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Abstract 

With the advent in multicore computers, the scheduling of Grid jobs can be made more 
effective if scaled to fully utilize the underlying hardware and parallelized to benefit from 
the exploitation of multicores. The fact that sequential algorithms do not scale with 
multicore systems nor benefit from parallelism remains a major challenge to scheduling in 
the Grid. As multicore systems become ever more pervasive in our computing lives, over 
reliance on such systems for passive parallelism does not offer the best option in harnessing 
the benefits of their multiprocessors for Grid scheduling. An explicit means of exploiting 
parallelism for Grid scheduling is required. The Group-based Parallel Multi-scheduler for 
Grid introduced in this work is aimed at effectively exploiting the benefits of multicore 
systems for Grid job scheduling by splitting jobs and machines into paired groups and 
independently multi-scheduling jobs in parallel from the groups. The Priority method splits 
jobs into four priority groups based on job attributes and uses two methods (SimTog and 
EvenDist) methods to group machines. Then the scheduling is carried out using the MinMin 
algorithm within the discrete group pairs. The Priority method was implemented and 
compared with the MinMin scheduling algorithm without grouping (named ordinary 
MinMin in this research). The analysis of results compared against the ordinary MinMin 
shows substantial improvement in speedup and gains in scheduling efficiency. In addition, 
the Execution Time Balanced (ETB) and Execution Time Sorted then Balanced (ETSB) 
methods were also implemented to group jobs in order to improve on some deficiencies 
found with the Priority method. The two methods used the same machine grouping 
methods as used with the Priority method, but were able to vary the number of groups and 
equally exploited different means of grouping jobs to ensure equitability of jobs in groups. 
The MinMin Grid scheduling algorithm was then executed independently within the 
discrete group pairs. Results and analysis shows that the ETB and ETSB methods gain still 
further improvement over MinMin compared to the Priority method.  The conclusion is 
reached that grouping jobs and machines before scheduling improves the scheduling 
efficiency significantly.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction  

This chapter introduces the background to the problem and motivation for the research. It 

then defines the research question followed by the aims and objectives. This is followed by a 

description of the methods adopted in achieving the aim and the philosophy behind adopting 

the method. Then a summary is presented of the findings and research results with a 

reflection on the research question. Finally, the organization and structure of the thesis is 

described. 

 

1.2 Background to Problem 

Grid computing is growing, gaining more acceptances and making inroads in many spheres 

of our daily lives. In the same vein, multicore systems are becoming ever more pervasive as 

hardware computing technology continues to grow in the direction of the Moore’s law, 

although a levelling off is currently apparent. The challenge of scheduling Grid jobs to meet 

users’ requirements and providers’ policies in the light of increasing powerful and prevalent 

computing technology calls for a fundamental and effective rethink. With the advent of 

multicore computers, scheduling of Grid jobs can be made more effective if scaled to fully 

utilize the underlying hardware and parallelized to benefit from the gains of the multicores.  

Most current Grid scheduling algorithms are sequential in nature and do not consider the 

inherent benefits in the underlying multicore systems and most focus on scheduling parallel 

jobs rather than scheduling jobs in parallel. In this research, the phrase “Scheduling jobs in 

parallel” is used to mean that the actual scheduling task is parallelised whereas “Scheduling 

parallel jobs” means the scheduling of submitted jobs or tasks such they execute concurrently 

on various distributed resources. 

Scheduling of Grid jobs without considering the underlying multicore hardware in an age 

characterized by multicore systems does not augur well for the current trend in computing 

hardware and will constitute the Achilles heel.  
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Most Grid scheduling algorithms are saddled with overheads incurred in the pre-optimizing 

computations done before scheduling of jobs. Also, more overheads are incurred when the 

whole pre-optimizing computations had to be done over again due to arrival and admission of 

new jobs. Other scheduling problems synonymous with serial scheduling algorithms are the 

bottlenecks that set in when the number of tasks increases.   

Given that sequential applications do not scale with multicore systems nor therefore benefit 

from parallelism, most current schedulers are rendered unsuitable for today’s advances in 

multicore technology. Hence, as the Grid continues to evolve and grow in tandem with 

advances in multicore hardware technology, the need to scale Grid job scheduling in-line 

with the ready benefits of multicore systems cannot be overemphasized.  

If the hardware technology of the near future is multicore, then the Grid schedulers of the 

near future shall be those which utilize the multicores to their benefit. Designing applications 

to benefit from multicore systems encompasses embracing parallelism. Parallelism enables 

the optimal use of all available processors and the underlying hardware. 

This research aims to develop a method that would exploit multicores through parallelism to 

enhance Grid scheduling. The result has been the development of the Group-based Parallel 

Multi-scheduler (GPMS). The GPMS exploits the benefits of multicore systems for Grid 

scheduling by splitting jobs and machines into paired groups and independently multi-

scheduling jobs in parallel from the groups.  

 

1.3 Motivation for undertaking this Work 

As multicore computers becomes ever more pervasive in our computing lives and as the Grid 

continues to grow according to prediction, over reliance on such systems for parallelism does 

not offer the best option in harnessing the benefits of their multiprocessing capabilities. A 

means of exploiting parallelism for Grid scheduling is required to tap the full benefit of 

multicores and place the Grid on a strong footing for the future.  

This work was inspired by a number of combined factors. These included:  

 Grid computing is an important component in data and compute intensive computing 

(Geddes 2012) and also provides a backbone in many Cloud systems (Messerschmidt 

and Hinz 2013). Continued development of new methods to enhance its functioning in 

an environment of growing data and computational requirements is therefore needed. 
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 Multicore computers are becoming ubiquitous – the design and development of 

multicore computers means that single processor systems are being phased out. 

 Most Grid scheduling research continues to dwell not on the exploitation of 

parallelism on multicores in the actual scheduling task but rather on scheduling 

individual payload tasks in parallel.  

The motivation is therefore to delve into the exploitation of parallelism on multicore systems 

to increase scheduling-throughput in Grid scheduling algorithms.  

 

1.4 Research Question  

Most Grid scheduling algorithms are sequential in design and in processing, targeted at 

addressing issues of QoS and makespan. They do not exploit the opportunities of parallelism 

as offered by the multicore technology. Since current Grid schedulers are sequential, 

increased workloads on the Grid could overwhelm the system, create a bottleneck and 

become its Achilles heel.  

Grid computing requires that jobs are submitted by users and executed at remote Grid sites. If 

the prediction on the growth of the Grid is to become a reality, Grid schedulers would be 

overwhelmed with the scheduling of millions of jobs at every moment.   

Parallelism offers increased speed of processing and optimal utilization of processing 

components and works best in an environment composed of independent tasks. Grid jobs 

submitted by different users are diverse and independent and are suitable candidates for 

parallelisation because such independent tasks offer coarse grain granularity in the scheduling 

process. 

In a multicore environment, each core can be used to do a separate job in parallel. This 

research was interested in investigating how best the Grid scheduling work could be 

organised to exploit the benefits offered by such characteristics. A multi-scheduling approach 

was therefore explored.   

Multi-scheduling in this scheme refers to the generation of several independent scheduling 

instances between independent groups of jobs and groups of machines.  

In the light of the above, the research question is:   
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How can multi-scheduling and parallelism be exploited to take advantage of multicores in order 

to improve the Grid job scheduling task? 

 

1.5 Aim and Objectives 

This research aims to improve scheduling-throughput in Grid scheduling by employing a 

dynamic approach that exploits parallelism and multi-scheduling to reap the gains of the 

multicore technology. This aim led to the proposition of the design of the Group-based 

Parallel Multi-scheduler (GPMS) that is capable of harnessing the benefits of the multicores 

by exploiting parallelism to leverage the scheduling of Grid jobs. 

From the above aim, the following objectives emerged: 

 Investigation of current scheduling techniques in Grid and in particular, attempts to 

exploit parallelism on multicores in Grid scheduling. This objective resulted in the 

literature review. 

 Design of a suitable method to exploit multicore technology through parallelism in the 

scheduling of Grid tasks. This objective resulted in the group scheduling methodology 

which included three job grouping methods and two machine grouping methods. 

 Design of the multi-scheduler which incorporates suitable multi-scheduling methods. This 

objective yielded the GPMS.  

 Implementation of the three job grouping methods with the two machine grouping 

methods to exploit parallelism on multicores to enhance scheduling of Grid tasks.  

 Design of a suitable test bed and the testing of the group scheduling methods. 

 Evaluation of the methods against a widely used non-grouping scheduling algorithms to 

ascertain the efficiency of the system.  

 Discussion of the findings and drawing of conclusion on the work. 
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1.6 Method 

In an attempt to achieve the set goals, the research process was broken down into the 

following phases: 

Literature Review, Definition of Terms and Research Question 

This phase dwelt on the review of the literature, related to the research question. Specific 

areas included: Grid; parallelism; the Grid and parallelism; distributed high-throughput 

computing systems; parallel scheduling algorithms; Grid scheduling algorithms; gang 

scheduling; group scheduling and load balancing. This review was carried out to find a gap 

and grasp knowledge on the task to be engaged in. After the rigorous search in literature, the 

key terms relating to the research were defined to give a clear context to the work. Then, the 

research question was formulated. 

Design of Grouping Method and Overall Architecture 

This phase involved the design of a model to be developed as solution to the problem. This 

phase brought to existence the visual components of the system, how jobs would flow in and 

out of the system and what part of the system does what. To bring the design to life, some 

standard design and modelling tools were used.  

A Context Diagram was developed to depict the overall frame of the system with its input and 

output. 

The following UML methods were used to model the system: 

 Use Case Diagram that shows how users will use the system. 

 Activity Diagram that depicts the activities the system shall perform when fully 

implemented. 

  Interaction Diagram that shows how users will interact with the system. 

 Class Diagram that shows the methods and attributes of the system. 

A flow-chart was used to describe the logical flow of processes in the system.  

Other tools used in the development stage were algorithms and pseudo-code which proved to 

be very helpful in the coding stage.  

The result of this phase was the overall and detailed design of the GPMS. 
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Implementation of the GPMS 

This phase was concerned with bringing the design to life. The Eclipse programming 

platform was employed for coding. Eclipse was preferred because it offered a very 

simple platform for programming which was achieved using Java. Multi-threading was 

used to implement parallelism. This phase also involved testing of the system to 

ascertain the functionality of the system. 

Simulation and Testing  

Due to the difficulty in accessing a physical Grid, simulation was employed in the 

testing process. A Grid environment, with Grid sites composed of several machines 

which in turn are composed of a number of CPU(s) ranging from 1 to 4 with varying 

speeds, was simulated for the tests. Also, the execution time of jobs on machines, based 

on size of the job and the speed of the machine, was simulated and used for the test.  

Analysis and Evaluation 

This phase involved the use of statistical data analysis tools, querying tools, 

mathematical formulas and calculations. These were used to analyse and compare test 

results against results obtained using the ordinary MinMin scheduling algorithm (Ibarra 

and Kim 1977). The evaluation was carried out to ascertain the efficacy of the method 

and to appraise the overall success of the research. The outcome of this phase was used 

to ascertain if the research aim had been achieved and if the research question had been 

answered. 

 

1.7 Contributions 

The main contributions of this research are: 

A Group-based Parallel Multi-scheduler has been produced which uses grouping methods to 

improve the scheduling-throughput in Grid scheduling.  

Three novel approaches to group Grid jobs before scheduling in parallel were developed. The 

three novel methods of grouping Grid jobs are: 
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 Priority method– this method groups Grid jobs based on job priorities which are in turn 

computed from the attributes of the jobs or which could be given directly by the users. 

 Execution Time Balanced (ETB) – this method uses the execution time of jobs as the 

attribute to group jobs. It computes the execution time of the jobs based on the size of the 

job when executed on a standard computer. It then balances the jobs into groups based on 

the computed execution time. 

 Execution Time Sorted and Balanced (ETSB) – This method computes the execution time 

of jobs, sorts the jobs based on the execution times then balances jobs into groups based 

on the sorted execution times. 

Two novel methods of grouping Grid machines based on the configuration(s) of the 

machine(s) were developed. The two methods are: 

 Similar Together (SimTog) – this method allocates machines with similar 

characteristics (configurations) into same group. 

 Evenly Distributed(EvenDist)– this method distributes all machines fairly equally into 

the groups based on their configurations.  

 

1.8 Organization of Thesis 

This thesis is organized as follows: 

Chapter One introduces the work and presents a summary of the entire work: the background; 

motivation; research question; aims and objectives; method applied in the design; and 

contributions made.  

Chapter Two explores relevant and related literature in Grid computing, scheduling and 

scheduling algorithms in Grid. The chapter also discussed parallelism, parallel systems, 

multicore systems, parallel scheduling algorithms, distributed and high throughput computing 

systems and nature-inspired algorithms. 

Chapter Three presents the methodology. It discusses the stages employed in achieving the 

aims and objectives and discusses the motivation for applying the method.  

Chapter Four discusses the design of the Group-based Parallel Multi-scheduler (GPMS) for 

Grid. It defines the components of the system and the functionality of the components. In a 

nutshell, Chapter Four serves as the blueprint for the system to be designed. This chapter 
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brings to life ideas about a solution to the problem. The chapter also describes the algorithms 

for the methods, simulation, implementation, experimental design and tests of the proposed 

methods.  

Chapter Five discusses the results, analysis and evaluation of results of the GPMS methods 

(the Priority, the ETB and the ETSB) against the MinMin and also provides a comparative 

analysis of the three GPMS methods used.   

Chapter Six presents a general discussion based on the outcomes in Chapter Five and also 

presents a brief discussion on shared resources contention among threads.  

Chapter Seven compares the GPMS simulator to the GridSim simulation tool and other 

established systems like Condor. It also relates the method applied in the GPMS to gang 

scheduling systems and the DIANE scheduler.    

Chapter Eight highlights the key points of the thesis, outlines the contributions made to 

knowledge, draws conclusions and discusses future work. 

 

1.9 Summary 

This chapter has provided a background to the problem the research addressed. It introduced 

the research question and set out the aims and objectives. It then provided an overview of the 

methods used in achieving the objectives. It also discussed the motivation for the research 

and presented the contributions made to the field of knowledge. Finally, it provided a glimpse 

of how the thesis is organized. 

The next chapter explores literature in relevant areas of the research. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter explores and discusses literature on relevant areas related to the research. It 

presents and discusses concepts of Grid, parallelism, multicore systems, parallel scheduling 

algorithms, Grid scheduling algorithms and also considers work in gang scheduling, grouping 

and load balancing. 

 

2.2 The Grid 

This section introduces various aspects of the Grid.  After providing an overview, the general 

architecture of the Grid is discussed, followed by an exposition of the main types of Grid. 

2.2.1 Overview 

According to Foster and Kesselman (1999), the Grid is a computing paradigm that promises 

to change the way complex problems are solved. It was hoped that the Grid would help large-

scale aggregation and sharing of computational data and other resources across institutional 

boundaries otherwise known as virtual organisations. Foster (2000) also observed that 

properly harnessing the Grid technology will transform various disciplines. These 

expectations will necessitate the requirement for a computing and scheduling paradigm that 

meets the expected growth of the Grid (Zhang and Cheng 2006, Etminani and Naghibzadeh 

2007, Xiaoyong et al. 2012, and Sajedi and Rabiee 2014). Figure 1 shows the image of the 

Grid courtesy of (Tech4globe 2010). 

Foster and Kesselman (1999) noted that the backbone of the Grid is the already established 

Internet, the powerful super computers, multiple computing clusters, large scale distributed 

networks and the connectivity of these resources. The aggregation and integration of these 

powerful computing systems, clusters, networks and resources, implemented with policies 

that ensure the delivery of computing services to users’ specifications or requirements, is 
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what represents the Grid. The underlying architecture of the Grid is based on using a set of 

protocols and heterogeneously distributed Grid resources in order to create Virtual 

Organizations (VOs). This is implemented on a set of protocols such as OGSA - Open Grid 

Service Architecture (Foster et al. 2005), using services and middle ware such as Globus 

(Foster and Kesselman 1997) and implemented upon an enhanced data transfer protocol such 

as the GridFTP (Allcock et al. 2003). 

 

Figure 1: Image of the Grid (Tech4globe 2010) 

The OGSA technologies are service-oriented architectures used by the Grid to provide 

services to clients using messages. Built from the concept of web services, OGSA is intended 

to support the creation, termination, management and invocation of stateful, transient Grid 

services (Bryant 2007). The OGSA framework specifies security, resource provisioning, 

virtual domains, and the execution environment for other Grid services and API access tools. 

GridFTP is a Grid-centric extension to the file transfer protocol with secure, reliable and 

high- performance data transfer with some added features that meets the concerns of the Grid 

such as third party control of data transfer, data confidentiality, data integrity and data 

authentication, stripped data transfer and parallel data transfer (Allcock et al. 2005). 

The Globus toolkit is intended to serve as the framework upon which integration of most of 

the services provided at various layers of the Grid can be accomplished. Globus integrates 

services between application, middleware and the network. The toolkit provides mechanisms 

for communication, authentication, network information and data access with the aim of 

transforming to a system that integrates higher-level services and enables applications to 

This item has been removed due to 3rd Party Copyright. 
The unabridged version of the thesis can be found in the 

Lancester Library, Coventry University.
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adapt to the heterogeneous and dynamic meta-computing environment(Foster and Kesselman 

1997). The core of Globus toolkit addresses issues of security, resource access, resource 

management, data movement, and resource discovery. 

 

2.2.2 Architecture of the Grid 

The architecture of the Grid is organized in layers with each layer depending on services 

provided by the succeeding layer as shown in Figure 2 courtesy of (Foster, Kesselman and 

Tuecke 2001). Each layer is made up of different components and functions and 

communicates within itself and with the succeeding layer (Laszewski and Mikler 2004). The 

layers of the Grid are as follows: 

- Fabric layer– the fabric layer according to Foster and Kesselman (1999) defines the 

interface to native resources and implements low-level mechanisms that allow users to 

access and use resources. It is composed of logical and physical resources. The logical 

resources include distributed files systems and computer clusters whose access is 

facilitated by the Grid while physical components includes computational resources, data 

storage resources, data and networks resources.  

- Connectivity layer – this layer defines communication and authentication protocols. The 

protocols are used for Grid networking and transaction services and also to provide means 

of identifying Grid users and resources. The connectivity layer includes networking 

protocols like transport control protocol (TCP) and internet protocol (IP). Other services 

include the domain name protocol (DNS).  

- Resource layer – the resource layer according to Foster et al. (2001) controls access, 

negotiations, management, monitoring and accounting for Grid resources. It uses the 

protocols defined in the connectivity layer for these control and management functions.  

- Collective layer – this layer oversees and manages the global state and atomic actions of 

all the resources. It coordinates communications and interactions between Grid resources. 

It builds upon the services of the lower layers to provide functions like scheduling, 

brokering, monitoring, diagnostics, data replication and directory services (Netto and 

Buyya 2010) cited in (Albodour 2011). 

- Application layer – the application layer is comprised of users’ applications and provides 

functions that allow for the use of Grid resources. This layer accesses programs, protocols 

and other services provided by the lower layers. 
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Figure 2: The layered structure of the Grid (Foster, Kesselman and Tuecke 2001) 

 

2.2.3 Main Types of Grid 

Two main types of Grid can be identified: the Data Grid and the Compute Grid. 

2.2.3.1 The Compute Grid 

The Grid as described by Foster and Kesselman (1999) is a computing paradigm for 

providing seamless computing services from various heterogeneous compute resources to 

homes and organizations in a manner analogous to the electricity Grid. It involves the 

integration and aggregation of different federating computing units to create virtual 

organizations for the purposes of large-scale sharing and service delivery to meet users’ 

defined QoS requirements (Wieczorek, Hoheiselb and Prodana 2009).  

The motivation for the Grid was for the provisioning of computing services on demand by 

delivering services from various federated and heterogeneous compute resources to homes as 

utility services like water, gas and electricity. Etminani and Naghibzadeh (2007) and Foster 

(2000) noted that the compute Grid is aimed at ‘solving wide-ranging computational 

problems in industry, commerce and businesses, engineering and science’. Foster(2000) also 

added that the primary target of the Grid is for ‘large-scale scientific computations and 

therefore there was the need for it to scale to leverage large number of resources, enable 

programs run faster and efficiently and ensure that programs finish correctly with a high 

degree of reliability and fault tolerance’. Furthermore, Foster (2000) averred that effectively 

harnessing the Grid technology will transform various disciplines like high-energy physics, 

businesses, organisations and the life sciences, enable large-scale aggregation and sharing of 

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be found in the Lancester Library, Coventry 

University.
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data, computational and other resources across institutional boundaries (otherwise known as 

virtual organisations) located in disparate geographical regions and provide qualities of 

service based on policies and protocols.  The researcher believes such systems would require 

a novel, efficient and effective job scheduling mechanism. 

With these intimidating promises and sophistications of the Grid, the programming model 

required in the Grid environments differs fundamentally from traditional serial or sequential 

execution environments. For instance the need for multiple administrative domains, the 

heterogeneous nature of resources, diverse policy requirements, quality of services required, 

stability and performance, and exception handling in highly dynamic environments all place a 

new demand for Grid programming.  

 

2.2.3.2 Data Grid 

The Data Grid was conceived as a service platform designed to provide scalable and 

optimized management of storage infrastructure and distributed data in the Grid environment 

(Chervenak et al. 2000). It was conceptualised to address the emergence of large scientific 

and business applications requiring large amounts of data (in terabytes and petabytes) with 

diverse requirements, which has brought about the proliferation of various storage devices 

with specialised capabilities. These various storage devices with varying capabilities have 

therefore become an integral part of the Grid and need to be managed. How these data and 

storage facilities can be managed, transferred and replicated is the problem the Data Grid is 

designed to address (Vazhkudai 2001).   

The Data Grid typically uses the Globus Data Grid as a standard platform. The Globus Data 

Grid architecture is used to define and provide a set of core services that serve as standard to 

provide access to the diverse storage systems in the Grid environment. A good example of the 

Data Grid is the European Data Project, set up with the primary aim of developing 

middleware solutions and test beds that are capable of scaling up to support a novel 

environment for the global distribution of petabytes of distributed scientific data, are robust in 

supporting thousands of data centres and processors, and that are capable of managing tens of 

thousands of multiple users. This has brought about the emergence of fundamental modes of 

scientific exploration that dissolves the constraints of data-access. The long term goal was the 

positive impact on future industrial and commercial activities (Segal et al. 2000).  
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The European Data Grid Project also provides replica management services like the 

movement and replication of data at high speed from one geographical location to the other, 

optimization of access to data, management of distributed replicated data and provision of 

metadata management tools (Cameron et al. 2004). 

 

2.3 Parallelism 

Traditionally, computer instructions are written serially and are executed sequentially on 

single processor systems. Parallel computing is the simultaneous application of multiple 

computer resources to execute computational problems. This is made possible with the 

availability of multicores and through the clustering of machines.  

Amdahl’s law describes a relationship that exists between a serial execution of an algorithm 

and the parallel execution of the same algorithm using different numbers of processors with 

the assumption that the algorithm size does not change. While it was observed that for any or 

many given problems or algorithms there is always a portion of it that can never be 

parallelized, it was also noted that a speedup of processing rate was achievable for every 

processor added to the system especially if the sequential portion of the algorithm can be 

parallelized (Amdahl 1967).  

Speedup = wall-clock time of serial execution/ wall-clock time of parallel execution 

 

2.3.1 Parallelism and Multicore Systems 

Limiting factors on serial computing like transmission speed, miniaturization, need for 

improved performance, and economic limitations put constraints on the continuous 

production of serial computers. This trend is traceable to Knight’s assertion that limiting 

factors like size and speed obtainable would always determine the cost / size of computer 

systems attainable (Kenneth 1966).   

Advances in computer hardware technology (owing to Moore’s law) has drastically changed 

the philosophy of computer design from increasing the number of transistors on a chip and 

increasing clock speed (Moore 1965) to present day multicores (Mellor-Crummey2012, Lin 

et al. 2009, Peng et al. 2007, Meyer 2006, Geer 2005, Knight 2005,Kalla, Sinharoy and 
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Tendler 2004,  Kenneth 1966). This trend was long predicted by Kenneth and Leon (1975), 

Hobbs and Theis (1970) and Hollander (1967). 

According to Peng et al. (2007) and Gepner and Kowalik (2006), the advances in computing 

hardware are due largely to the paradigm shift in hardware design. According to Schauer 

(2008), processor manufacturers have come to embrace the multicore design technology by 

simply combining two or more individual processors and their caches and controllers in a 

single silicon-chip, thereby maintaining the system architecture and clock speed and neatly 

gaining increase in performance.  

The length to which the growth of computer technology based on transistors will continue to 

obey the Moore’s law (Moore 1965) or put differently, the extent to which Moore’s law 

would continue to determine the development of silicon chips (transistors) was fascinating 

and dominated scientific interest and researches in the mid 1960’s to early 1970’s with the 

general conclusion that the trend cannot be sustained forever ( Hollander 1967, Thurber and 

Wald 1975). Advances in computer technology were therefore pointed to multichip or 

multicore processors (Hobbs and Theis 1970, Knight 2005, Peng et al. 2007, and Schauer 

2008).  

Current technology in computer design has given credence to those predictions as the 

Moore’s law continues to ‘level off’ and is predicted to gradually die off in 2020 (Eck 2012, 

and Michiko 2013) to finally pave way for a paradigm shift towards multicore processors 

(Geer 2005, Meyer 2006, Lin et al. 2009, Mellor-Crummey 2012, and Michiko 2013).   

Since every generation of computing technology is identified with its distinct programming 

platform (Bell 2008), the requirement therefore now is for a programming paradigm that 

takes advantages of the number of processors (cores), namely parallel programming. 

Tendulka (2014) noted that for the potential gains of multicore computing to be achieved, a 

retrospective paradigm shift in software design technology must be embraced.  

After a keen observation of the trend of computer evolution from the beginning, characterized 

by vacuum-tube technologies and accommodation size large enough for many humans to 

walk in, to today’s microprocessor technologies that allow computers to easily fit into a 

garment pocket, Gordon Bell postulated the Bell’s law describing the birth, evolution and 

eventual death of every computer generation and class based on logic technology evolution 
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(Bell 2008). A computer class according to Bell is a combination of new platform and 

‘dominant’ programming techniques.  

Referring to Bell’s Law and Moore’s Law, Larus (2009) noted that between the periods 1974 

to 2006, the number of transistors on a processors increased from 45 hundred to 291 million – 

representing an increase of 64, 467 times, while clock speed increased from 2MHz to 

2.93GHz – an increase of 1,465 times. This research, if extended to today, will see the 

numbers jump in millions. This remarkable increase of 40-50% (transistors) per year over the 

past three decades he contended was underutilized by software and programming codes as the 

gains were not reflected in processing in much the same way. Noting the paradigm shift from 

continuous increase in the number of transistors on a processor to the new multicore 

technology, he opined that one way to gain from the Moore’s dividends was to develop codes 

that execute in parallel and support the design and development of parallel programming 

languages. 

In other related studies by Kessler, Dastgeer and Li (2014) and Catanzaro et al. (2010), it is 

acknowledged that the propelling idea for advances in computing technology is not just the 

increase in speed of processing but in improved efficiency and increased throughput. The 

advent of multicore computing therefore opened up a gap in the software development owing 

to the fact that execution of serial algorithms on multicore systems impedes performance 

(Singh and Agrawal 2014, Tendulka 2014, Stone, and Gohara and Shi 2010) and does not 

optimize the utility of the multicores (Adams et al. 2010). Figure 3 shows the distribution of 

large parallel computers produced by vendors. 
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Figure 3: Distribution of large parallel computers produced by vendors (Source: top500.org) 

 

Sadly, these advances in hardware technology are hardly being translated to gains in 

application design and development. Larus (2009) noted that the gains as a result of advances 

in hardware technology (‘Moore’s dividends’) are not being fully utilized in software 

development. He then suggested that codes be developed to execute in parallel. To give more 

credence to Larus’s call, Wang et al. (2007) also noted that multicore systems are not being 

fully exploited but have the potential for high performance computing if programmed 

efficiently.   

Based on these developments and on a more positive note, recent advances in programming 

have seen the proliferation of parallel programming languages and applications and most 

science and engineering platforms are adopting software approaches aimed at utilizing the 

multicores in their systems to their advantage and fine tuning their applications to enhance 

the benefits of multicore systems (Ras, Chris and Leo 2011, Ciechanowicz and Kuchen 2010, 

This item has been removed due to 3rd Party Copyright. The unabridged version of 
the thesis can be found in the Lancester Library, Coventry University.
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LeBlanc and Wrinn 2010, Viry 2010, Nickolls et al. 2008, Ranger et al. 2007, and Stone et al. 

2007). Extending these advances and increasing the call for further actions (Jin et al. 2011, 

Adams et al. 2010, Asanovic et al. 2009, and Chaiken et al. 2008) stated that it is desirable 

for programming applications to embrace parallelism. 

 

2.3.2 Exploiting Parallelism in Multicore Systems  

Sequential algorithms do not scale well with parallel (multicore) systems and single processor 

systems do not gain from parallel algorithms as well (Bader, Kanade and Madduri 2007, 

Dolbeau, Bihan and Bodin 2007, Hill and Marty 2008, Nickolls et al. 2008, and Sutter 2005). 

CPUs (central processing units) have recently been provided with multiple cores and are now 

capable of processing data in parallel (Lee et al. 2010, and Owens et al. 2007).  

Dekel and Sahni (1983) provided an early discussion of parallel algorithms. They presented 

algorithms for various scheduling problems such as minimizing the number of tardy jobs, job 

sequencing with deadlines, and minimizing the mean finish time. Maheswaran et al. (1999) 

also noted that to exploit a given architectural feature of a machine the task’s computational 

requirements must match the machine’s advanced capabilities. And Kwiatkowski and 

Iwaszyn (2010) noted that multicore processors give the opportunity of parallel program 

execution using the number of available processing units. However, Kwiatkowski and 

Iwaszyn (2010) opined that when developing programs for multicore computers, 

consideration should be given to the architecture, parallelism and the number of processors 

available. For instance, SWAM (Bader, Kanade and Madduri 2007) is a tool which helps in 

program development and RapidMind (Monteyne 2008) is a tool used in the execution 

environment. Both tools require knowledge about the processor architecture and parallel 

programming.   

Being the current leading architecture, multicore computers are becoming increasingly 

pervasive (Bondhugula et. al 2008) and constitute a section of the machines on the Grid. 

Targeting the parallelism inherent in the multicore systems therefore forms part of the focus 

for this research.    
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The GPMS method (Abraham, James and Yaacob 2015a, and Abraham, James and Yaacob 

2015b) is intended to exploit parallelism both on the scheduler platform and on the multicore 

systems that constitute the Grid. The HPC system, on which the GPMS scheduler currently 

executes, utilises the parallelism provided for in the GPMS method (independent groups that 

execute scheduling algorithm in parallel / simultaneously). Also, the multicore systems that 

constitute machines or nodes in the Grid are exploited by scheduling independent jobs 

directly to them – the scheduler schedules jobs directly to the cores on a machine; machines 

with two, four or eight cores are allocated two, four or eight independent jobs to execute.  

The GPMS method presented in this research is a simulation rather than actual execution and 

concentration of the research has been on the parallelisation of the scheduler. Hence, the HPC 

system executes the parallelism inherent in the GPMS at the scheduler level, and also, the 

multicores that constitute machines in the Grid are exploited in a simulation by scheduling 

independent jobs to them, thereby improving parallel executions on the Grid machines and 

improving scheduling throughput. 

2.3.3 Multicore Systems and Constraints  

Zhuravlev et al. (2012) noted  that ‘multicore systems have emerged as the dominant 

architecture choice for modern computing platforms and will most likely continue to be 

dominant well into the foreseeable future. When multicore systems emerged, they executed 

unmodified scheduling algorithms that were designed for older symmetric multiprocessor 

systems (SMP). Each core was seen as an isolated processor by the OS; as a result, the SMP 

scheduler could be used without modifications on multicore systems. However, to the OS 

scheduler, this created the illusion that each core in a multicore system was an independent 

processor. This created a lot of problems. Multicore systems consist of multiple processing 

cores on a single die and this advancement added a new dimension to the role of the 

scheduler. 

The scheduler in a multicore system carries out both time sharing and space-sharing functions 

among the threads. Time sharing ensures that threads are scheduled to execute on processors 

at time intervals while space-sharing entails the actual scheduling of cores to execute the 

thread chosen to run at the scheduled time in its entirety. 
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Multicore processors offer tremendous opportunities for parallelism and multi-threaded 

applications and take advantage of simultaneous thread execution as well as fast inter-thread 

data sharing. However, as with many systems, multicore systems offer a unique set of 

challenges. The cores in multicore processor systems are not independent but rather share 

common resources. The sharing of resources creates contention among threads and this 

creates problems in multicore systems. Most common shared resources in multicores are the 

last level cache (L2 or L3), the memory bus or interconnects, Dynamic Random Access 

Memory (DRAM) controllers and pre-fetchers.  

In the Uniform Memory Access (UMA) architecture with multiple Lower Level Caches 

(LLCs), the LLCs are usually connected via a shared bus to the DRAM controller. This 

memory bus is a point of contention for threads running simultaneously on the core (Kondo, 

Sasaki and Nakamura 2007). There is also the DRAM controller which services memory 

requests that are missed in the LLC. Current DRAM memory controllers were designed for 

single-threaded access and optimize for data throughput (Rixner et al. 2000). However, the 

interference among different threads during the scheduling process was not considered in 

multicore systems. Therefore, when several threads try to access the DRAM controller, these 

conventional policies gives unpredictable and poor performance (Mutlu and Moscibroda 

2008). 

Shared resources are managed exclusively in hardware and are thread-unaware; all requests 

from the various threads running on different cores are seen as if they were all requests from 

one single source. This means that they do not enforce any kind of fairness or partitioning 

when different threads use the resources (Zhuravlev et al. 2012).  

When multiple cores on a processor share a common resource (cache), this brings about 

contention between the cores for the shared resources (cache). Contention for the shared 

cache memory is a major performance bottleneck which also leads to severe and 

unpredictable performance impact on applications running on the cores. Some researchers 

have shown that an application can slow down by hundreds of percent if it shares resources 

with processes running on neighbouring cores relative to running alone (Zhuravlev et al. 

2012).  

Furthermore, as the number of processor cores per chip increases with new microprocessor 

generation, the problem caused by shared limited main memory bandwidth is also increased.  
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Several solutions have been proposed to deal with the negative aspects of multicores and take 

advantage of the positive aspects. Kondo, Sasaki and Nakamura (2007) used a simulator to 

evaluate the effect that the shared memory bus can have on the performance of threads in a 

multicore. They demonstrated when inter-process communication (IPC) between two 

applications competing for the shared memory bus is reduced, performance can vary 

dramatically and can cause performance degradation of as much as 60% compared to running 

solo. 

By analyzing the performance impact of mapping processes onto a non-uniform memory 

access (NUMA) multicore computer with data locality constraints, Majo and Thomas (2011) 

showed that the operating system alone cannot guarantee good performance in NUMA-

multicores if the structure of the memory system and the allocation of physical memory in the 

system are not considered. The study finds that the benefits of cache contention avoidance 

can be counteracted if optimization is considered for only data locality and vice versa. They 

stated that ‘the system software must take both data locality and cache contention into 

account to achieve good performance, and memory management cannot be decoupled from 

process scheduling’. They also showed that an architecture-aware process scheduler can 

greatly increase performance if the operating system is also aware of the memory allocation 

setup in the system.    

Muralidhara et al. (2011) employed application-aware memory channel partitioning (MCP) 

and integrated memory partitioning and scheduling (IMPS) to reducing inter-application 

interference in multicore memory systems and improved system throughput by 7.1 percent 

and 11.1 percent respectively. The MCP maps the data of applications that are likely to 

severely interfere with each other to different memory channels by partitioning onto separate 

channels: (i) the data of light (memory non-intensive) and heavy (memory-intensive) 

applications and (ii) the data of applications with low and high row-buffer locality, while the 

IMPS prioritizes very light applications in the memory scheduler (since such applications 

cause negligible interference to others), then uses MCP to reduce interference among the 

remaining applications.     

Liu et al. (2012) applied a practical software approach to effectively eliminate interference in 

multicore memory without hardware modification by modifying the OS memory 
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management subsystem to adopt a page-coloring based Bank-level Partition Mechanism 

(BPM), which allocates specific DRAM Banks to specific cores (threads). The method 

enabled memory controllers to passively schedule memory requests in a core-cluster (or 

thread-cluster) way. 

The importance of CPU scheduling and resource management in multicore systems is a major 

concern. Bak et al. (2012) noted that memory-level-interference, caused by simultaneous 

access to shared main memory by tasks, poses a serious bottleneck to performance. They 

explored real-time scheduling on jobs adhering to the Predictable Execution Model (PREM) 

and discovered the least-laxity with non-pre-emptive memory (M-LAX) scheduling policy as 

the best method. M-LAX schedules accesses to memory in a non-pre-emptive fashion 

according to least-laxity. The main focus of the study was on PREM jobs - which requires 

that tasks explicitly indicate during which phases of their execution main memory will be 

accessed, and during which phases, the application will work with cache-local data.  

Zhuravlev et al. (2012) carried out a survey focusing on a subset of proposed solutions to the 

shared resources contention in multicore systems. Among the multitude of new and exciting 

work explored, the survey concentrated on solutions that exclusively make use of OS thread-

level scheduling to achieve their goals. The solutions include: 

Orthogonal CMP-contention minimization techniques 

The orthogonal chip-multiprocessor systems (CMP) contention minimization technique 

involves mapping threads to the cores of the multicore system (Zhuravlev et al. 2012). It was 

noted that some threads compete less while others compete more aggressively for resources. 

To mitigate the resource contention with this method, the mapping that gives the best 

performance is sought. This is done by mapping threads in varying combinations based on 

their degree of competition for the shared resources.  The limitation with this method is that 

substantial changes are required on the hardware and/or the OS to enforce physical 

partitioning of resources among threads.  

DRAM controller scheduling 

DRAM memory is one of the most critical shared resources in a chip multiprocessor. The 

DRAM memory system in modern computing systems is made up of bank, row, and column. 

Banks are accessed in parallel, while rows are accessed sequentially. Controllers for DRAM 

memory systems use a variant of the first-ready-first-come-first-serve (FR-FCFS) policy 



 

26 

 

(Rixner et al. 2000). FR-FCFS prioritizes memory requests that hit in-the-row buffers 

associated with DRAM banks over other requests, including older ones.  

Two proposed solutions to the DRAM controller scheduling problem are: Fair Queuing 

Memory scheduler (Nesbit, Laundon and Smith 2007); and Parallelism-aware Batch 

Scheduling algorithm (PAR-BS) (Mutlu and Moscibroda 2008). The FQM scheduler method 

keeps a counter called virtual runtime for each thread in each bank which the scheduler 

increments whenever a memory request of the thread is serviced. FQM prioritizes the thread 

with the earliest virtual time and balances the progress of each thread in each bank.   

The PAR-BS method gives a higher priority to requests from the thread with the shortest stall 

to minimize the average stall time. The PAR-BS algorithm uses batches to coalesce the oldest 

requests from a thread in a bank request buffer into units called batches. When a batch is 

formed, PAR-BS builds a ranking of threads based on their estimated stall time. The thread 

with the shortest queue of memory requests is heuristically considered to be the thread with 

the shortest stall time and its requests are serviced preferentially by PAR-BS. 

Cache partitioning 

The most common replacement policy used in caches is Least Recently Used (LRU) (Suh, 

Rudolf and Devada 2004, and Kim, Chandra and Solihin 2004). In a single application, the 

method uses temporal locality by keeping the most recently accessed data in cache. However, 

when multiple threads share the LLC, the LRU replacement policy treats misses from all 

competing threads uniformly and allocates cache resources based on their rate of demand 

(Jaleel et al. 2008). As a result, the performance benefit, that threads with greater cache space 

enjoy, depends on the memory access pattern and thus varies greatly from thread to thread. 

Furthermore, it is not a guaranteed that the thread with the most cache space allocation is the 

one that benefits the most from this space, and by forcing other threads to have less space it 

can adversely affect the performance of other threads (Qureshi et al. 2006a, and Suh, Rudolf 

and Devada 2004). 

Qureshi and Patt (2006b) proposed the Utility Cache Partitioning (UPC) method which 

minimizes cache contention among a set of co-running applications. UPC employs a custom 

monitoring circuit to estimate an application’s number of hits and misses, then partitions the 

cache to minimize the number of cache misses for co-running applications. 
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Researchers such as Tam et al. (2009), Cho and Jin (2006), Lin et al. (2008), and Zhang, 

Dwarkadas and Shen (2009) addressed cache contention using a software-based method. The 

method uses page coloring to partition the cache among applications. A section of the cache 

is reserved for each application, and the physical memory is allocated in a way that maps the 

application’s cache lines only to the reserved portion.   

Software cache partitioning is used to isolate threads that degrade each other’s performance. 

Though this solution holds some promises, it requires nontrivial changes to the virtual 

memory system and also requires copying of physical memory if the application’s cache 

portion must be reduced or reallocated. 

Thread-level scheduling  

In the survey, thread-level schedulers were shown to be very effective at mitigating shared 

resource contention, thus improving performance and predictability. An example of a thread-

level scheduler is the contention-aware scheduler (Zhuravlev et al. 2012). Contention-aware 

schedulers determine which threads are sharing multiple resources and schedule them close 

together and which threads are sharing minimal resources and schedule them far apart.  

Different combinations of threads compete for shared resources at varying degrees, and as 

such suffer different levels of performance degradation. Using thread-level schedulers to 

address shared resource contention was found to be attractive because the solution requires 

no modification to the hardware and minimal changes to the operating system itself.  

However, to be truly effective, the schedulers require a workload that consists of both 

memory-intensive as well as compute-intensive threads in order that co-scheduling threads 

with complementary resource usage can yield better results compared to contention-unaware 

schedulers.   

Furthermore, contention-aware schedulers are not able to actually eliminate shared resource 

contention but they can avoid or reduce it. Hence, the study noted that even the best possible 

thread-to-core mapping may result in high overall contention and performance degradation. 

Despite the problems that resource contention introduces in multicore systems, Zhuravlev et 

al. (2012) conclude that multicore systems present tremendous opportunities for improving 
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performance of multi-threaded applications. While threads from different applications 

typically compete for shared resources, threads of the same application can share these 

resources to their benefit. Threads that share data can also share the same LLC to be more 

productive. Similarly, such threads can share the prefetching logic and bring data into the 

cache for each other.  

 

2.3.4 Some Impediments to the Impact of Multicore Systems 

The major idea that propels hardware advances was not just the increase in the speed of 

execution of jobs but also the optimal utilization of processors and increased throughput (Du, 

Mummoorthy and Jing 2010). The advent of multicore systems therefore created a gap in 

application design as execution of jobs in sequence in the midst of several processors does 

not optimize utilization of available processors (Catanzaro et al. 2010). Some of the 

impediments to legacy systems and applications in the multicore era according to  Kumar 

(2013) include:  

Inefficient parallelization – this is an impediment in legacy systems or applications that fail to 

support multithreading and in some cases too many threads, 

Serial bottlenecks – this is mostly common to applications that share a single data source 

among contending threads, or serialisation of data accessing processes to maintain integrity, 

Over dependence on operating system or runtime environment – this arises when too much is 

handed to the operating system or runtime environment to scale and optimize the application, 

Workload imbalance- where the job is unevenly spread to the various cores,  

I/O bottlenecks - these occur due to disk I/O blocking, 

Inefficient memory management – this is a performance inhibitor caused by the sharing of 

memory by several CPUs.  

To correct or eliminate these impediments, most scientific and engineering platforms have 

reacted appropriately by embracing and implementing mechanisms that scale utilization of 

multicores to greater benefit and increasingly issued calls for the design of applications that 

focus on parallelism in an effort to increase throughput and ensure hardware optimisation 



Group-Based Parallel Multi-scheduling Methods for Grid Computing 

29 

 

(Kumar 2013, Jin et al. 2011, Ciechanowicz and Kuchen 2010, Stone, Gohara and Shi 2010, 

and Karp 1987). 

The bottom line is that for software applications to gain from the immediate benefits of 

multicore systems, concerted effort should be made to improve legacy systems and new 

applications should be developed targeting parallelism. Grid computing will be better 

leveraged if this method targeting multicore systems finally becomes a reality. This is the 

driving force for this research as we seek to explore the concept of parallelising Grid 

scheduling algorithms in order to increase efficiency of Grid scheduling algorithms and 

increase scheduling-throughput. 

 

2.4 The Grid and Parallelism 

Parallelism is a computing paradigm that takes programming away from the traditional serial 

mode of job processing by employing several computing resources like CPUs to 

simultaneously execute a given job. According to Foster ‘a parallel computer is a set of 

processors that are able to work cooperatively to solve a computational problem. Such 

systems include parallel supercomputers that have hundreds or thousands of processors, 

networks of workstations, multiple-processor workstations, and embedded systems’.  

Most suitable tasks for parallelism are independent tasks that are decomposable and are 

massively parallelisable. Independent or decomposable tasks are tasks that are easily 

decomposable into parts and whose computation does not need much communication or 

sharing of data with other tasks during execution. Such tasks are also referred to as 

embarrassingly parallel tasks. On the other hand, tasks that are not easily decomposable and 

whose data or execution depends heavily on results from other tasks or computations are 

dependent tasks and are termed non-parallelizable tasks. 

On the Grid, tasks are diverse, varied and independent of others as they arrive from different 

users. Hence they are suitable candidates for parallelisation. Scheduling jobs in the Grid 

therefore qualifies as one of the most embarrassingly parallelizable tasks.  

Some benefits of parallel computing are presented in Table 1. 
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Table 1 Benefits of parallel computing 

No Benefit  Explanation 

1 
Save Time and 

Money  

Jobs are done faster, parallel computing can save time and 

money, though it may cost more to initially acquire parallel 

computers, but the large time gains far outweigh the initial cost. 

2 
Solve larger 

Problems  

Parallel computers can solve larger scientific and natural 

problems so large and complex that it would not be practical to 

solve them with non-parallel computers – especially problems 

requiring petaflops of or petabytes of computing resources. 

3 
Provides 

Concurrency 

It provides concurrency by doing several operations at the same 

time (Barney 2012). 

 

However, Adams et al. (2010) and Foster et al. (2008) observed that the programming model 

in Grid environments differs fundamentally from other traditional computing environments. 

