

A Quaternion Gated Recurrent Unit
Neural Network for Sensor Fusion

Onyekpe, U. A., Palade, V., Kanarachos, S. & Christopoulos, S.

Published PDF deposited in Coventry University’s Repository

Original citation:
Onyekpe, UA, Palade, V, Kanarachos, S & Christopoulos, S 2021, 'A Quaternion Gated
Recurrent Unit Neural Network for Sensor Fusion', Information (Switzerland), vol. 12,
no. 3, 117.
https://dx.doi.org/10.3390/info12030117

DOI 10.3390/info12030117
ESSN 2078-2489

Publisher: MDPI

This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0
https://dx.doi.org/10.3390/info12030117

 information

Article

A Quaternion Gated Recurrent Unit Neural Network for
Sensor Fusion

Uche Onyekpe 1,*, Vasile Palade 1 , Stratis Kanarachos 2 and Stavros-Richard G. Christopoulos 2

����������
�������

Citation: Onyekpe, U.; Palade, V.;

Kanarachos, S.; Christopoulos, S.-R.G.

A Quaternion Gated Recurrent Unit

Neural Network for Sensor Fusion.

Information 2021, 12, 117. https://

doi.org/10.3390/info12030117

Received: 31 January 2021

Accepted: 1 March 2021

Published: 9 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affl-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Centre for Data Science, Coventry University, Coventry CV1 5FB, UK; ab5839@coventry.ac.uk
2 Faculty of Engineering and Computing, Coventry University, Coventry CV1 5FB, UK;

ab8522@coventry.ac.uk (S.K.); ac0966@coventry.ac.uk (S.-R.G.C.)
* Correspondence: onyekpeu@uni.coventry.ac.uk

Abstract: Recurrent Neural Networks (RNNs) are known for their ability to learn relationships
within temporal sequences. Gated Recurrent Unit (GRU) networks have found use in challenging
time-dependent applications such as Natural Language Processing (NLP), fnancial analysis and
sensor fusion due to their capability to cope with the vanishing gradient problem. GRUs are also
known to be more computationally effcient than their variant, the Long Short-Term Memory neural
network (LSTM), due to their less complex structure and as such, are more suitable for applications
requiring more effcient management of computational resources. Many of such applications require
a stronger mapping of their features to further enhance the prediction accuracy. A novel Quaternion
Gated Recurrent Unit (QGRU) is proposed in this paper, which leverages the internal and external
dependencies within the quaternion algebra to map correlations within and across multidimensional
features. The QGRU can be used to effciently capture the inter- and intra-dependencies within
multidimensional features unlike the GRU, which only captures the dependencies within the se-
quence. Furthermore, the performance of the proposed method is evaluated on a sensor fusion
problem involving navigation in Global Navigation Satellite System (GNSS) deprived environments
as well as a human activity recognition problem. The results obtained show that the QGRU produces
competitive results with almost 3.7 times fewer parameters compared to the GRU. The QGRU code is
available at.

Keywords: gated recurrent unit; quaternion neural network; quaternion gated recurrent unit; hu-
man activity recognition; INS; GPS outage; autonomous vehicle navigation; inertial navigation;
neural networks

1. Introduction

The success of Recurrent Neural Networks (RNNs) on sequentially-based problems
has been emphasized in applications such as natural language processing, fnancial analysis
and signal processing problems [1–5]. Other researchers have demonstrated the excel-
lent performance of RNNs on various time series problems such as on electronic health
records [6], classifcations of acoustic scenes [7], cyber-security [8], human activity recogni-
tion [9,10], and vehicular localisation [11–15]. Although RNNs were formulated to model
time-dependent relationships within basic sequential problems [16], real-world problems
are often multi-dimensional and thus require a dedicated approach towards modelling
the relations inherent in the data [17]. Matsui et al. in [18], showed the existence of local
relations within the elements of multi-dimensional data. Real-valued methods such as
the RNNs, however, approach the multidimensional elements as independent entities
within the input vector, where local relations are considered in the same way as global
dependencies [17].

Another challenge commonly faced in machine learning is the effcient computation of
the representations of large data within the hidden dimensions. It is important for a good
model to encode local relations effciently within the input features, such as the relations

Information 2021, 12, 117. https://doi.org/10.3390/info12030117 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-6768-8394
https://orcid.org/0000-0002-8468-2998
https://doi.org/10.3390/info12030117
https://doi.org/10.3390/info12030117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12030117
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12030117?type=check_update&version=3
mailto:onyekpeu@uni.coventry.ac.uk

Information 2021, 12, 117 2 of 16

between the red, green and blue channels of a pixel as explored in [18,19], and structural
relations across pixels such as edges or shapes. Such effcient representations lead to a
signifcant reduction in the number of neural parameters needed to facilitate the learning
process, with also naturally minimised occurrences of overftting within the model [17].

Quaternions are a number system characterised by one real and three imaginary
components that form their hypercomplex structure. Their composition lends them the
ability to represent and manipulate features uniquely, thus enabling effcient learning
within and across multidimensional input features through the exploitation of the Hamil-
ton product during quaternion algebraic operations [20–22]. Several quaternion-based
learning algorithms have been proposed by researchers. Parcollet et al. [23] studied the
success of quaternion Convolutional Neural Network (CNN) by investigating the infu-
ence of the Hamilton product on colour image reconstruction from gray-scale images.
Moya-Sanchez et al. proposed a bio-inspired quaternion local phase CNN layer, offering
the possibility of capturing rotational linear response and contrast invariance in image
classifcation as well as faster learning image rotations than a regular convolution layer [24].
Chen et al. [25] studied the use of quaternion-embedded capsule network model for knowl-
edge graph completion. Ozcan et al. proposed a quaternion capsule network in [26],
Grassucci et al. proposed a quaternion-valued variational autoencoder in [27], and Nguyen
et al. proposed a quaternion graph neural network in [28]. Parcollet et al. used a quaternion-
based RNN and LSTM (Long Short-Term Memory) on a challenging natural language
processing task [20]. A bidirectional quaternion LSTM recurrent neural network was ex-
plored by Parcollet et al. for speech recognition in [29]. However, the Gated Recurrent Unit
(GRU) network, a variant of the LSTM is characterised by a less complex structure, making
it computationally more effcient compared to the LSTM and justifying its suitability for
computationally demanding applications.

A novel Quaternion Gated Recurrent Unit (QGRU) is thus proposed in this paper to
leverage the internal and external dependencies within the quaternion algebra in order
to map correlations within and across multidimensional features using fewer parameters
within the hidden dimensional space. The QGRU is proposed as an improvement on the
GRU to better address sensor fusion applications, as it can be used to effciently capture the
inter and intra dependencies within multidimensional features unlike the Gated Recurrent
Unit (GRU). The performance of the quaternion formulation of the GRU is investigated
comparatively to the GRU on a complex task involving the navigation of autonomous
vehicles in challenging environments problems, as addressed in [16,30], and a human
activity recognition classifcation task, as addressed in [31], with the use of time-based
signals rather than the frequency transformed signals as used in [31].

The rest of the paper is structured as follows: Section 2 presents a brief literature
review on Quaternion Neural Networks, then, in Section 3, we discuss the formulation of
the proposed QGRU network, Section 4 presents some experimentation of the QGRU on a
challenging vehicular localisation problem as well as a Human Activity Recognition (HAR)
task, and it also details the employed datasets. The results obtained on the performance
analysis evaluation of the QGRU and GRU are discussed in Section 5, and fnally, the paper
is concluded in Section 6.

