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ABSTRACT

Catalytic converters are widely used in the automotive industry to comply with increasingly

stringent emissions regulations. The flow distribution across the catalyst substrate signifi-

cantly affects its conversion efficiency. Measuring the flow in a catalyst system is challenging;

computational fluid dynamics (CFD) provides an alternative approach for the assessment of

different design concepts and is therefore commonly employed to model flow behaviour. This

thesis studies the application of CFD to modelling flow in a two-dimensional system consist-

ing of a catalyst monolith downstream of a wide-angled planar diffuser, with total included

angle 60°.

Computational models are developed using the commercial CFD software STAR-CCM+.

Flow predictions are compared to experimental data collected by Mat Yamin, (2012) and also

as part of this study. Measurements were obtained on a two-dimensional isothermal flow rig

using particle image velocimetry (PIV) and hot-wire anemometry (HWA).

Steady flow studies compare different methods of modelling the monolith. Models include

the common approach of modelling the monolith as a porous medium and the computationally

expensive individual channels model. A hybrid model is developed that combines the two

approaches, benefiting from the respective merits of each method. Two monolith lengths are

considered, with flow at varying Reynolds numbers.

The porous model predicts the downstream velocity profile well for the shorter monolith but

overpredicts flow maldistribution for the longer monolith. The inclusion of an entrance effect

to account for the pressure losses associated with oblique entry into the monolith channels

is studied. Best agreement in downstream velocity is observed when the pressure losses are

limited using a critical angle approach.

The individual channels model is found to be the most consistently accurate across monolith

lengths, attributable to the accurate capture of flow behaviour upon entry into the monolith

channels. A novel hybrid model is proposed, which combines the computational efficiency

of the porous model with the geometrical accuracy of individual channels. The model is

evaluated and is found to provide results similar to the individual channels model, with
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improved predictions of velocity maxima and minima.

Pulsating flow studies present three transient flow regimes with similar inlet pulse shapes

and varying Reynolds number and frequency. Predicted velocities in the diffuser are in good

agreement with PIV flow fields, however CFD predicts higher magnitudes at the shear layer.

The model predicts large residual vortices present at the end of the cycle where experimental

data shows none; it is concluded that CFD underpredicts turbulence diffusion. Evidence of

cyclic variation in experimental data highlights the limitation of URANS turbulence models.
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K-W Küchemann-Weber

LDV laser doppler velocimetry

LES large eddy simulation

NOX nitrogen oxide

PIV particle image velocimetry

PM particulate matter

PN particle number

RANS Reynolds-averaged Navier-Stokes

RST Reynolds Stress Transport

SIMPLE Semi-Implicit Method for Pressure Linked Equations

TWC three-way catalyst

Greek Symbols

α angle of attack, °

αc critical angle, °

αs subcritical angle, °

αc,v critical angle dependent on flow rate, °

x



β axial porous viscous resistance tensor coefficient

∆h change in water elevation, m

∆P pressure drop, Pa

∆P ∗ non-dimensional pressure loss, (∆P )/( 1
2ρU

2)

∆P ∗obl non-dimensional oblique pressure loss, ∆Pobl/(
1
2ρU

2)

∆Pobl pressure loss due to oblique flow, Pa

δ boundary layer thickness, m

ε turbulent dissipation rate, m2/s3

η conversion efficiency

γ axial porous inertial resistance tensor coefficient
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1 | Introduction

1.1 Motivation

The continued development of automotive exhaust catalyst systems is driven by increasingly strin-

gent emissions regulations. The first emissions legislation was enacted in California in 1959 and the

European Union first adopted directives for road vehicle emissions in 1970. Following the introduc-

tion of emissions standard Euro 1 in 1992, standards have been regularly revised to reduce the level

of pollutant emissions and thereby lessen their harmful effects upon human health and the ecosys-

tem. EU legislation focuses on four main pollutants: carbon monoxide (CO), nitrogen oxides (NOX),

hydrocarbons (HC) and particulate matter (PM).

Table 1.1: Euro emission standards for passenger cars (DieselNet, 2015)

Table 1.1 shows the progression of standards for passenger cars. All limits have decreased over

the years to counteract increases in vehicle numbers, annual mileage and traffic density. Individual

standards for HC and NOX have been established and limitations of PM emissions for petrol engines

1

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis 
can be found in the Lancester Library, Coventry University.



have been introduced in the past decade. More recent legislation includes a particle number (PN)

emission limit in addition to the mass-based limits.

To comply with emissions standards, it is necessary to use a catalytic converter downstream of

the engine to facilitate the conversion of pollutants in the pulsating exhaust flow into less harmful

emissions. A two-way (oxidation) catalyst converts hydrocarbons and carbon monoxide into carbon

dioxide and water. Originally employed in petrol engine exhausts, two-way converters are now typically

used only in diesel engine exhausts due to the need for treatment of nitrous oxides. For petrol engine

vehicles, the two-way catalyst was superseded by the three-way (oxidation-reduction) catalyst (TWC),

benefiting from the additional reaction of the reduction of nitrous oxides to nitrogen and oxygen.

Figure 1.1: Schematic of a TWC

Figure 1.1 shows a typical TWC. The catalyst is a monolith structure in ceramic or metal. The

monolith comprises many parallel channels with small hydraulic diameter. A thin washcoat applied to

the channel walls provides a large surface area for the reaction of exhaust pollutants, as illustrated in

Figure 1.2. Embedded in the washcoat are precious metals, such as platinum, rhodium and palladium,

which increase the chemical reaction rate at lower temperature. The size and shape of monolith

depends on vehicle size and packaging constraints, however a typical passenger vehicle monolith would

have a circular or oval cross-section and a cell density between 15 and 95 cells/cm2 (Pundir, 2007).

The catalyst does not function effectively before reaching operating temperature. From cold-start,

the catalyst is initially heated by exhaust gases alone. Once reactions start to occur in the catalyst,

their exothermic nature results in a ‘snowballing’ effect and therefore increased conversion efficiency.

This warming-up process is known as light-off. Characteristic behaviour may then be expressed by

the light-off temperature or light-off time, respectively denoting the temperature and time at which

conversion efficiency passes a specified level. For 50% conversion, a TWC has a light-off temperature
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Figure 1.2: Schematic of washcoated monolith

of 250–350°C (Kašpar et al., 2003). Light-off time is heavily dependent on the location of the catalyst.

An under-body TWC has a light-off time of 90–120 s, however this drops to 10–20 s when the catalyst

is closely coupled to the engine (Kašpar et al., 2003).

Petrol engines are generally internal combustion engines, where combustion is started through spark

ignition. A key factor for the efficiency of emissions aftertreatment in spark ignition engine vehicles

is the air-fuel ratio. Reduced fuel levels give a ‘lean’ air-fuel ratio, i.e. with high oxygen content.

An insufficient level of reducing agents (e.g. CO, HC) leads to an oxidising combustion, resulting in

increased O2 and NOX emissions and lower CO and HC (Taylor, 1984). Increased fuel levels lead to

chemically reducing ‘rich’ combustion, i.e. with low oxygen content. This results in reduced NOX

emissions, but higher levels of CO and HC. Ideal combustion occurs at the point of stoichiometry,

where exhaust gases consist only of nitrogen, water and carbon dioxide, with no residual oxygen or

fuel. An emission control system is typically used to maintain the air-fuel ratio near stoichiometric

level.

Ignition of engines using diesel oil is through compression of the charge and the air-fuel ratio is

always lean, so the exhaust reaction is always oxidising. As with lean-burn spark ignition engines,

the treatment of NOX is thereby impeded, however the presence of PM complicates the issue further.

A trade-off then exists in the combustion process of the two emissions, such that controlling the

engine-out levels of both is problematic. The main device for the aftertreatment of PM is the Diesel

Particulate Filter (DPF), where channels are alternately closed at either end of the catalyst and

exhaust gases are filtered as they pass through the porous walls into neighbouring channels.

Ageing of the catalyst results in the degradation of its activity. Sintering at high temperatures
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reduces the reactive surface area, whilst poisoning occurs from chemicals present in fuel and engine oil

(Martin et al., 1998). When the catalyst is routinely subjected to non-uniform flow, the most utilised

areas age faster, resulting in more rapid deterioration of efficiency.

Energy losses inside aftertreatment devices cause a pressure drop, resulting in an increased exhaust

back-pressure which lowers engine efficiency. Back-pressure may be reduced by using a monolith of

shorter length. For sufficient catalyst surface area for maximum conversion, it is therefore necessary

for the cross-sectional area of the catalyst to be significantly larger than the inlet pipe. As a result, a

large expansion is required between the exhaust pipe and the catalyst. Short wide-angled diffusers are

typically used due to space constraints, thus increasing flow maldistribution in the catalyst (Clarkson,

1995).

Flow separates at the expansion, resulting in a confined jet that traverses the diffuser. Flow

behaviour in the diffuser is illustrated in Figure 1.3(a). Close to the monolith face the flow decelerates

and spreads radially, with part of the flow entering the monolith and the remaining flow feeding

into vortices located between the jet and diffuser wall. As a result the flow entering the monolith is

maldistributed, with higher velocities in the central channels of the monolith. Flow enters the channels

axially on the centre line and obliquely at increased radial distance from the centre. Oblique flow

at the monolith face results in separation at the channel entry and thus increased resistance in these

areas, see Figure 1.3(b). Radial flow approaching the diffuser wall at the front face of the monolith

stagnates. This causes an increase in pressure at these locations and some flow is obliged to enter the

outermost channels of the monolith, resulting in secondary velocity peaks near the diffuser walls. A

typical velocity profile across the monolith is shown in Figure 1.3(a).

Flow maldistribution in the monolith affects the pressure drop across the system as well as the

conversion efficiency and degradation rate of the catalyst. The development of improved catalytic

converter design concepts therefore requires an understanding of the effect of flow behaviour upon

catalyst performance. Flow characteristics may either be studied empirically through experimental

analysis, or predicted numerically using modelling techniques. Considering the extra cost, time and

practical challenges associated with detailed flow measurements, computational fluid dynamics (CFD)

provides an attractive alternative for studying flow behaviour and is therefore increasingly used to

assess designs. CFD is commonly employed for this purpose, however the accuracy of predictions and

the level of computational resources required for solution require assessment. This thesis addresses

these issues through the development and analysis of several models.
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(a) Flow field in diffuser and typical velocity pro-

file inside monolith

(b) Recirculation bubbles formed at channel walls

Figure 1.3: Example of flow behaviour in a catalytic converter system

1.2 Aims and Objectives

The overall aim of this thesis is to assess the performance of computational fluid dynamics as

applied to catalytic converters systems using RANS-based turbulence modelling, and to develop novel

methodologies for modelling catalyst monoliths for the improvement of CFD predictions, thus aiding

the design process of the next generation of aftertreatment devices.

The specific objectives are to:

• Assess and validate the performance of existing CFD methodologies for modelling catalyst

systems, combining state-of-the-art RANS turbulence models and various porous medium mod-

elling approaches;

• Develop new computational methodologies aimed at improving on both the accuracy and effi-

ciency of the porous medium model applied to the catalyst monolith;

• Evaluate the predictive capability of RANS-based simulations for transient flow through a sim-

plified catalyst system geometry, in order to gain a better understanding of the fundamental

flow features representative of typical engine operation conditions.
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1.3 Thesis Outline

An overview of studies and literature relevant to this work is given in Chapter 2.

The methodology is then presented. The process of experimental data collection is detailed in

Chapter 3 and the development of computational models is demonstrated in Chapter 4.

Chapter 5 presents results from the steady flow models and Chapter 6 presents pulsating flow results.

Model predictions are compared to experimental measurements as axial velocity profiles downstream

of the monolith and velocity fields in the diffuser.

The thesis is concluded in Chapter 7 by a summary of the principal findings and contributions

presented in the work, with suggestions for future research.

6



2 | Literature Review

This chapter presents an overview of studies most relevant to this thesis. Significant works relating

to flow maldistribution and pressure drop in the system are presented, and the previous application

of CFD to modelling catalyst systems is summarised.

The exhaust gas flow is typically strongly pulsating, however pulsations in the flow complicate mea-

surement in the system. For simplification, many studies have been undertaken with the assumption

of steady or non-pulsating flow.

2.1 Flow distribution studies

For optimum conversion rates, the catalyst monolith is typically of a larger cross-sectional area

than the connecting pipes. Inlet and outlet cones connect the monolith to the exhaust, however space

constraints result in cones of relatively short length and wide angle. The sudden expansion results

in a non-uniform flow profile upon entry into the catalyst, as observed by Wendland and Matthes,

(1986).

Flow uniformity is a key factor in catalytic converter design since maldistributed flow adversely

affects the performance of the catalyst. Flow profiles have been found to be more uniform with

smaller Re (Benjamin et al., 1996; Lai et al., 1991) and higher monolith resistance (Clarkson, 1995;

Lai et al., 1991).

The centre of the catalyst, observing higher velocities and temperatures, degrades at an increased

rate, as found experimentally by Martin et al., (1998). In this regard, Howitt and Sekella, (1974)

studied the effect of various flow deflection devices designed to inhibit flow to the monolith centre. It

was found that improved uniformity of the flow carries with it an increased light-off time due to the

reduction of gas flow concentration.

Will and Bennett, (1992) modelled the conversion in a catalytic converter and obtained a non-

uniform predicted conversion profile at the monolith exit. Comfort, (1974) carried out a mathemat-

ical study on the effect of velocity distribution on conversion efficiency. Assuming reaction rates

determined by mass transfer, a more uniform profile was found to improve efficiency. Experimental

measurements by Martin et al., (1998) showed improved conversion rates of HC, CO and NOX for

increased uniformity, in particular for aged catalysts.

7



The velocity profile entering the catalyst is heavily dependent on the geometry of the diffuser

connecting the exhaust to the catalyst body. Wollin, (2002) used diffusers with total included angle,

denoting the overall diffuser expansion, of 60° and 180°. The total flow separation resulting from the

180° diffuser resulted in a less uniform profile than the 60° diffuser under pulsating flow conditions,

however similar results were obtained for both diffusers under steady flow conditions. Hauber et al.,

(1998) studied the influence of inlet cone angle in a two-piece catalytic converter, where two monoliths

are situated one after the other with a space between the two. It was observed that the inlet cone angle

had a significant influence on the flow distribution in the first monolith, but negligible impact in the

second monolith. Clarkson, (1995) studied the effect of total included diffuser angle and found that

reducing the diffuser angle improved flow uniformity and decreased pressure drop across the system,

however the size constraints of practical applications typically impede the use of low-angled diffusers.

