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Abstract
The present work is concerned with the numerical modelling of large-amplitude
interfacial waves produced by metal pad roll instability in the aluminium reduc-
tion cells. A semi-conservative two-layer shallow-water model containing a novel,
fully non-linear equation for electric potential is developed and solved using an
original finite difference scheme. The latter is based on the two-dimensional Lax-
Wendroff-Richtmyer scheme, which is adopted and extended to the two-layer
system containing interfacial pressure. Two-dimensional Poisson-type equations
for pressure and electric potential are solved using an original highly-efficient al-
gorithm based on the combination of the tridiagonal matrix factorisation (Thomas
algorithm) and the fast discrete cosine transform.

The development of the model and numerical schemes is started by considering
purely hydrodynamic one-dimensional two-layer system and various conservative
forms of shallow-water equations describing conservation of circulation or mo-
mentum in addition to that of mass. Using the method of characteristics, a novel
analytical solution is found to the so-called lock-exchange problem. This exact
solution is used to validate the ability of various numerical schemes to handle hy-
draulic shocks which are expected to develop in the shallow-water approximation.
The one-dimensional solution is further used to validate two-dimensional numer-
ical code by considering one-dimensional initial interface perturbations along two
perpendicular sides of the rectangular container.

In addition, linear stability analysis of various basic models of aluminium re-
duction cells is revisited and extended to rectangular geometries. Linear stability
analysis shows that in the case of negligible viscous friction, the cells with aspect
ratios squared equal to the ratio of two odd numbers are inherently unstable and
can be destabilised by arbitrary weak electromagnetic effect. The growth rates of
small-amplitude electromagnetically destabilised interfacial waves produced by
the numerical simulation agree very well with the linear stability results. Nu-
merical results show that the growth rate decreases as the amplitude of unstable
rolling interfacial disturbance grows with the time. A large-amplitude quasi-
equilibrium state is reached without the interface touching the upper electrode.
In this strongly nonlinear stage, the wave amplitude still keeps growing, however
the growth rate is much slower than during the linear instability stage. At the
same time, the nonlinear streaming effect produced by the large-amplitude rotat-
ing interfacial wave induces a global counter-circulation in the top and bottom
layers. Numerical results indicate that the increase of the shear velocity above the
critical value results in the Kelvin-Helmholtz type of instability which eventually
causes the interface to break down.
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1

Introduction

The process of aluminium reduction consists of two superimposed layers of elec-
trically conducting fluids. Through these layers of aluminium and cryolite, an
intense electric current is supplied from the anodes, dissolving the alumina in
the bath of molten cryolite by means of Joule-heating, before exiting from the
cathode. This method of reducing aluminium was discovered independently by
Charles Hall and Paul L.T. Héroult in 1886 when they revolutionised commercial
production of aluminium with the electrolytic process of reducing alumina which
little has changed till today. Typical sizes for the cells of aluminium reduction
are 4-5m by 10-16m each, while the thicknesses of aluminium and cryolite are
approximately 20-30cm and 4-5cm (Davidson, 2000). A historical overview in
the development of the aluminium reduction Hall-Héroult cells (HHCs) can be
found in Davidson (2001) and Batchelor et al. (2000), while detailed discussion
of the electrochemical and material processing is carried out in Grjotheim and
Kvande (1993) . The time-efficiency as well as monetary implications associated
with improving the process are discussed in Davidson (2000) and Grjotheim and
Kvande (1993), and it is highlighted that in this multi-billion industry, which con-
sumes 2% of the electricity generated worldwide, any improvement would lead to
immense economic benefits.

In order to reduce the electric energy consumption owing to Ohmic heating of
the cryolite, which is of much poorer conductivity than aluminium, the reduction
of its thickness is desired. The efficiency of aluminium reduction relies upon
the controlled Magneto-Hydro-Dynamic (MHD) interaction of interfacial waves
with the electromagnetic field. The development of interface instabilities may
disrupt the process if either the cryolite’s thickness or the supplied current are
not carefully adjusted.
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Crust breaker

Crust

Side ledge

Alumina
supply

Carbon anode block
Carbon anode block

Electrolyte

Molten aluminium

Carbon cathode block

Current collector bar

Insulation

Figure 1: Schematic representation of Hall-Héroult cells.

Linear stability analysis (Bojarevics and Romerio, 1994; Sneyd and Wang,
1994; Lukyanov et al., 2001) is capable of detecting growth mechanisms and
identifying dominant disturbances, however, investigation of nonlinear effects
once a cell has become unstable may still provide insight of stabilising mechanisms
and the manner by which the cell fails. Nonlinear models have been investigated
by Zikanov et al. (2000), Sun et al. (2004) and Bojarevics and Pericleous (2008)
which, owing to the shallow-water approximation, present a fast and efficient
method for modelling the underlying mechanisms.

In recent years the ever increasing energy storage requirements, as a result of
the rapidly developing renewable energy technologies, resprung and intensified
the study of liquid-metal-batteries (LMB) which consist of two stably stratified
liquid metals separated by a layer of molten salt. The nonlinear evolution of the
rotational interfacial motion which has been, in the context of HHCs, identified as
the primary source of instability is nevertheless, applicable in LMBs. Alas, due
to the increased complexity of the system, large scale commercial applications
are still not viable as further investigation is required. An extensive review of
literature associated with LMBs is given in (Weier et al., 2017; Weber et al., 2017;
Horstmann et al., 2018; Herreman et al., 2019).

This dissertation aims to develop a strongly non-linear 2D MHD model for
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the numerical investigation of interfacial instabilities that arise in two layer flows,
with a rigid lid, under the influence of an electromagnetic field. In order to tackle
this problem a series of steps were required which are described in the succeeding
paragraphs.

In the shallow-water approximation the waves are known to develop sharp
fronts over time. To this end, a benchmark was required in order to test the
effectiveness of the numerical scheme as well as a suitable set of equations capable
of accurately encapsulating strongly non-linear motion. The 1D two-layer shallow
water model was analytically solved under the approximation of small density
difference, for the lock-exchange problem, and thus, offering valuable insight into
the interfacial motion in the presence of an initially discontinuous interface. The
analytic results were in turn contrasted with the numerical results obtained using
the 1D Lax-Wendroff scheme which proved adept in accurately simulating the
dynamics of motion in the vicinity of a discontinuous interface.

The numerical investigation of the 2D two-layer system bounded by a rigid lid
compelled the construction of an efficient Poisson solver for the electric potential
and pressure equations. Employing a combination of discrete cosine transforms
and tridiagonal matrix algorithms, a new fast and accurate solver was developed.
For the numerical integration of the shallow-water equations, an efficient 2D Lax-
Wendroff scheme was developed, chosen for its second order accuracy in space
and time as well as its low dispersion.

The Lorentz force arising as part of the MHD problem requires the solution
of the Poisson equation for the electric potential. A novel fully non-linear 2D
equation was derived for the electric potential. Furthermore, the linear stability
analysis of the MHD problem elucidated the dependence of stability on the aspect
ratios of rectangular cells.

This dissertation is organised as follows. In §1 a literature review covering
the three main topical areas is presented. Namely, the magnetohydrodynamics
of liquid metals, the shallow-water theory and numerical methods. In §2 an
overview of the basic theoretical concepts underlying this work are presented,
with the main focus on the fundamental principles pertaining to hydrodynamics,
shallow-water (SW) approximation and electromagnetics (EM). In §2.6 the single-
layer shallow-water equations are presented. These are extended to two layers,
in §2.7, with a 2D nonlinear equation accounting for the interfacial pressure and
electric potential. The relevant parameters used in the nondimensionalisation
of these equations are also discussed therein. The simplifying assumptions for



4 Introduction

aluminium reduction cells are presented in §2.5 where also a fully nonlinear 2D
equation for the electric potential was derived.

The linear stability analysis of electromagnetically modified interfacial waves
is carried out in §6, where models with increasing geometrical complexity are con-
sidered. Results of the half plane and the channel geometries are revisited before
proceeding to the rectangular geometry where the stability threshold depending
on the aspect ratio of rectangular cells is analysed.

In §2.9 the 1D Lax-Wendroff scheme has been presented, while its 2D extension
by Richtmyer is further described in §3.1. The latter is used to develop a new
modified scheme which utilises the finite volume formulation on the staggered
rhombic grids, thus eliminating the uncoupled part of the solution present in the
original scheme. Furthermore, a new highly-efficient Poisson solver is developed,
combining the discrete cosine transforms and the tridiagonal matrix Thomas
algorithm.

A two-layer 1D model is considered in §4 with the use of a conservative set
of equations. The lock-exchange problem with strong interfacial discontinuities
is solved analytically in the Boussinesq approximation. The analytical solution
is then used to validate the 1D Lax-Wendroff scheme which is found to be in
excellent agreement with the former.

In §7 the efficiency of the two-layer hydrodynamic 1D Lax-Wendroff scheme is
further examined for smooth initial states and compared with the results produced
by the 2D scheme for the analogous cases. The chapter is concluded with the
presentation of the two-layer magnetohydrodynamic results, obtained with the
2D scheme, where a discussion of the instabilities leading to the break down of
interface is presented.
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Chapter 1

Literature review

In this chapter an overview of research developments on the three main topical
areas of this thesis are presented, starting with a historical background devel-
opment of the liquid metal MHD in §1.1. This is followed by the discussion
on research pertaining to the lock-exchange problem §1.2 before concluding to a
review of schemes for hyperbolic problems in §1.3.

1.1 MHD part of the problem

The field of magnetohydrodynamics spans from thermonuclear fusion and plasma
astrophysics to industrial applications. Extensive work has been carried out in
the study of fluids under the influence of an electromagnetic field with particular
interest in industrial applications; thus giving rise to the field of liquid-metal
MHD where the theory pertaining hydrodynamics as well as electrodynamics is
exploited with tangible ecological and economic benefits when the consumption
of energy and consumable materials is reduced. The incipience of liquid-metal
MHD sprang from the benefits found in controlling the liquid metal flow by means
of the Lorentz force, with major applications onto metallurgical industries and in
specific liquid metal reduction cells.

One of the earliest papers on the instability mechanism in aluminium reduction
cells is by Sele (1977) where the transient waves are numerically explored with
emphasis on the geometry of the cell and the strength of the electromagnetic
interaction. The model is used to determine the stationary flow and interface
shape in the electrolytic cells subject to constant magnetic field. The general
characteristics of aluminium reduction cells are analysed along with the rolling-
pad instability mechanism and the complications that this process is associated
with. Additionally, a stability criterion resulting from scaling considerations is
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verified against the numerical results. This key nondimensional parameter, com-
monly referred to as the Sele parameter, is discussed further in §2.7.3 and it is
widely used in the field.

Moreau and Evans (1984) introduce simplifications based on physical criteria
such as the permeability and the electrical conductivity, along with the shallow-
water approximation which is based on the assumption of small depth-to-length
ratio. These considerations lead to the approximation of small magnetic Reynolds
number which holds because the magnetic diffusion time through the cell is small
compared to the characteristic hydrodynamic time scale. The electromagnetic
force was examined to both first and second order of the shallowness parameter,
where the latter was concluded to be insignificant. Although the two-layer fluid
system concerns an ideal case, the analysis reveals dependence of the dynamics
on the geometry of the anode channels and on the electric current distribution.
The model of Moreau and Evans (1984) is extended by Moreau and Ziegler (1988)
who model the effect of viscosity via a linear friction term using the same nu-
merical scheme as Lympany et al. (1982). Moreau and Ziegler (1988) analyse
the influence of the small channels between the anode blocks but do not find any
significant effect. These papers are relevant to the present work mostly because
of the shallow-water approximation, and the linear friction model introduced by
Lympany et al. (1982). Lastly, based on the results of aforementioned papers, a
flat rigid-lid is assumed on the top boundary where no spacing among the anode
blocks is considered.

Sneyd (1985) considers a very basic aluminium reduction cell model by making
a range of simplifying assumptions such as the uniform normal current, no fluid
flow in the unperturbed state and no lateral boundaries. The magnetic field is
assumed to be purely coplanar consisting of an induced and an external compon-
ent. The former is generated by the electric current passing through the system
and is found to be always stabilising, contributing to the gravitational restoring
force. The far field component may give rise to unstable interfacial disturbances
that grow exponentially in time. Special attention is drawn to the external elec-
tric currents which can affect the stability of interface by altering the magnetic
field in the reduction cell. The discussion of the instability dependance on the
wavelength and cryolite layer depth leads to the conclusion that only longer waves
can be destabilised by MHD effects. In the analysis conducted by Moreau and
Evans (1984), Sneyd (1985) as well as Moreau and Ziegler (1988), the effects of
lateral boundaries were neglected, the importance of which however is later shown
to be pivotal for the system’s stability. The subsequent analysis of Sneyd (1992)
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is extended to account for the horizontal current component, vertical magnetic
field and vertical field gradients. The stabilising effect of gravity and surface
tension on the Kelvin-Helmholtz instability are investigated. The contribution
of the electromagnetic effects is found to be destabilising for wavelengths greater
than one meter, with the main destabilising factors, dependent solely on the ver-
tical component of the background current, being the vertical gradients of the
horizontal magnetic field. Although, the current is assumed uniform, in reality
the disturbance current may change direction depending on the direction of the
horizontal currents. The effects of this convention are thought detrimental, as the
main contributor to the instability is known to be the vertical component of the
electric field which is constant. Moreover, the linear variation of the magnetic
field –imposing a linear variation on the wave-induced flow– may have serious
stability consequences as it affects the boundaries of the cell.

Sneyd and Wang (1994) analyse the instabilities at the interface of two-layers
in a rectangular tank under the influence of a vertical uniform current and a lin-
early varying magnetic field in the plane transverse to the current. Similarly to
Sele (1977) a stability parameter and an estimate of the stability threshold are
derived. The perturbations under consideration are combinations of the normal
gravity-wave modes. Unlike analyses which consider a channel, it is shown that
the cell becomes more unstable as the external field increases with the most dan-
gerous component being the vertical one. In the same train of thought, Bojarevics
and Romerio (1994) provide a rigorously derived linearised system for the study
of the interface instability of the fluid layers, through perturbation expansions
in parameters of the depth aspect ratios, the maximum amplitude and the con-
ductivities of the respective layers. A generalisation of the Sele parameter under
the shallow-water approximation is derived, which demonstrates the importance
of the aspect ratio in addition to the vertical component of the magnetic field.
Later, Bojarevics (1998) extends the analysis by considering nonlinear waves with
linear dissipation terms. The effect of the aspect ratio, of a rectangular cell, on
the stability is further studied in §6.

Davidson and Lindsay (1998) point out the advantages of the explicit expres-
sion of the Lorentz forces versus the model developed by Urata (1985) where
an implicit formulation is considered. In contrast to Sneyd (1985) and Moreau
and Ziegler (1988), who considered travelling-wave instabilities in non-uniform
magnetic fields, Sneyd and Wang (1994) and Davidson and Lindsay (1998) study
the instabilities which can occur in a uniform magnetic field. For standing waves
in a finite domain, an energy criterion is developed indicating that certain types
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of motion such as a rotating, tilted interface, may gain energy. Their analysis
shows that it is not necessarily the interaction of the closest gravitational modes
which causes instability and that unstable modes can arise from merging of two
stable eigenmodes. This is complemented by the fact that few modes interact but
the uncoupled ones cannot become unstable. Lastly, for rectangular domains the
results are confirmed to agree with the ones of Sneyd and Wang (1994), while for
a circular domain a simple form of instability is found.

Lukyanov et al. (2001) investigate the basic mechanism of instability for the
two-layer system under the influence of a uniform magnetic field. Linearised
shallow-water equations are used as in the previous studies. The attention is
focused at the effects of the wave reflection from the walls on the stability of two
models: a plane wall and a circular domain. It is shown that with an increase of
the interaction parameter, which controls the ratio of the electromagnetic (EM)
to gravity forces, the interfacial stability is dictated by the wave reflection from
the wall. The work of Lukyanov et al. (2001) is extended by Molokov et al.
(2011) who consider the instability at high values of the electromagnetic interac-
tion parameters, for different geometries. A distinction is made between unstable
travelling waves localised at the wall modes and non-local Sele modes, which
are gravity wave modes with the wavenumber spectrum modified by the elec-
tromagnetic reflection condition. The former are argued to be amplified by the
MHD-modified reflection of waves from the side walls. The latter are stable or
slowly growing.

Kurenkov et al. (2004) carry out a linear stability analysis of the interface in
two-layer shallow water model in an infinite channel. The instability mechan-
isms considered are those of the Kelvin-Helmholtz and Sele. These mechanisms
are initially analysed separately and then compared to the general case. Little
interaction exists between those two destabilising mechanisms, with practically
no effect on the stability threshold. The stability investigation is focused on its
dependence on the width of the channel and the Sele parameter. Concerning
the stability, it is found that narrow channels are more stable. The linear sta-
bility analysis of semi-infinite and channel geometries are reviewed in §6 before
proceeding into the study of the rectangular geometry.

The interfacial stability of two liquids is investigated numerically by Zikanov
et al. (2000) using a nonlinear 2D shallow-water model in a rectangular geo-
metry. Assumptions used in this model are the same as those introduced by Sele
(1977) and Urata (1985) and the reasoning for the electromagnetic force in the
upper(cryolite) layer is based on the analysis of Davidson and Lindsay (1998).
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It is found that the horizontal current perturbation plays a pivotal role in the
stability. The background flow driven by the Lorentz force can lead to strong dis-
tortion of the interface. The authors highlight that in linear stability analysis, the
eigenvalues describing interfacial wave instabilities are calculated by ignoring the
stationary background flow which only afterwards is substituted into the analysis.
Shortcomings of this approach lie on omitting nonlinear effects which may pro-
duce background flows. This eigenvalue analysis may be, computationally, costly.
Lastly, the assumption of a time invariant basic state is always true. The main
advantage of this model over linear stability analysis is due to the combination
of the background flow and instability which permits nonlinear interface perturb-
ation of large amplitude. Sun et al. (2004) expand the shallow-water model of
Zikanov et al. (2000) to investigate the impact of the nonlinear terms omitted
in the MHD models used by Bojarevics and Romerio (1994), Sneyd and Wang
(1994) and Davidson and Lindsay (1998). The effect of the horizontal compon-
ents of the magnetic field on the Lorentz force were found only significant in the
destabilisation of the system when the system obtains large interface deformation
and strong nonlinearities are involved which are further amplified by the Lorentz
forces.

1.2 Hydrodynamic part of the problem

The development of a scheme for the simulation of a strongly nonlinear shallow-
water model for two layers necessitated the investigation of conservation laws
which are required in the presence of strong discontinuities. This led to a compre-
hensive review of the known theory pertaining to one- and two-layer shallow-water
models, with particular interest into the topic of the two-layer lock-exchange (LE)
problem. Cardinal publications that formed the fundamental basis for the the-
oretical analysis of single layer flows released from rest, when a wall is instant-
aneously released, can be found in Barré de Saint-Venant (1871) followed by the
solution provided by Ritter (1892) which used the shallow-water approximation
and the method of characteristics to study the gravity driven current over a hori-
zontal or sloped ground. This classic solution, commonly known as the dam-break
problem, which can be found in more detail in Courant and Friedrichs (1948),
Stoker (1957), Whitham (1975) (and references therein), is an important example
in the study of nonlinear flows reproduced in laboratory experiments and used as
a benchmark in the development of schemes.
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One of the inherent features of the shallow-water approximation is the unlim-
ited steepening of the wave fronts. The single layer formulation of the shallow-
water approximation and the analogous description in gas dynamics have been
thoroughly discussed in Stoker (1957, Chapter 10). The evolution of steep fronts
leads to breaking of the waves which are commonly referred to as hydraulic-
jumps, bores or shocks. From a mathematical perspective, this is the behaviour
under which the system of PDEs produces a discontinuous solution, thus ceases
to be directly applicable. As highlighted in Whitham (1975), Stoker (1957), and
LeVeque (2002, Chapter 1.1.2) the relevant physics represented by the relevant
conservation laws can still be applicable to discontinuous solutions. These conser-
vation laws are represented by the so-called Rankine-Hugoniot (RK) conditions
which can describe the propagation of shocks. The direct relevance of this theory
to a two-layer system as well as the necessity for appropriate conservation laws
for its description will become evident in §4.

In single-layer shallow-water flows it has been shown by Benney (2006) and
Miura (1974) that an infinite number of locally conserved quantities exist. The
more complex problem of superimposed fluids, where a heavier fluid in a hori-
zontal channel is initially separated by a vertical lock from a lighter fluid, has
been extensively studied over the past century owing to its widespread use in
oceanography, metereology and engineering applications (Yih, 1947; Long, 1954;
Keulegan, 1957; Yih, 1965; Armi, 1986; Simpson and Britter, 1979; Klemp et al.,
1994; Shin et al., 2004). In two-layer flows with an unbounded upper surface
only six linearly independent local conservation laws exist (Ovsyannikov, 1979;
Montgomery and Moodie, 2001; Barros, 2006). For two-layer system bounded by
a rigid lid, the first rigorous derivation of shallow-water equations is due to Long
(1956a) where a unified system with the use of the mass and circulation (vor-
ticity) conservation is presented. The existence of an infinite number of locally
conserved quantities in this system has been first noted by Ovsyannikov (1979).
However, only the aforementioned two are generally known.

The primary conserved quantity that governs the dynamics of bores in single
fluid layers is momentum. To our knowledge no analogue shallow-water conserva-
tion law is known for the case of a two-layer system. This has led to the consensus
that such a system containing internal bores is inherently non-conservative (Ab-
grall and Karni, 2009), and external closure relations are required based upon
dimensional arguments (Abbott, 1961) or derived using various semi-empirical
and approximate integral models (Baines, 1995).

One of the earliest mathematical models of hydraulic jumps in two-layer system
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is due to Yih and Guha (1955). In their analysis they used the momentum and
mass conservation principle to link the flow states across the discontinuity. The
system was reduced in to a set of ordinary differential equations that allowed the
authors to identify the conjugate states connected by a discontinuity.

Long (1956a) is the first to derive the two-layer shallow-water equations under
a rigid-lid by elimination of the longitudinal pressure gradient. Long (1956a) also
obtains explicit expressions for Riemann invariants which can be used to solve
certain initial problems for strongly nonlinear interfacial waves analytically. Such
exact analytical solutions are useful for validating numerical algorithms. The
paper investigates, with the method of characteristics, how the advancement of
an interface elevation leads to the steepening of the waves, but does not consider
how to tackle discontinuous solutions. For the same system, Ovsyannikov (1979)
examines three different models: that of a free upper layer, the two-layer system
bounded by a rigid-lid significant density difference and the limiting case of the
two-layer model where the density of the two layers is almost equal. Similarly to
Long (1956a) the Riemann invariants and the characteristic speed were utilised
to establish the domain of hyperbolicity.

Benjamin (1968) applied hydraulic theory, based on the Bernoulli’s equation,
in a channel where an air-cavity flow displaces the heavier fluid at the bottom.
The main result of this study on steady gravity currents is a front condition
relating the velocity of propagation with the layer depth of the bottom which
was compared with the experimental results of Keulegan (1957), Yih (1965).
This is one of the classic hydraulic conditions which is widely used to describe
gravity currents.

Rottman and Simpson (1983) utilise a unified two-layer model, similar to Long
(1956a), where the front condition of Benjamin (1968) is incorporated in the
region where the equations resulted in discontinuous solutions, which results in
the current front being treated similarly to hydraulic jumps. This empirical front
condition involved an adjustable parameter to be defined by experiments. This
class of hydraulic-type models (Benjamin, 1968; Huppert and Simpson, 1980;
Rottman and Simpson, 1983; Shin et al., 2004) and approximate ad-hoc solutions
(Keller and Chyou, 1991; Lowe et al., 2005) have been commonly proposed for the
lock-exchange problem where the thought absence of a momentum conservation
law led to the chase of empirical or semi-empirical front conditions dependent on
energy conservation considerations being preserved on the upper- (Klemp et al.,
1994; Klemp et al., 1997), or lower-layer (Wood and Simpson, 1984; Huppert
and Simpson, 1980). So far only a numerical solution of this problem has been



12 Chapter 1. Literature review

carried out by Klemp et al. (1994) using a characteristics-type approach suggested
by Rottman and Simpson (1983). A more direct numerical solution of the lock
exchange problem has been attempted by Ungarish (2009, Sec. 2.4) using a non-
conservative form of two-layer shallow-water equations.

Milewski and Tabak (2015) use two-layer shallow-water conservation laws for
circulation and energy, and a rather advanced finite-volume scheme for numerical
modelling of the lock-exchange problem with entrainment. They also consider an
analytical solution to the lock-exchange problem with the conservation of either
mass or energy besides that of circulation. However, their approach differs from
the standard simple-wave method (Whitham, 1975, Sec. 6.8) pursued in this
study. Recently, the lock-exchange problem for Boussinesq fluids was solved nu-
merically by Esler and Pearce (2011) using a higher-order weakly non-hydrostatic
shallow-water approximation in which dispersion prevents the formation of sharp
wave fronts.

1.3 Numerical schemes for hyperbolic problems

The dam-break problem has been thoroughly analysed theoretically and serves
as a benchmark in the development of numerical schemes to validate one- and
two-dimensional numerical models. An analytic methodology originating in the
affiliated topic of gas dynamics is the Riemann problem, that permits the re-
duction of PDEs into a system of ODEs which offer similarity solutions. These
consist of a finite set of wave solutions that propagate from the origin, with con-
stant wave speeds (Godunov, 1959). The drawback of the numerical implement-
ation developed in Godunov (1959), lies in the piecewise linear reconstruction
that leads to strong diffusion. Being an exact solver, Godunov’s scheme can be
computationally expensive for nonlinear problems. Consequently, this lead to
the development of numerical schemes which make use of approximate Riemann
solvers.

The property of monotonicity, introduced by Godunov (1959), provides the
means for the systematic analysis of the stability conditions for non-oscillatory
behaviour required by schemes. This was further complemented by the criterion of
Total-Variation-Non-Increasing (TVNI) (or Total-Variation-Diminishing (TVD)),
solutions introduced by Harten (1983) and Harten (1984). This concept ensures
that in the numerical solution of nonlinear equations, unwanted oscillations are
not generated.
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A large number of schemes have been developed in order to tackle the dam-
break problem, aiming to encapsulate the rise of discontinuous solutions, whilst
overcoming the strongly oscillatory behaviour that is encountered in the study
of hyperbolic equations. Owing to the fact they are first-order accurate, the
schemes detailed in Engquist and Osher (1981), where the direction of the flux
is defined by the eigenvalue’s sign, in Roe (1981), where an average from either
side of the Riemann problem is used, or Harten (1983) which defines the max-
imum/minimum wave speeds arising in the Riemann solution, are usually not
employed due to their inherent low accuracy.

Despite the necessity of a monotone scheme where the solution is discontinu-
ous, higher order schemes can be used in regions where the solution is smooth,
by means of controlling their gradients. This was the idea proposed by (Boris
and Book, 1973; Boris and Book, 1976), (Van Leer, 1973; Van Leer, 1974). Con-
sequently, schemes such as the Monotonic Upwind Scheme for Conservation Laws
(MUSCL) (Van Leer, 1979) which is a Godunov-type of scheme, or Essentially
Non-Oscillatory (ENO) type of schemes (Harten and Osher, 1987), were de-
veloped permitting higher accuracy. Whereas the former relaxes its accuracy in
the presence of a discontinuity, in the latter an nth-order polynomial is heur-
istically constructed ensuring the smoothness. In both examples, second-order
accuracy in space and time is achieved for smooth solutions but lowered in the
presence of shocks to ensure that oscillations are not produced.

