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Abstract

The ability to perceive and interpret human emotions is an essential as-

pect of daily life. The recent success of deep learning (DL) has resulted

in the ability to utilize automated emotion recognition by classifying af-

fective modalities into a given emotional state. Accordingly, DL has set

several state-of-the-art benchmarks on static affective corpora collected

in controlled environments. Yet, one of the main limitations of DL based

intelligent systems is their inability to generalize on data with nonuniform

conditions. For instance, when dealing with images in a real life scenario,

where extraneous variables such as natural or artificial lighting are sub-

ject to constant change, the resulting changes in the data distribution

commonly lead to poor classification performance. These and other con-

straints, such as: lack of realistic data, changes in facial pose, and high

data complexity and dimensionality increase the difficulty of designing DL

models for emotion recognition in unconstrained environments.

This thesis investigates the development of deep artificial neural net-

work learning algorithms for emotion recognition with specific attention

to illumination and facial pose invariance. Moreover, this research looks

at the development of illumination and rotation invariant face detection

architectures based on deep reinforcement learning.

The contributions and novelty of this thesis are presented in the form

of several deep learning pose and illumination invariant architectures that

offer state-of-the-art classification performance on data with nonuniform

conditions. Furthermore, a novel deep reinforcement learning architecture

for illumination and rotation invariant face detection is also presented.

The originality of this work is derived from a variety of novel deep learning

paradigms designed for the training of such architectures.
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Chapter 1

Introduction

The recent success of deep learning in signal and vision processing related tasks has

opened a pathway for the development of intelligent systems capable of reacting to a

user’s state of mind by recognizing their emotions. Human emotions are an impor-

tant aspect of every day life and are fundamental for meaningful social interaction.

Therefore, it is imperative that automated emotion recognition systems provide good

degrees of recognition performance, for instance to avoid misinterpreting a person’s

state of mind.

This thesis explores the development of novel deep artificial neural network archi-

tectures and learning paradigms for emotion recognition from facial expression images.

Furthermore, it explores the development of a novel deep reinforcement learning archi-

tecture for face detection. The work presented in this thesis takes into consideration

the limitations of contemporary state-of-the-art machine learning models designed

for face and facial expression recognition and aims to address illumination, face pose,

and face rotation invariance, as commonly encountered in real life scenarios.

The face and facial expression recognition architectures proposed in this thesis are

also constrained by theoretical aspects of empirical deep and reinforcement learning

learning methods. They incorporate and are derived from a variety of concepts,

such as transfer learning, domain adaptation, deep convolutional networks, stacked

autoencoders, greedy layer-wise unsupervised training, adversarial learning, and deep

reinforcement learning, among others.
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1.1 Recognizing Human Emotions

Emotion recognition refers to the human ability to perceive and interpret emotions

in other people. Recognizing emotions involves analyzing facial expressions, speech

signals, hand gestures and other forms of body language, or a combination of these

modalities. According to [1], emotions are also essential for social interaction, learn-

ing, communication, rational decision-making, perception and cognition. Being able

to recognize human emotions is also fundamental for human empathy; when interact-

ing with other people, humans rely on their ability to perceive and interpret emotions

in other people and automatically adjust their responses according to the emotional

state perceived.

This research focuses on recognition from facial expression images taking into

account that it is commonly more feasible to obtain facial images than other sources

of affective data, particularly in unconstrained environments. In addition, existing

literature shows that recognition from facial expressions can yield higher recognition

levels.

1.2 Motivation for Research

The ability to recognize and interpret human emotions is fundamental for meaning-

ful interactions, communication, learning, rational decision-making, perception and

cognition. As we continue the transition into a lifestyle that constitutes interacting

with intelligent computer systems on a daily basis, it is imperative that these sys-

tems possess the ability to react to a user’s emotional state and provide appropriate

responses that take into account a user’s state of mind.

The inspiration for this research is derived from empirical research studies on the

importance of emotion recognition during empathy [2]; when empathizing with other

people, humans are likely to develop and understanding of other people’s emotional

2



state and unconsciously adjust their responses based on this understanding. For

this reason human empathy, and thus human emotions, are often interpreted as an

indispensable element of human-human interaction.

There have been many attempts at addressing automated emotion recognition

from facial expressions using DL and other machine learning (ML) methods. Accord-

ingly, many state-of-the-art recognition benchmarks have been set on datasets consist-

ing of static facial expression images collected in controlled environments. Yet, when

these DL methods are evaluated on images with nonuniform conditions, such as those

collected in unconstrained environments, the recognition rate drops dramatically.

Figure 1.1: Sample images from the Multi-PIE dataset illustrating two different levels
of relative luminance.

The poor generalization on nonuniform data is partially attributed to the de-

pendency of DL models on large amounts of data, which not always represent the

conditions encountered in real life scenarios. Moreover, changes in the data distribu-

tion caused by factors, such as changes in illumination, also lead to poor recognition

performance. For instance, Figure 1.1 illustrates two images with virtually identical

spatial information and different relative luminance levels. Ideally, a DL model should

be able to identify these two images as belonging to the same category. However, for

a DL model to treat these two images impartially, it requires to see large amounts of

data with both conditions during the training phase. This is notably problematic for

real life applications intended for use in unconstrained ever-changing environments,

where natural and artificial lighting are subject to constant change.

Other forms of variance in the domain of facial expression recognition arise in the

form of face pose, rotation, or tilt, all of which significantly affect recognition perfor-

mance. This is also true in the domain of face recognition where most empirical face

3
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detectors fail to recognize faces that are non-frontal or faces with poor illumination.

Theoretically, these generalization and invariance issues can be addressed by training

deep networks on very large datasets covering all possible variances. However, the

lack of public datasets with realistic conditions, along with the difficulty of training

very large DL models, renders the training process virtually unattainable.

Taking into account these limitations of existing DL approaches for emotion recog-

nition, and considering the importance of being able to correctly identify emotions in

people, for instance to avoid misinterpretation of a person’s state of mind, the work

presented in this thesis aims to advance the field of face and emotion recognition in

unconstrained environments.

1.3 Scope of Research

This thesis aims to develop novel artificial neural network architectures based on

deep and reinforcement learning principles, designed for face and facial expression

recognition in unconstrained environments. The research presented in this thesis

builds on contemporary theory of empirical learning and optimization paradigms in

deep and reinforcement learning with application to emotion recognition and face

detection. The overall intended outcome is a set of architectures for face and emotion

recognition that work in unconstrained environments.

In this work, the term emotion recognition refers to the process of assigning a

categorical label to facial expression images using a deep artificial neural network. The

categories considered are neutral states and Ekman’s Big Six: happy, sad, surprise,

angry, disgust, and fear [3]. The latter are commonly considered as universal emotions

across cultures and usually develop from a neutral expressions, hence the inclusion of

neutral states. This work does not consider other ways to recognize emotions, such

as from speech signals or hand gestures and other forms of body language. This is

due to the added difficulty of obtaining reliable data in unconstrained environments.

4



For instance, in a crowded scenario, it is easier to detect faces and facial expressions

than it is to detect body language or audio from specific individuals.

The research question addressed in this thesis is as follows:

”Is it possible to develop novel artificial neural network architectures based on deep

and reinforcement learning concepts to efficiently recognize faces and human emotions

through facial expressions in unconstrained environments?”

In this research question, the phrase recognition in unconstrained environments

refers to recognition of face and facial expressions under different levels of illumi-

nation and facial pose. It also refers to face detection under different levels of face

rotation. As a result, this research question is addressed in multiple stages: illumi-

nation invariant recognition, facial pose invariant emotion recognition, illumination

and rotation invariant face recognition.

1.4 Thesis Originality

The novelty of the research presented in this thesis is in the form of novel deep

learning neural network architectures, along with their application to face and emo-

tion recognition from facial expressions, and end-to-end learning algorithms designed

specifically to facilitate their training.

Figure 1.2 shows a pictorial summarized description of the illumination and pose

invariant emotion and face recognition architectures presented in this thesis. Four dif-

ferent architectures denoted by dotted lines are shown along with their corresponding

flow of information. As it can be observed, the overall research question described

above is addressed in different stages, each one building upon the previous one, re-

sulting in a framework that addresses facial emotion recognition and face detection

in unconstrained environments. More precisely, these architectures address pose and

5



Figure 1.2: Overview of the emotion recognition models, and face detection model,
presented in this thesis. Left to right: Convolutional Ensembles Network, Pose In-
variant CNN (pretrained as a GASCA), Illumination Invariant CNN (pretrained as
a SCAE), Illumination and Rotation Invariant Q-network (uses SCAE for feature
extraction).

illumination invariance in facial emotion recognition, and rotation and illumination

invariance face detection.

The contributions presented in Chapters 3, 4, 5 and 6 can be summarized as:

• An illumination invariant Stacked Convolutional Autoencoder (SCAE) model

capable of reconstructing images with up to 64 different degrees of illumination

as images with the same illumination.

• A Gradual Greedy Layer-Wise (Gradual-GLW) training algorithm that reduces

error accumulation in early layers and significantly improves reconstruction per-

formance and training time.

• A pose invariant Generative Adversarial Stacked Convolutional Autoencoder

model that can reduce face pose to zero degrees from up to ±60 degrees.

• Two convolutional layers: one which utilizes shifting neurons, and another one

that exploits facial symmetry to reduce its number of parameters.

6
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• Several deep CNN models that achieve state-of-the-art classification rates on

data with nonuniform conditions.

• A novel deep reinforcement learning architecture designed for illumination and

pose invariant face recognition.

The originality of this work is also derived from a combination of these approaches

into a single hybrid architecture for illumination and pose invariant face and facial

expression recognition. Other minor contributions include: a derivative of the ReLU

transfer function designed to reduce sparsity and constrain image luminance to a

given upper and lower bound; deep stacked autoencoder models able to reconstruct

as many output planes as produced by convolutional layers in the encoder element;

and novel greedy reward policies for deep Q-learning applied to face detection.

1.5 List of Publications

Chapters 2, 3, 4, and 5 contain some excerpts from the following peer reviewed

publications that resulted from this research:

Ruiz-Garcia, A., Webb, N., Palade, V., Eastwood, M., & Elshaw, M. (2018). Deep

Learning for Real Time Facial Expression Recognition in Social Robots. accepted

for publication in International Conference on Neural Information Processing (Vol.

2018December). Siem Reap: Springer.

Ruiz-Garcia, A., Palade, V., Elshaw, M., & Almakky I. (2018). Deep Learning for

Illumination Invariant Facial Expression Recognition. In Proceedings of the Interna-

tional Joint Conference on Neural Networks (Vol. 2018September). Rio de Janeiro:

IEEE.

Ruiz-Garcia, A., Elshaw, M., Altahhan, A., & Palade, V. (2018). A hybrid

deep learning neural approach for emotion recognition from facial expressions for so-
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cially assistive robots. Neural Computing and Applications, 29(7), 359373. Springer,

https://doi.org/10.1007/s00521-018-3358-8

Ruiz-Garcia, A., Elshaw, M., Altahhan, A., & Palade, V. (2017). Stacked deep

convolutional auto-encoders for emotion recognition from facial expressions. In Pro-
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1.6 Thesis Overview

The next chapter, Chapter 2, explores existing literature on the nature of human

emotions. An in-depth analysis of existing work in the domain of face detection and

emotion recognition using deep and reinforcement learning techniques is also provided.

The chapter also looks at learning and optimization theory for neural networks and

previous attempts to deal with illumination and pose invariance in faces.

In Chapter 3, a new architecture that uses two learning streams to facilitate

feature learning is proposed. This chapter also proposes the use of deep convolutional

autoencoders to pretrain deep convolutional networks.

Chapter 4 introduces a novel deep learning architecture to address illumination
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invariance in facial expression images. This chapter also introduces novel learning

concepts that aid in the training of neural networks in general. The method proposed

is evaluated on images with very high and extremely low relative luminance levels.

The facial expression corpora is also described in detail.

Chapter 5 describes the implementation of several DL architectures that deal with

pose invariance in faces. An experimental setup and methodology is proposed and

evaluated on multiple datasets. State-of-the-art classification results are reported on

several corpora in this chapter. This chapter also combines the learning principles

proposed in Chapters 4 and the pose invariant model into a single architecture. This

new architecture is evaluated on data collected in unconstrained environments using

a NAO robot, a potential application for DL emotion recognition models presented

in this thesis.

Since the facial expression algorithms presented in Chapters 4 and 5 are con-

strained by facial expression images that contain minimal background, and since

empirical face detector methods are prone to failure, Chapter 6 proposes a novel deep

reinforcement learning architecture designed for face detection in unconstrained en-

vironments. It also combines the findings from Chapters 4 and 5 and combines them

with deep reinforcement learning principles to achieve good face detection.

Finally, Chapter 7 provides a summary of the findings presented in this work and

highlights the novelty of the research presented in this thesis. This is followed by a

list of references.
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Chapter 2

Background and Literature Review

2.1 Introduction

This research looks at the development of novel face and emotion recognition deep

and reinforcement learning architectures as well as learning paradigms. The main

objective is to develop DL models for face and emotion recognition from facial ex-

pressions, regardless of image illumination and facial pose. Fundamentally, this thesis

aims to provide an answer to the research question presented in section 1.3 of Chapter

1.

This chapter provides an overview of artificial neural network learning paradigms.

This is followed by an extensive summary of contemporary attempts at automated

emotion recognition from facial expressions using DL, as well as automated face recog-

nition using deep reinforcement learning (DRL). Finally, this chapter provides an

overview of deep and reinforcement learning paradigms, such as: autoencoders, su-

pervised and unsupervised learning, deep q-learning, transfer learning (TL) and deep

convolutional networks, among others, which form the basis of the architectures pre-

sented in chapters: 3, 4, 5, and 6.
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2.2 Artificial Neural Networks

Artificial neural networks (NN) are computational models inspired by the processing

found in the human brain [4]. These sophisticated algorithms are often described as

black boxes due to their complex learning process and lack of real explanation for

the decisions produced. The most common type are feedforward neural networks,

in which information flow only happens in one direction, from input to output. For

consistency the term NN refers to feedforward neural networks throughout this work.

In its simplest form, a NN is composed of a single layer with no hidden layers.

These are known as single layer perceptrons, and the input vector is directly mapped

to the output layer. However, single layer perceptrons can only solve linearly sep-

arable problems. Multilayer Perceptron Networks (MLP) [5] are some of the most

common classifiers in pattern recognition and overcome the limitation of single layer

perceptrons. Learning is commonly done by adjusting the connection weights w be-

tween nodes. Nodes are designed to represent a neuron in the human brain and are

usually organized in layers which are interconnected. The output for a given node is

given by the weighted sum:

y = f(
∑
i

wi, xi + b) (2.1)

where f is an activation function, x the input, and b a bias.

Activation functions are commonly employed to provide the network with non-

linearity. The most common functions are Sigmoid: σ(x) = 1
1+e−x

, Tanh: tahn(x) =

2
1+e−2x + 1, or rectifier linear unit (ReLU): y = max(0, x) activation functions.

Different variations of NNs have resulted to address specific problem. For instance,

recurrent neural networks (RNNs) are designed to deal with sequential data, e.g.

temporal or time-series data. Similarly, convolutional neural networks (CNNs) are

designed for problems where spatial information is relevant, for instance in visual

processing related tasks.
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2.3 Deep Learning

According to the Universal Approximation Theorem [6], [7], MLPs with at least one

single hidden layer can represent an approximation of any given function. Moreover,

the universality of NNs is enabled through the architecture of the NN [6]. However,

learning a NN for a given function can be very complex and may require a significant

amount of hidden units. In practice, instead of adding more hidden units to the same

hidden layer in a NN, it is common to add new layers and allow multiple levels of

representation, depending on the complexity of the data from which the model is to

learn. This often results in very large models with multiple hidden layers. These large

models are referred to as deep NN and are part of a new sub-field within Machine

Learning (ML), known as deep learning [8].

Deep learning is concerned with learning data representations and abstractions

[9] in a supervised or unsupervised manner. It allows NNs to model complex rela-

tionships, whether linear or non-linear, among data. For consistency, in this thesis

the term deep learning is used to refer to the process of learning data representations

with NNs that have more than two hidden layer. These NNs are also referred to as

deep NNs. In contrast, NNs with two or less hidden layers are referred to as shallow

NNs.

Training of deep NNs is commonly done using backpropagation in conjunction

with stochastic gradient decent (SGD). Given a training set x of size N , during

training, SGD minimizes the loss:

Θ = arg min
Θ

1

N

N∑
i=1

`(xi,Θ) (2.2)

to find the parameters Θ. This is done using mini-batches x1...m of size m. Then the

gradients are calculated by:
1

m

∂`(xi,Θ)

∂Θ
(2.3)

where m has to be carefully selected for it to be a good representation of the entire

training dataset. One of the main limitations of SGD is that it does not guarantee an
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optimal solution, rather just a good local minimum. Nonetheless, the local minimum

is often enough.

2.4 Convolutional Neural Networks

This research is concerned with facial expression images and, therefore, employs CNNs

taking into account that they have proven to be efficient in visual processing. Con-

volutional networks [10] are feed forward networks, inspired by the animal cortex,

in which nodes are arranged in a two dimensional space in order to take advantage

of spatial information. The most common type of CNNs are those applied to two-

dimensional data, such as images. As such, the term CNN in this work is used to

refer to convolutional networks with two-dimensional filter kernels applied to two-

dimensional inputs.

CNNs have the ability to self-learn a vector of salient features, while at the same

time retaining spatial information, and, as such offer an outstanding alternative to

prescribed feature extraction and representation methods. Moreover, CNNs have

significantly fewer parameter than MLPs with the same number of layers, making

them less computationally expensive. These are inspired by the receptive fields found

in the cat’s cortical visual system [11]. Traditionally, every convolutional layer in a

CNN often employs more than one filter kernel in order to learn a variety of features

that highlight salient information. This results in a set of feature maps; one per filter

used. Moreover, because the feature maps are produced by sliding the filter kernel

through the image, the information at the edges is often lost. For this reason, it is

common to add zero padding, i.e. add zeros around all the edges of the input.

The output of a convolutional layer is defined as the dot product of two matrices

AK with m,n dimensions, where A is the current spatial view of a larger matrix I,
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and K is the filter kernel. For instance, given A ∈ IRm×n and K ∈ IRm×n such that:

A =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
...

. . .
...

xm1 xm2 xm3 . . . xmn

K =


y11 y12 y13 . . . y1n

y21 y22 y23 . . . y2n
...

...
...

. . .
...

ym1 ym2 ym3 . . . ymn

 (2.4)

then the new feature s for the new feature plane at location i, j is given by:

s(i, j) = A ∗K = x11y11 + x12y12 · · ·+ xmnymn (2.5)

This process is repeated over for every location in the image space, for instance, the

next value at location i + 1, j is produced by K ∗ A but A starts at x12 and ends

at xn+1. This is only true for weight-sharing convolutional layers where the same

filter kernel K is convolved throughout the input image I resulting in a translation

invariant feature map. Where equivariance to translation is not needed, e.g. if a the

feature of interest is always at the same known location, a filter kernel K can be

learned for every spatial view A of the input image I, although this scenario is less

common in visual processing.

Traditionally, a CNN is composed of convolution, max pooling, and fully connected

layers [12]. Max pooling layers allow the network to down sample the input and speed

up training at the cost of giving up some features. The output of Convolutional

layers is often shaped by a transfer function. In recent years, most publications

employ the rectified linear unit function (ReLU) as this activation function [13]. ReLU

layers assist in the training of NN by reducing the risk of vanishing gradients often

encountered during training, particularly of very deep NNs. Lastly, Convolutional or

Pooling layers are often followed up by an MLP for classification. However, this is not

a rule, and the output of a convolutional layer can be directly mapped to an output

layer [14].

Finding the right network topology in CNNs is as challenging as it is in traditional

MLPs. However, in practice it is common to use small filter kernels. Some of the

most commonly used CNN architectures include: residual networks (ResNets) [14],

Inception [15], AlexNet [16], and VGG [17]. However, most of these models are very
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deep, i.e. have many convolutional layers, and are not necessary for datasets with a

small number of classes.

In terms of practical application, CNNs are a popular choice in visual processing

related task, particularly in classification. And since they have significantly less num-

ber of parameters than MLPs, very deep networks have been employed for large-scale

classification [16], [18], [14]. In emotion recognition, CNNs have also set a number of

benchmarks on static datasets: [19], [13], [20], [21]. Other work on emotion recogni-

tion using CNNs is presented in [22], as well as in [23] —which is a work that resulted

from this research —where CNNs are employed for feature extraction and a Sup-

port Vector Machine (SVM) [24] is used for classification of the resulting translation

invariant feature vector.

2.5 Autoencoders

Autoencoders are neural networks that can reconstruct an input vector and are of-

ten used for data dimensionality reduction. They can learn sparse distributed codes

similar to those seen in the cortical sensory areas such as visual area V1 [25]. Autoen-

coders are composed of an encoder function f that learns to map an input distribution

x ∈ Rdx to a hidden representation h(x) ∈ Rdx , and a decoder function g that learns

to map the hidden representation h(x) back to an approximation y ∈ Rdx of the input

x. Empirical autoencoders aim to learn nonlinear functions f and g, and constrain

h to have a smaller dimensionality than x in order avoid simply learning an identity

function and instead learn salient features of the input distribution. This is achieved

by minimizing a loss function L
(
x, g(f(x))

)
using empirical training methods such as

SGD.

Just like deep NNs, various types of autoencoder variations have been proposed

in the literature. In visual processing tasks, the most commonly used variations are:

denoising autoencoders [26], which are used to map a corrupted input image to a non-

distorted image; variational autoencoders, commonly used to generate images using
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random ; sparse autoencoders, which learn sparse representations by having hidden

layers larger than the input image; and adversarial autoencoders [27], which rely on

adversarial learning as discussed in the next section, and are also used to generate

images, often with specific features.

Empirical autoencoders are commonly used as an alternative to dimensionality

reduction methods such as PCA, or to pre-train deep neural networks. In contrast,

generative class of autoencoders, e.g. variational and adversarial, are commonly used

to generate synthetic images. Both approaches are explored in this work as later seen

in Chapters 3–6.

2.6 Generative Adversarial Learning

Generative adversarial learning is a relatively new DL framework introduced by [28]

and used to train generative adversarial networks (GANs). GANs are composed of

two networks: a generative model G and a discriminator model D. Both models are

trained simultaneously by playing a min-max adversarial game where the discrimina-

tor model tries to determine if a given sample is from the generator or the training

dataset. In contrast, the generator maps samples z from a prior distribution p(z) and

maps it to the data space. Formally this is defined as:

min
G

max
D

Ex∼p[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (2.6)

Although a relatively new sub-field, GANs have become mainstream in synthetic

image generation. Accordingly, various works have focused on the generation of real-

istic synthetic facial expression images. Some of these works include multi-pose face

recognition [29], [30], or facial expression image completion [31]. Although GANs are

mainly used for data synthesis, some works have explored their use in classification

[32].
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One of the, arguably major, constrains of GANs is the difficulty in training. GANs

are known to be unstable and difficult to optimize. This can be attributed to the

large number of parameters to be optimized, as well the joint training process of two

networks that have different objectives. However, training deep networks is known to

be challenging. Chapter 5 overcomes some of this challenges by combining adversarial

learning with an improved version of greedy layer-wise training as described below.

The use of GANs for emotion recognition is inspired due to their ability to produce

very realistic image reconstructions that retain salient features.

2.7 Regularization

Due to the inherent non-linearity of deep NNs, training can be a difficult task due a

several factors, such as: incorrect weight initialization; imprecise network topology,

e.g. too many or too few layers, incorrect hyperparameter initialization, e.g. very

large or small learning rates, vanishing or exploding gradients; among others.

