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Abstract 

Due to the numerous and increasingly malicious attacks on computer networks and systems, current 

security tools are often not enough to resolve the issues related to illegal users, reliability, and to 

provide robust network security. Recent research has indicated that although network security has 

developed, a major concern about an increase in illegal intrusions is still occurring. Addressing 

security on every occasion or in every place is a really important and sensitive matter for many users, 

businesses, governments and enterprises. A Network Intrusion Detection and Prevention System 

(NIDPS) is one of the most tested, reliable, and strongest forms of technology used to sniff out 

network packets, monitor incoming and outgoing network traffic, and identify the unauthorised usage 

and mishandling of computer system networks. It can provide a better understanding of the things that 

are really happening on the network. In addition, an NIDPS has the potential to detect, prevent, and 

report any evidence of attacks and malicious traffic. It is critical to implement an NIDPS in a 

computer network that has high traffic and high-speed connectivity. This thesis presents an 

investigation, involving literature review and intensive experiments, which shows that current 

NIDPSs have several shortcomings such as they are incapable to detect or prevent the rising attacks 

and threats to high-speed environments, such as flood attacks (UDP, TCP, ICMP and HTTP) or 

Denial and Distributed Denial of Service attacks (DoS/DDoS), because the main purpose of these 

types of attacks is basically to send heavy traffic to systems at high-speed to stop or slow down 

performance. To investigate the status of NIDPS performance and test the capability of NIDPS 

analysis, detection, and prevention modes when exposed to malicious attacks that come through high-

load and high-speed traffic, a prototype network has been designed. The prototype consisted of virtual 

and physical stations including six (6) PCs and three (3) switches (i.e two layer 2 switches and 1 layer 

3 switch). Several tools were used to carry out the research experiments, implementation and 

evaluation. The research presents a study using Snort NIDPS open source software. It shows that 

NIDPS performance can be weak in the face of high-speed and high-load traffic in terms of packet 

drops, and outstanding packets without analysis and failing to detect/prevent unwanted traffic. The 

research has designed a novel QoS architecture to increase the analytical, detection, and prevention 

performance of NIDPS when deployed in high-speed networks. It has proposed and evaluated a 

solution using a novel QoS configuration in a multi-layer switch to organise and improve network 

traffic performance in order to reduce the packets dropped and then uses parallel techniques to 

increase packet processing speed. The novel architecture was tested under different traffic speeds, 

types, and tasks. The experimental results show that the novel architecture improves network and 

NIDPS performance. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

The research is introduced in this chapter, including the background, motivation and purpose, 

leading to a problem statement and introduction of research questions. The research aims and 

objectives are stated and an overview of the research methodology and approach is also provided. An 

analysis of the research relative to the state of the art and a summary of its original contributions are 

included. Finally, the structure of the thesis is described. 

1.2 Introduction to the Research 

The drastic growth of various network and wireless systems-based malicious attacks has 

rendered conventional security tools, such as firewalls and anti-virus programs, insufficient to provide 

integral, reliable and secure free networks. Intrusion Detection and Prevention Systems (IDPS) offer 

strong, reliable technology that monitor inbound and outbound network traffic to detect illegal usage 

and corruption of systems (Scarfone and Mell 2007, Bul’ajoul, James and Pannu 2013, Bul’ajoul, 

James and Pannu 2015 and Kenkre, Pai and Colaco 2015). IDPS also identify the activity of malicious 

attackers. Several computer network systems are incompetent to stop computer network terrorisations 

such as overflow attacks, including Transmission Control Protocol (TCP) flood, User Datagram 

Protocol (UDP) flood and Hypertext Transfer Protocol (HTTP) flood. In addition, Denial of 

Service (DoS) and Distributed Denial of Service (DDoS) attacks disturb numerous systems, and the 

influence of such attacks is severe and serious. The key technique of these attacks is to send traffic at 

high-speed and high-volume to a network system address, which can be stopped or slowed down the 

performance by taking advantages of system vulnerabilities such as misconfigurations and software 

bugs (Bul’ajoul, James and Pannu 2015, Goel and Mehtre 2016, Ordi et al. 2015, Wang et al. 2015 

and Van der et al. 2015). 

IDPS are capable of monitoring, identifying and reporting evidence of malicious activities 

and attacks such as DoS and DDoS, unauthorized log-ins, privilege escalation, illegitimate access and 

modification of data and data-driven attacks. Therefore, an IDPS’s sniffing mechanism can be applied 

at a network gateway to provide offered valuable information about traffic and packet types to 

security professionals. IDPS are widely used to reduce the risks of attacks. 

This research is based on Network Intrusion Detection and Prevention Systems (NIDPS). 

NIDPS involve software in which incoming and outgoing individual and/or network traffic is 
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monitored. An open-source IDPS software has been used in this research, which acts as a Network 

Intrusion Prevention System (NIPS) and Network Intrusion Detection System (NIDS), and can 

therefore be considered a NIDPS. Snort NIDPS open source is quite famous within the research 

community. It is the most widely deployed IDPS worldwide (Akhtar, Matta and Wang 2015, 

Sadhukhan, Mallari and Yadav 2015 and Samani and Karamta 2016). Snort NIDPS has three modes: 

Network IDPS mode; Host IDPS mode; and Hybrid IDPS mode. This research used Network 

Sniffing, Network Detection and Network Prevention configurations within the NIDPS mode. Many 

studies have used Snort IDPS to observe and monitor high-speed levels of network environments and 

detect high-speed traffic attacks, such as DoS, DDoS and flood attacks, by developing and designing 

new rules (Buchanan et al. 2011, Saboor, Akhlaq and Aslam 2013, Khamphakdee, Benjamas and 

Saiyod 2014, Khamphakdee, Benjamas and Saiyod 2015, Bul’ajoul, James and Pannu 2015 and Goel 

and Mehtre 2016). The research demonstrates the weaknesses of the NIDPS, namely its incapability 

to process various traffic at high-speed and heavy volumes of packets, and its inability to detect or 

prevent unwanted traffic that might attack the system. The research proposes a solution to improve 

NIDPS performance. This study shows how a novel configuration of QoS (Quality of Service) in the 

Layer 3 network switch combined with the introduction of parallel technologies can increase the 

efficiency and effectiveness of NIDPS platforms. 

1.3 Motivation and Purpose 

Information technology (IT) influences almost every aspect of modern life. Today, various 

devices are available to meet users’ requirements such as high machine processor speed, quick 

network responses and reliable security. Alongside our increasing dependence on IT, there has 

unfortunately been a rise in security incidents (Arbor Networks 2015). Threats and attacks may range 

from stealing personal information from a laptop or network server to stealing the most top-secret 

information stored on a Security Intelligence Service (SIS). Furthermore, hackers can snoop on users’ 

online purchases by eavesdropping on their credit card details, or, even more dangerous, a damaged 

web resource can cause failures in the movement of air traffic. Multi-faceted attacks and threats have 

made the implementation of security systems more challenging. Hackers have evolved along with the 

sophistication of the IT industry. For example, hackers exploit the developments in computer 

processors and network speeds (multi-core and cloud environment technologies) to increase the 

volume and speed of malicious traffic that might constitute a DoS or DDoS attack (Cheung et al. 

2009, Gao and Xiao 2012, Wang et al. 2015, Chauhan and Prasad 2015, Malina, Dzurenda and Hajny 

2015, Bukac and Matyas, 2015 and Samani and Karamta, 2016). Network security is therefore 

extremely important and has developed into an industry aimed at improving applications and 

hardware platforms to identify and stop network threats. 
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One of the most established concepts in the information security is a defence-in-depth 

approach which utilised a multi-layered structural design in which firewalls, vulnerability assessment 

tools (anti-viruses and worms) and IDPS are employed to prevent any hostile endeavours on network 

systems and servers. The NIDPS has been designed to serve as the last point of defence in the network 

architecture. The name “NIDPS” is derived from the fact that the system monitors the network traffic 

from the viewpoint of where it is installed. NIDPS monitor the transportation of network traffic for 

any malicious and uncomfortable activities and create alerts when operating in detection mode or 

block packet alerts when operating in prevention mode. NIDPS can be used to defend and protect 

network strategic segments and monitor a specific part of a network or system. NIDPS can also be 

placed in the external border of the network architecture to defend important parts of the system, such 

as servers, from any intrusion attempts or malicious attacks (Dave, Trivedi and Mahadevia 2013, 

Vasudeo, Patil and Kumar 2015and Bul’ajoul, James and Pannu 2015). 

The detection and prevention mechanisms of the NIDPS are grounded in observing the 

comparison of ingress packets (traffic) to any known aggression (attack) through patterns (signature 

NIDPS mechanism) or identifying unknown malicious patterns from ingress traffic (anomaly NIDPS 

mechanism). NIDPS are important in that they: 

• counter intrusions or malicious attempts to access networks and systems; 

• analyse network traffic and identify hackers’ targets and techniques; and 

• detect or prevent unwanted and malicious traffic. 

Open source is the most common category of NIDPS software configured platforms (Akhtar, 

Matta and Wang 2015 and Sadhukhan, Mallari and Yadav 2015); however, its performance in high-

speed networks communication remains a major issue. Irrelevant alerts (false positive alerts) occur, 

thus creating a more difficult job for system security managers. Moreover, despite claims of increased 

capabilities and efficient performances by several NIDPS dealers, research has shown that systems 

lack the required capabilities to monitor and analyse high-speed network traffic (Kenkre, Pai, and 

Colaco 2015, Li et al. 2015, Kim et al. 2015 and Kizza 2015). 

Innovators have created current hardware IDPS to process millions of packets at the same 

time (Cisco 2016b and Trevisan et al. 2016), but there are limitations in the capability to perform 

particular software tasks. In addition, limited memory size is a problem for hardware-based NIDPS 

solutions. Furthermore, hardware-based NIDPS offer a high range of processing speed but are very 

costly. Software solutions are popular because they are cheaper and offer more flexibility than 

hardware solutions. This research focuses on open-source software solutions. 

3 



 

 

 

 
 

 

 

        

     

         

 

 
 

           

        

     

 
 

 

 

         

  

 

 

  

    

 

   

         

    

 
 

   

      

       

     

      

       

         

Computer network and Internet security face increasing challenges and many companies rely 

on NIDPS to secure their data sources and systems. The need to ensure that the NIDPS can keep up 

with the increasing demands as a result of increased network usage, higher speed networks and 

increased malicious activity, makes this an interesting area of research and motivates this study. 

1.4 Problem Statement 

The problem addressed by this research is that NIDPS is unable to detect or prevent unwanted 

packets (traffic) when faced with unexpectedly high volumes of traffic exceeding network interface’s 

speed i.e. 100MBps / 1Gbps. This study investigates the problem and proposes a solution. 

1.5 Research Questions 

The main research question is: 

How can network security architecture be improved to cope with high-speed traffic and high-

volume data attacks? 

To answer the research question, the following sub-questions were addressed: 

1. What are the current performance issues with NIDPS? 

2. How can network management and traffic performance be improved through QoS 

technology? 

3. Can parallel technology along with QoS improve the performance of NIDPS? 

4. Can a generalised NIDPS architecture be built through the application of QoS and 

parallel technology for improving security performance? 

1.6 Research Methodology and Approach 

In this study, a quantitative approach based on experimental analysis has been followed. 

There are three types of quantitative approach: simulation, experimental, and inferential. The 

simulation approach is concerned with the construction of an artificial network environment, within 

which relevant database information and traffic (packets) are generated. The experimental approach 

involves changing variables in an observed domain and monitoring the effects. The inferential 

approach uses relationships or characteristics of a population to deduce new findings. The simulation 

and experimental approaches can overlap in that experimentation can be carried out within a 
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simulated environment. This study initially uses a quantitative methods experimental approach. 

Experiments were carried out to analyse the performance of NIDPS under various traffic scenarios 

with and without improved novel security architecture. 

1.7 Identifying State of the Art Technology 

Regardless of the accessibility of monitoring tools and security-enforcing software, the 

understanding of the issues involved in designing a software security solution are difficult and 

expensive. Although effective techniques can be learned that identify and detect different types of 

attacks, there are no software approaches and that are realisable globally and that achieve unfailing 

results for detecting numerous types of high-level and high-speed attacks. The discoveries of cyber-

based attacks on network systems continue to be an important and challenging area of research. 

Malicious traffic and attacks continue to grow and develop daily. Current security software 

cannot keep up with this development; it is still unable to handle some high-speed attacks such as 

DoS, DDoS and flood attacks (TCP, UDP and ICMP). The largest speed attack in the history was 

carried out against the BBC website. It is DDoS attack. The attack’s speed reached up to 602 Gbps 

(The Hacker News 2016), which is far higher than the speed of current networks and security systems. 

The previous record was 400Gbps in 2014 (Arbor Networks 2015). Detection of such kind attacks by 

traditional network security operations alone is almost difficult due to the rise of network traffic speed 

and volume of data and real-time environment. 

This study investigates the concern that current security systems, while continuously 

developing, are not keeping up with the increasingly high-speed intrusions into computer networks. 

This study further demonstrates how to improve the methods used by the NIDPS for analysing, 

detecting, and preventing attacks in network security systems. There are two major areas of concern in 

computer security: the speed and volume of attacks, and the complexity of multi-stage attacks (De 

Muila and Ferdinand 2010 and Bul’ajoul, James and Pannu 2015). The study analyses state of the art 

developments in network switch and parallel technology to provide a solution to the problem of 

NIDPS not meeting the demands of high-speed and high-volume attacks. 

This research focuses on the improvement of a novel and unique infrastructure for NIDPS 

based on an open-source software which has a benefit of employing the right usage of QoS and 

parallel technologies to improve attack detection rates and thus contribute to state-of-the-art network 

security. In addition, the proposed approach enables handling of the most high-speed and severe 

attacks faced by the Internet and computer networks. 
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1.8 Research Aim and Objectives 

The aim of the research is to develop a solution to the problem of NIDPS that are unable to 

cope with high-speed and high-volume traffic attacks. 

The objectives of this research are to: 

• Review the literature to assess weaknesses of NIDPS; 

• Investigate a particular NIDPS to see if such weaknesses exist; 

• Design an experiment that will enable NIDPS to be tested under high-speed traffic 

with various network packets; 

• Design new architecture based on a novel QoS configuration to improve NIDPS 

performance; 

• Design and develop a parallel implementation of the novel architecture; 

• Carry out experiments to test the improved architecture; and 

• Evaluate the redesigned NIDPS architecture. 

1.9 Original Contribution 

This research offers an original contribution, described as follows: 

• Development of a new architecture for NIDPS that improves overall network security 

and performance. 

The architecture is founded on the integration and development of two techniques: 

1. A novel QoS architecture was designed that enhances network traffic 

performance based on classification and policy methods and then improves 

overall network management and security. 

2. A high level parallelism was designed for the novel architecture to improve 

traffic throughput processing with the aim of improving NIDPS throughput 

performance and reducing NIDPS processor time. 

1.10 Thesis Structure 

The remaining chapters are organised as the follows: 

Chapter 2: Literature Review 

This chapter discusses the historical perspective and provides information about the 

development of threats and attacks; security mechanisms; types of intrusion detection and 
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prevention technologies and their methodologies; some discussion of open-source IDPS, 

Snort and Bro; and, finally, related research in parallel technology. 

Chapter 3: Methodology and Experimental Design 

This chapter explains the methodology and experimental design, including the configuration 

of Snort NIDPS rules and components. The experimental testbed is described along with its 

constituent parts and the experiments carried out are listed. 

Chapter 4: Exposure of Problem through Experimentation 

This chapter exposes the research problem in more detail through implemented experiments. 

The weakness of current NIDPS technology is shown. 

Chapter 5: A Novel Architecture 

This chapter presents a solution to the problem of dropped packages and missed attacks. The 

solution proposed is based on Layer 3 QoS switch technology and parallel processing. 

Chapter 6: Evaluation of the Novel Architecture 

An evaluation of the proposed solution through a second set of experiments is presented in 

Chapter 6. The solution is shown to improve NIDPS performance. 

Chapter 7: Conclusion, Recommendation and Future work 

Finally, Chapter 7 concludes the study and suggests recommendations and further work. 

1.11 Research Outputs 

In this section publications which have arisen from the research are listed. 

1.11.1 Publications arising from the Research 

1. Bulajoul, W., James, A., and Pannu, M. (eds.) (2013) E-Business Engineering (ICEBE), 2013 

IEEE 10th International Conference on. 'Network Intrusion Detection Systems in High-Speed 

Traffic in Computer Networks': IEEE. 

2. Bul'ajoul, W., James, A., and Pannu, M. (2015) 'Improving Network Intrusion Detection 

System Performance through Quality of Service Configuration and Parallel Technology'. 

Journal of Computer and System Sciences 81 (6), 981-999. 
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3. Bul'ajoul, W., James, A., Shaikh. S, and Pannu, M. (2016) 'Using Cisco Network Components 

to Improve NIDPS Performance. Second International Conference of Networks, 

Communications, Wireless and Mobile Computing (NCWC 2016). 

4. James, A., Bulajoul, W., Shehu, Y., Li, Y and Obande, G (2017) ‘Security Challenges and 

Solutions for E-Business’, The Institution of Engineering and Technology (IET).     (accepted) 

5. Bul'ajoul, W., and James, A. (2017). Intrusion Detection Systems: Management, Technology 

and Recent Advances. Nova Science Publishers. (The abstract is accepted and chapter under 

process) 

1.11.2 Posters arising from the Research 

1. Bul'ajoul, W., and James, A. 2013. Network Intrusion Detection systems (NIDS) for Multi 

Attack Scenarios in Computer Networks. Research Symposium, Coventry University, UK. 

2. Bul'ajoul, W., and James, A. 2014. Intrusion Detection Systems for High-speed 

Environments. BCS Symposium, University of Warwick, UK. (Achieved Award) 

3. Bul’ajoul, W., and James, A. 2014.Intrusion Detection Systems for High-speed 

Environments. EC Annual Research Symposium, Coventry University, UK. (Achieved Award) 

4. Bul'ajoul, W., and James, A. 2014. Intrusion Detection systems for Multi Attack Scenarios in 

Computer Networks. Libyan Higher Education Forum-London, Libyan Embassy, London, 

UK. (Achieved Award) 

5. Bul'ajoul, W., and James, A. 2014. Network Intrusion Detection Systems for High-speed 

Traffic in Computer Networks. PGR Symposium, Coventry University, UK. 

1.11.3 Presentations arising from the Research 

1. Bul'ajoul, W., and James, A. 2013. Network Intrusion Detection Systems for High-Speed 

Traffic in Computer Networks. 2013, IEEE 10th International Conference, Coventry 

University, UK. 

2. Bul'ajoul, W., and James, A. 2014. Intrusion Detection Systems for High-speed 

Environments. EC Annual Research Symposium, Coventry University, UK. 
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3. Bul'ajoul, W., and James, A. 2014. Improving Network Intrusion Detection System 

Performance through Quality of Service Configuration and Parallel Technology. PGR 

Symposium, Coventry University, UK. 

4. Bul'ajoul, W., James, A., Shaikh. S, and Pannu, M. (2016) 'Using Cisco Network Components 

to Improve NIDPS Performance. Second International Conference of Networks, 

Communications, Wireless and Mobile Computing (NCWC 2016), Dubai, UAE. 

1.12 Conclusion 

This chapter has given a brief background to the research, describing the motivation, problem 

statement and research questions addressed. It has also briefly described the methodology and set out 

the aims and objectives. The original contribution has been highlighted and the thesis structure 

outlined. Finally a list of publications and presentations made in connection with this research has 

been included in this chapter. 

9 



 

 

 

 
 

 

    

 
 

       

     

        

 

 
 

     

        

        

  

 

 

             

 

    

         

        

    

        

         

  

CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter focuses on the state-of-the-art and literature review of related work. It gives an 

overview and background about the latest threats and attacks in computer networks, common security 

mechanisms and approaches including IDPS types and methodologies and discusses advances in 

research towards improving the performance of NIDPS. 

2.2 Threats and Attacks 

A company’s network plays a vital role in its business projects. Keeping the computer 

network up-to-date with the latest software and security techniques is essential for success and 

progress. Reliability and safety are the major concerns in enabling a company to achieve success and 

boost its progress. 

Largest DDoS Attack(Gbps) 

700 
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Figure 2. 1: Largest DDoS attack reported by The Hacker News 2016 and Arbor Networks 2015. 

However, networks can also be considered a major risk in any business project. Security 

issues have increased as technology has advanced (Jang-Jaccard and Nepal 2014). Fuchsberger (2013) 

reported that, according to a survey conducted by the Federal Bureau of Investigation and Crime 

Scene of Investigation (FBI/CSI), viruses are behind many attacks on business networks. Moreover, 

Denial of Service (DoS) attacks and unauthorized user access (which can be initiated from external or 

internal LAN sources) have also increased dramatically. It is also noticeable that nowadays there are 
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powerful intrusion tools available, allowing hackers to attack networks even if they know little of the 

software. Attackers can now use several tools simultaneously to achieve an objective. 

The 10th Annual Worldwide Infrastructure Security Report and ATLAS 2015 data report 

(Arbor Networks 2015) reported that the number of Distributed Denial of Service (DDoS) attacks has 

grown significantly, nearly doubling on a year-to-year basis between 2005 and 2010 (see Figure 2.1). 

The size of attacks in 2016 increased by over 33 percent compared to the previous year. The largest 

reported attack by BBC website respondents in 2016 was over 600 Gbps (The Hacker News 2016); 

the previously largest reported attack size by WISR was recorded at 400 Gbps. Moreover, ATLAS 

recorded more than 8x number of malicious attacks over 20 Gbps as compared to 2012 in 2013, The 

largest monitored attack by ATLAS in 2014 was slightly more than that at 324Gbps. Ten years ago 

the largest monitored attack was 8Gbps. Recent DDoS attacka have utilised networks and internet 

servers that employ a large number of automated detection and mitigation techniques in order to 

prevent the misuse of the services. The hackers simply use their script on the server’s services to set 

the bandwidth limit as unlimited and to hide the amendment. 

Therefore, security products, such as firewalls, vulnerability assessment tools, antivirus 

programs, and Network Intrusion Detection and Prevention Systems (NIDPSs), are utilised to reduce 

the risk of attacks. However, even these measures are not 100 percent effective in protecting 

networks. One problem is that increase network traffic speed and valoume over its limit, packets can 

be dropped prior to analysis, detection and prevention (Shiri, Shanmugam and Ideis 2011, Albin and 

Rowe 2012, Bul’ajoul, James and Pannu 2015 and Kenkre, Pai and Colaco 2015). It is becoming 

recognised that advantage could be taken of parallel technology such as multi-core technology or 

distributed systems to overcome the problem of the network traffic rate superseding the rate at which 

NIDPSs can process incoming data (Jiang et al. 2014, Bul’ajoul, James and Pannu 2015 and Zhang et 

al. 2015). 

Flood attacks, also known as DoS attacks or DDoS attacks, are deliberate over-requesting of 

network system resources which become rendered unavailable. Statistically, the most common attack 

is flood attack. Between 2011 and 2014, there was a massive rise in the speed at which this attack 

occurred, indicating that the security system must be able to perform at similarly attacks’s speed (Wei 

and Xiangliang 2011 and Arbour Networks 2015). 

Hardware-based IDPS are more powerful in performance terms than software-based and some 

companies have opted to use such technology as defence against the rapid development of bandwidth 

and the speed of attacks (Lesk 2007, TeleGeography Research 2008 and M86 Security 2010). NIDPS 

become inefficient when attempting to monitor high-speed and volume network traffic and will end 
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up dropping, outstanding packets and losing alerts, logs, and blockings of malicious packets when the 

software is implemented as a solution (Whitman et al. 2012, Weaver, Weaver and Farwood 

2013:265-292, Hussain, Lalmuanawma and Chhakchhuak 2015 and Bul’ajoul, James and Pannu 

2015). However, hardware IDPSs are very costly and are not available in the many organisations and 

companies. A solution is therefore needed to enhance software approaches in the context of affordable 

infrastructure. This research focuses on this challenge. 

2.3 Security mechanisms and approaches 

Security products such as firewalls and antivirus programs are less efficient than NIDPS and 

have different functionalities. NIDPSs analyse collected information and detect or prevent unwanted 

traffic to infer more useful results than other security products. The difference between NIDPS and 

other security products such as antivirus programs is that, while NIDPS require more embedded 

intelligence than other security products, they analyse gathered information and deduce useful results 

(Bul’ajoul, James and Pannu 2013, Bul’ajoul, James and Pannu 2015 and Ahmed, Khan and Bashir 

2015). 

2.3.1 Firewall technology 

In order to secure a corporate network or a sub-network, network traffic is usually filtered 

according to criteria such as origin, destination, protocol and service, typically forwarded from 

dedicated router to firewall through the network and also could be placed before router. It depends on 

the network and policy requirements (Khorchani, Halle and Villemaire 2012 and Bul’ajoul, James and 

Pannu 2015). 

The Firewall is a standard security system defence and has become an important part of all 

network gateways for stopping inbound and outbound intruders from getting access to private/local 

networks and systems (Beg et al. 2010, Shuo and Quan 2015 and Genge, Graur, and Haller 2015). 

The functionality of the firewall is based on filtering mechanisms specified by a set of rules, known as 

a policy, which can protect a system from such attacks. The fundamental function of the firewall is to 

sort packets according to allow/deny rules, based on header-field information. The basic operation of 

the firewall is filtering packets passing through specific hosts or network ports, which are usually 

open in most computer systems. It does not perform deep analysis (malicious code detection in the 

packet) and treats each packet as an individual entity (Marinova-Boncheva 2007, Beget al. 2010, 

Whitman et al. 2012:133-164, Trabelsi, Sayed and Zeidan 2012and Shuo and Quan 2015). 
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The disadvantage of a firewall is that it cannot fully protect an internal network; it is unable to 

stop internal attacks, outside attacks such as anomaly attacks (unknown signatures attacks), or high-

volume attacks from accepted signatures (Kim and Cho 2012, Wang, Zhang and Song 2012, 

Bul’ajoul, James and Pannu 2013, Bul’ajoul, James and Pannu 2015 and Shuo and Quan 2015). A 

firewall is just a set of rules such as to allow or deny protocols, ports or an IP address. Today’s denials 

of service (DoS) attacks are too complex for firewall technology, because it cannot distinguish good 

traffic from DoS attack traffic (Bessis and Rana 2015, Ormazabal et al. 2015 and Chen et al. 2015). 

However, the firewall provides the benefit of added security to strengthen a network when used in 

conjunction with an IDPS (Alpcan and Başar 2010:29-33). 

This item has been removed due to 
3rd Party Copyright. The unabridged 
version of the thesis can be found in 

the Lanchester Library, Coventry 
University

Figure 2. 2: Basic firewall installation. 

2.3.2 Anti-virus technology 

Computer viruses are programs which cause computer failure and damage computer data. A 

computer virus poses an immeasurable threat and can be very destructive especially in a network 

environment. Antivirus programs are software that can be installed onto a computer in order to detect, 

prevent and make decisions regarding whether to quarantine or delete malicious programs such as 
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malware, worms or viruses. The functionality of an anti-virus program is a running process that 

examines executables, worms and viruses in the memory of guarded computer/network systems 

instead of monitoring network traffic (Wang, Zhang and Song 2012, Bul’ajoul, James and Pannu 2013 

and Al-Saleh 2015 ). 

Although the anti-virus program monitors the integrity of data files against illegal 

modifications, it is unable to block unwanted network traffic intended to damage the network. Anti-

threat software is installed only at explicit points of the servers such as interface between the network 

segment to be protected and outside environments (Shiri, Shanmugam and Idris 2011and Bul’ajoul, 

James and Pannu 2015). 

2.3.3 Commercial state-of-the-art 

Many vendors are now trying to produce security appliances that can protect networks and 

which combine technologies. For example, the Cisco ASA (Adaptive Security Appliance) 5500 series 

is a range of essential Cisco products that aims to secure an organisation’s network from end to end. 

The main gear of Cisco Secure X design is a firewall called the adaptive security appliance (ASA). 

The product comes in different sizes and has been a popular choice for network designers because of 

its high performance. The Cisco ASA 5500 Series integrates multiple full-featured, high-performance 

security services, including application-aware firewall, SSL and IPsec VPN (virtual private network), 

IPS with Global Correlation and guaranteed coverage, antivirus, antispam, antiphishing, and web 

filtering services (Cisco 2016b). 

The ASA series includes the essential ASA 5505 through to the ASA 5585. The 

differentiating feature between the ASA appliances and other software security products is that the 

ASA series products combine firewall, VPN concentrator and intrusion prevention in one image 

software. Cisco claims that this technology, which combines tools, provides a great improvement to 

network security. New features of the ASA technology include virtualisation, identity firewall, and 

threat control and containment services (Cisco 2016b). 

ASA virtualization is the capability to split an ASA appliance into numerous separate devices. 

The feature of “high availability with failover” uses redundancy so that full availability can be 

provided even if an ASA devices fails. The identity firewall allows the ASA to use an organisation’s 

active directory, which contains user and departmental policies and rules, to provide identity-based 

protection. Additionally the ASA appliance can be used as an IPS. The feature of “Threat control and 
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containment services” allows the ASA Cisco appliance to use external intrusion detection models 

(Cisco 2016b). 

2.3.4 IDPS technology 

An IDPS is a more advanced and enhanced security tool than a firewall, because a firewall 

just drops packets but cannot detect intrusion since the packets not examined (Whitman et al. 

2012:150-164 , Weaver, Weaver, and Farwood 2013:83, Kenkre, Pai, Colaco 2015 and Yan, Jian-

Wen and Lin 2015). The difference between a firewall and IDPS can be indistinguishable to the user 

as the separate technologies are often combined to a single gateway sentry system. The firewall 

checks headers on packets and blocks depending on header information such as protocol type, source 

address, destination address, source port, and/or destination port according to network security policy. 

An IDPS identifies the attacks and protects the system handling issues like misuse of the computer 

system, DoS/DDoS attack, and flooding attacks (Whitman et al. 2012:224, Weaver, Weaver, 

Farwood 2013:269, Bul’ajoul, James and Pannu 2015 and Özçelik, Brooks 2015, ). 

Current state-of-the-art IDPS provides highly accurate results as compared to other security 

protection techniques. Some researchers indicated that IDPS has significantly improved with the 

passage of time, but they still often produce an unacceptable quantity of false positives and false 

negatives (Weaver, Weaver, and Farwood 2013:83 and Amudhavel et al. 2016). In addition, it is 

difficult to detect suspicious activities in the midst of high traffic and other such adverse 

circumstances in the network, consequently resulting in an inaccurate detection mechanism. IDPS is 

still unable to control all threats and malicious activities (Bul’ajoul, James and Pannu 2015, Malik and 

Singh 2015 and Özçelik, and Brooks 2015). These issues motivated the research towards the aim of 

developing a solution to the under-performance of NIDPS in high-speed and high-volume traffic 

situations. 

2.4 Intrusion Detection system (IDS) and Intrusion Prevention System 
(IPS) 

A distinction is often made between intrusion detection systems (IDS) and intrusion 

prevention systems (IPS). This distinction is that the IDS detects intrusions and reports them, whereas 

the IPS detects reports and prevents them through blocking. Therefore the IPS can be seen as an 

extension of the IDS. However, nowadays the technologies have converged and most IDS systems 

cover prevention as well as detection. The mode of operation between detection and prevention may 

be selected via a configuration setting. IDS and IPS can be indistinguishable to the user as the 
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separate technologies are often combined to a single gateway sentry system. The IPS checks both 

headers and payload, blocking on recognisable known features according to network security policy. 

Combined Systems are often known as Intrusion Detection and Prevention Systems (IDPS) (Whitman 

et al. 2012:221, Weaver, Weaver, and Farwood 2013, and Bul’ajoul, James and Pannu 2015). 

2.5 Types of Intrusion Detection and Prevention System (IDPS) 

IDPS are often used to sniff out network packets giving the network users/administrator a 

clear picture of what is truly happening on the network. An IDPS also has the potential to detect and 

reports any evidence of attacks such as flooding attacks, unauthorised log-ins, privilege escalation, 

illegitimate access, modification of data and data-driven attacks. IDPS are effective and useful in 

controlling malicious activity and threats under circumstances where traffic is constantly growing. 

NIDPSs are further classified as software- or hardware-based. The mechanism of an IDPS is based on 

how, where and what it detects, along with mandatory requirements. In particular, IDPSs should be 

based on flexible and scalable network components to accommodate the drastic increase in today’s 

network environments (Whitman et al. 2012, Bul’ajoul, James and Pannu 2013 and Bul’ajoul, James 

and Pannu 2015). The IDPS should provide straightforward and user-friendly management and 

operational procedures and steps instead of complicating its underlying tasks. 

The typical actions of IDPS software can be classified as follows: 

• Monitors entire and/or partial packets; 

• Detects (alerts, logs and passes) or prevents (blocks, rejects and drops) suspicious 

activities; 

• Records required events; and 

• Sends updates to the network administrator. 

Some of the existing types of IDPSs are: network-based (NIDPS); host-based (HIDPS); and 

graph-based IDS (GrIDPS). Hybrid systems also exist which combine one or more types into a single 

system (Whitman et al. 2012:224, Weaver, Weaver, and Farwood 2013:265-285 and Bul’ajoul, James 

and Pannu 2015). 

2.5.1 Network-based IDPS (NIDPS) 

According to Yang, Fang, Liu and Zhang (2004) and Hofstede and Pras (2012), network-

based IDPS (NIDPS) have become a critical component of an organization’s security solution. A 

NIDPS is capable of detecting a broad range of malicious and unwanted attacks occurring in the 
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application, network and transport layers, along with unexpected services based on multiple 

applications. In addition, NIDPS are able to detect and monitor the network traffic and secure the 

computer systems from network-based threats without network policy violations (Scarfone and Mell 

2007, Whitman et al. 2012:226-230, Stanciu 2013, Arbor Networks 2015, Bul’ajoul, James and 

Pannu 2015, Malik and Singh 2015, Özçelik and Brooks 2015 and Li et al. 2015). 

This item has been removed due to 3rd Party Copyright. The unabridged version 
of the thesis can be found in the Lanchester Library, Coventry University

Figure 2. 3: An example of network-based IDPS (Bul’ajoul, James and Pannu, 2015). 