2. Previous Work on Quaternion Neural Networks

In the past decade, the feld of complex-valued neural networks has been actively
researched, but with limited infuence until its recent application to RNNs. Studies show
that complex-valued neural networks have better generalisation capabilities [32] and are
easier to optimise [33]. Quaternion neural networks were proposed where the inputs and
bias vectors, as well as the weight matrices, are quaternion-based. The quaternion-valued
vanilla RNN and LSTM were shown to provide improved accuracy with a signifcantly
reduced number of parameters on speech recognition tasks compared to their real-valued
counterparts [20]. Several researchers have proposed several quaternion-based learning
algorithms with applications to various challenging problems [19–22]. Cui et al. [34] ap-

Information 2021, 12, 117 3 of 16

plied the quaternion neural network to the inverse kinematics of a robot manipulator.
Luo et al. [35] compressed colour images using quaternion neural network principal com-
ponent analysis. Greenblatt et al. in [36] applied quaternion neural networks to prostate
cancer Gleason grading. Shang and Hiros [37], proposed a quaternion neural-network-
based PolSAR for land classifcation in Pointcare-sphere-parameter space. Parcollet et al.
studied the applications of a deep quaternion neural network to speech recognition [38,39].
Gaudet and Maidat [39], and Parcollet et al. [40] investigated the use of quaternion convo-
lution networks for image processing on the CIFAR and KITTI datasets and an end-to-end
automatic speech recognition problem respectively. Pavllo et al. modelled human motion
using quarternion-based neural networks [40]. A quaternion convolutional neural network
was used by Comminiello et al. to detect and localise 3D sound events in [41]. Zhu et al.
proposed a quaternion convolutional neural network for colour image classifcation and
denoising tasks [42]. Tay et al. explored the use of quaternion networks for lightweight
and effcient neural natural language processing in [43]. Parcollet et al. investigated the
use of quaternion-valued convolutional and recurrent neural networks on speech recog-
nition in [44]. Parcollet et al. studied the use of quaternion neural networks for theme
identifcation of telephone conversations in [45]. Tran et al. proposed a quaternion-based
self-attentive long short-term user preference encoding for recommendation in [46]. The
localisation of colour image splicing by using a full quaternion convolutional network was
explored by Chen et al. in [47]. A deformable quarternion Gabor convolutional neural
network for recognition of colour facial expression was proposed by Jin et al. in [48].
Qiu et al. studied the use of quaternion neural networks for multi-channel distant speech
recognition in [49]. A hate speech classifcation model using multi-modal fusion archi-
tecture was proposed by Kumar et al. in [50]. However, the quaternion formulation is
yet to be extended to the GRU and could fnd use in computationally constrained sensor
fusion applications.

3. Proposed Quaternion Gated Recurrent Unit

This section presents a novel quaternion formulation of the GRU, which formulates
the input and bias vectors as well as the weight matrices as quaternions and replaces some
of the multiplicative product operators of the GRU with the Hadamard product. The
weight initialisation, gated operations and backward propagation mechanism of the QGRU
are discussed in this section.

3.1. Real-Valued GRU

The GRU, which was introduced by Cho et al. in 2014 [51], addresses the vanishing
gradient problem of the RNN giving it the opportunity to learn long-term dependencies.
The cellular operation is characterised by the combination of the input gate and the update
gate into a single “update gate”. The hidden state and the cell state are also merged to
provide a more computationally effcient model compared to the LSTM. The update and
reset gate in the GRU operate to tackle the vanishing gradient problem by deciding what
information should be passed to the output, thus removing information that is not relevant
to the prediction.

The update gate functions to determine the amount of the previous information to
be passed along to the future, while the reset gate controls how much of the previous
information to forget. Memory content is introduced to store relevant information from
the past using the reset gate. The operation of the gates of the GRU are governed by
Equations (1)–(4).

update gate : zt = σ(Wzxt + Uzht−1) + bz (1)

reset gate : rt = σ(Wrxt + Urht−1) + br (2)
,

current memory state : ht = tanh(Whxt + rt ∗ Uhht−1) + bh (3)
,

f inal memory : ht = zt ∗ ht−1 + (1− zt) ∗ ht (4)

http:Comminielloetal.to

Information 2021, 12, 117 4 of 16

where ∗ is the Hadamard product, ht−1 is the previous state, Wz, Wr and Wh are the weight
matrices of the update gate, reset gate and current memory state, respectively, Uz, Ur and
Uh are the hidden weight matrices of the update gate, reset gate and current memory state
respectively, bz, br and bh are the bias vectors of the update gate, reset gate and current
memory state, respectively, xt is the input feature vector and σ is the sigmoid activation
(non-linear) function. Figure 1 shows the GRU’s cell structure.

Information 2021, 12, x FOR PEER REVIEW 4 of 16

𝒇𝒊𝒏𝒂𝒍 𝒎𝒆𝒎𝒐𝒓𝒚: 𝒉𝒕 = 𝒛𝒕 ∗ 𝒉𝒕−𝟏 + (𝟏 − 𝒛𝒕) ∗ 𝒉̀𝒕 (4)

where ∗ is the Hadamard product, ℎ𝑡−1 is the previous state, 𝑊𝑧, 𝑊𝑟 and 𝑊ℎ are the weight

matrices of the update gate, reset gate and current memory state, respectively, 𝑈𝑧, 𝑈𝑟 and

𝑈ℎ are the hidden weight matrices of the update gate, reset gate and current memory state

respectively, 𝑏𝑧, 𝑏𝑟 and 𝑏ℎ are the bias vectors of the update gate, reset gate and current

memory state, respectively, 𝑥𝑡 is the input feature vector and 𝜎 is the sigmoid activation

(non-linear) function. Figure 1 shows the GRU’s cell structure.

Figure 1. Cell structure of the Gated Recurrent Unit (GRU).

3.2. Quaternion Algebraic Representation and Operations

A quaternion is a four-element vector in the class of hypercomplex numbers com-

posed of a real part and three imaginary parts defined in a four-dimensional space, as

expressed in Equation (5).
𝒙𝑸 = 𝒙(𝒓) + 𝒙(𝒊)𝒊 + 𝒙(𝒋)𝒋 + 𝒙(𝒌)𝒌 (5)

Where 𝑥(𝑟), 𝑥(𝑖), 𝑥(𝑗) and 𝑥(𝑘) are explicit real numbers, 𝑥𝑄 is the quaternion-valued

input and 𝑖, 𝑗 and 𝑘 are the quaternion bases.

Quaternions are further characterised by their ability to satisfy the identities (Hamil-

ton rules) expressed in Equations (6–7), establishing their non-commutativity:

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = 1 (6)

𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗 (7)

The conjugate of the quaternion is expressed as:

𝒙̅𝑸 = 𝒙(𝒓) − 𝒙(𝒊)𝒊 − 𝒙(𝒋)𝒋 − 𝒙(𝒌)𝒌 (8)

The normalised quaternion is expressed as:

ẋ𝑄 = √𝑥𝑄 . 𝑥̅𝑄 = √𝑥(𝑟)2 + 𝑥(𝑖)2 + 𝑥(𝑗)2 + 𝑥(𝑘)2

(9)

The Hamilton product of two quaternions can be expressed as:

𝒙𝑸𝟏 ⨂ 𝒙𝑸𝟐 = (𝒙𝟏
(𝒓)

𝒙𝟐
(𝒓)

− 𝒙𝟏
(𝒊)𝒙𝟐

(𝒊) − 𝒙𝟏
(𝒋)

𝒙𝟐
(𝒋)

− 𝒙𝟏
(𝒌)

𝒙𝟐
(𝒌)

)

+ (𝒙𝟏
(𝒓)

𝒙𝟐
(𝒊)

+ 𝒙𝟏
(𝒊)

𝒙𝟐
(𝒓)

+ 𝒙𝟏
(𝒋)

𝒙𝟐
(𝒌)

− 𝒙𝟏
(𝒌)

𝒙𝟐
(𝒋)

)𝒊

+ (𝒙𝟏
(𝒓)

𝒙𝟐
(𝒋)

− 𝒙𝟏
(𝒊)

𝒙𝟐
(𝒌)

+ 𝒙𝟏
(𝒋)

𝒙𝟐
(𝒓)

+ 𝒙𝟏
(𝒌)

𝒙𝟐
(𝒊)

)𝒋

+ (𝒙𝟏
(𝒓)

𝒙𝟐
(𝒌)

+ 𝒙𝟏
(𝒊)

𝒙𝟐
(𝒋)

− 𝒙𝟏
(𝒋)

𝒙𝟐
(𝒊)

+ 𝒙𝟏
(𝒌)

𝒙𝟐
(𝒓)

)𝒌

(10)

3.3. Quaternion-valued Gated Recurrent Unit

A fully connected QGRU has its input, weights, bias and output parameters repre-

sented as quaternions. Each variable is broken down into four dimensions representing

Figure 1. Cell structure of the Gated Recurrent Unit (GRU).

3.2. Quaternion Algebraic Representation and Operations

A quaternion is a four-element vector in the class of hypercomplex numbers composed
of a real part and three imaginary parts defned in a four-dimensional space, as expressed
in Equation (5).

(r) (i)i + x(j) j + x(k)kxQ = x + x (5)

where x(r), x(i), x(j) and x(k) are explicit real numbers, xQ is the quaternion-valued input
and i, j and k are the quaternion bases.