Several methods have attempted to improve training and generalization of deep

NNs, some of which attempt to improve the optimization algorithms directly. For

instance, SGD is normally used with momentum. Due to the use of linear activation

functions such as sigmoid, training using SGD often leads the network to fall into

local minima rather than global minima. This is caused by the significantly small

magnitude of the gradients which result in small weight updates, as well as the satu-

ration of gradients by sigmoid activation. Accordingly, momentum aims to overcome

this issue by adding a fraction of previous weight updates to the current one. Let

∇f(θt) be the gradient for the objective function f(θ) at step θt, momentum is given

by:

θt+1 = θt + (µvt − ε∇f(θt)) (2.7)

where ε is the learning, µ the momentum coefficient. Similarly, Nesterov momentum

aims to improve classical momentum by calculating the gradient at µvt. Formally, it

is given by:

θt+1 = θt + (µvt − ε∇f(θt + µvt)) (2.8)
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Nesterov momentum is known to provide better convergence rates than classical

momentum [33], [34]. However, Nesterov momentum is still bounded by some of the

constrains of classical momentum; when momentum is too small it cannot avoid local

minimum, whereas big momentum may lead to missing the global minimum. An

alternative to this is Resilient Backpropagation (Rprop) which addresses these issues

by exploiting local gradient information to perform a direct adaptation of the weight

step [35].

Although Rprop inherently addresses some of the issues caused by sigmoid acti-

vations such as vanishing and saturation of gradients, in practice, ReLU activations

have replaced sigmoid functions as the preferred activation function. Moreover, other

alternatives to Rprop and SGD have been proposed. For instance, Adam[36] is an

alternative to SGD which requires less tuning of hyperparameters, e.g. it computes

individual adaptive learning rates. Refer to section 3.3.1 in Chapter 3 for a formal

definition of Rprop.

Other regularization methods include the use of dropout [37], which improves gen-

eralization performance by preventing the network from co-adapting too much and

overfitting. This is done by randomly dropping a set of units and their connection

weights during training. Another popular choice is weight decay [38], which attempts

to improve generalization by suppressing irrelevant components of the weights vector

and the effects caused by static noise on the target. This is achieved by penalizing

large weights. Similarly, learning rate decay can assist in improving weight conver-

gence by reducing the size in change.

Another popular choice is Batch Normalization (BN) proposed by [39]. BN is a

technique that reduces covariate shift by normalizing the distribution of a each input

feature at every layer. Normalization is done by subtracting the batch mean by the

batch standard deviation. Moreover, BN reduces the need for other methods such as

dropout, and speeds up training by allowing higher learning rates and faster learning

rate decays. As presented in [40], we have observed it to also improve generalization

performance and therefore it is used throughout this work.
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2.8 Greedy Layer-Wise Training

Another way to improve the generalization performance of deep NNs is by pretraining

them and using transfer learning. Although random weight initialization is aimed to

provide a weight distribution that does not favor any given class, [41] has demon-

strated that random weight initialization can lead to convergence in in local minima

that are far from an optimal global solution. Greedy layer-wise (GLW) [41] can facil-

itate the training of deep NNs by treating each individual layer as a shallow network.

In GLW unsupervised training, each individual layer is treated as an individual

shallow network and trained individually as an autoencoder. Recall that autoencoders

are composed of an encoder function f and a decoder function g. Then, given an

unsupervised training function L which takes as input the training data and returns

a trained encoder function f (k), the first layer of the deep NN is trained using raw

pixel data. The resulting f (k) is added to a stack of trained encoder functions f .

For every remaining layer, pass the raw pixel data through f , and use the resulting

features to learn f (k+1) until k = m, where m is the number of layers in the deep NN

[42]. One all the layers have been trained, one can attach a classification layer to the

resulting stack of trained encoders f , and fine-tune for classification using the labels

for the data. GLW is exploited in Chapter 3 and improved in Chapter 4.

When there is a lack of data, pre-training using GLW can be done using larger

corpora, from different domains. This is particularly relevant for image processing

related tasks that employ CNN, given that CNN learn to extract a set of salient

features such as shapes, which are commonly found in various domains. This is

commonly referred to as transfer learning (TL) and domain adaptation (DA).
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2.9 Feature Extraction

Although NNs are powerful function approximators, the high dimensionality of the

input data often makes learning difficult. Moreover, high dimensionality often means

lengthier training times and increased computational cost. Accordingly, it is common

practice to apply a dimensionality reduction procedure such as Principal Component

Analysis (PCA) to the training data before learning a model. In emotion recognition

from facial expressions, the common approach is to employ Gabor filters [23], [43],

[44], [45] to detect edges and highlight salient features. Gabor filters resemble the the

perception in the human visual system [43].

Gabor filters are essentially a sinusoidal modulated by a Gaussian kernel function

[44] in which orthogonal directions are represented by real and imaginary components.

Let λ represent the frequency of the sinusoidal, θn represents the orientation, and σ

represents the standard deviation of the Gaussian over x and y dimensions of the

sinusoidal plane, the real component of the Gabor filter applied to an image with

dimensions the x and y is defined by:

Gλ,θ(x, y) = exp

[
− 1

2

{
x2
θn

σ2
x

+
y2
θn

σ2
y

}]
cos(2π ∗ θn ∗ λ) .

where

xθn = x(sin θn) + y(cos θn)

yθn = x(cos θn) + y(sin θn)

(2.9)

The magnitude response after convolving a Gabor filter with over an image is given

by:

||Gλ,θ(x, y)|| =
√
<2{Gλ,θ(x, y)}+ =2{Gλ,θ(x, y)} . (2.10)

where <{Gλ,θ(x, y) represents the real part of the filter and ={Gλ,θ(x, y)} represents

the imaginary part, as we presented in [23].

Other common pre-processing steps include the use of including Local Binary

Pattern (LBP) features [19]. LBP codes are obtained by selecting a group of pixel

values, finding the central pixel value and using it as a threshold for each pixel within
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the group. Pixel values lower than the threshold value become zero and pixel values

above the threshold value become ones. Another popular choice is to employ local

transitional pattern (LTP) codes [43]. LTP codes are similar to LBP codes and are

obtained by comparing transition of intensity change at different level of neighboring

pixels in different direction.

Since faces have specific features, other feature extraction methods exploit these

features to extract a set of features. For instance, the work by [46] identifies 15 dif-

ferent feature points and the Euclidean distances between these are used to represent

a facial expression. This method requires reconstructing a representation of a neutral

face to use as reference.

These feature extraction methods are prescribed and the resulting features are

classified using a variety of classifiers such as MLPs or SVMs. SVMs are non-

probabilistic binary classifiers well known for per-forming notably well in image clas-

sification problems. SVM have also been employed for face recognition problems [47],

[48], [19].

2.10 Reinforcement Learning

Reinforcement learning (RL) is an area of research within ML which allows agents

to learn from interaction with the environment. RL is usually suitable for problems

where there is no known information about the environment, i.e. when there are no

labels for the data and no information regarding how the environment will react to a

an action taken by the agent.

RL tasks are modeled as finite Markov Decision Processes (MDPs) where an agent

can perform a set of actions, A, in a given environment, in order to reach its goal.In

such formulation, a learning agent learns by interacting with the environment at

given discrete time step, t ∈ Z : t ∈ 0 . . .m. At a given time step t, the agent

observes the state St of the environment and performs an action At. Then at time
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step t + 1 the agent receives a reward signal Rt+1 and is at a new observation St+1

of the environment, both of which are the result of the action it selected at time step

t [49]. Formally, the probability of transition from state s to a new state s′ after

performing an action a is given by:

P (s, s′) = Pr(st+1 = s′|st = s, at = a) (2.11)

Then the immediate reward signal for the transition (st, at, st+1) is R(s, s′) . Dur-

ing learning, the agent’s objective is to reach its desired target while at the same time

maximizing the accumulated reward. The cumulative reward is given by:

Gt =
T∑
k=0

Rt+k+1 (2.12)

However, because the way the target is reached is important, in practice it is

common to use a discounted reward instead. Discounted reward is used to let the

agent know whether short or long term reward is more important. Therefore, it is

discounted at every time step t by a factor γ ∈ [0, 1] such that:

Gt =
T∑
k=0

γkRt+k+1 (2.13)

Depending on the objective, some variations of RL aim to learn a policy that

predicts the maximum expected future reward, e.g. value based RL, model the en-

vironment’s behaviors, e.g. model based, or learn a policy that defines the agents

behavior at a time step t, e.g. policy based. Policy based models have been employed

by [50], [51], [52], [53], [54] and [55] for face detection.

2.11 Constrains of State-Of-The-Art Face and

Emotion Recognition Models

In the domain of emotion recognition from facial expression images, SVM based

methods are a popular choice: [19], [45], [47], [48]. However, these methods are
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heavily dependent on image pre-processing methods such as Gabor filters, PCA, or

LBP. The main downside to such prescribed methods is the lengthy and difficult

process required to craft them, lower generalization performance, latency, among

others. As a result, the work in Chapters 3–6 avoids such pre-processing methods

and instead rely on deep CNNs for both, feature extraction and classification. The

advantages of CNNs over a combination of SVMs and prescribed image pre-processing

have also been discussed in our work presented in [23].

The work on emotion recognition using CNNs: [13], [19], [22], [56], [57], also

has some limitations. For instance, the method by [57] employs very complex CNN

architectures such as inception modules proposed by [18], and does not achieve state-

of-the-art performance. Similarly, the work by [22] relies on very large CNNs, namely

AlexNet pre-trained on ImageNet [16], which contains over 1.2 million images. Train-

ing such large models is likely to require a number of trial and error attempts in

order to find the ideal hyperparameters. Moreover, these models rely on very large

amounts of data to learn meaningful representations and provide good generalization

performance.

The authors of [58] argue that it is imperative to train models with realistic

data obtained in the same scenario where the final application will be used. The

idea behind this argument is that the models will learn features that generalize the

environment, and, therefore, the model will be able to provide better generalization.

For instance, one of the main challenges is changes in illumination, which leads to

changes in the data distribution. Because most models are trained on static corpora,

they fail to adapt to such changes in the data distribution.

Changes in facial pose also lead to changes in the data distribution. Work that

has attempted to address pose invariance is computationally expensive and relies on

hard-coded features. For instance, the work by [59] requires the use of a template

for describing different facial expressions and involves the creation of a model for

each person, making it unsuitable for unseen data. Although some work has looked

into pose invariant face detection [60], [61], it does not address pose invariant emo-
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tion recognition. As a result, Chapter 5 introduces a novel pose invariant emotion

recognition model that produces state-of-the-art recognition performance.

Face recognition models are also prone to failure. For instance, as discussed in

Chapter 6, empirical methods fail to capture faces on images with low luminance or

with some degree of rotation. Other methods relying on RL are also unable to deal

with rotation and illumination invariance: [50], [51], [52] and [53].

2.12 Chapter Summary

The aim of this thesis is the development of DL architectures for emotion recognition

and face detector. This chapter has introduced deep neural network learning algo-

rithms and optimization methods. A brief introduction on reinforcement learning

was also provided. Most of these learning paradigms form the foundation of the work

presented throughout this thesis.

This chapter has explored existing sate-of-the-art approaches and highlighted some

of their limitations. Some of the main limitations of contemporary approaches to emo-

tion recognition are addressed throughout this thesis: Chapter 3 improves feature

learning by exploring ways of improving generalization performance without the need

of large corpora. Chapter 4 overcomes illumination invariance. Chapter 5 addresses

pose invariance in a much more automated, less computationally expensive, and sig-

nificantly faster way. Finally, Chapter 6, looks at ways to overcome illumination and

rotation invariance on face detection using RL.

Other limitations of training deep NNs are also addressed in this thesis, such as:

the difficulty of training GANs, the lack of multi-illumination data, error accumulation

problems in GLW training, among others.
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Chapter 3

Deep Learning for Emotion
Recognition

3.1 Introduction

This chapter considers two deep learning paradigms: transfer learning and convolu-

tional networks, and their application to emotion recognition from facial expression

images. The originality of the research presented in this chapter, is in the form of a

novel deep CNN architecture with two learning streams to facilitate feature extrac-

tion and representation, and the use of deep stacked autoencoders as a pretraining

method for deep CNN models that operate in high dimensional feature spaces.

The novel CNN architecture, referred to as Convolutional Ensembles Network

(CEN), splits the input image in half according to mouth and eye positions within

the image space and feeds each segment to two different ensembles consisting of convo-

lutional layers with several filter kernels. The features learned by both sub-networks

are concatenated together before classification is done using a fully connected layer.

In contrast, the second CNN architecture proposed is pretrained as a stacked convolu-

tional autoencoder in a greedy layer-wise unsupervised fashion. The SCAE model is

capable of learning an approximation of g(f(x)) = x for any number of convolutional

layers with high dimensional feature spaces. This preliminary study of stacked AEs

also shows that pretraining a CNN in this manner, significantly improves training
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time and generalization performance.

The findings presented here serve as foundation for the remaining chapters of

this thesis, which rely on deep CNN and TL as the underlying mechanisms for the

illumination and pose invariant emotion recognition DL architectures proposed.

3.2 Experimental Setup

3.2.1 Karolinska Directed Emotional Faces Corpus

Figure 3.1: Subject F07 from the KDEF [62] dataset, displaying seven emotions: sad,
surprised, neutral, happy, fear, disgust, and angry.

The Karolinska Directed Emotional Faces [62] database (KDEF) is employed to

train and test the DL models presented in this chapter. The corpus contains facial

expression images belonging to 70 individuals: 35 males and 35 females aged between

20 and 30 years, each displaying seven different emotional expressions from five dif-

ferent angles. All images were taken under a controlled environment, subjects wore

uniform T-Shirt colors, and faces were centered with a grid by positioning eyes and

mouth in fixed image coordinates [62]. In this chapter only the frontal images, i.e. 0◦

pose, are considered; a subset containing 140 front angle images for each one of the

seven emotions. Refer to Figure 3.1 for a pictorial description.

3.2.2 Image Pre-Processing

In order to facilitate training and to limit unnecessary texture information, dimen-

sionality reduction is applied to all the corpora used in this work by gray-scaling and
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resizing the images to 100 × 100 after extracting the face. Face extraction is done

using a distributed version of the detector provided by [63]. The corpus is randomly

divided into 70% training and 30% testing subsets. All images are also normalized to

zero mean unit variance.

3.3 Deep Convolutional Neural Networks for

Emotion Recognition

Unlike traditional feedforward networks like MLPs, CNNs retain spatial information,

such as shapes, through filter kernels and therefore are able to identify salient features.

In the case of emotion recognition from facial expressions, this is particularly impor-

tant considering the fact that classification of a given emotion depends predominately

upon the shape of facial features such as the eyes, mouth, and eyebrows. However,

due to the high complexity of facial expression images, CNN models often require a

high number of convolutional layers in order to extract an ideal set of features that

best represents the data. A disadvantage of increased network depth is the complexity

of the network and training time that grows exponentially with each additional layer.

Moreover, increased network complexity often leads to a failure in finding the opti-

mum network configuration, leading to poor generalization performance on unseen

data.

This section of the chapter introduces a novel deep CNN, Convolutional Ensembles

Network, made up of two ensembles: two sub-networks composed of four convolutional

layers each. The main objective is to facilitate learning salient features around the

eyes and mouth areas with different parameters, reduce the number of deep learning

layers, and therefore simplify the training process.
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3.3.1 Convolutional Ensembles Network (CEN)

The two ensembles of the deep CEN model are made up of convolution, ReLU, max

pooling, and local response normalization (LRN) layers for feature learning. The

resulting translation invariant feature vectors are then concatenated across the first

dimension. The concatenation layer is followed by one fully connected layer and one

softmaxloss layer for classification. Refer to Figure 3.2 for a pictorial description of

this model.

Figure 3.2: Convolutional Ensembles Network.

The convolutional layers retain spatial information through filter kernels and are

able to self-extract translation invariant feature vectors of salient features by sharing

weights. Their output is defined by:

C(xu;v) = (x+ a)n =

n
2∑

i=−n
2

m
2∑

i=−m
2

fk(i, j)xu − i, u− j (3.1)

where fk is the filter with a kernel size n ×m applied to the input x [13]. Note

that only squared kernels are used throughout this work. The output height, h′, and

width, w′ dimensions produced by convolutional layers are defined by:

w′ = bW + 2 ∗ Pw − kw
sw + 1

c, h′ = bH + 2 ∗ Ph − kh
sh + 1

c (3.2)

where H and W denote the height and width dimension of the input image, P denotes

the padding across H and W dimensions, and s the stride size.
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In addition, the resulting feature planes are uniformly normalized using the Local

Response Normalization (LRN) operator [16]. Let k represent the output feature

map, and let G(k) ⊂ {1, 2, . . . , D} represent a corresponding subset of input feature

maps, the output of LRN is calculated as follows:

yijk = xijkz

k + α
∑
t∈G(k)

x2
ijt

−β . (3.3)

ReLU functions are defined as:

y = max(0, x) (3.4)

and facilitate the training of deep models by eliminating the vanishing gradient prob-

lem which often renders the training process unsuccessful.

The input is further reduced with max pooling layers. Let xi be the input and m

be the size of the filter, then the output of the max pooling layers is calculated as:

M(xi) = max

{
xi+k,i+l

∣∣|k| ≤ m

2
, |l| ≤ m

2
k, l ∈ N

}
(3.5)

The output of the fully connected layer in the CNN is defined according to:

F (x) = σ(W ∗ x) (3.6)

where σ represents a sigmoid activation function defined by:

S(x) =
1

1 + exp−x
(3.7)

As discussed in the literature, Chapter 2, sigmoid activations can lead to vanishing

gradients or falling into local minima. As a result, the CEN model is trained using

Resilient Backpropagation (Rprop) [35] to avoid such side effects. Let ∆ij represent

the individual update-value which determines the size of the weight-update, then the
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evolution of the adaptive update-value during learning is based on the error function

E according to [35]:

∆
(t)
ij =


n+ ∗∆

(t−1)
ij , if ∂E

∂wij

(t−1) ∗ ∂E
∂wij

(t)
> 0

n− ∗∆
(t−1)
ij , if ∂E

∂wij

(t−1) ∗ ∂E
∂wij

(t)
< 0

∆
(t−1)
ij , else

. (3.8)

where 0 < n− < 1 < n+

Then the weight-update is defined according to [35]:

∆
(t)
ij =


−∆w

(t)
ij , if ∂E

∂wij

(t)
> 0

+∆w
(t)
ij , if ∂E

∂wij

(t)
< 0

0 , else

. (3.9)

w
(t+1)
ij = w

(t)
ij + ∆w

(t)
ij

This model is trained on the testing subset of the KDEF corpus for 5, 280 epochs.

The learning rate for filters and biases was initially set to 1.0 and dynamically adjusted

down to 0.00001 over 1000 epochs, whereas the momentum was set to 0.9.

3.3.2 CEN Classification Performance

Table 3.1: Confusion matrix for the CEN model on the test subset of the KDEF
corpus. A: angry; D: disgust; F: fear; H: happy; N: neutral; Sa: sad; Su: surprised.

A D F H N Sa Su

A 95.24 2.38 2.38 0 0 0 0
D 2.38 76.19 2.38 7.14 0 7.14 2.38
F 2.38 4.76 88.10 0 0 0 4.76
H 4.76 0 0 100 0 0 0
N 2.38 4.76 2.38 0 76.19 11.91 2.38
Sa 0 7.14 4.76 2.38 0 85.71 0
Su 0 0 7.14 0 0 0 92.86

The CEN model proposed splits the image horizontally in half, and feeds each half

to a corresponding sub architecture to be processed in parallel. Each sub-network
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learns a representation of different facial parts: in the case of the first half, the salient

features highlighted are the areas around the eyes whereas the second half highlights

the area surrounding the mouth. The translation invariant features obtained from

each sub-network are then recombined for classification. The CEN model with split

input was trained for 5, 280 epochs and achieved an accuracy rate of 86.73%. Table

3.1 illustrates the confusion matrix for this model.

As it can be observed in Table 3.1 the model achieved a higher performance rate

when classifying facial images illustrating happy emotions and missclassified neutral

faces the most. The misclassification on neutral faces is justified due to the similarity

of this emotion with all the others, especially with sadness. As it can be observed

in Figure 3.2 above, there is not a big difference between these two expressions and

neutral has previously been defined as the basic human emotion [46] which implies

that all other emotions evolve from a neutral emotional state.

3.4 Preliminary Evaluation of Stacked Convolu-

tional Autoencoders

Figure 3.3: Illustration of deep CNN model pretrained as a SCAE.

Due to the inherent non-linearity of deep networks, empirical training methods

such as SGD may fail if the parameters are not initialized appropriately or if the
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network topology is not ideal for the problem being solved, e.g. too many layers

or too few convolutional kernels. Imprecise network configurations can lead to large

or small gradients and problems in obtaining a set of weights that provide optimal

generalization of the training data. Where the topology or parameters of the network

are not ideal, it often requires a lengthy training process, particularly for very deep

models. Random weight initialization is often the preferred choice among researchers

and is intended to provide the network with a weight distribution that does not favor

any particular class. However, recent studies [41] show that random initialization of

weights can lead to convergence in local minima that are far away from an optimal

global solution.

One way to overcome this training difficulty associated with random initialization

is by employing autoencoders to pretrain each layer of a CNN in a greedy layer-wise

unsupervised manner as discussed in Chapter 2. This allows for an initialization of

filter kernels in a CNN close to a good local minimum [41], which leads to improved

feature extraction and classification performance. However, empirical CNN models

employ a large number of filter kernels and the deeper the layer the more filters used,

since this can be afforded computationally, and therefore the increase in dimension-

ality of the feature vectors. The increase in dimensionality of the feature vector, and

other problems such as exploding or vanishing gradients, makes it difficult to train

a network to map an input distribution to a hidden representation, and the hidden

representation back to an approximation of the input. For this reason, only the first

convolutional layer is pretrained as an autoencoder.

This section of the chapter explores whether every layer of a deep CNN can be

pretrained in a GLW unsupervised manner, regardless of how large the dimensionality

of the feature vector to be reconstructed may be. The proposed stacked convolutional

autoencoder (SCAE) utilizes batch normalization (BN) to speed up training using

larger learning rates, and ReLU activation functions to avoid vanishing gradients.
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3.4.1 Stacked Convolutional Autoencoders

Recall from Chapter 2 that the purpose of an autoencoder is to learn a hidden repre-

sentation h(x) of the input distribution x ∈ Rdx . This is achieved by two functions:

an encoder and a decoder. Formulating a deep CNN as an autoencoder requires using

the original CNN as the encoder element and adding layers to represent the decoder.

In order to ensure that the reconstruction y has the same dimensions as x, it is nec-

essary to upsample, or learn a deconvolution procedure, the hidden representation h.

This in effect makes learning f(x) and g(h) simultaneously a complex task due to the

large number of parameters.

The main challenge with this formulation of the CNN model as an AE is that

the number of parameterized layers increases over a magnitude of two, which makes

training more difficult. GLW can be employed to gradually learn f(x) and g(h) by

deconstructing the autoencoder into smaller shallow autoencoders, consisting of only

one parametrised layer in the encoder element and one in the decoder element, and

training these individually before combining as a stacked autoencoder.

To build the shallow autoencoders, and eventually the SCAE model, each convo-

lutional layer and its subsequent layers: BN, ReLU, and Max Pooling in some cases,

are treated as a single block and the encoder element for each individual autoencoder.

An equivalent block of layers which replaces Max Pooling with Upsampling layers is

used as the decoder component. Refer to Figure 3.3 for a pictorial representation

of the SCAE model and Table 3.2 for a detailed description of the topology. When

there is no Max Pooling applied to the output of the convolutional layer, the decoder

element does not use an upsampling layer.

