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Abstract—Concerns over energy efficiency and greenhouse gas 

(GHG) emissions are driving research investments into advanced 

propulsion technologies. Plug-in hybrid electric vehicles (PHEVs) 

can provide a bridge that connects transport electrification to 

renewable bioenergy sources such as ethanol. However, it remains 

unclear how this pathway can simultaneously address economic, 

energy and environmental goals. To tackle this challenge, the 

present study explores, for the first time, the multiobjective 

optimal sizing of PHEVs powered by low-carbon sources of 

electricity and ethanol-gasoline blend. The empirical ethanol-

gasoline blend model is incorporated into the PHEV simulation 

whose relevant parameters are validated using laboratory data 

from the European Commission – Joint Research Centre. We 

develop a full picture of the use-phase well-to-wheel (WTW) GHG 

emissions from ethanol, gasoline and grid electricity and their 

energy consumptions. Consequently, market-oriented PHEV 

sizing solutions are provided as per the power utility generation 

portfolio and automobile fuel properties of the target region. The 

results indicate that better performances of the PHEV, regarding 

GHG emissions and energy consumption, are associated with 

larger battery size and smaller engine displacement but result in a 

higher cost-to-power ratio. Specifically, for E25-fuelled PHEVs in 

markets with world average electricity carbon intensity, every 1.0 

USD/kW increase in cost-to-power ratio leads to savings of 1.6 MJ 

energy consumption and 1.7 g CO2-eq/km WTW GHG emissions. 

Moreover, a clear benefit of using E25 in the hybrid propulsion 

system is identified, where the energy consumption and GHG 

emissions can be reduced by 5.9 % and 12.3 %, respectively. 

 
Keywords—low carbon propulsion, multiobjective optimization, 

ethanol-gasoline blends, plug-in hybrid electric vehicle. 

I. INTRODUCTION 

Transport is a major source of greenhouse gas (GHG) 

emissions and unsustainable energy use due to a nearly 

complete dependence on liquid fossil fuels [1]. Intensive efforts 

have been directed at battery and biofuel technologies, which 

have made electric and flex-fuel vehicles (EVs and FFVs) 

potentially important strategies to decarbonize transport [2]. 

However, the market penetration of EVs remains marginal 

owing to higher cost, increased weight, limited range, and slow 

charging process [3]. The main barriers to the adoption of FFVs 

running on ethanol are high cost relating to powertrain 

enhancements and the potential to pose a big threat to food 

security [4]. To overcome these limitations, the view from BYD 

Auto, a Chinese multinational automaker, is that plug-in hybrid 
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electric vehicles (PHEVs) could provide a bridge that connects 

powertrain electrification to renewable ethanol. The reason for 

this is the PHEV can use an onboard battery to travel on 

electricity from the grid, and it can burn liquid fuel, operating 

as a traditional hybrid electric vehicle (HEV).  

Despite the surging acceptance of PHEVs, little progress has 

been made to simultaneously address economic, energy and 

environmental goals in the design of PHEVs powered by low-

carbon sources of electricity and ethanol. In PHEVs design, the 

optimal sizing of the key mechanical and electrical components 

has significant effects on driving performance and cost-

effectiveness [5]. Some valuable insights have been reported in 

the literature [6], [7], being primarily concerned with the 

optimal sizing of lithium-ion batteries, ultracapacitors, and the 

internal combustion engine (ICE). For example, Hu et al. [8] 

presented a battery sizing framework for PHEVs to minimize 

CO2 emissions. Wu et al. [9] demonstrated a cost-optimal sizing 

of drivetrain components including batteries and ICE, etc.   

The lithium-ion battery represents the most widely used 

electric energy storage module because of its high energy 

densities [10], both gravimetric and volumetric. However, its 

relatively low power density often results in an oversizing, and 

thus the excess cost, of the battery pack, in order to deal with 

high power transients in real-world driving scenarios [11]. 

Furthermore, increased load frequency is reported to reduce 

battery durability [12]. Consequently, the role of the 

ultracapacitor has received considerable critical attention in 

automotive propulsion systems [13] mainly due to its high 

power density, fast charge, and wide operational range. In the 

recent study by Zhang et al. [14], the energy storage system 

comprising batteries and ultracapacitors is shown to fully 

exploit the synergistic benefits of these two devices.  

To address limitations of the above electric energy storage 

devices, such as range anxiety and lack of charging 

infrastructure, the ICE installed in the PHEV can use liquid 

fuels and act as an onboard charging device [15]. In addition, 

various techniques have been developed to make ICEs greener, 

cleaner, and more efficient [16]. Among them, ethanol-gasoline 

blends have attracted considerable attention from both scholars 

and the wider community [17]. For example, Wang et al., in 

their recently published articles [18], [19], have demonstrated 

clear benefits of ethanol addition for the enhancement of engine 
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efficiency and the reduction of emissions. Furthermore, 

Samaras et al. [20] have stressed that the reduced liquid fuel 

requirements of PHEVs could utilize limited ethanol resources, 

without threat to food security. Bradley et al. [21] present the 

PHEVs design considerations including vehicle component 

function, energy management systems and energy storage 

trade-offs. Some studies on PHEVs have shown larger regional 

GHG reductions in areas with less GHG-intensive generation 

portfolios [22].  

