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Abstract 

In order to control stormwater runoft engineers and hydrologists have used various 
techniques to attempt to reduce or delay the volume of water which reaches the sewer 
system. Recently, international approaches have favoured the idea of "source control" or 
"on-site" retention. This technique stores water in areas close to the point at which 
precipitation lands. Permeable pavements and similar stormwater control devices have not 
been exploited in the United Kingdom. Their adoption has been hindered by a lack of 
knowledge of their hydrological performance. This research aims to produce information 
on the hydrological performance of a car park surface and to produce a model which can 
predict the hydrological response to varying rainfall inputs. 

The objective of this thesis is to examine the hydrological behaviour of a model car park 
surface under varying rainfall conditions. The study has involved the construction of 
full-scale permeable pavement model car park structures and a rainfall simulator for use in 
the laboratory. A monitoring procedure was developed in order to measure inputs and 
changes in drainage, storage and evaporation over short (less than 2 hours) and long (up 
to 3 months) time scales. A range of rainfall simulations were applied to the model car 
park surfaces which differed in intensity, duration and volume. Hydrological processes 
were monitored over an 18 month period. Results suggest that evaporation, discharge and 
retention in the structures were strongly influenced by the particle size of the bedding 
material and the surface blocks. In general an average of 55% of a 15 mm 11-1 rainfall 
event could be retained by an initially dry structure. Subsequent simulations suggest that 
approximately 30% of a 15 mm rainfall event could be stored by an initially wet 
structure (with a minimum time interval of 72 hours). 

Sediments were also applied to the car park structures in order to monitor the effects of 
clogging on hydrological performance and to quantify the ability of the structures to act as 
a primary screening site for sediments. The application of sediments to the structure 
showed that evaporation from the structure increased by as much as 25-30%. Laboratory 
simulation of clogging effects was also compared to data gathered from field sites and the 
results suggested that laboratory simulations provided a good approximation of the 
migration of sediments in the structure. 

A model of the hydrological performance of the structure has been developed to be used 
as a predictive tool. The model relates rainfall inputs to water retention and discharge 
output over consecutive rainfall events. It also allows evaporation and long-term retention 
by the structure to be estimated over differing lengths of dry periods. The model results 
indicate that discharge was predicted to an accuracy of 78% (based on a percentage 
difference between the observed and predicted values), and evaporation and retention 
were predicted to an accuracy of 80%. 
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Chapter 1 

1.1 Introduction 

In order to control stormwater runoff; engineers and hydrologists have used various 

techniques to attempt to reduce or delay the volume of water which reaches the sewer 

system. Recently, international approaches have favoured the idea of "source control" or 

"on-site" retention (Pratt, 1995). This technique stores water in areas close to the point at 

which precipitation lands and has the advantage of reducing the volume of runoff in 

downstream rivers and sewers and of increasing potential groundwater recharge which 

feeds the base-flow in rivers. 

The source control structure considered in this research project is a permeable pavement 

which allows rapid infiltration and on-site storage of precipitation. It's design allows 

water to pass between the specially designed surface blocks, where it is stored below the 

surface in layers of gravel and crushed stone. Any water stored (up to 100 mm of rainfall) 

can be removed, if required, to a grey water system (Schilling eta!., 1988), or released 

into a downstream sewer or water-course at a controlled rate and time. Stored water may 

also be allowed to infiltrate into the ground or evaporate. 

The structure is designed to be used in areas of low traffic speed and density, for example 

in car parks. 122,000 cars are licensed in the city of Coventry alone and an estimated 1.5 

million m2 of land in the city is used for car parking purposes. With the city covering 

approximately 80 km2, car parking surfaces cover approximately 2% of the city. This may 

seem a small percentage of the area, but it does not include residential roads or driveways 

1 



where this technique may also be adopted. The structure has a high storage capacity and, 

as a result, the runoff from roof surfaces could be directed into the structure. If roof 

runoff was redirected, it is estimated that between 30 and 40% of a storm event with a 

return period of two years can be stored, in addition to the rainfall reaching the car park 

surface directly (CIRIA, 1992). This technique, therefore, has a large potential for 

adoption in limiting or controlling stormwater discharge from urban surfaces by creating 

on-site retention; thus reducing the risk of flooding and potentially reducing pollutant 

discharge. 

The study has involved the construction of full-scale permeable pavement model car park 

structures in the laboratory. A range of rainfall simulations were applied to the model car 

park surfaces which differed in intensity, duration and volume. Hydrological processes 

were monitored over an 18 month period. Sediments were also applied to the car park 

structures in order to monitor the effects of clogging on hydrological performance and to 

quantify the ability of the structures to act as a primary screening site for sediments. 

Laboratory simulation of clogging was also compared to data gathered from field sites. 

A model of the hydrological performance of the structure has been developed. The model 

relates rainfall inputs to water retention and discharge output over consecutive rainfall 

events. It also allows evaporation and long-term retention by the structure to be estimated 

over differing lengths of dry periods. 

2 



1.2 Overview of Thesis 

An overview of the thesis is given in Figure 1.1 and the following paragraphs provide a 

brief summary of each chapter. 

Chapter 2 - Literature Review 

A complete review of the literature covering urban hydrology and urban stormwater 

control would be extremely time-consuming. It is not the aim of this research project to 

undertake such a challenge but to provide a general introduction to some of the more 

important hydrological problems associated with urbanisation of direct relevance to the 

research project. Section 2.1 of the literature review provides a brief overview of these 

problems and suggests that the use of infiltration techniques may help to alleviate part of 

the detrimental impacts on receiving urban water courses. Section 2.2 outlines the 

changes in philosophy adopted by engineers and hydrologists in their approach to urban 

stormwater control since the 1960s. Section 2.3 discusses the traditional and modem 

techniques used to control stormwater runog which is followed in section 2.4, by a more 

detailed review of research on permeable pavements. Chapter 2 places this research in 

context by identifying the lack of hydrological performance details on permeable pavement 

structures. 

Chapter 3 - Experimental Design 

This chapter has been divided into three sections. After a brief introduction, Section 3.2 

describes the development of equipment and instrumentation used in the laboratory 

experiments. The research project monitored water retention, discharge and evaporation 

3 
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Figure 1.1 An overview of the structure of the thesis. 
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from the model car park structures. The equipment required to do this was specially 

designed and constructed for the purposes of this research project. Section 3.2 gives 

details on the model permeable pavement structures, weighing equipment and rainfall 

simulator design. Section 3.3 explains the experimental procedure for both the 

hydrological simulations and the clogging experiments. In total, 41 hydrological 

simulations and 12 clogging experiments are discussed in this thesis. 

Chapter 4 - Hydrological characteristics of concrete blocks and bedding material. 

The data produced during experimentation has been divided into four chapters (Chapters 4 

to 7). Chapter 4 presents and discusses the hydrological performance of the individual 

structural components. It is important to appreciate how the individual components 

perform before attempting to understand the performance of the composite large-scale 

structures. Chapter 4 examines the retention and evaporation performance of individual 

structural components and compares the individual component performance with box 

experiments containing similar components. 

Chapter 5 - Short-term hydrological experiements. 

Short-term hydrological performance (Up to 2 hours following the end of a rainfall 

simulation) of the model car park structure is examined in Chapter 5. Rainfall, retention 

and discharge characteristics are examined to ascertain the influence of rainfall 

characteristics and box components on the overall performance. Analysis of hydrograph 

response to storm hyetograms is also discussed. 
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Chapter 6 - Long-term behaviour of the structure. 

This chapter examines the long-term hydrological performance of the model car park 

structure with regard to retention and evaporation processes after the cessation of rainfall 

and drainage. Model box experimental results are also compared to evaporation pan data 

in order to assess the importance of water availability on the evaporation process. The 

influence of the structural components on retention and evaporation is also examined. 

Chapter 7- Clogging experiements. 

The effect of clogging on the hydrological performance of the model car park is discussed 

in this chapter. Laboratory simulations of particulate additions are examined in relation to 

their effects on: infiltration; the lifespan of the structure; the migration of particulate 

material; and on the overall hydrological performance of the structure. Information from 

field sites is also analysed. 

Chapter 8 - Modelling the hydrological performance of the car park surface. 

The model that has been produced to predict the hydrological performance of the car park 

structure is discussed in Chapter 8. From the results presented in Chapters 4 to 7, it was 

possible to identify patterns in retention'and evaporation from the varying bedding 

materials and surface blocks (structural components). The performance of the structural 

components were predictable by simple mathematical equations. A computer model was 

developed to predict the hydrological performance of full-scale car park structures using 

information on the hydrological performance of the single components discussed in 

Chapters 4 to 7. The model predicts retention, discharge and evaporation and these 

6 



predictions were compared with results from the hydrological simulations in order to 

assess the performance of the model and it's accuracy as a predictive tool. 

Chapter 9 - Conclusions. 

This chapter discusses the implications of the results obtained during experimentation and 

suggests specific design criteria which may enhance the performance of the car park 

structure. A consideration is also made of how urban stormwater runoff could be 

controlled by the use of permeable pavements. 

Permeable pavements and similar stormwater control devices have not been exploited in 

the United Kingdom. Their adoption has been hindered by a lack of knowledge of their 

hydrological performance This research aims to produce information on the hydrological 

performance of a car park surface and to produce a model which can predict the 

hydrological response to varying rainfall inputs. Projects similar to the one presented in 

this thesis should be encouraged, in order to allow for a wider understanding and 

application of "on-site" techniques to control urban stormwater runoff 

7 



Chapter 2 - Literature Review. 

This chapter reviews literature on the hydrological problems associated with urbanisation 

which has direct relevance to the research project. 

2.1 Urban Hydrolo2v and Urban Storm Water Control. 

Urbanisation can drastically influence the environment and it's hydrological regime. As most 

countries develop, the percentage of impermeable area increases due to expansion of industrial 

activities, development of residential areas and the necessary infrastructure for transport. This 

occurs to the detriment of rural areas. Pearce (1993) reported the findings of a recent 

investigation by the Institute of Terrestrial and Fresh Water Ecology which showed that in 

England and Wales, between 1984 and 1990, 130 km2 per annum was lost from the 

countryside as a result of urbanisation. Over the same time period there was a 40% increase 

in "hard areas without buildings", for example car parks, demolished factory sites and airfields. 

The impact of an increase in impermeable surfaces is generally twofold: 

1) impacts associated with water quantity in the hydrological cycle; 

2) impacts associated with water quality. 

2.1.1 Modifications to the hydrological cycle. 

Impermeable surfaces disrupt a large proportion of the natural hydrological cycle, particularly 

by inhibiting infiltration and the subsequent percolation of excess storm waters (see Figure 

2.1) (Diniz, 1978; UNESCO, 1975). This often creates a large proportion of rapid overland 

flow since rainfall intensity exceeds infiltration capacity in the classical Hortonian sense 

(Horton, 1933). 
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Figure 2.1 The problems associated with an increase in impermeable surfaces in the 

urban environment. 
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Modifications to the hydrological cycle in the urban environment include: 

1) a decrease in infiltration and percolation; 

2) a decrease in throughflow and water reaching the aeration zone; 

3) a decrease in base-flow in streams; 

4) a decrease in the level of groundwater; and 

5) an increase of water conveyed via sewer systems. 

(Field eta!., 1982) 

The first two modifications inevitably influence, or cause, the third and fourth changes. A 

decrease in the volume of water contributing to base flow, suggests that groundwater levels 

will also have decreased (Schumm, 1977). A continuous decrease in groundwater levels may 

eventually result in the cessation of groundwater abstraction if an aquifer is used to supply 

water. 

This disruption to the water balance can have long-term implications for groundwater 

availability and base-flow contributing to the river system. In the National Rivers Authority 

(NRA) Water Resources Strategy (NRA, 1992), it was stated that abstraction of ground and 

surface waters have reduced river flows to unacceptable levels. Over forty such rivers in the 

UK have experienced unacceptable periods of low flows. If authorised licensed abstractions 

were revoked, 2% (on average) of the reliable yield of water for consumption in England and 

Wales would be lost. It would be preferable to maintain or revert to pre-development 

hydrological conditions and promote recharge of groundwater than have to deal with the 

problems associated with a decrease in the reliable yield. 
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The water that is prevented from infiltrating into the ground produces overland flow and the 

increase in overland flow must be accommodated within the drainage system if flooding is to 

be avoided in the urban environment (Walling, 1981). Increasing runoff volumes in sewer 

systems is also problematic (Lindbeck, 1984). Within the UK, the sewer systems in many 

areas were designed during the nineteenth century. The volume of sewage to be removed was 

less during that time, with the population being smaller and the sewer connections fewer 

(Shaw, 1994). There have been a number of reports of sewer pipes collapsing under the more 

recent increased flows (Crabtree, 1988;Shaw, 1994). 

One attempt to reduce hydraulic overloading considers attempts to reduce the flows entering 

the drainage system. Colyer (1983) discusses this approach when he summarises the 

Hydraulics Research Station report (Hydraulics Research, 1982) which studied flow reduction 

in drainage systems. Two suggested methods of reduction were preventative entry and 

attenuation of peak flows. The most effective methods proposed were: 

1. restriction of flow from pitched roofs by passing more runoff to permeable areas; 

2. similar controls of the runoff from other paved surfaces; 

3. the use of attenuation storage tanks; 

4. the use of semi-permeable road pavements providing temporary storage of rainfall and 

other benefits, such as reduced splash and spray. 

The disruption to the water balance caused by a reduction of infiltration and natural recharge 

is clearly a cause of concern for the NRA. Their water resources strategy (NRA, 1992) 

identified that the demand for water resources in different regions is increasing. It was also 

shown that only 10% of effective rainfall was needed to meet abstraction requirements. 
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Unfortunately, the supply of rainfall is temporally variable and it's distribution is influenced by 

west to east contrasts in rainfall amounts in the UK (Rodda et al., 1976; Shaw, 1994), which 

results in the east of England receiving less rainfall, a part of the country where demand is 

high. For example, the NRA calculate that the East Anglian region has a demand for potable 

water of 1820 Mld (see glossary list) (NRA, 1992): this demand has been projected to 

increase by the year 2021 by 42%. Anglian region already finds difficulties in supplying the 

demand required at present. The NRA is considering a number of projects to alleviate the 

encroaching supply/demand problem (NRA, 1992) and at present transfers water from the 

River Ouse to supplement a number of Essex rivers. 

Perhaps one simple precaution might be to ensure that all future developments in the urban 

environment attempt to maintain the existing infiltration rates, thus at least maintaining 

groundwater and river yields at the present level. 

2.1.2 Geomorphological Modifications. 

The various impacts on fluvial geomorphology by urbanisation have been well documented 

(Wolman, 1967; Hammer, 1972; Gregory and Park, 1976; Park, 1977; Riordan et al., 1978; 

Knight, 1979; Petts, 1979; Walling, 1979; Whipple, 1981). The most important impact is 

associated with the increased flow volumes within the urbanised drainage basin which alters 

channel flow regime. 

The increase in overland flow and storm flow volumes may cause changes to the hydraulic 

geometry of receiving channels (see glossary Appendix B) by modifying the width, depth, 

slope or velocity in the channel (Leopold and Maddock, 1953). This may in turn cause an 
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increase in the shear stress acting on the channel boundaries (Bagnold, 1977) which may in 

turn increase the potential for sediment entrainment (Ferguson, 1987) and enlargement of the 

channel (Hammer, 1972). 

It has also been frequently argued that the fluvial environment will adjust to the dominant 

discharge (which is the most effective at controlling the channel regime), which are the flows 

associated with a 1.5 - 2 year recurrence interval storm event (Leopold and Maddock, 1953). 

If flow volumes increase due to urbanisation, the discharge volume associated with the 1.5 

year recurrence interval would be higher and the channel would adjust in an attempt to 

accommodate the greater discharges. 

An increase in rapid transfer of water in the urban environment caused by overland flow and 

stormwater discharge (in comparison with the natural transfer of water) will also cause an 

increase in the peak flow magnitudes and a decrease in the lag time. For example channel 

erosion, resulting from an increase in the peak flow, has been studied at Catterick, north 

Yorkshire (Gregory and Park, 1976). When comparing urban and rural sites, the urban sites 

had a 150% increase in channel capacity. 

There are wider implications when considering changes to the hydraulic geometry and channel 

regime. Increased shear stresses and changes in channel width, depth, or slope may induce 

sediment entrainment and bed scour. This will re-mobilise sediments which may have been 

deposited many years earlier (Trimble, 1981; Richards, 1982). Not only will this cause 

problems downstream by depositing the entrained sediment, or by adjusting the channel 

further, it will also have an impact on the established ecology (Carling, 1987). 
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Modifications to the established biota will occur if there is a disturbance to the habitats of 

organisms (Simmons, 1981; Hellawell, 1986). This occurs through a number of mechanisms 

which include winnowing of fine silts from the bed, bed mobilisation; bank erosion; or 

sediment deposition. Changes in the quality of bed sediments may cause damage to trout and 

salmon spawning habitats and other established ecologies, for example, freshwater 

invertebrate populations (Luedthe and Brusven, 1976). The re-mobilisation of sediment will 

have a secondary and a possibly more damaging (long-term) effect on the freshwater ecology. 

It has been documented (Thorns, 1987; Elliott and Pratt, 1989) that the pollutant loadings 

within river and lake sediments in urban areas can be greatly increased in comparison with 

rural areas. For example heavy metal concentrations in the sediments in the River Tame, UK, 

have been found to be 3000 times greater than background concentrations in rural rivers 

(Thorns, 1987). The re-mobilisation of sediments and their associated pollutants may cause 

changes to water chemistry and quality (Ongley et aL, 1981; Färstner and Wittman, 1983; 

Morrison eta!., 1990). 

2.1.3 A suggested solution. 

Ifpre-development hydrological conditions could be maintained in the urban catchment, the 

impact of urbanisation on the fluvial system would be less dramatic. Realistically, this would 

be extremely difficult to attain during future development (Jenkins and Maskell, 1990), but 

attempts could and should be made to reduce overland flow and stormwater drainage, to 

increase infiltration and to maintain a near-natural water balance. 
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Source control and infiltration techniques attempt to store precipitation where it falls and, 

where ground conditions allow, dispose of the water into the ground in the adjacent areas. 

The use of source control has the advantages of retarding storm flows within the system by 

on-site storage and, consequently, reducing the discharge volumes which have to be 

accommodated in downstream sewers and watercourses (Amaki, 1990). This will be an 

advantage both to the engineer and the environment since the hydraulic load on the sewer 

system will be reduced and a more "natural" hydrological cycle will be maintained. The 

increased movement of water through the aeration zone will eventually create better 

conditions for groundwater recharge provided the pollutant loading can be minimised. 

Permeable pavements are specifically designed in an attempt to increase infiltration rates. In 

addition to their potential for decreasing storm flows and allowing water to be lost by 

evaporation (Jackson and Ragan,1974; Carleton,1990,a), they may through appropriate 

design, be used to decrease the pollutant loads of infiltrating waters (Aulenbach,1988; 

Rajapakse and Ives,1990). 

2.1.4 Water Quality. 

The urban environment concentrates populations and pollutants associated with anthropogenic 

activities (especially heavy metals (Nriagu, 1979; Gibson and Farmer, 1984)). 

2.1.5 The impact of contaminants. 

What is contamination ?. 

Contamination occurs when pollutants are introduced into a system. Pollution has been 

defined by the Royal Commission on Environmental Pollution (1984) as: 
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the introduction by man into the environment of substances or energy liable to cause hazards 

to human health, harm to living resources and ecological systems, damage to structures or 

amenity, or interference with legitimate uses of the environment. (p46) 

Sources of pollutants. 

Within the human-created environment there are many sources of pollutants including: 

atmospheric fallout; industrial effluent; domestic effluent, which includes incinerator 

emissions; vehicles; leaching from waste dumps; and urban stormwaier runoff. The various 

sources can generally be divided into two broad categories which are: 

a) Point pollution sources; 

b) Non-point pollution sources 

(FOrstner, 1979; Walling, 1981; FOrstner and Wittmann, 1983 ). Point pollution sources occur 

where the pollutants are emitted into the environment from a single source. These are usually 

easier to both control and monitor. Non-point pollutant sources are more difficult to monitor, 

examples being atmospheric fall-out and the application of de-icing salts on roads (Novothny, 

1984; Brinkman, 1985). 

Rutherford (1988) outlined nine sources of pollutants specifically associated with toxic heavy 

metals: 

a)Animal metabolic processes 

b)Sewage, sludge and effluent 

c)Domestic waste disposal (point source) 

d)Industrial waste disposal (point source) 

e)Agricultural plant protection and fertiliser application 
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f)Urban expansion 

g)Industrial extraction processes: smelting and mining 

h)Precipitation 

i)Automobiles. 

Six out of the nine listed above are non-point pollution sources, with only domestic waste, 

sewage and industrial waste being point pollution sources, however, there will be a proportion 

of these two which will eventually be incorporated into the non-point pollution category. For 

example, emissions from incinerators burning industrial and domestic waste are often 

dispersed to urban surfaces (Elliott and Pratt, 1989). 

With a point pollution source, discharge consents formatted within a legislative framework 

(for example the Water Resources Act (1991); Surface Waters (Dangerous Substances 

(Classification) Regulations 1989 (SI 1989 No.2286;HNISO)), can be established in order to 

regulate the concentration of pollution that is discharged into receiving waters. This will 

reduce the possibility of accidental acute shocks of pollutants entering the fresh-water system, 

but it may produce chronic long-term effects (Thorns, 1987; Crabtree and Clifforde, 1989). 

However, once a discharge consent has been established, it is at least possible to monitor the 

pollutant discharge and possibly reduce it. 

Non-point pollution discharges are more difficult to quantify and it becomes more difficult to 

establish a budget for emissions within an environmental system (Field and Pitt, 1990). It has 

been shown, for example by Loehr (1984), that overland flow and streamflow are the main 

carriers of non-point pollution. This is because there is a higher percentage of =off which is 

"overland" and which reaches the drainage system rather than infiltrating into the ground. 

17 



Non-point pollutant sources in the urban environment have been associated with industrial 

developments (Whipple, 1981) and high levels of heavy metals have been linked with road 

pollution (Hedley and Lockley, 1975; Hamilton-Taylor, 1979; Hamilton et al., 1984; 

Morrison eta!., 1984; Palmgren and Bennerstedt, 1984; Williams, 1987; Warren and Birch, 

1987), especially cadmium, which is produced by the attrition of car tyres (Johnston and 

Harrison, 1984). Road surfaces are not usually permeable and the pollutants rest on the 

surface where they are entrained during overland flow (Diniz, 1978). 

Lindholm and Balmer (1978) observed a correlation between pollutant loadings and the 

percentage area of impermeable surfaces in the catchment. They also observed that runoff 

occurs only for 5-10% of the year, with the consequent effect that pollutant loadings are 

concentrated during this short time. For example, they monitored the runoff from a 15 minute 

rainfall event and found that the concentration of organic matter from a 10 ha catchment had 

similar levels to untreated domestic sewage from 160,000 people. Bradford (1977) also 

showed that the shock load of urban stormwater runoff could be 100 to 1000 times greater 

than sanitary waste water. This is possibly due to the fact that when urban stormwater runoff 

occurs it entrains pollutants which have been gathering on urban surfaces over long periods of 

time and transports them often within a small total volume of water. 

In order to reduce these concentrations the percentage area of impermeable surfaces could be 

decreased, thus encouraging the attenuation of storm flows within the urban environment and 

increasing the possibility of on-site retention of sediment-associated pollutants. 
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It has been observed that the degree of sediment-associated pollution in urban areas can be at 

least four times greater than that found in rural areas (Nriagu, 1979; Ellis and Revitt, 1982; 

Lord, 1987; Elliott and Pratt, 1989). Figure 2.2 illustrates the pathways of dissolved and 

sediment-associated pollutants within the urban environment (FOrstner, 1979). 
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Figure 2.2 The pathways of pollutants within the urban environment (after FOrstner, 

1979). 
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Concentration of pollutants and the "first flush" phenomenon. 

Within the urban environment, pollutants will rest on the impermeable surfaces until they are 

removed by sweeping and aeolian processes, or are incorporated into urban stormwater runoff 

which is generated during a precipitation event. The residence time of these pollutants 

depends on the magnitude and frequency of precipitation events, but residence time is usually 

not as long as the possible residence time on "natural" surfaces. Once pollutants are entrained 

within the stormwater runolt the peak concentrations are usually in advance of the peak 

water discharge (FOrstner and Wittmann, 1983; Knighton, 1987). This is often referred to as 

the first flush phenomenon. 

Non-point pollution discharge cannot be regulated; it is influenced by a number of factors; for 

example pollutant dispersal on roads is influenced by density of traffic, wind speed and 

direction (Jones and Tinker, 1984), intensity and duration of rainfall events. However, 

removal of particulate-associated pollutants during the early rising stages of the hydrograph 

inevitably means a short, but concentrated, shock of pollutants to the stormwater runoff and 

receiving watercourses (Lindholm and Balmer, 1978). It is not the pollutant loading over the 

year that is important, it is the concentration at a certain time and the dilution of these 

concentrations, which govern the survival of freshwater biota. 

The first flush of p ollutant loads in runoff can be controlled by the use of combined sewer 

systems (Cherrered and Chocat, 1990), which allow the most polluted water during the initial 

stages of the hydrograph to be directed to treatment plants. The less polluted water can then 

be re-directed, if necessary, into fresh-water systems. Whipple,(1981) illustrated the benefits 

of using detention basins to allow particulates and their associated pollutants to settle from the 
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stormwater rwiog showing that 14-34% of total sediments were removed during peak flows 

and 83-90% of annual suspended sediment load was removed, if detention storage was 

released over a 30-40 hour period. Mesuere and Fish (1989) also discovered that small-scale 

detention ponds are a useful management practice for controlling runoff and the associated 

pollutants from parking areas. These practices were seen to reduce the pollutant 

concentrations reaching receiving waters. 

Research has also shown that polluted stormwaters are placing stres-s on receiving water 

systems (Ellis, 1989). The provision of roads for the increasing traffic flows exacerbates 

metallic and organic pollutant loadings (Johnston and Harrison, 1984; Lygren et al., 1984; 

Mikalsen, 1984; Lord, 1987). Yousef and Wanielista (1986) discussed the stormwater runoff 

from highway bridges over lakes where they found that the heavy metals in dissolved form 

settle out at the point of release into the lakes and become immobilised on sediments. The 

sediment on the bottom of the receiving waters holds the heavy metals and the benthic 

organisms accumulate high concentrations of heavy metals. They suggested that stormwater 

percolation in adjacent land should be encouraged with the removal of heavy metals before the 

runoff reaches the receiving waters. Research suggests that detention devices of some kind 

would be of benefit in order to reduce the impact on receiving systems. 

Numerous research projects have shown that heavy metal concentrations are associated with 

the sediments on which they adsorb (Hamilton-Taylor, 1979; Fizirstner and Wittmann, 1983; 

Mesuere and Fish, 1989; Ellis, 1990), with cation exchange capacity generally increasing with 

a decrease in grain size (Kennedy, 1965). Heavy metals in the urban environment have 

significant health impacts on the population; for example, Gibson and Farmer (1984), studied 
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the lead ingestion by young children in Glasgow and found that on average they ingest 100 mg 

of dust per day which has a daily mass of lead of 26 micrograms. 

Cline and Upchurch (1973) found that heavy metal concentrations are correlated with organic 

carbon concentrations and that in soils the upper 5-10 cm are where concentrations are 

greatest, although this was dependent on bacterial absorption mechanisms. Ellis (1990), also 

found that the presence of organic material was important for pollutant removal. He 

suggested that the removal of solids in stormwater runoff through sedimentation and filtration 

can effectively reduce the pollutant load. 

Measurements of heavy metal concentrations near roads have shown a dramatic decrease in 

concentration with an increase in the distance from the road surface (Johnston and Harrison, 

1984; Lygren eta!., 1984; Jones and Tinker, 1984; Warren and Birch, 1987; Deronne-Bauvin 

et al., 1987; Williams, 1987; Tam eta!., 1987). If sediments contained in stormwater runoff 

can be retained on-site, either by filtration or sedimentation within the road surface, the 

pollution associated with the sediments can be retained, thereby reducing the pollutant 

concentration in stormwater runoff which reaches the watercourses. 

A gravel matrix can effectively filter turbid water; for example stormwater runoff with a 

sediment load (Rajapakse and Ives, 1990). Sand column infiltration experiments have also 

shown that heavy metals can be removed by simply directing sediment-loaded waters over 

sand (Aulenbach and Chan, 1988). Since most stormwater runoff contains sediment particles 

(Ellis et al., 1982), especially clays and silts, a simple gravel matrix (for example below a car 
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park surface) could be used to act as a primary screening site for sediments in stormwater 

runoff. 

2.1.6 Conclusion. 

There seem to be two main problems to approach when attempting to alleviate the detrimental 

environmental impacts of urbanisation; firstly, the return to, or maintenance quasi-natural 

runoff conditions and, secondly, the reduction and control of sediment-associated pollutants 

as they move through the urban drainage system. The logical direction of research would be 

to analyze the possibilities for retaining any excess runoff and pollutant loadings at source, 

with the intention of producing on-site reductions. With respect to the hydrological problems 

outlined above, this avenue of reasoning would allow precipitation to be directed into the 

ground. If a more natural hydrological response could be created, then the pollutants might 

be held on-site and filtered within suitable structures, causing the source area to be a managed 

sink for pollutants. This would decrease the sediment-associated pollutant loadings and 

concentrations in stormwater discharges within the storm sewers and also in those reaching 

the receiving surface water and groundwater systems. 

Results concerning the use of stormwater infiltration systems indicate that stormwater 

discharges within urban areas can be physically reduced by on-site storage (Raimbault,1990). 

This has been shown to reduce stormwater volumes reaching the sewers by 30% (Field et al., 

1982), which helps to alleviate the overloading of stormwater sewers, producing a slower rate 

of water movement within the urban system. Research on these techniques has shown an 

attenuation in the storm hydrograph (Raimbault,1990) but, in comparison, there has been little 

analysis focusing on the sediment/pollutant retention possibilities of such systems. It is 
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imperative that more intensive research should be directed to study both the rainfall and 

pollutant retention mechanisms within stormwater infiltration systems. The next section 

reviews the historical approach of engineers and hydrologists to the control of stormwater 

runoff since the 1960s. 

2.2 Changes in philosophy in the control of urban runoff 

2.2.1 Philosophical changes, 1960s-1970s. 

The traditional approach to the control of increased stormwater runoff in urban areas has been 

an "end of pipe" solution (Newson, 1992). Such a solution evacuates the runoff quickly from 

problem areas via man-made conduits to areas, usually on the outskirts of the urban 

environment, where it can be dealt with. This approach is the antithesis of integrated 

catchment planning, whereby smaller scale controls are exercised throughout the whole 

catchment in an attempt to control the increase in stormwater discharges (Gardiner, 1991). A 

change in the philosophy to urban stormwater control by the engineer can be seen from the 

1960s onwards (Mc Pherson, 1977). 

The problems associated with increases in stormwater discharges were well documented 

(Leopold, 1968), as was the need to alleviate the detrimental impacts downstream. By the 

early 1970s, data from a number of research projects (eg; McPherson, 1977; Aitken, 1977) 

had been collated and preliminary suggestions for the alleviation of urban stormwater 

problems were proposed. Papers presented at a number of symposia and meetings (e.g 

McPherson, 1977) illustrated that there was a need to model the effect that urbanisation was 

having on the hydrological cycle. The research undertaken involved comparative studies; for 

example studies on paved and unpaved areas and on pre/post-development impacts on basin 
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hydrology (McPherson,1977). This research led to a better understanding of the impact 

which humanity was having on the hydrological regime in the environment and the benefits of 

using new "state-of-the-art" techniques to minimise the impacts downstream. 

Following these developments, a number of models were developed which examined the 

effects that varying rainfall intensities and durations would produce on the drainage system. 

These included the development of planning models, design/analysis models and operational 

models (Mc Pherson, 1977). 

By the mid 1970s a secondary anthropogenic impact was beginning to be appreciated i.e. the 

poor quality of urban stormwater runoff. It was obvious at the time that many countries had 

not considered this problem (Ramashars and Sarma, 1977; Marsalek, 1977). However, a 

number of Scandinavian countries, as well as America, Australia and Germany, had started to 

study the quality of stormwaters (Aitken, 1977; Lindh, 1977; Lindholm and Balmer, 1978) in 

addition to changes in hydrological response. 

2.2.2 Philosophical changes, 1980s onwards. 

By the 1980s emphasis in the engineering hydrological literature was being placed on methods 

of detaining stormwaters. Australian interest in urban hydrology had expanded (since Aitken, 

1976) and research was promoted into the study of detention systems, especially on-site 

retention storage (Carleton, 1990). Modelling of rainfall/runoff relationships had begun and 

the awareness of the impacts of stormwater quality was growing rapidly (Carleton, 1990). A 

similar situation existed in Canada where research concentrated on urban runoff data and on 
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the impacts that the stormwater quality had on receiving waters (Marsalek, 1977). Storage 

ponds and inlet controls for "dual" drainage or combined systems were researched. 

Developments in the U.K. included the completion and release of the Wallingford Procedure 

(Lowing, 1977); urban catchment research (including pollution analysis) and a number of 

specialist studies, which monitored pollution runoff from urban areas (Fletcher et al, 1978; 

Pratt and Adams, 1984). Flow reduction in the drainage system was also studied, with 

research suggesting a number of ways in which peak flows could be attenuated. This included 

designs to pass more roof runoff to permeable areas; using attenuating storage tanks to 

control runoff from paved areas; and the use of semi-permeable roads or pavements (Colyer, 

1977). 

In Sweden, studies illustrated the importance of using both separate and combined stormwater 

sewers appropriately (Lindh, 1977). The Netherlands were more experienced in the use of 

combined systems after investing a great deal of capital in urban stormwater control (Lindh, 

1977). Infiltration research was well established, as was the monitoring of stormwater quality 

(Zuidema, 1977). Finland also had developed research into stormwater infiltration primarily 

using retention basins, but it was apparent that the effect of fine material on infiltration, which 

caused clogging, needed to be researched further (Zuidema, 1977). 

In France, the main approach to reducing peak flows was to use retention basins and porous 

roadways (Desbordes and Normand, 1983; Balades and Chantre, 1990). This research was 

one of the more progressive in Europe, which had already seen significant advances in the 

modelling of urban runoff by the 1970s. During the 1980s urban runoff p ollution levels were 
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identified as being a cause for concern (Raimbault et al. , 1982). One approach to solve this 

problem was to reduce the quantity and increase the quality by: 

a)retarding the flow in the drainage system; 

b)reducing the flows entering the sewer system and; 

c)reducing the contact time of stormwaters with the pollutants. 

Desbordes and Hemain (1990) also discussed further research needs concerning the impact 

-
assessment of urban stormwater pollution. Stormwater infiltration systems were beginning to 

be developed and the phrase "source control" was being widely used (Desbordes and 

Normand, 1983; Balades and Chantre, 1990; Raimbault, 1990: Pratt, 1995). 

In general, the approach to the control of urban stormwater had moved, at least internationally 

if not in the UK, from the use of traditional "end of pipe" solutions (using detention structures 

and other financially and land-intensive strategies) to a catchment management strategy (using 

local small-scale, on-site control methods). The following section describes some of the 

techniques and devices used. 

2.3 Approaches used to control urban runoff 

The control of urban runoff has been approached from numerous directions which can be 

summarised into four main categories: 

i) an increase in the capacity of the drainage system; 

control of the flows entering the sewer system and watercourses; 

iii) attenuation of flows within the drainage system; 

iv) reduction of flows entering the drainage system. 

27 



	
	

	

I I 

Approaches Used to Control Urban Runoff 

Increase the capacity of Control flows entering I Attenuate flows within the Reduce flows entering 
the Drainage System the sewer/water courses drainage system the drainage system 

Modify 

Rooftop Storage 
Flow control h 
down pipes 

Control of flow from 
gulley outlets 

Charnel 

Flood 
storage 

Over sized 
sewers tanks 

Off-line 
tank 

Storage ponds and 
retention/detention 
basins 

Diversion Infiltration 

Large scale- Small scale-
Divert to InfiltrationDivert roof Plane Basin Swales I I Soakaways Infiltration 
adjacent boreholesrunoff Infiltration Infiltration Trench 
basin 

Figure 2.3. The traditional and modern approaches used to control urban stormwater 

runoff. 

These approaches are summarised in Figure 2.3. 

2.3.1 Increasing the capacity of the drainage system 

Within the natural drainage system this method involves channel enlargement works by 

deepening the channel (by dredging); raising the river banks; or widening the channel in an 

attempt to increase the capacity of the drainage system, thus confining waters that may derive 

from flooding upstream (Keller, 1976; Gardiner, 1991). The urban drainage system can be 

enlarged by the installation of large sewer networks with oversized pipes; but the 

disadvantages include economic factors and the disruption of the urban environment and the 
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drainage system downstream. However, if no alternatives are available, it is generally 

considered favourable to convey the runoff downstream as efficiently and quickly as possible 

(Gardiner, 1991). 

This strategy echoes the traditional "end of pipe" solution to urban runoffproblems. With the 

growth of integrated catchment planning and sustainable management, this approach of 

transferring the problem downstream is unlikely to be tolerated by the regulating authorities. 

2.3.2 ControLling the flows entering the sewer or water-courses 

This approach aims to divert, or attenuate, the flows before they reach the main drainage 

system. Techniques include: 

a) roof top storage, which has the advantage of maximising the attenuation of the storm 

hydrograph and the reduction of peak flows in the sewers (Balmforth, 1990), but has the 

disadvantage of high installation costs and stress to the building. About 60% of stormwater is 

derived from roof surfaces and the reduction of roof water discharges by on-site storage has a 

more significant impact on downstream flows than corresponding interception of runoff from 

paved surfaces during the same storm event (Pratt and Harrison, 1982). 

b)Flow control in downpipes, directs the flow from roof surfaces into storage tanks or 

underground chambers instead of into the drainage system. The disadvantages of these 

systems include difficulty in outflow control; device maintenance; and the regulatory 

authorities lack of interest in adopting such systems due to their non-permanent nature (Beale, 

1992). 
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c)Control of flow from gulley outlets, which restrict or reduce the capacity of the outlet pipe 

consequently allowing, under extreme conditions, surface flooding in non-critical areas, such 

as car parks (Zeno and Palmer, 1986). 

2.3.3 Attenuation of flows. 

Attenuation is, in general, the reduction of peaks in the storm hydrographs through the 

extension of the period of discharge, thus avoiding periodic overloading of the drainage 

system (Whittow, 1984). By reducing these peaks in discharge, the system has more chance 

of coping with the total flow volume without surface flooding. Various strategies include: 

a)Flood storage. This strategy re-directs excess flows to areas where surface detention or 

retention is tolerated, providing a localised cost-effective method of dealing with excessive 

discharges. Partial retention systems have been beneficial in Orlando (USA), allowing for the 

attenuation of the hydrograph and a reduction in the pollutant load entering surface waters 

(Zeno and Palmer, 1986). By on-site retention of the first 12 5 mm of rainfall, some 80-85% 

of pollutant loads were controlled and prevented from entering the receiving waters (Zeno and 

Palmer, 1986). The water retained can then infiltrate or evaporate, but the water retained 

must be disposed of within 72 hours to provide for storage volume for subsequent events. 

b)Oversize sewers. This strategy allows flood discharge to be stored subterraneously, where 

surface flooding is not possible. However, sewer dimensions must ensure that the pipe design 

has a channel which will reduce the possibility of sediment deposition (Beale, 1992). 
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c)On-line tanks. This strategy incorporates storage tanks along the length of the sewer 

system. The outlet structure to a tank controls the release from storage. Outlet control can 

be an orifice; a throttle pipe; a flume or weir; or a vortex control, such as a hydrobrake. The 

precision of control of these systems will depend on requirements and costs may be high 

(Novotny, 1984: Novotny, 1994). 

d)O(e-line tanks. This strategy diverts flow to storage tanks that are separate from the 

drainage system. Return into the sewer system can be by gravity or by pump (Beale, 1992). 

e)Storage ponds and retention/detention basins. 

This strategy allows for storm sewer flows to be stored on the surface or below ground. 

These systems can be on-line or off-line and often have a secondary advantage ofpollution 

control (Whipple, 1981; Yousef and Wanielista, 1986; Livingston, 1986). These basins are 

usually man-made and differ from (a), since their primary function is storage over an extended 

period of time. Jacobsen (1993) suggested that the infiltration of stormwater, instead ofjust 

detaining it, would have a positive effect by reducing the loadings which reach treatment 

facilities. 

2.3.4 Reduce flows entering the drainage system 

This approach has two main strategies, namely diversion and infiltration. 

a)Diversion. On a macro-scale this strategy incorporates the diversion of flows into adjacent 

catchments, but the applicability is limited due to cost and to the feasibility of adjacent 

catchments being able to cope with the increase in discharge volumes (Beale, 1992). On a 

micro-scale diversion can be achieved by diverting roof runoff onto grassy areas or surfaces 
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which allow for direct infiltration. The percentage area of roof surface in an urban area is 

relatively high; approximately half of the sealed surface in urban areas in central Europe 

(Forster, 1992). This method could be an effective way of reducing flows entering the 

drainage system (Hydraulics Research, 1982). 

Wnfiltration. Infiltration and source control techniques are receiving more interest 

internationally as regulating bodies adopt them (ClRIA, 1992). In the UK, this technique has 

been used for decades, even centuries (CIRIA, 1992) but lack of long-term performance 

details has meant that their formal adoption has been slow. The method removes surface 

runoff from the drainage system by allowing it to infiltrate into the soil, increasing the 

possibility of recharge to groundwater and also increasing the opportunity of water loss by 

evaporation. This method attempts to maintain pre-development runoff levels by encouraging 

infiltration, thus reducing runoff volume and velocities, and also attenuating the storm 

hydrograph. There are a number of strategies adopted namely: 

i)Plane infiltration. This strategy uses flat, grassed or paved areas as a surface through which 

the runoff can infiltrate (Stahre, 1992). If the sub-soil is impermeable, drains may be installed 

and the throughflow can be dispersed into a drainage system or, alternatively, into a grey 

water system for re-use (Pratt, 1993). If the latter procedure is implemented, the system 

becomes more of an attenuation device. 

ii)Basin infiltration. This method conveys runoff from other areas to a basin where 

infiltration can occur at ground surface level in the retention area. This strategy can enhance 

the aesthetic qualities of the urban area (Amaki, 1990), with the design of the system being 
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dependent on the location and the possible dual use of the surface, i.e., for car parks or 

landscaping. Maintenance of these systems is relatively simple, but the responsibility for the 

maintenance will depend on the location of the device (MIA, Vol.2, 1992). 

iii)Swales. This method allows for the storage and infiltration of runoff in shallow-sloped, 

grassed ditches (side slopes typically of 1:4 or less to allow easy maintenance). They are 

common in North America (Scholl, 1987) and have the advantage of adding to the aesthetic 

quality of urban developments. These systems can also be used to convey runoff to a more 

central infiltration device. 

iv)Soakaways. This method of infiltration is common in the UK, previously being used in 

areas remote from a sewer or watercourse. More recently, these systems have been used in 

urban areas to reduce the nmoff volumes. The BRE Digest 151 (1973) design approach 

stated that assuming that the soakaway is cylindrical in shape, with a diameter equal to the 

effective depth, the soakaway is sized such that the rate of exfiltration from the soakaway into 

the surrounding soil equals the design rainfall rate, which has been taken as 15 mm h -1, being 

equivalent, on average, to that occurring in a 2 hour storm once in 10 years. 

The design of soakaways has been updated recently (BRE, 1991) allowing the size to be 

determined from specified shape and soil infiltration characteristics. Construction of these 

devices may take many forms, being singular or linked, and may use a range of materials, 

depending on requirements. Hydraulics Research Ltd have recently completed a project 

examining the design and the performance of these systems (Watkins, 1992). 

33 



v) Infiltration trench. These systems are stone-filled trenches which can receive runoff 

directly from the surface or through perforated or porous pipes. They are more effective than 

circular or square soakaways since they have a greater surface area for exfiltration relative to 

the volume of storage. They are a popular method used in Sweden mainly for the infiltration 

of roof runoff (Holmstrand, 1984; Jonasson, 1984). Japan has used this technique in its 

experimental sewerage system in the northwest area of Tokyo (Fujita, 1993). Peak flow 

reduction has been shown to reach 60% and both the cost of construction and the reduction in 

the acquisition of land makes the use of these systems very favourable. 

vi)Infiltration boreholes. This method is not used to a great extent in the UK, often being 

restricted to the infiltration of less polluted nmoff such as that coming from roof surfaces 

(Beale, 1992). 

Infiltration techniques are, in general, small scale and are usually used as an on-site strategy to 

reduce the volume of stormwater entering the sewer system. By controlling the discharges 

on-site, in an attempt to maintain pre-development discharge rates, the problems associated 

with larger detention devices (I. e. land acquisition, cost and maintenance) are reduced (Amaki, 

1990). The main problem to overcome with the use of these infiltration techniques is that 

their maintenance requirements are still relatively unknown in the UK and a lack of 

performance knowledge 'finders their adoption by water companies and regulating authorities. 

2.4 Specific research on permeable/porous pavements. 

There are many strategies employed to counteract the detrimental impacts of urban runoff 

The research aims of this project were to examine the hydrological behaviour of one of these 
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structures, a type of plane infiltration system known as porous/permeable pavements. 

Previous research illustrating the advantages and disadvantages of using this technique of 

stormwater control will be examined in the subsequent discussion. 

There are two main types of engineered permeable pavement: the first being composed of a 

porous Macadam surface and the second being formed from concrete blocks or lattice paving. 

The first option has a greater structural strength and, therefore, has a wider applicability to the 

urban road system. 

Different countries have differing approaches and designs and examples from a number of 

countries will be examined independently. 

2.4.1 Permeable pavement research in America. 

There are various types of porous/permeable pavement ranging from permeable Macadam to 

concrete porous pavements, such as grasstone and grasscrete. Their uses are limited usually 

to parking areas and roads carrying light loads. Field et al. (1982) gave an overview of 

porous pavement research in America. The paper discussed how the approach to stormwater 

management had moved from quick elimination of the runoff to the adoption of techniques 

that attempted to maintain the natural or pre-development runoff levels through on-site 

controls. Design philosophy was discussed, as were a number of projects, for example EPA 

research projects, at Rochester,(Murphy et al. , 1981). The research in Rochester on two 

parking sites illustrated a number of positive benefits of using these surfaces, especially the 

fact that the peak runoff was reduced by as much as 83% and that the structural integrity of 

the surface, even after 100 freeze-thaw cycles, was maintained. 
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Another advantage of using permeable Macadam is that the drainage capacity of the surface 

allows surface water to be removed effectively, thus eliminating vehicle hydroplaning, because 

the coefficient of friction between the vehicle tyre and the surface (highway or runway) is 

similar to that of dry conditions (Jones, 1973; Field eta!., 1982). 

