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ABSTRACT 

This thesis presents the development of MUSIC algorithm based novel approaches for the 

estimation of Direction of Arrival (DOA) of electromagnetic sources. For the 2D-DOA estimation, 

this thesis proposes orthogonally polarized linear array confguration rather than the conventionally 

invoked two dimensional array. An elegant one dimensional search technique to compute 2D-DOA 

estimation for a single source scenario has been proposed. To facilitate one dimensional search 

for 2D-DOA estimation, a closed form relationship between the azimuth and elevation angles 

of the 2D-DOA is derived using the analytical expressions of radiation patterns of Rectangular 

Waveguide (RWG) and Circular Waveguide (CWG). The computation time for the proposed one 

dimensional search technique is reduced by a factor of 50 and 150 for 1◦ and 0.5◦ search interval 

respectively. To improve the accuracy and the resolution of 2D-DOA estimation in case of closely 

spaced sources, this thesis proposes novel array confgurations such as orthogonally polarized 

planar array, orthogonally mounted linear array and orthogonally polarized linear array. Through 

numerous simulation studies, a relative performance comparison of 2D-DOA estimation realized 

through various proposed novel array confgurations has been carried out to highlight the accu-

racy and resolution under wide range of SNR conditions. The thesis presents a discussion on 

the analysis of effect of spatial de correlation in lieu of the employed orthogonally polarized ele-

ments in the array confguration on the improved accuracy and resolution of the 2D-DOA estimation. 

This thesis also deals with the utility of the proposed orthogonally polarized array confgura-

tions for tracking of 2D-DOA angles of non-stationary signal sources. The weighting factor and 

forgetting factor approaches for smoothing the time-varying covariance matrix of the non-stationary 

sources are studied. The simulation studies on 2D-DOA tracking by invoking proposed array 

confgurations along with the proposed smoothing techniques prove that orthogonal polarized array 

confguration track the DOA source angle with minimum estimation errors. The thesis proposes 

the replacement of computationally intensive numerical schemes in Multiple Signal Classifcation 

(MUSIC) algorithm such as eigen decomposition and singular value decomposition with the sub-

space tracking techniques such as Bi-Iterative Singular Value Decomposition (Bi-SVD) algorithm. 

Invoking the concept of sub-band processing, the thesis addresses the validity of the extension of 

the presented 2D-DOA estimation analysis to wide band signal. A two subband flter approach is 

proposed for the estimation 2D-DOA of single and two wideband sources. The simulation study of 

the two subband flter approach along with the orthogonal polarized array confgurations confrms 

the better estimation accuracy as well as the lesser computation time. 
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Chapter 1 

Introduction 

1.1 Introduction to DOA Estimation 

Antenna array processing has been in the forefront during the last several decades catering 

to the research progress of radar and wireless communication engineering. Estimation of 

signal parameters has been a topic of considerable research interest to various disciplines 

coming under the purview of communication systems designed to meet the system applica-

tions of radar and wireless technologies. The Direction of Arrival (DOA) is a technique for 

the estimation of angular direction of the signal sources impinging on the array of sensing 

elements by subjecting the received data samples to the array signal processing algorithms. 

The localization of the impinging source (signal) on the array of sensor elements is the 

theme of DOA estimation technique. The DOA estimation fnds many applications in vari-

ous disciplines of engineering. In radar and communication engineering, sensing elements 

are usually antennas which are part of the base station to identify the signals as well as 

interference. The system which performs the DOA estimation is also widely referred to as 

Direction Finding System (DFS). 

Array signal processing is a broad feld of research interest in advanced antenna systems. 

Development of algorithms in array signal processing for advanced antenna techniques, 

is of great relevance to wireless communication as well as radar engineering. The spatial 

samples of the signals emitted from various sources are received by the antenna elements 

of the array. The received data samples depend on the characteristics of the sources, the 

channels, the noise, and the measurement devices. Typically, the data are processed to 

estimate the parameters such as number of sources, location of sources, range or distance 

as well as velocity of the moving sources of signals. Estimation of these parameters opens 

up an avenue for a large number of studies involving different system models and signal 

processing objectives. Over the past decades, many researchers have been fascinated by 

the realisable novelties and niceties offered by the domain of estimation algorithm. The 
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demand for the performance enhancement of estimation algorithms has drawn attention and 

focus of applied mathematicians and signal processing researchers. Many researchers have 

attempted and contributed numerous techniques to this discipline. The source localization 

using smart antennas is one such problem which has evolved from the classical direction 

fnding problem in radar signal processing. Through collection of received time samples 

and by processing of spatial signals, detection of multiple incoming sources and estimation 

of their DOAs can be realised (Krim & Viberg, 1996). 

The spatial samples received through the elements of antenna array are processed to 

estimate the DOA. The algorithms of earlier DOA estimation techniques were either 

Fourier based or beamforming based. Later the arrival of subspace based approaches laid 

foundation for the development of algorithms for DOA estimation with higher resolution. 

The subspace algorithms are based on Eigen Value Decomposition (EVD) and Singular 

Value Decomposition (SVD) techniques (Golub & Van Loan, 2012). EVD plays a crucial 

role in signal processing, because it can split a mixture of complex signals into a set of 

desired and undesired subspace components. Thus, eigen based methods have been exten-

sively researched in adaptive signal processing. These algorithms were initially developed 

to fnd the one dimensional DOA and later extended for two dimensional DOA estimation. 

1.2 Applications of DOA Estimation 

The DOA estimations fnd utility in diversifed system applications and the following are 

a few examples, where DOA estimation schemes are employed (Van Trees, 2004) and 

(J. C. Chen, Yao, & Hudson, 2002); RADAR systems installed as phased array radar and 

air-traffc control radar; SONAR systems deploy DOA estimation schemes to estimate the 

far-feld sources with localization and classifcation. In mobile communications, smart 

antennas with suitable adaptive signal processing sensor array are adopted. This technique 

will be able to locate mobile users with the use of DOA estimation techniques. In radio 

astronomy, the radio telescopes are used for the detection of radio waves from an astronom-

ical object or celestial bodies. The accuracy and resolution of DOA estimation algorithms 

play a signifcant role. Seismology which deals with scientifc study of earthquakes and 

the propagation of elastic waves through the earth fnds the utility of DOA estimation 

algorithms to determine the origin of the seismic waves. In wireless communication, 

multipath channel characteristics of radio channel can be analysed using DOA estimation 
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algorithms. The angle of arrival statistics and time of arrival statistics are incorporated in 

channel models to characterise the multipath channels more accurately (Fuhl, Rossi, & 

Bonek, 1997; Rappaport, Reed, & Woerner, 1996). Recently, DFS has been identifed for 

its potential in mobile communication systems for the characterisation of channel statistics 

in a multipath scenario. The DOA of interfering signal can also be estimated using DFS. 

The DOA estimation technique has paramount importance in tracking of signal sources 

in civilian and commercial applications. The DOA technique is a multi specialization 

entity embarking on the speciality domains of antenna engineering, algorithms of array 

signal processing and estimation techniques of communication engineering (Chryssomallis, 

2000). 

Recently, the potential of directional antennas and their signifcance for Mobile Ad-Hoc 

Networks (MANETs) have been steadily explored by researchers. Typically, the MANET 

nodes are employed with omni-directional antennas. The communication between sending 

and receiving nodes of MANET is through the packets routing, in which the route (path) is 

established through routing algorithms. These routing algorithms identify the nodes within 

the range of communication, and route the data packets from source node to destination 

node through multiple hops in the path established (Choudhury & Vaidya, 2003). In such 

a case, if the directional antennas are employed in place of omni-directional antennas, 

a directional antenna with its enhanced range of communication in lieu of higher gain 

would lead to minimization of the number of hops in routing of the packets. The scenario 

of transmitting data packets with omni-directional antenna and directional antenna for 

reduced hopping in the packet transmission are shown in Figures 1.1 and 1.2. From the Friis 

transmission formula (Kraus, 1992) and Shannon channel capacity theorem (S. Haykin, 

2008), the higher gain of directional antenna will improve the channel characteristics as 

well as range of communication. This will be lead to realization of higher Signal to Noise 

Ratio (SNR) and reduced Bit Error Rate (BER). Since, the number of hops is reduced, it 

minimizes the packet transmission latency, saves transmission power and battery energy of 

the nodes in the network (Kolar, 2004). 

The potential utility of directional antennas can be realized if only the task of plac-

ing the directional beam of the antenna towards the intended communication direction is 

achieved. Precise placement of directional beam of the antenna warrants the associated 

desirable accuracy and resolution of DOA estimation algorithm. Thus the algorithms 
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Figure 1.1: MANETs with Omni Directional Antennas 

Figure 1.2: MANETs with Directional Antennas 

of DOA estimation with higher accuracy and resolution have signifcant role to play in 

MANETs, satellite tracking and radar applications. 

1.3 DOA Estimation Algorithms 

Multiple Signal Classifcation (MUSIC) (Schmidt, 1986) and Estimation of Signal Param-

eters via Rotational Invariance (ESPRIT) (Roy & Kailath, 1989) are the classical high 

resolution Eigen-structure based algorithms for the estimation of DOA of the incoming 

sources. These algorithms are based on the assumption that the desired array signal 

response is orthogonal to the noise subspace. The orthogonality implies that the esti-

mated covariance matrix is decomposed into the signal and noise subspaces (Eigenvectors) 

(Chandran, 2005). 
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The signal subspace based ESPRIT algorithm and noise subspace based MUSIC algorithm 

are the classical subspace based parameter estimation algorithms. In temporal signal 

processing, the estimation of frequency components from the mixture of complex sinusoids 

is carried with these algorithms. In array signal processing, these algorithms facilitate 

the estimation of azimuth and elevation angles of incoming signal sources through data 

processing of the spatial signal samples received by the antenna elements of the signal 

sensing array. The phase relationship between the array elements is utilized to construct 

an array steering vector which is a function of DOA angles. The ESPRIT algorithm has 

been limited only to uniform linear array confguration, since its computation is based on 

rotational invariance property of the subspace components. The estimation in ESPRIT al-

gorithm, involves fnding the roots of the polynomial and obtaining a least squares solution. 

The MUSIC algorithm can be invoked with an array of arbitrary geometric confguration 

and the estimation is based on the orthogonality of signal and noise subspaces. The DOA 

estimation is carried out through spectral peak search method. The construction of co-

variance matrix of the data for a fxed order, has signifcant role in these subspace based 

estimation algorithms. The covariance matrix should be decomposed to signal and noise 

subspaces. The computationally intensive EVD or SVD techniques are used in both of 

these algorithms for decomposition of signal and noise subspaces. 

The ESPRIT algorithm is computationally effcient, since it does not involve a search 

approach, whereas the MUSIC technique is a computationally intensive approach. In 

case of one dimensional DOA, (say for only elevation angle θ ), the search is along one 

dimension, and for two dimensional DOA (both the elevation angle θ and azimuth angle 

φ ), two dimensional search is required. Hence the order of computation in search approach 

of MUSIC algorithm is increased from O(n) to O(n2). 

The statistical analysis of MUSIC and ESPRIT reveals that, in case of temporal signal 

processing for the estimation of frequency components from complex mixture of sinusoids, 

the ESPRIT algorithm is slightly more accurate than MUSIC algorithm. Whereas, in array 

signal processing, the MUSIC algorithm yields more accurate estimation than ESPRIT 

algorithm (Stoica & Söderström, 1991). 

The MUSIC algorithm has the vast utility of being amenable to any arbitrary array con-

fgurations, despite its intensive computation. The need for reduction of computation 
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in the MUSIC algorithm for array signal processing based parameter (DOA) estimation 

problems is a single signifcant motivation factor to pursue research pertaining to estimation 

algorithms. The conventional DFS utilizes an antenna array, in which the elements are 

excited in single polarization. Typically, the performance of DOA estimation is studied 

with an assumption of isotropic radiating elements in the antenna array. In this, the gain 

of the antenna is assumed to be unity in all angles. The gain of the antenna element in 

the array is not considered in the DOA estimation, since it will be a scaling factor that is 

uniform across all the elements of the array. The assumption of unity gain of the antenna 

elements is valid in DOA estimation involving spatial signal samples obtained through 

single polarized antenna array with identical elements. 

The scope of improving the estimation accuracy and resolution of MUSIC algorithm, 

is yet another direction of research which encourages to design diversely polarized antenna 

arrays. The antenna array with diversely polarized (vertical and horizontal polarization) 

antenna elements will not have uniform gain across the array and hence the unity gain 

assumption is not valid in such a case. Thus, the radiation pattern of individual antenna 

elements of the array must be considered along with their respective polarization for esti-

mation of DOA angles of interest. 

The difference in the gain of the vertical and horizontal polarized antenna elements present 

in the diversely polarized antenna array provides a difference in the covariance of the 

data received through the vertical and horizontal polarized array elements. The perfect 

orthogonality between the signal and noise subspaces is expected in the decomposition of 

the covariance matrix, which cannot occur in the practical scenario, because of the additive 

noise present in the signal reception. The difference in the covariance of the data through 

orthogonal polarized elements leads to the improved orthogonality between the signal and 

noise subspace components accomplished through EVD or SVD of the covariance matrix of 

the data samples. This improvement in the subspace decomposition directly refects in the 

improved estimation accuracy and resolution of the DOA angles. The improved accuracy 

of DOA estimation from the diversely polarized array, warrants the analysis and design of 

novel array confgurations named as orthogonal polarized array confgurations, with its 

antenna elements having a combination of horizontal and vertical polarized elements in 

different geometric confgurations. These orthogonal polarized array confgurations must 

be evaluated for their performance in DOA estimation for wide range of SNR scenarios. 

The correlation property associated with the covariance matrix of the data samples obtained 
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through the antenna elements of the diversely (orthogonally) polarized array confgurations 

is likely to not only improve the accuracy of the DOA estimation, but also the resolution to 

distinguish the closely spaced sources. 

The DOA estimation by classical algorithms such as MUSIC and ESPRIT for stationary 

(fxed) sources is straight forward through the well established procedures. However the 

non-stationary sources (moving sources) pose challenges in DOA estimation. In simple 

terms, DOA tracking is nothing but estimation of DOA of non stationary sources and 

tracking the movements of the sources. The dynamic changes in the moving sources lead 

to fuctuations in the covariance of the data matrix as and when the (instantaneous) samples 

are received. Hence, the sample covariance matrix is not the correct choice for DOA 

estimation, whereas as a smoothing flter which does the weighted average of covariance 

information from the current and past samples tends to improve the accuracy of DOA esti-

mation. The improved accuracy of 2D-DOA estimation with orthogonal polarized arrays, 

along with the improved covariance matrix using smoothing flter can offer a cumulative 

advantage in the tracking of 2D-DOA of non-stationary sources. 

The term signal bandwidth is defned as the difference between the highest (signifcant) 

frequency and the lowest (signifcant) frequency in the signal spectrum (Lathi, 1998). In a 

wideband signal, the signal power spreads over wide range of frequencies. The spread of 

signal power in a narrow band signal is limited to a narrow range of frequencies (S. Haykin, 

2008). However the term bandwidth is relative with respect to which part of the EM 

spectrum the signal is occupying. 

Most signal sources used in wireless or mobile communication channels are not a nar-

row band signal. The information modulated by a carrier wave will always have a fxed 

bandwidth. Such signals with a defned bandwidth are termed as wideband signals. The 

terms wideband and broadband are sometimes interchangeably used in the broad domain 

of communication engineering. The scope of the study in DOA estimation can be extended 

to investigate the effect of orthogonal polarized array confgurations for wideband source 

scenarios. The phase difference between the array elements for narrow band signals is fxed, 

whereas the corresponding phase difference of wideband signal gets cumulatively added 

for every discrete frequency component present in the signal.The cumulative phase along 

with the additive noise lead to increased complexity in the DOA estimation. Typically, 

wideband DOA estimation is performed by processing the discrete frequency components 
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of a wide band signal. For the estimation of DOA of incoming wideband sources, the 

classical techniques of incoherent and the coherent approaches are widely used. The 

incoherent approach averages the DOA estimation from the all the subspace components 

of the discrete frequencies. The coherent approach uses a transformation matrix to focus 

the signal subspace components of every discrete frequency to a desired frequency. Sev-

eral methods of focussing the signal subspace components are proposed in the literature 

(Di Claudio & Parisi, 2001; Sellone, 2006). The potential utility of conventional subband 

fltering approach used in the multirate flters (Vaidyanathan, 1993) and image processing 

(Woods & O’Neil, 1986) can be utilised for DOA estimation of wideband sources. The 

improved DOA estimation using orthogonal polarized array confgurations along with the 

subband approach can be exploited to process the wideband signal, to enhance its capability 

of 2D-DOA estimation. This simple subband approach does not involve any focusing of 

subspace and will estimate the 2D-DOA of wideband in a consistent manner. The subband 

flter approach is also preferred for its lower computational complexity when compared to 

the conventional incoherent and coherent approaches. 

1.4 Motivation of the Research 

DFS as a whole is a multi-disciplinary domain. The DFS involves the antenna array, Radio 

Frequency (RF) modules and digital signal processing modules to perform computation. In 

the past, signifcant research work has been carried in the development of DOA estimation 

algorithm, in an isolated way with a number of assumptions. Most of the research in DOA 

estimation is oriented towards the development or improvement over the existing algo-

rithms with reduced emphasis on antenna confgurations. The researchers have preferred to 

deal the problem in an isolated way by assuming the isotropic elemental radiation pattern, 

even though most commonly used elements of the antenna array are not omni antennas. 

The simulation of DOA estimation algorithms with actual radiation pattern of antenna 

element will be helpful to analyse its effects on the accuracy and resolution of DFS. The 

study of DOA estimation with the consideration of elemental radiation pattern in turn can 

affect the resolution of the estimation. 

This thesis aims to focus its research on the DOA estimation emphasising techniques, 

algorithms and approaches to improve the performance characteristics (resolution, accu-

racy) of the DOA estimation. In the framework of DOA estimation, several characteristics 
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play vital role in the performance of DFS system. They are 

• Confguration of array and its elements 

• Characteristics of the received signal 

• Estimation Algorithm 

A need for novel approaches in the 2D-DOA estimation technique with improved esti-

mation accuracy and resolution with lesser computational complexity is justifable. The 

requirement for improved signal processing algorithm suitable to track the 2D-DOA of the 

non-stationary sources with least computation is also valid. A performance enhancement in 

the estimation of 2D-DOA for the case of wideband signal sources will also be benefcial 

from practical consideration. In this context, the following questions have been formed to 

formulate the intended research pursuance. 

1. Can different confgurations of orthogonally polarized array be designed for improved 

accuracy and resolution of 2D-DOA estimation algorithms? 

2. Will the designed orthogonal polarized array confgurations be able to resolve DOA 

of multiple sources, if their angular separation between them is smaller? 

3. Can the designed orthogonally polarized array confgurations be utilized for effective 

tracking of dynamic sources? 

4. Will the proposed orthogonal polarized array confgurations be effective to treat the 

2D-DOA of single and multiple wideband sources 

5. For the retention of orthogonally polarized elements for higher accuracy and resolu-

tion of 2D-DOA estimation, what modifcations are needed at algorithmic perspec-

tives to make them more amenable for DOA estimation? 

6. Is there a feasibility to reduce the computational complexity of the MUSIC algorithm 

in 2D-DOA estimations? 

1.5 Objectives of the Thesis 

This thesis envisages to address the above listed research questions through the realization 

of the following formulated objectives. 

9 



1. To review the literature pertaining to the DOA estimation algorithms, approaches 

with respect to improve the resolution 

2. To design, simulate and analyse the array of antenna elements with adjacent elements 

orthogonally polarized 

3. To develop a DOA estimation scheme using orthogonally polarized adjacent elements 

4. To enhance the performance of subspace based DOA estimation techniques using 

subspace tracking algorithms 

5. To propose a novel approach for DOA estimation of wideband incoming signals 

1.6 Organization of the Thesis 

The subsequent chapters of this thesis are organized as follows. 

• Chapter 2 is intended to facilitate a succinct and yet an effective review of background 

theory of antennas, antenna array and various DOA estimation algorithms 

• Chapter 3 deals with the novel linear array confguration with its alternate elements 

orthogonally polarised and such an array is termed as Orthogonally Polarised Linear 

Array (OPLA). A closed form solution for MUSIC based 2D-DOA estimation of 

a single source is proposed which involves only 1D search instead of conventional 

2D search. The computational advantage of the proposed 1D search scheme is 

substantiated through relevant case studies. 

• Chapter 4 proposes novel orthogonally polarised antenna array confgurations which 

enhance the accuracy and resolution of 2D-DOA of multiple sources compared with 

conventional single polarized uniform planar array. This chapter also discusses 

simulation results to substantiate the signifcant advantages of orthogonally polarised 

antenna array confgurations to distinguish the multiple sources with relatively 

closer angular separation between them. This chapter also discusses a comparative 

RMSE performance analysis of 2D-DOA estimation realised through the proposed 

orthogonally polarised arrays and conventional single polarized planar array. 

• Chapter 5 deals with the formulation and solution technique to analyse the tracking 

behaviour of 2D-DOA estimation of dynamic sources using the proposed novel 
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orthogonally polarised antenna array confgurations. In particular, this chapter 

emphasises the importance of the techniques used for the formation of covariance 

matrix of the data samples and their infuence on the accuracy of 2D-DOA estimation. 

• Chapter 6 presents an analysis for 2D-DOA estimation of wideband sources based on 

an elegant subband fltering technique. The simulation studies presented in this chap-

ter substantiate the consistent and steady performance of subband based 2D-DOA 

estimation of wideband sources at all SNR levels. This chapter also compares the 

accuracy and resolution of 2D-DOA estimation realized through subband approach 

with the conventional coherent and incoherent methods. 

• Chapter 7 is aimed at the summary and signifcance of the analytical formulations 

along with the associated simulation results presented in this thesis. The suggestions 

for further research studies on the topics coming under the purview of this thesis are 

also incorporated in this chapter. 
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Chapter 2 

Review of Antenna Arrays and DOA Estimation Algorithms 

This chapter intends to review the concepts of antennas, antenna array theory and various 

antenna array confgurations applicable for two dimensional DOA estimation. This chapter 

also details the fundamental concepts of array signal processing and provides a detailed 

review on classical algorithms for 2D-DOA estimation. The techniques and algorithms 

required to extend conventional DOA estimation to dynamic sources are also covered in 

this chapter. The analytical consideration and the algorithms in the 2D-DOA estimation to 

deal with wideband sources are also presented in this chapter. 

2.1 Antennas 

An antenna facilitates the propagation of electromagnetic waves in free space. It is an 

interface between free space EM waves propagation and a guided medium. An antenna 

plays a signifcant role in the performance of wireless communication systems. The antenna 

array has been a preferred solution for applications such as radar and communications. 

Rapid technological progress in wireless communication has provided an impetus for 

advancement of antenna engineering. The fundamental parameters and radiation behaviour 

of the radiating elements are signifcant to facilitate a better understanding of antenna 

arrays. 

2.1.1 Radiation Pattern 

The radiation pattern is a two or three-dimensional representation of radiation of an antenna. 

According to the IEEE (“IEEE Standard Defnitions of Terms for Antennas”, 1983) the 

radiation pattern is defned as, A mathematical function or a graphical representation of 

the radiation properties of the antenna as a function of space coordinates. This parameter 

highly depends upon the application of the antenna. 

The radiation pattern of an antenna can be depicted or illustrated through a two di-

mensional representation or three dimensional representation for a given distance of 
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measurement. In a two dimensional representation, the illustration is restricted to a particu-

lar plane of a given three dimensional space. For example, In a Cartesian measurement 

system, the three dimensional representation corresponds to the three orthogonal axes x, 

y and z. The radiation patterns of an antenna in xz, yz and xy planes correspond to two 

dimensional representation. In a spherical polar coordinate system, the two dimensional 

radiation pattern may correspond to a plane of a fxed θ and varying φ or vice versa. A 

three dimensional radiation pattern of antenna in a spherical polar coordinate, corresponds 

to the radiation pattern measured / computed for θ varying from 0◦ to 180◦ and φ varying 

from 0◦ to 360◦ . 

The antenna radiation is measured in terms of a parameter called gain (dB). The antenna 

gain is defned as, The ratio of the intensity, in a given direction, to the radiation intensity 

that would be obtained if the power accepted by the antenna were radiated isotropically 

(“IEEE Standard Defnitions of Terms for Antennas”, 1983; Balanis, 2012). A plot of 

radiation pattern of an antenna as a two dimensional graph is as shown in Figure 2.1. The 

main beam of an antenna refers to the region of strong radiation from the antenna. The 

maximum gain of the main lobe is termed as the peak gain of the antenna and side lobe 

level of antenna determines the radiation in other directions. 

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be found in the Lancester 

Library, Coventry University.

Figure 2.1: Antenna Radiation Pattern (Balanis, 2012) 
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Figure 2.2: Coordinate System for Antenna Analysis (Balanis, 2012) 

The radiation at exactly 180◦ from main lobe is called as back lobe. The Half Power 

Beam Width (HPBW) is the width of main lobe between half power points. The Beam 

Width between the First Nulls (BWFN) is a parameter measured as width of the mainlobe 

between the frst null of the left and right side of the mainlobe. The HPBW and BWFN 

are the performance parameters to characterize the shape of the radiation pattern of the 

antenna or antenna array (Balanis, 2012, 2011). A coordinate system for radiation pattern 

analysis of an antenna is shown in Figure 2.2. 

2.1.2 Antenna Polarization 

Polarization is an important radiation characteristic of the antenna. In a broad sense an 

antenna exhibits two polarizations typically called as vertical and horizontal polarization. 

The Figure 2.3 shows that, in the far-feld distance from a dipole antenna, the E-feld 

(E-wave or Electric feld) oscillates. The H-feld (H-wave or Magnetic feld) also oscillates 
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perpendicular to the E-feld plane. Both E and H felds oscillate together along the 

propagation axis. The direction of the electric feld orientation of the antenna with respect 

to a reference plane (typically azimuth) is referred as polarization of the antenna. In Figure 

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be found in the Lancester 

Library, Coventry University.

Figure 2.3: E and H Fields in Far-Field 

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be found in the Lancester 

Library, Coventry University.

Figure 2.4: Veritical E-Fields Orientation of Rectangular Wave Guide - Vertical Polarization 

2.4, the E-feld orientation is vertical. Thus an antenna is termed as a vertically polarized 

antenna. If the orientation of the E-feld of the antenna is horizontal as shown in Figure 2.5, 

then the polarization of the antenna is horizontal. The mounting position of the antenna 

also decides the polarization characteristics. 

The radiation pattern of an antenna with linear polarization is discussed with respect 

to the principal plane of interest. Typically, the principal planes are E or H planes. The 

E-plane radiation pattern of the antenna corresponds to the radiation pattern in the plane 

containing the E-feld of aperture distribution and the direction of the wave propagation 

(maximum radiation). Referring to Figure 2.4, the E-plane radiation pattern of the antenna 

is measured in xz plane. Likewise, the H-plane radiation pattern of the antenna corresponds 
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Figure 2.5: Horizontal E-Fields Orientation of (RWG) - Horizontal Polarization 

to the radiation pattern in the plane containing the H-feld of aperture distribution and the 

direction of wave propagation (maximum radiation). Referring to Figure 2.4, the H-plane 

of the radiation pattern of the antenna is measured in yz plane. Mostly, antennas are oriented 

to one of the principal planes where the antenna maximum radiation is coincident with it 

(Balanis, 2012; Allen & Ghavami, 2006). 

The concepts of the dual polarization characteristics and dual polarized antenna are often 

misunderstood and interchangeably used in practice. A single antenna radiator fed with a 

single feed, that exhibits both the horizontal and vertical polarized components of equal or 

comparable amplitude in a plane (either azimuth or elevation) is called a dual polarized 

antenna. Any conventional antenna radiating in single polarization (say vertical) can be 

physically rotated by 90◦ (about its propagation (z) axis) to receive the other orthogonal 

polarized (horizontal) component of the signal. In such a case, the antenna should not be 

called as dual polarized antenna. 

2.1.3 Illumination of Sources 

The impinging angles (θ ,φ) of a source on the array of antenna elements are classifed as 

broad side illumination and endfre illumination. In antenna elements such as waveguides 

the maximum radiation occurs along the propagation axis of the antenna elements or in a 

direction perpendicular to the radiating surface of the antenna. 
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Figure 2.6: Broadside Illumination of Sources 
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Figure 2.7: Endfre Illumination of Sources 

Illumination, when the incidence is perpendicular to the antenna surface or aperture is 

called broadside illumination. Illumination when incidence is parallel or nearly parallel 

to the radiating surface or aperture of the antenna is called endfre illumination. Antenna 

elements whose direction of maximum radiation is along the broadside illumination angle 

are called broadside antenna. An analogous defnition holds for endfre antenna. The 

illumination of a broad side source is illustrated in the Figure 2.6 and endfre sources is 

shown in Figure 2.7. 
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2.2 Antenna Arrays 

Two or more antennas arranged in a geometric confguration (Topology) constitute an 

antenna array. The weighted sum of array antenna response gives the fexibility of electronic 

beam steering, combined sum and difference patterns, and formation of multiple beams. 

The position and the direction of the antenna elements in the array are critical in determining 

how the array receives a far-feld signal from any angle. The spatially distributed antenna 

elements have one of their antenna element as reference element. The phase difference 

between the reference antenna element and the other antenna elements determines the 

response of the array antenna. Mostly, the antenna elements used in the array have identical 

radiation pattern. If non-identical elements are used in an array, then characterisation of an 

array will not be a straightforward task. 

2.2.1 Array Factor 

The performance or response of an antenna array, independent of its element behaviour is 

called as array factor. The array factor is computed as defned in Equation (2.1) (Balanis, 

2012; Visser, 2006; Hansen, 2009). The Figure 2.8 denotes the parameters of array factor 

in a planar array. 

This item has been removed due to 3rd Party Copyright. 
The unabridged version of the thesis can be found in the 

Lancester Library, Coventry University.

Figure 2.8: Array Factor Parameters on Planar Array(Balanis, 2012) 

M 
jk(xm sinθ cos φ +ym sin θ sinφ+zm cos θ)AF(θ ,φ) = ∑ wm e (2.1) 

m=1 
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where M is the number of antenna elements; 

xm,ym and zm are the co-ordinates of the mth antenna element; 

k = 2π is the wave number, λ being wavelength; 
λ 

wm is the complex weight denoting amplitude and phase of the mth antenna element. 

The phase term of the array factor is only with respect to its positional coordinate of antenna 

elements as well as elevation and azimuth angles (θ ,φ). 

2.2.2 Pattern Multiplication 

The radiation pattern of the single (individual) radiator is called element factor. The array 

factor denotes the radiation pattern of the array of M isotropic radiators. The product of 

element factor of the array element and array factor of the array determines the radiation 

pattern of the array antenna. The above product is termed as the pattern multiplication of 

the array antenna. 

Array Radiation Pattern = Array Factor AF(θ ,φ) × Element Radiation Pattern (θ ,φ) 

For the pattern multiplication to hold well, all antenna elements in an array have to be 

mounted identically to receive or transmit the same polarization. If any of the antenna 

elements are having different orientation, its polarization or propagation axis will change. 

The phase term of a particular element in the array factor at angles (θ ,φ ) has to match with 

the individual radiation pattern of the respective element at angles (θ ,φ). Thus, factoring 

the element pattern out side the array factor is not possible for dissimilar orientation of 

elements. The radiation pattern of individual elements of the array has to individually 

multiplied inside the array factor equation. 

2.2.3 Array Manifold 

The vector a(θ ,φ) which is a function of both the azimuth angle φ and elevation angle 

θ in an array of M antenna elements is called the array manifold vector or array steering 

vector for a corresponding direction of (θ ,φ). The response of an array antenna to a signal 

with specifed incidence angle, is determined by the array structure and characteristics of 

antenna. The set of these steering vectors for all possible angles of incidence is defned 

as antenna array manifold. The array manifold vector is measured or calculated for a 

specifed incident angle (J.-T. Kim, Kim, & Lee, 2013). The array manifold transforms 

the change in angle of wave incidence into a change in measurement vector (Tuncer 
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& Friedlander, 2009). The change in measurement vector is correlated with (computed) 

phases at the antenna terminals to steer the antenna beam towards the desired beam pointing 

angle. The array manifold is two-dimensional information lying in an M-dimensional 

space. The information about the positional co-ordinates and directional characteristics 

of all the elements are required to calculate the array manifold. Apart from the complete 

characterisation of an array, the array manifold represents the real array in M-dimensional 

complex space as, (Chandran, 2005) h iT 
e− jkdβ1(θ ,φ ) e− jkdβ2(θ ,φ) e− jkdβM(θ ,φ )a(θ ,φ) = , , · · · , (2.2) 

where 

βm(θ ,φ) = xm sin θ cos φ + ym sin θ sin φ + zm cos θ (2.3) 

The parameter βm(θ ,φ) is the phase computation with respect to the mth antenna element 

in the array along with its position coordinates. 

In the case of spatial fltering or beamforming applications, the weighted sum of amplitude 

and phase along with radiation pattern of the antenna element are utilized to realize the 

radiation pattern of the array. In source localization and DOA estimation applications, the 

data samples are collected from the antenna elements of an array and the array manifold 

vector or array steering vector is employed in the estimation schemes / algorithms. 

2.2.4 Effect of Antenna Element Pattern 

The antenna array form cited in the array signal processing literature (Krim & Viberg, 

1996; Inoue, Mori, & Arai, 2002), generally ignores the actual radiation pattern of antenna 

elements. Typically, the array factor or array steering vector, in isolation of the radiation 

pattern is considered for array signal processing. The radiation pattern of the antenna 

element accounted through the pattern multiplication will not completely reveal the real 

scenario. The use of an isotropic radiation pattern with point source as shown in Figure 

2.9 is convenient for signal processing engineers to develop pattern synthesis techniques 

and array signal processing algorithms. In practice, the physical dimension of the 

antenna is a constraint, while utilizing the modern array algorithm. In array antenna theory, 

the inter element spacing d is bounded within the limit as λ 
4 ≤ d ≤ λ 

2 , where λ is the 

wavelength (Balanis, 2012). Figure 2.10 shows a rectangular waveguide operating in the 

dominant TE10 mode with its width a = 0.75λ and height b = 0.33λ . (Here TE10 refers to 

Transverse Electric wave with m = 1 and n = 0 mode (dominant mode) of the rectangular 

20 



This item has been removed due 
to 3rd Party Copyright. The 

unabridged version of the thesis 
can be found in the Lancester 
Library, Coventry University.

Figure 2.9: Point Source Spacing 
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Figure 2.10: Rectangular Waveguide Element Spacing 

waveguide). The minimum of inter-element spacing d shown on Figure 2.10 occurs when 

the two waveguides are positioned such that the side walls of them touch each other and 

the resulting d is 0.75λ which is higher than λ /2. Thus when the actual waveguide is 

considered instead of approximating it by a point source, there will be a violation of the 

conventional upper limit of inter-element spacing of λ /2. 

