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ABSTRACT  

The design and optimisation of inventory replenishment systems has already been 

exhaustively studied by the operational research community. Many classical mathematical 

methods and simulation techniques have been developed and introduced in the literature. 

However, what can be observed is the fact that in a real case scenario the lead-time, 

deterioration of goods and demand for product are likely to be time-varying and uncertain, 

which traditionally have not necessarily been reflected in the model formulations. Therefore, 

in response to the dynamical nature of inventory systems, the potential of algorithms based 

on control theory to reduce the undesirable influences of system uncertainties on inventory 

level stability, have been investigated /proposed. Consequently, the mapping of the 

inventory problem into the control theory domain, for cost-benefit inventory trade-off 

achievement has been realised. Although, the application of control theory in inventory 

optimisation appears to be beneficial, there are certain reasons why the approach has gained 

yet little attention among the operational research community. One reason is that it cannot 

be adopted easily by researchers who are unfamiliar with control theory and another is due 

to a communication gap which exists between the control theory and operational research 

communities. Prompted by these observations, the thesis presents a novel, systematic 

mathematical approach for finding the optimal order quantities. The proposed approach has 

been mathematically demonstrated to be equivalent in study-sate to model-based predictive 

control, which is one of the more well-established productive control techniques with 

industrial application today. The mathematically reduced approach attempts to bridge the 

identified gap to fulfil the lacking dual perceptions of both communities. It enables the 

straightforward benefits afforded by predictive control without the necessity to become 

familiarised with principles of control theory. The method is shown to be applicable for both 

perishable and non-perishable inventory. Although the novel technique was inspired by 

MPC and noticing the MPC patterns in the mathematical description, the resulting proposal 

is no longer MPC. It is in fact a minimum variance approach, or dear beat controller, with an 

incorporated Smith predictor. Therefore using the adjective ‘predictive’ in the title of the 

thesis refers to both, the inspiration of MPC and the predictive nature of the minimum 

variance controller to accommodate lead time, being incorporated within an inherent Smith 

predictor. The developed approach is considered to be transferable to other applications, 

where similar model formulations may be applicable.                      
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1 INTRODUCTION 

1.1 Introduction to logistics 

In the context of this thesis, logistics is understood as a discipline of science that develops 

strategies for appropriate motion and allocation of goods. It assures that all non-human 

resources are always in the right place at the right time. The origin of logistics science can be 

recognised in the times of World War Two when the need for appropriate allocation of military 

resources was crucial to accomplish military operations successfully (Rushton, Croucher and 

Baker, 2006). Nowadays the term logistics is usually identified with the distribution of goods 

within a supply chain. Starting from the raw materials needed for production, through to the 

components needed for assembly, up until the finished goods reaching the end customer. All 

the goods need to be properly distributed so that they reach the appropriate supply chain node 

at the right time. Although, logistics does not include production, the term logistics is often 

substituted by supply chain management. Logistic operations of any company are designed to 

achieve customer demand satisfaction. Each node within a supply chain becomes a customer 

for the previous one and the supplier for the next. A delay or failure might affect the whole 

supply network including the end customer.  

 

Although logistics is a relatively new scope of science, techniques have already been 

established to reduce the risks of both not satisfying the customer demands and of not making 

the whole costs excessively expensive. The techniques can be differentiated between the 

managerial techniques (usually industrial approaches) and the engineering techniques (usually 

academic approaches). The current chapter focuses on the industrial approach to improve 

logistics operations. In order to acquaint the reader with the motivation for the research, 

Sections 1.1.1 presents several basic terms and logistics strategies.   

Equation Chapter (Next) Section 1  
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1.1.1 Basic definitions and descriptions 

 

Supply Chain Management: Several different definitions of supply chain management can be 

found in the logistics literature. According to Basu and Wright (2008) ‘for every business 

transaction there is a supplier and a customer and there are activities, facilities and processes 

linking the supplier to the customer. The management process of balancing these links to 

deliver best value to the customer at minimum cost and effort for the supplier is supply chain 

management.’  

According to Simchi-Levi et al. (2003, p. 1) ‘Supply chain management is a set of 

approaches utilized to efficiently integrate suppliers, manufacturers, warehouses and stores, so 

that merchandise is produced and distributed in the right quantities, to the right locations, and 

at the right time, in order to minimize system-wide costs while satisfying service level 

requirements.’ Therefore, supply chain management consists of the flow of materials as well as 

the reverse flow of information. The latter refers to the customer requirements management, in 

other words the demand. The goods and information flows for a typical supply chain are 

illustrated in Figure 1-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1-1: Supply chain management (source: Rushton, Croucher and Baker, 2010, p.5) 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis 
can be viewed in the Lanchester Library Coventry University.
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In general, the supply chain can be defined as a distribution network of goods, starting from 

the supply of raw materials to appropriate manufacturers, up to the finished goods being 

delivered to the retailer. ‘The key objective of supply chain management is to provide best 

value to the customer by measuring, planning and managing all the links in the chain’ (Basu 

and Wright, 2008). Therefore, the waste and cost reduction plays a vital role in a supply chain 

design.  

Bullwhip effect (Forrester effect): ‘The bullwhip effect also known also as the Forrester 

effect, is the commonly used term for a dynamical phenomenon in supply chains. It refers to 

the tendency of the variability of order rates to increase as they pass through the echelons of a 

supply chain toward producers and raw materials suppliers’ (Disney and Lambrecht, 2008). 

The bullwhip effect again describes the variations in order rates in a given supply chain 

echelon (customer) required to be supplied by a previous echelon (its supplier), which affects 

the ordering policies of the latter from the antecedent echelons (its suppliers) along the supply 

chain. If the end customer demand suddenly increases it causes the raising of the demands in 

all antecedent supply chain echelons by the same ratio (increased by the number of goods 

ordered to support a pre-defined safety stock policy). Figure 1-2 presents the fluctuations 

appearing in the inventory levels in each echelon due to customer demand change.  

 

 

 

 

 

 

 

Figure 1-2: Bullwhip effect (source: Schniederjan, 1999) 

This item has been removed due to 3rd Party Copyright. The unabridged version of the 
thesis can be viewed in the Lanchester Library Coventry University.
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Figure 1-3 presents the surge in demand (from end-product demand to raw-material 

demand) due to the bullwhip effect. 

   

 

 

   

 

 

 

 

 

 

Lead time: Lead time is the time between an order being placed and it being delivered. It 

involves the following activities: manufacturing or picking (whichever is relevant), packing, 

shipping, dispatching and delivering (Rushton, Oxley and Croucher, 2000, p.208).  

 

Logistics operation: Logistics operation refers to any activity which is included in the overall 

supply chain management of a company. Several logistics operations are now well established. 

Typical logistics activities include: 

 

• The movement of cargo in all transportation modes of air, land and water including 

planes, vehicles, trains, trucks, lorries and ships  

• The storage of goods in warehouses or other storage rooms 

• The ordering and purchasing of an appropriate number of raw materials by 

manufacturers 

• The ordering of goods by each supply chain node to fulfil the expected demand for 

goods from their customers  

Figure 1-3: ‘Bullwhip’ or Forrester effect (source: Rushton, Oxley, Croucher. 2000:208) 

This item has been removed due to 3rd Party Copyright. The unabridged version of the 
thesis can be viewed in the Lanchester Library Coventry University.



5 

 

• Planning the production in advance to enable an uncertain customer demands to be 

fulfilled  

Logistics operations are activities involving goods only, so that labour and human resource 

management is not considered as logistics operation (Rushton, Croucher and Baker, 2010).   

Value-added-activities: Value-added-activities are considered as the activities which increase 

the value of the item from the customer point of view. For instance, a finished product has a 

greater value for the customer than the sum of raw materials it was made from. As it can be 

noticed, although all of the above mentioned logistics operations are essential for a successful 

design of a supply chain network, none of them, in contrast to the process of production or 

assembling, can be considered as a value-added activity. Therefore they only generate costs 

related to holding goods in terms of time wastage, fuel wastage etc. Any possible cost 

reduction, which will not affect the customer demand satisfaction, is advantageous for the 

company. The aim of a successful supply chain is to find a way to balance logistics operations 

benefits against costs.  

Economics of scale: Economics of scale is a management strategy which refers to cost 

reduction due to large batch production (or large batch transportation). For some industrial 

applications, the production set up cost (or empty transportation costs) outweigh the storage 

costs. In such situations the production quantity may be arbitrarily increased by manufacturers 

to reduce the production costs. Such a production quantity may significantly exceed the 

customer demand and may require additional inventory holding until the goods are actually 

demanded. The economics of scale is an opposite of the Just-In-Time (JIT) policy. JIT refers to 

very small batch production or even continuous production (or transportation) in respect of 

inventory reduction or elimination. Economics of scale implies a ‘push’ design of the supply 

chain. ‘In the push system the stock is provided for the next stage of supply (e.g. buying items 

to sell or starting manufacture) without having the total production path clear’ (Basu and 

Wright, 2008). It means that the products are produced and stored in the quantity which is 

economic in terms of designing a production system but not necessarily in the quantity which 

will be demanded by the customer (often significantly more than demanded). This is contrary 

to the ‘pull’ system. 

 

Pull policy: The orders are placed by the supply chain nodes in response to the customer 

demand only. The flow of goods in the supply chain is pulled from the end customer side.  
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Push policy: The supply chain members tend to order, manufacture and store goods in order to 

be prepared to immediately satisfy the customer demand. The flow of goods is pushed by 

suppliers.  

 

Replenishment policy: Replenishment is the act of refilling or complete again by supplying 

what has been used up or is lacking. In logistics it refers to placing new orders when the goods 

are used or sold. The replenishment policy can be decided for each individual node based on 

the purpose of the particular node in the supply chain and the overall company strategy (e.g. 

pull or push system). Exemplary replenishment policies are elaborated in Section 1.1.3.  

 

 

1.1.2 Storage, warehousing & materials handling 

There are several types of inventory, depending on the role of the supply chain node, the 

stock being held, and the role the inventory has for the node. For instance in some nodes the 

goods can be stored for several months, possibly kept in special environments to ensure they 

do not deteriorate. At other nodes goods are moved and processed very quickly from one place 

to another. Among other inventory types the most common are: raw materials, spare parts, 

work in progress, pipeline stock, finished products, and stock in warehouse or retail. 

Regardless of the inventory type the need for inventory holding is usually similar. 

 

1.1.2.1 Need for stock holding 

1. Enables the logistics operation to run smoothly by providing a buffer between suppliers 

and customers: 

 Compensates the negative consequences of production delay (such as break down, 

lack of raw materials etc.) or delivery delay (traffic issues, transportation mode 

break down etc.). 

 Compensates the uncertainties related to customer demand which, in most of the 

real world environments, is partially or highly uncertain. It enables immediate 

customer demand response even if the demand forecast was underestimated. Such 

kind of inventory is called the safety stock.  
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2. Enables reduction of costs of other activities: 

 Reduces the purchasing costs. It can be achieved as a result of economy of scale 

policy. Purchasing a large batch of products usually enables negotiation of 

satisfactory discounts with the suppliers. In the case of periodically fluctuating 

goods prices, the goods can be purchased at the moment of lowest price. This 

strategy is used if the stock holding is more cost efficient than regular small batches 

procurement at any time.  

 Reduces costs of production. ‘Often it is costly to set up machines, so production 

needs to be run as long as possible to achieve low unit cost.’ (Rushton, Oxley, 

Croucher, 2000:183). Reduction in the numbers of setting up of machines signify 

running the production without any break for longer than required, even if the 

produced goods are not demanded by the customer in such number. It requires the 

storage of finished goods after the production processes. 

 

1.1.2.2 Disadvantages of stock holding: 

From the previous section it could be concluded that keeping inventory is necessary for the 

company, although keeping inventory generates non-value-added costs, which has already 

been recognised as one of the higher logistic costs.  Among the inventory related cost the most 

significant are as follows (Rushton, Oxley, Croucher 2000:191)  

 Cost related to stock holding and maintaining - cost of space needed for storage (cost of 

building the warehouse and maintaining it in terms of electricity costs, taxes etc.), cost of 

manpower, cost of equipment such as appropriate racks, forklifts, cranes, picking devises 

etc.  

 Cost associated with management of stock – the higher the inventory level, the higher the 

need for proper inventory management systems and people controlling it to avoid errors in 

delivery. 

 Cost associated with insurance of the stock – the higher the inventory level, the risk of 

damage and the greater need for insurance. 

 Risk cost – cost of possible theft, damage or deterioration of stock, which is more likely in 

the case of higher inventory level. Also it increases the risk of human accidents on the 

warehouse floor.  
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 Capital cost – loss of potential profits associated with investing capital, which is currently 

frozen in the inventory and reduces the cash flow in the company. 

Therefore, high standard replenishment management requires achieving the appropriate 

balance between inventory holding benefits and expenses or equivalently the balance between 

processes organization and customer requirements. As a response to such a need, several 

different replenishment approaches have been established (Rushton, Oxley, Croucher, 2000). 

Some of them are reviewed in section 1.1.3. 

 

1.1.3 Industrial approaches to replenishment policy 

 

There are several approaches to inventory replenishment strategy commonly used in the 

industry. Some of them are listed below.  

 Periodic review (shown in Figure 1-4): Stock level of product in the warehouse is 

reviewed at the end of each period of time. The order is placed if the inventory level is 

below the reorder level. 

 

 

 

 

 

 

 

 

 

 

 Fixed order quantity (illustrated in Figure 1-5): The order is placed when the quantity 

of product decreases below the reorder level, before it reaches the safety stock level.  

 

The disadvantage of both methods is the fluctuating inventory levels, the risk that 

during one period (in the case of the first method) or lead time (in the case of the 

Figure 1-4: Periodic Review (source: Rushton, Oxley, Croucher. 2000:206) 

This item has been removed due to 3rd Party Copyright. The unabridged version of 
the thesis can be viewed in the Lanchester Library Coventry University.
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second method) the inventory might decrease under the safety level, and might cause 

unnecessary costs related to inventory holding.  

 

 

 

 

 

 

 

 

 

 

 Economic order quantity (EOQ): ‘The EOQ method is an attempt to estimate the best 

order quantity by balancing the conflicting costs between holding stock and placing 

replenishment orders (Rushton, Oxley, Croucher 2000:191). Figure 1-6 compares two 

exemplary replenishment policies. Policy A refers to less frequently replenishing, 

which reduces the transportation costs and order setting up costs. On the other hand it 

increases the inventory level significantly which increases the holding cost as well as 

the stock maintenance costs. The policy B, in turn, reduces the inventory costs and 

increases the transportation costs due to its delivery frequency.   

 

Figure 1-6: Order sizes (source: Rushton, Croucher and Baker, 2010) 

Figure 1-5: Order quantity (source: Rushton, Oxley, Croucher. 2000:207) 

This item has been removed due to 3rd Party Copyright. The unabridged version of the 
thesis can be viewed in the Lanchester Library Coventry University.

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
viewed in the Lanchester Library Coventry University.
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To achieve a balance, the EOQ approach aims at minimising the total costs through 

appropriately designed objective function (cost function). Figure 1-7 presents the 

exemplary EOQ plan. The total cost is represented by the objective function.  Its 

minimum value represents minimal costs for goods number of economic order 

quantity. The functions of ordering costs and holding costs (the two components of the 

objective function) are shown in Figure 1- 7 for comparison. 

 

Such an approach already seems more beneficial for the company than the previously 

presented ones. One has to remember, though, that the presented model does not 

consider system uncertainties such as varying customer demand and the lead time 

delay. It is still quite a basic approach. Chapter 2 is devoted to the discussion of more 

sophisticated replenishment decision support tools available in academic literature.   

 

 

 

 Just in time – the zero inventory philosophy 

The concept of just in time (JIT) refers to a type of replenishment system where the 

goods appear in the warehouse (or production line) exactly when they are needed, 

neither before nor after that time instance. Ideally it refers to zero inventory holding 

policy. The idea itself seems to be simple, nevertheless due to system uncertainties such 

as unknown demand or unexpected delays, it is not so straightforward in application. 

Adopting JIT requires either the patience of the customer (for instance car industry) or 

Figure 1-7: Economic order quantity (source: Shah, Gor and Soni, 2008:305) 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis 
can be viewed in the Lanchester Library Coventry University.
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an accurate prior knowledge regarding future demand (for instance due to accurate 

forecasting) and/or a sophisticated material requirement planning system. Nevertheless 

in most of the real world cases the demand is uncertain, which justifies the importance 

of appropriate design replenishment decision systems.  

Implementation of JIT is not just about reducing the inventory, but also reorganisation 

of processes in the manner that they become more efficient and the lead time is 

reduced. For instance, in terms of reduction of inventory held in the warehouse, the 

delivery frequency needs to be increased contrary to the economics of scale approach.   

‘Stock controllers have been sceptical about the efficiency of frequent deliveries of 

smaller batches without investigating all the options and potential. There are many 

instances where the accepted delivery quantity is now much smaller than it was a few 

years ago, and is destined to continue to be reduced’ (Basu and Wright, 2008). 

As it was mentioned in the definition of economics of scale in Section 1.1.1, the JIT 

policy is an opposite strategy to economics of scale and in this respect it refers to more 

frequent and smaller sizes of order quantity, ideally the continuous production system. 

Defining a scale of degree of ‘pull/push’ strategy, the extreme JIT (zero inventory 

policy) would be at the pull end of the scale, while the economics of scale, would be at 

the push end. The smaller production (or transportation) batches and the more frequent 

orders (deliveries), the more shifted to ‘pull’ the replenishment strategy is on the 

‘pull/push’ scale.  

From a mathematical modelling perspective, the JIT policy appears to have no 

constraints on order batch size, therefore the batch can be as small as needed.  

‘For some supply chains, the application of JIT is natural because of the nature of the 

products or the processes, e.g. in fast-cycle manufacture, where a stage in the 

production process takes very little time’ (Basu and Wright, 2008).  Nevertheless, in 

many industries the implementation of JIT is not straightforward and many companies 

do not adopt JIT simply because of the fear of decreasing service levels and 

disappointing customers by the lack of stock when required. There is a need for 

applying analytical techniques in replenishment planning so that the likelihood of lost 

business opportunity is reduced.  
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1.1.4 Lean Management 

The Lean Management (or Toyota Production System) concept was pioneered in the Toyota 

production system and adopted by other Japanese manufacturers. Much later it was appreciated 

by Western manufacturers as well and recognised as an incredible source of cost reduction as 

well as improved customer response. 

Lean Management is a management approach, realised by the implementation of 

established principles, theories and tools which, contrary to economy of scale approaches, 

practice economics of time, when designing logistics operations. Implementation of even a 

single one of the existing lean techniques is considered to be beneficial for a company 

(Bicheno, Holweg and Bicheno, 2009). The reduced cost is related to reduction or, if possible, 

the elimination of non-value-added activities (e.g. inventory holding) as well as the elimination 

or appropriate prevention of other identified wastes. Therefore, the lean approach aims at cost 

reduction via better organization of processes in the time line while maintaining high customer 

service and the rapid response to customer needs. The several lean tools listed below briefly 

explain concepts from the design of a lean inventory replenishment system point of view.  

Lean theory is based on the five principles presented below. The conducted research 

especially refers to the flow (no 3) and pull (no 4). 

The five lean principles (Bicheno, Holweg and Bicheno, 2009): 

1. Specify the value from the customer point of view. The main stress should be put on 

the fact that the customer buys the result, not a product itself and the value should be 

assessed having this in mind.  

2. Value Stream. It aims at identification of non-value-adding activities.  

In the context of efficient replenishment system design, inventory holding is not 

considered valuable in terms of both, principle no. 1 as well as principle no. 2. It does 

not add any value to the product.   

3. Flow. According to lean philosophy, all goods should be kept in a flow. Any storage is 

considered a waste of money, any waiting for finishing of other components or batch to 

be delivered is a waste of time because it does not add any value to products. 

4. Pull. In contrast to the commonly used ‘push’ approach, lean management proposes 

just in time supply and production. It means that the products should be delivered when 

needed but no later than required by the customer. It again refers to elimination of 



13 

 

stock. ‘With a pull system the first action in the chain is that the item is demanded. To 

satisfy this demand there is an item in stock. As soon as this stock is used up, another 

item is supplied, either from outside or from a production process’ (Basu and Wright, 

2008). In a pull system the quantity of delivery is significantly smaller compared to the 

push system, thus the delivery takes a much higher frequency and refers to JIT policy. 

5. Perfection. “Perfection does not only mean quality – it means producing exactly what 

the customer wants, exactly when (with no delay), at a fair price and with minimum 

waste” (Bicheno and Holweg, 2008:11). This principle summarises the previously 

presented lean principles and shows that the aim of lean management is to reorganise 

the processes in a way that overall time will be reduced and the quick response to 

customer requirements will be possible without any buffer inventory holding.  

 

1.1.4.1 Lean Wastes 

One of the more important lean concepts is identification and elimination of wastes. 

According to lean theory wastes can be differentiated into two categories:  wastes from an 

organization’s perspective and the customer’s perspective. Both of them are presented as 

follows.  

Service Wastes (customer point of view) (Bicheno, Holweg and Bicheno, 2009) 

• Delay.  In general it refers to waste of a customer’s time, especially in the form of 

delays in services, deliveries, waiting in queues etc.  

• Duplication of activities which are required to be completed by the customer.  

• Unnecessary customer movement whilst being served.  

• Unclear communication.  

• Incorrect inventory, such as lack of required stock in required time. 

• Loss of business opportunity 

• Errors in orders or damage of products  

Seven Wastes (company point of view) (Bicheno, Holweg and Bicheno, 2009) 

 

 Overproduction: Goods should be produced, delivered and stored in an appropriate 

quantity.  Safety stock should be minimised as it contributes to wastage of time, money 

and storage space.  It might also increase the likelihood of the deterioration of 

perishable goods. 
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 Waiting: This refers to delays from the company’s point of view with regard to delivery 

or until a batch of products or components are finished.  Attention should be paid to the 

fact that waiting also creates some bottlenecks in the system and might cause the 

bullwhip effect in the whole supply chain.  In general it affects the goods flow which 

was previously presented as one of the lean principles. 

 Unnecessary motion: This refers to the movement of products, people and machines. 

 Waste of transportation: Besides the waste of energy it also refers to the increased 

likelihood of damage. 

 Overprocessing: This refers to the unnecessary use of sophisticated and expensive 

software or machines.  The designing of complex processes or the implementation of 

sophisticated software when not necessary is a waste of money as well as time devoted 

to change management. 

 Unnecessary inventory: As previously mentioned the reduction of unnecessary 

inventory causes a cost reduction related to storage space or the number of employees 

needed to maintain the inventory etc.  Implementation of a Just in Time (JIT) policy 

prevents unnecessary inventory holding.  It also makes a company more flexible, 

simplifies inventory management and facilitates a quick response to customer 

requirements. 

 Defects: Defects generate unnecessary costs to the company.  Defective goods need to 

be repeated or ordered again.  Defects are common in the case of a ‘push’ system, 

where mass production occurs due to economy of scale. 

 

Lean management also suggests the reduction of suppliers in order to simplify the system 

design and the development of better relationships with those suppliers that are kept so that 

they become more reliable. 

It should be noted that all wastes are related to each other, one causing another.  High 

inventory can be identified as a factor that most affects other wastes. Unnecessary inventory 

might result in the increased likelihood of defects and deterioration, causing complexity while 

stock managing, which is considered over processing. 

Defects might also involve cause the customer additional and unnecessary involvement (e.g. 

returns). Defects need to be repaired or the goods need to be ordered again, which causes 

overproduction as well as overprocessing. Overproduction causes unnecessary motion, 
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transportation, delays, waiting or waste of transportation. This also causes additional inventory 

and reduces the ability to respond quickly to demand changes. Unnecessary transportation 

increases the probability of goods being damaged and increases the waiting time. This in turn, 

affects the smooth flow of goods within the supply chain. Both the defects as well as high 

inventory can cause errors in inventory, which could result in lost business opportunities. All 

of the above wastes bring about unnecessary costs to the system.  

 

Designing of efficient replenishment systems with special focus on inventory control would 

directly and indirectly reduce costs significantly. It would enable a fair price to be set for the 

sold products without a decrease in quality caused by mass production and big-batch 

transportation. This, in turn, could result in increased customer demand. The current research 

recognises the importance of appropriate inventory control.  

 

 

1.1.5 Fluctuating inventory level 

 

As noted in Section 0 it can be identified that the surplus inventory holding affects other 

lean principles, unnecessary inventory holding generates hidden costs to the whole supply 

chain. Therefore, zero inventory policy seems ideal. This is the reason why so many academic 

researchers were devoted to this topic (see Section 2.2.5). Nevertheless, in most real life 

applications keeping some safety stock is still necessary (as explained in 1.1.2.1). The right 

quantity identification is a subject for academic research as well as industrial trial and error 

practice. Both the industrial and academic strategies tend to decrease the inventory as much as 

possible under the constraint of demand satisfaction. Due to the lack of accurate prediction of 

future demands in most real life replenishment systems, searching for inventory level balance 

is also often inaccurate.  

As a response, in this section the author proposes an innovative way of thinking of 

replenishment design. It resembles JIT policy in respect of no constraint on order batch 

quantity. The batch can be as small as needed. However the introduced strategy involves a 

reduction of inventory fluctuations rather than inventory level itself. It has not necessarily been 

realised by many researchers and industrial managers but it is highlighted here that 

uncontrolled inventory level fluctuations can cause several hidden costs and surplus problems 

compared to stable inventory level holding such as: 
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 Bullwhip effect: as shown in Section 1.1.1 the sudden change of inventory level in one 

supply chain node causes inventory fluctuations in the others. 

 Unnecessary deterioration of products: the shelf life management becomes more 

complex when the inventory level is varying.  The short shelf life replenishment system 

is appropriate for low inventory levels when the stock is replenished often.  Sometimes 

the supply chain node chooses goods with close end dates on purpose as they are 

usually less expensive and enable some purchasing cost reduction.  In turn, long shelf 

life is necessary for high inventory levels where certain stock will be kept significantly 

longer.  In the case of fluctuating inventory, keeping a balance between long and short 

shelf life purchases becomes complex, some unexpected product deterioration is likely 

to occur.  Also in some storage areas of real life application the surplus inventory is 

stored on top of the regular stock, which for some product types increases the 

likelihood of deterioration (for instance due to reduced oxygen exposure of those at the 

bottom).  In other cases, holding unexpected inventory may mean using emergency 

storage areas where conditions may possibly increase the likelihood of deterioration 

(for instance outdoor storage areas). 

 Damage: the damage of goods is more likely to occur when the inventory level 

suddenly increases as it involves the additional movement of goods, which increases 

the likelihood of damage.  It can involve the inventory being kept in inappropriate 

storage areas where damage to goods is more likely to occur. 

 Storage capacity definition problem: either the storage room is not used, albeit still paid 

for, or exceeded. 

 Fluctuations in storage cost: varying storage costs affect the cash flow of the company 

and financial planning ability. 

 Difficulty in required employees planning: either the surplus labour is maintained and 

paid for, or the labour capacity is exceeded.  A sudden increase of inventory requires 

more labour to be involved in logistics operations such as packing/repacking, labelling, 

moving to storage locations etc.  

 

The thesis devotes its attention to model based control to reduce the inventory fluctuations and 

reduce hidden costs. No batch constraint on order quantity is considered in the thesis. The 

batch constraint in mathematical terms can refer to an order quantity smoothing parameter. For 
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the purpose of this thesis the smoothing parameter is considered to be set to zero (see Equation 

(3.63)). 

 

 

 

1.2 Research Problem 

 

1.2.1 The need for system modelling 

 

The purpose of modelling is to gain a better understanding of real systems at low-cost. 

Experimenting with the model itself instead of involving the real system is less time 

consuming and does not require reorganisation of processes for experimentation purposes and 

associated investments. As many as needed of different scenarios can be considered before 

implementation. Several mathematical and engineering techniques enable system modelling 

for optimisation purposes. They can be further used for optimal or suboptimal decision 

making.  

1.2.2 Operational research approach 

 

Operational research (OR) is a field of studies that deals with optimal or suboptimal 

decision making in real world, albeit mostly non-engineering, environments such as military 

operations, businesses processes, network design, scheduling, supply chain management, 

routing, optimal search, facility location etc. It uses analytical techniques for decision making 

involving mathematics for modelling and /or sophisticated software for scenarios analysis and 

simulation (Winston 1991). 

 

1.2.3 Research description 

 

Control theory (CT) is an interdisciplinary field of study that involves dynamical systems 

theory. Being applicable in any system where a feedback loop can be mathematically 

modelled, it has been developed for a broad range of techniques and algorithms to control the 

system input in order to obtain the desired output and desired system behaviour. As methods 

used in control theory have a quantitative nature, the natural consequence was to find a wide 
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array of applications in engineering fields such as automotive, heating, electronics, robotics 

etc. Control engineering, then, regards application of control theory techniques to engineering 

disciplines. Nevertheless, the algorithms which are used for engineering application, being 

already recognised as powerful and well performing, can be benchmarked for a variety of 

problems such as inventory, manufacturing, network optimisation etc.  Control theory, with its 

straightforward consideration of system dynamics, can potentially be recognised as powerful 

and efficient in the operational research field. The thesis focuses on the inventory problem 

studied from a control theory perspective. The approach brings the advantage of overcoming 

the problem of system uncertainties related to fluctuating customer demand (as illustrated in 

Figure 1-8), fluctuating lead times and deterioration of products by updating the current 

information in a feedback loop, and controlling system behaviour without having prior 

knowledge about the system dynamics.  

