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Abstract: Recurrent Neural Networks (RNNs) are known for their ability to learn relationships 
within temporal sequences. Gated Recurrent Unit (GRU) networks have found use in challenging 
time-dependent applications such as Natural Language Processing (NLP), fnancial analysis and 
sensor fusion due to their capability to cope with the vanishing gradient problem. GRUs are also 
known to be more computationally effcient than their variant, the Long Short-Term Memory neural 
network (LSTM), due to their less complex structure and as such, are more suitable for applications 
requiring more effcient management of computational resources. Many of such applications require 
a stronger mapping of their features to further enhance the prediction accuracy. A novel Quaternion 
Gated Recurrent Unit (QGRU) is proposed in this paper, which leverages the internal and external 
dependencies within the quaternion algebra to map correlations within and across multidimensional 
features. The QGRU can be used to effciently capture the inter- and intra-dependencies within 
multidimensional features unlike the GRU, which only captures the dependencies within the se-
quence. Furthermore, the performance of the proposed method is evaluated on a sensor fusion 
problem involving navigation in Global Navigation Satellite System (GNSS) deprived environments 
as well as a human activity recognition problem. The results obtained show that the QGRU produces 
competitive results with almost 3.7 times fewer parameters compared to the GRU. The QGRU code is 
available at. 

Keywords: gated recurrent unit; quaternion neural network; quaternion gated recurrent unit; hu-
man activity recognition; INS; GPS outage; autonomous vehicle navigation; inertial navigation; 
neural networks 

1. Introduction 

The success of Recurrent Neural Networks (RNNs) on sequentially-based problems 
has been emphasized in applications such as natural language processing, fnancial analysis 
and signal processing problems [1–5]. Other researchers have demonstrated the excel-
lent performance of RNNs on various time series problems such as on electronic health 
records [6], classifcations of acoustic scenes [7], cyber-security [8], human activity recogni-
tion [9,10], and vehicular localisation [11–15]. Although RNNs were formulated to model 
time-dependent relationships within basic sequential problems [16], real-world problems 
are often multi-dimensional and thus require a dedicated approach towards modelling 
the relations inherent in the data [17]. Matsui et al. in [18], showed the existence of local 
relations within the elements of multi-dimensional data. Real-valued methods such as 
the RNNs, however, approach the multidimensional elements as independent entities 
within the input vector, where local relations are considered in the same way as global 
dependencies [17]. 

Another challenge commonly faced in machine learning is the effcient computation of 
the representations of large data within the hidden dimensions. It is important for a good 
model to encode local relations effciently within the input features, such as the relations 
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between the red, green and blue channels of a pixel as explored in [18,19], and structural 
relations across pixels such as edges or shapes. Such effcient representations lead to a 
signifcant reduction in the number of neural parameters needed to facilitate the learning 
process, with also naturally minimised occurrences of overftting within the model [17]. 

Quaternions are a number system characterised by one real and three imaginary 
components that form their hypercomplex structure. Their composition lends them the 
ability to represent and manipulate features uniquely, thus enabling effcient learning 
within and across multidimensional input features through the exploitation of the Hamil-
ton product during quaternion algebraic operations [20–22]. Several quaternion-based 
learning algorithms have been proposed by researchers. Parcollet et al. [23] studied the 
success of quaternion Convolutional Neural Network (CNN) by investigating the infu-
ence of the Hamilton product on colour image reconstruction from gray-scale images. 
Moya-Sanchez et al. proposed a bio-inspired quaternion local phase CNN layer, offering 
the possibility of capturing rotational linear response and contrast invariance in image 
classifcation as well as faster learning image rotations than a regular convolution layer [24]. 
Chen et al. [25] studied the use of quaternion-embedded capsule network model for knowl-
edge graph completion. Ozcan et al. proposed a quaternion capsule network in [26], 
Grassucci et al. proposed a quaternion-valued variational autoencoder in [27], and Nguyen 
et al. proposed a quaternion graph neural network in [28]. Parcollet et al. used a quaternion-
based RNN and LSTM (Long Short-Term Memory) on a challenging natural language 
processing task [20]. A bidirectional quaternion LSTM recurrent neural network was ex-
plored by Parcollet et al. for speech recognition in [29]. However, the Gated Recurrent Unit 
(GRU) network, a variant of the LSTM is characterised by a less complex structure, making 
it computationally more effcient compared to the LSTM and justifying its suitability for 
computationally demanding applications. 

