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Abstract

There are two main threads of this thesis, namely, an unknown (unmeasurable) input

reconstruction and fault detection and diagnosis. The developed methods are in the

form of parity equations, i.e. finite impulse response filters of the available input and

output measurements.

In the first thread the design of parity equations for the purpose of an unknown

input reconstruction of linear, time-invariant, discrete-time, stochastic systems is taken

into consideration. An underlying assumption is that both measurable system inputs

as well as the outputs can be subjected to noise, which leads to an errors-in-variables

framework. The main contribution of the scheme is accommodation of the Lagrange

multiplier method in order to minimise the influence of the noise on the unknown

input estimate. Two potential applications of the novel input reconstruction method

are proposed, which are a control enhancement of a hot strip steel rolling mill and an

estimation of a pollutant level in a river.

Furthermore, initial research is conducted in the field of the unknown input recon-

struction for a class of nonlinear systems, namely, Hammerstein-Wiener systems, where

a linear dynamic block is preceded and followed by a static nonlinear function. Many

man-made as well as naturally occurring systems can be accurately described using

Hammerstein-Wiener models. However, it is considered that not much attention has

been paid to Hammerstein-Wiener systems in the errors-in-variables framework and in

this thesis it is aimed to narrow this gap.

The second thread considers a problem of robust (disturbance decoupled) fault de-

tection as well as fault isolation and identification. Unmeasurable external stimuli,

parameter variations or discrepancies between the system and the model act as distur-

bances, which can obstruct the fault detection process and lead to false alarms. Thus,

a fault detection filter needs to be decoupled from the disturbances. In this thesis

the right eigenstructure assignment method used for the robust fault detection filter

design is extended to systems with unstable invariant zeros. Another contribution re-

gards the design of robust parity equations of any arbitrary order using both left and

right eigenstructure assignment. Furthermore, a parity equation-based fault isolation

and identification filter is designed which provides an estimate of the fault. A simple

method for the calculation of thresholds whose violation indicates a fault occurrence is

also proposed for the errors-in-variables framework.
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Chapter 1

Introduction, motivation and

outline of approach

1.1 Introduction and motivation

Safety considerations provided an essential objective for motivating the research on

fault detection and diagnosis. As air travel became popular, and plans of the first

manned space missions were made, it became crucial to ensure safety of the people

on board in the case of malfunction. It was important to isolate a fault and handle

it accurately. Early analogue methods for fault detection in DC power systems for

aircrafts have been presented in (Kaufmann & Finison 1952). Then, a decade later an

automated take-off monitoring system for an aircraft was patented by Craddock (1962).

1960s were times of the first space missions, which boosted research on methods for

fault detection and location of faults (Janis 1963, Mast, Mayper & Pilnick 1966). In the

1970s fault accommodation in a spacecraft (i.e. reconfiguration of the control system

such that safety of operation can be achieved in the presence of a fault) has been

proposed (Kennedy 1970).

Another field where fault diagnosis is crucial for the safety of operators is a nuclear

reactor, for which safety control apparatus has been developed, among others, in (Dever

1960). Garrick, Gekler, Goldfisher, Karcher, Shimizu & Wilson (1967) proposed a fault

detection method using logic gates for a nuclear reactor. Gradually, as computational

power became more available, application of fault diagnosis to other industrial processes

has been considered. Lee (1962) proposed a method that can locate faults in a 555-

transistor digital system. Halton (1963) proposed an automated checkout of a drone.

(In the 1960’s the term ‘checkout’ has been widely used for fault diagnosis.) A design

of software for an automated checkout has been summarised in (Jirauch 1967).

A breakthrough in the fault detection and diagnosis field, which formed a basis for

the modern fault detection and diagnosis, was use of the Luenberger state observer

(Luenberger 1964) for the purpose of fault diagnosis by Beard (1971) and Jones (1973).
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Fault diagnosis schemes based on the so-called Beard-Jones fault detection filter have

been in use up to this day in various industrial processes, e.g. chemical batch reac-

tors (Pierria, Paviglianiti, Caccavale & Mattei 2008), satellite attitude control systems

(Wang, Jiang & Shi 2008), or gas turbines (Gao, Breikin & Wang 2007).

Another important method which is used up to this day are parity equations (PE),

developed independently by Mironovski (1979) and Chow & Willsky (1984). Chan,

Hua & Hong-Yue (2006) applied PE for fault diagnosis of DC motors. A recent work

of Berriri, Naouar & Slama-Belkhodja (2011) presents a parity space approach for

diagnosis of a current sensor electrical system.

Fault detection and diagnosis algorithms are used practically in every industry

(Isermann 2005). They are not only used to detect abrupt malfunctions, but also to

signal wear and tear of machine parts, hence indicating when particular parts should

be replaced and facilitate the maintenance process.

The other topic, which is explored in this thesis, is an unknown (unmeasurable)

input reconstruction. Early contributions to this subject can be found in (Dorato 1969,

Sain & Massey 1969, Moylan 1977). Approximate input reconstruction has been used in

(Fu, Yan, Santillo, Palanthandalam-Madapusi & Bernstein 2009, Fu, Kirtikar, Zattoni,

Palanthandalam-Madapusi & Bernstein 2009) for diagnosing aircraft control surfaces.

Rocha-Cozatl, Moreno & Vande Wouwer (2012) utilised a continuous-discrete unknown

input observer in order estimate unknown variables in phytoplanktonic cultures. Recent

work of Czop (2011) presents reconstruction of the passenger vehicle wheel vertical

movement under ride conditions.

1.2 Problem statement

1.2.1 Unknown input reconstruction

A system is a real world entity, which can be represented using a mathematical model

that describes relationships between system inputs and outputs. Inputs may not only

represent external stimuli, but also discrepancies between the model and the real sys-

tem. Some of the input signals can be measured, some, however, are inaccessible for

measurement. A representation of a system with unknown (unmeasurable) inputs is de-

picted in Fig. 1.1. The aim of the unknown input reconstruction problem is to estimate

the unmeasurable inputs to the system based on the known accessible measurements.

Methods considered in this thesis assume that the mathematical model of the system

is known.

1.2.2 Fault detection and diagnosis

A fault means a malfunction of a system and/or component. A fault detection and

diagnosis process can be divided into three stages, which are defined by answers to the

following questions:

2
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System

measured

inputs

unmeasured

inputs

measured

outputs

?

Figure 1.1: Representation of a system with unknown inputs

1. Is there a malfunction in the system? If the answer is ‘yes’, a fault has been

detected. Thus, the first stage of the process is called fault detection.

2. Which component is faulty? Determining, which component is malfunctioning,

is referred to as fault isolation.

3. By how much the component is faulty? Determining the magnitude of the fault is

denoted as fault identification, i.e. defining the quantity by which the particular

system parameter deviated from its acceptable/nominal value.

In the literature fault isolation and identification are often denoted as fault diagnosis.

Faults are usually modelled as extra inputs to the system. Thus, a fault diagnosis

process can be understood as unknown input estimation.

1.3 Outline of approach

1.3.1 Methodology

Algorithms developed in this thesis are built on existing schemes, by extending/adapting

them, by combining two (or more) different methods or by applying a well known

scheme for different purposes than originally designed. Proposed algorithms are de-

scribed in details in a form that allows their straightforward implementation using

computer software, e.g. Matlab. For a better understanding of the devised schemes tu-

torial examples are presented and care is taken to ensure reproducibility of the results.

A benchmark comparison of some of the proposed algorithms with examples from the

literature is also provided where possible.

A review of well known methods existing in the literature, on which the schemes

proposed in this thesis are built, is given in the review Chapter 2. Furthermore, Chap-

ters 3–6 start with a short literature review on the particular topic that each of the

chapters explores. All abbreviations and nomenclature used throughout this thesis are

given in a separate section at the beginning of the thesis. Some of the terms have

different meanings depending on the context in which they are used. Therefore, for
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completeness, at the beginning of Chapters 2–7 the nomenclature used in the par-

ticular chapter is provided. Additionally, Chapters 3–7 start with an indication of a

preliminary reading from specific sections of this thesis. Outlines of following chapters

are provided in Subsection 1.3.2.

1.3.2 Outlines of chapters

Chapter 2: The aim of this chapter is to review available methods for unknown in-

put reconstruction and fault detection and diagnosis, which are the bases for

algorithms developed in further chapters. Firstly, the notation for the system

representation used throughout this thesis is provided. Then, unknown input

reconstruction methods are reviewed and two schemes are presented, which are

further used as benchmarks for the novel scheme developed in Chapter 3. Fur-

thermore, the nomenclature used for fault detection and diagnosis is provided and

well known methods for robust fault detection and isolation are presented, which

forms a basis for development of algorithms in Chapters 5–6.

Chapter 3: In this chapter a method for unknown (unmeasurable) input reconstruc-

tion is proposed, i.e. parity equation-based unknown input observer (PE-UIO).

The algorithm is devised for systems that are subjected to process and measure-

ment noise in the errors-in-variables (EIV) framework, i.e. the known input is

affected by white, Gaussian, zero-mean independent and identically distributed

(i.i.d.) noise sequences, whereas the output is subjected to coloured noise. PE

are used for the purpose of an unknown input reconstruction with a Lagrange

multiplier method utilised to find an optimal solution minimising the effect of

noise on the unknown input estimate. The order of the parity space is a tuning

parameter which allows adjustment of the bandwidth and, hence, noise filtering

properties of the filter. The efficacy of the novel scheme is compared with those of

two known methods, namely, minimum variance unbiased (MVU) state and input

estimator, see (Gillijns & De Moor 2007b), and input estimation (INPEST), see

(Young & Sumis lawska 2012).

Chapter 4: This chapter builds on the algorithm developed in Chapter 3. The un-

known input reconstruction method is extended to a class of nonlinear systems,

namely Wiener-Hammerstein systems, where a linear dynamic block is preceded

and followed by a memoryless nonlinear function. Similarly, as in Chapter 3,

an EIV framework is considered. Due to nonlinearities, the impact of the noise

on the unknown input estimate depends on the values of the known input and

output themselves, and is changing over time. Therefore, an adaptation scheme

is devised, which allows adjustment of the order of the parity space (and, con-

sequently, the filter bandwidth) based on the change of the measured input and

output.
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Chapter 5: There are two main outcomes of this chapter: firstly, the robust fault

detection filter based on right eigenstructure is extended to systems with unstable

invariant zeros, which extends the applicability of the aforementioned scheme. It

is also demonstrated that the devised algorithm is computationally simpler than

that of Chen & Speyer (2006a). Then, a robust PE of user-defined order is

designed using right and left eigenstructure assignment. In order to obtain an

open-loop solution (i.e. equivalent to PE) a finite time convergent state observer

is utilised. The disturbance decoupling property of the novel scheme is proven

algebraically and its efficacy is shown using a numerical example.

Chapter 6: This chapter builds on Chapter 5. Decoupling properties of the robust

PE designed in Chapter 5 are used to devise a fault isolation and identification

filter, which generates an estimate of the fault signal.

Chapter 7: Practical applications of the algorithms developed in Chapter 3 are pro-

posed. The PE-based unknown input reconstruction scheme is used to improve

control performance of a simulated single stand of a steel rolling mill. Further-

more, it is proposed to apply the unknown input reconstruction algorithm to a

hydrological application.

Chapter 8: In this chapter concluding remarks are given and proposals for further

work are stated.

A structural representation of the flow of developments carried out in this thesis is

depicted in Fig. 1.2.

1.4 Contributions

Contributions of the author are listed in descending order with respect to their consid-

ered relative significance.

1. Parity equation-based unknown input reconstruction for linear stochastic systems:

The main contribution of the scheme is use of the Lagrange multiplier method to

find optimal filter parameters such that the effect of noise on the unknown input

estimate is minimised. The parity equation-based unknown input observer (PE-

UIO) has been originally developed in [1]1 for systems with a single output in an

output error (OE) case (i.e. when the output of the system is subjected to white,

Gaussian, zero-mean noise). Then, in [2] and [3], the method has been extended

for systems in the EIV framework, i.e. when both input and output are affected by

white, Gaussian, zero-mean, and mutually uncorrelated noise sequences. Then,

in [4], the scheme has been extended to a multivariable case.

1Note that the references in square brackets are the publications of the author.
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Figure 1.2: Structural representation of a logical flow of developments of this thesis
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assignment.

[7] Sumis lawska, M., Larkowski, T., Burnham, K. J., Design of parity equations

using right eigenstructure assignment. In Proc. of the 21st International

Conference on Systems Engineering, pages 367–370, Las Vegas, USA, August

2011

[8] Sumis lawska, M., Larkowski, T. and Burnham, K. J., Design of robust par-

ity equations of user-defined order using left eigenstructure assignment. In

Proc. of the 9th European Workshop on Advanced Control and Diagnosis,

Budapest, Hungary, November 2011

5. Extension of the right eigenstructure assignment method to systems with unsta-

ble invariant zeros: Invariant zeros of the residual response to disturbances are

unobservable modes of the robust fault detection filter via right eigenstructure

assignment, i.e. the invariant zeros of the system become poles of the fault de-

tection filter. Therefore, design of a stable filter becomes impossible when those
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1. Introduction, motivation and outline of approach

zeros are unstable. A solution is proposed in this thesis which allows the design

of stable robust fault detection filters for systems with unstable invariant zeros.

6. Fault isolation and identification based on diagonal PE using right eigenstructure

assignment: This development builds on contributions 4 and 5 above. The right

eigenstructure is used to design a PE, whose output is an estimate of the fault

vector. A system with multiple faults is considered. The scheme is applicable to

systems, whose response to faults contains unstable invariant zeros.
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Chapter 2

Review

2.1 Introduction

The purpose of this chapter is to familiarise the reader with the notation and the

background knowledge used to develop algorithms in the next chapters. Firstly, the

notation of a linear discrete-time time-invariant stochastic system representation and a

class of nonlinear systems, namely, block-oriented systems, is provided in, respectively,

Section 2.2 and Section 2.3. In Section 2.4 the problem of an unknown input recon-

struction is presented. Two methods for a reconstruction of the unknown input signal

are presented, which are further used for a benchmark comparison with the algorithms

developed in Chapter 3. Section 2.5 provides the nomenclature used in the subject of

fault diagnosis as well as describes open- and closed-loop fault detection. Furthermore,

in Section 2.6 the problem of a robust (disturbance decoupled) fault detection is re-

viewed. A closely related fault isolation and identification is presented in Section 2.7.

Concluding remarks are given in Section 2.8.

2.2 Linear system representation

The algorithms presented in this thesis are designed for discrete-time time-invariant

systems. The schemes proposed in Chapters 3, 5, and 6 are derived for linear sys-

tems, whilst the algorithms developed in Chapter 4 are devised for a class of nonlinear

systems. The algorithms presented in this thesis utilise a state-space representation

of a linear system, see Subsection 2.2.2. The unknown input reconstruction schemes

developed in Chapters 3 and 4 are designed for stochastic systems, i.e. those which

are subjected to random noise. The notation of a stochastic linear discrete-time time-

invariant model is defined in Subsection 2.2.3. State-space representations of known

polynomial noise models, see (Ljung 1999), are presented as well. For completeness, a

polynomial representation of a linear system is defined in Subsection 2.2.1.

9



2. Review

2.2.1 Polynomial representation

Assume that a linear dynamic discrete-time time-invariant multiple-input multiple-

output (MIMO) system with p inputs and m outputs is represented by an nth order

state-space equation of the following form (Ljung 1999):

y(t) = −
na

∑
i=1

aiy(t − i) +
nb

∑
j=0

bju(t − j) (2.1)

The terms u(t) ∈ Rp and y(t) ∈ Rm refer to, respectively, the input and output vectors,

whilst na and nb, with na ≥ nb, are the orders of the auto-regressive and exogenous

parameters, respectively, and ai ∈ Rm×m and bi ∈ Rm×p are coefficient matrices.

2.2.2 State-space representation

The algorithms, which are developed within the framework of this thesis utilise the

state-space form of a linear system, which is given by:

x(t + 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.2)

where x(t) ∈ Rn is the state vector, whilst A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and D ∈ Rm×p.

A notation (A,B,C,D) is used to refer to the system (2.2). In the case when D = 0,

the system (2.2) is denoted as (A,B,C). System (2.1) can be described by an observer

canonical form of a state-space model (Ljung 1999, Yiua & Wang 2007), where matrices

A, B, C, and D are:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 I 0 ⋯ 0

−a2 0 I ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
−ana−1 0 0 ⋯ I

−ana 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 − a1b0
b2 − a2b0
⋮

bnb
− anb

b0

−anb+1b0

⋮
−anab0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C = [ I 0 ⋯ 0 ] D = b0 (2.3)

2.2.3 Polynomial and state-space representations of stochastic sys-

tems

Consider system (2.2) affected by stochastic noise. A general representation of the

system is given by the following set of equations:

x(t + 1) = Ax(t) +Bu0(t) +Πe(t)
y(t) = Cx(t) +Du0(t) +Ωe(t)
u(t) = u0(t) + ũ(t)

(2.4)

10



2. Review

where Π ∈ Rn×m, Ω ∈ Rm×m. The terms u0(t) ∈ Rp and y(t) ∈ Rm refer to, respectively,

the input and output vectors. The term e(t) ∈ Rm is a column vector of m zero-mean,

white, Gaussian, independent and identically distributed (i.i.d.) noise sequences. The

term ũ(t) ∈ Rp is a vector of white, zero-mean, Gaussian i.i.d. noise sequences, which is

uncorrelated with e(t). Equation (2.4) is a generalised representation of a linear system

and can be simplified in more specific cases, some of which are given below.

Auto-regressive model with moving average and exogenous input (ARMAX)

A MIMO auto-regressive model with a moving average and exogenous input (ARMAX)

is given by, see (Ljung 1999, Yiua & Wang 2007):

y(t) = − na

∑
i=1

aiy(t − i) + nb

∑
j=0

bju(t − j) + nc

∑
k=0

cke(t − k) (2.5)

where u(t) and y(t) are, respectively, the input and output vectors of the system and

e(t) is a vector of white, zero-mean, Gaussian, i.i.d. noise sequences. The terms na,

nb, nc, with na ≥ nb and na ≥ nc, are the orders of the auto-regressive, exogenous and

moving average parameters, respectively, and ai ∈ Rm×m, bi ∈ Rm×p and ci ∈ Rm×m are

coefficient matrices. The last component of the right-hand side of (2.5) refers to the

moving average (coloured) process noise of the system.

The state-space system matrices (2.2) for the ARMAX model (2.5) in the observer

canonical form are given by:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 I 0 ⋯ 0

−a2 0 I ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
−ana−1 0 0 ⋯ I

−ana 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 − a1b0
b2 − a2b0
⋮

bnb
− anb

b0

−anb+1b0

⋮
−anab0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 − a1c0
c2 − a2c0
⋮

cnc − ancc0

−anc+1c0

⋮
−anac0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C = [ I 0 ⋯ 0 ] D = b0 Ω = c0

(2.6)

The ARMAX model assumes that the input u(t) is known exactly (there is no noise

present on the input variable), hence ũ(t) = 0 and u(t) = u0(t). Note that an autore-

gressive model with an exogenous input (ARX) is obtained from an ARMAX model by

setting ci, i = 1,⋯, nc, to zero.

Output error (OE) model

An OE model assumes, that there is no process noise present in the system, however

the noise-free output y0(t) is subjected to zero-mean, white, Gaussian measurement

11



2. Review

noise e(t), see (Ljung 1999):

y0(t) = − na

∑
i=1

aiy0(t − i) + nb

∑
j=0

bju(t − j)
y(t) = y0(t) + e(t)

(2.7)

This case can be modelled by the system representation (2.2), where matrices A, B, C,

and D are all given as in the ARMAX case. The matrix Π is null, and Ω is diagonal.

Also, there is no noise present on the input variable, hence ũ(t) = 0.

Errors-in-variables (EIV) framework

In the EIV framework, see, for example, (Söderström 2007), all measured variables, i.e.

the inputs and outputs of the system, are affected by zero-mean, white, Gaussian, i.i.d.

measurement noise sequences. This can be represented by (2.2), where ũ(t) ≠ 0, Π = 0,

and Ω is diagonal.

2.2.4 Invariant zeros

An invariant zero of the system (A,B,C,D) is such a value zi for which the Rosenbrock

system matrix, defined as:

P (zi) =
⎡⎢⎢⎢⎢⎣
ziI −A −B
C −D

⎤⎥⎥⎥⎥⎦
(2.8)

loses its rank (MacFarlane & Karcanias 1976). Two vectors are associated with an

invariant zero: the invariant zero state direction v ∈ Rn and the invariant zero input

direction g ∈ Rp, which conform the following equation (El-Ghezawi, Billings & Zinober

1983, Patel 1985, Patel & Munro 1982):

⎡⎢⎢⎢⎢⎣
ziI −A −B
C −D

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v

g

⎤⎥⎥⎥⎥⎦
= 0 (2.9)

2.2.5 Properties of a linear system in geometric theory

Robust fault detection and fault isolation may be easier to understand if the reader

is familiar with the basics of a geometric approach. The aim of this subsection is to

demonstrate some geometric properties of linear systems.

Consider a matrix A ∈ Rn×m. An image of A is defined as a set of all vectors Ax for

any arbitrary x ∈ Rm:

Im{A} = {Ax ∶ x ∈ Rm} (2.10)

An image of A is sometimes defined as span{A}, i.e. the subspace spanned by A, which

12
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is a set of all possible linear combinations of columns of A, i.e.

span{A} = {m

∑
i=1

αiAi ∶ αi ∈ R} (2.11)

where Ai, i = 1,⋯,m are columns of A and αi are arbitrary scalars. The kernel of A is

a set of all x ∈ Rm for which Ax = 0, i.e.

Ker{A} = {x ∈ Rm ∶ Ax = 0} (2.12)

Denote an n-dimensional space over the field of real numbers as X . Consider a matrix

V ∈ Rn×k, where k ≤ n. Denote V = Im{V }; then V is a k-dimensional subspace of the

space X . (Note that X = Im{I}.) Consider the following subspaces V , Y , and Z of

vector spaces R
n and R

m and a matrix A ∈ Rm×n. For completeness, basic operations

on subspaces are given below (Halmos 1958, Basile & Marro 2002):

1. Sum:

Z = V +Y ∶= {z ∶ z = v + y, v ∈ V , y ∈ Y} (2.13)

2. Intersection:

Z = V ∩Y ∶= {z ∶ z ∈ V , z ∈ Y} (2.14)

3. Direct sum:

Z = V ⊕Y ∶= {z ∶ z = v + y, v ∈ V , y ∈ Y ,V ∩Y = 0} (2.15)

4. Linear transformation:

Y = AV ∶= {y ∶ y = Av, v ∈ V} (2.16)

5. Inverse linear transformation:

V = A−1Y ∶= {v ∶ y = Av, y ∈ Y} (2.17)

6. Orthogonal completion1:

Y = V� ∶= {y ∶ ⟨v, y⟩ = 0, v ∈ V} (2.18)

1In the coordinate-free subspace algebra a product of vectors v and y is usually denoted as ⟨v, y⟩.
Note that this refers to vT y in the linear matrix algebra.
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Invariant subspaces

Consider a linear transformation matrix A ∈ Rn×n. A subspace V is A-invariant if and

only if AV ⊆ V . In other words, there exists such a matrix X that (Halmos 1958):

AV = V X (2.19)

Note that if X is diagonal, then columns of V are the eigenvectors of A. The invariance

has a physical meaning in the linear systems theory. Consider an autoregressive system

described by the following equation:

x(t + 1) = Ax(t) (2.20)

It holds that if x(t) ∈ V , where V is A-invariant, then x(t + 1) ∈ V . This means that if

the system is initialised with x(0) ∈ V , then the state vector will remain within V .

Reachability and controllability

Reachability and controllability can be defined by means of geometric tools. Consider

an autoregressive system with an exogenous input:

x(t + 1) = Ax(t) +Bu(t) (2.21)

Using the notation B = Im{B}, the term ⟨A∣B⟩ = B + AB + ⋯ + An−1B is the infimal

A-invariant subspace containing B, i.e. the reachable subspace of (A,B). This means

that the state trajectory of the system (2.21) driven by the input u(t) can be anywhere

within the reachable subspace of (A,B). Furthermore, because ⟨A∣B⟩ is A-invariant,

the state driven by u(t) cannot leave the reachable subspace of (A,B). Note that, the

reachable subspace of (A,B) can be defined as:

⟨A∣B⟩ = Im{R} (2.22)

where:

R = [ B AB ⋯ An−1B ] (2.23)

is the reachability matrix of the system.

Analogously, observability can be defined using the geometric theory. Consider the

following autoregressive system:

x(t + 1) = Ax(t)
y(t) = Cx(t) (2.24)

Denote the kernel of the matrix C as K = Ker{C}, i.e. CK = 0. Then the unobservable

subspace of the system (2.24) is defined as the supremal A-invariant subspace contained
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in K (Massoumnia 1986):

⟨K∣A⟩ = K ∩A−1K ∩⋯∩KA−n+1 (2.25)

Note that if the state vector x(t) ∈ K then y(t) = Cx(t) = 0. Because ⟨K∣A⟩ ⊆ K, it

holds that y(t) = Cx(t) = 0 for any x(t) ∈ ⟨K∣A⟩. Furthermore, due to the fact that

⟨K∣A⟩ is A-invariant it holds that x(t + 1) ∈ ⟨K∣A⟩ if x(t) ∈ ⟨K∣A⟩, i.e. the state vector

stays within ⟨K∣A⟩. Thus, if the system (2.24) is initialised with x(0) ∈ ⟨K∣A⟩, then the

state vector remains within the unobservable subspace of (A,C) and the output y(t)
remains zero.

Now consider the relation between ⟨K∣A⟩ and the system observability matrix O:

O =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

⋮
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.26)

The subspace which is an orthogonal completion of ⟨K∣A⟩ is the observable subspace

of system (2.24). An orthogonal completion of an intersection of two subspaces, V and

Z, is defined as, cf. Equation (3.1.10) in (Basile & Marro 2002):

(V ∩Z)� = V� +Z� (2.27)

Hence:

⟨K∣A⟩� = K� + (A−1K)� +⋯+ (A−n+1K)� (2.28)

Note that the orthogonal subspace of K is Im{CT }. An orthogonal completion of

an inverse transformation of a subspace is defined as, see Property 3.1.3 in (Basile &

Marro 2002):

(A−1V)� = ATV� (2.29)

Therefore, it holds that:

⟨K∣A⟩� = K� + (A−1K)� +⋯+ (A−n+1K)� = Im{CT } + Im{ATCT } +⋯+
+ Im{(An−1)TCT } = Im{[ CT ATCT ⋯ (An−1)TCT ]} (2.30)

which is an image of the transposed observability matrix O. Consequently, the unob-

servable subspace of (A,C) is given by:

⟨K∣A⟩ = Ker{O} (2.31)
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Controlled and conditioned invariants

The concept of controlled invariants was introduced in (Basile & Marro 1969, Wohnam

& Morse 1970), whilst the concept of conditioned invariance was introduced in (Basile

& Marro 1969). Consider a pair (A,B). A subspace V is an (A,B)-controlled invariant

if:

AV ⊆ V +B (2.32)

This means that there exists such a matrix K that the input u(t) = Kx(t) keeps the

state of the system (2.21) within V , i.e. there exists such a K that (A +BK)V ⊆ V . A

dual of the controlled invariant is a conditioned invariant. Consider a pair (A,C). A

subspace S is said to be an (A,C)-conditioned invariant if:

A(S ∩K) ⊆ S (2.33)

The (A,C)-conditioned invariance means that there exists such a matrix K that (A −
KC)S ⊆ S. For more properties of controlled and conditioned invariants the reader is

referred to (Basile & Marro 2002).

Invariant zeros

Consider the following system:

x(t + 1) = Ax(t) +Bu(t)
y(t) = Cx(t) (2.34)

Denote the minimal (A,C)-conditioned invariant containing Im{B} as S0 and use the

notation V0 for the maximal (A,B)-controlled invariant contained in ker{C}. Consider

a matrix V1 such that Im{V1} ∩ V0 = Im{V1}, Im{V1} + V0 = V0, and Im{V1} ∩ S0 = 0.

Invariant zeros of (A,B,C) are the eigenvalues of the matrix M1, which fulfils the

following equation, see (Basile & Marro 2010):

[ V1 −B ]
⎡⎢⎢⎢⎢⎣
M1

M2

⎤⎥⎥⎥⎥⎦
= AV1 (2.35)

Using a similarity transformation Vm1
, the matrix M1 can be decomposed as:

M1 = V −1m1
JVm1

(2.36)

Equation (2.36) can be, in particular, a Jordan normal decomposition. Consequently,

equation (2.35) can be reformulated as:

V1V
−1
m1
JVm1

−BM2 = AV1 (2.37)
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By postmultiplying both sides of (2.37) by V −1m1
the following formula is obtained:

V1V
−1
m1
J −BM2V

−1
m1
= AV1V −1m1

(2.38)

Note that if the invariant zeros of (A,B,C) are distinct, the matrixM1 is diagonalisable,

and J is diagonal, equation (2.38) is equivalent to (2.9), where the diagonal elements of

J are the invariant zeros of (A,B,C), whilst columns of V1V
−1
m1

and columns of M2V
−1
m1

are, respectively, invariant zeros state and input directions. Therefore, if the invariant

zeros of (A,B,C) are distinct, (2.9) is equivalent to (2.35), where D = 0. Nevertheless,

as opposed to (2.9), Equation (2.35) can be used to determine the number of all of the

invariant zeros of the system, including the repeated ones.

In the case when the system contains a feedthrough term, i.e. D ≠ 0 Basile &

Marro (2002) proposed some manipulations to represent the quadruple (A,B,C,D)
with a triple. However, the geometric approach is used in this thesis to analyse/design

fault detection and isolation filters, where the considered transfer functions between

disturbances or faults and the output of the system do not contain any feedthrough

term. Thus, for more details on invariant zeros of systems with a feedthrough term the

reader is referred to (Basile & Marro 2002).

2.3 Block oriented models

Block-oriented model structures consist of static nonlinearities interconnected with lin-

ear dynamic blocks. In the case of a Hammerstein model, see Fig. 2.1(a), a linear

block is preceded by a static nonlinear function, whereas in the case of a Wiener

model, see Fig. 2.1(c), the order of these elements is reversed (Pearson 1995, Pear-

son & Pottmann 2000). In the case of a Hammerstein-Wiener model structure, cf.

Fig. 2.1(b), a linear dynamic block is preceded and followed by static nonlinearities.

A Wiener-Hammerstein model, cf. Fig. 2.1(d), is characterised by two linear dynamic

blocks connected via a nonlinear static function (Crama & Schoukens 2004). Further-

more, block-oriented systems can be cascaded creating more complicated structures.

Dobrowiecki & Schoukens (2002) studied cascaded Wiener-Hammerstein systems as

the one presented in Fig. 2.2.

u(t) ū(t) y(t)
N(⋅) G(z)

(a) Hammerstein model

u(t) ū(t) ȳ(t) y(t)
N1(⋅) N2(⋅)G(z)

(b) Hammerstein-Wiener model

u(t) ȳ(t) y(t)
N(⋅)G(z)

(c) Wiener model

u(t) ū(t) ȳ(t) y(t)
N(⋅)G1(z) G2(z)

(d) Wiener-Hammerstein model

Figure 2.1: Block oriented models
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...
u(t) y(t)

N1(⋅)G1(z) H1(z) Nk(⋅)Gk(z) Hk(z)

Figure 2.2: Cascade of k Wiener-Hammerstein systems

In order to capture system nonlinearities more accurately, a feedback block-oriented

model can be used, see, for example, (Pearson & Pottmann 2000). Different variations

of feedback block oriented models (e.g. a sandwich feedback block-oriented model as

in Fig. 2.3(b), have been studied in (Pottmann & Pearson 2006).

u(t) y(t)

N(⋅)

G(z)

(a) Feedback block-oriented model

u(t) y(t)

N(⋅)

G0(z)

G2(z) G1(z)

(b) Feedback block-oriented model – a sandwich
structure

Figure 2.3: Feedback block oriented models

2.4 Unknown input reconstruction

It is assumed that the model of a linear system is known and its output is measurable,

however the system is affected by noise. The aim of the unknown input reconstruction

process is to estimate the unknown (unmeasurable) input to the system. The most

trivial solution to this problem, a naive inversion, is not applicable when any system

zero lies outside the unit circle, i.e. the system in nonminimum-phase. Also, due to

highpass properties of a naive inversion, it is not preferable when the system is subjected

to noise. In this Section two input reconstruction algorithms are presented, which

are used as benchmarks for the assessment of the schemes developed in Chapter 3.

In Subsection 2.4.1 a minimum variance unbiased (MVU) state and input estimator

based on the Kalman filter, see (Gillijns & De Moor 2007b), is described. The second

method used as a benchmark is the input estimation (INPEST) method presented in

Subsection 2.4.2.

2.4.1 MVU state estimator

A Kalman filter-based MVU state and input estimator for systems with a direct

feedtrough has been developed by Gillijns & De Moor (2007b). The scheme, for com-

pleteness, is presented in Algorithm 2.1. The system, for which the MVU has been
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designed, is described by (Gillijns & De Moor 2007b):

x(t + 1) = Ax(t) +Gu(t) + ξ(t)
y(t) = Cx(t) +Hu(t) + ζ(t) (2.39)

where u(t) is a vector of unknown inputs (the number of unknown inputs is lower or

equal to the number of outputs), whilst ξ(t) and ζ(t) are vectors of white, zero-mean,

Gaussian, i.i.d. noise sequences.

It is assumed throughout this thesis that the noise distribution is Gaussian (i.e.

normally distributed) and zero-mean. Whilst in practice it is known that noise is not

necessary Gaussian, it is commonly accepted that a Gaussian assumption is appropriate;

offering an approach which, although may no longer be optimal, would be consistent

and generalisable, and is applicable to a wide range of situations.

Algorithm 2.1 (MVU).

1. Initialisation

x̂(0) = E{x(0)} (2.40a)

P x(0) = E{(x̂(0) − x(0)) (x̂(0) − x(0))T } (2.40b)

R = E{ζ(t)ζT (t)} (2.40c)

Q̃ = E{ξ(t)ξT (t)} (2.40d)

2. Estimation of unknown input

R̃(t) = CP x(t∣t − 1)CT +R(t) (2.40e)

M(t) = (HT R̃−1H)−1HT R̃−1 (2.40f)

û(t) =M(t) (y(t) −Cx̂(t∣t − 1)) (2.40g)

P u(t) = (HT R̃−1H)−1 (2.40h)

3. Measurement update

K(t) = P x(t∣t − 1)CT R̃−1 (2.40i)

x̂(t∣t) = x̂(t∣t − 1) +K(t) (y(t) −Cx̂(t∣t − 1) −Hû(t)) (2.40j)

P x(t∣t) = P x(t∣t − 1) −K(t) (R̃(t) −HP u(t)HT )KT (t) (2.40k)

P xu(t) = (P ux(t))T = −K(t)HP u(t) (2.40l)
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4. Time update

x̂(t + 1∣t) = Ax̂(t∣t) +Gû(t) (2.40m)

P x(t + 1∣t) = [ A G ]
⎡⎢⎢⎢⎢⎣
P x(t∣t) P xu(t)
P ux(t) P v(t)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
AT

GT

⎤⎥⎥⎥⎥⎦
+ Q̃ (2.40n)

The MVU requires the knowledge of the covariance matrices of the noise sequences,

Q̃ and R, which are the tuning parameters for the algorithm.

Remark 2.1. If the system (2.39) is SISO, the MVU is equivalent to a naive system

inversion.

Demonstration. If (2.39) is a SISO system, H and M are scalars and, therefore,

M =H−1. Incorporating (2.40g) into (2.40j) it follows that:

x̂(t∣t) = x̂(t∣t − 1) (2.41)

Hence, incorporating (2.40g) into (2.40m):

x̂(t + 1∣t) = (A −MGC)x̂(t∣t − 1) +MGy(t) (2.42)

Consequently, in the SISO case Algorithm 2.1 is equivalent to:

x̂(t + 1∣t) = (A −MGC)x̂(t∣t − 1) +MGy(t) (2.43a)

û(t) = −MCx̂(t∣t − 1) +My(t) (2.43b)

The gain of the filter (2.43) is equal to the reciprocal of the gain of the system, see

(Gillijns & De Moor 2007b). Denote any arbitrary zero of the filter (2.43) as zmvu, then

the following formula holds, cf. (2.9):

⎡⎢⎢⎢⎢⎣
zmvuI −A +MGC −MG

−MC −M

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
χ

κ

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎦
(2.44)

where a column vector χ denotes the zero state direction and a scalar κ refers to the

input zero direction of zmvu (El-Ghezawi et al. 1983). Consequently:

(zmvuI −A)χ = 0 (2.45)

which means that zmvu is an eigenvalue of A, whereas χ is its corresponding eigenvector.

This means that the zeros of the filter (2.43) are equal to the poles of the system (2.39).
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Analogously, it can be demonstrated that the poles of (2.43) are equivalent to the

zeros the the system (2.39). Thus, the MVU behaves as a naive inversion in the case

when (2.39) is a SISO system.

2.4.2 Input estimation (INPEST) method

The INPEST algorithm has been designed for the input reconstruction of SISO linear

systems (Young & Sumis lawska 2012). A schematic diagram of the INPEST method is

presented in Fig. 2.4. The basic idea of the method is to create a control loop, where

the model of the system is controlled in such a way that its output tracks the measured

output of the real system (which acts as a reference for the control loop). The output

of the controller (i.e. the input to the controlled model) renders the unknown input

estimate. The time delay τ is introduced in order to recognise, that the control system

_

+y(t)
modelcontroller

ŷ(t − τ)

û(t − τ)

Figure 2.4: Schematic diagram of INPEST method

does not respond instantaneously to the changes in y(t).
The control system utilises the proportional integral plus (PIP) controller design

that exploits a non-minimum state-space (NMSS) model of the system (Young, Behzadi,

Wang & Chotai 1987). The state vector of the controlled model of the system in the

NMSS representation is defined by:

x(t) = [ ŷ(t) ŷ(t − 1) ⋯ ŷ(t − na + 1) û(t) û(t − 1) ⋯ û(t − nb + 1) z(t) ]T
(2.46)

where z(t) is an integral of the tracking error:

z(k) = z(k − 1) + (y(k) − ŷ(k)) (2.47)

The PIP controller utilises a state variable feedback (SVF), i.e.

û(t) = −gx(t) (2.48)

where g is the controller gain. The INPEST method makes use of the PIP linear

quadratic (PIP-LQ) design, which minimises the cost function defined as:

J =
∞

∑
t=0

{xT (t)Qx(t) + rû2(t)} (2.49)
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where:

Q = diag([ qy ⋯ qy qu ⋯ qu qe ]) (2.50)

and r = qu = qy = 1, whilst qe is optimised. In order to find the optimal value of the qe

parameter, denoted q̊e, and the corresponding estimation delay, τ̊ , the following cost

function J is optimised:

{q̊e, τ̊} = arg minJ (qe, τ)
J (qe, τ) = N

∑
t=τ+1

η2(t) + ν(∆û(t))2
η(t) = y(t) − ŷ(t − τ)

∆û(t) = û(t) − û(t − 1)

(2.51)

where ν is a tuning parameter. The reason for penalising the derivative of the recon-

structed input signal is that in the case of noisy measurements of y(t) the algorithm

would tend to amplify the effects of the disturbance if the rate of change on û(t) was

not penalised. Note that the only tuning parameter of the INPEST method is the

reconstructed input derivative weighting ν.

2.4.3 Efficacy measure of compared algorithms

An efficay index used to assess the ability of the examined algorithms to reconstruct

the unmeasurable signal (unknown input) allows one to determine how much of the

original signal can be explained by the reconstruction algorithm. For this purpose the

following variation of a widely used coefficient of determination, denoted R2

T , see, for

example, (Ljung 1999, Young 2011), is utilised:

R2

T =
∑t(û(t) − u(t))2
∑t u

2(t) × 100% (2.52)

where u(t) and û(t) refer to, respectively, the unknown input and its estimate. Note

that in an ideal case, i.e. when û(t) = u(t), R2

T = 0 and it increases as the discrepancy

between the original and the estimated input increases.

2.5 Introduction to fault detection and diagnosis

In many industrial processes fault detection and diagnosis cannot be spared as it is

crucial to maintain smooth operation and safety. Undiagnosed or improperly handled

faults can lead to serious consequences, starting from a damage to the product on a

production line (financial loss) up to catastrophic events, which can cost lives. There-

fore, measures should be taken and algorithms implemented, which can isolate and then

deal with (accommodate) the faults. Furthermore, automation and availability of high

computational power increases complexity of industrial systems, which become more
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vulnerable to faults and hence require a complex monitoring.

An interest in the model-based fault diagnosis started in the early 1970’s with

observer based fault detection (Beard 1971, Jones 1973). Initially, the terminology in

the early fault diagnosis literature was not consistent. In 1991 the SAFEPROCESS

(fault detection, supervision, and safety for technical processes) Steering Committee

was established (in 1993 it became the Technical Committee), which discussed that

matter and formed commonly accepted definitions. Some of the definitions can be

found in (Reliability, Availability, and Maintainability Dictionary 1988) and (Isermann

& Balle 1997). The definitions used throughout this thesis are given in Subsection 2.5.1.

Then, the fault detection problem is discussed in Subsection 2.5.2.

2.5.1 Nomenclature

The fault detection and diagnosis terminology used throughout this thesis is given

below (Isermann & Balle 1997):

Fault: A deviation of at least one characteristic property or parameter of the system

from the acceptable/usual/standard conditions.

Residual: An output of the fault detection/isolation/identification filter. In a fault-

free condition the residual is close to zero and it significantly deviates from zero,

when a fault occurs.

Fault detection: A binary decision, whether a fault is present in the system. Due to

the fact that there is always a certain level of noise in the system a need arises

to distinguish, whether the residual deviates from zero due to the noise or due

to presence of a fault. This is achieved by setting a threshold whose violation

indicates the presence of a fault.

Robust fault detection: A fault detection process which is insensitive to unmea-

sured disturbances. A robust fault detection filter is designed in such a way that

the residuals are insensitive to (decoupled from) disturbances, whilst they are

sensitive to faults.

Fault isolation: Determination of the component which deviates from the accept-

able/usual/standard condition.

Fault identification: Determination of the magnitude of the fault.

Fault diagnosis: Includes fault isolation and identification, i.e. determination of the

source of the fault and the fault magnitude.
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2.5.2 Fault detection

Consider a process, which can be described by a linear discrete-time time-invariant

model:

x(t + 1) = Ax(t) +Bu(t) + Fµ(t)
y(t) = Cx(t) +Du(t) (2.53)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rp and y(t) ∈ Rm are, respectively,

the system input and output, and µ(t) ∈ R
k is a fault signal. Matrices A, B, C,

D, and F are constant and have appropriate dimensions. The aim of fault detection

is to define the time instances t, when µ(t) ≠ 0. When both the input and output

measurements are available, so-called process-model-based fault detection methods are

used for the purpose of residual generation (Isermann & Balle 1997, Simani, Fantuzzi

& Patton 2002). These, in particular, are:

1. State and output observers

2. PE

3. Identification and parameter estimation

In this thesis two fault detection methods are considered, which are the state observers

and the PE.

State observer (closed-loop fault detection filter)

A schematic illustration of a state observer is presented in Fig. 2.5 and given by the

following set of equations (Patton 1997, Chen & Patton 1999, Simani et al. 2002):

x̂(t + 1) = Ax̂(t) + (B −KD)u(t) +K(y(t) − ŷ(t))
ŷ(t) = Cx̂(t) +Du(t)
r(t) = Q(y(t) − ŷ(t))

(2.54)

where K is the observer gain matrix, whilst Q is an arbitrary matrix. (The matrix

Q plays an important role in robust fault detection which is described in Section 2.6;

in this section, however, without loss of generality it is assumed that Q is an identity

matrix.) Consider the state estimation error ξ(t) = x̂(t) − x(t). Then the residual is

governed by:

ξ(t + 1) = (A −KC)ξ(t) + Fµ(t)
r(t) = QCξ(t) (2.55)

24



2. Review

_
+

+
+

+

+
+

x̂(t)x̂(t + 1)

u(t) y(t)
µ(t)

ŷ(t) r(t)

A

B C

D

K

Qz−1

x(t + 1) = Ax(t) +Bu(t) + Fµ(t)
y(t) = Cx(t) +Du(t)

Figure 2.5: State observer-based (closed-loop) fault detection filter

Therefore, in order to detect an occurrence of a fault, the z-transform transfer function

of the residual response to the fault, denoted as Gµr(z) must be non-zero, i.e.

