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Chapter 1

Introduction

Network science has evolved out of various well-established disciplines including mathematics,
statistics, physics, computer science and sociology. It enables the statistical treatment of
certain types of systems comprising large numbers of interconnected elements. The collective
behaviour that can be exhibited by such a system can manifest emergent features; i.e properties
of the whole can be greater than the sum of those of its individual parts. Network science
has been applied to a wide range of areas that include, biology, epidemiology, transportation,
telecommunication, finance, scientometrics and more (see, e.g., Refs. [1–10]). Its application
to different fields is still developing and it is still finding new applications in areas where
it amalgamates more than one branch of knowledge, bringing together diverse traditional
academic disciplines. Besides delivering new quantitative insights when applied to old
problems, network science approaches inspire new questions and opens new avenues of
research.
Graph theory is the mathematical platform behind much of network science and can be traced
back to Leonhard Euler’s mathematical investigations of the Königsberg-bridge problem in the
18th century. Königsberg was a capital city of Prussia on the Preger river up to 1701. The
city had seven bridges that connected two islands and the question was whether one could
walk around the city in such a way that transverses each of the bridges precisely once. Euler
presented the arrangement of the bridges as a graph and provided a mathematical proof that no
such path exists [11, 12]. The graph corresponding to the bridge was an early representation of
a network [13, 14].
From the 1970s, the empirical study of social networks has also played an important role in
social science. Indeed, some of the mathematical and statistical tools were first developed in
the field of sociology. In such applications, social-network analysis was employed to analyse the
propagation of information such as news, ideas, inventions and culture as well as to understand
the spread of diseases and opinions. Social networks have also been studied in economic

1



systems, for example to investigate exchange relationships in trading. The spread of political
ideology, the movement of traffic, and the study of scientific collaborations have also been
targeting network analysis from the sociological point of view.
It was in 1998 that Watts and Strogatz produced their now famous paper [13] containing a model
that could explain the clustering observed in many real-world networks while still manifesting
the short average path lengths of the Erdős-Rényi random graphs. This was an important step
mathematically and one that drew the attention of many from the statistical physics community.
Striking similarities were noticed between the structure of an electrical grid, social networks
of Hollywood actors and the wiring of the neural system of a nematode worm. Since then, the
study of networks has accelerated and it now forms a large component of complexity science
and applied mathematics, overlapping with many other disciplines.
Very recently a new sub-discipline has emerged from the applications of network science
to study the relationships between characters in works of literature. The study of so-called
character networks has gained in popularity in recent years. Previous analyses have focused
on the universal properties and distinguishing features of character networks, particularly in
areas such as mythology [8, 15, 16]. There it facilitates new quantitative ways to compare
mythological narratives within and between cultures. This thesis follows on from these
pioneering investigations and examines two important works of the Gaelic tradition of epic
narratives. These are Cogadh Gaedhel re Gallaibh which is an account of the Viking age in
Ireland and the Poems of Ossian, a controversial but highly influential Scottish narrative.
In this thesis, we mainly focus on the character networks embedded in these two epic narratives
and compare them to others of the broad genre. In character networks, the basic elements
in question are individuals (characters) depicted in the narrative and these are represented by
nodes or vertices of the network. Interactions and relationships between these characters are
represented by edges or links. Network science offers the mathematical and statistical resources
to capture a plethora of quantitative features associated with the societies depicted in the texts.
By comparing the statistics from various networks to each other, one can gain insight into
similarities and differences between such societies. Of course, the application of networks to
epic narratives does not supplant current methods of analysing such texts in the humanities.
Rather our approach provides an additional tool — a quantitative methodology — that can
extract new features and inspire new angles for investigation.
In the following chapter, we start by giving a background to Cogadh Gaedhel re Gallaibh and
describe the characters and events in the Viking age in Ireland from the late 8th century to 1014
AD. The text presents conflict of the time as a war between the Irish and the Vikings (i.e. an
international conflict, a view supported by traditionalists). However, revisionists oppose this
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view and instead consider hostilities as part of a civil war. Our aim is to apply network theory
to the collection of interactions contained in Cogadh Gaedhel re Gallaibh. Our primary aim is
to gain some insight into the mixing patterns of interactions in the text to determine what these
have to say about the traditionalist versus revisionist debate.
The second part of Chapter 2 begins by contextualising the origins of the Ossianic controversy,
outlining the cultural circumstances in which the work appeared. It also documents how it was
received both positively and negatively. The poems published in 1760, reached international
acclaim and invited comparisons with major works of Homer. However, the work was plagued
by authenticity issues which ignited a persistent debate that is still existing in humanities today.
Our primary aim here is to compare the networks of Ossian with those coming from other
works which are claimed to have been influential in its composition. We hope to identify which
of these is closest to Ossian and if we can explain similarities detected.
In Chapter 3, we introduce various metrics from network theory that we use in this thesis.
Historically, new methods and approaches in complexity science and applied mathematics are
inspired through necessity — applications require the appropriate tools. Here too, we find the
need to invent new measures. We introduce a renormalised version of the so-called categorical

assortativity which facilitates meaningful comparison between some network systems in a
manner which was not previously accessible. Our main aims are addressed in the subsequent
chapters. We use the quantities that we discussed in Chapter 3 to provide empirical results
that capture the statistics of networks found in Cogadh Gaedhel re Gallaibh and Ossian. These
results are presented in chapters 4 and 5 respectively.
Chapter 6 carries on from our analysis of Ossian in Chapter 5 and addresses further questions
about its origin. Here we employ sampling methods known as sparsification in network theory,
to investigate if there is a process that generates an Ossianic type network from a likely source.
We summarise and give our conclusions in the last Chapter.
The investigation and analysis of Ossian in Chapter 5 is published in Advances in Complex

Systems as Ref. [9]. An online visualisation of Ossian’s character network is also available on
the github page https://yosej.github.io/Ossian_Full_Network. The work on Cogadh
Gaedhel re Gallaibh contained in Chapter 4 has been submitted to the journal Royal Society

Open Science and on the arXiv in Ref. [17]. The visualisations of the corresponding networks
will likewise be placed on github. The material in Chapter 6 is currently being prepared for
publication.
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Chapter 2

Epic Texts

In this thesis two epic narratives associated with the Gaelic tradition are investigated from a
perspective of network science. The adjective Gaelic pertains to the language of the Gaels, i.e.,
Irish, Scottish Gaelic and Manx (from the Isle of Man). The first is Cogadh Gaedhel re Gallaibh

(hereafter sometimes referred to simply as “the Cogadh”), one of the fifteen most important and
extensive Irish chronicles [18]. The title, in Irish, translates to “The war of the Gaedhil with
the Gaill” or “War of the Irish with the Foreigners”. It has been described as a “romantic tale”
which tells of events in Ireland between the late 8th and early 11th centuries. It differs from
most of the remaining Irish chronicles mainly in that it is not “a simple record of events” but a
dramatic account “in which heroes shine and villains play their sinister parts” [19]. The earliest
version of the text itself is dated between the 11th and 13th centuries. The text recounts how
Brian Boru, an Irish king, led a coalition of forces to triumph against Viking invaders. The
general outlines of the story have entered popular tradition in Ireland in a manner reflective of
this (i.e., as a clear-cut war between the Irish and Vikings). However, modern scholars view
the chronicle as largely propagandistic. A debate has arisen in the humanities as to whether
the events it describes really amount to an international conflict between Irish and Vikings
or whether they describe a domestic dispute, internal to Ireland, primarily between two Irish
factions. Our aim is to contribute to that debate by using the modern science of network theory
to analyse Viking-age interactions recorded in the text.
The second set of texts that we examine are from Scotland and come under the title The

Poems of Ossian [20–23]. These are purported to have been composed in Scottish-Gaelic
by a third-century bard named Ossian and translated into English by James Macpherson in
about 1760. The poems received international attention and were compared to Homer’s Illiad

and Odyssey. However, they also caused great controversy amid claims they were essentially
misappropriated from Irish tradition. An epic is defined as a long narrative detailing heroic
deeds and describes events of a nation or culture. Our aim is to compare the network structures
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contained within The Poems of Ossian to other epic works to which they have been matched in
the past. In particular, we wish to determine whether they more closely resemble those from the
Irish tradition or of the Classics.
In this chapter we provide some background to the network studies contained in subsequent
chapters. We begin with Cogadh Gaedhel re Gallaibh in Section 2.1. We first provide some
context in the form of a short discussion in Sub-section 2.1.1 of the main political divisions of
Ireland in the Viking age. In Sub-section 2.1.2 we then pose the main question that we wish to
address and discuss why network theory may deliver a meaningful answer. In Sub-section 2.1.4
more details of the context are given in the form of a summary of the main events of the
Viking Age in Ireland and set down in Cogadh Gaedhel re Gallaibh. The authenticity and
deficiencies of Cogadh Gaedhel re Gallaibh as a source are discussed in Sub-section 2.1.5.
After giving all of these contextual details and the humanities background to our study, we
restate the main question that we wish to address in the context of Cogadh Gaedhel re Gallaibh

in Sub-section 2.1.6.
We turn our attention to the Poems of Ossian in Section 2.2. Following a very brief summary
of the controversy surrounding the texts and of recent revisionist re-interpretations, we again
declare our main outcome for the impatient reader. In the Sub-section 2.2.1, we outline the
cultural circumstances in which Ossian appeared and in Sub-section 2.2.2 we discuss how
it received both praise and condemnation. We discuss the enormous cultural influence of
Ossian its legacy including the controversy surrounding the work. Despite the vast amount
of humanities literature on the topic, the Poems of Ossian continue to appeal as an interesting
area of academic research, recently revitalised by revisionist and counter-revisionist arguments.
This is the context in which we pose our main question in Sub-section 2.2.3 and explain why
we expect network theory to provide an answer.

2.1 Cogad Gáedel re Gallaib

The year 2014 marked the millennial anniversary of the famous Battle of Clontarf, an event of
great importance in the history of Ireland. In popular tradition and collective memory, the battle
is viewed as marking the end of Viking power after two centuries in the country. After Clontarf,
Viking ambitions in Ireland were essentially reduced as they submitted to the overlordship
of Irish kings. The recent anniversary inspired academics to revisit the period, and multiple
articles appeared in academic journals, booklets, books, online commentaries and various
media engagements (e.g., Refs. [24–34]). Quite naturally, these approached the subject matter
using long-standing, traditional tools of the humanities, extending and building upon earlier
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investigations which go back centuries (e.g., Refs. [19, 35–61]). There has been an ongoing
debate within the humanities community regarding the precise nature of the relationships and
interactions described in Cogadh Gaedhel re Gallaibh. The debate, which has lasted at least
seven decades, is between what we may call “traditionalist” and “revisionist” interpretations of
the exchanges between the conflicting parties [19, 28–30, 34, 43]. (In fact, there is an argument
that the discussion can be traced back as far as 250 years [28, 62, 63].)
In this thesis, we present an alternative investigation into Cogadh Gaedhel re Gallaibh using
a novel approach based within complexity science. Although limitations of Cogadh Gaedhel

re Gallaibh are multi-fold and well documented, it remains an extensive and useful source
of information for the Viking Age in Ireland. The text recounts the exploits of multitudes of
characters, conflicts, alliances, relationships and interactions between them.1 The statistical
tools appropriate to tackle networks like these have recently been developed [9, 15, 16]. They
require large casts of characters to deliver reasonable statistical power. Here our aim is to apply
them and to further develop them to deliver a new type of investigation into the Viking age in
Ireland as presented in Cogadh Gaedhel re Gallaibh.
Nowadays, the set of events, interactions and relationships associated with the Viking Age in
Ireland and, indeed, with the Battle of Clontarf, are frequently believed to exist in the public
memory in an excessively simplified and even incorrect manner. The popular picture of the
public at large is one of an “international” conflict between native Irish and “foreign” Viking.
After centuries of conflict in the country, victory for the former ended the invaders ambitions in
the country. We are told that this picture is at variance with the truth, which is more complex
and nuanced [19, 43]. Instead of a conflict whose nature is international, it is claimed that the
main issue at stake at the climactic Battle of Clontarf was actually a domestic dispute or civil
war. It was all about an internal, Irish struggle for sovereignty. Specifically, the new orthodoxy
views the conflict as primarily concerning the determination of Leinster (the eastern province of
Ireland) to remain independent of the high king [19, 43].2 Some such interpretations, wherein

1There are a number of theories for the origins and meaning of the word “Viking”. In this thesis we use it to
refer to the medieval raiders and invaders from Scandinavia who attacked Ireland, amongst other countries, by sea,
between the late 8th and 11th centuries [61]. Many of these subsequently settled in the country. There are stricter
definitions of the term “Viking” which may involve the notion of “piratical”. When used in this sense, the term
encompasses people beyond Scandinavia. Therefore, one may argue that not all Vikings were Scandinavian and,
indeed, that not all Scandinavians were Vikings [61]. But here we use the term in the looser sense — along the
lines in popular, modern usage. This is also keeping with much of the literature, e.g., Refs. [45, 48, 51, 52, 54, 56,
58, 59]). The Vikings we refer to are the Gaill (singular Gall) referred to in the title of the narrative. There are
also Hiberno-Norse (Hibernia is the Classical Latin name for Ireland) or Norse-Gaels, also called Gall-Ghaedheil
or “foreigner Gaels”. These emerged as a mixture of Gaelic (Irish) and Norse culture through intermarriage. They
include, for example, the kingdom of Dublin.

2The term “national” may be viewed by some as anachronistic and misleading here [30]. It is used in the sense
of a large group of people with common characteristics such as language, traditions, customs and ethnicity [51]
rather than in a governmental sense [64].
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Figure 2.1: Left: The kingdoms of Ireland in 1014 (courtesy of Wesley Johnston,
http://www.wesleyjohnston.com). Right: The first page of the oldest existing copy of
Cogadh Gaedhel re Gallaibh (from the twelfth century Book of Leinster).

the Vikings play a secondary role, tend to downplay the significance of Clontarf [34] and have
been partly ascribed to revisionist fashions [28, 54]. The aim of the investigations described
herein is to determine what the character networks contained in Cogadh Gaedhel re Gallaibh

have to say on the matter.

2.1.1 Background

Figure 2.1 contains a map outlining the political structure of Ireland in 1014. According to
legend, Ireland was divided into two parts in ancient times. The northern part was called
Leath Cuinn (meaning Conn’s Half) and included what became the medieval provinces of
Connacht, Ulster and Meath. The southern half was called Leath Moga (Mugh’s half) and
included the provinces of Munster and Leinster. Because there were five provinces altogether,
these were called cóiceda or “fifths”. The medieval provinces of Ulster, Connacht and Munster
approximately correspond to the modern Irish provinces of the same names. A combination
of the ancient provinces of Leinster and Meath approximate what is the modern Irish province
of Leinster. In modern times, Cúige remains the Irish word for “province”, even though they
number only four instead of five. In the Viking Age, the main contest for the overlordship of
Ireland (the so-called “high kingship”) was between two branches of Uı́ Néill dynasty, both
based in the northern half of the country. These were the so-called northern and southern
branches of the Uı́ Néill, The dominance of the Uı́ Néill was finally ended by Brian Boru,
as we shall see. In Figure 2.1 the red regions are Cork, Dublin, Limerick, Waterford and
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Wexford. These were all developed from Vikings base camps in the ninth century to more
permanent settlements and formed the foundations of the modern towns and cities of those
names in Ireland.
Figure 2.1 also contains an image from the famous Book of Leinster (one of a number of famous
Irish annals which have survived). It is the opening page of the copy of Cogadh Gaedhel re

Gallaibh recorded in that volume (which is also the oldest existing version). The narrative
style used in the Cogadh is “inflated and bombastic” [35] and modern scholars consider it
to be a brilliant piece of propaganda, whose main purpose was to praise Brian Boru and his
dynasty — the Dalcassians or Dál gCais. It is viewed as being of particular importance
in asserting the claim of the Dál gCais to the high kingship of Ireland [35, 45, 48]. This
is achieved through the usage of long, detailed tracts declaring the virtues of Brian and his
army while portraying the Vikings as piratical and brutal. However such qualitative, rhetorical
features are largely irrelevant for quantitative character-network analysis. Instead, the approach
used here draws only from the most basic information, namely the presence or absence of
interactions between characters which may be positive or negative in a sense to be described
below. The depictions of the characters themselves — whether they be virtuous or piratical,
for example — do not enter the analysis. Still, even such basic information is imperfect; e.g.,
the versions of the Cogadh which have come down to us contain imagined interactions in the
form of interpolations (discussed below). If, despite this, the text contains networks which are
reasonably or approximately reliable in the aggregate, they deliver essential information on the
society at the time.

2.1.2 The networks contained in the text

A network visualisation of the full set of interactions between the characters of Cogadh Gaedhel

re Gallaibh is depicted in Figure 2.2. Here and throughout individual network nodes represent
characters identified in the text. Relationships or interactions between these characters are
represented by edges or curved line segments connecting them. The nodes are coloured so
that Irish characters are represented in green. Green edges represent interactions between pairs
of Irish characters. The counterpart set of Viking nodes and their interlinks are in blue. Brown
edges represent interactions between Irish and Viking nodes. Any remaining nodes and edges
are in grey. Our aim is to analyse the network represented in Figure 2.2 and sub-networks
associated with it in order to gain quantitative insight into the complexity and conflicts of the
Viking Age in Ireland as described in Cogadh Gaedhel re Gallaibh.
The primary question we wish to ask in relation to this text is the following: Are the networks
underlying the Cogadh
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Figure 2.2: The entire Cogadh network of interacting characters. Characters identified as Irish
are represented by green nodes and those identified as Vikings are in blue. Other characters are
in grey. Edges between pairs of Irish nodes are also coloured green while those between Viking
pairs are blue. Edges linking Irish to Viking nodes are brown and the remaining edges are grey.

(a) consistent with the traditional depiction of a contest which is clear-cut international or

(b) supportive of the revisionist notion of a power-struggle which is mostly domestic or

(c) suggestive of something between both pictures?

In other words, our aim is to determine whether the conflictual edges in Figure 2.2 are mainly
blue and green or brown. There is a related question which we are also able to address, namely
whether a set of positive interactions mostly connects nodes of the same or different cultural
types. A simple count of edges is not adequate as such an approach would not take into account
different numbers of nodes of different type. Instead, a proper quantitative approach necessitates
the networks-science concepts of assortativity and disassortativity. The former is the tendency
for nodes which have similar attributes to connect to each other. The opposite tendency is
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disassortativity, whereby links tend to be between nodes of different types. The type of attribute
we are interested in here is cultural identity; we wish to gauge whether nodes linked by different
types of edges represent Irish or Viking characters (the Gaedhil or the Gaill). We use the term
“cultural assortativity”3 to denote associated measures which we denote generically by ρ. One
such quantity will be used as the primary determinant to distinguish between the alternatives
(a), (b) and (c) listed. A network with a positive value of ρ is said to be culturally assortative. A
negative value of the metric signals disassortativity. A value close to zero indicates the absence
of any such correlations (neither assortative nor disassortative).
The attributes we wish to investigate in the cultural context are positive (i.e., social) and negative
(i.e., hostile) interactions between characters of the text. Our main aim is to investigate the
configurations of hostile links, as these are the ones which are relevant for the above-mentioned
debate. One could argue that in an extreme situation (a limit, in a sense, of the overly simplified,
traditional picture), a scenario of purely “international conflict” (a) might be expected to contain
networks where hostility is “clear-cut” between nodes of different cultural identities.. This
(“clear-cut”) is the term employed by Ryan in a paper which challenged the traditional picture
Ref. [19]. The value of the cultural assortativity metric ρ for such a network would be expected
to be strongly negative. The revisionist picture of domestic or intranational conflict (b), on the
other hand, would have a positive value of ρ because hostility is primarily between sides of the
same cultural identity tags.4 A moderate value of cultural assortativity, lying between the two
extremes (i.e. a negative value of ρ which is moderate in magnitude) would then point to a more
complex picture (c).

2.1.3 The outcome of the study of Cogadh Gaedhel re Gallaibh

The unique strength of our analysis is that, unlike previous qualitative investigations which
tended to polarise the issue, we can deliver quantifying statements. We will show that the
spectrum (see Figure 2.3) of potential values of cultural assortativity for networks of the
conflictual type contained in Cogadh Gaedhel re Gallaibh ranges from ρ = −0.88 to ρ = 1.
The traditional “clear-cut” picture corresponds to the left-hand limit. The modern, revisionist

3The term is motivated by a discussion in Ref. [51] of “the strong sense of identity, achievement, and cultural
cohesion that had been created by the Irish learned classes.” Ó Corráin states “The island was united culturally
and linguistically” and “Self-consciously, the literati saw the Irish as a people or natio, to be compared with the
Goths, the Franks, or the people of classical antiquity. As far as the genealogists were concerned, the Vikings were
outsiders, and were called Gaill ‘Foreigners’ to the end. Irish reaction to the Vikings is to be understood in terms
of these cultural traits.” For further discussions of Hiberno-Scandinavian relations, see Ref. [52].

4We loosely use the term “intranational conflict” to describe Irish-on-Irish and Viking-on-Viking hostility
although there are two sets of Vikings — Danes and Norse which frequently fight with each other. We deal
with that issue in Section 4.7
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Figure 2.3: Graphical representation of the main conclusion of the analysis of Cogadh
Gaedhel re Gallaibh. The spectrum of values of cultural assortativity for networks of the
conflictual-Cogadh type ranges from ρ = −0.88 to ρ = 1. Negative values of ρ correspond to
various degrees of the traditional picture of international hostilities with ρ = −0.88 representing
a clear-cut Irish-versus-Viking conflict. Positive values correlate with the revisionist picture of
mostly intranational conflict. The analysis presented in this paper shows that the Cogadh hostile
network delivers a value −0.32 which, although not clear-cut, lies on the traditional side of the
spectrum.

picture is associated with the right-hand side. We determine a value for the actual Cogadh

network of ρ = −0.32. Its negative sign signals that the depiction of conflict in the narrative
is mainly international. Its moderateness is indicative of significant intranational conflict too.
Therefore the account is not as clear cut as either the traditional or revisionist pictures suggest,
but is located between their two extremes, on the traditional side.
The principal aims of our investigation into Cogadh Gaedhel re Gallaibh in later chapters of this
thesis are (i) to present visualisations for the positive and negative networks, (ii) to develop the
notion of cultural assortativity to estimate where a network of interactions is positioned on the
spectrum from the international to the intranational and (iii) to apply that tool to the networks
recorded in Cogadh Gaedhel re Gallaibh. Another objective is to (iv) quantify various statistical
properties of the Cogadh networks. These will allow us to compare with other epic narratives.
However, before presenting these details, we first provide more contextualisation of the problem
with a summary of Cogadh Gaedhel re Gallaibh and previous studies of it (all of which belong
to the humanities).

2.1.4 Context and text: The war of the Gaedhil with the Gaill

Cogadh Gaedhel re Gallaibh comes down to us in three manuscripts. The oldest is in the
twelfth century Book of Leinster (so named because of the associations of its content with that
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province of Ireland), which contains a fragment of the tale. The second (also incomplete) is
the Dublin Manuscript (so called because the copy is kept in Trinity College Dublin), dated
to the 14th century. The third, and only complete text is the Brusssels Manuscript. This was
saved by the famous Franciscan friar Mı́cheál Ó Cléirigh who in the 17th century was sent from
Louvain in Belgium to Ireland to collect and preserve Ireland’s ancient heritage. It is a copy
of an earlier work, Leabhar Chonn Chonnacht Ui Dhálaigh (Book of Cuconnact O’Daly who
died in 1139 [35]) which is now lost. The Brussels and Dublin manuscripts are close but not
identical. Nı́ Mhaonaigh gives a detailed textual history of Cogadh Gaedhel re Gallaibh in
Refs. [47, 48].
As a proxy for the originals, we use the nineteenth-century translation into English by James
Henthorn Todd [35]. Todd’s edition, which is 150 years old in 2017, is accompanied by an
extensive introduction and by detailed explanatory footnotes. It was prepared for the series
Rerum Britannicarum Medii Ævi Scriptores (“Chronicles and Memorials of Great Britain and
Ireland during the Middle Ages”) and is considered well balanced and thorough. It serves as a
source for some scholars wishing to access the narrative today [56].
Todd considered Cogadh Gaedhel re Gallaibh as divisible into two parts. The first recounts the
arrival and deeds of the Vikings in Ireland in a rough chronological fashion. The second part
concerns Brian Boru and his Munster dynasty whose power-base was on the banks of the river
Shannon. The lives and politics of his family are outlined along with numerous encounters with
the Vikings, all leading to the events at Clontarf.
Brian Boru or Brian Bóruma5 mac Cennétig was son of Cennétig mac Lorcáin, king of the Dál
gCais in the northern part of the province of Munster (a map of Ireland during the Viking Age
is provided in Subsection 2.1.1). On the death of his father, Brian’s older brother Mathgamain
assumed control. After capturing Cashel, the traditional capital of Munster, he claimed authority
over the entire province. On his death, Mathgamain was replaced by Brian who, like his brother,
proved to be an excellent military commander. After various battles at the provincial level, Brian
and the Dál gCais consolidated rule of Munster, defeating their Irish and Norse challengers.
Brian then turned his attention to the easterly province of Leinster and the westerly province of
Connacht.
Máel Sechnaill mac Domnaill was king of Meath (Mide) and high king of Ireland. He belonged
to the Clann Cholmáin sept of the Southern Uı́ Néill. Brian’s interests in Leinster brought
him into contest with Máel Sechnaill who led repeated forays there, as well as into Munster.
However, in 997, Brian and Máel Sechnaill agreed a truce, whereby the former would rule
over the (approximate) southern half of Ireland, while Máel Sechnaill kept the (approximate)

5The epithet “Bóruma” in Old Irish (“Borumha” in Todd [35]) is an alternative to “Boru” and may signify “of
the cattle tributes” [38].
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northern half as well as the high kingship. By these means, Brian came to control Munster and
Leinster as well as the Hiberno-Norse cities within, while Máel Sechnaill held the provinces of
Connacht, Meath and Ulster.
In 998, Brian and Máel Sechnaill worked together against the Dublin Norse. The Vikings had
established a settlement in Dublin in 838 and during the following century they developed a
kingdom comprising large areas surrounding the town and controlling parts of the Irish Sea.
Viking Dublin was politically linked to the Isle of Man and the Hebrides, as well as to Viking
settlements in Britain and Scandinavia. Indeed, in 980, an unsuccessful Dublin campaign
against Máel Sechnaill mac Domnaill had support from the Isle of Man and the Hebrides.
Dublin was joined by Leinster under a new king, Máel Morda mac Murchada, in opposing Brian
and Máel Sechnaill. Leinster traditionally rejected the rule of both Munster and Meath and the
Hiberno-Norse city of Dublin was ruled by Máel Morda’s cousin, Sigtrygg Silkbeard. The two
sides met at Glenmama in late December 999. The Irish annals agree that the combined forces
of Munster and Meath decisively defeated those of Leinster and Dublin. Sigtrygg, however,
was allowed to retain his rule over Dublin. Indeed, one of Brian’s daughters married him while
Brian himself married Sigtrygg’s mother Gormflaith (Máel Morda’s sister). Gormflaith was
also the former wife of Máel Sechnaill.
The river Shannon presented a barrier to Meath receiving support from his ally Cathal mac
Conchobar mac Taidg, king of Connacht, when Máel Sechnaill came under attack by Brian in
the year 1000. By 1002, Máel Sechnaill had surrendered the high kingship to Brian at Athlone.
The next target for Brian was Ulster. It took ten years, a combination of forces and coordinated
use of sea and land attacks, and support from the Church in Armagh for the Northern Uı́ Néill
and regional kings of Ulster to submit to Brian. By 1011, Brian had achieved his aim of bringing
all the regional rulers of Ireland under his control.
In 1012, Máel Mórda mac Murchada of Leinster rose in rebellion. Allied with Flaithbertach
Ua Néill, regional king of Ailech in Ulster, he again attacked Meath. Máel Sechnaill sought
Brian’s help and the following year Brian and his son led a combined force from Munster and
Connacht into Leinster, reaching Dublin in September. Out of supplies near the end of the year,
they abandoned their siege of the walled city, with an intention to return.
Thus was the background to the famous Battle of Clontarf. In 1014, Máel Morda’s cousin,
Sigtrygg, journeyed to Orkney and the Isle of Man seeking Viking support. These Norsemen
came under Sigurd Hlodvirsson (Earl of Orkney, known as Sigurd the Stout) and Brodir,
apparently of the Isle of Man. Brian’s forces came from Munster and southern Connacht
possibly supported, at least initially, by Máel Sechnaill mac Domnaill’s Meathmen (the precise
role of Meath in the Battle itself is a matter of some contention [19, 28, 54]). The Battle of
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Clontarf is believed to have taken place on Good Friday, 23 April 1014 [35] (see, however,
Ref. [30,65]). After a day’s fighting, the battle ended with the routing of the Viking and Leinster
armies. Their retreat was cut off by the high tide. Many of the nobles died. Brodir killed Brian,
having found the old man in his tent. Brodir in turn was killed by Wolf the Quarrelsome, a
relative of Brian Boru. Sigurd the Stout of Orkney was also killed, as was the Leinster king
Máel Morda mac Murchada. Sigtrygg Silkbeard survived and remained king of Dublin, and the
king of Meath, Máel Sechnaill mac Domnaill, resumed his high kingship of Ireland, at least in
name, supported by Flaithbertach Ua Néill.