The Maryland Department of Natural Resources published a Standards and Specifications for 

Infiltration Practices (Anon, 1984), which included a section on the design of porous 

macadam pavements. The discussion included feasibility testing metho-ds, design methods and 

design procurement. In general the design method was based on controlling the runoff 

resulting from a specific frequency of storm event. The required design volume of the 

sub-base stone was calculated from equation 2.4.1. 

Vw=QA,, + PAR - FTAp Equation 2.4.1 

Vw=Volume of water that must be stored 

QA0=runoff volume from the adjacent contributing area 

PAp=Rainfall volume falling on the porous macadam pavement 

FTAp=exfiltration volume into the underlying soil. 

The design method dimensioned the structure by minimum depth and minimum area. 

Jackson and Ragan (1974) provided a more theoretical approach to the examination of the 

hydrology of porous pavements, using the Boussinesq equation in order to produce design 

equations and graphical aids for the engineer. The equations were based on assumptions 

made by the Franklin Institute Research Laboratories (1972) on the performance of porous 
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pavements. The numerical models gave an insight into the hydrological modifications, if a 

complete drainage system was constructed using porous pavements. The approach was 

entirely theoretical and did not consider practical problems, such as surface clogging. 

Research on the economics of installing these systems, undertaken by the Franklin Institute 

(Thelen et a/. ,1972) found that the installation of a conventional pavement with any 

downstream sewer works due to increased flows was of higher cost than a similar area 

installed with a porous Macadam pavement which would not cause any downstream sewer 

works. However, the cost of these systems were very site specific, as was their adoption. 

Scholl (1987) illustrated this point in a short paper examining the various techniques 

considered when a parking lot was designed at the University of Florida. The costs are given 

in Table 2.4.1. 

The porous pavements were not adopted due to the higher construction costs, in particular the 

transport costs for the import of the stone sub-base material, and due to the limited 

experience of these systems. Grasscrete structures have also been researched in America. Day 

et al. (1981) illustrated the significance of these structures for decreasing overland discharge 

and reducing pollution. However, the lattice structures have the disadvantage of low 

structural strength and decreasing permeability due to compaction of the soil-filled inlets over 

time. 

Table 2.4.1. Costs of surface construction. (After Scholl, 1987). 

Porous Pavement $630,000 

Conventional Facilities $535,000 

Difference $95,000 
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2.4.2 Permeable pavement research in Sweden. 

In Sweden, a permeable/porous pavement, called a "unit superstructure", has been intensively 

studied since 1981 (Hogland eta!., 1987). The first surface was built at Nodinge in 1981. 

The construction consisted of 

a) permeable Macadam, 40 mm thick called Drainor (trade name),with a surface void 

volume of 15-25% of total volume, 

b) an adjustment layer consisting of an aggregate bed (size fraction 8-80 mm some 

60-200 mm thick and a sub-base 300-700 mm thick depending on the required storage 

capacity, 

c) a drainage pipe 100 mm diameter installed with sub-base to convey waters out of the 

construction to a nearby watercourse or sewer (the sites were all on impermeable soils, 

hence infiltration to groundwater was impossible) 

d) a layer of geotextile, which reduced particulate penetration to the sub-grade. 

The surface measured 950 ne. Infiltration tests were carried out 41/2 years after the 

construction of the surface. The results showed an average infiltration rate of 64 8 mm 

with a maximum of 199 8 mmh-1, which was still 60 times higher than the infiltration capacity 

of an ordinary old lawn (Hogland et al., 1987). 

In Lund, the test areas, built in 1984, comprised two parking areas measuring 470 m 2. A 

number of other test surfaces were built in Sundsvall. The infiltration capacity of new 

surfaces ranged from 498-702 mmh-l (Hogland, 1990). The disadvantage of these structures 

was that they became clogged during the construction phase of the development, mainly 

because the site workers were untrained to work with this new type of surface. This was also 

noted in Lund, where the infiltration capacity was dramatically reduced. The surface clogging 
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could only be removed efficiently if brushing and vacuum suction was used in combination 

with a high pressure spray. 

The test sites in Sundsvall were chosen because of the cold climatic conditions in that region. 

The research identified that the 'unit superstructure' showed the same, or less, sensitivity to 

frost damage (possibly due to the higher void ratios). 

-
Other research (Niemczynowicz, 1990) reported an 80% decrease in peak flows from the 

sub-base drains as compared with drain flows from traditional impermeable surfaces, which 

was significant since these surfaces covered a total of 7,000 km' in 1990. However, the 

volume of runoff will remain the same if the throughflow is evacuated to the sewer system. 

Overall the cost of construction was estimated to be 25% cheaper than for traditional 

pavements, because construction was simple and quicker and local stone costs were low. 

Pollution studies on these structures have been carried out by Hogland (Hogland, 1990; 

Hogland et al., 1990). Within the structure (comprising of Macadam, adjustment layer, 

aggregate bed, drainage pipe in coarse aggregate, a pervious geotextile and the soil), the 

highest levels of trapped pollutants were detected in the geotextile, which prevented clay 

particles from penetrating into the soil below the lowest part of the structure. The 

accumulation of pollutants was suggested to increase with time, which might affect the 

maintenance requirements. Overall, the pollutant concentrations in all layers were low, but 

this was partly explained by the age of the structure (being only one-year old), however, there 

was no significant build up of pollutants in the underlying soil. This was also found to be the 
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case in the laboratory studies which simulated a thirty-year use of the structure (Hogland, 

1990). 

2.4.3 Permeable pavement research in Japan. 

In Japan infiltration devices are used to reduce the flooding by stormwater caused by 

increased runoff due to urbanisation. Land is limited, so alternative methods for detaining 

stormwater had to be found which did not demand large land areas for storage (Fujita and 

Koyama, 1990). Examples included permeable Macadam, which could be used in certain 

areas (Tsuchiya, 1978). Ichikawa et aL (1984), described the use of a pervious pavement at a 

baseball pitch at the University of Tokyo. The structure included: a) two layers of 50 mm 

thick pavement, b) 100 mm to 300 mm crushed gravel, c) 50-100 mm sand. The hydrological 

performance was monitored and it was noted that only 5.9% of the rainfall was discharged. 

However, the rainfall during the research period was lower than normal. 

Fujita (1984) described the experimental sewer system in Tokyo (called the E. S. S.) which had 

been installed in about 249 ha of urbanised area since 1980, in order to reduce runoff which 

might cause downstream flooding due to over-bank flows from the Shakujii and Slaiako rivers. 

Flood problems were exacerbated by the fact that the widening of these rivers was restricted 

by buildings on both banks. Infiltration techniques included permeable pavements, which 

were laid as footpaths, narrow roads and parking areas. Heavy traffic had caused problems by 

clogging the structures. Their application has, therefore, been limited to low traffic density 

areas. Fujita (1993) described the development of the E. S. S. with regards to the use of 

permeable pavements. In Setagaya, Tokyo, the total road area was 7,600 km2, of which 354 

km2 or 4.7% being covered with permeable pavements. For the total road area of Tokyo 

40 



(149.68 km2), the estimated area covered by permeable pavements was 3.74 km2 or 2.5%. 

Both porous concrete blocks and Macadam were used. 

2.4.4 Permeable pavement research in France. 

Balades et al. (1990), discussed the experiments made by the Bordeaux Municipal Council in 

the drainage system in order to reduce stormwaters. Large constructions, such as storage 

reservoirs (eg, beneath football pitches) and other capital intensive projects, have not been 

adequate to cope with the increasing runoff produced by urbanisation (he surface area which 

has a risk of flooding was 135 km2 out of 640 km2 (Balades eta!., 1992)). The council had 

found it financially difficult to maintain these types of projects and gave itself statutory powers 

to use "compensating techniques" (infiltration techniques) in an attempt to alleviate these 

problems. Financially, these techniques were favourable because they reduced costs (those 

involved with the laying of pipes) by 20-30%. They also had the added advantage of being 

easy to integrate into the urban environment; and they promoted the maintenance of a 

quasi-natural hydrological budget. 

Permeable pavements (carriageway reservoirs) were used as an integral part of the roads, 

providing sub-surface reservoirs for rainfall which could be temporarily stored before release 

into the drainage network. Surface coverings included porous Macadam; foam mortar cement 

concrete; honeycombed concrete flagstones; ungraded, run-of-pit coarse gravel; and foam 

mortar paving stones. The choice of surface depended on the site's specific structural 

requirements. Table 2.4.2 illustrates the storage space available for water in some examples 

of the sub-structures, which also exhibited adequate mechanical properties. 

41 



The clogging of these devices has been reduced by regular maintenance in the form of suction 

sweeping. Raimbault (1990) discussed aspects of the carriageway structures 

(porous pavements) including their importance as reservoir structures. He examined the 

performance of these structures by injecting water into the sub-base areas. Initial results 

showed that, even though clogging of the surface occurred, it was limited to the top 10 mm, 

implying that the storage capacity was unaffected. Raimbault discussed a number of projects 

and illustrated the utilisation of porous pavements (Raimbault eta!., 1982; Raimbault eta!., 

1987). Pollution studies on pervious roads were conducted in 1991 by -Colandini (1993) in 

response to a perceived lack of knowledge on the effects that these systems can have on 

groundwater. The site was a car park structure with a retention zone of 200 m 2 in Begles 

(Gironde, France). The structure consisted of a) porous Macadam 80 mm thick, b) 170 mm 

of coarse bitumen-stabilized graded aggregate, c) cobblestones, d) sand layer, e) geotextile, f) 

Nidaplast, a honeycomb plastic structure which increases the water storage capacity, g) 150 

mm sand. The results indicated that the highest pollutant concentrations were found at the 

surface and close to the drainage pipes. The conclusion was that regular cleaning of the 

surface would reduce the risk of pollutants being stored in the structure or, worse, being 

conveyed through the structure into the groundwater. 

Table 2.4.2. Storage space available in sub-structures. (After Balades et A, 1990). 

Bituminous 
draining 
base course 

Coated 
draining 
material 

Foam mortar Nidaplast- ductile 
honeycombed 

Total 20% 20% 15-25% 90% 
space 
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2.4.5 Permeable pavement research in the United Kingdom. 

The use of permeable pavements for the control of stormwater runoff has had a limited 

application in the UK, with few examples available. The use of grasscrete and similar 

concrete lattice structures could be said to be more widespread, with a large selection of 

commercial products. However, these structures have had a limited use, mainly for aesthetic 

enhancement, or for economic reasons, being rarely used for hydrological control. 

There has been on-going research into porous pavements which used a permeable concrete 

block structure (Pratt eta!., 1988; Pratt, 1989; Pratt and Hogjand, 1990; Pratt, 1992). This 

structure was developed at Nottingham, where two experimental car park surfaces were laid. 

One site was at the Clifton campus, Nottingham Trent University, built in 1986. The ground 

conditions were not favourable for infiltration, but the structure had a large storage capacity 

(100 mm rainfall) which could cope with any excessive rainfall events. The dimensions of the 

car park were 40 m by 5 m, with the structure comprising of. 

a) permeable concrete surface blocks (CeePy blocks); 

b) 70 mm of crushed gravel, 2-10 mm size fraction; 

c) geotextile; 

d) 200 mm of sub-base stone, which varied between the bays and included gravel, 

blast-furnace slag, limestone and granite. 

The structure was sealed at the base by an impermeable membrane, thus allowing the 

throughflow to be collected and analyzed (Mantle, 1987). The cost of construction 

(excluding the cost of the membrane) was £2300 for a car park with parking area for up to 16 
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cars, excluding some labour costs. This had a lower, and more favourable cost in comparison 

with a similar area surfaced with impermeable tarmacadam (Mantle, 1987). 

The second site was built on a Nottingham City Council car park (Gill Street) in 1985. It had 

a similar construction to the Clifton structure except that the sub-base stone was limestone 

and the gravel above the geotextile was of a slightly smaller size fraction (2-6 mm) 

Infiltration rates for the block surfaces were tested in 1987 and was found to be in excess of 

1000 mm h-1. This rate had decreased to 100 mmh 1 by 1993 due to clogging, but the surface 

had not experienced any maintenance during the six years (Pratt, 1993; personal 

communication). The reduction in the infiltration rates was less than those described by 

Hogland (1990), who found a reduction from 720 mm if' to 64.8 mm h 1 after 41/2 years. 

Laboratory simulations on the permeable surface blockage was undertaken at Nottingham 

(Pratt, 1989). The laboratory simulations of the blockage mechanisms applied two sets of 

stormwater samples (the first being gully pot liquor containing inorganic and organic particles; 

and the second comprising liquor from the washing of the gravels). The laboratory data 

suggested that the sediment was transported throughout the whole gravel bedding layer, 

fanning out immediately below the infiltration inlets. Sediment concentrations were 0.95% 

sediment (by weight of the sample from the infiltration inlet) in the upper half of the 

infiltration inlet; 0.65% in the lower half; 0-0.5% in the top half of the bedding material; and 

0.2-0.6% in the lower half The "fanning out" was restricted to the bedding material above 

the geotextile. A model was produced which suggested that it was extremely difficult to 

block the infiltration inlet and that the bedding material would be the first area to fill. 
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Research results from these structures illustrated a decrease in discharge by at least 30%, 

mainly caused by initial loss (surface wetting etc). The rainfall loss was found to be increased 

by the use of different sub-base material, as well as by increasing the depth of the sub-base 

stone (Pratt, 1989). These systems were suggested to have an efficiency of intercepting 

stormwater for up to ten years (CIRIA, 1992, Vol.2). Stormwater quality was also seen to be 

enhanced due to pollutant retention within the structures. 

The experience in the U.K of this type of system has been limited and, as the CIR1A report 

(1992, Vol.3) suggested, there is a need for additional research to examine the long-term 

performance of these structures. 

2.5 Summary. 

From the literature, a number of advantages and disadvantages of using infiltration techniques 

have been identified and are summarised below; 

Advantages: 

a) attenuation of the storm hydrograph; 

b) reduction in rainfall volumes reaching the sewer system; 

c) reduction in pollutants reaching the sewer systems; 

possible reduction in installation costs; 

e) contained structural integrity after frost action; 

elimination of vehicle hydro-planing; 

g) reduction in land required to detain stormwaters; 

h) partial return to "natural" hydrological conditions; 

i) possible increase in groundwater recharge. 
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Disadvantages: 

a) clogging, especially during construction; 

b) installation costs may be higher occasionally, but this is site specific; 

c) possible risk of groundwater contamination if the site has not been sufficiently 

surveyed; 

d) restricted to low density traffic areas due to structural strength and clogging problems. 

2.6 Areas identified for research. 

Having examined a wide spectrum of research projects, it became obvious that most of the 

research had dealt with the hydrological performance of the permeable pavements as a 'black 

box' study, only measuring the input and output in a crude manner To gain an improved 

knowledge on the hydrological performance of these structures, it was necessary to obtain 

detailed information on the hydrological processes and pollution/sediment retention 

mechanisms which were occurring within these structures. 

Few of the research projects had emphasised the importance of evaporative losses from these 

surfaces. If these structures were to be used extensively as reservoir structures, a proportion 

of the water in the reservoir could be lost by evaporation. To understand the hydrological 

regime of these structures, evaporation, as well as rainfall input and discharge, should be 

examined in detail. 

Clogging of the structures was also identified as a disadvantage, therefore, research was 

needed in order to ascertain the lifespan of the structures and the main areas of sediment 

retention within the structure. 
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Two areas were identified as lacking information in previous research projects: 

1) Research on detailed hydrological performance, including information on evaporation 

amounts; and 

2) Research on the clogging of the structures and the main areas of sediment storage. 

Permeable pavement research was already established in the UK on a surface used for car 

parking purposes (Mantle,1987; Pratt et al., 1989; Pratt, 1989; Pratt and Hogland, 1990). 

Research had examined a permeable pavement car park structure which used concrete blocks 

as a surface and illustrated the positive effects, both for stormwater runoff reduction and for 

sediment retention. In order to gain more detailed information on the hydrological 

performance of this permeable pavement, a car park structure similar to the one used at 

Nottingham was chosen for analysis. The same block surface was chosen because it used 

concrete blocks which were specially designed to allow for infiltration into the bedding 

material. This surface was also chosen because previous research (Van Dam and Van deVen, 

1984) illustrated that a block surface increases the possibilities of surface water storage by 

surface moistening, in comparison with other surfacing materials (eg concrete tiles). 

The previous research at Nottingham was a "black box" study and it was felt that more 

detailed information on the hydrological performance of the structure could be obtained if the 

structure was examined on a small size, but using a full scale model and under controlled 

laboratory conditions. 
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Chapter 3 - Experimental Design. 

3.1 Introduction 

The intention of this research project was to identify and measure the hydrological 

processes operating within a model car park structure. The processes that were 

considered essential for measurement and analysis were: 

1. Rainfall intensity, duration and frequency; 

2. Discharge rates and amounts; 

3. Evaporation rates and amounts; 

4. Retention rates and amounts. 

The large-scale experiments performed by Mantle (1990) on similar car park structures 

yielded information on the rainfall input, the drainage output and a calculated retention, 

but these latter data were not adequate to provide details of processes, such as 

evaporation, which occur continuously during and after a rainfall event. 

Two types of data were required in order to calculate and quantitatively assess the 

hydrological processes which were occurring in the model car park structures: 

a) detailed sequential rainfall input to and discharge from the model. This 

information was required in order to produce hydrographs and to allow 

calculations to be made of retention within the structure; 

b) data giving quantitative changes in the water volume (or weight) stored in the 

model structure before and after rainfall events, thus allowing the evaporation rates 

and amounts to be calculated. 
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There were three types of equipment which were designed and developed in order to 

gather the required information: 

1) the model structure; 

2) a weighing apparatus; 

3) a rainfall delivery system. 

Equipment was also set up to monitor potential evaporation from an open water body 

with the same surface area as the model structure; and to provide a continuous measure of 

relative humidity and temperature. 

The first problem was to develop a model car park structure on which rainfall could be 

applied and the rates of actual evaporation, retention and discharge monitored. The 

second set of equipment, i.e. the weighing apparatus, allowed the model car park to be 

weighed, which meant that quantitative measurements of actual evaporation and retention 

could be obtained. The rainfall delivery system allowed controlled rainfall to be applied to 

the surface, with both the input from the simulator and discharge from the base of the 

model being monitored at the same time by electronic weighing balances. 

Section 3.2 outlines the equipment used to collect the data which were required to 

measure the factors outlined above. This is followed in section 3.3 by a discussion of the 

experimental procedure. 
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3.2 Experimental Equipment 

3.2.1. Structure of the simulated model car park. 

Earlier research by Mantle (1990) concentrated on the hydrological regime of a full-scale 

car park surface of some 200 nf. A variety of sub-base stone types were examined, but 

the surface blocks and bedding material (pea gravel) remained the same for all areas 

whatever the sub-base. This research project is an extension of this previous research and 

was designed to gather more detailed information on the hydrological regime of the 

surface structure, i.e. the surface blocks and bedding material. During experimentation, 

the sub-base stone layer was not modelled because previous research had already 

examined this component of the porous pavement (Pratt et al., 1988). This project was 

concerned more with processes, such as surface evaporation, and changes in the 

hydrological regime due to surface clogging. 

A model permeable pavement structure was designed which represented the previous 

full-size car park surface at a laboratory scale. This model car park structure had to be of 

a design which would enable accurate measurement of water input, drainage output, 

retention and evaporation. The chosen design, based on a box-like structure, was 

constructed in order to fulfil the following requirements: 

1) to be large enough to be representative of macro-processes operating on the car 

park structure; 

2) to be small enough to be weighed; 

3) to be able to take a sufficient depth of bedding material and the surface blocks for 

the designed experiment; 
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	4) to allow for the unimpeded discharge of percolating water from the base of the 

structure. 

The adopted design, illustrated in Figure 3.2.1, involved a plastic vacuum-moulded box, 

made from clear PVC, with internal dimensions 600 by 600 mm. The physical structure 

was divided into two zones. Zone 1, 190 mm deep, allowed adequate space for the 

constituents of the car park structure. Zone 2, an inverted pyramidal design, allowed for 

the rapid drainage of percolation from the base of the car park structure and discharge to a 

collection point below the model. 

There were four major components in the simulated car park: 

1) Concrete surface blocks (CeePy blocks, specifically designed for the original 

full-scale car park surfacing (Mantle, 1987)): 

2) Bedding stone, mainly pea gravel and crushed limestone; 

3) Geotextile - Terram 1000 (trade name); 

4) The base support of stainless steel mesh. 

3.2.2. The Concrete Blocks. 

The concrete blocks, which were placed at the surface of the model structure, had an 

unusual design in that 15% of the rectangular surface area was open and acted as 

infiltration inlets which increased the rate of water entry to the sub-base areas. A second 

important design feature was that the blocks had raised circular areas which reduced 

compaction (in the prototype) of the gravel in the 'open' areas by car wheels. The blocks 

were made from a mixture of cement, aggregate and pulverised fuel ash. 
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Infiltration Surface Concrete 
Inlets Blocks 

Zone 1 

Bedding 
Material 

Geotextile 

Stainless Steel 
Zone 2 Mesh 

Discharge Release 
Valve 

Figure 3.2.1. A diagrammatic representation of the model car park structure. 

The latter was thought to influence the density and the water absorption capacity of the 

blocks, which was found to be 4-6% of the oven dry block weight. Figure 3.2.2 and plate 

3.2.1 illustrate the dimensions of the blocks. 

3.2.3 The bedding stone 

The bedding stone was predominantly pea gravel which was sieved into various grain 

sizes, ranging from 1-10 mm. In some experiments a crushed limestone with a grain size 

of 5-10 mm was used. The bedding material was placed directly below the concrete 

blocks and also in the infiltration inlets, once the surface blocks had been laid in a 

herring-bone pattern. 
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Figure 3.2.2. The dimensions of the surface concrete blocks. The blocks are laid in a 

herring bone fashion. 

Plate 3.2.1. The concrete surface block. 
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3.2.4 The geotextile 

The third component was a geotextile, "Terram 1000". The geotextile consisted of 70 % 

polypropylene and 30 % polyethylene. It had chemical resistance to all naturally occurring 

alkalis and for acids greater than, or equal, to pH 2; and it was "unaffected by bacteria" 

(Terram 1000 brochure). The tensile strength of the textile was stated to be 1.6 KN m-1 

for a 200 mm width strip. The mean pore size was 100 microns and the geotextile had a 

permeability of 50 1m 2 s-1. 

3.2.5 The base support 

The fourth component was the stainless steel mesh, which had the function of supporting 

the model car park structure. Stainless steel was chosen because it suffered very little 

from corrosion and would, therefore, retain its strength and not interfere with any water 

quality analysis. 

The design of the car park structure fulfdled the requirements identified in section 3.2.1. 

The dimensions were small enough to allow for the full-scale model structure to be 

weighed using a specially designed balance, but were considered large enough to be 

representative of a car park structure in terms of hydrological performance 

The volume within the box was large enough to take the required depth of material and 

the design also allowed for the rapid drainage of percolating water, thereby reducing 

inaccuracies which might have resulted from the ponding of water below the base support. 

The next important issue was to choose the box components to be used in the model car 

park constructions during the hydrological simulations. 
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3.2.6 The variations in box components 

From preliminary hydrological experiments (Chapter 4) on the individual structural 

components in the model, it was shown that the concrete blocks and bedding material 

exhibited differing retention and evaporation rates. Furthermore, there were significant 

variations in the above processes depending on the size of bedding material used. It was 

concluded that a number of experimental boxes should be constructed with varying 

structural components (all boxes contained the steel mesh and geotextile). Table 3.2.1 

illustrates the box components. If the rainfall event was constant for all boxes, then the 

variables (box structural components) could be assessed with regard to their impact on 

retention, drainage and evaporative processes. Box 5 was regarded as the control box 

since the components were the same as those used to construct full-scale surfaces. 

Table 3.2.1 Components of the model car park structures. 

Experiment Type of Depth of Grain size of Concrete 
Box Number Bedding stone Bedding Bedding Blocks 

stone (mm) stone (mm) present 

Block only Yes 
lA 

Pea Gravel 50 1-10 No 
1B . 

2 Pea Gravel 50 1-10 Yes 

3 Pea Gravel 30 1-10 Yes 

4 Pea Gravel 70 1-10 Yes 

5 Pea Gravel 50 5-10 Yes 

6 Pea Gravel 50 3-5 Yes 

7 Pea Gravel 50 1-3 Yes 

8 Pea Gravel 25 5-10 Yes 
Limestone 25 

9 Pea Gravel 30 5-10 Yes 
Limestone 40 

10 Limestone 50 5-10 Yes 
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3.2.7 Design of Balance equipment. 

The design of a device which was capable of weighing the model car park structure was 

one of the most complicated practical features considered in the experimental design. An 

electronic load cell could not be used since it would not give the accuracy that was 

required (ie. total evaporation from the surface may be as little as 20 g day -1 with the box 

having a mass in excess of 70 kg). After considering several possibilities, a knife-edged 

balance was selected as the most effective method for obtaining data on the changing 

weight of a model structure. 

The design was based on a beam balance and incorporated three knife-edge points which 

were intended to reduce friction and increase the accuracy of weight measurement. Figure 

3.2.3 illustrates the design of the balance. The balance was attached to a jib arm extension 

which fitted a pedestrian-operated hoist with an adjustable crane arm (plate 3.2.2). The 

operator could raise or lower the balance when required and, because the balance was 

mobile, move the balance along the row of model car park structures when necessary. 

3.2.8 Balance Weighing Procedure. 

Data collected from the balance were in the form of differing counterbalance weights 

required to compensate for rainfall inputs or evaporative losses from the model structures 

over time. The difference between consecutive readings gave water gain or loss which, in 

theory, allowed calculation of water retention within the model car park structure. 
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At the beginning of each experiment, the model box was weighed and the weight was then 

referred to as the "original box weight". In order to perform this measurement, chains 

were attached to the box and then, using the hoist, the box was raised clear of the base 

support. Changes were made to the counterbalance weight in order to bring the balance 

to equilibrium. The weight was recorded when an air bubble was centred on the spirit 

level (see Figure 3.2.3 (D)). 

Once rainfall had occurred and drainage ceased, subsequent changes in counterbalance 

weights were used to estimate water retention changes due to evaporation. During the 

preliminary hydrological studies, it was noted that lifting the box immediately after rainfall 

disturbed a portion of the water retained by surface tension; a situation that would not 

occur in reality. In consequence, further weighing was only undertaken after a 24-hour 

delay, which allowed sufficient time for drainage to occur. 

Calibration of the Counter Balance. 

The balance was designed to give a high degree of accuracy, incorporating three 

knife-edge points (hardened steel edges), in order to reduce friction. Care had to be taken 

to ensure that the balance beam was parallel to the pedestrian-operated hoist and that the 

knife-edges were not in contact with the cage in which the knife groove was located. Any 

contact with the holding cage would bias the balance readings. Consequently, before 

weighing a box structure, several checks were made of the hoist equipment to ensure 

accuracy. 
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At the beginning of the experimental phase, the counter balance was checked for it's 

level of accuracy. Following previous counterbalancing of the weighing device with 

one model box, an unknown weight was placed on the model box and the counter 

balance weight was loaded to achieve equilibrium. The accuracy of the weighing 

device was shown to be 5 g in 100 kg, which could be increased if the distance from 

the fulcrum of the counter weight was decreased. This is a high degree of accuracy, as 

it is equivalent to measuring as little as 0.014 mm of rainfall on the model car park 

surface. Over time, the accuracy of the balance was found to decrease. This was due 

to wear on the knife-edges. Over the two years of the experiment, this resulted in a 

reduction in accuracy from 5 g to 30 g in 100 kg i.e. from 1 in 20000 to 1 in 3333 (the 

balance was used daily). 

3.2.9 Design of the rainfall simulator. 

In designing the rainfall simulator, the intention was to produce a "near-natural" 

rainfall This meant that the manner in which simulated rainfall was applied to the 

model car park had to imitate natural rainfall i.e., there had to be droplet formation. 

The design had to allow for rainfall volume, intensity and duration to be controlled to 

suit the experimental requirements. • 

After an examination of various rainfall simulator designs (e.g. Selby, 1970; Savat, 

1981), one was selected which could be modified and further improved (Bowyer -

Bower and Burt, 1989) for the purposes of this experiment. The design allowed for 

varying intensities, durations and resultant volumes of rainfall to be applied to the 

model car park structure. A delivery system for the water was developed, replacing 
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the previously reported constant head supply system. There were two main parts to 

the rainfall simulator, namely: 

1) the rainfall simulator box; 

2) the water delivery system. 

3.2.10. The rainfall simulator box. 

Figure 3.2.4 illustrates the design of the rainfall simulator box. The box comprised 

two layers of 10 mm thick, clear PVC of 640 mm square sides. The top layer had four 

air release valves which were manually controlled and were used to remove air trapped 

in the simulator box. This was necessary if the pressure was to remain constant 

during the 'rainfall event'. Below this layer was a 10 mm edging strip of PVC, which 

created a gap between the top and the base layers of PVC which was filled with water. 

The bottom sheet of PVC was drilled with holes, through which Tygon tubing (trade 

name of Cole Palmer) with an internal dimension of 0 7 mm and an external dimension 

of 2.3 mm was threaded. The Tygon tubing was cut to lengths of 15 mm. Before the 

Tygon tubing was threaded into the pre-drilled holes, fishing line (thickness 0.65 mm 

and 25 mm long) was inserted into the tubes. The end of the fishing line inside the 

simulator box was crushed to keep it in place. The purpose of the fishing line was to 

produce a point on which rain droplets could form and fall from the simulator. The 

fishing line extended below the Tygon tubing by 10 mm, allowing the droplet to fall 

freely. The rainfall simulator box had holes drilled at intervals of 28 mm in rows. On 

the lower plate of the rainfall simulator there were also four inlet points where the 

pressurised water from the supply entered the gap between the PVC sheets. Once the 
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Figure 3.2.4. Section through the Rainfall Simulator box, illustrating the 

movement of water into and out off the box, via the Tygon tubing. 

three PVC plates were bolted together, the simulator could be made air-tight with 

silicon sealant. The rainfall simulator had PVC plate dimensions which were the same 

as the surface area of a model box, which meant that the rainfall produced would fall 

only onto the model car park structure. It could be moved from model box to model 

box simply by guiding the mobile frame over the top of the boxes (see plate 3.2.3). 

3.2.11. The water delivery system. 

Figure 3.2.5 illustrates the design of the pressure system. A high pressure air supply 

was directed into a 25 litre pressure barrel. The pressurised air was introduced into the 

barrel through a regulating pressure gauge (see Figure 3.2.5.(A)) which allowed the 

pressure to be modified as necessary. At the start, the barrel was full of water and the 
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Plate 3.2.3. The Rainfall Simulator placed over a model car park structure. 
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high pressure air supply was turned on and a constant pressure was established, forcing 

the water to enter the rainfall simulator box. 

As the rainfall simulator began to fill with water, any air inside was released through 

the air release valves (see Figure 3.2.5 (11)). Once all the air was released, and the 

pressure had reached equilibrium, the rainfall simulator was ready for operation. The 

rainfall simulator had a splash guard which ensured that all the rainfall landed upon the 

model car park surface. 

The design of the system incorporated a pressure valve which allowed the operator to 

increase or decrease the pressure within the system. Various rainfall intensities could 

be produced: any change of intensity was rapid and involved no manual effort. By 

simply turning a valve on the tube delivering the water to the PVC simulator box (or 

for large intensity changes also adjusting the air pressure valve to the water reservoir), 

it was possible to vary the intensity from 1 mm h-1 to 100 mm The use of this 

pressurised system increased the versatility of the rainfall simulator. In the laboratory 

the air was supplied from a central compressor. 

Electronic balances were located beneath the pressurised barrel and the collecting 

bucket at the base of a model box structure. To achieve a controlled intensity, the 

water loss (g) from the pressurised barrel supplying water to the simulator was 

controlled until the constant loss per unit time was reached, i.e. a loss of 90 g per 

minute was equivalent to a constant rainfall intensity for a 15 mmh rainfall event. 

The accuracy of the rainfall intensity depended on the ability of the operator to control 

the water supply valves. 
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Periodically, the rainfall simulator had to be dismantled and the Tygon tubing replaced. 

This was mainly due to blockage caused by calcite deposits from the hard water in the 

mains supply. If this maintenance was not carried out, the pressure within the 

simulator box would have had to be greater in order to produce the required intensity 

of rainfall. The increased pressure occasionally caused the Tygon tubes to be blown 

out. By periodically changing the tygon tubing (every month) and by using only 

distilled water, the number of malfunctions was reduced. 

3.2.12 Calibration of the Rainfall Simulator Equipment. 

The rainfall simulator was checked for it's accuracy of water delivery. This was carried 

out on an empty box, which would contain a model car park structure. Two electronic 

balances were used: Balance (A) (measuring range 40,000 g x 0.5 g increments) which 

was situated beneath the pressurised barrel; and Balance (B), which was located 

beneath the collecting device at the base of the structure. After three rainfall events, 

balance (A) and balance (B) showed a difference in readings, with Balance (B) always 

showing lower readings (when input was expected to equal output) of 21 g, 24 g and 

19 g, respectively. This was an average of 0.4 % difference between the two balance 

readings for three rainfall events of 3 litre volume input with durations of 10 minutes. 

The differences could not be attributed to evaporation since the length of the 

experiment was only 10 minutes. Therefore, the difference had two possible 

explanations: 

1) the model box did not drain completely; 

2) the differences were due to inaccuracies in the balance readings. 
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The latter explanation was eliminated from the possibilities since both balances were 

checked for accuracy by calibration testing of each balance. Both balances read the 

same, for the same known weight, after several repeat tests. As a result the difference 

was attributed to the box not draining completely, which was also visible, on 

inspection, after rainfall simulation events. An error of 0.4% was considered 

acceptable within the overall experimental design. 

3.2.13 Rainfall Intensity - sources of error. 

The main source of error associated with the rainfall simulator was its sensitivity to 

changes in pressure from the high pressure air supply. As a result it was extremely 

difficult to maintain a constant rainfall intensity during a rainfall event. There were 

three reasons for this: 

1) The pressure valve controlling the pressure entering the pressurised barrel was 

somewhat crude, having a range from 0 - 40 psi. The pressure required to 

create the desired rainfall events ranged between 0-5 psi It would have been 

preferable to have a more precise valve. Unfortunately, the cost of such a 

valve was in excess of available funding. The solution chosen in order to 

enhance the accuracy was to add a second valve before the five-way manifold, 

allowing the pressurised water flow to be reduced or increased when required. 

2) The second reason for the variations in intensity, was that, after a length of 

time (approximately one month), the Tygon tubing became partially blocked. 

This meant that the pressure entering the five-way manifold had to be increased 

in order to maintain the required intensity. Unfortunately, this had the added 

problem of creating greater pressure within the simulator rainfall, which 

occasionally led to the blow-out of Tygon tubes. This "blow-out" produced 
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some increase in the rainfall intensity, but the problem was always rectified 

quickly since the simulator was continuously monitored during a rainfall event. 

3) In order to produce a near constant rainfall intensity, the valve controlling the 

water entry into the rainfall simulator had to be manually manipulated. The 

rainfall intensity during the initial stages of the rainfall event was variable due 

to the operator attempting to produce the required constant intensity. Figure 

3.2.6 provides an example of the variations during an actual rainfall simulation. 

It can be seen that rainfall intensity values vary the most during the initial and 

later stages of the simulation. 

The variation in intensity was identified as an important source of experimental error if 

the experimental method required an exact rainfall intensity. These experiments 

required a known volume of rainfall to be applied over a pre-determined time period 

(30 minutes, 1 and 2 hours), as the examination of the hydrological performance was 

mainly restricted to discharge, retention and evaporation after a rainfall simulation. 

The mean rainfall intensities for thirty rainfall events were examined in detail and are 

given in Table 3.2.2. 

Runs 1, 2 and 3 were designed to have a 15, 30 and 7 5 mm rainfall intensity, 

respectively. The mean value for each Box and run was calculated from intensities 

measured every 30 seconds over the duration of the rainfall simulation. The results 

indicated that the shorter the rainfall simulation, the greater the error in maintaining a 

constant intensity, but if the rainfall duration is greater than 1 hour, the error in mean 

intensity is lower. 
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Figure 3.2.6. The variations in rainfall intensity. 

Table 3.2.2 The mean rainfall intensity over 30 rainfall simulations. 

Box number Mean rainfall Mean rainfall Mean rainfall 
intensity intensity intensity 
(nua h -1 ) during (mm h -1 ) during (mm h-1) during 
Run 1 (duration 1 Run 2 (duration 0.5 Run 3 (duration 2 
hour) hours) hours) 

One 21.95 29.53 7.57 

Two 16.64 28.81 7.85 

Three 14.20 28.80 7.58 

Four 15.55 24.70 7.55 

Five 13.26 25.89 7.67 

Six 15.06 35.33 8.79 

Seven 15.12 29.78 7.66 

Eight 14.52 45.58 7.40 

Nine 14.39 29.70 7.78 

Ten 15.20 24.62 7.52 
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3.2.14. Design of Evaporation Pan. 

The equipment was designed to allow measurements of actual evaporation from the 

models by weighing each car park structure repeatedly through time. In order to 

understand more clearly the evaporative processes, measurements of actual 

evaporation were required to allow for an assessment of the quantitative differences 

between evaporation rates for an open water body (under similar laboratory 

conditions) and for the model car park surfaces. An empty model box with the same 

surface dimensions as the model car park structures was chosen to act as an 

evaporation pan. One of the eleven boxes was sealed at the base and filled with water. 

A thimble micrometer had a brass extension fitted on to the moveable section, which 

was connected via a terminal to an ammeter. The brass extension was filed to a point 

in order to reduce interference created by a large surface area on the contact point (see 

Figure 3.2.7). 

A secondary brass rod was attached to a PVC holding device and was connected via 

another terminal to the ammeter. The PVC holding device was secured to the edge of 

the PVC evaporation box. The depth of the water was measured by lowering the 

thimble micrometer's brass extension to the water surface. When the surface was 

touched, the pointer on the ammeter displayed the contact and the reading on the 

micrometer was taken. This procedure was repeated for 100 days. The amount of 

evaporation was calculated by finding the difference between the original water depth 

reading on the micrometer and a following reading of the water level, 24 hours later. 

The micrometer could detect variations in water depth to an accuracy of 0 5 mm. The 

evaporation pan was periodically refilled with water and the calculations modified 

accordingly. 
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3.2.15. Equipment used to monitor evaporation from the concrete surface blocks 

- the "wick" effect. 

The concrete block surface, situated at the top of the car park structure, was the 

surface from which water was lost by evaporation. Preliminary analysis of block 

absorption and evaporation rates indicated the pattern of water uptake and release 

(Chapter 4). However, the methods of testing reported here were not, in reality, 

similar to conditions during or after a rainfall event. Another experiment was designed 

which would allow evaporation from the surface of a single block to be monitored (see 

Plate 3.2.4). The block was sealed in an air tight container so that only the top surface 

was exposed to the air, from which water could be released by evaporation. Any 

vacuum (by suction created by evaporative losses) in the container surrounding the 

block and holding the water, was accommodated by the presence of a latex seal which 

had been pierced by a pin. 

The latex seal would allow air to enter the water container and would minimise any 

evaporative losses from the water in the box except via the block surface. Any change 

in weight of the sealed box was assumed to be due to evaporation from the block 

surface only (see Plate 3.2.5). 

The experiment was designed to examine the "wick" effect of the block i.e. the water 

movement up and through the block. An oven dry block was placed in the sealed 

container and water was introduced to the base of block to a depth of 20 mm. The 

block was allowed to settle for a day. Changes in the total weight of the equipment 

was monitored daily as evaporation occurred. 
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3.2.16. Equipment used to measure humidity and temperature. 

To examine the influence of humidity and temperature on evaporation rates occurring 

on the car park surfaces, measurements of humidity and temperature were taken during 

experimental simulations. To monitor humidity, a hygrometer probe was used (model 

MP-100 F Campbell Scientific). This probe had a measuring range for relative 

humidity of between 0-100 % and for temperatures between -40 to 60 degrees 

centigrade. The measurements of temperature and humidity were recorded every hour 

and stored in a 21X Campbell Scientific data logger. 

Measurements of temperatures close to the experimental car park surfaces were also 

required. These were obtained by the use of thermocouples which were placed on 

some block surfaces. These were attached to the surface of the blocks with Araldite 

resin. 

3.2.17. Computer Equipment and data loggers. 

The equipment developed was expected to generate a great deal of data which would 

require computer processing. The counter balance and box weight readings were 

manually recorded and then processed by computer. Figure 3.2.8 illustrates the 

computer and data logger equipment which were used to collect data from the various 

monitors and balances. The computer terminal was linked to the data loggers by an 

SC23A interface. Using a computer package called PC208 (Campbell Scientific), the 

data loggers could be programmed to record data at the required time intervals. This 

necessitated special programs to be written which are listed in Appendix D. 
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Plate 3.2.4. The equipment used to monitor the "wick" effect by the surface 

blocks. 

Plate 3.2.5. The surface block in a sealed container. 
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3.2.18. The CR10 Data logger. 

The CR10 logger was used to control the generation of data from the two electronic 

balances via an RS232 interface. The two balances recorded the following: 

Balance A - positioned beneath the pressurised water barrel, data on the loss of water 

from the barrel was recorded (in grams) at 30 second intervals; Balance B - positioned 

beneath the device collecting output of percolating water from the car park structure, 

the weights of drainage from the boxes were recorded (in grams) at 30 second 

intervals. 

3.2.19 The 21X Data Logger. 

There were four 21X data loggers used during experimentation. One was 

programmed to collect relative humidity data every hour. The other three were used 

to gather surface temperature readings using the thermocouples attached to the surface 

of the boxes, again at hourly intervals. The computer programmes controlling these 

data loggers are also given in Appendix D. 

Data generated by the data loggers were periodically down-loaded on to the computer. 

Using PC208, they were transferred into "As Easy As" (IBM program) and then into a 

Microsoft Works (for Windows) spreadsheet, where further calculations could be 

performed. 
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Figure 3.2.8 A flow diagram schematically representing the equipment and their 

associated data loggers. 
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3.3 Experimental Procedure 

The previous section described the equipment developed to obtain data on the 

hydrological processes operating within the model car park structure. The following 

section describes the experimental procedure. 

3.3.1 Box Component Experiments. 

The first experiments undertaken were basic hydrological tests on the surface blocks, 

bedding material types, and varying materials with differing grain sizes. 

Concrete Surface Blocks 

A sample of 20 blocks was oven dried (at 40°C) for three weeks and then weighed 

after standing in the laboratory for one week. They were placed in a tank of water and 

periodically taken out for weighing. This continued for 12 days until water absorption 

by the blocks was negligible. The experiment gave data on rates and the total amount 

of water absorbed by the blocks. 

Evaporation from the concrete blocks was measured from the same sample as above. 

The blocks were allowed to dry in the laboratory (temperature was 16-18°C). The 

weight of each block was recorded at hourly time intervals during the first 10 hours 

and then daily over the next 21 days. 

Bedding Materials. 

A selection of bedding materials used in the boxes in the hydrological experiments (see 

Table 3.2.1) were chosen from washed, oven dried (at 40°C) samples. The samples 
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were placed in containers of known volume, weighed and then saturated with water. 

The samples were allowed to drain for one hour, the base was sealed and the weight 

was then recorded. This gave information on bedding material retention. The same 

samples were then weighed every hour for 10 hours and then 62 hours later. This 

provided information on the short term evaporation rates from varying bedding 

materials. These experiments were simple but, as will be shown in Chapter 4, they 

provided vital information that could be used to explain and predict hydrological 

response to the rainfall input. 

3.3.2 The Hydrological Experiments. 

The boxes were constructed with laboratory air-dry materials (the individual box 

components are given in (Table 3.2.1). The long-term water content in the air-dry 

components provided a datum for all retention experiments. The water content of the 

blocks and gravels at this point was negligible (less than 0.5% of the block weight) and 

it was considered that this would be of the same magnitude as for the structural 

components used to construct any full-scale structures in the field. 

Initially, each box was subjected to three rainfall simulations which varied in intensity 

and duration. These results are discussed in Chapters 5 and 6. The experimental 

procedure is represented diagrammatically in Figure 3.3.1. 

During Stage I, short-term hydrological data were collected which included: 

1) rainfall duration (hours); 

2) total rainfall (g); 

3) total discharge (g). 
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Knowing the rainfall input and discharge output, it was possible to calculate the water 

retention in the structure from a simple water balance equation (e.g. 3.3.1.): 

R = RC- Q Equation 3.3.1 

where Rf= rainfall (g); 

R = retention (g) and; 

Q = discharge (g). 

During Stage II, the long-term information on evaporation and changes in retention 

were calculated. Evaporation (g) was calculated from equation 3.3.2.: 

E --(OW + R) - W Equation 3.3.2 

where E = evaporation (g); 

OW = the original weight of the box before rainfall simulation (g); 

R = retention (g) and; 

W = the weight of the box following the rainfall simulation (g). 

Variations in Rainfall Intensity and Duration. 

In an attempt to standardise the analysis of results, a constant volume of precipitation 

was applied to the boxes during each rainfall simulation. A rainfall volume of 5.4 litres 

was chosen, which was equivalent to a 15 mm rainfall of one-hour duration over the 

box surface (see Table 3.3.1). The 15 mm event was chosen because it is typical of a 

two-year return interval storm event in the British Isles, which is frequently used in 

storm drainage design (Rodda eta!., 1976). The size of storm was also within the 

capabilities of the experimental design, i.e. the volume of water could be contained 

within the pressurised barrel without having to interrupt the experiment in order to 

refill the container. 
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Stage 1 

Recording of CPS weight prior to rainfall simulation' 

Data loggers 
record rainfall 
input 

Rainfall 
Simulation 
of known intensity 
and duration 

Information 
calculated 
concerning the 
rainfall input, 
discharge output 
and retention in 
the CPS. 

Weighing of the CPS 
after 24 hours 

Daily measurements 
of the CPS during the 
inter-rainfall dry 
period. 

End of simulation or 
the cycle begins again 
if further simulations 
are required. 

Data loggers 
record drainage 
output 

Short Term 

Stage 2 

Long Term 

Figure 3.3.1. The Procedure for the hydrological investigation. Stage I finished 

2 hours after rainfall ceased. Stage II was completed if a further simulation was 

intended. CPS is the Car Park Structure. 
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Table 3.3.1 Data on the rainfall simulations experienced by all boxes. 