Gµr(z) = QC(Iz −A +KC)−1F ≠ 0 (2.56)

Parity equations (open-loop fault detection filter)

PE are widely used for the purpose of fault detection and isolation, see, for example,

(Chow & Willsky 1984, Gertler & Singer 1990, Li & Shah 2002). A schematic illus-

tration of PE is presented in Fig. 2.6. As opposed to the observer-based (closed-loop)

fault detection filters, PE have an open-loop structure.

delay

_

delay

+

u(t) y(t)
µ(t)

r(t)
WWQ

x(t + 1) = Ax(t) +Bu(t) + Fµ(t)
y(t) = Cx(t) +Du(t)

Figure 2.6: Open-loop fault detection filter (PE)

Consider a state-space representation of the system (2.2). The stacked vector of the

system output y(t) is defined as:

Y (t) = [ yT (t − s) yT (t − s + 1) ⋯ yT (t) ]T (2.57)
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where the term s denotes the order of the parity space. Analogously, one can construct

a stacked vector of u(t), which is denoted as U(t). Using this notation the system

defined by (2.53) in a fault-free case can be expressed in the form of:

Y (t) = Γx(t − s) +QU(t) (2.58)

where Γ is an extended observability matrix:

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

⋮
CAs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(s+1)m×n (2.59)

and Q is the following block Toeplitz matrix:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0 ⋯ 0

CB D ⋯ 0

CAB CB ⋯ 0

⋮ ⋮ ⋱ ⋮
CAs−1B CAs−2B ⋯ D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(s+1)m×(s+1)p (2.60)

For the purpose of elimination of the unknown state vector from (2.58), a matrix

W ∈ Rl×(s+1)m, l ≥ 1, is defined, which belongs to the left nullspace of Γ, i.e.

WΓ = 0 (2.61)

Note that W can always be found by choosing s to be sufficiently large. Therefore, by

premultiplying (2.58) by W the following expression is obtained:

WY (t) =WQU(t) (2.62)

Consequently, the residual defined as:

r(t) =WY (t) −WQU(t) (2.63)

deviates from zero if a fault occurs in the system. It is worth noting that, because the

residual response to fault is open-loop, the residual is correlated only with the last s+1

samples of the fault signal.

2.6 Robust fault detection

Unmodelled dynamics, process noise, parameter variations, or unmeasurable external

stimuli act as disturbances and may affect the fault detection process leading to false
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alarms. Therefore, it is required to construct such a fault detection filter, which is

sensitive to faults but insensitive to disturbances. Disturbances are often represented

by an extra input to the system, d(t) ∈ Rq, with a known distribution matrix E ∈
R
n×q. Thus, the system (2.53) with disturbances is represented by the following set of

equations:

x(t + 1) = Ax(t) +Bu(t) +Ed(t) + Fµ(t)
y(t) = Cx(t) +Du(t) (2.64)

A complete disturbance decoupling is achieved if the residual is sensitive to a fault,

i.e. r(t) ≠ 0 if µ(t) ≠ 0, but it is insensitive to disturbances, i.e. if µ = 0 then

r(t) = 0 for any d(t) ∈ R. A robust fault detection filter may be either open-loop

(equivalent to PE) or closed-loop (observer-based). In Subsections 2.6.1 and 2.6.3 the

design of robust, observer-based fault detection filters using, respectively, right and left

eigenstructure assignment (Patton & Chen 1991a, Chen & Patton 1999) is presented.

In Subsection 2.6.2 a geometric insight into a robust fault detection filter via right

eigenstructure assignment is given. It has been shown in (Patton & Chen 1991a) that

a special case of a robust fault detection filter via left eigenstructure assignment is

equivalent to the first order PE, which is shown in Subsection 2.6.4.

2.6.1 Robust fault detection via right eigenstructure assignment

In this subsection a design of a robust fault detection filter using right eigenstructure

assignment is presented. Consider the filter (2.54). The sufficient conditions for the

decoupling of the disturbances from the residual are, see (Chen & Patton 1999):

1. All columns of the matrix E are right eigenvectors of (A−KC) corresponding to

any eigenvalues

2. QCE = 0

It is assumed that E is full column rank. Denote the ith column of E as Ei, which

is also a right eigenvector of (A −KC) corresponding to the desired eigenvalue λi. In

order to satisfy the decoupling condition 1, it should hold that:

(λiI −A +KC)Ei = 0 for i = 1,⋯, q (2.65)

which is equivalent to:

KCEi = (A − λi)Ei for i = 1,⋯, q (2.66)

The procedure for finding such a gain matrix K, for which the decoupling conditions

are fulfilled, has been proposed by Chen & Patton (1999). Using the notation:

Aλ = [ (A − λ1I)E1 (A − λ2I)E2 ⋯ (A − λqI)Eq ] (2.67)

27



2. Review

equation (2.66) can be reformulated as:

KCE = Aλ (2.68)

The sufficient conditions to assign all columns of E as right eigenvectors of (A −KC)
are, see (Chen & Patton 1999):

(i) rank(CE) = rank(
⎡⎢⎢⎢⎢⎣
Aλ

CE

⎤⎥⎥⎥⎥⎦
)

(ii) (C ′,A′) is a detectable pair, where:

A′ = A −Aλ(CE) C
C ′ = (I −CE(CE) )C (2.69)

The matrix K is subsequently calculated as:

K = Aλ(CE) +K ′(I −CE(CE) ) (2.70)

where K ′ is an arbitrary matrix (Chen & Patton 1999). Note that:

A −KC = A −Aλ(CE) C −K ′(I −CE(CE) )C = A′ −K ′C ′ (2.71)

Consequently, the columns of E are the right eigenvectors of (A′ −K ′C ′) = (A −KC)
corresponding to the desired eigenvectors λi, i = 1,2, ..., q. Hence, one can allocate re-

maining (n−q) eigenvalues by choosing an appropriate gain matrix K ′ and subsequently

compute the gain matrix K using (2.70). Note that the eigenvalues λi, i = 1,2, ..., q are

the unobservable modes of the pair (C ′,A′), which means that only remaining n − q
eigenvalues can be allocated by K ′. The proof of this statement is provided in (Chen

& Patton 1999).

2.6.2 Disturbance decoupling in geometric approach

Consider the robust fault detection filter described in Subsection 2.6.1. Each column

of E is a right eigenvector of (A −KC). Therefore, Im{Ei}, for i = 1,⋯, q is an (A −
KC)-invariant subspace. Furthermore, Im{Ei}, for i = 1,⋯, q is an infimal (A −KC)-
invariant subspace containing Im{Ei}, i.e. the reachability subspace of (A −KC,Ei).
This means that the state trajectory driven by the ith disturbance signal, di(t), will

remain within Im{Ei}. Due to the fact that QCE = 0, Im{Ei} ⊆ Ker{QC} and, because

Im{Ei} is (A−KC)-invariant, it belongs to the supremal (A−KC)-invariant contained

in Ker{QC}, i.e. the unobservable subspace of (A−KC,E,QC). Thus, the state vector

driven by the disturbance remains in the unobservable space of the fault detection filter

(A −KC,E,QC) and, hence, the residual is insensitive to disturbances.
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2.6.3 Robust fault detection via left eigenstructure assignment

A tutorial paper for the left eigenstructure assignment technique has been written

by (Patton & Chen 1991b). Subsequently, these results have been revisited in (Chen

& Patton 1999). Patton & Chen (1992) utilised the left eigenstructure assignment

technique for a jet engine sensor fault detection.

Any transfer function matrix can be written as:

(zI −A +KC)−1 = v1l
T
1

z − λ1
+
v2l

T
2

z − λ2
+⋯ +

vnl
T
n

z − λn
(2.72)

where vi and lTi are, respectively, the right and left eigenvectors of (A −KC) corre-

sponding to the eigenvalue λi, see (Patton & Chen 1991b, Patton & Chen 1992, Chen

& Patton 1999). Denote left and right eigenvector matrices, respectively, as:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lT
1

lT
2

⋮
lTn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
V = [ v1 v2 ⋯ vn ] (2.73)

It is known that the left eigenvector lTi is orthogonal to the right eigenvector vj if i ≠ j,
cf. (Patton & Chen 1991b, Chen & Patton 1999). Therefore, if the vectors lTi and vi

are appropriately scaled:

LV = I (2.74)

and hence:

L = V −1 (2.75)

The transfer function between the disturbance and the residual can be expressed

as:

Grd(z) = n

∑
i=1

QCvil
T
i E

z − λi
(2.76)

Hence, Grd(z) vanishes if and only if for i = 1,⋯, n:

QCvil
T
i E = 0 (2.77)

which implies that:
n

∑
i=1

QCvil
T
i E = QCV LE = QCE = 0 (2.78)

Therefore, the first step for the disturbance decoupling is to find the matrix Q, such that

QCE = 0, see (Patton & Chen 1991b, Chen & Patton 1999). Consequently, sufficient

conditions for the disturbance decoupling using the left eigenstructure assignment are:

1. QCE = 0
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2. All rows of QC are left eigenvectors of (A−KC) corresponding to any eigenvalues

The proof of the above conditions can be found in (Chen & Patton 1999).

Assignability condition

Rows of QC should be the first rq eigenvectors of (A − KC), where rq denotes the

number of column of QC, i.e.

lTi (A −KC) = λilTi (2.79)

where lTi is the ith row of QC. The above expression can be reformulated as:

lTi (A − λiI) = lTi KC (2.80)

Consequently:

lTi = −l
T
i KC(A − λiI)−1 (2.81)

Note that lTi ∈ R
1×n and K ∈ Rn×m. Therefore, lTi K ∈ R

1×m, whilst the matrix C(A −
λiI)−1 ∈ Rm×n. This means that by premultiplying the matrix C(A − λiI)−1 by a row

vector lTi K a linear combination of rows of C(A − λiI)−1 is obtained. Consequently,

a solution to (2.79) exists for the desired λi if and only if the vector lTi lies in a

row subspace spanned by C(λiI − A)−1, i.e. li lies in a column subspace spanned by

(λiI−AT )−1CT , see (Chen & Patton 1999). Therefore, li must be equal to its projection

on the subspace Im{(λiI−AT )−1CT }. Denote (λiI−AT )−1CT as P (λi). The projection

of li onto Im{(λiI −AT )−1CT } is given by:

l∗i = P (λi)w∗i for i = 1,⋯, rq (2.82)

where:

w∗i = [P (λi)TP (λi)]−1P (λi)T li for i = 1,⋯, rq (2.83)

In the case when l∗i = li, the left eigenvector li is assignable. Otherwise a complete dis-

turbance decoupling using the left eigenstructure assignment is not possible. Consider

the following equation:

(l∗i )T (A −KC) = λi(l∗i )T (2.84)

it holds that:

l∗i = −(λiI −AT )−1CTKT l∗i (2.85)

Therefore, one can note that, cf. (2.82):

w∗i = −K
T l∗i (2.86)

30



2. Review

The disturbance decoupling conditions require only rq eigenvectors to be specified

(i.e. rows of QC). The remaining n − rq eigenvectors may be selected freely from

the assignable subspace Im{(λiI −AT )CT }, i.e.:

li = −(λiI −AT )−1CTwi for i = rq + 1,⋯, n (2.87)

for any arbitrary wi, i = q + 1,⋯, n. Subsequently, the gain matrix K is calculated via

(see (Chen & Patton 1999)):

K = −[WL−1]T (2.88)

where:

L = [ l∗
1
⋯ l∗rq lrq+1 ⋯ ln ] (2.89)

and:

W = [ w∗
1
⋯ w∗rq wrq+1 ⋯ wn ] (2.90)

2.6.4 Design of first order PE using left eigenstructure assignment

Consider a fault detection filter via left eigenstructure assignment, where (Chen &

Patton 1999):

QC(A −KC) = 0 (2.91)

This occurs when eigenvalues of (A −KC) assigned to the columns of QC are equal

zero. Then, the z-form of the residual is, cf. (2.54):

r(z) = (Q −QC(zI −A +KC)−1K)y(z)−
(QD −QC(zI −A +KC)−1(B −QD))u(z) (2.92)

where u(z), y(z), and r(z) are the z-transform forms of, respectively, u(t), y(t), and

z(t). Note that:

QC(zI −A +KC)−1 = z−1QC(I + (A −KC)z−1 + (A −KC)2z−2+
(A −KC)3z−3 +⋯) (2.93)

Hence, QC(zI−A+KC)−1 = z−1QC. Therefore, the computational form of the residual

vector r(z) can be rewritten as:

r(z) = (Q − z−1QCK)y(z) − (QD − z−1QC(B −QD))u(z) (2.94)

which is equivalent to a first order PE:

r(t) = [ Q −QCK ]
⎡⎢⎢⎢⎢⎣

y(t)
y(t − 1)

⎤⎥⎥⎥⎥⎦
− [ QD −QC(B −QD) ]

⎡⎢⎢⎢⎢⎣
u(t)

u(t − 1)
⎤⎥⎥⎥⎥⎦

(2.95)
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The above scheme is also referred as a deadbeat robust fault detection filter (DRFDF),

see (Chen & Patton 1999).

2.7 Fault isolation and identification

Isermann & Balle (1997) listed various statistical methods, as well as neural networks

and fuzzy logic for fault isolation. This thesis, however, deals with deterministic meth-

ods, which generate residuals of the following properties (Gertler & Kunver 1995):

Structured residual set: Each fault yields certain residuals deviate from zero, whereas

other residuals remain zero. This can be interpreted as the fault µi(t) causing the

residual vector to lie in a certain subspace of the residual space, see Fig 2.7(a).

An example of a structured residual set is presented in Table 2.1.

Fixed direction residuals: Presence of the fault µi(t) yields the residual to lie in a

fixed direction, see Fig 2.7(b). Residual directions do not need to be linearly in-

dependent. However, multiple faults cannot be detected unless residual directions

are linearly independent.

Diagonal residual set: A combination of the two above, i.e. the fault µi(t) causes

the residual ri(t) to deviate from zero, whilst the remaining residuals are equal

to zero. A diagonal residual set can be used to isolate multiple faults. Note that

a diagonal residual set can be obtained from a set of linearly independent fixed

direction residuals by a similarity transformation (change of basis).

r1(t)

r2(t)

r3(t)

µ1(t)

µ2(t)µ3(t)

(a) Structured residual set

r1(t)

r2(t)

r3(t)

µ1(t)

µ2(t)
µ3(t)

(b) Directional residual set

Figure 2.7: Graphical illustration of structured and directional residual set

2.7.1 Fault isolation via diagnostic observers

Diagnostic observers are state observers which are used for diagnostic purposes. The

pioneers of model-based fault isolation filters are Beard (1971) and Jones (1973). Note
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Table 2.1: Example of a structured residual set. The entry 1 in the ith row (cor-
responding to the fault µi(t)) and the jth column (corresponding to the
residual rj(t)) denotes that µi(t) yields the residual rj(t) deviate from
zero. Note that multiple faults cannot be isolated using this residual set.

r1(t) r2(t) r3(t) r4(t)
µ1(t) 1 0 1 0

µ2(t) 0 1 1 0

µ3(t) 1 0 1 1

µ4(t) 0 1 0 1

that the fault isolation schemes developed by them are often referred to as ‘Beard-Jones

fault detection filters’. In this thesis the term ‘fault detection’ refers to the process of

determining a fault occurrence, whereas the schemes proposed by Beard (1971) and

Jones (1973) are, for sake of consistency, referred to as ‘fault isolation filters’.

Consider the system described by equation (2.53). Denote each column of the matrix

F as Fi and each corresponding fault signal as µi(t). Let δi be the smallest non-negative

integer such that CAδiFi ≠ 0. Then the term fi = AδiFi is further referred to as the

fault direction (Massoumnia 1986, Chen & Speyer 2006a). Consider the following fault

isolation filter:

x̂(t + 1) = (A −KC)x̂(t) + (B −KD)u(t) +Ky(t) (2.96a)

r(t) = y(t) −Cx̂(t) −Du(t) (2.96b)

The objectives of the filter design are:

The residual lies in the direction Cfi when the fault µi occurs

Eigenvalues of (A−KC) can be arbitrarily specified (with constraint of conjugate

symmetry and no repeated eigenvalues2)

In order for the filter design to be feasible, the following conditions must be fulfilled

(Chow & Willsky 1984, Massoumnia 1986, Chen & Speyer 2006b):

1. (C,A) is observable pair

2. rank([ Cf1 Cf2 ⋯ Cfk ]) = k
Assumption 1. ensures that all the filter eigenvalues can be arbitrarily specified, whereas

Assumption 2. allows for the faults to be isolated, i.e. yields residuals caused by

different faults lie in different directions.

2Constraint of no repeated eigenvalues is often imposed for clarity of analysis and derivation pro-
cesses (Chen & Patton 1999, Chen & Speyer 2006a)
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Different solutions have been proposed to design a fault diagnostic observer. Mas-

soumnia (1986) represented the Beard-Jones fault isolation filter in a geometric do-

main and, furthermore, added a solution for the filter design when the output re-

sponse to fault has invariant zeros. White & Speyer (1986) reformulated the Beard-

Jones fault isolation filter to an eigenstructure assignment problem. Then, Chen &

Speyer (2006b) used the spectral theory to design a Beard-Jones fault isolation filter.

Furthermore, a design of the filter has been presented using eigenstructure assign-

ment (Chen & Speyer 2006a) and linear matrix inequalities (LMI), see e.g. (Chen &

Nagarajaiah 2007).

Design of fault isolation filter

A fault isolation filter design using the right eigenstructure assignment developed by

Chen & Speyer (2006a) is presented here. Eigenvalues of (A −KC) can be arbitrarily

specified and for each column of F ni eigenvalues, denoted λ
(i)
j , are allocated to (A −

KC), corresponding to the eigenvectors w
(i)
j , j = 1,2,⋯, ni:

(A −KC)w(i)j = λ(i)j w
(i)
j (2.97)

It is demonstrated in (Chen & Speyer 2006a) that the number of assignable eigenvalues,

ni, depends on the rank of the observability matrix of (Ci,Ai):

Oi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ci

CiAi

⋮
CiA

n−1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.98)

where Ai = A −Afi(Cfi) C and Ci = (I −Cfi(Cfi) )C and:

ni = n − rank(Oi) (2.99)

It is also shown that the unobservable subspace of (Ai, Ci), i.e. ker{Oi}, is

Im{[ Fi AFi ⋯ AδiFi ]} ⊕ Vi, where Vi is the subspace spanned by the invariant

zero state directions of (A,Fi, C). Therefore, ni = δi + dim{Vi} + 1. It is pointed out

that Cfi and Cw
(i)
j are colinear and, for convenience, it is assumed that (Chen &

Speyer 2006a):

Cfi = Cw
(i)
j (2.100)

Incorporating (2.100) into (2.97) the following relation is obtained:

KCfi = (A − λ(i)j )w(i)j (2.101)
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The eigenvectors of (A −KC) are defined as:

w
(i)
j = Θiβ

(i)
j (2.102)

where Im{Θi} = ker{Oi} and β
(i)
j is a coefficient vector (Chen & Speyer 2006a).

From (2.100) if follows that the last element of β
(i)
j is unity, hence (2.102) is refor-

mulated as:

w
(i)
j = [ Θ̄i fi ]

⎡⎢⎢⎢⎢⎣
β̄
(i)
j

1

⎤⎥⎥⎥⎥⎦
= Θ̄iβ̄

(i)
j + fi (2.103)

where:

Im{Θ̄i} = Im{[ Fi AFi ⋯ Aδi−1Fi ]}⊕Vi (2.104)

Substituting (2.103) into (2.101):

(A − λ(i)j )Θ̄iβ̄
(i)
j =KCfi − (A − λ(i)j )fi (2.105)

and repeating (2.105) ni times:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(A − λ(i)
1
)Θ̄i 0 ⋯ 0

0 (A − λ(i)
2
)Θ̄i ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ (A − λ(i)ni

)Θ̄i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̄
(i)
1

β̄
(i)
2

⋮
β̄
(i)
q1+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KCfi − λ
(i)
1
fi

KCfi − λ
(i)
2
fi

⋯
KCfi − λ

(i)
ni
fi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.106)

After subtracting the last row of (2.106) from the others, the following expression is

obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(A − λ(i)
1
)Θ̄i 0 ⋯ −(A − λ(i)ni

)Θ̄i

0 (A − λ(i)
2
)Θ̄i ⋯ −(A − λ(i)ni

)Θ̄i

⋮ ⋮ ⋱ ⋮
0 0 ⋯ (A − λ(i)ni−1

)Θ̄i − (A − λ(i)ni
)Θ̄i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̄
(i)
1

β̄
(i)
2

⋮
β̄
(i)
q1+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ(i)
1
− λ(i)ni

)fi
(λ(i)

2
− λ(i)ni

)fi
⋯

(λ(i)ni−1
− λ(i)ni

)fi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.107)

Denote the matrix at the left hand side of (2.107) as Ãi. Then the coefficient vectors

β̄
(i)
j , j = 1,2,⋯, ni are calculated using a pseudoinverse of Ãi:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̄
(i)
1

β̄
(i)
2

⋯
β̄
(i)
q1+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ãi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ(i)
1
− λ(i)ni

)fi
(λ(i)

2
− λ(i)ni

)fi
⋯

(λ(i)ni−1
− λ(i)ni

)fi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.108)
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From (2.100) it follows that (Chen & Speyer 2006a):

KCfi = (A − λ(i)1 I)w(i)
1
= ⋯ = (A − λ(i)ni

I)w(i)ni
(2.109)

Combining the above for i = 1,2,⋯, q:

KCf = [ λ(1)
1
w
(1)
1

λ
(2)
1
w
(2)
1

⋯ λ
(q)
1
w
(q)
1
] (2.110)

Consequently, the gain matrix K is calculated as:

K = [ λ(1)
1
w
(1)
1

λ
(2)
1
w
(2)
1

⋯ λ
(q)
1
w
(q)
1
] (Cf) +K0 (I − (Cf)(Cf) ) (2.111)

where K0 is an arbitrary matrix.

2.7.2 Geometric properties of fault isolation filter

A Beard-Jones fault isolation filter has been derived using a geometric approach in

(Massoumnia 1986). For each fault direction fi it holds that Im{Θi} = Im{[ Fi AFi

⋯ AδiFi ]}⊕Vi is an (A−KC)-invariant subspace. Consequently, the state trajectory

driven by the fault µi(t) remains within Im{Θi}. This yields the residual to lie in the

direction Im{CΘi} = Cfi. Due to the fact that Cfi ≠ Cfj , i ≠ j, i.e. different faults

yield different residual directions, faults can be isolated.

2.7.3 Fault identification

In order to identify the magnitude of the fault fault, a fault identification filter is

designed in such a way that the residual approximates the fault signal, i.e. (Ding 2008):

r(t) ≈ µ(t) (2.112)

This is an unmeasurable input reconstruction problem. In the case of multiple faults a

diagonal fault isolation filter can be utilised. It is, however, important that the steady

state gain of the residual response to fault is non-zero (Ding 2008).

2.8 Concluding remarks

In this chapter a background knowledge which is used to develop the algorithms pro-

posed in this thesis has been provided. The reader has been familiarised with the

representation of a dynamic, discrete-time, time-invariant stochastic system in both

polynomial and state-space forms, and an insight into the geometric theory of linear

systems has been given. The problem of an unknown (unmeasurable) input recon-

struction has been introduced and two methods known from the literature have been

presented. Furthermore, the reader has been familiarised with the basics of fault detec-

36



2. Review

tion and diagnosis. Both closed-loop (observer-based) and open-loop (PE-based) fault

detection/isolation filters have been discussed and appropriate algorithms selected from

the literature have been presented.
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Chapter 3

Parity equations-based unknown

input reconstruction for linear

stochastic systems

Nomenclature

ai . . . . . . . . . . . . . . autoregressive parameter in polynomial model

A . . . . . . . . . . . . . . . state transition matrix in state-space model

b(t) . . . . . . . . . . . . auxiliary vector

bi . . . . . . . . . . . . . . exogenous parameter in polynomial model

B . . . . . . . . . . . . . . input matrix of known input in state-space model

ci . . . . . . . . . . . . . . moving average parameter in ARMAX model

C . . . . . . . . . . . . . . output matrix in a state-space model

D . . . . . . . . . . . . . . feedforward matrix of known input in state-space model

e(t) . . . . . . . . . . . . noise term

f(⋅) . . . . . . . . . . . . function to be minimised by Lagrange multiplier method

g(⋅) . . . . . . . . . . . . . constraint function in Lagrange multiplier method

G . . . . . . . . . . . . . . input matrix of unknown input in state-space model

G′ . . . . . . . . . . . . . . auxiliary matrix

Gu(z) . . . . . . . . . . z-domain transfer function between u0(t) and y(t)

Gv(z) . . . . . . . . . . z-domain transfer function between v(t) and y(t)

G′v(z) . . . . . . . . . . auxiliary z-domain transfer function

H . . . . . . . . . . . . . . feedforward matrix of unknown input in state-space model

H ′ . . . . . . . . . . . . . . auxiliary matrix

k . . . . . . . . . . . . . . . number of rows of the matrix spanning the left nullspace of Γ

K(t) . . . . . . . . . . . gain matrix (used by MVU)

m . . . . . . . . . . . . . . number of system outputs

M(t) . . . . . . . . . . . auxiliary matrix (used by MVU)

Mv(z) . . . . . . . . . . auxiliary transfer function

n . . . . . . . . . . . . . . . order of system

na . . . . . . . . . . . . . . order of autoregressive polynomial

nb . . . . . . . . . . . . . . order of exogenous polynomial

nc . . . . . . . . . . . . . . order of moving average polynomial
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Nv(z) . . . . . . . . . . auxiliary transfer function

p . . . . . . . . . . . . . . . number of known inputs to the system

pi . . . . . . . . . . . . . . element of P

P . . . . . . . . . . . . . . auxiliary vector

P x(t), P d(t) . . . . . submatrices of state and input estimation error covariance matrix

P dx(t), P xd(t) . . . submatrices of state and input estimation error covariance matrix

Q . . . . . . . . . . . . . . block Toeplitz matrix

Q̃ . . . . . . . . . . . . . . covariance matrix of ξ(t)

R . . . . . . . . . . . . . . covariance matrix of ζ(t)

R̃ . . . . . . . . . . . . . . covariance matrix (used in MVU)

s . . . . . . . . . . . . . . . parity space order

S . . . . . . . . . . . . . . . auxiliary matrix

T . . . . . . . . . . . . . . . block Toeplitz matrix

T ′ . . . . . . . . . . . . . . auxiliary matrix

u(t) . . . . . . . . . . . . measured input

ũ(t) . . . . . . . . . . . . input measurement noise

ũ∗(t) . . . . . . . . . . . auxiliary variable

u0(t) . . . . . . . . . . . noise-free known input

U(t) . . . . . . . . . . . . stacked vector of last s + 1 values of u(t)

U(z) . . . . . . . . . . . u(t) in z-domain

Ũ(t) . . . . . . . . . . . . stacked vector of last s + 1 values of ũ(t)

Ũ(z) . . . . . . . . . . . ũ(t) in z-domain

Ũ∗(t) . . . . . . . . . . . stacked vector of last s + 1 values of ũ∗(t)

Ũ∗(z) . . . . . . . . . . ũ∗(t) in z-domain

U0(t) . . . . . . . . . . . stacked vector of last s + 1 values of u0(t)

U0(z) . . . . . . . . . . u0(t) in z-domain

v(t) . . . . . . . . . . . . unknown (unmeasurable) input

v̂(t) . . . . . . . . . . . . unknown input estimate

v′(t) . . . . . . . . . . . . auxiliary variable

V (t) . . . . . . . . . . . . stacked vector of last s + 1 values of unknown input

V (z) . . . . . . . . . . . v(t) in z-domain

V̂ (z) . . . . . . . . . . . v̂(t) in z-domain

V ′(t) . . . . . . . . . . . stacked vector of last s + 1 values of v′(t)

V ′(z) . . . . . . . . . . . v′(t) in z-domain

wqi ,wξi . . . . . . . . . auxiliary polynomial parameters

W . . . . . . . . . . . . . . vector, which belongs to Γ�

W (z) . . . . . . . . . . . polynomial of z-variable defined by appropriate elements of W

WQ(z) . . . . . . . . . polynomial of z-variable defined by appropriate elements of WQ

WT (z) . . . . . . . . . polynomial of z-variable defined by appropriate elements of WT

WT ′(z) . . . . . . . . . polynomial of z-variable defined by appropriate elements of WT ′

WΞ(z) . . . . . . . . . . polynomial of z-variable defined by appropriate elements of WΞ

x(t) . . . . . . . . . . . . state vector instate space model

y(t) . . . . . . . . . . . . measured output

y0(t) . . . . . . . . . . . noise-free output in output-error case

Y (t) . . . . . . . . . . . . stacked vector of last s + 1 values of measured output

Y (z) . . . . . . . . . . . y(t) in z-domain

Y0(t) . . . . . . . . . . . stacked vector of last s + 1 values of noise-free output

zi . . . . . . . . . . . . . . system zero

αi, α
′
i . . . . . . . . . . . auxiliary parameters

βi . . . . . . . . . . . . . . ith diagonal element of Σ in multiple output OE case
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χ . . . . . . . . . . . . . . . auxiliary vector

δ . . . . . . . . . . . . . . . system delay

ǫ(t) . . . . . . . . . . . . auxiliary noise term

ǫ∗(t) . . . . . . . . . . . auxiliary noise term

γ . . . . . . . . . . . . . . . row vector of Γ�

Γ . . . . . . . . . . . . . . . extended observability matrix

Γ� . . . . . . . . . . . . . . left nullspace of Γ

κ . . . . . . . . . . . . . . . auxiliary scalar

λ . . . . . . . . . . . . . . . Lagrange multiplier

ν . . . . . . . . . . . . . . . input derivative weighting

Π . . . . . . . . . . . . . . . input matrix of noise term in the state-space model

Ω . . . . . . . . . . . . . . . feedforward matrix of noise term in the state-space model

Σ,Σe,Σũ,Σũe . . covariance matrices

τ . . . . . . . . . . . . . . . unknown input estimation lag

Ξ . . . . . . . . . . . . . . . block Toeplitz matrix

ψ . . . . . . . . . . . . . . . auxiliary vector

ξ(t) . . . . . . . . . . . . process noise vector in state space model

ζ(t) . . . . . . . . . . . . output noise vector in state space model

Preliminary reading: Sections 2.2, 2.4, and Subsection 2.5.2.

3.1 Introduction

In the literature the problem of the unknown (unmeasurable) input estimation is solved

either by a system inversion or by a joint state and input estimation. Early contribu-

tions to the inversion of multiple-input multiple-output (MIMO) deterministic systems

have been presented by Dorato (1969) and Sain & Massey (1969), however their ap-

proaches did not ensure stability of the inverted systems. Moylan (1977) provided a

stable inversion algorithm for minimum-phase systems, whilst Antsaklis (1978) devel-

oped a straightforward state feedback-based method, which allows to assign poles of

the inverted system. This latter method is however limited to the systems with stable

zeros.

Over the last decade a geometric approach to an unknown input reconstruction has

gained considerable interest, see e.g. (Edelmayer 2005). Kirtikar, Palanthandalam-

Madapusi, Zattoni & Bernstein (2009) proposed an unknown input reconstruction

scheme for minimum phase systems. An exhaustive solution to an unknown-state

unknown-input reconstruction for both minimum-phase and nonminimum-phase sys-

tems has relatively recently been developed by Marro & Zattoni (2010). Nevertheless,

this approach does not consider the effects of measurement noise.

Another approach to the unknown input estimation for deterministic systems is

based on state observers. The Luenberger state observer, see (Luenberger 1964), has

been extended to the class of systems with both, known and unknown system inputs, see

for example (Hou & Müller 1992, Darouach & Zasadzinski 1997). The work of Fernando

& Trinh (2006) presents a joint input and state observer based on a descriptor approach.
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When dealing with stochastic systems Kalman filter-based approaches have gained

an interest, see, for example, (Hsieh 2000, Floquet & Barbot 2006). Gillijns & De Moor

(2007a) combined the state observer proposed by Darouach & Zasadzinski (1997) and

the unknown input estimator of Hsieh (2000) creating a joint state and unknown input

observer, which is optimal in the minimum variance sense. This approach has subse-

quently been extended to the case of a linear system with a direct feedthrough term, see

(Gillijns & De Moor 2007b). Palanthandalam-Madapusi & Bernstein (2007) introduced

concept of a state and input observability, i.e. they provided a scheme, which allows

to determine, if both the unknown input and the state can be derived from the output

measurements. Keller & Sauter (2010) proposed a variable geometric Kalman filter,

where the statistical effect of each unknown input is tested before deriving the state

estimate. In the recent work of Ghahremani & Kamwa (2011) an extended Kalman

filter with unknown inputs has been developed and applied to state estimation of a

synchronous machine in a power system.

In this chapter a novel approach to the unknown input reconstruction for MIMO

discrete-time stochastic systems is presented. The parity equation-based unknown in-

put observer (PE-UIO) utilises a parity equations (PE) concept for the unknown input

reconstruction. The design freedom is used to minimise the effect of stochastic distur-

bances on the unknown input estimate. For this purpose a Lagrange multiplier method

is utilised. The proposed method is suitable for both minimum and nonminimum-

phase systems, which is an important result, because unstable zeros may result from

a discretisation of a continuous-time system. The PE-UIO has been originally devel-

oped for single-input single-output (SISO) output error (OE) systems in (Sumis lawska,

Burnham & Larkowski 2010). The algorithm has been subsequently extended to the

errors-in-variables (EIV) framework in (Sumis lawska, Larkowski & Burnham 2010b).

The analysis of the PE-UIO in frequency domain has been provided in (Sumis lawska,

Larkowski & Burnham 2011a). In (Sumis lawska, Larkowski & Burnham 2010a) the

scheme has been extended to a MIMO case and a potential application to a steel

rolling mill has been described. In this chapter the PE-UIO is extended to a coloured

process noise case. A generalised form of the algorithm is provided, where the output is

subjected to coloured noise (accounting for measurement and process noise), whilst the

input is affected by white measurement noise. An extension of the PE-UIO algorithm

for the cases when systems zero is close or equal to unity is also provided.

This chapter is organised as follows: in Section 3.2 the problem of the unknown

input reconstruction is stated. Subsequently, in Section 3.3 the PE-UIO is presented.

Then, in Section 3.5, the limitation of the scheme in the case when the system has

zeros close or equal to unity is discussed and an extension, which tackles this problem,

is provided. The proposed algorithms are demonstrated on tutorial examples in Sec-

tion 3.7. Finally, in Section 3.8, the efficacy of the proposed methods is compared with

two existing methods, namely, the minimum variance unbiased (MVU) joint state and
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v(t)

e(t)

y(t)

u(t)

u0(t)

ũ(t)

system
linear

Figure 3.1: Schematic view of a linear system

input estimator, see (Gillijns & De Moor 2007b), and the input estimation (INPEST)

method of Young & Sumis lawska (2012).

3.2 Linear system representation

Assume that a linear dynamic discrete-time time-invariant multiple-input multiple-

output (MIMO) system with p known inputs, m outputs and a single unknown input

is represented by an nth order state-space equation of the following form:

x(t + 1) = Ax(t) +Bu0(t) +Gv(t) +Πe(t)
y(t) = Cx(t) +Du0(t) +Hv(t) +Ωe(t)
u(t) = u0(t) + ũ(t)

(3.1)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p, G ∈ Rn×1, H ∈ Rm×1, Π ∈ Rn×m,

Ω ∈ R
m×m. The terms u0(t) and y(t) refer to, respectively, the known input and

output vectors, whereas v(t) denotes the scalar unknown (unmeasurable) input. The

term e(t) is a column vector of m zero-mean, white Gaussian, i.i.d. noise sequences.

The term ũ(t) is a vector of white, Gaussian, zero-mean, i.i.d. noise sequences, which

is uncorrelated with e(t). The aim of the proposed approach is to reconstruct the

unknown input v(t), minimising at the same time the influence of the disturbances e(t)
and ũ(t) on the estimate. A schematic picture of the considered system is presented in

Fig. 3.1.

Equation (3.1) is a generalised representation of a linear stochastic system and can

be simplified in more specific cases, see Subsection 2.2.3, which, for completeness, are

given below.

ARMAX: The state-space system matrices A, B, C, D, Π, and Ω for the ARMAX

model, cf. (2.5), in the observer canonical form are given by equation (2.6). The

matrices G and H are built by replacing bi in, respectively, matrices B and D

with exogenous matrix parameters related to the unknown input v(t). Note, the

ARMAX model assumes that the input u(t) is known exactly (there is no noise

present on the input variable), hence ũ(t) = 0.
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ARX: An ARX model is obtained from the ARMAX model by setting ci, i = 1,⋯, nc,
to zero.

OE: An OE case can be modelled by the system representation (3.1), where matrices

A, B, C, D and also G and H are all given as in the ARMAX case. The matrix

Π is null and Ω is diagonal. Also there is no noise present on the input variable,

hence ũ(t) = 0. The PE-UIO algorithm for a SISO OE case has been developed

in (Sumis lawska, Burnham & Larkowski 2010).

EIV framework: The EIV framework, see, for example, (Söderström 2007), can be

represented by (3.1), where ũ(t) ≠ 0, Π = 0, and Ω is diagonal. The PE-UIO algo-

rithm for a SISO case in the EIV framework has been presented in (Sumis lawska,

Larkowski & Burnham 2010b, Sumis lawska et al. 2011a).

3.3 Design of unknown input reconstructor

In this section the PE-UIO algorithm is derived. Firstly, for completeness, the PE

for the state-space model (3.1) are described in Subsection 3.3.1. This is followed by

a development of a new unknown input observer based on PE in Subsections 3.3.2

and 3.3.3. Finally, in Subsection 3.3.4, simplified PE-UIO design algorithms for special

cases of a stochastic linear system, such as SISO OE and MIMO OE, are presented.

3.3.1 Parity equations

The approach presented in this chapter utilises the PE to design an unknown input

reconstructor. Recall the stacked vector of the system output y(t), cf. (2.58):

Y (t) = [ yT (t − s) yT (t − s + 1) ⋯ yT (t) ]T (3.2)

where the term s denotes the order of the parity space. Analogously, one can construct

stacked vectors of v(t), u(t), u0(t), ũ(t) and e(t) which are denoted, respectively, as

V (t), U(t), U0(t), Ũ(t) and E(t). Using this notation the system defined by (3.1) can

be expressed in the form of:

Y (t) = Γx(t − s) +QU0(t) + TV (t) +ΞE(t) (3.3)

where Γ is an extended observability matrix, cf. (2.59), and Q is given by (2.60).

Analogously, one can build the matrix T ∈ R(s+1)m×(s+1) by replacing B and D in Q

by, respectively, G and H, and the matrix Ξ ∈ R(s+1)m×(s+1)m is obtained by replacing

B and D in Q by, respectively Π and Ω. The term W ∈ R1×(s+1)m is considered to be a

row vector, which belongs to the left nullspace of Γ, cf. (2.61). Consequently, (3.3) can
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be reformulated as, cf. (2.62):

WY (t) =WQU(t) −WQŨ(t) +WTV (t) +WΞE(t) (3.4)

By rearranging the measured (known) variables to the right-hand side of (3.4) and the

unknowns to the left-hand side, the following parity relation is obtained, cf. (Li &

Shah 2002):

WTV (t) +WΞE(t) −WQŨ(t) =WY (t) −WQU(t) (3.5)

In the next subsection the PE are used in order to derive the PE-UIO.

3.3.2 Unknown input estimation

Denote the matrix spanning the left nullspace of Γ as Γ�. Consequently, the row vector

W is a linear combination of rows of Γ�. In the disturbance-free case, i.e. when

U(t) = U0(t) and E(t) = 0, the following equation holds, cf. (3.5):

Γ�TV (t) = b(t) (3.6)

where b(t) is a column vector given by:

b(t) = Γ�Y (t) − Γ�QU(t) (3.7)

Selection of a sufficiently large s would lead (3.6) to be a set of equations with an explicit

solution or an overdetermined set of equations. Nevertheless, in practice, precision of

the solution to (3.6) can still be seriously affected by noise. The algorithm proposed here

provides an on-line approximation of the unknown input, simultaneously minimising

unwanted effects of noise.

It is proposed to calculate the value of the unknown input as:

v̂(t − τ) =WY (t) −WQU(t) (3.8)

where τ is an estimation lag (estimation delay) and it accounts for the fact that the un-

known input may not be reconstructed instantenously. Therefore, at the time instance

t the estimate of v(t − τ) is obtained. The estimation delay τ is defined further in this

section. In the noise-free case, v̂(t − τ) is simply:

v̂(t − τ) =WTV (t) (3.9)

Therefore, based on the assumption that the unknown input is varying relatively slowly

(see Subsection 3.5.1), its estimate can be calculated as a linear combination of the

sequence v(t − s), v(t − s + 1),⋯, v(t), i.e.

v̂(t − τ) = α0v(t) + α1v(t − 1) +⋯+ αsv(t − s) (3.10)
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where the α parameters are dependent on the choice of the vector W , such that:

WT = [ αs αs−1 ⋯ α0 ]T (3.11)

One can note that (3.10) represents a moving average finite impulse response filter with

the gain being given by the sum of the α parameters, i.e. the sum of elements of the

vector WT . Thus, it is suggested that W should be selected in such a way, that the

sum of elements of the vector WT is equal unity. Furthermore, it is anticipated that

the choice of the order of the parity space s, as well as the vector W , both influence

the estimation lag τ in the estimate of the unknown input (due to the moving average

filtering property of the unknown input estimator). The estimation lag is defined as the

centre of gravity of the moving average filter rounded to the nearest natural number

and is calculated via:

τ = round(∑αii

∑αi

) (3.12)

In the following subsection an algorithm for the selection of the optimal vector W

is derived based on the Lagrange multiplier method.

3.3.3 Selection of optimal W

In the case of noisy input and output measurements, equation (3.9) becomes:

v̂(t − τ) =WTV (t) +WΞE(t) −WQŨ(t) (3.13)

which can be expanded to give:

v̂(t − τ) = α0v(t) + α1v(t − 1) +⋯+ αsv(t − s) +wξs+1e(t) +wξse(t − 1) +⋯+
+wξ1e(t − s) −wqs+1 ũ(t) −wqs ũ(t − 1) −⋯−wq1 ũ(t − s) (3.14)

where the vector coefficients wξi and wqi , i = 1,2,⋯, s + 1, are constructed from the

appropriate elements of the vectors WΞ and WQ, respectively. (In the case when

p =m = 1, i.e. u(t) and y(t) are scalars, wξi and wqi refer to the ith elements of vectors

WΞ and WQ, respectively.) Note, that in (3.14) the estimate of the unknown input

is affected by two coloured noise sequences. However, by a careful choice of W , the

degrading effect of these disturbances can be minimised.

Furthermore, the influence of measurement noise on the unknown input estimate

can be reduced by minimising the variance of the term WΞE(t) −WQŨ(t), i.e.:

E{(WΞE(t) −WQŨ(t))(WΞE(t) −WQŨ(t))T } =
=WΞΣeΞ

TW T +WQΣũQ
TW T −WΞΣT

ũeQ
TW T −WQΣũeΞ

TW T
(3.15)

where Σũ = E{Ũ(t)ŨT (t)}, Σe = E{E(t)ET (t)}, and Σũe = E{Ũ(t)ET (t)} = 0. Conse-
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quently, the vector W should be selected to minimise the cost function f(W ):
f(W ) =WΞΣeΞ

TW T +WQΣũQ
TW T (3.16)

subject to the following constraints:

1. Sum of elements of WT is equal to 1.

2. WΓ = 0.

Note, that the condition 1 is sufficient to ensure unity gain, because E{e(t)} = 0 and

E{ũ(t)} = 0.

The cost function (3.16) can be minimised by making use of the Lagrange multiplier

method, see, for example, (Bertsekas 1982). Denote the rows of Γ� by γ1, γ2, ..., γk,

where:

Γ� = [ γT
1

γT
2
⋯ γTk ]T (3.17)

The vector W is a linear combination of rows of Γ�, which ensures that the constraint

2 is satisfied, i.e.