Extensive studies have been carried out on flux-limiters analysing their sta-
bility properties. Typical examples found in LeVeque (2002), and Hirsch (2007)
analyse the various possible, linear and nonlinear, limiters example of which are:

• The MinMod introduced by Roe (1986) is a special case of Chakravarthy
and Osher (1983), where the upwind and downwind slopes are compared
and the one with the smaller magnitude is chosen.

• The Superbee Roe (1985), where each one-sided gradient is compared with
twice the opposite one-sided gradient and finally the one with the larger
modulus is chosen.

• The MC (Monotonised-Central difference limiter) Van Leer (1977), where
the centered difference is compared against twice the upwind and downwind
differences.

This discussion goes alongside with the evaluation of schemes such as the Lax-
Wendroff (LW) (Lax and Wendroff, 1960) and MacCormack (MacCormack, 1969)
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which are of second order accuracy. The LW scheme can straightforwardly be ob-
tained from a Taylor series expansion to second order terms. It is more practical
though, to refer to the Richtmyer-Lax-Wendroff (RLW) two-step formulation, first
introduced in Richtmyer (1962), which eliminated the necessity for the calculation
of the Jacobian and consists of a first-order (Lax-Friedrich) spatial discretisation
and a leapfrog central difference in time. The idea of the MacCormack scheme
can be considered to fall from the RLW scheme and it equivalently consists of
a predictor-corrector model coupled with using forward differencing initially, fol-
lowed by backward differencing to achieve the second order accuracy. It is worth
noticing that for the constant coefficient linear advection problem, both of those
schemes are identical to each other. This is no longer the case in extending to
nonlinear problems where they overlap in their second-order accuracy in space
and time but their merits do not tip the scale in favour of either of them.

Regardless of the numerical scheme used, the form the equations are expressed
in, affects both the algorithm stability as well as correctness of the solution.
Smooth solutions aside, nonconservative methods cannot be expected to converge
to the correct solution. This can be better understood in considering the integral
formulation, as opposed to the differential equation, which forms the mathem-
atical basis in deriving the Rankine-Hugoniot conditions that govern the correct
description and propagation of shock waves. Lax (1954) as well as LeVeque (2002)
and Hirsch (2007) emphasised and demonstrated the necessity of the conservative
form of equations in order to obtain the correct jump relations in discontinuous
solutions.
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Chapter 2

Theoretical background

2.1 Overview

In this chapter, an introduction is presented into fluid mechanics and the equa-
tions describing their macroscopic mechanics along with the coupling involved
in the presence of an electromagnetic field acting on a conductive fluid. The
assumptions leading to the shallow water approximation are explored, gradually
building-up towards the mathematical description of the two-layer system which
will be studied in both its magnetohydrodynamic as well as purely hydrodynamic
description.

2.2 Basic hydrodynamic equations

Macroscopic fluid flow is described by the velocity u = (𝑢, 𝑣, 𝑤), density 𝜚 and
pressure 𝑝. These are functions of time 𝑡 and the position r = (𝑥, 𝑦, 𝑧). Consider
a fixed fluid volume V with mass

∫
𝜚 𝑑V. The rate of variation of this mass is

equal to the mass flux through the enclosing surface S:
𝑑

𝑑𝑡

∭
V

𝜚 𝑑V = −
∯

S

𝜚 u · n 𝑑S.

Using the divergence theorem, we have:∭
V

(
𝜕𝜚

𝜕𝑡
+ ∇ · (𝜚u)

)
𝑑V = 0.

To be applicable to any fixed volume V, a zero integrand is required: 𝜕𝜚

𝜕𝑡
+∇·(𝜚u) =

0, which describes local mass conservation. In terms of the material derivative1

it reads as:
𝐷𝜚

𝐷𝑡
+ 𝜚∇ · u = 0.

1 𝐷

𝐷𝑡
≡ 𝜕

𝜕𝑡
+ u · ∇
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For an incompressible fluid we have 𝐷𝜚

𝐷𝑡
= 0, which yields:

∇ · u = 0. (2.1)

Newton’s second law defines the rate of change of the momentum which must
equal to the total net force, comprised of short-ranged surface and long-ranged
body force, acting on the fluid volume. Therefore, formulating Newton’s law for
a fluid, Cauchy’s momentum equation is obtained in the following form

𝐷 (𝜚u)
𝐷𝑡

= ∇ · 𝜏 + f , (2.2)

where 𝜏 is the stress tensor and f is the density of body forces applied to the
fluid. These body forces encompass forces per unit mass - external gravity force:
f𝑔 = −𝜚 g - as well as forces per unit volume, such as electromagnetic forces,
which will be later defined in §2.4. For an isotropic fluid the stress tensor equals
𝜏 = −𝑝I+T, where 𝑝 is the pressure, I is the identity tensor and T is the deviatoric
stress tensor. For an incompressible viscous fluid, the latter yields the viscosity
term: T = 𝜇

(
∇u + (∇u)𝑇

)
, where 𝜇 is the dynamic viscosity coefficient.This stress

tensor describes the stresses acting on a surface due to pressure and viscosity.
Hence, the no-stress conditions at the surface are given by:

𝜏 = 0 on Γ, (2.3)

At the solid boundary wall two alternative conditions can be considered. The
first condition applied at the boundary of a solid surface writes as:

u = 0 on Γ, (2.4)

This condition, commonly referred to as the no-slip condition, means that the
normal component as well as the tangential components assume zero velocity
relative to the stationary boundary

An alternative formulation permitting the velocity to be expressed in terms of
the tangential component of the stress reads as

u · 𝑛 = 0, (T · 𝑛)𝜏 + 𝛾u = 0. (2.5)

where (T · 𝑛)𝜏 = 𝑛× (T · 𝑛) ×𝑛 expresses the tangential to the bottom components
and defines that the tangential stress is proportional to the tangential velocity
of the fluid and 𝛾 is the frictious parameter. This is the Navier wall law where
the slip-with-friction boundary condition defines stagnant layer of fluid close to
the wall allowing a fluid to slip. Additionally, it requires the tangential, to the
boundary, component of the strain tensor to be proportional to the tangential
component of the fluid velocity.
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A crucial simplification is imposed when in addition to the incompressibility
condition, a homogeneous fluid is considered, which requires that 𝜚 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.
Consequently, using the material derivative1 onto Eq. (2.2), the equation is recast
in to the incompressible Navier-Stokes equation:

𝜚

(
𝜕u
𝜕𝑡
+ (u · ∇) u

)
= −∇𝑝 + 𝜇∇2u + 𝜚 g + f . (2.6)

If viscous effects are negligible then Euler’s equation is recovered:

𝜚

(
𝜕u
𝜕𝑡
+ (u · ∇) u

)
= −∇𝑝 + 𝜚 g + f . (2.7)

The no-penetration boundary condition supplements the equations of motion by
requiring that u · 𝑛 = 0. In the more general setting of a moving surface this
defines that the velocity and pressure distribution across a surface must be equal.

2.3 Maxwell’s equations

The equations governing time-dependent electric and magnetic fields were first
found by (Maxwell, 1861; Maxwell, 1865). The Maxwell-Ampère equation, with
Maxwell’s displacement current correction j + 𝜕𝑡D, accounting for the induction
of a magnetic field H generated by a varying electric field, is found in:

𝜕𝑡D + j = ∇ ×H, (2.8)

where D is the electric induction and j the current density. This correction is
crucial for the description of rapidly fluctuating fields and complements the pre-
Maxwell equations which, Faraday’s law excluded, were derived based on steady-
state observations:

Ampère’s law ∇ ×H = j, (2.9)
Coulomb’s law ∇ · D = 𝑞, (2.10)
No monopoles ∇ · B = 0, (2.11)
Faraday’s law ∇ × E + 𝜕𝑡B = 0, (2.12)

where 𝑞 is the charge density2, E is the electric field and B is the magnetic
induction.

2The notation 𝑞 rather than 𝜌 is used here to avoid confusion with the fluid density 𝜚.
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The expressions relating D, E, H and B in the vacuum are:
D = 𝜖0E,

H = 𝜇−1
0 B,

(2.13)

where 𝜖0 and 𝜇0 define the speed of light 𝑐2 = (𝜖0𝜇0)−1. Maxwell’s equations for
the vacuum then read as: 

𝜕𝑡 (𝜖0E) = 𝜇−1
0 ∇ × B − j,

∇ · E = 𝜖−1
0 𝑞,

𝜕𝑡B + ∇ × E = 0,
∇ · B = 0.

(2.14a)
(2.14b)
(2.14c)
(2.14d)

Taking the divergence of Eq. (2.14a) and combining it with Eq. (2.14b) one ob-
tains the conservation of electric charges:

𝜕𝑡𝑞 + ∇ · j = 0, (2.15)

relating the temporal rate of charge variation 𝑞 to its flow across the surface of a
volume.

2.4 Governing MHD equations

Similarly to Eq. (2.13) D, E, H and B in medium are related by:
D = 𝜖E,

H = 𝜇−1B,
(2.16)

where 𝜇 is the magnetic permeability and 𝜖 is the electric permittivity of the
medium which are defined relative to the vacuum values by:

𝜖 = 𝜖𝑟𝜖0,

𝜇 = 𝜇𝑟𝜇0,
(2.17)

where the parameters 𝜖𝑟 and 𝜇𝑟 are respectively the relative permittivity and
permeability of the material. For an isotropic electrically conducting liquid the
permittivity and the permeability are usually equal to the vacuum values (Mor-
eau, 1990; Gerbeau, Le Bris et al., 2006). Consequently, following Eq. (2.14) for a
perfect dielectric (i.e. no external current) medium Maxwell’s equations become:
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
𝜕𝑡 (𝜖E) = 𝜇−1∇ × B − j,

∇ · E = 𝜖−1𝑞,

𝜕𝑡B + ∇ × E = 0,
∇ · B = 0.

(2.18a)
(2.18b)
(2.18c)
(2.18d)

Furthermore, Ohm’s constitutive law provides the link connecting j and E,
where in a conducting medium j is proportional to the local electric field experi-
enced by the moving particle:

j = 𝜎 (E + u × B) . (2.19)

Here 𝜎 is the electrical conductivity and the term u×B takes in to consideration
the field induced by the motion.

In the definition of Euler’s equation Eq. (2.7), in absence of any additional
volumetric force f the purely hydrodynamic limit is recovered. Conversely, the
influence of an electromagnetic field acting on a conducting fluid, gives rise to the
MHD coupling. At macroscopic scale, passing through fluid in the presence of a
current, the magnetic field generates a Lorentz force:

f = j × B. (2.20)

This stems from the coupling of Maxwell’s equations and fluid mechanics which
enter the system via the Lorentz force. The magnetohydrodynamic set of equa-
tions in the more general form then reads as follows:

𝜚

(
𝜕u
𝜕𝑡
+ (u · ∇) u

)
= −∇𝑝 + 𝜚 g + j × B,

𝜕𝑡B + ∇ × E = 0,
𝜕𝑡 (𝜖E) = 𝜇−1∇ × B − j,

∇ · E = 𝜖−1𝑞,

j = 𝜎 (E + u × B)

(2.21)

2.5 Basic assumptions for aluminium reduction
cells

Since its inception HHCs have been known to suffer from instabilities. Under
certain circumstances the perturbation arising may grow to an extent which dis-
rupts the operation the cell. Implications resulting from this mechanism entail
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increased cost and longer production times.

The configuration of aluminium reduction cells consists of a high intensity
electric current passing sequentially through the carbon anodes, the electrolyte
layer which reduces the alumina, the molten aluminium layer and the carbon
cathode where the current is collected, while the boundary walls of the cell are
assumed to be perfectly insulating (Grjotheim and Kvande, 1993). The respective
electrical conductivities are:

𝜎− ≡ 𝜎electrolyte � 𝜎carbon � 𝜎aluminium ≡ 𝜎+,

where 𝜎+ = 3.3 · 106 (Ω ·m)−1, 𝜎− = 2.5 · 102 (Ω ·m)−1 (Gerbeau, Le Bris et al.,
2006) and 𝜎carbon = 2 · 104 (Ω ·m)−1 (Molokov et al., 2011).

An immediate consequence of the electrolyte layer’s poor conductivity is an in-
creased energy consumption owing to its conversion into Ohmic heating. Straight-
forwardly, thinner layer would result in an increased energy efficiency.

The physical set-up of a rectangular cell of size 𝐿𝑥 × 𝐿𝑦 consists of shallow but
broad electrolyte-alumina layers (𝐻 � 𝐿). This framework renders the system
an ideal candidate for the application of the shallow water approximation where
the characteristic longitudinal length scale of the perturbation, 𝐿, is much larger
than the layers depth, 𝐻. The two-layer system is subject to a downward gravity
force with the free fall acceleration 𝑔. The velocity of each layer is considered
uniform and vertically invariant; i.e the vertical velocity, 𝑤, has a relatively small
magnitude ∼ 𝐻/𝐿 = 𝜀 � 1, which means that the associated fluid flow is pre-
dominantly horizontal with the velocity u = 𝑢e𝑥 + 𝑣e𝑦.
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Figure 2.1: Schematic representation of the aluminium smelting process, with
a vertical component of the magnetic field and a perturbation at the interface.
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The magnitude of difference in the layers’ specific conductivities lays the
premises for the interface between the aluminium and cryolite layers as well as
the interface between the carbon anode and cryolite to be approximately con-
sidered as an equipotential surface. Furthermore, the low electric conductivity
of cryolite, along with the shallow-layer layout, permits the assumption that, in
the long-wavelength, the electric current within the layer take the shortest path
between the anode block and aluminium, i.e. they are primarily vertical in the
electrolyte (Davidson, 2001, p. 366). Any change in the position of the interface
between the two fluids gives rise to a perturbation in the current distribution,
as the electrical path in the electrolyte is either decreased or increased. This
also means that the Lorentz force exerted on the layer of cryolite is negligible in
comparison to that of aluminium. Consequently, the Lorentz force in the upper
layer is insignificant and is only considered in the lower layer.

For a material of uniform conductivity with steady current, Eq. (2.15) reduces
to:

∇ · j = 0. (2.22)

On the basis, that charges are varying much slower than the speed of light, the
pre-Maxwell formulation is recovered, and hence, it can be inferred that:

∇ × B = 𝜇j,

whereupon taking the divergence of Eq. (2.18a) and using Gauss’ (electrostatic)
law it can be shown that the contribution of 𝜕𝑡 (𝜖E) is negligible, thus Ampere’s
circuital law is recovered while omitting Maxwell’s correction term. Moreover the
magnetic field must satisfy ∇ ·B = 0, which is the solenoidal constraint requiring
the net magnetic flux of any closed surface to be zero.

At this stage, it is advantageous to separate the magnetic field, into two com-
ponents. The first is the externally imposed magnetic field B0 generated by the
current supplying the cell, whereas the second part b is the induced magnetic
field. Hence, for B = B0 +b Ampere’s law requires ∇×B0 = 0. In poorly conduct-
ing fluids, such the ones found in aluminium reduction cells, the induced magnetic
field is much weaker than the externally imposed magnetic field, i.e. 𝜇0 𝑗0𝐿 � 𝐵0.
Hence, a quasi-static approximation 𝜕𝑡B ≈ 0 can be employed, where B ∼ B0,
and thus:

∇ × E ≈ 0,
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Consequently, for a fixed and uniform magnetic field in the electrostatic approx-
imation the electric field writes as follows:

E = −∇𝜙,

where 𝜙 is the perturbation of the electric potential.

It has been established that the external current generate strong external,
primarily vertical magnetic field B0 = 𝐵0𝑒𝑧. Additionally, the velocity can be
assumed to have no influence on the magnetic field (Moreau, 1990), thus u × B
is of minor influence, leading to the Lorentz force being written as:

f = j × B = −𝜎∇ × (𝜙𝐵0) . (2.23)

The resulting expression has undergone several layers of simplifications based
on the time variation of the flow, and the intensity of the electromagnetic fields.
Particular attention should be drawn though, on ignoring the term u×B. As noted
by Gerbeau, Le Bris et al. (2006) this term corresponds to a worst case scenario
in the stability of the system because induced currents can have stabilising effects
on the flow.

2.6 Single-layer shallow-water model

Computationally, the three-dimensional system poses onerous difficulties in nu-
merical resolution and discretisation. The shallow-water approximation, when
applicable, reduces the complexity of the computational problem from three to
two dimensions. The shallow-water approximation is used in meteorology, ocean-
ography and engineering applications such as aluminium reduction cells and liquid
metal batteries. The conventions enabling the shallow-water approximation are
further detailed in this section.

The shallow-water approximation is based on the assumption that the typical
vertical length scale (𝐻) of the system is much smaller than the typical horizontal
length scale (𝐿): 𝜖 = 𝐻

𝐿
� 1. Hence, the vertical acceleration of a fluid during the

passage of the wave remains small. The pressure in the fluid layer is considered
hydrostatic i.e. 𝜕𝑝

𝜕𝑧
= −𝜚𝑔𝑒𝑧 + O(𝜖2), thus enabling the calculation of the local

pressure.
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It is convenient to reformulate Eq. (2.7) such that the horizontal components
are separated from the vertical one:

∇ · u + 𝑤𝑧 = 0,
𝜚 (u𝑡 + (u · ∇) u + 𝑤u𝑧) + ∇𝑝 = 0,
𝜚 (𝑤𝑡 + u · ∇𝑤 + 𝑤𝑤𝑧) + 𝑝𝑧 = −𝜚𝑔.

(2.24a)
(2.24b)
(2.24c)

Henceforth u = (𝑢, 𝑣), subscripts of (𝑥, 𝑦, 𝑧, 𝑡) define partial derivatives in the
respective variable and the operator ∇ =

(
𝜕𝑥 , 𝜕𝑦

)
.

In the case of a fluid of uniform density under the influence of a uniform
body force due to gravity, the relation between pressure and height is given by
integration of Eq. (2.24c) which results in the following linear equation:

𝑝 = Π + 𝜚𝑔 (ℎ − 𝑧) (2.25)

where Π is the constant of integration Π(x, 𝑡) = 𝑝(r, 𝑡) |𝑧=ℎ and it depends on
the boundary conditions or the influence of the overlying fluid. In the case of a
free surface, pressure should be continuous, hence, the atmospheric pressure is
assumed to be zero above the free surface ℎ: 𝑝 = 𝜚𝑔 (ℎ − 𝑧). Then, the horizontal
gradient operator with the 𝑧-component omitted, results in a depth-invariant
expression for pressure:

∇𝑝 = 𝜚𝑔∇ℎ. (2.26)

The kinematic boundary condition of the vertical component of the momentum
equations at a flat bottom topography requires no normal flow at the rigid surface
i.e. 𝑤(0) = 0. Upon integration of the continuity equation along the vertical axis,
Eq. (2.1) yields:

[𝑤]ℎ0 = ℎ∇ · u

At the free surface, 𝑤 is equal by definition to the time derivative of the interface
height:

𝑤(ℎ) = 𝐷ℎ

𝐷𝑡
.

Combination of these two expression above, yield the mass conservation of the
shallow-water equations:

𝜕ℎ

𝜕𝑡
+ ∇ · (ℎu) = 0. (2.27)

The flow is assumed to be irrotational which in turn requires that in the leading
order approximation u𝑧 = 0. Therefore, considering Eq. (2.24b), while multiplying
with ℎ in order to recover the commonly found in textbooks expression, the
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momentum conservation for the single-layer shallow-water model writes as:

𝜕𝑡 (ℎu) + ∇ ·
(
ℎu2) + 𝑔

2∇
(
ℎ2) = 0, (2.28)

where presently, the density parameter, being constant, has been omitted from
the momentum equation. Hereafter, u2 = uu denotes the tensorial product.

Finally, the energy conservation for the single layer shallow-water model is
derived in multiplying Eq. (2.28) with the velocity u, leading to

𝜕

𝜕𝑡

1
2

(
ℎ‖u‖2 + 𝑔ℎ2) + ∇ · (1

2

(
𝑔uℎ2 + 1

2ℎu‖u‖2
))

= 0. (2.29)

A more detailed derivation can be found in Johnson (1997, Chapter 1.2.5) and
Vallis (2017, Chapter 3.6.2).

2.7 Two-Layer shallow-water model

In contrast to the single-layer model, where interaction with the ambient environ-
ment is considered negligible; in stratified models there exists an interdependence.
On account of this interaction, the intricacy of the analysis is augmented. Their
span of applicability, ranging from atmospheric to oceanic dynamics, is portrayed
in more detail in (Pedlosky, 1979; Vreugdenhil, 1994).

A subset of stratified fluid theory is the two-layer model where two fluids of
homogeneous but distinct densities 𝜚+ and 𝜚− are examined. An illustration of
the two-layer problem is given in figure 2.2. The case of two-layer flows has
been briefly examined by various classic textbooks, such as (Tan, 1992; Salmon,
1998; Gill, 1983), in the context of free upper surface or quasi-geostrophic flows
where quite frequently the reduced gravity (or one-and-a-half layer) approxima-
tion Salmon (1998, Chapter 2) is employed, where horizontal pressure gradients
are replaced by the fluid interaction in their gravity terms. This approximation
is based on the buoyancy effects of the upper layer altering the gravitational
restoring force of the lower layer. This translates to a fluid adjustment, corres-
ponding to a reduced gravitational constant, owing to surface displacement being
of smaller magnitude than the interior interface displacement. In oceanography
this commonly used simplification has been named rigid-lid approximation.

Discarding any assumption for the scale of the upper surface elevation, the
rigid-lid approximation introduces a pressure force acting on the fluids confined
under it. The reference height at which pressure is defined depends on the ap-
plication and individual preference. In contrast to common approach, where
the pressure at the top boundary is used as a reference pressure(Vallis, 2017,
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Chapter 3.2.1), it is beneficial to use the interfacial pressure for this purpose. On
account of a continuous pressure distribution at the interface, this choice leads to
a symmetric form of the momentum equations. Therefore, the horizontal gradient
of pressure is given by:

∇𝑝 = ±𝜚±∇ℎ± + ∇Π (2.30)

in the respective layers.

Bearing in mind that the normal components of velocity at the interface must
be the same for the two fluids the mass conservation for each layer writes as:

𝜕ℎ±
𝜕𝑡
+ ∇ · (ℎ±u±) = 0, (2.31)

where subscript ± indicates the lower or upper layer respectively; and as seen in
figure 2.2, each height component is split into an initial thickness and a perturbed
part, i.e. ℎ± = ℎ̄± ± 𝜂.

Figure 2.2: Sketch of the fluid domain.

On account of the rigid-lid approximation, the total height of the system is
ℎ+ + ℎ− = 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Therefore, the volume conservation across the layers is:

∇ · (ℎ+u+ + ℎ−u−) = 0. (2.32)

Starting from Eq. (2.24) while keeping note of the shallow-water approximation,
the momentum equations for the two layers write as

𝜚±
(
(u±)𝑡 + (u± · ∇) u± ± 𝑔∇ℎ±

)
= −∇Π, (2.33)

where a simplification can be achieved by employing the expression ℎ± = ℎ̄± ± 𝜂
which leads to:

𝜚±
(
(u±)𝑡 + (u± · ∇) u± + 𝑔∇𝜂

)
= −∇Π, (2.34)
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and the gravity term is subtracted on either side of the equation such that:

𝜚±
(
(u±)𝑡 + (u± · ∇) u±

)
+ 𝜚±𝑔∇ (𝜂) − 𝜚𝑔∇𝜂 = −∇Π − 𝜚𝑔∇𝜂,

where 𝜚 =
(𝜚−+𝜚+)

2 =
{𝜚}
2 is used, which expresses an average of the fluid densities

and the {} denoted summation of the enclosed quantity. Likewise, it is convenient
to introduce [ 𝑓 ] B 𝑓+ − 𝑓−, in which the square brackets denote the difference of
the enclosed quantities.

The interfacial pressure can be redefined such that:

Π̃ = Π − 𝜚𝑔𝜂,

which permits a symmetric description of the two-layer equations and it is ad-
vantageous in eliminating the density in the gravity terms in the Boussinesq ap-
proximation as considered in §2.7.2. Subsequently, the hydrodynamic equations
take the following form:

𝜚±
(
(u±)𝑡 + (u± · ∇) u±

)
± 𝑔 [𝜚]

2 ∇𝜂 = −∇Π̃.

As a last step, the height term ℎ± is reinstated and the interfacial displacement
𝜂 in the gravity term is replaced by:

𝜚±
(
(u±)𝑡 + (u± · ∇) u±

)
+ 𝑔 [𝜚]

2 ∇ℎ± = −∇Π̃. (2.35)

Similarly to Eq. (2.28), upon multiplication with the respective layer height, the
two-layer momentum equation Eq. (2.35) writes as:

𝜚

(
(ℎu)𝑡 + ∇ ·

(
ℎu2) ) + 𝑔 [𝜚]

4 ∇
(
ℎ2) = −ℎ∇Π̃, (2.36)

where for the sake of clarity u ≡ u±, 𝜚 ≡ 𝜚±.

The energy equation is obtained by taking a scalar product of the velocity
with Eq. (2.36). After few rearrangements this reads as:

𝜚

( (
ℎ‖u‖2

)
𝑡
+ ∇ ·

(
uℎ‖u‖2

) )
+ uℎ

(
𝑔 [𝜚] ∇ (ℎ)

)
= −2uℎ∇Π̃,

where for both layers uℎ · ∇ℎ = ∇ ·
(
uℎ2) − ℎ∇ · (uℎ) and likewise for the pres-

sure term. Hence, employing the mass conservation Eq. (2.31) the total energy
obtained by summation over the two layers, after few rearrangements, reads as
follows:{

𝜚ℎ‖u‖2 + 𝑔 [𝜚]
2 ℎ2

}
𝑡

+ ∇ ·
{
u

(
𝜚ℎ‖u‖2 + 𝑔 [𝜚] ℎ2)} = −2∇ ·

{
uℎΠ̃

}
, (2.37)

Laslty, the equation for pressure is given by taking the divergence of the sum
of the two layers which upon recalling the incompressibility condition Eq. (2.32)
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leads to an elliptic equation of the form:

∇ ·
({

ℎ

𝜚

}
∇Π̃

)
= −∇ ·

(
∇

{
ℎu2} − 𝑔 [𝜚]

4 ∇
{
ℎ2

𝜚

})
. (2.38)

2.7.1 Nondimensionalisation

The choice of scaling parameters used in this work deviates form the ones en-
countered in other studies (Bojarevics and Romerio, 1994) where height is scaled
with ℎ̄+ ℎ̄−

ℎ̄++ℎ̄−
and the wave propagation speed with the root of 𝑔 [𝜚]

{
𝜚

ℎ̄

}−1
. The

choice of these parameters is based on the argument of large amplitude waves
where the aforementioned alternative expressions would become irrelevant.

The characteristic scales used to nondimensionalise the equations are given in
the following table.