 

Figure 1-8: Exemplary varying demand showing how dynamically and randomly the demand can change 

 

The final outcome presented in the thesis, which is an inventory level control methodology, 

aims  to not only obtain good results compared to purely mathematical techniques, but rather at 

giving the reader the idea of the elegancy and power of control theory in such applications. It 

also highlights the potential benefits of collaboration between the control engineering and the 

operational research communities. Although such collaboration seems promising, there is still 

a gap in effective communication due to differences in perspective and understanding between 

these two groups. One of the reasons can be attributed to very little awareness of OR problems 

and its appropriate mapping into the control theory domain among the CT community. Another 

reason is the limited awareness of Control Theory science within the OR community  
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Figure 1-9: Operational Control 

 

Recognising the above, this research aims at bridging the gap between the two by 

developing a new field of studies which, in the future, would enable the operational research 

community to apply the complex and efficient algorithms of control theory without any need to 

familiarise themselves with the deep and structured control theory. For the purposes of this 

thesis, the name operational control (OC) has been given to the control theory patterns and 

procedures being benchmarked in the operational research field.  

To start with, one of the well-established optimisation algorithms, extensive in 

mathematical description and deeply ingrained in control theory science, known as model 

predictive control (MPC), has been benchmarked. Further, the algorithm, for the inventory 

model, has been mathematically reformulated to the form which is significantly simplified in 

description, and does not require the user to possess any initial control theory knowledge. As a 

result, the novel shortened optimisation procedure gives almost exactly the same results MPC, 

and both have been demonstrated to be mathematically equivalent.    

The developed methodology appears to be transferable to other applications, for instance 

production systems.  The reduced mathematical formulation was based on noticing patterns in 

the MPC formulation and followed a series of propositions and their demonstrations leading to 

the final approach. The final formulation is presented in the form of a proposition in Chapter 3, 

Section 3.3. The elaboration of its simplicity in application and the straightforward manual 

calculation of the next optimal order size on a daily basis, which maintains the inventory in 

balance, are shown in Chapter 4, Section 4.5. The mathematical demonstration of the 

equivalence of the initial and final formulation is shown in Chapter 5 and the final results are 

shown in Chapter 6. 
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1.3 Aim, Objectives Research Contribution and Outline of Thesis 

 

1.3.1 Aim of the research 

 

The aim of the research consists of two parts: 

 Apply the control theory as an optimisation tool to develop a decision support system 

for replenishment and satisfactory performance  

 Bridge the gap between the precision of control theory and the understanding of the 

operational research community 

   

 

1.3.2 Objectives 

 

In order to accomplish the aim of the research project, the following objectives have been 

established: 

1. Identify the current practice of OR modelling of warehouse management. 

2. Identify the state-of-the-art in application of control theory to inventory modelling and 

optimisation 

3. Convert the inventory problem to control theory domain 

4. Benchmark control as an optimisation technique for replenishment decision support 

system 

5. Develop the simplified algorithm which can be easily adoptable by operational research 

community 

6. Run a number of managerial scenarios in order to improve the current practice. 

 

 

 

 

 

1.3.3 Research contributions 

 

According to their importance the PhD research contributions can be listed as follows: 

 

1. Making the model predictive control (MPC) technique available to the OR community 

via mathematical reduction – Chapter 3, Section 3.4 

Based on literature review of control techniques applied in OR and presented in Section 2.3, it 

seems that many of the authors follow the same path. All of them apply various existing 
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control techniques for a range of logistics models. Therefore, the accessibility of those 

techniques to OR is very limited, as it involves familiarity with control theory principles. In 

this thesis the author presents a totally different approach and shifts the research towards a 

different direction, developing the MPC inspired simplified method, which makes it instantly 

available to the OR community, but retaining the engineering precision of dynamical control. It 

is computationally significantly less consuming (as elaborated in Section 3.6) and, although 

initially developed for inventory control, it can be applicable in a wide range of other 

management/production/inventory problems. 

 

2. Demonstration of the mathematical equivalency of the reduced approach to MPC for 

the inventory model (step-by-step process) – Chapter 5 

It involves the presentation of a sequence of propositions and their demonstrations, comprising 

a whole chapter. Each proposition is a consequence of the previous one and the last one is the 

final version of the novel mathematically reduced technique. The demonstration is an 

illustration of the evolving thought process, which was inspired initially by MPC and 

subsequently applied for the inventory model. 

 

3. Quantification of benefits of MPC with application to inventory model (and as a 

consequence the benefits of the novel reduced controller, as mathematically equivalent) 

– Chapter 4 (Section 4.4), Chapter 6  

The quantification of benefits was an innovation in the OR perspective, with the reduction of 

inventory fluctuations elaborated in Section 1.1.5. The profitability of the MPC was assessed 

using a developed profit function (minor contribution).  

 

4. Establishment of limitations of new method – Chapter 6 and Chapter 7 

The method is limited to the applications where there is no constraint on order quantity. The 

limitation was recognised and justified in Chapter 6. In Chapter 7 the possible directions for 

overcoming the limitation was elaborated. It also showed that for the considered application 

the limitation becomes strength of the model (justified in Chapter 7).  

 

5. Translation of inventory problem to control theory framework Chapter 3, Section 3.2, 

the model is represented in a state space form, where the demand is treated as a disturbance, 

the system dimension refers to lead time and the deterioration of products is a time varying 
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quantity. In contrast to typical control theory approaches, the disturbance (demand) is 

subtracted from the current inventory level signal.  

 

 

1.3.4 Outline of thesis 

 

The thesis is organised in the following manner. Chapter 1 introduces the reader with 

logistics definitions, which are necessary for the understanding of further chapters in the thesis. 

It also presents the fundamental concepts and problems of logistics that the thesis addresses. It 

enables an understanding of the need for mathematical modelling of supply chain and 

inventory problems. It also justifies the thesis goal of reducing the inventory fluctuations, 

which is the reference point for performance assessment later in the thesis.  

Chapter 2 presents the literature review of a general OR approach and the more specific CT 

approach in logistics problems. It shows the variety of techniques and approaches to logistics 

systems modelling in the OR community. It highlights the gap in the OR approach and justifies 

how CT can effortlessly bridge the gap. Chapter 2 also allows the reader to see that the CT 

approaches found in the literature of inventory problem follows the same path initiated by 

Simon (1952). Therefore, in Chapter 2 the need for shifting towards a different direction is 

justified. The main contribution of the thesis (see point 1 Section 1.3.3), starts a new route 

which will hopefully be chosen by other researchers in the future.  

Chapter 3 presents the translation of the inventory problem to the CT framework. It shows 

both, the continuous time and discrete time preliminary modelling. It also presents the first 

research attempts of the application of CT algorithms (Smith predictor in Section 3.2.3.1). 

Further, the model predictive control approach is shown in Section 3.3. Although the novel 

mathematically reduced controller is presented immediately after the model predictive control 

in Section 3.4, in the time scale of the research evolution the novel controller development 

(shown in Chapter 5) took place between these two milestones of Section 3.3 and Section 3.4. 

The novel algorithm, although inspired by model predictive control used for the inventory 

model, transpires to be a minimum variance approach, or dead beat controller with an 

incorporated Smith predictor. Although the reduced form was initially inspired by model 

predictive control, the final formulation which is essentially an optimal dead beat controller 

with Smith predictor appeared to be immensely beneficial. It’s perceived limitation (of lack of 

order size constraints) was in fact found to be the controller’s advantage, for which 

justification is shown in Chapter 7. 
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Chapter 4 is a natural consequence of Chapter 3. It shows the simulation results of each 

modelling stage shown in Chapter 3. It justifies the decision of the abandonment of the Smith 

predictor applied independently. It shows how the simulation results inform and redirect the 

research with new attempts to appropriate algorithm selection, to finally complete the cycle 

and obtain the dead beat controller, with incorporated Smith predictor. This is mathematically 

equivalent to the model predictive control applied for the inventory model when the tuning 

parameter is set to zero. Chapter 4 justifies the initial inspiration of model predictive control 

applied to the inventory problem and shows the equivalency in results between the original 

model predictive control and the developed/proposed novel controller.  

Chapter 5 presents the process of recognising model predictive control patterns in 

mathematical descriptions and in obtaining the mathematically reduced equivalent formulation. 

As a sequence of propositions and their demonstrations the overall process of reaching the 

final mathematically reduced novel controller is shown. 

Chapter 6 presents the results of the proposed method in respect to different numerical 

settings.  

Although the lack of order constraints has been considered an advantage of the model in 

this particular application, Chapter 7 discusses possible future directions in order to overcome 

this limitation. Instead of finding the mathematically equivalent controller, the chapter 

proposes a good estimation in the case when the model predictive control tuning parameter is 

non-zero. It can be applied straightforwardly by the OR community and the generated results 

are very similar to the original model predictive control.  

 

 

1.3.5 Publications 

 

A list containing publications of the author is  presented in Appendix II – List of publications 

and other academic activities. The publications were gradually reflecting every achieved 

milestone of the research. (Orzechowska, Burnham, and Petrovic, 2011a) was presented at an 

OR conference and the publication highlighted the advantage of the application of control 

theory to inventory modelling based on a literature review (which was particularly inspired by 

the Smith Predictor application of Ignaciuk and Bartoszewicz 2010b) and some preliminary 

experiments with continuous model predictive control combined with the Smith predictor. 

After the presentation, one question provided inspiration for the rest of the research. Being 

asked, if control engineering should be taught on OR courses. It was understood then, even 
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better, that the OR community needs a tool which will maintain control engineering 

advantages but should be straightforward and understandable in OR terms. As a response 

(Orzechowska, Burnham, and Petrovic, 2011b) focused on convincing the control community 

to apply their method to inventory problems in a manner which would be acceptable by OR 

experts. The paper presented the application of continuous and discrete-time model predictive 

control with an incorporated Smith predictor. As consequence of this conference presentation a 

new international collaboration with Prof. Bartoszewicz, the author of the paper which 

significantly influenced the research in the beginning (Ignaciuk and Bartoszewicz, 2010b).  

The next step was a journal review paper of control techniques applied to supply chain 

management. Having already been particularly interested in model predictive control at that 

stage, the main part of the review was devoted to that technique (Orzechowska, Bartoszewicz, 

Burnham and Petrovic, 2012a).  

The first steps of the mathematical reduction process of discrete model predictive control can 

be found in (Orzechowska, Bartoszewicz, Burnham and Petrovic, 2012b). The accomplished 

mathematically reduced controller for non-perishable goods only was presented in 

Orzechowska, Bartoszewicz, Burnham and Petrovic (2012c). The first steps of the perishable 

goods in mathematical reduction form can be found in Orzechowska, Bartoszewicz, Burnham 

and Petrovic (2013a). The completed mathematically reduced controller, applicable for both, 

perishable and non-perishable goods was presented at an OR conference (Orzechowska, 

Bartoszewicz, Burnham and Petrovic 2013b) and a control theory conference (Orzechowska, 

Bartoszewicz, Burnham and Petrovic 2013c). The first one presented the research from an OR 

point of view, focusing on performance, results and simplicity. The second one focused on 

demonstrating the equivalency of the original model predictive control and the mathematically 

reduced model.  

 

 

1.4 Summary 

 

The current chapter presents an introduction to logistic science. It is aimed at familiarising 

the reader with relevant terms and management strategies necessary to understand the research 

application. It also highlights the problems that usually occur within logistics. Special focus is 

devoted to the inventory issues and corresponding management strategies as it relates to the 

research application.  
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As previously mentioned, there are several reasons for holding inventory within the 

distribution arms of supply chains. Among others, the inventory provides a buffer between the 

supply and customer demand in response to dynamic demands and lead times. It ensures a high 

service level, which is crucial for a company to survive in a competitive market. Although, the 

inventory holding is convenient for a company, it generates an expense, which has already 

been recognized as one of the highest logistics costs. Surplus inventory holding also causes 

problems also brings indirect costs as it affects the work flow in other areas. A replenishment 

system requires an appropriate balance between customer demand satisfaction and stock 

keeping expenses to be achieved with due consideration to system dynamics. Taking into 

account, only two such system uncertainties, including unpredictable demand and lead time 

delay, managing replenishment inventory without application of an engineering decision 

support framework becomes a complex process. This often results in uncontrolled inventory 

level fluctuations, which in turn lead to several other problems such as deterioration of 

products, variation in storage costs, extension of storage capacity and/or backorders. 

As logistics is a relatively new field of science there is still a huge scope for further 

improvements. Due to the many of constraints in the real world scenario the developed 

theoretical and analytical techniques used in inventory replenishment design usually focus on a 

few selected aspects of the actual logistics systems and usually only achieve a trade-off 

between the theory and practice.  

The conclusion that can be drawn is that the complexity of the cost-benefits balance 

achievement justifies the need for the development of decision support systems. Since the 

1940s the logistics operations have elicited the attention of operational researchers using more 

sophisticated methods in designing more efficient logistics systems. The science of 

mathematics possesses a set of optimisation techniques which can be applied to improve the 

logistics performance decision making or/and cost reduction. It is sufficient to represent the 

existing problem in a mathematical language of variables and equations to enable the 

application of the techniques. The literature review, Chapter 2, is devoted to elaborating the 

history and the state-of-the art of logistics system design with special focus on inventory 

replenishment. 

The aim of the research is to use mathematical techniques of control theory to solve 

inventory problem.  
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2 LITERATURE REVIEW 

 

2.1 Introduction to an academic approach to supply chains 

The expansion and globalization of companies can be widely observed in everyday life. 

Barely anything is produced locally in today’s world. The productions sites are located in one 

country, management in another and the distribution network expands worldwide. What is 

more, the competition becomes stronger in a global market, as it develops dynamically and 

grows fast. Such a dynamic environment requires continuous improvement from the 

company. Lack of improvement in this context leads to recession and will eventually exclude 

the company from the market (Rushton, Croucher and Baker, 2006). This new situation 

compels the company managers to continuous rethinking of the company processes, policies, 

strategies, structures etc. The need to innovate ideas has become a matter of utmost 

importance not only within the company’s core tasks but also in all processes enabling the 

completion of core tasks; logistics is one of them. Although logistics enables expansion of 

companies in terms of organisation and design of goods flow, it generates additional, not 

necessarily value-added expenses with respect to details as discussed in Chapter 1. The 

awareness of possible cost reduction in logistics processes, particularly in inventory holding, 

becomes crucial in times of market globalisation. The new logistics strategies are 

continuously developed by both industrial and academic communities, and find their 

application in global corporations as well as medium and small businesses. The industrial 

strategies have been introduced in the previous chapter (Chapter 1). The current chapter 

presents the academic approach to logistics systems improvement and optimisation with 

special focus on inventory management and replenishment. It is observed that inventory 

replenishment optimal policy design has gained increased attention in the field of operational 

research in recent times. 

Though the origins of the application of regulation theory in the field of logistic systems 

control can be dated back to the 1950s there have been a relatively limited number of 

researchers dedicating their attention to this issue until recently. Therefore, the discussion of 

control methods in logistics, without mentioning the well-established techniques of the 

operational research field, would not give the reader a holistic view of the topic, disregarding 

the strengths and weaknesses of control methods. Thus, the chapter has been organised as 
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follows. Firstly, an overview of OR techniques applied to overcome problems faced in logistics 

is presented. Secondly, the application of the control oriented techniques addressed to different 

logistics operations is discussed. Here, the main focus of attention is given to the inventory 

replenishment application, as this is relevant to the current research topic. Furthermore, the 

strengths and weaknesses of the discussed techniques in replenishment systems are listed with 

respect to model complexity and adequacy of the model to the case of real-world applications. 

The further sections of the chapter focus on control theory applications related to logistics, 

mostly inventory systems, and the gaps in knowledge are identified.  

Equation Chapter (Next) Section 1 

2.2 Operational Research Techniques 

There are many techniques applied in the field of operational research to find optimal or 

quasi optimal solutions for a particular problem. The mathematical methods or simulation 

based methods or the combination of both can be found in the academic literature. 

Mathematical methods consist of mathematical optimisation (commonly mathematical 

programming) and other algorithms, among which the genetic algorithm plays a major role.  

Mathematical programming, which includes linear programming, nonlinear programming, 

convex programming, geometric programming, integer programming, dynamic programming, 

quadratic programming and many others, refers to building a mathematical model with an 

objective function which minimises cost or maximises profit, and the equality and inequality 

constraints representing the physical constraints of the system. Since a real system has many 

uncertainties the mathematical description of the system usually requires some initial 

assumptions and simplifications.  

A genetic algorithm (GA) is an iterative technique of searching for better solution(s) with 

close proximity to the optimal solution. In a similar manner to a natural selection process, a 

GA selects better solutions from populations of possible solutions and then combines them 

together with each other to breed a new generation of solutions. Just as in a natural selection 

process, the new generation of solutions becomes closer to the optimal value. The procedure is 

repeated until satisfactory results are obtained.   

 Simulation is another approach used for system design or process reengineering. Although 

it allows for relatively more complex model building than the pure mathematical methods, it is 

not typically meant to find the optimal solution. Rather than that, it enables deep system 

analysis, performance evaluation and experimenting with different scenarios for finding 
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satisfactory results. For instance Hachicha et al. (2010) use simulation for performance 

evaluation in multi-stage, multi-product, multi-location and multi-resources within a 

production system. The objective is to find better lot sizes of each of the products being 

manufactured. Simulation can also be combined with different optimisation techniques such as 

a GA, applied for instance by Kochel and Nelander (2005) in a multi-echelon inventory 

problem or scatter search applied by Keskin, Melouk, Sharif and Ivan (2010) for an integrated 

vendor selection and inventory problem.  

 

The reviewed models proposed in the operational research literature are briefly discussed in 

the current section under six categories: inventory modelling, supply chain management, 

routing/transportation problem, distribution network design, optimal packing, and 

manufacturing/scheduling problems. Therefore the presented papers are discussed with respect 

to their field of application as well as techniques applied. The considered techniques are: linear 

programming, other mathematical optimisation techniques (such as nonlinear programming, 

integer programming, convex programming, stochastic programming, dynamic programming 

and heuristic methods), simulation and genetic algorithm. All of the discussed papers are 

contained in Table 2-1 with respect to applied method and applications. 

 

 

 

 Linear 

programming 

 

Other 

mathematical 

optimisation 

techniques 

Genetic 

algorithm 

Simulation 

Inventory (Janssens and 

Ramaekers, 

2011), 

(Amaya, 

Carvajal, and 

Castaño, 

2013) 

(Padmanabhan 

and Vrat, 

1990) 

(Samadi, 

Mirzazadeh 

and Pedram, 

2013) 

(Zhang, et al. 

2012), 

(Guchhait, 

Kumar, Maiti 

and Maiti, 

2013), 

(Chun-Wei 

and Hsian-

Jong, 2011) 

(Kochel 

and 

Nelander, 

2005), 

(Kochel 

and 

Nelander 

2005), 

(Keskin, 
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Melouk, 

Sharif and 

Ivan, 2010), 

(Healy and 

Schruben, 

1991) 

Supply chain 

management 

(Bilgen, 

2010), 

(Peidro et al., 

2010). 

(Paksoy, 

Özceylan and 

Weber, 2010), 

(Cintron, 

Ravindran and 

Ventura, 

2010), 

(Poojari, 

Lucas and 

Mitra, 2008) 

(Zhang, 

Zhang, 

Caiand 

Huang, 

2011), (Seo, 

Jeong, Lee, 

Lee and Park, 

2012), 

(Kaijun and 

Xiangjun, 

2012) 

(Kharazi 

and 

Jandaghi, 

2011), 

(Siddiqui, 

Khan and 

Akhtar, 

2008), 

(Long, Lin 

and Sun, 

2011) 

Routing (Chien, 

Balakrishnan 

and Wong, 

1989), 

(Adelman, 

2003), 

(Adelman, 

2004) 

(Berman and 

Larson, 2001), 

(Lee, Moon, 

and Park, 

2010), 

(Golden, 

Assad and 

Dahl, 1984) 

(Jiang, Wang, 

and Ding, 

2013), (Lin, 

and Yeh, 

2013) 

(Suzuki, 

2011), (Lau 

et al. 2009) 

Supply network 

design 

(Bilgen, 

2010), (Peidro 

et al. 2010) 

(Cintron,  

Ravindran and 

Ventura, 

2010), 

(Poojari,  

Lucas and 

Mitra, 2008) 

(Lin, and 

Yeh, 2013), 

(Che, Chiang 

and Che, 

2012), 

(Zhang, Cai 

and Huang, 

2011) 

(Long, Lin 

and Sun, 

2011), 

(Turhan, 

Vayvay and 

Birgun, 

2011) 
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Picking/packing (Bidgoli, 

2010), 

(Roodbergen, 

and Koster, 

2001a), 

(Roodbergen, 

and Koster, 

2001b), 

(Roodbergen, 

and Koster, 

2001c) 

(Roodbergen, 

Sharp, and Vis 

2008), 

(Smolic-

Rocak, et al., 

2010), (Hall, 

1993), (Gu, 

Goetschalckx, 

and McGinnis, 

2007) 

(Khanlarzade, 

Yegane and 

Nakhai, 

2012) 

(Serna and 

Pemberthy, 

2010) 

Manufacturing (Bard and 

Nananukul, 

2010), 

(Winston, 

1998) 

(Yong, Wang, 

Lai, 2009), 

(Lee and 

Yoon, 2010) 

(Svancara, 

Kralova and 

Blaho, 2012), 

(Qiao, Ma, Li 

and Yu, 

2013) 

(Kumar and 

Sridharan, 

2010), 

(Božičkovié 

et al., 2012) 

Transportation  (Chien, 

Balakrishnan 

and Wong, 

1989) 

(Adelman, 

2003), 

(Adelman, 

2004),  

(Berman and 

Larson 2001), 

(Golden, 

Assad and 

Dahl, 1984) 

(Jung and 

Mathur, 2007) 

 

(Jiang, Wang 

and Ding, 

2013), ( Lin 

and Yeh, 

2013) 

 

Table 2-1: The OR techniques applied in logistics processes modelling 

 

 

 

2.2.1 Transportation supporting models 

 

The purpose of transportation in logistics is to link facilities within the logistics system and 

provide a flow of goods starting from the manufacturer to the end customer (Ghiani, Laporte 

and Musmanno, 2004). The movement of goods, regardless of the transportation mode being 
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utilised, generates significant costs to the company. Motor vehicles (lorries, trucks, vans, cars) 

are regarded as the most commonly used transportation mode in a supply chain due to motion 

flexibility in the well-developed road network (Rushton, Croucher and Baker, 2006). As the 

most often used mode, it is also the most commonly targeted mode for a potential cost 

reduction in supply chain network design.  

 

The most common approach towards transportation cost reduction is the Vehicle Routing 

Problem (VRP), which tends to optimise the total vehicle route length under the constraints 

and requirements of the distribution system: structure of the supply chain network, customer 

requirements, vehicle capacity etc. Several researchers (e.g. Chien, Balakrishnan and Wong 

(1989) and Adelman (2003, 2004)) have dedicated their work to the aforementioned problem, 

and designed routing models, employing linear programming as an optimisation technique. 

Berman and Larson (2001), in turn, applied dynamic and stochastic programming methods to 

find optimal vehicle paths, while Golden, Assad and Dahl (1984) and Jung and Mathur (2007) 

focused on heuristic analysis of the problem. Jiang, Wang and Ding (2013) and Lin and Yeh 

(2013) approached the routing problem by applying a genetic algorithm. The simulation based 

models optimising the vehicle routes, in turn, appeared in papers of Clarke and Wright (1964) 

and Schwart, Ward and Zhai (2006). A few papers presented the routing problem in 

combination with supply chain design (e.g. Lee, Moon and Park (2010)) or inventory 

management (e.g. Golden, Assad and Dahl (1984) and Jung and Mathur (2007)).  

 

 

2.2.2 Supply chain management supporting models 

 

The supply chain design involves both movement as well as storage of goods and therefore 

almost any single logistics aspect can be considered in this category (Mentzer, 2001). For this 

reason the problem can be considered as a multi-objective optimisation. Nevertheless, for the 

purposes of this section, the supply chain modelling and optimisation should be understood in 

terms of performance measures of supply chain networks. Allocation of facilities, inventory 

optimisation and routing of vehicles and integrated multi-objective models have been 

presented in several papers. Bilgen (2010) and Peidro et al. (2010) proposed fuzzy linear 

programming models for optimal supply chain design. Paksoy, Özceylan and Weber (2010), 

developed a mixed integer programming model to find the minimal inventory holding costs, 

transportation costs and the vacant capacity of a warehouse. While developing the model, 
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several factors were taken as constraints: appropriate distribution centres assigned to 

appropriate customers, storage capacity, demands and throughput of suppliers. Also other 

mathematical programming techniques such as pure integer programming (as in the case of 

Cintron, Ravindran and Ventura 2010) and dynamical programming (for instance Poojari, 

Lucas and Mitra, 2008) can be commonly found in the literature. The supply network planning 

and design can be found in papers of Lin and Yeh (2013), Che, Chiang and Che, (2012) and 

Zhang, Zhang, Cai and Huang (2011) using the genetic algorithm as an optimisation method. 

In the papers of Bottani and Montana (2010) and Wangphanich, Kara and Kayis, (2010) the 

simulation based approach to this topic can be found.  

 

 

2.2.3 Picking-packing supporting models 

 

The picking and packing problem refers to several issues: the optimal or near optimal 

warehouse design, which would allow for quick stock picking based on pickers path reduction, 

pickers routing problem, order-picking policies, allocation of inventory, optimal fitting of the 

stock in the transportation vehicle, including pallet design and packing etc.  

The picking costs have been recognized as one of the highest costs among warehousing 

costs, approximately 50-75% of the total (Coyle et al., 1996). It refers mostly to labour costs, 

therefore the optimisation of the picking time problem is often presented in the literature. 

Although the automation of the picking processes definitely brings significant cost reduction, 

the manual order-picking still plays a major role, due to diversity in the size and shape of 

warehouse stock (Bidgoli, 2010). Therefore several models have been developed in order to 

facilitate optimal order picking system design. Roodbergen, Sharp and Vis (2008), for 

instance, developed a linear programming model using statistical estimation of walking 

distances of pickers. Hall (1993) optimised the order-picking path within one warehouse block 

only. Smolic-Rocak et al. (2010), however, built the shortest path dynamic programming 

model for a given entire warehouse layout. In the work of Gu, Goetschalckx and McGinnis 

(2007) the optimisation of a picker’s travel routes was achieved by optimal assignment of 

products to particular storage locations. 

Gagliardi, Renaud and Ruiz (2007) created a discrete event simulation-based model aimed 

at improvement of warehouse performance at picking and storage operations. It addresses the 
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concerns of design of the storage areas and picking characteristics. The storage allocation 

influence on the warehouse’s performance is discussed in the paper. Different scenarios are 

compared and evaluated to obtain the best results. The picker performance has significantly 

increased with optimal design of the storage area.  

Petersen and Aase (2004) presented a simulation-based model of the existing picking area 

which was designed to improve the order-picking process with respect to both reduced cost 

and increased performance. The sensitivity analysis involved the experimentation with the 

shape of the warehouse, size of order, warehouse layout, pickers routing and the location of 

products in the storage area. In view of the former, the researchers presented several methods 

of picking to identify which of the examined methods brought the most improvement to the 

picking process. It concluded that batch-picking grossly affects the cost reduction in a given 

system.  

 

2.2.4 Manufacturing supporting models 

 

Production modelling refers to two issues here, namely the minimisation of total production 

cost based on inventory, delivery and planning as well as production scheduling. The first issue 

was addressed in the paper of Bard and Nananukul (2010). The linear programming model of a 

single product manufacturing system was built by considering the production capacity limits. 

Another linear programming model was introduced by Winston (1998). It considered a one-

product inventory-production planning system. The demand was assumed to be known in 

advance, which made the model unrealistic and not applicable for most of real life scenarios. 

Yong, Wang and Lai (2009), in turn developed a convex programming production-inventory 

model for deteriorating products in order to obtain optimal scheduling of the production of 

goods being sold in multiple markets with different peak seasons. Lee and Yoon (2010) 

introduced an integer programming model to identify the optimal production schedule in 

addition to batch sizes to minimise the total work-in-progress inventory cost. The genetic 

algorithm approach to optimal manufacturing system design and scheduling can be found in 

Svancara, Kralova and Blaho (2012) and Qiao, Ma, Li and Yu (2013).  
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2.2.5 Inventory and replenishment supporting models 

 

 

The inventory or replenishment problem is usually approached by computing the optimal 

order quantity or economic order quantity (EOQ). Regardless of the company strategy, usually 

the aim is to minimise the storage cost by the reduction of inventory held in the warehouse. 

