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Abstract

This thesis considers the development of a Hammerstein-bilinear approach to non-

linear systems modelling, analysis and control system design, which builds on and

extends the applicability of an existing bilinear approach. The underlying idea

of the Hammerstein-bilinear approach is to use the Hammerstein-bilinear sys-

tem models to capture various physical phenomena of interest and subsequently

use these for model based control system designs with the premise being that

of achieving enhanced control performance. The advantage of the Hammerstein-

bilinear approach is that the well structured system models allow techniques that

have been originally developed for linear systems to be extended and applied,

while retaining moderate complexity of the corresponding system identification

schemes and nonlinear model based control designs.

In recognition of the need to be able to identify the Hammerstein-bilinear

models a unified suite of algorithms, being the extensions to the simplified refined

instrumental variable method for parameter estimation of linear transfer function

models, is proposed. These algorithms are able to operate in both the continuous-

time and discrete-time domains to reflect the requirements of the intended pur-

poses of the identified models with the emphasis being placed on straightforward

applicability of the developed algorithms and recognising the need to be able to

operate under realistic practical system identification scenarios. Moreover, the

proposed algorithms are also applicable to parameter estimation of Hammerstein

and bilinear models, which are special cases of the wider Hammerstein-bilinear

model class.

The Hammerstein-bilinear approach has been applied to an industrial heating,

ventilation and air conditioning (HVAC) system, which has also been the under-

lying application addressed in this thesis. A unique set of dynamic control design

purpose oriented air temperature and humidity Hammerstein-bilinear models of

an environmentally controlled clean room manufacturing zone has been identified.

The greater insights afforded by the knowledge of the system nonlinearities then

allow for enhanced control tuning of the associated commercial HVAC control

system leading to an improved overall control performance.
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Chapter 1

Introduction, motivation and

outline of approach

1.1 Introduction

The work in this thesis has been motivated by the intended application to heating,

ventilation and air conditioning (HVAC) systems with the view of improving

the energy utilisation of these systems via enhanced control performance. The

bilinear approach to modelling and control of nonlinear real-world systems, such

as the considered HVAC system application, has been found to be practically

realizable and of great benefit in the past (Burnham 1991, Goodhart 1991, Disdell

1995, Dunoyer 1996, Minihan 2001, Ziemian 2002, Martineau 2004, Ekman 2005,

Larkowski 2009). This approach places an emphasis on use of bilinear model

structures for nonlinear systems modelling, analysis and controller design. The

bilinear system models represent an important class of nonlinear models that are

defined to be linear in both state and control when considered independently,

with the nonlinearity arising from coupled terms involving products of system

state and control input (Mohler 1973). By formulating the model appropriately

the bilinear coupled terms could also be represented by products of system output

and input signals, i.e. the output is defined as a system state.

The advantage of the bilinear approach is that a well structured ‘nearly-linear’

system model allows techniques that have been originally developed for linear

systems to be extended and applied. Adopting a bilinear model retains a well

structured framework, which contains the well known notional concepts such

as time constant and process gain. When adopting a bilinear approach these

concepts become system input dependent quantities which can be appropriately

1



1. Introduction, motivation and outline of approach

modelled. In contrast, whilst it is possible to obtain a complex nonlinear model

of a nonlinear system, the resulting model may not necessarily lend itself for the

purpose of system analysis and model based control design, e.g. when use is

made of methods such as neural networks and/or fuzzy logic (Burnham, Zajic &

Larkowski 2011).

Considering the underlying application to the HVAC systems addressed in

this thesis, the most relevant dynamic nonlinear processes are the heat transfer

process and the compartmental processes where both can be successfully modelled

by bilinear model structures (Underwood & Yik 2004, Ekman 2005). Additionally

the HVAC system components such as control valves, dampers, and static power

characteristics of pumps and fans introduce static, memoryless nonlinearities,

which can be classified as Hammerstein-type models (Eskinat, Johnson & Luyben

1991, Janczak 2005). The following relatively simple, yet rather typical, example

1.1 concerning a through-flow water heater shows how a static input nonlinearity

in a cascaded connection with a bilinear dynamic subsystem naturally arises.

Example 1.1 The water heaters of similar functionality can be found for ex-

ample in households as gas or electric showers. The water heater maintains the

outlet water temperature, denoted Two(t) [K], at the desired value by means of

regulating the water mass flow rate, denoted ṁ(t) [kg/s], through the heater as

depicted in Figure 1.1a. In other words the water heater regulates heat transfer

through flow. The greater the water mass flow rate the lesser the heat, denoted

q(t) [W ], is exchanged between the water and the heat reservoir, so that the out-

let water temperature approaches the inlet water temperature, denoted Twi [K].

On the contrary, a high outlet water temperature can be achieved by maintaining

a low water mass flow rate through the heater so that there is enough time for

heat to be exchanged between the heat reservoir and the heated water. Note that

time varying variables are denoted with the time variable (t) in rounded brackets,

defined in seconds [s], while the variables and coefficients which are assumed to

be constant in this example are denoted without (t).

The water mass flow rate is regulated by the flow control valve which is mod-

elled by the following relationship

ṁ(t) =Mwφ(u(t)), (1.1)

where u(t) denotes the valve stem fractional position in the range of 〈0, 1〉, where

0 corresponds to a fully closed valve and 1 to fully opened. Mw denotes the

constant maximal water mass flow rate for a fully open valve, i.e. u(t) = 1, and

2



1. Introduction, motivation and outline of approach

Twi Two(t)

inlet outlet

q(t)

heat

ṁ(t) / water

(a) (b)

u(t)

0

1

1

φ(u)

u

Figure 1.1: The subfigure (a) depicts the through-flow water heater, and the
subfigure (b) shows the flow control valve static characteristic.

φ(·) represents the valve static characteristic depicted in Figure 1.1b. Such a

valve static characteristic would in practice correspond to a so called installed

linear valve characteristic, see (Underwood 1999) and Appendix A.1.

A lumped parameter modelling approach is adopted to capture the underlying

dynamics of the water heater. The water heater is assumed to behave as a

perfectly mixed vessel, i.e. a single-compartmental model is created. In this

model the outlet water temperature is the same as the mean temperature of the

whole water content of the vessel (in this case a long metal pipe). Further, for

clarity within this example, the heat exchange material (metal pipe) and water

thermal capacities are lumped together and modelled as one combined effect.

Based on these assumptions an energy balance equation for the water can thus

be expressed

C
dTwo(t)

dt
= ṁ(t)cpw [Twi − Two(t)]− q(t), (1.2a)

q(t) = UA [Two(t)− Tq] (1.2b)

where C [J/K] denotes the overall thermal capacity, cpw [J/kgK] is the specific

water thermal capacity, U [W/m2K] denotes the overall heat transfer coefficient,

A [m2] denotes the overall effective heat exchange area, and Tq [K] denotes the

constant temperature of the outer side of the metal pipe.

Defining and denoting the system output as y(t) = Two(t) and the system

input as the valve opening u(t), the dynamic model of the water heater governed

by (1.1) and (1.2) can be re-expressed in an input-output form as follows

dy(t)

dt
= −Θ1y(t) + Θ2φ(u(t)) + Θ3y(t)φ(u(t)) + Θ4Tq (1.3)

where the coefficients Θ1,...,4 are defined as Θ1 = UA/C, Θ2 = MwcpwTwi/C,

3



1. Introduction, motivation and outline of approach

Θ4 = Θ1, and Θ3 = −Mwcpw/C. In (1.3) one can observe the bilinear product

term between the system input and the output (system state), i.e. Θ3y(t)φ(u(t)),

and the memoryless nonlinear transformation of the control input φ(u(t)), which

demonstrates that these types of nonlinearities namely, static input (or Hammer-

stein) and bilinear product terms, arise naturally in HVAC applications.

Motivated by the physical phenomena occurring in a general HVAC system,

such as that described in the above example 1.1, there is a natural interest to

introduce a Hammerstein-bilinear model structure. This model structure is then

defined as a memoryless static input nonlinearity in a cascaded connection with

a bilinear dynamic submodel. The Hammerstein-bilinear model structure can be

viewed as a natural extension to the bilinear system model structures, which even

further extends the modelling and approximation capabilities of the bilinear mod-

els while exploiting the concept of retaining a well structured nonlinear model.

Indeed, it is against this background that the proposed extension to the now well

established bilinear approach is proposed, namely that of a new Hammerstein-

bilinear approach to modelling and control of real-world systems. Subsequently,

in both approaches, i.e. bilinear and Hammerstein-bilinear, knowledge of the

nonlinear models is essential, which further prompts the need to develop the

corresponding model parameter estimation techniques.

It is desirable that such parameter estimation techniques are straightforwardly

applicable and able to work sufficiently well under realistic practical system iden-

tification scenarios, e.g. limited amount of measured input-output data, input

signal not persistently exciting, having limited a priori knowledge regarding the

system dynamics and presence of coloured (non-white) measurement noise. Fur-

thermore, such proposed parameter estimation techniques should be able to op-

erate in both continuous-time and discrete-time domains to reflect the needs of a

particular system identification scenario as well as the various intended purposes

of the identified models. For example, the continuous-time models are suitable for

the physical interpretability of parameter estimates while the discrete-time mod-

els are desirable for control system implementation and realisation in a digital

computer environment. Based on these requirements, therefore, it is proposed to

extend the simplified refined instrumental variable method (Young 1976, Young &

Jakeman 1979, Jakeman & Young 1979, Young & Jakeman 1980, Young, Garnier

& Gilson 2008) for linear transfer function model parameter estimation to encom-

pass a bilinear and Hammerstein-bilinear model class both in the continuous-time

and discrete-time domains.

4



1. Introduction, motivation and outline of approach

1.2 Outline of thesis

The logical flow of the research work carried out within the thesis has a top-down

structure, where the developments presented in one chapter directly depend on

the developments carried out in the previous chapter (and chapters). The outline

of the presented research work is given chapter by chapter in the order as they

appear in this thesis.

Chapter 2 This chapter provides essential background to bilinear and Ham-

merstein system models both in continuous and discrete-time domains to-

gether with a corresponding literature review. A continuous-time single-

input single-output bilinear model in an input-output form, used for system

identification purposes, is presented. It is shown that under appropriately

chosen parametric constraints this bilinear model can be interpreted as a

two-input single-output linear in structure transfer function model so that

the reviewed linear parameter estimation methods can be applied. Despite

the fact that an exact discretisation of bilinear (nonlinear) continuous-time

models is not necessarily structure preserving an approximate, yet related,

discrete-time single-input single-output bilinear model in an input-output

form is presented. A multi-input single-output linear in structure transfer

function representation of this discrete-time bilinear model is also presented,

which promotes the use of linear parameter estimation methods. Subse-

quently, the Hammerstein-bilinear model structure is introduced and the

corresponding static and dynamic properties are highlighted, which leads

to the notion of a Hammerstein-bilinear approach.

Chapter 3 In this chapter various extensions to the simplified refined instru-

mental variable method for linear transfer function model parameter es-

timation designed to encompass both bilinear and Hammerstein-bilinear

model classes in the continuous-time domain are presented. A detailed lit-

erature review related to the estimation of linear, bilinear and Hammerstein

models in the continuous-time domain is provided. A state variable filtering

approach is followed to obtain the time derivatives of input-output signals

required for parameter estimation purposes; two types of prefilters are pro-

posed giving rise to two distinct groups of algorithms. The first group of

algorithms makes use of the linear optimal prefilters, which promotes the

use of linear estimation methods. The second and more general group of al-

gorithms is based on the time-step quasi-linear interpretation of the bilinear

5



1. Introduction, motivation and outline of approach

models and uses adaptive, input dependent, prefilters. In the conclusions

of this chapter a list of the reviewed and derived extensions to the reviewed

algorithms is presented in a concise tabulated form.

Chapter 4 In a similar manner to Chapter 3, the extensions to the simplified

refined instrumental variable method are presented to encompass a bilinear

and Hammerstein-bilinear model class in the discrete-time domain. Since, it

is possible to interpret the discrete-time bilinear models in the multi-input

single-output linear in structure form, only the linear prefilters are required.

The designed discrete-time parameter estimation algorithms then comple-

ment the continuous-time counterpart algorithms proposed in Chapter 3.

Chapter 5 In this chapter the use of selected parameter estimation algorithms

proposed in Chapters 3 and 4 is demonstrated on the modelling challenge

of the industrial HVAC system located at Abbott Diabetes Care, Witney,

UK. The practical aspects of system identification are shown, including

model order selection, processing of raw measured data and adjustment of

the estimated nonlinear model parameters for any given operating point.

Furthermore, some of the advantages of using continuous-time models in

gaining physical insight into the investigated system are demonstrated.

Chapter 6 The advantages of having a well structured nonlinear model are

demonstrated on a control oriented system analysis and subsequent tun-

ing of a commercial industrial control system. During this analysis the

identified Hammerstein-bilinear models obtained in Chapter 5 are applied.

Subsequently, real-time trials are carried out showing enhanced control per-

formance of the investigated HVAC control system. Furthermore, an energy

consumption analysis of the modelled HVAC system is carried out, where,

again the knowledge of the nonlinearity of the system is beneficial, thus fur-

ther reinforcing the need for the Hammerstein-bilinear models, and indeed

the proposed Hammerstein-bilinear approach, which is considered to have

wide applicability when dealing with practical nonlinear systems.

Chapter 7 Provides the main conclusions of the research and highlights areas

for immediate work and potential areas for further fruitful research.

6



1. Introduction, motivation and outline of approach

1.3 Contributions

The main research contributions of the author are summarised and listed in the

order as they appear in this thesis.

• Building on an existing bilinear approach, and prompted by the HVAC

system application, a new approach, termed the Hammerstein-bilinear ap-

proach to nonlinear system modelling, analysis and control systems design

has been proposed.

• A special relation between two distinct continuous-time bilinear model struc-

tures has been revealed, where, under appropriately chosen parametric con-

straints, the two models yield identical output responses and share the same

model parameters. While the first bilinear model can be interpreted, purely

for parameter estimation purposes, as a two-input single-output linear in

structure transfer function model, the second model cannot. This obser-

vation has been exploited in the development of linear based estimation

algorithms, where by virtue of estimating the parameters of the transfer

function model the parameters of the second bilinear model are also ob-

tained.

• Building on the simplified refined instrumental variable method for parame-

ter estimation of linear transfer function models a unified suite of algorithms

for the identification of bilinear and Hammerstein-bilinear models in both

the continuous-time domain and discrete-time domain have been proposed,

and have been successfully applied to a HVAC system.

• A unique set of control oriented air temperature and humidity continuous-

time Hammerstein-bilinear models of an environmentally controlled clean

room manufacturing zone in Abbott Diabetes Care have been identified.

Relevant practical aspects of system identification when using the proposed

parameter estimation methods have been shown. Furthermore, the use of

continuous-time models has allowed a physically meaningful insight into

the system to be gained, which has led to the derivation of a manufacturing

zone heat gain temperature model used for the purpose of control tuning.

• Adjustment of estimated model parameters for bilinear and Hammerstein-

bilinear models for any given operating point has been demonstrated on the

identified HVAC system models.

7



1. Introduction, motivation and outline of approach

• Control oriented analysis of the HVAC system based on the set of identified

Hammerstein-bilinear models has been conducted. Subsequent control tun-

ing of the commercial HVAC control system has led to an enhanced control

performance, creating scope for subsequent reduction in energy consump-

tion.

8



Chapter 2

Background to

Hammerstein-bilinear models

2.1 Introduction

The purpose of this chapter is to give an essential background to Hammerstein

and bilinear system models and especially to the combination of these two model

classes, i.e. the Hammerstein-bilinear (HB) model, which is used throughout

this thesis. Bilinear systems and systems which can be approximated with suf-

ficient accuracy by bilinear models naturally occur in man-made systems and in

nature (Mohler 1973). Bilinear system models are characterised by input depen-

dent dynamic behaviour and cannot exhibit neither input multiplicity nor output

multiplicity in their steady-state. Since the physical phenomena are described

by physical laws, the bilinear models were originally defined in a continuous-time

(CT) state-space framework. The state of a bilinear system evolves not just

according to the system input and current state, as it would be in the case of

linear systems, but also according to a product between the system input and

state. Bilinear models are therefore defined to be linear in both state and con-

trol when considered independently, with the bilinearity (or nonlinearity) arising

from coupled terms involving products of the system state and control input. It

is this close connection to linear systems, which makes the bilinear models par-

ticularly appealing and as such many techniques developed for linear systems can

be extended and applied to the bilinear case (Burnham et al. 2011).

Much work has been done in the area of modelling and control for bilinear

systems, with many real-world processes being more appropriately, and possibly

more conveniently, described using bilinear models. From first principles consid-
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2. Background to Hammerstein-bilinear models

erations, in a similar manner as shown in Example 1.1, many processes exhibit

inherent bilinear dynamic behaviour in the continuous-time domain. These non-

linear processes may be found in areas such as engineering, ecology, medicine and

socioeconomics, for comprehensive overviews, see, for example, (Mohler 1973,

Bruni, DiPillo & Koch 1974, Mohler & Kolodziej 1980). In HVAC applications

the most relevant nonlinear processes are heat transfer (Underwood & Yik 2004)

and compartmental processes (Ekman 2005).

The Hammerstein models are characterised by a memoryless static nonlinear

element in series with a linear dynamic submodel. While the model dynamics are

entirely defined by the linear submodel the steady-state characteristic is deter-

mined by the product of a static element and the linear submodel steady-state

gain. Hammerstein models can exhibit input multiplicity due to the static non-

linear element scaling the input, which is a desirable feature, but cannot exhibit

the output multiplicity. For example, (Eskinat et al. 1991) modelled an exper-

imental heat exchanger and also simulated a high-purity distillation column by

both Hammerstein and linear dynamic models and compared their performances.

The authors concluded that the results obtained are satisfactory and favour of

the Hammerstein-type models. However, it is known that the underlying dy-

namic behaviour of these systems is input dependent, i.e. bilinear, as opposed

to a purely linear dynamic behaviour. Consequently, this observation leads natu-

rally to the idea of extending the Hammerstein model structure by replacing the

linear dynamic submodel by a bilinear model structure. Indeed it is against this

background that the proposal for the HB model structure is formed.

The HB model combines the advantages of its constituent submodels and

can exhibit both, input dependent dynamic behaviour and increased flexibility of

the steady-state characteristic including the input multiplicity. Furthermore, the

model structure remains relatively simple, yet mathematically well structured,

and can be favourably exploited by extensions to existing parameter estimation

schemes and for the purpose of control system design. To the best of the author’s

knowledge, so far very little has been published in the study of such a nonlinear

model structure and its control.

Some encouraging examples where the HB model have been successfully ap-

plied or have naturally appeared are: Thomson, Schooling & Soufian (1996)

consider system identification of a pilot-scale parallel-tube heat exchanger in a

black-box manner, i.e. physical laws are not used for preliminary model structure

selection. Albeit the identification of a model structure is carried out entirely in a

black-box manner the best (in the sense of minimal simulation error) final model

10



2. Background to Hammerstein-bilinear models

resembles the HB model structure. Motivated by underlying physical relations

(Zajic, Larkowski, Hill & Burnham 2012) successfully used the HB model for

system identification of an industrial air handling unit. Larkowski & Burnham

(2011) adopted the HB model for identification of a simulated continuous stirred

tank reactor. From first principles considerations the continuous stirred tank re-

actor does not have exactly a HB model structure, however due to the flexibility

offered by the HB model, an excellent model fit has been achieved. The control of

the zone temperature via a variable-air-volume (VAV) box unit is considered in

(Huang 2011). Here the overall HVAC system model is based on first principles

considerations and the final model used by the nonlinear model based predictive

controller has a HB model structure.

2.2 Definition of bilinear models

A state-space representation of a continuous-time single-input single-output (SISO)

deterministic bilinear model takes the form

d

dt
x(t) = Ax(t) + bu(t) + u(t)Nx(t) (2.1a)

y(t) = cTx(t) (2.1b)

where x(t) = [x1(t), · · · , xn(t)]
T denotes the (n× 1) state vector, y(t) the (1× 1)

system output, u(t) the (1× 1) system input, A the (n× n) system matrix, b the

(n× 1) input vector and c is the (n× 1) output vector. Linear models coexist as

a special subclass of bilinear models and can be obtained by setting the (n× n)

matrix N of bilinear coefficients to null.

In general, bilinear models can be found and formulated in different forms.

The parameter estimation methods developed and applied in this thesis make use

of an input-output model relation (external description) rather than the state-

space model representation (internal description). Therefore, the input-output

model representation must exist and be of a ‘convenient form’ which can be

favourably exploited by the designed model parameter estimation algorithms.

Bearing in mind the class of bilinear models appearing in HVAC applications and

the corresponding parameter estimation algorithms, the phase variable canonical
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2. Background to Hammerstein-bilinear models

form of the following matrices is used throughout this thesis

A =









0 1 · · · 0
...

. . .
...

0 0 · · · 1

−αn −αn−1 · · · −α1









, N =









0 0 · · · 0
...

...

0 0 · · · 0

ηn ηn−1 · · · η1









cT =
[

βm · · · β0 0
]

, bT =
[

0 · · · 0 1
]

(2.2)

in whichm < n andA, N, cT and bT comprise real valued coefficients α1, · · · , αn,

β0, · · · , βm and η1, · · · , ηn, respectively. The same class of state-space bilinear

models has been successfully applied in the work of (Dunoyer 1996) focusing on

control and identification of bilinear systems and also in the application to a

high-temperature industrial furnace, see (Martineau, Burnham, Haas, Andrews

& Heeley 2003) and references given therein. It is assumed that the system (2.1)

is subject to zero initial conditions, i.e.

x(0) = 0, d
dt
x(0) = 0, · · · , dn

dtn
x(0) = 0 (2.3)

By eliminating the states in (2.1), defined by matrices (2.2), the following

input-output representation, i.e. differential equation, can be obtained

y(n)(t) + α1y
(n−1)(t) + · · ·+αny

(0)(t) = β0u
(m)(t) + · · ·+ βmu

(0)(t)

+ η1y
(n−1)(t)u(0)(t) + · · ·+ ηny

(0)(t)u(0)(t)
(2.4)

where x(p)(t) denotes the pth time-derivative of the continuous-time signal x(t).

A commonly used compact form of (2.4) is written as

A(s)y(t) = B(s)u(t) + u(t)
n∑

i=1

ηis
n−iy(t) (2.5)

with

A(s) = sn + α1s
n−1 + · · ·+ αn (2.6a)

B(s) = β0s
m + β1s

m−1 + · · ·+ βm (2.6b)

where s denotes the differential operator defined as spx(t) = dpx(t)
dtp

. Further, in

the case where the product terms are present, as in the bilinear model (2.5), the

operator s is defined such that it operates (acts) only on the signal(s) on its right

12



2. Background to Hammerstein-bilinear models

hand side, i.e. u(t)spx(t) = u(t)d
px(t)
dtp

. Hereinafter, when referring to the term

‘continuous-time bilinear model’, the model structure (2.5) is implied. Note,

that yet another continuous-time bilinear model structure is introduced later

on in equation (2.16). Under appropriately chosen parametric constraints this

bilinear model structure is a subset of the bilinear model structure introduced in

(2.5), which is favourably exploited by some of the designed parameter estimation

methods.

The following example demonstrates state elimination in the state-space model

(2.2) towards obtaining its input-output realisation. This approach will be used

in Chapter 5, where the water-to-air heat exchanger temperature model will be

derived from physical laws.

Example 2.1 Consider a third order state-space continuous-time bilinear model

defined by (2.2) and with n = 3 and m = 2. Rewrite this state-space canonical

model into its equivalent input-output representation, which is entirely described

by measured input-output variables u(t) and y(t), respectively.

The third order state-space model (2.2) can be rewritten from its compact

matrix form into a set of equations, using the s operator, as follows

sx1(t) = x2(t) (2.7a)

sx2(t) = x3(t) (2.7b)

sx3(t) = − [α3 − η3u(t)] x1(t)− [α2 − η2u(t)] x2(t)

− [α1 − η1u(t)] x3(t) + u(t) (2.7c)

y(t) = β2x1(t) + β1x2(t) + β0x3(t) (2.7d)

Noting that x2(t) = sx1(t) and x3(t) = s2x1(t), it is possible to substitute for

x2(t) and x3(t) in (2.7c) and in (2.7d) leading to

s3x1(t) = − [α3 − η3u(t)] x1(t)− [α2 − η2u(t)] sx1(t)

− [α1 − η1u(t)] s
2x1(t) + u(t) (2.8a)

y(t) = β2x1(t) + β1sx1(t) + β0s
2x1(t) (2.8b)

In order to eliminate the state x1 in (2.8a), equation (2.8b) can be rearranged

with respect to the state x1(t), i.e.

x1(t) =
y(t)

β0s2 + β1s+ β2
(2.9)
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2. Background to Hammerstein-bilinear models

and noting that the time derivatives of state x1(t), i.e. sx1(t), s
2x1(t) and s

3x1(t),

are required, taking the time derivatives of (2.9) gives

sx1(t) =
sy(t)

β0s2+β1s+β2

, s2x1(t) =
s2y(t)

β0s2+β1s+β2

, s3x1(t) =
s3y(t)

β0s2+β1s+β2

(2.10)

and substituting (2.9) and (2.10) into (2.8a) for the state x1(t) and its time

derivatives leads to the desired input-output realisation

s3y(t) = − [α3 − η3u(t)] y(t)− [α2 − η2u(t)] sy(t)

− [α1 − η1u(t)] s
2y(t) + u(t)

[
β0s

2 + β1s+ β2
]

(2.11)

Equation (2.11) can be further expressed in a more compact form, as defined in

(2.5), i.e.

[
s3 + α1s

2 + α2s+ α3

]
y(t) =

[
β0s

2 + β1s+ β2
]
u(t) + u(t)

3∑

i=1

ηis
3−iy(t)

A diagrammatic representation of the state-space model (2.1), defined by

matrices (2.2), is provided in Figure 2.1. Being able to express the input-output

bilinear model (2.5) in its state-space form provides a convenient way for the

actual implementation of such a model in Matlab/Simulink software.

u(t)

y(t)

η1 ηn

−α1

−αn

β0

βm

××

1
s

1
s

Figure 2.1: Block diagram representation of bilinear model structure.

Remark 2.1 It has often been found in practice that a minimal number (n ≤

3) of bilinear product terms can provide an adequate model for the purpose

of simulation and especially for control. Examples of such systems are: high-

temperature industrial furnace (Martineau et al. 2003), activated sludge process
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2. Background to Hammerstein-bilinear models

(Ekman 2008) and industrial air handling unit (Zajic et al. 2012).

Remark 2.2 Because of the intended application to HVAC systems a particular

subclass of state-space bilinear models has been selected, defined by state-space

matrices (2.2), which yields unique input-output representation conveniently con-

sisting only of products of system input and time derivatives of system output

(2.5). However, this does not imply that all bilinear models in input-output

form consist only from such input-output products. Rather, depending on the

selection of system states, system output, and the definition of system matrices,

the equivalent input-output model structure can be regarded as being generally

nonlinear. For example the state-space model structure considered in (Brehe &

Unbehauen 1998), which can be deduced from (2.2) by re-defining vectors bT and

cT as

bT =
[

0 β0 · · · βm

]

cT =
[

1 0 · · · 0
] (2.13)

has the following input-output realisation

A(s)y(t) = B(s)u(t) + u(t)
n∑

i=1

ηis
n−iy(t)

+
n∑

j=2

j−2
∑

i=0

αjβis
j−2−iu(t)− u(t)

n∑

j=2

j−2
∑

i=0

ηjβis
j−2−iu(t)

(2.14)

which is considerably more complex than the representation (2.5). This alterna-

tive representation is presented here just to show that there are numerous ways

in which the bilinear models have been interpreted by different authors.

Comparing models (2.5) and (2.14) it is observed that additional products of

input and input time derivatives are present. Additionally, it is observed that the

input-output model parameters are not independent since parameter terms αjβi

and ηjβi are present. Specifically, the original state-space model has 2n+m+ 1

parameters, while the input-output model (2.14) has 3n− 1 +max(m+ 1, n− 1)

parameters, which is also noted in (Pearson & Kotta 2004).

2.3 Special observation

During the research on the first principles modelling of heat exchangers and the

representation of the resulting bilinear models in input-output model form a spe-
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2. Background to Hammerstein-bilinear models

cial relation between two bilinear model structures has been observed. Defining

the polynomial E(s) consisting of coefficients ηi, i = 1, · · · , n, which are part of

bilinear model (2.5), such that

E(s) = η1s
n−1 + · · ·+ ηn (2.15)

Under the condition that the polynomial E(s), defined in (2.15), and the poly-

nomial B(s), defined in (2.6b), have the same roots; the original bilinear model

(2.5) has equivalent dynamic and static behaviour as the following bilinear model

A(s)y(t) = B(s)u(t) +
n∑

i=1

ηis
n−i {u(t)y(t)} (2.16)

The curly parentheses around the term u(t)y(t) indicate that the differential

operator acts on the product of signals u(t) and y(t). In the original bilinear

model (2.5) the differential operator acts only on the output signal y(t), while

the input signal u(t) is a multiplying factor, effectively ‘scaling’ the ηi parameters.

Additionally, if the first n− 1 parameters of polynomial E(s) are not present,

then the order of polynomial B(s) is not restricted. In this special case, the only

present bilinear term in the original bilinear model (2.5) is u(t)ηny(t), which is

directly equivalent to the corresponding term ηnu(t)y(t) of the model (2.16).

2.3.1 Exploiting the observation in system identification

Defining input signals u1(t) = u(t) and u2(t) = u(t)y(t), the newly presented

SISO continuous-time bilinear model (2.16) can be formulated in the following

two-input single-output (TISO) transfer function form

y(t) =
B(s)

A(s)
u1(t) +

E(s)

A(s)
u2(t) (2.17)

Assuming the input-output signals u1(t), u2(t) and y(t) are known, measured, the

transfer function model (2.17) can be viewed as linear, which facilitates the use

of existing and well established linear parameter estimation methods. Therefore,

by virtue of estimating the parameters of the transfer function model (2.17), the

parameters of the original bilinear model (2.5) are also estimated. The second

input u2(t) consists of the measured, noisy, output y(t). This in effect creates

an errors-in-variables identification scenario, (Larkowski 2009), causing bias in

the parameter estimates. The instrumental variable parameter estimation meth-
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2. Background to Hammerstein-bilinear models

ods, presented in Chapter 3, are able to overcome this problem by replacing the

measured output by an instrumental variable series.

The need for polynomial B(s) to have the same roots as polynomial E(s) is

certainly restricting and case specific, however not so uncommon in the case of

HVAC systems. Consider the motivational Example 1.1, where the simplified first

principles model of through-flow water heater has been developed. Assigning the

thermal capacities to both, water and metal pipe, denoted C1 and C2, respectively,

creates a model of two state equations

C1sTwo(t) = ṁ(t)cpw [Twi − Two(t)]− UA [Two(t)− Tm(t)] (2.18a)

C2sTm(t) = UA [Two(t)− Tm(t)]− UA [Tm(t)− Tq] (2.18b)

where Tm(t) [K] is the mean temperature of the metal pipe and water mass

flow rate is defined as ṁ(t) = Mwu(t). To simplify the state equations the heat

transfer coefficient U and the pipe’s surface area A are assumed to be the same for

the inner and outer walls of the pipe. Defining and denoting the system output

as y(t) = Two(t) and the system input as u(t), the dynamic model of the water

heater governed by (2.18) can be re-expressed in an input-output form as follows

s2y(t) = −α1sy(t)−α2y(t)+β0su(t)+β1u(t)+η1u(t)sy(t)+η2u(t)y(t)+o (2.19)

where the individual coefficients are: α1 = (2UAC1 + UAC2)/(C1C2), α2 =

(2U2A2−U2A2)/(C1C2), β0 =MwcpwTwiC2/(C1C2), β1 =MwcpwTwi2UA/(C1C2),

η1 = −MwcpwC2/(C1C2), η2 = −Mwcpw2UA/(C1C2), and the static offset is

o = U2A2Tq/(C1C2). It is clear that in this case the roots of polynomials B(s) =

β0s+ β1 and E(s) = η1s+ η2 are the same and the polynomial B(s) is scaled by

the negative value of inflow water temperature −Twi.

2.3.2 Demonstration

The original bilinear model (2.5) is expressed in a compact polynomial form

A(s)y1(t) = B(s)u(t) + u(t)E(s)y1(t) (2.20)

with the polynomials A(s) and B(s) being defined in (2.6) and the polynomial

E(s) defined in (2.15). In model (2.20) the polynomial E(s) operates on the

output signal y1(t) only and this filtering order should be retained. Note, for the

purpose of the demonstration, that the output signal is denoted y1(t) instead of
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2. Background to Hammerstein-bilinear models

y(t). Similarly, for the second bilinear model the output signal is denoted y2(t)

and (2.16) is also expressed in a compact polynomial form, hence

Ā(s)y2(t) = B̄(s)u(t) + Ē(s) {u(t)y2(t)} (2.21)

The polynomials Ā(s), B̄(s) and Ē(s) are defined to be equivalent to polynomials

A(s), B(s) and E(s), respectively, but may have restrictive parametric values.

The task is to establish under what conditions, for a given input signal u(t),

the output signals y1(t) and y2(t) of the two considered bilinear models (2.20) and

(2.21), respectively, match. Specifically, assuming that the output signal y1(t) is

known (measured) and is used as a part of the second input term of the second

bilinear model (2.21), then the simulated output y2(t) of this model must be the

same as y1(t). In other words, the second bilinear model (2.21) must be able

to fit the measured output y1(t) from (2.20). This, in return, would allow the

parameters of the first bilinear model (2.20) to be estimated by estimating the

parameters of the second bilinear model (2.21).

The output of the first bilinear model (2.20) can be obtained (simulated) by

interpreting the originally input-output model in a time-step quasi-linear transfer

function form, hence

A(s)y1(t) = B(s)u(t) + u(t)E(s)y1(t)

[A(s)− u(t)E(s)]y1(t) = B(s)u(t)

y1(t) =
B(s)

[A(s)− u(t)E(s)]
u(t) (2.22)

and defining the input dependent polynomial as

A(s, u(t)) = A(s)− u(t)E(s) (2.23)

it follows that

y1(t) =
B(s)

A(s, u(t))
u(t) (2.24)

Note that the individual coefficients of polynomial A(s, u(t)) are then αi(u(t)) =

αi − ηiu(t) for i = 1, · · · , n. To enhance the readability of the equations the sim-

pler notation is adopted, where the dependence on u(t) is denoted as dependence

on t, i.e. A(s, u(t)) becomes A(s, t).

It is not possible to fully express the second bilinear model (2.21) in terms

of its output, so that only the following transfer function form interpretation is
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possible

y2(t) =
B̄(s)

Ā(s)
u(t) +

Ē(s)

Ā(s)
{u(t)y2(t)} (2.25)

Premise: It will now to be shown, that if the parameters of the first and

second bilinear models (2.20) and (2.21) are selected accordingly

Ā(s) = A(s)

B̄(s) = kĒ(s) = kE(s) = B(s)

Ē(s) = E(s)

(2.26)

then y1(t) = y2(t) for a given input signal u(t). The two models share the same

parameters and the roots of the polynomials E(s) and B(s) are identical. The

variable k denotes a real number valued gain (a scaling factor). Consequently,

whilst the parametric values of polynomials E(s) and B(s) may differ, the roots

will be the same. Equating output signals y1(t) and y2(t), implies substituting

output y1(t) for the output y2(t) in (2.25), hence

B(s)

A(s, t)
u(t) =

B̄(s)

Ā(s)
u(t) +

Ē(s)

Ā(s)

{

u(t)
B(s)

A(s, t)
u(t)

}

(2.27)

In order for the above equation to hold, the right hand side expression must

reduce to the left hand side expression. Therefore, considering the premise and

the relationship given in (2.26) and re-expressing (2.27) in terms of A(s), E(s)

and kE(s) only, gives

kE(s)

A(s, t)
u(t) =

kE(s)

A(s)
u(t) +

E(s)

A(s)

{

u(t)
kE(s)

A(s, t)
u(t)

}

(2.28)

kE(s)

A(s, t)
u(t) =

E(s)

A(s)

{

ku(t) + u(t)
kE(s)

A(s, t)
u(t)

}

(2.29)

Filtering the input signal u(t) through an autoregressive process 1/A(s, t) and

then through an inverse A(s, t) of this process gives back the original signal u(t).

This can be written such that

u(t) = A(s, t)
1

A(s, t)
u(t) (2.30)

Substituting (2.30) for the first appearing u(t) on the right hand side of (2.29)
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gives

kE(s)

A(s, t)
u(t) =

E(s)

A(s)

{

kA(s, t)
1

A(s, t)
u(t) + u(t)

kE(s)

A(s, t)
u(t)

}

(2.31)

and expanding the input dependent polynomial A(s, t) according to (2.23) leads

to

kE(s)

A(s, t)
u(t) =

E(s)

A(s)

{

k [A(s)− u(t)E(s)]
1

A(s, t)
u(t) + u(t)

kE(s)

A(s, t)
u(t)

}

(2.32)

The right hand side of (2.32) then simplifies as follows

kE(s)

A(s, t)
u(t) =

E(s)

A(s)

{(

k [A(s)− u(t)E(s)] + u(t)kE(s)
) 1

A(s, t)
u(t)

}

(2.33)

kE(s)

A(s, t)
u(t) =

E(s)

A(s)

{(

kA(s)− ku(t)E(s) + u(t)kE(s)
) 1

A(s, t)
u(t)

}

(2.34)

kE(s)

A(s, t)
u(t) =

E(s)

A(s)

{

kA(s)
1

A(s, t)
u(t)

}

(2.35)

=
kE(s)

A(s, t)
u(t) (2.36)

as required. Equation (2.36) shows that for a given input signal u(t), the two

considered bilinear models generate the same outputs, subject to the selected

parameter set, defined in (2.26).

To further highlight that the chosen second bilinear model (2.21) is able to

emulate the first bilinear model (2.20), it is observed that these differ in the

structure of their last nonlinear (bilinear) terms only. Therefore, one nonlinear

term must be a subset of the other term, so that for the selected parameter set

(2.26) the two models are identical, cf. (2.36). The nonlinear term of the second

bilinear model (2.21), i.e.
n∑

i=1

ηis
n−i {u(t)y(t)} (2.37)

is expanded using the differentiation product rule. The nonlinear terms associated

with the individual parameters ηi, for i = n, n − 1, · · · , 1, are then stacked in a

Pascal triangle-like form. Hence for the case n = 4, and without loss of generality,
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2. Background to Hammerstein-bilinear models

it may be deduced that

ηn : u(t)y(t)

ηn−1 : u(1)(t)y(t) u(t)y(1)(t)

ηn−2 : u(2)(t)y(t) 2u(1)(t)y(1)(t) u(t)y(2)(t)

ηn−3 : u(3)(t)y(t) 3u(2)(t)y(1)(t) 3u(1)(t)y(2)(t) u(t)y(3)(t)

...

From which it is noted that the terms encircled by the dashed black line cor-

respond exactly to the four bilinear terms of the first bilinear model (2.20), i.e

u(t)
n∑

i=n−3

ηis
n−iy(t) (2.38)

2.3.3 Numerical study

Under the parametric constraints stated in the premise and the relation (2.26),

the outputs of the two considered bilinear models are simulated and compared.

The first bilinear model is simulated according to

y1(t) =
B(s)

A(s, t)
u(t) (2.39)

with the input dependent polynomialA(s, t) defined in (2.23). The second bilinear

model is simulated according to

y2(t) =
B(s)

A(s)
u(t) +

E(s)

A(s)
{u(t)y2(t)} (2.40)

Since B(s) = kE(s), equation (2.40) further simplifies to

y2(t) =
E(s)

A(s)
{ku(t) + u(t)y2(t)} (2.41)

which can be viewed as a nonlinear, internal feedback, dynamic model. In this

model, the output signal is scaled (multiplied) by the input signal u(t) in the

internal feedback path.

The selected model orders are n = 4 and m = 3, and the chosen model
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2. Background to Hammerstein-bilinear models

parameters are

A(s) = s4 + 0.0445s3 + 6.545× 10−4s2 + 3.485× 10−6s+ 3.9× 10−9 (2.42)

B(s) = 9.75× 10−3s3 + 2.2425× 10−3s2 + 1.6575× 10−4s+ 3.9× 10−6 (2.43)

E(s) = −9.75× 10−5s3 − 2.2425× 10−5s2

− 1.6575× 10−6s− 3.9× 10−8 (2.44)

The roots of A(s) are −0.02, −0.0015, −0.013 and −0.01. The roots of B(s) and

E(s) are −0.1, −0.08 and −0.05. The scaling factor gain k, defined such that

B(s) = kE(s), is -100. Both models, i.e. (2.39) and (2.41), are implemented in the

Simulink (software version 2010b) programming environment. The variable-step

size Dorman-Price ode45 numerical solver is selected. When importing sampled

input signals to Simulink a function block from workspace is used. This function

block uses a standard linear Lagrangian interpolation of the signal inter-sample

behaviour. The input signals are sampled at 1 [s].

The simulation results are presented in Figure 2.2 for two distinct inputs. The

first input is a multi-level stair case signal and the second input is a sinusoidal

signal, these are shown in the left and right lower plots of Figure 2.2, respectively.

The discrepancy between the simulated outputs y1(t) and y2(t), defined as the

difference y1(t) − y2(t), is shown in the upper plots of Figure 2.2. The observed

discrepancy is approximately 10−13. The small, but yet not null, discrepancy is

caused by the numerical accuracy limitations of the presented simulation results.

Hence this discrepancy is virtually zero indicating that the two simulated output

signals do in fact match, which is evident from the middle plots in Figure 2.2.

2.4 Discrete-time bilinear models

There are at least three different ways of obtaining and/or defining a discrete-

time bilinear model, which are introduced hereafter. Also, whilst these models

are related to each other via the common continuous-time model the different

discretisation methods lead to models that are not equivalent.

2.4.1 Exact discretisation

The exact discretisation of continuous-time nonlinear state-space models, e.g.

(2.1), is in principle possible although it generally does not lead to useful results

in practice (Pearson 1999, p. 13). The common problem is the increase in the
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Figure 2.2: Simulation of two bilinear models, having the same constraint pa-
rameters (i.e. B(s) = kE(s)). Left part of the figure shows simu-
lation results for multi-level stair case input signal, while the right
part of the figure considers sinusoidal input signal.

discrete-time model complexity and that the exact discretisation is not structure

preserving as it would be in the linear case. To illustrate this point, consider

the continuous-time bilinear model (2.5) having first order linear dynamics, i.e.

n = 1 and m = 0, hence

sy(t) = −αy(t) + βu(t) + ηu(t)y(t) (2.45)

Assume uniformly sampled u(t) and y(t) signals at sampling instances tk = kh,

where h denotes the sampling interval and k is the integer valued discrete time

index, and define the notation x(k) = x(tk). Now, consider the zero-order-hold

assumption on the input signal, i.e. u(t) = u(k − 1) for tk−1 ≤ t < tk, which

allows (2.45) to be re-expressed as

sy(t) = [−α + ηu(k − 1)] y(t) + βu(k − 1) (2.46)
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2. Background to Hammerstein-bilinear models

Given the initial condition y(t) = y(k − 1) at t = tk−1 the expression (2.46)

integrates to (Pearson 2003), i.e.

y(k) =

[

y(k − 1) +
βu(k − 1)

ηu(k − 1)− α

]

exp [− (α− ηu(k − 1))h]

−
βu(k − 1)

ηu(k − 1)− α
(2.47)

The following remark clarifies the use of nomenclature for sampled signals.

Remark 2.3 When dealing with purely discrete-time models the nomenclature

for a general discrete-time signal is x(k). However, when dealing with models

and parameter estimation methods in the continuous-time domain the notation

for a sampled general signal is x(tk). This distinction is preferred in order to

emphasize that the original continuous-time signals x(t) are sampled at discrete

time instances tk = kh.

In the work of (Dunoyer, Balmer, Burnham & James 1997) the structure

preserving exact discretisation method for bilinear systems governed by the time-

invariant continuous-time model (2.45) has been proposed. Although, the continuous-

time model structure is preserved, the parameters of the resulting discrete-time

bilinear model are input dependent quantities and the exact solution to the dis-

cretisation problem is implicit.

2.4.2 Approximate discretisation

A state-space representation of discrete-time SISO deterministic bilinear model

takes the form

x(k + 1) = Adx(k) + bdu(k) + u(k)Ndx(k) (2.48a)

y(k) = cd
Tx(k) (2.48b)

The model (2.48) can be obtained from the continuous-time state-space bilinear

model (2.1) by adopting the Euler forward approximate difference discretisation

method in which the time derivatives are simply replaced by differences, then

Ad = I + Ah, Bd = Bh, Nd = Nh, cd
T = cT . I is the identity matrix of the

same dimension as A.

It is important to note that albeit the model structure similarity of discrete-

and continuous-time state-space models (2.1) and (2.48), respectively, the qual-

itative behaviour, accuracy and stability of the discrete-time model is sampling
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2. Background to Hammerstein-bilinear models

interval dependent. This is, for example, noted by (Ekman 2005) who proposes a

new approximate structure preserving discretisation method for bilinear models,

which is somewhat less sampling interval dependent.

Again, in a similar manner as highlighted in the continuous-time case, the

general discrete-time state-space model (2.48) does not exhibit convenient input-

output realisation. This is shown in the following example, which can be found

in (Pearson & Kotta 2004).

Example 2.2 Consider the discrete-time state-space model (2.48) with the fol-

lowing matrices

Ad =

[

0 1

a1 a2

]

, Nd =

[

n11 n12

n21 n22

]

, cd =

[

1

0

]

, bd =

[

b1

b2

]

(2.49)

having the state vector x(k) = [x1(k) x2(k)]
T . The state-space model can then

be re-expressed as a set of two difference equations, i.e.

x1(k + 1) = x2(k) + b1u(k) + u(k)n11x1(k) + u(k)n12x2(k) (2.50a)

x2(k + 1) = a1x1(k) + a2x2(k) + b2u(k) + u(k)n21x1(k) + u(k)n22x2(k) (2.50b)

Noting that x1(k) = y(k) and x1(k + 1) = y(k + 1) equation (2.50a) can be

expressed in terms of x2(k) such that

x2(k) =
y(k + 1)− u(k)n11y(k)− b1u(k)

1 + n12u(k)
(2.51)

Now, substituting the expression (2.51) into the second equation (2.50b) for x2(k)

leads to the input-output realisation

y(k) = [1 + n12u(k − 1)] [a1y(k − 2) + n21y(k − 2)u(k − 2) + b2u(k − 2)]

+ n11y(k − 1)u(k − 1) + b1u(k − 1) +

[
1 + n12u(k − 1)

1 + n12u(k − 2)

]

× [a2 + n22u(k − 2)] [y(k − 1)− n11y(k − 2)u(k − 2)− b1u(k − 2)]

(2.52)

The resulting input-output model representation is a rational nonlinear auto-

regressive moving average with exogeneous input (NARMAX) model structure.
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2. Background to Hammerstein-bilinear models

2.4.3 Input-output representation

Historically the term ‘bilinear model’ has been defined in the continuous-time

state-space framework (Mohler 1973). It has been shown that exact discretisa-

tion is not structure preserving and that approximate discretisation is structure

preserving; however, the equivalent input-output realisation is open to wide in-

terpretation, see (2.52). Because of this generality some constraints on the model

parameters need to be imposed, in a similar manner as in Section 2.2, where

a phase variable canonical form of the continuous-time state-space model was

considered.

In recognition of the above discretisation issues and the fact that many param-

eter estimation methods are based directly on input-output model representations

the following discrete-time bilinear model is defined

A(z−1)y(k) = B(z−1)u(k) +
n∑

i=1

n∑

j=1

ci,ju(k − i)y(k − j) (2.53)

with

A(z−1) = 1 + a1z
−1 + · · ·+ anz

−n

B(z−1) = b1z
−1 + · · ·+ bmz

−m

where z−1 denotes a backward shift operator defined as z−1x(k) = x(k − 1) and

n ≥ m. This model structure is broadly adopted by a number of different au-

thors, see (Pearson 1999, p. 95) and references given therein. Note that the term

‘bilinear model’ is now defined as being linear in both the system output and

the control input when considered independently, and being bilinear when con-

sidered jointly. Although related, the discrete-time input-output bilinear model

(2.53) is not necessarily equivalent to the discrete-time state-space bilinear model

(2.48) in a minimal state-space sense, i.e. controllable and observable realisa-

tion. The state-space realisability of input-output bilinear models is analysed in

(Baheti, Mohler & Spang 1980, Kotta, Nomn & Zinober 2003, Belikov, Kotta &

Kotta 2010).

Since this thesis is primarily concerned with parameter estimation methods

making use of the input-output model representation, and since the model (2.53)

is flexible enough to approximate the nonlinear phenomena present in HVAC

systems, the term ‘discrete-time bilinear model’ as defined by (2.53) is adopted

hereandafter unless it is explicitly stated otherwise.
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2. Background to Hammerstein-bilinear models

The discrete-time bilinear model (2.53) is further divided into the following

distinct subclasses (Pearson 1999, p. 96), i.e.

1. Linear models ci,j = 0 ∀ i, j

2. Diagonal models ci,j = 0 ∀ i 6= j

3. Superdiagonal models ci,j = 0 ∀ i > j

4. Subdiagonal models ci,j = 0 ∀ i < j

For example the superdiagonal model subclass, when subject to a Gaussian white

zero mean input sequence, is capable of localized burst-like (high in output am-

plitude) behaviour. Such time-series models have been used in the analysis of

earthquakes and underground explosions (Pearson 1999). Note, that the sub-

diagonal and diagonal model subclass would be obtained if the continuous-time

bilinear model (2.5) is discretised by the structure preserving Euler forward dif-

ference discretisation method.

Remark 2.4 For the purpose of system identification, it is noted that the SISO

discrete-time bilinear model can be expressed in a form of multi-input single-

output (MISO) linear in structure model. Such a formulation then enables the

use of existing, well established, parameter estimation methods developed for

linear systems. Since the input-output data are measured, the signal products

y(k − i)u(k − j) in (2.53) are known. This allows n × n additional inputs to be

formed, such that

ui,j(k) = u(k − i)y(k − j) for i = 1, · · · , n, and j = 1, · · · , n (2.54)

Having defined the inputs (2.54), the MISO linear in structure model is then

A(z−1)y(k) = B(z−1)u(k) +
n∑

i=1

n∑

j=1

ci,jui,j(k) (2.55)

which can be re-expressed in the following compact transfer function form

y(k) =
B(z−1)

A(z−1)
u(k) +

n∑

i=1

n∑

j=1

ci,j
A(z−1)

ui,j(k) (2.56)

where some ci,j parameters are allowed to be zero.
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2. Background to Hammerstein-bilinear models

2.5 Definition of Hammerstein-bilinear models

The Hammerstein models are characterised by a memoryless static nonlinear el-

ement in series with a linear dynamic submodel (Eskinat et al. 1991). The only

nonlinearity is in the steady-state gain and the dynamics is not reference depen-

dent. The notion of a Hammerstein model is extended in this thesis for the bilinear

case such that the linear dynamic submodel is replaced by a bilinear model as

indicated in Figure 2.3. The system input u(t) is scaled by the nonlinear block

φ(·) and transformed into the intermediate variable v(t) = φ(u(t)), which then

effectively acts as the input for the bilinear subsystem (BS) dynamic block. The

intermediate input signal v(t) is usually either not available or is unmeasurable

in practice. The overall Hammerstein-bilinear model combines the advantages of

its constituent submodels and can exhibit both, input dependent dynamic be-

haviour and increased flexibility of the steady-state characteristic including input

multiplicity.

u(t) y(t)v(t)
φ(·) BS

static nonlinearity dynamic subsystem
︸ ︷︷ ︸︸ ︷︷ ︸

Figure 2.3: Block diagram representation of Hammerstein-bilinear model struc-
ture.

2.5.1 Preliminary HVAC system considerations

In the HVAC system application the common sources of the static nonlinearity

are variable speed drives, control dampers, fan and pump static characteristic

(performance curves) and control/modulating valves (Underwood 1999, Singhal

& Salsbury 2007). The control valves are of particular interest here since these

components are present in the HVAC system application considered in Chapter

5.