However, an NIDPS can have disadvantages. NIDPSs are usually unable to check all 

incoming network packets in high-speed and high-load environments. This results in incomplete 

analyses and therefore considerable delays. The NIDPS itself is affected by DoS and DDoS attacks, 

similar to those against IPSec gateways. In addition, an NIDPS is unable to inspect encrypted network 

traffic (packets) due to the placement in the middle of the network connections (see Figure 2.3); 

similarly, eavesdroppers are unable to understand encrypted traffic in the middle of the traffic. DoS 

and DDoS attacks can also overcome the processing power of the NIDPS because of the attacks’ 

speed and volume (Arbor Networks 2015 and Malik and Singh 2015).  The NIDPS only works on the 

transporting or routing part of the network environment, as opposed to an end point of a network (see 

Figure 2.3). The NIDPS can be placed at the hub and can see all traffic but this is not possible in a 

switched network where there is no hub. In a switched network, port mirroring or spanning is used to 

enable a complete view but this causes overhead. 

2.5.2 Host-based IDPSs 

In order to overcome the problems with NIDPS discussed above, host-based IDPS (HIDPS) 

are implemented to monitor suspected events happening in local host machines. The HIDPS is 

versatile due to its installation over servers, workstations and notebooks, as compared to NIDPS. In 

addition, HIDPS are capable of monitoring malicious networks and multiple events happening within 

the protected host. A HIDPS is situated at the end point of a computer network (see Figure 2.4) same 

as anti-threats applications (spyware detection, firewalls and antivirus software programs), which 

provide the access to the outside environment such as internet. Host-based multiple IDPSs consult 
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various kinds of log files (e.g., system, kernel, network and server firewall) and compare logs and an 

internal database of common signatures for recognised attacks (Vigna and Kruegel 2006:1-13, 

Scarfone and Mell 2007, Topallar 2009, Whitman et al. 2012:230, Roozbhani and Rikhtechi 2010, 

Bul’ajoul, James and Pannu 2013, Bul’ajoul, James and Pannu 2015 and Li, et al. 2015). 

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be found in the Lanchester 

Library, Coventry University

Figure 2. 4: An example of host-based IDPS. 

Additional advantages of HIDPSs include: 

• Capable of integrating code analysis, monitoring system calls, detecting buffer 

overflows, privilege misuse and abuse, file system, library list and application, system 

configuration and system analysis. This can be done by the HIDPS, because the 

HIDPS is designed to operate with a specific host and with respect to applications 

such as web servers, database servers, file servers, mail servers and DNS servers. 

• The HIDPS is often integrated into server software and can be relatively easily 

implemented to communicate with other network components and operating system. 

• It can inspect encrypted traffic, because the HIDPS has capability to analyse packets 

at the application ends. 

The disadvantages of an HIDPS are as follows: 

• It consumes computer system resources that should be allocated for services. 

• It may conflict with existing security policies of firewalls and operating systems. 

• It is difficult to analyse intrusion attempts on multiple computers. 

• It can be very difficult to maintain in large networks with different operating systems 

and configurations. 

• It can be disabled by attackers after the system is compromised. 

• It requires many hosts to reboot after a complete installation or updates and many 

essential servers cannot support this operation (Kim, Pamnami and Patel 2007, 
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Scarfone and Mell 2007, Whitman et al. 2012:225-232, Bul’ajoul, James and Pannu 

2013 and Bul’ajoul, James and Pannu 2015). 

2.5.3 Hybrid-Based IDPS 

In some situations, HIDPS and NIDPS may unable to fulfil the requirements for intrusion 

detection because each type of IDPS has both inherent virtues and shortcomings. Therefore, the 

combination of HIDPS and NIDPS is known as Hybrid IDPS (Kim, Pamnami and Patel 2007, and Li, 

et al. 2015). These are widely used in computers and networks for security management. 

2.5.4 Graph-based IDPS (GrIDPS) 

Graph-based IDPSs (GrIDPSs) are designed to protect computer networks from large-scale 

malicious attacks, which severely affect computer networks. Network traffic and computers are linked 

through GrIDPs. The advantages of GrIDSs are that they can gather data about computer activity 

across a network and help to recognize comprehensive automated or coordinated attacks in real time. 

They allow network systems to state and implement policies specifying which users are permitted to 

utilise the particular services of an individual host or group of hosts. Assumptions made in this kind of 

system include the existence of related networks within a single organisation that has an independent 

infrastructure and sovereign departments. It also assumes that no single component of the network is 

actively hostile, and therefore the IDPS must be designed to operate in non-hostile situations. 

(Bul’ajoul, James and Pannu 2015, Costa et al. 2015 and Fredj 2015). 

2.6 Intrusion Detection and Prevention Systems (IDPS) methodology 

Most IDPSs utilise either misuse detection and prevention or non-regular pattern detection 

and prevention. The technique of misuse detection is employed to find known intrusions and/or a 

pattern of signatures. Due to its reliance on signatures, its detection speed is quite fast and has a low 

false positive rate (Weaver, Weaver, and Farwood 2013:265-290). On the contrary, an anomaly-based 

method is able to detect unknown intrusions due to its intelligent detection behaviour. It is based on 

profiles which present the usual behavioural activities of users, systems, network connections and 

applications. These profiles are expanded to monitor the attributes of typical activity over a period of 

time (Whitman et al. 2012:233, Weaver, Weaver, and Farwood 2013:268 and Bul’ajoul, James and 

Pannu 2015). Profiles can be generated depending on a number of behavioural attributes such as 

number of emails generated by a user, the number of failed login attempts for a host, and the 

processor-usage level for a host in a given period of time. Defining profiles is a very important step. If 
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the profiles are not defined properly or are broadly defined, some attacks might not be detected, 

leading to a low detection rate for the computer system. On the contrary, if the profiles are too 

narrowly defined then various usual activities might be detected and considered as intrusion. 

Figure 2. 5: General architecture for an IDPS. 

The functional components of an integrated IDPS are: events management, data storage, 

analysis engine, and response manager. Event management gathers information on events (such as 

alerts or block events) to and from the monitored system (see Figure 2.5) and sends these to the 

database source. The database source stores multiple events gathered by event management. The 

analysis engine collects data from the data source in order to analyse and determine whether the data 

is free of policy violations or other attacks. This engine can utilize anomaly/statistical detection, 

misuse/signature-based detection, or both. The analysis engine processes events and transmits alerts. 

The response manager neutralizes an attack once it is detected. The response manager responds to 

events and stops intrusions (Whitman et al. 2012:232-254, Weaver, Mudzingwa and Agrawal 2012, 

Weaver, and Farwood 2013 and Bul’ajoul, James and Pannu 2015 and). 

2.6.1 Signature-based IDPSs methodology 

Signature detection has been used to detect known attacks. Signature-based IDPSs compare 

observed signatures with known attack signatures. It has a higher level of security than anomaly 

detection. Signature-based IDPSs cannot recognise a new attack in the monitored environment 
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(Mudzingwa and Agrawal 2012) and are therefore unreliable when it comes to detecting threats. The 

IDPS uses known signatures of malicious codes, which are stored in an IDPS database. This kind of 

detection system is highly efficient for use in a small IDPS. The major drawback of such a system is 

that its database must be regularly updated, resulting in an ever-increasing database that must include 

as many available signatures as possible (Hoque et al. 2012, Mudzingwa and Agrawal 2012 and 

Bul'ajoul, James, and Pannu 2015). Thus the checking process takes more time, which tends to 

weaken the performance of the IDPS. 

The architecture shown in Figure 2.6 utilizes the detectors which discover and evaluate the 

signatures available in the monitored environment to the known signatures database. The system 

generates alerts if signatures match but on the contrary, the detector does not generate any alert if 

there is no signature match with the database (Mudzingwa and Agrawal 2012). 

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the 

thesis can be found in the Lanchester Library, 
Coventry University

Figure 2. 6: Signature-based methodology architecture (Mudzingwa and Agrawal 2012). 

2.6.2 Anomaly-based IDPS methodology 

Anomaly-based IDPSs require foundation information and particular knowledge of the 

system being protected. Such systems have profound merit in gathering evidence in the form of 

statistics, data, facts and figures, which are responsible for the formation of baselines during the 

learning period. 

The baseline profile is the normal learned behaviour of the monitored system and is 

developed during the learning period, while the IDPS learns the environment and develops a normal 
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profile of the monitored system. This environment can be a network, users or a system. Anomaly-

based IDPSs are further classified as follows: Protocol-based Anomaly; and Application Payload-

based Anomaly (Mudzingwa and Agrawal 2012, Whitman et al. 2012, Weaver, Weaver, and Farwood 

2013:256-274 and Bul’ajoul, James and Pannu 2013). Anomaly-based IDPSs recognise breaches on 

computer technology and systems that are outside the normal range for standard network traffic and 

system operations. 

Anomaly-based methodologies can identify and detect unknown intrusions and attacks on a 

computer network environment without requiring updates to the system. Whenever an anomalous 

operation is sensed, a standard anomaly-handling action should be initiated. This might occasionally 

lead to false positives (Chen and Chen 2009, Shiri, Shanmugam and Idris 2011 and Pal and Verma 

2015). 

The anomaly/statistical NIDPS method is a comparison-based method which compares any 

activity to the profile for all possible learned actives through statistical data, facts and figures. There 

are two types of profile, fixed and dynamic. A fixed profile is the most efficient as compared to other 

schemes, because it terminates the occurrence of any unusual behaviour and it classifies the behaviour 

as anomalous. A fixed profile cannot be modified once it is established, whereas a dynamic profile 

can be changed as the system being monitored changes. An extra overhead will be added to the 

system as the IDPS continues to update the dynamic profile. In the IDPS that implements a dynamic 

profile, an attacker can avoid detection by spreading the attack over a long time period. The attack 

becomes part of the profile as the IDPS incorporates the changes into the profile as normal system 

changes A dynamic profile cannot be created without an existing fixed profile; once the dynamic 

profile has been created, it allows the attacker to observe and alter his or her behaviour in long-term 

activities (Hoque et al. 2012, Mudzingwa and Agrawal 2012 and Bul'ajoul, James and Pannu 2015). 

Anomaly detection can be used to detect new attacks, but there is no guarantee of the 

accuracy of the detection. It generates false positive alarms (Shiri, Shanmugam and Ideis 2011, 

Weaver, Weaver, and Farwood 2013:268 and Bul’ajoul, James and Pannu 2013); therefore, the 

problem of accuracy is still an issue for researchers (Ru et al. 2016 and Zhao, Jiang, and Stathaki 

2016). According to Scarfone and Mell (2007) there are three general techniques for anomaly 

detection, statistical, knowledge/data-mining and machine learning. 
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Figure 2. 7: Anomaly-based methodology architecture (Mudzingwa and Agrawal 2012). 

The monitored environment is observed by the detector that matches events against a baseline 

profile with two possibilities. If the observed event does not equate with the baseline but lies within 

the range of an acceptable threshold, then the profile is updated. On the other hand, if the observed 

event equates with the baseline, then no action is required. If the observed event does not match the 

baseline profile and is outside the range of the threshold, the alert must be issued and the event 

marked as anomaly (see Figure 2.7) (Mudzingwa and Agrawal 2012). 

2.6.3 Analysis-based stateful protocol IDPS methodology 

The Stateful Protocol IDPS methodology incorporates the notion of state and is therefore 

capable of understanding and tracking the network protocol state. Stateful protocol models are built 

on TCP/IP protocols using their specifications. The stateful protocol analysis models are built on 

TCP/IP protocols using their specifications. The stateful protocol NIDPS technique is based on 

analysis of the behaviour of the protocols. It observes the protocol behaviour and then compares it to 

those stored in its protocol behaviour database. It detects anomalies in the packet on the head part of 

the protocol. This technique is quite effective, but can be easily avoided by attackers working inside 

the protocol limitations (Hoque et al. 2012 and Bul'ajoul, James and Pannu 2015). 
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Figure 2. 8: Analysis-based stateful protocol architecture (Mudzingwa and Agrawal 2012). 

Multiple vendors established and designed a baseline profile of the protocols. Stateful 

protocol analysis provides in-depth understanding of related applications and protocols and how they 

interact and work each other, but it introduces additional overheads in the system (Scarfone and Mell 

2007 and Mudzingwa and Agrawal 2012). 

Furthermore, intruders usually use signatures which behave similarly to viruses used in 

computers. The protocol anomaly detection method analyses data packets related to intrusion, which 

contain known anomalies and single or sets of signatures. The detection system is capable of detecting 

suspicious activity in the logs and generates alerts based on these signatures and rules. Anomaly-

based IDSs generally depend on detecting packet anomalies available in the header parts of the 

protocol. The universal architecture of the Stateful protocol and its analysis is similar to the 

methodology of the signature-based approach (see Figure 2.8) and requires a database of acceptable 

protocol behaviours. 

2.6.4 Hybrid IDPS methodologies 

The hybrid system is the integration of two or more methods. Hybrid methodology can 

combine two or more intrusion detection and prevention systems methodologies in order to analyse, 

detect and match any suspicious behaviour and signature-based malicious code that attempt to attack 

the network. The power of combination means it can detect more types of intrusion, thereby providing 
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relatively better results as compared to other methods. Figure 2.9 depicts the behaviour of the general 

hybrid methodology which combines stateful protocol analysis, signature and anomaly methods. The 

monitored environment is analysed by each method in turn (Mudzingwa and Agrawal 2012and 

Bul’ajoul, James and Pannu 2015). 
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Figure 2. 9: Hybrid methodology architecture (Mudzingwa and Agrawal 2012). 

2.7 Open Source NIDPSs (Snort and Bro) 

Snort (2016) and Bro (2014) are both well-known open-source IDPSs. This research uses the 

Snort open-source IDPS. In this section some comments are made on these two main open-source 

IDPSs and reasons are given on why Snort was adopted as the vehicle to demonstrate the novel 

architecture developed in this research. 

Snort is ranked among the top NIDPSs currently available. In spite of the huge development 

over the years and offering a de facto open-source IDP/IPS solution for many years (Khalil 2015), 

Snort is still struggling to sustain its growth in the network industry and prevent attacks (Bul’ajoul, 

James and Pannu 2015, Podofillini et al. 2015 and Wang and Kissel 2015). It was released as an open-

source, rule-centred NIDPS, which stores rules in text files that can be modified by a text editor. The 

rules are grouped into categories, and the rules belonging to each category are stored as information in 

separate files; these files are then integrated into the main configuration file, named “snort.conf”. The 

data is captured in terms based on described rules, which are read at the initialisation of Snort and are 

used to construct the internal data structure. 

Although, Snort is one of the most useable and popular NIDPS tools, other NIDPSs such as 

Bro, have received attention from the researchers (Gupta 2012 and Khalil 2015). Bro is a UNIX 
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based, open-source NIDPS capable of monitoring network traffic using passive methods to observe 

suspicious and malicious activity. It detects specific attacks based on event signatures. Some studies ( 

Khalil 2015, Jaiswal, Lokhande and Gulavani 2015 and Stocks 2015) compare Snort and Bro are on 

the basis of various parameters such as performance, processing speed, signatures, flexibility, 

deployment, interface and capability of operating system. 

Bro is getting popular in the research area due to its flexibility and easy customization. It is 

also useful for the advanced techniques of detection and is easy to integrate with existing tools. 

Association and correlation are other important and useful features which secure and protect the 

overall network system. The performance of Bro is higher than Snort in terms of correlation of events. 

Bro users use the sys-log as an output which provides the broad results of the events in the system. 

These features are not available in Snort but researchers are working to add such features to Snort 

(Mehra 2012, Jaiswal, Lokhande and Gulavani 2015 and Stocks 2015). A multi-instance feature has 

been added to Snort whereby a new Snort instance can be launched across each core to support load 

balancing across multiple CPUs. Snort has become multi-threading to address high-throughput 

networks. However, Bro lacks built-in, multi-threading. 

Bro and Snort have the ability handle high-speed traffic. This makes them suitable for larger 

scale Gbps networks but both have limits. Both are flexible and can be configured for their intended 

computer network. Bro includes pre-written rule scripts which cannot be modified and these will 

detect the most well-known attacks. More features can be added and policy scripts can be customised 

to cope with new attacks. The policy scripts can be customised to contain application-specific rules. 

Snort rules are powerful, flexible and relatively easy to write and also have provision for 

customization. 

Bro differs from Snort in its event-driven analysis. It has its own policy engine, which 

provides the capabilities of analysis, downloading of files on the wire, and then notifying the 

administrator. When a computer user tries to modify or download its script, the event engine will stop 

and shutdown. Snort does not have its own facility to capture packets. An external packets-sniffing 

library is required. Often used is the LipPcap library, which is widely supported across various 

operating systems. When Libpacp packets are delivered to Snort, the packets will be processed 

through a series of decoders corresponding to the protocol stack elements. Once the packets are 

decoded, they move up to the pre-processor and detection engine for analysis. 

Arguably Snort is easier to use than Bro because it has a graphical interface Therefore it more 

popular. Snort can run on most of today’s common OSs such as Windows, UNIX, Mac, and Linux 

including virtual machines whereas Bro is limited to UNIX based OSs. Snort can be configured to 
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different IDS/IPS modes such as Sniffing, passive and inline mode. Bro does not support inline 

intrusion prevention (IP) mode; it offers a script-driven IDS. 

Bro architecture is different from Snort. It is a script-driven policy engine rather than 

processing and decoding engine. Snort offers a wide variety of pre-processors which examine and 

modify packets for input to the detection engine which has rules for parsing and signature detection. 

New functionality can be added in Bro through the creation of policy scripts which can be written in 

the Bro. New functionality in Snort is written in the C language (Mehra 2012, Stocks 2015, Jaiswal, 

Lokhande, and Gulavani 2015 and Khalil 2015). 

Several NIDPSs are available on marketplace and some open-source NIDPSs are also 

available. Snort and Bro are free-of-charge NIDPSs and both are available for download from their 

respective websites. Snort, Bro and other freeware NIDPS systems are often used both in research and 

operational systems (Bro 2014, Snort 2016). According to the Snort website (Snort 2016), the Snort 

community includes more than 500,000 registered and active users. Also, there have been over four 

(4) millions downloads from national and international universities which are actively using Snort for 

their research purposes and tutorials. Snort is the most widely deployed IDPS in the world. On the 

contrary, there are no numbers published in the community to show the users of Bro and it is assumed 

that the user base is smaller. Snort has been developed to be suitable for speedy networks and is 

packet-oriented whereas Bro is connection-oriented (Mehra 2012, Chen et al. 2015, Kenkre, Pai and 

Colaco 2015 and Bul'ajoul, James and Pannu 2015).  Snort focuses on performance and simplicity and 

is one of the best known lightweight NIDPSs. 

It was decided to use Snort instead of Bro in this research because of its larger user base, 

longer established research community and ability to be used on multiple operating systems. 

2.8 Use of Parallelism in Intrusion Detection 

Multi-core technology and parallelism is a possible solution for the high-speed network traffic 

security problem. This section describes relevant related work in parallelism in intrusion detection. 

Salah and Qahtan (2009) implemented a hybrid scheme in Linux OS to prove that a hybrid 

scheme can improve the performance of general-purpose network desktops or servers running 

network I/O-band applications when such network hosts were exposed to both light and heavy traffic 

load conditions. In order to achieve a high throughput of analysed traffic, the researchers tuned the 

budget parameter of the Linux Network subsystem. This parameter controls the utilization time of the 
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central processing unit cycle. However, this solution will cause another problem, which is polling of 

speedy and large traffic to CPU for which there is no buffer. If the incoming traffic speed is higher 

than CPU processing speed, some of the traffic will be dropped.  The method proposed in this thesis is 

similar to the work of Salah and Qahtan in that it exploits configuration in a general purpose 

environment, but it is different in that it introduces a novel configuration of QoS at a multi-layer 

switch level by using a buffer reservation technique together with parallel processing technology. 

Thus it is network-based rather than the host-based. 

Shiri, Shanmugam and Idris (2011) proposed a type of parallelism to improve the 

performance of signature based IDSs. They used two signatures and created parallel implementations 

of Snort. Then they distributed the traffic between the two Snort nodes, each node handling one of the 

signatures. Beg et al. (2010) gave an overview about using AI (Artificial Intelligence) techniques in 

IDS and showed their capabilities for intrusion handling and minimising false alarms. They provided 

details about how using different AI approaches in IDS has serious disadvantages in a large and high-

speed network. The variations in the AI algorithms make it quite difficult to pin-point exact 

limitations of the system or the technique used. Moreover, for a large, high-speed network, 

corresponding computation needs arise which make AI algorithms more difficult and less scalable. 

Beg et al. suggested the use of HPC in a centralized network to improve processing of large data and 

speedy traffic in the context of using AI techniques. This thesis has similarities to the research of Beg 

et al. in that it uses multiple Snort nodes and parallelism but it addresses performance in a different 

way. It explores the use standard network components to improve processing of a speedy and heavy 

traffic through improved QoS architecture. 

One of the most important weaknesses of NIDPSs is that they fail, when processing 

unexpected increases in traffic volume. It is crucial that more efficient approaches are developed. To 

find a solution to this problem, several nodes can be used to process network traffic concurrently and 

in parallel. Wheeler and Fulp (2007) proposed a framework that is complementary to NIDPS. Their 

research illustrates that three levels of parallelism can be used: 

• the node level (the node plays a vital role in the running of several identical systems 

(entire systems) in a parallel fashion: the same set of tasks (or rules) are replicated at 

each node); 

• the component level (defines a form of practical parallelism; a fraction of tasks (rules) 

are set for each node and given their own processing elements); and 
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• the sub-component level (refers to the further parallelisation of individual 

components). The parallelisation of pre-processing into critical and non-critical pre-

processing can be viewed as a functional sub-component parallelism). 

In Snort, rules are placed into rule groups based on their source and destination: for example, 

rules associated with web traffic are usually placed in port number 80. In the work of Wheeler and 

Fulp, Snort organises the rules into discrete groups, and each individual group is commonly 

recognised by its file name. Packet duplicators are used to duplicate incoming packets that run across 

all the nodes at the same time, because of different tasks (or rules) maybe maintained at different 

nodes. In the node level parallelism, one can therefore assume that one packet may pass through the 

same inspection many times. The main flaw of this method is repetition, so that when a packet is sent 

to the node, the node must check whether its rules are related to that of the packet. Wheeler and Fulp 

(2007) do not cover this issue in their research. 

There are many difficulties associated with node level parallelism: 

• If all communications are considered to be stateless, the node level is able to work. 

However, this seems to be unrealistic with today’s attack, as demonstrated by 

(Hernandez-Herrero and Solworth 2007 and Shaikh et al. 2009); 

• Duplication of processing may occur if a packet is sent to more than one node. In 

contrast, in the method proposed in this thesis, traffic (packets) was configured and 

treated by using QoS configuration and other switch technology such as ACL, 

Queues, bandwidth, threshold and DiffServ architecture to help prevent duplications 

of packet processing at multiple NIDPS nodes.  

• No co-relation was reflected in the packets that were sent in multiple frames; in 

contrast, the method proposed in this thesis classifies and processes the traffic 

through specific class and policy maps and then packets are passed to multiple 

NIDPS nodes, which analyse traffic depending on packet IP frames. 

• A flaw in the node level parallelism method further reveals that it does not take into 

account the fragmentation issue, which is the latest primary technique used by 

abusers who overflow systems. The latest IDPSs are unable to handle the process of 

fragmentation because of the sheer speed of the attacks (Vasanthi and Chandrasekar 

2011). In the novel architecture configuration proposed in this thesis, the traffic speed 

has been organised and controlled wherever the speed is high to help prevent the 

effectiveness of increasing attack speed. QoS queuing, DSCP (Differentiated Service 

Code Protocol) and SRR (Share and Shape Round Robin) were used on lower 
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bandwidth to ensure real-time network traffic does not suffer from high jitter and 

delay. 

Wheeler and Fulp (2007) demonstrate that at the component level, some particular functions, 

including e-fragmentation, can be parallelised. However, it has not been properly clarified how this 

will take place in this system, and the risk may be exacerbated by the formation of a bottleneck at this 

level. This can even be increased if the top-level categorisation is not done in order to isolate the 

fragmented packets from whole and complete packets. 

Shiri, Shanmugam and Idris (2011) proposed a parallel technique for improving the 

performance of a signature-based NIDPS. Their idea was to send different types of packets to 

different parallel Snorts for analysis and they obtained a 40% improvement in processing time. 

Schuff, Choe and Pai (2007) proposed a multi-thread Snort called MultiSnort which executes multiple 

instances of the original Snort in parallel. The research of this thesis is similar to these in that different 

types of packet are sent to parallel Snorts. However, while the research of this thesis confirms the 

findings of previous research, the main difference is that it provides new detail on how to achieve the 

improvement through QoS and parallelisation using industry standard software systems. Another 

difference is that it has concentrated on NIDPS analysis, detection and prevention and also provided 

further experiments with greater detail of relevant parameters. 

Chen et al. (2009) presented Para-Snort which revised the structure of the original Snort 

decoupling the decoding part so that this activity is carried out centrally before the parallel queues are 

formed. The approach also used central load balancing to distribute packets to parallel Snort 

processing units. The research of this thesis differs from Chen et al.’s work in that the whole of Snort 

is parallelised (including decoding). Parallel queues are formed in the switch before being sent to 

Snort pre-processing and decoding. The problem with central decoding, pre-processing and load 

balancing modules is that they could become additional bottle necks in the system. Chen et al. also 

researched how to reduce the load balancing bottle neck issue. 

Vasiliadis, Polychronakis, and Ioannidis (2011) proposed a new model for a multi-parallel 

IDS architecture (MIDeA) for high-performance processing and stateful analysis of network traffic. 

Their solution offers parallelism at a subcomponent level, with NICs, CPUs and GPUs doing 

specialised tasks to improve scalability and running time. They showed that processing speeds can 

reach up to 5.2Gbps with zero packet loss in a multi-processor system. Jiang et al. (2013) proposed a 

parallel design for NIDS on a TILERAGX36 many-core processor. They explored data and pipeline 

parallelism and optimized the architecture by exploiting existing features of TILERAGX36 to break 

the bottlenecks in the parallel design. They designed a system for parallel network traffic processing 
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for implementing an NIDS on the TILERAGX36 which has a 36 core processor (Tilera). The system 

was designed according to two strategies: first a hybrid parallel architecture was used, combining data 

and pipeline parallelism; and secondly a hybrid load-balancing scheme was used. They took 

advantage of the parallelism offered by combining data, pipeline parallelism and multiple cores, using 

both rule-set and flow space partitioning. They showed that processing speeds can handle and reach 

up to 7.2Gbpswith 100-bytes packets and 13.5 Gbps for 512-bytes. Jamshed et al. (2012) presented 

Kargus’s system which exploits high processing parallelism by balancing the pattern matching 

workloads with multi-core CPUs and heterogeneous GPUs. Kargus adapts its resource usage 

depending on the input rate, to save power. The research shows that Kargus handles up to 33 Gbps of 

normal traffic and achieves 9 to 10 Gbps even when all packets contain attack signatures. The various 

approaches described in this paragraph are not directly comparable in terms of throughput as different 

numbers of processors is used in each. However the experiments show that high gains can be made 

by parallelising NIDPSs in order to combat problems of higher speeds and increasing traffic. The 

novel research presented in this thesis differs from the research described in this paragraph in that the 

research presented in this thesis shows how QoS and queue technologies can be exploited in a multi-

layer switch to improve packets processing performance. Further enhancements occur when queuing 

is combined with parallel processor technologies. The other research did not exploit QoS. The 

approach of this thesis has shown how parallelism at a lower level of granularity, which is simpler to 

implement, can also make impressive improvements for NIDPS performance in terms of throughput 

and the number of dropped packages. 

Chen, et al. (2015) proposed an application-specific integrated circuit (ASIC) design with 

parallel exact matching (PEM) architecture to accelerate processor packets speed. The ASIC hardware 

has been designed to operate at 435MHz to perform up to 13.9 Gbps throughput to manage the 

requirements of high-speed and high accuracy for IDS, which resolves the issue of the information 

security limitation to manage data received from the 10Gbps core network. They proposed SRA 

(Snort Rule Accelerator) with parallel rules to increase the performance of the IDS. The SRA is 

proposed with a stateless parallel-matching scheme to perform high throughput packet filtering as an 

accelerator of the Snort detection engine. The ASIC is composed of five major modules, including the 

Inspector, Counter, Parallel Matching, Conformity and Compare modules. The parallel matching 

scheme compares a packet’s payload with the stored rule. When an entry packet is matched with Snort 

rules, the ASIC is in an idle state and sends a compare signal to the conformity module, which 

integrates all signals and determines whether an abnormal payload is presented. Here the authors 

designed a half mesh architecture in the parallel matching rules module, which allows the traffic to be 

compared with several rules. The research of this thesis addressed performance in a different way. It 

utilised hardware Layer-3 switch technology (QoS, memory and buffer dynamic reservation and 

parallel queue technologies) to improve network forward-throughput-traffic architecture and, hence, 
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NIDPS performance. It configured an interface into queues (interface-to-queues), which allows 

packets to be processed through the component level parallel NIDPS nodes. The approach is designed 

to deal with the limitation of real networks speed and finds solutions to the problems that caused the 

NIDPS performance. The approach can deal with any incoming traffic-speed that may allow 

malicious packets to enter the system and prevent NIDPS from detecting or preventing them. It does 

this by imposing advanced management of network packets traffic. The advantage of the proposed 

approach is that every-day equipment can be utilised in a new way to achieve improvements and it is 

also more scalable than the proposal of Chen et al. (2015). 

In the context of big data and distributed systems, Zhao et al. (2014) have developed a 

security framework in G-Hadoop. This work focuses on authentication and access rather than 

intrusion detection but offers an interesting new direction. The framework could be enhanced with 

intrusion detection and protection functionality to create a more complete solution. The research of 

this thesis has focussed on standard business infrastructure whereas the work of Zhao et al. has 

concentrated on single cluster across cloud data centres. Cross-cluster security services in a high 

performance environment such as that afforded by G-Hadoop is an area where attention is welcome. 

Vendor companies are aiming to develop security solutions to protect the enterprise network. 

Equipment has been designed to meet connectivity speed and load standards. The improvements in 

the throughput of NIDPS shown in this thesis are achieved by pairing the ASA Cisco equipment 

(Cisco 2016b) with multiple implementations of Snort. The principles of the method proposed in this 

thesis could be applied to other equipment combinations where similar facilities are offered. 

Interesting work is being carried out in the classification of internet traffic which can be used 

to support attack detection. In order to counteract limitations of current internet traffic classification 

techniques, which are based only on header and payload inspection, Wang et al. (2014) have 

developed a system which can classify traffic in terms of their intended application by considering 

packet and flow characteristics. A machine learning approach has been used to develop the classifier. 

Extra complexity introduced by more demanding methods such as machine learning, albeit with the 

purpose of producing better detection performance, supports the contention of this thesis for a solution 

based on parallel NIDPS in high-speed and heavy traffic environments. 

To summarise, the research of this thesis differs from the research described in this section in 

terms of the architecture used. The research of this thesis investigates how QoS technology and 

parallelism can have impact in high-speed and heavy traffic network using an industry standard 

switch and standard desktop processors. This solution is a more accessible way of receiving good 

results as it can be activated at a higher level, namely at the level of configuring the CISCO switch 
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software and replicating Snort on standard machines. Further improvements could be made if higher 

performance equipment was used. However, there is room for various approaches in the security 

arena and more exploration of the suitability of various methods in varying circumstances is welcome. 

Also the cost is generally an important concern. The design proposed in this research benefits the 

network security requirements at low cost. 

2.9 Conclusion 

In this chapter an overview has been given of the ever-growing problem of network and 

system attacks and the current technology used to combat them, including its limitations. It has also 

discussed related research work which, like this research, aims to improve the performance of 

NIDPSs. The chapter has also described how the research presented in this thesis differs from related 

research. 
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CHAPTER 3: METHODOLOGY AND EXPERIMENTAL DESIGN 

3.1 Introduction 

This chapter describes the methodology and experimental design of this research. First the 

chapter provides a description of the overall approach applied in this research. A major part of the 

approach included practical experiments which were set up using a number of technologies including 

Snort as the base NIDPS. The proposed solution to the research problem involved the use of QoS 

configuration in a Layer 3 Cisco switch together with parallel NIDS technology. The experimental 

testbed also incorporated generator traffic tools, such as NetScanPro, Packets Generator, Packets 

Traceroute, TCP reply and Packets flooder. Thus after describing the general approach to the research, 

relevant aspects of the participating technologies in the experimentation and solution are described. 

The NIDPS methodology used was the signature-based and thus the chapter also includes coverage of 

this. Finally, the chapter informs readers about the actual experiments carried out and the performance 

metrics used. 

3.2 General Approach to the Research 

The general method used in this research was quantitative including experimentation, 

inferential and simulation techniques (see section 1.5). The research followed the steps given below 

(also see Figure 3.1). 

1. Literature Review 

A literature review was undertaken to establish the state of the art and clearly define the 

problem to be solved. 

2. Research design 

A method to carry out the research was designed. An experimental approach was 

determined. It was decided to first analyse the problem through a set of practical 

experiments (stage 1), further tested with different tasks carried out with some additional 

virtual experiments (stage 2). Finally, design a solution to the problem and evaluate the 

solution through a second set of experiments (stage 3). 
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3. Analysis of the Problem (Stage 1 and Stage 2) 

The problem was exposed through a set of experiments, the results of which were 

analysed. The experiments show the rates of dropped packets when a network is 

subjected to high-speed and high-volume traffic. The first sets of experiments were 

carried out in a specially designed testbed. The second set of experiments was carried out 

in a virtual environment to investigate the reason of problem. The experiments show how 

the rates of dropped packets are different under different OSs, buffer size and processor 

speed. 

4. Solution Design and Evaluation (Stage 3) 

A solution to the problem based on Layer 3 switch configuration, QoS and parallel 

technology was designed and implemented. The solution was evaluated through a third 

set of experiments. 

Figure 3. 1: Main steps of research. 
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3.3 The NIDPS used - Snort NIDPS 

Snort, a software-based NIDPS, was used as the example NIDPS for the research. Snort is 

one of the strongest and most popular open-source NIDPSs. Its architecture is represented in Figure 

3.2. When a packet arrives at the network, Snort listens and captures packets. In the beginning, the 

packet decoder receives packets from multiple network interfaces, such as Point-to-Point Protocol 

(PPP) or Ethernet and Serial-Line-Internet-Protocol (SLIP), and then pre-processes such packets 

ready for the detection engine (filters organise and modify the data packets before transferring them to 

a detection engine). The detection engine performs three main tasks: sniffing (analysis), detection and 

prevention. It can perform network traffic analysis and content searching/matching in both real-time 

and for forensic post-processing (Caswell and Beale 2004:170, Chi 2014 and Snort 2016). Snort can 

be configured in three main modes: sniffer, packet logger, and network intrusion detection and 

prevention mode (NIDP mode).  