This frequently results in more regular orders and deliveries. Different strategies are applied, 

depending on the type of product, to achieve the appropriate balance between maximising the 

chances of demand satisfaction and minimising the inventory. The linear programming 

(Janssens and Ramaekers 2011, Amaya, Carvajal, and Castaño, 2013) and other mathematical 

optimisation models - for instance the non-linear programming (Padmanabhan and Vrat, 1990) 

and fuzzy geometric programming (Samadi, Mirzazadeh and Pedram, 2013) - can be found in 

the literature. The reviewed models are discussed according to a few key criteria as listed 

under the bullet poits below. The more realistic the assumptions used while developing the 

model, the more complexity is added to the mathematical description. For this reason many 

authors have focused on less realistic assumptions, which is reasonable when considering the 

complexity of the mathematical description. The references presented in the categories below 

have been given additional local reference numbers in square parentheses ‘[ ]’ for ease of 

presentation in Table 2-2.  

 

 

 Nature of demand - whether it is deterministic, stochastic or totally random. 

The models built under the assumption of having a prior knowledge about future demand 

are applicable only in a limited number of real world cases. Although, in real case scenarios 

the demand is usually not fully predictable, there might be some demand prediction done based 

on past data records, for instance with regard to seasonality of products. Though, the EOQ 

modelling for deterministic demand is rarely applicable in industry, it can be observed that 

there are relatively few academic papers, which present the demand as totally unpredictable 

and unknown. Deterministic demand can be found in models of Avinadav and Arponen (2009) 

[2], Chung and Liao (2009) [3], Hsu and Wen-Kai (2009) [4], Panda, Saha and Basu (2008) 

[5], Konstantaras and Skouri (2010) [8], Ghiani, Laporte and Musmanno (2004) [11] and 

Chungt (1998) [12]. The stochastic demand consideration can be found in papers of Madadi, 

Kurz and Ashayeri (2010) [6], Baumol and Vinod (1970) [7], Edwin, Cheng, and Wang (2007) 



35 

 

[9] Strack and Pochet (2010) [10], Xiong and Helo (2006) [13] and Ehrhardt (1997) [14]. The 

random demand is less common in the literature and can be found for instance in Dutta, 

Chakraborty and Roy (2005) [1]. 

 

 Nature of lead time – whether it is considered to be different than zero, fixed or 

variable.  

The importance of considering the non-zero, albeit fixed lead time was appreciated in the 

literature by many researchers (Chakraborty and Roy (2005) [1], Avinadav and Arponen, 2009 

[2], Chung and Liao, 2009 [3], Hsu and Wen-Kai, 2009 [4], Panda, Saha and Basu, 2008 [5], 

Konstantaras and Skouri, 2010 [8], Ghiani, Laporte and Musmanno, 2004 [11], Chungt, 1998 

[12], Madadi, Kurz and Ashayeri, 2010 [6],  Baumol and Vinod, 1970 [7], Edwin, Cheng, and 

Wang, 2007 [9], Strack and Pochet, 2010 [10] and Xiong and Helo, 2006 [13]). The papers 

published under the assumption that lead time is negligible and goods appear in the warehouse 

/ factory the moment orders are placed, are still prominent in recent literature (Stadtler and 

Sahling, 2013). Such an approach seems suitable for some particular companies. Nevertheless 

the range of applications of models based upon such an assumption is narrower. In the most 

optimistic scenario the lead time is fixed and known in advance. Although having a fixed lead 

time often simplifies the mathematical description of the model the consideration of a varying 

lead time makes the model more realistic and easier to apply in the industry. Ehrhardt, 1997 

[14], for instance, considered varying lead time in his model.  

 

 Deterioration of products – whether not considered, fixed or increasing with time 

Not every product is perishable, therefore there is not a need to consider the deterioration of 

products at all times. For instance the following authors developed the inventory models for 

non-perishable products: Chakraborty and Roy (2005) [1], Konstantaras and Skouri (2010) [8], 

Ghiani, Laporte and Musmanno (2004) [11], Chungt (1998) [12], Madadi, Kurz and Ashayeri 

(2010) [6],  Baumol and Vinod (1970) [7], Edwin, Cheng, and Wang (2007) [9], Strack and 

Pochet (2010) [10], Xiong and Helo (2006) [13], Ehrhardt (1997) [14]. However, if one wants 

to make the model more universal and applicable in the perishable and non-perishable 

industry, the deterioration of goods should be taken into account. A fixed deterioration rate 

might be realistic for some products. For instance all yoghurts produced on one particular day 

will expire on one the same day. The appropriate models for such a scenario can be found in 
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Avinadav and Arponen (2009) [2], Chung and Liao (2009) [3], Hsu and Wen-Kai (2009) [4], 

Panda, Saha and Basu (2008) [5]. If the model allows for the deterioration rate to vary over 

time it makes the model more realistic for the same type of products (for e.g. fruits, which do 

not have a shelf-life). Such models become more frequently encountered in the literature: 

Sarkar and Sarkar (2013), Sett, Sarkar, and Goswami, (2012) or Sarkar, (2012). 

 

 Number of products considered 

The single-product models, though relatively popular in the literature, such as in the paper 

of Avinadav and Arponen (2009) [2], Chung and Liao (2009) [3], Chakraborty and Roy (2005) 

[1], Hsu and Wen-Kai (2009) [4], Panda, Saha and Basu (2008) [5], Madadi, Kurz and 

Ashayeri (2010) [6],  Baumol and Vinod (1970) [7],  Konstantaras and Skouri (2010) [8], 

Ghiani, Laporte and Musmanno (2004) [11], Chungt (1998) [12] and Ehrhardt (1997) [14], are 

sutable only for a limited number of industrial applications. The multi-product models, such as 

those presented by Li, Edwin, Cheng, and Wang (2007) [9] Strack and Pochet (2010) [10] or 

Xiong and Helo (2006) [13], bring out the advantage of broader applications in real life case 

studies.  

 

 Static or dynamic model 

The disadvantage of many models introduced in the literature is the fact that they conduct 

the optimisation for one period ahead only (Chakraborty and Roy (2005) [1], Avinadav and 

Arponen, 2009 [2], Chung and Liao, 2009 [3], Hsu and Wen-Kai, 2009 [4], Panda, Saha and 

Basu, 2008 [5], Konstantaras and Skouri, 2010 [8], Ghiani, Laporte and Musmanno, 2004 [11], 

Chungt, 1998 [12], Madadi, Kurz and Ashayeri, 2010 [6],  Baumol and Vinod, 1970 [7], 

Edwin, Cheng, and Wang, 2007 [9], Strack and Pochet, 2010 [10] and Xiong and Helo, 2006 

[13]).  or find the optimal order quantities for several periods ahead based on initial 

information (Ehrhardt, 1997 [14]). The dynamic models bring the advantage of conducting the 

on-line optimisation by updating current information at every time instance. They are rarely 

found in mathematical optimisation literature:  Hung, Chew, Lee and Liu (2012). 

Also, additional aspects to those mentioned can be found in the EOQ based models. Several 

models are incorporated within the delivery costs (e.g. (Madadi, Kurz and Ashayeri, 2010 [6]) 
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and (Baumol and Vinod, 1970 [7])). Konstantaras and Skouri (2010) [8], for instance, 

considered a recovery inventory remanufacturing system within the model. Li, Edwin, Cheng, 

and Wang (2007) [9], in turn, incorporated the postponement policy. Strack and Pochet (2010) 

[10] considered a limited storage capacity. Laporte and Musmanno (2004) [11], considered not 

only the purchasing cost, but also the order rate costs. Chungt (1998) [12], in turn, developed 

the permissible delay in payment model. 

Considering the above listed criteria, the reality of the model can be assessed. For instance, 

the EOQ non-linear programming model developed by Avinadav and Arponen (2009) [2] can 

be assessed as follows. The inventory consists of one product type only but the deterioration of 

product is considered as a fixed shelf-life period, the lead time is fixed, the demand is 

deterministic, expressed as a polynomial function. The order is placed only when the need 

occurs, which means that the optimal order quantity might be equal to zero. It can be noticed 

that the range of applications in real life is decreased by the simplifications of deterministic 

demand and single product consideration.  

A summary of the criteria in respect to the paper references can be found in Table 2-2. 

The criteria have been split into two categories: namely basic and advanced assumptions. 

The term ‘basic assumption’ refers to those, which decrease the complexity of mathematical 

model description, hence simplify the reality, while the term ‘advanced assumption’ refers to 

more realistic modelling, which increases the model description complexity.  

 

Basic assumption: Paper index: Advanced assumption: Paper index: 

One product model: [1], [2], [3], [4], [5], 

[6], [7], [8], [9],[10], 

[11], [12], [13], [14] 

Multiple product 

model: 

[1],[2],[3], [4],[5],[6], 

[7],[8], [9], [10], 

[11],[12], [13] [14], [1 

Deterministic demand: [1], [2], [3], [4], [5], 

[6], [7], [8], [9],[10], 

[11], [12] [13],[14] 

Stochastic demand: [1],[2],[3], [4], [5], [6], 

[7], [8], [9], [10], 

[11],[12], [13], [14] 

Deterministic lead 

time: 

[1], [2], [3], [4], [5], 

[6], [7], [8], [9], [10], 

[11], [12], [13], [14] 

Stochastic lead time: [1],[2],[3], [4],[5],[6], 

[7], [8],[9],[10], [11], 

[12], [13], [14], [14] 

Deterioration of 

products not 

considered: 

[1], [2], [3], [4],[5], 

[6], [7], [8], [9], [10], 

[11], [12], [13], [14] 

Deterioration of 

products considered: 

[1], [2], [3], [4], [5] 

[6], [7],[8],[9],[10], 

[11], [12],[13], [14], [1 
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Static model: [1], [2], [3], [4], [5], 

[6], [7], [8], [9], [10], 

[11], [12], [13] [14] 

Dynamic model:  [1],[2],[3], [4],[5],[6], 

[7], [8],[9],[10], [11], 

[12], [13], [14], [14] 

Table 2-2: The accuracy of OR models applied in replenishment system optimisation 

 

 Based on the presented examples drawn from the literature, it can be concluded that the 

simplicity of the mathematical description prevails at the expense of the accuracy of the actual 

system representation. 

 

 

2.3 Application of Control Theory to Logistics 

 

The current chapter concentrates on those control theory techniques, which have been found 

in the literature of logistics in general and inventory in particular. It also justifies the 

applicability and advantages of control theory to logistics and production systems. Finally the 

model predictive control applications in replenishment systems only are discussed separately 

(as shown in Figure 2-1). 

Although the fundamental concept in control theory of a feedback loop is a natural property 

of any real life system, it is not necessarily visible in non-engineering fields. Nevertheless, if 

attention is given, it can be realised that the feedback loop exists in almost every environment, 

starting from biological evolution, to human behaviour, to decision making to business 

development. It can be noticed that every improvement is based on taking a corrective action 

with respect to the current situation. The corrective actions (which can be defined as system 

inputs for control modelling purposes) are taken according to the obtained outcome (which can 

be defined as a system output) and are often affected by independent reasons (system 

disturbances). Therefore the current information is fed back to the system for future decision 

making / adjustment, which enables straightforward consideration of system dynamics. Just as 

in the case of pure engineering systems, where the error signal in the negative feedback loop is 

used to reduce the unstable fluctuation of the output signal, the same can be done in non-

engineering disciplines as well. It is just a matter of finding an appropriate mathematical 

representation of the system in the control theory domain. Therefore the inventory or 

production system can be represented as a feedback loop too. Once this representation is 

obtained, the appropriate control can be applied to improve the overall system performance or 
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profitability. Control theory, in fact, offers a sufficient range of mathematical techniques that 

facilitate modelling and control of inventory-production systems, which makes it worthwhile 

focus. Utilisation of control theory can be a major breakthrough for decision making within the 

dynamic nature of the manufacturing supply chain industry.  

 

Figure 2-1: Narrowing the scope of the research 

 

 

 

2.3.1 Historical review 

 

The section herein provides a historical review of the first contributions made in the 

application of contol theory to logistics. The origins of application of regulation theory in the 

field of logistic systems control can be dated back to 1950’s, when Simon (1952) applied the 
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servomechanism algorithm to support the replenishment policy in a continuous single product 

inventory control system. The representation of inventory features, such as inventory level or 

order quantity, as system signals in the control theory domain brought an immediate 

substantial advantage in realistic inventory system modelling. Nevertheless the model was 

continuous, which makes its application somewhat limited. As a response, the discrete-time 

model with the application of servomechanism theory was presented by Vassian (1954) a few 

years later. The state space representation as well as the block diagram of an inventory system 

was introduced and control engineering attributes such as a transfer function, describing 

dynamics of the stock levels, reference inventory signal and feedback loop appeared in the 

above mentioned paper, to support the replenishment decision making process. The inventory 

system stability and transient response were determined. This showed the potential power of 

application of control theory techniques in inventory system modelling. Both authors, Simon 

and Vassian had applied the classic control approach to the inventory problem for the first 

time.  

The next milestone in this field was achieved by Christen and Brogan (1971), who focused 

on optimisation of the simulation model of a production system as an early contribution to 

industrial control, based on matrix analysis and the states of a system. The analytical approach 

to a weighting function, defined to obtain satisfactory results in different scenarios, gained 

some attention in the literature. This approach was continued by several researchers and many 

techniques have been developed. Among others the main contributions were made by Mak, 

Bradshaw and Porter (1976) and Bradshaw and Porter (1974). 

Forrester (1958) paid particular attention to fluctuating behaviour of inventory levels at a 

supply chain’s nodes, later called the ‘bullwhip effect’, caused, among others, lead time lags 

and instabilities. He and his successors (Roberts, 1978; Coyle, 1997) tended to control the 

industrial dynamics based on simulation of equations of motion models. In his extensive study, 

Forrester (1958) showed adverse influences of lead time delay to the scale of inventory level 

fluctuation in the following periods and in different supply chain nodes. He discussed the 

dynamical behaviour of an industrial inventory system and suggested the application of 

feedback as a control. Since that time several papers have been published which have 

contributed to the field to allow one to predict, analyse, measure and avoid the bullwhip effect 

using a regulation or control theory approach. The first block diagram representation of on 

Inventory and Order Based Production Control System (IOBPCS) model and its dynamic 
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analysis was proposed in the early 1980s by Towill (1982). The orders for the next period were 

assumed to be equal to the average orders plus a fraction of the shortage in inventory. In fact, 

Towill (1982) combined the transfer function approach with a suboptimal tuning parameter for 

the feedback gains. The demand was averaged as well, which was not necessarily practical. 

Since then the block diagram has been adopted by several researchers, see ((Wikner, Towill 

and Naim, 1991), (Agrell and Wikner, 1996), (Grubbström and Wikner, 1996), (Samanta, and 

Al-Araimi., 2001), (Braun, et al 2003), (Gaalman, 2006), (Rodrigues and Boukas, 2006), 

(Hoberg, Bradley and Thonemann, 2007), (Zafra-Cabeza et al, 2007), (Venkateswaran, 2006), 

(Aggelogiannaki and Sarimveis, 2008), (Ignaciuk, and Bartoszewicz, 2011)) for further 

research and development. In the above works a target inventory level became to be modelled 

as an input to the system and treated as a reference signal, while the order quantity was taken 

as a manipulated variable. The actual inventory level was modelled as an output of the system 

and treated as a controlled variable to use for feedback. Subsequently such an approach to 

inventory system modelling has been applied by other researchers. Several tests were 

conducted for relevant design of inventory-production systems such as stability, tracking 

ability and/or noise rejection.    

The IOBPCS model was subsequently extended and improved by adding more system 

components. Beside the already existing features, the new block diagram components inluded: 

target inventory level, feedback loop, the lead time delay, demand forecasting policy and work 

in progress (WIP). For the application of this model the forecast of demand is required, which 

is not always practical. Among IOBPCS contributions one can differentiate the continuous and 

periodic inventory level review approaches, see (Grubbström and Wikner, 1996). More details 

about the IOBPCS family and description of IOBPCS’ components have been presented in 

(Lalwani, Disney and Towill, 2006).  

Several different control theory attributes which have been used to model and analyse 

features of inventory-production systems can be found in the literature over the last decade. 

Important contributions to this scope of study have been done at Cardiff University, UK, with 

respect to control of the bullwhip effect ((Dejonckheere, et al., 2002, 2003, 2004), (Disney and 

Towill, 1996, 2002, 2003a, 2003b, 2006), (Gaalmanand and Disney, 2006), (Lalwani, Disney 

and Towill, 2006), (Potter et al., 2009), (Zhou, Disney and Towill, 2010)). In the considered 

papers, the researchers aimed at smoothing the ordering policies as well as inventory levels and 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DWikner,%2520J%26authorID%3D15082065900%26md5%3D200443d83f4c0125ae1cedac602058fa&_acct=C000057807&_version=1&_userid=7289589&md5=86b81e1105b77cbfb3c1d6cc278f24c2
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTowill,%2520D.R%26authorID%3D7007047559%26md5%3D6ee6bed81e21c3783e2e5dd83c1b3eaa&_acct=C000057807&_version=1&_userid=7289589&md5=14df8cf19318ec5d9f8c098ef9cca464
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presented the suitability of utilisation of control theory tools in terms of preventing the 

bullwhip system oscillations.   

The examples of applications of control theory attributed to inventory systems which can be 

found in the literature are as follows. Autoregressive moving average (ARMA) system 

structure has been used by several researchers for different purposes. Gaalman (2006) and 

Gaalman and Disney (2006) used an ARMA system structure to model uncertain components 

of demand. Aggelogiannaki, Doganis and Sarimveis (2008), however, used an ARMA 

structure to model inventory position and a recursive least square (RLS) estimation in terms of 

demand forecasting. A state space representation, in turn, has been used for instance by 

Gaalman (2006), for demand modelling and Rodrigues and Boukas (2006) for stock 

accumulation representation. A differential equation model approach has been used by 

Ignaciuk and Bartoszewicz (2011, 2010b) as a stock balance equation.  

The transfer function model has been commonly applied by different researchers. For 

instance Dejonckheereet. al. (2003, 2004) used it for order-up-to policy establishing with 

respect to the prevention of the bullwhip. Hoberg, Bradle and Thonemann (2007) formulated 

the transfer function of an inventory system for evaluation of the ordering signal stability with 

respect to different lead time delay values. Lin et al. (2004) presented a combined closed-loop 

transfer function representing material balance and information flow of a whole supply chain 

network.  

The controllability and observability tests of supply chain systems can be found in a paper 

of Lalwani, Disney and Towill (2006). Dejonckheere et al (2003, 2004) introduced a damping 

factor for smoothing order policy and spectral analysis to obtain demand patterns and 

frequency response of a sinusoid demand. Gaalman and Disney (2006) applied a proportional 

controller in the inventory feedback loop and described the process of tuning it to prevent the 

bullwhip effect, while Grubbström and Wikner (1996) as well as Samanta and Al-Araimi 

(2001) applied a PID controller and combined it with fuzzy logic to maintain the stock at target 

level. Also estimation techniques can be identified in inventory management literature. The 

RLS method and Kalman filter, have been used by Aggelogiannaki and Sarimveis (2008) and 

Aggelogiannaki, Doganis and Sarimveis (2008) for lead time identification and by Gaalman 

(2006) and Gaalman and Disney (2006) for demand forecasting, respectively. A contribution to 

non-zero lead time modelling and compensation in periodic review systems has recently been 

reported by Ignaciuk and Bartoszewicz in (2010a, 2010c, and 2010d). In these papers the lead 
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time delay has been taken into account in the n-th order state matrix and the optimal control 

action has been found by minimisation of a quadratic performance index.  

 

2.3.2 Model predictive approach 

 

Beside classical control techniques, which have been mentioned in the previous section the 

Model Predictive Control (MPC) has been also used as an optimisation tool by several 

researchers. The approach brings several advantages to inventory control. The MPC, being a 

moving horizon control theory technique, aims at finding the current and future control actions 

in the desired optimisation horizon, by on-line optimisation of the problem. The MPC 

approach then applies the first control action only. The system dynamics is updated at each 

sampling instant. It means that the feedback gains are updated according to the current 

situation and can be continually adjusted for non-linear models.  

Perea-Lopez, Ydstie and Grossmann (2003) developed a dynamic decision framework for a 

multi-product, multi-echelon supply chain. The supply chain model includes plant, 

warehouses, distribution centres and retail levels. The MPC technique was applied to maximise 

the profit by reduction of the negative impact of unknown demand, considered as a system 

disturbance. The demand prediction is assumed to be known in advance and used by the 

model. Nevertheless, the demand error is regularly updated based upon past and current 

information. Upstream orders are inputs of a particular echelon, while shipments represent the 

echelon outputs. The orders are transferred from upstream to downstream echelons, while the 

shipment is moving the opposite direction. Nodes are assumed to handle as many products as 

the whole system is allowed to handle.  

The model allows for consideration of many products by splitting each node to one product 

division. The received orders from the downstream nodes are accumulated during the day and 

shipped the day after, unless the inventory level is too low to satisfy the customer’s 

requirements. Any kind of transportation, such as shipment from downstream to upstream 

nodes, delivery from external suppliers or shipment of goods to the end customers, is 

completed at the end of the day when the whole day’s orders are accumulated. In the model it 

is represented as an additional term which usually is equal to zero beside the circumstances 

when the time is equal to the particular value representing the end of the day.  
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The transportation times and their costs between nodes are known with certainty. The 

authors consider two different raw material supply possibilities: the quick and costly response 

and the slow and economic response. The availability of raw sources is assumed to be infinite. 

The model objective function is related to the overall net profit and contains all cost and gross 

profits in the supply chain related to the production process, storage, transportation and sales. 

In the considered paper two optimal decision making approaches are examined, the centralised 

and the decentralised. The results showed that the centralised scenario leads the supply chain 

overall profit to be higher than in the case of the decentralised scenario.  

Braunetal (2003) developed a decision support system for a single product, six-node and 

three-echelon production-inventory system. The discrete MPC aims at finding the optimal 

order quantities (system input) for reduced inventory levels. The demand (disturbance) 

prediction is assumed to be known in advance and it is updated based on a real demand pattern. 

The reference signal of the model is assumed to be equal to the predicted demand pattern 

increased by a safety stock level. The estimated order pattern (the predicted system input) is 

used as a predicted demand pattern (disturbance) for downstream echelon. The actual current 

value of disturbance is updated at each step. Goods posted to customers are understood as 

system outputs. The author proposed semi-decentralised decision making system. The separate 

model predictive controllers are used for each of the echelons so that they are shared between 

nodes included in each particular echelon. The forecast information is used by the downstream 

nodes. The transportation times between nodes are assumed to be known with certainty. The 

more time consuming routes are chosen only when necessary. It is achieved by setting the 

target order value to zero and applying different penalties for different ordering routes in case 

the orders placed for a particular route are greater than zero. The daily shipment capacities are 

constrained as well. The backorders are considered in the model. The time unit in the 

developed model is equal to one day, which enables modelling of lead time as a system delay. 

The model has been tested for different knowledge sharing strategies. It was shown that 

sharing the forecasted demand among all the nodes and suppressing the real demand pattern is 

beneficial to the company in order to achieve smoother order patterns, lower inventory levels 

and prevent inventory level fluctuations. 

Wang, Rivera and Kempf (2007) presented the effectiveness of an MPC algorithm in 

strategic decision making in a semiconductor manufacturing process with respect to the system 

making sudden changes. In this case the MPC is only an element of a comprehensive decision 
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making policy for a single product, single line and multi echelon manufacturing supply chain, 

where a fluid analogy is applied to illustrate the flow of materials. Here work in progress with 

respect to a manufacturing process is understood as flow of fluid in a pipe, while storage areas 

accumulating goods between manufacturing processes are treated as tanks. With respect to a 

control engineering representation of the developed model, the inventory levels are understood 

as system outputs and controlled variables, the orders are treated as first system input 

(manipulated variable) and demand is treated as a second input (disturbance signal). Several 

constraints, represented as linear equations, are taken into account for optimal decision 

making. These are: production and storage capacities, magnitude of starts, inventory levels, 

manipulated variable constraints, control variable constraints and work in progress capacity. 

The aim of MPC application in this case is to maintain the inventory level at a desired set point 

and satisfy the customers’ requirements at the same time. Some uncertainties are taken into 

account in the model such as random breakdowns or mistakes of machines, which affect the 

lead time and storage levels. Therefore, the lead time is never known with certainty. To 

optimise the production scheduling, different speeds of assembling machines are considered 

and used in the model. The demand prediction is used and assumed to be similar to the average 

value of a real demand pattern. The actual demand is regularly updated.  

Tzafestas, Kapsiotis and Kyriannakis (1997) presented a MPC application for production 

planning for multi-product manufacturing systems. The aim was to minimise the total cost of 

production and advertising so that the sales and inventory are maintained at desired levels. 

Selling prices are assumed to be fixed. In this case the production rate and advertising effort 

are manipulated variables (system inputs) while inventory and sales levels are system outputs 

(controlled variables). The demand (system disturbance) is controlled by an advertising 

parameter, which allows for demand prediction. The control variables have been constrained in 

the model. The paper presents the general idea of the developed model only. The applied case 

study is not explained in detail and the structure of studied system is not presented. The 

simulation results show that after some time the model tunes to achieve satisfying outcomes.  

Li and Marlin (2009) presented the MPC decision framework to minimise the total supply 

chain costs with respect to storage costs, manufacturing costs, transportation costs and penalty 

backorders costs and at the same time to satisfy customers’ requirements. The manufacturing 

rate, of semi-finished products, plant running time and transportation rates are model 

manipulated variables. Final product manufacturing rate, lead time and demand are assumed to 
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be uncertain, which require a correlated uncertainty description. In simulation, two scenarios 

were examined: the case when demand, lead time and manufacturing rate are predicted 

correctly and the case when the prediction is not exact. The model performs very well in the 

first case while in the second case backorders occur. The reason for this is that the model tends 

to reduce inventory level to minimise costs and the inventory level is not always enough for 

the customers’ requirements. Consideration of additional safety stock level increased total 

costs but prevented backorders at the same time.  

Aggelogiannaki, Doganis and Sarimveis (2008) developed a MPC framework for 

optimisation of order quantities for production systems with consideration of system dynamics. 

Besides unknown demand, the model’s unexpected behaviour was related to breakdowns of 

machines or running out of materials. The adaptive Finite Impulse Response (FIR) model has 

been applied to approximate the production system’s dynamics. The output of the FIR system 

is production volume while the FIR system input is an order quantity. The RLS algorithm, as 

an on-line estimation technique has been used to estimate FIR model coefficients, which 

change over time. The inventory balance equation is represented by an autoregressive with 

exogenous input model (ARX), where demand represents system disturbance, inventory level 

represents system output and controlled variable and orders volume represent system input and 

manipulated variable. The MPC framework employs the objective function, which aims at 

maintaining a target inventory level. In the numerical example the authors compare the 

adaptive MPC framework with the Estimated Pipeline Inventory and Order Based Production 

Control System (EPIOBPCS) of Disney and Towill (2003b) and with non-adaptive MPC. It 

was noticed that the adaptive MPC is able to respond faster than EPIOBPCS and also avoids 

oscillations, which occur in case of non-adaptive MPC. Therefore the application of adaptive 

MPC has been justified as an advantage. 
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2.4 Summary and gap identification 

 

The current chapter has familiarised the reader with the academic approach to the logistic 

problem modelling and optimisation. It has presented an overview of the methods applied in 

different logistic processes but focuses particularly on the inventory problem. From the 

literature review it can found that there are two ‘schools’ of inventory optimisation. The purely 

mathematical or business simulation based approach of the operational research community 

and the approach of the control theory community. The typical OR techniques often do not 

enable consideration of system dynamics due to increased complexity of the model. It indicates 

that the application of control theory to inventory is a reasonable path to be followed. It can be 

noticed that the application of control theory to inventory optimisation, though not a new idea, 

has not gained much attention yet, while the pure OR techniques have been exhaustively 

‘battled to death’ in literature. The sophisticated techniques of control theory, though beneficial 

in application, might seem deterrent to be broadly applied by the OR community. As a 

response, this thesis aims firstly at informing both communities of the possible benefits of 

collaboration. Secondly it aims at bridging the gap and making the control tool of MPC 

available for the OR audience. The novel method can be easily adopted by other than control 

engineering researchers. Therefore, the gap has been identified and the research aims at 

exploring its richness and goes some way towards bridging this gap. 
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3 PRELIMINARY MODELLING AND SIMULATION 

MODELS 

3.1 Introduction 

 

The current research concerns an inventory replenishment system cost reduction, which 

was decided to be achieved by maintaining the inventory at a desired level (the benefits of 

keeping inventory level at a reference point and resulting cost reduction have been discussed in 

Section 0). 

The current chapter presents the preliminary modelling of the inventory problem and the 

simulation models. It starts with elaborating the assumptions which have been used to build the 

inventory model (see Section 3.2.1). Then the process of translation of a conceptual model to 

the control theory domain is shown (see Section 3.2.2). A state space representation of the 

system (Section 3.2.3) facilitates consideration of the system dynamics (lead time delay, 

unknown demand and deterioration of products). The feedback loop enables an updating of the 

current inventory level on a sampled time instance basis and comparing it with the reference 

point.  