A novel Quaternion Gated Recurrent Unit (QGRU) is thus proposed in this paper to 
leverage the internal and external dependencies within the quaternion algebra in order 
to map correlations within and across multidimensional features using fewer parameters 
within the hidden dimensional space. The QGRU is proposed as an improvement on the 
GRU to better address sensor fusion applications, as it can be used to effciently capture the 
inter and intra dependencies within multidimensional features unlike the Gated Recurrent 
Unit (GRU). The performance of the quaternion formulation of the GRU is investigated 
comparatively to the GRU on a complex task involving the navigation of autonomous 
vehicles in challenging environments problems, as addressed in [16,30], and a human 
activity recognition classifcation task, as addressed in [31], with the use of time-based 
signals rather than the frequency transformed signals as used in [31]. 

The rest of the paper is structured as follows: Section 2 presents a brief literature 
review on Quaternion Neural Networks, then, in Section 3, we discuss the formulation of 
the proposed QGRU network, Section 4 presents some experimentation of the QGRU on a 
challenging vehicular localisation problem as well as a Human Activity Recognition (HAR) 
task, and it also details the employed datasets. The results obtained on the performance 
analysis evaluation of the QGRU and GRU are discussed in Section 5, and fnally, the paper 
is concluded in Section 6. 

2. Previous Work on Quaternion Neural Networks 

In the past decade, the feld of complex-valued neural networks has been actively 
researched, but with limited infuence until its recent application to RNNs. Studies show 
that complex-valued neural networks have better generalisation capabilities [32] and are 
easier to optimise [33]. Quaternion neural networks were proposed where the inputs and 
bias vectors, as well as the weight matrices, are quaternion-based. The quaternion-valued 
vanilla RNN and LSTM were shown to provide improved accuracy with a signifcantly 
reduced number of parameters on speech recognition tasks compared to their real-valued 
counterparts [20]. Several researchers have proposed several quaternion-based learning 
algorithms with applications to various challenging problems [19–22]. Cui et al. [34] ap-
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plied the quaternion neural network to the inverse kinematics of a robot manipulator. 
Luo et al. [35] compressed colour images using quaternion neural network principal com-
ponent analysis. Greenblatt et al. in [36] applied quaternion neural networks to prostate 
cancer Gleason grading. Shang and Hiros [37], proposed a quaternion neural-network-
based PolSAR for land classifcation in Pointcare-sphere-parameter space. Parcollet et al. 
studied the applications of a deep quaternion neural network to speech recognition [38,39]. 
Gaudet and Maidat [39], and Parcollet et al. [40] investigated the use of quaternion convo-
lution networks for image processing on the CIFAR and KITTI datasets and an end-to-end 
automatic speech recognition problem respectively. Pavllo et al. modelled human motion 
using quarternion-based neural networks [40]. A quaternion convolutional neural network 
was used by Comminiello et al. to detect and localise 3D sound events in [41]. Zhu et al. 
proposed a quaternion convolutional neural network for colour image classifcation and 
denoising tasks [42]. Tay et al. explored the use of quaternion networks for lightweight 
and effcient neural natural language processing in [43]. Parcollet et al. investigated the 
use of quaternion-valued convolutional and recurrent neural networks on speech recog-
nition in [44]. Parcollet et al. studied the use of quaternion neural networks for theme 
identifcation of telephone conversations in [45]. Tran et al. proposed a quaternion-based 
self-attentive long short-term user preference encoding for recommendation in [46]. The 
localisation of colour image splicing by using a full quaternion convolutional network was 
explored by Chen et al. in [47]. A deformable quarternion Gabor convolutional neural 
network for recognition of colour facial expression was proposed by Jin et al. in [48]. 
Qiu et al. studied the use of quaternion neural networks for multi-channel distant speech 
recognition in [49]. A hate speech classifcation model using multi-modal fusion archi-
tecture was proposed by Kumar et al. in [50]. However, the quaternion formulation is 
yet to be extended to the GRU and could fnd use in computationally constrained sensor 
fusion applications. 

3. Proposed Quaternion Gated Recurrent Unit 

This section presents a novel quaternion formulation of the GRU, which formulates 
the input and bias vectors as well as the weight matrices as quaternions and replaces some 
of the multiplicative product operators of the GRU with the Hadamard product. The 
weight initialisation, gated operations and backward propagation mechanism of the QGRU 
are discussed in this section. 