2.1.5 Authenticity and deficiencies of Cogadh Gaedhel re Gallaibh

It is nowadays widely accepted that one of the main aims of Cogadh Gaedhel re Gallaibh

was to praise Brian Boru. Its purpose was to document the achievements of the Dál gCais
and establish their right to the high kingship of Ireland. Although it is a valuable resource
for studies of the Viking Age in Ireland, it is considered a flawed one. The question of the
extent of its reliability has been the topic of a very long-standing debate [19, 28, 35, 43, 48].
Besides some clear interpolation, many of these flaws appear in the descriptive detail of the
narrative. Ours, however, is a statistical analysis and, as such, is rather concerned with the
totality of the interactions between characters rather than rhetorical levels of detail. As with
any statistical analysis, what it delivers is a summary which captures aggregate characteristics,
largely insensitive to individual elements. In this sense, one may hope that it delivers useful
statistical information on the Viking Age in Ireland.
Estimates for the date of Cogadh Gaedhel re Gallaibh are various. Todd stated its author “was
a contemporary and strong partizan of King Brian Borumha” [35]. Following consideration
of the possibility of a more recent date, he concluded that the author was “either himself an
eye-witness of the Battle of Clontarf, or else he compiled his narrative from the testimony
of eye-witnesses” [35]. Flower also considered the chronicle “almost contemporary” [42].
Goedheer gives a date as late as 1160 [40] but Ryan argues that Cogadh Gaedhel re Gallaibh

“might have been composed about 1130 or earlier” [41] In Ref. [43], Ó Corráin described the
Cogadh as “concocted ... some two-and-a-half centuries after the date of the events it purports
to narrate”. Elsewhere in Ref. [43] Ó Corráin refers to it as “written in the twelfth century”. He
also describes the hypothesised text known as Brian’s saga (discussed below) as written about
1100 in response to Cogadh Gaedhel re Gallaibh, a suggestion that implies a date before 1100
for the creation of the latter [43]. More recent scholarship by Nı́ Mhaonaigh gives the likely
composition date of Cogadh Gaedhel re Gallaibh as between the years 1103 and 1113 [47].
(She dates the common source for the Dublin/Brussels recension as the 1120s or 1130s [45,47].
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Casey, who also reviews dating estimates, sets this at about one hundred years after the events
described [59].) Duffy believes it may be “based on contemporary annals and, no doubt, local
memory” [28]. He suggests that Cogadh Gaedhel re Gallaibh gives “a vivid picture of what
happened at Clontarf as related perhaps to the writer of the Cogadh by a veteran” and gives the
possibility that it “was written by someone who may well have lived through these last year’s
of Brian’s life”. This bringing us back to Todd’s original estimate [35].
The interpretation of Cogadh Gaedhel re Gallaibh as propagandistic is linked to the question of
the date of its composition because “Heroic stature presupposes nurturing by time” [45]. Thus
its propagandistic nature “implied that it could no longer be considered contemporary with
any of the events it describes” [45]. The greater the distance between the events of Clontarf
and the setting down of Cogadh Gaedhel re Gallaibh, the more room there is for a distorted
view to take hold. This is the reason why a good estimate date for the composition of the
Cogadh is important in the present context. “In the course of the eleventh century, . . . the view
seems to have gained universal acceptance that the Battle of Clontarf was par excellence the
great decisive struggle of Irish history. Brian in the retrospect was everywhere acclaimed as
a national hero” [19]. The claim is that time distorted reality; “The Norse were a substantial
section of the opposing force, and in the mellow haze of popular imagination the battle tended
to be transformed into a clear-cut issue, Irish versus Norse, with the former victorious. Even
in the Northern countries the battle passed rapidly from history into saga” [19]. The above
estimates for the interval between Clontarf and composition of Cogadh Gaedhel re Gallaibh

range between contemporary and two hundred and fifty years. Our approach cannot deliver
an independent estimate for the date of composition and the above estimates should be kept
in mind. While the above considerations suggest that the Cogadh may distort in favour of an
overly international picture of conflict, on the other hand it should also be kept in mind that, in
places, it identifies Leinster as the principal enemies of Brian [28,30]. We return to these issues
in Section 4.8.
In his Introduction to Cogadh Gaedhel re Gallaibh, Todd acknowledges the defects of the
work and expresses regret that it is “so full of the feelings of clanship, and of the consequent
partisanship of the time, disfigured also by considerable interpolations, and by a bombastic style
in the worst taste . . . ”. In chronicle literature, an interpolation of the type mentioned by Todd is
a later addition not written by the original author. As scribes copied ancient material by hand,
extraneous material frequently came to be inserted for a variety of reasons [66]. These may have
been for bona fide intentions, perhaps as explanations; for fraudulent purposes; or they may
simply have crept in through errors and inaccuracies arising from manual copying or, indeed,
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as attempts “to enhance the appeal of the narrative” [45]. One way to detect interpolation is
through comparing different manuscripts.
For example, there occurs in the Dublin version a passage describing the actions of Fergal
Ua Ruairc (also written O’Ruairc or O’Rourke) of Bréifne and associate chieftains. (For the
location of Bréifne, see Figure 2.1.) The Brussels manuscript, however, “omits everything
connected with Fergal and his presence in the battle” [35]. As stated by Todd, “the whole
story bears internal evidence of fabrication, for Fergal O’Ruairc was slain A.D. 966 . . . , and
our author had already set him down amongst Brian’s enemies”. Ryan [19], Duffy [28] and
others also identify Ua Ruairc as an interpolation and Nı́ Mhaonaigh gives a detailed account
of Bréifne bias in Cogadh Gaedhel re Gallaibh [45]. She states “one of the main aims of
the interpolator was to portray Fergal Ua Ruairc and his followers in as favourable a light as
possible, sometimes regardless of the effect this had on his text”. The point is that pro-Ua Ruairc
reviser of the narrative may have deemed it politically expedient to alter the record of relations
between the Uı́ Ruairc and the Dál gCais by demonstrating assistance given by the former to
Brian at Clontarf. Nı́ Mhaonaigh estimates the period when the Uı́ Ruairc were likely to have
gained maximum advantage from such an association to have been the mid- to late 1140s, over
a hundred years after Clontarf [45].
The possibility of interpolation applies not only to Ua Ruairc and allies. Ryan claims that
“Many of the names mentioned are names only, for nothing is known of the persons who
bear them. Some of the levies in important positions were certainly absent. In a word, no
effort is made to distinguish between the genuine and the spurious, to criticise suspect sources,
and to reconcile contradictions” [19]. Ó Corráin states that the author of Cogadh Gaedhel re

Gallaibh “drew his material from the extant annals but he telescoped events, omitted references
to other Viking leaders and concocted a super-Viking, Turgesius, whose wholesale raiding and,
particularly, whose attack on Armagh was intended to demonstrate the inefficiency of the Uı́
Néill as defenders of the church and of the country in contrast of the achievements of the great
Brian” [43]. (Turgesius is elsewhere referred to as “exaggerated” rather than “concocted” [61].)
Duffy, on the other hand argues that whatever about the detail of Cogadh Gaedhel re Gallaibh

“and its slightly cavalier approach to chronology”, the gist of the account “seems sound” [28].
Duffy also discusses difficulties in using the annals to check the historicity of Cogadh Gaedhel

re Gallaibh. By his reckoning, although some of the names of individuals drafted in from
beyond Ireland are indeed suspicious, “up to half of them appear to be real and their presence
at Clontarf is historically credible, if not corroborated by some other source” [28].
In Ref. [48], Nı́ Mhaonaigh shows that genuine annals underlie Cogadh Gaedhel re Gallaibh

and that the compiler of Cogadh Gaedhel re Gallaibh “remained fairly true to his exemplar”.

16



“Provided, therefore, that we keep the redactor’s political purpose firmly in view, we may
tentatively add the annalistic material preserved in Cogadh Gaedhel re Gallaibh to our list
of sources for information on the history of Ireland in the Viking Age” [48].
Todd himself also reports what he considers to be “curious incidental evidence” for reliability of
at least some of the Cogadh account in that it “was compiled from contemporary materials” [35].
“It is stated in the account given of the Battle of Clontarf, that the full tide in Dublin Bay on the
day of the battle (23rd April, 1014), coincided with sunrise” [35]. In a piece of “mathematical
detective-work” [28] that precedes our own by 150 years, Todd’s colleague established that the
full tide that morning occurred at 5:30 am and indeed coincided with sunrise. For Todd, this
“proves that our author, if not himself an eye-witness, must have derived his information from
those who were” [35]. We have already seen the importance of the time of the evening tide;
calculated to have been at 5:55 pm, consistent with the account in Cogadh Gaedhel re Gallaibh;
it prevented the escape of the Viking forces and considerably aided Brian’s victory.
This is certainly amongst the most striking evidence in support of the account of Cogadh

Gaedhel re Gallaibh. Duffy provides multiple other instances where the Cogadh may be
reliable [28]. Certainly bombastic statements that are not backed up by the annals have to
be treated warily. Notwithstanding this, he considers the narrative as having “some credibility”,
although unreliable” in its precise detail [28]. There is “usually a germ of truth” in its narrative
and he often finds reason to give Cogadh Gaedhel re Gallaibh the “benefit of the doubt”.
For example, although there is a tendency to assume that the author of the Cogadh “dreamt
up much” of the detail, such as of fortifications built by Brian, Duffy argues that since these
structures would still have been standing at the time of writing, the author could not get away
with much invention; “the Cogadh’s audience comprised individuals in a position to contradict
it if it were inaccurate” [28]. (For criticism of Duffy’s counter-revisionist views, see e.g.,
Ref. [30].)
Along with the Irish annals, one may compare the contents of Cogadh Gaedhel re Gallaibh to
those of texts from other countries. There are similarities, for example to some of the content
of Njáls Saga, which takes place in Iceland between 960 and 1020. Njáls Saga is believed
to have been composed between 1270 and 1290 [67]. Einar Olafur Sveinsson postulated that
some of the content of Njáls Saga may have been drawn from a now lost Brjáns saga (Brian’s
saga) [68]. Following Sophus Bugge [37], Ó Corráin [51] suggests that Brjáns saga was written
in about 1100 as a response to Cogadh Gaedhel re Gallaibh, in order to affirm the loyalty of
the Hiberno-Norse Dubliners to descendants of Brian. There are also accounts of the Battle of
Clontarf in Wales, France and Germany. The consistency between Cogadh Gaedhel re Gallaibh

and these accounts is discussed in Ref. [28].
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To summarise, there is a vast amount of humanities scholarship concerning Cogadh Gaedhel

re Gallaibh. Although some dispute its reliability, others consider its version of events mainly
credible and largely consistent with other sources and evidence. As stated by Duffy, “even
though it is exaggerated and biased”, Cogadh Gaedhel re Gallaibh can be useful “if we use it
judiciously” and “make allowance for its propagandist tendency”. The composer surely did
not think in terms of network science but, in recording a cast of hundreds connected with
well over a thousand links between them, he nevertheless imprinted networks in the narrative.
Thus we may expect that the bulks of the networks contained in Cogadh Gaedhel re Gallaibh

might not be too far away from the reality of the networks of the Viking Age in Ireland.
Objections listed above are largely irrelevant to our approach as static networks are immune
to “bombastic” descriptions, “telescoping” of events and “cavalier” attitudes to chronology. We
will see that the aggregate approach is even resistant to isolated cases of interpolation. It is
with this perspective that we interrogate the narrative with a networks-science methodology. To
recap, our primary aim is to determine whether the character networks in Cogadh Gaedhel re

Gallaibh are implicative of an “international contest” or “local quarrel” [29].

2.1.6 International contest or local quarrel?

O’Connor [62] in the 18th century, with Ryan [19] and Ó Corráin [43], in the 20th, are
considered early debunkers of the traditional myth of Clontarf [28, 47]. O’Connor describes
the conflict as a “civil war” in which “the whole province of Leinster revolted, and called
the Normans from all quarters to its assistance” [62]. Ryan’s main claim in Ref. [19] is
that “In the series of events that led to Clontarf it was not . . . the Norse but the Leinstermen,
who played the predominant part”. His thesis is that the conflict is not a “clear-cut” one
between Irish and Viking. Firstly, Brian’s army was not a national one, but one of Munstermen
supported by two small Connacht states. Secondly, the opposition “was not an army of Norse,
but an army composed of Leinster and Norse troops, in which the former were certainly the
predominant element and may have constituted two-thirds of the whole” [19]. The battle, then,
was not a contest for the sovereignty of Ireland — it was not a clear-cut issue of Irish versus
Norse. Instead, the issue at hand was “the determination of the Leinstermen to maintain their
independence against the High-King”.
It was in the course of the eleventh century, Ryan argues, that the picture of a decisive struggle
of Irish history gained “universal acceptance” in the popular imagination. This came about
because of the parts played by forces from the Isle of Man and the Orkney Islands together with
the partisan nature of Cogadh Gaedhel re Gallaibh. It was only in this retrospect that Brian was
acclaimed as a national hero.
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Ó Corráin’s view is similar [43]: “The battle of Clontarf was not a struggle between the Irish
and the Norse for the sovereignty of Ireland. It was part of the internal struggle for sovereignty
and was essentially the revolt of the Leinstermen against the dominance of Brian, a revolt in
which their Norse allies played an important but secondary role”.
Duffy points out that this revisionist interpretation is not supported by the other ancient annals.
E.g., the Annals of Inisfallen gives a short but reliable account “reflective of contemporary
reaction to what occurred” [28]. It is stated that “the Foreigners of Dublin gave battle to Brian”
and Leinstermen are also slain. According to Duffy, “Whereas some modern historians see the
Leinstermen as Brian’s primary enemy at Clontarf, the annalist was in no doubt that the enemy
was the Norse of Dublin. In fact he has the same black-and-white picture of the opposing sides
that we tend to think of as later legend . . . ”. “The entry in the Annals of Ulster also echoes
the Annals of Inisfallen in emphasising the primacy of the Norse as Brian’s adversaries”. Duffy
states that the Annals of Ulster suggest “it was fundamentally a contest between the Irish and
Norse (although the latter too had Irish allies)”.
Duffy provides multiple items of evidence in support of his view that “Brian’s principle
opponents were the Hiberno-Norse allied to Leinster; and [the Battle of Clontarf] was notable
in particular for the great numbers of overseas Norse forces present, and for the huge losses
they incurred by fighting and drowning”. “Implicitly, for the Cogadh’s author, two centuries
of Irish opposition to Viking invasion, spearheaded by Brian’s dynasty, reached a climax at
Clontarf. That picture was imprinted too, with remarkable correspondences, on the minds of
those thirteenth-century Icelandic writers. Those who did battle with Brian came from the Norse
world seeking a kingdom for themselves in Ireland”.
Thus, the debate about Clontarf has spanned the centuries and frames our present investigation.
Here we broaden the question to conflictual and social relationships in the Viking Age in Ireland,
and how they are reported in Cogadh Gaedhel re Gallaibh.

2.2 The Ossianic Poems

The second main aim of our investigations concerns the Poems of Ossian. More than 250 years
ago, the Scottish writer, poet and politician James Macpherson published what he declared was
ancient Scottish Gaelic poetry, translated into English. Macpherson claimed that the poetry
dated from the “most remote antiquity” [20–23]. Although, as we shall see, the poems caused
enormous controversy, they are recognised as some of “the most important and influential
works ever to have emerged” [69] from the islands of Britain or Ireland. In its time, Ossian

was widely significant, especially in regard to the development of romantic nationalism in
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Europe. The controversy associated with the work (which is today regarded as one of the most
famous literary controversies of all time) concerned their authenticity and its consequences
rebound in Ossianic studies today [70–77]. In the 1990s the entire controversy was again
brought under academic scrutiny thanks to an enormous amount of revisionist scholarship.
Since then, the general topic has undergone a renaissance of sorts [69, 70, 78–92]. In this thesis
a fresh investigation into Macpherson’s famous work is presented, based upon the networks
approach [15]. The aim of this part of the work is to compare and contrast the social-network
structures of Ossian with other works which have been identified by humanities scholars as
playing influential roles in its composition. Specifically, these are texts from Irish mythology
and Homer’s epics. Our main aim is to determine if the society described in Macpherson’s
poems bears any resemblance to those of either corpus. We will see that the Ossianic networks
are quite dissimilar to those of Homer but that there is a remarkable structural similarity to
the society underlying an Irish text: Acallam na Senórach (Colloquy of the Ancients) from the
Fenian Cycle in Irish mythology. The significance of this finding is that it suggests a structural
closeness between Macpherson’s works and the Irish texts which he explicitly rejected and a
distance to the classics with which he sought to draw parallels [20–22].

2.2.1 Contexts for Ossian

In the mid 1700s, the society of the Scottish Highlands was very different to that of the rest
of Britain and indeed, Europe, both culturally and structurally as well as in terms of customs
and language [82]. In 1746 the Battle of Culloden, the final showdown of the Jacobite Rising,
took place there. The Jacobites were a political movement whose ambition was to restore the
Catholic king James VII of Scotland, who was also James II of England and James II of Ireland,
to the throne. (The name “Jacobite” comes from “Jacobus”, the Renaissance Latin for “James”.)
James belonged to the House of Stuart, nine monarchs of which had ruled Scotland from
1371 until 1603. The Jacobites rebelled against the British government on various occasions
between 1688 and 1746. The Battle of Culloden saw the defeat of Charles Edward Stuart by
British forces and after their defeat the Highlands were absorbed into Great Britain. This was
accompanied by efforts to suppress native Scottish Gaelic culture and the old Jacobite clans.
This was the background to which the first fragments of a Scottish epic narrative appeared. In
1760, James Macpherson published Fragments of Ancient Poetry, Collected in the Highlands

of Scotland, and Translated from the Galic or Erse Language [93] in Edinburgh. The claim
was that the Fragments were authored by a blind poet named Ossian, who lived in the third
century AD. The poetry told of battles, struggles and unhappy love and its rhythmic narrative
style created an atmosphere which captured the attention of a wide section of the public. This is
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how the romantic image of the Scottish Highlands, which persists in many forms to the present
day, was created [82, 90] as the images in the poems seemed to connect readers to a long-gone
heroic age [88]. In his short publication, Macpherson promised to follow up on the work and
hoped that one day a “work of considerable length, and which deserves to be styled an heroic
poem, might be recovered and translated” [93].
Macpherson visited the Scottish Highlands and Islands in the early 1760s to look for evidence of
ancient Gaelic epic poetry. In December 1761, his earlier promise was fulfilled and he published
Fingal: An Ancient Epic Poem in Six Books, Together with several Other Poems composed by

Ossian the Son of Fingal [20]. (The volume was published in London and dated 1762.) In 1763,
Macpherson produced with another volume: Temora: An Ancient Epic Poem in Eight Books,

Together with several Other Poems composed by Ossian the Son of Fingal [21]. Two years
later, both works were re-published in The Works of Ossian, the Son of Fingal. This publication
included “A Critical Dissertation on the Poems of Ossian, the Son of Fingal” by Hugh Blair,
who was a Professor of Rhetoric at the University of Edinburgh [22]. In 1773 a new edition,
simply called The Poems of Ossian, was published, which claimed to be “carefully corrected,
and greatly improved” [23]. In 1996, Howard Gaskill produced a new edition, The Poems of

Ossian and Related Works, which is based on the 1765 edition [69]. The network analysis
presented here is based on Gaskill’s modern work. There are differences between the 1765 and
1773 editions, but these are mostly in terms of how content is arranged (the order of the poems).
There are also changes in style but neither of these changes affects character interactions in the
text, which are the basis for the data and the analysis presented here. Throughout this thesis,
Ossian (in italic font) refers to Macpherson’s work and Ossian (in Roman font) refers to the
lead character.

2.2.2 Reception of Ossian

An interpretation of Macpherson’s work is that it was motivated (at least partly) by an intention
to undo some of the damage caused to the Scottish Highlands after the Jacobite Rising [88,89].
The supposed discovery of epic poetry was intended to increase a sense of national identity as
people could look to an ancient and noble literary heritage for Scotland. Renowned scholars
such as Adam Ferguson, David Hume and Hugh Blair were keen to support claims of Ossian’s
authenticity and credibility. Scholarly support for the Ossianic poems was especially important
to create Scottish unity and to counter the fragmentation of its culture caused by Highland
Clearances (the eviction during the 18th century of large numbers of tenants in the Scottish
Highlands) [94]. Certainly, Ossian was pivotal in popularising Highland literary traditions
amongst audiences beyond the north of Scotland [90].
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The impact of Ossian beyond Scotland was enormous. It directly influenced literary figures
such as Blake, Byron, Coleridge, Goethe, Scott, and Wordsworth. Brahms, Mendelssohn,
and Schubert were also influenced by the work. Ossianic themes featured in paintings
such as by Nicolai Abildgaard, Franois Gérard, Anne-Louis Girodet de Roussy-Trioson,
Jean-August-Dominique Ingres, Angelika Kauffmann, Johann Krafft, and Philip Runge.
Thomas Jefferson (principal author of the United States’ Declaration of Independence and its
third President) believed that Ossian was “the greatest poet that has ever existed” [70, 95, 96].
Napoleon kept a copy of Ossian in the portable library that accompanied him on his military
campaigns. The town of Selma, Alabama, which became famous during the Civil Rights
Movement of the 1960s, derives its name to “The Songs of Selma” in Ossian.
The poetry instigated a revival of interest in national literature, folklore, mythology, and poetry
around Europe [81]. Accounts of the growth of romantic nationalism usually acknowledge
Ossian as important. In particular, the work was perceived to “vindicate a fallen nation” [94]
and it appealed to other countries which were subjected to conquest. It inspired these to look
to their own ancient epics as reminders of a proud and illustrious past [81, 94]. The romantic
imagery used in Ossian was extended and adapted for literary nationalism emerging in other
countries [91] including the Celtic nations. In 1764, Some Specimens of the Poetry of the Ancient

Welsh Bards by Evans [97] showed that Wales could also boast of an interesting native corpus
of poetry [98]. In England, Thomas Percy published Reliques of Ancient English Poetry in
1775 [99]. In 1789, Charlotte Brooke produced a volume called Reliques of Irish Poetry [100].
The reader is referred to Bär and Gaskill’s Refs. [81,89] for a wider discussion on the reception
of Ossian and the development of the Ossianic tradition in various European contexts.
By the 1770s, supporters of Macpherson’s Ossian already believed it to be comparable to
Homer’s epics and they saw a particular similarity with the Iliad [92, 101]. In Ref. [101] it
is suggested that Macpherson was perhaps assisted by Hugh Blair in providing comparative
passages from Homeric epics in the footnotes to Fingal. The purpose of such footnotes was to
try to draw parallels between episodes in Homer and Ossian. A large part of Blair’s “Critical
Dissertation” was also devoted to establishing Ossian’s epic character [22]. The comparison
of Ossian to Homer has been an important and central element of analysis of the poetry and,
in this context, the phrase “Homer of the North,” emerged. The phrase has been attributed to
Madame de Staël in Ref. [101]. (See also Refs. [70, 81, 90, 92] for further developments of this
association.)
Macpherson’s work also came in for heavy criticism, however. Some came from Samuel
Johnson, the English scholar famous for compiling A Dictionary of the English Language.
Johnson’s expertise and interests were in the classical and neo-classical world centered on the
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civilizations of ancient Greece and Rome. Macpherson’s poems formed a contrast to this world
because they focussed instead on native literature. This focus was far more relevant for the
Romantic mode of literature than was Johnson’s experience. Johnson famously stated that there
is a “strong temptation to deceit” in the Ossianic poems [71] and, in 1773, he went to the western
islands of Scotland to inquire about their supposed origins. He argued that there were no ancient
manuscripts in the local Scottish language and he did not believe that texts of Ossian’s length
could be delivered intact from generation to generation and through word of mouth. However,
his statement that Gaelic was “the rude speech of barbarous people” [71] only served to show
his bias against that culture and to demonstrate widespread English hostility towards Scotland
at the time [94].
During the days of Empire, British intellectuals and administrators tended to see themselves
as inheritors of the classical civilisations. They saw imperialist ideologies as in line with the
classical history of ancient Greece and Rome. Homer was viewed as representative of this
culture and the epic narrative form was seen as reflecting its splendour. This is to be contrasted
with the view by some of Scottish culture as inferior and even uncivilised. This picture allowed
and justified the conquest of Scotland and its colonisation. However, the apparent discovery
of an ancient epic tradition in the Highlands threatened to undermine these attitudes. As a
consequence, besides representing a clash between emerging Romanticism and Classicism,
the disagreements around Ossian inflamed tensions between national identities within Great
Britain [84]. In the end, over subsequent decades, Macpherson’s Ossian did play a central role
in the rise of Romanticism as Classicism declined.
Whatever about the reaction to Ossian across Europe, the reaction in Ireland was one of
outrage. Here, however, the offence caused was entirely different as were the objections. Irish
antiquarians immediately recognised the poems as variants of their own mythology and of the
tales of the Fenian Cycle in Irish mythology, in particular. They identified poorly disguised
characters, place-names, and events from well-known Irish epics and accused Macpherson
of forgery. Cuchullin – “the General or Chief of the Irish tribes” [93] in Macpherson was
easily identified as Cúchulainn, the hero of an entirely different epoch in Irish mythology.
The antiquarian and Gaelic scholar Charles O’Connor identified the character Ossian – “an
illiterate Bard of an illiterate Age” for Macpherson [62] – as Oisı́n, the warrior-poet of the
Fenian Cycle [62]. Fingal, Ossian’s father, who was a third-century Scottish king according to
Macpherson, was identified as a corruption Finn MacCumhail, the famous leader of a heroic
Irish band, the Fianna Éireann. Sylvester O’Halloran characterised the Irish response in 1763
by denouncing what he saw as Macpherson’s attempt to misappropriate Ireland’s Gaelic heroes
for Scotland [72] (see also Refs. [73–76]).
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Matters were worsened by Macpherson’s reversal of the ancient relationship between Ireland
and Scotland [73, 88]. O’Halloran directly denounced Ossian as an “imposture” and
“Caledonian plagery” [72]. (“Caledonia” is Roman name for the parts of Scotland beyond
their control. It is nowadays used as a romantic or poetic name for Scotland, similar to the
way “Hibernia” is used for Ireland.) O’Connor, claimed that Macpherson lacked “decency, in
the illiberal abuse of all ancient and modern writers, who endeavoured to throw lights upon the
ancient state of Ireland, and North-Britain” [62]. A more extensive analysis of Irish reactions
to Ossian is given in Ref. [102].