Measurements are often taken downstream of the monolith in order to characterise flow in the

monolith. However, the comparison of downstream profiles from numerical models and experimental

data as a means of assessing monolith modelling techniques assumes an accurate description of flow

behaviour in the diffuser upstream, e.g. Liu, (2003) and Weltens et al., (1993). The advance of non-

intrusive optical measurement techniques has enabled the study of flow behaviour in the diffuser, e.g.

Shuai et al., (2001), Turner et al., (2011), and Kim et al., (1995). Studies including measurements

both upstream and downstream of the diffuser enable identification of areas of flow redistribution and

provide further insight into the accuracy of CFD models.

Quadri et al., (2009b) used PIV to measure flow in the diffuser and were thus able to compare

velocity profiles approximately 3 mm upstream with HWA profiles 30 mm downstream of the monolith.

Significant differences in profile shape were observed (Figure 2.1). Since the flow cannot redistribute

in the transverse direction inside the monolith, and only minimal mixing is expected downstream due

to the uni-directional nature of the flow, the comparison demonstrates a dramatic redistribution of

flow immediately before entering the monolith channels. Fluid is forced outwards directly in front of

the monolith face, producing secondary peaks consistent with the study by Persoons et al., (2008).

PIV flow fields obtained by Quadri et al., (2009b) captured flow behaviour in a planar diffuser. A

free shear layer separates the central jet from recirculating vortices on either side which occupy the

rest of the diffuser. The potential core narrows as flow traverses the diffuser, whilst the recirculation

regions feed into the jet. A saddle-shape velocity profile develops and is then suppressed as flow

spreads at the monolith face. Velocities in the diffuser were found to be independent of Reynolds

number, whilst a higher monolith resistance downstream was seen to flatten velocity profiles in the

diffuser. Mat Yamin et al., (2013) measured steady state velocity profiles 2.5 mm from the monolith
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Figure 2.1: Comparison of axial velocity profile shape upstream and downstream of monolith

(Quadri et al., 2009b)

face and observed flatter profiles for lower Re.

Arias-Garćıa et al., (2001) compared steady and pulsating flows in a close-coupled catalyst and

observed lower maldistribution for pulsating flow. Benjamin et al., (2002) compared different pulsating

flow regimes, finding more uniform flow distribution at higher frequency, resulting in a reduced pressure

drop across the system. The maldistribution for pulsating flows was found to be less sensitive to

changes in Re than in the steady case. Benjamin et al., (2002) also introduced the non-dimensional

parameter J , reciprocal of the Strouhal number, to characterise flows by the ratio of pulse period to

residence time in the diffuser.

J =
Uin

Ldf
(2.1)

where Uin, f and Ld respectively denote mean inlet pipe velocity, frequency and length of diffuser.

Flow maldistribution was found to reliably correlate with J (Benjamin et al., 2002). Liu et al.,

(2003) observed less uniform flow than Benjamin et al., (2002), although this was attributed to

reduced inlet mean-peak ratio and the absence of periods of zero inlet velocity. Mat Yamin et al.,

(2013) measured flow in a similar system under pulsating conditions. Two flow regimes with similar

J were seen to show similar flow fields. Lower J (lower Re and/or higher frequency) flows resulted in

more uniform profiles within the monolith, since flow was able to reattach downstream of separation

bubbles.

9

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the thesis can be 

found in the Lancester Library, Coventry University.



2.2 Monolith Pressure Drop

While flow distribution is linked to conversion efficiency and catalyst ageing, minimising the pressure

drop is important for engine performance and fuel economy. Clarkson, (1995) found that a shorter

inlet expansion and a longer monolith both decreased the pressure drop across the system. Wendland

et al., (1991) found the pressure drop to increase with flow rate to a power between 1.1 and 1.5.

However normalised pressure loss, calculated as the ratio of pressure loss to inlet pipe dynamic head,

was found to decrease with flow rate. By normalising the pressure drop, the relationship between

Reynolds number and pressure loss was found to be the same for hot flow, cold flow and exhaust flow

(Wendland et al., 1991).

Pressure losses in the system may be estimated by theoretical formulations. Principal losses result

from the developing boundary layer at channel walls.

Shah, (1978) developed the following expression for non-dimensional pressure drop ∆P ∗ along a

channel:

∆P ∗ = (FRec)(4x
+) +K(x)

= (FappRec)(4x
+)

(2.2)

where

∆P ∗ =
∆P

1
2ρU

2
(2.3)

denotes the non-dimensional pressure drop,

x+ =
L

dhRec
(2.4)

denotes the non-dimensional distance along the monolith, and

FappRec =
3.44√
x+

+
(FRec) + K(∞)

4x+ − 3.44√
x+

1 + C(x+)−2
(2.5)

denotes the apparent friction factor based on the total pressure drop from x = 0 to L. K(x) is an

additional dimensionless pressure drop due to change of momentum. K(0) = 0 at the duct inlet

and increases monotonically to a constant value K(∞) in fully-developed flow. For laminar flow in

square channels, K(∞) = 1.43, FRec = 14.227 and C = 0.000212 (Shah and London, 1978). For

fully-developed channel flow, Eq. 2.2 reduces to the Hagen-Poiseuille (H-P) relationship:

∆P ∗ = (FRec)(4x
+) (2.6)

Will and Bennett, (1992) compared the theoretical H-P pressure drop with measurements from a

catalyst monolith and found good agreement. Benjamin et al., (1996) measured the pressure drop

10



across both washcoated and unwashcoated monoliths and compared the results with the theoretical

formulations given by Eqs 2.2 and 2.6. The expression for fully-developed flow (Eq. 2.6) was found

to agree well with experimental data for x+ > 0.2. For lower x+, losses due to developing flow were

non-negligible and measurements in this region better matched the Shah equation (Eq. 2.2).

CFD simulations were performed for a catalyst system, using Eqs 2.2 and 2.6 to calculate the pres-

sure drop across the ‘porous’ monolith (Benjamin et al., 1996; Haimad, 1997). CFD predictions were

very similar for the two models, with the Shah equation resulting in a slightly more uniform velocity

profile downstream of the monolith. This was attributed to increased back pressure associated with

boundary layer development (Haimad, 1997). In comparison with an experimentally measured veloc-

ity profile, maldistribution of the flow downstream was found to be underpredicted by the models.

Velocities at locations corresponding to areas of highly oblique flow at the monolith face were notice-

ably overpredicted. It was concluded that the model over-simplified the system, with pressure losses

only associated with one-dimensional flow.

In reality, flow approaching a series of parallel plates obliquely will result in separation at the

surface and a redistribution of the flow in the channel. Figure 1.3(b) shows flow approaching parallel

channels at an angle α, with axial velocity u, transverse velocity v and velocity magnitude U . Due

to the high angle of attack, recirculation bubbles form at the wall of each monolith cell as flow enters

the channels, which results in increased pressure loss in the channel.

During their work on heat exchangers, Küchemann and Weber, (1953) developed an expression for

pressure loss due to oblique flow, given by

∆Pobl =
ρv2

2
(2.7)

The inclusion of this additional pressure loss term in a computational model was found by Benjamin

et al., (2001) to improve velocity predictions downstream of the monolith, with increased maldistri-

bution and higher velocity maxima.

Expressing a non-dimensional oblique pressure loss by ∆P ∗obl = (∆Pobl)/(
1
2ρU

2), Eq. 2.7 is equiv-

alent to

∆P ∗obl = sin2 α (2.8)

Persoons et al., (2008) measured pressure losses due to oblique flow for annular swirling flow entering

a catalyst. For angle of attack α ≤ 33°, they found that the pressure loss could be approximately

expressed by

∆P ∗obl = 0.459 sin2 α (2.9)
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Expressing oblique pressure loss measurements as a function of Reynolds number and angle of

incidence, Quadri et al., (2009a) derived the piecewise relationship for the range of angles studied:

∆P ∗obl =





0.021 Re0.5 sin2 α 30° ≤ α ≤ 45°

0.18 Re0.24 sin2 α 55° ≤ α ≤ 70°

0.525 Re0.1 sin2 α α = 75°

(2.10)

Quadri et al., (2009a) combined Eqs 2.6 and 2.10 to model pressure drop in the monolith and found

good agreement downstream, with some overprediction of maldistribution near to the wall, as had

been observed by Benjamin et al., (2001) using Eq. 2.7.

The overprediction of pressure losses at regions of oblique flow suggests that the relationship between

angle of attack and pressure loss changes past a certain angle, i.e. a critical angle. Since channel height

restricts the size of the recirculation bubble, it follows that entry pressure losses should remain constant

above a certain angle of attack. Eq. 2.7 would then become

∆P ∗obl =





sin2 α α < αc

sin2 αc α ≥ αc
(2.11)

where αc denotes the critical angle.

Küchemann and Weber, (1953) also presented a critical angle effect using the Betz assumption that

there is no overall increase in pressure and thus oblique entry losses may not exceed the subsequent

pressure drop within the channel. The angle αc is then dependent on the flow rate, and may be

denoted αc,v. Using the Hagen-Poiseuille formulation given in Eq. 2.6, the critical angle may be

derived,

αc,v = tan−1

√
(4FRec)µL

ρψd2
h

us
u2

(2.12)

Liu, (2003) modelled the total pressure drop across the monolith using Eq. 2.6 and Eq. 2.11

with αc = αc,v. Comparing predictions with and without a critical angle approach, the inclusion of

a critical angle was found to significantly improve the accuracy of the downstream velocity profile.

Minima were in better agreement, however velocities at the wall were still overpredicted.

Quadri, (2008) also assumed fully-developed laminar flow in the channels and compared various

fixed critical angles αc using

∆P ∗obl = A(Rec)
B

(
L

dh

)C

(sin2 αc)
D (2.13)

where the coefficients A=0.447, B=0.1233, C=0.0756 and D=0.1287 were derived from experimental

measurements (Quadri, 2008). It was found that αc = 81° best agreed with experimental data.
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Velocity profiles were found to be quite sensitive to the choice of αc. Maximum velocities were

overpredicted using αc = 85°, but limited with αc = 75°. Reduction of the critical angle value resulted

in limited pressure loss at regions of highly oblique flow corresponding to troughs in the downstream

velocity profile. Velocity minima were therefore increased and the conservation of mass resulted in

lower velocity maxima predictions at the centre and at the walls, giving a more uniform profile.

It is worth noting that accurate CFD predictions immediately upstream of the monolith have not

been obtained and that the inclusion of entrance effects for the improvement of predictions may

therefore only compensate for modelling inadequacies in the diffuser.

2.3 CFD Studies in Automotive Catalysts

Approaches to Modelling the Catalyst

For simplicity and economy of computation, the large majority of CFD studies in catalyst systems

consider steady state cases. Several transient CFD simulations have been used for prediction of flow

behaviour but results have not been validated against experimental data (e.g. Kim et al., 1993;

Benjamin and Roberts, 2000; Jeong and Kim, 1997; Arias-Garćıa et al., 2001).

Initial CFD studies of pulsating pipe flow have been compared with experimental measurements of

heat transfer coefficient (Al-Haddad and Al-Binally, 1989) and instantaneous velocity profiles (Cho

and Hyun, 1990).

Full 3D models of a close-coupled catalyst (CCC) system have been developed by Park et al.,

(1998) for comparison with a limited range of LDV measurements, and by Bressler et al., (1996)

for comparison of cross-sectional partial volume flow contours, however the comparisons presented in

these studies are limited by their qualitative nature.

Liu et al., (2003) quantitatively analysed pulsating flow predictions in an axisymmetric system.

A 5° wedge section of the system was modelled and both instantaneous and cycle-averaged velocity

profiles downstream of the monolith were compared with HWA measurements. Predictions were found

to agree fairly well with experiment for gently pulsating flow, however agreement deteriorated for more

severely pulsating conditions. It was suggested that the turbulence model was inappropriate for such

conditions. A more complex model using LES was employed by Garćıa-Villalba et al., (2006) but

without experimental comparison.

Resolving the entire fluid domain over the intricate geometry of the monolith channels carries very
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high computational demand. An alternative approach is to regard the overall pressure drop across

the monolith. This is commonly achieved by modelling the monolith as an equivalent continuum (e.g.

Jeong and Kim, 1997; Lai et al., 1991), or even as an infinitesimally thin interface (Ozhan et al.,

2014). Via theoretical or empirical formulations, the pressure drop of the substrate may then be

applied directly to the model.

The solution of flow in a small number of channels may provide information on flow behaviour in

the monolith channels, whilst limiting the computational cost incurred. Single channel studies have

been carried out for quantification of oblique pressure losses (Haimad, 1997) and heat transfer studies

(Benjamin and Roberts, 2000; Day et al., 1999). Haimad, (1997) conducted an individual channels

study in order to assess the limitations of the porous media approach. Six channels were modelled

as parallel plates with two-dimensional flow. Comparing the predicted pressure drop of a porous

medium model for the same system, it was found that the channels model predicted a pressure drop

approximately 8% greater.

Background to Turbulence Modelling

Typical Reynolds numbers in the engine exhaust fall between 103– 5 × 104 (Kandylas and Stamate-

los, 1999). Flow in the diffuser is turbulent, however flow inside the monolith is laminar due to the

small hydraulic diameter of the channels. Since the behaviour of flow in the diffuser significantly af-

fects the flow profile entering the monolith, it is necessary to accurately predict the level of turbulence

exhibited.

Turbulent motion occurs once the inertia of the fluid overcomes its viscous stresses and the previ-

ously laminar motion of the fluid becomes unstable. Indeed, analysis of the Navier-Stokes equations

(Eq. 4.2) shows linearity of all terms except the inertial term. Laminar flow is regular in nature

and is so-called because it was believed to move in smooth layers, or laminae. Disturbances affecting

the flow may decay over time, allowing the flow to remain stable. If disturbances do not decay, the

behaviour of fluid particles destabilises and fluctuations increase.

