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Summary 

External beam radiation therapy (EBRT) is the most common form of radiation therapy (RT) that uses 

controlled energy sources to eradicate a predefned tumour volume, known as the planning target volume 

(PTV), whilst at the same time attempting to minimise the dose delivered to the surrounding healthy 

tissues. Tumours in the thoracic and abdomen regions are susceptible to motion caused mainly by the 

patient respiration and movement that may occur during the treatment preparation and delivery. Usually, 

an adaptive approach termed adaptive radiation therapy (ART), which involves feedback from imaging 

devices to detect organ/surrogate motion, is considered. The feasibility of such techniques is subject to 

two main problems. First, the exact position of the tumour has to be estimated/detected in real-time and 

second, the delay that can arise from the tumour position acquisition and the motion tracking compen-

sation. The research work described in this thesis is part of the European project entitled ‘Methods and 

advanced equipment for simulation and treatment in radiation oncology’ (MAESTRO), see Appendix A. 

The thesis presents both theoretical and experimental work to model and predict the respiratory surrogate 

motion. Based on a widely investigated clinical internal and external respiratory surrogate motion data, 

two new approaches to model respiratory surrogate motion were developed. The frst considers the lung 

as a bilinear model that replicates the motion in response to a virtual input signal that can be seen as 

a signal generated by the nervous system. This model and a statistical model of the respiratory period 

and duty cycle were used to generate a set of realistic respiratory data of varying diffculties. The aim of 

the latter was to overcome the lack of test data for a researcher to evaluate their algorithms. The second 

approach was based on an online polynomial function that was found to adequately replicate the breath-

ing cycles of regular and irregular data, using the same number of parameters as a benchmark sinusoidal 

model. The two developed models were extended to predict the surrogate motion by means of a sliding 

window polynomial function and an adaptive mode of the bilinear model. The new prediction algorithms 

for long and short time motion prediction developed by the author were compared to some predictors 

based neural network (NN) and Kalman Filter (KF), both established by MAESTRO co-workers, and us-

ing the same data. It was found that while the sliding polynomial model performs well over a short-time 

prediction (0.2s), the adaptive approach of the bilinear model performs better over a long-time predic-

tion (up to 0.6s). The modelling and prediction of the respiratory surrogate motion were also performed 

by considering input-output measurement. For this purpose, a novel experiment designed by the author 

involving Spirometry and external surrogate markers has been carried out. A comparison between the 

performance of a set candidate linear and bilinear models has shown that a second order linear model 

gives the best results. The impact of using a virtual input signal instead of physical input has revealed 

that using a virtual input gives better results than using a physical input. A new approach was applied 
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Summary Summary 

to the predictive tracking of respiratory surrogate motion. The work was carried out by building a non-

linear model of the patient support system (PSS) to achieve a good simulation model for the latter. The 

combination of the prediction and control to compensate for respiratory motion during the radiotherapy 

treatment was also considered. Finally, the overall MAESTRO aim was achieved by introducing a new 

strategy to accommodate for tumour/organ motion. The latter was assessed in clinical environment at the 

University Hospitals Coventry and Warwickshire (UHCW). 
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Chapter 1 

General introduction 

1.1 Background 

RT, also called radiotherapy, is an effcient treatment technique that consists in the delivery of a precisely 

controlled and monitored dose of electromagnetic and particle radiations to eradicate a predefned volume 

of abnormal cells, known as a tumour. The radiations aim to destroy these malignant cells making them 

unable to divide, reproduce and supplant the surrounding healthy cells. Over time, the abnormal cells die 

and the tumour shrinks. Although healthy cells can also be damaged by radiation, they can repair them-

selves more effectively than radio-sensitive cancer cells. Therefore, the main goal of RT is to maximise 

the dose delivery to abnormal cells while sparing exposure to the surrounding normal cells [Jeremić and 

Aaronson 2005]. 

There are three common ways to apply radiation to a cancerous tumour in current day RT. The frst 

method called brachytherapy, which consists in placing radioactive material, sealed in catheters or seeds, 

directly in the tumour region for a prescribed period of time. The second, known as unsealed source 

radiotherapy, is based on injecting or ingesting a soluble radioactive substance. The most common form 

of RT is external beam radiotherapy (EBRT) that operates by applying an external source (usually called 

a linear accelerator (LINAC)) of high or low energy rays. 

Radiation treatment involves two major procedures, which are treatment preparation and treatment de-

livery. The former consists of treatment simulation and planning, whereas the latter is usually done in 

multiple treatment fractions. Each fraction consisting of two stages i.e. patient positioning (set-up) and 

treatment delivery. At the treatment simulation stage, patient and tumour geometrical information are 

acquired. This is often performed through advanced diagnosis scans such as computerised tomography 

(CT), magnetic resonance imaging (MRI), or radiography with and without contrast media. A three-
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dimensional (3D) patient model, which includes models for the target (often called target delineation) 

and organs at risk (OAR), is then built using computer software. The choice of the imaging modality to 

be used depends on the area of the body to be investigated. 

Treatment planning is referred to the process of designing a particular treatment for each patient. This 

takes into account the patient’s model, built in simulation stage and treatment machine data 1 in the com-

puter, to fnd an adequate treatment plan, by trying various treatment parameters such as beam charac-

teristics and directions. This process can be viewed as performing a ‘virtual’ treatments using a ‘virtual’ 

machines on the ‘virtual’ patient (both modelled in the computer). During each fraction of treatment 

execution, the patient is frst positioned under the LINAC, attempting to duplicate the reference patient 

geometry acquired in the machine coordinate system during the treatment simulation (or the ‘virtual’ 

patient model used for treatment planning), and then the treatment plan is delivered to the patient. 

In addition to geographical position of the tumour, factors such as patient positioning, beam arrangement, 

appropriate dose, shielding and instructions for proper implementation of the treatment procedure should 

be taken into consideration for a good RT treatment plan. The patient’s body should remain as still as 

possible to accurately aim the radiation only at the target while avoiding healthy tissues. This is especially 

diffcult in areas that are normally moving, such as the lungs and abdominal organs. In such sites, a 

slight shift in position could move the target out of the radiation beam’s path. How to keep the patient 

geometry close to the reference model in the machine coordinate system or how to update the model to 

accommodate the changing patient geometry are the current research topics of the image guided radiation 

therapy (IGRT). 

In order to focus, accurately, the radiation beam on a central point, referred to as the ‘isocentre’ within 

the target, the patient and treatment machine must be correctly aligned. Depending on the body area to 

be treated, different techniques may be used for patient body positioning, including: skin markers, laser 

lights, feld lights, infra-red cameras and x-ray positioners. Laser lights are used to make sure the patient 

is level and straight on the table or couch. Field lights correspond to the skin marks. Infra-red cameras use 

body markers or tattoo to detect patient position and match the markers to the position in the treatment 

plan. X-ray positioners take stereoscopic x-rays of the patient anatomy and match them to the position in 

the treatment plan images. 

1The treatment machine data includes for example beams characteristics, linear accelerator angles and X, Y , Z position of 
the patient support system. 
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1.2 Problem statement 

Various errors may occur during each step of the RT process, which cause a signifcant deterioration in 

the treatment accuracy [Booth 2002, Herk 2004, Engelsman et al. 2001]. These errors are divided into 

systematic errors, i.e. the ones that occur in the course of the treatment preparation, and random errors, 

i.e. errors that take place during the delivery stage. The systematic errors include a patient positioning 

errors during simulation, organ motion, delineation error, dose calculation, and mechanical inaccuracy of 

the LINAC, such as feld size, gantry angle, system calibration. Patient positioning, organ motion, and 

mechanical inaccuracy errors can also happen during the treatment delivery, resulting in random errors. 

Tumours in the thoracic and abdomen regions are susceptible to motion caused mainly by the patient 

respiration, the patient motion and sometimes by skeletal muscular, cardiac, or gastrointestinal systems. 

A great deal of effort has been devoted to limit tumour motion due to the respiration. The most invasive 

method uses some immobilisation device where the patient’s motion is restricted. The conventional non-

invasive way to account for organ motion is to expand the tumour margins to ensure that the entire tumour 

will receive the prescribed dose [Herk 2004]. Alternatively, tumour motion control can be achieved 

by monitoring breathing either passively [Hanley et al. 1999] or actively [Wong et al. 1999]. Another 

category of methods allow patient’s free breathing (FB) while adapting the radiation beam to the tumour 

position. 

Respiratory gating is a technique that synchronises radiation treatment to the patient’s respiratory cycles. 

It operates such that the radiation beam is on only within a specifc phase or portion of patient’s breathing 

cycle [Jiang 2006b]. Real-time tumour tracking (RTTT) technique [Murphy 2004], can be realised by 

using dynamic multi-leaf collimator (DMLC) [Webb 2006] or LINAC based robotic arm [Schweikard 

et al. 2004] or, alternatively, by keeping the tumour under the beam path via PSS control [D’Souza 

et al. 2005, Skworcow et al. 2007]. Organ motion has also been included in the calculation of the dose 

distribution [Lujan et al. 1999], and various schemes to investigate the relationship between organ motion 

and motion management techniques has been carried out in [Land 2009]. 

Except for the breath-holding technique, the remaining respiration motion compensation methods men-

tioned above demand a good understanding of the motion characteristics. During the treatment simulation 

stage, tumour motion is measured and a model can be derived. With the help of this model, parameters 

of the motion can be estimated and utilised in treatment planning. Moreover, an online monitoring of the 

tumour position can be applied with either gating or RTTT techniques. 

The used adaptive approaches to compensate for tumour motion require the exact position of the latter to 

be estimated/detected in real-time. Tumour detection has been carried out by tracking the tumour itself 
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[Sixel et al. 2003], host organ [Davies et al. 1994], radiographic fducial markers 2 implemented near or 

in tumour [Seppenwoolde et al. 2002b], radioactive tracers targeting [Weiss et al. 1972], and surrogate 

organ such as diaphragm [Vedam et al. 2003b, Ford et al. 2002]. This was achieved by different imaging 

modalities such as Ultrasound (US) [Davies et al. 1994], CT [Shimizu et al. 2000b], MRI [Korin et al. 

1992] and more commonly fuoroscopy [Shirato et al. 2000b, Shimizu et al. 2001, Ozhasoglu and Murphy 

2002, Seppenwoolde et al. 2002b]. However, the utilisation of such imaging systems necessitates time to 

process the data and transmit the position of the tumour. On the other hand, both the multi-leaf collimator 

(MLC) and PSS are electromechanical devices with limited response time. The combination of the above 

effect means that by the time the MLC/PSS reaches the desired position, the organs may have moved. 

There is therefore a need to predict in advance the motion of the organ to be tracked [Sahih et al. 2006; 

2005]. 

1.3 Aims and objectives 

According to the problem statement, respiratory motion modelling and prediction are the two main issues 

for an accurate radiotherapy treatment. This research aims to investigating new modelling and prediction 

techniques as well as the application of the former to simulate realistic respiratory motion. To achieve 

these aims the following objectives were considered: 

• To model the respiratory surrogate motion. In order to realise this objective the following tasks 

were carried out: 

– Identify benefts and limitation of the existing models. 

– Perform a pre-processing and a statistical analysis of published data. 

– Investigate system engineering and identifcation approaches to model respiratory surrogate 

motion. 

– Extract the respiratory surrogate motion drift. 

– Validate the modelling approaches using clinical data. 

– Acquire additional breathing signals. 

• To develop more realistic respiratory trajectories to be used as a benchmark. This has involved the 

following issues: 

2Fiducial markers are implantable markers used in radiotherapy treatment to provide real-time accurate localisation of the 
tumour volume. 
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– Use the developed respiratory surrogate motion model. 

– Build statistical models of period and duty cycle parameters of the respiratory surrogate mo-

tion. 

– Involve a model of different drift signals. 

• To design, develop and implement new motion prediction strategies. The achievement of this ob-

jective the following tasks were carried out: 

– Design a new breathing experiment. 

– Assess the prediction strategy in real-time. 

– Compare the performance of the developed prediction algorithms to those introduced in the 

published work. 

1.4 Thesis outline 

The thesis is organised as follow: 

Chapter 2 presents a review of the principles of the RT process in practice, the equipments and imaging 

modalities currently in use as well as the main treatment techniques/approaches. Thereafter, the problem 

of treatment inaccuracy caused by uncertainties, such as patient/tumour motion, and treatment machines 

inaccuracy, is raised. The research has been focused mainly on the organ/tumour uncertainties and more 

exactly those caused by the breathing process. The source of breathing process was studied by investigat-

ing the respiratory system function. The main characteristics of the respiratory surrogate motion such as 

frequency, range and speed were identifed from the literature. A number of solutions have been proposed 

to compensate for the tumour motion. However, some of these methods are limited by the necessity to 

determine tumour position in real-time and the existence of a systematic time delay. 

Chapter 3 reviews the most signifcant published papers on organ/tumour motion modelling and predic-

tion to overcome the organ/tumour motion problems in RT as well as various assessment criteria that 

have been used to evaluate these techniques. While the motion model is necessary for motion simulation 

in order to assess, for example, the radiotherapy machines and treatment strategy, and motion tracking 

in real-time, the prediction is essential to overcome the problem of time delay during the beam delivery. 

The review of the few developed modelling approaches has revealed that there are three different types 

of models: (i) periodic models, (ii) phase based models, and geometrical model. The prediction algo-

rithms developed includes linear predictors, neural network (NN) and KF techniques. The last part of the 

Chapter reviews existing assessment criteria in order to establish a ground for comparison. 

5 



1.4. Thesis outline Chapter 1. General introduction 

Chapter 4 describes the pre-processing, characteristics and statistical analysis of the clinical data inves-

tigated in both anterior-posterior (AP) and superior-inferior (SI) directions. The data were provided by 

Virginia Commonwealth University (VCU) (USA) and Hokkaido University-School of Medicine (Japan). 

The data was grouped in four sets, namely free-breathing (FB), audio-instruction (AI), audio-visual 

biofeedback (AVB) and internal fducial markers (IFM). The time and frequency analysis of each data 

set have highlighted the presence of breathing abnormalities, baseline drift, measurement noise and heart 

beat in the internal data. The overall drift signal, measurement noise and respiratory data for each data set 

were found to be approximated by a Gaussian distribution with different parameters. A new parametri-

sation of the respiratory surrogate motion was adopted which considers the breathing as a succession of 

exhalation and inhalation. Different breathing parameters were estimated and the statistical distribution 

of the period and duty cycle obtained. This analysis enabled the modelling work described in Chapter 5 

and 6 to be based on the knowledge gained on the respiratory data. 

Chapter 5 introduces a new modelling approach which was deduced from the analysis of the respiratory 

motion performed in Chapter 4. It consists in considering the lung as a bilinear system, which responds 

to a square wave signal, assumed to be generated by the nervous system. The disturbances such as 

drift, measurement noise and heartbeat were considered as external signals that were not included in the 

breathing motion modelling. Two approaches to deal with the drift signal were considered. The frst 

models the drift by a polynomial function with different orders, the second flters the surrogate motion 

signal to remove the drift. For both drift removal techniques, models of each patient from the different 

clinical data set were estimated and validated. The model parameters were estimated using nonlinear 

constrained optimisation technique and nonlinear non-constrained optimisation technique. The resulting 

model was used to generate a set of benchmarks respiratory motion trajectories that summarise typical 

behaviour in sets of 4 mins durations. In addition to the average model, an adaptive approach of the 

bilinear model was developed. The latter was found to be able to follow accurately the changes in the 

respiratory patterns. A second modelling approach to model the respiratory cycles was also introduced 

which is based on the polynomial ftting. This was performed online and compared to the widely used 

Lujan model [Lujan et al. 1999], which was also implemented online. 

Chapter 6 describes a new experiment designed and carried out by the author. It exploits both Spirometry 

signals and external chest markers. The data collected from the experiment was then pre-processed and 

analysed prior to their use in modelling and prediction. The system identifcation procedure that consist 

in fnding the appropriate model of the lung system among different linear and bilinear model structures 

was carried out and a second order linear model was found to give the best performance. In addition, this 

model structure was assessed using a virtual input signal instead of the physical one. It was found that the 
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virtual input gives better results than the physical input. A new predictive tracking approach based on the 

Spirometry measurement and external chest markers was introduced. A demonstration of such approach 

shows that the latter can predict 0.2s ahead with a root mean squared error (RMSE) of 0.42 mm. 

Chapter 7 presents an adaptive bilinear model and a sliding polynomial function as a new prediction 

algorithms which were compared to a set of prediction algorithms based on KF and NNs. The outcome 

of this comparison was that the sliding polynomial model perform better for a short time prediction 

(0.2s) and the adaptive bilinear model gives a better prediction results for a long time prediction (0.4, 0.5 

and 0.6s). Having completed the work on motion prediction, a simulation model of the PSS was built 

using some measurements at the UHCW. The parameter estimation strategy developed by the author is 

presented. Finally, a demonstration of the overall motion compensation strategy developed within the 

MAESTRO project was presented. 

Chapter 8 discusses the fnal conclusions made in this thesis and future research stemming from this work. 

1.5 Contributions 

The main contributions in this thesis are : 

• Performed a thorough survey of relevant literature in Chapter 2 and 3. 

• Developed two new approaches for modelling, simulation and tracking of the respiratory surrogate 

motion based on the bilinear modelling framework and a polynomial function. Details are given in 

Chapter 5. 

• Exploited the bilinear model to generate a set of realistic respiratory surrogate motion to over-

come the lack of benchmark data and allow researcher in the feld to assess and compare different 

algorithms and motion strategies (see Chapter 5). 

• Designed a new experiment to evaluate the beneft of combining fow measurement and external 

chest markers for modelling and predictive. Details are in Chapter 6. 

• Introduced two new prediction algorithms based on a sliding polynomial model and an adaptive 

bilinear model (see Chapter 7). 
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A summary of the main contributions and where can be found in the Thesis are shown in the following 

diagram: 

Fig. 1.1: Illustrating the fow chart of the different contributions. 

1.6 Publications 

During the period of this research, some contributions have been made to the feld of system/control en-

gineering and medical physics, through the publication of one journal paper and ten papers in conference 

proceedings: 

Conference and journal papers 

• Haas O.C.L., Skworcow P., Sahih A., Land I., Paluszcyszyn D., Mills J., Bueno G., and Fisher M. 

(2008). New couch based control system for automatic inter and intrafraction motion compensation 

for IGRT. Radiotherapy & Oncology, 88 (Suppl. 2):S124 (2008). ESTRO 27 European Society for 
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Therapeutic Radiology and Oncology Conference, Gothenburg (Sweden), 2008 

• Mills J.A., Haas O.C.L., Bueno G., Fisher M., Sahih A., Skworkow P., Putra D., Burnham K.J., 

Land I., Young K., Sage J., Wilson A.J. and Martinez-Albala A., Torres M., Delgado J.M., Car-

rascosa C., and Yu S. (2007). Target motion detection and the adaptation of radiotherapy delivery 

systems for high-precision radiotherapy treatment. Strahlentherapie und Onkologie, 183(Suppl. 

1):152 (2007). DEGRO German Society of Therapeutic Radiology and Oncology Conference, 

Hanover (Germany). 

• Sahih, A., Haas O.C.L., Mills, J.A., and Burnham, K.J. (2007). A new bilinear model for res-

piratory motion. Jean-Pierre Bissonnette, ed., In XVth International Conference on the Use of 

Computers in Radiation Therapy, Volume 1, pages 133-137, Toronto, Canada. 

• Skworcow, P., D. Putra, A. Sahih, J. Goodband, O.C.L. Haas, K.J. Burnham and J.A. Mills (2007). 

Predictive tracking for respiratory induced motion compensation in adaptive radiotherapy. Mea-

surement + Control 40(1) 16-19. 

• Sahih, A., Haas, O.C.L., Goodband, G.H., Putra, D., Mills, J.A., and Burnham, K.J. (2006). Res-

piratory motion prediction for adaptive radiotherapy. In Proc. CD-ROM of IAR & ACD Annual 

Meeting, Nancy, France. 

• Sahih, A., Haas, O.C.L., Burnham, K.J., and Mills, J.A. (2006). Bilinear flter approach for internal 

and external respiratory motion modelling and prediction. In Int. Conf. on Systems Engineering, 

pages 425-430, Coventry, UK. 

• Skworcow, P., D. Putra, A. Sahih, J. Goodband, O.C.L. Haas, K.J. Burnham, J.A. Mills (2006). 

Predictive tracking for respiratory induced motion compensation in adaptive radiotherapy. UKACC 

Control 2006 Mini Symposia, pages 203-210, Glasgow, UK. 

• Skworcow, P., A. Sahih, O.C.L. Haas, J.A. Mills, and Burnham, K.J. (2006). Towards effective or-

gan immobilization via a predictive bilinear feedforward model based approach to control a radio-

therapy patient support system. Proc. CDROM. International Conference: Control 2006, Glasgow, 

UK. 

• Sahih, A., O C L Haas, O.C.L., Mills, J.A., and Burnham, K.J. (2005). Organ motion modelling 

and prediction for adaptive radiotherapy. In Proc. CD-ROM of IAR & ACD Annual Meeting, pages 

211-216, Mulhouse, France. 
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• Sahih, A., Haas, O.C.L., Burnham, K.J., and Mills, J.A. (2005). Organ motion modelling and 

prediction. In Proc. 6th Polish-British Workshop, Computer Systems Engineering. IEE Control and 

Automation Professional Network, pages 9-20, Wroclaw, Poland. 

• Skworcow, P., A. Sahih, O.C.L. Haas, K.J. Burnham, Mills, J.A. (2005). Assessing the mechan-

ical accuracy of radiotherapy treatment equipment: A precursor to control system design. 6th 

Polish-British Workshop, Computer Systems Engineering. IEE Control and Automation Profes-

sional Network, pages 145-156, Wroclaw, Poland. 

Abstracts and Posters 

• Sahih, A., Haas, O.C.L, Mills, J.A. and Burnham, K.J. (2006). Respiration cycles modelling using 

a bilinear flter approach. Biennial radiotherapy meeting, University of East Anglia, Norwich. 

Awards 

• Winner of the poster award in biennial radiotherapy meeting, University of East Anglia, Norwich 

2006. 

Citations of My Research 

• Ernst F., Schlaefer, A. and Dieterich, S. and Schweikard, A. (2008). A Fast Lane Approach to 

LMS prediction of respiratory motion signals. Biomedical Signal Processing and Control, 3(4): 

291–299. 

The author has also contributed to three MAESTRO project deliverables in the form of reports and/or 

softwares. The softwares consisted in Real-time implementation of some predictors and LabV IEW 
TM 

based video tracking system. 
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Chapter 2 

An overview of external beam radiation 

therapy (EBRT) 

2.1 Introduction 

A number of uncertainties may occur during/prior to the RT treatment resulting in a degradation of the 

accuracy for the whole RT process. The most dominant uncertainties are tumour/organ and patient motion 

[Langen et al. 2001, Di Yan 2001]. Research has been conducted towards the investigation of moving 

tumours, especially those generated by the respiration [Hoisak et al. 2004, Jiang 2006b, Kubo and Hill 

1996]. Note that patient’s motion can also induce tumour motion. Several methods to compensate for 

tumour and patient motion have been introduced [Hanley et al. 1999, Di Yan 2001, Herk 2004, Mageras 

and Yorke 2004, Shirato et al. 2007]. 

Modern advances in computers have fuelled both development in RT treatment equipment and imaging 

techniques for diagnosis and cancer localisation. The next direction in RT was to account for organ/patient 

movement and changes, which is being called ART. The latter considers the treatment delivery as a 

closed-loop feedback system, where dynamic variation of patient position and tumour geometry/location 

is exploited to adapt the radiation delivery. The implementation of ART requires radiation delivery system 

modifcation for hardware components including LINAC, MLC and on-line imaging devices/software. 

This chapter aims at giving an overview concerning the current state of EBRT practice and the uncer-

tainties that can be faced, particularly organ/tumour motion due to the natural respiration. Section 2.2 

highlights the clinical practice of the EBRT and the up to date techniques/tools that contributed to the 

progress of the latter. Section 2.3 reviews different uncertainties that might occur during or between pa-

tient irradiation and describes current solutions to compensate for some of them. An understanding of 
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respiratory system function and description of respiratory motion characteristics are discussed in Section 

2.4. Section 2.5 reviews the compensation methods that explicitly manage respiratory motion during RT. 

A discussion of the main outcomes of the chapter is presented in the last section. 

2.2 Outline of clinical radiotherapy treatment 

2.2.1 Imaging modalities for radiotherapy 

The evolution of RT has been strongly linked with the development of imaging techniques. They are 

involved in every key step of the RT process, ranging from patient staging, simulation, treatment plan-

ning, and radiation delivery, to patient follow-up. One of the most important issues in RT is to provide 

information about the tumour target and critical structure relative to the patient anatomy. 

The emergence of CT techniques revolutionised RT and allowed the use of image data to build a 3D 

patient model and 3DCRT design. This imaging modality evolves many advantages, including high 

spatial integrity, high spatial resolution, excellent bony structure depiction, and the ability to provide 

relative electron density information used for radiation dose calculation. In addition, it can be done in 

either axial, spiral, or cone-beam mode. Recent advances in CT technology has led to the development 

of four-dimensional computerised tomography (4DCT) which is based on 3D images with the additional 

dimension being time. With this dynamic imaging technique, one can carry out not only new diagnoses 

but also provide new interventional therapy through real-time observation [Mageras et al. 2004]. In 

practice, 4DCRT is a very diffcult problem, with many levels of complexity [Keall 2004]. 

A second type of imaging modality used for RT is MRI. It provides superior soft tissue discrimination 

and is used as primary image modality for central nervous system structures and within the abdomen and 

pelvis. It has also been widely used in the diagnosis and tumour delineation. It is also utilised for virtual 

simulation of radiation treatment for some specifc disease sites. In a clinical setting, MRI is typically 

employed together with CT images with the help of image fusion software to delineate the extent of the 

malignancy. An example of the use of MRI technique to obtain the four-dimensional (4D) information of 

the lung can be found in [Shimizu et al. 2000a]. 

Another useful imaging modality for RT is known as ultrasound (US). It utilises high-frequency (1˘10MHz) 

sound waves to generate anatomical images that have high spatial resolution and tissue characterisation 

discrimination power through image texture analysis. This imaging modality has been particularly useful 

in prostate imaging. Trans-rectal US is an imaging modality which permits an examination/ localisation 

of the prostate gland [Sawada et al. 2004, Yu et al. 1999] and it is an imaging modality of choice in 
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guiding the prostate seed implant procedure. 

Fluoroscopy is an imaging technique in which x-rays continually strike a fuorescent plate that is coupled 

to a video monitor. In a fuoroscopic images, tumours lack suffcient contrast with the surrounding tissue. 

Therefore, in treatment preparation metal clips are often implanted around the tumour [Shirato et al. 

1999]. Since these clips are radio opaque making them highly visible in fuoroscopy images and CT 

scans. 

The imaging modalities mentioned above are anatomic in nature, i.e. they provide snapshot of a patient’s 

anatomy without biological information of various organs or structures. Functional imaging techniques 

such as magnetic resonance spectroscopy (MRS), PET, and SPECT provide metabolic, or other functional 

data indicating the location, size, and aggressiveness of disease. These techniques may help clinicians to 

observe functional changes so that they can create targeted treatment plans that deliver escalated doses 

to the most metabolically active parts of a tumour. PET is widely used for lung [Caldwell et al. 2001] 

little for nasopharynx and neck [Daisne et al. 2004]. SPECT was used for lung perfusion measurement 

for planing and during follow-up [Seppenwoolde et al. 2002a]. 

The patient’s anatomy is changing during the radiation delivery, which makes the patient’s model created 

prior to the treatment outdated. Therefore, techniques for image guidance have been developed. The clas-

sical example is the electronic portal imaging which allows correction of the set-up of the bony anatomy 

and/or markers. Diagnostic x-ray imaging provides better contrast over shorter exposure intervals than 

portal imaging and it was adopted as an improvement for patient’s set-up and tracking during treatment. 

The usual implementation of image guidance involves either dual kilovoltage (KV) x-ray sources and 

solid-state fat-panel detectors mounted permanently to the foor and ceiling of the treatment room or a 

source/detector system mounted to the gantry arm for rotation around the patient. The x-ray images have 

been used for bony anatomy and marker based set-up when the x-ray imaging set is integrated with the 

LINAC [Balter et al. 1995b;a], and for determining tumour motion in lung [Shimizu et al. 2001]. The 

megavoltage (MV) images are widely used for set-up based on the bony anatomy and on markers, see for 

example [Nederveen et al. 2003]. However, they are rather time consuming and not necessarily accurate 

all the time. 

The precise localisation of the target volume is the key issue for organ motion tracking. There are two 

approaches to realise such detection which are ‘on-line’ or ‘real time’. The ‘on-line’ or inter-fraction 

method, also referred to as IGRT, images the patient before the delivery of radiation and then modifes 

the machine set-up accordingly. In terms of imaging technologies the current on-line target localisation 

techniques for EBRT include two-dimensional (2D) KV and MV radiographic imaging (Electronic portal 
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imaging). Portal imaging is currently the most widely used technique to routinely obtain the appropriate 

anatomical information and adjust to the patient’s position if the displacement exceeds agreed tolerances. 

The main issue with MV imaging is the lack of contrast which limits its use for adjustment based on the 

bony anatomy as opposed to the actual planning target volume (PTV) position. 

The ‘real time’ approach also referred to as ART, images the patient whilst the treatment is taking place. 

There is currently no method able to provide detailed 2D and 3D anatomy of the cancerous tissues whilst 

the patient is being irradiated. However, it is possible to infer the location of the PTV during treatment 

when the PTV is enclosed in bony anatomy (e.g. brain tumour) or from surgically implanted markers that 

can be tracked with a KV imager. These two techniques are now described. 

External markers are used in combination with video imaging systems based on standard or infra-red 

devices such as the Polarisr system. External markers are usually made of a number of geometrical 

shapes (usually spheres) that are combined together to form a predefned object. The positions of the 

individual markers within that ‘object’ need to remain constant to minimise measurement errors. The 

‘object’ made of this set of individual spheres can then be tracked using a stereoscopic vision system. 

The use of several spheres to form a single ‘object’ increases the accuracy of the tracking system. Note, 

however, that some commercial systems rely on the use of individual markers as opposed to groups of 

markers. The advantage of such a system is the speed at which the position of the sphere can be detected. 

For example the Polaris system is able to obtain a position in 34 ms and thus feedback control of the PSS, 

gantry or MLC positioning is feasible. However, the drawback is the uncertainty that exists and the need 

to correlate external patient motion with internal motion. 

Internal markers, namely fducial markers, are implanted surgically into the PTV and, therefore, their 

position is directly related to the position of the PTV. They are usually made of a high density inert 

material and shaped such that they do not move too much during the course of the treatment. The marker 

material ensures that they can be easily detected using KV imaging where they appear as pixels with 

whiter color than bones (i.e. at one extreme of the range of pixel grey level) within a PTV usually located 

in the middle of the range of grey levels. Fiducial marker detection and tracking is therefore a relatively 

simple task from the image processing perspective. This means that tracking of fducial marker can also 

be fast e.g. 90 ms (see for example [Shirato et al. 2000a]). 

2.2.2 Radiotherapy treatment delivery machines 

Several types of irradiation technologies can be used to produce the shape and the aim of the radiation 

beam directed to the volume target. Each machine offers a different level of accuracy and ability to deliver 
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various radiation techniques to treat the tumour. 

Linear accelerator system 

Medical LINAC system is the standard technology for delivering conventional radiotherapy which uses 

a gantry construction for moving the linear accelerator (see Figure 2.1). However, this mechanical con-

struction can deliver radiation from a limited number of directions during a single treatment. Meanwhile, 

its ability to compensate for target motion during treatment is inherently very limited. Several additional 

factors limit the accuracy of gantry-based systems, most notably mechanical fex and lack of fully com-

puterised position/motion control. Conventional LINAC systems has six motion axes, which are suffcient 

to target any point within a given workspace from any angle. However, four out the six axes of the LINAC 

gantry are built into the patient table, or so called PSS. The latter is a moving table (or couch) on which 

the patient is laid down during the treatment. 

Fig. 2.1: Standard radiotherapy treatment machine and coordinate system according to the 
IEC61217 standard. Machine illustration courtesy of Elekta Ltd 

The PSS has four degrees of freedom: Forward-backward (Y-axis or longitudinal axis), left-right (X-axis 

or lateral axis), up-down (Z-axis or height axis), and one rotational (around the vertical Z-axis referred 

to the iso-center). Note that manufacturers also have their own coordinate systems. It is essentially used 

to position the patient’s under the radiation beam. The radiation beam produced by a LINAC gantry can 

be shaped and aimed at the target from various directions by rotating the gantry and moving the PSS 
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simultaneously. 

CyberKnife system 

Tumour induced organ motion is diffcult to track with conventional LINAC based systems, and the ac-

curacy of such an approach would inherently be very limited. In contrast, modern robotic manufacturing 

relies on highly accurate motion control and high unit numbers. The CyberKnife is frameless radiation 

treatment system that incorporates a six degree of freedom robotic arm to precisely position a linear ac-

celerator as well as imaging system [Schweikard et al. 2000, Wilson 2006]. Similarity to LINAC system, 

CyberKnife system contains a couch and positioning system (see Figure 2.2). 

Fig. 2.2: Components of a CyberKnife Suite. 

The imaging system consists of a stereo low-energy x-ray source mounted on the ceiling that generates 

two perpendicular diagnostic x-rays. Coupled with a pair of x-ray detectors mounted orthogonally in a 

‘V’ shaped frame and fxed to the foor directly below the robot isocenter. This system determines the 

location of bony landmarks or implanted radio-opaque fducials. A control system compares periodically 

acquired images from the x-ray detectors with preoperative CT images, providing feedback to realign the 

LINAC to compensate for patient movements [Wilson 2006]. Although such system can follow the slow 

rate motion such as the brain tumour, a high rate motion (lung tumour for example) is hard to follow 

without any prediction. 
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2.2.3 Intensity modulated radiotherapy (IMRT) 

As the shape of tumour is irregular and may change during treatment process because of different factors 

such as respiratory motion, then, the beam feld must be shaped to reduce the irradiation of adjacent nor-

mal tissues. The conformal radiation therapy (CRT) offers the greatest advantage at sites where existing 

local control is limited by the collateral dose to normal structures. As its name implies, IMRT allows to 

modulate the intensity of each radiation beam, so each feld may have one or many areas of high intensity 

radiation and any number of lower intensity areas within the same feld, thus allowing for greater control 

of the dose distribution with the target. The introduction of IMRT has further improved outcomes by 

increasing organ sparing, providing better local control of disease, enhancing quality of life and reducing 

treatment associated morbidity. 

In contrast to CRT, in which the shaping was achieved using two pairs of metal blocks called ‘jaws’, the 

IMRT employ multiple opposing metal slats [Bortfeld et al. 2006, Webb 2001, Meyer 2001, Goodband 

2006]. Collimator devices (see Figure 2.3) are the most used tools to shape the radiation felds to match 

the geometry of the tumour. Initially developed for CRT, MLC are the most versatile device to focus and 

shape the beam. They are located in the head of LINAC perpendicular to the central axis and consist of a 

set of parallel opposed mobile tungsten leaves [Meyer 2001]. Each leaf can be controlled independently 

in the forward or in reverse direction. Beam modulation can be achieved by varying the position of the 

leaves over time during irradiation. This can be done dynamically (DMLC), referred to as dynamic-

leaf-sweep or sliding window technique, which is addressed in [Boyer and Strait 1997], with the leaves 

in motion during irradiation. It can also be achieved statically by delivering multiple static felds, also 

denoted the step-and-shoot technique, in which the MLC are positioned in different position for each 

sub-feld. 

Fig. 2.3: An illustration of an industrial MLC. Photo courtesy of Varian Medical Systems of Palo Alto, 
California. Copyright 2003, Varian Medical Systems. 
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IMRT involves an advanced concept to deliver 3DCRT known as inverse treatment planning with opti-

misation by computer. As distinct from the forward planning process, where only the best beam con-

fguration is taken after different tries, the inverse process starts with the required dose distribution and 

constraints imposed on the problem, then uses a computer to calculate the optimal beam weight and 

directions [Goodband 2006]. There are several techniques to deliver IMRT, including metal compen-

sator, MLC operation in multiple static-feld mode, DMLC, intensity modulated arc therapy (IMAT), 

slice-based tomotherapy with a multi-vane intensity modulating collimator (MIMiC), spiral tomotherapy, 

CyberKnife and Non-MLC-based techniques (concepts) [Bortfeld et al. 2006]. 

2.2.4 Adaptive and image guided radiotherapy 

The IMRT technique provides the capability of delivering a highly conformal radiation dose distribution 

to a complex static target volume. However, treatment errors related to internal organ motion may greatly 

degrade the effectiveness of conformal radiotherapy for tumours located in the thoracic and abdominal 

regions, especially when the treatment is done in a hypo-fraction or single fraction manner. This has 

become a pressing issue in the emerging era of IGRT. This latter makes use of many different imaging 

techniques ranging from portal imaging and fuoroscopy to MV cone-beam CT and following regimens 

as simple as a single set-up image or as complex as intrafraction tumour tracking [Murphy 2004, Mageras 

2005, Jaffray 2005, Xing et al. 2006, Huntzinger 2004]. 

The process of IGRT involves all steps in the treatment including patient immobilisation, CT simula-

tion, treatment planning, plan verifcation, patient set-up verifcation and correction, delivery, and quality 

assurance (QA). Many IGRT solutions have been proposed to resolve the problem of target defnition 

and beam targeting. Briefy, IGRT developments are focused in four major areas: (1) biological imaging 

tools for better defnition of tumour volume; (2) time-resolved 4D imaging techniques for modelling the 

intra-fraction organ motion; (3) on-board imaging system or imaging devices registered to the treatment 

machines for inter-fraction patient localisation; and (4) new radiation treatment planning and delivery 

schemes incorporating the information derived from the new imaging techniques. 

A full implementation of IGRT will lead to the concept of ART [Yan et al. 1997a, Yan 2004]. In this 

process the dose delivery for subsequent treatment fractions of a course of radiotherapy can be modifed to 

compensate for inaccuracies in dose delivery that cannot be corrected for by simply adjusting the patient’s 

positioning. The causes of these inaccuracies may include tumour shrinkage, patient loss of weight and 

increased hypoxia resulting during the course of fractionated treatment. This promising procedure is 

developed in order to track and compensate for tumour and patient motion. 
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The motivation for the development of such a technique is that if the cancerous cells can be targeted 

more effectively, then it will be possible to reduce the treatment margins, hence to a reduction of dose 

absorbed by the healthy tissues. Usually, the treatment planning uses imaging techniques to defne a static 

parameters such as patient position, organ and beam deviation and dose distribution. These parameters 

can be estimated during the treatment by using a new observation and measurement. For example tumour 

in abdominal site, parameters such as frequency and magnitude of breathing must be monitored online 

during the treatment. 

2.2.5 Quality assurance (QA) in radiotherapy 

The designed treatment may be different from the delivered one, due to various reasons including the 

inaccuracy of the treatment machines and staff errors. This has came out with a procedure called QA 

[Kutcher et al. 1994]. In this protocol, the performance of the equipments used for radiotherapy have to 

be checked regularly in order to ensure that the therapy unit performs according to specifcations, and that 

the unit is safe to use for patients and staff. It can also be referred to the assessment of a new radiotherapy 

treatment system or strategy. Usually, physical objects called phantoms are used during quality checks. 

Several phantoms to simulate the motion of lung have been proposed [Hugo et al. 2002, Zhou et al. 2004, 

Nioutsikou et al. 2006]. 

2.3 Radiotherapy uncertainties 

RT uncertainties are a (possibly large) source of unknowns (or errors) that act during treatment preparation 

and delivery. The main ones are organ motion and patient positioning (set-up) [Hurkmans et al. 2001, 

Langen et al. 2001, Booth 2002, Herk 2004, Goitein 2004]. Understanding these uncertainties, their 

characteristics and causes, and techniques to control or reduce them are very important for comprehensive 

health care. A thorough understanding of the treatment uncertainties is also required if these latter or part 

of it, is to be modelled, which is one task of this thesis. Uncertainties in radiotherapy process have been 

classifed into systematic and random. Systematic errors act during treatment preparation and random 

errors during the delivery execution. Both errors have an impact on the entire treatment. As consequence, 

a safety margin is required to ensure that the prescribed dose is delivered to the target volume. 

The international commission on radiation units and measurements (ICRU) report 50 and supplement 

report 62 [ICRU 1994; 2000], provide general guidelines to accommodate for uncertainties in planning 

of EBRT treatments. In the latter, several target and critical structure volumes and margins that help in 
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the treatment planning process and that provide a basis of comparison of treatment outcomes have been 

defned and described. 

The gross tumour volume (GTV) is defned as the obvious tumour volume which has been delineated 

using imaging modalities, reference frame of the bony anatomy and clinical examinations, by the clin-

ician, and must be eradicated. Usually, the treatment can take several days which is accompanied with 

microscopic extent of the tumour or growth. This clinical growth is also involved by adding a fxe or 

variable margin to the GTV to obtain what it is called clinical target volume (CTV). The planning target 

volume (PTV) includes both internal margin (IM) to account for uncertainties in organ shape, size, and 

motion, and setup margin (SM) to account for beam geometry and patient set-up. Internal target volume 

(ITV) is defned as the Clinical target volume (CTV) plus IM. 

Important organs around the tumour and their movement are also involved in the planning by introducing 

the quantities organ at risk (OAR) and planning organ at risk (PRV). In Figure 2.4 a graphical represen-

tation of the volumes of interest are depicted. The size of treatment margin depends on the site to be 

treated and clinical experience of the clinician. More details about designing margins can be found in 

[Herk 2004, Booth 2002, Ekberg et al. 1998]. 
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Fig. 2.4: Volumes and margins defnitions. 

2.3.1 Patient positioning 

During the treatment delivery, the position of the PTV with respect to the beam, may differ from the 

intended or reference position, done at planning stage. Consequently, systematic differences between the 

planned patient position and its average position over a course of fractionated therapy may exist. This is 

due to many factors including inaccurate alignment of positioning devices and differences in cushioning 

capacity of couch material between CT and treatment [Booth 2002, Hurkmans et al. 2001]. Random error 
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can also exist between the daily patient positions and the desired patient position, due to factors such as 

the width of positioning laser beams and human error. The patient positioning errors then can be defned 

as consisting of systematic and random components [Herk et al. 2000, Hurkmans et al. 2001, Bortfeld 

et al. 2002, Booth 2002]. 

The reference patient position is recorded on a reference image, being either a simulator image or a 

digitally reconstructed radiograph (DRR) in which anatomical structures (e.g. bone, lung, body contour), 

radio-opaque markers (if any) and the outline of the feld which is used to generate the image are seen 

[Hurkmans et al. 2001]. It is more common to use EPID rather than MV flms because of time consuming 

and less accuracy of these latter [Hurkmans et al. 2001]. 

Generally the coordinate system that is adopted is based on the patient coordinate system. It is defnes by 

X in the medial-lateral (ML) direction, Y in the anterior-posterior (AP) (or ventral-dorsal) direction and 

Z in the superior-inferior (SI) (or Cranial-Caudal (CC)) direction [Booth 2002, ICRU 1987]. Figure 2.5 

illustrates this defned motion directions. The positive and negative directions do differ in the literature. In 

practise, the orientation and direction of X, Y, Z is based on the linear accelerators software specifcations 

and may differ between corporations. 

Fig. 2.5: Motion directions. 

A selection of the studies investigating set-up measurement errors in the thoracic region is presented in 

Table 2.1. For the lung, set-up errors in the order of 2 to 4 mm have been reported in [De Boer et al. 

2001]. In [Hurkmans et al. 2001], it has been reported that the range of standard deviation of systematic 

error is 1.8-5.1 mm and 2.2-5.4 mm for random error. A small predominance of set-up errors in ML 

and CC directions, comparing to AP direction was showed in [Vijlbrief et al. 1998]. The set-up errors for 

lung cancer irradiations are generally larger than set-up errors for prostate and head and neck treatments. 

This is mainly caused by the lack of rigid structures like the skull or hipbones, which can be used to 
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immobilise the patient, and breathing motion [Hurkmans et al. 2001]. 

To reduce the set-up errors different methods have been investigated. For example, DeSteene etal. [DeSteene 

et al. 1998] has introduced an on-line correction protocol. After correction using a computer controlled 

treatment couch, the overall set-up errors in the ML and CC direction were reduced from 5.7 mm and 4.5 

mm (±1 mm standard deviation (SD)) to 1.2 mm and 1.0 mm (±1 mm SD), respectively. In [Bortfeld 

et al. 2002] methods based on single set-up correction of the (N + 1)th treatment fraction by using the 

set-up measurements of the previous N fractions. It is argued in [Bortfeld et al. 2002] that in many cases 

it might be suffcient to correct the systematic errors and accept the random errors. The set-up position is 

achieved by the mean of the landmarks clearly visible like bone, on the EPID or portal flm. This involves 

both random and systematic error. 

Although many mechanisms exist to monitor and manage target positioning, the application of EPIDs is 

becoming a standard tool for this purpose [Herman 2005]. EPIDs image quality has rivalled or exceeded 

that of flm almost since its inception in the 1980s, [Kruse et al. 2002]. These devices have sub-millimeter 

spatial resolution and suffcient contrast resolution (superior to flm) [Munro 1995] to image most bony 

anatomy or a small metallic marker implanted in 30 or 40 cm of tissue. 

Tab. 2.1: A summary of few patient set-up errors studies. 