W =
k

∑
i=1

piγi (3.18)

Hence, the cost function (3.16) can be reformulated as a function of the parameter

vector P = [ p1 p2 ⋯ pk ]T :

f(P ) = ( k

∑
i=1

piγi)Σ
⎛
⎝

k

∑
j=1

pjγ
T
j

⎞
⎠ (3.19)

where

Σ = ΞΣeΞ
T +QΣũQ

T (3.20)

The cost function f(P ) is required to be minimised subject to the constraint:

g(P ) = sumrow(WT ) − 1 = 0 (3.21)

where the operator sumrow(A) denotes a column vector whose elements are sums of

the appropriate rows of an arbitrary matrix A. (In the case of a row vector q, the term

sumrow(q) is simply a scalar being a sum of elements of the vector q, whilst, if q is a

column vector, sumrow(q) = q.)
The solution to the Lagrange minimisation problem is given by, see (Bertsekas 1982):

∇f(P ) = λ∇g(P ) (3.22)
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The cost function (3.19) can be expanded as:

f(P ) = p21γ1Σγ
T
1 + p1p2γ1Σγ

T
2 +⋯+ p1pkγ1Σγ

T
k +

p1p2γ2Σγ
T
1 + p

2

2γ2Σγ
T
2 +⋯+ p2pkγ2Σγ

T
k +

⋮

p1pkγkΣγT1 + p2pkγkΣγT2 +⋯+ p
2

kγkΣγTk

(3.23)

Hence, the partial derivative of f(P ) with respect to the ith element of the vector

P (denoted as pi) is given by:

∂f(P )
∂pi

=p1γiΣγT1 + p2γiΣγ
T
2 +⋯+ piγiΣγ

T
i +⋯+ pkγiΣγ

T
k +

p1γ1Σγ
T
i + p2γ2Σγ

T
i +⋯+ piγiΣγ

T
i +⋯+ pkγkΣγTi

(3.24)

Consequently, the gradient of f(P ) can be written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f(P )
∂p1

∂f(P )
∂p2

⋮
∂f(P )
∂pk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1Σγ
T
1

γ1Σγ
T
2
⋯ γ1Σγ

T
k

γ2Σγ
T
1

γ2Σγ
T
2
⋯ γ2Σγ

T
k

⋮ ⋮ ⋱ ⋮
γkΣγT

1
γkΣγT

2
⋯ γkΣγTk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1Σγ
T
1

γ2Σγ
T
1
⋯ γkΣγT

1

γ1Σγ
T
2

γ2Σγ
T
2
⋯ γkΣγT

2

⋮ ⋮ ⋱ ⋮
γ1Σγ

T
k γ2Σγ

T
k ⋯ γkΣγTk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P = (∇f(P ))T

(3.25)

Thus, recalling that Σ is symmetric, expression (3.25) can be reformulated as:

(∇f(P ))T = (Γ�Σ (Γ�)T + (Γ�Σ (Γ�)T )T)P (3.26)

The constraint function g(P ) is:

g(P ) = sumrow(WT ) − 1 =
k

∑
i=1

sumrow(piγiT ) − 1 (3.27)

Hence the partial derivative of g(P ) with respect to pi is calculated via:

∂g(P )
∂pi

= sumrow(γiT ) (3.28)

Thus, the gradient of g(P ) can be reformulated as:

(∇g(P ))T = sumrow(Γ�T ) (3.29)
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Using the notation:

S = Γ�Σ(Γ�)T + (Γ�Σ (Γ�)T )T (3.30)

and

ψ = sumrow(Γ�T ) (3.31)

the solution to the Lagrange optimisation problem (3.22) can be rewritten as:

SP = λψ (3.32)

Hence, the optimal parameter vector P is given by:

P = λS−1ψ (3.33)

The constraint function g(P ) = 0 can be rewritten as:

P Tψ − 1 = 0 (3.34)

Incorporating (3.33) into (3.34) yields:

λ (S−1ψ)T ψ − 1 = 0 (3.35)

Finally, the Lagrange multiplier is given by:

λ = ((S−1ψ)T ψ)−1 (3.36)

Consequently, the algorithm for calculating the optimal vector W and estimation of

the unknown input is summarised as follows:

Algorithm 3.1 (PE-UIO).

1. Select the order of the parity space s ≥ n and build matrices Γ, Q, T , and Ξ.

2. Obtain Γ�.

3. Compute Σ as:

Σ = ΞΣeΞ
T +QΣũQ

T (3.37a)

4. Calculate the column vector S via:

S = Γ�Σ(Γ�)T + (Γ�Σ (Γ�)T )T (3.37b)
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5. Compute the matrix ψ by making use of:

ψ = sumrow(Γ�T ) (3.37c)

6. Obtain the Lagrange multiplier λ:

λ = ((S−1ψ)T ψ)−1 (3.37d)

7. Calculate the parameter vector P by:

P = λS−1ψ (3.37e)

8. Compute the vector W using:

W = P TΓ� (3.37f)

9. Calculate the estimation lag as:

τ = round(∑αii

∑αi

) (3.37g)

where:

WT = [ αs αs−1 ⋯ α0 ]T

10. Obtain the estimate of v(t − τ) via:

v̂(t − τ) =WY (t) −WQU(t) (3.37h)

It should be noted that, due to the fact that the arg min f(P ) needs to be found,

cf. (3.19), the function f(P ) can be scaled by an arbitrary number. Therefore, the

covariance matrices of ũ(t) and e(t) do not require to be known explicitly. It is sufficient

to know only the ratio between the variances of the noise sequences and scale Σũ and

Σe accordingly.

3.3.4 Design of PE-UIO for OE systems

In the case when the system input measurements are noise-free and there is no process

noise, whilst the output vector is affected by a white, Gaussian, zero-mean, i.i.d. noise

sequences (OE case), the procedure of finding the optimal vector W can be simplified,

which is presented in this subsection.
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Single-output OE

Consider a single-output OE system described by (3.1). Without loss of generality it

is assumed that Ω = 1 and e(t) is a white, zero-mean, Gaussian sequence with the

variance of var(e(t)). Since there is no process noise and Ξ is an identity matrix, the

term Σ, cf. (3.20), is given by:

Σ = Σe = var(e(t))I (3.38)

Since the objective is to find the minimum of the cost function f(P ), it can be scaled

by any arbitrary number. Therefore, for sake of simplicity, the term var(e(t)) can be

omitted. Consequently, the cost function f(P ) becomes, cf. (3.19):

f(P ) = ( k

∑
i=1

piγi)⎛⎝
k

∑
j=1

pjγ
T
j

⎞
⎠ (3.39)

One can select Γ� such that its rows are orthonormal, i.e. Γ� (Γ�)T = I. Therefore, the

cost function can be reformulated as:

f(P ) = k

∑
i=1

p2i (3.40)

This gives a partial derivative if f(P ) equal to:

∂f(P )
∂pi

= 2pi (3.41)

Consequently:

(∇f(P ))T = 2P (3.42)

Incorporating (3.29) and (3.42) into (3.22) the solution to the Lagrange optimisation

problem is calculated as:

P = λsumrow (Γ�) (3.43)

The constraint equation (3.27) can be reformulated as:

P T sumrow (Γ�) = 1 (3.44)

Incorporating (3.43) into (3.44) yields:

λ (sumrow (Γ�))T sumrow (Γ�) = 1 (3.45)

Consequently, the Lagrange multiplier is calculated as:

λ = [(sumrow (Γ�))T sumrow (Γ�)]−1 (3.46)
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A simplified version of Algorithm 3.1 for single-output OE systems is given below:

Algorithm 3.2 (PE-UIO for single-output OE).

1. Select the order of the parity space s ≥ n and build matrices Γ, Q, T , and Ξ.

2. Obtain Γ� such that Γ� (Γ�)T = I.

3. Obtain the Lagrange multiplier λ using (3.46).

4. Calculate the parameter vector P by (3.43).

5. Compute the vector W using (3.18).

6. Compute τ using (3.12).

7. Obtain the estimate of v(t − τ) via equation (3.8).

Multiple output OE

Consider the system (3.1), where m > 1, ũ(t) = 0, Π = 0 and Ω is diagonal. In such

a case Ξ and consequently Σ, cf. (3.20), are diagonal matrices. Assume that Γ� is

selected, such that its rows are orthonormal vectors, i.e. Γ� (Γ�)T = I. Then the cost

function f(P ) can be simplified to, cf. (3.40):

f(P ) = k

∑
i=1

βip
2

i (3.47)

where βi denotes the ith element of the diagonal of Σ. Therefore, the partial derivative

of f(P ) is calculated as:
∂f(P )
∂pi

= 2βipi (3.48)

Consequently, the gradient of f(P ) is:

(∇f(P ))T = 2ΣP (3.49)

Therefore, the Lagrange optimisation problem can be reformulated as, cf. (3.43):

ΣP = λsumrow (Γ�) (3.50)

Incorporating (3.50) into (3.44) yields:

λ (sumrow (Γ�))T Σ−1sumrow (Γ�) = 1 (3.51)
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Consequently, the Lagrange multiplier is calculated as:

λ = ((sumrow (Γ�))T Σ−1sumrow (Γ�))−1 (3.52)

A simplified version of Algorithm 3.1 for multiple-output OE systems is given below:

Algorithm 3.3 (PE-UIO for multiple-output OE).

1. Select the order of the parity space s ≥ n and build matrices Γ, Q, T , and Ξ.

2. Obtain Γ� such that Γ� (Γ�)T = I.

3. Obtain the Lagrange multiplier λ using (3.52).

4. Calculate the parameter vector P by:

P = λΣ−1sumrow (Γ�) (3.53)

5. Compute the vector W using (3.18).

6. Compute the estimation lag τ using (3.12).

7. Obtain the estimate of v(t − τ) via equation (3.8).

3.4 Analysis in frequency domain

The two relationships between each system input (both known and unknown) and the

output can be described by discrete-time transfer functions of the z-variable of the

following form, cf. (3.1):

Gu(z) = C(zI −A)−1B +D
Gv(z) = C(zI −A)−1G +H (3.54)

Denote y(t), u0(t), and v(t) in the z-domain, respectively, as Y (z), U0(z), and V (z).
Consequently, equation (3.4) in the noise-free case can be reformulated as the following

relation:

W (z)Y (z) =WQ(z)U0(z) +WT (z)V (z) (3.55)

where terms W (z), WQ(z) and WT (z) are appropriate polynomial vectors of the z-

variable with parameters defined by vectors W , WQ, and WT , respectively. Therefore,

in the noise-free case, the relationship between the unknown input and its estimate in
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the z-domain is given by, cf. (3.10) and (3.11):

V̂ (z) =W (z)Y (z) −WQ(z)U0(z) =WT (z)V (z) (3.56)

In the case when noise is present in the system, equation (3.56) becomes:

V̂ (z) =WT (z)V (z) +WΞ(z)E(z) −WQ(z)Ũ(z) (3.57)

where WΞ(z) and E(z) refer to, respectively, the appropriate polynomial vector of the

z-variable with parameters defined by the vector WΞ and the variable e(t) in z-domain,

whilst Ũ(z) denotes the z-domain representation of ũ(t).
In the case when p = m = 1 the transfer functions corresponding to u0(t) and v(t)

are given, respectively, by:

Gu(z) = WQ(z)
W (z)

Gv(z) = WT (z)
W (z)

(3.58)

where Gu(z) defines the relationship between U0(z) and the output, whereas Gv(z)
describes the relationship between V (z) and Y (z), cf. (3.54). In the case when s = n,

the left nullspace of Γ is a row vector Γ� =W (it is assumed here that the system (3.1)

is observable) and the degree of the polynomial W (z) is equal to the order of the

system. Hence, one can deduce from (3.58) that the roots of the polynomial W (z) are

eigenvalues of the matrix A (i.e. poles of both Gv(z) and Gu(z)). Denote the set of

poles and zeros of Gv(z) by Pv and Zv, respectively. Analogously, refer to Pu and Zu

as, respectively, poles and zeros of Gu(z). Then, it is true that the roots of W (z) are

Pv ∪Pu, the roots of WQ(z) are defined by the set Zu ∪ (Pv/Pu), whilst roots of WT (z)
are Zv ∪ (Pu/Pv).

If the order of the parity space is higher than that of the system, i.e. s > n, then

the set of equations (3.58) must still be fulfilled. This means, that W (z), WQ(z) and

WT (z) have common s − n roots (a zero-pole cancellation occurs, hence both
WQ(z)

W (z)

and
WT (z)
W (z) remain unaltered). The choice of those additional s − n zeros influences

the properties of the noise filtration of the filter (3.13). Hence, the problem of finding

the optimal vector W can be reformulated as a filter zeros assignment problem. The

unknown input reconstruction is possible when the bandwidth of the unknown input is

narrower than that of WT (z), whilst the ability of the PE-UIO to filter ũ(t) and e(t)
depends on the frequency response of both, i.e. WQ(z) and W (z).
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3.5 Two stage PE-UIO

The previous section explains, why the PE-UIO cannot be used when the Gv(z) con-

tains a derivative term, i.e. a zero equal to unity. In such a case the polynomial WT (z)
also contains the derivative term and its steady state gain is zero. Therefore, use of

the standard PE-UIO for the purpose of the unknown input estimation is infeasible.

Furthermore, if Gv(z) contains a zero close to unity, the step response of WT (z) is

characterised by a large overshoot (characteristic for systems whose zeros lie close to

unity), hence the unknown input estimate becomes seriously affected. The overshoot

of WT (z) can be minimised by a significant increase of the order of the parity space,

however this results in a reduction of the bandwidth of the filter. Therefore, a modifica-

tion of the PE-UIO is needed, and it is provided in the next subsection. Note that this

problem will occur also for multiple input systems as long as the system has a single

output. Thus, during the derivation of the modified PE-UIO filter in Subsection 3.5.1

it is assumed that the single output system may have an arbitrary number of measured

inputs, i.e. m = 1 and p ∈ N. The algorithm developed in the following section is appli-

cable to systems, whose ‘problematic’ zero lies on the real axis and is lower or equal to

unity. This result is extended in Section 3.6 to the cases with multiple zeros which lie

on or within the unit circle and are relatively close to unity.

3.5.1 Two stage filter design

Consider a single output system, whose transfer function between the unknown input

and the output, denoted as Gv(z), contains a zero, denoted as z0, which is close or

equal to unity. Such a transfer function can be represented by:

Gv(z) = G′v(z)z − z0z
(3.59)

Therefore, the input-output relationship in a z-domain can be represented as:

Y (z) = Gv(z)V (z) +Gu(z)U0(z) = G′v(z)z − z0z
V (z) +Gu(z)U0(z) =

= G′v(z)V ′(z) +Gu(z)U0(z)
(3.60)

where V ′(z) = z−z0
z
V (z) is the z-domain representation of the variable v′(t), whose

relation with the unknown input is defined as:

v′(t) = v(t) − z0v(t − 1) (3.61)

The transfer function G′v(z) can be represented by:

G′v(z) = C(zI −A)−1G′ +H ′ (3.62)
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where H ′ and G′ are the appropriately modified matrices H and G, respectively. The

matrix T ′ is calculated by replacing G and H in T by, respectively, G′ and H ′. Subse-

quently, (3.5) can be reformulated as:

WT ′V ′(t) +WΞE(t) −WQŨ(t) =WY (t) −WQU(t) (3.63)

Analogously to the algorithm described in Section 3.3, it is proposed to estimate the

variable v′(t − τ) as:

v̂′(t − τ) =WY (t) −WQU(t) (3.64)

which in the noise-free case is equal to:

v̂′(t − τ) =WT ′V ′(t) (3.65)

Subsequently, the unknown input estimate can be calculated via, cf. (3.61):

v̂(t) = z0v̂(t − 1) + v̂′(t) (3.66)

Note that this scheme is applicable only to systems with ∣z0∣ ≤ 1. Otherwise, (3.66)

becomes unstable.

In the noisy case the term v̂′(t) is given by:

v̂′(t − τ) =WT ′V ′(t) + ǫ(t) (3.67)

where ǫ(t) accounts for the disturbance introduced by e(t) and ũ(t), i.e.:

ǫ(t) =WΞE(t) −WQŨ(t) (3.68)

Hence, it follows from equations (3.66) and (3.67), that the estimate of v(t − τ) is

affected by the error term ǫ∗(t), whose relation to ǫ(t) is given by:

ǫ∗(t) = ǫ(t) + z0ǫ∗(t − 1) (3.69)

For convenience, the following notation is introduced:

ũ∗(t) = ũ(t) + z0ũ∗(t − 1)
e∗(t) = e(t) + z0e∗(t − 1) (3.70)

Thus, the term ǫ∗(t) is given by:

ǫ∗(t) =WΞE∗(t) −WQŨ∗(t) (3.71)

where terms E∗(t) and Ũ∗(t) are built from the current and previous values of e∗(t)
and ũ∗(t), respectively, cf. (3.2). It is required to minimise the variance of the term
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ǫ∗(t), which is given by:

var(ǫ∗(t)) = E{(WΞE∗(t) −WQŨ∗(t))(WΞE∗(t) −WQŨ∗(t))T } =
=WΞΣe∗Ξ

TW T +WQΣũ∗Q
TW T −WΞ (Σũ∗e∗)T QTW T −WQΣũ∗e∗Ξ

TW T
(3.72)

where Σũ∗ = E{Ũ∗(t)(Ũ∗(t))T }, Σe∗ = E{E∗(t)E∗T (t)} and Σũ∗e∗ = E{Ũ∗(t)E∗T (t)} =
0. Hence, the function to be minimised is given by:

f(W ) =WΞΣe∗Ξ
TW T +WQΣũ∗Q

TW T (3.73)

In order to calculate (3.73), first, the terms Σe∗ and Σũ∗ need to be obtained. The

signal e∗(t) can be described by a function of its previous values, cf. (3.70):

e∗(t) = e(t) + z0e(t − 1) + z20e(t − 2) +⋯ (3.74)

Therefore, by recalling that e(t) is assumed white, the expected value of e∗(t)e∗(t − i)
is calculated as:

E{e∗(t)e∗(t − i)} = E{zi0e2(t − i) + zi+20 e2(t − i − 1) + zi+40 e2(t − i − 2) +⋯}
= E{e2(t)}zi0 (1 + z20 + z40 +⋯) (3.75)

which is a sum of a geometric series and in the case when ∣z0∣ < 1 it can be simplified

to:

E{e∗(t)e∗(t − i)} = E{e2(t)} zi
0

1 − z2
0

(3.76)

Analogously, by recalling that ũ(t) is assumed white, the expected value of ũ∗(t)ũ∗(t−1)
can be derived as:

E{ũ∗(t)(ũ∗(t − i))T } = E{ũ(t)ũT (t)} zi
0

1 − z2
0

(3.77)

(Note that e(t) is a scalar, whilst ũ(t) is, in general, a vector.) In the case when ∣z∣ = 1

the sum of the geometric series (3.75) is infinite. Therefore, to cope with such a case

it is proposed to replace z0 in (3.76) and (3.77) by a value smaller than unity in order

to indicate that e∗(t) and ũ∗(t) are not white.

The matrices Σe∗ and Σũ∗ are built by filling their entries by the appropriate values

of, respectively, E{e∗(t)e∗(t − i)} and E{ũ∗(t)ũ∗(t − i)}. For convenience, a new term

is introduced, cf. (3.20):

Σ∗ = ΞΣe∗Ξ
T +QΣũ∗Q

T (3.78)

56



3. Parity equations-based unknown input reconstruction for linear stochastic systems

Hence, the cost function (3.73) becomes:

f(P ) = (s−n+1∑
i=1

piγ
T
i )Σ∗

⎛
⎝
s−n+1

∑
j=1

pjγj
⎞
⎠ (3.79)

which is required to be minimised subject to the constraint:

g(P ) = sumrow(WT ′) − 1 = 0 (3.80)

The solution to this constrained optimisation problem is solved analogously to the one in

Section 3.3. Therefore, the algorithm for calculating the unknown input is summarised

as follows:

Algorithm 3.4 (Two stage PE-UIO).

1. Select the order of the parity space s ≥ n and build matrices Γ, Q, T ′, and Ξ.

2. Obtain Γ� .

3. Calculate Σe∗ and Σũ∗ using (3.76) and (3.77), respectively.

4. Compute Σ∗ using (3.78).

5. Calculate the matrix S by:

S = Γ�Σ∗(Γ�)T + (Γ�Σ∗(Γ�)T )T (3.81a)

6. Calculate the column vector ψ via:

ψ = sumrow(Γ�T ′) (3.81b)

7. Obtain the Lagrange multiplier λ via:

λ = ((S−1ψ)T ψ)−1 (3.81c)

8. Calculate the parameter vector P by:

P = λS−1ψ (3.81d)

9. Compute the vector W , cf. (3.18), as:

W = P TΓ� (3.81e)
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10. Calculate the estimation lag as:

τ = round(∑α′ii
∑α′i

) , for i = 0,⋯, s (3.81f)

where αi parameters are defined by the equation:

WT ′ = [ α′s α′s−1 ⋯ α′
0
]T (3.81g)

11. Obtain v̂′(t − τ) via:

v̂′(t − τ) =WT ′V ′(t) (3.81h)

12. Obtain the estimate of v(t − τ) as:

v̂(t − τ) = z0v̂(t − τ − 1) + v̂′(t − τ) (3.81i)

3.5.2 Analysis in frequency domain

The variable v′(t − τ) in the z-domain is given by, cf. (3.64):

V ′(z) =WT ′(z)V ′(z) −WQ(z)Ũ(z) +WΞ(z)E(z) (3.82)

where the coefficients of the polynomial WT ′(z) are appropriate elements of the vector

WT ′. Consequently, the unknown input estimate in the z-domain is, see (3.57):

V̂ (z) =WT ′(z)V (z) − z

z − z0
WQ(z)Ũ(z) + z

z − z0
WΞ(z)E(z) (3.83)

It can be deduced that the use of the two stage PE-UIO is advisable if z0 is a positive

real number lower or equal unity. Firstly, if the single stage PE-UIO is used in such

a case, the presence of z0 in WT (z) will cause an overshoot in the step response of

the input estimation filter, which may me undesirable. Secondly, the factor z
z−z0

, for

0 ≤ z0 ≤ 1, reduces the bandwidth of the noise affecting the input estimate, cf. (3.83).

On the other hand the use of the single stage PE-UIO may be preferred over its two

stage version if z0 > 0 is relatively close to zero, and the phase lead caused by the

presence of z0 is desirable, e.g. in an on-line application, when the fast response of the

filter is required. It is not recommended to use the two stage PE-UIO in noisy systems

when z0 is lower than zero, due to highpass properties of z
z−z0

, which would cause an

amplification of noise effect on the unknown input estimate.
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3.6 Generalised two stage PE-UIO

The two stage PE-UIO presented in Section 3.5 is used to cope with a single ‘problem-

atic’ zero. It is worth exploring a generalised form of the-two stage PE-UIO, which can

eliminate more than one ‘inconvenient’ zero. Therefore, the transfer function Gv(z)
can be formulated as, cf. (3.59):

Gv(z) =Mv(z)Nv(z) (3.84)

where Nv(z) is in a form of:

Nv(z) = ∑k
i=1(z − zi)
zk

(3.85)

and k denotes the number of zeros which need to be eliminated from the unknown input

reconstruction filter. In general it is assumed that zeros z1,⋯, zk are complex (with the

constraint of conjugate symmetry). Similarly, as in Section 3.5, zeros z1,⋯, zk must be

stable or marginally stable. Consider a variable v′(t), cf.(3.61), which in z-domain is

given by:

V ′(z) = Nv(z)V (z) (3.86)

Consequently:

Gv(z)V (z) =Mv(z)V ′(z) (3.87)

The transfer function Mv(z) is defined as:

Mv(z) = C(zI −A)−1G′ +H ′ (3.88)

where H ′ and G′ are the appropriately modified matrices H and G, respectively. The

matrix T ′ is calculated by replacing G and H in T by, respectively, G′ and H ′. Subse-

quently, in the first stage of the algorithm, the term V ′(z) is estimated as:

V̂ ′(z) =W (z)Y (z) −WQ(z)U(z) (3.89)

The unknown input is calculated in the second stage of the algorithm as:

V (z) = N−1v (z)V ′(z) (3.90)

where N−1v (z) is defined as:

N−1v (z) = zk

∑k
i=1(z − zi) (3.91)

In the case when noise is present in the system, the variable V ′(z) is given by, cf.

(3.64), (3.67) and (3.68):

V̂ ′(z) =W ′
T (z)V ′(z) +WΞ(z)E(z) −WQ(z)Ũ(z) (3.92)
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Therefore, the unknown input estimate is, cf. (3.90):

V̂ (z) =W ′
T (z)V (z) +W (z)ΞN−1v (z)E(z) −WQ(z)N−1v (z)Ũ(z) (3.93)

The following notation is used:

E∗(z) = N−1v (z)E(z) (3.94)

The term E∗(z) is denoted in time domain as e∗(t) and, subsequently, the stacked

vector of e∗(t) is E∗(t). Analogous notation is used for N−1v Ũ(z), i.e. Ũ∗(z), ũ∗(t),
and Ũ∗(t).

Analogously to (3.72), the variance of the following term must be minimised:

E{(WΞE∗(t) −WQŨ∗(t))(WΞE∗(t) −WQŨ∗(t))T } =
=WΞΣe∗Ξ

TW T +WQΣũ∗Q
TW T −WΞ (Σũ∗e∗)T QTW T −WQΣũ∗e∗Ξ

TW T
(3.95)

where Σũ∗ = E{Ũ∗(t)(Ũ∗(t))T }, Σe∗ = E{E∗(t)E∗T (t)} and Σũ∗e∗ = E{Ũ∗(t)E∗T (t)} =
0. Hence, the function to be minimised is given by:

f(W ) =WΣ∗W T (3.96)

where:

Σ∗ = ΞΣe∗Ξ
T +QΣũ∗Q

T (3.97)

The covariance matrices Σe∗ and Σũ∗ depend on zi, i = 1,⋯, k and variances of e(t) and

ũ(t) and should be calculated for each case individually. Finally, the generalised two

stage PE-UIO is summarised as follows:

Algorithm 3.5 (Generalised two stage PE-UIO).

1. Select zeros, z1,⋯, zk, which need to be eliminated from the PE.

2. Calculate Nv(z) using (3.85).

3. Select the order of the parity space s ≥ n and build matrices Γ, Q, T ′, and Ξ.

4. Obtain Γ� .

5. Calculate Σe∗ and Σũ∗ .

6. Compute Σ∗ using (3.97).

7. Calculate the matrix S by:

S = Γ�Σ∗(Γ�)T + (Γ�Σ∗(Γ�)T )T (3.98a)
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8. Calculate the column vector ψ via:

ψ = sumrow(Γ�T ′) (3.98b)

9. Obtain the Lagrange multiplier λ as:

λ = ((S−1ψ)T ψ)−1 (3.98c)

10. Calculate the parameter vector P by:

P = λS−1ψ (3.98d)

11. Compute the vector W as:

W = P TΓ� (3.98e)

12. Calculate the estimation lag using (3.81f).

13. Obtain v̂′(t − τ) as:

v′(t − τ) =WY (t) −WQU(t) (3.98f)

14. Obtain the estimate of the unknown input using (3.90).

3.7 Tutorial examples

In this section the design of the proposed approaches is demonstrated on numerical

examples. In Subsection 3.7.1 the design of the PE-UIO is demonstrated on two ex-

amples, namely, an OE case as well as an ARMAX system in the EIV framework.

The influence of the choice of the tuning parameter s on the frequency response of

the filter is also presented. In Subsection 3.7.2 the design of the two stage PE-UIO is

demonstrated and compared with the standard PE-UIO.

Although the examples presented here are described by feedtrough models, it should

be noted that the causality of physical systems assumes that there is a delay on the

system input, denoted as δ, which results in the transfer function defined by:

G(z−1) = bnz−δ + bn−1z−1−δ +⋯+ b0z−n−δ
an + an−1z−1 +⋯+ a0z−n

(3.99)

where z−1 is a backwards shift operator, i.e. z−1y(t) = y(t − 1), G(z−1) denotes the

transfer function between any of the system input (either v(t) or u(t)) and the output,
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ai and bi, i = 1,⋯, n, are transfer function polynomial coefficients, and n refers to the

order of the system. Without loss of generality, the delay term δ can be omitted and

therefore, the transfer function G(z−1) can be represented by:

G(z−1) = bn + bn−1z−1 +⋯+ b0z−n
an + an−1z−1 +⋯+ a0z−n

(3.100)

which corresponds to the following z-domain transfer fuction:

G(z) = bnzn + bn−1zn−1 +⋯+ b0
anzn + an−1zn−1 +⋯+ a0

(3.101)

3.7.1 PE-UIO

This subsection presents a step-by-step design of the PE-UIO algorithm for two different

cases, namely, an OE and an ARMAX case in the EIV framework. The importance of

the tuning parameter s on the frequency response of the filter is also explained.

Example 3.1. Design of the PE-UIO in the OE case

Consider a linear system, whose transfer functions, Gu(z) and Gv(z), cf. (3.54) are

given by:

Gu(z) = z + 0.01

(z − 0.9)(z − 0.85)
Gv(z) = (z + 1.95)(z − 0.2)

(z − 0.9)(z − 0.85)
(3.102)

It can be represented by equation (3.1), whose matrices are given by:

A =

⎡⎢⎢⎢⎢⎣
1.750 1

−0.765 0

⎤⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎣
1.00

0.01

⎤⎥⎥⎥⎥⎦
G =

⎡⎢⎢⎢⎢⎣
3.500

−1.155

⎤⎥⎥⎥⎥⎦
C = [ 1 0 ] D = 0 H = 1

(3.103)

It is assumed that the output of the system is affected by a white, zero-mean, Gaussian

noise sequence of the variance var(e(t)) = 1. Since the considered case is single-output

OE, Algorithm 3.3 is used for the unknown input reconstruction.

The parity space order is chosen to be s = 4, hence the extended observability matrix

is:

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0

1.7500 1

2.2975 1.7500

2.6819 2.2975

2.9357 2.6819

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.104)
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The left nullspace of Γ is calculated as:

Γ� =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.3578 0.1454 0.8094 −0.2794 −0.3431

−0.3118 0.4635 −0.2389 0.5947 −0.5264

−0.2720 0.6999 −0.2723 −0.4955 0.3412

⎤⎥⎥⎥⎥⎥⎥⎦
(3.105)

Note that Γ� is orthonormal, i.e. Γ�(Γ�)T = I. The matrix Q is given by:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

1 0 0 0 0

1.7600 1 0 0 0

2.3150 1.7600 1 0 0

2.7049 2.3150 1.7600 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.106)

whereas the matrix T is:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0 0 0 0

3.5000 1.0000 0 0 0

4.9700 3.5000 1.0000 0 0

6.0200 4.9700 3.5000 1.0000 0

6.7330 6.0200 4.9700 3.5000 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.107)

Using (3.46) the Lagrange multiplier λ is calculated to be 0.0403. Subsequently, the

parameter vector P is obtained using (3.43):

P =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.1608

−0.1199

0.0083

⎤⎥⎥⎥⎥⎥⎥⎦
(3.108)

The vector W is calculated as, cf. (3.18):

W = [ 0.0927 −0.0732 −0.1038 −0.0305 0.1211] (3.109)

Consequently, the vector WT is :

W = [ −0.0480 0.1463 0.3856 0.3929 0.1232 ] (3.110)

which corresponds to τ = 1, cf. (3.12). Therefore, v̂(t − 1) is calculated via:

v̂(t − 1) = 0.1211y(t) − 0.0305y(t − 1) − 0.1038y(t − 2) − 0.0732y(t − 3)+
0.0927y(t) + 0.1211u(t) + 0.1827u(t − 1) + 0.1229u(t − 2) + 0.0012u(t − 3)(3.111)

63



3. Parity equations-based unknown input reconstruction for linear stochastic systems

Example 3.2. Design of the PE-UIO for an ARMAX system in the EIV

framework

Consider an ARMAX system, whose A, B, C, D, G, and H matrices are the same as

in Example 3.1. The moving average coloured noise parameters are c0 = 1, c1 = 0.3,

and c2 = 0.1. It is assumed that the input measurement is affected by a white, zero-

mean, Gaussian noise ũ(t) of the variance equal to the variance of e(t). Thus the noise

distribution matrix is given by:

Π =

⎡⎢⎢⎢⎢⎣
2.050

−0.665

⎤⎥⎥⎥⎥⎦
(3.112)

whereas Ω = 1. The parity space order is selected as s = 4. Matrices Q, T , Γ, and Γ�

are the same as in Example 3.1. Then, one can compute the matrix Ξ as:

Ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

2.0500 1 0 0 0

2.9225 2.0500 1 0 0

3.5461 2.9225 2.0500 1 0

3.9700 3.5461 2.9225 2.05 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.113)

Note that the variances of ũ(t) and e(t) are unknown, however for the purpose of

finding the optimal filter parameters only the ratio between those variances is needed,

which is equal to one. Substituting unity for the variances of both ũ(t) and e(t), the

term Σ is calculated using (3.37a):

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 2.0500 2.9225 3.5461 3.9700

2.0500 6.2025 9.8011 12.5071 14.3895

2.9225 9.8011 17.8411 24.2391 28.8699

3.5461 12.5071 24.2391 35.7753 44.5789

3.9700 14.3895 28.8699 44.5789 58.8525

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.114)

whereas S is equal to, cf. (3.37b):

S =

⎡⎢⎢⎢⎢⎢⎢⎣

5.6976 3.5814 −0.2238

3.5814 2.8100 −0.3369

−0.2238 −0.3369 1.0128

⎤⎥⎥⎥⎥⎥⎥⎦
(3.115)

Consequently, the vector ψ is given by, cf. (3.37c):

ψ =

⎡⎢⎢⎢⎢⎢⎢⎣

−3.9894

−2.9748

0.2060

⎤⎥⎥⎥⎥⎥⎥⎦
(3.116)
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Using (3.37d), the Lagrange multiplier is calculated as λ = 3.1271 and the parameter

vector P is computed from (3.37e) as:

P =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.0477

−0.2749

−0.0383

⎤⎥⎥⎥⎥⎥⎥⎦
(3.117)

Finally, the vector W is obtained using (3.37f):

W = [ 0.1132 −0.1612 0.0375 −0.1312 0.1480 ] (3.118)

The estimation lag is equal to 1. Therefore, the unknown input estimate v̂(t − 1) is

calculated via:

v̂(t − 1) = 0.1480y(t) − 0.1312y(t − 1) + 0.0375y(t − 2) − 0.1612y(t − 3)+
0.1132y(t − 4) + 0.1480u(t − 1) + 0.1293u(t − 2)+
0.1492u(t − 3) + 0.0015u(t − 4)

(3.119)

Importance of the tuning parameter s

The order of the parity space s is a tuning parameter of the PE-UIO algorithm. It is

anticipated that an increase of s will lead to a reduction of the impact of disturbances

on the unknown input estimate. At the same time it is expected that an increase

of the order of parity space will yield a reduction of the filter bandwidth, which will

result in the input reconstruction filter being sluggish. This phenomenon can be seen

in Fig. 3.2, where the frequency responses of the polynomial filters WT (z), WQ(z), and

W (z), cf. (3.55), for three different cases of s are compared. This effect is also visible

in Fig. 3.3, where the reconstructed input signals are compared for different values of

parity space orders. The system from Example 3.1 is considered in this experiment.

Whilst for s = 4 the unknown input estimate is noisy (i.e. the noise filtering is rather

poor in this case), for s = 15 the filter does not reproduce high frequency oscillations

of the input. The PE-UIO with s = 7 seems to be the optimal setting for the given

example.

3.7.2 Two stage PE-UIO

In this subsection a design of the two stage PE-UIO is presented on a numerical example.

Furthermore, using different scenarios, the efficacy of the algorithm is compared with

that of the standard PE-UIO.
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Figure 3.2: Frequency responses of W (z), WQ(z) and WT (z) for different values of
the parity space order s
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Figure 3.3: Comparison of unknown input estimates for different values of s

Example 3.3. Design of the two stage PE-UIO for an OE model

Consider a linear system, whose transfer functions, Gu(z) and Gv(z) are given by:

Gu(z) = z − 0.1

(z − 0.9)(z − 0.8)
Gv(z) = (z + 1.2)(z − 0.95)

(z − 0.9)(z − 0.8)
(3.120)
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It can be represented by the state-space model (3.1), whose matrices are:

A =

⎡⎢⎢⎢⎢⎣
1.70 1

−0.72 0

⎤⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎣
1

−0.1

⎤⎥⎥⎥⎥⎦
G =

⎡⎢⎢⎢⎢⎣
1.95

−1.86

⎤⎥⎥⎥⎥⎦
C = [ 1 0 ] D = 0 H = 1

(3.121)

It is assumed that the output of the system is subjected to white, zero-mean, Gaussian

measurement noise (OE case) of the variance var(e(t)) = 2.7. After elimination of the

zero at 0.95, the corresponding modified matrices H ′ and G′ are built such that H ′ = 1

and:

G′ =

⎡⎢⎢⎢⎢⎣
2.90

−0.72

⎤⎥⎥⎥⎥⎦
(3.122)

The covariance of e∗(t) is calculated as, cf. (3.76):

E{e∗(t)e∗(t − i)} = var(e(t)) 0.95i

1 − 0.952
(3.123)

Consequently:

Σe∗ = 2.7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.9500 0.9025 0.8574 0.8145 0.7738

0.9500 1.0000 0.9500 0.9025 0.8574 0.8145

0.9025 0.9500 1.0000 0.9500 0.9025 0.8574

0.8574 0.9025 0.9500 1.0000 0.9500 0.9025

0.8145 0.8574 0.9025 0.9500 1.0000 0.9500

0.7738 0.8145 0.8574 0.9025 0.9500 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

1 − 0.952
(3.124)

The vector W is calculated to be:

W = [ 0.0658 −0.0576 −0.0417 −0.0292 −0.0196 0.0914 ] (3.125)

which corresponds to τ = 3. Therefore, the unknown input is computed via:

v′(t − 3) = 0.0914y(t) − 0.0196y(t − 1) − 0.0292y(t − 2) − 0.0417y(t − 3)−
0.0576y(t − 4) + 0.0658y(t − 5) + 0.0914u(t − 1) + 0.1267u(t − 2)+
0.1223u(t − 3) + 0.0779u(t − 4) − 0.0091u(t − 5)

v(t) = v′(t) + 0.95v(t − 1)
(3.126)

Fig. 3.4 compares step responses of WT ′(t) for the two stage PE-UIO with s = 5

and WT (t) for two cases of the standard PE-UIO (s = 5 and s = 15). It can be noted

that the system zero at 0.95 causes a large overshoot in the case when the standard

PE-UIO is used (for both s = 5 and s = 15). This results in a significant distortion of the

unknown input estimate, which can be seen in Fig. 3.5, where the time-domain result of
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Figure 3.4: Step responses of WT ′(t) for the two stage PE-UIO and WT (t) for two
cases of the standard PE-UIO
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Figure 3.5: Comparison of the unknown input estimate using the two stage PE-UIO
and the standard PE-UIO, z0 = 0.95. Distortion of the unknown input
estimate caused by the phase lead can be seen in the case of the standard
PE-UIO.

the unknown input reconstruction in a noise-free case is shown. The advantage of the

two stage PE-UIO in this particular case can be also seen in Fig. 3.6, where frequency

responses of W (z), WQ(z), WT (t), and WT ′(t) are presented.

Example 3.4. Comparison of the standard and the two stage PE-UIO in an

on-line application

In this example a situation is presented, where the phase lead introduced by the PE-

UIO is advantageous. Consider an on-line application, where an estimation delay is

crucial for the system performance, e.g. where the reconstructed input is utilised by

a feedback controller. Bearing in mind that at the time instance t the delayed input
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Figure 3.6: Frequency responses of WT ′(t) for the two stage PE-UIO and WT (t) for
two cases of the standard PE-UIO

estimate v̂(t − τ) is obtained, the on-line estimation error is defined as:

ǫon−line(t) = v̂(t − τ) − v(t) (3.127)

(In contrary, in an off-line situation or when the estimation delay is not crucial the

difference between v̂(t − τ) and v(t − τ) is taken into consideration.)

The system used in this example is given by the equation:

Gv(z) = (z − 0.3)(z + 1.8)
(z − 0.8)(z − 0.9) (3.128)

The zero at z0 = 0.3 causes a phase lead (and consequently an overshoot of the step

response) of WT (z) when the standard PE-UIO is used. However, it is expected that

the zero at 0.3 will reduce the impact of the estimation lag caused by the zero at −1.8.

(Due for the fact that 0.3 lies relatively far from unity, it is not expected to cause

such as damaging distortion in the step response of WT (z) as shown in Example 3.3.)

Consequently, a faster response is anticipated when using the PE-UIO instead of the two

stage PE-UIO with z0 = 0.3, which may be particularly desired in on-line applications.

In Fig. 3.7, for completeness, step responses of WT (z), for the standard PE-UIO,
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and WT ′(z), for the two stage PE-UIO, are compared (the parity space order is in both

cases s = 2).
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Figure 3.7: Step responses of WT (z) and WT ′(z), s = 2, z0 = 0.3

Sample time responses of the unknown input estimates using the two algorithms

are presented in Fig. 3.8. It is assumed that the output of the system is subjected
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Figure 3.8: On-line unknown input estimation using the standard PE-UIO and the
two stage PE-UIO. In both cases order of parity space s = 2, variance of
noise var(e(t)) = 14e-4.

to low level OE noise (var(e(t)) = 14e-4). It can be noted that the input estimate,

when using the standard PE-UIO, yields a smaller estimation delay compared to the
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two stage PE-UIO (τ = 0 in the case of the PE-UIO and τ = 1 for the two stage

PE-UIO), which is due to the fact that, when the standard PE-UIO is used, the lead

caused by the zero at 0.3 partially compensates for the lag caused by the zero at −1.8.

Nevertheless, the two stage PE-UIO has superior noise filtering properties (in terms

of the bandwidth of W (z)), what can be observed in Fig. 3.9. The efficacy of the
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Figure 3.9: Frequency responses of WT (z) and WT ′(z), s = 2, z0 = 0.3

two algorithms for different levels of noise and different orders of the parity space s

are compared in Table 3.1. It can be noted that for relatively low levels of noise the

standard PE-UIO preforms better in terms of the on-line input estimation error (3.127)

than the two stage PE-UIO, due to the lag compensation. However, as the noise level

increases, the on-line input estimation error variance increases more slowly when the

two stage PE-UIO is utilised, which is due to superior noise filtering properties of the

two stage PE-UIO. As the order of the parity space, i.e. s, is increased, the level of the

OE noise, for which both the standard PE-UIO and the two stage PE-UIO perform the

same in terms of the variance of the on-line input estimation error, is also increased.

3.8 Comparison with other methods

In this section the efficacy of the PE-UIO is compared with two other algorithms,

namely, the minimum variance unbiased (MVU) state and input estimator, see (Gillijns

& De Moor 2007b), and the INPEST (input estimation), see (Young & Sumis lawska

2012). In order to assess the efficacy of the considered algorithms, the R2

T , cf. Sec-

tion 2.4.3, is used.

Example 3.5. Comparison of efficacy of the PE-UIO and the MVU

In this example the efficacy of the unknown input reconstruction using two methods,
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Table 3.1: Comparison the standard PE-UIO and the two stage PE-UIO in terms
of the variance of the on-line unknown input reconstruction error, i.e.
ǫon−line(t), for different levels of noise and different orders of the parity
space. The term ‘% std dev’ refers to the percentage value of the ratio
between the output meausrement noise e(t) and the system output y0(t)
in terms of the standard deviation.

s var(e(t)) % std dev 1-stage PE-UIO 2-stage PE-UIO

2 14e-4 0.0099 0.0855 0.2994
2 2.8e-1 0.1407 0.4056 0.4082
2 14 0.99 16.1863 5.7649

4 14e-1 0.3145 1.1337 1.5725
4 14 0.9947 1.8377 1.9169
4 14e1 3.1455 8.8554 5.3312

6 14 0.9947 2.5897 3.0861
6 14e1 3.1455 3.8324 3.8192
6 14e2 9.9469 16.1160 11.0143

namely, the PE-UIO the MVU is compared. The following single-input two-output

ARX model is considered:

y(t) =
⎡⎢⎢⎢⎢⎣
−1.75 0

0 −1.75

⎤⎥⎥⎥⎥⎦
y(t − 1) +

⎡⎢⎢⎢⎢⎣
0.76 0

0 0.765

⎤⎥⎥⎥⎥⎦
y(t − 2)+

⎡⎢⎢⎢⎢⎣
1

1

⎤⎥⎥⎥⎥⎦
v(t) +

⎡⎢⎢⎢⎢⎣
1.3

−0.3

⎤⎥⎥⎥⎥⎦
v(t − 1) +

⎡⎢⎢⎢⎢⎣
2.4 0

0 0.7

⎤⎥⎥⎥⎥⎦
e(t − 1)

(3.129)

which corresponds to the system (3.1), whose matrices are given by:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.75 0 1 0

0 1.75 0 1

−0.76 0 0 0

0 −0.765 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.05

1.45

−0.76

−0.765

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.4 0

0 0.7

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

⎤⎥⎥⎥⎥⎦
H =

⎡⎢⎢⎢⎢⎣
1

1

⎤⎥⎥⎥⎥⎦
Ω =

⎡⎢⎢⎢⎢⎣
0 0

0 0

⎤⎥⎥⎥⎥⎦

(3.130)

Note, that the model (3.129) corresponds to the model (2.39), whose A, B, G, and H

matrices are as in (3.130), whilst ζ(t) = 0 and:

ξ(t) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.4 0

0 0.7

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
e(t) (3.131)
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Consequently, the noise covariance matrices used by the MVU are R = 0 and:

Q̃ = var(e(t))
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.76 0 0 0

0 0.49 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.132)

The algorithms are compared for tree different levels of var(e(t)), namely, 1, 8, and

0.001, which correspond to, respectively, 4.8 %, 13.6 %, and 0.152 % of noise on each

output by means of the standard deviation. In the experiment the MVU is compared

with the PE-UIO designed with different values of s. A Monte-Carlo simulation with

100 runs is carried-out in order to provide reliable results, which are presented in Ta-

ble 3.2. The MVU ensures the minimum variance of the estimation error resulting from

Table 3.2: Comparison of efficacy of PE-UIO and MVU

var(e(t)) 1 8 0.001

s τ R2

T [%] τ R2

T [%] τ R2

T [%]

2 0 2.2153 0 17.6747 0 0.0091202
3 1 1.7598 1 9.4901 1 0.6559958
4 1 0.9371 1 6.0884 1 0.2019992
5 2 1.5533 2 5.4152 2 1.0017866
6 2 1.5191 2 4.6083 2 1.0776268
7 3 2.4092 3 4.9843 3 2.0409051

MVU 0 1.9986 0 15.7028 0 0.0019627

the disturbances. Therefore, achieving lower R2

T than that of MVU and ensuring at the

same time τ = 0 is not feasible, what can be seen in the simulation results. However, the

major advantage of the PE-UIO is the ability to adjust the filter bandwidth by selecting

the tuning parameter s. By choice of an optimal s, the R2

T is reduced approximately

2 and 4 times for, respectively, var(e(t)) = 1 and var(e(t)) = 8 compared to the MVU.