2.3 Antenna Array Confgurations 

An antenna array is an orderly positional confguration of multiple antenna elements to 

obtain desired beam characteristics. The spatial arrangement of the multiple antenna 

elements and their combined radiation characteristics will lead to the narrow beam antenna. 

The beam widths (HPBW and BWFN) of the antenna array shall be controlled through the 

inter-element spacing, spatial arrangement and the radiation pattern of the elements. 

In array signal processing, the geometric confguration of array antenna elements is very 

important. The modifcation of antenna element and array confguration can be used to 

improve angular resolution of the DOA estimation in both the azimuth and elevation angles. 

The simplest antenna array confguration Uniform Linear Array (ULA) is well studied and 

analysed. A ULA is capable of estimating one-dimensional (1D) DOA angle. For singly 
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polarized ULA confguration, the placement of array elements either along x-axis or y-axis 

determines the DOA angles either azimuth angle φ or elevation angle θ only. For example 

ULA with its elements oriented along x-axis will determine only the azimuth DOA angle 

φ , since the antenna elements show spatial phase variation along the x-axis only. Likewise, 

ULA with its elements oriented along y-axis will facilitate the estimation of elevation DOA 

angle θ , since the antenna elements experience spatial phase variation only along y-axis. 

2.3.1 One-Dimensional Array 

A confguration of antenna elements arranged along a straight line with equal spacing 

between the elements is called Uniform Linear Array (ULA). The simplest form of array to 

realize many of the array signal processing algorithms is the ULA confguration. In a ULA 

the antenna elements are geometrically arranged along only one axis (either x or y axis) 

and is also called linear arrangement (Krim & Viberg, 1996; Visser, 2006; Hansen, 2009). 

Figure 2.11: Uniform Linear Array 

The Figure 2.11 shows the confguration of ULA. One of the antenna elements in the 

ULA is considered as a reference element. Usually it will be either the frst element or 

the center element of the array. The signal impinging on the array will tend to have phase 

difference between two successive elements, due the linear arrangement and the reception 

of parallel wave fronts from far feld. The received signal by the antenna elements will 

have integer multiples of phase difference. 
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2.3.2 Two-Dimensional Array 

The two-dimensional(2D) array confguration is the primary requirement for the estimation 

of both the azimuth φ and elevation θ angles in DOA estimation. In 2D space, many 

array topologies are possible to confgure the antenna elements. The commonly known 

two dimensional arrays are planar and circular arrangement of antenna elements. There 

are also several special two dimensional confgurations such as orthogonal and L shaped 

confguration which are discussed in this section. 

2.3.2.1 Uniform Planar Array 

In the uniform planar array confguration, the antenna elements are arranged in a uniform 

planar grid, thereby resembling a matrix like arrangement. A typical Uniform Planar 

Array (UPA) is shown in Figure 2.12. In the UPA confguration, the antenna elements are 

Figure 2.12: Uniform Planar Array Confguration 

arranged over the planar grid formed over a plane and it is usually over the x− y plane such 

that wave propagation direction is along the z axis only. Normally the center element of 

the grid topology is chosen as the reference element to compute the phase difference of 

the array elements. In Figure 2.12 the inter element spacing along the x axis and y axis 

is equal, and which in turn results in a square array. The UPA confguration can also be 

formed as a rectangular array with unequal number of elements oriented along the x and y 

axes with uniform or non uniform inter element spacing or equal number of elements with 

unequal inter element spacing. 

2.3.2.2 Uniform Circular Array 

In a 2D-array, the antenna elements can also be arranged in a circular fashion, such as 

along the circumference of the circle. The circular array is usually confgured in the x− y 
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plane and the wave propagation will be along the z axis. 

Figure 2.13: Uniform Circular Array Confguration 

This array is also capable of estimating both the azimuth and elevation angles of DOA. 

A typical Uniform Circular Array (UCA) confguration is shown in Figure 2.13. 

2.3.2.3 Cross Array 

The cross array is a confguration, where the sensors or antenna elements are arranged 

on two linear axes orthogonal to each other as shown in Figure 2.14. In the cross array, 

the intersecting point of the orthogonally placed two linear axes may contain a common 

antenna element, which will be a reference element for the array processing (Hu et al., 

2014). 
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Figure 2.14: Cross Array Confguration (Hu et al., 2014) 

2.3.2.4 Orthogonal Array 

The cross array can be confgured in an asymmetric form which is named as orthogonal 

array (N. A.-H. M. Tayem, 2005). The orthogonal array is shown in Figure 2.15. 
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Figure 2.15: Orthogonal Array Confguration (N. A.-H. M. Tayem, 2005) 
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The intersection of x-axis and y-axis will be at the origin of the coordinate system, 

which can also be treated as a reference point. If an antenna is placed at the reference point, 

the data acquired from that antenna is used as reference. 

2.3.3 Three Dimensional Array 

The 2D array confguration can be extended to the third dimension (3D) which is the z-axis. 

The antenna elements are arranged in the three linear axes orthogonal to each other. This 

confguration is shown in the Figure 2.18. In 2D and 3D confgurations, where the antenna 

elements are not only linearly spaced but also mutually orthogonally arranged. The array 

processing can be accomplished by segmenting the array into sub-arrays. Each sub-array 

is a linear array of antenna elements along its axis. The array steering vectors should be 

derived based on the geometric confguration of the antenna elements. The sub-array can 

be processed either independently or jointly and it depends on the algorithms used for DOA 

estimation. 

2.3.3.1 L-Shaped Arrays 

The antenna elements can be placed along x-axis, y-axis and z-axis as well as at the 

origin. Such an arrangement of antenna array has an L-shape structure. The L-Shape 

arrangement extended on the third dimension which is y-axis is as shown in the Figure 

2.16.(N. A.-H. M. Tayem, 2005; Liang & Liu, 2011; Harabi, Changuel, & Gharsallah, 

2007) 
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This item has been removed due to 3rd Party Copyright. 
The unabridged version of the thesis can be found in the 

Lancester Library, Coventry University.

Figure 2.16: L Shaped Array Confguration (N. A.-H. M. Tayem, 2005) 

This item has been removed due to 3rd Party Copyright. 
The unabridged version of the thesis can be found in the 

Lancester Library, Coventry University.

Figure 2.17: One L Shaped Array Confguration (N. A.-H. M. Tayem, 2005) 

Nizar Tayem (N. Tayem & Kwon, 2005) proposed a one L-shape array shown in Figure 

2.17 as well as two L-shape arrays as shown in Figure 2.18 which is the array confgurations 
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This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be found in the Lancester 

Library, Coventry University.

Figure 2.18: Two L Shaped Array Confguration (N. A.-H. M. Tayem, 2005) 

for two dimensional DOA estimation without any azimuth and elevation pair matching 

techniques. The authors claim that complete removal of the estimation pair matching 

between azimuth and elevation angles is possible with the proposed L-shape array and 

signifcant reduction in the RMSE of DOA estimation is also possible. 

2.4 Review of DOA Estimation Algorithms 

Antenna array signal processing has emerged under the broad engineering discipline of 

sensor array signal processing. This active area of research involves, processing of the data 

collected through antenna elements and fusing the data to perform the functions such as 

DOA estimation, digital beamforming and signal enhancement. 

2.4.1 Antenna Array Signal Modelling 

Array signal processing deals with the extraction of information from the simultaneous 

reception of data from the multiple elements of an antenna array. The estimation of 

parameters is carried out through fusion of temporal and spatial information obtained via 
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sampling of a signal. The information is obtained with appropriate positioning of antenna 

elements. A signal is generated or simulated through a fnite number of transmitters. The 

simulated signal contains information to characterise parameters of the transmitters. 

An array signal model is an absolute necessity for the success of any model based parameter 

estimation method. The signal modelling in the DOA estimation has the major dependence 

on the positions of antenna elements and the antenna array confguration. The common 

array confgurations used are ULA, UPA and UCA. Usually identical antenna elements are 

used in the array. The non-identical elements can also be used, but the computation of the 

radiation pattern of an array will be cumbersome, and hence identical elements are always 

preferred. 

2.4.2 Uniform Linear Array (ULA) 

A ULA is composed of M antenna elements (sensors) placed in a straight line. The spacing 

between the adjacent elements is uniform. The antenna array receives P number of narrow 

band signals from different directions θ1,θ2, . . . ,θP. The observed output from the array 

elements are the spatio-temporal samples at the time instant n, denoted as x(n), where 

n = 1,2, . . . ,N; N is the total number of spatio-temporal samples or snapshots or period of 

observation. The observation output vector is modelled as an M× 1 array (Krim & Viberg, 

1996). 

x = As+ w (2.4) 

where A is the array steering matrix; s is the signal vector and w is the spatially white 

Gaussian noise vector. The array steering matrix A spans the steering vector of each signal 

source through its column as h i 
A = a(θ1) a(θ2) · · · a(θP) . (2.5) 

The additive noise with the signal contents is assumed to have the property of ergodicity 

and is a spatial-temporal white stochastic process. The a(θ ) is the array steering vector 

which corresponds to the angle θ . This is also called as the array manifold vector and d is 

the inter element spacing chosen such that λ 
4 ≤ d ≤ λ 

2 . h iT 
− jkd cos θ − jk(M−1)d cos θa(θ) = 1, e , · · · , e (2.6) 

where k = 2π is wave number. λ is the wavelength of the incoming signal. Keeping the 
λ 

frst antenna as a reference element, the subsequent antenna elements in the array will 
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encounter an integer multiple of the phase differences with respect to the reference element. 

This will form a pattern called as Vandermonde structure as shown in Equation (2.6). The 

signal modelling of the observation output vector, received by the antenna array elements 

as a function of number of P incoming signals corresponding to P incoming angles is 

shown in Equation (2.7). 

⎤⎡⎤⎡ ⎤ ⎤⎡⎤⎡⎤⎡ ⎡ ⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 
⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎣x(n) 
⎥⎥⎦ = 

M×1 

⎢⎢⎣a(θ1) 
⎢⎢⎣⎥⎥⎦ a(θ2) 

⎥⎥⎦ · · · ⎢⎢⎣a(θP) 
⎥⎥⎦ × 

⎢⎢⎣s(n) 
⎥⎥⎦ + 

⎢⎢⎣w(n) 
⎥⎥⎦ (2.7) 

P×1 M×1 

M×P 

Equation (2.7) is written as 

x(n) = As(n)+ w(n) (2.8) 

where x(n) is the observation vector at nth instant; 

A is the array response matrix with respect to the DOA of the incoming signals; 

s(n) is the signal vector of size P× 1; 

w(n) is the zero mean white noise vector at the nth instant, which is a vector of dimension 

M× 1. 

The signal received by the array is sampled at arbitrary time instants. The spatial covariance 

matrix has to be computed from the received spatio-temporal samples. The array covariance 

matrix can be written as � 
R = E xxH� (2.9) 

Here, E[·] is the mathematical expectation operator and (·)H is the hermitian conjugate. The 

covariance matrix R shall be decomposed in to signal and noise components (subspaces) 

as shown in Equation (2.10). 

R = ARsAH + Q (2.10) 

The noise covariance Q is the diagonal matrix with σ2 as variance. Hence the Equation 

(2.10) shall be written as 

R = ARsAH + σ2I (2.11) 

where Rs is the signal covariance matrix of size P× P; 

Q is the noise covariance matrix of size M× M; 

I is the identity matrix of size M× M. 
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The signal covariance Rs shall be equated to the average covariance of the signal vector as 

shown in Equation (2.12). � � 
Rs = E s(n)sH(n) (2.12) 

The covariance matrix of the observed data samples is estimated as shown in Equation 

(2.13), where N is the number of data samples observed. 

N 
R̂ = 

1 
∑ x(n)xH(n) (2.13)

N n=1 

2.4.3 Assumptions in the DOA Estimation Schemes 

The process x(n) in Equation (2.13) is a multichannel random process. The frst and 

second order statistics of signals and noise, characterise the above random process. An 

assumption of spatial decorrelation is associated with the impinging sources. The white 

noise added to the signal model is also uncorrelated with the signal sources. Coherent 

sources or highly correlated sources will lead to reduction in rank of the covariance matrix. 

Thus the source covariance matrix R̂ is often presumed to be non-singular or near-singular 

for highly correlated sources for the ease of computation. 

In general, the distance of separation between the signal sources and antenna array is far 

greater than the array dimension. This facilitates to assume that parallel wave fronts are 

impinging on the array. The signals impinging on the antenna array are assumed to be 

originated from the far-feld distance. Thus, the signal wave fronts arriving at the antenna 

array are parallel. The empirical formula for the far-feld distance is 2D2/λ , where D is 

the maximum dimension of the antenna and λ is the wavelength. 

If the received signal has spherical wave fronts, then the signal source is said to have 

originated from near-feld region and the curvature of the wave front depends on the 

distance between the source and the antenna array. As the distance between the source and 

the antenna array becomes large, the antenna array receives the planar wave fronts (parallel 

rays). Hence the source is said to be in far feld region with respect to the array. 

For an impinging source located at a near-feld of the sensing array, the localisation of the 

source is possible from the available information of relative time delays and the speed of 

propagation of source. The far-feld sources which impinge on the array antennas have 

uniform time-delay as well as phase difference with respect to a reference antenna element. 

(Krim & Viberg, 1996; N. A.-H. M. Tayem, 2005). This thesis concentrates only on 

far-feld source localization algorithms and approaches. 
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The multiple sources received by the antenna array are assumed to have a single carrier. 

Most of the algorithms cited in the literature (Krim & Viberg, 1996) deal with the signal 

model with narrow band signal sources. 

The covariance matrix formed through the obtained data samples received by the antenna 

arrays elements, refects the properties of the noise in the received signal by having common 

variance and de-correlation among all antennas. Such a noise is often termed as spatial 

white noise. For DOA estimation, the assumption of spatial white noise is common. On the 

contrary, other sources of man-made noise cannot be assumed to result in spatial white noise. 

In such a case pre-whitening of noise is a must, leading to assumption of complex white 

Gaussian process. The additive noise is derived from a zero mean, spatially uncorrelated 

random process, which is uncorrelated (independent) with the received signal sources. 

The noise has a common variance σ2 at all the array elements and is uncorrelated among 

antenna elements. The analysis carried in this thesis neglects interference, atmospheric 

disturbances, static and other external noise sources. 

2.5 Classifcation of DOA Estimation Algorithms 

In general the DOA estimation algorithms can be broadly classifed into two types 

• Beamforming based estimation technique 

• Subspace based estimation technique 

2.5.1 Beamforming Based DOA Estimation Techniques 

Beamforming is a technique which focuses Electromagnetic (EM) radiation in a particular 

direction. The antenna array essentially combines the effects of many antenna elements 

to form one or more beams. It is developed as a technique that could accurately direct or 

position a beam in free space. The formation of array and combinational effects permit 

the development of antennas of narrow beam-widths with high gain. The pointed or 

focussed beam will be used to scan the surrounding angular region. The weight and sum 

techniques are used to scan the angular region. In the process of scanning, the angle which 

maximizes the power of the received signal will be identifed as the estimated DOA of 

the incoming signal. Bartlett’s conventional beamforming or delay and sum beamformer 

(Bartlett, 1950) and Capon’s minimum variance technique (Capon, 1969) are the classical 

beamforming techniques. The beamforming based techniques are formulated as spatial 
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fltering approaches to estimate the DOA. In these techniques, the main lobe of the antenna 

is used to scan the entire region of interest. The direction which maximizes the received 

signal power is determined as the DOA. 

2.5.1.1 Bartlett’s Conventional Beamformer 

The conventional (Bartlett) beamformer (Bartlett, 1950) is a Fourier-based spectral analysis 

of spatio-temporal sampled data. This technique is also named as the delay and sum 

beamformer. As the name indicates Delay and Sum, complex weights will be applied to the 

received signal by the array elements and summed to obtain the output of the beamformer. 

The complex weights introduce the phase in the antenna elements which steers the pointing 

angle of antenna main lobe. This inturn suppresses the unwanted interference signal from 

other directions. The scan angle, which yields the maximum power of the received signal 

is determined as the DOA of the signal. This technique attempts to maximize the expected 

output power as stated in expression (2.14) by applying optimal weights to the signals 

received by the array elements, and thus improves the SNR of the signal (Van Veen & 

Buckley, 1988) 
Hmax E[w x(n)xH(n)w]. (2.14) 

w s.t wHw=1 

The optimal weight wopt is computed such that, it is parallel to the a(θ) as shown in 

Equation (2.15). Here a(θ) is the steering vector for the DOA angle θ and aH(θ) is the 

Hermitian conjugate of the array steering vector. 
a(θ )

wopt = p (2.15) 
aH(θ)a(θ) 

The angular spectrum PB(θ ) for Bartlett’s method is computed through the function given 

in Equation (2.16) for all the angles of θ (Krim & Viberg, 1996) 

aH(θ)Ra(θ )
PB(θ) = (2.16)

aH(θ)a(θ ) 

The covariance matrix R is estimated from the samples received by the elements of antenna 

arrays. The DOA estimate is obtained by the highest peaks of the angular spectrum of 

the function of Equation (2.16). The beamformers developed invoking spatial-fltering 

were valid only for narrowband signals implying their characterisation only through a 

single frequency. This approach also suffers from fundamental limitation due to the beam 

width of the array elements. Its performance depends only on the physical size of the array 

(aperture). Further, the associated data collection time and Signal-to-Noise Ratio (SNR) 

have little signifcance (Bartlett, 1950; Coldrey & Viberg, 2006). 
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2.5.1.2 Capon’s MVDR Algorithm 

The limitation of the conventional beamformer is that, for the detection of multiple sources, 

the angular separation between the sources must be greater than the beamwidth of the array. 

This limitation is overcome by Capon’s approach of Minimum Variance Distorsionless 

Response (MVDR). Bartlett’s conventional beamformer uses every available degree of 

freedom to concentrate the received energy along one direction, namelythebearing angle 

of interest. This has been overcome by the minimization constraints of Capon’s approach. 

Capons approach interprets minimization constraints as a sacrifce in the noise suppression 

capability to obtain more focused nulling in the directions other than the DOA sources 

present. Thus spectral leakage from closely spaced sources is reduced. The resolution 

capability of the Capon beamformer is dependent on the array aperture and the SNR (Krim 

& Viberg, 1996). The received samples have the mixed signal power of the desired DOA 

of the source as well as the undesired sources. This method attempts to minimize the 

signal of the undesired DOA sources, but keeping the gain of the desired sources fxed as a 

constraint. This constrained minimization results in a weight vector called as Minimum 

Variance Distortionless Response (MVDR). The weight vector wc for the Capon’s MVDR 

approach after the constrained optimization is given in Equation (2.17). 

Ra(θ)
wc = (2.17)

aH(θ )Ra(θ) 

The angular spectrum PC(θ ) for computing DOA using Capon’s method after applying the 

constraints is given by Equation (2.18)(Krim & Viberg, 1996). 

1
PC(θ) = (2.18)

aH(θ )R−1a(θ ) 

The Capon’s method yields better response, compared to conventional beamformer in terms 

of sharpness of the peak estimation. It has higher complexity because it involves matrix 

inversion which is an intensive computation O(N3). It suffers when the correlated sources 

impinge on the array. The emergence of parameter estimation approach offers inspirations 

for the subsequent efforts in Maximum Entropy (ME) spectral estimation method and the 

initial applications of Maximum Likelihood (ML) principle (Hayes, 2009). 

2.5.2 Subspace Based Estimation Techniques 

The new age of high-resolution computations of DOA commenced with the subspace based 

estimation techniques. The class of algorithms known as subspace based techniques was 
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introduced in the mid 1970s and was a revolution in the feld of high-end and computa-

tionally intensive estimation algorithms. The estimation is purely based on the underlying 

data model. This algorithm decomposes the vectors spanned by the correlation matrix 

into signal subspace and noise subspace. The signifcant aspect of these techniques is that 

the decomposed signal subspace and noise subspace vectors are orthogonal to each other. 

The orthogonality property is used for the search based estimation, polynomial rooting 

based estimation as well as least squares based estimation. The results of subspace based 

methods are much more promising in terms of accuracy and angular resolution of DOA 

when compared to other techniques such as Bartletts and Capon’s method. The MUSIC and 

ESPRIT are the classical subspace based DOA estimation algorithms. The array aperture 

does not limit the resolution capability of subspace techniques. 

The array covariance matrix R of the observed signal vector is given as � 
R = E xxH� = ARsAH + Q (2.19) 

where x is the observed signal vector from the antenna array; 

E(.) is the expectation operator to make sample covariance matrix as shown in Equation 

(2.13); 

(.)H is the Hermitian transpose; 

A is the array steering matrix as defned in Equation(2.5); 

Rs is the signal covariance matrix; 

Q is the noise covariance matrix. Assuming the number of sources P is known, the 

estimated source angles are calculated with respect to the reference element of the array 

as θ1,θ2, · · · ,θP. The covariance matrix R is decomposed using eigen decomposition and 

shall be written using eigenvalues and eigenvectors as 
M 

HR = ∑ λivivi = VΛVH (2.20) 
i=1 

where, λ is the eigenvalue and v is the eigenvector. The eigenvalues are sorted in descending 

order such as λ1 ≥ λ2 ≥ · · · ≥ λP. The respective eigenvectors form the columns of the 

matrix V as shown in Equation (2.21). ⎤ ⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡ ⎡ ⎢⎢⎢⎢⎢⎢⎢⎣ 
⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎣v1 
⎢⎢⎣⎥⎥⎦ v2 

⎥⎥⎦ · · · ⎢⎢⎣vP 
⎢⎢⎣⎥⎥⎦ vP+1 

⎥⎥⎦ · · · ⎢⎢⎣vM 
⎥⎥⎦V = (2.21) 
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The eigenvalues will be arranged as diagonal elements of the matrix Λ as shown in Equation 

(2.22). ⎤⎡ 

Λ = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

λ1 0 · · · · · · 0 
. .0 λ2 . 

. .. .. . 

λP 

λP+1 
. . . 

. . . ¨ 0 

0 0 · · · · · · 0 λM 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
(2.22) 

The sum of eigenvalues λi, for i > P is equal to the variance of the noise present in the data 

covariance matrix, stated in Equation (2.23). 

λP+1 + λP+2 + · · · + λM = σ2 (2.23) 

The eigenvectors vi for i > P satisfy the condition as shown in Equation (2.24). 

Rvi = λivi = σ2vi (2.24) 

�� 
Rvi = ARsAH + σ2I vi (2.25) 

�� 
ARsAH vi = 0 (2.26) 

By the full rank property, A and Rs in Equation (2.26) will be 

Hvi A = 0 (2.27) 

where i > P 

G = SS+ NS (2.28) 

SS is the signal subspace and NS is the noise subspace which are described in Equations 

(2.29) and (2.30) and G is the sum of signal and noise subspace. ih 
SS = span a(θ1) , a(θ2) , · · · , a(θP) (2.29) 

ih 
NS = span vP+1, vP+2, · · · , vM . (2.30) 
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The mathematical steps or procedures describing in this section for the computation of 

covariance matrix and the decomposition of signal and noise subspace are applicable to 

both Pisarenko and MUSIC algorithms. Therefore the steps will not be repeated in the 

subsequent subsections. 

2.5.2.1 Pisarenko Harmonic Decomposition 

The Pisarenko method (Pisarenko, 1973) of parameter estimation was originally developed 

for the spectral estimation problems. This method acted as a base for the revolutionary 

emergence of the subspace based algorithms. This method assumes that a signal is com-

posed of a fnite number of complex exponentials in the presence of white noise. A priori 

knowledge of the number of complex exponential P present in the signal, is used to form 

the covariance matrix of size (P+ 1) × (P+ 1). The number of complex exponentials also 

refers to number of sources. The number of array elements M used in the case of Pisarenko 

method is one more than the number of sources, M = P+ 1. The covariance matrix of size 

M× M is decomposed into signal and noise subspace matrices. The signal subspace and 

the noise subspace are orthogonal to each other. The dimension of the noise subspace is 

always one and it is spanned by the eigenvectors corresponding to the least eigenvalue 

(Pisarenko, 1973; Hayes, 2009). 

PbPHD (θ ) = 
1 

(2.31)
|vH 

mina(θ) |2 

The angular spectrum PbPHD (θ) estimation using Pisarenko harmonic decomposition is 

stated in Equation (2.31), in which vmin is the eigenvector corresponding to minimum 

eigenvalue, and a(θ) is the array steering vector. 

2.5.2.2 MUSIC Algorithm 

The MUSIC Algorithm (Schmidt, 1986) is a classical high resolution subspace based 

algorithm to estimate the DOA of the signal sources. This algorithm is based on the property 

that the desired array signal response is orthogonal to the noise subspace. The orthogonality 

implies that the estimated autocorrelation matrix is decomposed (de-correlated) into the 

signal and noise subspaces (eigenvectors). The block diagram describing the computation 

fow of the MUSIC algorithm is shown in Figure 2.19. In a correlated environment some of 

the signal eigenvectors may diverge into noise eigenvectors, which in turn tends to degrade 
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Figure 2.19: Block Diagram for DOA Using the MUSIC Algorithm 

the performance of the algorithms severely. 

1
PMUSIC (θ ) = (2.32)

∑
M

i a(θ) |2 
i=K+1 |vH 

The angular spectrum PMUSIC (θ) of MUSIC algorithm can be estimated through Equation 

(2.32). In Equation (2.32), vi is the ith eigen vector after sorting in descending order and 

a(θ) is the array steering vector. 

2.5.2.3 Root MUSIC Algorithm 

The root MUSIC is a polynomial rooting based technique is applicable for the linear array. 

In this approach, an Mth order polynomial is construct from the subspace components of 

the data. The roots of the constructed polynomial is obtained by the solving the polynomial. 

The obtained roots are plotted on a unit circle. The number of roots, that lie on the unit 

circle or very close to the unit circle denotes the signal components. The other roots lying 

inside and outside the unit circle represents noises. 

2.5.2.4 ESPRIT Algorithm 

The ESPRIT (Roy & Kailath, 1989) algorithm is a signal subspace based DOA estimation 

algorithm which reduces the computation and storage. In this algorithm, a set of uniform 

linear array elements is grouped to form a subarray such that many subarrays are formed 

and each subarray is called a doublet. The covariance matrix formed with the data received 

by the elements of the array is split accordingly with respect to the doublet and emphasizes 

the shift invariance in that, each doublet elements will have identical radiation (sensitivity) 

pattern. The translational separation of doublets is through a known constant displacement 

vector. The covariance matrix which corresponds to the doublets is related by a similarity 

transformation. The data sample received in the subarrays encounters only a linear transla-

tion of phase and hence the subarrays will have the same eigenvalues. The eigenvectors 
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which correspond to the covariance matrices of doublet are related by translation operator 

which can be solved in the least squares sense. Typically, two types of subarray namely 

non-overlapping and overlapping subarrays are used as shown in Figures 2.20 and 2.21. 

Consider a ULA of M elements composed of two non-overlapping subarrays. The 

Figure 2.20: Non-Overlapping Subarrays 

Figure 2.21: Overlapping Subarrays 

samples received by the y and z subarrays of the ith doublets group can be written as 

P 
yi(t) = ∑ ai(θp)sp(t)+ nyi(t) (2.33) 

p=1 

P 

∑
− j 2π 

ai(θp)e λ d cos θpsp(t)+ nzi(t) (2.34)zi(t) = 
p=1 

where, ai(θp) is the array steering vector at angle θp for the ith doublet; 

sp(t) is the pth signal source; t is the time instant; 

θp is the incoming angle of the pth signal source; 

d is the inter element spacing; 

λ is the wavelength; 

nyi(t) and nzi(t) are the additive white Gaussian noise vectors at the instant t for the 
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subarrays y and z respectively. 

The matrix notation of Equations (2.33) and (2.34), can be represented as, 

Y(t) = A(θ)S(t)+ NY (2.35) 

Z(t) = A(θ )ΦS(t)+ NZ (2.36) 

where NY and NZ are the noise covariance matrices due to independent white noise vectors, 

whose components are zero mean and variance σ2. The information required for DOA 

estimation of the impinging sources is contained in diagonal matrix Φ of dimension P× P 

as described in Equation (2.37). h i 
− j 2

λ

π d cos θ1 − j 2
λ

π d cos θPΦ = diag e . . . e (2.37) 

Thus by computing the diagonal matrix Φ, the DOA can be estimated, and the procedure 

to estimate the matrix Φ is as follows. The sampled outputs of the subarrays Y and Z at 

the instant t are shown in the vector form in Equation (2.38). " # " # " # 
Y(t) A NyR = = S(t)+ (2.38)
Z(t) AΦ Nz 

The covariance matrix RYZ can be written as 

RYZ = ARsAH + σ2I (2.39) 

Using eigen decomposition the covariance matrix RYZ is written as 

+ EnΛnEH (2.40)RYZ = EsΛsEH
s n 

where Λs and Es are the eigenvalues and eigenvectors corresponding to the signal subspace; 

Λn and En are the eigenvalues and eigenvectors of the noise subspace. The sources are 

uncorrelated, and hence the rank of the covariance matrix is P. The steering vector and 

eigen vector of the signal subspace can be written as 

span{A} = span{Es} (2.41) 

Since span{A} = span{Es}, existence of a unique non-singular matrix T is realized, such 

that 

Es = AT (2.42) 
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The signal subspace Es shall be partitioned according to the samples of subarrays Y and Z 
formulated in the vector form shown in Equation (2.43). " # " # 

EY AT 
Es = = (2.43)

EZ AΦT 

The signal subspaces EY and EZ can also be stacked column wise as shown Equation 

(2.44). h i 
EsYZ = EY EZ (2.44) 

Since the rank of EsYZ is also P, it implies the existence of matrix F⊂ C2P×P with rank P 

such that, h i 
0 = EY EZ F = EYFY + EZFZ (2.45) 

ATFY + AΦTFZ = 0 (2.46) 

Here, F spans the null space of EsYZ. A matrix Ψ of size P× P is defned as 

Ψ = −FYF−1 
Z (2.47) 

Equation (2.45) can be written as 

ATΨT−1 = AΦ (2.48) 

The implication of matrix A having full rank property, yields 

TΨT−1 = Φ (2.49) 

Equation (2.49) can be rearranged to compute matrix Ψ as 

Ψ = T−1
ΦT (2.50) 

The eigenvalues of Ψ are equal to the diagonal elements of Φ. The matrix T spans its 

column space with the eigenvectors of Ψ. This property leads to the development of 

ESPRIT algorithm. 

The ESPRIT algorithm is also known as SUbspace Rotation Estimation (SURE). The 

accuracy of the MUSIC and ESPRIT techniques increases as M increases. In case of 

temporal data processing for frequency estimation, M refers to the temporal window size. 

In array signal processing, M denotes the number of sensors or antennas. However in 
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practical application, M cannot be very large. Both MUSIC and ESPRIT algorithms 

utilize eigen decomposition and the parameter M has the computational complexity of 

O(M3). M is fxed such that M � N. It is cited in (Stoica & Soderstrom, 1991), that 

the ESPRIT algorithm is preferred for its higher accuracy when compared to MUSIC 

algorithm for the case of temporal data processing. In case of the array signal processing, 

MUSIC algorithm is preferred over ESPRIT, due to processing of higher number samples. 

Generally, the ESPRIT algorithm is not required to search for all steering vectors as in the 

MUSIC algorithm. Hence its computational effciency is more compared to the MUSIC 

algorithm. However, the ESPRIT algorithm is limited to operate with ULA geometries due 

to its rotational invariance property whereas, the MUSIC algorithm can be used with any 

arbitrary array confgurations. 

2.5.2.5 Other Methods 

The de-correlation of the signal and noise eigenvectors has a critical role in the achievable 

resolution of the DOA estimators. Many attempts have been made in the past to improve 

the de-correlation between the signal and noise subspaces. Spatial Smoothing MUSIC 

(SS-MUSIC) and Signal Subspace-Scaled MUSIC (SSS-MUSIC) are some of the methods 

already available for improving the resolution. The above subspace based techniques are 

primarily signal processing based approach for improving the de-correlation (Shan, Wax, 

& Kailath, 1985; S.-W. Chen, Jen, & Chang, 2009). 

The Matrix Pencil (MP) method utilizes the spatial samples received by the antenna array. 

In this method, individual snapshot (sample) based analysis is carried out to take care 

of non-stationary environments to facilitate ease of handling. The MP method does not 

require spatial smoothing for the DOA estimation in a multipath coherent environment. 

The reduction in computational complexity of covariance matrix is accomplished by the 

conversion of complex matrix to real matrix and its eigenvectors by a unitary transformation 

matrix. The transform matrix maps centro-Hermitian matrices to real matrices (Yilmazer, 

Koh, & Sarkar, 2006). 

The subspace based Propagator Method (PM) is devoid of EVD or SVD of the Cross-

Spectral Matrix (CSM) of the received signals. This method was perceived as a possible 

alternative to the MUSIC algorithm. The computational load is signifcantly smaller than 

the classical subspace based MUSIC and ESPRIT algorithms. The steering vectors of the 

array enable the extraction of the propagator (a linear operator) from the received data 
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(Marcos, Marsal, & Benidir, 1995). 

2.6 Antenna Elements and Array Confguration for DOA Estimation 

The several decades of research in array signal processing has been oriented towards 

the improvement of the estimation techniques and algorithms. However the emphasis 

of research towards the antenna array element and array confguration is rather limited. 

The geometry of the sensor array confguration has signifcant effects on the performance 

of DOA estimation algorithms. Research papers orient the estimation techniques with 

respect to the classical ULA, UCA and UPA confgurations, because of their simplicity in 

implementation and straight forwardness. Some special confgurations such cross array, 

L-type array have also been addressed for the two dimensional DOA estimation. 

Most of the cited techniques and algorithms for DOA estimation (Krim & Viberg, 1996) 

assume the isotropic elements with omni-directional radiation pattern as element pattern 

for the antenna array element. Under the realistic scenario, this assumption is not valid. 

The antenna element designed for RF and Microwave frequencies are not omni-directional 

in practice. The assumption of identical antenna elemental characteristics is considered as 

fair one. The radiation pattern of the antenna elements of the array has signifcant impact 

on the DOA performance of estimation approaches. 

The mutual coupling effect of the antenna elements in the array has interfering effects in 

the received signal, which may tend to degrade the performance of the estimation tech-

niques. Formulation or analysis of approach to minimize the mutual coupling effect, which 

indirectly improves the DOA estimation has not been widely addressed in the literature. 

Initially, the large number of antenna elements in an array was used to produce the narrow 

pencil beam to detect and estimate the DOA of sources. The beamforming based methods 

are utilized in these approaches. After the arrival of subspace based techniques, lesser 

number of antenna elements are utilized to take advantage of the DOA estimation algorithm 

with higher resolution. Recently, research towards smaller antenna array to achieve high 

resolution DOA estimation has emerged. 