Authors, year. Type of measurement Direction No. of patients No. of images ˙systematic (mm) ˙random (mm) 
Immobilisation No Immobilisation Immobilisation No Immobilisation 

[Yan et al. 1997b] EPID AP 27 431 - - - -
ML - 2.5 - 2.3 
SI - 3.5 - 2.7 

[Vijlbrief et al. 1998] EPID AP 35 375 - 1.8 - 2.2 
ML - 2.1 - 2.9 
SI 2.5 2.9 

[DeSteene et al. 1998] EPID AP 16 98 0.8 deg - 1.1 deg 
ML 5.1 - 2.5 -
SI 2.8 - 3.5 -

[Samson et al. 1999] EPID AP 8 53 - - - -
ML 2.5 - 2.0 
SI 2.0 - 2.8 

[Halperin 1999] Film AP 11 170 - - 5.1 -
ML - - 3.7 -
SI 5.1 

[Halperin 1999] Film AP 11 17 3.6 
ML 5.3 
SI 5.4 

[Di Yan 2001] AP - - - -
ML 2.5 
SI 3.5 
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2.3.2 Organ motion 

The effects of tumour/organ motion in RT can occur in both the imaging and treatment delivery stages. 

In the imaging stage, tumour/organ motion can generate two effects. First, imaging of moving tumours 

during CT scanning can causes artifacts and hence distortion of the target volume and incorrect positional 

and volumetric information [Chen et al. 2004]. One reason of these motion artifacts is that different parts 

of the object move in and out of the CT slice window during image acquisition [Keall et al. 2006b]. 

Second, the image is distorted because of the relative speed of motion and scanning. 

Three different scenarios of scanning moving tumours have been given in [Chen et al. 2004, Jiang 2006a]: 

i) If the scanning speed is much slower compared with the tumour motion speed, the images are smeared. 

ii) If the CT-scanning speed is much faster than the tumour motion speed, then the target position and 

shape are captured at an arbitrary breathing phase. iii) If the scanning speed is comparable with the 

tumour motion speed, which is the case of most currently available helical CT scanners, the captured 

tumour position and shape can be heavily distorted. 

Radiation delivery in the presence of intrafraction organ motion causes an averaging or blurring of the 

static dose distribution over the path of the motion. This displacement results in a deviation between the 

intended and delivered dose distributions. Assuming a static beam, the total positional error affecting the 

dose is the composite vector of internal (e.g., tumour-bone) and external (bone-treatment room) displace-

ments. Thus, for conventional (non-IMRT) treatments, in which the dose gradient in the center of each 

feld can be assumed to be fairly small, the effect is manifested by a blurring of the dose distribution by 

the anatomy moving near the beam edges, in effect increasing the beam penumbra. This effect is thought 

to be exacerbated during IMRT delivery, causing motion artifacts in dose distribution due to the interplay 

between motion of the leaves of a MLC and the component of target motion perpendicular to the beam 

[Keall et al. 2006b]. However, it was found in [Herk 2004, Engelsman et al. 2001] that respiration motion 

with clinical relevant amplitude has a small impact on the dose compared with other errors that may occur 

in clinical practice. 

2.3.3 Other uncertainties 

Set-up errors and tumour motion are not the only factors causing uncertainty in the position of the CTV. 

The predominant error after set-up and tumour motion is tumour delineation. Several geometrical uncer-

tainties are involved in the delineation process. The limited resolution of imaging modalities causes a 

partial volume effect [Links et al. 1998]. The type of imaging modality to defne the target volumes can 

also generate a geometrical error. For example, prostate GTV’s defned using MRI have been found to be 
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30% smaller than those same tumours defned by means of conventional CT scans [Rasch et al. 1999]. 

The observer or inter-observer can also generate a delineation uncertainty. A comparison among clin-

icians show a factor of 1.8 variation in the CTV defnitions for the same tumour from the same set of 

images [Ketting et al. 1997]. Tumour delineation is discussed in the [ICRU 2000] document, and should 

be considered in the defnition of a PTV, but is not explicitly described as belonging to either the IM or 

setup margin (SM). Delineation uncertainty is a purely systematic error; it will infuence all treatment 

fractions in an identical way through the treatment planning process. 

Approximations of algorithms used in the treatment planning software do exist. The DRR can introduce 

errors due to sampling and digitisation resolution [Hurkmans et al. 2001]. The inter-observer variation 

introduced by the manual matching of a reference image and a portal image could also introduce sub-

stantial measurement errors [Bissett et al. 1995]. Today’s computer aided delineation tool provided with 

EPID software facilitate this registration process and make it more consistent . 

The source of setup errors can be mechanical due to the equipment accuracy or technique used for patient 

positioning and immobilising. Motions of the patient table (especially lateral table tilting) are likely to 

cause involuntary counter-motion of the patient. Such involuntary motions lead to muscle contraction, 

changes in breathing patterns, and may cause substantial additional inaccuracy. Given the kinematic and 

size limitations of such systems, most researchers have investigated methods for motion detection rather 

than active motion tracking. 

2.4 Respiratory motion characteristics 

Tumour motion is becoming an important issue in IGRT, that can be caused by respiratory, skeletal mus-

cular, cardiac and gastrointestinal systems. However, more research and development has been directed 

towards accounting for respiratory motion. This includes respiratory system function, breathing motion 

characteristics and respiratory motion management for radiotherapy. 

2.4.1 Respiratory system function 

Patient breathing during or within fractions can cause motion of tumours, especially those located in 

the thorax and abdomen. Therefore, a good understanding of respiratory system function is valuable to 

identify the component that are responsible of respiration and then motion of tumours. The human body 

is composed of tissues that require oxygen continually for their normal function, hence, the respiratory 

system aims to obtain oxygen from the atmosphere, through the nose or mouth, and supply it to the cells, 
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while excreting the carbon dioxide produced by cellular metabolism, through nose and mouth as well. 

The respiratory system is composed of lung, conducting airways, parts of the central nervous system 

concerned with the control of the muscles of the respiration and the chest wall [Levitzky 2002]. The 

muscles of respiration consists of diaphragm, intercostal muscles, scalene muscles, Sternocleidomastoid 

muscles, Pectoralis major, and abdominal muscles. These respiratory muscles, as well as their use in 

inspiration and expiration, are described in [George 2005]. 

Fig. 2.6: Right and left lung. 

The main function of respiratory system is to exchange the carbon dioxide by oxygen along inspiration 

and expiration phases, which take place in the lungs [Levitzky 2002, Bronzino 2000]. The lung is the 

essential organ of the respiration process which consists of two irregular conical-shaped right and left 

lungs, that occupy the thoracic cavity and separated from each other by the mediastinum and heart. This 

latter is extends out into the left thoracic space [Cotes 1993], therefore the left lung is smaller than the 

right lung. The right lung is subdivided into upper, middle and lower lobes. The left lung is subdivided 

into upper and lower lobes (see Figure 2.6). 

During inspiration phase, fresh air, containing oxygen, is inspired into the lungs through the conducting 

airways. The force needed to cause the air to fow are generated by the respiratory muscles, acting on 

command initiated by the central nervous system. At the same time, venous blood returning from the 

various body tissues is pumped into the lungs by the right ventricle of the heart. This mixed venous blood 

has a high carbon dioxide content and low oxygen content. In the pulmonary capillaries, carbon dioxide is 

exchanged for oxygen. The blood leaving the lungs, which now has high oxygen content, is distributed to 

the tissues of the body by the left side of the heart. During expiration phase, gas with a high concentration 

of carbon dioxide is expelled from the body. 
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The compression and expansion of the lungs are due to the muscles of respiration which supply a force 

that induced a rhythmic pattern of neuron-induced action to cause lungs air inspiration and expiration. 

Hence, respiratory muscles are divided into inspiration and expiration muscles. The muscles of inspiration 

include the diaphragm, the external intercostal, and the accessory muscles of inspiration. The primary 

muscle of inspiration is the diaphragm, which is a large dome-shaped muscle that separates the thorax 

from the abdominal cavity [George 2005]. 

Inspiration primarily requires contraction of the diaphragm and the external intercostal muscles located 

between the ribs. Contraction of the diaphragm causes it to move downward and increases the vertical di-

mension of the thoracic cavity, resulting in pulmonary expansion. Contraction of the diaphragm produces 

a 75% change in intra-thoracic volume during resting inspiration [Mead and Loring 1982]. The external 

intercostals contract to elevate the lower ribs and push the sternum outward, increasing the anteroposte-

rior dimension of the thoracic cavity [Kenyon et al. 1997]. Expiration is normally passive because of the 

elastic recoil. 

There is hysteresis in the relationship between pressure and lung volume; lung volume is different be-

tween inspiration and expiration at the same pressure [Tiddens et al. 1999]. In voluntary active expiration, 

the internal intercostal muscles contract and pull the rib cage downward, and the abdominal muscles assist 

by pulling the rib cage down and increasing abdominal pressure which forces the diaphragm up. Attempts 

to perform tidal inspiration with the diaphragm alone markedly reduces rib cage expansion and the upper 

rib cage moves paradoxically. In supine position and during normal quit breathing about two third of the 

air entering the lungs due to the diaphragm [Levitzky 2002]. 

Several studies have been carried out to investigate the range of tumours motion (see Table 2.2). Motion 

of organs has traditionally been studied for cardiac surgery applications and tele-operations [Ginhoux 

et al. 2003]. It has been classifed to voluntary, e.g. patient moving, involuntary, part of his body, e.g. 

unforced breathing [Shirato et al. 2004b]. Other authors have classifed motion as periodic, e.g. due 

to breathing or heart motion, irregular, e.g. due to diffculties in breathing, and random, e.g. gas in 

rectum. Understanding the tumour or host organ motion characteristics is necessary for accurate RT. 

This prior knowledge is also required for appropriate modelling process which is one of the objectives 

in this thesis. In this paragraph, a brief review of different studies that investigate tumour or respiratory 

motion is presented. 

Several studies have been undertaken on different class of patients including, normal, diseased, young and 

old, for the purpose of investigating the variability in breathing patterns. Most of the studies attempted to 

quantify magnitude, direction, period, phase and rate of motions as well as factors that have direct impact 

on breathing motion. The correlation between these variables has also been investigated. In this section, 
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a review of different contributions related to the characteristics of breathing are presented. 

In the early 1960s, Priban et al. [Priban 1963] demonstrated statistically that breath-to-breath fuctuations 

in respiratory cycle variables, like frequency and tidal volume, were not purely random. In fact, breath-to-

breath variations in the breathing pattern can occur as uncorrelated random variations, correlated random 

variations, or any of the two types of non-random changes: periodic oscillations and non-periodic fuc-

tuations [Bruce 1996]. This breath-to-breath variability and person-to-person and, in general, respiratory 

motion variability may be attributed to various causes such as central neural mechanisms, anatomic vari-

abilities, genetic variation, pulmonary afferent activities and/or chemorefex mechanisms [Bruce 1996, 

Shea and Guz 1992]. Tobin et al. [Tobin 1983] have also shown that breathing changes with age and is 

more regular in young rather than old normal adults. 

Samson et al. showed that the error in the measurement of the intrafractional motion was reduced if a 

combination of two match structures was used, compared to using only one structure [Samson et al. 

1999]. The spread in ML and CC translations was limited for the clavicle and thoracic wall (<1 mm, 1 

mm SD), while the carina exhibited a somewhat greater movement (SD >1 mm). De Boer et al. used this 

combination of two or three match structures to measure the difference in patient position between CT 

scanning and simulation for a group of 16 patients [De Boer and Heijmen 2001]. If the CT data are used 

for treatment planning, these differences lead to systematic treatment set-up errors. They found errors of 

4, 1 and 3 mm (1 mm SD) in the ML, CC and AP direction, respectively. In the same individual, the tidal 

volume and frequency can change with the biochemical condition (eg, CO2 concentration, exercise), body 

position (standing, supine, or prone), abdominal contents (food intake, time elapsed since eating), and 

emotional condition (anxiety). Respiratory motion of the internal organs depends on the body position, 

the position of the arms, and the type of immobilisation devices used [Giraud et al. 2001]. 

2.4.2 Range of motion 

Organ motion caused by respiration may result in a large displacement of treatment sites from their 

planned positions for tumours in the lung, pancreas, thorax and abdomen [Langen et al. 2001, Vedam 

et al. 2001]. The diaphragm motion creates organ displacement around 50 mm in SI direction and 20 mm 

in AP direction. The movement was shown in [Langen et al. 2001, Ross et al. 1990, Korin et al. 1992] 

to be largest in the CC direction for the diaphragm and the carina; with maximum deviations of 22 and 

12.5 mm, respectively. For the right and left lung tops and the lateral position of the carina, maximum 

deviations of 4, 2 and 5 mm were observed, respectively. 

In an early study, Wade [Wade 1954] measured diaphragm motion using fuoroscopy on 10 males. It was 
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found that in the supine patients, the average diaphragm motion was 17 mm and 99 mm for normal and 

deep breathing, respectively. The right hemi-diaphragm motion was investigated in [Weiss et al. 1972] 

involving 30 patients using fuoroscopy images. During quiet breathing, the diaphragm moved 13 ± 5 

mm in supine patients. Under deep breathing conditions, the movement ranged from 12 to 75 mm. A 

tumour motion of 10-25 mm in 7 FB patients was reported in [Ohara et al. 1989]. Intra-thoracic tumour 

movement with respiratory and cardiac motion using ultrafast computerized tomography (UFCT) scanner 

was investigated in [Ross et al. 1990]. It was noticed in the latter a minimal movement for tumours of the 

upper lobe or those attached to the chest wall in 20 patients, but observed motion of the order of 10 mm 

for hilar and lower lobe tumours. Kubo et al. [Kubo and Hill 1996], using fuoroscopic movies, observed 

tumour motion of approximately 15 mm in 1 of 3 patients. 

The MRI techniques was employed in [Korin et al. 1992] to study motion of the upper abdominal organs 

in 15 volunteers. The average peak-to-trough (PTT) diaphragm movement was 13 mm during normal 

breathing and 39 mm during deep breathing. Ultrasound was employed in [Davies et al. 1994] to study 

motion of kidney, liver, and diaphragm with respiration in 9 supine patients. Under normal respiration, 

the mean peak-to-trough (PTT) liver motion was 10 ± 8 mm, with a range of 5-17 mm. Under deep 

breathing, the mean liver motion was 37 ± 8 mm (range 25-57 mm). The above values refer to the SI 

direction of motion. For the AP and lateral directions, motions were less than 2 mm under both respiration 

conditions. Typical variations in the respiratory motion patterns of 10 to 20 mm for the same patient (in 

pediatrics) is reported in [Sontag et al. 1996]. 

Using fuoroscopic images, Kubo and Hill [Kubo and Hill 1996], studied the motion of the chest wall 

for three lung patients and one breast patient. It has been found that the right chest wall moved laterally 

by 5-7 mm and the anterior chest wall moved vertically 2-8 mm. To evaluate the motion of CTV due 

to respiration and other internal organ motions, fuoroscopy at simulator was performed for 20 patients 

in [Ekberg et al. 1998]. All patients were immobilized in the treatment position using an individual 

polyurethane foam cast. They found an average CTV movement with quiet respiration was about 2.4 mm 

(range: 0-5 mm) in the ML and AP directions. Movement in the CC direction was on average 3.9 mm 

with a range of 0-12 mm (range: 0-12 mm). 

The SI excursion of the right diaphragm using fuoroscopic movies was investigated in [Balter et al. 

1998]. Twelve patients participated in the study that was performed under normal breathing conditions. 

The average excursion movement was 9.1 mm and had a SD of 2.4 mm. In [Hanley et al. 1999], the 

tumour motion due to respiration was assumed to be 10-20 mm in the PTV design. In the latter, fuo-

roscopy images were used to measure the movement of the diaphragm under deep inspiration breath hold 

and normal breathing conditions in fve supine lung cancer patients. During FB, the mean diaphragm 
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movement was 26.4 mm, during a single breath hold 1 mm, and between different breath holds 2.5 mm. 

CT scans of 13 patients with a total of 16 lung tumours during normal breathing were investigated in 

[Shimizu et al. 2000b]. These CT scans were taken at the same position over a time interval and thus 

the AP movement of a tumour could be found. Estimates of the CC motion of the tumours were made 

assuming the tumours were spherical using simple trigonometry. Where a tumour’s motion caused it to 

completely disappear from the CT scan it was assumed that it had a displacement equal to the radius of 

the tumour. Tumours in the upper and lower lobes of the lung were differentiated. It has been found 

that the movement in AP direction was less than 10 mm in 80% of the cases but could be as much as 

24 mm for a tumour in the lower lobe. The estimated mean amount of CC movement for tumours at the 

upper/middle lobe was 6.2 mm, and ranged from 2.4 to 11.3 mm; the mean value for tumours of the lower 

lobe was 9.1 mm and ranged from 3.4 to 24.0 mm. 

Twenty patients were involved in a study done by Seppenwoolde et al. [Seppenwoolde et al. 2002b]. 

Seventeen of them had non-small cell primary lung cancer and 3 had metastatic tumours. A 2 mm gold 

marker was implanted in or near the tumour and its position was recorded 30 times per second using 

fuoroscopy during treatment. The average amplitude of the tumour motion was greatest (12 ± 2 mm) 

in the CC direction for tumours situated in the lower lobes and not attached to rigid structures such as 

the chest wall or vertebrae. For the lateral and AP directions, tumour motion was small both for upper-

and lower-lobe tumours (2 ± 1 mm). Chen et al. [Chen et al. 2001], have assessed the tumour motion of 

20 patients, with help of simulation fuoroscopy. Tumour motion varies in a range of 0 to 50 mm. From 

the 20 patient, only 10 where the diaphragm was reliably detectable. The range and the average of the 

diaphragm motion for 10 patients were 60 mm and 26 mm, respectively. 

Neicu et al. [Neicu et al. 2003], have carried out an analysis of breathing pattern regularity of 11 data-sets. 

These breathing data were selected from 41 lung tumour measurement in CC with maximum peak-to-peak 

motion greater than 10 mm. The average amplitude (for every data-set) was 7.6-22.5 mm, with relative 

standard deviations of amplitude (˙/Aavg %) 6%-49%. Murphy et al. [Murphy et al. 2002a], reported 

that lung tumours can move by 5 mm to 25 mm during regular breathing. 

Shimizu et al. [Shimizu et al. 2000c; 2001] have used the same system as Kitamura et al. [Kitamura 

et al. 2002] to record the movement of implanted lung-tumour markers at 30 Hz showing that, with free 

breathing, markers moved up to 16 mm. Onimaru et al. [Onimaru et al. 2005], have used data collected 

by a real-time tumour tracking radiotherapy (RTRT) system on 39 patients, to evaluate The effects of 

tumour location and pulmonary function on the motion of fducial markers near lung tumours. They 

found a median tumour movements in the ML, AP, and CC directions were 1.1 mm, 2.3 mm, and 5.4 

mm, respectively. There was no signifcant correlation between respiratory function and magnitude of 
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marker movement in any direction. Gierga et al. [Gierga et al. 2005], examined the correlation of external 

markers and abdominal tumour using fuoroscopy sessions for 4 patients. The maximum amount of peak-

to-peak SI tumour motion was 25 mm. The most comprehensive publication on organ motion and its 

management by Langen and Jones [Langen et al. 2001] collated tables of studies for liver, diaphragm, 

kidneys, pancreas, lung, bladder, rectum and prostate from 66 studies. 

Depending on the survey, organs considered and direction, typical movements for normal breathing are 

in the order of 30 mm. The largest displacement occurs in the chest for deep breathing. Normal or quiet 

breathing motion tends to be limited to 20 or 30 mm although this differs depending on the organ and the 

direction of motion. 
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Authors, year. Site Technique No. of patients Immobilization Displacement [mm] 
SI AP ML 

z ˙z Range y ˙y Range x ˙x Range 
[Ross et al. 1990] ULB CT 20 NO NA NA NA 1.4 NA NA 1 NA NA 
– MLB – – NO NA NA NA 0 NA NA 9 NA NA 
– LLB – – NO NA NA NA 9.8 NA NA 10.5 NA NA 
[Ekberg et al. 1998] Lung Fluoroscpy 20 Yes 3.9 2.6 0-12 2.4 1.3 0-5 2.4 1.4 0-5 
[Balter et al. 1998] Diaphragm-Right side – 12 NO 9.1 2.4 NA NA NA NA NA NA NA 
[Hanley et al. 1999] Diaphragm – 5 YES 12 NA 1-20 5 NA 0-13 1 NA 0-1 
[Shimizu et al. 2000b] LLB – 13 NO 9.1 NA 3.4 to 24 <10 NA NA NA NA NA 
– ULB/MLB – – – 6.2 NA 2.4 to 11.3 NA NA NA NA NA NA 
[Barnes et al. 2001] LLB – – - 18.5 9-32 NA NA NA NA NA NA 
– MLB,ULB – – - 7.5 2-11 NA NA NA NA NA NA 
[Chen et al. 2001] Fluoroscpy 0-50 NA NA NA NA NA NA 
[Engelsman et al. 2001] MLB,ULB – 2-6 NA NA NA NA NA NA 
– LLB – 2-9 NA NA NA NA NA NA 
[Shimizu et al. 2001] – – – – 6.4 2-24 – – – 
[Stevens et al. 2001] CT 4.5 0-22 
[Giraud et al. 2001] Diaphragm-Right side – 10/20 Alpha cradle 34.25 20.51 6.7-63.4 NA NA NA NA NA NA 
– – – – Posirest device 29.7 18.09 3.1-54.0 NA NA NA NA NA NA 
– Diaphragm-Left side – – Alpha cradle 42.1 22.59 13.2-95.0 NA NA NA NA NA NA 
– – – – Posirest device 30.6 14.94 3.8-58.8 NA NA NA NA NA NA 
– Lung apices-Right side – – Alpha cradle 2.9 3.19 0.8-11.2 4.9 2.95 1.1-9.1 6.8 4.25 1.9-15.4 
– – – – Posirest device 11.6 8.14 3.6-28.2 10.7 5.02 3.6-18.7 8.2 3.10 3.5-12.9 
– Lung apices-Left side – – Alpha cradle 4.0 5.17 0.1-17.6 7.3 4.15 2.3-12.1 4.0 1.80 1.6-7.3 
– – – – Posirest device 13.6 6.71 3.6-24.7 8.8 5.37 1.9-15.8 6.3 8.99 -16.1-17.6 
– Carnia – – Alpha cradle -9.8 6.28 -18.0-1.5 5.5 3.69 0.6-9.8 1.0 2.39 -2.3-4.8 

– – – Posirest device -11.1 8.22 -29.3-(-5.3) 8.9 6.44 0.5-18.8 -3.7 3.81 -10.2-2.3 
– Thorax-ULB – – Alpha cradle NA NA NA 10.7 8.58 2.0-28.5 7.8 5.37 2.2-17.6 

Thorax-MLB – – – – – – 9.7 7.18 0.7-19.5 2.70 1.58 1.5-6.4 
Thorax-LLB – – – – – – 9.8 6.94 1.0-18.4 4.0 2.45 1.3-8.1 
Thorax-ULB – – Posirest device – – – 21.7 9.33 7.6-37.3 12.2 5.87 7.7-28.4 
Thorax-MLB – – – – – – 16.9 9.90 2.9-30.7 18.6 18.91 0.5-50.5 
Thorax-LLB – – – – – – 15.4 9.28 2.6-29.7 25.1 25.22 2.9-64.1 

[Murphy et al. 2002b] Fluoroscopy 7 – 2-15 – – – – – – 
[Seppenwoolde et al. 2002b] ULB – 11 NO 2.0 2.2 0.2-8.7 2.2 1.9 0.2-8.2 1.2 0.9 0.4-2.8 

MLB – 2 – 5.9 1.05 0.7-11.1 3.5 0.4 1.2-5.8 0.65 0.2 0.2-1.1 
LLB – 8 – 12 6 5.4-24.6 2.2 1.9 0.2-8.2 1.2 0.9 0.4-2.8 

[Erridge et al. 2003] 13ULB, 12 LLB, MLB EPID 25 – 12.5 7.3 5-34 9.4 5.2 5-21 7.3 2.7 3-13 
[Grills et al. 2003] CT 2-30 0-10 0-6 
[Sixel et al. 2003] – 0-13 0-5 0-4 
[Plathow et al. 2004] LLB MRI 9.5 4.5-16.4 6.1 2.5-9.8 6.0 2.9-9.8 
– MLB – 7.2 4.3-10.2 4.3 1.9-7.5 4.3 1.5-7.1 
– ULB – 4.3 2.6-7.1 2.8 1.2-5.1 3.4 1.3-5.3 
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2.4.3 Frequency of motion 

Some of the earliest data collected on the range in frequency of breathing observed in adults shows that 

they can be anywhere between 0.1 to 0.5 Hz [Quetelet 1842]. According to Shirato et al. [Shirato et al. 

2004b], the breathing frequency of a healthy person at rest can be between 0.2 and 0.25 Hz. The inspi-

ratory and expiratory durations also showed that there could be several combinations of the inspiration 

time and the expiration time. Golla et al. [Golla and Antonovitch 1929], found that some normal subjects 

have regular breathing while others have habitually irregular breathing. According to [Benchetrit 2000a], 

individuals have different traits that make it possible to recognise them amongst others. 

Seppenwoolde et al. [Seppenwoolde et al. 2002b], found a typical breathing has a frequency 0.2-0.3Hz. 

Typical variations in the frequency of a single respiratory cycle of 0.2-0.5 Hz, for the same patient (in 

pediatrics) is reported in [Sontag et al. 1996]. In [Neicu et al. 2003], it was found that the average 

frequency (for every data set) changes from 0.25 Hz to 0.4 Hz with a mean value around 0.3 Hz and 

relative standard deviations of period (˙/Tavg %) in percentage 7%-25%. In the latter contribution [Neicu 

et al. 2006], analysis frequency of breathing for 60 volunteer data sets with duration of 240 s. They 

reported an average breathing frequency ranges from 0.2 to 0.3 Hz with a mean value of 0.2 Hz. 

Chen et al. [Chen et al. 2001] calculated frequencies between 0.3 Hz and 0.7 Hz for 20 patients. These 

were strictly measured during quiet respiration and did not take into account the effects of sighing and 

deep inhalation. By analysing the spectrum of obtained videos, they found a peak location at 0.36 Hz. 

Gierga et al. [Gierga et al. 2005], examined the correlation of external markers and abdominal tumour 

using fuoroscopy sessions for 4 patients. It was found that the period of the breathing cycle ranged from 

0.2 Hz to 0.4 Hz. Moreover, a frequency analysis of fuoroscopic image sets has shown similar frequency 

components in the motion of abdominal wall and the motion of liver tumours in both the AP and SI 

direction. 

To assess the frequency and amplitude of the periodic physiological organ motion during radiotherapy 

treatment Diez et al. proposed a new method based on cross-correlations with matched flters [Díez et al. 

2004]. Once the acquisition of fuoroscopic sequences has been collected, a reference image is cross-

correlated with the image sequence using matched flters. The correlation values grow and decrease 

following the periodic movement of the respiration, building a correlation wave. The correlation value is 

maximal when the reference image is correlated with itself (autocorrelation). The respiration frequency 

can be detected by applying a Fourier analysis of the correlation wave. 
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2.4.4 Motion speed and acceleration 

The speed of breathing motion depends on patient. However, according to [Schweikard et al. 2000] typi-

cal respiratory velocity is of the order 2-4 mm·s−1. Note that when the patient is stressed the velocity of 

motion could be signifcantly greater. The only study that contains data regarding velocity and accelera-

−1tion of organs due to respiration was done in [Davies et al. 1994]. Velocities in the range of 5-15 mm·s
and accelerations between 10 and 25 mm·s−2. Seppenwoolde et al. [Seppenwoolde et al. 2002b], found 

that the average speed of lung and liver tumours is on the order of 10 mm·s−1 (assuming the peak-to-peak 

motion amplitude is about 20 mm and the period is about 4s). 

The phantom used in [Shirato et al. 2000b] possessed only one axis of rotation and was capable of speed 

−1of about 40 mm·s . Note, however, that the speed of the markers on the four patients included in the 

study was in the range 0.5-30.3 mm·s−1. In [Fitzpatrick et al. 2005] the speed of the signal obtained from 

a real time position management (RPM) respiratory monitoring device from Varian Medical Systems, 

−1Palo Alto CA, was found to range from 0.4 mm·s−1 to 20 mm·s−1 with an average speed of 8 mm·s . 

2.5 Respiratory motion management 

Signifcant amount of work has been devoted to limit tumour motion due to the respiration. Investigators 

are pursuing several strategies that range from simple and unobtrusive to complicated, quasi-invasive, and 

quite costly. The aim is to reduce the dose margins and dose targeting error associated with respiratory 

motion. The traditional way to account for organ motion is to add a safety margin to the CTV to get the 

PTV [Herk 2004]. Control of breathing motion has also been introduced, using techniques such as breath 

holding, forced shallow breathing (such as jet ventilation) and abdominal compression [Hanley et al. 

1999, Mah et al. 2000, Rosenzweig et al. 2000, Wong et al. 1999, Stromberg et al. 2000, Remouchamps 

et al. 2003a;b]. Another category of methods allow free tumour motion while adapting the radiation 

beam to the tumour position by either respiratory gating, beam tracking, or couch-based and MLC-based 

motion compensation [D’Souza et al. 2005]. Organ motion has also been included in the calculation of 

the dose distribution [Lujan et al. 1999]. 

2.5.1 Margin expanding 

This is the traditional approach to account for organ motion and setup uncertainties. The extent of these 

latter are measured or estimated, and margins are added around the CTV to form the PTV, to ensure 

that the entire CTV will receive the prescribed dose [ICRU 1994; 2000, Herk 2004]. The size of the 
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margin has to be large enough to ensure the delivery of the prescribed dose to a moving target and small 

enough to keep the normal tissue complications to an acceptable level. The size of the margins needed 

to compensate for the different variations and uncertainties varies from one anatomical region to another 

and is dependent on the treatment technique, fxation, etc. 

Several margin designing techniques have been proposed. For example, in the Northern Association of 

Clinical Physics recommendation [Aaltonen et al. 1997], separate margins were proposed for positioning 

uncertainty and for organ motion, called the setup margin and the internal margin, respectively. This 

concept of separate margins suggests that a linear separation of the internal errors (organ motion) and 

setup errors can be made. However, because external error sources and internal error sources are generally 

not correlated, a linear addition of their standard deviations is, in general, not correct [Herk et al. 2000]. 

An overview of different margin recipes can be found in [Herk 2004]. 

The main diffculties with this margin enlarging is that the motion must be measured accurately and 

applying additional margins may lead to increased dose to normal tissues. In addition, it does not describe 

the effects of the uncertainties on the normal tissues near the CTV. Therefore, this approach has been 

extended by incorporating the uncertainties on the dose calculation, thereby giving more complete and 

accurate information on the dose delivered to both the target volume and the nearby normal tissues [Lujan 

et al. 1999]. This is based on a convolution of static dose distribution with a function (generally Gaussian) 

representing the distribution of uncertainties from setup and intrafraction organ motion. 

2.5.2 Breath-holding 

The obvious approach to reduce healthy tissues overdosing is to minimise the motion itself, and the 

simplest way to do that is via breath holding. This can be done passively [Hanley et al. 1999, Mah 

et al. 2000, Rosenzweig et al. 2000, Kim et al. 2001, Barnes et al. 2001] or actively [Wong et al. 1999, 

Stromberg et al. 2000]. 

A voluntary breath holding technique was investigated in [Suramo et al. 1984]. In this study, a bar was 

placed above the abdomen that touched the patient’s skin at the end of their normal inspiration. Patients 

were asked to hold their breath at this stage. The measured mean motion, relative to that observed during 

normal breathing, of the liver, pancreas, and kidneys was reduced from 25 to 2 mm, 20 to 1 mm, and 19 

to 1 mm, respectively. 

Schwartz et al. examined kidney movement in patients who held their breath at deep inspiration and 

expiration [Schwartz et al. 1994]. Alternatively, Blomgren et al. investigated the application of abdominal 

pressure and reported movements of the diaphragm of 10 mm or less during normal breathing [Blomgren 
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et al. 1995]. For both cases, a mean mobility of less than 3 mm was observed. Balter et al. found an 

average of a 12% difference in liver volumes between breath-hold CT scanning and free breathing (FB) 

CT scanning [Balter et al. 1996]. 

Forced breath holding, or active breathing control (ABC), was investigated in [Wong et al. 1999]. The 

patient breathes through an apparatus that allows the immobilisation of breathing at preselected phases 

of the breathing cycle. Breathing is suspended for an amount of time that is tolerated by the patient. The 

acceptance of this technique was tested on 12 patients, 4 of which were lung cancer patients. If breathing 

was suspended at the end of the normal breathing cycle, all but one lung cancer patient were able to 

tolerate a breath-holding period of 20 s or longer. This patient tolerated a breath holding period of 15s. 

Five of the 12 patients participated in a study where CT scans were obtained using the ABC method and 

during FB conditions. Two repeat ABC scans of one patient, taken 30 min apart, were used to assess the 

reproducibility of the diaphragm location. Relative to bony landmarks, the edge of the diaphragm moved, 

on average, by 1.5 mm. The movement of the liver between 2 ABC scans was examined for 2 patients and 

was found to be less than 1 mm. This compares with an observed motion of the liver of 4 mm between 

the 2 opposite extremes of the breathing cycle. 

A study accomplished by Giraud et al. at two different centers, the Institute Curie and Tenon hospital 

[Blomgren et al. 1995]. This involved ten patient from each center, all of a similar age (early 60s), weight 

(t 70kg), height (t 167 cm), tumour size and tumour stage. The method used was the same at each 

center; three CT scans were taken, one during FB and two during deep breath-hold. However, at the 

Institute Curie an alpha cradle was used to immobilise the patient while at the Tenon hospital a posirest 

device was used to hold patients’ arms above their heads. It has found that, the greatest displacements 

were observed for the diaphragm, and the smallest displacements were observed for the lung apices and 

carina. The relative amplitude of motion was comparable between the two centers. Also the use of a 

personalised immobilisation device reduced lateral thoracic movements. 

According to a study done by Barnes et al. , on 8 patient over 10 after excluding 2 patient because of their 

incapability to reproduce the deep inspiration breath-hold (DIBH), an extraordinary range of breath-hold 

periods up to 52s has been achieved [Blomgren et al. 1995]. Kim et al. experimented with four different 

parts of the breathing cycle for breath-hold [Kim et al. 2001]. Murphy et al. in a study involving 13 

patient, showed that breath-holding can allow the reduction of tumour motion dosimetry margins to 2 

mm or less for lung cancer treatments [Murphy et al. 2002b]. 

Butler et al. conducted a study to determine whether more normal lung tissue was excluded from high 

dose when treating a lung tumour if the radiation were gated [Butler et al. 2004]. They studied gating 
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on deep-inspiration breath-hold (DIBH; generally 60% of vital capacity), or on 0% (full expiration) and 

100% (full inspiration) of tidal volume. Mageras and York pointed out that 60% of patients at Memorial 

Sloan-Kettering Cancer Center (MSKCC) cannot comply with DIBH [Mageras and Yorke 2004]. 

Della Biancia et al. showed improved normal lung sparing at end inspiration compared with end expira-

tion [Della Biancia et al. 2005]. Gagel et al. have found after a study involving 36 patient that using ABC 

to modify regularity of the respiratory cycle through reduction of breath volume, a signifcant and repro-

ducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning 

margins [Blomgren et al. 1995]. 

Breathing hold techniques offer the advantage of being relatively simple to implement. However, they 

suffer from some disadvantage such as excessive treatment time, extra therapist requirement and limited 

patient compliance because they require momentary cessation or constraint of breathing by patients who 

typically already have limited respiratory capacity [Huntzinger 2004, Kubo et al. 2000]. 

2.5.3 Respiratory gating 

Respiratory gating is one of the promising techniques to account for respiratory motion, and which al-

lows patient’s FB while adapting the radiation beam to tumour position [Mageras and Yorke 2004, Jiang 

2006b]. It operates such that radiation beam is only on within a pre-selected phase or portion of pa-

tient’s breathing cycle that is detected either directly or indirectly. Usually, a predefned physical window 

commonly referred to "gate", which its position and width are determined within respiratory cycle, is 

adopted. 

Currently a large proportion of respiratory-gated radiotherapy is performed using either internal gating 

by fuoroscopic or magnetic tracking of implanted radio-opaque markers [Shirato et al. 1999; 2000a;b, 

Shimizu et al. 2000b, Seiler et al. 2000, Shimizu et al. 2001, Harada et al. 2002, Hummel et al. 2002, 

Berbeco et al. 2005], or external gating such as video camera, Spirometer, or strain gauge based systems, 

relies on the correlation between external and internal motion [Ohara et al. 1989, Kubo and Hill 1996, 

Ramsey et al. 1999, Kubo et al. 2000, Minohara et al. 2000, Vedam et al. 2001, Keall et al. 2002, Kini 

et al. 2003, Zhang et al. 2003, Jiang 2006b]. 

For greater accuracy, the respiratory gating methods require the exact tumour location in real-time. Con-

tinuous radiographic and fuoroscopic observation of the tumour during treatment has been employed 

[Shirato et al. 2000b]. Internal gold markers have been used, to gate the radiation treatment [Shimizu 

et al. 2001, Harada et al. 2002, Neicu et al. 2003, Shirato et al. 2000b]. However, this approach is often 

diffcult and the skin dose to the patient can be quite high during longer procedures. Instead, the use of ex-

36 



2.5. Respiratory motion managementChapter 2. An overview of external beam radiation therapy (EBRT) 

ternal anatomical markers or so-called surrogate motion is being investigated as a method of non-invasive 

tumour tracking [Keall et al. 2001, Chen et al. 2001, Mageras et al. 2001, Vedam et al. 2003b, Schweikard 

et al. 2004, Tsunashima et al. 2004, Hoisak et al. 2004, Ahn et al. 2004a, Ionascu et al. 2007]. If the tu-

mour motion and surrogate signal are spatially and temporally correlated, then the tumour position can 

be deduced. 

Research has been carried out to check correlation between external and internal organ motion. Vedam 

et al. [Vedam et al. 2003b] reported a mean correlation coeffcient of 0.94, between diaphragm and ab-

dominal motions. Hoisak et al. [Hoisak et al. 2004], found a correlation coeffcients ranging from 0.51 

to 0.98 between abdominal motion and lung tumour motion. Ahn et al. [Ahn et al. 2004a] achieved an 

average correlation of 0.77 between skin and tumour movements with a range between 0.41 and 0.97. 

Schweikard et al. [Schweikard et al. 2004] have also confrmed the hypothesis that external motion is 

related to internal motion. An evident correlation between 3D tumour motion and external respiratory 

motion obtained from laser displacement sensors has been found by Tsunashima et al. [Tsunashima et al. 

2004]. 

Berbeco et al. [Berbeco et al. 2005] have proposed that the fuoroscopically observed change in density 

of lung can be used to gate to specifc breathing phases. Solberg [Solberg 2000] and Kini et al. [Kini et al. 

2000] have gated therapy using the information from infrared surface markers. Since the emergence of 

the RPM system (Varian Medical Systems, Palo Alto, CA 94304), there has been an increase in the use 

of external signals clinically for gating. 

Another type of gating based on patient feedback, either auditory or visual has been implemented and 

evaluated [Kubo and Wang 2002, George et al. 2006, George 2005, Kini et al. 2003]. Kini et al. [Kini 

et al. 2003] used RPM system (Varian Medical Systems, Palo Alto, CA), to evaluated the feasibility of 

using patient training tools and their effect on the breathing cycle regularity and reproducibility during 

respiratory-gated radiotherapy. They concluded that audio prompts improves the stability of respiration 

frequency of the patient but does not maintain the range of respiratory motion, whereas visual prompts 

control only the regularity of the displacement and the frequency is not reproducible. 

Based on this results, combined audio-visual biofeedback was devised to improve the reproducibility of 

audio-visual biofeedback. Recently Neicu et al. [Neicu et al. 2006] described results of audio and visual 

prompting and demonstrated improvement in the effcacy of so-called synchronized moving aperture 

radiation therapy, using respiratory traces from single-patient and volunteer sessions. 

Several studies [Ford et al. 2002, Minohara et al. 2000, Keall et al. 2002, Mageras et al. 2001, Hugo et al. 

2002; 2003, Mageras and Yorke 2004, Keall et al. 2004b] have investigated the effects of respiratory gat-
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ing on margin reduction, imaging and delivery. It has been seen that with respiratory-gated radiotherapy, 

there is better target delineation and therefore a potential margin reduction. 

The use of respiratory gating has many advantages over breath-holding techniques, but advanced gating 

equipment at both imaging and radiation delivery are mandatory. Unlike the conventional radiotherapy 

in which the beam is delivered continuously, the implementation of gated radiotherapy can achieve up to 

maximum of twice the time required for conventional radiation delivery as found in [Tada 1998]. 

Another disadvantage of respiratory gating is baseline shift, i.e. variation of the mean value over time. 

Based on the analysis by Vedam et al. [Vedam et al. 2003b] that external motion is correlated to internal 

motion, it can be assumed that a baseline shift of the external signal indicates baseline shift of internal 

organ motion. A baseline shift may cause several problems. The beam may be triggered at the wrong 

phase of the breathing position or may not be triggered at all. The use of external signals for gating can 

be subject to a delay which must be taken into account. Finally, it is important to note that respiratory 

gating reduces but does not eliminate respiratory tumour motion during radiotherapy. 

2.5.4 Real-time tumour tracking 

Another option to compensate for respiratory motion is to continuously adapt the radiation beam delivery 

to the changes of tumour position, known as RTTT [Keall et al. 2006b, Murphy 2004, Shirato et al. 2007]. 

This method can be realised by using a DMLC [Keall et al. 2006a, Webb 2006] or LINAC based robotic 

arm [Schweikard et al. 2004] or, alternatively, by keeping the tumour under the beam path via couch 

control [D’Souza et al. 2005]. The effectiveness of real-time tumour tracking system depends on its ability 

to track tumour position location in real-time, accommodate for system latency, reposition the beam 

delivery and adapt dosimetry in order to allow for tumour changing and critical structure confgurations 

[Murphy 2004]. 

Currently, the continuous location of tumour position during the treatment is clinically in use and still 

under development. A RTRT system is the most advanced technology developed by Mitsubishi Electron-

ics Co, Ltd. (Tokyo, Japan), in collaboration with the Hokkaido University Hospital [Shirato et al. 1999, 

Shimizu et al. 2000d; 2001, Shirato et al. 2000a;b, Seppenwoolde et al. 2002b, Shirato et al. 2003, Harada 

et al. 2002]. 

Using this system, the fducial markers implanted at the tumour site prior to treatment, can be directly 

tracked fuoroscopically at a video frame rate of 30Hz [Shirato et al. 2000b]. The LINAC is gated to 

irradiate the tumour only when the marker is within a given tolerance (gating window) from its planned 

coordinates relative to the isocenter. The tolerance value was set at ±1 to ±3 mm according to the 
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patient’s characteristics and the margin used in treatment planning [Shimizu et al. 2001]. The phantom 

experiment demonstrated that the geometric accuracy of the tumour-tracking system is better than 1.5 

mm for moving targets up to a speed of 40 mm·s−1 [Shirato et al. 2000b]. 

This system, as well as its application in radiotherapy, has been published by the Hokkaido group [Shirato 

et al. 1999, Shimizu et al. 2000d; 2001, Shirato et al. 2000a;b, Seppenwoolde et al. 2002b, Shirato et al. 

2003, Harada et al. 2002, Seppenwoolde et al. 2002b, Shirato et al. 2004b;a, Ahn et al. 2004b, Shirato 

et al. 2003]. Studies of 3D internal lung tumour movement involving gold markers have been performed 

on 20 patients in [Seppenwoolde et al. 2002b]. Three-dimensional 3D position of 2.0 mm gold marker 

inserted into or near the lung tumour mass were recorded at a sampling frequency of 30Hz for more than 

10 continuous minutes. 

In [Brewer et al. 2004], 3D tracking of surgical clips implanted in 5 patients by means of online two 

orthogonal fuoroscopic imaging (In CC and ML direction) has been done. The root mean squared error 

in estimating 2D marker position was 0.47 mm on average. To correct for the rotational error of the CTV, 

Shirato et al. [Shirato et al. 2004a] have used static cubic phantom. The accuracy of the system and the 

additional dose due to the diagnostic X-ray, and its performance during clinical use have been determined 

in [Shirato et al. 2000b]. 

Jiang et al. [Jiang 2006b], have reviewed different technical aspect of image-guided respiration-gated 

RT and explained the implementation of internal gating technique developed by Hokkaido University and 

external gating from MGH. They pointed out that RTRT is the only system which can monitor the internal 

position of a tumour during irradiation. 

Real-time imaging system such as fuoroscopy has been adopted to directly locate tumour volume at 

suffcient high frequency. For example, at MGH, a technique has been explored to detect the lung tumour 

position directly based on the fuoroscopic images [Berbeco et al. 2005]. The idea is to calculate the 

correlation score between the motion-enhanced reference template and each frame of fuoroscopic images 

and to generate gating signal based on the score. Preliminary work shows this approach is promising, but 

still needs further development. Sometimes, the tumour can not be visible on the images due, for example, 

to its low contrast. Therefore, fducial markers or an active/passive signaling device implanted around or 

into the tumour can be applied with fuoroscopy or non-radiographic images. For more details about 

real-time tumour tracking, the reader can see these contributions [Shirato et al. 2007, Murphy 2004]. 

Research is being directed toward the use of radio-frequency (RF) devices that can magnetically tracked 

from outside the patient. Seiler et al. . [Seiler et al. 2000] have described a miniature, implantable 

powered RF coil sensor which can either implanted or otherwise attached to the patient such that it moves 
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with the tumour or organ of interest. An array of coils is used to create an alternating magnetic feld and 

the induced voltages in the sensor coil are measured. The position of the sensor could be determined by 

the authors with a accuracy of 1-2 mm. Using a phantom containing an x-ray flm, the feasibility of the 

tracking method was demonstrated. While the phantom was moved along a 2 cm diameter circle at a 

frequency of 0.25 Hz, the system was used to gate a proton beam on when the sensor was within a 3 mm 

diameter sphere of a given point. Evaluation of the x-ray flm showed that the absorbed dose distribution 

compared well with that measured on a stationary x-ray flm. 