Therefore, the incorporation of multiple targets, including 

energy consumption, cost-effectiveness, and emissions, is 

important when approaching the optimal PHEV component 

sizing. The multiobjective optimization methods can be 

categorized into the following two broad groups:   

1) Weighted-sum methods aggregate multiple objectives into 

a single cost function that is then minimized [23]. Zhou et 

al. [5] developed a particle swarm optimization (PSO) 

algorithm utilized in the optimal PHEV sizing. In this 

algorithm, the single cost function aims to minimize the 

overall volume and maximize energy efficiency. The 

weighted-sum methods cannot, however, determine the 

weights and the normalization factors that can optimally 

balance and scale the multiple objective functions for a 

problem with little or no information [24], which can cause 

misleading optimization results.  

2) Pareto-optimal methods offer a set of Pareto-optimal (or 

non-dominated) solutions [25], where no single solution is 

better than another in every criterion [26]. Zhang et al. [14] 

have employed a non-dominated sorting genetic algorithm 

(NSGA) to reduce the manufacturing cost of the energy 

storage system and prolong battery life. The resulting 

Pareto-optimal set provides the performance boundaries 

and relationships (e.g., conflicting or harmonious) of the 

objective functions, therefore, it is an important input to the 

system design process [27]. 

Using an advanced Pareto-based optimization algorithm, this 

work contributes to the multiobjective PHEV component sizing 

by including several aspects omitted by previous studies. First, 

an empirical ethanol-gasoline blend model is incorporated into 

the PHEV simulation. Second, we develop a full picture of the 

use-phase well-to-wheel (WTW) GHG emissions from ethanol, 

gasoline and grid electricity and their energy consumptions. 

Third, market-oriented PHEV design solutions can be provided 

since the power utility generation portfolio and automobile fuel 

properties of the target market are considered. Finally, the 

present work highlights the Pareto relationships among the 

economic, energy and environmental goals in PHEV design.  

The remainder of the paper is organized as follows: Section 

II presents the ethanol-gasoline blend model. Section III 

describes the hybrid ethanol-electric propulsion system. 

Section IV gives the methodology underlying the 

multiobjective optimization approach where the cost-to-power 

ratio, the energy consumption, and the GHG emissions are 

simultaneously minimized. Section V provides the results, 

followed by the key conclusions summarized in Section VI. 

II. ETHANOL-GASOLINE BLEND MODEL 

An accurate ethanol-gasoline blend model is vitally important 

because a precise knowledge of ethanol blends and their 

influencing factors can be instrumental in the implementation 

of component sizing and energy management. The authors, in 

our recently published articles [18], [19], have proposed an 

empirical ethanol-gasoline blend model based on historical and 

literature data to evaluated statistical benefits of ethanol use on 

the engine thermal efficiency gains and WTW GHG emissions. 

Table 1 lists the main properties of typical gasoline and ethanol 

used in automotive applications. What is important for us to 

recognize here, is that although lower in energy density (i.e., 

lower heating value, 𝐻𝑣), ethanol has a higher research octane 

number (𝑁𝑅𝑂𝑁) that can lead to an increased compression ratio 

and thence to enhanced engine thermal efficiency. Moreover, 

the GHG intensity (𝐸𝐺𝐻𝐺) of ethanol is only about one-third of 

its gasoline counterpart.  

 
Fig. 1 (a) shows the engine thermal efficiency gain 𝛽 due to 

the beneficial effects of ethanol addition. In the literature on 

ethanol blends, there are three principal effects of ethanol 

addition on engine hardware design and fuel consumption: 1) 

anti-knock; 2) high flame speed; 3) engine downsizing. These 

are factors contributing to total engine thermal efficiency gain 

𝛽 that varies as a function of the ethanol content, described as  

𝛽(𝜑𝑒) = 𝛽𝐴𝐾(𝜑𝑒) + 𝛽𝐹𝑆(𝜑𝑒) + 𝛽𝐸𝐷(𝜑𝑒), (1) 

where 𝜑𝑒  is the volumetric content of ethanol (vol. %); the 

subscripts, AK, FS, and ED denote the effects of anti-knock, 

flame speed, and engine downsizing, respectively. The anti-

knock engine efficiency gain can be calculated by  

𝛽𝐴𝐾(𝜑𝑒) = (𝑘0∆𝑁𝑅𝑂𝑁 + 𝑘1)𝜑𝑒
2

+ (𝑘2∆𝑁𝑅𝑂𝑁 + 𝑘3∆𝑆𝑂 + 𝑘4)𝜑𝑒 , 
(2) 

where 𝑘0, 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are coefficients derived from the 

engine tests using ethanol blends, more details are available in 

[18]; ∆𝑁𝑅𝑂𝑁  and ∆𝑆𝑂  are differences between ethanol and 

gasoline, in terms of research octane number and octane 

sensitivity, respectively, as expressed below.  

{
∆𝑁𝑅𝑂𝑁 = 𝑁𝑅𝑂𝑁

𝑒𝑡ℎ𝑎𝑛𝑜𝑙 −𝑁𝑅𝑂𝑁
𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒

,

∆𝑆𝑂 = 𝑆𝑂
𝑒𝑡ℎ𝑎𝑛𝑜𝑙 − 𝑆𝑂

𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒
,

 (3) 

In addition, the contributions of high flame speed and engine 

downsizing effects to engine efficiency are quantified as  

{
𝛽𝐹𝑆(𝜑𝑒) = 𝛾𝜑𝑒 ,

𝛽𝐸𝐷(𝜑𝑒) = (𝛼 − 1)(𝛽𝐴𝐾(𝜑𝑒) + 𝛽𝐹𝑆(𝜑𝑒)),
 (4) 

where 𝛾 and 𝛼 are factors equal to 0.02 and 1.1, respectively.  