2.2.3 “Homer of the North” or an “imposture”?

The question of whether Ossian is a “Homer of the North” or an “imposture” reflects the
two sides of the early days of the debate. The majority of scholarship in the humanities has
moved towards other aspects of Ossian, but still the questions of originality and inspiration
are relevant. In this thesis, we wish to add to the complex ideas surrounding the Ossianic
controversy by using the modern concept of social network analysis. Our main aim is to
investigate how Ossian compares to the literary traditions from which it is claimed that it
emerged. As stated, two comparisons were made throughout: to the Homeric epics on the one
hand and to Irish mythology on the other, especially to the Fenian Cycle. While previous studies
in the humanities focused on the identities of individual characters, such as Ossian, Fingal and
Cuchullin, discussed above, the networks approach allows for a complementary angle, namely
the set of interactions between the characters. This is our main motivation, to compare the social
network structure of Ossian to those of Greek and Irish narratives in Chapter 5. However, we
first provide further context for the comparative texts.
The Homeric epics, the Iliad and the Odyssey, are widely considered to mark the beginning of
Western literature. The former is dated to the eighth century BC, during the final year of the
Trojan War. It recounts a quarrel between Agamemnon, king of Mycenae and leader of the
Greeks, and Achilles, their greatest hero. The Odyssey, in part a sequel to the Iliad, describes
the journey home of the Greek hero Odysseus to his wife Penelope after the fall of Troy.
The Fenian Cycle of Irish mythology mostly takes place in Leinster and Munster, the eastern
and southern provinces of Ireland. The tales focus on the adventures of Fionn mac Cumhail
and the Fianna and there are also strong links with the Irish of Scotland. The most important
source is Acallam na Senórach (Colloquy of the Ancients or Tales of the Elders). In the stories,
Caı́lte mac Rónáin and Oisı́n are the last of the Fianna, and having survived into Christian times.
They tell tales of Fionn and his warriors to the recently arrived Saint Patrick, explaining how
the stories came to be preserved in written form [103].
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As stated earlier, we use Gaskill’s version of Ossian for our network analyses [69]. For the
Iliad and Odyssey, we use Refs. [104] and [105], respectively. We also use a relatively recent
translation of Acallam na Senórach [103]. Part II (The Fianna) of Lady Gregory’s Complete

Irish Mythology [106] is a more recent rendition of parts of the Fenian Cycle. Since it is clear
that this derives from Acallam na Senórach, it provides a benchmark for our analysis which
should be able to pick up similarities between it and the original. While other versions or
translations of any of these texts may deliver differences in respect of minor characters and
relationships, the large numbers of characters and links between them in each case leads one to
expect that the network properties be robust with respect to small variations.

25



Chapter 3

Network Theory

A network is defined as a collection of nodes connected by edges. The nodes are sometimes
called vertices and they are interconnected by the edges, which are also called links. In
mathematics, the word “network” is almost synonymous with “graph” and these terms will be
used interchangeably from here on. (Technically a network is more general than a graph because
it can entail multiple types of links which can be time dependent. However we do not deal with
such objects here.) Regular lattices and Erdős-Rényi random graphs are examples of networks.
Complex networks that are encountered in many situations are neither regular nor random.
Graphs are an abstract representation of real networks in which interactions between elements
lead to the emergence of non-trivial topological features. Examples include social or transport
networks in which nodes may represent people or stations and edges represent social interaction
or journeys. In this manuscript we consider graphs generated from epic-type narratives, each
node representing a character, while each edge is the representation of interactions between
characters.
A graph is defined by a pair G = (V, E) where V is a finite set of vertices and where E is the
set of edges between the vertices. The total number of nodes |V | in a network is denoted by N

and the total number of edges |E| is denoted by M. Nodes vi and v j are said to be adjacent if an
edge ei, j = (vi, v j) exists between them, that is e ∈ E. A graph can be directed or undirected, the
former being defined when an orientation is associated with each edge. In an undirected graph,
edges connect unordered pairs of nodes, that is (vi, v j) ∈ E ⇔ (v j, vi) ∈ E. The networks that
we envisage here are undirected. In addition, our edges are anti-reflexive i.e (vi, vi) < E for all
v in V . This means that an edge cannot link a node to itself. It is sometimes useful to assign a
weight to each edge, representing relative strength between nodes e.g., frequency of interaction.
A graph containing weighted edges is called a weighted network.
Statistical quantities have been used to characterise the structure of complex networks, and in
this chapter we discuss some of these network measures in detail. In the next section, we present
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the topology of a network in the form of an adjacency matrix and some network properties that
includes but not limited to degree, degree distribution, assortativity, clustering coefficient, path
length, closeness, eigenvalue and betweenness centralities.

3.1 Adjacency Matrix, Mean Degree and Density

The information on a network structure can be stored in the form of an N × N matrix called the
adjacency matrix often denoted by A. The adjacency matrix with elements Ai, j is defined by

Ai, j =

1 if (vi, v j) ∈ E
0 otherwise.

The adjacency matrix is symmetric (Ai, j = A j,i) with zeros along the main diagonal, since we
are only considering undirected networks with no self-loops.
In graph theory, local and global network properties help to identify the most important nodes
and to understand the structure of a network. The most basic localised structural property of
a network is the degree denoted by ki for node i. It measures the number of edges incident to
node i and is given by

ki =

N∑
j=1

Ai, j. (3.1.1)

Its maximum value kmax identifies the most connected node vmax and the various values of ki can
be used to rank nodes. The mean degree of the network is defined by

⟨k⟩ = 1
N

N∑
i=1

ki =
2M
N
, (3.1.2)

where the factor 2 in Eq.(3.1.2) accounts for the fact that there are two nodes at the ends of each
edge.
In addition to the network’s mean degree, we are also interested in quantifying the extent to
which a graph is close to being a complete graph. A complete graph is when every pair of
vertices is connected by an edge. The network density D is the ratio of edges that are contained
in G to the possible maximum number of such edges. It is normalised to give a value of 1 for a
completely connected graph and it is defined as

D =
2M

N(N − 1)
=
⟨k⟩

N − 1
, (3.1.3)

where 0 ≤ D ≤ 1.
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3.2 Degree Distribution

Besides the mean, variance and various moments, one is also interested in the spread of degrees
between the nodes of the network. This is its degree distribution. If Nk is the number of nodes
with degree k, the probability that any given node is of this type is

pk =
Nk

N
. (3.2.4)

Therefore pk gives the probability for a randomly chosen node to have k links. The convention
is to display the complementary cumulative degree distribution P(k) rather than p(k) itself. This
is because the latter can be rather noisy, especially in the tails of the distribution. The preferred
quantity P(k) is the frequency of nodes whose degree is greater than or equal to the given
value k.
It is also common to talk of the degree distribution when referring to an idealised probability
distribution from which a given graph G is generated. Both quantities, the degree frequency and
degree distribution, share the same properties defined below.
The distribution is normalised and satisfies

∞∑
k=0

pk = 1. (3.2.5)

The associated generating function defined by

g(z) =
∞∑

k=0

zk pk (3.2.6)

and is such that g(1) = 1. The first derivative,

g′(z) =
∞∑

k=0

zk−1kpk, (3.2.7)

generates the first moment or mean of the distribution

g′(1) =
∞∑

k=0

kpk ≡ ⟨k⟩. (3.2.8)

Similarly, for the second moment of the degree distribution we have

⟨k2⟩ =
∞∑

k=0

k2 pk = g′′(1) + g′(1). (3.2.9)

This is useful in constructing the variance about the mean defined by

⟨(k − ⟨k⟩)2⟩ = ⟨k2⟩ − ⟨k⟩2 = g′′(1) − g′(1)(g′(1) − 1). (3.2.10)
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In general, the nth moment is defined as

⟨kn⟩ =
∞∑

k=0

kn pk =

[ (
z

d
dz

)n

g(z)
]

z=1
. (3.2.11)

The higher moments can be used to quantify other features of the distribution such as its
skewness (third moment), kurtosis (fourth moment) etc. Skewness is a measure of the shape
asymmetry of a probability distribution and can be positive or negative. Kurtosis is another
shape metric and quantifies the “tailedness” of a distribution. Degree distributions which have
kurtosis less than that of the Gaussian distribution are called platykurtic and generate fewer (and
less extreme) outliers (they have thin tails). Leptokurtic distributions, on the other hand, have
tails that approach zero slower than a Gaussian (they have fat tails).

3.2.1 Degree Distribution of Complex Networks

The degree distributions of complex networks tend to be right-skewed, meaning there is a
small probability for high degree nodes and higher probability for low degree nodes [107].
Complex networks with leptokurtic (fat-tailed) degree distributions are sometimes described by
a power-law,

p(k) =
C
kγ
, (3.2.12)

where γ and C are constants. The shape of such a distribution is unaffected by increasing the
degree k by a factor of c. That is

p(ck) = C(ck)−γ = Cc−γp(k) ∝ p(k).

Hence, networks whose node degrees follow a power-law distribution, are sometimes referred
to as scale-free networks meaning they are scale invariant.
There are however restrictions to the possible values of γ. In Eq.(3.2.12) the distribution
diverges at k = 0, which is impossible for a finite system therefore, there must be some
minimum degree k = kmin above which the power-law behaviour is observed.
Real-world systems have a finite number of nodes N, and a finite number of edges M. As a
consequence, all moments ⟨kn⟩ of the distribution p(k) are finite. This is in contradiction with
predictions from an exact power-law distribution as we shall now see. First, summing over all
k in Eq.(3.2.12), leads to C = 1/ζ(γ), where ζ is the Riemann zeta function which diverges for
0 < γ ≤ 1 . Using Eq.(3.2.11), we see that

⟨kn⟩ = ζ(γ − n)
ζ(γ)

. (3.2.13)
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Hence, for a given γ it is always possible to find a value of n for which ⟨kn⟩ diverges (if 0 <
γ−n < 1). It follows that the degree distribution can only be best fitted by a power-law function
between some lower bound kmin and some upper bound kmax. Often networks have a cut-off
beyond which a simple power-law no longer describes their degree distributions [108, 109].
Such a cut-off sets a scale and, if it occurs at k = κ, then the distribution can be described by a
truncated power-law given by

pk ∼ k−γe−k/κ. (3.2.14)

It follows that the cumulative degree distribution has the form

P(k) ∼ k1−γe−k/κ. (3.2.15)

For example, a truncated power-law distribution was observed in networks generated from
human mobility patterns. Gonzalez et. al modelled travel patterns for 100 000 mobile phone
users by capturing each user’s position between consecutive calls [110]. The distribution of
displacements measured in kilometres was found to follow a truncated power-law with an
exponent of 1.75 ± 0.15 and a cut-off value of 400 km.
Another distribution generally found in complex networks is the exponential distribution, given
by

P(k) ∼ e−k/κ, (3.2.16)

with parameter κ > 0 setting the scale of the distribution [107]. Other exponential functions
often met in the literature include the normal distribution also called the Gaussian, of the form

P(k) ∼ exp
[
− (k − µ)2

2σ2

]
, (3.2.17)

where µ and σ2 are the mean and variance of the distribution, respectively. Additionally the
log-normal is more skewed than the normal distribution and takes the form

P(k) ∼ 1
k

exp
[
− (ln k − µ)2

2σ2

]
. (3.2.18)

The stretched exponential is given by

P(k) ∼ e−(k/κ)β . (3.2.19)

Setting β = 1 recovers the exponential distribution function Eq.3.2.16 and β = 2 gives the
Gaussian distribution. The stretched-exponential is also the complementary cumulative function
of the Weibull [111]. The Weibull is described by

P(k) =∼
(
k
κ

)β−1

e−(k/κ)β . (3.2.20)
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3.2.2 Parameter Estimators

We can fit the data set to each of the functional forms given in Sub-section 3.2.1. Using
the method of maximum likelihood estimators (MLE), we then determine best estimates of
the parameters for each probability distribution. The likelihood L is the probability that
independent and identically distributed data of N observations were drawn from a distribution
p(k) with parameter θ,

L(θ|k) =
N∏

i=1

pθ(ki). (3.2.21)

The estimated parameters are those that maximise the probability of obtaining the given
distribution. The logarithm of the likelihood is generally used instead of the likelihood itself
because they share the same maximising values of the parameters.
The Akaike Information Criterion (AIC) is then used to determine the most likely model that
best describes the data [112]. If a model estimates q parameters for a data set, the AIC is given
by

AIC =
2qn

n − q − 1
− 2 lnL, (3.2.22)

where n is the sample size.
To compare between various models, one relies on the relative probability that a given model
minimises the estimated information loss given by exp [(AICmin − AIC)/2] where AICmin is the
minimum AIC value for a given set of data.

3.2.2.1 Maximum Likelihood Estimators

We can estimate the probability distribution parameters using definitions given in
Sub-section 3.2.2 above.
Power-law distributions
Taking ∆ to represent the unknown distribution prior to kmin, Eq. (3.2.12) can be normalised to
obtain

pk =
1 − ∆
ζ(γ)

k−γ. (3.2.23)

Taking the likelihood on Eq.(3.2.23) yields

lnL = N ln(1 − ∆) − N ln(ζ) − γ
N∑

i=1

ln ki. (3.2.24)

The approximate value of γ can be obtained numerically however, [113] gives the following
approximation

γ̂ = 1 − N
[ N∑

i=1

ln
ki

kmin − 1
2

]−1

. (3.2.25)
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Truncated Power-law Distribution
For the truncated power-law, we can normalise Eq.(3.2.14) to get

p(k) = (1 − ∆)
ekmin/κ

Z(kmin)
k−γe−k/κ, (3.2.26)

where Z(k) ≡ ∑∞
m=0(k + m)−γe−m/κ. The log likelihood becomes

lnL = N ln(1 − ∆) +
Nkmin

κ
− N ln Z(kmin) −

N∑
i=1

(
γ ln ki

)
+

ki

κ
, (3.2.27)

which can be maximised numerically to obtain the value of γ̂.
Stretched Exponential Distribution
From Eq.(3.2.19) it follows that the cumulative degree distribution of the stretched exponential
can be expressed as

P(k) ∼
(
k
κ

)β−1

e−(k/κ)β . (3.2.28)

The log likelihood using Eq.(3.2.19) is therefore given by

lnL = N ln(1 − ∆) − N ln
[ ∞∑

kmin

e
−
(

kmin
κ

)β]
−

N∑
i=1

(
ki

κ

)β
. (3.2.29)

Normal Distribution
The log likelihood of the normal or Gaussian distribution in Eq.(3.2.17) is given by

lnL = N ln(1 − ∆) − N ln
[ ∞∑

kmin

e−
(

kmin−µ
)2

2σ2

]
−

N∑
i=1

(ki − µ)2

2σ2 . (3.2.30)

Additionally, the log likelihood for the log-normal is expressed by

lnL = N ln(1 − ∆) − N ln
[ ∞∑

kmin

1
kmin

e−
(

ln kmin−µ
)2

2σ2

]
− N

N∑
i=1

ln ki −
N∑

i=1

(ln ki − µ)2

2σ2 . (3.2.31)

Weibull Distribution
Applying the log likelihood on Eq.(3.2.20) for the Weibull distribution yields

lnL = N ln(1 − ∆) − N ln
[ ∞∑

kmin

(
kmin

κ

)β−1

e−
( kmin
κ

)β]
− N(β − 1) ln κ + (β − 1)

N∑
i=1

ln ki −
∑
i=1

(ki

κ

)β
.

(3.2.32)
Estimates for the parameters of the model distributions in Sub-section 3.2.1 are obtained by
numerically maximising the log-likelihood.

32



3.3 Assortativity

In sociology, homophily is the tendency for people to associate with similar people. In networks
with this type of feature, nodes tend to connect with other nodes that are similar in some
way. In network theory, this tendency is measured using assortativity. There are two types
of assortativity measures: scalar and categorical. Scalar characteristics, can be measured and
ordered — e.g., age, weight, height or popularity. Categorical features, by contrast, cannot
be ordered or ranked and they lack an associated metric. Examples include gender, race, or
nationality.
Degree assortativity r is an example of scalar assortativity. It quantifies the tendency of nodes
whose degrees have similar values to associate with each other. In determining r, it is important
to account for the possibility that nodes may have similar but not identical values; e.g., high
degree nodes may tend to mix with other high degree nodes without them having to have
precisely the same k-values.
In the categorical case, one is interested in whether two nodes have the same attributes or not.
The notion of degrees of similarity is absent here. In categorically assortative networks, there is
a tendency for nodes belonging to the same category to link to each other. Our aim is to quantify
statements such as this. Because we have two different types of assortativity, we require two
different formulae to quantify them.
Scalar assortativity can be measured using Pearson’s correlation coefficient. This is the
covariance of two variables divided by the product of their standard deviations. This
normalisation guarantees that the scalar assortativity takes values which lie within the range
[−1, 1]. Networks with positive values of degree assortativity (i.e., for which r > 0) are deemed
to be degree assortative. If, on the other hand, r is negative, the network is considered to be
degree disassortative. Since the scalar assortativity is limited by the same theoretical bounds
(i.e., -1 and 1) for all networks, comparisons are straightforward. It is meaningful to state that
one network is more (or less) scalar assortative than another.
There is a tendency for networks to evolve towards their maximum-entropy (most disordered)
state unless there is some sort of “force” which prevents this from happening [114]. The
interactions between people form an example of such a “force” in social circumstances. The
homophilic tendency of people to gravitate (i.e., to form links with) to others who are like
themselves is an example of such a “force” [107, 115]. The maximum-entropy configurations
encountered in networks without such a force are usually disassortative because disassortative
states are more plentiful than assortative ones [116]. For this reason, networks which have
no organising pressures (e.g., many non-social networks) are usually disassortative by degree.
Many social networks, on the other hand, are either assortative or else they are uncorrelated in
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this sense (i.e., they are neither assortative or disassortative). It has been found that this property
is also contained in many character networks for narratives of the epic genres, especially if
one restricts interactions to so-called positive (i.e., friendly) ones [8, 9, 15, 16]. This may be
considered to reflect the presence of a non-trivial social or “narrative force” — driving the
networks away from their maximum-entropy, disassortative states.
Categorical assortativity differs from scalar assortativity in a number of ways. Firstly it does
not carry the notion of relative similarity: two vertices either possess the same feature or
they do not. The feature under question may be thought of as a colour. We cannot say that
green and red, for example are closer to each other than, say orange and purple. Secondly,
the standard definition of categorical assortativity does not usually extend over the full range
[−1, 1]. This is another way in which it differs from the Pearson-correlation-coefficient measure
of scalar assortativity. Denoting catagorical assortativity by ρ, it turns out that it ranges from
a theoretical minimum value ρmin to a theoretical maximum of 1. Here ρmin is a value which
itself lies somewhere between −1 and 0. A network is categorically assortative if ρ is bigger
than 0 and it is categorically disassortative if ρ < 0 but bigger than ρmin. Therefore, while it is
easy to compare the ρ-values for two different assortative networks, one has to be quite careful
when looking at disassortative ones. Two different types of disassortative network may have
two different values of ρmin, so it becomes difficult to compare them. A low value of ρ for
one network may not be so low for another. In other words, the assortativity metric ρ is not
particularly good when comparing two networks which are disassortative in some categorical
feature.
In the next section, we discuss categorical assortativity in some more detail. After giving
the standard measure for it, we introduce a new quantity ρ̄ which measures disassortativity

directly, instead of considering it merely as the negative of assortativity. The metric ρ̄ is
developed in such a way as to take the value 0 for uncorrelated networks and the value −1 for
fully disassortative networks. In a sense, therefore, it is more suitable than ρ for comparing
two categorically disassortative networks. This will become important when we come to
investigate conflict in certain character networks. The disassortativity measure ρ̄ is as suitable
for measuring scalar disassortativity as ρ is for measuring assortativity. As we shall see, there
is a simple relationship between ρ̄ which will enable us to invent a measure that would be good
for both circumstances.
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3.4 Categorical Assortativity

Let N and M denote the numbers of nodes and edges, respectively. The nodes are endowed
with a categorical feature, which, for concreteness we can think of as colour. In constructing
the assortativity coefficient, the aim is to measure the difference between the fraction of edges
that exist between nodes of the same attribute and the fraction of such edges we would expect
if the nodes were connected at random regardless of the nodes’ attributes (i.e., if the linking
process were “colour blind”). Here, we only consider undirected networks, although one could
extend to include directed networks too.
The fraction of edges between nodes of the same type (colour) is

1
M

∑
(i, j)

δci,c j =
1

2M

∑
i, j

Ai, jδci,c j , (3.4.33)

where the sum on the left hand side is over all edges of the network while that on the right hand
side is over each pair of nodes i, j and where Ai, j is an element of the adjacency or connection
matrix for the graph in question. This is one if there is an edge between nodes i and j and zero
otherwise. Here, δci,c j is the Kronecker delta function which is 1 if ci = c j and 0 if ci , c j. If we
have an undirected network, every edge i, j is counted twice, and hence the factor 1/2 on the
right-hand side.
If nodes were linked at random (i.e., in a colour-blind manner), the probability that i and j are
connected is independent of their category but dependent on their degrees ki and k j. The number
of ways available to connect them is kik j and the total number of such pairs is (2M)2 so that the
adjacency matrix is kik j/(2M)2. Therefore the fraction of edges between nodes of the same
colour if linking is performed in a colour-blind manner is

1
2M

∑
i, j

kik j

2M
δci,c j . (3.4.34)

The modularity is defined as the difference between the actual proportion of similar-type edges
from Eq.(3.4.33) and the expected frequency of colour-blind edges from Eq.(3.4.34), and is

Q =
1

2M

N∑
i, j=1

(
Ai, j −

kik j

2M

)
δci,c j . (3.4.35)

Because of the Kronecker delta function in Eq.(3.4.35), the summation is effectively over edges
connecting nodes of the same colour. The next step to replace the summation over nodes by one
over colours.
The total degree of the network is

∑N
i=1 ki = 2M (twice the number of edges because each edge

is double-counted). It is convenient to introduce 2M chevrons or oriented markers as a visual
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representation of these degrees. Each chevron is associated with the end of an edge and each
is endowed with a colour, namely that of the nearest node. Let c and c′ denote categorical
variables which take their values from the set of node colours. Let Ecc′ denote the number of
chevrons in the network pointing from nodes of colour c to nodes of colour c′. We note that
Ecc′ = Ec′c if the network is undirected. If the two chevrons associated with an edge are of the
same colour, we say that the entire edge is of that colour. Thus Ecc edges are of colour c. If the
two chevrons at the ends of an edge are of different colour, we say that edge is colourless. We
define the chevron density as

ecc′ =
Ecc′

2M
. (3.4.36)

The quantities Ecc count the colour-c edges so that

Ecc =
∑

i, j

Ai, jδcicδc jc. (3.4.37)

Summing over the colours, ∑
c

Ecc =
∑

i, j

Ai, jδci,c j . (3.4.38)

This is the first term in Eq.(3.4.35).
To express the second term in Eq.(3.4.35) as a sum over colours, we first define the total number
and density of chevrons of colour c (the number of colour-c chevrons is simply the total degree
of nodes of that colour):

Ac =
∑

c′
Ecc′ =

∑
i

kiδcic, ac =
Ac

2M
=

∑
c′

ecc′ =
1

2M

∑
i

kiδcic. (3.4.39)

We have the sum rule ∑
c

ac =
∑
cc′

ecc′ = 1. (3.4.40)

To express the second term in Eq.(3.4.35) as a sum over colours, we write

−
∑

i, j

kik j

(2M)2 δci,c j = −
∑

c

∑
i

ki

2M
δcc j


∑

j

k j

2M
δcc j

 = −∑
c

a2
c ,

having used Eq.(3.4.39). We finally are in a position to express the modularity of Eq.(3.4.35) as
a sum over colours [117]:

Q =
∑

c

(
ecc − a2

c

)
. (3.4.41)

The categorical assortativity ρ is obtained by normalising the modularity so that its maximum
value is 1 (as is the case for the scalar assortativity). If the network is fully assortative, all edges
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(a) (b)

Figure 3.1: Two networks, (a) and (b) each with 6 nodes and 7 edges. The colours of the
chevrons indicate the type of the node associated with that edge and these are oriented towards
the partner node. The assortativity values are ρ = 0.3 and ρ = 0.714, respectively.

are coloured; they all connect nodes of the same colour. Therefore the normalising factor for Q

is given by Eq.(3.4.41) with
∑

c ecc = 1 set to 1. This suggests the definition

ρ =

∑
c

(
ecc − a2

c

)
1 −∑

c a2
c
. (3.4.42)

The minimum value that this quantity can attain is achieved when all edges are colourless (ecc =

0 for all c). It is

ρmin =
−∑

c a2
c

1 −∑
c a2

c
. (3.4.43)

We will shortly see that ρmin can be −1 if there are only two categories and if the network is
fully disassortative. Otherwise it will be in the range −1 ≤ ρmin < 0 [118].
An example is given in Figure 3.1(a) which has N = 6 nodes, M = 7 edges, and 2M = 14
chevrons. (Both examples in Figure 3.1, but without the chevrons, are borrowed from Ref.
[117].) With c ∈ {r, b} (r and b standing for red and blue, respectively), we have

Err = 8, Erb = Ebr = Ebb = 2, or err =
4
7
, erb = ebr = ebb =

1
7
. (3.4.44)

(a) (b)

Figure 3.2: (a) and (b) are fully assortative and fully disassortative two-colour networks. The
values of their scalar assortativities are ρ = 1 and ρ = −1, respectively.
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(a) (b) (c)

Figure 3.3: Three fully disassortative networks, each with three colours. Network (a) and (c)
have the same degree distributions but their assortativities ρ differ. Network (a) and (b) have
different degree distributions but the totals of their degrees for different colours are distributed
similarly so they have the same assortativity value.