The need for multiple administrative domains, the heterogeneous nature of resources, diverse 

policy requirements, quality of services, stability and performance, exception handling in 

highly dynamic environments, the need for scalability to incorporate larger number of 

resources, the need to enable programs run faster and efficiently and ensure that programs 

finish correctly with a high degree of reliability and fault tolerance all place heavy demands 

on Grid programming. 

Parallelism is implemented on the Grid using Message Passing Interface (MPI) where tasks 

use their own local memory during computations and communicate by exchanging messages 

to and from each other. Ahuja et al. (1986) showed that the Linda programming language is 

efficient in communication between heterogeneous components by offering facilities for 

interaction, specification, and dynamic composition of distributed components. They 

demonstrated that the set of coordinating primitives defined by Linda can be used to 

implement a Master-Worker parallel scheduler. Fox (2002) implemented message passing in 

parallel computing and found the code to be executable on all type of architectures, hence 

declared messaging as the natural universal architecture for the Grid.  The MPICH-G2 

(Koranis et al. 2003) is a Grid-enabled version of MPI that provides integration with the 
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Globus Toolkit and provides the same interface of MPI.  Mizuno et al. (2003) successfully 

implemented a system that maintained a pool of pre-spawned threads to handle new tasks and 

attained concurrency in Grid. Nakada et al. (2003) implemented the Ninf-G GridRPC system 

which integrates a Grid remote procedure call layer on top of the Globus Toolkit, publishes 

interfaces and function libraries on the Grid metadata service (MDS) and utilizes Grid 

Resource Allocation Manager (GRAM) to invoke remote executables.    

MapReduce is another programming model that offers support for runtime systems in the 

processing of large datasets (Dean and Ghemawat 2008). The Map function applies a specific 

operation to a set of items to produce new items while the reduce function performs 

aggregation on a set of items. Hence, MapReduce runtime partitions input data and schedules 

the execution of programs in a large cluster of machines. Another parallel programming 

implementation in Grid is the Cosmos distributed storage system and the Dryad processing 

framework developed by Microsoft. It offers DryadLinQ and Scope as declarative 

programming model on top of the storage and computing infrastructure (Isard et al. 2007). 

Dryad uses object oriented LinQ query syntax while Scope provides basic operators similar 

to those of SQL. The release of CUDA (Nickolls et al. 2008) – a parallel programming 

language has shown that programs can be developed to scale parallelism to leverage the 

increased number of cores in current computer systems. Another  attempt to parallelisation 

of tasks is the development of Ateji - a parallelism-centric extension to C and C++, Java and 

other programming languages intended to ease parallel programming constructs and to 

eradicate some of the common problems of threads in execution (Viry 2010 and Viry 2011).  

Despite such efforts, the Grid scheduling community has not given much attention to 

parallelisation of the actual scheduling process. So far, most Grid scheduling algorithms have 

concentrated more effort at scheduling the incoming tasks to run concurrently on multiple 

resources, rather than parallelising the actual scheduling process.  
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2.5 Distributed and High Throughput Computing (HTC) Systems 

A distributed network computing system is an aggregation of networked heterogeneous 

machines with a set of protocols that enables the sharing of their local resources. Distributed 

systems consist of multiple autonomous computers, each having its own private memory, 

communicating through a computer network. Information exchanges in distributed systems 

are accomplished via message passing.  The resource management system is the central 

component of distributed network computing systems (Hwang, Dongarra and Fox 2013). 

Advances in computing have led to an increase in the amount of data being generated. 

Processing these ever-increasing data in a timely manner has become very challenging; this 

has led to the emergence of High-Throughput Computing (HTC), a computing paradigm  that 

delivers improved processing deadline by employing data-level parallelism to process data 

independently on several processing elements using a similar set of operations (Chaudhry et 

al. 2005, and Lee et al. 2010).  

Based on the cost/performance ratio of computer hardware, individuals and small groups now 

control most powerful computing resources. These owners would only be interested in 

contributing their resources in a HTC environment only if they are sure that their needs and 

rights will be addressed and protected. Hence, the challenge facing the HTC environment in 

order to harness the vast resources available includes: the distributed ownership of computing 

resources, effective management and exploitation of the available computing resources and 

how to maximize the amount of resources accessible to its customers (Livny and Raman 

1999). 

HTC attempts to maximize the number of jobs completed on a daily or longer basis 

(Tsaregorodtsev, Garonne and Stokes-Ree 2004). The performance goal of HTC technology 

measures high throughput or the number of tasks completed per unit time. To deliver on this 

performance goal, HTC systems require parallelism and multicore or many-core processors 

that can handle large numbers of computing threads per core (Hwang, Dongarra and Fox 2013).    
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2.5.1 Examples of Distributed Systems  

Distributed systems are systems capable of running tasks in parallel on multiple connected 

resurces and managing their execution. This section discusses parallel and distributed 

computing platforms. Some examples of distributed computing systems are: 

 

Challenger: A multi-agent system for distributed resources allocation 

The challenger (Chavez, Moukas and Maes1997) is a multi-agent system that performs 

distributed resource (CPU) allocation based on the market model. The system is designed to 

be robust, adaptive, fault tolerant and to minimize the mean flow time of users jobs.  

Challenger is composed of local agents with no central control; each agent runs locally on a 

machine in the network and each agent is capable of assigning tasks originating from the 

local machine on which it runs and also assigning the local processor. 

Challenger agents exhibit the market bidding metaphor; when a job is originated, the local 

agent advertises the job to all machines requesting for bids in the network (including itself). 

Information contained in the broadcast includes job id, a priority value and optional 

information that can be used to estimate how long it will take to complete the job.  If an agent 

is idle when a broadcast is made, it responds by making a bid, which includes the estimated 

time it will take to complete the job (calculated from the optional information contained in 

the originating broadcast). If the agent was busy when the broadcast came, it stores the 

request in a queue in an order of priority. When the agent later becomes free, it retrieves the 

highest priority request and submits a bid for it. In selecting a match, the originating agent 

evaluates all the bids and assigns the task to the best bidder (i.e. the agent that returned the 

lowest estimated completion time). A cancel message is then sent to all agents about the 

assigned job. On completion of the job, the result is sent to the originating agent. 

 

NetSolve: A network-enabled computational kernel 

Netsolve (Casanova and Dongarra 1997) is a network-enabled client–agent–server based 

application designed to solve scientific problems in a distributed environment. The Netsolve 

system is an integration of hardware, network resources and computational software packages 
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in a desktop application. A Netsolve server uses scientific package to provide computational 

software. Netsolve clients, agents, and servers use TCP/IP sockets for communicaion. 

Netsolve agents maintain information about resources available in the network. Hence, 

Netsolve agents have the ability to search for resources in a network, choose the best one 

available, execute the client request, and then return the answer to the user. 

The Netsolve system can best be likened to a computational Grid with a hierarchical 

organization. An agent may request assistance from other agents in identifying the best 

resources and scheduling. 

 

Condor: Hunter of idle workstations 

Condor (Litzkow, Livny and Mutka 1988) is a distributed high-throughput computing 

platform for the management of large, distributed and heterogeneous machines and networks. 

It is designed to exploit idle workstations and it can also be configured to share resources. 

The Condor distributed platform follows a layered architecture and offers support for both 

sequential and parallel applications. 

 

Darwin: Resource management for network services 

Darwin (Chandra et al. 1998) is a distributed customizable scheduler for creating value added 

network services. It is designed for the networked environment but can also be adapted for 

scheduling in non-network nodes. Darwin provides a virtual network to distributed 

applications.  

Darwin is made up of Xena, a resource broker that carries out allocation of resources on a 

global scale. The system uses a hierarchical fair service curve scheduling (H-FSC) algorithm 

for allocating higher level resources. The H-FSC algorithm is designed to enhance the 

efficiency of virtual networks for distributed applications. 

 

Ninf: A network enabled server 

Ninf (Nakada, Sato and Sekiguchi 1999) is a distributed client–server based network 

infrastructure for global computing. The system is capable of accessing multiple remote 
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computers and database servers. The key components of Ninf system include Ninf client 

interfaces, Ninf Meta-server, and the Ninf remote libraries. The Ninf remote libraries are used 

to design a global computing application without bothering about the complexities of the 

underlying system. Ninf applications use Ninf libraries to make requests from the metaserver 

which contains a directory of Ninf servers. The metaserver respond to remote library calls by 

allocating resources to appropriate servers by querying the information stored on the servers.  

 

2K: A distributed operating system 

2K (Kon et al. 2000a) is an integrated network-centric operating system architecture that aims 

at mitigating the problems of resource management in heterogeneous networks and allows 

dynamic adaptability and configuration of component-based distributed applications. 2K is a 

distributed operating system that provides services across an array of platforms ranging from 

personal digital assistants (PDAs) to large scale computers. It permits the dynamic 

instantiation of customized user environments at different locations in the distributed system 

with mechanisms for proper management of dependencies. 2K is composed of a dynamic 

TAO (The ACE ORB) (Kon et al. 2000b) which is a reflective CORBA object request broker 

and an extension of the TAO ORB (object request broker) (Schmidt, and Cleeland 1999). The 

dynamic TAO ORB creates dynamic environments for applications and moves them across 

the 2K Grid machines using mobile reconfiguration agents.  

 

Bond: Java distributed agents scheduler 

Bond is a distributed Java based object-oriented scheduler for network computing (Boloni 

and Marinescu 2000). Bond is designed with uniform agent structure and extension 

mechanism. Bond is agents based (Jun et al. 1999) and uses knowledge querying and 

manipulation language (KQML) for communication. Bond agents are created as finite state 

machines with different behaviour in different states. Agents can be checkpointed and 

migrated by Bond. Agents can discover interface information via an interface discovery 

service that is accessed via a KQML message. Bond uses two-level scheduler based on a 

stock market or computational economy approach. 
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European DataGrid: Global physics data storage and analysis 

The European Data Grid Project (Hoschek et al. 2000) is developed to enhance middleware 

services for distributed analysis of physics data. The system takes advantage of the Globus 

toolkit as the core middleware. It distributes Petabytes of data in a hierarchical fashion to 

several sites located worldwide. The system uses global namespaces and special workload 

distribution facilities to create and access distributed and replicated data. The system 

integrates data analysis from several hundred scientists in order to have maximum 

throughput. Information about access and data distribution optimization is enhanced by 

monitoring users’ applications as well as collecting access patterns. Resources are 

periodically batched and sent to other parts of the Grid.  Discovery of resources in the Data 

Grid is distributed and is done by querying. The scheduler is organized in a hierarchical 

fashion with an extensible scheduling policy. 

 

Javelin: Java parallel computing 

Javelin (Neary et al. 2000) is a system written in Java for Internet-wide parallel computing. 

The Javelin system uses a distributed approach in scheduling application. The system works 

like a computational Grid for high-throughput computing. 

Javelin is made up of clients that seek resources, hosts that offer resources and brokers that 

coordinate the allocations between the clients and hosts. Javelin supports a model that 

decomposes parallel computations into a set of sub-computations. Javelin integrates 

distributed deterministic work stealing with a distributed deterministic eager scheduler that 

supports the branch-and-bound model. The model is scalable and fault-tolerant. Another level 

of fault-tolerance is the implemention of a mechanism that replaces hosts that have failed or 

retreated.  

 

Nimrod/G: Resource broker and economy Grid 

Nimrod/G is a distributed Grid resource broker for managing and steering task farming 

applications (Buyya, Abramson and Giddy 2000). Nimrod/G is being used as a scheduling 
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component in Grid Architecture for Computational Economy (GRACE) framework which is 

based on using economic theories for a Grid resource management system. Nimrod/G has a 

hierarchical machine organization and uses a computational market model for resource 

management. It uses the services of other systems such as Globus for resource discovery and 

dissemination. The scheduling policy is fixed-application-oriented and is driven by user-

defined requirements such as deadline and budget.  

 

ProActive 

ProActive (Oasis Group 2002) is a Java library which aims to achieve seamless programming 

for concurrent, parallel, distributed and mobile platforms. ProActive is implemented on the 

active-object programming model. Each active object controls its own thread and can 

independently reorder services to incoming method calls. Incoming method calls are stored in 

a queue of pending requests (called a service queue) automatically. Active objects wait for 

the arrival of a new request when the queue is empty. 

Method invocation is used to remotely access active objects. Method calls with active objects 

are asynchronous with automatic synchronisation. Another communication mechanism is the 

group communication model. Group communication dynamically generates a group of results 

by triggering method calls on a distributed group of active objects with compatible type. 

Migration mechanism is used to move active objects from any Java Virtual Machine (JVM) 

to another. ProActive is built on top of the standard Java API, and it does not require any 

modification of the standard Java execution environment, nor does it make use of a special 

compiler, pre-processor, or modified virtual machine. 

 

2.5.2 Parallel and distributed computing models/offerings 

Most companies operating internet-scale services have designed specialized system that suit 

their need to store and process large data sets. These platforms adopt special methods for 

processing data in parallel. In these frameworks, the data is staged in compute nodes of 

clusters or large-scale data centers and the computations are shipped to the data for 

processing. This section expands the discussion on these systems and also includes 

discussions on some domain-specific languages designed on top of MapReduce. 
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MapReduce 

MapReduce is a programming model for scalable data processing on large clusters over large 

data sets (Dean and Ghemawat 2008). Designed to support Google applications, the model is 

highly scalable and can explore high degrees of parallelism at different job levels. 

MapReduce is fault tolerant and reliable and provides a framework to implement large 

parallel system for distributed analysis. A MapReduce computation process can handle 

terabytes of data on tens of thousands or more client machines. It uses a map function that 

carries out grouping and a reduce function that performs aggregation. Parallelism is achieved 

by partitioning the data and processing different partitions concurrently with multiple 

machines.  

However, there are limitations to the model. Olston et al. (2008) noted that ‘the map-reduce 

paradigm is too low-level and rigid, and leads to a great deal of custom user code that is 

hard to maintain, and reuse’. Users/programmers are forced to bind their applications to the 

map-reduce model in order to achieve parallelism. In some other applications, users have to 

provide implementations for the map and reduce functions. Such custom code is error-prone 

and hardly reusable. Moreover, complex applications that require multiple stages of map-

reduce is difficult to set up. Asking users to implement (multiple) map and reduce functions 

is like asking them to specifically set out the physical execution plans – which is a difficult 

undertaking. This often leads to performance degradation by orders of magnitude (Olston et 

al. 2008). 

 

Hadoop 

Hadoop (developed by Yahoo inc.) is a software platform that enables users to write and run 

applications over vast amount of distributed data. Hadoop (Borthakur 2007) synonymous to 

Google’s MapReduce framework presented as open source. The Hadoop platform uses the 

Hadoop Distributed File System (HDFS) which is inspired by the Google File System (GFS).  

HDFS allows data access by Hadoop to take place via a customized distributed storage 

system built on top of heterogeneous compute nodes. The platform is highly scalable; users 

can easily scale Hadoop to store and process petabytes of data. Its efficiency is in its ability to 
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process data with a high degree of parallelism across a large number of distributed machines. 

It is also reliable as it keeps multiple copies of data for redeployment in case of system failure 

(Hwang, Dongarra and Fox 2013). 

 

Dryad 

Dryad (Isard et al. 2007) is a distributed execution platform for data-parallel applications. A 

Dryad application is represented as a combination of computational vertices and 

communication channels which is combined to form a dataflow graph. Dryad executes the 

application by executing the vertices of the graph on a set of available computers and 

communicates through files, TCP pipes, and shared-memory FIFOs. The vertices are usually 

provided by the application developer as sequential programs with no thread creation or 

locking. Dryad creates parallelism by scheduling vertices (applications) to run simultaneously 

on multiple CPU cores within a computer or on multiple computers. 

Dryad is highly scalable; it can create large distributed, concurrent applications by scheduling 

the use of computers and their CPUs. It can recover from communication or computer 

failures. 

DryadLINQ 

DryadLINQ is built on top of Microsoft’s Dryad execution framework to make large-scale 

parallel distributed cluster computing available to ordinary programmers (Yu et al. 2008). 

DryadLINQ is composed of two important components: the Dryad distributed execution 

engine and .NET Language Integrated Query (LINQ). LINQ is designed for users who are 

familiar with database programming model. 

DryadLINQ is a set of language extensions and a corresponding system that automatically 

and transparently compiles imperative programs in a general-purpose language into 

distributed computations that execute efficiently on large computing clusters. The goal is to 

give the programmer the illusion of writing for a single computer and to have the DryadLINQ 

system deal with the complexities of scheduling, distribution, parallelism and fault-tolerance. 
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Some domain-specific languages designed on top of MapReduce are: 

SawZall 

SawZall (Pike et al. 2005) is designed to exploit the parallelism to automate the analysis of 

very large data sets that span multiple disks and machines distributed over hundreds or even 

thousands of computers. Designed by engineers in Google Inc, Sawzall is a distributed and 

parallel data processing system built on top of MapReduce. The Sawzall interpreter runs in 

two phases; the first phase instantiates processes on many distributed machines, with each 

instantiation processing one GFS (Google Fie System) file in parallel. The output of this first 

is used in the second phase – the aggregation phase. The aggregators phase reduces the 

results to the final output.  

The input is initially divided into pieces to be processed separately; these separate pieces may 

be located on various storage locations. A Sawzall interpreter is then instantiated for each 

piece of data on the various machines where the data is store on a nearby set. 

In each run, more machines will run Sawzall and a smaller fraction will run the aggregator. 

Due to the aggregator function, the amount of data flowing through the system in each stage 

is less than at the stage before. 

Though the language is interpreted, comparative analysis from experiment have shown that 

Sawzall is significantly faster than most other languages like Python, Ruby, or Perl and 

slower than interpreted Java, compiled Java, and compiled C++. 

Perfect scaling in the system could see performance almost proportional to the number of 

machines used. That is every machine would contribute one machine’s worth of throughput.  

 

Pig Latin  

Pig Latin (Olston 2008) is a language designed to bridge the gap between the declarative 

style of SQL, and the low-level, procedural style of map-reduce. Designed by engineers at 

Yahoo Inc., Pig Latin is a dataflow language that uses a nested data model. A Pig Latin 

program is compiled by the Pig system into a sequence of MapReduce operators that are 

executed using Hadoop. The system dramatically reduces the time required for the 

development and execution of data analysis tasks compared to using Hadoop directly. 
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SCOPE (Structured Computations Optimized for Parallel Execution) 

SCOPE is designed for easy and efficient processing of massive amounts of data stored in 

distributed sequential files and provides efficient query processing functionality (Chaiken et 

al. 2008). Developed at Microsoft, SCOPE exploits the familiarity of users with relational 

data and SQL. Scope is designed to run on the Cosmos distributed computing platform for 

storing and analyzing massive data sets. 

SCOPE hides the complexity of the underlying platform and implementation details; thus 

allowing users to deal only with the task required to solve the problem. The SCOPE compiler 

and optimizer generates an efficient execution plan and the runtime executes the plan with 

minimal overhead. 

 

2.6 Parallel Scheduling Algorithms 

Parallel computers are made up of collections of processors interconnected in a way to allow 

a free and parallel coordination of their activities and exchange of data. The processors are 

located within short distances and are used to solve similar problems (Jada 1992). This 

contrasts with distributed systems where several processors are distributed over large 

geographic areas with the goal of exploiting the machines for the purpose of parallel and 

distributed processing. Parallel scheduling algorithms are algorithms designed to take 

advantage of parallel computer systems and have been a well researched area.  

This section discusses parallel scheduling algothims, which have attracted interest since the 

early eighties. In the first section, algorithms based on trees, graphs and hypercubes are 

discussed.  In the second section algorithms inspired by nature are discussed.  Some of these 

have been applied to the Grid scheduling problem. 

 

2.6.1 Tree, Graph and Hypercube Parallel Scheduling Algorithms 

Dekel and Sahni (1981 and 1983) examined the use of binary trees in the design of efficient 

parallel algorithms. Targeting the shared memory model of parallel computers and using the 
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binary tree method, they obtained the complexities and effective processor utilization (EPU) 

for several parallel scheduling problems. For instance, the researchers used the binary tree 

method to compute the minimum finish time and minimum mean finish time of jobs. They 

arrived at a parallel algorithm for minimizing the lateness of jobs and also for minimizing the 

number of tardy jobs. In the same study, the binary tree method was used to deal with the 

case of job sequencing with deadlines (this has to do with minimizing the sum of the weights 

of tardy jobs) and also for minimizing the total cost of the schedule. The binary tree method 

was also extended in the study to handle the wire routing prolem (Channel Assignment). For 

all the scenarios they considered in their proofs, they also proved that an effective processor 

utilization (EPU) can be attained.   

An application of trees in parallel scheduling is Tree-Puzzle (Schmidt et al. 2002). The 

system is a software package for quartet-based maximum-likelihood phylogenetic analysis. 

The system provides methods for reconstruction, comparison, and testing of trees and models 

on DNAs as well as protein sequences. As more and more data becomes available in public 

databases, the runtime of sequential analysis software poses a serious bottleneck. To reduce 

the wait time of large datasets in the system, the complex aspect of the software that deals 

with tree reconstruction has been parallelised using message passing to run on clusters of 

work stations and parallel machines. 

 

Cosnard, Jeannot and Yang (1999), Kwok and Ahmad (1999), Baev, Meleis and 

Eichenberger (2000), Wu, Shu and Chen (2000), Ranaweera and Agrawal (2001) and Qin and 

Jiang (2005) modelled the problem of scheduling parallel jobs with a Directed Acrylic Graph 

(DAG). The DAG models parallel programs with a set of processes (nodes) with 

dependencies among the nodes. In a DAG, each node represents a task and the directed edges 

or arcs represent dependencies between the tasks. The nodes in the DAG represent the tasks 

that are to be executed on the available processors.   

Ahmad and Kwok (1995) proposed a low-complexity static scheduling and allocation 

algorithm for multiprocessor architecture. The method considers communication delays, link 

contention, message routing and network topology. The method works by first serializing and 

injecting all the tasks to one processor. Parallel tasks are then ‘bubbled up’ to other 

processors and are allotted time slots. The edges among the tasks which represent 

communication links are also scheduled as resources. The method can self-adjust on regular 
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as well as arbitrary network topologies.   The approach was found to be self parallelized, 

reduces complexity and yielded high speedup. Cosnard, Jeannot and Yang (1999) developed 

a scheduling algorithm for parameterized DAG; the method derives symbolic linear clusters 

and then assigns tasks to machines.  

Baev, Meleis and Eichenberger (2000) considered two general precedence-constraint 

scheduling problems in parallel processing. These were minimizing the maximum completion 

time (makespan) and minimizing the total weighted completion time (WCT). By replacing 

precedence constraints with release and due dates, they obtained a tight lower bound on 

makespan and achieved optimal value of up to 90.3% of the time over a synthetic benchmark. 

They demonstrated that combinatorial algorithm can be a valuable alternative to linear 

programming in the scheduling of parallel jobs.  Qin and Jiang (2005) proposed a dynamic 

scheduling strategy that provides high reliability for non-pre-emptive, aperiodic real-time 

jobs.  They developed a framework that dynamically schedules real-time parallel jobs 

dynamically as they arrive at heterogeneous clusters. The approach was shown to make real-

time jobs more predictable, reliable and realistic.  

Some researches in parallel scheduling distinguished between M-tasks and S-tasks and 

concentrated on the parallel scheduling of M-tasks. M-task is a task that can be run on a 

multiple processor computer while S-task is a task that can run only on a single processor 

computer. Prasanna, Agarwal and Musicus (1994) scheduled M-tasks that are organized in a 

tree. Ramaswamy, Sapatnekar and Banerjee (1997) used a convex programming model to 

find the number of processors each M-task will be executed on. The M-tasks are then 

scheduled to processors using list scheduling algorithm. Before making the final schedule, a 

balancing act is made between the overall critical path and processor utilization.    

 

Rauber and Runger (1998) used series-parallel (SP) topology to deal with restricted case of 

graphs. The SP graphs are composed of a set of independent M-tasks that are scheduled by 

partitioning the processors to disjoint sets and assigning the M-tasks to these processors. 

Related to this is the work of Subhlok and Vondran (2000), their method focused on 

scheduling pipelined M-tasks. Also, Radulescu et al. (2001) employed the Critical Path 

Reduction (CPR) method for scheduling data-parallel task graphs and showed that the 

method achieves higher speedup compared to other well known existing scheduling 

algorithms. The CPR method solves the M-task problem in one step as opposed to the two 
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steps method proposed by Ramaswamy, Sapatnekar and Banerjee (1997).   Shu and Wu 

(1996) proposed the Runtime Incremental Parallel Scheduling (RIPS) method, the method 

alternates system scheduling activity with the underlying computation during runtime while 

tasks are incrementally generated and scheduled in parallel. The method targets the Single 

Program Multiple Data Model (SPMD).  The method exploited advanced parallel scheduling 

techniques to produce low-overhead and high quality load balancing and also adapted 

efficiently to irregular applications.   

 

Another model for representing the parallel scheduling problem is the hypercube. Ranka, 

Won and Sahni (1989) developed several examples and described features of a distributed 

memory Multiple Instruction Multiple Data (MIMD) hypercube multicomputer that can be 

exploited to obtain efficient parallel program schedules. Using the hypercube model, 

Cybenko (1989) presented a general approach for studying the convergence rate of diffusion 

schemes for load balancing. The method analyzes the hypercube network by explicitly 

computing the eigenstructure of its node adjacent matrix. Using a realistic model of 

interprocessor communication, the study showed that the deterministic dimension exchange 

scheme had a better convergence property for the hypercubes.   

 

The use of parallelism to speedup the execution of Branch and Bound (BB) algorithms has 

also prompted the interest of researchers. This has led to the study of parallel BB algorithms 

by researchers like Kindervater and Lenstra (1985), Roucairol (1989), Pardalos and Li 

(1990), Trienekens and de Bruin (1992) and Eckstein (1994).  

 

2.6.2 Nature Inspired Algorithms 

Nature inspired algorithms have been applied to scheduling.  This section discusses examples 

of these algorithms. First a variety of previous research is described and then the inherent 

parallelism in nature inspired algorithms is discussed. Some similar algorithms have been 

applied directly to the Grid scheduling problem.  These are discussed in section 2.7.5 (Nature 

Inspired Algorithms for Grid Scheduling). 
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2.6.2.1 Algorithms inspired by nature for scheduling  

Nature Inspired Algorithms have become a very active research area because familiar 

problems are becoming more complex due to size and other dynamics such as changing 

problem specifications, operating conditions, increasing distribution, decentralisation, 

robustness, adaptability and improved performance. These have generated new problems that 

require new solutions because existing methods are not effective. Nature seems to have 

solved most of its own problems; that is why inspiration is drawn from nature these days and 

in the foreseeable future.  

For instance Liu, Abraham and Hassanien (2010) noted that the dramatic increase in the size 

of the search space and the need for real-time solutions motivated research ideas into solving 

scheduling problems using nature-inspired heuristics, while Mirjalili, Mirjalili and Lewis 

(2014) noted that meta-heuristics have become remarkably common because they possess 

attractive features such as: simplicity, flexibility, derivation-free mechanism, and local 

optima avoidance. 

Some nature inspired heuristics include Genetic Algorithm (GA), Simulated Annealing (SA), 

Tabu-Search (TS), Ant Colony Optimisation (ACO), Swarm Optimisation,  Cuttlefish 

algorithm,  the Artificial Bee Colony Algorithm, the Firefly Algorithm, the Social Spider 

Algorithm, the Bat Algorithm, the Strawberry Algorithm, the Plant Propagation Algorithm, 

the Seed Based Plant Propagation Algorithm, the Grey Wolf Algorithm and many others. In 

the following paragraphs the Ant Colony Optimisation (ACO) and Grey Wolf Optimisation 

(GWO) algorithms are discussed.   

Dorigo, Di Caro and Gambardella (1999) proposed the Ant Colony Optimization (ACO) 

meta-heuristic. The algorithm is based on self-reinforcing chemical trails laid by ants while 

searching for a route (Ridge, Kudenko and Kazakov 2006). In the ACO algorithms, a number 

of artificial ants cooperatively search for good-quality solutions. Each ant builds a solution by 

moving through a (finite) sequence of neighbour states (local search) and by publicly 

available (global) pheromone trails and a priori problem-specific local information. A 

solution is expressed as a minimum cost (shortest path). High-quality solutions are obtained 

by the general cooperation among all the agents of the colony.  

The ant algorithm has been successfully applied by Colorni et al. (1994) to the job-shop 

scheduling problem (JSP). The job-shop scheduling problem assigns machines so that the 
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maximum of the completion times of all operations is minimized and no two jobs are 

processed at the same time on the same machine. When applied to problems of dimensions up 

to 15 machines and 15 jobs, the solutions were always within 10% of the optimal value 

(Colorni et al. 1994 and Dorigo, Maniezzo and Colorni 1996).  

 

Inspired by the activities and types of grey wolves, Mirjalili, Mirjalili and Lewis (2014) 

proposed the Grey Wolf Optimizer (GWO) meta-heuristic. The GWO algorithm mimics the 

leadership hierarchy and hunting techniques of grey wolves in nature. Four types of grey 

wolves such as alpha, beta, delta, and omega are employed for simulating the leadership 

hierarchy. In addition, the three main steps of grey wolf hunting such as: searching for prey, 

encircling prey, and attacking prey, are implemented. The results show that the GWO 

algorithm is able to provide very competitive results compared to other well-known meta-

heuristics. 

 

2.6.2.2 Parallelism inherent in nature inspired heuristics  

Some of the common characteristics of nature's heuristics are the close resemblance to a 

phenomenon existing in nature, nondeterministic nature, presence of implicitly parallel 

structure, and adaptability (Abraham, Buyya and Nath 2000). Ridge, Kudenko and Kazakov 

(2005) noted that natural systems on which nature inspired algorithms are based, possess 

many desirable properties that makes them good candidates for parallelism. These properties 

include, large numbers of relatively simple participants (ants, wolves, bees, birds, fish), 

completely decentralised, operate in parallel and asynchronously, use of relatively simple 

signals and their desired functionality emerges from the interactions of their participants.  

Generally, parallelism is inherent in systems with distinct and decomposable operations, tasks 

with high degree of independent or data with low relationships. These features are very 

prominent with nature-inspired heuristics. For instance, the nature of search for solution in 

nature-inspired heuristics provides a great opportunity for parallelism. Search for solution in 

meta-heuristic algorithms are based on global and local searches. Liu, Abraham and 

Hassanien (2010) noted that the focus is shifting to nature-inspired meta-heuristics because of 

the sound exploration ability of both global and local optimal solutions.  Referred to as 

exploration and exploitation respectively, the exploration phase refers to the process of 

investigating the promising area(s) of the search space as broadly as possible (globally) while 
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the exploitation phases involves the (local) search around the promising regions obtained in 

the exploration phase (Mirjalili, Mirjalili and Lewis 2014).  

Both the local and global search methods are decomposable and present opportunities for 

parallelism. Secondly, the global solution relies on the local search solutions which are 

performed by individual ants in the colony or bird (or fish) in the swarm. Since each bird, 

fish, or ant (as the case maybe) can act independently or concurrently, this again provides 

another opportunity for parallelisation.  

For example the very nature of ACO algorithms posseses features of parallelism. In 

particular, many parallel models used in other population-based algorithms can be easily 

adapted to the ACO structure (e.g. migration and diffusion models adopted in the field of 

parallel genetic algorithms) (Campanini et al. 1994, and Dorigo and Maniezzo 1993). Early 

experiments with parallel versions of ant systems for the travelling salesman problem (TSP) 

approached the problem by attributing one processing unit to each ant. The limitations with 

this method is the communication overhead due to ants spending most of their time 

communicating to other ants the modifications they made to pheromone trails. Bolondi and 

Bondanza (1993) obtained better results on a coarse grained parallel network of 16 

transputers by dividing the colony into sub-colonies based on the number of available 

processors. The sub-colony acts as a complete colony and therefore implements a standard 

Ant System (AS) algorithm. After the sub-colonies has completed the iteration of the 

algorithm, a concurrent update of the pheromone trails is carried out via a hierarchical 

process that collects the information about the tours of all the ants in all the sub-colonies and 

then broadcasts this information to all the processors. The method recorded a speed-up that 

was nearly linear when increasing the number of processors, and this behaviour did not 

change significantly for increasing problem dimensions.  

 

Bullnheimer, Kotsis, and Strauss (1997) proposed two coarse-grained parallel versions of AS: 

the Synchronous Parallel Implementation (SPI) and Partially Asynchronous Parallel 

Implementation (PAPI). The SPI is related in implementation to the one implemented by 

Bolondi and Bondanza (1993) while the PAPI exchanges pheromone information among 

subcolonies for every fixed number of iterations done by each sub-colony. The findings show 

a better performance of the PAPI approach with respect to running time and speed-up which 
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was due to the reduced communication as a result of less frequent exchange of pheromone 

trail information. 

Stutzle (1998) presents computational results for the execution of parallel independent runs 

on up to 10 processors of his MaxMin Ant System (MMAS) algorithm (Stutzle and Hoos 

1997a, Stutzle and Hoos 1997b). The results showed that the performance of MMAS grows 

with the number of processors. This is due to the parallelism inherent with the ACO 

algorithms.   

Kwok and Ahmad (1999) proposed a Parallel Genetic Scheduling (PGS) algorithm that relies 

on two powerful genetic operators: the order crossover and mutation. PGS is a parallel 

algorithm which encodes the scheduling list as chromosomes and uses that to generate high 

quality solution. The PGS outperformed two heuristics best known for performance and time 

complexity. The PGS also attained optimal solution for more than half of the test cases. This 

demonstrates the parallelism inherent in nature’s heuristics.   

 

2.7 Grid Scheduling Algorithms 

This section introduces the need for Grid scheduling algorithms as well as presenting and 

discussing some existing Grid scheduling algorithms. 

The Grid computing environment requires that jobs are submitted by users and executed at 

remote Grid sites. Scheduling on the Grid differs from traditional scheduling on computer 

systems and clusters (Tchernyk et al. 2006). Scheduling on computer systems and clusters is 

aimed at achieving optimal utilisation of resources and meeting the conflicting need of 

processes on limited resources. On the Grid there are several machines available and several 

Grid sites. The processes or tasks are not in contention for limited resources. Hence, the 

scheduling is aimed to meet the diverse QoS requirement of jobs from different users. 

Discussing the differences in application scheduling between clusters (and by extension 

traditional computing systems) and the Grid, Buyya and Murshed (2002) noted that ‘the 

scheduler in clusters aims at improving overall performance and system utility while 

schedulers in Grid systems aims at improving performance of applications inorder to meet 

end user requirements’. This requires reliability of the hardware and software, efficiency in 
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time consumption and effectiveness in the utilization of resources as well as increased 

throughput.  

Finding the optimal schedule is an NP-complete problem and so heuristics are typically used.  

Alternatively, non-deterministic algorithms such as genetic algorithms can be used.  However 

if the scheduling algorithm becomes too complex, the benefits of obtaining an optimal 

solution is outweighed by the time it takes to schedule. 

The importance of understanding the Grid and the concept of scheduling cannot be over 

emphasized. Feitelson, Rudolph and Schwiegelshohn (2004) highlighted the importance of a 

Grid scheduler and warned that the whole Grid system can fail should the scheduler fail. 

More recently Prajapati and Shah (2014) presented work to give a concise understanding of 

the concept. The work classified Grid scheduling algorithms and discussed methodologies 

used in evaluating Grid scheduling algorithms. For Grid computing to meet the requirement 

for large-scale international and global resource sharing and grow in the right direction, an 

effective and efficient scheduling algorithm will be required to facilitate throughput and 

enhance scalability (Sajedi and Rabiee 2014, Tang et al. 2012, Etminani and Naghibzadeh  

2007, and Zhang and Cheng 2006). The scalability requirement also demands that Grid 

scheduling algorithms are dynamic and reactive to the trend in hardware computing 

technology by exploiting the benefits the technology brings (Klusacek 2008). 

Inventions and advances necessitate changes, hence scheduling has transformed in several 

ways owing to the evolution of the computers to effectively control the conflicting demands 

from various processes for the limited CPU, memory and I/O resources. The Grid is a 

specific environment and requires a specific scheduling approach. The scheduling of Grid 

jobs has generated much interest and has continued to occupy the centre stage in recent 

research (Yu and Yu 2009). 

In the following sections, Grid scheduling algorithms are discussed.  Firstly the classical 

algorithms are discussed, and then fusion and enhancement of such algorithms are discussed.  

Next QoS focussed algorithms are considered, followed by adaptive Grid scheduling 

algorithms and algorithms based on nature.  A selected, representative list of Grid scheduling 

algorithms is provided in Appendix C. 
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2.7.1 Classical Grid Scheduling Algorithms 

Scheduling in the Grid can be carried out in immediate mode or batch mode. Immediate 

mode is when a job is assigned to a machine as it arrives and batch mode is when a number of 

jobs are batched and scheduled together (Maheswaran et al. 1999). Batch mode algorithms 

include the MinMin and MaxMin algorithms introduced by Ibarra and Kim (1977). The 

MinMin algorithm computes the completion time for all jobs on all machines then iteratively 

assigns the job with the minimum completion time to the processor that can complete the job 

the earliest. 

The MaxMin algorithm applies a similar principle to MinMin by computing the completion 

time for all the jobs on all the processors but the jobs with the maximum completion time is 

assigned to the processor that can complete the job earliest. Another batch mode algorithm is 

the Sufferage algorithm introduced by Maheswaran et al. (1999). The Sufferage heuristic is 

based on the idea that better mappings can be generated by assigning a machine to a task that 

would ‘suffer’ most in terms of expected completion time if that particular machine is not 

assigned to it. Algorithms for immediate mode include: the traditional First Come First Serve 

(FCFS); Easy-Backfill, which optimises FCFS by allowing jobs to jump the queue where 

they can fit a gap which otherwise would be left empty due to requirements of the next job in 

line. Opportunistic Load Balancing (OLB), where a task is assigned to the machine that 

becomes ready next, without considering the execution time of the task onto that machine; 

minimum execution time (MET) where the job with minimum execution time is selected 

next; minimum completion time (MCT) where the job with minimum completion time is 

selected next; and k-percent best (KPB). The k-percent best (KPB) heuristic considers only a 

subset of machines while mapping a task. The subset is formed by picking the k-percent best 

machines based on the execution times for the task. The task is assigned to a machine that 

provides the earliest completion time in the subset (Maheswaran 1999).  

Maheswaran et al. (1999) compared new and previously proposed dynamic matching and 

scheduling heuristics for mapping independent tasks onto heterogeneous computing systems 

under a variety of simulated computational environments. Five immediate mode heuristics 

and three batch mode heuristics were studied. For immediate mode they investigated 

opportunistic load balancing (OLB), minimum execution time (MET), minimum completion 
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time (MCT) and k percent best (KPB). For batch mode they considered MinMin, MaxMin 

and Sufferage.  Sufferage was a new algorithm proposed by the researchers. The authors 

showed that the choice of dynamic scheduling heuristic in a heterogeneous environment 

depends on parameters such as heterogeneity characteristics of task and machine as well as 

the arrival rate of tasks.  

 

2.7.2 Fusion and Enhancement of the Classical Algorithm 

Freund et al. developed SmartNet (1996, 1998) which is a resource scheduling system for 

distributed computing environments.  The work focused on the benefits that can be achieved 

when the scheduling system considers both computer availability and the performance of 

each task on the computer.  The system requires jobs to be broken down into tasks and also 

requires estimates of execution time of tasks.  It collects and uses data on jobs, task, machines 

and networks in order to tune the scheduling outcomes. The system uses various scheduling 

algorithms to attempt to assign tasks to the computer that will run that task best.  The work is 

interesting as it was one of the first to consider detail of computer, task, job and network 

characteristics in scheduling.  SmartNet implemented the MinMin and MaxMin algorithm 

introduced by Ibarra and Kim (1977).  The SmartNet approach showed improvement over 

simple load balancing. 

Other researchers have used various combinations or adjustments to these methods to 

improve the schedule. Lawson and Smirni (2002) employed greedy scheduling algorithms 

and conservative backfilling to schedule parallel jobs in a heterogeneous multi-site 

environment. Greedy scheduling algorithms are algorithms that consider the immediate or 

current best solution without recourse to the long term implications.  Feitelson, Rudolp and 

Scwiegelshohn (2005) presented a status report extending surveys of scheduling parallel jobs 

from supercomputers to clusters and Grid. Zhang, Albert and Mingzeng (2006) employed 

greedy-heuristics adaptive resource selection strategies and the conservative and easy back-

filling algorithm to schedule parallel tasks. 

Venugopal and Buyya (2008) proposed a heuristic approach based on the Set Covering 

Problem (SCP) to schedule distributed data on the Grid. The approach mapped jobs to storage 

resources on the Grid and then mapped storage resources to datasets required by jobs and 

scheduled a set of jobs to a set of compute resources using the MinMin heuristics or 
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Sufferage algorithm. The experiment showed that the method when combined with 

Exhaustive search heuristic performed better than the other four heuristics but noted that 

Exhaustive search may search through large spaces for jobs requiring large datasets. They 

also noted that there was no gain in performance when combining the method with MinMin 

and the Sufferage algorithm (Venugopal and Buyya 2008). 

 

2.7.3 QoS-Focused Algorithms 

More latterly, research has focused heavily on Quality of Service (QoS) paying attention to 

user requirements.  

Buyya, Abramson, and Giddy (2000) employed a resource reservation mechanism to 

schedule jobs on the Grid. Their method supported resource reservation request scheduling 

models implemented on First Come First Serve (FCFS) and Easy-backfilling.Buyya, 

Abramson, and Giddy (2000) took cognizance of the heterogeneous nature of the Grid, user 

defined QoS, and resource owner services availability to design the Nimrod-G resource 

broker and scheduler. Using economic models of demand and supply to represent resource 

management and allocation issues, they were able to regulate supply and demand as 

scheduling activities on the Grid. The model implemented Grid provider services and 

consumer demand based on some common economic principle of supply and demand. The 

model considered three key players in the Grid marketplace viz: Grid Service Providers 

(GSPs) that represent the producers; Grid Service Brokers (GRBs) that represent brokers; and 

Grid Market Directory (GMD) which is the medium through which the two players interact. 

The model was subsequently implemented on GRACE - to provide an economic incentive for 

resource owners to share their resources and resource users to trade-off between deadlines 

and budgets (time and cost). Although this model has become widely accepted in Grid, 

certain concerns were neglected. These were: the variation of users need; the human need; 

social need; changing technology; and other dynamics. Such concerns conspire to make it 

impossible for the Grid to solely rely on economic models based on principles of supply and 

demand. 

To adequately schedule jobs on the GRID, He, Xian-He and Laszewski (2003) suggest that 

consideration be given to two new concepts: 
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- How to calculate the computation time for the job on the non-dedicated network. 

- The quality of services required by the user.  

With those goals as a guide and based on the general adaptive scheduling heuristics, He, 

Xian-He and Laszewski (2003) designed the QoS guided task scheduling algorithm for Grid 

computing and recorded a significant performance gain in different applications. Armed with 

that success, the researchers extended the algorithm and designed the QoS guided MinMin 

scheduling algorithm for the Grid. The algorithm provides a match between the QoS 

requirements of a user’s job to the QoS provisions available from Grid service providers and 

provides an estimate of the completion time of the job. The algorithm favours smaller jobs by 

allocating smaller jobs to faster Grid resources and allows bigger jobs to starve.  This 

heuristic does not fully take the QoS requirements of user jobs into consideration as QoS in 

this heuristic was treated more as the bandwidth requirements of the job and not the speed of 

the CPU. 

Zhoujun, Zhigang and Zhenhua (2010) designed a cloud based dynamic service evaluation 

system with a method to cluster all services with similar QoS  and then a dynamic meta-task 

scheduling algorithm that provided services to users based on QoS and clusters(Zhoujun, 

Zhigang and Zhenhua 2010). The drawback with this algorithm is the assumption that all 

Grid resources provided the same QoS. Secondly, the heuristic is more concerned about 

makespan and cost reduction but overlooked the need to accommodate for the future growth.  

Due to the heterogeneous nature of the Grid there is a strong probability that at most times, 

some Grid resources may not be available. This may be as a result of break downs, network 

failures, local user policy, software failures, system malfunctions, management decisions or 

other locally based factors.  Scheduling jobs to resources whose availability is not certain 

introduces yet another dimension to Grid scheduling. To ensure reliability and user 

satisfaction, solutions to such problems must include a high degree of certainty that the Grid 

resource is available before scheduling jobs to it. Based on this concern, Agarwal and Kumar 

(2011) proposed the (AQuA) algorithm that schedule jobs to Grid resources based on: 

- A high probability of the availability of the resource at the time of scheduling. 

- A satisfaction of the QoS required by the job.  
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This heuristic modeled the bandwidth requirements of job as the QoS of a network and 

availability of requirement as QoS of compute resource. The QoS requirement is then 

implemented using the MinMin heuristics. The algorithm reduces the makespan of jobs when 

compared against the QoS guided MinMin heuristics. 

Caminero et al. (2011) proposed a network-aware multi-domain meta-scheduling strategy 

based on peer-to-peer techniques. The method coordinates the interaction of resources 

between administrative domains especially when performing meta-scheduling of jobs, job 

migration or monitoring of jobs. Using the routing indices method of peer to peer systems to 

forward queries (Crespo and Garcia-Molina 2002), the method considers forwarding of 

queries to neighbouring peers that are more likely to have the computing resources for a 

users’ job within the domain before others to avoid random sending and flooding of the 

network. It also takes into account the characteristics of the network when performing meta-

scheduling. It considers communication and queries between domains and also offers 

scalability. The method was implemented on the GNB (Grid Network Broker) and recorded 

better success rate of jobs and better latencies with less queries per job. They also recorded 

less overhead which makes the system scalable. 

Shah, Mahmood and Oxley (2011) explored the dynamic nature of incoming jobs for 

scheduling. In a related study, Shah et al. (2012) proposed the QoS based performance 

evaluation of Grid scheduling algorithms in which they carried out a comparative 

performance analysis of their job scheduling algorithm along with other algorithms based on 

QoS parameters like waiting time, turnaround time, response time, total completion time, 

bounded slowdown and stretch time. They confirmed from evaluation that their algorithm 

possesses a high degree of performance efficiency and scalability in Grid. 

Albodour, James and Yaacob (2012 and 2014) proposed the BGQOS, a QoS model for 

business-oriented and commercial applications on Grid computing systems. BGQoS allows 

Grid Resource Consumers (GRCs) to request specific QoS requirements from Grid Resource 

Providers (GRPs) for their resources to be utilised. BGQoS supports the dynamic calculation 

of QoS parameters such as resource reliability. This increases the accuracy of meeting the 

GRC’s requirements. GRPs are capable of advertising their resources, their capabilities, their 

usage policies and availability both locally and globally. This created a flexible model that 

could be carried across domains without altering the core operations and which could easily 
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be expanded in order to accommodate different types of GRC, resources and applications. 