Furthermore, the ethanol-gasoline blend model provides the 

estimation of the GHG intensities (g CO2-eq/MJ) of ethanol 

blends, which can be linearly calculated by 

𝐸𝐺𝐻𝐺
𝑓𝑢𝑒𝑙(𝜑𝑒) = 𝑏0 + 𝑏1𝜑𝑒 , (5) 

Table 1. Fuel properties [18] 

Parameter (unit) Gasoline Ethanol 

𝑁𝑅𝑂𝑁, research octane number 89 107 

𝑆𝑂, octane sensitivity 10 18 

𝜌𝑓, fuel density(kg/m3) 730 790 

𝐻𝑣, lower heating value (MJ/kg) 42 26.9 

𝐸𝐺𝐻𝐺, WTW GHG emission (g CO2-eq/MJ) 93.2 33.5 
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where 𝑏0  and 𝑏1  are constant coefficients determined by the 

gasoline and ethanol properties. As shown in Fig. 1 (b), with 

successive increases in ethanol content 𝜑𝑒  from 0 to 25, the 

GHG intensity of the fuel blend is decreased from 93.2 to 81.8 

g CO2-eq/MJ, indicating significant reductions in total GHG 

emission (~12 %, from blend) and in fossil GHG emission (~20 

%, from gasoline).  

 
The ethanol-gasoline blend model can be applied for up to 70 

vol. % ethanol blends [18]. However, the blend whose ethanol 

content is beyond 25 vol. % cannot be used in regular engines 

[28], causing high cost relating to engine enhancements. 

Therefore, the ethanol content (𝜑𝑒) in blends ranges between 0 

and 25 in this study.  

III. HYBRID ETHANOL-ELECTRIC PROPULSION SYSTEM 

 
As illustrated in Fig. 2, the PHEV propulsion system 

examined here comprises a set of mechanical and electrical 

components. The battery pack (BP) and the ultracapacitor pack 

(UP) can both store grid electricity. The ICE that is connected 

to the liquid fuel tank and the generator can use chemical energy 

obtained from the ethanol-gasoline blend to charge the batteries 

and ultracapacitors when their grid electricity is depleted or to 

propel the wheels via the electric motor. In addition, the kinetic 

energy harvested by regenerative braking can also be stored in 

the BP and the UP. The involved energy conversion and 

management processes are introduced below. 

A. Vehicle Dynamics 

The vehicle longitudinal dynamics can be described by  

{
  
 

  
 
𝑣(𝑡) = 𝑑̇(𝑡),

𝑎(𝑡) =
1

𝛿𝑚
(𝐹𝑇(𝑡) − 𝐹𝑅(𝑡)),

𝐹𝑇(𝑡) =
1000𝑃𝑒𝑚(𝑡)𝜂𝑑

𝑣(𝑡)
,

𝐹𝑅(𝑡) = 𝑓2𝑣(𝑡)
2 + 𝑓1𝑣(𝑡) + 𝑓0 cos 𝜃 + 𝑚𝑔 sin 𝜃,

 (6) 

where 𝑎 , 𝑣  and 𝑑  are acceleration (m/s2), speed (m/s), and 

travel distance (m), respectively, of the subject vehicle at time 

𝑡 (s); 𝑚 is the vehicle operating mass (kg); 𝛿 is the equivalent 

inertial mass; 𝑃𝑒𝑚 denotes the power (kW) of the electric motor; 

𝜂𝑑  is the driveline efficiency; 𝐹𝑇  is the tractive forces; 𝐹𝑅 

indicates the resistance forces acting on the vehicle, namely, the 

aerodynamic, rolling and grade resistance; 𝑓0, 𝑓1, and 𝑓2 are the 

road load coefficients [29]; and 𝜃 is the road grade (rad).  

 
As presented in Fig. 3, the vehicle dynamics are validated 

using chassis dynamometer tests carried out in laboratories of 

the European Commission – Joint Research Centre (JRC). 

Fig. 3 (a) shows 46 consecutive test cycles with different 

acceleration and deceleration rates. Fig. 3 (b) compares 

measured data points with the theoretical full-load acceleration 

curve 𝑎𝐹𝐿  derived from equation (6). It is worth noting that 

there are few data points at low-speed (less than ~5 m/s) region 

because the speed range for these tests is between 20 and 120 

km/h. It is apparent that the theoretical 𝑎𝐹𝐿  curve demonstrates 

a good correlation with the upper boundary test points. Fig. 3 

(c) selects test points with small accelerations (i.e., |𝑎| ≤ 0.1), 

so that their tractive power 𝑃𝑇  is approximately equal to their 

resistance power 𝑃𝑅. The observed strong correlation between 

the theoretical 𝑃𝑅  curve and measured 𝑃𝑇  points further 

supports the robustness and reliability of the vehicle dynamics 

model used in this work.  

 
Fig. 1.  The energy and emission benefits of different ethanol-gasoline blends. 