The consequence of reduction in number of antenna elements will eventually will lead to 

lesser number of samples to be processed for DOA estimation. Therefore subspace based 

technique is getting prominence for high resolution DOA estimation. 

It has been identifed that, the polarization of the antenna is a factor to improve the DOA 

estimation schemes. In this regard, diversely polarized antenna elements have the potential 
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to improve the DOA estimation schemes. A mutually orthogonal arrangement of dipoles 

This item has been removed due to 
3rd Party Copyright. The unabridged 
version of the thesis can be found in 

the Lancester Library, Coventry 
University.

Figure 2.22: Mutually Orthogonal Arrangement of Dipoles (Chick et al., 2011) 

and biconical antennas are proposed for DFS (Chick et al., 2011). In this paper, three 

biconical antennas with same angular cone are co-located. Thus the incident wave front 

rely only on the polarization of antenna. This mutually orthogonal arrangement cannot 

detect the phase delay between the antenna elements, since it is co-located. The mutually 

This item has been removed 
due to 3rd Party Copyright. The 

unabridged version of the 
thesis can be found in the 

Lancester Library, Coventry 
University.

Figure 2.23: Mutually Orthogonal Arrangement of Antennas (Chick et al., 2011) 

orthogonal arrangement of biconical antennas is shown in Figure 2.23. The computation of 

the vector which is perpendicular to the locus of the instantaneous electric feld vector is 

utilized in this array confguration. The typical ML and MUSIC algorithms are used for 

DOA estimation. 

A 3-axis orthogonal array antenna is proposed by Kim et al. (M. Kim et al., 2004) to 

determine the direction of the RFID tag. Three loop antennas of the same geometry and 

characteristics are arranged in 3-axis to form orthogonal array antenna as shown in Figure 

2.24. The comparison of measured signal strength in each axis of the antenna yields the 
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direction information. Also the distance is estimated by phase shift obtained in each of the 

antenna. 

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the thesis 
can be found in the Lancester Library, Coventry 

University.

Figure 2.24: 3 Axis Orthogonal Antenna (M. Kim et al., 2004) 

A patch antenna array with polarization discrimination is proposed by Yoshimura 

et al. in (Yoshimura et al., 2011). A 12 element antenna array with linear polarization 

discrimination circuit made up of diodes is proposed as shown in Figure 2.25. 
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This item has been removed due to 3rd Party Copyright. The unabridged version of the 
thesis can be found in the Lancester Library, Coventry University.

Figure 2.25: 12-Element Array Antenna for Orthogonal Polarization Discrimination (Yoshimura et 

al., 2011) 

The received signals by the array 1 and array 2 are multiplied at the discriminating 

circuit and the multiplier output voltage corresponding to the polarization angle is obtained. 

Consequently, the received polarization angle is discriminated by the polarity of the output 

voltage of the multiplier. The direction of the felds is shown in Figure 2.26. 
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This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis 
can be found in the Lancester Library, Coventry University.

Figure 2.26: Antenna Array Behaviour with Schematic Current Distributions (Yoshimura et al., 

2011) 

This antenna array can be utilized for dual linear polarization discrimination with very 

good cross polarization suppression. Simultaneous reception of both the horizontal and 

vertical polarized components cannot be achieved with this confguration. Wei and Guo 

(Wei & Guo, 2014) proposed a signal covariance technique with pair matching for 2D DOA 

estimation using the L-shaped array confguration of Figure 2.16. In this technique, two 

signal covariance matrices for each of the subarray are formed and a permutation matrix is 

formed for optimal matching of DOAs estimated through 1D subarrays. A technique for 

estimation of DOA using the Cross Covariance Matrix (CCM) realized through two arrays 

namely ULA and Sparse Linear Array (SLA) has been proposed by Gu et al. (Gu, Zhu, & 

Swamy, 2015). 

2.7 DOA Tracking of Non Stationary Signal Sources 

The classical high resolution DOA estimation techniques like MUSIC and ESPRIT ad-

dressed in (Schmidt, 1986; Roy & Kailath, 1989) are based on the eigen decomposition. 

These algorithms are associated with higher computational complexity because of the 

numerical techniques involved in the computation of eigenvectors for the sample covari-

ance matrix. The major computation of algorithms is devoted to the decomposition of 

subspace itself. The subspace based robust DOA estimation algorithm without the direct 
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EVD computation is not adequately addressed in the published literature. 

For the case of non-stationary sources, tracking DOA is essential for certain applications 

such as mobile communications. The computational complexity is increased by N folds, 

N refers to number of spatio temporal samples of the wave incident on the array. Due to 

time and space variation of the impinging signal characteristics, it is essential to estimate 

DOA for every sampling instant for higher accuracy. However, a single snapshot of the 

received sample, associated with noise cannot reveal the exact parameter of interest in the 

computation. It is preferred to utilize the past received samples of the impinging signal 

sources despite time and space variations present in it. The moving average and weighted 

average over the past received samples, tend to estimate the DOA more accurately when 

compared to the estimation through the instant samples alone. Processing of every new 

sample received along with the past sample increases computational complexity and time. 

As stated earlier, computing EVD or SVD alone occupies a signifcant computation load in 

the algorithm. 

2.7.1 Singular Value Decomposition (SVD) 

SVD decomposes the covariance matrix into left-hand and right-hand matrices. A descrip-

tive diagonal matrix consisting of singular values, separates the two matrices. The SVD 

technique is utilized for the case of singular matrices or numerically very close to singular. 

Given a matrix A of order M× N, where M > N, can be decomposed as shown in Equation 

(2.51). 

A = UΣVT (2.51) 

⎤⎡⎤⎡⎤⎡⎤⎡ T
σ1 ⎢⎢⎣ A 

⎥⎥⎦ = 
⎢⎢⎣ U 

⎢⎢⎣ ⎥⎥⎦ ⎢⎢⎣⎥⎥⎦ V 
⎥⎥⎦ . (2.52). . 

σMM×N M×N M×N M×N 

The decomposition of matrix A is a product of M× N column orthogonal matrix U, an 

N× N diagonal matrix Σ with positive or zero elements and the transpose of an N× N 

orthogonal matrix V. The diagonal elements of matrix Σ are also called singular values. 

Also matrices U and V have their column span the left and right singular vectors of 

the matrix A. The left and right singular vectors have similar properties of the eigen 

vectors. Mostly these singular vectors and eigenvectors are interchangeably used in the 

subspace algorithm. The computation of eigenvectors or singular vectors through the 
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classical approach like Jacobi or Power iteration methods involve higher computational 

complexities. The computation time is directly proportional to the order of the matrix 

under decomposition. The adaptive systems, uses this SVD technique for the reduction of 

computation resources (Vershinin, 2014). 

2.7.2 Subspace Tracking Algorithms 

The subspace tracking algorithms are more effcient than conventional SVD techniques 

to update the subspace components of the vector sequence. Initially, Karasalo proposed a 

method of signal subspace averaging in a least squares sense (Karasalo, 1986). Later the 

subspace tracking progressed from the exploitation of classical eigen structure techniques 

such as QR algorithm, Jacobi rotation, power iteration, and Lanczos method (Comon 

& Golub, 1990). The subspace tracking algorithms like BiSVD (Strobach, 1997), BiLS 

(Ouyang & Hua, 2005) are used for sequential updating of the subspace components. 

The Projection Approximation Subspace Tracking (PAST) (B. Yang, 1995) attempts for 

solution to an exponentially weighted least square of the data matrix using unconstrained 

minimization. Based on well known Recursive Least Square (RLS) method, the signal 

subspace components are tracked effciently. The obtained signal subspaces are not exactly 

orthonormal, which is a limitation of the PAST algorithm. Later the PAST algorithm 

is improved with orthonormal subspace components developed as Orthonormal PAST 

(OPAST) algorithm by (Abed-Meraim, Chkeif, & Hua, 2000). Estimation and tracking 

of DOA taking into account the mutual coupling between the elements of ULA has 

been proposed by Liao et al. (Liao, Zhang, & Chan, 2012). Liao et al. propose the 

joint estimation of DOAs and mutual coupling matrix by invoking the subspace tracking 

techniques such as Modifed PAST (MPAST) and OPAST for slow varying subspace 

components. For the case of rapid changing subspace components, they propose Kalman 

Filter with variable number of measurements (KFVM). In the analysis of Liao et al., for 

higher number of samples, the term subspace leakage refers to the deviation of the sample 

covariance matrix from the true covariance matrix. The solution to the problem of subspace 

leakage has been addressed in (Shaghaghi & Vorobyov, 2015) through a root-swap method 

in the root MUSIC algorithm. 
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2.8 DOA Estimation of Wideband Signals 

The signal with its energy spread over a broad range of frequencies is in general termed 

as wide-band or broad band signal. Initial attempts in the DOA estimation algorithms 

were directed only towards the narrowband signal sources, but many applications such as 

wireless communications warrant the localization of the wideband signal sources. The 

DOA estimation of wide-band signal sources has been attempted by many researchers in 

the past. 

Figure 2.27: Narrowband and Wideband Signal Sources 

Many concepts of DOA estimation in the narrow band case can be extended to the 

wideband situation. The design of a wideband beamformer involves a subband decomposi-

tion and subsequent design of beamformer for subband (narrow band) frequencies. This 

implies an application of spatio temporal flter to the samples received by the array. Hence 

such an array is often termed as flter and sum structure. Therefore the determination of the 

coeffcients of the spatio-temporal flters constitutes the main task of the wideband beam-

former. The narrow band and wideband sources are generated and its discrete frequency 

spectrum is shown the Figure 2.27. In a typical scenario, the narrow band signal appears as 

a spike at the corresponding frequency, where as the wideband signal spreads over the band 
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across the center frequency. The wideband source causes the spread of center frequency 

and adjacent frequency bins. 

2.8.1 Approximation of Narrow Band Signal 

A clear understanding of the approximations in the underlying concept of narrowband 

signal can provide an impetus for the development of wideband signal model. The complex 

representation of the pth narrow band source signal over N observation time shall be 

represented by the Equation (2.53) (Stoica & Moses, 1997). 

jωot jvp(t)x(t) = wp (t)e e (2.53) 

Here ωo is the center frequency; and p = 1,2, ...,P where P denotes the number of sources 

and the sample index t = 1,2, . . . ,N. The amplitude and phase of the narrowband source 

are given by wp(t) and vp(t) respectively. The amplitude and phase of the narrowband 

signal are slowly varying function with respect to ωo. The sequence x(t) represents the 

pth source signal waveform observed with respect to reference point in the array. The 

cumulative sum of all the P sources observed at time t is represented as 

P 
ym (t) = ∑ xp (t− Ψpm)+ um (t) where t = 1,2, . . . ,N and m = 1,2, . . . ,M 

p=1 
(2.54) 

where Ψpm is the propagation delay of the pth source at the mth antenna element from 

the reference antenna element of the array. In Equation (2.54), M denotes the number of 

antennas of the array and N is the number of samples. 

Ψpm = (m− 1)π sin θp (2.55) 

where θp is the direction of arrival of pth signal source. The um (t) is the additive white 

Gaussian noise at the mth sensor. From the narrow band assumption, the variations of 

amplitude and phase are insignifcant during the arrival time across the array. Now 

jωo(t−Ψpm) jvp(t−Ψpm)xp(t− Ψpm) = wp(t− Ψpm)e e (2.56) 

jωot − jωoΨpme jvp(t−Ψpm)xp(t− Ψpm) = wp(t− Ψpm)e e (2.57) 

By narrowband approximation 

wp(t− Ψpm) ∼ (2.58)= wp(t) 
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and 

vp(t− Ψpm) ∼ (2.59)= vp(t) 

xp(t− Ψpm) ∼ jωoΨpm (2.60)= xp(t)e

This implies that the time delay is transformed into only a phase delay. The center frequency, 

the inter element spacing and DOA determine this phase delay. However, it is independent 

of the time variable. 

2.8.2 Wideband Signal Model for Linear Array 

For the case where P number of far-feld point sources are observed by M sensors arranged 

in a linear array geometry with additive white Gaussian noise, the spectral output of the 

array of the wideband sources for (narrowband) frequency f and time sample t is given by 

the Equations (2.61) and (2.62). 

x( f , t) = A( f ,θ )s( f , t)+ n(t) (2.61) 

P 
= ∑ a( f ,θp)sp( f , t)+ n( f , t) (2.62) 

p=1 h iT 
where the signal source is a vector s( f , t) represented as s1( f , t), h s2( f , t), 

The DOA (bearing) angle vector of the P sources is denoted as vector θ = θ1, θ2, . . . ,θP . 

,sP( f , t) .. . . 

ihThe array manifold matrix of size M× P shall be defned as 

A( f ,θ ) = a( f ,θ1), a( f ,θ2), . . . ,a( f ,θP) with a( f ,θp) the array steering vector for 

the pth source at frequency f and n( f , t) is the noise vector that is spectrally and spatially 

uncorrelated. The noise is also uncorrelated with the source signals. 

The structure of the steering vector, a( f ,θ) changes signifcantly with the geometry of the 

array, since the steering vector establishes the relative phasing across the array to respond 

to source at a specifc angle. For a ULA with M elements with spacing d between them, 

the steering vector takes the form ⎤⎡ 
1 

j 2π f d sinθe c 

j 2π f 2d sin θca( f ,θ ) = 

⎢⎢⎢⎢⎢⎢⎢⎣ 
⎥⎥⎥⎥⎥⎥⎥⎦ 

(2.63)e
. . . 

j 2π f (M−1)d sinθce
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where c is the free space velocity of the EM wave. The frst element in the ULA is the 

reference element with zero phase. The source impinging on the ULA at an angle θ from 

broadside causes a phase shifts between neighbouring antennas. The angle θ is a physical 

angle and the angle is a corresponding phase angle. The corresponding spatial spectral 

density matrix for the array output at frequency f is 

Px( f ) = A( f ,θ )Ps( f )AH( f ,θ)+ Pn( f ) (2.64) 

where Ps( f ) = E[s( f , t)sH( f , t)] is the P× P Hermitian power spectral density matrix of 

the source vector, s( f ), and it may include undesired signals such as interference and 

noises; Pn( f ) = E[n( f , t)nH( f , t)] is power spectral density matrix of the noise of size 

M× M at frequency f . The superscript (·)H denotes the Hermitian transpose. It is assumed 

that P < M and that the rank of A( f ,θ ) is equal to P for all frequencies and angles. 

The general phase-based DOA estimation methods such as MUSIC and ESPRIT rely on the 

correlation of the signal across the antenna elements. Therefore an approximation to the 

overall spectral density matrix is desired that yields the covariance matrix of array output 

over every frequency bin f j, where j = [1,J] and sample t as shown in Equation (2.65). 

Rxx( f j) = E[x( f j, t)xH( f j, t)] (2.65) 

where E[·] is the expectation operator. The covariance matrix can be decomposed into 

signal component corresponding to the jth frequency bin and noise component as shown in 

Equation (2.66) 

Rxx( f j) = A( f j,θ)Rs( f j)AH( f j,θ)+ Rn( f ) (2.66) 

In Equation (2.66), Rs( f j) is the signal covariance matrix at jth frequency bin and Rn( f ) 

is the noise spatial covariance matrix. Typically, a limited number of samples are available 

for DOA estimation to obtain the spatial covariance matrix with sampling instants x( f j, t) 

for t = 1, ...,N. 
N1 H( f j, t)∑ x( f j, t)xRbxx( f j) = (2.67)

N t=1 

! 
N N1 H( f j, t) AH( f j, t)+ 

1 
n( f j, t)nH( f j, t)∑ ∑Rbxx( f j) = A( f j, t) x( f j, t)x (2.68)

N Nt=1 t=1 

h i 
x( f j) = x( f j,1), x( f j,2), . . . x( f j,T ) (2.69) 
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Here t is the sample index and x( f j) is the data matrix at frequency f j. An adequate 

observation period, containing N number of samples must be chosen to facilitate the 
1 1sample covariance matrices Ps = N ∑

N 
=1 s( f j, t)sH( f j, t) and Pn = N ∑

N 
=1 n( f j, t)nH( f j, t)t t

to model signal Ps and noise Pn covariance matrices respectively. 

2.8.3 DOA Estimation of Wideband Sources 

The DOA estimation of wideband sources, based on each of the discrete frequency bins are 

classifed as incoherent methods and coherent methods. The wideband DOA estimation by 

utilizing narrowband DOA estimation methods at each frequency bin and then combined 

to obtain the wide-band estimation is presented in this section. This approach is called 

incoherent approach. The subspace-based MUSIC algorithm decomposes the sample 

covariance matrix into subspace spanned by signal and noise components. A generic 

representation of the covariance matrix is of the form 

Rxx( f j) = A( f j,θ)Rs( f j)AH( f j,θ)+ Rn( f ) (2.70) 

The covariance matrix of Equation (2.70) can be decomposed using EVD as shown in 

Equation (2.71) " #" # h i 
∑s( f j) 0 UH( f j)sRxx( f j) = Us( f j) Un( f j) (2.71)

0 ∑n( f j) UH( f j)n 

where the ∑s( f j) and ∑n( f j) are the eigen values of the covariance matrices corresponding 

the signal subspace and noise subspace respectively for the jth frequency bin. These eigen 

values are sorted in the descending order of the diagonal matrix as shown in Equations 

(2.72 and 2.73). The matrices Us( f j) and Un( f j) in Equation (2.71) are signal and noise 

subspaces, respectively for the jth frequency bin. h i 
∑( f j) = diag σ1( f j) . . . σP( f j) (2.72) 
s 

h i 
∑( f j) = diag σP+1( f j) . . . σM( f j) (2.73) 
n 

The P number of eigen values denoting σ1( f j) > σ2( f j) > · · · > σP( f j) are principal 

components P signal sources and the remaining σP+1( f j) = σP+2( f j) = · · · = σM( f j) 

correspond to the additive noise of the signal; 

The standard assumptions of spatially uncorrelated and identically distributed noise ensure 
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that the noise covariance can be decomposed such that there is equal noise power in each 

of the array elements. Thus eigenvalues σP+1( f j) = σP+2( f j) = · · · = σM( f j) = σn( f j) 

where σn( f j) is the noise power such that the noise correlation can be written as 

Rn( f ) ≈ σn( f j)Un( f j)UH( f j) (2.74)n 

The (M− P) eigenvalues associated with the noise have the same value σn( f j) which are 

used to estimate the size of the noise subspace. The matrix Un( f j) is a basis for the noise 

subspace, and its orthogonal complement Us( f j) is basis for the signal subspace. A method 

of estimating the signal direction vector can now be obtained by using the matrix Un( f j) 

whose size is M× (M− P) and whose columns are the (M− P) noise eigenvectors. The 

square of the Euclidean distance between the vector a( f j,θ ) (the steering vector) and the 

noise subspace can be represented as in Equation (2.75). 

e2( f j,θ) = aH( f j,θ)Un( f j)UH( f j)a( f j,θ) (2.75)n 

The minimum of this distance will be obtained when a( f j,φ ) is in the same direction as the 

directional vectors of the signal, which are orthogonal to the noise subspace basis vectors. 

Inverting this distance, the MUSIC algorithm for the narrowband frequency bin, f j, is 

obtained as given in Equation (2.76). 

PMusic( f j,θ) = 
1 

(2.76)
aH( f j,θ )Un( f j)UH( f j)a( f j,θ )n 

The In-Coherent Method (ICM) and Coherent Signal Subspace Methods (CSSM), which 

are the classical subspace based wideband DOA estimation algorithms were proposed by 

Wang and Kaveh (Wang & Kaveh, 1985). 

2.8.4 Incoherent Method 

The extension of the MUSIC algorithm to wideband sources consists of several MUSIC 

bearing responses that are determined from the signal subspace at each narrowband fre-

quency and averaged together. Incoherent averaging was chosen to combine the MUSIC 

frequency spectra. The result from each narrowband MUSIC spectrum is averaged. 

J J 1
PMusic(θ ) = ∏ PMusic( f j,θ) = ∏ (2.77)

aH( f j,θ)Un( f j)UH( f j)a( f j,θ )nj=1 j=1 

The Equation (2.77) denotes the incoherent method of averaging the spatial spectrum 

obtained for each of the narrow band frequency bin. 
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2.8.5 Coherent Signal Subspace Method 

The Coherent Signal-Subspace Method (CSSM) is one of the widely adopted techniques 

and it is based on focusing matrices. Wang and Kaveh (Wang & Kaveh, 1985) proposed 

the CSSM approach in which a transformation matrix, transforms the covariance matrix 

and negates the infuence of the frequencies other than the center frequency. After transfor-

mation, the covariance matrix represents a narrowband signal for center frequency. 

The jth frequency bin of the observed data sample x( f j, t) and its covariance matrix shall be 

computed as shown in Equation (2.67). In CSSM method, data sample corresponding to jth 

frequency bin is transformed to a center frequency f0. This transformation is accomplished 

by focussing the signal subspace components of the data matrix to the center frequency 

(Doron & Weiss, 1992). The focussing of discrete frequencies is achieved by Equation 

(2.78). 

y( f j, t) = T( f j) x( f j, t) (2.78) 

The focussing matrix T( f j) defned in (Yoon, Kaplan, & McClellan, 2006) is represented 

in Equation (2.79). h i 
T( f j) = ei(k j−k0)sin θ , ei(k j−k0)d sinθ , . . . ei(k j−k0)(M−1)d sinθ ) (2.79) 

Here the k j is the wave number corresponding to jth frequency bin and k0 is wave number 

corresponding to focussing frequency. Typically, the mid frequency of the wideband signal 

is chosen as the center frequency. The sample covariance matrix of jth frequency bin after 

focussing is obtained by 

Rbyy( f j) = E[y( f j, t)yH( f j, t)] (2.80) 

The CSSM method of wideband DOA estimation using the classical MUSIC algorithm is 

computed through the Equation (2.81). 

J 
PMusic(θ ) = ∏ 

1 
(2.81) 

j=1 aH( f0,θ)Un( f j)UH
n ( f j)a( f0,θ) 

In Equation (2.81), Un( f j) is the noise subspace corresponding to covariance matrix of 

jth frequency bin Rbyy( f j). The product of noise subspaces of all the frequency bins of 

the covariance matrix is computed. The array steering vector a( f0,θ) corresponding to 

the focussing frequency acts as actual signal subspace which is computed as defned in 

Equation (2.63). 
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Several researchers (Doran, Doron, Weiss, et al., 1993; Di Claudio & Parisi, 2001; Yoon 

et al., 2006; Zhang, Dai, & Ye, 2010; Yu, Liu, Huang, Zhou, & Xu, 2007; Sellone, 2006) 

have attempted to improve the focussing matrix by several techniques. Also the focusing 

matrix is parametrized to compute its focussing loss, and thus to relate the inaccuracies of 

the estimations is also addressed in the literature. 

The CSSM attempts to focus (transform) its signal subspace components to a determined 

discrete frequency and averages to produce the search vector for the MUSIC like algorithm. 

A method named Array Manifold Interpolation (AMI) (Doran et al., 1993) attempts to lin-

early interpolate the array manifold vector for a desired frequency. These methods provide 

a array manifold interpolation matrix, which separates array manifold vector from the array 

geometry and direction θ . Further to CSSM, a Weighted Average of Signal Subspaces 

(WAVES) method (Di Claudio & Parisi, 2001) was developed by authors Di and Parisi. 

In WAVES, the signal subspace components subjected to weighed averaging to improve 

the focussing of the signal subspace. The Test of Orthogonality of Projected Subspaces 

(TOPS) proposed in (Yoon et al., 2006) for wideband DOA estimation accomplishes an 

intermediate performance between incoherent and coherent methods. Subsequently, an 

Extended TOPS (ETOPS) (Zhang et al., 2010) algorithm is based on incoherent method 

and TOPS algorithm further improved the focussing of signal subspaces at an reference 

frequency. The orthogonality between the signal and noise subspaces for each of the 

frequency components of the incoming sources is evaluated through TOFS method (Yu 

et al., 2007), to improve the focussing of signal subspaces over the CSSM method. The 

Robust Coherent Signal Subspace (R-CSM) (Sellone, 2006) proposed by Fabrizio Sellone 

shows a novel design of focussing matrices by minimizing the subspace focussing errors by 

optimising the Rotational Signal Subspace and Signal subspace transformation of focussing 

matrices. The Wideband-Sparse Spectrum Fitting (W-SpSF) estimation proposed by He 

et.al. in (He, Shi, Huang, & So, 2015) leverages the increased degrees of freedom of sparse 

spatial sampling available through co-array for under determined DOA. 

2.9 Summary 

This chapter aimed to present an overview of multi-disciplinary attributes of the broad 

domain of DOA estimation. It has provided a review of the basic concepts of antenna, 

antenna array and DOA estimation algorithms along with the associated mathematical 

techniques. After a brief discussion on important performance parameters of antenna, a 
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succinct review of various confgurations such as 1D, 2D and 3D antenna arrays is presented 

in this chapter. The progression in the DOA estimation algorithms from Fourier based to 

subspace techniques has also been covered in this chapter with pertinent technical details. 

The assumptions associated with the determination of radiation pattern of antenna arrays 

used in DOA estimation algorithms have been briefy explained. The analytical details of 

classical subspace techniques like MUSIC and ESPRIT which are either extensively used 

or referred in this thesis have been dealt in detail. This chapter has presented a discussion 

on the existing techniques for the estimation of DOA of non-stationary sources. A review 

of available techniques for the estimation of DOA of wideband sources is also included 

in this chapter. The implicit/explicit constraints as well as the limitations of conventional 

antenna arrays and the existing DOA estimation algorithms are highlighted with a view to 

facilitate better appreciation of the novelties and the signifcance of the analysis/results to 

be presented in the subsequent chapters of this thesis. 
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Chapter 3 

Formulation and Analysis of a Closed Form Solution for Two 

Dimensional DOA Estimation 

3.1 Introduction 

This chapter presents a formulation, for the minimization of computational complexity of 

two-dimensional DOA estimation algorithm for single incoming source scenario. Towards 

this end, a closed form expression for two-dimensional DOA estimation using the MUSIC 

algorithm is proposed which involves only one-dimensional search. This task has been 

accomplished by a novel one-dimensional antenna array confguration with its alternate 

array element’s orthogonal orientation. These elements receive both the horizontal and 

vertical polarized feld components simultaneously and these components are processed for 

2D-DOA estimation. With prior knowledge of the analytical expressions for the radiation 

patterns of typical array elements, a closed form expression has been derived relating 

the azimuthal angle φ and elevation angle θ of DOA through the ratio of the amplitudes 

of horizontally and vertically polarized received felds. This concept is illustrated using 

the open ended Rectangular Wave Guide (RWG) and Circular Wave Guide (CWG) as an 

antenna element. 

3.2 Review of 2D-DOA Estimation Techniques 

A basic review on antenna array confguration and DOA estimation algorithms has already 

been presented in Chapter 2. In the discussion of antenna array for 2D-DOA estimation 

covered in Chapter 2, the emphasis was on antenna elements having identical (single) 

polarization only. In this section, the signifcance of diversely polarized antenna elements 

in DOA estimation is reviewed. Generally, two-dimensional array confgurations such as 

planar, circular or three-dimensional array with linear subarrays along the three axes are 

used for the 2D-DOA estimation (N. Tayem & Kwon, 2005; Manikas, Alexiou, & Karimi, 

1997). The general performance of a DOA estimation system is also directly infuenced by 
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both the array geometry and the associated algorithm employed. Two-dimensional DOA es-

timation algorithms such as MUSIC (Schmidt, 1986) involves two-dimensional search and 

ESPIRIT (Roy & Kailath, 1989) uses polynomial rooting to determine the azimuth and ele-

vation angles subtended by the distant source. This is true irrespective of number of sources. 

In (Weiss & Friedlander, 1993), a diversely polarized array confguration along with 

array interpolation techniques are adopted for DOA estimation using a polynomial rooting 

method. In general, polynomial rooting methods are invoked for linear arrays, whereas in 

(Weiss & Friedlander, 1993) it is extended for arbitrary array confguration using diversely 

polarized array elements and interpolation techniques. In (Li, 1993), the polarization 

sensitive antenna elements such as crossed dipoles and loop antennas are used to exploit 

the invariance properties of the ESPRIT algorithm. The dipole and loops antennas are 

sensitive to the electric and magnetic felds of the incident waves. The invariance properties 

among the dipole and loop antennas are used to estimate the two-dimensional DOA and 

polarization of the incident waves. In (Wong, Li, & Zoltowski, 2004) antenna elements 

such as dipoles, loops and circularly polarized antennas oriented in L-shaped uniformly 

spaced grid array confguration are used for DOA estimation. In (Wong & Zoltowski, 

1998) a closed form solution for DOA is presented with vector sensor array of irregular 

confguration. Each of the sensor consists of six co-located antennas to measure the three 

components of both E and H felds. The ESPRIT algorithm is applied multiple times to 

the distinct pairs of the six subarrays to extract the invariant factors to characterize the six 

EM feld components of the impinging source. Both (Wong et al., 2004) and (Wong & 

Zoltowski, 1998), insist on the sensor array to capture the three cartesian components of 

E and H received felds. This chapter proposes a much simplifed approach for 2D-DOA 

estimation utilizing only the two orthogonally polarized components of the received felds. 

The focus of this chapter is to arrive at a formulation for the minimization of computational 

complexity of two-dimensional DOA estimation algorithm if the interest is of single source 

scenario. Towards this end, a closed form expression for two-dimensional DOA estimation 

using MUSIC algorithm is proposed which involves only a one-dimensional search. This 

task has been accomplished by a novel one-dimensional antenna array confguration with 

its alternate array element’s orthogonal orientation. These elements receive both the hori-

zontal and vertical polarized feld components simultaneously and these components are 

processed for DOA estimation. 
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With prior knowledge of analytical expressions for the radiation patterns of array ele-

ments, a closed form expression shall be derived to relate the azimuthal angle φ and 

elevation angle θ of DOA through the ratio of the amplitudes of horizontally and vertically 

polarized felds. The analytical expressions for the radiation pattern of the open ended 

RWG and CWG are stated and validated in the literature (Silver, 1949). These analytical 

expressions are utilized to derive the closed form solution for 2D-DOA estimation with 

reduced computation complexity (Karthikeyan, Kadambi, & Vershinin, 2015). 

3.3 Open Ended Waveguide as an Antenna Element 

Open ended waveguides are classifed under the category of aperture antennas in antenna 

engineering. The RWG and CWG are the fundamental canonical form of waveguides. 

These waveguides can serve as antenna as well as a transmission line to feed horn antennas. 

The aperture dimension of the waveguide is directly related to the operating frequency. 

The fundamental theory and different modes of operation of the RWG and CWG have 

been well addressed in the published literature (Silver, 1949; Kraus, 1992; Balanis, 2012). 

The cross sectional views of classical RWG and CWG are shown in Figures 3.1 and 3.2 

respectively. 

Figure 3.1: Rectangular Waveguide 

It is well known through electromagnetic and antenna engineering that a wave guide 

exhibits its maximum potential when it is excited in its dominant mode. Closed form 

expressions to compute the azimuth and elevation plane radiation patterns of waveguides 

for a given mode of excitation and operating frequency are presented in (Silver, 1949). 

The normalized azimuth (H-Plane) and elevation (E-Plane) radiation patterns of an X-band 

RWG for a TE10 dominant mode, operated at 9.375 GHz are shown in Figure 3.3. 
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Figure 3.2: Circular Waveguide 

Figure 3.3: Normalized Radiation Pattern of a RWG 

The Figure 3.4 indicate the copolar and cross polar components of the radiation of 

RWG. The signifcant difference between the copolar and cross polar justifes that, the 

cross polar component shall be ignored in the computations. 

3.3.1 Proposed Orthogonally Polarized Linear Array Confguration 

The RWG array is chosen for the proposed research based on the strong theoretical and 

practical considerations of RWG as an antenna element. The Orthogonally Polarized Linear 

Array (OPLA) confguration is proposed as shown in the Figure 3.5. In the proposed array 

confguration shown in Figure 3.6, the RWG elements are arranged in a straight line with 

the adjacent elements rotated by 90◦. The adjacent elements of the array are orthogonally 
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Figure 3.4: Co-polar and Cross Polar Radiation Pattern of a RWG 

polarized with respect to each other. This confguration of dual polarized array will receive 

both the horizontal and vertically polarized components, which will be used to estimate 

the two dimensional DOA. For 2D-DOA estimation, a closed form expression to relate 

Figure 3.5: Proposed Orthogonally Polarized Linear Array 

the azimuth angle φ and elevation angle θ is derived from the standard expressions of 

radiation patterns of RWG. The ratio between the horizontally polarized and vertically 

polarized received feld, yields a unique value, which is used to estimate the DOA in 

the proposed algorithm. The sampled signal data received by the antennas are processed 
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using the standard MUSIC algorithm. As shown in the Figure 3.5, the alternate elements 

A1,A2, . . . ,A4, receive the vertically polarized (azimuth) feld components whereas, the 

E1,E2, . . . ,E4 will receive the horizontally feld polarized (elevation) components. The 

Figure 3.6: Orthogonally Polarized Linear Array Confguration using RWG Elements 

RWG element in the proposed orthogonally polarized linear array confguration is shown 

in Figure 3.6. The elements are numbered with respect to its position Figure 3.6. The odd 

numbered elements correspond to the orientation to receive vertical polarization. Likewise, 

the even numbered elements correspond to horizontal polarization. The details of the 

polarization as an orientation of the electric feld vectors are shown in the Figure 3.7. 
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Figure 3.7: Polarization of RWG 

3.4 Signal Modelling with RWG Array Elements 

The RWG is considered as antenna elements for the array signal modelling. It is well 

known that for a waveguide mounted to radiate in one of its principal planes (E or H 

Plane), a physical rotation of 90◦ about its propagation axis (z axis) will result in change in 

polarization by 90◦ (Orthogonal Polarization). The signals received by antenna elements 

of the array are modelled in the matrix vector form as given in Equations (3.1) and (3.2). 

xh = Ahs+ n (3.1) 

where xh is the modelled signal vector received by the RWG elements oriented in H-Plane 

(Vertical Polarization) for the azimuth and elevation DOA angles (θ ,φ). Ah is an array 

steering matrix for the Vertical Polarization; s and n are signal data and additive white 

Gaussian noise vector respectively. 

xe = Aes+ n (3.2) 

Similar description holds for xe except that it refers to Horizontal Polarization or E-Plane. 

Ae is an array steering matrix for the Horizontal Polarization. The array steering matrix is 

a function of elevation angle θ , azimuth angle φ and the inter-element spacing d, which is 

defned as 

ah (θ ,φ) = Eφ (θ ,φ)e− jkdm1 sinθ cosφ where m1 = 1,2, . . . ,(Mh− 1) (3.3) 

Similarly, 

ae (θ ,φ) = Eθ (θ ,φ )e− jkdm2 sinθ sinφ where m2 = 0.5,1.5, . . . ,(Me − 1)+ 0.5 (3.4) 

The columns of array steering matrices Ah and Ae are formed by the array steering vectors 

ah and ae respectively. Each column of the array steering matrix represents the steering 
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vector of the corresponding source angle (θ ,φ). For the case of a single source, the array 

steering matrix has only one column, corresponding to the steering vector of the impinging 

source angle (θ ,φ). 