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the thesis can 

be found in the Lanchester Library, Coventry 
University

Figure 3. 2: Snort architecture (Bul'ajoul, James and Pannu 2013). 

In NIDP mode, Snort analyses the network traffic against a set of defined rules in order to 

detect/prevent intrusion threats. In the experiments, the researcher focussed on the Snort capabilities 

in network intrusion detection and prevention in order to determine how many packets could be 

analysed, detected and prevented by Snort under varying conditions. It has been shown previously 

that in high-speed and heavy load conditions, packets are dropped and left outstanding and therefore 
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not processed properly (Balkanli 2015, Bul'ajoul, James and Pannu 2015 and Dhakar and Tiwari 

2015). 

The detection engine is time-critical and the most important part of the Snort. It utilises 

different processing times based on the length of the packet, the specifications of the system and the 

number of rules defined in the system. Snort sometimes drops or leaves outstanding packets when it 

runs in real-time NIDPS mode, particularly when traffic is heavy and high-volume Snort rules are 

employed to detect intrusive actions in the data packet. In NIDPS mode, Snort is capable of reading 

chains (internal data structures), which have to be matched against all packets. If a packet does not 

match any rule, it will be blocked; otherwise, appropriate action is taken. 

Logs and alerts depend on the nature of what is detected inside the packets. If any suspicious 

activity is found inside a packet, the packet usually logs the malicious activity and/or generates an 

alert. Logs are usually stored in simple text-based files, such as tcp-dump files. Output modules (plug-

ins) are capable of performing multiple operations depending on the results generated by the Snort log 

and alert system. In general, output modules control the form of outcome produced by the log and 

alert system. 

Snort is a combination of both basic signature code analysis and content-driven rules. Snort 

can execute a protocol analysis and a search and match of the content. It can be utilised for the 

detection of various attacks and probes, such as those regarding stealth port scans, buffer overflow, 

SMB (Server Message Block) probes, CGI (Common Gateway Interfaces) attacks, fingerprinting 

attempts of OS and many more. Snort uses the rules, provided by developers or security analysts, to 

identify the traffic types that can be passed or collected (Bul'ajoul, James and Pannu 2015, Edge and 

O’Donnell 2016 and Snort 2016). 

There are several features available for Snort; the most common feature is its real-time alert 

mechanism. Alerts can also be collected by using a mechanism called syslog, which allows the 

reporting of suspicious activities in various ways: logs for additional investigation; a UNIX socket;a 

specified file of the user; or a Win-Popup message to the window client (Snort 2016). Snort is 

different from other packet sniffers, due to the tcp-dump sniffer, which can be run by different 

operating systems and the use of the hex-dump payload dump that the tcp-dump has employed during 

recent years. Snort also has the capability to display packets in different networks through the same 

method. The default detection method of Snort in NIDPS is the signature method. The alerts are 

stored and activated to any system log, database, management team or a trap. 
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3.4 Snort Rules 

Snort rules activate on an TCP/IP network and protocol layer. The part containing options 

normally also covers an alert message and information regarding relevant parts of the packets that can 

be used to generate an alert message. The options area keeps additional matching criteria. The rule 

can detect or prevent one or more types of interruption activity. Good rules should cover multiple 

intrusion signatures. Snort’s rules consist of two logical parts: a rule header; and rule options (See 

Figure 3.3) (Weaver, Weaver and Farwood 2013:284-304 and Snort 2016). 

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the thesis 

can be found in the Lanchester Library, Coventry 
University

Figure 3. 3: Basic structure of Snort rules (Rehman 2003:79). 

The rule header keeps the information regarding action taken by the rule and stores the 

criteria for matching a rule against data packets. A Snort rule structure can be seen in Figure 3.4. 

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be found in the Lanchester Library, Coventry 

University

Figure 3. 4: Structure of Snort rule header (Rehman 2003:79). 

3.4.1 Rule Header 

The rule header consists of several different parts: 

Action: The action rule is used to perform a typical function to generate an alert or log 

message or to initiate another rule. This performance is the first part of the rule, 

which shows the predicted action that will be taken when rule conditions are met. 

The action will take place in the case that all conditions mentioned in the rule are 

true. 

Protocol: The application of the protocol is used only for a particular protocol. This is the 

second mentioned criteria of a rule. It shows the protocol to which the rule applies 
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(e.g. IP, UDP, TCP and ICMP). If a protocol is TCP or UDP, then Snort checks the 

transport layer to determine the packet’s type. 

Address: The address is utilised to define source and destination addresses on a rule. 

Addresses may consist of one or numerous IP hosts of network addresses. The 

address fields in rules are of two types: a destination address and a source address. 

Both addresses can be determined on the basis of the direction field. For example, if 

the direction field is ‘->’, the source address is on left side and the destination 

address is on right side of a given address. For example, the following rule is to 

generate an alert message whenever it detects any ICMP packet from source address 

10.0.0.0/8, any source port to any destination address and any destination port with 

time to live (ttl) of ICMP packets equal to 138: 

Alert icmp[10.0.0.0/8] any -> any any (msg: “ping with ttl=138 “; ttl: 138; sid: 

100001 ;). 

Port: The port number is employed to apply a rule to a packet, which originated from or 

travelled to a specific interface (port) or range of interfaces. These port numbers are 

very useful for applying a rule to a specific type of traffic (packets). For example, if 

the point of network security weaknesses is related only to a HTTP (Hyper Text 

Transfer Protocol) web server, port 80 can be used in a rule to detect any attempts at 

exploitation. Moreover, port range, lower and upper boundaries, and the symbol of 

negation can be used to write an effective rule. The sample rule below would detect 

any UDP packets that come from any source address and specific source port range 

(1024 –2044) to any destination address and ports: 

Alert udp any 1024:2044 -> any any (msg:” udp ports”; sid: 100002 ;). 

The parts of the port identify the source and destination ports of the packets where 

the rules are applied. Due to the source address and port address, the rule can be 

applied to packets that are coming from a source port, which is related to the type of 

packet. If the destination IP and port are set to “any”, the rule will apply to all IP 

address traffic (packets), irrespective of their destination address. Port numbers will 

be related if the protocol is either TCP or UDP. 

Direction: The direction identifies which address and port numbers are used as a source and a 

destination. 
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Rule options follow the rule header and appear within the pair of parentheses. It is possible 

that there may be single or multiple options, which may be separated by a semicolon. The rule header 

is checked when relevant true criteria are found in options. Keywords are used to define all rule 

options, although some rule options also include arguments. A rule header can also define other rule 

header action, such as dropping, blocking or rejecting a rule. 

There are five predefined actions that comprise the rule header: Pass, Log, Alert, Activate and 

Dynamic and User Defined Actions (Snort 2016). The Alert and Log are the two most common 

actions, which were used in the experiments and also some user-defined actions, such as Drop, 

Prevent and Block. The Alert action rule sends an alert message in case true rule conditions are met 

for particular packets. There are multiple ways to send alerts. It can be sent to a file or console. In the 

experiments, alerts were sent to a text file. The Log action uses to record packets details, and different 

methods are used to accomplish this. For example, a packets detail logs to a database or a file. Packets 

and headers can be recorded with several levels of detail, depending on the configuration file and 

command line arguments. Log and Alert have different functions: the Alert action performs a task to 

send an alert message and then record (log) the packet, whereas the only task of the Log action is to 

log the packet. 

The Pass action rule is a process to inform Snort to ignore the packets. The Activate action 

generates an alert and then to activate another rule in order to check further conditions. The Activate 

rule is utilised if further testing is required for a captured packet. The Dynamic action is initiated by 

another rule, by using the Activate action. In fact, it can be activated only by using the Activate 

action, which already defines in another rule. 

The User Defined action is rule actions devised by the user. These rule actions are employed 

for various purposes, such as sending messages to syslog, taking multiple actions on packets, and 

logging messages into a database such as MySQL the preventative action rules, (e.g. Block, Reject or 

Drop) are implemented to prevent the unwanted traffic from entering the system. 

3.4.2 Rule Options 

Generally, an option in a rule can consist of two parts: an argument and a keyword (Snort 

2016). Colons are used to separate arguments from keywords of the option. There are various kinds 

of optional keyword rules, like ttl, content, offset, content list, dsize, depth and msg. (Snort 2016). 
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The ttl keyword rule checks the IP time-to-live values. This rule has the ability to prevent any 

packet reassembly. The ttl keyword can be used for many protocols constructed on the TCP/IP 

protocols including ICMP and UDP headers. The content rule detects a pattern in the packet. It 

enables the user to look for a specific content within the packet payload and activate a response. The 

offset keyword enables the means to start the search for a pattern from a particular point within a 

packet. The depth keyword enables specification of how far along the packet the search should 

continue. The criteria for a Snort packet search for a specific pattern depth, which modifies the 

previous content keyword in the rule. The offset and depth options are used to specify where to start 

searching (offset) for a particular content in the payload and where to stop (depth).The dsize keyword 

looks for payloads of the specified size (e.g. >800). It checks for abnormalities in the size of the 

packets, which can become a cause of buffer overflow. The content list keyword is generally used 

with a file name as an argument. The file contains a list of strings to be sought inside the packet. 

Every string is placed on a separate line of the file. The msg keyword is used in rule options to add a 

text string for use in logs and alerts (Snort 2016). 

3.5 The layer 3 Cisco Catalyst switch technology 

A layer 3 Cisco switch was used in the proposed solution. A layer 3 Cisco switch is a high-

performance switch optimised for the LAN/WLAN or internet, providing wire-speed switch interface 

services. The switch performs three major purposes: packet switching, packet route processing, and 

intelligent network services. Layer 3 Cisco switches improve network performance through a variety 

of means: Quality of Service (QoS); DiffServ, which is based on DSCP (Differentiated Services Code 

Point) or IP precedence values; packets classification and modification services; rating limiting; ACLs 

(assess control lists); high-performance IP routing while maintain the simplicity of traditional LAN 

switching; and route processing queues. 

A layer 3 switch contains a group of routing protocols based on Cisco IOS software, network 

protocols, such as IP and IPX, and routing protocols such as RIP (Router Information Protocol), 

OSPF (Open Shortest Path First), IGRP (Interior Gateway Routing Protocol). (Szigeti et al. 2013 and 

Cisco 2016a). The switch offers granular QoS features which help ensure that network traffic is 

classified and prioritised, and that congestion is avoided in the best possible manner. 

QoS technology is identified to provide a different treatment for network traffic in different 

classes, which can be assigned to a specific QoS. The class to which the packet belongs can determine 

or discard the packet’s scheduling and policies. Implementing QoS including technologies, such as 

Ingress and Egress Queues (IEQ), and Shaped or Share Round Robin (SRR), can help to control 
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traffic bandwidth, network traffic delay and packet drop. QoS technology supports some features 

including local administrative policy and DiffServ architecture, which can deal with different TCP/IP 

traffic (Cisco 2014a and Cisco2016a). 

Furthermore, Layer 3 switches offer a range of security features such as enabling businesses 

to protect important information, keep unauthorized traffic off the network, guard privacy, and 

maintain uninterrupted operation. The switch can deal with malicious traffic and high-speed attacks 

such as flooding, malicious traffic, and DoS by using ACL (Access Control List) services, which can 

restrict access to sensitive portions of the network by denying packets based on source and destination 

MAC/IP addresses, or TCP/UDP ports. The switch delivers high-performance IP routing architecture. 

This architecture offers a speedy lookups while helping ensure the stability and scalability necessary 

to meet the needs of experiment requirements. The switches support extra features, such as 

“constrained multicast flooding (CMF), IP routing, IP multicast routing, routing protocol convergence 

with Routing Information Protocol (RIP), EtherChannel and load sharing across equal cost Layer 3 

paths and spanning trees (for Layer 2 based networks)” (Cisco 2014a and Cisco2016a). They also 

support remote monitoring (RMON) groups. RMON (Remote Network MONitoring) is a network 

managing protocol for gathering network information and checking traffic flow data within remote 

LAN segments. RMON lets permitted users to see all traffic nodes and their interaction on a LAN 

segment. In the router, RMON allows the configurable user to view traffic that flows through the 

router by conjunction with the SNMP (Simple Network Management Protocol) agent. A Layer 3 

switch combines RMON events and actions with existing MIBs (Management Information Bases) so 

the configurable user can choose where monitoring will occur (Cisco 2016a and Cisco 2014a). 

A load balancing function distributes packets (traffic) over network interfaces such as ports or 

switch virtual interfaces (SVIs). This method benefits network traffic, because it is able to distribute 

the traffic more effectively without extending the data path. Load balancing improves the utilisation 

of network segments, which increases effective network range. Layer 3 Cisco switches support 

different layer protocols as well as advanced layer 3 IP and IPX (Internetwork Packet Exchange) 

protocol technology, which optimises network performance and scalability for networks which exhibit 

large and dynamic traffic patterns. 

Layer 3 switches offer a high routing traffic performance between interfaces by identifying 

the availability of available interface on the network without relying on any single router. Likewise, 

they support 10/100/1000 Mb (Megabit) Ethernet, Gb (Gigabit) Ethernet, FEC (Fast Ethernet 

Channel), GEC (Gigabit Ethernet Channel) and BVI (Bridge Virtual interface). Layer 3 switches 

bolster the Virtual Local Network Interface (VLAN), which can combine any group of network 
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interfaces and segments within an inter-network into an autonomous user group, which appears as one 

LAN (Szigeti 2013:294-299). 

3.6 Quality of Service (QoS) configuration technology 

The proposed solution includes QoS configuration. A QoS technique permits the control of 

traffic over a network and guarantees the throughput of traffic applications in terms of time scale. QoS 

concerns the performance of the network traffic over several technologies, including 802.1 networks, 

IP-routed networks, Frame relay and Synchronous Optical Network (SONET) as seen from the user’s 

perspective. Furthermore, QoS uses congestion management and avoidance techniques along with 

configuration and prioritises traffic based on its importance (Szigeti et al. 2013:1-9:83-85, Cisco 

2014a:7-12 and Cisco 2016a:827). 

The features of QoS are classified into the following functions: classifying and marking, 

policing, congestion management and avoidance. It offers a better and more reliable performance of 

network traffic service. QoS supports network management traffic and configuration methods, 

including a memory reservation, a dedicated bandwidth, a threshold, a throughput performance of 

network traffic (queues technology), shaping and sharing network traffic, and priority characteristics 

(Szigeti et al. 2013:31-32:83-109, Cisco 2014a:7-14 and Cisco 2016a:829). Employing QoS brands 

performance of network traffic more expectable and the utilisation of network bandwidth more 

effective. 

Classification is the process of distinguishing one type of traffic from another by checking the 

fields in the packets or in the header. After traffic was classified, a traffic policy and marking were 

implemented to specify the bandwidth limits for each input and output traffic on the interfaces. 

Policing can decide on a packet-by-packet basis whether the packets are in or out of the scope of the 

profile and specify the action on the packets. The actions can be carried out by the marking function, 

including allowing the packets to pass without modification, dropping the packets and modifying the 

packets (marking down), such as assigning traffic to be matched with a DSCP value to allow the 

packets to pass through without being dropped. After traffic was classified and policing and marking 

had been implemented, a set of packets was processed in queues (input and output queues) at the 

specific bandwidth, and congestion was prevented by using congestion avoidance and Shared/Shaped 

Round Robin (SRR) features. Both the input and output queues use the SRR function to manage the 

guarantee of bandwidth. They use a congestion-avoidance mechanism called a weighted tail drop 

(WTD) to manage the lengths of queues and to deliver drop priority for specific classifications. 
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3.7 Parallel NIDPS technology 

The solution made use of parallel NIDPS. Parallel NIDPS is a form of computation in which 

many NIDPS nodes work simultaneously, operating on the principle that the large incoming data can 

be divided into smaller sets, which are processed at the same time. Parallelism of NIDPS can occur at 

three general levels: the high-level processing node (entire system), the component level (specific 

tasks are isolated and parallelised) and the sub-component level parallelism (function within a specific 

task) (Wheeler and Fulp 2007). The handling of data can also be parallelised with traffic being split 

into separate streams to be processed by parallel nodes or components.  This is data parallelism which 

can occur in various ways with the three general levels of parallelisation. In the novel architecture of 

this thesis, a parallel traffic was implemented through the use of queues (2 input queues and 4 output 

queues) on a switch virtual interface (SVI) where component level parallelism of NIDPS nodes was 

implemented with QoS configuration with the aim of improving NIDPS throughput performance and 

reducing NIDPS processor time (see Figure 3.5). The bandwidth capacity for each ingress queue was 

50Mbps and each output queue was 25Mbps for each 100Mbps interface. For Gbps interfaces, the 

bandwidth was set to 500Mbps for each ingress queue and 250Mbps for each egress queue. Each 

ingress and egress buffer can be increased to its maximum interface bandwidth (100Mbps and/or 

1Gbps). The NIDPS node was configured from a single-node NIDPS to a multi-node NIDPS. Each 

node was configured to check for a certain type of packet (e.g. UDP, TCP and ICMP) and was able to 

access discrete parts of a centralised, common rule base to order to carry out its task. The kernel 

buffer parameters for each NIDPS node was configured as each output queue rate. 

Figure 3. 5: High level parallel process. 

44 



 

 

 

 
 

 

       

           

             

       

 

    

        

        

  

  
 

       

      

   

    

 

    

         

     

       

     

        

  

 

      

         

      

        

   

       

          

         

     

     

       

The parallelisation of data (traffic) that was distributed through ingress and egress queues into 

critical and non-critical is viewed as multiple traffic parallelism (MTP) (Queues may be operating a 

different data (traffic)). This level parallelism of MT processing was linked to the component level 

parallelisation of the Snort NIDPS. Critical pre-processing of traffic is performed on queues to create 

particular groups of packets (threads) before the traffic is examined by a queue algorithm. Non-critical 

pre-processing occurred after the packets had been matched to queues. The NIDPS node component 

can be parallelised in either non-functional or a functional manner. Component level parallelism is 

defined as function parallelism of the NIDPS processing node. In component parallelism, individual 

components of NIDPS were isolated, and each output queue was given its own processing element. 

3.8 NIDPS Methodology 

As covered in chapter two, NIDPS methodology is divided into the following four categories: 

misuse/ signature-based; anomaly/ statistical-based; protocol analysis-based; and hybrid 

methodologies. In this research the technique of misuse detection was used to find known intrusions 

through signature detection. 

In the experiments, a signature-based methodology is used to observe patterns inside the data 

packet. This method enables detection of various types of malicious traffic. Furthermore, this 

methodology can distinguish signatures in the headers of IP, UPD, TCP and ICMP. When a sought-

after signature is found, alerts are activated and sent to system logs, databases, management teams or 

a trap. The NIDPS node was tested in a high-speed environment with large amounts of data. Three 

modes were configured to test the NIDPS performance: sniffing (analysis), passive (detection) and 

inline (prevention) method. 

Analysis mode is employed to recognise and display the types of packets coming into the 

network. Various levels of detail can be displayed on the console, for instance, layer data attached to 

the packet in addition to TCP, UDP and ICMP header information. The detection system is capable of 

detecting suspicious activity and generating alerts based on recognised signatures and rules. Signature 

analysis is generally based on patterns inside the data packet. This technique aims to detect multiple 

kinds of attacks, such as the presence of scripts in packets destined for web services. Logging and 

alerts depend on the nature of what is detected inside the packets. If any suspicious activity is found 

inside a packet, the packet logs the malicious activity and/or generates an alert. Prevention mode 

intervenes to block intrusions that are detected before they reach the target. Prevention can be 

implemented through the use of signatures. Signatures contain IP addresses and can be considered 

safe or unsafe. The NIDPS contains known malicious packets in the form of a single or a set of 
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signatures. The detection mode is used to detect suspicious activity in the logs and generate alerts 

based on these signatures and rules. Furthermore, these technologies have proved their effectiveness 

in fighting flood type attacks (Burton, Baumrucker and Dubrawsky 2003, Wu, Schwab and Peckham 

2008 and Weaver, Weaver and Farwood 2013). 

To be effective, a NIDPS must see the entire network and must be placed at an appropriate 

point in the network. The NIDPS’s sniffing mechanism is effectively configured and implemented at 

the network gateway, which delivers valuable information about traffic types and processing speed. In 

the experiments, the NIDPS was placed at a switch where QoS configuration and parallel technologies 

were implemented to enable a complete view and control of traffic to monitor, detect or prevent 

malicious packets in the network. 

3.9 Experimental Design 

3.9.1 The Experimental Stages 

The overall experimental design can be seen as three stages: 

A. Stage 1 

Snort NIDPS was configured and tested in three modes: analysis (sniffer mode), detection 

(passive mode) and prevention (inline mode). Experiments were carried out to establish 

the amount of packet loss in increasing network traffic speed and volume for each mode. 

TCP/IP traffic was sent in 1 milliseconds (ms) and malicious packets in 1 microsecond 

(mSec) intervals. Both Windows and Linux operating systems were used. 

B. Stage 2 

The second set of experiments was conducted to establish the different packets dropped 

between (1) different operating systems, (2) different processor speeds and finally (3) 

different buffer sizes (speeds). Here, a virtual system was used. 

C. Stage 3 

An improved configuration based on QoS and parallel technology was developed. A third 

set of experiments was carried out to evaluate the solution. 
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3.9.2 The Experimental Testbed 

A network was set up to serve as a model for the purpose of analysis and data acquisition (see 

Figure 3.6). It consisted of six physical stations and two virtual stations distributed as follows: 

• Two physical check stations connected to the Cisco 3560/24P catalyst series switch; 

which supports QoS configuration; 

• Four other physical stations connected to a Cisco switch 2950/16P; and 

• Two VMware virtual machines running on one of the physical stations 

Several tools, including both software and hardware, were used to carry out the research 

experiments, implementation and evaluation. 

The software includes the following: 

• Snort NIDPS software, installed on Windows operating systems 7, 8 and Linux OSs; 

• Pcap tools (WinPcap and libpcap ) to capture packets on OSs (Windows and Linux); 

• NetScanPro tool to manage traffic in different time scales; 

• Packet Generator tool to generate ICMP, UDP and TCP traffic at different speeds and 

values; and 

• Flooder Packet, Tcpreply and Traceroute Packet tools to generate flood traffic and 

malicious UDP packets (threads) at high-load (65000KB) and high-speed (1ms and 

1mSec). 

The hardware includes the following: 

• Cisco 3560/24P catalyst series switch, which supports QoS configuration. The 

system’s  capacity is shown as the following below : 

➢ 24 Fast Ethernet interface with 2 Small Form-Factor Pluggable (SFP)-based 

Gigabits Ethernet and 2 x2-based 10 Gigabit Ethernet ports Uplink; 

➢ 1 rack unit (RU) fixed-configuration, multilayer switch; 

➢ 32-Gbps forwarding bandwidth with maximum 128-Gbps wire rate, non-

blocking switching fabric capacity; 

➢ 4 GB DDRAM with 64 MB Flash memory; and 

➢ Maximum buffer for each Fast Ethernet interface is 100Mb and for Gb 

interfaces is 1000Mb. 
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• Cisco Switch 2950, to implement Ethernet (port) channel (Ethchannel). The system’s 

performance are: 

➢ 8 Fast Ethernet 10/100Mb with Uplinks 2x1G copper or 1G SFP; 

➢ 16-Gbps forwarding bandwidth with Maximum 32-Gbps switch bandwidth; 

➢ 2 GB with 32 MB Flash memory; and 

➢ Buffer for each interface is 100Mb. 

• Computer network consisting of a minimum of six PCs with two VMware Virtual 

software machines (see Figure 3.6) with Intel Pentium® D CPU 2.2GHz, Intel® 

corei5 2.27GHz and Intel® corei7 2.40GHz. 

• Network cables to connect the network. 

Figure 3. 6: Experiment network design. 

3.9.3 Snort NIDPS tools and system requirements 

Most of IDPS tools need configuration and additional software must be installed in order to 

run successfully. The following factors were considered in determining the tools to use with the Snort 

NIDPS: 

• Accessible underlying signature database. 
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• Information about installing and setup configuration. 

• If applicable, free of charge tools. 

• The available tutorial and work related support. 

The monitoring environment is an important component, as it helps analyse and protect or 

prevent networks from any malicious traffic or attacks. Monitoring environments are implemented by 

different OS interfaces, for example SSH, Apache, Linux and Windows. In this research, Terminal 

Service and Command Prompt interfaces were used to access the Snort NIDPS to meet experiment 

requirements. 

Snort is one of most common monitoring NIDPS tools that safeguards a computer network 

and systems from any predictable attacks. It can be operated in either normal or special environments. 

Snort is not limited to a specific hardware, as it depends on the scalability of the network and systems. 

The technology of the host processor affects the application’s speed in gathering and processing data 

packets. It also affects the network connection speed and data collection performance with regard to 

storage and logs. 

For the research experiment design, the Switch Virtual Interface (SVI) and the host’s NIC 

card needed to be the same speed as well as the network cable connections, otherwise, packets 

(traffic) may be dropped (missed). Furthermore, one of the switch’s ports was used as a monitoring 

port, while the others were used for general serving, such as sending different traffic and speeds 

between hosts. An additional recommended requirement is to have a sufficient memory to grip a large 

amount of traffic (packets), which are exposed on the network detection engine. 

Relevant libraries were required to install Snort NIDPS successfully in Windows and Linux 

OS. These included: WinPcap (Windows Packets capture) for Windows OSs; Pcap (libpcap-dev), 

PCRE (libpcre3-dev), and Libdnet (libdumbnet-dev) for Linux OSs; and DAQ (Data Acquisition) 

(Snort 2016). Furthermore, Snort NIDPS needed to be configured to run in different modes, such as 

sniffer, passive or inline mode. The following sections the associated tools used with Snort to create 

the experimental testbed are described. 

3.9.4 Packets capture (Pcap) tool 

The Pcap tool captures the traffic passing through the NIC card network; otherwise, traffic 

cannot be monitored. Pcap is the industry-standard tool for link-layer network access in OS 

environments, such as UNIX and Windows OSs. Pcap tools allow applications, such as open source 
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NIDPSs, to capture and resend network packets while avoiding the protocol stack. It has additional 

valuable features, such as packet filtering at the kernel level, statistics of network engine and also 

supports remote packet capture (Naveen, Natarajan and Srinivasan 2012 and Thanasekaran 2011 and 

WinPcap 2013). 

WinPcap is a packet capture and filtering engine that is used with many commercial network 

tools, including open source, traffic and protocol analysers, network monitors, IDSs, IPSs, packets 

sniffers, traffic generators and network testers (Thanasekaran 2011and WinPcap 2013). Some such 

network tools, including e.g., NetScanPro, Nmap, Snort, Packets Flooder and ntop are identified and 

used throughout network community. WinPcap is a version of TcpDump and WinDump libraries, 

which are used to watch, diagnose and save network traffic according to various complex rules 

(WinPcap 2013). 

Other tools required for Snort NIDPS in Unix OS include the following: PCRE (Perl-

compatible regular expressions) and libdnet libraries. The PCRE library is a set of functions that 

execute systematic expression pattern matching. Libdnet simplifies transportable interfaces to 

numerous low-level networking routines, including manipulations of: network interfaces lookup; 

network IP address; kernel interfaces; IP header and Ethernet frame transmission (Mitra, Najjar and 

Bhuyan 2007 and Gullett 2012). 

3.9.5 NetScanPro tool 

NetScanPro is a tool that sends a certain type of traffic to specific networks and hosts. It 

offers a range of tools that gather internet information, monitor network and troubleshoot utilities for 

network professionals. These tools include the Packet Generator, Packet Flooder, Traceroute, Packet 

Capture, OS Fingerprinting, Ping-Enhanced, Ping Scanner and many more. Furthermore, it collects 

and captures IPv4, IPv6 and Hostnames, domain names, email addresses and URL information 

(NetScanToolsPro 2013). NetScanPro was designed to run on Win OS. The NetScanPro tool contains 

packet tools used in the research including the following: 

1) Packet Flooder tool 

The Packet Flooder tool is a network traffic generator. It can be sent different flooding 

packets (threads) to a target IPv4 or IPv6 address. It has control over the target interface and payload 

in the packets. It can send packets at a rate approaching nearly 100% of the interfaces bandwidth 

(wired internet). The flooder packets tool sends a malicious packet (thread) to a target as fast as a 
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computer’s networking system will allow. The tool can send more than 65000 bytes per second 

(65000Bps) with up to 256 malicious packets (threads) in interval packet trips per microsecond 

(mSec). 

2) Traceroute tool 

The Traceroute tool is used to show the route of network packets that are traveling between a 

source computer and a target host. It can determine the upstream internet provider(s) that service a 

network connected device. Traceroute shows the individual routers that pass packets between 

computer and a target computer including the countries that are assigned to IP addresses along the 

route. The mechanism of tracing a network is based upon the ICMP protocol. 

A very powerful additional mode is TCP Traceroute, which works by sending TCP packets to 

a valid network interface on the target, usually port 80, which means that this mode of traceroute will 

often penetrate firewalls from the outside. Although, when a traceroute attack starts sending malicious 

packets, a packet will be sent to a target address or a host with a TTL value of 1 (unless the user 

specifies otherwise); then if a timeout will occur from a responding system, another packet will be 

sent with a TTL of 2 and so forth. The TTL value is decremented on the header for each router in a 

network path. When the value of TTL is zero, the packet will discarded; then an ICMP message will 

be returned to the source with a signal that the time has been exceeded. When an ICMP packet’s field 

is set to time exceeded, the IP address of the router will be placed in the IP header source field, which 

can be exploited by hackers. However, Traceroute is fully configurable, allowing users to control 

many parameters of the tracing process. 

3) Packets Generation tool 

The Packets Generation tool creates different types of traffic (packets), such as TCP, UDP, 

ICMP, CDP, ARP and RAW at different speeds (milliseconds) with having much control over most 

parameters of the IP and TCP/UDP headers. In the experiments, any packets that were sent used an 

actual source IP address in the IPv4 header. Packets were sent using the WinPcap driver. The tool can 

only send packets from WinPcap compatible interfaces, which are typically wired Ethernet interfaces, 

or through 802.11 wireless interfaces. The maximum size of packet can be send is 1 kilobyte per 

millisecond (1KBpms). 
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3.9.6 Tcpreply tool 

Tcpreplay is a generator TCP traffic tool. It is employed in Linux OSs. It offers users an 

ability to test and capture traffic in network devices and systems. It can classify packets as clients or 

servers, rewrite the headers of Layers 2, 3 and 4 and replay the packets back onto the network and 

through other machines, such as switches, routers, and NIDPS, etc. Tcpreplay supports most of NIC 

modes (such as single and dual) for testing analysis, detection and prevention mechanisms. This tool 

can send traffic at speeds of more than 10Gbps. 

3.9.7 Layer 2 and 3 Cisco Catalyst switches 

Cisco Catalyst 3560 category belongs to layer 2 and 3 switches (Cisco 2016a:88). It provides 

support for IP-based functions, for example, rate limiting, access control lists (ACLs), QoS, IPv6 and 

advanced routing protocols. Policy and class enterprise features are supported by IP service software. 

Despite a packet’s size and content, this switch provides the best effort services for each packet of 

network traffic. The packets are sent with no surety of delay bounds, reliability or throughput (Cisco 

2016a:826). Using QoS configuration in this kind of switch can provide more control over traffic 

header and port parameters including setting queues, ACLs, VLANs, buffer, threshold, queue and 

traffic priority and bandwidth. Two other Cisco catalyst 2950 series switches were used to implement 

ether VLANs and channel techniques in order to investigate how to improve the throughput of data 

using parallel Snort NIDPS.  

3.9.8 Experiment Performance Metrics 

Performance metrics were used in the experiments to measure the capability of NIDPS to 

perform a certain task and to fit within the performance constraints. These metrics measure and 

evaluate the parameters that impact NIDPS performance. The following aspects were measured in the 

experiments. 

1. Packet generation 

The performance of TCP, UDP and ICMP protocols was measured when running over the 

IPv4 header. The WinPcap, Packets Generator tool and Flooder packets tools were used to vary the 

type of traffic and malicious packets (threads) in terms of IP header protocol (TCP, UDP and ICMP), 

speed, the number of packets and packet size. 
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2. Timing statistics 

The Snort processor time includes total runtime of the packets processor as well as packet 

processing rates (Pkts). 

3. Packets I/O totals and percentages 

Various totals and percentages were used to measure the number of packets processed or not 

in the various experiments. The specific metrics used are shown in Table 3.1. 

Table 3. 1: Snort performance metrics 

NIDPS 

Mode 

Performance 

metrics 

Description Sections 

A
n

al
ys

is
 m

o
d

e

m
et

ri
cs

 

Packets received Number of packets received by machines 

Input / output 

total section 

Packets analysed Percentage of packets analysed from total packets received 

Packets dropped Percentage of packets dropped from total packets received 

Packets filtered Packets filtered out and not handed to Snort for analysis 

Packets 

outstanding 

Number of the packets buffered waiting processing /or not 

processed 

Packets injected Injected packets are the result of active response, which can be 

configured for inline or passive modes. 

D
et

ec
ti

o
n

 m
o

d
e

m
et

ri
cs

 

Eth Packets 

received 

Percentage of packets Eth received of total packets analysed 

Breakdown by 

protocol section 

IP4 packets Percentage of IP4 packets received of total Eth packets analysed 

ICMP packets Number of ICMP packets analysed of total Eth packets received 

UDP packets Number of UDP packets analysed of total Eth packets received 

TCP packets Number of TCP packets analysed of total Eth packets received 

Alerts Number of packet alerts of total packets analysed Action status 

section logged Number of packet logs of total packets analysed 

P
re

ve
n

ti
o

n

m
o

d
e 

m
et

ri
cs

Block Number of packets blocked, dropped or rejected of total packets 

analysed 

Verdicts section 

4. Protocol statistics 

All traffic for all protocols decoded by Snort are summarised in the Snort breakdown section 

(see Table 3.1), which includes categories, such as Eth (Ethernet interfaces), VLAN, IP4, Frag 

(Fragmented packages), ICMP, UDP, TCP and others. 
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3.9.9 Experiments Conducted 

The experiments carried out are listed in Table 3.2, along with their purpose. 

Table 3. 2: Experiments conducted 

Number of 

experiments 

Purpose Section in 

Thesis 

Stage 1 - Experiments to analyse the problem 

Experiment 1 to 4 Test NIDPS analysis performance at high-speed and heavy traffic 4.3 

Experiment 5 to 8 Test NIDPS detection performance at high-speed traffic 4.4 

Experiment 9 -11 Test NIDPS prevention performance at high-speed traffic 4.5 

Stage 2 - Experiments to investigate reason of the problem and support stage 1. 