In some cases, continuous fuoroscopy imaging of the tumour position is not feasible, hence, it is nec-

essary to infer the tumour position from external respiration signals. However, this concept requires a 

robust 3D spacial and temporal correlation between the measured respiratory signal and tumour position. 

The correlation is verifed before the treatment and used to predict the tumour position during the deliv-

ery. Due to the breathing irregularity, this correlation can be non-stationary. To overcome this problem, 

the correlation must be updated continuously, during the treatment by using both images and respiratory 

signals, acquired simultaneously [Schweikard et al. 2000]. 

Because of the hysteresis nature of the breathing, the 3D relationship between the motion of the exter-

nal and internal anatomy requires complex models. However, simple linear correlation equations have 

been found between the relative positions of the diaphragm and the one-dimensional motion of external 

markers placed at the upper abdomen [Kini et al. 2003, Vedam et al. 2003b]. These correlation equations 

are patient specifc and depend on the breathing method. Fourier analysis of fuoroscopic image sets has 

shown similar frequency components in the motion of abdominal wall and the motion of liver tumours in 

both the AP and SI direction [Gierga et al. 2005]. 

Studies found the respiration motion of the upper abdomen to be in-phase with the diaphragm, and liver, 

pancreatic and some lung tumours. However, others have shown a time lag for the motion of markers 

on the chest wall [Ahn et al. 2004a] and lung tumours. Minohara et al [Minohara et al. 2000] found a 

phase difference of about 0.2s between the position of the diaphragm and the respiratory signal from the 

light-emitting diode camera system placed under the left rib. 

Studies attested to the correlation of external marker motion with the 2D internal motion of the diaphragm 

[Vedam et al. 2003b, Mageras et al. 2001] or internal markers [Gierga et al. 2005]. However, for a given 

external marker, the ratio of internal to external marker motion can be relatively large [Gierga et al. 2005]. 

It has been found in [Ahn et al. 2004a] that skin and tumour experience the same motion and remained 

correlated for some axes of motion. 

Beam tracking radiation therapy seeks to address the problems of gating by moving the radiation beam 
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dynamically to follow the target volume [Murphy 2004]. This was frst introduced in robotic radiosurgery 

system (CyberKnife) [Ozhasoglu et al. 2000, Schweikard et al. 2000, Murphy et al. 2003, Murphy 2002], 

and later adopted for motion-adaptive radiotherapy [Shirato et al. 2000a, Keall et al. 2001, Neicu et al. 

2003]. 

For linac-based radiotherapy, tumour motion can be compensated for using a DMLC [Keall et al. 2001, 

Neicu et al. 2003, Keall et al. 2005, Wijesooriya et al. 2005, Webb 2005b;a]. Linac-based beam tracking is 

still under development. Much effort is needed to overcome the technical diffculties and to solve quality 

assurance issues associated with this technique before it can be applied to patient treatment. 

At MGH a new beam tracking technique called synchronised moving aperture radiation therapy (SMART), 

was proposed to account for tumour motion during the treatment [Neicu et al. 2003; 2006]. This tech-

nique is based on synchronising the moving radiation beam aperture formed by a DMLC with the tumour 

motion induced by respiration. The success of this method depends on the precise and fast detection of 

tumour simulation/treatment and the reproducibility of tumour motion patterns. 

The former requirement is performed by a special imaging system integrated radiotherapy imaging system 

(IRIS) developed at MGH [Berbeco et al. 2004] and the latter one was achieved by an average model of 

tumour trajectory called average tumour trajectory (ATT), which is derived during treatment simulation 

stage. During the treatment delivery, respiratory surrogates or implemented markers are monitored and 

the beam is turned on only when the tumour is within ATT and off if it drift away. Therefore, the radiation 

beam aperture formed by a DMLC is synchronised with the ATT. 

Another approach involving a control of the patient couch to automatically reposition the patient in order 

to keep the moving tumour in the path of the radiation beams was considered. A feasibility study for such 

an approach has been reported in [D’Souza et al. 2005]. The couch-based approach has an advantage 

in that it is potentially able to compensate 3D motion of the tumour, whilst a MLC-based approach is 

only able to compensate 2D motion. Furthermore, the approach only requires basic modifcation of the 

currently available PSS technology and retains the existing gantry-based treatment machine, which is a 

less expensive and more effcient option compared to the robotic-arm-based approach that needs a new 

machine confguration. 

It was shown that this method is feasible and effective for moving tumours treatment. However, it is very 

sophisticated and expensive to be use in every hospital. The imaging system used in this approach can 

introduce more radiation to the patient, and can affect the accuracy of tracking if the imaging system 

is in poor conditions. Finally, a delay is introduced, and which should be compensated by means of a 

predictor. 
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2.6 Discussion 

The development of RT was motivated by the existence of treatment uncertainties, which degrade the 

treatment accuracy. The introduction of techniques such as IMRT, IGRT, and recently ART have im-

proved precision and accuracy to the treatment. To fulfl the expected benefts of the new techniques, 

organ motion, patient and machine inaccuracy uncertainties have to be reduced. A number of studies 

have been conducted to understand, quantify, and propose solutions to reduce errors and uncertainties in 

RT. A range of QA procedures takes place to reduce machines inaccuracy and uncertainties and evaluate 

the performance of new treatment technique. 

The main concern in RT was the problem of organ/tumour motion, and particularly motion due to the 

natural respiration. Several studies have been undertaken to understand the breathing process and quantify 

its parameters such as magnitude, frequency and rate of motion. One of the outcomes of these studies was 

that the respiratory motion patterns exhibit variability from patient to patient and even within the same 

patient. The respiratory motion was found to be larger in the SI direction and can achieve a maximum 

displacement of 34 mm. The range in frequency of breathing was reported to be between 0.1 and 0.5 

Hz, which means that the length of one breathing cycle can range from 2 to 10s. The speed of breathing 

−1depends on the patient and its value can be up to 15 mm·s . 

The traditional approach to account for the organ/tumour motion is to expand the margins to make sure 

that the whole tumour volume is eradicated, or consider the motion during the dose calculation. Immobil-

isation techniques are routinely used to reduce the patients’ motion. However, the ‘best’ immobilisation 

devices, in the sense of maintaining the treatment site virtually immobile, can not be used with every 

patient. Another way to manage respiratory motion is allow patient’s FB and adapt the radiation beam 

to tumour position, through respiratory gating and RTTT techniques. For the latter, the exact tumour 

position has to be measured/estimated in real-time. A model of the respiratory motion can be used in this 

case to replicate the tumour motion during the treatment or in order to assess a new treatment strategy for 

tumour motion. The IGRT tools have been introduced within the ART approach to improve the treatment 

of the moving tumours. However, using such approach generates a systematic delay, which can lead to 

a mismatch of the radiation and tumour position. The last two issues have motivated different research 

groups to work toward respiratory motion modelling and prediction, in order to achieve a better perfor-

mance of tumour motion tracking based methods. The next Chapter reviews theses studies to provide a 

platform against which the work presented in this Thesis can be evaluated. 
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Chapter 3 

Critical review of organ/tumour motion 

modelling and prediction 

3.1 Introduction 

The aim of this Chapter is to present a critical review of current radiotherapy treatment techniques to 

identify shortcomings of current methods and algorithms in view to justify the selection of algorithms 

presented in the subsequent Chapters. A variety of tumour/patient motion compensation techniques have 

been developed or are under development. These techniques comprise margin expansion, breath holding, 

respiratory gating, beam tracking, PSS/MLC based tracking and robotic beam re-alignment (see Chapter 

2). Excluding breath holding, all other compensation methods require an adequate understanding of 

the tumour motion characteristics and its reproducibility. As a consequence, an accurate description of 

tumour motion by means of a model is highly desirable to derive the appropriate treatment strategy [Land 

2006]. For example, such a model could be used to determine the amplitude and stability of motion for 

margin design [Herk 2004]. In gating/tracking based approaches, model of tumour motion should be 

able to quantify and monitor continually the tumour position, during treatment [Mageras and Yorke 2004, 

Neicu et al. 2003, Keall et al. 2001], and establish the most appropriate prior treatment gating strategy 

[Land 2006]. 

Tumour motion model can also be exploited to design motion prediction algorithms in order to com-

pensate for time lags. Time lags can occur between the acquisition of tumor position and the radiation 

delivery. These time delays are introduced by the image acquisition, the image processing, the communi-

cation delays, the induction within the motor, mechanical damping and the radiotherapy machine control 

loop sampling. If such delays are not taken into account and compensated for, then, by the time the equip-
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ment reacts, the organ may have moved to another location. There is, therefore, a need for tumour motion 

prediction in order to anticipate such motion. Delays ranging from 50 to 500ms have been reported in the 

literature [Keall et al. 2006b, Isaksson et al. 2005a, Jin and Yin 2005, Shirato et al. 2000b]. 

This Chapter presents a critical review of published papers on organ motion modelling and prediction 

for IGRT and ART. Section 3.2 reviews the models developed to date. Section 3.3 reviews tumour/organ 

motion prediction algorithms. A review of criteria used to assess the developed models is given in Section 

3.4. The outcomes of the chapter are discussed in the last section. 

3.2 Organ/tumour motion modelling 

3.2.1 A need for organ/tumour motion model 

Respiratory motion is one of the major sources of target uncertainty, especially, those located in thorax, 

abdominal and pelvic. This can appear during CT image acquisition and linac-based EBRT. Research 

has been conducted to study and analyse the respiratory motion in order to fnd the appropriate model that 

can replicate as much as possible breathing and hence, tumour motion. This new feld of research in RT 

was enabled by the emergence of advanced imaging techniques, providing clinicians with knowledge of 

dynamic tumour motion. Such information is provided directly in real-time by means of fducial markers 

surgically implemented within the PTV, or indirectly, using a signal correlated to tumour motion. 

Based on such data and knowledge gained from different breathing motion studies, several modelling 

approaches have been developed to reproduce respiratory motion. In addition to motion characteristics 

estimation, a model of tumour motion may also be used to track tumour motion in real time, to simulate 

the motion in order to assess treatment machine, imaging system and delivery technique. This latter is 

considered under the QA procedure. In the following, a review of up to date tumour/organ motion models 

is considered. 

3.2.2 Periodic models 

Lujan et al. [Lujan et al. 1999] were among the frst to propose an approach to adapt the beam delivery 

to moving liver tumor. It involved a mathematical model of intrafraction motion-induced breathing into 

the static dose distribution by including the probability distribution function (PDF) of tumor motion. A 

modifed cosine function was employed to generate the tumor motion PDF, assuming fxed respiratory 

motion amplitude and period. A comparison between the convolved dose distribution and the static 

dose distribution in regions outside of the CTV was carried out. A difference of up to 26% was found, 
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highlighting the potential importance of liver tumour motion on the overall beam delivery. The modifed 

cosine function model was given by: 

2n( 
ˇt 

z(t) = A0 −A cos − °), (3.2.1) 
˝ 

where t is the time in second, A0 is the position at exhalation, A is the average amplitude of breathing; 

hence, (A0 − A) is the position at inhalation, ˝ is the average period of breathing cycle in seconds, ° 

is the starting phase and n is a parameter that controls the general shape (steepness and fatness) of the 

breathing patterns. Figure 3.1 illustrates this model for given sets of parameters. In Figure 3.1(a), the used 

parameters are: ° = 0, A = 4, A0 = 2, n = 6, ̋  = 10 s. In the second Figure 3.1(b), the parameters are 

: ° = 1, A = 10, A0 = 1, n = 3,˝ = 5 s. 
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Fig. 3.1: Lujan model with two sets of different parameters. 

This model gives excellent fts for breathing patterns when parameters do not vary between and within 

breathing cycles. However, several studies have shown that the period and amplitude of the motion due to 

breathing can vary with time and from patient to patient [Shea and Guz 1992, Benchetrit 2000a, Ritchie 

et al. 1994, Sontag et al. 1996]. Moreover, the respiratory motion can be subject to random drift which is 

not taken into account in this model. Due to its simplicity, the Lujan model is still the most widely used 

model and will therefore be adopted as a benchmark in this work. 

Jalden et al. [Jaldén and Isaksson 2001], have considered the breathing motion as a simple mass/spring 

system so that it can be employed to build a state-space system. In this system the state consisted of a 

base position, an offset from this base (equilibrium) position y , the frst derivative of the offset (speed) 

v and a force constant d. The force act to bring the offset to zero by being negatively proportional to the 
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offset. In other words, the system is governed by the following system of frst order equations: 

d
8

y(t) = v(t)><
dt (3.2.2) > d
v(t) = −dy(t):

dt 

The above model was not assessed as typical model of breathing motion, but it was used to predict the 

breathing motion. 

Seppenwoolde et al. [Seppenwoolde et al. 2002b], investigated 3D lung tumour motion of 20 patient 

treated using RTRT system [Shirato et al. 2000b]. The mathematical model proposed by [Lujan et al. 

1999] was applied, whereby different parameters for every individual breathing cycles, such as the ampli-

tude, the position of the tumor in the inhale and exhale phases, the average tumor position, and the length 

of the breathing cycle were identifed. One of results in this work, is that the tumour position is more 

stable in the exhalation rather than in the inhalation. 

George et al. [George et al. 2005], used data collated over a 12 month period using 24 lung cancer 

patients to assess the accuracy of the Lujan model [Lujan et al. 1999]. They showed that the correlation 

coeffcient between respiratory motion and a simple harmonic oscillator (n = 1) model is equivalent to 

that achieved with higher order sinusoidal models. The cos2 term is transformed to a term in cos(2�) using 

the relationship cos(2�) = 2 cos2(�)−1. Although clearly the relationship can be extended recursively for 

all powers of cos, this approach was not taken. A probability density analysis is carried out, showing data 

to be best modelled using a bimodal distribution, which is to be expected, given the nature of breathing 

movement. 

In later studies [Le rest et al. 2000, Keall et al. 2002, Chetty et al. 2004], a periodic sinusoidal function 

was used to simulate the respiratory motion pattern. 

z(t) = A0 + A cos(!t+ °), (3.2.3) 

where t is the time in second, A is the amplitude, ! the angular frequency, ° is the phase and A0 is an 

offset. In [Le rest et al. 2000] this model was used to model the motion of pixels in the moving organs. 

The problem with such models is that they are limited to specifc regular and symmetrical breathing 

patterns. However, it has been found that the breathing cycle is not entirely symmetrical, with the patient 

usually spending a larger amount of time in the exhale phase than at inhale [Land 2006]. 

Neicu et al. [Neicu et al. 2003], developed a waveform model based on the ATT. The waveform model 

is normalized and averaged to better replicate the characteristics of the tumour motion. This model was 
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used in a beam tracking technique called SMART, under development in MGH. The concept of this 

technique is to derive the ATT from tumour motion data acquired at the treatment simulation stage, and 

then modify the original sequence of IMRT MLC leafs by taking into account tumour motion given by 

the ATT model. During treatment delivery, the tumour motion is monitored and the beam is on only when 

the leaf motion and tumour motion are synchronized at a specifc breathing phase and turned off when 

the tumour position differs from the average trajectory. The simulation of the SMART treatment was 

performed using the derived ATT. Due to the small size of the data pool, the same dataset was used for 

both ATT derivation and SMART simulation. Ideally, the validation should involve dataset which was 

not been used for modelling. 

Brewer et al. , [Brewer et al. 2004], described correlation based tracking of 2D motion of internal fducial 

markers, employing two orthogonal fuoroscopy imaging. The accuracy of the tracker was determined 

using 10 data sets of 5 patients, and a root mean squared error (RMSE) in estimating 2D marker position 

was 0.47 mm on average. Moreover, a 3 sine wave description, A0 + A sin(2ˇft), of CC, AP and ML 

trajectory were developed to approximate the average and maximum 3D motion of the markers. The 

amplitude A and frequency f , were calculated from the global minima and maxima that correspond to 

full inspiration and expiration, for each breathing cycle. The offset A0 was computed by averaging the 

values on the trajectory. The model was assessed on four pairs of trajectories, and an average RMSE of 3 

mm was found. 

Ruan et al. [Ruan et al. 2006] used subspace projection methods to derive models of periodic respiratory 

signals. These projection models used Fourier spectra and least-squared-error analysis to fnd the best 

ft periodicity of the respiratory signal. For each period within a physiologically reasonable range, a 

measured breathing signal is projected onto the subspace of all signals having that period to obtain the 

‘best ft’ periodic signal in the least squared error (LSE) sense. A Fourier spectrum was used to initialize 

the optimization technique. To validate this method, trajectories of external fducial markers placed on 

twelve patient’s chest walls have been investigated. This approach has been compared to the modifed 

cosine function developed by Lujan et al. [Lujan et al. 1999]. It was found that the subspace projection 

method was more representative, fexible, and computationally effcient. The main aim of this technique 

was to obtain the main principal period of breathing motion. 

3.2.3 Phase-based modelling 

Breathing motion has been modelled as function of breathing phase. Vedam et al. [Vedam et al. 2003a], 

characterized breathing as a cyclic process and subdivided breathing into eight phases: peak exhalation, 

early, mid, and late inhalation, peak inhalation, and early mid and late exhalation. The authors applied 
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this phase model to binning CT scans as a function of the breathing phase. Although the strategy was 

robust for a mechanical phantom and regular breathing cycles, the phase defnitions broke down with 

irregular breathing patterns. 

To address the issue of irregular breathing, Wu et al. [Wu et al. 2004] have designed and implemented a 

fnite state model that characterizes a breathing cycles, as a combination of three normal breathing states: 

exhalation (EX), end-of-exhale (EOE) and inhalation (IN). Abnormal breathing that does not fall into 

any of the previous states was also taken into account by including a fourth irregular state (IRR). The 

frst three states represent respectively, lung defation, rest after lung defation and lung expansion. In 

this model, each state was approximated by a line segment using a free and partial spline ftting. The 

transition from one state to another was guided by an adjustable thresholds of the velocity and amplitude 

changes. 

This model was performed using real internal respiratory data for 23 patients with peak-to-peak motion 

greater than 7 mm. The average RMSE over all the patients was less than 1 mm and no patient had an error 

worse than 1.5 mm. Although, the fnite state model produces good ftting results even for very complex 

breathing patterns, such as breathing with frequency changes, amplitude changes, base line shifting, or 

the combination of all the variations, the following limitations were identifed: The model cannot handle 

the breathing motion with important cardiac signal as well as nonlinear breathing. By assuming rigid 

states for every breathing cycle, the model enforces an extra state even if the tumour moves between 

exhalation and inhalation. 

3.2.4 Geometrical model 

Low et al. [Low et al. 2005] proposed a mathematical model of tumour motion based on lung motion 

measurement and physiologic lungs function. This model describes the displacement of an object in the 

lungs as a linear function of tidal volume and airfow. The position of an object was described relative 

to its position P0 at the reference tidal volume and zero airfow. An evaluation of the model using fve-

dimensional CT scans (acquired with simultaneous real-time monitoring of the tidal volume) of 4 patients 

have been carried out. For the 76 evaluated points, the average discrepancy (the distance between the 

measured and prediction positions) of the 15 locations for each tracked point was 0.75±0.25 mm with an 

average maximal discrepancy of 1.55±0.54 mm. The use of this model depends on its stability. It can be 

employed to assess the function of the lung as well as treatment planning and gating. 
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3.2.5 Summary 

Various models of organ/tumour motion have been developed/investigated. A summary of up to date 

models is given in Table 3.1. These developed models have been utilized in different radiotherapy related 

applications, such as tumour tracking for gating, respiratory motion analysis, treatment planing, accurate 

dose calculation, and lung function assessment. The evaluation of each model has involved different kinds 

of clinical data. While the accuracy of the model was given in term of tracking error for tumour tracking 

application, an average modelling error has been applied in case of respiratory motion replication. In this 

latter, it was noticed the use of the average RMSE criterion in most of the models. 

According to the RMSE criterion, the best model which gives small average RMSE was the model de-

veloped by [Wu et al. 2004]. Although, it gives a good replication of the respiratory motion, however, 

it does not exhibit any dynamics and it does not have a fxed number of parameters. Note that in some 

models, the same data were used for modelling and validation. In addition, it was noticed that none of the 

developed models was used to generate realistic respiratory data, in order to be used for QA procedure or 

motion compensation strategies assessment. The new challenge in this topic will be to develop a model 

with a RMSE less than 1.5 mm and which exhibits dynamical motion with small number of fxed param-

eters. Moreover, the model will be used to generate different types of realistic respiratory motion. These 

challenges will be addressed in Chapter 5. 
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Tab. 3.1: Summary table describing the various approaches to tumour/organ motion modelling. 

Authors, year. Anatomical site. 

Data set. 

Model. 

Technique. 

Results. Comments. 

[Lujan et al. 1999] - Liver. 

- 1D SI motion. 

2n(ˇt - z(t) = A0 − A cos − °).
˝ 

- Convolute static dose by tumour motion model. 

- Improvement of 26% comparing to static dose. - The model assumed fxed amplitude and period. 

- The model is widely used. 
[Seppenwoolde et al. 2002b] - Lung. 

- 3D Shirato data. 

2n(ˇt - z(t) = A0 − A cos − °).
˝ 

- The model was ftted to 3D data. 
- Average parameters of 3D motion were estimated. 
- Tumour more stable in exhalation. 

- Least-squares method was used in estimation. 
- The amplitude and period were derived. 

[Neicu et al. 2003] - Lung. 

- 1D Shirato data. 

- Model based ATT. 

- The average amplitude, period and mean position were used. 

- Tracking error of 2 mm. - The model was used for SMART gating technique. 

[Vedam et al. 2003a] - Lung and Phantom. - Phase based model 

- Breathing were subdivided into 8 phases. 

- Motion artefacts were signifcantly reduced. - The phase defnitions broke down with irregular 
breathing patterns. 
- Applied to binning 4D CT scans. 

[Wu et al. 2004] - Liver and lung. 

- 1D Shirato data. 

- Finite state model. 

- Regular breathing cycle is represented by three line segments, 
exhale, end-of exhale and inhale, while abnormal breathing 
is represented by an irregular breathing state. 

- The average RMSE among the 23 patients 
was less than 1 mm and no patient has an error 
worse than 1.5 mm. 
- The average processing time for each new 
measurement is less than 1 ms. 

- It works even for complex breathing patterns. 
- Can be used for both on-line and offine data. 
- Can be applied to internal and external motions. 
- It does not deal with nonlinear states. 
- Cannot distinguish the respiratory motion from 
the cardiac motion when this more than half of 
motion amplitude. 
- Not used for prediction. 

[Brewer et al. 2004] - Not specifed. 

- 3D motion data. 

- A0 + A sin(2ˇft). 

- A and f calculated from the global minima and maxima. 
- A0 is computed by averaging the values on the trajectory. 

- Average RMSE was 3 mm. 
- Tracking error 0.47 mm in term of RMSE 

- 10 data sets of 5 patients for tracking. 
- 4 pairs of trajectories for modelling. 

. 
[George et al. 2005] - Lung. 

- External chest markers. 

2n(ˇt - z(t) = A0 − A cos − °).
˝ 

- Find the best parameters for each cycle. 

- The mean position can be represented by a normal 
distribution. 
- Amplitude and period of the motion can be 
approximated with log-normal distributions. 

-The cos2 term is transformed to a term in 
cos(2�). 

[Low et al. 2005] - Lung. 

- 5D CT scans of 4 patients. 

- Geometrical model. 

- Linear function of tidal volume and airfow. 

- Average maximal discrepancy of 1.55± 0.54 mm - The model aims to obtain an accurate dose distribution. 
- The use of this model depends on its stability. 
- It may be used for treatment planning, gating and lung 
function assessment. 

[Ruan et al. 2006] - Lung 

- External fducial markers 

- Periodic funstion 

- Subspace projection methods. 

- More representative, fexible, and computationally 
effcient compared to Lujan model. 

- It can be used to obtain the main 
principal period of breathing motion. 
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3.3 Organ/tumour motion prediction 

3.3.1 A need for organ/tumour position prediction 

Recalling that real-time IGRT aims to adapt the radiation delivery to tumour motion during a treatment 

session based on the information provided by an imaging system. However, any adaptive response in 

beam delivery will be delayed with respect to the signal of the tumour’s position. This time delay is mainly 

attributed to tumour location by image system, time response of treatment machine and communication 

delay in the control loop. In bibliography, Shirato et al. [Shirato et al. 2000b], reported a time delay of 

0.09s between the time of the marker recognition and the start of irradiation in a gating system. This 

delay was measured with a flm and phantom, and is the total delay which includes computational time 

in post-processing the image to locate the marker as well as delays in triggering the beam onset. The 

same time delay was reported in [Seppenwoolde et al. 2002b]. Jin and Yan [Jin and Yin 2005] proposed 

a reliable method of measuring/verifying the time delay in a gating system. Various port flms and video 

tracking were taken for a motion phantom at different gating window levels. The gating system delay 

was measured by comparing the motion signal given by port flms and video camera. It was concluded 

that the time delay including the response time of the LINAC and the delivery time was about (170 ± 
0.03)ms. 

In addition to the delay of imaging system to locate tumour position, gating or tracking based system can 

also have a delay [Isaksson et al. 2005a]. This delay represents the system time response to a corrective 

action, and which can range from 0.05s for the beam to be gated to several hundred milliseconds for the 

beam to be physically realigned. In a robotic-based radiation delivery system, the time delay including 

the response time of the robot was found to be in the order of 0.3s and for very slow motion could be up 

to 0.33s [Schweikard et al. 2000]. The CyberKnife, for example, has a 0.2s delay between acquisition of 

tumor coordinates and repositioning of the linear accelerator. This delay is in addition to image acquisi-

tion, read-out, and processing times [Keall et al. 2006b]. Repositioning an MLC aperture will likewise 

involve a time delay on the order of 0.1 to 0.2s or more [Keall et al. 2006b]. Ohara et al. [Ohara et al. 

1989], reported a delay of 0.5s for a signal to interrupt the beam cycle. 

Sometimes, it is diffcult to track internal target directly, hence, surrogate signals are used instead. This 

can be for example a signal from a video camera monitoring the patient abdominal/chest wall movement, 

a Spirometer measuring fow and volume of the lung. However, a phase mismatch between the exter-

nal markers and the internal target have been reported in [Tsunashima et al. 2004, Mageras et al. 2004]. 

Tsunashima et al. observed a phase ranged from 0 to 0.3s. Murphy and Dieterich [Murphy and Dieterich 

2006] reported a latency of up to several hundred milliseconds. In [Minohara et al. 2000], a phase differ-
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ence of about 0.2s between the position of the diaphragm and the respiratory signal was found. Sharp et 

al. , [Sharp et al. 2007], have noticed a phase delay of more than 0.1s in two of the four patient treated 

with gated proton therapy. Such time lag causes a mismatch between the location of the radiation beam 

and the tumour due to the motion of the tumour during the time lag interval. Consequently, it results in 

under-dosing to some parts of the target volume [Vedam et al. 2005]. It is important to note that mea-

surement and verifcation of the time delay should be considered prior to the clinical use of any adaptive 

compensation technique. Unfortunately, only few contributions have investigated this issue [Jin and Yin 

2005]. 

This problem with delay in RT has prompted researchers to investigate various types of commonly used 

predicative techniques. The next subsections will be devoted to review the existing models and techniques 

for motion prediction. 

3.3.2 Discrete linear flters 

The use of RTRT system by Shirato et al. [Shirato et al. 2000b], causes a 0.09s lag between actual markers 

position and gating of the treatment system, which is caused by image and gating process. A correction 

algorithm has been implemented that is based on the speed of tumour marker. Assuming a constant linear 

marker speed, the correct position correction is the speed of the tumor (or slope) multiplied by the delay 

time prediction time (Tp) (which is about 0.09s). At time t, the predicted marker position, y(t|t), is thus 

given by: 
y(t|t)− y((t −�t)|t) 

y(t + Tp|t) = y(t|t) + Tp× , (3.3.1) 
�t 

where �t the imaging sampling time, (t−�t) is time of previous image frame, t is the time of the present 

image frame, t+ Tp is the anticipated time of gating (t plus the measured delay Tp), y((t−�t)|t) is the 

recognized marker coordinate in the previous frame (pair), and y(t|t) is the recognized marker coordinate 

in the present frame (pair). The gating of the accelerator is based on the predicted position. The geometric 

accuracy of prediction is better than 1.5 mm for moving targets up to a speed of 40 mm·s−1. It was also 

found that for organ motion below 9 mm·s−1 the motion prediction was not necessary. 

The feasibility of a linear autoregressive (AR) predictive flter model was investigated by Liu [Liu et al. 

2003]. This was used to predict in real time one step ahead free breathing motion acquired using electro-

magnetic sensors attached to the subject’s chest at frequency of 3Hz. The following model structure has 

been used: 
p

xt = 
X

akxt−k + et (3.3.2) 
k=1 
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where ak are the auto-regression parameters which must to be estimated, xt is the time series under 

investigation, p is the order (length) of the flter which is generally less than the length of the series 

and the white noise term et which represents the residual. Assuming that xt is linear and stationary, the 

parameters of the model were estimated using three different algorithms and the effect of training length 

and model order were also investigated. It was found that the minimum mean absolute prediction error 

was 0.25 mm compared to the mean absolute shifted error which was 0.8 mm (error due to no prediction 

action was taken). The minimum mean absolute predicted error was realized when the data input length 

was 60 points (corresponding to 20 seconds or 3 full respiratory cycles of free-breathing of the subject), 

and the order was 1/4 of the input data length. 

Sharp et al. [Sharp et al. 2004] used a linear prediction model to defne the position of the organ by a 

combination of the known previous positions xt−1 through xt−n, such that: 

xt = a0 + a1xt−1 + ... + anxt−n, (3.3.3) 

where xt is the 3D position of the tumour at time t. The model was performed for different imaging rates 

(1,3,10, and 30Hz) and times horizons (33ms,200ms, and 1s). The lowest performance in term of RMSE 

was less than 2 mm for the highest imaging rate and short time prediction (33 and 200ms), and less than 6 

mm for long time predication (1s). It was also concluded that use of prediction improves gated treatment 

accuracy for systems that have latencies of 200ms or greater, and for systems that have imaging rates of 

10Hz or slower. 

Extrapolation can be seen as a special case of linear prediction. It uses recent samples to fnd the signal 

velocity, and assumes that the signal will maintain constant velocity. In the following case the model used 

the previous two samples. 

xt = 2xt−1 − xt−2 (3.3.4) 

This model was found to have a higher error at all imaging rates. The reason behind the weakness of 

linear extrapolation is that the random noise makes it diffcult to estimate the motion velocity from two 

points. 

Murphy et al. [Murphy et al. 2002a] propose an adaptive linear flter to predict tumour motion using a 

combination of internal and external markers measurements and show the effectiveness of the flter for 

prediction times up to 0.8s. It was found that the accuracy deteriorated rapidly when predicting more than 

0.2s in advance of the current position. The frequency of updating the flter coeffcients was thought to 

have the most infuence on prediction accuracy. 

Vedam et al. [Vedam et al. 2004] have presented an application where two models are compared for 
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their ability to predict regular as well as irregular breathing patterns. The approach is based on ftting a 

model to past data and using it to predict a future position and then updating the prediction by taking into 

account the discrepancy between the predicted and the current position. One of the two models used was 

an adaptive flter, of similar structure to that of Liu et al. [Liu et al. 2003], which is expressed as follows: 

SHL

xpred(tn+�) = 
X

cixtn−i 
(3.3.5) 

i=1 

where the flter parameters ci are updated at each iteration using least-mean-square (LMS). 

3.3.3 Sinusoidal model 

A second model that was investigated by Vedam et al. [Vedam et al. 2004], was the sinusoidal model, 

which is given by: 

xf (t) = A sin(Bt+ C) +D, t 2 [tn − SHL, tn] (3.3.6) 

where A, B, C and D are parameters that are required to be identifed and signal history lengths (SHL) 

defne the amount of past data used to ft the model. The predictive position is calculated from the 

sinewave estimate as follows: 

xpred(tn + �) = xact(tn) + [xf (tn+�)− xf (tn)] (3.3.7) 

The linear model was found to perform better than the sine wave model, however such linear models 

were found to have limitations for long term prediction due to the complex nature of organ motion. The 

accuracy of adaptive models shows a dependence on the learning period, the number of data points used 

to build and update the model coeffcients. Outliers in the data may exaggerate prediction errors, and the 

user has to be careful to avoid adapting the model to accommodate these outliers, as this can degrade the 

ft to the overall pattern. The adaptive linear flter performed better and achieved prediction errors less 

than 2 mm in terms of standard deviation for prediction time less than 0.4s with 10Hz sampling rate. 

3.3.4 The Kalman flter (KF) 

The Kalman flter (KF) is a set of mathematical equations that implement a predictor-corrector type 

stochastic and recursive estimator, which gives the optimal system state in the sense that it minimizes the 

estimated error covariance (when some presumed conditions are met) [Kalman 1960]. It is dedicated to a 

linear systems based on the input-output measurement of this latter, and a model of the relation between 
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input and output. The Kalman Filter was one of the predictive models evaluated by Sharp et al. [Sharp 

et al. 2004], in their comparative paper. It was used to predict 3D marker position, assuming that the 

marker position is generated by a linear dynamic system model with no dependence on a control input. 

The maximum-likelihood values of the model parameters were estimated using an iterative algorithm 

called expectation-maximization on a set of training samples [Digalakis 1992]. The performance of KF 

was unsatisfactory, comparing with neural network (NN) (details are given later) due to the tuning of the 

flter from a small amount of data. 

Murphy et al. [Murphy et al. 2002a] compared three methods, a tapped delay line flter, a KF and a NN, 

for predicting the future position of a tumour using fuoroscopic simulation data and external markers. 

More details about the algorithms used can be found in [Jaldén and Isaksson 2001]. A nonlinear (ex-

tended) Kalman flter was applied for the estimation and prediction of the breathing motion. The applied 

extended KF assumed that the breathing motion is sinusoidal. Since the breathing motion is not sinusoidal 

for most of the patients, it was discovered that the extended KF is of limited use for breathing prediction. 

However, it has less high frequency noise in the predicted motion compared to linear adaptive flter and 

the NN. The prediction performances of the this flter were evaluated using three trajectories. The largest 

normalized root mean squared error (nRMSE) values were 55.1%, 63.3%, and 65.1% for a prediction 

horizon of 0.2s, 0.5s, and 0.8s respectively. 

Putra et al. [Putra et al. 2008], presents a multiple model approach to respiratory-induced tumour motion 

prediction using the interacting multiple model (IMM) flter. A combination of two models, constant 

velocity (CV) and constant acceleration (CA), are used to capture respiratory-induced tumour motion. 

A Kalman flter is designed for each of the local models and the IMM flter is applied to combine the 

predictions of those Kalman flters for obtaining predicted tumour position. The prediction performance 

of the IMM flter has been evaluated using 110 traces of 4-minute free-breathing motion collected from 

24 lung-cancer patients. The simulation study was carried out for prediction time 0.1-0.6 s with sampling 

rates 3, 5 and 10Hz. It was found that the prediction of the IMM flter was consistently better than the 

prediction of the Kalman flter with CV or CA model. There was no signifcant difference of prediction 

errors for the sampling rates 5 and 10 Hz. For these sampling rates the errors of the IMM flter for 0.4 s 

prediction time were less than 2.1 mm in terms of the 95% CI criterion. For the prediction time 0.6s the 

errors were less than 3.6 mm in terms of the 95% CI criterion. 

3.3.5 Non-parametric model 

Ruan et al. [Ruan et al. 2007] proposed a non-parametric local weighted regression to predict lung’s 

tumour motion. The frst step in this approach consists of designing an augmented state space model 
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using the most current observation and one or more previous samples. The aim of this is to capture the 

local system dynamics in the time point of interest. In the next step a local weighted regression is applied 

to the pairs state-observation, which form a scatter-plot in a high-dimensional space. The regression 

weights are designed to refect the distance between the state of interest and the training samples. Finally, 

the prediction is calculated by inferring the predictor response map from the behaviour of its neighbours in 

this high-dimensional space. For the purpose of real-time tracking and prediction, the inference weights 

are adaptively adjusted to incorporate the decaying temporal correlation among response patterns with 

longer time lags. A comparison with linear prediction, NN and KF to the same data is also performed. 

The accuracy of the predictor for various combinations of look-ahead length and sampling frequency, has 

been evaluated using RMSE and mean absolute error (MAE), between predicted tumour motion and its 

observed location for 10 patients. The proposed method reduced the prediction error for all imaging rates 

and latency lengths, particularly for long prediction lengths. 

3.3.6 Dual-component signal based prediction 

McCall et al. [McCall and Jeraj 2007] proposed a new approach to model-based prediction of respiration 

motion for RT. This approach is based on considering the respiratory motion as a dual-component signal. 

The periodic component is estimated using the best ft of the mean cycle, given by the equation: 

N
1 

[µ]$ = 
X

[X]!n , (3.3.8) 
N 

n=1 

where N the number of cycles, $ is the main wavelength, and [X]!n is an individual cycle with length 

!n. The non-periodic component was deduced by subtracting the periodic component from respiratory 

signal and modelled as autoregressive moving average (ARMA) process. The predicted trajectory is given 

by adding the amplitude of the periodic component to one-step ahead prediction of ARMA model. The 

prediction accuracy of the model was assessed using a phantom based MATLABr script that generates 

waveforms with variable and randomized amplitude and wavelength, to simulate the AP motion of the 

thorax. The prediction error was compared to the system without prediction. For a respiration pattern 

with ±14% consistency in cycle length and ±14% amplitude of motion, the prediction errors were 4.8 % 

of the total motion extent for a 0.5s ahead prediction, and increased to 9.4% at 1s lag. These prediction 

errors are expressed as a per cent of the motion extent observed or simulated in the respiration signal, 

where motion extent refers to the average distance traversed between end inspiration and end expiration. 
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3.3.7 Neural network (NN) 

The NN technique is a method by which a computer can be trained to ‘learn’ a relationship between in-

put and output data using mathematical functions designed to simulate the interactions between neurons 

and synapses in the human brain. This makes the NN a very powerful tool in situations where an ex-

plicit functional relationship between inputs and outputs cannot be determined analytically. If suffcient 

input/output data is readily available, the training of a NN may provide the best combination of speed 

and accuracy to replicate a desired function without a requirement for sophisticated technical knowledge 

from the operator. These facets have made NN the subject of research in the feld of RT, where many 

complex non-linear relationships exist, and much onus is at present placed on human experts to analyze 

data using knowledge and experience in combination with purely numerical calculations. In many cases 

NN can accelerate these processes by either replicating human knowledge or carrying out computations 

which would otherwise be more time consuming using alternative methods. 

Krell et al. [Krell et al. 1999] use a NN to track patient movement. A time-series prediction (TSP) NN 

with associative memory is trained off-line using data from an EPID which is subsequently incorpo-

rated into on-line data collected by a stereoscopic system which has been developed by the authors to 

track landmarks on the body surface of patients during treatment. The method is presented as a new in-

treatment verifcation and no metrical comparison with existing methods is given. No details of the NN 

architecture are provided, although a Kohonen network [Hagan et al. 1997] seems to be most likely. 

Sharp et al. [Sharp et al. 2004] investigated the performance of different predictive models to characterize 

the predictability of 3D tumour motion for different imaging rates and system latencies. The algorithms 

include two kinds of linear flters, two kinds of neural networks and a Kalman flter. Best results are 

achieved using a linear model for 33ms and 200ms latency, and a multi-layer perceptron (MLP) with one 

hidden layer for 1 s latency. Best RMSE ranges from 1 mm for an imaging rate of 30Hz and 33ms latency 

to 6 mm for 1Hz and 1s latency. The TSP MLP is trained for exactly 2s for each record using 15s of data 

and the conjugate gradient (CG) algorithm. Note that only static forms of the predictors are used i.e. no 

on-line adaptive parameter adjustment is attempted. 

Kakar et al. [Kakar et al. 2005] use an adaptive neuro fuzzy inference system (ANFIS) for prediction of 

organ movement for 11 breast cancer patients. Mean RMSE is reduced to sub-millimetre accuracy over a 

period of 20s for a 0.24s latency. Average RMSE if found to be 35% of respiratory amplitude for patients 

adopting free breathing and 6% for those previously coached to produce consistent breathing character-

istics. The hybrid training algorithm implemented is a combination of least-squares optimization and 

gradient descent BP, taking 120s to converge for 20s of training data. The practicality of implementing 
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this in a real-time clinical situation is not discussed. 

Isaksson et al. [Isaksson et al. 2005a] use an adaptive TSP MLP to predict lung tumour movement through 

correlating external and internal markers. Updating is carried out at 1 s and 5 s intervals using 2 s of data 

sampled at 10Hz. The LM training algorithm is used. All of the data points are used as inputs to a 

TSP MLP with 2 hidden neurons and 1 output neuron. All three neurons are sigmoidal. No indication 

is given as to whether they are logsig or tansig, and no justifcation is given for this architecture. From 

the explanation given, the training is therefore carried out using only one input data vector. Validation is 

carried out using a second 2s sequence, although whether this is the previous or following sequence is 

not explained. The tumour motion of 3 patients is analyzed, with the conclusion that an adaptive flter is 

superior to a stationary flter when the tumour motion is non-stationary. 

Yan et al. [Yan et al. 2006] present a method to correlate internal and external marker motion using a 

linear NN. SD is used for training the NN. Unfortunately, details are not given of the sampling frequency 

used, which makes comparison with other methods diffcult. A prediction error of 23% between external 

and internal marker position is reported. 

Murphy et al. [Murphy et al. 2002a] The predictive performance of the adaptive linear flter was com-

pared to the NN adaptive flter, using different frequencies of updating. A subsequent study in [Isaksson 

et al. 2005a] evaluated the relative performance of stationary linear flters, adaptive linear flters, and 

adaptive NN in correlating and predicting tumour motion for three representative examples of patient 

data. The results showed (unsurprisingly) that adaptive linear and nonlinear flters performed better on 

non-stationary data than the stationary flter. The study also found that as the irregularity of the tumour 

motion and breathing cycle increased, the nonlinear flter performed better than the adaptive linear fl-

ter. Furthermore, [Murphy and Dieterich 2006] show that nonlinear ANN outperforms linear ANN in 

predicting irregular breathing motion. 

3.3.8 Summary 

A summary of the main models/techniques to predict the target motion in advance is given in Table 

3.2. This includes mainly the prediction performance, which is assessed with different error metrics 

for various combinations of lookahead length, sampling frequency and data sets. Note that the most 

investigated methods are linear predictor, NN and KF. It is important to state that the most relevant 

comparative study was carried out by Sharp et al. [Sharp et al. 2004]. In the latter, the most commonly 

used predictive algorithms were applied to the same data set. The best performance was given by the NN 

with a RMSE of about 5 mm for 1s ahead. For the same time horizon, Ruan et al. [Ruan et al. 2007], 

58 



Chapter 3. Critical review of organ/tumour motion 
3.3. Organ/tumour motion prediction modelling and prediction 

achieved a RMSE of 2.5 mm using external data set with less noise. Although the use of KF can deal 

with noisy data, however it performs less the long time prediction compared to NN and linear prediction. 

59 



60 

Tab. 3.2: Summary table describing the various approaches to organ/tumour motion prediction. 

Authors, year. Anatomical site. 

Data set. 

Model. 

Technique. 

Results. Comments. 

[Krell et al. 1999] - Non-specifc thoracic. 

- Stereoscopic system tracks landmarks 
on patients body surface during treat-
ment. 

- TSP NN with associative memory. - In-treatment verifcation and no metrical comparison with ex-
isting methods is given. 

- Kohonen network. 

[Shirato et al. 
2000b] 

- Lung and static pelvic phantom. 

- 3D Shirato data. 

- Linear extrapolation. 

- Assuming constant speed. 

- Tp=90 ms- RMSE < 1.5 mm. - Limited to very short prediction time. 

- Sensitive to measurement noise. 
[Murphy et al. 
2002a] 

- Lung and pancreatic. 

- Combination of external and internal 
markers : 2 pairs of traces from four pa-
tients. 

- Adaptive linear flter. 

- NN adaptive flter 

- Tp=0.8 s; nRMSE=68.7%. 

- Tp=0.8 s; nRMSE=61.3%. 

- The prediction performance depends on the updating of the 
algorthims. 

[Vedam et al. 
2004] 

- Lung. 

- External chest markers. 

- Sixty traces of the Virginia data. 

- Adaptive sinusoidal flter and 
adaptive linear flter. 

- The linear flter is better than the sinusoidal flter. - Satisfactory prediction performance, i.e. standard deviation 
of errors <2 mm, is achieved for Tp=0.2 s. 
- Prediction depends on SHL. Using a big SHL assure a small 
prediction error. 

[Sharp et al. 
2004] 

- Liver and lung. 

- 3D Shirato data. 

- NN. 

- KF 

- Linear Extrapolation. 

- Linear flter. 

- Tp=33 ms-10/30 Hz- RMSĚ 1.8 mm. 

- Tp=0.2 s-10/30 Hz- RMSĚ 2.5 mm. 
- Tp=1 s-10/30 Hz- RMSĚ 5 mm. 

- Tp=33 ms; 10-30 Hz; 1 mm<RMSE<1.2 mm. 
- Tp=0.2 s; 10-30 Hz; 2 mm<RMSE<2.2 mm. 
- Tp=1 s; 10-30 Hz; RMSĚ 7 mm. 

- Tp=33 ms; 10-30 Hz; 2 mm<RMSE<2.7 mm. 

- Tp=33 ms; 30Hz; RMSĚ 1.2 mm. 
- Tp=200 ms; 30Hz; RMSĚ 2 mm. 
- Tp=1 s; 10 Hz; RMSĚ 5.5 mm. 

- Conjugate gradient back propagation. 

- The prediction depend on imaging rate. 
- Parameter of the model are estimated with EM algorithm. 
- Tuned KF is better than a normal KF. 
- No need for pre-fltering. 

- Based on extrapolation of velocity. 
- Limited to very short prediction time. 
- Sensitive to measurements noise. 
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Authors, year. Anatomical site. 

Data set. 

Model. 

Technique. 

Results. Comments. 