The results show that for a low level of noise (var(e(t)) = 0.001) the MVU performs

better than the PE-UIO. This is due to the fact that the PE-UIO provides an estimate

of the unknown input, cf. (3.10) and (3.11).

Example 3.6. Comparison of the INPEST, MVU, standard PE-UIO, and

two stage PE-UIO

In this example four methods are compared, namely, the standard PE-UIO, the two

stage PE-UIO, the INPEST and the MVU. Due to the fact that the INPEST method

has been designed for SISO systems, the considered model has only one unknown input

and no known inputs:

Gv(z) = z2 + 0.55z − 0.38

z2 + 0.05z − 0.756
(3.133)
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The output of the system is subjected to white, zero-mean, Gaussian noise of unity

variance. Note that in the SISO case, the MVU resembles a naive inversion, cf. Re-

mark 2.1. Results of 100-run Monte-Carlo simulation are presented in Table 3.3, whilst

samples of the estimated input signals are presented in Fig. 3.10. It can be noted
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Figure 3.10: Comparison of unknown input reconstruction efficacy of standard PE-
UIO, two stage PE-UIO, INPEST, and MVU

that the standard PE-UIO, the two stage PE-UIO, and the INPEST provide compa-

rable results, whereas the MVU seems to give inferior results in terms of R2

T . This is

due to the relatively high bandwidth of the MVU, which results in the lowest possible

estimation lag (in this case τ = 0). The other examined algorithms can be tuned to

reduce the reconstruction filter bandwidth (by increasing ν in the case of the INPEST

method and s in the case of the standard and the two stage PE-UIO), which also yields

an inherent estimation delay (τ > 0).

Example 3.7. Comparison of the INPEST and the two stage PE-UIO

In this example the efficacy of the two stage PE-UIO and the INPEST is compared in

the case when the output response to unknown input contains a zero close to unity.
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Table 3.3: Results of comparison of various input reconstruction methods. Noise vari-
ance var(e(t)) = 1

Method R2

T [%] τ

PE-UIO (s = 4) 1.1538 1
2-stage PE-UIO (s = 5) 1.1395 2

INPEST 1.3557 1
MVU 5.5980 0

The considered system is described by the following transfer function:

Gv(z) = 0.01759z2 + 0.05856z − 0.07367

z2 − 1.868z + 0.8706
(3.134)

The system has two zeros at: −4.3023 and 0.9735. Note, that (3.134) is non-minimum

phase, however both the two stage PE-UIO and the INPEST methods can cope with the

zero at −4.3023. The zero at z0 = 0.9735 needs to be eliminated from the parity equation

in the two stage PE-UIO. The output of the system is subjected to white, zero-mean,

Gaussian noise of the variance 0.003, which means that the standard deviation of the

output measurement noise is equal to approximately 6% of the standard deviation of

the output. The INPEST method is optimised for ν = 0.004, which results in q̊e = 0.2635

and τ̊ = 7. The results of the input reconstruction are presented in Fig. 3.11, whereas

the efficacy in terms of R2

T and τ is compared in Table 3.4. It can be noted that both

Table 3.4: Comparison of INPEST and two stage PE-UIO. System has zero at 0.9735

Method R2

T [%] τ

INPEST 0.3423 7
2-stage PE-UIO (s = 13) 0.2946 6
2-stage PE-UIO (s = 14) 0.2667 7
2-stage PE-UIO (s = 15) 0.2721 7

algorithms yield comparable results for τ = 7.

3.9 Concluding remarks

An approach to the unknown input reconstruction problem has been proposed. The

scheme is applicable to MIMO systems with a single unmeasurable input, whereas the

number of outputs and known inputs may be arbitrary. The generalised scheme is

suitable for OE and ARMAX linear systems. It is also applicable in the EIV case.

An extension to the standard PE-UIO, namely, the two stage PE-UIO, has been also

proposed. The latter copes with systems which contain a derivative term or whose

zeros lie close to unity (these are cases when the standard PE-UIO is not applicable).

In the numerical study the developed algorithms have been compared with two other
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Figure 3.11: Comparison of unknown input reconstruction efficacy of the two stage
PE-UIO and the INPEST; in both cases τ = 7. The system has zeros at
−4.3023 and 0.9735.

methods, namely, the Kalman filter-based MVU and the INPEST method which is

based on a closed loop control concept.

The main advantage of the PE-UIO is its simplicity; the filter parameters are cal-

culated once at the beginning of the reconstruction process. The method is fast as it

utilises two moving average filters. The only tuning parameter of the PE-UIO is the

order of the parity space s. By altering it, the bandwidth of the input reconstruction

filter is shaped. This property allows the designer to tune the algorithm for different

levels of noise. It should be noted that by reduction of the filter bandwidth (hence

improvement of the noise filtering properties of the scheme) an estimation lag is intro-

duced. Similar property has been observed in the INPEST method, whereas the MVU

does not allow for introduction of an estimation lag in order to reduce the impact of

the noise (in terms of a bandwidth reduction). Furthermore, the PE-UIO is suitable

for non-minimum phase systems.

The two versions of the PE-UIO algorithm have been compared. The two stage PE-

UIO allows to eliminate selected system zeros from the PE, which changes the response

of the input reconstruction filter. This is particularly desirable, when the system zeros

lie close to unity, which results in a large overshoot in the step response of the standard

PE-UIO. The design of the two stage PE-UIO allows the elimination of this overshoot

and hence a distortion of the unknown input estimate. Furthermore, the two stage

PE-UIO provides better (in terms of bandwidth) noise filtering properties. On the
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other hand it has been shown using a numerical example that the phase lead caused

by the system zero when using the standard PE-UIO may be desirable. This might be

the case in an on-line application when the estimation delay is crucial. The phase lead,

when using the standard PE-UIO, result in a reduced estimation delay compared to

the two stage PE-UIO.

The comparison of both PE-UIO methods, the INPEST, and the MVU revealed

comparable efficacy of the PE-UIO and the INPEST. Both algorithms have the pos-

sibility to shape the filter bandwidth (by introducing an inherent delay) by selection

of a single tuning parameter (ν in the case of the INPEST and s in the case of the

PE-UIO). The MVU does not have such a possibility of shaping the bandwidth of the

filter to this extent as in the case of the PE-UIO or the INPEST.

Further work aims towards an extension of the algorithms to systems with multiple

unmeasurable inputs. Although the proposed algorithms are generally applicable for

nonminimum-phase systems, a solution for systems, whose nonmiminum-phase zero is

close to unity, still remains an open question.
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Chapter 4

Parity equations-based unknown

input reconstruction for

Hammerstein-Wiener systems

Nomenclature

ai . . . . . . . . . . . . . . autoregressive parameter in polynomial model

A . . . . . . . . . . . . . . . state transition matrix in state-space model

bi . . . . . . . . . . . . . . exogenous parameter in polynomial model

B . . . . . . . . . . . . . . input matrix of known input in state-space model

ci . . . . . . . . . . . . . . moving average parameter in ARMAX model

C . . . . . . . . . . . . . . output matrix in state-space model

D . . . . . . . . . . . . . . feedforward matrix of known input in state-space model

e(t) . . . . . . . . . . . . noise term

f(⋅) . . . . . . . . . . . . function to be minimised by Lagrange multiplier method

g(⋅) . . . . . . . . . . . . . constraint function in Lagrange multiplier method

G . . . . . . . . . . . . . . input matrix of unknown input in state-space model

Gu(z) . . . . . . . . . . z-domain transfer function between u0(t) and y(t)

Gv(z) . . . . . . . . . . z-domain transfer function between v(t) and y(t)

H . . . . . . . . . . . . . . feedforward matrix of unknown input in state-space model

m . . . . . . . . . . . . . . number of system outputs

n . . . . . . . . . . . . . . . order of the system

na . . . . . . . . . . . . . . order of autoregressive polynomial

nb . . . . . . . . . . . . . . order of exogenous polynomial

nc . . . . . . . . . . . . . . order of moving average polynomial

p . . . . . . . . . . . . . . . number of known inputs to a system

pi . . . . . . . . . . . . . . element of P

P . . . . . . . . . . . . . . auxiliary vector

Q . . . . . . . . . . . . . . block Toeplitz matrix

s . . . . . . . . . . . . . . . parity space order

S . . . . . . . . . . . . . . . auxiliary matrix

T . . . . . . . . . . . . . . . block Toeplitz matrix

u0(t) . . . . . . . . . . . noise-free known input
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u(t) . . . . . . . . . . . . measured input

ũ(t) . . . . . . . . . . . . input measurement noise

ū0(t) . . . . . . . . . . . input to linear dynamic block

ũ∗(t) . . . . . . . . . . . auxiliary variable

˜̄u(t) . . . . . . . . . . . . estimation error of ū0(t)

U0(t) . . . . . . . . . . . stacked vector of last s + 1 values of u0(t)

U0(z) . . . . . . . . . . u0(t) in z-domain
˜̄U(t) . . . . . . . . . . . . stacked vector of last s + 1 values of ˜̄u(t)

U(t) . . . . . . . . . . . . stacked vector of last s + 1 values of u(t)

U(z) . . . . . . . . . . . u(t) in z-domain

Ũ(t) . . . . . . . . . . . . stacked vector of last s + 1 values of ũ(t)

Ũ(z) . . . . . . . . . . . ũ(t) in z-domain

Ũ∗(t) . . . . . . . . . . . stacked vector of last s + 1 values of ũ∗(t)

Ũ∗(z) . . . . . . . . . . ũ∗(t) in z-domain

v̂(t) . . . . . . . . . . . . unknown input estimate

v(t) . . . . . . . . . . . . unknown (unmeasurable) input

V (t) . . . . . . . . . . . . stacked vector of last s + 1 values of unknown input

V (z) . . . . . . . . . . . v(t) in z-domain

V̂ (z) . . . . . . . . . . . v̂(t) in z-domain

wqi . . . . . . . . . . . . . auxiliary polynomial parameter

wξi . . . . . . . . . . . . . auxiliary polynomial parameter

W . . . . . . . . . . . . . . vector, which belongs to Γ�

W (z) . . . . . . . . . . . polynomial of z-variable defined by appropriate elements of W

WQ(z) . . . . . . . . . polynomial of z-variable defined by appropriate elements of WQ

WT (z) . . . . . . . . . polynomial of z-variable defined by appropriate elements of WT

WT ′(z) . . . . . . . . . polynomial of z-variable defined by appropriate elements of WT ′

WΞ(z) . . . . . . . . . . polynomial of z-variable defined by appropriate elements of WΞ

x(t) . . . . . . . . . . . . state vector instate space model

y0(t) . . . . . . . . . . . noise-free system output

ȳ0(t) . . . . . . . . . . . output of linear dynamic block

˜̄y(t) . . . . . . . . . . . . estimation error of ȳ0(t)

y(t) . . . . . . . . . . . . measured output

ỹ(t) . . . . . . . . . . . . output measurement noise

Y0(t) . . . . . . . . . . . stacked vector of last s + 1 values of noise-free output

Ȳ0(t) . . . . . . . . . . . stacked vector of last s + 1 values of ȳ0(t)

Y (t) . . . . . . . . . . . . stacked vector of last s + 1 values of measured output
˜̄Y (t) . . . . . . . . . . . . stacked vector of last s + 1 values of ˜̄y(t)

Y (z) . . . . . . . . . . . y(t) in z-domain

zi . . . . . . . . . . . . . . system zero

αi . . . . . . . . . . . . . . auxiliary parameter

αi . . . . . . . . . . . . . . auxiliary parameter

δ . . . . . . . . . . . . . . . system delay

ǫ(t) . . . . . . . . . . . . auxiliary noise term

ǫ∗(t) . . . . . . . . . . . auxiliary noise term

φu(t), φy(t) . . . . . auxiliary variance terms

ϕ(⋅) . . . . . . . . . . . . Hammerstein nonlinearity

γ . . . . . . . . . . . . . . . row vector of Γ�

Γ . . . . . . . . . . . . . . . extended observability matrix

Γ� . . . . . . . . . . . . . . left nullspace of Γ

η(⋅) . . . . . . . . . . . . Wiener nonlinearity
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η−1(⋅) . . . . . . . . . . inverse of η(⋯)

λ . . . . . . . . . . . . . . . Lagrange multiplier

Π . . . . . . . . . . . . . . . input matrix of noise term in state-space model

Ω . . . . . . . . . . . . . . . feedforward matrix of noise term in state-space model

Σ,Σe,Σũ,Σũe . . covariance matrices

τ . . . . . . . . . . . . . . . unknown input estimation lag

Ξ . . . . . . . . . . . . . . . block Toeplitz matrix

ψ . . . . . . . . . . . . . . . auxiliary vector

Preliminary reading: Sections 2.2, 2.3, 2.4, Subsection 2.5.2, Sections 3.2 and 3.3.

4.1 Introduction

Block oriented models are convenient for modelling nonlinear systems. Their relatively

simple structure of a linear dynamic block interconnected with nonlinear memoryless

function(s) provides a powerful tool for an approximation of a large class of nonlin-

ear systems, see (Pearson & Pottmann 2000, Pearson 2003). Block oriented models

have been used for modelling such phenomena as, for instance: infant EEG (electroen-

cephalogram) seizures (Celka & Colditz 2002), a radio frequency amplifier (Crama &

Rolain 2002), a glucose-insulin process in diabetes type I patient (Bhattacharjee, Sen-

gupta & Sutradhar 2010), ionospheric dynamics (Palanthandalam-Madapusi, Ridley &

Bernstein 2005) or human operator dynamics (Tervo & Manninen 2010). Furthermore,

such models are also used for control purposes, see, for example, (Anbumani, Patnaik

& Sarma 1981, Fruzzetti, Palazoglu & McDonald 1997, De-Feng, Li & Guo-Shi 2010),

and fault detection (Korbicz, Koscielny, Kowalczuk & Cholewa 2003, Lajic, Blanke &

Nielsen 2009).

A two-input single-output Hammerstein-Wiener model is considered, i.e. the linear

dynamic block is preceded and followed by nonlinear static functions. (In the case of a

Hammerstein model a linear block is preceded by a static nonlinear function, whereas

in the case of a Wiener model the order of these elements is reversed.) A problem

of the reconstruction of the unknown/unmeasurable input to the system is taken into

consideration. Up to date, only a limited number of publications are available on this

subject. Szabo, Gaspar & Bokor (2005) proposed an inversion of Wiener systems using

a geometric method based on the assumption that the static nonlinearity transforming

the output is invertible, whilst Ibnkahla (2002) used neural networks for Hammerstein

system inversion.

The algorithm presented here extends the approach developed in Chapter 3 to a

Hammerstein-Wiener case. An EIV framework, see (Söderström 2007), is considered,

i.e. all the measured signals are affected by white, Gaussian, zero-mean and mutually

uncorrelated measurement noise sequences. The theory described in Sections 4.2–4.3

has been presented in (Sumis lawska, Larkowski & Burnham 2012).

This chapter is organised as follows: in Section 4.2, for completeness, the idea of
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block oriented models is presented and the Hammerstein-Wiener model, for which the

unknown input reconstruction algorithm is designed, is defined. Then, the PE-UIO

method for Hammerstein-Wiener systems (PE-UIO-HW) is described in Section 4.3.

Furthermore, in Section 4.4 the PE-UIO-HW is extended to an adaptive version, which

accounts for changes in noise levels. Finally, conclusions are provided in Section 4.5.

4.2 Problem statement

It is assumed that a two-input single-output nonlinear system can be described by a

Hammerstein-Wiener model. An EIV framework is considered (Söderström 2007), see

Fig. 4.1. Thus, the Hammerstein-Wiener model is given by the following state-space

form:

ū0(t) = ϕ (u0(t)) (4.1a)

x(t + 1) = Ax(t) +Bū0(t) +Gv(t) (4.1b)

ȳ0(t) = Cx(t) +Dū0(t) +Hv(t) (4.1c)

y0(t) = η (ȳ0(t)) (4.1d)

u(t) = u0(t) + ũ(t) (4.1e)

y(t) = y0(t) + ỹ(t) (4.1f)

where ϕ(⋅) is a static nonlinearity transforming the first system input u0(t) into an in-

accessible signal ū0(t) which serves as the first input to the linear block. It is assumed

that the second input v(t) is fed directly (without a nonlinear transformation) to the

linear block, which is described by a state-space model, where A ∈ Rn×n, B ∈ Rn×1,

C ∈ R1×n, D ∈ R1×1, G ∈ Rn×1 and H ∈ R1×1. The term ȳ0(t) refers to the output of

the linear part of the system, which is then transformed by the memoryless function

η(⋅) into the overall system output y0(t). Since the EIV case is considered, all mea-

sured variables, which are u(t) and y(t), are affected by white, Gaussian, zero-mean,

and mutually uncorrelated measurement noise sequences denoted by ũ(t) and ỹ(t), re-

spectively. Noise sequences are postulated to be uncorrelated with the noise-free but

unmeasured system input and output, denoted as u0(t) and y0(t), respectively. It is

assumed here that η(⋅) is strictly monotonic, hence its inverse exists. Note that (4.1)

represents a Hammerstein or a Wiener model if, respectively, η(⋅) or ϕ(⋅) is an identity

function.

Similarly as in Chapter 3, the objective of the proposed scheme is to estimate the

unknown input v(t), simultaneously minimising the effect of the measurement noise on

the unknown input estimate. It is assumed that the model of the system is known and

that v(t) is varying relatively slowly, cf. Subsection 3.5.1.
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u(t)

y(t)
v(t)

u0(t) y0(t)ū0(t) ȳ0(t)

ũ(t) ỹ(t)
ϕ(u0) η(ȳ0)linear

system

Figure 4.1: A Hammerstein-Wiener system in the EIV framework

4.3 PE-UIO for Hammerstein-Wiener systems

In this section the algorithm for estimation of the unknown input is derived. Firstly, for

completeness, the PE for Hammerstein-Wiener systems are derived in Subsection 4.3.1.

This is followed by a development of a PE-UIO-HW algorithm for the considered class

of block oriented systems in Subsections 4.3.2 and 4.3.3.

4.3.1 Parity relations for Hammerstein-Wiener system

Consider the system described by (4.1). Analogously, as in Equation (3.2), one can

build stacked vectors of y(t), y0(t), ȳ0(t), ỹ(t), ū0(t), u(t), u0(t) and ũ(t) which are

denoted, respectively, as Y (t), Y0(t), Ȳ0(t), Ỹ (t), Ū0(t), U(t), U0(t) and Ũ(t). By

making use of this notation the system defined by (4.1) can be expressed in the form

of:

Ū0(t) = ϕ(U0(t)) (4.2a)

Ȳ0(t) = Γx(t − s) +QŪ(t)0 + TV (t) (4.2b)

Y0(t) = η(Ȳ0(t)) (4.2c)

where ϕ(U0(t)) is a vector whose elements are ϕ(u0(t−s)), ϕ(u0(t−s+1)), ⋯, ϕ(u0(t)).
Analogously, the function η(Ȳ0(t)) is defined.

The linear part of the system, defined by (4.2b), can be represented by the following

parity relation, cf. Subsection 3.3.1.

WȲ0(t) =WTV (t) +WQŪ0(t) (4.3)

which, since η(⋅) is assumed to be invertible, can be reformulated as:

Wη−1(Y0(t)) =WTV (t) +WQϕ(U0(t)) (4.4)

where η−1(⋅) denotes an inverse of η(⋅). Due to the fact that y0(t) and u0(t) are

inaccessible, the parity relation (4.4) can be approximated by the measured values of
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the input and output:

Wη−1(Y (t)) =WTV (t) +WQϕ(U(t)) + ξ(t) (4.5)

where ξ(t) accounts for an overall error resulting from the presence of measurement

noise. (Note that ξ(t) depends also on the current values of u(t) and y(t) due to the

nonlinearities in the system.) By rearranging the measured (known) variables to the

right-hand side and the unknowns to the left-hand side, the following parity equation

is obtained, cf. (Li & Shah 2002):

Wη−1(Y (t)) −WQϕ(U(t)) =WTV (t) + ξ(t) (4.6)

4.3.2 Unknown input estimation

Analogously to the PE-UIO it is proposed to estimate the value of the unknown input

as:

v̂(t − τ) =Wη−1(Y (t)) −WQϕ(U(t)) (4.7)

which, in the case of noise-free input and output measurements, is:

v̂(t − τ) =WTV (t) (4.8)

In the case of noisy input and output measurements the unknown input estimate is

affected by an error, cf. (4.6):

v̂(t − τ) =WTV (t) + ξ(t) (4.9)

resulting from both the input and output measurement uncertainties, which can be

deduced to be given by:

ξ(t) =W (η−1(Y (t)) − η−1(Y0(t))) −WQ (ϕ(U(t)) −ϕ(U0(t))) (4.10)

Using the notation:

˜̄Y (t) = η−1(Y (t)) − η−1(Y0(t))
˜̄U(t) = ϕ(U(t)) −ϕ(U0(t)) (4.11)

Equation (4.10) can be rewritten as:

ξ(t) =W ˜̄Y (t) −WQ ˜̄U(t) (4.12)

Since ϕ(⋅) and η(⋅) are memoryless, the sequences:

˜̄u(t) = ϕ(u(t)) −ϕ(u0(t)) (4.13)
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and

˜̄y(t) = η−1(y(t)) − η−1(y0(t)) (4.14)

are white and mutually uncorrelated (as ũ(t) and ỹ(t) are white and mutually uncor-

related), which is demonstrated further in this Section. The variance of ˜̄u(t), further

referred to as var(˜̄u(t)), is time varying and depends on ϕ(u(t)), u(t) and the variance

of ũ(t), denoted as var(ũ). Analogously, the variance of ˜̄y(t), i.e. var(˜̄y(t)), is depen-

dent on var(ỹ) and the current values of η(y(t)) and y(t). The expression ϕ(u0(t))
can be approximated using a first order Taylor expansion at u(t):

ϕ(u0(t)) ≈ ϕ(u(t)) + ∂ϕ(u(t))
∂u(t) (u0(t) − u(t)) = ϕ(u(t)) −

∂ϕ(u(t))
∂u(t) ũ(t) (4.15)

Thus, incorporating (4.15) into (4.13), the dependency between the ˜̄u(t) and ũ(t) can

be approximated via:

˜̄u(t) = ϕ(u(t)) −ϕ(u0(t)) ≈ ∂ϕ(u(t))
∂u(t) ũ(t) (4.16)

This means that the ratio between ˜̄u(t) and ũ(t) is approximately proportional to the

tangential of ϕ(u(t)). Analogously, the ratio between ˜̄y(t) and ỹ(t) is approximately

proportional to
∂η−1(y(t))

∂y(t) , i.e.

˜̄y(t) ≈ ∂η−1(y(t))
∂y(t) ỹ(t) (4.17)

Note that:

E{˜̄u(t − i)˜̄u(t − j)} ≈ E{∂ϕ(u(t − i))
∂u(t) ũ(t − i)∂ϕ(u(t − j))

∂u(t) ũ(t − j)}
= E{∂ϕ(u(t − i))

∂u(t)
∂ϕ(u(t − j))

∂u(t) }E{ũ(t − i)ũ(t − j)}
= E{∂ϕ(u(t − i))

∂u(t)
∂ϕ(u(t − j))

∂u(t) } × 0 = 0, for i ≠ j

(4.18)

Hence, the sequence ˜̄u(t) is white. Analogously, it can be demonstrated that ˜̄y(t) is

white as well as ˜̄u(t) and ˜̄y(t) are mutually uncorrelated.

The variances of ˜̄u(t) and ˜̄y(t) can be approximated, respectively, as:

var(˜̄u(t)) ≈ (∂ϕ(u(t))
∂u(t) )

2

var(ũ)
var(˜̄y(t)) ≈ (∂η−1(y(t))

∂y(t) )2 var(ỹ)
(4.19)

It should be noted that var(˜̄u(t)) and var(˜̄y(t)) are, in general, time varying as they

depend on the current values of the functions ϕ(u(t)) and η−1(y(t)). Furthermore, the
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ratio between var(˜̄u(t)) and var(˜̄y(t)) is not constant, i.e. the impact of either input

or output measurement noise on the unknown input estimation error can be prevailing,

depending on the system operating point. Therefore, the unknown input reconstruction

filter should adapt to these changes.

The aim of the PE-UIO for Hammerstein-Wiener systems is to select such a vector

W that the variance of the error term ξ(t) is minimised, i.e.

var(ξ(t)) = E{(W ˜̄Y (t) −WQ ˜̄U(t))(W ˜̄Y (t) −WQ ˜̄U(t))T }
=WΣ˜̄yW

T
+WQΣ˜̄uQ

TW T
−WΣT

˜̄u˜̄y
QTW T

−WQΣ˜̄u˜̄yW
T

(4.20)

where Σ˜̄u = E{ ˜̄U(t) ˜̄UT (t)}, Σ˜̄y = E{ ˜̄Y (t) ˜̄Y T (t)}, Σ˜̄u˜̄y = E{ ˜̄U(t) ˜̄Y T (t)}. The term Σ˜̄u

is calculated via, cf. (4.19):

Σ˜̄u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

var(˜̄u(t − s)) ⋯ 0 0

⋮ ⋱ ⋮ ⋮

0 ⋯ var(˜̄u(t − 1)) 0

0 ⋯ 0 var(˜̄u(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.21)

Analogously, the expression Σ˜̄y is obtained by replacing the terms var(˜̄u(⋅)) in (4.21)

by var(˜̄y(⋅)). Due to the fact that ũ(t) and ỹ(t) are mutually uncorrelated, Σ˜̄uỹ = 0.

For convenience, an expression Σ is introduced, which is equal to:

Σ = Σ˜̄y +QΣ˜̄uQ
T (4.22)

Subsequently, the vector W should be selected to minimise the cost function f(W ):
f(W ) =WΣW T (4.23)

subject to the following constraints:

1. The sum of elements of WT is equal to 1

2. WΓ = 0

The solution to the constrained optimisation problem has been solved using the La-

grange multiplier method in Chapter 3.

Note that due to the fact that the ratio of the variances var(˜̄u(t)) and var(˜̄y(t)) is

changing over the time, cf. (4.19), as opposed to the linear case in Chapter 3, the vector

W needs to be updated at each time step, i.e. the elements of W are time varying. This

may eventually result in an unnecessary jitter of the estimation lag τ . This happens if

the mantissa of ∑αii

∑αi
, cf. (3.11) and (3.12), is close to 0.5 and in some time instances it

exceeds 0.5, whilst in the other is lower than 0.5. Thus, it is suggested to calculate τ

only once at the beginning of the input reconstruction process. Finally, the algorithm

for calculating the optimal vector W is summarised as follows:

85



4. Parity equations-based unknown input reconstruction for Hammerstein-Wiener

systems

Algorithm 4.1 (PE-UIO-HW).

1. Select the order of the parity space s ≥ n and build matrices Γ, Q and T .

2. Obtain Γ�.

for t = 1 ∶ N

3. Calculate variances of ˜̄u(t) and ˜̄y(t) using (4.19)

4. Compute Σ using:

Σ = Σ˜̄y +QΣ˜̄uQ
T (4.24a)

5. Calculate the column vector S via:

S = Γ�Σ(Γ�)T + (Γ�Σ (Γ�)T )T (4.24b)

6. Compute the matrix ψ by making use of:

ψ = sumrow(Γ�T ) (4.24c)

7. Obtain the Lagrange multiplier λ as:

λ = ((S−1ψ)T ψ)−1 (4.24d)

8. Calculate the parameter vector P by:

P = λS−1ψ (4.24e)

9. Compute the vector W as:

W = P TΓ� (4.24f)

if t = 1

Calculate the estimation lag as:

τ = round(∑αii

∑αi

) (4.24g)

where:

WT = [ αs αs−1 ⋯ α0 ]T
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end

10. Obtain the estimate of v(t − τ) via:

v̂(t − τ) =W (t)η−1(Y (t)) −W (t)Q(t)ϕ(U(t)) (4.24h)

end

4.3.3 Confidence bounds

It can be seen from (4.20), that the variance of the error term var(ξ(t)) can be repre-

sented as a sum of two terms, each of which depends solely on either the output or the

input measurement noise, such as:

var(ξ(t)) = φu(t) + φy(t) (4.25)

where φu(t) and φy(t) are defined as:

φu(t) =WQΣ˜̄uQ
TW T (4.26a)

φy(t) =WΣ˜̄yW
T (4.26b)

Therefore, it can be noted that the PE-UIO-HW algorithm minimises the sum of φu(t)
and φy(t).

The accuracy of the unknown input estimation alters over the time, as var(ξ(t)) is

changing. Based on the assumption of a Gaussian distribution of ũ(t) and ỹ(t) it can

be assumed that the distribution of ξ(t) can be approximated with a Gaussian curve

with the variance of var(ξ(t)). Consequently, confidence bounds of the unknown input

estimate can be approximated using Gaussian distribution tables as multiplicities of

the standard deviation of ξ(t).
4.3.4 Numerical examples

Example 4.1. Design of the PE-UIO-HW

Consider an examplary system, whose matrices of the linear block are given by:

A =

⎡⎢⎢⎢⎢⎣
0 −0.56

1 1.5

⎤⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎣
−0.1200

0.4125

⎤⎥⎥⎥⎥⎦
G =

⎡⎢⎢⎢⎢⎣
0.0055

0.0963

⎤⎥⎥⎥⎥⎦
(4.27)

C = [ 0 1 ] D = 0.125 H = 0.025
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The memoryless input and output nonlinearities are arbitrarily selected as:

ū0(t) = exp (0.165 ⋅ 10−5u30(t) + u0(t)) − 1

y0(t) = exp (11 + 0.165 ⋅ 10−5 (ȳ0(t))3) − exp(11) (4.28)

Fig. 4.2 depicts functions ϕ(⋅) and η(⋅) where it is observed that they are both mono-
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Figure 4.2: Hammerstein and Wiener nonlinearities

tonic and strictly increasing. This means that the impact of the input measurement

noise on the unknown input estimate is expected to be relatively low for low values of

u(t) (as the gradient of ϕ(u(t)) is small for low values of u(t)). On the other hand, this

impact will be relatively high for large values of u(t) (as the gradient of ϕ(u(t)) is large

for high values of u(t)). Due to the fact that the scheme utilises an inversion of η(⋅), an

opposite situation is expected according to the output measurement noise. Low values

of the output are expected to yield a significant impact of the output measurement

error on the accuracy of the unknown input estimate.

The known input and output signals as well as ū0(t) and ȳ0(t) are presented in

Fig. 4.3. For the first 1000 samples of the simulation y0(t) is relatively high and, as

the slope of η(⋅) becomes steeper for higher values of ȳ0(t), it is anticipated that the

inversion of the noisy measurement y(t) for the first 1000 samples will significantly

reduce the impact of the output measurement noise. After 1000 samples both u0(t)
and y0(t) decrease, which results in a higher vulnerability of the input reconstruction

process to the output measurement noise, cf. the slope of η(⋅) for the relatively low

values of the output. The input and output measurements are subjected to white,

Gaussian, zero-mean, and mutually uncorrelated noise sequences, whose variances are,
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Figure 4.3: Input and output of the considered system (grey solid curve) compared
with input and output of linear block (dashed-dotted curve)

respectively, var(ũ(t)) = 0.002 and var(ỹ(t)) = 0.5. As a result of the inversion of η(⋅),
needed for the calculation of ȳ0(t), the ratio of standard deviations of ˜̄y(t) to ȳ0(t) is

2.2 %. However, as expected, the impact of the measurement noise on the accuracy of

the estimate of ȳ0(t) changes over time. For the period between 100 and 900 samples

the standard deviation of ˜̄y(t) is equal to 1.4 % of the standard deviation of ȳ0(t).
Whereas for the period between 1100 and 1900 samples this ratio is 12.3 %. This

can be interpreted that the impact of the measurement noise decreases over 8 times

after 1000 samples. The order of the parity space has been selected as 12, which gives

τ = 6 samples. The unknown input estimate with 95% confidence bounds is presented

in Fig. 4.4. In the upper subfigure of Fig. 4.5 var(˜̄u(t)) and φu(t) are compared, whilst

the middle subfigure of Fig. 4.5 compares var(˜̄y(t)) and φy(t). The lower subfigure

of Fig. 4.5 presents the optimisation effect by comparing the sum of var(˜̄u(t)) and

var(˜̄y(t)) with the sum of φu(t) and φy(t). During the first 1000 samples the input

measurement noise has a larger influence on the unknown input estimation error in

comparison to the output measurement noise. One can note that for the first 300

samples the effect of the output measurement noise is actually amplified (as a result

of the minimisation of the joint impact of the input and output measurement noise).

However, due to a relatively large ˜̄u(t), it has a negligible effect on the input estimation

error. After 1000 samples of the simulation the situation changes. The effect of the

input measurement noise becomes less significant, whereas the term ˜̄y(t) increases as

it depends strongly on the value of the output.

Example 4.2. Distribution of ξ(t)
In order to calculate confidence bounds of the unknown input estimate a Gaussian

distribution of ξ(t) is assumed. In this example a Monte-Carlo simulation with 10000

runs is carried out and the theoretical distribution of ξ(t) is compared with an experi-
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Figure 4.4: Unknown input estimation for Hammerstein-Wiener system in the EIV
framework
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mentally obtained probability density function of the variable:

W ˜̄Y (t) ˜̄Y T (t)W T
+WQ ˜̄U(t) ˜̄UT (t)QTW T (4.29)
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at each time sample. The system from the previous example is used for the simulation.

In Fig. 4.6 those two distributions have been compared as functions of time. Further-

Figure 4.6: Experimental and calculated distributions of ξ(t) as functions of time.
The coloured surface presents the theoretical distribution of ξ(t) (Gaus-
sian curve with the variance defined by (4.20)) for a single simulation run.
Black plots are experimentally obtained probability density functions of
ξ(t) from 10000 runs of the Monte-Carlo simulation.

more, in Fig. 4.7 both theoretical and experimental distributions of ξ(t) are presented

for four different time instances. It can be noted that the experimentally obtained dis-

tribution of ξ(t) matches the theoretical Gaussian distribution with the variance given

by equation (4.20). In Fig. 4.8 values of φu(t) and φy(t) as functions of time for a single

simulation run have been compared with functions of time of mean values of, respec-

tively, WQ ˜̄U(t) ˜̄UT (t)QTW T and W ˜̄Y (t) ˜̄Y T (t)W T from the Monte-Carlo simulation.

It can be noted that the values of φu(t) and φy(t) calculated using (4.26) match the

experimental data.

Example 4.3. Use of the linear PE-UIO instead of the PE-UIO-HW

As filter parameters are recalculated at each time sample, the PE-UIO-HW algorithm

becomes computationally demanding. Therefore, it is worth considering to approximate

the Hammerstein-Wiener system with a linear model and then use the linear PE-UIO

described in Chapter 3 instead. Use of the linear PE-UIO in a Hammerstein-Wiener

case is, however, feasible only if the nonlinearities are mild enough, so the error resulting

from a linear approximation of the nonlinear system is relatively small. In this example

use of the linear PE-UIO instead of the PE-UIO-HW is considered and a degradation

of performance resulting from the use of the linear algorithm is examined.
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Figure 4.7: Comparison of theoretical distribution of ξ(t) with experimental data.
Black solid lines present theoretical distributions of ξ(t) for different time
instances (Gaussian curves with variance defined by (4.20)) for a single
simulation run. Grey stems are experimentally obtained probability den-
sity functions of ξ(t) from 10000 runs of Monte-Carlo simulation.

The linear block of the considered system is given by (4.28), whilst the Hammerstein

and Wiener nonlinearities are:

ū0(t) = 10

1 + e−0.4u0(t)
− 5

y0(t) = bi

1 + e−aiȳ0(t)
+ ci

(4.30)

where ai, bi, and ci are the coefficients of the Wiener nonlinearity η(⋅). The experi-

ment has been performed for three different Wiener nonlinearities (i = 1,2,3), whose

coefficients are given in Table 4.1. The Hammerstein nonlinearity as well as the three

considered Wiener nonlinearities, denoted as η1(⋅), η2(⋅), and η3(⋅), are presented in

Fig. 4.9.

Both known and unknown inputs to the system, u0(t) and v(t), are the same as

in Example 4.1. The upper subfigure of Fig. 4.10 presents u0(t) and ū0(t). Due to

the fact that the Hammerstein nonlinearity at the operating point is negligible ū0(t)
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Figure 4.8: Comparison of calculated and experimental values of φu(t) and φy(t).
Black dashed curves present theoretical values of φu(t) and φy(t) as func-
tions of time (calculated using (4.26) for a single simulation run). Grey
curves are experimentally obtained values of φu(t) and φy(t) from 10000
runs of Monte-Carlo simulation.

Table 4.1: Coefficients of Wiener nonlinearities η1(⋅), η2(⋅), and η3(⋅)
i ai bi ci
1 0.25 24 −12

2 0.2 26 −13

3 0.1 43 −21.5

is very close to u0(t) (the considered system is virtually a Wiener system). The lower

subfigure of Fig. 4.10 shows ȳ0(t) and the corresponding y0(t) for three different Wiener

nonlinearities. It is anticipated that the accuracy of the unknown input estimation using

the linear PE-UIO will depend on the severity of the Wiener nonlinearity, i.e. the best

accuracy is expected for η3(⋅), whilst it is anticipated that η1(⋅) will result is the most

distorted unknown input estimate. The measured input and the output of the system

are subjected to white, zero-mean, Gaussian, mutually uncorrelated sequences with the

variances, respectively, var(ũ(t)) = 0.002 and var(ỹ(t)) = 0.003.

For each case of a nonlinear system (i.e. a system with different Wiener nonlinearity)

a linear model is obtained using the least squares technique in order to estimate the

unknown input using the PE-UIO with s = 12 samples. A Monte-Carlo simulation with

100 runs is carried out, whose results in terms of R2

T are compared with results of the

PE-UIO-HW and presented in Table 4.2 . Sample plots of the unknown input estimate
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Figure 4.9: Hammerstein and Wiener nonlinearities
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Figure 4.10: The upper subfigure shows the input of the considered system (grey solid
curve) compared with the input of linear block (dashed-dotted curve).
The lower subfigure presents the output of the linear dynamic block
(grey solid curve) compared with the output of the system for different
Wiener nonlinearities (black dashed, dashed-dotted and dotted curves).

for the considered models are plotted in Fig. 4.11. As expected the distortion in the

unknown input estimate using the linear PE-UIO is least when the Wiener nonlinearity

is given by η3(⋅), whilst for η1(⋅) the reconstructed signal is least accurate.
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Figure 4.11: Unknown input estimation for different Wiener nonlinearities

Table 4.2: Comparison of efficacy (in terms of the mean value of R2

T [%] from a Monte-
Carlo simulation with 100 runs) of the linear PE-UIO and the PE-UIO-HW
for three different Wiener nonlinearities

η1(⋅) η2(⋅) η3(⋅)
linear nonlinear linear nonlinear linear nonlinear

0.7130 0.0385 0.4349 0.0270 0.0658 0.0216

4.4 Adaptive order PE-UIO for Hammerstein-Wiener sys-

tems

As it has been demonstrated in Subsection 3.7.1 an increase of the parity space order

s reduces the bandwidth of the unknown input reconstructor thus improving the noise

filtering properties of the filter (i.e. reducing the impact of the noise on the unknown

input estimate). However, the reduction of the filter bandwidth results in the input

reconstruction filter being sluggish. Due to the fact that var(˜̄u(t)) and var(˜̄y(t)) are

time varying, the impact of the noise on the unknown input varies. Therefore, it is

beneficial to vary the bandwidth of the filter (via changing the value of the parity

space order s) as values of var(˜̄u(t)) and var(˜̄y(t)) change. In the algorithm proposed

in this section the order of the parity space varies according to the changes of var(˜̄u(t))
and var(˜̄y(t)). In order to recognise that the order of the parity space is time varying,

its value at the time instance t is further denoted as s(t).
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4.4.1 Choice of s(t)

The choice of s(t) should depend on both var(˜̄u(t)) and var(˜̄y(t)). Considering (4.25)

and (4.26) it should be noted that the input and output noise filtering indices defined

as:

ρu =
φu

var(˜̄u(t)) (4.31a)

ρy =
φy

var(˜̄y(t)) (4.31b)

are not equal due to the presence of the matrix Q in (4.26a) and hence its influence

on (4.31a). This means that the impact of the change of s(t) will be different for the

input and the output measurement noise. It is proposed to create a two-dimensional

map, which assigns the value of s(t) for each couple of var(˜̄u(t)) and var(˜̄y(t)). Fur-

thermore, as the values of var(˜̄u(t)) and var(˜̄y(t)) are calculated based on the current

values of the measured input and output signals (affected by noise), cf. (4.19), the order

of the parity space s(t) selected based on the current values of var(˜̄u(t)) and var(˜̄y(t))
may jitter unnecessarily. In order to avoid this problem, it is proposed to use local

mean values of var(˜̄u(t)) and var(˜̄y(t)) defined as:

var(˜̄u(t)) = 1

t1 + t2 + 1

t+t2

∑
i=t−t1

(var(˜̄u(i)) (4.32a)

var(˜̄y(t)) = 1

t1 + t2 + 1

t+t2

∑
i=t−t1

(var(˜̄y(i)) (4.32b)

where t1 and t2 are arbitrarily defined by the user.

4.4.2 Variable estimation lag

At the time instance t, the following delayed unknown input estimate is calculated:

v̂(t − τ(t)) =W (t)η−1(Y (t)) −W (t)Q(t)ϕ(U(t)) (4.33)

where τ(t) is time varying, due to the alternating value of s(t). (Note that the notation

τ(t), W (t), and Q(t) has been used instead of τ , W , and Q in order to indicate that

the estimation lag τ , the vector W , and the matrix Q as well as sizes of W and Q are

time varying.) This would eventually lead to difficulties, such as some time instances

of the unknown input would be omitted, and some of them estimated more than once.

Therefore, a logic must be implemented, which copes with the variable estimation lag.

A difficulty may arise in two situations:

(i) τ(t) > τ(t − 1)
(ii) τ(t) < τ(t − 1)
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In the first case a particular time instance of the unknown input estimate is calculated

twice. In such a case from the two values of the unknown input estimate sample the

one should be selected, which is less affected by the noise. The fact that τ(t) increases,

means an increase of the noise influence, i.e. var(˜̄u(t)) or var(˜̄y(t)) has increased.

Therefore, the impact of the measurement noise on the unknown input estimate has

also increased. Consequently, it can be deduced that the previously calculated value of

the unknown input estimate is less affected by noise.

In the second case, the situation is opposite, i.e. some time instances of v̂(t) will

be omitted. It is proposed to use W (t− 1) and Q(t− 1) to calculate the missing values

of the unknown input estimate.

Incorporating this logic into Algorithm 4.1 the adaptive order PE-UIO-HW (AO-

PE-UIO-HW) is obtained:

Algorithm 4.2 (AO-PE-UIO-HW).

for t = 1 ∶ N

● Calculate var(˜̄u(t)) and var(˜̄y(t))
● Based on var(˜̄u(t)) and var(˜̄y(t)) select s(t)
● Obtain W (t), Q(t), and τ(t) as in Algorithm 4.1

if τ(t) = τ(t − 1)
● Calculate v̂(t − τ(t)) as:

v̂(t − τ(t)) =W (t)η−1(Y (t)) −W (t)Q(t)ϕ(U(t)) (4.34)

elseif τ(t) < τ(t − 1)
for k = τ(t − 1) ∶ τ(t) − 1

v̂(t−k) =W (t−1)η−1(Y (t−k))−W (t−1)Q(t−1)ϕ(U(t−k)) (4.35)

end

v̂(t − τ(t)) =W (t)η−1(Y (t)) −W (t)Q(t)ϕ(U(t)) (4.36)

else

● Do nothing

end
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Table 4.3: The table assigns value of the parity space order s(t) based on the values of var(˜̄u(t)) and var(˜̄y(t)). The row of the table is

selected such that ud < log {var(˜̄u(t))} ≤ uu, whereas the column is chosen such that yd < log {var(˜̄y(t))} ≤ yu
log {var(˜̄y(t))}

yd −∞ -2.87 2.66 -2.52 -2.42 -2.31 -2.19 -2.10 -2.01 -1.94 -1.88 -1.83 -1.76 -1.68 -1.61

ud

H
H
H

H
HH

uu

yu -2.87 -2.66 -2.52 -2.42 -2.31 -2.19 -2.10 -2.01 -1.94 -1.88 -1.83 -1.76 -1.68 -1.61 ∞

lo
g
{va

r(˜̄ u
(t))
}

−∞ -3.3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

-3.3 -3.2 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

-3.2 -3.0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

-3.0 -2.9 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

-2.9 -2.8 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

-2.8 -2.6 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

-2.6 -2.5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

-2.5 -2.3 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

-2.3 -2.1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

-2.1 -2.0 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

-2.0 -1.8 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

-1.8 -1.7 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

-1.7 -1.6 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

-1.6 -1.4 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

-1.4 -1.1 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

-1.1 -0.7 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3998
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4.4.3 Numerical examples

In this subsection the design of the AO-PE-UIO-HW is presented. Two examples are

considered here. The first example resembles an OE case, i.e. the input measurement

is noise-free whilst the output is subjected to white, Gaussian, zero-mean measurement

noise. The second example is in the EIV framework, i.e. both the system input and

the output are affected by white, Gaussian, zero-mean measurement noise.