Methods that monitor and reallocate jobs are used to ensure that QoS targets are met. 

Xiao and Dongbo (2014) proposed a Multi-Scheme Co-Scheduling Framework (MSCSF) to 

provide enhanced deadline-guarantees in heterogeneous environments.  The works integrates 

multiple co-scheduling schemes and quantitatively evaluates the deadline of each co-

scheduling scheme. The system then selects the best scheduling scheme for real-time 

applications at run time. Experimental results show that it can provide enhanced deadline-

guarantee. Chen, Li and Wang (2014) proposed a model to support the parallel strict resource 

reservation request scheduling model and algorithm. The method supported resource 

reservation request scheduling models implemented on First Come First Serve (FCFS) and 

Easy-backfilling. They presented the FCFS and Easy backfilling analysis of two important 

parallel algorithms based on job bounded slowdown factor and the success rate of Advanced 

Reservation (AR). Simulation results of the combined four methods showed that the easy 

backfilling method + first-fit algorithm can ensure the QoS of AR jobs while taking into 

account the performance of non-AR jobs. 

 

2.7.4 Adaptive Grid Scheduling Algorithms 

Some researchers have attempted to use characteristics of jobs to drive adaptive scheduling 

methods in attempt to gain better results. Classical heuristics favour one set of jobs to the 

detriment of the other set. For instance MinMin favours small jobs, while MaxMin favours 

large jobs. 

To ensure that one set of jobs do not suffer at the expense of the other and to address the 

problems of starvation of large jobs inherent in the MinMin heuristic, Etminani and 

Naghibzadeh (2007) designed a new selective scheduling algorithm to select at each decision 

point, the best algorithm between MinMin and MaxMin according to length of tasks in the 

batch. For instance if there is a prevalence of long tasks in the remaining tasks in a batch, the 

MaxMin would be chosen, if there is a prevalent of short tasks, the choice would be 

MinMin(Etminani and Naghibzadeh 2007). Parsa and Entezari-Maleki (2009) also proposed 

the implementation of RASA (Resource Aware Scheduling Algorithm), an algorithm that 

combines both MinMin and Max-Min heuristics; alternatively executing both heuristics in 

strict order.  Experimental analysis led them to conclude that the heuristic was better than 



 

56 

 

both MinMin and MaxMin but the study did not take into consideration the dynamics of the 

Grid. RASA only concentrated on the current number of jobs to be scheduled and which 

heuristics to apply at any given time. For instance if the number of jobs in the queue was odd- 

then apply MinMin heuristic, if the number of jobs was even – then apply MaxMin heuristics. 

The MinMin is used to favour smaller tasks while the MaxMin is used to favour large jobs. 

Caminero et al. (2007) noted the high variability in Grid environment and how it affects 

desirability of QoS and also pointed out the difficulty in achieving that desire. They then 

went ahead to propose the autonomic network-aware Grid scheduling architecture as a 

solution. The system was capable of making decisions based on its current network status and 

adapts itself to changes. It also incorporated a model for predicting the latencies in a network 

and in CPU which allows the architecture to exhibit the autonomic behaviour. This work was 

more focused on the architecture of the Grid in order to satisfy some QoS requirements than 

the scheduling of Grid jobs in parallel. 

Liang et al. (2013) used behavioural clustering of execution time to establish a pattern for 

users’ jobs and used that to improve accuracy of overall job execution times. The approach 

implemented a method to evaluate execution time estimation for parallel jobs based on user 

behaviours clustering for execution time estimation by exploring the job similarities and 

revealing the user submission patterns. The result showed that the approach improved the 

accuracy of job execution time estimation up to 5.6 % and the time for performing the 

computation was reduced by 3.8%. Khan, Kalim and MostafaAbd-El-Barr (2014) used a non-

FCFS policy to schedule parallel jobs by monitoring incoming jobs and their resource 

requirements to make scheduling decisions based on the backfilling algorithm. The authors 

used task partitioning and load balancing to schedule data parallel tasks. Wang et al. (2014) 

implemented the comprehensive performance tuning framework to initially schedule jobs to 

resources, and later tune certain parameters for another round of job scheduling. 

 

2.7.5 Nature Inspired Algorithms for Grid Scheduling  

Using biological theories of natural selection, survival of the fittest and how populations 

evolve and adapt, Abraham, Buyya and Nath (2000) proposed the use of the Genetic 

Algorithm (GA), Simulated Annealing (SA - originally by Osman and Potts 1989) and Tabu-



Group-Based Parallel Multi-scheduling Methods for Grid Computing 

57 

 

Search (TS - originally by Widmer and Hertz 1989) heuristics. They claimed that the GA can 

provide solutions to real world problems if properly programmed. According to the 

researchers, GA is adaptive and can be used to solve optimization problems based on the 

genetic process of biological organisms. They stated that GA searches are neither constrained 

by the continuity function nor the existence of a derivative function. Hence they declared that 

GA can easily adapt to the principle of natural selection and survival of the fittest. 

The researchers described the SA as an algorithm that exploits the analogy of the annealing 

process (that enables metals to cool and freeze into a minimum energy crystalline structure) 

and the search for a minimum in a more general system. They stated that the SA has the 

ability to avoid being trapped at local minima. 

Furthermore, the researchers stated that the TS was a meta-strategy known for guiding other 

known heuristics towards overcoming local optimality by repeatedly making moves from a 

set of solutions to other sets with the aim of efficiently achieving optimal solutions by the 

evaluation of some objective functions. They then went further to propose the hybridization 

of GA-SA as a scheduling algorithm for the Grid; arguing that it has the potential to inherit 

properties of both GA and SA to yield optimum. The study equally proposed the Hybrid GA-

TS (combination of GA and Tabu-Search), arguing that the combination of GA-TS will 

makes the result robust but the effectiveness of this is yet to be tested. A simulated 

experiment was carried out for only the GA algorithm with a finite number of resources 

(three computing resources) and thirteen jobs with an assumption that the processing speed of 

the resources, the cycles per unit time and the job length (processing requirements in cycles) 

are known. The simulation showed that all the resources were efficiently utilized and the jobs 

completed in minimum time. But only three resources and thirteen jobs is too minuscule to 

consider generalizing for the entire Grid.  

Sabin et al. (2003) explored the use of queues to model performance dynamics of resources to 

schedule independent tasks based on deadline and afterwards applied a neural model to 

schedule subtasks.  Carretero and Xhafa (2006) implemented the GA for job scheduling on 

computational Grids that optimizes the makespan and the total flowtime. The aim is to obtain 

an efficient scheduler that is capable of allocating a large number of jobs originated from 

large scale applications to Grid resources. The results recorded a fast reduction of makespan, 
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showed the robustness of the GA implementation and improvement in performance over the 

MinMin, thus making the GA a scheduler of practical interest for Grid environments. 

Liu, Abraham and Hassanien (2010) introduced a fuzzy approach based on Particle Swarm 

Optimization (PSO) for scheduling jobs on computational Grids. The particle swarm 

algorithm is inspired by social behaviour patterns of organisms that live and interact within 

large groups. In particular, it incorporates swarming behaviours observed in flocks of birds, 

schools of fish, or swarms of bees, and even human social behaviour, from which the Swarm 

Intelligence (SI) paradigm emerged. The fuzzy scheme based on discrete PSO extends the 

vectors of fuzzy matrices to represent the position and velocity of the particles for 

computational Grid job scheduling. The fuzzy approach dynamically generates an optimal 

schedule so as to complete the tasks within a minimum period of time as well as utilizing the 

resources in an efficient way. As an algorithm, its main strength is its fast convergence, 

which compares favourably with many global optimization algorithms.  

 

2.8 Parallelisation of the Grid Scheduling Task 

This section discusses the problems with current Grid schedulers and makes a case for the 

parallelisation of Grid schedulers. 

2.8.1 Problems with Current Scheduling Algorithms 

The algorithms described in section 2.7 map specific job(s) to specific Grid machine(s) based 

on some factors such as job, machine or network characteristics, (QoS) criteria and policies. 

They are based on overall performance in terms of scheduling and completing the whole task 

set or on providing improved quality of service to users. The algorithms described so far do 

not focus on the parallelisation of the Grid scheduling task but focus instead on reducing 

overall makespan. Thus, they do not concentrate on improving the efficiency of the scheduler 

in terms of how long the scheduling task takes or how much jobs are scheduled in a given 

time; hence, they do not utilize the underlying hardware for full benefits of parallelism. Even 

though the nature inspired algorithms have inherent parallelism, there has, even in this area, 

been little focus on the effect of parallelisation of the Grid scheduling task itself.  

Gupta, Tucker and Urushibara (1991), Ryoo et al. (2008), Agarwal and Kumar (2011), and 

Xiao and Dongbo (2014) have shown that many such algorithms cannot be optimal in 
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scheduling as they lack the ability to leverage Grid scheduling. Schwiegelshohn et al. (2010) 

noted that to adequately harness the power and functionalities of the Grid and leverage Grid 

scheduling in tandem with the dynamics, scalability and growth in computing, a more drastic, 

scalable and dynamic approach will be required.  

 

2.8.2 Parallelisation of the Grid Scheduling Algorithms 

For Grid scheduling to gain from the advances in hardware technology, meet its protracted 

growth and the challenges of the future. It is imperative for a paradigm shift in software 

programming model (McCool 2008). This is because sequential programs do not scale with 

multicore systems nor benefit from parallelism due to performance limitations (Gurudutt-

Kumar 2013, Hill and Marty 2008, Nickolls et al. 2008, Bader and Cong 2011, Dolbeau, 

Rihan and Bodin 2007, and Sutter 2005). 

As mentioned earlier, most work on Grid scheduling has concentrated on creating a parallel 

schedule for executing the jobs that are input to the scheduler.  Less attention has been paid 

by researchers to the actual parallelisation of the scheduling task.  However some work has 

been done in this area. This section discusses related research undertaken to improve the 

efficiency of schedulers through parallelisation.  Frequently a Graphics Processor Unit (GPU) 

configuration has been used in this related work. 

GPUs have been utilised to create massively parallel systems to improve computation in a 

variety of areas, for example in complex animation rendering, complex mathematical 

calculations and big data processing (Creel and Zubair 2012, Jung, Gnanasambandam, and 

Mukherjee 2012, Ponce et al. 2012, and Peng and Nie 2008). 

Nesmachnow, Cancela and Alba (2011 and 2012) investigated the use of massively parallel 

GPUs (Graphical Processing Units) to improve scheduling time. In 2011 they implemented 

the MinMin and Suffrage algorithm on GPU architecture (Nesmachnow and Canabe 2011). 

They recorded improvements in scheduling time when the number of tasks goes beyond 8000 

and where number of machines is more than 250.  In their experiment the number of 

machines (GPUs) was 32 times less than the number of tasks.  In 2012, the same researchers 

applied four variants of the parallelism on the MinMin algorithm and obtained large 

improvements in computation time when using parallel scheduling in comparison to serial 
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scheduling when the number of tasks increases. The proposed parallel method demonstrated a 

significant reduction on the computing times with the parallel GPU hardware (Canabe and 

Nesmachnow 2012). 

Other researchers have proposed genetic and memetic algorithms which exploit GPUs in 

solving the scheduling problem. Nesmachnow and Mauro (2011) have presented CPU and 

GPU multi-threaded parallel designs of the MinMin algorithm.  As would be expected, the 

GPU design outperforms the CPU because of the massive parallelisation. The parallel CPU 

solution outperformed the serial algorithm.  Pinel, Dorronsoro and Bouvry (2013) proposed a 

cellular genetic algorithm (CGA) to minimize the batch scheduling of independent tasks. The 

work was more intended to reduce makespan than increase scheduling throughput. The CGA 

brought more accurate results than some previous algorithms but took longer to run. 

Mirsoleimani, Karami and Khunjush (2013) propose a memetic algorithm, which uses 

combinations of non-deterministic approaches to solve the scheduling problem in a GPU 

environment. Significant improvement in speedup was recorded. 

The difference between the above related work   and this research is that most related work 

which concentrates on parallelisation of the scheduler has focussed on a GPU environment 

and/or on non-deterministic algorithms such as genetic or memetic algorithms.  The GPU 

environment offers massive parallelisation. However non-determinist algorithms have 

unpredictable run times. The scope of this research has been the more general purpose 

environment which was selected to avoid creating a facility that requires a specialised 

environment. The method also concentrated on deterministic algorithms to have better control 

on scheduler execution time. The Pinel, Dorronso and Bouvry (2013) work on CGA is related 

to this research except that their work focused on using a non-deterministic algorithm to 

reduce makespan rather than increasing scheduling throughput. Also the second variant of 

MinMin in Canabe and Nesmachnow (2012) is similar to this work except that the MCT of 

the jobs from the N domains partitions are computed separately by each GPU on all the 

machines. This research differs in the novel use of grouping of machines and jobs to achieve 

greater scheduling efficiency through parallelisation. 

Parallel multi-scheduling can improve Grid scheduling performance and should be exploited. 

The aim is therefore to exploit the use of multicores both on the scheduler and on the Grid 

sites. This is achievable through the innovative grouping algorithm developed in this 
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research. The development of the Group-based Parallel Multi-scheduler (GPMS) is an 

attempt to steer Grid scheduling algorithms towards tapping into the benefits of multicore 

systems in order to enhance performance. 

Whilst developments in Grid scheduling have produced some beneficial results, there remains 

a gap that needs to be addressed. The algorithms described in this section focused on the 

scheduling of parallel tasks and not on parallelisation of the actual scheduling task itself.  

They never explicitly exploited the underlying multicore hardware in their executions. With 

both multicores and Grid computing becoming increasingly pervasive, it would be promising 

to harness the advantages of multicore to improve scheduling on the Grid. 

The prospect for the future growth of the Grid examined by Klusácek et al. (2008) and Robert 

(2012) coupled with the achievements made with parallelism on scheduling calls for a 

paradigm shift and a dynamic approach to scheduling Grid jobs. A parallel scheduler for the 

Grid will facilitate increased throughput and scalability. The challenge is to develop a 

scheduler that is dynamic, optimizes resource utilization and above all increases scheduling-

throughput. 

 

2.9 Group Scheduling and Load Balancing 

Group scheduling is an important solution that is used in this research.  Previously some 

researchers have introduced group scheduling but have used it in a different way. A fore-

runner to group scheduling was Gang scheduling. This section discusses the notion of gang 

scheduling and then the notion of grouping of jobs. Then, it discusses the relationship of this 

research to group scheduling.  Finally, it addresses loading of machines by discussing load 

balancing in the GPMS.  

 

2.9.1 Gang Scheduling  

Gang scheduling according to Papazachos and Karatza (2009) concerns jobs or tasks 

consisting of a number of interacting subtasks which are scheduled to run simultaneously on 

distinct processors. The notion of gang scheduling was first introduced as co-scheduling to 

enable the concurrent execution of different parts of cooperating processes on a 

multiprocessor system and equally to solve the problem of blocking and thrashing that was 
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occasioned by the inability of then operating systems to coordinate cooperating processes 

(Ousterhout 1982). 

Zhou, Walsh and Brent (2000)  proposed the idea of dynamically repacking subtasks to 

schedule gangs based on time-slots or time-sharing and also based on space-sharing to create 

room for incoming processes and eliminate the problem of fragmentation. They also 

introduced the use of workload tree to ease search process for empty slots. Karatza (1999) 

extended gang scheduling into distributed systems prone to processor failure. The study 

showed improvement in performance when the mean repair time is low.  Wiseman and 

Feitelson (2003) proposed a means of slightly relaxing the strict allocation of processes to 

processors, and allowed pairs of jobs with alternate CPU requirements like I/O bound jobs 

and CPU bound jobs to be carefully mixed-and-matched and scheduled to execute on same 

processor to complement I/O cycles of one job with CPU cycle of its complementary match. 

The approach greatly improved system utilization. Zhang et al. (2000) and Papazachos and 

Karatza (2009) proposed a dynamical migration scheme to dynamically migrate some tasks 

from one node to another node or one queue to another queue during execution of job. Both 

approaches aim to create enough space in one node or queue for waiting jobs and filling up 

fragmented space in another node or queue.  

These studies of gang-scheduling showed that useful results can be attained with proper 

coordination of tasks and processors. Though gang-scheduling deals with the careful 

selection of related tasks for allocation to processors, it leads to the possibility of multi-

scheduling in Grid where several independent tasks are selected and dispatched in groups 

onto several Grid resources for processing.  

 

2.9.2 Grouping of Jobs 

Grouping of jobs to optimize scheduling in heterogeneous systems and Grid is a well 

researched topic; grouping of jobs has been employed to enhance job sharing, distribution 

among nodes and improve resource utilization. Braun et al. (1998) implemented a method to 

take advantage of heterogeneous computing systems by decomposing application tasks into 

subtasks where each subtask is computationally homogeneous. The algorithm also involves 

matching and scheduling groups of tasks to the heterogeneous machines.  
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Ernemann et al. (2002)  presented the potential benefits in sharing jobs among independent 

sites in the Grid environment and discussed a method of parallel multi-site job execution.  

Their work proved that significant improvement can be achieved in response time and that 

the use of multi-site applications can improve the results even more if the communication 

overhead can be kept to a limiting value. Grouping of small (fine-grained) jobs to form bigger 

(coarse-grained) jobs before scheduling to resources was exploited to primarily reduce the 

overhead of communication computation ratio (CCR) that always negates the advantages of 

distributed computing. This method was employed by Buyya et al. (2004) and Muthuvelu et 

al. (2005) to pack or group jobs before transmitting to Grid resources for computation. When 

jobs are grouped before scheduling, the computation time is reduced by a factor and 

performance of the scheduling process is also improved. Muthuvelu et al. (2005) presented a 

scheduling strategy that performs dynamic job grouping activity at runtime. The method 

employed granularity size to determine the total number of jobs that can be processed within 

a specified time and uses that to dynamically assemble individual fine-grained jobs of an 

application into a group of jobs and send the group of (coarse-grained) jobs to the Grid 

resources.  

Muthuvelu et al. (2005) implemented the Grouping-based job scheduling algorithm that 

groups the jobs according to MIPS of the resource. The method reduced the communication 

time and processing time of the job, but the algorithm did not take other resource 

characteristics into account. As a result, the method employed individual resources or 

processing elements rather than group resources. Also, the grouping strategy did not employ 

parallelism. Hence, resources where not utilized sufficiently.   

Keat et al. (2006) proposed a scheduling framework for bandwidth-aware job-grouping-based 

scheduling in Grid computing. In a related work, Liu and Liao (2009) also implemented 

grouping based fine-grained job scheduling in Grid computing.  The methods group the jobs 

based on MIPS and Bandwidth of the resource. The methods use a Greedy algorithm to 

cluster lightweight jobs. A job is not allowed to be grouped but immediately scheduled to a 

resource if the job is a coarse-grained job.  

SCOJO (Sodan et al. 2006) employed priority method to classify jobs into groups. Priorities 

are assigned to jobs according to the job-runtime classes which are short, medium, and long. 
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Short jobs are allocated higher priorities while long jobs get the lowest priority. An aging 

scheme (priority increase over time) method is also implemented to prevent starvation. 

He, Hsu and Leiserson (2007) employed the DEQ (Dynamic-Equipartitioning) job scheduler 

to dynamically partition jobs in order to give each job a fair share of processors. If a job 

cannot use its fair share, DEQ distributes the extra processors across the other jobs. Franke, 

Lepping and Schwiegelshohn (2007) used resource consumption as a criterion to group users’ 

jobs which were categorised into five groups. Group 1 represents all users with high resource 

consumption, whereas group 5 represent users with very low resource consumption. The 

work concentrated on only parallel jobs and uses only identical machines for processing.  

Selvi et al. (2010) proposed a rough set engine to group similar jobs and identifies the group 

to which the newly submitted job belongs. Soni et al. (2010) proposed the Constraint-Based 

Job and Resource Scheduling (CBJRS) algorithm. The method group jobs based on 

processing capability (in MIPS), bandwidth (in Mb/s), and memory-size (in Mb) of the 

available resources. The resources are arranged in hierarchical manner where Heap Sort Tree 

is used to obtain the highest computational power resource or root node, so as to make 

balanced and effective job scheduling.  

Sharma et al. (2010) employed job grouping to maximize resource utilization, scalability, 

robustness, efficiency and load balancing ability of the Grid for scheduling of jobs in Grid 

computing. This method also targetted independent tasks just as does the GPMS.  

Vishnu, Raksha and Manoj (2010) proposed the ‘Grouping-Based Job Scheduling Model in 

Grid Computing’, a model that explored the advantages of grouping light-weight or small 

jobs to coarse-grain jobs before scheduling to reduce the CCR. The method employed a 

First-Come-First-Serve method in the final schedule and does not consider parallelisation of 

the scheduling task. 

 

2.9.3 Relationship of this Research to Previous Research in Grouping 

The research described in 2.9.1 and 2.9.2 shows how it can be advantageous to group jobs. 

Gang scheduling (section 2.9.1) is different to the use of grouping in this research because it 

is concerned with grouping jobs that are inter-dependent in some way.  This research focuses 
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on grouping independent jobs. The grouping used in previous research described in section 

2.9.2 has similarities with this work. 

Two general approaches emerged from the study of grouping methods described in section 

2.9.2.  The first is grouping of jobs from fine-grained to course-grained in order to reduce 

communication costs and the second is grouping of jobs or machines according to 

characteristics so that jobs can be assigned to the most suitable machines. This research 

utilises the latter approach in that similarities of machines may be taken into account as a 

possible grouping method but the focus of this research is not on the scheduling of jobs to 

machines per se but on the parallisation of the actual scheduling activity, the parallisation of 

the scheduler. This was not address in the related work on grouping that has been described. 

The intention is that grouping of jobs will allow the jobs in each group to be treated as a 

scheduling entity accessible by discrete threads. Job grouping will therefore be explored in 

this investigation to enable jobs to be multi-scheduled. The researcher calls this method the 

Group-based Parallel Multi-Scheduling (GPMS) method. 

For jobs to be adequately scheduled in parallel such jobs must first be collected in an order 

for them to be scheduled at same time, hence grouping of a set of tasks or jobs is necessary 

before multi-scheduling. This research focuses on group scheduling and refers to the election 

or selection of a (several) independent tasks from a job group and dispatching or scheduling 

to machine groups. 

Group–based multi-scheduling (Abraham, James and Yaacob 2015a, and Abraham, James 

and Yaacob 2015b) aims at splitting Grid jobs and machines into the same number of groups. 

Machine groups are then paired with job groups, and then independent threads are utilized to 

execute scheduling algorithms within the groups and between paired groups. Using this 

method, there is a high guarantee that if jobs are equitably distributed into the groups, and the 

threads are executing independently unhindered in separate cores, and the jobs are highly 

independent, then the method can improve scheduling efficiency by large margins. Multi-

scheduling allows multiple independent scheduling instances to occur simultaneously within 

the groups. This will enable the parallelisation based on threads, allowing them to 

independently access the groups to schedule jobs based on the scheduling policy.   
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The method uses each thread to execute the scheduling algorithm independently in a group, 

automatically improving the total scheduling time of the grouping method by factors 

approaching or greater than N, if N is the number of groups used. 

 

2.9.4 Load Balancing  

Dynamic load balancing have been extensively studied in distributed systems (Dos Santos 

1996). The GPMS proposed in this research exploits load balancing.  In this section previous 

work in load balancing and its relationship to this research is considered. 

Shivaratri, Krueger and Singhal (1992) studied load-balancing algorithms in heterogeneous 

Networks. Roussopoulos and Baker (2006) studied load-balancing issues in P2P context. 

Randomised load-balancing algorithms were popularised by work-stealing algorithms 

(Blumofe and Leiserson 1999, and Berenbrink, Friedetzky, and Goldberg 2003).  

Cao et al. (2005) uses an algorithm based on an evolutionary process that uses intelligent 

agents and a multi-agent to deal with load balancing issues on the Grid. The method uses 

agents to schedule resource and to balance load across multiple host processors in a local 

Grid. An agent is capable of coupling application performance data with iterative heuristic 

algorithms to minimise makespan, host idle time and meet the deadline requirements for each 

task. The method can respond to system changes such as the addition or deletion of tasks, or 

changes in the number of hosts / processors available in a local Grid. Ungurean (2015) 

proposed an algorithm for scheduling and dynamic load balancing. The algorithm carries out 

scheduling of jobs towards nodes and the dynamic adjustment of nodes loaded into the 

system by transferring the jobs from loaded nodes towards the other nodes using the round 

robin algorithm.  Algorithms to dynamically migrate jobs from highly loaded nodes to 

weakly loaded nodes are also implemented to enhance load balancing. The process of 

dynamically migrating jobs introduces some overheads with the algorithm.   

These algorithms employ load balancing to distribute tasks to nodes and ensure that all 

processors are equally optimized. The GPMS system employs a grouping method also to 

ensure equitable distribution of jobs to Grid nodes in order to enhance scheduling throughput.  
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The GPMS proposed in this research exploits load balancing. It exploits grouping methods 

that balances jobs and machines into groups.  For instance, the ETSB (execution time sorted 

and balanced) method employed ensures that jobs are evenly distributed across groups based 

on their size. Also, the EvenlyDistributed (EvenDist) method ensures that machines are 

evenly distributed into groups.  

  

2.10 Summary 

The chapter discussed relevant literature related to this thesis. It started with a general 

exposition of the Grid. Then it discussed parallelism, focussing on technological 

developments yielding pervasive multicore systems, constraints of multicores and the need 

for their greater exploitation through parallelism. The relationship of the Grid to parallelism 

was then explored. Next previous research in distributed and high throughput computing was 

elucidated as well as earlier endeavours in the design of parallel scheduling algorithms, 

including nature-inspired algorithms and its inherent parallelism features. The chapter went 

on to focus on Grid scheduling algorithms, discussing both deterministic and nature-inspired 

methods. Research in gang scheduling, group scheduling and load balancing was finally 

explored in relation to the new method proposed in this research. 

An observation was made that insufficient attention has been paid to the parallelisation of the 

Grid scheduling task. 

The next chater discusses the methodology: the stages employed in achieving the aims and 

objectives and as discusses the motivation for applying the method. 
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CHAPTER THREE 

RESEARCH QUESTION AND METHODOLOGY 

 

3.1 Introduction 

It has been noted that multicore systems are on the increase, yet Grid scheduling algorithms 

do not typically exploit the opportunities of parallelism on multicores for the actual 

scheduling task. Current Grid schedulers are sequential and thus can get overwhelmed with 

increased workload thereby creating bottlenecks in Grid scheduling.   

This research proposes a job and machine grouping methods which are aimed at enhancing 

Grid scheduling by generating several independent scheduling instances between independent 

groups of jobs and groups of machines in parallel. In the following sections, the method used 

to develop an appropriate multi-scheduling approach is described. 

 

3.2 The Identified Gap 

Hardware computing technology has shifted grounds and multicore computers are now on the 

increase. While these advances hold much promise for the future of computing, the same case 

cannot be argued for sequential algorithms. It is contended that the benefits of the multicore 

technology should be exploited by engineering more applications which adopt parallelism. 

Current Grid scheduling algorithms do not exploit parallelism. Hence, the lack of a dynamic 

method to meet the future needs of Grid scheduling is the motivation for this research and the 

identified gap that will be addressed by this research. This research therefore aims to exploit 

parallelism to harness the benefits of multicores in Grid scheduling.  

In the light of the above, the research question is:   

How can multi-scheduling and parallelism be exploited to take advantage of multicores 

in order to improve the Grid job scheduling task? 

 

3.3 Overview of Method 

The following overall method was adopted in this research: 
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3.3.1 Literature Review 

This stage involved a rigorous search and review of relevant and related literature. This was 

done to gain more knowledge in various fields relating to the research. Related literature was 

gathered and analysed in the following relevant areas: Grid; Parallelism; Distibuted and High 

Throughput Systems; Parallel Scheduling; Grid Scheduling Algorithms; and Group 

Scheduling. 

 

3.3.2 Definition of Terms 

After reviewing the literature and gaining more understanding of the Grid, multicores and 

current Grid scheduling algorithms, the keywords relating to the literature were then defined. 

These are listed in the glossary. 

 

3.3.3 Research Question Development 

The literature search opened up a gap, which was the dearth of Grid scheduling algorithms 

that take advantage of multicore computers to scale Grid scheduling to meet the future, based 

on the backdrop that multicore computers are already pervasive and making their way into 

every aspect of our computing lives. The research question was generated to reveal the 

motivation for the research, expose the identified gaps in current systems and provide the 

direction for the design of a solution. 

 

3.3.4 Solution Design and Development 

After the identification of gaps in the area of research, and the subsequent generation of the 

research question, the solution for the research was developed. This stage involved first the 

design of a Grid scheduling model that describes the components and their functionalities. 

Different design aids were used.  These included: 

 

 Flowchart was used to visualize some operations of the system. 

 Pseudo codes and algorithms were used to describe the logical operations of the system. 

 Context diagram was used to represent the system and sub-systems of the GPMS. 
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 UML diagrams were used to describe operations in the system. The UML diagrams used 

include: 

- Use Case diagram: was used to describe the interaction between the user and the 

system 

- Activity diagram: was used to describe the various activities within the system 

-  Sequence diagram: was used to describe the sequence of operations within the 

system 

- Class diagram: was used to show the functional classes, methods and attributes of the 

system. 

The solution was developed in two stages, both of which were based on the idea of groups of 

jobs, groups of machines and simultaneous instances of scheduling. First the Priority-based 

Parallel Multi-Scheduler (PPMS) was designed and developed. The PPMS used the Priority 

method of job grouping which is described in section 3.3.4.1and also in more detail in 

Chapter Four. After observing some weaknesses in the PPMS method, the Group-Based 

Parallel Multi-Scheduler (GPMS) was designed and developed and is described in section 

3.3.4.2 and also in more detail in Chapter Four.  The GPMS is a more generic solution which 

can incorporate multiple methods of grouping including the Priority method which was the 

underlying method for the PPMS. On the other hand, the PPMS was structured such that it 

could only support the Priority method. Later the GPMS was generalised to incorporate the 

Priory method as an additional method. The programming language used for the development 

of the scheduler was Java. 

 

3.3.4.1 The Priority-based Parallel Multi-scheduler (PPMS) 

The Priority-based Parallel Multi-scheduler (Goodhead, James and Yaacob 2014) exploits 

parallelism on multicores both at the scheduler and at the Grid resources level. Jobs were split 

or categorized into four priority groups based on their attributes. Machines (Grid resources) 

were also distributed into four groups based on their configuration. Job groups were then 

paired to machine groups and the scheduling algorithm was executed independently within 

paired job-machine groups. Parallelism was implemented using independent threads within 

job-machine pairs. The researcher named the method of grouping used in the PPMS, the 

Priority method.  
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3.3.4.2 Group-based Parallel Multi-scheduler (GPMS) 

The Group-based Parallel Multi-scheduler (Goodhead, James and Yaacob 2015) aimed at 

exploring further the advantages of grouping jobs and machines and multi-scheduling in 

parallel on multicore systems to enhance scheduling algorithms in Grid. The Priority method 

of job grouping used in the PPMS had been found to be handicapped in that the effects of the 

priority grouping could not be ascertained since the number of groups was constant. 

Secondly, most jobs in the experimental source file had similar priority, hence were allocated 

to a single group. This affected the overall performance. The GPMS method was therefore 

developed to remedy the inadequacies of the PPMS.    

The GPMS employed two methods in grouping jobs, these were: 

Execution Time Balanced (ETB)–this method estimates the execution of all the jobs then 

distributes them equally (balanced) among groups. 

Execution Time Sorted and Balanced (ETSB)–this method estimates execution time of all 

jobs, then sort jobs and then distributes them equally (balanced) across groups. 

 

3.3.4.3 Machine Grouping Method 

A machine group contains a set of different computers or Grid resources for servicing a set of 

jobs from a job group. Information about Grid machines i.e. MachineId, CPUSpeed and 

number of CPUs are used for the grouping of machines and also for simulation and 

computation of execution times of jobs.  The same machine grouping method was used in 

both PPMS and GPMS. 

Machines are split into groups based on their configurations; two methods adopted to 

categorize machines into groups are: 

Similar Together (SimTog) - This method takes machines with similar characteristics or 

configuration into the same group. Similarity of configuration is based on the speed of the 

processor and numbers of CPUs. Due to the fact that the machines are not equally spread 

based on configuration, this method may generate some groups with more powerful machine 

configuration than other groups. Groups with better machine configuration may perform jobs 

quicker than those with less powerful configurations. Under these circumstances, if the same 
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numbers of jobs are scheduled to all groups, the group with less powerful machines may get 

busier and extend the overall completion time of scheduling and of job execution.  On the 

other hand, QoS could be served well in this method by allocating high priority jobs to the 

most powerful machine group. 

Evenly Distributed (EvenDist)-This method distributes machines with different 

configurations equally into all the groups; it ensures that all groups get equal share of the 

various machine configurations. This method should favour algorithms whose policies does 

not favour any particular set of jobs. 

 

3.3.5 Simulation 

This phase involved the simulation of an environment to test the effectiveness of the systems. 

Simulation was done due to the difficulty in accessing real Grid infrastructures. Both the Grid 

environment and the execution of jobs on machines were simulated. 

Simulation of Grid 

The Grid environment was simulated as comprising of four Grid sites, each Grid site 

contained different configurations of machines, and the machines further composed of 

various numbers of CPUs. 

Simulation of Job Execution and Completion Time 

The execution of jobs on machines and the completion time of jobs were simulated based on 

the size of the job and the speed of the machine it was assigned to with reference to a 

standard machine which in this case is a machine with 1GHz and 1 core or CPU. 

 

3.3.6 Experimentation 

Experimentation was carried out in phases. Seven different experiments were carried out. In 

the first instance, the MinMin scheduling algorithm was executed to schedule a range of jobs. 

This first experiment is treated as the base experiment and results from this experiment were 

compared against results from the other experiments. 
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The second and third experiments used the Priority job grouping method in combination with 

the two machine grouping methods (i.e. SimTog and EvenDist). At the time of this 

experimentation, the scheduler used was the PPMS.  The fourth and fifth experiments used 

the ETB method in combination with the two machine grouping methods. And lastly, the 

sixth and seventh experiments used the ETSB method in combination with the two machine 

grouping methods. At the time of this experimentation, the scheduler used was the more 

generic GPMS.  The experiments were executed on one of Coventry University’s HPC 

systems known locally as Pluto. 

The experiments used the simulated Grid environment with four Grid sites consisting of 

machines with different CPU speeds and numbers of processors. Machines from the various 

Grid sites were grouped based on their configurations. In the scheduling stage, jobs were 

dispatched directly to the CPUs on the individual machines. 

Three job grouping methods (Priority, ETB and ETSB) and two machine grouping methods 

(EvenDist and SimTog) were used in the experimentation. Except for the case of the Priority 

method which used four constant groups, the number of groups was varied between 2, 4, 8 

and 16 and the number of threads as varied from 1 to 16 (in steps of power 2 ). The MinMin 

Grid scheduling algorithm was then executed independently within the groups.  

The MinMin algorithm (referred to as the ordinary MinMin) was first executed to schedule a 

range of tasks and the time recorded appropriately. Then, the various grouping methods were 

executed to group jobs and machines. Thereafter, the MinMin algorithm was executed again 

to schedule same range of jobs independently within the groups and the time taken to 

complete each range of jobs using the various grouping methods and also varying the number 

of groups and threads was recorded. The various results were later compared to the ordinary 

MinMin and to each other. The MinMin algorithm was chosen for the comparative analysis 

because most research in Grid scheduling also compares with the MinMin and one can say 

that researchers have almost turned the MinMin algorithm into a base algorithm for 

comparison in Grid scheduling algorithms research. 

Table 2 summarises the experiments carried out.  For each experiment, job sets ranging in 

number, from 1000 to 10000 in steps of 1000 were used and also a range of threads were 

used, 1,2,4,8, and 16. For each variation in each experiment the scheduling time and 
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makespan was recorded.  In all, measurements for 950 experimentation variations were 

recorded for analysis. Table 3 shows the variations for each experiment. 

Table 2 Scheduling Experiments 

Experiment 

Number 

Number of 

Groups 

Scheduling 

Acronym 

Job 

Grouping 

Method 

Machine 

Grouping 

Method 

Inside 

Group 

Scheduling 

Method 

1 1 Ordinary 

MinMin 

n/a n/a MinMin 

2 4 Priority-SimTog Priority SimTog MinMin 

3 4 Priority-EvenDist Priority EvenDist MinMin 

4 2,4,8,16 ETB-SimTog ETB SimTog MinMin 

5 2,4,8,16 ETB-EvenDist ETB EvenDist MinMin 

6 2,4,8,16 ETSB-SimTog ETSB SimTog MinMin 

7 2,4,8,16 ETB-EvenDist ETSB EvenDist MinMin 

 

Table 3 Number of Variations of each Experiment 

Experiment 

Number 

Scheduling 

Acronym 

Number of 

Grouping 

Variations 

 

Number of Job Sets 

(Input job set size 

variations) 

Number of 

Threads 

Variations 

Number of 

Experiment 

Variations 

1 Ordinary 

MinMin 

1 10 

(1000 -10000 in 

steps of 1000) 

5 

(1,2,4,8,16) 

50 

2 Priority-

SimTog 

1 

(always 4 

groups) 

10 

(1000 -10000 in 

steps of 1000) 

5 

(1,2,4,8,16) 

50 

3 Priority-

EvenDist 

1 

(always 4 

groups) 

10 

(1000 -10000 in 

steps of 1000) 

5 

(1,2,4,8,16) 

50 

4 ETB-SimTog 4 

(2,4,8,16) 

10 

(1000 -10000 in 

steps of 1000) 

5 

(1,2,4,8,16) 

200 

5 ETB-

EvenDist 

4 

(2,4,8,16) 

10 

(1000 -10000 in 

steps of 1000) 

5 

(1,2,4,8,16) 

200 

6 ETSB-

SimTog 

4 

(2,4,8,16) 

10 

(1000 -10000 in 

steps of 1000) 

5 

(1,2,4,8,16) 

200 

7 ETSB-

EvenDist 

(2,4,8,16) (1000 -10000 in 

steps of 1000) 

5 

(1,2,4,8,16) 

200 
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3.3.7 Analysis of Results 

This stage involved the application of analysis tools on the results to derive meaning from 

them. The results from the experiments were written to an output file in text format. The 

results were then imported into a statistical analysis tool for analysis. First, the results were 

categorized based on methods, groups and threads before further analysis was performed. 

 

3.3.7.1 Statistical analysis 

Various statistical measures were used for the analysis of the data. The data manipulation and 

statistical analysis performed on the results included:   

Sorting In order to process the vast amount of data produced by the experiments, custom 

level sorting was applied to different fields. This enabled the results to be sorted based on 

fields such as job grouping method, machine grouping method, number of threads and 

number of groups. This further enabled the application of mathematical formulas on each 

category of the result. 

Total: After categorizing sets of result by methods, groups and threads, the total scheduling 

times for each set of result were computed for use in further analysis. 

Mean: The means for each set category of the data were also computed. 

Standard deviation: The standard deviation was computed between results from the 

different methods to show how the mean of the methods vary and also to reveal how one 

method performs better than the other. 

Correlation: The correlation analysis was carried out to show the strength in relationships or 

randomness between the results of the different methods.  

Analysis of variance: The analysis of variance was also performed between the result sets. 

This was done to show if there were significant differences between the result sets from the 

methods. 
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3.3.7.2 Mathematical formulas  

Mathematical formulas and functions were also used to compute values used for further 

analysis and evaluation. The mathematical formulas and functions used were speed and 

improvement. 

Speedup and improvement 

The speedup was computed to evaluate the differences and gains made between the methods 

and the ordinary MinMin. The speedup was computed for each step (or interval of 

scheduling). While the improvement was computed to know the overall gain made over the 

ordinary MinMin by the methods, the improvement was computed using the computed 

overall total and or average. Both values were computed in multiples and in percentages 

with different formulae.  

Speedup in multiple(X) 

Speedup is the gains made when applying a parallelised algorithm compared to a serial 

algorithm to execute the same job. The speedup in multiple is obtained by method dividing 

scheduling time results of the MinMin algorithm (referred here as ordinary MinMin and 

implemented in the base experiment without grouping) by that of the applied grouping 

method. This value tells by how many times the applied method performs better than 

ordinary MinMin (the base method) at each step of the schedule. 

Speedup in multiple was computed as: 

schedtime

schedtime

Group

MinMin
 

Equation 1 Speedup (X) 

 

Speedup in percentage (%) 

The speedup in Percentage method uses the values of both the ordinary MinMin and the 

applied method to compute the percentage. This evaluation tells by how many percent the 

method performs better than the ordinary MinMin method. This value is obtained by 

subtracting the scheduling time of the group method at each stage from the scheduling time 

of the ordinary MinMin at the corresponding stage, then dividing by the scheduling time of 

the ordinary MinMin and multiplied by 100. The value is computed as: 



Group-Based Parallel Multi-scheduling Methods for Grid Computing 

79 

 

100*)(
schedtime

schedtimeschedtime

MinMin

GroupMinMin 
 

Equation 2 Speedup (%) 

 

Performance Improvement over MinMin 

The performance improvement is the overall gain made over a serial algorithm by the parallel 

algorithm. This value was computed in multiples and in percentage. 

Performance Improvement in multiple(X) 

The performance improvement in multiple was computed similar to the speedup in multiple 

but here, it is the cumulated total scheduling time for the method that is used. This value is 

computed with the total or average scheduling time of the ordinary MinMin divided by the 

total scheduling time of the GPMS method. The value is computed as: 

Group

MinMin

Total

Total

 

Equation 3 Improvement over MinMin (X) 

Performance Improvement in percentage (%) 

This value represents the improvement over the MinMin algorithm in percentage. It is 

computed by subtracting the total scheduling time of the method from the total scheduling 

time of the ordinary MinMin then dividing by the total scheduling time of the MinMin and 

multiplying by 100. The performance improvement in percentage of the grouping method 

over the non-grouping method is computed as: 

100
1

21 X
x

xx 
 

where   x1 = MinMin Total Scheduling Time 

x2 =Group Methods Total Scheduling time 

or 100*
TimeTotalSched

TimeTotalSchedTimeTotalSched

MinMin

GroupMinMin 
 

Equation 4 Improvement over MinMin (%) 
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Performance Improvement between successive groups  

This computation is used to evaluate the improvement between two successive groups when 

using the same method. It is computed from the total scheduling times of a group and the 

total scheduling time of its successor group.  

Performance Improvement between groups in multiple (X) 

The performance improvement between two groups in multiple (x) is computed with the total 

scheduling time of the two groups. The value is computed by dividing the total scheduling 

time of the group by the total scheduling time of the successor group. For instance, the 

improvement between 4 groups and 2 groups or between 8 groups and 4 groups were 

computed as follows: 

]8,4,2[

1





n

Groupn

nGroup

TimeTotalSched

TimeTotalSched  

If nGrps = 2 Grps 

Then n+1 Grps =4Grps 

Or     If nGrps = 4Grps 

Then n+1 Grps =8Grps 

Equation 5 Improvement between groups (X) 

 

Performance Improvement between successive groups in percentage (%) 

This computation is used to evaluate the performance improvement between successive 

group cardinalities in percentage. It subtracts the total scheduling time of the successor group 

from the total scheduling time of the group, then divides by the total scheduling time of the 

group and multiplying by 100. The value is computed with the formula: 
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100*
1

]8,4,2[



n
TimeTotalSched

TimeTotalSchedTimeTotalSched

nGroup

GroupnnGroup

 

Equation 6 Improvement between groups (%) 

 

3.3.8 Evaluation of Results 

This stage drew meaning from the analysed results and provided explanation to the analysis. 

The evaluation was carried out to ascertain the efficacy of the method and to appraise the 

overall success of the research. The outcome of this phase was used to ascertain if the 

research aim had been achieved and if the research question had been answered.  

The evaluation was carried out against the MinMin algorithm. The motivation to compare 

against the MinMin algorithm was based on the fact that several other researchers (in Grid 

scheduling) also compared their results against the MinMin and the MinMin algorithm has 

almost become the coin of researcher’s evaluation in Grid scheduling. The motivation for 

using MinMin is further justified in section 3.3.9. 

Some of the results were plotted on charts to get clearer meaning. Methods used in the 

evaluation include: 

Charts: Different types of charts were employed to represent the data and analyse results 

graphically. Some charts used in the evaluation are line charts, pie charts, bar charts and 

column charts. From the charts, the differences in performance between the grouping 

methods and the MinMin algorithm were presented graphically and were easy to deduce.  

Correlation: Correlation test was carried out to determine the relationship or randomness 

between the results. The result of this test enabled more meaning to be made out of the 

values.  

ANOVA: Analysis of variance was performed between the means of the results. This was 

done to show if there were significant differences between the means of the methods. Results 

from this analysis helped informed the conclusion of this research 
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T-test of significance: T-test was used to compare the significance differences between the 

mean of more than two variables.  

Standard deviation: The standard deviation of the different methods were also computed and 

contributed to the discussions of the research. 

 

3.3.9 Motivation for using MinMin for Comparison 

The MinMin heuristic is a simple deterministic algorithm initially proposed by Ibarra and 

Kim in 1977 for the problem of scheduling independent tasks. The MinMin algorithm starts 

with a set U of all unmapped tasks, and then, the set of minimum completion times M for 

each task in U (on each machine) is calculated. Then, the task with the overall minimum 

completion time (MCT) from M is selected and assigned to the corresponding machine 

(hence the name MinMin). Lastly, the newly mapped task is removed from the set U, and the 

process repeats until all tasks are mapped (i.e. U is empty). After each assignment, the 

availability status of the machines is updated.  

The objective is to minimise makespan by assigning more tasks to the machines that can 

complete them the earliest and also execute them the fastest.  The problem has primarily been 

evaluated in a static "off-line" context - where all tasks are known before scheduling begins, 

and the objective is the minimization of makespan, i.e. the time to finish all tasks. The 

algorithms can also be applied in the dynamic "on-line" context, by "unscheduling" all non-

started jobs at each scheduling event - when either a new job arrives or a job completes.  

The accuracy and simplicity of the algorithm has lend credence to it been used widely as 

reference in many research papers (Casanova et al.1999, Braun et al. 2001, Sabin et al. 2003, 

Ritchie and Levine 2004, Dong and Akl, 2006, Luo, Lu and Shi 2007, Hao, Liu and Wen 

2012, and  Prajapati and Shah 2014).  