3.1. Real-Valued GRU 

The GRU, which was introduced by Cho et al. in 2014 [51], addresses the vanishing 
gradient problem of the RNN giving it the opportunity to learn long-term dependencies. 
The cellular operation is characterised by the combination of the input gate and the update 
gate into a single “update gate”. The hidden state and the cell state are also merged to 
provide a more computationally effcient model compared to the LSTM. The update and 
reset gate in the GRU operate to tackle the vanishing gradient problem by deciding what 
information should be passed to the output, thus removing information that is not relevant 
to the prediction. 

The update gate functions to determine the amount of the previous information to 
be passed along to the future, while the reset gate controls how much of the previous 
information to forget. Memory content is introduced to store relevant information from 
the past using the reset gate. The operation of the gates of the GRU are governed by 
Equations (1)–(4). 

update gate : zt = σ(Wzxt + Uzht−1) + bz (1) 

reset gate : rt = σ(Wrxt + Urht−1) + br (2) 
, 

current memory state : ht = tanh(Whxt + rt ∗ Uhht−1) + bh (3) 
, 

f inal memory : ht = zt ∗ ht−1 + (1− zt) ∗ ht (4) 

http:Comminielloetal.to
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where ∗ is the Hadamard product, ht−1 is the previous state, Wz, Wr and Wh are the weight 
matrices of the update gate, reset gate and current memory state, respectively, Uz, Ur and 
Uh are the hidden weight matrices of the update gate, reset gate and current memory state 
respectively, bz, br and bh are the bias vectors of the update gate, reset gate and current 
memory state, respectively, xt is the input feature vector and σ is the sigmoid activation 
(non-linear) function. Figure 1 shows the GRU’s cell structure. 
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A quaternion is a four-element vector in the class of hypercomplex numbers composed 
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3.3. Quaternion-Valued Gated Recurrent Unit 

A fully connected QGRU has its input, weights, bias and output parameters repre-
sented as quaternions. Each variable is broken down into four dimensions representing the 
four elements of a quaternion xQ = x(r) + x(i)i + x(j) j + x(k)k. Furthermore, the multiplica-
tion operator governing the product of the input vector and the weight matrix composed of 
real-valued elements is replaced by the Hadamard product, as principled by Equation (10). 
Just like in real-valued layers computations, the fully connected quaternion layers are 
formulated as matrix multiplications. A sample multiplication is shown in Equation (11). ⎤⎡⎤⎡⎤⎡ 

w(r) −w(i) −w(j) −w(k) x(r) γ(r) ⎢⎢⎢⎣ 
w(i) w(r) −w(k) w(j) 

w(j) w(k) w(r) −w(i) 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
x(i) 

x(j) 
⎥⎥⎥⎦ 
= 

⎢⎢⎢⎣ 
γ(i) 

γ(j) 

⎥⎥⎥⎦ (11) 

w(k) −w(j) w(i) w(r) x(k) γ(k) 

3.3.1. Weight Initialisation 

A successfully trained neural network is dependent on a properly designed weight 
initialization method. Proper initialisation of the weight parameters is key to the perfor-
mance of the network, leading to a reduced risk of the vanishing and explosion gradient 
and an improved convergence. Due to the unique interactions between the weight parame-
ters of a quaternion neural network, a quaternion-valued weight initialisation algorithm 
used in [20] is used as shown in Equation (12) where wr, wi, wj and wk are the real and 
imaginary components of the initialised weights. 

(j) (k)wr = ϕ cos(θ), wi = ϕẇ(i) sin(θ), wj = ϕẇ cos(θ), wk = ϕẇ cos(θ) (12) 

where ϕ is sampled between −σ and σ, and σ is established according to the Glorot 
criterion [35] such that σ = √ 1 , with nin and nout as the number of neurons at the 

2(nin+nout) 

input and output layers; ẇ(i), ẇ(j) and ẇ(k) are the imaginary elements of a normalised 
imaginary quaternion ẇQ as shown in Equations (13)–(16), with the imaginary elements of 
the base quaternion randomly chosen from a real number between 0 and 1; θ is generated 
as a random value within −π and π. 

wQ = 0 + w(i)i + w(j) j + w(k)k (13) 

wQ = 0− w(i)i− w(j) j− w(k)k (14) q
ẇQ = wQ·wQ = 0 + ẇ(i)i + ˙ (i) j + ˙ (i)kw w (15) 