Rainfall Duration of Equivalent Rainfall Return 
Simulation simulation Rainfall Intensity Interval 
Test no. (hours) Depth (mm) (mm 11 -1 ) (R.I) in 

Years 

1 1 15 15 2 

2 0.5 15 30 5 

3 2 15 7.5 1 

The sequence of three storm events per box, with various intensities, also allowed data 

to be obtained on the responses to consecutive storm events with differing inter-rainfall 

dry periods. The volumes of rainfall retained during a single storm and the changes in 

retention over time were also calculated. After the three sets of rainfall simulations 

were completed, a 3-hour storm event with a greater volume of water (10 litres) was 

applied to the boxes (approximately 9.26 mm equivalent rainfall intensity). The 

intention here was to establish if these higher volumes of rainfall influenced the overall 

retention within the structures. 

This volume was chosen because it was within the equipment limitations and it was 

estimated that the rainfall volume and duration were great enough to saturate the 

structure. 

3.3.3 Clogging Simulations on the Boxes 

Previous research identified clogging as a disadvantage when using permeable 

pavement structures (Field eta!., 1982; Hogland et al., 1987; Raimbault, 1990; 

Hogland, 1990). Clogging at the surface would reduce surface infiltration rates and 

clogging at the base of the structure would reduce percolation rates into the sub-soil. 
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If clogging occurred at the base, water could still be retained within the structure. It 

was considered important to identify where clogging occurred within the structure. 

Clay particles are known to be important for heavy metal absorption (Kennedy, 1965; 

FOrstner and Wittmann, 1983; Gibson and Farmer, 1984; Meseure and Fish, 1989), 

and it was considered important to examine the migration of clay through the model 

permeable pavement car park structure. Organic material is also known to influence 

heavy metal and contaminant migration (Cline and Upchurch, 1973; Ellis, 1990). The 

graded sands represented the coarser sediment load. 

Experiments were designed to identify whether clogging influenced the hydrological 

performance of the model car park surface. These experiments applied extreme 

particulate loadings onto the model boxes, in an attempt to cause failure of the 

structure and to ascertain the structure's lifespan. Boxes containing surface blocks and 

pea gravel were used during these clogging experiments (three different grain sizes of 

pea gravel were examined). The results are discussed in Chapter 7. 

To aid the decisions on the amount of sediment load to be applied, information was 

sought on sediment loading in stormwater runoff from other British research projects. 

Information gathered in 1985 from Clifton Grove, Nottingham (Pratt and Fletcher, 

1987) provided information on the type and grain size of sediment loaded onto car 

parks in an urban environment. In order to reduce the variables in the clogging 

experiments, it was decided that two separate experiments would be conducted; the 

first would apply clay and organic (peat) fractions only, to reduce any confusion 

between the migration of clay and graded sand fractions; and the second experiment 
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Table 3.3.2 Information on the clogging experiments. 

Experiment Type of Load Load Load applied on 
addition applied on applied on the car park 

the car park the car park surface (Years 
surface surface equivalent) 

(g ) 
(g m2) 

Experiment 1 Clay 365 1.014 80 
(66.7%) 
Peat 
(33.3%) 

Experiment 2 Graded 1.873 5.203 140 
sands 

would apply graded sands. The sediment and rainfall volumes applied are given in 

detail in Appendix C. Materials selected to clog the model boxes were clay (kaolinite); 

peat (representing the organic fraction); and graded sands. This allowed a simple 

analysis of clogging without having the concern of using toxic materials. Table 3.3.2 

gives the load and type of particulate additions for the two experiments. 

Experiment applying clay and organic fractions. 

The experimental design incorporated three grain size mixtures of bedding materials 

within the model structures as shown in Table 3.3.3. Table 3.3.3 also gives the type of 

material additions used in the experiments. The equivalent of 20-year loads from the 

Clifton Grove data were applied during each clogging simulation by applying 50.7 g 

of material. After the particulates were evenly applied (see Plate 3.3.1) a 15 mm, 

one-hour duration, rainfall event was simulated. The extreme loadings are applied in 

an attempt to cause blockage of the surface. In total, the equivalent of 80 years of 

particulate load (365 g) was applied to the boxes during the first clogging simulations 

(clay and peat fractions). Once the load was applied, the boxes were subjected 
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Plate 3.3.1 The separating device used during particulate applications. 

to five more rainfall events to allow the particulates to be transported into the bedding 

material. 

Experiment applying graded sands. 

Once the clay and organic fractions were added, the graded sand was applied on 3 of 

the boxes. The graded sand had a particle size ranging from 75 microns to 1.75 mm 

(see Table 3.3.4). The load was calculated for each particle size range. An equivalent 

20-year loading (743 g in') was applied every alternate rainfall event, resulting in a 

total of 1873 g being applied in the second set of clogging simulation. Table 3.3.4 

illustrates the grading of the sand applied. 
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Table 3.3.3 The material type applied to each box and also the model box 
components. 

Box Number Contents (all have Type of material 
concrete block surface) addition 

2 Pea gravel, 5-10 mm Clay 
Depth 50 mm 

3 Pea gravel, 5-10 mm Clay (66.7%) 
Depth 50 mm Peat (33.3%) 

4 Pea gravel, 5-10 mm None 
Depth 50 mm 

5 Pea gravel, 3-5 mm Depth Clay 
50 mm 

6 Pea gravel, 3-5 mm Depth Clay (66.7%) 
50 mm Peat (33.3%) 

7 Pea gravel, 3-5 mm Depth None 
50 mm 

8 Pea gravel, Clay 
50% 3-5 mm 
50% 5-10 mm 
Depth 50 mm 

9 Pea gravel, Clay (66.7%) 
SO% 3-5 mm Peat (33.3%) 
SO% 5-10 mm 
Depth 50 mm 

10 Pea gravel, None 
50% 3-5 mm 
50% 5-10 mm 
Depth 50 mm 

Table 3.3.4. The load and the percentage of sand (in each grade) applied during 
the second experiment. 

Grain size Percentage by weight of Actual load of addition 
range sand applied (g) the box area 

75 microns to 9.6 182 
150 microns 

150 microns to 21 398 
1.18 mm 

1.18 mm to 69.4 1.313 
1.75 mm 

Total = 1893 

After the material loads were applied, the boxes were dismantled to examine the 

migration of material through the structure. A number of the infiltration inlets were 
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also excavated to examine the degree of clogging. This allowed a comparison to be 

made between the clogging of the infiltration inlets in the models and at the field sites. 

Chapter 7 discusses the results of field measurements of clogging which were 

undertaken at the Clifton Campus and Gill Street sites, where frill-scale structures 

(with the same surfacing as the model car park structure) have been used as parking 

facilities since 1986 and 1985, respectively. The field samples were excavated from 

the infiltration inlets between the surface blocks. Six infiltration inlets were excavated 

per site with each infiltration inlet comprising two samples (the first being 0-50 mm 

and the second being 50-100 mm from the surface). The samples were then sieved and 

the amount of fine sediment was obtained. 

The clogging experimental results are discussed in Chapter 7 and the impact of 

clogging on the hydrological performance of the model car park structure is examined. 

3.4 Summary 

This chapter has examined the experimental equipment which has been developed 

during the research project. The equipment is unique and has been examined in some 

detail in order to present the advantages and limitations of it's use. The use of this 

equipment and the experimental procedures have also been outlined. The results of the 

experiments are discussed in Chapters 4 to 7. 

86 



Chapter 4 - Hydrological characteristics of concrete 

blocks and bedding materials. 

4.1 Introduction 

This chapter discusses the research findings from experiments carried out independently 

on two main car park components, namely surface concrete blocks and bedding material. 

Two different types of bedding material were used during experimentation, a pea gravel 

and a limestone (grain size 5-10 mm) The pea gravel used was of the same Ethology but 

it was sieved into four different ranges of grain sizes, which were 1-10 mm, 5-10 mm, 3-5 

mm and 1-3 mm. 

This chapter will briefly examine the theory of water movement in a porous medium 

followed by a general description of the bedding material used before discussing results 

from a number of experimental sources. Table 4.1 gives a detailed description of the 

experiments undertaken. This chapter also examines the hydrological performance of 

model boxes which contained only one component at a time, i.e., a model box containing 

pea gravel only and a second box containing only surface blocks. 

After examination of the research findings, the hydrological performance of the model 

boxes are predicted using the small-scale experimental results and the accuracy of the 

predictions is assessed. 
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Table 4.1. The experiments undertaken on single box components. 

Experiments Description of experiment, the scale and the 

components under study 

SET A Small-scale retention experiments involving a 
litre volume of bedding material. Various types 
of bedding materials are examined as are their 
retention characteristics. 

SET B Small-scale evaporation experiments involving 
tubes (evaporative surface being 12 cm 2 ) filled 
with the bedding material types. Evaporation is 
monitored over 62 hours. 

SET C Small-scale retention experiments involving 20 
concrete surface blocks. The increased retention 
over time is also examined. 

SET D Small-scale evaporation experiments involving 20 
concrete surface blocks. Evaporation volume and 
rates over 31 days from each block were examined 
and an average block performance calculated 

SET E Rainfall simulations were carried out on a model 
car park surface box (600 x 600 mm) containing 
only pea gravel (grain size 1-10 mm) and not 
having a surface covering of concrete blocks. The 
retention characteristics were monitored over four 
rainfall simulations. 

SET F The evaporation in the inter-rainfall dry periods 
of the above experiments (SET E) were monitored 
and analyzed in this experiment. Again no 
concrete surface blocks were present and the 
surface was totally covered by pea gravel. 

SET G Rainfall simulation on a model box containing only 
concrete surface blocks. The model box did not 
contain any pea gravel. Retention by the model box 
over three rainfall simulations was examined. 

SET H The evaporation during the inter-rainfall dry 
periods from the above experiments (SET G) were 
monitored during this experiment. 

SET I Evaporation from the surface of the concrete block 
was examined by the "wick" experiment. Water was 
introduced to the block from only the base. Water 
loss from the top surface was examined. 

If predictions can be made of the hydrological performance of the two components using 

the small-scale results, predictions can also be made of the hydrological performance of 

model boxes containing both components. 
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4.2 Background theory on water movement in porous media. 

Retention of water within a porous medium. 

The bedding material used in the experiments can be compared with a "skeleton soil". The 

large grain sizes and high permeability of the material will result in infiltration rates being 

high (over 1000 mm h-1) Infiltration often follows the form of the equation first proposed 

by Horton (1933), which states: 

f= f,, + ge -Kt Equation 4.1 

where: 

f is the infiltration rate (mm h') at any time; 

fc is infiltration capacity (mm h-'); 

11 = fo - fc; 

where fo is initial infiltration capacity (mm kl) at t=0; t is time (min) from beginning of 

rainfall; K is a constant (mini for a particular soil and surface. 

:C0 and fc for a gravel soil will usually yield values off greater then 220 mm h1 (Wilson, 

1992). The infiltration rates for the bedding materials used here were found to be 

extremely high (over 1000 mm h-1, see Chapter 7). 

Water retained by the bedding material after a rainfall simulation is held by surface tension 

around particles; at surface contact points; and by capillary forces (Todd, 1980; Marshall 

and Holmes, 1992; Shaw, 1994). The total amount of water retained depends on the 

specific surface area (total surface area of particles in a given volume of soil), which 
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increases as the grain size decreases and as the particle becomes more flattened in shape 

rather then spherical (Marshall and Holmes, 1992). For example, sand has a specific 

surface area of 1 m2 g-1, whereas montmorillonite has a specific surface area of nearly 800 

m2 (Ward, 1975). Therefore, the size and surface area of bedding material, as well as 

the degree of clogging, will be important in governing water retention. 

Movement of water in porous media. 

The movement of soil moisture is influenced by a number of factors such as gravity, 

suction forces (high to low hydraulic potential), vapour pressure and temperature 

gradients (Smedema and Rycroft, 1988). Particle tension and capillary forces increase as 

soil moisture decreases. This means that the energy required to lose moisture will be low 

if there is more moisture and higher if the soil moisture content has decreased (eg. if 

evaporation or drainage has occurred). 

The movement of soil moisture, after infiltration and percolation has ceased, is driven by 

the hydraulic conductivity and the combined gradients of suction and gravity (Todd, 1980; 

Marshall and Holmes, 1992; Shaw, 1994). However, water movement is irregular due to 

varying grain sizes, inter-particle spaces and differing thicknesses of the water film held by 

surface tension. The process of evaporation creates a suction gradient which results in an 

upward movement of moisture. Hillel (1971) identified two distinct stages in the drying 

process of a soil; the first being dependent on soil surface conditions and the second being 

a declining rate which is influenced by the soil's ability to deliver moisture to the surface. 

This will result in a slower decrease in the rate of moisture movement (Stage 1) when the 

soil is wet, followed by a more rapid decline (Stage 2). The second stage, where soil 
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moisture content is reduced, will result hi evaporation decreasing due to a decrease in the 

moisture gradient through the profile. 

Wind (1961) suggested that if clay overlies sand the hydraulic conditions created would 

favour a higher rate of capillary movement through the material to the surface, as 

compared with sand overlying clays. If it is assumed that the bedding material is the sand 

and clogging occurs at the surface rather then in the basal areas (by clay), then it could be 

expected that the presence of the clays on the surface would increase moisture loss (by 

evaporation), due to a higher rate of upward movement of moisture by capillary forces. 

Experiments on clogging were designed to see if this characteristic was observed on the 

model car park structure (see Chapter 3, section 3.3.3). 

4.3 Bedding material particle size and shape. 

Particle shape analysis was undertaken to aid the explanation of the varying hydrological 

performances of the bedding material. Various methods can be used to classify gravel 

shape (Briggs, 1977; Allen, 1985), including Zingg's classification, Knimbeins sphericity 

index and Cailleux flatness index. Since flatness may have a significant influence on the 

water retention (Marshall and Holmes, 1992) the Cailleux's index was chosen for 

comparison. The flatness index is defined by equation 4.2: 

Flatness = (A + B) /2C Equation 4.2 

where: 
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A, B and C are the length of the axes of the particle (see glossary list, Appendix B, for 

definition). 

The higher the flatness value, the greater the grain shape resembles a disc. The minimum 

value of 1 indicates an equi-dimensional particle (a sphere). 200 particles of each gravel 

type used in the construction of the model boxes were measured and the flatness values 

were calculated. The pea gravel (1-10 mm) had a flatness value of 2.19 and the limestone 

2.25. This indicated that the limestone had a marginally more disc-like grain shape when 

compared with the pea gravel. 

The gravel samples were also measured to produce grading indices. The average axis 

value was calculated using Equation 4.3: 

(A+B+C)/3 Equation 4.3 

Where A, B and C are defined in Equation 4.2. Percentage frequency distribution curves 

were produced from the measurements. Figure 4.1 illustrates the cumulative percentage 

frequency curves for the pea gravel and limestone samples. The pea gravel percentage 

frequency curve shows axis values ranging between 3.2 - 6 8 mm whilst the limestone 

curve had values between 4.3 - 7.7 mm. The greater average axis length of the limestone 

and it's grain shape suggests that it will be able to retain more water and conversely 

evaporate more water compared with the pea gravel (1-10 mm) This may have 

implications when considering the optimum retentive and evaporative surface for a model 

car park surface. 
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Figure 4.1 The cumulative percentage frequency curves for the limestone and pea 
gravel (1-10 mm) samples. 

4.4 Small-scale experiments. 

The experiments listed in Table 4.1 are discussed in the next section. Each component 

and hydrological process are examined separately. 

4.4.1 Retention characteristics of the bedding material (Set A, Table 4.1). 

Table 4.2 gives some of the physical characteristics of the bedding materials used in the 

construction of the model car park structures. These data are the average values obtained 

from 10 repeat measurements using a litre volume of gravel which was immersed in water 

for one hour. 
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Table 4.2. Hydrological characteristics of the bedding material (based on ten 
replicates). 

Bedding Water Standard Specific Porosity Bulk 
material retained deviation retention: = volume density 
(volume following water of voids ie. 
analyzed 1 hour of retained / total kg mass/ 
1000 cm') draining following volume 1 litre 

drainage 
as a 
percentage 
of voids 

Units (g) 
(%) (%) 00;010 

Pea gravel 69.20 0.5 16.54 41,85 1.46 
grain size 
1-10 mm 

Pea gravel 45.59 0.49 11.47 39.76 1.57 
grain size 
5-10 mm 

Pea gravel 101.39 0.61 23.59 42.98 1.44 
grain size 
3-5 mm 

Pea gravel 132.77 0.72 31.44 42.23 1.46 
grain size 
1-3 mm 

Limestone 56.81 0.52 12.64 44.94 1.42 
grain size 
5-10 mm 

The pea gravel, with a smaller grain size (1-3 mm), retained the most water following 1 

hour of drainage (132.77 g). This might be expected since the specific surface area of the 

smaller grains is greater than the specific surface area for a larger grain size in the same 

volume (section 4.2). The limestone (5-10 mm) retained slightly more water than the pea 

gravel (5-10 mm), but less then the other grain sizes and had a strong crystalline structure, 

which meant that absorption of water was negligible (0.2 g per litre volume of limestone). 

During these experiments it was observed that each type of bedding material had a 

maximum capacity of water retention which was reached after approximately two minutes 
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of wetting and did not increase with a longer contact time with the water. The average 

porosity of the bedding materials ranged from 39.76 - 44.94%. The average bulk densities 

of the material (after packing into a litre volume) ranged from 1.46 - 1.57 (g 

4.4.2 Evaporation Characteristics of bedding material (Set B, Table 4.1). 

Experiments were carried out to measure evaporation rates and amounts from the bedding 

materials. Samples were immersed in water for one hour and then allowed to drain freely 

under gravity. The weight was recorded after one hour of free-drainage. Subsequent 

weights were recorded for the next 10 hours (at 1-hourly intervals) and then 62 hours 

later. Since the bases and sides of the containers were sealed, with only 12 cm' of surface 

area being in contact with the air, any change in weight of the bedding material was due to 

evaporation from this limited surface area. 

The results were calculated as a cumulative evaporation loss (g cm -2). Table 4.3.A gives 

the observed evaporative losses from the bedding gravels, assuming that the gravels had 

covered a surface area equivalent to the gravel in the model car park structures, i.e., 15% 

of the model car park surface area (or 540 cm2). Table 4.3.B gives these losses in 

equivalent depths of rainfall (mm) on a car park surface. 

The greatest weight loss after ten hours was shown by the limestone sample (Figure 4.2). 

This may be due to the larger grain surface area exposed, since the limestone had a 

marginally higher flatness index. However, after 62 hours the greatest total evaporative 

loss was exhibited by the pea gravel (1-3 mm) From this it can be assumed that, after the 

initial stages of drying, evaporation was water supply-limited, since the greatest amount of 
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evaporation was exhibited by the smaller grain sizes which retained more water. After 10 

hours the effects of grain shape on evaporation became a less dominant factor. 

Table 4.3.0 gives the evaporation rate (mm h-') calculated from the results of Table 4.3.B. 

These results are plotted in Figure 4.3. It is apparent that during the first three hours the 

evaporation rates varied significantly. In general, the rate of evaporation began to 

decrease after four hours. Over the period from 10 to 62 hours, the pea gravel 1-10 mm 

had the lowest hourly evaporation rate (0.016 ram h-1), whereas the pea gravel 1-3 mm 

had an evaporative rate which was nearly double (0.030 mm h-1). The limestone had the 

second lowest evaporation rate. 

Table 4.3.A. Evaporation (g) from bedding materials (calculations assume the same 
surface area as the exposed model car park surface of 540 cm2). 

Period Cumulative Cumulative Cumulative Cumulative Cumulative 
water loss water loss water loss water loss water loss 
from the from the from the from the from the 
bedding bedding bedding bedding bedding 
material material material material material 
Pea gravel Pea gravel Pea gravel Pea gravel Limestone 
1-3 mm 3-5 mm 5-10 mm 1-10 mm 5-10 mm 

(hours) (g) (g) (g) (g) (g) 
0-1 6.32 8.21 12.00 8.21 9.47 
1-2 12.63 13.26 17.68 10.74 20.21 
2-3 21.47 23.37 25.26 16.42 24.00 
3-4 26.53 27.79 28.42 21.47 30.95 
4-5 30.95 31.58 30.95 25.90 36.63 
5-6 34.11 34.74 32.84 29.68 41.68 
6-7 

7-8 

8-9 

9-10 

10-62 

36.63 

38.53 

40.11 

41.62 

126.25 

-.. 

37.26 

39.16 

40.74 

42.00 

103.58 

_ 

34.48 

35.81 

37.07 

39.07 

88.42 

32.84 

35.68 

38.21 _ 

40.11 

85.26 

45.79 

48.95 

50.84 

52.11 

99.16 
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Table 4.3.B. Evaporation (mm) from various bedding materials. 

Period Cumulative Cumulative Cumulative Cumulative Cumulative 
water loss water loss water loss water loss water loss 
from the from the from the from the from the 
bedding bedding bedding bedding bedding 
material material material material material 
(equivalent (equivalent (equivalent (equivalent (equivalent 
rainfall) rainfall) rainfall) rainfall) Pea rainfall) 
Pea gravel Pea gravel Pea gravel gravel Limestone 
1-3 mm 3-5 mm 5-10 mm 1-10 mm 5-10 mm 

(hours) (mm) (mm) (mm) (mm) (mm) 

0-1 0.117 0.152 0.222 0.152 0.175 

1-2 0.234 0.246 0.327 0.199 0.374 

2-3 0.398 0.433 0.468 0.304 0.444 

3-4 0.491 0.515 0.526 0.398 0.573 

4-5 0.573 0.585 0.573 0.480 0.678 

5-6 0.632 0.643 0.608 0.550 0.772 

6-7 0.678 0.690 0.639 0.608 0.848 

7-8 0.714 0.725 0.663 0.661 0.907 

8-9 0.743 0.754 0.687 0.708 0.942 

9-10 0.771 0.778 0.724 0.743 0.965 

10-62 2.338 1.918 1.637 1.579 1.836 

Table 4.3.0 Evaporation rates (mm h-l)from the various bedding materials. 

Period Water Water Water Water Water 
loss loss loss loss loss 
Pea Pea Pea Pea 
gravel gravel gravel gravel Limestone 
1-3 mm 3-5 mm 5-10 mm 1-10 mm 5-10 mm 

(h) (mm h') (mm h-1 ) (mm h-1 ) (mm h-1 ) (mm h-1) 

0-1 0.117 0.152 . 0.222 0.152 0.175 

1-2 0.117 0.094 0.105 0.047 0.199 

2-3 0.164 0.187 0.140 0.105 0.071 

, 3-4 0.094 0.082 0.059 0.094 0.129 

4-5 0.082 0.070 0.047 0.082 0.105 

5-6 0.059 0.059 0.035 0.070 _ 0.094 

6-7 0.047 0.047 0.030 0.059 0.076 

7-8 0.035 0.035 0.025 0.053 0.059 
8-9 

/ 
9-10 

0.029 

0.028 

0.029 

0.023 

0.023 

0.037 

0.047 

0.035 

0.035 

0.023 
10-62 0.030 0.022 0.018 0.016 0.017 
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Figure 4.2 Cumulative evaporation from the gravel samples over 62 hours. 
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Figure 4.3 Rates of evaporation from the bedding material over 62 hours. 
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4.4.3 Retention characteristics of the surface blocks (Set C, Table 4.1). 

A block absorption experiment (Set C) was carried out on 20 concrete surface blocks. 

This experiment measured the water absorption by laboratory aft-dried blocks during 1 

hour of immersion. Table 4.4 illustrates the average water absorption with time. Some 61 

g (60% of the total water absorbed in one hour) was absorbed within the first five minutes 

and over 85% in the first 15 minutes (see Figure 4.4). It was apparent, therefore, that 

block absorption was rapid during the initial stages of contact with water. 

The experiment was continued in order to monitor the water absorption over 24 hours 

(Table 4.5). Some 83 g (70% of the total water absorption during 24 hours) was 

absorbed during the first two hours of immersion. This would suggest that the duration of 

the storm event over the blocks is important in determining the possible retention of 

rainfall and the overall hydrological performance of the car park structure. Table 4.6.A 

Table 4.4. The average absorption of water by the concrete block after experiencing 
one hour of total immersion in water. 

Time 
period 

Time 
interval 

Non-cumulative 
mass of water 
absorbed 

Cumulative 
mass of 
water 
absorbed 

Absorption as 
a percentage 
of total mass 
absorbed in 1 
hour 

(minutes) 

0-5 

(minutes) 

5 37.35 

(g) 
37.35 

(g) 
61 

CYO 

5-10 5 10.45 47.80 79 

10-15 5 4.06 51.88 85 

15-20 5 1.55 53.43 88 

20-30 10 2.65 56.08 92 

30-40 _ 10 2.60 58.68 97 

40-50 10 1.18 59.85 98 

50-60 10 0.98 60.83 100 
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Absorption as a
percentage of 
total absorption
in one hour 

Figure 4.4 Average absorption of water by surface blocks as a percentage of the 

total water absorbed in 1 hour. 

Table 4.5. Average concrete block absorption over 24 hours of immersion in water 
(* = given previously in Table 4.4). 

Time Time Non-cumulative Cumulative Amount absorbed as 
Period interval mass of water mass of a percentage of 
(hours) (hours) absorbed water the total absorbed 

absorbed in 24 hours 

(hours) (hours) (o/o)
(g) (g) 

0-1 1 60.83 * 60.83 * 51 

1-2 1 22.53 83.36 70 

2-3 1 4.53 87.90 74 

3-4 1 3.58 91.48 77 

4-5 1 4.70 96.22 81 

5-24 19 22.29 118.51 100 
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gives the block absorption in grams over a longer time period of 744 hours (31 days). 

Over this period, some 83 g (49% of the total water absorbed in the 744 hours) was 

absorbed in the first two hours. After 77 hours (three days), the rate of absorption 

decreased significantly. 

The absorption process was found to be best represented by a semi-logarithmic 

relationship of the form: 

A = 68.80 + 37.04 .log(t) R2 = 0.99 Equation 4.4 

where A is absorption (g); 

t is time (h). 

This is based on results averaged from 20 samples, and is graphically illustrated in Figure 

4.5. This relationship is clearly indicative of rapid water absorption during the initial 

stages of wetting. 

Table 4.6.B. gives the cumulative absorption of a concrete surface, in grams and mm 

equivalent depth of rainfall, per square metre. This table is based on the results from 

Table 4.6.A. but the absorption has been calculated as absorption per m2 of the block 

surface area in contact with water. During the small scale experiments all of the block's 

surface area was in direct contact with water (894.2 cm2 total block surface area). The 

results suggest that after a 1 hour rainfall simulation, 1 9 mm of rainfall can be stored as 

"retention" in every square metre of concrete surface. 
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Table 4.6.A. Average surface block absorption of water over 31 days (* = given 
previously in Tables 4.4 and 4.5). 

Time Time Non-cumulative SD Cumulative Amount 
period interval absorption absorption absorbed as 

Standard a percentage 
Deviation (SD) of the total 
in next column absorbed in 

744 hours 

(h) 00 60 60 (%) 

0-1 1 60.83 * 0.81 60.83 * 36 

1-2 1 22.53 * 0.79 83.36 * 49 

2-24 22 35.15 * 0.79 118.51 * 69 

24-77 53 19.69 0.74 138.20 81 

77-149 72 10.02 0.73 148.22 86 

149-168 19 3.82 0.71 152.04 89 

168-269 101 1.50 0.71 153.54 89 

269-293 24 4.28 0.71 157.82 92 

293-744 451 13.68 0.69 171.52 100 

Table 4.6.B. Concrete surface block absorption of water over 31 days. 

Time Time Cumulative absorption Cumulative absorption 
period Interval 

(h) (h) (g m-2 ) (mm m-2) 

0-1 1 680.27 1.89 

1-2 1 932.23 2.59 

2-24 22 1325.32 3.68 

24-77 53 1545.52 4.29 

77-149 72 1657.57 4.60 

149-168 19 1700.29 4.72 

168-269 101 1717.07 4.77 

269-293 24 1764.93 4.90 

293-744 451 1918.14 5.33 
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Figure 4.5 Average cumulative absorption of water (g) by a surface block. 

4.4.4 Evaporation characteristics of the surface blocks (Set D, Table 4.1). 

20 blocks were monitored for water loss by evaporation. The blocks had been submerged 

for one month (absorbing on average 171.5 g of water per block, with a standard 

deviation of 1.2 g) and were then left to air dry in laboratory conditions (temperature 

ranging from 16-18 °C). Figure 4.6 gives the "best fit" curve associated with the average 

cumulative evaporative loss over time (Table 4.7.A gives the data from which Figure 4.6 

was drawn). The relationship was best described by a semi-logarithmic equation of the 

form: 

Equation 4.5E = -41.62 + 36.41 log(t) R2=0.99 

where E is evaporation (g); 

t is time (hours). 
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Figure 4.6 Average cumulative evaporation loss (g) by the surface blocks. 

It is evident from Figure 4.6 that more evaporation occurs during the initial stages of the 

drying process. One explanation for this phenomenon is that the block may have two 

areas of water storage, the first area or zone of readily available water being within the 

first few centimetres of the block surface, and the second zone being located deeper within 

the block. Alternatively, the water first released is "free" water on the block surface and 

the second release is chemically-bonded water which takes longer to become free for 

evaporation. The surface area of the concrete block in direct contact with moving air was 

calculated to be 724.2 cm2 per block (the base was not exposed). The evaporative loss (g 

and mm equivalent depth of rainfall) per m2 was calculated using the data from Table 

4.7.A and is given in Table 4.7.B. The results indicate that after 3 days, over 1 mm of 

water can be lost by evaporation from 1 m2 of concrete surface area. 
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Table 4.7.A. Measured loss of water by evaporation from a concrete blocksurface . 

Time Time Average Standard Evaporation loss as a 
interval evaporation Deviation percentage of total 

loss from 20 water absorbed at 
concrete each time period 
surface blocks (171.5 g/ block) 

(hours) (hours) (g) CVO 
24 24 7.84 0.1 4.59 

52 28 21.83 0.09 12.77 

72 20 27.85 0.08 16.29 

149 77 37.19 0.07 21.75 

171 22 39.32 0.07 22.99 

197 26 41.56 0.06 24.30 

222 25 43.08 0.06 25.19 

311 89 47.72 0.05 27.91 

342 31 49.46 0.05 28.92 

365 23 51.00 0.05 29.83 

389 24 52.20 0.04 30.53 

413 24 54.08 0.03 31.63 

485 72 57.50 0.03 33.63 

509 24 58.84 0.03 34.41 

Table 4.7.B. Loss by evaporation from a concrete block surface. 

Time (h) Time LOBS by Loss by Mean interval 
interval evaporation evaporation evaporation rate 
(h) (g m-2 ) (mm m-2 ) (mm III-2 /1-1) 

24 24 108.26 0.30 0.013 

52 28 301.44 0.84 0.019 

72 20 384.56 1.07 0.012 

149 77 513.53 1.43 0.005 

171 22 542.94 1.51 0.004 

197 26 573.87 . 1.59 0.003 

222 25 594.86 1.65 0.002 

311 89 658.93 1.83 0.002 

342 31 682.96 1.90 0.002 

365 23 704.23 1.96 0.003 

389 24 720.80 2.00 0.002 

413 24 746.76 2.07 0.003 

485 72 793.98 2.21 0.002 

509 24 812.48 2.26 0.002 
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Table 4.7.B also shows that there are significant variations in the rates of evaporation over 

21 days. The evaporation rate was higher during the first three days of drying, 

approximately four times greater than after 9 days. 

The evaporation rate decreased significantly over the first 7 days from 0.019 mm to 

0.004 mm m 2 h4, and then it maintained a constant rate of around 0.002 - 0.003 mm 

h-1 over the next 12 days. 

4.4.5 The Wick Effect of the surface blocks. 

Chapter 3 (Section 3.2.15) outlined the experimental procedure for examining the loss of 

water from the block surface. Measurements of weight loss were taken daily over three 

weeks and the average evaporative loss was found to be 89.87 g day' ni -2 or 0.09 mm 

day' m", when there was a constant (20 mm depth) of water around the base of the block. 

The top surface of the block was never exposed to water. All loss by evaporation was, 

therefore, due to water moving through the block. The rate of evaporation was 

0.004 mm h 1 m" which compares favourably with the evaporation rates given in Table 

4.7.B. There is a good similarity in the rates of evaporation by the surface blocks even 

though they have been measured using different experimental methods. 

4.4.6 Hydrological performance of bedding material and surface blocks - a 

summary. 

1) The retention of water by the bedding materials is influenced by particle size, shape 

and bedding material lithology. Smaller grain sizes were shown to retain more 

water after 1 hour submersion and 1 hour drainage. The particles reached their 
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maximum retention capacity after approximately 2 minutes of submersion, thus 

suggesting that the particles did not absorb water. 

2) During the initial stages of evaporation (10 hours) from the bedding material, 

particles with a marginally larger shape index (as measured for the limestone in 

section 4.3) were seen to evaporate approximately 20% more water than the other 

more spherical particles (pea gravel). However, after 62 hours, the bedding 

material which retained the most water (pea gravel 1-3 mm, Table 4.2) was seen to 

have the highest amount of evaporation. The rates of evaporation by all bedding 

materials vary significantly during the first four hours following 1 hour of drainage. 

After 4 hours the rates of evaporation generally decreased. The highest rate of 

evaporation after 62 hours was exhibited by the smaller grain sized bedding 

material (pea gravel 1-3 mm) 

3) Absorption of water by the surface blocks was seen to be rapid during the initial 

contact time with water, i.e., 60% of the total water absorbed (171.5 g on average) 

was absorbed in the first five minutes of immersion. The rate of absorption was 

seen to decrease over contact time with water. However, an upper limit to the 

maximum absorption was not observed even after one month (744 hours). The 

absorption process could be represented by the positive semi-logarithmic 

relationship given in Equation 4.4. 

4) Evaporation from the surface blocks can also be described by a semi-logarithmic 

equation (Equation 4.5). Evaporation experiments showed that 16% of the total 

water absorbed (on average 171.5 g) was lost during the first 72 hours (3 days) 

and 23% of the total water absorbed was lost after 171 hours (approximately 1 

week), a long term evaporative loss rate of 0.002 - 0.003 mm m 2 h'. 
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	  5) The wick experiments showed an hourly evaporation rate of 0.004 mm m 2 h-1 , if 

there was a constant supply of water to the base of the block. The block 

evaporation during this experiment was a result of water moving up through the 

block to the surface. The rate was slightly higher than the long-term small-scale 

block experiment, but there was more water available in the wick experiment. 

4.5 Hydrological performance of model boxes containing blocks or bedding material. 

Two model boxes were assembled, one containing only surface blocks (18 in all) and the 

other containing only pea gravel. The model boxes contained only one component in 

order to allow separate analysis of retention and evaporation. 

4.5.1 The model box with pea gravel only - Retention characteristics (SET E). 

Pea gravel (grain size of 1-10 mm) was placed in a model box to a depth of 50 mm. It 

was then subjected to four rainfall simulations with varying rainfall intensities (Table 4.8). 

The volume of rainfall retained varied for each event. The event with the shortest storm 

duration (Run 2) retained the lowest amount of rainfall (2.67 mm), whereas the event with 

the longest storm duration (Run 4) retained the most rainfall (3.98 mm) This suggests 

that the retention in the bedding material increases with an increase in the duration of 

rainfall. The bedding material appears to be fully wetted only after a long duration rainfall 

event. The total mass of water held by the bedding material increased over the four events 

and this may be explained by the increase in storm duration and the pre-storm retention 

(0, 0.29, 0 and 0.15 mm for Runs 1 to 4 respectively). 
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Table 4.8. Retention characteristics during four rainfall simulations on a model box 
containing Pea gravel. 

Run Duration of Total Retention of Total mass Inter-rainfall 
rainfall rainfall -

equivalent 
rainfall 
during each 

of water 
held by the 

dry period. 

depth on the individual bedding 
model box event material 
surface 

(hours) (mm) (mm) (mm) (hours) 

1 1 15.00 2.92 2.92 1.054 

2 0.5 15.00 2.67 2.96 307 

3 2 15.26 3.65 3.65 401 

4 10 50.00 3.98 4.13 383 

The methods used to apply water to the box experiments differed from the small-scale 

experiments. The small-scale experiments experienced saturation and then drainage, 

whereas the box experiments had water applied to the surface with simultaneous 

infiltration and drainage, rather than complete saturation. This is likely to explain why the 

bedding material was only fully wetted after a long duration rainfall event. 

4.5.2 Evaporation characteristics (Set F). 

Evaporation from the model box containing pea gravel only (with no surface blocks) 

showed a similar pattern over all four inter-rainfall dry periods. Run 1 is used here as an 

example. Table 4.9 gives the cumulative evaporation (g); cumulative evaporation in mm 

equivalent depth of rainfall; evaporation as a percentage of the total water retained within 

the structure and the evaporation rate between measurement times. 

From Table 4.9, it can be seen that 56%, or 1.64 mm equivalent depth, of the total rainfall 

retained (2.92 mm) was evaporated after 22 hours and over 73% (770 g or 2.14 mm) after 

69 hours (nearly 3 days). All of the water retained (1058 g or 2.92 mm) was evaporated 
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Table 4.9. Evaporation from the model box containing pea gravel only after Run 1. 
Pea gravel covers 100% of the surface. 

Time Cumulative Cumulative Evaporation as a Evaporation 
evaporation evaporation percentage of the rate within the 

total retention held time period 
within the structure 
(2.92 mm) 

(hour) (g) (min) (%) (mm h-1) 

0-22 590 1.64 56 0.075 
TI=22 

22-45 680 1.89 64 0.012 
TI=23 

45-69 770 2.14 73 0.010 
TI=24 

69-120 925 2.57 87 0.008 
TI=51 

120-142 958 2.66 91 0.004 
TI=22 

142-168 1.008 2.80 95 0.005 
TI=26 

168-190 1.022 2.84 97 0.002 
TI=22 

190-216 1.033 2.87 98 0.001 
TI=26 

216-243 1.058 2.92 100 0.003 
TI=27 

* TI is the time interval in hours between each measurement. 

after 243 hours (10 days). The evaporation rate was extremely high during the first 22 

hours (0.075 mm If') but this decreased significantly over the rest of the dry period. 

4.5.3 The model box with concrete blocks only - Retention characteristics (Set G, 

Table 4.1). 

A model box was also constructed with blocks only and was subjected to three rainfall 

simulations with varying rainfall intensities, but with the same volume of rainfall 
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Table 4.10. Retention characteristics of the model box containing blocks only. 

Run Duration of 
rainfall 
event 

Total rainfall -
equivalent 
depth on the car 
park surface 

Retention of 
rainfall during 
individual 
rainfall events 

Total 
cumulative 
retention held 
within the 
model box (18 
blocks) 

Inter-
rainfall dry 
period 

(hours) (mm) (mm) (mm) (hours) 

1 0.5 15.00 3.42 3.42 23 

2 1 15.00 2.57 5.21 24 

3 2 15.26 2.02 6.52 1.531 

(Table 4.10). The rainfall simulations were carried out on consecutive days, unlike the pea 

gravel-only experiments. Table 4.10 shows the retention of rainfall after each rainfall 

simulation. As the number of rainfall events increased, the retention for each individual 

event decreased even though the storm duration and water contact time increased. The 

total amount of water held within the blocks increased over the three rainfall simulations. 

After the third rainfall simulation, the total retention was almost double that of the water 

retained after Run 1. To calculate pre-storm retention, the retention after individual 

rainfall events must be subtracted from the total cumulative retention to give pre-storm 

retention values of 0 mm for Run 1, 2.64 mm for Run 2 and 4.50 mm for Run 3. 

Pre-storm retention of water explains why the retention for an individual simulation 

decreases over the simulations. 

4.5.4 Evaporation characteristics (Set H, Table 4.1). 

The inter-rainfall dry periods following the first two runs were too short to allow for a 

detailed examination of the evaporation process and only Run 3 will be examined with 

regard to evaporation. 
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Table 4.11.A and 4.11.B give the actual evaporation amounts and rates for the model box 

containing only concrete blocks, following the third rainfall simulation. The evaporation 

per m2 was also calculated. The calculation assumed that each concrete block had an area 

of 654.2 cm2 exposed to moving air (i.e., no movement of air past the block sides, but 

open in the infiltration inlets, at the base and on the top surface). This gave a total 

concrete surface area of 1.12 m2 from which evaporation could occur. 

On examination of Table 4.11.B, it was seen that after 24 hours 13%(296 g) of the total 

water retained by the surface blocks had evaporated. The hourly evaporation rate 

decreased significantly after 24 hours to a quarter of the original rate. The evaporation 

rates fluctuated during the dry period which may be explained by variations in the 

laboratory environmental conditions (these are explained more fully in Chapter 6). 

However, the hourly rate after 122 hours was of a similar magnitude to the wick 

experiment results in section 4.4.5 which illustrates an hourly rate of 0.003 to 

0.004 mm 

Table 4.11.A. Evaporation characteristics of the model box containing only surface 
blocks. 

Time interval Actual Actual Actual 
(hours) cumulative cumulative cumulative 

evaporation (g) evaporation evaporation 
(g nf2) 

On M. nf2) 

1-24 296 251.37 0.70 

24-101 536 455.18 1.26 

101-122 606 514.62 1.43 

122-171 676 574.07 1.59 

171-197 716 608.04 1.69 

197-218 766 650.50 1.81 
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Table 4.11.B. Evaporation rate and percentage loss from a concrete surface (* from 
Table 4.10). 

Time Period Evaporation rate Evaporation as a 
interval for time intervals percentage of total 

retention held 
(* 6.52 mm) 

(hours) (hours) (mm m" 10 (0/0) 

0-24 24 0.029 13 

24-101 77 0.007 23 

101-122 21 0.008 26 

122-171 49 0.003 29 

171-197 26 0.004 30 

197-218 21 0.006 32 

These evaporation experiments on the model boxes differed with the block experiments 

outlined in section 4.4.4, in that less of the surface area of blocks in the model box was in 

direct contact with the atmosphere (654.2 cm2 per block for a model car park surface; and 

724.2 cm2 per block for the small scale experiments, since only the base was not in direct 

contact with air). The difference in experimental method may result in predictions based 

on the individual component analysis giving over-estimations of actual evaporation when 

compared with the box experiments unless consideration is given to the exposed block 

surface area. 

4.5.5 Hydrological performance of the model boxes - a summary. 

1) Retention experiments on the model box containing only bedding material (pea 

gravel 1-10 rum) suggest that the bedding material is only fully wetted following a 

long duration rainfall event. 
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2) Evaporation from the model box containing bedding material had a high 

evaporation rate immediately following rainfall. The rate decreased significantly 

over the rest of the inter-rainfall dry period. Comparison of evaporation rates after 

69 hours for the model box (section 4.5.4) and the single component analysis 

(section 4.4.2, Table 4.3.C) showed that the evaporation rate for the model box 

was lower than the evaporation rate from the single components 

(0.010 mm m-2 compared with 0.016 mm h -' m-2 for the single component 

analysis). 

3) Retention by the model box containing surface blocks only showed a decrease in 

the retention of rainfall during individual rainfall events. However, the total 

cumulative retention of water increased over successive rainfall events due to 

pre-storm retention of water. 

4) Evaporation from the model box containing surface blocks was of a high rate 

immediately following rainfall (0.034 mm m2 h-1 ). The rate decreased significantly 

over the inter-rainfall dry period to 0.003 mm m-2. 

4.6 Prediction of model box hydrological performance using the results from the 

individual component analysis. 

The results discussed previously have given information on: 

1) Small-scale retention and evaporation characteristics of individual bedding material 

types and sizes (Sets A and B, Table 4.1); 

2) Small-scale retention and evaporation characteristics of the surface blocks (Sets C 

and D, Table 4.1); 
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3) Model box retention and evaporation characteristics of a box containing only pea 

gravel 1-10 ram grain size (Sets E and F, Table 4.1). 

4) Model box retention and evaporation characteristics of a box containing only 

surface blocks (Sets G and H, Table 4.1). 

In theory, it should be possible to predict the hydrological performance of the model boxes 

containing the model car park structure (one component only, i.e., blocks or bedding 

material) using the results from the individual component analysis. The next section 

compares predictions of hydrological performance using the small-scale individual 

component results with the actual hydrological performance of the model boxes containing 

only one box component. 

4.6.1 Predictions of bedding material hydrological performance. 

Retention predictions. 

The model box containing pea gravel had a grain size of 1-10 mm (Sets E and F,Table 

4.1). The single component analysis of the retention characteristics of the pea gravel 

(1-10 mm), gave a retention value of 69.2 g per litre after drainage (Table 4.2). Using this 

retention value (from Set A experiments in Table 4.1), the retention by a model box 

containing pea gravel 1-10 mm can be estimated assuming that; 

1) Volume of gravel in a model box = 60 x 60 x 5 cm' i.e., 18 litres. 

2) If 1 litre of gravel retained 69.2 g after drainage, 18 litres would retain 18 x 69.2 g 

= 1245.6 g of water using these assumptions the volume of water retained by the 

bedding material can be expressed as: 

RG CiV x Rc Equation 4.6 

where RG = the water retained by the bedding material; 
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Gv = the volume of gravel (litres); 

Re = the maximum retention previously calculated (based on the results from Table 4.2). 

The model box results (section 4.5.1, Table 4.8) showed that the total retention of water 

over the four rainfall simulations was 2.92 mm, 2.96 mm, 3.65 mm and 4.13 mm for Runs 

1, 2, 3 and 4 respectively. 

If the predicted result (based on small scale experiments) of 1245.6 g (3.46 mm equivalent 

depth of rainfall) is compared with the actual average value of the model box of 1229.4 g 

(3.42 mm equivalent depth of rainfall), the prediction over-estimates the actual box 

retention by 1%. The difference is negligible and, from this analysis, it is concluded that 

Equation 4.6 can be used to estimate the retention of water by the bedding materials in the 

model boxes using the retention values of Table 4.2. 

4.6.2 Evaporation predictions. 

A comparison of evaporation between the small-scale single component results (section 

4.4.2, Set B) and the model box containing pea gravel-only can not fully be undertaken 

since the small-scale experiments had a duration of only 62 hours. However, it is possible 

to compare the evaporation after 69 hours from the model box with a predicted value 

based on the results of the small-scale experiments. 