The static relationship between the valve stem position and the flow rate of

controlled fluid at constant pressure drop across the valve is termed the valve

inherent characteristic. The two most commonly encountered characteristics are:

linear and equal percentage (Levenmore 2000), which are determined by the valve

plug geometry. Whether the linear or equal percentage valve is used depends on
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2. Background to Hammerstein-bilinear models

the HVAC application, i.e. the valve purpose. For example, in a central heating

application, the valve is designed such that it linearises the relationship between

the heat output of the radiator and the hot water flow rate in steady-state. In

this way the radiator heat output is linearly proportional to control valve stem

movement leading to an easier control problem situation.

The valve modulation causes pressure drops across the valve and also pressure

changes in the whole controlled pipe circuit (pipe-work). When the valve is

installed the relation between the valve stem position and the flow rate depends

on the relation of the pressure drop across the valve to that of the rest of the

pipe circuit. The link between the circuit and the valve size is quantitatively

expressed by so called valve authority, denoted Nv, see (Levenmore 2000, p. 3-

13). The valve inherent characteristic is then modified by the valve authority

yielding the valve installed characteristic. The valve authority is defined in a

range (0, 1〉, when Nv = 1 the inherent and installed characteristics are the same.

Figure 2.4 illustrates the shape of linear and equal percentage valve installed

characteristics for cases Nv = 1, 0.1 and 0.01. The ideal model of the control

valve is provided in Appendix A.1.
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Figure 2.4: Linear (solid lines) and equal percentage (dashed lines) installed
valve characteristics for valve authority Nv = 1 (black colour), Nv =
0.1 (dark grey colour) and Nv = 0.01 (light grey colour). The valve
leakage (a let-by) is 0.1%.
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2.5.2 Hammerstein model parameterization

Appropriate parameterization (approximation) of the static nonlinear function is

required during the system identification exercise. Such parameterization should

be of low dimension approximating the static nonlinearity well without over-

fitting (Young 2011, p. 335). There are, however, a number of decisions and

compromises which must be made when selecting suitable parameterization.

In the case there is no a priori knowledge on the shape of the static nonlin-

earity it is most straightforward to use a polynomial function

v(t) = φ(u(t)) = p1u(t) + p2u
2(t) + · · ·+ pru

r(t) (2.57)

where r is the polynomial order and pi, i = 1, · · · , r, are constant parameters.

The advantages of using a polynomial function are simplicity, flexibility and also

that the function (2.57) is linear in the parameters so that the ordinary linear

least squares method can be used to estimate the pi parameters. The disadvan-

tage of using a polynomial function is that many parameters are required to be

estimated. For example, the valve static characteristic is uniquely defined by

the single parameter, valve authority Nv, but to model the valve characteristic

with the polynomial function at least a third order polynomial is required. This

leads to the risks of over parameterization, poorly defined parameter estimates

and optimisation convergence issues. Also the information content of the mea-

sured input-output data must be sufficient enough throughout the whole intended

model operation range otherwise misleading results can be obtained. Such input-

output data might be difficult to obtain in practice, especially at the start and end

points of the nonlinear functions. Naturally, the estimated polynomial function

cannot be used outside the region of operation for which no data were provided

during the estimation stage. Another disadvantage of using simple polynomials

is the fact that such functions do not level off, i.e. for an input u(t) = ±∞ the

polynomial function goes to v(t) = ±∞. However, the HVAC component static

curves commonly do level off (saturate). Further discussion on parameterization

of nonlinear functions can be found in (Beven, Leedal, Smith & Young 2012)

together with other possible suitable parameterizations, e.g. sum of radial basis

functions.

Some identification methods, such as the state dependent parameter (SDP)

estimation method provided in (Young 2011), are able to estimate the shape of

the static nonlinearity in an non-parametric manner. When the general shape

of the static nonlinear function is known, then appropriate parameterization can
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be selected. For example (Taylor, Shaban, Stables & Ako 2007) applied a SDP

algorithm in the identification of an axial fan characteristic. The SDP algorithm

clearly identified the S-shaped fan characteristic and the following logistic growth

like relation has been selected for the final parameterization

v(t) = φ(u(t)) =
p1

1 + e−p2(u(t)−p3)
1/p4

(2.58)

where pi, i = 1, · · · , 4, are constant parameters to be estimated. Note that

the function (2.58) is nonlinear with respect to the parameters pi, so that some

suitable optimisation routine together with the initial conditions must be selected

in order to estimate the parameters pi.

In the case where a priori knowledge on the shape and nature of the static

nonlinearity is available, then such knowledge can be used directly. Such knowl-

edge might be obtained from open loop experiments, engineering knowledge, first

principles modelling assumptions or just direct experience. Based on the expe-

rience with HVAC systems (Singhal & Salsbury 2007) postulate that following

exponential relation

v(t) = φ(u(t)) =
1− e−pu(t)

1− e−p
(2.59)

and a series connection of two of such exponential relations is in most cases

sufficient. The single exponential relation (2.59) is capable of approximating

the linear valve characteristic and a series of two of such relations is capable of

approximating the S-shaped equal percentage characteristic, see Figure 2.4, and

of course other HVAC components.

2.6 Selected static and dynamic properties

From the versatile application of bilinear models and from the fact that the gen-

eral continuous-time bilinear models are recognised as being good approximators

to a large class of nonlinear systems it can be anticipated that the HB models can

exhibit an even richer versatility. As previously indicated, the research into the

parameter estimation of these models is narrowed here towards the HVAC applica-

tion by appropriately selecting the relevant model structures in both, continuous-

time and discrete-time domains, i.e. models (2.5) and (2.53). Therefore, the dis-

cussion regarding the HB model structure properties is restricted to these particu-

lar models only. Furthermore, without loss of generality, only the continuous-time

bilinear model is studied in the following discussion and analogous conclusions
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could be made if the discrete-time bilinear model had been used instead. The

discrete-time case is briefly discussed in (Larkowski & Burnham 2011).

For the sake of clarity the static (memoryless) input nonlinearity is param-

eterized by polynomial function of order r so that the investigated HB model

structure is represented by

v(t) = φ(u(t)) = p1u(t) + p2u
2(t) + · · ·+ pru

r(t) (2.60a)

A(s)y(t) = B(s)v(t) + v(t)
n∑

i=1

ηis
n−iy(t) (2.60b)

Due to the close connection of bilinear models to linear models, it is possible to

combine the bilinear product terms, in (2.60b), with the polynomial A(s) leading

to the linear in structure input dependent time varying differential equation, cf.

(2.24), i.e.

A(s, t)y(t) = B(s)v(t) (2.61)

where the input dependent time varying polynomial A(s, t) is defined as

A(s, t) =

[

A(s)− v(t)
n∑

i=1

ηis
n−i

]

(2.62)

The individual coefficients of the polynomial A(s, t) are αi(t) = αi − ηiv(t) for

i = 1, · · · , n. Subsequently, the linear time varying differential equation (2.61)

can be expressed in the following time-step quasi-linear transfer function form,

(Dunoyer 1996), i.e.

y(t) =
B(s)

A(s, t)
v(t) =

β0s
m + β1s

m−1 + · · ·+ βm
sn + α1(t)sn−1 + · · ·+ αn(t)

v(t) (2.63)

The notion of a transfer function, and the ability to express bilinear models in

time-step quasi-linear transfer function form, is used as a basis in the subsequent

Chapter 3 devoted to parameter estimation of Hammerstein-bilinear models. It

should be noted, however, that expressing the continuous-time nonlinear models

in transfer function form should be done with caution and as such should be used

only as a stepping stone in the development of the identification approaches. To

proceed some remarks on the use of the polynomial A(s, t) are necessary.

Remark 2.5 Because of the time varying nature of the polynomial A(s, t) the

rules regarding the manipulation of linear polynomials are no longer valid. The

sequence in which the signal v(t) is filtered through the polynomials B(s) and
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1/A(s, t) in (2.63) is crucial unlike in the linear case. For example, considering

two linear polynomials A(s) and B(s) the following relation holds

1

A(s)
(B(s)v(t)) = B(s)

(
1

A(s)
v(t)

)

(2.64)

where the parentheses indicate the filtering order. However, in the nonlinear

case the sequence in which the signal v(t) is filtered through B(s) and 1/A(s, t),

m < n and m > 0, is important since these polynomials do not commute; hence

in general
1

A(s, t)
(B(s)v(t)) 6= B(s)

(
1

A(s, t)
v(t)

)

(2.65)

Note that for the special case m = 0 the polynomial B(s) effectively reduces to

a gain, i.e. B(s) = β0, and the following holds

1

A(s, t)
(β0v(t)) = β0

(
1

A(s, t)
v(t)

)

(2.66)

since scaling by gain is a memoryless operation.

Considering the implementation of the continuous-time state-space bilinear

model provided in Figure 2.1, the correct implementation or use of the time

varying transfer function (2.63) is

y(t) = B(s)

(
1

A(s, t)
v(t)

)

(2.67)

A similar observation has been made in (Ekman 2005, p. 89) regarding nonlinear

filtering in the discrete-time domain.

The dynamic and steady-state behaviour of the HB model is dependent on

both the bilinear submodel and the static nonlinearity. To visualise this point

consider the time-step quasi-linear transfer function (2.63) interpretation of the

bilinear submodel. It is noted, that for different input values the αi(t) coefficients

change leading to different equivalent linear models. Furthermore, since the in-

put u(t) is scaled by the static input nonlinearity φ(u(t)), the input dependent

dynamics of the bilinear submodel will also depend on the selection of φ(u(t)).

Whereas, the dynamic behaviour of the commonly used Hammerstein models is

entirely determined by the dynamic linear submodel.

The overall steady-state characteristic of the HB model is defined by its con-

stituent submodels, i.e. the static nonlinearity transforming the input signal and

the bilinear dynamic submodel. With reference to the final value theorem, see
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2. Background to Hammerstein-bilinear models

for example (Nise 2008), the steady-state characteristic of the overall HB model

is given by

yss =
βm

αn − ηnφ(uss)
φ(uss) (2.68)

where the subscript ss denotes the steady-state value. Knowing the steady-

state characteristic allows two important expressions to be calculated, which are

namely the steady-state gain, denoted SSG, and the process gain, denoted K.

The steady-state gain is defined as the ratio of steady-state output to steady-state

input, i.e.

SSG =
βm

αn − ηnφ(uss)

φ(uss)

uss
(2.69)

where the SSG of the bilinear submodel is βm/ (αn − ηnφ(uss)) and the SSG

of the input static nonlinearity is given by φ(uss)/uss. The SSG provides more

detailed insight into the steady-sate properties of the nonlinear system and can

be used for the purpose of equipment sizing and the design of system components

as well as during the control system design stage. The process gain is defined as

the sensitivity of the system output (process variable) to changes in the system

input (manipulated variable). Taking the derivative of steady-state characteristic

(2.68) with respect to control input uss leads to

K =
βm

αn − ηnφ(uss)

dφ(uss)

duss
+

βmηnφ(uss)

(αn − ηnφ(uss))
2

dφ(uss)

duss
(2.70)

and the derivative of the input static nonlinearity in this case is

dφ(uss)

duss
=

r∑

k=1

kpku
k−1
ss (2.71)

The concept of process gain is important in control system design in which the

knowledge of the system sensitivity to the applied control signal is essential. Note,

that the physical units of the SSG and K can be derived as the ratio of the units

of the system output to the system input, respectively. However, the units of the

SSG and K will not be stated here, since the units of the considered input-output

signals will differ throughout this thesis. Although, the units of the SSG and K

are not explicitly provided, by knowing the units of the input-output signals these

can always be determined.

The steady-state characteristics (2.68) of the bilinear submodel (2.60b) for

different cases of the bilinear term ηn are illustrated in Figure 2.5 for αn = 1 and

βn = 5. Clearly, if ηn is zero, equation (2.68) represents a linear model, hence
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Figure 2.5: Steady-state characteristic of the bilinear submodel for a range of
different values of parameter ηn.

linear models may be considered as a special subclass. A consequence of this close

relationship between linear and bilinear models is that many techniques developed

for linear models can be extended and applied to the bilinear case. Positive

values of ηn result in a gain which increases as vss increases, typical of exothermic

chemical processes. Conversely, negative ηn produces a gain, which decreases as

vss increases, leading to eventual saturation, and is typical of many industrial

systems. Should a system exhibit bilinear characteristic of the form illustrated in

Figure 2.5, then it is pertinent to consider adopting a bilinear systems modelling

and control approach.

It can be verified that the horizontal asymptote of the steady-state character-

istic, obtained for vss → ±∞, is given by −βm/ηn, whilst the vertical asymptote,

obtained for yss → ±∞, is given by (1− αn)/ηn.

The following example illustrates the input dependent steady-state and dy-

namic behaviour of an exemplary HB model.

Example 2.3 As pointed out in Remark 2.1 a minimal order of the dynamic

bilinear submodel is often sufficient in practice. Therefore, consider the following
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2. Background to Hammerstein-bilinear models

HB model with first order linear dynamics and a single bilinear term

v(t) = p1u(t) + p2u
2(t) + p3u

3(t) + p4u
4(t) (2.72a)

(s+ α1) y(t) = β0v(t) + η1v(t)sy(t) (2.72b)

where p1 = 4.5544, p2 = −17.4851, p3 = 27.0102, p4 = −13.0937, α1 = 0.001,

β0 = 0.01 and η1 = −0.002. The input static nonlinearity (2.72a) is depicted in

the top left quadrant of Figure 2.6 by a solid black line, while the solid grey lines

show the case where no static input nonlinearity is considered, i.e. v(t) = u(t),

and only the bilinear submodel remains. The steady-state characteristic (2.68)

is shown in the top right quadrant of Figure 2.6 and the process gain (2.70) is

provided in the left bottom quadrant of Figure 2.6. The dynamic behaviour of

the HB model can be, in this case, conveniently expressed by a time constant of

the process, denoted T [s]. The time constant is the time it takes for a process to

reach approximately 63.2% of its final steady-state value when subject to a step

change in the process input, see for example (Nise 2008), and is computed as

T =
1

α1(t)
=

1

α1 − η1v(t)
(2.73)

The process time constant is given in the right bottom quadrant of the Figure

2.6.

In the above example with a negative bilinear parameter η1 the saturation like

behaviour can be observed in Figure 2.6, see top right quadrant. For increasing

value of input signal uss the process gain decreases and eventually saturates. Due

to the static input nonlinearity the process gain is not monotonically decreasing,

but even increases at value of around uss = 0.4. This is in stark contrast to the

behaviour of a purely bilinear model, where the process gain would monotoni-

cally decrease as indicated by the grey solid line. With an increasing magnitude

of the input signal uss the time constant decreases and the process dynamics be-

comes faster. Similarly to the process gain, the value of the time constant is not

decreasing monotonically and even increases at a value of around uss = 0.4.

Since the dynamics is affected by the input, the stability of Hammerstein-

bilinear model is also input dependent. This property is clearly observed in the

case of the exemplary model considered (2.72), where for stability it is required

that the time varying equivalent ‘linear pole’ remains on the left hand side of the

s-plane, i.e. α1 − η1φ(u(t)) < 0. This condition implies that the magnitude of

the input must be restrained to α1

η1
< φ(u(t)). For the more general higher order
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Figure 2.6: The input dependent steady-state and dynamic characteristics of
the Hammerstein-bilinear model (solid black line) and purely bilin-
ear model (grey solid line), i.e. v(t) = u(t).

case (2.60) the real part of n time varying (complex) poles must be negative for

stability. A detailed discussion on the stability of continuous-time and discrete-

time bilinear models is provided in (Pearson 1999, Verdult 2002).

2.7 Conclusions

In this chapter the Hammestein-bilinear model class has been introduced with

relevant examples to HVAC systems. The Hammerstein-bilinear model class has

been defined as a cascaded connection of the memoryless static nonlinear element

scaling the input of the bilinear dynamic submodel. It has been shown, that

the Hammerstein-bilinear model combines the advantages of its constituent sub-

models and can exhibit both, input dependent dynamic behaviour and increased

flexibility of the steady-state characteristic including the input multiplicity. Fur-

thermore, since the input to the bilinear submodel is scaled by the static nonlinear

function, the input dependent dynamic behaviour of the bilinear submodel will

37



2. Background to Hammerstein-bilinear models

also depend on the shape of such static nonlinear function.

A novel observation regarding the relation between two types of continuous-

time bilinear model structures has been made. It has been shown that two bilinear

model structures are equivalent if the model parameters are constrained in a

predefined way. While it is not possible to estimate the model parameters of the

first bilinear model structure by existing and well established linear parameter

estimation methods, this is, however, possible in the case of the second bilinear

model structure due to its close relation to linear models. Therefore, by virtue of

estimating the parameters of the second bilinear model structure, the parameters

of the first bilinear model are also estimated. This observation, is then greatly

exploited by some of the designed continuous-time parameter estimation methods

in the subsequent Chapter 3.
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Chapter 3

Parameter estimation methods in

continuous-time domain

3.1 Introduction

The general system identification procedure, or rather a cycle, consists of stages

such as experiment design, optimal system input design, model structure selec-

tion including noise model selection, suitable parameterization of static input

nonlinearity, model order selection, estimation of effective pure time delay be-

tween input and output signals, and, of course, estimation of model parameters

(coefficients). The choices regarding a criterion of fit between the measured data

and the model and also an actual way of evaluating the resulting models must be

also made. The system identification cycle is rather well understood in the case of

linear time-invariant discrete-time (Ljung 1999) and continuous-time (Garnier &

Wang 2008, Young 2011) dynamic models, but the same cannot be said in the case

of nonlinear models. For example, the design of optimally exciting input signal

or suitable parameterization of the static input nonlinearity might be a peculiar

task in practice and can be solved based on expert knowledge and engineering

insight rather than on analytical mathematical tools. This chapter is dedicated to

the problem of parameter estimation of linear, bilinear and Hammerstein-bilinear

model structures in the continuous-time domain only. Chapter 5, then consid-

ers the modelling challenge of the industrial HVAC system, where the complete

system identification cycle is treated separately with respect to individual HVAC

system components and subsystems.

There are several advantages of using continuous-time models for identification

over the discrete-time counterparts and only the most relevant advantages to
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3. Parameter estimation methods in continuous-time domain

subsequent HVAC system analysis are briefly mentioned, for a comprehensive

overview see (Rao & Unbehauen 2006, Garnier & Wang 2008, Garnier & Young

2012). In many cases a first principles modelling approach is applicable or the

physical phenomena governing the main system dynamics are known and help to

suggest the ‘correct’ model structure. The linear and nonlinear continuous-time

models then naturally arise from such physical considerations, hence the a priori

physical knowledge is preserved and incorporated in such a CT model structure.

Moreover, in contrast to linear models, the nonlinear (bilinear) models can be

discretised only approximately, cf. Subsection 2.4.1. If the original nonlinear

model structure is required to be preserved then system indentification in the

continuous-time domain becomes more of a necessity. In the case when the CT

model structure is known, however, and the model parameters are not, then

these might be estimated directly from the measured input-output signals, i.e.

a grey-box modelling approach. Such parameter estimates are then physically

meaningful and can provide further physical insight into the modelled (analysed)

system, e.g. detection of fouling in heat exchangers (Jonsson, Lalot, Palsson &

Desmet 2007). A very often stated advantage of parameter estimation in the

CT domain, over estimation in the discrete-time (DT) domain, is the ability to

handle stiff systems, i.e. systems which contain both slow and fast dynamics. An

example of a stiff system could be a temperature model of a building comprising

the building envelope (walls and insulation) and the air contained within this

envelope (Zajic et al. 2012). The thermal capacity of the building envelope is

an order of magnitude higher than the thermal capacity of the air. Therefore,

it takes considerable more time for the building envelope to change temperature

compared to the air leading to presence of two distinct dynamic modes, i.e. slow

and fast mode, respectively.

Historically, two main approaches to parameter estimation in the CT domain

were devised, which are namely the direct and the indirect approach. The in-

direct approach involves estimation of the DT model from measured sampled

input-output signals first, followed by a transformation to the CT domain. This

approach is, however, not necessarily suitable because the benefits of being able to

handle stiff systems and structure preservation properties are lost. As the name

implies, in the case of the direct approach the CT model is estimated directly,

which is the approach taken in this thesis. One of the problems when attempting

to directly estimate the CT model is the need for the time derivatives of the

input-output signals, which are either not measured for practical reasons or even

unobtainable. Various methods have been developed to reconstruct the time
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3. Parameter estimation methods in continuous-time domain

derivatives or transfer the identification problem into a set of known algebraic

equations. These methods differ in simplicity of implementation and computa-

tion, handling of initial conditions, accuracy, noise filtering properties, or whether

the CT model is formulated in a state-space, transfer function (TF) or differential

equation form. A survey of parameter estimation methods for linear CT models

can be found in (Young 1981) and for linear and nonlinear CT models in (Rao

& Unbehauen 2006). The following section briefly summarises popular and/or

relevant parameter estimation methods suitable for the bilinear case.

3.1.1 Dynamic bilinear models

Karanam, Frick & Mohler (1978) approximate the input-output signals by a se-

ries of piecewise constant orthogonal Walls functions, reduce the identification

problem to algebraic form and by adopting the integral equation approach to

estimate the unknown CT model parameters. Similarly, Berhe & Unbehauen

(1998) applied the Hartley modulating functions based method to replace the un-

known time derivatives with the known derivatives of the modulating functions.

A rather different approach has been devised in (Young, Foster & Lees 1993, Coca

& Billings 1999), where the time derivatives are directly computed from the mea-

sured (noisy) input-output signals. The method uses a fixed interval smoothing

Kalman filter based algorithm and a class of random walk models (Young 2011).

The use of state variable filters (SVF) is a classical approach of obtaining time

derivatives from measured input-output signals in linear model estimation theory.

The input-output signals are filtered through a linear filter or a chain of linear

filters so that the filtered time derivatives are generated and used for subsequent

parameter estimation. However, in the case of nonlinear models the linear filter

does not normally commute, cf. Remark 2.5. Therefore, Kohr (1963) proposed to

use so called delayed state variables filters (ideal transport lag device) and Tsang

& Billings (1994) further improved the implementation of the delayed SVF.

A computationally straightforward yet powerful and statistically efficient met-

hod for parameter estimation of linear DT transfer function models is the sim-

plified refined instrumental variable (SRIV) method and the refined instrumen-

tal variable (RIV) method (Young 1976, Young & Jakeman 1979, Jakeman &

Young 1979). The SRIV and RIV algorithms and their closely related counter-

parts for CT model identification (Young & Jakeman 1980, Young et al. 2008),

abbreviated SRIVC and RIVC, respectively, create together an unified time do-

main approach to parameter estimation for linear models. One of the contribu-
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3. Parameter estimation methods in continuous-time domain

tions of this chapter is the proposed extension of the SRIVC algorithm which is

capable of estimation of higher order CT bilinear models directly from sampled

input-output data, abbreviated BSRIVC. Additionally, based on the special ob-

servation, made in Section 2.3, regarding the possibility of expressing SISO CT

bilinear model as a TISO CT linear model, the SRIVC algorithm is configured

for such a case in Subsection 3.2.1. The en bloc solution (non-recursive, single

iteration of a batch of data) to SRIVC and BSRIVC algorithms is presented,

while its on-line recursive implementation is left for potential future work.

The reviewed and extended SRIVC algorithm is a direct parameter estimation

method, which uses sampled (discrete), noisy, input-output signals and is based

on the SVF approach. The purpose of the optimally selected SVF is twofold,

first, to obtain the filtered unknown time derivatives, second, to noise prefilter

the measured input-output signals. In the case of white, zero mean, additive

measurement noise with Gaussian amplitude distribution the SRIVC algorithm

yields asymptotically unbiased statistically efficient (minimum variance) parame-

ter estimates. Another feature of the SRIVC algorithm is the use of instrumental

variables (IV), which together with the optimal prefilters form the core of the

algorithm. If it occurs that the noise model assumptions are violated, i.e. the

additive noise is not white but coloured (a very real situation in practice), then

the SRIVC algorithm is still able to provide consistent and asymptotically unbi-

ased parameter estimates. The optimal CT prefilters are commonly implemented

in a digital computer environment, therefore a discrete-time approximation is

required. The inherent IV nature of the algorithm helps to attenuate the ap-

proximation errors caused by such a digital implementation of the CT optimal

prefilters. Additionally, the SRIVC method is known for its rapid convergence

properties, see (Liu, Wang & Zheng 2011, Young 2011).

The RIVC method is statistically optimal under the assumption of an auto-

regressive moving-average (ARMA) additive noise model and is suitable for iden-

tification of CT hybrid Box-Jenkins transfer function models (Young et al. 2008).

This model is hybrid in the sense that the deterministic part of the model is esti-

mated in the CT domain, while the noise model is estimated in DT domain. The

optimal identification of linear and bilinear CT models under the assumption of

coloured additive noise, i.e. use of the RIVC method as a core algorithm of the

BSRIVC method, is left as an area of further work.
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3.1.2 Hammerstein-bilinear models

The methods devoted to parameter estimation of Hammerstein models can be

broadly classified into two categories, namely, iterative and noniterative methods,

(Eskinat et al. 1991, Janczak 2005). Both methods were originally developed for

parameter estimation in the DT domain.

In the case of the input static nonlinearity being parameterized by a linear-in-

parameters polynomial-type function, as defined in (2.57), or in general by basis

functions with a priori known structure, then a well known noniterative over-

parameterization method, proposed by Hsia (1968), can be applied. The orig-

inal SISO bilinear-in-parameters Hammerstein model is converted into a MISO

linear-in-parameters auxiliary model, from which the individual parameters of

the Hammerstein model are then inferred. In the work of Hsia (1968) the lin-

ear transfer function has no zeros, this assumption has been further relaxed in

(Chang & Luus 1971). Subsequently, Hsia (1968) proposed a multi-stage nonit-

erative method, which accounts for coloured output noise. Stoica & Söderström

(1982) investigate the use of IV methods for identification of Hammerstein mod-

els, comment on the selection of persistently exciting input signals, and state

the necessary consistency conditions. The input-output signals must be suffi-

ciently informative to encompass the whole operating range. This is addressed in

(Barker, Tan & Godfrey 2004), who proposed an optimisation procedure for the

design of optimal multi-level input signals.

The need for estimation of Hammerstein models in the CT domain, under re-

alistic noise conditions, has been recognised recently in (Laurian, Gilson, Garnier

& Young 2008, Ni, Garnier & Gilson 2012). The authors proposed to use the

SRIVC and the RIVC algorithms for the estimation of Hammerstein CT hybrid

Box-Jenkis models within the context of the over-parameterization method. Un-

fortunately, because of the parameter estimates over-parameterization (parameter

redundancy) it is not possible to infer the static and dynamic model parameters

from the auxiliary model consistently, see e.g. (Young 2011, p. 336). The problem

of recovering the individual submodel parameters is further discussed in Chapter

4, where the over-parameterization method is applied in the DT setting.

The iterative backfitting methods are able to overcome such parameter esti-

mate inconsistency by solving for the static and dynamic part of the Hammerstein

model separately (Eskinat et al. 1991). Improved accuracy of iterative meth-

ods, over noniterative (over-parameterization) methods, has been reported in the

works of Gallman (1976) and Le, Markovsky, Freeman & Rogers (2010). The

principle of the iterative (relaxation) algorithm, proposed by Narendra & Gall-
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man (1966), is based on the following idea: First, suppose the parameters of the

static nonlinear block are known, then it is possible to compute the intermediate

input to the dynamic submodel and estimate its parameters. Second, knowing

the dynamic submodel parameters, compute the refined static nonlinear block

parameter estimates and repeat step one and two until convergence occurs. The

limitations of such an iterative method are potential convergence problems. The

algorithm convergence properties have been examined in (Liu & Bai 2007, Bai &

Li 2010).

Two related methods for parameter estimation of CT Hammerstein-bilinear

models are proposed and are based on the Narendra & Gallman (1966) itera-

tive algorithm. Both methods postulate that a linear-in-parameters polynomial

function of finite order is used to parameterize the static input nonlinear block.

The identification algorithm, then exploits this property by separately solving

two interconnected least squares problems. Such a method is computationally

efficient and it is known in the literature as a bilinear parameterization method

(Ljung 1999). The first method is based on the SRIVC algorithm configured for

parameter estimation of TISO bilinear models and is abbreviated HSRIVC. The

second method, abbreviated HBSRIVC, is based on a more general, earlier pro-

posed, BSRIVC algorithm. To date, no work on estimation of Hammerstein and

Hammerstein-bilinear models in the CT domain setting, using iterative methods,

as presented in this chapter, has been reported/found.

If the static input nonlinearity is characterized by a function, which is nonlin-

ear with respect to its parameters, a closed form solution cannot be formulated

and some sort of a constrained nonlinear optimisation routine must be employed.

However, it is beyond the scope of the current research to investigate such nonlin-

ear optimisation routines, since their application is case specific and each problem

should be treated as such.

3.1.3 Problem formulation

It is assumed that the continuous-time Hammerstein-bilinear model is described

by the following single-input single-output differential equation

A(s)x(t) = B(s)v(t− τ) + v(t− τ)
n∑

i=1

ηis
n−ix(t) (3.1)
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where the constant coefficient polynomials A(s) and B(s) of orders n and m,

respectively, are defined in (2.5) and repeated below

A(s) = sn + α1s
n−1 + · · ·+ αn

B(s) = β0s
m + β1s

m−1 + · · ·+ βm, m < n

The differential equation (3.1) relates the delayed intermediate input v(t − τ)

to the noise-free (unobserved) output x(t); the quantity τ is a pure time (trans-

portation) delay in time units and is assumed to be an integer valued multiple

of the sampling time interval, i.e. τ = kh for k = 0, 1, 2, · · · . Note, that some ηi

parameters can be set to zero. The model input u(t) is related to intermediate

input via a static (memoryless) nonlinear function v(t) = φ(u(t)) characterised

by pi, i = 1, · · · , r, parameters. It is assumed that the static input nonlinearity

is parameterized by a linear-in-parameters rth order polynomial function, i.e.

v(t) = φ(u(t)) = p1u(t) + p2u
2(t) + · · ·+ pru

r(t) (3.2)

Next, it is assumed that the input-output signals are uniformly sampled (mea-

sured), at sampling time interval h, and the sampled signals are denoted u(tk)

and y(tk), where tk = kh, cf. Remark 2.3 on nomenclature used. Further, it

is assumed that the sampling time interval is sufficiently short to permit CT

model identification from sampled input-output signals. The output observation

(measurement) equation then takes the following form

y(tk) = x(tk) + ξ(tk) (3.3)

where x(tk) is the sampled noise-free output and y(tk) is the measured output cor-

rupted by an additive measurement noise ξ(tk). The additive measurement noise

is modelled as white, normally distributed, zero mean, uncorrelated sequence de-

noted e(tk), i.e. ξ(tk) = e(tk) = N (0, σ2
e), which corresponds to the output error

model structure (Ljung 1999). The selection of the additive measurement noise

being white is not necessarily a valid assumption in practice, however provided

that the identification algorithm is based on an instrumental variables method,

then consistent results are still obtained.

The complete parameter estimation problem then consists of the estimation
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of an unknown parameter vector, comprising a set of stacked vectors, defined as

θ =






θl

θb

θn




 (3.4)

based on N uniformly sampled measurements of input-output signals, i.e. data

set ZN = {u(tk), y(tk)}
N

k=1. The parameter vector θ contains parameters cor-

responding to the linear dynamic part, the bilinear part and the static input

nonlinearity of the HB model, which are defined, respectively, as

θl =
[

α1 · · · αn β0 · · · βm

]T

(3.5a)

θb =
[

η1 · · · ηn

]T

(3.5b)

θn =
[

p1 · · · pr

]T

(3.5c)

The identification problem further consists of model order determination, time

delay estimation and selection of appropriate static input parameterization, which

is assumed to be known a priori. For simplicity, therefore, and without loss of

generality the time delay is set to null, i.e. τ = 0, and is ignored in the following

sections.

3.2 Simplified refined instrumental variable

method

The reviewed iterative SRIVC method is designed for direct parameter esti-

mation of linear time invariant CT models from sampled input-output signals.

The CT linear model can be viewed as a subclass of a wider HB model class by

setting the parameters associated with the bilinear terms to zero, i.e. ηi = 0, for

i = 1, · · · , n, and choosing the static input nonlinearity to be linear with unity

gain, i.e. v(t) = u(t), so that the HB model (3.1) reduces to a linear differential

equation, hence

x(n)(t) + α1x
(n−1)(t) + · · ·+ αnx

(0)(t) = β0u
(m)(t) + · · ·+ βmu

(0)(t) (3.6)

The output observation equation remains the same (3.3); rewriting the expression

(3.6) in a compact transfer function form (assuming zero initial conditions) leads
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to the overall linear CT TF model

x(t) =
B(s)

A(s)
u(t) (3.7a)

y(tk) = x(tk) + e(tk) (3.7b)

The objective, now, is to estimate the parameter vector θl (3.5a), based on the

data set ZN = {u(tk), y(tk)}
N

k=1, despite the unfavourable noise influence.

The first and the most common step towards the estimation of parameter

vector θl is to formulate a scalar cost function, denoted V , reflecting the difference

between the measured and modelled data, and to minimise this cost function with

respect to such an unknown parameter vector, i.e.

θ̂l = argmin
θl

V (θl) (3.8)

The estimate is denoted by a hat and the minimised cost function V (θl) is defined

as

V (θl) =
N∑

k=1

ε2(tk) (3.9)

where N denotes the total number of samples, or observations, and ε(tk) is an

error function at the kth time instant. As pointed out in (Young 1981), it is

the particular choice of the error function which distinguishes one estimation

methodology from an other. In order to estimate the linear transfer function

model (3.7), the straightforward choice of the error function is the difference

between the measured and modelled output

ε(tk) = y(tk)−
B(s)

A(s)
u(tk) (3.10)

used by the output error methods (Young 1981). Alternatively, the equation error

methods are based on the minimisation of the difference between the measured

and one step ahead predicted output, i.e.

ε(tk) = A(s)y(tk)− B(s)u(tk) (3.11)

which facilitates the use of the least squares method. Noting the noise model

formulation (3.7b) the equation error function (3.11) is then coloured by the
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3. Parameter estimation methods in continuous-time domain

A(s) polynomial such that

ε(tk) = A(s)y(tk)− B(s)u(tk) = A(s)e(tk) (3.12)

It is apparent that such a choice for the error function would induce an asymptotic

bias in the parameter estimates, because the equation error function is no longer

white and the least squares algorithm performs unsatisfactorily in statistical terms

in such a situation. Therefore, similarly to the prediction error method (PEM),

the following prefilter is formulated

f(s) =
1

A(s)
(3.13)

so that the error function (3.12) now takes the form

ε(tk) =
1

A(s)
[A(s)y(tk)− B(s)u(tk)] = e(tk) (3.14)

Since, the polynomial operators commute in this linear case it is possible to

prefilter signals y(tk) and u(tk) first, leading to the desired error function

ε(tk) = A(s)yf (tk)−B(s)uf (tk) (3.15)

where the subscript f denotes the filtering operation by filter (3.13), hence

yf (tk) =
1

A(s)
y(tk), uf (tk) =

1
A(s)

u(tk) (3.16)

Comparing, the error functions (3.10) and (3.15), it can be noted that these

are equivalent. Assuming, that the linear prefilter (3.13) is known prior to the

parameter estimation, the use of the error function (3.15) then permits for the

direct estimation of the linear TF models by least squares based methods.

Implementation of prefilters (3.16), which are effectively CT linear differential

equations, requires selection of a numerical integration method (a solver) with

either, fixed, or variable integration step size (discretisation interval). The signal

u(tk) (or y(tk)) is uniformly sampled at sampling time interval h, which is often

more coarse than the integration step size. Therefore, the filtering operation

(3.16) assumes interpolation of the inter-sample behaviour of u(tk) (or y(tk)) in

some manner, in order to allow for numerical integration. In most cases a zero-

order-hold or first-order-hold inter-sample behaviour assumption is sufficient. The

filtering operation (3.16) also inherently provides the filtered time derivatives
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3. Parameter estimation methods in continuous-time domain

as the inputs to the integrators in the prefilter, which is shown in Figure 3.1.

Therefore, the function of the prefilter 1/A(s) is twofold, firstly to filter the noise

on the measured signals and pre-whiten them, secondly, the filter acts as a state

variable filter and reconstructs the filtered time derivatives from the measured

noisy signals.

u(tk) u(t)inter-
polation

−α1

−α2

−αn

1
s

1
s

1
s h

h

h

hu
(n)
f (t)

u
(n−1)
f (t)

u
(n−2)
f (t)

uf (t)

u
(n)
f (tk)

u
(n−1)
f (tk)

u
(n−2)
f (tk)

uf (tk)

Figure 3.1: Diagrammatic representation of filtering operation uf (tk) =
u(tk)/A(s).

In order to obtain the explicit solution for θl the equation error (3.15) is

formulated in the following pseudo-linear regression form

ε(tk) = y
(n)
f (tk)−ϕT

f (tk)θl (3.17)

ε(tk) = y
(n)
f (tk)− ŷ(θl, tk) (3.18)

where ŷ(θl, tk) denotes the one step ahead prediction of y
(n)
f (tk) and ε(tk) is the

residual. The parameter vector θl is defined in (3.5a), and the regression vector

is defined as

ϕT
f (tk) =

[

−y(n−1)
f (tk) · · · −y(0)f (tk) u

(m)
f (tk) · · · u

(0)
f (tk)

]

(3.19)

The IV least squares en bloc solution of the optimisation problem (3.8) is then

(Young 2011), i.e.

θ̂l =

[
N∑

k=1

ϕ̂f (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕ̂T
f (tk)y

(n)
f (tk) (3.20)

where ϕ̂f (tk) is the prefiltered instrumental variable regression vector and in the
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3. Parameter estimation methods in continuous-time domain

context of the SRIVC method is formulated as follows

ϕ̂T
f (tk) =

[

−x̂(n−1)
f (tk) · · · −x̂(0)f (tk) u

(m)
f (tk) · · · u

(0)
f (tk)

]

(3.21)

The instrumental variable vector is a noise free (modelled) version of the regres-

sion vector ϕT
f (tk), where the noise free output is generated from the auxiliary

model

x̂(tk) =
B(s, θ̂l)

A(s, θ̂l)
u(tk) (3.22)

It is noted, that in order to generate (simulate) output x̂(tk), which is sub-

sequently used by the IV parameter estimator (3.20), the estimated parameter

vector θ̂l is required to be known first. Similarly, the regression vectors ϕT
f (tk)

and ϕ̂T
f (tk) consist of filtered time derivatives of the signals u(tk), y(tk) and x̂(tk),

where the optimal prefilter (3.13) is not known a priori in most practical cases.

Therefore, (Young 2011) and references given therein, proposed, the following

SRIVC iterative (relaxation) algorithm to overcome this problem.

Algorithm 3.1 (SRIVC).

Stage 1 Initialisation: Compute an initial parameter vector estimate θ̂
j
l ,

for j = 0, where j denotes the iteration number. The IV regression

vector is initialised by choosing

ϕ̂T
f (tk) = ϕT

f (tk)

In order to generate filtered time derivatives, select the following state

variable filter

f(s) =
1

A(s)
=

1

(s+ λ)n
(3.23)

where λ is a single breakpoint frequency parameter and is selected to

be larger or equal to the bandwidth of the system to be identified. The

implementation of the filter is shown in Figure 3.1.

Stage 2 Iterative IV estimation

for j = 1 : convergence (see (3.25))

(1) Generate the instrumental variable series (modelled output) using

the auxiliary model (3.22) based on the estimated parameter set

50



3. Parameter estimation methods in continuous-time domain

from the previous iteration step θ̂
j−1
l , i.e.

x̂(tk) =
B(s, θ̂j−1

l )

A(s, θ̂j−1
l )

u(tk)

(2) Generate the filtered time derivatives of signals y(tk), u(tk) and

x̂(tk) using the filter f(s, θ̂j−1
l ) defined in (3.13), hence

f(s, θ̂j−1
l ) =

1

A(s, θ̂j−1
l )

where the filter is implemented as indicated in Figure 3.1.

(3) Form the filtered regression vector ϕT
f (tk) and the IV regression

vector ϕ̂T
f (tk) according to (3.19) and (3.21), respectively, and esti-

mate the latest parameter vector using the en bloc IV least squares

θ̂
j
l =

[
N∑

k=1

ϕ̂f (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕ̂T
f (tk)y

(n)
f (tk)

end

Stage 3 Parametric error computation: Compute the estimated para-

metric error covariance matrix, denoted P̂, associated with the final

parameter vector estimate

P̂ = σ̂2
e

[
N∑

k=1

ϕ̂f (tk)ϕ̂
T
f (tk)

]
−1

(3.24)

where σ̂2
e is the estimated noise variance defined in (3.26).

The Stage 1 of the SRIVC algorithm consists of computing an initial estimate

of parameter vector θ̂0
l , which is then subsequently used in Stage 2. The relatively

straightforward state variable filtering technique has been adopted for the purpose

of time derivative generation, where the single breakpoint frequency parameter

has to be selected based on some a priori knowledge. The need for the unknown

instrumental variable series x̂(tk) is avoided by setting ϕ̂T
f (tk) = ϕT

f (tk), which

leads to a standard least squares solution to optimisation problem (3.8). This

particular choice of the state variable filter and IV regression vector may not
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3. Parameter estimation methods in continuous-time domain

provide accurate parameter estimates, however this is not necessarily required at

this initial stage. Another option is to identify the system in the discrete-time

domain first and convert the resulting DT model into the CT domain, however

the advantages of CT parameter estimation are lost; for further discussion see

(Young 2011, p. 250) and references given therein.

The parameter vector is estimated in an iterative manner in Stage 2 until

satisfactory convergence occurs. The convergence criterion is rather user specific

than prescribed. The convergence criterion monitoring the maximum relative

improvement of the parameter estimates used in (Liu et al. 2011) is also adopted

here

max
i

∣
∣
∣
∣
∣

θ̂
j+1
l (i)− θ̂

j
l (i)

θ̂
j+1
l (i)

∣
∣
∣
∣
∣
< ǫ, for i = 1, 2, · · · , p (3.25)

The number of parameter estimates is denoted p and ǫ is a user specific small

number close to zero. Note, that the maximum number of parameter estimates is

n+m+1, but some parameters can be set zero. Other choices of the convergence

criterion are also possible, such as achieved cost or relative improvement of the

difference between the simulated and measured system output.

The final Stage 3 is optional since not in all situations the estimated paramet-

ric errors are required to be known. The estimated parametric error covariance

matrix P̂ is computed as defined in (3.24), where the estimated noise variance is

required. In the case of the output error noise scenario (3.7b) and with reference

to the equation error (3.17) expressed in the pseudo-linear regression form the

noise variance can be estimated as follows

σ̂2
e =

1

N − p

N∑

k=1

[

y
(n)
f (tk)−ϕT

f (tk)θ̂l

]2

(3.26)

where the difference y
(n)
f (tk) − ϕT

f (tk)θ̂l is a least squares residual and the final

parameter vector estimate is used, i.e. θ̂l = θ̂
j
l , j = end. The square root of

the diagonal elements of P̂ are then approximately standard errors, denoted SE,

associated with the individual estimated parameters, i.e.

SEi =

√

P̂i,i, for i = 1, 2, · · · , p (3.27)
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3. Parameter estimation methods in continuous-time domain

3.2.1 SRIVC method configured for bilinear model esti-

mation

The SRIVC algorithm 3.1 is applicable to the parameter estimation problem of

a SISO CT bilinear model, which can be interpreted as a TISO CT linear in

structure model, under the condition stated in Section 2.3, and repeated below

for a white additive noise assumption

y(tk) =
B(s)

A(s)
u1(tk) +

E(s)

A(s)
u2(tk) + e(tk) (3.28)

where the polynomial E(s) is defined as

E(s) = η1s
n−1 + · · ·+ ηn (3.29)

allowing for some η parameters to be zero, so that the order of the polynomial

E(s) is the same as the order of the polynomial B(s). The two input signals are

formed as u1(tk) = u(tk) and u2(tk) = u(tk)y(tk), respectively. This concept is

illustrated in the following example.

Example 3.1 Consider a bilinear model having first order linear dynamics and

one bilinear term, i.e.

(s+ α1) x(t) = β0u(t) + η1u(t)x(t) (3.30a)

y(tk) = x(tk) + e(tk) (3.30b)

The notation of the noise-free (unobserved) output x(t) and the selection of a

white, additive noise model is used in accordance with the problem formulation

in Section 3.1.3. Rearranging (3.30a) in terms of the unobserved output x(t),

substituting the final expression for x(tk) in (3.30b) and assuming that the input

u(tk) is uncorrelated with the noise e(tk), gives

(s+ α1) y(tk) = β0u(tk) + η1u(tk)y(tk) + (s+ α1) e(tk) (3.31)

Defining the new input u2(tk) = u(tk)y(tk) and renaming the input u(tk) as

u1(tk), the original SISO bilinear model (3.31) is interpreted as time-invariant

TISO linear in structure model, i.e.

(s+ α1) y(tk) = β0u1(tk) + η1u2(tk) + (s+ α1) e(tk) (3.32)
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3. Parameter estimation methods in continuous-time domain

which can be further written in a compact transfer function form as follows

y(tk) =
β0

s+ α1

u1(tk) +
η1

s+ α1

u2(tk) + e(tk) (3.33)

It is thus demonstrated, that the first order linear TF model (3.33) resemble the

general, higher order, model (3.28).

It is noted, that the second input u2(tk), consisting of a product between in-

put u(tk) and measured output y(tk), is noise contaminated due to the presence

of measurement noise on the output. This in effect creates an errors-in-variables

identification conceptual scenario, (Larkowski 2009), causing a bias in the pa-

rameter estimates. The use of optimal pre-filters helps to attenuate the influence

of this input noise on the parameter estimates, see (Young 2011), so that the

estimated model may suffice for practical purposes.

In general, it is desirable to avoid such parameter bias induced by measure-

ment noise. In order to do so, the inherent IV feature of the SRIVC method can

be extended for the bilinear case, by choosing the regression vector and the IV

regression vector to be, respectively,

ϕT
f (tk) =

[

−y(n−1)
f (tk) · · · −y(0)f (tk) u

(m)
1,f (tk) · · · u

(0)
1,f (tk)

u
(n−1)
2,f (tk) · · · u

(0)
2,f (tk)

] (3.34a)

ϕ̂T
f (tk) =

[

−x̂(n−1)
f (tk) · · · −x̂(0)f (tk) u

(m)
1,f (tk) · · · u

(0)
1,f (tk)

û
(n−1)
2,f (tk) · · · û

(0)
2,f (tk)

] (3.34b)

where

u
(i)
1,f (tk) = u

(i)
f (tk) for i = 0, · · · ,m

u
(i)
2,f (tk) =

{
uy
}(i)

f
(tk) for i = 0, · · · , n− 1

û
(i)
2,f (tk) =

{
ux̂
}(i)

f
(tk) for i = 0, · · · , n− 1

(3.35)

The curly parentheses indicate that the inputs u2(tk) and û2(tk) are formed first

and then filtered. In the IV regression vector (3.34b) the measured output is

replaced by the simulated output x̂(tk), including the measured output within

the second input. The corresponding estimated parameter set is then defined as

θlb =

[

θl

θb

]

(3.36)
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3. Parameter estimation methods in continuous-time domain

where parameter vector comprises the two sets θl and θb defined in (3.5a) and

(3.5b), respectively, stacked in a partitioned vector.

The SRIVC algorithm configured for bilinear model estimation is then imple-

mented in virtually same manner as the SRIVC algorithm 3.1 for linear model

estimation, with the following main differences:

• The originally estimated parameter set θl is replaced with θlb defined in

(3.36).

• In Stage 2, Step 1, the instrumental variable series is generated according

to

x̂(tk) =
B(s, θ̂j−1

lb )

A(s, θ̂j−1
lb , tk)

u(tk)

where A(s, tk) is defined in (2.62).

• In Stage 2, Step 3, the regression vector ϕT
f (tk) and the IV regression vector

are redefined according to (3.34a) and (3.34b), respectively.

3.3 Bilinear SRIVC (BSRIVC) method

In recognition of the need to estimate higher order bilinear models in the continuous-

time domain the SRIVC method, which has been originally devised for parameter

estimation of linear transfer function models, is extended to the bilinear case. The

CT bilinear model can be viewed as a subclass of the wider HB model class by

choosing the static input nonlinearity to be linear with unity gain, i.e. v(t) = u(t),

so that the HB model (3.1) reduces to a SISO bilinear differential equation

A(s)x(t) = B(s)u(t) + u(t)
n∑

i=1

ηis
n−ix(t) (3.37)

and the output observation equation, defined in (3.3), remains the same, hence

y(tk) = x(tk) + e(tk) (3.38)

The constant coefficient polynomials A(s) and B(s) of orders n and m, respec-

tively, are defined in (2.5). The objective, now, is to estimate the parameter

vector comprising the sets θl (3.5a) and θb (3.5b), based on the measured data

set ZN = {u(tk), y(tk)}
N

k=1.

Motivated by the TISO linear in structure approach in Subsection 3.2.1, and

defining for convenience, and for ease of explanation, u1(t) = u(t) and u1+i(t) =
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3. Parameter estimation methods in continuous-time domain

u(t)sn−ix(t), an equivalent representation of (3.37) becomes

A(s)x(t) = B(s)u1(t) + ηiui+1(t)

x(t) =
B(s)

A(s)
u1(t) +

ηi
A(s)

ui+1(t), for i = 1, · · · , n (3.39)

which may be interpreted as linear in structure MISO representation. (Note,

that this convenient notation, i.e. u1(t) and u1+i(t), will be re-interpreted in

subsequent sections.) Based on the experience gained in developing the some-

what restricted TISO approach the aim here is to extend the methodology to

develop/configure a SRIVC for the more general (i.e. unrestricted) bilinear case.

However, the problem with such an approach is that the higher order time deriva-

tives of the output signal, i.e. sn−ix(t), required to form the inputs ui+1(t), are

unknown. It is not possible to generate such output derivatives using the linear

prefilter f(s) introduced in (3.13), since the signal x(t) (or its measured counter-

part y(t)) is an output of nonlinear model, hence the use of linear prefilter would

be inadequate.

The proposal developed have to overcome this problem, namely that of obtain-

ing the time derivatives of the nonlinear (bilinear) function, the bilinear model is

represented in an alternative SISO time-step quasi-linear transfer function form,

see (2.63), hence

x(t) =
B(s)

A(s, t)
u(t) (3.40)

with the input dependent polynomial A(s, t) defined as

A(s, t) = A(s)− u(t)
n∑

i=1

ηis
n−i

A(s, t) = sn + (α1 − η1u(t)) s
n−1 + · · ·+ (αn − ηnu(t))

A(s, t) = sn + α1(t)s
n−1 + · · ·+ αn(t) (3.41)

where αi(t) = αi − ηiu(t), for i = 1, · · · , n. Following the derivation of the

SRIVC algorithm in the preceding Section 3.2 the nonlinear adaptive prefilter is

then defined as

f(s, t) =
1

A(s, t)
(3.42)

Note, that the prefilter f(s, t) is no longer linear and its special formulation

allows the time derivatives of the input-output signals of the bilinear model to be

obtained.
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Substituting the bilinear model represented in the time-step quasi-linear trans-

fer function form (3.40) into the output observation equation (3.38) and invoking

the Remark 2.5 on filtering order, leads to

y(tk) = B(s)

(
1

A(s, tk)
u(tk)

)

+ e(tk) (3.43)

where the parenthesis indicate the filtering order. Noting the selection of the

error function ε(tk) in (3.14) to be, in fact, the white noise sequence e(tk), the

error function for the bilinear model estimation is derived as follows

y(tk) = B(s)

(
1

A(s, tk)
u(tk)

)

+ e(tk)

e(tk) = y(tk)−B(s)

(
1

A(s, tk)
u(tk)

)

ε(tk) = y(tk)−B(s)

(
1

A(s, tk)
u(tk)

)

(3.44)

In order to obtain the closed form least squares solution to the given parame-

ter estimation problem, re-express the error function ε(tk) from its output error

formulation into an equation error form, i.e. multiplying both sides of (3.44) by

filter f(s, tk) gives

1

A(s, tk)
ε(tk) =

1

A(s, tk)

[

y(tk)−B(s)

(
1

A(s, tk)
u(tk)

)]

1

A(s, tk)
ε(tk) =

1

A(s, tk)
y(tk)−

1

A(s, tk)
B(s)

(
1

A(s, tk)
u(tk)

)

(3.45)

and multiplying both sides of (3.45) by A(s, tk) leads to the final expression for

the error function

A(s, tk)
1

A(s, tk)
ε(tk) = A(s, tk)

1

A(s, tk)
y(tk)− A(s, tk)

1

A(s, tk)
B(s)

(
1

A(s, tk)
u(tk)

)

ε(tk) = A(s, tk)
1

A(s, tk)
y(tk)−B(s)

(
1

A(s, tk)
u(tk)

)

ε(tk) = A(s, tk)yf (tk)−B(s)uf (tk) (3.46)

where the subscript f denotes the filtering operation by the nonlinear adaptive

filter (3.42), hence

yf (tk) =
1

A(s,tk)
y(tk), uf (tk) =

1
A(s,tk)

u(tk) (3.47)
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cf. (3.16). For brevity, the subscript f denoting the filtering operation is used

whether the filter is linear, i.e. f(s), or nonlinear, i.e. f(s, tk). From this point

onward, when the subscript f is used the nonlinear filtering operation is applied

unless stated otherwise. Note, that the linear filter is a special case of the non-

linear filter when the parameters associated with the bilinear terms are set to

null. The nonlinear filtering operation (3.47) is implemented as shown in Figure

3.2. Finally, it is also noted that although 1/A(s, tk) does not commute with the

polynomial B(s) in this nonlinear case, cf. Remark 2.5, it has been possible to

apply the nonlinear filtering operation (3.47) and express the error function in an

equation error form.

y(tk) y(t)

u(tk)u(t) inter-

inter-

polation

polation

−α1(t)

−α2(t)

−αn(t)

1
s

1
s

1
s h

h

h

hy
(n)
f (t)

y
(n−1)
f (t)

y
(n−2)
f (t)

yf (t)

y
(n)
f (tk)

y
(n−1)
f (tk)

y
(n−2)
f (tk)

yf (tk)

Figure 3.2: Diagrammatic representation of filtering operation yf (tk) =
y(tk)/A(s, tk). The input dependent parameters of polynomial
A(s, tk) are scheduled according to αi(tk) = αi − ηiu(tk), for
i = 1, · · · , n.