[Isaksson et al. 
2005a] 

- Lung, correlating external and in-
ternal markers 

- The tumour motion of 3 patients 

- Adaptive TSP MLP: 2 hidden neurons and 
1 output neuron. 

- Updating is carried out at 1 s and 5 s inter-
vals using 2 s of data sampled at 10 Hz. 

- Tp=0.2s- nRMSE ̌ 25%. 

- Tp=0.5 s- nRMSE ̌ 50%. 
- Tp=0.8 s- nRMSE ̌ 60%. 
- Adaptive flter is superior to a stationary flter when the tu-
mour motion is non-stationary. 

- LM algorithm for training. 

- The results of NN were compared to linear flter. 

[Kakar et al. 2005] - Breast 

- Organ movement for 11 breast 
cancer patients. 

- Adaptive Fuzzy inference System (ANFIS) - The latency was 0.24 s 

- Mean RMSE is reduced to sub-millimetre accuracy over a pe-
riod of 20 s: 35% of respiratory amplitude for patients adopting 
free breathing and 6% for those previously coached to produce 
consistent breathing characteristics. 

- Hybrid - back propagation +least-mean squares. 

[Yan et al. 2006] - The same as in [Murphy et al. 
2002a] 

- Linear NN. - The latency was 0.25-1 s. 

- A prediction error of 23% between external and 

internal marker position is reported. 

- SD is used for training 

- Details are not given of the sampling frequency 
used. 

[Ruan et al. 2007] - Lung or its vicinity 

- Chest markers of 10 patients 

- Non-parametric local weighted regression - Tp=0.2 s; 10-15-30 Hz; RMSE=2.5 mm. 

- Tp=0.6 s; 10-15-30 Hz; RMSE=2.5 mm. 

- Tp=1 s; 10-15-30 Hz; RMSE=2.5 mm. 

- This methods was compared to the linear prediction, 
neural networks and Kalman fltering. 
- The accuracy of the predictor was evaluated using 
RMSE and MAE. 
- The prediction error is reduced for all imaging rates 
and latency lengths, particularly for long prediction 
lengths 

[Putra et al. 2008] - Lung. 

- 110 traces of 4-minute free-
breathing motion. 

- Linear models (CV & CA) and their hybrid 
combination i.e. IMM flter. 

- Average RMSE of 0.98 mm is achieved for Tp=0.2 s with 
IMM flter. 

- The IMM flter is better than individual Kalman fl-
ters. 

[Goodband and 
Haas 2008] 

- Lung. 

- The EM-Virginia data. 

- The TSP MLP. 

- The GRNN 

- The CGBP: Tp= 0.2 s/0.4 s-RMSE = 0.63/1.20mm. 

- LM: Tp= 0.2/0.4 s-RMSE = 0.76/1.61mm. 
- BP+CG: Tp= 0.2/0.4 s-RMSE = 0.48/0.97mm. 
- Tp= 0.2/0.4 s-RMSE = 0.77/1.69mm. 

- Regularization improve prediction performance. 
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3.4 Assessment criteria 

The effciency of a RT treatment strategy is usually evaluated by considering the radiobiological impact 

of the treatment uncertainties in the dose delivered to the tumour site and surrounding tissues [Booth 

2002]. This is currently achieved by various radiobiological models including tumour control probability 

(TCP), normal tissue complication probability (NTCP), and uncomplicated tumour control probability 

(UTCP). The frst quantity is defned as the probability of killing all tumour cells in a given tumour 

volume by irradiation to a certain total dose. The second one is the probability that a certain percentage 

of the patient population will incur unfavorable reactions in the surrounding tissue at a particular dose. 

The probability for controlling a given tumour without complications is termed the UTCP and is given 

as UTCP = TCP.(1 −NTCP ). In general, the aim is to maximize the TCP while the NTCP remains 

below some ’acceptable’ (usually very low) level. 

Various approaches for modelling and predicting the motion of moving organs/tumours have been re-

viewed in the previous section. However, in order to compare and assess the performance of each model, 

a criterion is required. Concerning modelling performance, a standard metric criterion named the RMSE 

between the observed position and the simulated one, was previously used in [Wu et al. 2004]. As 

consequence, it is used here for comparison with previous results. Additionally, two other criteria are 

investigated in this work, namely MAE and the new (in the context of ART) criterion maximum absolute 

error (MaxAE). The introduction of the last criterion was prompted by the fact that in radiotherapy treat-

ment and for safety reasons, it is very important to have a small maximum error, to avoid the radiation of 

healthy tissues. First of all, let’s defne the modelling error at time-step k by: 

SE(k) = yact(k)− ysim(k), (3.4.1) 

where ysim(k) denotes the simulated estimate of the observed marker position yact(k) at time k. Then 

the cited criteria can be defned for N observed marker position, as follow: 

v
Nu

1 �2 
RMSSE = 

u X�
, (3.4.2) t esim(k)

N 
k=1 

N
1 X

MASE = 
���esim(k)

���, (3.4.3) 
N 

k=1 

MaxASE = max 
���esim(k)

���. (3.4.4) 
0�k�N 

Usually, a model is evaluated using different trajectories from different patients. Therefore, an overall 

mean of each criterion is required. For example, the overall mean RMSSE, denoted by RMSSE, for 
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1 PMthe M breathing traces given by: RMSSE = (RMSSE)j .M j=1

The previous criteria provide an overall fgure of accuracy for a given model. However, it is important 

to examine where/when the large errors take place. Hence, one can plot the time-domain variation of 

the modelling error (given by the equation 3.4.1). This can be applied to the respiratory motion which 

characterized by different phases. 

The second type of models deal with prediction of tumour/organ motion. The prediction error at time-step 

k is defned by 

PE(k) = yact(k) − ypred(k|k − Tp), (3.4.5) 

where yact(k) denotes the actual tumour position at time-step k and yp(k|k − Tp) denotes the predicted 

tumour position at time-step k for given measurement up to time-step k−Tp, with Tp is the prediction time 

horizon. Several criteria, which are summarized in Table 3.3, have been used to evaluate the performance 

of prediction algorithms for IGRT based on the error defnition (3.4.5), [Vedam et al. 2004, Sharp et al. 

2004, Putra et al. 2006, Isaksson et al. 2005b, Murphy and Dieterich 2006, Yan et al. 2006]. Criteria to 

assess the prediction performance would be useful in terms of clinical applications if they could provide 

information for treatment-plan evaluation. In general, the criteria listed in Table 3.3 do not provide such 

information. Therefore, it is of interest to develop new criteria that satisfy this requirement. 

Tab. 3.3: Some criteria have been introduced to evaluate prediction algorithms in radiotherapy. 

Criteria Formula 
q

PN PNStandard deviation (SD or ̇ ) 1 (PE(k) − µ)2 , µ = 1 PE(k)
N k=1 N k=1 

q

PN
RMSPE 1 PE(k)2 

N k=1 
r 

� �2 
PN PN PN

nRMSPE PE(k)2/ yact(k) − yact(k)k=1 k=1 k=1 
PN

MAPE 1 |PE(k)|
N k=1 

The dose volume histogram (DVH) has been accepted as a tool for treatment-plan evaluation and can be 

used to compute TCP and NTCP [Webb and Nahum 1993]. For a given dose profle, DVH is defned by 

target coverage (TC). Prediction errors is related to TC through the confdence interval (CI) of the errors. 

The CI of prediction errors provides information in terms of probability that the actual target position 

lies within a particular distance from the predicted position. A 95% CI of Y mm tells that for a given 

prediction yp mm it is expected with 0.95 probability (confdence level) that the actual target position yact 

lies within the interval [yp − Y, yp + Y ], i.e. P(yp − Y � yact � yp + Y ) = 0.95. 

The CI criterion is derived from the distribution of the prediction error PE. To illustrate the principle, 

let suppose the distribution of the error PE can be approximated by a Gaussian distribution with mean µ 

and standard deviation ˙. The probability that the error PE lies within the interval [µ−m˙,µ+m˙] for 
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a positive number m is given by 

µ+m˙ 1 
Z 

(PE − µ)2 
P(µ−m˙ � PE � µ+ m˙) = p exp(− )dPE (3.4.6) 

2˙2˙ 2ˇ µ−m˙ 

m/ 22 
Z p

p
= p exp(−u 2)du = erf(m/ 2), (3.4.7) 

ˇ 0 

where erf(·) is called the erf function [Kenney and Keeping 1962]. For a given confdence level L, 
p

equation (3.4.7) allows calculation of the interval [µ−m˙,µ+m˙] defned by m = 2erf−1(L), where 

erf−1 denotes the inverse erf function. For example, the values of the parameter m for 68.3% and 95% 

confdence levels are equal to 1.00 and 1.96, respectively. The CI criterion, for a given confdence level, 

is defned by 

CI = |µ|+ m˙. (3.4.8) 

Note that for µ 6 0 the margin interval [µ − m˙,µ + m˙] is asymmetric, i.e. left margin is not equal = 

to right margin, and the CI criterion takes the largest one. The CI criterion (3.4.8) takes into account 

systematic errors due to µ as well as random errors due to ˙. 

From the defnition of CI, the CI criterion (3.4.8) can be used to specify the margin needed to accommo-

date the prediction errors. Furthermore, the confdence level of CI criterion can be adjusted to match a 

specifc dose distribution objective. If the objective is, for example for a homogeneous dose profle, to 

achieve 100% of the target volume receive at least 95% of the prescribed dose then the confdence level 

should be set to 95% [Putra et al. 2007]. These advantages and the relation of CI to TC and DVH make 

the CI criterion suitable for assessing the performance of prediction algorithms for IGRT. Note that SD 

criterion listed in Table 3.3 can provide the certainty region, which is related to CI, only in the case µ = 0, 

i.e. unbias predictors. In this case, SD criterion is the same as RMSE and the 68.4% CI criteria, see Table 

3.3 and equation (3.4.8). 

3.5 Discussion 

A variety of surrogate motion modelling and prediction techniques have been reviewed in this Chapter. 

The surrogate motion models developed can be divided into three main different modelling approaches. 

The frst category is based on periodic models, where a sinusoidal model with constant amplitude and 

period, is used [Lujan et al. 1999, Neicu et al. 2003, Ruan et al. 2006]. The second technique considers 

the modelling of the breathing phases [Vedam et al. 2003a, Wu et al. 2004]. The third method considers 

that breathing motion can be parametrised as a function of tidal volume and breathing fow [Low et al. 
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2005]. 

The goal of the above models was either to reproduce the respiratory motion or capture their characteris-

tics, so that they can be applied in different aspect of RT treatment. The natural understanding of breathing 

process has been employed and the most common approach is based on a single function which depends 

on time [Lujan et al. 1999]. It was also observed that only modelling techniques based on time series 

data were used, and some of the models did not contain any dynamics (see for example [Wu et al. 2004]) 

and did not exhibit a variability of breathing period and amplitude (see for example [Lujan et al. 1999]). 

Moreover, breathing perturbations such as drift, measurement noise and heart beat were not included. In 

term of modelling, there is still a need for an accurate model to describe surrogate(s) motion. The widely 

used Lujan model [Lujan et al. 1999] will be used here as a benchmark against which to assess the new 

models developed in this work. 

Another category of models addresses the prediction of surrogate motion to compensate for the delay 

induced by the tracking and delivery systems. The most dominant predictive models are based linear 

flters, NNs and KF. At the time the work started, all the existing prediction methods, except the sinusoidal 

flter of [Vedam et al. 2004], were non model-based approaches. Note that the KF of [Sharp et al. 2004] 

is considered as non model-based because the matrices in the KF were obtained from the time series data. 

The prediction based NNs was found to perform better for the long prediction horizon. 

There is a lack of a common motion data base for QA purpose and to compare modelling and prediction 

strategies. This results in each research group selecting their own data, which makes a fair comparison of 

the algorithms developed to date diffcult. Such fnding prompted the development of realistic respiratory 

data that could be used as a benchmarks. Prediction models developed to date are able to predict between 

0.09s and 1s in advance with an accuracy in the range of 1.2-2.5mm in term of RMSE. The evolution 

of the developed modelling and prediction techniques has involved different clinical data and assessment 

criteria have been also reviewed. 

65 



Chapter 4 

Respiratory surrogate motion analysis 

4.1 Introduction 

Currently, several real-time imaging systems can effectively track either the location of tumour motion 

inferred from the position of fducial markers implemented near the tumour and/or the position of external 

markers positioned on the patient’s thorax. The information gained from the monitoring of these surro-

gates was exploited to calculate treatment margin and design methods to compensate for organ motion 

(see Chapter 2). The surrogate motion has also been used to model the respiratory motion and predict the 

future evolution of the tumour position (see Chapter 3). Among the widely published surrogate motion 

data there is the internal SI motion data obtained using the RTRT system at Hokkaido University (Japan) 

and the external AP motion data collected at VCU (USA). These two types of data are involved in this 

research to develop a new motion modelling and predicting techniques. 

Several delivery systems and strategies are commonly in use to compensate for respiratory motion (see 

Chapter 2). To ensure that these delivery systems and compensation methods are effective, their design 

should take into account patient/surrogate motion. To evaluate the clinical performances of the deliv-

ery systems, specifc QA procedure and equipment are being developed. In particular, the MAESTRO 

Coventry team has developed a thorax phantom able to move both an artifcial ’tumour’ along three inde-

pendent axes of motion together with chest and rib cage motion along two axes of motion [Land 2009]. 

To provide the phantom with a realistic yet demanding set of motion trajectories encompassing as wide 

a range/type of motion as possible within an acceptable signal duration, a realistic model replicating 

observed behaviour is required. 

In this Chapter, a pre-processing, statistical analysis such as minimum, maximum, average and relative 

variation in percentage, histograms and distributions will be performed to identify such range of typical 
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motion for both internal and external surrogate motion. In the following section, the internal and external 

clinical data are presented. A frequency analysis of the aforementioned data is performed in Section 4.3. 

The respiratory motion characteristics such as motion amplitude and duration, velocity and acceleration 

are presented in Section 4.4 and 4.5. Discussion and conclusions are given in the last section. 

4.2 Clinical respiratory motion data description 

The amount of internal/external surrogate lung motion data available in this work varies depending on the 

location of the tumour, and also type and direction of motion. The database utilised in this work include 

breathing-induced tumour motion measured by tracking the location of surrogate fducial markers sur-

gically implanted within the tumour and an external surrogate marker located onto the patient/volunteer 

chest and abdomen tracked by a video camera. In addition, a new experiment was designed using signals 

from which the organ motion can be inferred, namely the air fow measured by a spirometer and the chest 

and abdomen motion measured by a tracking system called Polaris (see Chapter 2 and 6). 

A system for intra-fraction tumour motion tracking has been implemented by Shirato et al. [Shirato et al. 

1999]. During each fraction, dual fuoroscopes track fducial markers implanted in or near the tumour, 

providing their 3D spatial coordinates at 30 frames per second. Sometimes the realisation of internal 

motion tracking is diffcult and expensive to realise, hence, an external respiratory signal may be used. 

Following this principle and in order to improve the gating technique, George et al. assessed the impact 

of audio and video gating on breathing motion [George et al. 2006]. An external marker box attached to 

the chest was used to measure the breathing motion at sampling frequency of 30 Hz. 

The use of such clinical data will enable some comparison with previous research involving the same 

data. It is important to note that most researchers, that investigated the internal markers data, do not use 

all the them. However, they specify how many traces they have used but not which ones. 

4.2.1 Internal motion data 

One of the most signifcant clinical data sets investigated in this work provides the motion of fducial 

markers attached to the lung tumours. This data was obtained during the treatment of 40 lung tumour 

patients treated between 2001 and 2002 using the RTRT system at Hokkaido University [Shirato et al. 

1999; 2000b]. More than 300 data sets in SI direction were obtained, courtesy of Wu [Wu et al. 2004] and 

Shirato [Shirato et al. 2000b]. Some of these data were utilised for modelling and prediction (see Chapter 

3). Concerning the analysis of these data, Seppenwoolde et al. [Seppenwoolde et al. 2002b], examined 
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a 3D data in terms of the amplitude and curvature of the tumour motion, the differences in breathing 

level during treatment, hysteresis (the difference between the inhalation and exhalation trajectory of the 

tumour), and the amplitude of tumour motion induced by cardiac motion. It was found that the average 

greatest motion was in CC direction (12±2 mm), for tumours situated in the lower lobes and not attached 

to rigid structures such as the chest wall or vertebrae. For lateral and AP directions, it was (2 ± 1 mm), 

for both upper- and lower-lobe tumours. It was also observed a measurable motion in range of 1− 4 mm 

caused by heart beat. 

Neicu et al. [Neicu et al. 2003], have carried out an analysis of breathing pattern regularity of 11 datasets. 

The average amplitude (for every dataset) was 7.6 − 22.5 mm, with relative standard deviations of 

amplitude (̇ /Aavg in%) 6% − 49%. Wu et al. [Wu et al. 2004], developed a model based breathing 

states, which was used for breathing motion analysis [Wu et al. 2007]. It was found that EOE state has 

the longest average duration (1.46 s), while the average IN duration (1.33 s) is longer than the average 

EX duration (0.99 s). For the velocity, The EOE velocity is small and has very limited variation, while 

both IN and EX velocities are widely spread. It was noticed that EX velocity is correlated with the IN 

velocity in a more complex manner. Shirato et al. , [Shirato et al. 2006] examined the amplitude and 

speed of tumour motion detected using RTRT system. It was found that the average absolute amplitude 

was 8.2±6.5 mm, 10.7±8.64 mm and 8.8±7.0 mm for ML, CC, and AP respectively. For the average 

−1speed, it was 21.1 ± 8.9 mm · s , 9.9 ± 5.4 mm · s−1 and 6.6 ± 3.6 mm · s−1 for ML, CC, and AP 

respectively. 

The number of trajectories used to analyse the data differs in each publication. While, Sharp et al. [Sharp 

et al. 2004] have used only 14 patients with peak-to-peak breathing amplitude greater than 8 mm, Wu et 

al. [Wu et al. 2004], selected 23 patients with peak-to-peak breathing amplitude greater than 7 mm, and 

Neicu et al. [Neicu et al. 2003], used 11 data-sets with maximum peak-to-peak tumour motion greater 

than 10 mm among 41. Note that these data selection choices were not justifed by the investigators. As 

this research concerns only the respiratory motion and in order to be able to validate the new proposed 

modelling approach, only 9 traces with more than 90 s duration have been investigated amongst 358 

trajectories. 

An example of three samples of the excluded data is shown in Figure 4.1. Figure 4.1 shows irregularities 

between the respiratory cycles and in the end of exhalation (sub-fgure (a) and (b)), sudden large spikes 

(sub-fgure (a) and (b)), and an important measurement noise (sub-fgure (c)). These abnormalities in the 

respiratory data can be either caused by the movement of the fducial markers during the acquisition, the 

imaging system itself or the movement of the patient. 
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Fig. 4.1: Some examples of the excluded internal respiratory data. 

Having examined the selected trajectories, it was noticed that breathing patterns are different from a 

patient to another and even within the same patient. Such fndings are in agreement with [Shea and Guz 

1992, Benchetrit 2000a, Ritchie et al. 1994, Sontag et al. 1996], who found that motion exhibits intra and 

inter patient variability. A summary of different breathing cases is shown in Figure 4.2. An example of 

regular breathing motion is given by the sub-fgure (a). The main irregularities in breathing motion are 

time varying of frequency and amplitude which are illustrated by the sub-fgures (b) and (c) respectively. 

The baseline drift of breathing pattern is presented in sub-fgure (d). 
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Fig. 4.2: Time domain characteristics of IFM: (a) regular breathing, (b) frequency changes, (c) amplitude 
changes, (d) baseline drift. 
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There are several benefts from using this clinical data. Firstly, it represents realistic and clinically relevant 

surrogate motion. Secondly, it provides the means to evaluate the proposed modelling and prediction 

techniques described in Chapter 5 and 7. 

4.2.2 External motion data 

The second clinical data considered in this research was acquired from a breathing training database 

collected at VCU (USA) [George et al. 2006, George 2005]. These measurements represent a total of 

331-4 minutes respiratory traces, collected 30 times per second from 24 lung cancer patients. A refec-

tive marker box resting on the patient’s abdomen between umbilicus and xyphoid allowed tracking of 

respiratory motion in the AP direction using the RPM system (Varian Medical Systems, Palo Alto, CA). 

The software installed on a PC interfaced with the tracking system detects the marker motion digitally 

and records it. The aim of the study was to determine whether audio-visual biofeedback can improve 

respiratory reproducibility by decreasing residual motion for displacement and phase-based gating. 

The experiment considered three different cases namely, FB, AI and AVB. The FB session was used 

to obtain the average frequency of the patient’s breathing and displacement of the marker. Thus, this 

average frequency was served as an input for the AI. The average peak-to-peak range of motion provided 

the formulation of the input for the visual biofeedback for the AVB. The AI method used instructions to 

’breath in’ or ’breath out’ at a periodic intervals deduced from the patients’ own FB patterns. In the AVB, 

the patients were shown a real-time trace of their abdominal wall motion due to breathing and asked to 

maintain a constant amplitude of motion. 

Examples of breathing traces 80 s in length and for all three breathing feedback types are shown in Figure 

4.3. The trajectories, shown in Figure 4.3, appear to be more regular compared to the internal motion 

data. In contrast to the latter, the shown external motion trajectories do not exhibit a large amount of 

measurement noise. Finally, one can notice the existence of a baseline drift in the three trajectories. 

Each respiratory motion data fle that was obtained contained information about the position of the exter-

nal marker, the phase of the breathing cycle (0 to 2ˇ) at that particular position, and the time (0− 240 s) 

at which the samples were collected for the particular breathing-type technique sampled at 30 Hz. The 

position values for the patient respiratory motion moved negatively for anterior motion of the abdomen 

and positively for posterior motion of the abdomen. For an abdominal breathe, posterior motion of the 

abdomen corresponds with inhalation and anterior motion of the abdomen corresponds with exhalation. 

Patients positioned with their arms extended above their head (typical for lung treatments) predominantly 

use their abdomens for breathing. 
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Fig. 4.3: Example of a respiratory trace for FB, AI, and AVB. A constant y-offset 
value has been added to the displacement values of each these traces to 
improve the clarity of the fgure. 

Similarly to the previous data, some of the EM data were removed due to their large irregularity. There-

fore, the number of data has been reduced from 110, 111 and 109 to 64, 84 and 81 for FB, AI and AVB 

respectively. Figure 4.4, illustrates three examples of highly irregular data leading to their exclusion from 

the data set considered for analysis purpose. Sub-fgure (a) shows a sudden change in the movement 

of the external marker which can be due for example to a movement of the patient or a change in the 

breathing of the patient. In sub-fgure (b) an abnormality in one of the breathing cycles can be noticed. 

Sub-fgure (c) presents an example of spikes that can occur between the breathing cycles. 
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Fig. 4.4: An example of three excluded external surrogate respiratory data. 

This data was utilised by the experiment investigator George et al. [George et al. 2005] to inspect various 

issues, including the cosine power of the Lujan model [Lujan et al. 1999], the cycle-to-cycle variation of 
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breathing parameters, including mean position, amplitude of motion, and period as well as their pdfs, 

and fnally, quantifcation of the pdf of the entire respiratory motion. It was realized that the mean 

position can be represented by a normal distribution, and amplitude and period of the motion can be 

approximated with log normal distributions. This fnding confrms the fact that the breathing parameters 

should not be assumed to be constant, as it was stated by previous studies [Herk et al. 2003, Chetty et al. 

2003]. Moreover, A bimodal model was found to have the highest correlation with the pdf of the overall 

patient respiratory motion, although the normal model exhibited a strong correlation. The overall standard 

deviations of respiratory motion were 0.48, 0.57, and 0.55 cm for FB, AI, and AVB, respectively. In other 

words the proposed gating methods present more motion dispersion than the FB. 

4.3 Frequency analysis 

In addition to the variation of the respiratory amplitude over time, the time domain description of the 

respiratory data has revealed the existence of a baseline shift (especially for the EM data), the changes 

of respiratory period, and some respiratory abnormalities that might occur during the breathing process. 

Moreover, it was essentially useful to pick out the acceptable respiratory signals to be analysed. Examples 

of the time domain characteristics of IFM and EM data are shown in Figure 4.2 and Figure 4.3 respec-

tively. Notice that such representation does not provide the spectral content of the respiratory signal. 

The experimental data is usually corrupted by undesirable signals known as noise, disturbances or even 

loss of signal [Vaseghi 2006]. These disturbances can be caused by external sources or by the system 

itself. The relevant question is to identify the disturbances that should be removed from the data, and 

that which should be considered in the modelling process. In the frequency domain, these disturbances 

can be divided into high, low frequencies, and occasional bursts. High and low frequency disturbances 

are defned according to the frequencies of interest of the system (lung in this work). The frequency 

representation is powerful tool to visualize the frequency characteristics of a temporal signal, which 

can be performed by the Fourier Transform. The latter is computationally very attractive since it can 

be calculated by using an extremely effcient algorithm called the Fast Fourier Transform (FFT). This 

algorithm is available in the MATLABr software under the function FFT which requires the signal to 

be transformed and the number of points where the FFT is performed. 

By applying the FFT function to the preselected clinical data, it was observed that some of the IFM data 

contained heart beat signals, which act particularly on the end of exhalation (see sub-fgure 4.5(a)). In 

Figure 4.5, the time domain representation of a sample internal motion trajectory is given in sub-fgure (a) 

and its frequency representation is shown in sub-fgure (b) and (c). Sub-fgure (b) illustrates that the most 
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dominant frequency components which represent the respiratory signal are in the range of 0.3-0.4Hz, 

which is in agreement with those given in literature review (see chapter 2). Sub-fgure (c) shows a peak 

around 1.2 Hz which represents the heart signal and with less signifcant power spectrum a pick around 

0.6 Hz which represents some breathing signals with small amplitudes at the end of exhalation. The 

components with a power spectrum less than 0.005 are considered as noise (see sub-fgure (c)). 
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Fig. 4.5: An example of a frequency analysis performed on a trajectory from the IFM: (a) Time domain 
representation, (b) The respiratory components, (c) Heart beat, disturbances and measurement 
noise components. 

More advanced frequency analysis of the breathing motion has been performed using a time-frequency 

representation, which has been adopted [Cohen 1995]. The fundamental idea behind this representation is 

to describe and understand how the frequency is changing in time. Figures 4.6 to 4.9 show an example of 

spectrogram from each preselected data sets as well as their time and frequency domain representations. 

Analysing the spectrogram of the different respiratory data, it can be noticed that the variation of the 

different frequency components do not exhibit a regular pattern. Moreover, the range of the respiratory 

frequencies is more important for the external trajectories rather than the internal one. The time-frequency 

representation has also shown some irregularities that can occur during breathing. These latter take places 

in different points in times. Such analysis can be employed to design a time-frequency flter to remove 

the undesirable signals, as it can be useful for modelling the frequency changing in time or predict the 

irregularities. 
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Fig. 4.6: An example of (a) time series representation , (b) frequency representation, and (c) spectrogram 
for a IFM trajectory. 

1 

0 50 100 

P
ow

er
 

0.5 
0.8

P
os

iti
on

 [m
m

]

0 

−0.5 

−1 

0.6 

0.4 

0.2 

0
0 0.5 1 

Time [s] Frequency [Hz] 

(a) (b) (c) 

Fig. 4.7: An example of (a) time series representation , (b) frequency representation, and (c) spectrogram 
for a FB trajectory. 
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Fig. 4.8: An example of (a) time series representation , (b) frequency representation, and (c) spectrogram 
for a AI trajectory. 
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Fig. 4.9: An example of (a) time series representation , (b) frequency representation, and (c) spectrogram 
for a AVB trajectory. 
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Due to the large amount of clinical respiratory data used in this chapter and in order to have a global idea 

about every selected data-set, it was more convenient to consider the overall spectrum. The normalised 

spectrum of each subset of selected breathing data was carried out, and an overall normalised power 

spectrum plots have been performed in Figure 4.10. From the latter one can deduce that the frequency 

band can be divided into three main ranges of frequency components. The dominant breathing frequency 

(between 0.1 and 0.4 Hz) are caused by breathing motion, which differ from patient to patient and even 

within the same patient [Benchetrit 2000b]. This is in accordance with literature fndings [Seppenwoolde 

et al. 2002b]. The low-frequencies components (below 0.1 Hz) are characteristic of drift or baseline shift. 

These low frequency changes have been found to be more important for external data. Concerning the 

high-frequency components, one can notice the heart beat in the internal data, noise patterns and localised 

distortions signals caused mainly by the measurement process. The heart beat signal is located between 

1-1.2 Hz, and was detected only in 4 trajectories. According to [Seppenwoolde et al. 2002b], this is 

especially for tumours close to the heart. Note that the range of the frequency axis was chosen to give 

a better view of the respiratory components and heart beat for the IFM. The informations gained in this 

part will be used to design adequate flters to extract the respiratory signals as well as the other signals 

contained in the clinical data. There is a wide range of different respiratory frequency components in 

the FB data (sub-fgure (b) ) and IFM data (sub-fgure (a)), which highlight the presence of breathing 

irregularities. Conversely, in the AI data (sub-fgure (c)) and AVB data (sub-fgure (d)), one can see 

the effect of frequency gating, as the range of breathing frequencies as well as the number of distinct 

breathing frequencies is reduced. 
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Fig. 4.10: The overall normalised power spectrum for (a) IFM, (b) FB, (c) AI and (d) AVB. 

4.3.1 Respiratory disturbances and measurement noise 

The respiratory function is susceptible to different kinds of disturbances that is driven by complex un-

known physiological processes [Bruce 1996], or might be induced by the patient’s anatomy, health and 

movement. Moreover, tumour motion acquisition can also be infuenced by the measurement noise. These 

disturbances are defned as high frequency random fuctuations which is mainly due to external sources 

such as measurement devices. In literature, Sharp et al. [Sharp et al. 2004] have described the small 

distortions in the IFM data, as intra-cycle Gaussian noise, which found to be around 1 − 2 mm. Such 

Gaussian noise cannot be directly correlated to the expansion of the lungs, and could therefore be elim-

inated from the respiration signal during pre-processing by applying a band-limited or smoothing flter. 

Additionally to the Gaussian noise, a noise spike of up 10 mm has also been noticed in the IFM data 
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[Sharp et al. 2004]. On the other hand, the main investigators of RTRT experiment, Shirato et al. [Shirato 

et al. 2000b] have mentioned an average noise on the detected IFM position of 0.5 mm. 

By contrast to [Neicu et al. 2003, Seppenwoolde et al. 2002b] in which a 30-point median flter was used 

to remove measurement noise, a non-causal flter (fltflt) is implemented in the MATLABr software 

package [MathWorks 2006] using a 3rd-order Chebyshev low pass flter [Shenoi and Wiley 2006]. The 

Chebysev flter is designed to have 0.3 dB peak-to-peak ripple gain and 0.5 Hz cut-off frequency. Such 

choice of cut of frequency removes both noise and heart beat motion. Note that in the data sets considered 

the heart beat motion was not signifcant. In order to examine the difference between the two flters, a 

comparison has been performed, and results are shown in Figure 4.11. One can observe that the 30-point 

median flter smooths the end of exhalation and inhalation more than the Chebyshev flter. This generates 

a fltering error larger than 2 mm and therefore, loss of respiratory information. 
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Fig. 4.11: A fltering performance comparison between Chebyshev low pass flter and 30-point 
median flter on a sample of IFM. (a) Filtered signals against real signal, (b) fltering 
errors 

To assess the effectiveness and applicability of the proposed Chebychev low pass flter, the normalised 

power spectrum of the fltered data was compared to that of the original data, for one patient (see Figure 

4.12) and for the overall data (see Figure 4.13). In the Figure 4.12, the flter was able to smooth enough 

noise, without losing the breathing frequency information in the four cases. This result was confrmed 

while comparing the fltering performance of the overall data (Figure 4.13). 
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Fig. 4.12: An example of normalised power spectrum comparison between real and fltered data for (a) 
IFM, (b) FB, (c) AI and (d) AVB. 
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Fig. 4.13: The overall normalised power spectrum comparison between fltered and real data for (a) IFM, 
(b) FB, (c) AI and (d) AVB. 

The characteristics of the fltered trajectories in temporal domain was also carried out, see Figure 4.14. 

The aim of this last comparison, is to show that there is no signifcant discrepancy between the real and 

fltered signals, and to make sure that the fltered signal contain the tumour location information. 
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Fig. 4.14: An example of fltered and real respiratory data in time domain for (a) IFM, (b) FB, (c) AI and 
(d) AVB. 

Once the data is fltered, the measurement noise !, can be extracted from real data y, using the relation 

! = y− yf , where yf is the fltered signal. The histograms depicted in Figure 4.15, show the distribution 

of measurement noise for (a) IFM, (b) FB, AI, and AVB. It can be seen that the distribution of the 

measurement noise can be approximated by a Gaussian distribution, with mean µ = 0.00 mm and 

standard deviation ̇ = 0.86 mm, ˙ = 0.06 cm, ˙ = 0.06 cm and ̇  = 0.06 cm for IFM, FB, AI 

and AVB respectively. Moreover, one can observe that the amount of noise in internal data is larger than 

external data. This is because of the use of fuoroscopy acquisition. 
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Fig. 4.15: Distribution of measurement noise of (a) IFM, (b) FB, (c) AI and (d) AVB. 

4.3.2 Heart beat 

In the literature, the effect of heartbeat on tumour motion has been discussed in several contributions. 

For example in [Seppenwoolde et al. 2002b], tumour motion due to heartbeat was detected in 7 out of 

the 20 patients. The amplitude of this motion was 1 − 4 mm, mostly in the ML direction. Tumour 

movement with heartbeat was most signifcant for tumours near the heart or attached to the aorta. In the 

fuoroscopy study by Ekberg et al. [Ekberg et al. 1998], it was observed that for tumours located close to 

the heart, cardiac movement was a major contributor to tumour motion. In a twenty patient study by Ross 

et al. [Ross et al. 1990], measurements using an ultra-fast CT scanner, have demonstrated tumour motion 

of 9 − 6 mm in the ML and AP directions which was attributed to aortic pulsation, cardiac contraction, 

and respiration. Neither author distinguished between tumour motion caused by breathing or cardiac 
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motion. 

The frequency analysis has shown the existence of the heartbeat signal, which was only noticed in the 

internal data. From the nine selected internal motion trajectories, four have showed heartbeat signals. 

Figure 4.16, illustrates the normalized spectrum of these trajectories. The frequencies of the heartbeat are 

between 1 and 1.3 Hz. These signals are considered as disturbances which have been removed by the 

applied flter. 
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Fig. 4.16: Frequency spectrum of the 4 IFM trajectories where the heartbeat infuence was noticed. 

4.3.3 Baseline drift 

Baseline trend or drift refers to a gradual change in the mean value over a long period of time. It is 

a common issue in the respiratory motion, which can stem from the respiratory process itself, patient’s 

movement, or measurement devices. In the breathing process this drift is mainly due to the respiratory 

muscles tones. The patient relaxation throughout the treatment or the gravity acting on compliant lung 

tissue shortly after the patient assumes a supine position can also induce a drift [Seppenwoolde et al. 
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2002b]. The use of physiological monitor such as a Spirometer showed a long-term drift of the baseline 

during breathing [Zhang et al. 2003]. Moreover, the variation of the interaction between movement 

sensors and the body can generate a drift for the tracking systems based video camera. A systematic inter-

fraction shift can also occur [Seppenwoolde et al. 2002b, Shirato et al. 2004b]. This could result from a 

slight shift in patient position, or simply a change in the level at which the patient started breathing. The 

variation of the latter is larger than intrafraction shift as reported in [Seppenwoolde et al. 2002b, Shirato 

et al. 2004b]. 

The range of drift amplitude has been assessed in the previous works. For example, Chen et al. [Chen 

et al. 2001], found an upward drift of the skin marker position by 2.5 mm in superior direction, while the 

range of the marker motion with breath is only 2.0 mm. This drift was found to be breathing phase inde-

pendent. A baseline drifting of 5 mm or more has been observed in two of the four patients investigated 

during gated proton therapy [Sharp et al. 2007]. The effect of this phenomena on diverse tumour motion 

compensation techniques has also been discussed in the literature. For example, Murphy et al. [Murphy 

et al. 2002b] showed that a slow, steady drift of tumor position occurs in the breath-holding technique 

during an extended sequence of held breaths. It has also been noted that this baseline drift may cause 

the beam to turn on during an unintended interval [Mageras and Yorke 2004]. Concerning margin design 

technique, it can lead to underestimating the margin as mentioned in [Engelsman et al. 2005]. Some 

models that have been used to model the respiratory motion such as the one in [Lujan et al. 1999] may 

break down when a drift is considered. 

The identifcation of the trend signal has always posed a problem, since the drift and the remaining 

components of a time series are latent variables. Hence, assumptions about the drift signal have to be 

made. Generally, the trend is thought of as a smooth and slow movement over a long term. The practice 

of removing the trends and periodic components from the signal prior to analysis is an established method 

of signal processing [Pollock et al. 1999], and is referred to as partitioning or the decomposition of the 

time series. The periodicities are removed by ftting trigonometric or other periodic functions to the 

data; otherwise, the mean cycle is subtracted. This decomposition method can be applied to respiration 

dynamics because the periodic nature of breathing has been extensively studied and several methods exist 

for estimating and extracting the periodic patterns from the data. Such methods include the modifed 

sinusoidal model developed by Lujan et al. [Lujan et al. 1999] and the Ruan projection models [Ruan 

et al. 2006]. 

In the frequency domain representation performed previously, it was found that the drift components 

are below 0.1 Hz. Based on this information, a low pass flter was designed to remove the drift signals 

from the noise free clinical data. An illustration of the fltering technique used is shown in Figure 4.17. 

83 



4.3. Frequency analysis Chapter 4. Respiratory surrogate motion analysis 

Sub-fgure (a) shows the time and frequency domain characteristics of the noise-free signal. In the latter 

the respiratory and drift frequencies are shown. In sub-fgure (b) the extracted drift signal as well as its 

frequency representation are shown. Sub-fgure (b) illustrates the time and frequency representation of 

drift-free signal. In this last sub-fgure, it can be noticed that drift component is completely removed from 

the noise free signal. 
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Fig. 4.17: Spectrum and time series plots for (a) noise-free signal, (b) drift signal and (c) drift-free signal. 

After removing the drift from the respiratory data, the overall distributions of the different preselected 

data sets have been established (see Figure 4.18). It can be noticed that the drift is normally distributed 

with: (i) mean µ = −0.04 mm and standard deviation ˙ = 0.81 mm for IFM; (ii) mean µ = 0 mm 

and standard deviation ˙ = 0.14 cm for FB; (iii) mean µ = 0 mm and standard deviation ˙ = 0.15 cm 

for AI; (iv) mean µ = 0 mm and standard deviation ˙ = 0.09 cm for AVB. The EM data exhibit 

an important drift comparing the IFM data. This is due to the measurement devices used and treatment 

techniques adopted. Compared to the overall dispersion of the drift signals and measurement noise, one 

can observe that the dispersion of the measurement noise is larger for the drift in EM data and comparable 

for the IFM. A comparison to the overall respiratory motion will be performed thereafter. 
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Fig. 4.18: Distributions of drift signal for (a) IFM, (b) FB, (c) AI and (d) AVB. 

4.4 Respiratory motion amplitude and durations 

The main respiratory motion parameters which consist of the amplitude and period are essential for var-

ious tumour motion compensation techniques. While the motion amplitude is involved to design safety 

margins [Herk 2004, Engelsman et al. 2005], both amplitude and period are used to quantify the repro-

ducibility of position for gated treatment [Mageras and Yorke 2004, George et al. 2006], and for planning 

treatments that use beam tracking [Neicu et al. 2003, Murphy 2004]. However, it is diffcult to detect the 

variabilities of these parameters as well as motion direction. An understanding of the nature of breathing 

parameters is necessary to assess the regularity and reproducibility of the breathing patterns for both free 

and coached breathing. Moreover, this analysis will help to validate a simulation model of respiratory 

motion, which is one of the aims in this work. Whilst previous analysis have been performed on different 
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sets of breathing data using a Lujan model [Lujan et al. 1999], see Chapter 2, this section will be de-

voted to the pre-selected data, adopting a new respiratory parametrization and algorithm to estimate these 

parameters. 

As it is stated in [Wu et al. 2004, Neicu et al. 2006, Berbeco et al. 2005, Keall et al. 2004a], the breathing 

process is composed of three successive states called EX (lung defation), EOE (rest after lung defation) 

and IN (lung expansion). Sometimes, this rule is not validated and additional states can take place be-

tween or within regular breathing cycles. Other breathing irregularities such as changes in frequency and 

amplitude can also happen. This irregularity can be attributed to various sources related to the patients, 

for example young persons have been shown to exhibit more regular breathing patterns [Tobin 1983]. 

Other factors include, mental state, patient’s anatomy, presence of breathing diffculties, patient’s motion 

and measurement devices used to measure the breathing motion. 

By contrast to the breathing representation used in [Wu et al. 2004], in this work, the breathing process has 

been divided into two states as shown in Figure 4.19. This was raised from the fact that the combination of 

the EX and EOE states can be approached by a typical response of second order system. According to this 

description, a breathing cycle starts from the beginning of exhalation and ends by the end of inhalation. 

The period and peak-to-peak (PTP) amplitude are defned for every cycle. It has been observed that the 

start of exhalation and end of inhalation may not have the same position, in this case the average PTP 

amplitude between the PTP EX and PTP IN amplitudes is believed to be the most appropriate in this case. 

It is important to add that this difference in breathing levels can generate a drift. In this work the drift was 

mostly removed from the data prior to the detection of the PTP amplitude. 
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After a pre-processing of the measured data by extracting the main respiratory components, an off-line 
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algorithm based on gradient changing has been developed to identify the peaks and valleys of each breath-

ing cycle. A previous algorithm has been utilised in [Sahih et al. 2005] for the same objective, which was 

based on zero crossing. Both two algorithms needs the mean value of the motion to be known in advance. 

This is possible in the case when the baseline drift is removed. An advantage of the developed algorithm 

is that it is able to avoid local maxima and minima due to the measurement process or patient breathing 

diffculties (see Figure 4.20). 

For each type of respiratory data and each preselected data set, various information were estimated for 

each breathing cycle. In the end an overall vector for each parameter was built representing each type 

of data. This includes duration and amplitude for both IN and EX phases, which will be denoted by 

T in , T ex , Ain and Aex, as well as breathing cycle period (T ) and amplitude (A), the relative standard 

deviations of the period (˙T /T ) and amplitude (̇A/A). In addition to duty cycle (D), average and 

absolute amplitudes (Aave , Aabs), and minimum and maximum values for the said parameters. Duty 

cycle parameters describes the ratio of exhalation duration for a given breathing period (D = T ex/T ). 

This last quantity is necessary to quantify the predominant state during a breathing cycle. 

Once the parameters are calculated, the mean and relative standard deviation can be deduced for each 

data set. It is important to differentiate between the average and absolute PTP breathing amplitudes. 

Whilst the frst is more appropriate from a modelling point of view, the second defnition is considered 

for moving target, since the maximum and minimum displacement are required. The average and absolute 

amplitudes are respectively, the mean breathing cycle amplitude and the distance between the maximum 

and minimum positions. For every breathing trajectory the following steps can be applied to estimate the 

adopted parameters: 

Algorithm 1 Breathing Parameters Extraction Algorithm 

1: for traj = 1:M do 
2: Frequency analysis to identify breathing, drift and noise frequencies. 
3: Keep the respiratory components by fltering the drift and noise components using two low-pass 

flters. 
4: Identify the peaks and valleys of each breathing cycle. 
5: Calculate Ain , Aex and the PTP amplitude A for every cycle. 
6: Deduce the average amplitude Aave for each cycle. 
7: For every trajectory deduce the absolute amplitude Aabs . 
8: For every pre-selected data-set the overall average �ave, overall relative standard deviations 

˙�/�ave, overall minimum and maximum values of each parameter are calculated. 
9: end for 
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Fig. 4.20: Peaks and valleys detections. 

The results of the statistical analysis of the adopted variables for free and coached breathing defned above 

are shown in Table 4.1. It was recognized for both external/internal data that the tumor spends longer 

duration in the EX phase than it is in the IN phase. This is confrmed by the D parameter whereas the 

average of this latter is 56%, 56%, 54% and 52% for FB, AI, AVB and IFM respectively. The duration 

T ex exhibits more fuctuation than T in for all datasets. This can be observed from the comparison of 

relative standard deviation of the two said parameters. The relative standard deviation of T ex is 39% 

comparing to 24% for T in, in FB data, 31% against 21% for AI, 31% versus 23% for AVB, and 50% 

comparing to 22% for IFM. One can also deduce from this comparison that the variability of the duration 

parameters is more important for a free breathing than coached cases and motion is more stable in IN 

phase. 

Concerning the average T , one can state that it is larger for external datasets than it is for the internal 

datasets. This can be probably due to the motion direction and markers positions. For the external 

breathing data the effect of gating can be noticed. In other words, the relative average standard deviation 

of T was reduced from 31% in free breathing session to 24% for AI and AVB sessions. The range of 

average T is different for each data set. In FB data, it varies from 1.83 s to 9.07 s, for AI it is between 

1.90; s and 8.93 s, AVB ranging from 1.83 s to 7.80 s, and IFM 2.20 − 10.13 s. 

Concerning the analysis of PTP breathing amplitude, it showed that it is almost similar for both EX and 

IN for all datasets. This is the result of removing the baseline shift from the data before the analysis. 

As consequence of this last fnding, the correlation between Ain and Aex was carried out and results 

88 

http:2.20�10.13


4.4. Respiratory motion amplitude and durations Chapter 4. Respiratory surrogate motion analysis 

are illustrated in Figure 4.21. There is a strong linear correlation between the two parameters. In terms 

of average PTP amplitude it was noticed that gating increases the amplitude of motion and reduces the 

variation of the average relative standard deviation, since this value is larger for free breathing than the 

AVB and AI. In percentage this is equivalent to 47% for free breathing and 38% for AI, while it is 39% 

for AVB. This can be the effect of the compromise between frequency and amplitude gating. In terms of 

stability, the external data is more stable than the internal one. Regarding the gated data, it was found that 

Aave is increasing from 1.03 cm in FB to 1.25 cm and 1.30 cm for AI and AVB respectively. 
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Fig. 4.21: Correlation between EX and IN amplitudes for (a) FB, (b)AI, (c) AVB and (d) IFM. 
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Tab. 4.1: The range of durations and amplitudes for free and coached respiratory data. 

