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Abstract 
In the present study additive manufacturing of Polylactic acid (PLA) by fused 

deposition modeling (FDM) were investigated based on statistical analysis. The 

honeycomb internal pattern was employed to build inside of specimens due to its 

remarkable capability to resist mechanical loads. Simplify 3D was utilized to slice the 

3D model and to adjust fixed parameters. Layer thickness, infill percentage, and 

extruder temperature were considered as controlled variables, while maximum failure 

load (N), elongation at break (mm), part weight (gr), and build time (min) were selected 

as output responses and analysed by response surface method. Analysis of variance 

results identified layer thickness as the major controlled variable for all responses. 

Interaction of infill percentage and extruder temperature had a significant influence on 

elongation at break and therefore, tough fracture of printed parts. The input parameters 

were optimized to materialize tow criteria; the first one was to rise maximum failure 

load and the second was to attain tough fracture and lessen build time and part weight at 

a time. Optimal solutions were examined by experimental fabrication to evaluate the 

efficiency of the optimization method. There was a good agreement between empirical 

results and response surface method predictions which confirmed the reliability of 

predictive models. The optimal setting to fulfill the first criterion could bring on a 

specimen with more than 1500 (N) maximum failure load and less than 9 (gr) weight.     

 

Keywords: 3D Printing; Fused Deposition Modelling; Mechanical properties; Part 

weight; Response Surface Method. 
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1. Introduction 

  Rapid Prototyping (RP) technologies are gradually developing to rapid 

manufacturing (RM) technologies due to widespread applications of rapid prototyping 

technologies in various industries. Nowadays, applications for additive manufacturing 

(AM) methods are growing in different fields namely industrial, medical, and 

architectural sectors. Additive manufacturing technologies build 3D components by 

adding successive layers of feedstock material that fuse together to create consolidated 

components. Fused deposition modeling (FDM) is a rapid prototyping process in which 

a filament of wax or polymer is extruded onto the existing part surface from a workhead 

to complete each new layer [1]. FDM works best with polymers that are amorphous in 

nature rather than highly crystalline polymers. This is because polymers that work best 

are those that are in a viscous paste rather than in a lower viscosity form. As amorphous 

polymers, there is no distinct melting point, and the material increasingly softens, and 

viscosity lowers with increasing temperature [2].  

     Many researchers investigated FDM process parameters by design of experiments 

method [3, 4, 5, 6], and many others evaluated the FDM process by evolutionary 

algorithm or artificial intelligence techniques [7, 8, 9, 10]. According to the literature, 

Padhi et al. [11] investigated effects of several process parameters including layer 

thickness, raster angle, raster width, air gap, part orientation, and their interactions on 

the accuracy of the length, width, and thickness, of acrylonitrile-butadiene-styrene 

(ABSP 400) parts fabricated through FDM technique. The process parameters were 

optimized to minimize the outputs responses, such as the change in length, width, and 

thickness of the test specimen by Taguchi method. Taguchi’s philosophy was not able to 

reach uniform optimal factor settings for each response. Therefore, a combined method 

of a fuzzy inference system and Taguchi philosophy were implemented to create a 

single response for three responses to attain overall optimum factor level settings. 

Gardan et al. [12] presented a new filament deposition for fused deposition modeling. 

Several specimens were printed to evaluate fracture behaviour of specimens. The new 

filament could result in a 30% improvement in the toughness of specimens.  A ductile-

like behavior associated with large deformation zone was achieved by modifying the 

filament direction. Peng et al. [13] studied the effects of line width compensation, 

extrusion velocity, filling velocity, and layer thickness on the dimensional error, warp 

deformation, and built time. The three responses were converted to a single output by a 

fuzzy inference system. The response surface methodology (RSM) was used to 

determine the relationship between four input parameters and a comprehensive output. 

Matlab software was also used to implement fitness function in the genetic algorithm. 

Results showed that the proposed method in could effectively improve accuracy and 

efficiency in the FDM process. Sajan et al. [14] conducted a study to improve circularity 

and surface finish of a grinder blade of acrylonitrile butadiene styrene (ABS). The part 

had three holes in three plains. Bed temperature, nozzle temperature, print speed, infill 

percentage, layer thickness and a number of loops were considered as input parameters. 

Taguchi method was performed to reach optimum process parameters to improve 

circularity and surface roughness. Results indicated that circularity error and surface 

roughness were minimum at the hole printed in XY plane and maximum at XZ plane. 