Example 4.4. Design of the AO-PE-UIO-HW in an OE noise case

Consider a system defined by (4.27) and (4.28). It is assumed that the output of

the system is subjected to white, Gaussian, zero-mean noise sequence of the variance

var(ỹ) = 0.5, whereas var(ũ) = 0 (OE case).

The input and output signals as well as ū0(t) and ȳ0(t) are presented in Fig. 4.12.

Similarly as in Example 4.1, y0(t) is relatively high for the first 1000 samples of the

simulation, hence it is anticipated that the inversion of the noisy measurement y(t) for

the first 1000 samples will reduce the impact of the output measurement noise. This is

due to relatively steep slope of η(⋅) for high values of y0(t). After 1000 samples y0(t)
decreases, which is expected to result in a higher vulnerability of the input reconstruc-

tion process to the output measurement noise, as the slope of η(⋅) is less steep for the

relatively low values of the output.
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Figure 4.12: Input and output of the considered system (grey solid curve) compared
with input and output of linear block (dashed-dotted curve)

The unknown input in this example is slightly lower than that in Example 4.1, which

yields lower values of y0(t) compared to Example 4.1. Therefore, it is anticipated that

the effect of measurement noise on the unknown input reconstruction process will be

more significant than in Example 4.1 (especially when y0(t) is very low between 1600

and 1800 sample).

As a result of the inversion of η(⋅), needed for the calculation of ȳ0(t), the ratio of
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standard deviations of ˜̄y(t) to ȳ0(t) is 4.5 %. However, this ratio changes over the time.

For the period between 100 and 800 samples the standard deviation of ˜̄y(t) is equal

to 1.7 % of the standard deviation of ȳ0(t). Whereas for the period between 1100 and

1600 samples this ratio is 27.0 %. In the extreme case of the period between 1600 and

1800 samples this ratio is equal to 81.1 %. Such a large deviation of the measurement

noise impact requires adaptivity of the unknown input reconstruction scheme. The

term var(˜̄y(t)) has been calculated with t1 = 2τ(t − 1) + 1 and t2 = 0, cf. (4.32).
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Figure 4.13: Unknown input estimation for a Hammerstein-Wiener OE system using
AO-PE-UIO-HW
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Figure 4.14: Adaptive minimisation of the effect of measurement output noise on the
input estimate

The unknown input estimate with 95 % confidence bounds is presented in Fig. 4.13.

The parity space order varies according to Table 4.3 and as a function of time is
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presented in the lower subfigure of Fig. 4.14. The upper subfigure of Fig. 4.14 presents

var(˜̄y(t)) and φy(t). As expected, the parity space order is low in the first half of

the simulation, when the impact of the measurement noise is low. Such a small s(t)
ensures a high bandwidth of the filter, and therefore even high frequency components

of v(t) are reconstructed, cf. Fig. 4.13. In the second half of the simulation, when the

impact of the measurement noise becomes more significant, the order of the parity space

increases. Furthermore, a higher parity space order yields stronger noise attenuation

(in terms of the ratio between var(˜̄y(t)) and φy(t)), which can be seen in the upper

subfigure of Fig. 4.14.

A Monte-Carlo simulation with 100 runs has been carried out to compare the per-

formance of the AO-PE-UIO-HW and the PE-UIO-HW with a constant parity space

order for two cases of s. The aim of this experiment is to quantify the improvement of

the unknown input reconstruction process when the AO-PE-UIO-HW is used instead

of the PE-UIO-HW. Results in terms of the R2

T are compared in Table 4.4. It can be

noted that by varying the parity space order an improvement of the accuracy of the

algorithm has been achieved. However, it needs to be remembered that the adaptive

algorithm needs more computational power.

Table 4.4: Comparison of efficacy of the PE-UIO-HW and the A0-PE-UIO-HW in
terms of R2

T [%]

PE-UIO-HW AO-PE-UIO-HW

sample s = 10 s = 23 s = 26 variable s

100:1990 0.0305 0.0320 0.0438 0.0197

100:1000 6.5e-4 0.0023 0.0033 5.7e-4

1000:1990 0.0600 0.0609 0.0837 0.0378

Example 4.5. Design of the AO-PE-UIO-HW in the EIV framework

Similarly as in Example 4.4 the Hammerstein-Wiener system is defined by (4.27)

and (4.28). The input and output signals as well as ū0(t) and ȳ0(t) are the same

as in Example 4.4, cf. Fig. 4.12. Both input and output measurements are subjected

to white, Gaussian, zero-mean, mutually uncorrelated noise sequences, whose variances

are, respectively, var(ũ) = 0.001 and var(ỹ) = 0.5, i.e. EIV framework. Similarly as

in Example 4.5, for the first 1000 samples the output signal is relatively high, hence

the output measurement error is expected to have a relatively low impact on the input

reconstruction error. However, as the known input is relatively high for the first half

of the simulation, whilst the slope ϕ(⋅) is relatively small, it is anticipated that the im-

pact of the input measurement noise on the estimation error will be prevailing for the

first 1000 samples of the simulation, cf. Example 4.1. In contrast, after 1000 samples,

when both u0(t) and y0(t) decrease, the influence of the output measurement noise is

expected to increase, whilst the impact of the input measurement noise is anticipated
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to reduce. Similarly as in the previous example the parity space order has been ob-

tained using Table 4.3, whereas terms var(˜̄u(t)) and var(˜̄y(t)) have been calculated

using t1 = 2τ(t − 1) + 1 and t2 = 0.
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Figure 4.15: Unknown input estimation for a Hammerstein-Wiener system in the EIV
framework using AO-PE-UIO-HW

The unknown input estimate is presented in Fig. 4.15. The values var(˜̄u(t)) and

φu(t)) are depicted in the upper subfigure of Fig. 4.16, whilst var(˜̄y(t)) and φy(t)), are

shown in the middle subfigure of Fig. 4.16. The lower subfigure of Fig. 4.16 presents

the parity space order s(t) as a function of time, which is compared with the s(t) from

the previous example. Note that the only difference between Examples 4.4 and 4.5 is

presence of the input measurement noise. The term var(˜̄u(t)) is relatively large for

the first half of the simulation, whereas it becomes negligible after 1000 samples. This

influence of the input measurement noise can be noticed by comparing the values of

s(t) for the two considered examples. The presence of the input measurement noise

causes an increase of s(t) by approximately 5 samples compared to the OE case during

the first half of the simulation. After the first 1000 samples, as the impact of the input

measurement noise on the unknown input estimate becomes negligible, s(t) is similar

for both the OE (Example 4.4) and the EIV (Example 4.5) cases.

4.5 Concluding remarks

The algorithms presented in this chapter are extensions of the PE-UIO developed in

Chapter 3. The basic idea of the unknown input reconstruction scheme for Hammerstein-

Wiener systems is to, firstly, knowing the system nonlinearities calculate the known in-

put and the output of the linear block, then use the PE-UIO to calculate the unknown

input. The algorithm has been developed for the EIV framework, i.e. when both mea-

sured input and output of the system are subjected to white, Gaussian, zero-mean,
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Figure 4.16: Upper and middle subfigures demonstrate adaptive minimisation of the
effect of measurement output noise on the input estimate in Example 4.5.
Lower subfigure compares values of parity space order s(t) as functions
of time in Examples 4.4 (OE) and 4.5 (EIV).

mutually uncorrelated noise sequences. The calculated values of the known input and

the output of the linear block are affected by measurement noise and the impact of

the EIV disturbance sequences depends on the values of the known input and out-

put themselves. This is due to the nonlinearities preceding and following the linear

block. Consequently, the impact of the measurement noise on the unknown input es-

timate changes over time. Therefore, the filter parameters are calculated at each time

instance.

In the first of the proposed algorithms, the PE-UIO-HW, the order of the parity

space, and thus the estimation delay, remains constant, whilst the filter parameters

vary over time.

Due to the fact that the impact of the measurement noise on the unknown input

estimate may vary significantly, a further extension to the scheme is proposed, where the

order of the parity space, s(t), is time varying. The parity space order is selected based

on values of the input and output measurement noise impact coefficients, calculated

as functions of noise variances and measured signals. The variable parity space order

allows the adjustment of the bandwidth of the unknown input reconstruction filter
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to the changing impact of the measurement noise on the unknown input estimate.

The variation of s(t) imposes a variable estimation lag, τ(t). Consequently, a logic is

implemented, which resolves the problem of time varying τ(t), resulting in a smooth

estimate of the unknown input.

The proposed schemes, since inherently adaptive, require at each discrete time

step a non negligible computational effort. The future work, therefore, aims towards

an optimisation of the computational procedure. It is also intended to extend the

algorithm to the multivariable case. Furthermore, block oriented models in the EIV

framework are a new topic in the literature, for which effective identification schemes are

required. Although it has been assumed that the unknown input is fed directly to the

linear block, the algorithm can be easily extended to the case, when the unknown input

is transformed by a nonlinear memoryless function, and afterwards, the transformed

unknown input is fed to the linear dynamic block (based on the assumption that the

static nonlinearity is invertible).
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Chapter 5

Robust fault detection via

eigenstructure assignment

Nomenclature

A . . . . . . . . . . . . . . . state transition matrix in state-space model

Ac1 ,Ac2 . . . . . . . . filter state transition matrices

Aλ,A
∗
e ,A

∗
e
(i)
,Aw auxiliary matrices

˜̃
A, Ã . . . . . . . . . . . . auxiliary matrices

A′ . . . . . . . . . . . . . . auxiliary matrix

B . . . . . . . . . . . . . . input matrix of the input in state-space model
˜̃
B . . . . . . . . . . . . . . auxiliary matrix

C . . . . . . . . . . . . . . output matrix in state-space model

C ′ . . . . . . . . . . . . . . auxiliary matrix

d(t) . . . . . . . . . . . . disturbance signal

di(t) . . . . . . . . . . . ith element of d(t)

d∗(t) . . . . . . . . . . . d(t), whose elements di(t) are delayed, respectively, by δi

D . . . . . . . . . . . . . . feedforward matrix of known input in state-space model

e . . . . . . . . . . . . . . . matrix of directions of elements of d(t)

ei . . . . . . . . . . . . . . direction of di

ē . . . . . . . . . . . . . . . matrix built from matrices ei

ēi . . . . . . . . . . . . . . matrix whose image is sum of image of ei and images of invariant zero directions

of (A, ei,C)

E . . . . . . . . . . . . . . input matrix of disturbance signal in state-space model

Ei . . . . . . . . . . . . . . ith column of input matrix of disturbance signal in state-space model

F . . . . . . . . . . . . . . input matrix of fault signal in state-space model

F (ē) . . . . . . . . . . . projection of F on subspace spanned by columns of ē

F (ē�) . . . . . . . . . . projection of F on subspace orthogonal to ē

g, gi . . . . . . . . . . . . auxiliary scalar

I . . . . . . . . . . . . . . . identity matrix

J, J1, J2 . . . . . . . . . gain matrices

K,K1,K2,K
′ . . . gain matrices

lj , l
∗
j . . . . . . . . . . . . transposes of left eigenvectors of filter state transition matrix

m . . . . . . . . . . . . . . number of system outputs

n . . . . . . . . . . . . . . . number of states in state-space model
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p . . . . . . . . . . . . . . . number of system inputs

P (λi) . . . . . . . . . . auxiliary function of λi

P,R . . . . . . . . . . . . auxiliary matrices

Pl,k . . . . . . . . . . . . auxiliary term

q . . . . . . . . . . . . . . . number of disturbance signals

Q . . . . . . . . . . . . . . gain matrix

r . . . . . . . . . . . . . . . number of fault signals

r(t) . . . . . . . . . . . . residual

ri(t) . . . . . . . . . . . . ith element of r(t)

rq . . . . . . . . . . . . . . number of rows of Q

T . . . . . . . . . . . . . . . similarity transformation matrix

T1, T2 . . . . . . . . . . . submatrices of T

u(t) . . . . . . . . . . . . system input

u0(t) . . . . . . . . . . . noise-free output in output-error case

ũ(t) . . . . . . . . . . . . input measurement noise

U(t) . . . . . . . . . . . . stacked vector of last τ + 1 values of u(t)

U0(t) . . . . . . . . . . . stacked vector of last τ + 1 values of u0(t)

Ũ(t) . . . . . . . . . . . . stacked vector of last τ + 1 values of ũ(t)

v, vj , v
(i)
j . . . . . . . . auxiliary vectors

Ve . . . . . . . . . . . . . . matrix whose columns are eigenvectors of filter state transition matrix

wj ,w
(i)
j ,w

′(i)
j . . . right eigenvectors of filter state transition matrix

w∗j . . . . . . . . . . . . . auxiliary vector

W . . . . . . . . . . . . . . auxiliary matrix

Wu,Wy . . . . . . . . . parity matrices

x(t) . . . . . . . . . . . . state vector instate space model

x̂(t) . . . . . . . . . . . . state estimate

xi,j . . . . . . . . . . . . . auxiliary scalars

X . . . . . . . . . . . . . . auxiliary matrix

y(t) . . . . . . . . . . . . system output

y0(t) . . . . . . . . . . . noise-free output in output-error case

ỹ(t) . . . . . . . . . . . . output measurement noise

Y (t) . . . . . . . . . . . . stacked vector of last τ + 1 values of y(t)

Y0(t) . . . . . . . . . . . stacked vector of last τ + 1 values of y0(t)

Ỹ (t) . . . . . . . . . . . . stacked vector of last τ + 1 values of ỹ(t)

zi . . . . . . . . . . . . . . system zero

zi(t) . . . . . . . . . . . . state estimate

αi . . . . . . . . . . . . . . auxiliary parameter

βi, β̄i . . . . . . . . . . . auxiliary parameter vector

δi . . . . . . . . . . . . . . auxiliary term

λj , λ
(i)
j . . . . . . . . . eigenvalue of filter state transition matrix

Λe . . . . . . . . . . . . . . diagonal matrix whose diagonal elements are eigenvalues of filter state transition

matrix

µ(t) . . . . . . . . . . . . fault signal

µi(t) . . . . . . . . . . . ith element of fault signal

Θ(i), Θ̄(i) . . . . . . . auxiliary matrices

Ω . . . . . . . . . . . . . . . set of all invariant zeros of (A, e,C) or an auxiliary matrix

Ωi . . . . . . . . . . . . . . set of all invariant zeros of (A, ei,C)

Σũ,Σỹ,Σµ̄ . . . . . . covariance matrices

τ . . . . . . . . . . . . . . . convergence time of finite time-convergent state observer, order of parity space

ξ(t) . . . . . . . . . . . . state estimation error
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Ψ . . . . . . . . . . . . . . auxiliary matrix

Preliminary reading: Sections 2.2, 2.6, and 2.7.

5.1 Introduction

Increasing complexity of industrial systems leads to a growing demand for system fault

diagnosis. Furthermore, system uncertainties (disturbances), such as modelling errors,

parameter variations or unmeasurable external stimuli, obstruct the fault detection

process, leading to false alarms. Therefore, a need arises for robust, i.e. disturbance

decoupled, fault detection schemes. In this chapter robust fault detection is consid-

ered. This means that the residual generator is sensitive to faults but insensitive to

disturbances.

Frank & Wünnenberg (1989), Duan & Patton (2001), and Edelmayer (2005) pre-

sented robust fault detection schemes based on unknown input observers. LMI have

been also used for the robust fault detection (Chen & Nagarajaiah 2007, Ding, Zhong,

Bingyong & Zhang 2001). Zhong, Ding, Lam & Wang (2003) proposed an LMI ap-

proach to design a robust fault detection filter for uncertain linear time-invariant sys-

tems. Patton and Chen (Patton & Chen 1991b, Chen & Patton 1999) used the left

and right eigenstructure assignment techniques for the purpose of disturbance decou-

pling. Furthermore, the equivalence between the left eigenstructure assignment-based

robust fault detection filter and the first order PE has been demonstrated by Patton &

Chen (1991a, 1991b, 1991c). Also the problem of the robust fault detection via eigen-

structure assignment has been of the topic of the research of Park & Rizzoni (1994)

and Shen & Hsu (1998). Douglas & Speyer (1995) proposed an algorithm for pre-

venting ill-conditioning when using left eigenstructure assignment. A novel method for

left eigenstructure assignment has been proposed in (Kowalczuk & Suchomski 2005).

Patton & Liu (1994) presented a robust control design method using eigenstructure

assignment, genetic algorithms and a gradient-based optimisation. A reconfigurable

control scheme has been presented in (Ashari, Sedigh & Yazdanpanah 2005a, Ashari,

Sedigh & Yazdanpanah 2005b).

Eigenstructure assignment has been used in various industrial applications. A re-

view of applications has been presented in (Isermann & Balle 1997). Robust fault

detection filters based on eigenstructure assignment have been used in a rolling mill

(Gu & Poon 2003), a jet engine (Patton & Chen 1992), an automotive engine (Shen &

Hsu 1998), an advanced vehicle control systems (Douglas, Speyer, Mingori, Chen, Mal-

ladi & Chung 1996), a single-shaft gas turbine (Fantuzzi, Simani & Beghelli 2001), a

flexible manipulator (Tan & Habib 2006), an inverted pendulum (Tan & Habib 2004), a

vehicle health monitoring system (Ng, Chen & Speyer 2006), and a longitudinal motion

of an unmanned aircraft model (Siahi, Sadrnia & Darabi 2009). Luenberger state ob-

servers using a fixed-structure H∞ optimization have been applied to fault detection of a
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lane-keeping control of automated vehicles (Ibaraki, Suryanarayanan & Tomizuka 2005)

and fifth order linearised dynamics of an aircraft (Ashari et al. 2005a).

This chapter is organised as follows: in Section 5.2 the robust fault detection filter

design method via right eigenstructure assignment of Chen & Patton (1999) is extended

to systems whose output response to disturbances contains invariant zeros. Then design

of robust PE via right eigenstructure assignment is proposed in Section 5.3. Further-

more, in Section 5.4 the left eigenstructure assignment is utilised to design robust PE

of a user defined order.

5.2 Robust fault detection via right eigenstructure assign-

ment for systems with unstable invariant zeros

Tan, Edwards & Kuang (2006b) extended the work of Chen & Patton (1999) providing a

right eigenstructure method for a sensor fault reconstruction. They demonstrated that

the invariant zeros of the transfer function between the disturbance and the output are

the unobservable modes of the robust fault detection filter. Therefore, filter stability can

only be ensured provided these zeros lie inside the unit circle. Tan, Edwards & Kuang

(2006b) used LMI to solve the filter equations. A continuation of they work has been

presented in (Tan, Edwards & Kuang 2006a), however the problem of using the right

eigenstructure assignment for the robust fault detection filter design in the presence of

unstable invariant zeros has not been resolved. The problem has been solved by Chen &

Speyer (2006a, 2006b, 2007) using a geometric approach. Chen & Speyer (2006b) used

the spectral theory to design a Beard-Jones fault isolation filter, whose applicability

has been extended to systems with unstable invariant zeros. Furthermore, a design of

the filter has been presented using eigenstructure assignment (Chen & Speyer 2006a)

and LMI (Chen & Nagarajaiah 2007).

This section extends the design method of a robust fault detection filter proposed

in (Chen & Patton 1999) to systems whose output response to disturbances contains

invariant zeros. Although the geometrical structure of the filter proposed here is similar

to that of Chen and colleagues (2006b, 2006a, 2007), the design procedure is simpler.

Similarities and differences between the robust fault detection filter presented in this

section and a fault isolation filter of Chen & Speyer (2006a) are discussed in Subsec-

tion 5.2.6.

5.2.1 Problem statement

It is assumed that a linear, dynamic, discrete-time, time-invariant system can be rep-

resented by the following equations, cf. (2.64):

x(t + 1) = Ax(t) +Bu(t) +Ed(t) + Fµ(t)
y(t) = Cx(t) +Du(t) (5.1)
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where x(t) ∈ Rn is the system state vector, u(t) ∈ Rp and y(t) ∈ Rm are, respectively,

the system input and output, d(t) ∈ Rq denotes a disturbance vector, whilst µ(t) ∈ Rr

is a fault signal. Matrices A, B, C, D, E, and F are constant and have appropriate

dimensions. It is assumed that (C,A) is an observable pair and the matrix E is of full

column rank.

Problem of unstable invariant zeros

Consider the robust fault detection filter described in Subsection 2.6.1 applied to the

system (5.1). Tan et al. (2006a) observed that the invariant zeros of the system

(A,Ei, C) are unobservable modes of the pair (C ′,A′), cf. (2.69). As a result, if the

invariant zero is unstable, the pair (C ′,A′) is not detectable. Consequently, in order to

ensure stability of the fault detection filter (2.54) in the case, when the triple (A,Ei, C)
has an unstable invariant zero, the design procedure needs to be altered, which is

proposed in Subsections 5.2.2, 5.2.3, and 5.2.4.

Lemma 5.1. Denote invariant zeros of (A,Ei, C) as z1, z2,⋯, zqi . Then zeros of (A,Ei, C)
fulfil the following recursive set of equations:

⎡⎢⎢⎢⎢⎣
zjI −A −vj−1

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
vj

gj

⎤⎥⎥⎥⎥⎦
= 0 (5.2)

where v0 denotes Ei, vj , j = 1,⋯, qi are vectors and gj , j = 1,⋯, gi are scalar values.

Proof. Equation (5.2) can be reformulated as:

A [ v1 v2 ⋯ vqi ] − [ v1 v2 ⋯ vqi ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 −g2 0 ⋯ 0

0 z2 −g3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ zqi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+Ei [ g1 0 ⋯ 0 ] = 0

(5.3)

which is equivalent to (2.35).

Lemma 5.2. If the pair (A,C) is observable, scalars gj , j = 1,⋯, qi in (5.2) are non-

zero.

Proof. If gj = 0 then (5.2) becomes:

⎡⎢⎢⎢⎢⎣
zjI −A

C

⎤⎥⎥⎥⎥⎦
vj = 0 (5.4)

which means that zj is an unobservable mode of the system (A,Ei, C). However, the

pair (C,A) is observable, hence it does not have unobservable modes. Consequently,

gj ≠ 0.
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Rank condition

A certain case when the rank condition:

rank(CE) = rank(
⎡⎢⎢⎢⎢⎣
Aλ

CE

⎤⎥⎥⎥⎥⎦
) (5.5)

is not fulfilled is considered here and a solution is proposed, which allows to relax the

strict rank condition and, consequently, apply the robust fault detection filter presented

in Subsection 2.6.1. Denote δi, i = 1,⋯, q the lowest number for which:

CAδiEi ≠ 0 (5.6)

Consider the situation when δi = 0 for i = 1,⋯, q0, where q0 < q, whilst δi ≠ 0 for

i = q0 + 1,⋯, q. Then CEi = 0 for i = q0 + 1,⋯, q, whilst the ith column of Aλ is:

(A − λiI)Ei (5.7)

The rank condition (5.5) is fulfilled if and only if the ith column of Aλ, i = q0 + 1,⋯, q,

is zero. This occurs if and only if Ei is a right eigenvector of A corresponding to the

eigenvalue λi. This would, however, mean that Ei belongs to the unobservable subspace

of the pair (C,A). Thus, as it has been assumed that (C,A) is observable, i.e. (C,A)
does not have any unobservable subspace, Ei is not a right eigenvector of A and the

rank condition (5.5) is not fulfilled. In order to relax this condition it is proposed to

slightly alter the robust fault detection filter design presented in Subsection 2.6.1, by

replacing E with the following matrix:

e = [ e1 e2 ⋯ eq ] (5.8)

where:

ei = A
δiEi (5.9)

From the definition of δi, cf. (5.6), it holds that Cei ≠ 0 for i = 1,⋯, q. Therefore,

columns of Aλ do not require to be equal to zero.

Theorem 5.1. Invariant zeros of the triple (A, ei, C) are equal to the invariant zeros

of (A,Ei, C) plus δi zero-valued invariant zeros.

Proof. For j = 1,2,⋯, δi it holds, that

⎡⎢⎢⎢⎢⎣
−A −AjEi

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Aj−1Ei

−1

⎤⎥⎥⎥⎥⎦
= 0 (5.10)

Therefore, from Lemma 5.1 it follows, that invariant zeros of (A, ei, C) are z1 = z2 =

⋯ = zδi = 0, whilst the corresponding vectors v0 = A
δiEi = ei, v1 = A

δi−1Ei,⋯, vδi = Ei,

and g1 = g2 = ⋯ = gδi = −1.
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Consequently, replacing the matrix E with e in the filter described in Subsection 2.6.1

results in the pair (C ′,A′) having zero-valued unobservable modes. It may be, however,

desired to set the eigenvalues of (A −KC) to different numbers that zero. In such a

situation the algorithms presented in the following subsections may be used.

Positive values of δi indicate a delay between the disturbance and the system output.

Thus, the system (5.1) can be reformulated as:

x(t + 1) = Ax(t) +Bu(t) + Fµ(t) + ed∗(t)
y(t) = Cx(t) +Du(t) (5.11)

where elements of d∗(t) are respective elements of d(t) delayed by δi, i.e.:

d∗(t) = [ d1(t − δ1) d2(t − δ2) ⋯ dq(t − δq) ]T (5.12)

5.2.2 Solution for q = 1 with a single invariant zero

In this subsection the algorithm of Chen & Patton (1999) is extended to the system,

where the invariant zero of (A, e,C) is unstable. For sake of simplicity it is assumed

that q = 1 and the triple (A, e,C) has only one invariant zero denoted as ze. Hence,

from the definition of an invariant zero, cf. (2.9), it follows that:

⎡⎢⎢⎢⎢⎣
zeI −A −e

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v

g

⎤⎥⎥⎥⎥⎦
= 0 (5.13)

where v and g are the invariant zero state and input directions, respectively. Utilising

a similar solution to that in (Massoumnia 1986) a vector ē is created, such that:

ē = [ e v ] (5.14)

The aim of the scheme is to create such a filter that the state trajectory yielded by the

disturbance d(t) remains in the subspace Im{ē}, as opposed to the algorithm presented

in (Chen & Patton 1999), where the state trajectory of the disturbance d(t) remains in

the one-dimensional subspace Im{e}. In order for the solution to this problem to exist

the subspace Im{ē} must be (C,A)-invariant, i.e. there must exist such a gain matrix

K that Im{(A−KC)ē} ⊆ Im{ē}, see (Halmos 1958, Basile & Marro 2002). This means

that there exists such a matrix X, that, cf. (2.19):

(A −KC)ē = ēX (5.15)

Note that, if (A, e,C) has no invariant zeros, then v = ∅, and, consequently, ē = E and

X = λ1, where λ1 is the desired eigenvalue of (A−KC) corresponding to the vector E.

The necessary and sufficient conditions for disturbance decoupling are:

1. The subspace Im{ē} is an invariant subspace of (A −KC)
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2. QCe = 0

From (5.15) it holds that the columns of ē are linear combinations of eigenvectors of

the matrix (A −KC):
ē = VeΨ (5.16)

where columns of Ve are the first two eigenvectors of (A−KC) and Ψ is an appropriate

matrix. Because (A−KC) is allocated distinct eigenvalues, rank{Ve} = 2, i.e. columns

of Ve are linearly independent. Also columns of ē are linearly independent (El-Ghezawi

et al. 1983). Consequently, matrix Ψ is of full rank. Furthermore:

(A −KC)Ve = VeΛe (5.17)

where Λe is a diagonal matrix, whose diagonal elements are user defined eigenvalues

corresponding to the columns of Ve. By postmultiplying both sides of (5.17) by Ψ, the

following equation is obtained:

(A −KC)VeΨ = VeΛeΨ (5.18)

Incorporating (5.15) and (5.16) into (5.18):

VeΛeΨ = VeΨX (5.19)

This yields:

ΛeΨ = ΨX (5.20)

Therefore, recalling that Ψ is of full rank, the matrix X can be defined as:

X = Ψ−1ΛeΨ (5.21)

where columns of Ψ−1 are right eigenvectors of X, whilst diagonal elements of Λe are

its corresponding eigenvalues. Consequently, it can be noted that the eigenvalues of X

are equal to the eigenvalues of (A −KC) corresponding to the columns of Ve, i.e. the

linear combinations of columns of ē.

From (5.15) it follows that:

KCē = Aē − ēX (5.22)

Denote Aē− ēX as Ae. The necessary and sufficient conditions to assign all columns of

ē as linear combinations of the right eigenvectors of (A −KC) are:

(i) rank(Cē) = rank(
⎡⎢⎢⎢⎢⎣
Ae

Cē

⎤⎥⎥⎥⎥⎦
)
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(ii) (C ′,A′) is a detectable pair, where:

A′ = A −Ae(Cē) C
C ′ = (I −Cē(Cē) )C (5.23)

Theorem 5.2. Diagonal elements of Λe are unobservable modes of the pair (C ′,A′).
Proof. Diagonal elements of Λe, denoted as λ1 and λ2, correspond to the right eigen-

vectors of (A′ −K ′C ′) denoted as w1 and w2:

(A −Ae(Ce) C −K ′ (I −Ce(Ce) )C)wi = λiwi (5.24)

which holds for any arbitrary K ′, therefore if K ′ = 0:

(λiI − (A −Ae(Ce) C))wi = (λiI −A′)wi = 0 (5.25)

Consequently:

K ′ (I −Ce(Ce) )Ce =K ′C ′wi = 0 (5.26)

which is valid for any K ′, hence:

C ′wi = 0 (5.27)

As a result it holds that: ⎡⎢⎢⎢⎢⎣
λiI −A

′

C ′

⎤⎥⎥⎥⎥⎦
wi = 0 (5.28)

which means that the diagonal elements of Λe are unobservable modes of the pair

(C ′,A′) and only remaining n − 2 eigenvalues can be allocated by K ′.

Calculation of the matrix X

From (5.13) it follows that:

Av = zev − ge (5.29a)

Cv = 0 (5.29b)

Therefore, from (5.29b) it follows that:

(A −KC)v = Av (5.30)

Consider (5.15), then:

(A −KC) [ e v ] = [ e v ]X (5.31)

Denote elements of X as xij . Incorporating (5.30) into (5.31) it holds that:

[ (A −KC)e Av ] = [ x11e + x21v x12e + x22v ] (5.32)
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Consequently, from (5.29a) it can be deduced that x12 = −g and x22 = ze. Knowing that

X has the same eigenvalues as Λe, x11 and x21 are calculated as:

x11 = λ1 + λ2 − ze (5.33a)

x21 = −
(ze − λ1)(ze − λ2)

g
(5.33b)

Rank condition

Recall the rank condition (i) in Subsection 5.2.1 and (5.29b). It can be deduced that:

rank(Cē) = rank([ Ce Cv ]) = rank(Ce) (5.34)

and:

Ae = [ Ae − x11e − x21v Av − zev + ge ] (5.35)

From (5.29a), it holds that the second column of Ae is equal to zero. Therefore, using

the notation:

A∗e = Ae − x11e − x21v (5.36)

it holds that:

rank(
⎡⎢⎢⎢⎢⎣
Ae

Cē

⎤⎥⎥⎥⎥⎦
) = rank(

⎡⎢⎢⎢⎢⎣
A∗e

Ce

⎤⎥⎥⎥⎥⎦
) (5.37)

Hence, the assignability condition can be reformulated as:

(i) rank(Ce) = rank(
⎡⎢⎢⎢⎢⎣
A∗e

Ce

⎤⎥⎥⎥⎥⎦
)

(ii) (C ′,A′) is a detectable pair, where:

A′ = A −A∗e(Ce) C
C ′ = (I −Ce(Ce) )C (5.38)

The algorithm for the design of a robust fault detection filter (RFDF) using right

eigenstructure assignment is summarised below.

Algorithm 5.1 (RFDF via right eigenstructure assignment, q = 1, q1 = 1).

1. Obtain disturbance direction matrix e using (5.6), (5.8) and (5.9)

2. Calculate Q such that QCe = 0

3. Select eigenvalues λ1 and λ2
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4. Calculate invariant zero state and input directions v and g from

⎡⎢⎢⎢⎢⎣
zeI −A −e

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v

g

⎤⎥⎥⎥⎥⎦
= 0 (5.39a)

5. Calculate coefficients x11 and x21 via:

x11 = λ1 + λ2 − ze (5.39b)

x21 = −
(ze − λ1)(ze − λ2)

g
(5.39c)

6. Obtain matrix Ae as:

A∗e = (A − x11I)e − x21v (5.39d)

7. Obtain:

A′ = A −A∗e(Ce) C (5.39e)

C ′ = (I −Ce(Ce) )C (5.39f)

8. Using any eigenstructure assignment method allocate remaining n − 2 eigen-

values of (A′ −K ′C ′)
9. Calculate the gain matrix K:

K = A∗e(Ce) +K ′ (I −Ce(Ce) ) (5.39g)

5.2.3 Solution for q = 1 with multiple invariant zeros

Consider the system (5.1) where q = 1 and the triple (A, e,C) has q1 (q1 < n) invariant

zeros denoted as z1,⋯, zq1 . One can assign a vector vi and a scalar gi to each invariant

zero zi such that: ⎡⎢⎢⎢⎢⎣
ziI −A −vi−1

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
vi

gi

⎤⎥⎥⎥⎥⎦
= 0 (5.40)

where v0 refers to the vector e. It follows from Lemma 5.2 that gi are non-zero, hence,

vectors vi, i = 1,2,⋯, q1 can be scaled such that gi = −1 for i = 1,2,⋯, q1. The aim of the

algorithm is to force the state trajectory governed by the disturbance d(t) to remain

within the subspace Im{ē} defined as:

ē = [ e v1 ⋯ vq1 ] (5.41)
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which requires ē to be a (C,A)-invariant subspace, i.e. there exist such a gain matrix

K that, cf. (5.15):

KCē = Aē − ēX (5.42)

Due to the fact that Cvi = 0 for i = 1,⋯, q1, all columns of Ae = Aē − ēX, except of the

first one, must be equal to zero for the solution of (5.42) to exist. Denote the elements

of X as xij , then the ith column of Ae is given by:

Avi−1 − (x1iv0 + x2iv1 +⋯+ xq1+1vq1) = 0 (5.43)

From (5.40) it follows that (recall that gi = −1 for i = 1,2,⋯, q1):

Avi−1 = zi−1vi−1 + vi−2 (5.44)

Incorporating (5.44) into (5.43) the following equation is obtained:

x1iv0 + x2iv1 +⋯+ (xi−1,i − 1)vi−2 + (xi,i − zi−1)vi−1 +⋯+ xq1+1vq1 = 0 (5.45)

Due to the fact that v1,⋯, vq1 are linearly independent:

xi−1,i = 1 for i = 2,⋯, q1 + 1 (5.46a)

xi,i = zi−1 for i = 2,⋯, q1 + 1 (5.46b)

xj,i = 0 for j ≠ i and j ≠ i − 1 (5.46c)

Consequently the matrix X is given by:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 1 0 0 ⋯ 0 0

x21 z1 1 0 ⋯ 0 0

x31 0 z2 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

xq11,1 0 0 0 ⋯ zq1−1 1

xq1+1,1 0 0 0 ⋯ 0 zq1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.47)

The first column of X is chosen such that the eigenvalues of X are equal to the desired

eigenvalues of (A − KC) corresponding to the linear combinations of columns of ē,

cf. (5.20). Consequently, (for derivation details see Appendix A) the first column of X

given by: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x12

⋮

xq1+1,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

˜̃
A−1

˜̃
B (5.48)
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where an element of ˜̃
A ∈ R(q1+1)×(q1+1), denoted as ˜̃

Aj,k is:

˜̃
Aj,k = (−1)k−1 qi

∏
l=k

(zl − λj) (5.49)

whilst the jth element of the vector ˜̃
B ∈ Rq1+1, denoted as ˜̃

Bj is:

˜̃
Bj = λj

qi

∏
l=1

(zl − λj) (5.50)

Algorithm 5.2 (RFDF via right eigenstructure assignment, q = 1, q1 ≥ 1).

1. Obtain disturbance direction matrix e using (5.6), (5.8) and (5.9)

2. Obtain Q such that QCe = 0

3. Denote e as v0 and obtain invariant zeros of the pair (A, e,C) and corre-

sponding vectors vi, for i = 1,⋯, q1

⎡⎢⎢⎢⎢⎣
ziI −A −vi−1

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
vi

−1

⎤⎥⎥⎥⎥⎦
= 0 (5.51a)

4. Select eigenvalues λ1,⋯, λq1+1

5. Calculate coefficients x11,⋯, xq1+1,1 using (5.48), (5.49), and (5.50)

6. Obtain matrix A∗e as:

A∗e = (A − x11I)e − x21v1 − x31v2 −⋯− xq1+1,1vq1 (5.51b)

7. Obtain:

A′ = A −A∗e(Ce) C (5.51c)

C ′ = (I −Ce(Ce) )C (5.51d)

8. Allocate remaining n − q1 − 1 eigenvalues of (A′ −K ′C ′)
9. Calculate K

K = A∗e(Ce) +K ′ (I −Ce(Ce) ) (5.51e)
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5.2.4 General solution for q ≥ 1

In this section a general solution for the robust fault detection filter when q ≥ 1 is

presented. It is assumed that the triple (A, e,C) has invariant zeros. The invariant

zeros of (A, ei, C), where ei refers to the ith column of e, are denoted as z
(i)
1
,⋯, z

(i)
qi . It

is assumed that the invariant zeros fulfil the condition:

Ω =
q

⊎
i=1

Ωi (5.52)

where Ω is the set of all invariant zeros of (A, e,C), whilst Ωi denotes the set of the

invariant zeros of (A, ei, C), see (Massoumnia 1986). The aim of the algorithm is to

ensure that the state trajectory driven by di(t) remains in the subspace Im{ēi}, where:

ēi = [ ei v
(i)
1
⋯ v

(i)
qi ] (5.53)

Therefore, the necessary and sufficient conditions for the robust fault detection are:

1. For each column of the matrix e it holds that Im{ēi} is an invariant subspace of

(A −KC)
2. QCe = 0

Analogously to the case where e is a column vector, cf. Subsection 5.2.2, the matrix

A∗e is built, such that:

A∗e = [ A∗(1)e A
∗(2)
e ⋯ A

∗(q)
e ] (5.54)

where:

A∗(i)e = (A − x(i)
11
I)ei − x(i)21 v(i)1

− x
(i)
31
v
(i)
2
−⋯− x

(i)
qi+1,1

v(i)qi
(5.55)

The matrices A′ and C ′ are built as in (5.51c) and (5.51d). Note that if the (A, ei, C)
has no invariant zeros then it holds that δi = 0 and ei = Ei, see Lemma 5.2, and:

A∗(i)e = (A − λiI)ei (5.56)

Hence, if the system has no invariant zeros and δi = 0 for i = 1,⋯, q the algorithm

presented here is equivalent to that of Chen & Patton (1999). The necessary conditions

for the solution of the robust fault detection filter to exist are:

(i) rank(Ce) = rank(
⎡⎢⎢⎢⎢⎣
A∗e

Ce

⎤⎥⎥⎥⎥⎦
)

(ii) (C ′,A′) is a detectable pair, where:

A′ = A −A∗e(Ce) C
C ′ = (I −Ce(Ce) )C (5.57)
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Similarly as in the previous case the matrix X(i) is given by:

X(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(i)
11

1 0 0 ⋯ 0 0

x
(i)
21

z
(i)
1

1 0 ⋯ 0 0

x
31(i)

0 z
(i)
2

1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

x
(i)
q11,1

0 0 0 ⋯ z
(i)
q1−1

1

x
(i)
q1+1,1

0 0 0 ⋯ 0 z
(i)
q1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.58)

and its first column is calculated via:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(i)
11

x
(i)
12

⋮

x
(i)
q1+1,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ( ˜̃
A(i))−1 ˜̃

B(i) (5.59)

where an element of ˜̃
A(i) ∈ R(qi+1)×(qi+1), denoted as ˜̃

A
(i)
j,k

is:

˜̃
A
(i)
j,k
= (−1)k−1 qi

∏
l=k

(z(i)
l
− λ
(i)
j ) (5.60)

whilst the jth element of the vector ˜̃
B ∈ Rq1+1, denoted as ˜̃

Bj is:

˜̃
B
(i)
j = λ

(i)
j

qi

∏
l=1

(z(i)
l
− λ
(i)
j ) (5.61)

The generalised form of the algorithm for disturbance decoupled fault detection

filter is given below.

Algorithm 5.3 (RFDF via right eigenstructure assignment, q ≥ 1, qi ≥ 0).

1. Calculate disturbance direction matrix e using (5.6), (5.8) and (5.9)

2. Obtain Q such that QCe = 0

3. For each column of e obtain invariant zeros of the triple (A, ei, C), denoted

as z
(i)
j , and corresponding vectors v

(i)
j , for j = 1,⋯, qi

⎡⎢⎢⎢⎢⎣
z
(i)
j I −A −v

(i)
j−1

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v
(i)
j

−1

⎤⎥⎥⎥⎥⎦
= 0 (5.62a)

where v
(i)
0

denotes ei.
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4. Select eigenvalues λ
(i)
1
,⋯, λ

(i)
qi+1

corresponding to linear combinations of v
(i)
j ,

j = 1,2,⋯, qi + 1

5. Calculate coefficients x
(i)
11
,⋯, x

(i)
qi+1,1

using (5.59–5.61)

6. Obtain matrix A∗e as:

A∗e = [ A∗(1)e A
∗(2)
e ⋯ A

∗(q)
e ] (5.62b)

where

A∗(i)e = (A − x(i)
11
I)ei − x(i)21 v(i)1

− x
(i)
31
v
(i)
2
−⋯− x

(i)
qi+1,1

v
(i)
k

(5.62c)

7. Obtain:

A′ = A −A∗e(Ce) C (5.62d)

C ′ = (I −Ce(Ce) )C (5.62e)

8. Allocate remaining eigenvalues of (A′ −K ′C ′)
9. Calculate K

K = A∗e(Ce) +K ′ (I −Ce(Ce) ) (5.62f)

5.2.5 Consideration of residual response to fault

In this subsection some remarks considering the residual response to a fault and its

dependency on the choice of the gain matrix K are discussed.

Zero-pole cancellation in the residual response to fault

Remark 5.1. Unobservable modes of (C ′,A′) are unobservable modes of (QC, (A −
KC)).
Demonstration. Consider unobservable modes of (C ′,A′), i.e. the eigenvalues of

(A −KC) corresponding to linear combinations of ei. Denote the eigenvectors of (A −
KC) corresponding to the unobservable modes of (C ′,A′) as w

(i)
j , i = 1,⋯, q; j = 1,⋯, qi.

Recall that w
(i)
j ∈ Im{[ ei v

(i)
1
⋯ v

(i)
qi ]}. It is known that:

Cv
(i)
j = 0 (5.63a)

QCei = 0 (5.63b)
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Therefore, it holds that:

QCw
(i)
j = 0 (5.64a)

(Iλ(i)j −A +KC)w(i)j = 0 (5.64b)

where λ
(i)
j is the eigenvalue of (A−KC) corresponding to the eigenvector λ

(i)
j . Conse-

quently, the unobservable modes of (C ′,A′) are the unobservable modes of (QC, (A −
KC)).
This results in a zero-pole cancellation of the unobservable modes of (C ′,A′) in the

transfer function of (A − KC,F,QC). Consequently, the observable modes of (A −
KC,F,QC) are only those eigenvalues of (A −KC) which are assigned by the choice

of the matrix K ′. This information may be useful for designing the residual response

to faults.

Note that the necessary condition for the fault to be detected by the filter is:

QC(zI −A +KC)−1F ≠ 0 (5.65)

Without loss of generality assume that F is a column vector. Using the notation

ē = [ ē1 ē2 ⋯ ēq ], the matrix F can be expressed as a sum of its orthogonal

projections on Im{ē} and the orthogonal completion of Im{ē}
F = F (ē) + F (ē�) (5.66)

where F (ē) is an orthogonal projection of F on Im{ē}, whereas F (ē�) denotes an

orthogonal projection of F on the orthogonal completion on Im{ē}. Due to the fact

that F (ē) belongs to the unobservable subspace of the fault detection filter, the fault

to residual transfer function, denoted as Gfr(z), is given by:

Gfr(z) = QC(zI −A +KC)−1F (ē�) (5.67)

This means that the necessary condition for the robust fault detection filter to exist

is that the dimension of the unobservable subspace of (QC,A −KC) is lower that n

(otherwise no fault can be detected as the whole state space is unobservable for the

fault detection filter).