So the densities of red and blue edges are, respectively, err = 4/7 and ebb = 1/7. Also,

Ar = 10, Ab = 4 and ar =
5
7
, ab =

2
7
.

Eq.(3.4.42) then gives ρ = 3/10 = 0.3 and the network is assortative. A similar calculation for
Figure 3.1(b) gives ρ = 5/7 ≈ 0.714. Since the theoretical bounds on positive assortativity for
both networks in Figure 3.1 are the same, i.e., between 0 and 1, we can say that the network in
Figure 3.1(b) is more assortative than that in Figure 3.1(a).
An example of a fully assortative network is given in Figure 3.2(a). This has M = 3 edges
and the total numbers of red and blue chevrons are Ar = 4 and Ab = 2, respectively. Their
proportions are therefore ar = 2/3 and ab = 1/3. Moreover, Err = 4, Ebb = 2 and Erb = Ebr = 0,
so that err = 2/3, ebb = 1/3, and erb = ebr = 0. The fact that err + ebb = 1 means that all links
are red or blue and ensures that ρ = 1 from Eq.(3.4.42).
An example of a fully disassortative network is given in Figure 3.2(b). Here we have M = 4,
Ar = Ab = 4 so that Ar = Ab = 1/2. There are no coloured edges so that Err = Ebb = 0. The
undirectedness of the network ensures symmetry between the two colours, giving Erb = Ebr = 4.
Normalised, these give err = ebb = 0, erb = ebr = 1/2. Eq.(3.4.42) then gives ρ = −1. It is
a general result that a fully disassortative, undirected network with two colours has ρmin = −1.
However, this minimum value for ρ is misleading; it is not generally −1 if more colours are
involved. While the absence of assortativity means that

∑
c ecc = 0 for any number of colours,

the undirectedness that assures the symmetry between the colours only happens when there are
two of them. This property, together with ar+ab = 1 from Eq.(3.4.40) means that ar = ab = 1/2.
Eq.(3.4.42) then trivially gives ρ = −1.
The three networks in Figure 3.3 illustrate that the result ρ = −1 does not carry over to
fully disassortative networks with more than two colours. Each network in the figure is fully
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disassortative because no edge links two nodes of the same colour: Err = Ebb = Egg = 0 (here
the green nodes are labelled g and we omit the chevrons from the illustrations from now on).
Each network has M = 8. Networks (a) and (c) have the same degree distributions given by
16p(k) = 4, 2, 1, 0, 1 for k = 1, 2, 3, 4 and k = 5, respectively. Here, p(k) is the probability
(relative frequency) of nodes with degree k. Network (b) has 16p(k) = 2, 4, 2, 0, 0 and network
3 has 16p(k) = 4, 2, 1, 0, 1. Network (a) has Ar = 5, Ab = 5, Ag = 6; network (b) has Ar = 5,
Ab = 6, Ag = 5; and network (c) Ar = 4, Ab = 4, Ag = 8.
Although networks (a) and (b) have different degree distributions, because the totals of their
degrees for different colours have the same distributions, they have the same assortativity values,
namely ρ = −86/170 = −0.506. Although network (c) has the same degree distribution as
network (a), because the totals of their degrees for different colours differ, they have the same
assortativity values; that of network (c) is ρ = −3/5 = −0.6. Moreover, although each of the
three networks is fully disassortative, none of their ρ values is −1.
Fully disassortative, undirected networks with only two categories have ρmin = −1. However,
the minimum value for ρ is not generally −1 if more categories are involved. While the absence
of assortativity means that

∑
c ecc = 0 for any number of categories, the lack of directedness that

assures the symmetry between the categories only happens when there are two of them. This
property, together with Eq.(3.4.40) trivially gives ρ = −1. More generally, ρmin lies between −1
and 1.
The reason why ρmin , −1 for a fully disassortative network with three or more colours is
that such a network more closely resembles a random network than a perfectly assortative one
does [118]. When many colours are available, random colour-blind mixing will tend to connect
nodes of different colours. It is for this reason that the value ρ = 0 for a random network is
closer to the value of a fully disassortative network than it is to that of a perfectly assortative
network. For this reason it is more difficult to compare disassortative networks using ρ than it
is to compare assortative ones.
In developing Eq.(3.4.42) for the modularity, one seeks to compare to the expected density of
edges between nodes of the same category in the circumstance that the network is assembled
without regard to category. This is an appropriate approach when it is that assortativity that we
seek to measure. However, as we have seen, this leads to a bad normalisation for disassortative
networks. To develop a measure that is nicely normalised in the latter case, one may seek
to directly measure disassortativity instead. To this end, we focus on edges between node of
different categories. We start by introducing

ρ̄ = −
∑′

c,c′ (ecc′ − acac′)
1 −∑′

c,c′ acac′
. (3.4.45)
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Here the prime on the summation signals that it runs over values of c and c′ that are not equal
(c = c′ is omitted). Also, the leading minus sign is introduced in order to make sure that
disassortative networks have negative values of ρ̄. This is to ensure that we keep the same sign
conventions as in the ρ-cases.
Eq.(3.4.40) gives ∑′

c,c′
ecc′ = 1 −

∑
c

ecc.

This allows us to write
ρ̄ = ρ

(
1∑
c a2

c
− 1

)
. (3.4.46)

From Eq.(3.4.43), this may simply be written

ρ̄ = − ρ
ρmin
, (3.4.47)

so that ρ̄ is just the standard expression for the assortativity, but normalised by its minimum
value (which is, of course, negative).
We can also introduce a renormalised version of the categorical assortativity that is more
suitable for all circumstances:

ρ̂ =

{
ρ if ρ > 0,
− ρ

ρmin
if ρ < 0. (3.4.48)

This quantity is 1 in the case of a fully assortative networks; it is −1 if the network is fully
disassortative; and is 0 in the case of a colour-blind network. Therefore it has all the features
that we desire, including a normalisation which facilitates easy and meaningful comparisons of
categorical assortativities between networks.

3.5 Clustering Coefficient

Another network topological measure is clustering coefficient. This measures the concentration
of edges in a vertex neighbourhood. The maximum potential number of edges between node i

and its nearest neighbours is ki(ki − 1)/2. If ni is the number of links that actually exist between
node i and its neighbours, we define the clustering coefficient of node i as

Ci =
2ni

ki(ki − 1)
. (3.5.49)

The average clustering coefficient C for the entire network is the mean of these quantities taken
over all nodes of the network and is bound between 0 and 1:

C =
1
N

N∑
i=1

Ci. (3.5.50)
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Figure 3.4: A schematic graph showing central node i with seven of its neighbours.

This measure of clustering coefficient was proposed by Watts and Strogatz in [13] and we use
Figure 3.4 to illustrate its application. In the figure, the central node i has degree ki = 7. Only
three edges connect the neighbours of node i. Therefore, Ci = 3/21 = 1/7. The clustering
coefficient of the entire network is

C = 0.77

It can be noticed however, from Eq.(3.5.49) that clustering coefficient is biased towards low ki

values because of the denominator ki(ki − 1). An alternative measure of clustering coefficient,
sometimes called transitivity CT minimises this bias. It is given by Newman et al.(2002) and
can be quantified as follows. If node a connects with b and node b connects with c, then abc

makes a path of two edges. If a also connects with c then a triangle forms. In this case, the
path between a, b and c forms a closed triad representing a transitive relationship. Transitivity
is defined by

CT =
3N∆
Nt
,

where N∆ is the number of triangles and Nt is the number of triads of paths length two.
The factor of three accounts for the symmetry of the triangle. Figure 3.4, gives a clustering
transitivity of 0.33.
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3.6 Path length

A path in a network is any sequence of consecutive edges that connects two nodes. The path
length, also known as distance, is then defined by the number of edges transversed along the
path. The shortest path between two nodes is called a geodesic. The geodesic length is the
number of edges between two nodes such that no other shortest path exists. If di, j is the shortest
distance between node i and j, the average shortest path length in a network is defined as

ℓ =
1

N(N − 1)

N∑
i=1

N∑
j=1

di, j,

where N is the number of nodes in the network. In networks, ℓ tends to be short (typically the
average path length is comparable to the logarithm of N ) [119] . The longest geodesic path ℓmax

is the network’s diameter.
It is possible for a network to be fragmented into a number of disconnected components. In
this case, the component with the largest size is called the giant component. By convention, the
geodesic path length between two nodes is said to be infinite if the nodes belong to different
components of the network [119]. In circumstances where the network is fragmented, one
calculates the average shortest path length over paths that run between nodes of the same
component (i.e., one simply omits the infinite paths).

3.7 Closeness

Closeness centrality measures the proximity of a node to other nodes in the network. It can be
used to identify the most central node in a network as that with the least mean distance to all
other nodes in the network. The closeness centrality of node i is calculated as

Cc(i) =
1

N − 1

∑
j(,i)

1
di, j
. (3.7.51)

The mean closeness centrality for the network is

⟨Cc⟩ =
1
N

N∑
i=1

Cc(i).

The idea of closeness centrality has found uses in various applications. For example, in transport
networks, closeness was applied to rank airports in Ref. [120]. Erjia Yan and Ying Ding, in their
study of co-authorship networks, refer to closeness as a useful proxy for scientific impact [121].
In addition, Ref. [122] used this metric to measure how Computer Science and Mathematics are
progressively drawing closer to each other through interdisciplinary research.
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Figure 3.5: The network is used in Table 3.2 to illustrate how Closeness centrality is calculated
in a network.

3.8 Betweenness centrality

Another measure of the relative importance of nodes is the betweenness centrality bl. This
measures the degree to which a node acts as a broker between pairs of other nodes in the
network. Freeman [125] is typically accredited for this concept of betweenness, although
Freeman himself [126] acknowledges Anthonisse [127] for the original idea. It is computed
as the fraction of shortest paths between pairs of nodes passing through a given node [119]. It
is normalised to give a bound 0 < bl < 1. To define it, we first write the number of geodesics
(shortest paths) between nodes i and j as σ(i, j). We denote the number of these which pass
through node l as σl(i, j). The betweenness centrality of vertex l is then defined as

bl =
2

(N − 1)(N − 2)

∑
i, j

σl(i, j)
σ(i, j)

. (3.8.52)

If bl = 1, all geodesics pass through node l. Nodes associated with high betweenness have
a considerable influence in the network as they control the flow of information between other
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Nodes Closeness
A B C D E F G H I J K

∑
j(,i)

1
di, j

Normalised
A ... 1 0.5 1 1 0.33 0.25 0 0 0 0 4.08 0.41
B 1 ... 1 0.5 0.5 0.5 0.33 0 0 0 0 3.83 0.38
C 0.5 1 ... 1 1 1 0.5 0 0 0 0 5.00 0.50
D 1 0.5 1 ... 1 0.5 0.33 0 0 0 0 4.33 0.43
E 1 0.5 1 1 ... 0.33 0.25 0 0 0 0 4.08 0.41
F 0.33 0.5 1 0.5 0.33 ... 1 0 0 0 0 3.67 0.37
G 0.25 0.33 0.5 0.33 0.25 1 ... 0 0 0 0 2.67 0.27
H 0 0 0 0 0 0 0 ... 1 0.5 0 1.50 0.15
I 0 0 0 0 0 0 0 1 ... 1 0 2.00 0.20
J 0 0 0 0 0 0 0 0.5 1 ... 0 1.50 0.15
K 0 0 0 0 0 0 0 0 0 0 ... 0.00 0.00

Table 3.1: Closeness centralities for the network shown in Figure 3.5. For example, the geodesic
path between nodes A and G is four and the entry in boldface is the inverse of this distance.
Where no path exist between node i and j, for example A and J, the quantity 1/di, j is replaced
by zero [123, 124]. The normalized values are bound between 0 and 1. Node C is the most
central node in this example.

nodes. The removal of these nodes disrupts communication between other nodes as they act as
a bridge for the largest number of paths between pairs of nodes in a network [119].
The concept of betweenness is additionally useful in defining one of the most common and
novel measures of edge centrality, proposed by Girvan and Newman in [128]. In this case, i, j

and l in Eq.(3.8.52) can be used to represent edges rather than nodes. The quantity bl becomes
edge betweenness centrality instead. Edge betweenness finds a wide range of application in
network analysis including help with detecting communities [129].

3.9 Eigenvector centrality

Eigenvector centrality characterises node importance based on centralities of its neighbours.
The measure recognises that not all interactions are equal. Nodes are deemed influential
according to how they are linked to other important nodes. Eigenvector centrality is a variant of
the “pagerank” score used to rank websites [119]. For a graph G, if we let xi denote the average
centralities of node i’s neighbours, then

xi =
1
λ

n∑
j=1

Ai, jx j, (3.9.53)

where A is the adjacency matrix and λ is a constant. If x = [x1, x2, x3, ...] is the vector of
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Figure 3.6: Community structure of the Zachary karate club network displaying three
communities detected using the Girvan-Newman algorithm with modularity Q = 0.39 [130].
Panel to the left shows a network coloured into two different communities from earlier steps of
the algorithm.

centralities then Eq.(3.9.53) leads to λx = A · x, where x is the corresponding eigenvector of the
adjacency matrix A with its largest eigenvalue λ.

3.10 Community Structure

Another property of many real-world networks is the presence of a community structure.
Communities are tightly knit groups i.e, nodes with multiple interconnections. Links between
groups are measurably less dense [128]. An example from social networks could be groups
of people with similar interests, beliefs, education, background or behaviours. Such a network
structure where a heterogeneous large structure is built from homogeneous clusters is often
refereed to as modular or a hierarchical community structure. This structure is sometimes
represented using a dendrogram that exhibits how smaller groups are nested within larger groups
which in turn make-up the entire network.
The problem of community detection is closely related to graph partitioning in computer science
[131]. In the Girvan-Newman algorithm, the edge betweenness for the network is calculated
and an edge with highest betweenness removed, edge betweenness is then recalculated and
again removing the edge with highest betweenness [128, 129]. The process is repeated until an
optimal number of communities is achieved. If we gradually remove edges with the highest
betweenness, we obtain a hierarchical map, called a dendrogram as shown by an example in
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Figure 3.6. The leafs are the individual nodes that represents the whole graph.
Girvan and Newman [128] introduced a modularity quantity Q as a qualitative measure that
helps to evaluate the optimal number of communities (partitions) given by the algorithm. This
is given by Eq.(3.4.41)

Q =
∑

c

(
ecc − a2

c

)
, (3.10.54)

where instead of colour, c represents a set of communities.
The karate club studied in [132] is a good example of a network that exhibit a community
structure. This particular network is quite famous because has been used to test different
community detection algorithms [128, 130, 133, 134].
The anthropologist Zachary conducted observations over two years relating to the friendships
between 34 members of a karate club. A disagreement between the club’s administrator and a
teacher prompted a split which led to the club members taking sides between the two factions.
The network depicted in Figure 3.6 contains 78 edges between 34 nodes.

3.11 Structural Balance

We have earlier touched upon the notion of positivity to describe friendly connections in social
networks. The converse concept is negativity; links which represent hostile or conflictual
relationships between pairs of nodes are deemed negative. Obviously the concepts of positive
and negative edges relate to social networks. In a full social network, there is often a tendency
to suppress odd numbers of negative links in a closed triad. This is related to the notion of
structural balance [135]. This is the notion that “the enemy of my enemy is my friend”; hostility
between two individuals in a social network (or characters of a text) is suppressed if they have a
common foe. One way to quantify this is by introducing the quantity ∆, defined as the fraction
of closed triads that contain an odd number of positive links. Clearly ∆ is only relevant to the
complete network rather than to its positive or negative subsets, formed out of only positive or
only negative relations, respectively. (In the former ∆ = 1 by definition, while in the latter it is
zero.)

3.12 Random networks

A random network is a graph containing N nodes where each pair is connected with some
probability p [136]. There are two regularly considered models of random graphs, the Gilbert
model [137] and the Erdős-Rényi model [138]. The Gilbert model is labelled by G(N, p). In it,
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M edges appear independently with probability 0 < p < 1 . In the closely related Erdős-Rényi
model, G(N,M), N nodes are connected by randomly placing M links between them. If we
consider a random network where each edge is connected with probability p and a given node
with degree k which have a maximum of N − 1 connections. The probability of having degree k

in the network will then be proportional to pk(1− p)(N−1−k). The degree distribution of a random
network therefore follows a binomial distribution of the form

pk =

(
N − 1

k

)
pk ( 1 − p )N−1−k. (3.12.55)

The corresponding generating function is defined by

g(z) = [1 + p(z − 1)]N−1. (3.12.56)

The first and second moments are given by

⟨k⟩ = p(N − 1) (3.12.57)

⟨k2⟩ = p(N − 1)[p(N − 2) + 1]. (3.12.58)

In the limit of large N, the following approximation can be used for Eq.(3.12.55):

P(k) =
⟨k⟩k
k!

e−⟨k⟩. (3.12.59)

From Eq.(3.12.59), it shows that the degree distribution for a random network can be
approximated by a Poisson distribution for large N with a small connecting probability, p.
Random graphs are characterised by a small average path-length ℓrand that behaves like the
logarithm of the network size N. They are also associated with low clustering coefficient Crand.
The average path length of a random network ℓrand is suggested as

ℓrand ∝
log N
log⟨k⟩ . (3.12.60)

This quantity in Eq.(3.12.60) was a proposal of Albert and Barabási [109] but later adjusted by
to include the Euler-Mascheroni constant a ≈ 0.5772 [139] and given as follows

ℓrand ≈
log N − a

log pN
+

1
2
. (3.12.61)

We recall that clustering coefficient is the average probability that there is a connection between
two neighbours of a node. The clustering coefficient of a random network is given by

Crand =
⟨k⟩

N − 1
≡ p. (3.12.62)
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Figure 3.7: Degree distribution averaged from 100 random graphs, each with 2000 nodes
connected with probability p = 0.03. The continuous green line shows the binomial distribution
and the Poisson distribution is represented by a dotted line in red. The point shows the average
fraction of nodes with degree k and error bars represent the standard deviation around that point.
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Figure 3.8: A plot of system size vs average path-length obtained from Erdős-Rényi random
graph with probability p = 0.05. Even though the analytical results obtained from Eq.(3.12.61)
do not follow the simulation results exactly, they follow similar behaviour. The simulation
results are averaged over 100 realisations.
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Both random and real-world networks inherently have a small average path length. However,
there exist many differences between random and real-world systems. There is no correlation
between the degrees of adjacent nodes in random networks as nodes link at random unlike
in real-world networks where they are usually correlated. Another difference is found in the
degree distribution. As discussed earlier, the degree distribution of real networks tend to be
right skewed with a small number of nodes displaying hubs and a high number of low-degree
nodes. On the other hand, random networks display a poisson degree distribution. Moreover,
nodes in real networks tend to group into communities, a structure that is absent in random
networks [119].

3.13 Small world networks

Small-worldness is related to the concept of “six degrees of separation”. It is a phenomenon
that a short path exists between any two strangers picked from anywhere in the world. Stanley
Milgram conducted a study (the now famous “small-world experiment”) to examine the average
path-length between people in the United States. The research findings suggested that any two
strangers are separated by not more than six steps between them. This notion became popularly
known as the “six degrees of separation” [140]. Although the notion is generally accredited
to Milgram, the concept can be traced back to 1929 to an experiment conducted by Frigyes
Karinthy. Karinthy, a Hungarian poet and journalist [141], suggested that the world’s population
lives close enough to connect any two individuals by not more than five steps between them. He
was able to establish a relationship with a very distant stranger in an American factory through
not more than five individuals between them. He contacted a factory worker at Ford Motor
Company, who knew his foreman, who knew Mr. Ford, who was acquainted with an American
publisher who had Hungarian links – William Randolph Hearst, who in turn knew Mr. Árpád
Pásztor a friend of Frigyes [142].
A small-world network is a graph in which most nodes can be reached from every other node
by a small number of steps [13, 143]. Conventionally, random network models such as the
Erdős-Rényi have been used to discern the structural properties of small-world networks [8,109,
139,144]. There are two main metrics that characterise the behaviour of small-world networks,
C ≫ Crand and ℓ ≈ ℓrand. That is, a network G with N nodes and M edges is a small-world if its
average path length is similar yet having significantly higher average clustering coefficient than
that of a random network of the same size.
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Figure 3.9: Robustness of the Beowulf network panel (a) and Laxdæla’s saga (b).

3.14 Robustness

Robustness is measured by a network’s ability to maintain it’s basic functions amid network
attacks. This implies the presence of parallel functions that can replace missing functionalities
from removed nodes or edges. This concept is used in many fields. In economics, the concept
is applied to study risks and stability in the financial markets [145]. In biology, the principal
can be used to give an insight into mutations and diseases [146]. It is often useful to identify
influential nodes in character networks. Nodes of high degree are likely to have more influence
on the network than those of low degree. Likewise, a node with high betweenness centrality
controls the connectivity of other nodes in the network. To test robustness, the size of the
giant component is measured as nodes are removed [8]. A network is fragile when its giant
component fragments quickly [147]. Node removal can be targeted: nodes are removed
according to their degree or betweenness centrality. In the later case, betweenness centrality
has to be recalculated every time a node is removed. Node removal can also be done randomly.
Scale-free networks tend to be robust against the random removal of nodes [147]. This seems
to be the same behaviour observed in mythological networks looked at by MacCarron [8].

3.15 Gathering the Data

As with previous studies [9, 15, 16, 148], we consider epic texts in Chapter 2 as playing out on
character network comprising N nodes and M edges which link the nodes through relationship
or interactions. We distinguish between two types of edge: positive and negative. Positive edges
are established when any two characters are related, communicate directly with each another,
or speak about one another or are present together when it is clear that they know each other.
So positive edges basically represent friendly, social or neutral relationships. Negative links, on
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the other hand, represent hostility between nodes. They are formed when two characters meet
in conflict or when animosity is explicitly declared by one character against another and it is
clear they know each other.
It is possible that two characters are linked by both positive and negative edges as relationships
between characters may change over time. However, because Cogadh Gáedhel re Gallaibh is
temporally relatively non-extended, covering a period of only two centuries, its connectivity
properties can be reasonably accommodated through a static analysis. Indeed, previous studies,
to which we wish to compare, used the static approach [9, 15, 16]. Nonetheless, it should
be noted that the study of dynamical properties of networks constitutes an active, broad and
developing area of research and such an approach would be of interest in the future [148].
In the following analysis, we focus primarily on the topology of the networks underlying texts
in Chapter 2. For this purpose, we consider undirected, unweighted networks. This means that
(i) the features which connect the various nodes are not oriented and (ii) the statistics we report
upon do not take into account varying levels of intensity of interactions between nodes. To
account for (i), one would have to introduce a level of detail which is finer that just positivity
or negativity. However, what one gains in refining this detail, one loses in statistical power. To
account for (ii), one may place higher weight on more intense interactions. However, besides
using the number of interactions between characters in the narrative, there is no established
standard mode of weighting edges in character networks. Moreover, we are primarily interested
in the presence or absence of conflict, not on the details of varying intensity of such hostility.
Therefore we defer consideration of directed, weighted and temporal networks for future studies
and restrict the current study to network topology and related matters.
Finally, we remark that our approach to constructing the networks follows the methodology of
Refs. [9,15,16] in that nodes and links are identified by carefully reading the texts with multiple
passes through all of the material by multiple readers. In our experience, such an approach
is required to minimise errors and omissions as well as to reduce levels of subjectivity. As
an example, Cogadh Gáedhel re Gallaibh is an extremely dense text and meticulous care is
required to interpret extremely subtle tracts containing large amounts of explicit and implicit
information. It is currently beyond technological capabilities to extract such information
automatically owing to the inherent complexity of such texts (see, e.g., Ref. [149]). Establishing
the technology for such an approach is another active area of research.
Together the set of nodes and edges form a network. Analysis of such networks delivers outputs
in the form of statistics which can be considered as metrics. We can also study the distributions
of edges amongst the nodes of the various networks as well as their connectivity information.
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By comparing these we can gauge similarities and dissimilarities between the social structures
underlying the narratives.
Our analyses begin by comparing some standard network topological observables underlying
each text. This is followed by the analyses of their degree distributions. We finally look at the
spectral distance from the adjacency matrices of the graphs.