Gautam et al. [15] investigated the compressive performance of ABS Kagome truss unit 

cell fabricated by fused deposition modeling. Effects of part build orientation, the 

diameter of the strut, the height of the core and the surface roughness on the peak 

strength and the effective stiffness were studied. It was found that the average peak 

strength and effective stiffness varies by 23% and 19% with different build orientation 



due to changes in strut dimensions with different build direction as well as the 

anisotropic compressive behavior of FDM printed parts. The numerical results of 

effective stiffness differed from experimental measurements by 10–17% attributed to 

the imperfections like voids and staircase surfaces on the struts.  

Ning et al. [16] investigated the mechanical properties of CFRP composites part 

manufactured by FDM. The first step of the investigation was to produce CFRP 

composites filaments by adding carbon fiber to plastic materials. The second step 

printing specimens by FDM. The third step was to conduct the tensile test. The 

composite filament resulted in increasing tensile strength and Young’s modulus. 

However, toughness, ductility, and yield strength were decreased using a composite 

filament. 

Additive manufacturing displays significant potential for replacement of traditionally 

manufactured parts, part repair, and prototype, however, properties of parts processed 

through additive typically suffer in comparison [17]. Opportunities for 3D printing 

nanostructures materials are investigated to improve the properties of the final printed 

part [18]. Mechanical properties can be increased through adjustment of FDM 

processing parameters such as build speed, build direction about the part orientation, 

layer thickness, and fill pattern comparison [17]. Also, a key requirement of any 

materials to be used in FDM is compatibility of the material with existing FDM setup 

without changing functional hardware/software of the machine [19]. In the current 

research, PLA tensile test sample was used to study effects of layer thickness, infill 

percentage, extruder temperature and their interactions on mechanical properties, build 

time, and part weight by design of experiment (DOE) method. PLA presents relatively 

brittle behaviour under tensile loading. The main objective of this study is to fine tune 

controlled variables to produce tough PLA specimen, reduce part weight, and lessen 

build time of the printed parts. Also, the honeycomb internal fill pattern was 

implemented to boost mechanical performance and decrease material consumtion. 

Interior solidity of the printed parts can also be established by infill percentage. The 

build time data were measured after printing the specimens by a digital timer, and the 

parts weight were measured by a weighing scale. The tensile test determined the 

maximum failure load and elongation at break. Design-Expert V8 software was 

exploited to statistical analysis of experimental data via response surface method 

(RSM). The research objective was accomplished by RSM and validated by 

experimental fabrication. Validation of the statistical model was confirmed by getting 

the analogous results to experimental data. 

 

2. Experimental Design and Methodology 

2.1. Response Surface Method 

It is of great significance to fine-tune variety of build parameters to optimize properties 

of 3D printed parts. Response surface methodology (RSM) is a structured and arranged 

method to identify relationships between factors affecting a process and output of the 

process [20]. RSM is advantageous to quantify relationships between output parameters 

and vital input factors. The aim is to determine a relationship between outputs and 

inputs with a minimum error in the form of a mathematical model. [21]. A functional 

relationship relating a response η with k levels of controlled variables is [22]: 

η = f (x1, x2,…, xk) + Ɛ                                                                (1) 

Where Ɛ represents the random experimental error due to some unknown or 

uncontrollable variables. To optimize the response η, it is necessary to find a suitable 

approximation for the true functional relationship between the independent variables 
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and the response surface [23]. The second order polynomial equation was used for 

representing the response and also expressed in the form of equation (2): 

 

                                                                    (2) 

 

In equation 2, β0 is constant, βi is linear coefficients, βii is coefficients of quadratic, βij is 

interaction coefficients, and ε is the error of parameters of regression. In this study layer 

thickness, infill percentage, and extruder temperature were considered as controlled 

variables. The statistical analysis was performed on experimental data by Design-Expert 

V8 software. The statistical analysis was designed based on Central Composite Design 

(CCD) full replication with three factors five levels. Table 1 shows levels of controlled 

factors. Coding reduces the range of each factor to a common scale, -2 to +2, regardless 

of its relative magnitude.  Maximum failure load (N), elongation at break (%). Part 

weight (gr), and build time (min) opted as output responses. The designed experiments 

and results of experiments are shown in Table 2. 