Invariant zeros in the residual response to fault

Invariant zeros shape the response of the residual to a fault. In some situations, e.g.

fault identification, it may be desirable to influence not only its poles, but also zeros.

Remark 5.2. If rank(Q) = n−rank(Ce), then the selection of eigenvalues of (A−KC)
has no influence on the invariant zeros of the residual response to a fault.
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Demonstration. Without loss of generality it is assumed that dim{F} = 1. Then the

invariant zero of the residual response to a fault, denoted zf , fulfils the condition:

⎡⎢⎢⎢⎢⎣
A′ −K ′C ′ − zfI F

QC 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
vf

gf

⎤⎥⎥⎥⎥⎦
= 0 (5.68)

where vf and gf are the invariant zero state and input directions, respectively. Note

that Im{vf} ⊂ Ker{QC}, i.e. the state direction vf belongs to the right nullspace of QC.

The matrix Q which fulfils the condition QCe = 0 can be defined as (Basilevsky 1983):

Q = Q0 (I −Ce(Ce) ) (5.69)

where Q0 is an arbitrary matrix. Note that rows of Q are linear combinations of rows

of (I −Ce(Ce) ). Therefore, if rank(Q0) = rank (I −Ce(Ce) ) = n − rank(Ce), then

rank(Q) = n − rank(Ce). Hence, it follows, that if rank(Q0) = rank (I −Ce(Ce) ),
then the subspace spanned by the rows of Q is the subspace spanned by the rows of

(I −Ce(Ce) ). Furthermore, it holds that:

QC = Q0 (I −Ce(Ce) )C = Q0C
′ (5.70)

Hence, Ker{QC} = Ker{Q0C
′}. This means that, if rank(Q) = n − rank(Ce) then

Ker{QC} = Ker{Q0C
′} = Ker{C ′}. Recall that vf ⊂ Ker{QC}, then, if rank(Q) =

n − rank(Ce), it holds that:

QCvf = C
′vf = 0 (5.71)

This shows that the invariant zero of the residual response to fault, defined by (5.68),

does not depend on choice of K ′, i.e. zf does not depend on the choice of the eigenvalues

of (A −KC), which are not corresponding to the linear combinations of ēi, i = 1,⋯, q.

As a result (5.68) can be rewritten as:

A′vf − zfvf + Fgf = 0 (5.72a)

QCvf = 0 (5.72b)

Now it will be demonstrated that the invariant zeros of the residual response to

a fault do not depend on the choice of eigenvalues of (A −KC) corresponding to the

linear combinations of ēi, i = 1,⋯, q. Consider the following change of basis using the

following orthonormal matrix:

T = [ T1 T2 ] (5.73)

where:

Im{T1} = Im{[ ē1 ē2 ⋯ ēq ]} (5.74)
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and Im{T2} is an orthogonal completion of Im{T1}. Equation (5.72) is reformulated

using the similarity transformation T :

T TA′TT T vf − zfT
T vf + gfT

TF = 0 (5.75a)

QCTT T vf = 0 (5.75b)

which furthermore can be rewritten as:

⎡⎢⎢⎢⎢⎣
A1 A2

0 A3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
T T
1
vf

T T
2
vf

⎤⎥⎥⎥⎥⎦
− zf

⎡⎢⎢⎢⎢⎣
T T
1
vf

T T
2
vf

⎤⎥⎥⎥⎥⎦
+ gf

⎡⎢⎢⎢⎢⎣
T T
1
F

T T
2
F

⎤⎥⎥⎥⎥⎦
= 0 (5.76a)

[ 0 QCT2 ]
⎡⎢⎢⎢⎢⎣
T T
1
vf

T T
2
vf

⎤⎥⎥⎥⎥⎦
= 0 (5.76b)

where A1, A2, and A3 are the appropriate submatrices of T TA′T . The first element

in the left hand side matrix of (5.76b) is equal zero because QCe = 0. Using the

notation v′f = T
T
2
vf , if the invariant zero of the residual response to a fault exists, then

it conforms the following equation:

A3v
′

f − zfv
′

f + Fgf = 0 (5.77a)

QCv′f = 0 (5.77b)

Knowing v′f one can calculate vf which fulfils v′f = T
T
2
vf by solving dim{T2} equations

with n unknowns. Hence the obtained solution has n−dim{T2} parameters. The second

part of (5.76), i.e.

(A1T
T
1 +A2T

T
2 − zfT

T
1 + gfT

T
1 ) vf = 0 (5.78a)

consists of n− dim{T2} equations, from which remaining parameters can be found and

the vector vf calculated. Therefore, the existence of zf depends on A3 = T
T
2
A′T2.

Recall (5.62b) and (5.62c):

A∗e = [ Ae1 Ae2 ⋯ Aeq ] + [ ∑q1
i=0 v

(1)
i ∑q2

i=0 v
(2)
i ⋯ ∑qq

i=0 v
(q)
i
]

= Ae +Ω
(5.79)

where:

Ω = [ ∑q1
i=0 v

(1)
i ∑q2

i=0 v
(2)
i ⋯ ∑qq

i=0 v
(q)
i
] (5.80)

Recall that:

A′ = A −Ae(Ce) C +Ω(Ce) C (5.81)

Due to the fact that T T
2

Ω = 0:

A3 = T
T
2 A

′T2 = T
T
2 (A −Ae(Ce) C)T2 (5.82)
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5. Robust fault detection via eigenstructure assignment

Therefore, the matrix A3 and hence the invariant zeros of the residual response to a

fault do not depend on the choice of the eigenvalues of (A −KC).
5.2.6 Differences and similarities with fault isolation filter of Chen

and Speyer (2006a)

Although Algorithm 5.3 is designed for a robust fault detection, whilst Algorithm pre-

sented in Subsection 2.7.1, cf. (Chen & Speyer 2006a), is for a fault isolation, their

eigenstructures are the same, i.e. the eigenstructure of (A − KC,E,C) using Algo-

rithm 5.3 and eigenstructure of (A −KC,F,C) using the algorithm of Chen & Speyer

(2006b) are the same. The idea of both schemes is to find such a gain matrix K that

the following conditions are fulfilled:

(i) Eigenvalues of (A−KC) can be arbitrarily chosen (with constraint to no repeated

eigenvalues and conjugate symmetry)

(ii) Eigenvectors of (A −KC) are linear combinations of columns of e (f) and their

invariant zeros state directions.

Note that the condition (ii) in (Chen & Speyer 2006a) has been specified as:

w
(i)
j = Θ̄(i)β̄

(i)
j + fi = Θ(i)β

(i)
j (5.83)

where w
(i)
j is an eigenvector of (A −KC) and β̄(i) is an appropriate coefficient vector.

Columns of Θ̄(i) span the following subspace:

Im{Θ̄(i)} = Im{[ Fi AFi ⋯ Aδi−1Fi ]}⊕ Vi (5.84)

where Vi is the subspace spanned by invariant zero state directions of (A,Fi, C).
Chen & Speyer (2006a) explicitly indicate that each eigenvector of (A−KC) corre-

sponding to fi contains the vector fi. Although it is not explicitly said Algorithm 5.3

is characterised by the same property.

Lemma 5.3. Each eigenvector of (A−KC) obtained using Algorithm 5.3 correspond-

ing to linear combination of ēi contains ei.

Proof. Denote an eigenvector of (A −KC) corresponding to a linear combination of

columns of ēi as:

w
(i)
j = α

(i)
0
ei + α

(i)
1
v1 + α

(i)
2
v
(i)
2
+⋯+ α(i)qi v

(i)
qi

(5.85)

Consider the situation when α
(i)
0
= 0, i.e. the jth eigenvector of (A−KC) corresponding

to linear combination of ē, denoted as w
′(i)
j , is a linear combination of vectors v

(i)
k
, k =

1,2,⋯, qi but not ei:

w
′(i)
j = α

(i)
1
v1 + α

(i)
2
v
(i)
2
+⋯+ α(i)qi v

(i)
qi

(5.86)
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Then it holds that:

(A −KC)w′(i)j = λ
(i)
j w′(i) (5.87)

As w
′(i)
j is a linear combination of v

(i)
k
, k = 1,⋯, qi, it holds that Cw

′(i)
j = 0, cf. (5.40).

Consequently:

Aw
′(i)
j = λ

(i)
j w

′(i)
j (5.88)

i.e. w
′(i)
j a right eigenvector of A corresponding to eigenvalue λ

′(i)
j . Then, it holds that:

α
(i)
1
Av
(i)
1
+ α
(i)
2
Av
(i)
2
+⋯+ α(i)qi Av

(i)
qi
= λ
(i)
j v

(i)
1
+ λ
(i)
j v

(i)
2
+⋯ + λ

(i)
j v(i)qi

(5.89)

Incorporating (5.40) into (5.89):

− α
(i)
1
g
(i)
1
ei + (α(i)1 z

(i)
1
− α
(i)
2
g2 − λ

(i)
j ) v(i)1

+ (α(i)
2
z
(i)
2
− α
(i)
3
g3 − λ

(i)
j ) v(i)2

+⋯+

(α(i)qi−1z(i)qi−1
− α(i)qi gqi − λ

(i)
j ) v(i)qi−1

+ (α(i)qi z(i)qi
− λ
(i)
j ) v(i)qi

= 0
(5.90)

Because columns of ēi are linearly independent, the above equation holds if and only

if:

(i) gi = 0

(or)

(ii) α
(i)
1
= α
(i)
2
= ⋯ = α

(i)
qi = 0

Assumption (i) does not hold as the system is observable, see Lemma 5.2. Assumption

(ii) would mean that the eigenvector of (A−KC) corresponding to a linear combination

of columns of ēi is equal zero. Consequently, eigenvectors of (A −KC) corresponding

to linear combination of ēi must contain ei. Due to the fact that eigenvectors can be

arbitrarily scaled, the coefficient α
(i)
0

can be set to unity and the rest of the coefficients

can be scaled accordingly.

The solution to Algorithm 5.3 is such a matrix K that:

KCe = A∗e (5.91)

whilst the solution to the algorithm of Chen & Speyer (2006a) is:

KCf = Aw (5.92)

where

Aw = [ (A − λ(1)1
I)w(1)

1
(A − λ(2)

1
I)w(2)

1
⋯ (A − λ(q)

1
I)w(q)

1
] (5.93)

and w
(i)
1

, i = 1,2,⋯, q, are eigenvectors of (A −KC) corresponding to λ
(i)
j .
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Lemma 5.4. Matrices A∗e and Aw are equal.

Proof. See Appendix B.

The main difference between both algorithms is the calculation of the coefficients

needed to obtain columns of A∗e (Aw). The algorithm presented in Subsection 2.7.1

requires to calculate qi(qi + 1) of β̄j coefficients in order to calculate one column of

Aw. This is done by a pseudoinverse of a matrix of the dimension nqi × qi(qi + 1).
Furthermore, the β̄j coefficients are linearly dependent, cf. (B.9), and not all of them

are needed to compute a column of Aw. On the other hand, Algorithm 5.3 requires qi+1

coefficients to obtain any column of A∗e , which are calculated by solving a set of qi + 1

linear equations, which requires an inverse of a matrix of the dimension (qi+1)×(qi+1),
which is computationally less demanding compared to the algorithm of Chen & Speyer

(2006a).

5.2.7 Tutorial examples

Example 5.1. q = 1, single invariant zero

Consider the system (5.1), whose A, C, D, E, and F matrices are given by:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

−0.1155 −0.7985 −2.06 −2.35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8000

1.4000

1.2000

3.7725

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1.1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎣
−0.8165 0.5266 −0.2367 0

−0.4082 −0.2367 0.8816 0

⎤⎥⎥⎥⎥⎦

(5.94)

The triple (A,E,C) has one invariant zero at ze = 1.2, whose input direction is g = 1

and the zero state direction is given by:

v = [ 1 2 1 0 ]T (5.95)

Also CE ≠ 0, thus δ1 = 0 and e = E. The aim of the algorithm is to limit the state

trajectory governed by d(t) to the subspace Im{[ E v ]}. Eigenvalues of (A −KC)
corresponding to linear combinations of E and v are selected to be 0.45 and 0.65. This

corresponds to x11 = −0.1, cf. (5.39b), and x21 = 0.4125, cf. (5.39c). Consequently, the

matrix A∗e is calculated as, cf. (5.39d):

A∗e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9075

0.5150

3.4800

−11.9856

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.96)
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Matrices A′ and C ′ are given by, cf. (5.39e) and (5.39f):

A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5186 0.8704 −0.2593 0

0.2943 −0.0736 0.8529 0

1.9886 −0.4971 −0.9943 1

−6.9644 0.9137 1.3645 −2.35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C ′ =

⎡⎢⎢⎢⎢⎣
−0.1843 0.3685 −0.5528 0

0.1936 −0.3872 0.5807 0

⎤⎥⎥⎥⎥⎦

(5.97)

It is noted that:

rank(CE) = rank(
⎡⎢⎢⎢⎢⎣
A∗e

CE

⎤⎥⎥⎥⎥⎦
) = 1 (5.98)

and (C ′,A′) is a detectable pair, i.e. its unobservable modes, 0.45 and 0.65, lie within

the unit circle. Therefore, the solution for the stable filter design exists. The remaining

eigenvalues of (A−KC) are chosen to be 0.35 and 0.4 and consequently the matrix K ′

is given by:

K ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5936 4.0532

0.7442 2.6206

0.6739 −7.8011

−0.9526 2.0485

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.99)

Finally, the gain matrix K is obtained as:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.8760 2.8324

−0.7107 1.2356

5.8663 −2.8584

−7.1590 −3.8596

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.100)

Note that the fault distribution matrix F can be represented as a sum of:

F (Ē�) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3889

0.0528

−0.4944

0.2201

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and F (Ē) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6111

1.0472

0.4944

−0.2201

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.101)

where F (Ē) ∈ Im{Ē}, whilst the vector F (Ē�) is orthogonal to the subspace Im{Ē}.
Furthermore, the generalised angle between and F and the subspace Im{Ē} is given

by:

arccos( F TF (Ē)
∣∣F ∣∣2∣∣F (Ē)∣∣2)

180o

π
= 26.7o (5.102)

Consequently, as the fault input direction F ∉ Im{Ē}, the fault occurrence can be

detected by the robust fault detection filter. The simulation results are presented in

Fig. 5.1. As expected the fault detection filter is insensitive to disturbances, whereas
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Figure 5.1: Robust fault detection, q = 1, the triple (A,E,C) has single invariant zero.
Upper subfigure presents disturbances, whilst lower subfigure demon-
strates robust fault detection process. It can be noted that residual,
r(t), is insensitive to disturbances.

it is sensitive to fault.

Example 5.2. q = 1, multiple invariant zeros

In this example q = 1 and the triple (A,E,C) has two invariant zeros. Matrices of the

state-space system (5.1) are given by:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−0.0751 −0.6345 −2.1375 −3.5875 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.4400

0.6200

1.5600

−3.4816

18.3643

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎣
0.0948 −0.4811 0.8675 0 −0.0837

−0 0 0 1 0

⎤⎥⎥⎥⎥⎦
F =

⎡⎢⎢⎢⎢⎣
1 −1 1 1 0.3

2 3.4 2 0 0

⎤⎥⎥⎥⎥⎦
T

(5.103)

The triple (A,E,C) has two invariant zeros, namely z1 = 1.3 and z2 = 1.2, and:

v1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8000

−1.4000

−1.2000

0.0000

−3.4816

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.104)
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Poles of (A −KC) corresponding to linear combinations of E, v1, and v2 are selected

to be 0.35, 0.3, and 0.25. Consequently, matrices ˜̃
A and ˜̃

B are, cf. (5.49) and (5.50):

˜̃
A =

⎡⎢⎢⎢⎢⎢⎢⎣

0.9975 −0.95 1

0.9000 −0.90 1

0.8075 −0.85 1

⎤⎥⎥⎥⎥⎥⎥⎦
˜̃
B =

⎡⎢⎢⎢⎢⎢⎢⎣

0.2494

0.2700

0.2826

⎤⎥⎥⎥⎥⎥⎥⎦
(5.105)

Thus, the first column of the matrix X is given by, see (5.48):

X =

⎡⎢⎢⎢⎢⎢⎢⎣

−1.6000

−2.7075

−0.7268

⎤⎥⎥⎥⎥⎥⎥⎦
(5.106)

Then, the matrix A∗e is calculated as, cf. (5.51b):

A∗e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3912

0.2150

−3.5079

12.7937

−26.1909

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.107)

Furthermore, matrices A′ and C ′ are obtained using (5.51c) and (5.51d):

A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0021 1.0106 −0.0192 −0.1078 0.0019

0.0012 −0.0058 1.0105 0.0593 −0.0010

−0.0188 0.0954 −0.1720 0.0331 0.0166

0.0686 −0.3480 0.6275 3.5263 0.9394

−0.2154 0.0779 −3.4220 −10.8064 −2.8760

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C ′ =

⎡⎢⎢⎢⎢⎣
0.0910 −0.4617 0.8324 −0.1968 −0.0804

−0.0187 0.0947 −0.1708 0.0404 0.0165

⎤⎥⎥⎥⎥⎦

(5.108)

Similarly, as in the previous example:

rank(CE) = rank(
⎡⎢⎢⎢⎢⎣
A∗e

CE

⎤⎥⎥⎥⎥⎦
) = 1 (5.109)

and (C ′,A′) is a detectable pair, hence the solution to the robust fault detection prob-

lem exists. The remaining eigenvalues of (A−KC) are selected to be 0.45 and 0.4 and,
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consequently, the gain matrix K is given by, cf. (5.51e):

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.6891 −0.4392

3.1731 −0.7126

0.1983 0.9669

−0.7233 −3.5263

1.4808 7.2189

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.110)

The orthogonal projections of F on the subspace Im{Ē} and the orthogonal com-

pletion of Im{Ē} are given by:

F (Ē�) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9687 0.1092

−0.9910 −0.1749

1.0133 0.2406

1.0324 0.0660

0.2718 0.0125

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F (Ē) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0313 1.8908

−0.0090 3.5749

−0.0133 1.7594

−0.0324 −0.0660

0.0282 −0.0125

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.111)

One can calculate the generalised angles between, respectively, F1 and F2 and their

projections on the subspace Im{Ē}, cf. (5.102), which are, respectively, 88.4264o and

4.2009o. Note that the F1 is ‘almost orthogonal’ to the subspace Im{Ē}, whilst F2

‘almost lies’ in the subspace Im{Ē}, i.e. the angle between F2 and Im{Ē} is low. Since

the norm of F1(Ē�), i.e. 2.02, is significantly larger than the norm of F2(Ē�), i.e. 0.32,

it is expected that the steady state gain of the residual response to the fault µ1(t) will

be larger than the one of µ2(t). The responses of the residual to both faults in the

z-domain are given by:

r(z)
µ1(z) =

0.39613(z − 0.0221)
(z − 0.45)(z − 0.4)

r(z)
µ2(z) =

0.094264(z − 0.08207)
(z − 0.45)(z − 0.4)

(5.112)

where r(z), µ1(z), and µ2(z) are, respectively, z-domain representations of r(t), µ1(t),
and µ2(t). The responses of the residual to both faults are presented in Fig. 5.2. It can

be noted that the residual is insensitive to disturbances. The steady state gain of the

residual response to fault µ1(t) is larger than the one of the residual response to fault

µ2(t).
Example 5.3. q = 2, two invariant zeros

In this example q = 2 and there are two invariant zeros of the triple (A,E,C). The
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5. Robust fault detection via eigenstructure assignment
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Figure 5.2: Robust fault detection, q = 1, the triple (A,E,C) has two invariant zeros
at 1.2 and 1.3. Upper subfigure presents disturbances, whilst lower sub-
figure demonstrates robust fault detection process, i.e. residual, r(t), is
insensitive to disturbances.

system is described by equation (5.1), whose matrices are:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−0.0751 −0.6345 −2.1375 −3.5875 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8 0

1.4 1

1.2 0

0 1

3.4816 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎢⎢⎣

0.0948 −0.4811 0.8675 0 −0.0837

0 0 0 1 0

0.8375 −0.3069 −0.2238 0 0.3929

⎤⎥⎥⎥⎥⎥⎥⎦
F =

⎡⎢⎢⎢⎢⎣
1 1 0 0 0

0 0 1 1 0

⎤⎥⎥⎥⎥⎦
T

(5.113)

Note that CE1 = 0 and δ1 = 1, whilst δ2 = 0. The invariant zero of (A,E1, C) is 1.2 and

e1 is given by:

e1 = AE = [ 1.4 1.2 0 3.4816 −13.8381 ]T (5.114)

whilst e2 = E2. Note that the triple (A, e1, C) has two invariant zeros z1 = 0 and z2 = 1.2

and the corresponding v
(1)
0
= e1, v

(1)
1
= E1 and v

(1)
2
= − [ 1 2 1 0 0 ]. Eigenvalues

of X(1) are selected to be 0.4, 0.5, and 0.6, whilst the eigenvalue corresponding to E2

is 0.7. Then matrices ˜̃
A(1) and ˜̃

B(1) are calculated as:

˜̃
A =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.32 −0.8 1

−0.35 −0.7 1

−0.36 −0.6 1

⎤⎥⎥⎥⎥⎥⎥⎦
˜̃
B =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.128

−0.175

−0.216

⎤⎥⎥⎥⎥⎥⎥⎦
(5.115)
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5. Robust fault detection via eigenstructure assignment

Thus, the first column of the matrix X is given by:

X(1) =

⎡⎢⎢⎢⎢⎢⎢⎣

0.300

−0.380

0.336

⎤⎥⎥⎥⎥⎥⎥⎦
(5.116)

Subsequently, the matrix A∗e is obtained using (5.62b) and (5.62c):

A∗e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1400 1

−0.5000 −0.7

3.6016 1

−14.8826 0.3

33.6320 −7.922

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.117)

Note that:

rank(CE) = rank(
⎡⎢⎢⎢⎢⎣
A∗e

CE

⎤⎥⎥⎥⎥⎦
) = 2 (5.118)

and (C ′,A′) is a detectable pair, hence the solution to the robust fault detection prob-

lem exists. The remaining eigenvalue of (A −KC) is chosen to be 0.3. As a result the

gain matrix K is obtained as:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.7707 0.5424 0.2586

0.6203 −0.3448 −0.0556

−0.6264 0.6775 −0.3647

−1.3397 −0.6720 2.5006

6.5303 −3.4705 −8.8598

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.119)

Note that the unobservable subspace of (QC,A −KC) is 4-dimensional, therefore

its observable subspace is only one-dimensional. This means that F1(Ē�) and F2(Ē�)
are colinear and are given by:

F1(Ē�) = −0.4143

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4397

−0.5181

0.5965

0.4143

0.1038

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F2(Ē�) = 1.0108

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4397

−0.5181

0.5965

0.4143

0.1038

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.120)

As a result the transfer functions between, respectively, µ1(t) and µ2(t) and the residual
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5. Robust fault detection via eigenstructure assignment

differ only by the steady state gain:

r(z)
µ1(z) =

−0.29

(z − 0.3)
r(z)
µ2(z) =

0.70

(z − 0.3)
(5.121)

The results of the simulation are presented in Fig. 5.3. It can be seen that transient
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Figure 5.3: Robust fault detection, q = 2, the triple (A,E,C) has two invariant ze-
ros. Upper subfigure presents disturbances, whilst lower subfigure demon-
strates robust fault detection process. Trajectory of disturbances remains
within a 4-dimensional subspace of 5-dimensional state space of fault de-
tection filter, thus only one-dimensional subspace is left for fault detec-
tion. As a result the responses of residual to different faults differ only
by steady state gain, cf. Remarks 5.1 and 5.2.

behaviour of the residual responses to both faults is the same, but their steady state

gains differ.

5.3 Design of robust parity equations using right eigen-

structure assignment

In this section a novel design of robust PE is proposed. An illustration of the proposed

scheme is presented in Fig. 5.4. The method utilises a finite-time convergent observer

in order to obtain the state estimate. Then, by multiplying the estimated state vector,

x̂(t), by the system output matrix C and adding Du(t) an output estimate, ŷ(t), is

constructed and compared with the measured output. Note that the difference between

the robust residual generator described in the previous section and the scheme proposed

in this section is that the algorithm proposed here utilises a finite-time convergent
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5. Robust fault detection via eigenstructure assignment

state observer. This means that the state estimate converges within a finite time (as

opposed to the asymptotic observer in Subsection 2.6.1 and in the previous section).

Consequently, due to a finite impulse response of the state observer, the proposed

scheme is equivalent to PE. The material presented in this section is extension to

(Sumis lawska, Larkowski & Burnham 2011b), where a design of robust PE for systems,

which do not contain any invariant zeros, has been proposed.

+
_

+
+x̂(t)

u(t) y(t)
d(t) f(t)

ŷ(t) r(t)
C

D

Q

Figure 5.4: Schematic illustration of the proposed residual generator

The finite-time convergent observer is presented in Subsection 5.3.1. Then in Sub-

section 5.3.2 the robust fault detection filter, which has been proposed in Section 5.2,

is combined with the finite-time convergent observer. In Subsection 5.3.3 it is demon-

strated that the proposed method is equivalent to PE. Finally, the design scheme is

explained using a numerical example in Subsection 5.3.4.

5.3.1 Finite-time convergent observer

A finite time convergent observer was originally developed by Engel & Kreisselmeier

(2002) for continuous-time systems. The scheme proposed here utilises an equivalent

observer in a discrete-time domain, which converges in a predefined time of τ samples.

For sake of completeness, the discrete-time form of the observer described by Engel &

Kreisselmeier (2002) is given in this subsection.

The system (5.1) in a fault-free, disturbance-free condition is described by:

x(t + 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) (5.122)

Consider two Luenberger-type full-order state observers in the form of:

zi(t + 1) = Acizi(t) +Kiy(t) + (B −KiD)u(t) for i = 1,2 (5.123)

where:

Aci = A −KiC (5.124)
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5. Robust fault detection via eigenstructure assignment

The ith state estimation error ξi(t) = zi(t) − x(t) is then governed by:

ξi(t + 1) = Aciξi(t) (5.125)

Therefore, the state estimation error as a function of time and initial conditions is

defined by:

ξi(t) = At
ci
ξi(0) (5.126)

The estimation error delayed by τ samples is then:

ξi(t − τ) = At−τ
ci
ξi(0) (5.127)

Subsequently, using (5.126) and (5.127), it holds that:

ξi(t) −Aτ
ci
ξi(t − τ) = At

ci
ξi(0) −At

ci
ξi(0) = 0 (5.128)

thus ξi(t) can be eliminated from the state estimation zi(t):
zi(t) −Aτ

ci
zi(t − τ) = x(t) −Aτ

ci
x(t − τ) (5.129)

In order to obtain the correct state estimate the term Aτ
ci
x(t−τ) needs to be eliminated

from the expression (5.129). Note that there are two unknowns in (5.129), namely,

x(t) and x(t − τ), and two equations, i.e. two Luenberger-type observers, therefore an

explicit solution to the set of equations can be found. By combining the two observer,

the following is obtained, cf. (Engel & Kreisselmeier 2002):

z(t + 1) = Acz(t) +Ky(t) +Gu(t) (5.130a)

x̂(t) = J (z(t) −Ac
τz(t − τ)) (5.130b)

where:

Ac =

⎡⎢⎢⎢⎢⎣
Ac1 0

0 Ac2

⎤⎥⎥⎥⎥⎦
K =

⎡⎢⎢⎢⎢⎣
K1

K2

⎤⎥⎥⎥⎥⎦
G =

⎡⎢⎢⎢⎢⎣
B −K1D

B −K2D

⎤⎥⎥⎥⎥⎦
z =

⎡⎢⎢⎢⎢⎣
z1

z2

⎤⎥⎥⎥⎥⎦
(5.131)

The gain matrix J should be chosen in such a way, the the terms Aτ
ci
x(t − τ), i = 1,2

are eliminated from (5.130b), i.e.

J (z(t) −Aτ
cz(t − τ)) = J

⎡⎢⎢⎢⎢⎣
x(t) −Aτ

c1
x(t − τ)

x(t) −Aτ
c2
x(t − τ)

⎤⎥⎥⎥⎥⎦
= x(t) (5.132)

Therefore, J should fulfil the following condition:

J

⎡⎢⎢⎢⎢⎣
I Aτ

c1

I Aτ
c2

⎤⎥⎥⎥⎥⎦
= [ I 0 ] (5.133)
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5. Robust fault detection via eigenstructure assignment

Consequently, the gain matrix J is calculated as, cf. (Engel & Kreisselmeier 2002, Raff,

Menold, Ebenbauer & Allgöwer 2005):

J = [ I 0 ]
⎡⎢⎢⎢⎢⎣
I Aτ

c1

I Aτ
c2

⎤⎥⎥⎥⎥⎦
−1

(5.134)

Note that the solution of the expression (5.134) exists if the observer transition matrices

Ac1 and Ac2 have distinct eigenvalues. Therefore, if the system (A,E,C) contains an

invariant zero, Algorithm 5.3 should be used in order to ensure distinct eigenvalues of

Ac1 and Ac2 .

5.3.2 Proposed scheme

The necessary and sufficient conditions for a disturbance decoupling in the proposed

scheme are:

1. QCe = 0

2. For each column of the matrix E it holds that Im{ēi} is an invariant subspace of

Ac1 and Ac2

3. Ac1 and Ac2 have distinct eigenvalues and no common eigenvalues

Conditions 1 and 2 ensure disturbance decoupling, whilst the condition 3 is essential

for an existence of a finite time convergent observer (Engel & Kreisselmeier 2002).

If the disturbance and fault vectors are present in the system (5.1), the state esti-

mation term of the ith observer, ξi(t) = zi(t) − x(t), see (5.127), is driven by, cf. (5.11)

and (5.12):

ξi(t + 1) = Aciξi(t) + Fµ(t) +Ed(t) = Aciξi(t) + Fµ(t) + ed∗(t) (5.135)

Therefore, ei(t) can be defined by:

ξi(t) = At
ci
ξi(0) + t−1

∑
j=0

Aj
ci
Fµ(t − j) + t−1

∑
j=0

Aj
ci
ed∗(t − j) (5.136)
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Hence, the term zi(t) −Aτ
ci
z(t − τ) can be expanded as:

zi(t) −Aτ
ci
z(t − τ) = x(t) +At

ci
ξi(0) + t−1

∑
j=0

Aj
ci
Fµ(t − j) + t−1

∑
j=0

Aj
ci
ed∗(t − j)−

Aτ
ci
x(t − τ) −Aτ

ci
At−τ

ci
ξi(0) −Aτ

ci

t−τ−1

∑
j=0

Aj
ci
Fµ(t − τ − j) −Aτ

ci

t−τ−1

∑
j=0

Aj
ci
ed∗(t − τ − j)

= x(t) −Aτ
ci
x(t − τ) + t−1

∑
j=0

Aj
ci
Fµ(t − j) + t−1

∑
j=0

Aj
ci
ed∗(t − j) − t−1

∑
j=τ

Aj
ci
Fµ(t − j)−

t−1

∑
j=τ

Aj
ci
ed∗(t − j) = x(t) −Aτ

ci
x(t − τ) + τ−1

∑
j=0

Aj
ci
Fµ(t − j) + τ−1

∑
j=0

Aj
ci
ed∗(t − j)

(5.137)

Therefore, one can obtain the state estimate x̂(t), see (5.133):

x̂(t) = x(t) + J
⎡⎢⎢⎢⎢⎣
∑τ−1

j=0 A
j
c1Fµ(t − j)

∑τ−1
j=0 A

j
c2Fµ(t − j)

⎤⎥⎥⎥⎥⎦
+ J

⎡⎢⎢⎢⎢⎣
∑τ−1

j=0 A
j
c1ed

∗(t − j)
∑τ−1

j=0 A
j
c2ed

∗(t − j)
⎤⎥⎥⎥⎥⎦

(5.138)

Hence, the residual in the fault-free case is given by:

r(t) = QCJ
⎡⎢⎢⎢⎢⎣
∑τ−1

j=0 A
j
c1ed

∗(t − j)
∑τ−1

j=0 A
j
c2ed

∗(t − j)
⎤⎥⎥⎥⎥⎦

(5.139)

The matrix J can be expressed as:

J = [ J1 J2 ] (5.140)

where J1, J2 ∈ R
n×n. Incorporating (5.140) into (5.134), the following relationships are

obtained:

J1 = −A
τ
c2
[Aτ

c1
−Aτ

c2
]−1

J2 = I − J1
(5.141)

Consequently, the residual in the fault-free case is:

r(t) = QC [ J1 J2 ]
⎡⎢⎢⎢⎢⎣
∑τ−1

j=0 A
j
c1ed

∗(t − j)
∑τ−1

j=0 A
j
c2ed

∗(t − j)
⎤⎥⎥⎥⎥⎦

= QCJ1

τ−1

∑
j=0

Aj
c1
ed∗(t − j) +QCJ2 τ−1

∑
j=0

Aj
c2
ed∗(t − j)

(5.142)

Denote a subspace spanned by columns of an arbitrary matrix V as V . Assume that

there exist two matrices P and R, such that V is P -invariant and R-invariant. From
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the definition of invariance it holds that (Halmos 1958):

PV ⊆ V

RV ⊆ V
(5.143)

Therefore:

PV +RV = (P +R)V ⊆ V (5.144)

This means that V is (P + R)-invariant. Furthermore, V is a P i-invariant subspace,

where i ∈ Z. This leads to the conclusion that Im{ē} is J1- and J2-invariant, cf. (5.141).

Due to the fact that Im{e} ⊆ Im{ē}, it holds that:

Aj
ci

Im{e} ⊆ Im{ē} for i = 1,2; j = 0,⋯, τ − 1 (5.145)

because Im{ē} is Aj
ci-invariant and Im{e} ⊆ Im{ē}. Hence:

JiA
j
ci

Im{e} ⊆ Im{ē} for i = 1,2; j = 0,⋯, τ − 1 (5.146)

because Im{ē} is Ji-invariant and Im{e} ⊆ Im{ē}. Consequently:

QCJiA
j
ci

Im{e} ⊆ QCIm{ē} = Im{QCē} = 0 for i = 1,2; j = 0,⋯, τ − 1 (5.147)

Thus in the fault-free case the residual, cf. (5.139), is equal to zero.

5.3.3 Design of robust PE

A state estimation using the finite time convergent observer described in Subsection

5.3.1 can be expressed as a function of the last τ past values of the system input and

output:

x̂(t) = 2

∑
i=1

Ji

τ−1

∑
j=0

Aj
ci
(B −KiD)u(t − j − 1) + 2

∑
i=1

Ji

τ−1

∑
j=0

Aj
ci
Kiy(t − j − 1) (5.148)

(The derivation of the above equation is analogous to (5.137).) Therefore, the residual

generator can be described by the following parity relation:

r(t) = Qy(t) −Q(Cx̂(t) +Du(t)) =WyY (t) −WuU(t) (5.149)

where:

Y (t) = [yT (t − τ) yT (t − τ + 1) ⋯ yT (t)]T
U(t) = [uT (t − τ) uT (t − τ + 1) ⋯ uT (t)]T (5.150)
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and:

Wu = − [ QC(J1Aτ−1
c1
(B −K1D) + J2Aτ−1

c2
(B −K2D)) ⋯

QC(J1A2
c1
(B −K1D) + J2A2

c2
(B −K2D))

QC(J1Ac1(B −K1D) + J2Ac2(B −K2D))B QCB −QD ]
Wy = [ QC(J1Aτ−1

c1
K1 + J2A

τ−1
c2

K2) ⋯ QC(J1A2
c1
K1 + J2A

2
c2
K2)

QC(J1A1
c1
K1 + J2A

1
c2
K2) QC(J1K1 + J2K2) −Q ]

(5.151)

The algorithm for obtaining vectors Wu and Wy is given below:

Algorithm 5.4 (Robust PE via right eigenstructure assignment).

1. Obtain the disturbance direction matrix e = [ e1 e2 ⋯ eq ], where

ei = A
δiEi (5.152a)

and δi is the smallest number for which CAδiEi ≠ 0

2. Obtain Q such that QCe = 0

3. Select eigenvalues for Ac1 = A −K1C

4. For each column of E obtain invariant zeros of the triple (A, ei, C), denoted

as z
(i)
j , and corresponding vectors v

(i)
j , for j = 1,⋯, qi, such that:

⎡⎢⎢⎢⎢⎣
z
(i)
j I −A v

(i)
j−1

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v
(i)
j

−1

⎤⎥⎥⎥⎥⎦
= 0 (5.152b)

where v
(i)
0

denotes ei.

5. Calculate coefficients x
(i)
11
,⋯, x

(i)
qi+1,1

using (5.59–5.61)

6. Obtain matrix A∗e as:

A∗e = [ A∗(1)e A
∗(2)
e ⋯ A

∗(q)
e ] (5.152c)

where

A∗(i)e = (A − x(i)
11
I)ei − x(i)21 v(i)1

− x
(i)
31
v
(i)
2
−⋯− x

(i)
qi+1,1

v
(i)
k

(5.152d)
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7. Obtain:

A′ = A −A∗e(CE) C (5.152e)

C ′ = (I −CE(CE) )C (5.152f)

8. Using any eigenstructure assignment method allocate remaining eigenvalues

of Ac1 = (A′ −K ′1C ′)
9. Calculate K1

K1 = A
∗

e(CE) +K ′1[I −CE(CE) ] (5.152g)

10. Repeat steps 3 to 9 for Ac2 = A −K2C

11. Choose τ and calculate J1 and J2 using

J1 = −A
τ
c2
[Aτ

c1
−Aτ

c2
]−1 (5.152h)

J2 = I − J1 (5.152i)

12. Obtain Wu and Wy using (5.151)

13. Calculate residual via

r(t) =WyY (t) −WuU(t) (5.152j)

5.3.4 Numerical example

In this example Algorithm 5.4 is used in order to design robust PE. The influence of

the selection of eigenvalues of Ac1 and Ac2 and the convergence time τ on step and

impulse response of the residual to the fault is examined.

Example 5.4. Design of robust PE using right eigenstructure assignment

Consider the system (5.1), where:

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 3 4

1 2 3

0 2 5

⎤⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
E =

⎡⎢⎢⎢⎢⎢⎢⎣

1

2

−1

⎤⎥⎥⎥⎥⎥⎥⎦
F =

⎡⎢⎢⎢⎢⎢⎢⎣

1

−0.5

0.5

⎤⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎣
0 1 0

0 0 1

⎤⎥⎥⎥⎥⎦
(5.153)

and the matrix D is null. The eigenvalues of the matrix Ac1 are chosen to be λAc1
=

{0.9,0.925,0.95}, whereas the eigenvalues of Ac2 are λAc2
= {0.965,0.975,0.995}. (Note

that eigenvalues of Ac1 and Ac2 are close to unity.) Gain matrices K ′
1

and K ′
2

have
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5. Robust fault detection via eigenstructure assignment

been selected to minimise Frobenius norms of K1 and K2 and are given by:

K1 =

⎡⎢⎢⎢⎢⎢⎢⎣

3.6306 6.1612

−0.3713 −0.9425

2.2481 4.5963

⎤⎥⎥⎥⎥⎥⎥⎦
K2 =

⎡⎢⎢⎢⎢⎢⎢⎣

3.7124 6.3899

−0.4854 −1.0407

2.2577 4.5504

⎤⎥⎥⎥⎥⎥⎥⎦
(5.154)

Algorithm 5.4 is used to calculate Wu and Wy for parity space orders equal to τ = 5

and τ = 15 samples. The impulse and step responses of the residual r(t) to the fault

µ(t) for the two aforementioned parity space orders are compared in Fig. 5.5. It is

worth noting that the response of the residual to fault is strongly dependent on the

chosen parity space order. This is due to the fact that the eigenvalues of Ac1 and Ac2

are selected to be close to unity, therefore the two asymptotic state observers which are

combined to create the finite time convergent observers are relatively slow in comparison

to the chosen parity space orders.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

Impulse response of residual to fault

Step response of residual to fault

Time [samples]

τ = 5
τ = 15

Figure 5.5: Comparison of step and impulse responses of the residual to fault for
different cases of τ . Eigenvalues of (A−K1C) and (A−K2C) are, respec-
tively, λAc1

= {0.9,0.925,0.95} and λAc2
= {0.965,0.975,0.995}.

In the second simulation ‘fast’ eigenvalues are taken into consideration, i.e. λ∗Ac1
=

{0.33,0.25,0.3} and λ∗Ac2
= {0.15,0.20,0.35}, and compared with ‘slow’ eigenvalues

from the previous experiment for parity space τ = 15. The gain matrices K∗
1

and K∗
2

are:

K∗1 =

⎡⎢⎢⎢⎢⎢⎢⎣

2.7472 3.8243

0.7943 0.2487

2.3278 5.3257

⎤⎥⎥⎥⎥⎥⎥⎦
K∗

2
=

⎡⎢⎢⎢⎢⎢⎢⎣

2.7472 3.8243

0.7943 0.2487

2.3278 5.3257

⎤⎥⎥⎥⎥⎥⎥⎦
(5.155)

Step and impulse responses of the residual to the fault for two different sets of eigen-
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5. Robust fault detection via eigenstructure assignment

values (‘slow’, i.e. λAc1
and λAc2

, versus ‘fast’, i.e. λ∗Ac1
and λ∗Ac2

) are compared in

Fig. 5.6. As expected, the response of the residual to the fault is faster when the

eigenvalues of Ac1 and Ac2 are closer to the origin. The experiment also revealed that,

in the case of ‘fast’ eigenvalues, the increase of the parity space order has a negligible

influence on the residual response to the fault.
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Figure 5.6: Comparison of step and impulse responses of the residual to fault
for different choices of eigenvalues of Ac1 and Ac2 . Slow eigenvalues:
λAc1

= {0.9,0.925,0.95} and λAc2
= {0.965,0.975,0.995}. Fast eigenval-

ues: λ∗Ac1
= {0.33,0.25,0.3} and λ∗Ac2

= {0.15,0.20,0.35}.

5.4 Design of robust parity equations using left eigen-

structure assignment

The basic idea of the fault detection filter presented in this Section is similar to that

described in Section 5.3. The state estimate is obtained using the finite time convergent

observer (see Subsection 5.3.1). Then, based on the state estimate, an output estimate

is calculated an compared with the measured output. The difference between the

measured and estimated output is then multiplied by the matrix Q, see Fig. 5.4. The

difference between the filter designed in this section and that presented in Section 5.3

is that the state observer gains K1 and K2 are obtained using the left eigenstructure

assignment, see Subsection 2.6.3.

5.4.1 Design of robust PE

Decoupling conditions of the proposed scheme are:
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5. Robust fault detection via eigenstructure assignment

1. QCE = 0

2. All rows of QC are left eigenvectors of Ac1 and Ac2

3. Ac1 and Ac2 have distinct eigenvalues and no common eigenvalues

Condition 2. is achieved by the left eigenstructure assignment algorithm presented in

Subsection 2.6.3. Analogously, to the case presented in Section 5.3, the fault detection

filter can be reformulated as a parity equation (5.149), whose matrices Wu and Wy are

given by (5.151). Consequently, the algorithm for the design of robust PE is summarised

as follows:

Algorithm 5.5 (Robust PE via left eigenstructure assignment).

1. Calculate the matrix Q, which fulfils the condition QCE = 0

2. Select the desired eigenvalues of the matrix Ac1 , λi, i = 1,2,⋯, n

3. Compute P (λi) as

P (λi) = (λiI −AT )−1CT (5.156a)

4. Calculate l∗i and w∗i , i = 1,⋯, q using

l∗i = P (λi)w∗i (5.156b)

w∗i = [P (λi)TP (λi)]−1P (λi)T li (5.156c)

and check the assignability condition l∗i = li.

5. Select arbitrary wi, i = q + 1,⋯, n and obtain li, i = q + 1,⋯, n using

li = −(λiI −AT )−1CTwi (5.156d)

6. Obtain L and W as

L = [ l∗
1
⋯ l∗q lq+1 ⋯ ln ] (5.156e)

W = [ w∗
1
⋯ w∗q wq+1 ⋯ wn ] (5.156f)

7. Calculate K1 via

K = −(L−1)TW T (5.156g)

8. Repeat steps (2-7) for the matrix Ac2 and obtain K2
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9. Choose τ and calculate J1 and J2 using

J1 = −A
τ
c2
[Aτ

c1
−Aτ

c2
]−1 (5.156h)

J2 = I − J1 (5.156i)

10. Construct Wu and Wy as given by (5.151)

11. Calculate residual via

r(t) =WyY (t) −WuU(t) (5.156j)

Theorem 5.3. Algorithm 5.5 ensures disturbance decoupling.

Proof. Assume that two arbitrary matrices P and R have a common eigenvector x

corresponding to eigenvalues λp and λr, respectively:

Px = λpx Rx = λrx (5.157)

then x is also an eigenvector of their sum or difference:

(P ±R)x = (λp ± λr)x (5.158)

Furthermore, P can be expressed in a Jordan form as:

P = V ΛV −1 (5.159)

where diagonal elements of Λ are eigenvalues of P , whereas eigenvectors of P are

appropriate columns of V . Then it is known that:

P i
= V ΛiV −1 (5.160)

which means that P and its ith power have common eigenvectors. Consequently, if

all rows of QC are left eigenvectors of Ac1 and Ac2 , then all rows of QC are also left

eigenvectors of J1 and J2.