Further, several control techniques have been applied for the established model (see 

Sections 1.1.1 -3.3). A dead beat controller enables the mathematical verification of the state 

space model accuracy with the actual system. A special focus, however, has been devoted to 

the model predictive control technique (Section 3.3) as it yield an inspiration to develop a 

novel method within this research. Finally, the novel technique of the inventory controller is 

presented in Section 3.4. Enabling the operational research (OR) specialists to use the method 

without the necessity of familiarising themselves with control theory principles is one of the 

main attribute of this research. Equation Chapter (Next) Section 1 

3.2 Inventory Modelling 

3.2.1 Assumptions 

 

In the considered inventory system (or distribution centre) the customer demand is 

assumed to be prior unknown. The goods that are needed to fulfil the customer’s demands are 

ordered from the remote supplier with a certain delay. Such a model is usually considered in 
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inventory-production systems where the inventory model is a link between two other supply 

chain nodes such as a raw material supplier and factory or factory and wholesaler or 

wholesaler and retailer. The model allows for both scenarios - of consideration and for non-

consideration of perishable goods. The warehouse is assumed to be initially empty, as it is a 

common practice in OR literature, and a single supplier case is considered.  

  

3.2.2 Converting the inventory problem to the control domain 

 

The current section presents a way of mapping of the exemplary inventory replenishment 

conceptual system into the control theory domain. To illustrate the transformation, Figure 3-1 

shows an example of how the inventory (operational research) problem can be transformed 

into a control theory scheme. From Figure 3-1 it can be seen that the same system elements are 

labelled and understood in different ways within each domain. 

 

 

Figure 3-1: Transforming the inventory problem to a control scheme 

 

Now, the initial problem of finding the optimal order quantities (u ) to maintain an 

appropriate inventory level ( y ) with consideration of lead time ( Lse  ) and varying demand    

( d ) turns into the following formulation: designing a controller to find an optimal system 

input (u ) to maintain an appropriate system output ( y ) with consideration of system time 

delays ( Lse  ) and varying disturbances ( d ). Although in control theory literature, the 

disturbance is usually denoted as a positive signal, here it is negative, as it represents 

    
Reference 

inventory 

  

  

Decision making unit 

Demand 

DISTURBANCE 

CONTROLLER 

Lead time   

DELAY 

warehouse 

SYSTEM 



50 

 

customer demand which due to the balance equation (3.1) must be subtracted from the 

inventory.  

 

 

3.2.3 Inventory state space representation 

   

The current section presents the initial model of the distribution centre. The continuous state 

space representation refers to a balance equation of the inventory level.   

 
         

   

x t x t u t L d t

y t x t

t   




 (3.1) 

where 

( )x t   is the current inventory level (system state) 

( )u t   is the current order quantity (system input) 

( )d t   is the current demand, backorders are allowed (system disturbance) 

( )y t   is the current inventory level (system output) 

 0L   is a lead time, the time needed for goods to be received in the warehouse after an 

order has been placed (system delay)  

   0,1t   is the current goods survival rate and  1 t  refers to a time varying 

deterioration rate. The variation can be for instance dependent on the inventory level, such that 

   ( )tt y  . In any case it must satisfy  0 1t   and if backorders occur ( ( ) 0y t  ) then 

  1t  . If  t  is set to 1, the model does not allow for consideration of perishable goods. 

The condition of  t  always being greater than zero assures the survival of some goods in the 

warehouse, where t  denotes a time, and the first order is allowed to be placed at 0t  , 

 0 0 x   and  0 0y  .  
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Figure 3-2 shows the open loop system block diagram with the internal loop 

corresponding to stock accumulation. 

 

 

 

 

 

 

 

 

 

 

The next step refers to building the controller which will aim to maintain the inventory level 

at the reference level and prevent the system oscillations which are related to the lead time 

delay.  

 

 
- 

+ integrator 

 

 

 

 

Figure 3-2: Open loop inventory system (warehouse) block diagram incuding stock deteriration 
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3.2.3.1 Smith Predictor Decision Maker 

 

Because of the lead time delay, if the Smith predictor is not used, there would appear 

oscillations in the system, which in operational research terms corresponds to the bullwhip 

effect. The typical Smith predictor configuration is presented in Figure 3-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this thesis an alternative configuration of the Smith predictor (based on the non-perishable 

goods case, and developed in Ignaciuk and Bartoszewicz, 2010b) was applied in the form 

presented in the block diagram of Figure 3-4. Note that in the non-perishable good case 

 1 t  is zero, i.e.   1t  .  
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Mathematically it does not matter if 

 and  are interchaned. 

Figure 3-3: Typical Smith predictor configuration 
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The Figure 3-4 shows an alternative formulation of the Smith predictor, configured within a 

unity feedback closed loop system, where the feedback loop well is understood by the OR 

community and the Smith predictor is viewed as decision maker. The warehouse deficit is the 

‘Order signal’ which feeds into to the decision maker. In the control engineering sense the 

control action, goods ordered,  would be the output of the controller.  

The transfer function SPC  has the form as follows 

  
 

    1 1
SP Ls

C s
C s

C s G s e


 
 (3.2) 

where  C s is a selected proportional controller (i.e. gain  C s K , where K  is a positive 

constant) and  t  
1

(1 )
G s

s


 
, with   0 1t   

Figure 3-4: Smith predictor decision maker for inventory systems (block diagram) 
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In inventory control the transfer function ( )G s  corresponds to the warehouse, where the future 

inventory level becomes equal to current inventory level decreased by the deterioration value 

  increases by the number of delivered goods with a delay ( ( )u t L ) and decreased by 

number of demanded goods ( ( )d t ).  

 

The Smith predictor decision maker is included to show the complexity of the system, which 

should be ideally hidden from the OR community. It is elaborated here and in Chapter 4, 

Section 4.3, that the application of the Smith predictor as a decision maker is adequate but not 

ideal due to the perishable nature of the goods. The Smith predictor decision maker in this case 

is not tuned for the efficient handling of perishable goods (i.e. 1 ). Excluding the case 1  

or including an integrator in  C s  would improve the effectiveness of the method. However it 

would require a deep understanding of control the by the OR user, which is in opposition to the 

assumption driving the current research. As stated in this thesis the OR community requires 

simpler approaches to be developed, which does not need a deep knowledge of control to be 

applied.  

 

 

3.2.4 Discrete state space representation 

 

The above model assumes that the order quantity as well as the inventory levels are 

continuous, which is not a necessarily realistic assumption. The current section details the 

discrete state-space representation. In this formulation the lead time is taken into account and 

represented as a system delay within a state matrix. The inventory replenishment has been 

assumed to be carried out at regular intervals kT , where T  is a review period and 0,1  , 2k   

Therefore, the lead time is assumed to be an integer multiple of the review period (sampling 

interval). 

Consider the following state-space representation for the inventory system 

        1k T kT u kT d kT     x Ax b v  (3.3)     

    Ty kT kT c x  (3.4) 
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Where 

L n   is a system order and lead time delay 

  nkT x  is the state vector at time instance  kT  

 u kT     is the system input, which represents the order quantity at time instance  kT  

  ny kT   is the system output, which represents the current inventory level at time instance 

 kT  

 d kT   is a system disturbance, which represents demand (backorders are allowed) at time 

instance  kT  

n nA  is the system state transition matrix considering the lead time delay, and the time 

varying deterioration of goods denoted as    1 0,1kT   and nb , T nc , nv  are 

vectors, such that 

 

 

( ) 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
,

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 ,

1

0

0

0

1

T

kT   
   
   
   

    
   
   
   
   



 
 
 
 

  
 
 
 
 



v

A b

c

 (3.5) 

 

Note that the matrix A is always the same structure and depends only on the deterioration rate 

value and its dimension is directly related to the lead time. Should lead time fluctuate, so the 

dimension will fluctuate.  

The form of the vector v  in (3.5) assures the subtraction of the demand from the current 

inventory level. It is assumed that the inventory level  y kT  can be lower than zero, which 

corresponds to the allowance of backorders. The deterioration rate  kT  represents to the 

fraction of the total number of goods in the warehouse in the current period, which will be left 
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(i.e., will survive) in the warehouses, until the next period. The remaining fraction1 ( )kT , 

then, is the number of goods which actually deteriorates within such a period. The 

deterioration rate is assumed to be time varying and for some applications it can be reasonable 

to be dependent on ( )y kT , the current inventory level, such that    kT y kT     . It 

makes the A  matrix inventory level dependent. Defining  y kT    as a linear or non-linear 

monotonically decreasing or non-increasing function, it may be deduced that the goods are 

more likely to deteriorate in the warehouse if the number of goods increases. Regardless of the 

deterioration rate definition, it must be stressed that for any natural number k , for the 

deterioration rate such that  0 1kT   if backorders occur (   0y kT  ) then   1kT  . 

The latter condition prevents the goods to deteriorate when backorders occur.  

 

Essentially, if  kT  is set to 1, the model does not allow for the consideration of perishable 

goods. The condition of  kT  always being greater than zero assures the survival of some 

goods in the warehouse. 

 

 

 

 

 

Therefore 

1 1

2 2

3 3

1 1

( ) 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 1

0 0

0 0
[( 1) ] ( ) ( ) ( )

0 0

1 0

n n

n n

x x

x x

x x
k T kT u kT d kT

x x

x x

kT

 

 
 
 
 

 
 
 
 

       
       
       
       

          
       
       
       
           



 (3.6) 

  

1

2

3

1

( ) 1 0 0 0 0 ( )

n

n

x

x

x
y kT kT

x

x



 
 
 
 

   
 
 
 
  

 (3.7) 
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where 

( )ix kT , for  1, 2,3i n     represents the quantity being ordered at time instance  

1k n i    

 

  Therefore 

 

         

   

   

   

   

1 1 2

2 3

3 4

1

1

1

1

1

1

n n

n

x k T kT x kT x kT d kT

x k T x kT

x k T x kT

x k T x kT

x k T u kT



     

   

   

   

   



 (3.8) 

This leads to the representation as follows, where the first line refers to the inventory balance 

equation of the form: the future inventory level is equal to current level increased by the 

number of goods arriving to the warehouse at the current time instance and decreased by the 

current sale/demand.  

  

 

         

   

   

   

   

1

2

3

1

1 [ 1)

1 2

1 3

1 1

1

n

n

x k T kT y kT u k n T d kT

x k T u k n T

x k T u k n T

x k T u k T

x k T u kT



       

         

         

        

   



 (3.9) 

 

From equations (3.9) it can be deduced that the orders reach the warehouse with a delay of

1n  periods. 
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The aim of this work is to maintain the inventory at the desired level with the assumption that 

the warehouse is initially empty (  0 0x ). To do so, the reference inventory level signal, 

denoted Rx , is defined such that 

 

0

0

0

0

rx 
 
 
 
 
 
 
 
 

Rx  (3.10) 

 

3.2.4.1 A stepping stone 

 

The current section is shown to verify the correctness of discrete inventory model formulation. 

It verified by identifying what input signal must be applied to a system in order to eliminate the 

error  Re x x  in the smallest number of time steps (which in fact refers to dead-beat 

controller). In this thesis the presentation of application of Dead-beat controller and its 

simulation results do not contribute to the leading thought. Therefore the current section is 

shown as a stepping stone to further mathematical formulations rather than to show 

preliminary formulation of one of tested algorithms.  

Define the control vector 

 1 2

T

nf f ff , which will define the number of ordering items in period k  such that 

1 rx x  

   Tu kT  f e  (3.11) 

It can be deduced that  

    2

1

2

3

1

1

r

n

n

n

x x

x

x

x

x

u kT f f f



 
 


 
 
 
 
 
 
  

    (3.12) 
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The solution is to apply feedback such that all poles of the system are at the origin of the 

complex z-plane. 

Substituting (3.11) to (3.3) the closed loop system is obtained: 

 
       

     

1  k T kT kT d kT

kT d kT

           

   

R

T

T T

R

x Ax bf x x v

A bf x bf x v
 (3.13) 

 

An illustration of the closed loop system is given in Figure 3-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Defining  

 and  T T

c c
A A bf b bf  (3.14) 

it can be deduced that 

 

 
 
- 

+ integrator 

 

 

 

 

 

 

 
 

 

Figure 3-5: Dead-beat controller block diagram 

http://en.wikipedia.org/wiki/Feedback
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1 2 3 4

( ) 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

n

kT

f f f f f

 
 
 
 

  
 
 
 
      



cA  (3.15) 

 

1 2 3 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

nf f f f f

 
 
 
 

  
 
 
 
      

cb  (3.16) 

So that 

      1k T kT d kT      c c Rx A x b x v  (3.17) 

To place all system poles at the origin of the z-plane, the eigenvalues of the matrix cA  must all 

be equal to zero. 

To achieve this one considers the characteristic equation of the matrix: 

   0det  cA I  (3.18) 

Therefore from the above and (3.15) it can be deduced that 

 

1 2 3 4

( ) 1 0 0 0

0 1 0 0

0 0 1 0
0

0 0 0 0 1

n

kT

det

f f f f f

  
  

  
  

  
  
  
           

 







 (3.19) 

Expanding results in the expression  

         2 1

1

2

1 0
n

n i n

i

i

f f kT kT 



 
      

 
        (3.20) 
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Further expansion of equation (3.20) it is possible to obtain the coefficients of the vector 
T

f : 

 

        

        

         

        

           

2 1

1

2

1 2 1

1

2

2 3 2

1 2 2 3 3 4 4

1 2 1

2

1 2 2 3 3 4

1

1

1 ...

... 1

1 ...

.

n
n i n

i

i

n
n i i n

i i

i

n

n n n n

n n

n

f f kT kT

f f kT f kT

f f kT f f kT f f kT f

f kT f kT

f kT f f kT f f kT f

 



  



  

 
      

 

 
       

 

        

    

       





     

     

       

     

    

         2 1

1.. 1 0
n n n n

n n nf kT f f kT 

            (3.21) 

 

Since the steady state response is required, the poles must be settled at the origin, therefore the 

eigenvalues are assumed to be zeros.  

Therefore  

 

 

 

 

 

 

21

32

3 4

1

n

n n

f kT

kT ff

kT ff

f kT f

f

and

kT f





















 (3.22) 
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Therefore 

 

 

 

 

 

 

2

1

2

3

1

2

1

...

n

n

n

n

n

f kT

f kT

f kT

f kT

f kT



























 (3.23) 

Finally 

      
1n nT kT kT kT
  

 
  f  (3.24) 

Therefore substituting (3.23) into (3.12) it can be deduced that 

       

2

3

1

1

1
  

n

n

r

n n

x x

x

x
u kT kT kT kT

x

x





 
 


 
 

     
 
 
 
  

      

which results in  

 
           

       

1

1 2

2

3

n n n

r

n

n

u kT kT x kT x kT kT x kT

kT x kT kT x kT





   

 

  

 
 (3.25) 

 

From (3.9) 
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         

   

   

   

   

1 1

2

3

1

.

1 ) 1

1

2

 

2

.

1

.

n

n

x kT kT x k T u k n T d k T

x kT u k n T

x kT u k n T

x kT u k T

x kT u k T



         

    

    

   



 

 



 



 (3.26) 

From (3.7), and assuming that deterioration is dependent on inventory level such that 

   kT y kT      and substituting into (3.25) leads to 

 

           

       

       

1

1 2

1 )

1 2

... 1 1

n n n

r

n n

n

u kT y kT x y kT y k T y kT u k n T

y kT u k n T y kT u k n T

y kT u k T y kT d k T



 

                       

                    

                 

  

 

 

 (3.27) 

Equation (3.27) enables a one by one consideration of the few initial order quantities to be 

obtained with the proposed approach mainly for verification that the results match the logical 

expectation. Therefore, it may be deduced as it will become clear in the following, that if the 

initial state space representation is formulated correctly for the application, the dead beat 

controller achieves its goal.  

 

Initially the warehouse is assumed to be empty (  0 0y k T    ), no orders are placed for 

time instances 0k   (  0 0u k T    ) and no goods are demanded before the first order 

reaches the warehouse (   0d k n T    ). 

Considering the above assumptions from (3.27) the following may be deduced: 

Let a and b denote two arbitrary time instances, then for 1k   it can be noticed that   
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 1 0y k T    , and for any system dimension n  

 1, ) 0b n a n ba u k a T           and   1 0d k T    , therefore, recalling the 

assumption that deterioration must be set to 1 for inventory less than or equal to zero 

       0 1
n n

r au kT y kT x y kTnd             (3.28) 

As if there are zero inventories, the goods cannot deteriorate, therefore from (3.28) eventually 

   ru kT x , 1for k   (3.29) 

which is logical as the warehouse is assumed to be initially empty and the first order is equal to 

the inventory target level. 

 

Further for 2k  , if 2n   

 1 0y k T    , since the ordered goods in time step 1k   have not yet reached the 

warehouse,  1 ru k T x    , from (3.29) and from the assumptions  1 0d k T     and 

 1, ) 0b n a n ba u k a T         , therefore 

 

         

 

1 1
n

r

r r

u kT y kT x y kT u k T y kT

u kT x

and

x

     



           

 

  

 (3.30) 

Therefore in the considered time instances 

   0u kT   (3.31) 

which reflects the expectation, since until the first order reaches the warehouse, and demand is 

zero, there is no need to place new orders. 

 

Analogously for any k , such that 1 k n   
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 1 0y k T    , for such b  that 1k b     ru Tb xk    , and 

 1 ) 0a k u k a T       ,  1 0d k T     

Therefore for some  

           1
n b

ru kT y kT x y u k b T and y kT                 (3.32) 

since the warehouse remains empty until the first order reaches the warehouse at the time 

instance k n . Therefore  

   0u kT   (3.33) 

which means that there is no order placed until the first order reaches the warehouse, which 

would appear to be logical again.  

Further for 1k n   it can be observed that  

 1 0y k T    ,  as the first order reached the warehouse in the current time instance   only 

and      1 ,  ) 0ru k n T x a n u k a T             . Also a demand greater than or equal 

to zero appears.  

Therefore, 

            1
n n n

ru kT y kT x y kT y k n T y kT d k T                          (3.34) 

If   1y kT    ,  

    1u kT d k T     (3.35) 

which means that the size of the orders placed is always equal to the amount of goods which 

have been sold one period backward.  

Otherwise  

      1
n

u kT y kT d k T         (3.36) 
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which means that the number of goods chosen by the controller to be ordered is smaller than 

the number of goods demanded. This means that the demand might not be satisfied, depending 

on the chosen reference inventory level. 

 

From the above reasoning, it can be noticed that, although, the dead-beat controller is chosen 

as an optimal order quantity finder, it may not be the most profitable in the case of system time 

delay. Nevertheless, through mathematical reformulation, its construction has highlighted, that 

the inventory state space model is designed correctly, which was indeed the purpose of the 

verification.  
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3.3 Model-based Predictive Control Approach 

 

Defining   1k T   x   such that 

      1 1k T k T kT          x x x  (3.37) 

from (3.3) it follows that 

              1 1 1k T kT k T u kT u k T kT                  x A x x b vq  (3.38) 

where 

      1kT d kT d k T    q  (3.39) 

Defining  u kT , such that 

      1u kT u kT u k T       (3.40) 

from (3.37), (3.39) and (3.40) it follows 

        1k T kT u kT kT        x A x b vq  (3.41) 

To create the closed loop system, 
cx  as a new state vector is defined such that  

      
T

T
kT kT y kT  

 cx x  (3.42) 

From (3.4) and (3.41) it follows that 
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            1 1T T T Ty k T y kT k T kT u kT kT               c x c A x c b c vq  (3.43) 

so that (3.42) and (3.43) leads to new state equation 

        1k T kT u kT kT     c c c c cx A x b v q  (3.44) 

    Ty kT kT c cc x  (3.45) 

where  

 
1 1 ( 1) ( 1) 1 1, ,
1

n n n n

T T T

           
          
     

n

c c c

A O b v
A b v

c A c b c v
 (3.46) 

and 

   1

1

T n

c n



 0c I  (3.47) 

where 

   1

1 ( 1) 0 0 0 0 n

n



    0  (3.48) 

The matrices in (3.46) represent the augmented model. The prediction model uses the objective 

function of the quadratic form to optimise the future order quantities within the optimisation 

horizon so that the inventory achieves the reference level. The objective function has the form 

as follows 

    
T TJ min     R RY Y Y Y U UR  (3.49) 

where 
RY  is a reference inventory level vector.  

Defining 
cN  as the control horizon and pN  as the prediction horizon, such as pcN N ,  

c pr N ×NuR = I and 0ru   as a tuning parameter,   

U  is a control trajectory vector of future orders such that 

  ( ) [( 1) ] [( 2) ] [( 1) ]
T

cu kT u k T u k T u k N T         U  (3.50) 
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where  u k i  for 0,1, 1ci N   , are future order control signal values to be optimised.  

Y is a predicted inventory level signal represented by the vector 

          1| 2 | 3 | ... |
T

py k k T y k k T y k k T y k N k T                   
Y  (3.51) 

where  |y k i k  is the i-step ahead prediction of the inventory level vector. 

RY  defines the target inventory level signal. Assuming that  

          1 2 ... 1
T

ckT kT k T k T k N T               Q q q q q  (3.52) 

is a zero-mean white noise sequence, the predicted inventory level variables can be represented 

by the matrix form 

  kT  cY Fx Φ U  (3.53) 

where 

 

 

2

3

0 0 ... 0

0 ... 0

... 0

...c

and

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
N -1 N -2 N -3 N -Np p p

p

p c

T

c c

T

c c

T

c c

NT

c c

T

c

T T

c c

T T T

c

c

c c c

2

c c c c c

c c c c c c c

c c

T T T T

c c c c

c A

c A

c AF

c A

c

c c

c c cΦ

c

b

A b b

A b A b b

A b A b A b Ac bc c

 (3.54) 

From the above description of F  and Φ  it can be noticed that Y  shown in (3.53) is already 

extensive in description and time consuming in calculation.  
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The MPC approach uses past and current information to predict the future inventory levels. 

The optimisation of order quantities is carried out over a fixed prediction horizon pN . From 

(3.50) and (3.53) the control order quantities ΔU  can be derived such that 

    
1

T kT


    
T T

R cU Φ Φ+ R Φ Y Φ Fx  (3.55) 

Assuming that 

      1 1 1 ... 1

cN

T

R R R Ry kT y kT Y Y  (3.56) 

where
Ry  is a reference inventory level, this gives the optimal order quantity vector for the 

replenishment inventory. If not, attention is given to the size of orders during the optimisation 

process, and, as a result 0ru  , then the optimal U  for the control order signal is obtained as 

      
1

Ry kT kT

    

T T T

R cU Φ Φ Φ Y Φ Fx  (3.57) 

or 

  

      
1

Ry kT kT

    

T T T

R cU Φ Φ Φ Y Φ Fx   (3.58)  

 if 0ru  .  (3.59) 

 

Because of the MPC principle the first element of U  is applied only, such that  

           
1

1 0 0 ... 0

cN

T

Ru k y kT kT


  T T T

RΦ Φ Φ Y Φ F  (3.60) 

or 

           
1

1 0 0 ... 0

cN

T

Ru k y kT kT


 T T T

RΦ Φ+ R Φ Y Φ F   (3.61) 

is the actual value recommended to be ordered by the warehouse manager at time instance kT  

where  
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Denoting 

      R cu k y kT x kT  
y

K K  (3.62) 

such that yK is a first element of  
1

T T

RΦ Φ Φ Y  or  
1

T T

RΦ Φ+ R Φ Y  

 

 

and if 0ru   

 

   
1

1 0 0 ... 0

p c

x

N N

T

and







   

T T

y

K Φ Φ Φ F

K K K

 (3.63) 

or  

 

   
1

1 0 0 ... 0

p cN

T

x

N

and







   

T T

y

K Φ Φ+ R Φ F

K K K

  (3.64) 

if 0ru  . 

 

It can be seen that calculation of the order size which should be ordered at time instance kT  

described in the manner shown in (3.37)-(3.64), requires an understanding of control theory 

principles and might not be easily adoptable by non-control-engineering researchers and 

practitioners.  

 

In the thesis initially the tuning parameter is initially neglected, as the smoothness of order 

quantities is not in a concern of the research.   
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3.4 Novel Inventory Controller 

 

The current section introduces a novel contribution to inventory control.  The developed 

controller is non-model based yet adaptive and simple in implementation with low 

computational costs.  As previously mentioned it can be applied with only a minimum of 

control theory knowledge.  It is mathematically equivalent to MPC, applied for the defined 

inventory model as shown in equations (3.3)-(3.10). MPC applied for that particular inventory 

state space model will be termed the Inventory model predictive control (IMPC) in this thesis, 

while the developed novel technique will be termed the inventory controller (IC).  Only the 

formulation is presented in this section, further chapters show the development process, the 

mathematical equivalency and benchmarking of the new method against IMPC. 

 

Being straightforward in application, the IC attempts to bridge the gap between the 

precision afforded by methods of control theory and the expectations of the OR community.  

Finally, the developed model, being applicable with a minimum of control theory knowledge, 

appears to be applicable not only in inventory optimisation, but also in other non-engineering 

applications, such as production planning, plant or animal culture prediction, property 

insurance profit optimisation, extracurricular courses/classes planning, food restaurant 

management and many others. 

 

The IC requires the same assumptions as IMPC, of lead time delay between the moment the 

order is placed and delivery.  The inventory level is reviewed and orders are placed 

periodically, the technique is applicable for a single supplier case where demand is assumed to 

be unknown and the warehouse to be initially empty.  The goods are assumed to deteriorate 

according to a time-varying deterioration rate.  

 

The developed IC is defined in the form of the proposition, the origins of the IC proposition 

within IMPC are elaborated gradually in the following sections. 

 

 

  



73 

 

IC Proposition: 

Denoting cx as vector of the form 

 





( ) [( 1) ] [( ) ] [( 2) ]

[( 2) ] [( 1) ] ( ) [( 1)

( )

.. ] ( ).
T

= I kT I k T u k n T - u k n T

u k n T - u k n T u kT - u

k

k T I kT

    

    

cx

 (3.65) 

 

where kT  represents the thk  time instance,  I kT  represents the thk  time instance stock level 

and  u kT  defines the thk  time instance order size, and denoting  RI kT  as the reference 

inventory level at time instance kT ,  kT  as the stock deterioration rate in time instance kT  

and n  as the lead time delay, K  can be defined as the transposed vector of 1n  

dimension, where r  denotes the gain vector K  column number such that 

     1 1K K r K n     K . Then the following can be formulated:   

        
1

1

0 1

1
n r n

i i

n r

i i

K r kT K kTand
 



 

       (3.66) 

For such a formulation of vector K , the current optimal order quantity can be found as 

follows: 

 

 
     

     

0 1 0

1

R

R

if u k T I kT kT
u kT

u k T I kT kT otherwise

       
 

     

c

c

Kx

Kx

 (3.67) 

which defines the proposed inventory controller (IC). 

 

The above proposition uses the pre-defined cx  vector of past information. It proposes a 

method of calculating the gain vector K  and indicates how to use the appropriate information 

in calculating non-negative optimal order quantities. 

The advantage of the proposed method is the fact that the calculation is done on-line, 

separately for each time instance. Therefore the time-varying deterioration rate  kT  can be 

decided separately for each time instance, also the lead time can be set differently for each time 
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instance. Moreover, the deterioration rate in such a case can be judged to be dependent on the 

current inventory level  I kT    , which for some applications might be more realistic (for 

instance the higher the inventory level, the more chances of deterioration of products). 

  1 ( )I kT I kT      , where 
max

1
(0, )

I
 ). Since backorders are allowed in the 

model, the  I kT     approach enables the deterioration rate to be set back to 1, when the 

inventory level goes below zero. Therefore the non-realistic assumption, that the product can 

still deteriorate if their associated value is lower than zero, is avoided.   

 

 

3.5 Novel Method Properties 

 

It can be realised that although the novel technique was inspired by MPC and noticing the 

MPC patterns in the mathematical description, the resulting proposal is no longer MPC. It is in 

fact a minimum variance approach, or dear beat controller, with an incorporated Smith 

predictor. Note that using the adjective ‘predictive’ in the title of the thesis refers to both, the 

inspiration of MPC and the predictive nature of the minimum variance controller to 

accommodate lead time, being incorporated within an inherent Smith predictor.  

It can be noticed that the vector ( )k
c

x  of the form shown in (3.65) is the MPC augmented 

model state vector. In the OR perspective though, it is a past and current information vector of 

inventory levels and order quantities.  

The control gain vector K  of the form elaborated in (3.66) is a mathematically reduced 

form of the MPC gain. The mathematical reduction of this control vector is one of the main 

contributions of this thesis, and Chapter 5 is dedicated to the mathematical demonstration. 

Here, from an OR point of the view, vector K  can be found according to the straightforward 

procedure described in (3.66) and does not need to be related with the MPC gain to be 

understood or applied.  