Turbulence may be characterised by irregularity, diffusion, non-linearity and highly fluctuating

vorticity (Garde, 2010) and is composed of an eddying motion, i.e. local swirling flow with high

vorticity. An eddy is a group of particles that moves laterally and longitudinally. Turbulent eddies

are three-dimensional, even in two-dimensional flow. Eddies are generated in regions of high shear

and varying sizes are present, with large-scale eddies carrying the smaller disturbances along the flow.

With the decay of turbulence, the kinetic energy transfers from the larger eddies to smaller ones and
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then, via molecular viscosity, they dissipate into heat. This is known as Kolmogov’s equilibrium theory.

Modelling the turbulence of a given system is challenging since no turbulence model has yet been

established to be valid for all flows. Wilcox, (2006) states that ‘an ideal model should introduce

the minimum amount of complexity while capturing the essence of the relevant physics’. Many

approaches exist to model turbulence, however they may largely be classified as belonging to one

of three groups: Reynolds-averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) or Direct

Numerical Simulation (DNS).

RANS models treat the irregularity of turbulent flow statistically. Each instantaneous flow field φ

may be expressed as the sum of a mean φ and a fluctuating part φ
′
, so that

φ(x, t) = φ(x) + φ
′
(x, t) (2.14)

When the statistical flow parameters of the flow do not vary over time, the turbulent flow field is

called stationary or quasi-steady. The time averaged mean φ may then be defined

φ = lim
t∗→∞

1

t∗

∫ t+t∗

t

φ dt (2.15)

and the time average of turbulent fluctuations is zero:

φ′ = lim
t∗→∞

1

t∗

∫ t+t∗

t

φ
′

dt = 0 (2.16)

Decomposition of all flow variables in the Navier-Stokes equations (Eq. 4.2) forms the Reynolds-

averaged Navier-Stokes (RANS) equations:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj
(2µsij + ρτij) (2.17)

where sij is the strain-rate tensor given by

sij =
1

2

(
∂ui
∂xj

+
∂xj
∂ui

)
(2.18)

and τij = −u′ju
′
i denotes the specific Reynolds stress tensor, given by

τij = −




uiui uiuj uiuk

ujui ujuj ujuk

ukui ukuj ukuk


 (2.19)

τij describes the stress acting on the control volume. It is symmetric and therefore has six indepen-

dent components. The diagonal and non-diagonal elements respectively represent the three normal

stress components and three shear stress components. These, along with the unknown mean-flow
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properties of the pressure and velocity components, result in ten unknown values. Mass conservation

(Eq. 4.1) and the three components of Eq. 2.17 collectively make four equations in ten unknowns and

thus the system is not closed. Closure of the system is achieved by modelling τij in terms of the mean

flow quantities. Turbulence models may be classified by the number of additional equations involved

in order to close the system.

The Boussinesq eddy-viscosity approximation forms the basis of most RANS turbulence models. It

assumes proportionality of the Reynolds stress tensor to the product of the eddy viscosity µt and the

mean strain-rate tensor S∗ij , such that

τij = 2µtS
∗
ij −

2

3
ρkδij (2.20)

Algebraic turbulence models are the simplest models. Using the Boussinesq approximation (Eq.

2.20), the eddy viscosity is calculated from the mixing length. Both properties being dependent on

the flow, an algebraic relation between the two must be specified and thus the model is by definition

incomplete.

Eddy viscosity models use the turbulent viscosity µt to model τij . They include the two-equation

k-ε and k-ω models. In a k-ε model, transport equations are solved for the turbulent kinetic energy

k and the turbulent dissipation rate ε. k-ω models solve for k and for the specific dissipation rate ω,

where ω ∼ ε/k. Eddy viscosity models also include Spalart-Allmaras models, where a single transport

equation is solved to determine µt. The k-ε model assumes a velocity scale of k, however in the

near-wall region v2 is more appropriate (Durbin, 1991). In addition to solving for k and ε, the v2f

turbulence model also solves the normal stress function and the elliptic function f . Reynold stress

transport models solve transport equations for all components of τij . They are therefore complex and

incur high computational demand.

Large eddy simulations make a distinction between eddies of different size. Large eddies are com-

puted since they are directly affected by boundary conditions and carry the majority of Reynolds

stresses. The smallest eddies, so called subgrid-scale (SGS), are modelled since the small-scale tur-

bulence here is less critical. The turbulent SGS stress tensor is modelled using the Boussinesq ap-

proximation. El-Behery and Hamed, (2011) compared various two-equation RANS models for flow in

an asymmetric diffuser and found best agreement with experimental and LES results using the v2f

model. Young and Ooi, (2007) compared LES and three-dimensional Unsteady RANS (URANS) to

two-dimensional URANS for flow around a cylinder. Using three-dimensional URANS gave only slight

improvement, whilst LES significantly improved predictions of wake structure and behaviour. Cata-

lano et al., (2003) also considered flow around a cylinder, observing LES to be in excellent agreement
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with experimental data for mean pressure distribution. URANS provided satisfactory predictions but

RANS results were relatively poor.

Direct numerical simulations produce a complete three-dimensional time-dependent solution of the

Navier-Stokes and continuity equations. They represent numerically accurate solutions of exact equa-

tions of motion, i.e. no turbulence closure approximation is used, and thus carry high computational

demand. Cokljat et al., (2003) compared various RANS models with DNS results for recirculating

flows. The v2f model was found to be comparable to the most accurate two-equation models and in

some cases improved accuracy. Ozhan et al., (2014) conducted DNS for a catalytic converter system,

using adaptive mesh refinement to economise on computational resources.

Although most of the boundary layer is turbulent like the freestream flow, there exists a very thin

layer adjacent to the surface where fluctuations are negligible. Viscous effects become more important

close to the wall and the velocity profile varies logarithmically with distance from the surface. This is

known as the law of the wall and is given by

U

uτ
=

1

κ
ln
uτy

ν
+ C (2.21)

where κ is Kármán’s constant (≈ 0.41) and C is a dimensionless constant of integration. Expressing

Eq. 2.21 in terms of the dimensionless velocity u+ ≡ U
uτ

and distance y+ ≡ uτy
ν , we may write

u+ =
1

κ
ln y+ + C (2.22)

Turbulence models do not inherently account for changes in flow behaviour at a surface and thus

require the inclusion of a wall treatment to resolve the boundary layer. The all-y+ treatment available

in STAR-CCM+ assumes that the viscous sublayer is resolved for fine meshes and, for coarse meshes,

assumes that the near-wall cell lies within the log layer and derives shear stress, turbulent production

and turbulent dissipation from equilibrium turbulent boundary layer theory (CD-adapco, 2013).

In a catalytic converter system the dominant flow characteristics are the separation in the diffuser

and the resultant vortices. Algebraic models are too simplistic for such a case (Durbin, 1995), however

the standard k-ε model is not valid at the wall where viscous effects dominate over turbulent effects

(Rodi and Scheuerer, 1986). To account for this, various wall functions have been developed such that

near-wall flow behaviour is embodied in the equations. Clarkson, (1995) compared the standard k-ε

and renormalisation group (RNG) k-ε models with wall functions and with the Norris-Reynolds one

equation near-wall model for flow in a catalyst system. For both models, the one equation model at

the wall significantly improved velocity and pressure predictions compared to wall functions.
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2.4 Summary

The behaviour of flow in catalytic converters has been widely studied since their introduction and is a

continued field of international research. Technological developments have extended both experimental

and modelling capabilities. Flow measurements are increasingly accurate and are possible in previously

inaccessible regions of the system, whilst sophisticated numerical models benefit from the extensive

computational resources offered by high performance computing.

DNS and LES provide improved accuracy of predictions compared to RANS-based modelling, how-

ever the computational cost incurred still hinders widespread use and RANS remains the common

approach for current industrial practices. Many turbulence models have been developed for RANS

modelling, and the v2f model has been found to improve the accuracy of turbulent boundary layer

prediction compared to other models.

Flow maldistribution and pressure drop are the characteristics of principal interest in catalyst

design. Studies of flow uniformity in a catalyst system have revealed an association with the upstream

flow behaviour and a strong dependence on the geometry of the system. Efforts to successfully predict

the downstream profile, characteristic of flow in the catalyst, have failed to provide accurate agreement

of flow maldistribution. Discrepancies have largely been attributed to inaccuracies of pressure loss

predictions in the monolith channels, in particular at the channel entrance where flow enters obliquely.

Pressure losses associated with the monolith have been studied and theoretical formulations, in-

corporated into a porous domain, have been found to provide moderate agreement but be insufficient

without the consideration of additional entry losses. Measurements of oblique entry pressure losses

have yielded various expressions dependent on the angle of attack. Incorporation of an entrance effect

improves CFD predictions, however some disagreement still remains.

A limited amount of single channel studies have been conducted, therefore an overall prediction and

analysis of flow behaviour within the channels has not yet been realised. Comparison between CFD

and experimental studies is very limited for pulsating flow, and no validation has been presented for

prediction of flow in the upstream diffuser region. The purpose of the work contained in this thesis is

to expand on previous CFD studies, developing accurate modelling techniques and contributing to a

more comprehensive understanding of catalytic converter flow behaviour.
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3 | Experimental Data Collection

All experimental data presented in this work has been collected in the flow laboratory at Coventry

University. The measurements were taken as part of this work and also by Mat Yamin, (2012), and

are detailed in Section 3.4.

3.1 Flow Rig

3.1.1 Monolith Pressure Drop

Pressure loss across the monoliths was measured on the rig shown schematically in Figure 3.1. Air

is supplied via a calibrated viscous flow meter (1) to a plenum (2) with flow straightener (3) and

axisymmetric contracting nozzle (4). Four equidistant pressure taps (5) are located around the nozzle

and the plenum attaches to the front face of the monolith (6). Pressure drop measurements are carried

out using a 20 channel water manometer.

The pressure drop is calculated by

∆P = ρg∆h (3.1)

where ∆h is the mean change in water elevation ∆hi = hi − ha from the four channels, i =1–4, and

ha is the water elevation at ambient pressure.

Figure 3.1: Schematic diagram of 2D isothermal flow rig used for pressure drop measurements

3.1.2 Catalytic Converter System

Figure 3.2 shows a schematic diagram of the isothermal flow rig used for flow measurements. The

high pressure line supplies air through a viscous flow meter into the flow rig (1) where a plenum (2)
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with flow straightener (3) and axisymmetric nozzle (4) leads to a pulse generator (5). Air then flows

through another flow straightener (6) and past a resonator box (7), installed to shape pulses during

pulsating flow studies. A particle generator (9) supplies seeding to a second plenum (8) with flow

straightener (10) to minimise any swirl components. A two-dimensional nozzle (11) provides uniform

flow to the planar diffuser (12), thus generating well-defined inlet conditions for CFD. The nozzle has

outlet dimensions 24 × 96 mm, giving a hydraulic diameter of Dh=38.4 mm, or 0.0384 m.

Figure 3.2: Schematic diagram of 2D isothermal flow rig

The diffuser (12), shown in Figure 3.3, is made of crown glass for optimal optical conditions for

PIV. It has inlet dimensions 24 × 96 mm, outlet dimensions 78× 96 mm, length 48 mm and a total

included angle of approximately 60°.

The diffuser outlet attaches to an unwashcoated monolith (13) of length 27 mm or 100 mm. The

monoliths are made of cordierite (2 MgO · 2 Al2O3 · 5 SiO2), a low-thermal-expansion ceramic (Pundir,

2007), and have channel hydraulic diameter 1.12 mm, a nominal cell density of 62 cells/cm2 and

porosity 0.77.

An outlet sleeve (14) of length 50 mm minimised any influence from air outside the rig. Two sleeves

were used: a fitted sleeve of dimensions 78 × 96 mm and a wide sleeve of outlet dimensions 125 × 96

mm.
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Figure 3.3: Schematic diagram of planar diffuser

3.2 Measurement

Flow within the diffuser was measured using particle image velocimetry (PIV) and axial velocity

profiles at the nozzle exit and downstream of the monolith were obtained using hot-wire anemometry

(HWA).

3.2.1 Particle Image Velocimetry

Measurements in the diffuser were obtained using PIV, a non-intrusive optical imaging technique

which measures the velocity at thousands of points in a flow field. As the fluid passes through the

measurement plane, seeded particles are intermittently illuminated by a laser sheet and are captured

on a CCD camera. Each image is divided into a grid of small interrogation regions where, using the

timing and sequence of the acquisition of image pairs, particle velocities are obtained.

A six-jet atomiser at 25 psi produced olive oil droplets of approximately 0.6 µm diameter. A

cylindrical lens of -25 mm focal length was combined with a spherical lens of 500 mm to transform

the circular beam from a 120 mJ solid-state Nd:YAG laser into an approximately 1 mm thick light

sheet at a stand-off distance of 0.5 m to illuminate the seeded flow. A 4-megapixel CCD camera with

resolution of 2048 × 2048 pixel was used to capture the flow field. The camera was coupled with a

105 mm lens and was placed 0.8 m from the measurement plane to cover an 80 × 60 mm field of view,

resulting in a magnification factor of 0.155. An f number of 11 enabled a particle image diameter
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above 2 pixels, avoiding pixel locking. INSIGHT-3G software was used for image processing. The

recursive Nyquist method with a 64 × 64 initial grid and a final grid of 32 × 32 pixels yielded 95%

valid vectors in each field and a vector resolution of 0.76 mm.

The majority of the flow field was captured with a sampling size of 2048 points, however some data

loss occurred at the sealed joints of the diffuser inlet and outlet. The measurement closest to the

monolith face is at a distance 2.5 mm upstream. An example of the range of valid data points is given

in Figure 3.4.

Figure 3.4: Example of collected data set

3.2.2 Hot wire Anemometry

Axial velocity profiles at the nozzle exit and downstream of the monolith were obtained using HWA,

an intrusive fluid measurement method. The anemometer uses the priniciple of convective theory to

measure the velocity of a fluid. As air passes over the probe, the wire is maintained at a constant

temperature through adjustment of the voltage. The current required is used to calculate the heat

lost due to fluid convection, and thus the velocity of the flow.

The system used was a TSI IFA 300 constant temperature HWA system, pictured in Figure 3.5(a),

with 5 µm platinum-plated tungsten wires (Dantec 55P11), shown in Figure 3.5(b), calibrated on an

automatic TSI 1129 calibration rig. A 1 MHz 4 channel 12 bit A/D converter converted the IFA

output voltage (±5 V) to a digital signal to be processed by ThermalPro software.