In Equations (3.3) and (3.4), Mh and Me represent the number of antenna elements oriented 

in H-plane and E-plane respectively. k represents free space wave number. Typically, the 

inter-element spacing d is such that λ 
4 ≤ d ≤ λ 

2 , λ being the wavelength. The Eφ (θ ,φ) 

and Eθ (θ ,φ) are the amplitudes of vertically and horizontally polarized feld components 

of the radiation pattern at (θ ,φ). 

The computation of the sample covariance matrix to invoke MUSIC algorithm (Schmidt, 

1986) is carried out using Equation (3.5). � �HRxx = E xexe (3.5) 

In Equation (3.5), E[.] is the expectation operator and (.)H denotes the Hermitian conjugate. 

The covariance matrix Rxx can also be constructed using xh data. The covariance matrix 

can be decomposed into signal and noise components through eigen decomposition shown 

in Equation (3.6). 

Rxx = ASAH + σ2I (3.6) 

where S = E[ssH ] is the signal covariance matrix; A denotes the matrix representation 

of the array steering vector for the respective polarization as shown in Equations (3.3) 

and (3.4). σ2 is the noise covariance, I is the identity matrix. The eigen vectors of the 

covariance matrix are decomposed into signal and noise subspace as stated in Equation 

(3.6) which are orthogonal to each other. The peak magnitude of MUSIC algorithm for the 

two-dimensional DOA estimation is given in Equation (3.7). 

1 
argmax P(θ ,φ ) = (3.7) 

(θ ,φ ) a(θ ,φ)VnVHaH (θ ,φ)n 

where a(θ ,φ) is a search vector. The matrix Vn spans the noise subspace vectors in its 

columns, which are the eigenvectors whose eigenvalues are equal to the σ2. 

3.5 2D-DOA Estimation Using Closed Form Solutions 

For two-dimensional DOA estimation in the case of a single source, the two-dimensional 

search Equation (3.7) can be reduced to one-dimensional search which constitutes the 
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proposed research contribution of this chapter. The two-dimensional search vector a(θ ,φ) 
is reduced to one-dimension by deriving compact expressions which relates the angle θ in 

terms of angle φ through the ratio of amplitudes of vertical polarized (Eφ ) and horizontal 

polarized (Eθ ) feld components received by the RWG elements of the array. 

3.5.1 Derivation to Relate Azimuth and Elevation DOA Angles with RWG 

The analytical expressions of Eθ (Horizontal Polarization) and Eφ (Vertical Polarization) 

components of radiation patterns of the RWG with a dominant TE10 mode of propagation 

are given by Equations (3.8) and (3.9), respectively along with equation (3.10) (Silver, 

1949). These closed form expressions are used to compute the E-Plane (horizontal) and 

H-Plane (vertical) polarized radiation pattern for a given operating frequency (9.375 GHz). � ��
µ �1/2 πa2b β10Eθ (θ ,φ) = − cos φ + cos θ Ψ(θ ,φ) (3.8)
ε 2λ 2R k � ��

µ �1/2 πa2b β10Eφ (θ ,φ ) = − sin φ 1+ cos θ Ψ(θ ,φ) (3.9)
ε 2λ 2R k 

where, " � #" �#�
πa �

πbcos 
λ sin θ cos φ sin 

λ sin θ sin φ
Ψ(θ ,φ) = �2 �

π �2 �
πb � (3.10)�

πa 
λ sin θ cos φ − λ sin θ sin φ 

a 

For a rectangular waveguide, β10 is computed by q
= k2− k2 (3.11)βmn mn 

where r� �2 � �2mπ nπ
kmn = + (3.12)

a b 
where θ is the elevation angle, 

φ is the azimuth angle, 

µ is the free space permeability, 

ε is the free space permittivity 

λ is the wavelength, 

k is the wave number, 

a is the width of the waveguide aperture, 

b is the height of the waveguide aperture, 

β10 is the propagation constant for the waveguide excited in dominant mode (m = 1,n = 0), 
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R is the distance between a reference point and a far-feld distant point. 

The ratio between the horizontal and vertical polarized feld components of the received 

signal shall be derived as follows. Let 

X = (3.13)
|Eθ (θ ,φ)|
Eφ (θ ,φ) 

����
X denotes the ratio of amplitudes of horizontal and vertical polarized feld components 

received by the RWG elements. With the substitution of Equations (3.8) and (3.9) in 

Equation (3.13). ih 
sin φ 1+ βk 

10 cos θ 
X = ih (3.14)

β10cos φ cos θ + k 

Further simplifcation of Equation (3.14) yields the separable closed form expressions 

relating the azimuth φ and elevation θ angles as shown in Equation (3.15) and (3.16). 

φ = tan−1 

⎛⎝ 
�� 

β10X cos θ + k 

⎞⎠ (3.15)
1+ βk 

10 cos θ 

tan φ − X β

k 
10 
! 

θ = cos−1 (3.16)
X− βk 

10 tan φ 

The exponential term of Equation (3.3) can be rewritten as shown in Equation (3.17) with 

the substitution of Equation (3.15). 

e 
− j 2

λ

π d sinθ cos 

⎛⎝tan−1 

⎛⎝ X 
�

β10cos θ+ k 

⎞⎠ ⎞⎠ 
� 

β101+ k cos θ (3.17) 

Thus, the exponential term of Equation(3.17) only involves the elevation angle θ . Similarly, 

the exponential term of Equation (3.3) shall also be rewritten after substituting Equation 

(3.16) in it. As a result, the exponential term of Equation (3.3) can be written to involve 

only the azimuth angle φ . 

!! 
β10tan φ −X

− j 2π −1 k 
λ d sin cos cos φ 

X− k tan φe 
β10 (3.18) 

The expressions (3.17) and (3.18) which relate the 2D-DOA (θ ,φ) with only one angle say 

elevation θ (or azimuth φ ) shall be utilized in the two-dimensional search vector ah (θ ,φ) 

in Equation (3.7) of the MUSIC algorithm. 
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3.5.2 Derivation to Relate Azimuth and Elevation DOA Angles with CWG 

The derivation described for RWG has been extended to the case wherein the RWG is 

replaced by a CWG. Similar to the RWG, the analytical expressions of Eθ (θ ,φ) and 

Eφ (θ ,φ ) components of radiation patterns of CWG with the TE11 dominant mode are 

given by Equations (3.19) and (3.20) (Silver, 1949). � � 
kρωµ β11 J1 (kρ sin θ ) 

kρ sin θ
Eθ (θ ,φ) = cos θ J1 (k11ρ) sin φ (3.19)1+

2R k 

� � 
ρJ k( )1 11 

0
kρωµ β11 J

Eφ (θ ,φ) = cos θ + �1 (kρ sin θ) 
cos φ (3.20)�22R k kρ sinθ1− k11 

For the dominant TE11 mode of a circular waveguide, β11 is computed as �s 
k2−β11 = 

�21.841 
ρ 

�� ��

where ρ is the radius of the circular waveguide, k is the wave number, J1(.) is the frst 

order Bessel function and J1
0 
(.) is the derivative of the frst order Bessel function. Similar 

to Equation (3.13), the ratio of amplitude of Eθ and Eφ feld components received by the 

CWG elements of the array can be related through Equation (3.21). 

J1(kρ sinθ)
|Eθ (θ ,φ )| 1+ βk 

11 cos θ kρ sin θ tan φX (3.21)= = 
β11 J0 cos θ +Eφ (θ ,φ) 
k �1(kρ sinθ)�2kρ sinθ 

k11 
1− 

For the CWG, only the azimuth angle φ can be related in-terms of the elevation angle θ as 

shown in Equation (3.22). 

φ = tan−1 

⎛ ⎜⎝ kρ sin θ 
J1 (kρ sin θ ) 

⎞ ⎟⎠ (3.22) 

�� 
β11 0X cos θ + �(kρ sin θ)�2 

Jmk 

1+ βk 
11 cos θ k sinθ1− k11 

The exponential term of Equations (3.3) can be represented as shown in Equation (3.23) 

after the substitution of Equation (3.22). 

− jkd sin θ cos 

⎛ ⎜⎝tan−1 

⎛ ⎜⎝ 
⎞ ⎟⎠ 

⎞ ⎟⎠ 
�� 

� 
β11 

k Jm(kρ sin θ ) 
X cos θ + 0 

kρ sinθ �2 
1+ 

β11 
k cos θ 1− 

J1(kρ sin θ )k sin θ 
k11 (3.23)e 

The derived Equation (3.22), relates the azimuth angle φ in-terms of only the elevation 

angle θ as shown in expression (3.23). 
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3.5.3 Reduction of Search Dimension of 2D DOA Estimation using Closed Form 
Solution 

The expressions stated in Equations (3.17), (3.18) and (3.23) clearly indicate that, the expo-

nential term is a function of only one angle. Hence the search dimension of steering vector 

a(θ ,φ) in estimating P(θ ,φ) of Equation (3.7) is reduced to one-dimension. The conven-

tional MUSIC algorithm as given in Equation (3.7) can be expressed in one-dimensional 

search form with the usage of the exponential term of Equation (3.17). The expression in 

Equation (3.24) shall be used for estimation of one of the angles of DOA say θ , which will 

estimate the angular peak of θ as shown in Figure. 3.8. 

1 
argmaxP(θ ) = (3.24)

θ a(θ ,φ )VnVHaH (θ ,φ)n 

The azimuth angle of two-dimensional DOA namely φ can be computed through the 

derived closed form Equation (3.15). Similarly, for the case of estimating azimuth angle 

Figure 3.8: Estimation of Angle θ through the peak of One-Dimensional Search Technique for the 
DOA (−20◦ ,25◦) 

φ using the search vector of the MUSIC algorithm, the Equation (3.25) shall be used for 

estimation of angular peak of the φ angle. 

1 
argmaxP(φ ) = (3.25)

φ a(θ ,φ)VnVHaH (θ ,φ)n 
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The elevation angle θ of the 2D-DOA, shall be computed through substituting the estimated 

peak angle φ in the derived closed form solution stated in Equation (3.16). 

For the case of CWG as antenna elements, one dimensional search vector of the MUSIC 

algorithm given in Equation (3.24) should be used to estimate the angular peak of elevation 

angle θ , followed by substituting the angular peak θ in the derived closed form solution in 

Equation (3.22). Unlike the case of RWG, estimation of angular peak of azimuth angle φ 

using the one dimensional search vector and elevation angle θ using closed form is not 

possible with CWG antenna elements, in view of the radiation pattern functions of CWG. 

Table 3.1 summarizes the steps of one-dimensional search algorithm. The proposed array 

Table 3.1: Summary of One Dimensional Search Algorithm 

Steps of the Proposed Technique 

1. Signal modeling as per equations (3.1) and (3.2) for a DOA (θ ,φ) 
|Eθ |2. Compute Ratio X = from a single sample of xe and xh|Eφ |

3. Compute Rxx using xe (or xh) 

4. Compute noise subspace Vn through eigendecomposition of Rxx 

5. Compute ae (θ ,φ) substituting equation (3.17) in (3.4); (or ah (θ ,φ)) 

(Here angle φ is equated through X and θ , similarly angle θ 

can also be equated using X and φ ) 

6. Find argmaxθ P(θ) as in equation (3.24); −90◦ ≤ θ ≤ 90◦ 

(Here θ in the range can have a search interval of interest) 

7. Compute φ using θ found as stated in equation (3.15) 

confguration shown in Figure 3.5, detects the impinging sources at +/-90◦ in the E-plane 

and H-plane, which is not possible through the conventional singly polarized confguration. 

In the case of multiple sources, incoming wave received by the array will be the cumulative 

sum of the E-plane and H-plane feld components of the multiple sources. Thus for the 

case of multiple sources, a unique combination of θ and φ cannot be determined to satisfy 

the resulting ratio X . Hence the proposed technique is limited to single source only. The 

array steering vectors for the proposed OPLA confguration is similar to the conventional 

linear array. The data received by both the horizontal and vertical polarized array elements 

are processed separately. The ratio of amplitudes of azimuth (vertical) polarized and 

elevation (horizontal) polarized received feld components is calculated using a single 

snapshot received. A fnite number of received samples is given as an input to classical 
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MUSIC algorithm. This is a typical one dimensional DOA estimation. The derived closed 

form expressions namely Equations (3.15) and (3.16) for RWG and Equation (3.22) for 

CWG are used to compute search in one dimension. With this procedure the azimuth DOA 

angle can be estimated using the Equation (3.15) for RWG or Equation (3.22) for CWG. 

The estimation of the elevation DOA can be substituted in the closed form expression 

to obtain azimuth DOA or vice versa. In this proposed method of 2D-DOA estimation, 

search computations are drastically reduced because of closed form relation of azimuth 

and elevation angles. In the proposed method, the searching dimension is now reduced to 

one dimensional (Equations (3.24) and (3.25)) instead of the two dimensional (Equation 

(3.7)) in typical 2D-DOA estimation algorithms. 

3.5.4 Simulation Analysis of Proposed One Dimensional Search Technique for 2D-
DOA 

Conventionally for two-dimensional DOA estimation, a typical planar array confguration 

is used. A 2× 2 planar array with RWG elements operating at 9.375 GHz was used to 

compute two-dimensional DOA. The signal was modeled for the incoming angles of actual 

DOA as stated in Table 3.2. In this analysis, a perfect mounting of the antenna elements in 

their principal (E and H) planes without mutual coupling between them is assumed. The 

spacing between the elements is λ /4. 

The conventional two-dimensional search based MUSIC algorithm (Equation (3.7)) was 

used to estimate the φ and θ angles of DOA. Digital data modulated with a sinusoidal 

signal of frequency 9.375 GHz is modelled, which forms the spatio-temporal samples, as 

an input for the DOA analysis. The AWGN noise is considered with a SNR of 15 dB for 

the signal modelled for the array confguration. 100 number of spatio-temporal samples 

were considered for the simulation. The estimated DOA angles using the conventional two-

dimensional search of MUSIC algorithm using Equation (3.7) are tabulated in Table 3.2. 

The signal was remodelled using Equations (3.1 and 3.2) for the proposed one-dimensional 

OPLA confguration for the same φ and θ angles of DOA as used for two-dimensional 

search technique of MUSIC. The steps for one-dimensional search algorithm for 2D-DOA 

estimation are provided in Table 3.1. The ratio between the horizontal and vertical polarized 

component of the impinging signal is computed form the signal model using the Equations 

(3.1 and 3.2). 
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The proposed one-dimensional search based MUSIC algorithm as stated in Equation 

(3.24) was used to estimate elevation angle θ frst and then the azimuth angle φ was 

computed through the Equation (3.15). The results of the estimation of 2D-DOA (Table 

3.2) through the conventional two-dimensional search approach and the proposed one-

dimensional search technique are found to be exactly the same establishing the validity of 

the proposed technique. 

The analysis of two-dimensional DOA computations was repeated with the CWG as 

array elements which also yielded the same DOA estimation as with RWG. The envelope 

of P(θ ) of Equation (3.24) simulated with RWG and CWG for the desired elevation 

angle, θ = -20◦ is shown in Figure. 3.8. The tabulated computational time in Table 3.2 

highlights the reduced computation of the proposed one dimensional search technique 

for the estimation of 2D-DOA. Simulations for both the one-dimensional search and 

two-dimensional search were performed on Intel core 2 Duo processor of 2.93 GHz 

clock speed platform. The computation time for the proposed one dimensional search 

technique of 2D-DOA estimation is reduced by a factor of 50 and 150 for 1◦ and 0.5◦ search 

intervals respectively, when compared with the conventional two-dimensional MUSIC 

search algorithm. 

3.5.5 RMSE Analysis 

The derived formulation of 2D-DOA estimation with 1D search approach is analysed for 

the range of SNR scenario 0 - 30 dB. The simulation for the wide range of SNR scenario is 

carried for signal model with DOA angles θ = -20◦ , φ = 25◦. The RMSE of the estimation 

of elevation angle θ and azimuth angle φ is computed. The average estimation error from 

200 simulation iteration for wide range of SNRs are computed and the results are shown in 

the Figure 3.9. The results reveal that estimation of θ angle has higher estimation error 

when compared to φ estimation error. The geometric confguration of the OPLA is linear. 

The spatial covariance of the received data samples is along only one direction, that is the 

array axis (x axis). Thus the θ estimation error is more than φ estimation error. 

The results of the estimation of 2D-DOA OPLA confguration with one-dimensional 

search approach is compared with the conventional 2×2 uniform planar array confguration. 

The RMSE of 2D-DOA estimation for 2×2 UPA confguration is shown in Figure 3.10. 

The RMSE results shown in Figure 3.10 illustrate the importance of spatial phase variation 

with respect to geometric confguration of the array elements. The presence of spatial phase 
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Figure 3.9: RMSE Plot for Estimation of θ and φ angle using One Dimensional Search Approach 

Figure 3.10: RMSE Plot for Estimation of θ and φ angle using 2x2 Planar Array with Conventioanl 
2D-MUSIC 

variation with both (x and y) axes infuences, estimation accuracy and this can be seen 

through the reduction in RMSEθ error when compared with the RMSEθ results of OPLA 

confguration shown in Figure 3.9. Similarly, the linear phase variation with diversely 
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polarized array confguration of OPLA is advantageous with the estimation of RMSEφ 

with least error, whereas poorer estimation accuracy in RMSEφ is seen with the result of 

conventional UPA confguration due to its limited phase variation along x axis. 

3.6 Summary 

This chapter has presented an elegant one-dimensional search technique for two dimen-

sional DOA estimation involving azimuth and elevation angles of distant sources. The 

proposed one-dimensional search is a consequence of utilizing the linear array confgura-

tion with alternate elements orthogonally polarized. The distinct feature of the proposed 

one-dimensional search technique leading to a signifcant reduction in the computation time 

for two-dimensional DOA estimation using MUSIC algorithm has been illustrated through 

the simulation studies. The proposed 2D-DOA estimation using one dimensional search is 

applicable only for a single source. Without loss of generality, the proposed formulation 

can be extended to any other antenna whose radiation pattern can be represented through 

an analytical expression involving separable form of elevation angle θ and azimuth angle 

φ . 

The OPLA confguration can be used to estimate DOA with classical subspace based tech-

niques. The derived closed form expression relation can be used along with the classical 

subspace based techniques to estimate 2D-DOA. The search dimensions are reduced to 

minimize the computation intensity in the proposed method. The proposed OPLA confgu-

ration minimizes the mutual EM coupling between the adjacent array elements. Reduced 

mutual coupling is obtained even when the antenna elements are very close to each other. 
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Chapter 4 

Two Dimensional DOA Estimation using Dual Polarized Array for 

Single and Multiple Sources 

4.1 Introduction 

In this chapter, the diversely (dual) polarized array confgurations are analysed for their 

performance in estimating 2D-DOA of the single and multiple sources. Discussion on 

various antenna array confgurations for 2D-DOA estimation has been presented in Chapter 

2. Subsequently, Chapter 3 covered the signifcance of antenna arrays with diversely 

polarized antenna elements. A novel OPLA confguration has been proposed for 2D-DOA 

estimation in Chapter 3. This chapter deals with other types of orthogonal polarized antenna 

arrays for 2D-DOA estimation. In this study, from antenna engineering perspective, dual 

polarization concept and different antenna array confgurations are explored to improve the 

accuracy and resolution of DOA. Novel array confgurations are proposed, where adjacent 

array elements have orthogonal polarization. The simulation studies confrm the proposed 

array geometries improve estimation accuracy of 2D-DOA estimations when compared 

with the single polarized array confguration. 

4.1.1 Antenna Confgurations for 2D-DOA Estimation 

Typically, one dimensional array is used to estimate 1D-DOA (usually azimuth) and two 

or three dimensional array are used for 2D-DOA estimation. The conventional Uniform 

Planar Array (UPA) or Uniform Circular Array (UCA) (Balanis, 2012) confgurations are 

used for the 2D-DOA estimation. Apart from this L-shaped array and 2L shaped array 

confgurations addressed in (N. A.-H. M. Tayem, 2005; N. Tayem & Kwon, 2005) have 

been used for 2D-DOA estimation and involve pair matching computations. 
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4.2 Antenna Element Radiation Pattern in DOA 

In the feld of the array signal processing (especially in antenna arrays), generally re-

searchers exclude the elemental radiation pattern (radiation pattern of element of the array), 

and utilize ideal steering matrix to validate the simulation model of the algorithms. How-

ever, in practice the elemental radiation characteristics, the mutual coupling and mounting 

inaccuracies of the array system distort measurements, which lead to less accurate DOA 

estimation. In this chapter, the actual antenna element pattern with its polarization are 

considered. The RWG as an antenna element is chosen to prove the proposed orthogonal 

array confguration. The mutual coupling and mounting inaccuracies are not considered in 

the 2D-DOA analysis. 

4.3 Signal Model 

The array confguration provides the spatial samples of the incoming signal waveform. 

The time domain discrete samples of the signal model at the nth instant are represented by 

Equation (4.1). 

x(n) = As(n)+ n(n) (4.1) 

where x(n) is the observed signal vector at the sensor of size M× 1, s(n) is the signal 

vector at the instant n; n(n) is zero mean Gaussian distributed noise vector. A is the array 

steering matrix of order M× P; P is the number of sources, where M > P represented by h i 
A = a1 (θ ,φ) a2 (θ ,φ ) · · · aP (θ ,φ ) (4.2) 

where h iT 
− jkβ1(θ ,φ) − jkβ2(θ ,φ) − jkβM(θ ,φ )a(θ ,φ) = e , e , · · · , e (4.3) 

βm (θ ,φ) = xm sin θ cos φ + ym sin θ sin φ + zm cos θ (4.4) 

xm, ym and zm are co-ordinates of the mth antenna element (sensors in general) positioned 

in the array; (θ ,φ) denotes the elevation and azimuth angles of incoming source. In case of 

linear array sensor elements mounted along x-axis, its y and z co-ordinates of its elements 

will be zero. Similarly for a planar array mounted in x− y plane, the z co-ordinate will 

be zero. For three dimensional array or conformal array, all the three axes take their 

co-ordinate values. 
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The matrix form of the signal model of the array for P number of signal sources is 

given as 

X = AS+ n (4.5) 

where X is the observation samples constructed as a matrix of order M× N; M is total 

number of antenna elements and N is the total number of samples. A is the array steering 

matrix consisting of the manifold vectors of each incoming source, whose size is M× P; 

S is the data matrix of N discrete samples of the signal matrix of order P× N, in which 

each row of the S matrix represents the data of a particular source. 

4.4 Diversely (Dual) Polarized Antenna Array 

The polarization of an antenna plays a key role in its receive mode performance. For 

typical communication purpose, an effective suppression of cross polarization is preferred 

in the antenna element design, where as in DOA estimation problem, the reception of 

orthogonally polarized components plays an important role in estimation algorithms. 

In order to account for the antenna element characteristics in the array system, the el-

emental radiation pattern is multiplied with the array steering vector. According to the 

antenna array theory, the radiation pattern of the array is the product of the array factor 

(array steering vector) and element radiation pattern of the antenna. 

ah (θ ,φ) = a(θ ,φ)Eφ (θ ,φ) (4.6) 

av (θ ,φ) = a(θ ,φ)Eθ (θ ,φ) (4.7) 

In Equations (4.6) and (4.7), a(θ ,φ) denotes the array factor; Eφ (θ ,φ ) and Eθ (θ ,φ) verti-

cal and horizontal polarized components of radiation pattern of the antenna elements in the 

array. Typically, identical elements are used in the array confgurations, so that the element 

radiation pattern can be factored out and multiplied in fnal product. This is performed to 

simplify the multiplications. In a diversely polarized array confguration, element pattern 

of every element of the array should be accounted with due care for the polarization. The 

mounting position of the array element decides its electric feld orientation. 

If the array elements have dissimilar orientations, their polarization characteristics will not 
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be identical in the observation plane of interest. The respective polarization of the elements 

has major effects in the determination of the radiation pattern of the array. Under such a 

scenario it is not possible to factorize the element radiation pattern outside array steering 

vector. Rather it should be included within the steering vector. The array elements are 

denoted with numeric identity, which in-turn represents the co-ordinates of the position of 

the array element and thus there will a change in phase with respect to reference element. 

According to the array geometry of the design with respect to element orientation and its 

polarization characteristic, the corresponding elemental radiation pattern shall be multiplied 

with phase term of the array factor. 

4.5 Antenna Array Confguration 

For two dimensional DOA estimation, an antenna array of elements positioned at least 

in two axes is essential to estimate the azimuth φ and elevation θ angle of the DOA. In 

general, planar array confguration or L-shaped array are preferred for two dimensional 

DOA. In this thesis, the concept of diversely polarized array confgurations are explored 

for two dimensional DOA estimation. The orthogonal polarized (vertical and horizontal 

polarized) RWG is used for the analysis in various array confgurations. These orthogonally 

polarized array confgurations are compared with the singly polarized conventional UPA 

confguration for the performance of two dimensional DOA through the simulation analysis. 

To differentiate the infuence of polarization in the antenna array confguration, different 

orthogonally polarized array confgurations are proposed. The linear as well as planar array 

confgurations with orthogonal polarization feature are proposed for determining 2D-DOA 

estimations. The proposed array confgurations for the analysis are Orthogonally Polarized 

Planar Array (OPPA), Orthogonally Mounted Linear Array (OMLA) and Orthogonally 

Polarized Linear Array (OPLA). The 2D-DOA estimation of the proposed confgurations 

are compared with the conventional singly polarized UPA confguration. 

4.5.1 Uniform Planar Array (UPA) 

A UPA chosen for analysis is a conventional 3× 3 planar array confguration modelled 

as shown in Figure 4.1, where all the antenna elements are singly polarized (typically 

vertical). The planar arrangement of antenna spans square or rectangular grid in x− y 

plane and antenna elements are indexed with spatial coordinates along x and y axes. In this 
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array confguration, the phase term in the array factor stated in Equation (4.4) reduces to 

Equation (4.8). Since there are no elements along the z- axis, the z coordinate of the phase 

term is ignored. 

Figure 4.1: Conventional UPA 

βm (θ ,φ) = xm sin θ cos φ + ym sin θ sin φ (4.8) 

4.5.2 Orthogonally Polarized Planar Array (OPPA) 

A typical 3× 3 planar array with adjacent elements rotated by 90◦, which changes its 

polarization orthogonally with respect its adjacent elements is shown in Figure 4.2. In this 

array confguration, indices of the element are same as in the conventional planar array. 

The planar orthogonal array geometry is shown in Figure 4.2. The phase term in the array 

factor shall be accounted as expressed in Equation (4.8). 

Figure 4.2: Orthogonal Polarized Planar Array 
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4.5.3 Orthogonally Mounted Linear Array (OMLA) 

The OMLA confguration also involves both vertical and horizontal polarized elements. As 

shown in Figure 4.3, OMLA looks like a planar array. In the confguration of OMLA shown 

in Figure 4.3, the horizontally polarized antenna element ’2’ is placed on the vertically 

polarized antenna element ’1’ with no spacing between the edges of the mounted elements. 

However, these two orthogonally polarized elements exhibit a spacing of (a+ b)/2 (center 

to center) along the y axis. There is a spacing along the x axis between successive like 

polarized elements. In view of the presence of the spatial variations of the elements 

along both x and y axes, the OMLA appears like a planar array. Since the size of array 

confguration shown in Figure 4.3 can be increased with the additional elements along the 

x axis only, this confguration tantamount to ’linear array’. 

Figure 4.3: Orthogonal Mounted Linear Array 

4.5.4 Orthogonally Polarized Linear Array (OPLA) 

The classical linear array is modifed to satisfy that adjacent elements are orthogonal to 

each other. In this array confguration, the antenna elements are mounted along only one 

axis (say x-axis). There is a the phase variation along the x-axis only. Thus the phase term 

mentioned in Equation (4.4) reduces to Equation (4.9). 

βm (θ ,φ) = xm sin θ cos φ (4.9) 

The OPLA is shown in Figure 4.4. Unlike typical linear array geometries, this OPLA 

confguration is capable of determining two dimensional DOA (both azimuth and elevation 

angles). 
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Figure 4.4: Orthogonally Polarized Linear Array 

4.6 Simulation Environment 

The simulation environment is confgured through the signal modelling of the conventional 

uniform planar and proposed diversely polarized array confgurations. As stated earlier 

X-band rectangular waveguide is chosen as an antenna for the analysis. The standard 

dimension of the X-band waveguide of width a = 2.32cm and height b = 1cm is consid-

ered. The RWG is operated at its TE10 dominant mode. The frequency and wavelength 

of the simulation setup are 9.375 GHz and 3.2cm respectively. The standard spectral 

MUSIC algorithm described in subsection 2.8.2.2 (Equations(2.32 and 3.7)) is used for 

the computation of the 2D-DOA estimation for the conventional and proposed orthogonal 

array confgurations. 

The elements of the array are oriented such that the array receives both the vertical and 

horizontal polarized components independently at their respective elements. The signals of 

opposite (orthogonal) polarization do not combine in space. However the samples received 

from the vertical and horizontal polarized antenna elements are combined to produce the 

spatial covariance matrix. The covariance between the vertical and horizontal polarized 

signal components are utilized to improve the accuracy and angular resolution of the DOA, 

when compared to the single polarized spatial covariance matrix of UPA. 

4.7 Analysis of Accuracy of Estimation of 2D-DOA 

The following simulation results illustrate the estimation accuracy of the proposed dual 

polarized array confgurations and its results are compared with the singly polarized UPA 

confgurations. The 2D-DOA estimation is analysed through the RMSE of the estimation 

for the SNR range of 0 - 30 dB and averaged over 200 Monte-Carlo iterations. In the 

comparison of estimation accuracy of 2D-DOA estimation, different array confgurations 

namely UPA, OPPA, OMLA and OPLA are used. 
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4.7.1 Broadside Illumination 

For the estimation accuracy of the 2D-DOA of single source of broadside illumination, a 

signal was modelled at azimuth angle φ = 35◦ and elevation angle θ = 25◦. The Figures 

4.5, 4.6 and 4.7, 4.8 depict the accuracy through the RMSE of estimate of angles θ and φ 

respectively as the SNR is varied from 0 to 30 dB. 

Figure 4.5: RMSE of Elevation Angle Estimation for Broadside Illumination at (35◦ ,25◦) for UPA 

and OPPA Confgurations 
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Figure 4.6: RMSE of Elevation Angle Estimation for Broadside Illumination at (35◦ ,25◦) for 

OMLA and OPLA Confgurations 

The results of RMSE of elevation angle θ of DOA estimation are shown in Figure 4.5 

for UPA and OPPA as well as in Figure 4.6 for OMLA and OPLA. The results of Figures 

4.5 and 4.6 illustrate that OPPA confguration exhibits least RMSE when compared to 

the UPA, OMLA and OPLA confgurations. At low SNR scenario (<10 dB) a relative 

difference in RMSE is found to be (0.3◦- 0.4◦). At higher SNR, the relative difference in 

RMSE is still smaller. The ability of OPPA to estimate the elevation angle θ of DOA with 

least error is attributed to its elements which exhibit the spatial phase variation along x 

and y axes. The elements of OMLA confguration experience the spatial phase variation 

predominantly along x axis when compared to y axis and hence a small difference in 

RMSE with respect to that of OPPA is present. The complete absence of spatial phase 

variation along y axis leading to relatively higher increased RMSE can be seen in OPLA 

confguration. In UPA confgurations, the antenna elements experience spatial phase 

variation along x and y axes. However, UPA confguration suffers from the absence of 

orthogonal polarized antenna elements leading to a slightly more RMSE compared to 

OPPA confguration. By comparing the planar array confgurations for DOA estimation, 

UPA and OPPA show a relative reduction of RMSE at lower SNRs . 
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Figure 4.7: RMSE of Azimuth Angle Estimation for Broadside Illumination at (35◦ ,25◦) for UPA 

and OPPA Confgurations 

Figure 4.8: RMSE of Azimuth Angle Estimation for Broadside Illumination at (35◦ ,25◦) for OMLA 

and OPLA Confgurations 
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Similarly, the results of RMSE of azimuth angle φ of DOA estimation are shown in 

Figure 4.7 for UPA and OPPA as well as Figure 4.8 for OMLA and OPLA. The results of 

Figure 4.7 and 4.8 reveal that the OPPA confguration exhibits the lowest RMSE compared 

to UPA, OMLA and OPLA confgurations. The relative comparison of RMSE among 

the four different array confgurations shows the same trend with respect to the azimuth 

and elevation angle estimations, which can be seen from the Figures 4.5, 4.6, 4.7 and 4.8. 

The RMSE of azimuth angle of DOA estimation is more (from Figure 4.7 and 4.8) when 

compared to the RMSE of elevation angle estimation (from Figure 4.5 and 4.6) since the 

incidence angle is modelled for broadside illumination. It is well known in array theory, 

that conventionally the linear and planar array confgurations are more effectively utilized 

in broadside region rather endfre region. 

The OPLA is featured with an inaccuracy to 0.6◦ at 0 dB SNR. The performance of singly 

polarized UPA and OMLA is not good with respect to other confgurations. In case of the 

azimuth angle, the OPLA exhibits array inaccuracy up to 1.2◦ at 0 dB SNR. However in 

both the azimuth and elevation angular estimation, the OPPA is superior among all other 

array confgurations. 

4.7.2 End-fre Illumination 

Similar to broad side illumination, accuracy of the 2D-DOA estimation of single source 

closer to End-fre illumination with azimuth angle φ = 60◦ and elevation angle θ = 60◦ is 

analysed. Figures 4.9, 4.10, 4.11 and 4.12 reveal the accuracy through the RMSE of the 

estimation of elevation angle θ and azimuth angle φ respectively. 

87 



Figure 4.9: RMSE of Elevation Angle Estimation for End-fre Illumination at (60◦ ,60◦) for UPA 

and OPPA Confgurations 

Figure 4.10: RMSE of Elevation Angle Estimation for End-fre Illumination at (60◦ ,60◦) for OMLA 

and OPLA Confgurations 

88 



Figure 4.11: RMSE of Azimuth Angle Estimation for End-fre Illumination at (60◦ ,60◦) for UPA 
and OPPA Confgurations 

Figure 4.12: RMSE of Azimuth Angle Estimation for End-fre Illumination at (60◦ ,60◦) for OMLA 
and OPLA Confgurations 
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The results of Figure 4.9 illustrate that a maximum error of 3.5◦ at SNR of 0 dB 

for both UPA confguration and OPLA confguration. The OPPA achieves a minimum 

RMSE of 0.8◦ at 0 dB. The OMLA exhibits a relatively poorer performance amongst 

the array confgurations. The RMSE of the azimuth angle ranges between 0.5◦ to 1.5◦ 

for the different array confgurations. The conventional UPA exhibits error of 1.5◦ at 

SNR of 0 dB and continues to perform similar to the OPLA confguration. The OMLA 

confguration continues to exhibit average performance and the OPPA shows superior 

performance among all other array confgurations. 