Quaternions are further characterised by their ability to satisfy the identities (Hamilton
rules) expressed in Equations (6) and (7), establishing their non-commutativity:

i2 = j2 = k2 = ijk = 1 (6)

ij = −ji = k, jk = −kj = i, ki = −ik = j (7)

The conjugate of the quaternion is expressed as:

xQ = x(r) − x(i)i− x(j) j− x(k)k (8)

The normalised quaternion is expressed as: q q
x(r)2

+ x(i)2
+ x(j)2

+ x(k)2 ẋQ = xQ·xQ = (9)

The Hamilton product of two quaternions can be expressed as: � �
(r) (r) (i) (i) (j) (j) (k) (k)xQ1 ⊗ xQ2 = x1 x − x1 x2 − x1 x2 − x1 x2 2� �

(r) (i) (i) (r) (j) (k) (k) (j)
+ x1 x2 + x1 x + x1 x − x1 x i2 2 2� � (10)(r) (j) (i) (k) (j) (r) (k) (i)
+ x1 x2 − x1 x + x1 x + x1 x j2 2 2� �

(r) (k) (i) (j) (j) (i) (k) (r)
+ x + x k1 x2 1 x2 − x1 x2 + x1 x2

�

�

�

Information 2021, 12, 117 5 of 16

3.3. Quaternion-Valued Gated Recurrent Unit

A fully connected QGRU has its input, weights, bias and output parameters repre-
sented as quaternions. Each variable is broken down into four dimensions representing the
four elements of a quaternion xQ = x(r) + x(i)i + x(j) j + x(k)k. Furthermore, the multiplica-
tion operator governing the product of the input vector and the weight matrix composed of
real-valued elements is replaced by the Hadamard product, as principled by Equation (10).
Just like in real-valued layers computations, the fully connected quaternion layers are
formulated as matrix multiplications. A sample multiplication is shown in Equation (11). ⎤⎡⎤⎡⎤⎡

w(r) −w(i) −w(j) −w(k) x(r) γ(r) ⎢⎢⎢⎣
w(i) w(r) −w(k) w(j)

w(j) w(k) w(r) −w(i)

⎢⎢⎢⎣

⎥⎥⎥⎦
x(i)

x(j)
⎥⎥⎥⎦
=

⎢⎢⎢⎣
γ(i)

γ(j)

⎥⎥⎥⎦ (11)

w(k) −w(j) w(i) w(r) x(k) γ(k)

3.3.1. Weight Initialisation

A successfully trained neural network is dependent on a properly designed weight
initialization method. Proper initialisation of the weight parameters is key to the perfor-
mance of the network, leading to a reduced risk of the vanishing and explosion gradient
and an improved convergence. Due to the unique interactions between the weight parame-
ters of a quaternion neural network, a quaternion-valued weight initialisation algorithm
used in [20] is used as shown in Equation (12) where wr, wi, wj and wk are the real and
imaginary components of the initialised weights.

(j) (k)wr = ϕ cos(θ), wi = ϕẇ(i) sin(θ), wj = ϕẇ cos(θ), wk = ϕẇ cos(θ) (12)

where ϕ is sampled between −σ and σ, and σ is established according to the Glorot
criterion [35] such that σ = √ 1 , with nin and nout as the number of neurons at the

2(nin+nout)

input and output layers; ẇ(i), ẇ(j) and ẇ(k) are the imaginary elements of a normalised
imaginary quaternion ẇQ as shown in Equations (13)–(16), with the imaginary elements of
the base quaternion randomly chosen from a real number between 0 and 1; θ is generated
as a random value within −π and π.

wQ = 0 + w(i)i + w(j) j + w(k)k (13)

wQ = 0− w(i)i− w(j) j− w(k)k (14) q
ẇQ = wQ·wQ = 0 + ẇ(i)i + ˙ (i) j + ˙ (i)kw w (15)

(i) (j), w , w(k) ← rand(0, 1) (16)w

3.3.2. Gated Operations

The operations of the gates of the QGRU are governed by Equations (17)–(20). The
structure of the QGRU cell is illustrated in Figure 2. The structure of the QGRU remains
similar to the GRU, however, the input and output to each cell gate are quaternion-based. �

update gate : zq,t = σ Wq,z ⊗ xq,t + Uq,z ⊗ hq,t−1 + bq,z (17) �
reset gate : rq,t = σ Wq,r ⊗ xq,t + Uq,r ⊗ hq,t−1 + bq,r (18)

current memory state :
,
hq,t = tanh

��
Wq,h ⊗ xq,t + rq,t ∗ Uq,h ⊗ hq,t−1 + bq,h (19) � ,

f inal memory : hq,t = zq,t ∗ hq,t−1 + 1− zq,t ∗ hq,t (20)

Information 2021, 12, 117 6 of 16 Information 2021, 12, x FOR PEER REVIEW 6 of 16

Figure 2. Cell structure of the Quaternion Gated Recurrent Unit (QGRU).

In the above equations, ∗ is the Hadamard product; ℎ𝑞,𝑡−1 is the previous quaterni-

onic state; Wq,z, Wq,r and Wq,h are the quaternion weight matrices of the update gate, reset

gate and current memory state, respectively; Uq,z, Uq,r and Uq,h are the hidden weight ma-

trices of the update gate, reset gate and current memory state, respectively;bq,z, bq,r and

bq,h are the bias vectors of the update gate, reset gate and current memory state, respec-

tively; and xq,t is the quaternionised input features vector.

3.3.3. Quaternion Backward Propagation Through Time

The quaternion back-propagation mechanism is adapted from [21]. For each weight

matrix, the gradient of the loss 𝑒𝑡 with respect to each weight matrix is expressed as shown

in Equations (21)–(24), where ∆𝑤𝑞𝑦
𝑡 is the quaternionic representation of the output weight

update.

Hidden weights:

∆𝑈𝑞,𝑧
𝑡 =

𝜕𝑒𝑡

𝜕Uq,z
, ∆𝑈𝑞,𝑟

𝑡 =
𝜕𝑒𝑡

𝜕Uq,r
, ∆𝑈𝑞,ℎ

𝑡 =
𝜕𝑒𝑡

𝜕Uq,h
 (21)

Input weights:

∆𝑤𝑞,𝑧
𝑡 =

𝜕𝑒𝑡

𝜕Wq,z
, ∆𝑤𝑞,𝑟

𝑡 =
𝜕𝑒𝑡

𝜕Wq,r
, ∆𝑤𝑞,ℎ

𝑡 =
𝜕𝑒𝑡

𝜕Wq,h
 (22)

Output weights:

∆𝒘𝒒𝒚
𝒕 =

𝝏𝒆𝒕

𝝏𝐖𝐪𝐲

(23)

Bias:

∆𝑏𝑞,𝑧

𝑡 =
𝜕𝑒𝑡

𝜕bq,z
, ∆𝑏𝑞,𝑟

𝑡 =
𝜕𝑒𝑡

𝜕b𝑞,r
, ∆𝑏𝑞,ℎ

𝑡 =
𝜕𝑒𝑡

𝜕bq,h
 (24)

The gradients can thus be generalised to ∆𝑡=
𝜕𝑒𝑡

𝜕𝑤𝑞
 where:

𝜕𝑒𝑡

𝜕𝑤𝑞
=

𝜕𝑒𝑡

𝜕𝑤𝑟 +
𝜕𝑒𝑡

𝜕𝑤𝑖 𝑖 +
𝜕𝑒𝑡

𝜕𝑤𝑗 𝑗 +

𝜕𝑒𝑡

𝜕𝑤𝑘 𝑘

The computation of the loss with respect to each element of the quaternion parame-

ters of the network is done through the application of the chain rule and updated as shown

below in Equations (25)–(28).

Hidden weights:
𝑼𝒒 = 𝑼𝒒 − 𝝀∆𝑼,𝒒

𝒕 (25)

Figure 2. Cell structure of the Quaternion Gated Recurrent Unit (QGRU).

In the above equations, ∗ is the Hadamard product; hq,t−1 is the previous quaternionic
state; Wq,z, Wq,r and Wq,h are the quaternion weight matrices of the update gate, reset gate
and current memory state, respectively; Uq,z, Uq,r and Uq,h are the hidden weight matrices
of the update gate, reset gate and current memory state, respectively;bq,z, bq,r and bq,h are
the bias vectors of the update gate, reset gate and current memory state, respectively; and
xq,t is the quaternionised input features vector.

3.3.3. Quaternion Backward Propagation through Time

The quaternion back-propagation mechanism is adapted from [21]. For each weight
matrix, the gradient of the loss et with respect to each weight matrix is expressed as
shown in Equations (21)–(24), where Δt

wqy is the quaternionic representation of the output
weight update.

Hidden weights:

∂et ∂et ∂etΔt = , Δt = , Δt = (21)Uq,z Uq,r Uq,h∂Uq,z ∂Uq,r ∂Uq, h

Input weights:

∂et ∂et ∂etΔt = , Δt = , Δt = (22)wq, z wq,r wq, h∂Wq, z ∂Wq,r ∂Wq, h

Output weights:

Δt
wqy =

∂et (23)
∂Wqy

Bias:
∂et ∂et ∂etΔt = , Δt = , Δt = (24)bq,z bq,r bq,h∂bq,z ∂bq,r ∂bq,h

∂et ∂et ∂et ∂et ∂etThe gradients can thus be generalised to Δt = ∂wq
where: ∂

∂
w
et

q
= ∂wr +

∂wi i+
∂wj j+

∂wk k.
The computation of the loss with respect to each element of the quaternion parameters

of the network is done through the application of the chain rule and updated as shown
below in Equations (25)–(28).