The next step is to express the error function (3.46) in a pseudo-linear regres-

sion form so that an IV least squares solution can be obtained, hence equation

(3.46) becomes

y
(n)
f (tk) = −

n∑

i=1

αi(tk)y
(n−i)
f (tk) +

m∑

i=0

βiu
(m−i)
f (tk) + ε(tk) (3.48)

and expanding the input dependent parameters αi(tk), defined in (3.41) as αi(tk) =
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αi − ηiu
(0)(tk), leads to

y
(n)
f (tk) =−

n∑

i=1

αiy
(n−i)
f (tk) +

m∑

i=0

βiu
(m−i)
f (tk)

+ u(0)(tk)
n∑

i=i

ηiy
(n−i)
f (tk) + ε(tk)

(3.49)

The above expansion of the αi(tk) parameters is a necessary (important) step

taken in order to allow for estimation of the ηi parameters, which would otherwise

have been ‘hidden’ in the nonlinear prefilter. Note, that the input u(0)(tk) in the

third (bilinear) term is not filtered. Equation (3.49) can be expressed in a more

compact vector form by utilising the parameter vector θlb, defined in (3.36), and

regression vector ϕT
f (tk), i.e.

ε(tk) = y
(n)
f (tk)−ϕT

f (tk)θlb (3.50)

where the regression vector is defined as

ϕT
f (tk) =

[

−y(n−1)
f (tk) · · · −y(0)f (tk) u

(m)
f (tk) · · · u

(0)
f (tk)

u(0)(tk)y
(n−1)
f (tk) · · · u(0)(tk)y

(0)
f (tk)

] (3.51)

and re-introducing the earlier notation, see (3.39), define the inputs u1(tk) = u(tk)

and u1+i(tk) = u(0)(tk)y
(n−i)
f (tk), for i = 1, · · · , n. The regression vector (3.51)

can be further expressed in its final form, which resembles the desired MISO

linear in structure model interpretation (3.39), i.e.

ϕT
f (tk) =

[

−y(n−1)
f (tk) · · · −y(0)f (tk) u

(m)
1,f (tk) · · · u

(0)
1,f (tk)

u2(tk) · · · u1+n(tk)
] (3.52)

Recall that the parameter vector θlb (3.36) consisting of vectors θl (3.5a) and θb

(3.5b) is given by

θlb =

[

θl

θb

]

(3.53)

The IV least squares solution is then similar to (3.20), that is

θ̂lb =

[
N∑

k=1

ϕ̂f (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕ̂T
f (tk)y

(n)
f (tk) (3.54)
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3. Parameter estimation methods in continuous-time domain

where ϕ̂f (tk) is the IV regression vector and in the context of the proposed

BSRIVC method is formulated as follows

ϕ̂T
f (tk) =

[

−x̂(n−1)
f (tk) · · · −x̂(0)f (tk) u

(m)
1,f (tk) · · · u

(0)
1,f (tk)

û2(tk) · · · û1+n(tk)
] (3.55)

where û1+i(tk) = u(0)(tk)x̂
(n−i)
f (tk), for i = 1, · · · , n. The IV regression vector is

a noise free (modelled) version of the regression vector ϕT
f (tk), where the noise

free output is generated from the following auxiliary bilinear model

x̂(tk) =
B(s, θ̂lb)

A(s, θ̂lb, tk)
u(tk) (3.56)

Similarly, as in the case of SRIVC algorithm 3.1, it is noted that in order to

generate the instrumental variable series x̂(tk) and apply the optimal adaptive

prefilter (3.42) on signals u(tk), y(tk) and x̂(tk), the estimated parameter vector

θ̂lb is required to be known first. Following the basic SRIVC procedure, it is pro-

posed, therefore, to use the following three stage BSRIVC iterative (relaxation)

algorithm to overcome this initialisation problem.

Algorithm 3.2 (BSRIVC).

Stage 1 Initialisation: Compute an initial parameter vector estimate θ̂
j
lb,

for j = 0, where j denotes the iteration number. The IV regression

vector is initialised by choosing

ϕ̂T
f (tk) = ϕT

f (tk)

In order to generate filtered time derivatives, select the following (linear)

state variable filter

f(s, tk) =
1

A(s, tk)
=

1

(s+ λ)n

where λ is a single breakpoint frequency parameter and is selected to

be larger or equal to the bandwidth of the system to be identified. The

implementation of the filter is shown in Figure 3.2.

Stage 2 Iterative IV estimation

for j = 1 : convergence (see (3.25) and replace θ̂l with θ̂lb)

60



3. Parameter estimation methods in continuous-time domain

(1) Generate the instrumental variable series (modelled output) using

the auxiliary model (3.56) based on the estimated parameter vector

from the previous iteration step θ̂
j−1
lb , i.e.

x̂(tk) =
B(s, θ̂j−1

lb )

A(s, θ̂j−1
lb , tk)

u(tk)

(2) Generate the filtered time derivatives of signals y(tk), u(tk) and

x̂(tk) using the filter f(s, θ̂j−1
lb , tk) defined in (3.42), hence

f(s, θ̂j−1
lb , tk) =

1

A(s, θ̂j−1
lb , tk)

where the filter is implemented as indicated in Figure 3.2.

(3) Form the filtered regression vector ϕT
f (tk) and the IV regression

vector ϕ̂T
f (tk) according to (3.52) and (3.55), respectively, and com-

pute the latest parameter vector estimate using the en bloc IV least

squares

θ̂
j
lb =

[
N∑

k=1

ϕ̂f (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕ̂T
f (tk)y

(n)
f (tk)

end

Stage 3 Parametric error computation: Compute the estimated para-

metric error covariance matrix, denoted P̂, associated with the final

parameter vector estimate

P̂ = σ̂2
e

[
N∑

k=1

ϕ̂f (tk)ϕ̂
T
f (tk)

]
−1

where σ̂2
e is the estimated noise variance defined in (3.26) with θ̂l = θ̂lb

and p = 2n+m+ 1.

3.3.1 Comments

In Stage 1 the initial estimate of the parameter vector θ̂0
lb is computed and subse-

quently used in Stage 2. In order to generate the signal time derivatives the rela-
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3. Parameter estimation methods in continuous-time domain

tively straightforward (linear) state variable filtering technique has been adopted

similarly to the SRIVC algorithm 3.1. Therefore, it is assumed that the choice

of the pre-filter f(s, tk) = 1/A(s, tk) = 1/A(s), i.e. the ηi parameters are initially

null, is appropriate despite the fact that the estimated model is bilinear and not

linear. In other words, the identified system is assumed to be linear to start with.

Such an initial choice of the prefilter may, however, cause convergence problems

in Stage 2. While the convergence properties of the SRIVC algorithm are proven

in (Liu et al. 2011), the same cannot be stated about the proposed BSRIVC

algorithm despite the obvious similarities. The overall estimation problem is in-

deed nonlinear due to the presence of the input dependent prefilter f(s, tk) and

as in any nonlinear optimisation problem the ‘appropriate’ choice of the initial

conditions is important in achieving desired (global) solution.

If the initialisation described in previous paragraph does not yield conver-

gence, it is proposed to estimate a reduced order, auxiliary, bilinear model first,

having only a single bilinear term ηnu(tk)y(tk). The remaining unmodelled bilin-

ear terms are then treated as part of the noise model. To estimate this auxiliary

model the SRIVC algorithm 3.1 configured for bilinear model estimation, i.e. the

TISO approach, is applied. The application and initialisation of the SRIVC algo-

rithm is more straightforward since the overall estimation problem is linear and

less sensitive to the initial choice of the A(s) polynomial used in the prefilter f(s),

see (Liu et al. 2011). Subsequently, this model is used to initialise the BSRIVC

algorithm.

3.4 Hammerstein-bilinear model estimation

In this section the HBSRIVC and HSRIVC algorithms for parameter estimation

of CT HB models are proposed. It is postulated that the static input nonlin-

earity can be approximated by a linear-in-parameters polynomial of finite order

r. The identification algorithm exploits this property by separately solving two

interconnected least squares problems in an iterative (backfitting) manner. For

convenience, the equations governing the general CT HB model introduced in
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3. Parameter estimation methods in continuous-time domain

(3.2), (3.1) and (3.3) are repeated below

v(t) = φ(u(t)) =
r∑

i=1

piu
i(t) (3.57a)

A(s)x(t) = B(s)v(t) + v(t)
n∑

i=1

ηis
n−ix(t) (3.57b)

y(tk) = x(tk) + e(tk) (3.57c)

The model parameters to be determined are contained in the vector θ defined as

θ =






θl

θb

θn




 =

[

θlb

θn

]

(3.58)

with θlb =
[
θT
l
θT
b

]T
and the individual parameter vectors are defined in (3.5).

Note, that θ is divided into two sub-vectors θlb and θn, respectively, with param-

eters corresponding to the two component submodels. The overall identification

task can be expressed as follows

θ̂ = argmin
θ

V (θ) (3.59)

The estimate is denoted by a hat and the minimised cost function V (θ) is defined

as

V (θ) =
N∑

k=1

ε(tk)
2 =

N∑

k=1

[y(tk)− ŷ(θ, tk)]
2 (3.60)

where N denotes the total number of samples and ŷ(θ, tk) is the predicted output.

The bilinear parameterization method solves (3.59)-(3.60) in two steps by

estimating a minimal number of parameters that defines the HB model. In Step 1,

it is postulated that the estimate of the parameters describing the static nonlinear

block, θn, is available. Thus, by knowing the static nonlinear block parameters

it is then possible to compute the intermediate input v(t) and then an estimate

of the parameters corresponding to bilinear submodel, θlb, is sought. This is

obtained by solving the following optimisation problem, i.e.

Step 1:

θ̂
j
lb = argmin

θlb

V1(θlb,θ
j−1
n ) (3.61)
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3. Parameter estimation methods in continuous-time domain

where

V1(θlb,θ
j−1
n ) =

N∑

k=1

[
y(tk)− ŷ(θlb,θ

j−1
n , tk)

]2
(3.62)

and j denotes the iteration index. Subsequently, in Step 2 the estimate of θlb is

set to the value calculated in Step 1 and the estimate of θn is determined from

Step 2:

θ̂j
n = argmin

θn

V2(θ
j
lb,θn) (3.63)

where

V2(θ
j
lb,θn) =

N∑

k=1

[
y(tk)− ŷ(θj

lb,θn, tk)
]2

(3.64)

Next, the iteration index increases, i.e. j = j + 1, and the entire scheme is

re-iterated until convergence.

Because the optimisation problems in Steps 1 and 2 are both linear with

respect to the optimised parameters the corresponding solutions can be obtained

in a closed analytical form via a least squares based technique. To solve for the

unknown parameter vector θlb in Step 1 the BSRIVC algorithm 3.2 is applied.

Alternatively, if the SISO bilinear submodel can be formulated as a linear TISO

model, under the condition stated in Section 2.3, the SRIVC algorithm can be

used instead, as described in Subsection 3.2.1. The actual implementation of the

overall estimation scheme differs depending on whether the BSRIVC algorithm

or SRIVC algorithm has been used in Step 1, resulting in two distinct, proposed,

HBSRIVC and HSRIVC algorithms, respectively.

3.4.1 Hammerstein-bilinear SRIVC (HBSRIVC) method

Considering Step 2, to obtain the estimate of the parameter vector θn the model

output must be expressed in a pseudo-linear regression form. Therefore, to start

with, use is made of the time varying interpretation of the HB structure, cf.

(3.43), i.e.

y(n)(tk) = −
n∑

i=1

αi(tk)y
(n−i)(tk) +

m∑

i=0

βiv
(m−i)(tk) + e(k) (3.65)
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3. Parameter estimation methods in continuous-time domain

where αi(tk) = αi − ηiv
(0)(tk), for i = 1, · · · , n. Because the input-output time

derivatives are unknown in (3.65) the filtering operation is applied, cf. (3.48),

leading to

y
(n)
f (tk) = −

n∑

i=1

αi(tk)y
(n−i)
f (tk) +

m∑

i=0

βiv
(m−i)
f (tk) + ε(tk) (3.66)

Since the input to the bilinear submodel of the overall HB model is v(tk) the

nonlinear prefilter is defined as

f(s, t) =
1

A(s, t)
(3.67)

with the adaptive, intermediate input dependent, polynomial A(s, t) given by

A(s, t) = sn + (α1 − η1v(t)) s
n−1 + · · ·+ (αn − ηnv(t))

A(s, t) = sn + α1(t)s
n−1 + · · ·+ αn(t)

Comparing the above defined prefilter (3.67) with the prefilter used for the pa-

rameter estimation of bilinear models (3.42) the difference is that the input to

the bilinear submodel is v(tk) and not u(tk), otherwise the functionality of the

prefilter remains unchanged. Furthermore, since the prefilter is scheduled by the

intermediate input v(tk), which in turn depends on the shape of the static input

nonlinearity, the prefilter performance thus depend not only on the estimate of αi

and ηi, for i = 1, · · · , n, but also on the estimate of pi, for i = 1, · · · , r. The pre-

filter used for the parameter estimation of bilinear models (3.42) can be viewed as

a special case of the prefilter (3.67) for v(tk) = u(tk), therefore the same notation

is adopted for both prefilters.

The following remark clarifies the filtering operation of the intermediate input

signal v(tk) in (3.66).

Remark 3.1 Recalling the definition of the filter f(s, t) in (3.67) and the defi-

nition of the static input nonlinearity (3.57a), the following holds

vf (t) =
1

A(s, t)
v(t) =

1

A(s, t)

r∑

l=1

plu
l(t) (3.68)

and it is postulated in Remark 2.5 that the following is true

1

A(s, t)

r∑

l=1

plu
l(t) =

r∑

l=1

pl

{
1

A(s, t)
ul(t)

}

(3.69)
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3. Parameter estimation methods in continuous-time domain

In other words, it is possible to filter the individual components of v(t), i.e. powers

of input signal u(t), separately as a MISO system, and the weighted sum of these

filtered signals is equal to vf (t). Note, that for clarity in (3.70) the subscript

l is used in (3.68) instead of subscript i as originally defined in (3.57a). The

individual filtered time derivatives of the intermediate input signal in (3.66) are

then obtained from

v
(m−i)
f (t) =

r∑

l=1

pl
{
ul
}(m−i)

f
(t), for i = 1, · · · ,m (3.70)

where the curly parenthesis indicate that the filtering operation is performed on

the signals ul(t), for l = 1, · · · , r, i.e. the powers of signal u(t).

Considering the above Remark 3.1 and substituting the polynomial expression

(3.70) for vf (tk) in (3.66) gives

y
(n)
f (tk) = −

n∑

i=1

αi(tk)y
(n−i)
f (tk) +

m∑

i=0

βi

r∑

l=1

pl
{
ul
}(m−i)

f
(tk) + ε(tk) (3.71)

which, due to the separability of the MISO structure, can be also expressed as

y
(n)
f (tk) = −

n∑

i=1

αi(tk)y
(n−i)
f (tk) +

r∑

i=1

pi

m∑

l=0

βl{u
i}(m−l)

f (tk) + ε(tk) (3.72)

Rearranging the above expression (3.72) into pseudo-linear regression form leads

to

ε(tk) = y
(n)
f (tk) +

n∑

i=1

αi(tk)y
(n−i)
f (tk)−ϕT

f (tk)θn

ε(tk) = yf (tk)−ϕT
f (tk)θn (3.73)

where

yf (tk) = y
(n)
f (tk) +

n∑

i=1

αi(tk)y
(n−i)
f (tk) (3.74)

ϕT
f (tk) =

[

w1(tk) · · · wr(tk)
]

(3.75)

wi(tk) =
m∑

l=0

βl{u
i}(m−l)

f (tk), for i = 1, · · · , r (3.76)

Subsequently, the least squares en bloc solution to the optimisation problem (3.63)
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is

θ̂n =

[
N∑

k=1

ϕf (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕT
f (tk)yf (tk) (3.77)

The newly formulated signals wi(tk), i = 1, · · · , r, within the regression vec-

tor (3.75), are not affected by measurement noise. Therefore, there is no need

for use of the instrumental variable method, which leads to the standard least

squares solution (3.77) of the optimisation problem (3.63). Note, the presence of

intermediate input dependent parameters αi(tk) in (3.74), which are given by

αi(tk) = αi − ηiv
(0)(tk) = αi − ηi

r∑

l=1

pl
{
ul
}(0)

(tk), for i = 1, · · · , n (3.78)

where the dependence of parameters αi(tk) on currently estimated parameter set

θ̂n is clearly evident. In the context of the HBSRIVC algorithm this dependency

does not impose any problems since the parameter set θ̂n is estimated in an itera-

tive manner so that the most recent estimate is always used, i.e. αi(θ̂
j
lb, θ̂

j−1
n , tk).

Having established the core content of the bilinear parameterization method

comprising of Steps 1 and 2 the full HBSRIVC iterative algorithm takes the

following form:

Algorithm 3.3 (HBSRIVC).

Stage 1 Initialisation: Compute an initial parameter vector estimate θ̂
j
lb,

for j = 0, where j denotes the iteration index. Choose the static input

nonlinearity to be linear with unity gain v(t) = u(t), hence setting

θ̂0
n = [1 0 · · · 0]T . The IV regression vector (3.55) is initialised by

choosing

ϕ̂T
f (tk) = ϕT

f (tk)

In order to generate filtered time derivatives, select the following (linear)

state variable filter

f(s, tk) =
1

A(s, tk)
=

1

(s+ λ)n

where λ is a single breakpoint frequency parameter and is selected to

be larger or equal to the bandwidth of the system to be identified. The

implementation of the filter is shown in Figure 3.2.

Stage 2 Iterative estimation
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for j = 1 : convergence (see (3.80))

(Step 1.a) Knowing the latest estimate of the static input nonlinearity

compute the intermediate input to the dynamic submodel

v(tk) = φ(θ̂j−1
n , u(tk)) =

r∑

i=1

θ̂j−1
n (i)ui(tk)

(Step 1.b) Generate the instrumental variable series using the esti-

mated parameter set from the previous iteration step

x̂(tk) =
B(s, θ̂j−1

lb )

A(s, θ̂j−1
lb , θ̂j−1

n , tk)
v(tk)

(Step 1.c) Generate the filtered time derivatives of signals y(tk), v(tk)

and x̂(tk) using the filter f(s, tk) defined in (3.67), i.e.

f(s, θ̂j−1
lb , θ̂j−1

n , tk) =
1

A(s, θ̂j−1
lb , θ̂j−1

n , tk)

where the filter is implemented as indicated in Figure 3.2 with the

scheduling signal being the intermediate input v(tk) and not u(tk).

(Step 1.d) Form the filtered regression vector ϕT
f (tk) and the IV re-

gression vector ϕ̂T
f (tk) according to (3.52) and (3.55), respectively,

in which the input u(tk) is replaced with the input v(tk). Compute

the latest parameter vector estimate using the en bloc IV least

squares

θ̂
j
lb =

[
N∑

k=1

ϕ̂f (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕ̂T
f (tk)y

(n)
f (tk)

(Step 2.a) Generate the filtered time derivatives of signals y(tk) and

ui(tk), for i = 1, · · · , r, using the filter f(s, tk) defined in (3.67),

i.e.

f(s, θ̂j
lb, θ̂

j−1
n , tk) =

1

A(s, θ̂j
lb, θ̂

j−1
n , tk)

(Step 2.b) Form the filtered regression vector ϕT
f (tk) according to

(3.75) and form the output yf (tk) defined in (3.74). Obtain the
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latest least squares estimate of the parameter vector θ̂n

θ̂j
n =

[
N∑

k=1

ϕf (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕT
f (tk)yf (tk)

end

Stage 3 Parametric error computation: Compute the estimated para-

metric error covariance matrices denoted P̂lb and P̂n associated with

the final parameter vector estimates θ̂lb and θ̂n, respectively, hence

P̂lb = σ̂2
e

[
N∑

k=1

ϕ̂f (tk)ϕ̂
T
f (tk)

]
−1

(3.79a)

P̂n = σ̂2
ē

[
N∑

k=1

ϕf (tk)ϕ
T
f (tk)

]
−1

(3.79b)

where the appropriate regression vectors ϕ̂f (tk) and ϕf (tk) are used as

defined in Steps 1 and 2. The estimated noise variances σ̂2
e and σ̂2

ē are

defined in (3.82a) and (3.82b), respectively.

In Stage 1 the initial estimate of the parameter vector θ̂0
lb is computed and

subsequently used in Stage 2. The parameter set defining the static input non-

linearity is initialised with θ̂0
n = [1 0 · · · 0]T , hence assuming the static input

nonlinearity to be linear with unity gain, i.e. v(t) = u(t). In other words, the

estimated model is assumed to be purely bilinear to start with. If a more detailed

a priori knowledge is available this can be used to further refine the initial ‘guess’

of the static input nonlinear function. Note, that the technical documentation

of the modelled HVAC system components commonly contains expected static

characteristics, hence these can be used in Stage 1.

Similar to the SRIVC and BSRIVC methods the selected convergence criterion

adopted is to monitor the maximum relative change of the parameter estimates

max
i

∣
∣
∣
∣
∣

θ̂j+1(i)− θ̂j(i)

θ̂j+1(i)

∣
∣
∣
∣
∣
< ǫ, for i = 1, 2, · · · , p (3.80)

where the parameter vector θ̂ =
[

θ̂T
lb
θ̂T
n

]T

is defined in (3.58) and the number of
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estimated parameters is p = 2n+m+r+1. Other convergence criterion, which has

been found useful in practice, is to monitor the value of the integral of absolute

error (or its relative change) between measured and modelled (simulated) system

output defined as

IAEj =
1

N

N∑

k=1

|y(tk)− x̂(θ̂j , tk)| (3.81)

and to choose the estimated parameter vector θ̂j corresponding to the minimal

value of the computed IAEj, for j = 1, · · · , end. In the case where the model is

intended for simulation purposes the IAE convergence criterion is an appropriate

choice, since it reflects ability of the model to simulate measured system output.

Considering the selection of the cost function (3.60), it can be seen that the

IAE criterion is not explicitly minimised, when estimating parameter vector θ̂.

Based on the experience of the author, it has been noticed, that in some cases

the minimal value of IAE criterion can be reached before the maximum relative

change of parameter estimates reaches predefined threshold value ǫ. Addition-

ally, when conducting data acquisition experiments on an actual HVAC system,

in some instances, the negative effect of slowly acting load disturbances is un-

avoidable, causing trends in measured data, e.g. due to changes in outdoor air

temperature which may cause such trends. It is not necessarily feasible to re-

move such slow trends from the measured data prior to the parameter estimation

exercise, especially in the case of the estimated model being nonlinear. The

HBSRIVC algorithm then tends to explain such slow trends by overfitting the

estimated static input nonlinearity to the measured data. The IAE convergence

criterion has been found to be useful, and perhaps more appropriate, in these

instances and returns more realistic static input nonlinearity estimates.

One of the advantages of the developed iterative backfitting HBSRIVCmethod

is the separate estimation of parameter sets θ̂lb and θ̂n, this allows for subsequent

computation of the standard errors associated with the individual estimated pa-

rameter sets. In the case of noniterative over-parameterization methods it is not

possible to compute standard errors associated with the θ̂n parameter vector and

other tools, such as Monte Carlo simulation studies, must be used to recover such

standard error estimates, see (Young 2011).

In the final, optional, Stage 3 of the HBSRIVC algorithm the parametric error

covariance matrices P̂lb and P̂n are estimated, which can be subsequently used to

compute the standard errors associated with the individual estimated parameter

sets θ̂lb and θ̂n. To compute the covariance matrices P̂lb and P̂n, defined in

(3.79a) and (3.79b), respectively, the corresponding noise variance estimates must
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be computed first, i.e.

σ̂2
e =

1

N − p1

N∑

k=1

[

y
(n)
f (tk)−ϕT

f (tk)θ̂lb

]2

(3.82a)

σ̂2
ē =

1

N − p2

N∑

k=1

[

yf (tk)−ϕT
f (tk)θ̂n

]2

(3.82b)

where the appropriate regression vectors ϕf (tk) are used as defined in Steps 1

and 2 when computing noise variances σ̂2
e and σ̂2

ē , respectively. The variable

p1 = 2n + m + 1 denotes the number of parameters associated with vector θ̂lb,

and p2 = r is the number of parameters associated with vector θ̂n. The square

roots of the diagonal elements of P̂lb and P̂n are then approximately standard

errors associated with the individual estimated parameters, hence

SElb
i =

√

P̂
lb

i,i, for i = 1, 2, · · · , p1 (3.83a)

SEn
i =

√

P̂
n

i,i, for i = 1, 2, · · · , p2 (3.83b)

3.4.2 Constrained HBSRIVC method

The overall steady-state characteristic of the HB model is determined by its

constituent submodels, i.e. the static nonlinearity scaling the input signal and

the bilinear dynamic submodel. Having the measured input-output data, it is

not possible to uniquely distinguish between the contributions of the individual

submodels to the overall steady-state characteristic due to the redundancy in the

parameters of the static input function. This is shown in the following example.

Example 3.2 Two distinct HB models are considered, which have the same

overall steady-state characteristic. The first HB model has first order linear dy-

namics, a single bilinear term and the static input nonlinearity is parameterized

by a linear-in-parameters rth order polynomial function

v(t) = p̃1u(t) + p̃2u
2(t) + · · ·+ p̃ru

r(t) (3.84a)

x(1)(t) = −α1x(t) + β0v(t) + η1v(t)x
(1)(t) (3.84b)

where p̃i = p0pi, for i = 1, · · · , r, are polynomial function parameters and p0 acts
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3. Parameter estimation methods in continuous-time domain

as a scaling gain. The second HB model is defined as

v(t) = p1u(t) + p2u
2(t) + · · ·+ pru

r(t) (3.85a)

x(1)(t) = −α1x(t) + β̃0v(t) + η̃1v(t)x
(1)(t) (3.85b)

where β̃0 = β0b0 and η̃1 = η1b0. Comparing models (3.84) and (3.85) it is clearly

evident that the two models perform the same, however the constituent submodel

parameters differ.

In order to overcome the redundancy in the parameters of the static input

function a constrained solution must be sought. A widely adopted approach

is to normalise the leading coefficient p1 in (3.57a) to unity, see e.g. (Eskinat

et al. 1991, Laurian et al. 2008). Alternatively, the static input function can be

constrained such that v(t) = u(t) for u(t) = 1. The static input function, defined

in (3.57a), is repeated below for convenience

v(t) = p1u(t) + p2u
2(t) + · · ·+ pru

r(t) (3.86)

To satisfy the constraint v(t) = u(t) = 1, i.e. substituting number one for v(t)

and u(t) in (3.86), leads to

1 = p1 + p2 + · · ·+ pr (3.87)

subsequently a decision to constrain parameter p1, such that

p1 = 1−
r∑

i=2

pi (3.88)

implies that only parameters pi, for i = 2, · · · , r, need to be estimated. The

constrained parameter p1 is then computed according to (3.88). Substituting

(3.88) in the original polynomial function (3.86) gives the final expression for the

constrained static nonlinear function

v(t) = u(t) +
r∑

i=2

pi
[
−u(t) + ui(t)

]
(3.89)

It is convenient to normalise the input signal in the range 〈0, 1〉, where 1 corre-

sponds to a maximal value of input signal u(t). Such normalisation is a common

practice in HVAC systems literature, (Underwood 1999), and is also adopted

here. In fact it was this normalisation which prompted the idea to constrain the
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3. Parameter estimation methods in continuous-time domain

coefficients as in (3.87), hence u(t) ∈ 〈0, 1〉. Note, that there is a redundancy in

what parameters can be selected and constrained. For example, the parameter p2

could be chosen instead of parameter p1. This leads to different solutions of the

constrained estimation problem, and, in practice, to different parameter vector

estimates.

Considering Step 2 of the bilinear parameterization method (3.63), in order to

obtain the constrained estimate of parameter vector θn the polynomial expression

(3.89) is substituted for vf (tk) in (3.66)

y
(n)
f (tk) =−

n∑

i=1

αi(tk)y
(n−i)
f (tk) +

m∑

i=0

βiu
(m−i)
f (tk)

+
m∑

i=0

βi

r∑

l=2

pl
{
− u+ ul

}(m−i)

f
(tk) + ε(tk)

(3.90)

and rearranging with respect to the pl parameters gives

y
(n)
f (tk) =−

n∑

i=1

αi(tk)y
(n−i)
f (tk) +

m∑

i=0

βiu
(m−i)
f (tk)

+
r∑

i=2

pi

[

−
m∑

l=0

βlu
(m−l)
f (tk) +

m∑

l=0

βl
{
ui
}(m−l)

f
(tk)

]

+ ε(tk)

(3.91)

In order to obtain the least squares solution provided in (3.77) the above expres-

sion (3.91) is formulated in pseudo-linear regression form

ε(tk) = y
(n)
f (tk) +

n∑

i=1

αi(tk)y
(n−i)
f (tk)−

m∑

i=0

βiu
(m−i)
f (tk)−ϕT

f (tk)θn

ε(tk) = yf (tk)−ϕT
f (tk)θn (3.92)

where

θn =
[

p2 · · · pr

]T

(3.93)

yf (tk) = y
(n)
f (tk) +

n∑

i=1

αi(tk)y
(n−i)
f (tk)−

m∑

i=0

βiu
(m−i)
f (tk) (3.94)

ϕT
f (tk) =

[

w2(tk) · · · wr(tk)
]

(3.95)

wi(tk) = −
m∑

l=0

βlu
(m−l)
f (tk) +

m∑

l=0

βl
{
ui
}(m−l)

f
(tk), for i = 2, · · · , r

Note, that only r− 1 polynomial function parameters need to be estimated now.
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3. Parameter estimation methods in continuous-time domain

The HBSRIVC algorithm in its constrained form is then implemented in vir-

tually the same manner as the unconstrained HBSRIVC algorithm 3.3 with the

following differences:

• In Stage 1 the static input nonlinear function is defined in (3.89) and ini-

tialised with θ̂0
n = [0 0 · · · 0]T .

• Stage 2 in Step (1.a) the intermediate input to the dynamic submodel is

computed according to

v(tk) = φ(θ̂j−1
n , u(tk)) = u(tk) +

r∑

i=2

θ̂j−1
n (i)

[
−u(tk) + ui(tk)

]

• Stage 2 in Step (2.b) the filtered regression vector ϕT
f (tk) is defined in

(3.95), the output yf (tk) is defined in (3.94), and the parameter vector θn

is redefined according to (3.93).

3.4.3 Hammerstein SRIVC (HSRIVC) method

In the SISO bilinear dynamic model, provided in (3.57b) and repeated below, i.e.

A(s)x(t) = B(s)v(t) + v(t)
n∑

i=1

ηis
n−ix(t) (3.96)

the output signal x(t) is unknown and needs to be measured, hence substituting

(3.96) for x(tk) in the output measurement equation (3.57c), and assuming that

the noise is uncorrelated with the intermediate input v(tk), yields

A(s)y(tk) = B(s)v(tk) + v(tk)
n∑

i=1

ηis
n−iy(tk) + A(s)e(tk) (3.97)

Interpreting the bilinear model (3.97) as a TISO linear dynamic model gives

A(s)y(tk) = B(s)v(tk) +
n∑

i=1

ηi
{
vy
}(n−i)

(tk) + A(s)e(tk) (3.98)

where the differential operator s is replaced by rounded parenthesis, i.e. x(p)(t)

denotes the pth time-derivative of signal x(t), and the curly parenthesis indicate

that the differential operator acts on the product of v(tk) and y(tk) signals. Not-

ing, the definition of the error function ε(tk) in (3.14) and applying the linear
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3. Parameter estimation methods in continuous-time domain

prefilter f(s), defined in (3.13), the above expression may be reexpressed by

A(s)yf (tk) = B(s)vf (tk) +
n∑

i=1

ηi{vy}
(n−i)
f (tk) + ε(tk) (3.99)

Using summation notation for the A(s) and B(s) polynomials and rearranging

leads to

y
(n)
f (tk) =−

n∑

i=1

αiy
(n−i)
f (tk) +

m∑

i=0

βiv
(m−i)
f (tk)

+
n∑

i=1

ηi
{
vy
}(n−i)

f
(tk) + ε(tk)

(3.100)

Considering Step 2 of the bilinear parameterization method (3.63), in order

to obtain the estimate of the parameter vector θn, with reference to Remark 3.1

on filtering operation of the intermediate input, the polynomial function (3.57a)

is substituted for v(tk) in (3.100), hence

y
(n)
f (tk) =−

n∑

i=1

αiy
(n−i)
f (tk) +

m∑

i=0

βi

r∑

l=1

pl
{
ul
}(m−i)

f
(tk)

+
n∑

i=1

ηi

r∑

l=1

pl
{
uly
}(n−i)

f
(tk) + ε(tk)

(3.101)

Rearranging with respect to the pl parameters, and changing the subscript l for

i, gives

y
(n)
f (tk) =

r∑

i=1

pi

[
m∑

l=0

βl
{
ui
}(m−l)

f
(tk) +

n∑

l=1

ηl
{
uiy
}(n−l)

f
(tk)

]

−
n∑

i=1

αiy
(n−i)
f (tk) + ε(tk)

(3.102)

In order to obtain the least squares solution to the optimisation problem stated in

(3.63) the above expression (3.102) is formulated in the pseudo-linear regression

form

ε(tk) = y
(n)
f (tk) +

n∑

i=1

αiy
(n−i)
f (tk)−ϕT

f (tk)θn

ε(tk) = yf (tk)−ϕT
f (tk)θn (3.103)
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3. Parameter estimation methods in continuous-time domain

where

yf (tk) = y
(n)
f (tk) +

n∑

i=1

αiy
(n−i)
f (tk) (3.104)

ϕT
f (tk) =

[

w1(tk) · · · wr(tk)
]

(3.105)

wi(tk) =
m∑

l=0

βl{u
i}(m−l)

f (tk) +
n∑

l=1

ηl
{
uiy
}(n−l)

f
(tk), for i = 1, · · · , r (3.106)

and the parameter vector θn is defined in (3.5c). The main difference between the

error function (3.73) of the HBSRIVC algorithm and the error function (3.103) of

the HSRIVC algorithm is the presence of the measured, noise corrupted, output

signal y(tk) in the regression vector (3.106), cf. (3.76). This would inevitably

induce bias in parameter estimates. Therefore, the IV least squares solution to

the optimisation problem (3.63) is formulated, hence

θ̂n =

[
N∑

k=1

ϕ̂f (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕ̂T
f (tk)yf (tk) (3.107)

In accordance with the SRIVC method, the filtered instrumental variable

regression vector ϕ̂f (tk) is defined as

ϕ̂f (tk) =
[

ŵ1(tk) · · · ŵr(tk)
]

(3.108)

ŵi(tk) =
m∑

l=0

βl{u
i}(m−l)

f (tk) +
n∑

l=1

ηl
{
uix̂
}(n−l)

f
(tk), for i = 1, · · · , r

where x̂(tk) denotes the noise free simulated output.

Having established the core content of the bilinear parameterization method

comprising of Steps 1 and 2 the full HSRIVC iterative algorithm takes the fol-

lowing form:

Algorithm 3.4 (HSRIVC).

Stage 1 Initialisation: Compute an initial parameter vector estimate θ̂
j
lb,

for j = 0, where j denotes the iteration index. Choose the static input

function (3.57a) to be linear with unity gain v(t) = u(t), hence setting

θ̂0
n = [1 0 · · · 0]T . The IV regression vector (3.34) is initialised by

ϕ̂T
f (tk) = ϕT

f (tk)
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3. Parameter estimation methods in continuous-time domain

In order to generate filtered time derivatives, select the following state

variable filter

f(s) =
1

A(s)
=

1

(s+ λ)n

where λ is a single breakpoint frequency parameter and is selected to

be larger or equal to the bandwidth of the system to be identified. The

implementation of the filter is shown in Figure 3.1.

Stage 2 Iterative estimation

for j = 1 : convergence (see (3.80))

(Step 1.a) Knowing the latest estimate of the static input nonlinearity

compute the intermediate input to the dynamic submodel

v(tk) = φ(θ̂j−1
n , u(tk)) =

r∑

i=1

θ̂j−1
n (i)ui(tk)

(Step 1.b) Generate the instrumental variable series using the esti-

mated parameter set from the previous iteration step

x̂(tk) =
B(s, θ̂j−1

lb )

A(s, θ̂j−1
lb , θ̂j−1

n , tk)
v(tk)

(Step 1.c) Generate the filtered time derivatives of signals y(tk), x̂(tk).

Additionally, generate derivatives of input signals u1(tk), u2(tk) and

û2(tk), defined in (3.35), in which the input signal u(tk) is replaced

with the intermediate input v(tk). Use filter f(s) defined in (3.13),

i.e.

f(s, θ̂j−1
lb ) =

1

A(s, θ̂j−1
lb )

where the filter is implemented as indicated in Figure 3.1.

(Step 1.d) Form the filtered regression vector ϕT
f (tk) and the IV re-

gression vector ϕ̂T
f (tk) according to (3.34). Compute the latest

parameter vector estimate using

θ̂
j
lb =

[
N∑

k=1

ϕ̂f (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕ̂T
f (tk)y

(n)
f (tk)
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3. Parameter estimation methods in continuous-time domain

(Step 2.a) Generate the filtered time derivatives of signals y(tk),

ui(tk), {u
iy}(tk), {u

ix̂}(tk), for i = 1, · · · , r, using updated filter

f(s), i.e.

f(s, θ̂j
lb) =

1

A(s, θ̂j
lb)

(Step 2.b) Form the filtered regression vectors ϕT
f (tk) and ϕ̂T

f (tk) ac-

cording to (3.105) and (3.108), respectively. Form the output

yf (tk) defined in (3.104). Obtain the latest least squares estimate

θ̂j
n =

[
N∑

k=1

ϕ̂f (tk)ϕ
T
f (tk)

]
−1 N∑

k=1

ϕ̂f (tk)yf (tk)

end

Stage 3 Parametric error computation: Compute the estimated para-

metric error covariance matrices denoted P̂lb and P̂n associated with

the final parameter vector estimates θ̂lb and θ̂n, respectively, hence

P̂lb = σ̂2
e

[
N∑

k=1

ϕ̂f (tk)ϕ̂
T
f (tk)

]
−1

P̂n = σ̂2
ē

[
N∑

k=1

ϕf (tk)ϕ
T
f (tk)

]
−1

where the appropriate regression vectors ϕ̂f (tk) and ϕf (tk) are used as

defined in Steps 1 and 2. The estimated noise variances σ̂2
e and σ̂2

ē are

defined in (3.82a) and (3.82b), respectively.

3.4.4 Constrained HSRIVC method

Following the same reasoning for imposing constraints on parameters of the static

input function (3.57a), stated at the beginning of Subsection 3.4.2, the con-
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strained polynomial expression (3.89) is substituted for v(tk) in (3.100), i.e.

y
(n)
f (tk) =−

n∑

i=1

αiy
(n−i)
f (tk) +

m∑

i=0

βiu
(m−i)
f (tk) +

n∑

i=1

ηi
{
uy
}(n−i)

f
(tk)

+
m∑

i=0

βi

r∑

l=2

pl
{
− u+ ul

}(m−i)

f
(tk)

+
n∑

i=1

ηi

r∑

l=2

pl
{
− uy + uly

}(n−i)

f
(tk) + ε(tk)

(3.109)

and rearranging with respect to the pl parameters gives

y
(n)
f (tk) =−

n∑

i=1

αiy
(n−i)
f (tk) +

m∑

i=0

βi
{
u
}(m−i)

f
(tk) +

n∑

i=1

ηi
{
uy
}(n−i)

f
(tk)

+
r∑

i=2

pi

[

−
m∑

l=0

βl
{
u
}(m−l)

f
(tk)−

n∑

l=1

ηl
{
uy
}(n−l)

f
(tk)

+
m∑

l=0

βl
{
ui
}(m−l)

f
(tk) +

n∑

l=1

ηl
{
uiy
}(n−l)

f
(tk)

]

+ ε(tk)

(3.110)

In order to obtain the least squares solution the above expression (3.102) is then

re-written in pseudo-linear regression form, hence

ε(tk) = yf (tk)−ϕT
f (tk)θn (3.111)

where

θn =
[

p2 · · · pr

]T

(3.112)

yf (tk) =y
(n)
f (tk) +

n∑

i=1

αiy
(n−i)
f (tk)

−
m∑

i=0

βi
{
u
}(m−i)

f
(tk)−

n∑

i=1

ηi
{
uy
}(n−i)

f
(tk) (3.113)

ϕT
f (tk) =

[

w2(tk) · · · wr(tk)
]

(3.114)

wi(tk) =−
m∑

l=0

βl
{
u
}(m−l)

f
(tk)−

n∑

l=1

ηl
{
uy
}(n−l)

f
(tk)

+
m∑

l=0

βl
{
ui
}(m−l)

f
(tk) +

n∑

l=1

ηl
{
uiy
}(n−l)

f
(tk), for i = 2, · · · , r
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Note, that only r − 1 polynomial function parameters need to be estimated.

Accordingly with HSRIVC algorithm 3.4, the filtered instrumental variable re-

gression vector also needs to be defined, i.e.

ϕ̂f (tk) =
[

ŵ2(tk) · · · ŵr(tk)
]

(3.115)

ŵi(tk) =−
m∑

l=0

βl
{
u
}(m−l)

f
(tk)−

n∑

l=1

ηl
{
ux̂
}(n−l)

f
(tk)

+
m∑

l=0

βl
{
ui
}(m−l)

f
(tk) +

n∑

l=1

ηl
{
uix̂
}(n−l)

f
(tk), for i = 2, · · · , r

where the noise contaminated output y(tk) is replaced with the simulated output

x̂(tk).

The constrained HSRIVC algorithm is then implemented in virtually the same

way as the unconstrained HSRIVC algorithm 3.4 with the following differences:

• In Stage 1 the static input nonlinear function is defined in (3.89) and ini-

tialised with θ̂0
n = [0 0 · · · 0]T .

• Stage 2, Step (1.a), the intermediate input to the dynamic submodel is

computed according to

v(tk) = φ(θ̂j−1
n , u(tk)) = u(tk) +

r∑

i=2

θ̂j−1
n (i)

[
−u(tk) + ui(tk)

]

• Stage 2, Step (2.b), the filtered regression vector ϕT
f (tk) is newly defined

in (3.114), IV regression vector in (3.115), the output yf (tk) is defined in

(3.113), and the parameter vector θn is redefined according to (3.112).

3.4.5 Comments

The HBSRIVC algorithm has been created for parameter estimation of Hammerstein-

bilinear models, however by setting parameters associated with the bilinear terms

to zero, i.e. ηi = 0, for i = 1, · · · , n, and/or not considering the static input non-

linearity, i.e. v(t) = u(t), the HBSRIVC algorithm encompass the estimation of

Hammerstein, bilinear, and linear models as special cases. For example, consid-

ering the case v(t) = u(t), then the HBSRIVC algorithm reduces to the BSRIVC

algorithm, and by further considering all ηi, for i = 1, · · · , n, to be zero, then the

BSRIVC reduces to the SRIVC algorithm.
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3. Parameter estimation methods in continuous-time domain

The HSRIVC algorithm can be viewed as being a complementary algorithm

to the HBSRIVC algorithm. The main difference consists of the use of linear

prefilters instead of adaptive, input dependent, prefilters used by the HBSRIVC

algorithm. This creates a linear parameter estimation method, which is more

straightforward to initialise. In Subsection 3.3.1, it has been suggested to use the

SRIVC algorithm to help to initialise the full BSRIVC algorithm. Similarly, the

HSRIVC algorithm can be used to obtain an approximate estimate of the static

input function, subsequently this estimate can be used to initialise the HBSRIVC

algorithm.

3.5 Numerical study

This section considers a Monte Carlo simulation (MCS) analysis that aims to

empirically demonstrate the performance of the SRIVC, BSRIVC, HSRIVC and

HBSRIVC algorithms. The bilinear and Hammerstein-bilinear models considered

are chosen such that their behaviour (static and dynamic) is comparable to that

observed on a real HVAC system. Therefore, based on this numerical study one

can gain an insight into the expected performance of the proposed parameter es-

timation methods in practice. Additionally, the aim of this simulation study (and

this Chapter as a whole) is not to benchmark algorithms such as well established

SRIVC method with the proposed BSRIVC method. The SRIVC algorithm is

used as a reference point to gain an insight about the corresponding performance

of the proposed BSRIVC method, which is specifically designed for the estimation

of higher order bilinear systems.

Two case scenarios are considered. In both cases the static input nonlinearity

is parameterized by a third order constrained polynomial, defined in (3.89), i.e.

v(t) = u(t) +
3∑

i=2

pi
[
−u(t) + ui(t)

]
, for u(t) ∈ 〈0, 1〉 (3.116)

where the parameter p1, of the equivalent unconstrained polynomial function

(3.88), is computed from

p1 = 1−
3∑

i=2

pi (3.117)

The corresponding parameter set is

θn =
[

p2 p3

]T

=
[

−4.4 2
]T

(3.118)
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and the static function is displayed in the right-lower plot of Figure 3.3. In this

plot, the polynomial function, black solid line, is compared to a linear case, grey

solid line, i.e. v(t) = u(t).
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Figure 3.3: Upper-left and upper-right plots show simulated output y(tk) of
bilinear models having orders [n,m, n] = [1, 0, 1] and [n,m, n] =
[2, 0, 2], respectively. Middle-left and middle-right plots show sim-
ulated output y(tk) of HB model having orders [n,m, n] = [1, 0, 1]
and [n,m, n] = [2, 0, 2], respectively. In each case, the solid black
line represents noise free simulated output, solid light grey line is
noisy output for NSR = 10 [%], solid dark grey line represents noisy
output for NSR = 30 [%]. Seed value is 22 for each case. Lower-
left plot shows input signal u(tk) and intermediate input v(tk), while
lower right plot displays static function v(tk) = φ(u(tk)), solid black
line, and linear case v(tk) = u(tk), solid grey line.
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The system input is a multi-level stair-case signal with arbitrary chosen step

amplitude and step time duration shown in the left-lower plot of Figure 3.3.

The number of simulated data points is N = 7836, sampled at h = 5 [s], i.e. the

overall simulation time is approximately 11 [h], which corresponds to a low sample

size situation. Although, such an input is not necessarily strongly persistently

exciting according to the definition provided in (Stoica & Söderström 1982) for

Hammerstein systems, this input signal is considered to be practically realisable

and applicable on an actual HVAC system. The Monte Carlo analysis is based on

M=100 realizations where, for each realization, the noise ξ(tk) = e(tk) is randomly

generated using the Matlab (software version 2010b) function randn for seed

values ranging from 1 to 100. The generated noise sequence is normalized such

that the resulting noise-to-signal ratio (NSR) is fixed at 10 [%] and 30 [%], hence

two noise scenarios are considered. The NSR is based on standard deviations, in

percentage, and is defined as follows

NSR = 100×
SDe

SDx

(3.119)

with the noise signal (SDe) and noise free simulated output (SDx) standard de-

viations given by, respectively,

SDe =

√
√
√
√ 1

N

N∑

k=1

(e(tk)− ē(tk))
2 and SDx =

√
√
√
√ 1

N

N∑

k=1

(x(tk)− x̄(tk))
2 (3.120)

where the bar over a variable denotes the mean value, i.e. mean value of signal

x(tk) is x̄(tk) = (1/N)
∑N

k=1 x(tk).

The convergence criterion monitoring the maximum relative change of pa-

rameter estimate, defined in (3.80) for a general parameter vector θ̂, for all pa-

rameter estimation algorithms considered, is selected to be ǫ = 1 × 10−7. The

general prefilter f(s, t), defined in (3.67), is implemented in Simulink (software

version 2010b) programming environment. All estimated systems adopted in sub-

sequent subsections, Case scenario 1 and Case scenario 2, are also implemented

in Simulink. The variable-step size Dormand-Price ode45 numerical solver is

selected. When importing sampled input-output signals to Simulink a function

block from workspace is used. This function block uses, by a default, a linear

Lagrangian interpolation of the signal inter-sample behaviour.

Several model fit criteria are evaluated and are common to both Case sce-

narios. An integral of absolute error between measured and simulated system
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3. Parameter estimation methods in continuous-time domain

output, defined as

IAE =
1

N

N∑

k=1

|y(tk)− x̂(θ̂, tk)| (3.121)

is computed for each noise realization and overall mean values are tabulated.

The mean value of estimated noise variance σ̂2
e is evaluated for each Monte Carlo

simulation analysis and is compared to the true variance of the applied noise

e(tk). The noise variance estimate is computed according to (3.82a), where a

suitable regression vector must be selected based on a considered Case scenario.

To be able to comment on the accuracy of estimated parameter sets for the two

noise scenarios, the following norm is evaluated for each noise realization

AC(θ̂) =

√
√
√
√

p
∑

i=1

(

θ(i)− θ̂(i)
)2

(3.122)

where p is the number of parameters within the currently evaluated vector θ̂.

3.5.1 Case scenario I

The HB system is assumed to take the following form

sx(t) =− α1x(t) + β0v(t) + η1v(t)x(t) (3.123a)

y(tk) =x(tk) + e(tk) (3.123b)

with the true parameter vectors

θl =
[

α1 β0

]T

=
[

0.0025 −0.1
]T

(3.124a)

θb =
[

η1

]T

=
[

−0.0025
]T

(3.124b)

and the static function nonlinearity is as defined in (3.117). Since the bilinear

submodel (3.123) can be interpreted as a TISO linear in structure model during

the estimation stage, the SRIVC and HSRIVC algorithms are applicable. In order

to gradually gain an insight into the proposed estimation methods, two distinct

cases are considered. Firstly, only the bilinear submodel (3.123), with v(tk) =

u(tk), is used to represent the system, so that the SRIVC and BSRIVC algorithms

are applied only. Secondly, the full HB system, governed by (3.117) and (3.123), is

estimated by the HSRIVC and HBSRIVC algorithms. The corresponding input-

output data for these two cases are plotted in the left part of Figure 3.3.

84



3. Parameter estimation methods in continuous-time domain

The input dependent steady-state gain SSG, according to definition (2.69),

varies in the range SSG ∈ 〈−40,−20〉 for corresponding values of input signal

u(t) ∈ 〈0, 1〉. The negative value of steady-state gain may, for example, indicate

a cooling HVAC system application, where the SSG relates to maximal cooling

capacity of the system. The time constant T , defined in (2.73), varies in the

range T ∈ 〈400, 200〉 [s] for input values u(t) ∈ 〈0, 1〉. The negative sign of

η1 parameter indicates saturation type steady-state characteristic of the dynamic

submodel. The static input nonlinearity is also of a saturation type. Therefore, it

is believed that the combination of these two submodels creates a difficult system

identification scenario, where the estimation method must be able to distinguish

between the contributions of the individual submodels to the overall steady-state

characteristic.