Experiment 12 To test NIDPS performance under different Oss, different Buffer size and 

different processor (speed). 

4.6 

Stage 3 - Experiments to evaluate the solution 

Experiment 13 Test  the evaluation solution for NIDPS analysis performance 6.2.2 

Experiment 14-18 Test the evaluation solution for NIDPS detection performance 6.2.3 and 6.2.4 

Experiment 19-20 Test the evaluation solution  for NIDPS prevention performance 6.2.5 

Experiment 21 Show how parallel technology can benefit NIDPS through QoS 6.3.1 

Experiment 22 Show NIDPS architecture performance under more than 8 Gbps traffic 

speed. 

6.3.2 

3.10 Conclusion 

This chapter provided information and details about the methodology and experimental 

design of this research and described the software and hardware that was used to conduct the 

experiments. 
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CHAPTER 4: RESEARCH PROBLEM ANALYSIS 

4.1 Introduction 

In this chapter, analysis of the research problem is provided. The analysis was carried out 

through experimentation which was termed stage 1 experimentation in this research. The results are 

presented of the stage 1 and stage 2 experiments. The list of experiments is given in section 4.2. The 

stage 1 experiments were carried out to establish the level of packet loss using three NIDPS modes: 

analysis; detection; and prevention. The results for analysis mode are presented in section 4.3, for 

detection mode in section 4.4 and prevention mode in section 4.5. Stage 2 experiments tested NIDPS 

performance under different OSs, buffer size and processor speeds and the results are presented in 

section 4.6. Overall the research found that the NIDPS performance decreases in a high-speed and 

high-volume traffic in all three modes and tasks. 

4.2 Summary of Experiments carried out 

The experiments carried out are shown in Table 4.1, along with their purpose. 

Table 4. 1: Summary of experiments. 

Experiment 

Number 

Purpose Section in 

Thesis 

Analysis Mode Experiments 

1 to show Snort-NIDPS analysis performance under heavy traffic 4.3.1 

2 to show Snort-NIDPS analysis performance under high-speed traffic 4.3.2 

3 to show Snort-NIDPS analysis performance under large data traffic 4.3.3 

4 to show Snort-NIDPS analysis performance under heavy traffic and high-speed 4.3.4 

Detection Mode Experiments 

5 to show Snort-NIDPS performance detection under high-speed ICMP traffic 4.4.1 

6 to show Snort-NIDPS performance detection  under high-speed UDP traffic 4.4.2 

7 to show Snort-NIDPS performance detection  under high-speed TCP traffic 4.4.3 

8 to show Snort-NIDPS performance detection under a heavy and high-speed 

malicious traffic 

4.4.4 

Prevention Mode Experiments 

9 to show Snort-NIDPS performance prevention under high-speed IP (ICMP and 

UDP) traffic 

4.5.1 

10 to show Snort-NIDPS performance prevention under high-speed TCP traffic 4.5.2 

11 to show Snort-NIDPS performance preventing under a heavy and high-speed 

malicious traffic 

4.5.3 
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Different tasks Experiments 

12 To show Snort-NIDPS performance under different OSs, buffer size and processor 

speeds. 

4.6 

4.3 NIDPS’s Performance analysis-mode (sniffer mode) 

Here, Snort NIDPS has been configured to analysis or Sniffer mode. The following metrics 

were recorded: the number of packets received of the total packets sent; the number of packets 

analysed of the total packets received; the number of packets dropped of the total packets received; 

the number of packets rejected of the total packets received; and the number of packets outstanding of 

the total packets received. Specific results are given in the following sections. 

4.3.1 Experiments 1s: Testing Snort NIDPS under heavy traffic 

The transmission rate of packets was kept to the same speed (1ms intervals) to obtain a fair 

analysis of different numbers of packets. For this experiment, three (3) consecutive tests were run to 

test TCP, UDP and ICMP headers. For each test, the number of the packets sent was increased. The 

packets sent were 1024 bytes (each packet carried 1KB). NetScanPro and WinPcap tools were used to 

manage traffic through the network and the Packet Generator tool was used to send different numbers 

of packets and types of traffic (TCP, UDP or ICMP) at the same speed (1ms intervals) through the 

network and hosts. 

4.3.1.1 Experiment 1.1: Snort reactions to TCP header under heavy traffic. 

Table 4. 2: Snort reaction to TCP header. 

No 

of 

Test 

Packets 

sent 

Packets 

received 

Packets 

analysed 

Packets 

filtered 

Packets 

injected 

Packets 

dropped 

Packets 

outstanding 

Percentage 

analysed 

packets 

Percentage 

dropped 

packets 

Percentage 

outstanding 

packers 

1 100 105 105 0 0 0 0 100.00% 0.00% 0.00% 

2 200 202 202 0 0 0 0 100.00% 0.00% 0.00% 

3 400 402 402 0 0 0 0 100.00% 0.00% 0.00% 

4 800 805 538 0 0 266 267 66.832% 24.837% 33.168% 

5 1600 1,606 970 0 0 636 636 60.399% 28.368% 39.601% 

6 3200 3,208 964 0 0 2,241 2241 30.050% 41.127% 69.950% 

7 6400 6,417 1,418 0 0 4,998 4999 22.098% 43.784% 77.902% 

8 100000 100067 13169 0 0 86898 86898 13.160% 46.478% 86.840% 

9 200000 200144 25383 0 0 174759 174761 12.682% 46.614% 87.318% 
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Figure 4. 1: Snort reaction to TCP header under heavy traffic. 

4.3.1.2 Experiment 1.2: Snort reactions to UDP header under heavy traffic. 

Table 4. 3: Snort reactions to UDP header. 

No 

of 

test 

Packets 

sent 

Packets 

received 

Packets 

analysed 

Packets 

filtered 

Packets 

injected 

Packets 

dropped 

Packets 

outstanding 

Percentages 

analysed 

packets 

Percentages 

packets 

dropped 

Percentages 

packet 

outstanding 

1 100 105 105 0 0 0 0 100.00% 0% 0% 

2 200 210 161 0 0 49 49 76.667% 18.919% 23.333% 

3 400 406 151 0 0 255 255 37.192% 38.578% 62.808% 

4 800 813 273 0 0 539 540 33.579% 39.867% 66.421% 

5 1600 1607 266 0 0 1341 1341 16.553% 45.488% 83.447% 

6 3200 3219 390 0 0 2829 2829 12.116% 46.776% 87.884% 

7 6400 6420 603 0 0 5817 5817 9.393% 47.536% 90.607% 

8 100000 100174 7246 0 0 92928 92928 7.233% 48.124% 92.767% 

9 200000 200357 14466 0 0 185885 185891 7.220% 48.127% 92.780% 

120.00% Packets received 
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Figure 4. 2: Snort reaction to UDP header under heavy traffic. 
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4.3.1.3 Experiment 1.3: Snort reactions to ICMP header under heavy traffic. 

Table 4. 4: Snort reactions to ICMP header. 

No 

of 

test 

Packets 

sent 

Packets 

received 

Packets 

analysed 

Packets 

filtered 

Packets 

injected 

Packets 

dropped 

Packets 

outstanding 

Percentages 

packets 

analysed 

Percentages 

packets 

outstanding 

Percentages 

packet 

dropped 

1 100 105 105 0 0 0 0 100.00% 0.00% 0.00% 

2 200 206 206 0 0 0 0 100.00% 0.00% 0.00% 

3 400 403 296 0 0 107 107 73.449% 26.551% 20.980% 

4 800 804 370 0 0 434 434 46.020% 53.980% 35.057% 

5 1600 1605 527 0 0 1,078 1078 32.835% 67.165% 40.179% 

6 3200 3,212 752 0 0 2,458 2460 23.412% 76.588% 43.351% 

7 6400 6,417 993 0 0 5,424 5424 15.475% 84.525% 45.807% 

8 12800 12812 1905 0 0 10907 10907 14.869% 85.131% 45.984% 

9 100000 100061 12043 0 0 88018 88018 12.036% 87.964% 46.798% 

10 200000 200140 23805 0 0 176335 176335 11.894% 88.106% 46.838% 
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Figure 4. 3: Snort reaction to ICMP header under heavy traffic. 

As demonstrated by the results shown in Figures 4.1, 4.2, and 4.3, all the packets that were 

sent reached the wire. Figures show that when 100 and 200 packets were sent at speed 1ms, Snort 

analysed 100% of the total packets that it received. As the number of packets was increased, Snort 

started dropping packets or leaving packets outstanding (see Figures 4.1, 4.2 and 4.3). Figures also 

show that as the number of packets increases, more packets are dropped and left outstanding .The 

experiments show that dropped packets start to occur from 400 to 200000 at speed 1ms, Snort’s 

efficiency dropped more than 46 percent for (TCP) and (ICMP) headers (see Tables 4.2 and 4.4), and 

more than 43 percent for (UDP) headers (see Table 4.3). More than 87 percent of packets were 

outstanding for (TCP) headers (see Table 4.2), more than 77 percent for (UDP) headers (see Table 

4.3) and more than 88 percent for ICMP headers (see Table 4.4), and less than 13, 23 and 12 percent 

of the total packets received for (TCP, UDP and ICMP respectively) were analysed (see Tables 4.2, 
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4.3 and 4.4,). The experiments show that Snort performance analysis has been affected when the 

value of the traffic is increased. 

4.3.2 Experiments 2s: Testing Snort NIDPS under high-speed traffic 

The number of the packets was kept to the same value, 200,000, for a fair analysis between 

different speeds. Here, three (3) consecutive tests were run for (TCP, UDP and ICMP) headers, for 

each test, the speed at which the packets were sent was increased. 

4.3.2.1 Experiment 2.1: Snort reactions to ICMP header under high-speed traffic. 

Table 4. 5: Snort reaction to ICMP header. 

Packets 

trip time 

Packets 

received 

Packets 

analysed 

Packet 

filtered 

Packets 

injected 

Packets 

dropped 

Packets 

outstanding 

Percentages 

packets 

analysed 

Percentages 

packets 

outstanding 

Percentages 

packets 

dropped 

32ms 

interval 

203622 203622 0 0 0 0 100.00% 0.00% 0.00% 

16ms 

interval 

201757 201757 0 0 0 0 100.00% 0.00% 0.00% 

8ms 

interval 

201266 188205 0 0 13060 13061 93.511% 6.489% 6.094% 

4ms 

interval 

200420 94154 0 0 106266 106266 46.978% 53.022% 34.650% 

2ms 

interval 

200221 47130 0 0 153090 153091 23.539% 76.461% 43.330% 

1ms 

interval 

200131 23793 0 0 176338 176338 11.889% 88.111% 46.840% 

0.5ms 

interval 

199890 2364 0 0 197526 197526 1.183% 98.817% 49.703% 
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Figure 4. 4: Snort reaction to ICMP header under high-speed traffic. 

4.3.2.2 Experiment 2.2: Snort reactions to UDP header under high-speed traffic. 

Table 4. 6: Snort reaction to UDP header. 

Packets 

trip time 

Packets 

received 

Packets 

analysed 

Packets 

filtered 

Packets 

injected 

Packets 

dropped 

Packets 

outstanding 

Percentages 

packet 

analysed 

Percentages 

packet 

outstanding 

Percentages 

packet 

dropped 

32ms 

interval 

201099 200601 0 0 0 0 100.00% 0.00% 0.00% 

16ms 

Interval 

201067 201067 0 0 0 0 100.00% 0.00% 0.00% 

8ms 

interval 

200997 200997 0 0 0 0 100.00% 0.00% 0.00% 

4ms 

interval 

200922 108799 0 0 92123 92123 54.149% 45.851% 31.436% 

3ms 

interval 

200715 81950 0 0 118765 118765 40.829% 59.171% 37.174% 

2ms 

interval 

200426 54730 0 0 145694 145697 27.307% 72.693% 42.09% 

1ms 

interval 

200225 27831 0 0 172394 172394 13.600% 86.400% 46.26% 

0.5ms 

interval 

200031 3385 0 0 196644 196648 1.692% 98.308% 49.58% 
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Figure 4. 5: Snort reaction to UDP header under high-speed traffic. 

4.3.2.3 Experiment 2.3: Snort reactions to TCP header under high-speed traffic. 

Table 4. 7: Snort reaction to TCP header. 

Packets 

Time 

trip 

Packets 

received 

Packets 

analysed 

Packets 

filtered 

Packets 

injected 

Packets 

dropped 

Packets 

outstanding 

Percentages 

packet 

analysed 

Percentages 

packet 

outstanding 

Percentages 

packet 

dropped 

32ms 

interval 

200320 200420 0 0 0 0 100.00% 0% 0% 

16ms 

interval 

200350 200741 0 0 0 0 100.00% 0% 0% 

8ms 

interval 

200004 200000 0 0 0 4 99.998% 0.002% 0% 

4ms 

interval 

200469 104070 0 0 96397 96399 51.913% 48.087% 32.472% 

3ms 

interval 

200382 78141 0 0 122238 122241 38.996% 61.004% 37.889% 

2ms 

Interval 

200327 52458 0 0 147869 147869 26.186% 73.814% 42.467% 

1ms 

interval 

200147 26734 0 0 173413 173413 13.357% 86.643% 46.422% 

0.5ms 

interval 

200104 13759 0 0 186345 186345 6.876% 93.124% 48.220% 
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Figure 4. 6: Snort reaction to TCP header under high-speed traffic. 

The results shown in Figures 4.4, 4.5 and 4.6 reveal that Snort initially was analysed all 

packets that reached the wire. As the speed increased, Snort started dropping the packets and some 

were left outstanding. Figures 4.4, 4.5 and 4.6 show that the number of packets dropped and the 

number of packets outstanding increase as the speeds increase. The experiments show that Snort 

dropped more than 49, 49 and 48 percent, and left outstanding more than 98, 98 and 93 percent. So 

Snort analysed less than 2, 2 and 7 percent of the total packets analysed for ICMP, UDP and TCP 

respectively as the transmission interval decreased from 4ms to 0.5ms (see Tables 4.5, 4.6 and 4.7). 

The experiments show that Snort’s analysis performance reduced while speed of transmission 

increased. 

4.3.3 Experiments 3s: Test Snort NIDPS under large packets 

For this experiment the number of the packets was kept to the same value, 5000, and the same 

speed (rate of transmission 2ms per packet) for fair analysis between different sizes and lengths of 

packets. Here, three (3) consecutive tests were run; for each test, the size of each packet sent “Len” 

was increased, starting from 1 byte, 400bytes, 800bytes to 1Kbyte. 

4.3.3.1 Experiment 3.1: Snort reactions to ICMP header under large packets. 

Table 4. 8: Snort reaction to ICMP header. 

Packets size 

‘’weight’’ 

Packets 

received 

Packets 

analysed 

Packets 

dropped 

Packets 

filtered 

Packets 

injected 

Packets 

outstanding 

Percentages 

packet 

analysed 

Percentages 

packet 

outstanding 

Percentages 

packet 

dropped 

0 bytes 10011 10011 0 0 0 0 100.00% 0.00% 0.00% 

400 bytes 5018 1400 3617 0 0 3618 27.930% 72.070% 41.887% 
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800 bytes 5023 636 4387 0 0 4387 12.661% 87.339% 46.615% 
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5012 507 4505 0 0 4505 10.036% 89.964% 47.333% 
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Figure 4. 7: Snort reaction to ICMP header under large packets. 

4.3.3.2 Experiment 3.2: Snort reactions to UDP header under large packets. 

Table 4. 9: Snort reaction to UDP header. 

packets 

size 

''weight'' 

Packets 

received 

Packets 

analysed 

Packets 

dropped 

Packets 

filtered 

Packets 

injected 

Packets 

outstanding 

Percentages 

packet 

analysed 

Percentages 

packet 

outstanding 

Percentages 

packet 

dropped 

0 bytes 5023 5022 0 0 0 1 99.980% 0.020% 0% 

400 bytes 5019 2649 2366 0 0 2370 52.779% 47.221% 32.038% 

800 bytes 5019 1393 3625 0 0 3626 27.755% 72.245% 41.937% 

1024(1KB) 

bytes 

5019 963 4055 0 1 4056 19.187% 80.813% 44.688% 
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Figure 4. 8: Snort reaction to UDP header under large packets. 
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4.3.3.3 Experiment 3.3: Snort reactions to TCP header under large packets. 

Table 4. 10: Snort reaction to TCP header. 

Packets size 

“weight” 

Packets 

received 

Packets 

analysed 

Packets 

dropped 

Packets 

filtered 

Packets 

injected 

Packets 

outstanding 

Percentages 

packet 

analysed 

Percentages 

packet 

outstanding 

Percentages 

packet 

dropped 

0 bytes 5019 5019 0 0 0 0 100.00% 0.00% 0.00% 

400 bytes 5012 2070 2942 0 0 2942 41.310% 58.690% 36.984% 

800 bytes 5013 1359 3654 0 1 3654 27.115% 72.885% 42.148% 

1024(1kb) 

bytes 

5006 920 4086 0 0 4086 18.379% 81.621% 44.940% 
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Figure 4. 9: Snort reaction to TCP header under large packets. 

As shown in Figures 4.7, 4.8 and 4.9, Snort initially analysed every single packet that reached 

the wire. As the size of packets was increased, Snort started dropping and leaving the packets 

outstanding. Also the figures show that while the size of packets (Len) was increased, the number of 

packets outstanding and packets dropped increased as well. The experiments showed that Snort 

dropped more than 47 percent of ICMP packets, and more than 44 percent of UDP and TCP packets 

of the total packets received as the size of packet changed from 400B to 1KB. Left outstanding was 

more than 89 percent of ICMP, 80 percent of UDP and 81 percent of TCP packets of the total packets 

received (see Tables 4.8, 4.9 and 4.10). The experiments show that Snort analysis performance was 

affected while increasing the size (Len) of packets. 

4.3.4 Experiment 4: Testing Snort NIDPS under heavy traffic and high-speed 

In this experiment, IP traffic has been sent with different values, speed and size. For each test 

the number of packets, speed traffic and size of each packet was increased. 
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As shown in Figure 4.10, the experiment demonstrated that, as the volume and speed of 

traffic increased, the number of packets dropped and outstanding increased drastically as well. Snort’s 

analysis rate decreases as traffic and speed increase in a computer network. 
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Packets sent 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 

Packets received 5014 10020 15031 20042 25049 30064 35066 40081 45087 50130 

Packets analysed 5014 10018 10179 10424 10789 10820 10736 10711 10681 7637 

Packets dropped 0 0 4852 9618 14260 19244 24330 29370 34406 42493 

Packets outstanding 0 2 4852 9612 14262 19245 24330 29372 34408 42496 

Figure 4. 10: Snort reactions under heavy traffic and high-speed. 

4.4 NIDPS’s Performance detection-mode (passive-mode) 

Here, Snort NIDPS has been configured to NIDPS detection mode (NID-mode). This mode is 

used to detect malicious traffic. In this part of the experiments, the second and third sections of the 

Snort metrics has been used, such as Snort’s breakdown by protocol (i.e., the number of packets 

analysed of the total packets received, the number of Ethernet (Eth) packets received of the total 

packets analysed, the number of IP packets received of the total Eth packets received, and the number 

of TCP, UDP and ICMP packets analysed) and Snort’s action statistics (i.e., the number of packet 

alerts of the total TCP/IP packets analysed and the total packets logged of the total TCP/IP packets 

analysed). The experiments were conducted to test Snort NID-mode performance reaction to detect 

(TCP/IP) headers and malicious packets (threads) under high-speed traffic. 

4.4.1 Experiment 5: Snort NIDPS reactions to alerts and logs with ICMP 
header 

In this experiment, more than 1 million IP/ICMP packets have been sent at different speeds 

(10ms, 5ms and 1ms interval). The size of each packet was carried out 1KB. The rule below was used 

which requires that Snort will alert and detect any ICMP packets from any sources and ports to any 

destinations and ports. 
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Alert icmp any any ->any any (msg:”Detect ICMP Packets”; sid: 100001 ;). 

Table 4. 11: Snort reaction to ICMP header. 

Traffic 

speed 

per 

millisecon 

d 

Machin 

e 

Packets 

receive 

d 

% 

packet 

analyse 

d 

Eth packets 

received 

of the 

total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packet 

analysed 

UDP 

packets 

analysed 

Packets 

alert 

Packet 

s 

logged 

% 

packet 

alerts 

% 

packet 

logs 

10ms 100% 4.300% 100% 1874 0 44459 1874 1874 100% 100% 

5ms 100% 1.120% 100% 345 0 13463 231 231 66.96 

% 

66.96 

% 

1ms 100% 0.141% 100% 730 0 1144 405 405 55.47 

% 

55.47 
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Figure 4. 11: ICMP packets detection. 

As the results show in Figure 4.11, Snort analysed every packet that reached the wire. When 

ICMP traffic was sent at 10ms, Snort alerted and logged nearly 100% of the total ICMP packets 

analysed (see Table 4.10). As the speed increased from 10ms to 1ms, Snort started missing alerts and 

logged packets. Also, Figure 4.11 shows that the number of missed alerts increased when the speed 

increased. The experiment shows that Snort detected 55.47 % of the total ICMP packets that it 

analysed (see Table 4.11). 

4.4.2 Experiment 6: Snort NIDPS reactions to alerts and logs with UDP 
header 

In this experiment, more than 1 million IP/UDP packets were sent at different speeds (10ms, 

5ms, 3ms and 1ms), the packet size was 1KB and the following rule was written to allow Snort to 
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detect any UDP packets from any sources to any destination address and to any source and destination 

ports: 

Alert udp any any ->any any (msg:”Detect UDP Packets”; sid: 100002 ;). 

Table 4. 12: Snort reaction to UDP header. 

Traffic 

Speed 

Per 

millisecond 

Machine 

Packets 

Received 

% 

Packets 

Analysed 

Eth 

packets 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analyse 

d 

TCP 

packets 

analyse 

d 

UDP 

packets 

analyse 

d 

Packe 

t 

alerts 

packet 

s 

logged 

% 

Packet 

s 

alerts 

% 

Packet 

s 

logged 

10ms 100% 11.293% 100% 0 0 7854 7798 7798 99.28% 99.28% 

5ms 100% 3.128% 100% 0 0 2958 2896 2896 97.90% 97.90% 

3ms 100% 1.274% 100% 0 0 1358 946 946 69.66% 69.66% 

1ms 100% 1.006% 100% 0 0 65 30 30 46.15% 46.14% 
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Figure 4. 12: UDP packets detection. 

As shown in Figure 4.12, when UDP traffic was sent at a speed of 10ms, Snort alerted and 

logged nearly 100% of the total UDP packets that it analysed (see Table 4.11). When the traffic’s 

speed increased to 5ms, Snort detected 97.90% of the total UDP packets analysed (see Table 4.12). 

Figure 4.12 shows that, as the speed increased, missed alerts and logs also increased. This experiment 

shows that Snort detected 46.14% of the total UDP packets that it analysed (see Table 4.12). 
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4.4.3 Experiment 7: Snort NIDPS reactions to alerts and logs with TCP 
header 

Here, more than 1 million TCP/IP packets were sent at different speeds (10ms, 5ms and 1ms). 

Each packet was 1KB in size. The following rule was made to allow Snort to detect any TCP packets 

from any sources to any destinations, from and to any ports: 

Alert tcp any any ->any any (msg:”Detect tcp Packets”; sid: 100003) 

Table 4. 13: Snort reaction to TCP header. 

Traffic 

Speed 

per 

millisecond 

Machine 

packets 

received 

% 

packets 

analysed 

Eth packets 

received of 

the total 

packets analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

packets 

analysed 

Packets 

alerts 

Packets 

logged 

% 

Packets 

alerts 

% 

Packets 

logged 

10ms 100% 51.567% 100% 128 51070 25 5170 5170 100% 100% 

5ms 100% 3.122% 100% 110 33113 31 33113 33113 100% 100% 

1ms 100% 0.981% 100% 0 14622 249 14622 14622 100% 100% 
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20% 

10% 

0% 

Packets Speed 

Figure 4. 13: TCP packets detection. 

As shown in Figure 4.13, Snort analysed all packets that reached the system. The experiment 

shows that Snort detected all TCP packets that it analysed, even if the speed increased (see Table 

4.13). This effectiveness occurred because TCP does not send the next packet until it receives an 

acknowledgement that the previous package has been received. For example, when a device sends a 

TCP packet at a specific time, it waits for an acknowledgement for a certain period, and the 

transmission will be paused until the acknowledgement is received. These acknowledgements make 

the TCP packet slower than the UDP and ICMP packets. 
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4.4.4 Experiment 8: Snort NIDPS reactions to detecting malicious packet 
(Threads) in high-speed traffic 

In this experiment, WinPcap and Flooder packet tools were used to send flood traffic with 

malicious UDP packets (255 threads per 1mSec) to specific hosts or networks at different speeds (see 

Table 4.14). The following rule allowed Snort to alert and log any UDP threads or malicious packets 

that contain the variables ‘abcdef’ and time to live (TTL) 128 that comes from any source and port 

address and goes to any destination address and ports: 

Alert udp any any ->any any (msg: “Detect Malicious UDP Packets”; ttl: 128; content:|’ 61 62 

63 64 65 66 ’|; Sid: 100004 ;) 

This experiment is different from the previous ones. The previous experiments tried to detect 

headers, such as TCP, UDP and ICMP. The system received the TCP, UDP and ICMP packets at 

different speeds, but in this experiment, flood traffic was sent in different bandwidths (speeds) with 

255 malicious UDP packets (threads) in interval packets with a delay of 1 microsecond (1 mSec). 

Snort was set up to detect only the malicious UDP threads by using two conditions of additional rules 

(TTL and content). These two key rules will detect any UDP malicious packet that is matched in order 

to determine that the TTL value is equal to 128 and to determine if a data pattern inside the malicious 

packet has variables (‘abcdef’). The hexadecimal number (‘61 62 63 64 65 66’), which the rule 

contained, is equal to the ASCII characters (‘a b c d e f’).   

Table 4. 14: Snort reaction to udp malicious packets. 

flood traffic 

(Byte PerSeconds) 

With 255 UDP malicious 

packets in (1mSec) 

Total Eth received 

Of the total 

Packets analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

packets 

analysed 

Malicious 

packets 

Alerts 

Malicious 

packets 

logged 

% 

Packets 

alerts 

% 

Packets 

logged 

16 Bps 100% 0 0 9868 9820 9820 99.51% 99.51% 

32 Bps 100% 0 0 8702 8654 8654 99.44% 99.44% 

200 Bps 100% 0 0 7166 7083 7083 98.84% 98.84% 

1200 Bps 100% 0 0 6024 5854 5854 97.17% 97.17% 

4800 Bps 100% 0 0 2876 1421 1421 49.40% 49.40% 

60000 Bps 100% 0 0 7560 2810 2810 35.75% 35.75% 
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Figure 4. 14: Malicious packets detection. 

As shown in Figure 4.14, Snort initially analysed every packet that reached the wire. When 

malicious UDP packets were sent at a speed of 1 mSec and flood traffic at 16 bytes per second (Bps), 

Snort alerted and logged more than 99% of the total UDP packets that it analysed. As the flood traffic 

(speed) was increased to 200, 1200, 4800 and 60000 bytes per second (Bps), Snort alerted and logged 

packets to a decreasing degree, respectively, at 98.84, 97.17, 49.40 and 35.75% of the total malicious 

packets analysed (see Table 4.14). Figure 4.14 shows that the number of missed malicious packet 

alerts increased when the speed increased. The experiment shows that, when the speed was 60000 

Bps, Snort only detected nearly 35% of the malicious packets analysed (see Table 4.14). 

4.5 NIDPS’s performance prevention mode (inline-mode) 

Snort was configured to inline mode (NIP-mode) on Linux OS, because Win OS does not 

support inline mode. In this experiment, the fourth (4th) processor section action has been used on 

Snort, and the metrics considered are: the number of packets dropped of the total packets analysed; 

the number of packets blocked of the total packets analysed; and the number of packets rejected of the 

total packets analysed. 

4.5.1 Experiment 9: Snort NIDPs reaction to drop (prevent) IP (ICMP/UDP) 
header 

In this experiment, IP traffic has been sent at different speeds (1200KBps, 10000KBps, 

11000KBps and 12000KBps). NetScanPro, Packet Flooder and WinPcap tools were used to send IP 

traffic at different speeds through the network to hosts. The following rule below tells Snort to prevent 

any IP packets from any sources to any destinations address from and to any ports. 
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Drop ip any any ->any any (msg:”Prevent IP traffic”; sid: 100005). 

Table 4. 15: Snort NIP-mode reaction to prevent IP traffic. 

Speed 

limits 

Kilobyte 

per 

second 

Number 

Packets 

analysed of 

packets 

received 

Total Eth 

Packets 

received 

of the total 

packets analysed 

Total 

Ip4 analysed 

Of the Eth 

Packets 

received 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

packets 

analysed 

Number 

of 

IP packets 

Dropped 

% 

of packets 

prevented 

1200-KBps 232867 100.00% 99.988% 21 0 232817 232838 100.00% 

10000-kBps 266764 100.00% 99.991% 13 0 239249 239262 100.00% 

11000-kBps 306188 100.00% 99.986% 41 0 231077 231118 100.00% 

12000-kBps 351467 100.00% 99.991% 47 0 205152 205199 100.00% 
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Figure 4. 15: Snort reaction to prevent IP header in high-speed traffic. 

As the results in Figure 4.15 show, Snort analysed all packets that reached the system. The 

experiment shows that Snort NIDPS prevents all unwanted traffic event if it came in high-speed (over 

12000KBps). 

4.5.2 Experiment 10: Snort NIDPs reaction to block (prevent) TCP header 

TCP/IP packets have been sent at different speeds ((1200KBps, 10000KBps, 11000KBps and 

12000KBps) by using NetScanPro, WinPcap and Tcpreply tools. The following rule was used to 

prevent any TCP packets from any sources to any destinations address from and to any source and 

destinations ports. 

Block tcp any any ->any any (msg:”Prevent tcp packets”; sid: 100006 ;) 
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Table 4. 16: Snort NIP-mode reaction to prevent tcp traffic. 

Speed limits 

Kilobyte per 

second 

Number packets 

analysed of 

packets received 

Total Eth  Packets 

received of the total 

packets analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

packets 

analysed 

TCP 

Packets 

block 

% 

packets 

prevent 

1200-KBps 222821 100.00% 19 222786 16 222786 100.00% 

10000-kBps 236652 100.00% 23 236615 14 236615 100.00% 

11000-kBps 296258 100.00% 45 15054 28 15054 100.00% 

12000-kBps 301456 100.00% 80 10152 30 10152 100.00% 
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Figure 4. 16: Snort reaction to prevent TCP header in high-speed traffic. 

Figure 4.16 and Table 4.16 show that Snort prevented all TCP packets even if the traffic came 

at high-speed (over 12000KBps). 

4.5.3 Experiment 11: Snort NIDPS’s prevention mode reaction to reject 
(prevent) malicious packets 

Flood packets and WinPcap were used to send malicious traffic at varying transmission 

speeds to specific network and hosts. The following rule sets Snort to prevent any UDP packets which 

contain content ‘.H`..OK.’ and which have TTL of 128 and that travel from any source and ports to 

any destination and ports. 

reject udp any any ->any any (msg: “Prevent Malicious UDP Packets”; ttl: 128; content:|’ C2 

48 60 AE 97 4F 4B C3 ’|; Sid: 100007 ;) 

In this experiment, flood traffic was sent at different bandwidths (speeds) (see Table 4.17) 

with 255 malicious UDP packets (threads) in interval packets with a delay of 1 microsecond (1 mSec). 

Snort was set to detect UDP threads by using two rule conditions (TTL and content). Use of these 
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options will prevent any UDP malicious packet that is matched with the TTL value equal to 128 and a 

data pattern inside the malicious packet with content “.H`..OK.”. The hexadecimal number (‘C2, 48, 

60, AE, 97, 4F, 4B, C3’), which the rule contained, is equal to the ASCII characters (‘., H, `, ., ., O, K, 

. ‘). 

Table 4. 17: Snort NIP-mode reaction to prevent malicious packets. 

flood traffic 

(BytePerSeconds) 

With 255 UDP 

malicious 

packets in (1mSec) 

Number 

Packets 

analysed 

of 

packets 

received 

Total Eth 

Packets received 

of the total 

packets analysed 

Total Ip4 

Analysed of 

the Eth Packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

malicious 

packets 

reject 

% 

packets 

prevent 

100-Bps 267032 100.00% 89.066% 28 0 237777 237777 100.00% 

1000-Bps 266863 100.00% 99.991% 7 0 235338 235338 100.00% 

10000-Bps 329926 100.00% 99.988% 522 0 15092 7585 50.258% 

60000-Bps 335143 100.00% 99.992% 784 0 186811 32812 17.564% 
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Figure 4. 17: Snort reaction to prevent malicious packets in high-speed traffic. 

As shown in Figure 4.17, Snort analysed every packet that reached the wire. When malicious 

UDP packets were sent at a speed of 1 mSec and flood traffic at 100 bytes per second (Bps), Snort 

prevented 100% of the total UDP packets that it analysed. As the flood traffic (speed) was increased 

to 10000 bytes per second (Bps), Snort prevented less than 51% of the total malicious packets 

analysed (see Table 4.17). 

Figure 4.17 shows that the number of missed malicious packets increased when the speed 

increased. The experiment shows that, when the speed was 60000 Bps, Snort only prevented just 

nearly 16% of 100% of the malicious packets analysed (see Table 4.17). 
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4.6 Experiment 12: Snort NIDPS performance under different OSs, 
buffer size and processor speed. 

This experiment was designed to show how the performance of NIDPS is different under 

different operating systems (OSs), processor speed and different buffer sizes (speeds). Three tests 

were developed. The experiments were carried out in a virtual environment (see section 3.9.2) and are 

listed in Table 4.18. In each experiment more than 50,000 packets were sent at an interval delay of 

1ms. The size of each packet was 1KB. 

Table 4. 18: Experiments for different OSs, processor speed and different buffer sizes. 

Test 

Number 

Purpose Result 

1 Evaluate NIDPS performance under different OSs Little difference between OSs 

2 Evaluate NIDPS performance under different 

processor speeds. 

Performance improvement with increased 

processor speed 

3 Evaluate NIDPS performance under different NIC 

buffer speeds. 