The encoder function f(x) of the SCAE model is formally defined as:

h = f(x) = sf
(
Wx+ bh

)
(3.10)

where sf is an activation function, W a weight matrix and b an activation bias. The
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decoder function g has the form:

y = g(h) = sg
(
Wh+ by

)
(3.11)

where sg is the decoder’s activation function, a ReLU function in this work and

by ∈ Rdx the bias. Training consists in finding parameters θ = W, bh, by that minimize

the error between reconstructions and inputs over a training set of examples Dn,

which corresponds to minimizing the following objective function:

JAE(θ) =
∑
x∈Dn

L

(
x, g
(
f(x)

))
(3.12)

where L is a loss function penalizing g(f(x)).

Table 3.2: SCAE and CNN topology. Each row, except for the last one, corresponds
to an individual AE during GLW training. Final SCAE is obtained by stacking all
the encoder layers in the first column, and the decoder layers last column. For the
first encoder the initial input is a 1× 100× 100 image. The subsequent encoders take
as input the hidden representation h from the previous encoder. All Convolutional
layers are followed by ReLU and Batch Normalization layers.

CNN/Encoder Feature Space(h) Decoder

Convolution 20, 5× 5 Convolution 1, 5× 5

MaxPooling 2× 2 b ×20a×50× 50 Bipolar Upsampling

Convolution 40, 5× 5 Convolution 20, 5× 5

MaxPooling 2× 2 b ×40a×26× 26 Bipolar Upsampling

Convolution 60, 3× 3 Convolution 40, 3× 3

MaxPooling 2× 2 b ×60× 14× 14 Bipolar Upsampling

Convolution 80, 3× 3 b ×80× 14× 14 Convolution 60, 3× 3

MLP b×100

SoftMax b ×7
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In the SCAE model, the first autoencoder learns to reconstruct raw pixel data.

The second autoencoder learns to reconstruct the output of the first encoder: raw

pixel data passed through the first encoder component of the first autoencoder, and so

forth. Finally, because the network uses a fully connected layer with 100 hidden units,

this layer is trained to associate the output of the last convolutional encoder with its

corresponding label. Refer to section 2.8 in Chapter 2 for a detailed description of

the training process.

All individual autoencoders are trained for only 10 epochs using mini-batch SGD.

Mini-batches are of size 49 and, in the case of the convolutional autoencoders, the loss

in Equation 3.12 is measured using the mean absolute value (C) of the element-wise

difference between input x and the reconstruction y:

C =

∑n
i=1 |xi − yi|

n
(3.13)

where x and y are both vectors with a total of n elements. In the case of the fully

connected layer the loss is measured by the cross-entropy criterion referred:

y = −xc + log

(∑
j

exp(xj)

)
(3.14)

Where there are max pooling layers in the encoder element, these are replaced

with nearest neighbor upsampling with a scale of 2. Let u and v represent image

coordinates of the input image, α the scale, then upsampling f is defined as:

f(u, v) = bu− 1

α
c+ 1, bv − 1

α
c+ 1 (3.15)

Once all the autoencoders are trained, they are stacked together and fine-tuned for

reconstruction for 10 epochs. Then the weights corresponding to the encoder layers

are used to initialize the CNN model. This CNN is then fine-tuned for classification

as a single model for only 20 epochs, also using SGD with a momentum of 0.6 using

the criterion described by Equation 3.14. When trained for higher number of epochs
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the performance of the network drops or remains the same. Learning rate, LR, for

fine-tuning was set to 0.1 and annealed by a factor of 0.001 according to:

LR =
λ

1 + (ω × θ)
(3.16)

where λ is the initial LR, θ is the decay factor and ω the current epoch.

3.4.2 SCAE and CNN Regression and Classification Results

Figure 3.4: Sample visualization of filter kernels in the first convolutional layer. Left
to right, subject F05 of the KDEF dataset illustrating: fear, sad, and happy emotions.

Although GLW training has demonstrated to improve training and generalization

of deep autoencoders composed of fully connected layers, MLPs, it is not applied in

practice to deep convolutional models. The reason being that empirical deep CNNs

utilize a high number of filter kernels, thus producing a multidimensional feature

vector h that causes the search space for the decoder function g grow exponentially.

Therefore, learning a decoder function g from Equation 3.11, that can accurately

produce an approximation of the input x, becomes difficult to accomplish. For this

reason, it is common to only pretrain the first layer of a CNN as an AE [64] tak-

ing into account than in empirical CNN models the first parametrised layer has the

least amount of convolutional kernels and therefore the reconstruction task is much

simplified.

One of the main observations made during training was that the first convolutional

layer of the SCAE models learns a set of filters that resemble Gabor filters, such as
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Table 3.3: Classification performance by the CNN model on the KDEF dataset. A:
angry; D: disgust; F: fear; H: happy; N: neutral; Sa: sad; Su: surprised.

A D F H N Sa Su

A 90.48 2.38 0 0 2.38 4.76 0
D 2.38 90.48 0 0 0 7.14 0
F 2.38 0 83.33 0 0 9.52 4.76
H 0 0 0 97.62 2.38 0 0
N 0 0 2.38 2.38 95.24 0 0
Sa 0 0 4.76 0 0 95.24 0
Su 0 0 2.38 0 0 2.38 95.24

those that we proposed in [45], which are often used for edge detection. Figure 3.4

illustrates sample filter activations of the first convolutional layer when an image

labeled as happy is forward propagated through the CNN. Notice the main areas

highlighted are those around the eyes and mouth, just as it is the case in the work

we presented in [45].

When fine-tuning the CNN model for classification using the weights of the encoder

element of the SCAE model, the CNN model achieves a classification performance

of 92.52% on the test subset of the KDEF dataset. This is an increase of 1.36%

compared to when the CNN is not pre-trained as a SCAE but instead is initialized

with random weights. Although 1.36% may seem as an insignificant improvement

in performance, it is an increase of over 15% on the classification error, which is

significant for a classifier. When trained with random weight initialization, the CNN

achieved a top classification performance of 91.16% after 500 epochs, compared to

a combined of 80 epochs for the CNN: 20 for fine-tuning and 10 for each individual

layer including the MLP, and 10 for fine-tuning the entire stack for reconstruction.

As it can be observed in Table 3.3, the CNN emotion recognition model performs

well on the emotions happy, neutral, sad, and surprised and only misclassifies them

once or twice. The worst performance is on the emotion fear which often tends to be

confused with other emotions such as sad. The misclassification of images belonging

to the class fear can be attributed to their similarity to sad images, noticing that sad
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images were only confused with fear ones: the shape of facial features, particularly

of the eyes and eyebrows tend to be very alike. As illustrated in Figure 3.4, the

representations learnt for the sad and fear images are relatively identical, whereas the

representation learnt for a happy image is significantly different, particularly in the

area around the eyes. In effect, this explains the misclassification of such images and

exposes the challenge faced by models intended for real-time emotion recognition:

since people express emotions in a number of ways, particularly if ethnic backgrounds

are different, it can be difficult to create a model that can efficiently differentiate

emotions that are expressed in similar ways.

3.5 Discussion

In this preliminary study of convolutional networks and transfer learning, it has been

established that both of these methods are suitable for emotion recognition from facial

expressions.

The novel Convolutional Ensembles Network uses two deep learning streams for

feature learning. Although the model produces remarkable classification results, it

was observed that, due to the use of sigmoid activation functions and random weight

initialization, the model tended to fall into bad local minima. This issue was addressed

with resilient back propagation. Furthermore, training required several trial and error

attempts to find the best initialization parameters. When the parameters were not

ideal, it led to exploding or vanishing gradients. The exploding or vanishing gradients

problem was addressed in the SCAE model by combined use of ReLU functions along

with BN.

It was also established that it is possible to pretrain very deep CNN models—with

many filter kernels and high multidimensional feature spaces—as autoencoders in a

GLW fashion using empirical learning methods such, as SGD. It was demonstrated

that features learned during unsupervised pretraining can be transferred and used in

supervised learning. Equally important, it was shown that this approach helps the
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CNN model by exponentially reducing its training time and increasing its generaliza-

tion performance.

One of the main observations during the training of the SCAE model was that

the training of the first convolutional layer as an autoencoder largely affects the

performance of the remaining layers. Overfitting in the top layer leads to small

reconstruction error in the deeper layers when trained individually, however, when

the layers are stacked a significant increase in the reconstruction error is observed.

This can be explained by the error accumulated in the first layer, which is propagated

to deeper layers. The deeper layers are then learning g(f(x)), where x is the feature

vector produced by the layer before, which may not be a good representation of the

original input. In this case, the deeper layers are then learning to reconstruct a feature

vector that is far from a good local minima. This problem decreased when BN was

used after each convolutional layer. BN also helps in improving training time and

avoiding exploding gradients, which was often observed in deeper layers.

The performance achieved by the CNN model pretrained as a SCAE is compara-

ble to more complex DL emotion recognition models with many more parametrised

layers [13], [22], [21], and similar performance than models that employ Gabor fil-

ters for feature extraction as we presented in [45]. The CNN model proposed in this

work self-learns Gabor-like filters with the first convolutional layer and improves the

feature vector through lower convolutional layers. Finally, it was also observed that

training a SCAE model is challenging not only due to the high number of filters in

the deeper convolutional layers, but also due to error accumulated in early layers,

which is propagated to deeper layers. This issue is addressed later in Chapter 4.

One of the main differences observed between the CEN model and the CNN model

pretrained as a SCAE was the training time it took for each. The CEN model had

to be trained for over 5000 epochs compared to 80 for the CNN. Further training of

the CEN model also led to overfitting. Although this is partially attributed to the

use of BN, the pre-training method proved to be more efficient than random weight

initialization and, therefore, this approach is also adopted in Chapters 4, 5 and 6.
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3.6 Chapter Conclusion

This chapter has explored two popular concepts in deep learning and their application

to emotion recognition. Two main contributions have been proposed: (i) a novel deep

convolutional architecture with two learning streams, and (ii) a deep CNN model

with high dimensional feature spaces pretrained as a SCAE in a greedy layer-wise

unsupervised fashion.

Other contributions are presented in the form of a new insight into the training

process of deep CNN with random weight initialization, which leads to vanishing

and exploding gradients, or convergence in non-optimal local minima, and the use

of resilient back propagation, ReLU activation functions, and batch normalization to

address these issues. Similarly, new findings were presented on the use of bipolar

upsampling as an alternative to deconvolutional layers, and new knowledge on the

features learned by the first convolutional layer in deep SCAE models, which resemble

features produced by Gabor filters. In addition to these, new knowledge is presented

on unsupervised pretraining using the GLW algorithm: whereas unsupervised learning

seems to work and improve the generalization performance of deep CNNs, the GLW

method has some shortcomings, such as high error accumulation.

The following chapter addresses one of the main challenges in recognizing emotions

through facial expressions, i.e. illumination invariance, and exploits the findings

gathered chapter such as the concept of pre-training deep CNNs as SCAE models.
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Chapter 4

Illumination Invariant Emotion
Recognitinon

4.1 Introduction

When dealing with images or live video feed collected in unconstrained environments,

natural and artificial lighting conditions, and therefore image luminance, can dras-

tically change within the span of a few seconds. This is problematic for DL models

that are intended for use in real time in ever-changing environments due to changes

in the data distribution. Moreover, since it is virtually impossible to obtain data

that can accurately represent all possible scenarios, training a NN that can provide a

good degree of generalization performance under unforeseen and drastically different

conditions remains a challenge in DL.

This chapter of the thesis explores the development of an illumination invariant

deep CNN for emotion recognition from faces and builds on the preliminary findings

gathered in in Chapter 3 on transfer learning and SCAE models as a means of pre-

training deep CNN. The SCAE model presented here learns an internal illumination

invariant feature vector h of the data distribution using an improved version of the

GLW training algorithm. Two of these models are trained using different corpora

in order to provide an in-depth analysis of TL and Domain Adaptation (DA) in the

domain of facial expression recognition. The main contributions presented in this

chapter are as follows:
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• An illumination invariant SCAE model capable of reconstructing images with

up to 64 different degrees of illumination as images with virtually the same

illumination.

• A Gradual GLW training algorithm that reduces error accumulation in early

layers and significantly improves reconstruction performance, training time, and

generalization of deep networks.

• An illumination invariant deep CNN emotion recognition model that produces

state-of-the-art classification performance on the CK+, JAFFE, FEEDTUM

and KDEF corpora.

Other contributions are presented in the form of a derivative of the ReLU acti-

vation function with an upper threshold and new insight into how these thresholds

affect regression and classification performance. As well as new insight into how γ

correction can be used to create a training set when data with varying illumination

is unavailable. Furthermore, the use of these learning paradigms in combination with

the learning method proposed —using the same image as target for reconstruction

for several other images with varying illumination —contribute to the novelty of the

work presented in this chapter.

As later discussed in this chapter, when these approaches are combined, an in-

crease in classification accuracy of 5%–15% is observed on different facial expression

corpora. Moreover, training time is reduced exponentially, and the SCAE model

produces image reconstructions on unseen data with significantly low reconstruction

error.

The next section of this chapter introduces the experimental setup and corpora

used for this work. The chapter then introduces an illumination invariant CNN

model pretrained in an unsupervised fashion as a SCAE using an improved version

of the GLW algorithm. The chapter then concludes with a discussion of the findings

presented and future work.
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4.2 Experimental Setup

Two illumination invariant models are trained in order to illustrate the difference

between pretraining on one dataset and fine-tuning on another or pretraining and

fine-tuning on the same dataset. The first model, SCAE1 is trained on the Multi-

PIE and Yale datasets and evaluated, i.e. the CNN is fine-tuned and tested, on the

CK+ and KDEF corpora. The second model, SCAE2 is trained and evaluated on a

combined corpus of facial expression datasets, referred to as the Combined Emotional

Faces (CEF) dataset hereafter.

4.2.1 Multi-PIE Dataset

The SCAE1 model is trained on the Multi-PIE dataset [65]. This corpus contains

a total of 750, 000 images from 337 subjects. These images were collected over four

sessions and capture 15 view points and 19 different illumination conditions. For the

work described in this chapter, the high resolution images along with the ±90◦ views

are discarded and only 580, 907 images covering all 19 illumination conditions and

the 13 view points are used. This also excludes images where the face detector failed

to capture a face. Note that this corpus has no labels for emotion categories.

4.2.2 Yale Database

The extended Yale Face Database B [66] is also used to train and test the SCAE1

model. This corpus contains a total of 16128 facial images from 28 subjects with 9

poses and 64 degrees of illumination. The corpus also contains an ambient image

where all the images for every subject were taken, however these images are not

considered in this work. It is worth noting that some of the images in this corpus

have relatively low luminance levels making it difficult to visually recognize a face.

This corpus also does not have labels for emotion categories.
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4.2.3 Facial Expressions Corpora

To evaluate the classification performance of the first illumination invariant emo-

tion recognition model and compare its performance against the models proposed in

Chapter 3, it is evaluated on the testing subset of the KDEF corpus. Furthermore, to

compare against empirical models, it is also tested on the testing subset of the CK+

corpus.

The second model, SCAE2, is trained on large facial expression database, CEF,

consisting of: the CK+; KDEF; Japanese Female Facial Expressions (JAFFE) [67];

and the Facial Expressions and Emotions (FEEDTUM) [68], corpora. The JAFFE

dataset consists of 213 images from 10 Japanese female subjects posing seven emo-

tions. The FEEDTUM database contains video streams from 18 participants’ reac-

tions to stimuli videos, capturing 7 affective states from neutral to the peak of the

emotion. The emotion categories include Ekman’s six universal emotions: angry, dis-

gust, fear, happy, neutral, sad, and surprise, plus neutral states. For the FEEDTUM

database, the first 30% along with the last 10% of each sequence of images is dis-

carded; since each sequence starts with a neutral face and transitions to an emotion,

this ensures that the images used contain the most emotion related information rather

than neutral faces.

4.2.4 Image Pre-Processing

Taking into account that color only adds texture information, dimensionality reduc-

tion is applied to all the corpora used in this chapter by gray-scaling and resizing

the images to 100 × 100 after extracting the face. Face extraction is done using a

distributed version of the detector provided by [63]. For the Multi-PIE dataset, the

face detector was executed in each sub-folder —each containing the same image with

19 different degrees of illumination —until the first face was found; since some images

are very dark, the face detector fails to find a face. The same bounding box is then

used for all the images within the same sub-folder to ensure that the input and target
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images for the SCAE contain similar spatial information but different illumination. In

contrast, the Yale dataset already provides cropped images containing only the face.

Face detection for the CEF corpus is done as explained in Chapter 3. All corpora are

randomly divided into 70% training and 30% testing subsets, and all images are also

normalized to zero mean unit variance.

To create the training dataset for the SCAE1 model, the relative luminance, Y ,

is estimated for every cropped facial image from the Multi-PIE and Yale datasets.

In both corpora, each subfolder contains the same facial image with several different

illumination conditions: 19 for the Multi-PIE and 64 for the Yale dataset. Therefore,

the mean luminance for each subfolder is estimated and the image with luminance

level closest to the mean, referred to as xµ hereafter, becomes the target reconstruction

image for all the other images, including itself. This ensures that all images within

the same subfolder are reconstructed with the same luminance, regardless of how low

or high it is within the original image. Let R,B,G represent the linear red, green

and blue, RGB, values of an image before gray-scaling, relative luminance Y for the

given image is defined by:

Y = 0.2126R + 0.7152G+ 0.0722B (4.1)

For the second model, SCAE2, since the CEF corpus does not have images with

varying luminance, gamma correction is used to alter image luminance on the train-

ing subset. Gamma correction alters the luminance of an image with a non-linear

alteration of the input values and the output values. Given an input image i, the

gamma corrected image x is defined by:

x =
( i

225

) 1
γ × 225 (4.2)

where γ ∈ {0.4, 0.6, 0.8, 1.0, . . . , 3.4}.

The use of gamma correction augments the training subset of the CEF dataset

over a magnitude of ten. Note that when γ = 1.0 the input image remains unchanged,
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Figure 4.1: Sample images before and after γ corrections.

thus in this case x = i. For this reason, when training the SCAE2 model the gamma

corrected image x with γ = 1.0, also referred to as xµ for consistency, becomes the

target reconstruction image for itself and all other gamma corrected copies of itself.

Note that the selected γ values provide a good range of very dark and very light

images.

4.3 Illumination Invariant Architecture

Recall the images in Figure 1.1 from Chapter 1. Even though the two images belong

to the same subject and contain virtually identical spatial information, in order for

a DL model to know that these two images belong to the same subject, or even

simply to label them as the same category, will require the model to be trained with

enough data that can accurately represent all possible variations of the image, which

is often unattainable, particularly when the data is limited. This issue increases the

difficulty of being able to recognize emotions from facial expression, particularly in

unconstrained environments. This section of the chapter presents the novel SCAE

model designed to address illumination invariance.

4.3.1 Unsupervised Feature Learning: Gradual GLW

Due to the inherent non-linearity of deep learning models, empirical training meth-

ods such as SGD may fail if the network topology is not ideal for the problem being

solved, i.e. too many or too few deep learning layers, too few neurons in MLPs or

filter kernels in CNN, or if the network hyperparameters are not properly initialized.
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As observed in Chapter 3, these imprecise network configurations can lead to ex-

ploding or vanishing gradients, thus rendering the training processing unsuccessful,

particularly for very deep models such as autoencoders. Chapter 3 also showed that

GLW unsupervised learning of SCAE models can increasingly facilitate the training

of very deep CNN models. This section explores this training method further in the

context of reconstruction and classification error and looks at ways to overcome the

error accumulation observed during GLW training.

As observed in the preliminary experiments, the nature of the GLW training algo-

rithm allows for error accumulated in early layers to be propagated to deeper layers,

and therefore deeper layers are often trained to encode or decode features that fall far

from a global minimum. This makes it difficult to obtain good image reconstructions

y of the input x, even after fine-tuning the final stack of shallow autoencoders for

classification. When training a SCAE model for the sole purpose of pretraining a

secondary deep model, the ability of the SCAE to produce reconstructions y with

significant low reconstruction error is trivial. However, the experimental design of

the illumination invariant SCAE requires the model to retain all the spatial informa-

tion present in the input x. This is also true for other transfer learning or domain

adaptation problems.

To address error accumulation, reduce the distance between y and x, improve the

overall performance of the GLW training method, and at the same time learn an

illumination invariant feature vector, this chapter introduces a novel Gradual Greedy

Layer-Wise (Gradual-GLW) training method. Firstly, instead of fine-tuning the final

stack only once for classification, the stack of shallow autoencoders is fine-tuned for

reconstruction at every step k ∈ Z : k ∈ {1, . . . ,m}. This inter-layer fine-tuning

approach ensures that the shallow autoencoders at steps k and k + 1 learn to reduce

the error accumulated by the shallow autoencoder at step k before the next shal-

low autoencoder learns to map the hidden representation h produced by these two

autoencoders to an approximation y.

Recall that in the preliminary study of SCAE models trained in a GLW manner
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the objective was to learn an approximation of g(f(x)) = x by minimizing Equation

3.12. However, when trying to adjust luminance levels on a given image, learning the

identify function g(f(x)) = x is not particularly useful given that it only learns to

replicate the input image. The objective of the autoencoder model proposed in this

chapter is to learn to reconstruct an input image x with relative luminance Y as xµ,

thus the objective is to learn an approximation of g(f(x)) = xµ, which is achieved by

minimizing:

JAE(θ) =
∑
x∈Dn

L

(
xµ, g

(
f(x)

))
(4.3)

where Dn is the training set, xµ is an image x with luminance µ and similar spatial

information as image x with luminance Y and ¬�(µ = Y ). Note that (¬�) is used

to denote that µ and Y are not necessarily equal. Tables 4.1, 4.2 and 4.3 provide a

formal definition of the Gradual-GLW training algorithm proposed.

Fine-tuning is done in a similar way as training in Table 4.2 except there are no

stopping conditions and is only done for a fixed number of epochs. This is due to

the layers already being trained which only require small updates to strengthen the

connection between the layers already fine-tuned and the newly trained one.

Minimizing Equation 4.3 can be done using empirical learning methods such as

SGD or Adam. Although no significant differences in performance were observed as

discussed in the results section, SGD with Nesterov momentum [34] is employed for

comparison purposes with the preliminary study discussed in Chapter 3.

Since in previous work Ruiz-Garcia et al. [40] have observed that classifier models

with more than four or five convolutional layers do not improve classification per-

formance for the KDEF dataset due to its sparsity, the illumination invariant deep

CNN model has five convolutional layers —each convolutional layer becomes a shal-

low autoencoder in the SCAE model. Additionally, as discussed in the results section,

since the data distribution is significantly reduced by the SCAE model, it becomes

unnecessary to add more convolutional layers.
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Table 4.1: Gradual Greedy Layer-Wise unsupervised training.

Given a training set X and validation set X̃ each containing input images x and
target images xµ, m shallow autoencoders with only two parametrised layers,
an unsupervised feature learning algorithm L —see Table 4.2 —which returns
a trained shallow autoencoder, and a fine-tuning algorithm T —see Table 4.3:
train the first shallow autoencoder with raw data and add it to the stack of
trained autoencoders f . For the remaining autoencoders: encode the training and
validation data using the encoder layers ξ from the stack f and use the resulting
features to train the next shallow autoencoder. Add the new autoencoder to the
stack and fine-tune the stack on raw pixel data and repeat.

f 1 ← L(f 1, X, X̃)

f ← f ◦ f 1

for k ← 2, . . . , m do

[ξ, δ]← f

Xf ← ξ(X)

X̃f ← ξ(X̃)

f (k) ← L(f (k), Xf , X̃f )

f ← f (k) ◦ f
f ← T (f,X, X̃)

end for

Return f
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Table 4.2: Learning procedure for each shallow autoencoder from Table 4.1

Given a training dataset X with m mini-batches of size b, a validation set X̃ and
a model f with weight matrix W taking Nin inputs and producing Nout outputs,
train f until the difference between the average luminance ι of the reconstructions
y and the average luminance µ of the target images is below the threshold Θ
or until reaching a maximum number of epochs M . The weight matrix W is
initialized with a Xavier distribution [69]. S denotes the interval at which the
stopping criteria is assessed.