Data (Nb. of traces) Proprieties � �ave ˙�/�ave [%] �max �min 

FB (64) Duration (s) T in 

T ex 

T 

1.59 
2.08 
3.67 

24 
39 
31 

3.77 
5.83 
9.07 

0.90 
0.93 
1.83 

Duty cycle (%) D 56 10 75 27 
Amplitude (cm) Ain 

Aex 

Aave 

Aabs 

1.03 
1.03 
1.03 
1.53 

47 
47 
47 
40 

3.48 
3.46 
3.46 
3.58 

0.22 
0.23 
0.25 
0.52 

AI (84) Duration (s) T in 

T ex 

T 

1.69 
2.18 
3.87 

21 
31 
24 

3.50 
5.80 
8.93 

0.87 
0.87 
1.90 

Duty cycle (%) D 56 10 80 31 
Amplitude (cm) Ain 

Aex 

Aave 

Aabs 

1.25 
1.25 
1.25 
1.80 

38 
38 
38 
31 

3.58 
3.56 
3.07 
3.59 

0.29 
0.23 
0.29 
0.71 

AVB (81) Duration (s) T in 

T ex 

T 

1.75 
2.12 
3.87 

23 
31 
24 

3.83 
5.73 
7.80 

0.90 
0.87 
1.83 

Duty cycle (%) D 54 11 80 28 
Amplitude (cm) Ain 

Aex 

Aave 

Aabs 

1.30 
1.30 
1.30 
1.69 

39 
39 
39 
38 

2.91 
2.94 
2.88 
3.95 

0.26 
0.27 
0.30 
0.61 

IFM (9) Duration (s) T in 

T ex 

T 

1.53 
1.75 
3.28 

22 
50 
31 

3.23 
8.57 
10.13 

1.10 
1.10 
2.20 

Duty cycle (%) D 52 13 85 33 
Amplitude (mm) Ain 

Aex 

Aave 

Aabs 

10.73 
10.73 
10.73 
16.46 

47 
47 
46 
60 

25.28 
27.38 
26.04 
37.61 

4.33 
4.55 
4.45 
6.54 

The previous analysis has given an idea about the variability of breathing characteristics by means of 

statistical tools. Another type of statistical analysis will be devoted to visualize the distribution shape 

of different characteristics of breathing motion. This is very important for several reasons. First, it can 

be used to summarize a data set to better understand general characteristics such as shape, spread, or 

location. In turn, this information can be used to suggest transformations or probabilistic models for the 

data. Second, these methods might be helpful to check model assumptions, such as symmetry, normality, 

etc. 
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An adequate design of margin around the CTV is usually used to reduce the effect of breathing-induced 

tumour motion during the treatment delivery. The width of the margin is commonly based upon the 

quadrature sum of the standard deviations of the contributory errors over patient population and for a 

particular treatment site. This approach is applicable when the PDF of the component errors are Gaus-

sian. Respiratory motion uncertainty was considered as Gaussian by Van Herk [Herk 2004], however 

McKenzie did not agreed with this assumption [McKenzie 2000]. As part of the analysis, the distribution 

of respiratory motion will be assessed, in order to check the normality hypothesis on current data. 

Figure 4.22 illustrates the distributions of the different respiratory data investigated in this work. Indeed, 

both internal and external respiratory data used in this work can be approximated by Gaussian distribu-

tions with different parameters. Concerning external data, one can see that there is more fuctuation in AI 

data compared to FB and AVB. The standard deviation of FB, AI and AVB are 0.14 cm, 0.19 cm and 

0.10 cm respectively. 

Since the number of trajectories of internal movement is small compared to external movement, it seems 

obvious that the distributions for these latter are more representative than the former. However it can be 

considered as Gaussian distribution. The standard deviation of this latter is 1.29 mm. By comparing the 

distribution of the drift and the breathing signals, one can observe that the standard deviation is roughly 

similar for external data and larger for the respiratory signal in the internal movement. This confrmed 

that the external measurement are more indisposed to the baseline shift. This fnding will be useful to 

validate a simulation model of breathing. 
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Fig. 4.22: Distributions of the respiratory data for (a) IFM, (b) FB , (c) AI and (d) AVB . 

The overall population’s distributions for breathing durations and amplitudes have also been investigated. 

At the frst instance, only the durations are considered, especially, the period T and the ratio D. The 

parameter T1 and T2 are not involved since they are correlated to T . The main aim of evaluating the 

distributions of the quantities T and D, is to create a model of breathing frequencies as well as state 

changes in order to be used in the simulation of respiratory movement later on. For the four type of 

trajectories a PDF of each parameter for an overall population was ftted. 

Figure 4.23 and 4.24 show the distributions of T and D for FB, AI, AVB and IFM respectively. In the 

external markers data, the most dominant periods are between 2.5-3.5s for FB, 3-4s for both AI and AVB. 

The gating has increased the period of breathing, by increasing the importance of the periods between 

4.5-5.5s. For the internal markers data, the main periods are located between 2.5-3s. Regarding the 
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distribution of D one can see that the dominant range is 50%-55% for the fours datasets. In order to 

model the data distributions, several distributions have been carried out. It was found that generalized 

extreme value (GEV) distribution is the more appropriate distribution for T and D. The GEV distribution 

is a fexible three-parameter model that combines the Gumbel, frechet and Weibull maximum extreme 

value distributions. It has the following PDF: 

8
>>< 
>>

! 
)−

1 
k )−1− 1 

kexp − (1 + k (x−µ) 
˙ (1 + k (x−µ) 

˙ 
1 if k 6 0= ˙ 

f(x|k, µ, ˙) = 
1 (x−µ) (x−µ)exp(− − exp(− )) k= 0˙ ˙ ˙

: 

where k, ˙,µ are the shape, scale, and location parameters respectively. The scale must be positive 

(˙ > 0), the shape and location can take on any real value. 

The idea of modelling the respiratory motion period and duty cycle distributions was motivated by the 

need of a realistic respiratory motion data generator that can be used by researches for example to assess 

their motion compensation strategies or developed algorithms. 
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Fig. 4.23: Distributions of the period for (a)FB, (b) AI, (c) AVB and (d) IFM. 
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Fig. 4.24: Distributions of duty cycle for (a)FB, (b) AI, (c) AVB and (d) IFM. 

The distributions of the overall absolute amplitude for FB, AI, AVB and IFM data sets are shown in 

Figures 4.25. The range of the overall absolute amplitudes of the three internal motion data are not 

comparable. In the FB data the most important absolute amplitudes are between 0.5-2cm. The AI test has 

generated an increase in the absolute amplitudes where the dominant values are between 1-2.5 cm. In the 

AVB test the absolute amplitude of the trajectories was reduced to a range of 1-1.5 cm. Concerning the 

IFM data set, the regular absolute amplitude values are between 1 cm and 1.5 cm. 
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Fig. 4.25: Distributions of the overall absolute amplitude for (a) FB, (b) AI, (c) AVB and (d) IFM. 

4.5 Respiratory velocity and acceleration 

The velocity and acceleration of respiratory motion are crucial variables for different RTTT techniques 

such as a DMLC [Wijesooriya et al. 2005], PSS [D’Souza et al. 2005] or robotic arm [Schweikard et al. 

2004] (see Chapter 2). Note that the PSS based method is a closed-loop system unlike the DMLC and 

robotic arm or LINAC which are open-loop systems. In the three approaches the limits of the respiratory 

velocity and acceleration are required for suitable system design and greater accuracy. This latter can be 

achieved by measuring or estimating the velocity and acceleration in real-time. Furthermore, the design 

of dynamic lung phantom for QA evaluation, has to consider the speed of motion [Shirato et al. 2000b]. 

Finally, the said parameters can be used to predict the tumour motion position in order to compensate for 

different treatment delays, as it is the case in [Shirato et al. 2000b, Putra et al. 2008]. 
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It is important to remember that only few contributions have given the range of velocity and acceleration 

information. The velocity can be defned as the rate of change of position. It is a vector physical quantity; 

both speed and direction are required to defne it. The speed of tumour can be calculated from the 

following formula: 
dx 

v = (4.5.1) 
dt 

The acceleration is defned as the rate of change of velocity, or as the second derivative of position (with 

respect to time). It can be calculated from the following formula: 

d2x 
a = (4.5.2) 

dt2 

The velocity and acceleration of respiratory motion were calculated for the different breathing motion 

using the fltered data. An illustration of the breathing position, velocity and acceleration profles for the 

FB case, are given in Figure 4.26. It was noticed from the latter that the velocity and acceleration depend 

on the amplitude and period of breathing. To demonstrate this result, the velocity and acceleration of 

breathing exhibited by the tumour due to respiration was performed utilising the standard tumour motion 

model [Lujan et al. 1999] given by (3.2.1). The corresponding velocity and acceleration are as follows: 

ˇ ˇt ˇt 
v = (2nA ) cos2n−1( − °) sin( − °) (4.5.3) 

˝ ˝ ˝ 
ˇ ˇt ˇt 

a = 2An( )2
�
− 4 cos2n−2( − °) sin2( − °)

˝ ˝ ˝ 
ˇt ˇt ˇt 

+cos2n( − °) + cos 2n−2( − °) sin2( − °)
� 

(4.5.4) 
˝ ˝ ˝ 

It was found that for a typical tumour motion pattern (A=10 mm, ̋ =4 s, n=2) the maximum acceleration 

and the maximum velocity are 49 mm · s−2 and 31 mm · s−1, respectively. For extreme (hardly realistic) 

−1case of tumour motion (A=30 mm, ̋ =3 s, n=4) these quantities are 263 mm · s−2 and 251 mm · s , 
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Fig. 4.26: An example of signals representing (a) position, (b) velocity and (c) acceleration. 

In order to evaluate the overall range, average and relative standard deviation (in percentage) of breathing 

motion speed and acceleration for both free and gated data, a statistical analysis has been performed. The 

numerical results of this analysis are shown in Table 4.2. In addition to the speed and acceleration of 

the overall breathing cycles, the mentioned variables have also been estimated for the overall IN and EX 

phases. This will help to compare the speed and acceleration between IN and EX. 

Concerning the speed of breathing in IN phase compared to the EX, it was noticed that in the frst one the 

motion of lung is much faster than in EX, except for the IFM data that exhibits almost the same speed for 

both states. This is the opposite case for the acceleration. These last two results seem to be logical, since 

the respiratory system function is based on the help of muscles. These latter need more energy during 

the inhalation compared to the exhalation. Concerning the average speed comparison, it was found that 

it is 6 mm · s−1 for FB and 7 mm · s−1 for AI, AVB and IFM. The increase of average speed for the 

external data is caused by the increase of the amplitude by the gating method. The average acceleration 

−2 −2is 11 mm · s , 12 mm · s , 13 mm · s−2 and 15 mm · s−2 for FB, AI, AVB and IFM respectively. 

In term of speed and acceleration fuctuations, it can be seen that, there is more variation in the EX phase 

compared to IN. The audio and audio video gating have reduced this fuctuation, but they increase their 

−1ranges. The maximum speed and acceleration were larger for AVB and AI with (51 mm · s ,117 mm · 
−1 −1s−2 ) and (46 mm · s ,108 mm · s−2) comparing to FB and IFM with (31 mm · s ,71 mm · s−2) and 

−1(26 mm · s ,58 mm · s−2). 
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Tab. 4.2: The range of speed and acceleration for internal and external respiratory data. 

Data (Nb. of traces) Proprieties States Avg. Std./Avg. [%] Max. 
FB (64) −1)Speed (mm · s IN 

EX 
Cycles 

6 
5 
6 

73 
76 
76 

31 
26 
31 

−2)Acceleration (mm · s IN 
EX 
Cycles 

10 
13 
11 

83 
88 
88 

66 
71 
71 

AI (84) −1)Speed (mm · s IN 
EX 
Cycles 

8 
6 
7 

67 
76 
73 

46 
35 
46 

−2)Acceleration (mm · s IN 
EX 
Cycles 

10 
15 
12 

80 
82 
85 

93 
108 
108 

AVB (81) −1)Speed (mm · s IN 
EX 
Cycles 

8 
6 
7 

73 
75 
75 

51 
33 
51 

−2)Acceleration (mm · s IN 
EX 
Cycles 

11 
14 
13 

86 
89 
89 

105 
117 
117 

IFM (9) −1)Speed (mm · s IN 
EX 
Cycles 

7 
7 
7 

79 
77 
78 

26 
25 
26 

−2)Acceleration (mm · s IN 
EX 
Cycles 

13 
16 
15 

68 
76 
73 

44 
58 
58 

The overall distribution of velocity and acceleration were carried out and results are shown in Figure 4.27 

and 4.28. The profle of the velocity and acceleration distributions for the external data has two modes. 

One representing the exhale phase and the other one represents the inhale phase. It was notice that the 

most dominant range of velocities are between ±10 mm · s−1, while for the acceleration was between 

±20 mm · s−1 . Concerning the internal data, the profle of the velocity distribution has 7 modes. This 

results from the variability of the respiratory motion in this type of data. However, the main values of the 

velocity are between ±10 mm · s−1 . 
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Fig. 4.27: Motion velocity distributions for (a) FB, (b) AI, (c) AVB and (d) IFM. 
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4.6 Discussion and conclusions 

This chapter has presented an analysis of internal/external surrogate respiratory motion data. The latter 

involves both the internal SI displacement of fducial markers implemented around the tumour and the 

AP motion of external markers attached to the chest. For an accurate analysis of the respiratory motion, 

trajectories that exhibited abnormalities/irregularities (e.g. sudden large position change), were excluded 

from the both data sets. An analysis in the time and frequency domains of the selected signals was carried 

out. This has highlighted the presence of signals such as measurement noise (>0.5 Hz), baseline drift 

(<0.1 Hz), and heart beat (between 1-1.2 Hz) in addition to the breathing-pattern (between 0.1-0.4 Hz). 

The respiratory, drift and measurement noise signals were approximated by Gaussian distributions with 

different parameters. By comparing the standard deviation of the three distributions, it was found that 

the breathing distribution is roughly similar to the drift one for the external data and larger in the internal 

data. Both respiratory and drift distributions have a larger standard deviation than the measurement noise 

in the external data, and similar between the drift and the measurement noise in the internal motion. 

By contrast to current approaches that divided respiratory motion in three phases, two phases were consid-

ered in this work, as the external motion data seldomly require three phases to be described appropriately. 

In addition the modelling approach adopted enable one to include the third phase within the frst. The 

breathing was therefore modelled as a succession of exhalation and inhalation with varying amplitude 

and duration. The average period T and duty cycle D were (3.67s, 56%) ,(3.87s, 56%), (3.87s, 54%) and 

(3.28s, 52%) FB, AI, AVB, and IFM respectively. There was more fuctuation of the average period in 

the free breathing rather than the gated ones. The average amplitude of respiratory was found to be 1.03 

cm, 1.25 cm, 1.30 cm, and 1.07 cm for FB, AI, AVB, and IFM respectively. 

The statistical distributions of the period and duty cycle were calculated and found to be non-Gaussians. 

Such information is used in subsequent chapters, to generate realistic motion data from the new model 

developed in Chapters 5. Finally, the velocity and acceleration of the both motions were calculated. The 

−1average surrogate speed was of the order of 7 mm· s−1, the maximum velocity were between 26 mm· s
−1and 51 mm · s . The average acceleration was below 15 mm · s−2 and the maximum acceleration, 

which occurred rarely, was between 58 mm · s−2 and 117 mm · s−2. The maximum average speed and 

acceleration were larger for AVB and AI data comparing to the FB and IFM. Such fndings informed 

other members of the MAESTRO team as to the requirement that was imposed on the PSS control system 

in term of ability to compensate for relatively small motion together with the requirement for the overall 

system velocity and acceleration. Moreover, the fndings were used to defne the design requirements of 

the developed lung phantom [Land 2009]. 
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In conclusion, the analysis of the respiratory motion has helped to identify motion pattern, evaluate breath-

ing irregularities and select the minimal number of variables needed to describe the motion. Moreover, 

it has provided a valuable information that can be used for clinical practice, including motion modelling, 

treatment planning and motion prediction for real-time treatment delivery. 
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Chapter 5 

A new bilinear model for markers-based 

respiratory motion simulation 

5.1 Introduction 

Having reviewed current modelling and prediction algorithms in chapter 3 and analysed the clinical sur-

rogate motion trajectories, the current chapter describes two new respiratory models which aim to: (i) 

replicate the movement of respiration during the radiation delivery, (ii) evaluate treatment strategies on 

simulations, (iii) provide realistic motion trajectories that could be followed by an artifcial phantom, (iv) 

be used together with the statistical information collected in Chapter 4 to generate a set of benchmark 

trajectories to be used by other researchers. 

The frst model is based on a second order bilinear system (BLS) defned by an input/output difference 

equation. The model structure is derived from the knowledge gained from the clinical respiratory motion 

analysis performed in Chapter 4. The model parameters are then estimated off-line and on-line. While 

the former is considered to simulate the respiratory motion, the latter is desirable to accommodate for 

breathing changes. The proposed model and the parameter estimation are validated using the clinical data 

presented in Chapter 4. 

A polynomial and fltering approaches was used to remove the drift signals from the respiratory motion 

prior to modelling and simulation. In both instances, the parameters of the models were analysed and 

the generalizability of the mean average bilinear model for each respiratory data set was assessed. The 

bilinear model with fxed parameters was used to generate a set of respiratory data that can be used to 

realistically simulate breathing motion. Moreover, a set of different types of drift signals were added to 

the simulated respiratory motion in order to take into account the baseline drift in the respiratory motion. 
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The second method to model the respiratory motion has considered the modelling of the breathing cycles 

based on an on-line polynomial structure with the same number of parameters as the widely adopted 

modifed cosine function. The latter has been implemented on-line and used as a benchmark to compare 

the performance of the polynomial model. 

This chapter is organised as follows: Section 5.2 gives some background about the modelling framework 

of the bilinear systems. Section 5.3 presents an overview about the system identifcation technique. The 

new bilinear approach for respiratory motion modelling is discussed in Section 5.4. Section 5.5 presents 

an adaptive bilinear approach for respiratory motion modelling. Modelling based on the cosine and 

polynomial functions are shown in Section 5.6 and 5.7 respectively. The process of generating the set of 

respiratory motion data is described in Section 5.8. Finally, conclusions are drawn in the last Section. 

5.2 Background on modelling framework of bilinear systems 

The concept of BLSs was introduced in the 1960’s (see the surveys of references [Bruni et al. 1974, 

Mohler and Kolodziej 1980]). The BLSs form a subclass of nonlinear systems which are distinguished 

by their linearity in both state and input (or control), when considered separately. The bilinearity arises 

as a product between a system states and input [Mohler 1973a]. Being linear separately with respect 

to the state and the input, but not jointly, has enabled the extension to bilinear systems of the theory 

developed for linear systems both time-variant and time-invariant. Such systems were frstly applied to 

the control feld, when Mohler et al. considered a control system with multiplicative mode for modelling 

and controlling a nuclear reactor [Mohler 1973a]. The non-linear structure of BLSs offers some important 

advantages comparing to the linear case. With regard to modelling framework, the multiplicative term 

allows the modelling of those systems whose dynamic exhibit variability. 

BLSs have been found to be natural approximation of many types of systems commonly encountered in 

felds such as biology, socio-economics and engineering applications, see for example [Bruni et al. 1974, 

Mohler and Kolodziej 1980, Dunoyer 1996, Mohler 1970; 1971; 1972, Biondi et al. 1972, Leontief 1970, 

Disdell 1995, Mohler 1973b, Figalli et al. 1984, Mohler et al. 1996, Schwarz et al. 1996, Weeb et al. 

1996], The widespread use of BLSs has motivated the development of various algorithms for estimat-

ing the parameters of BLSs, such as subspace-based parameter estimation methods for BLSs [Favoreel 

et al. 1999, Verdult and Verhaegen 1999]. Maximum Likelihood and associated methods for parameter 

estimation have also been applied to BLSs [Gibson et al. 2005]. 

In order to understand the characteristics of the BLSs, the following single-input single-output (SISO) 
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discrete-time bilinear state-space representation of a BLS is considered: 

xk+1 = Axk + ukNxk + Buk + wk, (5.2.1) 

yk = Cxk + Dxk + vk. (5.2.2) 

Where, at each sample k, xk 2 Rn is the system state vector, uk 2 Rm and yk 2 Rp are the model input 

and output respectively. The matrices A 2 Rn×n , N 2 Rn×m×n , B 2 Rn×m , C 2 Rp×n , D 2 Rp×m 

parameterise the system. The sequences wk and vk are the unobserved state and measurement noise 

signals, respectively. This system may be rewritten in a time-varying linear (LTV) form as: 

xk+1 = A(uk)xk + Buk + wk, (5.2.3) e

yk = Cxk + Dxk + vk, (5.2.4) 

where, for each sample k, Ae (uk) = [A+ ukN] represents an input dependent ‘system’ matrix. A similar 

combination can be achieved by considering the input vector B, yielding to a state dependent input vector. 

The stability of linear systems has been clearly defned compared to nonlinear systems. However, if 

the control input is bounded from the above and below, i.e. umin < u < umax, then it is possible to 

determine stability in term of the equivalent of the eigenvalues of the linearized system at some input 

dependent operating point [Dunoyer 1996]. This condition was taken into account in this work by using 

input signals that are bounded. Considering the linearised system given by (5.2.3) and (5.2.4), the stability 

may be deduced from the zeros of det[�I −Ae (uk)] = 0. 

An equivalent quasi-linear transfer function representation may be defned as the ratio [Mohler 1973b]: 

m m−1N(s) bms + bm−1s · · · + b1s + b0 
t , (5.2.5) 

D(s) sn + (an−1 − �n−1u)sn−1 · · · + (a0 − �0u)

where s is interpreted as s = d/dt without the rigour of the Laplace variable associated with linear 

models. The bilinear parameters are denoted by �i and the linear part of the system is described by ai 

and bi. Since Ae (uk) is an input dependent quantity, the input uk will affect both the dynamic and steady 

state characteristics of the system. To illustrate this effect a steady state output and gain were performed 

as in [Dunoyer 1996]. These can be written as follow: 

b0Uss 
Yss = , (5.2.6) 

a0 − �0Uss 

Uss b0
Gss = = , (5.2.7) 

Yss a0 − �0Uss 
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where, Yss and Uss are defned as the steady state input and output, respectively. Such a static char-

acteristics is shown in Figure 5.1. While the linear system corresponds to the case �0 = 0, the BLS 

characteristics corresponds to �0 > 0 and �0 < 0. It is important to note that the steady-state gain is 

increasing for �0 > 0 and reducing for �0 < 0, with increased steady-state input. A considerable mod-

elling error might occur if a linear model is used to replicate a nonlinear phenomena. For the case of the 

respiratory process which exhibits IN and EX states, it is expected to have a positive � for the former and 

a negative � for the latter. 
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Fig. 5.1: BLS steady-state characteristics for: (a) system output, and (b) system gain. 

In this research the modelling process deals with observation in discrete-time obtained using various 

data-acquisition devices. The discrete-time representation of a discrete time-invariant SISO class of BLS 

is described by a bilinear model in the form of a Nonlinear Autoregressive with eXogenous Variables 

(NARX) process (so called input/output difference equation), of the form: 

p r

A(q −1)yk = B(q −1)uk +
XX

�ijuk−iyk−j + �k, (5.2.8) 
i=1 j=1 

where k is the integer time index, r � na, p � nb � na, na and nb are the orders of the A and B 

−1polynomials, q−1 is the backward shift operator, defned by q xk = xk−1, uk, yk are the input-output 

sequences and �k represents additive output noise. The polynomials A(q−1) and B(q−1) are given by 

−1 −na−1)A(q = 1 + a1q + ... + anaq , (5.2.9) 

−1) −nb−1B(q = b1q + ... + bnb
q , (5.2.10) 

where, ai, bi are constant coeffcients. Moreover, the bilinear parameter �ij is also constant. 
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Having introduced the notion of bilinear approach for system representations with the abilities to model 

nonlinear characteristics, hence replicate the behaviour of a plant more appropriately and over a wider 

operating range than linear models, the next section focuses on a brief introduction to the feld of system 

identifcation. 

5.3 System identifcation : An overview 

In most practical applications the system under investigation is not known and has to be estimated by 

making use of all available information. This technique is called system identifcation, and is about 

constructing a mathematical model from measurement data. This is often referred to black-box model 

estimation, when the parameters of the model have no physical interpretation, and grey box, when the 

parameters refect physical proprieties. There exist several different methods to solve the system iden-

tifcation problem, for example PEM [Ljung 1999], subspace methods [Overschee and De Moor 1996] 

and non-parametric 1 correlation and spectral analysis methods [Ljung 1999]. System identifcation in-

volves the following steps: Data set recording, structure identifcation, parameter identifcation and model 

validation, all of which include choices that are subject to personal judgement supported by a range of 

decisions criteria to evaluate the appropriate use of the solution. 

The data recording 

The system input-output data are collected through an experiment. Usually, a so called identifcation 

experiment is designed to maximise the information carried by the recorded data. The experiment may 

involve the choice of signals to be measured, and when can be measured, as well as the input (or test) 

signal choice, the sampling interval, etc. In some situations the possibilities to obtain data are much more 

limited and it is not possible to control for external factors that infuence the outcomes. In this work, the 

data were recorded from human volunteers and patients under different conditions. Some patients were 

subjected to various stimuli whilst others were left to breath freely. Whilst the ’output’ was measured, the 

stimuli received by the patient were not. The initial step of the work was to defne an appropriate ’input’ 

to the model which would results in the observed organ/patient motion. 

1In the system identifcation literature a distinction has been made between parametric and non-parametric methods. The 
parametric methods deals with estimating a specifed number of parameters, whereas the non-parametric methods deals with 
estimating e.g. entire spectra or step responses 
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Structure identifcation 

Structure identifcation is considered as the most important, and at the same time the most diffcult issue 

in system identifcation. Roughly speaking the problem can be divided into three sub-problems. The frst 

one is to specify the type of model set to use. This involves the selection between linear and nonlinear 

structure, between black box, grey box and physically parametrised approach, and so on. The next issue 

is to decide the size of model set. This includes the choice of possible variables and combination of 

variables to use in the model. It also involves fxing orders and degree of the chosen model types, usually 

to some intervals. The last item to consider how to parametrise the model set so that the estimation 

algorithm will be successful in fnding reasonable parameter values. 

The aim of the model developed in this work is to be generalisable to replicate a range of realistic motion. 

From a practical perspective the simplest possible model should be used with the minimum number of 

parameters. The structure of the models developed in this Thesis comprises linear and bilinear structures 

ranging from second-order to third-order models. The second-order model structure was used for the 

clinical data (see 5.4), since the analysis of the latter showed that the respiratory data is similar to the 

response of a second order system. Whilst in the data collected from the carried out experiment a set of 

model structures including second and third orders were assessed (see 6.4). The third order models were 

also investigated to see whether they can perform better. 

Parameter identifcation 

The next step is to fnd the parameters of the selected models that explain better the experimental data. It 

is called the parameter identifcation (or estimation) problem, in which a high model accuracy is desirable 

and the numerical solution should be tractable and reliable. Usually, the frst criterion is defned by the 

cost function to be minimised [Ljung 1999]. It is very common in engineering problems to choose a 

quadratic cost function for its convex property. A commonly used cost function is the mean squared 

prediction error (MSPE) between the measured and the hp-step-ahead prediction of the system output. 

This quantity depends on the parameters of the model to be estimated and is defned as follow: 

1 
MSPE(�) = 

X
[y(k)− ŷ(k|k − hp, �)]

2 , (5.3.1) 
N 

k 

where hp is typically chosen as unity, or is represented as an integer multiple of the sampling interval, N 

the number of data, and � vector of parameters to be estimated. Minimising such a cost criterion leads 

to a parameter identifcation framework, which is known as PEM. One particular subset of PEM, which 
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is known as output error (OE) minimisation, is extensively used in this research work to build simulation 

models of the respiratory motion. In general, it can be interpreted as having an horizon hp tending towards 

infnity, or at least to a number N of samples or observations. The corresponding minimised cost function 

defnes the mean squared simulation error (MSSE), and is given by 

N
1 

MSSE(�) = 
X

[y(k)− ŷ(k|k, �)]2 , (5.3.2) 
N 

k=1 

which is the MSSE between the measured output y of the system and the simulated output ŷ of the 

model. The model parameters are obtained by minimising the introduced cost criteria (depends on the 

model purpose). For example the minimising parameter vector for a simulation model is defned by: 

� = argmin MSSE(�) (5.3.3) b
�2D 

This operation is known as the optimisation process which attempt to fnd an optimal numerical solution. 

In this work constrained and unconstrained Nelder−Mead Simplex Method [Lagarias et al. 1998], were 

used for this purpose. It is important to state that the two presented cost criteria can also be used as a 

means to assess the performance of the different modelling techniques. Additionally, in the case where 

recursive estimation techniques are applied to obtain a time-varying model, use is made of the standard 

deviation of the estimated parameters, denoted std(�̂(k)). 

Model validation 

When a model is identifed, the next step is model validation. This step involves the assessment of whether 

the estimated model is generalisable and adequate for its purpose. This is usually carried out by dividing 

the measured data obtained from the real system into two distinct sets. The frst set is called the identifca-

tion set which is utilised as, its name implies, to identify the model parameters and the second one, called 

validation sets, allowing the model to be tested on unseen data, i.e. data not used for the identifcation. 

The conceptual idea behind such a process is that the model should aim to replicate the system behaviour 

(the identifcation set(s)) as best as possible, but not at the detriment of the generalisation to other data 

sets (the validation set(s)) issued from the same system. 

The developed models in this work were validated using different respiratory data including clinical data 

from VCU (USA) and Hokkaido University School of Medicine (Japan) as well as data acquired from an 

investigated experiment. The steps of system identifcation technique are used next to determine model-

based simulation of the respiratory motion. 
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5.4 Bilinear time-invariant (BTI) model for respiratory motion 

The main motivation behind this modelling work is to investigate the applicability of system identifcation 

technique and, more particularly, the bilinear modelling framework to model and simulate respiratory 

motion. The new approach considers the lung as a dynamic system replicating the motion in response 

to a generated input signal. The latter is analogous to having a signal generated by the nervous system, 

which is the main responsible for the breathing process (see Section 2.4). In this work, the breathing 

process is considered as a succession of two states, i.e. IN and EX. Subsequently, a virtual input signal 

is modelled as a square wave with fxed amplitude and varying frequency/duty cycle corresponding to 

the irregular time switching between IN and EX. Fixed amplitude as well as amplitude depending on the 

inhale and exhale amplitudes were trialled, however the latter require more parameters to be identifed. 

This Section, therefore, considers that the virtual input signal is of fxed amplitude. 

Figure 5.2 illustrates an example of input signal generated from respiratory data described in Section 4.2 

using the algorithm 1 described in Section 4.4. The input signal switch between a high level correspond-

ing to the exhalation phase and the low level representing the inhalation phase. The main information 

exhibited by the generated input signals is the frequency characteristics of the respiratory motion. It is 

however important to notice that there is a time switching uncertainty due the accuracy of the input gener-

ation algorithm. In some simulations the switching level was between the maximum and minimum values 

of the respiratory motion instead of 1 and -1. 
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Fig. 5.2: An example of generated input signal. 
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Disturbances that can affect the respiratory motion include measurement noise, heart beat and amplitude 

drift over time (see Chapter 4). The main aim being to model only the respiratory motion, the remaining 

signals are considered as external signals, separated from the main respiratory signal. An illustration of 

the proposed overall modelling approach is shown in Figure 5.3. The measurement noise is assumed to 
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be above 3 Hz and is removed using a third order low pass Chebysev flter, which is applied twice, frst 

in forward direction and then in reverse direction to obtained zero-phase shift, i.e. non-causal flter. The 

flter utilised here, is the function ‘fltflt’, Matlabr software package. The same principle can be used 

to remove the heart beat component in the IFM. 

Fig. 5.3: Schematic of the overall modelling approach adopted in this work. 

It was also shown in the respiratory data analysis performed in Chapter 4 the existence of a drift signal, 

which is more important in the external data. These low frequency components in general have a negative 

infuence on the estimation results. They cause a considerable bias of the model and do not average out 

because of their low frequency behaviour. Hence, it is natural to remove them from the data. Two different 

approaches have been used for drift correction. The frst one is to estimate the trends and to remove them 

from the signals. A polynomial function with different orders was initially ftted to the respiratory data. It 

was found that the drift is satisfactory modelled by 10th and 20th order polynomial function for internal 

and external data, respectively. 

Figure 5.4 shows an example of drift modelling and elimination using a polynomial model. The latter is 

divided into sub-fgure (a) and (b) which illustrate respectively an example of respiratory signal including 

the drift and the corresponding drift-free signal. The polynomial method to remove the drift was able to 

extract the drift from the respiratory data. The modelled drift signal will be removed from the fltered 

data before modelling and validation process. The surrogate motion can subsequently be reconstructed 

by adding the drift to the simulated breathing signal (see Figure 5.3). 
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Fig. 5.4: Drift elimination using the polynomial model: (a) noise-free signal including the drift, (b) the 

drift-free signal. 

Whilst the polynomial model is a known practice to deal with quadratic drifts, it might include some res-

piratory components because the choice of the polynomial order is approximate. Moreover, it is sensitive 

to the initial conditions. To overcome such issue padding strategies can be used. 

The second ‘model based’approach involves prior information about the frequency of the drift signal 

to flter it using a low pass-flter designed to remove the frequency components below 0.05 Hz. This 

cut-off frequency was chosen to make sure that only the drift signal is removed. An illustration of the 

proposed aforementioned approach is shown in Figure 5.5. The temporal and frequency representation of 

the noise-free respiratory signal with the drift is presented in sub-fgure (a), and drift-free signal is shown 

in sub-fgure (b). As it can be seen from the frequency representation of both noise-free and drift-free, the 

used flter was able to remove the low-frequency component and keep only the respiratory information. 

Note that a high-pass fltering can also be performed to remove the drift signal. 
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Fig. 5.5: Drift elimination via pre-fltering: (a) noise-free signal including the drift, (b) the drift-free 

signal. 

After removing the external signals the next step is to fnd a model structure for the respiratory motion. It 
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has been demonstrated by several authors, see for example [Crooke et al. 2002, Kanae et al. 2004, Ben-Tal 

2006], that the respiratory system is a nonlinear process. A bilinear model is an example of a suitable 

candidate for a nonlinear model which has been found in [Sahih et al. 2005; 2007] to be appropriate 

for simulating the respiratory cycles. The choice of the bilinear model (BM) stems from the analysis of 

the respiratory motion performed in Chapter 4, which showed that the exhale phase can be approximated 

with a second order system response and the inhale phase with frst order response (see Figure 4.19). This 

results in an asymmetric response. Thus, the following second order BM structure is chosen to model the 

respiratory motion: 

yk = −a1 yk−1 − a2 yk−2 + b uk−1 + � yk−1uk−1 + d+ ek. (5.4.1) 

The offset dis added in the model to compensate for the constant drift between the model output and real 

output due to the fact that the amplitude of the input uk is constant. The modelling error (or residual) is 

represented by ek. 

5.4.1 Parameter estimation 

Once the model structure is chosen, next stage will be parameters estimations. Given (5.4.1), the regres-

sion model can be written as follow: 

yk = ' bls 
T (k)� + ek, (5.4.2) 

where the parameter vector � and regressor (or data vector) ' bls are defned as follow: 

� = [−a1 ,−a2 , b , � , d ]
T , (5.4.3) 

' bls(k) = [yt−1, yt−2, ut−1, yt−1ut−1, 1]
T . (5.4.4) 

From the measurement data the vector ' bls(k) can easily be calculated at each instant k = l, . . . , N , then 

N − l + 1 regression equations can be derived as: 

y = �� + e (5.4.5) 
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where 

y = [y(l), y(l + 1), . . . , y(N)]T , (5.4.6) 

� = ['(l),'(l + 1), . . . , '(N)]T , (5.4.7) 

e = [e(l), e(l + 1), . . . , e(N)]T . (5.4.8) 

Given that the goal of the model is to simulate the respiratory motion, it is proposed to estimate the 

parameters by minimising the MSSE, defned by (5.3.2). As such, the MSSE relates to the Euclidean 

distance between the measured and simulated output, by opposition to the more communally used one 

step-ahead prediction, which utilised past output measurement. The resulting problem is non-linear and 

does not have explicit solution. An approximation can be made by use of an optimisation technique. In 

this particular case, use was made on the unconstrained Nelder−Mead Simplex Method [Lagarias et al. 

1998]. In practice a non-linear minimising procedure is exposed to the risk of getting trapped in a local 

minimum. In order to avoid this problem, an initial estimate in the neighborhood of the minimum must be 

provided. Usually, an estimator in the category of prediction error method (PEM) is used for this purpose. 

A least squares (LS) method is one of those that minimises the criterion function J defned as a sum of 

squared errors 
2 

JLS = 
y −��

 (5.4.9) 
2 

The initial estimate is then given by 

�̂i = (�T�−1)�T y (5.4.10) 

Finally, the introduced models were estimated and validated using the internal and external breathing 

motion in the SI and AP direction respectively . The steps of the applied algorithm can be summarised as 

follows: 

Algorithm 2 Modelling and Validation Procedures of the Respiratory Motion 

1: For a given respiratory signal {YN}, where N is the number of samples considered. 
2: Remove measurement noise and drift. 
3: Generate a squares wave signal {UN} with fxed amplitude by detecting the peaks corresponding to 

the end of the inhalation and the exhalation phases from {YN}. 
4: Separate data in two sets, the frst set for modelling {U1,Y1}, and the other set of unseen data 

{U2,Y2} to validate the model. 
5: Estimate an initial vector parameter �bi, for input-output observations {U1,Y1}, using linear least 

squares (LLS), which is based on minimising one step ahead prediction. This latter is then used to 
initialise the iterative optimisation technique in the next step. 

6: Estimate using a nonlinear optimisation technique, the parameters of the model � iteratively by min-
imising the MSSE, for input-output {U1,Y1}. 

7: Use the input observations {U2} and the model to simulate the estimated unseen data {Yb 2}. 
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5.4.2 Simulation results for polynomial drift 

The preliminary procedure utilised in this work to eliminate the drift signal was based on polynomial 

ftting. For every respiratory motion signal, the measurement noise was subtracted and a polynomial 

function with different orders were ftted using a least squares method (see an illustration in Figure 5.4). 

The input signals were then generated with the minimum and maximum values corresponding to the min-

imum and maximum of the respiratory trajectories. Having the input-output signals for every respiratory 

signal, a BTI model is built and validated using algorithm 2. The number of samples considered for both 

modelling and validation was N=1000, which is equivalent to 33s time for a sampling frequency of 30 

Hz. 

The modelling and validation procedures presented in the algorithm 2 were applied to the four different 

respiratory motion data-sets and a sample result from each data-set is given in Figure 5.6. Sub-fgure (a) 

shows the modelling and validation results from a sample IFM data. In the frst 1000 samples, an average 

BTI model of respiratory motion with different time constant for exhalation and inhalation is estimated. 

In the second 1000 samples, the estimated average BTI model was able to replicate the unseen data with 

an accuracy of 0.80 mm in term of MASE. The lower performances of the average BTI model were 

mainly noticed in the end of the inhalation and sometimes when an unusual motion within the end of 

exhalation occurs. 

The performance of the BTI model applied to a sample trajectory from the FB dataset is shown in sub-

fgure (b). In the latter, a MASE of 0.94 mm was achieved by the BTI model in the validation step. 

Similar to the previous case the lower performances were noticed in the end of the inhalation. In sub-

fgure (c) and (d) a sample result from the AI and AVB data-sets respectively are shown. The BTI model 

performs the validations sets with a MASE of 1.17 mm for the former and 0.49 mm for the latter. One 

might notice that the MASE in validation stage for the AI sample has the largest value compared to the 

other samples from the remaining data-sets. This was mainly due to an irregular breathing cycle located 

after 500 samples (see sub-fgure (c)). 

The same remark as in the previous trajectories, the BTI model has a problem to catch the end of the 

inhalation in some breathing cycles. In conclusion, despite some respiratory motion irregularities, the 

BTI model can replicate adequately the respiratory motion with a MASE less or around 1 mm. The BTI 

model was able to replicate the slow respiratory motion such as the one given by the IFM as well as the 

fast motion which characterise the external markers data. In the case of a constant respiratory motion the 

BTI model can be used to track the respiratory measurement in the validation set. 

114 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5. A new bilinear model for markers based respiratory 
5.4. Bilinear time-invariant (BTI) model for respiratory motion motion simulation 

Modelling−MASE=0.74mm Modelling−MASE=0.89mm 
10 

1 
0 

0.5 

Real Sim 

0 200 400 600 800 1000 

Real Sim 

0 200 400 600 800 1000 

P
os

iti
on

 [c
m

] 
P

os
iti

on
 [c

m
] 

P
os

iti
on

 [m
m

] 
P

os
iti

on
 [m

m
] 

P
o

si
tio

n
 [

cm
] 

P
o

si
tio

n
 [

cm
] 

P
o

si
tio

n
 [

cm
] 

P
o

si
tio

n
 [

cm
]

−10 0 

−0.5−20 

−1 
−30 

Validation−MASE=0.80mm Validation−MASE=0.94mm 

Real Sim 

0 200 400 600 800 1000 

Real Sim 

0 200 400 600 800 1000 
Samples 

1 

0.5 

0 

−0.5 

0 

−10 

−20 
−1 

Samples 

(a) Internal fducial markers (b) Free breathing 

Modelling−MASE=0.8mm Modelling−MASE=0.39mm 
0.5 

Real Sim 

0 200 400 600 800 1000 

Real Sim 

0 200 400 600 800 1000 

Validation−MASE=0.49mm 

0.5 

00 

−0.5 
−0.5 

Validation−MASE=1.17mm 
0.5 

Real Sim 

0 200 400 600 800 1000 

Real Sim 

0 200 400 600 800 1000 
Samples 

0.5 

0 

−0.5 

0 

−0.5 

Samples 

(c) Audio instruction (d) Audio-visual biofeedback 

Fig. 5.6: Bilinear time-invariant model applied to an example of each clinical data set after the polynomial 
drift removal. 

The performance of the developed models were assessed by means of the criteria (3.4.2)-(3.4.4), and an 

overall average of these criteria was assessed over the number of the trajectories M (see Table 5.1). In 

term of modelling, the BTI gives an overall mean absolute simulation error (MASE) less than 1mm 

for all patients and an overall RMSSE less than 1.27mm. However, the overall Max.ASE is larger 

than 3mm for all the data sets. This is mainly due to the irregularities of some of the respiratory data 

which were included in this simulations. A comparison between the modelling performance of the BTI 
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model against the performance of the model presented in [Wu et al. 2004], both involving the IFM data, 

was carried out. It was found that the RMSSE criteria for the BTI model is a slightly bigger than the 

phase based modelling approach. However, the BTI model exhibits dynamic and has fxed number of 

parameters. 

Comparing the performance of the investigated data, it may be noticed that the model conforms rather 

well to real patient data in case of AVB with respect to AI, FB, and IFM. This is mainly due to the fact 

that patients are provided with guiding instructions which are characterised by a same regular breathing 

amplitude and frequency, to help them to keep their normal breathing. This is in agreement with the 

results given in validation phase, as the three adopted criteria are small for the AVB data set. This confrm 

clinical observation linked with the usefulness of methods allowing patients to monitor their breathing. It 

is important to highlight the interest of the maximum error criterion which is not in agreement with the 

MASE and RMSSE for the modelling phase (see the performance of the IFM data). 

Tab. 5.1: Simulation error evaluation for polynomial drift (the best results are indi-
cated in bold). 

Respiratory data M MASE [mm] RMSSE [mm] Max.ASE [mm] 
Mod. Val. Mod. Val. Mod. Val. 

IFM 9 0.84 1.05 1.12 1.39 3.81 4.54 
FB 110 0.93 1.17 1.18 1.51 3.64 4.67 
AI 111 0.99 1.29 1.26 1.71 3.82 5.65 
AVB 109 0.94 1.04 1.20 1.35 3.69 4.10 

An assessment of models’ parameters was also carried out to analyse the developed models and check 

whether a generalisable model is realisable. For each data set, the mean and standard deviation of the 

overall estimated parameters were calculated, see Table 5.2. The mean value of the estimated parameters 

are slightly different for the four data sets. This dissimilarity in the overall mean values can be attributed 

to the variability in the characteristics of breathing motion including the amplitude and frequency motion. 

A large deviation of the parameters from their mean values was also noticed, which suggests diffculties 

to achieve a single model. 

It was also noticed that the overall standard deviation of the models parameters is larger for FB and AI 

data sets compared to the IFM and AVB. The overall mean bilinear term � was found to be negative for 

the FB and IFM data sets and positive for the AI case. The overall mean of the constant offset parameter 

is very small for the external data and larger for the internal data. This is mainly due to the polynomial 

order, which is higher for the internal motion data and lower for internal motion data. 
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Tab. 5.2: An overall parameters analysis for polynomial drift. 

Resp. data M a1 a2 b � d 

a1 ± ˙a1 a2 ± ˙a2 b± ˙b � ± ˙� d± ˙d 
IFM 9 −1.8194 ± 0.0872 0.8284 ± 0.0835 0.0067 ± 0.0038 −0.0003 ± 0.0004 −0.0205 ± 0.0396 

FB 110 −1.7418 ± 0.3410 0.7489 ± 0.3352 0.0076 ± 0.0103 −0.0053 ± 0.0173 0.0004 ± 0.0014 

AI 111 −1.8090 ± 0.2343 0.8152 ± 0.2272 0.0048 ± 0.0041 0.0004 ± 0.0174 0.0001 ± 0.0011 

AVB 109 −1.8650 ± 0.0855 0.8699 ± 0.0838 0.0040 ± 0.0032 0.0000 ± 0.0025 0.0001 ± 0.0006 

Simulation studies were carried out to evaluate the modelling performance of the overall mean BTI model 

against the validation sets of each data set. This was achieved by estimating the unseen data {Yb 2} using 

the input observations {U2} and the average model parameters (�), which their values are given in in 

Table 5.2. The MASE is then calculated using (3.4.3). Figure 5.7 shows the results of simulation studies. 