Performance improvement with increased NIC 

buffer speed 

WinXP Win7 Win8 ubuntu 

Packets recived 100% 100% 100% 100% 

Packets analysed 10.10% 9.82% 10.10% 9.73% 

Packets dropped 47.34% 47.36% 47.34% 47.44% 

Packets outstanding 89.90% 90.18% 89.90% 90.27% 
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Figure 4. 18: NIDPS performance for different OSs processors. 
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Figure 4. 19: NIDPS performance for different processors speeds. 

Corei7 Corei5 Intel P4 

Packets received 100% 100% 100% 

Packets analysed 10.28% 7.31% 4.60% 

Packets dropped 47.29% 48.10% 48.88% 

Packets outstanding 89.73% 92.69% 95.40% 
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Figure 4. 20: NIDPS performance for different NIC buffer speeds. 

As shown in Figures 4.18, 4.19 and 4.20, when the system was tested under different OSs, 

such as Win 8, 7, XP and UNIX with the same processor and buffer speed, there were no differences 

in the number of packets dropped (see Figure 4.18). On the contrary, when we tested Snort with 

different processor speeds (Intel Pentium® D CPU 2.2GHz, Intel® corei5 2.27GHz and Intel® corei7 

2.40GHz) and also different buffer speeds (size), the differences between them were considerable (see 

Figures 4.19 and 4.20). As shown in Figure 4.19, Corei7 dropped fewer packets than the others. 

Figure 4.20 shows that while buffer speed increases, fewer packets are dropped and outstanding, and 

more packets will be analysed. These experiments show that the important components in NIDPS 

performance are buffer size and processor speed. 
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4.7 Summary of experiments 

Experiments 1 to 4 have showed that Snort drops and outstanding packets in high-speed 

network traffic. They show that Snort NIDP’s performance analysis was affected when it was 

deployed in high-speed and high-load traffic. Experiment 5 to 8 showed how Snort-NIDPS’s 

performance detection decreased while traffic speed limit on the network is increased. They show that 

Snort NIDPS missed malicious packet alerts when it is implemented in a speedy network. 

Experiments 9, 10 and 11 showed Snort cannot prevent all unwanted traffic (malicious packets) when 

the traffic comes at high-speed. The experiments show that Snort NIDPS performance prevention will 

be at a lower performance when traffic speed is increased. Finally, experiment 12 shows that the 

limitation of buffer size and processor speed affect Snort NIDPS performance. 

4.8 Conclusion 

This chapter has reported on experiments carried out to test NIDPS performance under high-

speed and high-volume traffic. Snort NIDPS performance has been tested under different 

circumstances (speed and volume). The results show that Snort NIDPS has been affected and is 

unable to analysis traffic and control unwanted packets when faced with high-speed traffic. 
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CHAPTER 5: PROPOSED SOLUTION 

5.1 Introduction 

The results of the experiments described in chapter 4 shows that the NIDPS’s performance 

decreases when faced with heavy and high-speed attacks. This chapter outlines a novel solution that 

uses QoS configuration and parallel technologies in a layer 3 switch in order to increase NIDPS 

performance in the analysis, detection, and prevention of malicious attacks. The chapter describes the 

technical problems that affect NIDPS performance and provides a novel solution to the problems of 

dropped and outstanding packets, of lost alerts and logged packets, and of inability to prevent 

(blocked) unwanted packets. These can be a prevalent issue for NIDPS performance in heavy and 

high-speed traffic environments. 

5.2 Proposed Solution 

Critical analyses were done for the previous experiments presented in chapter 4 (see Figures 

4.1 to 4.10, respectively). The figures show that performance of Snort’s throughput is affected when 

Snort NIDPS is exposed to a high-volume and speed of traffic; more packets will be dropped and left 

outstanding as the size of packets and the speed of traffic increases. Figures 4.11, 4.12, and 4.13 

show that Snort’s performance detection decreased when the traffic speed increased. There were more 

missed alerts and missed logs for packets as the speed of traffic increased. Furthermore, when the 

malicious traffic was sent at high-speed, Snort lost more malicious packet alerts and logs (see Figure 

4.14). Figure 4.17 shows that Snort NIDPS cannot prevent unwanted and malicious packets in a high-

speed traffic environment. Furthermore, when the Snort performance was tested under different OSs, 

buffer size and processor speed (see Figures 4.18, 4.19, and 4.20), the experimental results show that 

Snort performance was positively increased while the processor and buffer speeds were increased. 

According to the results shown in the previous chapter, the following activities affect Snort-

NIDPS performance: 

• high-speed traffic 

• large sized packets 

• high-volume of traffic 

However, Snort is used as a real-time traffic processor on the network. It is a multimode 

packet tool that can perform network traffic analyses, intrusion detection or prevention, and content 
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searching/matching in real-time as well as for forensic post-processing. Snort has a limited time in 

which to analyse traffic and then alert, log, and prevent any unwanted and malicious packets; it will 

drop or leave outstanding packets without analysis if the speed of a network’s traffic is higher than 

Snort’s processing limit. Snort will also miss detection and prevention of unwanted traffic in this 

circumstance. The performance of an NIDPS could be described as ineffective if the NIDPS is unable 

to detect or stop unwanted packets that could reach the system. Based on literature review in chapter 2 

and experiment 12 in chapter 4, there are two main causes of ineffective NIDPS: buffer size and 

processing speed. 

When traffic moves through the network interface card (NIC) to the NIDPS node, the packets 

are stored on the buffer until the other relevant packets have completed transmission to processing 

nodes. In the event of high-speed and heavy traffic in multiple directions, the buffer will fill up. Then 

packets may be dropped or left outstanding (Kishore, Hendel, and Kalkunte 2015, Naouri and 

Perlman 2015 and Zhu et al. 2015). In this case, there is no security concern about the packets 

dropped; the packets are dropped outside the system. The outstanding packets that are waiting or have 

not been processed by the NIDPS node may affect the system, however. 

Packets can also be lost in a host-based IDPS. Most software tools use a computer program 

such as the kernel, which manages input/output (I/O) requests from software and decodes the requests 

into instructions to direct the CPU’s data processing. When traffic moves from the interface (NIC) 

through the kernel’s buffer to the processor space, where most of processing nodes are executed, the 

packets will be held in the kernel buffer before being processed by the CPU. When some nodes 

experience a high-volume of data, the buffer will fill up and packets may be dropped.  

Configuring the kernel parameter can enhance kernel performance by increasing the level of 

optimization and selecting multivariate features such as kernel complex quantitative near-infrared (K-

NIR), kernel support vector regression (k-SVR), or kernel partial least squares (K-PLS) to improve 

the accuracy of packet processing (Salah and Kahtani 2009, Wu, Cadambi, and Chakradhar 2015, 

Fraser et al. 2015, Lee et al. 2015 and Lutz, Fensch, and Cole 2015). In order to hold and process 

packets quickly, these kernel performance enhancements pull a high value of packets from interfaces 

and bind them with obtainable CPU cycles, which limit packet speed and time and have no buffer 

memory. Furthermore, it requires a great deal of CPU to process a vast amount of data buffered in the 

kernel; the CPU cycles may run out of time. In this case, the packets that were dropped in the kernel 

and NIC might drop very early in the CPU cycles, which cannot buffer packets (Smith et al. 2014 and 

Emmerich et al. 2015). In the cases of network, host, and processor packet loss, NIDPS is affected 

because packets are dropped before reaching the NIDPS node or dropped after reaching the node but 

before matching packets with the signatures database. 
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This research does not focus much on the network-based packets drop, because these are 

dropped out of the system and lost before they reach the NIDPS. Packets dropped after having been 

received by the NIDPS are of greater security concern, and thus are the focus of this research. Such 

packets might reach the target systems when they are missed by the NIDPS. This study also focuses 

on outstanding packets based in the NIC network. In order to solve the problem of dropped packets in 

NIDPS, the researcher investigated the use of a QoS configuration in layer-3 switches with parallel 

NIDPS technology to organise and improve the interval packets processing speed. The increased 

speed should improve throughput performance of NIDPS, even during a high-speed, high-volume 

traffic environment. 

One mechanism that QoS offers is queue technology, which can give a switch a new logical 

throughput-traffic-forwarding plan. A configurable QoS offers two input queues and four output 

queues at the physical switch interfaces, which might be switch virtual interfaces (SVIs) or ports. As 

Figure 5.1 shows, the switch interface has been configured to have two input queues and four output 

queues. The queues parameters were configured to allow queues to process traffic as a group of bytes. 

These load a set of packets equally among the queues and divide traffic into parallel streams in order 

to increase the rate of packet processing. The system then uses parallel NIDPS to increase the NIDPS 

throughput performance and analyses each portion of traffic separately to determine whether it is free 

of malicious codes. 

A class map and a policy map were made for each input queue. The class map recognises and 

classifies a certain type of traffic for each input queue, while the policy map controls and organises 

the speed limit for each input queue and applies the limit to all interfaces. The bandwidth, threshold, 

buffer, memory reservation, and priority (queue and traffic) were configured for all ingress and egress 

queues to treat and control traffic in order to help prevent congestion or complete failure through 

overload. 

To guarantee the bandwidth for an interface including ingress and egress queues, one of two 

functions can be used inside the switch: Shaped or Share Round Robin (SRR). Network devices such 

as switches and routers can classify all traffic that flows through. The Shaped task only exists on 

output queues. With it, a queue books a percentage of a total port’s bandwidth and this is guaranteed 

to that queue and cannot be shared with other queues The Share function (SRR) operates on both 

input and output queues. It guarantees a queue a portion of a total port’s bandwidth, but this 

bandwidth can be shared with other queues if it is unused. Figure 5.1 shows the architecture of the 

system. The Share queue has been configured for two input queues to use the maximam efficiency of 

queue capacity and help prevent congestion each output queue has an individual configuration using 
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the shaped queue to control and organise traffic speed for each output queuewhich is processed 

separately via parallel NIDPS nodes. 

Figure 5. 1: Novel architecture for NIDPS. 

One queue was configured as an expedited queue. It prioritised QoS services and did not 

service other queues until the bandwidth of prioritised queue reaches its limit. A memory buffer 

reservation technique was set on the proposed novel configuration for each queue to guarantee that 

each queue’s buffer could attain more space once it reached its limit by reserving space from an 

available queue buffer, from SVI or port interfaces’ memory buffers, or by switching to a common 

memory pool buffer. However, headers such as ICMP, TCP, and UDP as well as malicious packets 

have different characteristics and techniques. The SRR, threshold, and priority methods for each 

output queue and ACLs offer a wide range of opportunities to deal with the behaviours of different IP 
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headers and malicious packets. For example, when all input and output queue buffers are flooded with 

traffic, priority queue and threshold map values can deny buffer overflow. 

The main idea of this novel configuration design is to manage and allocate a specific traffic 

weight, or set of bytes, into each input queue and process each output queue individually in parallel, 

thereby increasing NIDPS processor speed and reducing traffic congestion, even if the traffic is high-

load and high-speed. 

5.3 Technical Discussion of QoS and Parallel NIDPS Configuration 

A network intrusion detection and prevention system (NIDPS) is contingent upon the nodes 

being able to see the traffic on the network between source and destination targets. Traffic 

identification is frequently prepared at the network border by employing the node on a mirrored port 

arranged to send the node a copy of the entire packet flow in and out of the network. When some of 

these packets fail to reach the NIDPS node for analysis, packet drop may occur. The NIDPS node 

drops/loses the packets because it cannot see them or packets (traffic) bandwidth is over its limit. Two 

(2) types of packet loss (drop) may occur: packets are dropped before reaching a system; and packets 

are dropped after reaching a system. 

Figure 5. 2: General model of buffer packets drop. 

However, there are three (3) places that packets could be dropped: in the network, in the host 

or in the processor, because all of them are dependent on buffer size and processing speed. If the 

arrival packet speed rate (λ) is greater than the network or host buffer speed rate (β), dropped (λ𝑑 > 
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0) packets may occur (see Figure 5.2), and even increasing the buffer speed can affect processor 

speed and cause packet drop. 

Dropped (λ𝑑)  and outstanding packet (λo) rates range from > 0% to nearly 100% of n packets 

dependent on the traffic arrival speed and traffic load. Various traffic is applied at different speeds (λ) 

and is organised through the configuration in datasets of bytes. The resulting abridged datasets are 

analysed at the NIDPS node to show analysed packet rates and lost packets rates (dropped or 

outstanding packets rates). 

For network based packet loss, the NIDPS node fails to analyse this traffic (packets) because 

the network drops packets and the node cannot see them. Packet loss has no negative impact on the 

node’s ability to detect or prevent internal malicious packets, but it does have an impact on the 

receiving system in that useful packets would not be delivered. In host based and processor based 

packet loss, the NIDPS node has analysed this traffic because these packets have reached the host 

system but the NIDPS node has not been able to process them. This kind of packet loss has a negative 

impact on the node’s ability to detect or prevent attacks. In this research, a novel design based on a 

Layer 3 network switch was proposed to reduce this kind of packet loss. 

Figure 5. 3: Positioning of CoS and DSCP values. 

A layer-3 switch enables a network to get the best performance effort from a network traffic 

delivery system. Through it, packets of various priorities can be delivered on network in a timely 

manner. When networks experience high-speed and heavy traffic, each packet has a similar chance of 

being dropped or modified. Implementing QoS methods, such as queueing, memory reservation, 

congestion-management, and congestion-avoidance techniques, can yield preferential treatment to 
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prioritise traffic according to its relative importance. Furthermore, QoS technology ensures that 

network performance is more predictable and that bandwidth utilization is more effective (Cisco 

2014a:42). QoS can be configured on physical interfaces such as ports and SVIs (Szigeti et al. 

2013:294-299 and Cisco 2016a:826). 

By default, most of the switches work in layer 2, which is the data link layer. The switches 

use the class of services (CoS) value (see Figure 5.3), which enables differentiation of the packets 

(Szigeti et al. 2013 and Cisco 2016a:827-828). However Layer 2 provides insufficient methods to 

support switch features such as QoS features, dynamic access control lists (ACLs), VLAN features, 

static IP routing, and policy-based routing (PBR) Cisco-default Smartports (Cisco 2014b, Bul'ajoul, 

James and Pannu 2015 and Cisco 2016a). 

Other mechanisms operate at Layer 3 (see Figure 5.3). For example, differentiated services 

(DiffServ) allow different types of services to be offered depending on a code (configuration). 

DiffServ allows a policy that gives priority to a certain type of package (Szigeti et al. 2013, Cisco 

2014a:42 and Cisco 2016a:827-828). DiffServ architecture is the basis for the QoS implementation in 

this research. It assigns each packet a classification upon entry that states its priority and its likelihood 

of being delivered into a network before packets are distributed. It adjusts each packet for different 

traffic speeds to ensure timely delivery. 

This item has been removed due to 3rd Party Copyright. 
The unabridged version of the thesis can be found in the 

Lanchester Library, Coventry University

Figure 5. 4: QoS classification bits in frames and packets (Cisco 2014a:11and Cisco 2016a:828). 
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Figures 5.3 and 5.4 illustrate the relative layers at which CoS and Differentiated Services 

Code Point (DSCP) operate. QoS has supported the use of both values because DSCP values are 

backward-compatible with IP precedence values. Layer-3 DSCP values range from 0 to 63, while IP 

precedence values range from 0 to 7 (Szigeti et al. 2013:191, Cisco 2016a:827:830-833). 

The static and dynamic classification methods involved Layer 3 header information matching. 

The IP precedence or DSCP value indicated the type of service required. For example, a dynamic 

classification access list can be used to identify what IP traffic can be placed into a reserved queue. 

Classification can also take place in the Layer 2 frame. Packet classification should occur 

close to the edge of the network because it is processor-intensive and every hop must decide how a 

packet should be treated. Setting the type of service (ToS) field in the IP header can be used to 

achieve a simpler classification which can be carried with the packet across the network (Szigeti et al. 

2013:32 and Cisco 2016a:830-833). In Layer 2, 802.1Q and 802.1p frames use 3 bits for the IP ToS 

field; in Layer 3 IPV4 packets use 6 bits for DSCP in the ToS field to carry the classification 

information (see Figure 5.4). Regardless of a network’s capability to identify and classify IP packets, 

hops can offer each IP packet a QoS service. Special techniques can be configured to approve a 

priority queue in order to ensure that a large data packet does not interfere with transmission. 

“If a node can set the IP Precedence or DSCP bits in the ToS field of the IP header as soon as 

it identifies traffic as being IP traffic, then all of the other nodes in the network can be classified based 

on these bits. In most marking of IP networks, IP Precedence or DSCP should be sufficient to identify 

traffic as IP traffic” (Szigeti et al. 2013:191-247 and Cisco 2016a). 

In the configuration method utilized by this research, the first action changes the switch frame 

from Layer 2 to Layer 3 by mapping values from CoS to DSCP (See Appendix1:Section 1. Part 1). 

Because differentiated services technology can offer more precise handling of traffic on the network, 

can classify each packet upon entry into the network interfaces, and allows for adjustments to be made 

for different traffic speeds and loads, the researcher considered DSCP to be the best choice for the 

intended usage. The mapping action between values determines the delay priority of the packets. CoS 

has 8 values and DSCP has 64 values. Thus, the DSCP values allow for a higher degree of 

differentiation (Szigeti et al. 2013 and Bul'ajoul and Pannu 2015). 

QoS features such as a policy map and class map can be given preliminary management to 

classify the traffic inside the switch with the same policy and class plan; different management can be 

given to packets with different class and policy plans (Szigeti et al. 2013:32 and Cisco 2016a:833). 

Classification is the process of identifying the data packets to a class or group in order to manage the 
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packet appropriately (Szigeti et al. 2013a). Network devices use several match criteria to place 

packets into classes that can be intensively processed if nodes must repeat classifications based on 

access list matches. The class information can be assigned by switch, router, or end host. Therefore, 

the node will mark packets as soon as they are identified and classified. Policing involves creating a 

policy that defines a group weight for the traffic (the number of bytes to be processed together) and 

applies it to the interface. Policing can be applied to a packet per direction and can occur on the 

ingress and egress interfaces. Different types of traffic can be recognised in terms of type and ports, 

and differentiated policies can be set accordingly. 

Network QoS technology enables the implementation of a new logical and throughput-traffic-

forwarding plan in the switch. For the purpose of this research, a physical interface was configured to 

two input queues and four output queues (See Appendix 1: Section 1. Part 1). This configuration helps 

to prevent congestion traffic (which would cause buffer overflow) and helps to improve buffer 

throughput performance. A buffer was set for each queue and a memory reservation method using a 

dynamic memory reservation technology was created and implemented in order to organise and hold 

more traffic. After all packets were placed into input queues, class and policy maps were implemented 

to packets based on their QoS requirements (See Appendix 1: Section 1. Part 3). Appropriate services 

were then provided, including bandwidth guarantees, thresholds, queue setting, and priority servicing 

through an intelligent ingress and egress queueing mechanism (See Appendix 1: Section 1. Part 3, 4 

and 5). 

The packets’ class map information is assigned along the path of a switch. QoS users can use 

this information to limit the volume of incoming packets distributed to each traffic class. The default 

behaviour in Layer 3 switches handle packets using the DiffServ architecture using “per-hop” 

behaviour (Szigeti et al. 2013:6:940-941 and Cisco 2016a:828,). If a switch along the path does not 

provide a consistent behaviour per hop, QoS provides a conceptual and constructed solution, such as 

an end-to-end queue solution. The solution is based on a configurable policy map that allows the 

system to examine packet information closer to the edge of the network, which helps prevent the core 

switch from experiencing overload. The output queues are processed individually where parallel Snort 

NIDPS nodes are implemented (each output queue has own NIDPS node) (see Figure 5.5) in order to 

enhance the performance of NIDPS and increase packet processing speed. 

Queues and class and policy map technologies can use access control lists (ACLs) to allow 

the processing management of different types and patterns of incoming and outgoing packets (Cisco 

2014b:1). The novel configuration proposed in this research uses an ACL technology with a class map 

and SVI queues, as well as a policy map that specifies each type of IP traffic to be processed by 
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implementing parallel output queues with associated parallel NIDPS nodes (see Figure 5.6) (See 

Appendix 1: Section 1. Part 2).  

Figure 5. 5: Parallel Snort-NIDPS Using QoS and ACLs. 

Figure 5. 6: Snort NIDPS parallel node. 
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This novel QoS configuration includes a novel architecture of packets classification as well 

(see Figure 5.7). Data were classified through a class map that which enabled packets to be processed 

as a group of bytes (See Appendix 1 :Section 1. Part 2) defined by a policy and ACLs that were 

matched with DSCP values. A policy map was made to specify what traffic classes should inspire 

action. The following actions constitute the method: 

• Classify the ACL traffic with a class map for SVI and ports 

• Organise a rate-limit for each group of bytes for the class traffic 

• Establish the matching of DSCP values with classes 

• Set a particular DSCP value to be mapped with classes 

After packets were classified and policed with a specific bandwidth, some were dropped out 

of the profile. Each policy can specify what actions should be carried out ( Szigeti et al. 2013 and 

Cisco 2016a:833), including dropping packets, allowing dropped packets to be modified, allowing 

packets to pass through without modification, and deciding on a packet-by-packet basis whether a 

packet is in or outside the profile. This novel QoS policy map architecture was proposed as follows: 

• Packets dropped were modified to be re-processed again and mapped with new DSCP 

values based on the original QoS label. 

• When packets are reprocessed, they may get out of order. To prevent this, a policy 

was designed to allow packets to be re-processed in the same queue as the original 

QoS label. 

• The system has the ability to mark up a limit speed (as a set of bytes) for each input 

queue. 

• If packets are not matched with DSCP values, packets will be dropped. See Figure 5.7 

for an illustration of the architecture (See Appendix 1:Section 1 .Part 2 ). 

A hierarchical policy map was created and applied it to the traffic path inside the ingress 

physical queues. The policy map targeted SVIs and ports. Two types of QoS policy were created: 

individual and aggregate. Individual QoS applies a separate policy to specify a bandwidth limit for 

each traffic class. Aggregate QoS specifies an aggregate policy with which to apply a bandwidth limit 

to all matched traffic flows. The individual policer only affects packets on a physical port. 

Furthermore, if more than one type of traffic needs to be classified, it is possible to create more ACLs, 

class maps, and policy maps (Szigeti et al. 2013). In our experiments, three types of traffic (TCP, 

UDP, and ICMP) were classified using three criteria groups: ACL, class map, and policy map. Each 

type of traffic matches an instance of these related criteria groups and enables the matching time of 

arrival traffic with NIDPS node to be reduced (See Appendix 1 : Section 3 ). 
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Figure 5. 7: Novel architecture of packet classification and marking. 
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Switches receive each traffic frame in a token bucket (Szigeti et al. 2013:62 and Cisco 

2016a:835), which is defined as an algorithm used in packet switches to check leaks of data 

transmissions. It is set at the same rate as the configured average packets rate and conforms to defined 

limits on bandwidth to allow a burst of traffic for short periods. It is used in traffic policy mapping to 

prevent the problem of the bucket hole overflow. Each time a token is added to the bucket, the 

algorithm checks to see if enough room is available in the bucket. If not, the packets will be marked as 

non-conforming, and the specified policy action will be taken. In the novel QoS architecture of this 

research, packets dropped out of profile were marked down with new DSCP values and the DSCP 

value was modified to generate a new QoS label (see Figure 5.8) (See Appendix 1:Section 1.Part 2). 

Figure 5. 8: Novel architecture of packet policing and marking. 

During traffic classification, QoS employs configurable map tables to match a corresponding 

DSCP from a received CoS, IP precedence, or DSCP value. If DSCP values are different between 
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QoS domains, a configurable mutation map (DSCP-to-DSCP values) can be used. Throughout QoS 

policing, the DSCP value is assigned according to the IP traffic. This value assignment creates a 

policed-DSCP map (Szigeti et al. 2013 and Cisco 2016a). 

Figure 5. 9: Novel scheduling architecture for ingress and egress queues. 
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QoS stores packets in input and output queues according to the QoS label, which is defined 

and identified by the DSCP values in the packets. Threshold map values can be selected through the 

DSCP ingress and egress values. The QoS label also identifies the weighted tail drop (WTD) 

threshold value (Szigeti et al. 2013:260 and Cisco 2016a:838). In the novel QoS architecture created 

in this research, WTDs were employed on ingress and egress queues to cope the bandwidth length of 

each queue and deliver the drop precedence for different classifications of packets (See Appendix 

1:Section 1. Part 2, 4 and 5). As each packet is assigned to a specific ingress and egress queue, WTD 

allows the packets assigned under the QoS label to be subject to different thresholds. If the available 

space on a destination queue is less than the volume of packets, the threshold is exceeded for that QoS 

label and the switch drops the packet (Szigeti et al. 2013:260 and Cisco 2016a:839). In this research 

(see Figure 5.9), DSCP values were mapped to ingress and egress queues and located buffer space. 

WTD thresholds for input and output queues were set. Each queue has three drop thresholds. This 

means that different thresholds can be set for different types of packets. Each value of the threshold 

represents a percentage of the queue’s total buffer. Furthermore, one of the important techniques that 

used in the QoS architecture is a buffer reservation. 

Buffers are universal throughout the software and hardware layers of any network computer 

system. They are valuable in reducing the impact of traffic rate variability on the network especially 

in the case of traffic rate points. By having sufficiently large buffers to absorb traffic rate spike, high 

latencies associated with retransmissions and lost data (traffic) can be avoided. They are also useful if 

there is a temporary difference in the rate at which traffic is produced and consumed. However, 

increasing the buffer size cannot compensate for packet processing that is perpetually slower than the 

packet arrival rate. A switch may have different buffer configurations. The total rate of all buffers is 

β; and each ingress and egress buffer of an interface is limited to rate α. The same α applies to all 

interfaces. The rate of a buffer is the speed at which packets move out of it and this depends on the 

underlying processing system. 

The multi-interfaces switch manages buffering across a number of ingress interfaces (ports). 

An ingress interface has ingress buffers connected to common egress buffers. The switch algorithm is 

also responsible for scheduling. At each event of scheduling, the switch algorithm selects one of the 

ingress buffers. The packet at the head of the selected buffer is then transmitted to the inside at the 

switch and via the egress buffer to the target system. There are some formulations that model the 

entire switch rather than just one interface (Kawahara, Kobayashi and Maeda 2015). For example: a 

switch consists of n ingress and n egress interfaces, where each interface has buffer. An arrival event 

(packets) arrives at the ingress interfaces (which have specified destination egress interfaces) . At the 

scheduling event, packets at the top end of the ingress interface buffers are sent to the egress interface 

buffers. Here, the switch algorithm matches the packets in the ingress and egress interfaces. 
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According to this matching, the packets in the ingress interfaces will be transmitted to the 

corresponding egress interfaces. In this scheduling task, there is also a buffer for each pair of ingress 

and egress interfaces. Thus there arises anther buffer management problem at scheduling phases. In 

the implementation of QoS architecture proposed in this thesis, QoS DiffServ was used to assign a 

value to each packet according to its importance and then it decides the order of packets to be 

processed through queues based on the value of packets. Additional buffers were provided 

dynamically to the ingress and egress interfaces. A QoS switch was used to control the input and 

output traffic. A priority queue was implemented for one of the ingress queues in an interface. 

By default, the ingress buffer rate is the same as egress buffer rate. However, when the arrival 

event of traffic (packets) rate (λ𝑖𝑛𝑖 
) is more than total rate of egress buffers, or one of n egress buffers 

already reached α , the packets would be dropped (λ𝑑>0). In the novel configuration, Sharing policy 

α 
was configured for each ingress-queue’s buffer which corresponds to rate and the egress-queue’s 

2 

α 
buffer was to rate , where α is the maximum rate for the interface’s buffer. All buffers were 

4 

assumed to have the same maximum rate. 

WTD (Weighted Tail Drop) is employed on the queues to manage the queue lengths and to be 

responsible for drop precedence for different packets classification. It used the frame’s assigned QoS 

label to subject it to different thresholds. If the thresholds are exceeded for that QoS label (the 

available buffer space in the destination queue is less than the size of n packets), the switch drops n 

packets (Cisco 2016a:839 and Szigeti et al. 2013). In the QoS configuration proposed in this thesis, 

each ingress queue was assigned to a specific threshold value (See Appendix 1:Section 1. Part 3, 4 

and 5, Section 2). Each value of the threshold holds a percentage of the ingress interface’s buffer 

space. One of ingress queues was assigned to maximum queue threshold (the queue can hold up to its 

limit of frames at up to ≤ 100% threshold). The other ingress queue was assigned to minimum queue 

threshold (the queue can hold up to minimum of queue frames at < 100% threshold). A high-

threshold queue was configured as a high-priority queue (See Appendix 1:Section 2), where 

percentage of maximum queue threshold ≤ 100 (non-empty queue) and a low-threshold queue was 

configured as a low priority queue, where minimum queue threshold < maximum queue threshold. 

A buffer reservation technique has been used to increase buffer size along with implemented 

parallel nodes of buffers to increase buffer speed performance. A switch buffer’s memory space was 

divided between the switch common memory pool, the SVI, and the queue reserved pool (see Figure 

5.10). a specific buffer memory space was defined for each queue, including ingress and egress 

thresholds. Packets were divided between two ingress and four egress queues via configured queue-

sets. A buffer distribution scheme was implemented to reserve more space for each egress buffer. 
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Thus, all buffers cannot be consumed by one egress queue, and the system can manage whether 

funding buffer space to demand queue. The remaining free common pool interfaces were set to 

reserve up to 50% of the available switch memory pool. 

Figure 5. 10: : Novel egress queue buffer reservation. 

A switch identifies whether the target queue has consumed less buffer space than its reserved 

volume (under-limit), whether the target queue has consumed all of its reserved amount (over-limit), 

and whether the switch memory pool is empty or not (no free buffers and free buffers, respectively). If 

the queue is not over-limit, the switch can reserve a buffer space from the interface pool or from the 

switch common memory pool. If no more space is available on the common pool or if queues are 

over-limit, the switch drops the packet. 

After traffic has been classified, marked, and policed in two ingress queues, each packet is 

processed into four output queues that implement parallel NIDPS nodes. QoS also offers Shaped or 

Share Round Robin (SRR) technologies, which can vary the bandwidth, provided for the queues in the 

interface and control the rate at which packets are sent ( Szigeti et al. 2013:260 and Cisco 2016a:840). 

The Shaped function SRR can guarantee each queue a bandwidth limit, but queues cannot share with 

each other if one or more queues reach their bandwidth limits. The Share function SRR can guarantee 

a bandwidth limit for each queue, and the other queues can share with each other if one or more 

queues reach their bandwidth limits. This research utilised Share in the ingress queues and Shaped in 

the first three egress queues. In the fourth queue, the Share mode was set to allow the queue to share 

process traffic with other available output queues (See Appendix1: Section 1. Part 4 and 5 and Section 

2). 

Queue technology is placed at specific points in Cisco switches to help prevent congestion 

(Szigeti et al. 2013 and Cisco 2016a). The total inbound bandwidth of all interfaces may exceed a ring 
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space of internal bandwidth. After packets are processed through classification, policing, and 

marking, and before packets pass into the switch fabric, the system allocates them to input queues. 

Because multiple input queue interfaces can simultaneously send packets to output queue interfaces, 

outbound queues are allocated after the internal ring in order to avoid congestion. The SRR ingress 

queue transmits packets to the internal ring, while the SRR egress queue sends the packets to the 

output link. 

The novel configurable architecture has a large limit of buffer space and a generous 

bandwidth allocation for each queue. One of the ingress queues was set as a priority queue, which 

allowed the system to prioritise packets with particular DSCP values and thereby allocate a large 

buffer. It also allows buffer space to be used more frequently, and then adjusts the thresholds for each 

queue so that packets with inferior priorities are dropped when queues are full. This allows the system 

to ensure that high priority traffic is not dropped. 

For more information, when the traffic comes to the interface, the packets are buffered in the 

priority ingress buffer (priority queue) and if the priority buffer is getting full, the traffic will transmit 

to the second ingress buffer. If all ingress buffers are getting full, the packets will be dropped or the 

switch can reserve another ingress buffer (which has the same priority) up to n, where n is the 

maximum number of ingress buffers. The formulae apply in one interface when there are two ingress 

queues and four egress queues. 

When the λ𝑖𝑛𝑖 
is the arrival rate of packets, the rate for each ingress queue in one interface is 

λ𝑖𝑛𝑖 
λini⁄ .The output rate of arrival packets is ⁄ for each queue j in an interface i. The output rate 2 4

4 λ𝑖𝑛𝑖 𝑛(λ𝑜𝑢𝑡) of packets for one link is ∑𝑖=1 ⁄ . The arrival traffic rate (λ𝑖𝑛) is ∑𝑖=1 λ𝑖𝑛𝑖
; The λ𝑖𝑛 is 4

the highest arrival traffic rate when i=n; and n is the maximum number of output links (interfaces). At 

the highest supported arrival rate the maximum number of output queues will have been λ𝑖𝑛, 

λ𝑖𝑛⁄4⁄ λ𝑖𝑛configured and the output rate for each output queue is = ⁄ . The highest output traffic 𝑛 𝑛4 

𝑛 4 λ𝑖𝑛rate of n packets (λ𝑜𝑢𝑡) is ∑ (∑ ( ⁄ )).i=1 j=1 𝑛4 

In other hand, when the arrival packets pass through ingress buffers at speed rate (λ𝑖𝑛𝑖 
), the 

traffic (packets) speed (λ𝑖𝑛𝑖
) was re-controlled as an interface speed limit (μ) (group of bytes per 

second) to organise and improve performance of ingress traffic speed, and then the traffic is stored in 

its range space, where packets were arranged and managed to exit the interface through egress queues 

(See Appendix 1 Section 1. Part 2). 
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Every arrival packet needs to be sent out of an ingress interface and then placed in egress 

buffers which permit an interface to hold packets when there are more packets to be transmitted than 

can physically be sent (experiencing congestion). If the switch cannot allocate enough buffers to hold 

all incoming traffic, the packets will be dropped. Availability of egress buffers determine if a packet is 

transmitted or not. When it comes to reducing packet drop, the switch does not concern itself with 

packets. Rather, it is concerned with the number of requested (reservation) buffers to which 

unbuffered packets can be added. The volume of egress buffering differs from platform to platform. 

Typically, two (2) reservation pools are available for Layer 3 network switches. These pools are the 

SVI reserved pool and the switch memory common pool. The switch memory common pool is used 

when the SVI reservation pool has previously been consumed. 

Figure 5. 11: Reservation buffer from n node of switches (η_n). 

Furthermore, when packets (traffic) go through the output queues, the switch reserves buffers 

from the SVI reservation pool for all egress buffers and then if one egress buffer is fully consumed, 

the consumed egress buffer can reserve buffer space from the available buffers of other egress queues. 