V (W )← 2
Nin+Nout

for k = 1, . . . , M do

for n = 1, . . . , m do

[x, xµ]n ⊂ 1, . . . ,m← random(X, b)

y ← predict(x, f)

L← loss(xµ, y)

f ← update(f, L)

end for

if k mod S = 0 then

[x, xµ]← random(X̃, b)

y ← predict(x, f)

ι← mean luminance(y)

µ← mean luminance(xµ)

if |µ− ι| <= Θ then

Return f

end if

end if

end for

Return f
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Table 4.3: Fine-tuning procedure for the stack of autoencoders from Table 4.1

Given a training dataset X with m mini-batches of size b, a validation set X̃ and
a model f , train f for M epochs.

for k = 1, . . . , M do

for n = 1, . . . , m do

[x, xµ]n ⊂ 1, . . . ,m← random(X, b)

y ← predict(x, f)

L← loss(xµ, y)

f ← update(f, L)

end for

end for

Return f

One of the main challenges in unsupervised learning is determining when to stop

training; since there are no labels, there is no direct way to measure the model’s

performance. Empirically, training is stopped when the error stops decreasing for a

given number of iterations. However, in the case of the SCAE model proposed here,

it is imperative to avoid overtraining and converging to a model that has learnt an

identity function g(f(x)) = x instead of g(f(x)) = xµ, which in effect would mean

f(x) does not result in an illumination invariant feature vector h. Moreover, because

the error is estimated according to the distance between the reconstructed image y

and the target image xµ, the error does not necessarily reflect the model’s ability to

produce an illumination invariant feature vector given that y is an approximation of

x and ¬�(x = xµ). Therefore, the stopping criteria is based on the luminance level

of the reconstructed images as illustrated in Table 4.2.

Since error accumulation is not an issue using the Gradual-GLW training method

as opposed to the GLW method, each shallow autoencoder in the SCAE1 model is

trained and fine-tuned for only two epochs, compared to ten in the preliminary study.

Similarly, the shallow autoencoders in the SCAE2 model are trained and fine-tuned

for only one epoch. Note that because the corpora used to train both models are

significantly larger, training using GLW over Gradual-GLW would require training
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for much longer.

Each CNN model is formulated as a SCAE as discussed in section 3.4.1, i.e. each

parametrised layer is used as the encoder element and a decoder is created using

the same layers with upsampling replacing max pooling. Although deconvolutional

layers seem a perfect fit for this purpose, nearest neighbor upsampling produces sig-

nificantly smoother reconstructions, and it facilitates evaluating the luminance of the

reconstructions produced by the SCAE models. The reconstruction loss is measured

for mini-batches of size 512 using the mean absolute value C from Equation 3.13.

Other learning parameters such as momentum and LR decay remained the same as

in the preliminary study, 0.6 and 0.001. Due to a significant reduction in error re-

constructions using the Gradual-GLW approach proposed in this thesis, higher LRs

can be used for deeper layers which in effect allows for faster training. Therefore,

λ ∈ {0.1, 0.3, 0.5, 0.7, 0.75} were used as initial learning rate for k shallow autoen-

coders. The same hyperparameters were used for SCAE1 and SCAE2.

4.3.2 Classification: Convolutional Neural Networks

Once the SCAE models are trained to learn a feature vector that is illumination

invariant, the decoder is discarded and replaced with two fully connected layers of

size 5000 and 1000. The output of the first fully connected layer is shaped using a

standard ReLU layer, whereas the second is shaped by a ReLU-n layer. The CNNs

are fine-tuned for classification using SGD. The output of the CNN model is defined

by a SoftMax operator and the cross-entropy loss y as defined by Equation 3.14.

Note that the the fully connected layers do not use batch normalization. Addi-

tionally, the first two convolutional layers use a 5×5 kernels and the remaining layers

use 3 × 3 kernels. This ensures that emphasis is placed on smaller shapes, which

for the purpose of this work helps identify small salient features that differentiate

emotions.
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The encoder element of the SCAE1 is used to initialize two convolutional networks,

namely CNN1a and CNN1b. The former is fine-tuned and tested on the KDEF dataset

and the latter on the CK+ dataset. SCAE2 is used to initialize a third model, CNN2

which is fine-tuned and tested on the CEF corpus.

Fine-tuning for the CNN1b is done using mini-batches of size 49 and the training

subset of the KDEF dataset. The n value for the activation function ReLU was set

to 0.4., whereas the learning rate was initially set to 0.1 and annealed by a factor of

0.1 according to Equation 3.16.

For the CNN1b, fine-tuning is done on the training subset of the CK+ corpus using

mini-batches of size 38, a learning rate of 0.3 which is annealed by a factor of 0.01.

As discussed in the results section, the ReLU-n function in the last fully connected

layer was modified with an n value equals to π, and the lower bound was set to 0.1

instead of 0.

Lastly, fine-tuning and testing CNN2 on the CEF corpus is using the same hy-

perparameters used for CNN1b, with the exception of batch size which was set to 64.

Momentum was set to 0.7 for all three CNNs and all three models were fine-tuned for

10 epochs. Further training did not provide an increase in classification performance.

4.3.3 Weight Activations and ReLU-n

While training using the Gradual-GLW training method, it was observed that recon-

structions for images with very low luminance had a marginally smaller reconstruction

error than those for images with high luminance. This observation is justified by the

use of ReLU transfer functions, which constrain the output of a convolutional layer to

non-negative real values R≥0, therefore, dark pixel values which are close to zero and

often become negative when forward propagated through the network, are bound to

remain non-negative. And because there is no upper threshold in ReLU functions the

bright pixels —there is a tendency for larger values to continue growing and smaller
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ones to become smaller —can grow endlessly. Moreover, when back tracing individual

activations, it was observed that pixel values with very high white intensities tend

to become large without the the ReLU-n layers used in the SCAE model. This is

particularly relevant for the images with very high luminance, which are often the

ones misclassified.

When using ReLU-6 activation functions, i.e. imposing a max upper threshold

value of 6 as opposed to no upper threshold in ReLU functions [70], the reconstructions

for images with high luminance improved marginally. Just as is the case with images

with relatively low luminance, by bounding the gradients to remain small, when the

image is propagated through the network, the brighter pixel values are not allowed

to become too large and the luminance levels of the reconstruction are somewhat

controlled. Note that there is a tendency for bright pixels to cause large activations

in the network.

This upper threshold also assists in avoiding the exploding gradients problem:

Similarly to the vanishing gradient problem, exploding gradients are a common issue

when training deep models and are often caused by imperfect network configurations

or incorrect parameter initialization, causing the gradients to grow exponentially and

eventually rendering the training process a failure. However, when the gradients are

restricted to a max value of 6, the exploding gradient problem is reduced and the

neural network is forced to learn less sparse representations.

These observations raise the question whether these thresholds are optimal to

address illumination invariance. Further experimentation established that a max

value of 1 led to faster learning of the SCAE model. Let n represent the upper

threshold, the output y of the ReLU-n proposed is defined by:

y = min(max(x, 0), n) (4.4)

Using this upper threshold encourages the network to learn even more sparse

features in earlier layers and encourages the network to increase or decrease luminance

on the input image, without shifting towards one end in the SCAE models. However,
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it was observed that for the fully connected layers in the CNN models, the higher

the n values, the larger the decrease in classification performance of the model. After

more experimentation it was established that for the fully connected layers, which

essentially are responsible for classifying the features learned by the convolutional

layers, the upper threshold could be smaller than 1. For the KDEF corpus, it was

found that an n value between 0.4 and 1 provided better results on the test set.

Similarly, for the CK+ corpus, it was found that a value as small as π provided

better results.

The difference in n values for the two corpora is hypothesized to be due to the

different in relative luminance between the datasets: the CK+ has a higher mean

luminance value due to many images being significantly bright. And, as observed in

the SCAE models, the brighter pixel values tend to become very large. Moreover,

because the classification on facial expression images depends upon salient features

such as the mouth, eyes and eyebrows, with a small upper threshold all the white

noise is ignored.

Another issue observed was that when a large amount of activations in the fully

connected layers fall below zero during fine-tuning —note that this is not the case

for the convolutional layers given they have been pretrained with a lower threshold

of zero and the fully connected layers are initialized with a random distribution—the

layers struggle to learn. This highlighted an unnoticed issue with ReLU layers and

seemed a common problem when fine-tuning on the CK+ corpus. Therefore, to avoid

zero multiplications, the lower bound of the ReLU-n functions was set to 0.1 in the

last fully connected layer for the CNN1a model. These configurations produced the

best results for the CK+ and KDEF corpora, as discussed in the results section.

CNN2 used the same values as CNN1b fine-tuned on the KDEF corpus.
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4.4 Results

Training a deep learning model to deal with illumination is a challenging task due to

a number of factors such as limited multi-illumination training data, or the large dis-

tribution of data containing different illumination variations, which causes the search

space to grow exponentially. These issues are addressed in this chapter by employing

gamma γ correction to augment a dataset and obtain images with varying luminance,

and by training an autoencoder to reduce the data distribution and thus the search

space. The data distribution is reduced by learning to encode a set of images contain-

ing identical spatial information, but varying illumination as an illumination invariant

downsampled feature vector.

4.4.1 Illumination Invariant Reconstruction Results

Figure 4.2: Performance comparison of SCAE1 on unseen data, (left images), when
trained using the Gradual-GLW method, (middle images), proposed in this chapter,
versus the empirical GLW method, (right images), as used in the preliminary study
in Chapter 3. Input images extracted from the CK+, (left), and KDEF, (right),
corpora.

The SCAE models are trained using an improved version of the GLW algorithm,

namely Gradual-GLW, and learn to produce remarkable reconstructions even on un-

seen data from different datasets. As it can be observed in Figure 4.2, the SCAE

model learns to increase relative luminance on images with low luminance - left im-

age, or reduce the luminance for images with relatively high luminance - right image.

Notice that the reconstructions produced with Greedy-GLW retain all the spatial

information, as opposed to those produced with GLW.

Ideally, due to the ability of convolutional networks to retain spatial information
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through filter kernels, the SCAE models should be able to produce reconstructions

that resemble the input image. However, as it observed in Figure 4.2, it is not the

case when the SCAE models are trained in a GLW unsupervised fashion. This is due

to the error accumulation problem that leads deeper layers to reconstruct a feature

vector that falls far form a good local minimum. And once the weights have shifted

in a given direction, it is difficult to adjust them in such a way that would allow them

produce better reconstructions.

Figure 4.3: SCAE1 sample reconstructions on the test subset of the Yale corpus. Top
row: the input image x; and bottom row: the corresponding reconstruction y.

The Gradual-GLW training method proposed here overcomes the limitations of

the empirical GLW training method and significantly reduces training time and recon-

struction error. As a result, SCAE models also improve their generalization abilities

and are able to produce remarkable illumination invariant reconstructions even on

unseen data. When evaluated on the same dataset, the reconstructions are more re-

markable and are difficult to differentiate from the ground truth images as observed

in Figure 4.3.

As it can be observed in Figure 4.3, even when the input images are significantly

dark, i.e. have very low relative luminance levels, and half of the face is not clearly

visible, the SCAE model compensates for missing information and produces images

not much different than the target, supporting the superiority of the Gradual-GLW

training method over the empirical GLW method proposed by [41]. The main ad-

vantage of this is that all the spatial information and salient features necessary for

classification are kept almost intact. Equally important, when the input image al-

ready has a good degree of illumination, this is kept unchanged as observed in the

last column of Figure 4.3.
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4.4.2 Classification Results

Once the SCAE models converged to a good local minimum that allowed to to produce

illumination invariant reconstructions, the encoder element which produces an illumi-

nation invariant feature vector h is used to initialize a deep CNN model. Two CNN

models share the same autoencoder SCAE1 except they are fine-tuned on different

datasets. CNN1a is fine-tuned on the training subset of the CK+ corpus and achieves

a classification performance of 94.90%. CNN1b, fine-tuned on the KDEF, achieves a

state-of-the-art classification rate of 95.70% on the testing subset. These results are

also reported in [71], which is published work that resulted from this research.

Table 4.4: Left: Classification performance of the CNN1a model on the CK+ (93 out
of 98 images correctly classified 94.90%). Right: Classification performance of the
CNN1b model on the KDEF (281 out of 294 images correctly classified 95.70%). A:
angry; D: disgust; F: fear; H: happy; N: neutral; Sa: sad; Su: surprised.

A D F H N Sa Su A D F H N Sa Su

A 76.92 0 0 0 0 23 0 95.24 4.76 0 0 0 0 0
D 100 0 0 0 0 0 2.38 95.24 0 0 0 2.38 0
F 0 0 85.71 0 14.26 0 0 0 0 90.48 0 2.38 2.38 4.76
H 0 0 0 100 0 0 0 0 0 0 97.62 2.38 0 0
N 0 0 0 0 100 0 0 0 0 0 0 100 0 0
Sa 0 0 0 0 16.66 83.33 0 0 2.38 0 0 7.14 90.48 0
Su 0 0 0 0 0 0 100 0 0 0 0 0 0 100

The difference in performance between SCAE1a and SCAE1b, which was observed

to affected by the upper and lower bounds of the ReLU-n function, can be justified

by the different complexity of each dataset and the larger number of samples in the

KDEF. With these observations made, it is possible to conclude that restricting the

output of the classifier layer to values between 0 and 0.4 provides a similar effect to

dropout [37], by dropping high or low neuron activations. Nonetheless, in this case,

the values being dropped are those that have become too small or two large, instead of

random ones. Keeping the weights of the convolutional layers, which were pretrained

as a SCAE, fixed during fine-tuning, also produced lower classification performance.

This can be justified by the fact that the SCAE model only learns to map the input

image to an approximate reconstruction and does not take into account categorical
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information. Nonetheless, this needs to be explored further. Other configurations

also produced lower performance, for instance, adding normalizing the output of the

fully connected layers using BN also reduced the performance. In addition to this,

when training the SCAE to reconstruct the input image as the image with the highest

luminance level instead of the images closest to the mean, xµ, it was observed that

even though the reconstructions for the Multi-PIE dataset were visually remarkable

and with a luminance relatively close to that of xµ, the classification performance

dropped.

The CNN2 model, which is initialized with the weights of the encoder element of

the SCAE2 model and fine-tuned on the testing subset of the CEF dataset, produces a

state-of-the-art classification rate of 99.14% on the test subset. Note that the testing

subsets of the CK+ and KDEF corpora from Table 4.4 form part of the CEF testing

subset. As it can be observed, the CNN2 model outperforms both CNN1a and CNN1b

models, supporting the potential of the Gradual-GLW method in combination with

gamma γ corrected images when lack of multi-illumination data is present.

Table 4.5: Classification performance (99.14%) on the CFE corpus, composed of the
CK+, KDEF, JAFFE, and FEEDTUM corpora combined.

A D F H N Sa Su

A 99.34 0.53 0 .13 0.00 0.00 0.00 00.0
D 0.18 99.18 0.00 0.18 0.00 0.36 0.09
F 0.18 0.00 99.04 0.09 0.09 0.35 0.17
H 0.26 0.00 0.11 99.31 0.11 0.34 0.11
N 0.00 0.00 0.00 0.40 97.21 2.79 0 .00
Sa 0.80 0.06 0.25 0.00 0.26 99.05 0.06
Su 0.32 0.00 0.12 0.25 0.00 0.00 99.63

As observed in Table 4.4, the classification performance of the illumination invari-

ant CNN1a and CNN1b models is consistent on both datasets. Both models obtain

lower classification rates on angry, fear, and sad. And even though CNN1a achieves

100% accuracy on four out of seven classes, its performance on the most missclas-

sified classes is far worse than the performance of CNN1b, hence the overall lower

performance. In contrast, CNN2 learns to improve the classification performance on
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these particular classes but fails to provide the same level of accuracy on neutral

states. This can be justified by the incorporation of the FEEDTUM dataset in the

CEF corpus: although the first 30% of every sequence is discarded along with the

last 10%, this does not guarantee that all the neutral faces are removed from every

sequence, resulting in many neutral faces being mislabeled as other emotions.

Since the SCAE1 model was trained on a significantly larger dataset and produces

remarkable illumination invariant reconstructions, theoretically, the classifiers initial-

ized with this model should yield higher classification rates than the one pretrained

with SCAE2 However, this is not the case. The significant increase in performance of-

fered by the CNN2 model can be justified by the fine-tuning process, which used more

facial expressions data with varying conditions than CNN1a and CNN1b. With these

observations, it is possible to conclude that better reconstructions do not necessarily

mean better classification, and it highlights the importance of fine-tuning on large

amounts of data. At the same time, it can be concluded that the use of gamma γ

correction in conjunction with Gradual-GLW can yield state-of-the-art classification

performance. Furthermore, when unsupervised pretraining is done using the empiri-

cal GLW method as is, and ReLU activations instead of ReLU-n as done in Chapter 3,

the best performance obtained on the CK+ is of 86% and 91.5% on the KDEF. This

difference in classification performance also supports the training method presented

in this chapter, even when luminance is not a direct issue.

4.5 Comparison Against State-Of-The-Art

Contemporary attempts to address illumination invariance in the domain of facial ex-

pression recognition include the use of noise injection [72], blurring images with Gaus-

sian filters [73], a combination of histograms, principal component analysis (PCA) and

discrete cosine transforms [74], or complex and very deep CNN architectures [75]. Al-

though some of these methods produce remarkable results, they are still unable to

generalize on data with nonuniform distributions, particularly the hand-crafted meth-

ods such as Gaussian filters or histograms. The DL based models are also prone to
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overfitting. The novel DL architecture presented here is capable of dealing with data

with nonuniform conditions, and can deal with up to 64 degrees of illumination. This

architecture presented here extends the findings gathered in the preliminary experi-

ment discussed in Chapter 3 by improving the performance of GLW and proposing a

novel training method to address illumination invariance.

The results obtained on the CK+ corpus significantly surpass similar work de-

signed to address illumination invariance [76] and are in line with the results obtained

by [73], who use a much more complex approach. [73] use spatial-temporal and uni-

versal manifold models to extract low-level features and construction expressionlets.

This approach is similar to Action Units [77], and the authors report an accuracy rate

of 95.1% on the CK+ dataset. Similarly, [76] use an adaptive filer based on temporal

local scale normalization, and use a complex architecture based on a very deep CNN

followed by fully connected layers and deconvolutional layers to learn seven different

facial expressions from short video clips. This architecture is able to reconstruct the

input image, like an autoencoder, as well as categorizing it. The authors report a per-

formance rate of 83% on the CK+ dataset. On the CK+ dataset, the CNN1a model

learned to classify four classes out of seven with 100% accuracy, that is two classes

more with 100% accuracy than the approach proposed by [76], and three more than

the work by [73]. The lowest performance was on angry, which is confused with sad;

this marginally surpasses the results by [76] and falls behind on those obtained by

[73] for this particular class. Both [76] and [73] obtain 50% or lower on sad, compared

to 83.3% using our approach. Nevertheless, the CNN2 model outperforms all these

different approaches with a state-of-the-art classification accuracy of 99.14%.

Compared to empirical DL models, such as the deep CNN used in the preliminary

study, the illumination invariant model here learns to exponentially reduce the search

space by learning a feature vector that is illumination invariant. For instance, the Yale

dataset has sixty-four estimated different levels of illumination. A traditional CNN

model would have to learn at every layer that these sixty-four images belong to the

same subject and same category. This is particularly problematic for the classification

layer, given it has to learn to categorize all these variation under the same category.
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The classification layer of the illumination invariant model presented here only sees

one level of illumination, and thus it does not need to learn that two or more images

with significantly different luminance levels fall under the same category or contain

the same spatial information.

Other advantages of the unsupervised pretraining approach proposed in this chap-

ter over contemporary methods is the faster training times allowed by Gradual-GLW

algorithm, as well as reduced need for very deep models and increased network com-

plexity. Moreover, the illumination invariance models also have the potential of being

employed for other visual processing tasks and should reduce the need for hard coded

image pre-processing approaches such as those employed to train very deep networks

such as ResNets, which rely on pre-processing techniques such as: alteration of bright-

ness, contrast, saturation, color normalization, and PCA based lighting. In addition,

theoretically, this illumination invariant unsupervised training of autoencoders should

reduce the need for more complex methods such as denoising autoencoders, which in-

ject random noise to the input images during run time, and should eliminate the need

for other techniques, such as dropout, by employing ReLU-n activation functions, as

seen in section 4.3.3

For the SCAE models, it is difficult to compare their performance in terms of

reconstruction due to a lack of existing work exploring this particular issue, specifically

in terms of illumination invariant facial expression recognition. Nonetheless, the

regression results presented in this chapter can be used as a benchmark for future

work. Note that although this method was only evaluated on gray-scaled images, it

can also be evaluated with colored images.

4.6 Chapter Conclusion

This chapter of the thesis has presented a novel deep learning approach to deal with

illumination invariance in images with application to facial expression recognition.

The approach presented employs a deep CNN pretrained as a SCAE model that
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learns to map an input image x to a hidden illumination invariant representation h

and back to an illumination invariant approximation y of the input image. The SCAE

model is trained using Gradual-GLW, an improved version of GLW also proposed in

this chapter, that reduces error accumulation in early layers and significantly improves

training time and generalization performance. The encoder element, which produces

h, is used to initialize the CNN model, which produces state-of-the-art classification

performance. The CNN offers an increase of over 15% in classification performance

compared to contemporary methods also designed for illumination invariant emotion

recognition from facial expressions, and up to 10% increase when compared to a

similar approach that employs GLW as opposed to Gradual-GLW.

The originality of the illumination invariant architecture relies on the unsupervised

pretraining approach presented, which learns to increase or decrease illumination in

images or keep it the same if it is already good enough —i.e., if salient facial features

are already visible. This method also compensates for missing information and is able

to reconstruct faces in which some features are not visible due to poor illumination.

Moreover, this method provides remarkable generalization performance and is able

to produce illumination invariant reconstructions even on unseen data from different

corpora. Although the method presented here relies on multi-illumination corpora to

learn, it was demonstrated that when there exists lack of multi-illumination data, γ

correction can be utilized to magnify the training data.

The work presented here brings us a step closer to emotion recognition in uncon-

strained environments with non-uniform illumination conditions. However, the main

limitation of this work is that it only addresses illumination invariance and does not

deal with another important problem in the field of face and facial expression recog-

nition: pose invariance. The following chapter will explore this problem in detail and

introduce a novel method to address pose invariance.
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Chapter 5

Pose Invariant Emotion
Recognition

5.1 Introduction

One of the main findings presented in Chapter 4 was that we can learn an encoder

function f that maps an input image x to a hidden illumination invariant represen-

tation h = f(x), and learn a function g that maps h to a reconstruction y = g(f(x))

that resembles a desired target xµ and ¬�(x = xµ). In theory, this establishes that

the input and target vectors in an autoencoder do not need to be the same, and

therefore we can learn a function that maps an input from a given distribution to a

target that lies in a different distribution. This chapter exploits these observations

along with Gradual-GLW training and contemporary adversarial learning principles

to address pose invariance in the domain of facial expression emotion recognition.