Sub-fgure (a) shows that the most dominant MASE errors are around 3 mm which were obtained in 40 

% of the IFM trajectories. Concerning the external motion data, the most dominant errors were found 

around 1 mm with a percentage of 34%, 25% and 35% for the FB, AI and AVB, respectively. The main 

idea behind this simulations is to quantify the number of trajectories that can be simulated by the average 

BTI model. 

Knowing that a MASE of 1 mm can be considered as a good result for respiratory motion modelling, 

the percentage of the trajectories that have a MASE near 1 mm is around 20%, 60%, 40% and 55% 

for IFM, FB, AI and AVB data sets, respectively. Even though the FB, AI and AVB data still include 

some irregular breathing data, the results given by average BTI model are considerably good. There is 

an important number of data that cannot be modelled by the average model in the IFM data set. This is 

mainly due to the variation of the breathing motion, which can be from patient to patient, and even within 

the same patient. Moreover, in addition to the heart beat component, which is still in the internal data, 

and the data which contains some abnormalities, were also included in the simulation. 
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Fig. 5.7: An average BTI model applied to different types of surrogate motion for polynomial drift re-
moval. 

5.4.3 Simulation results for pre-fltered drift 

The second approach investigated in this work, in order to remove the drift signals is based on low fre-

quency signal fltering. The design of an appropriate flter requires a good knowledge about the frequency 

characteristics of the respiratory signals. Note that the frequency spectrum of the clinical data was already 

performed in Chapter 4 as well as the low-pass flter design. Compared to the polynomial method, pre-

fltering exploits a priori knowledge about the respiratory signals characteristics and should not lead to 

an over parameterised model such as that which can occur with the polynomial method. Similarly it is 

possible to extract the ‘true’ signal without the drift by applying a high pass flter. 

Contrary to the previous simulations, the number of samples used in this case for the modelling and 

validation of EM is N=2000 samples, which is equivalent to 1 min for a sampling frequency of 30 Hz. 
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Due to the short time duration of the internal data, the same number of samples as the previous simulations 

for modelling and validation was used. The level of the generated input signals were fxed between -1 

and 1. To ensure that the model are generalisable and stable the values of their poles are constrained. 

The concept of the poles is introduced here as the amplitude and frequency of the respiratory motion 

depend of poles of the model used to generate the breathing motion. Therefore, in order to avoid a large 

respiratory amplitudes and frequency which can lead to a large modelling error, the range of models poles 

has to be chosen properly. 

Considering the approximate second order BLS expressed in discrete-time: 

N(z) 

D(z) 
= 

bz 
, 

z2 + (a1 − �u�)z + a2 
(5.4.11) 

where z is a complex number. Alternatively, Equation 5.4.11 can be expressed as follow: 

N(z) 

D(z) 
= 

bz 
,

(z − p1)(z − p2)
(5.4.12) 

where p1,2 = f(�, u�). The equivalent poles of the system can (loosely) be expressed in term of model 

parameters: 

(a1 − �u�) = −(p1 + p2), (5.4.13) 

a2 = p1p2, (5.4.14) 

where u� is the known value of the input signal and p1, p2 are the poles of the system. The parameters 

of the model can be estimated by minimising MSSE. This can lead to several solutions, including 

those which correspond to an unstable system. To ensure that the model remains stable, an optimisation 

technique with constraints has been used. This is equivalent to applying regularisation technique, by 

constraining the parameters to be bounded on an interval. Assuming that � � p1,2 � �, such as � = 1/2 

and � = 0.9. By using (5.4.13) and (5.4.14), it can be deduced that −� � a1 � −� and �2 � a2 � �2 . 

Simulation studies were carried out by applying algorithm 2 in which the nonlinear optimisation part has 

considered constrains on the estimated parameters to make sure that the resulting estimated systems are 

stables. Results of simulation studies, for a sample from the internal and external data sets, are depicted 

in Figure 5.8 and 5.9, respectively. The performance of the BTI model on the internal sample data in term 

of MASE was found to be 0.88 mm for modeling and 0.93 mm for simulation. Although these results are 

slightly larger than those found for the polynomial removal drift, they are still better than the ones given 

by the previous models reviewed in Chapter 3. The increase of the MASE in pre-fltering drift case can 
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be due to the constrained optimisation technique considered. 
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Fig. 5.8: BTI applied to a sample IFM data after pre-fltering drift removal. 

Concerning the external motion data, although the length of the latter is larger than the previous case (see 

subsection 5.4.2), the BTI model performs well these data. In term of modelling, the MASE for FB,AI 

and AVB was 1.05 mm, 0.99 mm and 0.44 mm respectively. For the validation sets, the MASE was found 

to be 1.02 mm, 0.84 mm and 0.48 mm for FB,AI and AVB data respectively. The modelling performance 

on the data with audio and video gating was better than the case of FB data. 
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Fig. 5.9: BTI applied to different types of external surrogate motion after a pre-fltering drift removal. 

The performance of the developed models was also assessed using the criteria (3.4.2)-(3.4.4), and results 

are shown in Table 5.3. Concerning the internal data which involve the same number of samples, the con-

strained optimisation technique has slightly decreased the MASE and RMSSE criteria but increased 

the Max.ASE for modelling compared to the case of polynomial drift removal. However, the RMSSE 

criteria is still slightly larger compared to the RMSSE of the model developed in [Wu et al. 2004]. The 

maximum value of the MASE and RMSSE were noticed in AI data for modelling by 1.14 mm and 

1.50 mm respectively. Concerning the validation stage, the maximum value of the MASE was 1.32 mm, 

found in the AI data, while the maximum value of the RMSSE was 1.94 mm, noticed in AVB data. The 
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best performance between the three external data sets was noticed in FB case. Compared to the previous 

simulation results, one might notice that the assessment criteria are a slightly larger in the second case. 

As in the polynomial drift case, a large overall Max.ASE was observed. 

Tab. 5.3: Simulation error evaluation for pre-fltered drift (the best results for the external data are indi-
cated in bold). 

Respiratory data Nb. of traj. MASE [mm] RMSSE [mm] Max.ASE [mm] 
Mod. Val. Mod. Val. Mod. Val. 

IFM 9 0.82 1.04 1.11 1.42 3.84 4.70 
FB 110 1.02 1.17 1.33 1.67 4.64 7.78 
AI 111 1.14 1.32 1.50 1.73 5.42 6.22 
AVB 109 1.06 1.29 1.38 1.94 4.75 9.57 

Table 5.4 shows the overall mean and standard deviation of the estimated parameters. The overall mean 

value of the parameters a1, a2 and b is approximately similar for the external respiratory data. The overall 

standard deviation of the parameters a1 and a2 is larger for the FB data set compared to the other data 

sets. The overall mean value of the bilinear term is negative. Comparing the results from the previous 

approach and the current one, it can be observed that there is a trade-off between the simulation error and 

the persistency of parameters. 

Tab. 5.4: An overall parameters analysis for pre-fltered drift. 

Resp. data Nb. of traj. a1 a2 b � d 

a1 ± ˙a1 a2 ± ˙a2 b± ˙b � ± ˙� d± ˙d 
IFM 9 −1.7750 ± 0.0402 0.7845 ± 0.0390 0.0630 ± 0.0336 −0.0018 ± 0.0024 −0.0327 ± 0.0588 

FB 110 −1.7331 ± 0.341 0.7405 ± 0.335 0.0069 ± 0.010 −0.0039 ± 0.017 −0.0009 ± 0.001 

AI 111 −1.7479 ± 0.1316 0.7540 ± 0.1310 0.0067 ± 0.0044 −0.0024 ± 0.0085 −0.0009 ± 0.0012 

AVB 109 −1.7507 ± 0.1091 0.7572 ± 0.1075 0.0064 ± 0.0038 −0.0032 ± 0.0123 −0.0008 ± 0.0011 

The assessment of the average BTI model is shown in Figure 5.10. In sub-fgure (a) the performance of 

the average BTI on IFM data is presented. More than 40% of the IFM validation sets can be simulated 

by theBTI model with a MASE around 1 mm. Sub-fgures (a), (b) and (c) represents the results for the 

FB, AI and AVB validation sets respectively. The best result for these three validation sets was noticed 

in the FB case in which around 32 % of the data can achieve a MASE of around 1 mm, while in AI 

and AVB data the percentage was found to be 29% and 23% respectively. In overall, the percentage of 

the trajectories that have a MASE near 1 mm is around 55%, 47%, 37% and 27% for IFM, FB, AI and 

AVB data sets, respectively. Compared to the previous results in the case of polynomial drift removal the 

performance of the average model was improved for the IFM data set and decreased for the three external 

data sets. 
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Fig. 5.10: An average BTI model applied to different types of surrogate motion for pre-fltered drift. 

5.4.4 Simulations with original data 

The performance of the BTI model was also applied to the original IFM data and some example results 

are shown in Figure 5.11. In sub-fgure (a) the model was unable to capture some irregularities such as 

the patient/markers movement during the position acquisition. Therefore, the modelling and simulation 

errors in term of MASE were 1.57 mm and 1.92 mm respectively. In sub-fgure (b) a quite regular and 

noisy respiratory motion trajectory that could be modelled and replicated by the BTI model. The MASE 

in this case was 0.30 mm for modelling set and 0.38 mm for the validation set. The trajectory considered 

in sub-fgure (c) exhibits an important measurement noise and a slow respiratory motion. In the latter 

case, the BTI model was able to model the trajectory with a MASE equal to 1 mm. However, in the 

validation step the model replicates the data with a MASE equal to 1.48 mm. This difference in the 

MASE is mainly due to the change of the respiratory motion patterns during the validation set and some 

123 



Chapter 5. A new bilinear model for markers based respiratory 
5.4. Bilinear time-invariant (BTI) model for respiratory motion motion simulation 

sudden spikes. In sub-fgures (d), (e) and (f), the trajectories taken into consideration have a slow motion 

and an important amount of noise in the end of exhalation and inhalation. In sub-fgure (d), the model 

achieved almost a similar MASE for both modelling and validation sets, as the patient was breathing with 

the same rhythm. In the case presented in sub-fgure (e), the simulation error is smaller in the validation 

set compared to the modelling set, while it is the opposite in the example shown in sub-fgure (f). 

As conclusion, it can be deduce that irregularities in the respiratory data can slightly degrade the mod-

elling and validation errors. The ability of the BTI model to replicate the respiratory motion even in the 

presence of irregularities can achieve MASE less than 2 mm. These irregularities include measurement 

noise, occasional or sudden motion and amplitude/frequency changes. The BTI model can be used here 

to defne the main breathing characteristics, such as the amplitude and period. Note that the optimisation 

process takes more time to fnd the optimal parameters than in the noise-free data case. In practice, the 

problem of the measurement noise can be resolved by using an online flter that cut-off the noise fre-

quencies. However, this latter can generate a delay that has to added to the data after acquisition process. 

Concerning the other irregularities, one might consider a respiratory motion gating. 
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Fig. 5.11: BTI model applied to data with measurement noise. 
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5.5 Bilinear time-varying (BTV) model for respiratory motion 

Usually during radiotherapy treatment the position of the tumour is acquired online via an imaging system 

(see Chapter 2 for more details). Therefore, an adaptive model is required that can adapt their parameters 

by taking into account new measurements. The most widely used adaptation algorithms are the LMS and 

the recursive least-squares (RLS) methods. They have established themselves as the principal tools for 

linear adaptive fltering. Assuming that the parameters can be changing with time (5.4.1) can be written 

as follows: 

yk = −a1k yk−1 − a2k yk−2 + bk uk−1 + �k yk−1uk−1 + dk (5.5.1) 

The RLS algorithm is considered in this section to identify the varying parameters of the above BTV 

model structure. 

5.5.1 Parameter estimation 

The RLS algorithm minimises the cost function specifed in (5.4.9), in a recursive manner, i.e. the current 

estimation �̂k only bases on the previous estimation �̂k−1 and the current observations. One extension of 

the said algorithm is the RLS with forgetting factor, which is also called adaptive LS. In this case the cost 

function to be minimised is: 

2 
JRLS 
� = (y − ŷ)T�(y − ŷ) = 

y − ŷ
 (5.5.2) 
� 

where � is a diagonal matrix defned by: 

0 
�N−1 

1 
B

. .
CB

. 
C

� = 
B C

(5.5.3) B CB
� 

CB C@ A 
1 

The forgetting factor or weighting factor � is a positive scalar � 1, which controls the adaptivity of the 

RLS algorithm and its choice is of crucial importance. In this work the weighting used in the simulation 

was � = 0.97. The RLS algorithm with fxed forgetting factor is given by the following three steps: 

Lk = 'T (5.5.4) Pk−1 ' bls(k)
�
1 + bls(k) Pk−1 ' bls(k)

�−1 

'TPk = 
�
I − Lk bls(k)

�
Pk−1/� (5.5.5) 

ˆ ˆ
h

ˆ
i

�k = �k−1 + Lk yk −'T
bls(k) �k−1 (5.5.6) 
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5.5.2 Simulation results 

Using the RLS algorithm, the parameter of the BTV model were estimated. A simulation study was 

performed using internal and external respiratory data, and two examples are depicted in Figure 5.12. 

Note that the data was fltered prior to the adaptive estimation of the markers position by means of an 

online algorithm and the generated input square wave signal was between the minimum and maximum 

values of the respiratory signals. As it can be seen in these Figures, the BTV model gives a good ftting for 

both internal markers (RMSE=0.004 mm) and external markers (RMSE=0.002 mm). The largest errors 

between the real and estimated markers positions were noticed during the respiratory transition between 

exhalation and inhalation. 
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Fig. 5.12: Simulation results of BTV model for an example of: (a) internal data, and (b) external data. 

The time variation of the bilinear model parameters are also shown in Figure 5.13-5.15. A large variation 

was noticed in the parameter bk, which represents the gain of the bilinear flter. Although the bilinear 

term has a small change compared to the other parameters, it does compensate for the large gain. The 

parameters a1k and a2k are varying around the values 1 and -2 respectively. Accordingly, the linear part 

of the model can be considered as a linear extrapolation (see Chapter 3). The varying offset between the 

input and output signals was also illustrated in Figures 5.15. These latter are changing randomly and the 

rate of change is roughly similar for internal and external markers. 
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Fig. 5.13: Temporary changing of the parameters a1k and a2k for an example of: (a)internal data, and (b) 
external data. 
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Fig. 5.14: Temporary changing of the parameters bk and �k for an example of: (a)internal data, and (b) 
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5.6 Model-based modifed cosine function 

One of the outcomes of Chapter 3 was that the modifed cosine function model introduced in [Lujan et al. 

1999] is the widely acceptable model for the respiratory motion. Therefore, the results of an online class 

of this model are included here to provide a benchmark. The online modelling approach consisted in 

modelling each breathing cycle with a modifed cosine function. For each cycle, the time is set to zero 

and the model parameters are estimated online using an iterative non linear optimisation scheme [Lagarias 

et al. 1998]. The latter was initialised with an approximate estimate of each parameter. For a given value 

of n={1,2,3,4}, a model of each cycle is obtained. The ‘best’ value is that which minimises the mean 

squared error (MSE) criterion. 

Figure 5.16 shows an example of two typical sets of regular and irregular breathing motion chosen from 

the internal motion dataset. These two data will be referred to D1 and D2 respectively, and will be used 

in the simulation study. The data set D1 exhibits a shorter period at the end of the EX compared to D2. A 

changes in terms of frequency and amplitude are also observed. A further diffculty associated with the 

modelling of these data is pattern changes and the presence of Gaussian and ‘spiked’ noise [Sharp et al. 

2004], due to the acquisition process. To reduce the effect of noise, the data was smoothed with a three 

point median flter. 
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Fig. 5.16: The two different types of breathing motion used for simulations 

Evolutions of the parameters T1 (duration of the frst half period), T2 (duration of the second half period), 

period and peak to peak amplitude over the breathing cycles of data D1 are shown in Figure 5.17. It is 

interesting to note that whilst the duration of EOE, and hence T1, may change signifcantly between two 

successive cycles, T2 remains fairly constant at 1.33s with a standard deviation of 0.08 s, see Table 5.5. 

The amplitude is usually similar for adjacent cycles with a few exceptions where it varies by about 20%. 
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Fig. 5.17: Cycle-to-cycle variation T1, T2, period and amplitude of data D1. 

Tab. 5.5: The range of the breathing parameters for data D1. 

Parameters Mean SD 
T1 1.6s 0.24s 
T2 1.33s 0.08s 
Period 2.93s 0.23s 
Amplitude 5.84 mm 0.34 mm 

The simulations results of the applied cosine model are depicted in Figure 5.18. The estimated signal 

is noted with a plain line and the real data with starts. In each of the graphs showing the ftting errors, 

the overall value of the MSE is given (top left right side). The advantage of this model is that it requires 

only fve parameters, which relate to the characteristics of the signal, i.e. may be interpreted. Comparing 

the MSE criteria, it is interesting to note that ftting regular respiratory motion data gives better results 

than irregular respiratory data. The mean and standard deviation of the estimated parameter are presented 

in Table 5.6. The latter shows that the frst three model parameters replicated to regular data changing 

less than irregular ones. A Comparison between the results of the respiratory analysis and the estimated 

parameters of cosine model for data D1 shows that amplitude and period of the motion can be quantifed. 

Consequently, this model can be used in margin calculation. In addition to the amplitude and period, a 

motion static drift can be also identifed. 
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Fig. 5.18: Online curve ftting using cosine function model for (a) regular and (b) irregular respiratory 
data. The black line corresponds to the measured data, the grey line corresponds to the ftted 
data. 

Tab. 5.6: The range of cosine model parameters for data D1 and D2. 

Parameters Mean SD 
D1 D2 D1 D2 

A0 

A 
Period 
Phase 

0.46 mm 
5.41 mm 

2.95s 
9.19s 

-0.57 mm 
14.06 mm 

5.92s 
9.00s 

0.32 mm 
0.36 mm 

0.22s 
1.06s 

0.40 mm 
0.43 mm 

0.75s 
0.96s 

5.7 Model-based polynomial function 

The polynomial function is often used for curve ftting in order to approximate a time series data. A model 

based polynomial function is proposed here as a new approach (at the time of publication [Sahih et al. 

2005]) to model the respiratory motion. Unlike the sinusoidal model, the polynomial model is linear in the 

parameters. Consequently LLS can be applied to estimate the parameters. The polynomial function can 

be considered as weights which increases the importance of the related powers. The following polynomial 
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function has been used in this work: 

n

y(t) = a0 + 
X

ak(t − t0)
k t0: initial time for each cycle. (5.7.1) 

k=1 

An online algorithm was designed, which consists in ftting each respiratory cycle by different order 

polynomial function. The time was re-initialise to zero for each cycle according to (5.7.1). Figure 5.19 

illustrates the modelling performance of the a 5th order polynomial model applied to a regular and irreg-

ular breathing motion. The polynomial model performs the regular and irregular breathing with a MSE 

of 0.03 mm and 0.39 mm, respectively. Compared to the modifed cosine model and for the same number 

of parameters the polynomial model gives a better ft according to the MSE. Moreover, the online curve 

ftting using the polynomial model is faster in terms of being less computationally intensive. As shown in 

5.7, It is possible to improve the model ft signifcantly by increasing the order of the polynomial, noting 

that the lowest order is desirable. In this work the best order is obtained by determining a polynomial 

which achieves a mean error of less than 1 mm. 
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Tab. 5.7: Error analysis for different polynomial order for Data D1 and D2 

Orders Mean [mm] SD [mm] Max. [mm] 
D1 D2 D1 D2 D1 D1 

5 0.15 0.50 0.10 0.39 0.93 2.11 
6 0.11 0.42 0.08 0.37 0.47 2.14 
8 0.09 0.26 0.07 0.23 0.34 1.29 

Figure 5.20 shows a comparison between the polynomial and the sinusoidal models. It can be noticed 

the fexibility of the polynomial model to reproduce fairly accurate breathing cycles, with small end-of-

exhale time and the changing gradient. Such result was obtained by concatenating the model cycles to 

give the overall response. The polynomial models developed offers more fexibility than the periodic 

cosine model to reproduce non symmetrical breathing cycles. The BM approach, whilst less accurate 

when compared to the polynomial and sinusoidal models, is found to produce a better average model. 
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Fig. 5.20: Comparing curve ftting for regular breathing (upper) and irregular breath-
ing (lower) using the polynomial and sinusoidal models. 

5.8 Simulated respiratory data generation 

The clinical respiratory data that have been used in this research played a signifcant role in the devel-

opment of the new respiratory motion model. Alternatively, such data can also be employed in other 

radiotherapy related applications such as tumour tracking, radiotherapy strategies assessment, treatment 
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planning, and radiotherapy equipments calibration. There are to date only a few data set available to 

researchers in the feld. As a consequence most researcher design motion modelling and prediction al-

gorithm based solely on their data, which makes comparison between algorithms diffcult. Further when 

common data bases are used it is current practice for published research to base the results on a subset 

of the whole data set. The aim of this section is to overcome the current defcit in respiratory data to 

compare alternative algorithms by creating a set of signals against which to evaluate current motion pre-

diction algorithms. This respiratory motion database exploits the bilinear model formulation presented in 

this Chapter. 

5.8.1 Respiratory motion simulation 

The simulation of the respiratory motion data has involved the previously developed BTI models. To 

drive the latter, a set of virtual input square wave signals, which contain the frequency and duty cycle 

information of breathing motion has been randomly generated. The period and duty cycle characteristics 

of the square wave were generated based on the statistical distributions previously modelled, see Section 

4.4. One square wave signal was generated for each type of data set corresponding to internal and external 

motion for different experimental conditions. In order to generate the respiratory motion a distribution 

of the period and the duty cycle have been used to produce a square wave signal. A square wave which 

period are generated base on the period frequency distribution is initially generated. Subsequently the 

square wave is modifed by changing its duty cycle based on the duty cycle distribution. The number of 

cycles was fxed to 80 cycles, which is equivalent to signal of 5 minutes duration at a sampling time of 30 

Hz. Note that the number of cycles can be changed by the user. The bilinear models estimated previously 

in Section 5.4, were used to generate different trajectory dynamics and amplitude. 

Figure 5.21 shows an example of generated data with their frequency characteristics and the used input 

signals for every data set. It can be seen from the power spectral components of the generated respiratory 

signals that they contain various respiratory frequencies as well as some typical breathing irregularities. 

Some of the respiratory models give unstable responses, because their frequency bandwidths are smaller 

than the ones of the input signals. A further advantage of this approach is that it can generate internal 

respiratory data with long duration, which is not the case in the original data. The amplitude and period 

of the generated signals can also be changed by modifying the amplitude and period of the simulated 

input signals. This is another way of adapting to amplitude change of the respiratory signals as opposed 

to changing the gain of the bilinear model. 
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Fig. 5.21: An example of the generated respiratory data for the cases : (a) FB, (b) AI, (c) AVB and (d) 
IFM. 

5.8.2 Baseline drift adding 

Different drift signals were generated to be added to the test signals, as baseline shift is an inherent 

part of any respiratory motion. The aim of such an approach was to realise realistic respiratory signals 

with a wide range of typical characteristics. A set of different randomly generated drift signals was 

generated to account for four different types of baseline shift observed in clinical data: low frequency 

sinusoidal, triangular as well as spikes and steps, see Figure 5.22. The maximum and minimum values 

of the extracted drift signals from the investigated clinical data were initially calculated and are used to 
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defne the amplitude limits of the simulated drifts signals. 

Sub-fgure (a) illustrates the generated random drift signal that was produced by joining the amplitude 

and frequency knowledge of the original drift signals. A random signal with varying frequencies between 

0.0042 Hz and 0.025 Hz was concatenated to another random signal generated by a uniform distribution 

with its amplitude extracted from clinical drift signals. The resultant signal exhibits varying amplitudes 

and frequencies. In sub-fgure (b), a sinusoidal drift signal that its frequency varies between 0 and 0.025 

Hz is shown. The latter is characterised by constant amplitude and a frequency that increase with time. 

The third drift that is depicted in sub-fgure (c) is a triangular signal with the same amplitude than that 

of the sinusoidal drift. This drift simulates a succession of linear drifts that may be cause by the motion 

acquisition device. The last drift signal is a step signal, which simulates the spikes or sudden motion-see 

sub-fgure (d). Finally, in addition to the previous drifts, a mixture of sinusoidal, triangular and spikes 

signals has also been generated to create a signal combining all the different types of drift observed (see 

sub-fgure (e)). 
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The above drift signals were added to the test trajectories generated for each data set and some examples 

are represented in Figures 5.23-5.27. The common point between the illustrated trajectories is that they 

exhibit a variation of the amplitude and frequency as in real clinical respiratory motion. Figure 5.23 

illustrates the generated respiratory trajectories to which a random drift signal was added. The effect of the 

random drift on the respiratory data is different as this type of drift was generated with random frequencies 

and amplitudes between realistic values gained from the drift analysis. Figure 5.24 illustrates the effect of 

the sinusoidal drift on the generated respiratory data. The sinusoidal drift has introduced a slight drift into 

the mean respiratory motion position. Figure 5.25 shows example of trajectories that contains a triangular 

drift. This sort of drift introduces an increasing/decreasing linear drift to the respiratory motion. A sudden 

movement was modelled by an impulse signal-see Figure 5.26. Sometimes different types of drifts can 

occur in the same time. This situation was also simulated by considering a mixture of drift (Figure 5.27). 
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Fig. 5.26: Impulse drift added to the generated respiratory data for (a) FB, (b) AI, (c) AVB, and (d) IFM 
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Fig. 5.27: Mixture of different drift signals (sinusoidal, triangular, and spikes) added to the generated 
respiratory data for the cases : (a) FB, (b) AI, (c) AVB, and (d) IFM 
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5.9 Conclusions 

This Chapter has addressed the development of surrogate motion models for the purpose of simulation. 

Two new approaches, namely a BM and polynomial function were introduced. The BM approach was 

inspired from a simplifed representation of the respiratory system. It considers the lung as a bilinear 

model driven by a square wave with varying frequency and duty cycle. This input signal can be interpreted 

as a stimuli signal generated by the nervous system, which its period and duty cycle correspond to the ones 

of the respiratory motion data. As reported in Chapter 4, the respiratory motion data contain additional 

components including measurement noise, heart rate and baseline drift. The bilinear modelling approach 

has considered the aforementioned signals as external components, which were removed before modelling 

and simulation. 

Two methods to deal with the drift signals were adopted. The frst models the drift as a polynomial 

function with different orders. The second removes the frequencies corresponding to the drift using a 

low-pass flter. The parameters of the bilinear model were estimated using a non-constrained nonlinear 

optimisation technique for the polynomial drift removal and a constrained non-linear optimisation tech-

nique for the pre-fltered drift. For both methods, it was shown that the estimated models have validated 

the clinical data with a MASE around 1mm. The mean average bilinear model, was found to be gener-

alisable when the motion irregularities are excluded. The bilinear modelling approach has also shown a 

good performance when it was assess on unfltered respiratory surrogate data. Finally the new bilinear 

modelling framework was used to generate a set of realistic respiratory surrogate motion data including 

different types of drift scenarios. 

A new polynomial model was adopted to model respiratory motion cycles. The performance of the 

polynomial model has been assessed against the widely used Lujan model [Lujan et al. 1999], using 

two clinical data sets from VCU and Hokkaido University School of Medicine. It was shown that the 

polynomial model offers more fexibility than the periodic cosine model to reproduce non-symmetrical 

breathing cycles. 
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Chapter 6 

Respiratory simulation and predictive 

tracking based on spirometry/external 

markers 

6.1 Introduction 

Usually, the ART process involves IGRT techniques to monitor the tumour position in real-time by means 

of an imaging system (see Chapter 2). It is, however, possible to monitor other biological signals such as 

breathing fow, lung volume and pressure as well as the heartbeat. The current chapter aims to investigate 

if there is any beneft in combining respiratory motion information with biological signals to improve 

modelling, simulation and predictive tracking of respiratory motion. In order to do so, an experiment 

has been carried out with medical equipment used for research. A 3D motion of three external markers 

attached to a special tool placed onto two different positions on the thorax of healthy persons have been 

recorded. At the same time, breathing fow, respiration rate, heartbeat and pressure signals were also 

measured. 

The concept, based on an input-output signals to simulate and predict the respiratory motion presented in 

Chapter 5, is extended here by replacing the artifcially generated input by a measured air fow signal. A 

pre-processing and statistical analysis of the measured data were performed prior to their use to select the 

input and output signals of the system to be identifed. The predictive tracking approach was assessed in 

practice using a video tracking system developed within MAESTRO project. The latter involves a simple 
TM 

video camera and LabV IEW software. 
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This chapter is organised as follows. Section 6.2 gives a simulation framework of the predictive tracking. 

Section 6.3 describes the design of new respiratory motion experiment as well as the acquisition process, 

pre-processing and analysis of the collected data. In Section 6.4, modelling and simulation of the respi-

ratory motion is carried out. The effect of using a physical input signal was investigated in Section 6.5. 

In the latter, a comparison to the modelling approach used in Chapter 5 was also carried out. Section 6.6 

describes the online approach for predictive tracking of the respiratory motion. Conclusions are drawn in 

Section 6.7. 

6.2 An overview of the predictive tracking simulation 

The most effective prediction process must be able to deal with the full range of respiratory behaviour. 

The likelihood of highly irregular breathing increases with patients whose pulmonary function has been 

compromised by disease. Regular breathing can be interrupted by irregular transient periods (e.g., cough-

ing, hyperventilation, etc). Some breathing behaviours are highly irregular by nature. Irregularities in 

breathing makes modelling and prediction diffcult. Therefore, a simulation of respiratory motion track-

ing needs to be carried out before any clinical evaluation. 

The motion prediction system can be simplifed by the scheme given by the Figure 6.1. In the latter, the 

breathing model aims to provide a realistic respiratory motion based on different breathing information, 

which can be used as an input-output of the system to be modelled. As shown in the analysis of the 

respiratory motion, different disturbances can occur. These disturbances can be simulated and added to 

the simulated respiratory motion. 

An on-line prediction model uses the measured input-output to predict a number of samples in advance. 

A so-called prediction horizon that corresponds to the treatment system delay has to be predicted. The 

time delay is due to the communication between the imaging systems and the treatment delivery control 

system, the dynamic of the control system and sampling time of the imaging system as well as control 

system (see Chapter 3). These latencies can be modelled by an adjustable delay block. 

This scheme is useful to carry out a simulation study to evaluate tracking of the respiratory motion prior 

to any clinical implementation. Note that this scheme can be extended by involving a model of the PSS 

and/or MLC, in order to simulate the process of the EBRT treatment. 
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y(t − �|t) 

Predictor 
by(t + hp|t) 

Fig. 6.1: Block diagram of respiratory motion simulator and predictive tracking scheme. 

6.3 A novel respiratory motion acquisition experiment 

6.3.1 Experiment description 

The modelling work carried out so far in this thesis was based on clinical data, corresponding to the posi-

tion of internal/external markers (see Chapter 5). For each of those trajectories an ‘artifcial’ input signal 

was generated and established upon the frequency changes, in order to apply the system identifcation 

approach (see Chapter 5). This Chapter investigates the feasibility of replacing such an ’artifcial’ signal 

with a measurable input signal. One of the critical conditions to the success of the approach is the choice 

of signals to be measured. 

Variables that are related to the respiration process can involve airfow, volume, pressure and heart rate. 

The air fow represents the rate of change of the lung volume, and is driven from a region of relatively 

high pressure to one where the pressure is lower. It was reported in the literature that tumour motion (or 

external motion related internal motion) can be linked to the volume of lung variation [Low et al. 2005]. 

Thus, the key signals that have to be measured are lung volume and external chest motion. 

An experiment was designed and conducted with support of some MAESTRO co-workers. Note that 

a university research committee approval was required to perfrom this experiment (see Appendix B). 

The latter took place in the Control Theory and Application Centre (CTAC) Laboratory and involved 13 

healthy human volunteers (12 males and 1 female) of different ages and weights. The participants were 
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positioned comfortably on a table and asked to breath normally for two sets of 4 minutes each. The same 

acquisition period was adopted in [Hoisak et al. 2006, George et al. 2006]. The experimental procedure 

is described in Appendix B.1. In this experiment a set of biological and geometrical information related 

to the breathing process were acquired in real-time by two different means. 

A Spirometer DATEX AS3 (see Figure 6.2(b)) on loan from UHCW, measured breathing fow, lung vol-

ume and pressure, and an electrical recording of the heart or Electrocardiogram (ECG). The Spirometer 

cset-up was connected to a separate PC via the dSPACE  DS1104 Controller Board installed in this 

clatter and data was collected via MATLAB/SIMULINK . 

A 3D tracking system Polarisr (see Figure 6.2(a)) on loan from Elektar, was connected to a separate 

workstation. This accurate tracking system was utilized to measure real-time 3D position and orientation 

of optical markers affxed to two "tools" (see Figure 6.2(c)) specifcally designed for the experiment. The 

tool was positioned onto the thorax (on abdomen) with an elastic band. Each subject had the tool initially 

located on the upper chest (upper test), and then the tool was positioned in the vicinity of diaphragm 

(lower test), in order to evaluate the infuence of diaphragm motion on chest abdominal breathing patterns. 

An illustration of the experiment set-up for one of the subject taking part is given in Figure 6.2(d). 

(a) (b) (c) 

(d) 

Fig. 6.2: Illustration of (a) Polaris system with its coordinates, (b) Spirometer equipment, (c) Tracked 
tool, and (d) The set-up for a subject taking part in the experiment. 
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The Polaris system can be described as a portable 3D infrared vision system able to track, with sub-

millimetre accuracy the motion of active or passive tool [Wiles et al. 2004]. In this work passive tools 

were used (Figure 6.2(c)). Each tool comprises a set of infrared refective spheres. The infrared tracking 

system emits infrared light that is refected by these spheres. The refections are detected by the infrared 

tracking system and used to determine the position of the sensors. Note that the RMSE is 0.35 mm when 

using only one marker [Wiles et al. 2004]. The number and positioning of the spheres was designed to 

minimise the tracking error. 

A new data collection software was developed by a MAESTRO co-worker (for more detail see [Haas et al. 

2005]). An example of the data collected by the Polaris system via the new software is demonstrated in 

Table 6.1. 

Tab. 6.1: Illustrating the format of the data collected by Polaris. 

Frame number X Y Z q0 qx qy qz Error Mark 
27798 160.56 199.2 -1408.74 0.9865 -0.1564 -0.0247 0.0412 0.2768 1 

The data collected includes: 

• A frame number that is an internal counter that starts at power up and relates to the time at which 

the coordinates were returned by Polaris. It can be used to indicate the time in terms of samples at 

which the data was collected. 

• The position of the tool tracked in Cartesian coordinate system (X,Y,Z) where reference is given 

with respect to Polaris’own coordinate system (see Figure 6.2(a)). 

• The quaternion (q0, qx, qy, qz) that indicates the orientation of the tool. 

• An error indicating the discrepancy (in term of RMSE value) between the marker position measured 

on the rigid body and the marker position defned in the tool description. 

• An indicator denoted ’Mark’ that is employed by the user to indicate specifc events during the 

tracking process. The latter has been implemented to facilitate data processing. 

A sample signals for two different subjects with the measurement tool in the upper position, obtained 

from the Spirometer and Polaris are shown in Figure 6.3 and 6.4 respectively. While the fow rate, 

pressure and volume signals exhibit oscillatory patterns, the heart rate signal is characterised by periodic 

patterns. The pressure and volume measurements are affected by a negative offset which was due to the 

initial confguration of the Spirometer. Moreover, the pressure signal is distinguished from the rest of the 
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signals by having a higher level saturation and a large amount of measurement noise. It was noticed from 

the ECG data that there is an offset which causes negative values in the heart beat measurement. The 

signals obtained from the Spirometer were in Volts, so a conversion to the real units was performed. Note 

that the 3D position data were transformed to have the initial position as a reference. Concerning the 

the Polaris signals, one might notice that the motion data in Y and Z direction exhibit more measurement 

noise compared to the X motion. In addition, a baseline drift was also noticed in the the three motion data. 

It is important to mention that it was not possible to electronically synchronise the Polaris and Spirometer 

as both equipments have different data acquisition process. 
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Fig. 6.3: Spirometer measurement for subject number 1 obtained during the upper test. 
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Fig. 6.4: The 3D markers motion for subject number 10 obtained during the upper test. 

6.3.2 Respiratory data pre-treatment 

Once the data were collected, it was noticed that they are not suitable for an immediate use. Therefore, 

a data pre-processing was performed. The frst diffculty that was noticed is the loss of the tool by the 

Polaris tracking system in the external chest measurement (see an example in Figure 6.5(a)). Among the 

data where the missing values were detected, there is subject 1, 8, 11 for the upper test and subject 7 for 

the lower test. The frst step in data pre-processing is to handle these missing values. It was decided to 

consider only the data without any missing values, i.e. the part of the signal where the missing values 

occur, was completely removed. 

The second issue with the data collected was some irregularities in the Polaris data which might be caused 

by subjects movement/coughing, movement of the measurement tool within the body and a large amount 

of measurement noise. These data were noticed especially in the lower sets and will be considered as bad 

data. An example of such data is shown in Figure 6.5(b). Such data will not be considered for modelling. 

147 



 

 

 

 

Chapter 6. Respiratory simulation and predictive tracking 
6.3. A novel respiratory motion acquisition experiment based on spirometry/external markers 

10 4
5 

−5 
120 140 160 180 200

X
 [
m
m
]

2 
00 

−2 

0 50 100 150 
0.6 

−0.2Y
 [
m
m
]

Y
 [
m
m
] 

0 
Y

 [
m
m
]

−1 
−2 
120 140 160 180 200 

0.4 
0.2 

0 

0 50 100 150 

Z
 [m

m
] 

5 0.2 

−0.2 
−0.4−5 −0.6Z

 [m
m
] 00 

120 140 160 180 200 0 50 100 150 
Time [s] Time [s] 
(a) (b) 

Fig. 6.5: Illustration of (a) data where loss of the tool by the tracking system Polaris and (b) some bad 
data. 

The last issue within this experimental data was the dissimilarity in the sampling time between Polaris 

and the Spirometer. While the data in Polaris was acquired at sampling rate of 10 Hz, the Spirometer has 

a sampling rate of 1000 Hz. Consequently, the sampling rate of Spirometer data was reduced to 10 Hz 

to have the same sampling frequency as Polaris data. Two re-sampling methods have been investigated. 

The frst one consists in down-sampling the data by a factor of 100 and the second approach takes the 

average value of a moving 100 samples window. The frst method will be called re-sampling method 1 

and the second one will be referred to re-sampling method 2. The following Figure shows a comparison 

between the real signal and the re-sampled signal by the two above mentioned methods. It can be noticed 

from Figure 6.6 that the resultant re-sampled signals exhibit the same pattern as the real. Moreover, the 

both re-sampling methods have reduced the amount of noise present in the measured data. 

0.40.4 

0.20.2 

Real data 
Method 2 

66 67 68 69 

Real data 

Method 1 

65.5 66 66.5 67 67.5 68 68.5 69 

F
lo

w
 r

at
e 

[l
/s

] 

F
lo

w
 [
l/

s]
 

−0.2 

00 

−0.2 

−0.4 

−0.6 

−0.4 

Time [s] Time [s] 

(a) (b) 

Fig. 6.6: A comparison between the real signal and (a) re-sampling method 1 and (b) re-sampling 
method 2. 
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In order to compare the two methods, a common measure called the Signal-to-Noise Ratio (SNR) or ratio 

signal of variance can be used. It is defned by SNR = 10 log
�˙2 �

. A high SNR (̨  1) indicates high 
˙2 
noisel 

precision data, while a low SNR indicates noise contaminated data. The variance of the noise component 

is not known. Consequently, data has to be fltered in order to remove approximately the measurement 

noise. Before doing that, a frequency spectrum is required to defne the cut-off frequencies. The FFT 

algorithm was applied to the Spirometer data and a sample results from each variable are illustrated in 

Figure 6.7. The latter shows the presence of the respiratory components below 0.5 Hz in the fow, volume, 

and pressure. The signals with frequency higher than 1 Hz for fow, volume, and pressure, and above 2 

Hz for the heart rate signals were considered as noise. The main heart beat frequency was found to be 

around 1 Hz. 
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Fig. 6.7: An example of Spirometer data spectrum for subject 3 in upper test. 

A third order Chebychev low-pass flter with 0.1 db peak-to-peak ripple was utilised to remove the noise. 

An example of the fltering performance of Spirometer 1 in the upper test is shown in Figure 6.8. The 

flter was able to remove noise component from the four signals and keep the main information. 
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Fig. 6.8: Filtering performance of Spirometer data for subject 1 in the upper test. 
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The measurement noise signals were extracted from the fow, volume and pressure signals and their over-

all distribution were carried out (see Figures 6.9). The standard deviation of the overall noise distribution 

for the fow, volume and pressure which were denoted by ˙F , ˙V and ̇ P respectively, were also quan-

tifed. Comparing the overall measurement noise distributions, one might notice that these latter have a 

peak distributions with different standard variations. The pressure signals have more noise compared to 

the fow and volume signals. This is probably due to the Spirometer confguration and calibration. It was 

also noticed that the lower and upper sets have approximately the same quantity of noise. This supports 

the selection of the cut-off frequencies and supports the assumption that the noise on the data is typically 

due to the measurement device. 
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pressure respectively. 

Once all data have been fltered, the SNR was calculated for every subject and the two different tests. 

Figure 6.10 shows a comparative example of the fow signal for lower and upper tests. From the latter, 

one can notice that the SNR of the data re-sampled using method 2 is higher than the re-sampled data via 

method 1. This means that the second method removes more noise than the frst one. Therefore, only the 

re-sampled data by the method 2 will be used later on in modelling and prediction. 
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This time the comparison involves the SNR measurement of different variables over all the subjects (see 

Figure 6.11). As result, the fow and volume are the variables that are less infuenced by the measurement 

noise compared to pressure and heart rate. This is applicable for all the subjects and for different markers 

positions. This fnding is very important since it is preferable to have less noise in the signals that will be 

utilized to track the breathing motion for more accuracy. 
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Fig. 6.11: A comparison of SNR for different variables and subjects: (a) upper test and (b) lower test. 

The frequency spectrum of the external markers data in the three directions was also performed and an 

example of a Polaris data spectrum for subject 5 in the upper test is given in Figure 6.12. Sub-fgure (a) 

shows the breathing information (between 0.1 and 0.3 Hz) and the drift component (below 0.05 Hz). In 

sub-fgure (b) the noise components characterised by the frequencies above 0.6 Hz are illustrated. 
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Similarly, to the Spirometer data, a third order low pass flter was applied to remove the signals that have 

a frequency above 0.6 Hz. Figure 6.13 shows a comparison between an original Polaris data sample and 

the its fltered signal. It is clear for the latter that the used flter has removed adequately the noise signals 

and maintains only the respiratory and drift components. 
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Fig. 6.13: Filtering performance of Polaris data for subject 2 in the upper test. 

The removed noise signals were found to have a Gaussian distribution as shown in Figure 6.14. The 

standard deviation of the noise distributions for the X, Y and Z directions were respectively 0.22 mm, 

0.11 mm and 0.11 mm for the upper test and 0.36 mm, 0.13 mm and 0.12 mm for the upper test. These 

values show that there is more noise in the X direction compared to Y and Z directions. This is due to the 

fact that the breathing motion is more important in the X direction. Note that more noise was noticed in 

the lower position. The amount of noise in the Y and Z directions are almost similar. 
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Fig. 6.14: Polaris measurement noise distribution for (a) upper test and (b) lower test. 

A comparison between the level of the 3D position and the level of the noise was performed for all 

subjects and different markers positions (see Figure 6.15). By comparing the SNR values, it was noticed 

that the effect of noise level changes depending on the X, Y or Z axes as well as from subject to subject. 

The variable X has in most cases the highest SNR compared to Y and Z direction, especially for the lower 

sets. This type of analysis can be useful to investigate the origins of noise level differences and to improve 

the quality of the signals acquired. 
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6.3.3 Respiratory motion analysis 

The overall distribution of the Polaris data for the two investigated tests was performed here to evaluate 

the range of breathing motion amplitude in the three axes X, Y, and Z. The frequency spectrum of the 

Polaris data carried out previously has shown the presence a baseline drift. Therefore, the latter has to be 

removed from the Polaris data before performing the overall distribution of the external markers motion 

amplitude. A high-pass flter was used to retain the frequencies above 0.05 Hz. 

Figure 6.16 illustrates both the time and frequency characteristics of (a) noise-free signal representing 

the movement of the chest markers in the X direction for subject 2 acquired in the upper test and (b) 

the corresponding drift-free signal. The performed frequency spectrum were useful for the assessment of 

the drift removal. The frequency spectrum of the drift-free signal shows that the latter contains only the 

respiratory frequencies 
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Fig. 6.16: Time and frequency characteristics of X movement for subject 2 acquired in the upper test: (a) 
noise-free spectrum and (b) drift-free spectrum. 

Subsequently, the overall distribution of the drift signals for upper and lower tests were carried out-see 

Figure 6.17. The latter shows that the overall distribution of the drift signals do not have a Gaussian 

shape as it was found for the previous clinical data. It was also noticed that the range of the overall drift 

amplitude is more important in the X direction compared to Y and Z directions. This was due to the fact 

that the breathing motion was more important in the X direction. Except for the Y direction, the lower 

test involves a signifcant drift compared to the upper test. 
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Fig. 6.17: The overall distributions of the 3D drift data for the upper (Top) and lower (Bottom) tests. 