Description Quantity Scaling

Horizontal dimensions: 𝐿𝑥 , 𝐿𝑦 𝐿 =
√︁
𝐿𝑥𝐿𝑦

Vertical dimension: ℎ±, 𝜂 𝐻

Density 𝜚 𝜚 =
𝜚+ + 𝜚−

2

Velocity: u 𝐶 =

√︂
2𝑔 [𝜚]{𝜚}𝐻

Time: 𝑡
𝐿

𝐶

Pressure: Π̃ 𝑔 [𝜚] 𝐻

Electric potential: 𝜙
𝐼0

𝜎+𝐻

Table 2.1: Characteristic scales for normalisation

For the sake of brevity, the same symbols are subsequently used to denote
dimensionless quantities. Therefore, the system of Eqs. (2.31), (2.36) and (2.37)
in each layer expressed in the nondimensional form reads as:

(ℎ)𝑡 + ∇ · (ℎu) = 0,

𝜚

(
(ℎu)𝑡 + ∇ ·

(
ℎu2) ) + {𝜚}8 ∇ (

ℎ2) = −ℎ∇Π̃,{
𝜚ℎ‖u‖2 + {𝜚}4 ℎ2

}
𝑡

+ ∇ ·
{
u

(
𝜚ℎ‖u‖2 + {𝜚}2 ℎ2

)}
= −2∇ ·

{
uℎΠ̃

}
.

(2.39a)

(2.39b)

(2.39c)
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2.7.2 The Boussinesq approximation

A significant simplification is possible in gravity-driven flows when density does
not depart significantly from a mean reference value 𝜚. Thus, on the premises
that relative -spatial and temporal- variations of density are non-consequential
compared with the velocity field, it can be postulated that 𝜚+ ' 𝜚−. Nonetheless,
gravity is, comparatively, potent enough to make the specific weight considerably
different between the two fluids, and thus remains relevant only in the gravity
terms of the momentum equations as seen in Eq. (2.39). Thus, Eqs. (2.39b)
and (2.39c) simplify into:

(ℎu)𝑡 + ∇ ·
(
ℎu2) + 1

4∇
(
ℎ2) = −ℎ∇Π̃,{

ℎ‖u‖2 + 1
2ℎ

2
}
𝑡

+ ∇ ·
{
u

(
ℎ‖u‖2 + ℎ2)} = −2∇ ·

{
uℎΠ̃

}
,

(2.40a)

(2.40b)

Owing to the rigid-lid condition as well as the Boussinesq approximation, the
non-dimensional form of Eq. (2.38) simplifies into a Poisson equation which reads
as:

∇2Π̃ = −∇ ·
(
∇

{
ℎu2} − 1

4∇
{
ℎ2}) . (2.41)

2.7.3 The Sele parameter

In the preceding chapter the model with uniform vertical magnetic field was intro-
duced while defining the stability of the system. The electromagnetically-driven
rotating motion of the interface was first identified by Sele (1977), who intro-
duced a parameter characterising this instability. This nondimensional parameter
defines the relative magnitude of the electromagnetic and gravity forces. Follow-
ing Gerbeau, Le Bris et al. (2006), Davidson and Lindsay (1998) and Molokov
et al. (2011), the Sele nondimensional parameter can be writen as:

𝛽 =
𝐼0𝐵0

𝑔 (𝜚+ − 𝜚−) ℎ̄+ ℎ̄−
. (2.42)

Depending on physical parameters and the geometry of the cell, there is a critical
value of this parameter by exceeding which the system becomes unstable to a
rotating interface tilt.

With the normalisation described in Table (2.1), and the Boussinesq approx-
imation and recalling that the electromagnetic force is effective only in to the
lower layer the equation for the bottom fluid is:

𝜚𝐶2𝐻

𝐿

(
(ℎu)𝑡 + ∇ ·

(
ℎu2) + 1

4∇
(
ℎ2) + ℎ∇Π̃)

= −𝐻𝐵0𝜙0𝜎

𝐿
ℎ (𝑒𝑧 × ∇𝜙) .
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Therefore, the ratio of electromagnetic forces to gravity forces, writes as

𝛽 =
𝐵0𝜙0𝜎+
𝜚𝐶2 =

𝐵0𝐼0
𝜚𝐶2𝐻

=
𝐵0𝐼0

𝑔 [𝜚] 𝐻2 . (2.43)

Due to the scaling used in this work the resulting key dimensionless parameter
differs from that of Eq. (2.42) by a factor of 𝐻2/( ℎ̄+ ℎ̄−). In using Eq. (2.43) the
non-dimensional momentum equation in the Boussinesq approximation writes as:

(ℎu)𝑡 + ∇ ·
(
ℎu2) + 1

4∇
(
ℎ2) = −ℎ (

∇Π̃ + 𝛽 𝑒𝑧 × ∇𝜙
)
. (2.44)

2.7.4 Linear friction

Although viscous effects have been thus far omitted from the shallow-water model
description, oceanographic and engineering oriented approaches require the inclu-
sion of dissipative terms that permit a more realistic description of physical phe-
nomena. The resultant depth averaged viscous parameter coming from Eq. (2.6),
has been meticulously derived and included in the description of shallow-water
model in various classic textbooks such as (Tan, 1992; Pedlosky, 1979); however it
is most often a friction parameter on the bottom corresponding to a wall-law sim-
ilar to Navier friction which is employed under the shallow-water approximation.
A review of such friction laws can be found in Tan (1992) and Pedlosky (1979).
Concerning the 1D case, models featuring a viscous shallow-water approximation
are derived in Gerbeau and Perthame (2001) and Audusse (2005) to first and
second order of the shallowness parameter, offering a rigorous derivation of the
viscous parameters, which though do not distinguish between the bottom and
lateral friction. Marche (2007) offers the analogous derivation in 2D wherein a
distinction is made between the laminar (linear with respect to the mean velocity)
and turbulent viscous parameters.

In the context of MHD, an approximation first introduced by Lympany et
al. (1982), and used thereafter in (Moreau and Evans, 1984; Bojarevics, 1998;
Zikanov et al., 2000; Bojarevics and Pericleous, 2008), entails a simple linear
friction term. As pointed out in Zikanov et al. (2000) “... all the effects of
turbulent-energy dissipation near the rigid walls and within the layers are incor-
porated into the linear-friction terms with the empirical friction coefficients...”.
This rudimental implementation is preferred over more elaborate expressions for
its simplicity which does not obscure the instability mechanism of the two-layer
MHD system and the contribution of each parameter.

Therefore, the MHD two-layer system of equations including all friction effects,
internal viscous and turbulent dissipation as well as the friction at rigid walls,
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have been appended into a single expression in the following equations:

(ℎu)𝑡 + ∇ ·
(
ℎu2) + 1

4∇
(
ℎ2) = −ℎ (

∇Π̃ + 𝛽 𝑒𝑧 × ∇𝜙
)
− 𝛾u, (2.45)

where 𝛾 is the nondimensional linear friction coefficient for the respective layer.

2.8 Finite Volume Method

In this section the concept of conservation laws is introduced, which serves as the
foundation for the numerical methods employed. The continuous description of
time-dependent hyperbolic system of PDEs is recast into a finite set of discrete
values which enable their spatio-temporal discretisation by a relevant algorithm.
In anticipation of the discontinuities that inherently arise in the shallow-water
approximation, the discretisation is performed on the basis of an integral for-
mulation representing a conservation law. Following the discussion of §2.2, the
evolution of 𝑞 in a control volume is determined by the balance of net fluxes
entering and leaving the volume, i.e. 𝜕𝑡

∫
V
𝑞 𝑑V =

∫
V
∇ · Q 𝑑V. Owing to the

integral formulation of the governing equation, the conservation of the physical
quantity is ensured also for discontinuous solutions.

In its numerical approximation, the PDE is solved via the finite-volume-
method (FVM) where the conserved quantity enclosed within a finite volume-cell
is calculated by taking the integral over the volume element. Following the path
of the cell centre, it is assumed that the solution of 𝑞𝑛

Ω
is known on the control

cell Ω at timestep 𝑡𝑛. Considering its evolution over a subsequent step Δ𝑡, the
solution 𝑞𝑛+1

Ω
at 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 is obtained by integrating over Ω ×

[
𝑡𝑛, 𝑡𝑛+1

]
:∫

Ω

∫ 𝑡𝑛+1

𝑡𝑛
𝜕𝑡𝑞 𝑑𝑡𝑑Ω =

∫
Ω

∫ 𝑡𝑛+1

𝑡𝑛
∇ · Q 𝑑𝑡𝑑Ω ,

and the solution to 𝑞𝑛
Ω

is prescribed by the average of 𝑞 over the control volume
Ω (Godlewski and Raviart, 2013):

𝑞𝑛Ω =
1
|Ω|

∫
Ω

𝑞 𝑑Ω , where |Ω| =
∫
Ω

𝑑Ω . (2.46)

In admission of this cell-average and using purely explicit fluxes, Eq. (2.8) writes
as:

𝑞𝑛+1Ω = 𝑞𝑛Ω −
Δ𝑡

|Ω|

∫
Ω

∇ · Q 𝑑Ω. (2.47)

In a rectangular computational domain Ω = [𝑥𝐿 , 𝑥𝑅] × [𝑦𝐿 , 𝑦𝑅] a structured
static cell is depicted in figure 2.3:
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Figure 2.3: Control-volume schematic.

where the spatial increment Δ𝑥 is defined by Δ𝑥 = 𝑥𝑖+ 1
2
−𝑥𝑖− 1

2
-equivalently for Δ𝑦-

and the domain is considered equispaced throughout. The integral is approxim-
ated using a point located at the centre with the fluxes located at the interface
of the cell, is interpreted as the average of the surrounding flux node elements.
By definition of Eq. (2.46) and Eq. (2.47) one obtains

𝑞𝑛+1𝑖, 𝑗 = 𝑞𝑛𝑖, 𝑗 −
Δ𝑡

Δ𝑥Δ𝑦

∫ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

(
𝐹 (𝑥𝑖+ 1

2
, 𝑦 𝑗 , 𝑡

𝑛) − 𝐹 (𝑥𝑖− 1
2
, 𝑦 𝑗 , 𝑡

𝑛)
)
𝑑𝑦

− Δ𝑡

Δ𝑥Δ𝑦

∫ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝜕𝑦

(
𝐺 (𝑥𝑖, 𝑦 𝑗+ 1

2
, 𝑡𝑛) − 𝐺 (𝑥𝑖, 𝑦 𝑗− 1

2
, 𝑡𝑛)

)
𝑑𝑥

(2.48)

where the divergence is ∇ ·Q = 𝜕𝑥𝐹 + 𝜕𝑦𝐺. Successively, the numerical fluxes are
defined as:

𝐹𝑛

𝑖+ 1
2 , 𝑗

=
1
Δ𝑦

∫ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝐹 (𝑥𝑖+ 1
2
, 𝑦 𝑗 , 𝑡

𝑛) 𝑑𝑦

𝐺𝑛

𝑖, 𝑗+ 1
2
=

1
Δ𝑥

∫ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝐺 (𝑥𝑖, 𝑦 𝑗+ 1
2
, 𝑡𝑛) 𝑑𝑥

(2.49)

which rewrites Eq. (2.48) to express the 2D geometry as:

𝑞𝑛+1𝑖, 𝑗 = 𝑞𝑛𝑖, 𝑗 −
Δ𝑡

Δ𝑥

(
𝐹𝑛

𝑖− 1
2 , 𝑗
− 𝐹𝑛

𝑖+ 1
2 , 𝑗

)
− Δ𝑡

Δ𝑦

(
𝐺𝑛

𝑖, 𝑗+ 1
2
− 𝐺𝑛

𝑖, 𝑗− 1
2

)
(2.50)

In the case of a uniform Cartesian grid, the FVM may be related to the
finite-differences (FD) method. However, the advantage held over the former
is that the element located at the centre is not affected by the the boundary
conditions applied onto the fluxes. The advantages of the FVM method are
more pronounced for non-uniform meshes as well as in two-or-higher- dimensions
whence curvature is more naturally dealt with the FVM due to the integral nature
of the equations used. Indeed, FD method uses a pointwise approximation at
the node of the cell where the corresponding derivatives are approximated by
finite differences. In general such methods tend to be numerically unstable and
break down near discontinuities. However, it is convenient to consider the finite
difference interpretation when computing the local truncation error via a Taylor
series expansion at a point.
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2.9 1D Lax-Wendroff scheme

In this section the Lax-Wendroff scheme is presented in one-spatial dimension.
Consider a system of conservation laws in one space dimension:

𝜕𝑡U + 𝜕𝑥F(U) = 0, (2.51)

where U is a vector of the conserved quantities per unit volume and F is the flux
rate per unit area.

The scheme introduced by (Lax and Wendroff, 1960) was constructed for solv-
ing 1D systems of conservation laws of the form Eq. (2.51) and falls from consid-
eration of a Taylor’s expansion

U𝑛+1
𝑖 = U𝑛

𝑖 + Δ𝑡 (𝜕𝑡U)
𝑛
𝑖 +
(Δ𝑡)2

2
(
𝜕2
𝑡 U

)𝑛
𝑖
+ O((Δ𝑡)3). (2.52)

Subsequently, substituting Eq. (2.51) in Eq. (2.52), the spatial derivatives
replace the temporal derivatives. For the second-order term in Taylor’s expansion,
the Jacobian matrix 𝐴 = 𝐴(U) = 𝜕F

𝜕U is considered, leading to the single-step Lax-
Wendroff scheme:

U𝑛+1
𝑖 = U𝑛

𝑖 + Δ𝑡 (𝜕𝑥F)
𝑛
𝑖 +
(Δ𝑡)2

2 (𝜕𝑥 (𝐴𝜕𝑥F))𝑛𝑖 + O((Δ𝑡)3). (2.53)

The system is hyperbolic if the Jacobian 𝐴 is diagonalizable and admits real
eigenvalues and a complete set of independent eigenvalues, such that

𝐴 = 𝑅Λ𝑅−1, (2.54)

where R is the matrix of right eigenvectors and Λ the set of eigenvalues.

The single-step Lax-Wendroff scheme can be discretised using a FD method
with second order accuracy in time and space. However, for nonlinear problems
the substitution carried out in the temporal derivatives is neither unique nor
straightforward. Furthermore, the single-step Lax-Wendroff is not well suited for
FVM methods. Solutions to systems described by Eq. (2.51) contain discontinu-
ities even if the initial data is smooth. On the theoretical analysis of hyperbolic
conservation laws (Lax and Wendroff, 1960; Hou and LeFloch, 1994) comple-
ment each other. It is shown that numerical solutions of such systems, in the
presence of shocks, if convergent they will converge to the weak solution, while
non-conservative methods will converge to an unphysical solution. It thus be-
comes apparent that for problems where discontinuities can arise, conservation
laws and schemes are decisive in obtaining a physically correct solution.

In a technical report, Richtmyer (1962) presents the two-step Lax-Wendroff
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method which, compared to its counterpart, eliminated the necessity of the ex-
plicit calculation of the Jacobian matrix. In a centred difference approach, illus-
trated in figure 2.4, this takes the form:

𝑈
𝑛+ 1

2
𝑖+ 1

2
= 1

2
(
𝑈𝑛
𝑖+1 +𝑈𝑛

𝑖−1
)
− Δ𝑡

2Δ𝑥
[
𝐹 (𝑈𝑛

𝑖+1) − 𝐹 (𝑈𝑛
𝑖−1)

]
,

𝑈𝑛+1
𝑖

= 𝑈𝑛
𝑖
− Δ𝑡

Δ𝑥

[
𝐹 (𝑈𝑛+ 1

2
𝑖+ 1

2
) − 𝐹 (𝑈𝑛+ 1

2
𝑖− 1

2
)
]
.

(2.55)

which represents the numerical approximation of Eq. (2.51) in one-space-dimension.

The intermediate time step 𝑛+ 1
2 evaluated at the grid points 𝑖+ 1

2 , is calculated
by a Lax-Friedrich spatial discretisation which is first-order accurate. A leapfrog
central-difference-in-time is applied in the second step, with which second-order
accuracy is achieved by updating the value using data from the 𝑛th and the 𝑛 + 1

2
steps. Therefore, a time- and space-centred integration formula is obtained in the
full step of the calculation.

𝑖 − 1 𝑖 𝑖 + 1

𝑖 − 1
2 𝑖 + 1

2

𝑛

𝑛 + 1
2

𝑛 + 1

Figure 2.4: One-dimensional spatio-temporal mesh for the Lax-Wendroff
scheme.

2.9.1 Stability

The measure of stability established therein is given in terms of the Courant-
Friedrich-Lewy (CFL) condition which imposes a physical restriction on the propaga-
tion of information advected with the fluid.

𝜆𝑚𝑎𝑥

Δ𝑡

Δ𝑥
≤ 1 (2.56)

where the 𝜆𝑚𝑎𝑥 = max
𝑚
( |𝜆𝑚 |) defines the maximum wave propagation speed (eigen-

value). This falls from consideration of the von-Neumann stability analysis where
for a Fourier mode exp (𝑖𝑘Δ𝑥) the amplification matrix defined by Eq. (2.55) is
(Richtmyer and Morton, 1967):

G = 𝐼 − 𝑖 Δ𝑡
Δ𝑥

𝐴 sin (𝑘Δ𝑥) −
(
Δ𝑡

Δ𝑥
𝐴

)2
(1 − cos (𝑘Δ𝑥)) .
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Then, with 𝜆 being an eigenvalue of 𝐴, the corresponding eigenvalue of G is

𝑔 = 1 − 𝑖𝑎 sin (𝑘Δ𝑥) − 𝑎2 (1 − cos (𝑘Δ𝑥)) ,

where 𝑎 = 𝜆 Δ𝑡
Δ𝑥

. Hence, the magnitude of the amplification factor in the complex
plain is given by

|𝑔 |2 = 1 − 𝑎2(1 − 𝑎2) (1 − cos (𝑘Δ𝑥)) .

It is now clearly seen that for the two-step Lax-Wendroff method the von-Neumann
condition will be satisfied for all wavenumbers 𝑘 when 𝑎2 ≤ 1. In relation to the
FVM the CFL number ensures that the information propagated through in one
time step does not exceed one grid cell, which otherwise would correspond to un-
physical speeds and the rise of numerical instabilities. As highlighted by LeVeque
(2002, p. 69) and Durran (2010, pp. 98–100) the CFL condition dictates the in-
terdependence of the numerical domain with the associated PDE. Although CFL
is a necessary condition for stability the sufficient conditions for stability may be
more restrictive and one should refer back to the von Neumann stability analysis.

2.9.2 TVD schemes and the oscillatory behaviour near
shocks

The two-step Lax-Wendroff method developed by Richtmyer (1962) and Richt-
myer and Morton (1967) and further demonstrated by Potter (1973) and Vesely
(2001), is tested in terms of its stability and compared against various schemes
for hyperbolic problems by Toro (2001), LeVeque (2002) and Durran (2010). In
specific, the discussion is focused around discontinuous solutions. First, an over-
view of first-order accuracy schemes is carried out where it is shown that schemes
such as Godunov’s or Lax-Friedrich’s introduce numerical diffusion, resulting in
poor accuracy. For smooth solutions good accuracy can be achieved with the
use of second-order schemes such as the Lax-Wendroff, the Beam-Warming or
Fromm’s method which though, being dispersive, produce spurious oscillations
to discontinuities. Techniques introduced to improve these oscillations are flux-
and slope-limiters or MUSCL (Monotone Upstream-centred Scheme for Conser-
vation Laws) -type of schemes. The class of flux-limiter schemes aims to combine
features of the first- and second-order accuracy schemes by means of lowering the
numerical accuracy in regions where shocks develop but retaining second-order
in smooth parts of the solution. The MUSCL schemes aim to mimic the exact
solutions of conservation laws by reconstructing the data in the shock vicinity
so as to avoid spurious oscillations. Convergence of both methods is analysed
examining their TVD (or TVNI) properties (Harten, 1983), which ensures that
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independently of the data reconstruction technique employed, the scheme pre-
serves monotonicity.

Utilising flux-limiter or polynomial-reconstruction-limiter can be advantage-
ous for the numerical approximations of problems ensuring convergence even in
the presence of shocks or discontinuous solutions. Nevertheless, use of these
techniques can significantly hinder solutions to smooth extrema introducing er-
rors to the computation as they degenerate to first-order accuracy at extremal
points. Moreover, all limiter approaches impair the computational efficiency.
Consequently, it stands to reason that whence limiters are not essential for the
correct simulation of the underlying physics, to be avoided. A synopsis of such
methods has been given in §2.9, and can be found in more detail in (Zhang et
al., 2015; Toro, 2001; LeVeque, 2002) but are generally beyond the scope of this
thesis.

As mentioned above, although the Lax-Wendroff method exhibits oscillations
near shocks, it still captures accurately their steepness. Adjusting the CFL condi-
tion (i.e. the temporal- and/or the spatial-step) one can regulate the oscillations
minimising the dispersion effects displayed (Potter, 1973, p. 269). Such an ex-
ample can be seen in Hesthaven (2017, p. 119) where the CFL is adjusted in
terms of its temporal discretisation. In fact, it is indicated in LeVeque (2002)
that it owes to work best when the CFL equals unity.
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Chapter 3

Numerical schemes and solvers

This chapter reviews the 2D Lax-Wendroff-Richtmyer scheme before proceeding
to present a new and improved spatiotemporal integration scheme used for the
evolution of the system of equations. The latter is coupled with a highly-efficient
Poisson solver employing the tridiagonal matrix algorithm and fast discrete cosine
transform used in solving the interfacial pressure and electric potential equations.

3.1 2D Lax-Wendroff scheme

The Richtmyer-Lax-Wendroff scheme is presented in two-spatial dimensions be-
fore developing the new two-dimensional scheme utilising the rhombic structure
of the grids. In the latter parts of this chapter, an efficient fast Poisson solver
for the 2D finite-difference elliptic equations is developed, which is applied in the
numerical resolution of the 2D two-layer pressure, as well as the electric potential
equation.

In two-spatial dimensions, a conservative hyperbolic equation can be written
as:

𝜕𝑡U + 𝜕𝑥F(U) + 𝜕𝑦G(U) = 0. (3.1)

where F(U) and G(U) are the fluxes of the quantity U in the 𝑥 and 𝑦 direction
respectively. In presenting the numerical scheme, in two-dimensional spatial-
variables, the index notation will be temporarily altered from that of §2.9 to
accommodate the needs for the description of the scheme as per Richtmyer (1962)
and Richtmyer and Morton (1967). As such, the fractional indices are replaced
by integer indices; 𝑡 = (𝑛 + 1)Δ𝑡 refers to the predictor step whereas 𝑡 = (𝑛 + 2)Δ𝑡
to the corrector step and the following scheme is applied on all (𝑖, 𝑗) : 𝑖, 𝑗 ∈ Z
nodes.
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

𝑈𝑛+1
𝑖, 𝑗 = 𝑈𝑛

𝑖, 𝑗 −
Δ𝑡

2Δ𝑥

[
𝐹 (𝑈𝑛

𝑖+1, 𝑗 ) − 𝐹 (𝑈𝑛
𝑖−1, 𝑗 )

]
− Δ𝑡

2Δ𝑦

[
𝐺 (𝑈𝑛

𝑖, 𝑗+1) − 𝐺 (𝑈𝑛
𝑖, 𝑗−1)

]
,

where 𝑈𝑛
𝑖, 𝑗 =

1
4

(
𝑈𝑛
𝑖+1, 𝑗 +𝑈𝑛

𝑖−1, 𝑗 +𝑈𝑛
𝑖, 𝑗+1 +𝑈𝑛

𝑖, 𝑗−1

)
𝑈𝑛+2
𝑖, 𝑗 = 𝑈𝑛

𝑖, 𝑗 −
Δ𝑡

Δ𝑥

[
𝐹 (𝑈𝑛+1

𝑖+1, 𝑗 ) − 𝐹 (𝑈𝑛+1
𝑖−1, 𝑗 )

]
− Δ𝑡

Δ𝑦

[
𝐺 (𝑈𝑛+1

𝑖, 𝑗+1) − 𝐺 (𝑈𝑛+1
𝑖, 𝑗−1)

]
.

(3.2a)

(3.2b)

In the implementation of the Richtmyer two-step Lax-Wendroff scheme, the
nine-point-stencil used is portrayed in figure 3.1a whereas the spatial grid con-
sidered is presented in figure 3.1b.
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(a) 2D Lax-Wendroff stencil.
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(b) Spatial grid points.

Figure 3.1: The nine-point stencil 3.1a and the grid 3.1b for the Lax-Wendroff
scheme

As mentioned by Richtmyer and Morton (1967), in application of Eq. (3.2)
on figure 3.1b the set of points with 𝑛 + 𝑖 + 𝑗 being even and the set having
odd values are decoupled which induces a “drift” in the solution, between the
two stencils, over time as mentioned by Vesely (2001). It has been suggested by
Vesely (2001) and Potter (1973) that a diffusion term in the equations or one
artificially implemented would mutually couple the grids.

The decoupling in Richtmyer’s implementation can be better understood in
application of the nine-point stencil on the grid for two neighbouring points. At
this stage, it is also advantageous to return to the fractional notation, in both
Eq. (3.2) and figure 3.1, for comparison with the scheme naturally following from
Richtmyer’s scheme. Hence, the grid, illustrated in figure 3.1b, with the nine-
point stencils applied takes the following form:
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Figure 3.2: Grid with two neighbouring points’ stencil.

In this thesis, no diffusion term is considered and since the solutions on the
two grids are decoupled they thus are mutually independent. Therefore, it is
possible to define two conjugate grids as shown in figure 3.3.
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(a) Staggered grid
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(b) Conjugate staggered grid

Figure 3.3: Two configurations of the rhombic staggered grid

In these two configurations, letV1 be the graph indicated in figure 3.3a whereas
V2 the graph of figure 3.3b, where the vertices of the corresponding graphs write
as:
V1 :=

{(
𝑖 + 𝜎

2 , 𝑗 + 𝜎′

2

)
: (∀ 𝑖, 𝑗 ∈ Z) ∧ (∀ 𝜎, 𝜎′ ∈ {0, 1}) : 𝜎 + 𝜎′ ∈ {0, 2}

}
,

V2 :=
{(
𝑖 + 𝜎

2 , 𝑗 + 1 − 𝜎
2

)
: (∀ 𝑖, 𝑗 ∈ Z) ∧ 𝜎 {0, 1}

}
.

(3.3a)

(3.3b)
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As it can be seen in the computational domain under consideration, the result-
ing uniformly spaced quadrangle elements form rhombic (“diamond”-shaped) ele-
ments. This particular choice of representation lies in the accurate interpretation
of the control-volumes. The orientation of the quadrangles allow no overlapping
spaces which otherwise would arise as a result of rectangular quadrangles i.e. the
rhombic-shaped elements rotated by 45◦.