Table 1. Levels of independent variables 
Variable Symbol Unit Levels 

-2 -1 0 1 2 

Layer Thickness LT mm 0.1 0.15 0.2 0.25 0.3 

Infill Percentage IP % 10 20 30 40 50 

Extruder Temperature ET C 190 200 210 220 230 

 

Table 2. Design matrix and experiments results 
Run  Input Variables  Output Responses Type of 

Fracture 

Layer 

Thickness 

(LT) 

Infill 

Percentage 

(IP) 

Extruder 

Temperature 

(ET) 

Maximum 

Failure 

Load (N) 

Elongation 

at break 

(mm) 

Part 

Weight 

(gr)  

Build 

Time 

(min) 

 

1 0.20 30.00 210.00  1263 3.1294 7.92 35 Brittle 

2 0.20 30.00 210.00  1238.5 2.5069 7.86 35 Brittle 

3 0.15 40.00 220.00  1079.1 2.4006 7.52 43 Brittle 

4 0.30 30.00 210.00  1496 5.6586 9.14 27 Tough 

5 0.20 30.00 210.00  1054.6 3.1281 7.88 35 Brittle 

6 0.25 40.00 200.00  1336.6 6.2812 8.72 31 Tough 

7 0.25 20.00 200.00  1324.4 3.0758 8.37 30 Brittle 

8 0.15 20.00 220.00  1201.7 3.6945 6.92 40 Brittle 

9 0.20 30.00 210.00  1189.5 5.7852 7.83 35 Tough 

10 0.15 40.00 200.00  1226.3 2.7683 7.56 43 Brittle 

11 0.20 30.00 210.00  1066.8 2.4134 7.87 35 Brittle 

12 0.20 10.00 210.00  1164.9 2.8005 7.45 33 Brittle 

13 0.10 30.00 210.00  711.2 2.7617 6.45 54 Brittle 

14 0.15 20.00 200.00  870.6 2.1663 6.97 40 Brittle 

15 0.20 30.00 230.00  1385.7 3.7018 7.94 34 Brittle 

16 0.20 30.00 190.00  1189.5 3.4015 7.85 34 Brittle 

17 0.20 50.00 210.00  1410.2 3.5957 8.40 36 Brittle 

18 0.25 40.00 220.00  1515.1 5.1222 8.91 31 Tough 

19 0.25 20.00 220.00  1459.2 5.8019 8.59 30 Tough 

20 0.20 30.00 210.00  1214 2.6181 7.88 35 Brittle 

 

2.2. Experimental Work 

Polylactic acid or polyactide (PLA) is a biodegradable and bioactive polyester made up 

of lactic acid building blocks. It is the default filament of choice for most extrusion-

based 3D printers because it can be printed at a low temperature and does not require a 

heated bed. PLA is easy to print, very inexpensive, and creates parts that can be used for 



a wide variety of applications. It is also one of the most environmentally friendly 

filaments on the market today, renewable and most importantly biodegradable. 

However, PLA has a limitation due to its inherent brittleness [24]. Table 3 shows the 

properties of PLA.  

Table 3. Material properties. 
Property Value 

Full Name Polylactic acid (PLA) 

Melting Point 150 to 160 °C (302 to 320 °F) 

Glass Transition 60-65 °C 

Injection Mold Temperature 178 to 240 °C (353 to 464 °F) 

Density 1.210–1.430 g·cm−3 

Chemical Formula (C3H4O2)n 

Crystallinity 37% 

Tensile Modulus 2.7–16 GPa 

 

3D printing of PLA was conducted by fused deposition modeling (FDM) method.  

Simplify3D software was used to adjust build parameters of specimens. Simplify3D 

includes an incredibly realistic pre-print simulation that allows seeing the exact 

performance of the 3D printer before starting the print. The simulation includes 

information about the exact speeds, sequences, and settings that are used for the print. 

The tensile test sample was designed based on international standard ISO 527-2 by 

Solidwork software and imported in Simplify3D. Table 4 illustrations definitions of 

FDM build parameters.  

Table 4. FDM build parameters 
No Build Parameters Definition 

1 Nozzle diameter The diameter of the extruder nozzle. 

2 Extrusion width The desired single-outline width of the plastic extrusion. 

3 Build orientation The angle between the main axis of the part and the 

horizontal direction 

4 Top solid layer Number of solid layers to require at the top of the part. 

5 Bottom solid layers Number of solid layers to require at the bottom of the part. 

6 Default printing speed Initial speed used for all printing movements (modification may be 

added for cooling or outline underspeed). 

7 Retraction speed Extruder speed for the retraction movements, typically uses the highest 

speed the extruder can support. 

8 Outline overlap Percentage of extrusion width that will overlap with outline perimeters 

(ensures infill bonds to outline). 