22

This item has been removed due to 3rd Party 
Copyright. The unabridged version of the thesis can 

be found in the Lancester Library, Coventry University.



(a) HWA system (TSI Incorporated, 2010)

(b) 5 µm tungsten wire

(Dantec Dynamics, 2014)

Figure 3.5: Schematic of HWA system

The majority of the velocity profile is captured, however the width of the probe affects the closest

possible measurement to a surface.
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3.3 Flow Regimes

Mat Yamin, (2012) measured steady state axial velocity profiles with HWA at the nozzle exit and

40 mm downstream of the 27 mm monolith across both planes for a range of Reynolds numbers.

Acceptable uniformity of the upstream profiles, presented in Figure 3.6, and approximate symmetry

and limited variation across the z-plane of the downstream profiles, presented in Figure 3.7, led to

the presumption of symmetrical two-dimensional flow in the system. This is confirmed by PIV flow

fields in the diffuser, presented in Figure 3.8 for steady and pulsating flows.

Figure 3.6: HWA velocity profiles at centre of nozzle exit (Mat Yamin, 2012)

(a) Re = 2.2× 104 (b) Re = 4.2× 104

Figure 3.7: HWA velocity profiles 40 mm downstream of 27 mm monolith (Mat Yamin, 2012)
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(a) Steady flow

L = 27 mm, Re = 4.3 × 104

(b) Pulsating flow

L = 27 mm, Re = 4.2 × 104, f = 50 Hz at t/T =

0.5

Figure 3.8: Symmetry of velocity vectors in diffuser (Mat Yamin et al., 2013)

3.3.1 Steady Flow

Steady state measurements were taken for systems with monoliths of length 27 mm and 100 mm, at

Reynolds numbers of 2.2 × 104, 3.0 × 104, 4.2 × 104 and 6.0 × 104. Re is defined by the mean velocity

at the diffuser inlet Uin, obtained from HWA profiles, and the hydraulic diameter of the nozzle.

3.3.2 Pulsating Flow

Pulsating flow Reynolds numbers are defined by the cycle-averaged mean velocity at the diffuser

inlet Umean, obtained from HWA profiles, and the hydraulic diameter of the nozzle Dh. Pulsation

frequencies of 50 Hz and 100 Hz represent exhaust pulses of a 4 cylinder engine at 1500 and 3000

RPM respectively (Mat Yamin, 2012).

Pulsating flow measurements were taken over 100 cycles. The data presented for comparison is the

phase-average at each timestep. The pulse shapes are approximately sinusoidal, as shown in Figure

3.9.
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Figure 3.9: Inlet pulse shapes at centre of nozzle exit (Mat Yamin, 2012). Time t is normalised by

the pulse period T .
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3.4 Summary

Tables 3.1 and 3.2 present the experimental data used for analysis of CFD predictions in this thesis.

The superscript ‘*’ denotes measurements collected by Mat Yamin, (2012).

Table 3.1: Steady flow test case parameters

Table 3.2: Pulsating flow test case parameters
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4 | CFD Methodology

The velocity and pressure of the air flow are described by the conservation of mass, Newton’s Second

Law, and the conservation of energy. By applying these physical principles to a given control mass,

the following equations are obtained.

Continuity
∂ρ

∂t
+∇(ρu) = 0 (4.1)

Navier-Stokes

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + µ∇2u (4.2)

These are known as the governing equations. The Navier-Stokes equations include a transient term

∂u/∂t, convective flux (u · ∇)u, diffusive flux µ∇2u and pressure gradient ∇P . Since an analytical

solution for the Navier-Stokes equations has not yet been established, computational fluid dynamics

is used to obtain a numerical solution to the governing equations.

Assumptions in the models, made for practical calculation or justified by experimental measurement

(Figures 3.6–3.8), are:

• isothermal air flow

• Newtonian fluid

• uniform inlet flow

• planar flow - 2D flow or periodic in z-direction

• symmetry with respect to y = 0

4.1 Discretisation

STAR-CCM+ uses a finite volume method for the discretisation of Eqs 4.1–4.2. The solution

domain is divided into control volumes and the integral form of the conservation equations is applied

to each volume. The computational node is at the centre of each control volume and boundaries are

defined by the grid imposed on the domain. The net flux across the boundary is the sum of integrals

over the faces of the control volume. Figure 4.1 shows the flux of the arbitrary flow variable φ over a

control volume.
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Figure 4.1: Flux balance over a control volume

Discretisation of the convective term in Eq. 4.2 requires an approximation of the first derivative.

An upwind differencing scheme computes the convective flux at a face using information from the

upstream CV. The second order upwind scheme computes the convective flux as:

(ṁφ)f = ṁfφf =




ṁfφf,0 for ṁf ≥ 0

ṁfφf,1 for ṁf < 0
(4.3)

where ṁf and φf respectively denote mass flow rates and scalar values at the face f . The values φf,0

and φf,1 are linearly interpolated from cell values either side of the face via

φf,0 = φ0 + (xf − x0) · (∇φ)r,0

φf,1 = φ1 + (xf − x1) · (∇φ)r,1

(4.4)

where x0, x1 are the cell centroids, xf is the position of the boundary face f and (∇φ)r,0, (∇φ)r,1

denote the limited reconstruction gradients in each cell (CD-adapco, 2013).

The transient term is only included for the pulsating flow model. The first-order (Euler implicit)

scheme discretises the unsteady term using the solutions at the current time-step t and at the previous

time-step t− 1, such that (
dφ

dt

)

t

=
φt − φt−1

∆t
(4.5)
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4.2 Solution Algorithm

Two flow solvers are available in STAR-CCM+, coupled and segregated. When applying the coupled

flow solver, conservation equations for mass and momentum are solved simultaneously using a time-

marching approach. For the steady flow case, a pseudo-transient term is used instead of the physical

time derivative. As the solution advances in pseudo-time, this term is driven to zero and the governing

equations reach a steady state. The segregated flow model solves the flow equations for velocity and

pressure separately. The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm

is used to calculate the flow field. By expressing the pressure p at a point as the sum of the estimated

value p∗ and its correction p′, and defining the velocity components likewise, an iterative procedure

is performed using the discretised momentum and continuity equations for the solution of a given

flow field. The algorithm is summarised in Figure 4.2, where the superscripts ‘∗’ and ‘′’ denote the

intermediate value and correction term respectively and φ represents an arbitrary flow variable.

A coupled flow model is best for compressible flows, whereas a segregated flow model requires less

computational resources and is thus an ideal alternative for incompressible or mildly compressible flow

(CD-adapco, 2013). All studies presented in this work assume air as an incompressible Newtonian

fluid and thus use the segregated flow solver.
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Inital pressure field p∗

Solution of discretised momentum equations for u∗

Solution of discretised continuity equation for p′

Calculation of p = p∗ + p′

Calculation of u from velocity-correction formulae

Solution of discretisation equations for remaining flow variables φ

Convergencep∗ = p
Final

solutionno

yes

Figure 4.2: SIMPLE algorithm
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4.3 Mesh

STAR-CCM+ includes an automated meshing algorithm to generate control volumes based on

surface size, cell size limitations and growth rate. These values may be specified explicitly or defined

as a proportion of a characteristic dimension, called the base size.

All models presented in this work have predominantly hexahedral meshes with trimmed cells at

the surface, as illustrated in Figure 4.3. Refinement at wall surfaces or boundaries is achieved using

orthogonal prismatic layers. As demonstrated in Figure 4.4, cell width (normal to the wall) increases

with distance from the wall. Considering the dimensionless distance from the surface y+ ≡ uτy/ν,

values of y+ ≤ 1 enable the model to capture flow behaviour at the developing boundary layer.

Figure 4.3: 2D mesh of porous medium model

Figure 4.4: Mesh with prism layers at wall boundary and hexahedral cells in main body, with trimmed

cells at the interface

Mesh independence studies have been conducted to ensure a well-determined solution. By consid-

ering the effect of mesh size on a suitable flow parameter, it is possible to assess the reliance of a
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simulation on its computational grid. Table 4.1 and Figure 4.5 present the mesh independence test

for the porous medium model. The 27 mm monolith, Re = 2.2 × 104 case with K-W entrance effect

is considered. Axial velocity profiles are compared at the pressure outlet and the velocity maximum

at the outlet umax is studied as a characteristic of the final solution.

Figure 4.5: Mesh independence test

Table 4.1: Mesh independence test

Base size (m) # cells umax

test 4.0× 10−4 2.8× 104 4.2707

refined 3.5× 10−4 3.7× 104 4.2601 ±0.25%

coarse 4.5× 10−4 2.3× 104 4.2460 ±0.57%
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4.4 Modelling the Monolith

The development of a reliable model for the flow through a monolith is challenging. An accurate

model must account for the change in pressure due to the compression and expansion of flow as it

enters and exits the monolith, as well as friction losses in the channels and losses associated with

oblique flow entry. Resolving fluid flow over the whole domain carries high computational demand.

An alternative method is to model the monolith as an equivalent continuum, or porous medium, as

introduced by Aris, (1977).

4.4.1 Porous Medium Approach

The porous medium approach to modelling the monolith focuses on the overall effect of the substrate

rather than the internal flow of individual channels. The method is attractive due to its relatively low

computational demand.

The porous region is treated in Star-CCM+ by the inclusion of a porous source term fp in the

momentum equations of Eq. 4.2, such that

fp = −P · u (4.6)

where P denotes the porous resistance tensor, defined by

P = Pi|u|+ Pu (4.7)

Pi and Pu denote the inertial and viscous resistance tensors respectively (CD-adapco, 2013).

The monolith consists of parallel channels with solid walls, so no mass transfer occurs between

monolith channels. Moreover, the small size of the channel cross-section means that the transverse

flow redistribution inside the channels has minimal effect on the overall velocity profile of the monolith.

It is therefore justified to assume unidirectional flow inside the monolith. Consequently, there is

negligible pressure loss in the direction normal to the flow and principal losses occur in the streamwise

direction. Coefficients for the resistance tensors in the axial direction may be derived via theoretical

calculations or measured directly. The CFD studies presented in this work use axial resistance tensor

components obtained experimentally for each monolith and suitably high transverse resistance tensors

are prescribed.
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4.4.1.1 Pressure Drop Due to Channel Flow

Eqs 4.6 and 4.7 give

fp = − ( Pi|u| · u + Pu · u ) (4.8)

i.e. the axial pressure in the monolith is a second order polynomial with respect to superficial velocity.

Axial resistance tensor components were obtained for two monoliths. The monoliths used in this

study were of length 27 mm and 100 mm and had identical channel geometry. Coefficient values in

the axial direction were derived by fitting a second order polynomial function to the measured values

of superficial velocity and pressure drop per unit length to obtain an expression of the form

∆P

L
= βu2

s + γus (4.9)

as shown in Figure 4.6. The components of the axial porous resistance tensor are then Pix = β kg/m4,

Pvx = γ kg/m3s. Unidirectional flow in the monolith is achieved via high transverse resistance tensors

Piy = 107 kg/m4 and Pvy = 107 kg/m3s. The porous medium models in this work are two-dimensional,

so resistance tensor components need only be defined for x and y (streamwise direction and transverse

to streamwise direction, respectively).

Figure 4.6: Measured pressure drop per unit length as a function of superficial velocity

Pressure losses due to friction in monolith channels may also be derived from theoretical expressions,
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e.g. Eqs. 2.2–2.6. Figure 4.7 compares the experimental values with the theoretical Shah and Hagen-

Poiseuille (H-P) models. Data points lie close to the Shah curve for low x+ and approach the H-P line

as x+ increases, demonstrating increasingly developed flow along the monolith at higher velocities.

The fact that values from the 100 mm monolith lie directly upon the H-P equation at high x+ confirms

the presence of mostly fully-developed flow in the channels of the longer monolith.

Figure 4.7: Theoretical and measured monolith pressure drop

4.4.1.2 Oblique Entrance Effects

Pressure losses due to oblique entry into the monolith channels are accounted for using the Küchemann-

Weber (K-W) expression given in Eq. 2.7. The critical angle adaptation limits the pressure drop by

assuming constant losses at regions with flow of obliqueness above an angle αc. Since the K-W effect

is found to greatly over-predict velocities in the central downstream region of the longer monolith,

this work proposes to neglect the angle of attack for less oblique flow. This is effected by imposing a

subcritical angle, below which there is no additional pressure loss.

Entrance effects are imposed by specification of the momentum source term Svi . The source terms

for the K-W oblique entrance effect and its critical angle adaptations are defined by
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K-W

Svi = −ρv
2

2
(4.10)

Critical angle

Svi =




−ρv22 α < αc

−ρv
2
c

2 α ≥ αc
(4.11)

Subcritical angle

Svi =





0 α ≤ αs
−ρv22 α > αs

(4.12)

Source term values are calculated from velocity data extracted from the simulation 1 mm upstream

of the monolith. The flow here represents sufficient with accuracy the flow behaviour upon entry into

the monolith, as demonstrated by Haimad, (1997).

4.4.2 Individual Channels

The individual channels approach resolves the entire geometry by modelling the monolith as a

three-dimensional system of multiple parallel channels. Flow profiles in the z-direction (normal to

the diffuser plane) having been found to be acceptably uniform (Mat Yamin, 2012), periodicity is

presumed in this direction, with symmetry across the cell height. It is therefore sufficient to model

half the channel height with half the wall thickness. As for the porous medium model, half the monolith

width is included. The symmetry plane passes through the centre of a channel, as illustrated in Figure

4.8.

Figure 4.8: Modelled section of monolith
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The geometry of the channel domain is defined as per the monolith specification. The monoliths

used in this study are unwashcoated with porosity 0.77 and channel hydraulic diameter 1.12 mm.

Variation of the cell hydraulic diameter and wall diameter is present, however homogeneity of cell

dimensions across the monolith is assumed for the purposes of this study. A nominal cell density of

62 cells/cm2 gives the domain dimensions shown in Figure 4.9.

Figure 4.9: Cell dimensions
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4.5 Steady Flow Models

Flow in the exhaust system is strongly pulsating, however the assumption of a steady state simplifies

both experimental measurement and computational method. The development of an accurate steady

state model is an essential initial process for the long-term development of models for direct industrial

application.