3.16 Remarks

In this chapter we have presented a number of generic network statistics that are commonly
used in the literature to characterise the structure of networks. We have also highlighted the
shortcomings of the current metric used to quantify categorical assortativity, particularly in
cases that involve disassortativity. In a complete disassortative network, one would expect the
extremely minimum of this value (-1). Instead, the current measure gives a value below zero
but not its expected minimum (-1). We, therefore introduce a new measure of disassortativity,
an adjusted renormalised version of assortativity found in [118]. The new measure caters for a
completely disassortative network and for more than two categorical classifications. Chapters
4 and 5 will show how these network topological measures can be used to quantify character
networks.
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Chapter 4

Network Analysis of Cogadh Gaedhel re
Gallaibh

In this chapter, we present our character-network analysis for Cogadh Gaedhel re Gallaibh. A
network visualisation of the full set of interactions recorded in the text is shown in Figure 2.2
of Sub-section 2.1.1. We begin here with Section 4.1 where the summary statistics are given.
In Section 4.2 we consider networks formed from Irish and Viking characters separately. The
degree distributions are examined in Section 4.3 and the question of network robustness and
the importance of individual characters is addressed in Section 4.4. We compare the Cogadh

networks to those from other epic traditions in Section 4.5. In Section 4.6 we look at a particular
instance of interpolation in Cogadh Gaedhel re Gallaibh. Our main results are addressed in
Section 4.7. It is here that we examine the question of what the data embedded in the Cogadh

have to say regarding the long-standing debate about the nature of conflict in the Viking Age in
Ireland. We conclude with some remarks in Section 4.8.
The results of this chapter have been published on the arXiv as Ref. [17]. The work has also
been submitted in to the journal Royal Society Open Science.

4.1 The entire network and its positive and negative
sub-networks

We identified 326 individual characters in the main part of Todd’s translation of Cogadh

Gaedhel re Gallaibh. The introduction, footnotes, appendices and index were also used to
aid the identification of characters and links between them but individuals mentioned only
in these paratexts do not form part of the Cogadh network. A small number of characters
appear in the main text which are omitted in Todd’s index. Of the 326 characters, eleven are
isolated in the sense that they do not interact in the narrative. We consider these as not forming
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Table 4.1: Full-cast networks comprise Irish, Viking and other nodes together with interactions
between them. Unsigned networks comprise positive and negative edges as well as the nodes
they connect. Thus, for example, the positive, full-cast network comprises all nodes but only
positive links. The unsigned, Irish network comprises only Irish nodes but both positive and
negative links between them. The entire network comprises all interacting nodes and all links.

Edges
Positive Negative

N
od

es Irish

︸ ︷︷
 ︸

Fu
ll

ca
st

Viking
Other ︸                   ︷︷                   ︸

Unsigned

part of the Cogadh network and they are omitted from our analysis. Thus we are left with
N = 315 individual interacting characters in the entire network. These nodes are interconnected
by M = 1190 edges. We also identified 34 groups of unnamed characters. If these were to
be considered as nodes, they would bring an additional 187 edges. However because these are
neither individuals or named, we omit them too. (Note that for completeness, the networks with
these extra nodes and links were analysed too and it was found that they deliver only very small
changes to the statistics presented here.)
We refer to the assemblage of 315 nodes and 1190 edges as the entire network. We also
consider the positive and negative sub-networks, which are formed only of positive or negative
edges, respectively. Examination of these allows us to gain additional insight into the social and
conflictual statistics contained in the narrative.
It is known from sociology that societies exhibit what is called homophily. As previously
discussed, the tendency of individuals to associate with others who are similar to themselves in
some way (homophily) is know as generally known as assortativity [107,115,150]. In previous
studies of epic literature [8, 9, 15, 16], degree assortativity was a focus of study. It was shown
that some positive sub-networks exhibit degree assortativity, or are uncorrelated. The opposite
feature — degree disassortativity — was found to be characteristic of negative sub-networks.
This means that, compared to full social networks, positive sub-networks give, in some sense,
a “cleaner” picture of the non-conflictual societies underlying such narratives. This makes it
valuable to study positive sub-networks in isolation [144]. A new feature of this thesis is the
additional focus on the negative sub-network to statistically measure levels of hostility.
From here on, we use the term unsigned to refer to networks which contain both positive and
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Table 4.2: Statistics for the entire network and the various sub-networks. Columns 1 and 2
indicate whether the sub-network is unsigned, positive or negative with full cast of characters
(Irish, Viking and other) or only the Irish or Vikings are taken into account. N represents the
number of nodes and M is the number of edges; ⟨k⟩ is the average degree and kmax its maximum;
ℓ is the mean path length and C is the average clustering coefficient. Random counterparts are
indicated with the subscripts “rand”. The relative frequency of triads that contain an odd number
of positive links is represented by ∆; the proportion of nodes belonging to the giant component
is represented by Gc and the degree assortativity is denoted by r.

N M ⟨k⟩ kmax ℓ ℓrand C Crand ∆ Gc r

U
ns

ig
ne

d Full cast 315 1190 7.6 105 3.6 3.1 0.58 0.02 0.93 0.95 -0.09(2)
Irish 193 530 5.5 63 3.7 3.3 0.53 0.03 0.93 0.88 -0.08(3)
Vikings 91 313 6.9 26 4.4 2.6 0.67 0.08 1.00 0.90 0.31(7)

N+ M+ ⟨k⟩+ k+max ℓ+ ℓ+rand C+ C+rand G+c r+

Po
si

tiv
e Full cast 287 957 6.7 53 4.1 3.2 0.59 0.02 0.87 0.00(4)

Irish 186 475 5.1 47 3.9 3.4 0.53 0.03 0.85 -0.02(4)
Vikings 88 301 6.8 26 3.0 2.5 0.68 0.08 0.73 0.34(7)

N− M− ⟨k⟩− k−max ℓ− ℓ−rand C− C−rand G−c r−

N
eg

at
iv

e Full cast 180 264 2.9 63 3.7 4.8 0.06 0.02 0.89 -0.25(3)
Irish 62 72 2.3 25 2.6 4.7 0.06 0.04 0.69 -0.26(6)
Vikings 18 16 1.8 4 1.5 4.5 0.00 0.10 0.33 -0.08(18)

negative edges. Networks made up of only positive (or only negative) edges are themselves
termed positive (or negative, respectively). The term full-cast is used to refer to networks
containing the full cast of characters, i.e., with Irish, Viking and other characters. Networks
containing only Irish characters are themselves referred to as Irish. An analogous statement
holds for Viking networks. This terminology used is summarised in Table 4.1. Statistics for the
entire network and various sub-networks are collected in Table 4.2.
The mean number of edges per node for the entire network is determined to be ⟨k⟩ = 2M/N ≈
7.6. This varies between 1 for the least connected characters and kmax for the most connected
one. For the entire network, the most connected character is Brian himself. He has kmax = 105
edges, and is linked to 33% of the other characters in the narrative. Of course, besides Brian’s
degree, we are also interested in the connectedness of the other characters in the narrative and
we discuss the distribution of ki-values (the so-called degree distribution) in Section 4.3. We
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also rank the first few characters according to their individual degrees, and according to other
measures of importance, in Section 4.4.
Henceforth, we use the superscripts “+” and “−” to identify statistics associated with the
positive and negative networks, respectively. We refrain from using a superscript for the
unsigned networks. Cogadh Gaedhel re Gallaibh has N+ = 287 interacting characters in its
positive sub-network, and they are interconnected by M+ = 957 edges. This corresponds
to a mean degree of ⟨k⟩+ ≈ 6.7. Again we have omitted isolated nodes from the positive
and negative sub-networks. (We do this because the negative sub-network can have a large
number of zero-nodes and may end up with average degree less than 1, which is not sensible
for comparisons to other networks.) The counterpart numbers for the negative network are
N− = 180, M− = 264 and ⟨k⟩− ≈ 2.9. We note that the total number of positive and negative
links M+ +M− = 957 + 264 = 1221 is greater than the number M = 1090 which we previously
identified for the entire network. This is because some relationships involve both positive and
negative aspects. Brian has the highest degrees in both positive and negative sub-graphs, with
the former measured at k+max = 53 and the latter at k−max = 63.
The mean path length for the full network is measured to be ℓ ≈ 3.6. This is shorter than the six

degrees of separation that is supposed to characterise modern society [140]. The counterpart
statistics for the positive and negative sub-networks are ℓ+ ≈ 4.1 and ℓ− ≈ 3.7, respectively.
The clustering coefficient of a given individual is the proportion of acquaintances which are
themselves mutually linked and the average value over all vertices of the network is the mean
clustering coefficient. We found that both the full network and the positive sub-network have
significant amounts of clustering with C ≈ 0.58 and C+ ≈ 0.59, respectively. By contrast, the
negative sub-network is unclustered with C− ≈ 0.06.
It is usual to compare the structure of a given network to that of a random one. To do this in a
sensible manner, the random network is chosen to have the same size and mean degree as the
one we wish to compare to. As mentioned in Section 3.13, the term small world applies to the
network if its mean path length ℓ is similar to that of the random graph ℓrand and if the clustering
coefficient of the network C is much larger than that of the same random graph Crand [13, 151].
We find that the path lengths of the associated random networks are of the same order of
magnitude for both the unsigned and positive networks but the clustering is far smaller (see
Table 4.2). The unsigned and positive Cogadh networks are therefore small worlds but the
negative network does not exhibit this feature.
Triads with odd numbers of positive edges are considered structurally balanced and the overall
network is loosely also called structurally balanced if a high proportion of them have this
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feature. We find this to be the case for the entire network underlying Cogadh Gaedhel re

Gallaibh (which has 3041 triads) with ∆ ≈ 93%.
As mentioned in Section 3.6, a network may be fragmented into a number of disconnected
components. The largest is called the giant component. The giant component of the unsigned
Cogadh network contains 95% of its nodes and the equivalent proportions for the positive and
negative networks are 87% and 89%, respectively (Table 4.2).
In common with other character networks, we find that the negative full-cast network is
disassortative by degree, with r = −0.25(3). The error here is estimated using the method
given in Refs. [107, 115]. Error estimates for other network statistics are small (see discussion
in the final paragraph of Section 4.6) and we refrain from reporting them here. The reason
why we display errors for assortativity values is that they provide useful information when
comparing systems which are, or nearly are, uncorrelated (r close to zero). The negative value
of r for the negative sub-network means that high-degree characters are hubs and their negative
links preferentially attach to low-degree ones. This is a generic feature of heroic tales where a
small number of individuals encounter multitudes of lesser characters and defeat them in battle.
The positive full-cast network, by contrast, is uncorrelated within errors, with r = −0.00(4).
This means it is neither assortative nor disassortative. These features are quite typical of social
networks and of character networks with positive interactions [15, 144].

4.2 The Irish and Viking sub-networks

Beside the networks comprising the full cast of characters, we can also analyse the networks
containing only Irish or only Viking nodes. The statistics are also listed in Table 4.2. As usual,
isolated (degree-zero) nodes are removed. For example, there are 202 Irish nodes in total (see
Table 4.8), but nine of these are disconnected from other Irish nodes. These are omitted in
calculating the statistics for the unsigned Irish network in Table 4.2. Apart from the value of N,
reinstating the nine does not alter the statistics listed within the precision of Table 4.2.
We observe the following average properties of the various sub-networks. In the Irish, and
Viking networks (as, indeed, in the full-cast cases), the mean degrees are maximum for the
unsigned networks and minimum for the negative ones. For the Irish sub-network, the mean
path length is largest for the positive sub-network, just as it is for the full-cast of characters.
The clustering coefficients of the unsigned and positive networks are similar in size and far
smaller for the negative sub-networks. The unsigned networks and their positive sub-networks
are considered small worlds but the negative sub-networks are not. This is quite a typical feature
of epic literature [8, 9, 15, 16]. The unsigned Viking network is more structurally balanced than
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the Irish counterpart. Structural balance for the Irish network, with 830 triads, is 93% whereas
all of the 881 Viking triads contain odd numbers of positive links.

4.3 Degree distributions

Degree distributions deliver further important insights into the nature of complex networks and
facilitate comparisons between them. Here a brief report on the degree distributions of the cast
of Cogadh Gaedhel re Gallaibh is presented and how they compare to other epic narratives.
The simplest possibility is to seek to describe a degree distribution by a power law using the
form p(k) ∼ k−γ [108, 152]. Actually, this is more common in the tail of the distribution, i.e.,
some minimum value degree kmin > 0 [153]. Following Ref. [9] we use kmin = 2 to capture as
much information as possible.
As described in Section 3.2 power-law degree distributions often exhibit a cut-off at some value
k = κ. Section 3.2 provides details of this and other distributions including the log-normal and
Weibull categories. We find that the positive network underlying Cogadh Gaedhel re Gallaibh

is of the truncated power-law type. The negative network of Cogadh Gaedhel re Gallaibh is
best fitted by a log-normal distribution whilst the entire network is best described by a Weibull
distribution. Notwithstanding these fits, truncated power laws and Weibull distributions cannot
be ruled out as an alternative for any of the networks considered here.
In Table 4.3 we present the relative probabilities with the most likely values highlighted in
boldface. In Table 4.4 we present the maximum-likelihood estimates. Statistics in boldface are
those which come from the most likely distributions. These most likely distributions (along
with other candidate functions) are plotted for the unsigned, positive and negative networks in
Figure 4.1.

Table 4.3: Relative minimum-information-loss probabilities for the degree-distribution
functions of the unsigned, positive and negative networks. The values of distributions which
are most likely are highlighted in boldface.

Power law Truncated Log normal Exponential Weibull
power law

Unsigned ∼ 0 0.26 0.22 ∼ 0 0.52
Positive ∼ 0 0.62 ∼ 0 0.04 0.34
Negative 0.04 0.27 0.44 ∼ 0 0.25
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Figure 4.1: The complementary cumulative degree distributions for the unsigned network of
Cogadh Gaedhel re Gallaibh (left), its positive sub-network (middle) and negative sub-networks
(right).

Table 4.4: Maximum-likelihood estimates for the parameters associated with the various
probability distributions, as fitted to the data for the unsigned, positive and negative, full-cast
networks. Values which correspond to the most likely distributions are highlighted in boldface.

Power Truncated Log normal Exponential Weibull
law power law
γ γ κ µ σ κ β κ

Unsigned 1.7(1) 0.5(2) 11.4(1) 1.6(1) 1.0(1) 7.4(1) 0.8(1) 5.3(1)
Positive 1.8(1) 0.5(2) 9.4(1) 1.5(1) 1.0(1) 6.3(1) 0.8(1) 5.0(1)
Negative 2.2(2) 1.8(1) 30.9(1) 0.0(1) 1.3(1) 3.6(1) 0.5(1) 0.5(2)

4.4 Network robustness and importance of individual
characters

The leading characters of Cogadh Gaedhel re Gallaibh are listed in Table 4.5, ranked according
to four different measures: degree; betweenness; closeness and eigenvector centrality. It can be
noticed that Brian is the most central node based on all four measures. Brian, a high king of
Ireland, is portrayed in Cogadhas a heroic king who ended Viking invasion of Ireland. Sitriuc
is also recognised as an important character in the unsigned network following Brian. Sitriuc,
the main Viking leader, is associated with a number of raids into Irish territories and played a
prominent role at the battle of Clontarf in 1014.
An interesting question is: how reliant is the integrity of the giant component on the most
important characters? This is related to the question of robustness and it can be investigated by
examining the effects of systematic removal of nodes or edges. Another possibility is to remove
elements of the network in a random manner. In the systematic approach, we can remove the
most important nodes one after the other and keep tabs on how the giant component reduces
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Table 4.5: The most important characters of Cogadh Gaedhel re Gallaibh ranked according to
various criteria: degree, betweenness centrality, closeness, and eigenvector centrality.

Rank Degree Betweenness Closeness Eigenvector
1 Brian (105) Brian (0.42) Brian (0.44) Brian (0.53)

U
ns

ig
ne

d 2 Sitriuc (62) Sitriuc (0.21) Sitriuc (0.41) Maelmordha (0.28)
3 Maelmordha (42) Ottir (0.16) Ottir (0.39) Malachy II (0.22)
4 Ottir (40) Aedh Finnliath (0.13) Gormflaith (0.38) Sitruic (0.21)
5 Malachy II (36) Ossill (0.11) Maelmordha (0.38) Gormflaith (0.21)
1 Brian (53) Brian (0.28) Sitriuc (0.34) Brian (0.48)

Po
si

tiv
e 2 Sitriuc (40) Sitriuc (0.17) Brian (0.34) Murchadh (0.30)

3 Maelmordha (38) Malachy II (0.11) Gormflaith (0.34) Maelmordha (0.26)
4 Gormflaith (34) Ottir (0.10) Maelmordha (0.32) Malachy II (0.26)
5 Ottir (32) Gormflaith (0.10) Malachy II (0.32) Conaing (0.23)
1 Brian (63) Brian (0.63) Brian (0.44) Brian (0.66)

N
eg

at
iv

e 2 Sitriuc (25) Ottir (0.23) Malachy II (0.35) Maelmordha (0.23)
3 Mathgamhain (17) Sitriuc (0.23) Sitriuc (0.34) Brodir (0.22)
4 Cathal (14) Aedh Finnliath (0.16) Ottir (0.33) Malachy II (0.17)
5 Olaf Cuaran (12) Olaf Cuaran (0.12) Ivar (0.32) Ivar (0.17)

in size. We can then compare this to the results of the random approach, in which removal of
nodes is a random process.
There are many ways in which one can decide which are the most important or influential
nodes. One possibility is to consider that nodes with highest degree are most important and to
remove them first. Another is to consider nodes with the highest betweenness centralities [154].
Other measures of importance include nodes’ closeness and eigenvector centralities as defined
in Section 3.7.
We present the results of the study of robustness for the networks underlying Cogadh Gaedhel

re Gallaibh in Figure 4.2. As discussed in Section 3.14, we test robustness by measuring the
size of the giant component as nodes are removed. Nodes are removed either randomly or in
a targeted manner (nodes with highest degree or betweenness centralities). When nodes are
removed by betweenness centrality, betweenness is recalculated after each removal.
The relative sizes of the giant component of the unsigned network as nodes are removed
randomly are depicted in the main left panel by the red data points. The blue and green data
points correspond to removal by highest betweenness and by degree, respectively. A similar
behaviour is observed for the positive network, which is shown in the insert. The equivalent
information for the negative sub-network is contained in the next main panel. Random removal
of nodes has only a relatively gradual effect on the giant-component size in each of the three
networks. Removal by betweenness or by degree has rather more devastating consequences.
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Figure 4.2: The relative sizes of the giant components as depending on the percentage of nodes
removed. The left panel gives the size of the giant component for the unsigned network. That
for the positive network, which has a very similar type of decay, is given as an insert. The
rightmost panel displays the decay of the giant component of the negative network as nodes are
removed. The red data points track the effects of random removal of nodes and the blue and
green data correspond to removal by highest degree and betweenness, respectively.

Removal by betweenness is particularly effective for the destruction of the full and positive
networks. For the negative network, removal by betweenness and degree are about equally
effective. More details of the effects of node-removal on the relative sizes of the giant
components are given in Table 4.6.

4.5 Comparisons to epic networks

It is interesting to compare the network structures in Cogadh Gaedhel re Gallaibh to those
from epic narratives previously studied in Refs. [15, 16]. We decided to compare to the Irish
tale Táin Bó Cuailnge (The Cattle Raid of Cooley) because a recension (version) of this story
is contained in the Book of Leinster (which also, as we have seen, contains the oldest extant
fragmentary recension of Cogadh Gaedhel re Gallaibh). Actually, it has been claimed that the
style of Cogadh Gaedhel re Gallaibh is not unlike that used in the Book of Leinster’s version
of the Táin [19, 39–41, 47]. We also decided to compare the Cogadh to the Icelandic Njáls

Saga. This decision was motivated by the fact that the latter also contains a record of the Battle
of Clontarf and its relation with Cogadh Gaedhel re Gallaibh is described above. Finally we
decided to also compare to the Iliad. This decision was motivated by Refs. [36, 40, 47, 60]
which claim that as the account given in Cogadh Gaedhel re Gallaibh is partly a pseudo-history
borrowed from the story of Troy.
The statistics collected in Refs. [15, 16] are listed in Table 4.7. Again the corresponding data
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Table 4.6: The effects of removing the most important characters or of randomly removing
characters. Here, the entries in the table give the relative size of the giant component after
removal of the top 10% of characters systematically and randomly; the top five characters; and
after removal of the most important character, namely Brian Boru.

Remove Remove Remove Remove Remove Remove
10% by 10% by 10% top 5 by top 5 by Brian
degree betweenness randomly degree betweenness Boru

Unsigned 43% 6% 92% 90% 91% 92%
Positive 47% 7% 83% 85% 85% 86%
Negative 6% 5% 81% 69% 58% 85%

omit zero-degree nodes. There are only six such nodes in the Iliad and even fewer for the
Táin and Njáls Saga. The positive Cogadh network contains 91% of all Cogadh nodes. The
corresponding amounts for Táin Bó Cuailnge, Njáls Saga and the Iliad are 96%, 98% and 92%,
respectively. In contrast, the negative Cogadh network contains 57% of all Cogadh nodes.
The counterpart proportions for Táin Bó Cuailnge, Njáls Saga and the Iliad are 32%, 46% and
25%, respectively. These statistics suggest that hostility plays a greater overall role in Cogadh

Gaedhel re Gallaibh than it does in the other narratives.
Next we turn to the unsigned networks. We observe that even though Cogadh Gaedhel re

Gallaibh is closer in size to Táin Bó Cuailnge, in terms of node numbers, the network statistics
are different. The Cogadh network is also quite dissimilar to that of Njáls Saga. The data
suggest that the overall network of Cogadh Gaedhel re Gallaibh is more alike that of the Iliad

to either that of the Irish or Icelandic works. The mean and maximal degrees and the mean
path length are very close (⟨k⟩ ≈ 7.6 for Cogadh Gaedhel re Gallaibh and 7.7 for the Iliad;
kmax = 105 and 106; ℓ ≈ 3.6 and 3.5 respectively). The degree assortativities are also similar
(r = −0.09 for the Cogadh and r = −0.08 for the Iliad).

4.6 Interpolations

The most famous interpolation in the narrative is that associated with Fergal Ua Ruairc [19,45].
It is suggested by Nı́ Mhaonaigh that “the period in which the Uı́ Ruairc stood to gain most
from associating themselves with the Uı́ Briain seems to have been the mid- to late 1140s” [45].
This implies such a date for the interpolation. (Note that the name “Ua Ruairc” refers to an
individual, Fergal in this instance. The “Uı́ Ruairc” refer to the associated clan or dynasty.)
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Table 4.7: Here we list the statistics for the unsigned, positive and negative networks of Táin
Bó Cuailnge, Njáls Saga and the Iliad.

N M ⟨k⟩ kmax ℓ ℓrand C Crand ∆ Gc r

U
ns

ig
ne

d Táin 422 1266 6.0 168 2.8 3.5 0.73 0.01 0.92 0.99 -0.35(2)
Njáls Saga 575 1612 5.6 83 5.1 3.9 0.42 0.01 0.90 1.00 0.01(2)
Iliad 694 2684 7.7 106 3.5 3.4 0.44 0.01 0.98 0.99 -0.08(2)

N+ M+ ⟨k⟩+ k+max ℓ+ ℓ+rand C+ C+rand G+c r+

Po
si

tiv
e Táin 405 1118 5.5 164 3.0 3.7 0.74 0.01 0.93 -0.33(2)

Njáls Saga 564 1388 4.9 77 5.4 4.1 0.39 0.01 0.96 0.07(2)
Iliad 640 2329 7.3 85 3.8 3.5 0.44 0.01 0.86 0.09(2)

N− M− ⟨k⟩− k−max ℓ− ℓ−rand C− C−rand G−c r−

N
eg

at
iv

e Táin 134 148 2.2 82 2.9 6.0 0.03 0.02 0.91 -0.45(4)
Njáls Saga 145 224 3.1 22 4.9 4.4 0.0 0.02 0.82 -0.30(4)
Iliad 321 355 2.2 40 4.5 7.0 0.0 0.01 0.90 -0.44(4)

We saw earlier that 93% of triads in the unsigned network are structurally balanced. The same
proportion of triads in the Irish network are also structurally balanced. The triad formed by
the enmity between Ua Ruairc’s and Máel Sechnaill, the alliance between Máel Sechnaill and
Brian, and the interpolated support of Ua Ruairc for Brian has two positive and one negative
edges, meaning that it is structurally imbalanced. A possible explanation for the interpolation
strategy is given in Ref. [45]. Since only a small proportion of triads in Cogadh Gaedhel re

Gallaibh are imbalanced in this manner, this makes the Ua Ruairc episode stand out as unusual.
To investigate further, Ua Ruairc and his three associates (Domhnall mac Raghallach,
Gilla-na-naomh, and Mac an Trin) were omitted from the networks to test the effects on the
statistics. Obviously the number of edges decreases and M reduces by 44 to 1146 in the entire
network. But beyond this, the effects of this removal are tiny. The degree assortativies, for
example, do not change within the error estimates for each of the unsigned, positive and negative
networks.
Having established that the most famous interpolation has only a very minor effect on the
overall networks, we do not attempt to remove other interpolated material from our analysis.
Besides, any attempt to do this would be partial or incomplete as there can be no certainty
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all interpolations have been identified and removed. Moreover, since this is a study of the
networks in Cogadh Gaedhel re Gallaibh as represented by Todd in Ref. [35], we considered
it right to present it in its entirety. However, for completeness, we simulated some effects of
interpolation by randomly removing up to 15% of nodes or edges. Repeating the process 1000
times and then taking averages delivers no sizeable difference to the statistics of Table 4.2.
This, again, indicates their robustness (see Section 4.4 for a network-robustness analysis). For
example, removal of 15% of the nodes changes the assortativity from r = −0.09 to r = −0.08 (an
imperceptible amount within errors). Removal of 15% of the edges leaves r unchanged within
the level of precision identified. While interpolation appears not to affect the overall (global)
network statistics, a more systematic and targeted (local) quantitative study of the effects of
interpolation might be interesting for future study.