9 Interior fill percentage Determines the interior solidity of the model. 

10 Extruder temperature Defines the temperature at each build layer. 

  

According to Table 2 which is designed based on a design of experiments, 20 samples 

were printed in different settings to investigate the effect of input parameters, mentioned 

in Table 1, on the quality of 3D printed specimens. In FDM 3D printing build 

orientation is considered 45° for the solid surface of specimens. Honeycomb pattern can 

be seen in many natural and industrial structures which introduces its solidity against 

mechanical loads and ability to redistribute localized stresses. Honeycomb structures are 

frequently utilized in the aerospace industry and many other fields due to its strength. 

Therefore, honeycomb internal fill pattern was used for the interior part of specimens to 

enhance loading capacity of specimens. Different honeycomb infill percentages are 

represented in Fig. 2. Geometrical dimensions and internal pattern of the sample are 

demonstrated in Fig. 3. Table 5 displays fixed parameters which are permanent for all 

experiments.  



 
Fig. 2. Honeycomb infill percentages (10% to 50%). 

 

 
(a) 

 

 
(b) 

Fig. 3. Geometrical dimensions and internal features of the sample (a) dimensions of the 

tensile test sample according to ISO 527-2 (b) % 30 full honeycomb infill percentage 

 

Table 5. Values of fixed factors  
Variable Unit 

 

Value 

Nozzle Diameter Mm 0.45 

Extrusion Width Mm 0.45 

Build orientation Degree 45 

Top Solid Layer - 6 

Bottom Solid Layer - 6 

Default Printing Speed mm/min 3600 

Retraction Speed mm/min 1800 

Internal Fill Pattern - Full Honeycomb 

Outline Overlap % 15 



The build time was measured after printing of each specimen by a digital timer; part 

weight was measured via a precise weighing scale; maximum failure load and 

elongation at break were acquired by the tensile test.  The tensile tests were performed 

by a universal testing machine based on ASTM D638. Results indicated that the 

behaviour of specimens under load could be classified as the brittle and tough fracture. 

Almost 80% of outputs in the design matrix are showing brittle fracture because PLA is 

relatively brittle under tensile loading. The fracture of brittle specimens took place at the 

elastic limit, while tough specimens exhibited the ability to undergo a slight measure of 

plastic deformation before the break. Therefore, specimens with higher maximum 

failure load and elongation at break denoted tough fracture. However, the sudden brittle 

fracture was usually observed in specimens at elastic limit and in lower failure load. 

Brittle fracture of a specimen on the universal testing machine is shown in Fig. 4. Figure 

5 represents Extension-Force diagrams of a tough and brittle specimen.   

 

 
Fig. 4. Brittle fracture of the specimen (sample #12) 



 
(a) 

 
           (b) 

Fig. 5. Extension-Force diagrams of (a) tough specimen (sample # 6) and (b) 

brittle specimen (sample # 12) 

  

3. Results and Discussion 
The analysis of variance (ANOVA) reveals the effects of independent variables on 

output responses. The ANOVA is built entirely on the premise that factors are fixed, not 

random, and the design is crossed, not nested. The program calculates effects for all 

model terms. It produces statistics such as p-values, lack of fit, and R-squared values for 

comparing models. F-Values imply that models are significant and these models can be 

used to study the design space. In the mathematical model, the software selects higher 

polynomial where additional terms are significant, and the model is not aliased. Design-

Expert offers a guideline to select a correct power law transformation. It is useful to 

determine the most appropriate power transformation to apply to response data.  



3.1. Maximum Failure Load 
ANOVA table reveals that layer thickness is the dominant controlled variable for 

maximum failure load.  Extruder temperature and infill percentage are also significant. 

Table 6 demonstrates the ANOVA results of maximum failure load.  

 

Table 6. Analysis of variance (ANOVA) for maximum failure load 
Source Sum of 

Squares 

Df Mean 

Square 

F Value p-value 

Model 6.335E+015 3 2.112E+015 20.52 < 0.0001 

Layer Thickness(LT) 5.153E+015 1 5.153E+015 50.06 < 0.0001 

Infill Percentage(IP) 4.973E+014 1 4.973E+014 4.83 0.0430 

Extruder Temperature(ET) 6.848E+014 1 6.848E+014 6.65 0.0202 

Residual 1.647E+015 16 1.029E+014   

Lack of Fit 1.268E+015 11 1.153E+014 1.52 0.3375 

Pure Error 3.791E+014 5 7.582E+013   

Cor Total 7.982E+015 19    

 

 Adj R-Squared 0.7550 R-Squared 0.7937  

 

Equation (3) is predictive model of maximum failure load in terms of coded factors: 

(Maximum Failure Load)2.5  = +5.465E+007 + 1.795E+007 LT + 5.575E+006 IP + 

6.542E+006 ET                                                                                                              (3) 

 

Equation (4) is predictive model of maximum failure load in terms of actual values: 

(Maximum Failure Load)2.5 =-1.71241E+008 + 3.58918E+008 LT + 5.57518E+005 IP 

+ 6.54222E+005 ET                                                                                                       (4) 

 

The coded equation is worthwhile to determine the relative significance of factors by 

comparing the factor coefficients. Figure 6 depicts the perturbation plot of maximum 

failure load. The perturbation plot helps to compare the effect of all factors in the central 

point in the design space which is shown in the figure. The maximum failure load is 

plotted by changing only one factor over its range while holding other factors constant. 