A novel convolutional layer with shifting neurons is introduced as part of a new ar-

chitecture that gradually learns to shift faces with a pose of up to 60 degrees to a

representation of the same faces at 0 degrees. The resulting latent feature vector

representing the input image at 0 degrees is then used for classification. The main

contributions presented in this chapter are:

• a novel deep Generative Adversarial Stacked Convolutional Autoencoder (GASCA)

model that learns to shift faces with facial pose of up 60 degrees to 0 degrees
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representations.

• a hybrid deep learning layer employing convolutional filters to retain spatial

information and learn salient features, and fully connected units shared across

the depth dimension to facilitate the reduction of facial pose.

• a convolutional layer with reduced number of parameter that exploits facial

symmetry and learns from only one half of the face.

• an illumination and pose invariant emotion recognition classifier that produces

state-of-the-art classification performance on images taken in both, controlled

and unconstrained environments.

The pose invariant GASCA model is trained in different stages using Gradual-

GLW. Each shallow autoencoder learns to gradually reduce facial pose, or keep it the

same if it is already smaller than the desired target. This process is repeated until

reaching a facial pose of 0 degrees. Effectively, the search space for the upper layers

is greater than that of the deepest layer, which only has to learn one facial pose of

0 degrees. Similarly to the illumination invariance model from Chapter 4, by only

dealing with frontal images, the search space for the fully connected layer in the CNN

is dramatically reduced.

The motivation to reduce the pose in facial expression images comes from the

observation that in non-frontal faces —i.e. faces with pose greater than 0 degrees

—much of the information essential for emotion recognition is nonexistent. More-

over, the more variations in facial pose the larger the data distribution, and the more

difficult for a neural network to provide good generalization due to the high dimen-

sional search space. In addition, for real time emotion recognition in unconstrained

environments, it is difficult to obtain images without facial pose. Consequently, this

chapter explores the development of an emotion recognition model, GASCA1, capable

of dealing with faces with a facial pose of up to 60 degrees. A second model, GASCA2,

which combines the illumination and pose invariant models into one is also presented.

The GASCA1 model is only trained to learn a pose invariant hidden representation in

order to demonstrate this novel training approach in more detail, whereas GASCA2
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combines the findings gathered by training GASCA1 and the illumination invariant

SCAE models from Chapter 4.

The deep learning architectures proposed here utilize the findings gathered in the

previous chapter, namely the Gradual-GLW training algorithm and the concept of

pre-training a deep CNN as a SCAE where the input image and target reconstruction

image lie in different distribution spaces. The pose invariant model produces state-of-

the-art classification results on multi-pose emotion recognition from facial expressions.

The following section of this chapter presents the experimental setup.

5.2 Experimental Setup

5.2.1 Multi-pose Facial Corpus: Multi-Pie

Two pose invariant GASCA models are trained on the MultiPie database of faces

described in Chapter 4. The same image pre-processing approach for face detection

and dimensionality reduction is followed. The MultiPie corpus contains images with

facial pose, ϕ, at the following angles: {0,±15,±30,±45,±60,±75,±90}. However,

since the faces at±{70, 90} degrees contain very little facial features useful for emotion

recognition, these are not considered in this work.

In the GASCA models each shallow autoencoder deals with a given estimate

facial angle at a time, whether facing left or right, i.e. negative or positive angles,

and all the facial images with pose equal or smaller than the target angle α —where

α ∈ {0,±15,±30,±45} and n = dim(α). Note that images at ±60 degrees are only

used as input and never as target images.

Recall that in the MultiPie corpus all images for a given subject at a given session

were taken simultaneously, resulting in multi-pose multi-illumination images of the

same subject. All the resulting images with the same pose and varying illumination

are stored in the same folder. Therefore, for each session for a given subject there are
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9 folders, i.e. one folder for every angle {0,±15,±30,±45,±60}, each containing 19

images with different illumination.

Accordingly, the dataset is divided into n−1, i.e. 4 in this work, subsets containing

facial expression images with a given facial angle, whether positive or negative, and all

the images with a smaller facial angle. For instance, subset A1 contains all the images

with {0,±15} degrees. A2 contains all images at angles {0,±15,±30}, thus A1 ∩A2,

and so forth. However, as done for the illumination invariant SCAE model from

Chapter 4, the reconstruction target for each shallow autoencoder is not the same as

the input image. In the case of the GASCA1 model, the reconstruction target xµ is

either the input image x itself or the image taken simultaneously but from a smaller

angle. For instance, in the first shallow autoencoder trained on An−1, the images of

the same subject at −60 and +60 degrees are used as input and the images at −45

and +45 are used as target. And since all the other images already have a pose closer

to 0 degrees they are used as input and target. Note that the increase in angle, for

the images with a negative angle, or decrease, for the ones with a positive angle, is

done in intervals of 15 degrees due to the structure of the Multi-Pie corpus. Formally

this is defined as:

xµ =


xϕ−d , if 0 < α < ϕ

xϕ+d , if ϕ < α < 0

xϕ , if |ϕ| ≤ |α|
(5.1)

where α denotes the desired target pose and d denotes the change in pose by degrees:

15 degrees in this work. Each subset is further split into 70% training and 30%

validation subsets, X and X̃. The creation of these subsets following the methodology

described herein plays a vital role in learning illumination and pose invariant hidden

representations.

For the GASCA2 model, the subsets are created in the same manner except that

instead of simply using the version of an image with a smaller angle as the target, the

target is the image with a smaller angle and with relative luminance Y level closest

to the mean as done in Section 4.2.4 of Chapter 4. This ensures that the GASCA2

model learns a hidden representation h that is both illumination and pose invariant.
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Figure 5.1: Top row: sample faces with +30 degrees pose. Bottom row: faces at +15
degrees used as target for the top row images in the GASCA1 model. Middle image
in bottom row has relative luminance closes to the mean and is used as target for all
the images in the top row in the GASCA2 pose and illumination invariant model.

Figure 5.1 shows sample images used as input (top row) and images used as desired

target reconstructions (bottom row) for the GASCA1 model. In the GASCA2 model,

the middle image in the bottom row is used as target for all the top row, as well as for

the images in the bottom row when |ϕ| ≤ |α|. Note that the creation of the training

and validation subsets in this manner plays a vital role in learning illumination and

pose invariant hidden representations of the input images, and both GASCA models

heavily rely on it.

5.2.2 Facial Expression Corpora

The pose invariant GASCA model is used to initialize a classifier model, CNN1, which

is fine-tuned and tested on the KDEF corpus, also introduced in Chapter 4. However,

in this case frontal and images at ±45 degrees are used. No other publicly available

datasets with multiple poses have facial expression labels.

The pose and illumination invariant GASCA2 model is used to initialize a second

classifier, CNN2. This model is also fine-tuned and tested on the KDEF corpus. In

addition, due to the lack of publicly available data taken in realistic environments

with multi-pose and varying illumination, as well as labels for the emotions being

expressed, CNN2 is also tested on a corpus collected using a NAO robot as we pre-
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sented in [78] and referred to as NAOFaces hereafter. A total of 196 images from

28 participants were collected in three sessions and two different classrooms using

NAO, a 58 centimeters tall humanoid robot with a 1.22 megapixel camera capable

of capturing images at 30fps. Participants include 21 males and 7 females between

ages 18 and 55, are either students or staff members from at least five different ethnic

backgrounds.

During data collection of the NAOFaces corpus, participants were asked to express

one of seven emotions at a time as natural as possible and no further instructions

were provided. This resulted in participants sitting across from NAO at varying

distances, different heights, and looking in different directions, i.e. varying facial

pose and tilt. Moreover, no other factors were controlled: participants wore glasses,

scarves, and hats in some cases. Lighting was not controlled and the classrooms

had windows allowing natural light in, resulting in varying image luminance. The

resulting facial expression images were labeled by at least three independent parties

and images labeled as the same emotion unanimously, a total of 121 images, were

added to the final corpus. For the final corpus, faces were cropped and the resulting

images were gray-scaled and normalized to zero mean unit variance as done for all

the other corpora used in this research. Note that none of these images are used for

fine-tuning.

5.3 ConvMLP and HalfConv layers

One of the main advantages offered by CNNs over MLPs is their ability to self-learn a

translation invariant downsampled feature vector that highlights salient features and

retains spatial information through filter kernels. This is particularly beneficial for

visual processing tasks where spatial information plays a crucial role in identifying

features of interest, e.g. the shape of the mouth and eyebrows for emotion recognition.

Equally important, CNNs are significantly less computationally expensive than

MLPs, due to the exponentially smaller number of parameters. Although these ad-
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vantages offered by CNNs often yield high accuracy rates, CNNs are constrained to

preserve the spatial structure of images and therefore are not suitable to reduce or

increase facial pose: since every output value produced by convolutional layers is the

results of the dot product between a filter kernel and a small view of the input image,

the pixel values can only be shifted within the space covered by the filter kernel. Nor-

mally, filter kernels tend to be small in order to capture small salient features. In this

research, 3× 3 kernels have demonstrated to be the most efficient. Due to the small

are covered by these filters, a pixel value can only be shifted two spaces in a given

direction, which is not enough to shift facial features to a frontal view. For instance,

in a 100× 100 facial expression image with an estimated pose at −60 degrees, facial

features like the nose and left eye lie in the region covered by pixels 1 to 25 and need

to be shifted between 10 to 25 places over the x axis in order to obtain a frontal view.

Using larger kernels that can capture a larger area and allow spatial information

to be shifted 10 to 25 places over, results in a loss of smaller salient features and

a decrease in classification accuracy for emotion recognition. Moreover, because in

many cases some facial features are not visible if the pose is greater than ±46 degrees,

a convolutional layer will struggle to fill in the missing information considering that

its primary goal is to highlight salient features and retain spatial information. One

alternative is to substitute convolutional layers with fully connected layers, i.e. use an

MLP instead of a CNN for every shallow autoencoder. However, MLPs do not take

into consideration spatial information, are more prone to overfitting, and are more

difficult to train due to the exponentially higher number of parameters. For example,

consider the SCAE model from Chapter 3, which has been used as the base model for

all the other architectures in this thesis. The SCAE model utilizes 20 filter kernels

in the first convolutional layer, which takes 1 × 100 × 100 gray scaled images. The

weight matrix for this layer is of size 20× 1× 100× 100. If this is to be replaced with

a fully connected layer that can keep the input image at the same size —the image

needs to be kept at the same size to be able to measure the loss between the input

and target images—it would require 10, 000 hidden units and a weight matrix of size

10, 000× 10, 000, over 500 orders of magnitude larger than the CNN layer.
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To overcome the limitations imposed by convolutional kernels and fully connected

layers, and at the same time exploit the advantages offered by both, this section of the

thesis introduces a hybrid layer that combines both approaches. The most straight

forward to accomplish this is by simply placing an MLP after the convolutional layer.

And, by having a smaller number of hidden units in the MLP than the number of

features produced by the convolutional kernels, there would be no need for down-

sampling layers such as average or max pooling or convolutional layers with a stride

greater than one, which often result in the loss of important information. However,

because convolutional layers normally employ a high number of convolutional kernels

in order to extract several salient features, thus adding an extra dimension in the

weight matrix, this approach would require a significantly large matrix weight W .

Accordingly, W would need to have a connection weight for each feature in the feature

maps produced by convolutional kernels, resulting in a large number of learnable

parameters, increased computational cost, and increased training difficulty.

Figure 5.2: ConvMLP layers illustration. Connection weights for the shifting units
are shared between all the feature maps.

In contrast, the novel layer presented here, referred to as ConvMLP hereafter,

shapes the resulting feature map produced by a convolution operation with a fully

connected layer that is shared between all the resulting feature maps. Refer to Figure

5.2 for a pictorial description. Given an input image I and a filter kernel K with

m× n dimensions, and a second weight matrix W , the output of ConvMLP layers is

defined as:

C(i, j) = W
(
(I ∗K)(i, j)

)
(5.2)

where:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (5.3)
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Just as in empirical convolutional layers, the non-linearity is provided by a ReLU

activation function, extending the above Equation to:

y = max(0, C(i, j)) (5.4)

In this formulation of ConvMLP layers, during the forward pass, the weight matrix

W is used to shape every feature map produced by the convolution operation and

is updated only once using back propagation. Sharing this layer across the third

dimension—not taking into account the batch dimension for simplicity—the size of

W in the scenario described above is only 100× 100 as opposed to 200, 000 without

weight sharing, resulting in a dramatically smaller number of parameters. This also

ensures that the shifting layer learns to shift all the features highlighted in every

feature plane in the same manner. Notice in Figure 5.2 how the pixels on the second

feature map are at a different location.

In addition to ConvMLP layers, and in order to support the pose invariant train-

ing approach and models presented in this chapter, a second convolutional layer is

introduced here. This novel layer, referred to as HalfConv hereafter, exploits facial

symmetry present in face images with an estimated pose of zero degrees. HalfConv

layers slice the input vector vertically in half. The half containing all the facial fea-

tures belonging to the left side of a face is then used as input for a convolutional layer

that has half the number of parameters than an empirical convolutional layer. The

resulting feature map is then simply mirrored across the y axis. Just like empirical

convolutional layers, HalfConv layers can compute multiple feature planes. Figure

5.3 illustrates the concept of HalfConv layers. Notice that the layer takes half of an

image as input and produces feature planes with the full image.

Figure 5.3: HalfConv layers illustration.
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When applied to face or facial expression images, HalfConv layers give up some

important information on the right edge of the input image, which in effect corre-

sponds to the features in the middle of a face. This is due to the nature of the

convolution operation, which convolves a kernel across an input image, resulting in

a feature plane with smaller dimensions than the input image. For this reason, Half-

Conv layers enforce zero padding p on right side edge of the input image to allow the

filter kernel to capture the features closer to the edge. Their output is then defined

by:

C(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, (j + p)− n) (5.5)

where p = j
2

+ 1. Then every resulting feature plane is reflected over the y axis,

resulting in a full image. Note that padding p is enforced to avoid losing features at

the edges of the image.

The main advantage offered by HalfConv layers is the reduced number of learn-

able parameters, which in effect results in easier and faster training. Because the

only extra operation required by this layer is simply mirroring a feature vector verti-

cally, HalfConv layers are significantly less computationally expensive than empirical

convolutional layers. Furthermore, because this layer only deals with frontal faces,

there is no need to employ any shifting neurons. Note that these layers are only

suitable for cases where symmetry is existent in the input image or is desired in the

resulting feature plane. Therefore, in the GASCA model, these layers are only used

when α = 0.

5.4 Generative Adversarial Stacked Autoencoders

In previous chapters of this thesis, it was established that the input and target recon-

struction images used to train an autoencoder do not need to be same. This approach

allows a neural network to learn a mapping from an input image to a target image

that may or may not lie in a different distribution. In effect, the network learns to

impose a distribution on the input data to produce reconstructions that resemble the
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desired target. Adversarial autoencoders can facilitate this task as they uniformly im-

pose a data distribution on the code vector, i.e. the hidden representation produced

by the encoder element, to generate realistic reconstructions. Moreover, adversarial

autoencoders are designed to produce very realistic reconstructions with minimal loss

of information. Accordingly, this chapter builds on this framework, along with the

findings from earlier chapters, and introduces a novel generative adversarial stacked

convolutional autoencoder (GASCA) model. This framework is employed in order to

gradually reduce facial pose to zero degrees while at the same time retaining all the

salient features that are essential for emotion recognition.

Recall from Chapter 2, GANs are composed of two networks: a generative model

G and a discriminator model D [28]. Both models are trained by playing a min-max

adversarial game where the discriminator model tries to determine if a given sample

is from the generator or the dataset. In contrast, the generator maps samples z from

a prior distribution p(z) and maps it to the data space. Adversarial autoencoders

follow a similar approach where the generator is an autoencoder that maps an input

x to a latent representation z that lies in an aggregate posterior distribution q(z)

and back to a reconstruction y which is an approximation of x. The discriminator

network in this framework attempts to determine if a sample has been drawn from a

prior distribution p(z) or from the latent distribution q(z).

In the GASCA model, the discriminator attempts to tell whether a sample comes

from the training dataset or if it is a reconstruction produced by the autoencoder.

Let xϕ be a sample from the data distribution pd(xϕ) and xµ the sample from the

data distribution pd(xµ) used as the desired target reconstruction defined according

to Equation 5.1. The autoencoder G model learns to map xϕ to a latent space z, note

that this is not an aggregate posterior as in conventional adversarial autoencoders,

and back to a reconstruction y that resembles xµ and lies in the distribution q(y).

The discriminator D attempts to differentiate between y and xµ.

The conventional adversarial autoencoder framework [27] imposes p(z) —often a

Gaussian distribution—on q(z) by estimating the divergence between q and p. This
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imposition can be used to produce reconstructions with specific features. However,

in this work, the objective is to produce reconstructions that are as close as possible

to the desired target image xµ. Consequently, instead of imposing random noise on

the hidden representation vector, the GASCA model imposes pd(xµ) on q(y) in the

following way:

q(y) = Rxµq(y|xµ)pd(xϕ)dxµ (5.6)

This formulation assists in the reduction of facial pose. Furthermore, the GASCA

model is trained in a greedy layer-wise manner using the Gradual-GLW training

method proposed in Chapter 4. By employing Gradual-GLW, the GASCA model is

able to overcome the added difficulty of training GANs as it is often the case.

With this formulation, the discriminator model D is optimized to rate samples

from pd(xµ) with a higher probability, and samples from q(y) with a low probability.

Formally this is defined as:

∇θd

1

m

m∑
i=1

[
logD(x(i)

µ ) + log
(
1−D(G(y(i)))

)]
(5.7)

where xmu is defined according to Equation 5.1. Note that since the objective is to

generate an image with a smaller facial pose, D never sees the input image xϕ.

The objective of the autoencoder model G, which in term plays the role as the

generator, is to convince the discriminator model D that a sample reconstruction y

was drawn from the data distribution pd(xµ) and not from q(y). This optimization is

done according to:

∇θg

1

m

m∑
i=1

log
(

1−D
(
G(y(i))

))
(5.8)

5.5 Unsupervised Feature Learning

Two pose invariant models are proposed in this chapter. Both models are constrained

by the theoretical convolution and adversarial learning methods described earlier in
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Figure 5.4: Visualization of the first shallow autoencoder in the GASCA model.

this chapter, and rely on the creation of a training set as described in the experimen-

tal setup section of this chapter. The first model, GASCA, is designed to address

pose invariance, whereas the second model, GASCA2 incorporates the illumination

invariance findings gathered in Chapter 4 with the pose invariant methodology of this

chapter. Figure 5.4 illustrates how the first layer in the GASCA models is trained.

For a full description of the topology for both networks in the GASCA model refer

to Table A.1 in Appendix A.

Both models utilize the same topology as the SCAE model in Table 3.2 from

Chapter 3. However, the first three convolutional layers are replaced with ConvMLP

layers and the last one is replaced with a HalfConv layer. Moreover, both models

are trained in a greedy layer-wise unsupervised fashion using Gradual-GLW. The

Gradual-GLW method from Chapter 4 is modified to comply with the adversarial

learning paradigm as showing in Table 5.1.

Intuitively, it makes sense to encode xµ using D to learn Dk. However, because the

features learned by D and G are similar, and since D does not use a fully connected

layer like empirical CNNs, it is unnecessary to add an extra step. Fine-tuning D for

classification leads to D being good at differentiating between samples drawn from

q(y) and those from pd(xµ). Therefore, forcing D to improve its ability to generate

more realistic images in the next step, i.e. when the next shallow autoencoder is

trained and the stack is fine-tuned again.

Every shallow autoencoder in the GASCA models is trained for 100 and fine-tuned

for 20 epochs. G is optimized using ADAM whereas D employs SGD with Nesterov
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Table 5.1: Gradual-GLW Semi-supervised Adversarial Training.

Given a training set X and validation set X̃ each containing input images xϕ
and target images xµ, m shallow autoencoders, an unsupervised feature learning
algorithm L—see Table 5.2 —which returns a trained shallow autoencoder and a
discriminator model, and a fine-tuning algorithm T —see Table 4.3 in Chapter 4:
train D1 and G1 jointly with raw data and add them to their corresponding stacks
G and D. For the remaining autoencoders and generator models: encode X and
X̃ using the encoder layers ξ from the stack G. Create a new discriminator Dk and
train together with the new autoencoder Gk and add them to their corresponding
stacks. Fine-tuneG on raw pixel data. Forward propagate xϕ ⊂ X throughG and
use the resulting features, along with xµ, to fine-tune D for binary classification.
Note that D does not have a fully connected as empirical CNNs.

[G1, D1]← L(G1, D1, X, X̃)

G← G ◦G1

D ← D ◦D1

for k ← 2, . . . , m do

[ξ, δ]← D

[Xg, X̃g]← ξ(X, X̃)

[Gk, Dk]← L(Gk, Dk, Xd, X̃d)

G← G(k) ◦G
D ← D(k) ◦D
G← T (G,X, X̃)

Xϕ ← G(xϕ)

D ← T (D, {Xϕ, xµ ⊂ X})
end for

Return G,D
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Table 5.2: Gradual-GLW adversarial procedure from Table 5.1

Given a training dataset X with m mini-batches of size b, an autoencoder model
G and discriminator model D both with weight matrices Wg and Wd, an absolute
value cost function loss: train G and D jointly such that:

V (Wd)← 2
Nin+Nout

V (Wg)← 2
Nin+Nout

for k = 1, . . . , M do

for n = 1, . . . , m do

[xϕ, xµ]n ⊂ 1, . . . ,m← random(X, b)

yg ← predict(xϕ, G)

Lg ← loss(xµ, yg)

G← update(G,Lg)

pµ ← predict(xµ, D)

Lpd(xµ) ← loss(1, pµ)

D ← update(D,Lpd(xµ))

py ← predict(yg, D)

Lq(y) ← loss(0, py)

Ladversary = Lpd(xµ) + Lq(y)

Lminimax ← loss(1, py)

L = Lminimax + Lg

MMLg ← lossGrad(1, py)

MMg ← Grad(yg,MML−g, D)

G← update(G,MMg)

Adam(L,G)

SGD(Ladversary, D)

end for

end for

Return G,D
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momentum. The initial learning rates for each individual shallow autoencoder in G

were set to λ ∈ {0.1, 0.3, 0.5, 0.7, 0.75} and annealed by a factor of 0.01 using Equation

3.16. Since D learns faster than G, the shallow autoencoders employ smaller learning

rates: λ ∈ {0.01, 0.03, 0.5, 0.07} and are not annealed. During fine-tuning the stacks

G and D use a learning rate of 0.01 and are annealed using a factor of 0.3.

5.6 Emotion Recognition

As done for the illumination invariant SCAE models in Chapter 4, once a GASCA

model is trained and fine-tuned for reconstruction, which is a regression problem,

both the discriminator model D along with the decoder element gD of the generator

D model are discarded. The resulting encoder model, which produces a pose invari-

ant—and illumination invariant, in the case of the GASCA2 model—feature vector

z, is then used to initialize a convolutional classifier.

The GASCA model is used to initialize CNN1 and is fine-tuned on the training

subset of the KDEF corpus. This classifier is fine-tune for 10 epochs. The GASCA2

model is used to initialize two classifiers, namely CNN2a and CNN2b. The former

is also fine-tuned on the training subset of the KDEF corpus, whereas the latter is

fine-tuned on the CFE corpus which is composed of the CK+, JAFFE, KDEF, and

FEEDTUM corpora. Note that the CFE corpus contains the images with multiple

poses from the KDEF corpus and since the illumination invariant model from Chapter

4 achieved state-of-the-art classification performance on this corpus we use the entire

corpus for fine-tuning in an attempt to improve the models generalization performance

using more data. Consequently, this model is evaluated on completely novel data:

the entire NAOFaces corpus.