For the numerical integration of the cell-vertex quadratures, the Newton-Cotes
formulas are used. The whole volume is described as Ω =

4⋃
𝑖=1

Ω𝑖 where each

quadrature is |Ω𝑖 | = |Ω|4 for 𝑖 = 1 . . . 4 and they are not overlapping i.e. Ω𝑖

⋂
Ω 𝑗 =

∅, ∀𝑖 ≠ 𝑗 . The centre position 𝑞 is 𝑞 =
x1+x2+x3+x4

4 and an approximation of the
integral over the domain Ω is obtained via the Newton-Cotes formula as:∫

Ω

𝑓 (x)𝑑Ω ≈
4∑︁
𝑖=1

Ω𝑖 𝑓 (𝑥𝑖) ≈ |Ω| 𝑞

𝑥1

𝑥2

𝑥3

𝑥4 𝑞

Ω1

Ω2

Ω3

Ω4

(a) Volume

𝑥1

𝑥2𝑥4 𝑞

Ω
′
1

Ω
′
2Ω

′
4

(b) Volume at the boundary

Figure 3.4: Cell-vertex FV

At the boundary: |Ω′1 | = |Ω1 | and |Ω′2,4 | =
|Ω′1 |

2 =
|Ω2,4 |

2 . Therefore, Newton-Cotes
formula reads as:∫
Ω
′
𝑓 (x)𝑑Ω′ ≈ |Ω′1 |x1+|Ω

′
2 |x2+|Ω

′
4 |x4 =

2|Ω1 |x1 + |Ω2 |x2 + |Ω4 |x4
2 =

|Ω|
4

2x1 + x2 + x4
2

Hence, in relation to the inner volume it can be seen that |Ω′ | = |Ω|
2 , thus the

point 𝑞 is defined as 𝑞 =
2x1+x2+x4

4 on Γ. In review of Eqs. (2.46) and (2.50)
and retrieving the fractional notation, Richtmyer’s two-step scheme, applied on
figure 3.3a with vertices defined by Eq. (3.3a), can be represented as:
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

𝑈
𝑛+ 1

2
𝑖, 𝑗+ 1

2
= 𝑈𝑛

𝑖, 𝑗+ 1
2
− Δ𝑡

2Δ𝑥

[
𝐹 (𝑈𝑛

𝑖+1, 𝑗 ) − 𝐹 (𝑈𝑛
𝑖−1, 𝑗 )

]
− Δ𝑡

2Δ𝑦

[
𝐺 (𝑈𝑛

𝑖, 𝑗+1) − 𝐺 (𝑈𝑛
𝑖, 𝑗−1)

]
,

where 𝑈𝑛

𝑖, 𝑗+ 1
2
=

1
4

(
𝑈𝑛
𝑖+1, 𝑗 +𝑈𝑛

𝑖−1, 𝑗 +𝑈𝑛
𝑖, 𝑗+1 +𝑈𝑛

𝑖, 𝑗−1

)
𝑈𝑛+1
𝑖, 𝑗 = 𝑈𝑛

𝑖, 𝑗 −
Δ𝑡

Δ𝑥

[
𝐹 (𝑈𝑛+1

𝑖+ 1
2 , 𝑗
) − 𝐹 (𝑈𝑛+1

𝑖− 1
2 , 𝑗
)
]
− Δ𝑡

Δ𝑦

[
𝐺 (𝑈𝑛+1

𝑖, 𝑗+ 1
2
) − 𝐺 (𝑈𝑛+1

𝑖, 𝑗− 1
2
)
]
.

(3.4a)

(3.4b)

where the corrector step Eq. (3.4b) applies to the nodes represented by the blue
dots and the predictor step Eq. (3.4a) to the red crosses which are the nodes of
V2 on the conjugate grid. The grids formed by circles and crosses in figure 3.5,
indicate the spatial configuration of the time-discretisation of the half time step
Eq. (3.4a) and the full time step Eq. (3.4b) points, respectively. The new com-
putational grid encompasses two staggered subgrids, which comprise a numerical
analogue of the finite volume scheme where every element (conserved quantity)
is being enclosed at the centre of the computational cell, and requires four grids
(two for each step) to be computed.

𝑥

𝑦

𝑗 + 1

𝑗 + 1
2

𝑗

𝑗 − 1
2

𝑗 − 1

𝑖 − 1
2𝑖 − 1 𝑖 𝑖 + 1

2 𝑖 + 1

Figure 3.5: Dual-rhombic computational grid. Half-step: ( ). Full-step: ( )

According to the stability analysis carried out by Richtmyer and Morton (1967)
the stability conditions of this scheme is:

𝜆𝑚𝑎𝑥

Δ𝑡

Δ𝑥
≤ 1
√

2
,

where 𝜆𝑚𝑎𝑥 is the norm of the maximum eigenvalues in both directions where
equal discretisation (Δ𝑥 = Δ𝑦) has been considered. A thorough stability analysis
of both the two- and three-dimensional Richtmyer-type schemes is also carried
out by Wilson (1972). Detailed discussions of alternative discretisations can be
found also in Burstein (1967), Zwas (1972) and Eilon et al. (1972) from which
it is understood that arrangement of nodes in space and time may significantly
affect the computational accuracy and the stability conditions.
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3.2 Development of a highly-efficient Poisson solver

For two-layer systems with electromagnetic effects, additional terms arise on the
RHS of the governing equation. Numerical evaluation of these terms requires the
computation of elliptic equations which are not present when solving incompress-
ible hydrodynamic single-fluid flows for which the aforementioned Lax-Wendroff
scheme is sufficient for the study of the problem. Numerical modelling of the two-
layer shallow-water MHD system of equations necessitates at every time step the
resolution of elliptic equations describing the pressure at the interface between the
fluid layers as well as the electric potential distributions. In both cases the solu-
tion of diagonally dominant tridiagonal linear systems of equations is required.
The challenge is then to acquire a solver which is computationally efficient and
second-order accurate.

As shown in §2.7, the rigid-lid condition gives rise to an elliptic pressure equa-
tion, Eq. (2.41), for interfacial pressure which in the Boussinesq approximation
reduces to a Poisson equation. In the case of a second-order finite difference ap-
proximation of the Laplacian, this results in a system of linear equations with a
constant-coefficient matrix of coefficients, within which the boundary conditions
are incorporated.

However, Eq. (5.7) associated with the electromagnetic part of the problem,
as seen in §5, is essentially nonlinear and requires particular attention as a time
varying height term is involved on the LHS. Aiming towards a memory efficient
and computationally-fast direct solver, a methodology similar to Chorin’s projec-
tion scheme (Chorin, 1968) was employed where at each time step an effectively
linear constant-coefficient problem is formulated. The method is described in the
succeeding section.

3.2.1 Time-splitting projection method

As mentioned in the introduction, similarly to the Navier-Stokes equation, for
which Chorin’s projection method was originally developed, several Poisson equa-
tions must be solved numerically at each time step which is computationally
expensive. Consequently, considerable research has been devoted to the develop-
ment of direct fast Poisson solvers, based on the Fast Fourier Transforms (FFT)
in combination with the Gaussian elimination.

Notwithstanding the efficiency brought by fast Poisson solvers the solution
from time 𝑡𝑛 to 𝑡𝑛+1 of Eq. (5.7) involves time dependent coefficients which pre-
clude the direct use of fast Poisson solvers. In order to solve a variable coefficient
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equation as in Eq. (5.7), iterative multigrid methods are commonly used. The
main disadvantage of iterative methods is their high computational inefficiency,
especially in comparison to the fast Poisson solvers which though, are limited to
constant-coefficient equations.

Dong and Shen (2012), have developed a projection method that reduces the
elliptic equation into a constant-coefficient equation. Whereas their implement-
ation is applied on a variable-coefficient pressure-gradient with variable density;
adopting this approach it is possible to split the variable-coefficient potential-
gradient term into a constant term and a variable term, and then treat the con-
stant term implicitly and the variable term explicitly. The flux in Eq. (5.7) can
be split approximately as:

ℎ̄∇𝜙𝑛+1 +
(
ℎ𝑛+1 − ℎ̄

)
∇𝜙 ,

where 𝜙 defines an extrapolation of the potential to the time-step 𝑛 + 1. Dong
and Shen (2012) define this term as:

𝜙 =

{
𝜙𝑛.

2𝜙𝑛 − 𝜙𝑛−1.

(3.5a)
(3.5b)

where Eq. (3.5a) and Eq. (3.5b) define a constant and linear extrapolation result-
ing in a first and second order accurate approximations. For the Lax-Wendroff
scheme, flux can be split as:

• Half-step: O(𝜏)

ℎ𝑛+
1
2∇𝜙𝑛+ 1

2 =

(
ℎ̄ +

(
ℎ𝑛+

1
2 − ℎ̄

))
∇𝜙𝑛+ 1

2 = ℎ̄∇𝜙𝑛+ 1
2 +

(
ℎ𝑛+

1
2 − ℎ̄

)
∇𝜙𝑛. (3.6)

• Full-step: O(𝜏2)

ℎ𝑛+1∇𝜙𝑛+1 = ℎ̄∇𝜙𝑛+1 +
(
ℎ𝑛+1 − ℎ̄

)
∇

(
2𝜙𝑛+ 1

2 − 𝜙𝑛
)
. (3.7)

Since after the splitting all nonlinear terms are defined on the previous time
steps and thus moved to the RHS of the equation, the finite-difference potential
equation effectively reduces to a Poisson equation which is solvable by a fast
algorithm.

3.2.2 The DCT and TDMA algorithms

Approximating the Poisson equation in one-dimension with the second order finite
difference:

𝜕2𝑤

𝜕𝑥2 ≈
𝑤𝑖+1 − 2𝑤𝑖 + 𝑤𝑖−1

Δ𝑥2 ,
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results in a set of linear algebraic equations of the form

𝐴𝑤 = 𝑓 , (3.8)

with the matrix 𝐴 defined by:
−𝑑𝑖 𝑤𝑖 +𝑏 𝑤𝑖+1

𝑤𝑖−1 −𝑑𝑖𝑤𝑖 +𝑤𝑖+1

𝑏 𝑤𝑖−1 −𝑑 𝑤𝑖

 =


...

𝑓𝑖
...


𝑖 = 0,
𝑖 = 1, 𝑁 − 1,
𝑖 = 𝑁.

(3.9)

where first and last equations approximate Neumann boundary conditions which
in general are defined by the coefficients [𝑑, 𝑏]. These coefficients depend on the
grid as defined in the following figures.

(a) Grid 0. (b) Grid 1.

Figure 3.6: Two different 1D grids with midpoints: ( ) and nodes: ( )

The two natural choices falling from the second order FD approximation of
the Neumann boundary condition

𝜕𝑛𝑤 |Γ = 0,

define symmetry around a meshpoint fig. 3.6a, or around a midpoint fig. 3.6b
and formulate the coefficients of Eq. (3.9) as

[
𝑑1,𝑁 = 2, 𝑏 = 2

]
or

[
𝑑1,𝑁 = 1, 𝑏 = 1

]
,

respectively.

The Discrete Cosine Transform

The discrete cosine transform (DCT) is a form of the discrete Fourier transform,
first defined by Ahmed et al. (1974). It transforms the matrix from the spatial
domain to the frequency domain into spectral sub-bands of differing importance.

Equation (3.9) can be solved using a DCT the type of which depends on the
location of the boundary. Let 𝑤̂ 𝑗 denote the DCT whereas 𝑤𝑖 is the inverse
DCT. Then, for the case which

[
𝑑1,𝑁 = 2, 𝑏 = 2

]
corresponding to figure 3.6a, the

one-dimensional DCT commonly referred to as DCT-I is:

𝑤̂ 𝑗 =

(
2
𝑁

) 1
2 𝑁∑︁

𝑖=0

(1 + 𝛿𝑖0 + 𝛿𝑖𝑁 )−
1
2(

1 + 𝛿 𝑗0 + 𝛿 𝑗𝑁
) 1

2
cos

(
𝜋 𝑗𝑖

𝑁

)
𝑓𝑖, for 0 ≤ 𝑖, 𝑗 ≤ 𝑁, (3.10)
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Application of the DCT onto the discrete Poisson system Eq. (3.9) results to
eigenvalues, the form of which depends on the boundary conditions. The corres-
ponding eigenvalues in application of DCT-I are:

𝜆 𝑗 = 2
(
cos

(
𝜋 𝑗

𝑁

)
− 1

)
= −4 sin2

(
𝜋 𝑗

2𝑁

)
. (3.11)

The associated inverse DCT 𝑤𝑖 is defined by a similar expression, replacing 𝑓𝑖

with 𝑤̂ 𝑗 and summing over the index 𝑗 .

The analogous Fourier transform for figure 3.6b with coefficients
[
𝑑1,𝑁 = 1, 𝑏 = 1

]
is DCT-II which reads as:

𝑤̂ 𝑗 =

(
2
𝑁

) 1
2 𝑁∑︁

𝑖=0

1√︁
1 + 𝛿 𝑗0

cos
(
𝜋𝑖

(
𝑗 + 1

2
)

𝑁 + 1

)
𝑓𝑖, for 0 ≤ 𝑖, 𝑗 ≤ 𝑁, (3.12)

with the corresponding eigenvalues being given by:

𝜆 𝑗 = 2
(
cos

(
𝜋 𝑗

𝑁 + 1

)
− 1

)
= −4 sin2

(
𝜋 𝑗

2 (𝑁 + 1)

)
. (3.13)

The respective inverse of DCT-II (IDCT-II) is equivalent to DCT-III. That is:

𝑤𝑖 =

(
2
𝑁

) 1
2 𝑁∑︁

𝑗=0

1
√

1 + 𝛿𝑖0
cos

(
𝜋𝑖

(
𝑗 + 1

2
)

𝑁 + 1

)
𝑤̂ 𝑗 , for 0 ≤ 𝑖, 𝑗 ≤ 𝑁. (3.14)

Tridiagonal Matrix Algorithm (Thomas Algorithm)

The Tridiagonal Matrix Algorithm (TDMA), first described by Thomas (1949),
is commonly referred to as the Thomas algorithm. Thomas algorithm is a simple
and efficient form of Gaussian elimination which makes use of the tridiagonal
banded structure of matrix systems to solve 𝑁 equations using O(𝑁) operations.
In this tridiagonal structure, all matrix elements other than the central-, the
super- and the sub-diagonal, are zero. The Thomas algorithm reduces the system
of equations to upper triangular form, by eliminating recursively terms in each of
the equations, followed by backward substitution starting with the last equation
as follows: {

𝑤𝑖+1 = 𝑎𝑖𝑤𝑖 + 𝑐𝑖 ,
𝑤𝑖 = 𝑎−1

𝑖 (𝑤𝑖+1 − 𝑐𝑖) .
(3.15a)
(3.15b)

For Eq. (3.9), the forward sweep for 𝑖 = 0 yields:

𝑎0 =
𝑑0
𝑏0

and 𝑐0 =
𝑓0
𝑏0

.
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Accordingly, for 𝑖 = 1, . . . , 𝑁 − 1 the recurrence relations falling from the use of
Eq. (3.15) are

𝑎𝑖 = 𝑑𝑖 − 𝑎−1
𝑖−1 and 𝑐𝑖 = 𝑎−1

𝑖−1𝑐𝑖−1 + 𝑓𝑖 .

The resulting upper bidiagonal matrix is now solved starting from the last element
𝑖 = 𝑁 for which

𝑤𝑁 =
𝑏𝑛

𝑑𝑁
𝑤𝑁−1 −

𝑓𝑛

𝑑𝑁
,

where using Eq. (3.15b) it rewrites into

𝑤𝑁 =
𝑏𝑛

𝑑𝑁
𝑎−1
𝑁−1 (𝑤𝑁 − 𝑐𝑁−1) −

𝑓𝑛

𝑑𝑁
= −

𝑎−1
𝑁−1𝑐𝑁−1 + 𝑓𝑁

𝑏𝑁

𝑑𝑁
𝑏𝑁
− 𝑎−1

𝑁−1
= − 𝑐𝑁

𝑎𝑁
.

Implementation of the Neumann boundary conditions in the tridiagonal system
results into a singular matrix which in turn affects the solution with the use of the
Thomas algorithm. This problem is overcome by setting 𝑎𝑁 = 1 which embodies
the solvability condition.

In this work, the Thomas algorithm is used with two sets of coefficients[
𝑑1,𝑁 = 1, 𝑏 = 1

]
and

[
𝑑1,𝑁 = 2, 𝑏 = 2

]
and will be referred to as TDMA-I and

TDMA-II respectively.

3.2.3 The DCT-TDMA algorithm

The proposed scheme is akin to the idea of the Fourier-analysis-cyclic-reduction
(FACR) algorithm described by Swarztrauber (1977) and Press et al. (2007),
which uses the 1D discrete Fourier transform to separate the original system of
linear equations into tridiagonal systems for each Fourier mode. Furthermore,
Wilhelmson and Ericksen (1977), Swarztrauber (1977) and Swarztrauber (1986)
studied the FACR algorithm for staggered and nonstaggered grids with the re-
spective Neumann as well as Dirichlet boundary conditions.

The DCT-TDMA method consists of a combination of the Discrete Cosine
Transform and the Tridiagonal Matrix (Thomas) Algorithm, where the two-
dimensional Poisson equation is transformed into the Fourier space along the
𝑦-direction, resulting in a tridiagonal system for each 𝑦-Fourier mode along the
𝑥-direction. Although the implementation of the scheme is much simpler than
that of other Poisson solvers, the only instance in literature where such a scheme
is mentioned is Hasbestan and Senocak (2018) and Hasbestan and Senocak (2019)
in which the study pertains numerical solution to the three-dimensional Poisson
equation as well as comparisons with the cyclic-reduction algorithm. Counter to
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the proposed scheme in this thesis, only one grid configuration is considered for
the Neumann boundary condition.

The computational efficiency of the Thomas versus cyclic-reduction algorithm
is shown to be comparable by (Hasbestan and Senocak, 2019). Assuming a
constant-coefficient problem, the overall efficiency could further be improved,
reducing the necessary operations per time step by calculating the Thomas al-
gorithm coefficients once at the beginning. The resulting algorithm requires
4(𝑁 − 1) + 1 operations per time-step as opposed to 6(𝑁 − 1) + 4 (see pseudo-
algorithms in A).

The Poisson equation is solved by application of the eigenfunction expansion
method on the 2D system 𝐴𝑤 = 𝑓 . Let 𝑄 denote the matrix consisting of eigen-
vectors of 𝐴 and thus the diagonal matrix comprised of eigenvalues being given
by 𝑄−1𝐴𝑄 = diag(𝜆𝑖) where 𝜆𝑖 depend on the boundary conditions which are sat-
isfied in each basis function. Then, defining the Fourier transform 𝑤̂ = 𝑄−1𝑤 and
computing 𝑓 = 𝑄−1 𝑓 the eigendecomposition of the discrete Laplacian operator
yields:

𝑤̂𝑖−1, 𝑗 −𝑄−1𝐴𝑄𝑤̂𝑖, 𝑗 + 𝑤̂𝑖+1, 𝑗 = 𝑓𝑖, 𝑗 .

where 𝑖, 𝑗 indicate the 𝑗 th component of the 𝑖th eigenvector. Bearing in mind
that the eigenfunctions 𝜓𝑖, 𝑗 applied to the system(

𝑤̂, 𝑓

)
𝑗
=

𝑁∑︁
𝑖=0
(𝑤, 𝑓 )𝑖 𝜓𝑖, 𝑗

are composed of sine and cosine functions the system is then recast as:

(𝜆𝑖I − 𝐴) 𝑤̂𝑖, 𝑗 = 𝑓𝑖, 𝑗 ,

which is a tridiagonal system of linear equations solved with the use of the Thomas
algorithm. Lastly the solution of 𝑤 is obtained by the inverse Fourier transform
as follows:

(𝑤, 𝑓 )𝑖 =
𝑁∑︁
𝑗=0

(
𝑤̂, 𝑓

)
𝑗
𝜓𝑖, 𝑗

In application of the DCT the coefficients (𝜆𝑖I − 𝐴) of the tridiagonal system
now take the form: 

𝑑′1 𝑏 · · · 0
1 𝑑′

𝑖
1

0 · · ·𝑏 𝑑′
𝑁

 .
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These coefficients, which depend on the boundary conditions, are given by 𝑑′
𝑖
=

−
(
𝑑𝑖 + 𝜆 𝑗

Δ𝑥2

Δ𝑦2

)
, where 𝑑𝑖 is defined as

𝑑𝑖 =

{
𝑏 for 𝑗 = 0 and 𝑖 = 𝑁,

−2 for 𝑗 = 1, . . . , 𝑁 − 1,
(3.16a)
(3.16b)

and 𝑏 is defined by the use of the analogous staggered or collocated grid. The
corresponding eigenvalues read as:

𝜆 𝑗 = −4 sin2 𝜃 𝑗 for 𝑗 = 0, . . . , 𝑁, (3.17)

where

𝜃 𝑗 =


𝜋 𝑗

2𝑁 , collocated grid,
𝜋 𝑗

2 (𝑁 + 1) , staggered grid.

(3.18a)

(3.18b)

The solution of the Poisson equation on the staggered grids presented in §3.1
decouples into four independent solutions on four different sub-grids which require
a different combination of the DCTs and TDMAs previously presented.

(a) Grid 00. (b) Grid 11.

(c) Grid 01. (d) Grid 10.
Figure 3.7: Visual representation of the 2D matrices domain of reference

decomposed into different grids.

In the case of the grid presented in figure 3.7a the DCT-II/TDMA-I is required,
while the grid presented in figure 3.7b requires application of DCT-I/TDMA-II.
In both cases the same type of staggered/collocated conditions are applied in both
directions. The other two cases illustrated in figure 3.7c and figure 3.7d require
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the use of DCT-II/TDMA-II and DCT-I/TDMA-I, respectively. The subsequent
time-cost efficiency in function of the grid size is given in figure 3.8:
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Figure 3.8: Illustration of the combined performance of the four types of
Poisson solvers against the matrix size.
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Chapter 4

1D two-layer SW system
bounded by a rigid lid

In this chapter the analysis and numerical modelling of interfacial waves with
hydraulic jumps is carried through with the use of a new theoretical frame-
work which was proposed by (Priede, 2018). Bound by a rigid lid, the two-layer
shallow-water system is formulated with the use of a completely self-contained
conservative form of momentum equation that does not require external closure
conditions.

In §4.1 the constituent theory of the two-layer model is reviewed. The Boussinesq
lock-exchange problem is closed analytically in §4.2 and validated numerically in
§4.2.5 where the new analytic results as well as numerical aspects of the problem
are discussed and results are illustrated.

4.1 Conservative shallow-water equations for the
1D system

The objective of §4.1.1 and §4.1.2 is to present a new set of conservative equations
for the two-layer system as proposed by Priede (2018). The apparent absence of
equations, in the case of a bilayer system, capable of encapsulating discontinuities
that inevitably arise under the admission of the shallow-water approximation
has lead to the belief that the system is inherently non-conservative and thus
unable to describe such solutions without external closure relations. Counter
to common belief, Priede (2018) shows that the two-layered system admits to a
conservative and self-contained form of the momentum equation which does not
require external energy considerations for closure.
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4.1.1 Basic equations

As noted in §2.6 and §2.7 the fluid flow is assumed to be predominantly hori-
zontal and has a negligible effect on the vertical pressure distribution. Hence, in
the first-order shallow-water approximation, the pressure distribution is purely
hydrostatic, i.e.

𝑝±(𝑥, 𝑧, 𝑡) = Π (𝑥, 𝑡) − 𝜌±𝑔(𝑧 − ℎ(𝑥, 𝑡)).

Congruous to §2.7, the plus and minus subscripts refer to the bottom and top
layer. In contrast to Baines (1984) and Milewski (2004), and similarly to Long
(1956b), Wood and Simpson (1984) and Sandstrom and Quon (1993) the pressure
distribution Π (𝑥, 𝑡) = 𝑝±(𝑥, 𝑧, 𝑡) |𝑧=ℎ is defined at the interface. Substituting this
pressure distribution into the inviscid fluid flow (Euler) equation for the horizontal
velocity component in each layer yields the first shallow-water equation, while
the second equation follows from the conservation of mass in each layer Pedlosky
(1979)

𝜌(𝑢𝑡 + 𝑢𝑢𝑥 ± 𝑔ℎ𝑥) = −Π𝑥 , (4.1)
ℎ𝑡 − (𝑢ℎ)𝑥 = 0, (4.2)

where 𝜚 is the density, 𝑢 the velocity and ℎ the height of the respective layers.
Hereafter, subscripts 𝑡 and 𝑥 denote the respective temporal and spatial partial
derivatives while the plus and minus indices have been dropped for the sake of
brevity.

In terms of the flux 𝑈 = ℎ𝑢, Eq. (4.1) is written as:

𝜚

(
𝑈

ℎ

)
𝑡

+ 𝜚

2

(
𝑈2

ℎ2

)
𝑥

± 𝑔𝜚(ℎ)𝑥 = −Π𝑥 . (4.3)

Lastly, the integral/weak formulation of Eq. (4.1) is obtained by integrating over
the depth of the respective layers:

𝜚

(
𝑈𝑡 +

(
𝑈2

ℎ

)
𝑥

± 𝑔

2
(
ℎ2)

𝑥

)
= −ℎΠ𝑥 . (4.4)

The system of four shallow-water Eqs. (4.2) and (4.4) contains five unknowns:
𝑢±, ℎ± and Π . It is closed by the rigid-lid approximation (fixed total height
ℎ+ + ℎ− = 𝐻) condition, which can be used to eliminate the top layer depth.

4.1.2 Circulation and Momentum conservation laws

Two more unknowns can be eliminated from Eqs. (4.1) and (4.4) by virtue of the
mass conservation and the laterally closed domain which permit their algebraic
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manipulation in order to obtain a set of locally conservative equations. The
pressure gradient Π𝑥 can be eliminated by subtracting Eq. (4.3) for the top layer
from that for the bottom layer. This leaves only two unknowns, 𝑈 ≡ 𝑢+ℎ+ and
ℎ = ℎ+, and two equations, which can be written in a locally conservative form as({ 𝜚

ℎ

}
𝑈

)
𝑡
+ 1

2

( [ 𝜚

ℎ2

]
𝑈2

)
𝑥
+ 𝑔 [𝜚] [ℎ]𝑥 = 0. (4.5)

As discussed by Priede (2018), the locally conservative Eq. (4.5) may not
be applicable to strong bores. The locally conserved quantity

({ 𝜚
ℎ

}
𝑈

)
which

can be written as [𝜚𝑢] =
∫
𝐻
𝜕𝑧 (𝜚𝑢) 𝑑𝑧, is closely related with the vorticity 𝜔 =

𝜕𝑧𝑢. As explained by Batchelor (2000, p. 508), vorticity is conserved in two-
dimensional flows where vorticity is advected, but in three-dimensional flows 𝜔.∇𝑢
can modify the vorticity balance, turning and extending the vortex. As such,
jump conditions owing to Eq. (4.5) may not be applicable in hydraulic jumps
as the relevant quantities should not only be conserved in one-dimensional flows
defined by Eqs. (4.2) and (4.5) but also in the more complex three-dimensional
turbulent flows taking place in strong bores.

The mass conservation for both layers leads to {𝑢ℎ} = Φ(𝑡), where Φ(𝑡) is the
total flow rate. In a laterally closed channel Φ ≡ 0 and thus 𝑢−ℎ− = −𝑢+ℎ+. A
conservation law that will be conserved across hydraulic jumps is derived through
a linear combination of the sum of the two layers of Eq. (4.3) and the respective
difference, as seen in Eq. (4.5). Due to Eq. (4.5) being zero one obtains:( [ 𝜚

ℎ

]
𝑈

)
𝑡
+ 1

2

({ 𝜚

ℎ2

}
𝑈2

)
𝑥
+ 𝑔{𝜚}(ℎ+)𝑥 = −2Π𝑥 . (4.6)

The summation of the two layers of Eq. (4.4) for both layers results in:

[𝜚]𝑈𝑡 +
({ 𝜚

ℎ

}
𝑈2

)
𝑥
+ 𝑔

2
[
𝜚ℎ2]

𝑥
= −𝐻Π𝑥 . (4.7)

Substituting the pressure gradient from Eq. (4.6) into Eq. (4.7) the momentum
conservation equation is obtained as:(
[𝜚]𝑈 − 𝐻

2

[ 𝜚
ℎ

]
𝑈

)
𝑡

+
({ 𝜚

ℎ

}
𝑈2 − 𝐻

4

{ 𝜚

ℎ2

}
𝑈2

)
𝑥

+ 𝑔

2
( [
𝜚ℎ2] − 𝐻{𝜚}ℎ+

)
𝑥
= 0.