MinMin can be easily adapted to different scenarios. Hence, it has been adapted for the 

design of other efficient algorithms. For example, He, Sun and Laszewski (2003) propose a 

QoS Guided MinMin heuristic which guarantees the QoS requirements of particular tasks and 

minimizes the makespan at the same time. Wu, Shu and Zhang (2000) proposed a Segmented 

MinMin algorithm, in which tasks are first ordered by the expected completion time (it could 

be the maximum ECT, minimum ECT or average ECT on all of the resources), then the 
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ordered sequence is segmented, and finally MinMin is applied to all the segments. Other 

works proposed to improve the MinMin are (Dorronsoro et al. 2010, Xhafa et al. 2008a, and 

Xhafa et al. 2008b).  

MinMin has also been proposed for scheduling tasks on heterogeneous systems (Freund et al. 

1996, Freund et al. 1998, Maheswaran et al. 1999, Venugopal and Buyya 2008, Parsa and 

Entezari-Maleki 2009, Hephzibah and Easwarakumar 2010, Nesmachnow and Canabe 2011, 

and Nesmachnow, Cancela and Alba 2012).  

According to Nesmachnow and Canabe (2011), the computational complexity of MinMin 

heuristics is O (N3), where N is the number of tasks to schedule. When solving large 

instances of the heterogeneous computing scheduling problem (HCSP), large execution times 

are required to perform the task-to-machine assignment (i.e. several minutes for a problem 

instance with 10000 tasks). This informed their decision to parallelise the MinMin in order to 

reduce the execution times required to find the schedules. Nesmachnow and Canabe 2011 

proposed methods of parallelising the MinMin scheduling algorithm for GPUs and compared 

results against the serial version implementation. Also,  Pinel, Dorronsoro and Bouvry (2013) 

presented a parallel version of MinMin in their work on cellular genetic algorithm (CGA) to 

minimize the batch scheduling of independent tasks.  

Ye, Rao and Li (2006) noted that the MinMin algorithm is becoming the benchmark of 

resources scheduling problems in Grid. Hence, our decision to use the MinMin as basis for 

comparison was informed by the fact that the MinMin scheduling algorithm has been used 

extensively in previous studies on Grid scheduling and in parallel scheduling. Appendix D 

shows some research work that used MinMin for comparison.  
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3.4 Summary 

This chapter started by summarising the problem area and stating the research question. It 

then described the methods used in the research which had led to the formulation of the 

research question and which subsequently served to address the research question. Methods 

used at each stage of the research were explained. The overriding methods used in this 

research have been prototype design, simulation and experimentation leading to an answer to 

the research question and a better understanding of grouping methods in Grid scheduling. The 

chapter also discussed the motivation for using the MinMin algorithm as basis for 

comparison.   

The next chapter shall discuss the design of the GPMS. 
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CHAPTER FOUR 

DESIGN OF THE GROUPING BASED MULTI-SCHEDULER 

 

4.1 Introduction 

This chapter describes the design of the Group-based Parallel Multi-scheduler (GPMS), the 

simulations used and experimental test bed. The initial design focused on the Priority 

grouping method as that was the first concept, but the group-based method would later be 

made into a more general model due to the shortcomings that were observed with the 

Priority-based method. 

This design process followed the strict adherence of laid down principles in software design 

and involved the use of design tools and graphical languages such as flowcharts and UML 

diagrams for visualizing, specifying, constructing, documenting and refining the functions 

and components of the system. 

Generally, design tools are used for visualising, specifying and documenting the components 

of a software intensive system as they provide basis for modelling use cases and scenarios to 

define and refine functionality that a software system is expected to provide. UML was 

chosen among other design tools because it provides strongly defined meaning and clarity for 

every element and encourages understanding of the task.  

 

4.2 Design of the Group-based Parallel Multi-Scheduler 

The Group-based Parallel Multi-scheduler (GPMS) was designed to take advantage of the 

underlying hardware of multicore systems. The GPMS is intended to execute on a multicore 

system. Furthermore, the machines making up the Grid (Grid resources) are assumed to be 

composed of different numbers of multicores. In the following sections, the functions and 

components of the GPMS are described.  
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4.2.1 Functions of the Group-based Parallel Multi-scheduler 

 The functions of the system are outlined in the Table 4. 

Table 4 Functions of the GPMS 

Functions of the Grouping-Based Parallel Multi-scheduler for Grid 

i. Employ grouping methods for both jobs and machines.  

ii. Split users jobs into groups based on job attributes  

iii. Split Grid machines also into groups based on some criteria 

iv. Pair groups of jobs to groups of machines  

v. Schedule jobs to machines between paired groups in parallel (Multi-scheduling) – 

the scheduling of jobs targets the cores of the Grid  machines 

vi. Time the scheduling and processing activities 

 

After specifying the overall functions of the system, the requirements of the system which 

determine the components to perform such functions were formulated. This was done with 

the ‘shall statement’ used to state what the multi-scheduler will do. 

 

4.2.2 The ‘Shall Statement’ and System Requirement 

The ‘Shall Statement’ describes in a nutshell the functionality the system shall provide and by 

extension the components required that can enable the system to perform such functions. The 

GPMS shall: 

- Take as input a batch of jobs into the system – this requires a means of reading data 

into the system. 

- Group jobs based on their attributes – this requires a means of identifying jobs 

attributes and a means of categorizing the attributes.  

- Take as input a set of Grid machines. Hence a means of identifying and registering Grid 

machines is required. 

- Categorize Grid machines (Grid resources) based on configurations. Hence a means of 

comparing and identifying machine configurations shall be required. 
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- Schedule jobs between machine groups and job groups. Hence a means of multi-

scheduling jobs independently from the groups is required.  

- Dispatch scheduled jobs to Grid machine cores. 

- Know the number of jobs scheduled at every instance. Hence a means for counting is 

required. 

- Be able to know the status of jobs being executed. 

- Receive executed jobs from the Grid sites  

- Returns jobs to users 

- Monitors scheduling activities. 

The functional components for the GPMS were deduced and are shown in Table 5. 

Table 5 Functions of the GPMS components 

S/No Functions 

1 A component that provides a means to accept  users jobs into the 

system 

2 A component that determines job attributes in order to group jobs 

3 A component that determines machine attributes and group them 

4 A component that  schedules jobs to machines 

5 A component that dispatches jobs to Grid resource 

6 A component that receives executed jobs from Grid resource 

7 A component that returns results to users  

8 A component that monitors scheduling activities like counting and 

timing 

 

4.2.3 Context Diagram 

The context diagram views the system as a black box. Details of the internal operations are 

not seen. It indicates how external events affect the system and how internal/system events 

affect the outside world. Figure 4 is made up of two context diagrams 4a and 4b. Figure 4a 

shows the GPMS system as a black-box and Figure 4b shows the sub-systems or units within 

the GPMS. 
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The JobReader is the component that accepts jobs into the system; the JobGrouper 

determines jobs attributes and also categorizes or groups jobs. The MachineGrouper 

determines machines configuration and group machines. The Multischeduler is the 

component that enables the parallel execution of the scheduling algorithm within paired 

groups while the JobDespatcher is the component that despatches jobs to machines at Grid 

sites. The JobReceiver receives processed jobs from the Grid sites and returns them to users.   

 

Figure 4a: The GPMS as a black box 
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Figure 4b: Sub-systems within the GPMS 

Figure 4a and 4b: Two level Context diagram for the GPMS system 

The interface between the outside world (users) and the system is the job input screen. 

Beyond the interface is the system itself. The system contains subsystems which carry out 

specific functions like accepting users jobs (input reader), sorting/grouping (job sorter), 

categorizing machines (machine sorter), scheduling jobs (multi-scheduler) and the dispatcher.  

These are represented as a black box at the subsystem level. The subsystems for the GPMS 

comprise the major components that enable the system to function as a whole. These are: 

Job Reader: Reads job input from file and feed to the system  

JobGrouper: sorts the jobs into groups based on job attributes  

MachineGrouper: categorizes machines into groups based on their configuration 

Multi-scheduler: schedules jobs from different job groups to machine groups.  

Job Dispatcher: dispatches jobs to machines at Grid sites 

Key 

      Parallel aspects 

The sub-system following the 

bar is parallel 
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Job Receiver: receives jobs from the Grid 

Job Returner: returns results to the user 

Monitor: records the scheduling activities like timing and counting 

 

4.2.4 Use Case Diagram 

A Use Case diagram depicts how a system is intended to be used; it shows the intended 

functionality of the system and how users will use it. Figure 5 shows the Use Case of the 

GPMS systems and some high-level view of the functionality of the system.  

 

Figure 5: Use Case diagram for the GPMS system 

 

4.2.5 Activity Diagram 

The activity diagram shows the procedural flow of activities associated with the system. The 

activity within the system starts with the system polling for the availability of jobs. If there 
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are no jobs the system continues polling. Once jobs are available, the JobReader reads the 

jobs into the system, the JobGrouper then determines jobs attributes and based on the 

attributes, it groups (sort jobs into groups). If there are Grid machines, the MachineGrouper 

determines machines configuration and groups machines based on the configuration. In this 

consideration, it is assumed that Grid machines are always available; this is because 

scheduling on the Grid differs from traditional scheduling in other environments. Jobs or 

processes compete for limited resources in most traditional environments, whereas on the 

Grid, computing machines are always available at different locations. The scheduling 

constraint therefore is not mostly how to ration scarce resources for competing processes but 

how to meet certain user requirements. After grouping both jobs and machines, the Multi-

scheduler then pairs job groups and machine groups and executes the ‘selected’ scheduling 

algorithm within paired groups. Jobs from within the groups are then scheduled to machines 

within machine groups. The JobDespatcher despatches the jobs to machines at Grid sites. 

After the execution, results are returned to users and the system continues the cycle.The 

JobReceiver receives processed jobs from the Grid sites and the ResultReturner returns the 

result to users.  It will however be noted that the system does not have to wait for jobs to be 

completed before starting the next round. At every point jobs become available; the system is 

activated and begins the processes (see Figure 6). However, machines are more stable on the 

Grid than jobs. Sorting machines as frequently as jobs at every scheduling operation requires 

extra overhead. As a result, sorting of machines was carried out less frequently (in the 

experiment). Machines were sorted only when the grouping method changes or when the 

number of groups to be used changes. Moreover, if the number of machines does not change, 

then the system has a way of remembering a previously used machine list. Hence, in real life 

systems, the grouping of machines can be less frequent than in the experiment. 
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Figure 6: Activity diagram for the GPMS system 
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4.2.6 Sequence Diagram 

The sequence diagram shows the timing and ordering of message interaction between the 

system and actors, external devices and external systems. The sequence diagram for the 

GPMS shows how a user submits his jobs and retrieves his jobs from the system. It also 

shows how the system handles the operations of sorting jobs, scheduling jobs and returning 

results to users. Figure 7 provides a sequence diagram showing the timing and interaction 

between users’ and the system. 

 

 

Figure 7: Sequence diagram for the GPMS system 
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4.2.7 Class Diagram 

The class diagram is used to visualize the components of the system and define the classes, 

functions and attributes of the system. It also aids the coding of the system. Figures 8a and 8b 

show the class diagram for the GPMS system. 
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Figure 8a: Class diagram for the GPMS system 
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Figure 9b: Class diagram for the GPMS system 
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4.3 The GPMS 

4.3.1 Overview of Processing 

The GPMS is the general system that incorporates all the functions required of the system. 

Users’ jobs are jobs generated and submitted by users for execution on the Grid. They are 

composed of distinct characteristics/attributes which are used to determine how jobs are 

sorted or categorized or where jobs are scheduled to. Jobs are scheduled onto Grid machines 

at Grid sites by the GPMS.  The GPMS executes on multicore systems, hence explores 

parallel programming methods that utilize multicores to advantage. The system implements a 

dynamic thread pool as a multi-threading mechanism that controls the number of threads used 

for each execution. Controlling the number of threads for executions on multicores enhances 

the utility of the underlying multicore and provides parallelism. The threads are stored in a 

pool and used when required and released when not required. The threads are targeted to 

execute the scheduling algorithm within the paired machine-job groups. In the experiment, 

the number of threads was varied from one to sixteen for each group but in the analysis, we 

presented the points where the number of groups and threads are equal. Hence, two groups 

used two threads, four groups used four threads and eight groups used eight threads. Each 

thread executes the same scheduling algorithm within a group. Figure 9 shows a model 

depicting the GPMS. 



Group-Based Parallel Multi-scheduling Methods for Grid Computing  

99 

 

 

Figure 10: A model of the GPMS with multiple groups 

Another way of looking at the GPMS is shown in Figure 10, this time with four groups. Jobs 

arrive from several sources. Jobs are sorted in parallel into groups based on the attributes of 

the jobs. They are then multi-scheduled in parallel from the various groups onto Grid 

machines at Grid sites. The Grid machines are also categorized into groups 
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Figure 11: A model of the GPMS with four groups 

 

4.3.2 GPMS Job and Machine Grouping 

The GPMS requires jobs and machines to be grouped.  The machine and job groups are then 

paired and scheduling occurs in parallel within the groups – the pairing between job groups 

and machine groups ensures independent and parallel scheduling within the groups. The 

scheduling algorithm used inside the groups is MinMin. Three different methods were 

implemented for job grouping in the GPMS model. These were the Priority, the ETB and the 

ETSB methods.  Two methods were used for the grouping of Grid resources (machines). 

These were SimTog and EvenDist. After the grouping of machines and jobs separately, a 

pairing is made between job groups and machine groups. Then using multiple threads 

(multithreading), a scheduling algorithm (MinMin scheduling algorithm) is executed 

independently within the paired groups in parallel. A thread pool is created to enable parallel 
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scheduling within the groups. The method can achieve improvements in scheduling 

efficiency by approximately g times where g is the number of groups used, although 

overheads make an exact g times improvement unachievable.  

Multi-threading was implemented with a dynamic thread pool. Threads were activated when 

needed and deactivated when no longer needed. The threads were varied from 1 to 16 in steps 

of power 2 ( n2 ) and groups varied between 2, 4, 8 and 16. This setting is deliberate because 

multicore computers exist in that order. Furthermore, it is important to observe the 

relationship between the numbers of groups used, number of threads used and number of 

cores used. In the analysis, we presented the points where the number of groups and threads 

are equal. Hence, two groups used two threads, four groups used four threads and eight 

groups used eight threads. Each thread executes the same scheduling algorithm within a 

group. 

The number of groups and threads are specified by a GPMS administrator. How jobs are read 

into the system and how the jobs are grouped before scheduling is presented in the algorithm 

in Table 6. At present an automated system for determining numbers of groups and threads 

has not been developed but this could be part of future work. 

Table 6 Algorithm for the GPMS 

Step1.    Start 

Step2:   Specify number of threads to use (this is set by the user)  

Step2:   Specify number of groups to use 

Step3:   Read jobs into the scheduler 

Step4:   Read machines  

Step5:  From the job attributes; estimate the priority, size, execution or completion time for        

each job 

Step6:   Group jobs into number of specified groups(three methods are used) 

Step7: Group machines into the specified number of groups(two methods are used)  

Step8:   Execute the scheduling algorithms within the groups using the inside groups 

scheduling algorithm – i.e. MinMin 

Step9:   Write results to output file 

Step10: Stop 

Results include total time of scheduling of jobs for job grouping method used, number of 

threads used, number of groups used, and number of jobs. 
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The GPMS splits jobs and machines into groups before executing the scheduling algorithm 

(MinMin) within the groups. Jobs are split (grouped) based on the estimated execution time 

computed from their size or priority if the Priority method is used.  Jobs are initially held in a 

table which also holds their estimated size or priority. Three methods are employed in 

splitting jobs into groups: 

Priority: Jobs are grouped based on priority.  The resulting groups may not be balanced. 

Execution Time Balanced (ETB): Jobs are grouped according to their execution time and 

balanced into groups. 

Execution Time Sorted and Balanced (ETSB): Jobs are balanced into groups according to 

their execution time but are first sorted from largest to smallest.  This grouping algorithm 

then ensures jobs are more evenly balanced across groups in terms of their size.The resulting 

job groups contain sets of Grid jobs submitted by users but sorted into groups based on some 

characteristics from where they maybe scheduled to machine groups independently. The 

machine grouping methods used are: 

Similar Together (SimTog) – machines of similar configurations are grouped together 

Evenly Distributed (EvenDist) – machines are evenly distributed with regard to their 

configuration 

In the next sections more detail is given on the job grouping and machine grouping methods. 

 

4.4 Job Grouping Methods 

Three job grouping methods were used: the Priority, the Estimated Time Balanced (ETB) and 

the Estimated Time Sorted and Balanced (ETSB) methods.  

 

4.4.1 Design of the Priority Method 

The Priority method differs from other methods in that it uses just four groups each for 

machines and jobs. The method categorizes jobs into four priority groups. Grid machines are 

equally distributed into four groups based on their configurations using two methods – 

SimTog and EvenDist. Machines and job groups are then paired before job scheduling is 

executed simultaneously and in parallel among the job-machine group pairs using the 
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MinMin algorithm. Scheduling of prioritized jobs from groups is targeted directly at the 

processors within the machines in the groups.  

In the experiment, the Priority method uses the number of processors requested by the user 

(ReqNProcs) to determine the priority. Before submission, a user either states or selects the 

number of processors he needs his job to be executed on.  The choices vary from not 

specifying (zero) to more than a few hundred. As provided in the Grid Work Flow archive, 

this attribute (ReqNProcs) may reflect the importance with which a user ascribes his job. Grid 

users who specify a higher number of processors for the execution of jobs could be regarded 

as desiring a higher priority for their jobs.  

Grid jobs are characterized by many attributes and the choice of attribute(s) used to determine 

priority in this research is somewhat arbitrary; other attributes could have been used. For 

instance, in some applications, the choices made directly by the customer could be used to 

determine priority (Albodour, James and Yaacob 2012). In production environments, suitable 

attributes would be determined depending on available meta-data. In commerce, attributes 

can be determined by customers need, demand or cost (Buyya, Abramson and Giddy 2000), 

or by availability (Abraham, Buyya and Nath 2000).  

The Priority method employs four priority groups from Priority Group 1 to Priority Group 4.  

Jobs in Priority Group 1 have the highest priority and those in Priority Group 4 have the 

lowest priority.  In a system which groups machines such that machines are grouped 

according to performance, the Priority method can be used to ensure high priority jobs are 

mapped to high performing machines.  In the GPMS, two methods of job grouping are used, 

SimTog and EvenDist.  The idea behind the Priority method was that the priority of job 

groups would be matched to the priority of machine groups. This requires a machine 

grouping method like SimTog which puts machines of similar characteristics together.  

Hence jobs of Priority 1 would be matched with the machine group which contains the most 

powerful machines.  However to work well, the incoming jobs must be evenly distributed in 

terms of priority and this cannot be guaranteed. If the EvenDist machine grouping method is 

used, all machine groups would be similar in power and in this case a priority match between 

jobs and machines would not be possible. In the analysis described in Chapter Five, it is 

shown how the machine grouping can affect the performance when the Priority method is 

used. 
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Muthuvelu et al. (2005) used (MI) million instructions or processing requirements of a user 

job to relate to the size or processing requirement of the job. The GPMS uses job size (which 

was computed by multiplying ReqTime by ReqNProcs). ReqNProcs (the number of 

processors requested by the user) was used because a job requiring one processor and another 

job requiring ten processors to execute certainly have different priorities (importance) set by 

their owners. Also, ReqTime was used because the resource time a user wants his job done 

also signifies the priority (urgency) with which the user attaches to his job. Hence, 

multiplying the requested time and the requested number of processors is a good way to 

quantify or represent the job size. 

The Priority grouping method uses four groups. The Priority of jobs is determined by the 

number of processors requested by the user. Hence four categories: Very High, High, 

Medium and Low were chosen to conform to the number of groups used by the method.  

The rule to assign the priorities is as follows: 

If (ReqNProc is less than or equal to1) then JobPriority = Low; 

If (ReqNProc is less than or equal to 2) then JobPriority = Medium; 

If (ReqNProc is less than or equal to 4) JobPriority=High; 

If (ReqNProc is greater than 4) then JobPriority=VeryHigh; 

Table 7 shows the algorithm to determine the priority of jobs and allocate them to priority 

groups based on the number of processors requested by the user and Table 8 shows the steps 

taken to schedule a job using the priority method.  

Table 7 Algorithm for the Priority method 

Step1: Start 

Step2:Establish 4 job groups (one per priority) 

Step3: Accept next  job 

Step4: Assign priority to the job based on the number of requested cores (1- low, 2-  

           medium, 3-4 –high, >4 –very high) 

Step5: Add the job to the group with matching priority 

Step6: Repeat Step3 to Step 4 until all jobs assigned to groups 

Step7: Stop  
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Steps taken to schedule jobs using the priority grouping method and measure time are as 

follows:  

Table 8 Scheduling steps using the Priority method 

 

Step1:   Start 

Step2:   Specify number of groups to use 

Step3:   Split jobs into groups based on their characteristics (Priority) - four priority groups  

              were used in the Priority method but a different number of groups could be used.  

Step4:  Machines are split into groups based on their configurations- the same number of              

             group is used as that for splitting jobs into groups.  

Step6:   Start scheduling clock to record time  

Step7:   Execute the (InsideGroupsScheduling algorithm)  - (the MinMin algorithm is used) 

Step8:   Write results  to files  

Step9:   Stop clock 

Step10: Stop 

 

Figure 11 depicts a simplified version of the flowchart for sorting of jobs to priority groups. It 

considers the priority, computational requirement and time requirement of the jobs as 

attributes. In this simplified version, the sorting is done using the number of processors 

requested to determine the priority of job.  
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Figure 12: Flowchart for priority sorting of jobs 

 

4.4.2 Design of the Execution Time Balanced (ETB) method 

This section discusses the design of the ETB method of the GPMS model. One major 

difference between ETB method and the Priority method is that the ETB uses a method that 

varies the number of groups of machines and jobs.  

The method uses an estimation of the processing time for each job to group the jobs.  It 

attempts to even out the total processing times in groups by adding the next job to the group 

with the current lowest total processing time. The method takes jobs one by one and inserts 

the job into the group that can execute it fastest (including the time needed to process jobs 

already added to that group).  First, jobs are read in and execution time of each job is 

estimated with reference to a base machine. Jobs with estimated execution times are then 

recorded in an Estimation table. The method accesses the Estimation table and groups jobs 

based on the estimated time of each jobs in the group. When a job is selected for grouping, 

the estimated execution time for the jobs is known and the total estimated execution time for 
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the group is also known. The job is grouped (sorted) to the groups with the best or lowest 

totalestimatedTime). The estimated execution times  for the job is then added to the group 

with the lowest execution time, then the total estimated time for that group is updated and the 

next job is selected. This method ensures that the jobs are distributed fairly to all groups. The 

selection is repeated until all the jobs are allocated to scheduling groups before the real 

scheduling is executed from the groups. Table 9 shows the ETB algorithm.  

 

Table 9 Algorithm for the ETB method of grouping jobs 

Step1:    Start 

Step2:    Select job from the Estimation table 

Step2:    Select the group with the smallest totalestimatedTime 

Step3:    Add job to group with the smallest totalestimatedTime 

Step4:    Update the totalestimatedTime for the group 

Step5:    Repeat until end of table 

Step6:    Stop 

 

 

4.4.3 Design of the Execution Time Sorted and Balanced (ETSB) method 

This section discusses the design of the ETSB method of the GPMS. This method also differs 

from the Priority method because it can vary the number of groups of machines and jobs (like 

the ETB method).  

The method first sorts jobs based on the estimated execution times before applying the ETB 

method to distribute jobs into the groups. Jobs are first read in and the estimated execution 

time for each job with reference to a base machine is generated and recorded in the 

Estimation table. Jobs in the table are then sorted based on their estimated execution time. 

Sorting is done in descending order and the job with the largest estimation time placed at the 

top of the list and that with the least completion time placed at the bottom of the list. Then 

starting from the biggest or top, the method takes jobs one by one and inserts into the group 
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that can execute it fastest or the group with the smallest totalestimatedTime and the 

totalestimatedTime for that group is updated accordingly. Just as in the ETB method, the 

jobs are added to the group with the lowest or best totalestimatedTime and the group is 

updated before the next job is picked and the process is repeated until the end of the 

Estimation table. The sorting employed in this method ensures that larger jobs are allocated 

before smaller jobs. Also, this method helps to increase the chance of all groups getting a fair 

share of the workload. 

This method is similar to the ETB method except that jobs are first reordered or sorted based 

on the execution times before inserting them into groups. The largest jobs are placed at the 

top of the list; the method ensures a fairer balance across groups. Table 10 shows the 

algorithm for the ETSB method.  

 

Table 10 Algorithm for the ETSB method of grouping jobs 

Step1:    Start 

Step2:    Sort jobs in the Estimation table 

Step3:    Read next job from the Estimation table 

Step2:    Select the group with the smallest totalestimatedTime 

Step3:    Add job to group with the smallest totalestimatedTime 

Step4:    Update the totalestimatedTime for the group 

Step5:    Repeat until end of table 

Step6:    Stop 

 

Both the ETB and ETSB methods ensure that jobs are distributed equally among the groups. 

They also allow the number of groups and threads employed to be varied in each execution.  
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4.4.4 Job Attributes and Job Categorization 

This section offers some observations on job attributes and job categorisation and how these 

are used in this research.  

The attributes of a job are distinct characteristics that distinguish jobs and determine how jobs 

are grouped then scheduled. The attributes of a job also determine a job’s priority. Other than 

size and computational requirements of the jobs, there are other options available for Grid 

users to specify options which could still be useful in categorizing jobs. These include:  

Trust - the issue of trust is based on a prior knowledge or long term use of a particular Grid 

resource or recommendation from friends, their preference for such trusted Grid site to 

execute their job. 

Budget – this is related to how much users are willing to pay to get their jobs executed, such 

options become useful when budget becomes the match-making criteria. This option 

determines between the highest and lowest budget. The budget is a very critical attribute for 

some (economic model) schedulers as they determine a match between users’ jobs and the 

Grid site.  

Time Requirement or Deadline– this factor is important when time is the most critical issue 

factored into the scheduling need of users.  

Users of the Grid are provided with means to specify options when submitting their jobs. 

These options and attributes are used by the scheduler for scheduling decisions. This work 

excludes those options but concentrates on the attributes present (in the source file) and 

relevant for this research.  

 

4.5 Machine Grouping 

The two methods used to split machines into groups are Similar Together (SimTog) and 

Evenly Distributed (EvenDist). 
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4.5.1 Design of SimilarTogether (SimTog) Method 

This method uses the configuration or performance attributes of machines like the number of 

CPUs and speed of the CPU to group them together. Machines are first sorted by 

performance (Number of CPUs*SpeedofCPU) from slowest to fastest.  The entire list of 

machines is then split into g groups represent the number of groups to be used for the 

execution. The first N machines are added to the first group, the next N machines are added 

to the next group and the process is continued until all machines are added and g groups are 

formed. As a result, the first group is guaranteed to have the slowest machines, followed by 

the next in that order. The last group is guaranteed to get the best set of machines. 

This means some groups have better performing machines than others. Groups with better 

machines (Number of CPUs*SpeedofCPU) may complete their execution faster than groups 

with slower machines (Number of CPUs*SpeedofCPU). And the group with the least 

(Number of CPUs*SpeedofCPU) ranking will perform poorly compared to the other groups if 

same tasks are assigned to all groups. It will be advisable to assign higher priority group jobs 

to higher configuration machine groups and lower priority job groups to lower configuration 

machine groups. This will ensure some load-balancing, improve overall execution time and 

ensure some level of QoS. However Priority is only one of the methods used within the 

GPMS. Table 11 shows the algorithm for splitting of jobs using the Similar Together 

(SimTog) method. 

Table 11 Algorithm for the SimTog method of grouping machines 

Step1:  Start 

Step2:  Sort machines based on configurations (i.e. number and speed of 

processors) 

Step3:  Determine g (g is the number of job groups) 

Step4: (Integer)-Divide number of jobs by g giving N           

Step5: Add top N machines to the first group 

Step6:  Add next N machines to the next group  

Step7:  Repeat Step7 until all machines are assigned 

Step8: Stop        
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4.5.2 Design of EvenlyDistributed (EvenDist) Method 

This method eliminates the immediate inadequacies in the SimTog method by ensuring that 

the various machines are equally or at best equally split and distributed into the groups (based 

on their configuration or performance specification). This method guarantees that each group 

has similar machine configurations. First, machines are sorted based on configuration or 

performance (Number of CPUs*SpeedofCPU) from slowest to fastest. Then the first machine 

is added to the first group, the second machine to the second group, then third to the third 

group and fourth machine to the fourth group. The process is then repeated until all machines 

have been allocated. This method provides a more balanced processing infrastructure which 

might suit some input job sets better than SimTog. Table 12 shows the algorithm for 

EvenDist method. 

 

Table 12 Algorithm for the EvenDist method of grouping machines 

Evenly Distributed Method 

Step1:  Start 

Step2:  Sort machines based on configurations (i.e. number and speed of processors) 

Step3:  Register number of groups 

Step4:  Add first machine to first group 

Step5:  Add next machine to next group  

Step6: Repeat Step5 until last group is reached.  

Step7: Add next machine to first group  

Step8: Repeat Step5 and Step6 until all machines are assigned to groups. 

Step9:  Stop 
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4.6 Experimental Testbed and Simulations  

 

This section presents the experimental test bed and simulation methods used to evaluate the 

GPMS.  First the simulation of the Grid is discussed and then a description is given of the job 

input source file and the attributes that were relevant to the evaluation, particularly with 

regard to simulation of execution time.  

Simulations were used rather than actual machines test on Grid sites because of the difficulty 

in accessing the real Grid system. Simulations were made of Grid sites, Grid machines, CPUs 

and execution times of jobs on the machines. 

 

4.6.1 Grid Site 

The Grid is composed of an aggregation of Grid sites that are distinguishable from others due 

to their peculiar differences like owners and policies. Grid sites are composed of several Grid 

resources or processing elements with varying configurations controlled by owner policies. 

The computing machines within each Grid site are unique with their distinct characteristics or 

attributes. A Grid site can contain any number of compute resources.  

Muthuvelu et al. (2005) in their study characterised Grid resource with: resource ID, name, 

total number of machines in each resource, total processing elements (PE) in each machine, 

MIPS of each PE, and bandwidth speed. The GPMS characterised the Grid with Grid ID 

(GId), the network bandwidth or speed of the network connection (n.b - Four categories were 

used to categorise network bandwidth in order to match the four priority groups used in the 

priority based grouping method), and the number of computing machines. The features of 

machines in the Grid were characterised differently because the machines in a Grid site are 

distinct and different from each other. The GPMS characterised Grid machines with machine 

ID (Mid), number of processors, speed of processors and RAM size.  Table 13 shows the 

features and characteristics of Grid site used in the simulation experiment. 
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Table 13 Features and characteristics of a Grid site 

Features Characteristics Attributes  

Network 

Bandwidth 

Every Grid site is connected to the Grid via 

a network and the speed of the network 

connecting the Grid site determines to an 

extent the performance of the Grid. The 

network bandwidth (NBW) or speed of a 

Grid site is therefore used as one of the 

attributes to characterize a Grid site.  

Network bandwidth or 

speed (NBW) are sub 

categorized into; Super-Fast 

(SF), Very Fast (VF), 

Medium Fast (MF) and Not 

Fast (NF) with weights 4, 3, 

2 and 1 respectively. 

Number of 

Machines  

This feature simply refers to the number of 

computers that the Grid site contains. The 

number of machines within a Grid site can 

be arbitrary. It can be any number and in 

some cases due to computer system 

characteristic of failure and repair, the 

number can vary from time to time. 

This number varies over 

time hence there is no need 

for categorization 

 

 

Grid ID This is the identification features of the Grid 

site. The Grid ID can be the name or number 

used to identify the Grid  

Name or number or 

combination of both 

 

4.6.2  Grid Machines 

Grid machines are the computing resources that make up a Grid site. Every Grid site contains 

hundreds to thousands of computing machines, and each computing machine is distinct by its 

configuration. Grid machines or compute resources are characterized by distinct features like 

the machine’s identification (MId), speed of processor (SP), number of processor cores 

(NPC) and RAM size. Table 14 shows the features of Grid machines used in the simulation 

experiment. 
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Table 14 Features and attributes of a Grid machine 

Features Characteristics Measure 

Machine 

Identification 

(MId) 

Used to identify an individual machine n/a 

The Number of 

Processor cores 

(NPC). 

 

The number of processors within a 

machine can determine how efficiently that 

machine can execute jobs. The number of 

processors contained within a machine is 

therefore a characteristic feature of the 

machine 

The number of 

processors contained 

in a Grid machine 

can vary from 1 to n, 

where n is the 

number specified  

The Speed of 

Processor (SP). 

The speed of processor of a machine 

determines how fast a job can be executed 

on a machine. This attribute is also used to 

determine to which group a machine is 

categorized.  

The speed of 

processors are rated 

in MHz or GHz  

The Ram Size  RAM is the part of memory where jobs in 

execution are held within each machine 

and plays a major role in determining how 

many jobs are executed over time. Large 

RAM sizes determine the size of jobs that 

can be resident in memory while in 

execution. It also determines how many 

jobs can be executed within the memory at 

the same time. 

This attribute RAM 

size is measured in 

MB or GB 

 

4.6.3 Simulation of Grid, CPU Speed and Number of Cores 

The Grid was simulated to be characterized by the following attributes: Category; CPU; 

RAM; Bandwidth. For example {A; 1200; 2000000; 1000} represents Grid site A, CPU 

1200, RAM 2000000, and Bandwidth 1000.    

The computer machine was defined with the following attributes: CORES; CPU; RAM.  For 

instance {2; 2000; 2000000} represents a Grid resource (machine) with 2CPUs, 2000 MHz 

(2GHz) and 2000000B (2MB). Table 15 shows the characteristics of the simulated Grid and 

Figure 12 is a schematic diagram of the GPMS and illustrates how users access the Grid. 

Users’ jobs are submitted to the Grid. The jobs are then sorted in parallel into groups from 
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where the multi-scheduler schedules them to Grid sites for execution. Results are returned to 

users after execution is complete. 

The Grid attributes discussed within this section are utilized by the GPMS in its scheduling 

decisions 

Table 15 Characteristics and components of the simulated Grid 

Grid Site Characteristics Grid Site Characteristics 

Number of 

machines  

Speed of 

CPU  

Number 

of CPU/ 

Cores 

Number 

of 

machines  

Speed 

of CPU  

Number 

of CPU/ 

Cores 

A 

240 

Machines 

30 

30 

30 

30 

30 

30 

30 

30 

1GHz 

2GHz 

3GHz 

4GHz 

1GHz 

2GHz 

3GHz 

4GHz 

1 

1 

1 

1 

2 

2 

2 

2 

C 

480 

Machines 

60 

60 

60 

60 

60 

60 

60 

60 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

1.5GHz 

2GHz 

3.5GHz 

4MHz 

2 

2 

2 

2 

4 

4 

4 

4 

B 

400 

Machines 

50 

50 

50 

50 

50 

50 

50 

50 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

2 

2 

2 

2 

4 

4 

4 

4 

D 

600 

Machines 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

1.5GHz 

2GHz 

3.5GHz 

4GHz 

2 

2 

2 

2 

4 

4 

4 

4 

8 

8 

8 

8 
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Figure 13: Schematic diagram of the system 

 

 

4.6.4 Local Policy 

Within every Grid is a local user policy that determines how resources within the Grid site 

are utilized by either incoming jobs or jobs from within the Grid site. Some policies are 

tailored to service jobs coming from outside the Grid site; other local policies are designed to 

favour jobs from within the site; while others try to strike a balance between the outside jobs 

and inside jobs.  
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Some policies are dynamic and can self-adjust to favour outside jobs when the internal nodes 

are not busy (close of work) and re-adjust to favour the internal jobs when they come alive (at 

the start of work). This work does not consider the effects of local policies on scheduling but 

assumes that all machines at Grid sites are available and directly addressable by the multi-

scheduler.   

 

4.6.5 Source of Jobs to the System 

When workloads are not available or do not represent the real usage of the system, there may 

be a discrepancy between the success of the system in theory and the success of the system in 

practice (Cirne and Berman 2001). Realistic workloads are critical for the design and analysis 

of computer systems (Chapin et al. 1999, Feitelson and Rudolph 1998 and Mache, and. 

Windisch 1998). Good sources of realistic workloads are logs that record the characteristics 

of jobs submitted to a production system (Cirne and Berman 2001). 

The Grid Workloads Archive (Iosup et al. 2008) is designed to make traces of Grid 

workloads available to researchers and developers alike. It is comprised of data from more 

than nine well known Grid environments, with a total of more than 2000 users who have 

submitted more than 7 million jobs. The Grid Workloads Archive project has lasted well over 

13 years spanning over 130 sites with over 10 000 resources. It contains files both in plain 

text format and the Grid Workload Format (GWF). The GWF file contains 29 attributes 

relating to the running of a job in a Grid. However, a very high percentage of the values are 

missing from some of the core fields (such fields that contain missing values are denoted with 

-1). These missing fields necessitated that some assumptions needed to be made in order to 

have sufficient input for the GPMS.  

A Grid scheduler should have the capability to accept users’ jobs as inputs which are Grid-

enabled before submission. Once jobs are submitted, they are either stored in buffers as files 

(batch mode) or scheduled immediately (immediate mode). Grid systems are capable of 

utilising real-time, online and batched data. The GPMS uses batched jobs made available 

from the GWA site for experimentation but the system can be adapted for real-time or online 

data in real life situations. 

The attributes of user jobs are the distinct items that characterize Grid jobs. Grid scheduling 
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algorithms depend largely on the attributes of jobs as specified for the optimization of the 

algorithm and delivery of quality of service.  The experiments used job attributes which were 

relevant for the purpose. Attributes used for estimating completion time of jobs are shown in 

Table 16. The full header file and file format of the GWA is shown in Appendix A while 

Appendix B acknowledges the contributors to the various trace files. 

 

Table 16 Selected attributes from the Grid Workloads Archive’s trace file 

Attribute Description 

ReqTime Requested time measure in wall 

clock seconds 

ReqNProcs Requested number of processors 

RunTime Time job actually executes 

AverageCPUTime

Used 

Average CPU time over all the 

allocated processors 

NProcs This is the number of allocated 

processors  

 

ReqTime: This is the expected execution time estimated and provided by the user.  

ReqNProcs (Computational / Processing Requirement): 

This is the number of processors specified by a user for the processing or execution of a job 

at the point of submission. It determines the computation requirement or the processing needs 

of a Grid job. It is simply stated in numbers. This value is used in the simulation to determine 

which machines are able to process the job and may contribute to estimating job size. 

RunTime: This is the actual execution time from when the job started to the time when it 

finished. 

AverageCPUTimeUsed: This is the time actually used by the processor to execute the task 

averaged over the number of allocated processors. 

NProcs: This is the number of processors allocated for execution 
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4.6.6 Simulation of Priority and Execution Time 

Table 17 shows some typical values of the relevant attributes of some rows from the GWF 

trace file.  The number of data items in the file is much larger than those shown in Table 17. 

However the attributes in Table 17 are the ones that were used to estimate priority and 

execution time in the simulation.  A larger sample from the trace file is given in Appendix A. 

 

Table 17 Example rows of values (relevant attributes only) from the GWF trace file 

JobID RunTime NProcs AverageCPUTime ReqNProcs ReqTime 

 

0 0 4 -1 4 3600 

1 19 1 -1 1 3600 

2 10 5 -1 5 3600 

3 8 90 -1 90 3600 

4 19 100 -1 100 3600 

5 25 1 -1 1 3600 

 

 

4.6.6.1 Simulation of Priority 

The Priority job grouping method needs a Priority metric for each job. The priority can be 

determined in various ways and can also be assigned directly by the user.  In this research a 

Grid Work Flow archive (Iosup et al. 2007) was used as input to the experimentation.  This 

archive did not include an explicit Priority measure. In the experimentation, the number of 

processors requested by the user (ReqNProcs) was used to determine the priority.  This 

approach was somewhat arbitrary but it was sufficient for the simulation.  

 

4.6.6.2  Simulation of Execution Time 

Scheduling of jobs in Grid environment is challenging and requires optimisation of multiple 

variables. To achieve optimum schedule and proper resource utilization, the correct 

estimation of a job’s execution time is vital. In some real systems, the user is required to 
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provide an estimate of the execution time of  a job to enable better scheduing. The accurate 

estimation of execution time of jobs improves the efficiency of the scheduling algorithm, 

improves resource utilisation, helps to reserve resources in advance and also serves to meet 

some user QoS.  

Estimating the execution time of jobs is a complicated task and has been the interest of many 

researchers (Liang et al. 2013, Quezada-Pina et al. 2012, Liu, Abraham and Hassanien 2010, 

Selvi et al. 2010, Franke, Lepping and Schwiegelshohn 2007, Tchernykh et al. 2006, Jeng 

and Lin 2005, Alem and Feitelson 2001, Braun et al. 2001, Ali et al. 2000, Hotovy 1996, and 

Tuomenoksa and Siegel 1981). In the GridSim experiment, Buyya and Murshed (2002) 

packaged jobs as Gridlets whose contents include the job length in MI (Million Instructions), 

the size of job input and output data in bytes along with various other execution related 

parameters. The job length is expressed in reference to the time it takes to run on a standard 

resource PE with (Standard Performance Evaluation Corporation) SPEC/MIPS rating of 100. The 

processing time of Gridlets is estimated based on 100 time units with a random variation of 0 

to 10%.  In another study, Tchernyk et al. (2006) and Franke, Lepping and Schwiegelshohn 

(2007) used the estimated execution time provided by the user at job submission as the 

execution time estimate of the jobs. In a related study, Liu, Abraham and Hassanien (2010) 

adopted a strategy to dynamically estimate the job lengths and estimate the completion time 

of jobs through load profiling, historical data or from some user defined attributes.  This 

method is inadequate as most users’ estimates have been found to be incorrect (Selvi et al. 

2010) and imprecise (Quezada-Pina et al. 2012). Selvi et al. (2010) used rough set techniques 

to analyse the history of jobs and estimate the execution time of jobs. The method groups 

similar jobs and identifies the group to which the newly submitted job belongs and based on 

this similar group identified, the execution time is estimated. But estimates based on historic 

data cannot be very reliable as users jobs are dynamic and subject to change. Liang et al. 

(2013) implemented a method to evaluate execution time estimation for parallel jobs based 

on user behaviours in clustering of execution time estimation. By exploring the job 

similarities and revealing the user submission patterns, they used behavioural clustering of 

execution time to establish a pattern for users’ jobs and used that to improve accuracy of 

overall job execution times. This method is also not very reliable as users’ behaviour is 

dynamic and subject to change.    
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In the GPMS experimentation, execution times of jobs are computed based on actual traces 

from Grid workloads archive. The execution times of the jobs are simulated with the size of 

jobs computed from ReqTime and ReqNProcs. If these values are not provided, the GPMS 

system uses the AverageCPUTimeUsed (average of CPU time over all allocated processors) 

provided in the log entry to estimate the execution time of the jobs before scheduling. 

The size of a job can be used to determine its processing or execution time – depending on its 

processing requirements. For instance if we multiple ReqTime by ReqNProcs we have some 

estimate of size.  A more accurate estimate may come from AverageCPUTime multiplied by 

ReqNProcs but AverageCPUTime was not always available. A value not available is shown 

as -1 in the file. Because of missing values it was not possible to accurately replicate original 

job size from the trace file but some values available were used to generate a set of jobs with 

estimated sizes. Whilst recognizing that this approach was somewhat arbitrary, the 

estimations served the experiment adequately as a range of jobs of varying sizes with which 

to experiment was provided. Appendix A shows typical values of the attributes from some of 

the rows in the trace file and Table 18 shows the pseudo code for estimating job size. 

Estimating execution time using file size and speed of the processors is easy and may seem 

one of the most feasible approaches (Xhafa and Abraham 2010) but the file size of jobs does 

not represent a true picture of the execution time of the job/file either. For instance some 

smaller jobs with several loops or iterations may take longer to complete than larger jobs 

without loops or iterations. In the same vein, some smaller jobs that require more I/O 

activities than larger jobs may take longer to complete due to slow processing activities 

caused by blocking during I/O request. 

In summary, estimation of execution time is difficult and error-prone and short of extremely 

detailed analysis of code and data which is likely to negate any benefits of parallelisation, any 

system can only attempt best efforts based on job size (e.g lines of code), user specified 

requirements, previous history, user or job profiling and various level of code and data 

inspection. 
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Table 18 Pseudo code for estimating size of jobs 

------- Pseudo code for job size-----------  

Job.Size 

 - calculated as  

 if(ReqTime != -1 AND ReqNProcs != -1) 

 Size = ReqTime * ReqNProcs 

 else if(ReqTime = -1 

  Size = ReqNProcs 

else Size = AverageCPUTimeUsed 

--------------  Explanation   ------------------ 

If the ReqTime (requested time) is 

provided and ReqNProcs (requested 

number of processors) is provided, then 

size is the product of the two variables, 

else if ReqTime is not provided, then size 

equals ReqNProcs.  

Else if both variables are not given, then 

size is derived from the average CPU 

time used. 

 

The simulation of the execution time was based on the job attributes provided in the file to 

estimate job size.  Job size is used to estimate how long a job of size x will take to execute on 

a standard machine which is deemed as a 1 core machine with 1GHz processor. Table 19 

shows the algorithm for the simulation of the execution time of the job on a particular 

machine.  

Table 19 Algorithm for simulating execution time of jobs 

                                         SIMULATION OF EXECUTION TIME 

Step 1: Start 

Step2: Set the job size to be job execution time (T) on a reference machine (1 GHz, 

1core) 

Step3: Scale the expected time to match the current machine 

Step4: Calculate performance ratio (R) between the current and the reference machine 

Step5: Return the expected execution time divided by the performance ratio (T/R) 

Step6:Stop  

4.6.6 Executing Dynamically Generated Jobs 

Scheduling of jobs without prior knowledge of the execution time of the jobs is referred to as 

non-clairvoyant scheduling. Quezada-Pina et al. (2012) noted that scheduling jobs with 

unspecified execution time is difficult, decreases the efficiency of the scheduling algorithm 
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and of the scheduler, as time is spent calculating (estimating) the execution time of jobs on 

machines.  