The prefilters of the SRIVC, BSRIVC, HSRIVC and HBSRIVC algorithms

are initialised with the same single breakpoint frequency parameter equal to λ =

0.005. Additionally, in the case of the BSRIVC and HBSRIVC algorithms, the

parameters associated with the bilinear terms are initialised with zero, i.e. η1 = 0.

The static input nonlinearity is assumed to be linear v(t) = u(t), hence setting

θ̂0
n = [0 0]T . Note, that the SRIVC and HSRIVC algorithms, by their design,

consider the dynamic part of the system to be linear (interpretable as linear),

while the other two algorithms consider the system to have bilinear dynamics.

By the current choice of the initial parameters, the adaptive prefilters of the

BSRIVC and HBSRIVC algorithms are set for the linear case, even though the

true system has bilinear dynamics. Therefore, albeit virtually the same initial

setting of all examined algorithms, the BSRIVC and HBSRIVC algorithms, are

from this point of view disadvantaged.

The Monte Carlo simulation analysis results are summarised in Tables 3.1

and 3.2. Since two distinct systems have been estimated, i.e. bilinear system and

HB system, only the appropriate algorithms should be compared with each other

directly, which are the SRIVC together with BSRIVC, and the HSRIVC together

with HBSRIVC.

Table 3.1 presents the single run and MCS results for the considered algo-

rithms. Small standard deviations (SD) of estimated parameters, computed from

the MCS analysis, are reported. In all cases the standard errors (SE) on the

parameter estimates are reasonably matched to the SD values. Although, the

SRIVC and BSRIVC algorithms perform virtually the same, the HSRIVC out-

performs the HBSRIVC algorithm by a margin. The HBSRIVC algorithm has

higher SD values, as compared to HSRIVC. Additionally, the HBSRIVC algo-
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3. Parameter estimation methods in continuous-time domain

Table 3.1: Monte Carlo simulation (MCS) results for simulation example in
Case scenario I. SR denotes the single run results for seed value
22, SE denotes the standard error on the estimates, SD denotes the
standard deviation of the MCS estimates.

Parameter α1 β0 η1 p2 p3
True values 2.5×10−3 -0.1 -2.5×10−3 -4.4 2

NSR=10 [%]

SRIVC θ̂ 2.4827×10−3 -0.09938 -2.4861×10−3 - -
(SR) SE 0.7904×10−5 0.3092×10−3 1.1186×10−5 - -

SRIVC mean 2.4931×10−3 -0.09972 -2.4934×10−3 - -
(MCS) SD 1.1893×10−5 0.4356×10−3 1.5076×10−5 - -

BSRIVC θ̂ 2.4907×10−3 -0.09986 -2.5032×10−3 - -
(SR) SE 1.2049×10−5 0.5017×10−3 1.7037×10−5 - -

BSRIVC mean 2.5002×10−3 -0.10006 -2.5033×10−3 - -
(MCS) SD 1.0965×10−5 0.4976×10−3 2.1423×10−5 - -

HSRIVC θ̂ 2.4906×10−3 -0.09870 -2.4436×10−3 -4.4413 2.0220
(SR) SE 0.7691×10−5 0.2971×10−3 1.0327×10−5 0.01247 0.00877

HSRIVC mean 2.4944×10−3 -0.09949 -2.4804×10−3 -4.4129 2.0071
(MCS) SD 1.2367×10−5 0.6854×10−3 3.4224×10−5 0.05047 0.03286

HBSRIVC θ̂ 2.4927×10−3 -0.10003 -2.5101×10−3 -4.3784 1.9846
(SR) SE 1.2097×10−5 0.4947×10−3 1.5593×10−5 0.01175 0.00825

HBSRIVC mean 2.5000×10−3 -0.10018 -2.5101×10−3 -4.3899 1.9933
(MCS) SD 1.1993×10−5 1.4334×10−3 8.1139×10−5 0.09628 0.06041

NSR=30 [%]

SRIVC θ̂ 2.4608×10−3 -0.09871 -2.4731×10−3 - -
(SR) SE 2.3406×10−5 0.9174×10−3 3.3267×10−5 - -

SRIVC mean 2.4916×10−3 -0.09970 -2.4948×10−3 - -
(MCS) SD 3.5585×10−5 1.3049×10−3 4.5205×10−5 - -

BSRIVC θ̂ 2.4907×10−3 -0.09986 -2.5032×10−3 - -
(SR) SE 1.2049×10−5 0.5017×10−3 1.7037×10−5 - -

BSRIVC mean 2.501×10−3 -0.10019 -2.5107×10−3 - -
(MCS) SD 3.2824×10−5 1.4924×10−3 6.4342×10−5 - -

HSRIVC θ̂ 2.4849×10−3 -0.09706 -2.3653×10−3 -4.5062 2.0557
(SR) SE 2.2994×10−5 0.8760×10−3 3.0447×10−5 0.03760 0.02644

HSRIVC mean 2.4958×10−3 -0.09939 -2.4741×10−3 -4.4212 2.0110
(MCS) SD 3.6986×10−5 2.0547×10−3 10.2690×10−5 0.15107 0.09841

HBSRIVC θ̂ 2.4782×10−3 -0.10016 -2.5346×10−3 -4.3305 1.9508
(SR) SE 3.6064×10−5 1.4827×10−3 4.6877×10−5 0.03522 0.02472

HBSRIVC mean 2.4968×10−3 -0.10130 -2.5728×10−3 -4.3265 1.9541
(MCS) SD 3.5828×10−5 4.8691×10−3 27.4970×10−5 0.31491 0.19633

rithm failed to converge in four cases for a high noise scenario only. However, with
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3. Parameter estimation methods in continuous-time domain

Table 3.2: Monte Carlo simulation results for simulation example in Case sce-
nario I. The true noise variances σ2

e of the bilinear system for
NSR = 10 [%] and NSR = 30 [%] are 0.3260 and 2.9344, respec-
tively. The true noise variances σ2

e of the HB system for NSR = 10
[%] and NSR = 30 [%] are 0.2816 and 2.5348, respectively.

IAE σ̂2
e AC(θ̂lb) AC(θ̂n) Iter

NSR=10 [%]

SRIVC mean 0.4558 0.3264 4.1403×10−4 - 4.6667
SD 1.4240×10−3 0.3990×10−3 3.1323×10−4 - 0.4880

BSRIVC mean 0.4558 0.3261 4.0809×10−4 - 13.400
SD 1.4199×10−3 0.1065×10−3 2.8839×10−4 - 0.5071

HSRIVC mean 0.4236 0.2821 7.0198×10−4 4.8883×10−2 345.40
SD 1.3278×10−3 0.4851×10−3 4.8227×10−4 3.7849×10−2 4.6105

HBSRIVC mean 0.4237 0.2818 11.408×10−4 9.0695×10−2 304.67
SD 1.3331×10−3 0.3230×10−3 8.8322×10−4 6.8972×10−2 16.504

NSR=30 [%]

SRIVC mean 1.3674 2.9370 1.0750×10−3 - 4.8667
SD 4.2764×10−3 3.6153×10−3 0.7925×10−3 - 0.5164

BSRIVC mean 1.3675 2.9346 1.2277×10−3 - 13.200
SD 4.2594×10−3 0.9665×10−3 0.8636×10−3 - 0.8619

HSRIVC mean 1.2708 2.5385 1.7706×10−3 0.1454 349.80
SD 3.9947×10−3 4.2762×10−3 1.2025×10−3 0.1083 14.872

HBSRIVC mean 1.2713 2.5362 3.6892×10−3 0.2837 352.00
SD 4.0733×10−3 4.2646×10−3 3.4259×10−3 0.2529 119.67

a different, more accurate initialisation convergence could have been achieved.

Table 3.2 compares the mean and associated SD values of IAE, σ̂2
e , AC(θ̂lb),

and AC(θ̂n) performance criteria together with an average number of required

iterations. All parameter estimation algorithms perform virtually the same in

terms of the IAE criterion. The BSRIVC and HBSRIVC algorithms consistently

provides noise variance estimates, which are closer to the true noise variances

(stated in the Table caption). The SRIVC and HSRIVC algorithms achieve, in

general, smaller values of the AC criterion. The exception is the BSRIVC algo-

rithm in comparison with the SRIVC algorithm under the low noise conditions.

The SRIVC algorithm, as compared to BSRIVC, requires a lower average num-

ber of iterations in achieving the prescribed convergence criterion. However, it

should be stressed, that the computational efficiency in terms of number of iter-

ations required or the time duration of the estimation procedure is not the focus

of the current research. The HSRIVC and HBSRIVC algorithms need a similar

average number of iterations to converge, however, the HSRIVC algorithms has
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3. Parameter estimation methods in continuous-time domain

considerably lower SD values.

In Figure 3.4 the true (grey solid line) static function and system output is

compared with the corresponding MCS estimates (black solid lines). The results

are displayed for HSRIVC and HBSRIVC algorithms, under the high noise sce-

nario, only. In the case of a low noise scenario the individual plots would be

virtually identical. Similarly, the results for the SRIVC and BSRIVC algorithms

are not distinguishable for any noise scenario, when plotted against each other,

hence are not displayed. It is observed in Figure 3.4, that the static function

estimates are less accurate when the HBSRIVC algorithm is used.
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Figure 3.4: Monte Carlo simulation results for Case scenario I. Comparison of
true (grey solid lines) and estimated (black solid lines) static func-
tions and the system outputs. High noise scenario is considered
only. Upper-left and lower-left plots show results for HSRIVC al-
gorithm, while upper-right and lower-right plots show results for
HBSRIVC algorithm.
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3. Parameter estimation methods in continuous-time domain

3.5.2 Case scenario II

The HB system is assumed to take the following form

s2x(t) =− α1sx(t)− α2x(t) + β0v(t) + η1v(t)sx(t) + η2v(t)x(t) (3.125a)

y(tk) =x(tk) + e(tk) (3.125b)

with the true parameter vectors

θl =
[

α1 α2 β0

]T

=
[

0.0045 0.0000045 −0.000225
]T

(3.126a)

θb =
[

η1 η2

]T

=
[

−0.003 −0.000008
]T

(3.126b)

and the static function nonlinearity is as defined in (3.117). The considered

system has second order linear dynamics, single input term and two bilinear

terms, and as such cannot be interpreted as a TISO linear for the purpose of

parameter estimation. Therefore, the SRIVC and HSRIVC algorithms are not

applicable. Similarly to Case scenario I, in order to gain gradual insight into

the performance of the proposed estimation methods, two cases are considered.

Firstly, only the bilinear submodel (3.125), with v(tk) = u(tk), is selected to

represent the system. Secondly, the full HB system, governed by (3.117) and

(3.125), is estimated. The corresponding input-output data for these two cases

are plotted in the right part of Figure 3.3.

Since the dynamic submodel (3.125) is of order n = 2, then two, input

dependent, time constants are present, which are T1 ∈ 〈666.67, 400〉 [s] and

T2 ∈ 〈333.33, 200〉 [s] for input values u(t) ∈ 〈0, 1〉. The steady-state gain varies in

a range SSG ∈ 〈−50,−18〉 for corresponding values of input signal u(t) ∈ 〈0, 1〉.

The system is not considered to be stiff, because the system time constants do not

considerably differ in magnitude. However, it is believed that the saturation type

steady-state characteristic of the dynamic submodel together with the saturation-

like shaped static input function still creates a challenging system identification

scenario.

The prefilters of the BSRIVC and HBSRIVC algorithms are initialised with

the same single breakpoint frequency parameter equal to λ = 0.01 and the pa-

rameters associated with the bilinear terms are initialised with zero, i.e. ηi = 0,

for i = 1, 2. The static input function is initialised with θ̂0
n = [−2.5 1]T . This

choice of the initial static function estimate is considered to be mild, yet helps to

induce the convergence.
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3. Parameter estimation methods in continuous-time domain

Table 3.3 presents the single run and MCS results for the two considered

algorithms. In case of the BSRIVC algorithm small standard deviations of MCS

estimates are reported. For the high noise scenario, the HBSRIVC algorithm

yields somewhat larger standard deviations of MCS parameter estimates. In

both cases, the standard errors on parameter estimates are rather optimistic,

especially in the case of the HBSRIVC algorithm. Both algorithms successfully

converged for all simulation runs. Table 3.4 compares the selected performance

criteria together with an average number of required iterations. Both algorithms

consistently provide noise variance estimates which are low in magnitude and

close to the true noise variances (stated in the Table caption). The IAE values

for a high noise scenario are almost exactly three times larger than the IAE

values for the low noise scenario, in which the noise is also three times lower in

terms of NSR. It is also noted, that the noise level does not seem to influence

the required number of iterations considerably.

In Figure 3.5 the true (grey solid line) static function and system output is

compared with the corresponding MCS estimates (black solid lines). The com-

parison is made for HBSRIVC algorithm only, for the low and high noise scenario.

As expected, it is observed that the static function estimates are less accurate for

the high noise scenario.

3.6 Conclusions

In this chapter, new parameter estimation methods for the identification of bi-

linear systems and Hammerstein-bilinear systems in continuous-time domain are

proposed. The well established SRIVC algorithm for parameter estimation of lin-

ear continuous-time transfer function models, has been extended to the bilinear

case. The proposed BSRIVC algorithm is designed to be capable for the esti-

mation of higher order bilinear models directly from sampled input-output data,

where the bilinear model is interpreted in time-step quasi-linear transfer function

form. Exploiting the iterative nature of the BSRIVC algorithm, and postulating

that the static input function is parameterized by a linear-in-parameters polyno-

mial function of finite order, the HBSRIVC algorithm is developed for the esti-

mation of Hammerstein-bilinear systems. This generalised estimation algorithm

then automatically includes the BSRIVC and SRIVC algorithms as special cases.

The proposed parameter estimation methods differ from the existing, reviewed

methods, in their simplicity of implementation, usage and the noise scenarios

under which the consistent parameter estimates are still obtained.
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Figure 3.5: Monte Carlo simulation results for Case scenario II. Comparison
of true (grey solid lines) and estimated (black solid lines) static
functions and the system outputs. Low and high noise scenario are
considered.

It has been noted, in Section 2.3, that under certain restricted conditions, the

considered continuous-time single-input single-output bilinear model can be inter-

preted as a two-input single-output linear (in structure) transfer function model.

Based on this observation, the SRIVC algorithm is configured for such an identifi-

cation scenario and, similar to the HBSRIVC algorithm; the iterative backfitting

HSRIVC algorithm is proposed for estimation of the Hammerstein(-bilinear) sys-

tems. Although, not an intended result, the iterative HSRIVC algorithm can be

applied to the estimation problem of Hammerstein systems. Here, the currently

predominant methods, which use SRIVC and further refined RIVC algorithms,

are based on a two stage noniterative over-parameterization method. It is be-

lieved, that the currently proposed iterative methods, if convergence occurs, are

capable of providing more accurate parameter estimates. This is demonstrated

in the subsequent chapter, where a Hammerstein(-bilinear) model is estimated,

in a discrete-time setting, using both the iterative and the noniterative methods.

The SRIVC and HSRIVC parameter estimation methods can be viewed as
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3. Parameter estimation methods in continuous-time domain

being a complementary to the BSRIVC and HBSRIVC algorithms and can be

used during the initialisation stages of these latter algorithms, respectively. The

main difference consists in the use of linear prefilters instead of adaptive, input

dependent, prefilters. This requires a linear parameter estimation methods, which

are more straightforward to be initialised and applied.

In general, the reviewed and designed parameter estimation methods can be

classified into two distinct groups based on the type of prefilters used. The SRIVC

and HSRIVC algorithms use linear prefilters, while the BSRIVC and HBSRIVC

algorithms use adaptive, input dependent, prefilters instead. Table 3.5 presents

a comprehensive overview of the reviewed and designed extensions proposed in

this chapter.

The en bloc solution, i.e. non-recursive or single iteration of a batch of data,

to the SRIVC, BSRIVC, HSRIVC and HBSRIVC algorithms is presented, while

its recursive implementation is left for potential future work. The recursive for-

mulation offers additional insight into the modelled system in an off-line setting

and, of course, can also be applied in on-line estimation applications. The RIVC

parameter estimation method is statistically optimal under the assumption of an

auto-regressive moving-average (ARMA) additive noise model and is suitable for

the identification of hybrid Box-Jenkins transfer function models. The optimal

identification of CT bilinear and CT Hammerstein-bilinear models under the as-

sumption of coloured additive noise, i.e. use of the RIVC algorithm as a core

algorithm instead of SRIVC algorithm, is also left for potential future work.

Similarly to the SRIVC algorithm, the proposed HBSRIVC and HSRIVC

parameter estimation methods can both be potentially implemented in a discrete-

time setting, i.e. use of discrete-time prefilters. However, due to the differences

between continuous-time and discrete-time bilinear models, as stated in Chapter

2, there is no case for the HBSRIVC algorithm to be implemented in discrete-time

setting. In particular, the selected CT bilinear model structure can be viewed as a

subset of the considered DT bilinear model structure. The discrete-time bilinear

model can be fully interpreted as multi-input single-output linear (in structure)

transfer function model, which promotes the use of linear perfilters and linear

estimation methods. Therefore, only the SRIVC and HSRIVC algorithms are

implemented in a discrete-time setting in the subsequent chapter.
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Table 3.3: Monte Carlo simulation results for Case scenario II. SR denotes the single run results for seed value 22, SE denotes
the standard error on estimates, SD denotes the standard deviation of MCS estimates.

Parameter α1 α2 β0 η1 η2 p2 p3
True values 4.5×10−3 4.5×10−6 -2.25×10−4 -3×10−3 -8×10−6 -4.4 2

NSR=10 [%]

BSRIVC θ̂ 4.4327×10−3 4.4167×10−6 -2.2345×10−4 -2.8268×10−3 -8.0751×10−6 - -
(SR) SE 2.6486×10−5 1.9971×10−8 1.0066×10−6 4.6604×10−5 3.991×10−8 - -

BSRIVC mean 4.4952×10−3 4.4981×10−6 -2.2527×10−4 -3.0036×10−3 -8.0243×10−6 - -
(MCS) SD 5.9259×10−5 6.7605×10−8 2.8351×10−6 17.857×10−5 14.564×10−8 - -

HBSRIVC θ̂ 4.3879×10−3 4.3732×10−6 -2.2622×10−4 -3.0471×10−3 -8.2239×10−6 -4.1814 1.8608
(SR) SE 2.7892×10−5 1.8474×10−8 0.9268×10−6 4.1528×10−5 3.5953×10−8 0.01075 0.00765

HBSRIVC mean 4.4851×10−3 4.485×10−6 -2.2570×10−4 -3.0192×10−3 -8.0582×10−6 -4.3613 1.9765
(MCS) SD 18.501×10−5 16.947×10−8 5.2049×10−6 22.739×10−5 44.548×10−8 0.29819 0.17945

NSR=30 [%]

BSRIVC θ̂ 4.3007×10−3 4.2489×10−6 -2.2013×10−4 -2.4514×10−3 -8.2164×10−6 - -
(SR) SE 7.4669×10−5 5.4980×10−8 2.8219×10−6 13.057×10−5 11.547×10−8 - -

BSRIVC mean 4.4880×10−3 4.4966×10−6 -2.2594×10−4 -3.0062×10−3 -8.0798×10−6 - -
(MCS) SD 17.714×10−5 20.322×10−8 8.6336×10−6 54.198×10−5 43.683×10−8 - -

HBSRIVC θ̂ 4.1979×10−3 4.1313×10−6 -2.2829×10−4 -3.0474×10−3 -8.6394×10−6 -3.7484 1.5856
(SR) SE 7.5915×10−5 4.8746×10−8 2.5864×10−6 11.608×10−5 10.439×10−8 0.03145 0.02247

HBSRIVC mean 4.5059×10−3 4.4783×10−6 -2.2785×10−4 -2.9823×10−3 -8.1917×10−6 -4.2798 1.9296
(MCS) SD 52.294×10−5 47.998×10−8 14.183×10−6 60.656×10−5 119.59×10−8 0.79332 0.47510
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3. Parameter estimation methods in continuous-time domain

Table 3.4: Monte Carlo simulation results for simulation example in Case sce-
nario II. The true noise variances σ2

e of the bilinear system for
NSR = 10 [%] and NSR = 30 [%] are 0.2218 and 1.9960, respec-
tively. The true noise variances σ2

e of the HB system for NSR = 10
[%] and NSR = 30 [%] are 0.1823 and 1.6408, respectively.

IAE σ̂2
e AC(θ̂lb) AC(θ̂n) Iter

NSR=10 [%]

BSRIVC mean 0.3768 0.2229 1.5732×10−4 - 70.067
SD 1.5913×10−3 1.3914×10−3 1.0219×10−4 - 3.8816

HBSRIVC mean 0.3414 0.1830 2.4569×10−4 0.2734 449.80
SD 1.4711×10−3 1.0372×10−3 1.5996×10−4 0.2183 78.281

NSR=30 [%]

BSRIVC mean 1.1305 2.0062 4.7799×10−4 - 73.933
SD 4.7999×10−3 12.625×10−3 3.0756×10−4 - 12.068

HBSRIVC mean 1.0241 1.6465 6.6735×10−4 0.7548 508.87
SD 4.2126×10−3 8.2448×10−3 4.3828×10−4 0.5470 51.810

Table 3.5: Summary of reviewed and designed algorithms for model parameter
estimation in the continuous-time domain.

Linear optimal prefilters

SRIVC
• Parameter estimation of linear TF models; algorithm is
provided in Algorithm 3.1.
• Parameter estimation of bilinear models formulated in a
TISO linear in structure TF form, see Subsection 3.2.1.

HSRIVC
• Parameter estimation of Hammerstein models, where the
dynamic submodel is a bilinear model interpreted in a TISO
linear in structure TF form provided in Algorithm 3.4.
• The HSRIVC algorithm with constrained static input non-
linear function is provided in Subsection 3.4.4.

Adaptive, input dependent, prefilters

BSRIVC
• Parameter estimation of bilinear models interpreted in a
time-step quasi-linear TF form; for implementation see Al-
gorithm 3.2.
• Includes SRIVC algorithm for linear TF model estimation
as a special case.

HBSRIVC
• Parameter estimation of HB models; for implementation
see Algorithm 3.3
• The HBSRIVC algorithm with constrained static input
nonlinear function is provided in Subsection 3.4.2
• Includes SRIVC and BSRIVC algorithms as special cases.

94



Chapter 4

Parameter estimation methods in

discrete-time domain

4.1 Introduction

The continuous-time parameter estimation methods introduced in Chapter 3 are

formulated here in the discrete-time setting. The reviewed and extended sim-

plified refined instrumental variable method is a unified time domain approach

to parameter estimation for linear transfer function models. Since, the proposed

HSRIVC and HBSRIVC algorithms, and their corresponding special cases SRIVC

and BSRIVC algorithms, respectively, are based on this instrumental variable

method, they are also directly applicable to the discrete-time case.

The general BSRIVC and HBSRIVC parameter estimation methods for CT

bilinear and CT Hammerstein-bilinear models, respectively, are, however, not

formulated here in their discrete-time setting. These methods target a specific

class of CT bilinear models, introduced in (2.5), which can be viewed as a subclass

of the currently considered DT bilinear model structure, see Subsection 2.4.3. The

considered class of DT bilinear models can be fully interpreted in MISO linear

in structure transfer function form, see Remark 2.4. Therefore, only the SRIVC

and HSRIVC algorithms are implemented in the discrete-time setting. Both, the

SRIVC and HSRIVC algorithms, have been proposed for parameter estimation of

CT SISO bilinear models interpreted as TISO linear in structure transfer function

models; the presented extension to the multi-input DT case does not impose any

further problems. The discrete-time counterparts of the SRIVC and HSRIVC

algorithms are abbreviated to SRIV and HSRIV, respectively.

While there was a need to use iterative schemes when estimating CT bilinear
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4. Parameter estimation methods in discrete-time domain

models, this is not the case in the DT domain. This need has arisen form the

interpretation of CT bilinear models in a time-step quasi-linear transfer func-

tion form during the filtering operation, i.e. use of the BSRIVC algorithm. The

subsequent iterations were needed for the reconstruction of the unknown filtered

bilinear input terms. Therefore, in order to estimate the parameters of the non-

linear static input function, being part of the CT Hammerstein-bilinear model

structure, the iterative solution has also been adopted, i.e. use of the HBSRIVC

algorithm. However, the situation is different in discrete-time domain, where the

considered DT bilinear model can be directly interpreted as MISO linear in struc-

ture form. Firstly, this faciliates the use of linear parameter estimation methods,

i.e. use of the SRIV algorithm. Secondly, there is no need to use an iterative so-

lution when estimating the nonlinear static input function, hence a noniterative,

over-parameterization, method, based on method proposed by (Hsia 1968), can

be applied.

Although, the over-parameterization method can be applied when estimating

the static part of the DT Hammerstein-bilinear model, the use of an iterative

solution is still the preferred option, because of improved parameter estimation

accuracy, i.e. the use of the designed HSRIV algorithm is preferred. The es-

timated Hammerstein-bilinear model is used for the purpose of control analysis

and design, where an accurate estimate of both static and dynamic submodels

is required. When using the over-parameterization method an auxiliary, over-

parameterized, model is estimated first, from which the individual parameters of

the Hammerstein-bilinear model are inferred. It has been reported in the works

of (Gallman 1976) and (Le, Markovsky, Freeman & Rogers 2010), who considered

the estimation problem of Hammerstein models only, that such inferred parame-

ters are less efficient in terms of parameter accuracy. This is mainly caused by the

parameter redundancy of the estimated auxiliary model, where such a problem

cannot be fully overcome.

In order to demonstrate the performance of the proposed HSRIV algorithm,

in terms of parameter estimation accuracy, a numerical study is presented in Sec-

tion 4.5. In this study the HSRIV algorithm is compared with the noniterative,

over-parameterized, version of the HSRIV algorithm, abbreviated HSRIV-OV.

Although, the HSRIV-OV estimation method is presented here just for bench-

mark purposes, the parameter estimates obtained can be used to initialise the

iterative HSRIV algorithm. In other words, the initial estimates obtained by

the HSRIV-OV algorithm can be subsequently refined and used by the iterative

HSRIV algorithm.
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4. Parameter estimation methods in discrete-time domain

4.1.1 Problem formulation

The parameter estimation problem in the DT domain is formulated in a similar

manner to the parameter estimation problem in the CT domain, which is pre-

sented in Subsection 3.1.3. The input to the discrete-time Hammerstein-bilinear

(HB) model relates to the intermediate input via a static, memoryless, nonlinear

function characterised by pi, i = 1, · · · , r, parameters. It is assumed, that the

static input nonlinearity is parameterized by the following linear-in-parameters

rth order polynomial function

v(k) = φ(u(k)) = p1u(k) + p2u
2(k) + · · ·+ pru

r(k) (4.1)

The dynamic part of the HB model is defined by the following single-input single-

output difference equation

A(z−1)x(k) = B(z−1)v(k − τ) +
n∑

i=1

n∑

j=1

ci,jv(k − i− τ)x(k − j) (4.2)

where the constant coefficient polynomials A(z−1) and B(z−1) of orders n ≥ m,

respectively, are defined in (2.53) and repeated below

A(z−1) = 1 + a1z
−1 + · · ·+ anz

−n

B(z−1) = b1z
−1 + · · ·+ bmz

−m

The difference equation (4.2) relates the delayed intermediate input v(k − τ)

to the noise-free (unobserved) output x(k). The constant τ denotes a pure time

transportation delay in time units, and is assumed to be an integer valued number

related to the sampling time interval, i.e. τ = kh, for k = 0, 1, 2, · · · , N . Note,

that some of the ci,j parameters associated with the nonlinear terms can be set

to zero.

Next, it is assumed that the measured input-output data are uniformly sam-

pled, at sampling time interval h. The sampled signals are denoted u(k) and

y(k), cf. Remark 2.3 on nomenclature used. The output observation equation

takes the following form

y(k) = x(k) + ξ(k) (4.3)

where the measured output y(k) is corrupted by an additive measurement noise

ξ(k). The additive measurement noise is modelled as white, normally distributed,

zero mean, sequence denoted e(k), i.e. ξ(k) = e(k) = N (0, σ2
e).
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4. Parameter estimation methods in discrete-time domain

The model order determination, including time delay estimation, is not con-

sidered hereinafter. Collecting relations (4.1), (4.2) and (4.3), which define the

HB model and formulating the dynamic bilinear submodel (4.2) in the linear in

structure MISO TF form, cf. Remark 2.4, gives

v(k) =
r∑

i=1

piu
i(k) (4.4a)

x(k) =
B(z−1)

A(z−1)
v(k) +

n∑

i=1

n∑

j=1

ci,j
A(z−1)

vi,j(k) (4.4b)

y(k) = x(k) + e(k) (4.4c)

where the additional inputs are defined as

vi,j(k) = v(k − i)x(k − j) for i = 1, · · · , n, and j = 1, · · · , n (4.5)

The complete parameter estimation problem then consist of estimating the un-

known parameter vector comprising the parameter sets for the linear, bilinear

and static nonlinear parts

θ =
[

θT
l θT

b θT
n

]T

(4.6)

based onN uniformly sampled measured input-output data ZN = {u(k), y(k)}Nk=1.

The parameter vectors defining linear dynamic part, bilinear part and static input

nonlinearity, denoted θl, θb and θn, respectively, are defined as

θl =
[

a1 · · · an b1 · · · bm

]T

(4.7a)

θb =
[

c1,1 · · · cn,1 cn,2 · · · cn,n

]T

(4.7b)

θn =
[

p1 · · · pr

]T

(4.7c)

Additionally, the parameter vector consisting only of parameters related to the

dynamic part of the HB model is defined, i.e.

θlb =
[

θT
l θT

b

]T

(4.8)
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4. Parameter estimation methods in discrete-time domain

4.2 Simplified refined instrumental variable

method

The SRIV algorithm is formulated for the case of parameter estimation of the

dynamic part of the HB model (4.4). Therefore, the static input nonlinearity is

assumed to be linear, i.e. (4.4a) reduces to v(t) = u(t). In the present situation,

the suitable error function ε(k) for estimating the parameter set θlb is defined as

follows

ε(k) =
1

A(z−1)

[

A(z−1)y(k)− B(z−1)u(k)−
n∑

i=1

n∑

j=1

ci,jui,j(k)

]

(4.9)

which is in accordance with the equivalently defined error function in the CT

setting (cf. (3.14)). The additional inputs are defined as ui,j(k) = u(k−i)y(k−j),

for i = 1, · · · , n, and j = 1, · · · , n, where for realisability the unobserved output

x(k) in (4.5) is replaced with the measured output y(t) under the assumption of

input u(k) being uncorrelated with the noise e(k). It is noted, that the polynomial

operators commute in this linear case, hence defining the linear prefilter

f(z−1) =
1

A(z−1)
(4.10)

the error function can be written as

ε(k) = A(z−1)yf (k)−B(z−1)uf (k)−
n∑

i=1

n∑

j=1

ci,j
{
ui,j
}

f
(k) (4.11)

The subscript f in (4.11) denotes that the input-output signals y, u and ui,j are

prefiltered by f(z−1), such that

yf (k) =
1

A(z−1)
y(k), uf (k) =

1
A(z−1)

u(k),
{
ui,j
}

f
(k) = 1

A(z−1)
ui,j(k) (4.12)

The curly parentheses then indicate that the input signals ui,j are filtered by the

prefilter f(z−1).

In order to obtain the explicit solution for θlb the minimised error function

(4.11) is formulated in the pseudo-linear regression form

ε(k) = yf (k)−ϕT
f (k)θlb (4.13)
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4. Parameter estimation methods in discrete-time domain

where the regression vector is defined as

ϕT
f (k) =

[

−yf (k − 1) · · · −yf (k − n) uf (k − 1) · · · uf (k −m)

{
u1,1
}

f
(k) · · ·

{
un,1
}

f
(k)

{
un,2
}

f
(k) · · ·

{
un,n

}

f
(k)

](4.14)

The IV least squares en bloc solution is then

θ̂lb =

[
N∑

k=1

ϕ̂f (k)ϕ
T
f (k)

]
−1 N∑

k=1

ϕ̂T
f (k)yf (k) (4.15)

where ϕ̂f (k) denotes the instrumental variable regression vector, which is formu-

lated as follows

ϕ̂T
f (k) =

[

−x̂f (k − 1) · · · −x̂f (k − n) uf (k − 1) · · · uf (k −m)

{
û1,1
}

f
(k) · · ·

{
ûn,1
}

f
(k)

{
ûn,2
}

f
(k) · · ·

{
ûn,n

}

f
(k)

](4.16)

The simulated noise free output x̂(k) is selected as an instrumental variable series

in (4.16), so that the IV additional inputs are then defined as

ûi,j(k) = u(k − i)x̂(k − j) for i = 1, · · · , n, and j = 1, · · · , n (4.17)

where x̂(k) is the output of the following auxiliary model

x̂(k) =
1

A(z−1, θ̂l)

[

B(z−1, θ̂l)u(k) +
n∑

i=1

n∑

j=1

ci,j(θ̂b)u(k − i)x̂(k − j)

]

(4.18)

The notation ci,j(θ̂b) indicates that the estimated parameters ci,j are used, which

are part of the estimated parameter vector θ̂b.

Similarly to the SRIVC algorithm 3.1, the SRIV algorithm is implemented as

follows

Algorithm 4.1 (SRIV).

Stage 1 Initialisation: Compute an initial parameter vector estimate θ̂
g
lb,

for g = 0, where g denotes the iteration number. In (4.15), the filtered
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4. Parameter estimation methods in discrete-time domain

regression and IV regression vectors are chosen as

ϕT
f (k) = ϕT (k)

ϕ̂T
f (k) = ϕT (k)

where the filtered input-output signals are replaced by the directly mea-

sured, unfiltered, signals. Therefore, the SRIV algorithm is initiated by

a simple least squares estimate of autoregressive with exogenous input

(ARX) model.

Stage 2 Iterative IV estimation

for g = 1 : convergence (see (4.20))

(1) Generate the instrumental variable series (modelled output) using

the auxiliary model (4.18) based on the estimated parameter set

from the previous iteration step θ̂
g−1
lb , i.e.

x̂(k) =
1

A(z−1, θ̂g−1
l )

[

B(z−1, θ̂g−1
l )u(k)

+
n∑

i=1

n∑

j=1

ci,j(θ̂
g−1
b )u(k − i)x̂(k − j)

]

(2) Prefilter signals y(k), u(k), ui,j(k), x̂(k) and ûi,j(k) by the filter

f(z−1, θ̂g−1
l ) =

1

A(z−1, θ̂g−1
l )

(3) Form the filtered regression vector ϕT
f (k) and the IV regression vec-

tor ϕ̂T
f (k) according to (4.14) and (4.16), respectively, and compute

the latest parameter vector estimate using

θ̂
g
lb =

[
N∑

k=1

ϕ̂f (k)ϕ
T
f (k)

]
−1 N∑

k=1

ϕ̂T
f (k)yf (k)

end

Stage 3 Parametric error computation: Compute the estimated para-

metric error covariance matrix associated with the final parameter vec-
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4. Parameter estimation methods in discrete-time domain

tor estimate

P̂ = σ̂2
e

[
N∑

k=1

ϕ̂f (k)ϕ̂
T
f (k)

]
−1

(4.19)

where σ̂2
e denotes the estimated noise variance defined in (4.21).

Equivalently to the SRIVC algorithm 3.1, the convergence criterion monitor-

ing the maximum relative change of parameter estimates is also used, i.e.

max
i

∣
∣
∣
∣
∣

θ̂
g+1
lb (i)− θ̂

g
lb(i)

θ̂
g+1
lb (i)

∣
∣
∣
∣
∣
< ǫ, for i = 1, 2, · · · , p (4.20)

The number of parameter estimates is denoted p and ǫ is a user specific threshold

limit. The rounded parentheses after vector θ̂lb denote the vector index. Note,

that the maximum number of parameter estimates is n+m+ (n× n), but some

parameters can be set zero. The noise variance estimate, required in (4.19), is

computed by

σ̂2
e =

1

N − p

N∑

k=1

[

yf (k)−ϕT
f (k)θ̂lb

]2

(4.21)

where the final parameter vector estimate is used, i.e. θ̂lb = θ̂
g
lb, for g = end.

4.3 Hammerstein SRIV (HSRIV) method

Equivalently to the HSRIVC algorithm 3.4, the HSRIV parameter estimation

method is a two step, iterative, algorithm. In Step 1, it is postulated that the

estimate of the parameters defining the static nonlinear block, θn, is already avail-

able. Thus, by knowing θn it is then possible to compute the intermediate input

v(k) and, subsequently, the parameters corresponding to the bilinear submodel,

θlb, are estimated. The estimate of θlb is obtained by the SRIV algorithm 4.1,

where the input u(k) is replaced with v(k).

Considering Step 2, the estimate of θlb is available from the previous step.

Subsequently, in order to estimate the parameter set θn, the HB model (4.4)

must be rearranged with respect to this unknown parameter set and the new

corresponding equation error ε(k) must be formed. Substituting the polynomial

function (4.4a) for v(k) in bilinear model (4.4b) and then substituting the result-

ing expression for x(k) in the measurement equation (4.4c), assuming that the
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4. Parameter estimation methods in discrete-time domain

input u(k) is uncorrelated with the noise e(k), gives

y(k) =
B(z−1)

A(z−1)

r∑

l=1

plu
l(k) +

n∑

i=1

n∑

j=1

ci,j
A(z−1)

r∑

l=1

plu
l(k− i)y(k− j) + e(k) (4.22)

Rearranging (4.22) with respect to θn, which consists of the parameters pl, l =

1, · · · , r, leads to

y(k) =
r∑

l=1

pl

[

B(z−1)

A(z−1)
ul(k) +

n∑

i=1

n∑

j=1

ci,j
A(z−1)

ul(k − i)y(k − j)

]

+ e(k) (4.23)

Under the chosen noise scenario, a suitable error function is then formulated as

ε(k) =
1

A(z−1)

[

A(z−1)y(k)−
r∑

l=1

pl

[

B(z−1)ul(k)

+
n∑

i=1

n∑

j=1

ci,ju
l(k − i)y(k − j)

]] (4.24)

Noting the definition of prefilter f(z−1) given in (4.10), the term 1/A(z−1) can

be taken inside the brackets so that the error function can be expressed as

ε(k) = A(z−1)yf (k)−
r∑

l=1

pl

[

B(z−1)
{
ul
}

f
(k)

+
n∑

i=1

n∑

j=1

ci,j
{
ul(k − i)y(k − j)

}

f

](4.25)

The curly parentheses in (4.25) indicate which signal or a product of signals is

filtered, hence the powers of signal u(k) are filtered and also the products of time

shifted powers of signal u(k) and time shifted signal y(k) are filtered.

In order to obtain the least squares solution to the given estimation problem,

the above expression (4.25) is formulated in the pseudo-linear regression form

ε(k) = yf (k)−ϕT
f (k)θn (4.26)
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where

yf (k) = A(z−1)yf (k) (4.27)

ϕT
f (tk) =

[

w1(k) · · · wr(k)
]

(4.28)

wl(k) = B(z−1)
{
ul
}

f
(k) +

n∑

i=1

n∑

j=1

ci,j
{
ul(k − i)y(k − j)

}

f

for l = 1, · · · , r. The IV least squares solution is then

θ̂n =

[
N∑

k=1

ϕ̂f (k)ϕ
T
f (k)

]
−1 N∑

k=1

ϕ̂T
f (k)yf (k) (4.29)

In accordance with the SRIV algorithm, the instrumental variable regression vec-

tor ϕ̂f (k) is defined as

ϕ̂T
f (tk) =

[

ŵ1(k) · · · ŵr(k)
]

(4.30)

ŵl(k) = B(z−1)
{
ul
}

f
(k) +

n∑

i=1

n∑

j=1

ci,j
{
ul(k − i)x̂(k − j)

}

f

for l = 1, · · · , r, with the noise free simulated output x̂(k) selected as an instru-

mental variable. The simulated output is computed according to (4.18), where

the input u(k) is replaced with the intermediate input v(k).

Discrete-time implementation of the HSRIVC algorithm 3.4, based on the DT

HB model governed by (4.4), is summarised as follows

Algorithm 4.2 (HSRIV).

Stage 1 Initialisation: Compute an initial parameter vector estimate θ̂
g
lb,

for g = 0, where g denotes the iteration number. The static input

function is initilised with θ̂0
n = [1 0 · · · 0]T , i.e. v(k) = u(k). In (4.29),

the filtered regression and IV regression vectors are chosen as

ϕT
f (k) = ϕT (k)

ϕ̂T
f (k) = ϕT (k)

where the filtered input-output signals are replaced by the directly mea-

sured, unfiltered, signals.
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Stage 2 Iterative estimation

for g = 1 : convergence

(Step 1.a) Compute the intermediate input to the dynamic submodel

v(k) =
r∑

i=1

θ̂g−1
n (i)ui(k)

(Step 1.b) Generate the instrumental variable series

x̂(k) =
1

A(z−1, θ̂g−1
l )

[

B(z−1, θ̂g−1
l )v(k)

+
n∑

i=1

n∑

j=1

ci,j(θ̂
g−1
b )v(k − i)x̂(k − j)

]

(Step 1.c) Prefilter signals y(k), v(k), vi,j(k), x̂(k) and v̂i,j(k) by the

filter

f(z−1, θ̂g−1
l ) =

1

A(z−1, θ̂g−1
l )

where vi,j(k) = v(k − i)y(k − j) and v̂i,j(k) = v(k − i)x̂(k − j), for

i = 1, · · · , n and j = 1, · · · , n.

(Step 1.d) Form the regression vectors ϕT
f (k) and ϕ̂T

f (k), defined in

(4.14) and (4.16), respectively, where all the inputs u(k) are re-

placed with v(k). Compute the latest parameter vector estimate

using

θ̂
g
lb =

[
N∑

k=1

ϕ̂f (k)ϕ
T
f (k)

]
−1 N∑

k=1

ϕ̂T
f (k)yf (k)

(Step 2.a) Prefilter signals contained in wl and ŵl(k), for l = 1, · · · , r,

as defined in (4.28) and (4.30), respectively, using the updated

filter, i.e.

f(z−1, θ̂g
l ) =

1

A(z−1, θ̂g
l )

(Step 2.b) Form the regression vectors ϕT
f (k) and ϕ̂T

f (k) according to

(4.28) and (4.30), respectively. Form the output yf (k) defined in
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(4.27). Obtain the latest least squares estimate

θ̂g
n =

[
N∑

k=1

ϕ̂f (k)ϕ
T
f (k)

]
−1 N∑

k=1

ϕ̂f (k)yf (k)

end

Stage 3 Parametric error computation: Compute the estimated para-

metric error covariance matrices denoted P̂lb and P̂n associated with

the final parameter vector estimates θ̂lb and θ̂n, respectively, hence

P̂lb = σ̂2
e

[
N∑

k=1

ϕ̂f (k)ϕ̂
T
f (k)

]
−1

(4.32a)

P̂n = σ̂2
ē

[
N∑

k=1

ϕf (k)ϕ
T
f (k)

]
−1

(4.32b)

where the appropriate regression vectors ϕ̂f (k) and ϕf (k) are used as

defined in Steps 1 and 2.

Equivalently to the HSRIVC algorithm 3.4, the convergence criterion might

be selected to monitor the maximum relative change of parameter estimates,

see (3.80), or to monitor the value of the integral of absolute error (3.81). The

estimate of the noise variances σ̂2
e and σ̂

2
ē , defined in (4.32), is computed according

to (4.21), where the input signal u(k) is replaced with v(k) and the output signal

y(k) is replaced with y(k), respectively.

4.3.1 Constrained HSRIV method

The constrained static nonlinear input function is derived in (3.89) and repeated

below

v(k) = u(k) +
r∑

i=2

pi
[
−u(k) + ui(k)

]
(4.33)

The function (4.33) is defined for the input signal u(k) in a range u(k) ∈ 〈0, 1〉

and the parameter p1 of the original, unconstrained, polynomial (4.4a) is then

computed according to

p1 = 1−
r∑

i=2

pi (4.34)
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Note, that the output v(k) of the constrained polynomial (4.33), for a given input

u(k) and parameter set pi, i = 2, · · · , r, would be the same as the output of the

original polynomial function (4.4a), when the parameter p1 is computed according

to (4.34).

The constrained polynomial expression (4.33) is substituted for v(k) in the

bilinear model (4.4b), so that the expression (4.22) then takes the following form

y(k) =
B(z−1)

A(z−1)

(

u(k) +
r∑

l=2

pl
[
−u(k) + ul(k)

]

)

+ e(k)

+
n∑

i=1

n∑

j=1

ci,j
A(z−1)

(

u(k − i) +
r∑

l=2

pl
[
−u(k − i) + ul(k − i)

]

)

y(k − j)

(4.35)

Expressing (4.35) with respect to parameters pl, l = 2, · · · , r, leads to

y(k) =
B(z−1)

A(z−1)
u(k) +

n∑

i=1

n∑

j=1

ci,j
A(z−1)

u(k − i)y(k − j)

+
r∑

l=2

pl

[

−
B(z−1)

A(z−1)
u(k)−

n∑

i=1

n∑

j=1

ci,j
A(z−1)

u(k − i)y(k − j)

+
B(z−1)

A(z−1)
ul(k) +

n∑

i=1

n∑

j=1

ci,j
A(z−1)

ul(k − i)y(k − j)

]

+ e(k)

(4.36)

Similarly to the error function (4.25) of the unconstrained HSRIV algorithm, a

suitable error function for the constrained HSRIV algorithm, consisting of pre-

filtered signals, is formulated as

ε(k) =A(z−1)yf (k)−B(z−1)uf (k)−
n∑

i=1

n∑

j=1

ci,j
{
u(k − i)y(k − j)

}

f

−
r∑

l=2

pl

[

−B(z−1)uf (k)−
n∑

i=1

n∑

j=1

ci,j
{
u(k − i)y(k − j)

}

f

+B(z−1)
{
ul
}

f
(k) +

n∑

i=1

n∑

j=1

ci,j
{
ul(k − i)y(k − j)

}

f

]

(4.37)

The above expression (4.37) is then re-written in the pseudo-linear regression

form

ε(k) = yf (k)−ϕT
f (k)θn (4.38)
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where

θn =
[

p2 · · · pr

]T

(4.39)

yf (k) =A(z
−1)yf (k)−B(z−1)uf (k)

−
n∑

i=1

n∑

j=1

ci,j
{
u(k − i)y(k − j)

}

f
(4.40)

ϕT
f (k) =

[

w2(k) · · · wr(k)
]

(4.41)

wl(k) =− B(z−1)uf (k)−
n∑

i=1

n∑

j=1

ci,j
{
u(k − i)y(k − j)

}

f

+ B(z−1)
{
ul
}

f
(k) +

n∑

i=1

n∑

j=1

ci,j
{
ul(k − i)y(k − j)

}

f

for l = 2, · · · , r. Due to the use of the constrained polynomial (4.33) only r − 1

parameters need to be estimated. The instrumental variable regression vector

also needs to be defined, hence

ϕ̂f (k) =
[

ŵ2(k) · · · ŵr(k)
]

(4.42)

ŵl(k) =− B(z−1)uf (k)−
n∑

i=1

n∑

j=1

ci,j
{
u(k − i)x̂(k − j)

}

f

+ B(z−1)
{
ul
}

f
(k) +

n∑

i=1

n∑

j=1

ci,j
{
ul(k − i)x̂(k − j)

}

f

for l = 2, · · · , r and x̂(k) being the instrumental variables. The overall number

of parameters to be estimated is n+m+ (n× n) + (r − 1).

The constrained HSRIV algorithm 4.2 is then implemented with the following

differences:

• In Stage 1 the constrained static input nonlinear function is as defined in

(4.33) and is initialised with θ̂0
n = [0 0 · · · 0]T .

• Stage 2, Step (1.a), the intermediate input to the dynamic submodel is

computed according to

v(k) = u(k) +
r∑

i=2

θ̂g−1
n (i)

[
−u(k) + ui(k)

]

• Stage 2, Step (2.b), the regression vector ϕT
f (k) is newly defined in (4.41),
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the IV regression vector is defined in (4.42), the output yf (k) is defined in

(4.40), and the parameter vector θn is redefined according to (4.39).

4.4 Over-parameterized HSRIV (HSRIV-OV)

method

In the first step of the proposed HSRIV-OV parameter estimation method, an

over-parameterized auxiliary dynamic model is estimated by the SRIV algorithm

4.1. Subsequently, the unique parameter sets defining the static and dynamic

submodels are inferred in the next estimation step. Since, it is not possible to

uniquely distinguish between the contributions of the individual submodels to the

overall steady-state gain from measured input-output data, see Example 3.2, the

steady-state gain of the static function is chosen to be constrained.

4.4.1 SRIV estimation of the over-parameterized model

The over-parameterized model is obtained such that the constrained polynomial

function (4.33) is substituted for v(k) in the bilinear model (4.4b) and then the

resulting expression is substituted for x(k) in the measurement equation (4.4c),

cf. (4.35), which leads to

y(k) =
B(z−1)

A(z−1)

(

u(k) +
r∑

l=2

pl
[
−u(k) + ul(k)

]

)

+ e(k)

+
n∑

i=1

n∑

j=1

ci,j
A(z−1)

(

u(k − i) +
r∑

l=2

pl
[
−u(k − i) + ul(k − i)

]

)

y(k − j)

(4.43)

The new input signal is introduced for the index l = 2, · · · , r, i.e.

ūl(k) = −u(k) + ul(k) (4.44)

and also the following parameters are introduced

b̄i,l = plbi for i = 1, · · · ,m (4.45a)

c̄i,j,l = plci,j for i = 1, · · · , n, and j = 1, · · · , n (4.45b)

Additionally, the over-parameterized constant coefficient polynomial B(z−1) is

defined

B̄l(z
−1) = plB(z−1) = b̄1,lz

−1 + · · ·+ b̄m,lz
−m (4.46)
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for l = 2, · · · , r. Using the newly defined input ūl(k), the bilinear coefficients c̄i,j,l

and the polynomial B̄l(z
−1) the model (4.43) is re-expressed as

y(k) =
B(z−1)

A(z−1)
u(k) +

n∑

i=1

n∑

j=1

ci,j
A(z−1)

u(k − i)y(k − j)

+
r∑

l=2

B̄l(z
−1)

A(z−1)
ūl(k) +

r∑

l=2

n∑

i=1

n∑

j=1

c̄i,j,l
A(z−1)

ūl(k − i)y(k − j) + e(k)

(4.47)

The over-parameterized model (4.47) has n+ r× (m+ n× n) parameters, which

is (r − 1)(m+ n× n− 1) parameters more than the HB model (4.35) estimated

by the constrained iterative HSRIV algorithm. This difference in the number of

parameters is important even for moderate values of r and can affect the accuracy

of the estimates, see (Le, Markovsky, Freeman & Rogers 2011).

The error function (4.9) for the over-parameterized model (4.47) takes the

following form

ε(k) =
1

A(z−1)

[

A(z−1)y(k)− B(z−1)u(k)−
n∑

i=1

n∑

j=1

ci,ju(k − i)y(k − j)

−
r∑

l=2

B̄l(z
−1)ūl(k)−

r∑

l=2

n∑

i=1

n∑

j=1

c̄i,j,lūl(k − i)y(k − j)

] (4.48)

Subsequently, the prefilter 1/A(z−1) is taken inside the brackets so that the error

function can be expressed in an equation error form, hence

ε(k) =A(z−1)yf (k)−B(z−1)uf (k)−
n∑

i=1

n∑

j=1

ci,j
{
u(k − i)y(k − j)

}

f

−
r∑

l=2

B̄l(z
−1)
{
ūl
}

f
(k)−

r∑

l=2

n∑

i=1

n∑

j=1

c̄i,j,l
{
ūl(k − i)y(k − j)

}

f

(4.49)

The equation error (4.49) can be further expressed in the pseudo-linear regression

form, i.e.