4.7 Interactions between cultures in Cogadh Gaedhel re
Gallaibh

As discussed in Chapter 2, traditional “memory” of the events surrounding the Battle of Clontarf
is of an international conflict between two clear, distinct sides: Irish vs Viking [19]. This is
rejected by some revisionist historians who instead argue that the conflict is primarily between
two Irish sides (each with Viking support) [19,43,62]. A viewpoint of a clear-cut contest could
lead one to expect a network wherein most of the negative (hostile) interactions are between
Irish and Viking nodes representing the primacy of hostility being between these two groups. On
the other hand, a network supporting the revisionist view might be expected to deliver something
rather different: the majority of negative edges would mainly link pairs of Irish nodes. In the
following, we have also to monitor Viking versus Viking conflict because, as explained by Todd,
there are “two distinct nations of the Gaill” [35]. “They are distinguished as white or fair-haired,
and black or dark-haired foreigners, the Danes being the dark, and the Norwegians, including,
perhaps, Swedes, the white race. The two nations are represented as hostile to each other, and
battles between them not infrequently took place. But it is to be regretted that our author does
not always very clearly distinguish between them in his descriptions of their devastations in
Ireland. We cannot even be sure that the name Dane is not sometimes given to the Norwegians.”
We present visualisations of the positive and negative networks in Figure 4.3 and Figure 4.4.
The same colour coding we used as for Figure 2.2 (i.e., green edges stand for Irish-on-Irish
interactions, blue for Viking-Viking, brown for Irish-Viking and grey for interactions involving
unassigned nodes). In Table 4.8, we record the proportions of Irish, Viking and other nodes
in each of the unsigned networks and in its positive and negative sub-networks. (Some of the
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Figure 4.3: The complexity of the positive network underlying Cogadh. About 50% of the
positive interactions connect pairs of Irish nodes (green); 31% are between Viking pairs (blue)
and only 12% of positive interactions are between Irish and Viking (brown). The cultural
assortativity for this network is measured to be ρ+ = 0.65.

entries in the second and third rows of Table 4.8 are different to the corresponding entries in the
third column of Table 4.2. This is because isolated nodes are not removed from sub-networks
in Table 4.8. The reason for this is that Table 4.8 concerns cultural profiles of unsigned, positive
and negative networks, rather than the Irish and Viking sub-networks of Table 4.2. Of course,
numbers of edges match across both tables because, by definition, these do not involve isolated
nodes. The proportions of Irish nodes in each of the three graphs lie between 61% and 65 %,
so are nearly constant. The proportion of Viking nodes is also quite stable, lying between 31%
and 34%.
In the same table, the proportions of interactions which link Irish to Irish nodes are listed,
as are those connecting Viking-to-Viking and Irish-to-Viking pairs. Half of the edges in the
positive network of Figure 4.3 connect pairs of Irish nodes; 31% link pairs of Viking nodes;
12% of positive interactions connect mixed Irish-Viking pairs. Twenty-seven percent of edges
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Figure 4.4: The complexity of the negative network underlying Cogadh. again, the same
colour coding is used as in Figure 2.2 and Figure 4.3. Twenty-seven percent of the conflictual
interactions connect pairs of Irish nodes (green); 6% are between Viking pairs (blue). Sixty-two
percent of the negative links are between mixed Irish-Viking pairs (brown). The cultural
assortativity for this network was found to be ρ− = −0.32.

in the negative network of Figure 4.4 connect Irish to Irish nodes; 6% connect pairs of Viking
nodes; and over 62% of negative interactions connect mixed Irish-Viking pairs. This means that
the positive (i.e., essentially social) network of Figure 4.3 is dominated by interactions between
characters of the same cultural identities (what we term intranational interactions). The negative
(conflictual) network of Figure 4.4 is dominated by Irish-Viking (international) interactions.
This indicates that the largest proportion of Cogadh conflict is international, but with significant
levels of intranational hostilities too (especially Irish versus Irish). From Table 4.8, we observe
that the number of international edges in the negative network is over two times the number
of Irish-Irish negative edges, which, in turn is over four times the number of Viking-Viking
negative edges.
To properly evaluate the levels of mixing between Irish and Viking, one should account for
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the fact that they have different numbers of nodes in the networks. In fact, there are about
twice as many Irish nodes as there are Viking. To account for this, we introduce what we call
the cultural assortativity of the various networks, and we represent this generically by ρ. The
precise definition of ρ is given in Section 3.4. It is a metric which runs between ρmin and 1
where ρmin is itself a non-trivial, negative value, which lies between −1 and 0 if there are more
than two categories under consideration [107, 115]. Therefore, although the largest possible
value of ρ is one, its smallest value can be network-dependent. This is because, when there are
more than two categories present, disassortativity connects dissimilar nodes — like randomness
tends to. Assortativity, however, connects only like nodes and is quite different to randomness.
We have to keep this asymmetry in mind when we interpret the cultural assortativity for the
negative networks with three categories of node (Irish, Viking and unassigned). It turns out that
ρmin = −1 only when there are two categories.
A purely culturally assortative network is signalled by a value ρ = 1. For example, if this
were so for our positive network it would imply that the only positive interactions are within

rather than between cultural groups (it would mean that friendly interactions are intranational).
The value ρ = −ρmin, on the other hand, implies that the network is completely culturally

Table 4.8: Cultural profiles of the cast of Cogadh Gaedhel re Gallaibh and their interactions.
The second, third and fourth rows list the numbers (and percentages) of nodes which are
identified as Irish, Viking and others (i.e., those not identified as Irish or Viking) in the entire,
unsigned network as well as in the positive and negative sub-networks. The next row gives the
total number of nodes in each network (these values are N, N+ and N− for the full-cast networks,
respectively). The sixth and seventh rows give the numbers (and proportions) of edges which
connect pairs of like nodes. The eighth row gives the numbers (with proportions) of edges
which connect Irish and Viking nodes. The final row gives the total number of edges in each
case as (M, M+ and M− for the full-cast networks). The remaining edges involve other (not
assigned as Irish or Viking) nodes.

Entire Positive Negative
network network network

Irish nodes 202 (64 %) 187 (65 %) 110 (61 %)
Viking nodes 97 (31 %) 88 (31 %) 61 (34 %)
Other nodes 16 (5 %) 12 (4 %) 9 (5 %)
Total # nodes 315 (100 %) 287 (100 %) 180 (100 %)
Irish-Irish edges 530 (45 %) 475 (50 %) 72 (27 %)
Viking-Viking edges 313 (26 %) 301 (31 %) 16 (6 %)
Irish-Viking edges 272 (23 %) 119 (12 %) 163 (62 %)
Total # edges 1190 (100 %) 957 (100 %) 264 (100 %)
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disassortative. If this were the case for our positive network it would signal that the only
positive interactions are between rather than within cultural groups (positive interactions would
be international). A zero-value of ρ would indicate that the cultural assortativity is the same
as should be expected for random mixing between nodes, oblivious of their Irish or Viking
character. It turns out that ρ+ = 0.65(3) for the full-cast positive network. Restricting our
attention to Irish and Viking nodes only by removing the other nodes, gives ρ+ = 0.72(3).
These statistics are recorded in Table 4.9 and they are supportive of the picture that most (but
not all) positive interactions are intranational.
We now focus our attention on the negative networks as these connect with the debate in the
humanities discussed in Chapter 2. A “clear-cut” version of the “international-conflict” picture
would correspond to the value ρ− ≈ ρ−min (where ρ−min is the minimum possible value of ρ−, i.e.,
−1 when unassigned nodes are excluded). A limiting negative value would indicate a purely
Irish-versus-Viking conflict. At the other end of the spectrum would be a narrative in which
all conflict is intranational. In this case one should expect ρ− ≈ 1. The revisionist picture
of a primarily (but not entirely) intranational conflict might be expected to correspond to a
positive value of ρ−. Between these two extremes, we a more even distribution of negative
edges would correspond to conflict between nodes being “blind” to their cultural identities.
Such a completely colour-blind narrative would deliver ρ− ≈ 0 for the negative network.
Our data delivers t ρ− = −0.32(6) if all three kinds of node (Irish, Viking and other) are
included in the negative network. One should compare this statistic to the theoretical minimum
ρ−min = −0.88(4). If unassigned nodes are omitted, (so that ρ−min = −1), one finds ρ− = −0.37(6).
Therefore the measured values for cultural assortativity on the negative (conflictual) networks
are negative. As discussed, this suggests that revisionist picture of a primarily intranational
conflict is not supported by data contained in Cogadh Gaedhel re Gallaibh. However, the
conflict is not clear-cut international either. Instead it is a narrative in which the highest
proportion of conflict is between Irish and Viking but with large amounts of green-on-green and
blue-on-blue conflict too. On the spectrum ranging from international to intranational conflict,
which represents various degrees of the traditional to the revisionist views, the negative Cogadh

networks are clearly on the traditional side albeit at a moderate rather than a limiting value
(Figure 2.3). This is the main conclusion of our analysis of Cogadh Gaedhel re Gallaibh.
The analysis of assortativity so far investigates the extent to which conflict or positivity reigns
within or between the two cultural sets. However, it may be argued that the revisionist concern
is only with the Irish side. The revisionist view is that the hostility is mainly within the Irish
community — it is not that it is both within the Irish cast and within the Viking set. The
humanities literature tells us that there was a great degree of such conflict too; e.g., Ryan states
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Table 4.9: Cultural assortativities. The left column identifies whether all nodes (Irish, Viking
and other) are included in the calculation of ρ or if the unassigned (other) nodes are omitted. In
the former case, ρmin is calculated by Eq.(3.4.43) and in the latter case, it is −1. The next column
identifies whether all remaining links are included or whether the Viking-on-Viking edges are
omitted.

Nodes Edges Positive Negative
Network Network

(ρ+) (ρ−)

A
ll

no
de

s
in

cl
ud

ed Include all edges 0.65(3) -0.32(6)
Omit Viking-on-Viking edges -0.45(5)
ρmin -0.62(3) -0.88(4)

O
th

er
no

de
s

om
itt

ed Include all remaining edges 0.72(3) -0.37(6)
Omit Viking-on-Viking edges only -0.53(4)
ρmin -1 -1

“The Norse were traditionally unscrupulous in preying upon one another” [19]. Therefore,
Viking-on-Viking conflicts could contaminate our measurements. Our intention is to determine
whether the Irish are mostly fighting with other Irish or if they are mostly in conflict with
Vikings. In this sense, whether Vikings were also fighting amongst themselves is irrelevant.
To investigate this further detail, and to take these aspects into account, we remove
Viking-on-Viking links from the negative sub-network. Redetermining the cultural assortativity,
we find that ρ− = −0.45(5) [ρ− = −0.53(4) if the unassigned nodes are omitted]. This is indeed
larger in magnitude than the previous measure (because the assortative Viking-on-Viking edges
having been removed). But it is still not a clear-cut Irish-versus-Viking picture. In other words
the value of ρ− is still not close to ρ−min = −0.88(4) (or −1 in the case where unassigned nodes
are removed). Therefore our conclusions are unchanged. The statistics are listed in Table 4.9.
In Section 3.4, to overcome the difficulties presented by network-dependent ρmin-values, we
introduce a renormalised categorical assortativity metric which ranges from −1 in the case of
fully disassortative networks through zero for uncorrelated networks to 1 for fully assortative
networks. In Table 4.10 we also present an alternative to Table 4.9, using these renormalized
values.
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Table 4.10: The renormalised cultural assortativity values ρ̂ from Eq.(3.4.45) presented here is
an alternative to Table 4.9. Completely disassortative, uncorrelated, and assortative networks
have ρ̂ = −1, ρ̂ = 0 and ρ̂ = 1, respectively. The introduction of a renormalised version of the
categorical assortativity (ρ̂) is suitable for all circumstances:

Nodes Edges Positive Negative
Network Network

(ρ̂+) (ρ̂−)

A
ll

no
de

s
in

cl
ud

ed Include all edges 0.65(3) -0.32(6)
Omit Viking-on-Viking edges -0.43(5)
ρmin -1 -1

O
th

er
no

de
s

om
itt

ed Include all remaining edges 0.72(3) -0.33(6)
Omit Viking-on-Viking edges only -0.44(5)
ρmin -1 -1

4.8 Remarks

The popular tradition associated with the Viking Age in Ireland and the events leading to
the Battle of Clontarf in 1014 is that Brian’s principal opponents were Vikings. In 1938,
Ryan stated that contemporary annalists “portray Clontarf in terms consistent with the later
popular tradition” [19]. Ryan’s paper [19] contains what has been described as an “assault”
on that traditional interpretation [29]. Instead of a “clear-cut” Irish-versus-Norse conflict, the
revisionist argument is that it was a struggle primarily between two Irish forces. Munster and
some allies on the one side were in conflict with Leinster and allies on the other, each having
some Viking support. The fundamental issue was not, therefore, Irish versus Norse, but the
intention of Leinster to be independent of the high king [19].
With the 1000th anniversary of the Battle of Clontarf, Seán Duffy attacked what he calls “the
new orthodoxy” [29] and launched a counter-revisionist defence of the traditional picture [28].
Notwithstanding the bombastic and partisan tone of Cogadh Gaedhel re Gallaibh, Duffy
provides a great deal of evidence that it is a valuable source if used correctly. His own use
of that and other texts leads him to conclude that “The Battle of Clontarf was an international
contest” [29]. This counter-revisionist stance has itself come in for criticism [30]. Thus the
anniversary reinvigorated a lively set of discussions and healthy debate amongst experts and
the wider public. This debate, together with the 150th anniversary of Todd’s famous translation
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[35], form the backdrop to which the above results are presented.
It is widely agreed that Cogadh Gaedhel re Gallaibh is a skillfully written propagandistic text,
containing bias and exaggerating virtues and vices of many of its characters [35, 45, 48]. It
has been used by both sides of the debate to support their arguments. For example, Duffy
describes it as a “long narrative of Irish conflict with the Vikings” [28]. Etchingham says that
“even Cogadh actually identifies the Leinstermen as principal rebels” [30]. From the side which
fought against Brian at Clontarf, the Cogadh gives the majority of the slain (3100 out of 5600)
as Irish [19, 35], amounts which could perhaps be viewed as supporting the picture of a mostly
domestic conflict. At least these head-counts indicate that Cogadh Gaedhel re Gallaibh does
not pretend that Viking slain exceed the numbers of Leinstermen in order to “internationalise”
the story. This suggests that, even though Cogadh Gaedhel re Gallaibh exaggerated qualities,
it might not have exaggerated quantities. Ryan himself believes that the account of the actual
battle of Clontarf in the Cogadh is “incomparably the most reliable”.
Here we have gone beyond a simple head-count of the slain and carried out a character-network
analysis of Cogadh Gaedhel re Gallaibh. Because this is independent of the tone of the account
(its bombastic and partisan nature) and its shortcomings (“telescoping” of events and “cavalier”
attitude to chronology), we believe this is a judicious use of the text. To contribute to the
debate about the nature of the Viking Age in Ireland as set down in the Cogadh, we developed
a new measure, ρ, which we termed cultural assortativity and which can take proportions of
Irish and Viking nodes into account. As we have seen, a literal interpretation of “the popular
tradition of Clontarf as wholly an Irish-Norse” conflict [19] suggests a strongly negative value
of cultural assortativity for the negative (conflictual) network. The revisionist picture of a “civil
war” [62] or an “internal struggle” [43], on the other hand, with Leinster as the “predominant
element” [19] or “principal rebels” [30], suggests a positive value of cultural assortativity for
the negative network. The main outcome of the investigation reported upon in this Chapter
is the measured values of the associated metric and we find negative values, supportive of
the traditional picture. But magnitudes are moderate, suggesting that, at least in network
terms, Cogadh Gaedhel re Gallaibh does not describe a “clear-cut” Irish versus Norse conflict.
Complementary information is gained from the positive network. The cultural assortativities
measured on the positive networks suggest that positive (social) interactions are mainly, but
not entirely, between nodes of the same cultural identity. To summarise, Cogadh Gaedhel re

Gallaibh describes the Viking Age in Ireland as predominantly an Irish-Norse conflict but not
wholly so.
Obviously all of the conclusions drawn here refer to the content of Cogadh Gaedhel re Gallaibh.
A statistical analysis can only be as good as the data it draws from and, all the claims to the
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contrary notwithstanding [19, 28], if one considers Cogadh Gaedhel re Gallaibh, in the main,
to be unreliable, invented or concocted then little can be drawn from it about reality. Even if
the author of the Cogadh tried to record as much as possible about encounters and relationships
between personages of the time, we have no way of knowing if some types of interactions are
under-reported. For example, the Irish author may not have been able to record interactions
between Vikings with an accuracy comparable to that with which he recorded interactions
involving Irish players. Even in these cases, texts such as the Cogadh still contain important
information on how writers tried to, or were able to, portray the society and the perceptions,
expectations and concepts of the time they was committed to writing. Since the author of the
Cogadh could not have anticipated a complexity-scientific analysis nearly 1000 years later, the
networks approach delivers unique insights in that it extracts a perhaps unintended message
from that time. One may be more optimistic than this and hope that a reasonable proportion
of characters and their interactions reflect the reality of the age. Indeed, we have seen that
omitting Viking-Viking interactions does not alter the broad conclusions of our study so, even
if the author did under-report them, our conclusions are unchanged. If one considers the main
thrust of the Cogadh account to be sound, the network approach delivers new, quantitative
knowledge of the Viking Age in Ireland.
A second question which we addressed in this Chapter is how the Cogadh narrative compares
to others of the epic genre [9, 15, 16]. We measured a number of other statistics characterising
the Cogadh network and found it has properties typical of the genre, resembling the Iliad more
than Njáls Saga or Táin Bó Cuailnge. The similarity to the Iliad is interesting because a link has
been suggested before by scholars from humanities, using traditional methods [36, 40, 47, 60].
It would be fascinating to continue such comparative investigations at a more detailed level in
future studies.
In summary, we conclude from this Chapter that the character networks contained in Cogadh

Gaedhel re Gallaibh support neither clear-cut traditionalist nor clean-cut revisionist depictions
of the Viking Age in Ireland. Instead they suggest a moderate traditionalist-type picture of
conflict which is mostly between Irish and Viking characters, but with significant amounts of
hostilities between both sides as well.
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Chapter 5

Network Analysis of the Poems of Ossian

In this Chapter, we compare the network structures in the Poems of Ossian to those of four
other texts. These are Acallam na Senórach (referred to as Acallam, henceforth); Lady
Gregory’s text; the Iliad; and the Odyssey. We begin in Section 5.1 by comparing some quite
standard topological measures of the networks underlying each text. These statistics, together
with the degree distribution studied in Section 5.2, encapsulate a variety of characteristics of
networks. By comparing them between different networks, we obtain quantitative indications
of similarities and differences between them. In previous studies, the literary usage of such an
approach was comparison and classification of epic narratives and sagas [15,16]. Our objective
here is to measure these statistics for the social network underlying Ossian and those from texts
to which Macpherson’s has been compared. Our aim is to use these to formulate quantitative
comparisons. We also probe them in more detail and analyse their degree distributions and look
at the spectral distances from the adjacency matrices of these graphs.
After establishing that the Ossianic networks are more similar to networks appearing in Irish
mythology in Section 5.2, we redo the entire analysis restricted to the giant components of the
various networks in Section 5.3. This is to establish that, not only is Ossian similar to Acallam,
but Lady Gregory’s text is too. This is what one would expect if the latter is derived from
the former and, in a sense, this benchmarks our approach. We take this opportunity to list the
relative importance of individual characters in Section 5.4 in the hope that such information may
be useful to humanities researchers in the future. We end the Chapter with a short discussion of
the significance of its results.
The results of this chapter have been published in Advances in Complex Systems as Ref. [9].
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Figure 5.1: The entire network of 748 edges between 325 characters from MacPherson’s Ossian.
Positive (friendly) and negative (hostile) edges are in blue and red, respectively.

5.1 Network statistics

To construct the Ossianic network we use Gaskill’s modern scholarly edition, The Poems

of Ossian and Related Works. This has five mains sections: Fragments of Ancient Poetry

(1760); Preface to Fingal (1761/62); The Works of Ossian (1765): Fingal; The Works of Ossian

(1765): Temora; and Preface to the Poems of Ossian (1773). We use the material from 1765
only (Fingal and Temora) because these comprise the entire Ossianic corpus. (The poems in
Fragments are reproduced and expanded in Fingal, with occasional modifications to the spelling
of characters’ names.) The full network is displayed in Figure 5.1.
In Table 5.1, we list some of the network statistics for Ossian and the texts to which we
wish to compare. The statistics generally indicate that, in each case, the full networks have
quite similar properties to the positive ones from the same narrative and are quite different to
their negative counterparts. This can be interpreted as reflecting that, although conflict is an
important element of each narrative, the overall network properties are dominated by positive
social interactions. Indeed, although Ossian is generally seen as a work replete with melancholy,
its 666 positive edges between 309 nodes and 82 negative edges between 87 nodes would imply
that the former dominate the Ossianic system. Strong degrees disassortativity values suggest
that the negative networks are held together by hubs of strongly connected characters who
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are in conflict with multitudes of lesser significant individuals. Short average path lengths
compared to equivalent sized random networks together with the absence of clustering mean
they are not small-world. The negative networks are therefore not reflective of genuine societies.
Moreover, similarities between their relatively trivial topologies do not allow the negative
networks to deliver information that may be used to categorise or differentiate between the
different narratives.
Like many complex networks that have previously been studied, the full and positive societies
listed in Table 5.1 are structurally balanced small worlds. They have non-trivial topologies
and large proportions of their nodes belong to their giant components [107, 109]. They are
structurally balanced and the full networks exhibit high values of ∆. These statistics therefore
capture what appear to be universal properties of mythological networks (see Refs. [15, 16])
and invite comparison. We see, for example, that the average degrees of Ossian are more
similar to those of Acallam and Lady Gregory’s text than they are to those of the Homeric
epics. This might be interpreted as suggesting that networks in Macpherson’s text may bear
closer structural similarities to the Irish than the Greek. However, although the path lengths
of Ossian are close to those of Acallam, they are also quite close to those of the Iliad and
rather different to those of Lady Gregory’s text. These likewise have quite different values of

Table 5.1: Properties of the full, positive and negative networks for Ossian and the texts to
which we compare it. Here, “Acallam” means Acallam na Senórach and “Gregory” represents
Lady Gregory’s text.

Narrative N M ⟨k⟩ ℓ ℓrand C Crand CT r ∆ Gc

Ossian 325 748 4.60 3.62 3.91 0.49 0.01 0.27 -0.08 0.95 88.62%

Fu
ll

Acallam 732 1606 4.39 3.79 4.57 0.37 0.01 0.19 -0.10 0.97 76.91%
Gregory 355 913 5.14 3.10 3.73 0.44 0.01 0.16 -0.18 0.97 94.65%
Iliad 694 2684 7.74 3.49 3.42 0.44 0.01 0.45 -0.08 0.98 99.42%
Odyssey 301 1019 6.77 3.29 3.18 0.45 0.02 0.38 -0.08 0.97 98.34%
Ossian 309 666 4.31 3.65 4.03 0.42 0.01 0.31 -0.06 82.20%

Po
si

tiv
e Acallam 722 1513 4.19 3.72 4.69 0.38 0.01 0.20 -0.09 71.33%

Gregory 337 833 4.94 3.23 3.78 0.45 0.01 0.18 -0.17 91.99%
Iliad 640 2329 7.28 3.80 3.47 0.44 0.01 0.58 0.02 85.94%
Odyssey 299 989 6.62 3.42 3.21 0.45 0.02 0.40 -0.08 97.32%
Ossian 87 82 1.89 5.30 6.61 0.00 0.02 0.00 -0.31 70.11%

N
eg

at
iv

e Acallam 86 93 2.16 2.32 5.53 0.00 0.00 0.00 -0.30 24.42%
Gregory 95 80 1.68 4.75 8.13 0.00 0.01 0.00 -0.30 45.26%
Iliad 321 355 2.21 4.46 7.00 0.00 0.00 0.00 -0.45 90.34%
Odyssey 41 30 1.46 1.88 8.74 0.00 0.04 0.00 -0.18 26.83%
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Figure 5.2: The complementary cumulative degree distributions of the full networks suggest that
the society depicted in Ossian more closely resembles those of the Irish Acallam na Senórach
and Lady Gregory’s text (denoted here by “Gregory”) than the Iliad or Odyssey.

assortativity. The various clustering coefficients fail to distinguish similarities too. Therefore,
although the network statistics are informative in a wide sense, they do not constitute precise
enough a tool to signal whether the Ossianic networks are more similar to those of the Irish or
the Classics. To investigate further we turn next to the degree distributions.

5.2 The Degree Distributions

As mentioned before, the degree distribution p(k) of a network governs the probabilities for
nodes to have certain numbers of edges. In the next sub-section, we examine and compare the
functional forms of our various networks.

5.2.1 Functional Forms

The functional form of the decay gives us important information about the structure of the
connectivity of the network. Rather than displaying the probability distribution functions
themselves, the convention is to present the complementary cumulative degree distributions
P(k) because it reduces the noise in the tail [155]; These cumulative distributions for the
networks are plotted in Figure 5.2. In the left (right) panel, the degree distribution for the full
Ossian network (all components and including both positive and negative edges) is compared
to those of the Irish (Greek) texts. (See Section 5.3 for equivalent plots restricted to the giant
components of the positive networks.) The distribution for Ossian more closely resembles those
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from the Irish corpus. To analyse further, we fit different standard functions to these various
distributions. (In Sub-section 5.2.2, we also apply the Kolmogorov-Smirnov test to investigate
the similarities between degree distributions in a parametric-independent manner.)
Here we fit data for each narrative to each of the functional forms described in Chapter 3.
Again we use maximum likelihood estimators to determine the parameters for each probability
distribution as described in Sub-section 3.2.2.1. To determine which of these models are most
likely, we use the Akaike information criterion (AIC ) Sub-section 3.2.2. The results are listed
for each network in Table 5.2. We also present the outcomes of the maximum-likelihood fits to
the various distributions in Table 5.3.
The results indicate that, of the various candidate models that we have examined for the degree
distributions, the networks underlying Ossian, Acallam na Senórach, and Lady Gregory’s text
are most likely to be log-normal with parameters µ between 0.5 and 1.2 and σ about 1 or a little
above. However, in the case of Ossian, one cannot rule out a Weibull distribution. A truncated

Table 5.2: Relative minimum-information-loss probabilities for the degree distribution
functions of the full networks underlying to the considered narratives. The probabilities
corresponding to the most likely distribution for a given narrative is highlighted in boldface.

Power law Truncated Log normal Exponential Weibull
power law

Ossian ∼ 0 0.11 0.54 ∼ 0 0.35
Acallam ∼ 0 ∼ 0 0.97 ∼ 0 0.03
Gregory ∼ 0 ∼ 0 ∼ 1 ∼ 0 ∼ 0
Iliad ∼ 0 ∼ 1 ∼ 0 ∼ 0 ∼ 0
Odyssey ∼ 0 0.32 0.16 ∼ 0 0.52

Table 5.3: Maximum-likelihood estimates for the various parameters associated with the
probability distributions fitted to the data for the full character networks.