The procedure for obtaining optimal order quantity  u kT , shown in (3.67) is in fact the 

MPC system input or the incremental control input shown in (3.40) of the form as in (3.62) 

bounded by a saturation condition. The OR user does not need to be concerned by the above 

fact as long as the user follows the recipe described in IC Proposition. 
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Chapter 4, Section 4.5 and Chapter 6 present the model response to different demand 

patterns, different deterioration rates and different lead time delays.  

 

3.6 Novel Methods vs. Smith Predictor, Dead Beat Controller and 

MPC 

 

3.6.1 Novel method 

 

The novel method can be used by anyone familiar with adding, subtracting and multiplying 

vectors, therefore it can be expected to be usable by the OR community. The novel algorithm 

is designed to be used on a discrete time basis. Moreover no parameter tuning is relevant in the 

method, which emphasise the simplify of the algorithm and eliminate the control theory 

knowledge requirement. The procedure of the proposed approach is presented below: 

 

1. Define the lead time delay n , reference inventory level 
RI   and the current 

deterioration date ( )k   

2. Substitute the current and past information of inventory levels and order quantities 

accordingly to the form of the vector ( )k
c

x  (3.65). Such information is usually stored 

in the warehouse system and is easily accessible 

3. Using the defined n  and ( )k  values, build vector      1 1K K r K n     K  

accordingly to the description given in (3.66). 

4. Use the vectors K  and ( )k
c

x  as well as the reference inventory level 
RI  and the order 

quantity of the time instance one step before (i.e. yesterday, if one per day is the 

sampling time) and substitute in the equation (3.67) to obtain the current order quantity.  

 

As it can be noticed the method does not require definition of state space representation. 

Therefore it does not require familiarity with difference equations as well as state space 

representations, nor transfer functions not even control engineering principles such as: input 

and output signals, system delay or disturbance.  

The novel technique is sufficiently mathematically reduced to be calculable in using Excel, 

with no need for sophisticated software such as MATLAB.  
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Section 3.6.2, Section 3.6.3 and Section 3.6.4 present the description of the knowledge 

required as well as the list of main procedure for the Smith predictor, dead-beat controller and 

MPC respectively, to support the statement that the novel techniques of IC is both, the less 

computationally costly and the easier to apply by the non-control familiar OR expert.  

 

3.6.2  Smith predictor 

 

 

To apply the Smith predictor on its own of the form shown in Section 3.2.3.1, the following 

minimum knowledge is required: familiarity with differential equations, understanding of 

control theory principles such as: input and output signals, state space representation, system 

delay, transfer function, disturbance, open loop system, closed loop system, block diagram, 

ways of converting block diagrams to transfer function. The steps needed to be completed to 

apply the Smith predictor are listed as follows: 

 

1. Define continuous time state space representation 

2. Build an open loop system block diagram with consideration of the system delay 

3. Close the loops of the system  

4. Identify the closed loop system transfer function ( )C s  of Figure 3-4 

5. Apply the Smith predictor in the block diagram of Figure 3-4 

6. Find the equivalent transfer function of the Smith predictor 

7. Implement the new transfer function form in the block diagram 

 

To use the method MATLAB and/or Simulink are recommended. To do so the familiarity with 

both of them as well as basics of coding are needed.  

 

3.6.3 Dead-beat controller 

 

To apply the dead-beat controller on its own of the form shown in Section 3.2.4.1Error! 

Reference source not found. the following minimum knowledge is required: familiarity with 

vector and matrix operations, difference equations, understanding of control theory principles 

such as: input and output signals,  discrete state space representation, system delay, system 

error, disturbance, open loop system, closed loop system, z-plane, determinant and 
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eigenvalues. The steps needed to be completed to apply the dead beat controller are listed as 

follows: 

 

1. Define the lead time delay n , reference inventory level 
RI  and the current 

deterioration rate ( )k   

2. Define the matrix form of state space representation, where the matrix dimension is 

dependent on the system delay 

3. Define the open loop system 

4. Define a control vector  

5. Close the loop of the system 

6. Identify the closed loop state space representation 

7. Find the characteristic equation of the system matrix (3.18) 

8. Place the system poles in the z-plane origin 

9. Find the control vector 

 

To apply the dead beat controller MATLAB and/or Simulink are recommended. To do so the 

familiarity with both of them as well as basics of coding are needed.  

 

3.6.4 Model predictive control 

 

To apply MPC of the form shown in Section 3.3 the following minimum knowledge is 

required: familiarity with vector and matrix operations, difference equations, objective 

function of the vector form definition, and derivatives of function of vector form calculation. 

Understanding of control theory principles such as: input and output signals, discrete state 

space representation, system delay, system error, disturbance, open loop system, closed loop 

system, augmented model and moving horizon concept. The steps needed to be completed to 

apply the model predictive control are listed as follows: 

 

1. Define the lead time delay n , reference inventory level 
RI   and the current 

deterioration rate ( )k   

2. Define the matrix form state space representation, where matrix dimension is 

dependent on the system delay 

3. Define the open loop system 
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4. Find the incremental form of state vector, control variable system input and disturbance 

signal. 

5. Find the closed loop system of the augmented form 

6. Denote augmented model form of state space representations 

7. Find the 1, pi N    step ahead predictions of inventory levels 

8. Reformulate the predicted inventory level vector to the form of (3.53). From such 

description it can be noticed how computationally intensive the MPC algorithm is. The 

matrices described in (3.54) are themselves constructed from elements which are 

already multiplication of matrices of the closed loop system augmented model.  

9. Define objective function of the vector form 

10. Find the minimum of the function 

11. Determine the future order quantities for the minimum value of the function 

12. Use order quantities to determine the MPC gain vector form 

13. Apply one time instance only of the prediction 

14. Repeat the process 

 

To apply the MPC MATLAB and/or Simulink are recommended. To do so the familiarity with 

both of them as well as basics of coding are needed.  

 

3.6.5 Calculation efficiency of the novel method 

 

The novel method was benchmarked against IMPC method using a ‘tic toc’ function in 

MATLAB to measure the elapsed time of both algorithms. The simulation was run 30 times 

and the lowest time was picked for both algorithms for the same simulation settings (200 time 

instances, 5 days lead time delay, 100 items reference inventory level, 0.9 deterioration rate). 

The elapsed time of novel technique appeared to be equal to 0.008137s which is 81.36% of the 

IMPC elapsed time. The IMPC elapsed time was equal to 0.019905s. Therefore the novel 

inventory controller appeared to be computationally less heavy that initial IMPC.  

 

3.7 Summary 

In the current chapter the preliminary modelling of the inventory system have been shown. 

The inventory state space representation has been used for the application of a number of 

control algorithms. The dead beat controller application enabled the verification of accuracy of 
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the initial state space model through the mathematical reformulation and comparison of the 

results obtained as expected. The model has been verified to be correct as an inventory model.  

 

Further, the MPC has been formulated to show the design process for the verified 

inventory model. The objective function of the predicted inventory levels has been constructed 

for obtaining the vector of optimal future order quantities within the defined control horizon. 

The moving horizon rule was used to make the optimisation dynamic and update inventory 

level at every time instance.  

 

Further, the novel inventory controller has been proposed in the form of a proposition. The 

controller does not require any control theory understanding to be applied. It can be adopted by 

the operational research community to obtain the precision of MPC for the given model. The 

controller is mathematically equivalent to the MPC used for a given model and its 

mathematical formulation is significantly reduced when compared with state space and MPC 

formulation. Its computational cost is lower, which was shown by measuring elapsed time of 

each of both algorithms, it does not require control theory knowledge and its applicability is 

not limited to inventory control only.   
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4    VERIFICATION OF THE PROPOSED IC APPROACH 

4.1 Introduction 

The main goal of this chapter is a verification of the proposed IC approach, rather than a 

detailed discussion of the simulation results. Although, initially, the chapter shows a few 

results for the Smith predictor, there is not much attention devoted to this technique. The 

chapter shows that the Smith predictor applied in a presence of the perishable goods on its own 

does not generate results which fulfil the thesis aim. It does not meet the requirements of 

keeping the inventory at the set level, but it soothes them instead. Note that without the lead 

time accommodation of the Smith predictor there would be oscillations. On the other hand the 

dead-beat control, in isolation, would not generate stable inventory levels in case of system 

delay and deterioration of goods. As it was elaborated in the Chapter 3, it was mainly applied 

to mathematically verify the accuracy of the inventory state space model, rather to improve 

inventory performance. Although significantly more simulations were run to test these two 

methods, only a selection of results have been chosen to support the discussion. Once 

identified that they are not relevant for this research, there is no additional analysis and detailed 

presentation of more experimental results done. 

The main aim here is to show how the proposed IC method is equivalent to IMPC in terms 

of its steady-state response.  

The IMPC itself, as a model based approach, incorporates the Smith predictor, and, 

therefore, the presented results of IMPC and IC are more relevant to what was planned to 

achieve in this research, namely developed a control scheme which could be used/adopted by 

the OR community.   

To confirm the equivalency of results between the proposed IC and the IMPC, several 

different tests were conducted. The first numerical example was run to illustrate the manual 

calculation of the IC approach. It was the shown that the manually obtained results were 

identical to at least the 4
th

 decimal place with the IMPC simulation results. The second test was 

run to show that both methods give very similar gains in respect to engineering accuracy 

regardless of the deterioration rate value. Therefore the inventory levels obtained for both 

methods are again very similar. The third test was run to confirm that the IC and IMPC 

approaches generate very similar gains for arbitrarily sinusoidally varying reference inventory 
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levels. This test shows that both techniques generate very similar inventory levels regardless of 

the demand patterns, seasonal as well as random or mixed patterns.  

Simulation settings are listed at the beginning of each section, to allow the reader to 

reproduce the results. The discretisation period 1T   day at any test.  

Equation Chapter (Next) Section 1 

4.2  Simulation settings justification 

In each test of the current chapter as well as Chapter 6 and Chapter 7 the initial simulation 

settings are similar. The current section elaborates the choice of particular numerical values. 

 Simulations time: 200 time instances, which refers to 200 working days. The choice of 

200 days for small (few days lead time) is both popular in the OR literature and in 

practice, as it gives a good time perspective of system behaviour. 

 Deterioration rates: different values chosen for different simulations and different test 

purposes. The choice of 0.9 refers to 90% of the items remaining good from one time 

instance to another. In respect to the OR literature the deterioration of such a degree 

seems reasonable (especially for products such as flowers fresh juices or preservative 

free food such as organic vegetables). Deterioration of 1 corresponds to 100% of the 

items remaining good from one time instance to another. It means that the considered 

products are not perishable. It can refer to products such as car parts. For some tests the 

value of the deterioration rate was chosen to be lower than 0.9 (0.5 for instance, which 

refers to 50% of goods surviving from one time period to another). It is not a 

necessarily realistic assumption in real life problems, but used here to show system 

properties and the behaviour to such a system variable.  

 Reference inventory level: Reference inventory level refers to safety stock. In real-life 

case scenarios the safety stock often exceeds the expected demand. Especially in the 

case of uncertain lead time, unreliable supplier or long lead times the safety stock kept 

can be very high. The choice of 100 items of safety stock for an expected demand 

between 0 and 70 items is not uncommon in reality as well as in OR literature. The 

more reliable the replenishment strategy, the lower the reference inventory level can be. 

Ideally, the reference inventory of zero items refers to Just-in-Time policy.  

 Demand pattern: The choice of seasonal demand pattern is popular in the OR literature. 

It is also practical for seasonal products such as Christmas trees or Easter sweats, or 

New Year fireworks but also for products which can be affected by weather (for 
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instanced increase sale of soft drinks in the summer, or summer clothes) and other 

seasonal factors. The demand of seasonal patterns where each of all values is kept at 

constant level before the new change occurs is a popular approach in the OR literature 

but not necessarily the most realistic, as in most of real-life cases the demand varies. 

Therefore a random pattern is considered as well for some of the simulations. The 

choice of random pattern is relevant for products where there is no noticeable 

seasonality. They can be everyday products, such as cosmetics or cleaning products. 

The demand in that case is more or less stable and the variations of demand are not that 

drastic. There is also a mixture of both demand patterns considered in the thesis as the 

most realistic demand pattern where the seasonality is visible but the demand slightly 

varies on a daily bases. This is not a popular approach in the OR literature due to its 

complexity.  

 Lead time delay: It has been chosen to be relatively low for most of tests (comparing to 

simulation period) to increase the visibility of results. In practice such a lead time is 

popular in real-life problems within a first tier local supply network and it is necessary 

if the perishable products are considered. Such a choice of small lead time values is 

common in the OR literature.  

 Warehouse is initially empty: this is a very common assumption in the OR literature.  

 

4.3 Smith Predictor 

The current section presents the simulation results for the Smith predictor described in 

Section 3.2.3.1. It was used for the continuous state space inventory representation to present 

initial steps taken in the research. Also it shows the initial stage results on the way to find a 

satisfactory inventory level control technique.  

The simulation was run for 200 time instances, which here refers to 200 working days. 

The proportional term was set to 1. The deterioration of product was set to 0.9 (which means 

that 90% of the items remain good from one time instance to another). The reference inventory 

level was set to 100 items, which in respect to the OR literature represents the safety stock of a 

realistic level. The demand was arbitrarily assumed to be seasonal and changing periodically 

between four allowed values: 70 (for time instances 6-55), 20 (for time instances 56-105), 50 

(for time instances 105-155) and zero (for the remaining time instances). The demand was set 

to be zero for the first 5 days to prevent unnecessary backorders for those cases where the lead 
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time is set to 5 or less days (before the first order reaches the warehouse) and to show what 

happens for the cases where the lead time is greater than 5 days. In particular the lead times of 

1, 5 and 10 days were chosen.  

Therefore the controller of equation (3.2) has a form as follows 

  
 1 (0.5 / ( 1

0.5

0.9)) 1
SP ns

C s
s e


   

  (4.1) 

where n  is a system lead time delay. The inventory level, the order quantities and demand 

pattern are presented in Figure 4-1 for 0...200t  , and Figure 4-2 - Figure 4-5 (zoomed for 

specific time instances when the demand suddenly changes) with respect to different lead time 

delay values. The goal is to test the model response in general and in respect to changes in the 

lead time values. The simulation was run for several different values of lead time delay, 

nevertheless only three results, for 1n  , 5n   and 10n   are presented to support the 

conclusions. 

 

For the specific simulation values the system model of equation (3.1) has the form as 

follows  

 

 
       

   

0.9x t x t u t n d t

y t x t

   


  (4.2) 

for 1n  , 5n   or 10n  and  d t  values shown in Figure 4-1 for 0...200t  .  
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Figure 4-1: Smith Predictor in respect to different lead time values 

 

The following representative observations have been carried out for the results shown in 

this section. This results are typical of those tested for other cases, but this are omitted here. 

The inventory levels fluctuate smoothly within the phases of demand pattern at relatively low 

levels: near 20 (for 70 items in demand), near 40-50 items (for 20 demanded items), near 30 

items (for 50 demanded items) and near 60 items (for 0 demanded items). At any time the 

inventory levels are not kept anywhere near to the reference inventory of 100 items, and 

always kept below that value. Therefore, the Smith predictor if applied in isolation does not 

generate satisfactory results in respect of the thesis goal (keeping inventory at a desired level). 

Instead the number of stored goods is smoothly fluctuating in response to changes in demand. 

However the higher lead time delay value, the less smooth the inventory levels and orders 

become. The fluctuations of inventory levels and order quantities can be observed to behave in 

a related manner. In control terms the order quantity is the control variable in a function of the 

I I 
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feedback inventory level. The difference in results obtained for different lead times are mostly 

visible close to the time instances where the sudden demand fluctuation occurs. Figure 4-2 - 

Figure 4-5 show the zoomed parts of Figure 4-1 for specific demand values.  

Figure 4-2 presents the zoomed demand, inventory levels and order quantities for time period 

of 0-30 days. It can be noticed that initially, for first 6 days, no items are demanded. As in 

general terms the demand increase means the subtraction of items from inventory levels (sale 

of items), consequently any increase of demand should be followed by the increase of orders 

(to replenish the sold goods), which indeed can be observed in Figure 4-2 for 1n   and 5n   

at 6
th

 time instance. For 10n  the increase of orders is observed in the 11
th

 time instance only, 

as due to 10 days delay the previous orders have not reached the warehouse by 11
th

 time 

instance.  

 

As the warehouse is initially empty, the first order size (in the 1
st
 time instance) is equal to 

reference inventory level, to supply the empty warehouse with the required number of goods. It 

can be noticed that within the time delay, some actions happens in inventory level after the first 

order is placed for the cases of 1n   and 5n  ,  the results differ then for 10n  , though.  

For 1n   and 5n   the inventory level reaches the level of approximately 50 items and stays 

at that level until the demand suddenly changes on 6
th

 day. Until that time the order quantities 

decreased to 50 items, to make sure no more goods appear in the inventory levels and no 

surplus inventory will be kept in the warehouse (apart from the reference inventory once the 

order reach as the warehouse with relevant delays).  
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Figure 4-2: Smith predictor, zoomed result for 0-30 time instances 

 

For 1n   and 5n   once 70 items the demand appears at the 6
th

 day, the orders increase 

quickly to approximately 70-80 items, to make sure the demand will be satisfied. The decrease 

of inventory level to slightly zero is a result of demanding more products then available in the 

warehouse. The value never goes below zero as the Smith predictor integrator is limited 

bounds inventory from backorders. The 1n   response is faster, due to smaller delay, but 

eventually both 1n   and 5n  inventory level signals increase to some stable level (in this 

case of 20 items).  

The behaviour of the system for 10n   is different due to the appearance of the demand (in 

the 6
th

 time instance) before the first order reaches the empty warehouse. Also the delayed 

reaction of orders cannot quickly compensate the demanded items and the inventory level 

peaks above zero level in 10
th

 time instance and goes almost immediately back to zero. It then 

increases around 21th time instance. Therefore the simulation produces the results as expected, 

with the case of the long delay ( 10n  ) requiring more time to recover.  

I 
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The converge to other inventory levels of 1n   and 5n   case is only noticeable in Figure 4-1 

after 35
th

 day of simulation.  

 

Figure 4-3 presents the zoomed results for time instances between days 50-80. As the effect of 

the initial delay of delivery time (lead time) to the warehouse was overcome already and all 

inventory levels were stable at around the 20 items level. Now, when the demand (sale) 

suddenly decreased in the 56
th

 time instance, the traces corresponding to the orders (for 1n  , 

5n   and 10n  ) decrease very smoothly and almost identically to a level of 55-60 items. The 

inventory levels slightly overshoot for the time of lead time and converges to the increased 

level of 40 items with respect to the time delay.  

 

Figure 4-3: Smith Predictor, zoomed result for 50-80 time instances 

 

In Figure 4-4 and Figure 4-5 the simulation is analogous to Figure 4-3. The orders increase or 

decrease smoothly and almost identically regardless of the delay (orders are not delayed by the 

lead time, but the inventory levels are). Then the inventory converges to a common level for all 

I I 
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three delays, to a level of 40 items, within appropriate time delay. In particular, Figure 4-4 

shows the zoomed results of Figure 4-1 for time instances between 100-120 days. The order 

signals (traces) regardless of the delay respond to the sudden change of demand (from 20 to 50 

items) by increasing the order size to 70-80 items. The inventory level decreased immediately 

due to the sudden sale of items and with appropriate time delays to converge to a common 

level regardless of the delay to a value of about 30 items.  

 

Figure 4-4: Smith Predictor, zoomed result for 100-120 time instances 

 

Figure 4-5 presents the zoomed results for time instance between 150 and 170 days. The 

demand suddenly decreased in time 157
th

 instance which results in smooth, no lead time 

affected, order sizes for all three cases of 1n  , 5n   and 10n  . For each case the inventory 

level initially slightly overshoots as the decreased order signal did not compensate the stock 

level kept in the warehouse for the duration of lead time delay. For all this cases the inventory 

level converges to a common level within the delay time.  

I I I 
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Figure 4-5: Smith Predictor, zoomed result for 150-170 time instances 

 

Although the Smith predictor decision maker produces a response which keeps stock in the 

warehouse, it can be concluded that the ‘blind’ application of the Smith predictor is not 

sufficient for this particular application i.e. in the presence of perishable goods. It turns out that 

this in fact levels itself well to this application, which is further extended in the following. 

Analysis of the Smith predictor shows that under the ‘ideal’ case of non-perishable goods the 

configuration adopted here will keep the inventory at the desired level. From a control 

engineering perspective to maintain the inventory level in the perishable case would require the 

controller gain K  to be replaced with a proportional plus integral term. However, since the 

aim is to develop schemes that are accessible by the OR community, attention is now forward 

to the optimal dead-beat controller.  

 

I 
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4.4 MPC Approach 

The purpose of this section is to present some initial results of inventory responses 

corresponding to the application of the MPC method. As it was mentioned before, the tuning 

parameter of equation (3.58) was set to zero (to be able to refer to the equivalent IC method, 

which does not require a tuning parameter neither). Therefore for all simulation settings here, 

the tuning parameter is arbitrarily set to zero, so that the result can be compared to IC in further 

sections.  

The simulation was set as follows. The simulation was run for 200 time instances. The 

reference inventory level was set to 100 items. The prediction horizon was set to 14 and the 

control horizon was set to 8 time instances. The representative values of prediction and control 

horizon are producing typical system behaviour for most of tested numerical value of the 

prediction and control horizons. The lead time delay was set to 5 time instances. The 

deterioration rate was set to 1 (which effectively means no deterioration of products as 

1 1 0  ).  

Therefore the inventory state space representation of equation (3.3) and (3.4) has a form 

 

        

1 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0
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 
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 
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
   
   
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x x   (4.3) 

      1 0 0 0 0 0 0y kT kT x   (4.4) 

and the MPC gain from (3.63) has a form 

 

  5 5 4 3 2 1K   (4.5) 

 

Three different demand patterns were tested: the seasonal pattern of four different values - 

70 items (days: 6-55), 20 items (days: 56-105), 50 items (days: 106-155) and 0 items 

(remaining days); random pattern: with 50 as a mean value and variance of 10 items; seasonal 

with some randomness allowed: the pattern of 70 items (days: 6-55), 20 items (days: 56-105), 

50 items (days: 106-155) and 0 items (remaining days)  plus one random pattern of zero items 
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as a mean value with a variance of 5 items. Figure 4-6 shows the demand values of three 

patterns (the seasonal, random and mixed) and respective system responses in terms of order 

quantities and inventory levels. Therefore the sensitivity of the MPC inventories is tested here 

in respect to different demands.  

 

 

Figure 4-6: MPC in respect to 3 different demand patterns 

 

The trace of demand 1 shown in Figure 4-6 presents the inventory level kept at the reference 

level of 100 items for most of the time (apart for the time instance when the demand changes 

suddenly). The sudden fluctuations themselves converge quickly (within the time delay) back 

to the reference level. Analogously, the order quantities fluctuate only when the demand 

suddenly change and converge back to expected mean values. Observing the trace of demand 2 

I 
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it can be noticed that the inventory levels fluctuates within +/-10 items from the reference 

inventory level of 100 items and the orders fluctuate in a similar manner near the demand 

mean value. Note that demand 2 is not representative of a practical case, but included to the 

test the algorithm. Finally, seeing trace of demand 3 it can be observed that the inventory 

remains near the desired value (with some oscillations in correlation to demand oscillations) 

for most of the time while it fluctuates when the demand suddenly changes too. Then, within 

the lead time delay the inventory level returns and converges back and remains with small 

oscillations near the reference level. The order quantities reflect the expected behaviour with 

the observation that it returns near to the demand mean trend.  

Figure 4-7 - Figure 4-10 present the zoomed results shown in Figure 4-6 for selected time 

instances, where the demand suddenly changes and the corresponding changes in inventory 

levels and order quantities can be observed before the signals converge back to the reference 

inventory level. The zoomed figures increase the visibility of the results.  

Figure 4-7 shows the system behaviour for the time period of 0 – 20 time instances. During 

these time instances the sudden increased from zero to 70 items in demand can be observed 

(for seasonal and mix demand patterns) at 6
th

 time instance.  

As it can be noticed, the inventory levels and order quantities of demand 1 and demand 3 

behave in similar way, with the difference that demand 3 adds some small fluctuations around 

the core values of the results of demand 1. For the first 5 time instances, the demand is zero 

(demand 1) or near zero (demand 3). 

In Figure 4-7 it can be noticed that the order sizes start at the level of 50 items and then slowly 

decreased to zero (or around zero) for all cases regardless of the demand pattern. This way, the 

orders shift the inventory levels to the reference value. For demand 1 and demand 3 in respect 

to the demand sudden increase at the 6
th

 time instance the orders increase up to the level of 200 

items for one time instance to quickly catch up with inventory level and slowly reduces back to 

the demand level to compensate the delay in inventory response. In Figure 4-7 it can be 

observed that the inventory initially drops after the 6
th

 time instance following the sudden 

demand change, as the previous, not decreased orders are still being delivered to the warehouse 

due to lead time delay of 5 days. Then the inventory starts building up again due to current 

decreased order deliveries (smaller quantities). Eventually the inventory reaches the reference 

level and order stabilizes as well.  



93 

 

 

 

Figure 4-7: MPC in respect to 3 different demand patterns, zoomed values for 0-20 time instances 

 

Figure 4-8 shows the system behaviour for the time period of 50 – 70 time instances. As it can 

be noticed, again for the demand 2, the orders lightly fluctuates to push the inventory levels 

builds up or down in respect to small demand fluctuations. The inventory levels and order 

quantities of demand 1 and demand 3 behave in similar way to each other, with a difference 

that demand 3 adds some small fluctuations around the core value of results of demand 1. For 

demand 1 and demand 3 in respect to demand sudden decrease at 56
th

 time instance the orders 

decreases to about -50 items (which refers to returns) due to a sudden demand decrease. It 

should be noticed that returns are allowed in this chapter only for the purpose of testing the 

model behaviour rather than to use this in practice. In further chapters the returns are not 

considered.  

 

I I 
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Figure 4-8: MPC in respect to 3 different demand patterns, zoomed values for 50-70 time instances 

 

In Figure 4-8 it can be observed that the inventory initially slowly builds up, as the previous, 

not yet decreased orders are still being delivered to the warehouse due to the lead time delay. 

Then the inventory starts decreasing back due to new decreased order size deliveries after the 

time delay. Eventually the inventory reaches the reference level and order stabilizes as well.  

 

Figure 4-9 shows the system behaviour for the time period of 100 – 120 time instances. It can 

be noticed, again for the demand 2, that the orders slightly fluctuate to push the inventory 

levels up or down in respect to small demand fluctuations. The inventory levels and order 

quantities of demand 1 and demand 3 behave in similar way to each other, with a difference 

that demand 3 adds some small fluctuations around the core value of results of demand 1. For 

demand 1 and demand 3 in respect to a sudden demand increase at the 106
th

 time instant the 

orders increase to about 100 items due to sudden demand increase. The inventory initially 

slowly reduces, as the previous, not yet increased the orders are still being delivered to the 

I 
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warehouse due to the lead time delay. Then the inventory starts rising back due to the new 

increased order size deliveries after the time delay. Again, as was the case for Figure 4-8 the 

inventory reaches the reference level and the orders stabilize.  

 

  

 

Figure 4-9: MPC in respect to 3 different demand patterns, zoomed values for 110-120 time instances 

 

Figure 4-10 again shows the system behaviour for the time period of 150 – 170 time instances. 

Similar observations may be described around 156
th

 time instance as discussed for 56
th

 time 

instance. Indeed the MPC approach is formed to provide a consistence performance.  

I 
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Figure 4-10: MPC in respect to 3 different demand patterns, zoomed values for 150-170 time instances 

 

It can be concluded that for all the studied demand patterns the inventory level is 

maintained near to or at the reference inventory level for most of the simulation time. The 

inventory fluctuates (and so do the orders respectively) at the time instances of a sudden 

demand change. As there is a delay in the system, the system converges with a delay to or near 

the desired value. It can be noticed, that compared with the Smith predictor, the obtained 

results would be satisfactory for industrial purposes in the sense of the previously defined goal, 

namely to reduce inventory level fluctuations and keep it near the reference point (Section 

1.1.5). Therefore, based on the presented results and other conducted simulations which are 

omitted from this section, the MPC as a technique can generate satisfactory results for 

inventory stability. As stated in the introduction, the MPC approach has the Smith predictor 

and potentially the dead-beat controller within its structure. Since MPC is considered as 

satisfactory for this research, the next subsections focus on a verification of the results obtained 

with the novel IC against the IMPC. 

I 
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Since it is to be verified that the IC and IMPC generate the same results for different 

simulation settings, therefore it is worth noticing that the IC method presented in the IC 

Proposition (Section 3.4) does not include pN  and 
cN  in its definitions and therefore does not 

depend on them. Therefore, the current test was conducted for the IMPC method itself, to 

study the sensitivity of the IMPC to changes of the pN  and 
cN  values. Several different 

simulations were run for the following sets of pairs of the pN  and 
cN  values: 

1 10cN n n     and defining o p cN N N  , values of 2..12oN  were studied. The model 

appeared to be insensitive to changes of pN and
cN  when the tuning parameter is set to zero in 

equation (3.58).  