(i) (j), w , w(k) ← rand(0, 1) (16)w

3.3.2. Gated Operations 

The operations of the gates of the QGRU are governed by Equations (17)–(20). The 
structure of the QGRU cell is illustrated in Figure 2. The structure of the QGRU remains 
similar to the GRU, however, the input and output to each cell gate are quaternion-based. � 

update gate : zq,t = σ Wq,z ⊗ xq,t + Uq,z ⊗ hq,t−1 + bq,z (17) � 
reset gate : rq,t = σ Wq,r ⊗ xq,t + Uq,r ⊗ hq,t−1 + bq,r (18) 

current memory state : 
, 
hq,t = tanh 

�� 
Wq,h ⊗ xq,t + rq,t ∗ Uq,h ⊗ hq,t−1 + bq,h (19) � , 

f inal memory : hq,t = zq,t ∗ hq,t−1 + 1− zq,t ∗ hq,t (20) 
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Bias: 

∆𝑏𝑞,𝑧

𝑡 =
𝜕𝑒𝑡

𝜕bq,z
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𝜕𝑒𝑡

𝜕𝑤𝑞
 where:

𝜕𝑒𝑡

𝜕𝑤𝑞
=

𝜕𝑒𝑡

𝜕𝑤𝑟 +
𝜕𝑒𝑡

𝜕𝑤𝑖 𝑖 +
𝜕𝑒𝑡

𝜕𝑤𝑗 𝑗 +

𝜕𝑒𝑡

𝜕𝑤𝑘 𝑘 
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Figure 2. Cell structure of the Quaternion Gated Recurrent Unit (QGRU). 

In the above equations, ∗ is the Hadamard product; hq,t−1 is the previous quaternionic 
state; Wq,z, Wq,r and Wq,h are the quaternion weight matrices of the update gate, reset gate 
and current memory state, respectively; Uq,z, Uq,r and Uq,h are the hidden weight matrices 
of the update gate, reset gate and current memory state, respectively;bq,z, bq,r and bq,h are 
the bias vectors of the update gate, reset gate and current memory state, respectively; and 
xq,t is the quaternionised input features vector. 

3.3.3. Quaternion Backward Propagation through Time 

The quaternion back-propagation mechanism is adapted from [21]. For each weight 
matrix, the gradient of the loss et with respect to each weight matrix is expressed as 
shown in Equations (21)–(24), where Δt

wqy is the quaternionic representation of the output 
weight update. 

Hidden weights: 

∂et ∂et ∂etΔt = , Δt = , Δt = (21)Uq,z Uq,r Uq,h∂Uq,z ∂Uq,r ∂Uq, h 

Input weights: 

∂et ∂et ∂etΔt = , Δt = , Δt = (22)wq, z wq,r wq, h∂Wq, z ∂Wq,r ∂Wq, h 

Output weights: 

Δt
wqy = 

∂et (23)
∂Wqy 

Bias: 
∂et ∂et ∂etΔt = , Δt = , Δt = (24)bq,z bq,r bq,h∂bq,z ∂bq,r ∂bq,h 

∂et ∂et ∂et ∂et ∂etThe gradients can thus be generalised to Δt = ∂wq 
where: ∂

∂
w
et

q 
= ∂wr + 

∂wi i+ 
∂wj j+ 

∂wk k. 
The computation of the loss with respect to each element of the quaternion parameters 

of the network is done through the application of the chain rule and updated as shown 
below in Equations (25)–(28). 
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Hidden weights: 
Uq = Uq − λΔt (25)U, q 

Input weights: 
wq = wq − λΔt

wq (26) 

Output weights: 
wqy = wqy − λΔt

wqy ⊗ hq,t (27) 

Bias: 
bq = bq − λΔt

b, q (28) 

where Δt , Δt and Δt are the generalised forms of the quaternion representations of U, q wq b, q 
the hidden weight, input weight and bias update, λ is the learning rate and Uq, wq, wqy 
and bq are the generalised forms of the quaternionic hidden weight matrices, input weight 
matrices, output weight matrices and bias vectors. 

4. QGRU Experiments on Sensor Fusion Applications 

This section presents some experiments on evaluating the performance of the QGRU 
on two sensor fusion applications: the Vehicular Localisation problem in Section 4.1, and 
the HAR problem in Section 4.2. 

4.1. Vehicular Localisation Using Wheel Encoders 

The continuous and accurate positioning of autonomous vehicles, road-wise and 
lane-wise, is critical to their safe performance [52]. In urban canyons, under bridges, 
tunnels, etc., the visibility of Global Navigation Satellite System (GNSS) is obstructed. 
Inertial Navigations Systems (INS) and wheel odometers are amongst systems that can 
be integrated with the GNSS to improve road localisation during GNSS outages. In [30], 
the wheel encoder was investigated as a replacement to the accelerometer of the INS in 
tracking the vehicle displacement in challenging GNSS environments, such as Hard-Brake 
(HB), Wet Road (WR), Successive Left and Right turns and sharp cornering (SLR) [15]. 
However, the accuracy of the position estimation from the wheel encoder’s measurement 
is affected by factors such as changes in tyre size and wheel slippage. A smaller tyre 
diameter leads to an under estimation of the vehicle’s displacement and vice versa [32]. 
These uncertainties lead to poor positioning of the vehicles over time as they are cascaded 
unboundedly during navigation. 