The overall distributions of the respiratory part are illustrated in Figure 6.18. While the distribution of the 

motion in X direction has the shape of a bimodal distribution, the motion in Y and Z directions have more 

sharply peaked distributions. One might also notice that the motion in X direction is larger compared to 

the other directions. Comparing these distributions to those for the clinical data, it can be seen that the 

respiratory fuctuation in the X direction for the upper test and in the Y direction for the lower test are 

comparable. 
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Fig. 6.18: The overall distributions of the 3D respiratory data for the upper and lower tests. 
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6.3.4 Variables correlation analysis 

Recalling that one of the main objectives of the performed experiment was to develop a simulation model 

of the respiratory motion in the frst place and a practical and easy way to track the latter, both tasks based 

on simple equipments such as Spirometer and video camera. The modelling technique adopted here 

assumes that the lung is a black box system with a number of inputs and outputs. While the input signals 

will be provided by the Spirometer, the output will be a position of the chest markers. It is very important 

to examine the correlation between the different variables in order to assess the relationship between the 

latter and reduce the number of variables in case there is any correlation. A scatter plot was performed 

here to measure the degree of relationship between the 3D markers positions and the Spirometer data 

(fow, pressure and volume). 

Figure 6.19 and 6.20 illustrate an example of scatter plot of the considered variables for subject number 

1 with markers in upper and lower positions, respectively. The correlation test between the 3D external 

markers motion has shown that these latter are linearly correlated for the markers in the upper position, 

whilst in the test with the markers in lower position, the linear correlation was noticed only between the X 

and Z motion. Concerning the Spirometer data, a nonlinear correlation between these latter was noticed 

for both upper and lower test. The nonlinear correlation between the fow and the volume is due to the 

fact that the latter represents the frst derivative of the former. The assessment of the correlation between 

the Polaris and Spirometer data was also carried out. The latter has revealed that there is a nonlinear 

relation between the Polaris data and Spirometer data for both performed tests. 
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Fig. 6.19: An example of the scatter plot of the measured data for subject 1 in upper test. 
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In contrast to a scatter plot, which graphically depicts the relationship between two data series, correlation 

analysis expresses this same relationship using a single number. The correlation coeffcient is a measure 

of how closely related two data series are. In particular, the correlation coeffcient measures the direction 

and extent of linear association between two variables. A correlation coeffcient can have a maximum 

value of 1 and a minimum value of -1. A correlation coeffcient less than 0 indicates a negative linear 

association between the two variables i.e. when one increases the other decreases. 

Figure 6.21 represents the correlation coeffcients between the variables acquired for subject 1 performing 

(a) the upper test and (b) lower test. Comparing the coeffcient of correlation of the Polaris variables, 

one might notice that highest linear correlation involved the X movement with the Y and Z movement. 

Concerning the Spirometer variables, the highest coeffcient of correlation was between the pressure and 

fow. 

As conclusions, the Spirometer signals that can be considered as input to the system are fow and pressure. 

From the analysis performed previously, it was found that the pressure signals have more noise than 

the fow signals. Moreover, this latter is more correlated to the Polaris data than the pressure signals, 

especially with X direction. Accordingly, only the fow and X motion signals will be used as an input and 

output in the identifcation process of the lung. 

1 2 3 4 5 6 
−0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 
X Y Z Pressure Volume Flow 

C
or

re
la

tio
n 

co
ef

f c
ie

nt
 

1 2 3 4 5 6 
−1 

−0.5 

0 

0.5 

1 

X Y Z Pressure Volume Flow 

C
or

re
la

tio
n 

co
ef

f c
ie

nt
 

Variables Variables 

(a) (b) 

Fig. 6.21: Coeffcient of correlation comparison for (a) upper test and (b) lower test. 
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6.4 Simulation model of respiratory motion 

An identifcation experiment was established previously, and the measurement data from Spirometer and 

Polaris system were acquired, pre-processed and analysed. One of the outcomes of the latter is that the 

relevant signals that can be used for respiratory motion modelling and prediction are the breathing fow 

and the external markers motion in X direction. Consequentially, the type of models to be identifed are 

known as SISO systems. In this work, the system in question is the lung, where the observable signal (i.e. 

system output), represent the markers position, and while the signal (referred to as input), which drives 

the system, is the breathing fow. 

The disturbances, such as high frequency noise and low frequency drift, are not considered here, since 

the signals were fltered prior to the identifcation process. A set of candidate models including linear and 

bilinear models structures, autoregressive with exogenous variables (ARX) and bilinear autoregressive 

with exogenous variables (BARX) were compared. These two models structures are specifed by the 

Equations 6.4.1 and 6.4.2 respectively. Note that an additional parameter d was added to both models to 

account for the static drift between the input and the output. The ARX model structure is given by the 

following equation: 
na nb

yk = 
X

−aiyk−i + 
X

biuk−i + d+ ek (6.4.1) 
i=1 i=1 

While the BARX model structure is described as follows: 

na nb nb na

yk = 
X

−aiyk−i + 
X

biuk−i + 
XX

�ij�ijuk−iyk−j + d+ ek (6.4.2) 
i=1 i=1 i=1 j=1 

where �ij denotes the Kronecker �-function for which 

8
1 if i = j, <

�ij = 
0 otherwise. : 

Several model orders have been considered, including second and third orders. The second order choice 

was the result of knowledge gained from the analysis of the breathing motion in Chapter 4. While the third 

order models are used here to see whether they can give a better results. Notice that for the bilinear term, 

only the data with same time shift was considered (see Equation 6.4.2). The identifcation process starts 

by removing the mean value from the input and output signals. Then, the same optimisation technique as 

in Chapter 5 was applied. The stability of the estimated system is satisfed by constraining the parameters 

of the denominators (ai), such that in Chapter 5. 

A simulation study was carried out to estimate a model for each subject’s respiration, acquired during the 
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two tests. The models obtained were then validated and compared using the MASE criterion, and results 

for both tests are depicted in Table 6.2. Note that the best results in term of MASE criterion for each 

subject and for the modelling and the validation sets, are indicated in bold and underlined. Assessing 

the results of Table 6.2, It can be noticed that the performance of the applied models for the upper test 

are considerably better than the ones in the lower test. This is mainly due to the poor quality of the fow 

measurement acquired in the lower test compared to the ones obtained in the upper test. 

Considering the modelling results of the upper test data, one might notice that the accuracy of the con-

sidered models is different from one subject to another and within the assessed models. In terms of 

modelling and validation performances, it was found that the subjects 6, 7, 8, 11, and 13, have the largest 

MASE compared to the rest of subjects. The MASE in modelling stage was near/higher than 1 mm for 

the fve above subjects, while the mentioned quantity was less than 1 mm for the other subjects. 

It is important to mention that the models that consider only a single numerator parameter such as 

ARX(2,1), ARX(3,1), BARX(2,1,1), and BARX(3,1,1) have the larger MASE for modelling and vali-

dation compared to the other models, and for the overall subjects. In order to fnd out, which is the best 

model structure, is suitable for the acquired data, a comparison between the model performances has 

been made. By examining the linear models, it was observed that the best model structure was ARX(2,2), 

which performs better in 6 subjects followed by ARX(3,2) in 4 subjects and ARX(3,3) in 2 subjects. 

On the other hand the bilinear models structure BARX(2,2,2) and BARX(3,3,2) has the lowest MASE 

error for 4 subjects, then comes BARX(3,2,1), BARX(3,2,2), and BARX(3,3,3) for 3 subjects. It can be 

deduced from this comparison that the second order linear model ARX(2,2) is the best model for such 

data. For the lower test data, the best modelling performance was given by the model ARX(2,2) with 3 

subjects for linear model sets, and BARX(2,2,2), BARX(3,3,1), and BARX(3,3,2) with 3 subjects, for the 

bilinear sets. 

An illustration of the modelling and validation performances of the ARX(2,2) and BARX(2,2,2) models 

applied to data of subject 1 carrying out the upper test is shown in Figure 6.22. Note that the input-output 

signals were normalised to ft on the same graph. While in the modelling stage, the both models achieved 

a MASE of 0.37 mm, in the validation stage the ARX(2,2) and BARX(2,2,2) models replicate the data 

with a MASE of 0.90 mm and 0.96 mm, respectively. In the last 150 samples of the validation set the 

amplitude of the input signal has increased and delay between the input and out signals was noticed. This 

latter has generated a large simulation error. In Overall, both models perform well the experimental data; 

however, any changes in the input or output signals can lead to a large simulation error. A way to deal 

with these changes is to use gating based audio and video instructions to limit the range of the motion 

amplitude and frequency or use an adaptive model that can take into account these changes. 
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Fig. 6.22: The modelling and validation performances of the ARX(2,2) model (top) and BARX(2,2,2) 
model (bottom) applied to subject 1 for the upper test. 
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Tab. 6.2: Models comparison for both upper and lower tests (the best results are indicated in bold and underlined). 

Model 
Structures 

And 
Orders 

The Upper 
And 

Lower 
Tests 

Subjects 
1 2 3 4 5 6 7 8 9 10 11 12 13 

MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] 
Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. 

ARX(2,1) Up 0.38 0.94 0.51 0.91 0.55 1.05 0.21 0.73 0.48 0.85 1.03 1.56 0.99 1.27 1.08 1.78 0.55 0.90 0.61 1.24 1.06 1.29 0.44 1.01 1.05 1.55 
Down 1.58 1.68 1.93 2.48 0.94 1.69 0.85 1.25 1.03 1.62 1.63 2.76 2.65 3.12 2.32 2.78 1.32 2.49 1.71 4.03 2.29 2.47 1.43 2.31 1.16 2.20 

ARX(2,2) Up 0.37 0.90 0.41 0.94 0.50 1.04 0.20 0.74 0.48 0.87 1.00 1.53 0.97 1.25 0.84 1.39 0.52 0.84 0.59 1.28 0.99 1.29 0.43 1.00 1.03 1.48 
Down 1.57 1.71 1.67 2.41 0.86 1.68 0.83 1.24 1.03 1.57 1.46 2.23 2.20 2.63 2.30 3.46 1.17 2.39 1.66 3.74 2.16 2.09 1.43 2.28 1.16 2.11 

ARX(3,1) Up 0.54 0.70 0.66 1.01 1.05 0.90 0.43 0.66 0.72 0.94 1.03 1.48 1.68 3.00 1.16 1.89 0.98 1.53 0.61 1.23 1.63 1.26 1.03 1.14 0.97 1.77 
Down 1.57 1.62 2.53 3.87 1.53 – 0.90 1.20 1.43 2.04 3.16 4.67 3.13 3.29 2.47 3.47 2.24 2.84 2.32 5.95 2.48 2.98 2.57 4.65 1.91 2.57 

ARX(3,2) Up 0.37 0.98 0.50 0.99 0.58 1.10 0.25 1.59 0.56 0.90 0.99 1.51 0.97 1.25 0.85 1.36 0.64 0.97 0.57 1.28 1.16 1.23 0.48 1.09 0.93 1.59 
Down 1.57 1.67 2.60 3.51 1.17 2.13 0.86 1.20 1.94 3.57 2.07 3.33 3.00 3.46 2.19 4.18 1.59 2.76 1.75 4.24 2.39 2.77 2.45 6.98 1.63 2.15 

ARX(3,3) Up 0.37 0.82 0.41 0.98 0.60 1.11 0.21 0.74 0.48 0.86 1.02 1.48 1.08 1.36 0.85 1.33 0.47 0.76 0.60 1.32 1.14 1.27 0.45 1.02 0.97 1.47 
Down 1.56 1.64 1.69 2.51 1.07 1.93 0.83 1.25 1.04 1.56 1.43 2.44 3.09 3.86 1.78 2.67 1.12 2.30 1.69 4.23 2.08 2.08 1.59 2.70 1.18 2.38 

BARX(2,1,1) Up 0.39 0.94 0.81 0.98 0.62 1.13 0.23 0.76 0.48 0.84 1.04 1.60 1.01 1.30 1.08 1.78 0.65 0.97 1.52 2.19 1.03 1.31 0.42 1.02 1.05 1.56 
Down 1.61 1.71 1.66 2.44 1.07 1.85 0.93 1.25 1.93 1.99 1.53 2.77 2.40 2.72 2.43 3.47 2.34 3.58 2.59 3.59 2.30 2.44 1.88 2.53 1.17 2.63 

BARX(2,2,1) Up 0.37 0.90 0.42 0.94 0.56 1.06 0.21 0.74 0.48 0.84 0.97 1.48 0.98 1.22 1.19 1.49 0.54 0.84 0.62 1.26 1.04 1.30 0.44 0.99 1.06 1.50 
Down 1.57 1.71 1.71 2.50 0.93 1.67 0.84 1.25 1.01 1.67 1.61 2.64 2.21 2.64 2.16 3.07 1.21 2.32 1.67 3.75 2.11 2.07 1.52 2.47 1.13 2.23 

BARX(2,2,2) Up 0.37 0.96 0.41 0.94 0.53 1.05 0.21 0.75 0.47 0.82 0.98 1.55 0.98 1.30 1.11 1.60 0.48 0.88 0.62 1.24 0.97 1.31 0.43 1.04 1.07 1.57 
Down 1.55 1.72 1.67 2.41 0.81 1.54 0.84 1.25 1.01 1.68 1.43 2.02 2.88 3.08 2.08 3.10 1.10 2.34 1.67 3.72 2.15 2.08 1.44 2.34 1.15 2.13 

BARX(3,1,1) Up 0.53 – 0.77 0.96 1.21 3.26 0.34 0.80 0.58 0.98 1.14 1.77 1.68 3.02 1.24 1.88 1.03 1.50 0.96 1.54 1.59 1.32 1.02 1.17 0.97 1.71 
Down 2.41 2.10 2.54 3.86 1.76 6.27 0.93 1.34 1.96 3.56 2.95 4.52 3.09 3.33 2.31 - 3.50 3.80 2.31 8.75 2.48 2.80 2.60 5.04 1.48 2.49 

BARX(3,2,1) Up 0.37 0.80 0.43 0.93 0.55 1.06 0.26 0.73 0.51 0.91 0.97 1.49 1.24 1.78 0.86 1.32 0.54 0.88 0.66 1.26 1.18 1.22 0.44 1.02 0.93 1.58 
Down 1.59 1.65 2.55 3.74 1.07 2.11 0.83 1.22 1.39 6.49 1.59 2.69 2.96 3.71 2.26 - 1.42 2.63 1.76 4.35 2.46 2.79 1.77 3.00 1.53 2.26 

BARX(3,2,2) Up 0.38 0.84 0.49 1.00 0.58 1.06 0.24 0.85 0.48 0.91 1.01 1.44 1.27 1.61 0.86 1.30 0.45 0.85 0.63 1.25 1.15 1.17 0.43 1.01 0.93 1.57 
Down 2.24 - 2.56 3.59 1.13 2.26 0.85 1.22 1.47 2.75 2.08 3.38 2.59 2.00 2.20 - 1.43 2.60 1.77 4.26 2.43 2.89 1.63 2.54 1.54 2.57 

BARX(3,3,1) Up 0.37 0.81 0.42 0.96 1.08 1.78 0.20 0.74 0.48 0.87 1.03 1.58 1.18 1.58 0.85 1.35 0.49 0.79 0.60 1.24 1.12 1.27 0.44 1.00 0.98 1.48 
Down 1.55 1.64 1.71 2.63 1.14 2.06 0.85 1.22 1.04 1.56 1.44 2.51 3.05 - 1.80 2.89 1.09 2.29 1.60 3.91 2.08 2.10 1.67 2.50 1.17 2.37 

BARX(3,3,2) Up 0.37 0.80 0.46 0.97 1.01 1.52 0.21 0.75 0.51 0.90 0.98 1.50 1.19 1.44 0.84 1.34 0.45 0.78 0.60 1.27 1.16 1.34 0.40 1.00 0.98 1.46 
Down 1.56 1.65 1.91 2.63 0.97 1.74 0.83 1.28 1.02 1.59 1.32 1.83 3.09 3.51 1.75 2.85 1.35 2.51 1.83 4.26 2.08 2.13 1.67 2.57 1.18 2.30 

BARX(3,3,3) Up 0.39 0.70 0.53 0.99 0.75 1.13 0.21 0.74 0.47 0.85 1.00 1.49 1.08 1.34 0.84 1.33 0.59 1.00 0.60 1.24 0.97 1.34 0.43 1.01 0.97 1.46 
Down 1.55 1.64 1.83 2.63 1.01 1.91 0.85 1.26 1.04 1.55 1.57 1.77 2.60 1.78 1.79 3.18 1.11 2.37 1.82 4.18 2.05 2.95 1.50 2.66 1.37 2.58 
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6.5 The impact of using a ‘virtual’ input signal 

The modelling technique introduced in Chapter 5 was used here in order to assess the effect of generating a 

virtual input signal from the respiratory data rather than using a physical input signal. The performance of 

the BARX(2,1,1) model for both virtual and physical inputs using the respiratory motion of the different 

subjects for the two tests has been compared, and results are shown in Table 6.3. It is clear from the 

latter that using a virtual input signal gives a better result form modelling and validation of the subjects 

trajectories. 

An illustration of the modelling and validation procedures of the BARX(2,1,2) model applied to mea-

surement data from subject 7 in the upper test is given in Figure 6.23. The MASE of BARX(2,1,2) model 

was found to be 0.87 mm and 0.59 mm for the modelling and validation sets respectively. Despite the 

large simulation error in the modelling step, which is due to the sudden change in the motion amplitude, 

the use of a virtual input signal has shown good overall modelling and simulation performances. 

Modelling-MASE= 0.87 mm Validation-MASE= 0.59 mm 
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Fig. 6.23: An example of modelling and validation performance of the BARX(2,1,2) model, using a vir-
tual input, applied to subject 7 for the upper test. 
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Tab. 6.3: The performance of the BARX(2,1,1) model based virtual input applied to the Polaris respiratory motion data. 

The Model The Upper Subjects 
Used Structures And 1 2 3 4 5 6 7 8 9 10 11 12 13 
Input And Lower MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] MASE [mm] 

Signals Orders Tests Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. Mod. Val. 
Virtual BARX(2,1,1) Up 0.43 0.50 0.21 0.39 0.46 0.47 0.11 0.21 0.26 0.28 1.50 1.62 0.87 0.59 0.60 0.75 0.34 0.72 0.45 0.63 0.78 0.70 0.28 0.42 0.33 0.50 

Down 2.29 – 0.74 0.78 0.55 1.34 0.30 0.34 0.44 0.55 0.71 0.63 1.07 0.89 0.98 1.47 0.97 0.91 0.99 0.88 1.38 1.28 0.66 0.79 0.67 1.20 

Physical BARX(2,1,1) Up 0.39 0.94 0.81 0.98 0.62 1.13 0.23 0.76 0.48 0.84 1.04 1.60 1.01 1.30 1.08 1.78 0.65 0.97 1.52 2.19 1.03 1.31 0.42 1.02 1.05 1.56 
Down 1.61 1.71 1.66 2.44 1.07 1.85 0.93 1.25 1.93 1.99 1.53 2.77 2.40 2.72 2.43 3.47 2.34 3.58 2.59 3.59 2.30 2.44 1.88 2.53 1.17 2.63 
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6.6 Online predictive tracking of respiratory motion 

The online predictive tracking of breathing induced tumour motion has been achieved by different time-

series based models using either internal or external markers motion data (see Table 3.2). Spirometry has 

been used as a respiratory surrogate to monitor patient’s lung volume in different steps of the RT (see 

for example [Hoisak et al. 2006, Kubo and Hill 1996]). However, it has never been used for predictive 

tracking of the breathing motion. In this section, an online predictive tracking method of respiratory 

motion based on fow-rate and on external markers signals is proposed. This approach was motivated by 

the satisfactory modelling performance carried out in Section 6.4 and the simplicity of the tools that can 

be used such as Spirometer and video tracking system. 

The proposed approach consists in modelling the external markers position online for a time period and 

then predict hp-step-ahead. The modelling and prediction were both based on the RLS algorithm with 

forgetting factor described by the Equations 5.5.4-5.5.6. The forgetting factor used in this algorithm was 

� = 0.97. In the modelling stage the parameters of the model were estimated by minimising the MSPE 

cost function defned by 5.3.1. This consisted in minimising the error between the measured and the 

hp-step-ahead prediction of the model output. 

A test was carried out in the CTAC laboratory consisting of acquiring in real-time both the fow-rate and 

external markers position using a Spirometer and the developed video camera system, and predicting 

short time ahead in advance. The number of predicted samples considered was 2, which is equivalent to 

0.2s for an acquisition frequency of 10Hz. The model structure used for modelling and prediction was 

the ARX(2,2) as the latter was found to be the appropriate model for such measurement data. The model 

parameters were estimated online during the frst 100 seconds, and then these parameters were used for 

prediction. 

Figure 6.24 shows the predictive tracking performance of the developed approach for 0.2 s ahead predic-

tion. The latter shows both the comparison between the real motion trajectory and the predicted one as 

well as the prediction error. The latter was quantifed by means of the RMSE criterion which was found 

to be 0.42 mm. Comparing the real and the predicted signals one might notice that the motion prediction 

was able to follow the respiratory motion including motion changes. This approach can be easily imple-

mented in clinical environment as it requires only a simple tracking devices such as video camera and a 

Spirometer. 
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Fig. 6.24: Illustration the online prediction performance for 0.2s ahead. 

6.7 Conclusions 

This chapter has described the modelling, simulation and predictive tracking of the respiratory motion 

based on two surrogates breathing signals namely fow rate and external chest marker. An experiment 

was designed and carried out involving 13 healthy subjects. The aim of the latter was to obtain some 

biological and external markers data in order to investigate if there is any beneft of combining motion 

information with biological signals to improve motion simulation and prediction. The acquired data were 

pre-processed and statistically analysed prior to their use. A comparison between linear and bilinear 

models with up to third order models was performed. This comparison has shown that the second order 

linear model is more appropriate for the acquired data. 

The impact of using a virtual input signal instead of physical one was also assessed. The outcome of 

the latter was that using the former gives better results in term of the used assessment criterion. A new 

technique for predictive tracking of respiratory motion was introduced. This was based on acquiring both 

the fow rate and external markers in real time and a second order linear model. The parameters of the 

model were estimated online by mean of RLS with a forgetting factor that minimising hp-steps-ahead 

prediction error. The performance of this technique was tested in practice by involving the acquisition 

of the fow rate and external chest markers in real time. The acquisition of the latter was performed by 
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means of a video tracking system developed within the MAESTRO project. 

In contrast to the previous contributions that use only the respiratory surrogate motion, this work has 

proven that the modelling, simulation and prediction of the respiratory motion can be achieved by con-

sidering both fow rate and external chest markers data. By considering the fow measurement as input 

signal and external chest markers motion as output signal, it is possible to build a model of the respiratory 

motion that can be used to simulate this latter. In the case of regular breathing motion, the modelling 

approach was found to achieve a simulation error less than 1 mm for most of the subjects. Compared 

to the results of the previous prediction algorithms presented in Chapter 3, the introduced strategy has 

given a good prediction performance for hp=0.2 s. However, the modelling and prediction results can be 

improved by ameliorating the data acquisition process and synchronising the input output signals. 
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Chapter 7 

Predictive tracking for respiratory 

surrogate motion compensation 

7.1 Introduction 

Chapter 3 has discussed the problem of the delay in EBRT and reviewed different time-delays reported in 

the literature. This has prompted the current research to consider tumour motion prediction. Therefore, 

two new approaches to predict tumour motion described by external markers are presented. While the 

frst approach is based on an adaptive bilinear model, the second method is based on a polynomial model. 

A new comparative study between different prediction approaches involving the same respiratory data has 

also been carried out. The latter has involved the maximum prediction error as a new assessment criterion 

in the context of ART. Some of the algorithms developed in MATLAB were modifed by the author to 

enable their implementation in embedded MATLABr functions within Simulink to be used in clinical 

application. 

A variety of approaches to accommodate the uncertainties caused by respiration has been discussed in 

chapter 2. The MAESTRO Coventry team has introduced a strategy-based feedback control scheme de-

veloped by MAESTRO co-workers [Skworcow et al. 2007, Skworcow 2008, Paluszczyszyn 2008]. The 

approach was initially tested on simulation using a predictive bilinear feedforward flter. The whole ap-

proach involves a controlled PSS to automatically reposition the patient in order to keep the moving 

tumour in the path of the radiation beams. The PSS-based approach is potentially able to compensate 

for 3D motion of the tumour, whilst a MLC-based approach is only able to compensate for 2D motion 

[D’Souza et al. 2005]. Furthermore, the approach only requires basic modifcation of the currently avail-

able PSS technology and retains the existing gantry-based treatment machine, which is less expensive 
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and a more effcient option compared to the robotic-arm-based approach that needs a new machine con-

fguration. In the above mentioned approach a model of the PSS was required. Work has been carried 

out in this chapter toward achieving a simulation model of the PSS. The developed motion compensation 

strategy was demonstrated in clinical environment at the UHCW. 

The schematic of the proposed strategy is illustrated in the following Figure 7.1. 

Target motion 
monitoring 

system 

Predictor MPC PSS 
T̂ (t)y(t) y(t − �|t) 

x(t) 

u(t) y(t) 

Fig. 7.1: Schematic of the proposed MPC control system with predicted reference and state-feedback. 

Where y(t) is the actual tumour position at time t while y(t−�|t) represents the most recent measurement 

of target position available at time t, T̂ (t) is a vector of predicted target positions, y(t) and u(t) are PSS 

output and input, respectively, and x(t) denotes the state variable feedback. 

The second section of this chapter presents the investigation of different prediction algorithms. This is 

followed by a Section of PSS modelling to develop an appropriate simulation model to represent the actual 

PSS behaviour. The evaluation of the prediction algorithm combined with the control system is carried 

out in Section 7.3. Section 7.5 shows some clinical assessments of the newly introduced compensation 

strategy which has been carried out at the UHCW. Conclusions are given in the last section. 

7.2 Respiratory motion prediction 

The sequential actions corresponding to position acquisition, data processing and time response of the 

PSS generate a delay between actual change in tumour position and the action taken to accommodate, 

hence compensate this change [Sharp et al. 2004]. In addition to such widely recognised issue, it should 

be noted that the dynamic response of the equipment used to either track or compensate for the tumour 

motion is also infuencing the speed of response from the image acquisition to the machine reaction. For 

this reason, the estimated position of the tumour must be quantifed and predicted in advance. The amount 

of the prediction horizon (hp) must be at least equivalent to the total delay of the systems involved in the 

compensation strategy. Figure 7.2 illustrates different delays in the proposed control scheme. Delays i, 

j and k denotes data processing time of each subsystem, while delay l denotes time required for the PSS 
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to reach a desired position for a given load and reference signal conditions. In this case the value of hp to 

be predicted should be at least equal to i+ j + k + l. 

Respiratory 
monitoring device 

Organ 
motion modelling 

Prediction of organ 
position n samples 

ahead 

Position 
controller 

PSS 

delay i delay j delay k delay l 

Fig. 7.2: Illustrating different delays in the proposed control scheme. 

Various proposals have been put forward for predicting such motion, see chapter 3. In this work, two 

motion prediction approaches namely BTV and sliding polynomial models have been proposed. These 

methods were compared to the ‘in-house’ developed approaches, particularly IMM, KF assuming CV 

and CA [Putra et al. 2008] and two structures of NN; a TSP MLP and GRNN, with four different training 

algorithms [Goodband and Haas 2008]. A full description of IMM, KF and NNs based algorithms is 

given in Appendix C. As opposed to existing studies, all algorithms are compared using the same data 

and a new criterion is introduced to demonstrate potential issues with the various algorithms. Some of 

these approaches will be used to generate predicted reference trajectories that are suitable for a receding 

horizon MPC scheme. The predicted trajectories are then utilised to determine an optimal control that is 

calculated based on a minimisation of future predicted tracking errors. The following subsections will be 

devoted to the description of the BTV and sliding polynomial algorithms. 

7.2.1 Bilinear model-based prediction 

In Chapter 5, an adaptive approach of the bilinear model called BTV model has demonstrated a great 

ability to track markers based respiratory motion. A RLS algorithm with fxed forgetting factor that 

minimise one step ahead prediction error has been used to estimate online the model parameters. In order 

to predict a hp steps ahead, the RLS algorithm was modifed by minimising hp steps ahead instead. The 

prediction starts after a training period of 1 min to allow the convergence of model parameters to the 

appropriate values. A fxed forgetting factor � = 0.99 was used. The following second order BTV model 

has been chosen to model the respiratory motion: 

yk = −a1kyk−hp 
− a2kyk−hp−1 + b1kuk−hp 

+ �1kyk−hp 
uk−hp 

+ dk (7.2.1) 
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The regression model can be expressed as 

yk|k−hp 
= ' k|k−hp 

�k|k−hp
, (7.2.2) 

where �k|k−hp 
= [a1k, a2k, b1k, �1k, dk]

T . The regressor is given by 

' k|k−hp 
= [−yk−hp

,−yk−hp−1, uk−hp
, yk−hp 

uk−hp
, 1] (7.2.3) 

It is important to note that the frequency of breathing must be known in advance, and hence the input sig-

nal can be generated. This assumption can be realised in practice by considering an audio or audio-video 

gating as it was done in [George et al. 2006]. Assuming that the position of the organ is acquired in real 

time by the measurement tool, the steps of modelling and prediction are given as follows: 

Algorithm 3 Modelling and Prediction Algorithm for BTV Model 

1: 

2: 

3: 

for t = 1:N do 
The hp steps ahead prediction is : byk|k−hp 

= ' k|k−hp 
�k|k−hp 

. 
The prediction error at step k is: 

4: 

" k|k−hp
(�k|k−hp

) = =yk|k − byk|k−hp 
yk|k − ' k|k−hp 

�k|k−hp 

Estimate the parameters of the BTV model: 

(7.2.4) 

�� = argmin )}2 k|k−hp 
{" k|k−hp

(�k|k−hp
� 

(7.2.5) 

5: 

6: 

Use the actual model to predict hp steps ahead. 
end for 

Illustrative examples of the motion prediction for hp={0.2s, 0.4s, 0.5s} using the BTV model are shown 

in Figure 7.3. In Figure 7.3, the predicted position was compared against the real position and the per-

formance of the predictor was assessed by means of two criteria namely RMSE and 95% CI. These 

two criteria were defned in Section 3.4. The 95% CI criterion is used here to specify the margins to 

accommodate for the prediction error. It was noticed from these simulations that the two adopted criteria 

increase by increasing hp. It is clear from Figure 7.3 that the large prediction errors occur during the 

change in the motion direction. This was also observed in the rest of the prediction algorithms. 
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Hp=0.2s-RMSE=0.21 mm-CI=0.43 mm Hp=0.4s-RMSE=0.92 mm-CI=1.86 mm 
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Fig. 7.3: Illustrating the prediction performance in term of 95% CI criterion as a margin to accommodate 
prediction errors of the BTV model using trajectory number 1 for different prediction horizons. 

7.2.2 Polynomial model-based prediction 

The second approach presented in this section to predict the respiratory motion online consists on a dy-

namic sliding window polynomial model. This technique was motivated by the satisfactory performance 

of the polynomial function to model respiratory cycles presented in Section 5.7. The adopted method-

ology for prediction was based on ftting the respiratory traces within a dynamic moving window and 

extract the ftting parameters of a 3th order polynomial function at each sliding window position. The 

polynomial ftting was done by means of the LLS estimator. The size of the moving window is chosen to 

be the same as hp. At each step, a polynomial function is ftted to the moving window and used then to 

predict in advance the required hp. 
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An illustration of the motion prediction strategy for hp=0.6s in different breathing phases is given in 

Figure 7.4. As shown in the latter, the polynomial prediction performs better in the linear phase compared 

to the phase of inhalation and exhalation. It is important to note that the frst and second order polynomial 

function represent respectively the CV and CA models described in Appendix C. 
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Fig. 7.4: Illustrating motion prediction of 0.6s ahead for three different cases 

The performance of the sliding polynomial model prediction for hp=0.6s using different orders and sliding 

window sizes has been assessed on 100 respiratory traces and results are illustrated in Figure 7.5. The 

effect of the polynomial order has revealed that the RMSE criteria is smaller for the third and forth 

orders. Concerning the effect of the window size on prediction, it was concluded that the prediction error 

175 



Chapter 7. Predictive tracking for respiratory 
7.2. Respiratory motion prediction induced motion compensation 

increase with the increase of the moving window. 
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Fig. 7.5: The effect of the polynomial order and moving window size for 0.6s ahead prediction 
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In the literature, the diffculty associated with comparing the performance of several prediction algo-

rithms is that they use either different data sets or different data within the same data set and restrict 

the applicability of their approaches to regular motion, which are in practice rarely achieved by patients. 

Further, the most widely used criterion to evaluate the performance of such prediction algorithms is the 

RMSE for each trajectory or the mean of the RMSE when more than one trajectory is considered. Such 

criteria do not, however, highlight algorithms that may fail for short periods of time and hence exhibit 

infrequent large errors. To account for large error, whilst at the same time preventing noise from the 

imaging equipment to interfere with the results, fltered measurements and predicted signals are used 

and then the maximum error is calculated. Moreover, in radiotherapy treatment and for safety reasons, 

it is very important to have a small maximum error, to avoid the radiation of healthy tissues. This has 

prompted the introduction of a new (in the context of ART) criteria to assess the performance of a given 

prediction algorithm. These criteria are based on the maximum error for each trajectory and the average 

of the maximum error for all trajectories. 

The performance of the algorithms presented above has been assessed using the clinical data set from 

VCU. Results for hp={0.2s,0.4s,0.5s,0.6s} are given in Table 7.1(a), 7.1(b), 7.1(c) and 7.1(d), respec-

tively. The effectiveness of the algorithms is compared to the case of no prediction, i.e. the target is 

assumed to remain in the same position. This is equivalent to shifting the current trajectory by hp steps 

ahead. Unlike the polynomial model, NNs schemes and the BTV, the Kalman CA, CV and IMM algo-
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rithms require sampling the data at the same period as the prediction horizon hp. It was found that all 

the predictors perform consistently, achieving a reduction of the RMSE compared to the case where no 

prediction is considered. In terms of RMSE criterion, the best prediction performance was achieved by 

the polynomial model for hp=0.2s and the BTV model for hp={0.4s,0.5s and 0.6s}. Similar results was 

found by comparing the standard deviation of the RMSE. Analysing the difference between the predicted 

trajectories and the actual marker position for the different predictors has highlighted that the largest 

errors occurred around the transition between the inhale and the exhale phases. However, signifcantly 

better accuracy could be achieved during the inhale and exhale phases. The use of prediction based NNs 

can result in a large prediction errors as shown in Table 7.1(a) and 7.1(b). Therefore, the algorithms based 

NNs were not considered in the comparison study for 0.4s and 0.6s ahead. 

Tab. 7.1: Comparative study using 331 trajectories for 0.2s, 0.4s, 0.5s and 0.6s ahead prediction (the best 
results are indicated in bold). 

(a) Prediction of 0.2s ahead (b) Prediction of 0.4s ahead 

Prediction Prediction Error Criteria [mm] 

Methods RMSE Std. of RMSE |emax|
No Predict. 
Kalman CV 
Kalman CA 
IMM 
BTV 
Polynomial 
CGBP 
GRNN 
LM 
BR+CG 

1.29 
0.19 
0.34 
0.30 
0.14 
0.03 
0.63 
0.77 
0.76 
0.48 

0.51 
0.11 
0.17 
0.15 
0.07 
0.02 
0.54 
0.16 
5.23 
0.54 

3.00 
0.72 
1.05 
0.94 
0.67 
0.16 
3.18 
5.25 

40.82 
3.08 

Prediction Prediction Error Criteria [mm] 

Methods RMSE Std. of RMSE |emax|
No Predict. 
Kalman CV 
Kalman CA 
IMM 
BTV 
Polynomial 
GRNN 
CGBP 
LM 
BR+CG 

2.54 
0.78 
1.15 
1.08 
0.51 
0.52 
1.69 
1.20 
1.61 
0.97 

1.00 
0.44 
0.58 
0.55 
0.23 
0.30 
0.50 
0.93 
8.40 
0.78 

5.83 
2.84 
3.45 
3.25 
2.36 
2.38 
4.35 
5.03 

66.56 
5.66 

(c) Prediction of 0.5s ahead (d) Prediction of 0.6s ahead 

Prediction Prediction Error Criteria [mm] 

Methods RMSE Std. of RMSE |emax|
No Predict. 
Kalman CV 
Kalman CA 
IMM 
BTV 
Polynomial 

3.13 
1.27 
1.70 
1.62 
0.75 
1.19 

1.22 
0.72 
0.87 
0.82 
0.32 
0.68 

7.14 
4.57 
5.04 
4.80 
3.44 
5.29 

Prediction Prediction Error Criteria [mm] 

Methods RMSE Std. of RMSE |emax|
No Predict. 
Kalman CV 
Kalman CA 
IMM 
BTV 
Polynomial 

3.70 
1.91 
2.35 
2.25 
1.00 
2.28 

1.44 
1.08 
1.19 
1.14 
0.42 
1.31 

8.37 
6.77 
6.81 
6.55 
4.59 
9.81 
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7.2.4 Real-Time implementation of motion prediction 

As the main objective of the project MAESTRO is to apply the newly proposed control strategy in clinical 

application, it was required to implement the PSS control system and the motion prediction in real-time. 

The implementation in real-time of the former was already carried out by MAESTRO co-workers, and 

is briefy described in [Skworcow 2008, Paluszczyszyn 2008]. This subsection will outline the real-

time implementation of three motion predictors, namely Kalman CV, Kalman CA, and the IMM flter. 

After a brief research, it was found that an Embedded MATLAB function which is a block of Simulink 

environment can be utilized to generate embedded codes. The Embedded MATLAB function allows the 

creation of functions with a subset of MATLAB language. Once a Simulink model is simulated a function 

in an Embedded MATLAB Function block generates effcient C code. A Real-Time predictor block was 

built and added to the overall Simulink model of the PSS control strategy illustrated in Figure 7.1. 

7.3 Model of the patient support system (PSS) movement 

A short description of the PSS was given in Chapter 2. The aim of this section is to introduce a model 

of the PSS movement, which was built by the author through a new identifcation experiment carried out 

at the UHCW. It is important to recall that the PSS has four degrees of freedom: Forward-backward 

(Y-axis or longitudinal axis), left and right (X-axis or lateral axis), up and down (Z-axis or height axis) 

plus a rotation around Z-axis refereed to the Iso center. Note that only the motion along the three axes 

will be considered for modelling. There exist some PSS with built-in position controller, however, they 

are designed for pre-treatment patient positioning and not for patient repositioning during the treatment 

delivery [Brock et al. 2002]. This work will consider a standard PSS. 

In practice, the PSS is operated manually using four one-degree-of-freedom ‘joysticks’ (one for each 

one-degree-of-freedom of the PSS), which are used to defne a velocity set-point for each joint. All 

the joints are independently controlled by joint-level velocity servo loops, as it is classically done for 

industrial robots [Gangloff and de Mathelin 2003], thus it is assumed that the dynamics of separate axes 

are decoupled. However, there is kinematic coupling between longitudinal and vertical axes due to PSS 

defection caused by fnite rigidity of a table top [Skworcow 2008]. 

7.3.1 Data acquisition 

Some models of the PSS have been developed by the MAESTRO team involving experiments where 

sine wave and steps stimuli were used [Haas et al. 2006]. In the experiment proposed by the author, 
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some usual test signals such as PRBS, RBS, and sine wave of amplitude ±2 mm were used to excite 

the PSS system over its whole bandwidth (0-1 Hz). While, the amplitude of the frst two signals was 

fxed, varying sine wave amplitude was used. The measurements were carried out at the UHCW on 

a PSS of an Elektar SynergyTM linear accelerator. A special hardware interface illustrated in Figure 

7.6(a)) has been developed to enable communication between the PSS and a PC equipped with a dSPACE 

card and Matlab/Simulink software package. A special graphical platform was developed in the dSPACE 

control desk to enable the PC to send various input voltages to PSS and to measure output voltage from 

the potentiometer measuring the position of the PSS. The measurements were performed along the PSS 

longitudinal, lateral and vertical axes. 

Previous measurements taken at the UHCW have revealed that the reading of the potentiometer installed 

in the clinical PSS required conversion from voltage units to millimetres. The relation between output 

of the PSS in voltage to position in millimetres was found by a MAESTRO co-worker to be linear with 

the conversion coeffcient equal 0.0095. Furthermore, the experiment did take into account the patient’s 

weight by using six weights of 13 kg each. The maximum load employed was thus similar to that proposed 

by [CAPCA 2005]. Three cases were assessed in this experiment: (i) PSS movement without load, (ii) 

PSS movement with 4 weights (52 kg), and (iii) PSS movement with 6 weights (72 kg). 

(a) Connection set-up. (b) The PSS joystick. 

Fig. 7.6: Illustrating the experiment connection set-up and the PSS joystick. 

For each scenario the PSS was moved along its three axes with the help of the joystick depicted in Figure 

7.6(b). An example of the PSS system input-output for the three axes and different simulated patient 

weight is given in Figure 7.7. Note that a constant offset value has been added to the amplitude values of 

each these signals to improve the clarity of the fgures illustrated in Figure 7.7. 
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Fig. 7.7: Example of PSS input-output measurement data for different axis, inputs and weights. 

7.3.2 Nonlinear autoregressive with exogenous variables (NARX) model 

The data collected was then used to develop a simulation model of the PSS. The latter consists of a NARX 

model, in which the linear part represents the motor dynamics and the nonlinear components comprise 

logarithmic PSS input, a saturation, a dead zone, and friction. Note that the logarithmic input, dead zone 

and saturation are due to the joystick interface and the maximum speed achievable by the motors. The 

following NARX model structure was used: 

y(t) = −a1y(t − 1)− a2y(t − 2) + bH(u(t − 1)) + offset (7.3.1) 

where H is a nonlinear function of the input signal which consist of the following functions. 
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PSS logarithmic input 

There was a logarithmic function at the level of the joystick, to enable better control at low velocity. This 

logarithmic function works such as when the input voltage of the PSS is increasing quickly the velocity 

of the PSS increase slowly. This was found to have the following model: 

8 
log10(u) if u > 1>>><

H1(u) = − log10(−u) if u < −1 >>>
u/10 if −1 < u < 1.: 

PSS saturation 

Above a certain value, increasing the voltage input does not result in a speed increase. The saturation 

restricts the allowable voltage input to the specifed saturation level (SL) ±2V . Assuming a symmetric 

saturation function, SL is a single parameter of the saturation. In our case the latter was fxed to 2V. The 

input signals were therefore limited to be between -2V and +2V such as not to infringe the saturation 

limits 

PSS dead zone 

The dead zone is used to prevent the PSS from reacting when subject to ‘small’ input signals. If the value 

of the input is inside the dead zone level then the actual input received by the PSS is zero. The dead zone 

was initially assumed to be symmetrical, warranting a single parameter Dz to model it. Note however that 

for some of the interface it was observed that the PSS started moving at voltages different to that used 

to stop and even different between positive and negative motion. Such behaviour was assumed to be due 

to stiction and friction as well as some hysteresis subsequently modelled as non symmetrical dead zone 

requiring two parameters Dzl and Dzh. The overall characteristic including a non symmetrical dead zone 

and symmetrical saturation is illustrated in Figure 7.8. 
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Fig. 7.8: Overall characteristic of a non symmetrical dead zone and symmetrical saturation. 

In addition to the above-mentioned nonlinearities, there is also the friction force that opposes the motion 

of the PSS. The friction force depends mainly on the surface of motion and the PSS velocity. A mathe-

matical description of the friction force can be found in [Putra 2004]. The friction force was omitted here 

for simplicity and therefore the values of the the friction component was given by the manufacturer. 

The amount and combination of each of these nonlinearities are slightly different depending on the axis of 

motion. However, all these are present and thus a similar modelling framework was adopted for each axis. 

The parameters of these models are however different. The next part describes the system identifcation 

work done to estimate the parameters of the models for the longitudinal, lateral and vertical direction. 

7.3.3 Simulation results 

Simulation studies were carried out to determine the model of the PSS movement in the three axes. Firstly, 

the data collected in the experiment were divided into two sets, in order to use the frst set for parameters 

estimation and the second one to validate the obtained models. The parameters estimation was performed 

using constrained nonlinear optimisation technique similar to the one described in the Subsection 5.4.1. 

The optimisation process was initialised by the least squares estimate for the linear part and an initial 

guess for the dead zone parameters (Dzl,Dzh). The PSS movement modelling and validation procedures 

are presented in the algorithm 4. 
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Algorithm 4 The PSS Movement Modelling and Validation Procedures 

1: For a given PSS input-output signals {UN} and {YN}, where N is the number of samples consid-
ered. 

2: Remove the mean value. 
3: Apply the logarithmic function to the PSS input signal {UN}. 
4: Separate data in two sets, the frst set for modelling {U1,Y1}, and the other set of unseen data 

{U2,Y2} to validate the model. 
5: Apply the dead zone function and friction force to the PSS input signal {U1}
6: Estimate an initial vector parameter �bi, for input-output observations {U1,Y1}, using linear least 

squares (LLS). This latter is then used to initialize the iterative optimization technique in the next 
step. 

7: Estimate using a nonlinear optimization technique, the parameters of the model � iteratively by min-
imizing the MSSE, for input-output {U1,Y1}. 

8: Use the input observations {U2} and the model to simulate the estimated unseen data {Yb 2}. 

The performance of the obtained three axes models were assessed for each input signal and different 

weights using the unseen data, see Table 7.2. Comparing the modelling performance in the case of the 

PRBS excitation, it was noticed that the longitudinal PSS movement model gives the lowest RMSE for 

the three different weights. For the RBS test, the best modelling performance for the 0, 52 and 78 kg was 

found to be the model of the PSS in the vertical, lateral and longitudinal respectively. Concerning the sine 

wave test, the lowest RMSE was given by the longitudinal model for 0 kg, and vertical model for both 

52 and 78 kg weights. On can deduce from this comparison that the performance of the PSS movement 

model is weight and input signal independent. The largest RMSE has resulted from the validation of the 

lateral model of the PSS for the PRBS (0 kg) and RBS (78 kg). 