Information 2021, 12, 117 7 of 16

Hidden weights:
Uq = Uq − λΔt (25)U, q

Input weights:
wq = wq − λΔt

wq (26)

Output weights:
wqy = wqy − λΔt

wqy ⊗ hq,t (27)

Bias:
bq = bq − λΔt

b, q (28)

where Δt , Δt and Δt are the generalised forms of the quaternion representations of U, q wq b, q
the hidden weight, input weight and bias update, λ is the learning rate and Uq, wq, wqy
and bq are the generalised forms of the quaternionic hidden weight matrices, input weight
matrices, output weight matrices and bias vectors.

4. QGRU Experiments on Sensor Fusion Applications

This section presents some experiments on evaluating the performance of the QGRU
on two sensor fusion applications: the Vehicular Localisation problem in Section 4.1, and
the HAR problem in Section 4.2.

4.1. Vehicular Localisation Using Wheel Encoders

The continuous and accurate positioning of autonomous vehicles, road-wise and
lane-wise, is critical to their safe performance [52]. In urban canyons, under bridges,
tunnels, etc., the visibility of Global Navigation Satellite System (GNSS) is obstructed.
Inertial Navigations Systems (INS) and wheel odometers are amongst systems that can
be integrated with the GNSS to improve road localisation during GNSS outages. In [30],
the wheel encoder was investigated as a replacement to the accelerometer of the INS in
tracking the vehicle displacement in challenging GNSS environments, such as Hard-Brake
(HB), Wet Road (WR), Successive Left and Right turns and sharp cornering (SLR) [15].
However, the accuracy of the position estimation from the wheel encoder’s measurement
is affected by factors such as changes in tyre size and wheel slippage. A smaller tyre
diameter leads to an under estimation of the vehicle’s displacement and vice versa [32].
These uncertainties lead to poor positioning of the vehicles over time as they are cascaded
unboundedly during navigation.

Due to the safety-critical nature of this problem, there is however the need to minimize
the error drift, thus offering a reliable positioning solution. As such, a localisation solution
capable of strongly mapping the features of the motion dynamics to enhance the prediction
accuracy of positioning algorithms is needed. The mathematical model of the wheel
encoder-based localisation problem is presented in Equations (29)–(36).

The rear left and right wheel’s angular velocity (wheel speed) measurements from the
wheel encoders are represented as ˆ whrr, respectively. The errors (uncertainties) ωb ωb

whrl and ˆ
corresponding to the left and right rear-wheel speed measurements are defned as εb

whrl
and εb

whrl are the wheel speed measurements without errors. whrr. ω
b
whrr and ωb

ωbˆ whrl = ωb
whrl (29)whrl + εb

ω̂b
whrr = ωb

whrr (30)whrr + εb

The calculation of the angular velocity of the rear axle is shown in Equations (30)–(31)
obtained from the average of the rear left and right wheel measurements.

ωb εb
ω̂b whrr + ωwhrl

b
+ whrr + εb

whrl (31)whr =
2 2

http:solution.As

Information 2021, 12, 117 8 of 16

εb
whrr+ωb

Taking whrr+εb
whrl as εb

whr and ωb
whrl as ωb

2 2 whr

ω̂b
whr + εb (32)whr = ωb

whr

Using v = wr, the vehicle’s linear velocity can be found, with r defned as a constant
mapping the speed of the wheel to the vehicle’s displacement:

vb
whrr + εb (33)wh = ωb

whrr

Taking εb
whrr as εb

whr,v
vb

whrr + εb (34)whr = ωb
whr,v

The vehicle’s displacement can thus be found through the integration of the vehicle’s
velocity from Equation (34); Where εb in Equation (35) represents the integral of εb

whr,x whr,v
from Equation (34). Z t

bx (ωb (35)whr = whrr) + εb
whr,x

t−1

Here
b bεb

whr,x ≈ xwhr − xGNSS (36)

The vehicle’s true displacement is represented as xGNSS
b and calculated according

to [53] using the Vincenty’s formula for geodesics on an ellipsoid based on the latitudinal
and longitudinal information of the vehicle position [53,54].

bThe focus is on learning to estimate εb to correct xwhr. All analysis are done in the whr,x
body frame as described in [15].

4.1.1. Dataset

The Inertial Odometry Vehicle Navigation Benchmark Dataset (IO-VNBD) [55] is used
in the experimentation. The dataset consists of about 98 h of driving data collected over
about 5700 km of travel on different driving scenarios. The dataset describes a variant of
vehicle motion dynamics using information from sensors such as accelerometers, wheel
encoders, gyroscopes, GPS receivers, etc. Although the dataset is collected with a sampling
interval of 10 Hz, we down-sampled to a frequency of 1 Hz, as in [30]. The dataset is
publicly available at https://github.com/onyekpeu/IO-VNBD (accessed on 30 December
2020) and described in [55]. The training datasets used from the IO-VNBD are V-Vta1a,
V-Vta2, V-Vta8, V-Vta10, V-Vta16, V-Vta17, V-Vta20, V-Vta21, V-Vta22, V-Vta27, V-Vta28,
V-Vta29, V-Vta30, V-Vtb1, V-Vtb2, V-Vtb3, V-Vtb5, V-Vw4, V-Vw5, V-Vw14b, V-Vw14c,
V-Vfa01, V-Vfa02, V-Vfb01a, V-Vfb01b and V-Vfb02b. The test datasets used are as shown
in Table 1.

Table 1. Inertial Odometry Vehicle Navigation Benchmark Dataset (IO-VNB) datasets used in the
performance evaluation on the localisation task.

Challenging Scenarios IO-VNB Data Subset

V-Vw16b

Hard Brake (HB) V-Vw17

V-Vta9

V-Vw6

Sharp Cornering and Successive Left and Right Turns (SLR) V-Vw7

V-Vw8

V-Vtb8

Wet Road (WR) V-Vtb11

V-Vtb13

https://github.com/onyekpeu/IO-VNBD

Information 2021, 12, 117 9 of 16

The performance of the QGRU in comparison to the GRU on the localisation problem
is evaluated using the maximum CRSE (Cumulative Root Squared Error) metric adopted
in [16]. The CRSE is defned as the cumulative root squared of the error estimation of each
second for the total duration of the GNSS outage (defned as 10 s). The maximum CRSE
from all 10 s length test sequences in each challenging scenario are compared. The CRSE
equation is as shown in Equation (37).

Nt q
CRSE = ∑ epred

2 (37)
t=1

where Nt is GNSS outage length of 10 s, t is the sampling period and epred is the uncertainty
(error) prediction.

4.1.2. Quaternion Features

All input signals are reconstructed by down-sampling the original signals from 10 Hz
to 1 Hz and restructured using a sliding window length of 4 per each input signal. The
quaternion input feature xQ,t is described in Equation (38).

XQ,t = xv1 + xv2i + xv3 j + xv4k (38)

where v1, v2, v3 and v4 refer to the wheel speed information at times t, t− 1, t− 2 and
t− 3, respectively.

At any time t, the quaternion input feature XQ,t is composed of XQ,1, XQ,2, XQ,3 and
XQ,4 as shown in the unrolled architecture of the QGRU in Figure 3. XQ,1, XQ,2, XQ,3 and
XQ,4 denote the quaternion inputs at each time step and are defned below such that at
time t:

XQ,1 = xt + xt−1i + xt−2 j + xt−3k (39)

XQ,2 = xt−1 + xt−2i + xt−3 j + xt−4k (40)

XQ,3 = xt−2 + xt−3i + xt−4 j + xt−5k (41)

XQ,4 = xt−3 + xt−4i + xt−5 j + xt−6k (42)

Information 2021, 12, x FOR PEER REVIEW 9 of 16

4.1.2. Quaternion Features

All input signals are reconstructed by down-sampling the original signals from 10

Hz to 1 Hz and restructured using a sliding window length of 4 per each input signal. The

quaternion input feature 𝑥𝑄,𝑡 is described in Equation (38).
𝑿𝑸,𝒕 = 𝒙𝒗𝟏 + 𝒙𝒗𝟐𝒊 + 𝒙𝒗𝟑𝒋 + 𝒙𝒗𝟒𝒌 (38)

Where 𝑣1, 𝑣2, 𝑣3 and 𝑣4 refer to the wheel speed information at times 𝑡, 𝑡 − 1, 𝑡 −

2 and 𝑡 − 3, respectively.