Lines A, B, and C show sensitivity of maximum failure load to the layer thickness, infill 

percentage, and extruder temperature respectively. The perturbation plot discloses 

increasing all input parameters results in increasing mechanical strength of specimens. 

However, layer thickness has much more influence. Also, the plot reveals that 

maximum failure load is almost equally sensitive to extruder temperature and infill 

percentage. Figure 7 demonstrates effects of layer thickness and infill percentage on 

maximum failure load. 3D surface plot of maximum failure load in terms of layer 

thickness and extruder temperature is displayed in Fig. 8. Figure 9 indicates the normal 

probability plot of the studentized residuals to check for normality of residuals. The 

normal probability plot indicates whether residuals follow a normal distribution; in this 

case, the points follow a straight line. Some moderate scatter even with normal data is 

expected.  



By increasing layer thickness the part thickness (4 mm) is divided into the fewer 

number of sections, and therefore the specimen printed by a thicker layer consists of 

less interlayer adhesion than a specimen with a thinner layer. Therefore, increasing layer 

thickness directly results in less interlayer adhesion. Also, thicker layer will have a 

lower heat transfer rate which results in improving interlayer adhesion. That is why 

printing of specimens with a thicker layer ends up tougher properties. In addition, 

higher extruder temperature leads to better fusion and adhesion of extruded layers on 

the solid layers. Infill percentage which determines interior solidity of the printed parts, 

however, has less influence in the strength of parts which somewhat associated to the 

solid surface of specimens. 

 

 
Fig. 6. Perturbation plot of maximum failure load 

 



 
Fig. 7. 3D surface plot of maximum failure load in terms of layer thickness and infill 

percentage 

 
Fig. 8. 3D surface plot of maximum failure load in terms of layer thickness and extruder 

temperature 
 



 
Fig. 9. The normal plot of residuals of failure load 

 

3.2. Elongation at Break 
ANOVA table indicates that layer thickness is the dominant controlled variable for 

elongation at break. In addition, the interaction of infill percentage and extruder 

temperature has a striking effect on elongation at break. Table 7 demonstrates the 

ANOVA results of elongation at break.  

Table 7. Analysis of variance (ANOVA) for elongation at break 
Source Sum of 

Squares 

Df Mean 

Square 

F Value p-value 

 

Model 0.096 4 0.024 6.00 0.0043 

Layer Thickness(LT) 0.064 1 0.064 15.89 0.0012 

Infill Percentage(IP) 3.956E-003 1 3.956E-003 0.99 0.3365 

Extruder Temperature(ET) 5.487E-003 1 5.487E-003 1.37 0.2605 

(IP) × (ET) 0.023 1 0.023 5.74 0.0301 

Residual 0.060 15 4.013E-003   

Lack of Fit 0.022 10 2.217E-003 0.29 0.9540 

Pure Error 0.038 5 7.604E-003   

Cor Total 0.16 19    

 

 Adj R-Squared 0.5126 R-Squared  0.6152  

 

Equation (5) represents predictive model of elongation at break in terms of coded 

factors: 

(Elongation at Break)-1.6 = +0.29 - 0.063 LT -0.016 IP - 0.019 ET +0.054 (IP)(ET)   (5) 



 

Equation (6) represents predictive model of elongation at break in terms of actual 

values: 

(Elongation at Break)-1.6 = +4.35291 - 1.26280 LT - 0.11421 IP - 0.017943 ET + 

5.36362E-004 (IP)(ET)                                                                                                   (6) 

 

Figure 10 depicts the perturbation plot of elongation at break. Lines A, B, and C show 

sensitivity of elongation at break to the layer thickness, infill percentage, and extruder 

temperature respectively. The perturbation plot of elongation at break has a similar 

trend to perturbation plot of the maximum failure load.  However, maximum failure 

load is more sensitive to layer thickness than the elongation at break. Figure 11 shows 

the 3D surface plot of elongation at break in terms of layer thickness and infill 

percentage. Interaction effects of infill percentage and extruder temperature on 

elongation at break are represented in Fig. 12. It is realized from Fig. 12 that increasing 

infill percentage at high temperatures results in decreasing elongation at the break; 

however, increasing infill percentage at low temperatures leads to increasing elongation 

at break. While low extruder temperatures have a remarkable effect on elongation at 

break it does not have much influence on maximum failure load. The figure also implies 

the other way to enhance elongation at break is to increase extruder temperature at low 

infill percentages. The elongation at break has two maximum in the design space where 

the infill percentage is maximum and extruder temperature is minimum and where the 

infill percentage is minimum, and extruder temperature is maximum. 