The last term of this equation can be further simplified using
[
ℎ2] = 𝐻 (2ℎ+ − 𝐻),

which leads to:(
[𝜚]𝑈 − 𝐻

2

[ 𝜚
ℎ

]
𝑈

)
𝑡

+
({ 𝜚

ℎ

}
𝑈2 − 𝐻

4

{ 𝜚

ℎ2

}
𝑈2

)
𝑥

+ 𝑔 [𝜚]4 {ℎ
2}𝑥 = 0. (4.8)

which is the sought locally conservative the momentum equation. This equa-
tion can straightforwardly be integrated across hydraulic jumps to obtain jump
conditions analogous to the Rankine-Hugoniot relations.
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4.1.3 Energy conservation equation

The local energy equation can be obtained using Eqs. (4.2) and (4.4). Hence, to
obtain the kinetic energy we multiply throughout by the velocity 𝑢, leading to:

𝜚𝑢

(
(𝑢ℎ)𝑡 +

(
𝑢2ℎ

)
𝑥
± 𝑔

2 ℎ
2
𝑥

)
= −𝑢ℎΠ𝑥 ,

which writes as

𝜚
( (
𝑢2ℎ

)
𝑡
− 𝑢ℎ𝑢𝑡 +

(
𝑢3ℎ

)
𝑥
− 𝑢2ℎ (𝑢)𝑥 ± 𝑔𝑢ℎℎ𝑥

)
= −𝑢ℎΠ𝑥 ,

rewriting it so as to make use of Eq. (4.4)

𝜚
( (
𝑢2ℎ

)
𝑡
+

(
𝑢3ℎ

)
𝑥
− 𝑢ℎ

(
(𝑢ℎ)𝑡 +

(
𝑢2ℎ

)
𝑥
∓ 𝑔ℎ𝑥

) )
= −𝑢ℎΠ𝑥 ,

leads to
𝜚

( (
𝑢2ℎ

)
𝑡
+

(
𝑢3ℎ

)
𝑥

)
− 𝑢ℎ (−Π𝑥 ∓ 2𝜚𝑔ℎ𝑥) = −𝑢ℎΠ𝑥 ,

which simplifies to:

𝜚
( (
𝑢2ℎ

)
𝑡
+

(
𝑢3ℎ

)
𝑥

)
± 2𝜚𝑔𝑢ℎℎ𝑥 = −2𝑢ℎΠ𝑥 .

For the next step, first note that: 𝑢ℎℎ𝑥 =
(
𝑢ℎ2)

𝑥
− ℎ (𝑢ℎ)𝑥 =

(
𝑢ℎ2)

𝑥
− ℎ (ℎ)𝑡 due

to the mass conservation equation, moreover, 𝑢ℎℎ𝑥 =
(
𝑢ℎ2)

𝑥
− 1

2
(
ℎ2)

𝑡
. Therefore,

𝜚
( (
𝑢2ℎ

)
𝑡
+

(
𝑢3ℎ

)
𝑥

)
± 𝜚𝑔

(
2
(
𝑢ℎ2)

𝑥
−

(
ℎ2)

𝑡

)
= −2𝑢ℎΠ𝑥 .

Rearranging and using 𝑈 = ℎ𝑢 for the respective layers gives:

𝜚

((
𝑈2

ℎ

)
𝑡

± 𝑔
(
ℎ2)

𝑡
+

(
𝑈3

ℎ2

)
𝑥

± 2𝑔 (ℎ𝑈)𝑥
)
= −2𝑢ℎΠ𝑥 . (4.9)

By taking the average of Eq. (4.9) we obtain:({ 𝜚
ℎ

}
𝑈2 + 𝑔

[
𝜚ℎ2] )

𝑡
+

( [ 𝜚

ℎ2

]
𝑈3 + 2𝑔 {𝜚ℎ}𝑈

)
𝑥
= 0. (4.10)

The terms of Eq. (4.10) are individually handled and simplified, the purpose
of which will become apparent in the following section where the Boussinesq
approximation is applied. Hence, the first term writes as:({ 𝜚

ℎ

}
𝑈2

)
𝑡
=

(
𝑈2

〈ℎ〉

(
{𝜚}
2 {ℎ} +

[𝜚]
2 [ℎ]

))
𝑡

,

whereas the second term reads as:( [ 𝜚

ℎ2

]
𝑈3

)
𝑥
=

(
𝑈3

〈ℎ〉2

(
−{𝜚}2

[
ℎ2] + [𝜚]2 {ℎ2}

))
𝑥

.
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Lastly, the third term after few rearrangements simplifies to:[
𝜚ℎ2]

𝑡
+ (2{𝜚ℎ}𝑈)𝑥 =

{𝜚}
2

[
ℎ2]

𝑡
+ [𝜚]2 {ℎ

2}𝑡 + 2
((
{𝜚}
2 {ℎ} +

[𝜚]
2 [ℎ]

)
𝑈

)
𝑥

=

=
[𝜚]
4 [ℎ]

2
𝑡 + [𝜚] ( [ℎ]𝑈)𝑥 .

Hence, the local energy conservation law Eq. (4.10) can be rewritten as:(
𝑈2

〈ℎ〉

(
{𝜚}
2 {ℎ} +

[𝜚]
2 [ℎ]

)
+ 𝑔 [𝜚]4 [ℎ]

2
)
𝑡

+

+
(
𝑈3

〈ℎ〉2

(
−{𝜚}2

[
ℎ2] + [𝜚]2 {ℎ2}

)
+ 𝑔 [𝜚] ( [ℎ]𝑈)

)
𝑥

= 0,
(4.11)

where the angular brackets 〈〉 denote multiplication of the enclosed quantities.
Similarly to Eq. (4.8), it can be integrated across hydraulic jumps to obtain the
jump conditions.

4.1.4 Nondimensionalisation

The equations are nondimensionalised using 𝐿

𝐶
as the time scale where 𝐿 is the

horizontal length scale and 𝐶 is the characteristic wave speed defined by 𝐶2 =

2𝑔𝐻 [𝜚]{𝜚} and used as the velocity scale. Heights are scaled with respect to the
total height 𝐻 and the flux 𝑈 is respectively scaled with 𝐶𝐻. Moreover, densities
are scaled with 𝜚 and the layers’ densities can be expressed as

𝜚± = 1 ± 𝛿 (4.12)

where 𝛿 is a measure of the density difference and favours the elegant description
of the equations.

A shift in the vertical direction can be performed centring the interface height
about 𝑧 = 0 leads to:

ℎ± =
1
2 (1 ± 𝜂) . (4.13)

Therefore, the nondimensional mass conservation reads as:

𝜂𝑡 +
1
2

(
𝑣
(
1 − 𝜂2) )

𝑥
= 0, (4.14)

where 𝜂 = [ℎ] and 𝑣 = [𝑢] are the differentials of depth and velocity between the
layers. In turn, the nondimensionalised momentum equation:

(𝜂𝑣 (1 − 𝛿𝜂))𝑡 +
1
4

(
𝑣2 + 𝜂2 − 3𝜂2𝑣2 + 2𝛿𝜂3𝑣2)

𝑥
= 0. (4.15)
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Similarly, the shear velocity Eq. (4.5) in nondimensional form is given by:

(𝑣 (1 − 𝛿𝜂))𝑡 +
1
4

(
𝑣2𝛿

(
1 + 𝜂2) + 2𝜂

(
1 − 𝑣2) )

𝑥
= 0. (4.16)

Lastly, the dimensionless energy conservation law corresponding to Eq. (4.11)
writes as: (

𝑣2〈ℎ〉 (1 + 𝛿𝜂) + 𝜂2

4

)
𝑡

+
(
𝑣3〈ℎ〉

(
𝛿
{
ℎ2} − 𝜂) + 𝜂𝑣〈ℎ〉)

𝑥
= 0. (4.17)

Equations (4.14)–(4.17) delineate the constitutive 1D two-layer system set of
equations for arbitrary densities.

4.2 The Boussinesq lock-exchange problem

Under the Boussinesq approximation it is assumed that the densities differ only
slightly from each other i.e.: 𝛿 → 0. This approximation permits the simpli-
fication of the equations as well as the analytic study of the problem at hand.
As shown by (Milewski and Tabak, 2015), Eqs. (4.14) and (4.16) reduces to a
remarkably symmetric form in the Boussinesq approximation. Whereas the mass
conservation Eq. (4.14) remains virtually unchanged, the circulation conservation
Eq. (4.16) reduces to:

𝑣𝑡 +
1
2

(
𝜂

(
1 − 𝑣2) )

𝑥
= 0. (4.18)

Accordingly, the momentum conservation equation Eq. (4.15) reads

(𝜂𝑣)𝑡 +
1
4

(
𝑣2 (

1 − 3𝜂2) + 𝜂2)
𝑥
= 0, (4.19a)

where, equivalently, substitution 𝜂𝑣 = 𝑤 leads to:

(𝑤)𝑡 +
1
4

((
𝑤

𝜂

)2 (
1 − 3𝜂2) + 𝜂2

)
𝑥

= 0. (4.19b)

Finally, the energy conservation Eq. (4.17) under the Boussinesq approximation
takes the form: (

𝑣2 (
1 − 𝜂2) + 𝜂2)

𝑡
+

(
𝜂𝑣

(
1 − 𝜂2) (

1 − 𝑣2) )
𝑥
= 0. (4.20)

4.2.1 Characteristic speeds and Riemann invariants

Solutions of a homogeneous system of the form:

𝔘𝑡 + 𝐹𝑥 (𝔘) = 𝔘𝑡 + 𝐴𝔘𝑥 = 0, (4.21)
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corresponding to 𝔘 = [𝜂, 𝑣]T, where 𝐴 = 𝜕𝐹
𝜕𝔘

is the Jacobian of Eqs. (4.14)
and (4.18) which reads as: 

−𝜂𝑣 1
2

(
1 − 𝜂2)

1
2

(
1 − 𝑣2) −𝜂𝑣

 ,
are examined with the simple wave method. The simple-wave method enables
the analysis of piecewise solutions to the initial value problem for the propagation
of disturbances in the subsequent motion. Simple wave solutions are of the form:

𝔘(𝑥, 𝑡) = 𝑊 (𝔯(𝑥, 𝑡)).

Substitution of the above expression in to Eq. (4.21) yields:

(I 𝔯𝑡 + 𝐴𝔯𝑥)𝑊′(𝔯) = 0,

where I is the 2× 2 identity matrix and 𝑊′(𝔯) is an eigenvector of 𝐴. Non-trivial
solutions exist provided that

|𝐴 − 𝜆I | = 0,

where 𝜆 is the corresponding set of eigenvalues of 𝐴. The eigenvalues define the
slope

𝑑𝑥

𝑑𝑡
= − 𝔯𝑡

𝔯𝑥
= 𝜆±

of the families of characteristic curves 𝐶± to which there exist two associated lin-
early independent eigenvectors R = (𝑅+, 𝑅−)T that are solutions of the equations:

(𝐴 − 𝜆I ) · R = 0.

Hence, premultiplication of the system Eq. (4.21) with R yields:
𝑑𝑊

𝑑𝑡
· R = 0,

that cast in the canonical form reads as
𝜕𝔯±

𝜕𝑡
+ 𝜆± 𝜕𝔯

±

𝜕𝑥
= 0, (4.22)

integration of which yields the Riemann invariants 𝔯(𝜂, 𝑣) that remain constant
along their corresponding simple wave solution.

For the two-layer system of equations Eqs. (4.14) and (4.18) as shown by (Long,
1956b; Cavanie, 1969; Ovsyannikov, 1979; Sandstrom and Quon, 1993; Baines,
1995; Milewski and Tabak, 2015; Esler and Pearce, 2011) this corresponds to the
characteristic velocities:

𝜆± =
3
4𝔯
± + 1

4𝔯
∓ = −𝜂𝑣 ± 1

2
√︁

1 − 𝜂2
√

1 − 𝑣2 (4.23)



58 Chapter 4. 1D two-layer SW system bounded by a rigid lid

and the Riemann invariants

𝔯± = −𝜂𝑣 ±
√︁
(1 − 𝜂2) (1 − 𝑣2), (4.24)

where the substitutions 𝔯± = ± arccos(𝔯±) has been used for the Riemann invari-
ants which are the constants of integration of the characteristic form of Eqs. (4.14)
and (4.18):

𝑑𝑣

𝑑𝜂
= ∓

√︄
1 − 𝑣2

1 − 𝜂2 . (4.25)

It is worth highlighting that due to the hyperbolicity condition, it is required
that the shear velocity cannot exceed 𝑣2 ≤ 1; which otherwise would result in a
Kelvin-Helmoltz type of instability. Equivalently, it is required that the interface
height is constrained between the top and bottom boundaries i.e. 𝜂2 ≤ 1.

4.2.2 Jump conditions

In the context of the shallow-water approximation, shocks are the discontinuities
in the wave amplitude, to which the partial differential equations describing the
wave propagation cease to apply. However, the relevant physics may still hold,
for a hyperbolic system in conservative form, where the integral relationships
known as the Rankine-Hugoniot conditions are still capable of encapturing the
behaviour across discontinuities Whitham (1975, p. 26).

Considering a conservation law of the form Eq. (4.21), the function 𝔘(𝑥, 𝑡)
satisfying the integral relationship

𝑑

𝑑𝑡

∫ 𝑥2

𝑥1

𝔘(𝑥, 𝑡)𝑑𝑥 = 𝐹 (𝔘(𝑥1, 𝑡)) − 𝐹 (𝔘(𝑥2, 𝑡)) , (4.26)

is called a weak solution and 𝑥1 ≤ 𝑥 ≤ 𝑥2 define an interval in which the discon-
tinuity is contained. Suppose that 𝔘 and 𝐹 (𝔘(𝑥, 𝑡)) as well as their respective
first derivatives are continuous in the ranges 𝑥1 ≤ 𝑥 < 𝜉 (𝑡) and 𝜉 (𝑡) < 𝑥 ≤ 𝑥2

where 𝜉 (𝑡) denotes the location of the discontinuity. According to the Leibniz
integral law, Eq. (4.26) reads as:

𝐹 (𝔘(𝑥1, 𝑡)) − 𝐹 (𝔘(𝑥2, 𝑡)) =
𝑑

𝑑𝑡

(∫ 𝜉 (𝑡)

𝑥1

+
∫ 𝑥2

𝜉 (𝑡)

)
𝔘(𝑥, 𝑡)𝑑𝑥

=

∫ 𝜉 (𝑡)

𝑥1

𝜕𝑡𝔘(𝑥, 𝑡)𝑑𝑥 +
∫ 𝑥2

𝜉 (𝑡)
𝜕𝑡𝔘(𝑥, 𝑡)𝑑𝑥 + ¤𝜉 (𝑡) (𝔘𝑙 − 𝔘𝑟)

where ¤𝜉 (𝑡) = 𝑑𝜉 (𝑡)
𝑑𝑡

, 𝔘𝑙 = lim
𝑥→𝜉−(𝑡)

𝔘(𝑥, 𝑡) and accordingly for 𝔘𝑟 . Since the derivatives
of 𝔘 are bounded in each interval, the integrals tend to zero in the limits when
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arbitrarily close to the shock. Subsequently, the expression above reads as

È𝐹 (𝔘)É = ¤𝜉 (𝑡)È𝔘É, (4.27)

where ÈÉ denotes the differential of the enclosed quantity across the discontinuity.
Then, using Eqs. (4.14), (4.18) and (4.19a) we obtain the Rankine-Hugoniot
conditions: 

¤𝜉 =

1
2È

(
1 − 𝜂2) 𝑣É
È𝜂É ,

¤𝜉 =

1
2È

(
1 − 𝑣2) 𝜂É
È𝑣É ,

¤𝜉 =

1
4È𝑣

2 (
1 − 3𝜂2) + 𝜂2É

È𝜂𝑣É ,

(4.28a)

(4.28b)

(4.28c)

across the discontinuous state. These relationships are bridged by the jump
propagation speed ¤𝜉, reducing the number of unknowns to the resulting states of
𝜂 and 𝑣 after the jump. In the shallow water framework only one conservation
law in addition to the mass conservation can be applied Whitham (1975, p. 458).
As discussed by Priede (2018) the more appropriate conservation law is the mo-
mentum conservation equation which is known to govern continuous as well as
discontinuous solutions. Therefore, using Eqs. (4.28a) and (4.28c) these lead to:

¤𝜉 =

1
2È

(
1 − 𝜂2) 𝑣É
È𝜂É =

1
4È𝑣

2 (
1 − 3𝜂2) + 𝜂2É

È𝜂𝑣É (4.29)

An appeal to physical considerations for physically meaningful shocks can be
made via examining the Lax entropy condition, Sharma (2010) and Debnath
(2011). The Rankine-Hugoniot condition yielded by the energy conservation law
Eq. (4.20), defines the energy balance across the discontinuity, and reads as:

− ¤𝜉È𝑣2 (
1 − 𝜂2) + 𝜂2É + È𝜂𝑣

(
1 − 𝜂2) (

1 − 𝑣2)É ≡ ¤𝜀. (4.30)

This imposes an additional constraint on the feasible hydraulic jumps where en-
ergy can not be generated and thus ¤𝜀 ≤ 0.

4.2.3 Lock-Exchange problem

The lock-exchange problem is a two-layer analogue of the dam-break problem in
single-layer shallow water flows, which can be widely found in literature (Whitham,
1975; Stoker, 1957), has been extensively studied as it provides insight into the
motion of shallow water flows and a useful benchmark for the validation of nu-
merical schemes. The general case of two fluids of different (or slightly different)



60 Chapter 4. 1D two-layer SW system bounded by a rigid lid

densities in a closed container that are initially separated by a vertical separat-
ing plate(lock) is considered. The separating plate is instantaneously removed
and thus initiates the flow. Then the slightly denser fluid penetrates into the
lower-density fluid. Figure 4.1 illustrates the lock-exchange problem where the
densities are considered to be 𝜚+ ' 𝜚−.

Figure 4.1: Partial lock-exchange.

The simple-wave method is applicable to disturbances propagating into an
initially homogeneous state and enables the analytic solution of the lock-exchange
problem. For the solution of this system we will consider sections of the domain
separately with 𝑥 = 0 separating the upstream(𝑥 < 0) and downstream (𝑥 > 0)
direction of the flow. The first step in understanding the behaviour of the lock-
exchange problem is to find the slope of characteristics which signify the maximum
propagation speed of information in their respective regions.

Upstream flow, x<0

The study of the lock-exchange problem is greatly simplified with the use of the
following substitutions: 𝜂 = sin(𝜃) and 𝑣 = sin(𝜙) which will be interchangeably
used with the original variables. These substitutions are permitted on the ground
that the corresponding range of validity is the same with the associated physical
variables.

Upstream (𝑥 < 0), the initial state is defined at 𝜂− = 𝜂0 and 𝑣− = 0. Substi-
tuting 𝜂 = sin(𝜃) and 𝑣 = sin(𝜙) for the aforementioned states, corresponds to
𝜃 =

𝜋

2 − 𝜃0 and 𝜙 = 0, where 𝜃0 ∈ [0, 𝜋]. The Riemann invariant associated with
this state, can be written as:

𝑟+ = 𝜙 + 𝜃 =
𝜋

2 − 𝜃0. (4.31a)

which yields 𝜙 =
𝜋

2 − 𝜃0 − 𝜃. Then the Riemann invariant associated with the 𝐶−

characteristics extending upstream from the lock reads as:

𝑟− = 𝜙 − 𝜃 =
𝜋

2 − (𝜃0 + 2𝜃), (4.31b)
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Using Eq. (4.31), the upstream velocity can be written as 𝑣− = sin
(𝜋
2 − 𝜃 − 𝜃0

)
=

cos(𝜃 + 𝜃0) where with the use of 𝜂0 = sin
(𝜋
2 − 𝜃0

)
= cos(𝜃0), 𝑣 is expressed as:

𝑣− = cos(𝜃 + 𝜃0) = 𝜂0
√︁

1 − 𝜂2 − 𝜂
√︃

1 − 𝜂2
0. (4.32)

Further, using Eq. (4.23) and Eq. (4.31) the characteristic speed can be written
as:

𝜆− = −3
4 cos(𝑟−) + 1

4 cos(𝑟+) = −3
4 sin(𝜃0 + 2𝜃) + 1

4 sin(𝜃0), (4.33)

which is constant along 𝐶−, thus defining straight lines with slope 𝜆− = 𝑥
𝑡
. Simil-

arly, for the 𝐶+ characteristics, we have:

𝜆+ =
3
4 cos(𝑟−) − 1

4 cos(𝑟+) = 3
4 sin(𝜃0) −

1
4 sin(𝜃0 + 2𝜃). (4.34)

This enables the investigation for the validity of these solutions. Hence, the family
of 𝐶+ characteristics in terms of the 𝐶− yield the characteristic speed:

𝜆+ =
1
3𝜆
− + 2

3 sin(𝜃0), (4.35)

which is equivalent to:
𝑑𝑥

𝑑𝑡
=

1
3
𝑥

𝑡
+ 2

3 sin 𝜃0,

and has the general solution 𝑥(𝑡) = 𝑐𝑡1/3 + 𝑡 sin 𝜃0, where the unknown constant 𝑐

is determined by matching with the solution for the undisturbed upstream state
𝑥(𝑡) = 𝑥0 + 1

2 𝑡 sin 𝜃0, which holds below the leftmost 𝜆− characteristic defined by
𝑥

𝑡
≤ min𝜆− =

1
4 (sin 𝜃0 − 3).

It can be seen that both families of characteristics become parallel to each other
when:

−3
4 sin(𝜃0 + 2𝜃) + 1

4 sin(𝜃0) =
3
4 sin(𝜃0) −

1
4 sin(𝜃0 + 2𝜃),

at 𝜃 = −𝜃0, where 𝜆+ = 𝜆− = sin(𝜃0) and the solution spreads down from the
lock until 𝑥

𝑡
= sin(𝜃0). This defines the range of validity of the characteristics in

𝜃 ∈
[
−𝜃0,

𝜋

2 − 𝜃0
]
. Both families of characteristics are shown in figure 4.2a.

Downstream flow x>0

For the downstream region (𝑥 > 0), which is filled with the lighter fluid, the
interfacial height is initially located at 𝜂+ = −1 and the fluid is at rest 𝑣+ = 0.
Utilising 𝜂 = sin(𝜃) and 𝑣 = sin(𝜙), it can be deduced that 𝜃 = −𝜋2 and 𝜙 = 0.
Then the Riemann invariant along the 𝐶− characteristics which originate from



62 Chapter 4. 1D two-layer SW system bounded by a rigid lid

this state is

𝑟− = 𝜙 − 𝜃 =
𝜋

2 , (4.36a)

while the Riemann invariant propagating along 𝐶+ is

𝑟+ = 𝜙 + 𝜃 =
𝜋

2 + 2𝜃, (4.36b)

both of which are invariant along the respective characteristics. Using Eq. (4.36),
velocity can be written as 𝑣+ = sin

(𝜋
2 − 𝜃

)
= cos(𝜃) or in terms of 𝜂 as:

𝑣 =
√︁

1 − 𝜂2. (4.37)

Further, by Eq. (4.23) and using Eq. (4.36) the negative characteristic speed 𝜆−

writes as:

𝜆− = −3
4 cos(𝑟−) + 1

4 cos(𝑟+) = −3
4 cos

(𝜋
2 + 2𝜃

)
= −3

4 sin (2𝜃) . (4.38)

Respectively, using Eq. (4.23) and relation Eq. (4.36b) one obtains:

𝜆+ =
3
4 cos(𝑟−) − 1

4 cos(𝑟+) = −1
4 cos

(𝜋
2 − 2𝜃

)
= −1

4 sin (2𝜃) . (4.39)

The slope of the 𝐶− characteristics in terms of 𝐶+ is expressed as:

𝜆− =
1
3𝜆
+, (4.40)

which defines the slope of the 𝐶− characteristics as they cross the 𝐶+ character-
istics. This relation, when written in terms of 𝑥 and 𝑡 takes the form of an ODE
𝑑𝑥
𝑑𝑡

= 1
3
𝑥
𝑡

and defines the 𝜆− characteristics above the rightmost 𝜆+ characteristic,
i.e. for 𝑥 ≥ 3

4 𝑡. In this region, we have 𝑥(𝑡) = 𝐶𝑡1/3, where the unknown constant
𝐶 is determined by matching with 𝑥(𝑡) = const for 0 ≤ 𝑥 ≤ 3

4 𝑡 which corresponds
to 𝜆± = 0 for the undisturbed downstream state. It is important to note that the
solutions defined in the preceding section by Eq. (4.32)–Eq. (4.34) for the up-
stream flow overlap with the downstream solutions in the region 0 ≤ 𝑥

𝑡
≤ sin(𝜃0).

Both families of characteristics are shown in figure 4.2a.

Downstream from the lock (𝑥 > 0), the characteristics obtain equal slope for
𝜆+ = 𝜆− at 𝜃 = 0 with 𝜃0 ∈ [0, 𝜋]. This defines the range of validity of the
characteristics in 𝜃 ∈

[
−𝜋2 , 0

]
, where both families of characteristics intersect.

Note that for 𝜃0 > 0, solution Eq. (4.33) extends downstream from the lock up
to 𝑥

𝑡
= sin 𝜃0, which corresponds to 𝜃 = −𝜃0. Thus, this solution overlaps with

Eq. (4.38) in the sector 0 ≤ 𝑥
𝑡
≤ sin 𝜃0 where both solutions are expected to be

connected by a jump.
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Figure 4.2: Family of characteristics 𝐶− and 𝐶+ for the partial lock-exchange
problem in the upstream and downstream regions and different initial interface

heights 𝜂0.

4.2.4 Jumps forming in the multivalued parts of the ana-
lytical solution

First, consider the jump in the upstream direction (𝑥 < 0), for which the state is
defined as:

𝑣+ = 0 & 𝜂+ = 𝜂0

𝑣− = 𝑣 & 𝜂− = 𝜂

where the subscripts "+" and "−" indicate the state of the flow right and left of
the jump respectively; and 𝜂0 is the initial interfacial height. Then, Eq. (4.29)
yields:

𝑣2 =

(
𝜂2 − 𝜂2

0
)
(𝜂 − 𝜂0)

𝜂3 + 𝜂 + 𝜂0 (1 − 3𝜂2) . (4.41)

which relates the shear velocity 𝑣 with the initial interfacial height 𝜂0 and the
jump height 𝜂. As seen in §4.2.3, applicability of the upstream solution is re-
stricted to 𝜃 ∈

[
−𝜃0,

𝜋

2 − 𝜃0
]
, above which it needs to be connected with the back

jump velocity of propagation. As such, connecting Eq. (4.32) with Eq. (4.41) one
obtains the following relation:(

𝜂2 − 𝜂2
0
)
(𝜂 − 𝜂0)

𝜂3 + 𝜂 + 𝜂0 (1 − 3𝜂2) =
(
𝜂0

√︁
1 − 𝜂2 − 𝜂

√︃
1 − 𝜂2

0

)2
. (4.42)

This equation has two possible roots, 𝜂 = 0 and 𝜂 = 𝜂0. At this stage it will
be assumed that 𝜂 = 𝜂0 > 0, corresponding to 𝜃0 ≤

𝜋

2 . Using the first root, it
is possible to describe the jump from the mid-height (𝜂 = 0) up to the initial
interfacial height (𝜂 = 𝜂0). Further, at 𝜂 = 0 by Eq. (4.41) the shear velocity is
𝑣 = 𝜂0. Using this information into the jump propagation speed Eq. (4.28a) yield
the maximum propagation speed of the jump ¤𝜉 = −1

2 independently of the initial
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height 𝜂0. More interestingly, for 𝜂 = 𝜂0 ≤ 0, corresponding to 𝜃0 >
𝜋

2 , the jump
in the upstream direction vanishes because the solution of Eq. (4.33) ceases to be
double valued which is confirmed by figure 4.3d.