The residual in the fault-free case can be described by, see (5.142):

r(t) = 2

∑
l=1

τ

∑
k=1

Pl,kd(t − k) (5.161)

where:

Pl,k = QCJlA
k−1
cl

E (5.162)
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Denote the ith left eigenvector, right eigenvector, and the corresponding eigenvalue of

the matrix Ak−1
cl

as, respectively, (lAc

i )T , vAc

i , and λAc

i . Analogously, use the notation

(lJi )T , vJi , and λJi for the left eigenvector, right eigenvector, and the corresponding

eigenvalue of the matrix Jl. The first rq left eigenvectors of Ak−1
c1

, Ak−1
c2

, J1, and J2 are

rows of QC. Then Pl,k can be expressed as:

Pl,k = QC
rq

∑
i=1

λJi v
J
i (lJi )TAk−1

cl
E +QC

n

∑
i=rq+1

λJi v
J
i (lJi )TAk−1

cl
E (5.163)

The second element of the above expression is equal to zero because QCvJi = 0, for

i = rq + 1,⋯, n (because rows of QC are first left eigenvectors of Jl). Subsequently:

Pl,k = QC
rq

∑
i=1

rq

∑
j=1

λAc

i λJj v
J
j (lJj )T vAc

i (lAc

i )TE
+QC

n

∑
i=rq+1

rq

∑
j=1

λAc

i λJj v
J
j (lJj )T vAc

i (lAc

i )TE
(5.164)

The first element of the above expression is zero because (lAc

i )T is equal to ith row of

QC and QCE = 0. The second element is equal to zero because (lJj )T vAc

i = (lJj )T vJi = 0,

for i = rq + 1,⋯, n, j = 1,⋯, rq. This shows, therefore, that the residual is null if there is

no fault present in the system.

5.4.2 Numerical example

In the following example, the design of robust PE using left eigenstructure assignment is

presented. The influence of the choice of τ as well as eigenvalues of Ac1 and Ac2 on step

and impulse responses of the residual to fault is examined. Furthermore, the proposed

scheme is compared with the DRFDF, i.e. a first order parity equation presented in

Subsection 2.6.4.

Example 5.5. Design of robust PE using left eigenstructure assignment

Consider system (5.1), whose matrices A, B, C, E, and F matrices are, cf. (Chen &

Patton 1999):

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0.25 0 0

0 0.5 0

0 0 0.375

⎤⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎦
E =

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

0

⎤⎥⎥⎥⎥⎥⎥⎦
F =

⎡⎢⎢⎢⎢⎢⎢⎣

1.0

0.1

1.0

⎤⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎣
1 1 0

0 1 1

⎤⎥⎥⎥⎥⎦
(5.165)

whilst the feedthrough matrix is null.

Eigenvalues of the matrix Ac1 are selected to be λAc1
= {0.975,0.985,0.995}, whilst

eigenvalues of Ac2 are λAc2
= {0.9,0.925,0.95}. The matrix Q, such that QCE = 0 is

given by:

Q = [ 1 −2 ] (5.166)
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Thus QC = lT
1
= [ 1 −1 −2 ]. The eigenvalue corresponding to lT

1
is λ1 = 0.975 and

hence P (λ1) is calculated via (5.156a) as:

P (λ1) =
⎡⎢⎢⎢⎢⎢⎢⎣

1.3793 0

2.1053 2.1053

0 1.6667

⎤⎥⎥⎥⎥⎥⎥⎦
(5.167)

and corresponding w∗
1
= [ 0.7250 −1.2 ]T , cf. (5.156c). It holds that P (λ1)w∗1 = l1,

hence a complete decoupling can be achieved. The remaining eigenvalues of Ac1 are

λ2 = 0.985 and λ3 = 0.995 and the corresponding matrices P (λ2) and P (λ3) are obtained

using (5.156a):

P (λ2) =
⎡⎢⎢⎢⎢⎢⎢⎣

1.3605 0

2.0619 2.0619

0 1.6393

⎤⎥⎥⎥⎥⎥⎥⎦
P (λ3) =

⎡⎢⎢⎢⎢⎢⎢⎣

1.3423 0

2.0202 2.0202

0 1.6129

⎤⎥⎥⎥⎥⎥⎥⎦
(5.168)

Vectors w2 and w3 can be freely chosen and they are selected to be w2 = [ 1 0 ]T and

w2 = [ 0 1 ]T . Then, the corresponding l2 and l3 are computed using (5.156d):

l2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1.3605

2.0619

0

⎤⎥⎥⎥⎥⎥⎥⎦
l3 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

2.0202

1.6129

⎤⎥⎥⎥⎥⎥⎥⎦
(5.169)

Consequently, matrices L and W are obtained via, respectively, (5.156e) and (5.156e)

as:

L =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1.3605 0

−1 2.0619 2.0202

−2 0 1.6129

⎤⎥⎥⎥⎥⎥⎥⎦
W =

⎡⎢⎢⎢⎢⎣
0.725 1 0

−1.200 0 1

⎤⎥⎥⎥⎥⎦
(5.170)

and the gain matrix K1 calculated using (5.156g) is:

K1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.7203 −5.8212

−0.9603 3.8412

1.2028 −5.4312

⎤⎥⎥⎥⎥⎥⎥⎦
(5.171)

Analogously, the gain matrix K2 is calculated. Vectors w2 and w3 are selected such

that the Frobenius norm of K2 is minimised and K2 is given by:

K2 =

⎡⎢⎢⎢⎢⎢⎢⎣

−1.6037 −0.5727

0.7037 0.1227

−0.8287 −0.8727

⎤⎥⎥⎥⎥⎥⎥⎦
(5.172)

Then, the matrices J1 and J2 and the PE coefficient vectors Wu and Wy are cal-
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Figure 5.7: Comparison of responses of residual to fault for different cases of par-
ity space order. Eigenvalues of Ac1 and Ac2 are, respectively, λAc1

={0.9,0.925,0.95} and λAc2
= {0.965,0.975,0.995}.

culated using, respectively, (5.156h), (5.156i), and (5.151) for the parity space orders

equal to τ = 5 and τ = 14 samples. Impulse and step responses of the residual r(t) to

the fault µ(t) for the two aforementioned values of τ are compared in Fig. 5.7. Simi-

larly, as in Example 5.4 a strong influence of the parity space order τ on the residual

response to fault can be observed (due to the fact that the eigenvalues of Ac1 and Ac2

are close to unity). Also the impulse response of the residual to the fault decays almost

linearly. In the second simulation ‘fast’ eigenvalues are taken into consideration, i.e.

λ∗Ac1
= {0.2,0.3,0.4} and λ∗Ac2

= {0.8,0.7,0.6}, and compared with ‘slow’ eigenvalues

from the previous experiment for the parity space order τ = 8. The gain matrices K∗
1

and K∗
2

of the ‘fast’ filter are:

K∗1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.0010 −0.0620

0.0390 0.0820

−0.0440 0.1030

⎤⎥⎥⎥⎥⎥⎥⎦
K∗2 =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.5790 −0.1020

0.1390 −0.1180

−0.0840 −0.4170

⎤⎥⎥⎥⎥⎥⎥⎦
(5.173)

Step and impulse responses of the residual to the fault for two different sets of eigen-

values (‘slow’, i.e. λAc1
and λAc2

, versus ‘fast’, i.e. λ∗Ac1
and λ∗Ac2

) are compared in

Fig. 5.8. Similarly to the experiment in Example 5.4, the response of the residual to

the fault is faster when the eigenvalues of Ac1 and Ac2 are closer to the origin. Also

in the case of ‘fast’ eigenvalues, the increase of the parity space order has negligible

influence on the residual response to the fault.

Choice of a low parity space order or selection of eigenvalues close to the origin leads

to a fast reaction of the residual to a fault. However, in practice there is always noise

present in the system. Therefore, it may be required to increase the parity space order

147



5. Robust fault detection via eigenstructure assignment

1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

 

 

1 2 3 4 5 6 7 8 9 10

0

0.5

1

 

 

‘fast’
‘slow’

Impulse response of residual to fault

Step response of residual to fault

Time [samples]

Figure 5.8: Influence of eigenvalues of matrices Ac1 and Ac2 on step and impulse
response of residual to fault for τ = 8. Slow eigenvalues: λAc1

={0.975,0.985,0.995} and λAc2
= {0.9,0.925,0.95}. Fast eigenvalues:

λ∗Ac1
= {0.2,0.3,0.4} and λ∗Ac2

= {0.8,0.7,0.6}.

for the purpose of minimising the effects of noise on the residual generator. In this ex-

periment the scheme proposed here is compared with the DRFDF, see Subsection 2.6.4,

which is equivalent to the PE, whose Wu and Wy coefficients are:

Wu = [ 0 2 ]
Wy = [ 1 −2 −0.25 0.75 ] (5.174)

Algorithm 5.5 has been designed using the ‘slow’ eigenvalues set, i.e. λAc1
and λAc2

for

two cases of the time delay, τ = 3 and τ = 8. The PE coefficient vectors for τ = 3 are:

Wu = [ 0.28 0.60 0.95 0 ]
Wy = [ −0.03 0.10 0.06 −0.06 0.18 −0.24 0.47 −0.95 ] (5.175)

whilst those coefficients for τ = 8 are:

Wu = [ 0.04 0.8 0.13 0.18 0.24 0.31 0.39 0.47 0 ]
Wy = [ −0.005 0.014 0.009 −0.008 0.023 −0.031 0.04 −0.058

0.06 −0.089 0.081 −0.124 0.106 −0.163 0.133 ]
(5.176)

Fig. 5.9 shows the efficacy of the developed algorithm and the DRFDF, when the

system output is affected by an additive, white, Gaussian, zero-mean measurement noise

with variance equal to 0.01. The DRFDF yields a fast reaction of the residual to a fault,
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Figure 5.9: Fault detection in the case when the output is subjected to measurement
noise

however it is relatively sensitive to noise. The filter obtained using Algorithm 5.5 allows

for an increase of the parity space order, hence a reduction of the residual sensitivity to

noise. Nevertheless, a high parity space order results in slow response of the residual

to the fault.

5.5 Concluding remarks

The drawback of the robust fault detection filter of Chen & Patton (1999) is its in-

applicability to systems with unstable invariant zeros. In such a case the design of a

stable filter was infeasible. In this chapter an extension to the aforementioned robust

fault detection filter has been presented which ensures stability of the scheme in the

case when the system has unstable invariant zeros. It has been demonstrated that the

eigenstructure of the developed scheme is equivalent that of the fault isolation filter

proposed in (Chen & Speyer 2006a). However, the algorithm presented in this chapter

is computationally simpler.

Furthermore, a novel design of robust PE of a user defined order has been presented.

In the proposed fault detection scheme the traditional asymptotically convergent ob-

server is replaced by a state observer, which converges within a finite, user predefined

time. By selecting the time (the number of samples) after which the state observer

converges, the order of the parity space can be arbitrarily chosen. This is an extension

to (Patton & Chen 1991b), where the left eigenstructure assignment method has been

used to design a first order PE. The method proposed in this chapter utilises both the

left and right eigenstructure assignment to design PE and is applicable to systems with

unstable invariant zeros.

Design freedom of the novel algorithms has been demonstrated on numerical exam-

ples. The residual response to faults can be shaped by a selection of the parity space

order as well as the eigenvalues of the component state observers, which form the finite

time convergent (open-loop) state observer. Advantages of the proposed scheme in a

noisy environment have also been shown. By selecting the order of the parity space the
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residual sensitivity to noise can be adjusted.

As further work an optimisation algorithm for minimisation of the influence of noise

on residual is considered. It may also be worth exploring the applicability of the scheme

when equation (5.52) is not fulfilled, i.e. the disturbance direction vectors ei combine

with each other to create new invariant zeros.
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Chapter 6

Fault isolation via diagonal PE

Nomenclature

A . . . . . . . . . . . . . . . . . . state transition matrix in state-space model

Ac1 ,Ac2 . . . . . . . . . . . . filter state transition matrices

Aλ,A
∗
e ,A

∗
e
(i)
,Aw . . . auxiliary matrices

˜̃
A, Ã . . . . . . . . . . . . . . . auxiliary matrices

A′ . . . . . . . . . . . . . . . . . auxiliary matrix

B . . . . . . . . . . . . . . . . . . input matrix of the input in state-space model
˜̃
B . . . . . . . . . . . . . . . . . . auxiliary matrix

C . . . . . . . . . . . . . . . . . . output matrix in state-space model

C ′ . . . . . . . . . . . . . . . . . auxiliary matrix

D . . . . . . . . . . . . . . . . . . feedforward matrix of known input in state-space model

f . . . . . . . . . . . . . . . . . . matrix of directions of elements of µ(t)

fi . . . . . . . . . . . . . . . . . . direction of µi

f̄ . . . . . . . . . . . . . . . . . . matrix built from matrices fi

f̄i . . . . . . . . . . . . . . . . . . matrix whose image is sum of image of fi and images of invariant zero direc-

tions of (A,fi,C)

F . . . . . . . . . . . . . . . . . . input matrix of fault signal in state-space model

Fi . . . . . . . . . . . . . . . . . ith column of F

g, gi . . . . . . . . . . . . . . . . auxiliary scalar

I . . . . . . . . . . . . . . . . . . . identity matrix

J, J1, J2 . . . . . . . . . . . . gain matrices

K,K1,K2,K
′ . . . . . . gain matrices

lj , l
∗
j . . . . . . . . . . . . . . . transposes of left eigenvectors of filter state transition matrix

m . . . . . . . . . . . . . . . . . . number of system outputs

M(t) . . . . . . . . . . . . . . stacked vector of last τ + 1 values of µ(t)

n . . . . . . . . . . . . . . . . . . number of states in a state-space model

p . . . . . . . . . . . . . . . . . . . number of system inputs

P (λi) . . . . . . . . . . . . . . auxiliary function of λi

P,R . . . . . . . . . . . . . . . auxiliary matrices

q . . . . . . . . . . . . . . . . . . . number of disturbance signals

Q . . . . . . . . . . . . . . . . . . gain matrix

r . . . . . . . . . . . . . . . . . . . number of fault signals

r(t) . . . . . . . . . . . . . . . . residual

ri(t) . . . . . . . . . . . . . . . ith element of r(t)
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T . . . . . . . . . . . . . . . . . . similarity transformation matrix

u(t) . . . . . . . . . . . . . . . . measured system input

U(t) . . . . . . . . . . . . . . . stacked vector of last τ + 1 values of u(t)

v, vj , v
(i)
j . . . . . . . . . . . auxiliary vectors

Ve . . . . . . . . . . . . . . . . . matrix whose columns are eigenvectors of filter state transition matrix

wj ,w
(i)
j ,w

′(i)
j . . . . . . . right eigenvectors of filter state transition matrix

w∗j . . . . . . . . . . . . . . . . . auxiliary vector

W . . . . . . . . . . . . . . . . . auxiliary matrix

Wu,Wy, W̊u, W̊y,Wµ parity matrices

x(t) . . . . . . . . . . . . . . . . state vector instate space model

x̂(t) . . . . . . . . . . . . . . . . state estimate

xi,j . . . . . . . . . . . . . . . . auxiliary scalars

X . . . . . . . . . . . . . . . . . . auxiliary matrix

y(t) . . . . . . . . . . . . . . . . measured system output

Y (t) . . . . . . . . . . . . . . . stacked vector of last τ + 1 values of y(t)

zi . . . . . . . . . . . . . . . . . . system zero

zi(t) . . . . . . . . . . . . . . . state estimate

αi . . . . . . . . . . . . . . . . . auxiliary parameter

βi, β̄i . . . . . . . . . . . . . . . auxiliary parameter vector

δi . . . . . . . . . . . . . . . . . . auxiliary term

λj , λ
(i)
j . . . . . . . . . . . . . eigenvalue of filter state transition matrix

Λe . . . . . . . . . . . . . . . . . diagonal matrix whose diagonal elements are eigenvalues of filter state transi-

tion matrix

µ(t) . . . . . . . . . . . . . . . . fault signal

µi(t) . . . . . . . . . . . . . . . ith element of fault signal

µ̂(t) . . . . . . . . . . . . . . . . estimate of fault signal

Θ(i), Θ̄(i) . . . . . . . . . . . auxiliary matrices

Ω . . . . . . . . . . . . . . . . . . set of all invariant zeros of (A, e,C) or auxiliary matrix

Ωi . . . . . . . . . . . . . . . . . set of all invariant zeros of (A, ei,C)

τ . . . . . . . . . . . . . . . . . . convergence time of finite time-convergent state observer, order of parity space

Ξ(t) . . . . . . . . . . . . . . . auxiliary matrix

Ψ . . . . . . . . . . . . . . . . . . auxiliary matrix

Preliminary reading: Sections 2.2, 2.6, 2.7, 5.2, and 5.3.

6.1 Introduction

Directional residuals have been used in various industrial applications, such as induc-

tion motor drives (Campos-Delgado 2011), a class of linear networked control systems

(Chabir, Sauter & Keller 2009), neuro-fuzzy diagnosis of AC motors (Alexandru 2003,

Alexandru & Popescu 2004), and engine fault detection and isolation (Dutka, Javahe-

rian & Grimble 2009). Also a structured residual set has been applied for fault diagnosis

of many industrial systems, such as: a two non-interacting tank system (Bhattacharjee

& Roy 2010), a heat exchanger (Fagarasan & St. Iliescu 2008), an aircraft (Fravolini,

Brunori, Campa, Napolitano & La Cava 2009), and a Tennessee Eastman process ex-

ample (Xie, Zhang & Wang 2006, Ye, Shi & Liang 2011).
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6. Fault isolation via diagonal PE

Furthermore, Patton & Chen (1997) proposed a scheme for condition monitoring

and fault diagnoisis of a seawater pumping system in operation at the Nuclear Electric

Heysham 2 power station. Simultaneous sensor and actuator fault diagnosis on a water

treatment system has been presented in (Fragkoulis, Roux & Dahhou 2009). Lia &

Jengb (2010) demonstrated a fault detection isolation and identification filter for a

nonisothermal continuous stirred tank reactor.

This chapter is an extension of the Algorithm 5.4 to a fault diagnosis scheme. In

Section 6.3 a fault isolation algorithm utilising a directional residual set is devised,

whilst in Section 6.4 the scheme is extended to fault identification.

6.2 Problem statement

It is assumed that a linear, dynamic, discrete-time, time-invariant system can be rep-

resented by the following equations:

x(t + 1) = Ax(t) +Bu(t) + Fµ(t)
y(t) = Cx(t) +Du(t) (6.1)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rp and y(t) ∈ Rm are, respectively, the

system input and output, and µ(t) ∈ Rr is a fault signal. Matrices A, B, C, D, and F

are constant and have appropriate dimensions. It is assumed that (C,A) is observable

and F is of full column rank. The aim of this chapter is to provide algorithms for fault

isolation an identification.

6.3 Design of fault isolation filter

A schematic illustration of the proposed fault isolation and identification filter is pre-

sented in Fig. 6.1. Analogously to the filter presented in Chapter 5, the method utilises

a finite-time convergent observer in order to obtain the state estimate. Then, using

the estimated state vector an output estimate is calculated and compared with the

measured output. The difference between the measured and the estimated output is a

directional residual (used for fault isolation). The residual is then evaluated in order

to identify the fault, see Section 6.4.

Design of the fault isolation filter is analogous to that proposed in Section 5.3, i.e.

the fault isolation filter is designed using Algorithm 5.4 by replacing the matrix E by

F and setting Q to an identity matrix. The necessary conditions for the fault isolation

filter to exist are:

1. (C,A) is an observable pair

2. rank([ Cf1 Cf2 ⋯ Cfr ]) = r
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fault isolation fault identification

Figure 6.1: Schematic illustration of the proposed residual generator

where fi = A
δiFi and δi is the smallest number for which CAδiFi ≠ 0. Condition 1

allows all eigenvalues of (A −K1C) and (A −K2C) to be arbitrarily specified, whilst

condition 2 ensures that residual vectors yielded by different faults lie in different di-

rections.

Algorithm 6.1 (Fault isolation using directional PE).

1. For each column of F obtain δi, which is the smallest number for which

CAδiFi ≠ 0 and compute zero directions fi = A
δiFi

2. Select eigenvalues for Ac1 = (A −K1C)
3. For fi, i = 1,⋯, r obtain invariant zeros of the triple (A,fi, C), denoted as z

(i)
j ,

and corresponding directions v
(i)
j , for j = 1,⋯, ri, where ri is the number of

invariant zeros of the triple (A,fi, C), such that

⎡⎢⎢⎢⎢⎣
z
(i)
j I −A v

(i)
j−1

C 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v
(i)
j

−1

⎤⎥⎥⎥⎥⎦
= 0 (6.2a)

where v
(i)
0

denotes fi.

4. Obtain matrix ˜̃
A(i) and vector ˜̃

B(i) whose elements are given by

˜̃
A
(i)
j,k
= (−1)k−1 ri

∏
l=k

(z(i)
l
− λ
(i)
j ) (6.2b)

˜̃
B
(i)
j = λj

ri

∏
l=1

(z(i)
l
− λ
(i)
j ) (6.2c)
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5. For i = 1,⋯, r calculate coefficients x
(i)
11
,⋯, x

(i)
ri+1,1

which fulfil the condition

[ x(i)
11

x
(i)
12
⋯ x

(i)
ri+1,1

]T = ( ˜̃
A(i))−1 ˜̃

B(i) (6.2d)

6. Obtain matrix A∗e as:

A∗e = [ A∗(1)e A
∗(2)
e ⋯ A

∗(r)
e ] (6.2e)

where

A∗(i)e = (A − x(i)
11
I)fi − x(i)21 v(i)1

− x
(i)
31
v
(i)
2
−⋯− x

(i)
ri+1,1

v(i)ri
(6.2f)

7. Obtain:

A′ = A −A∗e(CE) C (6.2g)

C ′ = (I −CE(CE) )C (6.2h)

8. Using any eigenstructure assignment methods allocate remaining eigenvalues

of Ac1 = (A′ −K ′1C ′)
9. Calculate K1 as

K1 = A
∗

e(CE) +K ′1 (I −CE(CE) ) (6.2i)

10. Repeat steps 2 to 9 for the gain matrix K2 and obtain Ac1 = A −K2C

11. Choose τ and calculate J1 and J2 using

J1 = −A
τ
c2
[Aτ

c1
−Aτ

c2
]−1 (6.2j)

J2 = I − J1 (6.2k)

12. Calculate Wu and Wy via

Wu = − [ C(J1Aτ−1
c1
(B −K1D) + J2Aτ−1

c2
(B −K2D)) ⋯

C(J1A2
c1
(B −K1D) + J2A2

c2
(B −K2D)) (6.2l)

C(J1Ac1(B −K1D) + J2Ac2(B −K2D))B CB −D ]
Wy = [ C(J1Aτ−1

c1
K1 + J2A

τ−1
c2

K2) ⋯ C(J1A2
c1
K1 + J2A

2
c2
K2)

C(J1A1
c1
K1 + J2A

1
c2
K2) C(J1K1 + J2K2) −I ] (6.2m)
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13. Calculate residual via

r(t) =WyY (t) −WuU(t) (6.2n)

Remark 6.1. The residual ri(t) obtained using Algorithm 6.1 lies in the direction Cfi.

Demonstration. The residual calculated using Algorithm (6.1) is, cf. (5.139):

r(t) = C [ J1 J2 ]
⎡⎢⎢⎢⎢⎣
∑τ−1

j=0 A
j
c1Fµ(t − j)

∑τ−1
j=0 A

j
c2Fµ(t − j)

⎤⎥⎥⎥⎥⎦
= CJ1

τ−1

∑
j=0

Aj
c1
Fµ(t − j) +QCJ2 τ−1

∑
j=0

Aj
c2
Fµ(t − j)

(6.3)

Consider a matrix f̄i = [ fi v
(i)
1
⋯ v

(i)
ri ]. It has been shown in Subsection 5.3.2,

that Im{f̄i} is an invariant subspace of Ac1 , Ac2 , J1, and J2. Hence, it holds that, cf.

Subsection 5.3.2:

CJkA
j
ck

Im{f̄i} ⊆ CIm{f̄i} for k = 1,2; j = 0,⋯, τ − 1, i = 1,⋯, r (6.4)

Recall that Cv
(i)
j = 0 for j = 1,⋯, rl, i = 1,⋯, r. Consequently:

Im{Cf̄i} = Im{Cfi} for i = 1,⋯, r (6.5)

Thus, a design of the fault isolation filter using Algorithm 6.1 ensures that the residual

driven by the fault signal µi(t) lies in the direction Cfi.

6.4 Fault identification

6.4.1 Change of coordinates

The presence of the ith fault yields residual direction Cfi. Thus, it is useful to represent

the residual vector r(t) as a linear combination of residual directions Cfi, i = 1,2,⋯, r,

i.e.

r(t) = γ1Cf1 + γ2Cf2 +⋯+ γrCfr (6.6)

where γ1, γ2,⋯, γr are scalar coefficients. The parameter γi deviating from zero indicates

a presence of the fault µi(t) and its value depends on the magnitude of the fault.

Consequently, a change of coordinates is defined as:

T = [ T1 T2 ] (6.7)
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where T1 = [ Cf1 Cf2 ⋯ Cfr ] and Im{T2} is an orthogonal completion of Im{T1}.
Applying the above similarity transformation to r(t) a variable r̊(t) is obtained:

r̊(t) = T−1r(t) (6.8)

Remark 6.2. An occurrence of µi(t) causes r̊i(t) deviate from zero, whilst the re-

maining components of r̊(t) are zero.

Demonstration. The term r̊(t) is given by:

r̊(t) = [ Cf1 Cf2 ⋯ Cfr T2 ]−1 (γ1Cf1 + γ2Cf2 +⋯+ γrCfr) (6.9)

which can be reformulated as:

[ Cf1 Cf2 ⋯ Cfr T2 ] r̊(t) = γ1Cf1 + γ2Cf2 +⋯ + γrCfr (6.10)

which it true if and only if:

r̊(t) = [ γ1 γ2 ⋯ γr 0 ⋯ 0 ]T (6.11)

Thus r̊i(t) deviates from zero only when the fault µi(t) occurs.

6.4.2 Steady state gain calculation

From (6.3) it follows that the directional residual as a function of a fault signal can be

represented by:

r(t) =WµM(t) (6.12)

where:

Wµ = [ C(L1A
τ−1
c1
+L2A

τ−1
c2
)F ⋯ C(L1A

2
c1
+L2A

2
c2
)F

C(L1Ac1 +L2Ac2)F QCF 0 ] (6.13)

and:

M(t) = [ µT (t − τ) µT (t − τ + 1) ⋯ µT (t) ]T (6.14)

It has been shown that the fault direction driven by µi(t) is Cfi. Consequently, the

directional residual, r(t), can be formulated as:

r(t) = τ

∑
j=0

r

∑
i=1

α
(i)
j Cfiµi(t − j) (6.15)
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where α
(i)
j are scalar coefficients. Then, the term r̊(t) can be reformulated as:

r̊(t) = T−1WµM(t) = ΩM(t) (6.16)

where Ω ∈ Rm×k(τ+1) is given by Ω = T−1Wµ.

Remark 6.3. The term Ω is in the form of:

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(1)
τ 0 ⋯ 0 α

(1)
τ−1 0 ⋯ 0 ⋯ α

(1)
0

0 ⋯ 0

0 α
(2)
τ ⋯ 0 0 α

(2)
τ−1 ⋯ 0 ⋯ 0 α

(2)
0

⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ α
(k)
τ 0 0 ⋯ α

(k)
τ−1 ⋯ 0 0 ⋯ α

(k)
0

0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.17)

Demonstration. See Appendix C

Note that r̊i(t) is the residual vector r(t) represented by the basis T , and, consequently,

r̊i(t) can be reformulated as, cf. (6.15):

r̊i(t) = α(i)0 µi(t) + α(i)1 µi(t − 1) +⋯+ α(i)τ µi(t − τ) (6.18)

Therefore, the steady state gain of the response of r̊i(t) to the fault µi(t) is equal to

∑τ
j=0 α

(i)
j , which is the sum of elements of the ith row of Ω. Consider a diagonal matrix:

Ξ = diag [ ∑τ
i=1 α

(1)
i ∑τ

i=1 α
(2)
i ⋯ ∑τ

i=1 α
(k)
i 1 ⋯ 1 ] (6.19)

and the variable:

µ̂(t) = Ξ−1r̊(t) (6.20)

The first r elements of the vector µ̂(t) are estimates of µ(t), whereas remaining m − r

elements of µ̂(t) should be equal zero and may be treated as control variables (if they

deviate from zero it indicates there is a fault or a disturbance that is not covered by

the model). Consequently, the PE for fault isolation and identification is given by:

µ̂(t) = W̊yY (t) + W̊uU(t) (6.21)

where

W̊u = Ξ−1T−1Wu and W̊y = Ξ−1T−1Wy (6.22)

The algorithm for fault isolation and identification via diagonal PE is summarised

below.
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Algorithm 6.2 (Fault isolation and identification via diagonal PE).

1. Compute r(t) using Algorithm 6.1

2. Obtain T using (6.7)

3. Obtain Wµ using (6.13) and obtain Ω as:

Ω = T−1Wµ (6.23a)

4. Compute Ξ using (6.19)

5. Calculate W̊u and W̊y as:

W̊u = Ξ−1T−1Wu (6.23b)

W̊y = Ξ−1T−1Wy (6.23c)

6. Compute reconstructed fault vector as:

µ̂(t) = W̊yY (t) + W̊uU(t) (6.23d)

6.5 Consideration of measurement noise

In practice there is noise present in the system. Consequently, the residual is rarely

equal to zero, and a decision must me made, whereas the residual deviating from zero

indicates presence of a fault or is a result of noise. A fault presence is sensed if a residual

exceeds a certain threshold (Ding 2008). An appropriate choice of the threshold allows

minimisation of the number of false alarms as well as missed fault occurrences. In this

subsection a simple method for calculating thresholds is presented.

Consider the system (6.1) in the EIV framework:

x(t + 1) = Ax(t) +Bu0(t) + Fµ(t)
y0(t) = Cx(t) +Du(t)
u(t) = u0(t) + ũ(t)
y(t) = y0(t) + ỹ(t)

(6.24)

where noise-free input and output, u0(t) and y0(t) are affected by white, Gaussian,

zero-mean, mutually uncorrelated noise sequences ũ(t) and ỹ(t), respectively. The

terms u(t) and y(t) are measured values of the input and output. The term µ̂(t) is
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calculated as:

µ̂(t) = W̊yY (t) + W̊uU(t) = W̊y(Y0(t) + Ỹ (t)) + W̊u(U0(t) + Ũ(t)) (6.25)

which in a fault-free case is:

µ̂ = W̊yỸ (t) + W̊uŨ(t) (6.26)

It should be noted that each column of µ̂(t) is affected by the measurement noise in

different level. Therefore, thresholds calculation should be based on the expected values

of the variance each element of µ̂(t) in the fault-free case. The covariance matrix of

µ̂(t), denoted as Σµ̂, in fault-free case is given by:

Σµ̂ = W̊yΣỹW̊
T
y + W̊uΣũW̊

T
u (6.27)

where Σỹ = E{Ỹ (t)Ỹ T (t)} and Σũ = E{Ũ(t)ŨT (t)}. In the EIV framework with no

process noise, cf. (6.24), Σỹ and Σũ are diagonal matrices. Based on the assumption

that the measurement noise sequences are white, Gaussian, zero-mean, and mutually

uncorrelated, the threshold which µ̂i(t) needs to violate for the fault to be noticed

should be calculated as an appropriate multiplicity of the standard deviation of µ̂i(t)
in a fault-free case, i.e. an appropriate multiplicity of the square root of the ith diagonal

element of Σµ̂.

6.6 Numerical example

Example 6.1. Design of diagonal PE for fault isolation and identification

It is assumed that a linear discrete-time time-invariant system is described by (6.24)

where the system matrices are:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0.1512 −1.1274 3.325 −4.85 3.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

1 0 0

0 −1 0

0 2 1

0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0

0 0 1 1 0

0 0 1 0 1

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.28)

The first output is affected by white, Gaussian, zero-mean noise with the variance equal

to σ2y1 = 0.01, whilst the remaining three are subjected to white, Gaussian, zero-mean

noise sequences with the variances of σ2y2 = σ
2
y3
= σ2y4 = 0.0001. Output measurement
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noise sequences are mutually uncorrelated.

Note that CF1 = 0 and:

f1 = AF1 = [ 1 0 0 0 −0.9762 ]T (6.29)

Therefore, δ1 = 1. Due to the fact that CF2 ≠ 0 and CF3 ≠ 0, f2 = F2 and f3 = F3.

Consequently, residual directions are:

Cf1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

−0.9762

−0.9762

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Cf2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Cf3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.30)

Note that rank([ Cf1 Cf2 Cf3 ]) = 3, hence the possibility for a complete fault

isolation exists.

Eigenvalues of (A −K1C) are chosen to be 0.22, 0.77, 0.66, 0.55, 0.44. Note that

the triple (A,f1, C) has an invariant zero at z
(1)
1
= 0, whilst the state and input zero

directions are, respectively, v
(1)
1
= F1 and g

(1)
1
= −1. Eigenvalues of (A −K1C) corre-

sponding to a linear combination of columns of f̄1 = [ f1 F1 ] are 0.22 and 0.44. As

a result, the first column of the matrix X(1) is given by, cf. (6.2b), (6.2c), (6.2d):

X(1) =

⎡⎢⎢⎢⎢⎣
0.6600

−0.0968

⎤⎥⎥⎥⎥⎦
(6.31)

Hence, A∗(1) is calculated as, cf. (6.2f):

A∗(1) = (A − 0.66I)f1 + 0.0968v
(1)
1
= [ −0.5632 0 0 −0.9762 −2.2157 ]T (6.32)

whereas A∗(2) and A∗(3) are:

A∗(2) = (A − 0.55I)f2 A∗(3) = (A − 0.66I)f2 (6.33)

Subsequently, the matrix A∗ is obtained as, cf. (6.2e):

A∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5632 −0.5500 0

0 −1 0

0 2.5500 1

−0.9762 −1.1000 1.34

−2.7157 −12.8738 0.83

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.34)

The remaining eigenvalue of (A′ −K ′
1
C ′) is chosen to be 0.77. Subsequently, the gain
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matrix K1 is computed as:

K1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4196 −0.2943 −0.1639 0.3110

0.2175 −0.2472 0.9702 −0.8466

−0.3623 1.7423 −1.1700 0.7988

0.0020 −0.6641 0.4379 0.5642

−1.0702 −2.3477 9.4559 −7.8671

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.35)

The eigenvalues of (A −K2C) are selected to be 0.95, 0.85, 0.18, 0.33, 0.47 and, as

a consequence, K2 is calculated as:

K2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.9584 −0.0699 −0.5583 0.5932

1.0705 −0.5388 1.5317 −1.2623

−0.3388 1.6940 −1.1147 0.7677

0.1891 −0.5675 0.5616 0.6321

1.1636 −3.6841 10.3533 −7.6162

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.36)

The order of the parity space is chosen as τ = 8 and matrices Wu and Wy are

calculated using (6.2l) and (6.2m), respectively. Then T is obtained using (6.7):

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0.3072

0 1 1 −0.6294

−0.9762 −1 2 −0.3222

−0.9762 0 2 0.6369

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.37)

The matrix Ω is then computed as, cf. (6.23a):

Ω = T−1Wµ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 2.3e − 2 0 0

0 3.2e − 2 0 0 1.3e − 1 0

0 0 4.3e − 3 0 0 3e − 2

0 0 0 0 0 0

1.8e − 1 0 0 1 0 0 0 0 0

0 3.8e − 1 0 0 1 0 0 0 0

0 0 1.8e − 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.38)

The first three diagonal elements of Ξ are equal to sum of appropriate rows of Ω. The
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last diagonal element of Ξ is unity, see (6.19):

Ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2004 0 0 0

0 1.5386 0 0

0 0 1.2118 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.39)

Consequently, W̊u and W̊y are calculated using, respectively, (6.23b) and (6.23c) and

the fault estimate is obtained using (6.23d).

Measurement noise

Recall that output measurements are affected by white, zero-mean, Gaussian, and

mutually uncorrelated noise sequences with variances of σ2y1 = 0.01 and σ2y2 = σ
2
y3
=

σ2y4 = 0.0001, whilst τ = 8. Hence, the output measurement covariance matrix is

a 36th order ((τ + 1)m = 9 × 4 = 36) diagonal matrix, whose diagonal is the vector

[ σ2y1 σ2y2 σ2y3 σ2y4 ] repeated τ + 1 = 9 times. Consequently, Σµ̂ is calculated as,

cf. (6.27):

Σµ̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0190 −0.0119 0.0129 0.0048

−0.0119 0.0190 −0.0118 −0.0034

0.0129 −0.0118 0.0118 0.0045

0.0048 −0.0034 0.0045 0.0038

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.40)

Thus, the variances of the consecutive elements of µ̂(t) in a fault-free case are, respec-

tively, 0.0190, 0.0190, 0.0118, and 0.0038. The threshold of each element of µ̂(t) is

selected as its standard deviation in a fault-free case multiplied by 3.1 (which results in

the confidence bound of 0.999, assuming a Gaussian distribution of the measurement

noise) and are given by, respectively, 0.4272, 0.3557, 0.3363, and 0.1915. Results of the

simulation are presented in Fig. 6.2. The filter identifies abrupt faults µ1(t) and µ2(t),
as well as an incipient fault µ3(t). After the 100th sample an unmodelled fault occurs.

This is indicated by µ̂4(t) violating the threshold.

6.7 Conclusions

The fault isolation and identification filter devised in this chapter utilises a diagonal

residual set. Therefore, multiple faults can be isolated and identified. Furthermore, if

the number of linearly independent outputs exceeds the number of modelled faults, a

new variable has been introduced, which indicates occurrence of an unmodelled fault.

This provides a signal to stop the process and investigate the source of a possibly

dangerous fault. Also a straightforward method to calculate residual thresholds, whose

violation indicates a fault, has been proposed for the EIV framework. A simulation

study has demonstrated promising results for both diagnosis of abrupt and incipient

163



6. Fault isolation via diagonal PE

10 20 30 40 50 60 70 80 90 100 110 120

−2

0

2

4

6

 

 

10 20 30 40 50 60 70 80 90 100 110 120

0

2

4

6

8

 

 

10 20 30 40 50 60 70 80 90 100 110 120
−8

−6

−4

−2

0

 

 

10 20 30 40 50 60 70 80 90 100 110 120
−4

−2

0

 

 

Residual response to faults

f1(t)

f2(t)

f3(t)

µ̂1(t)

µ̂2(t)

µ̂3(t)

µ̂4(t)
Time [samples]

Figure 6.2: Fault identification using diagonal PE. At the 100th time sample unmod-
elled fault occurs causing µ̂4(t) deviate from zero.

faults.

Further work aims to extend the scheme to fault isolation and identification of

multidimensional faults.

164



Chapter 7

Potential applications

Nomenclature

Ap . . . . . . . . . . . . . piston area

C . . . . . . . . . . . . . . compensation variable

d1, d2, d2 . . . . . . . . damping coefficients

Fc(t) . . . . . . . . . . . Coulomb friction

Ffric(t) . . . . . . . . total friction force

Fh(t) . . . . . . . . . . . hydraulic force

Fr(t) . . . . . . . . . . . roll force

Fs(t) . . . . . . . . . . . Stribeck friction (stiction)

Fv(t) . . . . . . . . . . . viscous friction

G1,G2 . . . . . . . . . . controller gains

Gv(z) . . . . . . . . . . transfer function

k1 . . . . . . . . . . . . . . spring constant

k2 . . . . . . . . . . . . . . spring constant

k3 . . . . . . . . . . . . . . steel strip spring constant

Kc . . . . . . . . . . . . . hydraulic oil compressibility coefficient

Kp . . . . . . . . . . . . . proportional gain of hydraulic piston controller

l . . . . . . . . . . . . . . . . stroke length of the piston

h(t) . . . . . . . . . . . . exit gauge

ĥ(t) . . . . . . . . . . . . estimate of exit gauge

href(t) . . . . . . . . . exit gauge reference signal

H(t) . . . . . . . . . . . input gauge

m1 . . . . . . . . . . . . . mass of hydraulic piston

m2 . . . . . . . . . . . . . mass of backup roll

m3 . . . . . . . . . . . . . mass of work roll

M . . . . . . . . . . . . . . mill modulus (spring constant)

M̂ . . . . . . . . . . . . . . estimated mill modulus

p(t) . . . . . . . . . . . . hydraulic pressure

qf(t) . . . . . . . . . . . fluid flow to hydraulic capsule

v(t) . . . . . . . . . . . . unknown input

v̂(t) . . . . . . . . . . . . unknown input estimate

vc, v1, v2 . . . . . . . . auxiliary coefficients

y(t) . . . . . . . . . . . . system output

z(t) . . . . . . . . . . . . position of the hydraulic piston
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7. Potential applications

zref(t) . . . . . . . . . hydraulic piston position reference signal

µc . . . . . . . . . . . . . . Coulomb friction level

µs . . . . . . . . . . . . . . Stribeck friction coefficient

µv . . . . . . . . . . . . . . viscous friction coefficient

Preliminary reading: Sections 3.2, 3.3, and 3.5

7.1 Introduction

Algorithms developed in Chapter 3 are evaluated using two practical examples. In

Section 7.2 the PE-UIO (see Algorithm 3.1) is used to improve control performance

of a steel rolling mill. Furthermore, the two stage PE-UIO (Algorithm 3.4) is used to

estimate the concentration of river pollutant. Conclusions and a critical appraisal of

practical use of the developed algorithms are presented in Section 7.4.

7.2 Steel rolling mill

In this Section Algorithm 3.1 is applied to a model of a single stand hot strip finishing

rolling mill. Rolling is a process of shaping a metal piece by a reduction of its thickness,

i.e. gauge. The metal is compressed by being progressed between rollers rotating with

the same velocity but in the opposite direction. The final stage of the rolling process is

the finishing mill, where the main goal is to maintain the exit gauge, i.e. the thickness

of the steel strip emerging from the mill, within increasingly tight specifications. The

finishing mill consists of several stands, which consecutively reduce the thickness of the

steel strip. Each of the finishing mill stands is controlled separately.

For the purpose of control, the force acting on the strip (further denoted as ‘roll

force’) is required to be inferred via measurement of a hydraulic actuator force. The

roll force is obtained via measurements of the fluid pressure in a hydraulic actuator

mounted on the top of the stand. However, a problem, which occasionally arises is an

oscillation of the exit gauge. It is believed that this is due to limit cycles, which result

from the nonlinearities in the plant, caused mainly by friction. The contacting surfaces

of the mill are many and the friction forces acting on the elements can be large hence

their impact on the plant behaviour is significant. The friction force is a strongly non-

linear phenomenon, difficult to model and dependent on many operating environment

conditions, such as temperature, properties of lubricant, wear of surfaces, etc., see, for

example, (Papadopoulos & Chasparis 2002, Putra 2004). The non-stationarity of these

conditions cause the friction to be difficult to parametrise.

Algorithm 3.1 is applied to the plant in order to estimate the value of the force

measurement error, which is assumed to be mainly caused by the friction and constitutes

on the unknown input. Based on the estimated value of the error, a correction is made

to the measured value of the force, which is then fed back to the plant.
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work roll

backup roll

piston position

roll force

hydraulic force

z(t)
Fh(t)

Fr(t)
h(t)H(t)

Figure 7.1: Schematic illustration of controlled plant

A PE-based friction compensator applied to a deterministic model of a rolling mill

has been previously investigated by the author in (Sumis lawska, Burnham, Hearns,

Larkowski & Reeve 2010). Furthermore, in (Sumis lawska, Larkowski & Burnham

2010a) an additive measurement noise on the piston position and hydraulic force has

been considered.

7.2.1 Description of the plant

A white-box model of the plant has been originally developed in (Sumis lawska 2009).

Furthermore, it has been reported in (Sumis lawska, Reeve, Burnham, Pozniak-Kosza lka

& Hearns 2009) and (Sumis lawska, Burnham, Hearns, Larkowski & Reeve 2010). A

schematic illustration of the plant is presented in Fig. 7.1. The steel strip remains

constantly in a contact with a pair of working rolls, which are supported by the backup

rolls. The entry gauge and the exit gauge of the strip are denoted as H(t) and h(t),
respectively. The hydraulic actuator mounted at the top of the stack changes the

position of the backup, hence the work rolls, and ultimately controls the exit gauge of

the strip (Yildiz, Forbes, Huang, Zhang, Wang, Vaculik & Dudzic 2009).

Control scheme

Harsh temperature conditions close to the rolling mill stand render direct measurement

of the exit gauge impossible (Yildiz et al. 2009), hence a need arises to estimate the

exit gauge from the measured value of the roll force and the mill modulus, i.e. mill

sensitivity to force, see (Yildiz et al. 2009). Due to the fact that the roll force is

inaccessible for measurements, the force in the hydraulic actuator capsule is measured.