Regarding the J factor defined in Eq. 2.1, the steady case may be considered as the case of an

infinitely long pulse, where J tends to infinity. The simplified nature of the steady model lends

itself to the study of different methods for modelling the monolith. Various modelling approaches are

presented in this work.

Results, presented in Chapter 5, have been published (Porter et al., 2014; Porter et al., In press)

and have also contributed to work by Medina et al., (2015).

Steady state models were developed for monoliths of length 27 mm and 100 mm and flows of

Reynolds number 2.2 × 104, 3.0 × 104, 4.2 × 104 and 6.0 × 104 for validation against experimental

data.

All steady state simulations in this work model turbulence using the low Re v2f k-ε model with

all y+ treatment, which solves the normal stress function and the elliptic function in addition to k

and ε (CD-adapco, 2013). The model is used since it provides a good balance between computational

demand and accuracy and is thus suitable for recirculating flows (CD-adapco, 2013). The model has

been designed to capture near-wall effects in turbulent boundary layers (CD-adapco, 2013) and this

has been demonstrated for separating flows (Cokljat et al., 2003). The low-Re method is an extension

of the model to the laminar and semi-laminar regions of near-wall flow, where the differential equations

for k and ε include coefficients dependent on turbulence Reynolds number.

4.5.1 Porous Medium Models

Models using the approach described in Section 4.4.1 are presented.

4.5.1.1 Full Length Monolith

The initial porous medium geometry includes full lengths of the flow rig parts. Figure 4.10 shows

the two-dimensional domain. The model is also adapted to include a sleeve wider than the diffuser
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outlet. This geometry corresponds to the rig used by Mat Yamin, (2012) and is shown in Figure 4.11.

The resistance of the monolith is incorporated using the coefficients of the corresponding quadratic

equation ∆P
L , as given in Figure 4.6.

Figure 4.10: Computational domain of porous medium model with fitted outlet sleeve

Figure 4.11: Computational domain of porous medium model with wide outlet sleeve

4.5.1.2 Condensed Monolith

Since the porous source term represents only a macroscopic consideration of the region and is

applied per unit length, it is possible to reduce the number of cells used to resolve the monolith. By

increasing the porous resistance tensor correspondingly, the overall pressure drop remains unchanged

and the model is simplified with negligible impact on the solution. For a ‘condensed’ length l, the
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measured axial resistance per unit length of the 27 mm monolith is increased by a factor of 27/l.

Table 4.2 presents the cases studied and the results are displayed in Figure 5.7.

Table 4.2: Condensed monolith model test cases

Length (m) Number of lengthwise cells
Axial porous resistance tensor coefficients

Pix Pvx

2.7× 10−2 68 14.053 734.48

4× 10−3 10 94.858 4957.7

8× 10−4 2 474.29 24789

4.5.2 Individual Channels

The individual channels approach assumes a three-dimensional domain, as shown in Figure 4.12.

The diffuser and the outlet sleeve include symmetry planes on the xy-plane so that the flow is modelled

as planar in these regions, and the channels are modlled using the method described in Section 4.4.2.

Figure 4.13 shows the interface between the diffuser and the channels. Prism layers are included at

the channel walls in order to capture developing boundary layers, as shown in Figure 4.14.

Figure 4.12: Computational domain cross-section of individual channels model

4.5.3 Hybrid Model

Whilst the individual channel model has the advantage of being able to accurately model the

behaviour of flow upon and immediately after entrance into the monolith, it carries high computational
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Figure 4.13: Model at diffuser/channels interface

Figure 4.14: Mesh resolution of channel

demand compared to modelling the monolith as a porous medium. A novel hybrid model is therefore

developed to combine the two approaches.

The monolith is modelled as a combination of channels and porous media. Individual channels at the

entrance to the monolith are able to accurately capture the effects of the flow behaviour immediately

downstream of the monolith face, i.e. flow separation in the channels as illustrated in Figure 1.3(b).

Once the flow is fully developed, the domain is treated as an equivalent continuum. Figure 4.15 shows

the geometry.

The channel section is 13 mm long, sufficient for capturing the effects of oblique entry into the

channels. Justification for this arises from predictions by the individual channels model, which are

presented in more detail in Section 5.2. For the high Reynolds number case with 27 mm monolith (i.e.

with greatest flow development length), the channels observing most oblique flow at the entrance are

identifiable. The predicted pressure fluctuation along these four channels is presented in Figure 4.16.

Once oblique entry pressure losses have taken effect, the pressure drop is linear and may be therefore

approximated using the Hagen-Poiseuille formulation (Eq. 2.6).

A 1 mm porous section downstream of the channels implements the overall pressure drop associated
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Figure 4.15: Computational domain of hybrid model

with the fully-developed flow, as presented in Figure 4.17. Each channel in the porous section has

slip walls, i.e. shear stress τ = µ∂u/∂y = 0, where u and y denote the velocity of the fluid along the

boundary and the distance from the boundary respectively. This ensures that no mass flux occurs

between channels, whilst allowing the flow to redistribute across the channel width.

Since the Hagen-Poiseuille equation assumes fully-developed flow, the viscous effects of the flow

dominate in this region and Pi has zero magnitude. Eq. 2.6 may be arranged to give a linear

relationship between pressure drop per unit length and channel velocity,

∆P

L
=

2(FRec)µ

d2
h

uc (4.13)

For a condensed 1 mm porous section representing a length l, the axial viscous resistance coefficient

is then defined

Pvx =
2(fRec)µ

d2
h

l (4.14)

Transverse resistance coefficients are set to 0 to allow flow redistribution within each channel of the

porous region.
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Figure 4.16: Predicted pressure fluctuation along channels with most oblique entrance flow.

L = 27 mm, Re = 6.0 × 104. The legend refers to the channels considered, where the individual

channels of the model are numbered from the centre outwards, such that channel 1 is the half channel

lying on the symmetry plane, and channel 31 is the outermost channel next to the diffuser wall.

Figure 4.17: Hybrid model schematic of downstream monolith region (one channel)
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4.6 Pulsating Flow Model

A time-dependent model of pulsating flow is developed and applied to three flow regimes studied

experimentally at Coventry University by Mat Yamin, (2012), as presented in Table 3.2. The results,

given in Chapter 6, have been presented at an international conference (Porter et al., 2015) and have

also contributed to the study by Saul et al., (2015).

A combination of Reynolds numbers of 2.2×104 and 4.2×104, and frequencies of 50 Hz and 100 Hz,

present three flows, characterised by the ratio J . Reynolds numbers are defined by the cycle-average

mean inlet velocity and the hydraulic diameter of the nozzle.

Figure 4.18: Geometry schematic

Inlet velocity is uniform and periodic. Velocities were extracted directly from phase-averaged PIV

data for the ten time-steps of each pulse. To obtain a smooth inlet velocity profile in the simulation,

average values from the furthest upstream measurements were interpolated at each computational

time-step using B-spline interpolation. Pulse shapes, given in Figure 4.19, are approximately sinusoidal

and are similar for the three cases.

The monolith is modelled using the porous medium method detailed in Section 4.4.1. The formu-

lation derived by Küchemann and Weber, (1953) (Eq. 2.7) is included as an approximation of the

pressure losses due to oblique channel entry. This is sufficient for the purposes of this study. Entry

losses primarily affect flow in the monolith and downstream of the monolith outlet, however steady

flow studies for the geometry considered (wide outlet sleeve) show unsatisfactory agreement in the

downstream region and thus the diffuser is the principal area of interest for this study.

45



Figure 4.19: Inlet pulse shape, with time t normalised by pulse period T .

Turbulence is modelled using the linear pressure-strain two-layer Reynolds Stress Transport (RST)

model. During initial investigation, the v2f model resulted in multiple recirculation regions in the

diffuser. The model was disregarded due to the extent of disagreement with experimental data, and

the RST model was found to produce more physically realistic results.

The model incorporates the linear pressure-strain model of Gibson and Launder, (1978) into a

two-layer (shear driven) formulation, as suggested by Rodi, (1991). The model inherently accounts

for anisotropy of the turbulent stress field since transport equation are solved for all specific Reynolds

stress tensor components (CD-adapco, 2013).

An implicit unsteady scheme is used for time integration, with first-order temporal discretisation.

Each 1 × 10-4 s time-step converges over a minimum of 1000 inner iterations.

The transient model was initialised from the converged solution of an equivalent steady state model.

The simulation was run until reaching a periodic solution, and a length of ten cycles was found to be

sufficient. Figure 4.20 shows the evolution of maximum axial velocity throughout ten cycles for Case

2.

Transient flows models must satisfy the CFL condition, which is a necessary, but not sufficient,

requirement for the convergence of a solution. Considering the sum of the ratios of time-step ∆t to

the characteristic convection time ∆xi/uxi for the spatial component i, the Courant number C is
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Figure 4.20: Maximum axial velocity at pressure outlet, showing the development of periodicity for

Case 2

defined

C = ∆t

n∑

i=1

uxi
∆xi

(4.15)

for a system in n dimensions. The CFL condition,

C ≤ Cmax (4.16)

requires that the physical domain of dependence at a point is contained within the numerical domain

of dependence, i.e. the temporal discretisation of a numerical solution is sufficiently refined for the

propagation of information in the spatial discretisation. Cmax = 1 when an explicit unsteady solver is

used. However, an implicit unsteady solver is less sensitive to numerical instabilities and thus values

greater than unity may be acceptable.
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5 | Steady Flow

This chapter presents the results from steady flow models presented in Section 4.5. Flow parameters

predicted by the CFD models are compared with experimental data collected during this work and

also by Mat Yamin, (2012). Results have been published (Porter et al., 2014) and also contributed to

the study by Medina et al., (2015).

5.1 Porous Medium Model

Results from the porous medium model detailed in Section 4.4.1 are presented. The flow structure in

the diffuser is discussed first. The approaches for simulating the pressure drop across the monolith are

then presented, and the analysis is repeated to a case with a wide outlet sleeve. Finally, a ‘condensed

monolith’ approach is discussed.

Figure 5.1 illustrates the simulated flow behaviour of the model. Across the porous section, trans-

verse velocity is negligible due to extremely high resistance tensors and thus the shape of the flow

profile is preserved along the monolith length. The jet spreads in the sleeve downstream and a bound-

ary layer develops at the sleeve wall.

Figure 5.1: Axial velocity field prediction using porous medium approach model.

L = 27 mm, Re = 2.2× 104.
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Diffuser

Figure 5.2 presents a comparison of CFD and PIV velocity magnitudes in the diffuser for four

Reynolds numbers. A planar jet, separating from the diffuser wall at its expansion, traverses the

diffuser and spreads sharply immediately upstream of the monolith. Most of the flow enters the

monolith, and part of the flow recirculates between the jet and the diffuser wall. These recirculation

regions then ‘squeeze’ the jet.

(a) Re = 2.2× 104 (b) Re = 3.0× 104

(c) Re = 4.2× 104 (d) Re = 6.0× 104

Figure 5.2: Velocity fields in diffuser upstream of 27 mm monolith

CFD predictions show a thinner shear layer at the jet periphery than PIV, leading to larger width

of the potential core. This shows an underestimation of mixing by the model, also illustrated by

differences in the shape of the recirculation region. The shear layer of the PIV results follows a gentler
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curve. Narrowing of the jet width near the point of expansion indicates the influence of the vortex

on the jet, whereas CFD shows weaker interaction between the recirculation region and the upstream

flow of the diffuser.

Close to the monolith face, PIV shows the jet spreading further upstream of the monolith face

than predicted by CFD, and this distance increases with Reynolds number. The recirculating flow

then occurs further upstream, ‘squashing’ the jet at the most upstream point possible, close to the

expansion of the diffuser.

Flow immediately upstream of the monolith face is further analysed via comparison of velocity

profiles near the diffuser outlet. Velocity profiles are extracted at three cross-sections in the diffuser:

2.5 mm, 5.55 mm and 10.13 mm upstream of the monolith face, as illustrated in Figure 5.3. The 2.5

mm upstream cross-section is studied since it is the closest measured distance to the monolith.

10.13 mm
5.55 mm

2.5 mm

diffuser outlet / 

monolith entry

diffuser inlet

symmetry plane

x

y

Figure 5.3: Location of examined cross-sections in diffuser

Figure 5.4 presents the axial and transverse velocity components at these locations for the 27 mm

monolith configuration. Upon approach to the monolith face, the central jet widens and flattens, and

flow enters individual monolith channels at an increasingly oblique angle.

Profiles are in good qualitative agreement with experimental data except immediately upstream

of the monolith (maximum transverse velocity predicted by CFD up to 34% higher than PIV at a

distance of 2.5 mm). High in the central region and low elsewhere, axial velocities show comparative

over-preservation of the potential core, even at the location closest to the monolith face. The steeper

gradient exhibited by CFD predictions in the shear layer shows the underestimation of mixing by

the model, leading to an over-predicted jet width. Well-matched transverse velocities in the central

region show that the model is correctly predicting the spreading effect of the monolith resistance on
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the flow in this area, however over-predicted obliqueness of the flow outside of the central jet shows an

under-predicted level of spreading at the monolith face. Part of the flow does not enter the channels

and instead moves towards the wall of the diffuser outlet, resulting in a build-up of pressure and

incurring secondary velocity maxima near the wall (Figure 5.4).

Velocity fields in the diffuser have been found to highly similar upstream of the 27 mm and 100

mm monoliths (Mat Yamin et al., 2013). A comparison of CFD and PIV is only made upstream of

the 27 mm monolith as any disagreements are deemed to be consistent across systems with different

length monoliths.
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(a) Re = 2.2× 104 (b) Re = 3.0× 104

Figure 5.4: Velocity profiles in diffuser 10.13 mm (top), 5.55 mm (centre) and 2.5 mm upstream of 27

mm monolith. u and v respectively denote axial and transverse velocity.
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(c) Re = 4.2× 104 (d) Re = 6.0× 104

Figure 5.4: Velocity profiles in diffuser 10.13 mm (top), 5.55 mm (centre) and 2.5 mm upstream of 27

mm monolith. u and v respectively denote axial and transverse velocity. (cont.)
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Oblique Entrance Effects

Velocity profiles downstream of the monolith are representative of flow inside the monolith, therefore

they are often used as part of the design process for the assessment of flow uniformity. Figure

5.5 compares velocity profiles downstream of the monolith. HWA measurements are compared to

predictions from CFD models with various oblique entrance effect formulations, namely the K-W,

critical angle and subcritical angle formulations given in Section 4.4.1.2. HWA measurements were

taken across the full width of the outlet sleeve. The velocity profiles denoted by ‘HWA 1’ and ‘HWA

2’ in Figure 5.5 show measurements either side of the symmetry plane of the system, and variability

between the two measurements is observable. Similar variability of around ±5% was observed by Mat

Yamin, (2012).