Due to the safety-critical nature of this problem, there is however the need to minimize 
the error drift, thus offering a reliable positioning solution. As such, a localisation solution 
capable of strongly mapping the features of the motion dynamics to enhance the prediction 
accuracy of positioning algorithms is needed. The mathematical model of the wheel 
encoder-based localisation problem is presented in Equations (29)–(36). 

The rear left and right wheel’s angular velocity (wheel speed) measurements from the 
wheel encoders are represented as ˆ whrr, respectively. The errors (uncertainties) ωb ωb 

whrl and ˆ
corresponding to the left and right rear-wheel speed measurements are defned as εb 

whrl 
and εb 

whrl are the wheel speed measurements without errors. whrr. ω
b 
whrr and ωb 

ωbˆ whrl = ωb 
whrl (29)whrl + εb 

ω̂b 
whrr = ωb 

whrr (30)whrr + εb 

The calculation of the angular velocity of the rear axle is shown in Equations (30)–(31) 
obtained from the average of the rear left and right wheel measurements. 

ωb εb 
ω̂b whrr + ωwhrl 

b 
+ whrr + εb

whrl (31)whr = 
2 2 

http:solution.As
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εb 
whrr+ωb 

Taking whrr+εb
whrl as εb

whr and ωb 
whrl as ωb 

2 2 whr 

ω̂b 
whr + εb (32)whr = ωb 

whr 

Using v = wr, the vehicle’s linear velocity can be found, with r defned as a constant 
mapping the speed of the wheel to the vehicle’s displacement: 

vb 
whrr + εb (33)wh = ωb 

whrr 

Taking εb
whrr as εb 

whr,v 
vb 

whrr + εb (34)whr = ωb 
whr,v 

The vehicle’s displacement can thus be found through the integration of the vehicle’s 
velocity from Equation (34); Where εb in Equation (35) represents the integral of εb 

whr,x whr,v 
from Equation (34). Z t

bx (ωb (35)whr = whrr) + εb
whr,x 

t−1

Here 
b bεb

whr,x ≈ xwhr − xGNSS (36) 

The vehicle’s true displacement is represented as xGNSS 
b and calculated according 

to [53] using the Vincenty’s formula for geodesics on an ellipsoid based on the latitudinal 
and longitudinal information of the vehicle position [53,54]. 

bThe focus is on learning to estimate εb to correct xwhr. All analysis are done in the whr,x 
body frame as described in [15]. 

4.1.1. Dataset 

The Inertial Odometry Vehicle Navigation Benchmark Dataset (IO-VNBD) [55] is used 
in the experimentation. The dataset consists of about 98 h of driving data collected over 
about 5700 km of travel on different driving scenarios. The dataset describes a variant of 
vehicle motion dynamics using information from sensors such as accelerometers, wheel 
encoders, gyroscopes, GPS receivers, etc. Although the dataset is collected with a sampling 
interval of 10 Hz, we down-sampled to a frequency of 1 Hz, as in [30]. The dataset is 
publicly available at https://github.com/onyekpeu/IO-VNBD (accessed on 30 December 
2020) and described in [55]. The training datasets used from the IO-VNBD are V-Vta1a, 
V-Vta2, V-Vta8, V-Vta10, V-Vta16, V-Vta17, V-Vta20, V-Vta21, V-Vta22, V-Vta27, V-Vta28, 
V-Vta29, V-Vta30, V-Vtb1, V-Vtb2, V-Vtb3, V-Vtb5, V-Vw4, V-Vw5, V-Vw14b, V-Vw14c, 
V-Vfa01, V-Vfa02, V-Vfb01a, V-Vfb01b and V-Vfb02b. The test datasets used are as shown 
in Table 1. 

Table 1. Inertial Odometry Vehicle Navigation Benchmark Dataset (IO-VNB) datasets used in the 
performance evaluation on the localisation task. 