(a) Engine efficiency gain. (b) GHG emissions. 
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Fig. 2.  The PHEV powertrain configuration and energy sources. 
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Fig. 3.  The validation of the vehicle dynamics model in laboratories. (a) Test 

cycles. (b) Validation of theoretical full-load acceleration. (c) Validation of 

theoretical resistance power.  
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B. Internal Combustion Engine 

An empirical 1.0 L engine model from the AVL CRUISE 

software was selected as the baseline for the component sizing. 

It is assumed that the engine operation points always lie on the 

highest efficiency curve across the entire power range of the 

engine, which is normalized against its maximum power (40 

kW) [30]. According to Willans method adopted by Zhou et al. 

[5] and Lujan [31], the maximum power of the engine can be 

scaled by considering its displacement, and thus, its 

instantaneous fuel consumption rate (𝑚̇) can be estimated by  

{
 
 

 
 𝑚̇(𝑡) =

𝑃𝑖𝑐𝑒(𝑡)

𝐻𝑣(𝜑𝑒) ∙ (1 + 𝛽(𝜑𝑒)) ∙ 𝜂𝑖𝑐𝑒
 𝑎𝑠𝑒(𝑃𝑖𝑐𝑒

𝑛 )
,

𝑃𝑖𝑐𝑒
𝑛 =

𝑃𝑖𝑐𝑒(𝑡)

𝑃𝑖𝑐𝑒
𝑚𝑎𝑥 ,

𝑃𝑖𝑐𝑒
𝑚𝑎𝑥(𝑉𝑖𝑐𝑒) = 𝑘𝑠𝑉𝑖𝑐𝑒  ,

 (7) 

where 𝑃𝑖𝑐𝑒
𝑚𝑎𝑥 is the maximum engine power (kW); 𝑉𝑖𝑐𝑒  indicates 

the engine displacement (L); 𝑘𝑠 is the engine scale factor; 𝑚̇ is 

the fuel consumption rate (g/s); 𝑃𝑖𝑐𝑒  is the current engine power 

output (kW); 𝑃𝑖𝑐𝑒
𝑛  is a dimensionless quantity and denotes the 

normalized engine power; 𝜂𝑖𝑐𝑒
 𝑎𝑠𝑒  is the baseline engine 

efficiency function illustrated in Fig. 4; 𝐻𝑣  is the lower heating 

value (MJ/kg) of the fuel blend. The cost estimation method for 

a regular engine, adopted by Wu et al. [9], is expressed as 
𝑐𝑖𝑐𝑒(𝑉𝑖𝑐𝑒) = 12𝑃𝑖𝑐𝑒

𝑚𝑎𝑥(𝑉𝑖𝑐𝑒) + 424, (8) 

where 𝑐𝑖𝑐𝑒  is the cost (USD) of the engine whose maximum 

power is 𝑃𝑖𝑐𝑒
𝑚𝑎𝑥 .  

 

C. Battery and Ultracapacitor 

 
The battery pack (BP) and ultracapacitor pack (UP) are scaled 

by their cell numbers, namely, 𝑛 𝑐 and 𝑛𝑢𝑐, respectively. Taken 

from the study by Zhou et al. [5], the types of lithium-ion 

battery and ultracapacitor are Panasonic NCR18650BF and 

NessCap ESHSR-3000C0-002R7A5T, respectively, whose 

main specifications are summarized in Table 2. The battery 

physics is simulated by the model proposed by Chen et al. [32], 

while the mathematical model adopted for the ultracapacitor 

simulation is based on the study by Ostadi et al. [6]. To avoid 

the detrimental effects of overcharge and overdischarge, the 

operating window of battery state-of-charge (SoC) is from 0.2 

to 0.8; while for ultracapacitor, its SoC is bounded between 0.2 

to 0.9, following  Zhang et al. [14].  

D. Energy Management Strategy 

Torque/power coordination is essential for realizing PHEVs’ 

low-carbon and high-efficiency potentials [33]. Thus, the 

hybrid propulsion system needs capable energy management 

strategies (EMSs) to coordinate the power outputs from the 

engine-generator unit (EGU), battery pack (BP), and 

ultracapacitor pack (UP). In this work, two widely-used EMSs 

including CD-CS (charge depleting – charge sustaining) and 

WT (wavelet transform) are employed to realize the power split 

among EGU, BP, and UP.  

The overall power-balance equations are 

{

𝑃𝑒𝑚(𝑡)

𝜂𝑒𝑚𝜂𝑖
2
= 𝑃𝑖𝑐𝑒(𝑡)𝜂𝑔 + 𝑃𝑒𝑙𝑒(𝑡),

𝑃𝑒𝑙𝑒(𝑡) = 𝑃  (𝑡) + 𝑃𝑢 (𝑡),

 (9) 

where 𝜂𝑒𝑚  is the motor efficiency; 𝜂𝑖  indicates the inverter 

efficiency; 𝜂𝑔  is the generator efficiency; 𝑃𝑒𝑙𝑒  is the power 

(kW) delivered from the electricity storage components; and 

𝑃   and 𝑃𝑢  are the power outputs (kW) of the battery pack and 

the ultracapacitor pack, respectively.  