The model box had an evaporative loss of 2.14 mm (Table 4.9) after 69 hours following 

rainfall. The small-scale (Set B) analysis showed that the pea gravel (1-10 mm grain size) 

lost 1.58 mm after 62 hours by evaporation (Table 4.3.B). The time difference in the 

duration of monitoring was 7 hours (i.e., 69 hours for the model box experiment and 62 
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hours for the small-scaled experiments). The evaporation rate of the small-scale 

experiments up to 62 hours had been 0.016 mm h.' (Table 4.3.C). Therefore an estimate 

of the evaporation from a small-scale sample after 69 hours can be obtained from: 

1.58 + (0.016 x 7) = 1.69 

If the actual model box evaporation amount (2.14 mm) is compared with the predicted 

evaporation rate based on the small-scale experiments (1.69 mm), the prediction 

under-estimates the actual model box evaporation by 21%. The difference may be due to 

scale effects when calculating evaporation since the small-scale experiments have a much 

smaller surface area (12 cm2 for bedding material experiments) which is multiplied up to 

provide a comparison with the model car park surface having a surface area of 3600 cm2. 

4.6.3 Predictions of block hydrological performance -Retention predictions. 

The block retention and absorption processes were best described by a semi-logarithmic 

relationship for the small-scale experiments (Equation 4.4). The model box experiments 

containing blocks only gave the total retention of water as 3.42 mm for Run 1, 5.21 mm 

for Run 2 and 6.52 mm for Run 3. If block retention is calculated using Equation 4.4, 

using the storm durations of Table 4.10, an estimate of model box retention can be 

obtained (it must be remembered that Equation 4.4 is based on absorption (g) from a 

single block). Table 4.12 gives the results. 

The percentage difference (percentage under-estimation of actual retention) increases with 

the number of rainfall events. This is not surprising as Equation 4.4 is based on absorption 

by surface blocks with no pre-storm retention. It was observed in section 4.5.3 that the 
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Table 4.12. Prediction of retention using Equation 4.4 for a model box containing 18 
surface blocks. 

Storm duration Retention Actual model box Percentage 
predicted using retention under-estimation 
equation 4.4 of the actual box 

retention 

(hours) (mm) (mm) CYO 

0.5 2.86 3.42 16 

1 3.41 5.21 34 

2 3.97 6.52 39 

water contact time of blocks was important in determining the total amount of water 

retained. Therefore, predictions of block retention were made using the cumulative 

contact time with water (Table 4.13). Again the percentage difference increases with the 

number of storm events, even when water contact time was taken into account. In section 

4.5.3 it was observed that the pre-storm retention increased over successive rainfall 

events. If the predictions using Equation 4.4 (Table 4.12) are used in addition to the 

pre-storm retention data given in section 4.5.3, the predictions produced are those in 

Table 4.14. 

The estimates for Runs 2 and 3 over-estimated the observed box retention. However, 

calculations using Equation 4.4 and considering pre-storm retention (as given in Table 

4.14) produces a lower percentage difference then the two previous methods of 

calculating block retention. The accuracy of the prediction is still poor (i.e., 30% 

over-estimation after Run 3) and this difference will be discussed in more detail in 

Chapter 5. 
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Table 4.13. Prediction of water retention using Equation 4.4. 

Total contact Predicted water Actual retention Percentage 
time with water absorption under-estimation 

of actual box 
retention 

(hours) (mm) (mm) (Vo) 
0.5 2.86 3.42 16 

1.5 3.74 5.21 28 

3.5 4.41 6.52 32 

Table 4.14. Prediction of model box retention including pre-storm retention. 

Run Pre-storm Prediction Sum of Percentage difference 
retention using equation previous 2 from the actual model 

4.4 columns box retention values (5) 

(mm) (mm) (mm) CYO 

1 0 2.86 2.86 16% under-estimation 

2 2.70 3.41 6.16 16% over-estimation 

3 4.51 3.97 8.48 30% over-estimation 

4.6.4 Evaporation predictions. 

Evaporation rates from the small-scale block experiments were best described by a 

semi-logarithmic equation (Equation 4.5). Since the inter-rainfall dry period for the model 

box experiment was only 218 hours, a comparison between the model box and small-scale 

experiments (up to 222 hours, Table 4.7.A) was undertaken. 

Figure 4.7 illustrates the cumulative evaporation (mm) from both the model box and 

small-scale experiments. A "best fit" curve was applied in order to allow for a comparison 

of evaporation rates to be made. Since Y=a+b log(x), (see Appendix B, glossary, for 

definitions) any variations in the value of b would indicate varying evaporation rates over 
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the dry period. The b value for the model box evaporation curve was 472.63 and for the 

small-scale experiments was 642.72 (36% greater than the model box). This indicates that 

the evaporation rate from the model box was lower than the small-scale box experiment. 

This is not surprising since, in section 4.5.4, it was noted that the blocks in the model box 

had less of their surface area in direct contact with the atmosphere, therefore, reducing the 

opportunity for evaporation to occur. As a result, the predictions based on the small-scale 

experimental results may over predict evaporation from a model box by approximately 

36%. 

Model box y - -372.45 + 472.63 * log(x) r-2 - 0.98 
• Small scale experiment y - -723.20 + 642.72 * log(x) r2 - 0.99 

800 
Cumulative 
evaporation 
(g) 700 

600 

500 
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200 
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Figure 4.7. Cumulative evaporation from the model box and the predicted 
evaporation using small scale experiments. 
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4.6.5 Hydrological performance predictions - Conclusions. 

1) Predictions of retention by a model box containing pea gravel only using 

small-scale experimental results proved to be very accurate (99%) using the 

retention data of Table 4.2. 

2) Predictions of evaporation by a model box with pea gravel using small-scale results 

under-estimate the actual box evaporation by 21%. 

3) Predictions of retention by a model box containing surface blocks and using 

Equation 4.4 proved to under-estimate block retention. The percentage difference 

increased over consecutive storms. If pre-storm retention values were added to 

the predictions using Equation 4.4, the percentage difference was less and the 

accuracy of the prediction improved. 

4) Predictions of evaporation by a model box containing blocks, using small-scale 

experimental results, tend to over-estimate the actual evaporation rate if Equation 

4.5 is used since Figure 4.7 shows that the rate of evaporation was lower from the 

model boxes compared with the small-scale experiments. 
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Chapter 5 -Short-Term Hydrological Experiments. 

5.1 Introduction 

This chapter examines the hydrological performance of the model car park structures from 

the onset of rainfall up to two hours after rainfall ceases. Since the retention by, and 

discharge from, the model structure governs the effectiveness of the structure to act as a 

rainfall attenuation device, factors influencing these processes were considered in some 

detail. The main factors influencing retention and discharge were rainfall intensity, the 

structural components and the pre-storm retention in the model structures. 

The following values were calculated from the raw data collected from the hydrological 

experiments: 

a) rainfall over time (mm), 

b) rainfall intensity (mm h-1), 

c) discharge over time expressed as a rainfall equivalent (mm), 

d) water retention over time expressed as a rainfall equivalent (mm) 

From these calculations, an analysis of discharge and retention in relation to rainfall 

intensity, pre-storm retention and the two structural components, could be performed. 

Table 5.1 lists the variables and calculations used to produce the final information on 

short-term hydrological processes. Three different rainfall intensities were employed in 

the experimental procedure (15,30 and 7.5 mm V). Section 3.2.13 identified the 

difficulties in maintaining a constant rainfall intensity during the experimental simulations. 

Reference to rainfall intensities in the following section are the target intensities ie: 
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15 mm is the application of 5.4 litres of water during a rainfall simulation with a

duration of 1 hour; 30 mm is the application of 5.4 litre of water during a rainfall

simulation with a duration of 0.5 hours; 7 5 mm li t, is the application of 5.4 litres of water

during a rainfall simulation with a duration of 2 hours.

The experimental design did not allow for the model boxes to become laboratory dry after

a rainfall event. Therefore, the pre-storm retention within the structures will also be

considered since this will influence retention and discharge of rainfall during the

subsequent rainfall events. A defmition list of the terms used in this section is given in the

glossary, Appendix B.

Table 5.1.  The variables and associated calculations used during data analysis.

ariable Calculation Units

Time (hours) Raw data taken from data loggers (h)

Rainfall, Weighing
Balance (A) data

Raw data taken from data loggers (g)

Rainfall mass Rainfall weight (g)

Cumulative rainfall rainfall mass converted into mm =
rainfall / area (360)

(mm)

Rainfall intensity = ((rainfall (g)t2 - rainfall (g)
t/) X ((time (min)t2 /60) - (time
(min)t/ /60 )))) / 360

(mm 11-1)

Discharge, Weigh
Balance (B) data

Raw data taken from data loggers (g)

Cumulative discharge Discharge data converted into mm =
Discharge (g) / Area (360)

(mm)

Discharge,
non-cumulative

Discharge data non-cumulative =
Discharge (mm)t2 - Discharge (mm)
t/

(mm)

Cumulative storm
retention

= (rainfall mass (g) - discharge
weight (g)) / 360

(mm)
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5.2. Hyetograms and hydrogranhs. 

Hyetograms and hydrographs for each model box during all rainfall simulations were 

drawn in order to examine the response of drainage to rainfall intensity. It was necessary 

to examine the drainage response because it provided an insight into the structure's ability 

to attenuate water movement under varying rainfall intensities. Two questions were 

addressed at this point: 

1. Is the discharge response influenced by rainfall intensity ? 

2. Do the structural components influence discharge response ?. 

The data loggers recorded information at 30 second intervals for up to 2 hours after 

rainfall ceased; the first reading being taken at the onset of rainfall. These data were then 

re-computed as 30-second intensities (in mm h4), as in Figure 5.1. Initial inspection of the 

hyetograms and hydrographs suggested that the time interval of 30 seconds produced a 

data set with considerable "noise". This was especially true of the hyetogram (Figure 5.1) 

which exhibited periodic low readings of rainfall intensity. These fluctuations were also 

reflected in the hydrographs (Figure 5.1), showing that the short-term discharge patterns 

were closely associated with fluctuations in rainfall intensity. These fluctuations were seen 

to occur with a periodicity of every 4-6 minutes. It was observed subsequently that these 

time intervals were approximately the same as the time interval at which the air 

compressor cut in to increase the pressure in the rainfall simulator and is, therefore, an 

artefact of the experimental procedure. 
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An attempt was subsequently made to filter out these fluctuations in order to identify 

general trends in rainfall intensity and drainage response. The data were re-calculated 

using the average rainfall intensities and discharge values over three different time 

intervals, namely, 3, 6 and 9 minutes. The intervals were chosen because they were 

divisible by 60, making calculations less complicated. Figures 5.2, 5.3 and 5.4 illustrate 

the hyetograms and hydrographs produced at these time intervals. The Box 5 experiment 

is selected as an example to illustrate the impact on this filtering process. The 30-second 

time interval hyetogram and hydrograph show considerable noise associated with the 

changes in air pressure feeding the rainfall simulator. For a 3-minute integration (Figure 

5.2), the effect of the compressor could also be identified, although the averaging over 3 

minutes had smoothed the data to some extent. 

Mean rainfall intensity Mean Discharge 
(mm/h) per 30 (mm/h) per 30
second interval second interval 

150 150 
Data points at 90 second intervals 

Discharge 
Rainfall Input 

100 — — 100 

Model eolonneent• 

Blocky 
Pea gravel50 — — 50 
110•1. •lee. 5-10mm 

Depth of beddlng etoae: 60mm 

; 

; 
; 

0 0 

0 los 200 

Time (minutes)Box Na.:5 
Run No.:1 
Code:B5R1295 

Figure 5.1 Hydrograph and hyetogram for Box 5 using a 30 second integration. 
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Figure 5.2 Hydrograph and hyetogram for Box 5 using a 3 minute integration. 
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Figure 5.3 Hydrograph and hyetogram for Box 5 using a 6 minute integration. 
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Figure 5.4 Hydrograph and hyetogram for Box 5 using a 9 minute integration. 

The 6-minute integration (Figure 5.3) smooths the data farther and was effective at 

reducing the effect of the compressor, allowing the general patterns in rainfall intensity and 

discharge to be examined. The 9-minute integration (Figure 5.4) illustrated how excessive 

smoothing disguises the general trend. On examination of the hydrographs and 

hyetograms at different time intervals for all experimental simulations, the 6-minute 

interval was regarded as being the most effective at reducing noise, but at the same time 

providing sufficient data on general patterns to be informative. As a result, the 6-minute 

integration was chosen as the most suitable for further detailed analysis. 
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5.2.1. The impact of rainfall intensity 

As discussed in section 5.1, three varying rainfall intensities were applied to each model 

box. Box 8 is used here to exemplify the response. Figures 5.5 to 5.7 show the 

hyetograms and hydrographs for the three consecutive rainfall simulations with the rainfall 

intensity being 15, 30 and 7.5 mm h-1 respectively. Figure 5.5 illustrates the general trends 

for the model boxes during the 15 mm rainfall simulation. There was an initial lag in 

response of the hydrograph to the hyetogram until the rainfall had infiltrated through the 

structure. This is referred to as the wetting phase. Once the wetting phase was complete 

(approximately 30 minutes in this instance) the hydrograph began to mirror the hyetogram, 

especially when there were any great variations in the rainfall intensity, ie. at points A, B 

and C. 

Mean Discharge 
(mm/h) per 6 

Mean rainfall intensity 

(mm/h) per 6 
minute intervalminute interval 

50 50 

Data points at 6 minute intervals 

Discharge 
Rainfall input 

A 
Wetting Pb... 

25 — 25 
Model comoonent• 

Block• 

Pea gravel/lIme•tone 

Drain sine: 5-10mni 

Depth of bedding stone: 50mm 

0 0 

Box No.:8 

Run N5.:1 

Code:08R1285 

0 100 

Time (minutes) 

200 

Figure 5.5 Hydrograph and hyetogram for Box 8 Run 1. 
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Mean rainfall intensity Mean Discharge 
(mm/h) per 6 (mm/h) per 6 
minute interval minute interval 

100 100 

Data points at 8 minute intervals 

Discharge 
Rainfall input 

—! ! 

50 —; — 50 

MRSILL0.011/112.11.1A211. 

gionk• 

Pea grave1/11me•tone 

Oral. size: 8-10mni 

Depth of bedding .tone: 50mm 

0 0 

0 loo 200 
De: No.:13 

Time (minutes)Run No.:2 

Code:08112270 

Figure 5.6 Hydrograph and hyetogram for Box 8 Run 2. 
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Figure 5.7 Hydrograph and hyetogram for Box 8 Run 3. 
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The hydrograph shows that drainage continues for up to 60 minutes after rainfall ceases. 

For the 30 mm rainfall event, the lag in response, or wetting phase was very short 

(Figure 5.6). This may be explained by two factors; first, the addition of a greater volume 

of rainfall in a shorter time and, secondly, the fact that the structure contained water from 

the previous event which will inevitably reduce the time necessary for the wetting of the 

structure. The response of the hydrograph is more rapid and maximum discharge 

(drainage) is greater than in the previous simulation. It is suggested that the response of 

the hydrograph is more obvious due to the greater volume of rainfall applied over a 

shorter storm duration. 

The response to variations in rainfall intensity is also shown in Figure 5.7 which plots the 

hyetogram and hydrograph for the 7.5 mm h 1 rainfall event. Once drainage begins, the 

response of the hydrograph mirrors that of rainfall intensity, especially if rainfall intensity 

temporarily increases or decreases. This can be seen at points A, B and C (Figure 5.7). 

The greater rainfall intensity at point C produces a dramatic increase in discharge, which is 

similar to the discharge response of the 30 mm h-1 rainfall event. 

On examination of Figures 5.5 to 5.7, a visual difference is apparent in the drainage 

characteristics of the same model box under varying rainfall intensities. A shorter duration 

rainfall simulation with a higher rainfall intensity (Figure 5.6) produces a more peaked 

drainage hydrograph, whereas a longer rainfall duration with a lower rainfall intensity 

produces a more rectangular hydrograph shape (Figure 5.7). It is therefore concluded that 

drainage characteristics are closely influenced by rainfall intensity once drainage 

commences. 
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5.2.2. Do structural components influence discharge response ?. 

To discuss this question, the discharge response during the 15 mm 11-1 event for three 

separate boxes have been chosen for comparison. The boxes chosen were Box 1, 

containing only pea gravel (1-10 mm) (Figure 5.8); Box 5 containing surface blocks and 

pea gravel (5-10 mm) (Figure 5.9); and Box 7 containing surface blocks and pea gravel 

(1-3 mm) (Figure 5.10). The hydrograph response to rainfall input for model Box 1 

(Figure 5.8) shows little lag in response with the hydrograph fluctuating in response to 

changes in rainfall intensity. This hydrograph also shows a second peak in discharge at 

point A. This effect was associated with water displacement due to the box being raised 

during the weighing process (see section 3.2.8). If Figure 5.8 and Figure 5.9 are 

compared, a different response in the hydrographs for the 15 mm rainfall event is 

apparent. Figure 5.9 (Box 5 containing surface blocks and pea gravel) has a greater lag in 

drainage response to rainfall. Furthermore, the volume of water drained was lower. This 

may suggest that the presence of surface blocks produces an increase in the time lag 

between rainfall input and discharge output. However, this is only a visual comparison 

and a quantitative analysis of discharge response is undertaken in section 5.3.4. 

A second variable in the structural components was the size of bedding material. For 

example, Box 5 contained pea gravel 5-10 mm and Box 7 contained pea gravel 1-3 mm. 

If Figures 5.9 and 5.10 are compared for Boxes 5 and 7 respectively, a different 

hydrograph response for each box is visible. Box 7 has a much longer lag time (or wetting 

phase) before discharge begins and the volume of discharge is significantly lower. 
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Figure 5.8 Hydrograph and hyetogram for Box 1 Run 1. 
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Figure 5.9 Hydrograph and hyetogram for Box 5 Run 1. 
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Figure 5.10 Hydrograph and hyetogram for Box 7 Run 1. 

This phenomenon is directly attributable to the structural components since Box 7 

contained the smaller pea gravel which had a higher specific surface area for retaining 

water (Chapter 4). A higher specific retention leads to a reduction in the total discharge 

from the structure and an increase in the length of the wetting phase. From Figures 5.8 to 

5.10, it can be seen that the arrangement of the structural components influence discharge 

response. The degree to which the structure influences the response is significant and will 

be quantified and discussed in Section 5.3.3. The model box containing both surface 

blocks and the smaller grain size of bedding material seems to have the greatest specific 

retention and the greatest attenuating effect on drainage. 
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5.3 Box Discharge response. 

The hyetogram and hydrograph analysis showed that discharge was influenced by both 

rainfall intensity and the car park structure. In section 5.2.1 pre-storm retention was 

suggested to have a significant influence on the wetting phase and, consequently, on the 

lag time. The analysis in section 5.2 provided a graphical comparison. In this section a 

quantitative analysis is performed in order to isolate the influence of rainfall intensity, car 

park structure and pre-storm retention on behaviour. 

The discharge (mm) 2 hours after the cessation of rainfall was measured during each 

experiment. Discharge ceased within 2 hours after a rainfall simulation and the outlet 

valves from the base of the model car park structure were closed. Table 5.2 gives the 

total discharge for all boxes following each rainfall simulation having allowed time for 

complete drainage. 

Table 5.2. Total Discharge following each rainfall simulation the model boxes. 

Run 1 Run 2 Run 3 

Box number Total discharge Total discharge Total discharge 
(mm) (mm) (mm) 

1 12.06 12.03 11.61 
(no blocks) 

2 5.89 8.28 13.33 

3 5.93 8.52 14.25 

4 7.02 9.84 11.87 

5 7.81 9.49 11.64 

6 7.30 10.01 11.00 

7 2.59 6.26 9.36 

8 7.09 9.26 11.81 

9 9.05 11.00 11.11 

10 8.01 10.02 11.64 
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Runs 1, 2 and 3 had target rainfall intensities of 15 mm 7 5 mm h-1 and 30 min h-1 

respectively. The data of Table 5.2 show two patterns. First, all boxes containing surface 

blocks showed an increase in the discharge following each successive rainfall simulation. 

Secondly, the discharge varied from box to box (during each set of rainfall intensity 

experiments) which indicated an effect of the structural components on discharge 

response. 

There may be two factors influencing the increase in discharge over consecutive rainfall 

events. These are variations in rainfall intensity and the pre-storm retention volume. 

5.3.1 Increases in discharge due to variations in rainfall intensity. 

In Chapter 4, it was shown that the duration of water contact with the surface blocks 

influenced the rate of water absorption (shorter contact producing lower absorption 

volumes). This characteristic would also influence the discharge from the model car park. 

If rainfall intensity was solely responsible for controlling variations in discharge over 

consecutive events, the shortest storm duration (Run 2) would be expected to produce the 

greatest total discharge response, since absorption by the surface blocks would be lower. 

This is, however, not the case. 

Furthermore, if rainfall intensity increased or decreased a difference in drainage volume 

would be expected, since storm duration also influences retention. For example if it is 

assumed that a 15 mm event produces a discharge of 100% then an increase in rainfall 

intensity to 30 mm should produce a consistent percentage increase from the 

15 mm event. 
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The drainage volume from the 15 mm h-1 rainfall event on all of the boxes was assumed to 

be a response of 100%. The difference in drainage volume from each run and box were 

calculated as a percentage of the difference from the first 15 mm h-1 event. Table 5.3 gives 

the percentage differences from the first rainfall simulation The percentage differences 

vary significantly between Runs 2 and Run 3 for each box. For a shorter storm duration 

(Run 2) a greater drainage volume would be expected, which is indeed the case. 

However, for a longer storm duration (Run 3), the drainage volume would be expected to 

be lower due to a greater water contact time for block absorption. This is not the case, 

suggesting that variations in total output could not be attributed solely to the difference in 

rainfall intensity. 

Table 5.3. The percentage difference from the discharge after Run 1 for all boxes 
after Run 2 and 3. 

Box number Run 2 Run 3 

Percentage difference Percentage difference 
from Run 1 from Run 1 

1 0 -4 

2 41 126 

3 44 140 

4 40 69 

5 22 49 

6 37 51 

7 142 261 

8 31 67 

9 22 23 

10 25 45 

136 



	

5.3.2 The effect of pre-storm retention. 

The model boxes in the first rainfall simulation were laboratory dry and the pre-storm 

retention was assumed to be zero. The increase in total discharge can in part be explained 

by the fact that Run 2 was carried out on boxes which were not dry and retention had not 

returned to the pre-storm level of the first rainfall simulation (Run 1). 

Pre-storm retention volumes are given in Table 5.4. If pre-storm retention amounts were 

high, it might be expected that the total discharge would increase in direct proportion to 

retention. All boxes showed an increase in pre-storm retention between Run 2 and Run 3. 

This would explain the increases in the percentage differences given in Table 5.3. 

Pre-storm retention significantly influences the discharge over consecutive rainfall events, 

therefore producing a greater discharge. 

Table 5.4. Pre-storm retention in each model box prior to Runs 2 and 3. 

Box number Pre-storm retention prior Pre-storm retention prior 
to Run 2 to Run 3 
(mm) (mm) 

1 0 0 

2 4.83 7.39 

3 5.03 • 7.41 

4 5.36 6.91 

5 3.37 6.07 

6 4.08 6.61 

7 5.52 10.12 

8 3.57 6.89 

9 2.53 5.11 

10 5.31 6.00 
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5.3.3 Variations in Box discharge response due to box components. 

Table 5.2 showed that there were significant differences in total discharge between each 

model box. In order to reduce the effect of other factors on discharge (ie. pre-storm 

retention and rainfall intensity), the 15 mm If' rainfall simulation will be examined in order 

to explain the influence of structural components on total discharge. Table 5.5 gives the 

model box components for each box and Figure 5.11 shows the total discharge for all 

boxes after the 15 mm 11-1 rainfall event. It can clearly be seen that Box 1 (pea gravel only) 

discharged the greatest volume of water (12.10 mm equivalent depth of rainfall), which 

may be explained by the absence of surface blocks. Boxes 5, 6 and 7 exhibited differing 

discharge amounts even though the depth of bedding material was the same (see Table 

5.5). The grain size of bedding material in these boxes differed being: 5-10 mm, 3-5 mm 

and 1-3 mm, for Boxes 5, 6 and 7, respectively. This suggests that, with a larger grain 

Table 5.5. Components held within each model box. 

Box number Type of bedding Depth of bedding Grain size of 
material material (mm) bedding material 

(mm) 

1 Pea gravel 50 1-10 

2 Pea gravel 50 1-10 

3 Pea gravel 30 1-10 

4 Pea gravel 70 1-10 

5 Pea gravel 50 5-10 

6 Pea gravel 50 3-5 

7 Pea gravel 50 1-3 

8 Pea gravel 25 5-10 
Limestone 25 

9 Pea gravel 30 5-10 
limestone 40 

10 Limestone 50 5-10 
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size of bedding material, the discharge from the model boxes will be greater due to a 

lower specific surface area in comparison to the smaller grain-sized bedding material. 

Apart from the presence of blocks, the difference in grain size of bedding material held in a 

model box had the most significant effect on water discharge during the 15 mm rainfall 

events. 

A second structural variable was the type of bedding material. Box 8, for example, 

contained 50% pea gravel and 50% limestone with a depth of sub-matrix similar to Box 5. 

Box 5 discharged slightly more water than Box 8 (7.81 mm compared with 7.09 mm), but 

Figure 5.11 Total discharge from all boxes after Run 1. 
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discharges from these two boxes varied over each rainfall simulation (being influenced by 

the pre-storm retention characteristics). Box 9 had a pea gravel/limestone mix of 43% and 

57%, respectively, with a depth of sub-matrix similar to Box 4, but Box 9 had the second 

highest discharge. These results suggest that the type of sub-matrix, it's size and it's shape 

influence the total discharge, in that the boxes containing pea gravel discharge less than 

those containing limestone. The total discharges ranged from 2.59 - 12.06 mm, which is 

between 17% and 80% of the rainfall applied. 

5.3.4 Attenuation of discharge response. 

The previous section demonstrated how structural components and pre-storm retention 

both influenced total drainage over consecutive rainfall simulations. It was shown that 

rainfall intensity (section 5.2) pre-storm retention and the structural components 

influenced the length of the wetting phase, and consequently, the drainage volume. 

When constructing a car park to attenuate discharge, prior knowledge of which structural 

components produce the slowest drainage (and thus attenuation) is required. It has 

already been shown that the analysis is complicated by pre-storm retention and rainfall 

intensity. This analysis will concentrate on the lag time in discharge response during Run 

1 on all boxes. 

The lag times for the 15 mm if' rainfall simulations were calculated for each box and are 

given in Table 5.6. Box 7 had the greatest lag time and Box 1 the shortest. Box 7 had a 

smaller grain size of bedding material with a larger specific surface area and, consequently, 

a larger surface area to retain infiltrating water, thus producing a slower discharge 
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Table 5.6. Lag times for all boxes during the 15 mm 11 4 events. 

Box number Lag time (minutes) 

1 1.8 

2 7.2 

3 22.8 

4 22.8 

5 20.4 

6 27.0 

7 46.2 

8 25.8 

9 20.4 

10 15.6 

Average 21.0 

response. A smaller grain size of bedding material produces a longer lag time. For 

example the two boxes containing the smallest grain size bedding material had the greatest 

lag times; ie. Box 7 contained pea gravel with a grain size of 1-3 mm and Box 6 contained 

pea gravel with a grain size of 3-5 mm. The presence of surface blocks also influences the 

lag time. 

Box 1 contained only pea gravel and no surface blocks and had the shortest lag time. In 

order to produce a slower drainage response, a car park structure should be constructed 

with surface blocks and a small grain-sized bedding material (1-3 mm) 

5.4 Specific retention 

Retention within the model car park was calculated by subtracting the discharge from the 

rainfall input (Table 5.1). Retention is a function of discharge, rainfall input, pre-storm 

retention and structural components. These variables will influence retention in the 
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opposite way that they affect discharge, eg. pre-storm retention will result in a decrease in 

rainfall retention over consecutive rainfall events and the presence of smaller sized bedding 

material and surface blocks will increase retention capabilities. The retention of water by 

the model car park structure will be discussed in more detail in the next chapter. 

However, this section will examine retention characteristics after each rainfall simulation 

to ascertain whether the surface blocks and/or the bedding material influences retention 

over consecutive events. This section also discusses whether it is possible to predict block 

retention over consecutive events. 

In Chapter 4 it was shown that the bedding material had a maximum retention value which 

was reached soon after wetting. However, if Table 5.7 is examined, it is seen that the 

total retention within the model boxes increases over successive rainfall events. Box 1 did 

not contain surface blocks and showed only a slight increase in specific retention over 

consecutive rainfall events. It is therefore suggested that this increase in total retention is 

associated predominantly with the surface blocks. This conclusion is substantiated by the 

findings from the experiments detailed in Chapter 4 which showed that the retention by the 

surface blocks was strongly influenced by the length of the contact time with water. To 

examine this further, data were analyzed from experiments on a model car park which 

contained only surface blocks. There were two stages in the experimental procedure. The 

first stage involved three rainfall simulations with each rainfall simulation being 24 hours 

apart. These were then left to dry for a period of approximately 2 months (1532 hours) 

before the second phase of the experiment. Table 5.8 shows the total retention, the 

inter-rainfall period and the pre-storm retention before each subsequent rainfall simulation. 
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Table 5.7. Total water retention in the model car park over three rainfall 
simulations. 

Box Retention after Retention after Retention after 
Run 1 (mm) Run 2 (mm) Run 3 (mm) 

1 (no blocks) 2.94 2.97 3.65 

2 9.11 11.64 12.76 

3 9.07 11.51 12.23 

4 7.98 10.52 10.22 

5 7.19 8.88 9.45 

6 7.70 9.07 10.64 

7 12.41 14.65 15.76 

8 7.91 9.08 10.08 

9 5.95 7.12 9.19 

10 6.99 8.56 9.40 

Table 5.8. Retention characteristics of a model car park structure containing surface 
blocks. 

Stage 1 Cumulative Inter-rainfall dry Pre-storm 
retention (mm) period (hours) retention (mm) 

Run 1 (Dry Box) 3.44 0 0.00 

Run 2 5.25 24 2.67 

Run 3 6.57 24 4.54 

Stage 2 

Run 4 5.33 1.532 2.86 

Run 5 6.79 71 4.11 

Run 6 7.12 22 5.60 

Run 7 7.26 22 6.08 

Figure 5.12 shows the pre-storm retention before each rainfall simulation and the retention 

after each event. The pattern of retention is very similar, indicating that the pre-storm 

retention has a strong influence on the total retention after a simulation. The total 

retention increase over Runs 1 to 3 and over Runs 4 to 7. Evaporation would have taken 
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Figure 5.12 Pre-storm retention and total retention over 7 consecutive runs on a 
box containing surface blocks. 

place between the two stages of the experiments (between Run 3 and Run 4). This 

explains the lower pre-storm retention value for Run 4. 

The retention after Run 4 is of a similar magnitude to Run 2 even though the retention for 

Run 3 was higher. This suggests that the blocks can only retain a certain amount of water 

per simulation and contact with water does not guarantee a return to maximum retention. 

It is as if the blocks absorb water during contact and then, depending on pre-storm 

retention and water contact time, they have a certain retention capacity. For example, for 

Runs 2 and 4, the water contact time and pre-storm retention were similar for both events 

and the resultant retention was also of a similar magnitude. Run 4 had 0.19 mm more 
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pre-storm retention than Run 2 and the model car park retained 0.08 mm more water than 

Run 2 after Run 4. This suggests that the model car park surface responds in a predictable 

fashion depending on pre-storm retention and water contact time. 

From the experiments discussed in Chapter 4, it was shown that: 

1) water absorption is strongly influenced by contact time with water and can best be 

described by Equation 4.4. 

2) water absorption by the blocks is influenced by pre-storm retention. 

Estimates of water retention were calculated using these data. Three types of predictions 

were made using different assumptions and are given in Table 5.9. The predicted results 

were then compared to the actual retention values of the model car park structure which 

were given in Table 5.8. The percentage differences were also calculated. 

Prediction 1 

The first prediction assumes that water retention is solely governed by the contact time 

with water. The contact time with water is the cumulative contact time (column B). The 

retention is then calculated using Equation 4.4 and the cumulative contact time is 

substituted into the equation as (t). 

Prediction 2 

This prediction uses the single storm duration time in Equation 4.4 (storm duration from 

column A) and then sums the result with the pre-storm retention. This equation assumes 

absorption takes the same form even though the blocks have a pre-storm retention greater 

than zero. 

145 



Table 5.9. Actual and predicted (P) retention by a model car park containing only 
surface blocks. 

A B c D 13 P 5 H I 

Run Storm Total water Actual P 1 Percentage P 2 Percentage P 3 Percentage 
length contact retention mm difference mm difference mm difference 
(hours) time in model UNDER-

(hours) box (mm) ESTIMATION 

1 0.5 0.5 3.44 2.88 -16.28 2.88 -16.28 2.88 -16.28 

2 1.0 1.5 5.25 3.77 -28.19 6.11 16.38 3.70 -29.52 

3 2.0 3.5 6.57 4.45 -32.37 8.54 29.99 7.87 -25.88 

4 1.0 4.5 5.33 4.65 -12.76 6.30 18.20 3.76 -29.46 

5 1.0 5.5 6.79 4.80 -29.31 7.55 11.19 4.40 -35.20 

6 1.0 6.5 7.12 4.95 -34.48 9.04 26.67 5.65 -20.65 

7 1.0 7.5 7.26 5.06 -30.30 9.52 31.31 6.11 -15.84 

Average -27.90 22.31 -26.09 

Prediction 3 

This prediction uses Equation 4.4 and data on pre-storm retention but it assumes that 

absorption is slower if the blocks have a pre-storm retention of greater than zero. 

Retention is calculated by firstly inversing Equation 4.4 to ascertain the equivalent time 

value for the pre-storm retention, i.e.: 

(PSR (g) / 18) = 68.8 + 37.04 .log(t) Equation 5.1 

(PSR (g) / 18) - 68.8 = 37.04 .log(t) 

((PSR (g) / 18) - 68.8) / 37.04 = .log(t) 

then inverse log(t) = t 

where PSR = pre-storm retention (g), t= time (h). 

The pre-storm retention is given in grams and divided by 18 since Equation 4.4 is for a 

single block and there are 18 blocks per model box structure. The (t) value, in hours, is 

then added to the storm duration (column B) and this then becomes the new value of (t), 
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which is substituted into Equation 4.4, and the retention is re-calculated for a model box. 

On examination of Table 5.9 it can be seen that the percentage differences are very 

different between each prediction, i.e, predictions 1 and 3 under-estimated the retention 

and prediction 2 over-estimated the block retention by over 20%. If no consideration is 

made in Equation 4.4 of pre-storm retention, i.e., as in prediction 2, the retention is 

over-predicted by an average of 22%. The percentage difference over-estimation 

increases for prediction 2 over consecutive rainfall events. This suggests that the accuracy 

of the prediction decreases, possibly because the blocks have a slower rate of absorption if 

they are approaching saturation. Therefore, even though the percentage difference may be 

on average lower for prediction 2, it's accuracy decreases over successive rainfall events. 

Unfortunately, the experiment did not continue long enough to ascertain if the accuracy of 

the prediction decreased significantly with a larger number of consecutive rainfall 

simulations. 

Prediction 1 under-estimated the block retention by an average of 27.9%, which was 

marginally higher than prediction 3. The percentage difference for prediction 3 began to 

decrease by approximately 5% over each of Runs 5, 6 and 7. This suggests that the 

accuracy of the predictions improves over successive rainfall events. However, prediction 

3 would seem to be a more realistic description of the process by which absorption occurs, 

i.e., pre-storm retention influences the rate of absorption by producing a slower absorption 

rate if the pre-storm retention is higher. 

It is suggested from the above analysis that a consideration of pre-storm retention should 

be included in the calculation of retention (e.g., prediction 3). The under-prediction here 
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may be a function of a scaling error, since Equation 4.4 is based on the behaviour of a 

single block, whereas the model box contained 18 blocks. The greater retention in the 

model box may also be attributed to some surface retention by the geo-textile; the steel 

mesh; the box itself; or capillary forces acting between blocks and between the blocks and 

box sides. These, however, are difficult to quantify but a consideration could be 

incorporated into the prediction of retention in a model box. For example, a box retention 

value, eg 1 mm, may be added. 

During the short-term hydrological analysis described above, retention was seen to be 

strongly influenced by pre-storm retention and the box structure. The retention increased 

over consecutive events and this can be explained by the presence and characteristics of 

surface blocks whose retention is also influenced by pre-storm retention and contact time 

with water. The process of retention by the blocks is a complex process and difficult to 

quantify. However, it is suggested that the absorption processes are similar to the 

processes described when producing prediction 3 (Equation 5.1). 

5.5 Summary of the short term hydrological performance. 

5.5.1 Hyetograms and hydrographs 

The hydrograph and hyetogram analysis showed that rainfall intensity influenced the shape 

of the hydrograph with a higher rainfall intensity producing a more peaked hydrograph 

response. The structural components in the model boxes also influenced the shape of the 

hydrograph by influencing the total drainage volume and the length of the wetting phase. 

It was shown that the presence of surface blocks and a small grain-size bedding material 

(1 - 3 mm) had the greatest attenuating effect on drainage. 
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5.5.2 Box discharge response 

The quantitative analysis on drainage volumes showed that rainfall intensity was not the 

only factor influencing discharge. Pre-storm retention and box structural components 

significantly influenced the total drainage over consecutive rainfall events. Variations in 

bedding material types and sizes and the presence of surface blocks, influenced the total 

volume of water discharged as well as the attenuation in discharge response. 

5.5.3 Specific Retention 

Pre-storm retention and the variations in structural components were the most significant 

influencing factor governing specific retention volumes. Increases in the volume of 

specific retention over consecutive rainfall events were attributed to the behaviour of 

surface blocks. A comparison of techniques to predict block retention (using Equation 

4.4) showed that a consideration of pre-storm retention was necessary to model block 

retention processes effectively. 

The next chapter examines the long term hydrological performance of the car park 

structure and considers evaporation processes in some detail. 
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Chapter 6 -Long-term Hydrological Behaviour of the 

Structure 

6.1 Introduction 

This chapter examines the long-term hydrological performance of the car park structures. 

The analysis deals with the performance between consecutive rainfall events and considers 

both evaporation and changes in retention. An analysis of the long-term retention patterns 

will be given first, followed by an analysis of long-term evaporation rates. 

6.2 Long-term Retention 

6.2.1 Single Storm Retention and Cumulative Retention. 

In Chapter 5, the proportion of rainfall retained by the structure during consecutive rainfall 

events was shown to decrease because of the pre-storm retention in the blocks and 

bedding material. 

Table 6.1. shows the decrease in retention following single rainfall events for the first three 

runs (15, 30 and 7 5 mm lfi respectively) on the model boxes (Column F Table 6.1). Box 

1 dried out during the inter-rainfall dry periods and did not have any pre-storm retention 

level until the beginning of the fourth simulation (see Figure 6.1). Box 4 showed a 

decrease in retention during the second storm. This was because the second storm 

received only 1 8 mm of rainfall before equipment failure. This rainfall event was 

re-simulated as Run 3 (which has the same rainfall application as Run 2 for the other 

boxes). 
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Table 6.1. Hydrological data from all boxes for all rainfall simulations. 

A B C D E F G 

Box Run Length Total Total Retention Total 
of rainfall Drainage of cumulative 
storm- (mm) rainfall retention 
hours during held 

individual within the 
event structure 

(mm) (mm) (mm) 

i 1 1 15.00 12.06 2.94 2.94 
2 0.5 15.00 12.03 2.97 2.97 
3 2 15.26 11.61 3.65 3.65 
4 10 50.00 46.02 3.98 4.13 

2 1 1 15.00 5.89 9.11 9.11 
2 0.5 15.09 8.28 6.83 11.64 
3 2 15.00 13.33 5.37 12.76 
4 3 29.17 23.94 5.22 11.88 

3 1 1 15.00 5.93 9.07 9.07 
2 0.5 15.00 8.52 6.48 11.51 
3 2 15.11 14.25 4.82 12.23 
4 3 27.78 23.23 4.54 11.35 

4 1 1 15.00 7.02 7.98 7.98 
2 * 0.15 1.80 0.01 1.79 6.09 
3 0.5 15.00 9.84 5.16 10.52 
4 2 15.18 11.87 3.31 10.22 
5 3 27.78 22.85 4.93 10.51 

5 1 1 15.00 7.81 7.19 7.19 

2 0.5 15.00 9.49 5.51 8.88 
3 2 15.03 11.64 3.38 9.45 
4 3 27.78 22.71 5.07 10.30 

6 1 1 15.00 7.30 7.70 7.70 
2 0.5 15.00 10.01 4.99 9.07 
3 2 15.03 11.00 4.03 10.64 
4 3 27.78 21.52 6.26 11.20 

7 1 1 15.00 2.59 12.41 12.41 
2 0.5 15.39 6.26 9.13 14.65 
3 2 15.00 9.36 5.64 15.76 
4 3 27.78 19.24 8.54 18.34 

8 1 1 15.00 7.09 7.91 7.91 
2 0.5 15.47 9.96 5.51 9.08 
3 2 15.00 11.81 3.19 10.08 
4 3 27.78 22.27 5.51 11.51 

9 1 1 15.00 9.05 5.95 5.95 
2 0.5 15.59 11.00 4.59 7.12 
3 2 15.18 11.11 4.08 9.19 
4 3 27.78 23.93 3.85 9.16 

10 1 1 15.00 8.01 6.99 6.99 
2 0.5 15.33 10.02 5.31 8.56 
3 2 15.04 11.64 3.40 9.40 
4 3 27.78 22.66 5.12 9.68 

* Equipment failure occurred during the run, therefore, this event was 
simulated again in Run 3. 
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Figure 6.1 Retention of rainfall by Box 1 during single events. The total volume of 
water retained in the structure is also shown. 

Figure 6.2 shows the retention from single rainfall events and the cumulative retention 

(including pre-storm retention) within Box 2 over the whole experimental period. This 

figure illustrates the general patterns shown by all of the boxes. The second rainfall event 

shows an increase in the cumulative retention values (i.e., from 9.11 mm to 11.64 mm) 

Cumulative retention increases again after the third rainfall event to 12.76 mm, but 

decreases slightly during the fourth simulation to 11.88 ram. The retention after each 

single rainfall event in Box 2 decreases for the first three rainfall events with the fourth 

showing similar values to the third (i.e., 5.37 mm in Run 3 and 5.22 mm in Run 4). Figure 

6.3, which is a similar plot for Box 6, also illustrates similar patterns. This figure shows 

that the retention during single rainfall events could sometimes be negative, i.e. just before 
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Figure 6.2 Retention of rainfall by Box 2. The total volume of water retained in the 
structure is also shown. 
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Figure 6.3 Retention of rainfall by Box 6. The total volume of water retained in the 
structure is also shown. 
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Run 4. Negative values occurred when the retention associated with the single event was 

evaporated in the inter-rainfall dry period. 

The decrease in retention over consecutive rainfall events can be explained by the total 

cumulative retention values. All boxes, apart from Box 4 (for reasons discussed above), 

demonstrated an increase in total cumulative retention over consecutive rainfall events. 

This increase can be explained by the results given in Chapters 4 and 5, which showed that 

the contact time between the surface block and rainfall determined the total retention. 

Thus, with an increased contact time, the retention would increase. 

6.2.2. Analysis of long-term retention curves 

The retention for each box and run were plotted as in Figure 6.4 which is an example 

illustrating the retention curves for Box 5 over runs 3 and 4. It is apparent that there are 

significant changes in the gradients of the retention curves approximately 50 hours after 

rainfall ended. The retention curves were therefore divided into two segments; the first 

segment comprised data for the first 50 hours and the second stage comprised data from 

50 hours until monitoring ceased. Best fit lines were fitted to the two different segments 

of each curve. All boxes and runs were analysed and the gradients were obtained from the 

regression analysis. The regression equation takes the form: 

Retention = a - bx Equation 6.1 

where a and b are constants and x = time (h), and was used in all analysis. 
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6.2.2.1 Stage I retention analysis. 

The gradients of the segment I curves (0-50 hours) were found to be approximately 10 

times greater than those of the Stage II curves (50 hours plus). This suggests that a 

significant change in retention occurred at the end of Stage I. Figure 6.5, shows the 

various rates of change of retention for the retention curves from segment I and 11 

following the first rainfall simulation on each box. On examination of these gradients for 

all of the runs and boxes, it was seen that there was a similarity in values with one main 

exception being Box 1 which had a much higher gradient in the stage I curve. This 

suggests that water stored in Box 1 is lost by evaporation at a more rapid rate during the 

initial stage in comparison with the other boxes containing blocks. 

6.2.2.2 Stage II retention analysis. 

Figure 6.6 gives the gradients calculated from the retention curves for each box for 

segment 11 over all rainfall simulations. On examination of Figure 6.6, some distinctive 

patterns are apparent. For Runs 1 and 2, Box 7 has the steepest slope, which is indicative 

of a greater rate of water loss by evaporation. Boxes 2 and 3 also have steep gradients, 

with Box 3 having the greatest value for Run 3. Both boxes contained bedding material 

with a grain size of 1-10 mm. The gradients are lower in comparison to the other boxes 

for Boxes 8, 9 and 10 during the first 50 hours. These boxes contained limestone which 

have a lower evaporation rate during Stage 11 of the inter-rainfall dry period. 
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Figure 6.4 Retention by Box 5 during the dry period for runs 3 and 4. Each data set 
is divided into two segments. 
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Figure 6.5 b values obtained from the fitted retention curves of all boxes. 
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Figure 6.6 b values for the gradient of the retention curves for stage II, all boxes 
and runs. 

In general, the slopes calculated from the retention curves during Stage II of the dry 

period show little variability (ranging from 0.02 to 0.08; excluding Box 7 Run 2). This 

indicates that the long-term changes in retention are generally similar for most of the 

boxes suggesting that long-term evaporation rates are governed more by water availability 

and the presence of the blocks rather than the characteristics of the bedding material. 

6.2.2.3 Summary of retention curve analysis. 

It is evident from the above analysis that water loss by evaporation over time takes on a 

similar form for all of the dry periods, although the actual retention volumes varied 

significantly. In an attempt to see whether the retention curves from all 4 runs could be 

indicative of the retention performance of each box, the single box storm retention curves 
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were superimposed onto a single graph (maintaining the retention amounts, but modifying 

the starting time of the run) to produce a single curve. Two best fit curves were produced 

for each new graph, again being divided into two stages (Stage I = 0-50 hours and Stage 

II = 50+ hours). Figure 6.7. shows the b values of the regression equation for the 

superimposed curves for stages I and 11 in each box. There were small differences 

between each box. For example Box 9 (containing limestone) had a low gradient and, 

therefore, a smaller rate of change in retention for both stages (indicating a slower rate of 

evaporation). After the initial stage of evaporation, the availability of water becomes a 

limiting factor, thus the higher the retention values the more the evaporation during the 

second stage. 
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Figure 6.7 The b values for the gradients of the superimposed gradient curves. 
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During the second stage there was less variation in the rate of water loss, since 

evaporation amounts were lower due to limited water availability. Box 7 exhibited a 

higher initial gradient which may be a function of the higher initial retention capabilities of 

this structure which resulted in a non-supply limited evaporation rate. 