Challenging Scenarios IO-VNB Data Subset 

V-Vw16b 

Hard Brake (HB) V-Vw17 

V-Vta9 

V-Vw6 

Sharp Cornering and Successive Left and Right Turns (SLR) V-Vw7 

V-Vw8 

V-Vtb8 

Wet Road (WR) V-Vtb11 

V-Vtb13 

https://github.com/onyekpeu/IO-VNBD
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The performance of the QGRU in comparison to the GRU on the localisation problem 
is evaluated using the maximum CRSE (Cumulative Root Squared Error) metric adopted 
in [16]. The CRSE is defned as the cumulative root squared of the error estimation of each 
second for the total duration of the GNSS outage (defned as 10 s). The maximum CRSE 
from all 10 s length test sequences in each challenging scenario are compared. The CRSE 
equation is as shown in Equation (37). 

Nt q
CRSE = ∑ epred

2 (37) 
t=1

where Nt is GNSS outage length of 10 s, t is the sampling period and epred is the uncertainty 
(error) prediction. 

4.1.2. Quaternion Features 

All input signals are reconstructed by down-sampling the original signals from 10 Hz 
to 1 Hz and restructured using a sliding window length of 4 per each input signal. The 
quaternion input feature xQ,t is described in Equation (38). 

XQ,t = xv1 + xv2i + xv3 j + xv4k (38) 

where v1, v2, v3 and v4 refer to the wheel speed information at times t, t− 1, t− 2 and 
t− 3, respectively. 

At any time t, the quaternion input feature XQ,t is composed of XQ,1, XQ,2, XQ,3 and 
XQ,4 as shown in the unrolled architecture of the QGRU in Figure 3. XQ,1, XQ,2, XQ,3 and 
XQ,4 denote the quaternion inputs at each time step and are defned below such that at 
time t: 

XQ,1 = xt + xt−1i + xt−2 j + xt−3k (39) 

XQ,2 = xt−1 + xt−2i + xt−3 j + xt−4k (40) 

XQ,3 = xt−2 + xt−3i + xt−4 j + xt−5k (41) 

XQ,4 = xt−3 + xt−4i + xt−5 j + xt−6k (42) 
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At time t + 1 : 
XQ,1 = xt+1 + xti + xt−1 j + xt−2k (43) 

XQ,2 = xt + xt−1i + xt−2 j + xt−3k (44) 

XQ,3 = xt−1 + xt−2i + xt−3 j + xt−4k (45) 

XQ,4 = xt−2 + xt−3i + xt−4 j + xt−5k (46) 
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where x is the wheel speed measurement: ωb 
whrl that are fed as XQ,t into the whrr and ωb 

neural network to learn the target εb .whr,x
As the performance of the QGRU is compared to the GRU in this work, the training 

process for both the QGRU and GRU are discussed below. 
The QGRU training process is done with a single hidden layer with a batch size of 1024 

and a recurrent dropout rate of 0.005 applied according to [56]. The model optimization 
was done using Adamax with an initial learning rate of 0.001. The objective function used 
is the mean absolute error loss function. 

The GRU’s training process is also done using a single hidden layer with a batch size 
of 1024, a recurrent dropout rate of 0.25 and a timestep of 4. The Adamax optimizer is 
used to optimize the model with an initial learning rate of 0.004. The mean absolute error 
loss function is also used as the objective function. All input to the QGRU and GRU are 
normalised to values between 0 and 1. 

A varying number of neurons from 4 to 256 are used to compare the performance of 
the QGRU to the GRU. 

4.2. Human Activity Recognition 

The identifcation of different activities performed by humans from sensor data records 
is an active research topic. Wearable devices, such as smartphones and bracelets, are used 
to record the actions carried out by humans whilst performing activities such as walking, 
running, standing, sitting, etc. Information on these activities are used to support domains 
such as healthcare, home automation and ftness. The challenge, however, lies in the 
management of the huge amount of information obtained from an array of several sensors 
as well as their temporal relationships and the lack of knowledge on how to relate the 
information recorded to the defned activities. 

4.2.1. Dataset 

The UCI HAR dataset is the second dataset used in our experiments. The dataset, 
described in [31], is stored in the UCI Machine Learning Repository at http://archive.ics. 
uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones. (accessed on 
30 December 2020). The dataset contains information from waist-mounted smartphone 
sensors, such as the accelerometer and gyroscope at a sampling frequency of 50 Hz. Unlike 
the IO-VNB Dataset, the signals were pre-processed for noise reduction with a median flter 
and a 3rd order low-pass Butterworth flter using a cut-off frequency of 20 Hz. The HAR 
dataset captures static human activities, such as standing, sitting and laying down as well 
as dynamic human activities, such as walking, walking upstairs and walking downstairs. 
The training set consists of 70% random samples from the original dataset, while the test 
set is made up of the remaining 30% of the dataset as used in [31]. 