4.8 Discussion of Results on 2D-DOA of Single Source 

The 2D-DOA estimations obtained through OPPA exhibit relatively better performance 

over singly polarized UPA and also with OPLA, implying that, diversely polarized planar 

array confguration is better than UPA confguration. From the simulation analysis it is also 

evident that in 2D-DOA estimation, the angle of illumination of sources is also a factor 

in the estimation accuracy provided the antenna element patterns are considered in the 

analysis. From the analysis of broadside and end-fre illumination of signal sources, it is 

shown that estimation accuracy depends on the region of illumination with respect to the 

antenna geometry and antenna radiation pattern. In general, the broadside illumination has 

lesser estimation error when compared to the end-fre illumination. When the azimuth and 

elevation angles of DOA broadly fall into broadside illumination, the estimation accuracy 

of elevation angle θ is greater than the source illuminated in end-fre region. This is due 

to higher gain of the radiation pattern in the broadside region and progressively reduced 

gain in the end-fre region. The accuracy of azimuth angle φ estimation is almost the same 

irrespective region of illumination. However minor changes are seen in the accuracy due to 

the spatial phase variations in the confguration. The RMSE of DOA estimation with OPLA 

is more compared to the conventional singly polarized array due to the linear arrangement 

of element of elements. The spatial phase variation only along the x axis is present in 

OPLA confguration, where as spatial phase variations in the both x and y axes are seen in 

the other array confguration. However it is evidently clear from the simulation analysis 

that, the OPLA although a geometrically linear confguration is a potential candidate to 

estimate 2D-DOA estimation. A conventional singly polarized linear array geometry is not 

adequate for 2D-DOA estimation. 
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Figure 4.13: Two Dimensional DOA Estimation of Two Sources using UPA for 20 dB SNR 

4.9 Analysis of 2D-DOA Estimation for Two Sources 

After having established the validity of proposed array confgurations for the 2D-DOA 

estimation with a single source, simulation studies have been performed to substantiate 

the performance of 2D-DOA estimation for two sources. The conventional UPA, OPPA, 

OMLA and OPLA as indicated in the Figures 4.1, 4.2, 4.3 and 4.4 respectively are 

considered for the analysis. The 2D-MUSIC algorithm is modelled for the various array 

confgurations for the 2D-DOA estimation. Modelling of the two sources with arriving 

angles of (θ1 = 52◦ ,φ1 = 28◦) and (θ2 = 40◦ ,φ2 = 65◦) has been carried for the varying 

SNR values of 20 dB, 10 dB and 0 dB. This analysis is carried out to compare the 

distinguishing features of the estimation of DOA angles obtained with the various array 

confgurations. 

4.9.1 Results of 2D-DOA of Two Sources at 20 dB SNR 

In this subsection, a detailed analysis of the simulation results of 2D-DOA estimation with 

two sources derived with various array confgurations is presented. For the purpose of 

simulation studies, signal modelling has been performed with 2D-DOA azimuthal and 

elevation angles of two sources as (θ1 = 52◦ ,φ1 = 28◦) and (θ2 = 40◦ ,φ2 = 65◦). 
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Figure 4.13 illustrates the results of estimating 2D-DOA angles of two sources derived 

with conventional UPA. There is a perfect match between the 2D-DOA angles assumed 

in the signal modelling and the estimated angles derived through the MUSIC based DOA 

estimation algorithm. The noticeable observation in the results of Figure 4.13 is the 

presence of an additional peak whose magnitude is signifcantly lesser than the other two 

peaks. Based on this inference, one can ignore it as a fctitious one. 

The appearance of additional peak in the UPA confguration is due to larger inter-

element spacing between the array elements because of which there is an inadequacy of 

spatial samples during one wavelength of the signal. This in turn leads to spatial aliasing 

resulting in additional peak or peaks. The minimum inter-element spacing along the x axis 

for UPA confguration itself is greater than the half of the wavelength (considering the 

dimensions of X-band RWG as (2.32cmx1cm) at λ of 3.2cm corresponding to 9.375 GHz). 

Assuming negligibly small wall thickness of the waveguide, the minimum inter-element 

spacing along the x-axis is equal to 2.32cm, which is 0.725λ and along the y-axis it is 0.31λ . 

In the case of OPPA, the minimum spacing between the successive elements along both x 

and y axes is equal to 1.16 + 0.5 = 1.66 cm, which is equivalent to 0.518λ The inter-element 

spacing much greater than λ /2 in the case of UPA is due to the physical aperture and 

the geometrical arrangement of its elements. The orthogonal array confgurations such as 

Figure 4.14: Two Dimensional DOA Estimation of Two Sources using OPPA for 20 dB SNR 
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Figure 4.15: Two Dimensional DOA Estimation of Two Sources using OMLA for 20 dB SNR 

OPPA, OMLA and OPLA have suffcient spatial samples due to their smaller inter-element 

spacing and hence the additional fctitious peaks do not occur. 

Figure 4.16: Two Dimensional DOA Estimation of Two Sources using OPLA for 20 dB SNR 
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The corresponding simulation results obtained with OPPA are shown in Figure 4.14. 

The results of 2D-DOA estimation shown in Figure 4.14 match exactly with the azimuth 

and elevation angle used in signal modelling. Unlike with UPA, 2D-DOA estimation with 

OPPA is not associated with any additional peaks. 

The simulation results of 2D-DOA estimation with two sources derived through OMLA 

are shown in Figure 4.15. Similar to the case of OPPA, the simulation results of 2D-DOA 

with OMLA also produce only two peaks corresponding to the azimuth and elevation angle 

of two sources assumed in the signal modelling. Also, there are no additional or fctitious 

peaks. The analogous simulation results of 2D-DOA estimation with OPLA are shown 

in Figure 4.16. The estimation results of 2D-DOA azimuth and elevation angles of two 

sources derived through OPLA match with the azimuth and elevation angles of sources 

assumed in the signal modelling. The results of Figure 4.16 also do not show any additional 

peaks. 

4.9.2 Results of 2D-DOA of Two Sources at 10 dB SNR 

In this subsection, the infuence of SNR assumed in the signal modelling on the reliability 

and accuracy of the 2D-DOA estimation derived through various antenna array confg-

urations is analysed. In this subsection, the simulation studies assume an SNR of 10 

dB. The simulation results of the 2D-DOA estimation with two sources derived through 

conventional UPA are shown in Figure 4.17. As in the case of SNR of 20 dB shown in 

Figure 4.13, even with SNR 10 dB, there is an additional peak predicted and the magnitude 

of the additional peak is relatively higher than the corresponding result with SNR of 20 dB. 

Figure 4.18 illustrates the 2D-DOA estimation with two sources for 10 dB SNR scenario 

derived with OPPA. The results with the confguration of OPPA also do not predict any 

additional peak thereby avoiding the ambiguity. The estimation of 2D-DOA angles of two 

sources exactly match with the azimuth and elevation angles of sources assumed in the 

signal modelling. 

The simulation results of 2D-DOA with two sources derived with OMLA are depicted 

in Figure 4.19. The 2D-DOA estimation obtained with OMLA confguration of array also 

does not predict any additional peaks. The analogous results of 2D-DOA with two sources 

for 10 dB SNR derived with OPLA are shown in Figure 4.20. As with other OPPA, the 

94 



Figure 4.17: Two Dimensional DOA Estimation of Two Sources using UPA for 10 dB SNR 

Figure 4.18: Two Dimensional DOA Estimation of Two Sources using OPPA for 10 dB SNR 

simulation results of 2D-DOA estimation with OPLA do not predict any additional peak. 
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Figure 4.19: Two Dimensional DOA Estimation of Two Sources using OMLA for 10 dB SNR 

Figure 4.20: Two Dimensional DOA Estimation of Two Sources using OPLA for 10 dB SNR 

4.9.3 Results of 2D-DOA of Two Sources at 0 dB SNR 

In this subsection, the simulation studies emphasise the infuence of 0 dB SNR on the 

accuracy of 2D-DOA estimation with two sources. A scenario of 0 dB SNR implies that 
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the signal power and noise power are equal. 

The results of simulation studies on 2D-DOA obtained through conventional singly po-

larized UPA are shown in Figure 4.21. The results of Figure 4.21 indicate the presence 

of multiple additional peaks whose amplitudes are comparable or higher that those peaks 

which coincide with the true arrival angles of the two sources. From the simulation studies 

carried out with singly polarized UPA with SNR values varying from 0 to 20 dB, it is 

clearly evident that this UPA confguration results in additional fctitious peak leading to 

an ambiguity of estimating the true values of 2D-DOA angles of multiple sources. The 

Figure 4.21: Two Dimensional DOA Estimation of Two Sources using UPA for 0 dB SNR 

corresponding simulation results obtained through OPPA are shown in Figure 4.22. Like in 

cases of SNR of 20 dB and 10 dB, even in case of 0 dB SNR, the estimation of 2D-DOA 

angles with OPPA does not produce any additional peak. Figures 4.23 and 4.24 depict 

the analogous results on estimation of 2D-DOA angles with two sources obtained through 

OMLA and OPLA respectively. Apart from the accuracy of the estimated azimuth and 

elevation angles of the two sources, the noteworthy observation is the absence of additional 

peak and thus avoiding the ambiguity in ascertaining the true angles of arrival of distant 

sources. 

From the simulation studies presented in this subsection, it is easy to infer that for the 

2D-DOA estimation with the presence of two sources, the array confgurations proposed in 
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Figure 4.22: Two Dimensional DOA Estimation of Two Sources using OPPA for 0 dB SNR 

Figure 4.23: Two Dimensional DOA Estimation of Two Sources using OMLA for 0 dB SNR 

the thesis that are featured with orthogonal polarization ensure relatively more accurate 

results and they are also associated with the distinct feature of absence of fctitious peaks. 
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Figure 4.24: Two Dimensional DOA Estimation of Two Sources using OPLA for 0 dB SNR 

The same observation cannot be extended to the case of array confguration featured with 

single polarization. This inference is valid for all the three cases of SNR values (20 dB, 10 

dB and 0 dB) considered in the simulation studies. 

4.9.4 Inference from the Results of 2D-DOA of Two Sources 

From the results shown in Figures 4.13-4.24, it is evident that the proposed diversely 

(dual) polarized array confgurations estimate the 2D-DOA of two sources accurately 

and detected peaks are clearly distinguishable. The single polarized conventional UPA 

confguration suffers in distinguishing the sources. This UPA exhibits extra peaks due to 

the non availability of spatial phase decorrelation of the polarized components. The results 

of UPA continues to produce extra peaks for all values of SNR ranging from 0 to 20 dB. 

The magnitude of the fctitious peak detected shows an increasing trend when the SNR 

decreases and may mislead to treating it as an actual DOA of sources in the lower SNRs 

scenarios. 

In MUSIC algorithm, the distance between the signal subspace and the noise subspace 

components is computed. Since the signal subspace and noise subspace are orthogonal 

to each other, the distance should be ideally zero and its inverse leading to infnity. For 

99 



the case of lower SNR, the higher variance of noise overlaid on the signal disturbs the 

orthogonality between signal and noise subspace vectors. The magnitude of the DOA 

estimation peak is inversely proportional to orthogonality between the signal and noise 

subspace vectors. In higher SNR scenario, lesser variance of noise leads to improved 

orthogonality and therefore higher magnitude of estimation peaks. Hence SNR determines 

the magnitude of true DOA peak as well as the fctitious peaks. 

The proposed diversely (orthogonally) polarized array confgurations are able to distinguish 

multiple sources for all ranges of SNR values. However in the proposed diversely polarized 

confgurations, the extra peaks are of diminished magnitude and are clearly distinguishable 

from the true peaks corresponding to the DOA of actual sources. A generic observation 

which holds uniformly to all the array confgurations is that, the magnitude of detected 

peaks increases with increased value of SNR assumed in signal modelling. 

4.9.5 Eigenvalues based Scheme for Distinguishing Sources 

In the previous section, analysis of 2D-DOA estimation to distinguish the sources was on 

the basis of detectable peaks. In this section, the utility of eigenvalue to distinguish the 

number of sources is presented. The eigenvalue spread of the correlation matrix in any 

subspace based estimation technique is a signifcant parameter. 

Figure 4.25: Eigenvalue Spread for Two Sources SNR = 20 dB 
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The spread of the eigenvalues are analysed in 2D-DOA for the two sources at (θ1 = 

52◦ ,φ1 = 28◦) and (θ2 = 40◦ ,φ2 = 65◦). The analysis is carried for the range of SNR 

values like 20 dB, 10 dB, 5 dB and 0 dB. The eigenvalues are sorted in a descending order 

and have been compared for the different array confgurations. 

Figure 4.26: Eigenvalue Spread for Two Sources SNR = 10 dB 
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Figure 4.27: Eigenvalue Spread for Two Sources SNR = 5 dB 

Figure 4.28: Eigenvalue Spread for Two Sources SNR = 0 dB 

The sorted eigenvalues have highest magnitude corresponding to the actual DOA of 

sources (signals) initially. The magnitude of eigen values corresponding to noise power 

will be negligibly small and tends to zero. This can be distinguished as, the frst P number 
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of eigenvalues correspond to the signal subspace and the remaining P+ 1 to M correspond 

the noise subspace eigenvectors, where P is number of incoming sources. Distinguishing 

the eigenvalues of signal subspace and eigenvalues of noise subspace can be achieved by 

the Minimum Discrimination Length (MDL) techniques and Akaike Information Criteria 

(AIC) algorithm (Wax, 1989; Wax & Kailath, 1985; Nadler, 2010). In this thesis, the 

simulation analysis assumes the total number of sources impinging on the array are aprior 

known and therefore performing MDL and AIC is beyond the scope of analysis. In this 

thesis, such an assumption is not only possible but is also not appropriate. Therefore the 

separation of eigenvalues belonging to signal subspace and noise subspace is beyond the 

scope of the work. 

4.9.6 Inference of Eigenvalues under various SNRs 

It is observed from the analysis, that eigenvalues corresponding to the noise subspace tends 

to be more towards zero as the SNR increases. This is true with the results obtained with 

all the array confgurations. For two sources, the frst two eigenvalues are corresponding to 

the signal subspace and the remaining eigen values correspond to the noise subspace. 

The computed eigenvalues of the covariance matrix used for the estimation of 2D-DOA 

angles of two sources with SNR 20 dB are shown in Figure 4.25. From the results of Figure 

4.25, it is seen that the frst two eigenvalues which correspond to the two actual sources have 

signifcant amplitude. The magnitudes of other eigenvalues are considerably smaller near-

ing zero. Such an observation is valid for all the four array confgurations considered in this 

thesis. As the SNR value is decreased to 10 dB, the magnitude of 3rd to 9th eigenvalues (be-

longing to noise subspace) increases as can be seen from the results of Figure 4.26. But the 

magnitude of the frst two eigenvalues which belong to the signal subspace are much higher. 

The signifcant magnitude of the frst and second eigenvalue which are said to be pri-

mary eigenvalues (also called as principal components) indicate the clear distinguishing 

feature of the estimated DOA of two sources from the noise. The eigenvalues having least 

magnitudes and whose values signifcantly differ from the primary eigenvalues are also 

known as secondary eigenvalues. The sum of magnitudes of the secondary eigenvalues 

denote the amount of noise power present in the signal. The noise is measured as variance 

denoted by σ2. Figures 4.27 and 4.28 depict the variation of amplitude of eigenvalues of 
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the covariance matrix for SNR of 5 dB and 0 dB respectively. With further decrease in SNR, 

the magnitude of eigenvalues from 3rd to 9th are relatively higher. But the magnitudes of 

1st and 2nd eigenvalues are more prominent. 

The divergence of signal component to the noise component is evident in the lower 

SNR scenario of 0 dB and 5 dB. The OPPA confguration shows better distinguishing 

capability even under lower SNR scenario, which is evident from the higher magnitudes 

of the primary eigenvalues (1st and 2nd) as can be observed from Figures 4.27 and 4.28. 

The raise of noise eigenvalues is obvious in the lower SNR case due to the increase in 

noise power. The other array confgurations such as OMLA and UPA also exhibit similar 

performance. The OPLA shows better magnitude in the estimation of number of sources 

as seen from the results of Figures 4.27 and 4.28. 

4.10 2D-DOA for Three Sources at SNR of 0 dB 

Without incorporating any changes to array confgurations, simulation studies have been 

carried out for 2D-DOA estimation with 3 sources. The simulation results of the 

Figure 4.29: Two Dimensional DOA Estimation of Three Sources using UPA for 0 dB SNR 

estimation of 2D-DOA angles with 3 sources under SNR scenario of 0 dB obtained with 
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Figure 4.30: Two Dimensional DOA Estimation of Three Sources using OPPA for 0 dB SNR 

Figure 4.31: Two Dimensional DOA Estimation of Three Sources using OMLA confguration for 0 
dB SNR 

the conventional single polarized UPA are depicted in Figure 4.29. In the simulation 

studies with three sources, the azimuth and elevation angles used in the modelling of signal 
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Figure 4.32: Two Dimensional DOA Estimation of Three Sources using OPLA for 0 dB SNR 

impinging on the array confguration of DOA estimation system are (θ1 = 52◦ ,φ1 = 28◦), 

(θ2 = 40◦ ,φ2 = 65◦) and (θ3 = −30◦ ,φ3 = −60◦). 

As revealed by the results of Figure 4.29, the estimation of 2D-DOA with conventional 

UPA is associated with numerous additional peaks which are fctitious. In addition, the 

additional peaks which are supposed to have information on the DOA angles of true sources 

have angular coordinates which are different from the ones used to simulate the impinging 

signal. 

The corresponding results derived through the OPPA are shown in Figure 4.30. As far the 

cases with single and two sources, the estimation of 2D-DOA angles with three sources 

using OPPA does not show any additional peaks thus avoiding the ambiguity. The estimated 

2D-DOA angles of all the 3 sources are close to the ones assumed while modelling the 

signal impinging on the OPPA. 

The analogous results of 2D-DOA estimation with 3 sources under 0 dB SNR scenario 

obtained with OMLA and OPLA are shown in Figures 4.31 and 4.32 respectively. The 

results shown in Figure 4.31 and 4.32 are also not associated with additional peaks. The 

estimated 2D-DOA angles of the three sources match closely with those assumed while 

modelling the 3 sources. 
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4.10.1 Inference from the Results of 2D-DOA on Estimation of Three Sources 

The results of the Figures 4.29, 4.30, 4.31 and 4.32 show the performance of the 2D-DOA 

estimation of three sources using the four array confgurations. The results illustrate that 

the proposed orthogonally polarized array confgurations have satisfactory performance in 

distinguishing the sources. Whereas the conventional singly polarized 3× 3 UPA fails to 

differentiate the actual DOA of sources and extra peaks. From the results of the Figures 

4.29-4.32, it is inferred that, the OPLA and OPPA yield better performance and exhibit clear 

distinction of the DOA of sources. The orthogonally mounted linear array confguration 

has a minor fctitious extra peak appearance, but with its lower magnitude. Hence the 

fctitious peak can be distinguished from the peaks corresponding to the actual DOA of 

sources. 

4.11 Analysis of Sharpness of Peak in 2D-DOA Estimation 

In the previous section, a detailed discussion on the analysis of two dimensional DOA 

Estimation for the sources (θ1 = 25◦ ,φ1 = 25◦) and (θ2 = 45◦ ,φ2 = 45◦) was presented 

for 10 dB SNR. This section presents a relative comparison of sharpness profle of the 

curve that will facilitate the accurate prediction of the DOA angle of the impinging sources 

on the array. Figure 4.33 illustrates the sharpness of the profle of the curve to detect the 

two peaks which confrms the presence of two sources obtained from the estimation of 

2D-DOA angles through conventional single polarized UPA. In the results of Figure 4.33, 

the true arrival angles of the two sources are (25◦ ,25◦) and (45◦ ,45◦). The corresponding 

results obtained through the estimation of 2D-DOA angles using OPPA are (25◦ ,25◦) and 

(45◦ ,45◦). A relative comparison of the results of Figures 4.33 and 4.34 reveal that the 

OPPA is associated with a sharper peak as well as larger amplitude of peak. 

From the results shown in Figure 4.35 and 4.36, it is easy to infer that the OMLA also 

shows relatively sharper profle of the peak when compared to the OPLA. From the results 

of Figures 4.33 - 4.36, it is also evident that OPLA exhibits maximum amplitude of the 

two peaks. 

107 



Figure 4.33: 2D-DOA Estimation using UPA Confguration for Two Sources at (25◦ ,25◦) and 
(45◦ ,45◦) for SNR of 10dB 

Figure 4.34: 2D-DOA Estimation using OPPA Confguration for Two Sources at (25◦ ,25◦) and 
(45◦ ,45◦) for SNR of 10dB 
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Figure 4.35: 2D-DOA Estimation using OMLA Confguration for Two Sources at (25◦ ,25◦)) and 
(45◦ ,45◦) for SNR of 10dB 

Figure 4.36: 2D-DOA Estimation using OPLA Confguration for Two Sources at (25◦ ,25◦) and 
(45◦ ,45◦) for SNR of 10dB 
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4.12 Resolution Analysis of 2D-DOA Estimation with Closely Spaced Two Sources 

A principal focus of this thesis is to formulate and analyse the schemes for improved 

resolution and accuracy of estimation of 2D-DOA. A measure of resolvability of 2D-DOA 

estimation algorithm is the ability of the algorithm to distinguish the peaks even when the 

angular separation between the sources impinging on the array confguration is small. This 

section presents the simulation results pertaining to the resolvability of the MUSIC based 

2D-DOA estimation using various array confgurations described earlier in this chapter. 

The detection of the peaks resulting from the MUSIC algorithms based 2D-DOA estimation 

techniques usually involves a visualization of 3D graph. To illustrate the ability of MUSIC 

algorithm based 2D-DOA estimation technique to resolve closely spaced sources, a 2D 

representation is preferred, in which 3D graph is viewed in 2D perspectives. 

4.12.1 Analysis of 2D-DOA Estimation of Closely Spaced Two Sources using UPA 

The results of the 2D-DOA estimation using UPA confguration are shown in Figures 4.37, 

4.38 and 4.39. For the simulations, the two sources are modelled with the arrival angles of 

(θ1 = 25◦ ,φ1 = 25◦) and (θ2 = 25◦ ,φ2 = 35◦). 

Figure 4.37: 2D-DOA Estimation of Closely Spaced Sources Estimation using UPA for Two 

Sources at (25◦ ,25◦) and (25◦ ,35◦) 
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Figure 4.38: 2D-DOA Estimation of Closely Spaced Sources Estimation using UPA for Two 

Sources at (25◦ ,25◦) and (25◦ ,40◦) 

Figure 4.39: 2D-DOA Estimation of Closely Spaced Sources Estimation using UPA for Two 

Sources at (25◦ ,25◦) and (25◦ ,43◦) 

The simulation results of 2D-DOA estimation using single polarized UPA are shown in 
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Figure 4.37. The simulation results shown in Figure 4.37 confrm that the single polarized 

UPA fails to distinguish the two sources when their angular separation is less than 10◦ . 

When the azimuth angle of the second source was increased from 35◦ to 40◦, the simulation 

results on 2D-DOA of Figure 4.38 reveal some improving trend of distinguishing the two 

closely spaced sources. When the azimuth angle of the second source is increased to 43◦ , 

the results of Figure 4.39 reveal further signs of conventional UPA being able to distinguish 

the two closely spaced sources with improved resolution. 

4.12.2 Analysis of 2D-DOA of Closely Spaced Two Sources using OPPA 

The results of the 2D-DOA with OPPA when the elevation and azimuth angles of the two 

sources are (θ1 = 25◦ ,φ1 = 25◦) and (θ2 = 25◦ ,φ2 = 33◦) are shown in Figure 4.40. 

Figure 4.40: 2D-DOA Estimation of Closely Spaced Sources Estimation using OPPA for Two 

Sources at (25◦ ,25◦) and (25◦ ,33◦) 
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Figure 4.41: 2D-DOA Estimation of Closely Spaced Sources Estimation using OPPA for Two 

Sources at (25◦ ,25◦) and (25◦ ,35◦) 

As far the case of single polarized UPA confguration, the OPPA is not able to distin-

guish the two sources when the azimuth angles of the two sources differ by less than 10◦ . 

However, when the azimuth angle φ2 of the second source is changed to 35◦, the OPPA is 

able to distinguish the two sources distinctly as can be inferred from the results of Figure 

4.41. This is contrary to case the of conventional single polarized UPA. 

4.12.3 Analysis of 2D-DOA Estimation of Closely Spaced Two Sources using OMLA 

The results of Figure 4.42 reveal that the OMLA is not able to distinguish the two sources 

whose elevation and azimuth angles of the two sources are (θ1 = 25◦ ,φ1 = 25◦) and 

(θ2 = 25◦ ,φ2 = 33◦). When the azimuth angle φ2 of the second source is increased to 34◦ 

also, the OMLA is not able to distinguish the two sources as revealed by the results of 

Figure 4.43. However, when the angle φ2 is changed to 35◦, the OMLA shows its ability to 

infer the presence of two sources even though not with a distinctly visible second peak. 
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Figure 4.42: 2D-DOA Estimation of Closely Spaced Sources Estimation using OMLA for Two 

Sources at (25◦ ,25◦) and (25◦ ,33◦) 

Figure 4.43: 2D-DOA Estimation of Closely Spaced Sources Estimation using OMLA for Two 

Sources at (25◦ ,25◦) and (25◦ ,34◦) 
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Figure 4.44: 2D-DOA Estimation of Closely Spaced Sources Estimation using OMLA for Two 

Sources at (25◦ ,25◦) and (25◦ ,35◦) 

4.12.4 Analysis of 2D-DOA Estimation of Closely Spaced Two Sources using OPLA 

The OPLA is subjected to the analysis of 2D-DOA with closely spaced sources. This con-

fguration is slightly inferior in distinguishing the closely spaced sources. The performance 

of the OPLA is analysed iteratively and identifed that minimum angular separation of 25◦ 

is required for the clear distinguishing of the two closely spaced sources. 
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Figure 4.45: 2D-DOA Estimation of Closely Spaced Sources Estimation using OPLA for Two 

Sources at (25◦ ,15◦) and (25◦ ,40◦) 

The inferior performance of the OPLA confguration is due to the lack of variation of 

spatial component along the y axis. The results of the OPLA is shown in Figures 4.45, 

4.46, 4.47 and 4.48. 
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Figure 4.46: 2D-DOA Estimation of Closely Spaced Sources Estimation using OPLA for Two 

Sources at (25◦ ,20◦) and (25◦ ,40◦) 

Figure 4.47: 2D-DOA Estimation of Closely Spaced Sources Estimation using OPLA for Two 

Sources at (25◦ ,25◦) and (15◦ ,45◦) 
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Figure 4.48: Closely Spaced Sources Estimation using OPLA for Two Sources at (25◦ ,25◦) and 

(25◦ ,40◦) 

4.13 Analysis of Effect of Inter Element Spacing on the 2D-DOA Estimation Per-
formance 

In this section, the infuence of the inter element spacing of OPLA on the accuracy and 

performance of 2D-DOA estimation algorithm is presented. Among the orthogonally 

polarized array confgurations, it is evident that the resolution and accuracy of 2D-DOA 

estimation realized with OPLA has been relatively poor. In an attempt to analyse the 

scheme for the performance enhancement of 2D-DOA estimation using OPLA, studies 

have been carried out to analyse the effect of change in the inter element spacing on 

the derived 2D-DOA estimation. As was stated in the section, in all the simulation 

studies presented so far in this chapter, the inter element spacing is λ /4 at the operating 

frequency of 9.375 GHz. The OPLA geometry was modifed by doubling the inter element 

spacing implying that the earlier value of 5.56 cm has been changed to 11.2 cm. With 

the specifc change, the simulation has been repeated for the estimation of 2D-DOA of 

the two sources whose angular coordinates of impinging on the array elements of OPLA 

are (θ1 = 25◦ ,φ1 = 25◦) and (θ2 = 25◦ ,φ2 = 35◦). Typically the inter element spacing is 

optimized to achieve the better performance of DOA estimators where antenna elements 
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Figure 4.49: Estimation of DOA using OPLA for Two Sources at (25◦ ,25◦) and (25◦ ,35◦) with 
d = 5.56cm 

Figure 4.50: Estimation of DOA using OPLA for Two Sources at (25◦ ,25◦) and (25◦ ,35◦) with 
d = 11.2cm 

are approximated as isotropic point sources. Consideration of actual radiation pattern of 

the antenna elements and their polarization, induces change in the amplitude of the signal 

reception with diversely polarized antenna elements. The change in amplitudes of the 

signal received by diversely polarized array elements is proportional to the magnitude 
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of radiation at that particular angle of incidence (DOA). Increased inter-element spacing 

approximating to half the wavelength leads to improved covariance of the received samples. 

This improvement in the covariance improves the DOA estimation. 

The simulation results of 2D-DOA with increased inter elemental spacing using OPLA are 

shown in Figure 4.50. A comparison of results of Figure 4.50 with the results of Figure 4.49 

clearly demonstrates that the larger inter elemental spacing has signifcantly improved the 

resolution of 2D-DOA results. The simulation results on estimation of 2D-DOA with the 

angular coordinate of the two sources being (θ1 = 25◦ ,φ1 = 25◦) and (θ2 = 25◦ ,φ2 = 35◦) 

derived through OPLA with d = 11.2 cm are shown in Figure 4.50. A comparison of 

results of Figure 4.49 with Figure 4.50 confrms that the sharpness of the peaks of 2D-DOA 

estimation improves with increased inter element spacing. 

4.14 Summary 

The simulations and analysis presented in this chapter confrm that the orthogonally polar-

ized components of antenna array have signifcant infuence in the accuracy and resolution 

of the 2D-DOA estimations. The proposed OPLA can be treated as an linear array. Thus 

a linear array confguration and its ability to estimate 2D-DOA is the novel part of the 

proposed OPLA. Among the proposed array confgurations, OPPA has improved estimation 

accuracy and the OMLA confguration estimates the two sources with higher magnitude. 

The improved distinguishing capability of the OPPA for closely spaced sources is also 

realized through the simulations. The OPPA and the OMLA confguration clearly distin-

guish the sources with minimum angular separation of 10◦ with accurate estimation. The 

conventional single polarized UPA confguration resolves the 18◦ angular separation of 

sources which is inferior when compared with the proposed OPPA and OMLA confgura-

tions. The OPLA can resolve 10◦ angularly separated sources at the expense of increased 

inter-element spacing. The improved estimation accuracy and resolution of the proposed 

orthogonally polarized array confgurations than the conventional single polarized UPA are 

realized for 2D-DOA for two sources and three sources under high and low SNR (weak 

coverage) conditions. 
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Chapter 5 

Two Dimensional DOA Tracking of Non-Stationary Sources using 

Subspace Tracking Algorithms 

5.1 Introduction 

High resolution subspace based parameter estimation algorithms are widely applied in 

both temporal and spatial domain spectral analysis. Typical subspace based parameter 

estimation algorithms highly rely on the statistical stationary characteristics of the sampled 

received signal. Hence, the sample covariance data matrix obtained from the data samples 

observed over a period is adequate for the parameter estimation. In case of a dynamic 

scenario, where the moving signal sources have non-stationary signal characteristics, direct 

application of the subspace estimation algorithm warrants repeated eigen decompositions 

of the continuously updating data covariance matrix. In time varying systems, there will be 

a more frequent change in vector sequence with time. Also there may be signifcant overlap 

between new and old vector sequences. This warrants an analysis for the development of 

adaptive eigen decomposition and subspace tracking algorithms discussed in Chapter 2. 

This chapter intends to provide the simulation study on the analysis of tracking of 2D-DOA 

of non-stationary signal sources. The simulation study includes novel method of smoothing 

the covariance matrix of time varying non-stationary signal sources. The performance 

analysis of tracking of 2D-DOA estimation is evaluated for the single polarized UPA and 

the proposed orthogonal polarized array confgurations for the range of SNR scenarios. 

5.1.1 Adaptive Eigen Decomposition Algorithms 

The adaptive eigen decomposition algorithm emerged in late 1970s, to avoid the repeated 

computation of intensive eigen decomposition of the covariance matrix. Many research 

contributions are reported in the literature for effcient updating and tracking of the subspace 

components of the covariance matrix. For every new sample, these algorithms attempt 

to recursively update the subspaces of eigen decomposition to avoid recomputing. A 
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signifcant reduction of computation complexity has been achieved through this approach. 

Initially, computation of signal subspace is developed through constrained optimization 

techniques. Subsequently, it is solved using stochastic gradient search approaches. These 

algorithms engage a Gram-Schmidt orthogonalization for every iteration (Owsley, 1978; 

J.-F. Yang & Kaveh, 1988). 

Consequently, the concept of rank one updating of symmetric covariance matrix has 

evolved which was proposed by Golub (Golub, 1973). This concept was further improved 

by Bunch et al. (Bunch, Nielsen, & Sorensen, 1978). Several versions of rank one updating 

technique emerged from its variations and extension (Schreiber, 1986). The rank one 

updating algorithm exploits the low rank property of the covariance matrix of the new 

samples. It invokes an effcient eigen decomposition of updating covariance matrix than 

direct computation. The frst order perturbation analysis of the covariance matrix due to 

the newer samples along with forgetting factor and exponential widowing is exploited in 

(Champagne, 1994). 

5.1.2 Eigen Based DOA Tracking Algorithms 

Eigen based methods were originally discussed in a block processing context. In sequential 

signal processing, the subspace components are updated by performing SVD of a data 

matrix recursively, on the arrival of new data snapshots. For example, it can be of great 

interest to compute, at each time step, some dominant singular values and the associated 

singular vectors of a data matrix. 

Classical EVD and SVD are used in the context of block processing to estimate the 

subspace components. The signal and noise subspace based algorithms are widely adopted 

in adaptive signal processing and wireless communication control systems. For the scenario 

where the dynamic update of the signal subspace or the noise-subspace is required, it 

is suffcient to track the subspace components rather than compute the complete EVD 

or SVD. Subspace Tracking algorithms are used for sequential processing of data and 

recursively update the subspaces upon the arrival of new data. Bi-Iterative Singular Value 

Decomposition (Bi-SVD) is computationally effcient when compared to classical SVD 

algorithms. The computationally intensive SVD algorithm can be circumvented with 

QR decomposition algorithm in the bi-iteration manner. Bi-Iterative QR decomposition 

(Bi-SVD) is computationally effcient than classical SVD algorithms. The computationally 

intensive SVD algorithm can be computed with QR decomposition algorithm in the bi-
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iteration manner. The subspace tracking algorithm Bi-SVD is detailed below. Many 

variations of the Bi-SVD algorithm cited in the [Strobach 1997] literature with different 

MACs of slow, fast and ultra fast. 