6.3 Long-term Evaporation. 

Evaporation was calculated from the change in box weight through time after a rainfall 

event. Since the base of each box was sealed two hours after rainfall ceased, any changes 

in the overall box weight were assumed to be the result of evaporation. Measurements 

were usually taken daily during the initial stages of the inter-rainfall dry period (when 

evaporation values were greater) and at less frequent intervals after a period of two 

weeks. An evapopan experiment was run concurrently with the hydrological experiments. 

Evaporation from the structure is an important process to analyze since it will govern the 

amount of pre-storm retention in the structure before a subsequent rainfall event. This will 

then influence the discharge and attenuation response of the structure. 

6.3.1 The Evapopan Measurements. 

The evapopan allowed an analysis of evaporation from an open water body with the same 

surface area as the model boxes and experiencing the same environmental conditions (air 

temperature/humidity). These data were compared with model car park evaporation rates 

and any differences were used to identify the effects that water availability had on box 

evaporation rates. The evapopan experiment ran for 100 days. 
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6.3.2 Evapopan - Predictions of evaporation. 

Evaporation from an open water body can be predicted from a number of equations. For 

example, Penman (1948) predicted evaporation using a combination of the two established 

approaches (energy budget and the mass transfer method) in Equation 6.2: 

H = E0 + Q Equation 6.2 

Where; H = available heat 

E. = is the energy available for evaporation; 

Q = is the energy for heating the air. 

If net radiation measurements are available, H can be measured directly based on incoming 

radiation (RI) and out going radiation (R.) determined by records on sunshine, temperature 

and humidity as in Equation 6.3; 

H = 11.1 (1 - r) - R0 Equation 6.3 

where; r = albedo and equals 0.05 for water; RI is a function of RA, the solar radiation 

which is dependent on the ratio of n/N which is the measured sunshine (n) and the 

maximum possible sunshine (N). 

Equation 6.3 uses a number of variables that were not monitored during the experiments 

(R1 and R., n and N). These variables can be estimated from published nomograms to 

insert into calculations, and are based on meterological field data. Since this study was 
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laboratory based and R„ R0 , n and N would be difficult to estimate, it was decided that a 

different approach was needed which would allow an estimate of evaporation based on 

meterological variables that were measured. 

An empirical formula which uses humidity and temperature to estimate evaporation is 

given by Wilson (1992) (Equation 6.4), 

Ea=C(es-e)f(u) Equation 6.4 

where 

E.= evaporation from an open water body 

C= an empirical constant 

e.= saturated vapour pressure of air at t °C 

e= actual vapour pressure in the air 

u= wind speed. 

The empirical constants were developed from tests which give the equation (Wilson, 

1992): 

Ea=0.35(e.-e)(0.5+0.54U2) Equation 6.5 

where 

u2 = the wind speed in m s-1 at a height of 2 metres. 

This equation assumes that the water temperature is the same as the air temperature. 

Equation 6.5 was used to predict potential evaporation in the laboratory. Since the study 

was laboratory based, the wind speed was assumed to be zero. 
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Figure 6.8 shows the cumulative actual daily evaporation for the evapopan plotted against 

the predicted values. The regression analysis indicates a good relationship with an It2 of 

0.999. The predictions, however are over 100% higher than the actual evaporation rates 

from the evapopan. Since the relationship is good, a modified equation could be used to 

predict evaporation from the evapopan with a reasonable degree of accuracy. The 

equation chosen seems to be a good empirical basis for predictions of potential 

evaporation, but it does not predict evaporation from the model box surface. The 

predicted evaporation values used the same temperature and humidity readings which 

were recorded during the model box experiments. If the daily evaporation rates from the 

evapopan are similar to the predicted potential rates, then it is suggested that evaporation 
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Figure 6.8 The cumulative observed daily evaporation from the evapopan plotted 
against the predicted evaporation using Equation 6.5. 
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from the evapopan must be influenced by temperature and humidity. This is suggested 

because the predicted rates are calculated using temperature and humidity readings. 

6.3.3 A comparison of Evapopan and Box evaporation rates. 

The box evaporation rates were compared with the daily evaporation rates from the 

evapopan. Figure 6.9 shows the daily evaporation from Box 5 and the daily evaporation 

from the evapopan on the same days. The evapopan losses are higher than the box 

evaporation rates. The box rates also decreased significantly after a rainfall event but 

there were significant increases in the daily evaporation rates when there were also 

increases in the daily evapopan rates. 
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Figure 6.9 A comparison of the daily evaporation rates exhibited by Box 5 and the 
Evapopan. 
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The average daily evaporation rates were calculated for all of the boxes and are given in 

Table 6.2. 

The average daily evaporation rates show that all boxes have a lower rate than the 

evapopan. Table 6.2 also shows that Box 7 has the greatest daily evaporation rate (0.22 

mm day') compared with the other boxes. This may be explained by the fact that Box 7 

always retained the greatest quantity of water after a rainfall event and, consequently, had 

more water available for evaporation. 

It is also interesting to note that the boxes containing limestone (Boxes 8, 9 and 10) had 

the lowest daily evaporation amounts. The boxes containing limestone usually had lower 

cumulative retention values when compared with the boxes containing pea gravel. Box 9 

had the lowest daily evaporation rate (0.11 mm day), which may be explained by the fact 

that Box 9 had the lowest cumulative retention values during the whole experiment. 

Table 6.2. Average daily evaporation rates for all of the boxes over the inter-rainfall 
dry periods. 

Box Number Average daily evaporation rate 
(mm day-1) 

Evapopan 0.79 

1 0.16 

2 0.16 

3 0.16 

4 0.14 

5 0.14 

6 0.15 

7 0.22 

8 0.13 

9 0.11 

10 0.13 
. 
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It seems reasonable to suggest, therefore, that retention and water availability within the 

boxes influence the average long-term evaporation rates. 

6.3.4 Factors influencing box evaporation. 

Data from the boxes were analysed to examine the factors that influenced the evaporation 

process. Two factors were thought to be significant in influencing the evaporation rates. 

These were: 

1. Experimental conditions (temperature and humidity). 

2. Box components; the combination of various bedding materials and blocks 

influence the retention of rainfall during simulations. The retention will influence 

the availability of water for evaporation. 

Experimental Conditions.-Potential Evaporation Calculations. 

Potential daily evaporation rates calculated from Equation 6.5 are based on relative 

humidity and temperature readings taken in the laboratory. The cumulative potential daily 

evaporation calculations were compared with the actual box daily evaporation rates. 

Figure 6.10 illustrates the results for Box 5 which is a typical example of the patterns 

exhibited by the boxes. A good relationship between potential and actual cumulative rates 

is observed during the majority of Run 1. At point A (Figure 6.10) the cumulative daily 

evaporation rate for Box 5 is higher in proportion to the rest of Box 5 values (these were 

during the initial stages of the dry period when evaporation is expected to be higher). 

Figure 6.11 shows Box 5 Run 2 plotted in the same way. On analysis of fitted regression 

lines, the gradient is approximately 2 times higher for Run 2 than for Run 1, i.e., 0.090 for 

Run 2 and 0.048 for Run 1. 
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Figure 6.10 Observed cumulative evaporation from Box 5 Run 1, plotted against 
the predicted values using Equation 6.5. 
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Figure 6.11 Observed cumulative evaporation for Box 5 Run 2, plotted against the 
predicted values using Equation 6.5. 
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This can be explained by the length of the dry period which was shorter for Run 2 and, 

therefore, was more likely to have a higher rate of evaporation over time. It is clear that 

evaporation from the experiment reflects a supply limitation in comparison with the 

potential rate. 

The influence of Retention and Length of dry period. 

Table 6.3 gives the total evaporation from each box after each simulation. It also gives 

the duration of the inter-rainfall dry period (IRP). 

Table 6.3. Water lost by evaporation between each rainfall event. 

Box 1 2 3 4 5 6 7 8 9 10 

RUN 1 2.94 4.28 4.05 3.67 3.81 3.62 6.88 4.34 3.42 3.74 

water 
lost 
(mm) 

Length 1.054 1.027 698 697 747 735 768 743 765 765 

of IRP 
(h) 

RUN 2 2.97 4.25 4.09 4.33 2.81 2.46 4.53 2.38 2.01 1.64 

water 
lost 
(mm) 

Length 307 314 315 307 289 288 257 286 287 286 

of IRP 
(h) 

RUN 3 3.50 6.11 5.43 4.46 4.21 7.06 5.96 4.08 3.88 4.84 

water 
lost 
(mm) 

Length 401 816 430 858 812 908 816 793 817 796 

of IRP 
(h) 

RUN 4 4.12 5.24 5.32 5.21 5.62 6.29 8.43 5.03 3.04 4.59 

water 
lost 
(mm) 

Length 383 1.116 1.105 1.080 1.077 1.006 983 981 934 968 

of IRP 

(h) 
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From Table 6.3. it is difficult to identify a pattern in total evaporation. This is because the 

length of the inter-rainfall dry periods differed for each run and for each box. If the length 

of inter-rainfall period is correlated with evaporation, a weak relationship can be identified 

(see Figure 6.12). This suggests that there are other factors which govern the total 

amount of evaporation from the boxes. 

The post-storm retention was also identified as a factor likely to influence evaporation. 

To examine this control further, the maximum retention values after each rainfall event 

were plotted against the total evaporation following the inter-rainfall dry period. Figure 

6.13 shows that there is a strong positive relationship between the maximum retention 

values and the total evaporation. This relationship is stronger than the evaporation / 

length of inter-rainfall dry period relationship. This suggests that the maximum retention 

amount has a significant effect on subsequent evaporation. 

A multiple regression analysis was carried out on the three variables, i.e., length of dry 

period, volume of retention and volume of evaporation. The data were input into SPSS, a 

statistical package for IBM compatible Pcs. A stepwise multiple regression analysis 

showed that there was no significant correlation between the two independent variables of 

retention volume and the length of the dry period (- 0.047 correlation). The first step in 

the regression (where evaporation was the dependent variable) gave an R2 value of 37.5%. 

The dry period had a highly significant partial correlation of 0.62. When the dry period 

was incorporated into the second regression step, the multiple R value was 0.79 and the 

R2 was 62%. 
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Figure 6.12 Correlation between the length of the dry period and evaporation for 

all boxes. 
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Figure 6.13 Correlation between evaporation and maximum retention. 
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The multiple regression analysis showed that the B (beta) value remained reasonably stable 

with the addition of the second variable (being 0.64 and 0.5 for the first and second steps 

respectively). The multiple regression analysis explained 62% of the variance with a best 

fit regression curve being described by: 

E=0.04519 + (0.27465 x R) + (0.002445 x 1RP) Equation 6.6 

where; 

E = Evaporation; 

R = retention; 

lRP = length of dry period. 

Box Components 

An analysis of evaporation was also undertaken in order to provide information on the 

relative significance of the different structural components. A general analysis of the 

long-term evaporation is given, followed by an analysis of the importance of individual 

box components. 

Analysis of Evaporation curves. 

Figure 6.14 shows evaporation following the four rainfall events on Box 3. In general 

there were two stages identified in the evaporative process. After 50 hours the 

evaporation curves for the first three rainfall events begin to differ from each other and the 

slopes change, indicating varying rates of evaporation. Runs 2 and 3 have a higher rate of 

evaporation following rainfall, as compared with Runs 1 and 4. This pattern is also 

evident for Box 2 and, to some extent, Box 7 (after 250 hours). 
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Figure 6.14 Cumulative evaporation during each of the four runs on Box 3. 

Boxes 2,3,9 and 6 have a higher losses by evaporation during Run 3. This may also 

explain why Boxes 2,3 and 9 experienced a decrease in total retention after Run 4 (10 litre 

rainfall event), since the evaporation amount after Run 3 was higher than the absorption 

associated with the rainfall/block contact time during Run 4. 

The rates of evaporation differed from box to box. The actual amounts of evaporation 

during the initial stages were similar for individual runs on each box, but the overall 

evaporation varied depending on the length of the inter-rainfall dry period. Boxes 1 and 7 

exhibited evaporation curves that have less variation in gradient (see Figures 6.15 and 

6.16) up to 200 hours. This relationship is not as strong for any of the other boxes. 
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Figure 6.15 Cumulative evaporation during each of the four runs on Box 1. 
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Figure 6.16 Cumulative evaporation during each of the four runs on Box 7. 
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Evaporation as a Percentage of Retention. 

The evaporation on individual days following a rainfall event was calculated as a 

percentage of the total retention after each rainfall event for each box. Table 6.4. gives 

the water loss by evaporation as a cumulative percentage over the 15 days. 

All boxes with surface blocks evaporated over 9% of the water retained after the first day 

following run 1. This is approximately two times higher than the block experiments in 

Chapter 4. It must be remembered, however, that the block experiments described in 

Chapter 4 had a longer contact time with water (being immersed for 1 month). The 

percentage values would be expected to be lower since a greater amount of water was 

retained in the small scale experiments. The block experiments showed an evaporation 

loss of 0.39 ram. The box evaporation amounts ranged from 0.98-1.03 mm, which is 

considerably higher, but the surface area was larger and included a 15% exposure of 

bedding material. 

The rainfall simulation experiments were also carried out under different laboratory 

conditions (i.e., the block only experiments had a temperature in the laboratory ranging 

between 16-18 °C, whereas the box experiments had a temperature range of 17-21 °C). 

The presence of surface blocks in the simulated car park structure was seen to have a 

significant effect on evaporation rates. This is apparent if the evaporation rates from Box 

1 (pea gravel only) are compared to any of the other boxes containing blocks. The rates 

of evaporation from Box 1 were always higher then the boxes containing surface blocks, 

with Box 1 losing 60% more of total retention over 15 days. 
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Table 6.4. Water lost by the boxes, expressed as a cumulative percentage of the total 
retained. 

Box RUN 1 RUN 1 RUN 1 RUN 2 RUN 2 RUN 2 RUN 3 RUN 3 RUN 3 
Day 1 Day 5 Day 15 Day 1 Day 5 Day 15 Day 1 Day 5 Day 15 

1 56% 87% 100% 42% 75% 100% 40% 66% 93% 

2 13% 21% 30% 12% 23% 35% 11% 18% 30% 

3 15% 20% 32% 13% 20% 36% 12% 22% 34% 

4 22% 29% 39% 24% 30% 39% 3% 12% 26% 

5 14% 18% 30% 11% 22% 29% 10% 24% 30% 

6 9% 21% 27% 12% 20% 26% 13% 23% 37% 

7 12% 21% 29% 7% 16% 27% 5% 13% 30% 

8 17% 21% 26% 6% 14% 19% 14% 18% 23% 

9 23% 30% 40% 12% 17% 24% 12% 19% 23% 

10 22% 25% 36% 22% 33% 40% 8% 22% 33% 
-

The presence of blocks therefore, reduce evaporation from the model boxes. 

6.4 Summary 

The analysis of the long-term hydrological performance of the car park structures is 

summarised below. 

6.4.1 Retention 

1. Cumulative retention increased as the number of rainfall events also increased. 

2. During the first 50 hours specific retention is controlled by the box structural 

components. During the second stage of evaporation after 50 hours, the amount 

of water available for evaporation is a more significant influence on retention. 

6.4.2 Evaporation 

1. Evaporation rates from the evapopan were significantly affected by relative 

humidity and temperature in the laboratory. 
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2. Evaporation through time was estimated using Equation 6.5. Actual evaporation 

rates, both from the evapopan and the boxes are significantly lower then the 

modelled rate but follow a similar temporal pattern. 

3. Evaporation from the evapopan had a higher average hourly rate than the boxes. 

4. The main factors influencing evaporation were temperature / humidity conditions 

and box structural components. The type of bedding material influenced the 

hourly evaporation rates, mainly by controlling the amount of water available for 

evaporation. Grain size of bedding material was also shown to influence 

evaporation, with the smaller grain sizes providing a higher average hourly rate. 

Depth of bedding material also influences evaporation rates, with a greater depth 

of bedding material resulting in a slower transfer of water to the surface and 

consequently reducing water availability at the surface for evaporation. 
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Chapter 7 - Clogging Experiments 

7.1 Introduction. 

The aim of this chapter is to examine the effect that the addition of particulate material has 

on the long-term hydrological performance of the model car park structures. Data on 

particulate experiments were available from three sources; 

1. field measurements from 2 sites (see Chapter 3.3.3); 

2. information from experiments conducted on nine boxes to which combinations of 

clay and clay/peat were applied; 

3. information from three boxes (which had already experienced clay/peat additions) 

to which graded sands were also applied (see Chapter 3.3.3). 

This chapter comprises: 

a) a consideration of the potential lifespan of the car park structures as a result of 

clogging; 

b) a discussion of the observed particulate movement within the structure; 

c) a discussion of the measurement of particulate concentrations within the structure, 

including laboratory and field data; 

d) an analysis of the influence of particulate additions on the hydrological 

performance of the model car park structures. 

Information on the clogging experiments is given in Table 7.1, which gives details of the 

type and rate of particulate additions. 
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Table 7.1. Experimental boxes used during the clogging experiments (the type and 

amount of particulate additions are also shown). 

First Particulate Load Load Experiment Load Load 
Experiment addition (years) (g) 2 (years) (g) 

Graded 
Box sands 

addition 

2 Clay 80 365 Addition 140 1873.2 

3 Clay and 80 365 Addition 140 1873.2 
Peat -

4 None Addition 140 1873.2 

5 Clay 80 365 Not used 

6 Clay and 80 365 Not used 
Peat 

7 None Not used 

8 Clay 80 365 Not used 

9 Clay and 80 365 Not used 
Peat 

10 None Not used 

7.2 "Lifespan" of the car park structures. 

One reason for examining the clogging of the car park structure was to ascertain it's 

"lifespan". The "lifespan" is the estimated time after which the car park surface should be 

replaced, because the rate of infiltration is reduced to an unsatisfactory level. The end of 

the structures lifespan might be specified as when the infiltration rate was lower than 

1 mm being below commonly accepted design criteria (Pratt, personal communication, 

1993). 

After the second set of clogging experiments were completed, the hydrological 

performance of the car park structures was not greatly impaired. The only adverse change 

to the hydrological performance was periodic ponding which ceased, on average, 
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 6 minutes after a 15 mm h-1 , one hour duration rainfall event (equivalent to a Return 

Period of approximately 2 years). 

It must be stressed at this point that the clogging simulations in the laboratory involved a 

concentrated loading of particulate material, followed by a rainfall simulation. The 

intention was to examine the influence of additions and not the influence of compaction of 

these additions. The application of particulate material and the rainfall simulation were, 

therefore, not directly akin to natural conditions. Natural conditions would have a more 

gradual particulate loading followed by a large number of rainfall events (and a higher 

rainfall volume). These experiments were not designed to simulate natural particulate 

loading, but were employed to assess the importance of clogging. 

7.2.1 Infiltration Rate and Storage Capacity. 

During the first set of experiments a particulate addition of 1014 g ni was applied, 

estimated to be equivalent to a load over 80 years. This particulate load was not the total 

load i.e. it was the equivalent loading of the organic and clay fractions only (see section 

3.3.3). After particulate additions to the car park structure, drainage continued for 6 

hours, an increase in drainage time by 4 hours (in comparison with experiments on clean 

boxes which ceased at around 2 hours). After the 80-year load had been applied, the 

infiltration through the structure was slower. This was caused by the "caking" of 

sediments at the surface, which created temporary ponding of the rainfall (see plate 7.1). 
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Plate 7.1. Ponding of rainfall due to particulate additions. 

Field-based observations on the full-scale car park sites in Nottingham (Chapter 2.4), 

showed that the infiltration rates of the two car park sites were 100 mmh -1 (Gill Street 

6 years after construction) and 146 mm h-1 (Clifton Campus 5 years after construction). 

These sites had not received maintenance since construction. The infiltration rate for Gill 

Street in 1987(1 year after construction) was 1000 mmh -1 . This indicates an order of 

magnitude reduction in infiltration capacity over the six years. 

On examination of the car park surface in these areas, silts were found to have 

accumulated in the infiltration inlets, especially the top 50 mm, which would inevitably 
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reduce infiltration rates. Similar clogging patterns were observed during the laboratory 

simulations (see plates 7.2. and 7.3.). The degree of silting was observed to be greater for 

the experimental boxes than for the fill-scale structures which was probably the result of 

the loads being applied over a short period of time and an overall greater amount of 

material added. The infiltration rate for the model car park structure, after 140 years of 

particulate loading (5203 g m2) (size range 75 microns to 1.75 mm) and 80 years load of 

organic and clay material (1014 g m2), was calculated as being, on average, 13.6 ram 

Even after the particulate additions, the model structure could easily infiltrate a 7 5 mm 

rainfall event during one hour, even after it had experienced these heavy particulate 

additions. From this it may be suggested that the lifespan of the car park structure could 

exceed 100 years of particulate loadings without any compaction of the silts. 

The void storage capacity of a structure with a 50 mm depth of bedding material is 

calculated, on average, to be 42% of the gravel volume (based on results from Chapter 4). 

From this, it is estimated that approximately 21 mm of rainfall could be stored in the voids 

of the bedding material alone. Observations from the laboratory and field experiments 

indicated that siltation occurred mainly within the top 50 mm of the infiltration inlet, with 

little particulate movement into the bedding material below. Therefore, the volume of 

voids able to retain water in the total bedding material would not be greatly reduced, and 

retention capabilities of the structure could still remain high. These results are not 

consistent with the observations by Pratt eta!. (1988), who found that after a load 

simulation on a car park surface, clogging occurred from the base upwards, when large 

volumes of water were used to convey the sediments. 
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Plate 7.2 The pattern of clogging during laboratory experiments 

Plate 7.3 Clogging of the model surface. 
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7.2.2 Observed Particulate Movement through the structure. 

Without dismantling the experimental boxes it was difficult to quantify the depth to which 

particles had moved through the structure. However, observations were made on the 

migration of peat and clay. Two distinct observations were made; 

1. the organic additions were restricted to the infiltration inlets with particles 

concentrated in the upper 50 mm of the structure; 

2. clays were also concentrated in the infiltration inlets but some clay particles were 

observed to reach the base of the structure and accumulate on the geotextile. 

During all rainfall simulations the peat was observed to float in the ponding water. This 

produced a concentration of organic material at the surface which resulted in limited 

incorporation of peat into the gravel in the infiltration inlets. Clay particles were removed 

from the structure with the drainage water. Table 7.2 gives the total loss of clay (with 

drainage) and the loss as a percentage of the total load applied. 

Table 7.2. Loss of clay from the box structures during the particulate addition 
experiments. 

Box Number and Total loss of clay (g) Loss as a percentage of 
particle size of bedding total load applied 
material 

2 - 5-10 mm 86.7 23.8 

3 - 5-10 mm 80.9 33.2 

5 - 3-5 mm 43.3 11.9 

6 - 3-5 mm 37.9 15.6 

8- 50% 5-10 mm 23.8 6.5 
50% 1-3 mm 

9- 50% 5-10 mm 21.2 8.7 
50% 1-3 mm 
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The boxes numbered in Table 7.2 all experienced particulate material additions. From the 

data of Table 7.2 it can be seen that the 5-10 ram grain size lost more clay during 

experimentation, followed by the 3-5 mm and then the 1-3/5-10 mm mixture. This 

suggests that the size of the bedding material has a significant influence on the migration 

of clays through the structure, with the smaller grain sizes providing a greater filtration of 

sediment which remains in the structure. The boxes with the peat/clay additions (Boxes 3, 

6 and 9) lost a higher percentage of clays in comparison with the boxes experiencing 

clay-only additions (Boxes 2, 5 and 8) which may be due to more efficient particle 

cohesion between clays then clay and peat. 

Plate 7.4. Migration pathways of clay particles. 
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When the boxes were dismantled, the pathways of clay migration were distinctly visible 

(see Plate 7.4). The visible white patches of clay were located directly under the 

infiltration inlets, showing that the migration path of the clays was concentrated in the 

areas immediately below the point of entry of the percolating waters. The pattern 

extended down to the geotextile at the base of the structure where the clay collected and 

moved laterally. 

The graded sand, which was added during the second set of experiments, was also 

retained in the infiltration inlets, again with a high concentration in the top 50 mm of the 

inlet. A small proportion of the sand was observed to reach the bedding material at the 

base of the infiltration inlet. 

7.3 A comparison of Laboratory and Field Observations. 

The field observations were made at two sites in Nottingham. The first site was Gill 

Street in the centre of Nottingham and the second was at the Clifton Campus at 

Nottingham Trent University. Gill Street (see Plate 7.5) field site was a car park used by 

the public in a busy shopping area of Nottingham. The bedding material used in 

construction had a grain size ranging from 2-6 mm. The infiltration inlets surrounding one 

of the surface blocks were carefully excavated. Each infiltration inlet was divided into two 

samples, the top 50 mm being sample 1 and the 50 mm below that being sample 2. In 

total, 6 infiltration inlets were excavated. It was observed that the migration of sediment 

through the surface of the structure was concentrated around the infiltration inlets. 
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Plate 7.5. Gill Street field site - shopping area, Nottingham. 

Plate 7.6. Gravel under the surface block. 
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From Plate 7.6 it was clear that there was no lateral movement of sediment to the area 

directly below the surface block. The gravel below the block was, by contrast, very clean. 

The observed migration was similar to that evidenced by the migration of clays during 

laboratory analysis. 

A similar procedure was carried out at the Clifton Campus site (see Plate 7.7). The 

bedding material ranged between 1.18 and 10 mm. After excavation, it was again noted 

that the migration of particulate material through the surface of the structure was 

concentrated in the infiltration inlets. The clean gravel directly below the surface block 

was also similar to that found in Gill Street (see Plate 7.8). It must be stressed at this 

point that the analysis which follows is based on information gained from the infiltration 

inlet and not the bedding material below the surface blocks. 

The excavated gravels from both sites were dried and sieved into size fractions. Table 7.3 

gives the size fractions in the samples as a percentage of the total sample. The size 

fractions below 1.18 mm are assumed to be the particulate loading onto the surface since 

the gravels used during construction of the surfaces all had a grain size greater than 

1.18 mm. 

For Gill Street, 8.37% of the material from the infiltration inlet weighed was of a size 

fraction less than 1.18 mm. The value for Clifton Campus was 3.02%. The difference 

may be explained by the age of the structure and the initial particle size distribution. 
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Plate 7.7. Clifton Campus, Nottingham. 

Plate 7.8. Gravel located below surface block. 
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Gill Street was constructed about a year before the Clifton Campus producing a difference 

in cumulative particulate loadings per year; and the grain size of the bedding material at 

Gill street was smaller, providing greater infiltration possibilities. 

The distribution of the particulate material through the structure showed a concentration 

of material in the first 50 mm of the infiltration inlet. The samples from the field sites were 

examined to quantify this observation. The concentration in the first (0-50 mm) and 

second (50-100 mm) samples were calculated as a percentage of the size fraction below 

1.18 mm (see Table 7.4). Table 7.4 shows that the percentage of particulate material in the 

first sample was significantly higher in both cases (see Plate 7.9). The results from Gill 

Street indicate that the older the construction, and the smaller the grain size of bedding 

material, the greater the concentration of particulate material in the upper 50 mm. 

Table 7.3. The weight of each size fraction was calculated as a percentage of the 
total infiltration inlet sample weight. 

Size >1.18 - < 5 <1.18 mm <600 <300 <150 <75 
Fraction mm >600 >300 >150 >75 

Gill Street 91.64% 1.98% 1.79% 1.94% 1.56% 1.09% 

Clifton 96.97% 0.80% 0.96% 0.64% 0.30% 0.33% 
Campus 

Table 7.4. The concentration of material (<1.18 mm) in the 0 - 50 mm and 50 - 100 
mm samples as a percentage of the total material less than 1.18 mm. 

Site Percentage of the size Percentage of the size 
fraction <1.18 mm fraction <1.18 mm 
contained in the top 50 mm contained at a depth 50-100 
of the infiltration inlet mm in the infiltration inlet 

Gill Street 83.82% 16.18% 

Clifton Campus 68.53% 31.47% 
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Plate 7.9 Samples taken from the infiltration inlet. 

The degree of clogging was also estimated as a percentage of the total volume of voids in 

the infiltration inlet. Table 7.5 gives the results for the field sites and a selection of the 

experimental boxes as well as the average infiltration rate. 

The field site results indicated that the older the structure, the higher the percentage of 

void fill and the lower the infiltration rate. The box studies also show a higher percentage 

of void fill which would be expected, since the loadings on the boxes were higher than the 

particulate additions at the field sites. The boxes also had a significantly lower 

infiltration rate. 
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Table 7.5. Infiltration rates measured after particulate additions. 

Site (average value) Infiltration rate Volume of particulate 
(mm 114) material as a percentage of 

the total volume of voids in 
the infiltration inlet. 

Clifton Campus 146.0 9.23% 

Gill Street 100.0 15.25% 

Boxes with clay/sand additions 14.4 21.69% 

Boxes with sand only additions 15.0 17.93% 

Boxes with Clay/peat/sand 13.6 32.50% 
additions 

A small percentage increase of void filling (2-3%) in the infiltration inlet seems to have a 

dramatic impact on the rate of infiltration. The storage potential of the bedding material 

below the surface blocks should remain high, but the infiltration rate will be influenced by 

the degree of void filling in the top 50 mm of the infiltration inlet. 

7.4 Laboratory Experiments. 

7.4.1 Influence of clogging on box retention. 

5-10 mm bedding material grain size boxes. 

All of the boxes in Table 7.6 had a similar weight and depth of 5-10 mm pea gravel. The 

clay and clay/peat additions were of the same quantity. Box 4 had no particulate additions 

and was used as a control box. All boxes contained surface blocks. The average 

cumulative retention over 13 rainfall events shows that the presence of the particulate 

material increased the retention by around 0.9 mm (for the 80 year load). If the 

percentage difference from the control box is calculated, there is a 16% higher retention in 

Box 2 and 18% higher retention in Box 3. 
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Table 7.6. Retention after rainfall events by the boxes containing pea gravel with a 

grain size of 5-10 mm. 

Box Particle Average retention after Average cumulative 
additions each rainfall event retention over 13 rainfall 

(mm) events (mm) 

2 Clay 2.17 6.53 

3 Clay and Peat 2.45 6.63 

None 1.65 5.63 

Table 7.7. Retention after rainfall simulations by the boxes containing pea gravel 

with a grain size 3-5 mm. 

Box Particle Average retention after Average cumulative 
additions each rainfall event (mm). retention over 13 rainfall 

events (mm). 
5 Clay 2.59 11.86 

6 Clay and peat 2.74 11.35 

7 None 2.14 10.86 

Table 7.8. Retention after rainfall simulations by the boxes containing a mixture of 

pea gravel with varying grain sizes. 

Box Particle Average retention after Average cumulative 
additions each rainfall event (mm). retention over 13 rainfall 

events (mm). 

8 Clay 2.25 11.84 

9 Clay and peat 2.91 13.28 

10 None 2.00 11.81 
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The inclusion of peat in the particle additions caused a marginal increase in retention (on 

average 0.1 mm). This may be due to the absorption of water by the peat fraction. 

3-5 mm bedding material grain size boxes. 

The boxes in Table 7.7 all had a similar weight and depth of 3-5 mm pea gravel as well as 

surface blocks. In comparison with the boxes containing 5-10 mm gravel, the boxes with 

3-5 mm gravel, had a greater average retention, both after each rainfall event and as an 

average cumulative retention over the 13 rainfall events. 

In comparison with the boxes containing 5-10 mm gravel, the boxes with 3-5 mm gravel 

had a greater average retention, both after each rainfall event and as an average cumulative 

retention over the 13 rainfall events. This suggests a pattern similar to the results given in 

Chapter 6, in that the smaller grain sizes tend to retain more rainfall. Again Box 7, which 

had no particulate additions, had a lower retention value, 0.49 mm on average less than 

the other boxes which experienced additions. Box 5 retained 9% more and Box 6 retained 

5% more than the control Box 7. These results differ to the results from Table 7.6 where 

the clay/peat additions had a greater retention then the two other boxes. This suggests 

that grain size is a more influencing factor in determining the retention in the 3 - 5 mm 

gravels. 

Box 6, on average, retained the most water after each rainfall simulation (0.15 mm more 

than Box 5 and 0 6 mm more than Box 7). The boxes containing 5-10 mm pea gravel as 

bedding material showed that the clay/peat particle additions retained more water after a 

rainfall simulation, both for the single events and for the average cumulative retention. 
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However, the average cumulative retention values for the 3-5 mm bedding material 

experiencing clay/peat additions had a lower retention than the clay additions alone. 

Since cumulative retention over the storms was influenced by evaporation during the 

inter-rainfall dry periods, evaporation had to be studied before this could be fully 

explained. The average retention after each rainfall simulation showed that Box 6 had the 

highest average retention followed by Box 5 and then Box 7. This suggested that the 

presence of organic matter has an influence on the retention. 

50% 5-10 mm and 50% 1-3 mm bed material grain size boxes. 

The incorporation of a smaller grain size material into Boxes 8, 9 and 10 was expected to 

increase the average retention values (based on the results from Chapter 6). Box 9 had 

12.4% more and Box 8 had 0.2% more retention than the control Box 10. 

The average cumulative retention values over the 13 rainfall simulations on boxes 

experiencing similar additions were: 1.93 mm higher for Box 9 than Box 6 (clay/peat 

additions); 0.95 mm higher for Box 10 then for Box 7 (no additions); but Box 8 was 

0.02 mm lower than Box 5. As with the other Boxes, the presence of particulate material 

seems to increase both the average retention after each rainfall event and the average 

cumulative retention over the 13 rainfall events. 

7.4.2 Evaporation 

Clay/peat particulate addition experiments. 

Each of the three types of bedding materials were set up in three boxes: one box which 

experienced no particulate additions; one box to see whether clay particulate additions 
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influenced evaporation; and one box to see whether a combination of clay and peat 

additions increased or decreased evaporation from the surface. Since these experiments 

were carried out at a different time of the year than the clean box experiments, the 

evaporation data from Chapter 6 could not be used for direct comparison. A box was 

selected as a control box, with no particle additions but experiencing the same rainfall 

simulations. 

The analysis of retention showed that the presence of particulate material increased the 

retention of rainfall. This should also influence long-term evaporation by increasing the 

amount of water available for evaporation. The evaporation analysis in Chapter 6 

suggested that there were two stages in the evaporation process (stage I was up to 50 

hours and stage II was after 50 hours). The results from Chapter 6 also suggested that the 

influence of box components on evaporation was more dominant during stage I. The first 

stage of evaporation was chosen for comparison since: 

1. the inter-rainfall periods were not, in general, greater than 72 hours and it was 

therefore not possible to fully analyse stage IL 

2. box components had a more significant influence during stage I in comparison to 

stage II; and 

3. the presence of particulate material changed the structure of the box. 

The evaporation after approximately 50 hours following a rainfall simulation was divided 

by the time interval and an average was calculated for each box. Table 7.9 gives the 

results as well as the average hourly rate over all of the simulations. Each box 

experienced 13 simulations during the whole experiment. 
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To summarise the results in Table 7.9, the highest hourly evaporation rates during the first 

stage of evaporation are shown by all of the boxes containing the clay/peat additions. All 

three boxes (Boxes 9, 3, and 6) have the three highest rates (0.045, 0.040, and 

0.033 mm h' respectively). The presence of clay/peat seems to have a more significant 

effect than the initial grain size distribution. This leads to two conclusions; first, the 

presence of peat in the boxes increases the rate of evaporation and, secondly, the presence 

of these additions have a more important influence on evaporation than do the box 

components. This second fact is further validated by the second highest rates being shown 

by the boxes that experienced clay additions, with the exception of Box 8, which was 

marginally lower than Box 10 (receiving no additions). These results suggest that the 

condition of the surface of the car park structure is the most critical control on 

evaporation rates. 

Table 7.9. The average hourly evaporation rates during the first stage of 
evaporation (up to 50 hour). 

Box Number Type of addition Average hourly Average hourly 
evaporation rate evaporation rate over 
up to 50 hours the whole experiment 

• (mm 114) (mm 10 

2 Clay 0.030 0.035 

3 Clay/Peat 0.040 0.036 

4 None 0.023 0.025 

5 Clay 0.031 0.034 

6 Clay/Peat 0.033 0.035 

7 None 0.027 0.025 

8 Clay 0.024 0.024 

9 Clay/Peat 0.045 0.035 

10 None 0.025 0.020 
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The average cumulative retention after each rainfall simulation was compared with the 

average hourly evaporation rates up to 50 hours (see Figure 7.1). It was noticed that the 

box which had the highest retention per event (Box 9) also had the highest average hourly 

evaporation rate up to 50 hours. The box which retained the least (Box 4) also had the 

lowest average hourly rate up to 50 hours. Although the two extreme end values are 

consistent with expectations, the rest of the boxes did not show such a strong relationship 

between retention and the hourly evaporation rate. However, this does seem to suggest 

that retention influences the rate of evaporation, thus confirming previous findings 

(Chapter 6). 
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Figure 7.1 The average hourly rate of evaporation (mm 11 4) plotted against the 

average retention (mm). The numbers refer to the box number. 
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The Graded Sand Particulate Addition Experiment 2. 

The second set of particulate addition experiments were carried out on Boxes 2, 3 and 4. 

The particulate additions were composed of graded sands. In total the equivalent of 140 

years load of each fraction was applied to each box. The inter-rainfall dry periods were 

shorter during this experiment (approximately 24 hours between each rainfall simulation) 

and therefore the average hourly rates up to 24 hours after rainfall were used for 

comparison. Table 7.10 gives the results. 

Boxes 2 and 3 had already experienced the particulate loadings during the clay/peat 

particulate addition experiments. Again it can be seen that the box which experienced peat 

addition (Box 3) had the highest hourly rate, followed by the box containing clay. 

Box 4 experienced no particulate additions during the first set of experiments and had an 

hourly rate of evaporation (up to 24 hours) then of 0.030 mm After the sand was 

applied this hourly rate increased to 0.034 mm This suggests that the addition of 

particulate material to the box structure increases the hourly rate of evaporation during the 

initial stages of the inter-rainfall dry period. 

Table 7.10. The average hourly evaporation rates exhibited by the boxes during the 
second particulate experiment. 

Box Number Average hourly evaporation rate up to 24 hours following 
a rainfall simulation (mm 114) 

2 0.037 

3 0.038 

4 0.034 
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7.5. Summary of Chapter 7 and conclusions. 

The presence of particulate material increases the evaporation rates during stage 1(0-50 

hours following rainfall). This confirms the observations made by Wind (1961), who 

showed that if clays overlie sand, the hydraulic conditions created would favour a higher 

rate of capillary movement through the material to the surface by comparison with sand 

overlying clays. There is also a tendency for boxes containing peat additions to have a 

higher evaporation rate. If particulate additions also increase the retention of rainfall, it 

seems reasonable to suggest that particulate additions to the surface of the car park 

structure will increase the overall evaporation rates from the structure. If the intention is 

to store a larger proportion of rainfall and induce evaporative losses at a higher rate, then 

the hydrological performance of the car park surface will be favourably enhanced after 

clogging has occurred despite the decrease in infiltration. 
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Chapter 8 - Modelling the Hydrological Performance of 

the car park surface. 

Modelling and Models 

"A model must be simple enough for manipulation and understanding by it's users, 

representative enough in the total range of the implications it may have, yet complex 

enough to represent accurately the system under study." (Chorafas, 1965) 

8.1 Introduction 

This chapter describes an empirical model which has been developed from the research 

findings which were presented in Chapters 4 to 7, and assesses it's validity as a tool for 

predicting the hydrological performance of the various car park structures. Although it is 

not the aim of this chapter to fully optimise the model some attempts have been made to 

improve it's performance using various empirical equations developed in previous 

chapters. Hydrological simulations on the model car park structures were discussed in the 

previous chapters and the results from these experiments were used to formulate the 

model structure and provide the data used in the simple empirical equations developed. 

The model was written in Qbasic. 

There are many types of models which might be developed but it is not the aim of this 

chapter to discuss the myriad of modelling strategies available. Models can generally be 

divided into two groups ; 
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1) Deterministic models which determine, through theory an output from a given 

input. They simulate a system by using known parameters based on a theoretical 

structure (Overton and Meadows, 1976), i.e. they are process response models. 

2) Stochastic models involve an element of time. Hydrological variables are 

measured and the probability of an outcome is produced (Shaw, 1994). 

The model developed in this research chapter is a deterministic process response model 

(Section 8.2). The model is an empirically or physically based model which aims to 

describe realistically the component processes of the hydrological performance of a model 

car park structure. 

Component models aim to describe hydrological processes using exact governing 

equations which have been rigorously tested. There is one disadvantage of these models 

in that they treat each process as an individual component and then try to link the 

components. This may produce problems in operational use since it simplifies to a great 

extent the complexities that exist in the examination of hydrological processes. 

Examples of similar approaches to modelling hydrological processes include the MIT 

catchment stream model (Bravo eta!., 1970), the SWMM model (Metcalf et al., 1971; 

Diniz, 1978), the SHE model (Jonch-Clausen, 1979) and the TOPMODEL (Beven et al., 

1984). The development of these models have been aided by computer systems which 

allow complex interactions to be analysed simultaneously using small time steps and run 

over long time periods. 
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With the introduction of computer systems, a large number of complex interactions can be 

analyzed simultaneously using small time steps and run over long time periods (years). 

For example the SHE model (Systeme Hydrologique Europeen) (Jonch-Clausen, 1979) 

examined a number of hydrological variables over a catchment, using measurements from 

2000 grid points on the horizontal axis and 30 vertical points. The amount of data 

produced was large but the potential applicability has been good. 

TOPMODEL is designed to calculate runoff from hill-slopes in ungauged catchments 

which is then routed downstream to give a catchment discharge (Beven et al., 1984). It 

considers evaporation, precipitation, interception storage, infiltration storage, saturated 

zone storage, contributing area, quick return flow delay, to estimate channel flow. 

The Stormwater Management Model (SWMM)(Metcalf et al, 1971; Diniz, 1978) 

produced by the EPA, is another example of a complex component model with multiple 

variables. It has five interacting sections which measure the rainfall and catchment 

characteristics to determine the quantity and quality of runoff This model also 

incorporates the possibility of using combined sewer systems and can assess the impact of 

water quality and quantity on receiving waters. 

The concept of producing a predictive deterministic hydrological component model is not 

new, but the model outlined in this chapter is unique. This model predicts, retention 

discharge and evaporation from a car park surface over an extended time period. It also 

allows hydrological conditions (including antecedent conditions) to be predicted over 
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consecutive rainfall events. The model can also predict the hydrological response from 

five differing bedding materials. 

8.2 Choice of model 

The model developed in this research programme was of a process-response type. It is a 

deterministic model, since a determined output is produced from a stated set of input 

values. The input variables in the model are surface characteristics and rainfall. The 

modelled outputs from the car park structure are evaporation and drainage. Retention by 

the structure was also modelled. 

The choice of model developed was determined by three factors: first, the processes under 

investigation, secondly, factors influencing these processes and thirdly, and the available 

data. The variables investigated in this research project were: 

1) Retention; 

2) Discharge; 

3) Evaporation. 

Factors influencing these hydrological characteristics, were identified during the research 

(Chapter 4 to 6) and included: 

1) Rainfall depth and duration; 

2) Variations in the structural components of the car park; 

3) Differing antecedent conditions. 

During the hydrological experiments (Chapter 4 to 7) the significance of these factors 

were controlled and isolated and quantitative information was derived on the retention and 

evaporation performance of the two structural components namely; 
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1) the surface blocks; 

2) the bedding material (Chapters 4 to 6). 

Various combinations of these two components in the model box experiments showed that 

both of them had a significant influence on the response of the structure (evaporation and 

drainage) to a rainfall input. 

8.3 Model predictions. 

The model was designed to predict the following variables: 

1) maximum retention for a known volume of bedding material; 

2) block retention over time; 

3) total discharge from the structure under given rainfall and surface component 

characteristics; 

4) total evaporation from the bedding material for dry periods; 

5) total evaporation from the block surface for dry periods; 

6) total retention in the structure; 

7) total evaporation from the structure; 

8) retention after a known inter-rainfall dry period; 

9) retention prior to a rainfall simulation on a structure that had experienced previous 

rainfall. 

8.4 Data Input Requirements. 

To predict the variables listed above, input data were required. These input data were: 

1) Rainfall duration (hours, minutes) and depth (mm) for each rainfall event; 

2) Surface area of the structure (m2); 
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3) Depth of bedding material (mm); 

4) Grain size and type of bedding material; 

5) Length of dry period (hours, minutes); 

6) Number of rainfall events. 

All these data were requested by the model prior to calculation. 

8.5 Model Assumptions. 

The structure of the model was shaped by a number of assumptions which were based on 

the experimental findings discussed in Chapters 4-6. The model calculated retention and 

evaporation by a car park which contains both bedding material and surface blocks. It was 

assumed in the calculations that the surface blocks covered 85% of the surface area and 

the other 15% of the surface area was open bedding material. The section below 

discusses how retention and evaporation by the bedding material and surface blocks were 

calculated and reference is made to the sources of data on which these assumptions were 

based. 

Bedding material retention. 

A comparison was made between small-scale bedding material retention experiments and 

model box experiments (containing only pea gravel 1 - 10 mm) in Chapter 4 (section 

4.6.1). The small-scale experiments showed that the bedding material had a maximum 

specific retention which was not affected by the contact time with water. If information 

on bedding material specific retention (Table 4.2) was incorporated into Equation 4.6, the 

retention of water by a known volume of gravel could be calculated. When the prediction 
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of retention, based on the small scale results, was compared with model car park 

structures containing only bedding material, a difference of only 1% was observed. 

Since the percentage difference was small, it was decided that the computer model could 

calculate bedding material retention using the data of Table 4.2 and Equation 4.6. The 

model assumed that each bedding material could only retain a maximum amount, 

depending on the grain size and type of material in the sub-matrix. The maximum was 

derived from the experiments discussed in Chapter 4.4.1. 

If the rainfall applied to the structure was less than the maximum specific retention of a 

bedding material, then the retention was calculated as 15% of the rainfall. This was based 

on the fact that the bedding material covered only 15% of the surface area. 

Bedding material evaporation. 