Power Truncated Log normal Exponential Weibull
law power law
γ γ κ µ σ κ β κ

Ossian 2.1(7) 1.4(1) 15.7(6) 0.5(7) 1.2(0) 4.0(1) 0.5(2) 0.6(6)
Acallam 2.0(5) 1.4(1) 18.9(4) 0.8(5) 1.1(8) 4.7(1) 0.5(1) 0.8(4)
Gregory 1.9(6) 1.2(1) 17.3(6) 1.2(6) 1.0(3) 5.2(1) 0.5(2) 1.3(4)
Iliad 1.8(4) 1.4(0) 39.6(3) 0.0(8) 1.8(0) 8.1(1) 0.4(1) 0.5(6)
Odyssey 1.8(6) 0.7(1) 12.2(12) 1.5(7) 1.0(2) 6.9(2) 0.7(4) 4.3(2)
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power law with γ ≈ 1.4 and κ ≈ 39.6 is the most probable distribution for the Iliad network
and the Weibull distribution with β ≈ 0.7 and κ ≈ 4.3 is most likely for the Odyssey. However,
a truncated power-law or a log-normal distribution cannot be dismissed for the Odyssey. In
Section 5.3 we give the relative probabilities and maximum-likelihood parameter estimates for
the giant components of the positive networks too.

5.2.2 Kolmogorov-Smirnov Comparisons

The AIC cannot deliver information about the quality of a particular model in an absolute
sense. It can only deliver information on relative quality. To offer an alternative, we next
investigate similarities between the degree distributions associated with different narratives in
a non-parametric manner. An advantage of the Kolmogorov-Smirnov test is that it does not
require knowledge of the distributional forms. Although it was developed for continuous
distributions, it can be used in the discrete case provided one is interested in comparing
two samples to each other rather than comparing one sample to a probability distribution
function [156–158]. This is the situation that exists in the present instance. If f (k) and g(k) are
the two empirical distribution functions, the test statistic to be used is D = sup| f (k)− g(k)|. The
appropriate null hypothesis is that the samples are drawn from the same underlying distribution.
Assuming this, the p value gives the probability that the two distributions are as different as
those observed. If the p value is large (i.e., if p > 0.05), we cannot reject the null hypothesis
and if it is small (i.e., if p < 0.05), we may conclude that the two samples are likely to have come
from different populations with different distributions. In the current context, we interpret large
p values as indicating similarities between the degree distributions of the networks underlying
two narratives. We describe such a circumstance as a “match”. Small p values suggest
dissimilarities. The results for the full and the positive networks (considering all components in
each case) are presented in Table 5.4. Unlike in the previous chapter, here we are not interested
in hostile networks as any such similarities merely reflect their trivial topologies rather than
interesting societal structure. Indeed we checked, and the negative networks from every text
analysed matches every other, indicating another universal, non-discriminating feature of such
narratives.
From the table, it is clear that whether we use the full network or its positive sub-network, there
are strong matches between the social structures of Ossian and Acallam na Senórach. The test
do not detect a match between Ossian and either of the Homeric texts. In Section 5.3 we apply
similar tests to the giant components of the various networks. These detect matches between
Ossian and both of the Irish texts in addition to the match between Acallam na Senórach and
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Lady Gregory’s version. Again, however, they detect no match between Ossian and the Homeric
networks. (See Table 5.9 of Section 5.3.)

5.2.3 Spectral Distances

Besides comparing the structural properties of the societies underlying the various narratives
through network statistics and degree distributions, it is interesting to compare two networks
directly. A network’s adjacency matrix contains all of its connectivity information and one way
to compare these is to use the Ipsen-Mikhailov (IM) distance [159]. Although originally defined
for dynamical biological networks, the approach is quite robust and can be considered wherever
a quantitative comparison between networks is needed [160].
The adjacency matrix A of a network is constructed so that element Ai j is 1 if there is an edge
from node i to node j and 0 otherwise. In our case, all diagonal elements are zero because there
are no edges from a node to itself (loops) in the simple graphs considered here. The matrix A

is also symmetric because our networks are undirected. We construct the network’s so-called
Laplacian matrix L by defining its elements as Li j = δi jki − Ai j where δi j is the Kronecker delta
function which is 1 if i = j and 0 otherwise. The diagonal of the Laplacian is the degree matrix.
This Laplacian matrix has N − 1 eigenvalues λi [119]. The spectral function ρ(ω) is a sum of

Table 5.4: Results of the Kolmogorov-Smirnov tests, in terms of p values, applied to the full
and positive networks. When they differ, data for the latter are given in square brackets. The
large values of p (highlighted in boldface) in the cell corresponding to the Ossian column and
Acallam row imply similarities in the corresponding degree distributions. The small values
in remaining cells suggest the absence of similarities between the corresponding character
networks.

Ossian
Full 0.79 [0.95] Acallam

[Positive] < 10−2 [0.04] 0.03 [0.02] Gregory
Networks < 10−5 < 10−5 < 10−2 Iliad

< 10−3 < 10−3 < 10−3 ≤ 10−2 Odyssey

Table 5.5: Spectral distances from the networks in Ossian to those of the other texts we
examined. Lower values indicate a greater degree of similarity between the networks.

Distance from Ossian Acallam Gregory Iliad Odyssey
Full network 0.03 0.02 0.07 0.09
Positive sub-graph 0.03 0.03 0.08 0.10
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Cauchy-Lorentz distributions, defined as

ρ(ω) = K
N−1∑
i=1

γw

(ω −
√
λi)2 + γ2

w

, (5.2.1)

in which K is a normalisation constant given by
∫ ∞

0
ρ(ω)dω = 1. Here, γw is a scale parameter

which represents the width of each distribution. Its value will be made explicit once the distance
is defined.
Each network has a Laplacian matrix and an associated spectral function. It follows that a
measure of the distance between two any spectral functions can be interpreted as the distance
between the networks themselves. Labelling the networks by 1 and 2, the IM-distance is defined
by

ϵ =

√∫ ∞

0
[ρ1(ω) − ρ2(ω)]2dω. (5.2.2)

This quantity vanishes when the two networks are identical [ρ1(ω) = ρ2(ω)]. The parameter γw

acts as a scale and one sets it by considering a complete graph (of the same size as Network 1,
for example) and an empty graph (of the same size as Network 2). Choosing γw so that ϵ = 1
for these networks sets the IM-distance to be 1 when two networks are maximally different.
Keeping this particular value of γw then allows us to evaluate the distance for the two networks
of interest.
As the networks considered here are all relatively sparse, low values of ϵ are expected. Still,
they can serve to indicate which networks are most similar and dissimilar to each other. The
results are listed in Table 5.5 as the IM-distances from Ossian to each of the other texts. They
suggest that the Ossianic networks are two or three times further from the Homeric networks
than they are to those in Acallam na Senórach or Lady Gregory’s text. The results for the giant
components are given in Section 5.3.
Therefore all three approaches that we have used (namely based on parametric fits,
Kolmogorov-Smirnov tests and IM distances) deliver the same result. That result is that the
social network structure of Ossian bears a closer resemblance to those of the Irish corpus
than to the Homeric narratives. This is interesting and significant because Macpherson and
his allies strove to parallel the Classical texts and explicitly tried to distance themselves from
the Irish [101].

5.3 The Giant Components

In Table 5.4 of this chapter, we saw evidence for matches between the character networks of
Ossian and Acallam na Senórach. However, the test did not match the full networks Acallam na
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Figure 5.3: As with Figure 5.2, the degree distributions for the giant components of the positive
sub-networks depicted in Ossian more closely resembles those of Acallam na Senórach and
Lady Gregory’s text (denoted here by “Gregory”) than the Iliad or Odyssey.

Senórach and Lady Gregory’s text. It is reasonable to expect that these should match because
the former is acknowledged as a source for the latter. If our approach is valid, it should be able
to detect this. For these reasons we repeat part of the analysis for the giant components of the
positive sub-networks. We begin with Table 5.6 where we list the network statistics.
In Section 5.2 we also established that the degree distribution of the social network underlying
Macpherson’s Ossian is similar to those of Acallam na Senórach and dissimilar to the Iliad and
Odyssey. In Figure 5.3 we display the equivalent plot for the giant components of the positive
sub-networks. Table 5.7 lists the corresponding probabilities for the various degree distribution
functions. The corresponding estimates of the various parameter are given in Table 5.8. In
Table 5.9 the results of the Kolmogorov-Smirnov tests are displayed.
The match between Ossian and Acallam na Senórach that was identified in Table 5.4 is repeated

Table 5.6: Properties of the giant components of the positive networks for Ossian and the four
comparative texts.

Narrative N M ⟨k⟩ ℓ C CT rk

Ossian 254 596 4.69 3.62 0.45 0.30 -0.10
Acallam 515 1364 5.30 3.71 0.41 0.20 -0.13
Gregory 310 808 5.21 3.24 0.46 0.18 -0.18
Iliad 550 2275 8.27 3.78 0.48 0.57 0.05
Odyssey 291 987 6.78 3.38 0.46 0.39 -0.08
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here but this time there is also a match to Lady Gregory’s text. The expected match between
Lady Gregory’s text and Acallam na Senórach is also evident. There is still no sign of similarity
between Ossian and either of the Homeric texts. Comparing the results of Table 5.9 with those
of Table 5.4, then, it would seem that the giant components of the positive sub-networks deliver
even stronger results than those of the full networks.

Table 5.7: Relative minimum-information-loss probabilities for the degree distribution
functions of the giant components of the positive networks. The probabilities for the most
likely distribution for a given narrative are highlighted in boldface.

Power law Truncated Log normal Exponential Weibull
power law

Ossian ∼ 0 0.17 0.45 ∼ 0 0.38
Acallam ∼ 0 ∼ 0 0.98 ∼ 0 0.02
Gregory ∼ 0 ∼ 0 0.99 ∼ 0 0.01
Iliad ∼ 0 ∼ 1 ∼ 0 ∼ 0 ∼ 0
Odyssey ∼ 0 0.33 0.17 ∼ 0 0.50

Table 5.8: Maximum likelihood estimates for the parameters associated with the probability
distributions fitted to the data coming from the giant components of the positive sub-networks.

Power Truncated Log normal Exponential Weibull
law power law
γ γ κ µ σ κ β κ

Ossian 2.1(8) 1.2(1) 12.4(8) 0.8(8) 1.1(11) 4.3(1) 0.5(3) 1.2(5)
Acallam 1.9(5) 1.2(1) 15.0(6) 1.1(5) 1.0(3) 5.1(1) 0.5(2) 1.5(3)
Gregory 1.9(6) 1.2(1) 15.7(7) 1.2(6) 1.0(3) 5.1(1) 0.5(3) 1.4(4)
Iliad 1.8(4) 1.3(0) 40.0(4) 0.3(8) 1.7(0) 8.5(1) 0.4(1) 0.7(5)
Odyssey 1.8(6) 0.6(1) 11.6(13) 1.5(7) 1.0(2) 6.9(2) 0.7(5) 4.5(2)

Table 5.9: Results of the Kolmogorov-Smirnov tests for the giant components of the full and
positive sub-networks. Large values of p indicate similarities in degree distributions and are
highlighted in boldface.

Giant Ossian
Components 0.30 [0.72] Acallam

of Full 0.07 [0.20] 0.75 [0.64] Gregory
[Positive] < 10−2 < 10−5 < 10−2 Iliad
Networks < 10−2 < 10−2 < 10−3 ≤ 10−2 Odyssey
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This conclusion is reinforced by the spectral distances. These are listed for the giant components
of the positive networks in Table 5.10. These results can be compared to those of the full
networks listed in Table 5.5. The distance from the networks of Ossian to the Acallam na

Senórach, which was 0.03 in Table 5.5 is reduced to 0.01 and 0.02 here.
Therefore we conclude again that there are strong resemblances between the character networks
of Ossian and those of the Fenian cycle of Irish mythology. Additionally we can confirm that
Macpherson’s networks are unlike those of Homer.

Table 5.10: Spectral distances from the giant component of the positive sub-networks of Ossian
to those in the other texts. Lower values indicate greater similarity between networks.

Distance from Ossian Acallam Gregory Iliad Odyssey
Giant Component 0.01 0.02 0.07 0.08
Positive GC 0.02 0.03 0.09 0.08

Table 5.11: The most important characters of the Ossianic texts ranked according to their
betweenness centrality, closeness, eigenvector centrality, and degree. We employ Gaskill’s
superscript notation to identify characters that share their names with others in the text.

Rank Betweenness Closeness Eigenvector Rank Degree (k)
1 Fingal (0.38) Fingal (0.43) Fingal (0.53) 1 Fingal (74)

Fu
ll

2 Ossian (0.26) Ossian (0.40) Ossian (0.48) 2 Ossian (61)
3 Cuchullin (0.12) Swaran (0.36) Gaul1 (0.35) 3 Cuchullin (30)
4 Swaran (0.08) Carril (0.35) Fillan (0.32) 3 Gaul1 (30)
5 Gaul1 (0.06) Gaul1 (0.35) Fergus1 (0.17) 5 Cairbar2 (21)
1 Fingal (0.38) Fingal (0.40) Fingal (0.44) 1 Fingal (68)

Po
si

tiv
e 2 Ossian (0.26) Ossian (0.37) Ossian (0.38) 2 Ossian (51)

3 Cuchullin (0.12) Carril (0.33) Gaul1 (0.21) 3 Cuchullin (27)
4 Swaran (0.08) Swaran (0.32) Fillan (0.19) 4 Gaul1 (20)
5 Gaul1 (0.06) Cuchullin (0.32) Fergus1 (0.18) 5 Connal5 (18)
1 Cairbar2 (0.34) Cairbar2 (0.20) Gaul1 (0.49) 1 Cairbar2 (10)

N
eg

at
iv

e 2 Swaran (0.27) Ardan2 (0.20) Ossian (0.48) 1 Gaul1 (10)
3 Ardan2 (0.24) Swaran (0.19) Cremor1 (0.24) 1 Ossian (10)
4 Gaul1 (0.24) Fingal (0.18) Cathmin1 (0.24) 4 Swaran (7)
5 Fingal (0.17) Gaul1 (0.18) Leth1 (0.24) 5 Fingal (6)
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5.4 Importance of Individual Characters in Ossian

The leading characters of Ossian are listed in Table 5.11. Fingal and Ossian are the two most
ranked characters according to all four network measures for the full and positive sub-network.
The network statistics listed in Table 5.1 are averaged over the entire network. We consider
that literary scholars may also find statistics corresponding to individual characters in the
Ossianic narratives of interest. Therefore we rank top characters according to various criteria in
Table 5.11. In the index of names that accompanies Gaskill’s text, superscripts are employed to
identify characters that share a common name with other characters in the narrative. We employ
this same notation in our identification of characters in Table 5.11.

5.5 Remarks

James Macpherson’s Ossian had a profound and wide-reaching influence on Western culture.
It acted as a catalyst for Romanticism in art and literature and in drawing attention to national
folklore, mythology, and poetry throughout Europe and, indeed, the wider world. However, it
has also been called a “curious blend of misreading and wilful misrepresentation” [161] and
“one of the greatest literary hoaxes of all time” [83]. Ossianic scholarship has experienced a
major revival in recent decades. In part this is due to revisionist interpretations surrounding the
production of the texts and its context in the history of cultural colonisation. As a result of this,
James Macpherson has enjoyed a degree of rehabilitation. Additionally Ossianic scholarship
has seen a growing focus on research questions that are more subtle than the original and
divisive questions of authenticity and fraud [92].
Macpherson employed footnotes, prefaces, and introductory dissertations to claim the value of
the Ossian poems and their supposed relevance for the early history of Scotland and Ireland.
He uses such paratexts to argue for the consideration of Ossian alongside established examples
of ancient epic poetry. With the help of Hugh Blair, he deliberately sought to place Ossian

within an established classical context. His aim in doing so was to legitimise and lend authority
to the new Scottish epic. The paratexts were used to repeatedly compare the poems to those
of Greek and Latin sources. Especially important to them were the comparisons to Homer.
Moreover they tried to distance the poems from Irish sources. At the time, Irish sources were
seen as having less cultural worth than the classical ones. Here, it has been shown using network
analysis that, despite the efforts of Macpherson and his allies, Ossian has structural similarities
to Irish epic tradition and not the Greek.
By determining the statistics which describe the structural connectedness of the character
networks present in Ossian and those of the Irish and Greek texts, meaningful quantitative
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comparisons have been made. Whether full or positive networks are used, or their giant
components, there is a clear match between Ossian and Acallam na Senórach (as well as
Lady Gregory’s tales of the Fianna in the case of the giant components). On the other
hand, there is little or no detectable structural resemblance between Ossian and the works of
Homer, whose networks are also unlike those of the Irish texts. Almost two hundred and fifty
years ago, Charles O’Connor and Sylvester O’Halloran identified characters in the Ossianic
network as appropriated from Irish tradition. These characters are nodes in the social-network
interpretation that we have given here. Here it has been shown that the configuration of edges
of the network also resembles that of Irish mythology, and not that of Homer. In this sense this
chapter work complements and completes that of O’Connor and O’Halloran.
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Chapter 6

“Ossianisation” of the Fenian Cycle

Here we follow on from the analysis in Chapter 5 in which it was established that the Ossianic
networks are similar to those of Acallam na Senórach and (to a lesser extent) Lady Gregory’s
text and are different to those of the Homeric epics. In Ref. [161], Thomson investigates the
parallels between the narratives in Ossian and those from the Irish corpus which further our
understanding of Macpherson’s relationship to oral and written Gaelic culture both in Ireland
and in Scotland. However, Thompson’s qualitative approach cannot resolve the debate about
the authenticity or otherwise of Ossian. It also cannot determine Macpherson’s intentions in
constructing the work. Similarly, the structural similarity of the character networks present
in Ossian to those of the Irish epics do not prove that these were Macpherson’s sources;
correlations do not imply causation.
Certainly we cannot suppose that Macpherson had network theory in mind when he went about
his work. Nonetheless, we can ask the question: how would one construct one network from
another if one did have the Acallam na Senórach networks to hand. In this chapter we attempt
to partially answer such a question. The groundwork prepared here will hopefully lay a route
for further investigations of the issue and further publications on the theme.
The analysis in the previous chapter demonstrated that the KS-test failed to detect a match
between the degree distributions of the entire networks of Acallam and Lady Gregory’s text.
However, restricting the analysis to the giant components of the positive networks, we found
that there is such a match. This was the benchmark for our analysis - for the method to be
viable, it should detect a match between Acallam and Lady Gregory’s text. Therefore we restrict
the further analysis in this chapter to the giant components of the positive networks. Indeed,
one may surmise that both Macpherson and Lady Gregory may have, for the most part, been
interested in characters taking part in the main action of the various texts — i.e., those in the
giant components. So, the question we wish to ask is: starting from the giant component of the
positive network of Acallam na Senórach, how would one go about constructing a network like
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that of Ossian? We refer to the former network as the parent and it has N = 515 characters.
The counterpart Ossian network has 254 characters. We ask, how could one decimate the parent
network to create daughter networks with approximately 254 characters and which (a) resemble
the parent and (b) resemble the corresponding network in Ossian. In network theory the type
of process corresponding to part (a) is called “sparsification”. Here, we have the additional
requirement (b) that the daughter network should match Macpherson’s Ossian. We refer to the
process that satisfies (a) and (b) as Ossianification.
Our approach is inspired by how we think Macpherson might have gone about his work, had he
some knowledge of networks science. Having heard the stories of the Fianna, he may have
randomly selected or remembered some characters from Acallam and used them and their
interactions for the basis of the Ossianic networks. In doing so, he might have recalled to
mind especially the stronger characters or indeed those centered around Oisı́n. We simulate
such approaches using various methods, testing whether the daughter networks have properties
similar to those of the parent as well as the Ossianic network. We are especially looking for
similarities in the degree distributions, assortativity and other network properties like path
length and clustering coefficient, which relate to small-worldness. We will show that the
sparsification processes have varying degrees of success. We also consider the inverse process
whereby a parent network is grown from the daughter. In this case we start with Ossian, grow
it to the size of Acallam and try to match the Irish network.
In fact we start in Section 6.1 with this network-growth approach. We look at uniform

attachment and preferential attachment [162] and find that results from both methods
successfully generate matches. This suggests that some form of “inverse growth” method may
be created to generate Ossian from Acallam. In Section 6.2 we set about looking for such an
approach by decimating Acallam to scale it down to the size of Ossian. This is done using
various sparcification techniques and we will find that some are indeed capable of delivering
daughter networks which resemble that of Ossian.

6.1 Network growth

If we let N = 515 denote the size of the giant component of the positive Acallam network.
n = 254 to that of Ossian. We also take M = 1364 and m = 596 for their respective numbers
of edges. Taking Ossian to be the daughter graph g and Acallam to be the parent G, we apply
growth processes so that the daughter network has to grow to about twice its original size. Here
we use models of uniform and preferential attachment to try to achieve matches between parent
and daughter.
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6.1.1 Uniform attachment

Before we examine the process empirically, we look at some of the analytic considerations
already extant in the literature [163]. Let us start with a connected network with N initial
vertices. Additional vertices are randomly introduced to the network one at a time. Nodes are
indexed in order of their time of birth, so that node i is born at time t = i.
We let ki(t) be the degree of node i at time t. At time t = 0, the connected network contains N

nodes and at every time t = N + j, a new node is born. A newly born node i forms η undirected
links with already-existing nodes at the time of birth t = i so that ki(i) = η. Because the new
node distributes its η new links randomly over the t existing nodes at time t, the change in the
expected degree of node i at time t > i is

dki(t)
dt
=
η

t
. (6.1.1)

which leads to
ki(t) = η ln i + constant.

The constant must be such that ki(i) = η as previously stated. Therefore

ki(t) = η + η log
( t
i

)
. (6.1.2)

If a newly born node, introduced to the network at time τ, has degree k at time t, it follows that
the fraction of nodes having a degree less or equal to k (at time t) is

t − τ
t
. (6.1.3)

Let us consider the node which is such that at time t its degree is k = d. We write τd(t) the time
of its birth. It follows that, at time t, the fraction of nodes of degree less than d is given by

Ft(≤ d) = 1 − τd(t)
t
. (6.1.4)

Using Eq.(6.1.2) we have

kτ(t) = η + η log
(

t
τd(t)

)
, (6.1.5)

leading to

τd(t) = t exp
(
η − d
η

)
. (6.1.6)

It follows that the cumulative distribution is an exponential distribution [163]:

Ft(≤ d) = 1 − exp
(
−d − η
η

)
. (6.1.7)
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Of course, in the previous chapter, we found no support for exponential distributions for any
of our networks. However, in the above calculations we did not take into account the existing
degree distribution functions of the daughter networks. One might expect that if these are large
relative to the parent, a uniform attachment scheme may not generate sufficiently large numbers
of new nodes and links so as to overwhelm the degree distribution of the daughter. However,
if the parent is far greater in size than the daughter, one might expect uniform attachment to
eventually result in a network whose degree distribution is exponential. In any case, while
uniform attachment may be able to grow the daughter to have the same number of nodes as the
parent, it does not achieve a similar number of edges. To achieve this, we need a second step.
Therefore our empirical growing process is implemented in two parts:

1. 261 new nodes are added to the Ossian network containing n = 254 to achieve a network
size of N = 515. Each newly born node arrives with one edge and is randomly linked to
existing nodes thereby increasing the edges of the network to 857 edges.

2. The second step involves the addition of extra edges at random until a target of M = 1364
is achieved.

The above process is repeated 100 times before taking averages. The resultant networks are
compared to those of Acallam for similarities in the degree distributions. Using the KS-test,
results demonstrate that 67% of the networks grown in this way have similar degree distributions
to Acallam. The results are displayed in Table 6.1. The average degree matches by construction
and we find that the path length of the parent also matches the target. However, neither the
clustering coefficient nor the degree assortativity are close to those of Acallam. KS tests show
that uniform attachment changes the degree distribution so that only 1% of the newly grown
networks match the original. Sixty-seven percent of them match the degree distribution of
the mother, however. Encouraged by this result we explore an alternative approach, namely
preferential attachment.

6.1.2 Preferential attachment

This idea of preferential attachment has been around since the beginning of the 20th century.
However it has been known under different names until the end of the 20th century. Barabási
referred to it as preferential attachment as it is known in the scientific corpus today [164, 165].
Derek de Solla Price called it the cummulative advantage in his work that describes the network
of scientific publications [166,167]. An American sociologist Robert Merton in his contribution
to science called it the Mathew effect in an attempt to address a phenomenon related to the
reward system in science. His endeavour was to quell the imbalance between eminent scientists
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and comparatively unknown researchers in the way they receive credit for their contribution to
science. The inspiration for his theory came from the gospel of St. Matthew which says ”For
everyone who has will be given more, and he will have an abundance. But the one who does not
have, even what he has will be taken away from him” [168] (the rich gets richer phenomenon).
Preferential attachment provides an understanding of the universal mechanism responsible for
the emergence of the scale-free nature found in the degree distributions of networks [119, 164,
165]. Assuming that a network starts with N nodes. A new node, pairs with a pre-existing
node to form an edge but unlike random attachment, the pre-existing node i attracts a node with
probability pi proportional to its degree. As an example, node i of degree ki is ki times more
likely to be linked to a new node than a node of degree one. The probability pi that an existing
node i connects to a new node is ki relative to the overall degree of all existing nodes. Thus,

pi =
ki∑
j k j
≡ ki

2m
.

Hence new nodes tend to favour highly existing connected nodes. This technique generates
networks in which all nodes are connected in a single component [169]. The probability that
node i is connected to k ≥ 1 other nodes is

p(k) =
4

k(k + 1)(k + 2)
≈ k−3. (6.1.8)

Therefore, the degree distribution is a power-law with an exponent of −3 [164]. The preferential
attachment is often generalised by considering the addition of c edges for every new node. This
however does not affect the power-low exponent.
Our implementation is again a variant on this and follows the following growth process:

1. Firstly, we add 261 nodes, one at a time, with preference to higher degree nodes. This
gives a resultant network with same number of nodes as those found in Acallam. However
this process only creates 261 extra edges resulting in 857 edges.