At any time t, the quaternion input feature 𝑋𝑄,𝑡 is composed of 𝑋𝑄,1, 𝑋𝑄,2, 𝑋𝑄,3 and 𝑋𝑄,4

as shown in the unrolled architecture of the QGRU in Figure 3. 𝑋𝑄,1, 𝑋𝑄,2, 𝑋𝑄,3 and 𝑋𝑄,4 de-

note the quaternion inputs at each time step and are defined below such that at time 𝑡:
𝑋𝑄,1 = 𝑥𝑡 + 𝑥𝑡−1𝑖 + 𝑥𝑡−2𝑗 + 𝑥𝑡−3𝑘 (39)

𝑋𝑄,2 = 𝑥𝑡−1 + 𝑥𝑡−2𝑖 + 𝑥𝑡−3𝑗 + 𝑥𝑡−4𝑘 (40)

𝑋𝑄,3 = 𝑥𝑡−2 + 𝑥𝑡−3𝑖 + 𝑥𝑡−4𝑗 + 𝑥𝑡−5𝑘 (41)

𝑋𝑄,4 = 𝑥𝑡−3 + 𝑥𝑡−4𝑖 + 𝑥𝑡−5𝑗 + 𝑥𝑡−6𝑘 (42)

At time 𝑡 + 1:
𝑋𝑄,1 = 𝑥𝑡+1 + 𝑥𝑡𝑖 + 𝑥𝑡−1𝑗 + 𝑥𝑡−2𝑘 (43)

𝑋𝑄,2 = 𝑥𝑡 + 𝑥𝑡−1𝑖 + 𝑥𝑡−2𝑗 + 𝑥𝑡−3𝑘 (44)

𝑋𝑄,3 = 𝑥𝑡−1 + 𝑥𝑡−2𝑖 + 𝑥𝑡−3𝑗 + 𝑥𝑡−4𝑘 (45)

𝑋𝑄,4 = 𝑥𝑡−2 + 𝑥𝑡−3𝑖 + 𝑥𝑡−4𝑗 + 𝑥𝑡−5𝑘 (46)

where 𝑥 is the wheel speed measurement: 𝜔𝑤ℎ𝑟𝑟
𝑏 𝑎𝑛𝑑 𝜔𝑤ℎ𝑟𝑙

𝑏 that are fed as 𝑋𝑄,𝑡 into the

neural network to learn the target 𝜀𝑤ℎ𝑟,𝑥
𝑏 .

Figure 3. Unrolled QGRU architecture for the vehicular localisation task.

As the performance of the QGRU is compared to the GRU in this work, the training

process for both the QGRU and GRU are discussed below.

The QGRU training process is done with a single hidden layer with a batch size of

1024 and a recurrent dropout rate of 0.005 applied according to [56]. The model optimiza-

tion was done using Adamax with an initial learning rate of 0.001. The objective function

used is the mean absolute error loss function.

The GRU’s training process is also done using a single hidden layer with a batch size

of 1024, a recurrent dropout rate of 0.25 and a timestep of 4. The Adamax optimizer is

used to optimize the model with an initial learning rate of 0.004. The mean absolute error

Figure 3. Unrolled QGRU architecture for the vehicular localisation task.

At time t + 1 :
XQ,1 = xt+1 + xti + xt−1 j + xt−2k (43)

XQ,2 = xt + xt−1i + xt−2 j + xt−3k (44)

XQ,3 = xt−1 + xt−2i + xt−3 j + xt−4k (45)

XQ,4 = xt−2 + xt−3i + xt−4 j + xt−5k (46)

Information 2021, 12, 117 10 of 16

where x is the wheel speed measurement: ωb
whrl that are fed as XQ,t into the whrr and ωb

neural network to learn the target εb .whr,x
As the performance of the QGRU is compared to the GRU in this work, the training

process for both the QGRU and GRU are discussed below.
The QGRU training process is done with a single hidden layer with a batch size of 1024

and a recurrent dropout rate of 0.005 applied according to [56]. The model optimization
was done using Adamax with an initial learning rate of 0.001. The objective function used
is the mean absolute error loss function.

The GRU’s training process is also done using a single hidden layer with a batch size
of 1024, a recurrent dropout rate of 0.25 and a timestep of 4. The Adamax optimizer is
used to optimize the model with an initial learning rate of 0.004. The mean absolute error
loss function is also used as the objective function. All input to the QGRU and GRU are
normalised to values between 0 and 1.

A varying number of neurons from 4 to 256 are used to compare the performance of
the QGRU to the GRU.

4.2. Human Activity Recognition

The identifcation of different activities performed by humans from sensor data records
is an active research topic. Wearable devices, such as smartphones and bracelets, are used
to record the actions carried out by humans whilst performing activities such as walking,
running, standing, sitting, etc. Information on these activities are used to support domains
such as healthcare, home automation and ftness. The challenge, however, lies in the
management of the huge amount of information obtained from an array of several sensors
as well as their temporal relationships and the lack of knowledge on how to relate the
information recorded to the defned activities.

4.2.1. Dataset

The UCI HAR dataset is the second dataset used in our experiments. The dataset,
described in [31], is stored in the UCI Machine Learning Repository at http://archive.ics.
uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones. (accessed on
30 December 2020). The dataset contains information from waist-mounted smartphone
sensors, such as the accelerometer and gyroscope at a sampling frequency of 50 Hz. Unlike
the IO-VNB Dataset, the signals were pre-processed for noise reduction with a median flter
and a 3rd order low-pass Butterworth flter using a cut-off frequency of 20 Hz. The HAR
dataset captures static human activities, such as standing, sitting and laying down as well
as dynamic human activities, such as walking, walking upstairs and walking downstairs.
The training set consists of 70% random samples from the original dataset, while the test
set is made up of the remaining 30% of the dataset as used in [31].

4.2.2. Quaternion Features

The shape of the HAR signal is also ordered by time and sampled in sliding windows
of 2.56 s (length of 128) and 50% overlap between them. The quaternion input feature at
time t denoted as XQ,t is as described in Equation (47).

XQ,t = xv1 + xv2i + xv3 j + xv4k (47)

where v1, v2, v3 and v4 refer to each element entry of the quarter divisions of the signal as
shown in Equations (48)–(51). As such, XQ,t is made up of XQ,1, XQ,2, XQ,3, XQ,32 as
shown in Figure 4 where XQ,1, XQ,2, XQ,3, XQ,32 also denote the quaternion input at
each time step and are as defned below.

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

Information 2021, 12, 117 11 of 16 Information 2021, 12, x FOR PEER REVIEW 11 of 16

Figure 4. Unrolled QGRU architecture for the Human Activity Recognition (HAR) task.

The training process of the QGRU is done with a single hidden layer, 300 epochs and

a batch size of 1280. The model is optimized using the Adamax optimizer with an initial

learning rate of 0.005. The objective function chosen is the mean square error loss function

with a dropout rate of 0.005. However, the GRU is trained with a batch size of 4, time step

of 128, epoch length of 100, an initial learning rate of 0.002, a categorical cross-entropy loss

function, a Stochastic Gradient descent model optimiser and a recurrent dropout rate of

0.25. The neural networks are trained to accurately classify the activity of the human, i.e.

standing, walking, laying down, sitting, walking upstairs and walking downstairs. Simi-

larly to the localisation experiment, the performance of the QGRU and the GRU are com-

pared using a varying number of neurons ranging from 4 to 256.

5. Results and Discussion

In this section, the performance of the QGRU and GRU are evaluated on the vehicular

localisation problem (regression task) as well as the HAR problem (classification task) de-

scribed above.

5.1. Challenging Vehicular Localisation Task

The results from the vehicle localisation experiments are presented in Table 2. The

performance of the QGRU is compared to the GRU and the physical model (the directly

integrated information from the wheel encoder) in estimating the positioning error (un-

certainties) 𝜀𝑤ℎ𝑟,𝑥
𝑏 needed for the correction of the vehicle’s positioning information. The

evaluation is done on three challenging scenarios for vehicular positioning in GNSS de-

prived environments: Hard Brake scenario (HB), sharp cornering and Successive Left and

Right turn scenario (SLR), and the Wet Road scenario (WR). With the task of finding the

model capable of accurately estimating the positioning uncertainties in each scenario con-

sidered, the error in accurately estimating this uncertainty from the QGRU and GRU in

comparison to the original uncertainty from the physical model 𝜀𝑤ℎ𝑟,𝑥
𝑏 are reported in Ta-

ble 2. In the hard brake scenario, the QGRU provided the least estimation error of 2.86 m,

compared to the GRU’s estimation error of 3.15 m and the initial physical model's uncer-

tainty of 7.31 m. The results from the successive left and right turn and sharp cornering

scenario shows that the QGRU also offers the least error in estimating the positioning un-

certainty, with an error of 1.24 m compared to the GRU’s estimation error of 1.31 m and

the original uncertainty of the physical model of 5.08 m. The QGRU performs similarly in

the wet road scenario, with the least uncertainty estimation error of 2.09 m compared to

2.36 of the GRU and the physical model’s original uncertainty of 4.01 m. The results high-

light the QGRU providing an improvement over the GRU of 9.2% in the HB scenario, 5.3%

in the SLR scenario and 11.4% in the WR scenario. The results so obtained are in line with

Figure 4. Unrolled QGRU architecture for the Human Activity Recognition (HAR) task.