Therefore the exit gauge is estimated via:

ĥ(t) = z(t) + C
M̂
Fh(t) (7.1)
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where ĥ(t) denotes the estimated exit gauge, M̂ is the estimated value of the mill

modulus M (i.e. mill sensitivity to force), z(t) denotes the hydraulic piston position

and Fh(t) corresponds to the value of the force measured in the hydraulic actuator

capsule, noting that Fh(t) ≈ Fr(t), where Fr(t) denotes the roll force. In fact it is

the difference between the measured Fh(t) and the actual Fr(t) which constitutes the

unknown input. The actual exit gauge, denoted h(t), is is given by:

h(t) = z(t) + C
M
Fr(t) (7.2)

In order to improve the robustness of the control loop a compensation variable C < 1

is introduced.

The control scheme of the rolling mill is presented in Fig. 7.2. The controller gains

G1 and G2 are given by:

G1 = 1 + (1 −C) k3
M̂
, G2 =

M̂ + k3

M̂ + k3 +Ck3
(7.3)

where k3 denotes the steel strip sensitivity to force (strip modulus). The term Kp

denotes the proportional gain of the hydraulic piston position controller and defines

a relation between the piston position error and the fluid flow, denoted qf(t), to the

hydraulic actuator capsule.

G1 G2  Kp Actuator Stack_ _

+ +

+

+

+
+

z(t)

zref(t)href(t) Fh(t)qf(t) h(t)

ĥ(t)

C

M̂

Figure 7.2: Control loop, href(t) – exit gauge reference signal, zref(t) – piston po-
sition reference signal, Fh(t) – hydraulic force, qf(t) – flow of hydraulic
fluid

7.2.2 Plant model

Stack model

The stack of rolls (i.e. backup and work rolls with a steel strip between them, further

referred to as the stack) is modelled by making use of a classical mass-spring-damper

model representation, see Fig. 7.3. Due to the symmetrical construction of the stack,

only the upper backup and work rolls are taken into consideration. The values of the

model parameters are given in Table 7.1. In the further analysis the damper denoted
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d1 is replaced by a friction model, which introduces a nonlinear dependency between

the piston velocity and the friction force.

Fh(t)

z(t)

h(t)

d1

d2

d3

m1

m2

m3

k1

k2

k3

Figure 7.3: Mass-spring-damper representation of the stack, m1 - hydraulic piston
mass, m2 - backup roll mass, m3 - work roll mass, k1 - spring coefficient
between piston and backup roll, k2 - spring coefficient between backup
and work roll, k3 - spring coefficient of the strip

Parameter Value Unit

m1 1 ⋅ 102 kg

m2 5 ⋅ 104 kg

m3 6 ⋅ 103 kg

k1 1 ⋅ 1010 N
m

k2 1 ⋅ 1010 N
m

k3 3 ⋅ 109 N
m

d1 1 ⋅ 107 kg
s

d2 5 ⋅ 106 kg
s

d3 5 ⋅ 106 kg
s

M 5 ⋅ 109 N
m

Table 7.1: Parameters of rolling mill model

Friction model

The friction is modelled as a sum of three components: Coulomb friction, viscous

friction and Stribeck friction. The latter is also named stiction (Putra 2004):

Ffric(t) = Fc(t) + Fv(t) + Fs(t) (7.4)
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where the term Ffric(t) denotes the total frictional force, whilst Fc(t), Fv(t) and Fs(t)
refer to the Coulomb, viscous and Stribeck friction, respectively. The Coulomb friction

is modelled as:

Fc(t) = −µcsign(ż(t))(1 − e∣ ż(t)vc
∣) (7.5)

where the term µc denotes the Coulomb friction level, whilst the exponential term is

introduced in order to avoid a zero-crossing discontinuity. The element related to the

viscous friction is modelled as a linear function of the hydraulic piston velocity, denoted

ż(t):
Fv(t) = −µv ż(t) (7.6)

where the term µv denotes the viscous damping of the frictional force. The Stribeck

friction (stiction) model is given by:

Fs(t) = −µssign(ż(t))(1 − e∣ ż(t)v1
∣)e∣ ż(t)v2

∣
(7.7)

where the term µs determines the magnitude of the static friction, whilst v1 and v2 are

utilised to shape the stiction model.

Hydraulic servo system model

Dependency between the fluid flow, denoted qf(t), into the capsule and the pressure

denoted p(t) acting on the piston area denoted Ap is represented by the following linear

relation, see e.g. (Jelali & Kroll 2003):

p(t) =Kc
∫ qf(t)dt −Apl

Apl
(7.8)

where l denotes the stroke length of the piston, and the term Kc corresponds to the

hydraulic oil compressibility coefficient. Therefore, the force denoted Fh(t) acting on

the hydraulic piston is given by:

Fh(t) = App(t) (7.9)

The values of the hydraulic actuator model parameters are given in Table 7.2.

Parameter Value Unit

Ap 0.331 m2

l 0.1 m

Kp 7.0 N
m

Kc 3.32 ⋅ 109 Pa

Table 7.2: Parameters of hydraulic actuator model

170



7. Potential applications

7.2.3 Simulation results

To simulate the plant the full nonlinear model is used, however to generate the PE-

UIO a linear model is required. The nonlinear model of the system has been linearised

by replacing the damping coefficient d1 (i.e. the ratio of the friction force to the

piston velocity) by its nominal value equal to 107 kg
s

. The white-box model described

in Subsection 7.2.2 is discretised using a sampling interval of 10 ms, which corresponds

to the sampling interval of the controller. The minimal state-space representation of

the model is a one-input two-output 7th order system, which is conveniently obtained

using the Matlab linmod function.

The resulting discretised form of the linearised closed-loop system has then been

used for friction force estimator design. The reference signal is considered to be the

input to the system. The two measured outputs of the system are the roll force (i.e.

the force acting on the strip) and the piston position, given by, respectively, the first

and the second elements of the output vector y(t), see (7.10). It is convenient to scale

the roll force by C

M̂
to ensure numerical scalability.

y(t) = [ C

M̂
Fr(t) z(t) ]T (7.10)

Recall that due to the fact that the roll force Fr(t) is inaccessible, the hydraulic force

Fh(t) is measured. Subsequently, the force measurement is affected by the friction force

and the parasitic dynamics of the stack. Due to the fact that the bandwidth of the

parasitic dynamics of the stack exceeds the sampling frequency, it can be assumed that

the frictional force has the most significant contribution to the roll force measurement

error. Therefore, the difference between the roll force Fr(t) and the force measured

in the hydraulic capsule Fh(t) is considered to be the unknown input to the system,

further referred to as v(t), where v(t) = C

M̂
(Fr(t) − Fh(t)). (The factor C

M̂
is used to

ensure to ensure numerical scalability.) Hence, the matrices G and H of the system

(3.1) are:

G = 0, H = [ 1 0 ]T (7.11)

Subsequently, the exit gauge change is estimated via:

ĥ(t) = z(t) + C
M̂
Fh(t) − v̂(t) (7.12)

where v̂(t) is the correction term (i.e. the estimated force the measurement error v(t),
corresponding to the unknown input obtained from the PE-UIO).

Engineering knowledge and past experience of technicians with the plant indicate

that it is reasonable to assume that the piston position and hydraulic force measure-

ments are affected by white, zero-mean, Gaussian, mutually uncorrelated noise se-

quences, whose standard deviations are, respectively, 0.1µm and 1000N. The PE-UIO

algorithm with s = 4 samples is used to obtain v̂(t).
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Figure 7.4: Friction compensation effect on the exit gauge error
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Figure 7.5: Friction force estimation

Fig. 7.4 presents the simulated results for the cases of no compensation and with the

unknown input compensation applied. The grey dashed line corresponds to a simulated

reconstruction of a typical limit cycle condition found in practice. The black solid line

corresponds to the compensated case and clearly indicates that the limit cycle ampli-

tude is significantly reduced, implying potential for improved product quality. Fig. 7.5

shows the actual unknown input and the estimated unknown input corresponding to

the simulated condition in Fig. 7.4. The PE-UIO accurately estimates the friction

force affecting the exit gauge and a subsequent feedback compensation that utilises the

estimated unknown input results in a significant improvement in control.

7.3 Hydrological application

The second example is based on the data collected during a potassium bromide (KBr)

tracer experiment carried out in a wetland area by Martinez & Wise (2003). A
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schematic illustration of the experiment is depicted in Fig. 7.6. A tracer has been

poured into the river at the point (1). Two tracer concentration sensors have been

placed downstream, at points (2) and (3), whose readings are denoted, respectively,

as v(t) and y(t). A linear model of the relation between v(t) and y(t), where v(t) is

the input to the system, whilst y(t) is the output, has been developed in (Young &

Sumis lawska 2012). The input v(t), further referred to as upstream tracer concentra-

v(t) y(t)KBr

flow direction

(1) (2) (3)

Figure 7.6: Tracer experiment

tion, and the output y(t), the tracer concentration measured downstream, are plotted

as the grey line and black line, respectively, in Fig. 7.7. The aim of this simulation is

to use the two stage PE-UIO (Algorithm 3.4) scheme to estimate the input v(t) based

on output measurements and the knowledge of the system model. The system can be
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Figure 7.7: Input and output signals in tracer experiment

approximated by a linear second order model, with time constants of 17.4 and 83.7

hours, i.e. a stiff system. The discrete time model of the two-hourly sampled system is

given by (Young & Sumis lawska 2012):

Gv(z) = 0.017591(z + 4.302)(z − 0.9735)
(z − 0.9764)(z − 0.8916) (7.13)

Note that the same model has been used in Example 3.7 to obtain the unknown in-

put of the simulated system (in contrast to this example, where real input and output

measurements are used). The model is nonminimum-phase. Although the standard

PE-UIO can cope with the zero at −4.302, the zero at 0.9735 requires the two stage
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PE-UIO to be used. For the design of the unknown input reconstruction it has been

assumed that the measurements are affected by white, zero-mean, Gaussian, mutually

uncorrelated measurement noise. The parity space order has been set to 15 samples,

which leads to an estimation time lag of 7 samples. The result of an unknown input

estimation using the two stage PE-UIO is compared with the input reconstructed us-

ing the INPEST, see Fig. 7.8. The parameters of the INPEST method are τ̊ = 7 and

q̊e = 0.8 obtained for λ = 0.001, see (Young & Sumis lawska 2012). It is noted that both
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Figure 7.8: Result of unknown input estimation

methods give similar results. Both methods detect a rise of v(t) in approximately the

33th sample, whereas the measured input starts rising at approximately the 42th sam-

ple. Furthermore, after the 200th sample the estimation errors of the PE-UIO and the

INPEST are virtually the same. It is believed that the input reconstruction discrep-

ancies are caused mainly by the modelling inaccuracy, presumably caused by system

nonlinearities. This hypothesis is supported by Fig. 7.9, which compares the measured

output with the model output. The simulated output starts rising approximately 10

samples after the rise of the measured output. Furthermore, the observed characteris-

tic ‘bumps’ of the measured output between 100 and 150 samples result in the input

reconstruction error pattern visible in the upper subfigure of Fig. 7.8.

7.4 Critical appraisal of practical application of developed

methods

A simulation study of a single finishing stand of a steel rolling mill has demonstrated

promising results. The force measurement error has been estimated quite accurately,
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Figure 7.9: Model output vs. measured output

and the compensation significantly reduced the amplitude of limit cycles. The high

frequency and low amplitude oscillations, which may be observed after enhancement of

the control, are probably the result of unknown input estimation delay. In the industrial

plant, however, unmeasured variations of the input gauge H occur, which should be

treated as a disturbance. Thus, before application to an actual plant, the possibility of

disturbance decoupling in the PE-UIO needs to be explored.

The two stage PE-UIO has estimated the tracer concentration in the river accu-

rately. Further improvement could possibly be achieved, if, instead of the assumption

of a white measurement noise, a coloured process noise model, which can explain dis-

crepancy between modelled and simulated output (model mismatch), is assumed.
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Chapter 8

Conclusions & further work

8.1 Conclusions

This thesis presents novel developments in the fields of unknown input reconstruction

and fault detection, isolation and identification. The developed algorithms are applica-

ble to time-invariant, discrete-time systems. Most of the research is devoted to linear

systems, except for the unknown input reconstruction method presented in Chapter 4,

which has been designed for a class of nonlinear systems, namely, Hammerstein-Wiener

systems. Two potential applications for the algorithms developed in Chapter 3 have

been proposed and promising results demonstrated via simulation studies.

This section is divided into three logical parts. Subsection 8.1.1 summarises the

development of unknown input reconstruction schemes. In Subsection 8.1.2 fault de-

tection and diagnosis algorithms are concluded. The main contributions of this thesis

are summarised in Subsection 8.1.3.

8.1.1 Unknown input reconstruction

In Chapter 3 a novel scheme combining PE and the Lagrange multiplier optimisation

method for unknown input reconstruction of MIMO stochastic systems has been de-

vised. Due to that fact that the PE-UIO utilises parity equations, i.e. both input and

output signals are filtered in an analogous manner, the method is suitable for systems

in the EIV framework. It is assumed that the system input is affected by white, Gaus-

sian, zero-mean measurement noise, whilst the output is subjected to coloured noise,

which may represent a combination of measurement and process noise sequences. In

particular, the methods can be applied to systems with well known noise models, such

as ARX, ARMAX or OE. The PE-UIO requires the knowledge of the system model

and, if the input is subjected to measurement noise (EIV framework), at least the ratio

between the variances of the input and output noise sequences. Otherwise, if the input

can be measured directly (i.e. there is no noise affecting the input), the knowledge of

the noise variance is not required to be known explicitly for the design of the input
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reconstruction filter (it is, however, required to know the noise model). In the case of

OE systems the design procedure can be simplified, which has also been demonstrated.

The only tuning parameter for the PE-UIO is the parity space order. By increasing it,

the bandwidth of the filter is reduced, and, consequently, noise filtering properties are

improved. On the other hand, reduced bandwidth causes an estimation lag. Thus, the

trade-off between noise filtering and estimation lag as well as an a’priori knowledge of

the bandwidth of the reconstructed signal needs to be taken into consideration. The

algorithm is applicable to both minimum-phase and nonminimum-phase systems.

The drawback of the PE-UIO is that it may produce a distorted unknown input

estimate, if a zero of the system transfer function to an unknown input is unity (a system

with a derivative term) or lies close to unity. To tackle this problem an extension to

the PE-UIO, i.e. a two stage PE-UIO, has been proposed. The two stage PE-UIO is

applicable to systems, whose minimum-phase zeros lie close to unity or its zeros are

equal unity. It has been demonstrated that the two stage algorithm has superior noise

filtering properties compared to the standard PE-UIO, however, it may introduce larger

estimation lag. Both, the standard and the two stage input reconstruction algorithms,

are computationally simple. The filter parameters need to be calculated only once

before the filter is applied to the system.

Both, the standard (single stage) PE-UIO and the two stage PE-UIO, have been

compared with two other methods found in the literature: a Kalman filter-based MVU

and the INPEST method, based on linear quadratic control. A simulation study has

revealed superior noise filtering properties of the PE-UIO compared to the MVU. This

is due to the adjustable bandwidth of the PE-UIO (which, however, causes the trade-

off between the noise filtering and estimation delay). Furthermore, the MVU in the

case of a single output system resembles a naive inversion, thus it cannot be used

for unknown input reconstruction of single output nonminimum-phase systems. The

INPEST method has shown comparable results to those of the PE-UIO (both single

stage and the two stage).

Potential industrial applications of the proposed unknown input reconstruction

schemes have been demonstrated via simulation studies in Chapter 7. The PE-UIO

has been used to improve the control performance of a steel rolling mill, by recon-

struction of a parasitic friction force. The two stage PE-UIO has been proposed in a

hydrological application in order to estimate the level of pollutant in a river.

In Chapter 4 the PE-UIO has been extended to Hammerstein-Wiener systems, i.e.

systems which can be modelled as a linear dynamic block preceded and followed by

a static nonlinearity. The algorithm has been developed for a system with a single

measurable input, single output, and a single unknown input to be reconstructed in

an EIV framework, where both measured input and output are subjected to white,

Gaussian, zero-mean mutually uncorrelated noise sequences. As the system operating

point changes, the influence of the input and output noise on the unknown input es-
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timate varies. Thus, the algorithm needs to adapt to these changes. Two versions of

the scheme are proposed. In the first version the parity space order remains constant,

whilst the filter parameters vary at each time sample. In the second version the parity

space order varies according to the system operating point. Furthermore, assuming a

Gaussian distribution of the measurement noise, a method for computation of the confi-

dence bounds has been proposed. The simulation study has demonstrated applicability

of proposed algorithms to the particular class of nonlinear systems. It has also been

shown that for relatively mild nonlinearities a linear algorithm can be used in order to

reduce the computational effort.

8.1.2 Fault detection and diagnosis

A robust fault detection filter of (Chen & Patton 1999) has been extended to system

with unstable invariant zeros, which improved the applicability of the scheme. Fur-

thermore, a modification has been proposed which allowed relaxation of a strict rank

condition. The robust fault isolation filter proposed in Chapter 5 has an equivalent

eigenstructure to the fault isolation filter proposed in (Chen & Speyer 2006a), how-

ever, it has been demonstrated that the design procedure presented in Chapter 5 is

computationally simpler. It has been shown that the devised robust fault detection

filter is completely decoupled from disturbances. The user can influence the transient

behaviour of the residual response to faults via assignment of poles of the filter.

Furthermore, by building on the finite time convergent state observer of Engel &

Kreisselmeier (2002), the proposed robust fault detection filter has been used to design

robust PE of an arbitrary order. Analogously, left eigenstructure assignment has been

used to design the PE of any user defined order. It has been demonstrated that both

algorithms provide complete disturbance decoupling.

In Chapter 6 the robust PE via right eigenstructure assignment have been extended

to the fault isolation and identification filter case. Decoupling properties of the robust

PE presented in Chapter 5 have been used to design a directional residual set. Fur-

thermore, by application of a similarity transformation and by setting to unity the

steady state gain of the residual response of the filter to a given fault, a filter has been

obtained, which provides an estimate of the fault vector, i.e. reconstructs the fault

vector. In the case when the number of outputs exceeds the number of possible faults,

the design freedom has been used to devise a control variable, which remains zero when

any of the modelled faults occurs. Deviation of the control variable from zero indicates

an occurrence of a fault which has not been covered by the model. Applicability of

the novel PE design for fault identification to stochastic systems in the EIV framework

has been considered and a simple method for calculation of thresholds, whose violation

indicates a fault, has been proposed. Efficacy of the method has been demonstrated

using a numerical example.
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8.1.3 Contributions

The main contributions of this thesis are briefly summarised in order of importance as

follows:

1. Incorporation of the Lagrange multiplier optimisation method into PE design in

order to minimise the noise effect on the unknown input estimate (Chapter 3).

2. Extension of the proposed unknown input estimator to Hammersten-Wiener sys-

tems (Chapter 4).

3. Application of the novel PE-based unknown input reconstruction method for en-

hancement of a control loop in a single stand of a rolling mill and for a hydrological

application (Chapter 7).

4. Use of right and left eigenstructure assignment to develop robust fault detection

PE of user defined order (Chapter 5).

5. Extension of the robust fault detection filter via right eigenstructure assignment

to systems with unstable invariant zeros (Chapter 5).

6. Use of right eigenstructure assignment to develop PE of arbitrary order for the

purpose of fault isolation and identification (Chapter 6).

8.2 Further work

The following aspects are considered as further work regarding the PE-UIO for linear

stochastic systems:

● Up to date the PE-UIO can be applied to systems where a single unknown input

needs to be reconstructed. Thus, an extension of the algorithm to systems with

multiple unmeasurable inputs could be considered.

● Application of a disturbance decoupling scheme to the PE-UIO could improve

applicability of the algorithm.

● The single stage PE-UIO produces a distorted unknown input estimate when a

zero of the system response to an unknown input lies close to unity. The two

stage PE-UIO copes with such a situation if the problematic zero lies inside the

unit circle. However, the problem remains open for the cases when a system

nonminimum-phase zero lies close to unity.

The following aspects of the input reconstruction scheme for Hammerstein-Wiener sys-

tems could be taken into consideration:

● Extension of the algorithm to the multivariable case, with multiple measured

inputs and outputs as well as multiple unknown inputs to be reconstructed.
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● Algorithms presented in Chapter 4 require calculation of filter parameters at

each time sample, thus they need a computational power which is not negligible.

Consequently, an optimisation of the procedure is considered as an interesting

aspect of future work.

● The scheme utilises a direct inversion of the output transforming nonlinearity,

hence it is not applicable to systems where the output nonlinearity is not in-

vertible. It would be interesting to consider e.g. adaptive learning methods to

reconstruct the input to the noninvertible block and hence improve the applica-

bility of the method.

Additional research on the topic of fault detection and diagnosis could include:

● Robust fault detection for stochastic systems. Design freedom of both robust

PE and a robust asymptotic filter could be used to minimise the influence of the

noise of the residual. Also calculation of thresholds, whose violation indicates the

presence of faults has not been discussed for the robust fault detection filter (it has

been discussed only for the fault isolation and identification filter in Chapter 6).

● Exploring applicability of the robust fault detection scheme to systems where the

disturbance direction vectors ei combine with each other to create new invariant

zeros.

● Extension the fault isolation and identification scheme to multidimensional faults.

Furthermore, the following future research directions could also be considered:

● Extension of the proposed schemes to time-varying and uncertain systems.

● Extension of the proposed robust fault detection and diagnosis methods to non-

linear systems; particularly, Hammerstein-Wiener and bilinear systems could be

considered.

● Whilst two of the developed algorithms have been applied to practical applica-

tions, it would be desirable to evaluate the other methods developed within this

thesis to real world applications to assess their potential benefits.
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Frank, P. M. & Wünnenberg, J. (1989), Fault Diagnosis in Dynamic Systems: Theory

and Application, Prentice Hall, chapter Robust Fault Diagnosis Using Unknown

Input Schemes, pp. 47–98.

Fravolini, M., Brunori, V., Campa, G., Napolitano, M. & La Cava, M. (2009), ‘Struc-

tural analysis approach for the generation of structured residuals for aircraft FDI’,

IEEE Transactions on Aerospace and Electronic Systems 45(4), 1466–1482.

Fruzzetti, K., Palazoglu, A. & McDonald, K. (1997), ‘Nonlinear model predictive con-

trol using Hammerstein models’, Journal of ProcessControl 7(1), 31–44.

Fu, H., Kirtikar, S., Zattoni, E., Palanthandalam-Madapusi, H. & Bernstein, D. (2009),

Approximate input reconstruction for diagnosing aircraft control surfaces, in ‘Pro-

ceedings of the AIAA Guidance, Navigation, and Control Conference’, Chicago,

Illinois.

Fu, H., Yan, J., Santillo, M. A., Palanthandalam-Madapusi, H. & Bernstein, D. (2009),

Fault detection for aircraft control surfaces using approximate input reconstruc-

tion, in ‘Proceedings of the American Control Conference (ACC’09)’, St. Louis,

MO, USA.

Gao, Z., Breikin, T. & Wang, H. (2007), ‘High-gain estimator and fault-tolerant design

with application to a gas turbine dynamic system’, IEEE Transactions on Control

Systems Technology 15(4), 740–753.

Garrick, B. J., Gekler, W. C., Goldfisher, L., Karcher, R. H., Shimizu, B. & Wilson,

J. H. (1967), Reliability analysis of nuclear power plant protective system, Tech-

nical Report HN-190 AEC Research & Development Report, Holmes & Narver,

Inc., Nuclear Division.

Gertler, J. & Kunver, M. (1995), ‘Optimal residual decoupling for fault diagnosis’,

International Journal of Control 61(2), 395–421.

Gertler, J. & Singer, D. (1990), ‘A new structurel framework for parity equation-based

failure detection and isolation’, Automatica 26(2), 381–388.

Ghahremani, E. & Kamwa, I. (2011), Simultaneous state and input estimation of a

synchronous machine using the extended Kalman filter with unknown inputs, in

‘Proceedings of the 2011 IEEE International Electric Machines & Drives Confer-

ence (IEMDC)’, pp. 1468– 473.

185



REFERENCES

Gillijns, S. & De Moor, B. (2007a), ‘Unbiased minimum variance input and state esti-

mation for linear discrete-time systems’, Automatica 43(1), 111–116.

Gillijns, S. & De Moor, B. (2007b), ‘Unbiased minimum variance input and state es-

timation for linear discrete-time systems with direct feedthrough’, Automatica

43(5), 934–937.

Gu, D. & Poon, F. W. (2003), ‘A robust fault-detection approach with application

in a rolling-mill process’, IEEE Transactions on Control Systems Technology

11(3), 408–414.

Halmos, P. R. (1958), Finite-dimensional vector spaces, Springer.

Halton, H. (1963), ‘Design philosophy of an automatic checkout and launch system for

a drone’, IEEE Transactions on Aerospace 1(2), 538–546.

Hou, M. & Müller, P. (1992), ‘Design of observers for linear systems with unknown

inputs’, IEEE Transactions on Automatic Control 37(6), 871–875.

Hsieh, C. (2000), ‘Robust two-stage Kalman filters for systems with unknown inputs’,

IEEE Transactions on Automatic Control 45(12), 2374–2378.

Ibaraki, S., Suryanarayanan, S. & Tomizuka, M. (2005), ‘Design of Luenberger state

observers using fixed-structure H∞ optimization and its application to fault de-

tection in lane-keeping control of automated vehicles’, IEEE/ASME Transactions

on Mechatronics 10(1), 34–42.

Ibnkahla, M. (2002), ‘Natural gradient learning neural networks for adaptive inversion

of Hammerstein systems’, IEEE Signal Processing Letters 9(10), 315–317.

Isermann, R. (2005), ‘Model-based fault-detection and diagnosis–status and applica-

tions’, Annual Reviews in Control 29, 71–85.

Isermann, R. & Balle, P. (1997), ‘Trends in the application of model-based fault detec-

tion and diagnosis of technical processes’, Control Engineering Practice 5(5), 709–

719.

Janis, J. P. (1963), ‘Checkout methods for space vehicle subsystems’, IEEE Transac-

tions on Aerospace 1(2), 547–549.

Jelali, M. & Kroll, A. (2003), Hydraulic servo-systems: modelling, identification and

control, Springer-Verlag, London.

Jirauch, D. H. (1967), ‘Software design techniques for automatic checkout’, IEEE Trans-

action on Aerospace and Electronic Systems AES-3(6), 934–940.

Jones, H. L. (1973), Failure Detection in Linear Systems, PhD thesis, Massachusetts

Institute of Technology, USA.

186



REFERENCES

Kaufmann, R. H. & Finison, H. J. (1952), D-C Power Systems for Aircrafts, John

Wiley & Sons, Inc., New York.

Keller, J. & Sauter, D. (2010), A variable geometric state filtering for stochastic linear

systems subject to intermittent unknown inputs, in ‘Proceedings of the Conference

on Control and Fault-Tolerant Systems (SysTol)’, pp. 558–563.

Kennedy, J. J. (1970), ‘Fault detection monitor circuit provides ”self-heal capability”

in electronic modules: A concept’, NASA Tech. Brief 70-10515.

Kirtikar, S., Palanthandalam-Madapusi, H., Zattoni, E. & Bernstein, D. S. (2009),

l -delay input recontruction for discrete-time linear systems, in ‘Proc. of the Con-

ference on Decision and Control’, Shanghai, China, pp. 1848–1853.

Korbicz, J., Koscielny, J. M., Kowalczuk, Z. & Cholewa, W., eds (2003), Fault Diag-

nosis: Models, Artificial Intelligence, Applications, Springer.

Kowalczuk, Z. & Suchomski, P. (2005), Entirely left eigenstructure-assignment for fault

diagnosis observers, in ‘Proceedings of the 16th IFAC World Congress, 2005’,

Vol. 16.

Lajic, Z., Blanke, M. & Nielsen, U. D. (2009), Fault detection for shipboard monitor-

ing Volterra kernel and Hammerstein model approaches, in ‘Proceedings of IFAC

Symposium on Fault Detection, Supervision and Safety of Technical Processes’,

pp. 24–29.

Lee, F. (1962), ‘An automatic self-checking and fault-locating method’, IRE Transac-

tions on Electronic Computers EC-11(5), 649–654.

Li, W. & Shah, S. (2002), ‘Structured residual vector-based approach to sensor fault

detection and isolation’, Journal of Process Control 12, 429–443.

Lia, C.-C. & Jengb, J.-C. (2010), ‘Multiple sensor fault diagnosis for dynamic processes’,

ISA Transactions 48(4), 415–432.

Ljung, L. (1999), System Identification - Theory for the User, PTR Prentice Hall In-

formation and System Sciences Series, 2nd edn, Prentice Hall, New Jersey.

Luenberger, D. G. (1964), ‘Observing the state of linear systems’, IEEE Trans. Mil.

Electr. MIL-8, 70–80.

MacFarlane, A. & Karcanias, N. (1976), ‘Poles and zeros of linear multivariable systems:

A survey of the algebraic, geometric and complex variable theory’, International

Journal of Control 24, 33–74.

Marro, G. & Zattoni, E. (2010), ‘Unknown-state, unknown-input reconstruction

in discrete-time nonminimum-phase systems: Geometric approach’, Automatica

46, 815–822.

187



REFERENCES

Martinez, C. J. & Wise, W. R. (2003), ‘Analysis of constructed treatment wet-

land hydraulics with the transient storage model OTIS’, Ecological Engineering

20(3), 211–222.

Massoumnia, M. A. (1986), ‘A geometric approach to the synthesis of failure detection

filters’, IEEE Transaction on Automatic Control AC-31, 839–846.

Mast, L. T., Mayper, V. & Pilnick, C. (1966), ‘Survey of Saturn/Apollo checkout

automation, spring 1965: Detailed description’, Memorandum RM-4785-NASA.

Mironovski, L. A. (1979), ‘Functional diagnosis of linear dynamic systems’, Automn

Remote Control 40, 1198–1205.

Moylan, P. (1977), ‘Stable inversion of linear systems’, IEEE Transactions on Auto-

matic Control 22(1), 74–78.

Ng, H., Chen, R. & Speyer, J. (2006), ‘A vehicle health monitoring system evaluated

experimentally on a passenger vehicle’, IEEE Transactions on Control Systems

Technology 14(5), 854–870.

Palanthandalam-Madapusi, H. & Bernstein, D. (2007), Unbiased minimum-variance

filtering for input reconstruction, in ‘Proceedings of the American Control Con-

ference (ACC’07)’, pp. New York City, USA.

Palanthandalam-Madapusi, H., Ridley, A. & Bernstein, D. (2005), Identification and

prediction of ionospheric dynamics using a Hammerstein-Wiener model with radial

basis functions, in ‘Proceedings of the American Control Conference (ACC’05)’,

Portland, OR, USA.

Papadopoulos, E. G. & Chasparis, G. C. (2002), Analysis and model-based control of

servomechanisms with friction, in ‘Proceedings of the International Conference on

Intelligent Robots and Systems (IROS 2002)’, Lausanne, Switzerland.

Park, J. & Rizzoni, G. (1994), ‘An eigenstructure assignment algorithm for the design

of fault detection filters’, IEEE Transactions on Automatic Control 39(7), 1521–

1524.

Patel, R. V. (1985), On blocking zeros in linear multivariable systems, in ‘Proceedings

of 24th Conference on Decision and Control’.

Patel, R. V. & Munro, N. (1982), Multivariable System Theory and Design, Pergamon

Press, Inc.

Patton, R. & Chen, J. (1997), ‘Observer-based fault detection and isolation: Robustness

and applications’, Control Engineering Practice 5(5), 671–682.

188



REFERENCES

Patton, R. J. (1997), ‘Robustness in model-based fault diagnosis: The 1995 situation’,

Annual Reviews of Control 21, 103–120.

Patton, R. J. & Chen, J. (1991a), A parity space approach to robust fault detection

using eigenstructure assignment, in ‘Proceedings of European Control Conference

ECC91’, Grenoble, France.

Patton, R. J. & Chen, J. (1991b), Robust fault diagnosis using eigenstructure assign-

ment: A tutorial consideration and some new results, in ‘Proceedings of the 30th

Conference on Decision and Control’, pp. 2242–2247.

Patton, R. J. & Chen, J. (1991c), A robust parity space approach to fault diagno-

sis based on optimal eigenstructure assignment, in ‘International Conference on

Control 1991. Control ’91’, Edinburgh , UK, pp. 1056–1061.

Patton, R. J. & Chen, J. (1992), ‘Robust fault detection of jet engine sensor systems

using eigenstructure assignment’, Journal of Guidance, Control, and Dynamics

15(6), 1491–1497.

Patton, R. & Liu, G. (1994), Robust control design via eigenstructure assignment, ge-

netic algorithms and gradient-based optimisation, in ‘IEE Proceedings on Control

Theory and Applications’, Vol. 141, pp. 202–208.

Pearson, R. K. (1995), ‘Nonlinear input/output modelling’, Journal of Process Control

5(4), 197–211.

Pearson, R. K. (2003), ‘Selecting nonlinear model structures for computer control’,

Journal of Process Control 13(1), 1–26.

Pearson, R. K. & Pottmann, M. (2000), ‘Gray-box identification of block-oriented non-

linear models’, Journal of Process Control 10, 301–315.

Pierria, F., Paviglianiti, G., Caccavale, F. & Mattei, M. (2008), ‘Observer-based sensor

fault detection and isolation for chemical batch reactors’, Engineering Applications

of Artificial Intelligence 21, 1204–1216.

Pottmann, M. & Pearson, R. K. (2006), ‘Block-oriented NARMAX models with output

multiplicities’, AIChE journal 44(1), 131–140.

Putra, D. (2004), Control of Limit Cycling in Frictional Mechanical Systems, PhD

thesis, Technische Universiteit Eindhoven, Eindhoven.
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Appendix A

Calculation of parameters xij

The matrix X is given by:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 1 0 0 ⋯ 0 0

x21 z1 1 0 ⋯ 0 0

x31 0 z2 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

xq11,1 0 0 0 ⋯ zq1−1 1

xq1+1,1 0 0 0 ⋯ 0 zq1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.1)

Eigenvalues corresponding to the linear combinations of columns of ē, λj , j = 1,⋯, q1,

must fulfil the equation:

det(λjI −X) = 0 (A.2)

i.e.

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 − λj 1 0 0 ⋯ 0 0

x21 z1 − λj 1 0 ⋯ 0 0

x31 0 z2 − λj 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

xq11,1 0 0 0 ⋯ zq1−1 − λj 1

xq1+1,1 0 0 0 ⋯ 0 zq1 − λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 − λj x21 x31 ⋯ xq11,1 xq1+1,1

1 z1 − λj 0 ⋯ 0 0

0 1 z2 − λj ⋯ 0 0

0 0 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ zq1−1 − λj 0

0 0 0 ⋯ 1 zq1 − λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(A.3)
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A. Calculation of parameters xij

Using a determinant expansion by minors, the following recursive expression is ob-

tained:

det(λjI −X) = (x11 − λj)det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 − λj 0 ⋯ 0 0

1 z2 − λj ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ zq1−1 − λj 0

0 0 ⋯ 1 zq1 − λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x21 x31 ⋯ xq11,1 xq1+1,1

1z2 − λj ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ zq1−1 − λj 0

0 0 ⋯ 1 zq1 − λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.4)

The determinant of a lower triangular matrix is equal to the product of its diagonal

elements, hence the first element of (A.4) is calculated via:

(x11 − λj)det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 − λj 0 ⋯ 0 0

1 z2 − λj ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ zq1−1 − λj 0

0 0 ⋯ 1 zq1 − λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (x11 − λj)(z1 − λj)(z2 − λj)⋯(zq1 − λj)

(A.5)

The second element of (A.4) is developed as:

− det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x21 x31 ⋯ xq11,1 xq1+1,1

1 z2 − λj ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ zq1−1 − λj 0

0 0 ⋯ 1 zq1 − λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (A.6)
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= −x12det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2 − λj 0 ⋯ 0 0

1 z3 − λj ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ zq1−1 − λj 0

0 0 ⋯ 1 zq1 − λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x31 x41 ⋯ xq1,1 xq1+1,1

1 z3 − λj ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ zq1−1 − λj 0

0 0 ⋯ 1 zq1 − λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Following this recursive procedure equation (A.2) is reformulated as:

x11 (z1 − λj) (z2 − λj)⋯ (zq1 − λj) + (−1)x21 (z2 − λj) (z3 − λj)⋯ (zq1 − λj)+
(−1)2x31 (z3 − λj) (z4 − λj)⋯ (zq1 − λj) +⋯+ (−1)q1xq1,1 (zq1 − λj)+
(−1)q1+1xq1+1,1 = λj (z1 − λj) (z2 − λj)⋯ (zq1 − λj)

(A.7)

The above equation needs to be fulfilled for λj , j = 1, w,⋯, q1 + 1, i.e.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∏q1
k=1 (zk − λ1) −∏q1

k=2 (zk − λ1) ⋯ (−1)q1−1 (zq1 − λ1) (−1)q1
∏q1

k=1 (zk − λ2) −∏q1
k=2 (zk − λ2) ⋯ (−1)q1−1 (zq1 − λ2) (−1)q1

⋮ ⋮ ⋱ ⋮ ⋮

∏q1
k=1 (zk − λq1) −∏q1

k=2 (zk − λq1) ⋯ (−1)q1−1 (zq1 − λq1) (−1)q1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x21

⋮

xq1+1,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1∏q1
k=1 (zk − λ1)

λ2∏q1
k=1 (zk − λ2)
⋮

λq1∏
q1
k=1 (zk − λq1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.8)

Consequently, the first column of X is given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x12

⋮

xq1+1,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ( ˜̃
A)−1 ˜̃

B (A.9)

where an element of ˜̃
A(i) ∈ R(q1+1)×(q1+1), denoted as ˜̃

Aj,k is:

˜̃
Aj,k = (−1)k−1 q1

∏
l=k

(zl − λj) (A.10)
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A. Calculation of parameters xij

whilst the jth element of the vector ˜̃
B ∈ Rq1+1, denoted as ˜̃

Bj is:

˜̃
Bj = λj

q1

∏
l=1

(zl − λj) (A.11)
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Appendix B

Proof of Lemma 5.4

For the sake of brevity, the superscript (i) is omitted. Matrices A∗e and Aw are equal if

their appropriate columns are equal. From equation (2.103) it holds that eigenvectors

of (A −KC) are given by:

w
(i)
j = fi + [ v(i)1

v
(i)
2
⋯ v

(i)
qi ] β̄(i)j (B.1)

where β̄
(i)
j is a column vector of qi parameters. The parameters β̄

(i)
j conform to (2.107),

which can be reformulated as:

(A − λ(i)
k
I) [ v(i)

1
v
(i)
2
⋯ v

(i)
qi ] β̄(i)k

− (A − λ(i)qi I) [ v(i)1
v
(i)
2
⋯ v

(i)
qi ] β̄(i)qi

= (λ(i)
k
− λ(i)qi )ei

(B.2)

for k = 1,⋯, qi − 1. Using the notation:

β̄
(i)
j = [ β(i)j,1 β

(i)
j,2 ⋯ β

(i)
j,qi
] (B.3)

it follows that:

βk,1Av1 + βk,2Av2 +⋯+ βk,qiAvqi − λkβk,1v1 − λkβk,2v2 −⋯− λkβk,qivqi−

βqi,1Av1 − βqi,2Av2 −⋯ − βqi,qiAvqi + λqi+1βqi,1v1 + λqi+1βqi,2v2 +⋯+ λqi+1βqi,qivqi

= (λk − λqi+1)ei
(B.4)

k = 1,⋯, qi. From (5.62a), it follows that:

Avj = zjvj + vj−1 (B.5)
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B. Proof of Lemma 5.4

Recalling that v0 = ei, (B.4) can be reformulated as:

βk,1z1v1 + βk,1ei + βk,2z2v2 + βk,2v1 +⋯+ βk,qizqivqi + βk,qivqi−1

− λkβk,1v1 − λkβk,2v2 −⋯− λkβk,qivqi − βqi,1z1v1 + βqi,1ei + βqi,2z2v2

+ βqi,2v1 +⋯+ βqi,qizqivqi + βqi,qivqi−1 − λqi+1βqi,1v1 − λqi+1βqi,2v2

−⋯− λqi+1βqi,qivqi = (λk − λqi+1)ei
(B.6)

Then:

− (λk − βk,1)ei + (βk,1z1 + βk,2 − λkβk,1)v1 + (βk,2z2v2 + βk,3 − λkβk,2)v2
+⋯+ (βk,qi−1zqi−1 + βk,qi − λkβk,qi−1)vqi−1 + (βk,qizqi − λkβk,qi)vqi =
− (λqi+1 − βqi,1)ei + (βqi,1z1 + βqi,2 − λqi+1βqi,1)v1 + (βqi,2z2 + βqi,3 − λqi+1βqi,2)v2
+⋯+ (βqi,qi−1zqi−1 + βqi,qi − λqi+1βqi,qi−1)vqi−1 + (βqi,qizqi − λqi+1βk,qi)vqi

(B.7)

Due to the fact that ei, v1, v2,⋯, vqi are linearly independent, it holds that:

λk − βk,1 = λqi+1 − βqi,1

βk,1z1 + βk,2 − λkβk,1 = βqi,1z1 + βqi,2 − λqi+1βqi,1

βk,2z2v2 + βk,3 − λkβk,2 = βqi,2z2 + βqi,3 − λqi+1βqi,2

⋮

βk,qi−1zqi−1 + βk,qi − λkβk,qi−1 = βqi,qi−1zqi−1 + βqi,qi − λqi+1βqi,qi−1

βk,qizqi − λkβk,qi = βqi,qizqi − λqi+1βk,qi

(B.8)

for k = 1,⋯, qi. Consequently, for any j, k = 1,⋯, qi + 1 it holds that:

λk − βk,1 = λj − βj,1

βk,1z1 + βk,2 − λkβk,1 = βj,1z1 + βj,2 − λjβj,1

βk,2z2v2 + βk,3 − λkβk,2 = βj,2z2 + βj,3 − λjβj,2

⋮

βk,qi−1zqi−1 + βk,qi − λkβk,qi−1 = βj,qi−1zqi−1 + βj,qi − λjβj,qi−1

βk,qizqi − λkβk,qi = βj,qizqi − λjβk,qi

(B.9)

The following notation is proposed:

x11 = λj − βj,1

x21 = −βj,1z1 − βj,2 + λjβj,1

x31 = −βj,2z2 − βj,3 + λjβj,2

⋮

xqi,1 = −βj,qi−1zqi−1 − βj,qi + λjβj,qi−1

xqi+1,1 = −βj,qizqi + λjβj,qi

(B.10)
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B. Proof of Lemma 5.4

Now consider the ith column of Aw, cf. (5.93):

(A − λ1I)w1 = Aei +Av1 +Av2 +⋯ +Avqi − λ1ei − λ1v1−

λ1v2 −⋯− λ1vqi

(B.11)

Incorporating (B.5) into (B.11) and reorganising, the following is obtained:

(A − λ1I)w1 = Ae − (λ1 − β1,1)ei + (β1,1z1 + β1,2 − λ1β1,1)v1+
(β1,2z2 + β1,3 − λ1β1,2)v2 +⋯+ (β1,qizqi − λ1βk,qi)vqi (B.12)

Incorporating (B.10) into (B.12)

(A − λ(i)
1
I)w1 = Ae − x11ei − x21v1 − x31v2 −⋯− xqi+1,1vqi (B.13)

which is equal to the ith column of A∗e .
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Appendix C

Demonstration of Remark 6.3

From (6.16) it follows that:

r(t) = T r̊(t) = TΩM(t) (C.1)

where the product term TΩ can be formulated as:

TΩ = [ Cf1 Cf2 ⋯Cfr T2 ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(1)
τ 0 ⋯ 0 α

(1)
τ−1 0 ⋯ 0 α

(1)
0

0 ⋯ 0

0 α
(2)
τ ⋯ 0 0 α

(2)
τ−1 ⋯ 0 0 α

(2)
0

⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ α
(k)
τ 0 0 ⋯ α

(k)
τ−1 0 0 ⋯ α

(k)
0

0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [ Cf1α(1)τ Cf2α

(2)
τ ⋯ Cfrα

(r)
τ Cf1α

(1)
τ−1 Cf2α

(2)
τ−1 ⋯ Cfrα

(r)
τ−1

⋯ Cf1α
(1)
0

Cf2α
(2)
0

⋯ Cfrα
(r)
0
]

(C.2)

whilst M(t) is expanded as:

M(t) = [ µ1(t − τ) µ2(t − τ) ⋯ µk(t − τ) µ1(t − τ + 1) µ2(t − τ + 1) ⋯
µk(t − τ + 1) ⋯ µ1(t) µ2(t) ⋯ µk(t) ]T

(C.3)

Recall equation (6.15):

r(t) = τ

∑
j=0

r

∑
i=1

α
(i)
j Cfiµi(t − j) (C.4)

It follows from (C.1), (C.2), and (C.3) that (C.4) is equivalent to:

r(t) = TΩM(t) (C.5)

Thus:

r̊(t) = ΩM(t) (C.6)
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