As opposed to the models in previous chapters, which employ a fully connected

layer after the last convolutional layer, the classifiers in this chapter map the resulting

feature planes produced by the last convolutional layer, which is a HalfConv layer,

directly to an output SoftMax layer for classification, as done in [14].
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The CNN2a model is fine-tuned for 10 epochs and because the CFE corpus has

more images CNN2b is only fine-tuned for two epochs. Since the stacked autoencoders

are optimized using ADAM, all classifiers are fine-tuned also using ADAM and a

learning rate of 0.1. Using a different optimizer like SGD for fine-tuning would lead

to the gradients changing dramatically and require a longer fine-tuning process.

5.7 Pose Invariant Reconstruction Results

The novel pose invariant Generative Adversarial Stacked Convolutional Autoencoder

models proposed in this chapter are trained to gradually reduce facial pose. A shallow

autoencoder is created to deal with specific pose interval, 15 degrees, in any given

direction. Each shallow autoencoder is trained using adversarial learning, where the

autoencoder is the generator model Gk and a new shallow CNN is the discriminator

Dk. Once both models are trained jointly the resulting models are added to their

corresponding stacks G and D and fine-tuned further. In the case of G it is fine-

tuned on raw pixel data where the input is xϕ and the target reconstruction is xµ.

In the case of D, xϕ is passed through G and the resulting reconstruction y is

assigned the label 0. xµ is assigned the label 1 and D is fine-tuned for classification.

Initially, since the reconstructions produces by G are significantly different than the

target reconstruction images, D learns to classify these two relatively fast. However,

as G becomes better at producing reconstructions, the classification performance of

D drops significantly. Once this happens the training of both models is halted since

it means that it is difficult to differentiate between y and xµ and D ends up making

random decisions.

As it can be observed in Figure 5.5, the pose invariant GASCA model manages to

reduce facial pose in facial images with an estimated pose of up to ±60 degrees. It can

also be observed that on the images with pose of ±60 degrees half of the face is not

visible, yet the pose invariant model manages to fill in the missing information, and

more importantly keeps the shape of facial shapes which are important for emotion
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Figure 5.5: Top row: input images xϕ to the GASCA model with estimated facial
poses at +60,+45,+30,+15, 0 degrees. Bottom row: corresponding reconstructions
y produced by the GASCA model with an estimated pose at ∼ 0 degrees.

recognition: eyes, eyebrows, mouth, nose, cheeks, among others. Nonetheless, the

greater the pose in xϕ the poorer the quality of the reconstruction y. This is justified

by (i) the fact that the GASCA model has to compensate for missing information,

(ii) the fact that only one layer is trained specifically to deal with that particular

facial pose, (iii) the smaller the pose the more the images get seen by every layer in

G during training, and (iv) increased network depth.

If the shallow autoencoder at step k = 1 fails to learn a pose invariant feature

vector, the shallow autoencoder at step k = 2 will struggle even more to learn a pose

invariant feature vector, and so forth. Gradual-GLW training proposed in Chap-

ter 4 greatly helps to address this issue by allowing inter-layer fine-tuning, which

helps strengthen the weight connections between Dk and Dk+1. One alternative to

Gradual-GLW training is GLW. However, as seen in Chapter 4 it is prone to high

error accumulation and poor image reconstructions. Similarly, G could be trained as

a single unit, i.e. training all the layers at once. Training in this manner is a naive

approach considering that G has a large number of parameters and finding the right

initialization parameters is a challenge in itself. Moreover, as seen in Chapter 3, joint

training usually requires an exponentially higher number of epochs. These observa-

tions highlight the vital role played by adversarial learning to obtain pose invariant

feature vectors.

One of the main remarks observed in the reconstructions is that although these
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retain all the important salient features, they are visually different than the the input

images. These reconstructions could be improved by unsupervised fine-tuning of

G for a significantly longer number of epochs. Likewise, secondary methods such

as super resolution CNNs [79] could be used to improve the visual quality of the

reconstructed images. However, because the objective of this research is to only learn

a pose invariant feature vector z that can be used for emotion recognition, the quality

or resolution of the reconstructions is trivial.

The ConvMLP layers proposed in this chapter are fundamental for the reduction

of facial pose. An empirical convolutional layer is unable to shift facial features due

to the restrictions imposed by the size of filter kernels. Every feature in a feature

plane produced by a convolutional layer is produced taking into account only a small

area in the input image. Therefore, they are unable to shift facial features a given

number of places within the image space. Moreover, MLPs, which are composed of

fully connected layers, have a significantly larger number of parameters and are prone

to overfitting. Likewise, since a convolutional layer with filter kernels with height and

width greater than one, followed by a 1 × 1 convolutional layer, is mathematically

equivalent to a fully connected layer [80], these could theoretically be used to reduce

facial pose. Yet, when evaluated individually these are still constrained by the spatial

structure of an image.

One of the main advantages offered by ConvMLP layers is that the number of

shifting neurons can be adjusted as needed. In the GASCA models, every ConvMLP

layer only employs 100, which are enough to reposition facial features and eventually

reduce facial pose. Another advantage offered by ConvMLP layers is that they can

be used for dimensionality reduction by mapping a feature plane to a smaller feature

plane. Although, this is not evaluated in this research.

As illustrated in Figure 5.5, the reconstructed images also do not have a horizontal

line diving the face in two, as it would be expected due to the use of HalfConv layers.

When visualizing the feature planes produced by these layers, the line is somewhat

visible. However, because in the final stack G this layer is followed by all the layers
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in the decoder stack of G, and since the line is not visible in the target reconstruction

images, it vanishes during fine-tuning.

5.8 Pose Invariant Emotion Recognition Results

One of the main advantages of pre-training the CNN as a GASCA mode, is that the

data distribution pd(xµ) is mapped to a smaller distribution q(z), where the feature

vector z is pose invariant. Accordingly, the search space for the classification layer in

the CNN model is significantly smaller since it only deals with one facial pose. This

also leads to faster fine-tuning of the CNN. The GASCA model is used to initialize

CNN1, which is fine-tuned on the KDEF training subset, which contains multi-pose

facial expression images.

Table 5.3: Classification performance (96.810%) of the CNN1 model on the KDEF
corpus.

A D F H N Sa Su

A 94.44 1.59 1.59 0.00 0.79 1.59 0.00
D 0.00 97.60 0.00 0.00 0.00 2.40 0.00
F 000 0.79 89.68 0.79 0.00 3.97 4.76
H 0.00 0.00 0.00 100.00 0.00 0.00 0.00
N 0.00 0.00 0.00 0.00 100.00 0.00 0.00
Sa 0.79 0.79 0.00 0.00 0.00 98.41 0.00
Su 0.00 0.00 2.42 0.00 0.00 0.00 97.58

As it can be observed in Table 5.3, the CNN1 model obtains a classification perfor-

mance of 96.81%. For comparison purpose, the GASCA model introduced in Chapter

3 achieved an accuracy rate of 92.52%, over 4% lower even though it was evaluated

only on the images with 0 degrees pose. The difference in performance supports the

pose invariant feature learning method presented in this chapter. Nonetheless, the

performance on individual classes is consistent for both models.

The GASCA2 model is used to initialize a second classifier, namely CNN2a, which

is fine-tuned on the KDEF. Furthermore, CNN2b is evaluated on the NAOFaces cor-
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pus. Note that none of the images in NAOFaces are used of fine-tuning. The GASCA2

model combines the findings obtained in Chapter 4 on illumination invariance unsu-

pervised feature learning and combines them with the findings observed when training

the GASCA model. The results are reported in Table 5.4.

Table 5.4: Classification performance (98.070%) of the CNN2a model on the KDEF
corpus.

A D F H N Sa Su

A 96.83 0.79 1.59 0 0.00 0.79 0.00
D 0.00 97.60 0.00 0.00 0.00 2.40 0.00
F 000 0.79 93.65 0.79 0.00 2.38 2.38
H 0.00 0.00 0.00 100.00 0.00 0.00 0.00
N 0.00 0.00 0.00 0.00 100.00 0.00 0.00
Sa 0.79 0.79 0.00 0.00 0.00 98.41 0.00
Su 0.00 0.00 0.00 0.00 0.00 0.00 100.00

As illustrated in Table 5.4, the CNN2a model outperforms the CNN1 model and

obtains a state-of-the-art classification rate of 98.07% on the KDEF corpus. The main

differences in performance are observed for classes: surprise, Fear, and Angry, whereas

both CNN1 and CNN2a obtained the same classification accuracy for the remaining

classes. Because both models are trained using a relatively similar approach, it is

hypothesized that these discrepancies in classification performance are due to these

three classes containing more images with varying image luminance, thus the pose

and illumination invariant model is able to generalize better.

One important observation is that, when looking at the missclassified images for a

given class, on average 40% of them are frontal images, i.e. images with zero degrees

pose, and the remaining 60% are those with a pose. However, because the ratio

of images with a facial pose is 2 : 1 compared to those without one. This means

that on average, more images without facial pose are missclassified. These results

and observations are of great importance given that they support the pose invariant

pretraining approach presented in this chapter.
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Table 5.5: Classification performance (81.36%) of the CNN2b model on the NAOFaces
corpus.

A D F H N Sa Su

A 92.86 7.14 0.00 0.00 0.00 0.00 0.00
D 8.33 75.00 8.33 0.00 0.00 8.33 0.00
F 9.09 0.00 81.81 0.00 0.00 0.00 9.09
H 0.00 0.00 0.00 100.00 0.00 0.00 0.00
N 3.85 0.00 3.85 15.38 57.69 11.54 7.69
Sa 9.09 0.00 18.18 0.00 0.00 72.72 0.00
Su 0.00 0.00 10.53 0.00 0.00 0.00 89.47

The CNN2b model is fine-tuned on the entire CFE corpus and evaluated on the

entire NAOFaces corpus. This classifier achieves an accuracy rate of 81.36%. As

we reported in [78], when using the illumination invariant training approach from

Chapter 4, the performance achieved is 73.55%, that is 7.81% lower than the pose

and illumination invariant model presented here. The superiority of the pose and

illumination invariant model can be justified by the varying poses and tilt of faces in

the NAOFaces corpus, which was collected in unconstrained environments.

As shown in Table 5.5, not a single image from the other classes was confused

with Neutral. This particular score is significant taking into account that all emotions

derive from a neutral state, often resulting in low precision scores.

Despite the increase in performance offered by the CNN2a on the NAOFaces cor-

pus, the classification performance offered by this model is not ideal. This is at-

tributed to one major factor: cultural differences. Because the model was trained

solely on images from Caucasian people, the model has never learned to adjust to

cultural difference. The NAOFaces corpus contains images of people from at least

five different backgrounds including: Asian, Arab, Black, Irish and Hispanic, among

others unrevealed ones. In effect, because people from different ethnic backgrounds

express emotions differently [81], the classifier should be trained with images of par-

ticipants from a wide range of ethnic backgrounds and cultures. Moreover, despite

expressing emotions differently, people from different backgrounds may have differ-

ent facial features, resulting in different spatial information, which is what the CNN
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models take into account when learning to extract salient features. Nevertheless,

the results obtained by the CNN2b are remarkable for recognition in unconstrained

environments.

5.9 Comparison Against State-Of-The-Art

Table 5.6: Classification performance comparison on the KDEF corpus: ResNet-34
—state-of-the-art classifier; CNN1 —pose invariant classifier proposed; CNN2 pose
and illumination invariant classifier proposed.

Resnet34 CNN1 CNN2a

A 84.127% 94.444% 96.825%
D 85.600% 97.600% 97.600%
F 73.810% 89.683% 93.651%
H 98.413% 100.000% 100.000%
N 90.400% 100.000% 100.000%
Sa 84.921% 98.413% 98.413%
Su 95.161% 97.581% 100.000%

Total 87.472% 96.810% 98.070%

Due to the lack of contemporary work designed explicitly for pose invariant emo-

tion recognition, the methods proposed in this work are compared against one of the

most common and state-of-the-art classifiers: a ResNet [14]. ResNet models use an

identity shortcut —a skip connection that skips one or two layers and allows a given

layer to receive as input the output of the previous layer along with the output of

the second or third layer before —that facilitates the flow of information, enabling

large network depth. Accordingly, a ResNet-34, i.e. with 34 parametrised layers, is

trained using SGD, a momentum of 0.9 and learning rate of 0.1. This model is trained

for 100 on the training subset of the KDEF corpus and achieves an accuracy rate of

87.472% on the test subset, as illustrated in Table 5.6. Note that even though the

SCAE model introduced in Chapter 3 achieved 92.52% on the KDEF corpus, those

results are only reported on frontal faces without facial pose. On the contrary, all

the models in this chapter are evaluated on images with multiple poses, hence the

marginally lower performance of the ResNet model.
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As seen in Table 5.6, the pose and illumination invariance model, CNN2a out-

performs the state-of-the-art classifier ResNet-34 model by over 10%. Similarly, it

outperforms CNN1 marginally, supporting the pose and illumination invariant train-

ing approach. The pose invariant GASCA models also have an exponentially smaller

number of parameters compared to the ResNet-34 model.

The novelty of this work also arises from combining greedy layer-wise training

with adversarial learning. Generative Adversarial Autoencoders are trained jointly

as opposed to layer-wise. They impose a random distribution p(z) on the distribution

q(z) produced by the encoder element of G, and use the resulting aggregate posterior

distribution is mapped to reconstruction y. The discriminator D tries to guess if

the sample was drawn from q(z) or p(z). The GASCA models do not use a random

distribution and instead use the reconstruction y produced by forward propagating

xϕ through G, along with the target image xµ as input for the discriminator. The

generator G is optimized to reduce the distance between y and xµ. By fine-tuning

the stacks G and D at every step k, both models become better at their respective

job. By improving the ability of D to differentiate between y and xµ, G is forced

to produce remarkable reconstructions and learn an encoder function that produces

downsampled pose invariant feature vectors.

In terms of work on pose reductions, a similar model was proposed by [61]. How-

ever, the authors focused on face detection and their model does not make use of

Convolutional Autoencoders and instead uses MLPs, which are prone to overfitting

when applied to this problem. Furthermore, because their model does not take into

account spatial information, it is unable to retain salient features that are essential

for emotion recognition. Whereas the GASCA models are able to retain facial fea-

tures, or compensate for missing information when this is not present in the image.

Additionally, the GASCA2 model also takes into account illumination and produces

an illumination and pose invariant feature vector.

One of the main constrains of the pose invariant unsupervised training method

proposed in this chapter, is that it relies on the availability of multi-pose facial expres-
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sion images. Although this is a common limitation of deep learning models, which

require large amounts of labeled data to learn meaningful representations.

By demonstrating that in an autoencoder model it is possible to map an input x

to a hidden representation z and back to a reconstruction y that resembles a desired

target xµ and ¬�(x = xµ), it can be established that this training approach can,

theoretically, be used to learn a mapping from and input to a desired target that lies

in a completely different distribution. For instance, this method could used to learn

to reduce face or object rotation.

5.10 Chapter Conclusion

This chapter of the thesis has introduced a novel pose invariant facial expression recog-

nition model. A CNN classifier is pretrained as a Generative Adversarial Stacked Con-

volutional Autoencoder in a greedy layer-wise semi-supervised fashion. The GASCA

model learns to map an input image containing a face, with an estimate pose ϕ, to

a hidden representation z with an estimated pose of 0 degrees. Once the GASCA

model is trained, the encoder elements is used to initialize a CNN model which is

fine-tuned for classification.

The outstanding performance of the GASCA models relies on four concepts: (i)

the Gradual-GLW method from Chapter 4 combined with Adversarial Learning, (ii)

the ConvMLP layers with shifting neurons, and (iii) the HalfConv layers which take

exploit of facial symmetry, and (iv) multi-pose facial expressions data. Combined with

Gradual-GLW and Adversarial Learning, the pose invariant methodology presented in

this chapter produces state-of-the-art classification performance on multi-pose facial

expression corpora. Moreover, the GASCA model produces reconstruction with very

small errors and is able to generalize on unseen data. However, it is difficult to

compare against other methods since there is limited literature on pose invariant

emotion recognition.
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The success of the pose invariant models is in part due to ConvMLP layers, which

learn salient features and shift them as needed to reduce facial pose. HalfConv layers

also play an important role as they reduce the number of learning parameters. Half-

Conv layers were inspired by the CEN model presented in Chapter 3, which splits the

input images in half to simplify feature learning. The main limitation of HalfConv

layers are bounded by the assumption that the input is symmetrical across the y axis,

which may not always be the case.

To the best of the author’s knowledge, this is the first approach that combines a

greedy layer-wise training method with adversarial learning. Moreover, this is also

the first approach to solely focus on pose invariant emotion recognition. Accordingly,

this work is a step forward for the domain of emotion recognition in unconstrained

environments. Nonetheless, this and all the emotion recognition models presented in

this thesis, rely on one important pre-processing step: face detection. Accordingly,

the following chapter looks at the implementation of a face detection model that over-

comes some of the limitations of contemporary face detectors, such as their inability

to deal with nonuniform data.

89



Chapter 6

Deep and Reinforcement Learning
for Face Detection

6.1 Introduction

The previous chapters of this thesis focus on the development of deep learning mod-

els for emotion recognition from facial expressions. Inherently, these models rely

on various image pre-processing methods, such as face detection and dimensional-

ity reduction. Face detection, in particular, eliminates unnecessary information such

as background noise, resulting in faster training and better generalization of deep

networks.

One of the main disadvantages of relying on face detection algorithms, aside from

having to do this step for every new image to be evaluated, is that contemporary face

detection methods are not very accurate [82], are highly computationally expensive

[63], and often fail to detect faces on images with nonuniform conditions. For instance,

as later seen in the results section of this chapter, empirical face detection methods

such as the Viola-Jones are prone to changes in illumination and pose, which are the

two core concepts addressed in Chapters 4 and 5. Accordingly, recognizing emotions

can become unattainable if the face detector fails to detect a face in the first instance.

This is a major concern for emotion recognition systems designed to work in real time.

As a result, this chapter of the thesis explores the use of deep learning in conjunction
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with deep reinforcement learning for face detection.

The novel face detection algorithm proposed here, referred to as DeepFace here-

after, makes use of the illumination invariant SCAE model for image pre-processing,

and employs an agent capable of learning through experience and interaction. Deep-

Face is shown to work on images with very low or very high luminance levels, and on

faces with some degree of rotation.

6.2 Motivation

In a real-life scenario, facial expression images will likely contain some degree of facial

pose, tilt, or rotation. Although not applied to emotion recognition, facial pose in face

recognition is widely studied in the literature [29], [83]. Face tilt is often solved when

facial pose is fixed as seen in Chapter 5. However, face rotation is often overlooked.

This may be due to the fact that when faces have some arbitrary degree of rotation,

the facial features usually remain visible.

Accordingly, DeepFace is designed to deal with face alignment with regard to face

rotation. Faces with some degree of rotation of up to ±45 degrees of rotation are

considered in this work as these are the commonly encountered scenarios in real.

Moreover, dealing with small rotations helps to illustrate the concept of DRL in face

rotation in more details.

The work done by [50], [51], [52] and [53] has demonstrated that Deep-Q learn-

ing can be employed for face localization purposes without exhaustively searching

the entire image space. Because non-exhaustive search is important for applications

designed for use in real time, DeepFace employs Deep-Q learning as the underly-

ing learning paradigm and builds upon contemporary work. Moreover, DeepFace is

translation and scale invariant.

Another objective of DeepFace is to overcome some of the limitations of empirical
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face detectors, which are often unable to deal with changes in illumination. When

learning a pose invariant model in Chapter 5, it was observed that the face detec-

tion model from [82] and [84] often failed on images with a facial pose or with low

luminance levels. In cases where other models worked [63] on such images, the local-

ization time was very expensive and always surpassed 50 seconds on a 32 core system.

Although the face detection model proposed here does not deal with facial pose, the

concept of fixing facial pose has already been proved in Chapter 5. Once a face is

located, a GASCA model can be used to correct the pose.

6.3 Experimental Setup

DeepFace is trained on the BioID Face Database [85]. This corpus consists of 1521

gray-scaled images of 23 participants illustrating a frontal face view and each image

has a resolution of 384 × 286. Each individual image has a corresponding text file

containing manually set coordinates of the participants eyes. In addition, a corre-

sponding text file describing twenty additional points such as the coordinates for the

mouth, chin, nose, temples, among others, is also provided. This corpus is divided

into 70% training and 30% testing subsets.

In addition to the BioID corpus, a small subset of the testing set of the Multi-Pie

corpus is also used for evaluation of the face detection model. The subset includes

100 random images with varying illumination and frontal facial pose. Note that only

a small subset is used in order to provided a detailed analysis on the performance of

DeepFace on unseen data. This subset is only used for testing. All images in this

corpus are gray-scaled and resized to 384× 286 using bicubic interpolation as defined

by Equation 6.3. Note that these 100 images are excluded from the Multi-Pie corpus

used below.

The agent employs an illumination invariant SCAE model like the one presented

in Chapter 4 for feature extraction. However, since the BioID corpus does not contain

multi-illumination images, a new corpus is created to train the SCAE model. This

92



new corpus, referred to as MultiFaces hereafter, consists of the Multi-Pie and Yale

corpora, as well as as γ corrected versions of the following corpora: CK+, KDEF,

FEEDTUM, JAFFE, and the training subset of the BioID corpus. Note that because

the Yale and MultiPie corpora already have multi-illumination images. Moreover,

when referring to the BioID corpus on its own, it is the version described above used

to train the Q-network, for which no γ correction is applied.

By creating such a large corpus with varying illumination and facial expressions,

it is ensured that the SCAE model will be able to generalize better on unseen data

with varying degrees of illumination. The MultiFaces corpus is also split into 70%

and 30% training and validation subsets. The validation subset is used to determine

the stopping criteria is illustrated in Table 4.2. Note that the MultiFaces is only used

to train the SCAE model and not to evaluate DeepFace. As such, there is no testing

subset. All images in this corpus are also gray-scaled and scaled to 384× 286.

Every image in all corpora, including testing images, are zero padded. As later

explained in this chapter, this helps the agent stay away from the borders. Moreover,

due to the lack of publicly available labeled data with varying degrees of rotation, all

images are randomly rotated. Accordingly, all corpora are magnified over a magnitude

of five, i.e. every image is randomly rotated four times. Let θ denote the rotation

angle in radians, rotation of an image is done by applying a transformation matrix

M :

M =

[
α β (1− α) · center.x− β · center.y
−β α β · center.x+ (1− α) · center.y

]
(6.1)

where α = scale · cos θ, β = scale · sin θ and θ is sampled uniformly at random, and

−45 < θ < 45. Note that the last column of M is only relevant when a different

center of rotation, other than (0, 0), is required, which is not the case in this work.

However, M is not simplified for consistency.

When performing an affine transformation on an image, the result is a change

in position of facial features. Consequently, the manually set coordinates for the

eye positions in the BioID corpus will change after the images are rotated. This is
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Figure 6.1: Sample rotated images from the BioID corpus. Left to right, rotations
at: 34, 18, 0,−21,−38. Middle image is the original image.

not an issue for the SCAE model, which is only trained for illumination invariant

feature extraction. However, the face detection agent relies on these coordinates to

learn. Therefore, these coordinates need to be estimated for the rotated images in

the BioID corpus.

Since the original x and y coordinates for both eyes and the chin are known, as

well as the degree of rotation, the new coordinates can be estimated by:

y′ = y ∗ cosθ + x ∗ sinθ

x′ = −y ∗ sinθ + x ∗ cosθ
(6.2)

Note that estimating the new coordinates is only possible due to the way the

images are rotated, using an affine transformation with known center of rotation:

center.x = 0 and center.y = 0 in Equation 6.1.