When the SVI reservation pool is consumed by all egress buffers, it reserves more buffer from the 

switch memory command pool (see Figure 5.10). If all the switch’s buffers are consumed, the packets 

will be dropped because no more space will be available. 

All ingress and egress buffers above are collectively called one node of the switch’s buffer 

(η𝑖). The common memory switch pool is the “holdup” storage area, where packets are held until they 
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can be processed. If the holdup area is full, more reservation buffer can be achieved by reserving 

memory from another switch memory pool in the network (see Figure 5.11) and even can be from 

outside networks. However, all egress buffers were controlled to limit rate β𝑘 (kernel buffer speed) to 

prevent host based dropped packets. The kernel buffer rate (speed) should be the same as output 

queue.  

In sensible implementations, limited buffers always have been implemented. If all the buffer 

space is already consumed, the arrival of additional packages causes buffer overflow. A buffer’s 

queues, priority and threshold methods are part of the classification mechanisms that are responsible 

for dealing with the excess traffic. One of the possible measures taken because of buffer overflow is 

dropped packets. 

5.4 Conclusion 

NIDPSs are often unable to detect or prevent all unwanted traffic or malicious activities when 

traffic comes in at high-speeds and volumes. As a solution, this chapter has described a novel 

architecture that exploits Layer 3 Cisco switch technology, combined with parallel NIDPS nodes, to 

create queues with specific buffer and bandwidth sizes. The system thus increases queue buffer size 

automatically up to a network limit. It also services buffer space from an available queue buffer, port 

buffer, or switch pool memory buffer in order to hold more packets. This allows the system to 

organise and increase the processing speed of arriving packets by setting a number of parallel queues 

to be processed by parallel NIDPS nodes. The number of parallel processing NIDPS nodes needed in 

any particular system depends on network arrival rates. Therefore, it was necessary to operate with the 

class and quality of service technologies within the network switch. QoS DiffServ, including CoS and 

DSCP values, and a buffer reservation method were exploited in the proposed architecture which aims 

to reduce dropped buffer packets in egress queuing traffic in order to improve NIDPS performance. 

Property categories such as queue technology including ingress and egress, priority queue and 

thresholds, queue bandwidth, classification and policy methods including ACLs, buffer queue 

memory reservation and switch memory pool reservation are also important factors in the proposed 

solutionAn assumption is that there will be an underlying parallel implementation of the target 

destination (NIDPS in this case) and for each egress buffer commissioned there will be a port to a 

parallel node of the target system This will enable better performance and higher volumes of traffic to 

be processed successfully.The evaluation of the proposed solution is presented in the next chapter. 

96 



 

 

 

 
 

 

       

 
 

   

      

   

         

        

   

 
 

      

      

      

       

  

 

   
 

  

 

   

 

  

 

   

       

        

   

 

         

     

   

 

  

    

  

 

       

CHAPTER 6: EVALUATION OF THE PROPOSED SOLUTION 

6.1 Introduction 

This chapter presents an evaluation of the proposed solution of using a novel QoS architecture 

with parallel technology to improve NIDPS performance. The research uses Snort IDS in network 

based IDPS, which is configured to three modes (NIDPS analysis mode, detection mode and 

prevention mode). Experiments were conducted to test Snort NIDPS performance under high-speed 

traffic. It was demonstrated that Snort NIDPS performance (analysis, detection and prevention) rate 

can be increased by using the proposed solution 

6.2 Evaluation of the Solution 

In this section, two types of experiments were ran for each NIDPSs mode, one to test Snort’s 

performance in terms of throughput without the support of the proposed solution (QoS and parallel 

technologies) and one with the proposed solution. Each experiment tested Snort NIDPS throughput 

when analysing traffic such as TCP/IP headers and when detecting or preventing unwanted traffic or 

malicious packets in a high-speed traffic. 

6.2.1 Summary of experiments for evaluating the solution 

The experiments evaluation carried out are shown in Table 6.1, along with their purpose. 

Table 6. 1: Summary of experiments 

Experiment 

Number 

Purpose Section in 

Thesis 

Evaluate QoS technology proposed solution 

13 Evaluate the proposed solution to NIDPS analysis mode under high-speed traffic 6.2.2 

14, 15, 16 and 17 Evaluate the proposed solution to NIDPS detection mode under high-speed ICMP, 

UDP and TCP traffic and malicious packets. 

6.2.3 

18 Evaluate different rules to detect malicious packets under high-speed traffic 6.2.4 

19 and 20 Evaluate the proposed solution to NIDPS prevention mode under high-speed 

TCP/IP traffic and malicious packets 

6.2.5 

Evaluate QoS and parallel technologies proposed solution 

21 Evaluate the proposed solution of using QoS and parallel technologies together 

under high-speed traffic 

6.3.1 

22 Evaluate the system under 8Gbps traffic speed 6.3.2 
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6.2.2 Evaluate NIDPS analysis mode (NID-mode) 

In this section, Snort NIDPS has been configured to sniffing mode. TCP/IP traffic been sent 

at speed 1ms (packets trip at 1 ms intervals). Two tests were done, the first one tested Snort without 

QoS and the second one test Snort with QoS. 

6.2.2.1 Experiment 13: Snort with and without QoS to analyse TCP/IP header in 
high-speed traffic 

In this experiment more than 38,000 packets (TCP/IP traffic) has been sent. Each packet was 

1KB in size and the interval between each transmission was 1ms. 

Figure 6. 1: Snort NIDPS without QoS in 1ms 

Figure 6. 2: Snort NIDPS with QoS in 1ms. 
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Table 6. 2 : Snort with QoS reaction to TCP/ IP Header in high-speed traffic. 

Test 

type 

The 

number 

of 

Packets 

received 

Total packets 

analysed 

of total 

the packets 

received 

Packets 

dropped 

of total 

packets 

received 

Packets 

filtered 

of total 

packets 

received 

Packets 

outstanding 

of total 

packets 

received 

Packets 

rejected 

of total 

packets 

received 

% 

packets 

analysed 

% 

packets 

dropped 

% 

packets 

outstanding 

Without 39809 6760 33049 0 33049 0 16.981% 45.361% 83.019% 

QoS Snort Processor Times = 64s -> (Pkts/min:6760 - Pkts/sec:105) 

With 40210 40209 0 0 1 0 99.998% 0.00% 0.002% 

QoS Snort Processor Times = 250s-> (Pkts/min:10052 – Pkts/sec:160) 

TCP/IP Traffic TCP/IP Traffic with (QoS)

 Packets Received 100% 100%

 Packets Analysed 17% 100%

 Packets dropped 45.36% 0.00% 

Packets filtered 0% 0.00% 

Packets outstanding 83.02% 0.00% 

Packets injected 0% 0% 
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Analysis TCP/IP Header 

Figure 6. 3: Snort NIDPS with QoS reaction to TCP/IP in 1ms. 

As the results in Figures 6.1, 6.2 and 6.3 show, all packets that were sent have been received 

by the machines. Figure 6.1 demonstrates that Snort without QoS analysed just less than 17% of the 

traffic that reached the wire with more than 45% dropped and more than 83% outstanding (see Table 

6.2 and Figure 6.3). When the same experiment was run with QoS, Snort analysed nearly 100 % of 

the total packets that it received with 0 % dropped and 0.002% outstanding packets (see Figure 6.3). 

The results show that Snort performance analysis is significantly improved when using QoS 

technology. 

6.2.3 Evaluate NIDPS detection mode (NID-mode) 

In this section, we ran four experiments, each to test Snort’s detection rate with and without 

support a QoS technology for a particular type of header or packet. The headers and packets were 

ICMP, UDP, TCP and malicious packets sent in speedy traffic. 
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6.2.3.1 Experiment 14: Snort with QoS reaction to detect ICMP header in high-
speed traffic 

In this experiment, more than 38,000 IP/ICMP packets were sent in interval traffic (packets) 

speed of 1ms. Each packet carried 1Kbyte. The aim was to detect IP/ICMP packets. 

Figure 6. 4: Snort detects ICMP header in 1ms. 

Figure 6. 5: Snort with QoS detects ICMP header in 1ms. 

Table 6. 3: Snort with QoS reaction to ICMP Header in high-speed traffic. 

Test 

type 

The 

number 

of 

Packets 

received 

Total 

packets 

analysed 

of the total 

the packets 

received 

Total 

Eth packets 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

packets 

analysed 

ICMP 

packets 

alerts 

ICMP 

packets 

logged 

% 

packets 

alerts 

% 

Packets 

logged 

Without 39121 37.259% 100% 14438 0 97 7220 7220 50.007% 50.007% 

QoS Snort Processor Times = 155s -> (Pkts/min:7228 – Pkts/sec:94) 
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With 38668 99.943% 100% 37393 0 757 37393 37393 100.00% 100.00% 

QoS Snort Processor Times = 293s -> (Pkts/min:9661 – Pkts/sec:131) 

ICMP Packets Detected ICMP packets detected( QoS)

 Packets Analysed 100% 100%

 Packets Alerts 50.01% 100%

 Packets Logged 50.01% 100.00% 

0% 

20% 

40% 

60% 

80% 

100% 

120% 
P

e
rc

e
n

ta
ge

s 
o

f
p

ac
ke

ts
 

Detecting ICMP Header 

Figure 6. 6: Snort with QoS reaction to detect ICMP packets in 1ms. 

As the results show in Figures 6.5, 6.5 and 6.6, when more than 38,000 IP/ICMP packets 

were sent with an interval time of 1ms, Snort alerted and logged 7220 of the 14,438 ICMP packets 

that were analysed (see Figure 6.6 and Table 6.3). When the same number of packets was sent at the 

same speed, using QoS, Snort detected all of the ICMP packets that it analysed (see Figure 6.5 and 

6.6). This experiment shows that when Snort NIDPS was used without QoS, it only detected 50% of 

the total packets analysed, but when Snort was used with QoS, Snort detected 100% of the total 

packets that it analysed (see Figure 6.6). 

6.2.3.2 Experiment 15: Snort with and without QoS to detect UDP headers in high-
speed traffic 

In this experiment, more than 38,000 IP/UDP packets were sent at interval traffic speed of 

0.5ms. Each packet carried 1Kbyte. The aim was to detect UDP packets. 
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Figure 6. 7: Snort detects UDP header in 0.5ms. 

Figure 6. 8: Snort with QoS detect UDP header in 0.5ms. 

Table 6. 4: Snort with QoS reaction to UDP header in high-speed traffic. 

Test The Total Total ICMP TCP UDP UDP UDP % % 

type number 

of 

Packets 

packets 

analysed 

of the total 

Eth packets 

received 

of total 

packets 

analysed 

packets 

analysed 

packets 

analysed 

packets 

Alerts 

packets 

logged 

packets 

alerts 

packets 

logged 

received the packets 

received 

packets 

analysed 

Without 36213 12.391% 100.00% 763 0 59 4 4 6.780% 6.780% 

QoS Snort Processor Times = 59s -> (Pkts/sec:76) 

With 37783 99.942% 100.00% 0 0 37564 37257 37257 99.182% 99.182% 

QoS Snort Processor Times = 292 -> (Pkts/min:9440 – Pkts/sec:129) 
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UDP Packets Detected (no QoS) UDP Packets Detected (QoS)

 Packets Analysed 100% 100%

 Avrage Packets Alerts 6.78% 99.18% 

Avrage Packets Logged 6.78% 99.18% 
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Detecting UDP Header 

Figure 6. 9: Snort with QoS reaction to detect UDP packets in 0.5ms 

As the results show in Figures 6.7, 6.8 and 6.9, when the traffic (packets) was sent in an 

interval time 0.5ms, Snort only alerted and logged nearly 4 of the 59 UDP packets that were analysed 

(see Table 6.3). It detected fewer than 7% of all UDP packets that it analysed (see Figure 6.7 and 6.9). 

When Snort was used with QoS and was sent the same traffic and speed at 0.5ms, Snort detected more 

than 99% of the total UDP packets analysed (see Figure 6.9 and Table 6.4). This experiment shows 

that the Snort NIDPS performance detection improved from 7% to 99% when the QoS configuration 

was used (see Figure 6.9). 

6.2.3.3 Experiment 16: Snort with and without QoS to detect TCP header in high-
speed traffic 

In this experiment, more than 38,000 TCP/IP packets were sent at interval packets speed of 

0.5ms. Each packet carried 1Kbyte. The aim was to detect TCP packets. 

Figure 6. 10: Snort detects TCP headers in 0.5ms. 
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Figure 6. 11: Snort with QoS detect TCP header in 0.5ms. 

Table 6. 5: Snort with QoS reaction to TCP Header in high-speed traffic. 

Test The Total Total ICMP TCP UDP TCP TCP % % 

type number 

of 

Packets 

packets 

analysed 

of the total 

Eth packets 

received 

of total 

packets 

analysed 

packets 

analysed 

packets 

analysed 

packets 

Alerts 

packets 

logged 

Packets 

alerts 

Packets 

logged 

received the packets 

received 

packets 

analysed 

Without 32108 1.884% 100.00% 0 497 85 497 497 100.00% 100.00% 

QoS Snort Processor Times = 34s -> (Pkts/sec:17) 

With 31058 99.997% 100.00% 0 30057 779 30057 30057 100.00% 100.00% 

QoS Snort Processor Times = 322s -> (Pkts/min:6211 – Pkts/sec:96) 

TCP Pakcets Detected TCP packets detected (QoS)

 Packets Analysed 100% 100%

 Avrage Packets Alerts 100% 100% 

Avrage Packets Logged 100.00% 100.00% 
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Detecting TCP Header 

Figure 6. 12: Snort with QoS reaction to detect TCP packets in 0.5ms. 

Figures 6.10, 6.11 and 6.12 show that Snort detected 100% of the total TCP packets that it is 

analysed, even without QoS (see Table 6.5 and Figure 6.12). 

104 



 

 

 

 
 

 

     
 

 

    

           

 

 

 

     

 

 

       

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

6.2.3.4 Experiment 17: Snort with and without QoS to detect malicious packets in 
high-speed traffic 

In this experiment, flood traffic was generated with UDP malicious packets (threads) in 

traffic speed (60000Bps of flooded traffic with 225 threads sent at an interval time of 1 mSec). Two 

tests were conducted: one test of Snort without QoS and one of Snort with QoS. 

Figure 6. 13: Snort detects malicious packets in high-speed traffic. 

Figure 6. 14: Snort with QoS detects malicious packets in high-speed traffic. 

Table 6. 6: Snort with QoS reaction to malicious packets in high-speed traffic. 

Test 

type 

The 

number 

of 

Packets 

received 

Total 

packets 

analysed 

of the total 

the packets 

received 

Total 

Eth packets 

received 

of total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

packets 

analysed 

UDP 

malicious 

packets 

Alerts 

UDP 

malicious 

packets 

logs 

% 

packets 

alerts 

% 

packets 

logged 

Without 985686 1.004% 100.00% 0 0 793 270 270 34.048% 34.048% 
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QoS Snort Processor Times = 125s -> (Pkts/min:5090 – Pkts/sec:82) 

With 996005 99.999% 100.00% 0 0 995155 990344 990344 99.517% 99.517% 

QoS Snort Processor Times = 19.22m -> (Pkts/min:52421 – Pkts/sec:857) 
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Detecting Malicous Packets 

120% 

100% 

80% 

60% 

40% 

20% 

0% 
Malicious Packets Detected Malicious Packets Detected (QoS)

 Packets Analysed 100% 100%

 Avrage Packets Alerts 34.05% 99.52% 

Avrage Packets Logged 34.05% 99.52% 

Figure 6. 15: Snort with QoS reaction to detect malicious packets in high-speed traffic. 

6.2.3.5 Summary of Detection Experiments 

As the results show in Figures 6.13, 6.14 and 6.15, when malicious traffic was sent at high-

speeds and values, Snort detected 270 of the 793 malicious packets that it analysed. It detected fewer 

than 35% of the total malicious packets analysed (see Table 6.6). When the same traffic was 

generated with the same speed and value, but Snort was supported by QoS, Snort detected more than 

99% of the total malicious packets that it analysed (see Figure 6.15 and Table 6.6). This experiment 

showed that the Snort NIDPS performance detection improved while QoS technology was used. 

ICMP-
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ICMP(QoS) 
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Header-

Alerts 

UDP(QoS) 
TCP Header 

alerts 
TCP(QoS) 

Malicious 

Packets 

Malicious 

Packets 

(QoS) 

Packets Analysed 100% 100% 100% 100% 100% 100% 100% 100% 

Avrage Packets Alerts 50.01% 100% 6.78% 99.18% 100% 100% 34.05% 99.52% 

Avrage Packets logged 50.01% 100.00% 6.78% 99.18% 100.00% 100.00% 34.05% 99.52% 

0% 

20% 

40% 

60% 

80% 

100% 

120% 

P
e

rc
e

n
ta

ge
s 

o
f 

p
ac

ke
ts

 

Snort and QoS reaction to ICMP, UDP,TCP Headers and Malicous packets 

Figure 6. 16: Snort and QoS reaction to ICMP, UDP, TCP and malicious packets in high-speed traffic. 
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As a summary for experiments 14, 15, 16 and 17see Figure 6.16 which shows that Snort 

analysed every single packet that reached the wire. When IP traffic was sent at an average of 35000 

packets per 1ms, Snort lost alerts and logs. For ICMP headers, Snort lost more than 49 % of the total 

ICMP packets that it is analysed and it missed more than 96 % of the total UDP packets analysed, but 

and for TCP , Snort alerted 100 % of the total TCP packets analysed (see Figure 6.16) . With the 

proposed new QoS architecture, Snort alerted 100 % of ICMP packets, more than 99 % of UDP 

packets and 100 % of TCP traffic (see Figure 6.16). Also Figure 6.11 shows that Snort lost more 66% 

of the total malicious packets that it is analysed, but when QoS is used, Snort detected more than 99% 

of the total packets that it analysed. The experiments show that Snort NIDPS detection performance 

improved when supported by QoS configuration. 

6.2.4 Evaluation of different Snort NIDPS rules 

In this section experiments are presented which evaluated Snort’s capability with different 

types of rules to detect malicious packets with and without QoS. In these experiments, malicious 

packets (threads) have been generated in high-speed traffic by using NetScanPro, WinPcap, Packets 

Flooder and Packets Traceroute tools. Every single test was repeated 3 times with and without QoS to 

get the average number of packet alerts and logs. Different Snort rules have been tested under high-

speed traffic. Flood traffic has been sent at 65000Bps with different types of 255 threats at interval 

time 1mSec. 

6.2.4.1 Experiment 18: Snort rules with QoS reaction to detect malicious packets 
in high-speed traffic. 

In experiment 18, six action rules (ttl, content, hexadecimal content, offset depth and dsize) 

have been tested to show Snort NIDPS performance detection with and without QoS. 

Test 1: Time To Live (TTL) rules 

The TTL rule detects any packet matched to the specified ttl value. The ttl keyword takes 

numbers from 0 to 255. In this experiment, 255 UDP malicious packets have been sent with ttl 128 at 

1mSec with flooding traffic at 65000Bps. The following rule was written to check if ttl of the UDP 

packets is equal to 128. If a packet matches the rule, Snort will provide an alert packet. 

Alert udp any any -> any any (msg:” Check Time To Live value in udp header”; ttl: 128; sid: 

10000171 ;). 
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Table 6. 7: Snort ttl keyword rule reaction to malicious packets in high-speed traffic without QoS 

The 

number 

of Packets 

received 

The total 

packets 

analysed of the 

packets received 

Total Eth 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analyse 

d 

TCP 

packets 

analyse 

d 

UDP 

maliciou 

s 

packets 

analysed 

UDP 

maliciou 

s 

packet 

alerts 

UDP 

maliciou 

s 

packets 

logged 

% 

packets 

alerts 

% 

packets 

logged 

985686 1.044% 100.00% 0 0 793 270 270 34.047 

% 

34.047 

% 

987885 1.075% 100.00% 0 0 796 265 265 33.291 

% 

33.291 

% 

993061 1.088% 100.00% 0 0 732 239 239 32.650 

% 

32.650 

% 

The Average of Snort Processor Times : (125s+126s+126s) / 3 = 125.6s -> (Pkts/min:5308 – Pkts/sec:84) 

The average of UDP Malicious Packets logged = 33.37% 

The average of UDP Malicious Packets alerts = 33.37% 

Table 6. 8: Snort ttl keyword rule with QoS reaction to malicious packets in high-speed traffic Without QoS 

The 

number 

of packets 

received 

The total 

packets 

analysed of the 

packets received 

Total Eth 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analyse 

d 

TCP 

packets 

analyse 

d 

UDP 

maliciou 

s 

packets 

analysed 

UDP 

maliciou 

s 

packets 

alerts 

UDP 

maliciou 

s 

packets 

logged 

% 

packets 

alerts 

% 

packets 

logged 

964952 99.995% 100.00% 47 0 964012 961539 961539 99.743 

% 

99.743 

% 

996005 99.915% 100.00% 0 0 995155 990344 990344 99.516 

% 

99.516 

% 

918372 99.999% 100.00% 0 0 917589 913523 913523 99.556 

% 

99.556 

% 

The Average of Snort Processor Times : (18.52m+19.22m+17.54m) / 3 = 18.42m -> (Pkts/min:53349 – Pkts/sec:855) 

The average of UDP Malicious Packets logged = 99.605% 

The average of UDP Malicious Packets alerts = 99.605% 

Test 2: Content Keyword rule 

Snort has a capability to catch a data pattern inside packets and headers. The pattern can be 

expressed as an ASCII string from (American Standard Code for Information Interchange) or as a 

hexadecimal number. For example, some malicious attacks have signatures and the content rule can 

detect them. The following rule was created to detect a pattern “abcdef” in the data part of all UDP 

packets. 

Alert udp any any -> any any (msg:” Check or to find data pattern inside packets”; ttl: 128; 

content: “abcdef”; Sid: 100000172 ;). 
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In this experiment, 255 UDP malicious packets were sent at 1ms intervals with flood traffic 

65000Bps. The malicious packets were sent are including “abcdef” with ttl 128. 

Table 6. 9: Snort content keyword rule reaction to malicious packets in high-speed traffic without QoS 

The 

number 

of 

Packets 

received 

The total 

packets 

analysed of the 

packets 

received 

Total Eth 

received of 

the total 

packets 

analysed 

ICMP 

packets 

analyse 

d 

TCP 

packets 

analyse 

d 

UDP 

maliciou 

s 

packets 

analysed 

UDP 

maliciou 

s 

packets 

alerts 

UDP 

maliciou 

s 

packets 

logged 

% 

Packets 

alerts 

% 

Packets 

logged 

988183 1.052% 100.00% 0 0 576 239 239 41.493 

% 

41.493 

% 

988109 1.069% 100.00% 0 0 564 232 232 41.134 

% 

41.134 

% 

987882 1.068% 100.00% 0 0 751 236 236 31.424 

% 

31.424 

% 

The Average of Snort Processor Times : (125s+125s+124s) / 3 = 124.6s -> (Pkts/min:5195 – Pkts/sec:83) 

The average of UDP Malicious Packets logged = 40.15% 

The average of UDP Malicious Packets alerts = 40.15% 

Table 6. 10: Snort content keyword rule with QoS reaction to malicious packets in high-speed traffic. 

The number 

of 

packets 

received 

The total 

Packets 

analysed 

of the 

packets 

received 

Total Eth 

received 

of the 

total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

UDP 

malicious 

packets 

Alerts 

UDP 

malicious 

packets 

logged 

% 

Packets 

alerts 

% 

Packets 

logged 

999158 92.242% 100% 0 0 920850 919567 919567 99.860% 99.860% 

999973 92.070% 100% 0 0 919855 918164 918164 99.816% 99.816% 

1017310 99.999% 100% 0 0 1016423 1012125 1012125 99.577% 99.577% 

The Average of Snort Processor Times : (19.33m+19.36m+19.51m) / 3 = 19.4m -> (Pkts/min:50168 – Pkts/sec:807) 

The average of UDP Malicious Packets logged = 99.751% 

The average of UDP Malicious Packets alerts = 99.751% 

Test 3: Content-hexadecimal Keyword rules 

In this test encrypted UDP malicious packets were sent at speed 1mSec with flood traffic 

65000Bps.The following rule was designed to the same Content rule, but the pattern is listed in the 

hexadecimal. The hexadecimal number 61 is equal to ASCII character (a), 62 is equal to (b), 63 is 

equal to (c) and 64 is equal to (d). 
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Alert udp any any -> any any (msg:” Check hexadecimal characters in side data”; ttl: 128; 

content: “|61 62 63 64|”; Sid: 100000173 ;). 

Table 6. 11: Snort content-hexadecimal keyword rule reaction to malicious packets in high-speed traffic without QoS. 

The 

number 

of 

Packets 

received 

The total 

packets 

analysed 

of the packets 

received 

Total Eth 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

UDP 

malicious 

packets 

Alerts 

UDP 

malicious 

packets 

logged 

% 

packets 

alerts 

% 

packets 

logged 

990065 1.066% 100.00% 0 0 570 241 241 42.280 

% 

42.280 

% 

990071 1.049% 100.00% 0 0 572 237 237 41.433 

% 

41.433 

% 

986888 1.067% 100.00% 0 0 555 238 238 42.882 

% 

42.882 

% 

The Average of Snort Processor Times : (126s+124s+124s) / 3 = 124.3s -> (Pkts/min:5278 – Pkts/sec:83) 

The average of UDP Malicious Packets logged = 42.12% 

The average of UDP Malicious Packets alerts = 42.12% 

Table 6. 12: Snort content-hexadecimal keyword rule with QoS reaction to malicious packets in high-speed traffic. 

The 

number 

of 

packets 

received 

The total 

packets 

analysed of 

the packets 

received 

Total Eth 

received 

of the 

total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

UDP 

malicious 

packets 

Alerts 

UDP 

malicious 

packets 

logged 

% 

packets 

alerts 

% 

packets 

logged 

1003040 99.999% 100% 0 0 1002190 997235 997235 99.505% 99.505% 

1003428 99.999% 100% 0 0 1002583 997600 997600 99.502% 99.502% 

1003200 99.999% 100% 0 0 1002355 997403 997403 99.505% 99.505% 

The Average of Snort Processor Times : (19.31m+19.30m+19.31m) / 3 = 19.3m -> (Pkts/min:52801– Pkts/sec:856) 

The average of UDP Malicious Packets logged = 99.504% 

The average of UDP Malicious Packets alerts = 99.504% 

Test 4: Offset Keyword rules 

The offset keyword rule can be used together with the content rule. It is used to examine a 

target signatures at a specific domain offset from the start of the data part of the packets. The 

following rule was made to start detecting for the characters “abcdef” after 100 bytes from the start of 

the payload of UDP packets. 
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Alert udp any any -> any any (msg:” Start research for the word “abcdef” after 100 bytes 

from the start of data”; ttl: 128; content: “abcdef”; offset: 100; Sid: 100000174 ;). 

Table 6. 13: Snort offset keyword rule reaction to malicious packets in high-speed traffic without QoS 

The 

number 

of 

packets 

received 

The total 

packets 

analysed of 

the packets 

received 

Total Eth 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

UDP 

malicious 

packet 

alerts 

UDP 

malicious 

packets 

logged 

% 

packets 

alerts 

% 

packets 

logged 

990286 1.057% 100% 0 0 553 232 232 41.952% 41.952% 

990631 1.072% 100% 0 0 544 235 235 43.198% 43.198% 

985661 1.062% 100% 0 0 562 238 238 42.348% 42.348% 

The Average of Snort Processor Times : (125s+125s+124s) / 3 = 124.6s -> (Pkts/min:5277 – Pkts/sec:84) 

The average of UDP Malicious Packets logged = 42.26% 

The average of UDP Malicious Packets alerts = 42.26% 

Table 6. 14: Snort offset keyword rule with QoS reaction to malicious packets in high-speed traffic. 

The 

number 

of 

packets 

received 

The total 

packets 

analysed 

of 

the 

packets 

received 

Total Eth 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

UDP 

malicious 

packet 

alerts 

UDP 

malicious 

packets 

logged 

% 

Packets 

alerts 

% 

Packets 

logged 

1000607 99.999% 100% 0 0 999753 998507 998507 99.875% 99.875% 

1000516 99.999% 100% 0 0 999664 998348 998348 99.868% 99.868% 

1000830 99.999% 100% 0 0 999976 998729 998729 99.875% 99.875% 

The Average of Snort Processor Times : (19.31m+19.31m+19.31m) / 3 = 19.31m (Pkts/min: 52665 – Pkts/sec:854) 

The average of UDP Malicious Packets logged = 99.872% 

The average of UDP Malicious Packets alerts = 99.872% 

Test 5: Depth Keyword rules 

To specify more check of matching limit in the pattern of data, the depth rule can be used 

together with the content rule. This depth rule is used to specify offset from data part starting. The 

data after that offset rule will not be checked for pattern matching. The depth rule defines the point 

after which Snort should stop examining the pattern inside the data. If offset and depth keywords are 

used together with the content keyword, a specific pattern matching within the range of data can be 

done. The following rule was written to find out the characters “abcdef” between characters 4 and 100 

of the data part of the UDP packets 
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Alert udp any any -> any any (msg:” Start research for the word “abcdef” between characters 

4 and 100 bytes of the data”; ttl: 128; content: “abcdef”; offset: 4; depth: 100; Sid: 100000175 ;). 

Table 6. 15: Snort depth keyword rule reaction to malicious packets in high-speed traffic without QoS 

The 

number 

of 

packets 

received 

The total 

packets 

analysed of 

the packets 

received 

Total Eth 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

UDP 

malicious 

packet 

alerts 

UDP 

malicious 

packets 

logged 

% 

packets 

alerts 

% 

packets 

logged 

988438 1.059% 100% 0 0 564 236 236 41.843% 41.843% 

989543 1.066% 100% 0 0 557 235 235 42.190% 42.190% 

989471 1.067% 100% 0 0 571 234 234 40.980% 40.980% 

The Average of Snort Processor Times : (125s+125s+125s) / 3 = 125s -> (Pkts/min:5233 – Pkts/sec:83) 

The average of UDP Malicious Packets logged = 41.66% 

The average of UDP Malicious Packets alerts = 41.66% 

Table 6. 16: Snort depth keyword rule with QoS reaction to malicious packets in high-speed traffic. 

The 

number 

of 

packets 

received 

The total 

packets 

analysed of 

the packets 

received 

Total Eth 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

UDP 

malicious 

packet 

alerts 

UDP 

malicious 

packets 

logged 

% 

packets 

alerts 

% 

packets 

logged 

999025 99.999% 100% 0 0 998134 994787 994787 99.664% 99.664% 

1001853 100.000% 100% 0 0 1000963 996965 996965 99.600% 99.600% 

1000624 99.999% 100% 0 0 999733 995775 995775 99.604% 99.604% 

The Average of Snort Processor Times : (19.32m+19.31m+19.31m) / 3 = 19.31m - > (Pkts/min:52657– Pkts/sec:853) 

The average of UDP Malicious Packets logged = 99.622% 

The average of UDP Malicious Packets alerts = 99.622% 

Test 6: Dsize Keyword rules 

Various malicious attacks are distributed a large size packets to the target system to cause 

buffer overflow which can be prevented by using the dsize rule. This rule is used to check if packets 

contain data of a length greater than, less than, or equal to a specified number. The following rule 

detects any UDP traffic, if the UDP packet size is over than 30000 bytes. 

Alert udp any any -> any any (msg:” Check data size for packets”; ttl: 128; dsize :> 30000; 

Sid: 10000176 ;). In this experiment, UDP traffic has been sent at 65000Bps. 

Table 6. 17: Snort dsize keyword rule reaction to malicious packets in high-speed traffic without QoS 

The The total Total Eth ICMP TCP UDP UDP UDP % % 
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number 

of 

packets 

received 

packets 

analysed of 

the packets 

received 

received 

of the 

total 

packets 

analysed 

packets 

analysed 

packets 

analysed 

malicious 

packets 

analysed 

malicious 

packet 

alerts 

malicious 

packets 

logged 

Packets 

alerts 

Packets 

logged 

989268 1.031% 100% 0 0 552 236 236 42.753% 42.753% 

987379 1.058% 100% 0 0 559 244 244 43.649% 43.649% 

989191 1.059% 100% 0 0 568 242 242 42.605% 42.605% 

The Average of Snort Processor Times : (125s+125s+124s) / 3 = 124.6s -> (Pkts/min:5223 – Pkts/sec:83) 

The average of UDP Malicious Packets logged = 42.93% 

The average of UDP Malicious Packets alerts = 42.93% 

Table 6. 18: Snort dsize keyword rule with QoS reaction to malicious packets in high-speed traffic. 

The 

number 

of 

packets 

received 

The packets 

analysed of 

the total 

packets 

received 

Total Eth 

packets 

received 

of the total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

malicious 

packets 

analysed 

UDP 

malicious 

packet 

alerts 

UDP 

malicious 

packets 

logged 

% 

packets 

alerts 

% 

packets 

logged 

999185 99.999% 100% 0 0 998332 997108 997108 99.877% 99.877% 

1004432 99.999% 100% 0 0 1003579 1002351 1002351 99.877% 99.877% 

1000284 99.999% 100% 0 0 999431 998209 998209 99.877% 99.877% 

The Average of Snort Processor Times : (19.31m+19.34m+19.31m) / 3 = 19.32 -> (Pkts/min: 52699 – Pkts/sec:854) 

The average of UDP Malicious Packets logged = 99.877% 

The average of UDP Malicious Packets alerts = 99.877% 

TTL TTL-QoS Content 
Content 

-QoS 
Hexade 
cimal 

Hexade 
cimal-
QoS 

Dsize 
Dsize-
QoS 

Offset 
Offset-

QoS 
Depth 

Depth-
QoS

 Packets Analysed 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

 Packets Alerts 33.37% 99.61% 40.15% 99.75% 42.12% 99.50% 42.93% 99.88% 42.26% 99.87% 41.66% 99.62%

 Packets logged 33.37% 99.61% 40.15% 99.75% 42.12% 99.50% 42.93% 99.88% 42.26% 99.87% 41.66% 99.62% 
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Snort Rules Keyword with QoS 

Figure 6. 17: Snort keyword rules and QoS reaction to detect malicious packets (threads) in high-speed traffic. 

A summary of the rule tests of experiment 18 are shown in Figure 6.17, Snort analysed every 

single packet that reached the wire. When flood traffic was sent at an average speed of 65000 bytes 

with 255 UDP malicious packets per 1mSec, Snort loses alerts and logs for all rules that are used. 