The GPMS system deals with batched jobs and requires that a limited number of jobs are 

available before grouping of jobs can begin. If jobs are generated dynamically or received 

real-time from users, then based on the attributes provided by users, GPMS would gradually 

batch the jobs, computes the size or execution time of the jobs (based on the attributes 

provided), then, when the required batch number is reached, group the jobs before 

scheduling.  Hence, if jobs are generated dynamically or if users’ jobs are accepted in real-

time, considerable time will be wasted while waiting for jobs to get to the limit for a batch. 

Also, job slowdown will be high if the number of jobs does not get to the limit on time. 

To lessen the time wastage and reduce the slowdown, the job limit can be reduced to allow 

grouping and scheduling activities to take place more frequently. Future research could be to 

investigate how to efficiently combine batch scheduling with dynamic scheduling so that 

urgent jobs do not have to wait. 

       

4.7 Experimental Design 

This section discusses the experimental design and the platform of execution. The 

experiments employed the three job grouping methods in turn with each of the two machine 

grouping methods presented in section 4.5. Experimentation was carried out in phases. Seven 

different experiments were carried out, each of which consisted of a number of variations. 

 In the first instance, the MinMin scheduling algorithm was executed to schedule a range of 

jobs. This first experiment is treated as the base experiment and results from this experiment 

are compared against results from the other experiments. 

The second and third experiments used the Priority job grouping method in combination with 

the two machine grouping methods (SimTog and EvenDist). The fourth and fifth experiments 

used the ETB method in combination with the two machine grouping methods. And lastly, 

the sixth and seventh experiments used the ETSB method in combination with the two 

machine grouping methods. 

The experimentation was executed on one of Coventry University’s HPC systems – known 
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locally as Pluto. The configuration of the HPC machine (Pluto) system on which the 

experiment was executed is as follows:  

Number of physical CPUs per node/head: 2 

Numbers of cores per one compute node/head: 12 

CPU family: Intel(R) Xeon(R) CPU X5650 2.67 GHz stepping 02 

Operating System: Linux x86_64 RHEL 5 

In the experiment, a Grid environment was simulated comprising of four Grid sites each 

consisting of machines with different CPU speeds and number of processors.  The parameters 

used in the experiment are the number of groups, number of threads used (varied from 1 to 16 

in steps 2 n  (n = 1 to 4) and the number of jobs scheduled ranged from 1000 to 10000in steps 

of 1000. 

4.7.1 The Experiments  

The various experiments are discussed in this section.  

Experiment 1 – the Base Experiment 

In the first experiment, the MinMin algorithm was executed on the HPC system to schedule a 

range of jobs (from 1000 jobs to 10000 jobs in steps of 1000). This was repeated using 1, 2, 

4, 8 and 16 threads. In each instance of the experiment, the time of scheduling was recorded. 

Time of scheduling is the time taken to schedule each set of jobs, that is the time taken to 

schedule 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10000 jobs in turn by 

each of the thread cardinalities. This experiment executes only the MinMin algorithm without 

employing the grouping method.  

Experiment 2 – Priority Method 1 (uses four constant groups) 

The second experiment used the Priority method to group jobs and the SimTog method to 

group machines before implementing the MinMin scheduling algorithm within the paired 

groups to schedule the same range of jobs as in the first experiment (1000 to 10000 in steps 

of 1000). For each instance of the scheduling execution, the time it took to schedule the range 

of jobs was recorded. This experiment used only four groups because there were four priority 

groups of jobs, while the number of threads was varied from 1 to 16 in steps 2 n  (n = 1 to 4). 
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For each of the combinations, time taken to schedule and the makespan for each variation 

was recorded. 

Experiment 3 - Priority Method 2 (uses four constant groups) 

The third experiment used the Priority method to group jobs and the EvenDist method was 

used to group machines before implementing the MinMin algorithm within the paired groups 

to schedule same range of jobs (1000 to 10000 in steps of 1000). This experiment also used 

only four groups because there were four priority groups of jobs while the number of threads 

was varied from 1to 16 threads in steps 2 n  (n = 1 to 4).   For each of the combinations, time 

taken to schedule and the makespan for each variation was recorded. 

Experiment 4 – ETB Method 1 (varied groups from 2, 4, 8 to 16) 

The fourth experiment used the ETB method to group the jobs and the SimTog method to 

group machines before implementing the MinMin scheduling algorithm to schedule the same 

range of jobs as in experiment 1 above between paired groups of jobs and machines. Several 

runs of the experiment were made using 2, 4, 8 and 16 groups in turn. For each group, the 

number of threads used was varied between 1, 2, 4, 8 and 16. For each of the combinations, 

time taken to schedule and the makespan for each variation was recorded. 

Experiment 5 - ETB 2 (varied groups from 2, 4, 8 to 16) 

The fifth experiment used the ETB method to group jobs and the EvenDist method used to 

group the machines before implementing the MinMin scheduling algorithm to schedule same 

range of jobs in experiment 1 between paired groups of jobs and machines. The experiment 

was executed using 2, 4, 8 and 16 groups in combination with 1, 2, 4, 8 and 16 threads. For 

each of the combinations, the time taken to schedule and the makespan for each variation was 

recorded. 

Experiment 6 – ETSB1 (varied groups from 2, 4, 8 to 16) 

The sixth experiment used the ETSB method to group jobs and the SimTog (SimTog)method 

was used to group machines before implementing the MinMin scheduling algorithm to 

schedule the same range of jobs in experiment 1 above between paired groups of jobs and 

machines. The experiment was executed with 2, 4, 8 and 16 groups in combination with 1, 2, 

4, 8 and 16 threads. For each of the combinations, the time taken to schedule and the 

makespan for each variation was recorded. 
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Experiment 7 - ETSB 2 (varied groups from 2, 4, 8 to 16) 

The seventh experiment used the ETSB method to group the jobs and the EvenDist method 

to group the machines before implementing the MinMin scheduling algorithm to schedule the 

same range of jobs in experiment 1 above between paired groups of jobs and machines. 

Several runs of the experiment were made using 2, 4, 8 and 16 groups in turn. For each 

group, the number of threads used was varied between 1, 2, 4, 8 and 16. For each of the 

combinations, the time taken to schedule and the makespan for each variation was recorded. 

 

4.7.2 Relationship between a job, a thread and a group 

The GPMS uses two different groups: job group and machine group. 

A job group is made up of several jobs (sorted) based on the jobs attributes and the method 

used for sorting them. Likewise, a machine group is made up of several machines (sorted) 

based on their configurations and the method used in categorising them. Hence, the 

relationship between a group and a job is one-to-many.   

Threads are lightweight processes or units of execution and multicore systems possess the 

capacity to concurrently execute processes and threads. Threads are exploited in the GPMS to 

enhance parallelism and increase scheduling throughput.  

Based on the experiments carried out for this research; the number of groups was varied 

between 2, 4, 8 and 16. Threads were varied from 1 to 16 in steps of power 2 ( n2 ) to 

simultaneously execute the scheduling algorithm in parallel. For instance, with two groups, a 

range of threads from 1 to 16 in steps of power 2 were used. With four groups, a range of 

threads from 1 to 16 in steps of power 2 were used. With eight groups, a range of threads 

from 1 to 16 in steps of power 2 were used and so forth. In a typical scenario, the systems 

administrator would set the number of threads to be used based on performance requirements 

and system load. However, the GPMS system does not currently have direct control over 

assigning threads to particular cores or functions. Use of multiple threads though encourages 

parallelism in the processing. 

In this research, results are presented where the number of threads equals the number of 

groups. 
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 4.7.3 The Grouping of Jobs and Machines in GPMS 

The GPMS system employs both job groups and machine groups; jobs are batched before 

grouping. The system creates the same number of job groups and machine groups by 

grouping the machines and then for each execution groups the jobs according to the specified 

number of machine groups. Machine groups and job groups are created and paired before 

scheduling; hence the number of job groups and machine groups are always equal. It is 

currently part of the GPMS algorithm to create the same number of job groups and machine 

groups. The GPMS system therefore is the agent that creates the groups in the first place so 

can ensure equality.  Typically the machines are grouped or re-grouped less frequently than 

jobs.  For instance a grouping of machines would be made (assume N groups) and this 

grouping would persist until the administrator determined that it was no longer the required 

grouping. The machine grouping might last days or months. Meanwhile jobs as they enter are 

batched and when a certain number of jobs have been entered, they are grouped into N 

groups to match the number of machine groups.  Thus job groups and machine groups are 

always the same and this is part of the GPMS method. However, with modification, the 

system could adequately respond to situations with differing job and machine groups. For 

instance, a ‘multiple-group pairing’ strategy could be implemented to pair more groups of 

machines to groups of job or vice versa. Multiple-group pairing in this case might involve the 

pairing of more than one job group to one machine group or pair more than one machine 

group to one job group. However such multiple-group pairing was not explored in this 

research since a basic tenet of the GPMS matching is to ensure equal number of groups for 

jobs and machines. 

 

4.7.4 Combination of the Number of Experiments 

In each of the experiments, the MinMin algorithm was executed on an HPC system to 

schedule a range of jobs from 1000 jobs to 10000 jobs (in steps of 1000). The experiment was 

controlled in steps of 1000 so that the effect of increasing jobs on the speedup could be 

determined.  In the experimentation the threads were varied from 1 to 16 in power 2 ( n2 ) and 

the groups were varied between 2, 4, 8 and 16. Steps of power 2 was considered because 
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multicore computers exist in that order and a relationship can be easily establish between the 

number of groups used, number of threads used and number of CPUs used. 

The complete experimentation yielded many results because of the combinations of several 

variables (number of groups, number of threads, job grouping method and machine grouping 

methods). For each instance of the experiment, the timeofScheduling (the time taken to do 

the scheduling) for each set of jobs, for each method, for each number of groups, and for each 

number of threads was recorded. This combines to give very high number of experiments and 

results.  

For the base experiment (Ordinary MinMin) there were10 scheduling instances(1000 to 

10000 in steps of 1000), combined with five possible threads (1, 2, 4, 8, 16), combined with 

just 1 group number (Ordinary MinMin does not use grouping so one can consider the input 

job set to be a single group) and combined with the two machine grouping methods. 

For the Priority method there were10 scheduling instances (1000 to 10000 in steps of 1000), 

combined with five possible threads (1, 2, 4, 8, 16), combined with just 1 group number (the 

Priority method always used 4 groups) and combined with the two machine grouping 

methods. 

 For the ETB and ETSB methods, there were of 10 scheduling instances(1000 to 10000 steps 

1000), combined with five possible threads (1, 2, 4, 8, 16), combined with four possible 

group number variations (2, 4, 8, and 16) and combined with the two machine grouping 

methods. 

  

4.8 Shortcomings of the Grid Workload Archive  

In the Grid workload archive, more than 90% of the fields for ReqNProcs have 1 as the value. 

This attribute (ReqNProcs) was used to determine the priority of the job in the priority 

grouping method (jobs with ReqNProcs = 1 are sorted to ‘low priority’ group). This impacted 

heavily the result of experiment on the Priority job grouping method as more of the jobs were 

sorted to a single group instead of spreading into all four groups. Hence, as the number of 

jobs increased, the performance of the method decreased against the MinMin. This also 

informed the decision to implement the ETB and ETSB methods.  
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Also, in the Grid Workload archive, more than 90% of the values for AverageCPUTimeUsed 

are not provided and are denoted with -1. The averageCPUTimeUsed may represent the 

actual execution time of the job on the system as this value in most cases should be from the 

system after job execution but unfortunately, the values are not provided. This however does 

not affect the result much because AverageCPUTimeUsed is a second option used only when 

ReqTime and ReqNProcs are not provided. Furthermore, the sizes of jobs are not provided in 

the workload. Hence the GPMS system uses attributes (ReqTime and ReqNProcs) in the Grid 

workload archive to estimate the job sizes and uses the size of job to estimate execution time.  

These factors combine to make the Grid workload archive inadequate in its raw form for 

experiments involving the size of jobs, estimation of processing time and equal spread of 

requested number of processors. The inadequacy was overcome by the method described 

previously for estimating job size. 

     

4.9 Summary 

This chapter has discussed the design of the Group-based parallel Multi-Scheduler (GPMS) 

for Grid, the simulations and the various experiments carried out. It started by defining the 

functions of the system, identifying the components to perform the functions and then 

described the design of the system. The chapter then described the simulation of Grid site and 

Grid machines and their attributes. It also described the various experiments and the number 

of combinations of the experiments or results. 

The GPMS is focussed on grouping jobs and machines and then running parallel instances of 

the MinMin scheduling algorithm within paired job-machine groups. Various grouping 

methods have been developed and the design of these was presented in this chapter.  

The next chapter presents the results of the experimentation and the analysis of the GPMS 

methods. 
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CHAPTER FIVE 

RESULTS AND ANALYSIS OF THE GPMS METHODS 

 

5.1 Introduction 

This chapter presents the results from the experiments discussed in Chapter Four, and the 

evaluation of each of the GPMS methods results against the ordinary MinMin. The analysis 

and evaluation is presented in four sections in which results of the Priority method, the ETB 

method and the ETSB method respectively are compared against the ordinary MinMin. This 

is followed by a comparative analysis of all the GPMS methods.  

 

5.2 Results and Performance Evaluation of the Priority Method 

This section discusses results and analysis of experiment 2 and experiment 3 and evaluation 

of the Priority method against the ordinary MinMin (experiment 1). Comparison was also 

made between the two machine grouping methods to ascertain which one works better with 

the Priority method. 

 

5.2.1 Presentation of Results (Priority) 

The analysis of the results presented in this section is based on four threads in order to create 

a one-to-one relationship between groups and threads. Also, the other results exhibited the 

same pattern or characteristic across threads. Four threads was chosen for presentation 

because this represents the median of threads used and also because it easily matched the four 

groups used in the Priority method. Two methods of evaluation were used. These were 

termed speedup and performance improvement. The speedup was evaluated against the 

ordinary MinMin at each scheduling interval but performance improvement was evaluated 

against the MinMin and also between the successive groups using the total scheduling time.  

The Priority method splits jobs into priority groups based on their attributes. Machines are 

also split into the same number of groups based on their configurations. Each priority group 

of jobs is then paired to a machine group before the MinMin scheduling algorithm is 

executed within groups in parallel. A priority group in this context means a group containing 
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a collection of jobs which have been determined to have a similar priority. These jobs might 

possess some similar characteristics or meet certain requirements that resulted in them being 

sorted into the same priority group. 

The result for the experiments and the computation of correlation, Analysis of Variance 

(ANOVA) significance test and standard deviation is shown in Table 20. Table21 shows the 

computation of improvement in multiples and in percentages. The correlation results between 

the methods shows a general pattern across methods – that results are strongly correlated with 

values close to 1 (0.9x). The ANOVA significance test also shows a significant difference 

between the Priority methods and the MinMin. The standard deviation and mean of the 

MinMin algorithm was 19831.78 and 24203.3 respectively). This means that the result of the 

MinMin is scattered from its mean.  The standard deviation and mean of the PrioritySimTog 

method was 4085.54 and 4100.6 respectively. The standard deviation and mean of the 

PriorityEvenDist was 3845.52 and 3580.7 respectively. This means that the results for the 

Priority methods are spread closer to the mean. See Table 20 for values of standard deviation.  

Table 22 shows the computed speedup against the MinMin algorithm as the scheduling 

continues from 1000 jobs to 10000 jobs. The raw results show differences in scheduling time 

between the two machine grouping methods (EvenDist and SimTog). However, the Anova 

computation shows no significant difference between results of the two machine grouping 

methods. Figures 13, 14, 15, 16, 17and 18 illustrate how the Priority method compares with 

the MinMin method. 

Figure 13 shows the percentage average and total scheduling times used by the methods 

(ordinary MinMin, Priority-EvenDist and Priority-SimTog) to schedule the same range of 

jobs. It shows that the ordinary MinMin took a total of 242033 Milliseconds, the SimTog 

method used 41006 Milliseconds and the EvenDist method used 35807 Milliseconds to 

schedule same range of jobs. In percentage, the MinMin used 76% of the time to schedule the 

jobs, while using the Priority method, the SimTog method used 13% of the time to schedule 

the same jobs and the EvenDist method used just 11% of the total time to schedule the same 

range of jobs.  

The EvenDist method recorded between 5.0 to 11.8 times speedup (with an average of 6.8 

times) speedup against the ordinary MinMin algorithm while the SimTog method recorded 

5.0 to 9.6 times (with an average of 5.9 times) speedup against the ordinary MinMin 
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algorithm as the number of jobs increases from 1000 to 10000 (see Table 22 and Figure 14). 

The best speedup is achieved when number of jobs equals 4,000. This may be due to jobs at 

this stage being more balanced into the four groups.  At this point, the speedup was equal to 

11.8 for the EvenDist method and 5.9 for the SimTog method.  

The EvenDist method recorded from 80% to 92% speedup with an average of 87% speedup 

over the ordinary MinMin algorithm and the SimTog method recorded a range of 80% to 

90% with an average of 85% speedup against the ordinary MinMin algorithm (see Figure 15).  

Figures 14 and Figure 15 show the speedup in multiples and speedup in percentage by the 

Priority method over the ordinary MinMin. The speedup improved from 6.9 times to a 

maximum of 11.8 times as the number of jobs increased from 1000 jobs to 4000 jobs. Then it 

began a downward trend. This negative slope of the speedup as the number of jobs increases 

indicates that even though the method was generally better than the MinMin, performance 

was degrading as the number of jobs increased. This is attributable to the type of jobs used in 

the experiment and the Priority method for grouping jobs and is discussed in section 6.2.2. 

Figure 16 shows the time used by the methods to schedule as the number of jobs increases. It 

shows that as the number of jobs increases from 1000 to 10000, the scheduling time also 

increases but the scheduling time of the MinMin increases faster. This is because the Priority 

method distributes the jobs into groups before scheduling the jobs in parallel.  Figure 17 also 

compares the total and average scheduling times of the methods used. It shows that the 

Priority grouping methods performed better than the ordinary MinMin. Figure 18 shows the 

performance chart for the MinMin and the Priority methods and also shows the polynomial 

nature of the methods. The Priority methods performed far better than the MinMin but the 

performance was degrading as the number of jobs increases. This was because jobs were not 

uniformly distributed based on priorities. Hence, more jobs were being sorted to and 

scheduled from one group.  
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Table 20 Results and computation of correlation, ANOVA and standard deviation (Priority) 

Jobs 

Limit 

MinMin Priority Method Correlation ANOVA 

Significance 

Test 

Standard 

Deviation 

EvenDi

st 

SimTog 

1000 654 95 105 Between  

MinMin  

and 

EvenDist = 

0.9740 

(Strongly 

correlated) 

Between  

MinMin and  

EvenDist 

P-value=0.006 

(significant) 

MinMin  = 

19831.78 (Less 

than and wide 

from mean of 

24203.3) 

2000 3230 340 412 

3000 7601 673 839 

4000 12920 1092 1345 

5000 18219 1776 2008 

6000 22671 2837 3339 Between  

MinMin 

and  

SimTog 

=0.9895 

(Strongly 

correlated 

Between  

MinMin and  

SimTog  

P-value=0.006 

(significant) 

Priority-EvenDist 

= 3845.52 

(greater and close 

to the mean of 

3580.7) 

7000 29504 3860 4570 

8000 39074 5312 7500 

9000 48178 7818 8830 

10000 59982 12004 12058 

Total 242033 35807 41006 Between  
EvenDist 
and  
 SimTog = 
0.9876(Stro
ngly 
correlated) 

Between  
EvenDist and  
 SimTog  
P-value =0.772 
(not 
significant) 

Priority-SimTog  
 = 4085.54 

(Less than and 
very close to 
mean of 4100.6) 

Ave 24203.3 3580.7 4100.6 
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Table 21 Performance in multiples and in percentage 

Performance 

Improvement  

MinMin EvenDist SimTog 

TotalSchedTime 242033 35807 41006 

Performance Improvement In Multiples 

Where
1x  = MinMinTotal  

   and   

2x =
DistiorityEvenTotalPr

   or            

2x =
ogioritySimTTotalPr

 

2

1

x

x
 =6.76  

 
2

1

x

x
= 5.90 

 

 Performance Improvement In Percentage 

Where
1x  = MinMinTotal  

   and   

2x =
DistiorityEvenTotalPr

   or            

2x =
ogioritySimTTotalPr

 

100*
1

21

x

xx 
 

 

=  85.20574 

 

100*
1

21

x

xx 

=   83.05768 

 

 

 

Table 22 Speedup in percentage and in multiples 

      Speedup Speedup 

   Schedule Time in seconds   (%)   (X)   

JobsLimit   MinMin EvenDist SimTog EvenDist SimTog EvenDist SimTog 

1000  0.7 0.1 0.1  85% 84%   6.9 6.2  

2000  3.2 0.3 0.4  89% 87%  9.5 7.8  

3000  7.6 0.7 0.8  91% 89%  11.3 9.1  

4000  12.9 1.1 1.3  92% 90%  11.8 9.6  

5000  18.2 1.8 2.0  90% 89%  10.3 9.1  

6000  22.7 2.8 3.3  87% 85%  8.0 6.8  

7000  29.5 3.9 4.6  87% 85%  7.6 6.5  

8000  39.1 5.3 7.5  86% 81%  7.4 5.2  

9000  48.2 7.8 8.8  84% 82%  6.2 5.5  

10000  60.0 12.0 12.1  80% 80%   5.0 5.0  

Total  242.1 35.8 40.9  - -  - -  

Average   - - -   87% 85%  6.8 5.9  
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Figure 14: Percentage average and total scheduling times for MinMin and Priority 

 

 

 

 

 

Figure 15: Speedup in multiples by Priority over MinMin 
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Figure 16: Speedup in percentage by Priority over MinMin 

 

 

 

 

 

 

Figure 17: Total scheduling time of Priority and MinMin with increasing number of jobs 
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Figure 18: Total and average scheduling time of Priority and MinMin 

 

 

 

 

 

Figure 19: Polynomial pattern of the Priority methods 
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5.2.2 Discussion of Results (Priority) 

There was a significant difference in performance between the Priority method results and 

that of the MinMin. The EvenDist method performed better than the MinMin by 6.76 times 

representing 85% while the SimTog method performed better than the MinMin by 5.9 times 

representing 83%.  The EvenDist method also performed better than the SimTog method by 

some margins but the difference was not significant from the ANOVA test carried out. Figure 

13, Figure 14, Figure 15, Figure 16 and Figure 17 shows the graphs detailing the performance 

of the three methods, while Table 20 shows the analysis of variance, correlation and standard 

deviation.  

Though both EvenDist and SimTog methods performed better than the MinMin algorithm, 

the pattern of the graph for both methods was generally polynomial (see Figure 18). The 

performance was degrading relatively as the number of jobs increases. This is exacerbated by 

the fact that more jobs in the test data set were scheduled to one machine group while the 

other machine groups ended up with fewer jobs. Hence, as the number of jobs increases, the 

number of jobs in that one priority group approaches same number of jobs as in the non-

grouping method, thereby degrading the general performance. 

This effect can be dampened by making sure that jobs are equally distributed among the 

groups. Polynomial time has the characteristic that as the number of instances of the input set 

increases so does the time per instance. Thus grouping jobs to create smaller sets and 

scheduling in parallel improves performance. Smaller sets and parallel execution/scheduling 

reduce the time required per instance as the total time required to schedule each set is greatly 

reduced.    

With the Priority method, it cannot be guaranteed that the jobs are equitably distributed 

among the groups. There is always the possibility that while some groups are still very busy 

scheduling jobs, others will have finished scheduling and remain idle. In the experiment, this 

affected the overall schedule time. This observation prompted the researcher to explore 

methods that can at least ensure that jobs are to a large extent equitably distributed among the 

groups. 

The Priority method aims at improving scheduling time. However improvements in 
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scheduling time are not valuable if the resulting schedule is inferior to one which would have 

been produced via a slower scheduling algorithm.  Where many of the input jobs have the 

same priority, they will be assigned to the same group of machines which could cause an 

imbalance in processing activity. This might result in a poorer schedule than would have been 

the case if machines were not grouped.  On the other hand, if the priority is evenly distributed 

across the input jobs, then the resulting schedule is likely to be equal to or of better quality to 

one produced without grouping.  If the machines are normally distributed and the EvenDist 

method is used for machine grouping, then the execution time should be the same for all 

priority groups, whereas if SimTog is used the execution time and quality of service could be 

improved if higher priority and larger jobs could be assigned to the groups with better 

machine configuration. In these cases, makespan should be improved, where makespan is 

considered to be a combination of both scheduling time and execution time. However much 

depends on the exact requirements of the incoming jobs and the characteristics of the 

receiving Grid. Thus it can be concluded that an even balance of jobs across groups is 

desirable and also that tuning the scheduling parameters according to incoming job 

characteristics would be beneficial towards achieving a better schedule. 

Since there were only four groups used in the experiment, the effect of grouping on 

performance cannot be fully ascertained. It would be worthwhile to implement a method 

where the number of groups is not restricted by the method itself. Effort should focus on 

methods that allow the number of groups to be varied just as the number of threads. This will 

throw more light on the effect of grouping on the performance of scheduling algorithms.  

Also, the impact of performance, grouping and number of processors used for execution 

needs to be explored further.   

Another observation worth mention and discussion is how both machine grouping methods 

obtained the highest speedup against the MinMin at the point when the number of jobs equals 

4000. The SimTog method recorded 9.6 as highest speedup and the EvenDist method 

recorded 11.8 as highest speedup – all at the point when number of jobs equal 4000.  Could it 

be that the four thousand jobs were better shared into the four priority groups and scheduled 

more effectively? This phenomenon also calls for further investigation for a method that 

distributes jobs equally into groups despite their attributes to enhance scheduling. Following 

these results, the researcher investigated other grouping methods.  
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Employing the Priority method improves the performance of the MinMin scheduling 

algorithm substantially but because the number of groups was constant, the relationship 

between varying (increasing) the number of groups and improvement in scheduling 

efficiency cannot be ascertained. More of the jobs were allocated to a single priority group as 

they exhibited similar characteristics – this also affected the performance of the scheduler as 

the number of jobs increased. Hence, further investigation is required for methods that ensure 

jobs are equally distributed into groups and number of groups is variable. This will reveal the 

effect of increasing the number of groups on scheduling efficiency. The design of the ETB 

and ETSB were therefore proposed. These two methods are intended to correct the 

shortcomings inherent in the Priority method.     

 

5.3 Results, Analysis and Evaluation of the ETB Method 

5.3.1 Presentation of Results (ETB) 

This section presents results and analysis of experiment 4 and experiment 5 which comprise 

the evaluation of the ETB method against the ordinary MinMin (experiment 1). 

The ETB method seeks to improve on some of the drawbacks inherent in the Priority method. 

Hence, it uses a method that ensures jobs are evenly or equally spread into groups. The 

method uses an estimation of the processing time (or execution time) for each job to group 

the jobs.  It attempts to share jobs equally into all groups by trying to even out the total 

processing times or execution time of jobs in all groups. It does this by selecting a job and 

adding it to a group with the least total execution time. For each job added to a group, the 

totalestimatedTime for the group is updated by adding the execution time of the job to that 

of the group. Then the next job is selected and the group with the least total execution is 

picked as the candidate for addition. By adding the next job to the group with the current 

lowest total processing time, the method ensures that jobs are spread equally into all groups – 

even if not by number. Machines are distributed into same number of groups as jobs – this is 

to enable a one-to-one pairing between job groups and machine groups. Pairings are then 

made between job groups and machine groups, and then multiple instances of the MinMin 

scheduling algorithm are executed within paired groups (multi-scheduling) using multiple 

threads (multithreading) in parallel.  
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Table 23 and Table24 show the results and computation of speedup over the MinMin 

algorithm by the ETB methods using 2 to 8 groups. The MinMin used a total of 242033ms 

and an average of 24203.3 ms to schedule the job sets. Using two groups, the ETB-EvenDist 

method used a total of 34862ms and an average of 3486.2 ms to schedule the same range of 

tasks. Four groups used a total of 4701 ms and an average of 470.1 ms to schedule the task, 

while eight groups used a total of 1435ms and an average of 143.5 ms to schedule same tasks.  

In the same vein, the ETB-SimTog used a total of 34667ms and an average of 3466.7ms to 

schedule the same tasks when using 2 groups. It used a total of 5224ms and an average of 

522.4ms for 4 groups to schedule same tasks and a total of 1541ms and an average of 

154.1ms for 8 groups to schedule the same set of jobs.  

Figure19 shows the total scheduling time and average scheduling time for ETB-EvenDist. It 

shows that with the ETB-EvenDist, the ordinary MinMin took 86% of the total time, 2 groups 

took 12% of the time, 4 groups used just 2% of the time to schedule same range of tasks 

while the time used by 8 groups is very negligible compared to the rest. Figure 20 shows total 

scheduling time and average scheduling time for the ETB-SimTog method.  

From Table 23 and Figure 21, the ETB-EvenDist method exhibited similar pattern across all 

groups (2, 4 and 8). The speedup increased to a point then declines as the number of jobs 

increases from 1000 to 10000. For instance, using 2 groups, the speedup in multiples 

improved from 6.48 times (at 1000 jobs) to 9.92 times (at 3000 jobs). The speedup then 

declines as the number of jobs increases to 10000. With 4 groups, the speedup improved from 

16.35 (at 1000 jobs) to 59.19 times (at 6000 jobs) before declining while using 8 groups, the 

performance improved from 59.45 times (at 1000 jobs) to 182.19 times (at 5000 jobs). The 

performance then declines as the number of jobs increases to 10000.   

These results represent a significant performance improvement over the MinMin algorithm 

on group basis. For instance, when scheduling with two groups, the ETB-EvenDist and ETB-

SimTog recorded an average of 6.94 and 6.98 times performance improvement over the 

MinMin respectively. Using four groups, the performance improvement was 51.49 and 46.33 

times respectively over the MinMin. When using eight groups, the performance improved 

over the MinMin by 168.66 and 157.06 times respectively. Table 25 provides the ANOVA 

test results which reveal the significance differences between the groups. Taking P values less 

than 0.05 to indicate significance, the analysis showed that all differences were found to be 
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highly significant with very low P values. For instance, there were significant differences 

between the MinMin and the ETB-EvenDist and between the MinMin and the ETB-SimTog 

methods. Significant differences were also found between successive ETB groups. This 

meant that increasing the number of groups impacted the result considerably.    

Table 23 shows the result of experiments for the ETB-EvenDist method and the speed in 

multiples and in percentage. Table24 shows the speedup in multiples and in percentage for 

the ETB-SimTog method. Significant speedup was recorded at each level of job scheduling, 

scheduling from 1000 to 10000 jobs in steps of 1000. Using 2 groups, the ETB-EvenDist 

method recorded between 6.32 to 9.92 times speedup with an average of 7.62 times speedup 

against the MinMin. Using four groups, the ETB-EvenDist method recorded between 16.35 

to 59.19 times with an average of 47.46 times speedup over the MinMin. Eight groups 

recorded between 59.45 and 182.50 times speedup and an average of 155.33 times speedup 

over the MinMin. In the same vein, when using two groups, the ETB-SimTog recorded 

between 5.33 to 11.10 times speedup with an average of 8.15 times speedup against the 

MinMin. Using four groups, the method recorded between 20.44 to 76.78 range speedup and 

an average of 50.39 times speedup against the MinMin. And with 8 groups, the method 

recorded between 65.40 to 187.82 range of speedup and an average of 147.28 times speedup 

against the MinMin. Across all the groups, as the number of jobs increases, there was a 

general improvement in the speedup to a point beyond which the rate of speedup declines. 

Figure 21 and Figure 22 shows the speedup in multiple while Figure 23 and Figure 24 show 

the speedup in percentage for the ETB-methods.  

There was a significant performance improvement by the ETB methods over the MinMin as 

the number of groups increased. Increasing the number of groups decreases the number of 

jobs per group and therefore decreases the total scheduling time. Figures 25, 26 and 27 show 

the scale of the improvement recorded against the MinMin by the ETB methods with 

increasing number of groups.  As the number of groups changes from two groups to eight 

groups, the scheduling efficiency improved significantly over the MinMin. This shows that 

using more groups increases the performance of the scheduling algorithm. Figure 25 shows 

that as the number of groups changes between 2, 4 and 8, the ETB-EvenDist method recorded 

6.94 times, 51.49 times and 168.66times improvements respectively. While for the ETB-

SimTog, the improvements recorded by 2, 4 and 8 groups were 6.98, 46.33 and 157.06 times 

respectively.  
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The GPMS sorts a number of jobs into independent groups from where scheduling operations 

can take place in parallel. The number of groups used range between 2 and 16 groups. For the 

method to achieve high scheduling efficiency against other scheduling algorithm, it is 

required that each group has a number of jobs to schedule in parallel. Hence, if the number of 

jobs to be scheduled is low or equal to the number of groups, the experiment can be set up but 

the GPMS method might not record significant gain over the other scheduling algorithms. 

This is so because of overheads in making and maintaining groups outweigh the advantages 

of group parallel scheduling when the number of jobs is low or equal to the number of 

machine groups. 

Figure 26 shows the improvement of the ETB-EvenDist method over MinMin and between 

successive groups.  Figure 27 shows the improvement of the ETB-SimTog method over 

MinMin and between successive groups. Although there was a general performance 

improvement over the MinMin as the number of groups increases, the rate of performance 

improvement of a successive group over its predecessor (within same method) decreases 

generally. For instance, using the ETB and EvenDist method, the rate of improvement of two 

groups over the ordinary MinMin was 6.94. As the group increased from 2 groups to 4 

groups, there was performance improvement of 47.46 over the MinMin but between 2 groups 

and 4 groups within same method, the improvement rate was just 7.41. Furthermore, as the 

group increased from 4 groups to 8 groups, performance of the method over the MinMin 

improved 155 times but between 8 groups and 4 groups, the improvement was only 3.28 

times and 8 groups performed better than 2 groups by 24.29 times. This slowdown in 

performance between successful groups is caused by shared rersurces contention between 

increased threads.     

Figure 27 shows the improvement of the ETB-SimTog method over MinMin and between 

successive groups. Using the ETB-SimTog method, 2 groups improved about 6.98 times over 

the MinMin and 4 groups showed improvement of 46.33 times over the MinMin but 

between2 groups and 4 groups, performance improved by just 6.64 times. Moving from 4 

groups to 8 groups, there was performance improvement of 157.06times over the MinMin but 

8 groups performed better than 4 groups by just 3.39 times. In the same vein, 8 groups 

performed better than 2 groups by about 22.50 times. 
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This shows that even though there is a general performance improvement over MinMin with 

increasing groups, the performance does not continue to improve at the same rate with 

increasing group within the method due to performance limiting factors. This is attributable 

partially to the increased number of threads necessitated by successive groups. Increase in 

threads results in increase resource contention among the threads and this impacted on the 

result.  

The decreasing rate of improvement with increasing groups for ETB-EvenDist and ETB-

SimTog is shown in Table 26 and Table 27 and Figures 28 and 29 respectively. 

Table 23 Result and speedup for MinMin and ETB-EvenDist 

Methods MinMin vs. ETB-EvenDist  

Time in ms 

Speedup (X) 

in multiples 

Speedup (%) 

in percentage 

Jobs Limit MinMin 

 

2Grps 

 

4Grps 

 

8Grps 

 

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 

1000 654 101 40 11 6.48 16.35 59.45 84.56 93.88 98.32 

2000 3230 331 92 25 9.76 35.11 129.20 89.75 97.15 99.23 

3000 7601 766 163 46 9.92 46.63 165.24 89.92 97.86 99.39 

4000 12920 1475 252 76 8.76 51.27 170.00 88.58 98.05 99.41 

5000 18219 2410 323 100 7.56 56.41 182.19 86.77 98.23 99.45 

6000 22671 3211 383 128 7.06 59.19 177.12 85.84 98.31 99.44 

7000 29504 4670 511 185 6.32 57.74 159.48 84.17 98.27 99.37 

8000 39074 5565 729 228 7.02 53.60 171.38 85.76 98.13 99.42 

9000 48178 6989 954 294 6.89 50.50 163.87 85.49 98.02 99.39 

10000 59982 9344 1254 342 6.42 47.83 175.39 84.42 97.91 99.43 

Total 242033 34862 4701 1435 76.19 474.63 1553.32 865.27 975.80 992.84 

Average 

 24203.3 3486.2 470.1 143.5 7.62 47.46 155.33 86.53 97.58 99.28 
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Table 24 Results and speedup for MinMin and ETB-SimTog 

Methods MinMin vs. ETB-SimTog 

Time in ms 

Speedup (X) 

in multiples 

Speedup (%) 

in percentage 

Jobs Limit MinMin 

 

2Grps 

 

4Grps 

 

8Grps 

 

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 

1000 654 102 32 10 6.41 20.44 65.40 84.40 95.11 98.47 

2000 3230 371 50 28 8.71 64.60 115.36 88.51 98.45 99.13 

3000 7601 745 99 46 10.20 76.78 165.24 90.20 98.70 99.39 

4000 12920 1164 196 70 11.10 65.92 184.57 90.99 98.48 99.46 

5000 18219 1860 324 97 9.80 56.23 187.82 89.79 98.22 99.47 

6000 22671 2678 522 173 8.47 43.43 131.05 88.19 97.70 99.24 

7000 29504 4046 703 221 7.29 41.97 133.50 86.29 97.62 99.25 

8000 39074 5181 907 282 7.54 43.08 138.56 86.74 97.68 99.28 

9000 48178 7267 992 288 6.63 48.57 167.28 84.92 97.94 99.40 

10000 59982 11253 1399 326 5.33 42.87 183.99 81.24 97.67 99.46 

Total 242033 34667 5224 1541 81.48 503.89 1472.78 871.27 977.56 992.55 

Average 

 24203.3 3466.7 522.4 154.1 8.15 50.39 147.28 87.13 97.76 99.25 
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Table 25 ANOVA results for ETB-EvenDist, MinMin and between group cardinality 

Test Method P-value Significant 

Difference? 

1 MinMin / ETB-EvenDist (All 

groups) 

0.001995 

 

Yes 

2 MinMin/ ETB-EvenDist (2Grps) 0.00431 

 

Yes 

3 MinMin/ ETB-EvenDist (4Grps) 0.00136 

 

Yes 

4 MinMin/ ETB-EvenDist (8Grps) 0.00121 

 

Yes 

5 ETB-EvenDist (2Grps)/  

ETB-EvenDist (4Grps) 

0.006842 

 

Yes 

6 ETB-EvenDist (2Grps)/ 

ETB-EvenDist (8Grps) 

0.003126 

 

Yes 

7 ETB-EvenDist (4Grps)/ 

ETB-EvenDist (8Grps) 

0.022274 

 

Yes 

 

 

 

 

Table 26 Performance of ETB-EvenDist against MinMin and between groups 

Methods ETB-EvenDist 

Performance Improvement(X) 

ETB-EvenDist 

Performance Improvement (%) 

Algorithm MinMin 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps 

Total 242033 34862 4701 1435  34862 4701 1435 

Group

MinMin

Total

Total

 
Better than MinMin 

6.94 51.49 168.66 
100

1

21 X
x

xx 

 

x1 = MinMin 

85.60 

 

x2 

=2Grps 

98.06 

 

x4 =4Grps 

 

99.41 

 

x8 =8Grps 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

Better than 2 groups  

7.41 24.29  

 

x1 = 2Grps 

 86.52 

 

x2 =4Grps 

95.88 

 

x2 =8Grps 

 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

Better than 4 groups  

3.28  

x1 = 4Grps 

  69.47 

 

x2 =8Grps 
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Table 27 Performance of ETB-SimTog against MinMin and between groups 

Methods ETB-SimTog 

Performance Improvement(X) 

ETB-SimTog 

Performance Improvement (%) 

Algorithm MinMin 2Grps 4Grps 8Grps MinMin 2Grps 4Grps 8Grps 

Total 242033 34667 5224 1541  34667 5224 1541 

Group

MinMin

Total

Total

 
Better than MinMin 

6.98 46.33 157.06 
100

1

21 X
x

xx 

 

x1 = MinMin 

85.68 

 

x2 

=2Grps 

97.84 

 

x2 =4Grps 

 

99.36 

 

x2 =8Grps 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

Better than 2 groups  

6.64 22.50  

 

x1 = 2Grps 

 84.93 

 

x2 =4Grps 

95.55 

 

x2 =8Grps 

 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

Better than 4 groups 

3.39  

x1 = 4Grps 

  70.50 

 

x2 =8Grps 

 

 

 

 

 

  

Figure 20: Total and Average scheduling time for ETB-EvenDist and MinMin 
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Figure 21: Total and Average of scheduling time for ETB-SimTog and MinMin 

 

 

 

 

 

 

Figure 22: Speedup (in multiples) of the ETB-EvenDist over MinMin 

 

85% 

12% 
2% 

1% 

ETB-SimTog:  Total scheduling 
time  

MinMin 2Grps 4Grps 8Grps

0
5000

10000
15000
20000
25000

24203.3 

3466.7 
522.4 154.1 Ti

m
e

(M
ili

se
cs

) 

Groups 

ETB-SimTog:  Average scheduling 
time  

Average

0

20

40

60

80

100

120

140

160

180

200

Sp
e

e
d

 u
p

(X
) 

Number of jobs 

ETB-EvenDist: Speed Up (X) 

2Grps 4Grps 8Grps



Group-Based Parallel Multi-scheduling Methods for Grid Computing  

151 

 

 

Figure 23: Speedup (in multiples) of the ETB-SimTog over MinMin 

 

 

 

 

 

 

Figure 24: Speedup (in percentage) of the ETB-EvenDist over the MinMin 
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Figure 25: Speedup (in percentage) of the ETB-SimTog over the MinMin 

 

 

 

 

 

Figure 26: Performance of ETB methods over MinMin across groups 
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Figure 27: ETB-EvenDist: Improvement on MinMin and across groups 

 

 

 

 

 

 

Figure 28: ETB-SimTog: Improvement on MinMin and across Groups 
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Figure 29: Declining rate of improvement between groups within ETB-EvenDist 

 

 

 

 

 

 

 

Figure 30: Declining rate of improvement between groups within ETB-SimTog 
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5.3.2 Discussion of Results (ETB) 

Results from the ETB method showed significant performance improvement over the 

MinMin algorithm. The method allowed the number of groups to be increased between 2, 4 

and 8. There was increasing performance improvement over the MinMin as the number of 

groups increases from 2 to 8. This indicates that using more groups increases the performance 

of the scheduling algorithm. Across the scheduling range, speedup was recorded by the 

methods against the ordinary MinMin. The speedup generally improves up to a point then it 

begins to decline. Increasing the number of groups decreases the number of jobs per group 

and therefore decreases the computation time of the scheduling algorithm. Although there 

was a general performance improvement over the MinMin as the number of groups increases, 

the rate of performance improvement of a successive group over its predecessor (when using 

same method) decreases generally which  indicates that even though there is a general 

performance improvement over MinMin with increasing groups, the rate of performance 

improvement with increasing groups does not continue to improve due to performance 

limiting factors like overheads with increasing group cardinality. These overheads are as a 

result of shared resource contention by increasing threads used by the groups in executing the 

scheduling algorithms.   

 

5.4 Results, Analysis and Evaluation of the ETSB Method 

This section present results and analysis of experiment 6 and experiment 7 which comprise 

the evaluation of the ETSB method against the ordinary MinMin (experiment 1). 

 

5.4.1 Presentation of Results (ETSB) 

The ETSB method seeks to improve on some of the drawbacks inherent in the Priority 

method. The method uses a sorted estimation of the processing time (or execution time) for 

each job to group the jobs. This method first sorts jobs based on the estimated completion 

times (or execution time) of jobs before applying the ETB method to distribute jobs into the 

groups. Sorting is done in descending order and the job with the largest completion time is 

placed at the top of the list and that with the least completion time placed at the bottom of the 
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list. The method also uses two methods for machine grouping (EvenDist and SimTog). 

Pairings are then made between job groups and machine groups, and then multiple instances 

of the MinMin scheduling algorithm is executed within paired groups (multi-scheduling) 

using multiple threads (multithreading) in parallel.  

Table 28 and Table 29 show the result and computation of speedup of the ETSB-SimTog and 

ETSB-EvenDist methods over the MinMin.  The MinMin used a total of 242033ms and an 

average of 3486.2ms to schedule the range of jobs from 1000 to 10000. With the ETSB-

SimTog method, two groups took a total of 82557ms and an average of 8255.7ms to schedule 

same tasks. Four groups used a total of 17569ms and an average of 1756.9ms to schedule the 

tasks, while eight groups used a total of 3587ms and an average of 358.7ms to schedule same 

tasks. Likewise, with the ETSB-EvenDist method, using two groups recorded 35648ms and 

an average of 3564.8ms to schedule the same tasks. Four groups took a total of 4643ms and 

an average of 464.3ms to schedule the same range of tasks. And eight groups used 1270ms 

and an average of 127.0ms to schedule the same set of jobs. Figure 30 and Figure 31 show 

the average and total scheduling times by ETSB-SimTog and ETSB-EvenDist respectively. 

Figure 30 shows that for ETSB-SimTog, the MinMin took 70% of the scheduling time, 2 

groups used 24% of the scheduling time, 4 groups used 5% of the scheduling time while 8 

groups used just 1% of the scheduling time. Figure 31 shows that for ETSB-EvenDist, the 

MinMin algorithm used 85%, 2 groups used 13%, 4 groups used only 2% and 8 groups used 

a negligible percent time to schedule the same set of jobs.  

Table 28 and Table 29 show the speedup in multiples and in percentage attained by the 

ETSB-SimTog and ETSB-EvenDist respectively. Both methods recorded substantial speedup 

in scheduling from 1000 to 10000 jobs in steps of 1000 against the MinMin. For instance, 

using the ETSB-SimTog method, two groups recorded a range 2.36 to 4.07 and an average of 

3.21 times speedup against the MinMin. Four groups recorded a range of 10.38 to 17.07 and 

an average of 14.58 speedup against the MinMin and eight groups recorded a range of 34.42 

to 71.04 and an average of 63.97 times speedup against the MinMin. Equally, the ETSB-

EvenDist method when using two groups recorded a range of 5.95 to 8.93 and an average of 

7.30 times speedup against the MinMin. Using four groups the speedup was between 27.25 to 

69.46 and an average of 52.17 against the MinMin and using eight groups, the range of 

speedup recorded was 65.40 to 204.72 with an average of 166.69 against the MinMin. Figure 

32 and Figure 33 shows the speedup in multiples (X) by the ETSB-SimTog and ETSB-
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EvenDist methods while Figure 34 and Figure 35 show the speedup in percentage (%) by the 

ETSB-SimTog and ETSB-EvenDist methods respectively. Across all the groups, there was a 

general improvement in the speedup to a point after which the speedup declines.  