6.4 Unsupervised Feature Extraction

As discussed in the next section, the Deep Q-learning agent only looks at a slice of

an input image at a time. Moreover, because the agent is scale invariant, the slice

can have varying dimensions. Since deep NNs learn a weight matrix of fixed size, the

input to the network has to always be of the same size. Therefore, the image slices

are scaled using bicubic interpolation. Scaling is done using bicubic interpolation

[86] as it retains more details than other commonly used methods such as bilinear

interpolation. The richer quality of the resulting interpolated image is the result of

considering 4 × 4 pixel neighborhoods to estimate the new intensity value for every
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point (x, y). This is obtained by convolving the image with the kernel k:

k(x) =


(a+ 2)|x|3 − (a+ 3)|x|2 + 1 , if x ≤ 1

a|x|3 − 5a|x|2 + 8a|x| − 4a , if 1 < x < 2

0 , otherwise

(6.3)

Accordingly, the SCAE model is trained on random crops of the images in the

MultiFaces corpus. During training, a set of random coordinates C is created along

with a random dimension d which is equal to or smaller than the smaller dimension

of the images in the training data: 286 in this case. Then an image is sampled from

the training set and cropped according to C and d. The resulting cropped image is

scaled to 200 × 200 and becomes x. The same process is done for its corresponding

target image xµ. This is done at run time in order to have a larger number of possible

crops and cover as much area of an image as possible.

The SCAE model is trained following the illumination invariant Gradual-GLW

training method from Chapter 4, where the input image x is mapped to a hidden

representation h = f(x) and back to a reconstruction y which is an approximation of

xµ and xµ is the image with good luminance. For the images from the MultiPie and

Yale corpora, xµ is the image with relative luminance Y closes to the mean. For the

remaining corpora, xµ is the original image before gamma correction.

The SCAE model is trained until the stopping criteria is met: once the recon-

structed images have a similar relative luminance. Once training is complete, the

decoder element is removed and the encoder is used as the feature extraction method

for DeepFace. Note that there are other feature extraction methods such as PCA

which can be used for dimensionality reduction, and no pre-processing is actually

required other than scaling since the Deep Q-Network can take any input. However,

because the objective is to have a scale, translation, and illumination invariant face

detector, the SCAE model greatly assists in achieving this goal. Moreover, unlike

PCA, the SCAE model retains the spatial structure of the input image which plays

a significant role in face detection.
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As opposed to the model in Chapter 4, the SCAE model here only employs three

convolutional layers and no max pooling. Pooling layers are avoided in an attempt

to keep the structure of the input as intact as possible. And instead, down sampling

is done using a stride of 2, i.e. moving the filter kernel two places instead of one, in

some of the convolutional layers.

6.5 Deep Q-Learning Face Detection

Recall from Section 2.10 in the literature Chapter 2. In order to use DRL as a

learning concept for face detection, it is necessary to formulate the task as a Markov

Decision Process (MDP). MDP models are defined by a finite set of possible world

or environment states, a finite set of possible actions that the agent can execute at

any given time, a function describing the probability transition from one state to

the other after executing an action, and a reward function describing the effect of

executing a given action in a given state. To qualify as an MDP, a Reinforcement

Learning (RL) task has to satisfy the Markov property, which in effect means that

a probability distribution of future events at time t + 1 depends solely upon the

environment’s state at time t and not on the events before t [49]. To comply with

this rule, DeepFace is based on stochastic transitions, and at any point in time t, the

probability that the agent will reach its desired destination depends solely upon the

current state of the environment.

The face detection DRL model employs Deep Q-Learning (DQL) to find an opti-

mal action-value policy that encourages an agent to navigate towards a face within

the image space. Similarly to Q-Learning, DQL is an off-policy Temporal Difference

—meaning it is able to learn from raw experience without a model of the environ-

ment’s dynamics—based algorithm that utilizes a deep neural network as function

approximation to minimize temporal difference lose. In this case, the Deep Q neural

network (Q-network) is a CNN composed of four convolutional layers. As opposed to

conventional deep CNN models, the Q-network here does not utilize max pooling lay-

ers in order to retain as much spatial information as possible. Whereas max pooling
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does not lose much spatial information due to the small kernels used, convolutional

layers with a stride greater than one are better at retaining spatial information as

well as structural information, and can also downsample a feature vector in the same

manner as pooling layers. Formally, DQL is defined by [87]:

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + ...|st = s, at = a, π] (6.4)

where rt is the sum of discounted rewards at time step t, with a discount factor γ

determining the agent’s horizon. This sum of rewards is also shaped by policy π:

π = P (a|s) (6.5)

where s denotes an observation of the environment, that is the image space occupied

by the bounding box, and a the action taken by the agent.

Figure 6.2: Visualization of the DRL face detection model. Red bounding box denotes
the agents random starting position. Landmarks marked with X are the ones used to
determine the desired target: in between the blue and green boxes. Agent coordinates:
lower left corner (x1, y1, upper left corner (x2, y2), lower right corner (x3, y3), upper
right corner (x4, y4).

In this task of face detection, the agent’s job is to place a bounding box around

three landmarks, namely coordinates, describing a face. Given that each facial ex-

pression image in the BioID database is labeled with a set of manually set coordinates
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describing the subject’s chin and eyes, these three coordinates are used as target for

the agent. As illustrated in Figure 6.2, the agent has some freedom on how close or

how far to place the bounding box from the target coordinates.

The bounding box is initially randomly placed within image space and set to a

random size that covers at least 50%, or up to 80%, of the image and. This facilitates

the job of the agent to cover as much ground as possible and get an idea of where it

is relative to the face. Smaller initial sizes for the bounding box have been observed

to lead the agent to shift the bounding box away from the target given that it has no

information of where it is located relative to the image. Although the learning process

would be easier if the bounding box is initially placed at a fixed location, experiments

showed that on average, a random initial position leads to faster localization.

During each episode, the area covered by the bounding box is cropped from the

image, resized to 200×200 and forward propagated through the illumination invariant

SCAE model. The resulting feature planes are then passed through the Q-network,

which outputs the action the agent should take. Note that this is only the case when

ε determines that the action should be selected by the Q-network and not be random

as described below.

The possible actions a an agent can execute are: move up, move down, move

right, move left, shrink the bounding box, enlarge the bounding box, rotate left,

rotate right, or come to a stop, thus formally a ∈ Z0 : a ≤ 8. Every time the agent

decides to transform the bounding box, this is done by a adding or removing five

pixels over the y dimension. In contrast, when the agent decides to move the box,

it is done by moving the bounding box 10 pixel values in a given direction. If the

action selected is to rotate the bounding box, it is rotated according to Equation 6.1

and θ = 10 if rotating left, or θ = −10 if rotating right. This combination seems to

provide the right trade-off between speed and accuracy. Larger values have shown to

make the agent misplace the bounding box or miss the target by a small number of

pixels, falling in an infinite loop trying to position the bounding box over the face.
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The environment’s state s at any given time step t is denoted by a list describing:

the size of the bounding box, the (x, y) coordinates describing the position of the

bounding box in relation to the image, and the height, width and angle of the bound-

ing box. Consequently, the state st+1 is defined by the action at executed during

the state st, as illustrated in Table 6.1. When the action selected by the Q-agent is

to stop, the episode concludes and list describing the bounding box at state st+1 is

returned.

As illustrated in Table 6.2, the objective of the agent is to place the bounding

box around the desired coordinates described by the eyes and chin. Therefore, the

target T describes these landmarks T = {L,R,C} where L and R denote the (x, y)

coordinates for the left and right eyes, and C the coordinates describing the chin.

After every action is executed, the coordinates describing the top left corner of the

bounding box (x3, y3) are compared to L, the right top coordinates of the bounding

box are compared to R, and the bottom two coordinates (x4, y4) are compared to

C. Comparison is done using the euclidean distance from one point to another. The

resulting three distances are then combined and also kept in memory as dt.

If the bounding box covers all three landmarks in T and is within a threshold

distance, the flag at target is set to true, and the agent may be rewarded according

to the following criteria:

rt =


+10 , if at = 8 & at target

+1 , if dt+1 < dt

−10 , if terminated

−1 , otherwise

(6.6)

where dt+1 denotes the new accumulated distance from the target, and terminated

is a flag indicating if the episode was terminated early, e.g. if the box went out of

image space or the bounding box became too small. In this reward function, if the

agent selects an action that places the bounding box further away from the target, it

gets punished. If it goes out of bounds, it gets punished more. If the agent selects an

action that brings it closer to the desired target, it gets some reward. And finally, if

it ends the episode at the desired target, it gets rewarded more.
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Table 6.1: Transformations to the bounding box: st=1 : (at, st)

f is a function that rotates an image using Equation 6.1 and returns the new
estimated angle of the image α. ` is a function that returns updated (x, y)
coordinates for a given point using Equation 6.2. w and h denote the width and
height of the bounding box.

Action Transformation

at = 0
move up

y1 = y1 + 10
y2 = y2 + 10
y3 = y3 + 10
y4 = y4 + 10

at = 1
move down

y1 = y1 − 10
y2 = y2 − 10
y3 = y3 − 10
y4 = y4 − 10

at = 2
move left

x1 = x1 − 10
x2 = x2 − 10
x3 = x3 − 10
x4 = x4 − 10

at = 3
move right

x1 = x1 + 10
x2 = x2 + 10
x3 = x3 + 10
x4 = x4 + 10

at = 4
enlarge

x1 = x1 − 5, y1 = y1 − 5

x2 = x2 − 5, y2 = y2 − 5 w =
√

(x1 − x2)2 + (y2 − y2)2

x3 = x3 + 5, y3 = y3 + 5

x4 = x4 + 5, y4 = y4 + 5 h =
√

(x3 − x1)2 + (y3 − y1)2

at = 5
reduce

x1 = x1 + 5, y1 = y1 + 5

x2 = x2 − 5, y2 = y2 + 5 w =
√

(x1 − x2)2 + (y2 − y2)2

x3 = x3 + 5, y3 = y3 − 5

x4 = x4 − 5, y4 = y4 − 5 h =
√

(x3 − x1)2 + (y3 − y1)2

at = 6
rotate left

αt ← f(θ = 10)
x1, y1 ← `(x1, y1)
x2, y2 ← `(x2, y2)
x3, y3 ← `(x3, y3)
x4, y4 ← `(x4, y4)

at = 7
rotate right

αt ← f(θ = −10)
x1, y1 ← `(x1, y1)
x2, y2 ← `(x2, y2)
x3, y3 ← `(x3, y3)
x4, y4 ← `(x4, y4)

at = 8
stop

return st+1 = {x1, . . . , x4, y1, . . . , y4, α, w, h}
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The DRL model also employs experience replay as done by [88], by storing the

last N experience et = st, at, rt, st+1 tuples in replay memory D and then sampling

uniformly at random from Dt = e1, ..., et, when performing updates in order to encode

past actions. Note that the cropped bounding boxes are the ones saved in memory,

instead of list describing it. This process is formally described by:

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )–Q(s, a; θi

)2
]

(6.7)

where θi denotes the parameters of the Q-network at iteration i, Q−i denote the Q-

network parameters used to compute the target at iteration i, and (s, a, r, s′) ∼ U(D)

are the mini-batches sampled from D.

The agent follows an ε–greedy strategy to provide the right balance between

exploration and exploitation. Initially, ε is set to 0.9, i.e. explore 90% of the time by

picking random actions, to allow for more exploration in early episodes. This is then

annealed linearly to 0.1 over the first 1000 iterations and fixed at 0.1 thereafter. 1000

iterations have proved to be enough for the agent to explore and learn to pick actions

that provide more reward. Once the Q-network starts learning to select informed

actions on its own, it is only allowed to pick a random action 10% of the time,

providing the right balance between informed decision making and exploration.

During training, the agent is initially allowed to try for a maximum of 120 at-

tempts. Once ε is set to 0.1, the agent is only allowed to try for a maximum of 50

attempts. If the agent does not find the face during this episode, the terminated

flag is set to true and, thus, the reward for the last time step t becomes negative

according to Equation 6.6. The terminated flag is also raised if the agent rotates the

bounding box for more than 50 degrees in either direction.

To discourage the agent from going out of image space, it is punished if it goes

out of bounds. Moreover, the image is zero-padded with a large margin in order

to let the agent know that if it reaches this hard line it is shifting away from the

target and should travel in a different direction. When zero padding the image, the
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set coordinates for the landmarks of interest change. However, they can be easily

estimated by adding or subtracting the number of zero-padding pixels to the x and

y coordinates.

The Q-network is trained for 175, 000 episodes using a replay memory of size

10, 000. Learning rate is set to 0.6 and annealed using a rate of 0.01 using Equation

3.16 until it reaches 0.00001. Training is done using SGD with Nesterov momentum

of 0.9 and mini-batches of size 64.

6.6 Face Detection Results and Discussion

Once training concludes, DeepFace is evaluated on the testing subset of the BioID

corpus and the 100—note that because these images were also randomly rotated,

they are now 500 in total—images randomly selected from the Multi-Pie corpus. The

latter were randomly selected to evaluate the model on novel, i.e. that are not part of

the same corpus used for training, images with varying luminance. DeepFace achieves

an accuracy rate of 96.53% on the testing subset of the BioID, and 93.60% on the

Multi-Pie subset. Table 6.2 illustrates the results on both corpora.

Table 6.2: Face recognition results on the BioID and a subset of the Multi-Pie corpora.

BioID MultiP ie

Success 2201/2280 468/500
Fail 79/2280 32/500

Total 96.53% 93.60%

As seen in Table 6.2, the face detection model classifies 2201 images correctly out

of 2280 in the test subset of the BioID corpus. It is worth noting that out of these,

DeepFace had a 100% success rate on the 456 non-rotated images. On the Multi-Pie

corpus, DeepFace had a success rate of 93.60%. Out of the 100 non-rotated images,

a face was successfully identified in 98 of them.
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During testing, the average detection rate on the BioID was 17 transitions from

state s′ to s, i.e. the agent performed 17 actions to placed the bounding box around

the face. On the Multi-Pie, the average was 32. The difference can be justified by

the fact that faces in the Multi-Pie corpus are smaller, and also the Q-network has

never seen these images. This also explains the lower performance on this corpus.

For the randomly rotated images, DeepFace returns a non-rotated image upon

successful localization. Since the bounding box is always placed without any rotation,

i.e. x1 and x3 have the same value initially, and since when the Q-network decides

to rotate the bounding box this is kept in the replay memory, it is possible to know

exactly how much the bounding box was rotated before reaching its target. Then

upon recognition, DeepFace rotates the image using Equation 6.1 in the opposite

direction. Figure 6.3 illustrates a pictorial description of this process.

Figure 6.3: Rotation invariant face localization.

In some cases where the face detector failed, it was observed that in many cases it

actually placed the bounding box within the target. However, the Q-network never

selected to end the episode, i.e. α = 8, and, therefore, it was called a failure. This

is particularly important since in a real life scenario, where there is no labeled data,

there is no way to efficiently and manually tell the agent that it has reached the target

and should therefore end the episode.

One of the main advantages of this method is that it is illumination invariant.

The model did not struggle to deal with illumination, and the majority of the failures

happened due to other issues such as rotation. For example, in some instances, the
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agent either rotate the bounding box too much, or got stuck in the same position by

selected a transformation action and then undoing it in the next time step. In some

other instances, the bonding box became too small, rendering the process a failure.

One observation made during early episodes, with a high ε–greedy parameter is

that the agent often would drive the bounding box out of image space. This can be

justified by the lack of information and knowledge in early episodes in which the agent

has to explore more in order to accumulate knowledge. Moreover, the agent does not

have any information of where the image ends or starts. This issue was solved by zero

padding the images. In order to allow the agent to correct its path if it reaches the

border, the padding covers at least as many pixels as the agent is allowed to move

the box.

When trying other reward criteria, the agent learned but did not perform as well,

or took many more steps to reach its target. It was also observed that bigger step

sizes, e.g. letting the agent move the box more than 10 pixels at a time, the agent

would often miss the target, or would reach it but struggle placing it within the given

margin. In contrast, the smaller the step size, the better the performance but the

longer training required and the longer time it took for the agent to reach the target.

As a result, using a step size of 10 seemed to provide the right trade off between speed

and performance.

Memory replay did not seem to affect the learning much. For instance, using

a replay buffer of 20, 000 did not make much of a difference. This may be due to

the small size of the dataset used to train the Q-network. In addition, letting the

agent try for more than 120 attempts in early episodes did not impact the learning.

Most of the time the episode would conclude before reaching 120 attempts due to:

the bounding box becoming too small or to large, or ε determining that the random

action is to stop. It is worth noting that letting ε randomly stop the episode played

an essential role in the learning process. Otherwise, the Q-network would not select

this action since it did not exist in the replay memory.
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The main restrictions of DeepFace are that it was designed to work on images

with a rotation θ : −45 < θ < 45. Future work could consider letting the agent have

the freedom to rotate the bounding box at any desired number of degrees. Moreover,

future work could explore letting the agent grow in only one direction.

6.7 Comparison Against State-of-the-art

The authors of [51] employ a similar method for face detection. They propose using

PCA for dimensionality reduction and use an MLP for face detection, where they use

the midpoint between the eyes as their desired target. Using distance as performance

metric, the authors obtain 40.11% on the BioID corpus when their metric is 10 pixels

within the target, i.e. finishing within ten pixels from the target, and their best

performance is 99.62% when using 50 pixels. They compare their method to the

Viola-Jones [82] and obtain 89.64% and 90.02% when measuring using 10 and 50

pixels, accordingly. Although the Viola-Jones detector obtains 90.02% at 20,30, and

40 pixels.

In contrast, DeepFace achieves 100% on non-rotated images, and an overall of

96.53% when considering rotate images. This metric is based on a 10 pixels within

the desired target. For comparison, [51] obtain 40.11% at the same distance, or

79.85% at 20 pixels. The authors also report 89.64% and 90.02% using the Viola-

Jones detector, at 10 and 20 pixels from the target. Demonstrating that DeepFace

provides better generalization performance than empirical methods such as the Viola-

Jones [82] detector, or similar methods also relying on Deep Q-Learning [51].

One of the main advantages of DeepFace is that it is guaranteed to cover the

entire face, while at the same time ignoring background noise. Whereas the method

by [51] is not aware of the size of the face, and therefore, would not be able to crop

it appropriately. Another advantage of DeepFace, is the fact that it is rotation and

illumination invariant, and solely relies on CNNs for feature extraction and feature

learning.
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Other work on face detection using RL is done by [50]. However, the authors

only use RL to find dominant features in every image of the training data. Simi-

larly [52] also try to address illumination invariance by employing γ correction and

Deep Q-Learning. However, the authors focus on person identification through facial

recognition, rather than face detection.

Similarly, [54] employ deep RL for face recognition under different levels of il-

lumination. The authors also employ gamma correction to train and test their

model under different levels of image luminance and obtain 100% precision scores

when γ ∈ {0.5, ..., 1.6}. Although the results obtained by the authors are remark-

able, the method proposed here can deal with more variations in image luminance:

γ ∈ {0.4, ..., 3.4}, and is also rotation invariant.

Although not considered in this work, other state-of-the-art face recognition ap-

proaches have been proposed by [89]. The authors employ a Faster R-CNN [90],

which are the current state-of-the-art models in object recognition, model for group

face recognition in unconstrained environments. Similarly, [63] have proposed a state-

of-the-art pose invariant face detection model.

6.8 Chapter Conclusion

This chapter of the thesis has introduced a rotation and illumination invariant DRL

face recognition model. The face detection model learns using temporal difference

learning by using previous experiences to predict future events. The development of

this model was inspired by the observation that empirical face detection models are

prone to failure on images with nonuniform conditions, for instance on images with

very low relative luminance. Moreover, because face rotation is widely ignored by

state-of-the-art detectors, it was taken into consideration in this chapter.

DeepFace was demonstrated to achieve state-of-the-art recognition rate on faces

with some degree of rotation. And was demonstrated to be robust to changes in
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illumination. The success of DeepFace partially relies on the illumination invariant

model from Chapter 4, which is employed for feature extraction. Although DeepFace

has some limitations, e.g. it was not evaluated on multi-pose images or on group

detection, it demonstrates the potential of the experimental design and should not

require major adjustments to deal with other forms of invariance.

This chapter compliments existing work in the domain of face recognition by

proposing a robust rotation and illumination invariant learning algorithm. Future

work can investigate extending the model to deal with pose invariance as well as

group face recognition.

107



Chapter 7

Conclusion

7.1 Introduction

This thesis has explored the development of deep and deep reinforcement learning

models for face detection and emotion recognition from facial expressions. More pre-

cisely, the main objective of this research was to investigate and provide an answer

to the following research question:

”Is it possible to develop novel artificial neural network architectures based on deep

and reinforcement learning concepts to efficiently recognize faces and human emotions

through facial expressions in unconstrained environments?”

The inspiration of this research is the significant role played by human emotions

in daily life, as well as the importance of being able to correctly perceive and in-

terpret emotions in other people. Although several works using machine learning

methods, and deep learning in particular, have been proposed to address automated

emotion recognition, they do not address some of the main challenges in automated

emotion recognition: generalization on nonuniform data. Accordingly, several novel

deep architectures and learning methods were designed with emphasis on pose and

illumination invariance, as well as network complexity.

Existing work in the domain of emotion recognition is commonly done by analyzing
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a person’s facial expressions [13], speech signals [91], body language [92], or other

physiological information such as EEG signals [93]. Whereas detecting emotions can

be done using all these affective modalities, whether combined or individually, some

of them are difficult to obtain. For instance, obtaining physiological information is

rather intrusive and usually requires physical contact, e.g. an EEG or heartbeat

scanner. Similarly, speech signals are often mixed with background noise, and body

language is difficult to capture in an adequate manner. In contrast, facial expression

images are easier to obtain, are non-intrusive, and have proven to be efficient for

emotion recognition. Consequently, the work presented in Chapters 3–5 employs facial

expression images. Nonetheless, facial expression images are also subject to changes in

illumination and facial pose, cultural differences, among others, all of which increase

the difficulty of recognizing emotions in an efficient manner. Therefore, Chapters

4 and 5 focused solely on overcoming illumination and pose invariance, as they are

arguably the biggest challenges in automated emotion recognition from faces to be

solved.

The work in Chapter 6 was inspired by observations made during the design of the

DL models for emotion recognition from facial expressions. Because face detection is

the first image pre-processing step, if the face detector fails to find a face on a given

image, the task of recognizing emotions can become unattainable. Moreover, some

of the best performing face detector models [63] are very computationally expensive

and are not suitable for real time recognition due to their large latency.

This thesis was designed to investigate the possibility of overcoming such limita-

tions of contemporary face and emotion recognition models. The results are a variety

of novel deep learning architectures and learning paradigms for emotion recognition,

and a novel architecture for face detection. As a whole, these contributions address

face and facial emotion recognition in unconstrained environments. All results in

Chapters 3–6 are reported as an average of ten experimental runs.
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7.2 Thesis Contributions

The originality and scientific value of this thesis is presented in the form of deep

learning methods for emotion recognition as presented in Chapters 3,4, and 5, and

the deep reinforcement learning methods for face detection, as presented in Chapter

6. The main contributions can be summarized as:

• An illumination invariant Stacked Convolutional Autoencoder model capable of

reconstructing images with up to 64 different degrees of illumination as images

with the same illumination.

• A Gradual Greedy Layer-Wise training algorithm that reduces error accumula-

tion in early layers and significantly improves reconstruction performance and

training time.

• A pose invariant Generative Adversarial Stacked Convolutional Autoencoder

model that can reduce face pose to zero degrees from up to 60 degrees.