5.1.3 Bi-SVD Algorithm 

The Bi-SVD algorithm involves Bi-iteration of QR decomposition of the covariance matrix. 

This bi-iteration simplifes the computation of the left and right singular vectors of the 

classical SVD techniques. The steps to execute Bi-SVD algorithm are detailed in the 

following pseudo code to decompose the covariance matrix Φ with r principal components. 

Pseudo code of Bi-SVD " # 
Iri. Initialize QA = ; where Ir is the identity matrix of size r× r and r is the number 
0 

of signal sources. 

ii. f or i = 1, ...,until convergence 

Bi = ΦiQA(i−1) 

QBiRBi = QR(Bi) 

Ai = ΦH
i QBi 

QAiRAi = QR(Ai) 

end 

Here QR(.) denotes the QR Decomposition of the matrix and (.)H refers to hermitian 

conjugate. 

The step (ii.) is iterated until convergence, and after convergence the left and right singular 

vectors are settled in the B and A matrices respectively. 

while the matrix Bi Settles for left dominant singular vectors, the matrix Ai Settles for right 

dominant singular vectors 

In mathematical sense, the r dominant singular vectors are equivalent to r signal subspace 

vectors of eigen decomposition. Also the matrices Bi and Ai have the non-dominant 

singular vectors, which are equivalent of noise subspace of the eigen decomposition. The 

signal subspace based estimation algorithm requires to compute the dominant singular 

vectors. Where as the noise subspace based algorithm warrants the non-dominant singular 

vectors. Typically the signal subspace is associated with the principal components of the 
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covariance matrix, and noise subspace is associated with the non-principal components of 

the covariance matrix. The Bi-SVD algorithm converges for the dominant singular vectors 

frst and later for the non-dominant vectors. The computationally intensive SVD algorithm 

can be circumvented with QR decomposition algorithm in the bi-iteration manner such as 

Bi-SVD and its variants. 

5.2 Modelling of Signal Sources for Tracking of 2D-DOA 

In DOA estimation, the data matrix or covariance matrix is processed for parameter 

estimation using either MUSIC or ESPRIT based algorithms, in which computationally 

intensive EVD or SVD technique are a routine must. 

5.2.1 Modelling of Stationary Source 

In case of the stationary sources, the array steering vector is fxed for all the samples and is 

independent of the time index n as shown in Equation (5.1). In other words, the azimuth 

(φ ) and elevation (θ ) angles are fxed for all the received samples of the array. The noise 

added to the signal model is white Gaussian noise of fxed variance for all the time samples. 

h iT 
− jkβ1(θ ,φ) − jkβ2(θ ,φ) − jkβM(θ ,φ )a(θ ,φ) = e , e , · · · , e (5.1) 

where, 

βm (θ ,φ) = xm sin θ cos φ + ym sin θ sin φ + zm cos θ (5.2) 

The standard array signal model for stationary sources are shown in Equation (5.3). 

x(n) = a(θ ,φ)s(n)+ w(n) (5.3) 

where, x(n) is the received sample at time instant n. s(n) signal sample at instant n. w(n) 

is the white Gaussian noise vector at instant n. The sample covariance matrix, Rxx is a 

simple computation as shown in Equation (5.4). � � 
Rxx = E xxH (5.4) 

where (.)H refers to Hermitian conjugate. 

124 



5.2.2 Modelling of Non-stationary Source 

In the case of non-stationary sources, the array steering vector is a function of time index 

n. The azimuth and elevation angles of the incoming signal sources change over time 

samples. The change in azimuth and elevation angles lead to change in phase of the 

received samples in the observation interval. Thus, it is essential to compute the covariance 

matrix independently for all the spatio-temporal samples. The time-varying source or 

non-stationary source or dynamic source model is shown in Equation (5.5). 

x(n) = a(θ ,φ ,n)s(n)+ w(n) (5.5) 

The covariance matrix is computed independently for all values of the time sample indices 

n. 

Rxx(n) = x(n)xH(n) (5.6) 

The covariance matrices of instantaneous samples are computed in which the variance of 

the spatial samples is not retained over the successive received samples, due to the dynamic 

behaviour of the incoming sources. Retaining the second order statistical properties of 

the received signal over the observation interval is essential for the better estimation of 

the DOA. Various methods for the construction of covariance matrix are discussed in the 

following subsections. 

5.2.3 Covariance Matrix by Weighting Factor α 

The concept of weighting factor based covariance computation widely used in adaptive 

signal processing algorithms is utilized to retain the statistical properties of the incoming 

sources. The weighting factor approach is formulated based on the typical moving average 

flter (Hayes, 2009) and weighted average covariance matrix used in (Strobach, 1997). In 

the weighting factor approach, the current sample along with the immediate past sample 

are weighted, such that more weightage is for the current sample and less weightage for 

the previous sample. In this method, covariance matrix for nth instant is computed by 

RWxx(n) = (1− α)Rxx(n− 1)+ αRxx(n) (5.7) 

where α is chosen such that 1
2 ≤ α ≤ 1. 

The weighted averaged covariance matrix used for DOA estimation carries the statistical 

properties of the signal from the beginning till the end. This in turn improves the DOA 

estimation of the non-stationary sources. The weighting factor based covariance matrix is 

shown in Equation (5.7) 
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5.2.4 Forgetting Factor β Method for Covariance Matrix 

Similar to the weighting factor approach, concept of forgetting factor is introduced for the 

dynamic source models. The forgetting factor technique is widely adopted in RLS type of 

adaptive algorithms (S. S. Haykin, 2008). The concept of forgetting factor is to forget the 

older samples in the memory. The size of the memory is fxed, keeping in view the ease of 

the computation. It also depends on the dynamic behaviour of the source. In essence, it 

can be said as the weighted sum of moving average flter. The covariance method Rffxx(n) 

through the forgetting factor method is represented through the Equation (5.8). 

Rffxx(n) = 
q 

∑ β iRxx(n− i) (5.8) 
i=0 

where β is chosen such that 0 ≤ β ≤ 1. 

The β and q are respectively the forgetting factor and the order of the flter. This approach 

carries the statistical property of the signal from the beginning more precisely than the 

weighting factor approach. The forgetting factor based covariance matrix is shown in 

Equation (5.8). 

5.3 Simulation Analysis of DOA of Non-Stationary Sources 

The simulation and performance analysis of DOA estimation are carried for the non-

stationary moving sources utilizing the instantaneous samples, weighting factor and forget-

ting factor approaches on the covariance matrix computations. 

5.3.1 Tracking of DOA with MUSIC Algorithm 

For the tracking of non-stationary sources, the standard MUSIC algorithm is incorporated to 

estimate the DOA. The Root MUSIC algorithm can also be incorporated, which is variation 

of the standard spectral MUSIC algorithm, in which polynomial rooting approach is 

incorporated. The polynomial roots determined from the subspace components are utilized 

to estimate the DOA. However, the Root MUSIC algorithm has the limitation of array 

geometric confguration restricted to linear. The dynamic tracking of the moving sources 

involves, the decomposition of signal and noise subspace components. The classical EVD 

or SVD approaches intensify the computation over the observation interval. It is suffcient 

to track the subspace components of the moving sources. The methods incorporated 

involving weighting factor approach and forgetting factor approach carry the second order 
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information of the covariance of the moving sources. 

Figures 5.1, 5.2 and 5.3 depict the tracking behaviour of 2D-DOA estimation for the 

non-stationary source model θ moving from source angle −25◦ to destination angle +45◦ 

using the instantaneous sample approach, Weighting factor approach and the forgetting 

factor approach respectively. The linear trajectory between the source angle and destination 

angle is assumed. 100 spatio-temporal samples for the linear trajectory between the source 

and destination angle are considered for the simulation. A scenario of 0 dB SNR with 

AWGN is chosen, where the signal power and noise power are equal for the simulation. 

The variations in DOA estimation can be clearly seen due to the noise infuence of the 

techniques. The 0 dB SNR scenario addresses the estimation behaviour under the heavy 

infuence of noise added to signal. At higher SNR the estimation algorithm should tend to 

behave distinctly better than 0 dB behaviour, since the noise infuence is lesser at higher 

SNRs. 

Figure 5.1: DOA Tracking by Instantaneous Samples Processed for SNR = 0 dB 

The results of the tracking behaviour of DOA estimation of the three different ap-

proaches in computing the covariance matrix can be clearly seen from the above depicted 

Figures 5.1 to 5.3. As can be seen from the results of Figure 5.1, the estimation and 

tracking behaviour of DOA estimation using instantaneous samples approach is poor for 
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Figure 5.2: DOA Tracking by Weighting Factor Method α = 0.6 for SNR = 0 dB 

Figure 5.3: DOA Tracking by Forgetting Factor Method β = 0.95 q = 5 for SNR = 0 dB 
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the dynamic signal sources. 

Further, the estimation and tracking characteristics of DOA derived through the weighted 

factor approach show marked improvement as is evident in Figure 5.2. On an average, the 

weighted factor approach for DOA estimation and tracking seems to be better than the 

instantaneous samples approach for dynamic sources. 

The results depicted in Figure 5.3, clearly reveal that the forgetting factor based DOA 

estimation and tracking out performs the approaches based on instantaneous samples and 

weighted average. Since this method carries the second order statistics of the signal from 

the beginning of duration of sample collection, lesser variations in the covariance are 

realized when compared with the weighting factor approach. 

5.4 Analysis of Weighting and Forgetting Factor in 2D-DOA Estimation and Track-
ing 

In section 5.3, the focus was on estimation and tracking of 1D-DOA. In this section, the 

analysis of the previous section is extended to 2D-DOA. The covariance of the received 

data samples from the antenna array confguration has the major infuence in the estimation 

accuracy of DOA. The second order statistics of the data covariance matrix need to be 

uniform for all the data samples received for the DOA tracking from the source angle to 

the destination angle. The instantaneous samples of the antenna array do not maintain the 

uniformity of second order statistics. Thus to maintain the uniformity of the statistics, it is 

essential to consider the past data samples also in to consideration, in the DOA estimation. 

The weighting factor approach and forgetting factor approach are proposed to construct 

the data covariance matrix with weighted average of the past data samples. These two 

approaches are analysed for the optimized choice of parameters for the tracking of DOA 

with low Mean Square Error (MSE) in the estimations. The signal for tracking of 2D-DOA 

using the OPLA confguration with source angle (θ = 25◦ ,φ = 15◦) and destination angle 

(θ = 45◦ ,φ = 50◦) is modelled for the analysis. 

5.4.1 Weighting Factor Analysis for Tracking of Estimation of 2D-DOA 

The weighted average approach is used in the signal model for the construction of data 

covariance matrix utilizing the Equation provided in (5.7). The use of immediate past data 

samples received from the antenna arrays, in the formation of data covariance matrix and 

its behaviour with various weights for the current and past data samples are analysed. The 
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Figure 5.4: Analysis of Weighting Factor in 2D-DOA Tracking 

weighting factor α in Equation (5.7) is varied in the range 0.1 ≤ α ≤ 0.9. The tracking 

behaviour of 2D-DOA estimation between the source and destination DOA angles are 

performed using the MUSIC algorithm. The MSE between the actual DOA trajectory and 

estimation angles for every data sample with weighted average is calculated. The Figure 

5.4 illustrates the MSE of θ and φ angles of the tracking behaviour of 2D-DOA with each 

of the weighting factor in the range considered for the data covariance matrix. This analysis 

reveals that the weighting factor α = 0.5 in the construction of covariance matrix yields 

the lowest MSE in tracking the estimation of 2D-DOA between the source and destination 

angles. This implies that equal weightage of the current and past samples will tend to track 

the estimation of θ and φ angles with lower MSE. 

5.4.2 Forgetting Factor Analysis for Tracking of Estimation of 2D-DOA 

Similar to the weighting factor approach, the forgetting factor approach is also subjected 

for the analysis of tracking behaviour of 2D-DOA estimation. Unlike the weighting factor 

approach, the forgetting factor approach includes several past samples, in the formation 

of the covariance matrix. The weighted average of the past several samples improves 

the smoothness in the tracking behaviour of estimation of 2D-DOA. The number of past 
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Figure 5.5: Analysis of Forgetting Factor in θ Estimation of 2D-DOA Tracking with Orthogonal 
Polarized Linear Array 

samples q is said to be the order of smoothing flter and β is the forgetting factor. The 

parameters q and β of the Equation (5.8) are analysed using the signal model for tracking 

Figure 5.6: Analysis of Forgetting Factor in φ Estimation of 2D-DOA Tracking with Orthogonal 
Polarized Linear Array 

131 



behaviour of estimation of 2D-DOA for choosing the optimum choice of the flter order 

and forgetting factor. 

The order of the smoothing flter q is subjected for the analysis in the range 2≤ q≤ 10 in 

steps of 2. The forgetting factor β in the range 0.5≤ β ≤ 0.95 with order of the flter is 

analysed for the tracking behaviour of estimation of 2D-DOA. The results of the Figures 5.5 

and 5.6 depict the MSE of θ and φ estimation respectively in 2D-DOA tracking behaviour 

between the source and destination DOA angles. The results of the Figures 5.5 and 5.6 

reveal that, in both θ and φ estimation error is very less at smoothing flter order of q = 

4. This in turn conveys that only the immediate past 4 samples should be utilized for the 

better estimation accuracy rather than considering the more number of past samples. The 

combined analysis of the θ and φ estimation error, the forgetting factor β = 0.95 is more 

suitable to be utilized for the lowest MSE with the flter order of q = 4, when compared 

with the other forgetting factors in the range. 

5.5 Analysis of 2D-DOA Tracking Behaviour of Single and Orthogonal Polarized 
Arrays 

The two-dimensional DOA tracking behaviour is analysed for the conventional single 

polarized and proposed orthogonal polarized array confgurations. The following analyses 

illustrate 2D-DOA tracking behaviour for the single and orthogonal polarized using the 

instantaneous samples, weighting factor and forgetting factor approaches. The signal 

model for the 2D-DOA tracking with source angle (θ = 25◦ ,φ = 15◦) and destination 

angle (θ = 45◦ ,φ = 50◦) is modelled for the analysis with SNR of 20 dB. Between the 

source and destination angles, 100 data samples are modelled for the trajectory. The 2D 

MUSIC algorithm is used for the 2D tracking behaviour of the array confguration and 

average error of the 2D-DOA estimation per data sample is computed through the MSE 

performance analysis. 

5.5.1 Tracking Behaviour of 2D-DOA Estimation with Single Polarized UPA 

The conventional single polarized UPA confguration with rectangular waveguide shown 

in Figure 4.1, is analysed for its performance in the 2D-DOA tracking behaviour for the 

above mentioned signal model. 
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5.5.1.1 Tracking of 2D-DOA Estimation with UPA using Instantaneous Samples 

The instantaneous data samples received in the conventional single polarized UPA con-

fguration is used to construct the data covariance matrix, This data covariance matrix is 

used to estimate the 2D-DOA using 2D MUSIC algorithm. Thus every instant of the data 

samples and the respective data covariance will tend to estimate the 2D-DOA and track the 

trajectory of signal model. 

Figure 5.7: 2D-DOA Tracking with Uniform Planar Array with Instantaneous Samples with SNR 

20 dB, θmse = 0.0826 and φmse = 0.1304 

Figure 5.7 depicts the tracking behaviour using the instantaneous samples method. The 

estimated trajectory is compared with true trajectory of the signal model. The MSE between 

the true and estimated trajectories is calculated as θmse = 0.0826 and φmse = 0.1304. 

5.5.1.2 Tracking of 2D-DOA Estimation with UPA using Weighting Factor 

The conventional single polarized UPA is analysed for the 2D-DOA tracking behaviour 

with weighting factor based construction of data covariance matrix. The data samples 

of the signal model between the source and destination angles are utilized to form the 
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covariance matrix using the weighting factor approach. The weighting factor α = 0.5 is 

chosen, and 2D-DOA tracking behaviour is analysed. 

Figure 5.8: 2D-DOA Tracking with Uniform Planar Array with Weighting Factor with SNR 20 dB, 

θmse = 0.0559 and φmse = 0.0939 

The performance of the tracking behaviour is analysed through computing the MSE 

of the θ and φ estimation of the tracking trajectory. The Figure 5.8 shows the tracking 

behaviour of the UPA utilizing weighting factor based data covariance matrix construction. 

The MSE of the tracking performance of DOA estimation is computed as θmse = 0.0559 

and φmse = 0.0939. The weighting factor based tracking of 2D-DOA has lower error in 

both θ and φ estimations, when compared with the instantaneous samples based tracking 

behaviour. 

5.5.1.3 Tracking of 2D-DOA Estimation with UPA using Forgetting Factor 

The analysis of 2D-DOA estimation and tracking of dynamic sources has also been carried 

out with forgetting factor based construction of data covariance matrix. The parameters 

forgetting factor β = 0.95 and the order of smoothing flter q = 4 are fxed based on 
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performance analysis of the approach. The estimation error in θ and φ is computed through 

the MSE analysis. 

Figure 5.9: 2D-DOA Tracking with Uniform Planar Array with Forgetting Factor with SNR 20 dB, 

θmse = 0.0426 and φmse = 0.0919 

Figure 5.9 depicts the tracking behaviour of the trajectory of the signal model. The 

MSE between the true trajectory and the estimated trajectory is computed as θmse = 0.0426 

and φmse = 0.0919. Lowest MSE of the tracking behaviour of 2D-DOA estimation algo-

rithm is realized with the forgetting factor approach. Due to presence of the forgetting 

factor as well as smoothing flter along with second order statistics of past data samples, 

improved tracking behaviour is realized using the forgetting factor based approach. The es-

timation and tracking performance of 2D-DOA estimation algorithm with forgetting factor 

approach tracking is better compared to instantaneous samples approach and weighting 

factor approach. 

5.5.2 Tracking Behaviour of 2D-DOA Estimation with OPPA 

The two dimensional DOA tracking behaviour analysis is performed for the proposed 

OPPA confguration. The OPPA confguration is as shown in Figure 4.2. The 2D-DOA 
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tracking is performed by tracking trajectory between with source angle (θ = 25◦ ,φ = 15◦) 

and destination angle (θ = 45◦ ,φ = 50◦) with 100 number of data samples between them. 

The signal model is used for the OPPA confguration, utilizing both horizontal and vertical 

polarized components of the RWG as per the geometric confguration shown in Figure 4.2. 

The tracking trajectory utilized for the analysis is maintained the same as with the case 

of conventional single polarized UPA confguration. Hence the comparison will reveal 

the infuence of orthogonal polarized waveguide elements in the tracking behviour of the 

2D-DOA estimation algorithm. 

5.5.2.1 Tracking of 2D-DOA Estimation with OPPA using Instantaneous Samples 

The OPPA confguration is subjected to estimate 2D-DOA, with the construction of data 

covariance matrix at every instant. This instantaneous sample based covariance matrix is 

utilized in 2D MUSIC algorithm for estimating both θ and φ angles of 2D-DOA for every 

data sample modelled in the trajectory. 

Figure 5.10: 2D-DOA Tracking with Orthogonal Polarized Planar Array with Instantaneous Samples 

with 20 dB SNR, θmse = 0.0499 and φmse = 0.0559 

The tracking behaviour of estimation of 2D-DOA with the OPPA confguration is 
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shown in Figure 5.10. The comparison between the true trajectory and estimated trajectory 

reveals close agreement between them. The difference between the true trajectory of the 

signal model and the estimated trajectory through the DOA tracking algorithm is measured 

through the MSE between them. The computed average error per estimation for scenario 

of 20 dB SNR are θmse = 0.0499 and φmse = 0.0559. Comparatively the θmse and φmse 

are less, when compared with the single polarized UPA confguration. Hence, it can be 

concluded that, orthogonal polarized elements of the array confguration improve the 

estimation accuracy in tracking of 2D-DOA estimation. 

5.5.2.2 Tracking of 2D-DOA Estimation with OPPA using Weighting Factor 

The OPPA confguration is evaluated for its performance in 2D-DOA tracking behaviour 

by utilizing weighting factor based data covariance matrix construction. Keeping the signal 

model and tracking trajectory identical to the one used with instantaneous samples method, 

the weighting factor based data covariance method has been adopted in the estimation 

algorithm. 

Figure 5.11: 2D-DOA Tracking with Orthogonal Polarized Planar Array with Weighting Factor 20 

dB SNR, θmse = 0.0389 and φmse = 0.0450 
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The weighting factor α is fxed as 0.5, as per the analysis carried for this technique. This 

approach averages the current data sample received by the antenna array and immediate past 

sample with equal weights. The results of the tracking behaviour of 2D-DOA estimation 

with weighting factor approach are shown in Figure 5.11. The tracking behaviour shown in 

Figure 5.11 clearly depicts the close DOA tracking of the true trajectory. The computed 

MSE between true and estimated trajectories are θmse = 0.0389 and φmse = 0.0450. The 

MSE value indicates that, weighting factor approach improves estimation and tracking 

behaviour when compared to instantaneous sample approach. Also the infuence of the 

orthogonal polarized elements in the array confguration is evident in realizing lesser MSE 

in the tracking, when compared with MSE of the single polarized UPA confguration. 

5.5.2.3 Tracking of 2D-DOA Estimation with OPPA using Forgetting Factor 

The tracking behaviour of the OPPA is also evaluated with forgetting factor approach. 

Figure 5.12: 2D-DOA Tracking with Orthogonal Polarized Planar Array with Forgetting Factor 20 

dB SNR, θmse = 0.0380 and φmse = 0.0622 

The analysis is carried by keeping the same signal model and trajectory model. The 

infuence of orthogonal polarized wave guide elements present in the array confguration, 
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along with the forgetting factor based approach for the construction of covariance matrix 

in improving the estimation accuracy is analysed. The parameters, forgetting factor and 

order smoothing flter are fxed as β = 0.95 and q = 4 based on the detailed analysis 

carried for this approach. The improved tracking behaviour of OPPA is depicted in the 

Figure 5.12. It is seen from the results of the Figure 5.12, that there is a close agreement 

of estimated trajectory of DOA with true trajectory and the same is evident through the 

computation of MSE between them. The computed MSE between the estimated trajectory 

and true trajectory are θmse = 0.0380 and φmse = 0.0622. The MSE value depicts the lesser 

estimation error both in the θ and φ DOA angles, which has resulted in improved tracking 

behaviour. The combination of forgetting factor approach and the orthogonal polarized 

array elements is an effective combination in improving the estimation accuracy and the 

tracking behaviour of 2D-DOA estimation algorithm. 

5.5.3 Tracking Behaviour of 2D-DOA Estimation with OMLA 

The simulation analysis of the tracking behaviour of 2D-DOA estimation is extended for 

the OMLA confguration. In the OMLA, both the horizontal and vertical polarized waveg-

uide elements are combined together to form the orthogonal mounting. This orthogonal 

mounting arrangement along the array axis as shown in Figure 4.3 is examined for its 

performance in tracking of a 2D-DOA trajectory between the source and destination angles. 

The signal model for the analysis is carried as per the geometric confguration of the array 

elements and the trajectory modelled between the source angle (θ = 25◦ ,φ = 15◦) and 

destination angle (θ = 45◦ ,φ = 50◦) with 100 number of data samples between them. 

The OMLA confguration also has the orthogonal polarized (both horizontal and vertical) 

elements. It is anticipated that, the estimation and tracking performance of 2D-DOA 

estimation will be similar to that with the OPPA confguration. 

5.5.3.1 Tracking of 2D-DOA Estimation with OMLA using Instantaneous Samples 

The signal model and trajectory model for the OMLA are evaluated for 2D-DOA tracking 

with the instantaneous sample method for the construction of data covariance matrix. 

The data covariance matrix is subjected to 2D-DOA estimation algorithm and the MSE 

performance of the 2D-DOA tracking is evaluated. 
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Figure 5.13: 2D-DOA Tracking with Orthogonal Mounted Linear Array with Instantaneous Samples 

with 20 dB SNR, θmse = 0.0499 and φmse = 0.0559 

The results of the 2D tracking behaviour of OMLA confguration are shown in Figure 

5.13. The simulation results of Figure 5.13 show relatively poor performance in the 2D-

DOA estimation and tracking behaviour. The comparison of true and estimated trajectory 

is analysed through computing MSE of the θ and φ of data samples. The computed MSE 

of θmse = 0.0499 and φmse = 0.0559 in the tracking behaviour for the OMLA confguration 

is realized. 

5.5.3.2 Tracking of 2D-DOA Estimation with OMLA using Weighting Factor 

The simulation analysis of 2D-DOA tracking for the OMLA confguration is extended by 

utilizing the weighting factor based construction of data covariance matrix. The weighting 

factor α = 0.5 reveals that it provides the data covariance matrix with the equal weighted 

average of the current and past data samples. 

140 



Figure 5.14: 2D-DOA Tracking with Orthogonal Mounted Linear Array with Weighting Factor 20 

dB SNR, θmse = 0.0389 and φmse = 0.0450 

The tracking of 2D-DOA estimation with OMLA is illustrated through the Figure 5.14. 

The results illustrated in Figure 5.14 depict that weighting factor approach improves the 

accuracy in the tracking behaviour of 2D-DOA when compared to instantaneous sample 

approach. The improved accuracy in the tracking behaviour is evident by comparing the 

difference between the true and estimation trajectories by computing MSE. The computed 

MSE θmse = 0.0389 and φmse = 0.0450 indicates the lesser MSE values when compared 

with the instantaneous sample approach. This signifes the beneft of weighting factor in 

the formation of the data covariance matrix of the 2D-DOA estimation algorithm. 

5.5.3.3 Tracking of 2D-DOA Estimation with OMLA using Forgetting Factor 

The OMLA confguration is analysed for its performance in tracking of 2D-DOA estimation 

by utilizing the forgetting factor based approach in the construction of data covariance 

matrix. The orthogonal polarized elements in the array confguration along with the 

forgetting factor techniques are anticipated to improve the tracking behaviour of 2D-DOA 

estimations. The forgetting factor β = 0.95 and order of the smoothing flter of q = 4 are 

fxed as per the earlier detailed study of this approach. 
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Figure 5.15: 2D-DOA Tracking with Orthogonal Mounted Linear Array with Forgetting Factor 20 

dB SNR, θmse = 0.0380 and φmse = 0.0622 

The tracking behaviour of 2D-DOA estimation using the OMLA is depicted in the Fig-

ure 5.15. The combination of the orthogonal polarized elements in the array and forgetting 

factor approach improves the 2D estimation and tracking behaviour. The improved tracking 

behaviour of 2D-DOA estimation is evident through the lesser MSE θmse = 0.0380 and 

φmse = 0.0622. The results of Figure 5.15 confrm the signifcance of utilizing the past data 

samples and the orthogonal polarized components of the received data. 

5.5.4 Tracking Behaviour of 2D-DOA Estimation with OPLA 

The simulation analysis for the tracking of 2D-DOA estimation is further extended to anal-

yse the performance of the OPLA confguration. The OPLA confguration shown in Figure 

4.4 has the linear arrangement of the RWG elements on the x axis with adjacent elements in 

orthogonal confguration. The signal model for the linear orthogonal array confguration is 

carried as per its geometric confguration shown in Figure 4.4. Without incorporating any 

changes in the trajectory model between the source angle (θ = 25◦ ,φ = 15◦) and destina-

tion angle (θ = 45◦ ,φ = 50◦) with 100 number of data samples, the tracking performance 

of 2D-DOA estimation is analysed. The performance of OPLA confguration performance 
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in tracking of 2D-DOA estimation is evaluated through computing the MSE between the 

true and estimated trajectories. 

5.5.4.1 Tracking of 2D-DOA Estimation with OPLA using Instantaneous Samples 

The signal model and the trajectory model are subjected to the tracking analysis of 2D-

DOA estimation by utilizing the instantaneous samples of the model, for the formation of 

data covariance matrix. This data covariance matrix is incorporated into the 2D MUSIC 

algorithm, through which 2D-DOA estimation is performed. 

Figure 5.16: 2D-DOA Tracking with Orthogonal Polarized Linear Array with Instantaneous Samples 

with 20 dB SNR, θmse = 0.1386 and φmse = 0.1351 

The OPLA exhibits its tracking behaviour of 2D-DOA estimation as shown in Figure 

5.16. The comparison between the true trajectory and the estimated trajectory is computed 

is analysed through MSE between them, and the computed MSE is θmse = 0.1386 and 

φmse = 0.1351. The MSE of the 2D-DOA tracking with OPLA is slightly higher, when 

compared with the other array confgurations presented earlier. Slightly higher MSE is 

attributed to the only linear arrangement of the array elements despite the presence of 

orthogonal elements. 
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5.5.4.2 Tracking of 2D-DOA Estimation with OPLA using Weighting Factor 

The evaluation of OPLA is carried further by utilizing weighting factor, without incorpo-

rating any changes in the signal model and the trajectory model presented earlier in this 

section. The weighting factor based approach for the data covariance matrix in the 2D 

MUSIC algorithm is simulated and performance analysis of the OPLA is examined by 

comparing the true trajectory and the estimated trajectory. 

Figure 5.17: 2D-DOA Tracking with Orthogonal Polarized Linear Array with Weighting Factor 20 

dB SNR, θmse = 0.0843 and φmse = 0.0994 

The Figure 5.17 depicts the tracking behaviour of 2D-DOA estimation with OPLA. 

The tracking behaviour illustrates the improvement in trajectory tracking when compared 

to the instantaneous samples approach. However, due the linear arrangement of the array 

confguration, the MSE between the true and estimated trajectory is θmse = 0.0843 and 

φmse = 0.0994. This is higher when compared with single polarized UPA confguration. 

5.5.4.3 Tracking of 2D-DOA Estimation with OPLA using Forgetting Factor 

The OPLA confguration is studied for its performance in tracking behaviour of 2D-DOA 

estimation by incorporating forgetting factor approach in the 2D-DOA estimation. With 
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no modifcations in the signal and trajectory model, simulation of OPLA with forgetting 

factor approach of covariance data matrix is performed and the performance is analysed 

through the MSE between the true and estimated trajectories. 

Figure 5.18: 2D-DOA Tracking with Orthogonal Polarized Linear Array with Forgetting Factor 20 

dB SNR, θmse = 0.0515 and φmse = 0.0952 

The results of the tracking of 2D-DOA estimation with OPLA are shown in Figure 5.18. 

The results of Figure 5.18 illustrate close agreement in tracking behaviour, by estimating 

the 2D-DOA to be very close to the actual DOAs. The improvement in the tracking 

behaviour of 2D-DOA estimation using forgetting factor approach is evident through lesser 

MSE between the estimation and true trajectories, which is computed as θmse = 0.0515 

and φmse = 0.0952. 

5.6 Computation Analysis of MSE versus SNR in Tracking Behaviour of 2D-DOA 
Estimation with Single Polarized and Orthogonal Polarized Arrays 

In the previous section, the analysis of the tracking behaviour of 2D-DOA estimation 

is evaluated for single and orthogonal polarized array confgurations with 20 dB SNR. 

The simulation analysis is extended further to analyse the tracking behaviour of 2D-DOA 
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estimation with lower and higher SNR values. The tracking behaviour of 2D-DOA estima-

tion of the single polarized conventional UPA confguration and the proposed orthogonal 

polarized array confgurations is examined by utilizing three different approaches for the 

construction of covariance matrix namely, instantaneous samples, weighting factor and 

forgetting factor approaches. The comparison of MSE of θ and φ angles for each of the 

approaches with both the conventional single polarized and orthogonal polarized array 

confguration is carried with respect to the SNR values of 10, 20 and 30 dB. 

5.6.1 MSE Performance Analysis of Tracking Behaviour of 2D-DOA Estimation 
with Instantaneous Samples 

The MSE between the true and estimated trajectories of the conventional single and 

orthogonal polarized array confgurations is analysed by utilizing the instantaneous sample 

approach. Both the θ and φ angles of 2D-DOA estimation are analysed through its MSE 

performance. The results comparing the MSE θmse and φmse versus the low, medium and 

high SNR values, for the conventional single polarized UPA, and the proposed OPPA, 

OMLA and OPLA are illustrated in Figures 5.19 and 5.20. 

Figure 5.19: Comparison of MSE of θ Estimation using Instantaneous Samples 

The results of the Figures 5.19 and 5.20 indicate that, for this trajectory model, θmse 
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Figure 5.20: Comparison of MSE of φ Estimation using Instantaneous Samples 

is very less when compared to φmse estimations. As expected, at low SNR, the MSE is 

more. At higher SNR, MSE is very low with (less than 0.1◦), due to lesser noise. The 

MSE of the conventional signal polarized UPA exhibits higher estimation error in both 

θ and φ estimation angles. On the contrary, all the proposed orthogonal polarized array 

confgurations show less MSE in the tracking behaviour. In both, the θ and φ estimation, the 

OPPA confguration exhibits superior performance in the tracking of 2D-DOA estimation 

among all other confgurations. Also, the OMLA also performs better compared to OPLA 

and single polarized UPA confguration. 

5.6.2 MSE Performance Analysis of Tracking Behaviour of 2D-DOA Estimation 
with Weighting Factor 

The conventional single polarized UPA confguration and the proposed orthogonal confgu-

rations such as OPPA, OPMA and OPLA are invoked for the analysis of tracking behaviour 

of 2D-DOA estimation with low, medium and high SNR scenarios. 
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Figure 5.21: Comparison of MSE of θ Estimation using Weighting Factor 

Figure 5.22: Comparison of MSE of φ Estimation using Weighting Factor 
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The analysis is carried by incorporating weighting factor approach for data covariance 

matrix in the 2D-DOA estimation and tracking. A weighting factor α = 0.5 is incorporated 

in the construction of data covariance matrix, which induces the weighted average of the 

current and immediate past data samples. The simulation analysis with weighting factor 

approach is illustrated by plots of MSE versus SNR for the conventional single polarized 

array confguration and the proposed orthogonal polarized array confgurations. The MSE 

θmse and φmse for all the array confgurations are shown in Figures 5.21 and 5.22 respectively. 

The results of the Figures 5.21 and 5.22 clearly depict the performance improvement in the 

tracking behaviour of 2D-DOA estimation of all the array confguration, when compared 

to instantaneous samples approach. The consistency in the improved tracking behaviour 

of 2D-DOA estimation is evident in both the θmse and φmse of estimations for all the array 

confgurations. At low SNRs, all the array confgurations exhibit lesser than 0.4◦ estimation 

error in both the θ and φ estimations. The analysis invariably infers that, OPPA is best 

among all other array confgurations, in the tracking behaviour of the trajectory of 2D-DOA, 

by estimating θ and φ with least MSE values. The OMLA confguration continues to 

perform better, when compared to OPLA and single polarized UPA confgurations. The 

OPLA shows a slightly inferior performance in its θ estimations at lower SNR, when 

compared to the single polarized UPA confguration. The φ angle estimations with OPLA 

is more accurate when compared to single polarized UPA confguration. However, at 

medium and higher SNR scenarios, the OPLA and UPA show on an average the same 

tracking behaviour with negligibly small difference. 