Figure 4-12 shows the exemplary order quantities of the pair 18pN   and 8cN   (where 

10oN  ) and Figure 4-13 of the pair 14pN  and 11cN   (where 3oN  ). The values were 

chosen in the manner that not only they differed from each other but also the difference 

between pN  and cN  (the oN  value) different too for each figure. Both simulations were run 

for 200 time instances and following settings: arbitrarily chosen three values of deterioration 

rate 1,     0.8    and 0.5 , lead time delay of 5 days and the seasonal demand pattern of 

Figure 4-11.  

 

Figure 4-11: Demand pattern for IMPC vs. IC verification 

 

Regardless of the pN  and 
cN  values the inventory state space models and IMPC gains have 

the same or very similar values (differences noticeable on or above 4
th

 decimal place only). 

 

1. For 1   the inventory state space representation of equations (3.3) and (3.4) has the 

form 
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x x   (4.6) 

      1 0 0 0 0y kT kT x  (4.7) 

and the MPC gain from (3.63) has the form 
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It can be noticed that the gains are identical up to the 4
th

 decimal place. 

2. For 0.8   the inventory state space representation of equations (3.3) and (3.4) has the 

form 
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      1 0 0 0 0y kT kT x  (4.10) 

and the MPC gain from (3.63) has the form 

 

 

 

2.6893 3.3616 2.9520 2.4400 1.8000 1.000 18 8

2.6893 3.3616 2.9520 2.4400 1.8000 1.000 14 11

p c

p c

for aN N

N

nd

or Nf and

  

  

K

K
 (4.11) 

It can be noticed that the gains are identical up to the 4
th

 decimal place. 

 

3. For 0.5   the inventory state space representation of equations (3.3) and (3.4) has the 

form 
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                       

0.5 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0

1

0

0

10 1

0

k T kT u kT d kT

   
   
   
        
   
   
 

 
 
 
 


    


 
  

x x   (4.12) 

      1 0 0 0 0y kT kT x  (4.13) 

and the MPC gain from (3.63) has the form 

 

 

 

0.9687 1.9375 1.8750 1.7500 1.5000 1.000 18 8

0.9688 1.9375 1.8750 1.7500 1.5000 1.000 14 11

p c

p c

for aN N

N

nd

or Nf and

  

  

K

K
 (4.14) 

It can be noticed that the gains are very similar. All gain values are the same up to the 4
th

 

decimal places apart from the first element. The first element is the same up to the 3
rd

 decimal 

place and different only on the 4
th

 decimal place. Such two gains can control the system very 

identical.  

 

Figure 4-12 and Figure 4-13 present the order quantities for all three of the above systems 

(deterioration values) for IMPC of 18
p

N   and 8
c

N   14
p

N   and 11
c

N   respectively.  

 

  

 

Figure 4-12: Order quantities for different deterioration rates when 18
p

N   and 8
c

N   
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Figure 4-13: Order quantities for different deterioration rates when 14
p

N  and 11
c

N   

 

 

From the results shown have and other simulations conducted which are omitted here, it can 

be concluded that the same values of order sizes were obtained regardless of the prediction and 

control horizon values for each of the values of deterioration rate. It is a result of the fact that 

the form of the IMPC gain for a given lead time is mainly dependent on the deterioration rate 

regardless of prediction and control horizon values. This appears to be further reinforced when 

the IMPC appears to be non-sensitive to changes in the control and prediction horizon vales 

when the tuning parameter is set to zero. Consequently the IC (which does not depend on pN

and
cN  by definition) and IMPC can be now compared. The issue of non-zero tuning parameter 

approach of an alternative IC method is addressed in Chapter 7.  

 

4.5 Alternative IC Method - Verification Against MPC 

For the purpose of verification, it is assumed that negative orders are allowed (which 

correspond to returns). This way the pure model behavior can be tested. For further chapters, 

where the focus is devoted to optimization of inventory, rather than verification of the model, a 

saturation module preventing returns will be included in the model. Therefore from (3.67) 

        1 Ru kT u k T I kT kT      cKx  (4.15) 
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at any time instance. The assumption is far from the reality, as even if negative orders are 

considered as returns, they should be returned with a delay (in the same manner as they are 

delivered with a delay). Nevertheless, in the current section the purpose is to verify 

equivalency of the IC and IMPC results for different conditions and settings only. Saturation 

here could reduce the clarity of the analysis. Chapter 6 addresses the IC approach for the 

inventory application, therefore the saturation is considered there.  

This way the results given by the IC can be directly compared with IMPC without any 

additional assumptions taken or constraint applied. The current section is devoted to verify that 

the IC behaves in the same manner as IMPC. Several numerical examples have been shown in 

the following sections to support the verification. The process of manual calculation of order 

quantities, which would result in satisfactory stable inventory levels, is shown in the Section 

4.5.1. This serves to demonstrate how straightforward IC is in terms of computation with 

respect to the original MPC.  

 

4.5.1 Test 1: To illustrate the manual calculation of IC 

In terms of illustrating the simplicity of the developed control policy, the current numerical 

example shows the manual calculation process of finding the optimal order sizes. From the IC 

Proposition in Section 3.4, for  5n  , 1  and 100Ry  , gain K  was calculated and has 

exactly the same form, as was obtained from MPC, namely   5 5 4 3 2 1K . The 

simplicity of determining the K  values in this case is related to the fact that   was set to 1. 

Although, the proposition was developed with the purpose of using calculation spreadsheets or 

simple (a few line of code) program in general, the current section enables the reader to gain a 

deeper understanding of the proposed method by following the calculation procedure step by 

step.  

From the IC Proposition it can be noticed that the method enables the on-line optimisation 

based on above the current and past information vector of the inventory system (the inventory 

levels and sizes of placed orders) denoted as a current time instance vector  kTcx . Using the 

mentioned data, the warehouse manager is able to calculate the next periods optimal order 

quantity as follows   

      100 5 5 4 3 2 1u kT kT   cx  (4.16) 



102 

 

As the warehouse is initially empty,  1cx  shown in (4.17) is a zero vector of  1n  

dimension 

    1 0 0 0 0 0 0
T

cx  (4.17) 

Then,  

     1 100 5 5 4 3 2 1 0 0 0 0 0 0 100
T

u     (4.18) 

 From (3.40), knowing that there was no order before  1u , the first order should be equal to 

  1 100 0 100u     (4.19) 

While reaching the next time period, the warehouse manager is able to read the current state 

vector    2 0 0 0 0 100 0
T

cx  and calculate the optimal orders of the second 

period as follows 

     2 100 5 5 4 3 2 1 0 0 0 0 100 0 100
T

u      (4.20) 

Then  

  2 100 100 0u      (4.21) 

Further, knowing                 3 0 0 0 100 100 0
T

 cx  

     3 100 5 5 4 3 2 1 0 0 0 100 100 0 0
T

u      (4.22)  

Then    

  3 0 0 0u     (4.23) 

Similarly, based on monitoring the current value of  kTcx , any  u kT  can be calculated 

on-line. Continuing the calculations for the case when demand is assumed to be zero for any 

further time instance, the value  u kT  is always obtained to be equal to zero. It is logical, 

since the 100 items ordered in the first step never get sold and therefore the inventory level 
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remains at the reference level. Once the demand changes, the order size adjusts as well. The 

manual calculation was continued for the following demand pattern for 25 periods shown in 

Figure 4-14. 

 

Figure 4-14: Demand pattern  

 

The order sizes for this case were calculated and presented in Table 4-1 for the given time 

instances: 

   (  ) 

  1 100 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 300 

10 50 

11 50 

12 50 

13 50 

14 50 

15 50 

16 50 

17 50 

18 50 
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19 -250 

20 0 

21 0 

22 0 

23 0 

24 0 

25 0 

26 0 
Table 4-1: Manually obtained order quantities for each time instance by IC 

 

Figure 4-15 illustrates the order sizes for the proposed IC from the Table 2-1 in graphical 

form. Figure 4-16 shows the order sizes obtained from the IMPC MATLAB simulation of the 

model and the gain of the form presented in (4.3)-(4.5), where control and prediction horizons 

were set as follows: 14cN   and 8pN  .  

 

Figure 4-15: Manually obtained order quantities by IC 

 

 

Figure 4-16: Simulated order quantities obtained by IMPC 
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As can be noticed, the results are the same or very similar for the given initial conditions, 

which concluded the main objective of this section.  

 

4.5.2 Test 2: To show effect of varying deterioration rate 

The second test aims at comparing the behavior of both methods regardless of the values of 

deterioration rate  . Therefore, both, the IMPC and IC were used to obtain the vector K  

values and make sure that they are the same (or very similar).  

In the considered scenario the time varying deterioration rate had an arbitrary form of

    
1

  sin 5 1
2

kT kT   (see Figure 4-17). The simulation was run for 33 periods. In this 

way 33 different values of 0,1   are used for comparison purposes. The constant 

reference inventory level was set to 100RI  . The lead-time delay was set to 5n  . The 

prediction and control horizons of the MPC method where set as follows: 12pN  , 8cN   

Table 4-2 and Table 4-3 show the values of the K  vector obtained for every time instance 

1, 2, 3 33k    regarding the  kT  values. 

 

 

Figure 4-17: Varying deterioration rate 

 

 

Table 4-2 shows the simulation results for the IMPC case and Table 4-3 for the IC case.  
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kT   (1)K   (2)K   (3)K  (4)K  (5)K  (6)K  

1 1.3802     2.3028     2.1738     1.9585     1.5993     1.0000 

2 1.9073     2.7455     2.5126     2.1773     1.6947     1.0000 

3 2.5408     3.2477     2.8731     2.3943     1.7823     1.0000 

4 3.2396 3.7728     3.2291     2.5960     1.8587     1.0000 

5 3.9295     4.2677     3.5490     2.7685     1.9207     1.0000 

6 4.5128     4.6715     3.8007     2.8992     1.9660     1.0000 

7 4.8919     4.9278     3.9566     2.9782     1.9927     1.0000 

8 4.9968     4.9979     3.9987     2.9994     1.9998     1.0000 

9 4.8072     4.8709     3.9222     2.9609     1.9869     1.0000 

10 4.3595     4.5666     3.7360     2.8660     1.9546     1.0000 

11 3.7344     4.1299     3.4613     2.7219     1.9042     1.0000 

12 3.0326     3.6200     3.1274     2.5395     1.8377     1.0000 

13 2.3465     3.0967     2.7670     2.3319     1.7578     1.0000 

14 1.7415     2.6090     2.4104     2.1130     1.6675     1.0000 

15 1.2483     2.1878     2.0818     1.8961     1.5706     1.0000 

16 0.8691     1.8460     1.7968     1.6925     1.4708     1.0000 

17 0.5887     1.5816     1.5624     1.5108     1.3722     1.0000 

18 0.3858     1.3841     1.3781     1.3564     1.2787     1.0000 

19 0.2407     1.2405     1.2390     1.2317     1.1941     1.0000 

20 0.1384     1.1384     1.1382     1.1364     1.1216     1.0000 

21 0.0686     1.0686     1.0686     1.0683     1.0642     1.0000 

22 0.0248     1.0248     1.0248     1.0248     1.0242     1.0000 

23 0.0032     1.0032     1.0032     1.0032     1.0032     1.0000 

24 0.0019     1.0019     1.0019     1.0019     1.0019     1.0000 

25 0.0210     1.0210     1.0210     1.0210     1.0205     1.0000 

26 0.0619     1.0619     1.0619     1.0617     1.0583     1.0000 

27 0.1282     1.1282     1.1280     1.1265     1.1136     1.0000 

28 0.2260     1.2258     1.2246     1.2184     1.1844     1.0000 
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29 0.3651     1.3637     1.3585     1.3394     1.2677     1.0000 

30 0.5598     1.5537     1.5369     1.4901     1.3603     1.0000 

31 0.8294     1.8092     1.7650     1.6686     1.4585     1.0000 

32 1.1953     2.1411     2.0439     1.8699     1.5583     1.0000 

33 1.6740     2.5527     2.3678     2.0858     1.6558     1.0000 

Table 4-2: Values of K vector obtained with IMPC 

 

kT   (1)K   (2)K   (3)K  (4)K  (5)K  (6)K  

1 1.3802     2.3028     2.1738     1.9585     1.5993     1.0000 

2 1.9073     2.7455     2.5126     2.1773     1.6947     1.0000 

3 2.5408     3.2477     2.8731     2.3943     1.7823     1.0000 

4 3.2396 3.7728     3.2291     2.5960     1.8587     1.0000 

5 3.9295     4.2677     3.5490     2.7685     1.9207     1.0000 

6 4.5128     4.6715     3.8007     2.8992     1.9660     1.0000 

7 4.8919     4.9278     3.9566     2.9782     1.9927     1.0000 

8 4.9968     4.9979     3.9987     2.9994     1.9998     1.0000 

9 4.8072     4.8709     3.9222     2.9609     1.9869     1.0000 

10 4.3595     4.5666     3.7360     2.8660     1.9546     1.0000 

11 3.7344     4.1299     3.4613     2.7219     1.9042     1.0000 

12 3.0326     3.6200     3.1274     2.5395     1.8377     1.0000 

13 2.3465     3.0967     2.7670     2.3319     1.7578     1.0000 

14 1.7415     2.6090     2.4104     2.1130     1.6675     1.0000 

15 1.2483     2.1878     2.0818     1.8961     1.5706     1.0000 

16 0.8691     1.8460     1.7968     1.6925     1.4708     1.0000 

17 0.5887     1.5816     1.5624     1.5108     1.3722     1.0000 

18 0.3858     1.3841     1.3781     1.3564     1.2787     1.0000 

19 0.2407     1.2405     1.2390     1.2317     1.1941     1.0000 

20 0.1384     1.1384     1.1382     1.1364     1.1216     1.0000 

21 0.0686     1.0686     1.0686     1.0683     1.0642     1.0000 

22 0.0248     1.0248     1.0248     1.0248     1.0242     1.0000 

23 0.0032     1.0032     1.0032     1.0032     1.0032     1.0000 
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24 0.0019     1.0019     1.0019     1.0019     1.0019     1.0000 

25 0.0210     1.0210     1.0210     1.0210     1.0205     1.0000 

26 0.0619     1.0619     1.0619     1.0617     1.0583     1.0000 

27 0.1282     1.1282     1.1280     1.1265     1.1136     1.0000 

28 0.2260     1.2258     1.2246     1.2184     1.1844     1.0000 

29 0.3651     1.3637     1.3585     1.3394     1.2677     1.0000 

30 0.5598     1.5537     1.5369     1.4901     1.3603     1.0000 

31 0.8294     1.8092     1.7650     1.6686     1.4585     1.0000 

32 1.1953     2.1411     2.0439     1.8699     1.5583     1.0000 

33 1.6740     2.5527     2.3678     2.0858     1.6558     1.0000 

Table 4-3: Values of K vector obtained with IC 

 

It can be noticed that the values of the vector K  obtained in two different methods are 

identical to 4
th

 decimal place for each time instance. In fact, the accuracy is identified to a 

higher number of decimal places, but this is not shown here. The inventory levels for IMPC 

(Figure 4-18) and for IC (Figure 4-19) are presented below for three chosen values of 

deterioration rate. Indeed, the results presented are very similar or identical results, thus the 

aim of this section has been demonstrated. The models used for IMPC for each deterioration 

rate are presented in (4.6), (4.7), (4.9), (4.10), (4.12) and (4.13). The vector K  (4.8), (4.11) 

and (4.14) gains for both methods are given for the considered values of deterioration.  

 

 

Figure 4-18: Inventory levels obtained with IMPC 
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Figure 4-19: Inventory levels obtained with IC 

 

 

 

4.5.3 Test 3: Sinusoidal reference inventory level 

The next test was conducted for the constant deterioration rate   1kT   to make the 

model time invariant. The delay was set 20n   and no demand disturbance was considered 

while conducting the test. The reference signal was set to be an arbitrary time varying value 

such that  sinRI 10kT .  

Therefore the IMPC model of equations (3.3) and (3.4) take the form as follows 

       

20 20 2 20 10 1

1 1 0 0 ... 0 0

0 0 1 0 ... 0 0

0 0 0 1 ... 0 0
1

0 0 0 0 ... 1 0

0 0 0 0 ... 11

0

0

1

0

0

k T kT u kT d kT

 

   
   
   
   

        
   
 

 
 
 
 
 
 
 


 
   
 


  

x x   (4.24) 

      
1 20

1 0 0 ... 0 0y kT kT


 x   (4.25) 

The gain K  for both methods has a form as follows (from (3.63) or (3.66)) 

 20 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1K =  

 (4.26) 
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The reference signal is shown in Figure 4-20: 

 

 

Figure 4-20: The sinusoidal reference signal 

 

The MATLAB simulation for IMPC and Excel calculation for IC was run for 200 time 

instances. The aim of the test is to compare the system response using both methods. Figure 

4-21 and Figure 4-22 show the inventory levels obtained due to simulation for IMPC and IC, 

respectively.   

 

 

Figure 4-21: Inventory levels in response to sinusoidal reference signal by IMPC 
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Figure 4-22: Inventory levels in response to sinusoidal reference signal by IC 

 

As it can be noticed, both sets of results presented are exactly the same. Both track the 

reference inventory level with a fixed delayn . Similar tests were run for different values of 

deterioration rate and each time the same results were obtained for both approaches. The test 

aimed at showing the inventory level response, which is important from the system designer 

perspective. Although, for the future uses of the method, the simulation of inventory levels will 

not be necessary, as it involves the control theory perspective and therefore it is not included in 

the IC Proposition. The current and previous sections present the inventory results so that the 

reader can become convinced about the accuracy of formulation of IC method. In practice, the 

calculation of the optimal order quantities would only be of interest for the user of the IC 

method, which, as a result, would lead to satisfactory stable inventory levels. Chapter 6 focuses 

more on commentary of the results.  

 

4.5.4 Test 4: Different demand patterns 

The current test was conducted in order for comparing the results of both methods for 

different demand patents (seasonal, random, and mixture of seasonal with some randomness as 

described in section 4.4) and also to verify that they are very similar for both methods. The 

commentary on the results themselves is a concern of Chapter 6.  

The simulation was run for 200 periods. The deterioration rate was set to 0.9. The lead time 

delay was set to 5, reference inventory level to 50 items. 

 

The IMPC state space model of (3.3) and (3.4) has a form  
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                       
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k T kT u kT d kT

   
   
   
        
   
   
 

 
 
 
 
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  

x x   (4.27) 

      1 0 0 0 0y kT kT x  (4.28) 

and the gain K  of (from (3.63) or (3.66)) for both methods has the form  

  3.6856 4.0951 3.4390 2.4400 1.9000 1.000K   (4.29) 

The result present the three tested demand patterns and the inventory levels and orders 

obtained for each of the demand patterns by the IMPC by in Figure 4-23 the IC approach in 

Figure 4-24.  

 

 

 

Figure 4-23: IMPC response to different demand pattern 

I 
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Figure 4-24: IC response to different demand patterns 

 

Comparing of the results it reveals that the same values of the inventory levels were 

obtained regardless of the approach used for each demand pattern. Similar results were 

obtained for different demand patterns, which presentation (due to its repetitive character) was 

omitted here.  

4.6 Summary 

Initially, the simulation results of the Smith predictor method used for continuous systems 

were shown. Due to presence of deterioration the results are not considered as satisfactory for 

industrial purposes in the sense of this thesis (maintaining inventory at or near the reference 

point for storage capacity panning, manpower planning and bullwhip affect reduction purposes 

and maintaining control simplicity).  

Further, the results of two methods, the IMPC (for 0ru  ) and IC (for no constraints on 

order size) were compared for a range of different test case scenarios. In each case both 

I 
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methods gave exactly the same results, which indicated that both of the methods might be 

mathematically equivalent.  

Also it was noticed that the IMPC (for 0ru  ) and IC (for no constraints on order size) are 

sensitive to changes in demand, deterioration rate, lead time delay and reference inventory 

level. No change in IMPC results was observed for changes of the pN  and 
cN values, as long 

as 1p cN N  . The reason behind this is based on the particular definition of the inventory 

state space representation as well as the fact that the 
ru  was set to zero. As a result, the IMPC 

becomes non-predictive. In the Section 7.2, the non-zero values of the tuning parameter are 

considered for further investigation of the alternative IC approach.   
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5 DEMONSTRATION OF MATHEMATICAL 

EQUIVALENCY 

 

The current section presents the mathematical demonstration of the equivalency of the novel 

IC method to the MPC technique applied for the inventory state space model. The 

demonstration process reflects the step by step development procedure, presenting how the IC 

was mathematically obtained from the initial MPC. The chapter presents the sequence of 

propositions and their demonstrations. Each of them has been developed based on recognition 

of some patterns of the MPC mathematical description. To familiarise the reader how the 

simplification procedure has evolved in time, first the process is shown for the non-perishable 

case and then, analogously, for the perishable case.  

The non-perishable case refers to deterioration rate arbitrarily set to one. In such case, the 

metrics defined as an augmented model of MPC contain zeros and ones only.  

Whether the non-perishable or perishable case considered, the augmented model 

mathematical description of the inventory system is relatively simple. The matrices defined in 

augmented model, when appropriately multiplied, build the elements of matrices F  and Φ . 

The formulation of each element in matrices F  and Φ  was noticed to be dependent on its row 

and column indices, in respect to power index of the augmented state matrix. Therefore, both 

of matrices  F  and Φ  could be formulated in general terms, depending on upon the row and 

column indices. The matrices F  andΦ , in turn, are building elements of the MPC gain K . 

Again some patterns were noticed there and the mathematical description was established in 

relation to row and column indices.  

The initial propositions present the way of recognising the mentioned patterns in the F  and 

Φ  matrices, the building elements used for construction of the gain in MPC. Their simplified, 

yet more general mathematical description is the subject of the propositions. The final 

proposition has the IC Proposition form and refers to the MPC gain K  simplified description. 

The whole procedure is based on the fact, that the inventory model being used, has a particular 

state space form, as shown in inventory modelling chapter, equations (3.3) - (3.7). The content 

of the current chapter is the main originality and novelty of the research.  
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5.1 Non-perishable Case 

If the elements of Φ  of equation (3.54) are considered, it can be noticed, that each of them, 

in general terms is either equal to zero or it has a form, which can denoted in general terms as 

T p

c c cc A b , where p  denotes the exponent, or power index. 

Using the following propositions, the simplified form of elements of Φ  can be represented.  

Equation Chapter (Next) Section 1 

Proposition 1: 

For 
T

c  c  and 
cA  defined in (3.46), the general description of  an 1n  dimentional vector 

T p

c cc A  , can be formulated regardless of the values of the exponent  p  and lead time delay 

n  in the following manner: 

 

 

 

1

1

2

2

... ... 1

.

1 2 2 2

1 2 2 0 .. .. 1... .

T p

n p n c

T p

n p n c

m n

m n

o

p p p p p m p n

p p p p

r

p m

 

 

 

 

         

       

c

c

c A

c A

 (5.1) 

  

where any thm  element of the vector becomes zero only when 2 0p m     

 

 

Remark 1: 

Note that for a chosen p  there is no zero element in the vector 
T p

c cc A , if 2 0p n   . In 

other words, if the dimension of the vector 
T p

c cc A  is smaller than 2p   for a chosen p  there 

will be no zero element in the vector.  

   

 

Demonstration: 

From (3.46) it is known that 
1 ( 1)

1T

  
  
 

n

c

A O
A

c A
  and   10T

c  nc I . 

Using the model described in (3.5) for ( ) 1y   the above can be expanded as follows. 
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  

1 1 0 0 ... 0 0 0

0 0 1 0 ... 0 0 0

0 0 0 1 ... 0 0 0

0 0 0 0 ... 0 0 0
0 0 0 ... 0 1

0 0 0 0 ... 0 1 0

0 0 0 0 ... 0 0 0

1 1 0 0 ... 0 0 1

T

cand

 
 
 
 
 
  
 
 
 
 
 
  

cA c  (5.2) 

Therefore, for 1p   it can be shown that 

  
1

1 1 0 0 ... 0 1

n

T

c



cc A  (5.3) 

Further, assuming that for some 1 2p n    

  1 2 ... 2 ... 0 ... 0 1T p p p p p p m    c cc A  (5.4) 

is true, then, 

 
 

 

1 2 ... 2 ... 0 ... 0 1

1 1 ( 1) 1 ( 1) 2 ... ( 1) 2 ... 0 ... 0 1

T T

c c c

cp p p p p m

p p p p p m

    

 



       

p+1 p

c cc A c A A

A
 (5.5) 

Assumung now that for same 2p n   

  ...1 12...2 2T p

c p p p p p m p n      cc A   (5.6) 

is true, then,  

 
 

 

1 2 2 2

1 1 ( 1) 1 ( 1) 2 ( 1

..

) 2

. ... 1

... ... 1( 1) 2

T T

c c c

cp p p p p m p n

p p p p p m p n

      

        



   

p+1 p

c cc A c A A

A
  (5.7) 

 

which has demonstrated the proposition for both cases, when 2p n   and 2p n  .  
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Proposition 2: 

For T

c  c , 
p

cA  and 
cb  defined in (3.46) for the non-perishable case ( ) 1y   

2n p p n     T p

c c c  c A b ,   when 2 0p n     else 0p T

c c c  c A b , where n  is the order of 

the system described in (3.3) and also represents the lead time delay. 

 

 

 

Demonstration: 

From (3.46) it is known that 
1 ( 1)

1T

  
  
 

n

c

A O
A

c A
, 

T

 
  
 

c

b
b

c b
 and  10T

c nc I . 

Using the model described in (3.5) for ( ) 1y  , the above can be expanded as follows. 

  

0

0

0

1

0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0
, 0 0 0 1

0 0 0 0 0

1 1 0 0 1

T

cand

 
 
 
 

   
 
 


 
 
 
 

  
 
 
 
 


 

c cA b c  (5.8) 

From the formulation of 
cb it can be noticed that 

T

c

p

c cc A b is the n
th  

(second last) element of the 

T

c

p

cc A  vector, which was defined in Porposition 1. From Proposition 1 it can be observed that 

depending on the dimension n  of the original system the second last element is either 

2p n   or 0. Therefore  

as ,n p then 

if 2 2 0p n p n        

 2T p

c p n  c cc A b  (5.9) 

else 

 0T p

c c cc A b  (5.10) 

So that (5.9) and (5.10) provide the statement of the proposition. 
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Remark 2: 

In the definition of Φ  in (3.54) it can be noticed that the exponent of cA in any T p

c c cc A b  

element is dependent on the row and column denoted m  and r  respectively of the original Φ  

matrix, , and it can be noticed that for each  ,m rΦ , the exponent p  is equal to m r .  

Then from Proposition 2 it can be deduced that the general formultion of T
Φ is as follows.   

 

1

1 2 2 1 2 ... 1 20 ... 0

0 1 2 2 ... 2 20 ... 0

0 0 1 2 ... 3 20 ... 0

0 0 0 ... 1 20 ... 0

0 0 0 ... 20 ... 0

n

p

p

p

p c

p c

n n n n n n N n

n n n n N n

n n N n

N N n

N N n

 
           

 
       

 
      

  
 
    
 

   
  

T
Φ (5.11)   

Note that the equation (5.11) presents more generic from than one could expect, and might 

seem unnecessary (for instance the element given by 1 2n n    could be simply denoted as 

1). Nevertheless, retaining this notation enables this notation a regularity in the description is to 

be observed, which is later utilised to reduce the formulation of the whole matrix to a simple 

form. Using the particular numerical values here, would reduce the complexity of the 

description, but would reduce the clarity of the reasoning.  

 

Further, as it was elaborated in Section 3.3, the MPC uses past and current information to 

predict the future inventory levels. The optimisation of order quantities is carried out over a 

fixed prediction horizon pN . From (3.55) and (3.56) the control order quantities U  can be 

derived such that 

    
1

T kT


     
T T

R cU Φ Φ R Φ Y Φ Fx  (5.12) 

For the time being assume  R   to be the null matrix such that 0ru  . Assuming that 

      1 1 1 ... 1

pN

T

R R R Ry kT y kT Y Y  (5.13) 

where Ry  is a reference inventory level, this gives as in (3.57) 
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      
1

Ry kT kT

   
 

T T T

R cU Φ Φ Φ Y Φ Fx  (5.14) 

Because of the MPC principle the first element of U  is applied 

 

     

        
1

1 0 0 ... 0

c

y R

N

T

R

u k y kT kT

y kT kT


  

  

c

T T T

R

K Kx

Φ Φ R Φ Y Φ F

 (5.15) 

where  

yK  is the first element of  
1

T T

RΦ Φ Φ Y and  

   
1

1 0 0 ... 0

p cN N

T





 T T
K Φ Φ Φ F and 

   x yK K K  as in (3.63).     

 

To find the new representation of the vector K , the relevant representation of its components 

such as T
Φ Φ  and T

Φ F  need to be obtained first. From Proposition 1 and the system 

description in (3.5), for the non-persishible case ( ) 1y  , the representation of T
Φ Φ  can be 

simplified and the following proposition can be demonstrated.  