The CD-CS technique [34] is applied to split the mechanical 

(𝑃𝑖𝑐𝑒 ) and electrical (𝑃𝑒𝑙𝑒 ) power outputs, where the former 

varies as a stepwise function of the battery SoC. 
𝑃𝑖𝑐𝑒(𝑡) = 

{
 
 

 
 
0, 𝑆𝑜𝐶 𝑐 ∈ (0.8, 1]

𝑟𝑜𝑢𝑛𝑑 (20𝑒
−
(𝑆𝑜𝐶𝑏𝑐(𝑡)−0.2)

2

2𝜎2 )

20
 𝑃𝑖𝑐𝑒

𝑚𝑎𝑥,
𝑆𝑜𝐶 𝑐 ∈ [0.2, 0.8]

𝑃𝑖𝑐𝑒
𝑚𝑎𝑥, 𝑆𝑜𝐶 𝑐 ∈ [0, 0.2)

 
(10) 

where 𝜎  is the time constant; 𝑆𝑜𝐶 𝑐  is the battery state-of-

charge (SoC). The battery dynamics [35], [36] are governed by 

the following equations.  

{
 
 

 
 𝑃 𝑐(𝑡) =

𝑃  

𝑛 𝑐
= 𝑉 𝑐𝐼 𝑐 − 𝐼 𝑐

2𝑅 𝑐 ,

𝑆𝑜𝐶̇  𝑐(𝑡) = −
𝐼 𝑐
𝑄 𝑐

= −
𝑉 𝑐 − √𝑉 𝑐

2 − 4𝑅 𝑐𝑃 𝑐(𝑡)

2𝑅 𝑐𝑄 𝑐
,

 (11) 

where 𝑃 𝑐  and 𝐼 𝑐  are respectively the power (W) and the 

current (A) of the battery cell; 𝑅 𝑐 , 𝑄 𝑐 , and 𝑉 𝑐  denote the 

internal resistance (Ω), energy capacity (As), and open-circuit 

voltage (V), respectively; 𝑛 𝑐 is the cell number in the battery 

pack.     

In addition, the WT technique uses high-pass and low-pass 

filters to decompose the electrical power signal (𝑃𝑒𝑙𝑒 ) into 

different localized contributions, each of which represents a 

portion of the signal from a different frequency band [37]. 

Consequently, the high frequency components are dealt with by 

 
Fig. 4.  The efficiency curve of the baseline engine fueled with gasoline 

(without ethanol addition).    
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Table 2. Main specifications of the battery and the ultracapacitor [5], [14] 

Parameter (unit) Value 

Battery cell  

𝑚 𝑐, mass (g) 46.5 

𝑉 𝑐, nominal voltage (V) 3.6 

𝑄 𝑐, energy capacity (As) 11500 

𝑅 𝑐, resistance (Ω) 0.01 

𝑐 𝑐, cost (USD) 6.5 

Ultracapacitor cell  

𝑚𝑢𝑐, mass (g) 535 

𝑉𝑢𝑐, nominal voltage (V) 2.7 

𝑄𝑢𝑐, energy capacity (As) 4000 

𝐶𝑢𝑐, capacitance (F) 3000 

𝑐𝑢𝑐, cost (USD) 32.5 
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the highly responsive ultracapacitor pack (UP); while the 

remaining parts are consigned to the battery pack (BP). This 

approach, as expressed in the following equations, can help to 

protect battery cells from too much transient charging and 

discharging.  

{
𝑃  (𝑡) = 𝑓𝑙𝑜𝑤− 𝑎𝑠𝑠(𝑃𝑒𝑙𝑒(𝑡)),

𝑃𝑢 (𝑡) = 𝑓ℎ𝑖𝑔ℎ− 𝑎𝑠𝑠(𝑃𝑒𝑙𝑒(𝑡)),
 (12) 

IV. OPTIMIZATION METHODOLOGY 

The working principle of the multiobjective optimal sizing 

conducted in this study is illustrated in Fig. 5. The input layer, 

as presented in Fig. 5 (a), provides information from the real-

world measurements, standards, and requirements, for the 

formulation of the multiobjective optimization problem (MOP). 

The driving cycle used is three consecutive repetitions of the 

worldwide harmonized light vehicle test cycle (3×WLTC). The 

vehicle resistance factors are validated with chassis 

dynamometer tests shown in Fig. 3. As mentioned in the 

previous section, the ethanol and gasoline properties are fed 

into the fuel blend model for the estimation of engine efficiency 

and GHG emission. The optimization layer, given in Fig. 5 (b), 

is the flow chart of the non-dominated sorting genetic algorithm 

III (NSGA-III) employed to solve the formulated MOP. The 

output layer, presented in Fig. 5 (c), utilizes the desirability 

function to derive the best compromise solution from the Pareto 

frontier resulting from the NSGA-III optimization.  

 

A. Optimal Sizing Problem Formulation 

The primary goal of this study is to investigate the optimal 

sizing, i.e., the engine displacement (𝑉𝑖𝑐𝑒 ), the number of 

batteries (𝑛 𝑐), and the number of ultracapacitors (𝑛𝑢𝑐), of the 

PHEV using multiple energy streams. To this end, three 

objective functions, namely cost-to-power ratio (𝐽𝑐𝑜𝑠𝑡), energy 

consumption ( 𝐽𝑒𝑛𝑒𝑟𝑔𝑦 ), and GHG emission ( 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ) are 

defined as follows to encompass economic, efficiency, and 

environmental needs.  

The cost-to-power ratio (USD/kW) is the value of the 

components’ total manufacturing cost divided by the maximum 

power that the propulsion system can deliver. Its mathematical 

expression is given below.  