The infill has a honeycomb pattern, and infill percentage specifies density of the pattern. 

When the infill percentage is maximum, it can be conceived that honeycomb internal 

pattern can facilitate the redistribution of localized stresses to endure stress 

concentrations to undergo more plastic deformation. 

Mechanical properties of printed parts also depend on the sturdy interlayer adhesion of 

plastic strings. The extruder puts a string on a layer which is already cooled down to a 

remarkable lower temperature than the temperature of the extruded string. The 

difference in temperatures for each layer will cause strings to not fuse thoroughly 

together. If these strings do not fuse perfectly, it is rational to suppose that the part will 

have a brittle fracture. The time required to extrude inside layers is dependent on the 

infill percentage, and thus lower infill percentage leads to lower building time for an 

inside layer. Therefore, in the production of specimens with lower infill percentage, 

there is less time to heat transfer and less difference in temperatures which ends in 

better interlayer adhesion between plastic strings. 

The mechanism of fracture can be evaluated by fracture energy which is characterized 

by maximum failure load and elongation at break. All in all, fracture phenomena in 3D 

printed parts mainly depends on the interlayer bond strength. Enhancement of the 

interlayer bond strength results in higher fracture energy which directly determines the 

mechanism of fracture. An internal pattern which can facilitate the redistribution of 

localized stresses and build parameters which make a well-built interlayer adhesion 

leads to higher fracture energy and therefore a tough or ductile fracture. 

 



 
Fig. 10. Perturbation plot of elongation at break 

 

 

 
Fig. 11. 3D surface plot of elongation at break in terms of layer thickness and infill 

percentage 

 

 



 
 

Fig. 12. 3D surface plot of elongation at break in terms of infill percentage and extruder 

temperature 

 

3.3. Part Weight 
ANOVA table reveals that layer thickness and infill percentage are the most substantial 

controlled variables for part weight. Table 8 demonstrates the ANOVA results of part 

weight.  

 

Table 8. Analysis of variance (ANOVA) for part weight 
Source Sum of 

Squares 

Df Mean 

Square 

F Value p-value 

 

Model 77.74 6 12.96 469.01 < 0.0001 

Layer Thickness(LT) 68.92 1 68.92 2494.79 < 0.0001 

Infill Percentage(IP) 8.04 1 8.04 290.92 < 0.0001 

Extruder Temperature(ET) 0.15 1 0.15 5.54 0.0349 

(LT) × (IP) 0.24 1 0.24 8.70 0.0113 

(LT) × (EI) 0.3 1 0.3 10.82 0.0059 

IP2 0.092 1 0.092 3.31 0.0918 

Residual 0.36 13 0.028   

Lack of Fit 0.32 8 0.040 5.04 0.0457 

Pure Error 0.040 5 7.921E-003   

Cor Total 78.10 19    

 

 Adj R-Squared 0.9933 R-Squared  0.9954  



Equation (7) expresses predictive model of part weight in terms of coded factors: 

(Part Weight)1.38 = +17.32 + 2.08 LT +0.71 IP + 0.098ET – 0.17 (LT) (IP) + 0.19 (LT) 

(ET) + 0.58 IP2                                                                                                                (7) 

 

quation (8) expresses predictive model of part weight in terms of actual values: 

(Part Weight)1.38 = +19.51650 - 29.29224 LT + 0.10538 IP - 0.067549 ET -0.34657 

(LT)(IP) + 0.38666 (LT)(ET) + 5.80039E-004 IP2                                                         (8) 

 

Excellent R-Squared and adjusted R-Squared of the predictive the model confirms that 

model is immensely reliable. As the coded equation reveals layer thickness and infill 

percentage coefficients are much higher than the extruder temperature coefficient. 