ε(k) = yf (k)−ϕT
of (k)θo (4.50)

where θo is the vector of the parameters in the over-parameterized model (4.47)

defined as

θo =
[

θT
lb p2θ̄

T · · · prθ̄
T

]T

(4.51)

In (4.51) the parameter vector θT
lb is provided in (4.8) and the new parameter
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vector θ̄ is formed such that

θ̄ =
[

b1 · · · bm c1,1 · · · cn,1 cn,2 · · · cn,n

]T

(4.52)

From (4.51) it is evident that the number of estimated parameters increases with

the increasing order r of the constrained polynomial function (4.33). The re-

gression vector for the over-parameterized model, denoted ϕT
of (k), is defined as

follows

ϕT
of (k) =

[

ϕT
f (k) ϕ̄T

2 (k) · · · ϕ̄T
r (k)

]T

(4.53)

where the regression vector ϕT
f (k) has been already defined for the case of the

SRIV estimation of the bilinear submodel only, and is provided in (4.14). The

new regression vectors ϕ̄T
l (k), l = 2, · · · , r, are defined as

ϕ̄T
l (k) =

[ {
ūl
}

f
(k − 1) · · ·

{
ūl
}

f
(k −m)

{
ūl(k − 1)y(k − 1)

}

f
· · ·

{
ūl(k − n)y(k − 1)

}

f

{
ūl(k − n)y(k − 2)

}

f
· · ·

{
ūl(k − n)y(k − n)

}

f

]

(4.54)

where the input ūl(k) is introduced in (4.44). The SRIV algorithm 4.1 uses

the simulated output x̂(k) as an instrumental variable, hence the corresponding

instrumental variable regression vector for the considered HSRIV-OV algorithm

is defined as follows

ϕ̂T
of (k) =

[

ϕ̂T
f (k) ˆ̄ϕ

T

2 (k) · · · ˆ̄ϕ
T

r (k)
]T

(4.55)

where ϕ̂T
f (k) is defined in (4.16) and

ˆ̄ϕ
T

l (k) =
[ {

ūl
}

f
(k − 1) · · ·

{
ūl
}

f
(k −m)

{
ūl(k − 1)x̂(k − 1)

}

f
· · ·

{
ūl(k − n)x̂(k − 1)

}

f

{
ūl(k − n)x̂(k − 2)

}

f
· · ·

{
ūl(k − n)x̂(k − n)

}

f

]

(4.56)

for l = 2, · · · , r. The instrumental variable x̂ is then the output of the auxiliary

model

x̂(k) =
B(z−1, θ̂o)

A(z−1, θ̂o)
u(k) +

n∑

i=1

n∑

j=1

ci,j(θ̂o)

A(z−1, θ̂o)
u(k − i)x̂(k − j)

+
r∑

l=2

B̄l(z
−1, θ̂o)

A(z−1, θ̂o)
ūl(k) +

r∑

l=2

n∑

i=1

n∑

j=1

c̄i,j,l(θ̂o)

A(z−1, θ̂o)
ūl(k − i)x̂(k − j)

(4.57)
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Finally, the over-parameterized model (4.47) is estimated by the SRIV al-

gorithm 4.1. Since, the presented SRIV algorithm has been introduced for the

estimation of the bilinear dynamic submodel only, the estimated parameter vec-

tor, regression vectors and the auxiliary model used for the instrumental variable

generation need to be redefined as follows: The estimated parameter vector θo

has been defined in (4.51) and the corresponding regression vectors are defined

in (4.53) and in (4.55), respectively. The instrumental variable is generated from

the auxiliary model introduced in (4.57).

4.4.2 Inferring unique parameter vector defining the HB

model

Once the parameter vector θo has been estimated the parameter vectors θn and

θlb, which correspond to the static and dynamic submodels of the overall HB

model (4.4), respectively, need to be inferred. Due to the particular choice of the

constrained polynomial function (4.33), the estimated parameter vector θo has a

special structure (4.51), such that the first part of this vector is the sought θlb.

Therefore, by virtue of estimating the parameter vector θo the estimate of θlb is

also obtained.

Subsequently, in order to infer the parameter vector θn, which consists of

parameters pl, l = 2, · · · , r, it is noted that the known (estimated) parameter set

θlb, which is defined in (4.8) and repeated below

θlb =
[

θT
l θT

b

]T

(4.58)

can be also expressed as

θlb =
[

a1 · · · an θ̄T

]T

(4.59)

where θ̄, introduced in (4.52), is part of the estimated θo.

Therefore, the estimate of θ̄, denoted ˆ̄θ, is known from the estimated vector

θlb, cf. (4.59). Defining new parameter vector

ϑ̄l = plθ̄ (4.60)

for l = 2, · · · , r, the parameter vector θo, defined in (4.51), can be expressed as

θo =
[

θT
lb ϑ̄T

2 · · · ϑ̄T
r

]T

(4.61)
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Considering the new definition of θo provided in (4.61) and having the estimate

of θ̄ the individual estimated static parameters are computed as follows

p̂l =
ˆ̄ϑl

(

diag ˆ̄θ
)
−1

for l = 2, · · · , r (4.62)

where the hat denotes an estimated value and pl denotes 1 × (m+ nn) vector

composing of pl parameters only, i.e.

pl =
[

pl · · · pl

]

(4.63)

Equation (4.62) then indicates that every parameter pl, l = 2, · · · , r, is estimated

as many times as is the dimension of the vector θ̄, which is m+ (n× n) times.

Clearly, the estimated individual pl parameters, being part of the vector pl, are

not the same, because of the measurement noise influence and/or the influence

of the unmodelled system dynamics. To solve for this parameter redundancy

problem a simple approach is to take an average value, see e.g. (Eskinat et al.

1991, Ni et al. 2012). The average estimate of parameters pl, for l = 2, · · · , r, is

¯̂pl =
1

m+ nn

m+nn∑

i

p̂l(i) (4.64)

where the bar above the estimate p̂l denotes an average value.

Taking an average value of estimated vector pl means that some estimated

pl, l = 2, · · · , r, parameters are better (in terms of model parameter accuracy)

than the others. The more reliable approach, reported in (Chang & Luus 1971),

is to select only such pl parameters from the vector pl, for l = 2, · · · , r, which

minimise a predefined cost function. This approach is also adopted in this work

and the cost is defined as an error between the measured and modelled output in

a least squares sense, i.e.

U =
1

N

N∑

k=1

[

y(k)− x̂(θ̂lb, θ̂n, k)
]2

(4.65)

where N denotes the overall number of data samples and x̂(θ̂lb, θ̂n, k) denotes the

simulated output based on the estimated parameter vector θ̂lb and the currently

evaluated θ̂n.

For completeness, there are at least two other approaches for inferring the

estimates of θlb and θn reported in the literature. The first approach infers

the individual pl parameters by means of a least squares algorithm, see (Hsia
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1976). Instead of taking an average value as suggested in (4.64), the least squares

estimate is computed instead. The second approach, reported in (Bai 1998),

uses singular value decomposition to separate the two parameter sets from the

over-parameterized estimate of θo.

4.5 Numerical study

In this MCS simulation analysis the iterative constrained backfitting HSRIV algo-

rithm, stated in Subsection 4.3.1, is compared with the noniterative HSRIV-OV

algorithm stated in Section 4.4. The HSRIV-OV algorithm effectively comprises

two distinct parts (stages). In the first part, denoted for clarity HSRIV-OV1, the

over-parameterized auxiliary model is estimated as described in Subsection 4.4.1.

Subsequently, in the second part, denoted for clarity HSRIV-OV2, the static and

dynamic components of the overall HB model are recovered from this estimated

auxiliary model as described in Subsection 4.4.2. In order to gain a more de-

tailed insight into the performance of the two stage HSRIV-OV algorithm, the

performance criteria for the estimated over-parameterized model, i.e. the algo-

rithm HSRIV-OV1 used in the first stage, and the performance criteria for the

recovered HB model, i.e. the algorithm HSRIV-OV2 used in the second stage,

are evaluated and presented separately.

The CT HB system adopted in the Case scenario I of the MCS analysis pre-

sented in Subsection 3.5.1, governed by (3.116) and (3.123), is discretised and

used here. Therefore, it is possible to directly compare the performance of the

continuous-time HSRIVC (SRIVC) and discrete-time HSRIV (SRIV) algorithms.

This also allows the indirect comparison of the HSRIVC and HSRIV-OV algo-

rithms. The structure preserving Euler forward discretisation method is applied

such that the discrete-time parameters of the bilinear submodel are a1 = α1h−1,

b1 = β0h and c1,1 = η1h. The resulting DT HB system having a constrained static

input nonlinearity is

v(k) = u(k) +
3∑

i=2

pi
[
−u(k) + ui(k)

]
(4.66a)

x(k) =
b1z

−1

1 + a1z−1
v(k) +

c1,1
1 + a1z−1

v(k − 1)x(k − 1) (4.66b)

y(k) = x(k) + e(k) (4.66c)

where the corresponding parameter sets, adopting a sampling interval h = 5 [s],
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are

θn =
[

p2 p3

]T

=
[

−4.4 2
]T

(4.67a)

θlb =
[

a1 b1 c1,1

]T

=
[

−0.9875 −0.5 −0.0125
]T

(4.67b)

Considering the HSRIV-OV algorithm, due to the increasing dimensionality of

the estimation problem with the increasing order of the system, the higher order

CT system presented in the Case scenario II, Subsection 3.5.2, is not used in this

numerical study.

The design of the presented MCS simulation study is equivalent to that used

for the continuous-time parameter estimation methods with M = 100 realisa-

tions, cf. Section 3.5. This also includes the selection of the same model fit and

parameter accuracy criteria. The input-output signals and the static input non-

linearity are shown in Figure 3.3. Two noise scenarios are considered, namely

low and high, respectively. The NSR for the low noise scenario is fixed at 10 [%],

which is anticipated to be present on an actual HVAC systems. The NSR for

the high noise case scenario is 30 [%], which corresponds to a rather severe noise

contamination. When initialising the iterative HSRIV algorithm the static input

nonlinearity is assumed to be linear, i.e. v(t) = u(t), hence setting θ̂0
n = [0 0]T .

Both the HSRIV and HSRIV-OV algorithms are initialised with a least squares

estimate of an auxiliary ARX model. The results for SRIV estimation of the

dynamic bilinear submodel only, i.e. v(t) = u(t) in (4.66), are also provided.

4.5.1 Results

Table 4.1 presents the single run and MCS estimation results for the considered

algorithms. The single run estimates are obtained for the noise seed value 22.

In the case of SRIV and HSRIV algorithms, the SD (standard deviations) and

SE (standard errors) values are reasonably matched. In both cases, the esti-

mated standard errors are approximately two orders of magnitude smaller than

the estimated parameters. Comparing the SD and SE values of the HSRIV-OV

and HSRIV algorithms, it is noted that these are always higher in the case of

the HSRIV-OV algorithm. This indicates a lower estimation accuracy for the

HSRIV-OV algorithm.

A more comprehensive set of numerical results are provided in Table 4.2, where

the mean and associated SD values of IAE, σ̂2
e , AC(θ̂lb), and AC(θ̂n) perfor-

mance criteria are given. The SRIV, HSRIV and HSRIV-OV1 algorithms consis-
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tently provide noise variance estimates, which are close to the true noise variances

(stated in the caption of Table 4.2). The IAE and σ̂2
e model fit criteria for the HB

model obtained by the HSRIV algorithm and for the over-parameterized model

obtained by the HSRIV-OV1 algorithm are virtually the same. However, the HB

model inferred from the over-parameterized model, obtained by the HSRIV-OV2

algorithm, performs poorly in terms of the AC(θ̂lb) and AC(θ̂n) criteria. Com-

paring the HB models obtained by the HSRIV and HSRIV-OV2 algorithms, it is

evident that the inferred parameter estimates are approximately three times less

accurate. This indicates that the over-parameterized HB model, estimated in the

first stage of the HSRIV-OV algorithm, i.e. HSRIV-OV1, is suitable for simu-

lation purposes. However, the inferred HB model, obtained in the second stage

of the HSRIV-OV algorithm, i.e. HSRIV-OV2, is neither suitable for simulation

purposes nor for control design.

In Figures 4.1 and 4.2 the true (grey solid line) static function and system

output are compared with the corresponding MCS estimates (black solid lines)

for low and high noise scenarios, respectively. The results are displayed for the

HSRIVC and HSRIVC-OV algorithms only. It is observed that the HSRIV algo-

rithm is able to obtain accurate and consistent static function estimates, including

the simulated outputs. Considering the HSRIV-OV algorithm, the static func-

tion estimates are widely spread around the true static function. This indicates

a poor performance and inability to recover the static and dynamic components

from the over-parameterized HB model consistently.

4.6 Conclusions

In this chapter, the discrete-time SRIV and HSRIV parameter estimation meth-

ods for bilinear and Hammerstein-bilinear model parameter estimation, respec-

tively, have been introduced. In a similar manner to the fact that the bilinear

model structure is a subset of a wider Hammerstein-bilinear model class, the SRIV

algorithm can be viewed as a special case (or subset) of the more general HSRIV

algorithm. Additionally, an over-parameterized, noniterative, counterpart to the

iterative HSRIV algorithm, abbreviated HSRIV-OV, has also been proposed.

A Monte Carlo simulation analysis has shown that a better model fit can be

obtained by the iterative HSRIV algorithm as compared to the HSRIV-OV algo-

rithm. It is postulated, that the statistical efficiency of the HSRIV-OV algorithm

is impaired by the fact that the over-parameterized model is estimated instead

of the appropriately (i.e. minimum number of parameters) parameterized model.
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Figure 4.1: Monte Carlo simulation results for low noise scenario NVR = 10
[%]. The estimated HB models obtained by the HSRIV (left-hand
side plots) and HSRIV-OV (right-hand side plots) algorithms are
compared. The true static functions and system outputs (grey solid
lines) are plotted against the estimated responses (black solid lines).

The HSRIV algorithm has been able to obtain consistent and accurate estimates

of the individual static and dynamic submodels. This makes the HSRIV algo-

rithm a suitable choice when estimating the DT Hammerstein-bilinear models

for control analysis and design purposes. For example, some control methods are

based on an inverse function of the estimated static input nonlinearity, so that

the control performance then depends on an accurate estimate of such an input

function.

The iterative HSRIV algorithm requires an initial estimate of the static input

nonlinearity, which can be based on a priori technical knowledge. The accuracy of

this initial estimate may then influence the convergence and overall performance

of the algorithm. In the case of the HSRIV-OV algorithm, no a priori knowledge

regarding the static input function estimate is required. The HSRIV-OV algo-

rithm can be initialised in a straightforward manner based on a relatively simple

least square estimate of an over-parameterized ARX model. Therefore, it is pro-
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Figure 4.2: Monte Carlo simulation results for high noise scenario NVR = 30
[%]. The estimated HB models obtained by the HSRIV (left-hand
side plots) and HSRIV-OV (right-hand side plots) algorithms are
compared. The true static functions and system outputs (grey solid
lines) are plotted against the estimated responses (black solid lines).

posed that the HSRIV-OV algorithm is used to obtain an initial parameter vector

estimate, which can be subsequently refined by the HSRIV algorithm. Moreover,

the presented discrete-time HSRIV and HSRIV-OV parameter estimation meth-

ods require, in general, less a priori knowledge during the initialisation stage

then their CT counterparts. Therefore, when possible, the presented DT param-

eter estimation methods can be used to initialise the CT methods introduced in

Chapter 3.
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Table 4.1: Monte Carlo simulation (MCS) results. SR denotes a single run results for seed value 22, SE denotes the estimated
standard error, SD denotes the standard deviation of MCS estimates.

Parameter α1 β0 η1 p2 p3
True values -98.75×10−2 -0.5 -12.5×10−3 -4.4 2

SNR=10 [%]

SRIV θ̂ -98.7557×10−2 -0.4983 -12.466×10−3 - -
(SR) SE 3.9840×10−5 1.5595×10−3 5.6220×10−5 - -

SRIV mean -98.7504×10−2 -0.4999 -12.503×10−3 - -
(MCS) SD 5.9494×10−5 2.1786×10−3 7.5480×10−5 - -

HSRIV θ̂ -98.7516×10−2 -0.4956 -12.293×10−3 -4.4336 2.0175
(SR) SE 3.8794×10−5 1.5021×10−3 5.2046×10−5 1.2453×10−2 0.8762×10−2

HSRIV mean -98.7496×10−2 -0.4997 -12.481×10−3 -4.4047 2.0023
(MCS) SD 6.1938×10−5 3.4496×10−3 17.251×10−5 5.0663×10−2 3.2987×10−2

HSRIV-OV θ̂ -98.7620×10−2 -0.4869 -11.385×10−3 -4.2578 1.8343
(SR) SE 6.9052×10−5 2.6506×10−3 8.9113×10−5 - -

HSRIV-OV mean -98.7500×10−2 -0.4995 -12.475×10−3 -4.4003 1.9961
(MCS) SD 8.1579×10−5 13.249×10−3 67.621×10−5 16.743×10−2 11.215×10−2

SNR=30 [%]

SRIV θ̂ -98.7668×10−2 -0.4948 -12.400×10−3 - -
(SR) SE 1.1797×10−4 4.6268×10−3 1.6718×10−4 - -

SRIV mean -98.7512×10−2 -0.4999 -12.510×10−3 - -
(MCS) SD 1.7803×10−4 6.5264×10−3 2.2634×10−4 - -

HSRIV θ̂ -98.7547×10−2 -0.4872 -11.894×10−3 -4.4996 2.0519
(SR) SE 1.1594×10−4 4.4269×10−3 1.5336×10−4 3.7557×10−2 2.6407×10−2

HSRIV mean -98.7489×10−2 -0.4991 -12.450×10−3 -4.4131 2.0062
(MCS) SD 1.8525×10−4 10.342×10−3 5.1761×10−4 15.164×10−2 9.8783×10−2

HSRIV-OV θ̂ -98.7852×10−2 -0.4632 -9.126×10−3 -3.9500 1.4883
(SR) SE 1.9658×10−4 7.3385×10−3 2.2928×10−4 - -

HSRIV-OV mean -98.7497×10−2 -0.4997 -12.485×10−3 -4.4069 1.9878
(MCS) SD 2.4624×10−4 39.318×10−3 20.069×10−4 51.238×10−2 34.095×10−2
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Table 4.2: Comprehensive Monte Carlo simulation results. The true noise variances σ2
e for the bilinear system for NSR = 10 [%]

and NSR = 30 [%] are 0.3265 and 2.9384, respectively. The true noise variances σ2
e for the HB system for NSR = 10

[%] and NSR = 30 [%] are 0.2820 and 2.5378, respectively.

IAE σ̂2
e AC(θ̂lb) AC(θ̂n) Iter

SNR=10 [%]

SRIV mean 0.4561 0.3267 1.7644×10−3 - 4.1333
SD 0.1427×10−2 0.4071×10−3 1.2706×10−3 - 0.3519

HSRIV mean 0.4238 0.2824 2.8813×10−3 4.8805×10−2 348.93
SD 0.1334×10−2 0.4845×10−3 1.9119×10−3 3.5737×10−2 4.6975

HSRIV-OV1 mean 0.4238 0.2824 - - 5.5333
SD 0.1340×10−2 0.4978×10−3 - - 0.7432

HSRIV-OV2 mean 0.4431 0.3617 10.552×10−3 16.619×10−2 5.5333
SD 2.2817×10−2 94.080×10−3 7.9864×10−3 11.281×10−2 0.7432

SNR=30 [%]

SRIV mean 1.3684 2.9408 5.2866×10−3 - 5.6000
SD 0.4281×10−2 3.6859×10−3 3.8030×10−3 - 0.5071

HSRIV mean 1.2715 2.5413 8.6225×10−3 14.602×10−2 352.07
SD 0.4003×10−2 4.2844×10−3 5.7366×10−3 10.690×10−2 12.591

HSRIV-OV1 mean 1.2714 2.5412 - - 7.8000
SD 0.4019×10−2 4.4348×10−3 - - 1.6125

HSRIV-OV2 mean 1.3312 3.2601 31.444×10−3 50.208×10−2 7.8000
SD 7.7113×10−2 0.8761 23.482×10−3 35.262×10−2 1.6125
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Chapter 5

Modelling of heating ventilation

and air conditioning system

5.1 Introduction

The goal of this chapter is to develop dynamic control design purpose oriented

air temperature and humidity models of an environmentally controlled clean

room manufacturing zone in Abbott Diabetes Care, UK. These models, which

are Hammerstein-bilinear in structure, are subsequently used for control analysis

and tuning of the corresponding HVAC control system. The aim is two-fold in

terms of improved set-point tracking and reduced energy consumption.

The currently utilised control algorithm is a standard linear proportional-

integral (PI) controller, which is tuned at one operating point based on a locally

linearised model, see (Åström & Hägglund 2006). The common approach is to

select a least stable point of operation for the control tuning purposes, so that

the overall stability of the system is guaranteed over the whole operational range,

see (Underwood 1990). However, due to the complexity, nonlinear characteristics

and non-stationary operational conditions of the HVAC system the selection of

such a critical operating point (control tuning) is a non-trivial task in practice

(Underwood 1999). Therefore, the developed models should be flexible enough to

replicate the main dynamic and static nonlinear characteristics of the considered

HVAC system over the whole feasible operational range. Subsequently, such

models would then allow for enhanced control analysis, which would result in

a better informed selection of the critical point of operation and corresponding

linearised model.

The system identification challenge lies in the fact that the investigated HVAC
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5. Modelling of heating ventilation and air conditioning system

system is already installed and fully integrated within the manufacturing plant

(factory). In other words, the HVAC system is not installed on a testbed fa-

cility, which would allow comprehensive system identification experiments to be

conducted in a controlled laboratory environment. This greatly limits the scope

and type of possible experimentation, which can be conducted. Therefore, the

research methodology and the resulting models have to comply with this limita-

tion.

The chapter is structured as follows: The functionality of the investigated

HVAC system and relevant technical details are provided in Section 5.2. In the

following Section 5.3 the experimental setup is explained and the system inputs

and outputs are selected. The overall control oriented temperature model of

the manufacturing zone comprises two interconnected submodels, which are the

zone temperature submodel and the air handling unit temperature submodel,

provided in Sections 5.4 and 5.5, respectively. A unique control oriented humidity

model of the environmentally controlled manufacturing zone is then provided in

Section 5.6. Additionally, Sections 5.4, 5.5 and 5.6 commence with a literature

review, which relates the developed models to the existing published models. The

conclusions and final remarks are given in Section 5.7 and an essential background

to psychrometrics is provided in Appendix B.

5.2 Plant details

The air conditioning system composes of four main components: namely, fresh

air plant (FAP), chilled water (CHW) plant, low temperature hot water (LTHW)

plant and the heating ventilation and air conditioning (HVAC) system. Consider

the schematic diagram of the overall air conditioning system given in Figure 5.1.

Firstly, the outdoor air progresses through the FAP, where the temperature of

the air is constantly regulated between (5, 10) [◦C]. Then, the pre-conditioned

air enters the mixing box and is mixed with the return air from the controlled

zone, i.e. manufacturing area. The mixing ratio of fresh air to return air is

approximately 3:17. Subsequently, the air mixture progresses through the HVAC

system, where the desired values of the air temperature and humidity (measured

in terms of dew-point temperature) are achieved.

A more detailed description of the HVAC system is given in Figure 5.2. Con-

sidering Figure 5.2 and continuing from the stage, where the mixture of supply

air and return air enters the HVAC system, it is then progressed through the de-

humidification unit (DU). The dehumidification unit is Munster MX 5000 type,
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Figure 5.1: Schematic diagram of the overall air conditioning system.

where the type number refers to the air volumetric flow in [m3h−1] for which the

unit is designed. A portion of the return air (approximately 34%) is by-passed

directly to the air handling unit (AHU) and is not treated by the DU. For the

personnel comfort the designed air flow to the controlled zone is 2 [m3s−1], i.e

7200 [m3h−1]. The corresponding DU for this volumetric flow would be Munster

MX 7200. However, such DU would be oversized for the current application and

would constantly deliver too low humidity levels. Therefore, approximately 34%

of the return air is led directly through the bypass to the AHU allowing for the

use of an undersized DU, in this case Munster MX 5000. The volumetric flow in

the bypass is controlled by dampers, whose position, in the setup considered, is

fixed.

After dehumidification the processed air enters the AHU Wolf KG 160, where

the air is heated or cooled depending on the operating requirements. The condi-

tioned air is then driven by the extract fan into the controlled area. The controlled

zone is a clean room production area, where, in order to avoid the environmental

contamination by dust and other air pollutants, a higher air pressure than that

atmospheric is maintained. This is achieved by having lower air outflow of 1.8

[m3s−1] from the controlled zone than the air inflow 2 [m3s−1], hence part of the
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Figure 5.2: Block diagram of the modelled HVAC system.

air ventilates through gaps around doors and windows.

In the return duct a permanent dew-point temperature and temperature trans-

mitter Vaisala DMT 348, measuring the state of the return air, is installed. The

dew-point temperature measurement range is (−70, 80) [◦C] with ±2 [◦C] ac-

curacy or better. The temperature range is (0, 80) [◦C] with accuracy of ±0.2

[◦C]. This transmitter is used for the purpose of control, where the installation of

the transmitter in the return duct permits the control system to compensate for

any load disturbances within the controlled zone. Additionally, a set of probing

sensors P1,··· ,6 is installed for gaining technical insight into the investigated sys-

tem and for identification purposes. The probing sensors are Vaisala HMD 40/50

Y relative humidity and temperature transmitters for HVAC applications. The

measurement range for which the relative humidity reading accuracy is specified

is (10, 90) [%] with ±3 [%] accuracy. The temperature range is (−10, 60) [◦C]

with accuracy of ±0.3 [◦C].

5.2.1 Dehumidification unit

The main component of the DU is a large desiccant rotor, which is made of narrow

air flutes formed in a honeycomb like structure. The air flutes are coated with
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5. Modelling of heating ventilation and air conditioning system

a moisture absorbent desiccant material, in this case, silica gel. The desiccant

rotor itself is of homogenous symmetric structure and continuously rotates with

a constant angular velocity of approximately 1/10 [rpm]. There are two separate

counterflow streams of so called reactivation (regeneration) and process air, which

simultaneously flow through the upper and lower part of the desiccant rotor,

respectively. These two air streams are separated by a hard barrier and cannot

mix with each other. This barrier then divides the rotor into corresponding

reactivation (90◦) and dehumidification (270◦) sectors.

The functionality of the DU is described as follows. The process air, being

the dehumidified air, is driven through the dehumidification sector. The silica gel

absorbs the moisture from the process air and, because the desiccant rotor is hot,

the process air is additionally warmed as well. The dry air is then delivered to the

outlet and is supplied to the AHU unit for further treatment. Simultaneously, the

outdoor air is heated by a gas driven reactivation heater and the resulting (hot)

reactivation air is driven through the reactivation sector. This air then evaporates

the moist from the silica gel and wet reactivation air is subsequently vented into

an exhaust duct and back to the atmosphere. This process continuously repeats

as the desiccant rotor rotates at constant speed.

The maximum power of the reactivation heater is 53.1 [kW ] and with fully

open gas supply valve the heater is able to increase the temperature of the supplied

outdoor air by 95 [◦C]. The power of the gas heater, hence the humidity of the

outflow process air, is controlled by the central control system, where a dedicated

PI controller is utilised. The controller drives an electronic actuator mounted to

the gas valve, by applying the control action, denoted ug. The gas valve itself has

a lower safety limit of 24 [%] (low fire), hence it is never switched off due to the

safety issues at the ignition stage.

Steady-state characteristic

Due to the coupled heat and mass transfer processes occurring within the des-

iccant rotor the dynamic and steady-state behaviour of the DU is inherently

complex and nonlinear (Ge, Li, Wang & Dai 2008). Overall, there are four ex-

ternal inputs, these being the dry-bulb temperatures and the specific humidities

of the process and reactivation air measured at the inlet, denoted Tp,in, Xp,in,

Tr,in and Xr,in, respectively. There are also four corresponding outputs, which

are dry-bulb temperatures and specific humidities of the process and reactivation

air at the outlet, denoted Tp,out, Xp,out, Tr,out and Xr,out, respectively.

In order to gain an insight into the influence of the four inputs on the humidity
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5. Modelling of heating ventilation and air conditioning system

and temperature of the process air, it is desirable to obtain and plot a steady-state

characteristic of the DU. However, it is not possible to measure such steady-state

characteristics on the investigated HVAC system, because the inputs (Tr,in, Xr,in)

are not measured (safety and technical reasons) and also these inputs are not

constant and are greatly influenced by the outdoor weather conditions. Therefore,

the static empirical model presented in (Beccali, Butera, Guanella & Adhikari

2003) is used instead. This model may not necessarily simulate the behaviour of

the investigated HVAC unit, however it is deemed to be sufficient for gaining and

insight into the basic functionality of the desiccant rotors. The model is valid

for the following input ranges Tp,in ∈ (20, 34) [◦C], Xp,in ∈ (8, 15) [g/kg], Tr,in ∈

(40, 80) [◦C] and Xr,in ∈ (10, 16) [g/kg]. In Figure 5.3 the static characteristics

between inputs (Tp,in, Xp,in) and outputs (Tp,out, Xp,out) are shown. The nominal

values at which the characteristics are plotted are Tr,in = 80 [◦C] and Xr,in = 12

[g/kg]. Figure 5.4 shows the static characteristics between inputs (Tr,in, Xr,in)

and outputs (Tp,out, Xp,out), for the nominal values of the second two inputs
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Figure 5.3: The steady-state characteristics of the DU at nominal values Tr,in =
80 [◦C] and Xr,in = 12 [g/kg].

Figure 5.3 shows that for increasing Xp,in the value of Xp,out also increases,

as expected. Interestingly, the temperature Tp,out significantly increases with

increasing Xp,in. It is observed, in Figure 5.4, that the Xp,out is inversely propor-
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Figure 5.4: The steady-state characteristics of the DU at nominal values Tp,in =
20 [◦C], Xp,in = 8 [g/kg].

tional to the reactivation air temperature Tr,in. This is an expected and desirable

relationship upon which the DU is designed. Additionally, for an increasing value

of Tr,in the temperature Tp,out also increases, which is, in general, an unwanted ef-

fect. In order to compensate for this temperature increase the AHU is commonly

engaged in cooling model.

Special observation

A special observation, originating in the work of (Danne 2008), has been made re-

garding the oscillatory pattern in the measurement of the dew-point temperature.

The dew-point temperature is measured by a sensor D, mounted in the return

duct, for two constant gas valve spindle positions of ug = 30 [%] and ug = 100

[%], respectively. During this experiment the cooling and heating coils of the

AHU have been switched off and only the extract fan has been left switched on,

so that the air recirculates. The left-hand and right-hand side plots of Figure

5.5 show the measured dew-point temperature oscillatory pattern for the two gas

valve positions. It can be observed that for a medium humidity level (left plot)

the amplitude of the approximately sinusoidal signal has an average value of 0.13

[◦C] with a time period of 5.85 [min]. For high humidity levels (right plot),

the amplitude increases to an average value of 0.52 [◦C] with a time period of
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6.57 [min]. A similar observation has been made when measuring the dry-bulb

temperature of the return air.
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Figure 5.5: The left-hand and right-hand side plots show the measured dew-
point temperature oscillatory pattern, in [◦C], for constant gas valve
positions of ug = 30 [%] and ug = 100 [%], respectively. The cooling
and heating coils of the AHU are turned off.

No conclusive evidence of the cause of this oscillatory pattern has been found.

The only active element of the investigated HVAC system has been the DU. Since

both the dew-point temperature (directly related to the specific humidity) and

the dry-bulb temperatures of the air are affected, it is assumed that the DU is the

direct or indirect cause of the measured sustained oscillations. The possible, yet

not proven, cause might be the closed loop nature of the air conditioning system

itself. It can be seen from Figure 5.2, that the air recirculates, where the DU

is an active nonlinear element in this loop. Therefore, the observed oscillations

might be attributed to a limit-cycle phenomenon of such a nonlinear closed loop

HVAC system setup.

It should be noted, that the oscillatory pattern observed in the measurement

of dew-point and dry-bulb temperatures may unfavourably affect the parameter

estimates of the designed models. This phenomenon is of a nonstationary char-

acter and is also not present (or rather detectable by the used sensors) at all

times.

5.2.2 Air handling unit

The AHU, being the Wolf KG 160 type, comprises the cooling coil unit (CCU),

the heating coil unit (HCU) and the main centrifugal fan. Depending on the

demanded zone temperature set-point the processed air is sensibly (no moist
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condensation) cooled or heated to achieve this demand. Both the CCU and HCU

are water-to-air heat exchangers having cooling and heating capacities 45.3 [kW ]

and 6 [kW ], respectively. The CCU is supplied with chilled water at designed

supply temperature of 4.5 [◦C] from the chilled water plant, denoted CHW in

Figure 5.1. The HCU is supplied with low temperature hot water (LTHW) at 82

[◦C] from the LTHW plant. The centrifugal fan is driven by an electric motor

having 7.5 [kW ] power. In order to prevent the electric motor from overheating,

the motor is installed within the AHU such that the processed air cools down the

motor.

During normal operational conditions the DU provides enough heat to com-

pensate for any heat losses of the building, consequently the HCU is disabled by

the control system for most of the time. Since the HCU is disabled under nor-

mal operating conditions, it is not further considered in the subsequent modelling

stage, see Section 5.3 for more details. The CCU cooling capacity is alternated by

means of the flow of chilled water. This is controlled by the cooling valve, which

is modulated by a dedicated PI controller with the corresponding control action

uc. The cooling valve is a Siemens two-port seat valve VVF 45.65 DN 50/40.

The valve has a linear characteristic for the range 〈0, 30〉 [%] of stem position and

equal percentage characteristic in the range of 〈30, 100〉 [%], see Appendix A.1

for more details on the terminology used.

Special observation

A special observation has been made regarding the heat gains and losses of the

AHU. In order to examine any potential heat gains and losses of the investigated

AHU, an experiment has been conducted. During this experiment, both the

CCU and HCU have been disabled, while the main centrifugal fan has been left

switched on. The temperature of the inflow air to the AHU, denoted Tai [
◦C], has

been measured by sensor P5, which is located just before the AHU, see Figure 5.2.

The outflow air temperature, denoted Tao [
◦C], has been measured by sensor P6,

which is located just after the AHU. The whole HVAC system has been switched

to manual control mode and left at rest overnight to achieve steady-state. The

gas valve position has been set to ug = 26 [%] and the cooling valve has been

completely closed uc = 0 [%].

Figure 5.6 shows the measured Tai and Tao temperatures together with the

corresponding gas valve position ug. Firstly, it can be noted that Tai and Tao are

steadily rising for the time period when ug = 26 [%]. This is due to the influence

of increasing outdoor temperature, which, through the reactivation air intake of
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the DU, influences Tai. During this time period, the outflow temperature is higher

than the inflow temperature, i.e. Tai < Tao, by approximately 1.62 [◦C]. This

temperature rise is caused by the 7.5 [kW ] electric fan motor located at the far

end of the AHU. A portion of the electric motor’s power is converted into heat,

which is conducted and convected into the passing air.
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Figure 5.6: The inflow and outflow air temperatures of the AHU, denoted Tai
and Tao, respectively, plotted gainst the gas valve position ug. The
CCU and HCU are disabled and only the main fan is in operation.

Subsequently, the gas valve has been opened to ug = 35 [%] and then further

to ug = 40 [%]. It is observed, in Figure 5.6, that with the gas valve being more

opened the Tai temperature rises and, consequently, also the temperature Tao.

For the inflow air temperature 30.1 [◦C], the inflow and outflow air temperatures

are approximately equal, i.e. Tai = Tao = 30.1 [◦C]. Note, that this temperature

has been measured when Tai undergoes a dynamic change due to the change of

gas valve position, hence this is not the steady-state value. After this point the

outflow temperature is always lower, i.e. Tai > Tao.

It is concluded, that at the observed temperature of 30.1 [◦C] the constant

heat gain from the electric motor is equal to the heat loss from the AHU. The

heat loss from the AHU depends on the difference between the temperature of the

processed air and the ambient air temperature. Therefore, when this temperature

difference is large enough the heat losses are greater than the heat gain and, as a
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consequence of that, Tai > Tao.

5.2.3 Fresh air plant

The main purpose of the FAP is to cool and pre-dehumidify the outdoor air.

The FAP is effectively an AHU, which composes of a CCU, an electric heating

plate and centrifugal fan. The dehumidification is performed by cooling down

the air below its dew-point temperature, i.e. sensible and latent cooling occurs.

Therefore, the actual temperature of the cooling element has to be lower than

the dew-point temperature of the outdoor air. The CCU is supplied with chilled

water at the designed supply temperature of 4.5 [◦C] from the CHW, which is a

sufficiently low temperature for a latent cooling application.

The FAP under consideration maintains the supply air temperature in the

range of (5, 10) [◦C]. In the case when the outdoor air is above 10 [◦C] the

CCU is switched on and the air is cooled down. The lower limit of 5 [◦C] is

due to the frost protection issues, since in the winter season dampers and other

mechanical parts might freeze due to the low outdoor air temperature. To heat

up the outdoor air the electric heating plate is used.

5.2.4 Control and monitoring system

The manufacturing requirements in ADC UK are such that the environmental

conditions within the manufacturing zone are: the air dry-bulb temperature must

lie within the range 21± 4 [oC] and the air relative humidity must be lower than

20 [%]. The corresponding dew-point temperature is −2.8 ± 3.3 [oC], which has

been computed using relation B.12. The temperature and the relative humidity

of the air within the manufacturing zone are constantly monitored by a building

management system. This system uses a set of sensors which are independent of

the control system and are not reviewed here.

The air conditioning system is controlled by a dedicated distributed control

system, where each of the controllers utilises a PI algorithm together with an

additional control logic, such as anti-windup logic and valve positioning logic.

The feedback signal for the temperature control loop is the measured return air

dry-bulb temperature. The temperature sensor is denoted T in Figure 5.2. The

manufacturing zone temperature set-point is 21.5 [oC] with a dead band ±0.5

[oC]. Depending on the measured temperature of the return air, the control logic

decides whether to engage in cooling or heating mode, i.e. whether to use the

CCU or HCU. The control set-point, denoted r, is thus r = 22 [oC] when the AHU
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is in the cooling mode and r = 21 [oC] when the AHU is in the heating mode.

In the case where the measured return air temperature is within the interval of

(21, 22) [oC], i.e. within the control dead band, no control action is taken.

The humidity control loop uses a dew-point temperature sensor, rather than

a relative humidity sensor, to measure the return air humidity. This is due to

the fact that the air dew-point temperature corresponds to the air water content

directly and does not depend on the air dry-bulb temperature, hence it neglects

the influence of the temperature control loop on the control of the DU. The control

dew-point temperature set-point is r = −10 [◦C]. Note that since the DU heats

up the conditioned air, a cross-coupling between the DU and AHU temperature

control loop exists.

5.3 System identification setup

The scope and type of possible experimentation is limited because the HVAC

system is already installed on the manufacturing site. The main limits are sum-

marised as follows: Not all external inputs acting on the system can be freely

manipulated, e.g. external weather conditions would be a typical example. Not

all inputs can be measured, in many cases this would mean to interfere with

the air conditioning unit in an irreversible manner, e.g. drilling probing holes.

The conditioned air recirculates, so that part of the return air is recovered and

reused. However, this implies that the system itself operates in a natural closed

loop setup, where some of the considered inputs are partially, or fully, caused by

the system outputs. The HVAC system (unit) under consideration is a part of a

complex network of alike HVAC units, which actively regulate the environmental

conditions within adjacent active manufacturing zones. The individual HVAC

units are interconnected via gas, chilled and hot water supply pipe networks. In-

evitably, due to the normal operation of the adjoining HVAC units the pressure in

such pipe networks fluctuates, which disturbs the performance of the investigated

HVAC unit, i.e. the units interact.

The aim of this system identification study is to obtain control oriented air

temperature and humidity models, which replicate the behaviour of the system

over the whole operational range. Based on a priori knowledge, it is known

that the system behaves in an nonlinear manner (Hammerstein-bilinear model

characteristics) throughout its operational range. Therefore, the manipulated

system inputs should excite the system over the whole range of operation under

consideration. Consequently, the time duration of the measurement experiments
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should be of sufficient length to allow the system to exhibit its main dynamic

behaviour, so that the acquired input-output data are sufficiently informative.

However, the long time duration of the data acquisition experiments allows for

slow varying load disturbances to act on the system, which introduces offsets

and trends into the measured data. The time duration of the conducted data

acquisition experiments is in order of hours, during this time the outdoor weather

conditions may significantly change and influence the collected data. Therefore,

the designed models and corresponding input selection should reflect this. In

order to minimise the influence of fast varying load disturbances, no personnel

nor active machinery were present during the data acquisition procedure in the

manufacturing zone.

Prior to every data acquisition experiment the system is allowed to settle, so

that the system is then excited from its initial steady-state conditions. In order

for the system to settle, the HVAC control system is disabled; in manual mode

of operation the gas, cooling and heating valves are set at fixed positions. The

measured steady-state values (baseline values) are subtracted from the signals,

hence any constant offsets are removed and do not need to be estimated. Since

the measured signals are affected by measurement noise a sample mean of the first

10 samples is taken as the baseline of the measured signal being considered. This

is an important consideration due to the type of parameter estimation methods

used. The applied estimation methods, introduced in the foregone Chapters 3 and

4, uses optimal prefilters. Since the baselines are subtracted from the measured

input-output signals, these start approximately at a zero value. Subsequently,

the optimal prefilters can be initialised with zero, which simplifies the use of the

adopted parameter estimation methods. The measured input-output signals are

sampled at h = 1 [s], which is the highest available sampling interval of the

instrumentation device.

For each obtained model two model performance criteria are evaluated, namely,

the integral of absolute error, denoted IAE [◦C], and the coefficient of determi-

nation, denoted R2
T [%]. The integral of absolute error is defined in (3.121) and

for convenience repeated below

IAE =
1

N

N∑

k=1

|e(tk)| (5.1)

where N is the number of data samples and the time index notation (tk) empha-

sizes that the original continuous-time signal is sampled at discrete time instances,

i.e. tk = kh. The error, denoted e(tk), between the measured output, denoted
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y(tk), and simulated model output, denoted x̂(tk), is defined as

e(tk) = y(tk)− x̂(tk) (5.2)

The IAE criterion then provides an average simulation error in the units of the

evaluated output signal (in this case [◦C]). The coefficient of determination is

defined as

R2
T = 100

(

1−
σ2
e

σ2
y

)

(5.3)

where the variances σ2
e and σ2

y are computed as follows

σ2
e =

1

N

N∑

k=1

[e(tk)− ē(tk)]
2 (5.4)

σ2
y =

1

N

N∑

k=1

[y(tk)− ȳ(tk)]
2 (5.5)

The bar above the variables in (5.4) and (5.5) denotes a sample mean. The R2
T

criterion then provides a measure of how much of the measured output variance

is explained (or captured) by the simulated output variance. In the case where

the variances of measured and simulated output matches, i.e. the signals are the

same, the R2
T criterion is 100 [%].

In the following two subsections the inputs and outputs of the designed man-

ufacturing zone temperature and humidity models are selected. This selection,

then defines the basic structure of the two considered models. Additionally, in

both cases, it is assumed that the sensor and actuator dynamics are lumped

within the dominant dynamics of the main modelled HVAC system components.

5.3.1 Manufacturing zone temperature model

The desired model is intended for control analysis and design, therefore the model

output is the regulated temperature of the return air measured by sensor T, which

is located in the main return duct, see Figure 5.2. The return air temperature

(or room temperature) is denoted Tar [
◦C], see Figure 5.7.

The temperature control loop regulates cooling or heating valve positions

of the AHU such that the demanded zone temperature set-point is achieved.

During the normal mode of operation the DU provides enough heat, therefore

the HCU of the AHU is disabled for most of the time and is active only during

cold start up. To simplify identification and modelling of the AHU, only the
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Figure 5.7: Schematic diagram showing the inputs and outputs of the manufac-
turing zone temperature model, provided in subfigure (a), and the
manufacturing zone humidity model, provided in subfigure (b).

cooling coil has been considered in the experimental setup. The corresponding

control (manipulated) input to the manufacturing zone temperature model is

thus the cooling valve position signal uc. In the case, when the AHU is designed

and sized appropriately, the influence of the cooling coil and the heating coil

on the temperature of passing air is equivalent, however having opposite effects.

Therefore, it is anticipated that the identified manufacturing zone temperature

model (including only CCU) can be also utilised in the model based tuning of

the PI controller corresponding to the heating coil.

For the purposes of system identification and simulation the cooling valve

position signal is normalised in the range 〈0, 1〉, where 0 corresponds to closed

and 1 to fully opened valve. For the ease of reading, when referring to a particular

valve position in the main text, this is expressed rather as a percentage of valve

opening, i.e. uc = 〈0, 1〉× 100 [%] in ‘engineering units’. The same normalisation

also applies to the gas valve position ug used in the following Subsection 5.3.2.

The second selected input is the inflow air temperature to the AHU, denoted

Tai [◦C]. The temperature Tai is measured by the sensor P5, see Figure 5.2.

The inflow air temperature effectively acts as a load disturbance and changes

the operating point of the AHU. The temperature Tai is mainly affected by the

operation of the DU and outdoor weather conditions.

The overall manufacturing zone temperature model composes of two subsys-

tems, these being the AHU and the zone itself, and these have been identified

separately. The cooling valve position and the temperature of the inflow air to

the AHU are selected to be the inputs for the AHU submodel; the outflow air

temperature, denoted Tao [
◦C], is the output of the AHU submodel. The outflow

air of the AHU is also the supply air to the manufacturing zone. Therefore, the

supply air temperature, denoted Tas [◦C], is used as the input to the zone tem-
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perature submodel, where Tao = Tas. The return air temperature, Tar, is then

the output of the zone temperature submodel as well as the output of the overall

manufacturing zone temperature model. The air temperatures Tao and Tas are

measured by sensor P6, see Figure 5.2 for the location of the sensor.

In order to excite the system the cooling valve position has been adjusted by

applying a stair case signal having a random normally distributed duration of

steps between 9 and 30 [min]. Also the second input to the system, being the

inflow air temperature, has been systematically adjusted. The only possible way

of adjusting the inflow air temperature to the AHU, on the installed HVAC unit,

is to modulate the gas valve of the DU.

Note that due to the experimental setup the inflow air temperature, Tai, is

partially correlated with the outflow air temperature, Tao, of the AHU. Also the

manufacturing zone supply air temperature, Tas, is correlated with the return

air temperature, Tar. This is caused by the air recirculation, i.e. an inherent

closed loop nature of the HVAC system. Further, the inputs Tai and Tas are both

measured and contaminated by measurement noise, which leads to an errors-in-

variables identification scenario.

5.3.2 Manufacturing zone humidity model

A schematic diagram showing the selected input and output signals of the man-

ufacturing zone humidity model is provided in Figure 5.7. The model output

is the regulated dew-point temperature of the return air measured by sensor D,

which is located in the main return duct, see Figure 5.2. The measured return

air dew-point temperature is denoted Tdrm [◦C]. The manipulated input to the

model is the gas valve position ug.

The fresh air dew-point temperature, denoted Tdf [◦C], influences significantly

the measured humidity levels within the manufacturing zone through the fresh

air intake of the HVAC system. Additionally, the dew-point temperature of the

fresh air is closely related to the dew-point temperature of the outdoor air, which

is used by the DU as reactivation air. Therefore a relatively simple linear trend

model is identified. The input to this model is the dew-point temperature, Tdf ,

measured by sensor P2, see Figure 5.1; the model output is the introduced trend,

denoted Tdt [
◦C]. Having the measured fresh air dew-point temperature, Tdf , the

resulting trend is computed and subsequently subtracted from the measured zone

dew-point temperature, Tdrm, giving the detrended zone dew-point temperature

measurement, denoted Tdr, i.e. Tdr = Tdrm-Tdt. The detrended Tdr is then used
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for system identification purposes.

The system has been allowed to settle prior to the identification experiment

with the gas valve being at low fire, ug = 24 [%], and the cooling valve partially

open at uc = 10 [%] (ug = 0). The system identification experiment is designed

such that the gas valve position is gradually increased (a stair case signal) and

then gradually closed. Consequently, the dew-point temperature, Tdr, gradually

decreases, as the gas valve opens, and then returns, i.e. increases as the gas valve

closes. Due to the operation of the DU, the zone dry-bulb temperature, Tar, is

also altered such that it increases and then returns, i.e. decreases during the

experiment.

The efficiency of the DU, i.e. the amount of air moisture removed from the

processed air at a given gas valve position, depends on the dry-bulb temperature

of process and reactivation air entering the DU. The temperature of the reac-

tivation air directly depends on the outdoor air temperature, which may vary

during the data acquisition experiment. The influence of the outdoor air temper-

ature on the humidity level within the manufacturing zone is ignored, because

this influence is not considered to be significant and is not practically identifi-

able. The process air entering the DU is a mixture of fresh air and return air

and its temperature is determined by the respective temperatures of these. The

fresh air temperature is regulated by the FAP to be in the range of (5, 10) [◦C].

The temperature of return air, Tar, has been significantly affected as stated in

the previous paragraph. Since the temperature change of Tar is a direct cause

of the DU operation, the identified humidity model inherently accounts for this

temperature dependency (which is not desirable).

Note that the temperature control loop normally regulates the temperature

Tar to be at the demanded constant set-point. Consequently the temperature of

the process air entering the DU is also approximately constant despite the oper-

ation of the DU. However, during the conducted data acquisition experiment the

Tar had risen approximately from 20 to 27 [◦C] and the identified humidity model

has accounted for this effect. Therefore, in order to mitigate this temperature

rise (any further) and to avoid overheating of the manufacturing zone the cooling

valve is opened at constant fixed position of uc = 10 [%]. It would have been

desirable to keep the temperature Tar constant during the experiment so that the

identified humidity model would more closely correspond to normal operation of

the DU (under closed loop control). However, this would have meant to actively

regulate this temperature by modulating the cooling valve position, which would

inevitably introduce dynamic disturbances into the measurement of Tdrm. The
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resulting zone humidity model is, therefore, a compromise between a fully tem-

perature dependent humidity model and a model which is practically realisable

and identifitable.

5.4 Zone temperature submodel

Having the measured input and output data, being the supply and return air

temperatures Tas(tk) and Tar(tk), respectively, a continuous-time second order

linear model is identified in a black-box manner, i.e. making use of the measured

data only. The resulting model has the same structure as the models found in

(Price, Young, Berckmans, Janssens & Taylor 1999) and (Youssef, Yen, Özcan

& Berckmans 2011), where the temperature models of an experimental chamber

have been identified using a data-based mechanistic (DBM) modelling approach.

Subsequently, a lumped parameter first principles modelling approach is adopted

in which the manufacturing zone is assumed to behave as perfectly mixed vessel.

The resulting first principles model has the same model structure as that obtained

based on measured data only. This confirms the ‘appropriateness’ of the selected

model structure for the data-based identified model and allows a meaningful

interpretation in physical terms. The identified zone temperature submodel and

the conducted analysis were originally presented in (Zajic et al. 2012).

The subsequent analysis of the identified model, based on physical laws, ad-

ditionally allows a heat load disturbance model to be obtained. The input to this

model is a heat gain within the zone, denoted q(tk) [W ], and the output is the

temperature rise due to this heat gain. Such a model is then utilised for control

system tuning purposes, where the knowledge of such a model is advantageous.

Note that time varying variables are denoted with the time index (tk) in rounded

brackets, while the variables and coefficients which are assumed to be constant

in the subsequent sections are denoted without (tk).

5.4.1 Data-based model

Two separate data sets have been acquired 19th July and 20th July 2011, respec-

tively, where the first data set is exclusively used for the purpose of parameter

estimation and the second data set is used for subsequent model validation. In

order to minimise the influence of errors-in-variables on estimated model param-

eters, the measured input signal Tas(tk) is noise prefiltered. A zero-phase second

order Butterworth filter is designed with a cut-off frequency of 5−2 [Hz], see
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(Ifeachor & Jervis 1993), selected mainly based on visual inspection. The sam-

pling interval for the continuous-time manufacturing zone submodel estimation

is selected to be h = 1 [s].

The simplified refined instrumental variable method for continuous-time sys-

tem identification is used, see SRIVC algorithm 3.1. This method is particularly

suitable for the considered application, as the system input is measured and

the adaptive prefiltering helps to additionally attenuate the influence of errors-

in-variables on the estimated parameters. Due to the use of prefilters within

the SRIVC method and the presence of a constant offset in the measured out-

put, the baselines are subtracted from measured input and output signals. The

baselines are selected to be a mean value of the first ten samples, i.e. T̄as =

(1/10)
∑10

k=1 Tas(tk) = 25.1460 [◦C] and T̄ar = (1/10)
∑10

k=1 Tar(tk) = 22.5690

[◦C].