{
  
 

  
 𝐽𝑐𝑜𝑠𝑡 =

𝑐𝑖𝑐𝑒(𝑉𝑖𝑐𝑒) + 𝑐 𝑐𝑛 𝑐 + 𝑐𝑢𝑐𝑛𝑢𝑐
𝑃𝑖𝑐𝑒
𝑚𝑎𝑥(𝑉𝑖𝑐𝑒) + 𝜀  𝑃 𝑐

𝑚𝑎𝑥𝑛 𝑐 + 𝜀𝑢 𝑃𝑢𝑐
𝑚𝑎𝑥𝑛𝑢𝑐

,

𝜀  =
𝑛 𝑐𝑄 𝑐

𝑛 𝑐𝑄 𝑐 + 𝑛𝑢𝑐𝑄𝑢𝑐
,

𝜀𝑢 =
𝑛𝑢𝑐𝑄𝑢𝑐

𝑛 𝑐𝑄 𝑐 + 𝑛𝑢𝑐𝑄𝑢𝑐
,

 (13) 

where 𝑃 𝑐
𝑚𝑎𝑥 and 𝑃𝑢𝑐

𝑚𝑎𝑥  are the maximum power outputs (kW) 

of the battery cell and the ultracapacitor cell, respectively. As 

mentioned in the literature review, the ultracapacitor has a high 

power density but has a much lower energy density when 

compared with the battery. Considering that the sustainability 

of their maximum power outputs is limited by the energy 

available in these two devices, the power adjustment factors 𝜀   

and 𝜀𝑢  are incorporated into the cost function. 

The energy consumption (MJ) includes the consumed 

ethanol-gasoline blend and grid electricity during the 3×WLTC 

test cycle. The expressions are presented as follows.  

{
 
 

 
 𝐽𝑒𝑛𝑒𝑟𝑔𝑦 = ∫

𝐻𝑣(𝜑𝑒)𝑚̇(𝑡) + 𝑃  (𝑡) + 𝑃𝑢 (𝑡)

1000
𝑑𝑡

𝑡𝑓

𝑡0

,

𝑃  (𝑡) = 𝑛 𝑐𝑃 𝑐(𝑡),

𝑃𝑢 (𝑡) = 𝑛𝑢𝑐𝑃𝑢𝑐(𝑡),

 (14) 

where 𝑡0 and 𝑡𝑓 represent the initial time and final time of the 

driving cycle.  

Life cycle assessment (LCA) is a standardized tool to 

quantify GHG emissions associated with a product’s 

manufacture, use, and end-of-life [20]. In this paper, the use-

phase well-to-wheel (WTW) GHG emission (g CO2-eq/km), 

resulting from powering the vehicle with liquid fuel and grid 

electricity [38], is given below.   

𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
1

𝑑
∫ (𝐸𝑔ℎ𝑔

𝑓𝑢𝑒𝑙(𝜑𝑒)𝐻𝑣(𝜑𝑒)𝑚̇(𝑡) +
𝑡𝑓
𝑡0

                               𝐸𝑔ℎ𝑔
𝑔𝑟𝑖𝑑

(𝑃  (𝑡) + 𝑃𝑢 (𝑡))) 𝑑𝑡, 
(15) 

where 𝐸𝑔ℎ𝑔
𝑔𝑟𝑖𝑑

 is the carbon intensity (g CO2-eq/MJ) of the grid 

electricity stored in batteries and ultracapacitors. As reported by 

the International Energy Agency (IEA) [39], for the base-case 

scenario, grid electricity used to charge PHEVs has the WTW 

GHG intensity 𝐸𝑔ℎ𝑔
𝑔𝑟𝑖𝑑

 similar to the average intensity of the 

current world power portfolio, or 146.9 g CO2-eq per MJ of 

electricity.  

Moreover, according to a dataset of vehicle specifications 

that contains information relating to 543 commercial hybrid 

 
Fig. 5.  Working principle of the multiobjective optimal sizing: (a) the input 

layer including the real-world measurements, standards, and requirements; (b) 

the optimization layer implementing the Pareto-based NSGA-III algorithm; 
(c) the output layer utilizing the desirability function to derive the best 

compromise solution from the Pareto frontier.  
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electric vehicles, the multiobjective optimization is subject to 

the following constraints on the controlled variables. 

{

0.8 𝐿 ≤ 𝑉𝑖𝑐𝑒 ≤ 2.  𝐿
0 ≤ 𝑛𝑢𝑐 ≤ 100
 00 ≤ 𝑛 𝑐 ≤  000

 (16) 

B. Optimization Using Pareto Genetic Algorithm 

NSGA-III has been recognized to be an effective and 

efficient algorithm to solve multiobjective optimization 

problems (MOPs) [40]–[42], where an approximation of the 

Pareto-optimal set can be obtained in a single run. The flow 

chart of the NSGA-III optimization in this study is illustrated in 

Fig. 5 (b). The vector of controlled variables is expressed as a 

chromosome where each variable is the gene. There are three 

fundamental genetic operators: 1) the crossover operator 

exchanges the gene information of the current generation, in 

order to share the better gene segment; 2) the mutation operator 

then randomly alters some genes of the chromosome to perform 

a local search, attempting to find a better fitness landscape; 3) 

the selection operator finally determines the survived 

population for the next generation.  