Chapter 4 discussed evaporation losses from the bedding material and compared the 

response of the small-scale experiments with pea gravel (1-10 mm) to a model box 

containing no blocks and the same bedding material (Chapter 4.6.2). A 21% 

under-estimation for the small scale experiment was calculated after the first stage of 

evaporation (Stage I up to 50 hours of the inter-rainfall dry period). This difference was 

attributed to errors associated with scale effects and may be regarded as a source of error 

if these small-scale experimental data were used to predict evaporation from a full-scale 

structure. However, only one bedding material type and size range were examined. At 

this stage it was decided that the small-scale results from Chapter 4.4 could be used as an 

estimate in the model although it was appreciated that evaporation rates from the bedding 
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material would need to be optimised at a later stage in model development. The model 

assumed that evaporation from the bedding material took place from only 15% of the 

surface area of the structure since the blocks covered 85% of the surface area. 

Surface block retention. 

The retention of water by dry concrete surface blocks could be calculated using Equation 

4.4, but this equation tended to under-estimate retention by around 16% when compared 

to the retention by a model box containing only blocks (Chapter 4.5.3, Table 4.10). 

Equation 4.4 did not incorporate the effect of pre-storm retention which was identified as 

a source of potential error in Chapter 5.4. 

Variations in methods used to predict block retention were discussed in Chapter 5.4, 

where it was concluded that a measure of pre-storm retention should be incorporated into 

Equation 4.4. This method used the storm contact time plus the pre-storm retention 

(calculated as a time equivalent using the inverse of (t) in Equation 4.4 log(t)) to estimate 

retention after more than one rainfall event. If more than one rainfall event was to be 

modelled, the first rainfall event used Equation 4.4 (assuming no pre-storm retention) and 

subsequent rainfall events were modelled as described in Prediction 3 (using Equation 4.4) 

in Chapter 5.4. The calculation also assumed that the block surface area covered 85% of 

the total area of the structure. 

A second assumption made was that if the amount of rainfall applied was less than the 

maximum block retention for a given storm duration, then the retention was 85% of the 

rainfall input (plus pre-storm retention). 
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Surface block evaporation. 

Chapter 4.4.4 discussed the small-scale evaporation data which were best described by 

Equation 4.5. The small-scale evaporation experiments over-estimated block evaporation 

by approximately 26%. Equation 4.5 was used to model the evaporation from a car park 

surface but it was appreciated that this equation would need to be examined in more detail 

at a later stage in model development. 

Total retention and evaporation. 

The model prediction of total retention and total evaporation was based on the assumption 

that each box component (blocks or bedding material) acted as hydrologically independent 

components. To produce a prediction of total retention or evaporation, the model 

summed the two component values i.e., 

TR = BR + BMR Equation 8.1 

where 

BR = block retention 

TR = Total Retention 

BMR = bedding material retention. 

8.6 How the model works - Equations used. 

The model is essentially a set of simple empirical equation groups, the choice of which is 

determined by Boolean expressions (ie., if A = B then do C). A listing of the model is 

given in Appendix D. From the listing it is possible to identify the equations used to 
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calculate the hydrological responses. Figures 8.1 and 8.2 show the model procedure. 

Figure 8.1 shows the prediction procedure on a dry surface and Figure 8.2 shows the 

procedure for predicting hydrological response on a surface containing pre-storm 

retention. This section explains the equations used by the model to predict the response. 

Block retention. 

Equations 8.2.a and 8.2.b were used to calculate the retention by the surface blocks on a 

dry surface. 

BRET= (LOG(FR/60) / LOG(10)) * 37.04 + 68.8 Equation 8.2.a 

BRETT= (BRET * (BEDAREA / 0.02) Equation 8.2.b 

Where BRET= block retention (g) for a single block; 

LOG= Qbasic expression to calculate logarithmic values;log to the base 10; 

Flt= storm duration (minutes); 

BRETT= block retention (g) for the whole surface area 

BEDAREA= bed area. 

Equation 8.2.a is essentially Equation 4.4. Equation 8.2.b calculated the block retention 

for the surface area of the structure. 
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Model Procedure 
(dry surface) 

Yes 

Block Retention 
Equals 85% of 
Rainfall 

Yes 

Gravel Retention 
Equals 15% 
Rainfall 

Yes 

Block Evaporation 
Equals Total Retention 
Mnus Gravel Evaporation 

Calculates Block Retention 
Based on Absorbtion Rates 

I 

Is Rain < Block retention 

N o 

Calculates Gravel Retention 
Base on Retention rates.I 

Is block retention > Rainfall 

N o 

Calculate Total Retention 
Calculate Total Discharge 

Input Length of 
Inter-rainfall Dry Period 

Calculates Block Evaporation and 
Gravel Evaporation based on Rates 
From Charter 4 and Equation 4.5. 

Is Total Evaporation >Total Retention 

No 

Calculate Total 
Evaporation 

IOutput Results 

Figure 8.1 Model procedure for a dry car park surface. 
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Model Procedure 
(surface contains pre-storm retention) 

Input 
Rainfall Characteristics 

Calculate Pre-Storm 
Retention Values 

Calculate Block Retention 

V 

Calculate Gravel Retention. 
Pre-Storm Retention Values 
Are Subtracted From Maximum 
Specific Retention 

Input Length of 
Inter-Rainfall Dry Period 

Calculate Block And Gravel 
Evaporation 

Ask If More Rainfall Events Yes 

No 

OutputI Output Results 

Figure 8.2 Model procedure for a surface containing pre-storm retention. 
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When the block surface had experienced previous rainfall events, the block retention was 

calculated from Equations 8.3(a-e); 

Bl= BRET - BEVAP Equation 8.3.a 

B2= (B1 - 68.8)/37.04 Equation 8.3.b 

B3= 10^ (b2) Equation 8.3.c 

BRET2=(LOG((FR/60)+B3)/L0G(10))*37. 04+68.6 Equation 8.3.d 

BRETT2= (BRET2 * (BEDAREA / 0.02) Equation 8.3.e 

Where Bl= block retention (g) following a dry period 

BRET= block retention (g) following the previous rainfall event; 

BEVAP= block evaporation (g) after the last rainfall event; 

B2= calculated variable of .log(t), where (t) is time; 

B3=inverse (t) value of .log (t); 

BRET2=block retention (g) following the next rainfall event; 

FR= duration of the storm event (minutes); 

BRETT2= the block retention (g) by the full surface area; 

BEDAREA= surface area of the structure. 

Equation 8.3.a calculated the block retention prior to the rainfall event. Equation 8.3.b 

then calculated the log(t) value for that retention. Equation 8.3.c inverses the B2 value to 

find the value of (t) which would produce the retention value (B1) when substituted into 

Equation 8.2.a. Equation 8.3.d calculated block retention. The (t) value was calculated 
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by summing B3 and the subsequent storm duration time. Equation 8.3.e calculated the 

total retention in the surface. 

Bedding material retention. 

The model calculated the specific retention depending on the type and grain size of the 

bedding material. The model was written to store the following five bedding material 

variations; 

1. Pea gravel grain size of 1-10 mm 

2. Pea gravel grain size of 5-10 mm 

3. Pea gravel grain size of 3-5 mm 

4. Pea gravel grain size of 1-3 mm 

5. Limestone grain size of 5-10 mm. 

The model requested the choice of bedding material prior to model calculations. Each 

bedding material had a maximum specific retention which could not be exceeded. 

Equations 8.4.a and 8.4.b show how the specific retention (in grams) was calculated. Pea 

gravel, with a grain size of 1-10 mm, is used as an example. 

Equation 8.4.a 

If RA1NG < (((69.2 * (VOL/1000)) + (((0.15 * BEDAREA)*100) * 69.2)) + BRET 

then WRET = (RAING - BRET) else go to next line 

Equation 8.4.b 

If RA1NG > (((69.2 * (VOL/1000)) + 0(0.15 * BEDAREA) * 100) * 69.2)) + BRET) 

then WRET = 69.2 * (VOL/1000) + (((0.15 * BEDAREA) * 100) * 69.2) 

Where RAING= rainfall (g) during the event; 
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VOL= volume of gravel in the whole surface (1); 

BEDAREA= surface area of the structure(m2); 

BRET= block retention by the surface area (g); 

WRET= retention (g) by the bedding material in the whole of the surface. 

Equation 8.4.a determined whether the rainfall applied (g) during the event was less then 

the maximum specific retention of the bedding material. If this was the case then the 

bedding material retention was calculated by subtracting block retention from the rainfall 

(i.e., block retention was calculated as 85% of the rainfall). 

Equation 8.4.b determines whether the rainfall was greater then the maximum specific 

retention. If it was greater, then bedding material retention (WRET in g) was calculated 

by Equation 8.4.c: 

Equation 8.4.c 

WRET=69.2 * (VOL/1000) + 0(0.15 * BEDAREA) * 100) * 69.2 

The value in bold text is taken from Table 4.2 and this was varied depending on bedding 

material type and grain size. Equation 8.4.c also calculated the retention of the bedding 

material held in the infiltration inlets of the surface. 

The model then calculated the equivalent specific retention in mm using Equation 8.4.d: 

WRETMNI = ((WRET / BEDAREA) / 1000) Equation 8.4.d 
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where WRETTMM= retention by the bedding material in the whole surface in mm; 

WRET= retention by the bedding material in the whole surface (g); 

BEDAREA= area of the surface(m2). 

If bedding material retention was to be calculated for a surface which had pre-storm 

retention, the model used a different calculation. Under these circumstances bedding 

material retention was calculated by Equation 8.5.a and 8.5.b: 

Equation 8.5.a 

If RAING2 < (((69.2 * (VOL/1000)) + ((0.15 * BEDAREA)* 100 * 69.2) + BRETT2) 

then WRET = (RAIIsIG2 - BRETT2) + GRET1 else next line 

Equation 8.5.b 

If RAING2 >a(69.2 * (VOL/1000) + ((0.15 * BEDAREA) * 100) * 69.2 + BRETT2) 

then WRET2 =(69.2 *(VOL/1000)) + 0(0.15 * BEDAREA) *100) * 69.2) 

Where 

RAINIG2= rainfall (g) for the rainfall event; 

BEDAREA= surface area of the stiucture(m2); 

BRETT2= block retention after this event (g); 

WRET2= bedding material retention for the event (g); 

GRET1= pre-storm retention in the bedding material prior to the rainfall (g). 

Equation 8.5.a shows that if the rainfall was less then the maximum specific retention by 

the bedding material, the bedding material retention equalled 15% of the rainfall plus the 
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pre-storm retention in the bedding material. The retention by the bedding material (using 

Equation 8.5.a) may be in excess of the maximum specific retention. The model checked 

this by the Boolean expression given in Equation 8.5.c, 

Equation 8.5.c 

IF WRET2 >(69.2 * (VOL/1000))+0(0.15 * BEDAREA) * 100)* 69.2) then WRET2 

=(69.2*(VOL/1000))+(((0.15 * BEDAREA) * 100)* 69.2) 

i.e, if the calculated bedding material retention was greater then the maximum retention, 

then the bedding material retention is set to the maximum. 

Block evaporation predictions. 

Block evaporation from the total surface area was calculated from Equation 8.6.a, 8.6.b 

and 8.6.c; 

BEVAP=(LOG(IRP/60) / LOG(10))* 36.41 -41.62 Equation 8.6.a 

BEVAPT= BEVAP * (BEDAREA / 0.02) Equation 8.6.b 

BEVAPTMM= (BEVAPT / BEDAREA) / 1000 Equation 8.6.c 

Where BEVAP= block evaporation (g); 

IRP= inter rainfall dry period (minutes); 

BEVAPT= block evaporation (g) from the whole surface area; 

BEDAREA= area of the surface; 

BEVAPTMM= block evaporation from the surface in ram. 
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Equation 8.6.a is the Qbasic form of Equation 4.5. This equation calculated evaporation 

from a single block. Equation 8.6.b calculated evaporation (g) from the whole surface 

area which was then converted into mm equivalent depth of rainfall by Equation 8.6.c. 

Bedding material evaporation predictions. 

The model calculated evaporation from five different bedding materials, the choice of 

which was determined prior to calculation. Evaporation from each bedding material grain 

size and type was based on a unique equation. The amount evaporated depended on the 

length of the dry period and the surface area of the structure. Figure 8.3 shows part of the 

program listing, to show how bedding material evaporation was calculated in the model. 

Line 1010 used a set of Boolean expressions to determine which bedding material had 

been selected. This was governed by both the grain size and type of bedding material. 

For example, if the pea gravel with a grain size of 1-10 mm was selected the model would 

use the calculation of line 1100. The next stage of the model calculation is determined by 

the inter rainfall dry period. The dry period was broken down into minute time steps 

(IRP) and, depending on the value of HIP, the model was directed to the appropriate 

calculation. For example if HIP was 370 minutes long, the programme would move onto 

line 1290. The "gevap" value would then be calculated. The "gevap" value was the 

calculated evaporation (g) from a small scale sample based on results presented in Chapter 

4 (Table 4.3.A). The "gevap" value is then scaled up to 15% of the surface area of the 

structure (line 3000) and converted into mm equivalent depth of rainfall (in line 3002). 
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Figure 8.3 Listing of a section of program. 

1010 IF AS = "L" OR A$ = "L" AND A = I THEN GOTO 2600 
1020 IF A$ = "ID " OR A$ = "P" THEN GOTO 1021 
1021 IF A = 1 THEN GOTO 1110 
1030 IF A = 2 THEN GOTO 1455 
1040 IF A = 3 THEN GOTO 1800 
1050 IF A = 4 THEN GOTO 2200 
1100 REM PEA GRAVEL SELECTION (1) CALCULATIONS 1-10 MM 
1110 IF IRP > 0 AND IRP <= 60 THEN GOTO 1120 ELSE 1140 
1120 GEVAP = ((13 / 60) * IRP) 
1140 IF IRP > 60 AND IRP <= 120 THEN GOTO 1150 ELSE 1170 
1150 GEVAP = (((04 / 60) * (JRP - 60)) +.13) 
1170 IF IRP > 120 AND IRP <= 180 THEN GOTO 1180 ELSE 1200 
1180 GEVAP = (((09 / 60) * (IRP - 120)) +.17) 
1200 IF IRP > 180 AND IRP <= 240 THEN GOTO 1210 ELSE 1230 
1210 GEVAP = (((08 / 60) * (JRP - 180)) +.26) 
1230 IF IRP > 240 AND IRP <= 300 THEN GOTO 1240 ELSE 1260 
1240 GEVAP = (((07 / 60) * (IRP - 240)) +.34) 
1260 IF IRP > 300 AND IRP <= 360 THEN GOTO 1270 ELSE 1290 
1270 GEVAP = (((06 / 60) * (JRP - 300)) +.41) 
1290 IF IRP > 360 AND IRP <= 420 THEN GOTO 1300 ELSE 1320 
1300 GEVAP = (((05 / 60) * (JRP - 360)) +.47) 
1320 IF IRP > 420 AND IRP <= 480 THEN GOTO 1330 ELSE 1350 
1330 GEVAP = (((045 / 60) * aRP - 420)) + .52) 
1350 IF IRP > 480 AND IRP <= 540 THEN GOTO 1360 ELSE 1380 
1360 GEVAP = (((04 / 60) * (flP - 480)) +.565) 
1380 IF IRP > 540 AND IRP <= 600 THEN GOTO 1390 ELSE 1410 
1390 GEVAP = (((3 / 60) * (JRP - 540)) +.605) 
1410 IF IRP > 600 AND IRP <= 3720 THEN GOTO 1420 ELSE 1430 
1420 GEVAP = (((012 / 3120) * (7RP - 600)) + .635) 
1430 IF IRP > 3720 THEN GOTO 1440 
1440 GEVAP = (((01 /11280) * (7RP -3720)) + .647) 
1445 GOTO 3000 

3000 GEVAPT = ((BEDAREA * 10000) /8.55) * GEVAP 
3002 GEVAPTABI = (GEVAPT / BEDAREA) / 1000 
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8.7 Model Results - Predictions. 

The hydrological performance of six boxes (discussed in Chapters 5 and 6) were chosen 

for comparison with model predictions. The boxes, their contents, the rainfall 

applications, and inter-rainfall dry periods for each run are summarised in Table 8.1. 

All of the boxes were chosen for comparison because they contained one bedding material 

with one grain type and size. The input data of Table 8.1 were fed into the model and 

predictions of the hydrological response were calculated. The predicted hydrological 

response of each box produced by the computer model was compared to the observed 

hydrological performance Table 8.2 gives the discharge, retention and evaporation values 

for all 3 runs and all boxes examined. To assess the degree of similarity between the 

predicted and the observed, the percentage error was calculated using Equation 8.7: 

Error function = ((Vp - Vo)/ Vo) x 100 Equation 8.7 

Table 8.1. Experimental statistics from previous box experiments. 

Box 2 Box 3 Box 5 Box 6 Box 7 Box 10 

Box Pea Pea Pea gravel Pea Pea Limestone 
components gravel gravel (5-10 mm) gravel gravel (5-10 mm) 

(1-10 mm) (1-10 mm) depth of (3-5 mm) (1-3 mm) depth of 50 
depth of depth of 50 mm and depth of depth of mm and 
50 mm and 30 mm and blocks. 50 mm and 50 mm blocks. 
blocks, blocks, blocks. and 

blocks. 

Rainfall 
Run 1 15.00 15.00 15.00 15.00 15.00 15.00 
Run 2 15.09 15.00 15.00 15.00 15.39 15.33 
Run 3 15.00 15.11 15.03 15.03 15.00 15.04 

Length of 
dry period 
(hours) 1027 698 747 737 768 765 
Run 1 314 315 289 288 257 286 
Run 2 816 430 812 908 816 796 
Run 3 
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Table 8.2. The predicted and observed discharge, retention and evaporation for the 
boxes chosen for comparison. 

Units (mm) Box 
2 
o 

Box 
2 
P 

Box 
3 
0 

Box 
3 
P 

Box 
5 
0 

Box 
5 
P 

Box 
6 
o 

Box 
6 
P 

Box 
7 
0 

Box 
7 
P 

Box 
10 
o 

Box 
10 
P 

Discharge 
Run 1 
Run 2 
Run 3 

5.9 
8.3 
13.3 

7.1 
12.1 
11.3 

5.9 
8.5 
14.3 

8.5 
12.3 
11.4 

7.8 
9.5 
11.6 

8.6 
12.2 
11.4 

7.3 
10.0 
11.0 

5.0 
12.3 
11.4 

2.6 
6.3 
9.4 

2.9 
12.6 
11.4 

8.0 
10.0 
11.6 

7.9 
12.5 
11.4 

Retention 
Run 1 
Run 2 
Run 3 

9.1 
11.6 
12.8 

7.9 
7.4 
8.5 

9.1 
11.5 
12.2 

6.6 
6.0 
7.1 

7.2 
8.9 
9.5 

6.4 
5.9 
7.0 

7.7 
9.1 
10.6 

10.0 
9.5 
10.6 

12.4 
14.7 
15.8 

12.1 
11.5 
12.6 

7.0 
8.6 
9.4 

7.1 
6.6 
7.7 

Evaporation 
Run 1 
Run 2 
Run 3 

4.3 
4.3 
6.1 

3.5 
2.6 
3.3 

4.1 
4.1 
5.4 

3.2 
2.6 
2.8 

3.8 
2.8 
4.2 

3.3 
2.5 
3.4 

3.6 
2.5 
7.1 

3.3 
2.5 
3.4 

5.9 
4.5 
5.6 

' 
3.4 
2.4 
3.4 

3.7 
1.6 
4.8 

3.3 
2.5 
3.4 

Percentage 
difference 

(") M) (%) () () (%) 

Discharge 
Run 1 
Run 2 
Run 3 

19.7 
45.8 
15.0 

43.2 
44.8 
20.1 

10.3 
28.7 
1.8 

-31.9 
22.6 
3.7 

12.7 
99.5 
21.5 

-1.6 
25.3 
-1.7 

Retention 
Run 1 
Run 2 
Run 3 

-12.8 
-36.2 
-33.5 

-28.0 
-47.6 
-41.6 

-11.1 
-33.9 
-26.6 

30.3 
4.4 
0.0 

-2.7 
-21.5 
-20.0 

1.9 
-23.1 
-18.1 

Evaporation 
Run 1 
Run 2 
Run 3 

-18.1 
-40.0 
-45.3 

-21.5 
-37.1 
-47.6 

-13.4 
-9.3 
-20.0 

-9.4 
0.8 
-51.7 

-43.2 
-45.8 
-39.1 

-10.3 
58.8 
-30.2 

where; 

Vp = predicted value by the computer; 

Vo = Observed value. 

The percentage differences are given in Table 8.2. 

Discharge predictions. 

The predicted discharge values were plotted against the observed values and are shown in 

Figure 8.4. Lines were also plotted to show a perfect prediction and over - (20% and 
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Predicted 
discharge
(mm) 

22 
20 

— Perfect prediction 
--- 20% over-prediction 

+ 40% 

18 
16 

40% over-prediction 
- 20% under-prediction 
o Box 2 

+ 20% 

14 • Box 3 
A Box 5 2 

12 • Box 6 

10 3 Box 7 
• Box 10 

8 
6 
4 
2 
0 1'1'1'1'1 

0 2 4 6 8 10 12 14 16 

Observed discharge (mm) 

Figure 8.4 The relationship between predicted model discharge and observed 
discharge. 

40%) and under-estimations (20%) of discharge. The numbers next to the symbols in 

Figure 8.4 denote the Run number (i.e., Run 1, Run 2 and Run 3). 

In general the model has a tendency to over-estimate discharge (only 6 out of 18 

predictions lie on the negative side of the perfect prediction line). The scatter in the 

predicted values is also influenced by the run number, with the highest over-prediction 

associated with Run 2, which differed from the other 2 runs by having the shortest storm 

duration. The only variable to change during each rwi was the storm duration. The only 

component which used storm duration to calculate the hydrological performance was the 

surface blocks. The retention of the surface blocks was dependent on storm duration. 

Since discharge is a function of retention, it is suggested that the retention of water by the 
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surface blocks was one area in the model which may produce errors in predictions by 

under-estimating retention, thus producing over-estimations in discharge. 

Retention predictions. 

Figure 8.5 shows the predicted retention values plotted against the observed retention 

values. Again a line for a perfect prediction has been shown as well as for a 20% and 40% 

under-prediction. 

Figure 8.5 effectively is the reciprocal of discharge since discharge is a function of 

retention. There is a tendency by the model to under-estimate retention by around 20%. 

Predicted 
retention (mm) 

16 
-Perfect prediction 
--- 20% under-estimation 

40% under-estimation14 
• Box 2 
o Box 9 
• Box 5 

12 + Box 
• Box 7 2 
El Box 10 

10 
1 

8 

6 
2 

4 

6 8 10 12 14 16 

Observed retention (mm) 

Figure 8.5 The relationship between the predicted model retention and the 
observed retention. 
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The influence of the run on the scatter is not as obvious as in Figure 8.4 which may be a 

result of pre-storm retention masking the influence of storm duration on retention during 

single events. The best predictions were for Box 6. 

Evaporation predictions 

Figure 8.6 shows the relationship between the predicted and the observed evaporation 

rates. Here, the prediction is poor. The under-estimation of evaporation appears to be the 

worst factor in the model. The procedure estimated evaporation by assuming that the two 

box components acted as hydrologically independent units. Whilst this may be convenient 

for modelling, it may not be a good representation since the two components may interact 

more than is assumed. 

Predicted 
evaporation
(mm) 8 

— Perfect prediction 
--- 20% under-prediction 

40% under-prediction 
• Box 2 

6 — O Box 3 
• Box 5 
A Box 6 
• Box 7 
2 Box 10 

4 
3 1 ,

..A. '''• * 3 3 A 

2 
1 

3 
3 

2 • 2," 

2 — 2 

0 

0 2 4 6 8 

Observed evaporation (mm) 

Figure 8.6 The relationship between the predicted and observed evaporation by the 
model boxes. 
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Improving model fit. 

The percentage error values given in Table 8.2 and the data illustrated in Figures 8.4 to 

8.6 identified two main areas where the model predictions required improvement; 

1) evaporation predictions; 

2) retention by the surface blocks. 

Improvements to the evaporation predictions. 

The predictions of evaporation by the model were seen to be the poorest of all predictions. 

The method of calculating evaporation assumes the bedding material and surface blocks 

act independently, evaporating water at differing rates. This is further complicated by the 

varying evaporation rates of the bedding materials. In Chapter 6.3.4, a multiple regression 

analysis was presented which described evaporation by Equation 6.6. the regression 

analysis explained 62% of the variation in evaporation from all of the model boxes over all 

runs. It was decided, therefore, that Equation 6.6 would be inserted into the computer 

model in order to see if better predictions of evaporation could be achieved. Evaporation 

in the model was subsequently calculated using Equation 8.8; 

E=0.04519 + (0.27465 x RET) + (0.002445 X IRP) Equation 8.8 

where 

RET = retention by the structure (mm); 

E = evaporation (mm); 

HIP = dry period (hours). 
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The predicted evaporation rates were plotted against the observed evaporative rates 

(Figure 8.7). In comparison with Figure 8.6, it is immediately apparent that the 

predictions are a considerable improvement over the initial model (see Appendix D for the 

full listing). There was significantly less scatter and most points centred around the 

perfect prediction line. The percentage error was calculated using Equation 8.7 and 

plotted in Figure 8.8. Figure 8.8 also shows the percentage error of the first model 

predictions (prediction 1). 15 out of the 18 predictions show an improvement after the 

model had been modified. 

Predicted 
evaporation (mm) 

Prediction after model revision to evaporation calculations 
8 

-Perfect prediction 

7 --- 20% under-prediction 

•• 40% under-prediction 

• Box 26 
o Box 3 1 

• Box 55 I., 3 A 

A Box 6 1 A-'---- ...-
0 3 --• Box 74 1 E1 • 

36 Box 10 El„2.---2o 1 ,.. ..4' ...., ........ . 

,---'' .„ 
2 

2 

1 2 4 5 6 7 8 

Observed evaporation (mm) 

Figure 8.7 The relationship between predicted and observed evaporation after 
modification to the model. 
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• Percentage error-Prediction 1Percentage error
in Evaporation 9 Percentage error-Prediction 2predictions (46) 

80 

60 — 

40 — 

20 — 

0 

-20 

-40 

-60 

[II 
I I I I I I I I I I I I I I I I I 

... a a - a a a a a a 
0 a a a a a 0 0 0 t a 2 

Box number / Run 

Figure 8.8 Percentage errors in evaporation predictions before and after model 

modifications. 

Improvement to block retention predictions. 

In Chapter 5, a comparison was made between the observed and the predicted retention of 

the surface blocks. The results (Table 5.9(1)) suggested that the predictions for the first 

rainfall events under-estimated block retention by 16.28%, 29.52% and 25.88% for Runs 

1, 2 and 3 respectively with an average under-prediction of 29.32%. In order to improve 

the predictions of block retention, the model was modified to take account of these 

under-estimates. All block retention predictions were therefore multiplied by 1.29 

(accounting for the average 29% under-estimation). Figure 8.9 shows the predicted 
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values plotted against the observed values. Even with the changes to the calculations, the 

model had a tendency to under-estimate retention. However, the percentage error was 

generally reduced, as shown in Figure 8.10. 

Figure 8.10 shows that 11 out of the 18 predictions of retention were improved with these 

changes to the model. It was also visible that the model still under-estimated retention, 

except for Box 6 (Runs 1 to 3) and Run 1 for Box 10. 

Predicted 
Retention (mm) Prediction after model revision 
16 -Perfect Prediction 
15 --- 20% under-estimation 

under-eetimation14 
• Box 2 

13 o Box 9 
3+12 • Box 5 

3Box11 
• Box 7 1 

LA 

+2 2 •
10 Box 10 

9 
8 
7 

E1
1 

1 

20 1P 

• -•"-- 2• 

- • 
3._-• . 

6 
5 ........ ... 
4 

1 ' I ' I ' 1 I 

6 7 8 9 10 11 12 13 14 15 16 

Observed Retention (mm) 

Figure 8.9 The relationship between the predicted and observed retention after 
model modification of block retention calculations. 
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Figure 8.10 Percentage error in retention predictions before and after modifications 
to the model. 

8.8 The model - a predictive tool ?. 

The final model used a set of empirical calculations to determine an output from a set of 

input values. It is a simple method for predicting hydrological performance based largely 

on a number of small-scale experiments. Whilst the main aim of this chapter was not to 

fully optimise the model, a number of improvements in the model performance were 

achieved by accounting for scale effects in retention calculations and using a simple model 

for predicting evaporation from both the surface blocks and bedding material components. 
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Table 8.3 The percentage differences for Predictions 1 and 2 from the observed. 

Box 2 2 3 3 5 5 6 6 7 7 10 10 
Humber 

P 1 2 1 2 1 2 1 2 1 2 1 2 

R 
Run 1 -12.8 -1.8 -28.0 -17.0 -11.1 2.8 30.3 43.25 -2.7 -11.1 1.9 16.1 
Run 2 -36.2 -29.1 -47.6 -40.6 -33.9 -24.9 4.4 13.3 -21.5 -29.9 -23.1 -13.8 
Run 3 -33.5 -22.7 -41.6 -30.3 -26.6 -12.1 0 13.0 -20.0 -24.2 -18.1 -3.4 

R 
Run 1 -18.1 13.7 -21.5 -9.8 -13.4 -0.5 -9.4 31.9 -43.2 -8.6 -10.3 8.9 
Run 2 -40.0 -28.6 -37.1 -34.2 -9.3 -7.5 0.8 43.2 -45.8 -9.6 58.8 73.8 
Run 3 -45.3 -14.1 -47.6 -25.0 -20.0 -1.7 -51.7 -28.2 -39.1 2.5 -30.2 -9.0 

P= prediction; E= evaporation; R= retention. 

To compare the model predictions before and after modifications, the average percentage 

differences were calculated. Table 8.3 gives the percentage differences for predictions 1 

and 2 compared with the observed retention and evaporation. 

The average percentage difference was calculated for both predictions for retention and 

evaporation. The average percentage difference for the retention and evaporation 

predictions were 21.85% for retention prediction 1 and 30.09% for evaporation 

predictions 1. After the model was modified and the second predictions were produced, 

the average percentage differences changed to 19.42% for the retention prediction and 

19.48% for the evaporation prediction. Both modifications to the model increased the 

accuracy of predictions. 

As a predictive tool, the model performs well, giving over 80% accuracy in predictions for 

evaporation and retention. Considering that the data used in the model was taken from 

small-scale experiments which could be conducted in the laboratory within 2 weeks, the 

model provides a simple and effective tool for predicting the hydrological response of a 

model car park surface. Further optimisation could improve the accuracy of predictions 
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but it was not the aim of this research to produce such a model. Instead, this research has 

been successful in providing a design tool (which uses easily obtainable data) which can 

predict the evaporation and retention processes in a model car park surface. 

8.9 Summary 

This chapter has described an empirical model which has been developed from the 

research findings of previous chapters. The research has provided insight into the ways in 

which structural components influence these hydrological processes. A consideration of 

the way that structural components influences these processes has been valuable in aiding 

the construction of empirical equations to predict process response. The accuracy of 

predictions of retention and evaporation was good even before model optimisation. It is 

recommended that this model be used as a design tool for engineers wishing to construct a 

porous pavement. 
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Chapter 9 - Conclusions 

9.1 Discussion and Conclusions. 

The results presented in Chapters 4 to 8 were concerned with four main areas of research 

including; 

1) the hydrological performance of the single structural components (Chapter 4); 

2) the hydrological performance of the total car park structures (Chapters 5 and 6); 

3) the effect of clogging on the hydrological car park performance of the structure 

(Chapter 7); 

4) the development of a predictive model based on (1) above and validated using the 

data gathered in (2) above (Chapter 8). 

This chapter aims to discuss the importance of the results obtained with regard to the use 

of permeable pavements in the control of urban stormwater runoff and identify the broader 

significance of this performance in relation to urban hydrological cycle as discussed in 

Chapter 2. 

9.2 Hydrological Performance of Single Box Components. 

The analysis of individual components of the car park structure showed that the surface 

blocks and the bedding materials performed differently. The retention by the surface 

blocks was strongly influenced by the contact time with water; some 60% of the total 

amount of water absorbed in 1 hour occurred in the first 5 minutes of contact. This 

suggested that storm duration would be an important influence on the total amount of 

water retained by the surface blocks and subsequently evaporated from the structure. 
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Evaporation amounts from the surface blocks were seen to be lower than the bedding 

material, being on average 33% lower over a 17 day period. Evaporation experiments on 

the blocks showed that 47% of the water evaporated during the first 21 days was 

evaporated during the first three days. This demonstrated that the presence of the blocks 

reduces evaporation and, as a result, might suggest that the hydrologically optimum 

surface should be made of only bedding material. However, such a construction would 

have two major disadvantages. Firstly, it would have a lower structural strength than the 

block surface and, secondly, it would significantly decrease the ability of the structure to 

retain water. It may be advantageous in subsequent research to optimise the design of the 

surface blocks in order to increase the percentage of the surface area covered by the 

infiltration inlets whilst retaining structural integrity for load bearing. 

The bedding material experiments have shown that differing grain sizes will influence the 

total retention and evaporation. A small grain size (1-3 mm) was identified as being more 

efficient at retaining rainfall and increasing the rate and total amount of evaporation from 

the surface when compared to larger sizes (3-5 and 5-10 mm) This agrees with the 

theory outlined in Chapter 4 (section 1) where smaller sizes of bedding material have a 

larger specific surface to retain water. 

Calculations based on data from the hydrological performance of the individual 

components were compared with the actual performance of boxes containing similar 

components and the performance was shown to be similar. However, the calculated 

values were usually lower than the box data which suggests that scale effects are 

important in the context of these experiments. 
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9.3 Hydrological Performance of the Car Park Structures. 

From the short term analysis on hydrological performance (Chapter 5), it was shown that 

total water retention was influenced by both blocks and bedding material in that the 

presence of blocks increase the potential for water retention, as did a smaller grain size. 

The most significant single component was the blocks although the effect decreased over 

rainfall events. Grain size of the bedding material was also important, with the smaller 

grain sizes retaining more water, and this factor was more important than Ethology. Table 

9.1 illustrates the total retention of rainfall by each box for each rainfall event as a 

percentage of the total rainfall applied (based on previous results from Chapter 7). The 

time interval between each rainfall simulation (runs 1-3) is also shown. These results 

indicate that if the car park structures are dry, on average 55% of a 15 mm h -1 rainfall 

event will be retained by the structure, thus providing a significant reduction in 

Table 9.1. Rainfall retained as a percentage of the total rainfall applied during each 
simulation (the days between each run is referred to as the inter-rainfall dry period). 

Box Run 1 Days Run 2 Days Run 3 
between between 
Runs Runs 

2 60.7% 44 45.4% 13 35.8% 

3 60.5% 29 43.2% 13 32.1% 

4 53.2% 29 34.4% 13 22.1% 

5 47.9% 31 36.7% 12 22.5% 

6 51.3% 31 33.3% 12 26.9% 

7 82.7% 32 60.9% 11 37.6% 

8 52.7% 31 36.7% 12 21.3% 

9 39.7% 32 30.6% 12 27.2% 

10 46.6% 32 35.4% 12 22.7% 

Average 55% 32 39.6% 12 27.6% 
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runog even if the discharge from the structure is directed into a drainage system. The 

runoff ratio could be further decreased by using a smaller grain size of bedding material. 

If on-site infiltration is allowed, then the retention will be 100%. These structures can 

reduce the total volume of stormwater runoff and, if the percolating water needs to be 

evacuated from the structure, will at worst attenuate the storm hydrograph peak. The 

delay and reduction in the amount of water reaching the drainage system will undoubtedly 

decrease the stress on existing sewer systems and will have important downstream 

consequences (see Chapter 2 section 2.1.2). 

The total retention of water in the bedding material voids is, on average, 42% of the 

gravel volume. If the base of the structure was sealed, for example, to allow water to be 

retained for evacuation through a grey water system, a surface area of 12.94 m2 (the 

equivalent area of a car parking space) with a depth of bedding material of 50 mm, could 

store the equivalent depth of 21.01 mm of rainfall. This calculation does not include the 

additional retention which may be created by the presence of a sub-matrix material, which 

usually has a greater depth then the bedding material. 

Evaporation from a structure during the inter-rainfall period is important since it governs 

the pre-storm retention held in the structure. This in turn influences discharge and 

retention volumes. Factors influencing evaporation from the surface are surface 

components (presence of blocks and the grain size of bedding material) and the length of 

the dry period. 9% of the rainfall retained in the structure was evaporated after the first 

day and approximately 30% after 15 days. Evaporation amounts from the structure was 

observed as being dependent on water availability. 
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The construction of the surface is important since this is where evaporation takes place. 

From the experimental results it is possible to design a surface which evaporates 

"efficiently". For example, the box experiments showed that evaporation was highest for 

the 1-3 mm grain size bedding materiaL If the smaller grain size bedding material is placed 

in the infiltration inlets, it may be possible to increase evaporation rates from the surface 

(in comparison with using a larger grain size of material). The ability of the structure to 

retain rainfall and then allow evaporation to take place will reduce the volume of water 

reaching the drainage system. It will also increase the retention capability of the structure 

for the next rainfall event. 

9.4 The effect of clogging on hydrological performance. 

Total clogging of the car park surface is difficult to achieve, even after an intense 

application of particulate material estimated to be equivalent to over 100 years of sediment 

load. Clogging, both on the experimental models and at the field sites, was seen to be 

concentrated in the upper 50 mm of the infiltration inlets which reduced the infiltration 

capacity of the structure. However, the infiltration capacity was seen to be above design 

parameters (greater then 13 mm h-1), even after the heaviest sediment loads were applied. 

The field sites also showed that the structure maintained a high infiltration capacity 

(greater than 100 mm after 8 years with no maintenance. 

The results from the clogging experiments showed that the hydrological performance of 

the car park surface was improved in relation to the amount of water retained and through 

higher evaporative rates. Indeed clogging might be seen as an advantage rather than a 
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disadvantage when using this structure providing that infiltrations rates do not fall below 

the minimum design requirements. 

9.5 Development of a predictive model. 

Chapter 8 discussed the development of a model which was used to predict the 

hydrological performance of the car park structure. The model was a design tool 

produced to aid the engineer in optimising the choice of structural components and assess 

their performance under varying rainfall conditions. Results indicated that the model was 

accurate to approximately 78% on discharge predictions, approximately 80% on retention 

predictions and around 80% on evaporation estimates. The raw data used to produce the 

model equations were taken from the small-scale experiments detailed in Chapter 4. This 

means that after less then 2 weeks laboratory work, sufficient information can be obtained 

from individual structural components which can incorporated into the model and used to 

predict hydrological performance of the car park structure with a reasonable degree of 

confidence. The model is simple in form and effective in producing a guide to the 

hydrological performance of any car park surface using different types of bedding material. 

This research project has yielded valuable information on the hydrological performance of 

a car park surface which can be used to design future structures. The results indicate that 

this permeable pavement can attenuate storm hydrographs; the degree of attenuation being 

determined by the structural components. The structure also has an evaporative efficiency 

(evaporating the water retained) of over 70% over the experimental period, thus allowing 

it to retain a high proportion of rainfall during subsequent events. The structure is simple 

to construct and is effective at ameliorating the hydrological problem associated with 
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urbanisation, potentially, maintaining pre-development hydrological pathways in a 

"quasi-natural" hydrological cycle. 

9.6 Control of urban runoff through the use of permeable pavements 

In Chapter 2 impermeable surfaces associated with urbanisation were shown to influence 

urban runoff by affecting: 

1) the quantity of stormwater runoff; 

2) the quality of stormwater runoff. 

9.6.1 Controlling the quantity of urban runoff by using permeable pavements. 

As discussed in Chapter 2, impermeable surfaces decrease infiltration and percolation 

rates, throughflow volumes and reduce the quantity of water reaching the aeration zone 

(Field et al. 1982). These surface also reduce the amount of water recharging 

groundwater and it's subsequent availability for abstraction (Schumm, 1977; NRA, 1992). 

Furthermore, urban runoff from impermeable surfaces will contribute to a greater amount 

of overland flow (Horton, 1933; Walling, 1981) which increases the risk of flooding in 

urban areas (Walling, 1981) and increases the stress on the sewer systems (Lindbeck, 

1984; Shaw, 1994). 

The experimental research outlined in this thesis shows that the permeable pavement 

increases the opportunity for infiltration and percolation. If rain water is allowed to 

infiltrate into the ground, a greater proportion of the input will reach the aeration zone and 

allow for groundwater recharge. Permeable pavements could reduce overland flow to 

zero by the infiltration of up to 100 mm of rainfall. If infiltration into the soil is not 
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allowed, the structure can still reduce the volume of stormwater runoff by at least 30%, 

could attenuate the storm hydrograph and decrease the peak flow discharges significantly. 

Decreases in maximum flow volumes and the attenuation of stormwater runoff will 

decrease the volume of stormwater reaching the sewer system and reduce the risk of 

flooding in the urban environment downstream. 

The overall impact on the fluvial system will also be significant. An increase in overland 

flow is known to create significant adjustments in the hydraulic geometry of river channels 

(Leopold and Maddock, 1953; Gregory and Park, 1976; Ferguson, 1987). Such changes 

could be minimised by improving infiltration and reducing the overland flow if permeable 

pavements are used as a source control technique. The problems of increased flow 

volumes and consequent increases in shear stresses which may induce sediment 

entrainment (Hellawell, 1986) in the fluvial system will also be alleviated. 

Permeable pavements can control urban runoff by directly reducing the total volume of 

water entering the drainage system. The use of this plane infiltration approach is more 

advantageous in low traffic density areas than the use of permeable Macadam because the 

structure does not experience the same clogging disadvantages as seen in Sweden 

(Hogland et al. , 1987; Hogland, 1990), Japan (Fujita, 1993) or France (Raimbault, 1990), 

i.e., the surface has greater void openings than Macadam. Clogging of the permeable 

pavement could be argued to favourably increase the hydrological performance of the 

structure, allowing for greater retention and higher evaporation rates. The structure has 

the added advantage of being able to evaporate rainfall retained within the structure; again 
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reducing the volume of water passing into the drainage system, producing a more 

"quasi-natural" hydrological cycle. 

The degree to which permeable pavements control stormwater runoff depends on the 

structural design of the surface. The model discussed in Chapter 8 allows the engineer to 

design a structure for an individual site, i.e., if only 10% runoff is permitted, a greater 

depth of bedding material with a smaller grain size may be incoipoiated into the design. 

The engineer will have a design tool from which to predict the hydrological performance 

of the design structure without the need of extensive simulation experiments. 

9.6.2 Control of the quality of urban runoff by using permeable pavements. 

The urban environment concentrates populations and pollutants associated with 

anthropogenic activities. Sediment-associated pollutants can be four times greater in the 

urban environment than background levels in rural areas (Nriagu, 1979; Ellis and Revitt, 

1982; Lord, 1987; Elliott and Pratt, 1989). Pollutant sources can be divided into two 

broad categories namely point and non-point pollution, with the latter being extremely 

difficult to monitor and control (Whipple, 1981; Loehr, 1984; Rutherford, 1988; Field and 

Pitt, 1990). A correlation between pollutant loads and the percentage area of 

impermeable surfaces in a catchment has been identified (Lindholm and Balmer, 1978). 

With an increase in pollutant loads on impermeable surfaces, stormwater runoff (which 

may entrain these pollutants) usually has a high concentration of pollutants which are 

released in a first flush. This produces a short sharp concentrated shock of pollutants 

reaching the receiving waters (Bradford, 1977; Lindholm and Balmer, 1978). 
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Detention devices (detaining stormwater runoff) can decrease pollutant loads and also the 

detrimental impact of this contamination receiving surface waters (Whipple, 1981; 

Mesuere and Fish, 1989; Cheffered and Chocat, 1990). Sediment-associated pollutants, 

e.g. heavy metals, can be reduced using these devices or by using a simple gravel matrix 

which allows filtration to occur (Aulenbach and Chan, 1988; Rajapakse and Ives, 1990). 

Since concentrations of heavy metals are high near roads and car parks (Johnston and 

Harrison, 1984; Lord, 1987; Yousef and Wanielista, 1986), and a gravel matrix can act as 

a filtration device, the use of permeable pavements may allow for sediment associated 

pollutants to be filtered and stored on-site. Just as the permeable pavement acts as an 

on-site source control for rainfall, it could perform a similar role for sediment-associated 

pollutants. 

Diffuse sources of pollutants (non-point) in the urban environment may be stored in the 

permeable pavement which is essentially a passive system. In theory, stormwater runoff 

from roads could be directed onto these surfaces to allow for primary filtration of 

stormwater runoff. The permeable pavement structure could be specially designed to 

include layers of limestone which increases the pH and produces favourable conditions for 

heavy metal retention (FOrstner and Wittman, 1983). The design can be altered depending 

on the site requirements and pollutant sources and types. 

9.7 Recommendations for further research. 

The next stage in the research into permeable pavement performance should examine the 

stability of heavy metals and other associated pollutants that could be filtered by the 

structure. The question then becomes "Is this structure to be a passive filtration system or 
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could an active system be introduced which would absorb the pollutants making the 

structure act as a sink r. With research in bio-remediation becoming more popular 

(Silverman et al., 1986; Silverman et al., 1988/89), could this structure be used as an area 

for on-site control in the urban environment ?. 

Permeable pavements have been seen to control the quantity of urban runoffi thereby 

reducing the detrimental impacts of urbanisation. They have also been observed (Chapter 

7) as being hydrologically efficient even after experiencing extreme sediment loadings. 

The maintenance requirements of these systems are low and the possibility of the structure 

to act as a sink for sediment associated pollutants is high. 
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APPENDIX B 



GLOSSARY LIST 

POLLUTION. The introduction by man into the environment of substances or energy 
liable to cause hazards to human health, harm to living resources and ecological systems, 
damage to structures or amenity, or interference with legitimate uses of the environment. ( 
Royal Commission on Environmental Pollution 1984) 

RECURRENCE INTERVAL. The average period of time which a specific amount or 
intensity of rainfall can be expected to occur once. These data are of value in flood 
forecasting where the period of a particularly hazardous flood level can be expected at 
intervals, say, once in 25 years, or once in 50 years. This is not to say that the rainfall will 
appear at regular intervals, so that exact predictions of timing are impossible. 

CHANNEL CAPACITY. The maximum volume of flow of a river within its' channel 
without overtopping its' bank. 