In order to determine the model order and presence of any pure time (trans-

portation) delay the function rivcid in the Captain Toolbox for Matlab, (Taylor,

Pedregal, Young & Tych 2007), has been applied. This function uses the SRIVC

method to estimate a preselected set of CT linear TF models having different

model orders. The model order is then determined based on the computed Young

information criterion (Y IC) for each estimated model, see (Young 2011). This

heuristically defined model fit criterion places emphasis on low order models rep-

resenting the system and is defined as follows

Y IC = ln
σ2
e

σ2
y

+ ln

[

1

p

p
∑

i=1

P̂(i, i)

θ̂2(i)

]

(5.6)

where the parameter p denotes the number of estimated parameters, estimated

error covariance matrix P̂ is provided in (3.24), and the variances σ2
e and σ2

y are

defined in (5.4) and (5.5), respectively. The first term of the Y IC in (5.6) provides

a measure of the ‘goodness’ of fit (cf. with R2
T defined in (5.3)). This logarithmic

measure becomes lower as the variance of the residuals σ2
e decreases. The second

term then gives a measure of how well the estimated model parameters are defined

in terms of the normalised estimated parameter error variances. The second term

is designed to indicate any potential over-parameterization and increases in value

as the estimated total sum of parameter error variances increases. In general, the

lower (the more negative) the value of Y IC criterion the more suitable the model

is. However other criteria such as R2
T should be also considered in the final model

order selection, see (Young 2011) for a further discussion.

The final selected model, having Y IC = −17.6, is a second order model with
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a single zero in the numerator, i.e. n = 2 and m = 1. The estimated pure time

delay is null. It is assumed that any pure time delay has been effectively captured

by the dominant dynamics of the model. For this selected model, the SRIVC,

as described in algorithm 3.1, has been applied with the following settings: The

convergence criterion monitoring the maximum relative change of parameter es-

timate, defined in (3.25), is selected to be ǫ = 1 × 10−10. The prefilter of the

SRIVC algorithm is initialised with the single breakpoint frequency parameter

equal to λ = 0.01. The final estimated model takes the form

Tar(tk) =
β0s+ β1

s2 + α1s+ α2

Tas(tk) + e(tk) (5.7)

where the estimated model parameters are

α1 = 53.3769× 10−4 (0.9352× 10−5) (5.8a)

α2 = 15.8771× 10−7 (0.6221× 10−8) (5.8b)

β0 = 23.2968× 10−4 (0.3300× 10−5) (5.8c)

β1 = 10.3538× 10−7 (0.4018× 10−8) (5.8d)

with the corresponding standard errors provided in the parentheses1. The esti-

mated standard errors are relatively small, compared to the value of estimated

parameters, indicating good accuracy of the obtained parameter estimates.

The estimated model has two real poles with corresponding time constants

T1 = 199.144 [s] and T2 = 3162.73 [s]. The steady-state gain is found to be

SSG = 0.6521. Subsequently, the simulation results with R2
T = 99.744 [%] and

IAE = 0.103 [◦C] are presented in Figure 5.8 for the estimation data set, where

the simulated system output is denoted by x̂(tk). The performance criteria have

also been evaluated for the validation data set and these are R2
T = 99.688 [%] and

IAE = 0.107 [◦C] and the simulation results are presented in Figure 5.9. At time

step 560 [min] an outlier can be seen in the simulation error subplot in Figure 5.9.

This outlier has been caused by a measurement error and has been kept in the

measured data set, because this data set is used only for the validation and not

for estimation purposes. The evaluated performance criteria for the validation

and estimation data sets indicate an acceptable predictive performance of the

estimated zone temperature submodel.

The simulation error (being also the model residuals), plotted in the lower

1Note that for consistency in the estimates 4 decimal places accuracy is adopted. How-
ever, from an engineering viewpoint in any final implementation 3 significant figures would be
normally adequate.
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Figure 5.8: Measured manufacturing zone supply air temperature Tas (black
dashed line) and zone return air temperature Tar (grey solid line)
are shown together with the simulated zone return air temperature
(black solid line). Estimation data set is used.

part of Figure 5.8, is not a zero mean white noise signal. However, the SRIVC

method assumes white additive noise disturbing the output, so the result indicates

that the noise model assumptions were in fact not correct. Additionally, the

sharp spikes can be observed when the input signal changes, which indicates that

the estimated error e(tk) is partially correlated with the input signal Tas. This,

further, indicates that the deterministic part of the model could not capture

all of the deterministic processes caused by the system input. It is assumed,

that the main cause of such correlation is the inherent closed loop setup of the

investigated HVAC system, where the output Tar recirculates and subsequently

largely influences the input Tas. It is anticipated that this may have also affected

the accuracy of the parameter estimates and that the reported SE are probably

too optimistic. However, the calculated R2
T and IAE model fit measures are

considered to be satisfactory. Therefore the model obtained is considered to be

applicable for the intended control analysis and tuning purposes.
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Figure 5.9: Measured manufacturing zone supply air temperature Tas (black
dashed line) and zone return air temperature Tar (grey solid line)
are shown together with the simulated zone return air temperature
(black solid line). Validation data set is used.

5.4.2 First principles considerations

A lumped parameter modelling approach has been adopted in which the manu-

facturing zone is assumed to behave as a perfectly mixed vessel. In this case the

zone air temperature is homogenous in an entire zone volume and equal to the

return air temperature Tar. Consequently, the energy balance equations for the

air within the zone and adjacent walls, are, respectively, given by

C1
dTar(t)

dt
= maca [Tas(t)− Tar(t)]− U1A [Tar(t)− Tw(t)] + q(t) (5.9a)

C2
dTw(t)

dt
= U1A [Tar(t)− Tw(t)]− U2A [Tw(t)− Ta(t)] (5.9b)

where C1 [J/◦C] is the thermal air capacity, C2 [J/◦C] thermal wall capacity, ca

[J/kg◦C] is the air specific heat capacity, ma [kg/s] is the air mass-flow rate, U1

and U2 [J/m2◦C] are the heat transfer coefficients on the inner and outer walls,
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respectively, A [m2] is the effective surface area of the walls, Tw(t) [◦C] is the

mean wall temperature, Ta(t) [
◦C] is the effective ambient temperature and q(t)

[W ] is the heat load disturbance within the zone. The time index (t) is chosen,

emphasising that the signals are not measured but generated by physical based

models.

Using the differential operator s, defined as spx(t) = dpx(t)
dtp

, allows the two

differential equations of (5.9) to be conveniently exposed as

[

s+
maca
C1

+
U1A

C1

]

Tar(t) =
maca
C1

Tas(t) +
U1A

C1

Tw(t) +
1

C1

q(t) (5.10a)

[

s+
U1A

C2

+
U2A

C2

]

Tw(t) =
U1A

C2

Tar(t) +
U2A

C2

Ta(t) (5.10b)

Introducing constant coefficients

a1 =
maca
C1

+
U1A

C1

(5.11a)

a2 =
U1A

C2

+
U2A

C2

(5.11b)

b1 =
maca
C1

(5.11c)

b2 =
U2
1A

2

C2maca
(5.11d)

and combining the set of differential equations (5.10) such that the second equa-

tion (5.10b) is substituted for temperature Tw(t) into the first equation (5.10a)

the following transfer function is obtained

Tar(t) =
b1

s+ a1

{

Tas(t) +
b2

s+ a2
Tar(t) +

U2

U1

b2

s+ a2
Ta(t) +

1

maca
q(t)

}

(5.12)

The combined transfer function (5.12) effectively represents a feedback connection

of two first order dynamic processes, which has been also noted in (Price et al.

1999). A block diagram representation of the combined transfer function (5.12)

is provided in Figure 5.10.

The transfer function (5.12) can be interpreted, in conjunction with the block

diagram provided in Figure 5.10, as follows: The temperature of supply air Tas(t)

directly influences the zone air temperature Tar(t) through the first order dynamic

process (forward path TF) having a time constant of

Tf1 =
1

a1
=

C1

maca + U1A
(5.13)
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b1
s+a1

b2
s+a2

Tas Tar

1
maca

U2

U1

q

Ta

Tw

Figure 5.10: Feedback decomposition of the first principles model representing
the zone temperature submodel dynamics.

Simultaneously, the air temperature, Tar(t), influences the wall temperature,

Tw(t), through the heat transfer process (feedback path TF), which also has

first order dynamics with a corresponding time constant of

Tf2 =
1

a2
=

C2

U1A+ U2A
(5.14)

The time constants Tf1 and Tf2 of the two dynamic modes are proportional to

the thermal capacity of air C1 and wall C2, respectively. Since, it can be assumed

that C2 > C1, due to the wall material thermal properties, then also Tf2 > Tf1.

Subsequently, this slow heat transfer process influences the zone air temperature

via the feedback path. Finally, it can be noted that the heat gain, q(t), and

ambient temperature, Ta(t), are directly related to the temperatures, Tas and

Tar, via gains 1/(maca) and U2/U1, respectively.

Expanding and rearranging the transfer function (5.12) with respect to Tar

gives the complete second order dynamic model representing the zone air tem-

perature, i.e.

Tar(t) =
b1s+ b1a2

s2 + (a1 + a2)s+ (a1a2 − b1b2)

{

Tas(t) +
1

maca
q(t)

}

+
U2b1b2

U1 [s2 + (a1 + a2)s+ (a1a2 − b1b2)]
Ta(t)

(5.15)

During the data collection experiment no heat gains were acting on the system,

i.e. q(t) = 0. Furthermore, the ambient temperature Ta(t) has not been measured.

However, it is expected that it can be considered as being constant over the

duration of the system identification experiment, i.e. Ta(t) ≃ Ta. Consequently,
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Ta effectively introduces a constant offset in the measurements. The constant

offset has been eliminated by subtracting the bases of measured signals in steady-

state prior to parameter estimation. Subsequently, the transfer function (5.15) is

expressed as

Tar(t) =
b1s+ b1a2

s2 + (a1 + a2)s+ (a1a2 − b1b2)
Tas(t) + o (5.16)

where the offset o is defined as

o =
U2b1b2

U1(a1a2 − b1b2)
Ta (5.17)

Comparing the data-based identified model structure (5.7) and that obtained by

physical considerations (5.16), it can be observed that these two are in fact the

same, which validates the prior, data-based, selection of the second order model

structure with a single zero.

Inferring available information from data-based model

The identified model is intended for the purpose of control tuning, where the

current controller operates as a regulator only. In other words, the controller is

required to follow a given, fixed, set-point while rejecting any load disturbances

acting on the system. In order to tune the controller for the load disturbance

rejection application, it is advantageous to obtain a load disturbance model itself.

Comparing the data-based identified model (5.7) and that obtained via physical

considerations (5.16), the following holds

β0s+ β1
s2 + α1s+ α2

!
=

b1s+ b1a2
s2 + (a1 + a2)s+ (a1a2 − b1b2)

(5.18)

where the parameters α1, α2, β0 and β1 are known from the parameter estimation

stage. Denoting the temperature rise of the air within the manufacturing zone

caused by the heat gain q(t) as Tq(t) [
◦C] and considering the relation (5.18) and

the first principles model (5.15), the heat load disturbance model is inferred as

Tq(t) =
β0s+ β1

s2 + α1s+ α2

1

maca
q(t) (5.19)

Since the manufacturing zone submodel is identified in the continuous-time do-

main, the model parameters have real physical meaning. Therefore, it is possible

to multiply the parameters of the identified model by 1/(maca), hence obtaining
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the heat load model. From technical sheets of the AHU the designed air mass-flow

rate isma = 2.4082 [kg/s] and ca = 1005 [J/◦Ckg]. The computed mass-flow rate

is a product between the rated volumetric flow, being 2 [m3/s], and the density

of air, being 1.2041 [kg/m3].

The constant effective ambient temperature Ta can also be calculated. First,

note that the sum of steady-state gains of the first and the second transfer function

in (5.15), denoted SSG1 and SSG2, respectively, is equal to unity, i.e.

SSG1 =
b1a2

a1a2 − b1b2
=
β1
α2

(5.20a)

SSG2 =
U2b1b2

U1(a1a2 − b1b2)
(5.20b)

1 = SSG1 + SSG2 (5.20c)

This is a consequence of energy conservation within the system. The SSG1 pro-

vided in (5.20a) is known, since the ratio β1/α2 is known (estimated). Therefore,

from (5.20c) the SSG2 is calculated

SSG2 = 1− SSG1 (5.21)

In steady-state the following holds

T̄ar = SSG1T̄as + SSG2Ta (5.22)

where the baselines T̄ar and T̄as are measured. Additionally, the offset o in (5.17)

is equal to

o = SSG2Ta (5.23)

hence the constant offset can be computed from (5.22) and (5.23) as

o = T̄ar − SSG1T̄as (5.24)

Knowing the constant offset term from (5.24) and considering the definition of

the offset term given in (5.23), the effective ambient temperature is computed as

follows

Ta =
T̄ar − SSG1T̄as

1− SSG1

=
22.5690− 0.6521× 25.1460

1− 0.6521
= 17.7381 [◦C] (5.25)

The estimated ambient temperature of Ta = 17.74 [◦C] may seem to be underes-

timated at first, as a value around 21 [◦C] would rather be expected with respect
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to the air temperatures of corresponding adjacent manufacturing zones. How-

ever, the relatively simple model used does also include the zone’s floor, which

has a lower temperature, possibly partially explaining the slightly low value of

the estimated Ta.

The estimated second order TF model (5.7) can be decomposed into a feedback

connection introduced in (5.12) using the equality of parameters in (5.18). This

then provides even further insight into the physical properties of the system. The

parameters a1, a2, b1 and b2 of the feedback TF form, defined in (5.11), can be

calculated as follows

b1 = β0 = 23.2968× 10−4 (5.26a)

a2 =
β1
b1

= 44.4431× 10−5 (5.26b)

a1 = α1 − a2 = 48.9326× 10−4 (5.26c)

b2 =
a1a2 − α2

b1
= 25.1968× 10−5 (5.26d)

Knowing the parameters of the two first order processes the time constants, de-

fined in (5.13) and in (5.14), can be computed together with the corresponding

steady-state gains, denoted SSGf1 and SSGf2, respectively, hence

Tf1 =
1

a1
= 204.363 [s] (5.27a)

Tf2 =
1

a2
= 2250.07 [s] (5.27b)

SSGf1 =
b1
a1

= 0.4761 (5.27c)

SSGf2 =
b2
a2

= 0.5669 (5.27d)

It is apparent that the fast process, having time constant Tf1, accounts for the

direct influence of the controlled supply air, while the heat transfer process be-

tween the air and walls has slow dynamics and dominates the zone temperature

over a long time horison. The relatively large gain SSGf2 would indicate rather

large heat losses, however, note, that approximately 0.2 [m3/s] of the air ven-

tilates from the zone so that a higher air pressure than the atmospheric one is

maintained (clean room production area).

Having computed the parameters of the two first order processes, given in

(5.26), and based on the technical insight, the constants ma = 2.4082 [kg/s] and

ca = 1005 [J/◦Ckg] are also known; it is then possible to compute the thermal
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capacities C1 and C2 and parameter products U1A and U2A. From the definition

of parameter b1 in (5.11c), the thermal air capacity is computed as follows

C1 =
maca
b1

= 1.0389× 106
[
J
◦C

]

(5.28)

and knowing C1 the product U1A is then computed from (5.11a), i.e.

U1A = (a1 − b1)C1 = 2.6632× 103
[
J
◦C

]

(5.29)

Having computed U1A it is then possible to calculate the thermal capacity C2

from (5.11d), hence

C2 =
(U1A)

2

b2maca
= 1.1631× 107

[
J
◦C

]

(5.30)

Subsequently, knowing U1A and C2, the product U2A is computed from (5.11b),

that is

U2A = C2

(

a2 −
U1A

C2

)

= 2.5059× 103
[
J
◦C

]

(5.31)

It is interesting to note, that the ratio U2/U1, used in the feedback interpretation

of the TF (5.12), is also known, because U1A and U2A have been calculated,

so that (U2A)/(U1A) = U2/U1. It is not possible to estimate the parameters

U1 and A separately, however the area A might be known from the technical

documentation. Finally, considering the definition of the thermal capacity of the

air C1 = V ρca, where V [m3] denotes the zone volume and ρ [kg/m3] denotes

the density, and assuming V = 10 × 10 × 3 = 300 [m3] and ρ = 1.2041 [kg/m3],

then the approximate value of C1 would be 3.6304 × 105 [J/◦C]. This is almost

three times less than the estimated value of 1.0389 × 106 [J/◦C]. It is assumed,

that this overestimation may have been caused by several factors, e.g. biased

parameter estimates and/or that the model does not take into account that 0.2

[m3/s] of air ventilates out of the zone.

5.5 Air handling unit temperature submodel

In this section, a continuous-time Hammerstein-bilinear model representing the

AHU is obtained. The considered system inputs are the inflow air temperature

Tai(tk) and the cooling valve stem fractional position uc(tk), the system output

is then the temperature of the outflow air Tao(tk). In order to simplify the nota-
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tion, the subscript c of the variable denoting the cooling valve position is omitted

in this section, i.e. uc(tk) → u(tk). The scope of possible experimentation is

limited, because the AHU is already installed on the site, i.e. the measured

input-output data may not be sufficiently informative for parameter estimation

purposes. Therefore, with the knowledge of the first principles analysis a candi-

date nonlinear model structure is determined first and the model parameters are

estimated based on the measured input-output data. Naturally, not all nonlin-

ear regression terms suggested by such analysis are needed. Therefore, some of

the regression terms of the originally determined nonlinear model structure are

discarded, which results in a simplified and well structured Hammerstein-bilinear

model. This model predicts the outflow air temperature with sufficient accuracy

for the current application.

The main active component of the AHU is the cooling coil unit composing

of the finned cold-water-to-air heat exchanger. The heat exchangers are non-

linear components and the modelling challenges of these have been addressed

by many authors. In the work of Thomson, Schooling & Soufian (1996) the

modelling of a pilot-scale parallel-tube heat exchanger carried out in a black-

box manner has been considered. Although, the authors does not refer to the

identified model as being of a HB form, the model obtained does indeed resem-

ble the HB model structure proposed in this thesis. A grey-box modelling ap-

proach to the identification of heat exchangers has been adopted in (Underwood &

Crawford 1991, Underwood 2000, Ghiaus, Chicinas & Inard 2007). This approach

has resulted in accurate yet rather complex models, which are not considered to

be suitable for the current application. Furthermore, some of the models are not

even obtainable under the current experimental setup, where the temperatures

of the supply and discharge cold water to and from the AHU, being the second

input and output of the system, are not measured. It is, therefore believed, that

the model obtained of the AHU presented in this section offers a compromise

solution between complexity, predictive accuracy and practical realisability.

5.5.1 First principles analysis

As in the case of the manufacturing zone submodel, the lumped parameter mod-

elling approach has also been adopted, see (Zajic et al. 2012). The cooling coil,

being the main component of the AHU, is considered to behave as a perfectly

mixed vessel, therefore the discharge cold water temperature, denoted Two(t) [
◦C],

is assumed to be equal to the mean temperature of the whole coil. The energy
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balance on the water side of the coil is then given by

C
dTwo(t)

dt
= mw(t)cw [Twi − Two(t)]− UA [Two(t)− Tao(t)] (5.32)

where C [J/◦C] denotes the overall thermal capacity (sum of water and metal

body of the coil thermal capacities), mw(t) [kg/s] denotes the water mass-flow

rate, cw [J/kg◦C] is the water specific heat capacity, U [J/m2◦C] is the effective

heat transfer coefficient, and A [m2] is the effective coil surface. The supply chilled

water temperature, denoted Twi [
◦C], is assumed to be constant and Tao(t) is the

temperature of the outflow air being the system output. Assuming instantaneous

heat exchange between the air and cooling coil the energy balance on the air side

is

0 = UA [Two(t)− Tao(t)]−maca [Tao(t)− Tai(t)] (5.33)

where Tai(t) is the inflow air temperature being the second system input and

constants ma and ca are defined in (5.9).

The water mass-flow rate entering the coil is modelled by

mw(t) =Mwφ (u(t)) , (5.34)

where Mw denotes the maximal water mass-flow rate for a fully open valve, i.e.

u(t) = 1, and φ (·) represents the valve static characteristic (Hammerstein-type

nonlinearity). The valve installed on the plant has a linear inherent characteristic

in the range of 〈0, 30〉 [%] and an equal percentage inherent characteristic in the

range of 〈30, 100〉 [%] of the stem position. It is, therefore, assumed that the

Hammerstein nonlinearity can be described by a 5th order polynomial, i.e.

v(t) = φ (u(t)) =
5∑

i=1

piu
i(t), (5.35)

where p1,...,5 are constant coefficients to be estimated. It is known that when

u(t) = 1 then v(t) = 1, so that the appropriate scaling is p1 = 1 −
∑5

i=2 pi, see

(3.88). Subsequently, the constraint static polynomial function, defined in (3.89),

is

v(t) = u(t) +
5∑

i=2

pi
[
−u(t) + ui(t)

]
, for u(t) ∈ 〈0, 1〉 (5.36)

hence only p2,...,5 coefficients need to be estimated.
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Further simplifying assumptions have been made regarding the heat transfer

coefficient U . The heat transfer coefficient on the water side depends, in a non-

linear manner, on the water mass-flow rate mw(t), see (Jonsson & Palsson 1991).

While the heat transfer coefficient on the air side predominantly depends, expo-

nentially, on the outflow air temperature Tao(t), see (Underwood 2000). The heat

transfer coefficients on the water and air sides have been, however, considered to

be constant and equal. Additionally, it is noted that during the normal opera-

tion of the HVAC system the air is dehumidified to Tdrm = −10 [◦C] (measured

in terms of dew-point temperature), while the temperature of the chilled supply

water is Twi = 4.5 [◦C]. Therefore, the temperature of the processed air is always

above its dew-point temperature, hence no dew condensates on the surface of the

cooling coil, i.e. only sensible cooling occurs. In the case where condensation took

place this would have to be reflected in the modelling assumptions, see (Wang &

Hihara 2003).

Using the differential operator s and the definition of the water mass-flow rate

(5.34) the energy balance equation on the water side (5.32) can be conveniently

expressed as follows

[

s+
Mcw
C

v(t) +
UA

C

]

Two(t) =
McwTwi

C
v(t) +

UA

C
Tao(t) (5.37a)

Two(t) =
McwTwi

C
v(t) + UA

C
Tao(t)

s+ Mcw
C
v(t) + UA

C

(5.37b)

Subsequently, substituting (5.37b) into the energy balance equation on the air

side (5.33) for the unknown discharge water temperature Two(t) and rewriting

the resulting expression in a transfer function form gives

Tao(t) =
β1,0
s+ α1

v(t) +
η2,1
s+ α1

v(t)Tao(t) +
β3,0s+ β3,1
s+ α1

Tai(t)

+
η4,1
s+ α1

v(t)Tai(t)
(5.38)

where the parameters are defined as

α1 =
macaUA

UAC+macaC
, β1,0 =

McwUATwi

UAC+macaC
, η2,1 = −Mcw

C

β3,0 =
macaC

UAC+macaC
, β3,1 =

macaUA
UAC+macaC

, η4,1 =
macaMcw

UAC+macaC

(5.39)

and the intermediate input v(t) is defined in (5.35). The product between the

input v(t) and output Tao(t) in the second transfer function of (5.38) represents a

bilinear-type nonlinearity, which affects the steady-state gain and the time con-
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stant such that these depends on the operating point. This nonlinearity arises

from the product of the water mass-flow rate mw(t) and the outflow water tem-

perature Two(t) in the enrgy balance equation (5.32). The second nonlinearity,

in (5.38), is the product between the two inputs, i.e. Tai(t) and v(t). If the non-

linear model of the AHU was linearised, this nonlinearity would ensure that the

resulting steady-state gain between valve position u(t) and the outflow air tem-

perature Tao(t) is negative for the case when Tai(t) > Twi, i.e. cooling application,

or positive for the case Tai(t) < Twi, i.e. heating application.

5.5.2 Preliminary system identification

The parameters of the nonlinear model structure suggested by the first principles

analysis (5.38) are estimated based on the measured input-output data. Assuming

a pure time transportation delay on the input u(tk), denoted τu [s], and on the

second input Tai(tk), denoted τai [s], and assuming white, zero mean, additive

measurement noise e(tk); the overall model to be estimated then constitutes a

static input function followed by a nonlinear dynamic submodel, hence

v(tk) = u(tk) +
5∑

i=2

pi
[
−u(tk) + ui(tk)

]
(5.40a)

Tao(tk) =
β1,0
s+ α1

v(tk − τu) +
η2,1
s+ α1

v(tk − τu)Tao(tk) (5.40b)

+
β3,0s+ β3,1
s+ α1

Tai(tk − τai) +
η4,1
s+ α1

v(tk − τu)Tai(tk − τai) + e(tk)

Consequently, two parameter sets need to be estimated, one corresponding to the

static part and one corresponding to the dynamic part of the model, i.e. θn =

[p2, · · · , p5]
T and θlb = [α1, β1,0, η2,1, β3,0, β3,1, η4,1]

T , respectively. The overall

nonlinear model of the AHU is bilinear in the parameters. By exploiting this

property it is possible to solve separately for the unknown parameter vectors θn

and θlb by the designed HSRIVC and HBSRIVC parameter estimation methods,

introduced in Chapter 3.

The dynamic submodel (5.40b) has first order linear dynamics, one bilinear

term and one multiplicative nonlinear term, which is a product between the two

system inputs. Since, the two system inputs are known, the last nonlinear term

can be treated as a new input. Therefore, the overall model of the AHU (5.40)

can be viewed as a multi-input single-output Hammerstein-bilinear model, where

the individual inputs are v(tk − τu), Tai(tk − τai) and v(tk − τu)Tai(tk − τai).

Subsequently, in order to estimate the unknown model parameters, including
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the input delays, the constrained HSRIVC algorithm 3.4 is chosen. The HSRIVC

algorithm has been applied with the following settings: The convergence criterion

monitoring the maximum relative change of the parameter estimate, defined in

(3.80), is selected to be ǫ = 1 × 10−5. The prefilter of the HSRIVC algorithm

is initialised with the single breakpoint frequency parameter equal to λ = 0.004.

The static input nonlinearity is assumed to be linear v(tk) = u(tk), hence setting

θ̂j=0
n = [0, 0, 0, 0]T , where j denotes the iteration index.

Similarly as in the case of the manufacturing zone temperature submodel, the

two separate data sets, acquired 19th July and 20th July 2011, are used. The first

data set is exclusively used for the parameter estimation and the second data set

is used for the model validation only. The measured, noise contaminated, input

signal Tai(tk) is noise prefiltered using zero-phase second order Butterworth filter

with a designed cut-off frequency of 5−2 [Hz], which has been selected mainly

based on visual inspection. The same sampling interval used for the data ac-

quisition is used for the parameter estimation, i.e. h = 1 [s]. Considering the

system dynamics, it is believed that this sampling interval is sufficiently small

and permits for the parameter estimation in the continuous-time domain. Ad-

ditionally, the baselines are subtracted from the measured input and output sig-

nals. The baselines are selected to be the mean value of the first ten samples,

i.e. T̄ai = (1/10)
∑10

k=1 Tai(tk) = 23.5054 [◦C], ū = (1/10)
∑10

k=1 u(tk) = 0 and

T̄ao = (1/10)
∑10

k=1 Tao(tk) = 25.1438 [◦C].

The delays τu and τai on the inputs u(tk) and Tai(tk), respectively, are es-

timated by minimising the IAE criterion (5.1). The IAE criterion has been

computed for all combinations of τu and τai in a predefined range and the results

are shown on the left side of Figure 5.11. The value of the achieved cost V ,

defined in (3.60), is also displayed. The right side of the Figure 5.11 considers

delay estimation of the simplified model derived in a subsequent section. The

minimum value of the IAE is achieved when τu = 55 [s] and τai = 68 [s]. The

value of the delay τai seems to be overestimated, because it is known that the time

required for the air to progress through the AHU is around 3 [s]. It is observed,

in Figure 5.11, that the influence of τai on the value of computed IAE is low and

relatively constant for a particular choice of τu. It is concluded, that the possi-

ble overestimation of the delay τai is caused by not having a sufficiently exciting

input Tai(tk), which is correlated with the output Tao(tk) due to the particular

experimental setup.

Subsequently, for the time delays τu = 55 [s] and τai = 68 [s] obtained, the

estimated model parameters are given in Table 5.1 with the corresponding esti-
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Figure 5.11: Input delay estimation based on original and simplified model:
cost V and IAE criterion plotted against delay τu for different
values of delay τai.

mated standard errors provided in the parentheses. Most of the standard errors

are relatively small, compared to the value of estimated parameters, indicating

good accuracy of the parameter estimates obtained. This is with the exception of

the standard errors related to the parameters β3,0 and η4,1, which are relatively

large indicating poor accuracy of the parameter estimates and possible identifia-

bility issues.

Subsequently, the simulation results withR2
T = 99.2557 [%] and IAE = 0.2901

[◦C] are presented in Figure 5.12 for the estimation data set. The performance cri-

teria have also been evaluated for the validation data set. These are R2
T = 99.0801

[%] and IAE = 0.3747 [◦C], respectively, and the accompanying simulation re-

sults are presented in Figure 5.13. The system output of the estimation and

validation data sets has been simulated for the inputs with subtracted bases,

hence each simulated output starts at a zero value. When plotting the results,
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Table 5.1: The estimated parameters of the original model and simplified model
with the corresponding estimated standard errors provided in the
parentheses.

Original Simplified Original Simplified

α1
3.2470 ×10−3 3.2914 ×10−3

p1
0.4515 0.4169

(4.2513 ×10−6) (3.9801 ×10−6) (-) (-)

β1,0
-10.489 ×10−2 -10.762 ×10−2

p2
12.785 12.988

(1.2890 ×10−4) (1.2894 ×10−4) ( 0.0545) (0.0542)

η2,1
-4.2453 ×10−3 -4.3944 ×10−3

p3
-47.213 -47.789

(7.1550 ×10−6) (7.2997 ×10−6) (0.1623) (0.1615)

β3,0
19.968 ×10−3 2.1253 ×10−3

p4
61.573 62.275

(2.2439 ×10−3) (3.6812 ×10−6) (0.1955) (0.1948)

β3,1
2.0842 ×10−3

p5
-26.596 -26.891

(4.8168 ×10−6) (0.0818) (0.0815)

η4,1
4.0924 ×10−6

(9.7729 ×10−6)

the subtracted bases have been added, so that the graphical results correspond

to the actual values.

Figures 5.12 and 5.13 each comprise three subplots. In each figure, the upper

plot shows measured (grey solid line) and simulated (black solid line) outflow air

temperature Tao(tk). The middle plot shows the simulation error e(tk), defined

in (5.2), for the currently estimated model (black solid line) and simplified model

(grey solid line), which is estimated in the subsequent section. The lower plot

shows inputs u(tk) (grey solid line) and Tai(tk) (black solid line). Note that

the temperature range of the inflow air is Tai ∈ 〈20.4027, 32.6651〉 [◦C] for the

estimation data set and Tai ∈ 〈20.0044, 31.6228〉 [◦C] for the validation data set.

The estimated error e(tk) does not have white noise properties and is also

correlated with the first system input u(tk), as it is clearly visible from Figure

5.12. This indicates that not all of the system dynamics have been captured by

the deterministic part of the proposed model (5.40). Nevertheless, the results

obtained in terms of the IAE and R2
T criterion are satisfactory for the intended

model purpose, hence the model is deemed to be valid. Additionally, in the case

of the validation data set a large simulation error of e(tk) = −3 [◦C] is observed

at time instance 415 [min], see middle part of Figure 5.13. This error has been

caused by an unrelated experiment on the AHU, in which the cooling valve of the

AHU has been manually modulated in an attempt to measure the valve static

characteristic. Because of the scarcity of good quality measurements this data

set has had to be used for the validation purposes. Note, tat this simulation
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Figure 5.12: The upper plot shows measured (grey solid line) and simulated
(black solid line) outflow air temperature. The middle plot shows
the simulation error for original model (black solid line) and simpli-
fied model (grey solid line). The lower plot shows system inputs,
i.e. fractional valve position (grey solid line) and the inflow air
temperature (black solid line). Estimation data-set is used.

error is not related to the outlier observed in the measurement of the zone return

temperature plotted in Figure 5.9.

The estimated valve characteristic is shown in Figure 5.14. Based on the

technical documentation, the cooling valve has a linear inherent characteristic for

the range 〈0, 30〉 [%] of stem position and equal percentage inherent characteristic

in the range of 〈30, 100〉 [%], which is in agreement with the shape of the estimated

characteristic. It can be observed, in Figure 5.14, that in the range of 〈87, 100〉

[%] the estimated characteristic curve is above value of unity. For increasing
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Figure 5.13: The upper plot shows measured (grey solid line) and simulated
(black solid line) outflow air temperature. The middle plot shows
the simulation error for original model (black solid line) and simpli-
fied model (grey solid line). The lower plot shows system inputs,
i.e. fractional valve position (grey solid line) and the inflow air
temperature (black solid line). Validation data-set is used.

values of u(tk) the intermediate input v(tk) rises at first and as the value of input

u(tk) further increases the value of v(tk) then decreases. In order words, as the

cooling valve opens the water mass-flow rate decreases, which is not considered

to be physically feasible. It is assumed, that this has been caused by not having

sufficiently informative measured input-output data over the whole operation

range.

Additionally, it has been possible to obtain one unique measurement of the ac-

tual valve characteristic. The measured data points are depicted in Figure 5.14 by
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black circles and the actual measurements of the chilled water mass-flow rate are

given in Table 5.2. The water mass-flow rate has been measured using an orifice

plate flowmeter. Unfortunately, it has not been possible to repeat the experiment

and validate the results obtained nor the accuracy of the corresponding measure-

ments. Therefore, the measured characteristic is not necessarily representative

and should be treated as such.
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Figure 5.14: Estimated (reconstructed) cooling valve characteristic. For com-
parison the measured data points are depicted by black circles.

Table 5.2: Measured chilled water mass-flow rate through the cooling valve. The
corresponding, normalised, intermediate input is also provided.

u(tk) mw(tk) [l/s] v(tk)

1 2.83 1
0.9 2.6 0.9187
0.8 2.28 0.8057
0.7 1.8 0.6360
0.6 1.5 0.5300
0.5 1.2 0.4240
0.4 1.1 0.3887
0.3 0.87 0.3074

5.5.3 Final system identification

Not all regression terms suggested by the first principles system analysis are re-

quired to predict the outflow air temperature of the AHU with sufficient accuracy.
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It has been noted, that the estimated standard errors associated with the param-

eters β3,0 and η4,1, provided in Table 5.1, are relatively large. Therefore, the

following simplified model structure is proposed

v(tk) = u(tk) +
5∑

i=2

pi
[
−u(tk) + ui(tk)

]
(5.41a)

Tao(tk) =
β1,0
s+ α1

v(tk − τu) +
η2,1
s+ α1

v(tk − τu)Tao(tk) (5.41b)

+
β3,0
s+ α1

Tai(tk − τai) + e(tk)

Comparing the structure of the simplified model (5.41) with the original nonlinear

model (5.40), the last transfer function term of the originally proposed model

(5.40) has been discarded together with the parameter β3,0. Subsequently, the

simplified model obtained is a two-input single-output Hammerstein-bilinear type

model.

In order to assess the importance of the individual transfer functions in the

original model (5.40) and in the newly proposed simplified model (5.41); it is

noted that these nonlinear models can be decomposed and simulated separately,

respectively, as follows

x̂1(tk) =
β1,0
s+ α1

v(tk − τu) (5.42a)

x̂2(tk) =
η2,1
s+ α1

v(tk − τu)x̂(tk) (5.42b)

x̂3(tk) =
β3,0s+ β3,1
s+ α1

Tai(tk − τai) (5.42c)

x̂4(tk) =
η4,1
s+ α1

v(tk − τu)Tai(tk − τai) (5.42d)

x̂(tk) = x̂1(tk) + x̂2(tk) + x̂3(tk) + x̂4(tk) (5.42e)

and

x̂1(tk) =
β1,0
s+ α1

v(tk − τu) (5.43a)

x̂2(tk) =
η2,1
s+ α1

v(tk − τu)x̂(tk) (5.43b)

x̂3(tk) =
β3,0
s+ α1

Tai(tk − τai) (5.43c)

x̂(tk) = x̂1(tk) + x̂2(tk) + x̂3(tk) (5.43d)

where x̂(tk) denotes the simulated system output Tao(tk) and x̂1,··· ,4 are simulated
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outputs of the individual transfer function terms. The average power of the

individual simulated outputs is evaluated by the RMS measure defined as

RMS(x̂i(tk)) =

√
√
√
√ 1

N

N∑

k=1

x̂2i (tk) (5.44)

for i = 1, · · · , 4. The results obtained are tabulated in Table 5.3. It is observed,

that the RMS measure of the signal x̂4(tk) is at least one hundred times smaller

than the second smallest RMS value of the original model. This is caused by the

inflow air temperature varying only in a limited range of Tai ∈ 〈20.0044, 31.6228〉

[◦C]. Although, the last nonlinear term of the original model (5.41) has a clear

physical interpretation its contribution to the predicted outflow air temperature

is, within the considered range of operation, negligible. The IAE and R2
T model

fit measures are also provided in Table 5.3 for estimation and validation data sets.

It can be seen, that in terms of these measures the simplified model performs

virtually the same as the original model. Therefore, for the subsequent control

analysis and design the proposed simplified model (5.41) will be used.

Table 5.3: The RMS measure computed for the original and simplified model.
The associated IAE and R2

T model fit measures are evaluated for the
estimation and validation data sets, respectively.

RMS Estimation Validation

x̂1 x̂2 x̂3 x̂4 IAE R2
T IAE R2

T

Original 17.82 8.105 2.282 0.002 0.2901 99.256 0.3751 99.094
Simplified 17.99 8.271 2.297 - 0.2892 99.258 0.3760 99.067

The estimated parameters of the simplified model are given in Table 5.1,

where the applied HSRIVC algorithm had the equivalent settings as for the orig-

inal model. The delays τu and τai on inputs u(tk) and Tai(tk), respectively, are

estimated by minimising the IAE criterion (5.1). The minimum value of IAE

is achieved when τu = 58 [s] and τai = 84 [s], see the right side of Figure 5.11.

Additionally, the value of the achieved cost V , defined in (3.60), is also computed

and is shown in Figure 5.11. The simulation results are provided in Figures 5.12

and 5.13 for the estimation and validation data sets, respectively. The simulated

system output is not distinguishable in the plot from the simulated output of the

original model. Therefore, only the simulation error (grey solid line) is shown in

the middle subplot of these figures.
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5.5.4 Adjustment of estimated parameters for a new op-

erating point

The dynamic bilinear submodel of the estimated Hammerstein-bilinear model

(5.41) representing the AHU has operating point dependent dynamics. Conse-

quently, the estimated model parameters are also operating point dependent. In

order to show this dependency, consider the following definition of the measured

signals

Tao,b(tk) = Tao(tk) + T̄ao (5.45a)

Tai,b(tk) = Tai(tk) + T̄ai (5.45b)

ub(tk) = u(tk) + ū (5.45c)

where the subscript b denotes that the measured signals have baselines, while the

signals without the subscript b denote the baseline compensated signals, i.e. these

signals start at the zero value. Additionally, because of the static relationship

between the intermediate input v(tk) and the measured input u(tk), the following

holds

vb(tk) = φ (ub(tk)) = v(tk) + v̄ (5.46)

Without loss of generality, time delays τu and τai are omitted together with the

noise term e(tk) and only the bilinear submodel (5.41b) of the Hammerstein-

bilinear model (5.41) is considered in the following discussion. Re-expressing the

bilinear submodel using the original, measured, input-output signals (5.45) leads

to

Tao,b(tk) =
β1,0
s+ α1

vb(tk) +
η2,1
s+ α1

vb(tk)Tao,b(tk) +
β3,0
s+ α1

Tai,b(tk) + o (5.47)

where o [◦C] denotes a static offset term, which can be viewed as an additional

constant external input to the system. Subsequently, substituting for the mea-

sured signals from (5.45) leads to

Tao(tk) + T̄ao =
β1,0
s+ α1

v(tk) +
η2,1
s+ α1

v(tk)Tao(tk) +
β3,0
s+ α1

Tai(tk)

+
β1,0
s+ α1

v̄ +
η2,1
s+ α1

v̄T̄ao +
β3,0
s+ α1

T̄ai + o

+
η2,1
s+ α1

v(tk)T̄ao +
η2,1
s+ α1

v̄Tao(tk) (5.48)
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5. Modelling of heating ventilation and air conditioning system

It is noted from (5.48), that the base T̄ao must be equal to

T̄ao =
β1,0
s+ α1

v̄ +
η2,1
s+ α1

v̄T̄ao +
β3,0
s+ α1

T̄ai + o (5.49)

and after any transient response and effects due to initial conditions decays, the

operator s→ 0, so that (5.49) becomes

T̄ao =
β1,0
α1

v̄ +
η2,1
α1

v̄T̄ao +
β3,0
α1

T̄ai + o (5.50)

Since the equality (5.49) holds, all the static terms in (5.48) are effectively can-

celled and only the dynamic part of the model (5.48) is considered, hence

Tao(tk) =
β1,0
s+ α1

v(tk) +
η2,1
s+ α1

v(tk)Tao(tk) +
β3,0
s+ α1

Tai(tk)

+
η2,1
s+ α1

v(tk)T̄ao +
η2,1
s+ α1

v̄Tao(tk) (5.51)

Subsequently, the last two transfer functions of (5.51) can be combined with the

whole model as follows

[

1−
η2,1v̄

s+ α1

]

Tao(tk) =

[
β1,0 + η2,1T̄ao

]

s+ α1

v(tk) +
η2,1
s+ α1

v(tk)Tao(tk) +
β3,0
s+ α1

Tai(tk)

s+ [α1 − η2,1v̄]

s+ α1

Tao(tk) =

[
β1,0 + η2,1T̄ao

]

s+ α1

v(tk) +
η2,1
s+ α1

v(tk)Tao(tk) +
β3,0
s+ α1

Tai(tk)

Tao(tk) =
β̃1,0
s+ α̃1

v(tk) +
η2,1
s+ α̃1

v(tk)Tao(tk)

+
β3,0
s+ α̃1

Tai(tk) (5.52)

where the operating point dependent parameters β̃1,0 and α̃1 are defined as

β̃1,0 = β1,0 + η2,1T̄ao (5.53a)

α̃1 = α1 − η2,1v̄ (5.53b)

During the parameter estimation stage, the baselines are subtracted from the

measured input-output signals, so that the offset is effectively eliminated and the

parameters of the bilinear submodel (5.52) are estimated. It is then observed, that

by estimating the bilinear submodel using the baseline compensated input-output

signals, i.e. estimating at zero operating point, the parameters β̃1,0 and α̃1 are

in fact estimated instead of the desired β1,0 and α1, respectively. Subsequently,

if it is required to simulate or to use the bilinear submodel at the original point
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of operation the estimated parameters must be adjusted for this, cf. (5.53),

according to

β1,0 = β̃1,0 − η2,1T̄ao

= −10.762× 10−2 + 4.3944× 10−3 × 25.1438

= 2.8716× 10−3 (5.54a)

α1 = α̃1 + η2,1v̄

= 3.2914× 10−3 − 4.3944× 10−3 × 0

= 3.2914× 10−3 (5.54b)

Using the operating point adjusted parameters β1,0 and α1, given in (5.54), the

outflow air temperature can be simulated at its original point of operation, using

the measured input signals vb(tk) and Tai,b(tk), according to

x̂(tk) =
β1,0
s+ α1

vb(tk) +
η2,1
s+ α1

vb(tk)x̂(tk) +
β3,0
s+ α1

Tai,b(tk) + o (5.55)

where x̂(tk) [◦C] denotes the simulated output corresponding to Tao,b(tk). Con-

sidering the static relation (5.50) the offset term o is defined as

o = T̄ao −
β1,0
α1

v̄ −
η2,1
α1

v̄T̄ao −
β3,0
α1

T̄ai (5.56)

Noting, that for the current application ū = 0 the following holds, v̄ = 0, so that

the offset term can be computed as follows

o = T̄ao −
β3,0
α1

T̄ai

= 25.1438−
2.1253× 10−3

3.2914× 10−3
23.5054

= 9.9662 [◦C] (5.57)

Finally, the adjustment of the bilinear model parameters can be interpreted

as follows: By adjusting the bilinear model parameters, as proposed in (5.54), it

is possible to obtain the same dynamic bilinear behaviour at any desired point

of operation. In other words, the operating point dependent dynamic behaviour

of the bilinear model can be reproduced at any desired point of operation. This

then holds for any bilinear model considered in this thesis and is a result which

is also directly applicable to bilinear models of higher order.
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Inferring available information from data-based model

It is noted, that the third transfer function of the first principles model of the

AHU (5.38), repeated below

β3,0s+ β3,1
s+ α1

Tai(t) (5.58)

has a unity steady-state gain due to the conservation of energy within the system,

i.e.

SSG3 =
β3,1
α1

= 1 (5.59)

In other words, in the case where the cooling valve is fully closed and no heat loss

occurs, the outflow air temperature must be equal to the inflow air temperature.

However, the estimated steady-state gain of the third transfer function of the

simplified model (5.43c) is not unity, but rather

SSG3 =
β̂3,0
α̂1

=
2.1253× 10−3

3.2914× 10−3

= 0.6457 (5.60)

where the hat above the parameters denotes that these parameters are estimated.

Since, the estimated SSG3 is less than unity, then a heat gain (or heat loss) is

present within the system. The heat gain is in fact manifested by the presence

of the offset term o, which has been calculated in (5.57) to be 9.9662 [◦C].

Following the same reasoning as for the manufacturing zone temperature sub-

model, stated in Subsection 5.4.2, there must exist an effective ambient temper-

ature, denoted Ta [◦C], such that, cf. (5.23),

o = SSG4Ta (5.61)

Additionally, due to the conservation of the energy within the system the following

must hold, cf. (5.20c), i.e.

SSG3 + SSG4 = 1 (5.62)

Knowing the value of constant offset term from (5.57) and considering the def-

inition of the offset term given in (5.61), the effective ambient temperature is
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computed as follows

Ta =
o

SSG4

=
T̄ao − SSG3T̄ai

1− SSG3

=
25.1438− 0.6457× 23.5054

1− 0.6457

= 28.1296 [◦C] (5.63)

The estimated ambient temperature of Ta = 28.1296 [◦C] is approximately equal

to the measured temperature of 30.1 [◦C] provided in the special observation

stated in the Subsection 5.2.2. Therefore, using the estimated model it is possible

to calculate the effective ambient temperature, which then indicates a presence

of a large heat gain (caused by the electric motor of the main fan).

5.6 Manufacturing zone humidity model

A continuous-time model predicting the humidity levels within the manufacturing

zone is identified in a black-box manner. Based on the technical insight gained

into the investigated HVAC system, and based on the on-site experiments, the

Hammerstein-bilinear model structure is selected as a candidate model. The

black-box modelling approach is chosen due to the complex nonlinear nature of

the modelled system caused by the combined heat and mass transfer processes

and general lack of control oriented first principles (and black-box) models in the

literature.

The desiccant rotor of the dehumidification unit is the main active component

involved in the dehumidification of the conditioned air. The existing models of the

desiccant rotors are reviewed in (Ge et al. 2008), where such models are intended

for the design, performance evaluation and manufacturing purposes only. There

are two main groups of available models. The first group includes data-based

static models, see (Beccali et al. 2003, Jeong & Mumma 2005). The second group

of models uses physical laws to model the main static and dynamic characteristics

of the desiccant rotors, see (Zheng & Worek 1993, Dai, Wang & Zhang 2001,

Zhang, Dai & Wang 2003, Nia, Paassen & Saidi 2006). One of the key parameters

determining the efficacy of the DU is the rotational speed of the desiccant rotor.

In order to find the optimal value of the rotational speed, the models based on

physical laws are commonly used. These models are governed by a set of coupled

165



5. Modelling of heating ventilation and air conditioning system

nonlinear partial differential equations, which are evaluated for every air flute

of the desiccant rotor and continuously solved for new boundary conditions as

the rotor moves. Commonly, only the steady-state solution is sought. It should

be pointed out, that none of the reviewed models is suitable for the purpose of

control tuning and design. The static models do not explain the system dynamics,

while the first principles based models are not practical due their complexity and

computational demands. Therefore, the relatively simple yet reasonably accurate

Hammerstein-bilinear model structure is proposed instead.

The considered system input is the gas valve position ug(tk). Unless stated

otherwise, the subscript g is omitted and the gas valve position is denoted u(tk)

in this section only. The system output is the detrended return air dew-point

temperature Tdr, which is defined as the measured return air dew-point tempera-

ture minus the estimated trend (load), i.e. Tdr = Tdrm−Tdt. A gas flow meter has

been additionally installed in order to be able to monitor the gas consumption

of the HVAC system under investigation. This has allowed the gas valve static

characteristic to be measured prior to system identification. The measured gas

valve characteristic is subsequently used as a starting point during the system

identification exercise. The final estimated static characteristic, being part of

the Hammerstein-bilinear model, then includes the combined effects of the static

characteristics of all components such as the desiccant rotor and the gas valve.

5.6.1 Trend model

A unique data set has been acquired 7th January 2012. During this day the

outdoor humidity had dropped, causing a step-like decrease of the measured

dew-point temperature of the fresh air supply (step input), see lower plot of

Figure 5.15. Subsequently, this has allowed the linear dynamic model of the

resulting trend, measured within the manufacturing zone, to be identified. The

gas valve position was at low fire ug(tk) = 24 [%] and the cooling valve was

closed uc(tk) = 0 [%]. Due to the operation of the DU at low fire a static offset,

denoted o [◦C], is introduced into the measurement of the return air dew-point

temperature. However, all of the dynamic changes are caused by the fresh air

supply only. Therefore, the linear model representing the dynamic influence of

the fresh air supply on the measurement of the return air dew-point temperature

can be obtained. The measured return air dew-point temperature is then defined

as follows

Tdrm = Tdt + o (5.64)
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Figure 5.15: The upper plot shows measured (black solid line) and simulated
(grey solid line) return air dew-point temperature together with
the corresponding simulation error (light grey solid line). The
lower plot shows measured fresh air intake dew-point temperature.
The sampling time interval is h = 1 [s]

The considered system input is the measured fresh air dew-point temperature

Tdf and the system output is the measured return air dew-point temperature

Tdrm. The noisy measured input Tdf has been prefiltered by a zero-phase second

order Butterworth filter designed with a cut-off frequency of 5−2 [Hz], which has

been selected mainly based on visual inspection. The sampling interval for the

continuous-time trend model estimation is selected to be h = 1 [s]. Prior to the

parameter estimation stage the baselines are subtracted from the measured input

and output signals, hence the static offset o is effectively eliminated so that Tdrm =

Tdt. The baselines are selected to be the mean values of the first ten samples,

i.e. T̄df = (1/10)
∑10

k=1 Tdf (tk) = 8.8331 [◦C] and T̄drm = (1/10)
∑10

k=1 Tdrm(tk) =

1.3929 [◦C]. Note that due to the operation of the DU T̄drm < T̄df .

In order to determine the model order and presence of any effective time de-

lay the function rivcid in the Captain Toolbox for Matlab, (Taylor, Pedregal,

Young & Tych 2007), has been applied. This function uses the SRIVC method to

estimate the preselected set of CT linear TF models having different model orders
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and delays. The selected model is a first order linear model with a corresponding

Y IC = −21.2835, defined in (5.6), which indicates good model fit and parsi-

monious parameterization. The estimated effective time delay is null. For this

selected model order, the SRIVC algorithm, as described in 3.1, has been applied

with the following settings: The convergence criterion monitoring the maximum

relative change of the parameter estimates, defined in (3.25), is selected to be

ǫ = 1× 10−10. The prefilter of the SRIVC algorithm is initialised with the single

breakpoint frequency parameter equal to λ = 0.001. The final estimated model

takes the form

Tdt(tk) =
β0

s+ α1

Tdf (tk) (5.65)

where the estimated model parameters are

α1 = 5.2401× 10−4 (4.4867× 10−7)

β0 = 4.6395× 10−4 (3.7314× 10−7)

with the corresponding standard errors provided in the parentheses. The esti-

mated standard errors are relatively small, compared to the value of estimated

parameters, indicating good accuracy of the obtained parameter estimates.