The model was first run with only pressure losses associated with axial flow taken into account

(Figure 5.5, solid green curve). As observed by Benjamin et al., (1996), such a model flow underesti-

mates the maldistribution of the flow downstream. Maximum velocities are underpredicted and the

jet width is very large, with little to no trough in the profile. Secondary maxima are also slightly

underpredicted. Agreement is particularly poor for the shorter monolith (Figure 5.5(a)–(d)), and the

discrepancy in maldistribution increases with Re, with a difference in maxium velocity of 0.3 u/U

shown in Figure 5.5(d). However, disagreement of flow maldistribution for the longer monolith is less

severe and does not noticeably depend on Re (Figure 5.5(e)–(h)).

Inclusion of the entrance effect introduced by Küchemann-Weber (Eq. 2.7) dramatically increases

flow maldistribution downstream of the monolith. The profile is in better qualitative agreement with

the experimental data but the non-uniformity of the flow is now overpredicted (Figure 5.5, solid black

curve).

For the shorter monolith, the inclusion of an oblique entrance effect markedly improves the pre-

diction of the flow profile and velocity maxima at the centre. Values at sencondary maxima are also

increased, now overpredicting those measured by HWA. The high Re cases show a particularly overly

maldistributed flow, with very low axial velocities at the trough. The case with highest inlet velocity

(Figure 5.5(d)) even features negative axial velocity values. This suggests that the resistance presented

by the porous region is not sufficient to confine the recirculation zone to the diffuser and that flow is

entrained from inside the porous region and downstream.

For the longer monolith, the maldistribution is highly overpredicted and does not agree well with

the relatively flat profile measured by HWA. Comparing predictions from models with and without

entrance effect, the inclusion of an oblique entrance effect for the longer monolith case generally reduces
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the accuracy of CFD predictions. Secondary maxima are well-matched for low Re only. Over-predicted

velocities at the wall for high Re cases suggest that it may not be necessary to incorporate pressure

losses at locations of extremely transverse flow. This may be achieved by ‘capping’ the magnitude of

losses due to oblique entry using a critical angle formulation, as presented in Sections 2.2 and 4.4.1.2.

A critical angle entrance effect (Eq. 2.11) is tested for αc = 69°, 75°, 81° (Figure 5.5, solid yellow,

orange and red curves respectively). For certain cases only small portions of flow reach highly oblique

angles and a critical angle of 81° makes negligible difference to the downstream velocity profile, par-

ticularly for the longer monolith. As the critical angle is reduced, maldistribution in the downstream

profile decreases. Keeping the pressure loss constant for flow of obliqueness αc and above incurs higher

velocities at the corresponding locations downstream. The maximum velocity is thereby reduced, as

is the secondary maximum at the wall. For the shorter monolith, a critical angle of 81° provides the

necessary pressure loss correction to sufficiently improve the predicted profile. The longer monolith

high Re cases are best improved when αc = 69° (Figure 5.5(g),(h)), however this overpredicts maxima

and underpredicts secondary maxima for the low Re cases. With the objective of identifying a model

suitable for all cases, a critical angle of 69° is considered as providing the most consistent agreement

across the two monolith lengths studied.

The fact that the inclusion of an oblique angle pressure loss over-predicts velocity maxima on the

centre-line for the 100 mm length monolith suggests that the angle of attack at the central region

of the monolith face may be insignificant. Neglecting pressure loss for flow at low angles below 40°,

the sub-critical angle entrance effect (Eq. 4.12) is applied to the 100 mm monolith system with low

Re (Figure 5.5(e)). The adjustment has a very minimal effect on the profile, slightly flattening and

widening the central jet.
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(a) L = 27 mm, Re = 2.2× 104

(b) L = 27 mm, Re = 3.0× 104

Figure 5.5: Axial velocity profiles 40 mm downstream of monolith
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(c) L = 27 mm, Re = 4.2× 104

(d) L = 27 mm, Re = 6.0× 104

Figure 5.5: Axial velocity profiles 40 mm downstream of monolith (cont.)
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(e) L = 100 mm, Re = 2.2× 104

(f) L = 100 mm, Re = 3.0× 104

Figure 5.5: Axial velocity profiles 40 mm downstream of monolith (cont.)
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(g) L = 100 mm, Re = 4.2× 104

(h) L = 100 mm, Re = 6.1× 104

Figure 5.5: Axial velocity profiles 40 mm downstream of monolith (cont.)
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Wide Outlet Sleeve

Additional simulations were carried out in order to compare CFD with the steady flow measurements

taken by Mat Yamin, (2012), with an outlet sleeve wider than the diffuser outlet. CFD predictions are

presented for the entire outlet width, however HWA measurements are only available for the central

section of the sleeve corresponding to the diffuser outlet dimensions. The HWA profiles ‘HWA 1’ and

‘HWA 2’ denote measurements either side of the symmetry plane of the system. Velocities, presented

in Figure 5.6, are normalised by the mean outlet velocity Uout.

A single case is considered for the wide sleeve system, with L = 27 mm, Re = 3.0×104. Predictions

from the analogous fitted sleeve case are given in Figure 5.5(b).

The porous medium model does not predict the downstream velocity profile well for this geometry.

The porous medium model with pressure losses associated only with unidirectional flow results in a

wide central jet with underpredicted maximum velocity. Inclusion of an entrance effect based upon

angle of attack dramatically increases flow maldistribution. Maximum values at the centre are in good

agreement and the shape of the core jet is well matched, however velocities are in poor agreement

outside of the central region. The introduction of a critical angle of 69° improves predictions, as seen

for fitted sleeve cases. Magnitudes at the trough and secondary maximum are in excellent agreement,

with the global maximum velocity somewhat underpredicted.

The pressure loss calculation has negligible effect on the predicted lateral distance of the secondary

maximum from the centre-line and it is overpredicted by all porous medium models presented. How-

ever the predicted distance of the trough form the centre-line is reduced, and therefore improved, by

the dependency of the pressure drop on the obliqueness of flow entering the monolith, demonstrating

the importance of accurately capturing oblique entry effects.

The wide sleeve system is only considered for one case since the study predominantly serves to

demonstrate the limitations of the porous medium approach.
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Figure 5.6: Velocity profiles downstream of porous medium model with wide outlet sleeve. L = 27

mm, Re = 3.0× 104.

61



Condensed monolith

The monolith is modelled using a reduced geometry and correspondingly increased resistance ten-

sors, as presented in Section 4.5.1.2. Figure 5.7 shows that this has negligible effect on downstream

velocity profile prediction. This is as expected, since the macroscopic pressure losses remain constant,

with minimal changes attributed to rounding error. This approach therefore has the advantage of

greatly reducing the computational demand of the model.

Since there is negligible difference to the full monolith model, the study is not considered in more

detail and results are included for completion. Although similar methods have been applied elsewhere

(e.g. high aspect cell ratio by Benjamin and Roberts, (2000)), the method presented in this work is

more suitable for application in Star-CCM+.

Figure 5.7: Velocity profiles downstream of porous medium with resistance tensors equivalent to 27

mm monolith, Re = 6.0× 104
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5.2 Individual Channels Model

Figure 5.8 shows a typical flow field as modelled using the individual channels model presented in

Section 4.5.2. The analogous porous medium approach model is given in Figure 5.1.

Figure 5.8: Velocity contour plot of individual channels model, L = 27 mm, Re = 2.2× 104.

Developing boundary layers are present in the channels and channel flow is asymmetric as a result

of the oblique entry of flow into the channels. Small recirculation bubbles are evident at the entrance

of channels with highly oblique angle of attack, as demonstrated in Figure 5.9. This shows that the

model inherently accounts for restriction of the flow as it enters and traverses the monolith. Jets are

present as the flow enters the outlet sleeve. Mixing of the jets is sufficient for a relatively smooth

profile 40 mm downstream.

Figure 5.9: Recirculating flow at entrance to channels
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Predictions from this model are compared with results when employing the porous medium approach

and experimental data. Figure 5.10 presents velocity profiles in the diffuser. Results from the two

models are similar, with any differences more evident as flow approaches the monolith and with

increased Re. This is as expected, since the different methods for modelling the monolith produce

distinct predictions of pressure distribution.

Figure 5.11 compares axial velocity profiles 40 mm downstream of the monolith. HWA velocity

profiles ‘HWA 1’ and ‘HWA 2’ in Figure 5.11 show measurements either side of the symmetry plane

of the system.

The model provides good qualitative description of the flow profile, however omits secondary peaks

for the longer monolith (Figure 5.11(f)). Maximum velocities agree well, particularly for the case

of low Re and short monolith (Figure 5.11(a)). They are however underpredicted for the majority

of cases. The same is also true for secondary maxima at the walls. Underprediction is particularly

observed for the longer monolith, where the profile is similar to the porous medium approach with no

entrance effect (see Figures 5.11(e)–(h)). For these cases the flow predicted by the individual channels

model is too uniform downstream. The individual channels model overestimates the jet width and

troughs are located closer to the wall than as measured. This is consistent with discrepancies in axial

velocity profile immediately upstream of the monolith (Figure 5.10).

Discrepancies between model predictions and experimental data may arise from assumptions in the

model. The geometry for the channels is derived from the manufacturer’s specifications, however this

assumes uniformity throughout the monolith. In reality, channels are not perfectly square and channel

dimensions are not identical across the monolith. Channels are not perfectly straight and the walls

are rough and porous.

Nonetheless the model has consistent accuracy across the two monolith lengths and in this regard

it represents an improvement on the porous medium models.
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(a) Re = 2.2× 104 (b) Re = 3.0× 104

Figure 5.10: Velocity profiles in diffuser 10.13 mm (top), 5.55 mm (centre) and 2.5 mm upstream of

27 mm monolith. u and v respectively denote axial and transverse velocity.
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(c) Re = 4.2× 104 (d) Re = 6.0× 104

Figure 5.10: Velocity profiles in diffuser 10.13 mm (top), 5.55 mm (centre) and 2.5 mm upstream of

27 mm monolith. u and v respectively denote axial and transverse velocity. (cont.)

66



(a) L = 27 mm, Re = 2.2× 104

(b) L = 27 mm, Re = 3.0× 104

Figure 5.11: Axial velocity profiles 40 mm downstream of monolith
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(c) L = 27 mm, Re = 4.2× 104

(d) L = 27 mm, Re = 6.0× 104

Figure 5.11: Axial velocity profiles 40 mm downstream of monolith (cont.)
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(e) L = 100 mm, Re = 2.2× 104

(f) L = 100 mm, Re = 3.0× 104

Figure 5.11: Axial velocity profiles 40 mm downstream of monolith (cont.)
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(g) L = 100 mm, Re = 4.2× 104

(h) L = 100 mm, Re = 6.1× 104

Figure 5.11: Axial velocity profiles 40 mm downstream of monolith (cont.)
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Wide Outlet Sleeve

The application of the individual channels model to the wide sleeve system is compared to results

from the porous medium model. Figure 5.12 compares axial velocity profiles 40 mm downstream of

the monolith exit. Velocities are normalised by the mean outlet velocity Uout. Since the 69° critical

angle model has been shown to provide the best results using the porous medium approach, only the

prediction from this model is presented for comparison.

The individual channels model provides improvement compared to the predictions from the porous

medium simulations. The total width of the profile is in better agreement, however the central jet is

slightly wider than experimental measurements. Velocity values at maxima and minima are in good

agreement.

The improvement presented by the individual channels model may be attributed to an accurate

description of flow behaviour upon entrance to the monolith channels. The presence of boundary

layers at the channel walls produces individual jets in the outlet sleeve, preserving the flow profile

from the monolith and thus better predicting the profile downstream.

Figure 5.12: Velocity profiles downstream of individual channels model with wide outlet sleeve. L =

27 mm, Re = 3.0× 104.
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5.3 Hybrid Model

As presented in Section 4.5.3, a novel hybrid modelling approach has been developed and tested for

the same configurations as for the porous medium approach and individual channels models (Porter

et al., In press).

The computational demand of a model may be demonstrated by the number of cells required for a

mesh independent solution. Table 5.1 compares the computational mesh of models using the porous

medium, individual channel, and hybrid approaches. Compared to the individual channels model,

the novel hybrid model greatly reduces the number of cells required and has the benefit of being

independent of monolith length.

Table 5.1: Computational resources required for different monolith modelling approaches

Model
Monolith length (mm)

27 100

Porous medium 2.8× 104 4.7× 104

Individual channels 4.0× 106 8.8× 106

Hybrid 9.1× 105 9.1× 105

Figure 5.13 shows velocity contours on the symmetry plane of the model for the case of a 27 mm

monolith with Re = 4.2× 104. At the expansion of the diffuser, flow separates and a jet traverses the

diffuser. The resistance presented by the channels forces the flow to spread radially upstream of the

monolith face. Flow enters the channels obliquely away from the diffuser centre, causing recirculation

bubbles to form at the inlet of the individual channels as seen previously (Figure 5.9). As the flow

progresses along the channel, a boundary layer develops and the velocity profile becomes increasingly

parabolic. The porous region results in a high resistance to the flow in the axial direction. Individual

jets from the channels are present at the monolith outlet, and are less visible as more spreading occurs

downstream, resulting in a relatively smooth velocity profile at the outlet.

Flow distribution in the catalyst is largely dependent on the behaviour of the flow at the monolith

face. Accurate predictions in this critical region are therefore highly important. Figure 5.14 compares

velocities in the diffuser, 2.5 mm upstream of the monolith, with PIV experimental measurements

(Mat Yamin, 2012) and with predictions from the porous medium and individual channels models.