-1 -0.5 0 0.5 1

-1

0

cr

1

(a) Full lock-exchange,
𝜂0 = 1

-1 -0.5 0 0.5 1

-1

1

0

cr

0

1

-
( )

+
( )

-
(0)

-
(

1
)

1

(b) Partial lock-exchange for
1 > 𝜂0 ≥ 0.351

-1 -0.5 0 0.5 1

-1

1

0
0

cr

1

-
( )

-
(0)

-
(

1
)

1

(c) Partial lock-exchange for
0.351 > 𝜂0 ≥ 0

-1 -0.5 0 0.5 1

-1

1

0

0

cr

1

-
( )

-
(0)

-
(

1
)

1

(d) Partial lock-exchange for
𝜂0 < 0

Figure 4.3: Interface height versus the similarity variable 𝑥/𝑡 for the lock-
exchange problem.

In the downstream region (𝑥 > 0), the states of the height and velocity on
either side of the discontinuity are described as follows:

𝑣+ = 0 𝜂+ = −1,
𝑣− = 𝑣 𝜂− = 𝜂,

where 𝜂+ and 𝑣+ are the known variables due to the jump propagating into a
homogeneous state. Hence, from Eq. (4.29), we obtain a relation which describes
the shear velocity depending on the interface height:

𝑣2 =
1 − 𝜂2

−𝜂2 − 2𝜂 + 1 . (4.43)
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In this case the shear velocity defined by Eq. (4.43), has to match at the jump
with shear velocity Eq. (4.37) defined by the Riemann invariant:

1 − 𝜂2

−𝜂2 − 2𝜂 + 1 = 1 − 𝜂2.

The possible interface heights at the jump are defined by 𝜂 (2 + 𝜂)
(
1 − 𝜂2) = 0.

Out of the four possible solutions, only two are physically relevant and satisfy the
energy dissipation condition Eq. (4.30). These are 𝜂 = 0 and 𝜂 = −1. The latter is
just the original double-valued solution. The solution 𝜂 = 0 admits a downstream
shear velocity of 𝑣 = 1 and corresponds to a jump propagation velocity of ¤𝜉 = 1

2 (1−
𝜂)𝜗 = ±1

2, where only the positive solution , which describes a jump propagating
downstream, satisfies the energy dissipation constraint Eq. (4.30).

This gives rise to a secondary -trailing- jump with downstream interface height
𝜂 = 0. The front and back states of this jump are:

𝑣+ = 1 𝜂+ = 0,
𝑣− = 𝑣1 𝜂− = 𝜂1.

Then, Eq. (4.29) yields the shear velocity behind the jump:

𝑣1 =
1 − 𝜂2

1
1 + 𝜂2

1
. (4.44)

Matching with the upstream shear velocity defined by Eq. (4.32) enables us to
link the final height preceding the trailing jump with the initial interfacial height
as follows:

1 − 𝜂2
1

1 + 𝜂2
1
= 𝜂0

√︃
1 − 𝜂2

1 − 𝜂1

√︃
1 − 𝜂2

0

which is equivalent to:

𝜗1 = cos(𝜃1 + 𝜃0) =
1 − sin2 𝜃1

1 + sin2 𝜃1
, (4.45)

which relates 𝜃1 behind the jump with 𝜃0 = arccos 𝜂0 defined by the state up-
stream of the lock. Analytical solutions for the interface height behind the jump,
𝜂1 = sin 𝜃1, and its velocity of propagation

¤𝜉1 =
𝜂1

(
𝜂2

1 − 3
)

2
(
𝜂2

1 + 1
) , (4.46)

are plotted in figure 4.4b along the characteristic velocity 𝜆−(𝜂1) against 𝜂0.

Upon decreasing 𝜂0 the trailing jump velocity of propagation ¤𝜉1 attains the
velocity of the leading edge which as seen in figure 4.4a can never propagate
faster than ¤𝜉 =

1
2. Solving Eq. (4.46) with ¤𝜉1 =

1
2 the only physically meaningful
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solution is 𝜂1 = 1 −
√

2. At this critical height, both edges merge, destroying
the head-block. Using Eq. (4.45) it is found that this critical upstream interface
height is 𝜂𝑐 = 0.351, as illustrated in figure 4.3c.

Consequently, for 𝜂0 ≤ 𝜂𝑐, the solution Eq. (4.33) has to connect directly to the
downstream state 𝜂+ = −1 and 𝑣+ = 0 which is at rest. Combining the downstream
shear velocity obtained in Eq. (4.43) with the upstream state 𝑣− = cos(𝜃 + 𝜃0)
and 𝜂0 = sin(𝜃) yields:

𝑣1 = cos(𝜃1 + 𝜃0) =
cos 𝜃1√︁

cos2 𝜃1 − 2 sin 𝜃1
, (4.47)

which is analogous to Eq. (4.44). The parameters of the downstream jump res-
ulting from the solution of Eq. (4.47) are plotted in figure 4.4a. Figure 4.3c
and figure 4.3d, illustrating the interface height versus the similarity variable
𝑥/𝑡, correspond to two interface configurations in the case where 𝜂0 ≤ 𝜂𝑐. The
first configuration for an initial interface height 0 ≤ 𝜂0 ≤ 𝜂𝑐 is illustrated in fig-
ure 4.3c, where an upstream jump from 𝜂0 is connected to the mid-height 𝜂 = 0
analogously to the head-block in the downstream state. Figure 4.3d delineates
the second configuration 𝜂0 ≤ 0 where there is no more an upstream jump and
the solution connects directly to the upstream initial interface height at 𝜂 = 𝜂0

as specified by the second root of Eq. (4.42). In this case, similarly to the single-
layer dam-break problem, the upstream state can connect directly with 𝜂 = −1 at
𝜃 = − 𝜋

2 without a leading jump. However, as seen in figure 4.4a, an infinitesimal
perturbation would result in a non-zero front height, which in turn would halt the
propagation of the heavier fluid along the bottom, thus, leading to an increasing
perturbation where the upstream state propagates faster than the front. There-
fore, this alternative solution is inherently unstable with respect to the height
perturbation of the leading edge.
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Figure 4.4: Jump propagation speed ¤𝜉 along with the associated energy ¤𝜖 , the
characteristics ¤𝜆 and the the interface height 𝜂1, for all possible initial interfacial

heights 𝜂0.
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4.2.5 Numerical solution of conservative SW equations

In the present section the analytical solutions previously obtained for the Boussinesq
lock-exchange problem are verified by solving the lock-exchange problem numer-
ically using the 1D Lax-Wendroff method. For comparison, in addition to the
momentum and mass conservation equations defined by Eqs. (4.14) and (4.19b),
the alternative system in which Eq. (4.19b) is replaced by the circulation conser-
vation law Eq. (4.18) is also solved.
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Figure 4.5: Interface height at the time instant 𝑡 = 1 after opening the lock
with upstream heights 𝜂0 = 1 (a), 0.7 (b), 0.1(c) and −0.1(d) obtained using
momentum and circulation conservation laws with the Lax-Wendroff method.
The time step is 𝑑𝑡 = 10−3 and the spatial step is 𝑑𝑥 = 5 × 10−4 (a,b) and

𝑑𝑥 = 10−2 (c,d).

In contrast to the circulation equation Eq. (4.5), numerical integration of the
momentum equation Eq. (4.19b) suffers from large numerical errors when 𝜂 is
close to zero. In an attempt to eliminate this numerical uncertainty in the flux
term of the momentum equation L’Hopital’s rule was used. However this did
not resolve this numerical uncertainty. Bringing in mind the product 𝑤 = 𝜂𝑣,
which connects the momentum equation with the circulation equation, a hybrid
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approach was employed. Whenever 𝜂 happens to be close to zero, the momentum
conservation equation is replaced with the vorticity one. This approach was found
to produce numerical results in good agreement with the analytical solution for
a range of lock heights, as illustrated in figure 4.5.

The exact solution for the full lock-exchange, illustrated in figure 4.5a, is repro-
duced using equal time and space steps. This is an optimal choice which renders
the scheme marginally stable and ensures that the front advances one full grid
step in one time step. In general, such marginally stable schemes are known to
reduce spurious oscillations at the jumps Lerat and Peyret (1974). The scheme
becomes unstable at larger time steps, which violate the CFL condition, whereas
spurious oscillations arise at smaller time steps. In both cases, the solution for
the full lock-exchange breaks down.

Using the same time step and grid size as for the full lock-exchange, the exact
solution for a range of partial lock-exchange flows was able to be reproduced.
The numerical solutions for the lock height 𝜂0 = 0.7 is shown in figure figure 4.5b.
In this case, spurious oscillations appear behind the head block because the re-
spective jump advances less than a grid step per time step. As the head block
becomes progressively thinner with lowering 𝜂0, there is a range of lock heights
0.1 . 𝜂0 . 0.7 for which it was not possible to find a numerically stable solution.
The stable numerical solution that re-emerges at 𝜂0 ≈ 0.1 has no elevated head
block but just the downstream and upstream jumps and can be seen in figure 4.5c.
This upstream jump vanishes when the lock is lower than the channel mid-height
(𝜂0 ≤ 0), as seen in figure 4.5d. In this case, the numerical solution produces a
finite front height as predicted by the analytical solution. A smooth analytical
solution akin to the single-layer dam-break solution is in principle possible. How-
ever, as argued above, such a smooth solution is unstable and thus unobservable
in the two-layer system.

It is worth noting that the qualitative behaviour of the numerical solution of
our system is similar, with respect to the appearance of the headblock, to the one
studied by Esler and Pearce (2011), where the next order weakly non-hydrostatic
approximation is investigated.

For reasons that are still not fully understood, there exists a range of initial
height values (𝜂0) for which numerical solutions require extremely careful selec-
tion of the spatial and temporal discretisation. A number of Total-Variation-
Diminishing, Flux-Limiting and higher order schemes were employed in an at-
tempt to overcome this issue. For the most part the investigation proved un-
successful as the considered algorithms partly or completely suppressed the front
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headblock and modified the speed of the jump. On the contrary, the LWLF4
composite scheme in which three steps of Lax-Wendroff scheme are followed by a
step of Lax-Friedrichs scheme, Liska and Wendroff (1998) provides a good approx-
imation to the exact analytical solution. This composition significantly reduces
spurious oscillations around the jumps, which are typical to the Lax-Wendroff
scheme, without introducing excessive numerical diffusion which is typical to the
Lax-Friedrichs scheme.





71

Chapter 5

Derivation of fully-nonlinear SW
electric potential equation

In this chapter a fully nonlinear electric potential equation, based on the long-
wave approximation, is derived. This differs form these presented in Bojarevics
(1998) and Zikanov et al. (2000) and is applicable in modelling of large amplitude
shallow-water waves.

5.1 Derivation

The perturbation of the cryolite-aluminium interface results in a spatial vari-
ation in the interfacial potential and the magnitude of the current flow across
the interface. Consequently, this gives rise to a loop of perturbation current in
the cell, which nevertheless, will not penetrate the cathode-block. The current
loops will close in the aluminium, where the conductivity is much higher, and be
uniformly distributed across the layer. Assumptions regarding the difference of
conductivities between the layers enable the derivation of boundary conditions at
the interface of each layer.

The side walls of the cell as well as the upper cryolite surface around the anode
are considered to be electrical insulators. However, the anode block, where the
current enters the electrolyte, is assumed to be perfectly conducting relative to
the electrolyte, which means that it is effectively equipotential. Since the electric
potential is defined up to an additive constant, the boundary condition is given
by:

𝜑− |𝑧=𝐻 = 0. (5.1)
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The boundary conditions of the electric potential at the interface fall from the
continuity of the normal component of the current as follows:

j+𝑛 |𝑧=ℎ+ = −𝜎+ 𝜕𝑛𝜑+ |𝑧=ℎ+ = 𝑗+𝑛 ,

where 𝜎+ 𝜕𝑛𝜑
+ |𝑧=ℎ+ ≡ 𝜎− 𝜕𝑛𝜑

− |𝑧=ℎ+
j−𝑛 |𝑧=ℎ+ = −𝜎− 𝜕𝑛𝜑

− |𝑧=ℎ+ = 𝑗−𝑛 ,

(5.2a)

(5.2b)

In contrast, the cathode-block is effectively insulating with respect to the current
perturbations, which means that the current density at the bottom is fixed

𝜎+ 𝜕𝑧𝜑
+ |𝑧=0 = 𝑗0 = constant, (5.3)

In the above the subscript n denotes the unit normal to the interface:

n =
e𝑧 − ∇ℎ
(1 + |∇ℎ |2)

1
2
≈ e𝑧 − ∇ℎ + O(𝜖2) and 𝑛𝑧 = e𝑧 , ℎ = 1 + O(𝜖2), (5.4)

Since 𝑧/𝐿 ∼ 𝐻/𝐿 = 𝜖 � 1, the potential distribution in the bottom layer can
be approximated by a power series expansion about a small quantity of vertical
surface height 𝑧 (Bojarevics and Romerio, 1994) as follows:

𝜑+(r) = 𝜙+(x) + 𝑧 𝜕𝑧𝜙
+(x) + 𝑧2

2 𝜕2
𝑧 𝜙
+(x) + O(𝜖3), (5.5)

where 𝜕𝑘
𝑧 𝜙
+ = 𝜕𝑘

𝑧 𝜑
+ |𝑧=0 and the vector x defines x = r− 𝑧e𝑧 = 𝑥e𝑥 + 𝑦e𝑦. Therefore,

with the expansion applied to the boundary condition at the interface, the normal
current Eq. (5.2a) writes as:

𝜕𝑛𝜑
+ |𝑧=ℎ+ = n ∇𝜑+ |𝑧=0 = (e𝑧 − ∇ℎ) ∇𝜑+ |𝑧=ℎ+ = 𝜕𝑧𝜙

+ + ℎ+ 𝜕2
𝑧 𝜙
+ − ∇ℎ+ ∇𝜙+ + O(𝜖2)

Hence,
𝜕𝑧𝜙
+ + ℎ+ 𝜕2

𝑧 𝜙
+ − ∇ℎ+ ∇𝜙+ = −𝜎−1

+ 𝑗+𝑛 ,

where by using Eq. (5.3) after a few rearrangements it writes as:

ℎ+ 𝜕
2
𝑧 𝜙
+ − ∇ℎ+ ∇𝜙+ = −𝜎−1

+
(
𝑗+𝑛 + 𝑗0

)
.

In consideration of the conservation of charge Eq. (2.22) and Ohm’s law the
Laplacian of the electric potential leads to

∇2𝜙 = −𝜕2
𝑧 𝜙, (5.6)

where ∇2 horizontal component of the Laplacian. Consequently, this lead to the
governing equation for the two-dimensional potential perturbation in the bottom
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layer being read as:

−ℎ+ ∇2𝜙+ − ∇ℎ+ ∇𝜙+ = −𝜎−1
+

(
𝑗+𝑛 + 𝑗0

)
⇒

∇
(
ℎ+ ∇𝜙+

)
= 𝜎−1
+

(
𝑗+𝑛 + 𝑗0

)
. (5.7)

In turn, to determine the normal current 𝑗+𝑛 of Eq. (5.7), the potential distri-
bution in the top layer has been considered. This is sought similarly to that in
the bottom layer. The expansion for the potential in upper layer writes as:

𝜑−(r) = 𝜙−(x) + (𝑧 − 𝐻) 𝜕𝑧𝜙−(x) +
(𝑧 − 𝐻)2

2 𝜕2
𝑧 𝜙
−(x) + O(𝜖3), (5.8)

where 𝜕𝑘
𝑧 𝜙
− = 𝜕𝑘

𝑧 𝜑
− |𝑧=𝐻 . By virtue of Eq. (5.6) and the boundary condition

Eq. (5.1) the first and last term of Eq. (5.8) are eliminated due to:

𝜙(0)− = 𝜙(2)− = 0. (5.9)

Owing to the large difference in conductivities between the top and bottom layer,
an equipotential surface is formed and the potential of the upper layer Eq. (5.2b)
is expressed as:

𝜑− |𝑧=ℎ+ = (ℎ+ − 𝐻) 𝜕𝑧𝜙
− + O(𝜖3) = −ℎ− 𝜕𝑧𝜙

− + O(𝜖3) ≡ 𝜑0,

where ℎ− = 𝐻 − ℎ+ is the top layer depth. Therefore,

𝑗𝑛 |𝑧=ℎ+ =
𝑗𝑧

𝑛𝑧
≡ 𝑗𝑧 + O(𝜖2) ≈ −𝜎−𝜕𝑧𝜑|𝑧=𝐻 = 𝜎−

𝜑0
ℎ−

. (5.10)

Finally, substituting Eq. (5.10) into Eq. (5.7), we obtain up to 𝑂 (𝜀2) terms:

𝜎+∇ · (ℎ+∇𝜙+) = 𝑗0 + 𝜎−
𝜑0
ℎ−

. (5.11)

The unknown potential of the bottom layer, 𝜑0, is determined by the solvability
condition of this equation, which is due to the Neumann boundary condition at
the insulating side walls, where we have:

𝜕𝑛𝜑+ = 𝜕𝑛𝜙
(0)
+ +𝑂 (𝜀2) = 0. (5.12)

Integrating Eq. (5.11) over the horizontal cross-sectional area 𝑆 and using this
boundary condition, we obtain:∫

𝑆

( 𝑗0 + 𝜎−𝜑0ℎ
−1
− ) d2x = 0,

which is the solvability condition of Eq. (5.11). This condition, which requires
the constancy of the total current 𝑗0𝑆 = 𝐼0, defines the potential of the bottom
layer as:

𝜑0 = −𝜎−1
− 𝐼0/

∫
𝑆

ℎ−1
− d2x.
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Substituting this expression into Eq. (5.11), we obtain:

𝜎+∇ · (ℎ+∇𝜙(0)+ ) = 𝑗0

(
1 − 𝑆ℎ−1

− /
∫
𝑆

ℎ−1
− d2x

)
, (5.13)

which is the final form of electric potential equation. Note that this equation is
fully non-linear and thus it is valid not only for small-amplitude perturbations
but also for arbitrary large long-wave interface perturbations.

The distribution of the electric potential in the bottom layer Eq. (5.5) indicates
that the respective electromagnetic force

j+ × B0 = 𝜎+B0 × ∇𝜙(0)+ (x) + O(𝜀2)

is depth-invariant up to O(𝜀2). Thus, the curl of this force has zero hori-
zontal components which means that it preserves zero horizontal vorticity of the
flow. Therefore, the electromagnetic force is compatible with the conservation of
the depth-invariance similarly to the depth-invariance of the horizontal velocity,
𝜕𝑧u ≡ 0, in the shallow-water approximation. Additionally, as shown in Eqs.
(5.8,5.9), the horizontal component of the current perturbation in the top layer
is O(𝜀). Thus, the associated electromagnetic force is negligible in the leading-
order approximation and the conservation of the depth-invariance holds also for
the top layer.
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Chapter 6

Linear stability analysis

In this chapter the linear stability of the shallow-water magnetohydrodynamic
system is investigated. It is assumed that the perturbation has a characteristic
longitudinal length scale 𝐿 which is much larger than the layer depth 𝐻 and focus
on the interfacial waves of small amplitude:

𝜂(x, 𝑡) = ℎ(x, 𝑡) − ℎ̄+ � 𝐻. (6.1)

This means that the non-linear terms in the governing equations are higher-
order small relative to the linear terms. After the linearisation, Eqs. (2.39a)
and (2.39b) take the form:

𝜕𝑡𝜂 = ∓ℎ̄±∇ · u±,

𝜚±
(
(u±)𝑡 + 𝑔∇𝜂

)
= −∇Π + j × B.

(6.2a)

(6.2b)

The difference of the momentum equations for the respective layers reads as:

[𝜚u]𝑡 + 𝑔 [𝜚] ∇𝜂 = [j] × B. (6.3)

Taking the divergence while bearing in mind that ∇ · (j × B) = 0 yields:

[𝜚∇ · u]𝑡 + 𝑔 [𝜚] ∇2𝜂 = 0,

where applying Eq. (6.2a) rewrites as:

−𝜕2
𝑡 𝜂

{
𝜚

ℎ̄

}
+ 𝑔 [𝜚] ∇2𝜂 = 0.

Therefore, a pure interfacial gravity wave equation is obtained in the form:

𝜕2
𝑡 𝜂 = 𝑐2∇2𝜂.
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where 𝑐2 = 𝑔 [𝜚]
{
𝜚

ℎ̄

}−1
is the wave propagation speed. Likewise, linearisation of

Eq. (2.45), where friction is considered, results in:

𝜕2
𝑡 𝜂 + 𝛾𝜕𝑡𝜂 − 𝑐2∇2𝜂 = 0

where 𝛾 =

{
𝜚𝛾

ℎ̄

} {
𝜚

ℎ̄

}−1
.

The impermeability condition requires that the normal component of velocity
on Γ is u𝑛 = 0, which for Eq. (6.3) translates into the following condition for the
interfacial height 𝜂:

n · (𝑔 [𝜚] ∇𝜂 = j × B) on Γ,

which rewrites as
𝜕𝑛𝜂 = 𝛽𝜕𝜏𝜙,

where 𝜕𝜏 is the derivative in the direction tangential to the boundary and 𝛽 is
the Sele parameter defined in Eq. (2.42).

After linearisation, that is applying

ℎ+ = ℎ̄+ + 𝜂 ≈ ℎ̄+,

ℎ−1
− = ( ℎ̄ − 𝜂)−1 ≈ ℎ̄−1

− + 𝜂ℎ̄−2
− ,

and taking into account that
∫
𝑠
𝜂 d2®𝑥 = 0 due to the mass conservation, the

potential equation (5.13), reduces to

∇2𝜙(0)+ = − 𝑗0𝜂

𝜎+ ℎ̄+ ℎ̄−
, (6.4)

which satisfies the solvability condition automatically owing to the mass conser-
vation. Changing to dimensionless variables by using 𝐿 =

√︁
𝐿𝑥𝐿𝑦 = 𝑆1/2, 𝜏0 = 𝐿/𝑐

and 𝜙0 = 𝐼0/(𝜎+ ℎ̄+) as the length, time and electric potential scales, respectively,
yields the following nondimensional set of equations. The equation (5.13) of the
electric potential reads as:

∇2𝜙 = −𝜂,

with the insulating boundary walls of the cell requiring that:

𝜕𝑛𝜙 = 0 on Γ,

where 𝜙 is the dimensionless counterpart of 𝜙(0)+ . Accordingly, the dimensionless
governing equations for a uniform and purely vertical magnetic field are:{

𝜕2
𝑡 𝜂 = ∇2𝜂 − 𝛾𝜕𝑡𝜂, 𝜕𝑛𝜂 = 𝛽𝜕𝜏𝜙|Γ,
∇2𝜙 = −𝜂, 𝜕𝑛𝜙|Γ = 0.

(6.5a)
(6.5b)
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The linear system of Eq. (6.5) can be treated as an eigenvalue problem. Solu-
tions to the eigenvalue problem are sought in the form of travelling waves. Owing
to the stationarity of the base state, small-amplitude disturbances of the inter-
face height 𝜂 and the associated electric potential 𝜙 can be sought as the normal
modes:

{𝜂, 𝜙} (x, 𝑡) =
{
𝜂, 𝜙

}
(𝑦)𝑒𝑖(𝑘𝑥−𝜔𝑡) , (6.6)

with a real wave number 𝑘, a generally complex frequency 𝜔, and the 𝑦-dependent
amplitude distributions 𝜂(𝑦) and 𝜙(𝑦). Applying the equation Eq. (6.6) onto
Eq. (6.5) while omitting the friction term 𝛾 = 0 results into a system of ODEs:{

− 𝜔2𝜂 = 𝜂
′′ − 𝑘2𝜂, 𝜂

′
= 𝑖𝑘 𝛽𝜙 on Γ,

− 𝜂 = 𝜙
′′ − 𝑘2𝜙, 𝜙

′
= 0 on Γ.

(6.7a)
(6.7b)

6.1 Semi-infinite domain

Following Lukyanov et al. (2001) the simplest geometry considered is that of a
single wall, i.e. [0 ≤ 𝑦 < ∞] × [−∞ < 𝑥 < ∞]. The general solution of Eq. (6.7)
can be written as: {

𝜂(𝑦) = 𝜂−𝑒
−𝑖𝜅𝑦 + 𝜂+𝑒𝑖𝜅𝑦,

𝜙(𝑦) = 𝜙0𝑒
−𝑘𝑦 + 𝜔−2𝜂(𝑦),

(6.8a)
(6.8b)

where the corresponding boundary conditions write as:{
𝜙′(0) = 0 on Γ,

𝜂
′ (0) = 𝑖𝑘 𝛽𝜙(0) on Γ.

(6.9a)
(6.9b)

The 𝜂± and 𝜙0 are unknown constants and 𝜅 =
√
𝜔2 − 𝑘2.

There are two types of solution possible. The first is defined by real 𝜅 and
describes pure gravity waves with real frequency 𝜔. The genuinely unstable mode,
missed by Lukyanov et al. (2001) and considered first by Morris and Davidson
(2003), is defined by complex frequencies 𝜔. These are in turn examined in the
ensuing subsections.

6.1.1 Pure gravity waves

The first solution describing pure gravity waves with real frequency 𝜔 = ±
√
𝑘2 + 𝜅2,

is obtained by substituting Eqs. (6.8) and (6.9) in Eq. (6.7) and reads as:

𝜙0 = −𝑖 𝜅
𝑘

𝜂+ − 𝜂−
𝜔2 . (6.10)
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For this solution, the boundary conditions Eq. (6.9) yield:

𝜂
′ (0) = 𝑖𝑘 𝛽𝜙(0),

where utilising the information obtained in Eq. (6.10) yields:
𝜂+ − 𝜂−
𝜂+ + 𝜂−

= − 𝑘
𝜅

𝛽

(𝜔2 − 𝑖𝛽) . (6.11)

It can be deduced, that if no electromagnetic interaction exists, i.e. 𝛽 = 0,
then 𝜂+ = 𝜂−. This results in a broken symmetry between the incident and the
reflected gravity waves, such that no instability arise. Morris and Davidson (2003)
question this claim by Lukyanov et al. (2001) and Molokov et al. (2011) that wave
reflections from the wall lead to instability. The stability of the system is defined
by the frequency of eigenmode which consists of a superposition of incident and
reflected gravity waves. These are coupled by the reflection condition Eq. (6.11)
and can be swapped owing to the time inversion symmetry for this problem. The
respective frequency is purely real, which means that the eigenmode is neutrally
stable, i.e. neither growing nor decaying.