The simulation results are presented in Figure 5.15. The upper plot of Figure

5.15 shows the measured (black solid line) and simulated (grey solid line) return

air dew-point temperature according to (5.64) together with the corresponding

simulation error (light grey solid line). The lower plot shows the measured fresh

air supply dew-point temperature. The computed model fit criteria are R2
T =

99.9172 [%] and IAE = 0.0724 [◦C], which indicate a good model fit. The offset

term used for the system simulation is computed as

o = T̄drm −
β0
α1

T̄df

= 8.8331−
4.6395× 10−4

5.2401× 10−4
1.3929

= −6.4277 [◦C] (5.66)

where the negative value of the offset term indicates that part of the moisture

within the conditioned air is removed by the DU. The computed steady-state

gain is SSG = 0.8854, while the system time constant is T = 31.8058 [min]. It is

expected that the computed steady-state gain is lower than unity, i.e. SSG < 1,

because of the mass conservation within the system. The estimated time constant

indicates slow system dynamics.
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5.6.2 Gas valve characteristic

The gas valve characteristic has been measured at seven distinct gas valve frac-

tional positions on 11th August 2010. In order to obtain a single measurement

on the characteristic curve the gas valve has been fixed at a constant position for

a time interval of 40 [min]. During this time interval the gas consumption has

been measured by the installed gas flow meter. Subsequently, the gas volumetric

flow, denoted Vg [m3/h], has been computed as an average value of measured

consumed gas per time period of 40 [min]. The results are provided in the first

and second columns of Table 5.4. The intermediate input v(tk), corresponding

to the gas valve position u(tk), is then computed as a normilised value of the

measured gas flow, i.e. v(tk) = Vg/max(Vg). The values of v(tk) are provided in

the last column of Table 5.4.

Table 5.4: Measured gas volumetric flow for different gas valve positions. Hav-
ing the gas calorific value, the heating power is also provided.

u(tk) Vg(tk) [m
3/h] P (tk) [kW ] v(tk)

1 3.2791 35.5238 1
0.8 3.2652 35.3726 0.9957
0.6 3.1892 34.5496 0.9726
0.45 2.7201 29.4672 0.8295
0.35 1.7661 19.1330 0.5386
0.27 0.8211 8.8956 0.2504
0 0 0 0

The individual measured points are depicted in Figure 5.16 by black circles.

The measured gas valve characteristic takes the form of an S-shaped power curve.

So far, the introduced parameter estimation methods, such as the HSRIVC and

HBSRIVC methods, were based on the assumption that a polynomial function

is able to model the given static function. The disadvantage of using polynomial

functions is the fact that such functions do not level off, saturate, to a constant

value, however the given static characteristic does level off. In fact, for the gas

valve opening of approximately u(tk) = 80 [%] the maximal gas volumetric flow is

achieved. Therefore, in a similar manner to (Taylor, Shaban, Stables & Ako 2007),

the following logistic based growth function, cf. (2.58), is assumed

v(tk) =
vmax

1 + p1 exp (−p2u(tk))
(5.67)

where vmax denotes the limiting value (carrying capacity) parameter, while p1

and p2 are constant coefficients which are yet to be estimated. The limiting value
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parameter is set to unity, i.e. vmax = 1. This then automatically normalises the

steady-state gain of the static function to unity, cf. discussion on the constrained

HBSRIVC method provided in Subsection 3.4.2.
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Figure 5.16: Estimated gas valve characteristic (black solid line) and heating
power (black dashed line). The measured data points are depicted
by circles.

The parameter vector, denoted θn, consisting of parameters p1 and p2 is de-

fined as

θn =
[

p1 p2

]T

(5.68)

In order to find the unknown parameter vector θn the scalar cost function, denoted

V , is formulated as follows

V (θn) =
1

N

N∑

k=1

ε(tk)
2 =

1

N

N∑

k=1

[v(tk)− x̂(θn, tk)]
2 (5.69)

where N denotes the total number of samples and x̂(θn, tk) is the modelled

(simulated) static characteristic using the estimated parameter values. The cost

function (5.69) is defined as the average sum of squared differences between the

measured and the modelled static characteristic. The estimation problem then

consists of minimising the cost function (5.69) with respect to the unknown pa-
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rameter vector θn, i.e.

θ̂n = argmin
θn

V (θn) (5.70)

where the estimated parameter vector is denoted by the hat notation.

Since the static characteristic is parameterized by a function (5.67), which is

nonlinear with respect to its parameters, a closed form solution cannot be formu-

lated and a numerical optimisation routine must be employed. The available stan-

dard optimisation routine fminsearch of Matlab (software version 2010b), which

uses the Nelder-Mead simplex method, is applied to solve for the optimisation

problem (5.70). The optimisation routine has been initialised with θn = [1 1]T ,

subsequently the estimated parameter vector is found to be

θ̂n =
[

162.2751 14.8972
]T

(5.71)

Note that the standard errors of the parameter estimates are not provided by the

Matlab optimisation routine.

Having the estimated parameter values (5.71), the modelled static character-

istic is shown in Figure 5.16 as a black solid line. Note, that the gain of the

modelled static characteristic has been normalised to unity, i.e. vmax = 1, so that

in order to plot the gas valve characteristic in its original scale the computed value

v̂(θ̂n, tk) has been multiplied by the maximal measured gas volumetric flow, de-

noted Vg,max [m3/h], which is 3.2791 [m3/h]. Additionally, for the purpose of

potential energy consumption analysis the heating power can be computed ac-

cording to

P (tk) = CV
1000

3600
Vg,maxv(tk) (5.72)

Here, P (tk) [kW ] denotes the heating power, CV [MJ/m3] is the gas calorific

value and 1000/3600 is a constant (conversion of units). The gas calorific value

was CV = 39 [MJ/m3] on 11th August 2010. The computed heat power charac-

teristic is shown in Figure 5.16 as the black dashed line.

5.6.3 Final system identification

The proposed model structure for the zone humidity model is of the Hammerstein-

bilinear form. The input static nonlinearity is parameterized by the logistic

growth function used to model the gas valve static characteristic (5.67). Al-

though, the overall input static nonlinearity includes the combined effects of all

the nonlinear components and processes within the system, it is assumed that

the saturation type gas valve characteristic dominates the shape of the input
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nonlinearity. The overall zone humidity model then takes the following form

v(tk) =
1

1 + p1 exp (−p2u(tk))
(5.73a)

Tdr(tk) =
β0

s+ α1

v(tk − τu) +
η1

s+ α1

v(tk − τu)Tdr(tk) + e(tk) (5.73b)

Tdrm(tk) = Tdr(tk) + Tdt(tk) (5.73c)

Having measured the dew-point temperature of the fresh supply air the trend Tdt

is simulated using the identified trend model (5.65). Subsequently, using (5.73c)

the dew-point temperature of the return air, being the system output in (5.73b),

is computed as

Tdr(tk) = Tdrm(tk)− Tdt(tk) (5.74)

The parameter vectors corresponding to the static and dynamic submodel of

the overall Hammerstein-bilinear model (5.73), respectively, are defined as

θn =
[

p1 p2

]T

(5.75a)

θlb =
[

α1 β0 η1

]T

(5.75b)

The parameter estimation task is then formulated as the following optimisation

problem

θ̂n = argmin
θn

V (θn, θ̂lb) (5.76)

The estimate is denoted using the hat notation and the minimised cost function

V (θn) is defined as

V (θn, θ̂lb) =
1

N

N∑

k=1

ε(tk)
2 =

1

N

N∑

k=1

[

Tdr(tk)− x̂(θn, θ̂lb, tk)
]2

(5.77)

where x̂(θn, θ̂lb, tk) denotes the simulated system output Tdr(tk) based on the

sought parameter vector θn and estimated θ̂lb.

In a similar manner to the optimisation task stated in Subsection 5.6.2 regard-

ing the gas valve static characteristic estimation problem, the static input func-

tion (5.73a) is nonlinear with respect to its parameters. Therefore, the available

standard optimisation routine fminsearch of Matlab (software version 2010b)

is applied to solve the optimisation problem (5.76). This optimisation routine

is of an iterative nature searching for the parameter vector θn, where in each

iteration the SRIVC parameter estimation method 3.1, configured for bilinear
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model parameter estimation, is applied to solve for the parameter vector θlb.

The fminsearch optimisation routine is initialised with the found parameters of

the gas valve static characteristic stated in (5.71). The SRIVC algorithm has

been applied with the following settings: The convergence criterion monitoring

the maximum relative change of the parameter estimates, defined in (3.25), is

selected to be ǫ = 1 × 10−5. The prefilter of the SRIVC algorithm is initialised

with the single breakpoint frequency parameter, such that λ = 0.001.

Two separate data sets are used. The first data set, acquired 15th January

2012, is used exclusively for the model parameter estimation. While the sec-

ond data set, acquired 14th January 2012, is used for the model validation pur-

poses only. The original data were measured with a sampling interval of h = 1

[s]. Considering the slow system dynamics the measured data have been sub-

sequently downsampled to h = 5 [s] for the purpose of parameter estimation.

The baselines are subtracted from the measured input and output signals, where

the baselines are computed as the mean values of the first ten signal samples.

All the considered baselines are: T̄drm = (1/10)
∑10

k=1 Tdrm(tk) = −6.4748 [◦C],

T̄dr = (1/10)
∑10

k=1 Tdr(tk) = −5.3967 [◦C], T̄df = (1/10)
∑10

k=1 Tdf (tk) = −1.2177

[◦C] and ū = (1/10)
∑10

k=1 u(tk) = 0.2400.

The input delay τu is estimated by minimising the IAE criterion (5.1). The

IAE criterion has been computed for a predefined range of input delays and the

results are shown on the left side of Figure 5.17. The input delay obtained, which

minimises the IAE criterion, is τu = 135 [s]. The value of the cost V achieved,

defined in (5.77), is additionally displayed on the right side of Figure 5.17.

100 120 140 160
0.1985

0.199

0.1995

0.2

0.2005

0.201

100 120 140 160
0.064

0.0645

0.065

0.0655

0.066

I
A
E

[◦
C
]

V

τu [s]τu [s]

Figure 5.17: Input delay estimation: IAE and cost V criterion plotted against
delay τu on left and right sides, respectively. Sampling time inter-
val is h = 5 [s].
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The estimated parameters corresponding to the static and dynamic submodel

of the Hammerstein-bilinear model (5.73), respectively, are

p1 = 3201.5646 (5.78a)

p2 = 20.1539 (5.78b)

and

α1 = 6.6758× 10−4 (1.1141× 10−6) (5.79a)

β0 = −5.0520× 10−2 (8.3081× 10−5) (5.79b)

η1 = −1.5062× 10−3 (2.6049× 10−6) (5.79c)

where the corresponding standard errors are provided in the parentheses. The

negative sign of the estimated η1 parameter indicates a saturation type steady-

state characteristic of the dynamic submodel, while the negative sign of the β0

parameter indicates that the moisture is removed from the conditioned air. Con-

sidering the static input function (5.73a) and using the estimated parameters p1

and p2 the estimated static input nonlinearity is depicted in Figure 5.18 by a

solid black line. For comparison, the gas valve static characteristic, measured

and estimated in Subsection 5.6.2, is also shown in Figure 5.18 as a solid grey

line. It can be observed, that the static input nonlinearity has a steeper gradient,

but saturates approximately at the same valve position.

The simulation results with R2
T = 99.854 [%] and IAE = 0.1988 [◦C] are

presented in Figure 5.19 for the estimation data set. The simulation results

for the validation data set are presented in Figure 5.20 with the performance

criteria R2
T = 99.277 [%] and IAE = 0.4242 [◦C] being achieved. The simula-

tion results obtained show a good model fit despite the relative simplicity of the

adopted model. The simulation results presented have been obtained such that

the estimated zone humidity model parameters (5.79) have been adjusted for the

subtracted baselines of the estimation data set. This procedure is explained in

detail subsequently in Subsection 5.6.4.

Figures 5.19 and 5.20 each comprise three subplots. In each figure, the upper

plot shows measured (grey solid line) and simulated (black solid line) return air

dew-point temperature Tdr(tk). The middle plot shows the simulation error. The

lower plot shows the fractional gas valve position (grey solid line) and the sim-

ulated trend (black solid line). The measured return air dew-point temperature

Tdrm(tk) is not shown, however, having the simulated trend, this can be inferred
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Figure 5.18: Estimated (reconstructed) gas valve characteristic (black solid
line). For comparison the valve characteristic based on the mea-
sured data is also shown (grey solid line).

using the relation (5.74). Oscillations are observed in the simulation error of both

the estimation and validation data sets. Furthermore, the amplitude of the oscil-

lations is observed to be operating point dependent, where for lower air humidity

the amplitude increases. This observation is in an agreement with that made in

Subsection 5.2.1.

5.6.4 Adjustment of estimated parameters for a new op-

erating point

The adjustment of the estimated parameters for a new operating point has been

explained in detail in Subsection 5.5.4. The parameters of the bilinear submodel

(5.73b) are known to be operating point dependent. The baselines of the input-

output signals were subtracted prior to model parameter estimation, hence the

input-output signals start (approximately) at zero values. Therefore, the esti-

mated parameters of the bilinear submodel, provided in (5.79), are valid only

at a zero operation point. Subsequently, if the model is required to correspond

to the original point of operation, e.g. for simulation purposes, the estimated

parameters must be adjusted for this.
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Figure 5.19: The upper plot shows measured (grey solid line) and simulated
(black solid line) return air dew-point temperature. The middle
plot shows the simulation error. The lower plot shows the frac-
tional gas valve position (grey solid line) and the estimated trend
(black solid line). The estimation data-set is used with a sampling
time interval h = 5 [s].
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The same notation of measured signals, as used in (5.45), is adopted, hence

consider the following definition for the measured signals

Tdr,b(tk) = Tdr(tk) + T̄dr (5.80a)

ub(tk) = u(tk) + ū (5.80b)

vb(tk) = v(tk) + v̄ (5.80c)

the subscript b denotes the measured signals together with their baselines (the

letter being denoted by the bar notation). Using the gas valve position baseline

ū = 0.2400 as the input to the estimated static input function (5.73a), the cor-

responding baseline for the intermediate input is v̄ = 0.0379. Additionally, the

parameters α1 and β0 estimated in (5.79) are renamed to α̃1 and β̃0, respectively.

The tilde above the parameters then indicates that these were estimated using

the baseline compensated input-output signals, i.e. at the baseline compensated

operating point.

The estimated parameters α̃1 and β̃0 are adjusted for the original working

point (v̄, T̄dr) as follows, cf. (5.54), i.e.

β0 = β̃0 − η1T̄dr

= −5.0520× 10−2 − 1.5062× 10−3 × 5.3967

= −5.8648× 10−2 (5.81a)

α1 = α̃1 + η1v̄

= 6.6758× 10−4 − 1.5062× 10−3 × 0.03789

= 6.1051× 10−4 (5.81b)

Subsequently, using the operating point adjusted parameters β0 and α1, computed

in (5.81), the return air dew-point temperature can be simulated at its original

point of operation, using the measured input signal vb(tk), according to

x̂(tk) =
β0

s+ α1

vb(tk) +
η1

s+ α1

vb(tk)x̂(tk) + o (5.82)

where x̂ [◦C] denotes the simulated output corresponding to Tdr,b. The constant

offset o can be interpreted as an external constant input acting on the system
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and in a similar manner to (5.56) is computed as

o = T̄dr −
β0
α1

v̄ −
η1
α1

v̄T̄dr

= −5.3967 +
5.0520× 10−2

6.6758× 10−4
0.03789−

1.5062× 10−3

6.6758× 10−4
0.0378× 5.3967

= −2.2613 [◦C] (5.83)

Finally, using the operating point adjusted parameters β0 and α1 the system

time constant and steady-state gain can be calculated. The time constant T ,

defined in (2.73), varies in the range T ∈ 〈1637.99, 472.441〉 [s] for the input values

u(tk) ∈ 〈0, 1〉. The input dependent steady-state gain, according to definition

(2.69), varies in the range SSG ∈ 〈−96.0643,−27.7077〉 for the corresponding

values of the input signal u(tk) ∈ 〈0, 1〉.

5.7 Conclusions

The dynamic control oriented air temperature and humidity models of an environ-

mentally controlled clean room manufacturing zone have been identified. Overall,

three separate models have been identified, where different modelling approaches

have been adopted to reflect the particular identification scenarios. All models

presented have been estimated in the continuous-time domain, because of the

subsequent physical interpretability.

The air temperature model of the environmentally controlled manufacturing

zone comprises two submodels in a series connection, which are the air handling

unit temperature submodel and the zone (room) temperature submodel. The

zone temperature submodel has been identified in a black-box manner, where

a second order linear model structure has been selected based on the Young’s

information criterion. Additionally, a lumped parameter first principles modelling

approach has also been adopted. The resulting first principles model has the same

model structure as that obtained based on the measured data only, which confirms

the selected model order. Moreover, relating the identified zone temperature

submodel to physical laws has allowed a unique heat load disturbance model to

be obtained, which can be used during the control design and tuning procedure.

A grey-box modelling approach has been chosen to identify the air handling

unit temperature submodel. Because the scope of the possible data acquisition

experimentation has been limited, a first principles analysis has been used to

select an initial candidate model structure. Naturally, not all of the model pa-
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rameters suggested by such an analysis have been identifiable from the available

measurements. Therefore, some parameters have been discarded, which resulted

in a simplified, yet accurate and well structured Hammerstein-bilinear model.

The manufacturing zone humidity model has been identified in a black-box

manner. The first principles analysis has been considered to be too complex

and impractical due to the coupled nonlinear heat and mass transfer processes

occurring within the desiccant rotor based dehumidification unit. Based on the

engineering insight into the modelled HVAC system, and coupled with the on-

site experiments, a Hammerstein-bilinear type model has been selected. A good

model fit has been achieved despite the relative simplicity of the proposed model

structure. It is believed, that this has been the first time the Hammerstein-

bilinear type model has been used to model such a dehumidification process.

The steady-state and dynamic behaviour of the bilinear model is operating

point dependent. Therefore, the parameters of the bilinear model are also opera-

tion point dependent. It is advantageous to subtract the baselines of the measured

system input-output signals prior to any model parameter estimation. However,

this also means that the bilinear model parameters have been estimated at a

different point of operation than the actual system point of operation. Conse-

quently, the estimated parameters of the bilinear model are valid only for the

input signals with the subtracted baselines. A procedure to adjust the estimated

parameters for an original (or indeed any) operation point has been suggested.

This procedure then allows the bilinear model to be simulated at any given point

of operation, while the dynamic behaviour of the bilinear model is retained. It is

believed, that this procedure is new within the context of the identification and

model parameter estimation of bilinear system models.
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Chapter 6

Control analysis and tuning of an

industrial HVAC control system

6.1 Introduction

The aim of this chapter is to select a set of control gains for an exiting designed and

installed commercial HVAC control system1. This control system makes use of a

standard fixed gain proportional-integral, PI, controller. The relative complexity

and the nonlinear characteristics of the HVAC system together with the non-

stationary operational conditions within which the system has to operate render

the selection of control gains to be a non-trivial task in practice (Underwood

1999, Lim, Rasmussen & Swaroop 2009).

The control tuning of two PI feedback control loops is considered. The control

system is required to regulate the manufacturing zone air (dry-bulb) temperature

and the manufacturing zone air dew-point temperature at constant set-point val-

ues (regulatory control setup). It is not possible to interfere with the computer

implementation of the commercial control algorithm, which limits the scope of

possible experimental work. It is, however, possible to freely change the control

gains or to suggest new temperature and humidity control set-points.

The originally implemented PI control gains led to an undesirable dynamical

behaviour of the controlled HVAC system. Both, the regulated air dry-bulb and

dew-point temperatures have been observed to oscillate around the demanded set-

points (control hunting) for certain operation ranges. In return, this causes wear

on control actuators and control valves and may also lead to energy inefficient

operation of the whole HVAC system (Lim et al. 2009). Furthermore, because of

1IQ3-type control system designed by Trend Control Systems Ltd, UK. Trend 963 operator
software provides graphical displays for the control system.
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poor control tuning the chosen control safety margin for the humidity control loop

is considered to be over-large, see Subsection 6.1.2. The control safety margin,

also known as a back-off region (Rangaiah & Kariwala 2012), is defined as a

difference between the control set-point and the product specification limit. In

other words, the control set-point is selected such that despite the poor control

performance the regulated variable will never exceed the product specification

limit, hence assuring product safety. Consequently, more energy is required to

maintain such a large safety margin.

The proposed set of control gains should guarantee a stable control through-

out the whole considered operation range, while offering good load disturbance

rejection. In return, this will allow the humidity control loop set-point to be

adjusted for operation close to the product specification limit, where the high-

est profitability can be obtained. Additionally, stable environmental conditions

within the clean manufacturing room may potentially increase the product quality

and reduce any potential product defects.

To select the control gains for a single, linear, fixed gain PI controller a first or-

der linear model with input delay, representing the dominant dynamic behaviour

of the system, is required (Skogestad 2003, Åström & Hägglund 2006). Since, the

HVAC system is nonlinear and its dynamic and steady-state behaviour changes

throughout the operation range, the PI controller is tuned at one operating point

based on a locally linearised model. To guarantee the closed loop system stability

over the whole operating range, the common approach (also adopted in this the-

sis) is to select a least stable point of operation for the control tuning purposes

(Underwood 1990). It is assumed, that the least stable point of operation is that

for which the system has the highest process gain. Taking into consideration

the cooling applications for which the process gain is negative, then the highest

absolute value of the process gain is selected instead. Subsequently, if the system

operates at any other operating point than that for which the PI controller has

been tuned, then an even more stable closed loop control will be obtained albeit

at the expense of a less responsive (slow) control.

The selection of the critical operating point is, however, a non-trivial task in

practice and a particularly daunting task to be carried out on the site. Therefore,

the nonlinear temperature and humidity models of an environmentally controlled

clean room manufacturing zone, which have been identified in the Chapter 5, are

adopted for such control analysis. These models are flexible enough to rplicate

the main dynamic and static nonlinear characteristics of the considered HVAC

system over the whole feasible operating range. The result of the control analysis
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conducted in Sections 6.2 and 6.3 is the selection of the critical operating points

together with the associated linearised models, which are used for the subsequent

control tuning of the two considered control loops.

The tuning of the PI controller is, in general, a multi-objective constrained

optimisation problem, where a trade-off must be made between (often conflict-

ing) requirements on sensitivity to measurement noise, robustness to process

uncertainties, load disturbance attenuation, input usage and set-point response

(Åström & Hägglund 2006). To derive the optimal control gains the Skoges-

tad internal model control (SIMC) PI/PID tuning rule has been adopted, see

(Skogestad 2003, Skogestad & Grimholt 2012). This rule is model based and is

analytically derived based on the desired closed loop response. Here, the require-

ments on the sensitivity to measurement noise, robustness to process uncertainties

and input usage are quantified and condensed to a single criterion, a maximum

sensitivity peak, denoted Ms, see (Åström & Hägglund 2006). At the same time,

the requirements for the output performance are quantified in terms of integral

of absolute error, IAE, of the system output when subject to set-point and load

disturbance changes. The SIMC tuning rule then provides PI/PID control gains

such that the IAE criterion is minimised (best output performance) subject to

a given robustness level Ms, which can be adjusted by a user defined tuning

parameter.

6.1.1 Control algorithm

The positional (non-incremental) form of the ideal proportional-integral-derivative

(PID) controller, (Åström & Hägglund 2006), is given by

u(t) = Kp

(

1 +
1

Tis
+ Tds

)

e(t) (6.1)

where the control error e(t) is defined as the difference between the demanded

set-point r(t) and the system output y(t), i.e. e(t) = r(t) − y(t). The controller

parameters are the proportional gain Kp, integral time Ti and derivative time Td.

The control gains Ti and Td have units of seconds.

The measurement noise prefilter is not implemented on the currently adopted

HVAC control system. The measured (sampled) system output is directly used

to compute the control error and generate the corresponding control action. This

means that the derivative term would then amplify the high-frequency measure-

ment noise causing large variations of the generated control action. Therefore,
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due to the absence of noise prefilters, the derivative term of the PID controller

is permanently disabled by setting the derivative time to zero, i.e. Td = 0. This,

in return, may limit the achievable control performance in terms of set-point fol-

lowing and load disturbance rejection properties. The resulting PI controller can

be expressed in a transfer function form as follows

C(s) = Kp

(

1 +
1

Tis

)

(6.2)

where, in this context, the variable s refers to the Laplace variable, see (Nise

2008). The same notation for the differential operator as for the Laplace variable

is adopted, since these are used here in the same manner.

A general block diagram of the feedback control loop is provided in Figure

6.1. Here, G(s) represents the process transfer function and C(s) represents the

controller. The input load disturbance, denoted d(t), is considered together with

the measurement noise denoted n(t).

C(s) G(s)
r e u

d n

y+

++

+

+−

Figure 6.1: Block diagram of feedback control loop.

Digital implementation

To implement the continuous-time PI controller (6.1) in a digital computer envi-

ronment the integral term must be discretised. From discussion with the supplier

of the control system it is known that the Euler backward approximate difference

discretisation method has been used, see (Åström & Hägglund 2006). The ap-

plied control signal to the system can be expressed as a sum of the control signal

due to the proportional action, denoted uP (t), and the control signal due to the

integral action, denoted uI(t), hence

u(t) = uP (t) + uI(t) (6.3)

Replacing the continuous variables with the corresponding discrete-time variables

gives

u(k) = uP (k) + uI(k) (6.4)
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where the discrete time index k is adopted. The proportional action of the dis-

cretised PI controller is simply computed by

uP (k) = Kpe(k) (6.5)

with the control error defined as

e(k) = r(k)− y(k) (6.6)

From the continuous-time control law (6.1) it can be deduced that the integral

term is given by

uI(t) =
Kp

Tis
e(t) (6.7)

which can be further rearranged to

suI(t) =
Kp

Ti
e(t) (6.8)

Using Euler backward approximate discretisation method the time derivatives are

simply replaced by differences so that

uI(k)− uI(k − 1)

h
=
Kp

Ti
e(k) (6.9)

from which it follows that the control action due to the integral term is imple-

mented as

uI(k) = uI(k − 1) +
Kph

Ti
e(k) (6.10)

The sampling interval h is also known as the rescheduling time of the controller.

The rescheduling time of the controller is the interval at which the new control

action is calculated and applied. The currently adopted rescheduling time is h = 3

[s] in the commercial setup and this value cannot be changed for the purpose of

this control analysis.

The investigated HVAC control system also uses an appropriate anti-windup

logic to avoid the wind-up effect of the integral term. The details of this logic

are not provided since it does not impact the conducted control tuning analysis

presented in this chapter. Additionally, control decision logic is used by the

temperature control loop to switch between the cooling and heating modes of the

air handling unit based on the current heating demand.
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6.1.2 Control requirements

Brief overviews of control requirements have already been provided in Section

5.2.4. This section is summarised and further extended here. The product man-

ufacturing requirements are such that the manufacturing zone air temperature

must be in the range 21±4 [oC] and the air relative humidity must be lower than

20 [%].

Apart from the control system, an independent monitoring system is also

installed in ADC UK. The monitoring system uses an independent set of temper-

ature and relative humidity probes to measure the manufacturing zone environ-

mental conditions. In order to assure that the product environmental manufac-

turing limits are not exceeded tighter limits are in use by the monitoring system.

The zone air temperature must be in the range 21 ± 2 [oC] and the air relative

humidity must be lower than 15 [%] at all times. In the case where these limits

are exceeded an alarm is activated. From the control point of view, it is the safety

limits of the monitoring system which are of importance and these should not be

exceeded.

It is noted that the air relative humidity is directly dependent on the air

temperature, while the dew-point temperature is not. Therefore, to reduce the

interaction between the temperature and humidity feedback control loops, the

air humidity is measured in terms of its dew-point temperature instead of the

relative humidity. Subsequently, for the air temperature control range 21±2 [oC]

the corresponding air humidity (upper) limit in terms of dew-point temperature

is −6.6± 1.6 [oC], see equation (B.12).

The temperature feedback control loop is considered first. The air tempera-

ture set-point is set to 21.5 [oC] with the dead band ±0.5 [oC]. Since only the

cooling mode of the AHU is assumed, then the targeted temperature set-point,

denoted rT (t) [oC], is thus rT (t) = 22 [oC]. The regulated zone temperature

Tar(t), being the system output, can therefore deviate from its set-point value

maximally by 1 [oC], i.e. the upper temperature limit of 23 minus the set-point

value 22. The range of the manipulated variable (control input) is uc(t) = 〈0, 100〉

[%], where 0 corresponds to closed and 100 to a fully open cooling valve.

The control set-point for the humidity control loop, denoted rH(t) [oC], is

currently set to −10 [oC]. Assuming that the zone air temperature is, rT (t) = 22

[oC], the humidity set-point value can be converted to relative humidity units

using the expression (B.11), see Appendix B, and the value obtained is 10.8

[%], which is below the specification limit of 15 [%]. The control input range

is ug(t) = 〈24, 100〉 [%], where the lower limit of 24 [%] corresponds to the low
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fire state and is a safety feature of the dehumidification unit. In the worst case

scenario, when the zone air temperature is at its lowest allowed specification limit

of 19 [oC] the corresponding dew-point temperature safety limit is only −8.2 [oC],

i.e. −6.6− 1.6 = −8.2. Consequently, this means that the system output Tdrm(t)

can deviate maximally by 1.8 [oC] from its set-point value before this safety limit

is reached. While, if the zone air temperature is at its upper specification limit

of 23 [oC] the corresponding dew-point temperature safety limit is then −5 [oC],

which allows the system output to deviate by 5 [oC] from its set-point value.

Clearly, the control tuning of the humidity control loop should account for the

worst case scenario, i.e. the allowed deviation of the system output from its

set-point is 1.8 [oC].

6.2 Control analysis: Manufacturing zone tem-

perature model

The manufacturing zone temperature model comprises two submodels in a cas-

cade connection, which are the air handling unit temperature submodel identified

in Section 5.5 and the zone (room) temperature submodel identified in Section 5.4,

respectively. The overall manufacturing zone temperature model is summarised

and stated as follows

v(t) =φ(uc(t)) =
5∑

i=1

piu
i
c(t) (6.11a)

Tao(t) =
β1,0
s+ α1

v(t− τu) +
η2,1
s+ α1

v(t− τu)Tao(t)

+
β3,0
s+ α1

Tai(t− τai) + o1 (6.11b)

Tar(t) =
βr
0s+ βr

1

s2 + αr
1s+ αr

2

Tas(t) + Tq(t) + o2 (6.11c)

where the outflow air temperature of the air handling unit (6.11b) acts as an

input to the zone temperature submodel (6.11c), i.e. Tas(t) = Tao(t). Note, that

the use of the continuous-time index t is preferred instead of using the index tk

since all the variables considered are simulated and not sampled (measured). The

parameters of the manufacturing zone temperature model are provided in Table

6.1.

The static input nonlinearity (6.11a), scaling the input uc(t), was originally

identified as a normalised 5th order polynomial function (5.41a). For the purpose
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Table 6.1: Manufacturing zone temperature model parameters.

Parameter Value Parameter Value Parameter Value

p1 0.4169 η2,1 -4.3944 ×10−3 o1 9.9662
p2 12.988 β3,0 2.1253 ×10−3 o2 6.1707
p3 -47.789 αr

1 53.3769 ×10−4 τu 58
p4 62.275 αr

2 15.8771 ×10−7 τai 84
p5 -26.891 βr

0 23.2968 ×10−4 ma 2.4082
α1 3.2914 ×10−3 βr

1 10.3538 ×10−7 ca 1005
β1,0 2.8716 ×10−3

of simulation an equivalent polynomial function, as provided in (6.11a), is a pre-

ferred option and has been considered instead. For consistency, the constrained

parameter p1 is calculated such that p1 = 1 −
∑5

i=2 pi, see (3.88). It should be

noted, that the control input uc(t) is normalised in the range 〈0, 1〉 for the purpose

of simulation, while the implemented control system assumes the range 〈0, 100〉

[%].

The bilinear submodel (6.11b) of the air handling unit model was originally

defined in (5.55), where the simulated outflow air temperature has been denoted

x̂(t) while the notation Tao(t) is used in (6.11b). The parameters α1 and β1,0 are

adjusted for the operating point according to (5.54). The input-output signals

uc(t), Tai(t) and Tao(t) were originally denoted with the subscript b in (5.55),

where this subscript refers to signals that have their original signal baselines

unchanged. The subscript b is omitted in (6.11b) for ease of notation. The static

offset term o1 in (6.11b) was originally defined and calculated in (5.57), where

the notation o, with no subscript, was adopted.

The zone temperature submodel (6.11c) has been identified in (5.7). In the

model (6.11c), as compared to (5.7), the superscript r on the model parameters

is used in order to distinguish these from the parameters of the air handling unit

bilinear model (6.11b). The presence of the offset term o2 and temperature Tq(t)

(due to heat gain q(t)) can be deduced from equation (5.15). The offset term

o2 can be calculated according to expression (5.24), where the offset is denoted

by o without any subscript. Using the heat load disturbance model (5.19) the

temperature Tq(t) is given by

Tq(t) =
βr
0s+ βr

1

s2 + αr
1s+ αr

2

1

maca
q(t) (6.12)

where the parameters ma and ca are also provided in Table 6.1.

For the control analysis purposes the assumed feasible range of the inflow air
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temperature is Tai(t) = 〈20, 35〉 [oC], where 20 [◦C] and 35 [◦C] are the lowest

and the highest observed inflow air temperatures, respectively. However, when the

parameters of the manufacturing zone temperature model have been estimated

the measured lowest and highest inflow air temperatures were 20.4 [◦C] and 32.7

[◦C] (of the estimation data set), respectively. Since the model structure stems

from the first principles considerations, it is assumed that the model is valid for a

wider range of Tai(t) temperatures than those which were part of the estimation

data set. Additionally, the assumed feasible range of the heat gain is q(t) = 〈0, 15〉

[kW ]. Considering the number of personnel, power of the machinery and the type

of manufacturing process within the air conditioned zone, a higher heat gain than

15 [kW ] is not expected.

Both, the inflow air temperature and the heat gain act as load disturbances

creating a cooling demand. The inflow air temperature to the air handling unit

is mainly determined by the operation of the dehumidification unit and the heat

gain is mainly caused by the personnel and machinery producing heat within the

manufacturing zone.

6.2.1 Steady-state characteristic

The manufacturing zone temperature model (6.11) with (6.12) has three effective

inputs: the manipulated variable uc(t), and the inflow air temperature Tai(t)

together with the heat load q(t) constantly changing the demand for cooling.

As the inputs Tai(t) and q(t) are freely changing, the controller computes the

new value of the cooling valve position so that the set-point demanded value is

achieved.

Assume a ‘perfect’ control in which the system output Tar(t) always tracks

the set-point rT (t) despite the influence of disturbances acting on the system.

Under the assumption of such a perfect control, it can then be deduced that only

certain combinations of the three system inputs can actually occur. To highlight

this idea consider the following example. The inflow air temperature is at its low

level and no heat is produced within the zone, i.e. Tai(t) = 20 [oC] and q(t) = 0

[kW ]. In order to meet the demand set-point value, it is then expected that

the cooling valve will be closed rather than fully opened as there is only a small

amount of heat to be compensated.

The dynamic behaviour of the manufacturing zone temperature model (6.11)

is operating point dependent due the presence of the bilinear submodel (6.11b).

Since, only certain combinations of the three considered inputs can occur, then
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only certain corresponding dynamic modes of the system will be activated. There-

fore, the steady-state characteristic of the manufacturing zone temperature model

(6.11) is derived in this section with the view of determining the feasible ranges

of operation for the three input signals.

The steady-state characteristic of the manufacturing zone temperature model

(6.11) is found, with reference to the load disturbance model (6.12), by setting

the value of the differential operator to zero, cf. (2.68), so that

Tao =
β1,0
α1

φ(uc) +
η2,1
α1

φ(uc)Tao +
β3,0
α1

Tai + o1 (6.13a)

Tar =
βr
1

αr
2

(

Tas +
1

maca
q

)

+ o2 (6.13b)

where Tas = Tao. To distinguish the steady-state variables from their continu-

ous counterparts the index t has been omitted. Note, that in the steady-state

characteristic (2.68) the subscript ss has been adopted to denote the steady-state

variables, however for clarity of the text this notation is omitted here.

The air handling unit submodel (6.13a) is rearranged in terms of its output

Tao as follows

Tao =

β1,0

α1

φ(uc) +
β3,0

α1

Tai + o1

1− η2,1
α1

φ(uc)
(6.14)

and by combining the two submodels given in (6.13b) and (6.14) the steady-state

characteristic of the manufacturing zone temperature model is found, hence

Tar =
βr
1

αr
2

(
β1,0

α1

φ(uc) +
β3,0

α1

Tai + o1

1− η2,1
α1

φ(uc)
+

1

maca
q

)

+ o2 (6.15)

The steady-state characteristic (6.15) is plotted (grey surface) in Figure 6.2 for

the input ranges uc = 〈0, 1〉, Tai = 〈20, 35〉 [oC] and the heat gain value q = 0

[kW ]. The solid black and grey curves in Figure 6.2 are not considered at this

stage.

To find the feasible combinations of inputs uc, Tai for a given heat gain the

air handling unit submodel (6.13a) is rearranged with respect to the input Tai,

hence

Tai =
α1

β3,0

(

Tao −
β1,0
α1

φ(uc)−
η2,1
α1

φ(uc)Tao − o1

)

=
α1

β3,0

[(

1−
η2,1
α1

φ(uc)

)

Tao −
β1,0
α1

φ(uc)− o1

]

(6.16)

190



6. Control analysis and tuning of an industrial HVAC control system

20

25

30

35

0
0.2

0.4
0.6

0.8
1

10

15

20

25

30

T
a
r
[o
C
]

Tai [
oC]

uc [−]

Steady-state characteristic

Figure 6.2: Manufacturing zone temperature model steady-state characteristic
shown for heat gain value q = 0 [kW ]. The solid black and grey iso-
cline curves of constant Tar refer to feasible combinations of inputs
uc and Tai for heat gains q = 0 and q = 15 [kW ], respectively, such
that the set-point rT = 22 [oC] is achieved.

The zone temperature submodel (6.13b) is then rearranged with respect to its

input Tas as follows

Tas =
αr
2

βr
1

(

Tar −
βr
1

αr
2

1

maca
q − o2

)

(6.17)

and in steady-state operation the system output is equal to the set-point, i.e.

Tar = rT , so that (6.17) becomes

Tas =
αr
2

βr
1

(

rT −
βr
1

αr
2

1

maca
q − o2

)

(6.18)

Since the outflow air temperature of the air handling unit is equal to the supply air

temperature to the manufacturing zone, the relation (6.18) is substituted for the

temperature Tao in (6.16), giving the steady-state relation between the considered
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model inputs

Tai =
α1

β3,0

[
αr
2

βr
1

(

1−
η2,1
α1

φ(uc)

)(

rT −
βr
1

αr
2

1

maca
q − o2

)

−
β1,0
α1

φ(uc)− o1

] (6.19)

The upper left plot of Figure 6.3 shows the steady-state relation (obtained

using (6.15)) between the system output Tar and input uc for constant inflow air

temperatures Tai = 20 [oC] (grey solid line) and Tai = 35 [oC] (black solid line)

and heat gain q = 0 [kW ]. The corresponding lower left plot of Figure 6.3 shows

the steady-state relation (obtained using (6.19)) between inputs Tai and uc for

set-point value rT = 22 [oC] and heat gain q = 0 [kW ]. The solid black line of

the lower left plot then highlights the region for which Tai = 〈20, 35〉. The right

side of Figure 6.3 then mirrors the static characteristic curves which are on the

left side, but for a heat gain value q = 15 [kW ]. The highlighted (black solid line)

static curves of the lower left and right plots show the feasible combinations of

the inputs Tai and uc for a heat gain value of 0 and 15 [kW ], respectively. These

are also shown in the Figure 6.2 as the solid black (q = 0 [kW ]) and the solid

grey (q = 15 [kW ]) isocline curves.

It can be observed from Figure 6.3, that for the inflow air temperature range

Tai = 〈22.16, 35〉 [oC] and the heat gain value q = 0 [kW ], the corresponding

cooling valve position range is uc = 〈0, 17.19〉 [%]. In other words, the cooling

valve will not open more than 17.19 [%] if the gain within the manufacturing zone

is q = 0 [kW ] and the demanded set-point value is rT = 22 [oC]. Note, that under

zero heat gain load the cooling valve is already closed when Tai = 22.16 [oC] so

that in the temperature range Tai = 〈20, 22.16〉 [oC] the valve is closed (negative

values of valve opening are infeasible). Similarly, for the heat gain q = 15 [kW ] the

operating range of the cooling valve position is constrained to uc = 〈14.12, 64.29〉

[%] for the considered inflow air temperature range Tai = 〈20, 35〉 [oC].

6.2.2 Process gain and time constants

The notion of the process gain and time constant has been introduced in Section

2.6, where the selected static and dynamic properties of the Hammerstein-bilinear

models have been examined. The manufacturing zone temperature model (6.11)

process gain, denoted KT , can be computed as a product of the process gains

of the air handling unit submodel, denoted KAHU , and process gain of the zone
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Figure 6.3: The upper plots show the steady-state characteristics for a constant
temperature Tai and heat gain values 0 and 15 [kW ]. While, the cor-
responding lower plots show the steady-state characteristic curves
for constant set-point value rT = 22 [oC],where rT = Tar.

temperature submodel, denoted KR, so that

KT = KAHUKR (6.20)

The relations for process gains KAHU and KR are derived individually in the

following two subsections together with the corresponding process time constants.

The time constant of the air handling unit submodel is denoted TAHU [s] and the

time constant of the zone temperature submodel is denoted TR [s]. Subsequently,

the overall process gain KT is evaluated with respect to the feasible set of system

inputs found in the previous Section 6.2.1.

Air handling unit

The process gain is defined as the sensitivity of the system output to changes in

the manipulated variable (cooling valve position). Therefore, taking the deriva-
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tive of the steady-state characteristic (6.15) with respect to the control input uc

leads to

KAHU =
η2,1
α1

β1,0

α1

φ(uc) +
β3,0

α1

Tai + o1
(

1− η2,1
α1

φ(uc)
)2 ψ(uc) +

β1,0
α1

1

1− η2,1
α1

φ(uc)
ψ(uc) (6.21)

where ψ(uc) is the derivative of the function φ(uc) with respect to the variable uc

derived in (2.71) and repeated below

ψ(uc) =
dφ(uc)

duc
=

5∑

i=1

ipiu
i−1
c (6.22)

It is noted, in equation (6.21), that the process gain KAHU depends on the value

of the inputs uc and Tai as well as on the value of the offset term o1.

The corresponding time constant is computed according to (2.73), hence

TAHU =
1

α1 − η2,1φ(uc)
(6.23)

where, it is noted, that the time constant is also a control input dependent vari-

able.

Zone temperature submodel

The zone temperature submodel (6.11c) has two real poles with corresponding

time constants T1 = 199.144 [s] (fast dynamic model) and T2 = 3162.73 [s] (slow

dynamic mode), which were calculated in Subsection 5.4.1. The response of the

zone temperature submodel is dominated by the slow mode over a long time

horizon (approximately 5× T2 and more). From the control perspective the slow

mode is of no interest, see (Underwood 1999). The slow mode is approximately

sixteen times slower than the fast mode and will appear as a ‘drift’ in the measured

system output, which will be inherently compensated for by the integral action

of the PI controller.

To place emphasis on the fast mode only, the zone temperature submodel

is reduced to a first order linear model via a system identification, data-based,

model order reduction approach. Such an approach has been applied in a similar

manner to a model order reduction problem of a high-order, nonlinear, glasshouse

simulation model in (Lees, Young, Chotai & Tych 1995). The input Tas(t) to the

zone temperature submodel is perturbed with a step input function, where the

input-output data set obtained is used for subsequent parameter estimation of a
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reduced order model. Since, the targeted reduced order model is of first order,

the use of a single step input function is deemed to be sufficiently exciting.

The crucial aspect of such a model order reduction analysis is the selection of

the simulation time, or equivalently, the length of the step input response. The

selection of the simulation time impacts the type of dynamic modes which are

captured by the reduced order model. After the step input is applied, sufficient

time should be allowed for the fast mode to fully exhibit itself. However, as the

simulation time increases the slow mode starts to dominate the step response and

the identified reduced order model captures the slow (dominant) mode as well.

It is assumed, that the simulation time N = 5× T1 ≈ 955 [s] is sufficiently long

enough for the fast mode to fully exhibit itself, while being short enough so that

the slow mode will not dominate the transient response. The simulation time of

five times the time constant of interest has been selected, because it is the time

it takes for a step response to reach 99.33 [%] of its final value, see (Nise 2008).

The considered model orders are n = 1 and m = 0. No time delay is present

since, using the partial fraction expansion, the zone temperature submodel which

has no input time delay can be decomposed and simulated as a sum of two

first order processes. The SRIVC parameter estimation method, provided in

Algorithm 3.1, has been applied to the simulated input-output data set with

the following settings: The convergence criterion for monitoring the maximum

relative change of the parameter estimates, defined in (3.25), is selected to be

ǫ = 1× 10−10. The prefilter of the SRIVC algorithm is initialised with the single

breakpoint frequency parameter equal to λ = 0.01. The final estimated model

takes the form

Tar(t) =
β̄r
0

s+ ᾱr
1

Tas(t) (6.24)

where the estimated model parameters of the reduced order model, denoted with

a bar notation, are found to be

ᾱr
1 = 44.5808× 10−4 (6.25a)

β̄r
0 = 22.3571× 10−4 (6.25b)

The process gain and time constant of the reduced order model representing the

zone manufacturing submodel are, respectively,

KR = 0.5015 (6.26a)

TR = 224.3117 [s] (6.26b)
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It is noted, that the time constant TR is close to T1, however, it also partially

accounts for the slow time constant T2 which influences the initial transient step

response of the system2. The model order reduction simulation results are pre-

sented in the left-hand side plot of Figure 6.4. In this plot, the output of the

full order model (grey solid line) is plotted together with the simulated output

of the reduced order model (black solid line). The achieved model fit criteria are

R2
T = 99.9476 [%], IAE = 0.00258 [◦C] and Y IC = −21.0381, all indicating good

model fit.
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Figure 6.4: Model order reduction simulation results for the zone temperature
submodel (left-hand side) and the overall manufacturing zone model
(right-hand side). The output of the full order model (grey solid
line) is plotted together with the simulated output of the reduced
order model (black solid line). In both cases the step input is con-
sidered.

Process gain and time constant analysis

The process gain of the manufacturing zone temperature model, defined in (6.20),

comprising the process gains KAHU , provided in (6.21), and KR, provided in

(6.26a), is shown in Figure 6.5 for input ranges uc = 〈0, 1〉 and Tai = 〈20, 35〉

[oC]. Having found the feasible combinations of the inputs uc, Tai and q based

on the steady-state characteristic curves obtained in Subsection 6.2.1, it is then

possible to find the corresponding feasible sets of process gains. Subsequently,

2Note, that again similar to Chapter 5, the numerical results are quoted to 4 decimal places
accuracy even though in some cases this might lead to 7 or 8 significant figures. It is recognised
from engineering viewpoint that such accuracy cannot be achieved. However in the final control
implementation these values are reduced to 3 significant figures.
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in Figure 6.5 the solid black and grey curves show the feasible sets of process

gains for the heat gain values q = 0 and q = 15 [kW ], respectively, such that

the set-point rT = 22 [oC] is achieved. It can be observed that the process gain

surface has a wave-like shape declining in a direction of decreasing cooling valve

fractional position (manipulated variable) and inclining towards the increasing

values of the inflow air temperature.
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Figure 6.5: Manufacturing zone temperature model process gain. The solid
black and grey curves show feasible sets of process gains for heat
gains q = 0 and q = 15 [kW ], respectively, such that the set-point
rT = 22 [oC] is achieved.

The feasible sets of process gains for heat gain q = 0 [kW ] (black solid line)

and q = 15 [kW ] (dark grey solid line) are shown in more detail in the right-

hand side plot of Figure 6.6. From the control point of view the most critical

process gain is the one with the highest absolute value. In the considered cooling

application, therefore, the most critical gain is KT = −24.4959 (depicted as a

black dot) occurring at uc = 10.3 [%], Tai = 28.7611 [oC] and q = 0 [kW ]. While

the least critical gain has value −1.7539 (grey dot) occurring at uc = 46.3 [%],

Tai = 31.4249 [oC] and q = 15 [KW ]. For comparison, the isoclines of constant

inflow air temperatures are shown for temperatures 20 [oC] (light grey solid line)

and 35 [oC] (light grey dashed line). It can be observed, that the absolute lowest
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value (the most critical) process gain of −28.6522 would occur at uc = 8.3 [%]

for Tai = 35 [oC]. However, from the conducted steady-state analysis of feasible

combinations of system inputs such a process gain could not occur, therefore, is

not considered.
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Figure 6.6: The left-hand side plot shows the time constant of the air handling
unit submodel as a function of control input. The right-hand side
plot shows the feasible sets of process gains for heat gain q = 0
[kW ] (black solid line) and q = 15 [kW ] (dark grey solid line).
The minimal process gain is highlighted by a black dot, while the
maximal process gain by a grey dot. The isoclines of constant input
Tai are shown for temperatures 20 [oC] (light grey solid line) and
35 [oC] (light grey dashed line).

The left-hand side plot of Figure 6.6 shows the time constant of the air han-

dling unit submodel as a function of the control input. For the selected critical

gain KT = −24.4959, which occurs for the input value uc = 10.3 [%], the cor-

responding time constant of the air handling unit submodel is TAHU = 257.3625

[s], which has been calculated using the relation (6.23).

6.2.3 Model order reduction

The critical operating point obtained, where the system has the highest absolute

value of the overall process gain, i.e. KT = −24.4959, occurs for the following

input values uc = 10.3 [%], Tai = 28.7611 [oC] and q = 0 [kW ]. At this operating

point the process time constant of the air handling unit submodel is TAHU =
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257.3625 [s]. The relevant time constant for control of the zone temperature

submodel, which is in a series connection with the air handling unit submodel,

has been found to be TR = 224.3117 [s]. Additionally, the time delay τu = 58

[s] is present on the control input uc(t). The resultant second order (linearised)

transfer function model with time delay, denoted GT (s), is given by

GT (s) =
Tar(s)

U(s)
=

KT

(TAHUs+ 1)(TRs+ 1)
exp(−τus)

=
−24.4959

(257.3625s+ 1)(224.3117s+ 1)
exp(−58s) (6.27)

where Tar(s) and U(s) denote the Laplace transforms of the continuous signals

Tar(t) and uc(t), respectively. Applying the second time shift theorem the delayed

input signal uc(t− τu) is transformed to exp(−sτu)U(s), (Nise 2008). The notion

of the transfer function in the s-domain is preferred, because this facilitates the use

of block diagram algebra, (Nise 2008), which is used in the forthcoming Section

6.4.

The two time constants of the derived linear manufacturing zone temperature

model (6.27) have the same order of magnitude and the faster time constant

is larger than the time delay, i.e. TR > τu. Skogestad (2003) refers to such a

model as being a dominant second order model and recommends the use of the

PID controller. The derivative action term of a PID controller then would help

to speed up the closed-loop transient response allowing for tight control tuning

(Åström & Hägglund 2006). However, the derivative action term is switched off,

cf. Subsection 6.1.1, so that only a PI controller can be applied in the current

application. Therefore, to obtain the control gains of the PI controller, the second

order model (6.27) must be reduced to a first order plus delay model.

A system identification based model order reduction approach has been adopted,

in a similar manner to (Lees et al. 1995). The step input response of the second

order model (6.27) is shown (grey solid line) in the right-hand side plot of Fig-

ure 6.4. Subsequently, the simulated input-output data set obtained is used to

estimate the parameters of the reduced order model. The SRIVC parameter es-

timation method, as stated in Algorithm 3.1, has been applied with the following

settings: The convergence criterion (3.25) is ǫ = 1×10−10 and the prefilter of the

SRIVC algorithm is initialised with the single breakpoint frequency parameter

equal to λ = 0.01. The model orders are known, i.e. n = 1 and m = 0, while

to select the value of the input delay the YIC (5.6) has been adopted. The final
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estimated model takes the form

GT (s) =
KT

TT s+ 1
exp(−τT s)

=
−24.6129

381.6204s+ 1
exp(−180s) (6.28)

where TT [s] denotes the process time constant of the reduced order linearised

manufacturing zone temperature model and τT [s] denotes the input delay.