HYDRAULIC GEOMETRY. An expression introduced in 1953 by L.B.Leopold and 
T.Maddock to describe the hydraulic characteristics of a stream channel. The mean 
velocity, the mean depth and the width of flowing water are the functions of discharge at a 
given river cross-section, since discharge is the product of the mean velocity and the 
cross-sectional area of flow. It has been shown that with increasing discharge the mean 
velocity, mean depth and width increase as power functions:v=Kqm, d=Cqf, w=Aqb, where 
v is mean velocity, d is mean depth, w is width, Q is discharge and k,c,a,m,f and b are 
numerical coefficients. In addition to the three parameters of velocity, depth and width, 
the complete hydraulic geometry of a stream channel will include measurements of 
suspended-sediment load, gradient and bed roughness, all of which will affect the streams' 
capability of moving varying amounts of water and sediment. 

FINES. Fine-grained soil or sediment is that which has more than 50% of its' bulk weight 
comprising particles smaller than 0.075 mm in diameter. 

CHANNEL GEOMETRY. A term used in hydrology and in fluvial geomorphology to 
describe the spatial properties of a river channel. These include the width, depth, slope, 
gradient, bed roughness and wetted perimeter of the channel. 

FLATNESS RATIO. This is measured by comparing the grain dimensions (a, b and c 
axis) and is calculated by 
(A + B)12C. The higher the value, the greater the grain resembles a disc. A minimum 
value of 1 represents an equi-dimensional particle. 

RELATIVE HUMIDITY. This is the actual vapour pressure expressed as a percentage 
of the saturated vapour pressure at the same air temperature. 

RETENTION: Retention is defined as the water held within the car park structure at a 
given time interval (units are given in mm unless otherwise stated). 



	

TOTAL RETENTION: The total retention is defined as the amount of rainfall retained 
after monitoring on single event by the model car park structure. Retention after two 
hours (from the end of rainfall) was defined as the total retention because discharge from 
the model car park structure had ceased. 

CUMULATIVE RETENTION: This includes total retention and the retention from 
previous rainfall events. 

CUMULATIVE STORM RETENTION: This term refers to the measurements of the 
retention of rainfall during the rainfall event and up to the time when total retention is 
reached. 

TOTAL DISCHARGE: The total discharge is defined as the discharge at two hours after 
rainfall has ceased. This denotes the time when no further discharge takes place and the 
base of the structure is sealed. 

CUMULATIVE STORM DISCHARGE: This term refers to the measurements of the 
cumulative discharge during a rainfall event up to the time when total discharge has been 
reached. 

LAG TIME: The lag time is defined as the time difference between the onset of rainfall 
and the start of discharge. 

Mid: Mega litres per day. 

AXIS: The A axis is the longest axis of a particle. The B axis is the breadth of a particle. 
The C axis is the depth of the particle. 

REGRESSION ANALYSIS: A statistical technique which expresses the relationship 
between two or more variables in a graphic form. It comprises of fitting a regression line 
through a scatter of points in such a way that the sum of the squares of the distance 
between the points and the line is reduced to a minimum, i e , the best fit is achieved. The 
analysis can be described in the form of an equation where y = a + bx, with y and x being 
the axis and y and x being constants. . 
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LISTING OF COMPUTER PROGRAMMES 

Programme for the thermocouples using the PC208 software. 

Program: 
Flag Usage: 
Input channel Usage: 
Excitation Channel Usage: 
Continuous Analog Output Usage: 
Control Port Usage: 
Pulse Input Channel Usage: 
Output Array Definitions: 

* 1 TABLE 1 PROGRAMS 
01:0.0000 SEC.EXECUTION INTERVAL 

0.1: P END TABLE 1 

* 2 TABLE 2 PROGRAMS 
01:0.0000 SEC.EXECUTION INTERVAL 

0.1: P END TABLE 2 

* 3 TABLE 3 PROGRAMS 
0.1: P END TABLE 1 

* 4 MODE 4 OUTPUT OPTIONS 
01:00 TAPE/PRINTER OPTION 
02:00 PRINTER BAUD OPTION 

* A MODE 10 MEMORY ALLOCATION 
01:28 INPUT LOCATIONS 
02:64 INTERMEDIATE LOCATIONS 

* C MODE 12 SECURITY (OSX-0) 
01:00 SECURITY OPTION 
02:0000 SECURITY CODE 



	
	

	

	

	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	
	

	

	
	
	
	
	

	

	

	

	

	

	

	

	
	
	

	
	

Programme for Balances and RH probes using PC208 software

Program:
Flag Usage:
Input channel Usage:
Excitation Channel Usage:
Control Port Usage:
Pulse Input Channel Usage:
Output Array Definitions:

1 TABLE 1 PROGRAMS
01: 0.5 SEC.EXECUTION INTERVAL

01: P91 IF FLAG/PORT
01:11 DO IF FLAG 1 IS HIGH
02: 0 GO TO END OF PROGRAM TABLE

02: P32 Z=Z+1
01:5 Z LOC :

03: P86 DO
01: 10 SET HIGH FLAG 0 (OUTPUT)

04: P87 BEGINNING OF LOOP
01:60 DELAY
02: 240 LOOP COUNT

05: P86 DO
01: 1 CALL SUBROUTINE 1

06: P89 IF X<=>F
01:5 X LOC
02:3 >=
3: 2880 F
4: 31 EXIT LOOP IS TRUE

07: P95 END

08: P86 DO
01: 10 SET HIGH FLAG 0 (OUTPUT)

09: P87 BEGINNING OF LOOP
1: 600 DELAY
2: 12 LOOP COUNT

10: P86 DO
01: 1 CALL SUBROUTINE 1



	

	

	

	

	

	

	

	

	

	

	
	
	

	
	

	

	

	

	

	

	
	

	
	
	
	

	

	

	

	

	

	

	

	

11: P89 IF X<=>F
01:5 X LOC
02:3 >=
03: 4320 F
04:31 EXIT LOOP IF TRUE

12: P95 END

13: P87 BEGINNING OF LOOP
1: 7200 DELAY
2: 0 LOOP COUNT

14: P86 DO
01: 1 CALL SUBROUTINE 1

15: P95 END

16: P END TABLE 1

* 2 TABLE 2 PROGRAMS
01: 0.0000 SEC. EXECUTION INTERVAL

01: P END TABLE 2

* 3 TABLE 3 SUBROUTINES

01: P85 BEGINNING OF SUBROUTINE
01: 1 SUBROUTINE NUMBER

02: P30 Z=F
1: 209 F
2: 0 EXPONENT OF 10
3: 1 Z LOC (:CMD.Q)

03: P30 Z=F
01: 141 F
02:0 EXPONENT OF 10
03: 2 Z LOC (CARRET.)

04: P15 USER SPECIAL
1: 01
2: 01
3: 10
4: 1
5: 1



	
	

	
	

	
	

	
	
	

	

	

6: 2 
7: 13 
8: 17 
9: 300 
10: 03 
11: 1 
12: 0 

05: P15 USER SPECIAL 
01:01 1 
2: 01 
3: 10 
4: 4 
5: 1 
6: 2 
7: 13 
8: 17 
9: 300 
10: 04 
11: 01 
12: 0 

06: P86 DO 
01: 10 SET HIGH FLAG 0 (OUTPUT) 

07: P77 REAL TIME 
01: 111 DAY, HOUR-MINUTE, SECONDS 

8: P70 SAMPLE 
01:2 REPS 
02:3 LOC 

9: P95 END 

10: P END TABLE 3 

*A MODE 10 MEMORY ALLOCATION 
1: 28 INPUT LOCATIONS 
2: 64 INTERMEDIATE LOCATIONS 
3: 768 FINAL STORAGE AREA 2 

*C MODE 12 SECURITY 
1: 0000 LOCK 1 
2: 0000 LOCK 2 
3: 0000 LOCK 3 



	

	
	

	

PROGRAMME FOR CALCULATION MODEL BOX HYDROLOGICAL 
RESPONSE. WRITTEN IN ()BASIC. 

REM PROGRAM CALLED MODEL.BAS 
CLS 
PRINT : PRINT : PRINT : PRINT: PRINT" THIS PROGRAMME MODELS THE 
RAINFALL, RETENTION AND DISCHARGE CHARACTERISTICS" 

PRINT: 
PRINT" EXHIBITED BY A MODEL PERMEABLE PAVEMENT 

STRUCTURE" 
PRINT : PRINT: PRINT : PRINT 
PRINT" COPYRIGHT TOFF BERRY 1995" 
PRINT : PRINT: PRINT : PRINT : PRINT : PRINT" _ PRESS 

ANY KEY" 

COLOR 7,0 
A$ = "? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?II 

WHILE INKEY$ <> ": WEND 'CLEAR KEYBOARD BUFFER 

WHILE INKEY$ = 'I" 
FOR A = 1 TO 5 

LOCATE 1, 1 'PRINT HORIZONTAL SPARKLES 
PRINT MID$(A$, A, 80); 
LOCATE 22, 1 
PRINT M1D$(A$, 6- A, 80); 

'PRINT VERTICAL SPARKLES 
C = (A + B) MOD 5 
IF C = 1 THEN 

LOCATE B, 80 
PRINT "!"; 
LOCATE 23- B, 1 
PRINT CHR$(173) 
ELSE 
LOCATE B, 80 
PRINT" "; 
LOCATE 23 - B, 1 
PRINT" "; 

END IF 
NEXT B 

NEXT A 
WEND 

REm***********************sEcTioN 
ONE********************************************** 

FOR B =2 TO 21 

1 CLS 



2 PRINT 

3 PRINT" DATA INPUT SEQUENCE" 
4 PRINT 

5 PRINT : PRINT: PRINT: 
INPUT "BOX NUMBER"; BOX 
INPUT "ENTER NUMBER OF RAINFALL EVENTS TO BE CALCULATED"; E 
IF E < 1 AND E > 5 THEN GOTO 5 
20 INPUT "ENTER DEPTH OF RAINFALL REACHING SURFACE DURING 
EVENT 1 (MM)= "; RAINS 
30 INPUT "DURATION OF RAINFALL EVENT (HOURS,MINS)= "; HOURS, MINS: 
31 FR = MINS + (HOURS * 60): REM TIME CONVERTED TO MINUTES 
33 DURAT = FR / 60 
36 INTENSITY = (RAINS / (FR / 60)) 
50 INPUT "AREA OF SURFACE (M2)"; BEDAREA 
55 RAING = (BEDAREA * RAINS) * 1000: REM *********RAINFALL IN GRAMS 
60 INPUT "DEPTH OF BEDDING MATERIAL (MM)"; DEPTH 
61 VOL = (BEDAREA * 10000) * (DEPTH! 10): REM ***********IN CM3 
90 INTENSITY = RAINS / DURAT 
100 PRINT "RAIN INTENSITY (MM/H)"; INTENSITY 
REM ********************** BLOCK RETENTION CALCULATIONS FROM 
HERE ************ 
REM *********CALCULATIONS BELOW ARE FOR SINGLE BLOCKS ONLY 
******** 
BRET = (LOG(FR / 60) / LOG(10)) * 37.04 + 68.8 
129 BRETT = (BRET * (BEDAREA / .02) * 1.16): REM BLOCK RETENTION IN 
GRAMS WHOLE SURFACE 
130 IF RAT_NG < BRETT THEN BRETT = RAING * .85 
135 BRETMIVI = ((BRETT / BEDAREA) / 1000): REM BLOCK RETENTION 
WHOLE SURFACE 

GRAVEL RETENTION 

CALCULATIONS FROM HERE 
PRINT "TYPE OF SUBMATRIX (P)EA GRAVEL (PIEVIESTONE"; : INPUT A$ 
140 IF A$ = "P" OR A$ = "P" THEN PRINT "PEA GRAVEL IS SELECTED" 
150 IF A$ = "L" OR A$ = "L" THEN PRINT "LIMESTONE IS SELECTED" 
160 IF A$ = "P" OR A$ = "P" THEN GOTO 200 
170 IF A$ = "L" OR A$ = "L" THEN GOTO 352 
REM ******************DATA INPUT FOR PEA GRAVEL CALCULATIONS 

REM ********************************

***************** 
200 CLS 
202 PRINT "PLEASE SELECT GRAIN SIZE OF BEDDING MATERIAL :" 
203 PRINT: PRINT: PRINT 
204 PRINT" 1 TO 10MM (1)" 
205 PRINT" 5 TO 10MM (2)" 



206 PRINT" 3 TO 5MM (3)" 
207 PRINT" 1 TO 3MM (4)" 
208 PRINT : PRINT 
209 INPUT "ENTER YOUR SELECTION 1 TO 4:"; A 
210 IF A > 4 THEN GOTO 202 
211 IF A > 1 THEN GOTO 336 
336 IF A = 1 THEN GOTO 337 
IF A = 2 THEN GOTO 340 
IF A = 3 THEN CrOTO 344 
IF A = 4 THEN GOTO 348 
REM *************** GRAVEL RETENTION CALCULATIONS FROM HERE 
****************** 
REM *********************SELECTION FOR 1 TO 10MM GRAIN 
************************* 
337 IF RAIING < (469.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2)) + 
BRETT) THEN WRET = (RAING - BRETT) ELSE GOTO 338 
338 IF RAING > 0(69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2)) + 
BRETT) THEN WRET = 69.2 * (VOL / 1000) + (((.15 * BEDAREA) * 100) * 69.2) 
339 GOTO 360 
REM *********************SELECTION FOR 5 TO 10MM GRAIN 
*********************** 

340 IF A > 2 THEN GOTO 344 
341 IF RAING < 0(45.59 * (VOL / 1000)) ± ((( . 15 * BEDAREA) * 100) * 45.59)) + 
BRETT) THEN WRET = (RANG - BRETT) ELSE GOTO 342 
342 IF RANG > (445.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59)) + 
BRETT) THEN WRET = 45•59 * (VOL / 1000) + 0(.15 * BEDAREA) * 100) * 45.59) 
343 GOTO 360 
REM *********************SELECTION FOR 3 TO 5MM GRAIN 
************************* 

344 IF A > 3 THEN GOTO 348 
345 IF RAING < (0101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39)) + 
BRETT) THEN VVRET = (RANG - BRETT) ELSE CrOTO 346 
346 IF RAING > 0(101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39)) + 
BRETT) THEN WRET = 101.39 * (VOL / 1000) + (((.15 * BEDAREA) * 100) * 
101.39) 
347 GOTO 360 
REM *********************SELECTION FOR 1 TO 3MM 
********************************* 
348 ON A > 4 GOTO 349 
349 IF RAING < (0132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77)) + 
BRETT) THEN WRET = (RANG - BRETT) ELSE GOTO 350 
350 IF RAING > 0(132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77)) + 
BRETT) THEN WRET = 132.77 * (VOL / 1000) + 0(.15 * BEDAREA) * 100) * 
132.77) 
351 GrOTO 360 
REM *********************SELECTION FOR LIMESTONE 
***************************** 

http:0(132.77
http:0(101.39


 

352 CLS : PRINT : PRINT : PRINT 
353 PRINT" 5 TO 10MM (1)" 
354 INPUT "PLEASE ENTER YOUR SELECTION "; A 
355 IF A > 1 THEN 352 
358 IF RAING <(((56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81)) + 
BRETT) THEN WRET = (RAING - BRETT) ELSE GOTO 359 
359 IF RAING > 4(56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81)) + 
BRETT) THEN VVRET = 56.81 * (VOL / 1000) + (((.15 * BEDAREA) * 100) * 56.81) 
360 WRETMM = ((WRET / BEDAREA) / 1000) 
370 TOTR = BRETT + WRET: REM ****** TOTAL RETENTION IN GRAMS 
380 TOTRM1VI = BRETMM + WRET1VIM: REM ***TOTAL RETENTION IN MM 
CLS : REM *****************EVAPORATION CALCULATIONS FROM HERE 
********************** 

476 INPUT "LENGTH OF INTER-RAINFALL DRY PERIOD-(HOURS,MINS)="; 
HIRP, MIRP: 
477 IRE' = IVBRP + (HIRP * 60) 

REM *****************BLOCK EVAPORATION CALCULATIONS 
************************** 

BEVAP = (LOG(IRP / 60) / LOG(10)) * 36.41 - 41.62 
1000 BEVAPT = BEVAP * (BEDAREA / .02) 

1002 REM *************GRAVEL EVAPORATION CALCULATIONS FROM 
HERE ******************** 

1010 IF A$ = "L" OR A$ = "L" AND A= 1 THEN GOTO 2600 
1020 IF A$ = "P" OR A$ --= "P" THEN GOTO 1021 
1021 IF A = 1 THEN GOTO 1110 
1030 IF A = 2 THEN GOTO 1455 
1040 IF A = 3 THEN GOTO 1800 
1050 IF A = 4 THEN GOTO 2200 
1100 REM ***********PEA GRAVEL SELECTION (1) CALCULATIONS 1-10MM
*************** 

1110 IF 1RP > 0 AND IRP <= 60 THEN CrOTO 1120 ELSE 1140 
1120 GEVAP = ((.13 / 60) * IRP) 
1140 IF 1RP > 60 AND IRP <= 120 THEN GOTO 1150 ELSE 1170 
1150 GEVAP = (4.04 / 60) * (IRP - 60)) + .13) 
1170 IF lRP > 120 AND IRP <= 180 THEN GOTO 1180 ELSE 1200 
1180 GEVAP = (0.09 / 60) * (IRP - 120)) + .17) 
1200 IF IRP > 180 AND IRP <= 240 THEN GOTO 1210 ELSE 1230 
1210 GEVAP = 0(08 / 60) * (IRP - 180)) + .26) 
1230 IF WP > 240 AND 1RP <= 300 MEN GOTO 1240 ELSE 1260 
1240 GEVAP = 0(07 / 60) * (IRP - 240)) + .34) 
1260 IF 1RP > 3 00 AND IRP <= 360 THEN GOTO 1270 ELSE 1290 
1270 GEVAP = (0.06 / 60) * (IRP - 300)) + .41) 
1290 IF IRP > 360 AND IRP <=420 THEN GOTO 1300 ELSE 1320 
1300 GEVAP = 0(05 / 60) * (IP - 360)) + .47) 
1320 IF IRP > 42° AND 1RP <=480 THEN GOTO 1330 ELSE 1350 



 

  

1330 GEVAP 0(045 / 60) * (IRP - 420)) + .52) 
1350 IF likp > 480 AND 1RP <= 540 THEN GOTO 1360 ELSE 1380 
1360 GEVAP 0(04 / 60) * (IRP - 480)) + .565) 
1380 IF IRP > 540 AND IRP <= 600 THEN GOTO 1390 ELSE 1410 
1390 GEVAP (0.3 / 60) * (IRP - 540)) + .605) 
1410 IF 1RP > 600 AND 1RP <= 3720 THEN GOTO 1420 ELSE 1430 
1420 GEVAP = 0(012 / 3120) * (IRP - 600)) + .635) 
1430 IF 1RP > 3720 THEN GOTO 1440 
1440 GEVAP = 0(01 / 11280) * (IRP - 3720)) + .647) 
1445 GOTO 3000 
REM ***************PEA GRAVEL SELECTION (2) CALCULATIONS 5-10MM
********** 

1455 IF IRP > 0 AND IRP <= 60 THEN GOTO 1470 ELSE 1490 
1470 GEVAP ((.19 / 60) * 1RP) 
1490 IF IRP > 60 AND IRP <= 120 THEN GOTO 1500 ELSE 1520 
1500 GEVAP = 0(09 / 60) * (IRP - 60)) + .19) 
1520 IF 1RP > 120 AND IRP <= 180 THE,N GOTO 1530 ELSE 1550 
1530 GEVAP = (((.12 / 60) * (1RP - 120)) + .28) 
1550 IF IRP > 180 AND IRP <= 240 THEN GOTO 1560 ELSE 1580 
1560 GEVAP 0(05 / 60) * (IRP - 180)) + .4) 
1580 IF 1RP > 240 AND IRP <= 300 THEN GOTO 1590 ELSE 1610 
1590 GEVAP = 0(04 / 60) * (IRP - 240)) + .45) 
1610 IF 1RP > 300 AND 1Rp 360 THEN GOTO 1620 ELSE 1640 
1620 GEVAP = 0(03 / 60) * (IRP - 300)) + .49) 
1640 IF IRp > 360 AND IRP <=420 THEN GOTO 1650 ELSE 1670 
1650 GEVAP 0(026 / 60) * (1RP - 350)) + .52) 
1670 IF 1RP > 420 AND IRP <=480 THEN GOTO 1680 ELSE 1700 
1680 GEVAP = 0(021 / 60) * (1RP - 420)) + .546) 
1700 IF 1RP > 480 AND IRP <= 540 THEN GOTO 1710 ELSE 1730 
1710 GEVAP = 0(02 / 60) * (MP - 480)) + .567) 
1730 IF IRP > 5 40 AND 1RP <= 600 THEN GOTO 1740 ELSE 1760 
1740 GEVAP = 0(019 / 60) * (IRP - 540)) + .587) 
1750 IF IRP > 600 AND 1RP <= 3720 THEN GOTO 1755 ELSE 1760 
1755 GEVAP = 0(01 / 3120) * (IRP - 600)) + .606) 
1760 IF IRP > 3720 THEN GOTO 1765 
1765 GEVAP = (4.01 / 11280) * (IRp - 3720)) + .787) 
1780 GOTO 3000 
REM ****************PEA GRAVEL SELECTION (3) CALCULATIONS 3-5MM 
********** 

1800 IF IRP > 0 AND mp <= 60 THEN GOTO 1820 ELSE 1840 
1820 GEVAP = ((.13 / 60) * IRP) 
1840 IF IRP > 60 AND IRP 120 THEN GOTO 1850 ELSE 1870 
1850 GEVAP (4.08 / 60) * (IRP - 60)) + .13) 

180 THEN GOTO 1880 ELSE 19001870 IF 1RP > 120 AND I:" <= 
1880 GEVAP = (4.16 / 60) * (IRP - 120)) + .21) 
1900 IF 1RP > 180 AND fRP <- 240 THEN GOTO 1910 ELSE 1930 

1910 GEVAP =- 4(07 / 60) * (IRP - 180)) + .37) 



	

 

1930 IF 1RP > 240 AND IRP <= 300 THEN GOTO 1940 ELSE 1960 
1940 GEVAP = 0(.06 / 60) * (IRP - 240)) + .44) 
1960 IF IRP > 300 AND IRP <= 360 THEN GOTO 1970 ELSE 1990 
1970 GEVAP = 0(.05 / 60) * (IRP - 300)) + .5) 
1990 IF IRP > 360 AND IRP <= 420 THEN GOTO 2000 ELSE 2020 
2000 GEVAP = 0(.04 / 60) * ( IRP - 360)) + .55) 
2020 IF IRP > 420 AND IRP <= 480 TEEN GOTO 2030 ELSE 2050 
2030 GEVAP = (4.03 / 60) * (IRP - 420)) + .59) 
2050 IF IRP > 480 AND IRP <= 540 THEN GOTO 2060 ELSE 2080 
2060 GEVAP = (0.025 / 60) * (IRP - 480)) + .62) 
2080 rF > 540 AND IRP <= 600 THEN GOTO 2090 ELSE 2110 
2090 GEVAP = 4(.02 / 60) * ( IRP - 540)) + .645) 
2100 IF IRP > 600 AND IRP <= 3720 THEN GOTO 2110 ELSE 2130 
2110 GEVAP = 0(.016 / 3120) * ( 1RP - 600)) + .665) 
2130 IF IRP > 3720 THEN GOTO 2140 
2140 GEVAP = (4.01 / 11280) * ( IRP - 3720)) + .681) 
2160 GOTO 3000 
REM ****************PEA GRAVEL SELECTION (4) CALCULATIONS 1-3MM
************ 

2200 IF IRP > 0 AND IRP <= 60 THEN GOTO 2220 ELSE 2240 
2220 GEVAP = ((.1 / 60) * 1RP) 
2240 IF IRP > 60 AND IRP <= 120 THEN GOTO 2250 ELSE 2270 
2250 GEVAP = (((.1 / 60) * (IRP - 60)) + .21) 
2270 rF IRP > 120 AND 1RP <= 180 THEN GOTO 2280 ELSE 2300 
2280 GEVAP = (((.14 / 60) * ( IRP - 120)) + .42) 
2300 IF IRP > 180 AND IRP <= 240 THEN GOTO 2310 ELSE 2330 
2310 GEVAP = (((.08 / 60) * ( IRP - 180)) + .58) 
2330 rF rRp > 240 AND IRP <= 300 THEN GOTO 2340 ELSE 2360 
2340 GEVAP = 0(.07 / 60) * (IRP - 240)) + .68) 
2360 IF IRP > 300 AND IRP <= 360 THEN G-OTO 2370 ELSE 2390 
2370 GEVAP = 4(.06 / 60) * (IRP - 300)) + .75) 
2390 IF IRP > 360 AND IRP <= 420 THEN GOTO 2400 ELSE 2420 
2400 GEVAP = (0.04 / 60) * (IRP - 360)) + .81) 
2420 IF 1RP > 420 AND FRP <= 480 THEN GOTO 2430 ELSE 2450 
2430 GEVAP -= 0(.03 / 60) * (1RP - 420)) + .86) 
2450 rF IRP > 480 AND IRP <= 540 THEN GOTO 2460 ELSE 2480 
2460 GEVAP = (4.025 / 60) * (IP - 480)) + .89) 
2480 IF IRP > 540 AND 1RP <= 600 THEN GOTO 2490 ELSE 2510 
2490 GEVAP = (4.024 / 60) * ( RP - 540)) + .92) 
2500 IF IRP > 600 AND IRP <= 3720 THEN GOTO 2510 ELSE 2520 
2510 GEVAP = (4.022 / 3120) * ( IRP - 600)) + .945) 
2520 IF 1RP > 3720 GOTO 2530 
2530 GEVAP = (0.01 / 11280) * (IRP - 3720)) + .965) 
2550 GOTO 3000 
2600 REM ******************LIMESTONE SELECTION (1) CALCULATIONS
************* 

2610 IF 1RP > 0 AND 1RP <= 60 THEN GOTO 2620 ELSE 2640 



2620 GEVAP = ((.15 / 60) * IRP) 
2640 IF IRP > 60 AND IRP <= 120 THEN GOTO 2650 ELSE 2670 
2650 GEVAP = (((.17 / 60) * (IRP - 60)) + .15) 
2670 IF IRP > 120 AND IRP <= 180 THEN GOTO 2680 ELSE 2700 
2680 GEVAP = (0.06 / 60) * (IRP - 120)) + .32) 
2700 IF IRP > 180 AND MP <= 240 THEN GOTO 2710 ELSE 2730 
2710 GEVAP = (((.11 / 60) * (IRP - 180)) + .38) 
2730 IF IRP > 240 AND IRP <= 300 THEN GOTO 2740 ELSE 2760 
2740 GEVAP = (0.09 / 60) * (IRP - 240)) + .49) 
2760 IF 1RP > 300 AND IRP <= 360 THEN GOTO 2770 ELSE 2790 
2770 GEVAP -= (0.08 / 60) * (1RP - 300)) + .58) 
2790 IF IRP > 360 AND IRP <= 420 THEN GOTO 2800 ELSE 2820 
2800 GEVAP = 0(.065 / 60) * (IRP - 360)) + .66) 
2820 IF IRP > 420 AND IRP <= 480 THEN GOTO 2830 ELSE 2850 
2830 GEVAP = 0(.05 / 60) * (IRP - 420)) + .725) 
2850 IF IRP > 480 AND IRP <-= 540 THEN GOTO 2860 ELSE 2880 
2860 GEVAP = 0(.03 / 60) * (IRP - 480)) + .775) 
2880 IF IRP > 540 AND IRP <= 600 THEN CrOTO 2890 ELSE 2910 
2890 GEVAP = 0(.02 / 60) * (IRP - 540)) + .805) 
2910 IF IRP > 600 AND IRP <= 3720 THEN GOTO 2920 ELSE 2930 
2920 GEVAP = 0(.012 / 3120) * (IRP - 600)) + .825) 
2930 IF IRP > 3720 GOTO 2940 
2940 GEVAP = (4.01 / 11280) * (IRP - 3720)) + .837) 
2960 GOTO 3000 
REM **** CALCULATIONS OF EVAPORATION FROM THE STRUCTURE AREA 
******************* 
REM ************************** GRAVEL 
EVAPORATION***************************** 

3000 GEVAPT = (((BEDAREA * 10000) * .15)! 8.55) * GEVAP 
3002 GEVAPT1VIM = (GEVAPT / BEDAREA) / 1000 
REM ************************** BLOCK EVAPORATION 
***************************** 

3003 IF BEVAPT > ((WRET + BRETT) - GEVAPT) THEN BEVAPT = ((WRET + 
BRETT) - GEVAPT) 
3005 BEVAPTMM -= (BEVAPT / BEDAREA) / 1000 
3010 GRET1 = WRETMIV1 - ((GEVAPT / BEDAREA) / 1000): REM **** WATER 
RETAINED IN GRAVEL AFTER EVAPORATION 
3020 BRET1 = BRETMM - BEVAPTMM 
TOTEMIVI = GEVAPTMM + BEVAPTMIVI 
DISM1VI = RAINS - TOTRMM 
REm****************************sEcTioN 
TWO********************************************** 

CLS : REM *****************INPUT DATA FOR THE NEXT RAINFALL 
EvENTs*************** 

PRINT 



	

	 	

PRINT" DATA INPUT SEQUENCE SECOND RAINFALL EVENT" 
PRINT 
i, 

II 

INPUT "ENTER DEPTH OF RAINFALL REACHING THE SURFACE IN EVENT 2 
(MM)"; RAINS2 
INPUT "DURATION OF RAINFALL EVENT (HOURS,MINS)= "; HOURS2, MINS2: 
FR2 =1VIINS2 + (HOURS2 * 60): REM TIME CONVERTED TO MINUTES 
DURAT2 = FR2 /60 
INTENSITY2 = (RAINS2 / (FR2 / 60)) 
RAING2 = (BEDAREA * RAINS2) * 1000: REM *********RAINFALL IN GRAMS 
INPUT "LENGTH OF INTER-RAINFALL DRY PERIOD (HOURS,MINUTES)="; 
HIRP2, MIRP2: 
IRP2 = MIRP2 + (I-BRP2 * 60): REM IRP2 CONVERTED INTO MINUTES 
REM ********************** BLOCK RETENTION CALCULATIONS FROM 
HERE ************ 

B1 = BRET - BEVAP 
B2 = (B1 - 68.8) / 37.04 
B3 = 10 A (B2) 
BRET2 = (LOG((FR2 / 60) + B3) / LOG(10)) * 37.04 + 68.8 
REM BLOCK RETENTION IN GRAMS WHOLE SURFACE 
4129 BRETT2 = (BRET2 * (BEDAREA / .02) * 1.2952) 
4130 IF RAING2 < BRETT2 THEN BRETT2 = RAING2 * .85 
4135 BRETMM2 = ((BRETT2 / BEDAREA) / 1000) 
REM MM BLOCK RETENTION FOR THE WHOLE SURFACE 
REM ******************DATA INPUT FOR SECOND PEA GRAVEL 
CALCULATIONS ***************** 
4200 IF A$ = "P" OR A$ = "P" AND A> 1 THEN GOTO 4230 
4205 IF A$ = "L" OR A$ = "L" THEN GOTO 4350 
REM *********************SELECTION FOR 1 TO 10MM GRAIN 
************************* 

4210 IF RAING2 < 0(69.2 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 69.2) + 
BRETT2) THEN WRET2 = (RAING2 - BRETT2) + GRET1 ELSE GOTO 4215 
4215 IF RAING2 > 0(69.2 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 69.2) + 
BRETT2) THEN WRET2 = (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) 
4212 IF WRET2 > (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) THEN 
WRET2 = (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) 
4220 GOTO 4400 
REM *********************SELECTION FOR 5 TO 10MM GRAIN 
*********************** 

4230 IF A > 2 THEN GOTO 4250 
4235 IF RAING2 <(((45.59 * (VOL / 1000)) + ((.15 * 



BEDAREA) * 100) * 45.59) + BRETT2) THEN WRET2 (RAING2 - BRETT2) + 
GRET1 ELSE GOTO 4240 
4240 IF RAING2 > (((45.59 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 45.59) + 
BRETT2) THEN WRE,T2 = (45.59 * (VOL /1000)) + (((.15 * BEDAREA) * 100) * 
45.59) 
4242 IF WRET2 >(45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59) 
THEN WRET2 = (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59) 
4245 GOTO 4400 
REM *********************SELECTION FOR 3 TO 51v1M GRAIN 
************************* 

4250 IF A > 3 THEN GOTO 4270 
4255 IF RAING2 <(((101.39 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 101.39) + 
BRETT2) THEN WRET2 = (RAING2 - BRETT2) + GRET1 ELSE GOTO 4260 
4260 IF RAING2 > (001.39 * (VOL / 1000)) ± ((15 * BEDAREA) * 100) * 101.39) + 
BRETT2) THEN WRET2 = (101.39 * (VOL / 1000)) + 4(.15 * BEDAREA) * 100) * 
101.39) 
4262 IF WRET2 > (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39) 
THEN WRET2 (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39) 
4265 GOTO 4400 
REM *********************SELECTION FOR 1 TO 3M1VI 
********************************* 

4270 ON A > 4 CrOTO 4275 
4275 IF RAING2 <(((132.77 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 132.77) + 
BRETT2) THEN WRET2 = (RAING2 - BRETT2) + GRET1 ELSE GOTO 4280 
4280 IF RAING2 > (032.77 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 132.77) + 
BRETT2) THEN WRET2 = (132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
132.77) 
4282 IF WRET2 > (132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77) 
THEN WRET2 = (132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77) 
4285 GOTO 4400 
REM *********************SELECTION FOR LIMESTONE 
***************************** 

4350 IF RAING2 <(((56.81 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 56.81) + 
BRETT2) THEN WRET2 = (RAING2 - BRETT2) + GRET1 ELSE GOTO 4355 
4355 IF RAING2 > (((56.81 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 56.81) + 
BRETT2) THEN WRET2 = (56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
56.81) 
4356 IF WRET2 > (56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81) 
THEN WRET2 = (56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81) 
4400 WRETMM2 = ((WRET2 / BEDAREA) / 1000) 
4420 TOTRMM2 = BRETM1VI2 + WRETMM2: REM ***TOTAL RETENTION DT 
MM 
REM *****************BLOCK EVAPORATION CALCULATIONS 
************************** 

BEVAP2 = (LOG(IRP2 / 60) / LOG(10)) * 36.41 - 41.62: REM PER BLOCK 
BEVAPT2 = BEVAP2 * (BEDAREA / .02): REM WHOLE SURFACE 



REM *************GRAVEL EVAPORATION CALCULATIONS FROM HERE 
******************** 

5001 IF A$ = "L" OR A$ = "L" THEN GOTO 5650 
5010 IF A$ = "P" OR A$ = "P" THEN GOTO 5021 
5021 IF A = 1 THEN GOTO 5100 
5030 IF A = 2 THEN GOTO 5225 
5040 IF A = 3 THEN GOTO 5450 
5050 IF A = 4 THEN GOTO 5580 
5060 REM ***********PEA GRAVEL SELECTION (1) CALCULATIONS 1-10MNI
*************** 

5100 IF IRP2 > 0 AND IRP2 <= 60 THEN GOTO 5105 ELSE 5110 
5105 GEVAP2 = ((.13 / 60) * IRP2) 
5110 IF IRP2 > 60 AND IRP2 <= 120 TI-TEN GOTO 5115 ELSE 5120 
5115 GEVAP2 = (((.04 / 60) * (IRP2 - 60)) + .13) 
5120 IF IRP2 > 120 AND IRP2 <= 180 THEN GOTO 5125 ELSE 5130 
5125 GEVAP2 = (((.09 / 60) * (IRP2 - 120)) + .17) 
5130 IF IRP2 > 180 AND IRP2 <= 240 THEN GOTO 5135 ELSE 5140 
5135 GEVAP2 = (((.08 / 60) * (IRP2 - 180)) + .26) 
5140 IF IRP2 > 24O AND IRP2 <= 300 THEN GOTO 5145 ELSE 5150 
5145 GEVAP2 = (4.07 / 60) * (IRP2 - 240)) + .34) 
5150 IF IRP2 > 300 AND IRP2 <= 360 THEN GOTO 5155 ELSE 5160 
5155 GEVAP2 (0.06 / 60) * (1RP2 - 300)) + .41) 
5160 IF IRP2 > 360 AND IRP2 <= 420 THEN GOTO 5165 ELSE 5170 
5165 GEVAP2 = (0.05 / 60) * (IRP2 - 360)) + .47) 
5170 IF IRP2 >420 AND IRP2 <= 480 THEN GOTO 5175 ELSE 5180 
5175 GEVAP2 = (0.045 / 60) * (IRP2 - 420)) + .52) 
5180 IF IRP2 > 480 AND IRP2 <= 540 THEN GOTO 5185 ELSE 5190 
5185 GEVAP2 = (0.04 / 60) * (IRP2 -f4,80)) + .565) 
5190 IF IRP2 > 540 AND IRP2 60r11-ffiN GOTO 5195 ELSE 5200 
5195 GEVAP2 = (0.3 / 60) * (IRP2 - 540)) + .605) 
5200 IF 1RP2 > 600 AND IRP2 <= 3720 THEN GOTO 5205 ELSE 5210 
5205 GEVAP2 -= (0.012 / 3120) * (IRP2 - 600)) + .635) 
5210 IF IRP2 > 3720 THEN GOTO 5215 
5215 GEVAP2 = 0(.01 / 11280) * (IRP2 - 3720)) + .647) 
5220 GOTO 5800 
REM ***************PEA GRAVEL SELECTION (2) CALCULATIONS 5-10MM
********** 

5225 IF IRP2 > 0 AND TRP2 <= 60 THEN GOTO 5230 ELSE 5235 
5230 GEVAP2 = ((.19 / 60) * IRP2) 
5235 IF IRP2 > 60 AND IRP2 <= 120 THEN GOTO 5240 ELSE 5245 
5240 GEVAP2 = 4(.09 / 60) * (IRP2 - 60)) + .19) 
5245 IF IRP2 > 120 AND IRP2 <= 180 THEN GOTO 5250 ELSE 5255 
5250 GEVAP2 = (((.12 / 60) * (IRP2 - 120)) + .28) 
5255 IF IRP2 > 180 AND IRP2 <=240 THEN GOTO 5260 ELSE 5265 
5260 GEVAP2 = 0(.05 / 60) * (IRP2 - 180)) + .4) 
5265 IF IRP2 > 240 AND IRP2 <= 300 THEN GOTO 5270 ELSE 5275 
5270 GEVAP2 = (0.04 / 60) * (IRP2 - 240)) + .45) 



 

5275 IF IRP2 > 300 AND IRP2 <= 360 THEN GOTO 5280 ELSE 5285 
5280 GEVAP2 = (0.03 / 60) * (IRP2 - 300)) + .49) 
5285 IF IRP2 > 360 AND IRP2 <= 420 THEN GOTO 5290 ELSE 5295 
5290 GEVAP2 = (((.026 / 60) * (IRP2 - 360)) + .52) 
5295 IF IRP2 > 420 AND IRP2 <= 480 THEN GOTO 5300 ELSE 5305 
5300 GEVAP2 = (0.021 / 60) * (IRP2 - 420)) + .546) 
5305 IF IRP2 >480 AND IRP2 <= 540 THEN GOTO 5310 ELSE 5315 
5310 GEVAP2 = (0.02 / 60) * (IRP2 - 480)) + .567) 
5315 IF IRP2 > 540 AND IRP2 <= 600 THEN GOTO 5320 ELSE 5325 
5320 GEVAP2 = (0.019 / 60) * (IRP2 - 540)) + .587) 
5325 IF IRP2 > 600 AND IRP2 <= 3720 THEN GOTO 5330 ELSE 5335 
5330 GEVAP2 = (0.01 / 3120) * (IRP2 - 600)) + .606) 
5335 IF IRP2 > 3720 THEN GOTO 5340 
5340 GEVAP2 = (((.01 /11280) * (IRP2 - 3720)) + .787) 
5445 GOTO 5800 
REM ****************PEA GRAVEL SELECTION (3) CALCULATIONS 3-51VIM
********** 

5450 IF IRP2 > 0 AND IRP2 <= 60 THEN GOTO 5455 ELSE 5460 
5455 GEVAP2 = ((.13 / 60) * IRP2) 
5460 IF IRP2 > 60 AND IRP2 <= 120 THEN GOTO 5465 ELSE 5470 
5465 GEVAP2 = (0.08 / 60) * (IRP2 - 60)) + .13) 
5470 IF IRP2 > 120 AND IRP2 <= 180 THEN GOTO 5475 ELSE 5480 
5475 GEVAP2 = 0(.16 / 60) * (IRP2 - 120)) + .21) 
5480 IF IRP2 > 180 AND IRP2 <= 240 THEN GOTO 5485 ELSE 5490 
5485 GEVAP2 = (((.07 / 60) * (IRP2 - 180)) + .37) 
5490 IF IRP2 > 240 AND IRP2 <= 300 THEN GOTO 5495 ELSE 5500 
5495 GEVAP2 = (4.06 / 60) * (1RP2 - 240)) + .44) 
5500 IF IRP2 > 300 AND IRP2 <= 360 THEN GOTO 5505 ELSE 5510 
5505 GEVAP2 = (0.05 / 60)* (IRP2 - 300)) + .5) 
5510 IF IRP2 > 360 AND IRP2 <= 420 THEN GOTO 5515 ELSE 5520 
5515 GEVAP2 = 0(.04 / 60) * (IRP2 - 360)) + .55) 
5520 IF IRP2 > 420 AND TRP2 <= 480 THEN GOTO 5525 ELSE 5530 
5525 GEVAP2 = (0.03 / 60) * (IRP2 - 420)) + .59) 
5530 rF. IRP2 > 480 AND IRP2 <= 540 THEN GOTO 5535 ELSE 5540 
5535 GEVAP2 = (0.025 / 60) * (IRP2 - 480)) + .62) 
5540 IF IRP2 > 540 AND IRP2 <= 600 THEN GOTO 5545 ELSE 5550 
5545 GEVAP2 = 0(.02 / 60) * (11Z132 - 540)) + .645) 
5550 IF IRP2 > 600 AND IRP2 <= 3720 THEN GOTO 5555 ELSE 5560 
5555 GEVAP2 = (4.016 / 3120) * (IRP2 - 600)) + .665) 
5560 IF IRP2 > 3720 THEN GOTO 5565 
5565 GEVAP2 = (0.01 / 11280) * (IRP2 - 3720)) + .681) 
5570 GOTO 5800 
REM ****************PEA GRAVEL SELECTION (4) CALCULATIONS 1-31VIIVI
************ 

5580 IF IRP2 >0 AND IRP2 <= 60 THEN GOTO 5585 ELSE 5590 
5585 GEVAP2 = ((.1 / 60) * IRP2) 
5590 IF IRP2 > 60 AND IRP2 <= 120 THEN GOTO 5595 ELSE 5600 



5595 GEVAP2 = (((.1 / 60) * (IRP2 - 60)) + .1) 
5600 IT IRP2 > 120 AND IRP2 <:---- 180 THEN GOTO 5602 ELSE 5604 
5602 GEVAP2 = (((.14 / 60) * (JRP2 - 120)) + .2) 
5604 IF IRP2 > 180 AND IRP2 <= 240 THEN GOTO 5606 ELSE 5608 
5606 GEVAP2 = (0.08 / 60) * (IRP2 - 180)) + .34) 
5608 IF IRP2 > 240 AND IRP2 <= 300 THEN GOTO 5610 ELSE 5612 
5610 GEVAP2 = 0(.07 / 60) * (IRP2 - 240)) + .42) 
5612 IF IRP2 > 300 AND 1RP2 <= 360 THEN GOTO 5614 ELSE 5616 
5614 GEVAP2 = (0.05 / 60) * (IRP2 - 300)) + .49) 
5616 IF IRP2 > 360 AND IRP2 <= 420 THEN GOTO 5618 ELSE 5620 
5618 GEVAP2 = (4.04 / 60) * (IRP2 - 360)) + .54) 
5620 IF IRP2 > 420 AND IRP2 <= 480 THEN GOTO 5622 ELSE 5624 
5622 GEVAP2 = (4.03 / 60) * (IRP2 - 420)) + .58) 
5624 IF IRP2 > 480 AND IRP2 <= 540 THEN GOTO 5626 ELSE 5628 
5626 GEVAP2 = (((.025 / 60) * (IRP2 - 480)) + .61) 
5628 IF IRP2 > 540 AND IRP2 <= 600 THEN GOTO 5630 ELSE 5632 
5630 GEVAP2 = (((.024 / 60) * (IRP2 - 540)) + .635) 
5632 IF IRP2 > 600 AND IRP2 <= 3720 THEN GOTO 5634 ELSE 5636 
5634 GEVAP2 = 0(.022 / 3120) * (IRP2 - 600)) + .659) 
5636 IF IRP2 > 3720 GOTO 5638 
5638 GEVAP2 = (((.1 / 11280) * (IRP2 - 3720)) + .681) 
5640 GOTO 5800 
REM ******************LEVIESTONE SELECTION (1) CALCULATIONS
************* 

5650 IF IRP2 > 0 AND IRP2 <= 60 THEN GOTO 5660 ELSE 5670 
5660 GEVAP2 = ((.15 / 60) * IRP2) 
5670 IF IRP2 >60 AND IRP2 <= 120 THEN GOTO 5680 ELSE 5690 
5680 GEVAP2 = (0.17 / 60) * (IRP2 - 60)) + .15) 
5690 IF IRP2 > 120 AND IRP2 <= 180 MEN GOTO 5700 ELSE 5705 
5700 GEVAP2 = 0(.06 / 60) * (IRP2 - 120)) + .32) 
5705 IF IRP2 > 180 AND IRP2 <= 240 THEN GOTO 5710 ELSE 5715 
5710 GEVAP2 = (0.11 / 60) * (IRP2 - 180)) + .38) 
5715 IF IRP2 >240 AND IRP2 <= 300 THEN GOTO 5720 ELSE 5725 
5720 GEVAP2 = (4.09 / 60) * (IRP2 - 240)) + .49) 
5725 IF IRP2 > 300 AND IRP2 <= 360 THEN GOTO 5730 ELSE 5735 
5730 GEVAP2 = (0.08 / 60) * (IRP2 - 300)) + .58) 
5735 IF IRP2 > 360 AND 1RP2 <= 420 MEN GOTO 5740 ELSE 5745 
5740 GEVAP2 = 0(.065 / 60) * (IRP2 - 360)) + .66) 
5745 IF IRP2 > 420 AND IRP2 <=480 MEN GOTO 5750 ELSE 5755 
5750 GEVAP2 = (0.05 / 60) * (IRP2 - 420)) + .725) 
5755 IF IRP2 > 480 AND IRP2 <= 540 THEN GOTO 5760 ELSE 5765 
5760 GEVAP2 = 0(.03 / 60) * (IRP2 - 480)) + .775) 
5765 IF IRP2 > 540 AND IRP2 <= 600 THEN GOTO 5770 ELSE 5775 
5770 GEVAP2 = (((.02 / 60) * (IRP2 - 540)) + .805) 
5775 IF IRP2 > 600 AND IRP2 <= 3720 THEN GOTO 5780 ELSE 5785 
5780 GEVAP2 = (0.012 / 3120) * (IRP2 - 600)) + .825) 
5785 IF IRP2 > 3720 GOTO 5790 