Table 30 and Table 31show the computation of performance improvement over the MinMin 

and between successive groups by the ETSB-methods. The ETSB methods achieved 

substantial performance improvement over the MinMin as the number of groups increased 

from 2 to 8. For instance, the ETSB-SimTog attained 2.93 times performance improvement 

over the MinMin with two groups. With four groups, the method attained 13.78 times 

performance improvement over the MinMin. While with eight groups, the performance 

improved 47.48 times. In the same vein, the ETSB-EvenDist recorded 6.79 times 

improvement over the MinMin with two groups. With four groups, it achieved 52.12 times 

improvement over the MinMin while using eight groups, the performance improved to 190 

times. As the scheduling changes from two groups to eight groups, the scheduling efficiency 

improved significantly over the MinMin. This shows that using more groups increases the 

performance of the scheduling algorithm. Figure 36 and Figure 37 shows the performance 

improvement as the number of groups increases. Figures 38 and Figure 39 show the 

performance improvement of the ETSB-SimTog and ETSB-EvenDist methods respectively 

against the MinMin and between groups. The ANOVA test (shown in Table 32) was used to 

check the significance of the results. All the results exhibited very low P values, showing that 

the differences were highly significant. 

There was a general performance improvement over the MinMin with increasing groups. 

That was not the case when the improvements are computed between successive groups 

(using the same method). For instance, using the ETSB-SimTog method, the improvement of 

two groups over the ordinary MinMin was 2.93 times. As the group increased to 4 groups, the 

performance improvement of the method over the MinMin was 13.78 but the performance 

improvement between 2 and 4 groups was 4.70 times. As the group increased from 4 groups 

to 8 groups, the performance improvement over MinMin was 47.48 while an increase from 4 

to 8 groups showed improvement of only 4.90 times. Between 8 groups and 2 groups, there 

was performance improvement of 23.02 times.  Likewise with the ETSB-EvenDist method, 

the use of 2 groups improved performance by 6.79 times. Increasing from 2 to 4 groups, 

performance improved 52 times over the MinMin but improved 7.6 times between the 2 

groups and 4 groups. Increasing from 4 groups to 8 groups improved performance over the 
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MinMin by 190 times over the MinMin, but this only brought about an improvement of 3.66 

times between 4 groups and 8 groups. Also, 8 groups performed better than 2 groups by just 

28 times. This decline in performance between successive groups (using the same method) is 

partially due to the effect of shared resource contention introduced by increasing threads used 

by increasing groups. For instance, two groups used two threads, four groups used four 

threads and eight groups used eight threads. Increase in the number of threads directly 

increases the effects of resource contention among threads. This impacted negatively on the 

performance of the method between successive groups.    

Figure 40 and Figure 41 shows the declining rate of improvement between successive groups 

by the ETSB-SimTog and ETSB-EvenDist. This shows that even though there is a general 

performance improvement over MinMin with increasing groups, the rate of performance 

improvement with increasing groups’ declines. This demonstrates that there is a limiting 

factor to the general performance with increasing groups within same method. Successive 

groups uses more threads for execution, this resulted in increased resource contention from 

the threads and impacted the result.  Another reason for the slowing rate of improvement is 

the polynomial nature of theMinMin algorithm where improvement is greater when the 

number of jobs to be grouped is larger.  As the number of groups increases, the number of 

jobs per group become smaller, further grouping produces smaller rates of improvement. 
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Table 28 Scheduling times and speedup for MinMin vs. ETSB-SimTog 

Methods MinMin vs ETSB-SimTog 

Scheduling time in ms 

Speedup (X) Speedup (%) 

Jobs Limit MinMin 

 

2Grps 

 

4Grps 

 

8Grps 

 

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 

1000 
654 181 63 19 3.61 10.38 34.42 

72.32 90.37 97.09 

2000 
3230 793 192 51 4.07 16.82 63.33 

75.45 94.06 98.42 

3000 
7601 1876 447 110 4.05 17.00 69.10 

75.32 94.12 98.55 

4000 
12920 3691 757 183 3.50 17.07 70.60 

71.43 94.14 98.58 

5000 
18219 7706 1178 283 2.36 15.47 64.38 

57.70 93.53 98.45 

6000 
22671 8576 1548 360 2.64 14.65 62.98 

62.17 93.17 98.41 

7000 
29504 10343 2133 437 2.85 13.83 67.51 

64.94 92.77 98.52 

8000 
39074 12399 2555 550 3.15 15.29 71.04 

68.27 93.46 98.59 

9000 
48178 15984 3527 685 3.01 13.66 70.33 

66.82 92.68 98.58 

10000 
59982 21008 5169 909 2.86 11.60 65.99 

64.98 91.38 98.48 

Total 
242033 82557 17569 3587 32.12 145.78 639.69 

679.41 929.68 983.69 

Average 

 24203.3 8255.7 1756.9 358.7 3.21 14.58 63.97 
67.94 92.97 98.37 
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Table 29 Scheduling times and speedup for MinMin vs. ETSB-EvenDist 

Methods MinMin vs ETSB-EvenDist 

Scheduling time in ms 

Speedup (X) Speedup (%) 

Jobs Limit MinMin 

 

2Grps 

 

4Grps 

 

8Grps 

 

2Grps 4Grps 8Grps 2Grps 4Grps 8Grps 

1000 

654 110 24 10 5.95 27.25 65.40 
83.18 96.33 98.47 

2000 

3230 372 61 30 8.68 52.95 107.67 
88.48 98.11 99.07 

3000 

7601 851 119 51 8.93 63.87 149.04 
88.80 98.43 99.33 

4000 

12920 1458 186 71 8.86 69.46 181.97 
88.72 98.56 99.45 

5000 

18219 2384 333 97 7.64 54.71 187.82 
86.91 98.17 99.47 

6000 

22671 3213 518 126 7.06 43.77 179.93 
85.83 97.72 99.44 

7000 

29504 4605 532 152 6.41 55.46 194.11 
84.39 98.20 99.48 

8000 

39074 6210 744 199 6.29 52.52 196.35 
84.11 98.10 99.49 

9000 

48178 7139 949 241 6.75 50.77 199.91 
85.18 98.03 99.50 

10000 

59982 9306 1177 293 6.45 50.96 204.72 
84.49 98.04 99.51 

Total 
242033 35648 4643 1270 73.01 521.72 1666.91 

860.09 979.68 993.22 

Average 

 24203.3 3564.8 464.3 127 7.30 52.17 166.69 
86.01 97.97 99.32 
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Table 30 Performance of ETSB-SimTog against MinMin and between groups 

Methods ETSB-SimTog 

Performance Improvement(X) 

ETSB –SimTog 

Performance Improvement (%) 

 MinMin 2Grps 4Grps 

 

8Grps 

 

Methods  2Grps 4Grps 

 

8Grps 

 

Total 242033 82557 17569 3587  82557 17569 3587 

Group

MinMin

Total

Total

 

2.93 13.78 47.48 
100

1

21 X
x

xx 

 

x1 = MinMin 

65.89 

 

x2 =2Grps 

92.74 

 

x 2 =4Grps 

 

98.52 

 

x 2 =8Grps 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

4.70 23.02 x1 = 2Grps  78.72 

x 2 =4Grps 

 

95.66 

x 2 =8Grps 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

4.90  

x1 = 4Grps 

  79.58 

x 2 =8Grps 

 

 

Table 31 Performance of ETSB-SimTog method against MinMin and between groups 

Methods ETSB-EvenDist 

Performance Improvement(X) 

ETSB –EvenDist 

Performance Improvement (%) 

 MinMin 2Grps 4Grps 

 

8Grps 

 

Methods  2Grps 4Grps 

 

8Grps 

 

Total 242033 35648 4643 1270  35648 4643 1270 

Group

MinMin

Total

Total

 
Better Than MinMin 

6.79 52.12 190.57 
100

1

21 X
x

xx 

 

x1 = MinMin 

85.27 

 

x2 =2Grps 

98.08 

 

x 2 =4Grps 

 

99.47 

 

x 2 =8Grps 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

Better Than 2 groups  

7.68 28.07 x1 = 2Grps  86.97 

x 2 =4Grps 

 

96.44 

x 2 =8Grps 

]8,4,2[

1





n

Total

Total

Grpsn

nGrps

 

Better than 4 groups  

3.66  

x1 = 4Grps 

  72.65 

x 2 =8Grps 
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Table 32 ANOVA results for ETSB-SimTog vs. MinMin and between group cardinality 

Test Method P Value Significant 

Difference? 

1 MinMin/ ETSB-SimTog (All) 0.00423 

 

Yes 

2 MinMin/ ETSB-SimTog(2Grps) 0.0273 

 

Yes 

3 MinMin/ ETSB-SimTog(4Grps) 0.002202 Yes 

4 MinMin/ ETSB-SimTog(8Grps) 0.001306 Yes 

5 ETSB-SimTog(2Grps)/  

ETSB-SimTog(4Grps) 

0.00946 Yes 

6 ETSB-SimTog(2Grps)/ 

ETSB-SimTog(8Grps) 

0.001943 

 

Yes 

7 ETSB-SimTog(4Grps)/  

ETSB-SimTog(8Grps) 

0.015697 

 

Yes 

 

 

 

 

Figure 31: Total and average scheduling times of MinMin and ETSB-SimTog 
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Figure 32: Total and average scheduling times of MinMin and ETSB-SimTog by groups 

 

 

 

 

 

 

Figure 33: Speedup (in multiples) by ETSB-SimTog against MinMin 
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Figure 34: Speedup (in multiples) by ETSB-EvenDist over MinMin 

 

 

 

 

 

Figure 35: Speedup (in percentage) by ETSB-SimTog against MinMin 
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Figure 36: Speedup (in percentage) by ETSB-EvenDist against MinMin 

 

 

 

 

 

Figure 37: Improvement of ETSB-SimTog over MinMin across groups 
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Figure 38: Improvement of ETSB-EvenDist over MinMin across groups 

 

 

 

 

 

Figure 39: Improvement of ETSB-SimTog over MinMin and between groups 
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Figure 40: Performance improvement of ETSB-EvenDist over MinMin and groups 

 

 

 

 

 

 

Figure 41: Rate of Improvement of ETSB-SimTog across group cardinality 
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Figure 42: Rate of Improvement of ETSB-EvenDist across group cardinality 

 

5.4.2 Discussion of Results (ETSB) 

Results from the ETSB method showed significant improvement over the MinMin algorithm. 

The ETSB method varied the number of groups between 2, 4 and 8. Performance improved 

over the MinMin as the number of groups increased from 2 to 8. This indicates that using 

more groups increases the performance of the scheduling algorithm. 

 Across the scheduling range, speedup was recorded by the ETSB methods against the 

ordinary MinMin. The speedup generally improves up to a point then rate of improvement 
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and therefore decreases the computation time of the scheduling algorithm.  
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(when using same method) decreases generally even though there was a general performance 

improvement over the MinMin as the number of groups increases. This indicates that even 

though there is a general performance improvement over MinMin with increasing groups, the 
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performance limiting factors like overheads with increasing group cardinality. These 

overheads are as a result partially of shared resource contention caused by increasing threads 

used by the groups in executing the scheduling algorithms.   

 

0

1

2

3

4

5

6

7

8

9

2 Grps 4 Grps 8 Grps

Ti
m

e
s(

X
) 

Groups 

ETSB-EvenDist: Improvement within method 

Improvement Linear (Improvement)



Group-Based Parallel Multi-scheduling Methods for Grid Computing  

169 

 

 

5.5 Comparative Analysis of the Group-based Scheduling Methods 

The previous sections discussed the results, analysis and evaluation of all the methods against 

the ordinary MinMin. The GPMS used three job grouping methods (Priority, ETB and ETSB) 

and two machines grouping methods (EvenDist and SimTog) which yielded six group 

scheduling methods: Priority-SimTog; Priority-EvenDist; ETB-SimTog; ETB-EvenDist; 

ETSB-SimTog; and ETSB-EvenDist. All grouping methods performed significantly better 

than non-grouping (Ordinary MinMin).  Increasing the number of groups improved 

performance until a levelling off occurred which was apparent in all grouping methods. 

This section continues the analysis of results but focuses on comparisons between the 

different grouping methods rather than each method against MinMin. 

The Priority method used only four priority groups so comparisons of the ETB and ETSB 

methods to the Priority method are considered only with four groups. When comparison is 

between ETB and the ETSB methods, group cardinality (number of groups) is considered. In 

all cases, the number of threads used equals the number of groups used at that point. Hence, 

when number of group equals four, the number of threads also equals four.  

 

5.5.1 Comparison between ETSB and ETB methods 

This section considers the performance improvement and speedup of the ETB and ETSB 

methods in combination with the two machine grouping methods on a group by group basis. 

  

5.5.5.1 Performance Improvement 

Table 33 shows the scheduling times for all methods and improvements made using four 

groups. The ETSB-EvenDist method performed best with 52.13 times against the MinMin. 

The ETSB-EvenDist performed best because it guarantees even distribution of both machines 

and jobs.  This was closely followed by the ETB-EvenDist method which recorded 51.48 

times performance improvement; this was achieved due to the even distribution of jobs 

guaranteed by the EvenDist method. The ETB-SimTog was next with 46.33 times 

performance improvement against the MinMin, and the ETSB-SimTog was the least with 
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13.78 improvements. Table 40 shows the aggregate mean improvement and average 

improvement by all methods and by all groups. Two Groups made an average of 6.16 

improvements across all methods which represent 4% of the general improvement. Four 

groups made an average of 40.13 improvements across all methods representing 22% of the 

general improvement and 8 groups made an average of 141 improvements across all the 

methods which represent 74% of the general improvement. On the other hand, across the 

groups, the ETSB-EvenDist performed best with an average of 83.16 improvements across all 

groups. This represents 33% of overall improvement. This was followed by the ETB- 

EvenDist with an average improvement of 70.14 times, representing 28% of overall 

improvement. Next is the ETB-SimTog with improvement of 70.12 times representing 28% 

of general improvement. The ETSB-SimTog came worst with an average improvement of 

27.25 times representing 11% of general improvement. This is due to the effect of 

distributing jobs equally (by the ETSB method) to unbalanced (SimTog) machine groups. 

Figure 50 shows the percentage performance by the methods across groups and Figure 51 

shows the percentage performance by the groups across methods.  

Figure 46 shows the improvement of the methods using 2 groups. Figure 48 shows the 

improvement by the methods using 4 groups. Figure 50 shows the improvements by the 

methods when using 8 groups. Figure 51 shows the percentage performance by the methods 

across groups and Figure 52 shows the percentage performance by the groups across 

methods. In these figures, ETSB-EvenDist stands out as showing the highest performance 

improvement and ETSB-SimTog as showing the worst. Based on the group by group 

analysis, using 2 groups, the ETB-EvenDist method performed better than the rest, followed 

by the ETSB-EvenDist and ETB-SimTog. The ETSB-SimTog performed worse than the 

other methods. Using 4 groups and 8 groups; the ETSB-EvenDist method performed better 

followed by ETB-EvenDist and ETB-SimTog methods. The ETSB-SimTog performed worse 

in all the groups. Generally, there is a remarkable increase in performance with increase in 

the number of groups. The ETSB-EvenDist method performed best because it ensures load-

balancing by evenly distributing both jobs and machines among the groups. While the ETSB-

SimTog performed worse because the machines in the groups were unbalanced and the total 

scheduling time of the worst machine group impacted the overall scheduling time.     
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5.5.5.2 Speedup 

Table 37 and Figure 44 show result and graph of speedup of ETB and ETSB methods using 2 

groups. The ETB-SimTog method showed a better speedup than the other methods at some 

points than the other methods, while the ETSB-SimTog showed the worst speedup compared 

to the rest. Table 38 and Figure 46 show result and graph of speedup by ETB and ETSB 

methods using 4 groups. The ETB-SimTog showed a better speedup than the other methods 

to a point (when jobs = 5000). Thereafter, the ETB-EvenDist method picked up and showed 

higher speedup. The ETSB-SimTog method showed less speedup than the other three 

methods. Table 39 and Figure 48 show results and graph of speedup by ETB and ETSB 

methods using 8 groups.  The ETB-SimTog, ETSB-EvenDist and ETB-EvenDist performed 

relatively equally to a point (when jobs = 5000). Beyond this point, the ETSB-EvenDist 

method showed the best speedup closely followed by the ETB-EvenDist.  

Based on the group by group analysis, using 2 groups, the ETB-SimTog had better speedup 

than the other methods; this was followed by the ETB-EvenDist and the ETSB-EvenDist.     

The ETSB-SimTog performed worst compared to the other methods. The result of using 2 

groups contrast with those of 4 groups and 8 groups. Splitting the machines into just two 

groups based on configuration favoured the SimTog method more. Using 4 groups and 8 

groups; the ETSB-EvenDist had the best speedup, this was followed by the ETB-SimTog and 

the ETB-EvenDist. The ETSB-SimTog had the worst speedup. From this 4 and 8 groups 

analysis, it can be deduced that the ETSB  method which guarantees fairer even distribution 

of jobs among the groups when paired with the EvenDist method that also guaranteed 

equitable distribution of machines among the groups enhances speedup more than when 

paired with the SimTog method that does not support fair distribution of jobs.   
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5.5.2 Comparison between Priority, ETB and ETSB methods 

This section compares the results of the ETB and ETSB methods against results of the 

Priority method. 

Table 33 shows scheduling results for MinMin and the other methods using four groups. 

Using the Priority method, the SimTog and EvenDist methods recorded scheduling times of 

41006ms and 35807ms which represents a performance improvement of 5.90 and 6.76 

respectively over the MinMin.  While using the ETSB method, the SimTog and EvenDist 

methods recorded scheduling times of 17569ms and 4643 ms representing a 13 times and 52 

times performance improvement over the MinMin respectively. With the ETB method, the 

SimTog and EvenDist methods recorded 5224ms and 4701 ms, yielding 46 times and 51 

times performance improvement respectively over the MinMin. It is clear that ETB and 

ETSB methods performed better than the Priority method. 

With Priority, both machine grouping methods (EvenDist and SimTog) were observed to 

have recorded the highest speedup against MinMin at the point when the number of jobs 

equals 4000. Using the ETSB-EvenDist method, 2, 4 and 8 groups recorded its highest 

speedup at points 3000, 4000, and 10000 respectively with values of 8.9, 69 and 204 

respectively. Using the ETB-SimTog, 2, 4 and 8 group recorded highest speedup at points 

4000, 3000 and 5000 respectively with speedup values of 11, 76 and 187 respectively.  

In Figure 53 and Figure 54, comparison was made of the improvement by all the GPMS 

methods using four groups. It shows that the ETSB-EvenDist, ETB-EvenDist, ETB-SimTog, 

ETSB-SimTog, Priority-EvenDist and Priority-SimTog methods achieved 52, 51, 46, 13, 6 

and 9 times improvements respectively over the MinMin. These values represent a total 

percentage improvement of 30%, 29%, 26%, 8%, 4%, and 3% respectively.  

Figure 55 shows the mean scheduling time and percentage mean scheduling time of the 

GPMS methods.  It shows that the Priority, ETSB and ETB had a mean of 3840.7ms, 

1110.9ms and 496.4 ms respectively. These values further represent a total percentage of 

71%, 20% and 9% respectively by the methods. These results indicate that ETSB and ETB 

perform better than Priority. The ETSB-EvenDist and ETB-EvenDist method performed 

better than other methods because the method guaranteed that both jobs and machines were 
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equally shared among the groups. The Priority-SimTog method performed worse because 

both jobs and machines were not equally balanced into the groups.   

The ANOVA test results generally back up the observation that ETSB and ETB perform 

better than Priority (see Table 35) showing significant differences between ETSB and ETB 

on the one hand and Priority on the other.  The only exception is Priority vs. ETSB, where the 

significance is marginal, right on the P=0.05 boundary (see Table 35, Test 3). A closer 

inspection reveals that ETSB-SimTog has the least improvement among the GPMS methods. 

There was no significant difference between Priority-SimTog and ETSB-SimTog (see Table 

35, Test 7). In Figure 53, the performance of the ETSB-SimTog method is much closer to 

that of the Priority methods than any other GPMS method. Overall though, the ETB and 

ETSB methods perform better than the Priority method. The ANOVA analysis of the Priority 

vs. ETB and ETSB methods combined gave a P value of 0.027992 which shows that the 

difference is significant (see Table 35, Test 1).  

The ETB and ETSB methods performed much better than the Priority method because with 

the Priority method, the jobs were not evenly distributed into groups. This resulted in most 

jobs getting sorted into one group. When job groups are assigned to machine groups such an 

uneven distribution can result in a particular machine group being overloaded.  Scheduling 

from that group therefore tends towards the same execution time of the ordinary MinMin 

method. Hence, the general performance of the Priority method was affected. Furthermore, 

the MinMin scheduling time tends to polynomial (Freund et al. 1998) which means that 

increase in the number of instances of the input set increases the time per instance directly. 

Hence, smaller groups have smaller time per instance and by extension smaller scheduling 

time and larger groups have a comparatively inflated scheduling time which impacted the 

total scheduling time of the method.  Although in some cases Priority might work equally 

well as ETB or ETSB, this cannot be guaranteed unless the priority allocations scheme 

guarantees equity in job distribution. 
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5.5 Statistical Tests 

This section discusses the statistical analysis carried out on the results from the experiments. 

Analysis of variance  

The ANOVA significance test results for the various performances are shown in Table 35. 

Significant differences between results from the GPMS method and the MinMin are shown. 

Furthermore, significant difference was shown between the Priority method and the ETB and 

ETSB methods.  Figure 42 illustrates the difference in performance between MinMin and the 

ETB and ETSB grouping methods.  The grouping methods perform much better than 

ordinary MinMin.  The ANOVA results show these differences to be significant.  Figure 43 

illustrates the difference in performance between MinMin and the ETB and ETSB grouping 

methods more clearly. Figures 44, 46 and 48 compare these grouping methods without 

MinMin and with differing numbers of groups. The ETSB-SimTog method performs worse 

than the others. The ANOVA results, which are discussed in the next paragraph, show this 

performance difference to be significant. There was no significant difference between the 

performances of the ETB and ETSB grouping methods. 

All GPMS grouping methods performed better than MinMin with significant differences 

shown in the ANOVA results. Test 1 in Table 36 used the mean scheduling speed of all three 

GPMS methods and compared this to MinMin and a significant difference is shown. This 

shows that overall the GPMS performs significantly better than the ordinary MinMin. The 

significance analysis shows that there was no significant difference between ETB and ETSB 

grouping methods (Table 36, Test 8), both of which performed significantly better than 

MinMin. However a difference is shown between ETB-SimTog vs. ETSB-SimTog; this 

indicates that (using the same machine grouping method) the job grouping methods (ETB and 

ETSB) employed have different effects. Also, a significant difference was shown between 

ETSB-EvenDist vs. ETSB-SimTog. This indicates that the machine grouping methods 

(EvenDist and SimTog) also have different effects on the result when the job grouping 

method is the same. For instance, the SimTog method was not as effective as the EvenDist.   
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Standard Deviation  

Table 41 shows the analysis of standard deviation, correlation and t-test. The standard 

deviation analysis was carried out to determine how widespread the data are from the mean.  

 

Standard deviation of the methods 

The standard deviation for the MinMin algorithm =19831.78 with mean of 24203.3. The 

standard deviation for the PrioritySimTog method = 4085.54 and very close to the mean of 

4100.6. The standard deviation for the PriorityEvenDist method =3845.52, is greater and 

close to the mean of 3580.7. The standard deviation for the ETBEvenDist method = 396.71 

close to the mean of 470.1. The standard deviation for the ETSBEvenDist method = 394.27 

close to the mean of 464.30. The standard deviation for the ETBSimTog method = 466.46 

close to the mean of 522.4 and the standard deviation for the ETBSimTog method = 466.46 

close to the mean of 522.4. The closeness of the standard deviation to the mean by all the 

GPMS methods shows that the results across the methods are reliable and consistent. 

 

Correlation   

The correlation analysis was carried out to determine the strength of relationships or 

randomness between the results from the different methods. A correlation of 1 indicates that 

the results are strongly related. Values close to 1 also indicate strong relationship while 

values further away from 1 indicates less relationship or randomness between the results.       

From the computation, all the results from the various methods are strongly correlated with 

values of 0.9xx. For instance, the correlation between the MinMin and the ETB-EvenDist 

method is 0.9935. The correlation between the MinMin and the ETSB-EvenDist method is 

0.9953. The correlation between the MinMin and the ETB-SimTog method is 0.9928 and 

between the MinMin and the ETSB-SimTog, the correlation is 0.9885. The correlation 

between the Priority method and the ETB-SimTog and ETB-EvenDist methods are 0.9903 

and 0.9908 respectively. The correlation between the Priority and the ETSB-SimTog and the 

ETSB-EvenDist are 0.9891and 0.9744 respectively. Furthermore, the correlation between the 

ETB-SimTog and ETSB-SimTog method is 0.9872 and the correlation between the ETB-

EvenDist and the ETSB-EvenDist is 0.9886. These values of 0.9xxx are very close to 1 and 
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indicate a very strong correlation (relationship) between the results. See Table 41 column 3 

and column 6. This strong correlation between all the results by the GPMS methods indicates 

that the results are reliable and not random. It also strengthens the argument that grouping 

jobs before scheduling in parallel can increase the scheduling efficiency of scheduling 

algorithms and means that the same outcomes are achievable if the method is generalised and 

applied in real systems.  

T-Test 

The t-test was carried out to also reveal if there are significant differences between results 

from the methods. The t- tests shows a very significant value of 0.003xxx between the 

MinMin and the ETB and ETSB methods. The result between the Priority method and the 

ETB and ETSB methods is also significant with a value of 0.019127 for ETB-EvenDist, 

0.0192 for ETSB-EvenDist, 0.0123 for ETB-SimTog and 0.0152 for ETSB-SimTog. The t-

test value of 0.7658 between the ETB-EvenDist and the ETSB-EvenDist is not significant 

while the t-test value of 0.01533 between ETB-SimTog and ETSB-SimTog is significant and 

confirms the ANOVA test. See Table 41 column 4 and column 7.  

 

Table 33 Results and performance by GPMS methods 

Method MinMin Priority ETB ETSB 

Jobs MinMin EvenDist SimTog EvenDist SimTog EvenDist SimTog 

1000 654 95 105 40 32 24 63 

2000 3230 340 412 92 50 61 192 

3000 7601 673 839 163 99 119 447 

4000 12920 1092 1345 252 196 186 757 

5000 18219 1776 2008 323 324 333 1178 

6000 22671 2837 3339 383 522 518 1548 

7000 29504 3860 4570 511 703 532 2133 

8000 39074 5312 7500 729 907 744 2555 

9000 48178 7818 8830 954 992 949 3527 

10000 59982 12004 12058 1254 1399 1177 5169 

Total 242033 35807 41006 4701 5224 4643 17569 

Ave 24203.3 3580.7 4100.6 470.1 522.4 464.3 1756.9 

StanDev 19831.78 3845.53 4085.54 396.71 466.46 394.27 1631.86 

Performance 

Improvement(X)  

 

6.76 5.90238 51.48 46.33 52.13 13.78 



Group-Based Parallel Multi-scheduling Methods for Grid Computing  

177 

 

 

Table 34 Result and Improvement for ETB and ETSB 

Method ETB ETSB 

Jobs MinMin EvenDist SimTog EvenDist SimTog 

1000 654 40 32 24 63 

2000 3230 92 50 61 192 

3000 7601 163 99 119 447 

4000 12920 252 196 186 757 

5000 18219 323 324 333 1178 

6000 22671 383 522 518 1548 

7000 29504 511 703 532 2133 

8000 39074 729 907 744 2555 

9000 48178 954 992 949 3527 

10000 59982 1254 1399 1177 5169 

Total 242033 4701 5224 4643 17569 

Ave 24203.3 470.1 522.4 464.3 1756.9 

Performance 

Improvement 51.48 46.33 52.13 13.78 

Cumulated average 48.91 32.96 

 

 

Table 35 ANOVA Test: Priority vs. ETB and ETSB methods 

Test Method P value Significant 
Difference? 

1 Priority vs. GPMS (ETB 
and ETSB averaged) 

0.027992 
 

Yes 

2 Priority vs. ETB 0.015965 
 

Yes 

3  Priority vs. ETSB 0.048583 
 

Marginal – 
Yes/No? 

4 Priority-EvenDist vs. 
ETB-EvenDist 

0.020335 
 

Yes 

5 Priority-SimTog vs. ETB-
SimTog 

0.013124 
 

Yes 

6 Priority EvenDist vs ETSB 
EvenDist 

0.020128 
 

Yes 

7 Priority SimTog vs ETSB-
SimTog 

0.109315 
 

No 
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Table 36 ANOVA Test:  MinMin, ETB and ETSB methods 

Test No Method P value Significant 

Difference? 
(Threshold level:  

P = 0.05) 

1 MinMin vs. GPMS  0.001537 Yes 

2 MinMin vs. ETB 0.001373 Yes 

3 MinMin vs. ETSB 0.001723 Yes 

4 MinMin vs. ETB-EvenDist 0.00136 Yes 

5 MinMin vs. ETB-SimTog 0.001387 Yes 

6 MinMin vs. ETSB-EvenDist 0.001357 Yes 

7 MinMin vs. ETSB-SimTog 0.010622 Yes 

8 ETB vs. ETSB 0.093828 No 

9 ETB-EvenDist vs. ETSB-EvenDist 0.974201 No 

10 ETB-SimTog vs. ETSB-SimTog 0.033619 Yes 

11 ETB- EvenDist vs. ETB-SimTog 0.790165 No 

12 ETSB-EvenDist vs. ETSB-SimTog 0.025532 Yes 

13 SimTog vs. EvenDist 0.073511 No 

 

Table 37 Speedup for ETB and ETSB methods using two groups 

JobsLimit 

 

ETB-
SimTog 

ETSB-
EvenDist 

ETSB-
SimTog 

ETB-
EvenDist  

1000 
 

6.41 5.95 3.61 6.47 

2000 
 

8.71 8.68 4.07 9.76 
 

3000 
 

10.20 8.93 4.05 9.92 
 

4000 
 

11.10 8.86 3.50 8.76 
 

5000 
 

9.80 7.64 2.36 7.56 
 

6000 
 

8.47 7.06 2.64 7.06 
 

7000 
 

7.29 6.41 2.85 6.32 
 

8000 
 

7.54 6.29 3.15 7.02 
 

9000 
 

6.63 6.75 3.01 6.89 
 

10000 
 

5.33 6.45 2.85 6.42 
 

Sum 
 

81.47 73.02 32.09 76.18 
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Table 38 Speedup for ETB and ETSB methods using four groups 

JobsLimit 
ETB-
SimTog 

ETSB-
EvenDist 

ETSB-
SimTog 

ETB-
EvenDist 

1000 20.44 27.25 10.38 16.35 

2000 64.60 52.95 16.82 35.11 

3000 76.78 63.87 17.00 46.63 

4000 65.92 69.46 17.07 51.27 

5000 56.23 54.71 15.47 56.41 

6000 43.43 43.77 14.64 59.19 

7000 41.97 55.46 13.83 57.74 

8000 43.08 52.52 15.29 53.60 

9000 48.57 50.77 13.66 50.50 

10000 42.87 50.96 11.60 47.83 

Sum 503.89 521.72 145.76 474.63 

 

Table 39 Speedup for ETB and ETSB methods using eight groups 

JobsLimit 
ETB-
SimTog 

ETSB-
EvenDist 

ETSB-
SimTog ETB-EvenDist 

1000 65.40 65.40 34.42 59.45 

2000 115.36 107.67 63.33 129.20 

3000 165.24 149.04 69.10 165.24 

4000 184.57 181.97 70.60 170.00 

5000 187.82 187.82 64.38 182.19 

6000 131.05 179.93 62.98 177.12 

7000 133.50 194.11 67.51 159.48 

8000 138.56 196.35 71.04 171.38 

9000 167.28 199.91 70.33 163.87 

10000 183.99 204.72 65.99 175.39 

Sum 1472.77 1666.92 639.68 1553.32 
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Table 40 Groups aggregate mean improvement 

No. 

Grouping Method 

Groups average speedup (or 
mean improvement) 

 
2 Grps 4 Grps 8 Grps 

1 
ETSB-SimTog 3.21 14.58 63.97 

2 

ETSB-EvenDist 6.79 52.13 190.57 

3 
ETB-SimTog 6.98 46.33 157.06 

4 
ETB-EvenDist 7.62 47.46 155.33 

Aggregate mean improvement (over 
MinMin) 6.15 40.125 141.7325 

Aggregate mean improvement (between groups) 6.52439 3.532274 

 

 

 

Table 41 Standard Deviation, Correlation and t-tests for Priority, ETB and ETSB 

No. Evenly Distributed Methods  Similar Together Methods  

Standard Deviation 

For  

Correlation 

(between) 

t-test 

(between)  

Standard 

Deviation for  

Correlation 

(between) 

t-test 

(between) 

1 ETB-EvenDist = 

396.71 and very 

close to the mean 

of 470.1 

MinMin 

and ETB = 

0.9935 

MinMin 

and ETB = 

0.003841 

ETB-SimTog = 

466.46 (and close 

to the mean of 

522.4) 

MinMin 

and ETB = 

0.9928 

MinMin 

and ETB = 

0.00381 

2 ETSB-EvenDist = 

394.27 and very 

close to the mean 

of 464.30 

MinMin 

and ETSB = 

0.9953 

MinMin 

and ETSB = 

0.003837 

ETSB-SimTog = 

1631.86 and close 

to the mean of 

1756.9 

MinMin 

and ETSB = 

0.9885  

MinMin 

and ETSB = 

0.003643 

3 Priority and 

ETB = 

0.990792 

Priority and 

ETB = 

0.019127 

Priority and 

ETB = 

0.990352 

Priority 

and ETB = 

0.012275 

4 Priority-EvenDist = 

3845.52. 

Greater and close 

to the mean of 

3580.7 

Priority and 

ETSB = 

0.974364 

Priority and 

ETSB = 

0.019208 

Priority-SimTog 

=4085.54. 

Less and very 

close to the mean 

of 4100.6 

Priority and 

ETSB = 

0.989133 

Priority 

and ETSB = 

0.015329 

5 ETB and 

ETSB = 

0.988611 

ETB and 

ETSB = 

0.765807 

ETB and 

ETSB = 

0.98718 

ETB and 

ETSB = 

0.015329 
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Figure 43: Scheduling performance by all methods with increasing jobs 

 

 

 

 

 

 

Figure 44: Scheduling performance by GPMS methods with increasing jobs 
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Figure 45: Speedup by ETB and ETSB methods using two groups 

 

 

 

 

 

Figure 46: Improvement across methods using two groups 
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Figure 47: Speedup by ETB and ETSB methods using four groups 

 

 

 

 

 

Figure 48: Improvement across methods using four groups 
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Figure 49: Speedup by ETB and ETSB methods using eight groups 

 

 

 

 

 

Figure 50: Improvement across methods using eight groups 
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Figure 51: Percentage improvement by ETB and ETSB methods and by groups 

 

 

 

 

 

Figure 52: Improvement by ETB and ETSB methods across Groups 
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Figure 53: Improvement comparison between the GPMS methods (multiples) 

 

 

 

 

 

 

Figure 54: Improvement comparison between the GPMS methods (percentage) 
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Figure 55: Percentage and mean scheduling time of the GPMS methods 

 

 

 

 

Figure 56: Aggregate group improvement 
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Figure 57: Aggregate rate of improvement with increasing group 
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improvement between successive groups. This was due in p art to the contention for resources 

that the increased number of threads introduced. 
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CHAPTER SIX 

GENERAL DISCUSSION ON RESULTS AND OUTCOMES 

 

6.1 Introduction 

This chapter presents a general discussion on the work and also discusses briefly the impact 

of shared resource contention among threads. This research recognizes that Grid computing is 

an important component in managing the data explosion currently affecting society. It also 

acknowledged that multicore computing technology is speedily pervading both the domestic 

and work lives. On this backdrop and given the fact that most current Grid scheduling 

algorithms are sequential, the task was to design a method that enables Grid schedulers 

harness the benefits of multicores in the scheduling task. Job and machine grouping methods 

were employed and several instances of independent and simultaneous scheduling (multi-

scheduling) were simulated while threads were used for parallelization.  

 

6.2 Overview of Approach and Results 

This research introduced the GPMS which uses three grouping methods for scheduling Grid 

jobs in parallel. The methods are the Priority method, the ETB method and the ETSB method. 

Also two machine grouping methods, the EvenDist method and SimTog method, were 

introduced as part of the GPMS. The methods are designed to be used in batch scheduling 

and involve categorizing jobs into groups. Grid machines are also categorized into the same 

number of groups using the two methods.  Job groups and machine groups are then paired 

and the MinMin scheduling algorithm is executed in parallel within the paired groups. 

Multiple threads were used to achieve parallel scheduling. The Priority method grouped jobs 

based on priority attributes while the ETB and ETSB methods employed the execution or 

processing times of the jobs for the grouping. Several experiments were performed. The 

Priority method used only four groups while the ETB and ETSB methods varied the groups 

between 2, 4, 8 and 16. The number of threads was also varied from 1 to 16 (in steps of 

power 2). Results show that by sharing jobs and machines into groups before scheduling, the 

pre-computation time for the algorithm and the scheduling time is drastically improved. 
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Users’ jobs for the experiment were sourced from the Grid Workloads Archive (Anoep et al. 

2007), while Grid sites, machines, CPUs and job execution times were simulated. The 

experiment was executed on one of the Coventry University’s HPC’s machine locally known 

as (Pluto). 

 

6.3 Priority Method 

The Priority method groups jobs based on priorities. Priorities were assigned to jobs based on 

the number of processors requested by the user on submission. The system was designed and 

implemented, tested, analysed and evaluated. Results and analysis shows that categorizing the 

jobs into four groups and scheduling the jobs in parallel reduces the total scheduling time by 

large margins. The correlation analysis showed that the relationship between GPMS methods 

is strong - this indicates that the results are reliable, not random and can be reproduced.   

From the experiment results in Chapter Five, the MinMin algorithm used 242033ms to 

schedule a range of jobs from 1000 to 10000 in step 1000. The Priority-EvenDist method, 

took 35807ms to schedule the same range of jobs from 1000 to 10000 (step 1000) while the 

Priority-SimTog method took 41006ms to schedule 1000 to 10000 (step 1000) jobs. The 

Priority-EvenDist method recorded 6.76 times performance improvement over the ordinary 

MinMin algorithm which represents 85.21 % while the Priority-SimTog method performed 

better than the MinMin algorithm by 5.90 times representing 83.06%.  

The results from the Priority method were better than the ordinary MinMin algorithms 

because grouping the jobs before scheduling in parallel reduced the number of per-instance 

processing by the algorithm. However, the growth pattern from the Priority method also 

tended towards polynomial as the number of jobs increases. That means the performance was 

degrading as the number of jobs increases which is expected since the MinMin scheduling 

time is polynomial. Inspection on the job input file reveals that more jobs were of low 

priority. Hence, jobs were not uniformly distributed into the four groups. Instead more jobs 

were sorted into the low priority group. This increased the per-instance scheduling time of the 

jobs in the group and impacted the efficiency. Thus, the effect of the grouping, which would 

have dampened the polynomial effect, was not achieved to its full potential. 
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From the results and analysis made, the conclusion is that the Priority method can be an 

effective way of reducing scheduling time.  The splitting of jobs and machines into groups 

meant that the MinMin algorithm took less time in computing or estimating the completion 

time of jobs on all machines. The MinMin method is polynomial in nature, thus savings can 

be made through using smaller groups even without parallelisation.  However running each 

grouped pair in parallel achieves still greater processing time benefits. Also, the nature of the 

input set and the machine grouping approach has an impact on the effectiveness of the 

method.  

 

6.4 The ETB and ETSB Methods 

The ETB and the ETSB methods were proposed to remedy the shortcomings inherent in the 

Priority method, which showed that the system might under-achieve parallelism due to the 

fact that more jobs could be sorted to a single group. Secondly, the number of groups in the 

previous Priority method was constant and it was not possible to determine with certainty 

about the effects of grouping jobs and machines.  The ETB and the ETSB method were 

designed. With these two new methods, the number of groups can be varied, and jobs are not 

grouped based on priorities but rather by other methods which ensures uniformity in 

distribution amongst the groups. Both ETB and ETSB methods were executed in combination 

with the two machine grouping methods. 

Execution Time Balanced (ETB)–this method estimates execution time of all jobs based on 

attributes and then balances or groups the jobs based on the execution times across groups. 

Execution Time Sorted and Balanced (ETSB)–this method also estimates execution time of 

jobs. However, jobs are first sorted based on the execution times before balancing (grouping) 

them.  

Results showed that grouping of jobs before scheduling increases the efficiency of the Grid 

scheduler by large margins and the efficiency increases with increase in the number of 

groups. Grouping jobs before executing the scheduling in parallel within the groups improved 

Grid scheduling algorithms performance by a range of 3.21 to 7.62 times when using two 

groups to schedule. With four groups, scheduling efficiency improved by a range of 14.58 to 

52.13 times and when using eight groups, scheduling improved by a range of 63.97 to 190.58 

times.   Percentage-wise, these results showed that using two groups improved the scheduling 
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efficiency by 81% to 87% percent. Four groups improved the efficiency of scheduling by 

97% to 98% while eight groups increased the performance by up to 99%. Between the 

groups, there was 80 to 84% improvement between four groups and two groups. Between 

eight and four groups, there was a 67% to 69% improvement.  

Cumulatively, all 2 group methods made a combined mean of 6.15 times improvement over 

the ordinary MinMin. All 4 group methods made a combined mean of 40.13 times over the 

ordinary MinMin and all 8 group methods made a combined mean of 141.73 times 

improvement over the ordinary MinMin. Between the groups, 4 groups made an aggregate 

mean improvement of 6.5 over group 2 while 8 groups made an aggregate mean 

improvement of 3.5 over 4 groups. See Table 40. 

Though there was improvement in speedup across the range of jobs by all methods, 

nevertheless, there was a pattern exhibited by the performance graph in all the cases. As the 

number of jobs increases, the speedup also increased up to a point then begins to level-off or 

decline. For each method and on each schedule, the speedup improves from the beginning (at 

1000 jobs) to a point (say at 4000 or 5000 jobs) then declines for the rest of the period (up to 

100000 jobs).  

Likewise, there was a general decline in performance characterised by all methods. Though 

there was general performance improvement over the MinMin scheduling algorithm with 

increasing groups, this was not the case between two successive groups. Within a method, the 

rate of improvement was declining. Grouping of jobs therefore improves performance 

generally but within a method and between two successive groups, the improvement rate was 

marginal and declining. The general decline in performance between successive groups when 

using same method was also exhibited when the aggregate average performance for all the 

methods was examined. This characteristic can be partially attributed to overheads that 

results with increase in groups. Within the same GPMS method, the efficiency factor of the 

method is the same because they use the same scheduling strategy and the differences in 

performance is brought about by the differences in number of groups which also means 

number of threads as increased groups also increases the number of threads. As the number of 

groups increases, the number of threads used in scheduling also increases (one thread per 

group). This impacted the result as the threads contend for shared resources.  

 



General Discussion on Results and Outcome 

196 

 

6.5 Differences between ETB and ETSB Methods 

In demonstrating that manipulation of input jobs can be exploited in improving Grid 

scheduling, a comparative analysis was carried out between the ETB and ETSB methods vis-

à-vis machine grouping methods. The ETB method performed similarly to the ETSB method 

when using the EvenDist machine grouping method because both machines and jobs were 

evenly distributed in this case. The ETB performed far better than the ETSB method when 

using SimTog to group machines. 

 

6.6 Comparison of the ETB, ETSB and the Priority Methods 

The GPMS methods include the Priority, the ETB and the ETSB methods. Both ETB and 

ETSB performed better than the Priority method because in the Priority method, jobs were 

not uniformly distributed based on priority attributes and therefore large number of jobs was 

assigned to the one machine group. Hence, scheduling from the group took relatively longer, 

increasing the overall scheduling time disproportionally due to the polynomial-time 

characteristics of the MinMin algorithm. If jobs were evenly distributed into the groups, the 

method would have performed relatively better compared to the other methods. Results from 

the experiment were near perfectly correlated and consistent (they were all tending to 1) – 

indicating that the results are reliable and can be reproduced. The standard deviation for all 

the methods except the grouping methods was close to the mean of the methods.  

 

6.7 Comparison of Machine Grouping Methods (EvenDist and SimTog) 

The ANOVA results in Table 36, Test 8 showed a difference between ETSB-EvenDist vs. 

ETSB-SimTog. This indicates that the methods employed in grouping machines effects the 

result differently when the job grouping method is the same. Generally, it was observed 

among all the three job grouping method that machine grouping methods that distribute 

machines fairly equally into groups like the EvenDist method performed better than the 

SimTog method that does not share machines evenly into groups.  
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6.8 Load Balancing in the GPMS 

The research showed that the Priority method did not work well in the experiment because of 

poor load balancing.  Hence the development of the ETB and ETSB methods for job 

grouping to ensure more even distribution of jobs according to estimated size.  Of these two, 

the ETSB ensures better grouping of jobs according to job size.  SimTog and EvenDist offer 

alternative methods of grouping machines.  EvenDist provides the most balanced grouping of 

machines whereas SimTog groups similar machines together. 

The experiment found that GPMS methods that ensure jobs are equally shared (balanced) into 

groups (like ETSB) performed better than other methods that does not guarantee balancing of 

jobs (like Priority) into groups. Also, machine grouping methods that balances machines into 

groups (like EvenDist) also performed better than the (SimTog) method that does not share 

machines evenly into groups. However the charateristics of the incoming jobs might 

determine the most suitable combination of job grouping and machine grouping method. The 

GPMS does not presently include a dynamic load balancing mechanism but the idea of 

dynamically employing different methods to handle differing job sets according to prevalent 

characteristics could be an extension to the system. 

 

6.9 Impact of shared resource contention on the overall result 

Shared resources are managed exclusively in hardware and most proposed solutions to avoid 

the shared resources contention require modifying the OS memory management subsystem or 

hardware (Liu et al. 2012). Meanwhile, rights and access to the use of the HPC on which the 

experiment was conducted was limited. Hence, the impact of shared resources contention was 

evident on the outcome of the results.   