C. Desirability Function 

In engineering applications, usually only one PHEV design 

solution is required, thus, the desirability function is introduced 

to select the best compromise solution from the Pareto frontier, 

as shown in Fig. 5 (c). The method adopted by Pasandideh et 

al. [43] computes a penalty score 𝛼 for each objective vector in 

the Pareto-optimal set. Consequently, the solution with the 

minimum 𝛼 is the best compromise one. The expressions of the 

desirability function are presented as follows. 

 min
𝐾∈𝑃𝐹

𝛼(𝐽(𝐾)) = min
𝐾∈𝑃𝐹

∑ 𝑤𝑖
𝐽𝑖(𝐾)−𝐽𝑖

𝑚𝑖𝑛

𝐽𝑖
𝑚𝑎𝑥−𝐽𝑖

𝑚𝑖𝑛
3
𝑖=1 , (17) 

  {

𝐽 = [𝐽𝑐𝑜𝑠𝑡 , 𝐽𝑒𝑛𝑒𝑟𝑔𝑦 , 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛],

𝐾 = [𝑉𝑖𝑐𝑒 , 𝑛𝑢𝑐 , 𝑛 𝑐],

∑ 𝑤𝑖
3
𝑖=1 = 1 and 𝑤𝑖 ≥ 0,

  (18) 

where 𝐽𝑖
𝑚𝑎𝑥 and 𝐽𝑖

𝑚𝑖𝑛 are the maximum and minimum values of 

the objective function 𝐽𝑖  on the Pareto frontier (PF); 𝐾 is the 

variable vector; 𝑤𝑖  means the weight factor given by the 

decision-maker.  

V. RESULTS AND DISCUSSION 

The results obtained from the multiobjective component 

sizing are presented and discussed in the section below from 

three perspectives: 1) the Pareto analysis seeks to elicit 

relationships (e.g., conflicting and harmonious) between 

different objective functions, and thus to provide guidance for 

the selection of the weight vector 𝑤 in the desirability function; 

2) the performance analysis demonstrates the reliability of the 

best compromise solution when implemented in the PHEV 

propulsion system; and 3) the analysis of energy and GHG 

emission benefits from the ethanol use is presented.  

A. Pareto Analysis 

Fig. 6 (a) presents the Pareto-optimal set achieved by NSGA-

III optimization when 𝜑𝑒 is equal to 25 %. For visualization and 

analysis purposes, the three-dimensional (3D) objective space 

is projected onto the 2D scatter plots, i.e., Fig. 6 (b) - (d), where 

the ideal point (black square, 𝑧𝑖𝑑𝑒𝑎𝑙) and the nadir point (black 

triangle, 𝑧𝑛𝑎𝑑𝑖𝑟) correspond to the lower and upper boundaries 

of the Pareto performance range (PPR). The relationships 

among different objective functions are analyzed as below.  

 
Intuitively with the projection in Fig. 6 (b), a trade-off (or 

conflicting relationship) can be identified between the 

manufacturing cost ( 𝐽𝑐𝑜𝑠𝑡 ) and the energy consumption 

(𝐽𝑒𝑛𝑒𝑟𝑔𝑦) targets, because one of them will deteriorate when the 

other is improved in the Pareto-optimal set. Moreover, there 

exists a similar trade-off between the cost ( 𝐽𝑐𝑜𝑠𝑡 ) and the 

emission (𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛) targets, as shown in Fig. 6 (c). However, 

looking at Fig. 6 (d), the optimization of 𝐽𝑒𝑛𝑒𝑟𝑔𝑦  is in harmony 

with that of 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 , where the reduction of any one is 

rewarded with a simultaneous decrease in the other.  

According to relationships of objective functions mentioned 

above, the weight vector is assigned as 𝑤 = [0.50, 0.25, 0.25] in 

this work, because the energy and the emission targets are both 

in conflict with the cost objective. After the implementation of 

the desirability function, the best compromise solution is 

obtained and identified as a pentagram symbol in Fig. 6.  

 
The box-whisker diagrams shown in Fig. 6 (e) – (g) provide 

the statistical distributions of the Pareto-optimal set regarding 

 
Fig. 6.  The Pareto frontier (PF) resulting from the multiobjective optimization. 

(a) PF in 3D space. (b)-(d) Projections onto 2D planes. (e)-(g) Marginal 

distributions. 
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Table 3. Distribution of each objective on the Pareto frontier  

Objective PPR Median 

cost-to-power ratio, 𝐽𝑐𝑜𝑠𝑡 (USD/kW) 47.6 106.2 

energy consumption, 𝐽𝑒𝑛𝑒𝑟𝑔𝑦 (MJ) 75.6 107.4 

GHG emission, 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (g CO2-eq/km) 80.4 163.6 
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each objective. The height of the box is the interquartile range 

(IQR) between the first quartile (Q1, 25 %) and the third quartile 

(Q3, 75 %). The median, the band inside the box, denotes the 

second quartile (Q2, 50 %). The ends of the whisker represent 

the Pareto performance range (PPR), namely, the range 

between the ideal point and the nadir point in every objective 

dimension. As summarized in Table 3, the cost (𝐽𝑐𝑜𝑠𝑡), energy 

(𝐽𝑒𝑛𝑒𝑟𝑔𝑦 ), and emission (𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ) objectives have a median 

value of 106.2 USD/kW, 107.4 MJ, and 163.6 g CO2-eq/km, 

respectively, in the Pareto-optimal set. More importantly, the 

PPR data from this table indicates that, for the design of PHEVs 

fueled with E25, every 1.0 USD/kW increase in cost-to-power 

ratio leads to savings of 1.6 MJ energy consumption and 1.7 g 

CO2-eq/km WTW GHG emission. 