At such close proximity to the monolith, the method of modelling the monolith resistance affects

the upstream velocity. Predictions from the hybrid model fall between those from the two separate
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Figure 5.13: 27 mm monolith, Re = 2.2× 104

Figure 5.14: Velocity 2.5 mm upstream of 27 mm monolith, Re = 4.2× 104

approaches. Axial velocity plots show a slight over-prediction of the central jet width and transverse

velocity shows over-predicted obliqueness outside of the central region, corresponding to a high level

of shear at the edge of the spreading core.

Predictions downstream of the monolith are presented in Figure 5.11. Results from the hybrid model

fall between those from the individual channels and porous model. Profiles have high similarity to

the individual channels model, demonstrating the importance of accurately capturing flow behaviour

at the entry to the monolith. However, the hybrid modelling approach has the advantage of reducing

computational time compared to the individual channels model.
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The effect of combining the individual channels model with a porous section is most visible near

to the sleeve wall. Flow maldistribution is increased compared to the individual channels model.

Particularly present for the short monolith higher Re case shown in Figure 5.11(c),(d), maxima at the

centre and near the wall are higher and velocity at the trough is lower, showing improved agreement

with experimental data.

Profile predictions for the longer monolith are fairly uniform, with the hybrid model showing im-

provement compared to the individual channels model near to the wall. Profiles are noticeably un-

smooth, with the jet from each channel remaining identifiable downstream, particularly for the high

Re cases (Figure 5.11(g),(h)). This is not observed for the individual channels model, and it is there-

fore suggested that this is due to the method used for calculating the pressure drop across the porous

section.

Discrepancies between hybrid model predictions and experimental data may be attributed to as-

sumptions in the model. The geometry of the channels assumes cell uniformity and channels walls

are treated as flat surfaces. In the porous region, an uncertainty arises from the application of the

theoretical Hagen-Poiseuille equation.

Wide Outlet Sleeve

In the contour plot shown in Figure 5.15, jets are visible in the outlet sleeve. Figure 5.16 presents

the predicted downstream axial velocity profile. The individual jets are preserved and the width of

the flow profile is in good agreement with experimental data. Compared to the porous medium model,

the hybrid model benefits from the inclusion of channels at the monolith entrance in this regard.

Increased maximum velocity compared to the individual channels model is consistent with the

difference in velocity immediately upstream of the monolith, shown in Figure 5.14. In turn, the

upstream flow profile is affected by the monolith modelling approach applied downstream.
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Figure 5.15: Axial velocity prediction for hybrid model with wide outlet sleeve.

L = 27 mm, Re = 3.0× 104.

Figure 5.16: Velocity profiles downstream of hybrid model with wide outlet sleeve.

L = 27 mm, Re = 3.0× 104.
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5.4 Non Uniformity Index

The level of flow maldistribution is a key factor in the design process of catalytic converters and is

commonly used in the automotive industry. A relatively simple measure of conversion efficiency can

then be obtained for post light-off conditions where reactions are mass-transfer limited (Karvounis

and Assanis, 1993; Benjamin et al., 2004; Jeong and Kim, 2001). Conversion efficiency η as a function

of flow velocity can then be described by Equation 5.1 (Benjamin et al., 2004):

η = 1− exp

(−4Lkc
ucdh

)
(5.1)

where L is the length of the monolith channel, uc is the channel velocity, dh is the channel hydraulic

diameter, and kc is the mass transfer coefficient which may be determined theoretically (Bhattacharya

et al., 2004).

Figure 5.17 compares the non-uniformity index ψ from the model predictions and the experimental

data. The non-uniformity index is defined as

ξ =
ζ

U
(5.2)

and is calculated using the mass flow weighted velocity over the monolith face. ζ is defined as

ζ =
1

ṁ

∫

A

|ui − U | δṁ (5.3)

which is equivalent to

ζ =
1

n

n∑

i=1

|ui − U |ui (5.4)

for a velocity profile of discrete data, where ui and U respectively denote the local axial velocity and

the mean axial velocity. Non-uniformity values of experimental data are approximately equidistant

to the predicted values from CFD for the shorter monolith. However for the longer monolith case,

the porous medium model performs markedly worse in the prediction of flow maldistribution than

the other models. Figure 5.17 shows simulations exhibiting the same trend as experiment, with the

maldistribution index increasing with Re and as monolith resistance is reduced. This is consistent

with studies for axisymmetric assemblies, e.g. Benjamin et al., (1996). For the important case where

maldistribution is greatest, Re = 6.0×104 and 27 mm monolith, it is encouraging to note that hybrid

model predictions are within 10% of experiment.
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Figure 5.17: Non-uniformity index
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5.5 Pressure

The pressure drop across the monolith affects the performance of the engine and fuel efficiency.

It is therefore important to be able to accurately predict the change in pressure across the catalyst

system. CFD predictions of pressure distribution are presented here. Figure 5.18 shows symmetry

plane contour plots from different modelling approaches for the same steady flow case.

The first porous medium model presented in this work only calculates the pressure drop due to

unidirectional flow in the monolith channels. The axial pressure drop is based on the superficial veloc-

ity at the first cell of the monolith inlet, with porous resistance coefficients derived via experimental

measurement (Eq. 4.7). The additional pressure loss ∆P = ρv2/2 accounts for oblique entry into

the channels. The monolith section in Figure 5.18(a) shows the effect of the specified pressure drop

function. Particularly high pressure is seen at the centre of the front face of the monolith, where flow

is normal to the porous region.

In contrast, the pressure drop predicted across the monolith using the individual channels model

is due entirely to the geometry of the monolith channels and the characteristics of the fluid. Figure

5.18(b) shows the pressure increase at areas of oblique flow entering the channels, and the negative

pressure present in the outlet sleeve.

The hybrid model, shown in Figure 5.18(c), combines the two: pressure losses at the most up-

stream part of the monolith, across the channels section, are derived by the model itself, whereas the

porous region downstream uses resistance tensor coefficients, here derived using the Hagen-Poiseuille

formulation, to account for the pressure loss of fully-developed flow along a rectangular duct.

Comparing the models, the similarity of pressure distribution shown by the individual channels and

hybrid models supports the use of the truncated porous section of the hybrid model to represent the

downstream channel flow of the monolith. Comparatively higher pressures present in the diffuser of

the porous medium model illustrate the effects of applying theoretical pressure drop calculations to

the system.
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(a) Porous medium model

(b) Individual channels model

(c) Hybrid model

Figure 5.18: Pressure contour plots of CFD models. L = 27 mm, Re = 3.0× 104.
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6 | Pulsating Flow

Results are presented and discussed for the pulsating flow study. The model is presented in Section

4.6 and case numbers and relavant flow parameters are specified in Table 3.2. CFD predictions are

initially compared to phase-averaged PIV data, which leads to the consideration of instantaneous flow

fields. The results discussed in this chapter have been presented at an international conference (Porter

et al., 2015) and have also contributed to the study by Saul et al., (2015).

6.1 Phase-Averaged Flow Fields

Flow fields in the diffuser from PIV and CFD are compared at regular non-dimensional times

throughout the pulse cycle. PIV data is averaged from 100 individual cycles. Figures 6.1–6.3 show

velocity vector fields, where velocities are normalised by the cycle-averaged mean inlet velocity. For

Case 1, velocities are further examined via comparison of cross-sectional profiles upstream of the

monolith in Figure 6.5. Figures 6.6–6.8 show vorticity contours in the diffuser. The non-dimensional

unit ωL/U denotes the normalisation of the vorticity magnitude by the diffuser length and the cycle-

averaged mean inlet velocity.

Peak inlet velocities occur in the range t/T = 0.6–0.7. At this phase of the cycle, a central jet

traverses the diffuser and there is separation of the flow from the wall. The jet spreads immediately

upstream of the monolith face. Flow either enters the monolith or forms large recirculating regions

either side of the jet. The shear layer is then incorporated into the recirculation region. At time

t/T = 0.8, the flow field is similar to the steady state case (Mat Yamin et al., 2013). During inlet flow

deceleration (t/T = 0.7–1.0) the recirculation regions dominate the diffuser and the central jet width

is narrowed as a result of pulsation (Medina et al., 2013).

Vorticity decreases and dissipates within the diffuser. When not fully dissipated during the cycle,

recirculating flow remains in the diffuser and is denoted residual vorticity. Acceleration of the inlet

flow (t/T = 0.1–0.5) sees the residual vortices of the previous cycle carried along the length of the

diffuser. Flow is able to reattach to the diffuser wall downstream of the small recirculation region,

resulting in a relatively uniform velocity profile upon exit from the diffuser.

Comparing experimental and numerical results, best qualitative agreement is observed mid-cycle,

for t/T = 0.4–0.8. PIV shows high variation of the jet core width, and it noticeably narrows at t/T =

0.1 compared to the rest of the cycle. For high inlet velocities, PIV data show more diffusion of
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the jet, with the shear layer wider than for CFD. There is significant difference in vortex structure at

time-steps t/T = 0.1–0.3, where residual vorticity is negligible for PIV data. The retention of vorticity

by CFD suggests an underestimation of vortex dissipation.

Figure 6.5 compares velocity profiles in the diffuser for the case with Re = 2.2 × 104, f = 50 Hz.

Axial and transverse components, normalised by the mean inlet velocity, are presented from four

cross-sections in the diffuser. The locations shown are 2.5, 5.3, 10.6 and 20.5 mm upstream of the

diffuser outlet, as illustrated in Figure 6.4. Consistent with velocity contour plots (Figures 6.1–6.3),

best agreement of profiles is observed at the time of maximum inlet velocity (t/T = 0.6–0.7), with

moderate agreement during the deceleration period (t/T = 0.8–1.0). During inlet velocity acceleration,

highly over-predicted CFD velocities demonstrate the contrast in residual vorticity from the previous

cycle.

Figures 6.6–6.8 show vorticity distribution in the diffuser. CFD results show peak vorticity magni-

tudes at vortex centres and within the jet shear layer. Maximum PIV vorticity magnitudes are low

in comparison throughout the cycle. For example, at t/T = 0.7 the predicted vorticity at the centre

of the vortex is twice as high as PIV measurements.

Vortex centres are identifiable for the majority of time-steps presented. CFD and PIV data are

further studied via comparison of the vortex core location at each time-step. For simplicity, the

location of the data point with highest vorticity magnitude in the region of interest is considered.

CFD predictions exhibit high levels at vorticity at the separation point and at near-wall regions.

Maxima located in these regions are therefore ignored for the purpose of this analysis, such that the

point identified denotes the centre of the dominant vortex in the main body of the diffuser. Figure

6.9 presents the location of local vorticity maxima for the three cases studied. Data labels T1 to T10

denote the time-steps t/T = 0.1 to 1.0 respectively. Where residual vorticity is present and two vortex

centres are distinguishable, both locations are determined and the respective data label is repeated,

giving a representation of the overall path of each vortex structure.

Regarding CFD predictions, the two cases with identical J = 3.4, shown in Figures 6.9(a) and

6.9(c), show the vortex structure following a well-defined path. The paths also have a similar shape,

as illustrated in Figure 6.9(d). This demonstrates the suitability of flow regime characterisation by

the ratio J , as found by Mat Yamin, (2012). The case of J = 6.8, shown in Figure 6.9(b), shows a

clear path at the beginning of separation of the vortex from the wall. High residual vorticity later

in the cycle sees the vortex remaining in the same region with slight movement, and the locations of

vorticity maxima are clustered.

Vorticity contour plots of averaged PIV measurements in Figures 6.6–6.8 show the same qualitative
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trend in the cyclic behaviour of vortex structures. However, the path of the traced vortex centre

point is not smooth, and sometimes the vortex seems to move backwards against the direction of the

flow. Nonetheless a certain level of order in traced vortex movement is observed for all three cases.

For example, Figure 6.9(c) shows PIV data split into three regions. Each cluster is associated with

a segment of the cycle, namely t/T = 0.1–0.4, t/T = 0.3–0.5, and t/T = 0.6–1.0. Moreover, the

trajectory of residual vorticity across time-steps t/T = 0.1–0.4 shows sequential behaviour.

The J = 6.8 case presented in Figure 6.9(b) shows a clear path directly after separation from the

diffuser wall, t/T = 0.2–0.5, and clustered locations later in the cycle. In this respect, the experimental

data and the model predictions are in good agreement.

The lack of order in the PIV data of Figure 6.9(a) is consistent with the low vorticity presented by

PIV in Figures 6.6–6.8. Vorticity levels are particularly weak at times when inlet velocity approaches

a minimum (t/T = 1.0, 0.1–0.3) and no clear vortex structure is identifiable. The local maximum

therefore has no real significance for this data set and a statistical definition of vortex location would

be more appropriate.

The disagreement between CFD and PIV may be explained by one or more of the following. Firstly,

it is possible that the computational model does not accurately predict the turbulent characteristics

of the flow. Turbulence modelling is a complex field with many variables and no one model to suit all

flows. Another reason for the difference in values is the level of data resolution. The computational

model is more refined than the PIV data set. It is possible that the interrogation window used for

PIV measurements was too large to capture high velocity gradients.