 

6.9.1 Impact of thread contention between the GPMS and MinMin 

The effect of thread contention for shared resources impacted tremendously on the overall 

result and the efficiency of the GPMS method, the use of more threads (as a result of 

increased groups) to access the same source file introduced communication overheads and 

shared resource contention resulting in ineffective use of the caches and consequently led to 

increased cache-miss rate. The impact affected the overall improvement recorded by the 
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GPMS method over the ordinary MinMin.  Most noticeably is when the number of threads 

increases as a result of increased group. This can be seen in Figures 28, Figure 29, Figure 40, 

Figure 41 and Figure 56. However, the impact of shared resource contention was more 

noticeable between successive GPMS groups than against the MinMin, this is because the 

GPMS method performed far more efficienctly compaired to the ordinary MinMin. Within 

the same GPMS method, the efficiency factor of the method is the same because they use the 

same scheduling strategy and the differences in performance is only determined by the 

differences in number of groups which also means number of threads as increased groups 

also increases the number of threads. Between the GPMS method and the MinMin, the 

efficiency factor is determined both by the method (or strategy) and the number of groups (or 

threads in this case). The comparisons were made at the point where both the GPMS and the 

ordinay MinMin used the same number of threads. The effect of resource contention is 

therefore not too noticeable between the GPMS methods and the ordinary MinMin because 

both methods used the same number of threads and the overall gains of the GPMS method 

(even with increased threads) far outweigh the impact of shared resource contention between 

it and the ordinary MinMin.     

    

6.9.2 Impact of thread contention between successive groups within the GPMS 

method 

The negating impact of shared resources contention was noticeable when using the same 

group method; as the number of groups increases, even though the performance of the 

successive group is better than that of the previous group, but the trend is negative. That is to 

say the rate of improvement between two successive groups within a given method was 

declining. This is because within the same GPMS methods, the same scheduling strategy is 

used and the difference in performance (or the efficiency factor) is a result of the differences 

in the number of groups used – which in this case is the same as the number of threads.   

The groups used in this work are intended to increase parallelism in scheduling and since 

increased parallelism (more cores within a system) comes at a cost (shared resources 

contention), this affected the general performance of the method as the number of groups 

increases. As the number of groups increases, more threads are required to match the number 

of groups to carry out the parallel scheduling (one thread per group - two groups used two 
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threads to schedule, four groups used four threads and eight groups used eight threads to 

schedule). This created more contention between the (increased) threads for same resources.  

The negating impact was evident on the overall result and the analysis between successive 

groups.   

 

6.9.3 Impact of thread contention on makespan in the GPMS 

The focus of this research has been on the parallelisation of the scheduling activity rather 

than on makespan.  However makespan is crucial and there would be little point in improving 

scheduling time if the resulting schedules made for longer makespan.  The GPMS is intended 

to schedule independent jobs to the cores of the machines. Estimate makespans were 

calculated to give an outline assurance that the parallelisation of the scheduler achieved 

appropriate makespans but more detailed consideration of this and the effects of contention is 

needed. As the research literature exposed in section 2.3.3 has shown, the nature of the tasks 

themselves can affect contention as this is why deeper analysis is needed.  As the jobs 

handled by the GPMS are independent there would be little contention over data access but 

there could be contention over the use of the LLCs, shared buses and DRAM controllers. The 

makespan currently calculated in this research does not include extra time for such contention 

as the concentration was on the multi-core aspect of the actual scheduling process.  Delving 

deeper into the makespan aspect is a subject for future work. 

 

6.10 Summary of Findings 

The following were the findings made in this research: 

 Grouping of jobs can improve scheduling efficiency and increase scheduling-throughput 

 Increasing the number of job - machine groups directly increases the scheduling 

efficiency respectively. 

 The idiosyncrasies of the input job set can have an effect on the scheduling outcome 

depending on the scheduling or grouping method used. This was evident with the Priority 

method where the attributes of the jobs were skewed and more jobs were sorted into one 

priority group. 

 The attributes of the incoming job affect the quality of the resulting schedule.  
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 Increase in the number of groups (which also translate to increase in the number of 

threads) improved performance against the MinMin but the rate of improvement slowed 

between successive groups within the same method. This is because between the GPMS 

and the MinMin, the efficiency factor is determined by the strategy used for scheduling 

(grouping) and the increasing number of groups while within the same method, the 

scheduling strategy is the same and the impact factor or efficiency factor is determined 

only by the number of groups (or threads used). The slowing down of the rate of 

improvement is partially as a result of shared resource contention caused by increase in 

the number of threads as the number of group increases. Another reason is due to the 

polynomial nature of MinMin. 

       

In conclusion, we say that the best results might be obtained by using an adaptive GPMS 

which can exploit different scheduling mechanisms depending on the characteristics of the 

incoming jobs. Future work will explore alternative grouping methods and how 

characteristics of input jobs can be harnessed such that appropriate grouping methods can be 

selected based on characteristics in an adaptive GPMS. 

 

6.11 Summary 

This chapter presented further discussions on the results and statistical analysis of the 

methods used in the experiments. It also brought together some key observations on 

characteristics exhibited by the various methods, together with some explanations. 

The next chapter shall discuss the GPMS system in a different light relating it or comparing it 

to other established systems such as GridSim, gang scheduling, Condor and the DIANE 

scheduler. 
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CHAPTER SEVEN 

COMPARISON OF GPMS AND PREVIOUS RESEARCH 
 

7.1 Introduction 

In this chapter a review is provided of the GPMS approach in comparison to previous 

research, some of which was introduced in Chapter Two.  The GPMS is a simulator and 

whilst producing a simulator was not the primary aim of this research (rather the aim was to 

explore group based multi-scheduling methods) the implementation used in the exploration 

required simulation of Grid scheduling.  Thus it has a relationship with previous work in 

simulation.   Initially this chapter discusses simulation in Grid Systems and then compares 

the GPMS with a well-known Grid simulator, namely GridSim.  Secondly the GPMS uses 

group scheduling and hence a later section of this chapter compares the GPMS to Group and 

Gang scheduling.  Lastly it is interesting to compare the work with previous iconic 

distributed systems.  The final section of the chapter compares the work to Condor and 

DIANE scheduler. 

 

7.2 The Simulation Approach 

The management and evaluation of resources and scheduling of applications in a 

heterogeneous environment where the resources are geographically distributed in multiple 

administrative domains managed and owned by different organizations, where different 

policies may be implemented is a complex challenge. Effectively evaluating the performance 

of scheduling algorithms in such environments requires that different scenarios be tested in a 

controllable and repeatable manner, like varying the number of resources, users, users’ 

requirements and tasks. But this is difficult because resources in the Grid span across 

different administrative domains with varying policies, users, time zones and priorities. 

Moreover, many researchers do not have access to ready-to-use test bed infrastructure and 

cannot bear the burden of building such systems because of cost. More so, most existing test 

beds are limited in size and domains. Hence, testing and evaluating scheduling algorithms 

with such systems is difficult. This introduces a number of challenges in resource 

management and application scheduling the Grid.  
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Simulation and modelling has emerged as an important tool for modelling and evaluating real 

world systems/scenarios and many standard and application-specific tools and technologies 

have been developed and used extensively for modelling and evaluating real world scenarios. 

This has necessitated the development simulation languages e.g. Simscript (CACI), 

simulation environments e.g. Parsec (Bagrodia et al. 1998), simulation libraries e.g. SimJava 

(Howell and McNab 1998), and application specific simulators e.g. OMNet++ network 

simulator (Varga 2001). There also exist tools for simulating application scheduling in Grid 

computing environments. These include Bricks (Aida et al. 2000), MicroGrid (Song et al. 

2000) Simgrid (Casanova 2001) and GridSim (Buyya and Murshed 2002) toolkit. 

 

7.3 Some Grid Simulation Tools 

This section discusses some simulation tools and technologies for simulating the Grid 

environments.  

7.3.1 OptorSim 

OptorSim is a package designed to imitate the structure of real Data Grid and investigate 

replica optimisation algorithms. It enables the studying of optimisation strategies under 

different conditions. In addition, it explores the stability and behaviour of different 

optimisation techniques (Bell et al.  2003). Written in Java, OptorSim was developed by the 

DataGRID (2004). OptorSim is simulated as a Grid with several sites, with each site having 

zero or more computational and data storage facilities. In OptorSim, computing elements run 

the jobs stored on storage elements and a resource broker controls the scheduling of jobs to 

computing elements. Optimisation in OptorSim is done in two phases: the first phase choses 

the computing element to run the job and the second phase involves the creation of replicas 

by the optimisation algorithm. This is aimed at achieving dynamic optimal replication during 

the running of the jobs. OptorSim uses two configuration files, one of the file descrbes the 

network topology while the other file comprises information about the logical names of files 

to be executed. OptorSim uses two types of optimisation algorithm, scheduling algorithms 

and replication algorithms. The replication algorithm creates geographically disparate but 

identical data sets aimed at reducing data access time and cost. OptorSim enable users to 

visualize the performance of a specific algorithm by providing a set of measurements which 
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can be used to quantify the effectiveness of the optimisation strategy under consideration, 

hence focusing on optimisation and data replication.  

7.3.2 SimGrid 

SimGrid (1999) is a toolkit created at the University of California, San Diego (UCSD). 

Implemented in C programming language, it provides core abstractions and 

functionalities that could be used to simulate specific distributed computing 

environments and to provide the tools for carrying out research in resource scheduling 

in distributed environments.  

SimGrid simulation involves the creation of resources. Resources are created with two 

performance parameters, latency and service rates. These two parameters are used to 

simulate performance using a vector of time-stamped values or constants.  

In 2003, SimGrid V2 was introduced with a new layer. This new layer provided the 

toolkit with the capability to model simulations in terms of communication agents with 

the capability of scheduling tasks on resources (Legrand, Marchal and 

Superieuredelyon 2003, and Casanova, Legrand and Quinson 2008). 

In 2006, another model of SimGrid called Grid Reality and Simulation (GRAS) was 

deployed on top of SimGrid V2, this new model was to facilitate the operation of 

simulated codes in real time environments. The new model was built on top of the new 

software layer of V2; the Meta-SimGrid (MSG) in simulation mode and is built on top 

of the socket layer in real mode, introducing what is known as SimGrid V3 (Casanova, 

Legrand and Quinson 2008).  

SimGrid is limited because of its restriction to a single scheduling entity and time 

shared system. Simulation of multiple users is difficult and the representation of 

resources or applications with separate policies and specifications is complex.  

 

7.3.3 MicroGrid  

MicroGrid (2004) is an online simulation tool designed for the Globus toolkit to model 

applications created in Globus to be carried out in a controlled environment. The 

package was developed in the University of California in San Diego (UCSD).  
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MicroGrid is designed to provide a platform that supports the simulated execution of 

real life applications. MicroGrid supports the running of applications that use dynamic 

resource allocations. It provides a mechanism for repeatable experiments in order to 

observe and study design aspects for applications and middleware, exploration of 

extreme circumstances and choices of application deployment, Grid resource allocation 

and network design.  

MicroGrid uses a virtual Grid configuration file to build corresponding simulation 

objects required to create the virtual Grid. MicroGrid models applications and 

middleware to be executed on virtual machines in near real-time. Simulation objects in 

MicroGrid include network elements and computing resources. 

Users of MicroGrid are first required to specify a set of virtual resources before 

specifying the physical resources to be used for the computation and online network 

simulation. Users are then be able to submit the application as a task on the virtual 

Grid, and observe the execution (Xia, Casanova and Chien 1999, Xin, Xia and Chien  

2004, and Huang,  Casanova  and Chien 2006). 

The limitation of MicroGrid is that the package is tied to the Globus toolkit which 

produces a significant amount of overhead. Moreover, using MicroGrid to model a 

large number of applications, environment and scenarios requires a significant amount 

of time. 

7.3.4 GridSim 

GridSim (Buyya and Murshed 2002) is designed to effectively simulate the Grid and evaluate 

applications in varying scenarios; it is a framework for deterministic modelling and 

simulation of resources and applications to evaluate scheduling strategies in the Grid. 

GridSim is java-based and has the capability to support modelling and simulation of 

heterogeneous Grid resources, users and applications.  

The GridSim toolkit supports modelling and simulation of a wide range of heterogeneous 

resources, such as single processor or multiprocessors systems, shared and distributed 

memory machines such as PCs, workstations, and clusters with different capabilities and 

configurations. It can model application scheduling on various classes of parallel and 

distributed computing systems such as clusters, Grids and P2P networks. 
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GridSim is a very popular simulation tool used by researchers in simulating test scenarios and 

has proved to be generic, comprehensive and adaptable in various ways because it allows 

various scheduling algorithms to be simulated and evaluated.  

GridSim has features that allow the modelling of heterogeneous resources. Resources can be 

modelled to operate under space- or time -shared mode. Time sharing ensures that threads are 

scheduled to execute on processors at time intervals. Space-sharing entails the scheduling of 

cores to execute completely the thread chosen to run, before executing the next. 

Resource capability can be defined in the form of MIPS (Million Instruction per Second) as 

per the SPEC benchmark. Resources can be located in any time zone. Weekends and holidays 

can be mapped depending on resource’s local time to model non-Grid (local) workload. 

Resources can be booked for advance reservation. 

Applications with different parallel application models such as Clusters, Grids and P2P 

networks can be simulated. Application tasks can be heterogeneous, CPU intensive or I/O 

intensive. It supports simulation of both static and dynamic schedulers, any number of 

application jobs can be submitted to a resource.  

Multiple users can submit tasks for execution in the same resource, which may be time -

shared or space-shared. The network speed between resources and between users and 

resources can be simulated. And finally, statistics of all or selected operations can be 

recorded and analyzed using GridSim statistical analysis methods. 

 

7.3.4.1   GridSim Entities  

GridSim entities can be simulated as single processor, multiprocessor or heterogeneous 

resources that can be configured as time- or space-shared systems. Different time zones can 

be simulated to represent geographic distribution of resources. It can also simulate networks 

for communication among resources. GridSim also supports the creation of multi-threaded 

entities which run in parallel in their own threads. 

 

  



Group-Based Parallel Multi-scheduling Methods for Grid Computing  

207 

 

User 

In GridSim, Grid users are represented by a User entity; each user is represented by an 

instance of the User entity. Each User is distinguished from other Users by number of 

tasks to be submitted, execution time of each task, scheduling optimisation strategy 

(which could be Time, Cost or Cost/Time which also refers to Deadline, Budget or 

Deadline and Budget combined), task creation rate and Time Zone. 

Resource Broker 

Each User is connected to a resource broker; each resource broker is represented by a 

Resource Broker entity. Each user submits their tasks to the resource broker they are 

connected to, and the resource broker sends the tasks to the resources according to the 

Users optimisation strategy: Cost, Time or Cost/Time.  

Resource 

Each resource in GridSim is represented by an instance of the resource entity, a 

resource entity is a reusable entity that is deployed in the Grid and used to fulfil tasks 

submitted by Grid users. One resource entity differs from the other resource entity 

according to factors such as: the number of Machines in each resource; the number of 

Processing Elements (PEs) inside each Machine; the speed of each CPU or processor 

measured by MIPS; the cost of each processing unit; the resource allocation policy 

which is either time-shared allocation policy or space-shared allocation policy; local 

load factor; time zone where the resource is located; operating system; and system 

architecture. 

Grid Information Service (GIS) 

The Grid Information Service provides basic operational communication with users and 

resources in the GridSim package.   

I/O Entities   

I/O entities are represented by instances of the I/O entity. I/O entities enable the free 

flow of information between entities in GridSim. Each I/O entity is capable of 

executing in parallel in its own thread. 

Gridlets 

In GridSim, users’ tasks are represented by Gridlet objects. Gridlets contain logical 

information about tasks, such as the size of the file, the user that originated the Gridlet, the 
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start time, finish time, total completion time, current status and the size of the file that is to be 

returned from the resource to the user.   

 

7.3.4.2   Communication and Interaction between Entities  

Interaction between entities in GridSim is done in the form of messages or events. 

These events are initiated by an entity to be delivered either with immediate effect or 

with a defined delay to other entities. 

Internal Events are events that originated from the same entity while those that originated 

from external souces are called External Events. These events can be distinguished by the 

source identification associated with them. GridSim events are further classified into 

synchronous and asynchronous events depending on the service protocols.  

 

7.3.4.3   Main GridSim Classes 

The main GridSim classes in GridSim are: 

GridSim: this class is responsible for initializing and starting the simulation. It also activates 

the simulation kernel and is required before any entity creation.  

GridSimCore: this class is responsible in the management of I/O operations of an entity. 

This class was an addition to the GridSim toolkit, aiming at taking over I/O operations: 

reducing the complexity of the GridSim class. Moreover, entities in this class are capable of 

knowing the bottleneck of a network route using the Gridsim.net package (Sulistio et al. 

2007).  

TrafficGenerator: this class generates the network traffic; it is used by entities of the 

GridSimCore class to determine bottlenecks of routes in a network topology. 

Gridlet: This class is used for the creation of Gridlets or users tasks. The basic Gridlet class - 

before modification - contains information on the tasks submitted, including, task length and 

number of PEs.  

GridUser: this class is used in the creation of user entities. It allows the users to communicate 

with and register with a GIS. It allows the user to query the GIS on resources availability.  

GridResource: this class is used for the creation of different types of Grid resource. 
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AllocPolicy: this class is responsible in handling the internal resource allocation policy for a 

GridResource. The class allows the addition of new scheduling algorithms via extension of 

this class.  

AdvancedReservation Classes: This class enables users to request for the use of resources in 

advance. Variations of the AR class includes: ARGridresource and ARPolicy.  

These classes have added functionalities like: requesting reservations of PEs; creating 

reservations; committing reservations; modification of reservations; and reservation 

cancellation to GridSim. 

 

7.3.4.4   GridSim Application Model 

In the experiment, the application is modelled as a task farming application with 200 jobs. 

The jobs are packaged as Gridlets whose contents include the job length in MI (Million 

Instructions), the size of job input and output data in bytes along with various other execution 

related parameters. The job length is expressed in reference to the time it takes to run on a 

standard resource PE with SPEC/MIPS rating of 100. The processing time of Gridlets is 

estimated based on 100 time units with a variation of 0 to 10%. However, GridSim does not 

explicitly define any specific application model. The developer of schedulers and resource 

brokers defines them. The developers of GridSim experimented with a task-farming 

application model and believe that other parallel application models such as process 

parallelism, DAGs (Directed Acyclic Graphs), Divide and Conquer and other algorithms can 

also be modelled and simulated using GridSim.  

 

7.3.4.5   GridSim Resource Model 

In the GridSim experiment, resources were modelled as those of the WWG (World Wide 

Grid) testbed with different characteristics, configurations and capability. These 

configurations and characteristics reflect the latest CPU models. The processing capability of 

the PEs is modelled after the base value of  SPEC CPU benchmark.   The GridSim toolkit 

allows the creation of Processing Elements (PEs) with different speeds (measured in either 

MIPS or SPEC-like ratings). Machines are created with one or more PEs. Then, one or more 

machines are put together to make a Grid resource. The Grid resource can be a single 
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processor, shared memory multiprocessor (SMP), or a distributed memory cluster of 

computers. 

Time-shared operating systems that uses round robin scheduling policy is used to manage the 

single PE or SMP type Grid resource while space-shared schedulers manages the distributed 

memory multiprocessing systems. 

 

GridSim uses process oriented events to represent physical entities and simulates their 

behaviour. GridSim resources can send, receive, or schedule events to simulate the execution 

of jobs. Simulation of execution and allocation of PEs to Gridlet jobs are done using internal 

events. If there is a free PE when a job arrives, then space-shared systems start its execution 

immediately, otherwise, it is put in a queue. When a Gridlet job finishes execution, an internal 

event is generated to signify the completion of the Gridlet job. The PE allocated is then freed 

by the resource simulator and a check is made to determine if there are other jobs in the 

queue. If there are jobs waiting in the queue, then it selects a suitable job depending on the 

policy and assigns to the free PE. 

 

7.3.4.6   Limitations of GridSim 

GridSim is a generic simulation tool for the Grid and not tailored for some specific use. As is 

the case with most generic tools, it does not fully consider all the constraints in all 

circumstances and has to be adapted, modified or extended for specific use. This has 

necessitated the extension of the tool by several researchers such as Sulistio et al. (2007), 

Kalantari and Akbari 2009, Albodour, James and  Yaacob (2010) and Qureshi, Rehman 

Manuel (2011) before use. 

 

Albodour (2011) stated that GridSim only provides the basic and simple operations required 

to fully and accurately simulate a true Grid environment including the users, tasks and the 

scheduler. He stated that the creative flexibility of users, tasks and resources are limited. In 

GridSim, when users (called user entities) are created, they are immediately required to create 

Gridlets or tasks. In real Grid environment this is not typically the case as users are free to 

and should be able to create their tasks when they choose. He stated further that the 

Nimrod/G resource broker utilises a greedy method in satisfying users’ requests without 
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taking into consideration any other requests from other users. He then argued that the greedy 

method does not consider load balancing or congestion in the Grid. Although GridSim can be 

adapted for the specific test or scenario, Albodour (2011) also argued that the Nimrod/G 

resource broker is limited in capability as it provides optimisation for budget and deadline 

scheduling only, when in reality, many other scheduling constraints are required. 

 

Also, with GridSim, each independent task requires varying processing time and input files 

size which are created or defined through Gridlet objects which contain attributes related to 

the job and its execution details. A Gridlet object may contain information such as job length, 

disk I/O operations, the size of input and output files, and the job originator. These attributes 

help to determine the execution time of the job and the transportation time of the job.  

 

But most jobs in the Grid Workload Archive used as source for the data do not contain these 

parameters required by GridSim. This influenced the decision to design a simulator that can 

work with the available parameters contained in the source file.  

 

GridSim is a generic simulation tool and not tailored for specific use. As a result, it has to be 

adapted, modified or extended for specific use. Parallelisation could be simulated on GridSim 

if the parallel scheduler is broken down into parallel tasks and each task couched as a Gridlet 

but the actual scheduling code would not run, as GridSim does not support actual execution.  

Instead estimation would have to be made of the size of each scheduler task (or scheduler 

Gridlet) so that GridSim in turn could estimate the size of the parallel execution.  

Furthermore if the parallel scheduler was broken into tasks and input to GridSim for 

scheduling, there is no mechanism for adding the next level of simulation i.e. the task or 

payload scheduling of the input jobs.  In other words, since GridSim does not support actual 

execution of tasks in the above described scenario, there is no way any output would be 

available to show the schedule that is determined by the scheduler and no facility to further 

simulate execution of  that schedule.  To carry out this investigation a new simulator which 

incorporated a parallel scheduler had to be written. It could have been possible to create the 

parallel scheduler and integrate it with GridSim in order to take advantage of some existing 

GridSim classes. However in this case the vast majority of the creation would have been new 

write rather than reuse because the functionality required does not currently exist in GridSim.   
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In summary the reasons for not developing the GPMS in GridSim were primarily so that it is 

not tied to a particular existing simulator, the lack of required functionality and to avoid 

potential constraints of developing within an existing product. Interesting future work could 

be the execution of the GPMS experiments using existing simulation tools like GridSim. 

 

7.4 The GPMS Simulator  

The simulator reads jobs from a file then calculates job sizes and job priorities. It then reads 

simulated machines from a machine file from simulated Grid sites. Based on the scheduling 

algorithm, it simulates job execution on machines and allocates jobs to machines.  

The simulator is made up of the following packages and classes: 

Algorithms: This package contains the scheduling algorithm class. The scheduling algorithm 

class defines the scheduling or allocation policy to implement in the test. The algorithm used 

in this experiment is the MinMin algorithm but other scheduling algorithms can be developed 

and added to this package as a class then called in the SchedulingAlgorithmI class. This class 

therefore enables the simulation to be generalised or extended.    

SchedulingAlgorithmI: this class calls the scheduling policy class and executes it. It takes a 

batch of jobs information, information about each Grid site and information about every 

machine in the Grid. It then produces for each machine in all Grids a list of jobs to be 

executed by that machine (in order). In other words, it simulates the allocation/execution of 

jobs to machines based on the scheduling algorithm or on the allocation policy. 

Entities: This package contains classes used in defining the components of the Grid and Grid 

jobs. These include: 

GridInformation: this file contains information making up the Grid. In the simulation, the 

Grid is made up of categories determined by its network bandwidth and the type of machines 

constituting that Grid. There are categories A to D Grid sites. Categories are based on the 

configuration of the machines (speed of processors, number of cores and RAM size). 

Category A contains machines with less processing power and number of CPU cores. 

Category B contain machines with better configuration (based on speed, number of cores and 

RAM size) compared to group A. The machines in group C are better in configuration rating 
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compared to machines in group A and B while machines in group D contain machines with 

the best configuration in terms of speed of processors and number of cores.  

Each Grid has a unique Grid id and is constituted by Grid machines made up of different 

number of cores with varying CPU speed and RAM sizes. Furthermore, each machine has a 

machine id.  

JobInformation: the job information class contains information about users’ jobs like the job 

id, job size and the priority of the job. The job sizes can be defined as Very Large, Large, 

Medium and Small. 

JobPriority: This entity defines the priority of jobs. There are four different priorities namely; 

Very High, High, Medium and Low. Categorizations of job priority are based on the 

attributes of the jobs. GPMS uses the number of job processors requested by the user to 

estimate the priorities of jobs. This is different from the method used for estimating job sizes 

which is based on both the number of processors requested and / or the requested time or the 

average CPU time used (this value was not always available). 

WorkerConfiguration: this entity contains the configurations or attributes of the machines 

making up the Grid. The attributes includes the machine id, the number of cores, the speed of 

CPU and the size of RAM.  

Files: This package contains classes that reads and stores files temporarily for the 

simulation/experiment. These include:  

GridLogReader: This is a class that reads the jobs from the job log, computes the jobs sizes 

and the priorities of the jobs based on the attributes. Among the attributes read are: 

JobID, SubmitTime, WaitTime, RunTime, NProc, AverageCPUTimeUsed, UsedMemory, 

ReqNProcs, ReqTime, ReqMemory, UserId, GroupId, ExecutableId, QueueId, PartitionId, 

OrigSiteId, LastRunSiteId. 

GridsInformationFile: This class reads the Grid machines available and stores them for the 

scheduling experiment. 

ScheduledJobsFile: This class reads the jobs file and machine file, and then keeps a log of 

the scheduled jobs and the cores in the machines they were allocated to for each round of 

scheduling. 



Comparison of GPMS and Previous Research 

214 

 

Threading: This package contains the class ThreadPool.java which creates a thread pool to 

be used for the multi-schedulingexperiment. 

Simulation: This package contains classes that simulate the Grid environment with machines 

and jobs and also simulates the scheduling of jobs to machines. It also simulates the 

execution of jobs on the machines. The simulation package contains the following classes: 

Execution Simulator: This class simulates the execution times of the jobs on the CPU cores 

in the machines they are allocated to. It takes as input the file containing machines list 

(machine id and specification), file with original (job) log information (job id, log entry 

containing job size, etc.) and file containing scheduled jobs (job id and machine id), and 

produces as output a table of job execution on machines with the following attributes; job id, 

job info, machine id, machine speed, waiting time, finish time, execution time.  Machines are 

simulated to comprise varying number of cores. Jobs are allocated to the CPU cores and the 

execution times of the jobs are computed on the allocated cores.  

This class also simulates the usage of the CPU cores and when the next CPU will be available 

for allocation to the next job. 

The execution times of the jobs are simulated with the AverageCPUTimeUsed by the job 

(provided in the log entry) but for jobs without this value, the execution time is computed 

from the job size in reference to the speed of the allocated CPU core compared to that of a 

standard machine with a 1GB RAM and 1GHz. Algorithm for simulating the execution times 

of the jobs is shown in Table 42. 

Table 42: Algorithm for simulating execution times 

 

If (averageCPUTimeUsed == -1) 

     baseTime = Job.Size  = ReqTime * ReqNProcs  

OR baseTime = ReqTime if the number of processors is unknown 

  else 

    baseTime = averageCPUTimeUsed   

  time = baseTime * 1000 / processor CPU speed 
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 Each log entry in the source file contains (among others): 

 - ReqTime - expected execution time provided by the user 

 - ReqNProcs - expected number of processors, provided by the user 

 - RunTime - time when the job was started to the time when it finished 

 - AverageCPUTimeUsed - time actually used by the processor to execute the task  

Job Size: The simulation is based on real Grid data from the Grid workload archive. The 

simulator reads the jobs from a file.  Based on the available parameters of the jobs, it 

estimates the job size with the requested time, or number of processors requested or both. 

Where both attributes are not available, then it uses the actual time it took the job to execute 

(which is represented by the value AverageCPUTimeUsed) as the job size. In the source data, 

one of the two or both of the two values (requested time, or number of processors requested) 

were always present. Hence, the algorithm does not evaluate to the third option that uses 

AverageCPUTimeUsed. If the size cannot be determined, then the log entry is ignored. Table 

43 shows the algorithm to estimate the file size. 

Table 43: Estimating the job size 

     If (ReqTime != -1 AND ReqNProcs != -1) 

  Size = ReqTime * ReqNProcs 

 else if(ReqTime != -1) 

  Size = ReqNProcs 

 else 

  Size = AverageCPUTimeUsed 

- For this simulation, if the size cannot be determined, then the log entry is ignored. 

 

Create_Table: this class creates a table of scheduling times for the algorithm based on the 

number of jobs (jobs limit), method used, and or number of threads used.  

Test_Scheduling: this class enables the scheduling algorithm to access Grid Jobs and the 

Grid machines and allow scheduling based on the scheduling algorithm’s policy.  
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Test_Execution: this class enables the ExecutionSimulator class to execute. It estimates how 

long it will take to complete all jobs as scheduled by the algorithm.  

Test_Parameters: the test parameter class sets out the experiment detail. It specifies the 

GPMS method to apply, number or range of jobs (jobs limit), the steps of jobs, the number of 

threads and the number of groups to use for the experiment. It also specifies where to read the 

input files from and where to save the measured scheduling results to. 

Stats_Jobdistribution: This class counts the distribution of jobs used in the experiment based 

on priority. 

Start.java: This is the main class that calls the execution to take place. It also ensures that 

scheduling results are written out and saved to the output file. Two output result files are 

generated from the simulation. These are: 

ResultStatistics: this file contains a general statistics of the scheduling times obtained by the 

scheduling methods in scheduling n jobs by the group method, number of threads used, 

number of groups used. A sample result statistics header file contains the algorithm used, the 

number of groups used, the machine grouping method used, the job grouping method used, 

the number of threads and number of groups used, job limit, time taken to schedule n jobs, 

execution time, core time, average core time, average machine time and machine standard 

deviation. These values tell how the each core performs in the scheduling experiment. A 

sample result statistics header file with some data is shown in the Table 44. 

 

Table 44: Sample results statistics file 
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ExecutionResults: This file contains the execution result of the jobs on the machine cores. It 

shows which cores in the machines jobs were allocated to, the waiting time, finish time and 

execution time of jobs on allocated machines. It also shows the job id, job size and job 

priorities. It also shows the machine id, CPU speed, RAM size and core of machines on 

which jobs were allocated and executed. A sample execution result file generated from 

MinMin algorithm executing 1000 jobs using 4 threads is shown in Table 45.  

In Table 45, jobs 5506, 5507, 4243, 4244, 2345 and 2346 were allocated to machine 363 in 

three rounds of scheduling. Machine 363 is made up of two cores (core0 and core1) and its 

CPU speed is rated as 3500MHz (3.5GHz) and the RAM size of the machine is 2G. The 

allocations were made in three different schedules. In the first schedule, jobs 5506 and 5507 

with size 3600 (categorized under low priority) were allocated to core0 and core1 of machine 

363. The jobs waiting time were 0 and they both took 1028 milliseconds to execute.  

In the second schedule, jobs 4243 and 4244 with sizes 14400 (and categorized under low 

priority) had their waiting times as 1028 milliseconds (the time it took the first set of jobs to 

execute). The execution time was 4114 milliseconds and the finish time was 5142 

milliseconds (5142-1028 equals 4114) and in the third schedule, jobs 2345 and 2346 with 

size 86400 categorized as medium priority had their waiting time as 5142 milliseconds and 

were allocated to core0 and core1 respectively. Their finish time was 29827 Milliseconds and 

execution time was 24685 milliseconds.   

The next sets of jobs were allocated to another machine with id 1480. Machine 1480 has four 

cores ranging from 0 to 3. Its CPU speed is 4000MHz (4GHZ) and RAM size 2G (this 

machine is faster than machine 363 and was utilized more in the scheduling). Machine 1480 

was used for four rounds of scheduling. Four different jobs were allocated to each core in 

each round of scheduling. In the first set, jobs 2115, 2126, 2141 and 2168 were allocated to 

cores 0, 1, 2 and 3 respectively. In the second round of schedule; jobs 2211, 2251, 2252 and 

2253 were allocated to cores 0, 1, 2 and 3 respectively.  

From the table, it can be seen that for each machine, the smaller jobs were first allocated and 

executed before the higher jobs. For instance, machine 363 executed low, low, medium jobs 

in the three rounds of schedule and the jobs sizes were 3600, 14400 and 86400 respectively. 

Machine 1480 was allocated and executed low, medium, very high, very high order of jobs. 
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The job sizes were 900, 1800, 14400 and 86400 respectively. This is because the MinMin 

algorithm which favours smaller jobs was used in scheduling. See Table 45. 

 

Table 45: Execution results file (ExecutionResults_MinMin_4_10000.txt) 

 

 

 

7.5 Comparison between GridSim and the GPMS simulator 

 

7.5.1 Application Model 

Both GridSim and the GPMS do not explicitly define any specific application model. Both 

simulators allow the user to define and execute the algorithm of their choice. The developers 

of GridSim experimented with a task-farming application model while in the GPMS 

simulation; the MinMin scheduling algorithm was used. 

Both GridSim and GPMS simulations allows users to define the scheduling algorithm for use. 

Hence they both have the capability to accept the file system used by the algorithm. For 

instance, GridSim, users (on creation) are required to define gridlets while the GPMS simulator 

accepts jobs from a batched file. 
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7.5.2 Resource Model  

The GridSim toolkit allows the creation of Processing Elements (PEs) with different speeds 

(measured in either MIPS or SPEC-like ratings). It also allows the creation of varying 

machines with different number of PEs and scaling with more machines to form a Grid 

resource. The number of Grid resources can be changed easily – making it dynamic. The 

simulator used in this research simulates machines with different cores and different speed 

rated in GHz. A combination of different machines with varying cores and varying speed are 

specified to constitute a Grid.  

GridSim models both Time-sharing and Space-sharing events while the GPMS simulator 

assigns jobs directly to the cores, hence it models only space-sharing events.  

 

7.5.3 General Features    

Both GridSim and the GPMS simulator are built with classes using the same programming 

language (java).  

GridSim has the features to allow for the modelling of heterogeneous resources. Resource can 

be located in any time zone, weekends and holidays can be mapped, and resources can be 

booked for advance reservation. Heterogeneous tasks can be CPU or I/O intensive. There is 

no limit on the number of application jobs that can be submitted to a resource. Network speed 

between resources can be specified. It supports simulation of both static and dynamic 

schedulers. Statistics of all or selected operations can be recorded and they can be analyzed 

using GridSim statistics analysis methods. 

Most of the features in GridSim are not available in the GPMS simulator developed for this 

experiment. For instance the simulator used in the experiment did not model differentiation 

between CPU or I/O intensive tasks, it did not also consider weekends, holidays, advance 

reservation and different time zones.  
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Some features common to both simulators are: support for static and dynamic schedulers (as 

users are allowed to define them); Network bandwidth of the Grid site; space-shared 

scheduling; and the number of jobs that can be submitted are not limited.  

 

The GPMS is set up to support experimentation in parallelisation of the actual scheduler 

rather than parallelisation of regular jobs.  Different algorithms can be used to schedule in 

parallel the batched groups of jobs.   GridSim is not set up to experiment with parallelisation 

of the actual scheduler. 

 

Overall, GridSim is more generic, extensive and has more features while the GPMS was 

specific as the design was focused on the task at hand. Despite the current restrictiveness of 

the GPMS simulator, there is room for expansion and standardization.  

 

7.6 Relationship of the GPMS System to Gang Scheduling 

This section provides further discussion of gang scheduling and then explains how this relates 

to the GPMS.  

7.6.1 Gang Scheduling 

The performance of multiprogramming systems degrades when a parallel application does 

not have all its interacting processes scheduled at the same time (Marinescu and Wang 1995).  

Gang scheduling (co-scheduling) was proposed to efficiently manage the scheduling of 

cooperating processes of a parallel application in a multiprogramming environment 

(Ousterhout 1982). Gang scheduling is the concept of scheduling at the same time only the 

active processes in a process group - a set of tasks is scheduled to execute simultaneously on 

a set of processors. The aim is to allow tasks to interact efficiently by using busy waiting, 

without the risk of waiting for a task that is not currently running. Without gang scheduling, 

tasks have to block in order to synchronize. This is because a process in execution that 

requires data (or input) in order to continue always blocks to wait for the input and continues 

execution after the input is supplied, thus suffering context switch overhead (Al-Saqabi, 

Sarwar and Saleh 1997, Wiseman and Feitelson 2003, Frachtenberg et al. 2001, Corbalan, 

Martorell, and Labarta 2001 and Karatza 2001). 
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Gang scheduling offers many advantages for job and system efficiency, the system can be 

better utilized by the scheduler’s ability to pre-empt jobs in several ways. However, gang 

scheduling can incur a relatively high overhead due to the effect of the context switch on the 

computing nodes. This is caused by the resource sharing between multiple jobs and context 

switches between processes (Frachtenberg et al. 2001) 

In gang scheduling, jobs are pre-empted and re-scheduled as a unit across all involved 

processors. The notion uses the analogy of a working set of memory pages to argue that a 

“working set” of processes should be co-scheduled for the application to make efficient 

progress (Ousterhout 1982). Gang scheduling provides an environment similar to a dedicated 

machine where all of a job’s threads progress together, and at the same time allows resources 

to be shared. In particular, pre-emption is used to improve performance in the face of 

unknown runtimes. This prevents short jobs from being stuck in the queue (Feitelson, 

Rudolph and Schwiegelshohn 2004).  

Gang-scheduling aims at optimal utility of the CPUs. To this end, gang scheduling is 

concerned with grouping of tasks into gangs that complement the optimal use of the CPUs. 

With gang-scheduling, useful results can be attained with proper coordination of tasks and 

processors.  
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7.6.2 Gang Scheduling and the GPMS  

Both gang scheduling and the GPMS aim at achieving high scheduling-throughput by 

optimally utilising computer resources. In gang scheduling, multiple processes are selected 

for scheduling (time-sharing) and execution on processors (space-sharing) at the same time 

while the GPMS system groups and schedules independent (users) jobs onto the cores of a 

multicore system (space-sharing). Gang scheduling is aimed at efficiently scheduling 

dependent (cooperating) processes in a multiprogramming environment while the GPMS is 

aimed at enhancing scheduling of independent jobs in a multicore system. Gang scheduling 

targets the CPUs of a multiprocessor while the GPMS targets the cores in a multicore system. 

Gang scheduling targets dependent jobs (gangs are made based on dependent relationship 

between the processes) while the GPMS targets independent jobs (groups are made based on 

characteristics (attributes) of the jobs and not based on their dependencies).  

The GPMS uses grouping to improve efficiency in scheduling of Grid jobs, it does so by 

allowing threads to execute scheduling algorithms independently within the groups. Jobs and 

machines distributed into a group are local to that group. Hence, the thread for that group 

performs the scheduling operation between jobs and machines local to the group alone. This 

allows n (where n = number of groups) instances of the scheduling algorithm to execute in 

parallel. The groups provide platforms for threads to execute independently, taking advantage 

of the multicores. It allows the jobs and machines in each group to be treated as a scheduling 

entity accessible to the thread. The GPMS therefore enhances scheduling-throughput by 

enabling jobs to be multi-scheduled.  

In summary, Gang scheduling deals with the scheduling of a set of interdependent jobs 

whereas group scheduling in GPMS deals with the parallel scheduling of independent jobs. 

Hence, the concept of groups in GPMS is different to the concept of gangs in gang 

scheduling. 
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7.7 Comparison between the GPMS and Condor  

This section provides a further discussion of Condor and explains how this previous work 

relates to the GPMS. 

 

7.7.1 Condor 

Condor is a high-throughput distributed batch computing system (Thain, Tannenbaum and 

Livny 2005) that utilises both dedicated and non-dedicated computers (Roy and Livny 2004 

and Tannebaum et al. 2001). Condor provides resource management mechanism for job 

management, scheduling policy, priority scheme and resource monitoring, (Thain, 

Tannenbaum and Livny 2005). When jobs are submitted to Condor by users, Condor chooses 

when and where to run the jobs, monitors the jobs progress, and also informs users when 

execution is completed. 

Condor also provides users with extra computing power by allowing them to submit jobs to 

non-dedicated computers; non-dedicated computers are computers that are only occasionally 

available for Condor to access, such computers are desktop computers belonging to other 

users or distant computers under private control (Tannenbaum et al. 2001). The policies and 

mechanisms employed in Condor enable the resource owners to control how their 

workstations are used as a HTC resource (Livny et al. 1997).  

Some of the mechanisms employed by Condor are: 

ClassAds - this enables Condor to pair resource requests and resource owners 

Remote System Calls - this enables Condor to allocate resources across administrative 

domains.  

Checkpointing – this is a mechanism that enables Condor to revoke resources that must be 

freed due to owners' constraints and to resume the application from where it left off on 

another resource. 

Match-making – this is the means by which Resource Requests and Resource Owners that 

satisfy each other are identified and paired together.  

 

There is no centralised job submission system in Condor; rather, each machine contains its 

own (local) job queue from where jobs are submitted from. According to Roy and Livny 
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(2004) “when users submit jobs to Condor, they do not submit to global queues, as they 

would in many other batch systems, instead, Condor has a decentralized model where users 

submit to a local queue on their computer”. Users may submit to a cluster (jobs submitted 

with a description file is referred to as a job cluster) from their own desktop machine or 

workstation (Tannenbaum, Wright, Miller, and Livny 2001).  

Condor workstations have a daemon that detects user I/O and CPU activities. A job from the 

batch queue is assigned to a workstation that has been idle for two hours; this job will run 

until the daemon detects a keystroke, mouse motion, or high non-Condor CPU usage. When 

that happens, the job is revoked from the workstation and taken back to the batch queue. 

Furthermore, applications in Condor must be able to execute as a batch job. The applications 

are executed in the background and so are unable to perform interactive I/O operations. All 

I/O operations are redirected to a file on the user machine (Tannenbaum, Wright, Miller, and 

Livny 2001). 

The Condor system is designed to maximize the utilization of workstations with as little 

interference as possible between jobs scheduled by the system and the activities of the owners 

of the workstations with a guarantee that jobs must complete (Litzkow, Livny and Mutka 

1988). The system was initially aimed at balancing the under-utilisation of workstations 

owned by some individuals with the higher processing need of others whose workstations 

offer them less.  

Condor identifies idle workstations and schedules jobs onto them, and when the owner of the 

workstation resumes activity on the system, Condor checkpoints the remote job running on 

the system and allows the user full control of his system. It then transfers the checkpointed 

job to another idle workstation and resumes it on another idle workstation - if and when 

available (Thain, Tannenbaum and Livny 2005). 

The ability to access both dedicated and non-dedicated computers creates two major 

complexities with scheduling in Condor.  First is the need to remove or pre-empt job(s) that 

were executing on an individual computer when owners reclaim their idle computers (CPUs) 

– this is called pre-emption. The second is the need to deal with the heterogeneity of 

computers available to Condor.  
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Pre-emption is carried out to meet the needs of owners, users, and administrators and to deal 

with unplanned outages. Condor pre-emption occurs for the following reasons: on behalf of 

users when better resources become available; on behalf of resource owners to ensure that the 

owner’s policy on sharing is met; and on behalf of the system administrators to meet the 

efficiency of the entire Condor pool of computers. Computer owners will only allow their 

computers to run Condor jobs if Condor does not negatively impact their activities. 

Checkpointing and pre-emption is done to meet the need of the owners and also to prevent 

loss of work when the job resumes a new available computer (Raman, Livny and Solomon 

1998).  

 

7.7.2 The heterogeneity of computers available to Condor 

Computers accessible to Condor are of different varieties in architectures, characteristics and 

performance and with varying policies. Heterogeneity complicates the scheduling problem in 

several ways. Different processors can have unequal processing capacities and hence an even 

distribution of work among the available processors will not usually result in correct load-

balancing. Secondly, variations in architecture and instruction set among the available 

processors impose hard constraints on the choice of targets for scheduling decision (Al-

Saqabi, Otto and Walpole 1994) 

To provide the maximum amount of computational power to its users, there is the 

requirement for Condor to cope with this variety and handle the complexities. In order to deal 

effectively with this heterogeneity, Condor uses matchmaking to pair user’s jobs with 

appropriate computers. Pairing of jobs and computers is determined by their description in 

the ClassAd (classified advertisements). 

The job’s requirements (in the job’s ClassAd) are evaluated based on the machine’s context 

and the machine’s requirements (in the machine’s ClassAd) are determined based on the job 

context. Both job and machine ClassAd must evaluate to true for a match to be made. The 

matchmaker informs both the user agent and the owner agent when a suitable match is found. 

The user and owner agent would then go ahead to claim the match independently of the 

matchmaker.  
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Users of Condor submit their jobs to a decentralized local queue on their computer and not to 

a global queue as they would in many other batch systems. The Condor processes on the 

computer would then interact with the Condor matchmaker and the computers that run the 

job. Interaction with the matchmaker is called matchmaking, and interaction with other 

computers is called claiming. Each computer in a Condor pool runs only a single job at a 

time, not multiple jobs – although, computers with multiple CPUs may run one job per CPU 

(Roy and Livny 2004). 

Due to the advantages in Condor scheduling system Frey et al. (2002) proposed the Condor-

G system to leverage the intra-domain resource management methods of Condor and the 

inter-domain resource management protocols of the Globus Toolkit. This is to allow users of 

the Grid to harness the multi-domain resources as if they all belong to one personal domain. 

 

7.7.3 Gang Scheduling in Condor 

This section discusses scheduling or matchmaking schemes in Condor that employed gangs, 

set or groups. 