 

 

Proposition 3: 

 

 
 

  
1 2

0

, 1 1

   

   

pN g n

T

n m r

i

m r m r i i

m when m r
where g

r when m r

   



       


 



Φ Φ

 (5.16) 

 

 

Demonstration: 

Defining 

 2L n   (5.17) 

from (5.11) T
Φ  has the  form as follows  
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1

1 1 ... 10 ... 0

0 1 ... 20 ... 0

0 0 1 ... 30 ... 0

0 0 0 ... ( ) 10 ... 0

0 0 0 ... ( )0 ... 0

n

p

p

p

p p c

p p c

n L n L n L N L

n L n L N L

n L N L

N N N L

N N N L

 
       

 
    

 
    

  
 
    
 

   
  

T
Φ  (5.18) 
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From the above, T
Φ Φ  can be obtained such that 

                 

                 

       

1 1 ... 1 1 1 ... 1 2 1 1 ... 1

1 ... 1 2 1 1 ... 2 2 1 ... 2

1 1 ... 3 1 1

p p p p p c c p

p p p p p c c p

p p

n L n L N L N L n L n L N L N L n L n L N N N L N L

n L n L N L N L n L n L N L N L n L n L N N N L N L

n L n L N L N L n L

                             

                            

           
T

Φ Φ           

                 

... 3 2 1 1 ... 3

1 1 ... 1 1 ... 2 1 1 ...

p p p c c p

p c c p p c c p c c

n L N L N L n L n L N N N L N L

n L n L N N N L N L n L n L N N N L N L n L n L N L N L

                 

                            

 
 
 
 
 
 
 
 

 

         (5.19) 

Therefore, colecting terms leads to 

           

          

1 2 3 ( 1) 1

1 1

0 0 0 0

2 2 3

2 1

0 0 0

1 1 1 1 1 ...

1 1 1 1 ...

p p p p p

p

p p p

p

N L N L N L N N n n

N i n i

i i i i

N L N L N L

N i n i

i i i

n L i n L i n L i n L i n L i n L i p L p L

n L i n L i n L i n L i n L i n L i p L p

          

   

   

     

   

  

                  

                 



   

  

T
Φ Φ

 

           

       

( 1) 1

0

3 3 3 ( 1) 1

3 1

0 0 0 0

0 0

1 1 1 1 1 ...

1 1 1 1 1

p p

p p p p p

p

c c

N N n n

i

N L N L N L N N n n

N i n i

i i i i

N L N L

p c p c

i i

L

n L i n L i n L i n L i n L i n L i p L p L

n L i n L N N i n L i n L N N i n L i n

    



          

   

   

 

 

                  

                  



   

      
0 0

... 1 1
c c

N L N L

p c

i i

L N N i n L i n L i

 

 

         

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

                  

(5.20)
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It can now be observed that the formulation of each matrix element follows a pattern and 

relates to the row and column indices of a given element location, denoted m  and r  

respectively. From the above, the general formulation of a given element of the T
Φ Φ  matrix 

element can be derived such that: 

 

 
 

  
1

0

, 1 | | 1

   

   

pN g L

i

m r n m r L i n L i

m when m r
where g

r when m r

  



        


 




T

Φ Φ

 (5.21) 

noticing that 2L n   and from (5.17) it follows that 

 

 
 

  

 

  

1 2

0

1 2

0

, 1 2 1 2

1 1

   

   

p

p

N

N

g n

i

g n

i

m r n m r n i n n i

m r i i

m when m r
where g

r when m r

   



   



           

    


 







T
Φ Φ

 (5.22) 

The above demonstrates the proposition.  

 

Remark 3: 

From Proposition 3 it can be noticed that the elements of the matrix T
Φ Φ  depend on their 

row and column index, denoted m  and r  respectively, the order of the original system n  

defined in (3.5) and the prediction horizon pN . 

 

 

Proposition 4: 

The matrix T
Φ F  denoted hare as M  is defined as follows 
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 
   

 

   

   

1 1

1

1

, 2

) , 1 2 1

) 1

) , 1 ,

p

p

N m n

1<r<n+1

i

N

T

r

m

m

m

a m r i n m r i

b

c m n m r

m m

   





          

 

  





M

M M

M Φ

,   (5.23) 

where m  and r , represent the rows and columns, respectively. 

 

 

Demonstration: 

Recalling the representation of the matrix F as shown in (3.54) 

 

2

3

 
 
 
 
 
 
 
 

p

T

c c

T

c c

T

c c

NT

c c

c A

c A

c AF

c A

 

From (5.4) it can be observed that 

  1 2 ... 2 0 0 ... 0 1p p p p p n    T p

c cc A  

Noticing that the exponent of the matrix 
cA  depends upon the row index of the matrix F , it 

can be deduced that p m , so that 

  1 2 ... 2 0 ... 0 1 ( )m m m m m n m     T p

c cc A F  (5.24) 

which is a general definition of a row in the matrix F in respect to its row index denoted as m . 

From the above, the matrix F  can be presented in the following form 
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1 1 0 0 0 ... 1

2 2 1 0 0 ... 1

3 3 2 1 0 ... 1

4 4 3 2 1 ... 1

5 5 4 3 2 ... 1

1 2 3 ... 1

1 2 3 ... 1p p p p p

n n n n n

N N N N N

 
 
 
 
 
 
 
 
 
   
 
 
    

F
 (5.25) 

From the form of F , whether shown in (5.25) or (5.24), it can be observed that the 1
st
 and 2

nd
 

columns of T
Φ F must have the same form, which demonstrates part b) of the proposition. 

 

From the form of F  (where the last column contains ones only) it can be recognised that the 

last column of the matrix T
Φ F  must be a vector, in which any element denoted m is the sum 

of the elements of row index m of the matrix T
Φ (or equivalently the sum of elements of 

column number r of the matrix Φ ). This demonstrates part c) of the proposition. 

 

Further, from the formulation of T
Φ in (5.11), and noticing that 1np n  , the matrix T

Φ  can 

be obtained as follows 

 

 

1

( ) 1

( 1) 1

( 2)

1 2 3 4 ...0 ... 0

0 1 2 3 ...0 ..

1

( ) 1

(

. 0

0 0 1 2 ...0 ... 0

...

0 0 0 0 ...0 ... 0

0 0 0 0 .. 1).0 ... 10

p

p

p

p c

p c

n

N n

N n

N n

N N n

N N n

 
 
 
 
 

  
 
 
 
 
 

 

  

  

 







  

T
Φ   (5.26) 

 

 

Further, the multiplication of T
Φ in the formulation of (5.26) and F in the formulation (5.25), 

using the demonstrated parts b) and c) of (5.23), the following expression for the matrix M  is 

obtained  
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(note that due to its size the formulation continues over two lines). 

 

           

             

               

   

1,2 2 1 ... 1 1 2 ... 1 1

2,2 1 2 2 ... 1 1 2 1 ... 1 1 1

3,2 2 2 3 ... 2 1 1 2 2 ... 2 1 1

,2 ...

p p p p

p p p p

p p p p

p c p c p c

n n N n N n n N n N

n n N n N n n N n N

n n N n N n n N n N

N N n N N N N

                  

                     

                      

     

M

M

M
M

M

=

          

       

       

   

1

1

1 1 1 ... 1 1 1

( 2) 2 1 ( 2) ... 1 ( 2)

( 3) 2 1 ( 3) ... 1 1 ( 2)

( 4) 2 1 ( 4

... 1,

... 2,

) ......

p

p

p p c p c p

p

N

T

p

p

r

r

p

N

T

p

n N n N N N N n N

n n n n N n N n n

n n n n N n N n n

n n n n

r

N

r
















                

              

               

       





Φ

Φ

   

       

1

1

2 1 ( 2)

2 1 ... 1 1

3,

.. 2. ,

p

p

p

p c p c p c p p c

N

T

r

N

T

r

n N n n

n N N n N N N N

r

rn N n n N N












        



                     





Φ

Φ

 (5.27) 
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From the above, it can be observed that for every 1 1m n      

 
   

   
1

, 1 2 1

1 1

maxi

i

max p

m r i n m r i

i N m nwhere



        

    

M
 (5.28) 

The above ends the demonstration of part a) of (5.23) and the whole proposition. 

 

 

Remark 4: 

From the form of T
Φ  presented in (5.26) it can be observed that in the case when pn N , 

zeros will always be generated in the T
Φ matrix, which will always result in a zero vector of 

the predicted order quantities. Therefore, n  should always be assumed to be no greater than 

pN , and the converse case will not be considered in the thesis. 

 

 

The next step is to find the final representation of  

      y R nu k y kT kT  K Kx  (5.29) 

which will allow the optimal order quantities to be found, but avoiding the extensive 

calculations of MPC at the same time.  

In (3.63)  

 

  
1

1 0 0 ... 0

p cN N

and







   

T T

x y

K Φ Φ Φ F

K K K

 (5.30) 
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From the above it can be deduced that only the first row of the inverse matrix  
1

T
Φ Φ  is 

required to be obtained for further calculations. The following proposition shows the general 

form of the inverse matrix with respect to the values of n , pN  and cN  values.  

 

 

Proposition 5: 

 

 
1

1 2 1 0 0 0 ... 0 0 ... 0 0 0 0 0

2 5 4 1 0 0 ... 0 0 ... 0 0 0 0 0

1 4 6 4 1 0 ... 0 0 ... 0 0 0 0 0

0 1 4 6 4 1 ... 0 0 ... 0 0 0 0 0

0 0 1 4 6 4 ... 0 0 ... 0 0 0 0 0

0 0 0 1 4 6 ... 0 0 ... 0 0 0 0 0

0 0 0 0 0 0 ... 6 4 ... 0 0 0 0 0

0 0 0 0 0 0 ... 4 6 ... 0 0 0 0 0





 

 

 

 



 



T
Φ Φ

...

0 0 0 0 0 0 0 0 0 ... 6 4 1 0 0

0 0 0 0 0 0 0 0 0 ... 4 6 4 1 0

0 0 0 0 0 0 0 0 0 ... 1 4 6 4 1

0 0 0 0 0 0 0 0 0 ... 0 1 4

0 0 0 0 0 0 0 0 0 ... 0 0 1

a b

b c

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 

  
 
 
   (5.31) 

 

 

where   

 
 

( 1, ) ( 3, 1) 4 ( 1, 2)

( 1, 1)

b S S S S S S
a

S S

      


 

T T T

T

Φ Φ Φ Φ Φ Φ

Φ Φ
 

 1 ( , 1) ( 1, 2)

( 1, 1)

c S S S S
b

S S

    


 

T T

T

Φ Φ Φ Φ

Φ Φ
 

 1 ( 2, 1) ( 1, 1)

( , ) ( 1, 1) ( , 1) ( , 1)

S S S S
c

S S S S S S S S

    


    

T T

T T T T

Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ Φ Φ
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where 

p cS N N   

 

Demonstration 

With respect to (5.16) the demonstration serves to show that  
1

I


T T
Φ Φ Φ Φ , where I  is the 

identity matrix of appropriate dimension. The demonstration is shown in Appendix I.  

 

Remark 5a: 

From Proposition 5, it can be deduced that apart from four elements in the matrix  
1

T
Φ Φ  

denoted a , b  andc , none of the matrix elements depend on the values of pN  or 
cN  values for 

that particular state space model.  

 

Remark 5b: 

From the formulation in (5.31) it can be noticed that  

     
1

2 1 0 0 ... 0 1 2 1 0 0

p c

p c p

N N

n N N N





      T
Φ Φ  (5.32) 

Proposition 6: 

 
     \ 1

2 1n r
n rr an fd or r r n 

      K K  (5.33) 

 

Demonstration: 

From the form of   
1

1 0 0 ... 0

p cN N


T

Φ Φ  in Proposition 5, it can be noticed that K will 

have the following form: 

    1 1 2 1 11 21 31 12 22 32 1 2 3... 2 2 ... 2

n

n n n nb b b b a a a a a a a a a         (5.34) 

where ( , )mra m r M  denotes an element of the matrix T
Φ F  corresponding to the thm  row 

and thr  column. From (5.23) part b) for the first element vector of the 
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1 12 22 32 11 21 312 2b a a a a a a     (5.35) 

 

and for any other vector element 
1rb 
  

 
1 2 32r r r rb a a a    (5.36) 

in respect to part a) and c) of (5.23). 

Therefore, following the mathematical reformulation of such defined elements it can be 

deduced that 

 

   

 
   

 

   

 

1 1 1 2 1 1

1

1 1

3 1 1

1

1 1 2 2 1 2 2 1 2 2 1

3 1 2 2 1

p p

p

N n N n

i i

N n

i

b i n i i n i

i n i

       

 

   



                    

        

 



 

      
1 1

1 1 1

1 2 1
p p pN n N n N n

i i i

i n i i n i i n i

    

  

           

       
1 1

1 1

1 1 1
p pN n N n

p p p p

i i

i n i i N n N N n N

   

 

             

      
1 1 1

1 1 1

2 2
p p pN n N n N n

p p

i i i

i n i N n N i n i i

     

  

          

 

     ( ) 1 1 2p p p p p pN n N N n N N n N         

 

2 2 22 2p p p p p p p pN N nN n N nN N N nN          

 n  (5.37) 

and for any 1 1r n    according to part a) of (5.23) 
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   

 
   

 

   

 

1 1 1 2 1 1

1 1

3 1 1

1

1 1 2 1 2 2 1 2 1

3 1 2 1

p p

p

N n N n

i i

N n

r

i

b i n r i i n r i

i n r i

       

 

   



                    

        

 



 

      
1 1

1 1 1

1 2 2 3
p p pN n N n N n

i i i

i n i r i n i r i n i r

    

  

               

         
1

1

1 1 1 1 1
pN n

p p p p

i

i n i r N n n N n r N n n N n r

 



                    

       
1 1

1 1

2 2 2 2 3
p pN n N n

p p

i i

i n i r N n n N n r i n i r

   

 

                

           
1

1

0 1 1 2 2 2
pN n

p p p p p p

i

i N n N r N n N r N n N r

 



               

 
2 2 2 2 2p p p p p p p p pN rN N nN rn n N rN N nN rn n rN              

 
22 2 2 2 4p p p pN N N Nr r n rn n       

 2n r    (5.38) 

 

 

and finally in respect to part c) of (5.23) and the form of T
Φ  shown in (5.26) 

 

 

1 1 2 ... 1 2(1 2 2 ... 1 1) 1 2 3 ... 2 1

1

( 1) 2

n p p pb N n N n N n

n n

                      



   

 (5.39) 

which demonstrates the proposition.  
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Remark 6: 

It can be noticed that the vector K  defined in Proposition 6 is a special case of the vector K  

shown in the IC Proposition. If the deterioration rate is not considered in the IC Proposition, 

so that   1kT  , the vector K  defined in Proposition 6 has the form 

      
1

\ 1

0 1

1 1 1
n r n

i i

n r

i i

andr
 

 

 

    K K  (5.40) 

 

From the above it can be noticed, that from now onwards the next order quantity can be 

immediately calculated by substituting the newly defined K , the reference inventory level and 

current inventory levels into the equation (3.60) 

      Ru k y kT kT  y cK Kx  

Since  u kT  is an incremental action defined in (3.40) such that 

     1u kT u kT u k T      , i.e. 

Therefore 

        1Ru kT y kT kT u k T     y cK Kx  (5.41) 

Since the system output  y kT  for an inventory model refers to the current inventory level it 

can now be denoted as  I kT  

    I kT y kT  (5.42) 

Since the reference signal  Ry kT  refers to the reference inventory level it can be denoted as 

 RI kT , and from (5.41) it can be deduced that 

        1Ru kT I kT kT u k T     y cK Kx  (5.43) 

From Proposition 6 and knowing that yK is the last element of the gain vector 
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   1 1n n n    yK K  (5.44) 

Therefore, eventually, it can be deduced that  

        1Ru kT I kT kT u k T     cKx  (5.45) 

which is the optimal order quantity (inventory system input) derived in the IC Proposition. 

Note that 
cx defined in the IC Proposition is equivalent to that defined in (3.42), therefore 

 

     

           

     

1 1 2 2 2 2[ 1   1   1  

1  ...   ]

T
T

T

kT kT y kT

kT k T k T kT k T kT

k T kT y kT

 
 

                 

   

c

n n

x x

x x x x x x

x x

 (5.46) 

 

From (3.9) and (5.42) it can be finally deduced that 

 

       

       

1   1  

2 1 ... 1 ( )
T

I kT I k T u k n T u k n T

u k n T u k n T u k T u kT I kT

                 

                 

cx

 (5.47) 

As defined in the beginning of the IC Proposition for the non-perishable case. 
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5.2 Perishable Case 

Proposition 7: 

The general description of 
T

c

p

cc A , can be formulated regardless of the values of  p  and n  in the 

following way 

 

           

         

2

1 2 3 1
0

1 0 0 0 0

2

1 2 3

0 0

1

1

1 0 0

1

. 1

..

..

1. 0

n p n

p p p p p m
T i i i i i

c

i i i i i

n p n

p p p p p m
T i i i i i

c

i i

m n

i

n

i i

m

kT kT kT kT kT kT

kT kT kT kT k

or

T

     

    

 

    

    

 

 

 

  



 

   

  

 
  
 

  

 
  
 

    

    

p

c

p

c

c A

c A

(5.48) 

where any thm  element of a vector becomes zero only when 2 0p m     

 

 

Demonstration 

From (3.46), and using (3.5) it can be deduced that  

 

 

 

 

1 0 0 ... 0 0 0

0 0 1 0 ... 0 0 0

0 0 0 1 ... 0 0 0

0 0 0 0 ... 0 0 0
0 0 0 ... 0 1

0 0 0 0 ... 0 1 0

0 0 0 0 ... 0 0 0

1 0 0 ... 0 0 1

T

c

kT

k

a

T

nd





 
 
 
 
 
 

 
 
 
 
 
 
  

c
A c  (5.49) 

Then, for 1p  , multiplying 
T

cc and 
cA  the last row of the matrix 

cA is obtained as follows 

  

1

1 0 0 ... 0 1

n

T

c kT



   cc A  (5.50) 



 

135 

 

which can also be represented as  

      
1 1 1

1 0

1 0 0 1 0 0 1i i

i i

kT kT kT


 

 
     

 
     (5.51) 

which fullfils the poposition for the 1p   case. 

Asummung, that the Proposition 7 is true for some 1 2p n   , then for 1p   it can be 

deduced that 

 

         

           

 
 

 
 

1

1 2 3 1

1 0 0 0 0

1 2 2

1 1 0 0 0

1 1 2 11

1 0 0

0 1

1 1 .

.

.. . 0

.

.. 1

.

T T

c c

p p p p p m
i i i i i

i i i i i

p p p p p m
i i i i i

i i i i i

p pp
i i i

i i i

kT kT kT kT kT

kT kT kT kT kT kT

kT kT k



    

    

   

    

   

  

 

 
  
 

 
   
 



    

    

  

    

     

  

p p

c c c

c

c A c A A

A

 
 

   
3 1 ( 1) 1

0 0

... 0 1

p p m
i i

i i

T kT kT

    

 

 
 

  
  

  

   (5.52) 

which satisfies the proposition for a given case. 

Assuming now, that the Proposition 7 is true for some 2p n  , then for 1p   it can be 

deduced that 
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           

           

 
 

 
 

 
 

1

1 2 3 1
0

1 0 0 0 0

1 2
0

1 1 0 0

1 1 2 1 3 11

1 0 0 0

1...

1 1 ... 1

T T

p p p p p m
i i i i i

i i i i i

p p p p
i i i i

i i i i

p p pp
i i i

i i i i

kT kT kT kT kT kT

kT kT kT kT kT kT

kT kT kT



    

    

 

   

     

   



 
  
 

 
   
 



    

   

   

     

     

   

p p

c c c c c

c

c A c A A

A

   0 1i kT kT
 

 
  



 (5.53) 

 

which satisfies the proposition for a considered case and completes the demonstration the 

proposition. 

 

Proposition 8: 

For
T

c  c , 
p

cA and 
cb defined in (3.46) 

 

  
1

0

2 0 ,, 0
p n

i

n p

i

k when elT n sep
 

 



      
T p T p

c c c c c c
  c A b   c A b  (5.54) 

where n  is the order of the system described in (3.5). 

 

Demonstration:  

From (3.46) and using (3.5) it can be deduced as follows. 



 

137 

 

 

 

 

 

0
1 0 0 ... 0

0
0 0 1 0 ... 0

0
0 0 0 1 ... 0

, 0 0 0 1

0
0 0 0 0 ... 0

1
1 0 0 ... 1

0

T

c

kT

kT

and





 
   
   
   
   

      
   
   
   
    

 

c cA b c  (5.55) 

From the formulation of 
cb  it can be noticed that T

c

p

c cc A b is the n
th 

(second last) element of the 

vector T

c

p

cc A .   

As ,n p then 

 

 
1

0

2   2 0

0

p n
T i

c

i

T

c

if

e

p n p n

kT

lse


 



     






p

c c

p

c c

c A b

c A b

 (5.56) 

which provides the statement of the proposition. 

 

Remark 7: 

It can be noticed that Proposition 1 and Proposition 2 from section 5.1 are essentially special 

cases of Propoistion 7 and Proposition 8 when   1kT  . 

 

Remark 8: 

From the form of the matrix Φ  shown in (5.11) it can be seen that 
T p

c c c c A b  are elements of the 

matrix Φ  and the exponent p  depends on elements position  in the matrix determined by the 

row (defined as m ) and column (defined as r ) indices, such that p m r  . Therefore, from 

Proposition 8 it can be concluded that   



 

138 

 

    
1

0

2 , , 0

m r n

T i T

i

n mif then elsr n m r e m r

  



     Φ Φ  (5.57) 

where n  is the order of the system described in (3.5). 

 

 

From Remark 8 and the system description in (3.5) the following proposition can be 

demonstrated.  

 

Proposition 9:  

 

     
1

1

0 0 0

,

  

  

p

p c c

N n g j m r j
T i i

n N N N n m r

j i i

m r kT kT

m when m r
g

r wh
whe

en r
e

m
r

    

  

  

 
        

 


 



   Φ Φ

 (5.58) 

where the matrix Φ  is defined in (3.54) and m  and r  denote the matrix row and column 

number respectively. 

 

Remark 9:  

From now onwards, for simplicity and ease of description, for any i , the ( )i kT  will be 

denoted as i , which should avoid confusion.  

 

Demonstration:  

From Remark 8 the matrix T
Φ  can be expanded in the following way 

 

 

 

 

 

 

 



 

139 

 

 

 

1 10 1 2 1 1

0 0 0 0 0

2 10 1 2 1

0 0 0 0

3 10 3 1

0 0 0

0

0 ... 0 ... ...

0 ... 0 0 ... ...

0 ... 0 0 0 ... ...

0 ... 0 0 0 0 ... 0 ...

p

p

p

p

N nm n
i i i i i

i i i i i

N nm n
i i i i

i i i i

N nm n
i i i

T

i i i

N

i

i

    

   

  



    

    

    

   

    

  





    

   

  Φ

( 1) 1

( ) 1

0

0 ... 0 0 0 0 ... 0 ...

p c

p p c

N N n

N N N n

i

i



    

   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  





 (5.59) 

 

From the above, the matrix T
Φ Φ  can be obtained such that 
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1 2 10 0 1 1 0 1 1 2 0 2 1 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

... ... ... ... ...
p p p p p p p c

N n N n N n N n N n N n N N

i i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i i i

                    

         

                   

         



                   

T
Φ Φ

1

0 0

1 1 1 2 10 1 1 2 0 0 1 1 0 1 1 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

... ... ... ...

pc

p p p p p p

N nN n

i

i

N n N n N n N n N n N n

i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i



                  

 

 

          

                  

        

 

                 
2 11

0 0 0

2 2 1 20 2 1 3 0 1 1 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

... ... ...

p c pc

p p p p p p

N N N nN n

i i i

i i i

N n N n N n N n N N n

i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i

  

                 

    

  

         

               



        

   

              
2 3 211 1 0

0 0 0 0 0 0

1 2 1 31 10 0 0

0 0 0 0 0 0 0 0 0 0 0

... ...

... ... ...

p c pc

p c p p c p p cc c c

n N N N nN n

i i i i

i i i i i i

N N N n N N N n N NN n N n N

i i i i i i i i i i i

i i i i i i i i i i i

   

          

     

     

           

          



     

      

         
21 1 20

0 0 0 0 0

... ...
p c c c c

N nn N N N n N n

i i i i i

i i i i i

    

       

    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

     

 

(5.60) 
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Therefore 

 

1 2 1 1 121 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

... ...
p p p p p c p cc

N n N n N n N n m j N N j N NN nj j j j j j j j m r j j

i i i i i i i i i i i i

j i i j i i j i i j i i j i i i i

           

                 

                

         
         
          

                

T
Φ Φ =

1

0

1 1 2 1 221 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

... ...

c

p p p p p c pc

N n

j

N n N n N n N n m j N N j NN nj j j j j j j j m r j

i i i i i i i i i i i i

j i i j i i j i i j i i j i i i

           

 



                 

               


 



        
         
         



              
21

0 0

2 2 2 1 222 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

... ...

cc

p p p p p cc

NN n j

j i

N n N n N n N n m j N NN nj j j j j j j j m r j

i i i i i i i i i i

j i i j i i j i i j i i j i i

         

 

 

               

              

 
 
 

        
         
         

  

              
31

0 0 0

1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

... ...

p cc

p p p p

j N NN n j

i i

j i i

N n r N n r N n r N n mj j r m j j r m j j r m j j

i i i i i i i i i i

j i i j i i j i i j i i

 

         

   

  

                

           

 
 
 

       
       
       

  

           
12 2

0 0 0 0 0 0

1 2 22 2 2

0 0 0 0 0 0 0 0 0

p c p cc c

p c p c p cc c c

j N N r j N N rN n N nj j

i i

j i i j i i

j N N j N N j N NN n N n N nj j j

i i i i i i

j i i j i i j i i

 

     

         

     

             

        

   
   
   

     
     
     

     

        
   1 12 2 2
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1 21
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... ...
p c p c p c p c p cc c c

p c p cc

j N N m j N N N N j N N N NN n N n N nj j j

i i i i i i

j i i j i i j i i

j N N j N NN n j j

i i i i

j i i j i i

     

   

                 

        

      

     

    
    

     

   
   
   

        

    
   3 11 1 2 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0

... ...
p c p c p c p c p c p cc c c c c

j N N j N N m j N N N N j N N N NN n N n N n N n N nj j j j

i i i i i i i i

j i i j i i j i i j i i

       

                       

           

 


















       
       

        
            






















 (5.61) 
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From the above the general formulation of T
Φ Φ  a matrix element can be reduced to: 

 

 
1

1

0 0 0

,

   

   

p

p c p

N n g j m r j
T i i

n N n N N m r

j i i

m r

m whenm r
where g

r whenm r

    

 

  



 
        

 


 



  Φ Φ  

 (5.62) 

The above demonstrates the proposition.  

 

 

Remark 10a: 

From Proposition 9 it can be noticed that the elements of the matrix  T
Φ Φ  depend on their row 

and column indices, m  and r , respectively, the order of the original system n  defined in (3.5), 

the prediction horizon pN  and the deterioration rate  . 

 

Remark 10b: 

It can be noticed that for 1cN n   the matrix definition in (5.58) does not hold and that case 

will not be considered in the thesis. 

 

Proposition 10: 

From matrix T
Φ F  denoted as T

M =Φ F the following hold 

 

 

 
 

   

1

1

0 0 0

1 1

1

0 0 1

1

1

a) ,

b) ,1

c) , 1 ,

p

p c p

p

p c p

p

p c p

N n m j j n m r
i i

m r n N n N N

j i i

N n m j n mj
i i

m n N n N N

j i i

N

m n N n N N

r

m r

m

m n m r

 

     

 

  

     







  

  



 
       

 

 
       

 

     

  

  


T

M

M Φ

M

   (5.63) 
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where the matrices Φ  and F  are defined in (3.54) and m  and r  denote matrix row and column 

index respectively.  

 

Demonstration: 

Recalling the representation of the matrix F shown in (3.54) 

 

2

3

 
 
 
 
 
 
 
 

p

T

c c

T

c c

T

c c

NT

c c

c A

c A

c AF

c A

 

from (5.48) it can be noticed that 

  mm  T

c cF c A  

where m  is a matrix row index, it can be observed that 

 

1 0

1 0

2 1 0

1 0 0

2 3 4 5 0

1 0 0 0 0

1 2 3 4 1

1 0 0 0 0

1 2 3 2

1 0 0 0 0

0 0 ... 0 1

0 ... 0 1

... 1

... 1

... 1

i i

i i

i i i

i i i

n n n n
i i i i i

i i i i i

n n n n
i i i i i

i i i i i

n n n n
i i i i i

i i i i i

 

  

    

    

    

 

  

   

    

   

    

  

    



 

  

    

    

    

F

1 2 3 ( 1)

1 0 0 0 0

... 1
p p p p pN N N N N n

i i i i i

i i i i i

    
    

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
    

 (5.64) 

 

It can be noticed that for row indices 2m n   there are no zero elements in the rows.  
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From the form of the matrix F shown in (5.64) (the last column contains ones only) it can be 

recognised that the last column of the matrix  T
Φ F  must be a vector of elements which are the 

sum of the elements of the m-th  row of the matrix T
Φ  (elements of the r-th column of the 

matrix Φ , equivalently). This demonstrates part c) of the proposition. 