At every time t:
XQ,1 = xT1 + xT33i + xT65 j + xT97k (48)

XQ,2 = xT2 + xT34i + xT66 j + xT98k (49)

XQ,3 = xT3 + xT35i + xT67 j + xT99k (50)

XQ,32 = xT32 + xT64i + xT96 j + xT128k (51)

where T1, T2, T3and Tn refer to the frst, second, third and nth element entry of the
signal and x is an input signal (one of the 9 signals): 3-axis linear acceleration, 3-axis
angular velocity and 3-axis jerk information.

The training process of the QGRU is done with a single hidden layer, 300 epochs and
a batch size of 1280. The model is optimized using the Adamax optimizer with an initial
learning rate of 0.005. The objective function chosen is the mean square error loss function
with a dropout rate of 0.005. However, the GRU is trained with a batch size of 4, time step
of 128, epoch length of 100, an initial learning rate of 0.002, a categorical cross-entropy
loss function, a Stochastic Gradient descent model optimiser and a recurrent dropout rate
of 0.25. The neural networks are trained to accurately classify the activity of the human,
i.e. standing, walking, laying down, sitting, walking upstairs and walking downstairs.
Similarly to the localisation experiment, the performance of the QGRU and the GRU are
compared using a varying number of neurons ranging from 4 to 256.

5. Results and Discussion

In this section, the performance of the QGRU and GRU are evaluated on the vehicular
localisation problem (regression task) as well as the HAR problem (classifcation task)
described above.

5.1. Challenging Vehicular Localisation Task

The results from the vehicle localisation experiments are presented in Table 2. The
performance of the QGRU is compared to the GRU and the physical model (the directly
integrated information from the wheel encoder) in estimating the positioning error (un-
certainties) εb needed for the correction of the vehicle’s positioning information. The whr,x
evaluation is done on three challenging scenarios for vehicular positioning in GNSS de-
prived environments: Hard Brake scenario (HB), sharp cornering and Successive Left
and Right turn scenario (SLR), and the Wet Road scenario (WR). With the task of fnding
the model capable of accurately estimating the positioning uncertainties in each scenario
considered, the error in accurately estimating this uncertainty from the QGRU and GRU
in comparison to the original uncertainty from the physical model εb are reported in whr,x
Table 2. In the hard brake scenario, the QGRU provided the least estimation error of 2.86 m,
compared to the GRU’s estimation error of 3.15 m and the initial physical model’s uncer-
tainty of 9.99 m. The results from the successive left and right turn and sharp cornering

Information 2021, 12, 117 12 of 16

scenario shows that the QGRU also offers the least error in estimating the positioning
uncertainty, with an error of 1.24 m compared to the GRU’s estimation error of 1.31 m and
the original uncertainty of the physical model of 8.19 m. The QGRU performs similarly
in the wet road scenario, with the least uncertainty estimation error of 2.09 m compared
to 2.36 of the GRU and the physical model’s original uncertainty of 5.36 m. The results
highlight the QGRU providing an improvement over the GRU of 9.2% in the HB scenario,
5.3% in the SLR scenario and 11.4% in the WR scenario. The results so obtained are in line
with those presented in [30]. Remarkably, despite the QGRU providing better estimates
compared to the GRU, it does so with fewer of trainable parameters. For instance, in the
HB scenario, the QGRU provides better estimates with 3809 parameters compared to 13,121
parameters with the GRU, as shown in Table 3. While in the SLR scenario, the QGRU
provided the best estimation with 1137 parameters compared to 3489 parameters of the
GRU. Additionally, in the WR scenario, the QGRU estimated the position uncertainty best
with 13,761 parameters compared to 50,817 parameters of the GRU.

Table 2. Comparison between the QGRU and GRU on each scenario of the vehicle localisation task.

Number of HB (m) SLR (m) WR (m) Neurons

Physical Physical PhysicalGRU QGRU GRU QGRU GRU QGRU Model Model Model

4 5.16 3.02 3.46 1.31 3.3 2.29

8 3.63 2.9 2.16 1.24 3.26 2.42

9.99 8.19 5.3616 3.55 2.86 1.8 1.24 3.41 2.24

32 3.52 2.94 1.31 1.24 3.38 2.09

64 3.15 2.94 1.58 1.3 3.42 2.25

128 3.58 3.13 1.32 1.32 2.36 2.09

256 3.76 3.14 1.36 1.44 2.48 2.35

Table 3. The number of trainable parameters across various numbers of neurons used in the vehicle
localisation experiment.

Number of Neurons Number of Trainable Parameters

GRU QGRU

4 101 377

8 297 1137

16 977 3809

32 3489 13,761

64 13,121 52,097

128 50,817 202,497

256 199,937 798,209

5.2. Human Activity Recognition (HAR) Task

The performance of the QGRU and GRU on the HAR task across different weighted
connections are reported in Table 4. Both neural networks are tasked with accurately
classifying the human activities in the HAR dataset, i.e. standing, walking, laying down,
sitting, walking upstairs and walking downstairs. The QGRU performs slightly better
than the GRU, with a classifcation accuracy of 95.28% and 95.16%, respectively, which is
in line with those presented in [31]. This highlights a 0.08% overall improvement of the
QGRU over the GRU. Even so, the QGRU performs better than the GRU in all neuron

Information 2021, 12, 117 13 of 16

numbers experimented with except in the 32 neurons experiment, where the GRU provides
a better classifcation accuracy. Similar to the localisation problem, the QGRU offers a
signifcant parameter reduction in providing the best overall classifcation accuracy, with
59,015 parameters compared to 206,087 of the GRU, as shown in Table 5.

Table 4. Comparison between the QGRU and GRU performance on the HAR task.

Number of Neurons Classifcation Accuracy (%)

GRU QGRU

4 87.51 91.72

8 91.18 92.57

16 92.6 93.62

32 93.62 93.15

64 94.3 95.28

128 95.01 95.12

256 95.16 95.23

Table 5. The number of trainable parameters across various numbers of neurons used in the HAR
task experiment.

Number of Neurons Number of Trainable Parameters

GRU QGRU

4 203 815

8 495 2007

16 1367 5543

32 4263 17,223

64 14,663 59,015

128 53,895 216,327

256 206,087 825,063

The performance of the QGRU may be attributed to the quaternion algebra and
Hamilton multiplication properties, lending support to a more compact Neural Network
formulation. Such reduction in the parametric complexity of the model makes it more
suitable for use on low memory embedded devices.

6. Conclusions

This paper proposed a novel Quaternion Gated Recurrent Unit (QGRU) to map
multi-dimensional features effciently using fewer parameters. The QGRU leverages the
Hamilton product of quaternions to capture internal and external dependencies effciently
within and across multi-dimensional features. The performance of the QGRU is evaluated
over a vehicular localisation problem and a Human Activity Recognition (HAR) task. On
the vehicular localisation problem, the QGRU provided the least error in estimating the
positioning uncertainty, with a 9.2% improvement over the GRU in the hard brake scenario,
a 5.3% improvement the GRU in the sharp cornering and successive left and right turns
scenario and an 11.4% improvement over the GRU in the wet road scenario. However, on
the HAR task, the QGRU outperforms the GRU with a classifcation accuracy of 95.28%
compared to 95.16% of the GRU. The results obtained from the study show that the QGRU
is able to obtain these positioning uncertainty estimates and better classifcation accuracy
compared to the GRU with up to 3.7 times fewer parameters. However, without the use
of a carefully designed CUDA kernel, the frequent memory copy operations between the

Information 2021, 12, 117 14 of 16

CPU and GPU during training could cause signifcant computational delays compared to
the GRU.

Our future work will involve an investigation into higher complex-valued neural
networks for reduced parametric computations on the sensor fusion problems described in
this paper as well as other similar problems.

Author Contributions: Conceptualization, U.O.; methodology, U.O.; validation, V.P., S.K. and
S.-R.G.C.; formal analysis, U.O; investigation, U.O; resources, U.O., S.K. and V.P.; data curation,
U.O.; writing—original draft preparation, U.O.; writing—review and editing, U.O, V.P., S.K. and
S.-R.G.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The IO-VNB dataset is located at https://github.com/onyekpeu/IO-
VNBD (accessed on 30 December 2020) and described in [40]. The UCI-HAR dataset is located at http:
//archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones (accessed
on 30 December 2020) and described in [33].