6.1.2 Edge waves

For a complex 𝜅 := 𝑖𝜅 the exponential functions Eq. (6.8) descibe either a growing
or a decaying disturbance. The resulting dispersion relation takes the form:

𝜔2 = 𝑘2 − 𝜅2. (6.12)

Consequently, the general solution of Eq. (6.7) is:


𝜂(𝑦) = 𝜂0𝑒

−𝜅𝑦,

𝜙(𝑦) = 𝜙0𝑒
−𝑘𝑦 + 𝜂(𝑦)

𝜔2 .

(6.13a)

(6.13b)

Similarly to Eq. (6.10) the boundary condition on the electric potential yields:

𝜙0 = − 𝜅
𝑘

𝜂0
𝜔2 , (6.14)

while, in using Eq. (6.9) the respective boundary condition on the interface elev-
ation is:

𝜂
′ (0) = 𝑖𝑘 𝛽𝜙(0). (6.15)

This relates the wavenumbers as follows:

𝜅

𝑘
= −1

2 ±
√︂

1
4 − 𝑖

𝛽

𝑘2 . (6.16)
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Accordingly, the dispersion relation Eq. (6.12) takes the form:

𝜔2

𝑘2 =
1
2 + 𝑖𝛽 ±

√︂
1
4 − 𝑖

𝛽

𝑘2 , (6.17)

where complexity of frequency for 𝛽 ≠ 0 implies instability. For 𝛽 � 𝑘2, the last
term can be expanded as:√︂

1
4 − 𝑖

𝛽

𝑘2 ≈
1
2 −

𝑖𝛽

𝑘2 +
𝛽2

𝑘4 +
2𝑖𝛽3

𝑘6 + . . . (6.18)

For a real positive-part of the wavenumber <(𝜅) > 0, which is required for the
perturbation to be bounded far away from the wall, the expression Eq. (6.18)
simplifies to:

𝜅

𝑘
≈ − 𝑖𝛽

𝑘2 +
𝛽2

𝑘4 +
2𝑖𝛽3

𝑘6 , (6.19)

while the expression for the frequency becomes:

±𝜔
𝑘
≈ 1 + 1

2

(
𝛽

𝑘2

)2
+ 𝑖

(
𝛽

𝑘2

)3
. (6.20)

Therefore, Eq. (6.20) describes weakly-destabilised waves with =(𝜔) ∝ 𝛽3

𝑘5 , shown
in figure 6.1, which according to Eq. (6.19) are nearly transverse =(𝜅) ∝ − 𝛽

𝑘
and

slowly decaying from the edge at the rate <(𝜅) ∝ 𝛽2

𝑘3 .
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Figure 6.1: Edge-wave growth rate in function of the electromagnetic inter-
action parameter.

6.2 Finite-width channel

Suppose the fluids occupy the domain [−1 ≤ 𝑦 ≤ 1] × [−∞ < 𝑥 < ∞], which cor-
responds to the case of a finite-width channel first considered by Davidson and
Lindsay (1998) and further studied in the context of hydromagnetic edge waves
by Morris and Davidson (2003) and Molokov et al. (2011).
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Then Eq. (6.7a), with the use of the dispersion relation, writes as 𝜂′′ − 𝜅2𝜂 = 0.
Hence, the solution to this ODE is of the form:

𝜂 = 𝐶1𝑒
𝑖𝜅𝑦 + 𝐶2𝑒

−𝑖𝜅𝑦 .

Replacing the complex exponential terms with their respective trigonometric
functions 𝑒±𝑖𝑎 = cos 𝑎 ± 𝑖 sin 𝑎, yields:

𝜂 = 𝜂+ cos(𝜅𝑦) + 𝜂− sin(𝜅𝑦), (6.21)

where 𝜂+ and 𝜂− are 𝜂+ = 𝐶1 + 𝐶2 and 𝜂− = 𝑖 (𝐶2 − 𝐶1). Accordingly, the general
solution of Eq. (6.7b) can be written as:

𝜙 = 𝜙+ cosh(𝑘𝑦) + 𝜙− sinh(𝑘𝑦) + 𝜂

𝜔2 . (6.22)

The boundary conditions for the channel are:{
𝜙′(±1) = 0 and
𝜂
′ (±1) = 𝑖𝑘 𝛽𝜙(±1) on Γ.

(6.23a)
(6.23b)

The coefficients of Eq. (6.22) are defined by Eq. (6.23) as:

𝜙+ =
𝜂+𝜅 sin(𝜅)
𝜔2𝑘 sinh(𝑘) and 𝜙− = −

𝜂−𝜅 cos(𝜅)
𝜔2𝑘 cosh(𝑘) . (6.24)

Consequently, substituted in Eq. (6.21) and Eq. (6.22) for the boundary condi-
tions described in Eq. (6.23) leads to the dispersion relation:

𝜅

𝑘

(
𝜔4

𝛽2 + 1
)
− 𝑘

𝜅
= tan(𝜅) coth(𝑘) − cot(𝜅) tanh(𝑘). (6.25)

Rearranging Eq. (6.25), yields:

𝛽 =
𝜔2√︂

𝑘
𝜅

(
𝑘
𝜅
+ tan(𝜅) coth(𝑘) − cot(𝜅) tanh(𝑘)

)
− 1

, (6.26)

which implicitly defines the spectrum of admitted 𝜅 values for given 𝑘 and 𝛽.

For 𝛽 = 0, Eq. (6.25) reduces to sin 2𝜅 = 0, which defines the standard discrete
eigenvalue spectrum of wave modes fitting in across the channel width: 𝜅𝑛 =

𝑛𝜋/2, 𝑛 = 0, 1, 2, . . . As seen in figure 6.2, where 𝛽 defined by Eq. (6.25) is plotted
against 𝜅 for various 𝑘,the increase of 𝛽 just modifies the spectrum of the wave
modes admitted by the electromagnetic reflection condition Eq. (6.23).
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Figure 6.2: The electromagnetic interaction parameter 𝛽 versus the admiss-
ible transverse wavenumber 𝜅 for various longitudinal wavenumbers 𝑘.

The modes remain pure gravity waves defined by the dispersion relation with
real wavenumbers up to the point where two branches of 𝜅 merge together. At this
point, a complex conjugate pair of wavenumbers emerges and thus the instability
sets in as the frequency becomes complex (see figure 6.3).
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Figure 6.3: Real (<) and imaginary (=) parts of the first three transverse
wavenumbers 𝜅 (a) and the respective frequencies 𝜔 (b) versus the electromag-
netic interaction parameter 𝛽 for various longitudinal wavenumbers 𝑘 as well as
(c) the critical 𝛽 and transverse wavenumbers 𝜅 as functions of the longitudinal

wavenumbers 𝑘.
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As shown by Morris and Davidson (2003), who use the reciprocal of 𝛽 as the
control parameter, this happens first in the limit 𝑘 → 0, yielding:

𝛽 =
𝜅2√︃

tan (𝜅)
𝜅
− 1

, (6.27)

which attains a maximum 𝛽𝑐 ≈ 1.365 when two purely longitudinal gravity wave
modes with 𝜅𝑐 = 1.113 merge. It is of note that, counter to the gravity wave
modes predicted by the semi-infinite model which are transverse and emerging
at 𝛽𝑐 = 0, this critical mode is longitudinal and emerges at a finite 𝛽𝑐. In the
channel geometry, the mode corresponding to the semi-infinite model, is recovered
in the short-wave limit 𝑘 � 1, which is of little practical significance as the most
unstable are the long-wave modes.

6.2.1 Short-wave limit

The short-wave limit is in turn considered, with respect to the length scale but
sufficiently long with respect to the height, maintaining consistency in terms of
the shallow water approximation. For a complex 𝜅 := 𝑖𝜅 following the analogous
procedure as in Eq. (6.25) results into:

𝜅

𝑘

(
𝜔4

𝛽2 + 1
)
+ 𝑘

𝜅
= tanh(𝜅) coth(𝑘) + coth(𝜅) tanh(𝑘). (6.28)

The RHS of Eq. (6.28) for 𝑘 � 1 simplifies into tanh(𝜅) + coth(𝜅) = 2 coth(2𝜅)
where for <(𝜅) � 1 the coth(2𝜅) = 1. Substituting 𝜅

𝑘
= 𝜒 and 𝛽 =

𝛽

𝑘2 the
dispersion relation simplifies to:

𝜒2

(
1 +

(
1 − 𝜒2)2

𝛽2

)
+ 1 = 2𝜒, (6.29)

the solution of which is:

𝜒 = −1
2 ±

√︂
1
4 ± 𝑖𝛽 (6.30)

Ensuring a decaying spatial growth rate, i.e. < (𝜒) > 0, Eq. (6.30) reads as:

𝜒 = −1
2 +

√︂
1
4 ± 𝑖𝛽 (6.31)

The frequency writes as:

𝜔2 = 𝑘2 − 𝜅2 = 𝑘2

(
1 − 1

2 ∓ 𝑖𝛽 +
√︂

1
4 ± 𝑖𝛽

)
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Using the Taylor expansion Eq. (6.18) for small values of |𝛽 | � 1 while retaining
imaginary leading order terms, the frequency 𝜔 is:

𝜔 = ±𝑘
√︃

1 + 𝛽2 ∓ 2𝑖𝛽3 ≈ ±𝑘
(
1 + 𝛽2

2 ∓ 𝑖𝛽
3 + O(𝛽4)

)
. (6.32)

analogously to Eq. (6.20).

For short waves, the marginal interaction parameter and the respective trans-
verse wavenumber can be seen in figure 6.3c to scale as 𝛽 ∼ 𝑘 and 𝜅 ∼ 1. The
interaction parameter based on the wave length, which is the relevant horizontal
length scale in this limit, then scales as 𝛽 ∼ 𝑘−1 → 0.

6.2.2 Long-wave limit

Considering the long-wave limit for a purely complex 𝜅 the RHS Eq. (6.28) hy-
perbolic trigonometric terms are approximated using a Taylor expansion:

tanh(𝑘) =
(
𝑘 − 𝑘3

3

)
+ O(𝑘5) and coth(𝑘) =

(
1
𝑘
+ 𝑘

3

)
+ O(𝑘3).

Consequently, Eq. (6.28) is approximated by

𝜔4

𝛽2 ≈ −
𝑘4

3𝜅2

(
−2 𝜅

2

𝑘2 +
𝜅4

𝑘4 + 1
)
.

Using 𝜒 = 𝜅
𝑘

and 𝛽 =
𝛽

𝑘2 , the expression above rewrites into:(
1 − 𝜒2)2

𝛽2 = −1
3 𝑘

2𝜒−2 (
−2𝜒2 + 𝜒4 + 1

)
,

the solution of which is:
𝜅 = ±𝑖 𝛽

√
3

Therefore, for 𝛽 ∼ 𝑘 � 1, the frequency becomes:

𝜔2 = 𝑘2 − 𝜅2 = 𝑘2 + 𝛽2

3 . (6.33)

6.3 Linear stability analysis of a rectangular cell

A more realistic model of a rectangular cell laterally bounded by four side walls
and of aspect ratio 𝛼 = 𝐿𝑥/𝐿𝑦 is now considered. Using the eigenvalue perturba-
tion method, it is shown that, in the inviscid limit, rectangular cells whose aspect
ratio squared equals the ratio of any two odd numbers can be destabilised by an
infinitesimally weak electromagnetic interaction, while cells of other aspect ratios
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have finite instability thresholds. The unstable aspect ratios form a discontinuous
dense set of points which intersperse aspect ratios with finite stability thresholds.

6.3.1 Eigenvalue perturbation solution for 𝛽 � 1

In this case, the problem does not appear to be solvable exactly but it can be
approximately solved using the classical eigenvalue perturbation method (Hinch,
1991, Sec. 1.6) for small 𝛽. Namely, the eigenmode of the form:

{𝜂, 𝜙}(x, 𝑡) = {𝜂, 𝜙}(x)𝑒−𝑖𝜔𝑡 + c.c. (6.34)

is sought by expanding the eigenvalue, which in this case is 𝜔2, and the amplitude
distribution in the power series of 𝛽 as follows:

𝜔2 = 𝜆(0) + 𝛽𝜆(1) + . . . ,
{𝜂, 𝜙}(x) = {𝜂, 𝜙}(0) (x) + 𝛽{𝜂, 𝜙}(1) (x) + . . .

At the leading order, which corresponds to 𝛽 = 0, Eq. (6.5) reduces to

𝜆(0)𝜂(0) + ∇2𝜂(0) = 0, 𝜕𝑛𝜂(0)
���
Γ
= 0,

𝜂(0) + ∇2𝜙(0) = 0, 𝜕𝑛𝜙(0)
���
Γ
= 0.

The solution of this problem is:

𝜆
(0)
k = k2, (6.35)

{𝜂, 𝜙}(0) (x) = {k2, 1}𝜙(0)k Ψk(x), (6.36)

where

Ψk(x) = cos(𝑥𝑘𝑥) cos(𝑦𝑘𝑦) (6.37)

is the gravity wave mode for the wave vector

k = (𝑘𝑥 , 𝑘𝑦) = 𝜋(𝑚/
√
𝛼, 𝑛
√
𝛼), 𝑚, 𝑛 = 0, 1, 2, . . . (6.38)

The first-order correction {𝜂, 𝜙}(1) to the leading-order solution with the eigen-
value Eq. (6.35), is sought as an expansion in the leading-order eigenmodes. These
may be a superposition of several eigenmodes Eq. (6.36) with the wave vectors
satisfying k′2 = k2 :

{𝜂, 𝜙}(0) (x) =
∑︁

k′2=k2

{𝜂, 𝜙}(0)k′ Ψk′ (x),
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when the frequency happens to be degenerate. Consequently, the first-order cor-
rection is sought as an expansion in the leading-order eigenmodes:

{𝜂, 𝜙}(1) (x) =
∑︁

k
{𝜂, 𝜙}(1)k Ψk(x).

Substituting this expansion into Eq. (6.5a) and applying the solvability condition
by projecting it onto Ψk, after a few rearrangements one obtains:

𝜆
(1)
k

〈
Ψ2

k
〉
𝑘2𝜙(0)k =

∑︁
k′2=k2

𝐹k,k′𝜙
(0)
k′ . (6.39)

The angle brackets denote the integral over 𝑆 = 𝐿𝑥 × 𝐿𝑦:
〈
Ψ2

k
〉
=

∫
𝑆

Ψ2
k d2x =

𝑐−1
𝑘𝑥
𝑐−1
𝑘𝑦
, where 𝑐0 = 1 and 𝑐𝑘 = 2 for 𝑘 ≠ 0. The RHS of Eq. (6.39) results from

Green’s first identity:〈
Ψk∇2𝜂(1) + ∇Ψk · ∇𝜂(1)

〉
=

∮
Γ

Ψk𝜕𝑛𝜂
(1)dΓ ,

where the boundary integral can be transformed using Eq. (6.5b) and Green’s
theorem as follows: ∮

Γ

Ψk𝜕𝜏𝜙
(0)dΓ = −

〈
e𝑧 · ∇Ψk × ∇𝜙(0)

〉
.

This results in the electromagnetic interaction matrix

𝐹k,k′ = 〈e𝑧 · ∇Ψk × ∇Ψk′〉 = 𝐺k,k′ − 𝐺k′,k, (6.40)

where 𝐺k,k′ = 𝐻𝑘𝑥 ,𝑘
′
𝑥
𝐻𝑘 ′𝑦 ,𝑘𝑦 and

𝐻𝑘𝑚,𝑘𝑛 = 𝑘𝑚 〈sin(𝑥𝑘𝑚) cos(𝑥𝑘𝑛)〉 =
2𝑚2

𝑚2 − 𝑛2 mod(𝑚 + 𝑛, 2). (6.41)

The anti-symmetric nature of Eq. (6.40) means that there is no electromagnetic
back-reaction on separate gravity wave modes, i.e., 𝐹k,k = 0. Thus, for a single
(non-degenerate) mode, this is construed as:

𝜆
(1)
k

〈
Ψ2

k
〉
𝑘2𝜙k = 𝐹k,k𝜙k = 0,

which means no electromagnetic effect of order 𝛽. For a degenerate mode consist-
ing of a superposition of two eigenmodes with the same frequency:

𝜆
(0)
k = k2

1 = k2
2, (6.42)
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Equation (6.39) takes the form:

𝜆
(1)
k 𝑘2 ©­«

〈
Ψ2

k1

〉
𝜙k1〈

Ψ2
k2

〉
𝜙k2

ª®¬ =

(
0 𝐹k1,k2

−𝐹k1,k2 0

) (
𝜙k1

𝜙k2

)
. (6.43)

The solution of this matrix eigenvalue problem yields:

𝜆
(1)
k 𝑘2

√︂〈
Ψ2

k1

〉 〈
Ψ2

k2

〉
= ±𝑖𝐹k1,k2 , (6.44)

signifying an imaginary 𝜆
(1)
k and thus, an instability in the system if 𝐹k1,k2 ≠ 0.

According to Eq. (6.41), this is the case only if both components of wave vectors
k1 = 𝜋(𝑚1/

√
𝛼, 𝑛1
√
𝛼) and k2 = 𝜋(𝑚2/

√
𝛼, 𝑛2
√
𝛼) have opposite parities; namely,

𝑚1 ± 𝑚2 and 𝑛1 ± 𝑛2 are odd numbers. Then the degeneracy condition from
Eq. (6.42) yields:

𝛼2
𝑐 = −

(𝑚1 − 𝑚2) (𝑚1 + 𝑚2)
(𝑛1 − 𝑛2) (𝑛1 + 𝑛2)

=
𝑚

𝑛
,

where 𝑚 and 𝑛 are odd numbers. It means that all cells with aspect ratios squared
equal to the ratio of two odd numbers are inherently unstable, i.e., they become
unstable at infinitesimal 𝛽 > 𝛽𝑐 = 0.

For a square cell, which corresponds to 𝛼2 = 1, the unstable wave numbers
are 𝑚1 = 𝑙, 𝑛1 = 0 and 𝑚2 = 0, 𝑛2 = 𝑙, where 𝑛 is an odd number. In this case,
Eq. (6.44) yields 𝜆

(1)
𝑙

= ±𝑖8/(𝑙𝜋)2 and thus

=[𝜔(1)𝑛 ] = ±
4
(𝑛𝜋)3 , (6.45)

which means that the most unstable is the mode with 𝑛 = 1. For general 𝛼2 = 𝑚/𝑛
with odd 𝑚 and 𝑛, the lowest unstable wavenumbers are:

𝑚 (3∓1)/2 = (𝑚 ± 1)/2, (6.46)
𝑛(3±1)/2 = (𝑛 ± 1)/2. (6.47)

In this case, Eq. (6.44) yields 𝜆
(1)
𝑚,𝑛 = ±𝑖8𝑐1/2

𝑚−1𝑐
1/2
𝑛−1/(𝜋2√𝑚𝑛) which respectively

designates:

=[𝜔(1)𝑚,𝑛] = ±
8
𝜋3

(
𝑐𝑚−1𝑐𝑛−1

(𝑚 + 𝑛) (1 + 𝑚𝑛)
√
𝑚𝑛

)1/2
, (6.48)

which reduces to Eq. (6.45) with 𝑙 = 1 when 𝑚 = 𝑛 = 1.

For an aspect ratio 𝛼 sufficiently close to the critical value 𝛼𝑐 =
√︁
𝑚/𝑛, the

stability of system can be expected to be determined by the interaction of two
modes with the wave numbers Eqs. (6.46) and (6.47) which correspond to the
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wavenumbers
k(3∓1)/2 =

𝜋

2
(
(𝑚 ± 1)/

√
𝛼, (𝑛 ∓ 1)

√
𝛼
)
.

Then 𝜔2 is defined by the following second-order matrix eigenvalue problem:(
(𝜔2 − k2

1)k2
1 𝛽𝐹k1,k2𝑐𝑛−1

−𝛽𝐹k1,k2𝑐𝑚−1 (𝜔2 − k2
2)k2

2

) (
𝜙k1

𝜙k2

)
= 0, (6.49)

where 𝐹k1,k2 =
2(𝑚+𝑛) (𝑚𝑛+1)

𝑚𝑛
. Note that Eq. (6.49) reduces to Eq. (6.43) when

𝛼→ 𝛼𝑐 and 𝛽→ 0. As before, for the system to be stable, the eigenvalue 𝜔2 has
to be real, which is the case if 𝛽 ≤ 𝛽𝑚,𝑛, where

𝛽𝑚,𝑛 =
𝜋4

16

��𝛼2
𝑐/𝛼2 − 1

��𝑚𝑛2

(𝑚 + 𝑛) (𝑚𝑛 + 1)

×
(
(𝑚2 − 1)2 + 𝛼4(𝑛2 − 1)2 + 2𝛼2((𝑚 + 𝑛)2 + (𝑚𝑛 + 1)2)

𝑐𝑚−1𝑐𝑛−1

)1/2
. (6.50)

As shown in the next section, this approximate analytical solution agrees very
well with the numerical solution of the full eigenvalue problem.

6.3.2 Numerical solution of the matrix eigenvalue prob-
lem

For general 𝛽, Eq. (6.34) leads to

𝜆𝜂 + ∇2𝜂 = 0, 𝜕𝑛𝜂 |Γ = 𝛽 𝜕𝜏𝜙
��
Γ , (6.51)

𝜂 + ∇2𝜙 = 0, 𝜕𝑛𝜙
��
Γ = 0, (6.52)

which is an eigenvalue problem for 𝜆 = 𝜔2 + i𝛾, where 𝛾 is the friction coefficient.
The problem can be discretised using Galerkin method with the gravity wave
modes Eq. (6.37) as basis functions (Sneyd and Wang, 1994), which leads to the
generalisation of Eq. (6.39):

(𝜆 − k2)k2 〈
Ψ2

k
〉
𝜙k = 𝛽

∑︁
k′

𝐹k,k′𝜙k′,

with the electromagnetic interaction matrix on the RHS defined by Eq. (6.40).
This is a matrix eigenvalue problem of size (𝑀 + 1)2 × (𝑁 + 1)2, where 𝑀 and 𝑁

are the cut-off limits of the 𝑥 and 𝑦 components of the wave vectors Eq. (6.38).
Alternatively, Eq. (6.51) and Eq. (6.52) can be discretised using the Chebyshev
collocation method. For more information on the Chebyshev collocation method
refer to (Boyd, 2013).
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Figure 6.4: The relative variation of the complex frequency with the largest
imaginary part (𝜔 = 3.14455 + i0.12889) versus the number of modes and nodes

used in the Galerkin and Chebyshev approximations for 𝛼 = 𝛽 = 1.

As seen in figure 6.4, the Chebyshev collocation method has a significantly
faster convergence rate than ∼ 𝑁−4 achieved by the Galerkin approximation with
𝑁 modes in each direction. As the relative accuracy of Chebyshev collocation ap-
proximation saturates at ≈ 10−11 · · · 10−12 when 𝑁 & 24, in the following analysis
16 · · · 24 collocation points have been used in each direction.
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Figure 6.5: The largest growth rate =[𝜔] depending on the interaction para-
meter 𝛽 for various aspect ratios 𝛼 computed by the Chebyshev collocation
method with 𝑁𝑥 = 𝑁𝑦 = 16 points. For 𝛼 equal ratio of two odd numbers, nu-
merical results are compared with the approximate analytical solution Eq. (6.48).

The largest growth rate 𝜔𝑖 = =[𝜔], which is computed using Chebyshev col-
location method with 𝑁𝑥 = 𝑁𝑦 = 16 points and plotted in figure 6.5 against the
interaction parameter 𝛽 for various aspect ratios 𝛼, confirms the eigenvalue per-
turbation solution obtained in the previous section. Namely, for 𝛼2 equal to the
ratio of two odd numbers, the growth rate becomes positive at 𝛽 > 𝛽𝑐 = 0 whereas
for other aspect ratios this happens at finite 𝛽𝑐 . The dependence of the instability
threshold 𝛽𝑐 on the aspect ratio squared is shown in figure 6.6 for various viscous
friction coefficients 𝛾. Without friction (𝛾 = 0), which for numerical reasons is
modelled by setting 𝛾 = 10−5, the stability diagram is very rugged containing
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both small and large scale regular patterns. The key feature are the dips in 𝛽𝑐

which can be seen to occur at 𝛼2
𝑐 equal to ratio of odd numbers as predicted by

the eigenvalue perturbation analysis in the previous section.
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Figure 6.6: Instability threshold 𝛽𝑐 depending on the aspect ratio squared (𝛼2)
computed for various viscous friction coefficients 𝛾 using Chebyshev collocation
method with 𝑁𝑥 = 𝑁𝑦 = 16 · · · 24 points. Analytical solution Eq. (6.50) is plotted

for the dominant critical points 𝛼2
𝑐 equal to odd numbers and their thirds.

The increase of the friction coefficient gradually smooths out the dependence
of 𝛽𝑐 on 𝛼, especially at small scales and larger aspect ratios. However, the main
feature of the stability diagram, which is the location of minima and maxima of 𝛽𝑐
in the vicinity of odd and even values of 𝛼2, respectively, persists with the increase
of 𝛾. It is remarkable that the approximate solution Eq. (6.50) for the dominant
critical points closely reproduces numerical results obtained with 𝑁𝑥 = 𝑁𝑦 = 24
collocation points up to 𝛼2 ≈ 5. The slight deviation of the numerical results from
the theoretical predictions, which emerges at 𝛼2 & 5, especially in the vicinity
of higher order critical points, is due to the reduced numerical resolution as the
collation grid becomes stretched out at large aspect ratios.
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Chapter 7

Simulation of the nonlinear
interfacial-wave instability

In this chapter the numerical results of the two-layer system of equations are
presented, the analysis of which is carried out in three stages. First, notwith-
standing the excellent agreement of the numerical and the theoretical results,
presented in §4.2.3 for discontinuous initial states, the stability properties of the
1D hydrodynamic scheme, presented in §2.9 are further examined with particular
attention to the long term evolution and the dependence of dissipation on the
relevant control parameters. In turn, these results are contrasted with the ones
obtained by the corresponding non-conservative 2D scheme, presented in §3.1,
for which the interface has been cosinusoidally excited with a single 1D gravity
wave-mode along either of the horizontal directions as well as an analogous 2D
perturbance. Lastly, the behaviour of the 2D bilayer MHD system is explored
for various parameters and a discussion is made in regards to cause and manner
upon which the break-down of the solution occurs.

7.1 1D code verification for smooth initial data

In the presence of discontinuous/sharp interface heights, such as the ones invest-
igated in §4.2.3, the two-layer system was studied with the use of the conservative
equations Eq. (4.14) and Eq. (4.18) – Eq. (4.20). As it has been discussed though
in §4.2.3, that set of equations is equivalent to Eq. (4.7) as long as the solution
is continuous. Nevertheless, aiming towards providing a benchmark to the 2D
system which is in non-conservative form, the analogous 1D frictionless set of
equations is used.

Provided a smooth initial interface perturbation, the 1D bilayer system has
been numerically investigated using the non-conservative momentum Eq. (4.7)
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and the 1D Lax-Wendroff scheme. In the 1D system, the pressure gradient
which was previously eliminated in Eq. (4.18) – Eq. (4.20), is now replaced in
the momentum conservation equation for each layer with an explicit but non-
conservative expression resulting from the sum of momentum conservation equa-
tions. This provides an explicit solution for the pressure gradient which is equi-
valent to that produced by the respective Poisson solver. This approach is used
to validate the Poisson solver. The latter is subsequently used to solve the re-
spective 2D problem for which the pressure gradient cannot be eliminated as in
the 1D case.