Nonetheless, the influence of honeycomb infill percentage on the part weight is almost 

one-third of the layer thickness. Due to the small size of the tensile test specimen and 

the number of tops and solid bottom layers honeycomb internal pattern constitutes a 

small part of the specimen. However, this interior part would be greater in larger 

products. In addition, the equation indicates that interactions of parameters are 

negligible.  Figure 13 depicts the perturbation plot of part weight. As the figure 

discloses part weight is more sensitive to layer thickness. It is evident that part weight is 

not so sensitive to extruder temperature. Figure 14 demonstrates the effects of layer 

thickness and infill percentage on part weight. It is observed that increasing infill 

percentage at lower layer thickness results in tangible changes in part weight. Figure 15 

shows the effects of layer thickness and extruder temperature on part weight.  

 

 
Fig. 13. Perturbation plot of part weight 

 



 
Fig. 14. 3D surface plot of part weight in terms of layer thickness and infill percentage 

 

 

 

 

 
Fig. 15. 3D surface plot of part weight in terms of layer thickness and extruder 

temperature 

 

 



3.4. Build Time 
ANOVA table indicates that layer thickness and infill percentage are major controlled 

variables for the build time. In addition, the square of extrusion temperature has a 

significant effect on build time.  Table 9 demonstrates the ANOVA results of build 

time.  
 

Table 9. Analysis of variance (ANOVA) for build time 
Source Sum of 

Squares 

Df Mean 

Square 

F Value p-value 

 

Model 1.088E-005 5 2.176E-006 1498.39 < 0.0001 

Layer Thickness(LT) 1.061E-005 1 1.061E-005 7305.05 < 0.0001 

Infill Percentage(IP) 2.373E-007 1 2.373E-007 163.42 < 0.0001 

IP2 8.043E-009 1 8.043E-009 5.54 0.0337 

ET2 3.050E-008 1 3.050E-008 21.00 0.0004 

Residual 2.033E-008 14 1.452E-009   

Lack of Fit 2.033E-008 9 2.259E-009   

Pure Error 0.000 5 0.000   

Cor Total 1.090E-005 19    

 

 Adj R-Squared 0.9975 R-Squared  0.9981  

 

Equation (9) is predictive model of build time in terms of coded factors: 

(Build Time)-1.61 = +3.259E-003 + 8.142E-004LT -1.218E-004IP +1.747E-005 IP2  

+3.402E-005 ET2                                                                                                           (9) 

 

Equation (10) is predictive model of build time in terms of actual values: 

(Build Time)-1.61 = +0.015527 + 0.016284  LT - 2.26600E-005 IP - 1.42874E-004 ET 

+ 1.74706E-007 IP2 +3.40177E-007  ET2                                                                    (10) 

 

The predictive model is still so reliable because of high values of R-Squared and 

adjusted R-Squared. As the equation reveals, the layer thickness coefficient is higher 

than infill percentage coefficient. Figure 16 depicts the perturbation plot of build time. 

Moreover, the figure displays build time is extremely sensitive to layer thickness. The 

build time decreases meaningfully with increasing layer thickness and increases slightly 

with increasing infill percentage. It can be explained that with increasing layer thickness 

the slicer software divides part thickness into fewer sections and therefore the build time 

is immensely affected by layer thickness. Moreover, with increasing infill percentage 

the nozzle should scan more internal honeycomb pattern lines at defined sections which 

takes more time. Figure 17 demonstrates effects of layer thickness and infill percentage 

on build time.  

 



 
Fig16. Perturbation plot of build time 

 

 
Fig. 17. 3D surface plot of build time in terms of layer thickness and infill percentage 

 

4. Numerical Optimization 
Tow criteria are considered for numerical optimization. Table 10 displays the first and 

second criteria for numerical optimization. The first criterion aims to increase the 

mechanical strength of 3D printed parts by boosting the maximum failure load. 

Adequate mechanical strength is regarded as the key characteristic of many industrial, 

household, and even artistic components. The second criterion is to concurrently 

achieve maximum failure load and elongation at break and minimum part weight and 

build time. In addition, different importance is applied to the responses to the second 



criterion. The importance of the responses is influential is calculating optimal solutions. 

The maximum failure load is the most important response and then build time is 

considered a second important response. Elongation at break and part weight, however, 

have the lowest values of the importance as shown in Table 10. The objective of 

optimization based on second criteria is to attain strong parts with a plastic deformation 

capability at the least possible build time with a reasonable weight. The optimized 

process parameters to achieve the first and second optimization criterion are shown in 

Table 11. Optimum solutions take advantage of a high level of desirability.  Figure 18 

shows the overlay plot which is comprised of contour plots from each response laid on 

top of each other. On each contour plot, regions which do not meet significations are 

greyed-out. The remained yellow region defines the final optimal region of input 

parameters. The overly plot suggests an adequate process window to build optimal 3D 

printed parts. 