Conficts of Interest: The authors declare no confict of interest.

References
1. Purohit, H.; Tanabe, R.; Ichige, K.; Endo, T.; Nikaido, Y.; Suefusa, K.; Kawaguchi, Y. MIMII dataset: Sound dataset for malfunc-

tioning industrial machine investigation and inspection. arXiv 2019, arXiv:1909.09347.
2. Tsang, G.; Deng, J.; Xie, X. Recurrent neural networks for fnancial time-series modelling. In Proceedings of the International

Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; Institute of Electrical and Electronics Engineers Inc.: New York,
NY, USA, 2018; pp. 892–897. [CrossRef]

3. El-Moneim, S.A.; Nassar, M.A.; Dessouky, M.I.; Ismail, N.A.; El-Fishawy, A.S.; Abd El-Samie, F.E. Text-independent speaker
recognition using LSTM-RNN and speech enhancement. Multimed. Tools Appl. 2020, 79, 24013–24028. [CrossRef]

4. Mao, W.; Wang, M.; Sun, W.; Qiu, L.; Pradhan, S.; Chen, Y.-C. RNN-based room scale hand motion tracking. In Proceedings of the
25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 21–25 October 2019; Association for
Computing Machinery (ACM): New York, NY, USA, 2019; Volume 19, pp. 1–16. [CrossRef]

5. Senturk, U.; Yucedag, I.; Polat, K. Repetitive neural network (RNN) based blood pressure estimation using PPG and ECG signals.
In Proceedings of the ISMSIT 2018—2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, Ankara,
Turkey, 19–21 October 2018; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018. [CrossRef]

6. Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate
deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [CrossRef] [PubMed]

7. Nwe, T.L.; Dat, T.H.; Ma, B. Convolutional neural network with multi-task learning scheme for acoustic scene classifcation. In
Proceedings of the 9th Asia-Pacifc Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017,
Kuala Lumpur, Malaysia, 12–15 December 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018;
pp. 1347–1350. [CrossRef]

8. Susto, G.A.; Cenedese, A.; Terzi, M. Time-series classifcation methods: Review and Applications to power systems data. In Big
Data Application in Power Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 179–220. ISBN 9780128119693.

9. Nweke, H.F.; Teh, Y.W.; Al-garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and
wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef]

10. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.
2019, 119, 3–11. [CrossRef]

11. Chen, C.; Lu, X.; Markham, A.; Trigoni, N. IONet: Learning to cure the curse of drift in inertial odometry. arXiv 2018,
arXiv:1802.02209.

12. Dai, H.F.; Bian, H.W.; Wang, R.Y.; Ma, H. An INS/GNSS integrated navigation in GNSS denied environment using recurrent
neural network. Def. Technol. 2019. [CrossRef]

13. Fang, W.; Jiang, J.; Lu, S.; Gong, Y.; Tao, Y.; Tang, Y.; Yan, P.; Luo, H.; Liu, J. A LSTM algorithm estimating pseudo measurements
for aiding INS during GNSS Signal outages. Remote Sens. 2020, 12, 256. [CrossRef]

14. Brossard, M.; Barrau, A.; Bonnabel, S. AI-IMU dead-reckoning. IEEE Trans. Intell. Veh. 2020. [CrossRef]
15. Onyekpe, U.; Palade, V.; Kanarachos, S. Learning to localise automated vehicles in challenging environments using Inertial

Navigation Systems (INS). Appl. Sci. 2021, 11, 1270. [CrossRef]
16. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
17. Parcollet, T.; Morchid, M.; Linarès, G. A survey of quaternion neural networks. Artif. Intell. Rev. 2020, 53, 2957–2982. [CrossRef]
18. Matsui, N.; Isokawa, T.; Kusamichi, H.; Peper, F.; Nishimura, H. Quaternion neural network with geometrical operators. J. Intell.

Fuzzy Syst. 2004, 15, 149–164.

https://github.com/onyekpeu/IO-VNBD
https://github.com/onyekpeu/IO-VNBD
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://doi.org/10.1109/ICPR.2018.8545666
http://doi.org/10.1007/s11042-019-08293-7
http://doi.org/10.1145/3300061.3345439
http://doi.org/10.1109/ISMSIT.2018.8567071
http://doi.org/10.1038/s41746-018-0029-1
http://www.ncbi.nlm.nih.gov/pubmed/31304302
http://doi.org/10.1109/APSIPA.2017.8282241
http://doi.org/10.1016/j.eswa.2018.03.056
http://doi.org/10.1016/j.patrec.2018.02.010
http://doi.org/10.1016/j.dt.2019.08.011
http://doi.org/10.3390/rs12020256
http://doi.org/10.1109/TIV.2020.2980758
http://doi.org/10.3390/app11031270
http://doi.org/10.1109/78.650093
http://doi.org/10.1007/s10462-019-09752-1
http:Dai,H.F.;Bian,H.W.;Wang,R.Y.;Ma,H.An
http:systemsdata.In
http:sceneclassification.In
http:tracking.In

Information 2021, 12, 117 15 of 16

19. Kusamichi, H.; Kusamichi, H.; Isokawa, T.; Isokawa, T.; Matsui, N.; Matsui, N.; Ogawa, Y.; Ogawa, Y.; Maeda, K.; Maeda, K.
A new scheme for color night vision by quaternion neural network. In Proceedings of the 2nd International Conference on
Autonomous Robots and Agents (ICARA2004), Palmerston North, New Zealand, 13–15 December 2004; pp. 101–106.

20. Parcollet, T.; Ravanelli, M.; Morchid, M.; Linarès, G.; Trabelsi, C.; De Mori, R.; Bengio, Y. Quaternion Recurrent Neural Networks.
2019. Available online: https://github.com/Orkis-Research/Pytorch-Quaternion-Neural-Networks (accessed on 16 June 2020).

21. Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P.I.-J.; Srinivasan, V.; Gopalakrishnan, K. PACT: Parameterized Clipping Activation
for Quantized Neural Networks. arXiv 2018, arXiv:1805.06085.

22. Isokawa, T.; Kusakabe, T.; Matsui, N.; Peper, F. Quaternion neural network and its application. In Proceedings of the Lecture Notes
in Artifcial Intelligence (Subseries of Lecture Notes in Computer Science); Springer: Berlin/Heidelberg, Germany, 2003; Voluem 2774,
Part 2, pp. 318–324. [CrossRef]

23. Parcollet, T.; Morchid, M.; Linares, G. Quaternion convolutional neural networks for heterogeneous image processing. In
Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019;
Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 8514–8518. [CrossRef]

24. Moya-Sánchez, E.U.; Xambó-Descamps, S.; Sánchez Pérez, A.; Salazar-Colores, S.; Martínez-Ortega, J.; Cortés, U. A bio-inspired
quaternion local phase CNN layer with contrast invariance and linear sensitivity to rotation angles. Pattern Recognit. Lett. 2020,
131, 56–62. [CrossRef]

25. Chen, H.; Wang, W.; Li, G.; Shi, Y. A quaternion-embedded capsule network model for knowledge graph completion. IEEE Access
2020, 8, 100890–100904. [CrossRef]

26. Özcan, B.; Kınlı, F.; Kıraç, F. Quaternion Capsule Networks. arXiv 2020. Available online: https://github.com/Boazrciasn/
Quaternion-Capsule-Networks.git (accessed on 24 February 2021).

27. Grassucci, E.; Comminiello, D.; Uncini, A. QUATERNION-VALUED VARIATIONAL AUTOENCODER. arXiv 2020,
arXiv:2010.11647v1.

28. Nguyen, D.Q.; Nguyen, T.D.; Phung, D. Quaternion graph neural networks. arXiv 2020. Available online: https://github.com/
daiquocnguyen/QGNN (accessed on 24 February 2021).

29. Parcollet, T.; Morchid, M.; Linares, G.; De Mori, R. Bidirectional quaternion long short-term memory recurrent neural networks
for speech recognition. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton,
UK, 12–17 May 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 8519–8523.

30. Onyekpe, U.; Kanarachos, S.; Palade, V.; Christopoulos, S.-R.G. Learning uncertainties in wheel odometry for vehicular localisation
in GNSS deprived environments. In Proceedings of the International Conference on Machine Learning Applications (ICMLA),
Miami, FL, USA, 14–17 December 2020; pp. 741–746.

31. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A public domain dataset for human activity recognition using
smartphones. In Proceedings of the European Symposium on Artifcial Neural Networks, Computational Intelligence and
Machine Learning, Bruges, Belgium, 24–26 April 2013.