Snort missed more than 66 % alerts of the malicious packets that were analysed for ttl rule; more than 
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59 % for content and depth rules; and more than 57 % for Content-hexadecimal, offset and dsize rules 

(see Figure 6.17). When QoS is used, Snort alerted more than 99 % of the malicious packet that were 

sent for all the rules (see Figure 6.17). Our experiments show that Snort detection performance has 

been improved when QoS technology is used. 

6.2.5 Evaluate NIDPS prevention mode (NIP-mode) 

In this section, two experiments are presented which tested Snort NIDPS performance in 

prevention mode in high-speed traffic. In Experiment 19, Snort NIDPS was set to prevent TCP/IP 

traffic and in Experiment 20, it was set to prevent malicious packets (threads) 

6.2.5.1 Experiment 19: Snort prevention rules with QoS reaction to prevent 
TCP/IP Header in High-Speed Traffic 

In this experiment, Snort actions such as Reject, Drop and Block were tested in the task to 

prevent TCP/IP packets in high-speed traffic. More than 150000 TCP/IP packets were sent at interval 

speed of 1ms and each packet carried 1Kbyte. This experiment was also carried out in stage 1 of the 

experimental design but here it is carried out with QoS. However, the reason to return to this 

experiment (earlier presented in chapter 4, experiment 10, and section 4.5.2.) was to ascertain whether 

the output result of the Snort prevention mode test has the same results as the stage 1 experiment 

when QoS was used. 

Table 6.19: Snort with QoS reaction to prevent TCP/IP Header in high-speed traffic. 

Test Total packets Total Eth packets ICMP TCP UDP IP4 TCP/IP % 

type analysed of the total received of total packets packets packets packets packets packets 

the packets received packets analysed analysed analysed analysed received prevent prevent 

Reject 

action 

rule 

159649 100.00% 50000 53737 50095 153832 153832 100.00% 

Snort Processor Times = 28s -> (PKts/sec:5701) 

Drop 

action 

rule 

150153 100.00% 50000 50000 50118 150118 150118 100.00% 

Snort Processor Times = 34s -> ( PKts/sec: 4416) 

Block 

action 

rule 

157745 100.00% 57625 50000 50092 157717 157717 100.00% 

Snort Processor Times = 29s -> (PKts/sec:5439) 
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Block Rule 

Reject Rule Drop Rule Block Rule

 Packets Analysed 100% 100% 100.00%

 Packets Prevent 100.00% 100.00% 100% 

Figure 6. 18: Snort reaction to prevent TCP/IP traffic in 1ms. 

Our experiment shows that Snort NIDPS with QoS prevents all unwanted traffic in all NIDPS 

prevention action rules (see Figures 6.18 and Table 6.19). The percentages of prevent performance 

was the same as in experiment 10 but the speed of packets processing was increased to nearly 

5701kpts/sec. 

6.2.5.2 Experiment 20: Snort with QoS Reaction to prevent malicious packets in 
High-Speed Traffic 

In this experiment, Snort prevention mode has been tested under high-speed traffic. Two tests 

were run, one Snort without QoS and one with QoS. IP traffic has been sent at 65000Bps with 255 

malicious UDP threads in interval packets delay of 1 mSec. 

Figure 6. 19: Snort without QoS preventing malicious UDP packets in high-speed and heavy traffic. 
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Figure 6. 20: Snort with QoS preventing malicious UDP packets in high-speed and heavy traffic. 

Table 6. 20: Snort with and without QoS preventing malicious packets in high-speed traffic. 

Test 

type 

The 

Number 

of 

Packets 

receive 

d 

Total 

Packets 

analysed 

of 

the total 

the 

packets 

received 

Total Eth 

packets 

received of 

total 

packets 

analysed 

ICMP 

packets 

analysed 

TCP 

packets 

analysed 

UDP 

packets 

analysed 

IP4 

packets 

received 

% 

Malicious 

packets 

prevent 

% 

Malicious 

packets 

prevent 

Withou 

t 

QoS 

170129 2222 100.00% 0 0 101 2265 51 50.495% 

Snort Processor Times = 70s -> (Pkts/min:2222 – Pkts/sec:31) 

With 

QoS 

172505 172569 100.00% 0 0 1715925 141592 171592 100.00% 

Snort Processor Times = 18.28m -> (Pkts/min:9587 – Pkts/sec:154) 

Preventing Malicous Packets 
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(no QoS) Prevent Malicious Packets 
(QoS) 

Prevent Malicious Packets (no QoS) Prevent Malicious Packets (QoS)

 Packets Analysed 100% 100%

 Packets Prevented 50.50% 100.00% 

Figure 6. 21: Snort with QoS reaction to prevent malicious packets in high-speed traffic. 
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As the results show in Figures 6.19, 6.20 and 6.21, when malicious traffic was sent at high-

speed and volume, Snort prevents 51 of the 101 malicious UDP packets that it analysed (see Table 

6.20). It blocked fewer than 51% of the total malicious packets analysed (Figures 6.19 and 6.21). 

When the same traffic was generated with the same speed and value, but Snort was supported by QoS, 

Snort prevented 100% of the total malicious UDP packets that it analysed (see Figures 6.20 and 6.21 

and Table 6.20). This experiment showed that the Snort NIDPS performance prevention rate is 

improved when QoS technology is used. 

6.3 Parallel NIDPS with QoS technologies 

All the experiments presented in this chapter so far tested NIDPS performance analysis, 

detection and prevention with and without QoS technology under high-speed traffic. The experimental 

results show that Snort performance is significantly improved when QoS configuration technology is 

used; and the experimental results show that Snort NIDPS packets processing performance 

(throughput) is improved as well (see Figures 6.1 to 6.21 and Tables 6.1 to 6.20). For example in 

experiment 20, Snort NIDPS was tested with and without support from QoS. Without QoS, Snort 

analysed less than 2% of the total packets received, detected less than 51% of the total packets 

analysed, and prevented less than 51% of the total packets analysed with packets processing speed at 

2222 Pktspm and 31Pktsps (see Figures 6.19 and 6.22 and Table 6.20). When the QoS is used , Snort 

analysed 100% of total packets received, detected 100% of the total packets analysed, and prevented 

all unwanted traffic with improved packets processing speed of 9587Pktspm and 154Pktsps (see 

Figures 6.20 and 6.22 and Table 6.20). Also experiment 20 shows that when 172505 packets were 

sent, Snort just processes 2222 packets at running time 70s and with QoS, Snort processes most of 

packets that it received at running time 18.28m, giving a higher Pkt throughput rate (see Figure 6.22). 

Snort Processor Time (for more than 172505 Pkts) 

Snort without QoS configuration Snort with QoS configuration 

70s with 1.306% 

analysed; 32.355% 
dropped; 98.694% 

outstanding; 50.495% 

alerts and blocked 

18.28m with 100% 
analysed; 0% 
dropped; 0% 

outstanding; 100% 
alerts and blocked 

Figure 6. 22: NIDPS Processor Time (for 65000B sending per (s) with UDP 255 threads 1mSec). 

117 



 

 

 

 
 

 

      

         

         

      

         

     

 

  
 

       

          

      

      

   

           

           

        

      

   

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

    

 

 

         

    

 

 

 

 

         

    

 

As a solution to reduce Snort’s overall processing running time and increase packets 

processing throughput further, it is proposed to use parallel NIDPS technology with QoS. Snort 

NIDPS has been configured from a single node system to a multi-node system. We configured and 

treated traffic using QoS management, which produced four output queues (see Figure 6.23). Then 

each queue was scanned individually using an access control list function (ACL). Traffic was filtered 

according to classification and different packages were sent to specific parallel Snort nodes. 

6.3.1 Experiment 21: Parallel Snort NIDPS with QoS technologies 

In experiment 13 (see section 6.2.2.1), a single node of Snort NIDPS was tested without any 

QoS treatment. Nearly 38,000 TCP/IP packets were sent at 1ms, each packet carrying 1kbyte. Snort 

analysed less than 17% of the total packets received in 64s with a processing rate of 105 Pktsps (see 

Table 6.2 and Figure 6.1), but when a single Snort NIDPS was run with a QoS configuration and sent 

the same packets Snort NIDPS analysed all the packets that reached the wire in 250s without dropping 

any and only having 1 packet outstanding yielding a processing rate of 160 Pkts/s (see Table 6.2 and 

Figure 6.2). In this experiment 21, the same number of packets was sent at the same speed and of the 

same size. Parallel NIDPS technology was used (in three queues). After configuring the switch using 

QoS, Snort analysed 100% of the packets in less time (103s) (see Figure 6.23 and Table 6.21) and 

increased packet processing rate to 389 Pkts/s (see Table 6.21 and Figure 6.24). 

Table 6. 21: Parallel Snort with QoS. 

Test The Total packets Packets Packets Packets Packets % % % 

type number 

of 

Packets 

received 

analysed 

of total 

the packets 

received 

dropped 

of total 

packets 

received 

filtered 

of total 

packets 

received 

outstanding 

of total 

packets 

received 

injected 

of total 

packets 

received 

packets 

analysed 

packets 

dropped 

packets 

outstanding 

Without 39809 6760 33049 0 33049 0 16.981% 45.361% 00.002% 

QoS Snort Processor Times = 64 -> (PKts/min:6760 - PKts/sec:105) 

With 40210 40209 0 0 1 0 99.998% 0.00% 0.00% 

QoS Snort Processor Times = 250s-> (PKts/min:10052 – PKts/sec:160) 

Parallel 40005 40005 0 0 0 0 100.00% 0.00% 0.00% 

NIDPs 

With 

QoS 

Snort Processor Times = 103 -> (PKts/min:40005 – PKts/sec:389) 
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Snort Processing Time (for more than 39500kb/1ms) 

Snort without QoS Snort with QoS Parralell Snort with QoS 

64s 
with 

less than 17% 

250s 
with 

99.998% 
analysed 

103s with 
100.00% analysed 

analysed 

Figure 6. 23: Parallel Snort NIDPS Processing Time for 40,000kb sending at 1ms intervals. 

The experiment also shows that, Snort’s processing running time decreased from 250s to 103s 

(see Figure 6.24); and Snort’s performance in packets processing throughput has been improved form 

105 Pkts/s to 389 Pktsps, showing an improvement of around 60% or roughly 3 times speed up (see 

Figure 6.24). The experiments prove that Snort performance improves significantly using QoS and 

parallel NIDPs technology. It has processed more than 40,000KB in 103s with 0 percent dropped or 

outstanding (see Figures 6.23). Obviously speed up depends on the number of nodes and processors 

used and far greater speed up is possible with more nodes. 

Snort (Pkts/s) processing speed  

Snort without QoS Snort with QoS Parralell Snort with QoS 

105 Pkts/s (16%) 

160 Pkts/s (24%) 

389 Pkts/s (60%) 

Figure 6. 24: Parallel Snort NIDPS Packets Processing Speed. 
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6.3.2 Experiment 22: Test NIDPS architecture performance under more 
than 8 Gbps traffic speed. 

In this experiment, TCP replay tool was used to generate traffic at different speeds (Gbps) 

(see Figure 6.25) through the system. Two 1Gb interfaces were used. Each interface was configured 

as 4 output queues and connected to a Snort NIDPS node. Each Snort node was configured as 4 Snort 

instances, one for each output queue of the connected interface. Each queue can reserve buffer up to 

an interface limit (1 Gb). 

0 

2000000 

4000000 

6000000 

8000000 

10000000 

12000000 

14000000 

16000000 

1Gbps 2Gbps 4Gbps 8Gbps 10Gbps 

(Gb)s speed 

Packets received Packets anaysed Packets dropped Packets outstanding 

100% 
100% 

100% 

100% 

80.008% 

0% 0% 0% 0% 

19.992% 

Figure 6. 25: Novel NIDPS architecture with more 8Gbps traffic speed. 

As the results show in Figure 6.25, Snort NIDPS processed every single packet that reached 

the wire. Snort processed 100% of packets that were received while the traffic speed was less than or 

equal 8 Gbps. When the traffic speed was increased to 10 Gbps , Snort started to drop packets. By 

using 2x 1Gb interfaces, the experiment results showed that the Snort NIDPS processed more that 

8Gbps with 0 packets dropped. 

6.4 Summary of experiments 

A summary of the results of the stage 2 experiments is shown in Table 6.22 

Table 6. 22: A summary of the results 

Number 

of 

Purpose of experiment 

Snort performance (no QoS 

no parallel technologies) 

QoS technology 

proposed solution Section 

in thesis 

Performance 

Packet 

processing Performance 

Packet 

processing 
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experiment rate speed rate 

(Pkts/sec) 

rate speed rate 

(Pkts/sec) 

13 Testsolution performance -

NIDPS analysis mode (IP 

traffic) 

17% 105 100% 160 6.2.2.1 

14 Test solution  performance -

NIDPS detection mode ( 

IP/ICMP traffic) 

50% 94 100% 131 6.2.3.1 

15 Test  solution performance -

NIDPS detection mode ( 

IP/UDP) 

7% 76 99% 129 6.2.3.2 

16 Test  solution performance -

NIDPS detection mode ( 

TCP/IP) 

100% 17 100% 96 6.2.3.3 

17 Test  solutionperformance -

NIDPS detecting malicious 

packets 

34% 82 99% 857 6.2.3.4 

18 Test  solution performance -

NIDPS using various rules to 

detect malicious packets 

35% 83 99% 853 6.2.4.1 

19 Test solution performance -

NIDPS prevention mode (IP 

traffic) 

100% 853 100% 4416 6.2.5.1 

20 Test performance - NIDPS 

preventing malicious packets 

50% 31 100% 154 6.2.5.2 

21 

QoS and Parallel technologies proposed Solution 

6.3.1 

Test solution performance -

NIDPS analysis mode with QoS 

and parallel technologies 

Performance rate Packet processing speed 

rate (Pkts/sec) 

100% 389 

22 Test solution performance 

- NIDPS architecture with 

up to 8 Gbps traffic 

100% 11904 6.3.2 

Experiment 13 has shown how QoS configuration within the Cisco Catalyst 3560 Series 

switch can enhance performance such that packets are no longer dropped or outstanding; and 

experiments 14, 15 and 16 show the improvement of NIDPS detection performance with headers such 

as TCP, UDP and ICMP. Experiments 17 and 18 have shown that how QoS can improve NIDPS 

performance to detect malicious traffic such that alerts and logs are no longer lost. Experiments 19 

and 20 have shown the improvement of NIDPS performance prevention mode with QoS. Experiment 

21 shows how parallel technology can be used to speed up packets processing. Finally, experiment 22 

shows that NIDPS architecture can process more 8Gbps with 0% dropped. 
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6.5 Conclusion 

NIDPSs are important components for the security of modern computer network systems. An 

NIDPS needs to perform packet examination of inbound traffic at or near network speed. Otherwise 

malicious packets may infiltrate the network undetected. This chapter outlined the evaluation results 

of the novel architecture and unique infrastructure for NIDPS proposed in this thesis. The chapter has 

presented the results of experiments to show how a novel configuration of QoS and parallel 

technology can improve NIDPS performance when deployed in a high-speed network. The results 

show that using the novel QoS configuration in Layer 3 Cisco Catalyst switches with parallel NIDPS 

significantly improves the NIDPS performance in analysis, detection and prevention mode. 
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CHAPTER 7: CONCLUSION, RECOMMENDATION AND FUTURE 
WORK 

7.1 Introduction 

This chapter summarises the outcomes achieved in the research and then provides 

recommendations for future research. 

7.2 Contribution and achievements 

A novel architecture for NIDPS deployment was designed, implemented and evaluated. There 

has recently been an incredible development in the ways computer networks are used, especially 

regarding their ability to handle different speeds and data volumes. As a result of this rapid 

development, computer networks are now more vulnerable than ever to high-speed attacks and 

threats. These can cause considerable trouble to computer networks and systems. Network intrusions 

can be categorised at various levels. Many high-speed attacks can be classified as being difficult to 

detect or prevent. It will become ever more difficult to analyse increasing volumes of traffic due to the 

rapid shifts in technology that are increasing network speed. 

For many years the number of attacks made on networks has been rising dramatically. 

Network disruptions are often carried out intentionally by several types of direct attack. These attacks 

are made at various layers in the TCP/IP protocol suite, including the applications layer. Besides the 

external body, attacks can be made on the network by the internal body as well. Various technologies 

and methods have been used to prevent such incidents; NIDPS in particular have gained substantial 

importance. 

NIDPS is considered to be one of the best technologies for detecting or preventing threats and 

attacks. NIDPS closely looks out for any malicious activity in the network and the systems, and reacts 

to deny or to permit packets from entering the network. An NIDPS is able to provide numerous 

methods for finding any suspicious packets in normal network traffic. It either directly rejects or 

blocks suspicious traffic, users, or IP addresses. NIDPSs have attracted the interest of many 

organisations and governments, and any internet user can deploy them. An NIDPS usually secures a 

computer system network in four stages: analysis, detection, prevention and correction. 

Recently, various open-source tools have become available to cover security requirements for 

network systems and users. In this research, the performance of an open source NIDPS has been 
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evaluated in the context of high-speed and volume attacks. The purpose of the evaluation was to 

determine the performance of the NIDPS under high-speed attack when restricted by off-the-shelf 

hardware, and then find ways to improve it. ‘Snort’ was installed and configured as the open source 

NIDPS. It was chosen for evaluation on account of its being the de facto NIDPS standard. The 

evaluation system was implemented on real hosts on a real computer network to simulate real-life 

traffic with malicious packets arriving at different speeds and volumes. 

This research focused on the weakness of NIDPS in high-speed network connectivity and 

proposed a solution for reducing this weakness. It presents a novel architecture in NIDPS 

development that utilises QoS and parallel technologies to organise and improve network 

management and traffic processing performance in order to improve the performance of the NIDPS 

when it is deployed in high-speed traffic. 

Many studies are theoretically based and lack supporting practical experimentation. In this 

research, the author aimed to present practical research in both real and virtual environments, which 

may be able to move faster to take-up. Furthermore, the author provided intensive technical 

information as a part of the research that describes the innovative research architecture. 

7.2.1 Weaknesses addressed 

The current design and implementation of NIDPS was challenged. The most important of the 

weaknesses found are listed below. 

• NIDPS fail to handle high-speed malicious packets and IP traffic. 

• The performance rate of Snort NIDPS (analysis, detection and prevention) decreases 

as the traffic speed increases. 

• Snort NIDPS rate of dropped and outstanding packets were very high and increased 

when traffic speed was increased. 

• Snort NIDPS was unable to detect or prevent up to 93% of unwanted IP traffic when 

the speed was 1KBp0.5ms and up to 65% of malicious packets when malicious 

packets speed was 255Bp1mSec with flood traffic speed 60KBps. The consequence 

of this weakness is that standard deployment of Snort NIDPS may not detect or 

prevent high-speed attacks. 

An attack such as flood attack (e.g. ICMP and UDP) uses a high-volume of traffic and a high-

speed to create a lot of noise in the network (for example, congestion traffic and buffer overflow) and 

then reduces system performance, including that of the NIDPS. When packets are outstanding or lost 
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by the NIDPS, they may traverse the network without any prior analysis. Hence, the network is 

unprotected against any variety of attack that carries such packets. This fault was addressed by adding 

other methods to the Snort NIDPS component. Snort NIDPS was unable to analyse a major portion of 

the headers in a high-speed environment. When traffic was sent at nearly 38,000KBp1ms, Snort 

analysed less than 17% of the total number of packets that the system received with processing speed 

105 Pkts/s. When QoS was used, Snort analysed nearly 99% of the total number of packets that it 

received in a processing time of 250s with 160 Pkts/s. The incorporation of parallel Snort NIDPS 

improved its performance by increasing its level of analysis by up to 100% and the speed of system 

processing by 60% (389 Pkts/s). Snort processor time is reduced from 250s to 102s using three 

parallel processing nodes. 

7.2.2 A Novel Architecture for NIDPS 

In order to solve the problems summarised in 7.2.1, a novel QoS configuration using network 

Layer 3 switch features was designed and implemented in this research. The QoS configuration 

boosted the NIDPS performance with regard to its congestion management and its congestion 

avoidance. Congestion management created balanced queuing by evaluating the internal DSCP and 

determining in which of the four egress queues to place the packets. Other items related to queuing 

were also configured: defining the priority queue, defining a queue set, guaranteeing buffer 

availability, limiting memory allocation, specifying buffer allocation, setting drop thresholds, 

mapping the CoS to the DSCP value, configuring SRR, and limiting the bandwidth on each of the 

outbound queues. The congestion avoidance method also helped with the performance of the NIDPS, 

by, for example, setting output queuing, configuring Weighted Tail Drop (WTD) parameters and 

thresholds for the four-queue set, guaranteeing buffer availability for a queue’s maximum memory, 

and allocating a queue buffer for all the output queues of an interface. The research enhanced policy 

and classification methods of the standard QoS architecture. The novel QoS architecture showed a 

substantial improvement in overall network system management, performance and security. 

A further important component of the new architecture was the use of parallel NIDPS nodes 

to match each of the switch egress queues. This enabled NIDPS packet checking to keep up with 

increased arrival rates typical of an attack. Snort’s performance improved markedly, allowing more 

packets to be checked before they were delivered into the network. The performance (analysis, 

detection and prevention rate) of Snort NIDPS increased to more than 99%. By using 2 machines (PC) 

connected to two Gb interfaces, Snort NIDPS processed more than 8 Gbps with 0 drop. This number 

can be increased up to 32Gbps which is the full system capacity forward bandwidth by implementing 

more nodes of NIDPS. 
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7.2.3 Contributions to Knowledge 

This research has made the following contributions to knowledge: 

(1) A new architecture for NIDPS which uses QoS switch technology and parallel 

processing nodes has been developed to combat the issue of dropped packets in high-

speed signature-based attacks. 

Important features of the new architecture are: 

• improvement of the NIDPS analysis, detection and prevention rates; 

• handling of any high-speed network traffic variations; 

• preventing high-speed attacks from inside or outside the network; and an increase 

of nearly 99 percent in Snort NIDPS performance. 

(2) A new NIDPS architecture has been processed for up to 8Gbps traffic speed with 0 

packets drop. 

There is always a limit to the number of packets a system can receive and process. This may 

cause serious security breaches. The research adapted an established technique in order to improve the 

capability of NIDPS, allowing it to deal with any volume of incoming traffic. The technique supports 

the NIDPS analysis, detection and prevention engine to help it process high-speed traffic. The 

research focused on establishing technical information of the problem and solution. This information 

generalises the problem and solution and thus enables the proposed approach to be applied more 

easily to infrastructures that are different to the testbed used in this research 

7.3 Limitations 

The output of the research was the design of a new architecture for NIDPS, which is achieved 

by adding other processing methods to the existing program. The system processed 8Gbps with 0 

packets dropped. This number can be improved but it depends on the system capacity which is always 

limited. 

No methodological development was added to Snort except configured multi-node of Snort 

(parallel component). Snort on its own was found to be vulnerable to the experiments required at 

diverse stages of the research. Snort never can hold all attacks and malicious packets but should be 

part of a defence in depth strategy and no single tool or technology should be relied upon exclusively. 
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To add any hardware, tools or features, a full cost-benefit analysis should be carried out in 

order to discover whether a sufficient level of security can be achieved at an acceptable cost. 

7.4 Further research 

The research centred on the failure of NIDPS to adequately handle traffic that occurs in high-

speed network attacks. Experiments were carried out which presented the weakness of NIDPSs and 

which later showed how a novel architecture improved NIDPSs in terms of performance, efficiency 

and effectiveness. The experimental results show vast improvement in reducing packet loss (drop) and 

therefore give better protection against attacks. However there remain areas to investigate. 

NIDPSs are used to capture data and detect malicious packets that travelling on the network 

media (cables, wireless) and match them to a database of signatures. Signature-based NIDPS are able 

to detect known attacks, but the major problem of the signature-based approach is that every signature 

should have an entry in a database in order to compare with the incoming packets. New signatures 

arise constantly and an issue is how to keep track up with new signatures. Another problem is 

processing time required to check all signatures. Knowledge sharing may provide a solution. Cloud 

computing which provides for massive processing distribution and sharing is a possible future 

direction but this also raises issues of trust. An avenue of future investigation should aim to develop a 

trusted cloud solution to NIDPS deployment such that if the threshold monitoring tool indicates that 

traffic is increasing then extra Snort nodes can be brought into play from the cloud. Future work 

should investigate the use of specialized and trustworthy security clouds i.e a parallel node of NIDPS 

can be implemented on a mulit-core/multi-processing cloud environment which can increase the 

NIDPS processing speed in order to improve its performance. 

Statistical based anomaly detection is designed to detect deviations from a baseline model of 

network behaviour. When the rate of "malicious" packet transmission is very high, the attack will 

almost certainly be detected by a statistical anomaly detector. Therefore, the fact that Snort's 

performance falls when the rate of transfers is high might be inconsequential in real world networks. 

The author considers this issue needs further investigating. 

When the rate of malicious packet transmission increases, Snort’s detection power may fall in 

terms of the True Positive rate (i.e. number of malicious packets detected). However, any anomaly 

detector faces a trade-off between true detection and network performance. For example, while the 

True Positive rate may have decreased, the True Negative rate (i.e. proportion of packets that Snort 
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said were clean and actually were clean) may have increased. As Snort does not provide parameters 

that allow the network admin to customize this trade-off, more research is needed to justify the trade-

off between network performance and security. 

In the area of development of the NIDPS detection function, intelligent techniques can be 

exploited to develop new rules for more precise detection of attacks to counteract the growth in 

diversity and deviousness. The current and anticipated future demands for online security require the 

revision of existing systems towards the development of improved parallel systems as well as stronger 

rule sets. Furthermore, using multi-core processors, further research can be done such as looking into 

some of the potential technological advancements in NIDPSs that can be employed for beneficial 

purposes and objectives. Finally, the success of this project has revealed more challenges, as 

following: 

• Importance analysis of interdependencies and possible cascading effects across related 

processes within the QoS framework. 

• Develop and execute a coordinated research to fully utilize the potential of IDPS to 

capture and analyse attacks trends. 

• Generate complex detection, prevention and correction algorithms; 

In the system, we identified that there is limitation for the number of packets processing 

which is 8.0 Gbps with 0% packets dropped. The idea has been examined further in terms of 

performance limitation above 8.0 Gbps, and therefore modification may be made for better response. 

As experiment 22 showed, packets started to be dropped when load-balancing for traffic exceeding 

8.0 Gbps. Analys is still in development and shall be covered in the future efforts. 

Establishing a relationship between traffic size and number of IDPS cluster nodes for an 

efficient performance is also an interesting research area. Defining parameters to identify the number 

of nodes for a scalable response to network speed type and will be a good addition. 
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Appendix 

Appendix 1. QoS Configuration 

Section 1: Lab Task 1 

Globally Enabling QoS 
SW3560 (config) # mls qos “enable QoS” 

Enable VLAN-Based classification 
Classification can be port-based or VLAN-based. To use the VLAN-based approach; enable 

VLAN-Based QoS on individual interfaces” port interfaces that bellowing in that VLAN”: 

SW3560 (config-if) #mls qos VLAN-Based 

SW3560 (config) #interface Vlan 100 

SW3560 (config-if) # service-policy input test “apply the policy to Switch Vlan Interface 
(SVI)” 
SW3560 (config-if) #exit 

SW3560 (config) #interface FastEthernet 0/1 

SW3560 (config-if) #mls qos Vlan-based “take the qos policy setting from SVI” 

Setting the port’s CoS value 
SW3560 (config-if) #mls qos CoS  “value 0-7” 
SW3560 (config-if) #mls qos CoS override “that mean it will take default value” 

Setting the Ports trust state 
SW3560 (config-if) #mls qos trust ? 

SW3560 (config-if) # mls qos trust  ip “trust IP traffic” 
SW3560 (config-if) # mls qos trust  udp 

SW3560 (config-if) # mls qos trust  icmp 

SW3560 (config-if) # mls qos trust  tcp 

SW3560 (config) #mls qos trust CoS 

QoS Mapping 
Once trusted an incoming marking, remark that frame/ packet based on a mapping table. 

SW3560 (config) #mls qos trust cos pass-through dscp 

SW3560 (config) #show mls qos maps CoS-DSCP 

SW3560 (config) # mls qos map ? 

SW3560 (config) # mls qos map CoS-DSCP 0 8 16 24 32 46 48 56 

SW3560 (config) #exit 

SW3560 #show mls qos map CoS-DSCP 

SW3560 (config) # class-map match-any dscp_class 

SW3560 (config)# match ip dscp 9 

SW3560 (config-cmap)# exit 

SW3560 (config) # class-map match-all vlan_class 

SW3560 (config-cmap)# match vlan 100 

Switch(config-cmap)# match class-map dscp_class 

Importance notes: 

You could classification/or recognize different type of traffic at layer 2 using MAC address or access 

control list (ACL) also you can classify traffic in access layer3 by using access control list (ACL). 
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Classifying and Class map 
SW3560 (config) #access-list 100 permit udp any any “you can add or not range 16384 
32767 Cisco rules used UDP range form 16384 – 32767” 
SW3560 (config) #access-list 100 deny ip any any 

SW3560 (config) #access-list 110 permit tcp any any 

SW3560 (config) #access-list 110 deny ip any any 

SW3560 (config) #access-list 120 permit icmp any any 

SW3560 (config) #access-list 120 deny ip any any 

SW3560 (config) #class map (inter-class map name(C-UDP, C-TCP, C-ICMP)). 

SW3560 (config) #class map C-UDP 

SW3560 (config-C-map) #match access-group 100 “match access list 100 with class map” 
SW3560 (config) #class map C-TCP 

SW3560 (config-C-map) #match access-group 110 

SW3560 (config) #class map C-ICMP 

SW3560 (config-C-map) #match access-group 120 

Creating policy map 
SW3560 (config) #policy-map (inter name of policy map (P-UDP, P-TCP, P-ICMP)). 

SW3560 (config) #policy-map P-UDP 

SW3560 (config-Pmap) #police 100000000 8000 exceed-action policed-dscp-transmit 

SW3560 (config-Pmap) #no match exceed-action drop. 
“100000000 is rate limit in bytes / s (bps), 8000 is not rate, it is a number of bytes”. 
SW3560 (config) #policy-map P-TCP 

SW3560 (config-Pmap) #police 100000000 8000. 

SW3560 (config) #policy-map P-ICMP 

SW3560 (config-Pmap) #police 100000000 8000. 

Applying policy map in interface 
SW3560 (config) #interface FastEthernet 0/1 

SW3560 (config-if) #service-policy input policy P-UDP. 

SW3560 (config-if) # mls qos trust dscp 

SW3560 (config-if) # mls qos dscp-mutation FastEthernet 0/1-mutation 

SW3560 (config) #interface FastEthernet 0/2 

SW3560 (config-if) #service-policy input policy P-TCP. 

SW3560 (config-if) # mls qos trust dscp 

SW3560 (config-if) # mls qos dscp-mutation FastEthernet 0/2-mutation 

SW3560 (config) #interface FastEthernet 0/3 

SW3560 (config-if) #service-policy input policy P-ICMP. 

SW3560 (config-if) # mls qos trust dscp 

SW3560 (config-if) # mls qos dscp-mutation FastEthernet 0/3-mutation 

All interface 1, 2 and 3 inside VLAN-1 

Notes: 

We should focus about the following below: 

Delay traffic inside switch. 

Fragmentation traffic in it. 
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Congestion management (queuing) 

Priority queue configuration 
To change the default input priority queue configuration 

SW3560 (config) #mls qos srr-queue input priority-queue? 

<1-2> enter priority queue number [1-2] 

SW3560 (config) #mls qos srr-queue input priority-queue 1? 

Bandwidth ingress priority queue bandwidth & at stack ring 

SW3560 (config) # mls qos srr-queue input priority-queue 1 bandwidth? 

<0-40> enter bandwidth number [0-40] 

SW3560 (config) # mls qos srr-queue input priority-queue 1 bandwidth 30? 

<cr> 

SW3560 (config) # mls qos srr-queue input priority-queue 1 bandwidth 30 

Here from default ingress priority queue is queue2, it has 10 percentage of priority queue. So from the 

command above, we change priority queue form q2 to q1 and then we change the bandwidth to 30 

percent of the interface bandwidth. 

To enable output of priority queuing on queue1 into the port you can use this command: 

SW3560 (config-if) #priority-queue out 

Congestion Avoidance 

Queue sets 
By default, all ports belong to queue set 1. However ports can be assigned to a second queue 

set with the following command: 

SW3560 (config-if) #queue-set queue_set-id 

SW3560 (config)# mls qos queue-set output qset-id threshold queue-id drop threshold1 drop-

threshold2 reserved-threshold maximum-threshold. 

SW3560 (config)# mls qos queue-set output qset-id buffers allocation1 allocation2 allocation3 

allocation4. 

SW3560 (config)# mls qos queue-set output 2 buffers 50 25 15 10 

Port buffer space 

SW3560 (config)# mls qos queue-set output 2 threshold 100 90 70 50 

SW3560 (config)# interface fast 0/1 

SW3560 (config-if)# queue-set 2 

For queue set2, 50 percent a port’s buffer space is allocated for queue1. 25 percent is allocated for 

queue2. 10 percent is allocated for queue3. 15 percent is allocated for queue4.Also queue set2, output 

queue 2 of 4 has its first drop threshold at 100 percent and its second drop threshold at 90 percent. 

100 percent of queue2 is allocate buffer space is guaranteed to be available , if needed if queue2 needs 

more buffer space , it can barrow from a port’s unused buffer space, up to a maximum of 200 percent 

of queue 2 is buffers allocation. 

Mapping QoS Markings to an output queue and drop threshold 

SW3560 (config) #mls qos srr-queue output [CoS-map / DSCP-map] queue queue-id 

threshold threshold-id qos {marking-1…. Qos-marking-8} 

SW3560 (config) #mls qos srr-queue output CoS-map queue 1 threshold 1 0 1 

SW3560 (config) #mls qos srr-queue output CoS-map queue 1 threshold 2 2 3 

SW3560 (config) #mls qos srr-queue output CoS-map queue 2 threshold 1 4 

SW3560 (config) #mls qos srr-queue output CoS-map queue 3 threshold 2 5 

SW3560 (config) #mls qos srr-queue output CoS-map queue 4 threshold 2 6 7 

Threshold 

CoS 

Threshold Queue 
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Shaped Round Robin (SRR) 

Bandwidth allocation for input queues 

Notes: queue sets are not used for input queues. 

SW3560 (config) #mls qos srr-queue input threshold queue-id threshold-precentage1 

threshold-precentage2. 