5.6.3 MSE Performance Analysis of Tracking Behaviour of 2D-DOA Estimation 
with Forgetting Factor 

The MSE performance analysis for the low, medium and high SNR scenarios is extended 

further with formation of data covariance matrix with forgetting factor approach. The 

conventional single polarized UPA as well as the proposed OPPA, OMLA and OPLA 

confguration are analysed for its MSE performance by incorporating the forgetting factor 

approach in the formation of data covariance matrix in the 2D-DOA estimation and tracking 

technique. 
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Figure 5.23: Comparison of MSE of θ Estimation using Forgetting Factor 

Figure 5.24: Comparison of MSE of φ Estimation using Forgetting Factor 
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The forgetting factor β = 0.95 and order of the smoothing flter q = 4 are incorporated 

in the simulation based on the extensive analysis of the approach. The tracking behaviour 

of 2D-DOA estimation with forgetting factor approach is superior in its performance, which 

is evident from the previous analysis presented earlier. The tracking behaviour of 2D-DOA 

estimation realized with forgetting factor based covariance matrix is consistently better 

when compared to those realized with the instantaneous approach as well as weighting 

factor approach. The results of the Figures 5.23 and 5.24 exhibiting the better MSE 

performance of θ and φ respectively are clear indicators of the superior performance of 

2D-DOA tracking behaviour. The forgetting factor approach shows the MSE lesser than 

0.25◦ at lower SNR scenario, which is the least estimation error, when compared to the 

instantaneous and weighting factor approaches. The results of the Figures 5.23 and 5.24 

infer the individual performance of the array confgurations considered in the simulation 

analysis. The OPPA confguration continues to exhibit least estimation error in both, θ and 

φ estimations, and thus shows the superior performance in the trajectory estimation of 2D-

DOA. The OMLA proves to be next best alternate to OPPA confguration in the estimation 

accuracy of both θ and φ angles. The OPLA and the UPA confgurations show similar 

performance as with case of weighting factor approach with reduced estimation error. The 

linear arrangement of elements in OPLA for 2D-DOA estimation limits the estimation 

performance at low SNR, when compared with the single polarized UPA confguration. 

However, the advantage of linear arrangement can also be factor that needs to be considered 

along the estimation accuracy. 
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5.7 Summary 

The simulation analysis of 2D-DOA estimation and tracking using the conventional sin-

gle polarized and orthogonal polarized array confgurations are performed. The tracking 

behaviour of 2D-DOA estimation with various array confgurations are analysed by compar-

ing the computed MSE between true trajectory of the signal model and estimated trajectory. 

Different schemes such as instantaneous samples approach, weighting factor approach and 

forgetting factor approach have been utilized for the formation of data covariance matrix 

involved in the MUSIC algorithm. The resulting MSEs for θ and φ angles of 2D-DOA are 

computed using the data covariance matrix using three different approaches. The results of 

the various analysis are tabulated for the low, medium and high SNR scenarios in the Table 

5.1. 
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Chapter 6 

DOA Estimation of Wideband Sources 

This chapter presents the analysis and simulation of 1D and 2D-DOA estimation of 

wideband signal sources. A comparison of performance between the conventional wideband 

DOA estimation schemes with proposed subband flter approach is carried. A study on 

proposed subband flter approach for 2D-DOA estimation of wideband sources with single 

polarized UPA and the orthogonal polarized array confgurations is performed for single 

and two sources for a wide range of SNR scenarios. 

6.1 Introduction 

Further to the analysis of 2D-DOA estimation and tracking, the single polarised conven-

tional UPA and the proposed orthogonal polarized array confgurations are evaluated for 

the 2D-DOA estimation of wideband signal sources. A signal whose energy is spread 

over a bandwidth, that is large in comparison to the signal center frequency is said to be 

wideband signal. The estimation of the DOA of wave-fronts carrying wideband signal 

is one of the critical tasks in DOA estimation. The rotational signal subspace and signal 

subspace transformation and many beamspace processing techniques are cited in literature 

for DOA of wideband sources (Sellone, 2005). The localization of a wideband signal 

exploiting the array of wideband antenna elements using the conventional narrow band 

techniques will fail. The limitation of narrowband techniques is that they exploit only the 

time delays which directly translate to a phase shift in the frequency domain (Stoica & 

Moses, 1997; Yoon, 2004). The performance of the subband flter approach for wideband 

2D-DOA estimation, proposed in this chapter has been compared with performance of 

conventional ICM and CSSM techniques discussed in Chapter 2. 

Conventionally DOA estimation is carried through CSSM and ICM methods. In CSSM, 

averaging of the spectrum is carried out after the focusing (transformation) of the subspace 

vectors to the desired frequency. Whereas in ICM, the averaging is performed without 

the transformation of subspace vectors. However the number of subspace computations 
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involved in EVD or SVD signifcantly increases the computational burden of CSSM and 

ICM methods. Also these methods suffer in their accuracy due to their high susceptibility 

to the noise present in the spatial samples. 

6.2 Sub-band Filtering Approach 

This section presents an analytical formulation for a subband fltering approach for the 

DOA estimation of wideband signal. The wideband signal received in the antenna array 

is passed through the set of flters. The flters are designed as sub-bands of the frequency 

spectrum (Vaidyanathan, 1993; Woods & O’Neil, 1986). The subband fltering technique 

is proposed for DOA estimation of wideband signals and it overcomes the limitations 

associated with the CSSM and ICM techniques. The block diagram of the subband fltering 

with two subbands is shown in Figure 6.1. In the proposed technique, there are two subband 

flters namely low band and high band. The low pass and high pass sub band flters are 2nd 

order FIR type with normalized frequency response. The impulse response of the subbands 

Figure 6.1: Two Subband Approach for Wideband DOA Estimation 

is designed with subband flter design Equation (6.1). The normalized frequency spectrum 

is split into L number of subbands. 

i2πlg 
Fl(z) = e L (6.1) 

where L is the total number of subbands, in which lth subband flter Fl(z) is designed 

with Equation (6.1). Here l = 0,1, . . . ,L− 1 and g is coeffcient of the lth subband flter 

g = 0,1, . . . ,L− 1. The block diagram shown in Figure 6.1 represents a two subband 

fltering approach in which L = 2 is applied. In the two subband approach the normalized 

frequency spectrum is divided into low pass subband flter F0(z) and a high pass subband 

flter F1(z). The frequency response of the low pass and high pass subband flters is shown 

in Figure 6.2. For wideband DOA estimation, the obtained samples from the array xn is 
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Figure 6.2: Two Subband Filters for Subband Technique 

fltered through the designed flter banks. The covariance matrix of respective low and 

high band fltered signal components is computed as given in Equations (6.2) and (6.3) 

respectively. 

RL = E[xL(n)xL(n)H ] (6.2)xx 

RH = E[xH(n)xH(n)H ] (6.3)xx 

In Equation (6.3), the subscript H refers to high band and the superscript (.)H refers 

to Hermitian conjugate. The covariance matrix of the low band and high band signal 

components is subjected to EVD or SVD to compute its noise subspace UN . This noise 

subspace is utilized in the conventional MUSIC algorithm for the estimation of DOA from 

the low band component θL and the high band component θH . 

6.3 Simulation Analysis of DOA Estimation of Wideband Sources 

Simulation of DOA estimation of wideband signal is carried by invoking wideband DOA 

estimation methods such as the conventional ICM, CSSM and the proposed two subband 

method for its performance analysis. 
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6.3.1 Wideband Signal Model 

A ULA consisting of 15 antenna elements is modelled with its element exhibiting unity 

omni-directional gain. A wideband signal model of frequency range 9.1 GHz to 9.5 GHz 

was modelled to incident on ULA at a DOA angle θ = −30◦. Narrow band signal sources 

Figure 6.3: Wideband Source with Frequency Spread 

in the frequencies ranging from 9.1 GHz to 9.5 GHz are averaged to form a wideband 

signal. The frequency spectrum of the wideband signal source is shown in Figure 6.3. 

The frequency spectrum of the wideband source is mapped to discrete frequencies. The 

wideband signal source with discrete frequency bins are shown in Figure 6.4. The discrete 

frequency components of the wideband signal are shown in Figure 6.4. The discrete 

frequency components with signifcant magnitude are considered for the wideband DOA 

estimation. The signifcant magnitude is chosen by fxing a threshold magnitude of DFT. 

In this simulation, a threshold magnitude of 200 is considered. 

6.3.2 Incoherent Method for DOA Estimation of Wideband Signal 

The conventional technique of incoherent method is applied for the above mentioned 

wideband signal model for DOA estimation. The performance of incoherent method is 

analysed for various SNR scenarios. The 12 discrete frequencies with signifcant magni-

tude are utilized in the DOA estimation. Final wideband DOA estimation is obtained with 
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Figure 6.4: Wideband Source Mapped to Discrete Frequencies 

the product of the each estimation with discrete frequencies. Each of discrete frequency 

components of wideband signal spectrum and its DOA estimation for 30 dB SNR are 

shown in Figure 6.5. Figure 6.5 shows individual discrete frequencies of wideband source 

Figure 6.5: Wideband DOA Estimation with Discrete Frequencies of Incoherent Method with 30 
dB SNR 
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which act as narrow band signal component in the wideband DOA estimation. Since the 

frequency spread over a range of frequencies leads to perturbations of the phase of the 

signal, the peak of DOA estimation with discrete frequency components will be around 

the actual DOA angle. The higher magnitude of the DOA estimation with all the discrete 

frequency components are due to higher SNR of 30 dB and the estimated peaks around the 

−30◦ are evident in the result. It is pertinent to point that in the simulations of results of 

Figure 6.5, the signal was modelled for DOA of −30◦ . 

Further the simulation is carried for 20 dB SNR scenario. The discrete frequency compo-

nents of wideband DOA estimation for 20 dB SNR are shown in Figure 6.6. The reduced 

magnitude of peaks of DOA estimation with discrete frequencies is due to moderate SNR 

is evident in the simulation results. Also the increased spread of the DOA estimation in 

Figure 6.6 is due to the moderate SNR of the scenario. The product of the DOA estimation 

Figure 6.6: Wideband DOA Estimation with Discrete Frequencies of Incoherent Method with 20 
dB SNR 

with discrete frequency components produces the wideband DOA estimation of incoherent 

method. The magnitude of the DOA estimation of incoherent method for the 20 dB SNR is 

shown in Figure 6.7. 

The results of wideband DOA estimation at 10 dB SNR for discrete frequency com-

ponents are shown in Figure 6.8. The results of 10 dB SNR show the poor magnitude of 

frequency component as well as wider spread of estimation peaks. The amount of noise 
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Figure 6.7: Wideband DOA Estimation with Incoherent Method with 20 dB SNR 

Figure 6.8: Wideband DOA Estimation with Discrete Frequencies of Incoherent Method with 10 
dB SNR 

present in the signal at 10 dB SNR is more and the noise energy is accumulated with phase 

of the wideband signal at each of the array element. Thus the incoherent method is inferior 

in distinguishing the frequency components along with phase information. Hence in DOA 
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estimation, the accumulation of phase of wideband signal leads to emerge at some arbitrary 

angle apart from actual DOA angle. The DOA estimation with the discrete components at 

10 dB SNR shown in Figure 6.8 leads to poorer estimation of DOA. The incoherent method 

is evaluated over range of SNR, which verifes that the method is inferior in estimation of 

DOA at lower SNRs due the accumulated energy in the phase information. 

6.4 Coherent Signal Subspace Method (CSSM) for Wideband DOA Estimation 

The CSSM focuses the signal subspace components of individual discrete frequencies to a 

focusing frequency. The focusing frequency will be typically chosen as center frequency 

of wideband signal spectrum. The wideband signal model for the ULA of 15 elements is 

further subjected to the DOA estimation with CSSM. The same wideband signal model 

for the DOA angle of −30◦ is incorporated for the performance analysis. The CSSM 

Figure 6.9: Wideband DOA Estimation with CSSM Method for various SNRs 

improves the accuracy of the individual signal subspace of discrete frequency components 

to a particular focussing frequency. The CSSM is analysed for various SNR scenarios. The 

performance of wideband DOA estimation with CSSM is shown in Figure 6.9. As it is 

anticipated, at higher SNR, the CSSM estimates the DOA accurately with higher magnitude 

and sharper peak. As the SNR decreases, sharpness of detected peak diminishes with lower 
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magnitude, which can be clearly seen in the results of Figure 6.9. Similar to incoherent 

method, the CSSM is also inferior in estimation accuracy of DOA at lower SNR of 10 dB 

and lesser. Also the additional peaks shown around 15◦ have a higher magnitude than the 

original magnitude at lower SNR scenarios, which leads to false estimation of DOA angle. 

But additional peaks are of very low magnitude. 

6.4.1 Subband Technique for Wideband DOA Estimation 

The proposed subband technique for DOA estimation of wideband signal decomposes 

the signal with a set of subband components. The subband components are obtained 

by subjecting wideband signal to a set of flter banks. Without loss of generality, the 

DOA analysis of wideband signal is extended for the proposed subband based technique. 

The same wideband signal modelled utilizing ULA of 15 elements for the DOA angle of 

−30◦ is subjected to the proposed subband method. The performance analysis of subband 

technique is carried with the flter bank of two flters. 

The DOA estimation of wideband signal with subbanding technique is carried by fltering 

the wideband signal with subband flter response as shown in Figure 6.2. The normalized 

frequency response of the two subband flters which have a low band and high band is 

shown in Figure 6.2. The fltered low band and high band components of signal are utilized 

individually for the DOA estimation. 

The DOA estimation of wideband signal utilizing low band and high band signal compo-

nents for 20 dB SNR scenario, as well as actual DOA angle are shown in Figure 6.10. The 

result depicts a overlapping of the plots corresponding to DOA estimation through low 

band and high band signal components. A perfect estimation of DOA angle is clearly seen 

from the result of the Figure 6.10. The proposed subband technique is evaluated for the 

wideband signal model with 10 dB SNR. The results of wideband DOA estimation for the 

10 dB are shown in Figure 6.11. The results of Figure 6.11 infer, that DOA estimation 

through low band signal component show a consistent behaviour in the estimation of DOA 

angle as with case for 20 dB scenario seen above. A negligibly small diminish in the 

magnitude of estimation peak through high band signal component is seen. However 

both the low band and high band signal components estimate the DOA angle perfectly 

at modelled DOA angle of −30◦ . The AWGN has the uniform noise spectral density 

across the spectrum. But the infuence of the noise is more in high frequency signal 

components than that in low frequency signal components. With the sub-band fltering 
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Figure 6.10: Wideband DOA Estimation with Subband Technique with 20 dB SNR 

concept, the normalized spectrum is split into two equal halves namely low band and 

high band. For the signal modelled with fxed SNR, the low band flter facilitates noise 

removal and therefore the infuence of the noise is less pronounced on the signals fltered 

through low band flter. In the case of high band flter, the noise removal is relatively less 

pronounced. The signal fltered with high band flter experiences signifcant infuence 

of the noise and it is proportional to the modelled SNR. Therefore the DOA estimation 

realised through high frequency band components is prone to relatively higher severity 

compared to the estimation obtained through low frequency band components. Thus, the 

change in the SNR in signal has not infuenced the accuracy of DOA estimate as shown in 

Figure 6.11. Further analysis of the subband technique is evaluated for the same wideband 

signal model at 5 dB SNR scenario. The corresponding results of subband based DOA 

estimation for the 5 dB SNR are depicted in Figure 6.12. The results of DOA estimation 

with low band signal component are consistent with the same magnitude and sharpness 

of estimation peak along the actual DOA angle as with the case seen in 20 dB and 10 dB 

SNR scenario. A signifcant reduction in the magnitude of the detection peak of estimation 

through high band signal component is evident in the results of Figure 6.11. However, even 

with the reduced magnitude of peak, the DOA estimation accuracy is still maintained at 

the actual DOA of −30◦. The performance of the subband technique is evaluated even 
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Figure 6.11: Wideband DOA Estimation with Subband Technique with 10 dB SNR 

Figure 6.12: Wideband DOA Estimation with Subband Technique with 5 dB SNR 

at 0 dB SNR in which the signal and noise carry equal power. The results of subband 

based DOA estimation thorough low band and high band signal components are shown 
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in Figure 6.13. The consistent estimate through low band signal component continued 

even at 0 dB SNR without losing its large magnitude and sharpness of detection profle 

along the actual DOA angle. The estimation through high band signal component exhibits 

signifcantly diminished peak magnitude and also lose its sharpness of peak. The reduced 

sharpness of peak leads to degraded estimation accuracy of DOA. The analysis of results 

Figure 6.13: Wideband DOA Estimation with Subband Technique with 0 dB SNR 

with subband flter based approach of DOA estimate of wideband signal, illustrates that, 

the subband based DOA estimation through low band signal component is consistent in the 

estimation of DOA through its higher magnitude of detection peak and sharpness along 

actual DOA at −30◦. The consistent behaviour is clearly evident at all SNR scenarios. 

However the DOA estimation through high band signal component shows diminished 

magnitude of detection peak in the estimation at lower SNRs and also loses its sharpness 

leading to reduced estimation accuracy. In summary, it can concluded that, only the low 

band signal component is suffcient to estimate the DOA of wideband signal at all SNRs. 

The high band signal component can be utilized at high and medium range of SNRs and it 

cannot be relied upon at very lower SNR scenarios. The average of the DOA estimation 

of wideband signal through low band and high band signal components is not preferred 

due to the inconsistent nature of the magnitudes of detection peak and sharpness of the 

estimations realisable through high band signal components. 
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6.5 Comparison of DOA Estimation Techniques for Wideband Signal 

The performance of wideband DOA estimations methods involving the conventional inco-

herent method, coherent signal subspace method and the proposed subbanding techniques 

are compared. The results of Figure 6.14 illustrate that the wideband DOA estimation 

performance of the three methods at high, medium and lower SNR scenarios. In subband 

based technique, only the low band signal component is utilized for the DOA estimation of 

wideband signal, since the earlier analysis has proved that it facilitates consistent estimation. 

Figure 6.14 shows the comparison of the three methods of DOA estimation for a DOA 

Figure 6.14: Comparison of Wideband DOA Estimation with 30 dB SNR 

of −30◦ . The results of Figure 6.14 reveal the following. The performance of CSSM 

and incoherent method of wideband DOA estimation is similar. However, the proposed 

subband fltering approach of DOA estimation of wideband signal exhibits much improved 

performance. The Figure 6.15 shows the zoomed plot of the peak magnitudes of Figure 

6.14. The peak magnitudes of all the three DOA estimation methods of wideband signal 

are approximately the same, whereas the incoherent and coherent schemes suffer from 

a accuracy of 0.5◦ in DOA estimate at times due to white Gaussian noise present in it. 

The results also show the accurate DOA estimation at −30◦ is exhibited by the proposed 

subband based technique. The simulation of comparative analysis is further carried for 
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Figure 6.15: Comparison of Wideband DOA Estimation with 30 dB SNR 

Figure 6.16: Comparison of Wideband DOA Estimation with 20 dB SNR 

wideband signal model with 20 dB SNR scenario. The results corresponding to 20 dB SNR 

are shown in Figure 6.16. The results infer that, the DOA estimation through incoherent 
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and coherent methods, the peak magnitudes of the estimation peak diminish signifcantly. 

Also it is noted, that performance behaviour of incoherent and coherent estimation schemes 

are similar with negligibly small difference. However, the behaviour of DOA estimation of 

wideband signal through the low band signal component of subbanding technique has not 

changed and the consistency is apparent as with the case of 30 dB SNR which can be seen 

in results of Figure 6.16. The simulation for 10 dB SNR scenario is incorporated in the 

Figure 6.17: Comparison of Wideband DOA Estimation with 10 dB SNR 

wideband signal model. The results in the Figure 6.17 infer, further reduction in the peak 

magnitudes as well as the sharpness of detection profle are associated with incoherent 

and coherent methods. In addition, the additional peak appears at +15◦ which leads to 

erroneous DOA estimation. However, the subband technique does not lose its accuracy in 

the DOA estimation at 10 dB SNR. The comparison of three wideband DOA estimation 

methods are evaluated further and analysed for 0 dB SNR scenario. The results for the 

wideband signal model at 0 dB SNR are shown in Figure 6.18. The results depict the 

peak of incoherent and coherent method completely vanish around the actual DOA angle 

of −30◦ and the additional peaks retain certain magnitude, and hence contributing to 

misleading inference in the DOA estimation. The superior performance of DOA estimation 

through low band signal component of the subband technique is evident in the results of 

Figure 6.18, without any change in its estimation behaviour at all SNR scenario. There is no 
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Figure 6.18: Comparison of Wideband DOA Estimation with 0 dB SNR 

undesired additional peaks in the subband technique. In summary, the subbanding scheme 

proves its robust performance in DOA estimation of wideband signal in the presence of 

white Gaussian noise irrespective of its SNR. 

6.5.1 Computation Time Analysis of Wideband DOA Methods 

The computation time of the incoherent, coherent signal subspace and the proposed subband 

based wideband DOA estimation methods is compared. The computation time of all the 

three methods is tabulated in Table 6.1. To derive the results shown Table 6.1, the processor 

Intel Core(TM)2 Duo CPU with the clock speed of 2.40 GHz is used. In the computation 

Table 6.1: Computation Time for Wideband DOA Methods 

Wideband Band DOA Methods Computation Time 
Incoherent Method 0.8608s 

CSSM 1.1135s 
Subband Technique 0.0409s 

of DOA estimation of wideband signal, incoherent and coherent methods take more time 

due to the computation of EVD or SVD for the subspace decompositions for every discrete 

frequency bins in it. The proposed two subband flter approach involves only two set of 
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eigen value decomposition for low band and high band signal components. Comparatively, 

the proposed subband technique is approximately 20 times faster than the conventional 

incoherent and CSSM methods. Thus the proposed subband technique possesses the 

desirable advantage in terms of minimum computation time. Also the computation time of 

subband technique can be further reduced by completely neglecting the computation of 

high band component, since it is prone to degraded DOA estimation performance at lower 

SNRs. 

6.6 Simulation of DOA Estimation Techniques for Two Wideband Sources 

In view of evaluation of the proposed subband based DOA estimation of wideband signal 

presented in section 6.5, further analysis is carried for the case of estimation of DOA of 

two wideband sources. The performance DOA estimation techniques for two wideband 

sources for various SNR levels is analysed by incorporating the conventional incoherent 

and coherent schemes as well as with the proposed subband approach. The comparative 

performance of estimating the modelled DOA estimation techniques for two wideband 

sources for different cases are analysed and the results are presented in the subsection to 

follow. 

6.6.1 Estimation of DOA of Two Wideband Sources θ1 = 10◦, and θ2 = 40◦ 

The modelling of DOA estimation techniques of wideband sources for the actual DOA 

angles θ1 = 10◦, and θ2 = 40◦ is carried out to perform the simulation analysis for various 

SNR levels. The results shown in Figures 6.19, 6.20 and 6.21 are the comparative perfor-

mance of the DOA estimation schemes of two wideband sources for 30 dB, 10 dB and 0 

dB SNR levels respectively. 

The normalized magnitude of the DOA estimation peaks is shown in the results of Figures 

6.19, 6.20 and 6.21. The actual DOA angles of the signal model are also shown in results 

for reference. The simulation results in the Figure 6.19 infer that, the ICM and CSSM 

methods estimate the DOA of two wideband sources with signifcantly different magni-

tudes. Also the accuracy of DOA estimation suffers when compared with the subband 

scheme of DOA estimation. The estimated DOAs through the subband technique correlate 

accurately with the DOA of modelled sources. Similar to the case of single source, results 

of DOA estimation by low subband component and high subband component overlap and 

amounting to an equal performance in the DOA estimation at higher SNR scenario. The 
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Figure 6.19: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = 10◦, and 
θ2 = 40◦ for 30 dB SNR 

Figure 6.20: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = 10◦, and 
θ2 = 40◦ for 10 dB SNR 
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Figure 6.21: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = 10◦, and 
θ2 = 40◦ for 0 dB SNR 

results of Figure 6.20 depict simulations for two wideband source with 10 dB SNR. The 

results show the inferior performance of the ICM and CSSM methods in the estimation 

of DOA of source at θ1 = 10◦ with poor accuracy. The DOA of source at θ2 = 40◦ is 

estimated with a lower magnitude. Difference in the magnitudes of the detection peaks 

of two sources is signifcant with ICM and CSSM. However, the consistency of DOA 

estimation with equal magnitudes of detected peaks of DOA of both sources realized with 

subband technique is noteworthy. The DOA estimation through high subband component 

shows a minor difference in the magnitude of detected peaks when compared with the low 

subband component. 

Figure 6.21 illustrates the estimation performance DOA of two wideband sources with 0 

dB SNR. The infuence of noise in the two wideband sources can be clearly seen in the 

results of Figure 6.21. The estimation of DOA by both ICM and CSSM is associated with 

poor accuracy and they exhibit reduced magnitude of detection peak. The low subband 

technique proves its consistent performance in the estimation of two DOA angles even at 0 

dB SNR. The high band component fails to estimate DOA of sources, since it is heavily 

infuenced by the additive noise. 
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6.6.2 Estimation of DOA of Two Wideband Sources θ1 = −10◦, and θ2 = 20◦ 

The consistent behaviour of the proposed subband based DOA estimation scheme of 

wideband signal is evaluated in comparison with incoherent and coherent schemes for 

various source angles and SNRs. The two wideband sources are modelled at θ1 = −10◦ , 

and θ2 = 20◦ . 

Figure 6.22: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = −10◦, and 
θ2 = 20◦ for 30 dB SNR 

The simulation for the above illustrated scenario and their results of DOA estimations 

of wideband signals are provided in the Figures 6.22, 6.23 and 6.24 for the SNR of 30 dB, 

10 dB and 0 dB respectively. These results depict, the clear distinction of DOA of two 

sources by the estimation through low band component of the subband approach. The high 

band component of subband approach fails to perform the estimation of DOA as well as in 

distinguishing sources at SNR lower than 10 dB. The coherent and incoherent approaches 

estimate the DOA of two sources with signifcantly different peak magnitudes for SNR of 

30 dB and 10 dB. They fail to estimate the DOA of the sources as well as in distinguishing 

sources at 0 dB SNR. 
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Figure 6.23: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = −10◦, and 
θ2 = 20◦ for 10 dB SNR 

Figure 6.24: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = −10◦, and 
θ2 = 20◦ for 0 dB SNR 
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6.6.3 Estimation of DOA of Two Wideband Sources θ1 = −30◦, and θ2 = 40◦ 

Further analysis is carried for the case of DOA estimation of two sources modelled at 

θ1 = −30◦, and θ2 = 40◦. The results of the simulations in the Figures 6.25 6.26 and 6.27 

are for the SNR of 30 dB, 10 dB and 0 dB respectively. The results of the simulations 

Figure 6.25: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = −30◦, and 
θ2 = 40◦ for 30 dB SNR 

shown in Figures 6.25, 6.26 and 6.27 are comparable with the previous simulation analysis. 

The consistent behaviour in the results of DOA estimation of wideband signal by subband 

based technique clearly reveal its utility in all the scenarios of SNR. 
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Figure 6.26: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = −30◦, and 
θ2 = 40◦ for 10 dB SNR 

Figure 6.27: DOA Estimation of Two Wideband Sources with the Signal Model θ1 = −30◦, and 
θ2 = 40◦ for 0 dB SNR 
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6.7 Simulation of 2D-DOA Estimation of Wideband Source by Using Subband Tech-
nique 

The discussion of the previous section was on the estimation of 1D-DOA of one or more 

wideband signals. The 2D-DOA estimation of wideband source using the proposed subband 

flter technique is carried to evaluate its performance with the conventional single polarized 

array and the proposed orthogonal polarized array confgurations in this section. 

6.7.1 Wideband Signal Model for 2D-DOA 

The 1D signal model for DOA estimation of wideband sources shown in Equation (2.61) 

can be extended for the case of 2D-DOA estimation, in which case both the elevation 

angle θ and azimuth angle φ are involved in the modelling. For the case of P number of 

far-feld wideband sources, observed by M antennas arranged in an array geometry with 

additive white Gaussian noise, the spectral output of the array of the wideband sources for 

frequency f and time sample t is given by the Equations (6.4) 

x( f , t) = A( f ,θ ,φ )s( f , t)+ n(t) (6.4) 

Where A( f ,θ ,φ) is array steering matrix of size P× M, whose columns are spanned by 

array steering vector a( f ,θ ,φ) for the frequency f . 

fH P 
x( f , t) = ∑∑ a( fi,θp,φp)sp( fi, t)+ n(t) (6.5) 

i= fL p=1 

Here the x( f , t) is the observation of wideband signal for frequencies ranging from fL to fHh iT 
at time instant t. The signal source s( fi, t) is represented as s1( f , t), s2( f , t), . . . ,sP( f , t) . 

The noise vector n(t) is spectrally and spatially uncorrelated. The noise is also uncorrelated 

with the source signals. The array manifold matrix of size M× P can be defned as h i 
A( f ,θ ,φ) = a( f ,θ1,φ1), a( f ,θ2,φ2), . . . ,a( f ,θP,φP) (6.6) 

The array manifold matrix has the array steering vector a( f ,θp,φp) for the pth source at 

frequency f in its columns space. The array steering vector for a elevation angle θ and 

azimuth angle φ for case of arbitrary array confguration is defned as h iT 
− j 2π f 

β1(θ ,φ ) − j 2π f
β2(θ ,φ) − j 2π f 

βM(θ ,φ)a( f ,θ ,φ) = e c , e c , · · · , e c (6.7) 

Where, 

βm (θ ,φ) = xm sin θ cos φ + ym sin θ sin φ + zm cos θ (6.8) 

177 



Here xm, ym and zm are co-ordinates of the mth antenna element positioned in the array. 

In case of antenna elements of linear array mounted along x-axis, its y and z co-ordinates 

of its elements will be zero. Similarly for a planar array mounted in x− y plane, the z 

co-ordinate will be zero. For three dimensional array or conformal array, all the three axes 

take their co-ordinate values. For the proposed orthogonal polarized array confgurations, 

the vertical and horizontal polarized components of the RWG denoted by Eφ ( f ,θ ,φ) and 

Ef ,θ (θ ,φ ) should be multiplied with the array steering vector for the respective polarized 

elements of the array and frequency f . 

The simulation analysis of the proposed subband technique for 1D-DOA estimation of 

wideband source is extended for the 2D-DOA by invoking the conventional single polarized 

UPA and the proposed orthogonal polarized array confgurations. The 2D-DOA for single 

wideband source is modelled for the DOA angles of θ = 15◦ and φ = 30◦. The simulation 

is performed for the estimation of 2D-DOA for the single wideband source for the modelled 

elevation angle θ and azimuth angle φ . 

6.7.2 2D-DOA Estimation of Wideband Source Using Conventional Single Polar-
ized UPA 

The conventional single polarized UPA discussed in the Chapter 4 is utilized for estimation 

of 2D-DOA of single wideband source modelled for 0 dB SNR. The results of the 2D-DOA 

estimation of wideband source with single polarized UPA are depicted in Figure 6.28. 
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Figure 6.28: 2D-DOA Estimation of Wideband Sources with Uniform Planar Array for the Signal 

Model θ = 15◦ and φ = 30◦ for 0 dB SNR 

Figure 6.29: 2D-DOA Estimation of Wideband Sources with Uniform Planar Array for the Signal 

Model θ = 15◦ and φ = 30◦ for 0 dB SNR - 2D View of Simulation Result 
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The spread of the profle of the detection peak above a certain magnitude can be clearly 

seen around the actual DOA angle in the 2D view of the result, depicted in Figure 6.29. 

Due to higher noise as well the single polarized array confguration, the performance of 

2D-DOA estimation of wideband source with singly polarized UPA is not satisfactory. 

6.7.3 2D-DOA Estimation of Wideband Source with OPPA 

The performance of 2D-DOA estimation of wideband source with OPPA has been analysed. 

The wideband signal model for OPPA confguration is performed for a single source with 

angles θ = 15◦ and φ = 30◦ . 

Figure 6.30: 2D-DOA Estimation of Wideband Sources with Orthogonal Polarized Planar Array for 

the Signal Model θ = 15◦ and φ = 30◦ for 0 dB SNR 
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Figure 6.31: 2D-DOA Estimation of Wideband Sources with Orthogonal Polarized Planar Array for 

the Signal Model θ = 15◦ and φ = 30◦ for 0 dB SNR - 2D View of Simulation Result 

The performance of 2D-DOA estimation of wideband source for 0 dB SNR using OPPA 

is shown in the Figure 6.30 and the same result is depicted in 2D view in Figure 6.31. The 

results of Figures 6.30 and 6.31 clearly indicate the reduction in the spread of profle of 

detection peak leading to less ambiguity in the estimated DOA angles. 

6.7.4 2D-DOA Estimation of Wideband Source with OMLA 

Without incorporating any changes, the wideband signal model of the previous subsection 

is extended to analyse the performance of OMLA confguration for 2D-DOA estimation of 

single wideband source. Keeping the 2D-DOA signal model same as in the previous array 

confguration, the 2D-DOA estimation of a wideband source has been carried out. 
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Figure 6.32: 2D-DOA Estimation of Wideband Sources with Orthogonal Mounted Linear Array for 

the Signal Model θ = 15◦ and φ = 30◦ for 0 dB SNR 

Figure 6.33: 2D-DOA Estimation of Wideband Sources with Orthogonal Mounted Linear Array for 

the Signal Model θ = 15◦ and φ = 30◦ for 0 dB SNR - 2D View of Simulation Result 
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The simulation results of 2D-DOA estimation of wideband signal using the OMLA are 

shown in Figure 6.32 and the 2D view is depicted in the Figure 6.33. The results of the 

simulation of Figures 6.32 and 6.33 confrm that the OMLA facilitates the reduction in the 

spread of detection profle leading to improved accuracy of 2D-DOA estimation. 

6.7.5 2D-DOA Estimation of Wideband Source with OPLA 

The OPLA is also evaluated for its performance in 2D-DOA estimation for the case of 

wideband signal scenario. The signal model for single wideband source used in the three 

previous array confguration is retained for the simulation. The simulation results of 

2D-DOA of wideband signal with OPLA are depicted in Figure 6.34. 