5790 GEVAP2 = (4.01 / 11280) * (IRP2 - 3720)) + .837) 
5795 GOTO 5800 
5800 GEVAPT2 = (((BEDAREA * 10000) * .15)! 8.55) * GEVAP2 
5810 GEVAPT1VIM2 = (GEVAPT2 / BEDAREA) / 1000 
5820 IF BEVAPT2 > ((WRET2 + BRETT2) - GEVAPT2) THEN BEVAPT2 

+ BRETT2) - GEVAPT2) 
5830 BEVAPTMM2 = (BEVAPT2 / BEDAREA) / 1000 
5840 GRET2 = WRETMIVI2 - ((GEVAPT2 / BEDAREA) / 1000): REM **** WATER 
RETAINED IN GRAVEL AFTER EVAPORATION 
5850 BLOCKR = BRETMM2 - BEVAPT1VIM2 
5890 TO'TEVAPMM2 = BEVAPTIVIM2 + GEVAPT1VIM2 
DISMM2 = RAINS2 - (TOTRMM2 - (GRET1 + BRET1)): DISL2 = DISMM2 * 
BEDAREA 
IF E = 2 THEN GOTO 12001 
6000 PRINT 

PRINT : PRINT" DATA INPUT SEQUENCE OF THIRD" 
PRINT: PRINT 

6001 INPUT "ENTER DEPTH OF RAINFALL REACHING THE SURFACE IN 
EVENT 3 (MM)"; RAINS3 
INPUT "DURATION OF RAINFALL EVENT (HOURSAIINS)= "; HOURS3, MINS3: 
FR3 = MINS3 + (HOURS3 * 60): REM TIME CONVERTED TO MINUTES 
DURAT3 = FR3 / 60 
INTENSITY3 = (RAINS3 / (FR3 / 60)) 
RAING3 = (BEDAREA * RAINS3) * 1000: REM *********RAINFALL IN GRAMS 
INPUT "LENGTH OF INTER-RAINFALL DRY PERIOD (HOURS,MINUTES)="; 
HIRP3, MERF'3: 
IRP3 = MIRP3 + (BIRP3 * 60): REM IRP3 CONVERTED INTO MINUTES 
REM ********************** BLOCK RETENTION CALCULATIONS FROM 
HERE ************ 

Z1 = BRET2 - BEVAP2 
Z2 = (Z1 - 68.8) / 37.04 
Z3 = 10 A (Z2) 
BRET3 = (LOG((FR3 / 60) + Z3) / LOG(10)) * 37.04 + 68.8 
6129 BRETT3 = (BRET3 * (BEDAREA / .02) * 1.2588): REM BLOCK RETENTION 
IN GRAMS WHOLE SURFACE 
6130 IF RAING3 < BRETT3 THEN BRETT3 = RAING3 * .85 
6135 BRETMM3 = ((BRETT3 / BEDAREA) / 1000) 
REM ******************DATA INPUT FOR 3RD PEA GRAVEL CALCULATIONS 
***************** 

6200 IF A$ = "P" OR A$ = "P" AND A> 1 THEN GOTO 6230 
6205 IF A$ = "L" OR A$ = "L" THEN GOTO 6350 
REM *********************SELECTION FOR 1 TO 10IVIM GRAIN 
************************* 



6210 IF RAING3 < 0(69.2 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 69.2) + 
BRETT3) THEN WRET3 = (RAING3 - B1.ETT3) + GRET2 ELSE GOTO 6215 
6215 IF RAING3 > (((69.2 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 69.2) + 
BRETT3) THEN WRET3 = (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) 
6212 IF WRET3 > (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) THEN 
VVRET3 = (69.2 * (VOL / 1000)) + 0(.15 * BEDAREA) * 100) * 69.2) 
6220 GOTO 6400 
REM *********************SELECTION FOR 5 TO 10MM GRAIN 
*********************** 

6230 IF A > 2 THEN GOTO 6250 
6235 IF RAING3 <(((45.59 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 45.59) + 
BRETT3) THEN WRET3 = (RAING3 - BRETT3) + GRET2 ELSE GOTO 6240 
6240 IF RA1NG3 > (445.59 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 45.59) + 
BRETT3) THEN WRET3 = (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
45.59) 
6242 IF VVRET3 > (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59) 
THEN WRET3 (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59) 
6245 GOTO 6400 
REM *********************SELECTION FOR 3 TO 5MM GRAIN 
************************* 

6250 IF A > 3 THEN GOTO 6270 
6255 IF RAING3 <(((101.39 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 101.39) + 
BRETT3) THEN WRET3 = (RAING3 - BRETT3) + GRET2 ELSE GOTO 6260 
6260 IF RAING3 > (0101.39 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 101.39) + 
BRETT3) THEN WRET3 =(101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
101.39) 
6262 IF WRET3 > (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39) 
THEN WRET3 = (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39) 
6265 GOTO 6400 
REM *********************SELECTION FOR 1 TO 3MM 
********************************* 

6270 ON A > 4 GOTO 6275 
6275 IF RAING3 <(((132.77 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 132.77) + 
BRETT3) THEN VVRET3 = (RAING3 - BRETT3) + GRET2 ELSE GOTO 6280 
6280 IF RA1NG3 > 0(132.77 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 132.77) + 
BRETT3) THEN WRET3 =(132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
132.77) 
6282 IF WRET3 > (132.77 * (VOL / 1000)) + 0(.15 * BEDAREA) * 100) * 132.77) 
THEN WRET3 = (132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77) 
6285 GOTO 6400 
REM *********************SELECTION FOR LIMESTONE 
***************************** 

6350 IF RMNG3 <(((56.81 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 56.81) + 
BRETT3) THEN WRET3 = (RA1NG3 - BRETT3) + GRET2 ELSE GOTO 6355 
6355 IF RAING3 > (((56.81 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 56.81) + 
BRETT3) THEN WRET3 =(56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
56.81) 
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6356 IF WRET3 > (56.81 * (VOL / 1000)) ± (((.15 * BEDAREA) * 100) * 56.81) 
THEN WRET3 = (56.81 * (VOL / 1000)) ± ((( . 15 * BEDAREA) * 100) * 56.81) 
6400 WRETMM3 = ((WRET3 / BEDAREA) / 1000) 
6420 TOTRMM3 = BRETMM3 + WRETMM3: REM ***TOTAL RETENTION IN 
MM 

REM *****************BLOCK EVAPORATION CALCULATIONS 
************************** 

BEVAP3 = (LOG(IRP3 / 60) / LOG(10)) * 36.41 - 41.62 
7000 BEVAPT3 = BEVAP3 * (BEDAREA / .02) 
REM *************GRAVEL EVAPORATION CALCULATIONS FROM HERE 
******************** 

7001 IF A$ = "L" OR A$ = "L" THEN GOTO 7650 
7010 IF A$ = "P" OR A$ = "P" THEN GOTO 7021 
7021 IF A== 1 THEN GOTO 7100 
7030 IF A = 2 THEN GOTO 7225 
7040 IF A = 3 THEN GOTO 7450 
7050 IF A = 4 THEN GrOTO 7580 
7060 REM ***********PEA GRAVEL SELECTION (1) CALCULATIONS 1-10IVIM
*************** 

7100 IF IRP3 >0 AND IRP3 <=60 THEN GOTO 7105 ELSE 7110 
7105 GEVAP3 = ((.13 / 60) * IRP3) 
7110 IF IRP3 > 60 AND IRP3 <= 120 THEN GOTO 7115 ELSE 7120 
7115 GEVAP3 = (4.04 / 60) * (IRP3 - 60)) + .13) 
7120 IF 1RP3 > 120 AND 1RP3 <= 180 THEN GOTO 7125 ELSE 7130 
7125 GEVAP3 = (0.09 / 60) * (IRP3 - 120)) + .17) 
7130 IF 1RP3 > 180 AND 1RP3 <= 240 THEN GOTO 7135 ELSE 7140 
7135 GEVAP3 = (0.08 / 60) * (IRP3 - 180)) + .26) 
7140 IF IIRP3 > 240 AND IRP3 <= 300 THEN GOTO 7145 ELSE 7150 
7145 GEVAP3 = (0.07 / 60) * (IRP3 - 240)) + .34) 
7150 IF IRP3 > 300 AND lltP3 <= 360 THEN GOTO 7155 ELSE 7160 
7155 GEVAP3 = (((.06 / 60) * (IRP3 - 300)) + .41) 
7160 IF IRP3 > 360 AND IRP3 <=420 THEN GOTO 7165 ELSE 7170 
7165 GEVAP3 = (((.05 / 60) * (1RP3 - 360)) + .47) 
7170 IF 1RP3 > 420 AND IRP3 <=480 THEN GOTO 7175 ELSE 7180 
7175 GEVAP3 = (((.045 / 60) * (IRP3 - 420)) + .52) 
7180 IF IRP3 > 480 AND 1RP3 <= 540 THEN GOTO 7185 ELSE 7190 
7185 GEVAP3 = (4.04 / 60) * (IRP3 - 480)) + .565) 
7190 IF IRP3 > 540 AND IRP3 <= 600 THEN GOTO 7195 ELSE 7200 
7195 GEVAP3 = 0(.3 / 60) * (IRP3 - 540)) + .605) 
7200 IF IRP3 > 600 AND IRP2 <= 3720 THEN GOTO 7205 ELSE 7210 
7205 GEVAP3 = 0(.012 / 3120) * (IRP3 - 600)) + .635) 
7210 IF IRP3 > 3720 THEN GOTO 7215 
7215 GEVAP3 = (0.01 /11280) * (IRP3 - 3720)) + .647) 
7220 GOTO 7800 
REM ***************PEA GRAVEL SELECTION (2) CALCULATIONS 5-10MM 
********** 



  

7225 IF 1RP3 >0 AND 1RP3 <= 60 THEN GOTO 7230 ELSE 7235 
7230 GEVAP3 = ((.19 / 60) * iltp3) 
7235 IF IRP3 > 60 AND IRP3 <= 120 THEN GOTO 7240 ELSE 7245 
7240 GEVAP3 = (((.09 / 60) * (IRP3 - 60)) + .19) 
7245 IF IRP3 > 120 AND 1RP3 <= 180 THEN GOTO 7250 ELSE 7255 
7250 GEVAP3 = (0.12 / 60) * (IP3 - 120)) + .28) 
7255 IF 1RP3 > 180 AND IRP3 <=240 THEN GOTO 7260 ELSE 7265 
7260 GEVAP3 = (((.05 / 60) * (IRP3 - 180)) + .4) 
7265 IF IRP3 > 240 AND IRP3 <= 300 THEN GOTO 7270 ELSE 7275 
7270 GEVAP3 = (0.04 / 60) * (IRP3 - 240)) + .45) 
7275 IF IRP3 > 300 AND IRP3 <= 360 THEN GOTO 7280 ELSE 7285 
7280 GEVAP3 ----- (0.03 / 60) * (IRP3 - 300)) + .49) 
7285 IF 1RP3 > 360 AND IRP3 <= 420 THEN GOTO 7290 ELSE 7295 
7290 GEVAP3 --= (4.026 / 60) * (RP3 - 360)) + .52) 
7295 IF 11RP3 > 420 AND 1RP3 <= 480 THEN GOTO 7300 ELSE 7305 
7300 GEVAP3 = (0.021 / 60) * (IRP3 - 420)) + .546) 
7305 IF IRP3 >480 AND IRP3 <= 540 THEN GOTO 7310 ELSE 7315 
7310 GEVAP3 = (((.02 / 60) * (IRP3 - 480)) + .567) 
7315 IF IRP3 > 540 AND 1RP3 <= 600 THEN GOTO 7320 ELSE 7325 
7320 GEVAP3 = (4.019 / 60) * (IRP3 - 540)) + .587) 
7325 IF IRP3 > 600 AND IRP3 <= 3720 THEN GOTO 7330 ELSE 7335 
7330 GEVAP3 = (0.01 / 3120) * (IRP3 - 600)) + .606) 
7335 IF LRP3 > 3720 THEN GOTO 7340 
7340 GEVAP3 = (0.01 / 11280) * (IRP3 - 3720)) + .787) 
7445 GOTO 7800 
REM ****************PEA GRAVEL SELECTION (3) CALCULATIONS 3-5MM
********** 

7450 IF IRP3 > 0 AND IRP3 <= 60 THEN GOTO 7455 ELSE 7460 
7455 GEVAP3 = ((.13 / 60) * IRP3) 
7460 IF IRP3 >60 AND I1RP3 <= 120 THEN GOTO 7465 ELSE 7470 
7465 GEVAP3 = (((08 / 60)* (IRP3 - 60)) + .13) 
7470 IF 1RP3 > 120 AND IRP3 <= 180 THEN GOTO 7475 ELSE 7480 
7475 GEVAP3 = (0.16 / 60) * (IRP3 - 120)) + .21) 
7480 IF IRP3 > 180 AND IRP3 <= 240 THEN GOTO 7485 ELSE 7490 
7485 GEVAP3 = 0(.07 / 60) * (IRP3 - 180)) + .37) 
7490 IF IRP3 > 240 AND IRP3 <= 300 THEN GOTO 7495 ELSE 7500 
7495 GEVAP3 = 0(.06 / 60) * (IRP3 - 240)) + .44) 
7500 IF IRP3 >300 AND IRP3 <= 360 THEN GOTO 7505 ELSE 7510 
7505 GEVAP3 = (0.05 / 60) * (IRP3 - 300)) + .5) 
7510 IF 1RP3 > 360 AND 1RP3 <= 420 THEN GOTO 7515 ELSE 7520 
7515 GEVAP3 = 0(.04 / 60) * (IRP3 - 360)) + .55) 
7520 IF IRP3 > 420 AND IRP3 <= 480 THEN GOTO 7525 ELSE 7530 
7525 GEVAP3 = (0.03 / 60) * (lRP3 - 420)) + .59) 
7530 IF IRP3 > 480 AND IRP3 <= 540 THEN GOTO 7535 ELSE 7540 
7535 GEVAP3 = 0(.025 / 60) * (RP3 - 480)) + .62) 
7540 IF lRP3 > 540 <LL,..,Axrn „1Ril-13 <= 600 THEN GOTO 7545 ELSE 7550 
7545 GEVAP3 = (4.02 / 60) * (IRp3 - 540)) + .645) 



7550 IF IRP3 > 600 AND IRP3 <= 3720 THEN GOTO 7555 ELSE 7560 
7555 GEVAP3 = (0.016 / 3120) * (IRP3 - 600)) + .665) 
7560 IF IRP3 >3720 THEN GOT° 7565 
7565 GEVAP3 = (0.01 / 11280) * (IRP3 - 3720)) + .681) 
7570 GOTO 7800 
REM ****************PEA GRAVEL SELECTION (4) CALCULATIONS 1-3MM
************ 

7580 IF IRP3 > 0 AND 1RP3 <= 60 THEN GOTO 7585 ELSE 7590 
7585 GEVAP3 = ((.1 / 60) * IRP3) 
7590 IF IRP3 > 60 AND IRP3 <= 120 THEN GOTO 7595 ELSE 7600 
7595 GEVAP3 = (((.1 / 60) * (IRP3 - 60)) + .1) 
7600 IF IRP3 > 120 AND IRP3 <=--- 180 THEN GOTO 7602 ELSE 7604 
7602 GEVAP3 = (((.14 / 60) * (IRP3 - 120)) + .2) 
7604 IF IRP3 > 180 AND LRP3 240 THEN GOTO 7606 ELSE 7608 
7606 GEVAP3 = (0.08 / 60) * (IP3 - 180)) + .34) 
7608 IF IRP3 > 240 AND IRP3 <=300 THEN GOTO 7610 ELSE 7612 
7610 GEVAP3 = (0.07 / 60) * (IRP3 - 240)) + .42) 
7612 IF IRP3 > 300 AND IRP3 <=--- 360 THEN GOTO 7614 ELSE 7616 
7614 GEVAP3 = 0(.05 / 60) * (IRP3 - 300)) + .49) 
7616 IF IRP3 > 360 AND IRP3 <=420 THEN GOT° 7618 ELSE 7620 
7618 GEVAP3 (((.04 / 60) * (IRP3 - 360)) + .54) 
7620 IF IRP3 > 420 AND IRP3 <= 480 THEN GOTO 7622 ELSE 7624 
7622 GEVAP3 = (0.03 / 60) * (IRP3 - 420)) + .58) 
7624 IF IRP3 > 480 AND IRP3 <= 540 THEN GOTO 7626 ELSE 7628 
7626 GEVAP3 = (0.025 / 60) * (I1RP3 - 480)) + .61) 
7628 IF IRP3 > 540 AND IRP3 <= 600 THEN GOTO 7630 ELSE 7632 
7630 GEVAP3 = 0(.024 / 60) * (IRP3 - 540)) + .635) 
7632 IF IRP3 > 600 AND IRP3 <= 3720 THEN GOTO 7634 ELSE 7636 
7634 GEVAP3 = 0(.022 / 3120) * (IRP3 - 600)) + .659) 
7636 IF IRP3 > 3720 GOTO 7638 
7638 GEVAP3 = (((.1 / 11280) * (IRP3 - 3720)) + .681) 
7640 GOTO 7800 
REM ******************LIMESTONE SELECTION (1) CALCULATIONS
************* 

7650 IF IRP3 >0 AND IRP3 <= 60 THEN GOTO 7660 ELSE 7670 
7660 GEVAP3 = ((.15 / 60) * IRP3) 
7670 IF IRP3 >60 AND IRP3 <= 120 THEN GOTO 7680 ELSE 7690 
7680 GEVAP3 = (4.17 / 60) * (IRP3 - 60)) + .15) 
7690 IF IRP3 > 120 AND IRP3 <= 180 THEN GOTO 7700 ELSE 7705 
7700 GEVAP3 = (0.06 / 60) * (IRP3 - 120)) + .32) 
7705 IF IRP3 > 180 AND IRP3 <= 240 THEN GOTO 7710 ELSE 7715 
7710 GEVAP3 = (((.11 / 60) * (IRP3 - 180)) + .38) 
7715 IF IRP3 > 240 AND IRP3 <=300 THEN GOTO 7720 ELSE 7725 
7720 GEVAP3 = 0(.09 / 60) * (IRP3 - 240)) + .49) 
7725 IF IRP3 > 300 AND IRP3 360 THEN GOT° 7730 ELSE 7735 
7730 GEVAP3 = 0(.08 / 60) * (IRP3 - 300)) + .58) 
7735 IF IRP3 > 360 AND 112P3 <= 420 THEN GOTO 7740 ELSE 7745 



	
	 	
	 	

7740 GEVAP3 = 0(.065 / 60) * (IRP3 - 360)) + .66) 
7745 IF IRP3 > 420 ANT) IRP3 <= 480 THEN GOTO 7750 ELSE 7755 
7750 GEVAP3 = (((.05 / 60) * (IRP3 - 420)) + .725) 
7755 IF IRP3 > 480 AND IRP3 <= 540 THEN GOTO 7760 ELSE 7765 
7760 GEVAP3 = (4.03 / 60) * (IRP3 - 480)) + .775) 
7765 IF IRP3 > 540 AND IRP3 <= 600 THEN GOTO 7770 ELSE 7775 
7770 GEVAP3 = 0(.02 / 60) * (IRP3 - 540)) + .805) 
7775 IF IRP3 > 600 AND IRP3 <= 3720 THEN GOTO 7780 ELSE 7785 
7780 GEVAP3 = (4.012 / 3120) * (IRP3 - 600)) + .825) 
7785 IF IRP3 > 3720 GOTO 7790 
7790 GEVAP3 = (4.01 / 11280) * (IRP3 - 3720)) + .837) 
7795 GOTO 7800 
REM ************************** GRAvEL 
EvApORATION***************************** 

7800 GEVAPT3--:--- (((BEDAREA * 10000) * .15) / 8.55) * GEVAP3 
7810 GEVAPTM1VI3 = (GEVAPT3 / BEDAREA) / 1000 
REM ************************** BLOCK EVAPORATION 
***************************** 

7820 IF BEVAPT3 > ((WRET3 + BRETT3) - GEVAPT3) THEN BEVAPT3 -' 
((WRET3 + BRETT3) - GEVAPT3) 
7830 BEVAPTMM3 = (BEVAPT3 / BEDAREA) / 1000 
7840 GRET3 = WRETMM3 - ((GEVAPT3 / BEDAREA) / 1000): REM **** WATER 
RETAINED IN GRAVEL AFTER EVAPORATION 
DISMM3 = RAINS3 - (TOTRMM3 - (GRET1 + BLOCKR)): DISL3 = DISMM 3 * 
BEDAREA 
7890 TOTEVAPMM3 = BEVAPTMM3 + GEVAPTMM3 
7892 IF E = 3 THEN GOTO 12001 
12001 
CLS 
IF E = 1 THEN PRINT " VARIABLE EVENT1 " 
IF E =2 THEN PRINT" VARIABLE EVENT1 EVENT2 " 
IF E =3 THEN PRINT" VARIABLE EVENT1 EVENT2 
EVENT3" 
PRINT "RAINFALL DURATION (HOURS)" 
PRINT "RAINFALL INTENSITY (MM/H)" 
PRINT "RAINFALL DEPTH (MM)" 
PRINT "RAINFALL DISCHARGE (MM)" 
PRINT "BLOCK RETENTION (MM)" 
PRINT "GRAVEL RETENTION (MM)" 
PRINT "TOTAL RETENTION (MM)" 
PRINT "LENGTH OF DRY PERIOD (H,MIN)" 
PRINT "BLOCK EVAPORATION (MM)" 
PRINT "GRAVEL EVAPORATION (MM)" 
PRINT "TOTAL EVAPORATION(MM)" 
PRINT "BOX"; BOX 
REM OUTPUT FOR RAINFALL EVENT 1 
LOCATE 2, 31: PRINT USING "####.##"; FR/ 60; 



LOCATE 3, 31: PRINT USING "####.44" ; INTENSITY 
LOCATE 4, 31: PRINT USING "####.##"; RAINS 
LOCATE 5, 31: PRINT USING "####.##"; DISMM 
LOCATE 6, 3L PRINT USING "####.##"; BRETMM 
LOCATE 7, 31: PRINT USING "###4.#41"; WRETMM 
LOCATE 8,31: PRINT USING "####.##"; TOTRM_M 
LOCATE 9,31: PRINT USING "####.##"; IRP / 60; 
LOCATE 10, 31: PRINT USING "####.##"; BEVAPTMM 
LOCATE 11,31: PRINT USING "####.###"; GEVAPTMM 
LOCATE 12, 31: PRINT USING "####.##"; TOTEMM 
REM OUTPUT FOR RAINFALL EVENT 2 
LOCATE 2, 51: PRINT USING "####.##"; FR2 / 60; 
LOCATE 3, 51: PRINT USING "####.##"; INTENSITY2 
LOCATE 4,51 PRINT USING "####.##"; RAINS2 
LOCATE 5,51 PRINT USING "####.44"; DISMM2 
LOCATE 6, 51: PRINT usrt•TG "#### #P'; BREI'MM2 
LOCATE 7,51 PRINT USING "####.44"; VVRETMM2 
LOCATE 8,51: PRINT USING "####.##"; TOTRMM2 
LOCATE 9, 51: PRINT USING "####.##"; IRP2 / 60; 
LOCATE 10, 51: PRINT USING "####.##"; BEVAPTMM2 
LOCATE 11,51: PRINT USING "####.I4#"; GEVAPTMM2 
LOCATE 12, 51: PRINT USING "####.4,4"; TOTEVAPMM2 
REM OUTPUT FOR RAINFALL EVENT 3 
LOCATE 2, 71: PRINT USING "####.##"; FR3 / 60; 
LOCATE 3,71: PRINT USING "####.##"; INTENSITY3 
LOCATE 4, 71: PRINT USING "####.##"; RAINS3 
LOCATE 5, 71: PRINT USING "####.##"; DISMM3 
LOCATE 6, 71: PRINT USING "####.##"; BRETMM3 
LOCATE 7, 71: PRINT USING "####.##"; WRETMM3 
LOCATE 8, 71: PRINT USING "#itit#.44"; TOTRM1VI3 
LOCATE 9,71: PRINT USING "####.#4"; IRP3 / 60; 
LOCATE 10, 71: PRINT USING "####.##"; BEVAPTMM3 
LOCATE 11, 71: PRINT USING "####.###"; GEVAPTMM3 
LOCATE 12, 71: PRINT USING "1t#144.144"; TOTEVAPMM3 
END 
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REVISED PROGRAMME FOR CALCULATING THE HYDROLOGICAL 
PERFORMANCE OF THE MODEL CAR PARK SURFACE. 

REM PROGRAM CALLED REVMOD - REVISED MODEL 
CLS 
PRINT : PRINT : PRINT : PRINT : PRINT" THIS PROGRAMME MODELS THE 
RAINFALL, RETENTION AND DISCHARGE CHARACTERISTICS" 

PRINT: 
PRINT" EXHIBITED BY A MODEL PERMEABLE PAVEMENT 

STRUCTURE" 
PRINT : PRINT : PRINT: PRINT 
PRINT" COPYRIGHT TOFF BERRY 1995" 
PRINT : PRINT : PRINT : PRINT : PRINT : PRINT" PRESS 

ANY KEY" 

COLOR 7,0 
A$ = "7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7" 
WHILE 1NKEY$ <> ": WEND 'CLEAR KEYBOARD BUFFER 

WHILE INKEY$ = 
FOR A = 1 TO 5 

LOCATE 1, 1 'PRINT HORIZONTAL SPARKLES 
PRINT M1D$(A$, A, 80); 
LOCATE 22, 1 
PRINT MEDS(A$, 6- A, 80); 

'PRINT VERTICAL SPARKLESFOR B =2 TO 21 
C = (A +B)MOD 5 
IF C = 1 THEN 

LOCATE B, 80 
PRINT "!"; 
LOCATE 23 - B, 1 
PRINT CHR$(173) 
ELSE 
LOCATE B, 80 
PRINT" "; 
LOCATE 23- B, 1 
PRINT" " •, 

END IF 
NEXT B 

NEXT A 
WEND 

REm***********************sEcTioN 
ONE********************************************** 

1 CLS 



	

2 PRINT 

3 PRINT" DATA INPUT SEQUENCE" 
4 PRINT 

5 PRINT : PRINT : PRINT: 
INPUT "BOX NUMBER"; BOX 
INPUT "ENTER DEPTH OF RAINFALL REACHING SURFACE DURING EVENT 1 
(MM)= "; RAINS 
INPUT "DURATION OF RAINFALL EVENT (HOURS,MINS)= "; HOURS, IVIINS: 
FR = MINS + (HOURS * 60): REM TIME CONVERTED TO MINUTES 
DURAT = FR / 60 
INTENSITY = (RAINS / (FR / 60)) 
INPUT "AREA OF SURFACE (M2)", BEDAREA 
RAING = (BEDAREA * RAINS) * 1000: REM *********RAINF'ALL IN GRAMS 
INPUT "DEPTH OF BEDDING MATERIAL (MM)"; DEPTH 
VOL = (BEDAREA * 10000) * (DEPTH / 10): REM ***********IN CM3 
INTENSITY = RAINS / DURAT 
REM ********************** BLOCK RETENTION CALCULATIONS FROM 
HERE 
REM *********CALCULATIONS BELOW ARE FOR SINGLE BLOCKS ONLY 
BRET = (LOG(FR / 60) / LOG(10))* 37.04 + 68.8 
BRETT = ((BRET * (BEDAREA / .02)) * 1.29): REM BLOCK RETENTION GRAMS 
WHOLE SURFACE 
IF RAING < BRETT THEN BRETT =- RANG * .85 
BRETMM = ((BRETT / BEDAREA) / 1000): REM BLOCK RETENTION WHOLE 
SURFACE 
REM ** GRAVEL RETENTION CALCULATIONS FROM HERE 
PRINT "TYPE OF SUBMATRDC (P)EA GRAVEL (L)IMESTONE"; : INPUT A$ 
IF A$ = "P" OR A$ = "P" THEN PRINT "PEA GRAVEL IS SELECTED" 
IF A$ = "L" OR A$ = "L" THEN PRINT "LIMESTONE IS SELECTED" 
IF A$ = "P" OR A$ = "P" THEN GOTO 200 
IF A$ = "L" OR A$ = "L" THEN GOTO 352 
REM ******************DATA INPUT FOR PEA GRAVEL CALCULATIONS 
***************** 

200 CLS 
202 PRINT "PLEASE SELECT GRAIN SIZE OF BEDDING MATERIAL :" 
203 PRINT : PRINT : PRINT 
204 PRINT" 1 TO 10MM (1)" 
205 PRINT" 5 TO 10MM (2)" 
206 PRINT" 3 TO 5MM (3)" 
207 PRINT" 1 TO 3MM (4)" 
208 PRINT : PRINT 
209 INPUT "ENTER YOUR SELECTION 1 TO 4:"; A 
210 IF A > 4 THEN GOTO 202 



211 IF A > 1 THEN GOTO 336 
336 IF A = 1 THEN GOTO 337 
IF A = 2 THEN GOTO 340 
IF A = 3 THEN GOTO 344 
IF A = 4 THEN GOTO 348 
REM *************** GRAVEL RETENTION CALCULATIONS FROM HERE 
REM *********************SELECTION FOR 1 TO 10MM GRAIN 
337 IF RANG < (069.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2)) + 
BRETT) THEN WRET = (RAENG - BRETT) ELSE GOTO 338 
338 IF RAING > (069.2 * (VOL / 1000)) + 0(.15 * BEDAREA) * 100) * 69.2)) + 
BRETT) THEN WRET = 69.2 * (VOL / 1000) + (((.15 * BEDAREA) * 100) * 69.2) 
339 GOTO 360 
REM *********************SELECTION FOR 5 TO 1011/M GRAIN 
340 IF A > 2 THEN GOTO 344 
341 IF RAING < 0(45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59)) + 
BRETT) THEN WRET = (RANG - BRETT) ELSE GOTO 342 
342 IF RANG > (045.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59)) + 
BRETT) THEN WRET = 45.59 * (VOL / 1000) + (((.15 * BEDAREA) * 100) * 45.59) 
343 GOTO 360 
REM *********************SELECTION FOR 3 TO 5MM GRAIN 
344 IF A > 3 THEN GOTO 348 
345 IF RAING < (0101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39)) + 
BRETT) THEN WRET = (RANG - BRETT) ELSE GOTO 346 
346 IF RAING > 0(101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39)) + 
BRETT) THEN WRET = 101.39 * (VOL / 1000) + (((.15 * BEDAREA) * 100) * 
101.39) 
347 GOTO 360 
REM *********************SELECTION FOR 1 TO 3MM 
348 ON A > 4 GOTO 349 
349 IF RANG < (((132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77)) + 
BRETT) THEN WRET = (RANG - BRETT) ELSE GOTO 350 
350 IF RAING > (0132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77)) + 
BRETT) THEN WRET = 132.77 * (VOL / 1000) + (((.15 * BEDAREA) * 100) * 
132.77) 
351 GOTO 360 
REM *********************SELECTION FOR LIMESTONE 
352 CLS : PRINT: PRINT: PRINT 
353 PRINT" 5 TO 101VIM (1)" 
354 INPUT "PLEASE ENTER YOUR SELECTION "; A 
355 IF A>> 1 THEN 352 
358 IF RAING < 0(56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81)) + 
BRETT) THEN VVRET = (RANG - BRETT) ELSE GOTO 359 
359 IF RAING > 0(56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81)) + 
BRETT) THEN WRET = 56.81 * (VOL / 1000) + (((.15 * BEDAREA) * 100) * 56.81) 
360 WRETMM = ((WRET / BEDAREA) / 1000) 
380 TOTRMM = BRETMM + WREI'MM: REM ***TOTAL RETENTION IN MM 
PRINT "WRETMM"; WRETKM 
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CLS : REM *EVAPORATION CALCULATIONS FROM HERE 
INPUT "LENGTH OF INTER-RAINFALL DRY PERIOD (HOURS,MINS) ="; HIRP, 
1VIERP: 
IRP = MIRP + (HIRP * 60) 
TOTEMIVI = .04519 + (.27465 * TOTRMM) + (.002445 * (IRP / 60)) 
IF TOTEMM > TOTRMIVI THEN TOTEMM = TOTRMM 
DIS = RAINS - TOTRMIVI 
PRINT "TOT Q"; DIS 
REM****************************SECTION 
Two********************************************** 

CLS : REM **INPUT DATA FOR THE NEXT RAINFALL EVENTS* 
PRINT 

PRINT" DATA INPUT SEQUENCE SECOND RAINFALL EVENT" 
PRINT 

INPUT "ENTER DEPTH OF RAINFALL REACHING THE SURFACE IN EVENT 2 
(MM)"; RAINS2 
INPUT "DURATION OF RAINFALL EVENT (HOURS,MINS) = "; HOURS2, MINS2: 
FR2 = MINS2 + (HOURS2 * 60): REM TIME CONVERTED TO MINUTES 
DURAT2 = FR2 /60 
INTENSITY2 = (RAINS2 / (FR2 / 60)) 
RAING2 = (BEDAREA * RAINS2) * 1000: REM *********RAINFALL IN GRAMS 
INPUT "LENGTH OF INTER-RAINFALL DRY PERIOD (HOURS,MINUTES)="; 
HIRP2, 1VIT_RP2: 
IRP2 = MIRP2 + (HIRP2 * 60): REM IRP2 CONVERTED INTO MINUTES 
REM ********************** BLOCK RETENTION CALCULATIONS FROM 
HERE ************ 

B1 = BRET - (.85 * ((TOTEMM * 1000) * BEDAREA)) 
B2 = (B1 - 68.8) / 37.04 
B3 = 10 A (B2) 
BRET2 = (LOG((FR2 / 60) + B3) / LOG(10)) * 37.04 + 68.8 
REM BLOCK RETENTION IN GRAMS WHOLE SURFACE 
BRETT2 = ((BRET2 * (BEDAREA / .02)) * 1.29) 
IF RAING2 < BRETT2 THEN BRETT2 = RAING2 * .85 
BRETMIVI2 = ((BRETT2 / BEDAREA) / 1000) 
REM MM BLOCK RETENTION FOR THE WHOLE SURFACE 
REM ******************DATA INPUT FOR SECOND PEA GRAVEL 
CALCULATIONS ***************** 
4200 IF A$ = "P" OR A$ = "P" AND A> 1 THEN GOTO 4230 
4205 IF A$ = "L" OR A$ "L" THEN GOTO 4350 
REM *********************SELECTION FOR 1 TO 10MM GRAIN 
************************* 



4210 IF RAING2 < (((69.2 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 69.2) + 
BRETT2) THEN WRET2 = (RAINTG2 - BRETT2) + GRET1 ELSE GOTO 4215 
4215 IF RAING2 > (((69.2 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 69.2) + 
BRETT2) THEN WRET2 = (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) 
4212 IF WRET2 > (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) THEN 
WRET2 = (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) 
4220 GOTO 4400 
REM *********************SELECTION FOR 5 TO 10MM GRAIN 
*********************** 

4230 IF A > 2 THEN GOTO 4250 
4235 IF RAING2 <(((45.59 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 45.59) + 
BRETT2) THEN WRET2 = (RAING2 - BRETT2) + GRET1 ELSE GOTO 4240 
4240 IF RAING2 > 0(45.59 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 45.59) + 
BRETT2) THEN WRET2 = (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
45.59) 
4242 IF WRET2 > (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59) 
THEN WRET2 = (45.59 * (VOL / 1000)) + 0(.15 * BEDAREA) * 100) * 45.59) 
4245 GOTO 4400 
REM *********************SELECTION FOR 3 TO 5MM GRAIN 
************************* 

4250 rF A > 3 THEN GOTO 4270 
4255 IF RAING2 <(((101.39 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 101.39) + 
BRETT2) THEN WRET2 = (RAING2 - BRETT2) + GRET1 ELSE GOTO 4260 
4260 IF RAING2 > (4101.39 * (VOL / woo)) + ((.15 *BEDAREA) * 100) * 101.39) + 
BRETT2) THEN WRET2 = (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
101.39) 
4262 IF WRET2 > (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39) 
THEN WRET2 = (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39) 
4265 GOTO 4400 
REM *********************SELECTION FOR 1 TO 3M1s'I 
********************************* 

4270 ON A> 4 GOTO 4275 
4275 IF RAING2 <(((132.77 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 132.77) + 
BRETT2) THEN WRET2 = (RAING2 - BRETT2) + GRET1 ELSE GOTO 4280 
4280 IF RAING2 > 0(132.77 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 132.77) + 
BRETT2) THEN WRET2 (132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
132.77) 
4282 IF WRET2 > (132.77 * (VOL / 1000)) + 0(.15 * BEDAREA) * 100) * 132.77) 
MEN WRET2 = (132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77) 
4285 GOTO 4400 
REM *********************SELECTION FOR LIMESTONE 
***************************** 

4350 IF RAING2 <(((56.81 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 56.81) + 
BRETT2) THEN WRET2 = (RAING2 - BRETT2) + GRET1 ELSE CrOTO 4355 
4355 rF RAING2 > (056.81 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 56.81) + 
BRETT2) THEN WRET2 = (56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
56.81) 
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4356 IF WRET2 > (56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81) 
THEN VVRET2 = (56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81) 
4400 WRETMIVI2 = ((VVRET2 / BEDAREA) / 1000) 
4420 TOTR1VEM2 = BRETIVIM2 + WRETMM2: REM ***TOTAL RETENTION IN 
ATIVI 
TOTEVAPNEM2 = .04519 + (.27465 * TOTRMA42) + (.002445 * (IRP2 / 60)) 
IF TOTEVAPMM2 > TOTRM1VI2 THEN TOTEVAPMM2 = TOTR1VIM2 
DIS2 = RAINS2 - (TOTR1VEM2 - (TOTR1VIIVI - TOTEMM)) 
6000 PRINT 

PRINT : PRINT" DATA INPUT SEQUENCE OF TIEIRD" 
PRINT: PRINT 

6001 INPUT "ENTER DEPTH OF RAINFALL REACHING THE SURFACE IN 
EVENT 3 (MM)"; RAINS3 
INPUT "DURATION OF RAINFALL EVENT (HOURS,MINS) = "; HOURS3, MINS3: 
FR3 = MENS3 + (HOURS3 * 60): REM TIIVIE CONVERTED TO MINUTES 
DURAT3 = FR3 /60 
INTENSITY3 = (RAINS3 / (FR3 / 60)) 
RAING3 = (BEDAREA * RAIN S3) * 1000: REM *********RAINFALL IN GRAMS 
INPUT "LENGTH OF INTER-RAINFALL DRY PERIOD (HOURS,MINUTES)="; 
HIRP3, 
IRP3 = MIRP3 + (FIER13 * 60): REM IRP3 CONVERTED INTO MINUTES 
REM ********************** BLOCK RETENTION CALCULATIONS FROM 
HERE ************ 

Z1 = BRET2 - (.85 * ((TOTEVAPMM * 1000) * BEDAREA)) 
Z2 = (Z1 - 68.8) / 37.04 
Z3 = 10 A (Z2) 
BRET3 = (LOG((FR3 / 60) + Z3) / LOG(10)) * 37.04 + 68.8 
6129 BRETT3 = OBRET3 * (BEDAREA / .02)) * 1.29): REM BLOCK RETENTION 
IN GRAMS WHOLE SURFACE 
6130 IF RAING3 < BRETT3 THEN BRETT3 = RAENG3 * .85 
6135 BRETMIVI3 = ((BRETT3 / BEDAREA) / 1000) 
REM ******************DATA INPUT FOR 3RD PEA GRAVEL CALCULATIONS 
***************** 

6200 IF A$ = "P" OR A$ = "P" A_ND A> 1 THEN GOTO 6230 
6205 IF A$ = "L" OR A$ "L" THEN GOTO 6350 
REM *********************SELECTION FOR 1 TO 10MM GRAIN 
************************* 
6210 IF RAING3 < 0(69.2 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 69.2) + 
BRETT3) THEN WRET3 (RAING3 - BRETT3) + GRET2 ELSE GOTO 6215 
6215 IF RAING3 > (((69.2 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 69.2) + 
BRETT3) THEN WRET3 = (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) 
6212 IF WRET3 > (69.2 * (VOL / 1000)) + 0(.15 * BEDAREA) * 100) * 69.2) THEN 
WRET3 = (69.2 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 69.2) 



6220 GOTO 6400 
REM *********************SELECTION FOR 5 TO 10MM GRAIN 
*********************** 

6230 IF A > 2 THEN GOTO 6250 
6235 IF RAING3 <(((4559 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 45.59) + 
BRETT3) THEN WRET3 = (RAING3 - B1&ETT3) + GRET2 ELSE GOTO 6240 
6240 IT RAING3 > 0(45.59 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 45.59) + 
BRETT3) THEN WRET3 = (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
45.59) 
6242 IF WRET3 > (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59) 
THEN WRET3 = (45.59 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 45.59) 
6245 GOTO 6400 
REM *********************SELECTION FOR 3 TO 5MM GRAIN 
************************* 

6250 IF A > 3 THEN GOTO 6270 
6255 IF RAING3 <(((101.39 * (VOL / 1000)) + ((AS * BEDAREA) * 100) * 101.39) + 
BRETT3) THEN WRET3 = (RAING3 - BRETT3) + GRET2 ELSE GOTO 6260 
6260 IF RAING3 > 0(101.39 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 101.39) + 
BRETT3) THEN VVRET3 = (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
101.39) 
6262 IF WRET3 > (101.39 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 101.39) 
THEN WRET3 =(101.39 * (VOL / 1000)) + 4(.15 * BEDAREA) * 100) * 101.39) 
6265 GOTO 6400 
REM *********************SELECTION FOR 1 TO 3MIVI 
********************************* 

6270 ON A > 4 GOTO 6275 
6275 IF RAING3 <(((132.77 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 132.77) + 
BRETT3) THEN WRET3 = (RAING3 - BRETT3) + GRET2 ELSE GOTO 6280 
6280 IF RAING3 > (0132.77 * (VOL /1000)) + ((.15 * BEDAREA) * 100) * 132.77) + 
BRETT3) MEN WRET3 = (132.77 * (VOL / 1000)) + 0(.15 * BEDAREA) * 100) * 
132.77) 
6282 IF WRET3 > (132.77 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 132.77) 
THEN WRET3 = (132.77 * (VOL / 1000)) + 0(.15 * BEDAREA) * 100) * 132.77) 
6285 GOTO 6400 
REM *********************SELECTION FOR LIMESTONE 
***************************** 
6350 IF RAING3 <(((56.81 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 56.81) + 
BRETT3) THEN WRET3 = (RAING3 - BRETT3) + GRET2 ELSE GOTO 6355 
6355 IF RAING3 > (((56.81 * (VOL / 1000)) + ((.15 * BEDAREA) * 100) * 56.81) + 
BRETT3) THEN WRET3 = (56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 
56.81) 
6356 IF WRET3 > (56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81) 
THEN WRET3 =(56.81 * (VOL / 1000)) + (((.15 * BEDAREA) * 100) * 56.81) 
6400 WRETMM3 = ((WRET3 / BEDAREA) / 1000) 
6420 TOTRMM3 = BRETMM3 + WRETMM3: REM ***TOTAL RETENTION IN 
MM 
DISMM3 = RAINS3 - (TOTRMM3 - (TOTRMM2 - TOTEVAPMM2)): 
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7890 TOTEVAPMM3 = .04519 + (.27465 * TOTRMM3) + (.002445 * (IRP / 60)) 
CLS 
PRINT 
PRINT "RAINFALL DURATION (HOURS)" 
PRINT "RAINFALL INTENSITY (VIM/H)" 
PRINT "RAINFALL DEPTH (MM)" 
PRINT "RAINFALL DISCHARGE (MM)" 
PRINT "BLOCK RETENTION (MM)" 
PRINT "GRAVEL RETENTION (MM)" 
PRINT "TOTAL RETENTION (MM)" 
PRINT "LENGTH OF DRY PERIOD (H,MIN)" 
PRINT "TOTAL EVAPORATION(MM)" 
REM OUTPUT FOR RAINFALL EVENT 1 
LOCATE 2, 31: PRINT USING "####.##"; FR / 60; 
LOCATE 3, 31: PRINT USING "####.##"; INTENSITY 
LOCATE 4, 31: PRINT USING "####.##"; RAINS 
LOCATE 5, 31: PRINT USING "####.##" ; DIS 
LOCATE 6, 31: PRINT USING "####.#4"; BRETMM 
LOCATE 7, 31: PRINT USING "####.44"; WRETMM 
LOCATE 8, 31: PRINT USING "####.114"; TOTRMM 
LOCATE 9,31: PRINT USING "##114.114"; IRP / 60; 
LOCATE 10, 31: PRINT USING "filtit#.##"; TOTEMM 
REM OUTPUT FOR RAINFALL EVENT 2 
LOCATE 2, 51: PRINT USING "####.##"; FR2 / 60; 
LOCATE 3, 51: PRINT USING "#,# 4.##"; INTENSITY2 
LOCATE 4, 51: PRINT USING "####.4"; RAINS2 
LOCATE 5,51: PRINT USING "####.14"; DIS2 
LOCATE 6, 51: PRINT USING "####.1i#"; BRETMM2 
LOCATE 7, 51: PRINT USING "####.##"; WRET1VIM2 
LOCATE 8, 51: PRINT USING "####.##"; TOTRMM2 
LOCATE 9, 51: PRINT USING "####.##"; IRP2 / 60; 
LOCATE 10, 51: PRINT USING "####.1fit" ; TOTEVAPMM2 
REM OUTPUT FOR RAINFALL EVENT 3 
LOCATE 2, 71: PRINT USING "####.##"; FR3 / 60; 
LOCATE 3, 71: PRINT USING "####.##"; INTENSITY3 
LOCATE 4, 71: PRINT USING "####.##"; RAINS3 
LOCATE 5, 71: PRINT USING "####.##"; DISMM3 
LOCATE 6,71: PRINT USING "####.##"; BRETMM3 
LOCATE 7, 71: PRINT USING "####.114"; WRETMM3 
LOCATE 8, 71: PRINT USING "####.##"; TOTRMM3 
LOCATE 9, 71: PRINT USING "####.##"; IRP3 / 60; 
LOCATE 10, 71: PRINT USING "####.#4"; TOTEVAPMM3 
END 
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