Tab. 7.2: The evaluation of the PSS model in the three axes (the best results are indicated in bold). 

Movement Axis LONGITUDINAL 
Input Signal PRBS RBS SINE WAVE 
Mass [kg] 0 52 78 0 52 78 0 52 78 

RMSE [mm] Mod. 0.15 0.21 0.23 1.17 0.36 0.21 0.26 0.31 0.39 
Val. 0.53 0.22 0.70 3.22 2.17 1.21 0.71 1.96 3.46 

Movement Axis LATERAL 
Input Signal PRBS RBS SINE WAVE 
Mass [kg] 0 52 78 0 52 78 0 52 78 

RMSE [mm] Mod. 0.32 0.59 0.40 0.46 0.35 0.69 0.26 0.35 0.26 
Val. 15.36 2.80 3.57 2.98 0.95 7.56 4.87 3.96 4.64 

Movement Axis VERTICAL 
Input Signal PRBS RBS SINE WAVE 
Mass [kg] 0 52 78 0 52 78 0 52 78 

RMSE [mm] Mod. 0.46 0.42 0.41 0.18 0.42 0.46 0.27 0.23 0.24 
Val. 1.20 3.44 1.06 2.09 4.72 1.69 3.75 0.62 1.11 

183 



Chapter 7. Predictive tracking for respiratory 
7.3. Model of the patient support system (PSS) movement induced motion compensation 

Some good examples of the comparison between the simulated PSS model data and the measured data for 

each test signal and movement axis are depicted in Figures 7.9-7.11. Figure 7.9 illustrates the simulation 

results for the PRBS test. The obtained models in this case have performed the experimental data with a 

RMSE less than 0.6 mm. However, in the validation step, the lateral and vertical models of the PSS have 

achieved a RMSE bigger than 1 mm. This is mainly due to the fact that the adopted model of the PSS in 

the lateral and vertical axes does not cover all the PSS motion dynamics in the aforementioned axes. The 

simulation results for the RBS test are depicted in Figure 7.10. The model of the PSS in this case performs 

the validation set with a RMSE bigger than 1 mm in longitudinal and vertical axes. Finally, the simulation 

results in the case of the sine wave input signal are presented in Figure 7.11. The large simulation error 

was noticed in the lateral model of the PSS. As conclusion, some of the simulation models of the PSS 

movement show a good ability to replicate the PSS movement in the three axes. The large errors in the 

validation stage were mainly noticed for the vertical model of the PSS. This can be due to the fact that the 

adopted model does not cover all the PSS motion dynamics in the vertical axis. Therefore, the model of 

the vertical motion of the PSS has to be improved. The parameters of the obtained models are shown in 

Table 7.3. The estimated parameters depend on the movement axis and the input signal. The parameters 

a1,a2 and b1 are slightly similar when comparing the longitudinal and lateral PSS response to the PRBS 

and RBS inputs for three cases (0,4 and 6 weights). The aforementioned parameters are dissimilar for 

the vertical movement. This is probably due to the complicated dynamic of the vertical movement of the 

PSS. 

The NARX model was found to be a satisfactory simulation model of the PSS. However, as the MPC 

scheme requires the system model to be in linear state-space form, hence, model developed for control 

design purpose consider only the linear part of the SimMechnics mode, i.e. all nonlinearities are ignored 

(see [Skworcow 2008]). Some of the system nonlinearities were taken into account during the control 

design in the form of constraints. 
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Fig. 7.9: Illustrating the PSS model evaluation for the PRBS excitation and for the three axes: longitudinal 
(a), lateral (b) and vertical (c). 

185 

http:Validation,RMSSE=0.22
http:Modelling,RMSSE=0.59


 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7. Predictive tracking for respiratory 
7.3. Model of the patient support system (PSS) movement induced motion compensation 

Modelling, RMSSE= 0.21cm Modelling, RMSSE= 0.35 cm 
10 

10 

Measured 

Simulated 

100 200 300 400 500 

[c
m

] 

Measured 

Simulated 

P
o
s
it
io

n
 [
c
m

] 
P
o
s
it
io

n
 [
c
m

] 

0 

−10 

−20 

0 

100 200 300 400 500 
Samples 

Samples Validation, RMSSE= 0.95 cm 
Validation, RMSSE= 1.21cm 

P
o
s
it
io

n
 

−10 

−20 

Measured 

Simulated 

100 200 300 400 500 

Measured 

Simulated P
o
s
it
io

n
 [
c
m

] 

10 

5 

0 

−5 

10 

0 

−10 

−20 

100 200 300 400 500 
Samples Samples 

(a) (b) 

Modelling, RMSSE= 0.46 cm 

P
o
si
ti
o
n
 [
cm

] 

0 

−5 

−10 
Measured 

Simulated 

100 200 300 400 500 600 
Samples 

Validation, RMSSE= 1.69 cm 

100 200 300 400 500 600 

−10 

0 

10 

20 

P
o
si
ti
o
n
 [
cm

] 

Measured 

Simulated 

Samples 

(c) 

Fig. 7.10: Illustrating the PSS model evaluation for the RBS excitation and for the three axes: longitudinal 
(a), lateral (b) and vertical (c). 
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Fig. 7.11: Illustrating the PSS model evaluation for the sine wave excitation and for the three axes: lon-
gitudinal (a), lateral (b) and vertical (c). 
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Tab. 7.3: The estimated parameters of the PSS model in the three axes. 

Movement Axis LONGITUDINAL 
Input Signal PRBS RBS SINE WAVE 
Weight 0 4 6 0 4 6 0 4 6 
a1 -1.7461 -1.7686 -1.7773 -1.7528 -1.7634 -1.7629 -1.3750 -1.2926 -1.3234 
a2 0.7461 0.7687 0.7773 0.7531 0.7635 0.7629 0.3745 0.2925 0.3236 
b1 0.283 0.2514 0.3358 0.2421 0.2380 0.2879 0.8894 0.5265 0.6486 
Offset -0.0001 0.0016 0.0039 0.0067 0.0102 -0.0034 0.0000 0.0215 0.0084 
Dzh 0.0433 0.0122 0.1213 0.0000 0.0000 .0206 0.0543 0.0000 0.0052 
Dzl -0.0008 -0.0270 -0.0782 -0.0000 -0.0000 -0.0809 -0.0535 -0.0000 -0.0022 

Movement Axis LATERAL 
Input Signal PRBS RBS SINE WAVE 
Weight 0 4 6 0 4 6 0 4 6 
a1 -1.7997 -1.8264 -1.8163 -1.8165 -1.8214 -1.8285 -1.4152 -1.5229 -1.4492 
a2 0.7997 0.8264 0.8164 0.8166 0.8214 0.8284 0.4155 0.5228 0.4492 
b1 0.2319 0.1895 0.1952 0.2311 0.1857 0.1885 0.5543 0.7969 0.7889 
Offset -0.0168 0.0011 0.0026 -0.0076 0.0051 0.0108 0.0033 0.0054 0.0034 
Dzh 0.0255 0.0217 0.0111 0.0000 0.0108 0.0093 0.0102 0.0995 0.0561 
Dzl -0.0328 -0.0082 -0.0106 -0.1179 -0.0103 -0.0111 -0.0081 -0.0127 -0.0323 

Movement Axis VERTICAL 
Input Signal PRBS RBS SINE WAVE 
Weight 0 4 6 0 4 6 0 4 6 
a1 -0.8351 -0.8149 -1.0015 -1.6751 -0.9319 -0.8556 -0.6442 -0.5937 -0.5615 
a2 -0.1647 -0.1860 0.0011 0.6751 -0.0686 -0.1446 -0.3554 -0.4082 -0.4390 
b1 0.8229 0.8684 0.7255 0.4707 0.7553 0.8094 1.1626 1.3654 1.7044 
Offset -0.0041 -0.0169 0.0040 -0.0323 0.0292 0.0357 -0.0179 -0.0007 0.0074 
Dzh 0.0121 0.0164 0.0071 0.0649 0.0148 0.0072 0.0139 0.0381 0.1151 
Dzl -0.0123 -0.0218 -0.0184 -0.2486 -0.0002 -0.0058 -0.0179 -0.0262 -0.0000 

7.4 Predictive bilinear feedforward model 

In [D’Souza et al. 2005] some feasibility studies of PSS-based organ motion compensation was demon-

strated. However, speed and frequency was four times slower than that necessary to track intra-fractional 

motion encountered in reality. In contrast, the frst simulation considered in this section deals with actual 

SI motion data of a tumour collected during treatment [Shirato et al. 2000a]. This is used to generate 

the reference signal for the controller. The time response of the closed-loop PSS depends on controller 

gain, the load (patient mass) and variation in reference amplitude and frequency. For an average load of 

70kg and a reference being the motion of an actual tumour, the time corresponding to the phase lag has 

been estimated to be 0.1s. The total latency due to respiratory monitoring and data processing leading to 

reference generation is estimated to be 0.2s. 

The SimMechanics model introduced in [Skworcow 2008] was developed for the purpose of simulation 

and includes nonlinearities such as friction and stiction, quantization of measurements, backlash and 

input saturation. However, for the purpose of model-based controller design, nonlinearities are removed 
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resulting in a simplifed linear model, which is considered to be realistic. In most commercial systems 

automated control of the PSS position is not currently available. To demonstrate the principle of PSS 

position control via a reference signal derived from organ motion, a proportional feedback controller 

implemented in Simulink was used. The predicted organ motion using the bilinear flter was taken as the 

reference signal. 

Contrary to the previous methods, including KF, linear prediction and NN, which have been used to 

predict up to 1s ahead, a new approach represented here involves long term prediction i.e. one cycle in 

advance (three seconds for data acquired with 30 Hz) using a bilinear approach. This approach consists 

in building a predictive model for the exhalation and inhalations durations. This model assumed that the 

exhalation and inhalation durations are nearly constant with a small variation or error to allow the two 

parameters some fuctuation. Following the initial step of generating the input signal, the parameters of 

the bilinear model are estimated recursively using a weighted recursive least squares (WRLS) algorithm. 

To be able to predict next breathing cycle, a predicted input was generated by making use of mean values 

for the two half periods (noting the asymmetry). This is then fed into the bilinear model to obtain the 

prediction of the next cycle. 

Assuming that the position of the organ is acquired in real time by the measurement tool, the steps of 

modelling and prediction are given as follows: 

Algorithm 5 Modelling and Prediction Algorithm 

1: for t = 1:N do 
2: Estimate Ymin (minimum value of system output). 
3: Generate Umax (maximum value of system input). 
4: 1 2Estimate �t = [a , a , bt, �t, dt]

T , by using optimization technique. t t 

5: 

6: 

Estimate Ymax (maximum value of system output) ) T1 (time spent in exhale). 
Switch to Umin (minimum value of system input). 

7: 

8: 

Detect Ymin ) T2 (time spent in inhale). 
Run KF to predict next T1 and T2. 

9: Use the actual model to Predict k position ahead. 
10: end for 

During the training time of the bilinear model, the latter has satisfactorily replicated the motion with a 

RMSE of 0.41mm (see Figure 7.12(a)). The bilinear predictor is then set-up for prediction to generate the 

reference to be fed into the controller to ensure that the PSS is at the correct position at the desired time. 

The RMSE of the predicted unseen cycle is 1.1mm. Note, that motion of the PSS and the organ should be 

in opposite directions to aim towards organ immobilization. For the purpose of illustration, however, the 

organ and PSS motion is in the same direction. Figure 7.12(b) shows that the control strategy enables the 

PSS to compensate for organ motion by accurately following the desired trajectory, i.e. predicted organ 

position. The discrepancy between the predicted organ position and PSS position is 0.04mm RMSE, 
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while the discrepancy between the actual organ position and PSS position is 0.42mm RMSE. 
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Fig. 7.12: The bilinear prediction with the PSS control. 

7.5 Clinical assessment of adaptive radiotherapy (ART) based patient sup-

port system (PSS) control 

Some clinical experiments were carried out at the UHCW to assess the new ART strategy based on PSS 

control (see Appendix D), to accommodate for respiratory motion. This adaptive approach was the result 

of collaboration between CTAC and the UHCW, both involved in the MAESTRO project. The clinical 

tests were performed on an Elektar SynergyTM LINAC and involved a thorax phantom to simulate the 

tumour motion and the video camera tracking system developed to monitor the position of the markers 

placed on the phantom. An illustration of the experiments set-up is shown in Figure 7.13. The thorax 

phantom and its accompanying software used in the experiments were developed by the UHCW team in 

collaboration with CTAC (see [Land 2009]). 

The new approach consisted in sending the acquired position by the video camera to the prediction block, 

which apply the Kalman CV algorithm to predict 28 samples in advance (equivalent to 0.56s for con-

troller sampling time of 50 Hz). The latter was then sent to the PSS controller which moved the couch 

accordingly. Connection to the PSS was implemented using a special purpose interface designed at CTAC 

in collaboration with UHCW and Elektar . The aim of the strategy consisted on moving the PSS in the 

opposite direction to the movement of the target in the phantom, so that the latter is immobilized with 

respect to the treatment beam. 
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Fig. 7.13: Illustrating a typical set-up for experiments with the clinical PSS at UHCW. 

The performance of the ART system was assessed for the longitudinal and vertical axes (corresponding to 

SI and AP tumour motion respectively), by comparing the motion generated by the phantom and the PSS 

response. The compensation for 2D motion (SI and AP) was successfully implemented in [Skworcow 

2008]. Respiratory motion of the target within the lung of the thorax phantom was frstly produced 

by a regular signals such as sinewaves. Figure 7.14 shows the PSS positional response to a sinusoidal 

motion with a peak-to-peak amplitude of 14 mm and a frequency of 0.2 Hz generated by the phantom in 

longitudinal axis. The controlled PSS was able to follow the sinusoidal motion generated by the phantom 

with an accuracy less than 1 mm in terms of RMSE. To quantify the predictive tracking of compensation 

strategy in term of RMSE, maximum error and 95% CI the reference signal was compared the PSS 

response (see Figure 7.14). The compensation method has reduced the tracking error in term of RMSE, 

maximum error and the 95% CI by a factor of 10 to an error which could be easily accommodated by a 

slight increase of the treatment margin. 
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Fig. 7.14: Illustrating the interest of the compensation method. 

7.6 Conclusions 

Respiratory motion prediction was achieved in this chapter by means of two novel prediction algorithms, 

namely BTV and sliding window polynomial models. The effectiveness of these latter was assessed 

against some prediction algorithms developed by MAESTRO co-worker, including IMM, KF assuming 

CV and CA and two structures of NNs; a TSP MLP and GRNN, with four different training algorithms. It 

was found that all predictors can achieve a reduction of RMSE when compared to the case of no prediction 

is considered. The outcome of the comparison between the introduced predictors has shown that while 

the polynomial approach performs better for short time prediction horizon (0.2s), the BTV has achieved 

a better results for long time prediction (0.4s, 0.5s and 0.6s). The real-time implementation of three 

motion predictors, namely Kalman CV, Kalman CA, and the IMM flter has also been performed. The 

real-time implementation was useful for the clinical assessment of the developed compensation strategy. 

A model of each motion axis of the PSS was identifed using experimental data collected at the UHCW. 

The developed models were shown to perform adequately being able to accommodate for most of the 

system’s nonlinearities, leading to a RMSE of less than 1mm in most of the cases. 

The new motion compensation strategy developed within the MAESTRO project was assessed clinically 

at the UHCW. This has involved a mechanical lung phantom, video camera tracking system, an MPC 
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controller and a motion predictor. The author has contributed to this practically signifcant outcome 

by implementing the initial KF predictor for use in dSPACE and the development of the video camera 

tracking system. The main outcome of this test was that the controlled PSS was able to follow the 

sinusoidal reference signals in longitudinal mode. Using such compensation strategy decreases the effect 

of target motion leading to a RMS compensation error of the order of 0.6. Such an error would warrant a 

margin of the order of 1.4mm to ensure a 95% coverage of the target. 
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Chapter 8 

General conclusions and further research 

perspectives 

This fnal chapter presents the overall conclusions that can be drawn from this research and suggests some 

of the future work that may follow-on from it. 

8.1 General conclusions 

The research, described in this thesis, considered the problem of delivering a radiation beam precisely 

to a tumour, when the tumour is in motion, caused by respiration, during the external beam radiotherapy 

process. Tumour motion is currently measured with the use of surrogate markers whose position is 

correlated to the actual tumour motion. In this work, it was assumed that the surrogate motion provides 

an accurate representation of the tumour motion. The main aim of this research was to model and derive 

the means to predict in advance the surrogate motion. Major efforts have been devoted to address the 

following objectives: 

• Develop new surrogate motion models (chapter 5). 

• Generate a set of realistic respiratory motion data sets (chapter 5). 

• Develop new modelling and predictive tracking strategy based on fow measurement and external 

chest markers (chapter 6). 

• Introduce new prediction algorithms (chapter 7). 
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To carry out the above objectives, both the theoretical and practical aspects have been considered. There 

are three types of contributions. The frst relates to the surrogate motion models developed and their 

exploitation to derive a new set of benchmark data. The second involves the modifcation of the models 

developed to make them suitable for the purpose of motion prediction. The third involves experimental 

work and the demonstration of the algorithms developed on real time motion monitoring system. The 

outcomes and novelty of each part of this research is highlighted in the following paragraphs. 

The success of this research was made possible with the most relevant clinical respiratory surrogate 

motion data provided by Virginia Commonwealth University (USA) and Hokkaido University-School 

of Medicine (Japan), representing respectively the anterior-posterior and superior-inferior movement of 

external and internal markers. This data was divided into four data sets; internal fducial markers, free-

breathing, audio instruction and audio-visual biofeedback. A time and frequency analysis of this data 

highlighted the different breathing irregularities and abnormalities that might affect the respiration to-

gether with measurement noise, baseline drift and heart beat. To derive average models, a subset of this 

data, referred as a ‘good’ data, was selected to build the respiratory model and provide the prior knowl-

edge exploited in the derivation and tuning of respiratory motion model and prediction algorithms. By 

contrast to the respiratory motion parameterisation adopted in [Wu et al. 2004], the author has considered 

breathing as a succession of exhalation and inhalation, as this was found to be more appropriate with the 

modelling approach presented in chapter 4. 

In addition to data from the literature, a new experiment presented in chapter 6 was designed and carried 

out by the author involving 13 healthy subjects. Three dimensional motion of external markers placed 

onto two different positions on the thorax were measured by the Polaris system and at the same time 

the breathing fow, lung volume, pressure and heart rate were measured by a spirometer. The aim of the 

experiment was to evaluate the applicability of using one of the physical signals from the spirometer as 

the input signal to drive a bilinear flter within the new model framework presented in chapter 5. This 

experiment is considered as a minor contribution, however it provided the means to validate the models 

and predictors developed using independent data as well as that of the literature. 

The main contribution of this thesis in terms of modelling the respiratory surrogate motion is the motion 

modelling framework described in Section 5.4. The approach has presumed that the lung is approximated 

by a bilinear system, which responds to a square wave signal assumed to be generated by the nervous 

system. The novelty of the approach lies in the combination of the past and current motion data with 

an input signal correlated to the inhalation and exhalation phases. This framework can accommodate 

both linear and non linear motion models. The driving signal could be generated based on predicted 

inhalation and exhalation phases as well as measurement of other surrogate signals. Disturbances such as 
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drift, measurement noise and heartbeat as external signals were modelled separately and combined with 

the disturbance free model. Two methods based on a polynomial function and drift frequencies fltering 

were proposed to remove the drift signal. Both constrained and unconstrained nonlinear optimisation 

techniques were used to obtain the parameters of the models. The performance of this modelling approach 

was assessed using the ‘good data’ subset for both internal and external motion. 

An average bilinear model was able to adequately replicate the validation set of the clinical data with 

an overall average root mean squared simulation error less than 1.5 mm for internal data and 2 mm for 

external data in the case of polynomial and pre-fltering drift removal methods respectively. However, an 

overall average maximum absolute simulation error was found to be larger than 3 mm in both cases, which 

was mainly due to some respiratory irregularities not considered in the modelling phase. A comparison 

between the modelling performance of the average bilinear model against the performance of the phase-

based model presented in [Wu et al. 2004], both involving the internal fducial markers data, was carried 

out. It was found that the overall average root mean squared simulation error criterion for the former is a 

slightly higher than the latter. It is believed, however, that the modelling framework presented can lead to 

more generalisable models able to cope with breathing period variability. 

Moreover, the introduced model is based on a dynamic system with a fxed number of parameters. In 

contrast to the previous developed models that were evaluated on the same data that was used to build 

the models, the assessment of the introduced models in this work was evaluated on different data to that 

used to build the models. The constrained optimisation technique adopted to estimate the parameters of 

the models was able to reduce the simulation error. However, such a fxed parameter model can only 

partially replicate some of the variability of breathing motion. It was found however that varying the 

model parameters on line could produce signifcantly better model ft at the cost of varying parameters. 

The second contribution in terms of respiratory cycles modelling was the use of polynomial ftting. This 

was performed online and compared to the widely used Lujan model, which was also implemented on-

line. The polynomial model was able to reproduce more accurately the non-symmetrical breathing cycles 

compared to the Lujan model. In addition, the polynomial ftting is computationally faster as the model 

is linear in the parameters. 

The third contribution, associated with the modelling work, was the generation of a set of benchmark 

data against which to assess motion prediction algorithms. The bilinear time-invariant model was found 

to provide an ideal platform to generate, for the research community, a new set of data representing a 

wide, as well as realistic, range of motion that could account for typical drift, heart beat and noise. The 

use of the bilinear time-invariant model to generate a new database of test signals is considered as another 

novelty of this work with great potential as there is currently no widely available database against which 
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the algorithms of various research groups may be compared. The generated test trajectories, presented 

in Section 5.8, exploit the statistical model of the period and duty cycle performed in chapter 4. The 

spectrum of the generated data has confrmed the existence of the expected respiratory frequencies as 

well as signal irregularities. These fles are available from the MAESTRO website. 

A fnal contribution in term of modelling was the experimental validation of the approach on the data 

obtained from the new experiment involving the spirometer and the Polaris. To illustrate the approach the 

breathing fow together with the external markers motion in the X direction were selected. It was found 

that ARX(2,2) was the ’best’ model structure. The impact of using a square wave virtual input by contrast 

to physical input was shown to be able to improve the modelling performance in terms of mean absolute 

simulation error. 

The main contribution in terms of motion prediction is the extension of the bilinear model for prediction. 

Recognising that patient motion changes regularly and that the model needs to be updated to cater for it, 

the bilinear model was modifed to make it suitable to predict organ motion. The bilinear time-varying 

motion prediction model is considered as the second major contribution. A related contribution has been 

the demonstration of such novel online predictive tracking approach using fow rate as the input driving 

the bilinear time-varying model, which itself exploits position of external markers measured by a camera. 

The second contribution in terms of motion prediction is the adaptation of the polynomial model devel-

oped in chapter 5 to be used within a sliding window to model and then extrapolate organ motion using 

polynomial approximation. The third contribution is the comparison between the prediction algorithms 

developed by the author and MAESTRO colleagues, particularly the interacting multiple model, Kalman 

flter assuming constant velocity and constant acceleration and two structures of neural networks; a time-

series prediction multi-layer perceptron and generalised regression neural network, with four different 

training algorithms. It was concluded that the polynomial method is the best for the short time i.e. 0.2s 

and the bilinear time-varying method is appropriate for long time prediction up to 0.6s. 

The combination of the predictive tracking and control to compensate for respiratory motion during the 

radiotherapy treatment was also considered. The motion prediction work was fed into a new compensation 

strategy has been developed by MAESTRO co-workers. The strategy was assessed in both simulation and 

in a clinical environment. In the former, a proportional control of the patient support system represented 

by a SimMechanics model and a predictive bilinear feedforward model has shown that the patient support 

system can follow the predicted organ motion with an accuracy of 0.04 mm. The developed approach 

was implemented in a clinical environment at the University Hospitals Coventry and Warwickshire. 
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In summary, a number of novel results have been contributed to the area of the external beam radiotherapy, 

which provide frm foundations to improve the treatment of moving tumours. It is hoped that the research, 

detailed in this thesis, will eventually lead to the successful and widespread use of the tumour motion 

models and compensation based patient support system control in radiotherapy treatment practice. 

8.2 Further research perspectives 

Based on the work presented in this thesis, the author believes that some research suggestions for further 

investigations can be made. These further research perspectives are described in the following paragraphs. 

The bilinear modelling approach adopted in chapter 5 has considered only the breathing motion. It can 

be extended to a new model structure that involves the external signals such as measurement noise, drift 

and heart rate. However, the estimation of model parameters will not be an easy task as the estimation of 

some of these parameters can affect the others. This problem can be solved by considering a regularisation 

technique in order to make use of the a-prior-knowledge. 

The polynomial drift removal used in chapter 5 was sensitive to the initial conditions. To overcome this 

problem a use of padding with the padded value being equal to the average of the signal over the frst few 

cycles, alternatively the frst few cycles and the last few should be extracted from the data and ignored in 

the analysis. Such an approach may also help reduce the order of the polynomial for the drift model. 

In the experiment carried out in chapter 6 the delay between the input and the output signals was not 

taken into account. The developed models can be modifed by introducing the delay as a parameter to be 

estimated. This can be adopted as an off-line practice to identify the delay as well as online in parallel 

with a predictor to defne the time horizon to predict in advance. Indeed, it has been observed that the 

delay due to the video processing system used in the MAESTRO project changes over time. 

Regarding the motion prediction, it might be useful to consider a new hybrid scheme where prediction 

based on neural network strategies, Kalman flter, polynomial and bilinear flter are merged together with 

signal pre-processing techniques such as wavelets, fast Fourier transform and noise fltering to give an 

accurate expected organ position, together with an estimate of the prediction accuracy. Moreover, some 

algorithms that have been used for tracking such as alpha-beta, alpha-beta-gamma flters, particle flter 

and Bayesian approaches can also be assessed. 
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Appendix A 

The Methods and advanced equipment for 

simulation and treatment in radiation 

oncology (MAESTRO) project 

The research work described in this Thesis is part of the European project entitled methods and advanced 

equipment for simulation and treatment in radiation oncology (MAESTRO). The project which started in 

May 2004 and fnished in October 2009, has involved 25 partners (research institutes, oncology centers 

and manufactures) from 14 European countries. The project was organised in four scientifc specifc work 

packages (WPs), one WP on dissemination and one WP on management. 

The work described in this Thesis is part of WP1 that involves the CTAC at Coventry University, the 

UHCW, the University of East Anglia, and the University Castilla-La Mancha in Spain. WP1 deals with 

ART that includes the assessment of the geometrical accuracy of PSS and gantry systems, the develop-

ment of a dynamic phantom, the evaluation of methods to track in real-time ROI from medical images 

and the development of a couch-based motion compensation system. 

The main achievement of the WP1 was the development of a new couch-based motion compensation 

strategy demonstrated in a clinical environment at the University Hospitals Coventry and Warwickshire 

(UHCW). The WP 1 demonstrated the ability to detect the surrogate motion and to compensate for its 

motion in real-time using a standard Elekta PSS. A new model predictive control MPC system was 

combined with a video tracker and a Kalman flter motion predictor to detect surrogate motion and move 

the PSS to compensate for the detected motion taking into account the software delays as well as the PSS 

dynamics. 
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CTAC and UHCW (Coventry, UK) developed a ‘breathing’ thorax phantom to facilitate the clinical val-

idation of the ’breathing couch’ developed. The phantoms as well as other simpler electromechanical 

devices were positioned onto the PSS. Their motion was computer controlled to replicate realistic ex-

ternal as well as internal organ motion. The motion detection was performed using external markers 

monitored by video cameras or infrared tracking systems (e.g. Polaris). The control algorithms exploited 

the measured and predicted position to calculate the control action required to move the PSS in real time 

to enable it to compensate for target movements in such a way that the markers remain as motionless with 

respect to the room coordinate system and the treatment beam (i.e. the target does not move with respect 

to the beam). 

Kalman flter based predictors were compared to neural networks, polynomial and bilinear flters. The 

effect of motion prediction was assessed and a typical prediction horizon of 0.3s selected as the most 

appropriate to perform motion compensation with a standard Elekta PSS. The effect of motion prediction 

was experimentally demonstrated and it was shown to clearly improve the overall motion compensation. 

The role of the author in the WP1 was to build a model of the respiratory motion in order to generate 

a set of realistic respiratory motion that can be replicated by the lung phantom. Moreover, the author 

has also investigated different prediction algorithms and performed a comparative study between the ’in 

house’ developed prediction algorithms. During the MAESTRO project the author has co-supervised 

with Dr. Haas the placement students: Mr Amir Mekherbeche, Mr Hugues Kode, Ms Audrey Rizzo, Ms 

Myriam Clesse. In addition, the author has co-supervised with Dr Haas the MSc project of Mr George 

Koustoumpardis. 

Coventry MAESTRO Members: 

• Dr O.C. Haas (MAESTRO Coordinator - CTAC) 

• Dr J. A. Mills (Project Supervisor - UHCW) 

• Prof K.J. Burnham (Project Supervisor - CTAC) 

• Dr D. Putra (Former Research Assistant - CTAC) 

• Dr P. Skworcow (Former MAESTRO PhD student - CTAC) 

• Dr I. Land (Former MAESTRO PhD student - UHCW) 

• Dr J. Goodband (Former PhD student - CTAC) 

• Mr D. Paluszcyszyn (Former Research Assistant - CTAC) 
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Appendix B 

Breathing experiment approval 

B.1 Full research proposal 

Introduction 

Adaptive radiation therapy and image guided radiation therapy are novel techniques that aim to improve 

the precision of the prescribed dose delivery to the tumour target whilst avoiding the surrounding healthy 

tissues by compensating for target motion. One of the predominant cause of such motion is breathing. 

A variety of motion compensation and cancelation techniques have been developed including margin 

expansion (to account for changes in organ motion and geometry), breath-holding, respiratory gating and 

beam-tracking [Keall et al. 2006b]. With the exception of breath-holding, all these techniques require 

real-time organ position tracking (RTOPT). To date, RTOPT has been achieved either by monitoring 

external motion signal using video imaging system [George et al. 2006] or Spirometer [Hoisak et al. 

2006], which is correlated with internal motion [Ahn et al. 2004a], or more accurately by inserting gold 

markers into or near the tumour [Shimizu et al. 2000d, Seppenwoolde et al. 2002b]. These two techniques 

are complicated, expensive and/or time consuming to set up and diffcult to assess from a quality assurance 

perspective. 

Whilst several models have been proposed to describe the respiratory motion [Wu et al. 2004, Lujan et al. 

1999, Brewer et al. 2004], a good generalisable model remains an open question. 
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Methods and materials 

This experiment is part of a project aimed to improve the delivery of radiation by tracking the patient 

motion during treatment. The experiment aims to collect data to build a model of respiratory motion 

combining biological signals with geometrical information. 

The model will be used to track and predict motion as well as explain the relation between biological 

signals and geometrical information. A Spirometer will measure breathing fow, lung volume and pressure 

as well as an electrical recording of the heart or electrocardiogram (ECG). A three dimensional tracking 

system (PolarisTM) will be used to measure real-time position and orientation of optical markers affxed 

to wireless tools which will be positioned onto the thorax with elastic band. The Polaris system is not 

able to take picture of the volunteer and can only detect specifcally designed markers. The experiment 

will not involve any drugs and is not part of a clinical trial. 

The correlation between external markers and biological signals will be investigated in order to fnd a 

model that can deduce the external motion when only biological signal is given or vice versa. A new 

technique of modelling will be used to model the lung function which is based on input-output signals. 

Having reviewed different models of the lung, it has been found that the main variables are pressure and 

volume of the lung [Crooke et al. 2002]. In our case, the pressure will be considered as input and volume 

as output. The heart beat signal, will be used to quantify its infuence in breathing and will be included in 

the model. 

To ensure the good progress of the experiment, two physiologists will take part in this experiment as 

advisors on physiological measurement as well as a frst aider from the department. The staff operating 

the equipment have been trained appropriately to deal with Spirometer and Polaris. All the equipment 

will be electrically isolated. 

Data analysis 

The geometrical as well as biological data collected will be analysed using system modelling technique 

[Ljung 1999]. The aim of the analysis will be to identify the signals that are necessary to provide an 

accurate representation of the lung chest motion. 
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Procedures 

1. (Time t from start of experiment = 0 min) On arrival, we will explain to the participant the aim 

of the research and procedures that will be followed during the experiment. The participant will 

be asked if he/she has any serious problem, e.g. lung, heart, joints, neck and back. If they do 

have medical problems, explecitly chest, skin infection and heart condition they will be excluded. 

He/she will be asked if he/she has any allergy, specifcally to the antibacterial product used to clean 

the Spirometer fow head. 

2. (Time t = 10 min) The queries of the participants will be answered. 

3. (Time t = 15 min) If the participant agreed with the explanations and do not have any objections, 

he/she will be asked to sign the consent form and healthy declaration, so that we can proceed with 

the experiment. 

4. (Time t = 20 min) Having seen the equipment, the participant will be asked to remove his/her 

coat and heavy jumpers, but be able to keep light piece of clothing and he/she will be asked to lie 

down on a table in a comfortable position, with your head on a pillow, slightly tilted. To measure 

ECG signals it will be necessary to stick the electrodes (which will be isolated from the main power 

supply) to your skin. The procedure involves cleaning with water and soft tissue these small areas of 

4cm*4cm (a bit more than a square inch) in the left and right clavicle and under the thorax. He/she 

will have the possibility to opt out of this procedure if he/she does not want electrodes in contact 

with his/her skin. The position of three different points on the thorax will be monitored by the 3D 

tracking system. To do so, three refective markers will be positioned onto his/her T-shirt using 

fexible elastic bands specially designed by the University Hospitals Coventry and Warwickshire 

NHS Trust. 

5. (Time t = 20min) Once the participant feel at ease, he/she will be given a Spirometer head fow 

which will have been cleaned with antibacterial surface spray before each session. In pre-test the 

participant will be asked to breath normally for 30 seconds, and then asked to sit down. If he/she 

feel any discomfort the experiment will be stopped. 

6. (Time t= 25 min) If the participant feel comfortable and agree to continue, then he/she will be 

asked to lie down and breath normally into the Spirometer fow head for two sessions of 4 min 

separated by 5 min break. He/she will have the possibility to stop the experiment at any time if 

he/she feel uncomfortable. The participant should bearing in mind that the electrodes connected to 

the Spirometer are safely removed before stepping out of the table top. 
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7. (Time t= 40 min) Once the data have been collected, the participant will be asked to remove the 

electrodes and given any assistance to do so if you require it. 

8. (Time t= 45 min) Approximately 45 minutes after you have entered the room, the experiment will 

be completed and participant will be free to leave the room. 

Recruitment of participants 

An e-mail will be sent to university researchers, staff and students explaining the aim and purpose of the 

experiment. Only healthy adults who do not have any serious medical problem will be asked to take part 

in this survey after signing health declaration. 

Confdentiality 

Confdentiality of participants information including medical records and personal research data gathered 

in connection with this study, will be annonymised and maintained in password protected computer. 

The data will be used for modelling purpose. Some models have already been been developed and will 

be tested and improved using the data from this experiment. Although results of this research may be 

presented at meeting or in publications, identifable personal information pertaining to participants will 

not be disclosed. 
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B.2 Participant information sheet 

Participant Information Sheet 

Version 2.0 22 November 2005 

You are being invited to take part in a research study. Before you decide it is important for you to 

understand why the research is being done and what it will involve. Please take time to read the following 

information carefully. Talk to others about the study if you wish. 

• Part 1 tells you the purpose of this study and what will happen to you if you take part. 

• Part 2 gives you more detailed information about the conduct of the study. 

Ask us if there is anything that is not clear or if you would like more information. Take time to decide 

whether or not you wish to take part. 

You will be given a copy of this information sheet and a signed consent form to keep. 
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Part 1 

1. Study title 

Respiratory motion experiment 

2. What is the purpose of the study ? 

This experiment is part of a project aimed to improve the delivery of radiation by tracking the 

patient motion during treatment. The experiment aims to collect data to create a computer model 

of chest motion by combining biological signals with geometrical information. A spirometer will 

measure breathing fow, lung volume and pressure as well as an electrical recording of the heart 

cor electrocardiogram (ECG). A three dimensional improved tracking system (dSPACE ) will be 

used to measure real-time position and orientation of optical markers affxed to wireless tools which 

will be positioned onto the thorax with elastic band. The Polaris system is not able to take picture 

of the volunteer and can only detect specifcally designed markers. No images of the volunteers’ 

body will thus be collected. The experiment will not involve any drugs and is not part of a clinical 

trial. 

3. Why have I been chosen ? 

The research requires the participation up to 100 healthy university researchers, student and staff. 

The call for volunteer will be via e-mails, phones and invitations. The volunteers need to have no 

previous problems with lung and heart or any illness that can be infuenced by the experiment. 

4. Do I have to take part ? 

No, it is up to you to decide whether or not to take part. If you do, you will be given this information 

sheet to keep and be asked to sign a consent form. You are still free to withdraw at any time and 

without giving a reason. A decision to withdraw at any time, or a decision not to take part, will not 

affect the standard of care you receive. 

5. What will happen to me if I take part ? 

(a) (Time t from start of experiment = 0 min) 

On arrival, we will explain to you the aim of the research and procedures that will be followed 

during the experiment. To be able to carry out the experiment you will be asked to remove 

your coat and heavy jumpers, but be able to keep light piece of clothing. You will be asked 

if you have any allergy, specifcally to the antibacterial product used to clean the spirometer 

fow head. We will use a spirometer (on loan from the University Hospitals Coventry and 

Warwickshire NHS Trust) to measure your breathing fow, lung volume and pressure as well 
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as ECG. A three-dimensional infrared video tracking system (the Polaris) will be used to 

determine real-time position and orientation of optical markers attached to a fexible elastic 

band. Note that this camera is only able to track specially designed markers, and can thus not 

be used to take any picture of yourself. 

(b) (Time t = 10 min) 

If you have any queries we will answer them. 

(c) (Time t = 15 min) 

If you feel happy with the explanations and do not have any objections, you will be asked to 

sign the consent form and health declaration so that we can proceed with the experiment. 

(d) (Time t = 20 min) 

Having seen the equipment, you will be asked to lie down on a table in a comfortable position, 

with your head on a pillow, slightly tilted. To measure ECG signals it will be necessary to stick 

the electrodes (isolated from the main power supply) to your skin. The procedure involves 

cleaning with water and soft tissue these small areas of 4cm*4cm (a bit more than a square 

inch) in the left and right clavicle and under the thorax. You will have the possibility to opt 

out of this procedure if you do not want electrodes in contact with your skin. The position 

of three different points on the thorax will be monitored by the 3D tracking system. To do 

so, three refective markers will be positioned onto your T-shirt using fexible elastic bands 

specially designed by the University Hospitals Coventry and Warwickshire NHS Trust. 

(e) (Time t = 20min) 

Once you feel at ease, you will be given a spirometer head fow which will have been cleaned 

with antibacterial surface spray before each session. In pre-test you will be asked to breath 

normally for 30 seconds, and then asked to sit down. If you feel any discomfort the experiment 

will be stopped. 

(f) (Time t= 25 min) 

If you feel comfortable and agree to continue, then you be asked to lie down and breath 

normally into the spirometer fow head for two sessions of 4 min separated by 5 min break. 

You will have the possibility to stop the experiment at any time if you feel uncomfortable. 

You should bearing mind that the electrodes connected to the spirometer are safely removed 

before stepping out of the table top. 

(g) (Time t= 40 min) 

Once the data have been collected, you will be asked to remove the electrodes and given any 

assistance to do so if you require it. 

223 



Appendix B. The MAESTRO project Appendix B. Breathing experiment approval 

(h) (Time t= 45 min) 

Approximately 45 minutes after you have entered the room, the experiment will be completed 

and you will be free to leave the room. 

6. Expenses and payments: 

You will not receive any expenses or payment to take part in this study. 

7. What do I have to do ? 

You will only have to lay down on your back and breath normally for an initial 30s followed by 

two 4 minutes sessions. 

8. What are the side effects of any treatment received when taking part ? 

You will not receive any treatment and as much there will not be any associated side effect. 

9. What are the other possible disadvantages and risks of taking part ? 

A 30 seconds pre-test is planned to see whether if the participant is comfortable or not. If not he 

can stop the experiment 

10. What are the possible benefts of taking part ? 

We cannot promise the study will help you but the information will be used to develop better 

computer model of the chest, and hence will indirectly help improve the treatment of people with 

(lung cancer). 

11. What if there is a problem ? 

Any complaint about the way you have been dealt with during the study or any possible harm you 

might suffer will be addressed. The detailed information on this is given in Part 2. 

Should the complaint relate directly to the research, you are requested to inform the research team 

who will try to resolve the matter. Failing this, you may wish to contact the Coventry University 

Ethics Committee chair, Dr Ray Carson, in writing at JS347, Coventry University, Priory Street, 

Coventry CV1 5FB, or by telephone on 024 7688 7688." 

12. Will my taking part in the study be kept confdential ? 

Yes. All the information about your participation in this study will be kept confdential in password 

computer. The details are included in Part 2’ 

The markers position information collected by the Polaris and biological signals recorded by the 

spirometer during the initial 30 second period as well as the two four minutes period will be sent 

to a PC directly connected to the Spirometer and the Polaris. The PC will not be connected to the 
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internet. Once the data have been collected, they will be saved onto CDs and USB data storage and 

the PC with password. 

13. Contact Details: 

Abdelhamid Sahih, 

Control Theory and Applications Centre 

Faculty of Engineering & Computing-Coventry University 

Armstrong Siddeley Building-Priory Street, Coventry CV1 5ED, United Kingdom. 

Tel: +44-(0)24 7688 8972 

Mob: +44-(0)7854111756 

Email: a.sahih@coventry.ac.uk 

Or 

Dr Olivier Haas, MIEEE 

Reader in Applied Control Systems 

Control Theory and Applications Centre 

Systems Engineering Department 

Faculty of Engineering and Computing 

Coventry University, Coventry, CV1 5ED, UK 

Tel: 024 7688 7658, Tel (Lab) 024 7688 8972 

This completes Part 1 of the Information Sheet. If the information in Part 1 has interested 

you and you are considering participation, please continue to read the additional information 

in Part 2 before making any decision. 

Part 2 

14. What if relevant new information becomes available ? 

No clinical information is expected to arise from this experiment (which is not a clinical trial). If 

the computer model is successful, it will be published, however no volunteer information will be 

revealed. 

15. What if there is a problem ? 

We don’t expect that there will be any problems linked to medication or diagnosis as this study 

involves neither. We will be particularly careful with the equipment used to monitor the various 
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information that we require to ensure that no harm can come from them. 

16. Harm: 

In the event that something does go wrong and you are harmed during the research study there are 

no special compensation arrangements. If you are harmed and this is due to someone’s negligence 

then you may have grounds for a legal action for compensation against (Coventry University) but 

you may have to pay your legal costs. 

17. Will my taking part in this study be kept confdential ? 

Any data/ results from your participation in the study will be used by ABDELHAMID SAHIH 

as part of his project work. The data will also be available to maestro team supervised by DR 

OLIVIER HAAS . It may also be published in scientifc works, but your name or identity will not 

be revealed. 

Data that is stored electronically and subject codes will be used in place of names such that indi-

viduals cannot be identifed. 

If you have any questions or queries, ABDELHAMID SAHIH will be happy to answer them. If 

he cannot help you can speak to DR OLIVIER HAAS 

18. What will happen to the results of the research study ? 

The markers position information collected by the Polaris and biological signals recorded by the 

spirometer during the initial 30 second period as well as the two four minutes period will be used to 

fnd the parameters of models able to replicate the motion of the chest. The research will investigate 

if what signals (amongst breathing fow, lung volume and pressure, electrocardiogram (ECG) and 

marker motion) are key to being able to model the chest motion. The ultimate aim is to minimize 

the number of signals to be collected from the patient during radiotherapy treatment. The results 

will be published in conference and journal papers. The volunteers will not be identifed in any 

report/publication. 

19. Who is organising and funding the research ? 

The collection of information is funded by MAESTRO research project. 

20. Who has reviewed the study? 

This study was reviewed and given a favorable ethical opinion for conduct in Coventry University 

by the Coventry University Ethics Committee chair, Dr Ray Carson, JS347, Coventry University, 

Priory Street, Coventry CV1 5FB, or by telephone on 024 7688 7688." 
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B.3 Consent form 

Centre Number: 

Study Number: 

Patient Identifcation Number for this trial: 

CONSENT FORM 

Title of Project: Respiratory Motion Experiment. 

Name of Researcher: Abdelhamid Sahih 

Please initial box 

1. I confrm that I have read and understand the information sheet dated � 

(Version 2.0) for the above study. I have had the opportunity to consider the 

information, ask questions and have had these answered satisfactorily. 

2. I understand that my participation is voluntary and that I am free to withdraw at any time, � 

without giving any reason, without my medical care or legal rights being affected. 

3. I agree to take part in the above study. � 

Name of Participant Date Signature 

Name of Person taking consent Date Signature 

(if different from researcher) 

Researcher Date Signature 

When completed, 1 for participant; 1 for researcher site fle; 1 (original) to be kept in medical notes. 
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B.4 Health declaration 

Health Declaration Participant No: 

Name: 

Height: Weight: Age: BMI: 

Do you have any health problems with your heart or breathing? 

YES/NO 

Do you have any health problems with your joints, neck or back? 

YES/NO 

Are you currently taking any medication, prescribed or un-prescribed? 

YES/NO 

Have you taken any illicit drugs in the last 72 hours? 

YES/NO 

Any other health issues which you feel may be relevant? 

YES/NO 

Signature: Date: 
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Respiratory motion prediction for adaptive 

radiotherapy (ART) 
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Predictive tracking for respiratory induced 

motion compensation in adaptive 

radiotherapy (ART). 
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