Figure 6.34: 2D-DOA Estimation of Wideband Sources with Orthogonal Polarized Linear Array 

for the Signal Model θ = 15◦ and φ = 30◦ for 0 dB SNR 
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Figure 6.35: 2D-DOA Estimation of Wideband Sources with Orthogonal Polarized Linear Array 

for the Signal Model θ = 15◦ and φ = 30◦ for 0 dB SNR - 2D View of Simulation Result 

The result of the simulation are also depicted in 2D view in Figure 6.35. The simulation 

results of the OPLA, in which the spread of the detection peak profle is slightly wide. when 

compared with the other two orthogonal polarized array confgurations. This wider spread 

is due to the linear arrangement of the array confguration. In the simulation results of 

2D-DOA of single wideband source using the four array confgurations discussed, SNR of 0 

dB has been considered. It is obvious to expect that the estimation performance of 2D-DOA 

using the discussed array confgurations will improve with increase in SNR. Appendix B 

thus for to presents additional results of 2D-DOA estimation of single wideband source 

at higher SNR values using various array confgurations. It is clearly evident from the 

simulation results, the orthogonal polarized array confguration is helpful in improving the 

2D-DOA estimation of wideband signals with improved accuracy when compared to the 

conventional single polarized UPA. 
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6.7.6 RMSE Performance Analysis of Subband Based 2D-DOA Estimation of Wide-
band Signal with Single and Orthogonal Polarized Array Confgurations 

From the analysis of simulation results of the previous subsections, it is clear that the 

proposed wideband DOA estimation scheme based on subband flter exhibits consistency 

and superiority in the 1D-DOA estimation in all SNR scenarios. This subbanding technique 

is further analysed for its RMSE performance for the range of SNRs using the conventional 

single and the proposed orthogonal polarized array confgurations. The wideband signal 

model for the conventional single polarized UPA and the proposed orthogonal polarized 

array confgurations namely, OPPA, OMLA and OPLA modelled in the previous subsec-

tions is used for RMSE analysis. The DOA for the wideband signal model is carried for 

θ = 15◦ and φ = 30◦. This wideband signal model is subjected for the analysis invoking 

the proposed subbanding technique for the wideband 2D-DOA estimation at 0 to 30 dB 

SNR scenarios. As per the previous analysis, the low band signal component for the 

estimation of DOA of the wideband source is utilized and the estimation through high band 

signal components is ignored in the simulation. 

Figure 6.36: RMSE Comparison for θ Angle Estimation of 2D-DOA Estimation of Wideband 

Signal for Single and Orthogonal Polarized Array Confgurations 
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Figure 6.37: RMSE Comparison for φ Angle Estimation of 2D-DOA Estimation of Wideband 

Signal for Single and Orthogonal Polarized Array Confgurations 

The RMSE performance of DOA estimation of wideband signal for both the θ and φ 

angles of 2D-DOA is analysed for 0 to 30 dB SNR scenarios. The results of the RMSE 

performance of θ and φ angles of 2D-DOA estimations are illustrated in Figures 6.36 and 

6.37 respectively. Comparison of the wideband estimation performance is seen individually 

for the elevation angle θ and the azimuth angle φ estimations for the single and orthogonal 

polarizes array confgurations. The analysis of infuence of array confguration on the 

2D-DOA estimation presented in the previous chapters for narrow band cases and tracking 

performances has been extended for the case of wideband sources also. At lower SNR, the 

estimation of φ angle is less accurate when compared to the estimation ofθ angle. The 

single polarized UPA confguration is more prone for error in the estimation of azimuth 

φ angle, when compared to the proposed orthogonal array confgurations. The OMLA 

and OPPA confgurations are better in their performance. These two array confgurations 

show almost similar performance with least RMSE in their θ and φ angle estimation. The 

OPLA suffers slightly due to its linear geometric arrangement in the 2D-DOA estimation. 

However OPLA shows improved DOA estimation of wideband source when compared 

with the azimuth angle φ estimation of conventional single polarized UPA confguration. 
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6.8 Simulation of 2D-DOA Estimation of Two Wideband Source by Using Subband 
Technique 

The simulation analysis of the proposed subband technique for DOA of wideband source is 

further extended for the 2D-DOA of two wideband sources. The two wideband incoming 

sources and the estimation of 2D-DOA are carried by invoking the conventional single 

polarized UPA and the proposed orthogonal polarized arrays. The 2D-DOA for two 

wideband sources are modelled for the DOA angles (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , 

φ2 = 65◦). 

6.8.1 2D-DOA Estimation of Two Wideband Sources with Conventional Single Po-
larized UPA 

The conventional single polarized UPA discussed in the previous chapters is utilized for 

estimation of 2D-DOA of two wideband sources modelled for 0 dB SNR. The results of the 

2D-DOA estimation with single polarized UPA are shown in Figure 6.38. The magnitudes 

of detection peaks corresponding to 2D-DOA of two sources are different. Additional 

fctitious peak is also seen in the results leading to ambiguity in the estimation of 2D-DOA. 

Figure 6.38: 2D-DOA Estimation of Two Wideband Sources with Uniform Planar Array for the 

Signal Model (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 0 dB SNR 
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Figure 6.39: 2D-DOA Estimation of Two Wideband Sources with Uniform Planar Array for the 

Signal Model (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 0 dB SNR - 2D View of 

Simulation Result 

A spread of peak magnitudes around the DOA of the two modelled wide band sources 

are seen in results of Figure 6.39. The additional peak at angle (−50◦ ,−30◦) is a spurious 

peak. The availability of only single polarized component, uniform covariance of the 

received data as well as the lack of provision for further reduction of inter-element spacing 

induce the additional spurious peak in the estimation. Also, the results of the simulation at 

higher SNR also confrm that the magnitude of spurious peak is not reducing. The results 

of 2D-DOA estimation at higher SNR scenario are shown in Figures C.1, C.2, C.3, C.4, 

C.5 and C.6 of Appendix C. 

6.8.2 2D-DOA Estimation of Two Wideband Sources with OPPA 

The proposed OPPA confguration is evaluated for its performance in estimating the 2D-

DOA of two wideband sources. The results of the 2D-DOA estimation with two wideband 

sources are presented in Figure 6.40 for 0 dB SNR. 
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Figure 6.40: 2D-DOA Estimation of Two Wideband Sources with Orthogonal Polarized Planar 

Array for the Signal Model (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 0 dB SNR 

Figure 6.41: 2D-DOA Estimation of Two Wideband Sources with Orthogonal Polarized Planar 

Array for the Signal Model (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 0 dB SNR - 2D 

View of Simulation Result 
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The 2D view of the simulation results is depicted in Figure 6.41. The results of Figures 

6.40 and 6.41 show that the OPPA facilitates the improved estimation of the 2D-DOA of 

two wideband sources without any spurious peak. The improved estimation of the two 

sources despite the case of 0 dB SNR is accomplished, due to the availability of the data 

covariances of both the vertical and horizontal polarized components along both x and 

y axes. The improved results of the estimation of 2D-DOA of two wideband sources, 

estimated through OPPA at higher SNRs are presented in Figures C.7, C.8, C.9, C.10, C.11 

and C.12 of Appendix C. 

6.8.3 2D-DOA Estimation of Two Wideband Sources with OMLA 

The 2D-DOA estimation of two wideband sources is also accomplished with the proposed 

OMLA. The two wideband sources of the simulations are modelled for 0 dB SNR. The 

results of 2D-DOA estimation of two wideband sources are shown in Figure 6.42. The 

same results are also captured in 2D view in Figure 6.43 to get the additional information 

on the spread of the detection peaks. 

Figure 6.42: 2D-DOA Estimation of Two Wideband Sources with Orthogonal Mounted Linear 

Array for the Signal Model (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 0 dB SNR 
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Figure 6.43: 2D-DOA Estimation of Two Wideband Sources with Orthogonal Mounted Linear 

Array for the Signal Model (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 0 dB SNR - 2D 

View of Simulation Result 

The results of Figure 6.42 reveal the higher magnitudes of detection peaks. The OMLA 

has limited covariance data of both the horizontal and vertical polarized components in 

both the x and y axes. In addition, the wideband nature of the two sources at 0 dB SNR, 

the spurious peaks of Figure 6.42 with reduced magnitudes than the peaks corresponding 

to the actual DOA of sources can be seen in the results. However, the magnitude of these 

spurious peak diminish as SNR of the data covariances increases. The results of diminishing 

magnitude of spurious peaks at higher SNRs can be seen in the results presented Figures 

C.13, C.14, C.15, C.16, C.17 and C.18 in Appendix C. 

6.8.4 2D-DOA Estimation of Two Wideband Sources with OPLA 

The simulation of 2D-DOA estimation is also carried for the proposed OPLA, keeping the 

same DOA angles of the source modelling. The estimation performance of 2D-DOA with 

OPLA as well as the corresponding detection peak and the spread of profle of detection 

peak can be seen in the results of Figure 6.44 and 6.45 respectively. 
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Figure 6.44: 2D-DOA Estimation of Two Wideband Sources with Orthogonal Polarized Linear 

Array for the Signal Model (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 0 dB SNR 

Figure 6.45: 2D-DOA Estimation of Two Wideband Sources with Orthogonal Polarized Linear 

Array for the Signal Model (θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 0 dB SNR - 2D 

View of Simulation Result 
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The results of Figure 6.44 and 6.45 indicate more spread in the estimation profle of 

the two DOA sources at low SNR (0 dB). There is a wider spread of the two detected 

peaks corresponding to the estimated DOA angles. The samples received through the array 

elements of OPLA will have the data covariance of both vertical and horizontal polarized 

components along one (x) axis only. The non-availability of the data covariance along the 

y axis of 2D-DOA estimation leads to spread of the peak magnitudes in the DOA of the 

two sources. However, the reduction in spread of estimation peaks is evident in the results 

of the higher SNR simulation shown in the Figures C.19, C.20, C.21, C.22, C.23 and C.24 

of Appendix C. 

6.9 Summary 

This chapter dealt with extension of DOA estimation technique of narrow band signal to 

wideband signal source. A detailed discussion on formulation of analysis for wideband 

DOA estimation based on incoherent, coherent and subband fltering techniques is presented 

in this chapter. Results of numerous simulation studies have been presented in the chapter 

to analyse the performance of the proposed wideband technique under the scenarios of low, 

moderate and high SNR. Through the simulation studies, it is evidently clear that only the 

proposed subband fltering is able to estimate the DOA of wideband signal consistently 

for all the SNR scenarios. A signifcant computation time reduction (20 times faster than 

incoherent and 27 times faster than CSSM) is realized for the proposed subband flter based 

DOA estimation of wideband sources when compared with conventional incoherent and 

coherent schemes. 

Further, it is noticed that the DOA estimation derived through the low band component of 

the subband fltering technique is accurate and shows the consistency at all SNR scenarios. 

The DOA estimation derived through the high band component of the subband flter 

cannot be relied upon particularly at low SNR scenarios such as 0 dB. The infuence of 

the geometrical confguration of the array on the accuracy of wideband DOA estimation 

has been analysed using the 4 array confgurations which have been dealt in chapters 

3 and 4 of this thesis. From the presented comparative analysis of DOA estimation 

through orthogonally polarized array confgurations, it is inferred that OPPA has better 

DOA estimation capability because of the presence of spatial phase variation in its array 

confguration (along both the axes). In addition to OPPA, OMLA also exhibits better 

performance in 2D-DOA estimation, since its geometrical confguration is a limiting case 
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of OPPA. The performance of the 2D-DOA of wideband sources with OPPA has been 

found to be more accurate and consistent for various simulation scenarios. 
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Chapter 7 

Conclusions 

This chapter intends to summarize and facilitate recapitulation of succinct summary, 

inferences, technical conclusions derived out of the undertaken research study of this thesis. 

The potential avenues for further explorations and investigations of the research study 

presented in this thesis are also emphasised. 

7.1 Research Summary 

The topic of parameter estimation has attracted many researchers over the past several 

decades. The estimation of the parameter DOA and its multi disciplinary approach pose 

challenges to RF and signal processing engineers. The estimation of DOA of electromag-

netic sources continues to warrant the performance improvement of the DOA estimation 

algorithms dealing with single and multiple sources. In addition, there is a greater emphasis 

for tracking of DOA of dynamic sources. There is growing need to extend the DOA 

estimation algorithms established for narrow band sources to wideband sources. There 

is always a desirable need to minimize the computational complexity of proven DOA 

algorithms without compromising the accuracy and reliability. 

In this context, this research was motivated towards the utilization of orthogonal polarized 

antenna array confgurations for the improvement of accuracy and resolution of DOA 

estimation invoking the classical MUSIC algorithm. By utilizing orthogonal polarized 

elements of the antenna array, a closed form solution was derived for the estimation of 

2D-DOA with 1D search technique to realize reduced computation complexity. This thesis 

proposes novel orthogonally polarized array confgurations to facilitate enhanced accuracy 

and resolution of 2D-DOA estimation algorithms for single and multiple sources. The 

novel orthogonal polarized array confgurations include OPLA, OPPA and OMLA. 

The improved capability of distinguishing two closely spaced sources is realized with 

the proposed orthogonal polarized arrays when compared to single polarized UPA con-

fguration. This thesis also analysed the proposed array confgurations for their potential 
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in tracking of 2D-DOA of sources. The combination of orthogonally polarized array 

confgurations and the conventional MUSIC algorithm is extended to analyse the tracking 

behaviour of 2D-DOA estimation of dynamic sources. Further, this thesis also covered 

the development of 1D and 2D-DOA estimation of wideband sources using the proposed 

orthogonally polarized array confgurations. A novel subbanding technique for wideband 

DOA technique was proposed and its improved performance was substantiated through a 

comparative study involving conventional algorithms for estimation of DOA of wideband 

sources. 

7.2 Conclusions 

The technical observations, inferences, original contributions and conclusions of this 

research are briefy reviewed in the following subsections. 

7.2.1 Formulation of Closed Form solution for 2D-DOA Estimation with OPLA 

Formulation of an analysis to derive the closed form expression for the estimation of 

2D-DOA of a single source using the linear array confguration constituted the primary 

theme of the 3rd chapter of this thesis. Under the purview of this topic, the following 

conclusions can be derived from the simulation studies. 

• The OPLA confguration can be used to estimate the DOA with classical subspace 

based MUSIC algorithm. The derived closed form expression can be used along 

with the classical subspace based technique to estimate the 2D-DOA. The search 

dimensions are reduced from 2D to 1D thereby minimizing the computational 

complexity involved in 2D-DOA estimation. 

• The derived solution estimates both azimuth and elevation angles of distant sources 

utilizing a linear array confguration. The proposed one-dimensional search is a 

consequence of utilizing the linear array confguration with its alternate elements 

orthogonally polarized. 

• The distinct feature of the proposed one-dimensional search technique leading to a 

signifcant reduction in the computation time for two-dimensional DOA estimation 

using MUSIC algorithm has been illustrated through the simulation studies. 
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• The proposed formulation can be extended to any other antenna whose radiation 

pattern can be represented through an analytical expression involving separable form 

of elevation angle θ and azimuth angle φ . 

• Simulation results of 2D-DOA obtained with conventional single polarized UPA (2× 

2) have been correlated with those obtained through OPLA and very good correlation 

exists between the results of the above two array confgurations. The proposed 

one-dimensional search technique has resulted in an acceleration of computation 

time by factors of 50 and 150 for 1◦ and 0.5◦ search intervals respectively. 

7.2.2 2D-DOA Estimation with Orthogonal Polarized Arrays 

Formulation of an analysis to estimate the 2D-DOA of multiple sources with enhanced 

accuracy and improved resolution is the main focus of the 4th chapter of this thesis. 

• The simulations and analysis have been carried out to confrm that the orthogonally 

polarized elements of antenna array have signifcant infuence in the accuracy and 

resolution of the estimation of 2D-DOA. 

• The proposed OPLA as a physical arrangement can be treated as a linear array. Thus 

a linear array confguration and its ability to estimate the 2D-DOA is the novel part 

of the proposed OPLA. 

• The proposed confguration of OPPA has improved accuracy of estimation of 2D-

DOA when compared with single polarized UPA. 

• The proposed OMLA confguration estimates the two DOA sources with higher 

magnitudes when compared with the other proposed orthogonally polarized and 

conventional UPA confguration. 

• The improved capability of the orthogonally polarized arrays in distinguishing the 

closely spaced sources is also substantiated through the simulation studies. 

• The OPPA and the OMLA clearly distinguish the DOA of sources with minimum 

angular separation of 10◦ . The conventional single polarized UPA confguration 

could resolve the two sources whose angular separation was 18◦ or more, which is 

inferior when compared with the proposed OPPA and OMLA confgurations. 
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• The orthogonally polarized linear elements resolve DOA of the two sources with 

angular separation of 10◦ with increased inter-element spacing. 

• The consistent accurate estimation of the 2D-DOA for two sources and three sources 

under high, medium and low SNR scenario with the proposed orthogonally polarized 

array confgurations and the derivable higher resolution have been substantiated from 

the simulation analysis. 

7.2.3 Orthogonal Polarized Arrays for Tracking of 2D-DOA for Dynamic Sources 

The primary emphasis of the 5th chapter of this thesis has been the extension of the analysis 

of the orthogonally polarized array confgurations to track the 2D-DOA of dynamic sources 

using different schemes of formation of covariance matrix. 

• The simulation analysis of tracking behaviour of 2D-DOA with the conventional 

single polarized and orthogonal polarized array confgurations has been carried out. 

The tracking behaviour of 2D-DOA estimation algorithms is analysed by comparing 

the computed MSE between true trajectory and estimated trajectory. 

• The MSE for θ and φ angles of tracking the estimation of 2D-DOA is computed by 

utilizing the different approaches in the formation of data covariance matrix such as 

instantaneous samples approach, weighting factor and forgetting factor approaches. 

• The results of the analysis are tabulated for the low, medium and high SNR scenarios 

in the Table 5.1. The comparative analysis reveals, that the OPPA outperforms the 

other array confgurations with least MSE in the 2D-DOA estimation and as well as 

in tracking of 2D-DOA estimation. 

• The OMLA performs better, when compared to UPA and OPLA confgurations. 

• The OPLA performs almost equally with UPA at medium and high SNR scenarios. 

Due to the linear geometric confguration, the OPLA shows, a small degradation in 

θ estimations when compared to UPA at low SNR. 

• The forgetting factor approach in the covariance matrix formation tracks the 2D-DOA 

estimation more accurately when compared to instantaneous samples and weighting 

factor approaches. 
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7.2.4 Subband Filter Technique for DOA Estimation of Wideband Sources 

The various analytical and simulation studies on DOA estimation of narrow band sources 

have been extended to the scenario of wideband signal too. The conclusions derived from 

the pertinent simulation studies on the estimation of 2D-DOA of wideband sources are 

presented in this subsection. 

• The subband flter approach for DOA estimation of wideband source is proposed 

and the performance of estimation of DOA of the proposed approach has been 

compared with conventional wideband DOA estimation methods namely incoherent 

and coherent signal subspace methods. 

• The comparative analysis of the proposed subband flter based wideband DOA 

estimation scheme outperforms the conventional incoherent and coherent signal 

subspace method. 

• A signifcant reduction in computation time (20 times faster than incoherent and 

27 times faster than CSSM) is realized for the proposed subband flter based DOA 

estimation of wideband sources. 

• The proposed two subband flter approach yields the DOA estimation through the 

two components namely low band and high band signals. The estimation of DOA 

derived through the signal component of low band exhibits satisfactory performance 

in low, medium and high SNR scenarios including the case of 0 dB. 

• The accuracy of the estimation of DOA of wideband signal through incoherent 

and coherent methods as well as through the high band signal of the subband flter 

approach is satisfactory only in high SNR. However they have the limitation of 

degraded performance in low and medium SNR cases. 

• Among the various array confgurations used in the estimation of DOA of wideband 

sources, the OPPA and OMLA exhibit the feature of improved estimation through 

low RMSE even in low SNR scenario. 

• The performance analysis of DOA estimation of two wideband signals has also 

been carried out using the proposed subband flter approach and the simulation 

results reveal the relative performance improvement compared to the conventional 

incoherent and coherent subspace methods. 

199 



• The accuracy of 2D-DOA estimation of wideband sources obtained through the 

signal component of low band is consistently better when compared to the other 

approaches cited above and the relative performance accuracy is signifcantly higher 

particularly in medium and low SNR scenarios. 

• The conventional single polarized UPA exhibits spurious peaks at an arbitrary DOA 

angle which tend to mislead the DOA estimation, whereas the proposed orthogonal 

array confgurations estimate the DOA angles of the sources without spurious peaks. 

• The orthogonally polarized array confgurations proposed in this thesis continue 

to facilitate better performance of the 2D-DOA estimation of two wideband signal 

sources. 

7.3 Contributions 

The following are the contributions of this thesis whose emphasis is on the estimation and 

tracking of 2D-DOA applying MUSIC algorithm. 

• Derivation of the closed form expression for the estimation of 2D-DOA of a single 

source using the orthogonally polarized linear array confguration. 

• Novel orthogonal polarized array confgurations for improved accuracy and resolu-

tion estimation of 2D-DOA. 

• Improved tracking accuracy of 2D-DOA estimation by utilizing orthogonal polarized 

array confgurations as well as forgetting factor approach based covariance matrix. 

• Enhanced accuracy in estimation of 2D-DOA of wideband sources by invoking 

subband flter approach. 

7.4 Suggestions for Future Work 

Research is a voyage of discovery. It is a path for unknown to the known and at times, 

known to the unknown. The philosophy of research always provides impetus to look for 

avenues to enhance the scope of current state of knowledge and understanding of any topic 

of interest to research community. With these words, potential avenues to further advance 

the research topic of this thesis are highlighted. 
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7.4.1 Orthogonal Polarized Arrays 

• Like the rectangular waveguides as antenna, chosen in this thesis, other potential 

waveguides and antenna elements suitable to be applied for DOA estimation can be 

explored for their utility in orthogonal polarized array confguration for estimation 

of 2D-DOA. 

• Invoking dual polarized antenna elements for DOA estimation by simultaneous 

reception of both the horizontal and vertical polarized components might yield 

novelty as well as paving the way for a new direction in modelling of antenna arrays 

and signal processing algorithms. 

• Analysis to investigate the infuence of mutual coupling of the various array confgu-

rations proposed in this thesis is yet to be formalised and the same can constitute a 

signifcant part for the future work. 

7.4.2 Tracking of 2D-DOA 

• The repeated computation of SVD during the tracking of 2D-DOA can be cir-

cumvented by the Bi-SVD and modifed Bi-SVD algorithms for reduction in the 

computation complexity. 

• An implicit assumption of linear movement of the DOA sources is associated with the 

research of this thesis. However, tracking of estimation of 2D-DOA with non-linear 

movements of non-stationary signal sources is worth pursuing further. 

• The extraction of DOA information and tracking the estimation of DOA in the 

presence of non-linear movements of single and multiple signal sources in a dynamic 

changing environment pose signifcant challenges in the estimation algorithm. 

• A forgetting factor based smoothing of covariance data matrix is carried out in 

this thesis. Further a prediction based tracking algorithm for linear and non-linear 

movements of non-stationary DOA sources can be analysed by invoking Kalman 

Filter and Extended Kalman Filter based techniques. 

• A Gaussian white noise process is utilized for the simulation analysis in most of this 

thesis. Instead consideration of a non-Gaussian noise with non-linearity in the signal 

model is a worth while exercise of practical signifcance. 
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7.4.3 Wideband DOA Estimation Techniques 

• The proposed two subband approaches can be extended to multiple flter bank 

approach for further improvements in estimation of DOA of wideband sources. 

• The polyphase decomposition scheme in the multirate flter bank approaches may 

offer potential scope for improvements in the estimation of DOA of wideband 

sources. 

• The Short Time Fourier Transform (STFT), Wavelet Filters and Gabor Filters can 

also be incorporated in estimation of DOA of wideband sources. 
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APPENDIX A 

Mutual Coupling Analysis of RWG 

This appendix is aimed to present the simulation studies pertaining to the mutual coupling 

between the RWG elements when confgured in linear array and OPLA confguration. The 

simulation results presented in this appendix clearly substantiate the desirable feature of 

reduced mutual coupling between the RWG elements when confgured as OPLA. 

A.1 Analysis of Mutual Coupling 

The simulation analysis of mutual coupling between antennas involves the geometric 

modelling of the radiating structure of the antennas. For the purpose of simulation analysis, 

the following dimensions of X band RWG have been assumed for standard RWG operating 

in dominant TE10 mode. The width a = 2.32 cm and height b = 1 cm. The linear array 

confguration with two RWG elements is shown in Figure A.1. 

Figure A.1: Mutual Coupling of Rectangular Waveguide Array for Conventional Linear Arrange-
ment for Two Elements 

In Figure A.1 the edge to edge separation between the two RWGs is denoted by d. With 

this arrangement of the array, the inter-element spacing between the center of aperture 

of the two RWGs d + a neglecting the wall thickness. Traditionally the elements of the 

antenna array are assumed to be point sources and physical dimensions of the antenna are 

not considered in the analysis. However, in this thesis, the inter-element spacing between 

the successive elements includes the edge to edge separation and the relevant physical 
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Figure A.2: Mutual Coupling of Rectangular Waveguide Array for Orthogonal Arrangement for 
Two Elements 

dimensions of the waveguide. As a consequence, the usual constraint of λ 
4 ≤ d ≤ λ 

2 cannot 

be satisfed, λ being wavelength. The geometry of the RWG elements of linear array of 

Figure A.1 is modelled in Empire 3D EM solver which is based on FDTD technique. 

The S parameters (S12 or S21) corresponding to the mutual coupling between the two 

Table A.1: Mutual Coupling Analysis between the Rectangular Waveguides 

Inter-element 
Spacing d in mm 

Mutual Coupling in 
Conventional Uniform 

Linear Array 

Mutual Coupling in 
Orthogonal Polarized 

Array 
16 mm 
8 mm 
4 mm 
2 mm 
0 mm 

-40 dB 
-38 dB 
-30 dB 
-25 dB 
-20 dB 

-98 dB 
-95 dB 
-86 dB 
-85 dB 
-85 dB 

RWGs are simulated by varying the value of d. For the simulation studies, the frequency 

of operation is 9.375 GHz. In the second confguration of linear array comprising the two 

RWGs, the two elements are oriented as shown in Figure A.2 to ensure that one of the 

RWGs receives only vertical or azimuth polarization and the other RWG receives only 

horizontal or elevation polarization. In Figure A.2 also d refers to the distance between the 

edges of the two RWGs. The S parameters corresponding to the mutual coupling between 

the RWGs of the Figure A.2 are simulated for various values of d which are identical to the 

ones used in earlier simulation pertaining to array shown in Figure A.1. Table A.1 presents 

a comparative performance of the mutual coupling exhibited by the two different array 

confgurations shown in Figure A.1 and A.2. From the simulation results of the Table A.1 

it is evident that the mutual coupling between the two RWGs of array shown in Figure 

204 



A.1 varies between -20 dB and -40 dB for the chosen range of d. For the same chosen 

range of d the mutual coupling between the adjacent elements of the array shown in Figure 

A.2 ranges between -85 dB and -98 dB. The reduced mutual coupling between the RWGs 

of Figure A.2 is attributed to relative orthogonal orientation of the two RWGs. In Table 

A.1 the scenario of d = 0 corresponds to the case of the two RWGs touching each other 

through the side walls. In a physical arrangement of RWGs, the two elements cannot be 

brought any closer than with d = 0. The results of Table A.1 show that the orthogonally 

oriented adjacent elements (Figure A.2) experience a mutual coupling -85 dB when the 

two RWGs touch each other. For an analogous case of two RWGs in conventional linear 

array confguration (Figure A.1), the mutual coupling between them is -20 dB at d = 0. 

This clearly indicates that the relative orthogonal orientation of adjacent elements results 

in signifcant reduction in the mutual coupling which is desirable for improved accuracy of 

DOA estimation. Therefore the novel orthogonal polarized array confgurations proposed 

in this thesis namely OPLA, OPPA and OMLA are featured with reduced mutual coupling 

between the adjacent elements even when they are in very proximity. 
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APPENDIX B 

Results of Estimation of 2D-DOA of Single Wideband Source for 

different SNRs 

Additional simulation results pertaining to the estimation of 2D-DOA of single wideband 

source are presented in this Appendix. The improved accuracy and reliability of the MUSIC 

based DOA estimation algorithm using various orthogonally polarized array confgurations 

are illustrated for varying SNR scenario. All the results presented in this Appendix are 

obtained through subband based technique of DOA estimation of single wideband source. 

In particular, only low band signal component of the subband technique is considered in 

the simulation results presented in this Appendix. 
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B.1 Estimation of 2D-DOA of Single Wideband Source With Conventional Single 
Polarized UPA 

Figure B.1: 2D DOA Estimation of Single Wideband Source with UPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 10 dB SNR 

Figure B.2: 2D DOA Estimation of Single Wideband Source with UPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 10 dB SNR - 2D View of Simulation Result 
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Figure B.3: 2D DOA Estimation of Single Wideband Source with UPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 20 dB SNR 

Figure B.4: 2D DOA Estimation of Single Wideband Source with UPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 20 dB SNR - 2D View of Simulation Result 
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Figure B.5: 2D DOA Estimation of Single Wideband Source with UPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 30 dB SNR 

Figure B.6: 2D DOA Estimation of Single Wideband Source with UPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 30 dB SNR - 2D View of Simulation Result 
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B.2 Estimation of 2D-DOA of Single Wideband Source With OPPA 

Figure B.7: 2D DOA Estimation of Single Wideband Source with OPPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 10 dB SNR 

Figure B.8: 2D DOA Estimation of Single Wideband Source with OPPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 10 dB SNR - 2D View of Simulation Result 
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Figure B.9: 2D DOA Estimation of Single Wideband Source with OPPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 20 dB SNR 

Figure B.10: 2D DOA Estimation of Single Wideband Source with OPPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 20 dB SNR - 2D View of Simulation Result 
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Figure B.11: 2D DOA Estimation of Single Wideband Source with OPPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 30 dB SNR 

Figure B.12: 2D DOA Estimation of Single Wideband Source with OPPA for the Signal Model 

θ = 15◦ and φ = 30◦ for 30 dB SNR - 2D View of Simulation Result 
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B.3 Estimation of 2D-DOA of Single Wideband Source With OMLA 

Figure B.13: 2D DOA Estimation of Single Wideband Source with OMLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 10 dB SNR 

Figure B.14: 2D DOA Estimation of Single Wideband Source with OMLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 10 dB SNR - 2D View of Simulation Result 
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Figure B.15: 2D DOA Estimation of Single Wideband Source with OMLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 20 dB SNR 

Figure B.16: 2D DOA Estimation of Single Wideband Source with OMLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 20 dB SNR - 2D View of Simulation Result 
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Figure B.17: 2D DOA Estimation of Single Wideband Source with OMLA for Signal Model 

θ = 15◦ and φ = 30◦ for 30 dB SNR 

Figure B.18: 2D DOA Estimation of Single Wideband Source with OMLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 30 dB SNR - 2D View of Simulation Result 
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B.4 Estimation of 2D-DOA of Single Wideband Source With OPLA 

Figure B.19: 2D DOA Estimation of Single Wideband Source with OPLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 10 dB SNR 

Figure B.20: 2D DOA Estimation of Single Wideband Source with OPLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 10 dB SNR - 2D View of Simulation Result 
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Figure B.21: 2D DOA Estimation of Single Wideband Source with OPLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 20 dB SNR 

Figure B.22: 2D DOA Estimation of Single Wideband Source with OPLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 20 dB SNR - 2D View of Simulation Result 
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Figure B.23: 2D DOA Estimation of Single Wideband Source with OPLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 30 dB SNR 

Figure B.24: 2D DOA Estimation of Single Wideband Source with OPLA for the Signal Model 

θ = 15◦ and φ = 30◦ for 30 dB SNR - 2D View of Simulation Result 
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APPENDIX C 

Results of Estimation of 2D-DOA of Two Wideband Sources for 

different SNRs 

Appendix C is an extension of the previous Appendix B. While the focus of the Appendix 

B was on the estimation of DOA of a single wideband source, this Appendix is intended 

to present additional simulation results pertaining to the estimation of 2D-DOA of two 

wideband sources. All the other introductory remarks of Appendix B are valid for this 

Appendix also. 

C.1 Estimation of 2D-DOA of Two Wideband Sources With Conventional Single 
Polarized UPA 

Figure C.2: 2D DOA Estimation of Two Wideband Sources with UPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 10 dB SNR - 2D View of Simulation Result 
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Figure C.3: 2D DOA Estimation of Two Wideband Sources with UPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 20 dB SNR 

Figure C.4: 2D DOA Estimation of Two Wideband Sources with UPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 20 dB SNR - 2D View of Simulation Result 
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Figure C.5: 2D DOA Estimation of Two Wideband Sources with UPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 30 dB SNR 

Figure C.6: 2D DOA Estimation of Two Wideband Sources with UPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 30 dB SNR - 2D View of Simulation Result 

221 



Figure C.1: 2D DOA Estimation of Two Wideband Sources with UPA for the Signal Model 
(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 10 dB SNR 
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C.2 Estimation of 2D-DOA of Two Wideband Sources With OPPA 

Figure C.7: 2D DOA Estimation of Two Wideband Sources with OPPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 10 dB SNR 

Figure C.8: 2D DOA Estimation of Two Wideband Sources with OPPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 10 dB SNR - 2D View of Simulation Result 
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Figure C.9: 2D DOA Estimation of Two Wideband Sources with OPPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 20 dB SNR 

Figure C.10: 2D DOA Estimation of Two Wideband Sources with OPPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 20 dB SNR - 2D View of Simulation Result 
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Figure C.11: 2D DOA Estimation of Two Wideband Sources with OPPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 30 dB SNR 

Figure C.12: 2D DOA Estimation of Two Wideband Sources with OPPA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 30 dB SNR - 2D View of Simulation Result 

225 



C.3 Estimation of 2D-DOA of Two Wideband Sources With OMLA 

Figure C.13: 2D DOA Estimation of Two Wideband Sources with OMLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 10 dB SNR 

Figure C.14: 2D DOA Estimation of Two Wideband Sources with OMLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 10 dB SNR - 2D View of Simulation Result 
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Figure C.15: 2D DOA Estimation of Two Wideband Sources with OMLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 20 dB SNR 

Figure C.16: 2D DOA Estimation of Two Wideband Sources with OMLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 20 dB SNR - 2D View of Simulation Result 
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Figure C.17: 2D DOA Estimation of Two Wideband Sources with OMLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 30 dB SNR 

Figure C.18: 2D DOA Estimation of Two Wideband Sources with OMLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 30 dB SNR - 2D View of Simulation Result 
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C.4 Estimation of 2D-DOA of Two Wideband Sources With OPLA 

Figure C.19: 2D DOA Estimation of Two Wideband Sources with OPLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 10 dB SNR 

Figure C.20: 2D DOA Estimation of Two Wideband Sources with OPLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 10 dB SNR - 2D View of Simulation Result 
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Figure C.21: 2D DOA Estimation of Two Wideband Sources with OPLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 20 dB SNR 

Figure C.22: 2D DOA Estimation of Two Wideband Sources with OPLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 20 dB SNR - 2D View of Simulation Result 
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Figure C.23: 2D DOA Estimation of Two Wideband Sources with OPLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 30 dB SNR 

Figure C.24: 2D DOA Estimation of Two Wideband Sources with OPLA for the Signal Model 

(θ1 = 52◦ , φ1 = 28◦) and (θ2 = 40◦ , φ2 = 65◦) for 30 dB SNR - 2D View of Simulation Result 
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