 
Fig. 7 displays the parallel coordinates, which offer more 

details in correlating the controlled variables (𝑉𝑖𝑐𝑒 , 𝑛 𝑐 , and 

𝑛𝑢𝑐) with the design objectives (𝐽𝑐𝑜𝑠𝑡 , 𝐽𝑒𝑛𝑒𝑟𝑔𝑦 , and 𝐽𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛). 

Each dimension is visualized on a vertical axis and each Pareto-

optimal solution is presented as a curve connecting the 

respective values on the vertical axis. In addition, the black dash 

curve denotes the compromise solution, which is consistent 

with the preference expressed by the weight vector 𝑤 . The 

findings in the parallel coordinates further indicate that better 

performances of the PHEV propulsion system with respect to 

GHG emissions and energy consumption are associated with 

larger battery size and smaller engine displacement, which, 

conversely, result in a higher cost-to-power ratio.  

B. Performance Analysis 

Fig. 8 demonstrates the performances of the PHEV 

propulsion system after the implementation of the compromise 

solution discussed above. Fig. 8 (a) – (c) show the power 

profiles of the battery pack (BP), the ultracapacitor pack (UP), 

and the engine-generator unit (EGU). To compare their power 

transients, two gray sections (time intervals 800 – 1000 s and 

4900 – 5100 s) are zoomed in and put into the same power vs 

time coordinates, as shown in Fig. 8 (e) and (f). The above 

figures reveal that power coordination among different 

mechanical and electrical propulsion components can be 

achieved by the employed CD-CS and WT energy management 

strategies. The battery pack has a smooth power profile together 

with reduced power levels, while the ultracapacitor pack assists 

to share the dynamic transients during the aggressive 

accelerations and decelerations. The engine-generator unit 

starts to work at ~3000 s and operates constantly in high-

efficiency and low-emission areas since the hybrid powertrain 

has multiple power sources and makes it easy to adjust the 

engine operation points [44]. Fig. 8 (d) illustrates the battery 

SoC and ultracapacitor SoC profiles during the 3×WLTC test 

cycle, where detrimental overcharge and overdischarge are 

avoided.  

 

C. Analysis of Energy and Emission Benefits  

To analyze the impact of ethanol use on the performance of 

the optimized PHEV, Fig. 9 compares the cumulative energy 

consumption and GHG emission for E0 (without ethanol 

addition, i.e., ethanol content 𝜑𝑒 = 0 %,) and E25 (𝜑𝑒 = 25 %) 

scenarios.  

Fig. 9 (a) and (b) present results from the simulation of the 

E0 scenario. It can be seen that the energy consumption and the 

GHG emission from 3×WLTC cycle are ~145 MJ and ~15.6 kg 

CO2-eq, respectively, where the gasoline accounts for 73.7 % 

of the total energy consumed and 64.0 % of the overall GHG 

emission. When using the low-carbon E25 fuel blend, an 

overview of the PHEV energy consumption is displayed in 

Fig. 9 (c), where the saving of the total energy consumption is 

5.95 %, while the corresponding contribution from gasoline is 

reduced to 58.3 %. Moreover, the emission benefit from ethanol 

use is provided in Fig. 9 (d), where the saving of total GHG 

emission is 12.3 %, and the percentage of fossil GHG emission 

 
Fig. 7.  Parallel coordinates of the Pareto-optimal solutions.  
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is reduced to 54.3 %. What is interesting about the data in 

Fig. 9 (c) and (d) is that ethanol only contributes to 4.6 % of the 

total GHG emissions although it provides 13.8 % of the total 

energy.  

 

VI. CONCLUSIONS 

To combat climate change and enhance energy security, 

plug-in hybrid electric vehicles (PHEVs) can provide a bridge 

that connects transport electrification to renewable ethanol. 

However, little progress has been made to simultaneously 

address economic, energy and environmental goals in the 

design of PHEVs powered by low-carbon sources of electricity 

and ethanol. This study has thoroughly examined the 

synergistic benefits of both electric and ethanol low-carbon 

propulsion techniques within the framework of multiobjective 

PHEV component sizing. The cost-to-power ratio, energy 

consumption, and use-phase WTW GHG emission are selected 

as optimization objectives. The major contribution and 

conclusions of this paper are as follows:  

1. An empirical ethanol-gasoline blend model is incorporated 

into the PHEV powertrain simulation. Then we develop a full 

picture of the use-phase WTW GHG emissions from ethanol, 

gasoline and grid electricity and their energy consumptions. 

2. The proposed PHEV component sizing approach can 

provide market-oriented PHEV design solutions targeted on the 

power utility generation portfolio and the automobile fuel 

properties of the market region. 

3. Specifically, for E25-fuelled PHEVs in markets with 

world average (146.9 g CO2-eq/MJ) electricity carbon intensity, 

every 1.0 USD/kW increase in cost-to-power ratio leads to 

savings of 1.6 MJ energy consumption and 1.7 g CO2-eq/km 

WTW GHG emissions. 

4. A clear benefit of using E25 in the hybrid propulsion 

system is identified, where the energy consumption and the 

GHG emissions can be reduced by 5.9 % and 12.3 %, 

respectively. 

5. A moderate proportion of ethanol using E25 in the PHEV 

can contribute to 13.8 % of the total energy used but counts only 

4.8 % of the GHG emissions.  
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