2. The second and final step involves the addition of 507 edges at random to make up for the
1364 remaining edges.

Eighty-two percent of the 100 grown networks, pass the KS-test in comparison with the Ossian’s
network. Compared with the Acallam, the results given are even more favourable with a KS
pass of 95%. N and M match by default and we also have a match in the average degree.
However, again the clustering coefficient and the degree assortativity of the grown network
do not match the target. Table 6.1 lists the results of the network growth techniques with
preferential attachment achieving more successful results than random attachment.
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6.2 Network Sampling (Sparsification)

Sparsification is a process that reduces the size of a network whilst preserving structural and
statistical properties. It is sometimes used for improved visualisation and data reduction
to manageable sizes [170–174]. For instance, analysing the world-Wide-Web may require
intensive computation, which would take a prohibitive amount of time to finish on the full
network. In such cases, it becomes viable to work with the smaller network (subset of nodes and
edges). However, the difficulty is in finding a sampling technique that maintains the properties
of the main graph.
Network sampling is not a new problem, although its application here is. Sparsification is
a non-trivial problem [175], and remains a challenging topic of research interest in network
science. Importantly, the way sub-networks are constructed is likely to have an impact on its
properties (degree distribution, average degree, clustering coefficient, etc). Research efforts in
this area focus on understanding how the properties of the selected sub-network (daughter) are
dependent on its original network (mother) and of the selection process. This problem has been
identified as one of the main issues in network modelling [176]. In general the daughter and
mother network’s degree distribution are expected to be different. For some important type of
networks, it has been shown that random sampling gives rise to networks with the same type of
degree distribution but characterised by different parameters. A study of random sampling
applied on to scale free networks was presented in [177], clearly showing that the degree
distribution of a random sub-network would typically differ from its mother network. Random
sampling as well as sampling strategies dependent on nodes’ degree was presented in [178],
again showing that for the majority of networks, daughter and mother networks properties
are different. The authors of [179] have presented a study of the assortativity and clustering
coefficient. There have been discussions on various sampling methods searching for one that

Table 6.1: Properties of the giant components of the positive networks for Ossian, Acallam
and the two grown networks from uniform and preferential attachment. The columns “KS-test”
shows the percentage pass out of 100 realisations.

Narrative N M ⟨k⟩ ℓ C r Ossian Acallam
KS-test KS-test

Ossian 254 596 4.69 3.62 0.45 -0.10
Acallam 515 1364 5.30 3.71 0.41 -0.13
Uniform 515 1364 5.30 3.87 0.10 0.07 1% 67%
Preferential 515 1364 5.30 3.58 0.10 0.00 82% 95%
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preserves the properties of the mother network [170,171]. A number of sampling methods were
explored by Leskovec [172] who also was interested in addressing questions on what constitutes
sampling success. Using the Kolmogorov-Smirnoff test (KS), the author concludes that the
so-called random-walk and forest fire methods are amongst the two best, having also looked
at random-node selection, random-edge selection and sampling by exploration where a node
is selected at random before exploring it’s neighbourhood. However the authors acknowledge
that there is no one perfect method for all applications but recommend hybrid methods that
combine random node selection and some sampling exploration. To evaluate sampling success,
a comparison of some network properties is used. These properties includes the network
diameter, average clustering coefficient, size of the giant component and the degree distribution.
The authors recognise no conclusive list of network properties that can be used to evaluate
sampling success. Some network properties of sampled networks behave differently depending
on a particular application, a result also confirmed in [179]. As an example, disconnected
components are expected where edge sparsification techniques are used. Mark Granovetter was
interested in sampling methods that estimated network density and average degree for large
populations [180]. The sampling method employed involved taking random sub-networks of
size n from a population of size N. On the other hand, Sokolov et. al [181] in their work
on sampling scale-free networks have shown that the sample mean degree is much smaller
compared to that of the population. This result was confirmed in [182] in which they observed
that the sample mean displays systematic deviations for n ≪ N.
Figure 6.1 illustrates the task at hand; our aim is to find sparsification methods whose
sub-network’s degree distribution and network statistics approximately estimate observables
from its mother network. The objective is to exploit various sparsification techniques by
sampling from the original graph (G) to create a sub-network (sub-graph g). Successful or
effective sampling methods are those that preserve the spectrum of the original network. The
next sections look at various sampling methods.

6.2.1 Random Node selection

This method involves randomly selecting the desired number of nodes from the mother G.
Already existing edges are considered only between selected nodes. The simplest approach uses
a uniform random selection method whereby the chance of a node’s inclusion in the daughter
graph g is equiprobable. Another possibility is to attach a weight to all nodes in G based on
some topological characteristics e.g the degree ki and to randomly select nodes according to this
weight. This sampling technique gives an inclination towards highly connected nodes. Random
node selection has been claimed to preserve some properties for daughter network down to a
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Figure 6.1: Network Sampling: Representative diagram of the task of sparsification in which
one seeks to generate a daughter network from a parent while preserving network properties.
The daughter should also satisfy a second condition which we call Ossianification: that is match
network properties of Ossian .

size of 30% of the mother network [172]. However [181] found that results generally differ, with
sampled networks producing a smaller average degree relative to that of the mother network.
Let us start by considering a graph G of size N, for which we write Nk the number of nodes
of degree k. In addition, we write M the total number of edges and remind the reader that k j

denotes the degree of a particular node j. It follows that the degree distribution is given by
p(k) = Nk/N, so that the average degree of the mother network G is

⟨k⟩G =
∑

k

p(k)k =
2M
N
. (6.2.9)

A daughter network g is constructed by randomly and independently selecting n nodes in G

(the mother network) and including all mutual edges between the n nodes. The construction
process of g is assumed to be Markovian: meaning that, at the step n + 1, the probability to add
a given node j to the sub-graph is only a function of the sub-network g at the step n. We wish
to consider two different situations:
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1. A fully random selection process, where all nodes are equiprobable. This implies that the
probability to add a particular node j to a sub-graph is n/N.

2. A preferential selection process where nodes are chosen according to their degree.

The probability to select a given node j is then proportional to kβj , where β is a parameter we are
free to adjust. Note that by choosing β = 0, the probability to select a node is independent of its
degree, reducing therefore to the fully random process defined in 1). Taking the limit β → ∞,
gives a systematic selection process, where nodes of maximum degree are selected.
One should mention that the probability to add a given node j does not depend on the existence
of links connecting nodes together. Therefore, it is possible that such process generates
disconnected sub-graphs and isolated nodes.

6.2.1.1 Unweighted node selection: β = 0

When considering a sub-graph g we define as κ j the apparent degree of a node j. It is defined
by the total number of links connecting j to all other nodes in the sub-graph g: κ j(g) =

∑
i∈g A j,i.

Its average defines the average degree of the sub-network. It is given by the ratio

⟨κ⟩g =
2⟨M⟩g

n
, (6.2.10)

where ⟨M⟩g denotes the average number of edges in g. This calculation remains quite simple
as p(i ∈ g): the probability to find the node i in the sub-network g, is constant, given by
p(i ∈ g) = n/N. Summing over all edges M, and writing e1 and e2 the nodes at its extremities,
we have

⟨M⟩g =
∑

e

p(e1 ∈ g)p(e2 ∈ g) = M
( n
N

)2
. (6.2.11)

In agreement with the results presented in [177, 178], it follows that the average degree is

⟨κ⟩g =
n
N
⟨k⟩G. (6.2.12)

A simple argument can help to understand the previous equation. Allow yourself to select a
node at random in the parent network G. On average, this node has a degree ⟨k⟩G. Assuming
this node is also part of the daughter network g. Its apparent degree ⟨κ⟩g will be smaller than
its actual degree, as only a fraction f of its neighbours will be in the daughter network too. It
follows that ⟨κ⟩g = f × ⟨k⟩G, with f = n/N.
Using the data presented in table 5.6 where n = 254 (the number of nodes in the Ossian), leads
to the prediction ⟨κ⟩g = 2.61. This is quite far from the average degree measured in Ossian,
namely ⟨k⟩ = 4.69. Therefore we deem this approach to be unsuccessful.
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6.2.1.2 Weighted node selection: β > 0

When looking to evaluate the average degree of the daughter network, we follow the previous
calculation keeping in mind that this time, the probability for a node i to be in g is proportional
to kβi . Using the equality

p(i ∈ g) =
n
N

kβi
⟨kβ⟩ , (6.2.13)

and summing over all edges e, and writing e1 and e2 the nodes at its extremities, we have

⟨E⟩g =
∑

e

p(e1 ∈ g)p(e2 ∈ g) =
( n
N

)2 1
⟨kβ⟩2

∑
e

kβe1
kβe2
. (6.2.14)

To proceed further, we need to evaluate the sum over all edges in the previous equation. Let us
approximate the adjacency matrix by

Ai, j ≃
kik j

N⟨k⟩ , (6.2.15)

which holds for uncorrelated networks. The previous approximation has a simple interpretation
if one choose to think of Ai, j of the probability to find a link between nodes i and j. It is then
obvious that this probability is proportional to both, the number of links connected to i and j.
Equation 6.2.14 becomes

⟨E⟩g ≃
n2

2N
⟨kβ+1⟩2
⟨k⟩⟨kβ⟩2 , (6.2.16)

and leads to

⟨κ⟩ ≃ n
N
⟨kβ+1⟩2
⟨k⟩⟨kβ⟩2 . (6.2.17)

In the case of β = 1, this leads to ⟨k⟩g ≈ (n/N)(⟨k2⟩2G/⟨k⟩3G). Using (⟨k2⟩G = 113.51 we get
⟨k⟩g ≈ 42.68. The latter value is ten times larger than the average measured in the Ossian. This
is due to nodes of a higher degree having a greater chance of being selected than nodes of a
lower degree.

6.2.1.3 Taking fragmentation into account

Our strategy so far has been to start with the giant component of the positive Acallam network
and to sparsify it by randomly selecting nodes to deliver a daughter of the same size as the
giant component of the positive Ossian network. We have not attempted to take into account
the fact that this process of sparsification generates isolated nodes, and indeed, small fragments,
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in the daughter networks. Therefore, we are comparing daughters which are fragmented to an
unfragmented giant component of Ossian. Thus we are not comparing like with like and this is
a potential reason why our efforts have failed so far.
Next we modify the above process so that, rather than identifying the full daughter networks
with Ossian (which has size N = 254), we identify only their giant components. We have to
permit the full daughter networks have varying sizes, dependent on the stochastic realisation at
hand, in excess of N = 254, in order to deliver giant components comparable to N = 254. The
results are listed in Table 6.2. We see that the network statistics broadly match the results found
in both Ossian and Acallam (i.e. ⟨k⟩, ℓ, C and r ).
This is an encouraging step and indicates that the process of fragmentation is in important one
that has to be taken into account in any ossianification of Acallam. However, it turns out that
this approach fails to match the degree distributions of the daughter networks to Ossian. This
can be seen visually in Panel (a) of Figure 6.2 where the degree distributions are plotted in the
case where β = 0. We can confirm with KS-tests that the process fails in this case and in the
higher-β cases.

6.2.2 The random walk approach

Given a mother network G = (V, E), with N = |V | and M = |E| denoting the total number of
nodes and edges respectively, a random walk is a stochastic process that starts from a given
node, and then randomly selects one of its neighbours to visit and select. This technique starts
from a randomly selected seed node. At every step, a neighbour of node i is either uniformly
selected or selected in a weighted manner. The process is repeated for t steps until the daughter
network g has the desired number of nodes (n) or edges Mg.
Consider a daughter network g constructed from a random walker starting at node i and taking
t random steps. Let pi(t) denote the probability that a walker is at node i at time t. If we

Table 6.2: Statistics for kβ sparsification. The daughter networks have been sampled to match
the size (Gc) of Ossian. Although statistics match for β = 0, non of the sparsification techniques
so far provide a degree distribution similar to the mother network

Narrative N M ⟨k⟩ ℓ C rk

Ossian 254 596 4.69 3.62 0.45 -0.10
Acallam 515 1364 5.30 3.71 0.41 -0.13
β = 0 253(6) 530(18) 4.17(7) 3.90(2) 0.40(1) -0.14(1)
β = 1 255(1) 938(3) 7.37(3) 2.98(2) 0.63(2) -0.15(1)
β = ∞ 254(1) 995(1) 7.87(2) 2.93(2) 0.70(2) -0.15(1)
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Figure 6.2: Daughter networks generated by (a) Random node sparsification and (b) unweighted
edge sparsification. The degree distribution of Ossian is marked by a red diamond. The shaded
circles (node sparsification) and lines (edge sparsification) represent the generated daughter
networks. Neither type is Ossianic.

consider that a walker is at node j at time t − 1 then the probability of traversing to any one of
k j neighbours of j is 1/k j. Hence, for an undirected network, the probability that a walker is at
node i is given by

pi(t) =
∑

j

Ai, j

k j
p j(t − 1). (6.2.18)

In the limit t → ∞, this becomes t = ∞ [119] so that

p∗i (∞) =
∑

j

Ai, j

k j
p∗j(∞). (6.2.19)

The probability that a random walker will be found at node i in the limit of long time is
proportional to ki, the degree of node i, that is

p∗i =
ki∑

j
k j
=

ki

2M
. (6.2.20)

Besides a low clustering coefficient of C = 0.22 compared to C = 0.45 observed in Ossian, the
remaining statistics are comparable. Additionally, 15% of samples obtained in this way pass
the KS-test. Table 6.3 provides averaged statistics from 100 realisations.

6.2.3 The snowball approach

We also consider a more deterministic approach, called snowball sampling [180]. This is
sometimes called chain-referral and is a non-probabilistic approach where we begin from a seed
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(a) (b)

Figure 6.3: Snowball sampling of radius two: Panel (a) shows the seed node in the middle
(green) and its neighbours (first layer in blue). The second layer (path length of radius two) is
represented by nodes in red and the greyed out nodes are from additional layers excluded in this
sample. Panel (b) includes edges between the sampled nodes (blue and red) and all nodes in
grey are discarded.

node and recruit additional subjects from among their neighbours. This method is sometimes
used to find a hidden sub-population [119,183]. The initial step involves choosing a single node
and all other nodes directly linked to it [179]. The second step includes neighbours of subjects
recruited from the previous step. The process is repeated until the desired sample size n is
reached. The steps otherwise called layers is akin to the idea of a radius in ego centric networks.
To control the number of required nodes in the sample graph g, nodes can be randomly selected
from the last nth layer. Only interactions between the sampled nodes form the edges of the
sample network g. Ebbes et. al in [171] considers an analogous method where a seed node, also
called an ego, is randomly selected. All neighbours of the seed node are included in the sample
including edges between the sampled nodes. Figure 6.3 provides an illustration of snowball
sampling.
Here we acknowledge Ossian as the most important character. We then shine a spotlight around
him by making him the seed node to construct an ego-centred daughter network. We include in
our sample, Ossian’s nearest and second-nearest neighbours. This gives 309 characters in total.
The final step involves randomly removing extra nodes and edges to make sure that our resultant
daughter network is of the same size N and M as that of Ossian. Before doing this, we note
that all nearest neighbours pass through Ossı́n. This imposes a constraint on the network and
its diameter, which is restricted to a maximum of four. To remove this constraint we allow any
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node (including that representing Ossian himself) to be a candidate for random removal. The
randomisation process is repeated 100 times before taking averages. The statistics and degree
distributions obtained using this method delivers an Ossianic type network which also resembles
the mother network Acallam. The results of the KS-test gives p-values > 0.05, 76% of the time
in support of similar distributions. A match here means the daughter network resembles both
the degree distribution of the target network Ossian and the mother network Acallam. Errors
from the random walk method were too small to report.

6.2.4 Other Sparsification Methods

We also consider other sparsification methods found in literature but none of them deliver a
sample that matches both Ossian and Acallam. These methods are briefly discussed below.
The approaches that we have looked at so far are based upon node sparsification. We can
also consider analogous edge sparsification techniques. Similarly, a sample network g can
be conceived by randomly selecting the desired number of edges from the mother network
G, a process called random edge sampling. Therefore, the daughter network will contain a
total of n nodes attached at the end of each randomly selected edge. However the sampled
network formed in this way is likely to be sparsely connected with a large network diameter as
a result. It is suggested that edge sparsification fails to preserve some network properties of the
original graph including the average clustering coefficient which is underestimated as a result
of disconnected components that originates from this technique [184] . The degree distributions
generated from 100 realisations of the random edge sparsification are shown in panel (b) of
Figure 6.2.
The 515 characters in the giant component of Acallam’s positive network are connected by
almost 1364 edges. Ossian, on the other hand, has 596 edges between 254 characters. Selecting
596 edges at random from Acallam delivers approximately 400 vertices for the daughter

Table 6.3: Statistics for random walk and snowball sampling. Both methods deliver a match
in statistics. However, we obtain better results from a more deterministic process (snowball)
especially on the degree distributions. About 76% of snowball samples match both Ossian and
Acallam compared to a random walk technique with a success rate of 15% .

Narrative N M ⟨k⟩ ℓ C rk Match
Ossian 254 596 4.69 3.62 0.45 -0.10
Acallam 515 1364 5.30 3.71 0.41 -0.13
Random walk 254 596 4.69 3.35 0.22 -0.13 15 %
Snowball 254(2) 598(1) 4.70(3) 3.20(3) 0.37(1) -0.22(1) 76 %
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network, on average. We generated 100 realisations of such daughter networks. The KS
test delivers a p-value of less than 0.0001 suggesting the sparsified network is not ossianic.
Panel (b) of Figure 6.2 illustrates this by plotting the 100 realisations alongside Ossian’s degree
distribution.
As with the weighted case in random node selection, a weight can also be attached to an edge
based on the frequency of interaction between two nodes. One way to do this is to partition
Acallam into 11 sections according to the chapters in [103] and to assign a numerical weight
to each link based on how many chapters two characters interact in. If the same edge appears
in two chapters, for example, it is twice as likely to be included in the sample than an edge
appearing in only one chapter of the narrative. However, results of the KS test give p-values of
less than 0.0001 so that this is not a good ossianification process
Another method, the forest-fire approach, was initially proposed by Leskovec et. al in [175] and
applied in [172] and [185]. The concept is comparable to the behaviour of fire spreading in a
woodland. Contrary to a random walk that begins from a single seed node, the forest-fire may
start from a multiple nodes. It is likewise possible for multiple walkers to transverse multiple
edges at the same time step. The idea involves a forward burning probability p and the process
is implemented as follows:

1. The process starts with randomly selecting a seed node i. The process can start from
either one seed node or a multiple of nodes.

2. Node i will arbitrarily pick x of its unvisited neighbours and burn them. Where ki < x,
then all ki neighbours of node i will be burnt. Nodes and edges burnt by the forest fire are
returned as the sampled graph g.

3. The process is repeated until g achieves the required number of n nodes. Where the
forest-fire dies before the required sample size then additional runs of forest-fire is
possible.

Samples obtained through this technique preserve the original network’s degree distribution
and diameter. A match in these statistics is observed for up to 15% reduction of the original
network [172].

6.3 Remarks

In this section, we reported upon various attempts to “Ossianify” the Acallam networks. By
“ossianification” we mean to decimate a parent network in such a way that the daughter both
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resembles the parent and resembles the target network — Ossian in this instance. This goes
a step beyond what has been studied previously in the literature, namely sparsification. It has
been pointed out in literature that there is no single sparcification method that performs better
than others across all network statistics. So too there may not be a unique best method when it
comes to ossianification. But the idea is not so much to closely match the Ossian — rather it is
to find out if it is relatively easy to do so.
Here sampling success is evaluated by comparing between mother and daughter networks.
Network characteristics compared include, average path-length, clustering coefficient,
assortativity and degree distribution. The Kolmogorov-Smirnoff test is used to evaluate
similarities in degree distributions.
Although not all methods work, we have demonstrated that it is possible to Ossianify Acallam

na Senórach stochastically. Moreover, the methods that seem to work best are those that place
some emphasis on node importance in particular sparsification by Oisı́n’s ego network appears
to work best. They also work best when the network integrity is maintained - i.e., when one
focusses on characters who are part of the main action. We suggest that if Macpherson wished
to employ network science to Ossianify Acallam, he would have had a number of options at his
disposal. He only needed to remember pockets of Acallam na Senórach and some important
characters around Oisı́n. It would be interesting, in the future, to couple this approach with
methods from psychology although, but that is beyond the remit of the current investigation.
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Chapter 7

Conclusions

We have performed extensive statistical analyses of character networks from two epic narratives
belonging to the Irish and Scottish Gaelic traditions. The first of these is concerned with the
Viking Age in Ireland up to the battle of Clontarf in 1014 AD. We contextualised the study
through a discussion of the basis from which the events were chronicled, and explained a
long-standing debate between the views of traditionalists and revisionists. Whilst the traditional
memory of the events has been described as a “clear-cut” war between the Irish and Vikings,
the revisionist view is of a domestic conflict in which the bulk of hostilities are internal to the
Irish players.
In this thesis, we have gone beyond traditional humanities approaches and basic descriptive
statistics and studied the character networks of Cogadh Gaedhel re Gallaibh. We consider our
approach to be a prudent use of the chronicle since it is completely independent of the tone
of the account. Indeed, the bombastic style and partisan nature of the Cogadh has long been
foundations for its criticism (although it has not prevented it being used to support both sides
of the debate). Our primary aim was to place the charater networks on a spectrum between
the traditionalist and revisionist views, and to do this we applied the notion of categorical
assortativity. This evaluates the extent to which interactions mainly connect nodes from either
category: Irish or Viking. A strong negative categorical assortativity for the negative network
would suggest a “clear-cut” war between the Irish and Vikings and a positive value would
support the revisionist’s interpretation.
Instead our results show a moderate negative value in categorical assortativity. We interpret this
as supportive of the traditionalist view. However the magnitude of the value is not large and
therefore does not back a “clear-cut” conflict between the Irish and Vikings. On the other hand,
results from the positive network show a positive value in categorical assortativity, an indication
that social interactions are mostly between characters of the same attribute but not wholly so.
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The observed results are also robust, e.g. our conclusions are not influenced by disregarding
Viking-Viking interactions.
Additionally, we compared the network of Cogadh Gaedhel re Gallaibh to those of other
epic narratives [15, 16]. We found that the network properties of the Cogadh are closer
to those from Iliad than Njal’s Saga and Táin Bó Cuailnge. The closeness to the Iliad is
fascinating considering some claims from humanities scholars that Cogadh was partly a rhetoric
“pseudo-history” borrowed from the account of Troy [36, 40, 47, 60]. It would be fascinating to
perform more extensive comparative investigations in future studies.
The second part of our analysis focused on the character networks of The Poems of Ossian.
The poems, purported to have been translations from Scottish-Gaelic sources into English,
drew worldwide attention at the time of publication, and their scholarly study has enjoyed a
revival in recent decades. James Macpherson’s Ossian had great influence on the introduction
of romanticism in literature. The works achieved international success and were paralleled
to Homer’s Iliad and Odyssey. However, from the outset, a great amount of controversy
concerned the authenticity of the works and provoked a divided view in humanities. Some
scholars branded them “the most successful literary fraud in history” implying that they were
essentially a distortion of tales from Irish mythology [84]. Here we sought to put Ossian on
a spectrum between the Greek and the Irish to try and make a quantitative contribution to this
debate from a new perspective using character networks.
Our results show that the character network of Ossian resembles those from Irish mythology
and a derivative text by Lady Gregory but is different to the Iliad or Odyssey. Our outcomes
may be considered as completing investigations by the likes of Sylvester O’Halloran 250 years
ago [63,72]. O’Halloran’s identification of some characters in Ossian as appropriated from Irish
mythology was essentially a study of the nodes of the networks. Ours is a study of its links.
These two studies have formed the basis for two papers. One of these has been published as
Ref. [9] and the second has been submitted as detailed in Ref. [17]. A third publication [10]
emerged during the course of these investigations but is not reported upon in this thesis because
it refers to a different genre of literature.
One additional question that is addressed in this thesis (and which will form the basis of a
fourth publication) is that of “ossianification”. The thesis explores the possibilities of creating
an Ossian-type network from that of Acallam. To demonstrate this is possible, we began by
growing the network of Ossian to the size of Acallam to see if it would match the Irish network.
Having verified this, we suggested that some form of an inverse process may be employed to
create an Ossian type network from Acallam. Our results show that there are various successful
sparsification methods capable of delivering an Ossianic type network that resembles both
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Acallam and the target network Ossian. The methods that seem to work best are those that
place an emphasis on node importance, especially for characters involved in the main action of
the tales and in particular nodes that appear in Oisı́n’s ego network. The results demonstrate
that if Macpherson could have had network science to hand, and if he desired to use some of
the methods employed here, he would have had a number of options available to him. He only
needed to recall the main characters and interactions of the Acallam network, particularly those
around Oisı́n, and build from there. However, these correlations do not decisively prove the
sources of James Macpherson’s Ossian. (Certainly, we cannot suppose that Macpherson had
network theory in mind when he went about his work.) But they do show that creation of an
Ossian-type network from an Acallam-type network is a relatively easy task.
This work can be extended in a number of ways. Like Refs. [15,16], the present analysis is based
on static networks. These freeze the narrative progress and capture the plot “all at one glance
in a visual display of its character network” [186]. Static networks are particularly appropriate
for the texts that were investigated here which paid little regard to chronology. Nonetheless,
dynamical properties are also of interest and ought to be explored in the future [148]. It would
be interesting to see if temporal networks can help to re-establish some of the chronology.
Directed and weighted networks also offer obvious routes for wider study. Moreover, the use
of machine learning techniques can be extended to character networks to include predictive
analysis.
Furthermore, inspired by the Ua Ruairc example in Cogadh Gaedhel re Gallaibh, it would
also be interesting to investigate if the structural imbalance in some network triads could be
developed to give a way to spot other potential interpolations in this and other texts. In the case
of Ossian, it would be interesting to advance the work through interdisciplinary collaborations
with experts from psychology to explore connections with the theories of memory and of
the mind. A plethora of other quantitative approaches and suggestions are contained in the
compendium [187]. Substantially more work is needed to extend this approach to compare with
the Irish annals, genealogies, and other contemporary sources. We feel this is desirable in the
long-term, and we hope that this work will help generate enthusiasm for such a project.
Having evolved out of applied mathematics, statistics and complexity science, the
character-network approach is sometimes criticised by humanities scholars for bringing little
new, merely re-discovering or verifying knowledge already established from conventional
studies in that discipline. The standard reply to this type of criticism is that such agreement
is exactly what one should hope to obtain using an approach which is new, provided that
approach is valid. One has to be patient and allow the sub-discipline to evolve and mature.
The precise placement of Cogadh Gaedhel re Gallaibh along a spectrum from the international
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to the intranational using quantitative techniques (namely categorical assortativity) in this thesis
is a new development in this regard. The demonstration of the possibility to “ossianify”
Irish narratives by focusing on the main characters and their interlinks also exemplifies new
developments in addition to showing how the sub-discipline can open up new questions. In
these ways, our work represents a step forward in the evolution of the sub-field. It goes
beyond previous works in that it generates new quantitative elements to unfinished debates
in the humanities and opens up new avenues for interdisciplinary research.
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52, 1–24.

[54] Downham, C. (2005). The Battle of Clontarf in Irish history and legend. History Ireland,
13, 19–53.

[55] Casey, D. (2010). Historical and literary representations of Brian Boru’s burial in Armagh,
1014AD. North Munster Antiquarian Journal, 50, 29–44.

[56] Dubois, T.A. (2011). Juxtaposing Cogadh Gáedel re Gallaib with Orkneyinga saga. Oral
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