The simulated step response of the reduced order model (6.28) is shown (black

solid line) on the right-hand side of Figure 6.4. The coefficient of determination

achieved, R2
T = 99.7426 [%], is close to 100 [%] and the calculated integral of

absolute error criterion IAE = 0.2037 [oC] is low, meaning that the reduced

order model explains the simulated data well. The obtained Young’s criterion is

Y IC = −18.8744, where a large negative value indicates a well defined model

structure (including the input delay).

It should be emphasised, that instead of reducing the second order linearised

model (6.27) the original Hammerstein-bilinear manufacturing zone temperature

model (6.11), with reduced zone temperature submodel (6.24), could have been

used for the linearisation purposes directly. The linearised model obtained would

then be equivalent to that obtained in (6.28).

Based on the conducted control analysis the critical operating point is known.

Therefore, the simulated input-output perturbation data set can be obtained

using the manufacturing zone temperature model, which has been excited around

this critical operating point. During such simulation, the inputs Tai and q are held

constant at their respective critical values, while the control input is perturbed.

The perturbation signal should be small in magnitude so that the output of the

nonlinear system is not driven far away from the critical operating point, e.g.

a step response from uc = 10.3 to uc = 10.4 would be a suitable perturbation

signal. Subsequently, the first order linearised model can be estimated using the

SRIVC algorithm.

6.3 Control analysis: Manufacturing zone hu-

midity model

The manufacturing zone humidity model has been identified in Section 5.6. The

model comprises a static input nonlinearity followed by the bilinear dynamic

submodel and the measured output is additionally influenced by the humidity
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trend caused by the fresh air supply. The manufacturing zone humidity model is

summarised and stated as follows

v(t) = φ(ug(t)) =
1

1 + p1 exp (−p2ug(t))
(6.29a)

Tdr(t) =
β0

s+ α1

v(t− τu) +
η1

s+ α1

v(t− τu)Tdr(t) + o (6.29b)

Tdt(t) =
βr
0

s+ αr
1

Tdf (t) (6.29c)

Tdrm(t) = Tdr(t) + Tdt(t) (6.29d)

with the parameters provided in Table 6.2.

The static input nonlinear function (6.29a), scaling the fractional gas valve

position, was originally defined in (5.73a) with the model parameters estimated

in (5.78). Note, that the control input ug(t) is normalised in the range 〈0, 1〉

for simulation purposes, while the implemented control system assumes a range

〈0, 100〉 [%]. Subsequently, the bilinear dynamic submodel (6.29b) is as originally

defined in (5.82). The parameters of this model have been estimated in (5.79),

where the parameters α1 and β0 are adjusted for the operating point according

to (5.81). The static offset term o has been defined and calculated in (5.83).

Lastly, the humidity trend model (6.29c) has been identified in (5.65), where the

model parameters are also provided. Note, that the new notation of the trend

model parameters has been adopted (superscript r has been added) as compared

to the original notation used in model (5.65). This has been made in order to

distinguish the humidity trend model parameters from the parameters of the

bilinear submodel (6.29b).

To find the process gain of the manufacturing zone humidity model (6.29)

the steady-state characteristic needs to be found first. The models (6.29b) and

(6.29c) are substituted for outputs Tdr(t) and Tdt(t) in (6.29d), respectively, and

setting the value of the differential operator to zero gives the desired steady-state

Table 6.2: Manufacturing zone humidity model parameters.

Parameter Value Parameter Value

p1 3201.5646 αr
1 5.2401 ×10−4

p2 20.1539 βr
0 4.6395 ×10−4

α1 6.1051 ×10−4 o -2.2613
β0 -5.8648 ×10−2 τu 135
η1 -1.5062 ×10−3
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characteristic, cf. (6.15), hence

Tdrm =

β0

α1

φ(ug) + o

1− η1
α1

φ(ug)
+
βr
0

αr
1

Tdf (6.30)

where to distinguish the steady-state variables from their continuous counterparts

the index t has been omitted. Subsequently, by taking the derivative of the

steady-state characteristic (6.30) with respect to the control input ug leads to the

expression for the process gain, so that

KH =
η1
α1

β1,0

α1

φ(ug) + o
(

1− η1
α1

φ(ug)
)2ψ(ug) +

β0
α1

1

1− η1
α1

φ(ug)
ψ(ug) (6.31)

where KH denotes the process gain of the manufacturing zone humidity model

and ψ(ug) denotes the derivative of the function φ(ug) with respect to the variable

ug. The function ψ(ug) is then given by

ψ(ug) =
dφ(ug)

dug
=

p1p2

exp (p2ug)
[

1 + p1
exp(p2ug)

]2 (6.32)

It is noted, in equation (6.31), that the value of the process gain KH is a system

input dependent quantity, as expected. However, it is also noted, that the value

of the process gain KH is independent of the second input Tdf . The associated

process time constant of the manufacturing zone humidity model is then defined

as follows, cf. (2.73), i.e.

TH =
1

α1 − η1φ(ug)
(6.33)

where TH [s] denotes the process time constant.

The process gain KH is plotted in Figure 6.7 as a function of the input ug

in the range 〈0.24, 1〉. It is observed, that the value of the critical gain is KH =

−131.4970, which occurs at ug = 33.9 [%]. The associated process time constant

is then TH = 1054.0164 [s] as can be observed in the left-hand side plot of Figure

6.7. Subsequently, the linear first order with time delay transfer function model

representing the dynamic behaviour of the Hammerstein-bilinear manufacturing

zone humidity model (6.29) at critical operating point, for which ug = 33.9 [%],
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is given by

GH(s) =
KH

THs+ 1
exp(−τHs)

=
−131.4970

1054.0164s+ 1
exp(−135s) (6.34)

where the value of the input time delay τu remains unchanged and is renamed to

τH for consistency of notation.
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Figure 6.7: Manufacturing zone humidity model. The left-hand side plot shows
the process time constant TH as a function of control input ug. The
right-hand side plot shows the process gain KH as a function of
control input.

6.4 Control tuning

The implemented control system in Abbott Diabetes Care assumes the input

signals to be in the range u = 〈0, 100〉 [%], while the derived linearised manu-

facturing zone temperature and humidity models assume the input signal to be

normalised in the range u = 〈0, 1〉. Therefore, the process gains of these two

models must be divided by 100 so that the models can be used for the purpose

of control tuning. Additionally, the digital implementation of the PI controller

introduces half of the effective rescheduling time delay in the control loop. Sko-

gestad (2003) recommends in such circumstances to add half of the rescheduling

time to the modelled time delay.
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Dividing the process gain of the linearised manufacturing zone temperature

model (6.28) by 100 and adding half of the rescheduling time to the modelled time

delay, i.e. τT + h/2, the linearised temperature model considered for subsequent

control tuning is

GT (s) =
−0.2461

381.6204s+ 1
exp(−181.5s) (6.35)

with KT = −0.2461, TT = 381.6204 [s] and τT = 181.5 [s]. The linearised

manufacturing zone humidity model (6.34) then becomes

GH(s) =
−1.3150

1054.0164s+ 1
exp(−136.5s) (6.36)

with KH = −1.3150, TH = 1054.0164 [s] and τH = 136.5 [s].

The adopted SIMC tuning rule for the PI controller, proposed in (Skogestad

2003, Skogestad & Grimholt 2012), is stated as follows

Kp =
1

K

T

Tc + τ
(6.37)

Ti = min{T, 4(Tc + τ)} (6.38)

where K denotes the process gain, T [s] denotes the process time constant, τ

denotes the time delay and Tc is the tuning parameter. The tuning parameter Tc

is the desired process time constant of the closed-loop system.

The robustness measure considered by the SIMC tuning rule is the maximum

sensitivity peakMs, see Remark 6.1 for the definition. Åström & Hägglund (2006)

state that ‘reasonable’ values for the maximum sensitivity are in the interval

Ms = 〈1.25, 2〉. The larger values of Ms correspond to active, less robust, control

setting, while the lower values correspond to stable and slow closed-loop response.

Therefore, by adjusting theMs stability criterion the trade-off between the control

stability and performance is made. To obtain ‘tight control’ performance subject

to good robustness (smooth control), it is recommended in (Skogestad 2003) to

select Tc to be the time delay, i.e. Tc = τ . Consequently, if Tc = τ then the

guaranteed minimal robustness by the SIMC tuning rule is Ms = 1.59.

Remark 6.1 The maximum sensitivity peak, denoted Ms, is the worst case

amplification of the load disturbances and is also a robustness measure when

considering the influence of process uncertainties on the closed-loop performance

(Åström & Hägglund 2006).

Consider the block diagram representation of the control system given in Fig-

ure 6.1 and let the Laplace transforms of the load disturbance signal, the mea-
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surement noise signal and the system output to be denoted by D(s), N(s) and

Y (s), respectively. The closed-loop system response, denoted Ycl(s), of the system

to signals D(s) and N(s) is

Ycl(s) =
G(s)

1 + C(s)G(s)
D(s) +

1

1 + C(s)G(s)
N(s) (6.39)

and the open-loop system response, denoted Yol(s), is expressed as

Yol(s) = G(s)D(s) +N(s) (6.40)

Defining the sensitivity transfer function, denoted S(s), to be

S(s) =
1

1 + C(s)G(s)
(6.41)

then the following relation between the system closed-loop and open-loop re-

sponses holds
Ycl(s)

Yol(s)
= S(s) (6.42)

The relation (6.42) shows the effect of feedback on the attenuation of load dis-

turbance D(s) and noise N(s) signals under closed-loop control. The worst case

amplification of the load disturbances is the maximum sensitivity, thus Ms is

defined as

Ms = max
ω

|S(jω)| (6.43)

where S(jω) denotes the frequency response function of S(s) and ω [rad/s] is the

frequency.

The SIMC tuning rule (6.37) has been applied to the linearised manufacturing

zone temperature and humidity models, stated in (6.35) and in (6.36), respec-

tively. The PI controller gains obtained are given in Table 6.3 together with

the originally implemented control gains (by Trend Control Systems Ltd). The

integral time constant Ti is provided in minutes, rather than seconds, since the

control system accepts only minutes as units of time.

It can be seen in Table 6.3, that the originally implemented control gains are

the same for both the temperature and humidity control loops. Comparing the

original and newly proposed proportional gains, it can be noted that the original

proportional gains are very high (absolute value) compared to the newly proposed

gains. Additionally, the integral time constants of the original controller are low

compared to the newly proposed constants. This indicates, that the original
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Table 6.3: The originally implemented and newly proposed PI control gains for
the temperature and humidity control loops.

Temperature control loop

Originally implemented Newly proposed
Kp = −30 Kp = −4.27
Ti = 5 [min] Ti = 6.36 [min]

Humidity control loop

Originally implemented Newly proposed
Kp = −30 Kp = −2.94
Ti = 5 [min] Ti = 17.6 [min]

control tuning has been rather aggressive, which eventually leads to the observed

oscillations in the controlled process variables.

6.4.1 Closed-loop system stability

The newly proposed control gains, given in Table 6.3, are used to calculate the

maximum sensitivity values for the temperature and humidity control loops at the

point of tuning. The maximum sensitivity is calculated according to definition

(6.43), where the sensitivity function S(s), defined in (6.41), is required. The

sensitivity function for the temperature control loop is given by

ST (s) =
1

1 + C(s)GT (s)
(6.44)

where C(s) is the transfer function of the PI controller defined in (6.2) and GT (s)

is the transfer function of the linearised manufacturing zone temperature model

given in (6.35). The sensitivity function for the humidity control loop is defined

as follows

SH(s) =
1

1 + C(s)GH(s)
(6.45)

where GH(s) is the linearised manufacturing zone humidity model provided in

(6.36). Subsequently, the Matlab (software version 2011b) function bode has

been applied to find the maximum sensitivity values of ST (s) and SH(s). It has

been found that the maximum sensitivity is the same for both control loops with

the corresponding value Ms = 1.5905, which is in agreement with the expected

values.

Once the PI controller for the temperature and humidity control loop has been

designed at the selected operating point, it is desirable to examine the close-loop

system stability over the whole operational range of the HVAC system. Therefore,
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a bank of linearised models spanning the considered feasible operational ranges of

the nonlinear manufacturing zone humidity and temperature models have been

obtained. The linearised models have been obtained in the same manner as the

single linearised models at the assumed least stable point of operation. The

feasible operational range for the temperature model is uc = 〈0, 17.19〉 [%], Tai =

〈22.16, 35〉 [oC] and q = 0 [kW ], see the steady-state characteristic analysis in

Subsection 6.2.1. The considered operational range for the humidity model is

ug = 〈24, 100〉 [%]. Subsequently, having obtained a bank of linearised models

the Ms robustness measure has been evaluated using the derived PI controllers

for both the temperature and humidity control loops.

Figure 6.8 shows the maximum sensitivity as a function of the control input

for the temperature control loop (left-hand side subplot) and the humidity control

loop (right-hand side subplot). The grey solid lines highlight the point of opera-

tion for which the PI controllers have been tuned, where the achieved robustness

is Ms = 1.5905 and the valve positions are uc = 10.3 [%] and ug = 33.9 [%]. Con-

sidering the temperature control loop the highest maximum sensitivity, which is

also the least stable point of operation, isMs = 1.5910 obtained at uc = 10.4 [%].

The highest maximum sensitivity for the humidity control loop is Ms = 1.6499

occurring at ug = 36.6 [%].
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Figure 6.8: The maximum sensitivity peak value as a function of the control
input (black solid line) plotted for the manufacturing zone temper-
ature model (left-hand side plot) and manufacturing zone humidity
model (right-hand side plot), respectively. The grey solid line high-
lights the point of operation for which the PI controller has been
tuned.
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It has been assumed, that the least stable point of operation is that for which

the system has the highest (absolute value of) process gain. However, such a sim-

plifying assumption does not take into account the influence of the varying (input

dependent) process time constant on the closed-loop system stability. Figure 6.8

shows that if the maximum sensitivity is used as a measure of the closed-loop sta-

bility, then the least stable operating points occur at uc = 10.4 [%] and ug = 36.6

[%] for the temperature and humidity control loops rather than uc = 10.3 [%]

and ug = 33.9 [%], respectively. The highest recommended maximum sensitivity

is Ms = 2, see (Åström & Hägglund 2006), while the highest observed maximum

sensitivity is Ms = 1.6499 for the humidity control loop. Therefore, the designed

PI control gains, given in Table 6.3, are considered to be valid.

6.5 Implementation results

Figure 6.9 shows the measured control inputs and system outputs for the temper-

ature and humidity control loops, respectively. The original control gains have

been in use, see Table 6.3, and the data set has been acquired 29th April 2012. It

is observed, that both control inputs, i.e. the cooling valve position uc(tk) and the

gas valve position ug(tk), are highly varying. Consequently, the measured return

air temperature Tar and measured return air dew-point temperature Tdrm oscillate

around their respective set-point values (dashed grey line). It can be concluded

that the original control implementation is overactive and not appropriate for the

current application.

Figure 6.10 shows the implementation results for the newly proposed control

gains. The measurements have been acquired 13st July 2012. The implementation

results for the temperature control loop are considered first. It is observed, that

accurate and stable control performance has been achieved. Furthermore, it is

noted that a small, in magnitude, chattering of the control input is present. It

should be emphasised, however, that it is the command signal, i.e. the computed

output of the controller, which has been plotted and not the cooling valve position

(movement) itself. After detailed examination of the shape of the control input

signal, it can be seen that the shape of the oscillations is not of a sinusoidal

character, as it would be in the case of tight (aggressive) control tuning, but

resembles rather a sawtooth wave signal. This triangular shape indicates, that

the oscillations are not caused by inappropriate tuning, but may be attributed

to the so called valve stiction effect (Shinskey 1996). The valve stiction is caused

by friction forces inside the valve, which prevent the valve from moving until
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Figure 6.9: Measured input-output data for the original control tuning. The
two left-hand side subplots relates to the temperature control loop,
while the two right-hand side subplots relates to the humidity con-
trol loop. The dashed grey lines show the respective control set-
points. The solid grey lines show the estimated trends for the valve
movements.

the new demanded valve stem position is greater than a certain threshold value.

Therefore, the technical limits of the HVAC system have been reached and further

control improvements are not considered to be feasible.

The implementation results for the humidity control loop are shown in the

two right-hand side subplots of Figure 6.10. It is observed that a smooth and

stable control performance has been achieved together with good set-point track-

ing. Subsequently, Figure 6.11 shows in more detail the first 30 minutes of the

measured input-output data. It can be observed, that the oscillatory pattern is

present in the measurement of the return dew-point temperature. This is the

same oscillatory pattern, which has been described in detail in Section 5.2.1.

More importantly, it can be observed that the control input (gas valve command

signal) also oscillates accordingly, i.e. the PI controller reacts to the measured
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Figure 6.10: Implementation results for the proposed control tuning. The two
left-hand side subplots relates to the temperature control loop,
while the two right-hand side subplots relates to the humidity
control loop. The dashed grey lines show the respective control
set-points. The solid grey lines show the estimated trends for the
valve movements.

oscillations. Consequently, it is assumed that the observed ‘oscillatory pattern’

may have potentially induced the sustained oscillatory behaviour of the closed-

loop system having the original control gains, as observed in Figure 6.9.

6.5.1 Evaluation of implementation results

There are two main control interests, which can be extracted from the acquired

measurements. It is desirable to know how accurately the controller is able to

regulate the process variable (air temperature or air humidity) around the control

set-point. The second control interest is how smooth and non-oscillatory the

control action is.

The ability of the controller to track the demanded set-point is evaluated by

calculating a mean value of the two regulated process variables together with
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Figure 6.11: Implementation results for the proposed control tuning, zoomed
in for the first 30 minutes of measured input-output data for the
humidity control loop.

the associated standard deviations. The mean value of the measured return

air temperature, denoted T̄ar [oC], and the mean value of the measured return

air dew-point temperature, denoted T̄drm [oC], should be as close as possible to

the demanded set-points. The associated standard deviations, denoted SDT̄ar

[oC] and SDT̄drm
[oC], respectively, should be sufficiently small. The standard

deviations are calculated based on the definition given in equation (3.120).

The smoothness of the control signal is assessed by calculating the standard

deviations of the cooling valve and gas valve de-trended control inputs, denoted

SDuc [%] and SDug [%], respectively. The standard deviation should be as small

as possible. In other words, it is undesirable to have highly fluctuating (high SD

value) control signals because of the excessive wear and tear of the control valves

and potential non-optimal energy utilisation of the HVAC system. The control

signals contain trends, displayed by grey solid lines in Figures 6.9 and 6.11, which

are caused by controller compensating for external disturbances, e.g. outdoor

temperature changes. It is assumed, that the input signal trends are of a slow

character, while the fast oscillations and signal chattering is due to the control

setting. It is the fast component of the measured control input signals, which is

of interest when evaluating the control performance. Therefore, estimated trends

are firstly subtracted from the corresponding measured control input signals and

the standard deviations are calculated based on the de-trended signals.

To extract the trend of the input signals the integrated random walk smooth-

ing and decimation function irwsm implemented in Captain Toolbox for Matlab,

(Taylor, Pedregal, Young & Tych 2007), has been applied. This function uses a

fixed interval smoothing algorithm based on the family of state-space random walk

models, see (Young 2011) and references there in. The irwsm function has been
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applied with the following settings: the integrated random walk model has been

selected as the basis for the trend estimation and the noise variance ratio (NVR)

hyper-parameter is selected based on visual inspection to be NV R = 1×10−14 for

all the measured data except the ug(tk) generated based on the newly proposed

control gains. The NV R parameter used for the trend computation of the gas

valve position input signal generated based on the newly proposed control gains

is NV R = 1× 10−11.

The final results are given in Table 6.4. It is clearly evident, that the imple-

mentation of the newly proposed control gains led to the overall improvement of

the control performance. The calculated mean value of the measured return air

temperature and dew-point temperature are closer to the demanded set-point and

the associated standard deviations are significantly reduced, i.e. better tracking

performance has been achieved. At the same time the actuation of the cooling

valve and gas valve have been found to be significantly reduced.

Table 6.4: The control tuning results. The mean values and the associated
standard deviations of the system outputs are shown together with
the standard deviations of the control input signals.

Temperature control loop

Original tuning Proposed tuning

T̄ar = 21.9666 [oC] T̄ar = 21.9936 [oC]

SDT̄ar
= 0.4490 [oC] SDT̄ar

= 0.0761 [oC]

SDuc = 11.8634 [%] SDuc = 0.6044 [%]

Humidity control loop

Original tuning Proposed tuning

T̄drm = −9.7348 [oC] T̄drm = −10.0701 [oC]

SDT̄drm
= 0.9326 [oC] SDT̄drm

= 0.1630 [oC]

SDug = 25.6863 [%] SDug = 0.1204 [%]

To further highlight the increased accuracy in the control of the process vari-

ables, Figure 6.12 shows the absolute value of the control error as a percentage of

time. The control error is defined as the difference between the control set-point

and the measured process variable and is defined in equation (6.6). Considering

the temperature control loop first, it can be observed in Figure 6.12, that the ab-

solute value of the control error never exceeded value of 0.22 oC as compared to

the original value of 0.98 oC. Similarly, considering the humidity control loop, the

absolute value of the control error never exceeded value of 0.53 oC as compared

to the original value of 2.4 oC. This translates to a factor of four times in terms
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of an increase in the control accuracy of the air temperature and almost a factor

of five times increase in the control accuracy of the air dew-point temperature.
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Figure 6.12: Absolute value of control error shown as a percentage of time.

6.6 Gas consumption analysis

A stable and tight control performance has been achieved by tuning the temper-

ature and humidity feedback control loops. In return, this allows for operation

close to the product specification limits, where the highest profitability can be

obtained. The steady-state characteristic between the control humidity set-point

and gas consumption of the dehumidification unit is obtained and analysed. In

this regard, it is possible to evaluate the economical benefits of adjustment of

the control set-point closer to the product specification limit. Moreover, such

an energy characteristic may be used to assist in the decision of choosing an

appropriate safety margin, i.e. the distance between the set-point and the prod-

uct specification limit, where there is a trade-off between manufactured product

safety and the economical benefits.

Under closed-loop operation in steady-state, the system output matches the

demanded set-point. Therefore, considering the steady-state characteristic of the

manufacturing zone humidity model derived in (6.30), and replacing the system

output with the set-point, i.e. Tdrm = rH , the characteristic relating the control

213



6. Control analysis and tuning of an industrial HVAC control system

input and humidity set-point is given by

φ(ug) =
1

1 + p1 exp (−p2ug)
(6.46a)

rH =

β0

α1

φ(ug) + o

1− η1
α1

φ(ug)
+
βr
0

αr
1

Tdf (6.46b)

where the static input function has been originally defined in (6.29a) and the

model parameters are provided in Table 6.2.

The static characteristic (6.46) shows the steady-state relationship between

the gas valve position ug and the set-point value rH . Subsequently, the rela-

tionship between the gas valve position and the actual gas consumption of the

dehumidification unit is, cf. (5.67), hence

Vg =
Vg,max

1 + pr1 exp (−p
r
2ug)

(6.47)

where Vg [m3/h] denotes the gas volumetric flow and Vg,max [m3/h] denotes the

maximal gas volumetric flow measured for a fully opened gas valve. The maximal

gas volumetric flow is equal to Vg,max = 3.2791 [m3/h], see Table 5.4. The pa-

rameters pr1 and pr2 are estimated in (5.71), where these parameters are denoted

p1 and p2, respectively. The superscript r has been added to highlight that these

parameters differ in value from parameters p1 and p2 used in (6.46).

For the considered gas consumption analysis the value of the dew-point tem-

perature of the fresh air supply Tdf is required. Since such temperature will vary

based on the day to day weather conditions it would be advantageous to know

the average annual Tdf temperature, which would then reflect an average annual

gas consumption of the dehumidification unit. Unfortunately, the readings of

this temperature are not recorded as standard practice, hence the average annual

value is not available. However, the average annual dew-point temperature of

the outdoor air is available and is used here instead. The average annual dew-

point temperature of the outdoor air for years 2010, 2011 and 2012 is 7.3 [oC],

6.8 [oC] and 4.3 [oC], respectively. These dew-point temperatures were recorded

by a weather station with designation number IOXFORDS293 in Minster Lovell,

Witney, UK, which is located 2.5 [km] away from the Abbott Diabetes Care site.

The difference between the average annual dew-point temperature of the out-

door air and the temperature of the fresh air supply is that the average annual

dew-point temperature of the fresh air supply will be lower. If the dew-point

3The data were retrieved from www.wunderground.com.
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temperature of the outdoor air, entering the fresh air plant, is higher than 10
oC, then part of the air moisture will condense on the cooling coil of the fresh

air plant. Therefore, the average annual gas consumption deduced based on the

conducted gas consumption analysis will be somewhat inflated.

For the gas valve position in the range ug = 〈0.24, 1〉 the corresponding set-

point values and gas volumetric flows are calculated using (6.46) and (6.47),

respectively. Subsequently, the results are shown in Figure 6.13, where the hu-

midity set-point is expressed in terms of a dew-point temperature scale (the

left-hand side plot) and in terms of a relative humidity scale (the right-hand side

plot) assuming rT = 22 [oC]. Two static characteristic curves for the average

annual fresh air supply air dew-point temperatures Tdf = 7.3 [oC] (black solid

line) and Tdf = 4.3 [oC] (dark grey solid line) are shown. The humidity set-point

is rH = −10 [oC] (black dashed line), which is plotted on the left-hand side plot.

The equivalent set-point value in terms of the relative humidity scale is an air

temperature dependent quantity. In the case when the air handling unit is in

cooling mode the zone temperature set-point is rT = 22 [oC], while for the heat-

ing mode the zone temperature set-point is rT = 21 [oC], see Subsection 6.1.2.

Consequently, with reference to Subsection 6.1.2, the corresponding zone relative

humidity set-point values are rH = 10.8 [%] at rT = 22 [oC] (light grey dashed

line) and rH = 11.5 [%] at rT = 21 [oC] (dark grey dashed line), see left-hand

side of Figure 6.13.

6.6.1 Observations

Figure 6.13 shows that the gas consumption characteristic has an approximately

constant negative slope in the region of the control safety margin, i.e. the distance

between the set-point and the product specification limit. The gas consumption

characteristic decreases at a rate of approximately 0.1 [m3/h] of gas volumetric

flow per 1 [oC] of the set-point value (dew-point temperature scale). Therefore, if

the set-point is to be increased, i.e. the control safety margin is reduced, then the

gas consumption of the dehumidification unit could be reduced by approximately

0.1 [m3/h] per 1 [oC] of the set-point adjustment.

Considering the left-hand side plot of Figure 6.13, it is noted, that the charac-

teristic curve moves horizontally towards the decreasing values of rH for decreas-

ing values of Tdf , while its shape is preserved. Although the ‘exact’ value of Tdf is

unknown and changes on day to day bases, its value has only an small influence

on the slope of the characteristic curve for a given set-point value (in the control
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Figure 6.13: Gas consumption of the dehumidification unit as a function of the
manufacturing zone humidity set-point.

safety margin region). In other words, the potential for gas savings by set-point

adjustment is approximately preserved, despite the variations of the actual value

of Tdf .

Furthermore, it should be emphasised, that increasing the humidity set-point

decreases the amount of heat generated by the dehumidification unit. Conse-

quently, the air handling unit must remove less heat from the conditioned air

so that the demanded zone temperature set-point is achieved. Therefore, less

chilled water is required by the air handing unit, which additionally generates

electricity savings on the side of the water chillers, see (Zajic, Larkowski, Hill &

Burnham 2011) for a more detailed discussion.

6.7 Conclusions

The control analysis and tuning of an industrial HVAC control system has been

investigated. The Hammerstein-bilinear air temperature and humidity models of

an environmentally controlled clean room manufacturing zone identified in Chap-

ter 5, have been used for the purpose of control analysis. The main results of the

control analysis has been the selection of feasible operation ranges of the HVAC

system and the subsequent selection of critical operating points for which the
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control system has been tuned. It should be emphasized, that the uncertainties

of the model parameter estimates could have been potentially taken into consid-

eration during the control analysis and design stage providing enhanced insights

into the closed-loop control performance.

The control analysis has revealed that only certain combinations of system

outputs and inputs are feasible if the control system regulates the system outputs

(air temperature and humidity) at the demanded set-points. Therefore, not all

dynamic modes of the nonlinear HVAC system are active, which greatly limits

the operating space for which the control system should be tuned. Therefore,

the knowledge of the system nonlinearities is beneficial and, in return, reinforces

the advantage of possessing a well structured nonlinear models prior to control

tuning and design.

The obtained PI control gains have been implemented and tested on the HVAC

system located in Abbott Diabetes Care, UK. The implementation of the newly

proposed control gains has led to an overall improvement of the control perfor-

mance. The originally observed oscillatory behaviour of the closed-loop control

system has been eliminated and accurate set-point tracking has been achieved

despite the influence of the load disturbances on the system.

The last contribution of this chapter highlights the potential for energy (gas)

savings via the adjustment of the humidity control set-point. It is argued, that

the improved control performance allows for the operation closer to the air humid-

ity product specification limit, where the highest profitability can be obtained.

The steady-state characteristic between the control humidity set-point and gas

consumption of the dehumidification unit has been obtained. In this regard, it is

possible to evaluate the economical benefits of adjustment of the control set-point

closer to the product specification limit, where there is a trade-off between man-

ufactured product safety and the potential for significant economical benefits.
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Chapter 7

Conclusions & future research

directions

7.1 Conclusions

Motivated by the physical phenomena occurring in a general HVAC system a

Hammerstein-bilinear model structure has been introduced, which offers improved

modelling capabilities yet retains a close link to well understood linear models.

The well established simplified refined instrumental variable method for linear

transfer function model parameter estimation has been extended to encompass a

Hammerstein-bilinear model class both in the continuous-time and discrete-time

domains. An emphasis has been placed on the applicability of the algorithms

to real problems and the ability of the algorithms to work under real system

identification scenarios. The resulting parameter estimation algorithms are in

themselves innovative in the system identification area and complement a vari-

ety of existing algorithms. Furthermore, due to the flexibility of the introduced

Hammerstein-bilinear model structure it is possible to adequately model phys-

ical phenomena occurring in a wide range of real systems, which increases the

applicability of the presented research. This, in return, forms the basis for the

concept of a so-called Hammerstein-bilinear approach to modelling and control

of real-world systems.

The Hammerstein-bilinear model class comprises Hammerstein and bilinear

model structures as special cases, which, within the latter, linear models coexist

as a special subclass. It has been shown, that the Hammerstein-bilinear model

structure then combines the advantages of its constituent parts and can exhibit

both, input dependent dynamic behaviour and increased flexibility of the steady-
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state characteristics including the input multiplicity. Furthermore, since the input

to the bilinear submodel is scaled by the static nonlinear function, the input

dependent dynamics of the bilinear submodel also depend on the form of the static

nonlinear function. However, it is this input dependent, hence static nonlinear

function dependent, dynamic and steady-state behaviour of the Hammerstein-

bilinear model, which creates a challenging system identification problem with

potential benefits for real-world applications.

The most significant algorithmic outcome of this thesis has been the proposed

extensions of the simplified refined instrumental variable parameter estimation

method to handle the Hammerstein-bilinear model class. The simplified refined

instrumental variable parameter estimation method is a unified time domain

approach and the designed extensions have inherited this property. Therefore,

the designed algorithms have been presented both in the continuous-time and

discrete-time domains. There are several advantages of using continuous-time

models for identification over the discrete-time counterparts. The single, most

exploited, advantage in this thesis has been the preservation of the a priori phys-

ical knowledge incorporated in the continuous-time model structures, which has

provided a physically meaningful insight into the modelled (analysed) system.

However, it is emphasised that the presented estimation methods, both in the

continuous-time and discrete-time domains, have been designed to complement

one another and should be chosen based on the intended purpose of the estimated

models. Additionally, the discrete-time parameter estimation methods require

less a priori knowledge during the initialisation stage, therefore these methods

can be used to appropriately initialise the continuous-time based methods should

this be necessary.

The research has mainly focused on the estimation methods in the continuous-

time domain due to the aforementioned physical interpretability of the continuous-

time models and the fact that there is a paucity of research in the literature in the

area of estimation of bilinear and Hammerstein-bilinear model structures in the

continuous-time domain. The simplified refined instrumental variable method for

the estimation of continuous-time transfer function models, abbreviated SRIVC,

has been extended to the bilinear case, where the corresponding algorithm has

been abbreviated BSRIVC. The proposed BSRIVC algorithm is capable of esti-

mation of higher order time-invariant single-input single-output bilinear models

directly from the sampled input-output data. For the purpose of parameter esti-

mation the bilinear model has been interpreted in time-step quasi-linear transfer

function form, where the denominator parameters are system input dependent
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quantities. The SRIVC algorithm uses a state variable filter approach to gener-

ate the filtered time derivatives of sampled input-output signals, where a linear

optimal prefilter is selected as the auto-regressive part of the estimated transfer

function model. Since the BSRIVC algorithm is based on the time-step quasi-

linear transfer function interpretation of the estimated bilinear model, the param-

eters of the optimal prefilter are also system input dependent, i.e. the prefilter is

adaptive and no longer linear. Subsequently, to solve for the unknown parame-

ter estimates an iterative, bootstrapping, solution has been employed, where the

parameters of the optimal prefilter are updated in an iterative manner based on

the latest estimate of the transfer function model parameters.

Exploiting the iterative nature of the BSRIVC algorithm, and postulating that

the static input function is parameterized by a linear-in-parameters polynomial

function of finite order, the Hammerstein-bilinear SRIVC (HBSRIVC) algorithm

has been designed for the estimation of Hammerstein-bilinear models. This gen-

eral estimation algorithm then includes the BSRIVC and SRIVC algorithms as

special cases in a similar manner to the Hammerstein-bilinear model structure

including Hammerstein and bilinear model structures as special cases. Further-

more, the HBSRIVC algorithm is applicable to Hammerstein models as well. The

proposed parameter estimation methods differ from the existing, reviewed meth-

ods, in their simplicity of implementation, usage and the noise scenarios under

which consistent parameter estimates are obtained.

A further significant contribution presented in this thesis is the observation

that if the parameters of the considered continuous-time single-input single-

output bilinear model are constrained in a predefined way, then the original

bilinear model can be interpreted for the purpose of parameter estimation as

a two-input single-output linear (in structure) transfer function model. In re-

turn, this facilitates the use of well established linear parameter estimation meth-

ods. Based on this observation, the SRIVC algorithm has been configured for

such an identification scenario and, in a similar manner to the HBSRIVC al-

gorithm, the iterative HSRIVC algorithm has been proposed for the estimation

of Hammerstein(-bilinear) models. Since the bilinear model parameters are re-

stricted, the applicability of this approach is also system identification case sce-

nario specific. However, it has been demonstrated on a simple example of a

first principles model of a heat exchanger, that the constrained bilinear model

structure may naturally occur in the case of HVAC system applications. The de-

veloped approach provides a conceptual stepping stone towards the more general

less restricted extensions.
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The SRIVC and HSRIVC parameter estimation methods configured for the

bilinear and Hammerstein-bilinear model estimation can be viewed as being com-

plementary to the BSRIVC and HBSRIVC algorithms, respectively, and can be

used during the initialisation stages of these. The main difference comprises the

use of linear prefilters instead of adaptive, input dependent, prefilters. This cre-

ates a set of linear parameter estimation methods, which are straightforward to

initialise, and the implementation complexity is reduced.

It is advantageous to subtract the baselines (initial values) of the measured

system input-output signals prior to model parameter estimation. This, of course,

does not impose any problems when a linear model is being estimated. How-

ever, the steady-state and dynamic behaviour of the bilinear model is operating

point dependent. Therefore, the estimated parameters of the continuous-time

(or discrete-time) bilinear model are also operating point dependent quantities.

Consequently, the estimated parameters of the bilinear model are valid only for

the input-output signals with the subtracted baselines.

By exploiting the mathematical structure of the bilinear models a procedure

to adjust the estimated parameters for a prescribed (or any) operating point

has been suggested. This procedure then allows the steady-state and dynamic

characteristics of the bilinear model to be corrected for any given operating point,

while the estimated model parameters are obtained for the baseline operating

point, thus retaining the input dependency of the model. To the best knowledge

of the author, it is believed that such a procedure has not to date been considered

within the context of the bilinear model parameter estimation problem. Note,

that the estimated parameters of the static input nonlinearity are not influenced

by the operating point of the system, hence these do not need to be adjusted

(modified).

7.1.1 Heating ventilation and air conditioning system ap-

plication

The use of the designed parameter estimation methods has been demonstrated

on the modelling and control implementation challenge of the industrial HVAC

system located at Abbott Diabetes Care, UK. Moreover, it has been this intended

application to HVAC systems, which has motivated the development of the pre-

sented identification methods and approaches in the first place. The research

aim has been to develop dynamic control system design oriented air temperature

and humidity models of an environmentally controlled clean room manufacturing
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zone. These are considered to be suitable for subsequent control analysis and

tuning of the associated commercial HVAC control system. In return, the well

tuned control system permits an energy efficient operation of the HVAC system

leading to an overall reduction in energy consumption.

The identified models are innovative in themselves and are contributions to

the field of HVAC systems modelling. Overall, three separate control oriented

models have been identified in the continuous-time domain, namely, a linear zone

(room) temperature model, a Hammerstein-bilinear temperature model of an

industrial air handling unit and a Hammerstein-bilinear manufacturing zone hu-

midity model. The continuous-time domain has been selected mainly because of

the physical meaningful insight gained into the behaviour of the modelled system

and suitability of the continuous-time models for the conducted control analysis

and tuning of the corresponding commercial HVAC control system.

To the best knowledge of the author a significant contribution to the field of

HVAC system modelling has been the single development of the Hammerstein-

bilinear manufacturing zone humidity model, which relates the manipulated vari-

able (control input) to the regulated manufacturing zone air humidity. The sin-

gle active component of the HVAC system, which removes the moisture from

the conditioned air, is the desiccant rotor based dehumidification unit. The re-

viewed models of the desiccant rotors are predominantly intended for the design

and performance evaluation of the dehumidification units, i.e. models for design

purposes. The reviewed models of the desiccant rotors, however, have not been

found to be suitable for the purpose of control; these models are either static and

do not encompass the system dominant dynamic behaviour or the models are too

complex, being based on physical laws and computationally demanding.

In the context of models for control analysis and tuning, it is considered that

the zone humidity model has not been modelled using a Hammerstein-bilinear

approach before, and furthermore the advantages of such an approach have been

realised for the first time. Whilst the suboptimal control performance on such

plants is tolerable, the increased energy consumption is becoming increasingly an

issue nowadays with concern for high energy costs and the effect on the natural

environment. Therefore, it can only be assumed, that the general paucity of

control oriented models within the literature has been caused, to some extent,

by a lack of demand in the past, where the energy consumption issue has not

been the main consideration. The HVAC commercial control system has been

re-tuned using the models developed for the HVAC system and components,

whereby improved control has been achieved via a greater insight into factors
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such as nonlinear input dependent process gains and time constants.

The greater insights afforded by knowledge of the system nonlinearities when

adopting a nonlinear model based approach are immense, and the corresponding

well structured mathematical models, e.g. the Hammerstein-bilinear modelling

and control approach applied to the HVAC system, provides a transparent, well

grounded engineering framework. Such a framework allows not only effective

control but also, and probably more importantly, a well structured approach for

nonlinear systems modelling, analysis and design.

7.2 Proposals for future work

The potential research topics of interest, which either directly stem from or are

motivated by the conducted research into the Hammerstein-bilinear modelling

and control approach, are summarised below:

• A development of recursive realisations of some of the proposed parameter

estimation methods, both in continuous-time and discrete-time domains,

would be an area of an immediate research interest. The recursive im-

plementations of the proposed estimation methods could be used off-line,

where such recursive estimation/analysis would provide further insight into

the modelled system. Furthermore, the recursive realisations for an on-line

implementation are also worth considering.

• Extensions of the designed parameter estimation methods for bilinear and

Hammerstein-bilinear model structures to handle an auto-regressive with

moving-average (ARMA) process noise model. This would broaden the

noise scenarios under which an unbiased and statistically efficient param-

eter estimates are obtained. Therefore, the proposed further extensions

would be based on the refined instrumental variable methods, summarised

in (Young 2011), instead of the currently utilised simplified refined instru-

mental variable methods.

• Investigate further extensions of the simplified refined instrumental vari-

able method to encompass a bilinear-Wiener and Hammerstein-bilinear-

Wiener nonlinear model structures. It is assumed, that such extensions

would even further increase the applicability of the presented research for a

wider class of real-world problems, while retaining a well structured math-

ematical framework for nonlinear control system design.
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• Another research area of interest might be that of model based robust con-

trol design, where such methods may incorporate the knowledge about the

system nonlinearities as parameter uncertainties of a linear model structure

upon which the control law is derived. Olalla, Queinnec, Leyva & Aroudi

(2011) considered a robust control design based on a bilinear system model.

It is proposed to further extended and build on such an approach to accom-

modate for the Hammerstein-bilinear model structure.

• An Investigation of convergence properties of the proposed parameter esti-

mation methods via numerical studies would be of interest. Such a conver-

gence analysis should be conducted alongside the selection of persistently

exciting input signals for bilinear and Hammerstein-bilinear models. Barker

et al. (2004) propose an optimisation procedure for the design of optimal

multi-level input signals for Hammerstein model estimation. It is believed

that such an approach could be potentially extended for the Hammerstein-

bilinear case, where the input dependent dynamic behaviour of the bilinear

submodel should be considered.

• It has been assumed, that by design, the influence of the cooling and heat-

ing coils of the HVAC air handling unit on the temperature of passing

air is equivalent, however having opposite effects. Therefore, it has been

anticipated that the identified manufacturing zone temperature model (in-

cluding the effect of the cooling coil only) can be utilised for the purpose of

model based tuning of both the PI controller for the cooling mode and the

PI controller for the heating mode. The experimental study presented in

Chapter 6, has so far only considered the cooling mode, therefore additional

experimental work needs to be carried out to validate the proposed control

approach for the heating mode.
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Appendix A

Models of HVAC system

components

A.1 Control valve ideal model

This section freely continues the description of the control valve started in Section

2.5 in which the terms valve inherent characteristic, valve installed characteristic,

linear and equal percentage inherent characteristics were introduced.

The ideal linear valve inherent characteristic can be modelled as follows, see

(Underwood 1999), i.e.

γ(u(t)) = f + u(t) (1− f) (A.1)

and the equal percentage inherent valve characteristic as

γ(u(t)) = f (1−u(t)) (A.2)

Here u(t) denotes the valve stem fractional position in a range of 〈0, 1〉, where

0 corresponds to a fully closed and 1 to a fully open valve. The valve let-by is

denoted as f ; even for fully closed valve, i.e. u(t) = 0, there could still be a

minimum flow of water through the valve, which in practice is maximally around

1% of maximal mass flow rate.

When the valve is installed within the HVAC system and the pipe-work

the valve inherent characteristic is influenced by the entire system itself, then

we speak about installed valve characteristic, which is derived and provided in
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(Underwood 1999), i.e

φ(u(t)) =
γ(u(t))

√

γ2(u(t)) (1−Nv) +Nv

(A.3)

The valve authority, which is the link between heating system and valve, is defined

as

Nv =
∆pv
∆ps

(A.4)

where ∆pv is the differential pressure over the fully opened valve at designed con-

ditions and ∆ps denotes the differential pressure over the closed valve. The ∆ps

is in fact the maximal locally available water pressure in the HVAC system and

Nv is defined in the interval of Nv = 〈0, 1〉. In practice, for commissioned HVAC

system, the valve authorities are expected to be in the range Nv ∈ 〈0.2, 0.5〉. Note

that the valve authority of Nv = 1 corresponds to the ideal/designed case. This

can be achieved if the valve would be small enough compared to the pipe work,

i.e. ∆pv ≈ ∆ps.

The water mass flow rate through the valve is then

ṁ(t) =Mwφ(u(t)) (A.5)

where Mw denotes the maximal water mass-flow rate for a fully open valve, i.e.

u(t) = 1.

The valve stem is modulated by either electric or hydraulic actuator in prac-

tice. Unless the actuator dynamics is fast enough compared to the system dy-

namics or it is assumed that the actuator dynamics can be lumped together with

the system dynamics, then the separate dynamic model should be also considered

and included in the system identification exercise. The valve actuator dynamics is

commonly represented as a first order dynamic system, subsequently the supply

water mass flow rate is computed as, (Underwood 1999), i.e.

τvalve
dṁ(t)

dt
=Mwφ(u(t))− ṁ(t) (A.6)

where τvalve is the valve actuator time constant. The basic model (A.6), however,

does not consider the different amount of time it takes to move the valve stem

for different distances. Therefore rate limiter should also be considered, so that

dṁ(t)/dt ≤ limit.
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Appendix B

Essential background to

Psychrometrics

Psychrometrics is a field of engineering studying gas mixtures in general. The

gas mixture of dry air and water vapor is of the main interest in air conditioning

applications, because of its impact on the human comfort and the indoor envi-

ronment. The term atmospheric air, or ‘air’ for short, refers to a mixture of dry

air and water vapor. The dry air itself is a mixture of oxygen (approximately 78

[%]), nitrogen (approximately 21 [%]) and other gases. A simplifying assumption

is made regarding the two air component properties. It is assumed, that the dry

air and the water vapor behave as ideal gases (Çengel & Boles 1994), that is the

two substances behave as they are alone and obey the ideal equation of state

pV = mRT (B.1)

where p [Pa] denotes the gas pressure, V [m3] denotes the gas volume, m [kg] is

the gas mass, T [K] denotes the temperature and R [J/(kgK)] is the gas constant.

The gas constant of dry air is Ra = 287 [J/(kgK)] and the gas constant of water

vapor is Rv = 461.5 [J/(kgK)], where the subscripts a and v refers to dry air

and water vapor, respectively. Under this assumption, the air pressure is a sum

of the partial pressure of dry air, denoted pa, and of the partial pressure of water

vapor, denoted pv, so that

p = pa + pv (B.2)

In air conditioning applications the air temperature and humidity are important

measures, which are being controlled. The two subsequent sections clarify the

following terminology and state essential mathematical relations between these:

dry-bulb temperature, dew-point temperature, frost-point temperature and rela-
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B. Essential background to Psychrometrics

tive humidity. The other measures quantifying the air humidity, such as absolute

and specific humidities, are not used in this thesis, hence are not introduced.

B.1 Dry-bulb temperature

The temperature of air measured by thermometer, which is shielded and freely

exposed to the air, is called the dry-bulb temperature. In other words, this is the

standard temperature measured by thermometer and often refers to the ambient

temperature. The temperature is measured in units of Kelvin, denoted [K],

which is also the basic SI (International system of units) unit. Other commonly

adopted temperature scale is the Celsius scale, having degree Celsius [◦C] as unit

of measurement. The conversion between Kelvin and Celsius scale is

[K] = [◦C] + 273.15 (B.3)

In psychrometrics and thermodynamics, the attention must be given to the actual

temperature units used as some constants and relations are provided either in [K]

or [◦C] but not necessarily in both.

B.2 Specific and relative humidity

The specific humidity, denoted X, is defined as a ratio of water vapor mass,

denoted mv, to the mass of dry air, denoted ma, in a given control volume of air,

hence

X =
mv

ma

(B.4)

where the units of X are [kg (water vapor)/kg (dry air)] or [g (water vapor)/kg

(dry air)]. Substituting from (B.1) for mv and ma in (B.4) gives the following

alternative expression for specific humidity

X =
pv

V
RvT

pa
V

RaT

= 0.622
pv
pa

(B.5)

Considering the (B.2), the above expression (B.5) can be also written as

X = 0.622
pv

p− pv
(B.6)

where p is a total atmospheric pressure.
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The relative humidity, denoted RH, defines the human comfort. Therefore, it

is the relative humidity which is commonly measured and controlled. Addition-

ally, the relative humidity also determines how much moisture a water absorbent

material can absorb from moist air, which might be critical information when

such material is being manufactured. The relative humidity is defined as a ratio

between the mass of water vapor mv to the maximum mass of water vapor, de-

noted mg, which could be held at specific control volume at the same conditions

(temperature and pressure), so that (Çengel & Boles 1994)

RH =
mv

mg

(B.7)

Substituting from (B.1) for mv and mg in (B.7) gives the following alternative

expression for relative humidity

RH =
pv

V
RvT

pg
V

RvT

=
pv
pg

(B.8)

where pg [Pa] denotes the saturated water vapor pressure. The relative humidity

can be then also defined as the ratio of partial pressure of water vapor to the

saturated partial pressure of this water vapor at the same temperature. The ratio

(B.7) ranges between zero and one, where zero means no moisture is contained

in the air and one states that the air is saturated with the water. Commonly,

the ratio (B.8) is multiplied by 100, so that the relative humidity is provided in

percentage [%].

The saturated water pressure is a function of the dry-bulb temperature only.

This relation can be expressed by empirical Magnus formula (Buck 1981)

pg = a exp

(
bT

c+ T

)

(B.9)

where a, b and c are constant parameters, which are directly taken from (Buck

1981) and are provided in Table B.1. This implies that the relative humidity

changes with temperature even when the actual mass of the water vapor does

not. Therefore, the relative humidity is not often being controlled directly by an

air conditioning system, but rather indirectly via the dew-point and frost-point

temperature measurements.
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Table B.1: The constant parameters of Magnus formula. For Td > 0 [◦C] the
relative error is < 0.05 [%] over the range 0 ≤ T ≤ 50 [◦C]. For
Td ≤ 0 [◦C] the relative error is < 0.02 [%] over the range −50 ≤
T ≤ 0 [◦C].

Parameter Td ≤ 0 [◦C] Td > 0 [◦C]

a 6.1115 6.1121
b 17.966 17.368
c 247.15 238.88

B.3 Dew-point and frost-point temperatures

The dew-point temperature is a measure of the air humidity and directly relates

to the so called specific humidity. The dew-point temperature, denoted Td [K],

is defined in (Çengel & Boles 1994) as “the temperature at which condensation

begins if the air is cooled at constant pressure”. The condensed water is called

the dew. In the case the dew-point temperature is negative, hence the air ambi-

ent temperature T must drop below freezing point, the frost is formed instead of

the dew. In such case the dew-point temperature is called the frost-point tem-

perature, i.e. for negative values of Td. However, to simplify the terminology the

frost-point temperature is also called the dew-point temperature and based on

the actual value of Td one can recognize whether the dew or frost would form.

Since the dew-point temperature directly relates to the water content of the

air, it is possible to calculate the partial pressure of water vapor within the air.

If the ambient temperature T of the air decreases, the amount of water the air

can hold also decreases (hence the saturated water pressure decreases cf. (B.9)),

so that the relative humidity of the air increases. The moment the ambient

temperature and the dew-point temperatures are equal the relative humidity is

100 [%]. At this point the partial pressure of water and the saturated partial

pressure of water are equal, i.e. pv = pg and T = Td. Therefore, having measured

the dew-point temperature, it is possible to calculate the partial pressure of water

vapor within the air by substituting Td for T in (B.9), i.e.

pv = a exp

(
bTd
c+ Td

)

(B.10)

where the constant coefficients are provided in Table B.1 and are the same as for

expression (B.9). Considering the definition of the specific humidity (B.6), it can

be noted that the dew-point temperature directly relates to the specific humidity

via partial pressure of water vapor (B.10).
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B.4 Conversion between relative humidity and

dew-point temperature

It is often convenient to be able to convert between the relative humidity and

the dew-point temperature in both directions. Considering the definition of rel-

ative humidity in (B.8) and substituting for partial and saturated partial water

pressures from (B.10) and (B.9), respectively, yields

RH(T, Td) =
exp

(
bTd

c+Td

)

exp
(

bT
c+T

) (B.11)

Equation (B.11) can be rearranged and expressed in terms of the dew-point tem-

perature, hence

Td(T,RH) =
c
[
ln
(
RH
100

)
+ bT

c+T

]

b− ln
(
RH
100

)
− bT

c+T

(B.12)

In practical HVAC system applications the installed sensors are commonly mea-

suring the relative humidity. This measurement is then converted to dew-point

temperature scale, which is then actually utilised for the control purposes. In this

manner, the humidity control loop is decoupled from the ambient temperature

control loop.
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