 The matchmaking scheme in Condor allocates single jobs to single resources; this makes the 

scheme inadequate in some application domains that require several resources to execute a 

given task. To make Condor effective and adaptable in environments dominated by 

distributed management and distributed ownership, a mechanism is required to enable the 

aggregate matching of job and resources. To this end, Liu et al. (2002) implemented set-

matching, the method enhanced Condor’s ClassAd to allow both bilateral (single jobs to 

single resources) matchmaking and multilateral (several jobs to several resources) 

matchmaking activity to take place. Set-matching is limited in handling a heterogeneous mix 

of resources.   Raman, Livny and Solomon (2003) also implemented a multilateral approach 

to machmaking in Condor job scheduling. Referred to as Gangmatching, the method 

improved Condor‘s capabilities by extending ClassAd to enable multiple resources to be 

marshalled. Gangmathing uses a docking paradigm to group a gang of ClassAds with similar 

attributes with a machine operation. Another work in this direction is Redline implemented 

by Liu and Foster (2004), Redline is a symmetric matchmaking scheme that extended 

Condor’s ClassAd and allowed for multiple matches to be made. Redline uses a very 

complex language for advertisement.   
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7.7.4 GPMS and Condor Comparison 

Although there are similarities between the GPMS scheduler and Condor, it is clear that 

Condor, which has been developed over time, has more features for appropriate management 

of resources and is a more tried and tested system. However it is interesting to compare the 

systems considering a variety of aspects. 

 

Goals 

To provide users with the amount of processing power they require, available resources need 

to be optimally utilized; this calls for parallel execution of jobs on available resources. Recent 

trends in the cost/performance ratio of computer hardware have meant that the control of 

powerful computing resources is now in the hands of individuals and groups with a growing 

need of users who are throughput-oriented. Exploiting these resources to the benefit of the 

user is the goal of both Condor and the GPMS system. Both Condor and the GPMS system 

satisfy the computing needs of the throughput-oriented users by exploiting available 

resources for the simultaneous execution of users’ jobs. 

 

Distributed network of computers and distributed ownership of computing resources  

Both Condor and the Grid seek to harnesses the computing power of a distributed set of 

computers on a network and controlled by different owner policies. Both the Grid and 

Condor provide a HTC environment intended to address the challenges introduced by 

distributed ownership of computing resources, allow users to transparently exploit the 

capacity of thousands of workstations simultaneously and properly manage the resources to 

offer high degree of parallelism. Condor exploits the processing power of several 

workstations from several owners with varying control mechanisms. The GPMS is also 

designed to exploit the dynamic and heterogeneous resources of the Grids. It does this by 

exploiting parallel multi-scheduling methods and exploiting the capacity of Grid resources 

for parallel execution.  
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Scheduling 

Scheduling with the GPMS is in a way similar to Condor in that they both deal with batch 

jobs. The main difference between GPMS and Condor is that GPMS uses a parallel scheduler 

whereas Condor does not. Also, the focus on Condor is a broad approach to scheduling using 

dedicated and non-dedicated resources whereas GPMS uses just dedicated resources. Condor 

is much more developed and does things GPMS does not currently do but theoretically 

GPMS could be developed to do such things.   

The Condor system is decentralised as jobs are submitted to a local queue on the user’s 

computer. When jobs are submitted to Condor, a special file is generated containing 

arguments that help Condor create a ClassAd for the job which in turn helps Condor work 

towards running it on contributing resources. Grid jobs (used in the GPMS) are submitted to 

the central scheduler from where they are batched before scheduling.  

Improvements to Condor system now enables the system to execute both bilateral (single jobs 

to single resources) matchmaking and multilateral (several jobs to several resources) 

matchmaking activities. The multilateral matchmaking capability of Condor is synonymous 

to the GPMS’s multi-scheduling capability.      

 

Matchmaking and job-machine pairing 

The matchmaking used in Condor is synonymous with the job-machine pairing (used in the 

MinMin) done before jobs are despatched to machines in the GPMS. Condor executes one 

job at a time or one job per CPU, while the GPMS executes one job per core; meaning that 

one processor with multiple cores can execute several jobs.  

The GPMS system takes all the machines in the Grid as one dedicated system while Condor 

has the capability to differentiate between dedicated and non-dedicated system and hence has 

the capability to manage them differently.   

The idea of ClassAds (which represents the interaction of users jobs and owners machines) is 

also represented in the GPMS by the interaction between job groups and machine groups. 
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The attributes of jobs and configuration of machines used by the GPMS system for grouping 

purposes before implementing the scheduling algorithm is synonymous with matchmaking 

made with classAds in Condor. 

Claiming in Condor which happens when a job’s ClassAd and a machine’s ClassAd are 

matched by the matchmaker can be likened to the process of allocation and despatch of a job 

to a processor’s core by the scheduling algorithm in GPMS.  

 

Pre-empting and migrating 

Though not implemented in the GPMS, the Grid could be expanded to migrate jobs from one 

failed system to the other just like Condor would pre-empt, checkpoint and resume jobs from 

a reclaimed, failed or less powerful system to another system.  

Leverage (which is a job’s ratio of capacity consumed remotely to capacity consumed locally 

to support remote execution) is not required in the GPMS system because once users submit 

their jobs, the Grid scheduler does not require the user’s local machine to perform any more 

tasks rather than receive the processed job after execution.  

Checkpointing (which is the saving of the state of an executing task from a reclaimed remote 

machine) used in Condor is not used in the GPMS because the system assumes a dedicated 

set of Grid resources for its use. 

 

Parallelism and increased throughput 

A Condor pool can be viewed as a private computational Grid of desktop workstations that 

are managed for HTC use, a Condor system enables one job to execute on one CPU. Condor 

systems with several CPUs are able to execute several jobs; this is aimed at achieving high 

throughput, exploiting available resources to optimum, and enabling parallelism.  

The GPMS achieves scheduling-throughput by exploiting multiple threads to simultaneously 

schedule independent groups in parallel on a HTC system. Also, scheduling on the GPMS 

system targets the cores of the machines, this enables several independent jobs to be executed 

on the cores in parallel.  
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File system 

Both Condor and the GPMS uses batch systems to service users’ jobs and owners/Grid 

resources. Batch systems are equipped with queuing mechanisms, scheduling policies, 

priority schemes, and resource classifications. Batch systems have been extended to deal with 

large multiprocessor, multicore computers and clusters of workstations and its policies have 

also been adapted to meet the needs of workloads that consist of both sequential and parallel 

applications (Livny and Raman 1999).    

 

7.8 Relationship to DIANE  

This section considers DIANE (Distributed Analysis Environment for GRID-enabled 

Simulation and Analysis of Physics Data) and discusses how the GPMS relates to DIANE. 

7.8.1 DIANE 

DIANE (Moscicki 2003) is a workflow management package for distributed master-worker 

applications that is built on top of the GRID middleware to provide high-level mechanisms 

for distributed application development and deployment. It interfaces semi interactive parallel 

applications with distributed GRID technology. DIANE provides high-level facilities and 

mechanisms for developing and deploying distributed applications with ease. Application 

developers are shielded from coding the communication mechanisms explicitly. Rather, they 

only implement the callback interfaces and describe the contents of input and output data 

messages, then, DIANE takes care of workflow management and message passing. The 

system is flexible, easy to configure, adaptable and scalable according to changing needs. It is 

language-neutral and it insulates the applications from the details of underlying middleware. 

DIANE is also interoperable. 

The master-worker computing paradgm used in DIANE entails that client’s jobs are sent to 

the Planner which then partitions the jobs into smaller tasks and allocates to the Workers for 

execution. There is also the Integrator which merges the results of execution and sends the 

final results back to the client. There is also the DIANE Master-Worker container which 

serves as host to the Integrator, Planner and Worker App and also provides the run-time 

context and set-up the environment.  
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7.8.2 Comparison between DIANE and the GPMS system 

DIANE uses a Master-Worker model; the Master-Worker model employed by DIANE 

encourages partitioning of tasks by the master and assigning to workers to execute in parallel. 

Diane handles jobs which contain inter-dependent tasks while the GPMS system targets 

independent jobs. The unique feature of the GPMS is that it incorporates parallelism at the 

scheduler level as well as the execution stage, while DIANE focuses on parallelsm at the task 

execution stage only. At the execution stage, GPMS tasks are assigned to individual cores for 

independent execution.  

With DIANE, jobs are sent to the planner which partitions the jobs into smaller tasks for 

execution. In the GPMS, independent users jobs are not partitioned but grouped for parallel 

scheduling onto the cores of Grid resources.  

With DIANE, the application is shielded from the specific details of underlying middleware, 

thus making it easy for the user to configure, adapt and extend according their need. The 

GPMS system is also easy to adapt; the developer only has to define and execute the 

algorithm of their choice in the specific class and GPMS system will carry out the task of 

grouping jobs and scheduling the jobs in parallel.  

The DIANE scheduler is more adapted for real-time and interactive distributed systems and 

has been applied for real-life use-cases in the domain of Distributed Simulation for Medical 

Physics and Space Science Applications. DIANE was used to perform a sizeable fraction of 

an in silico drug discovery application using the EGEE and other Grid infrastructures. At the 

ITU's Regional Radiocommunication Conference initiated by CERN, DIANE was 

successfully used to process large-scale data processing activities.  The GPMS system targets 

scheduling of independent executable jobs and uses batch processing rather than real-time 

and interactive   systems. The GPMS system has not been applied and tested as extensively as 

the DIANE. 
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7.9 Summary 

This chapter discussed the GPMS approach in relation to other established systems. First, it 

discussed other Grid simulation tools. It then focused on GridSim and compared the GPMS 

simulation used in this research to GridSim. It then discussed gang scheduling and how the 

GPMS relates to gang scheduling. The discussion then shifted to Condor and how it 

compares to the GPMS. Lastly, the chapter discussed the DIANE scheduler and also made 

comparison between the DIANE scheduler and the GPMS.  

The next chapter shall discuss contributions made to knowledge, draw conclusions and 

discuss future work.  
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CHAPTER EIGHT 

CONCLUSION AND FUTURE THOUGHTS 
 

8.1 Introduction 

This chapter serves to bring the work to a close. It highlights the key points and outlines the 

contributions made to knowledge. Then it draws conclusions and discusses future work.  

 

8.2 Contributions to Knowledge 

This work is chiefly about taking advantage of multicore technology and parallelising the 

Grid scheduling task. The interest of most researchers in Grid scheduling has been on 

creating schedules such that overall makespan is decreased. This research improves on those 

efforts by providing a method by which the scheduling can also be carried out in parallel. 

This work has thrown new light into novel methods of exploiting parallelism to improve the 

efficiency of Grid scheduling algorithms. Job grouping and machine grouping methods were 

employed to improve the efficiency of Grid scheduling algorithms on multicore systems. The 

method took advantage of the underlying multicore for parallelism rather than leaving it in 

the hands of the system alone. 

The contribution of this work has been on how to use grouping methods to harness 

parallelism in multicores and improve scheduling efficiency.  The resulting Group Parallel 

Multi-scheduler (GPMS) can be used in any environment in which there is a requirement to 

schedule a batch of jobs onto a set of limited or available resources.  Typical environments 

which could benefit are Grid and Cloud environments.   Given the trend in these computing 

paradigms, the research has potential to be exploited widely. 

The following are the contributions made to knowledge: 

 The development of the grouping idea to support parallelization of Grid scheduling 

algorithms. Various methods of grouping were explored  

 A Group-based Parallel Multi-scheduler (GPMS) was designed and developed. The 

GPMS included innovative methods to group jobs and machines: 

 The Priority method grouped jobs based on priority. Priority could be specified by 

users or estimated via job characteristics. 
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 The Estimated Time Balanced (ETB) method and the Estimated Time Sorted and 

Balanced (ETSB) method which ensure even distribution of jobs across groups were 

developed as enhanced methods to the Priority method. 

 Two methods of machine grouping were introduced; Similar Together (SimTog) 

method and Evenly Distributed (EvenDist) method. These methods serve to support 

the job grouping methods so that groups of jobs and machines can be matched, 

thereby enabling parallel instances of the scheduling tasks. 

This research aims to address the issue of Grid scheduling by employing a dynamic approach 

that exploits the gains of parallelism on multicores. In relation to the aims and objectives 

introduced in Chapter 1, it is safe to conclude that: 

 The GPMS method can be an effective way of reducing scheduling time and improving 

scheduling in general. The splitting of jobs into groups and scheduling independently 

means that fewer read accesses are made on jobs and machines in each group. This 

reduces the scheduling time of the scheduling algorithms.  

 Grouping of jobs can be adopted to harness parallelism on multicore machines to increase 

scheduling-throughput and improve scheduling efficiency. The MinMin method used in 

the test is polynomial in nature, thus savings can be made through using smaller groups 

even without parallelization. Furthermore, running each grouped pair in parallel achieves 

greater processing time benefits. Also of note is that the nature of the input set and 

machine grouping approach has an impact on the effectiveness of the method. 

 Grouping of jobs before scheduling, in general, can reduce scheduling time and increase 

scheduling-throughput. 

 Grouping of jobs before scheduling enhances parallelism by providing a platform for 

threads to execute independently. 

 Grid jobs can benefit more from parallelism if grouping methods for both jobs and 

machines are exploited. 

The bottom line is that for software applications to gain from the immediate benefits of 

multicore systems, concerted effort should be made to move both new and legacy 

applications towards parallelism. Grid scheduling will be better leveraged if this method of 

targeting multicores is adopted. 

Let us consider again the research question introduced in Chapter One. 
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How can multi-scheduling and parallelism be exploited to take advantage of multicores 

in order to improve the Grid scheduling task? 

This research has answered the above question in demonstrating the use of a Group-based 

Parallel Multi-scheduler (GPMS) which exploited grouping methods and parallelism to yield 

significant improve in performance over serial schedulers.   

 

8.3 Conclusion 

This work explored job grouping methods in a bid to increase throughput in scheduling Grid 

jobs by exploiting the multicore hardware. This informed the development of the GPMS 

method which used three different methods, Priority, Estimated Time Balanced (ETB) and 

Estimated Time Sorted and Balanced (ETSB) to group jobs. All methods used groups to 

create an independent separation so scheduling can be done in parallel and simultaneously 

from the independent groups. Two machine grouping methods: Similar Together (SimTog) 

and Evenly_Distributed (EvenDist) were used to group machines. Parallelism in scheduling 

was achieved using dynamic threads and by matching job groups with machine groups and 

scheduling paired groups simultaneously. The MinMin scheduling algorithm was used as the 

insidegroups scheduling method.  

All methods achieved significant speedup and improved scheduling efficiency when 

compared to the ordinary MinMin. However, some methods achieved better performance 

improvement than other methods due to the characteristics of the jobs or machines which 

affected the grouping outcome. Thus we can conclude that the best results might be obtained 

by using an adaptive GPMS which can exploit the different scheduling mechanisms or 

algorithms depending on the characteristics of the incoming jobs and available machines.  

 

8.4 Future Thoughts 

Since the interest of most researchers in Grid scheduling has been on the scheduling of 

parallel independent jobs instead of parallelising the scheduling task, this research can open a 

new area of parallelisation of the scheduler; the parallel scheduling of parallel tasks, where all 

the interacting units of jobs or sub jobs are selected for parallel scheduling onto cooperating 

computer systems in parallel.  
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This work did not directly control the number of CPUs on the HPC in the experiment. Hence, 

the relationship between increased CPU and groups in relation to scheduling efficiency 

cannot be ascertained. Future investigation should seek direct control of the system on which 

the scheduler runs. This will ensure that the number of CPUs on the HPC or system on which 

the experiment shall be executed can also be varied. This will allow for the relationship 

between increased groups and increased CPUs or cores to be investigated.  

This research showed that the characteristics of incoming jobs affected the performance of 

the grouping methods. Future work will explore alternative grouping methods and how 

characteristics of incoming jobs can be identified early and exploited such that appropriate 

grouping method can be selected based on job characteristics in an adaptive GPMS. 

Furthermore, patterns of previous usage and performance could be collected and exploited to 

devise a method of determining the number of groups and threads for a particular job set. A 

future investigation would be to explore how dynamic and batch scheduling could be 

efficiently combined.  At present the GPMS only uses batch scheduling. 

The makespan currently calculated in this research does not include extra time for shared 

resource contention as the concentration was on the multi-core aspect of the actual scheduling 

process. Future work should explore how makespan is affected by shared resource 

contention.   

Within the same GPMS method, increase in the number of groups (which also translates to 

increase in the number of threads) slowed the rate of improvement between the successive 

groups partially due to the impact of shared resource contention among threads. Further 

investigation should involve methods to reduce the impact of shared resource contention 

between threads.  

In a complex environment, this study can be extended to include the implementation of 

multiple scheduling algorithms across the discrete job-machine groups. In that way, we can 

independently execute a mix of different scheduling algorithms on each of the independent 

groups. This will enable the use of suitable scheduling algorithms favourable to jobs in a 

particular group and the use of other scheduling algorithm favourable to other jobs in other 

groups. If characteristics or attributes of certain jobs do affect the schedulers efficiency, then 

this proposed method will provide the opportunity to exploit the benefits of one scheduling 
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algorithm (from one set of jobs in one group) against the disadvantages of the other (in 

another set of jobs in another group). This will enable implementation of a scheduling 

algorithm within a group based on which scheduling algorithm favours jobs in that group. 

When the implementation of different or several scheduling algorithms from different groups 

is finally achieved, such systems or schedulers shall be referred to as hetero-multi-scheduling 

systems while systems that implement one scheduling algorithm on multiple group of jobs 

(like the method presented in this work) can be referred to as a mono-multi-scheduling 

systems. 

Lastly, the experiment was executed in a simulated environment and not on a real test bed. 

While the differences of a simulated environment and that of a real system or test bed are out 

of the scope of this work, it will be worthwhile to state here that effort should be made to test 

the experiment on a real test bed to ascertain the real functionality of the method.
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Glossary 

Blocking refers to situation when a process in execution that requires data (or input) in order 

to continue waits for the input and continues execution after the input is supplied 

Coarse grain granularity refers to a situation where the percentage of computational work 

done is far greater than the time used for communication 

Distributed computing system is a virtual computer formed by a networked set of 

heterogeneous machines that agree to share their local resources with each other 

Embarrassingly parallel: These are parallel systems with the ability to solve many 

independent tasks simultaneously with no need for any coordination amongst the processors. 

Fine grain granularity refers to a situation where the percentage of computational work 

done is relatively small compared to the time used for communication 

High-throughput computing (HTC) is a computing paradigm that delivers processing 

deadline by employing several data-level parallelisms to process data independently on 

different processing elements using a similar set of operations 

Granularity: Granularity in parallel programming describes the ratio between computation 

time and communication time 

The Grid is an aggregation and integration of heterogeneously diverse computing systems, 

clusters and powerful computers (by a set of protocols) into a virtual unit that combines to 

provide seamless computing utility services to meet the need of users via a fast transfer 

mechanism 

Grid resources are computing machines or processing elements or memory devices on 

the Grid which offers computer processing or storage power to consumers 

A job group is a collection of users’ jobs, in the context of this research, it is a 

collection of users’ jobs intended to be scheduled for execution on the Grid  

A machine or resources group contains a set of different computers or Grid resources 

categorised by the algorithm for servicing a set of jobs from a job group – the machines are 

grouped based on their configuration.A group of machine or group of Grid resources 

therefore comprises a list of machines from various Grid sites but having similar or varying 

configurations depending on the grouping method used 

Makespan refers to the combined time taken to schedule and execute a group of job. 

Massively parallel: These are computer systems with many processors that are synchronized 

and coordinated to execute tasks in parallel 

Match-making  is the means by which Resource Requests and Resource Owners that satisfy 

each other are identified and paired together.  
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M-task is a task that can be run on a multiple processor computer. 

Multicore systems are computers that are furnished with several execution cores on one 

CPU, this allows for multiple level of parallelism by the cores. This is referred to as chip-

level multiprocessing (CMP) 

Multiprocessor systems have several CPUs that allow them to process simultaneously in 

parallel. This is referred to as simultaneous multiprocessing (SMP).  

Multi-scheduling refers to the simultaneous election or selection of several 

independent jobs from different groups and dispatching to several different Grid 

resources for execution 

Multithreading is an execution model that allows multiple executions of threads such that 

they execute independently but share their process resources 

Non-clairvoyant scheduling this is the scheduling of jobs without prior knowledge of the 

execution time of the jobs  

Non-Parallelizable: This refers to algorithms that can never be parallelized. With such 

algorithms, parallelization cannot result in any speedup 

Parallelism or parallel computing is the ability of computer processors to work 

cooperatively and simultaneously on a task or on multiple tasks.  

Parallelizable algorithm: This is an algorithm that can be made to execute in parallel. 

Parallel overhead: This is the amount of time required to coordinate parallel tasks instead of 

doing useful work. Parallel overheads can be caused by factors like synchronization, data 

communication, task start up time and task termination time 

Process is an executing program or a running program 

Scalability: Scalability in parallelism refers to the ability of a system to increase or decrease 

its performance according to job loads without a detrimental effect on the quality of service.     

It also refers to the ability of a parallel system to proportionally increase in parallelism 

speedup with the addition of more resources. This is influenced by factors like hardware, 

application program, parallel overhead and characteristics of the application 

Scheduling is the allocation of limited resources to contending demands from processes 

based on policies and rules that serve to ensure that certain standards are adhered to. Within a 

computing system, the limited resources could be processors, memory, input and output 

media and the contending demands arise from the several processes executing within. On the 

Grid, the resources (processors and memory) are aggregated from various locations and 

deemed to be available. The contending requirements are no longer the processors but users’ 

submitted jobs and associated requests. Hence the requirement for scheduling on the Grid 

becomes how to manage the available resources to meet the contending users’ submitted jobs 

and associated requests rather than how to manage processors between processes    
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Space-sharing is the actual scheduling of cores to execute the thread chosen to run at the 

time 

S-task is a task that can run only on a single processor computer 

Task is a piece of work that needs to be performed 

Thread is a light weigh process 

Time-sharing is the scheduling of threads to execute on processors at time intervals  

Throughput refers to the number of jobs processed or scheduled within a given time 

User jobs are the jobs or processes submitted by users onto the Grid for processing 
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Appendix A: Header File from the Grid Workloads Archive 

 

This appendix shows a header file from the Grid Workloads Archive (Anoep et al.  2007). It 

also shows some sample data from a trace in Grid Workload Format (GWF). 

 

B1. Header File 

 

# Generated by get-clean-log.py ($Revision: 0.1$) on Tue February 20, 2007, at 09:48:14 PM  

# Authors: AlexandruIosup and Mathieu Jan ({A.Iosup|M.Jan} at tudelft.nl) 

# The Grid Workloads Archive (http://gwa.ewi.tudelft.nl/) 

# External coallocated_jobs info file: Grid5000_coallocated_jobs.log 

# External interactive_jobs info file: Grid5000_interactive_jobs.log 

# External reservation_jobs info file: Grid5000_reservation_jobs.log 

# External sites_time info file: Grid5000_sites_time.log 

# External user_to_group info file: Grid5000_user_to_group.log 

# Format documentation: Grid Workload Format (http://gwa.ewi.tudelft.nl/) 

# Field description from left to right: 

 

 

# 1  JobID    counter 

# 2  SubmitTime   in seconds, starting from zero 

# 3  WaitTime    in seconds 

# 4  RunTime    runtime measured in wall clock seconds 

# 5  NProcs    number of allocated processors 

# 6  AverageCPUTimeUsed  average of CPU time over all allocated processors 

# 7  Used Memory   average per processor in kilobytes 

# 8  ReqNProcs   requested number of processors 

# 9  ReqTime:    requested time measured in wall clock seconds 

# 10 ReqMemory   requested memory (average per processor) 

# 11 Status    job completed = 1, job failed = 0, job cancelled = 5 

# 12 UserID    string identifier for user 

# 13 GroupID    string identifier for group user belongs to 
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# 14 ExecutableID   name of executable 

# 15 QueueID    string identifier for queue 

# 16 PartitionID   string identifier for partition 

# 17 OrigSiteID   string identifier for submission site 

# 18 LastRunSiteID   string identifier for execution site 

# 19 JobStructure   single job = UNITARY, composite job = BoT 

# 20 JobStructureParams  if JobStructure = BoT, contains batch identifier 

# 21 UsedNetwork   used network resources in kilobytes/second 

# 22 UsedLocalDiskSpace  in megabytes 

# 23 UsedResources   list of comma-separated generic resources   

     (ResourceDescription:Consumption)  

#      c.q. memory usage in Gb seconds, io data transferred, 

     and io wait time in seconds  

# 24 ReqPlatform   CPUArchitecture,OS,OSVersion 

# 25 ReqNetwork   in kilobytes/second 

# 26 ReqLocalDiskSpace  in megabytes 

# 27 ReqResources   list of comma-separated generic resources   

     (ResourceDescription:Consumption) 

# 28 VOID    identifier for Virtual Organization 

# 29 ProjectID    identifier for project 

# (fields contain -1 if not available) 
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B2. Data Sample from a GWF Trace File 
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Appendix C: Selected Job Scheduling Algorithms on the Grid 

This appendix describes some selected scheduling algorithms from the literature review. The 

algorithms have been selected so as to give representation to each of the categories in the literature 

review. The categories were: 

 Classical Grid Scheduling Algorithms 

 Fusion and enhancement of the Classical Algorithm 

 QoS Focused Algorithms 

 Adaptive Grid Scheduling Algorithms 

 Scheduling Algorithms based on Nature 

 

Classical Algorithms 

Algorithm/Characteristics Simulation/scenario Performance Result 

MinMin  

(Ibarra and Kim 1977) 

This algorithm schedules a set of tasks 

onto a set of machines in such a way 

that the task with the smallest 

completion time on any machine is 

assigned to that machine.  When the 

task has been assigned the remaining 

tasks and all machines are looked again 

and the process repeats. This is why it 

is called MinMin the smallest task out 

of the tasks remaining is assigned to the 

machine that can complete it the fastest. 

Smaller jobs are thus favoured. The 

algorithm optimises the finishing time 

of all the jobs on the processors. If the 

finishing time of the jobs on all 

processors are the same, then the 

schedule is optimal but if any processor 

is idle while the others are not, then the 

schedule may not be optimal. 

 

There was no simulation carried 

out because this was a theoretical 

study. 
The finishing time properties of several 

heuristic  

are studied 

A simplified 

scheduling problem 

involving identical 

processors and 

restricted task sets 

was shown to be P-

complete. A least 

processing time 

algorithm (e.g. like 

MaxMin or MinMin) 

applied to this 

problem produces 

schedules which are 

near optimal (even 

load and shortest 

completion time) for 

large  N (where N is 

the number of tasks). 

Classical Algorithms 

Algorithm/Characteristics Simulation/scenario Performance Result 

MaxMin 

(Ibarra and Kim 1977) 

The MaxMin differs from the MinMin 

in that instead of assigning the task 

with the earliest completion time, it 

selects the task with the latest or 

maximum completion time and assigns 

it to the machine that can process it the 

There was no simulation carried 

out because this was a theoretical 

study. 

 

A simplified 

scheduling problem 

involving identical 

processors and 

restricted task sets 

was shown to be P-

complete. A least 

processing time 
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fastest.  Hence the name MaxMin. 

Expectedly, these are always the larger 

tasks. Hence, this algorithm favours 

larger tasks.  

algorithm (e.g. like 

MaxMin or MinMin) 

applied to this 

problem produces 

schedules which are 

near optimal (even 

load and shortest 

completion time) for 

large  N (where N is 

the number of tasks). 

Sufferage 

(Maheswaran et al. 1999) 

 

Sufferage was a new algorithm for batch 

mode proposed by the researchers. 

The Sufferage heuristic is based on the idea 

that better makespan can be achieved if a 

machine is assigned to a task that would 

‘suffer' mostin terms of expected 

completion time if that particular machine 

is not assigned to it.  

The sufferage value of a task is defined as 

the difference between the second earliest 

completion time of a task of some machine 

and the earliest completion time of that task 

on the same machine. 

 

 

 

The researchers compared new and 

previously proposed dynamic 

matching and scheduling heuristics 

for mapping independent tasks onto 

heterogeneous computing systems 

under a variety of simulated 

computational environments. Three 

new heuristics, one for batch mode 

and two for immediate mode, were 

introduced as part of this research. 

Simulation studies were performed to 

compare theseheuristics with some 

existing ones. 

If the sufferage value of task ti is the 

difference between its second earliest 

completion time on machine my  and 

its earliest completion time on 

another machine mx, Then using mx, 

will result in the best completion time 

for ti. 

 

The Sufferage algorithm 

performed better than 

MinMin and MaxMin 

but only slightly better 

than MinMin 

The simulation revealed 

that the choice of which 

dynamic mapping 

heuristic to use in a 

given heterogeneous 

environment depends on 

the structure of the 

heterogeneity among 

tasks and machines. 
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Fusion and Enhancement Algorithms  

Algorithm/Characteristics Simulation/scenario Performance Result 

Multiple-Queue Backfilling 

Scheduling with Priorities and 

Reservations for Parallel Systems 

Lawson and Smirni (2002) 

This algorithm proposes a non-FCFS 

policy to schedule parallel job on Grid 

systems. The algorithm monitors the 

intensity and variability of the 

incoming jobs to the Grid and adapts 

the scheduling parameters according to 

the variables. The method reduces 

resource fragmentation by employing 

backfilling to enable jobs execute 

before other jobs that arrive earlier than 

they did and are in front of them on the 

queue. 

Resource fragmentation arises when 

there are idle processors  while a job or 

jobs keeps waiting chiefly because the 

available processor does not meet their 

processing requirement. 

Two known methods of backfilling are 

aggressive and conservative 

backfilling. Aggressive backfilling 

permits jobs to backfill as long as it 

does not delay the first job in the 

queue. While conservative backfilling 

permits a job to back fill only when it is 

guaranteed that it does not delay any 

previous job in the queue 

 

The work considered 

two categories of jobs. 

First is that jobs 

submitted by local users 

are given high priority 

and jobs submitted by 

external users (not 

within the providing 

Grid) are granted low 

priority but with the 

objective to serve the 

external jobs as quickly 

as possible. Secondly, 

jobs that require 

execution at specific 

times (Reservation) are 

granted such times 

regardless of the 

consequences that will 

have in the remaining 

jobs. 

The simulation 

experiment was 

executed with trace files 

from the Parallel 

Workloads Archive 

(Feitelson 2005). 

 

(i)Multiple queues with no 

job priorities or reservation:  

the method recorded a 

remarkable improvement in job 

slowdown and better average 

job slow down. 

(ii) Performance under heavy 

load 

When the arrival rate of jobs 

was increased to create an 

environment of heavy load, the 

multiple queue back-filling 

provided better average job 

slowdown than the single queue 

backfilling for all job classes. 

(iii)Performance under 

reservation 

Sets 0.01, 0.05 and 0.25 were 

used for each job input as 

proportions of jobs requiring 

reservation in this experiment. 

The multiple queue backfilling 

method showed better average 

job slowdown and a comparable 

slowdown for the 0.25 

proportion set. 

In each of the experiments, the 

multiple queue back-filling 

method performance declined 

or gets worse for the long job 

class. This was because the 

queued jobs tend to compete 

with other jobs on the queue 

and shorter jobs tend to get 

scheduled more quickly than 

long jobs. The Multiple back-

filling algorithm therefore 

favours smaller job 
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Fusion and Enhancement Algorithms  

Algorithm/Characteristics Simulation/scenario Performance Result 

SCP(Set Covering Problem) -

based heuristic 

Venugopal and Buyya (2008) 

Tasks are first matched to compute 

resources using: 

(i) Compute-first-where the 

computer resource that provides the 

least execution time is selected first. 

(ii) Exhaustive search- where all 

possible resource matching are 

generated and the one that 

guarantees the least completion time 

is chosen for the job. 

(iii) Greedy selection - in this case 

datasets are matched to compute 

resources through an iteration 

process.  After each iteration, a 

check is made to compare it to the 

last iteration. 

After (i) to (iii) have been used to 

make the matching, the MinMin 

algorithm and Suffrage heuristic is 

applied. In the Suffrage heuristic, a 

resource is allocated to a job that 

will suffer the most if the compute 

resource was not allocated to it. The 

suffrage value is obtained by 

subtracting the second best CT 

value from the best CT value for the 

task. 

GridSim was used to model the test 

bed containing 11 resources spread 

across 6 countries connected via 

high capacity network links. Each 

resource was used as both compute 

and data host except the one at 

CERN which was used for only data 

source. All resources were simulated 

as clusters of a single CPU node or 

processing elements (PE) with a 

batch job processing system using 

space shared policy. Each 

processing node or PE was rated in 

MIPS. Storage was modeled as total 

disk capacity at the site.Networks 

between links were modeled as 

routers and links. 

A uniform set of 1000 datasets was 

used for the evaluation and the set 

was distributed uniformly between 

1GB and 6GB. The data were 

distributed uniformly and or Zipf-

like. The degree of replication of 

data was set at 5. A bag of tasks that 

can be converted into a set of 

independent tasks was modeled.  

The size of application was 

determined by the number of jobs in 

the set (N). The size or length of 

each job is the time taken to run the 

job on a standard PE with MIPS 

rating of 1000. Each job requires a 

number of datasets selected at 

random from the dataset as input. 

50 simulated experiments were 

conducted with different values for 

N, K, Size and Dist 

As more jobs are 

submitted, the 

makespan for SCP and 

exhaustive search were 

lower compared to 

compute-first and 

greedy. 

(ii) Locality of access 

is higher for SCP and 

Exhaustive search as 

the number of jobs 

increases because as 

the number of jobs 

increases, there is the 

probability of accessing 

more jobs locally. The 

locality for Zipf- 

distribution is lower 

than the case for 

uniform distribution. 

When the number of 

datasets per job is 

increased the impact of 

data transfer time 

increased at a faster 

rate for greedy than for 

SCP and exhaustive 

search and the locality 

reduced steeply for 

Zipf-distribution. The 

effect of data transfer 

was reduced as the size 

of computation 

increased. 
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QoS Focused Algorithm 

Algorithm/Characteristics Simulation/scenario Performance Result 

QoS Guided MinMin heuristic 

(QGMM)  

(He, Sun, and Laszewski 2003) 

Computes completion time of task, 

and host, then makes a match (best) 

between task and host for scheduling 

(minimum completion time over the 

entire host). 

Modification of MinMin with QoS 

matching as priority. 

Since smaller jobs always get 

completed before bigger jobs, this 

algorithm favours small jobs. 

 

 

Simulated Grid Environment. 

Host parameter was fixed and 

three task submission scenarios: 

(a) 75% tasks need QoS 

requirement (network bandwidth 

of no less than 1.0 G bits/s). 

(b) 50% of tasks need QoS 

requirement. 

(c) Only 25% tasks need QoS 

requirements. 

Also, the frequency of 

scheduling for online mode, 

batch mode, MM and QMM 

were also compared. 

For each scenario and heuristics, 

100 tasks were created 100 times 

and the makespan was computed 

separately. 

Makespan of QGMM was 

better than MM in all the 

scenarios as specified 

below. 

(a) 8%. 

(b) 11.41% 

(c) 1.62%. 

Scheduling frequency in 

batch mode improved 

makespan for QMM( by 

approx.. 11 times) 

But for online mode, there 

was no difference. 

 

AQuA- Availability-aware QoS 

Oriented Algorithm 

 (Agarwaland Kumar 2011) 

Jobs or tasks are split into two parts 

(t1, t2). t1= tasks that require QoS 

(i.e. availability and bandwidth), t2= 

tasks that doesn’t require QoS. Tasks 

in set t1 have higher priority and are 

scheduled to meet their QoS 

requirements before tasks in t2. 

Results were validated in a 

simulated Grid environment. 

Results were compared against 

the (QGMM) 

(a) Grid size =100 nodes, 

tasks=1000 (percentage of 

dedicated nodes or availability of 

Grid resources was varied from 1 

to 0.05 on a network of no less 

than 1Gbps. 

(b) Grid size varied from 50 to 

1000 nodes. 

(c) Task size was varied over 

Grid resources. (Grid Size=100 

nodes) 

(d) The percentage of tasks 

requiring QoS was varied and 

plotted against (i) Reliability and 

(ii) Makespan. 

 

Reliability of Grid 

resources and makespan 

of tasks was used as 

performance metrics. 

(a) AQuA performed 

better as availability 

increased with better 

makespan and reliability 

(b) AQuA was more 

reliable with fewer jobs 

but with no effect in 

makespan. 

(c) AQuA was more 

reliable with increasing 

jobs with no effect on 

makespan. 

(d) AQuA was more 

reliable and with little 

better makespan. 
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QoS Focused Algorithm 

Algorithm/Characteristics Simulation/scenario Performance Result 

NIMROD-G  

(Buyya,  Abramson, and Giddy 2000 

 

This model deals with ECONOMIC 

principle of SUPPLY and DEMAND. The 

model considered three key players in the 

GRID; 

(i) Grid Service Providers (GSPs) that 

represent the producers. 

(ii) Grid Service Brokers (GRBs) – that 

represent brokers and 

(iii) Grid Market Directory (GMD) which 

is the medium through which the two 

players in (i) and (ii) interact. 

The resource broker is made of: 

(i) task farming engine 

(ii) a schedule advisor and 

(iii) a dispatcher 

It uses the theory of supply and demand to 

match user tasks with Grid resources. QoS 

requirements of user jobs are used as 

conditions for a match. Matching is either 

Time constrained or Cost constrained. 

The experiment was conducted 

on the WWG test bed. 

Deadline and budget 

constraints were considered. 

Experiments was conducted at 

two different times (Australian 

peak andoff-peak hours) on 

resources distributed in two 

major time zones using a “cost-

optimization scheduling 

algorithm”.  The test bed has 

heterogeneous 

computer  resources distributed 

across five continents: Asia, 

Australia, Europe, 

North America and South 

America. The test bed contains 

other resources as PCs, 

workstations, SMPs, Clusters, 

and vector supercomputers. 

The experiments were 

conducted based on: 

(i) Optimized for time 

(ii) Optimized for cost. 

 

The broker selected 

resources in such a 

way that the whole 

application execution 

is completed at the 

earliest time for a 

given budget. 

(ii) The broker 

selected cheap 

resources to minimize 

the cost of execution 

and still try to meet 

deadlines. The 

experiment was really 

not compared against 

other Grid scheduling 

algorithms. 
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Adaptive Scheduling Algorithms  

Algorithm/Characteristics Simulation/scenario Performance Result 

Resource Aware Scheduling 

Algorithm(RASA)  

Parsa and Entezari-Maleki 

(2009) 

Apply MinMin and MaxMin 

algorithms to schedule jobs. 

Implements MinMin and 

MaxMin in alternating 

sequence. If the number of 

jobs is ODD then it applies 

MinMin, and if the number is 

EVEN, then it applies 

MaxMin. The MinMin is 

favours smaller tasks while the 

MaxMinfavours larger jobs. 

GridSim toolkit was used for simulating a 

Grid environment. Two assumptions were 

used: 

(i) the computation time of task overcomes 

communication time (ii) the 

communication time increases and even 

overcomes computation time of tasks. It 

was assumed that there are no constraints 

for executing tasks on different resources 

and each task could execute on each of the 

resources. Three different scenarios 

(workloads) were tested: Light= 200 tasks; 

Medium =1000 tasks; and Heavy=5000 

tasks. 

Tasks were dispatched to 10 or 11 Grid 

resources. The tests were run against 

QGMM, Max-Min, and OLB. 

(a) Workload was increased from 17 to 

725 based on assumption (i) 

(b) Workload was increased from 38 to 

1186 based on assumption (ii) 

(a) RASA returned the 

best (smallest) 

makespan based on 

assumption (i) and a 

small scale distribution 

of load. 

(b) RASA achieves 

smaller makespan 

even in a heavy 

workload situation. 
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Scheduling Algorithm based on Nature  

Algorithm/Characteristics Simulation/scenario Performance Result 

Nature’s Heuristics for Scheduling 

Jobs on Computational Grids  

(Abraham,  Buyya  and Nath2000) 

 

(i) Genetic Algorithm (GA). 

(ii) Simulated Annealing (SA). 

(iii) Tabu- Search (TS). 

(iv) GA-SA – Hybridization of GA 

and SA. 

(v) GA-TS – Hybridization of GA and 

TS. 

(i) GA: Uses optimization theory, 

theory of natural selection and 

survival of the fittest and adaptation. 

(ii) SA: This search is analogous to 

how metals cool and freeze into a 

crystalline structure. It is hoped that 

the process avoids ending up at any 

other point that is not optimal. 

(iii) TS: This search for solution 

method is aimed at starting off from 

one solution point and iteratively 

exploring neighborhoods for better 

solutions 

 

(i) Jobs are allocated on FCFS 

basis and also LJFR, if a 

resource becomes free, further 

jobs are allocated on a SJFM 

bases. Thereafter, LJFR and 

SJFM are applied alternatively. 

After every job completion, 

apply the fitness test and apply 

mutation operation to get the 

optimum (user requirements). 

(ii) Hybrid GA-SA: jobs are 

allocated to available resources 

based on LJFM, once a resource 

becomes available due to job 

completion, a job is allocated 

based on SJFM and thereafter, 

LJFR-SJFR is applied after 

completion of every job, after 

every schedule, a mutation is 

carried out to replace old result 

with a better one. 

(iii) Hybrid GA-TS: A 

maximum number of feasible 

schedules are generated, then 

the makespan is evaluated for 

best schedule. Each best move 

made is counted and an 

Aspiration value is set, the next 

schedule will then begin from a 

neighborhood of the best value. 

(i) A simulated 

experiment was carried 

out for only the GA 

algorithm with a finite 

number of resources (just 

3 computing resources) 

and 13 jobs. An 

assumption was made 

that the processing speed 

of the resources and the 

cycles per unit time 

(CPUT) and the job 

length (processing 

requirements in cycles 

are known.  The 

simulation showed that 

all the resources were 

efficiently utilized and 

the jobs were completed 

in minimum time. But 

only three resources and  

thirteen jobs is too 

minuscule to consider 

generalizing for the entire 

Grid 

(ii) No experimental tests 

or results were carried 

out for this experiment  

(iii) For this too, no 

experimental results was 

carried out. 
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Appendx D:  Some Research that employed the MinMin Scheduling 

Algorithm for Comparison 
  

S/No Researchers  Algorithm/Title Compared Against 

1  Fujimoto, and 

Hagihara (2004) 

 

 Fujimoto, N., and  Hagihara, K. 

(2004) 

‘A comparison among grid 

scheduling algorithms for 

independent coarse-grained tasks.’ 

In International Symposium 

on Applications and the Internet 

Workshops.   674-680. IEEE 

Compared the 

total processor 

cycle consumption 

(TCCP) of their 

proposed RR 

method with 

MinMin, MaxMin, 

WQ(work queue), 

DFPLTF(Dynamic 

Fastest Processor 

to Largest Task 

First) and 

Sufferage-C 

2 Nesmachnow, 

and Canabe 

(2011) 

Nesmachnow, S., and Canabé, M. 

(2011). 

GPU implementations of scheduling 

heuristics for heterogeneous 

computing environments. In XVII 

Congreso Argentino de Ciencias de 

la Computación 

MinMin and 

Sufferage 

3 Ye, Rao, and Li 

(2006) 

Ye, G., Rao, R. and Li, M., (2006) 

‘A multiobjective resources 

scheduling approach based on 

genetic algorithms in grid 

environment’. In Fifth International 

Conference on Grid and Cooperative 

Computing Workshops 504-509 

IEEE  

Minin and 

MaxMin 
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S/No Researchers  Algorithm/Title Compared 

Against 

4 He, Sun and 

Laszewski 

(2003) 

 He, X., Sun, X. and Laszewski, V. 

(2003) ‘QoS guided min-min 

heuristic for grid task 

scheduling. Journal of Computer 

Science and Technology,18(4),442-

451  

MinMin 

5 Wu, Shu and 

Zhang (2000) 

Wu, M, Y., Shu, W., and Zhang, H. 

(2000) ‘Segmented min-min: A static 

mapping algorithm for meta-tasks on 

heterogeneous computing systems. In 

hcw  375. IEEE  

MinMin 

6 Pinel, 

Dorronsoro and 

Bouvry(2012) 

Pinel, F., Dorronsoro, B., and 

Bouvry, P. (2013) ‘Solving very large 

instances of the scheduling of 

independent tasks problem on the 

GPU’. Journal of Parallel and 

Distributed Computing, 73(1), 101-

110.  

GPU- 

parallelised 

version of 

MinMin 

7 Nesmachnow, 

Cancela and 

Alba(2011) 

Nesmachnow, S., Cancela, H., and 

Alba, E. (2012) ‘A parallel micro 

evolutionary algorithm for 

heterogeneous computing and grid 

scheduling’.Applied Soft 

Computing, 12(2), 626-639  

MinMin and 

Sufferage 
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S/No Researchers  Algorithm/Title Compared 

Against 

8 Hephzibah and 

Easwarakumar 

(2010) 

Hephzibah, M, D, D., and 

Easwarakumar, K, S. (2010) ‘A 

double MinMin algorithm for task 

metascheduler on hypercubic p2p 

grid systems’. International Journal 

of Computer Science Issues, 7(4), 8-

18.  

MinMin and 

MaxMin 

9 Xie and Qin 

(2005) 

Xie, T. and Qin, X. (2005) 

‘Enhancing security of real-time 

applications on grids through 

dynamic scheduling’. In Job 

Scheduling Strategies for Parallel 

Processing 219-237. Springer Berlin 

Heidelberg. 

MinMin, 

Sufferage and 

Earliest Deadline 

First algorithm 

(EDF) 

 

10 Yu and Yu 

(2009) 

Yu, X., and Yu, X. (2009) ‘A new 

grid computation-based Min-Min 

algorithm’. In Sixth International 

Conference on   Fuzzy Systems and 

Knowledge Discovery, (1) 43-45 

IEEE  

MinMin 

11 Amudha and  

Dhivyaprabha 

(2011) 

Amudha, T., and Dhivyaprabha, T, T. 

(2011) ‘Qos priority based scheduling 

algorithm and proposed framework 

for task scheduling in a grid 

environment’. In International 

Conference on Recent Trends in 

Information Technology (ICRTIT), 

650-655 IEEE  

MinMin, 

QoS 

guided weighted 

mean time min 

(QWMTM) 

and Max-Min 

heuristic 

algorithms 
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S/No Researchers  Algorithm/Title Compared 

Against 

12 Hao, Liu, and 

Wen (2012) 

Hao, Y., Liu, G., and Wen, N. 

(2012) ‘An enhanced load 

balancing mechanism based on 

deadline control on 

GridSim’. Future Generation 

Computer Systems, 28(4), 657-665  

FPLTF, 

MinMin, 

max–min, and 

LBEGS 

13 Carretero,  and 

Xhafa (2006) 

Carretero, J., and Xhafa, F. (2006) 

‘Use of genetic algorithms for 

scheduling jobs in large scale grid 

applications’. Technological and 

Economic Development of 

Economy, 12(1), 11-17 

MinMin 

LJFR-SJFR 

(Longest Job to 

Fastest Resource 

– 

Smallest Job to 

Fastest 

Resource) 
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