7.1.1 Two layers with equal thicknesses

In this section the thicknesses of the respective layers are set to be equal, which
means that the interface oscillates about the mid-plane 𝑧 = 0.
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Figure 7.1: Relative energy and interface height for an initial perturbation
of amplitude 𝐴 = 0.01 using 𝑛𝑥 = 100 grid points.
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The numerical simulation run with two temporal discretisations 𝑑𝑡 = 10−3 and
𝑑𝑡 = 2 · 10−3, which allows an investigation of the energy conservation and its
dependence on the scheme’s time-stepping parameter. Figure 7.1 illustrates the
long-time evolution of the interface height at the grid’s fixed position 𝑥 = 0 as
well as the relative energy variation 𝐸 (𝑡)/𝐸 (0) − 1, for an initial gravity wave
𝐴 cos(𝜋𝑥) of amplitude 𝐴 = 0.01. The results indicate that for a smooth and
small initial perturbation the system manifests a non-increasing modulating wave
amplitude. The evolution of the amplitude is practically indistinguishable for the
two different temporal discretisations, the effect of which though on the energy
dissipation can be seen in figure 7.1c whereupon decreasing the time step results
in a lower energy dissipation.

The aforementioned observations are more profound in figure 7.2 where the
amplitude is set at 𝐴 = 0.1. In this case, owing to the increased amplitude the
effect of the non-linear terms on the evolution becomes relevant in figure 7.2b.
However, the flow still exhibits a stable behaviour with a gradual decay of the
total amplitude due to the scheme’s intrinsic numerical dissipation.
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Figure 7.2: The evolution for an initial perturbation of amplitude 𝐴 = 0.1
using 𝑛𝑥 = 100 spatial grid-points.
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The effects on the energy dissipation become clear for a large initial amplitude
of 𝐴 = 0.5. In this case the wave steepens quickly resulting in huge energy losses
as illustrated in figure 7.3.
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(c) Relative energy dissipation.

Figure 7.3: The evolution for an initial perturbation of amplitude 𝐴 = 0.5
using 𝑛𝑥 = 100 spatial grid-points.

For layers of equal thickness figures 7.1 and 7.2 show no wave breaking for
small amplitudes is expected to take long time to develop, if at all. On the other
hand, increasing the initial wave amplitude, as shown in figure 7.3, demonstrates
clearly the energy dissipation setting in rather abruptly as expected for the wave
breaking.

7.1.2 Two layers with unequal thicknesses

The system exhibits a significantly different behaviour when the liquid layers have
different average thicknesses. For comparison, the Lax-Wendroff scheme is used
to solve the semi-conservative momentum equation involving pressure Eq. (4.7)
as well as the conservative equations of circulation Eq. (4.18) and momentum
Eq. (4.19b).



7.1. 1D code verification for smooth initial data 95

In figure 7.4, where the thicknesses of the layers are different, even for a small
amplitude of 𝐴 = 0.01 the system exhibits to steepened waves almost straight
away with considerable energy dissipation. The evolution of waves in figure 7.4b,
where the lower layer occupies 1/4 of the total height, are vertically mirrored in
figure 7.4c, where the lower layer occupies 3/4 of the height, while both cases
have the same energy dissipation.
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Figure 7.4: The time evolution of unequal thickness for an initial perturbation
of amplitude 𝐴 = 0.01 using a spatial resolution 𝑛𝑥 = 100.

In figure 7.5, illustrating an initial amplitude of 𝐴 = 0.1, the steepened waves
become even more radical, introducing spurius oscillations from the onset of the
simulation, and thus resulting in to noticeable energy dissipation.

Nevertheless, it should be noted that all three numerical solutions produce al-
most identical results for smooth small-amplitude initial perturbations. However,
for larger ones, as seen in figure 7.5a, although the results are still comparable,
there is a small but noticeable difference. This difference is likely due to the
fact that the equation referred to as semi-conservative momentum/pressure is
not fully conservative and hence cannot adequately model steep waves.
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Figure 7.5: The evolution for layers unequal thicknesses with an initial per-
turbation amplitude 𝐴 = 0.1 using 𝑛𝑥 = 100 equally-spaced grid-points.

On the other hand, as discussed in §4.2.3, the circulation conservation law is not
likely to produce physical solutions for such waves because of not satisfying the
momentum balance. Moreover, it is not currently obvious how to formulate fully
conservative 2D circulation and momentum conservation laws.

7.2 Validation of the 2D codes using 1D solu-
tions

In this section, a comparison is made between the 1D and the 2D codes, for the
gravity waves 𝐴 cos(𝑥𝑘𝑥) cos(𝑦𝑘𝑦) of mode (0, 1), (1, 0) and (1, 1). In contrast to
the 1D problem, in the 2D case the pressure gradient cannot be found directly
without solving the respective Poisson equation. This is because, in 2D the mass
flux in each layer has one more degree of freedom, the direction, which precludes
explicit relation between these fluxes resulting from the mass conservation as
in 1D. Namely, zero divergence of the sum of two 2D mass fluxes just means
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that this sum is a solenoidal field which is not necessarily a constant field as in
1D. Such an assumption is too constrictive and in general incompatible with the
irrotationality of the 2D pressure gradient. This is the principal difference from
the 1D case which makes the solution of the Poisson equation in 2D necessary.
The 2D Poisson equation requires an explicit solution using the DCT-TDMA
algorithm, presented in §3.2.3, on Eq. (2.41).

The numerical results of the interface motion presented in figure 7.6 are com-
puted for 𝑁𝑥 × 𝑁𝑦 = 48× 48 points (𝑁𝑥 = 48 in 1D) and a temporal discretisation
of 𝑑𝑡 = 10−2 for an initial amplitude of 𝐴 = 0.1.
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Figure 7.6: The 2D numerical solution of gravity waves obtained with 𝑁𝑥 ×
𝑁𝑦 = 48×48; 𝑑𝑡 = 10−2 for the wave modes (0, 1), (1, 0) and (1, 1) cosinusoidally

with initial amplitude 𝐴 = 0.1 .

The energy dissipation shown in figure 7.6b for the modes (0, 1), (1, 0) and
(1, 1) for the 2D scheme is contrasted with the dissipation exhibited by the 1D
scheme. It is evident that the mode (0, 1) yields identical results to (1, 0).
Moreover, the (1, 1) wave mode, presented for comparison purposes, follows
closely. More importantly, the energy dissipated both by the 2D scheme as well
as the 1D scheme is comparable while all remain within the bounds of their initial
amplitude. This modulation of the wave amplitude is not as profound for small
amplitude waves. However, for larger amplitude waves there exists an energy
exchange between the wave modes which is gradually transferred onto the higher
frequency modes.
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7.3 2D simulation of the MHD interfacial-wave
instability

In this section, numerical results, obtained using the 2D nonlinear two-layer
shallow-water model are presented to demonstrate the evolution of electromag-
netically driven interfacial wave instability. In figure 7.7, results concerning a
square cell of aspect ratio 𝐿𝑥/𝐿𝑦 = 1 are plotted.
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Figure 7.7: The MHD problem with 𝛽 = 0.075, the interface centred at 𝑧 = 0
and an initial amplitude of 𝐴 = 0.01.
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As shown in §6.3, the square geometry is unstable for nonzero 𝛽. In the following,
the EM parameter is set to 𝛽 = 0.075, and numerical solutions for three different
grid sizes as well as two temporal discretisations are compared. This allows us
to assess the effect of numerical parameters on the solution. Figure 7.7e shows
the energy of an unstable perturbation against the time for an interface initially
located at the midplane and perturbed by a gravity wave mode (0, 1) with the
dimensionless amplitude 𝐴 = 0.01. The variation of the interface height at the
corner point (𝑥, 𝑦) = (0, 0) is shown in figure 7.7a. Without viscous friction,
the instability, which initially grows exponentially, appears to saturate as the
interfacial waves approaches the top and bottom boundaries.

The simulation breaks down when the interface reaches either the top or bot-
tom boundary. The breakdown is related to the intensifying shear velocity,∫
𝑠
(u+ − u−)2 𝑑𝑆, which develops between the two fluids as seen in figure 7.7d.

The rotating interfacial-wave that is generated due to to the Lorentz force drives
the fluids into a counter-rotating motion between the top and bottom layers,
as seen in figure 7.7c, where there is a separation of the angular momentum,
𝑒𝑧 ·

∫
𝑠
r × u 𝑑𝑆, of the two layers. This spinning motion leads to the develop-

ment of an overcritical shear velocity that escalates towards the critical value of 1
which marks the limit of hyperbolicity in 1D systems (Stewart and Dellar, 2013),
at which a Kelvin-Helmoltz-type of instability develops. In figure 7.7e in addition
to the frictionless case, the solutions shown are for non-zero, and equal, linear
friction coefficients . The results for the linear friction 𝛾± = 0.01 and 𝛾± = 0.02
are plotted in figure 7.7e where, as anticipated, an increase of the frictional forces
dissipate energy. Additionally, a coarser discretisation (either temporal or spa-
tial) results in an increase of the numerical dissipation which in turn dampens
the motion allowing the system to run longer before breaking down. Within the
same grid sizes the solution for smaller timestep always breaks down sooner. This
is shown in figure 7.7a, where for 𝑁𝑥 ×𝑁𝑦 = 80×80 the run of the simulation with
time-step 𝑑𝑡 = 10−3 breaks down sooner than the other case for 𝑑𝑡 = 10−2.

When the interface located at 𝑧 = 0.5 as shown in figure 7.8 is perturbed
with a gravity wave mode (0, 1) with amplitude of 𝐴 = 0.01, the motion changes
drastically and at a faster rate compared to the midplane case shown in figure 7.7.
Compared to figure 7.7a, the interfacial amplitude in figure 7.8a is significantly
dampened due to the sharp interface motion which augments the energy dissip-
ation as seen in figure 7.8e. Additionally, figure 7.8c shows the total angular
momenta of both layers emerge earlier but of lower magnitude than in the sym-
metric case shown in figure 7.7c.
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Figure 7.8: The MHD problem with 𝛽 = 0.075, the interface centred at 𝑧 = 0.5
and an initial amplitude of 𝐴 = 0.01.

Along with the results of the symmetric and asymmetric thicknesses, shown
in figures 7.7 and 7.8, the corresponding linear stability growth rates for energy
are plotted in figures 7.7e and 7.8e. Due to the different scalings used in the
nondimensionalisation of the linear and nonlinear parts in this study the imagin-
ary part of frequency, given by Eq. (6.45), must be scaled with 𝜏 = 𝐿/𝐶 where
𝐶 =

√︁
2𝑔𝐻 [𝜚] /{𝜚}. Thus, a simple expression can be obtained for the growth

rate curves proportional to 8𝛽/
(
𝜋3 (

ℎ̄+ ℎ̄−
)1/2) − 𝛾. This is illustrated in figures
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7.7e and 7.8e by the dashed black lines. The results of the numerical simulation,
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Figure 7.9: Interface snapshots for 𝛽 = 0.075 and the interface centred at
𝑧 = 0.0 for an initial amplitude of 𝐴 = 0.01 for the gravity wave mode (0, 1).
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for electromagnetically destabilised small-amplitude interfacial waves, can be seen
to be in good agreement with the growth rates produced by the linear stability.

The rotating interfacial motion of a (0, 1) gravity wave mode is illustrated
in figure 7.9, where the sequence of frames shown correspond to the grid size
𝑁𝑥 × 𝑁𝑦 = 80 × 80 with the time-step 𝑑𝑡 = 10−3. The evolution of the interface is
shown to develop short-wave instabilities when exceeding a certain critical value
of the the shear velocity, which is plotted in figure 7.7d. This leads to a Kelvin-
Helmholtz-type instability which eventually causes the interface to break down,
prior to the interface reaching the upper or lower boundaries.

Figure 7.10 shows the energy evolution of a square cell initially perturbed with
a gravity wave mode (1, 1) for the same range of parameters seen in figure 7.7. As
mentioned in §6, the cancellation of separate gravity modes up to first order of 𝛽
suppress the electromagnetic effects. Thus, as seen in figure 7.10 this leads to a
stably oscillating interface at initial times. The shear instability leads to oscilla-
tions at later stages of the simulation where the energy is seen to exponentially
increase. Nevertheless, the sudden energy increase may still reach a plateau-like
state, as seen in figure 7.10b, where it grows at a lower rate.
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Figure 7.10: The energy variation for a rectangular cell with 𝛽 = 0.075 and
a (1, 1) gravity wave mode with an initial amplitude of 𝐴 = 0.01.

The numerical results concerning a rectangular cell of aspect ratio 𝐿𝑥/𝐿𝑦 = 2
are plotted in figures 7.11–7.13 for a range of the parameter 𝛽 and an initial
(1, 0) mode perturbance of amplitude 𝐴 = 0.01. Figure 7.11 shows the stable
evolution of a slowly increasing interface motion for a small but finite value of 𝛽.
In contrast to square cells where instabilities develop for 𝛽 > 0, it can be seen
that for 𝛽 = 0.5 the interface height and energy variation for both the symmetric
and asymmetric layer depths gradually evolve in absence of strong instabilities.
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(c) Interface centred at 𝑧 = 0.5

0 200 400 600 800 1000

6

8

10

12

10
-5

=0,dt=10
-2

 (48 48)

=0,dt=10
-2

 (64 64)

=0,dt=10
-2

 (80 80)

=0,dt=10
-3

 (48 48)

=0,dt=10
-3

 (64 64)

=0,dt=10
-3

 (80 80)

(d) Energy variation for an interface
centred at 𝑧 = 0.5

Figure 7.11: The evolution of the interfacial amplitude and energy variation
for 𝛽 = .5 of a rectangular cell of aspect ratio 𝐿𝑥/𝐿𝑦 = 2 for a (1, 0) gravity mode

with an initial amplitude of 𝐴 = 0.01.

In a rectangular cell with layers of equal thickness, a significantly higher, com-
pared to the square cell, electromagnetic parameter is permitted. In figure 7.12a
the duration of the simulation prior to the break down is longer than figure 7.7a
while the electromagnetic parameter is set to 𝛽 = 0.9 as opposed to 0.075. The
effect of numerical dissipation, discussed in the preceding paragraphs, is clearly
demonstrated throughout figure 7.12 where a coarser discretisation results in
longer simulation times. The results plotted in figure 7.12c does not provide def-
inite answer in regards to the separation of the top and bottom momenta but
in view of figure 7.12d the shear velocity is seen to increase, thus leading to the
development of short-wave shear instability. Similarly to figure 7.10, figure 7.12e,
demonstrates an initially slowly increasing energy variation which for 𝛾 = 0 even-
tually explodes.
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Figure 7.12: The MHD problem with 𝛽 = 0.9, the interface centred at 𝑧 =

0 and an initial amplitude of 𝐴 = 0.01 for a rectangular cell of aspect ratio
𝐿𝑥/𝐿𝑦 = 2.

Note that, unlike to the results for a square cell plotted in figure 7.8, in a rect-
angular cell of aspect ratio 𝐿𝑥/𝐿𝑦 = 2 with unequal layer depths, the simulation
breaks down much sooner due to a rapid increase of the interfacial amplitude
as shown in figure 7.13a. The angular momentum of the lower layer, shown in
figure 7.13c, is larger than the one of the upper layer which appears to oscillate
about zero, and thus induces an increase of the shear velocity as it may be seen in
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figure 7.13d. Consequently, an instability arises in early stages of the simulation
resulting into an exponential increase of energy as shown in figure 7.13.
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Figure 7.13: The MHD problem with 𝛽 = 0.9, the interface centred at 𝑧 =

0.5 and an initial amplitude of 𝐴 = 0.01 for a rectangular cell of aspect ratio
𝐿𝑥/𝐿𝑦 = 2.
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Conclusions and further work

This thesis is concerned with the numerical modelling of large-amplitude inter-
facial waves produced by metal pad roll instability in the aluminium reduction
cells. This system was studied with the use of the two-layer rigid-lid model,
for conducting fluid layers under the influence of a uniform magnetic field. The
semi-conservative 2D shallow-water model derived in §2.7 includes a novel fully
nonlinear equation for the electric potential, derived in §5. The approximation
of small density variation between the fluids permitted the exact 1D solution of
the equations and a straightforward implementation of the 2D scheme and al-
gorithms. The commonly encountered linear damping term, discussed in §2.7.4,
was utilised in the investigation of both the linear stability analysis, in §6, as
well as the numerical implementation of the 2D MHD shallow-water equations in
§7.3, and it is shown to adequately stabilise the system.

The method of characteristics was used to obtain a novel exact solution of the
two-layer lock-exchange problem where the initially piecewise interface height
is released and the slightly heavier fluid is driven into the slightly lighter one.
The results obtained show four different interface shapes dependent on the initial
interface height. The suitability of the 1D Lax-Wendroff scheme in the presence
of discontinuities was verified via the numerical solution of the lock-exchange
problem, for the previously mentioned interface shapes, with a good agreement
in the results.

The validation of the Lax-Wendroff scheme for discontinuous flows motivated
the extension of the scheme to 2D. Furthermore, a new scheme was developed
based on the 2D Richtmyer-Lax-Wendroff scheme by consideration of the finite
volume formulation on a set of staggered rhombic grids. This scheme was then
coupled with the newly developed and efficient fast Poisson solver which utilises a
combination of the discrete cosine transforms and the tridiagonal matrix Thomas
algorithm for the solution of the interface pressure and electric potential. The
performance of the newly developed 2D scheme coupled with the DCT-TDMA
algorithm, was benchmarked with reference to the purely hydrodynamic 1D two-
layer model for smooth initial data.
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The linear stability analysis of the magnetohydrodynamic system under the
influence of an external uniformly vertical magnetic field for the half-plane and
the finite width channel geometries was revisited in §6. This was followed by
the analysis of the rectangular geometry laterally bounded by four walls. This
analysis revealed the instability threshold dependence on the aspect ratio of the
cell. These new analytic results were obtained using an eigenvalue perturbation
method and verified by numerical solution of the linear stability problem, where
the aspect ratios for which the cells become unstable at arbitrary weak electro-
magnetic effect, were found to be equal to the ratio of two odd numbers.

The nonlinear evolution of electromagnetic interfacial-wave instability was nu-
merically investigated in §7.3 for the square cell which is inherently unstable.
The interface positions considered were that of equal thickness layers as well as
the case where their thickness ratio is 1 : 3. The numerical results obtained from
the 2D two-layer shallow-water model at initial times were in excellent agreement
with the growth rates predicted by the linear stability analysis. Furthermore,
it was shown that the nonlinear effects result in the slowdown of the growth of
large-amplitude waves leading to a quasi-equilibrium state in certain cases. How-
ever, it was found that the rotating interfacial wave by the nonlinear streaming
effect induces a global counter-circulation in the top and bottom layers, whereby
exceeding a critical value of the shear velocity leads to the Kelvin-Helmholtz-type
instability which causes the interface to break down.

The models and algorithms designed and utilised in this work employed a series
of simplifications in order to reduce the complexity in the problem. In order to
model aluminium reduction cells in a more realistic framework, extensions may
be required in terms of the perturbation of the electric field induced by the flow
across the magnetic field. Furthermore, a more realistic model of the problem
could be constructed by considering non-uniform magnetic fields, known to be
present in aluminium reduction cells Bojarevics and Romerio (1994).

Although effects of linear friction were briefly considered in terms of a linear
friction term, incorporation of more refined viscous terms similarly to Zikanov
(2018) or turbulent stresses could potentially enable a more adequate modelling
of the viscous effects. Furthermore, the hydrodynamic analysis and numerical
investigation of magnetohydrodynamic instabilities beyond the Boussinesq ap-
proximation pose an interesting aspect of the problem being natural extensions
of the present work. Additionally, the thickness of the respective layers should
be further investigated as it has a critical role on the stability of a cell. In fu-
ture work, the discussed reduction of simplifications presently made, could enable
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verification against real data of aluminium reduction cells.
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Appendix A

Algorithms

A.1 Thomas algorithm

Algorithm 1 The Thomas Type-I algorithm factorisation and solver
Comment: Factorization of the tridiagonal matrix: [1-d,1; 1,-d,1; ...; 1,1-d]
Input: 𝑛 (vector size), 𝑎 (reserved matrix), 𝑑 (main diagonal element)
Output: 𝑎 (Thomas algorithm factors)

1: function tdfct1(𝑛, 𝑎, 𝑑)
2: if 𝑑 == 2 then ⊲ Singular case
3: 𝑎(1 : 𝑛) = 1
4: else
5: 𝑎(1) = 1/(𝑑 − 1)
6: for 𝑖 = 2 to 𝑛 − 1 do
7: 𝑎(𝑖) = 1/(𝑑 − 𝑎(𝑖 − 1))
8: end for
9: 𝑎(𝑛) = 1/(𝑎(𝑛 − 1) − (𝑑 − 1))

10: end if
11: end function

Comment: Solution using the factorised matrix a(n) to solve f(1, n)
Input: 𝑛 (vector size), 𝑎 (Thomas algorithm factors), 𝑓 (Poisson RHS)
Output: 𝑓 (Solution)

1: function tdslv1(𝑛, 𝑎, 𝑓 )
2: for 𝑖 = 1 to 𝑛 − 1 do
3: 𝑓 (1, 𝑖 + 1) = 𝑓 (1, 𝑖 + 1) + 𝑓 (1, 𝑖) ∗ 𝑎(𝑖) ⊲ Forward sweep
4: end for
5: 𝑓 (1, 𝑛) = 𝑓 (1, 𝑛) ∗ 𝑎(𝑛)
6: for 𝑖 = 𝑛 − 1 to 1 do
7: 𝑓 (1, 𝑖) = ( 𝑓 (1, 𝑖 + 1) − 𝑓 (1, 𝑖)) ∗ 𝑎(𝑖) ⊲ Backward sweep
8: end for
9: end function
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Algorithm 2 The Thomas Type-II algorithm factorisation and solver
Comment: Factorization of the tridiagonal matrix: [-d,2; 1,-d,1; ...; 2,-d]
Input: 𝑛 (vector size), 𝑎 (reserved matrix), 𝑑 (main diagonal element)
Output: 𝑎 (Thomas algorithm factors)

1: function tdfct2(𝑛, 𝑎, 𝑑)
2: if 𝑑 == 2 then ⊲ Singular case
3: 𝑎(1 : 𝑛 + 1) = 1
4: else
5: 𝑎(1) = 2/𝑑
6: for 𝑖 = 2 to 𝑛 do
7: 𝑎(𝑖) = 1/(𝑑 − 𝑎(𝑖 − 1))
8: end for
9: 𝑎(𝑛) = 1/(𝑎(𝑛 − 1) − 𝑑/2))

10: end if
11: end function

Comment: Solution using the factorised matrix a(n+1) to solve f(1, n+1)
Input: 𝑛 (vector size), 𝑎 (Thomas algorithm factors), 𝑓 (Poisson RHS)
Output: 𝑓 (Solution)

1: function tdslv2(𝑛, 𝑎, 𝑓 )
2: for 𝑖 = 1 to 𝑛 do
3: 𝑓 (1, 𝑖 + 1) = 𝑓 (1, 𝑖 + 1) + 𝑓 (1, 𝑖) ∗ 𝑎(𝑖) ⊲ Forward sweep
4: end for
5: 𝑓 (1, 𝑛 + 1) = 𝑓 (1, 𝑛 + 1) ∗ 𝑎(𝑛 + 1)
6: for 𝑖 = 𝑛 to 1 do
7: 𝑓 (1, 𝑖) = ( 𝑓 (1, 𝑖 + 1) − 𝑓 (1, 𝑖)) ∗ 𝑎(𝑖) ⊲ Bacward sweep
8: end for
9: end function

Algorithm 3 The tridiagonal system coefficients for GRID-0 & GRID-1
Comment: Factorization of the tridiagonal matrix: [1-d,1; 1,-d,1; ...; 1,1-d]
Input: 𝑛𝑥 (Matrix rows), 𝑛𝑦 (Matrix columns), 𝑑𝑥, 𝑑𝑦 (Spatial discretisation)
Output: 𝐶𝐹 (Thomas algorithm coefficients)

1: for 𝑖 = 0 to 𝑛𝑥 do
2: 𝐶𝐹 (:, 𝑖 + 1, 1) = tdfct2(𝑛𝑦, 𝐶𝐹 (:, 𝑖 + 1, 1), 2 + 4 ∗ (𝑠𝑖𝑛(𝑝𝑖 ∗ 𝑖/𝑛𝑥/2) ∗ 𝑑𝑦/𝑑𝑥)2)
3: 𝐶𝐹 (:, 𝑖 + 1, 2) = tdfct1(𝑛𝑦, 𝐶𝐹 (:, 𝑖 + 1, 2), 2 + 4 ∗ (𝑠𝑖𝑛(𝑝𝑖 ∗ 𝑖/𝑛𝑥/2) ∗ 𝑑𝑦/𝑑𝑥)2)
4: end for
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A.2 The 2D Poisson solver

Algorithm 4 The 2D Poisson solver
Input: 𝑘 (2x1 constant vector defining the switch of grids), 𝑛 (2x1 vector con-
taining the matrix dimensions), 𝑑𝑦 (spatial discr.), 𝐶𝐹 (factors), 𝑓 (Reserved
matrix)
Output: 𝑓 (Solution)

1: function psn2D(𝑘, 𝑛, 𝑑𝑜)
2: 𝑖 = 1 : 𝑛(1) + 1 − 𝑘 (1) ⊲ Indices declaring the necessary points
3: 𝑗 = 1 : 𝑛(2) + 1 − 𝑘 (2)
4: 𝑓 (𝑖, 𝑗) = dct( 𝑓 (𝑖, 𝑗), [], 1,′𝑇𝑦𝑝𝑒′, 𝑘 (1) + 1) ⊲ Apply DCT
5: for 𝑖𝑡 = 0 to 𝑛(1) − 𝑘 (1) do ⊲ Thomas algorithm solution
6: if 𝑘 (2) == 0 then
7: 𝑓 (𝑖𝑡 + 1, 𝑗) = tdslv0(𝑛(2), 𝐶𝐹 ( 𝑗 , 𝑖𝑡 + 1, 1), 𝑓 (𝑖𝑡 + 1, 𝑗))
8: end if
9: if 𝑘 (2) == 1 then

10: 𝑓 (𝑖𝑡 + 1, 𝑗) = tdslv1(𝑛(2), 𝐶𝐹 ( 𝑗 , 𝑖𝑡 + 1, 2), 𝑓 (𝑖𝑡 + 1, 𝑗))
11: end if
12: end for
13: 𝑓 (𝑖, 𝑗) = idct( 𝑓 (𝑖, 𝑗), [], 1,′𝑇𝑦𝑝𝑒′, 𝑘 (1) + 1) ⊲ Apply inverse DCT
14: end function
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A.3 Code structure

Initialisation of the program:
(mesh setting, creation of matrices, initial

parameters for ℎ,𝑈,𝑉

prefactorisation of the coefficient for the
Poisson solver)

Half-step LW

Half-step MHD

Half-step Pressure

Full-step LW

Full-step MHD

Full-step Pressure

End or broken

Export results

Time integration

Height average

Height average

No

Yes

← time-projection scheme
using last step potential

← time-projection scheme
using last step potential

Poisson solver

Poisson solver

Figure A.1: Code logic diagram.
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