• Two convolutional layers: one which utilizes shifting neurons, and another one

that exploits facial symmetry to reduce its number of parameters.

• Several deep CNN models that achieve state-of-the-art classification rates on

data with nonuniform conditions.

• A novel deep reinforcement learning architecture designed for illumination and

pose invariant face recognition.

These contributions are supported through extensive experimentation and discus-

sion. Furthermore, the novelty of this work is supported through other contributions

such as: the combination of adversarial learning and greedy layer-wise training into a

single learning paradigm; a deep CNN that simplifies feature learning by splitting the

input image in half and learning to extract features through two learning streams;

the concept of pretraining all convolutional layers in a CNN as a shallow autoencoder

regardless of the number of filter kernels used; new knowledge in the usage of rectifier

linear unit functions and their effect on regression and classification problems; a deep
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reinforcement learning reward function carefully designed for face detection, among

others.

7.3 Deep Learning for Emotion Recognition

The thesis began by exploring two deep learning concepts and their suitability for emo-

tion recognition: deep convolutional networks and unsupervised pretraining. Chapter

3 introduced a novel deep CNN that splits the input image in half and learns to self-

extract salient features in parallel using two sub-networks. The resulting feature

vector is then concatenated and used for classification. This architecture is referred

to as Convolutional Ensembles Network, or CEN.

The main advantage offered by the CEN model is the simplification of feature

learning, at the expense of marginally increased computational cost. Because the

image is split in half and faces in the KDEF corpus are centered with a grid, it can be

assumed that specific facial features, such as the eyes and eyebrows always lie within

the upper half of an image, and the mouth within the lower half. By having an

ensemble solely dedicated to learning salient features that resemble a mouth, or the

eyes and eyebrows for the second ensemble, the sub-networks learn specific features

instead of generic or broader ones. However, in terms of implementation, having two

sub-networks requires two separate weight matrices and more memory. This results

in marginally increased computational cost. And because the same error is equally

propagated through both sub-networks, if one of the is struggling to learn it will affect

the other, resulting in longer training times.

The CEN model obtained a test accuracy rate of 86.73% on the KDEF, after

training for 5280 epochs. Although these results fall behind the state-of-the-art, they

prove that the concept of splitting images in half and taking advantage of locality is

a good training approach. Although, it requires more exploration, it was not used

in later architectures due to the already high number of learning parameters. How-

ever, during training, the CEN model also helped in noticing some of the challenges
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in training deep CNN. For instance, using sigmoid activations instead of ReLUs re-

sulted in lower classification performance and often in vanishing gradients. sigmoid

activations also demonstrated to be more prone to the way the hyperparameters were

initialized, for instance a higher learning rate would result in exploding gradients. All

these observations greatly assisted in the training of the other architectures in this

thesis.

Chapter 3 also explored the concept of pretraining a deep CNN as a stacked con-

volutional autoencoder. The observations gather in the training of the CEN model,

along with existing literature against random weight initialization, inspired this ar-

chitecture. This model employs ReLU activations instead of sigmoid.

The main challenge addressed by this model was the reconstruction of high di-

mensional feature planes produced by convolutional layers. Standard autoencoders

composed of MLPs only produce a one dimensional feature vector and, therefore,

are not as difficult to train. However, because convolutional layers normally employ

many filters —it is common to increase the number of filters in every layer as the

network grows—they produce a feature vector composed of many feature planes. For

this reason, it is common to only pretrain the first layer of a deep CNN as an autoen-

coder, since the autoencoder only has to reconstruct one input plane, or three if using

colored images. However, as the CNN grows, the more feature planes an autoencoder

has to reconstruct. Accordingly, the SCAE model introduced the application of batch

normalization [39] to speed up training, eliminate the need for dropout, and eliminate

the risk of vanishing or exploding gradients.

The SCAE model also showed that fine-tuning the final stack of shallow autoen-

coders also improved the reconstruction error of the model. When the SCAE com-

pleted training, the encoder element was used to initialize a CNN classifier, which was

fine-tuned for only 20 epochs. The deep CNN achieved an accuracy rate of 92.52%,

compared to when 91.16%, when the CNN was initialized with a random distribution

and trained for 500 epochs.
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The unsupervised pretraining of the CNN as a SCAE provided three main find-

ings:(i) large convolutional models can in fact be pretrained in a GLW unsupervised

fashion, (ii) unsupervised pretraining leads to better performance of a deep CNN,

and (iii) the greedy layer-wise training method has one vulnerability, namely error

accumulation. These findings formed the basis of the pose and illumination invariant

architectures presented in the remaining chapters.

It was also observed in this chapter that the filters learned by the first convolu-

tional layer in a deep CNN resemble Gabor filters [40] and learn generic features.

7.4 Illumination Invariant Emotion Recognition

When analyzing the results obtained in Chapter 3, it was observed that most of

the missclassified images by the CEN and the CNN model pretrained as SCAE had

something in common: they appeared significantly brighter or darker, as opposed

to the remaining images in the training and testing data. Accordingly, Chapter 4

investigated this issue further and introduced an emotion recognition model designed

to address illumination invariance.

The illumination invariant model in Chapter 4 also employs a SCAE to pretrain

a deep CNN. However, the SCAE model is trained to learn an illumination invariant

feature vector. The illumination invariant SCAE learns a function f(x) that produces

a downsampled illumination invariant feature vector h, which is mapped to a recon-

struction y that resembles the target xµ. Therefore, instead of simply learning an

identity function, like empirical autoencoders and the SCAE model from Chapter 3,

it learns g(f(x)) = xµ. In this case xµ, is a copy of x with equal or different relative

luminance levels, thus ¬�(x = xµ).

The illumination invariant SCAE model was demonstrated to generalize on novel

data, e.g. from different corpora than the one used during training, and produce
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remarkable illumination invariant reconstruction. The model also managed to recon-

struct very dark images in which a face is not very visible. The main limitation was

observed to be its dependability on multi-illumination data: In order to map an input

image with some arbitrary degree of illumination, to a second image with a fixed level

of illumination, both images have to exist in the training corpus. However, it was

demonstrated that when multi-illumination corpora is nonexistent, gamma correction

can be applied to a corpus to create variations of a given image with several levels

of illumination. Moreover, applying gamma correction to a corpus also magnifies the

training data, which is usually beneficial for DL models.

Because the feature vector h produced by the SCAE is illumination invariant,

the distribution of q(h) is significantly smaller than that of the input data p(x). In

effect, when the encoder element of the SCAE is used to initialize a CNN, the CNN

does not have to learn multi-illumination representations and instead only deals with

one degree of illumination. This results in faster learning and significantly better

generalization of the CNN. Accordingly, when this CNN was evaluated on the KDEF

corpus, it achieved an accuracy rate of 95.70%, compared to 92.52% achieved by

the non-illumination invariant model from Chapter 3. Similarly, when evaluated on

the CK+ corpus, it achieved an accuracy rate of 94.90%, whereas when a CNN was

trained without the illumination invariant method proposed it only achieved 86%.

In addition, when the illumination invariant deep CNN was evaluated on the CFE

corpus, which is made up of the CK+, KDEF, JAFFE, and FEEDTUM corpora, it

achieve a state-of-the-art classification rate of 99.14%. Note that the results obtained

on just the KDEF corpus are also considered state-of-the-art and are only surpassed

by the pose invariant model discussed in the next section.

These results strongly support the illumination invariant training approach pro-

posed in Chapter 4. Nonetheless, two important key factors played a significant role

in both, the reconstruction and classification results: ReLU-n activation functions

and gradual greedy layer-wise training. ReLU-n activation layers were initially intro-

duced to assist in the learning of an illumination invariant feature vector by setting

a threshold on the activations of a given node. However, they were also shown to
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have an effect in classification, and that a lower threshold marginally greater than

zero improves classification performance. In contrast, Gradual-GLW was introduced

to address the vulnerability of GLW to error accumulation.

Gradual-GLW improves training of SCAE models by reducing error accumulation

in early layers, and stopping it from being propagated to deeper layers. This is

achieved by fine-tuning the stack of autoencoders at every step k ∈ Z : k ∈ [1,m]

using raw pixel data. When adapted for the the illumination invariant model, the

stopping condition in Gradual-GLW unsupervised training is done according to the

difference between the estimated luminance of the reconstructed images and that of

the target image.

7.5 Pose Invariant Emotion Recognition

One of the major challenges in the domain of emotion recognition from facial expres-

sions is dealing with changes in facial pose. To the best knowledge of the authors,

no existing work in the literature has attempted to address this issue specifically.

Chapter 5 introduced a novel deep learning method designed solely to address pose

invariance. The pose invariant model is based on a novel generative adversarial au-

toencoder (GASCA) architecture trained using Gradual-GLW.

Similarly to the illumination invariant model from Chapter 4, the GASCA model

learns a feature vector by mapping the input xϕ to a hidden representation and back

to a reconstruction y that resembles the target image xµ. And xµ and xϕ are both

images belonging to the same subject but taken from different angles. Learning is

done using a version of Gradual-GLW adapted for adversarial learning and, thus, a

discriminator network D is created. Empirical adversarial autoencoders draw samples

from a random distribution, and use them along with the code vector of produced

by the encoder function in G as input to D. In the GASCA model, D gets the

reconstruction y produced by G and tries to differentiate it from the target image xµ.

In contrast, G is trained to trick G into believing that the reconstructions are the same
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as the target images. Which in effect forces G to produce remarkable reconstructions.

Moreover, D is also trained in a layer-wise fashion. Both D and G are also fine-tuned

as they grow, i.e. when more layers are added.

The GASCA model is able to reduce facial pose from up to ±60 degrees down to 0

degrees and produces remarkable reconstructions. Remarkable reconstructions were

obtained even in cases where half of the face is not visible, yet the model managed to

compensate for the missing information and even retain the shape of facial features

important for emotion recognition.

The encoder element of the GASCA model is used to initialize a CNN and fine-

tune for classification. Effectively, the SCAE model reduces the data distribution

and leads to faster fine-tuning of the CNN models. The CNN models achieves a

classification performance of 96.81% on the KDEF corpus. Note that this version of

the KDEF has facial expression images with estimate poses of up to ±45 degrees.

When trained for pose and illumination invariance, the model achieves state-of-the-

art classification performance of 98.07%. Moreover, when tested on nonuniform data

from 28 participants collected using a NAO robot in unconstrained environments,

it achieves an accuracy rate of 81.36%, compared to 73.55% when trained only for

illumination invariance, as we reported in [78].

Part of the outstanding performance of the GASCA model is attributed to the two

new convolutional layers designed specifically to assist the model in learning a pose

invariant feature vector. The ConvMLP layers are convolutional layers that employ

shifting neurons to allow reduction of facial pose in faces. HalfConv layers are layers

designed to exploit facial symmetry and reduce the number of parameters in half by

only processing half of an image and then mirroring its output.

The GASCA model, when trained to address illumination and pose invariance,

eliminates the need for more complex image pre-processing steps often found in the

literature: noise injection, color and brightness normalization, among others [14].

This is particularly important considering that these pre-processing methods often
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lead to an increase in the data distribution space.

7.6 Illumination and Rotation Invariant Face De-

tection

Although face recognition is a widely studied subject in the visual processing and ML

communities, work addressing face rotation is very limited. Chapter 6 introduced a

novel DRL architecture for illumination and rotation invariant face detection. This

model achieved state-of-the-art recognition rate of 96.53% on the testing subset of

the BioID corpus, which contains randomly rotate images. The model also provides

good generalization performance on novel data and achieved a performance rate of

93.60% on unseen images of the Multi-Pie corpus.

DeepFace provides an alternative to popular face detectors such as the Viola-Jones

[82], or Histogram of Oriented Gradients [84], by employing a non-exhaustive search

method. Moreover, DeepFace returns a non-rotated cropped face. Whereas other

methods would not be able to achieve this without employing alternative rotation

estimation methods.

Although not explored in this thesis, in theory, DeepFace should work on multi-

pose images by either adding multi-pose images and processing them as is, or by

employing the pose invariant GASCA model from Chapter 5 and using the pose

invariant feature vector to train the deep Q-network model. Either approach should

provide an alternative to contemporary state-of-the-art pose invariant methods such

as the one proposed by [63]. For instance, once loaded into memory, a single image is

processed in 1/100th of a second on average, compared to almost 45 seconds required

by the best model proposed by [63]. Note that these comparison is done based on the

multi-core open source code released by the authors; nonetheless, DeepFace should

be much faster as it only requires some matrix multiplications.

The robustness of DeepFace on images with varying illumination is attributed
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to the illumination invariant SCAE model from Chapter 4 trained using Gradual-

GLW and γ corrected images. Therefore, supporting the work presented in the same

chapter.

7.7 Research Limitations

One of the main limitations of the work presented in this thesis is the emotion recog-

nition models are trained on images of white Caucasian subjects. This is due to

lack of existing publicly available multi-cultural facial expression data. And since

people from different ethnic backgrounds express emotions in different ways [81], the

emotion recognition models offer lower classification performance on images of par-

ticipants from different cultures. This was observed when testing the model of the

NAOFaces corpus, in which participants are from at least five different ethnic back-

grounds. Although this was reduced to some degree by combining various corpora

into a single one, the results on the NAOFaces corpus were still lower compared to

the other corpora.

In terms of pose invariant recognition, the GASCA model is only evaluated on

images with an estimated pose of up to ±60 degrees. For facial expressions with a

larger facial pose, the model’s performance will likely drop. This has been observed

in the reconstructed images: when an image with estimated pose at 0 degrees is

passed through the GASCA model, the reconstruction is marginally better than for

images with larger facial pose. And the larger the pose, the lower the quality of the

reconstruction, although the difference is marginal and for the purpose of this work

it is trivial. The illumination invariant model proved to be more robust to drastic

changes in illumination.

Furthermore, because the emotion recognition models were trained on corpora

containing only seven emotional states, they are unable to detect more complex emo-

tions such as shame, trust, or envy, among others. In addition, because classification
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is done categorically, the models are unable to deal with overlapping emotions or

transitions in emotional states.

One aspect that was not considered in this research was real-time emotion recog-

nition. Theoretically, the emotion recognition models should not have any latency

issues: for a batch of 512 images, the average prediction time is one tenth of a sec-

ond when processed using two NVidia Kepler K80 GPUs, and implemented using

the Torch7 framework [94]. Although this does not account for face detection or the

latency caused by the camera used to obtain the images.

The main limitation of the findings presented on the face detection model was

the lengthy training time required to learn a policy: usually over 100, 000 iterations.

Moreover, this research did not look into extreme facial rotation, for instance upside

down faces. The face detection model was also evaluated on a single corpus due to

its reliability on three known facial points during training. The face detection model

also did not take into consideration multi-pose corpora due to lack of labeled data.

7.8 Future Direction

Automated emotion recognition is an area of research that continues to expand. Its

applications are diverse and can be employed in the education sector, healthcare,

security, social robotics, among many others. Future work can explore the suitabil-

ity of the pose and illumination invariant emotion recognition models for real time

recognition in these, and other domains.

The illumination and pose invariant models can be extended to consider more

complex emotions, such as trust or envy, as well as to take into account overlapping

emotions and transitions between emotions. In addition, future work can extend

the findings presented in Chapters 3–5 to provide better generalization insensitive

to cultural differences. This can be achieved by incorporating multi-cultural facial

expression images in the training data. The emotion recognition models can also
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be expanded to consider multimodal affective data. For instance, speech signal in

the form of spectrograms; or, in combination with other empirical classifiers, such as

MLPs, where both models learn simultaneously.

Due to the formulation of the GASCA model, and due to the success of generative

adversarial learning in synthetic image generation, it could be extended to generate

realistic facial expression images. This could be done using the encoder element in the

generator model, or a second decoder model could be added. Some variations of this

approach for generation of synthetic facial expression images has been explored by

[95], [96] and [97]. Such extension would be very beneficial for the domain of emotion

recognition, considering that labeled data is limited.

The formulation of the GASCA and SCAE models could also be explored to

address tilt and face rotation. Although tilt is inherently fixed by the pose invariant

model to some degree. For face rotation, the GASCA model could use the non-

rotated image as the reconstruction target, and gradually reduce face rotation through

the shallow autoencoders. Hypothetically, the GASCA model should also be able

applicable to other domains, such as rotation invariant object recognition. Moreover,

both the SCAE and GASCA models could be evaluated on corrupted images, where

parts of the images contain no significant information. And they could be combined

with sub-pixel convolutional layers [79] to improve the resolution of the reconstructed

images. However, in this work the quality of the reconstructions is trivial.

Other possible extensions to the SCAE and GASCA models is end-to-end learning

that takes into account classification. For instance, in the GASCA model, the latent

distribution q(z) could be used as input to a second classifiers—the discriminator

D is a classifier model—for emotion recognition. The classification loss could then

be combined with the adversarial loss to update all the models. However, this may

not be straight forward considering that this would add complexity to the overall

architecture. Moreover, it would have to be explored if such classifier should be trained

layer-wise like the discriminator and generator models, or jointly. Nonetheless, this

may be a very promising learning procedure given that in unsupervised learning, the
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features learned are relevant for reconstructions but are not guaranteed to be relevant

for classification.

The ConvMLP layers can also be applied to other classification and regression

problems. ConvMLP layers could also be adapted for different purposes. For instance,

in the state-of-the-art architectures, such as ResNets [14], the layer with shifting

neurons could be used to replace the skip connections. As such, instead of simply

being an identity function, the skip connection would apply a function f that can be

not only assist with the flow of information, but also assist in learning other complex

relations. Future work can also explored increasing the depth of the fully connected

layer shared across the depth dimension in ConvMLP layers.

Due to the ability of HalfConv layers to exploit facial symmetry, these could be

used in other applications where symmetry is guaranteed. HalfConv layers can also be

optimized to exploit locality. For instance, in cases where it is known in advance that

a particular feature of interest will always be within a given region, HalfConv layers

can be adapted to split the input image according to this region and learn to extra the

feature of interest. In such case, depending of the application, mirroring in HalfConv

layers would let the proceeding layer that this feature is important. Alternatively,

instead of mirroring the extracted features, HalfConv layers can simply fill in the rest

of the image with zeroes or pass the the downsampled feature plane to the next layer

as is.

For the face detection model, future work should look at improving the deep

reinforcement model for simultaneous recognition of multiple faces, e.g. group face

detection. In theory, this could be achieved by deploying different agents on the same

image, perhaps placed strategically instead of randomly. However, it may require

some adaptation to avoid having all the agents find the same face. Moreover, a

challenge in this scenario would be to create a strategy to determine the number of

possible agents to deploy on a given image. Future work can also look at possible

ways to reduce training time of the face detection model. One possible way could be

to incorporate other forms of information in the training process. For instance, the
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location of the agent at any given time relative to the image space.

The face detection model can also be extended to deal with multi-pose corpora.

One way to accomplish this would be by using the GASCA model. For example, it

could be trained to fix facial pose in full images, i.e. images with some background.

In this case, once the image has a reduced pose, the agent would be able to find it,

as it is, without any changes in the training of the DRL agent. Although, this would

transform the image and result in a frontal face cropped image, which may not always

be desired.

7.9 Chapter Conclusion

This thesis introduced a set of deep learning architectures and training paradigms

designed for emotion recognition from facial expression images. Careful attention

was placed on illumination and pose invariance, considering that they are two of

the most challenging, and often overlooked, issues in emotion recognition from faces.

Although these architectures have some limitations, the state-of-the-art classification

performance they offer on nonuniform data are significant contributions to the field of

automated emotion recognition. Moreover, these contributions are also significant to

the field of deep learning as they introduce new deep learning concepts for invariant

feature learning, as well as several novel deep learning architectures.

This thesis has also explored the development of illumination and rotation invari-

ant face detection using deep reinforcement learning. The face detection architecture

is a significant contribution to the field as it offers fast recognition offered through

non-exhaustive search.

The findings presented in this research bring us a step closer to real-time emotion

recognition in unconstrained environments. To the best of the authors’ knowledge,

this thesis is the first work designed to solely address pose invariance in emotion

recognition. Along with the face detection model, the pose and illumination emotion

122



recognition models offer significant new knowledge in the field of automated emotion

recognition, as well as the field of deep learning, and bring us a step forward in the

development of intelligent systems for face and emotion recognition in unconstrained

environments.
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Appendix A

Supporting Material

Most of the implementations of the models in Chapters 3–6 were implemented using

Torch7 [94]. More precisely, the nn, nngraph, cudnn, and autograd libraries were

used as the base libraries for the implementation of all the experiments.

All experiments were ran using the several nodes with the following configurations

per node: 2 Intel(R) Xeon(R) CPU E5-2683 v4, 2.10GHz (32 CPU-cores), 128GB

RAM and 2 NVidia Kepler K80 GPUs.

All results are reported as an average of ten experimental runs.

The following sections describe the topology for some of the models used in Chap-

ters 5 and 6. After various experiments, these configurations provided the best results.

In some cases, some of the layers can be replaces for alternatives, for instance upsam-

pling layers can be replaced with deconvolutional layers, with no significant changes

in performance. However, these configurations provided the best performance as is.
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A.1 Pose Invariant Network Topology

Table A.1: Topology of the GASCA model from Chapter 5. Left two columns are
the Generator G which has two functions, an encoder and decoder. Right column
describes the topology of the Discriminator D. Every row separates each shallow
autoencoder, or network in D, which are trained individually. Once the GASCA
model is trained, the layers in the left column are fine-tuned for classification. For
the ConvMLP layers: (filters× filterWidth× filterHeight, shiftingNeurons).

CNN/Encoder Decoder Discriminator

ConvMLP(20× 5× 5, 100) Sigmoid ConvMLP(32× 5× 5, 100)

BatchNorm BatchNorm BatchNorm

ReLU Convolution(1× 5× 5) ReLU

MaxPooling(2× 2) BipolarUpsampling(2) MaxPooling(2× 2)

ConvMLP(40× 5× 5, 100) ReLU ConvMLP(64× 5× 5, 100)

BatchNorm BatchNorm BatchNorm

ReLU Convolution(20× 5× 5) ReLU

MaxPooling(2× 2) BipolarUpsampling(2) MaxPooling(2× 2)

ConvMLP(60× 3× 3, 100) ReLU ConvMLP(128× 3× 3, 100)

BatchNorm BatchNorm BatchNorm

ReLU Convolution(40× 3× 3) ReLU

MaxPooling(2× 2) BipolarUpsampling(2) MaxPooling(2× 2)

ConvMLP(80× 3× 3, 100) ReLU ConvMLP(256× 3× 3, 100)

BatchNorm BatchNorm BatchNorm

ReLU Convolution(60× 3× 3) ReLU

MaxPooling(2× 2) BipolarUpsampling(2) MaxPooling(2× 2)

SoftMax(7) SoftMax(2)
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A.2 Deep Q-Learning

Table A.2: Topology for the deep Q-network from Chapter 6. For the convolutional
layers: (filters× filterWidth× filterHeight, stride).

Encoder Decoder Q-Network

Convolution(32× 5× 5, 1) Sigmoid Convolution(64× 3× 3, 1)

BatchNorm BatchNorm BatchNorm

ReLU-n Convolution(1× 5× 5, 1) ReLU

Convolution(64× 3× 3, 2) ReLU Convolution(96× 3× 3, 2)

BatchNorm BatchNorm BatchNorm

ReLU-n Convolution(32× 3× 3, 1) ReLU

BipolarUpsampling(2)

Convolution(64× 3× 3, 1) ReLU Convolution(128× 3× 3, 2)

BatchNorm BatchNorm BatchNorm

ReLU-n Convolution(64× 3× 3, 1) ReLU

Convolution(128× 3× 3, 2)

BatchNorm

ReLU

SoftMax(9)
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