 

Table 10 Constraints and criteria of input parameters and responses. 
Parameters/Responses Name Goal Lower 

limit 

Upper 

limit 

Lower 

Weight 

Upper 

Weight 

Importance 

parameters  Layer Thickness is in rang 0.1 0.3 1 1 - 

  Infill Percentage is in rang 10 50 1 1 - 

  Extruder Temperature is in rang 190 230 1 1 - 

Responses Criteria 1 Maximum Failure Load maximize 711.2 1545.1 1 1 3 

  Elongation at Break is in rang 2.1663 6.2812 1 1 3 

  Part Weight is in rang 6.45 9.14 1 1 3 

  Build time is in rang 27 54 1 1 3 

 Criteria 2 Maximum Failure Load maximize 711.2 1545.1 1 1 3 

  Elongation at Break maximize 2.1663 6.2812 1 1 1 

  Part Weight minimize 6.45 9.14 1 1 1 

  Build time minimize 27 54 1 1 2 

 

Table 11 Predicted optimum results and experimental validation 

solution Optimum input parameters  

Desirability 

 Output responses 

 LT IP ET Maximum 

Failure 

Load (N) 

Elongation 

at break 

(%) 

Part 

Weight 

(gr) 

Build 

Time 

(min) 
 

1 

 

0.27 

 

36.47 

 

226.62 

 

0.98 

Actual 1521 5.1253 8.98 31 

Predicted 1558.93 4.2723 9.1195 29.05 

Error% -2.49% 16.5% -1.55% 6.29% 

 

2 

 

 

0.23 

 

 

 

16.86 

 

 

230 

 

 

0.752 

Actual 1437 7.9825 8.42 32 

Predicted 1376.77 9.404 8.1759 30.69 

Error% 4.19% -17.8% 2.89% 4.09% 



 
                  (a) 

 
                  (b) 

Fig. 18. Overlay plots in terms of (a) layer thickness and extruder temperature (b) layer 

thickness and infill percentage. 



In the final experiment, a tensile test specimen is produced by FDM machine setting 

%100 infill percentage to compare mechanical properties, part weight, and build time of 

the filled specimen with optimized specimens. Table 12 compares results of the 

optimized specimen and filled specimen. The results indicate that optimized specimen 

promisingly has higher maximum failure load, lower part weight, and shorter build 

time. Figure 19 represents Force- Extension diagram of the specimen with a %100 infill 

percentage. 

Table 12 Comparison of the optimized specimen with a full specimen 

 Input parameters  Output responses 

Specimen LT IP ET Maximum 

Failure 

Load (N) 

Elongation 

at break 

(%) 

Part 

Weight 

(gr) 

Build 

Time 

(min) 
 

Optimized 

 

0.27 

 

36.47 

 

226.62 

  

1521 

 

 

5.1253 

 

 

 

8.98 

 

 

 

31 

 

 

Full 

 

 

0.27 

 

 

100 

 

 

226.62 

  

1410.2 

 

5.3679 

 

10.93 

 

34 

 

 
Fig. 19. Extension-Force diagram of the specimen with %100 infill percentage 

 

5. Conclusions 
In this research, the FDM process was investigated to enhance mechanical properties 

and to reduce build time and part weight as far as possible. In addition, effects of Layer 

thickness (LT), infill percentage (IP) and extruder temperature (ET) on maximum 

failure load (N), elongation at break (%), part weight (gr), and build time (min) were 

evaluated by RSM. The following conclusions are mentioned: 

1. Honeycomb internal pattern is the adequate internal fill pattern to manufacture 

low weight PLA components with the ability to undergo slight deformation.  



2. Printed tensile test specimens with higher maximum failure load and elongation 

at break characterize tough fracture. However, sudden brittle fracture is usually 

observed in PLA specimens at elastic limit and in lower failure load. 

3. Increasing layer thickness leads to a positive impact on the strength of 

specimens and build time, while, results in increasing part weight.  

4. Results unveil that infill percentage is the second major parameter influencing 

part characteristics.  

5. It could be inferred that increasing infill percentage at low extruder temperatures 

and increasing extruder temperature at low infill percentages end up producing 

more tough specimens because of boosting elongation at break. 

6. The optimized printed PLA specimen with almost 9 (gr) weight can resist more 

than 1500 (N). 

7. There is no need to fill inside of 3D printed parts because it was unveiled that 

optimized specimen has superior mechanical properties, less part weight, shorter 

build time, and therefore lower production costs than the filled specimen.  
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