Finally, it must be noted that the post-processed PIV data have been phase-averaged from multiple

cycles. Any variation in vortex location between cycles would then result in the absence of higher

vorticity magnitudes once all fields have been averaged. Section 6.2 presents analysis of instantaneous

data fields to determine the presence of cycle-to-cycle variation.
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(a) t/T = 0.1 (b) t/T = 0.2

(c) t/T = 0.3 (d) t/T = 0.4

(e) t/T = 0.5 (f) t/T = 0.6

Figure 6.1: Velocity vector fields for Case 1 (Re = 2.2× 104, f = 50 Hz, J = 3.4)
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(g) t/T = 0.7 (h) t/T = 0.8

(i) t/T = 0.9 (j) t/T = 1.0

u/Umean

Figure 6.1: Velocity vector fields for Case 1 (Re = 2.2× 104, f = 50 Hz, J = 3.4) (cont.)
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(a) t/T = 0.1 (b) t/T = 0.2

(c) t/T = 0.3 (d) t/T = 0.4

(e) t/T = 0.5 (f) t/T = 0.6

Figure 6.2: Velocity vector fields for Case 2 (Re = 4.2× 104, f = 50 Hz, J = 6.8)
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(g) t/T = 0.7 (h) t/T = 0.8

(i) t/T = 0.9 (j) t/T = 1.0

u/Umean

Figure 6.2: Velocity vector fields for Case 2 (Re = 4.2× 104, f = 50 Hz, J = 6.8) (cont.)
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(a) t/T = 0.1 (b) t/T = 0.2

(c) t/T = 0.3 (d) t/T = 0.4

(e) t/T = 0.5 (f) t/T = 0.6

Figure 6.3: Velocity vector fields for Case 3 (Re = 4.2× 104, f = 100 Hz, J = 3.4)
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(g) t/T = 0.7 (h) t/T = 0.8

(i) t/T = 0.9 (j) t/T = 1.0

u/Umean

Figure 6.3: Velocity vector fields for Case 3 (Re = 4.2× 104, f = 100 Hz, J = 3.4) (cont.)
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Figure 6.4: Location of examined velocity profiles
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(a) t/T = 0.1 (b) t/T = 0.2

Figure 6.5: Velocity profiles (from top to bottom) 2.5, 5.3, 10.6 and 20.5 mm upstream of the monolith

for Case 1. (cont.) 90
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(c) t/T = 0.3 (d) t/T = 0.4

Figure 6.5: Velocity profiles (from top to bottom) 2.5, 5.3, 10.6 and 20.5 mm upstream of the monolith

for Case 1. (cont.) 91
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(e) t/T = 0.5 (f) t/T = 0.6

Figure 6.5: Velocity profiles (from top to bottom) 2.5, 5.3, 10.6 and 20.5 mm upstream of the monolith

for Case 1. (cont.) 92
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(g) t/T = 0.7 (h) t/T = 0.8

Figure 6.5: Velocity profiles (from top to bottom) 2.5, 5.3, 10.6 and 20.5 mm upstream of the monolith

for Case 1. (cont.) 93
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(i) t/T = 0.9 (j) t/T = 1.0

Figure 6.5: Velocity profiles (from top to bottom) 2.5, 5.3, 10.6 and 20.5 mm upstream of the monolith

for Case 1. (cont.) 94



(a) t/T = 0.1 (b) t/T = 0.2

(c) t/T = 0.3 (d) t/T = 0.4

(e) t/T = 0.5 (f) t/T = 0.6

Figure 6.6: Vorticity contours for Case 1 (Re = 2.2× 104, f = 50 Hz, J = 3.4)
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(g) t/T = 0.7 (h) t/T = 0.8

(i) t/T = 0.9 (j) t/T = 1.0

ωL/Umean

Figure 6.6: Vorticity contours for Case 1 (Re = 2.2× 104, f = 50 Hz, J = 3.4) (cont.)
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(a) t/T = 0.1 (b) t/T = 0.2

(c) t/T = 0.3 (d) t/T = 0.4

(e) t/T = 0.5 (f) t/T = 0.6

Figure 6.7: Vorticity contours for Case 2 (Re = 4.2× 104, f = 50 Hz, J = 6.8)
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(g) t/T = 0.7 (h) t/T = 0.8

(i) t/T = 0.9 (j) t/T = 1.0

ωL/Umean

Figure 6.7: Vorticity contours for Case 2 (Re = 4.2× 104, f = 50 Hz, J = 6.8) (cont.)
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(a) t/T = 0.1 (b) t/T = 0.2

(c) t/T = 0.3 (d) t/T = 0.4

(e) t/T = 0.5 (f) t/T = 0.6

Figure 6.8: Vorticity contours for Case 3 (Re = 4.2× 104, f = 100 Hz, J = 3.4)
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(g) t/T = 0.7 (h) t/T = 0.8

(i) t/T = 0.9 (j) t/T = 1.0

ωL/Umean

Figure 6.8: Vorticity contours for Case 3 (Re = 4.2× 104, f = 100 Hz, J = 3.4) (cont.)
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(a) Case 1 (Re = 2.2× 104, f = 50 Hz, J = 3.4) (b) Case 2 (Re = 4.2× 104, f = 50 Hz, J = 6.8)

(c) Case 3 (Re = 4.2× 104, f = 100 Hz, J = 3.4) (d) Cases 1 (�) and 3 (F) (J = 3.4)

Figure 6.9: Location of vorticity maxima throughout pulse cycle
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6.2 Instantaneous Flow Fields

To examine the effect of phase-averaging on PIV data, instantaneous vorticity fields are considered

for Case 2 (Re = 4.2× 104, f = 50 Hz, J = 6.8).

PIV measurements were obtained by Mat Yamin, (2012) for 100 cycles. Fluctuations of inlet velocity

are presented in Figure 6.10, with values normalised by the cycle-averaged inlet velocity Umean. Figure

6.10(a) shows the mean inlet velocity, with standard deviation at each time-step of the pulse, and

Figure 6.10(b) presents the standard deviation at each time-step, as an absolute value and also as

a coefficient of variation σ/Umean. Maximum standard deviation is sufficiently small to eliminate

velocity variation at the inlet as a contributing factor to differences in the diffuser.

Figures 6.11 and 6.12 compare CFD predictions with instantaneous PIV measurements for the

time-steps t/T = 0.2 and t/T = 0.5 respectively. 10 cases have been randomly selected, as presented

by (Saul et al., 2015).

At t/T = 0.2 (Figures 6.7(b), 6.11), the inlet velocity is increasing and the vortex present in the

diffuser is residual from the previous cycle. Instantaneous vorticity plots (Figure 6.11) are quite

dissimilar to the averaged values presented (Figure 6.7(b)). Vorticity is scattered and clear vortex

centres are not identifiable, however peak magnitudes in the main diffuser body are comparable to

those predicted by CFD.

More correlation is seen at time-step t/T = 0.5 (Figures 6.7(e), 6.12). The cycle averaged flow

field in Figure 6.7(e) shows adequate agreement with CFD for size and location of the vortex at the

diffuser expansion, however peak magnitudes are approximately 50% less than predicted by CFD. The

instantaneous plots in Figure 6.12 show variation of vortex location and peak magnitude from cycle

to cycle, however the majority of cases display the same peak magnitude, ωL/Umean ∼ 45 as for CFD

predictions.

Examination of instantaneous flow field measurements reveals a large amount of cyclic variation.

This is not accounted for in a RANS-based simulation, which is therefore inappropriate for this case.

The more detailed solutions provided by LES or DNS are desirable. The variation between the

instantaneous flow field and the corresponding phase-average is the subject of ongoing research at

Coventry University (Saul et al., 2015).
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(a) Average inlet pulse shape, with error bars indicating standard deviation (Saul et al., 2015)

(b) Standard deviation of inlet velocities at each point of the cycle

Figure 6.10: Inlet pulse shape statistics of 100 individual cycles, Case 2.
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ωL/Uin

Figure 6.11: Instantaneous vorticity contour plots at t/T = 0.2, Case 2 (Re = 4.2× 104, f = 50 Hz,

J = 6.8)
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ωL/Uin

Figure 6.12: Instantaneous vorticity contour plots at t/T = 0.5, Case 2 (Re = 4.2× 104, f = 50 Hz,

J = 6.8)
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7 | Conclusion

7.1 Conclusions

The main aim of this work was to assess the performance of RANS-based computational fluid

dynamics as applied to catalytic converter systems. To this end, the v2f and RST turbulence models

have been used to resolve the flow features in an idealised planar diffuser configuration representative

of a generic catalyst system.

Modelling approaches have been implemented using the commercial CFD code Star-CCM+ and

the performance of each model has been evaluated via comparison with the experimental data from

PIV and HWA measurements performed by Mat Yamin, (2012), complemented with additional mea-

surements collected as part of this project.

Established porous medium approaches were employed for modelling the pressure drop across the

catalyst monolith, including oblique entry, critical angle and ‘condensed monolith’ formulations. Rep-

resenting the monolith as a porous medium requires a semi-empirical approach for entry losses and

does not provide detailed information about flow inside the monolith. A model with individual chan-

nels was therefore considered to gain insight into the flow physics within the monolith structure.

From the initial assessment it was found that the individual channel approach (with a few exceptions

- for example, see Figure 5.11(b)) consistently produced more accurate predictions than the porous

medium approach (Porter et al., 2014). Results from the individual channels model confirmed the

influence of the oblique entry effect on the flow structure both upstream and downstream of the

monolith as well as on the pressure loss across the monolith. Separation zones are clearly observed in

channels with highly oblique entrance flow. Furthermore, the individual channels model demonstrates

the formation of microjets at the monolith exit and the mixing of the jets downstream of the monolith,

which the porous medium approach fails to capture. However, the detail achieved by this model is

counteracted by the high computational demand associated with the refined mesh necessary inside

each channel. It is therefore not a cost-effective solution needed to support the initial design process,

where CFD is routinely used in industry.

In order to provide a methodology combining the cost-effectiveness of the porous medium approach

with the fidelity of the individual channels approach, a novel hybrid approach was proposed, imple-

mented and evaluated. Since the benefits of the individual channels approach mostly result from
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detailed modelling of the region where flow enters the monolith, the new method includes individual

channels at the inlet area of the monolith. The Hagen-Poiseuille expression for friction losses in fully

developed channel flow was used to determine the length of the developing flow region covered by

the individual channel approach. Once the channel flow is fully developed, the remaining part of the

monolith was treated as porous medium with resistance coefficients calculated theoretically based on

the Hagen-Poiseuille formulation.

The proposed hybrid model was found to generate results comparable with those obtained using the

individual channels model (∼ 2% difference in maximum axial velocity downstream of the monolith),

while reducing the number of mesh elements by an order of magnitude. The most important feature

of the proposed hybrid model is that it eliminates the need for experimental estimation of oblique

entry losses, which is required by the porous medium model and is subject to uncertainty. The hybrid

model also preserves the individual jets exiting the monolith and thus provides improved predictions

for mixing downstream of the monolith.

Although steady flow studies provide a useful insight into the performance of catalytic converters,

the flow through the exhaust system is pulsating under operating conditions. It is therefore highly

important to understand and assess the suitability of URANS for modelling such flows. Due to the

extra computational demand associated with unsteady flow simulations, the standard porous medium

model was used since it requires the lowest mesh density and is considered adequate for assessing the

flow behaviour in the diffuser, upstream of the monolith.

The simulation results presented in this work show that a URANS approach adequately predicts

general flow features, capturing the formation of vortices and their motion through the diffuser during

the pulse cycle. Consequently, URANS could potentially be useful in the initial design stage of

aftertreatment systems. However, the results also show that URANS overpredicts the PIV phased-

averaged vortex strength (estimated using vorticity magnitudes), especially towards the end of the

pulse and approximately by a factor of two. This was attributed to several factors, including turbulence

model limitations in general, fundamental deficiencies of the URANS approach, as well as an inherent

variance of the vortex strength and location observed in experiments (Saul et al., 2015).

Due to the existing gap in knowledge on the effect of cyclic variance on the phased-averaged flow

field, it has been investigated in detail. Interestingly, it was found that despite relatively small cycle

to cycle variance in the inlet conditions (< 0.08%), the instantaneous vorticity fields show significant

change in the location of the vortex core from cycle to cycle, and this has the effect of reducing the

calculated phased-averaged peak vorticity. The instantaneous peak vorticity was found to be up to

three times higher than the phase-averaged value and was comparable in magnitude to the peak values
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obtained from the URANS predictions. This contribution suggests that other simulation techniques

such as DNS or LES are more suitable for later stages in the design process where more detailed

information about the flow is required.
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7.2 Original Contribution

The contributions to knowledge resulting from this work are:

• Implementation and evaluation of several porous medium approaches in Star-CCM+, including

oblique entry effect with and without critical angle, and ‘condensed monolith’ method;

• Using the individual channels model, establishment of the relative importance of capturing the

flow structure in the entrance region of the monolith for improved CFD predictions for the

whole system and in simulating mixing at the rear of the monolith;

• Proposal, development, implementation and validation of a novel hybrid approach for modelling

the catalyst monolith, thus reducing computational time while accurately representing flow

behaviour upon entry into the monolith channels;

• Identification of the effect of cyclic variance on phased-averaged PIV results and demonstra-

tion of an overprediction by CFD of phased-averaged vorticity values, but agreement of CFD

predictions with instantaneous vorticity magnitudes.

7.3 Recommendations for Future Work

Based on the work undertaken as part of this study, recommendations are made for further research.

• Development of the CFD models presented in this work to a three-dimensional system;

• Inclusion of more complex flow phenomena such as swirl, with or without pulsation;

• Extension of the hybrid modelling validation to include pulsating flows;

• Assessment of the ability of DNS and/or LES to capture cyclic variance of pulsating flow.
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Appendix A : Implementation of entrance effect in Star-CCM+

The method and syntax used for the inclusion of entrance effects are detailed. For details of the

creation and definition of tables and field functions in Star-CCM+, see the user manual (CD-adapco,

2013).

Entrance effects are applied to the monolith model as an additional momentum source term Svi .

The source term is defined by the vector [−λ, 0, 0] where λ is a scalar value derived as a function of

flow velocity.

The table ‘1mm upstream vel’ extracts velocity values at cells located along a line-probe 1mm

upstream of the monolith and λ is calculated using the values. The table automatically extracts and

updates values with each iteration of the model. For monolith length L, critical angle αc and subcrit-

ical angle αs, λ is calculated from the following definitions.

K-W (Eq. 4.10)

$Density*pow(interpolatePositionTable(Table("1mm upstream vel"),"Velocity[j]"),2)/2/L

Critical angle (Eq. 4.11)

( ${tan alpha} < ${tan critical angle} ) ?

$Density*pow(interpolatePositionTable(Table("1mm upstream vel"),

"Velocity[j]"),2)/2/L

:

$Density*pow( ${tan critical angle}*interpolatePositionTable(Table("1mm upstream vel"),

"Velocity[i]"),2)/L

Subcritical angle (Eq. 4.12)

( ${tan alpha} > ${tan subcritical angle} ) ?

$Density*pow(interpolatePositionTable(Table("1mm upstream vel"),"Velocity[j]"),2)/2/L

:

0

where:

‘tan alpha’ is calculated from the definition

abs(interpolatePositionTable(Table("1mm upstream vel"),"Velocity[j]")/

interpolatePositionTable(Table("1mm upstream vel"),"Velocity[i]")
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‘tan critical angle’ is defined as $tan(αc*3.141592654/180)$

‘tan subcritical angle’ is defined as $tan(αs*3.141592654/180)$
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