32. Hirose, A.; Yoshida, S. Generalization characteristics of complex-valued feedforward neural networks in relation to signal
coherence. IEEE Trans. Neural Networks Learn. Syst. 2012, 23, 541–551. [CrossRef]

33. Nitta, T. On the critical points of the complex-valued neural network. In Proceedings of the ICONIP 2002 9th International Conference
on Neural Information Processing: Computational Intelligence for the E-Age, Singapore, 18–22 November 2002; Institute of Electrical and
Electronics Engineers Inc.: New York, NY, USA, 2002; Volume 3, pp. 1099–1103. [CrossRef]

34. Yao, W.; Zhou, D.; Zhan, L.; Liu, Y.; Cui, Y.; You, S.; Liu, Y. GPS signal loss in the wide area monitoring system: Prevalence,
impact, and solution. Electr. Power Syst. Res. 2017, 147, 254–262. [CrossRef]

35. Luo, L.; Feng, H.; Ding, L. Color image compression based on quaternion neural network principal component analysis. In
Proceedings of the 2010 International Conference on Multimedia Technology, ICMT 2010, Ningbo, China, 29–31 October 2010.
[CrossRef]

36. Greenblatt, A.; Mosquera-Lopez, C.; Agaian, S. Quaternion neural networks applied to prostate cancer gleason grading. In
Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, Manchester, UK, 13–16
October 2013; pp. 1144–1149. [CrossRef]

37. Shang, F.; Hirose, A. Quaternion neural-network-based PolSAR land classifcation in poincare-sphere-parameter space. IEEE
Trans. Geosci. Remote Sens. 2014, 52, 5693–5703. [CrossRef]

38. Parcollet, T.; Morchid, M.; Linares, G. Deep quaternion neural networks for spoken language understanding. In Proceedings of the
2017 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2017, Okinawa, Japan, 16–20 December 2017; Institute of
Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; pp. 504–511. [CrossRef]

39. Parcollet, T.; Morchid, M.; Linarès, G. Quaternion Denoising Encoder-Decoder for Theme Identifcation of Telephone Conver-
sations. 2017. 3325–3328. Available online: https://hal.archives-ouvertes.fr/hal-02107632 (accessed on 30 December 2020).
[CrossRef]

40. Pavllo, D.; Feichtenhofer, C.; Auli, M.; Grangier, D. Modeling human motion with quaternion-based neural networks. Int. J.
Comput. Vis. 2020, 128, 855–872. [CrossRef]

41. Comminiello, D.; Lella, M.; Scardapane, S.; Uncini, A. Quaternion convolutional neural networks for detection and localization of
3D sound events. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK,
12–17 May 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 8533–8537.

https://github.com/Orkis-Research/Pytorch-Quaternion-Neural-Networks
http://doi.org/10.1007/978-3-540-45226-3_44
http://doi.org/10.1109/ICASSP.2019.8682495
http://doi.org/10.1016/j.patrec.2019.12.001
http://doi.org/10.1109/ACCESS.2020.2997177
https://github.com/Boazrciasn/Quaternion-Capsule-Networks.git
https://github.com/Boazrciasn/Quaternion-Capsule-Networks.git
https://github.com/daiquocnguyen/QGNN
https://github.com/daiquocnguyen/QGNN
http://doi.org/10.1109/TNNLS.2012.2183613
http://doi.org/10.1109/ICONIP.2002.1202792
http://doi.org/10.1016/j.epsr.2017.03.004
http://doi.org/10.1109/ICMULT.2010.5631456
http://doi.org/10.1109/SMC.2013.199
http://doi.org/10.1109/TGRS.2013.2291940
http://doi.org/10.1109/ASRU.2017.8268978
https://hal.archives-ouvertes.fr/hal-02107632
http://doi.org/10.21437/Interspeech.2017-1029
http://doi.org/10.1007/s11263-019-01245-6
http:understanding.In
http:network.In

Information 2021, 12, 117 16 of 16

42. Zhu, X.; Xu, Y.; Xu, H.; Chen, C. Quaternion Convolutional Neural Networks. 2019. Available online: https://arxiv.org/abs/1903
.00658 (accessed on 30 December 2020).

43. Tay, Y.; Zhang, A.; Tuan, L.A.; Rao, J.; Zhang, S.; Wang, S.; Fu, J.; Hui, S.C. Lightweight and effcient neural natural language
processing with quaternion networks. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 1494–1503.

44. Parcollet, T.; Ravanelli, M.; Morchid, M.; Linarès, G.; De Mori, R. Speech recognition with quaternion neural networks. arXiv
2018, arXiv:1811.09678.

45. Parcollet, T.; Morchid, M.; Linares, G.; De Mori, R. Quaternion convolutional neural networks for theme identifcation of telephone
conversations. In Proceedings of the 2018 IEEE Spoken Language Technology Workshop, SLT 2018, Athens, Greece, 18–21 December 2018;
Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 685–691. [CrossRef]

46. Tran, T.; You, D.; Lee, K. Quaternion-based self-attentive long short-term user preference encoding for recommendation. In
Proceedings of the International Conference on Information and Knowledge Management, Galway, Ireland, 19–23 October 2020; Association
for Computing Machinery: New York, NY, USA, 2020; pp. 1455–1464. [CrossRef]

47. Chen, B.; Gao, Y.; Xu, L.; Hong, X.; Zheng, Y.; Shi, Y.-Q. Color image splicing localization algorithm by quaternion fully
convolutional networks and superpixel-enhanced pairwise conditional random feld. MBE 2019, 16, 6907–6922. [CrossRef]

48. Jin, L.; Zhou, Y.; Liu, H.; Song, E. Deformable quaternion gabor convolutional neural network for color facial expression recogni-
tion. In Proceedings of the International Conference on Image Processing, ICIP, Abu Dhabi, United Arab Emirates, 25–28 October 2020;
IEEE Computer Society: Washington, DC, USA, 2020; pp. 1696–1700. [CrossRef]

49. Qiu, X.; Parcollet, T.; Ravanelli, M.; Lane, N.; Morchid, M. Quaternion neural networks for multi-channel distant speech
recognition. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH,
Shanghai, China, 14–18 September 2020; International Speech Communication Association: Baixas, France, 2020; pp. 329–333.
[CrossRef]

50. Kumar, D.; Kumar, N.; Mishra, S. QUARC: Quaternion multi-modal fusion architecture for hate speech classifcation. arXiv 2020.
Available online: https://github.com/smlab-niser/quaternionFusion (accessed on 24 February 2021).

51. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. In Proceedings of the EMNLP 2014—2014 Conference on
Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014. [CrossRef]

52. Onyekpe, U.; Kanarachos, S.; Palade, V.; Christopoulos, S.-R.G. Vehicular localisation at high and low estimation rates during
GNSS outages: A deep learning approach. In Deep Learning Applications, Volume 2. Advances in Intelligent Systems and Computing;
Wani, M.A., Khoshgoftaar, T.M., Palade, V., Eds.; Springer: Singapore, 2020; Volume 1232, pp. 229–248. ISBN 978-981-15-6758-2.

53. Vincenty, T. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev. 1975,
23, 88–93. [CrossRef]

54. Pietrzak, M. Vincenty · PyPI. Available online: https://pypi.org/project/vincenty/ (accessed on 12 April 2019).
55. Onyekpe, U.; Palade, V.; Kanarachos, S.; Szkolnik, A. IO-VNBD: Inertial and odometry benchmark dataset for ground vehicle

positioning. Data Br. 2021, 35, 106885. [CrossRef] [PubMed]
56. Gal, Y.; Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. arXiv 2016,

arXiv:1512.05287.

https://arxiv.org/abs/1903.00658
https://arxiv.org/abs/1903.00658
http://doi.org/10.1109/SLT.2018.8639676
http://doi.org/10.1145/3340531.3411926
http://doi.org/10.3934/mbe.2019346
http://doi.org/10.1109/ICIP40778.2020.9191349
http://doi.org/10.21437/Interspeech.2020-1682
https://github.com/smlab-niser/quaternionFusion
http://doi.org/10.3115/v1/d14-1179
http://doi.org/10.1179/sre.1975.23.176.88
https://pypi.org/project/vincenty/
http://doi.org/10.1016/j.dib.2021.106885
http://www.ncbi.nlm.nih.gov/pubmed/33665271

	A Quaternion Gated cs
	information-12-00117-v3
	Introduction
	Previous Work on Quaternion Neural Networks
	Proposed Quaternion Gated Recurrent Unit
	Real-Valued GRU
	Quaternion Algebraic Representation and Operations
	Quaternion-Valued Gated Recurrent Unit
	Weight Initialisation
	Gated Operations
	Quaternion Backward Propagation through Time

	QGRU Experiments on Sensor Fusion Applications
	Vehicular Localisation Using Wheel Encoders
	Dataset
	Quaternion Features

	Human Activity Recognition
	Dataset
	Quaternion Features

	Results and Discussion
	Challenging Vehicular Localisation Task
	Human Activity Recognition (HAR) Task

	Conclusions
	References