SW3560 (config) #mls qos srr-queue input threshold 1 25 50 

Set the second threshold to 50 percent of the Queue capacity 

Set the first threshold to 25 percent of the Queue capacity 

Queue1 

We can set the buffer allocation for input queues with the following command: 

SW3560 (config) #mls qos srr-queue input buffers percentage1 precentage2 

SW3560 (config) #mls qos srr-queue input buffers 25 75 

75 percent of a port’s buffers are given to queue2 

25 percent of a port’s buffers are given to queue1 

To give different a mounts of bandwidth to input queues, we can use the following command: 

SW3560 (config) #mls qos srr-queue input bandwidth weight1 weight2 

SW3560 (config) #mls qos srr-queue input bandwidth 30 70 

70 percent of a port’s bandwidth is guaranteed to queue2 

30 percent of a port’s bandwidth is guaranteed to queue1 

Bandwidth allocation for output queues (shared mode) 
SW3560 (config-if) #srr-queue bandwidth share weight1 weight2 weight3 weight4 

SW3560 (config-if) #srr-queue bandwidth share 30 20 25 25 

30 percentages is relative weight for queue1, 20 percentages is relative weight for queue2, 25 

percentages is relative weight for queue3, and then 25 percentages is relative weight for queue4. 

Notes 

TIP: the relative weight to not have to total 100. However, selecting values that do total 100 makes it 

easier to determine the bandwidth available to each queue. 

So, 30 percentages it will be taken from the port’s bandwidth for queue1, 20 percentages it will be 

taken from the port’s bandwidth for queue2, 25 percentages it will be taken from the port’s bandwidth 
for queue3 and 25 for queue4. 

Determine the amount of bandwidth available to each output queue on interface FastEthernet. 

SW3560 (config) # interface FastEthernet 0/2 

SW3560 (config-if) #speed 100 

SW3560 (config) # srr-queue bandwidth share 10 25 35 50 

BW for Q1: [10/ (10+25+35+50)] =8.33 mbps 

BW for Q2: [25/ (10+25+35+50)] =20.83 mbps 

BW for Q3: [35/ (10+25+35+50)] =29.17 mbps 

BW for Q4: [50/ (10+25+35+50)] =41.67 mbps 

Total bandwidth (mbps) =8.33+20.83+29.17+41.67=100 mbps 
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Bandwidth allocation for output queues (shaped mode) 
SW3560 (config-if) #srr-queue bandwidth shape weight1 weight2 weight3 weight4 

SW3560 (config-if) #srr-queue bandwidth share 50 50 0 0 
50 inverse weight for queue1, 50 inverse weight for queue2, 0 shaping not applied for queue3, and 0 

shaping not applied for queue4 

Note: 

TIP: if a queue is configured for both shaped and share mode, the shaped mode config will be 

applied, and share mode will be ignored. 

Determine the amount of bandwidth limits applied to the output queues on interface 

FastEthernet. 

SW3560 (config) # interface FastEthernet 0/3 

SW3560 (config-if) #speed 100 

SW3560 (config-f) # srr-queue bandwidth shape 30 0 0 0 

BW limit for queue1:1/30*100 mbps=3.33 mbps 

BW limit for queue2: no limit applied 

BW limit for queue3: no limit applied 

BW limit for queue4: no limit applied 

Determine the amount of bandwidth guarantees or limits applied to the output queues on 

interface FastEthernet. 

SW3560 (config) # interface FastEthernet 0/4 

SW3560 (config-if) #speed 100 

SW3560 (config-if) # srr-queue bandwidth shape 50 50 0 0 

SW3560 (config-if) # srr-queue bandwidth share 100 100 40 20 

The shaping config for a queue (i.e. non-zero value) overrides the sharing configuration. 

BW limit for queue1 (mbps):1/50*100 mbps=20 mbps 

BW limit for queue2 (mbps): 1/50*100 mbps=20 mbps 

BW for queue3: [40/ (40+20)]*(100-20-20) mbps=40 mbps 

BW for queue4: [20/ (40+20)]*(100-20-20) mbps=20 mbps 

Total bandwidth (mbps) =20+20+40+20=100 mbps 

Queue1 is guaranteed 20 mbps 

Queue2 is guaranteed 20 mbps 

Limiting Bandwidth on an output interface. 
This command specifies the maximum amount of an interface’s bandwidth that can be used 

for outgoing traffic, by default there is no limit(i.e a weight of 100) 

SW3560 (config-if) # srr-queue bandwidth limit weight 

SW3560 (config-if) # srr-queue bandwidth limit 85 
Interface’s outbound bandwidth is limit to 85precent of interface speed. 

To confirm mls qos is enabled 
SW3560# show mls qos. 

To view a port’s trust configuration 
SW3560#show mls qos interface interface-id 

SW3560# show mls qos interface FastEthernet 0/1 

To view interface’s policer configuration 
SW3560#show mls qos interface interface-id policers. 

SW3560#show mls interface FastEthernet 0/1 policers 

To view a queue set’s parameters: 
SW3560#show mls qos queue-set 
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Section 2: Lap task2 

SW3560 (config) # mls qos 

SW3560 (config-if) #mls qos CoS 

SW3560 (config-if) #mls qos CoS override 

SW3560 (config-if) # mls qos trust IP 

SW3560 (config-if) # mls qos trust UDP 

SW3560 (config-if) # mls qos trust TCP 

SW3560 (config-if) # mls qos trust ICMP 

SW3560 (config) #mls qos trust CoS 

SW3560 (config) #show mls qos maps CoS-DSCP 

SW3560 (config) # mls qos map ? 

SW3560 (config) # mls qos map CoS-DSCP 0 8 16 24 32 46 48 56 

SW3560 (config) #mls qos trust dscp 

SW3560 (config) #exit 

SW3560 #show mls qos map CoS-DSCP 

SW3560 (config) #access-list 100 permit ip any any / or 

SW3560 (config) #access-list 100 permit ip-id range any any to ip-id range any any 

SW3560 (config) #class map (class map id-name) 

SW3560 (config) #class map id-name 

SW3560 (config-C-map) #match access-group 100 “match access list 100 with class map” 

SW3560 (config) #policy-map (inter name of policy map (id-policy name)). 

SW3560 (config) #policy-map id-class map 

SW3560 (config-Pmap) #police 25600000 8000 exceed-action policed-dscp-transmit. 

SW3560 (config) #interface FastEthernet interface-id 

SW3560 (config-if) #service-policy input policy policy-id. 

SW3560 (config) #mls qos srr-queue input buffers percentage1 precentage2 

SW3560 (config) #mls qos srr-queue input buffers 25 75 

SW3560 (config) #mls qos srr-queue input threshold queue-id threshold-precentage1 

threshold-precentage2. 

SW3560 (config) #mls qos srr-queue input threshold 1 90 100 

SW3560 (config) #mls qos srr-queue input bandwidth weight1 weight2 

SW3560 (config) #mls qos srr-queue input bandwidth 50 50 

SW3560 (config) #mls qos srr-queue input priority-queue queue-id 

SW3560 (config) #mls qos srr-queue input priority-queue 2 

SW3560 (config) #mls qos srr-queue input [CoS-map / DSCP-map] queue queue-id threshold 

threshold-id qos {marking-0…. Qos-marking-65} or {marking-1…. Qos-marking-8} 

SW3560 (config) #mls qos srr-queue input dscp-map queue 1 threshold 1 0 

SW3560 (config) #mls qos srr-queue input dscp-map queue 1 threshold 2 8 

SW3560 (config) #mls qos srr-queue input dscp-map queue 1 threshold 3 16 

SW3560 (config) #mls qos srr-queue input dscp-map queue 2 threshold 1 24 

SW3560 (config) #mls qos srr-queue input dscp-map queue 2 threshold 2 32 

SW3560 (config) #mls qos srr-queue input dscp-map queue 2 threshold 3 46 

SW3560 (config) #mls qos srr-queue output dscp-map queue 1 threshold 2 8 

SW3560 (config) #mls qos srr-queue output dscp-map queue 1 threshold 3 16 

SW3560 (config) #mls qos srr-queue output dscp-map queue 2 threshold 2 32 

SW3560 (config) #mls qos srr-queue output dscp-map queue 2 threshold 3 32 

SW3560 (config) #mls qos srr-queue output dscp-map queue 2 threshold 2 46 

SW3560 (config) #mls qos srr-queue output dscp-map queue 3 threshold 3 56 

SW3560 (config) #mls qos srr-queue output dscp-map queue 4 threshold 1 0 
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SW3560 (config) #mls qos srr-queue output dscp-map queue 4 threshold 2 24 

SW3560 (config) #mls qos srr-queue output dscp-map queue 4 threshold 3 48 

SW3560 (config) # interface FastEthernet interface-id 

SW3560 (config-if) #speed interface-speed –limit 

SW3560 (config-if) #srr-queue bandwidth shape weight1 weight2 weight3 weight4 

SW3560 (config-if) # srr-queue bandwidth shape x1 x2 x3 x4 

Bandwidth limit for queue1: (1/x1)*interface-speed-limit mbps=bandwidth-limit for Q1 mbps 

Bandwidth limit for queue2: (1/x2)*interface-speed-limit mbps=bandwidth-limit for Q2 mbps 

Bandwidth limit for queue3: (1/x1)*interface-speed-limit mbps=bandwidth-limit for Q3 mbps 

Bandwidth limit for queue4: (1/x1)*interface-speed-limit mbps=bandwidth-limit for Q4 mbps 

SW3560 (config-if) #srr-queue bandwidth share weight1 weight2 weight3 weight4 

SW3560 (config-if) # srr-queue bandwidth share y1 y2 y3 y4 

Bandwidth limit for queue1: (y1/ (y1+y2+y3+y4)) =bandwidth-limit for Q1 mbps 

Bandwidth limit for queue2: (y2/ (y1+y2+y3+y4)) =bandwidth-limit for Q2 mbps 

Bandwidth limit for queue1: (y3/ (y1+y2+y3+y4)) =bandwidth-limit for Q3 mbps 

Bandwidth limit for queue1: (y4/ (y1+y2+y3+y4)) =bandwidth-limit for Q4 mbps 

SW3560 (config) # interface FastEthernet 0/1 

SW3560 (config-if) #speed 100 

SW3560 (config-if) # srr-queue bandwidth shape 88 88 0 0 

SW3560 (config-if) # srr-queue bandwidth shape 100 100 60 40 

For shaped mode:88 inverse weight for queue1, 88 inverse weight for queue2, 0 shaping not applied for queue3, 

and 0 shaping not applied for queue4.For share mode :10 percentages is relative weight for queue1, 100 

percentages is relative weight for queue2, 60 percentages is relative weight for queue3, and then 40 percentages is 

relative weight for queue4. 

BW limit for queue1 (mbps):1/88*100 mbps=1.13 mbps 

BW limit for queue1 (mbps):1/88*100 mbps=1.13 mbps 

BW for queue3: [60/ (60+40)]*(100-1.13-1.13) mbps=58.644 mbps 

BW for queue4: [40/ (60+40)]*(100-1.13-1.13) mbps=39.096 mbps 

Total bandwidth (mbps) =1.13+1.13+58.644+39.096=100 mbps 
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Section 3: Lab task 3 

SW3560 (config) #access-list 101 permit UDP any any 

SW3560 (config) #access-list 101 deny ip any any 

SW3560 (config) #access-list 102 permit TCP any any 

SW3560 (config) #access-list 102 deny ip any any 

SW3560 (config) #access-list 103 permit ICMP any any 

SW3560 (config) #access-list 103 deny ip any any 

SW3560 (config) #access-list 104 permit ip any any 

SW3560 (config) #class map C-UDP 

SW3560 (config-C-UDP) #match access-group 101 “match access list 101 with class map” 

SW3560 (config-C-UDP) #exit 

SW3560 (config) #class map C-TCP 

SW3560 (config-C-UDP) #match access-group 102 “match access list 102 with class map” 

SW3560 (config-C-UDP) #exit 

SW3560 (config) #class map C-ICMP 

SW3560 (config-C-UDP) #match access-group 103 “match access list 103 with class map” 

SW3560 (config-C-UDP) #exit 

SW3560 (config) #class map C-Other 

SW3560 (config-C-UDP) #match access-group 104 “match access list 104 with class map” 

SW3560 (config-C-UDP) #exit 

Policy 

SW3560 (config) #policy-map P-UDP 

SW3560 (config) #policy-map C-UDP 

SW3560 (config-Pmap) #police 13500000 8000 exceed-action policed-dscp-transmit 

SW3560 (config-Pmap) #exit 

SW3560 (config) #policy-map P-TCP 

SW3560 (config) #policy-map C-TCP 

SW3560 (config-Pmap) #police 13500000 8000 exceed-action policed-dscp-transmit 

SW3560 (config-Pmap) #exit 

SW3560 (config) #policy-map P-ICMP 

SW3560 (config) #policy-map C-ICMP 

SW3560 (config-Pmap) #police 13500000 8000 exceed-action policed-dscp-transmit 

SW3560 (config-Pmap) #exit 

SW3560 (config) #policy-map P-Other 

SW3560 (config) #policy-map C-Other 

SW3560 (config-Pmap) #police 100000000 8000 exceed-action policed-dscp-transmit 

SW3560 (config-Pmap) #exit 

SW3560 (config) #interface FastEthernet interface-id/ VLAN-id 

SW3560 (config) #interface FastEthernet 0/1 

SW3560 (config-if) #service-policy input policy P-UDP 

SW3560 (config-if) #exit 

SW3560 (config) #interface FastEthernet 0/2 

SW3560 (config-if) #service-policy input policy P-TCP 

SW3560 (config-if) #exit 

SW3560 (config) #interface FastEthernet 0/3 

SW3560 (config-if) #service-policy input policy P-ICMP 

SW3560 (config-if) #exit 

SW3560 (config) #interface FastEthernet 0/4 

SW3560 (config-if) #service-policy input policy P-Other 

SW3560 (config-if) #exit. 
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Appendix 2. Installation and Configuration of Snort NIDPS. 

The following sections give instructions for installing and configuring Snort NIDPS for Windows, Linux OSs 

and virtual machines 

Section 1: Windows 

1. Download Snort, Snort rules and Winpcap tools from the following website “ www.snort.org” 
2. When you downloaded you will see the following structure on C: driver 

3. Go to command prompt 

4. C:>Snort –W 

5. Go to C:\snort\etc\snort.config and then change some lines as the following : 

From : 

Path to your rules files (this can be a relative path) 

# Note for Windows users: You are advised to make this an absolute path, 

# such as:  c:/snort/rules 

var RULE_PATH c:/snort/rules 

var SO_RULE_PATH c:/snort/so_rules 

var PREPROC_RULE_PATH c:/snort/preproc_rules 

# If you are using reputation preprocessor set these 

var WHITE_LIST_PATH c:/snort/rules 

var BLACK_LIST_PATH c:/snort/rules 

To : 

# such as:  c:\snort\rules 

var RULE_PATH c:\snort\rules 

var SO_RULE_PATH c:\snort\so_rules 

153 

http://www.snort.org/


 

 

 

 
 

 

 

 

 

 

 

                 

   

 

   

 

 

 

 

     

  

     

  

      

 

  

 

 

     

  

     

  

      

   

 

                

     

 

 

 

 

     

 

               

 

 

 

          

           

            

            

           

           

             

                  

  

             

              

 

                

 

                   

     

                   

      

                

               

                

              

                    

  

            

            

var PREPROC_RULE_PATH c:\snort\preproc_rules 

var WHITE_LIST_PATH c:\snort\rules 

var BLACK_LIST_PATH c:\snort\rules 

From: 

# Configure default log directory for snort to log to. For more information see snort -h command line options (-l) 

#config logdir: c:/snort/log 

To: 

#config logdir: c:\snort\log 

From: 

Dynamic Modules 

################################################### 

# path to dynamic preprocessor libraries 

dynamicpreprocessor directory c:/snort/_dynamicpreprocessor 

# path to base preprocessor engine 

dynamicengine c:/snort/snort_dynamicengine/engine.dll 

# path to dynamic rules libraries 

To : 

Dynamic Modules 

################################################### 

# path to dynamic preprocessor libraries 

dynamicpreprocessor directory c:\snort\lib\snort_dynamicpreprocessor 

# path to base preprocessor engine 

dynamicengine c:\snort\lib\snort_dynamicengine\sf_engine.dll 

# path to dynamic rules libraries 

dynamicdetection directory c:\snort\lib\snort_dynamicrules 

Add: 

Include $RULE_PATH/local.rules in step7 list rule 

Add: 

whitelist $WHITE_LIST_PATH\white.list, \ 

blacklist $BLACK_LIST_PATH/black.list 

At the send of step 5 

6. Open local rule file and create your rules. The list of rules can be found it in the list below: 

LOCAL RULES 

➢ #alert udp any any -> any any (msg:" Malicious UDP Packets "; sid:1000002;) 

➢ #drop ip any any -> any any (msg:" ip Header TEST"; sid:1000001;) 

➢ # block ip any any -> any any (msg:" ip Header TEST"; sid:10000001;) 

➢ # alert tcp any any -> any any (msg:" TCP Packets Generatore TEST"; sid:1000002;) 

➢ # alert icmp any any -> any any (msg:" ICMP Header Test "; sid:1000003;) 

➢ # alert ip any any -> any any (msg:" udp flooder TEST"; sid:1000004;) 

➢ # alert ip any any -> any any (msg:" ip Packets Generatore TEST"; sid:1000005;) 

➢ # alert udp any any -> any any (msg:" detect a specific time to live value of ip header"; ttl: 128; 

o sid:1000006;) 

➢ # alert ip any any -> any any (msg:" ip flooder TTL=128 TEST"; ttl: 128; sid:1000007;) 

➢ # alert udp any any -> any any (msg:" UDP flooder TTL=128 TEST"; ttl: 128; content: "abcdef"; 

sid:1000009;) 

➢ # alert udp any any -> any any (msg:" UDP flooder TTL=128 TEST"; ttl: 128; content: "|72 7D 98 8D|"; 

sid:10000010;) 

➢ # alert udp any any -> any any (msg:" start resrach for the word abcdef after 100 bytes from the start of the 

o data"; ttl: 128; content: "abcdef"; offset:100; sid:10000011;) 

➢ # alert udp any any -> any any (msg:" start resrach for the word abcdef between characters4 and 100 bytes 

of the data"; ttl: 128; content: "abcdef"; offset: 4; depth: 100; sid:10000012;) 

➢ # # alert udp any any -> any any (msg:" abc work match"; ttl: 128; content-list: "abc"; sid:10000014;) 

➢ # alert ip any any -> any any (msg:" data size of an ip packets"; ttl: 128; dsize: <30000; sid:10000015;) 

➢ # alert udp any any -> any any (msg:" data size of an udp packets"; ttl: 128; dsize: <30000; sid:10000016;) 

➢ # alert icmp any any -> any any (msg:" check icmp-id field >oms ";icmp_id: 789; sid:10000017;) 

➢ # alert IP any any -> any any (msg:" Check if the source and destination ip address are same "; sameip; 

o sid:10000018;) 

➢ # alert tcp any any -> any any (msg:" Check sequence number "; seq: 1; sid:10000019;) 

➢ # # Alert udp any any -> any any (msg:” check UDP-ID field”; id:789; Sid: 1000005 ;) 
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➢ # Alert icmp any any -> any any (msg:” check ICMP-ID field”; icmp_id:789; Sid: 1000005 ;) 
➢ # Alert udp any any -> any any (msg:” Detect Malicious packets (Check Time To Live value in udp 

header)”; ttl: 128; Sid: 1000006 ;) 

➢ # Alert ip any any -> any any (msg:” Check Time To Live value in ip header”; ttl: 128; Sid: 1000006 ;) 
➢ # Alert udp any any -> any any (msg:" Detect Malicious packets (Check or to find data pattern inside 

o packets) "; ttl:128; content:"abcdef"; Sid:1000007;) 

➢ # Alert udp any any -> any any (msg:" Detect Malicious packets (Check hexadecimal characters in side 

o data) "; ttl:128; content:"|61 62 63 64|"; Sid:1000008 ;) 

➢ # Alert udp any any -> any any (msg:" Detect Malicious packets (Check data size for packets) "; ttl:128; 

o dsize:<660000; Sid:1000009 ;) 

➢ # Alert udp any any -> any any (msg:" Start research for the word “abcdef” after 1 bytes from the start of 
data "; ttl:128; content:"abcdef"; offset:1; Sid:10000010 ;) 

➢ # Alert udp any any -> any any (msg:" Detect Malicious packets (Start research for the word “abcdef” 
o between characters 1 and 100 bytes of the data) "; ttl:128; content:"abcdef"; offset:1; depth:100; 

Sid:10000011 ;) 

➢ # Alert udp any any -> any any (msg:" Start research for the word “abcdef” after 100 bytes from the start 

of data "; ttl:128; content:"abcdef"; offset:4; Sid:10000010 ;) 

Section 2: Linux 

1. Update the system 

# apt-get update 

# apt-get install openssh-server 

# reboot 

2. Install ethtool tool 

# apt-get install ethtool 

3. Install build-essential tool 

# apt-get install -y build-essential 

4. Install Snort prerequisites 

Install libpcap-dev, libpcre3-dev, zlib1g-dev and libdumbnet-dev packages 

# apt-get install -y libpcap-dev 

# apt-get install libpcre3-dev 

# apt-get install -y libdumbnet-dev 

# apt-get install zlib1g-dev 

5. Install Snort DAQ Prerequisites 

bison and flex are the requirement for Snort DAQ installation 

# apt-get install bison flex 

6. Create a directory to install tar packages of snort and Snort DAQ 

# mkdir /home/snort/snort_src 

7. Change working directory to newly created directory. 

# cd /home/snort/snort_src/ 

8. Download and install DAQ 

# wget https://www.snort.org/downloads/snort/daq-2.0.6.tar.gz 

9. Install the Package 

# tar -xvf daq-2.0.6.tar.gz 

# cd daq-2.0.6 

# cd daq-2.0.6 

# ./configure 

# makes root@snort:/home/snort/snort_src/daq-2.0.6# make install 

10. Install Snort in same directory 

# wget https://www.snort.org/downloads/snort/snort-2.9.7.5.tar.gz 

11. Extract and Install the snort package 

# gunzip snort-2.9.7.5.tar.gz 

# tar -xvf snort-2.9.7.5.tar 

# cd snort-2.9.7.5 

# ./configure --enable-sourcefire 

# make 

# make install 

# ldconfig 

12. Create a Soft Link for Snort binary 
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# ln -s /usr/local/bin/snort /usr/sbin/snort 

13. Verify your Snort is installed correctly or not 

# snort -V 

14. Configure Snort for NIDS Mode 

Create following Directories 

# mkdir /etc/snort 

# mkdir /etc/snort/rules 

# mkdir /etc/snort/preproc_rules 

# touch /etc/snort/rules/white_list.rules 

# touch /etc/snort/rules/black_list.rules 

# touch /etc/snort/rules/local.rules 

15. Create Log Directory for snort 

# mkdir /var/log/snort 

16. Create a Directory for snort Dynamics rules 

# mkdir /usr/local/lib/snort_dynamicrules 

17. Change permissions 

# chmod -R 5775 /etc/snort/ 

# chmod -R 5775 /var/log/snort/ 

# chmod -R 5775 /usr/local/lib/snort 

# chmod -R 5775 /usr/local/lib/snort_dynamicrules/ 

18. Copy *.conf and *.map files from snort download directory to /etc/snort 

# cp /home/snort/snort_src/snort-2.9.7.5/etc/*.conf* /etc/snort/ 

# cp -v /home/snort/snort_src/snort-2.9.7.5/etc/*.map* /etc/snort/ 

19. Configure /etc/snort/snort.conf 

Before editing snort.conf get the backup of that file first 

# cp /etc/snort/snort.conf /etc/snort/snort.conf_orig 

20. Give following Command 

# sed -i 's/include \$RULE\_PATH/#include \$RULE\_PATH/' /etc/snort/snort.conf 

Note:Above Command will comment all rulesets which we will edit line by line 

21. Go to line 45 of /etc/snort/snort.conf, edit to make like below 

ipvar HOME_NET 10.0.0.0/8 

ipvar EXTERNAL_NET !$HOME_NET 

22. Go to line 104 and put following entries 

var RULE_PATH /etc/snort/rules 

var SO_RULE_PATH /etc/snort/so_rules 

var PREPROC_RULE_PATH /etc/snort/preproc_rules 

var WHITE_LIST_PATH /etc/snort/rules 

var BLACK_LIST_PATH /etc/snort/rules 

23. To enable local rules go to line 551 and uncomment following line 

##include $RULE_PATH/local.rules 

24. Save and Quit 

25. Now Download Community rules from following link 

https://www.snort.org/downloads/community/community-rules.tar.gz 

Extract these rules and copy to /etc/snort/rules. 

26. Test the configuration 

# snort -T -c /etc/snort/snort.conf 
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Section 3: For a virtual machine 

1. Download and run Ubuntu V 14.04.3 LTS in virtual machine 

2. Go to terminal 

3. :$ ifconfig 

4. :$//installing prerequisite for compliny snort// 

5. :$sudo apt-get install flex bison build-essential checkinstall libpcap-dev libnet1.dev libpcre3-dev 

libmysqlclient15.dev libnetfilter-queue-dev iptables-dev 

6. :$do you want to continue [y/n] y 

7. :$wget http://libdnet.google.com/files/libdnet-1.12.tgz 

8. :$ls 

9. :$tar xvf2 libdnet-1.12.tg2 

10. :$ls 

11. :$cd libdnet-1.121 

12. :$~/ libdnet-1.12 $ ./configure “CFLAGS—FPIC” 
13. :$make 

14. :$sudo checkinstall 

15. :$ do you want to list them [y/n]: n 

16. :$Should i exclude ……..[y/n]:y 
17. :$sudo dpkg –I libnet-1.12-1_amd64.deb 

18. :$sudo ln –s /usr / local / lib/ libnet.1.0.1 /usr/lib/libdnet.1 

19. :$//” download “ snort/2// 
20. :$//”go to internet browser and them open www.snort.org>>download snort>>source>>daq. 

tar.g2>>snort.V.targ2”// 
21. :$cd 

22. :$ls 

23. Cd downloads 

24. ~/downloads$ ls 

25. //” you will find DAQ file and Snort file.// 
26. :$tar xvfz dag-.V.tar.g2 

27. :$ls 

28. :$cd daq-2.0.2/ 

29. :$./configure 

30. :$make 

31. :$sudo checkinstall 

32. :$Do you want to list them[y/n]:n 

33. :$Sudo dpkg –I dag-2.V.deb 

34. :$ls 

35. :$cd 

36. :$cd downloads 

37. :$tar xvfvz snort .V. tar.g2 

38. :$ls 

39. :$cd snort 

40. :$./configure 

41. :$make 

42. :$sudo checkinstall 

43. :$sudo dpkg –I snort.V.deb 

44. :$sudo in –s /usr/local/bin/snort  /usr/sbin/snort 

45. :$sudo ldconfig –v 

46. :$snort –v 

47. :$// netx step to configure snort and download snort rules// 

48. :$// for security we requmanded to create seprate linex user// 

49. :$sudo groupadd snort 

50. :$sudo useradd snort 

51. :$sudo useradd snort –d/var/log /snort –s/sbin/nologin –c snort_ids –g snort 

52. :$sudo mkdir /var/log/snort 

53. :$sudo chown snort:snort /var/log/snort 

54. :$//go to snort rule// 

55. :$//www.snort.org>>rule>>sign in>>get rules>>snort rule file>>save// 

56. :$cd Downloads 
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57. :$sudo mkdir /etc/snort 

58. :$Sudo tar xvfvz snortrules…. Tar.g2 –c /etc/snort 

59. :$sudo touch /etc/snort/rules/white_list.rules/etc/snort/rules/black_list.rules 

60. :$sudo mkdir /usr/local/lib/snort/snort_dynamicrules. 

61. :$sudo chown –R snort:snort /etc/snort/ 

62. :$sudo mv /etc/snort/etc/* /etc/snort 

63. :$// configure snort configuration file// 

64. :$sudo pico /etc/snort/snort.conf 

65. :$// file snort.config is oppend >> changed >> 

66. *step#1 

67. #Ipvar home_net ANY [YOUR NETWORK]EX[10.0.0.0/8] 

68. #Ipvar EXTERNAL_NET any >> [!$HOME_NET] 

69. #VAR rue.path. /etc/snort/rules 

70. # /etc/snort/so_rules 

71. # /etc/snort/pre_rules 

72. #var wite_list_path /etc/snort/rules 

73. /ect/snort/rules 

74. #Close snort.config file 

75. :$sudo –T –I eth0 –A snort –g snort –c /etc/snort/snort.config 

76. :$// install tcp replay// 

77. :$wget https://dl.dropboxusercontent.com/u/98306176/captures/smallflows.pcap 

78. :$wget http://download s.sourceforge.net/project/tcpreplay/tcpreplay/4.0.0/tcpreplay-4.0.0tar.gz 

79. :$download libcap-1.6.2 tarz , “tcpdump-4.6.2” 
80. :$tar xvzf libcap.16.2 tar.g2 

81. :$cd libcap-1.6.2 

82. :$./configure; make; sudo make install 

83. :$tar xvzf tcpreplay-4.0.0 

84. Cd tcpreplay 

85. :$./configure; make ; sudo make install 

86. :$./sudo make test 

87. :$tcpreplay –V 

88. :$sudo tcpreplay –I eth –t –k small flows.pcap 
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Appendix 3. Terms and Expressions (Abbreviations) 

ARP: Address Resolution Protocol. 

ARP: Address Resolution Protocol. 

ASA: Adaptive Security Appliance. 

API: Application Program Interface. 

ATM: Asynchronous Transfer Mode. 

ASIC: Application-Specific Integrated Circuit. 

ACL: Access Control List. 

BVI: Bridge-group Virtual Interface. 

Bps: Byte per Second. 

Bpms: Byte per millisecond. 

CPU: Central processing Unit. 

CSI: Crime Scene of Investigation. 

CGI: Common Gateway interface. 

CDP: Cisco Discovery Protocol. 

CoS: Class of Service. 

CMF: Constrained Multicast Flooding. 

DoS: Denial of Service. 

DDoS: Distributed Denial of Service. 

DiffServ: Differentiated Service. 

DSCP: Differentiated Service Code Point. 

EIGRP: Enhanced Interior Gateway Routing Protocol. 

Eth: Ethernet interface. 

Frag: Fragmented Packets. 

FEC: Fast Ethernet Channel. 

FBI: Federal Bureau of Investigation. 

GrIDPS: Graph-based Intrusion Detection and Prevention System. 

GUI: Graphical User Interface. 

GEC: Gigabit Ethernet Channel. 

GPU: Graphics Processor Unit. 

GB: Gigabyte. 

Gb: Gigabit. 

Gbps: Gigabit per second. 

HIDPS: Host-based Intrusion Detection and Prevention System. 

HTTP: Hypertext Transfer Protocol. 

HSRP: Host Standby router Protocol. 

ID: Intrusion Detection. 

IP: Intrusion Prevention. 

IDS: Intrusion Detection System. 

IDPS: Intrusion Detection and Prevention System. 
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IPS: Intrusion Prevention System. 

ICMP: Internet Control Massage Protocol. 

IOS: Interface Operating system. 

IPX: Internetwork Packet Exchange. 

ISL: Inter-Switch Link. 

I/O: Input and Output. 

KBps: Kilobytes per second. 

LAN: Local Area Network. 

Libpcap: Library Packets Capture. 

MIB: Management Information Bases. 

MIDeA: Multi-parallel IDS Architecture. 

MB: Megabyte. 

Mb: Megabit. 

Ms: Millisecond. 

mSec: Microsecond. 

MHz: Megahertz. 

NID: Network Intrusion Detection. 

NIP: Network Intrusion Prevention. 

NIDPS: Network-based Intrusion Detection and Prevention System. 

NAPI: New Application Program Interface. 

NIC: Network Interface Controller. 

OSs: Operating Systems. 

OSC: Operating System Compatibility. 

POP: Post Office Protocol. 

PPP: Point-to-Point Protocol. 

PDP: Policy Decision Point. 

Pcap: Packet Capture. 

PCRE: Perl-Compatible Regular Expressions. 

PBR: Policy-Based routing. 

PEM: Parallel Exact Matching. 

QoS: Quality of Service. 

OSPF: Open Shortest Path First. 

OPI: Open System Interconnection. 

RIP: Routing Information Protocol. 

RMON: Remote MONitoring. 

SMB: Server Massage Block. 

SNMP: simple Network Management Protocol. 

SLIP: Serial-Line internet Protocol. 

SQL: Structured Query Language. 

SONET: Synchronous Optical Network. 
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SSH: Secure Shell. 

SSL: Secure Socket Layer. 

SVI: Switch Virtual Interface. 

SRR: Share or Shape Round Robin. 

SRA: Snort Rule Accelerator. 

TCP: Transmission Control Protocol. 

ToS: Type of Service. 

TTL: Time-To-Live. 

UDP: User Datagram Protocol. 

VPN: Virtual Private Network. 

VIA: Virtual Internet Access. 

VLAN: Virtual Local Network Interface. 

WISR: Worldwide Infrastructure Security Report. 

WTD: Weighted Tail Drop. 

WinPcap: Windows Packets Capture. 

XML: Extensible Mark-up Language. 

𝛌: Traffic (packets) speed rate. 

𝛃: Buffer Speed rate. 

𝛌𝐝: Drop packets rate. 

𝛌𝐨: Outstanding packets rate. 

𝛃𝐞𝐱𝐢 
: Output buffer rate for interface i. 

𝛃𝐢𝐧𝐢𝐣 
: Ingress queue ( j) buffer rate for interface i. 

𝛃𝐞𝐱𝐢𝐣 
: Egress queue ( j) buffer rate for interface i. 

𝛌𝐢𝐧: The arrival traffic (packets) rate. 

𝛌𝐢𝐧𝐢 
: The arrival traffic (packets) rate for interface i. 

𝛌𝐨𝐮𝐭: The output rate for output links (interface). 

𝛌𝐨𝐮𝐭𝐢 
: The output traffic (packets) rate for output link (interface i). 

𝛂: The maximum rate of each buffer. 

𝛍: Group of bytes per seconds. 

𝛃𝐤: Kernel buffer rate. 

𝛂𝐨𝐮𝐭𝐢𝐣
: The output packets rate for queue j in interface i. 

𝛃𝐬𝐯𝐢: SVI memory pool rate. 

𝛃𝐞𝐱: The rate for all egress buffers together. 

𝛃𝐬𝐰𝐢 
: Switch memory common pool rate. 
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