4.2.2. Quaternion Features 

The shape of the HAR signal is also ordered by time and sampled in sliding windows 
of 2.56 s (length of 128) and 50% overlap between them. The quaternion input feature at 
time t denoted as XQ,t is as described in Equation (47). 

XQ,t = xv1 + xv2i + xv3 j + xv4k (47) 

where v1, v2, v3 and v4 refer to each element entry of the quarter divisions of the signal as 
shown in Equations (48)–(51). As such, XQ,t is made up of XQ,1, XQ,2, XQ,3, . . . . XQ,32 as 
shown in Figure 4 where XQ,1, XQ,2, XQ,3, . . . . XQ,32 also denote the quaternion input at 
each time step and are as defned below. 

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
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At every time t: 
XQ,1 = xT1 + xT33i + xT65 j + xT97k (48) 

XQ,2 = xT2 + xT34i + xT66 j + xT98k (49) 

XQ,3 = xT3 + xT35i + xT67 j + xT99k (50) 

XQ,32 = xT32 + xT64i + xT96 j + xT128k (51) 

where T1, T2, T3 . . . .and Tn refer to the frst, second, third and nth element entry of the 
signal and x is an input signal (one of the 9 signals): 3-axis linear acceleration, 3-axis 
angular velocity and 3-axis jerk information. 

The training process of the QGRU is done with a single hidden layer, 300 epochs and 
a batch size of 1280. The model is optimized using the Adamax optimizer with an initial 
learning rate of 0.005. The objective function chosen is the mean square error loss function 
with a dropout rate of 0.005. However, the GRU is trained with a batch size of 4, time step 
of 128, epoch length of 100, an initial learning rate of 0.002, a categorical cross-entropy 
loss function, a Stochastic Gradient descent model optimiser and a recurrent dropout rate 
of 0.25. The neural networks are trained to accurately classify the activity of the human, 
i.e. standing, walking, laying down, sitting, walking upstairs and walking downstairs. 
Similarly to the localisation experiment, the performance of the QGRU and the GRU are 
compared using a varying number of neurons ranging from 4 to 256. 

5. Results and Discussion 

In this section, the performance of the QGRU and GRU are evaluated on the vehicular 
localisation problem (regression task) as well as the HAR problem (classifcation task) 
described above. 

5.1. Challenging Vehicular Localisation Task 

The results from the vehicle localisation experiments are presented in Table 2. The 
performance of the QGRU is compared to the GRU and the physical model (the directly 
integrated information from the wheel encoder) in estimating the positioning error (un-
certainties) εb needed for the correction of the vehicle’s positioning information. The whr,x 
evaluation is done on three challenging scenarios for vehicular positioning in GNSS de-
prived environments: Hard Brake scenario (HB), sharp cornering and Successive Left 
and Right turn scenario (SLR), and the Wet Road scenario (WR). With the task of fnding 
the model capable of accurately estimating the positioning uncertainties in each scenario 
considered, the error in accurately estimating this uncertainty from the QGRU and GRU 
in comparison to the original uncertainty from the physical model εb are reported in whr,x 
Table 2. In the hard brake scenario, the QGRU provided the least estimation error of 2.86 m, 
compared to the GRU’s estimation error of 3.15 m and the initial physical model’s uncer-
tainty of 9.99 m. The results from the successive left and right turn and sharp cornering 
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scenario shows that the QGRU also offers the least error in estimating the positioning 
uncertainty, with an error of 1.24 m compared to the GRU’s estimation error of 1.31 m and 
the original uncertainty of the physical model of 8.19 m. The QGRU performs similarly 
in the wet road scenario, with the least uncertainty estimation error of 2.09 m compared 
to 2.36 of the GRU and the physical model’s original uncertainty of 5.36 m. The results 
highlight the QGRU providing an improvement over the GRU of 9.2% in the HB scenario, 
5.3% in the SLR scenario and 11.4% in the WR scenario. The results so obtained are in line 
with those presented in [30]. Remarkably, despite the QGRU providing better estimates 
compared to the GRU, it does so with fewer of trainable parameters. For instance, in the 
HB scenario, the QGRU provides better estimates with 3809 parameters compared to 13,121 
parameters with the GRU, as shown in Table 3. While in the SLR scenario, the QGRU 
provided the best estimation with 1137 parameters compared to 3489 parameters of the 
GRU. Additionally, in the WR scenario, the QGRU estimated the position uncertainty best 
with 13,761 parameters compared to 50,817 parameters of the GRU. 

Table 2. Comparison between the QGRU and GRU on each scenario of the vehicle localisation task. 

Number of HB (m) SLR (m) WR (m) Neurons 

Physical Physical PhysicalGRU QGRU GRU QGRU GRU QGRU Model Model Model 

4 5.16 3.02 3.46 1.31 3.3 2.29 

8 3.63 2.9 2.16 1.24 3.26 2.42 

9.99 8.19 5.3616 3.55 2.86 1.8 1.24 3.41 2.24 

32 3.52 2.94 1.31 1.24 3.38 2.09 

64 3.15 2.94 1.58 1.3 3.42 2.25 

128 3.58 3.13 1.32 1.32 2.36 2.09 

256 3.76 3.14 1.36 1.44 2.48 2.35 

Table 3. The number of trainable parameters across various numbers of neurons used in the vehicle 
localisation experiment. 

Number of Neurons Number of Trainable Parameters 

GRU QGRU 

4 101 377 

8 297 1137 

16 977 3809 

32 3489 13,761 

64 13,121 52,097 

128 50,817 202,497 

256 199,937 798,209 

5.2. Human Activity Recognition (HAR) Task 

The performance of the QGRU and GRU on the HAR task across different weighted 
connections are reported in Table 4. Both neural networks are tasked with accurately 
classifying the human activities in the HAR dataset, i.e. standing, walking, laying down, 
sitting, walking upstairs and walking downstairs. The QGRU performs slightly better 
than the GRU, with a classifcation accuracy of 95.28% and 95.16%, respectively, which is 
in line with those presented in [31]. This highlights a 0.08% overall improvement of the 
QGRU over the GRU. Even so, the QGRU performs better than the GRU in all neuron 
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numbers experimented with except in the 32 neurons experiment, where the GRU provides 
a better classifcation accuracy. Similar to the localisation problem, the QGRU offers a 
signifcant parameter reduction in providing the best overall classifcation accuracy, with 
59,015 parameters compared to 206,087 of the GRU, as shown in Table 5. 

Table 4. Comparison between the QGRU and GRU performance on the HAR task. 

Number of Neurons Classifcation Accuracy (%) 

GRU QGRU 

4 87.51 91.72 

8 91.18 92.57 

16 92.6 93.62 

32 93.62 93.15 

64 94.3 95.28 

128 95.01 95.12 

256 95.16 95.23 

Table 5. The number of trainable parameters across various numbers of neurons used in the HAR 
task experiment. 

Number of Neurons Number of Trainable Parameters 

GRU QGRU 

4 203 815 

8 495 2007 

16 1367 5543 

32 4263 17,223 

64 14,663 59,015 

128 53,895 216,327 

256 206,087 825,063 

The performance of the QGRU may be attributed to the quaternion algebra and 
Hamilton multiplication properties, lending support to a more compact Neural Network 
formulation. Such reduction in the parametric complexity of the model makes it more 
suitable for use on low memory embedded devices. 

6. Conclusions 

This paper proposed a novel Quaternion Gated Recurrent Unit (QGRU) to map 
multi-dimensional features effciently using fewer parameters. The QGRU leverages the 
Hamilton product of quaternions to capture internal and external dependencies effciently 
within and across multi-dimensional features. The performance of the QGRU is evaluated 
over a vehicular localisation problem and a Human Activity Recognition (HAR) task. On 
the vehicular localisation problem, the QGRU provided the least error in estimating the 
positioning uncertainty, with a 9.2% improvement over the GRU in the hard brake scenario, 
a 5.3% improvement the GRU in the sharp cornering and successive left and right turns 
scenario and an 11.4% improvement over the GRU in the wet road scenario. However, on 
the HAR task, the QGRU outperforms the GRU with a classifcation accuracy of 95.28% 
compared to 95.16% of the GRU. The results obtained from the study show that the QGRU 
is able to obtain these positioning uncertainty estimates and better classifcation accuracy 
compared to the GRU with up to 3.7 times fewer parameters. However, without the use 
of a carefully designed CUDA kernel, the frequent memory copy operations between the 
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CPU and GPU during training could cause signifcant computational delays compared to 
the GRU. 

Our future work will involve an investigation into higher complex-valued neural 
networks for reduced parametric computations on the sensor fusion problems described in 
this paper as well as other similar problems. 
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