Further multiplying the matrix T
Φ  (formultion shown in (5.59)) by the first column of the 

matrix F  (formulation shown in (5.64)) it may be deduced that 

  

 

0

0 1 0 1

10 1

0 1 0 1

20 2

0 1 0 1

110

0 1 0 1

...

...

,1
...

...

p p

p p

p p

p p cp c p

N n Nn
i i i i

i i i i

N n Nn
i i i i

i i i i

N n Nn
i i i i

i i i i

N N Nn N N N

i i i i

i i i i

m



   

 

   

 

   

    

   

 
  

 
 
  
 
 
  




  
 

   

   

   

   

M

   

   

   

   








 (5.65) 

So that  

  

0 0 1

( 1) 1

0 0 1

( 2) 2

0 0 1

( 1) 1

0 0 1

,1

p

p

p

p p c p c

N n j j n
i i

j i i

N n j j n
i i

j i i

N n j j n
i i

j i i

N N N j n N Nj
i i

j i i

m

 

  

   

  

   

  

      

  

  
  

  
  
  
  
 

   
  
 

 
 
 

  
   
  

  

  

  

  

M

 

 

 

 

 (5.66) 

Therefore     
   1 1

0 0 1

,1
pN n r j n rj

i i

j i i

m

     

  

 
   

 
  M       (5.67) 

This demonstrates part b) of the proposition. 

 

 

Further, multiplying (5.59) by the remaining columns of the matrix F  shown in (5.64) it can be 

observed that for 1r   
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 

( 1) ( 2) ( 3) ( 1) (1 n)

0 0 0 0 0 0 0 0 0 0 0 0

1 ( 1

0 0 0 0 0

...

,

p p p p

p

N n N n N n N nj j n j j n j j n j j n

i i i i i i i i

j i i j i i j i i j i i
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   

            

           

    
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
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        

     
     
     

     
     
     

       

       
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0 0 0 0 0 0 0 0 0

...
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  
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 
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     
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...
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         
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 
 
 
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 
 
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  
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        (5.68) 
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Therefore  

  
1

0 0 0

,
pN n m j j n m r

i i

j i i

m r

     

  

 
  

 
  M    (5.69) 

This demonstrates part a) of the proposition and ends the demonstration of Proposition

 

The last step is to obtain the final representation of  

     y R nu k K y kT Kx kT    

using T
Φ Φ  and T

Φ F  in the simplified descriptions shown in Proposition 9 and Proposition 

10. This will allow the optimal order quantities to be found, avoiding at the same time the 

extensive calculations related to the multiplication of extensive matrices Φ and F described in 

(3.54) for the system desribed in (3.5).  

As in (3.63)  

   
1

1 0 0 ... 0

p c

x

N N

T

and







   

T T

y

K Φ Φ Φ F

K K K

 

It can be noticed that only the first row of the inverse matrix  
1

T
Φ Φ  is required to be obtained. 

The following proposition shows the general form of the inverse matrix in respect to the  , n , 

pN  and 
cN  values.  

 

 

Proposition 11: 

The inverse of the matrix T
Φ Φ  has dimension p cN N  and has the following form
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         (5.70) 



 

148 

 

where 

 
 

( 1, ) ( 3, 1) 4 ( 1, 2)

( 1, 1)
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      


 

T T T

T

Φ Φ Φ Φ Φ Φ

Φ Φ
 

 1 ( , 1) ( 1, 2)

( 1, 1)

c S S S S
b

S S

    


 

T T

T

Φ Φ Φ Φ

Φ Φ
 

 1 ( 2, 1) ( 1, 1)

( , ) ( 1, 1) ( , 1) ( , 1)

S S S S
c

S S S S S S S S

    


    

T T

T T T T

Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ Φ Φ
 

 

are scalars and 

where 

p cS N N 
 

 

 

Demonstration: 

Demonstration of the proposition makes reference to the product of   
1

T T
Φ Φ Φ Φ  to ensure 

that the identity matrix is obtained. The process is shown in Appendix I.  

 

Remark 11: 

     
1

1 2 1 0 0  0 1 1 0 0

p c

p c p

N N

n N n N N





           T
Φ Φ  (5.71) 

the matrix T
Φ F  is defined in (3.54) and m  and r  denote matrix row and column number 

respectively, and for a system desribed in (3.5), using Proposition 11, and Remark 11, the 

general form of the vector   
1

1 0 0  0

p cN N



  T T
K Φ Φ Φ F  was obtained and shown in  Proposition 

12.  
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Proposition 12: 

    
1

1 1

0 1

1
n r n

i i

n r n

i i

r and
 

   

 

    K K   (5.72) 

 

Demonstration: 

Knowing the tripartite structure of the matrix T
Φ F  shown in Proposition 10, to demonstrate the 

current proposition, the following separate cases need to be considered: 

 for 1r  , covering the second part of the current proposition (  
1

1 )
n

i

i

K  with 

reference to part b) of Proposition 10 

 for 1 1r n    and for 1 r n   covering the first part of the current proposition  

(  
1

1 1

0

n r
i

r n

i

r
 

  



  K  ), with reference to part a) and c) of Proposition 10 where 1n  is 

the column index of the matrix T
Φ F .  

Based on Remark 11, starting from the second part of the proposition,  
1

1
n

i

i

K    and recalling 

the matrix ( ,1)mM , representing the first column of the matrix T
Φ F  shown in (5.63), it needs 

to be shown that 

    
1

1 1 1 0 0 ( ,1)
n

i

i

m


     K M    (5.73) 

Therefore, from (5.66) it needs to be shown that  

    
   1 21 2

0 0 1 0 0 1 0 0 1 1

1 1
p p pN n N n N nj j n j j n j j n n

i i i i i i i

j i i j i i j i i i

        

         

     
          

     
                 K  (5.74) 

Defining pz N n  ,  the principle of mathematical induction is now used to show (5.74) above. 

As a first stage, consider 2z  , then 



 

150 

 

 

   

 

1 21 2

0 0 1 0 0 1 0 0 1

1 1 2 2 1 1 2 2

1 0 1 0 1 1 0 1 1

1

1 1

1

1

j j n j j n j j nz z z
i i i i i i

j i i j i i j i i

n n n n n n
i i i i i i i i i

i i i i i i i i i

n
i

i

     

        

    

        



     
         

     

 
        

 

  

        

        



K        

          

        

       

1 2 1 2 2
2

1 1 1 1 1

1 2 1 2 2
2 2

1 1 1 1 1 1

1

1 1 1

1 1 1 1 2

n n n n n
i i i i i

i i i i i

n n n n n n
i i i i i i

i i i i i i

n
i

i

    

    

    

     



 
         

 

      



     

    

     



          

            



(5.75) 

Assuming now that for some 2z   

    
1 21 2

0 0 1 0 0 1 0 0 1 1

1 1
j j n j j n j j nz z z n

i i i i i i i

j i i j i i j i i i

     

         

     
          

     
                 K  (5.76) 

then for 1z   it can be deduced that: 

 

   

 

1 21 1

0 0 1 0 0 1 0 0 1

1 21 2

0 0 1 0 0 1 0 0 1

1 1

1

j j n j j n j j nz z z
i i i i i i

j i i j i i j i i

j j n j j n j j nz z z
i i i i i i

j i i j i i j i i

i

     

        

     

        



     
         

     

     
          

     



        

        

       

       

K

 
1 1 1 1 1

0 1 0 1 0 1

1
z z n z z n z z n

i i i i i i

i i i i i

       

    

   
      

   
            

 (5.77) 

From the assumption in (5.76), continuing (5.77), the following is observed 
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   

 

1 1 1 1 1

1 0 1 0 1 0 1

1 1 1

1 1 0 0 0

1 1 1

1 1 0 0 1 1

1 1

1

n z z n z z n z z n
i i i i i i i

i i i i i i i

n z n z z z
i i i i i

i i i i i

n z n z z z z
i i i i i

i i i i i i

       

      

   

    

   

     

   
        

   

 
      

 

    

      

    

     

        

      

     

K

1
1 1

1 1

1

1

0

i

n z n
i i z z

i i

n
i

i

n
i

i

 
 

 





 
 
 

    







 





   




 (5.78) 

which, in terms of proof by induction, demonstrates that for every 2z  ,  
1

1
n

i

i

K . 

Further, based on Remark 11, focusing on first part of the proposition and the case when 

1 1r n    and recalling the matrix 
1 1 ( , )r n m r   M  in (5.63), it needs to be shown that 

    
1

0

( , )1 1 0 0
n r

i

i

r m r
 



   K M    (5.79) 

Therefore, from (5.68), it needs to be shown that  

 

   

 

1 1 2 1 3 11 2 3

0 0 0 0 0 0 0 0 0

11 2

0 0 0 0 0 0

1

1

p p p

p p

N n N n N nj j n r j j n r j j n r
i i i i i i

j i i j i i j i i

N n N nj j n r j j n r
i i i i

j i i j i i

r

                

        

       

     

     
         

     

   
      

   

        

     

       

    

K

2 3

0 0 0

1

0

pN n j j n r
i i

j i i

n r
i

i

    

  

 



 
  

 



  



  



(5.80) 
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Defining pz N n    the principle of mathematical induction is used to show the above. As a 

first stage consider 2z  , then  

 

   

 

1 2 31 2
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1 1 2 2 3 2 1 3

0 0 0 0 0 0 0 0

1

1
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 
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 

        

       
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0
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2
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2
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2

0 0 0

1 1
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i

i

n r n r n r
i i i

i i i

n r n r n r
i i i
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
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 
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

  
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  
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i
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i

i

 



 

 (5.81) 

Assuming now that for some 2z   
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1 2 31 2
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

K

 (5.82) 

then for 1z   it can be obtained: 
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 (5.83) 

From the assumption in (5.82) and continuing (5.83) the following is observed 
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 (5.84)  

which, in terms of proof by induction, demonstrates that for every 2z  ,  
1

0

n r
i

i

r
 



 K . 

The last case which needs to be considered is 1r n  . It needs to be shown that for such 

defined r ,  
1

0

n r
i

i

r
 



 K  . Recalling the matrix ( , 1)m nM  defined in (5.63), representing the 

last column of the matrix T
Φ F  (column number 1n ) it needs to be shown that for every n  
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Therefore, from (5.59)  
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Defining pz N n   , the principle mathematical induction is used to show the above. 

As a first stage consider 2z  , then   
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Assuming now that for some 2z   
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then for 1z   it can be obtained: 
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 (5.89) 

From the assumption in (5.88) and continuing (5.89) the following is obtained 
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 (5.90) 

which ends the demonstration of the proposition. 

 

Remark 12 

From (3.63)    x yK K K , where yK  is the last element of the vector K , it can be noticed 

that as the dimension of K  is equal to 1n ,  1n yK K . Then recalling Proposition 12 

  
 1 1

0

0

1 1

n n

i

i

n

  



     K  (5.91) 

Therefore  
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 1n yK  (5.92) 

 

Remark 13: 

From Proposition 12 it can be noticed, that from now onwards the next order quantity can be 

immediately calculated by substitution of the simplified description of the vector K , the 

reference inventory level and the current inventory levels into the equation shown in (3.60) such 

that: 

      y Ru k y kT kT   cK Kx  

Since  u kT  is an incremental quantity defined in (3.40) such that 

     1u kT u kT u k T       

Therefore        1Ru kT y kT kT u k T     y cK Kx  (5.93) 

Since the system output  y kT  for the inventory model refers to the current inventory level it 

can now be denoted as  I kT , such that  

    I kT y kT  (5.94) 

Since the reference signal  Ry kT  refers to the reference inventory level it can be denoted as 

 RI kT , from (5.93) it can be deduced that 

        1Ru kT I kT kT u k T     y cK Kx  (5.95) 

From equation (5.92) it can be eventually observed that  

        1Ru kT I kT kT u k T     cKx  (5.96) 

which is the optimal order quantity (inventory system input) shown in the IC Proposition for the 

perishable case. 
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5.3 Summary 

The demonstration of the mathematical equivalency between the IC and IMPC methods has 

been systematically shown. To illustrate the development of the IC method, the mathematical 

demonstration has been presented initially for the non-perishable case where  ( ) 1kT    and 

then the perishable case, where ( ) (0 , 1]kT  , separately. In a logical sequence the 

simplification procedure of the initial MPC method for the inventory model has been deduced in 

a step by step manner, firstly for non-perishable and then for perishable conditions. Although, 

eventually, the non-perishable case was elaborated to be a special case of the wider perishable 

case, such an organisation of the material of the chapter has enabled the reader to follow how the 

proposed IC method has been developed. Therefore, all propositions established for 

demonstration of mathematical equivalency of the non-perishable case appeared to be the 

special cases of the propositions established for the perishable case. Eventually the final 

proposition has demonstrated the equivalency of the gain vector K  from the IC Proposition 

with gain vector K  of IMPC. The procedure of obtaining the optimal order size for the current 

time instance kT  was elaborated.  The proposed IC method can be used equivalently to IMPC, 

and can therefore significantly decrease the computational cost and complexity and enable the 

wider accessibility of the OR community. The findings presented in this chapter constitute the 

main originality and novel work of the thesis. 

Equation Chapter (Next) Section 1  
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6 RESULTS OF PROPOSED METHOD 

 

6.1 Introduction 

In this chapter, simulation results of the proposed IC method are presented to justify the 

efficiency of the proposed method for the inventory application. In Section 4.4 and Section 4.5 

the low-bound saturation of order levels were not considered (the orders were allowed to be 

lower than zero, returns). The order quantities in the current chapter are prevented from 

dropping below zero for the purpose of obtaining realistic simulation results of given inventory 

control.  

Defining the profit function to be of the form: 

 

    prof Tot L L c u c TotF P d I P I H I Pu       (6.1) 

 

where: 

Totd  denotes the total number of goods sold in N  periods 

uI  denotes the total number of goods stored in the warehouse in N  periods (the inventory level 

greater or equal than zero) 

LI  denotes the total number of backorders in N  periods (the inventory level lower than zero) 

Totu  denotes the total number of goods ordered in N  periods 

P  denotes the selling price per unit 

P  denotes the discounted selling price per unit, where   is a discount rate, applicable 

when the demand is not satisfied immediately and the customer has to wait for a delivery 

(backorders) 

cH  denotes the holding cost per kept unit in an unit time 

cP  denotes the purchasing cost per unit. 

 

Using the profit function (6.1), it can be analysed to show how the simulation settings affect the 

profit. Based on the observations, the suggestions for improvement can be made. 
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The current chapter presents the simulation settings first, where, among others, the time 

varying and inventory level dependent deterioration rate are shown. The deterioration is 

assumed to proportionally increase when the inventory level increases. Indeed, this is true for 

some real life applications, where the higher the inventory level, the greater chances the stock 

will deteriorate. 

The first simulation test was run to show that the reference inventory level affects the system 

response characteristics. Then the defined profit function in equation (6.1) is used to test the 

influence of the reference inventory levels to profitability (for some chosen numerical values of 

costs and prices of the profit function). The following test is run for the most profitable 

inventory level accordingly to the test results. It shows the system behaviour with respect to 

different demand patterns to see if the IC control performs according to expectations. A more 

detailed discussion of the system behaviour is presented in the following test for inventory 

levels, order sizes and deterioration rate separately.  

 

6.2 Simulation Settings 

 

In the current numerical example, the simulation parameters were set as follows: 

The lead time delay was set to 5n  . The inventory was assumed to be no greater than 1000 

items at any time (to assure the deterioration rate is never negative), the deterioration rate was 

assumed to be dependent on current inventory level in the following manner 

 

  
1 0.001 ( ) ( ) 0

1

I kT if I kT
I kT

otherwise

  
    


  (6.2) 

where the current value is dynamically substituted to obtain the control vector of IC Proposition 

of (3.66) such that 
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The unit costs and prices of profit function (6.1) were set as follows: 2P  , 0.2 , 0.3cH  , 

0.5cP   and the simulation was run for 200 periods. The different demand patterns used in the 

following tests have the same, or approximately the same (in the case of randomness) mean 

values of 50 items (if the first 5 null values time instances are not considered, while the mean 

calculation) or 48.75 in general (considering the null values into mean calculation), as the 

demand in each case is set to zero for the first 5n   periods. Since the mean value of demand is 

always the same regardless of demand pattern, once the profit function in (6.1) is used, the 

assessment of the profit can be considered. This way, the differences in profits obtained and 

results in general depends only on different demand trends rather than total number of products 

sold within the simulation period (as it is exactly the same for all demand patterns shown). It 

accounts for the fact that the warehouse does not sell any items until the first order reaches the 

warehouse.  

 

The five different demand patterns are presented in Figure 6-1 (all of them on the same scale) 

and in Figure 6-2 separately to increase the visibility, respectively, as follows: constant demand, 

seasonal demand pattern with two possible values only, seasonal pattern with more values 

allowed, random demand oscillating around the mean value and finally the seasonal pattern with 

some randomness allowed.  

The demand, apart from the initial 5 time instances, is constant and equal to 50 items. Later in 

the chapter it is referred to as Demand 1. Demand 1 is used in the chapter for simulation of the 

system to show that the response of the inventory level is smooth, stable and the costs related to 

inventory overshoots are very limited.  

The seasonal demand of two allowed values is equal to 100 items (for 6-45 and 100-154 time 

instances) and 0 (for the remaining time instances). It is later referred to as Demand 2. The 

chosen values of demand differ extremely (comparing to other tested demand patterns) therefore 

they enable the reader to see that the more sudden the changes in demand, the more cost 

generated to the warehouse in terms of inventory overshoots (storage costs) as well as order 

overshoots (purchasing costs).  

The seasonal demand pattern with more values allowed is equal to 50 (for 6-60 and 151-190 

time instances), and 100 items (for 61-110). It is later referred to as Demand 3. The chosen 

values are less extreme than in the case of Demand 2. Therefore, they enable to see the 

difference in profit increase in comparison to Demand 2. It enables to notice that the sudden 
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increase of inventory is smoother than in case of the Demand 2. Therefore, the less the storage 

costs are generated. Also, comparing with Demand 2, the purchase costs are smaller, due to the 

less sudden increase of order quantities, when they occur.  

The random demand pattern is set to zero for the first 5 time instances and then oscillates 

around a mean value of 50 with a variance of 5 items. It is later referred to as Demand 4. 

Demand 4 has a relatively smooth pattern as the randomness allowed is relatively small. 

Therefore, it enables to see that the profit is relatively high, as in case of constant demand. The 

inventory levels and orders are relatively smooth, which does reduce storage and purchasing 

costs. The seasonal pattern with some randomness allowed contains the seasonal pattern of 50 

(for 6-60 and 151-190 time instances), 100 items (for 61-110) plus randomness of 0 as a mean 

value and variance of 5 items. It is later referred to as a Demand 5. It tends to highlight the 

difference in results obtained with comparison to Demand 3 – an identical pattern, but the 

randomness or lack of randomness constitutes the difference.  

 

 

Figure 6-1: 5 Demand patterns shown on one scale 
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Figure 6-2: 5 Demand patterns shown on separate scales 

 

6.3 Test 1: To illustrate how the reference inventory affects the system 

behaviour 

From the profit function in (6.1) it can be noticed that the positive values of the inventory 

level (the actual number of stored goods) generate the storage costs which, perceptibly, 

decreases the profit. Therefore, it can be assumed that the lower the reference inventory level, 

the greater the profit for the organisation. On the other hand, the negative values of inventory 
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levels (the backorders), are more likely to compensate for the low value of reference inventory 

level, which generates additional cost for the organisation. There are three different reference 

inventory levels tested: 0ry  , 100ry   and 200ry   for the last (the fifth) demand pattern of 

Figure 6-2. Figure 6-3 shows the system response for each of them on the same graph. Figure 

6-4 and Figure 6-6 illustrate the inventory system response for each of 0ry  , 100ry   and 

200ry  separately to increase the visibility. First the discussion of each reference inventory 

level is conducted separately based on analysis of Figure 6-4 and Figure 6-6, later all of the 

results are compared with each other with reference to Figure 6-3. 

 

Figure 6-3: System response for all three reference inventory levels 
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Figure 6-4 shows the system response to the reference inventory level set to zero (empty 

warehouse). As a result of demand a sudden increase at 10
th

 time instance is noticed where the 

order size suddenly overshoots to up to 300 items (due to increased sale, more items must be 

replenished) around the 10
th

 day, to compensate for the backorders of 220 items (negative 

inventory) obtained in the inventory levels (sold/demanded items) at the same time instance. 

Then the orders converge quickly (within 5 days) to approximately 50 items, which correspond 

to the demand value (50 items too) and which drives the inventory levels back to near reference 

value (zero) within lead time delay. For the times instances between approximately 15 to 60 

days, the order sizes oscillate slightly around value of 50 items. They do so in noticeable 

correlation to demand behaviour at the respective time instances. When the demand increases 

slightly, the orders increase respectively to compensate for the inventory level reduction (due to 

goods sale), and when the demand slightly decreases, the orders decrease respectively as less 

goods were sold and the current inventory increases slightly.  

 

When the demand suddenly increases to 100 items at the 60
th

 time instance, the orders 

overshoot again to the level of 300 items, to converge quickly (within 5 days – lead time delay) 

to a level of approximately 100 items (which corresponds to the demand value of 100 items too). 

Again it happens due to the inventory levels compensation, which, as it can be seen in Figure 

6-4 drops to 200 items of backorders when the demand suddenly increases. Further, in 

correlation to demand, at time instances between 65 and 110, the orders slightly oscillate near 

the value of 100 items (directly proportionally to demand) and inventories slightly oscillate near 

the reference value of zero items (inverse proportionally to demand).  

 

Then, as the demand suddenly decreases to just above zero, the orders suddenly decrease to 

just above zero too, to reduce the surplus inventory after the real time delay. If returns were 

allowed, the orders would have compensated for the surplus inventory after the real time period 

of 5 days completely by dropping significantly below zero. At the same time instance, the 

inventory suddenly rises as fewer items were sold and due to the system delay the previous order 

quantities were still delivered to the warehouse. As returns are not allowed in the model, the 

orders could not go below zero to compensate for the surplus inventory and thus the inventory 

returns to the desired level of about zero at a slower rate than before.  
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Figure 6-4: System response to reference inventory of value zero items 
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For the next season of 40 days for 110-150 time instances (the orders stay at or slightly above 

zero) none or very little items are ordered to the warehouse. The inventory levels take about half 

of that period to come back to around the reference zero inventory level. Then, on the 150
th

 day, 

the orders overshoot to a value of 200 items due to a sudden increase in demand to around 50 

items. In this way they drive the inventory level  (within time delay) back to around reference 

level faster, as they dropped to 200 items of backorders due to the sudden demand change. Then 

the orders converge within 5 days to the level near to 50 items, which corresponds to the level of 

demand (50 items too). Subsequently, the orders keep oscillating near the value of 50 items. The 

inventory is maintained around the reference level after the lead time delay. The demand 

changes once more for the last 5 time instances by dropping to just above zero. This causes the 

reduction of orders to zero and increases the inventory to around 180 items.  

In general it can be noticed that the system responds in an expected manner: the order 

quantity controls the inventory level through quick responses to demand changes and drives 

them back to the reference value usually with respect to a system delay.  

Figure 6-4 also presents the deterioration rate to confirm that it behaves according to 

expectations. Indeed it never exceeds one (as designed) and drops below one inversely 

proportionally to the inventory level. The significant drop below one (to about 0.7) occurs in the 

110-120 time instances, when the inventory overshoots to 200 items.    

 

Figure 6-5 shows the system response to the reference inventory level set to 100 items. With 

respect to changes in demand, the order size suddenly overshoot to approximately 250 items at 

approximately the 10
th

 day (due to the increased sale, more items must be replenished)  in order 

to compensate for the backorders of about 150 items obtained in inventory levels 

(sold/demanded items) at the same time instance. It can be noticed that the overshoot is less than 

in the case when 0ry  . The orders then converge quickly (within 5 days) to the level around 50 

items, which correspond to the demand value (50 items too) and which drives the inventory 

levels back to near the reference value (100 items) within the lead time delay. For the time 

instances between approximately 15 to 60 days the order sizes oscillate around value of 50 

items. The oscillations are slightly greater than in the case of 0ry  . Orders oscillate in 

noticeable correlation to demand behaviour at the respective time instances. When the demand 

increases slightly, the orders increase respectively to compensate for the inventory level 

reduction (due to goods sale), and when the demand slightly decreases, the orders decrease 

respectively as less goods  are sold and the current inventory  increases slightly.  
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Figure 6-5: System response to reference inventory of value 100 items 
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When the demand suddenly increases to 100 items at the 60
th

 time instance, the orders 

overshoot again to the level of 220 items (the order overshoot here is smaller than in the case 

of 0ry  ), to converge quickly (within 5 days – lead time delay) to a level of approximately 

100 items (which corresponds to the demand value of 100 items too). Again it happens due to 

the compensation in the inventory levels, which, as it can be seen in Figure 6-5 drops to 200 

items of backorders when the demand suddenly increases.  Further, in correlation to the 

demand at time instances between 65 and 110, the orders oscillate near the value of 100 items 

(directly proportionally to demand) and inventories slightly oscillate near the reference value 

of zero items (inverse proportionally to demand). The oscillations of both, orders and 

inventories are greater than in the case of 0ry  . 

As the demand suddenly decreases to just above zero, the orders suddenly decrease to just 

above zero too, to reduce the surplus inventory after the real time delay. If the returns were 

allowed, the orders would have compensated for the surplus inventory after the real time 

period of 5 days completely by dropping significantly below zero. At the same time instance 

the inventory would suddenly rise up to around 250 items as less items are sold and due to the 

system delay the previous order quantities are still delivered to the warehouse. As returns are 

not allowed in the model, the orders could not go below zero to compensate for the surplus 

inventory, and thus the inventory returns to the desired level of about 100 items slower than 

before. However the period of inventory level recovery is smaller than in the case of 0ry  .  

For the next season of 40 days for 110-150 time instances (the orders oscillate just above 

zero) none or very little items are ordered to the warehouse). The oscillations are significant 

here and are greater than in case of 0ry  . Then, on the 150
th

 day, the orders overshoot to a 

value of 200 items due to a sudden increase in demand to around 50 items. This way they drive 

the inventory level faster (within the time delay) back to around reference level, as they 

dropped to 120 items of backorders due to a sudden demand change. The orders then converge 

within 5 days to the level near to 50 items, which correspond to the level of demand (50 items 

too). Subsequently, the orders keep oscillating near the value of 50 items and the oscillations 

are significant. The inventory is maintained around the reference level after the lead time delay 

with some oscillations which are greater than in the case of 0ry  . The demand changes once 

more for the last 5 time instances by dropping to just above zero. This causes the reduction of 

orders to just above zero and increases the inventory to around 180 items.  

In general it can be noticed that the system responds in an expected manner where the order 

quantity controls the inventory level through quick responses to demand changes and drives 



 

169 

 

them back to the reference value usually with respect to system delay. The oscillations are 

always more significant here than in the case of 0ry  , which can be reflected in the 

deterioration rates. 

Figure 6-4 also presents the deterioration rate to confirm that it behaves according to 

expectations. Indeed it never exceeds one (as designed) and if it does drop below one it is 

inversely proportionally to the inventory level. The significant drop below one (to about 0.7) 

happens in the 110-120 time instances, when the inventory overshoots to 200 items. The 

clearly visible oscillations just below one or near 0.9 are visible all over the simulation period, 

which, in comparison to 0ry  , shows even more clearly that the inventory levels oscillate 

here more.  

 

Figure 6-6 shows the system response to the reference inventory level set to 200 items. The 

relation between the behaviour of order sizes and the demand pattern is not clearly noticeable 

for the current case. The order sizes fluctuate significantly comparing to the previous cases. 

The inventory level oscillations reach almost 400 items, but the back orders never occur. The 

deterioration rate oscillates between one and 0.75 which reflects the significant oscillations in 

inventory levels. 

 

As a conclusion it can be noticed that different reference inventory levels generate different 

responses of the system. Combining all the results together in Figure 6-3 it can be noticed that 

the inventory level goes below zero the least (actually zero times) for 200ry   and the most 

often for 0ry  . Therefore backorders do not appear at all for 200ry  , while they occur 

relatively often for the case where 0ry  . Nevertheless, the inventory level becomes less stable 

for 200ry  , while it is the most stable for 0ry   (which in terms of the thesis objective is an 

advantage). Also, respectively, the stock is the greatest for the case of 200ry   and the lowest 

for the case of 0ry  . The aim of this thesis is to keep the inventory at a stable level therefore 

in this case the 0ry   reference level can be recommended for the industrial purposes. In any 

case the profit function described in (6.1) enables numerical analysis and assessment of the 

most cost efficient reference inventory level for a given unit cost for a given set of numerical 

values.  
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Figure 6-6: System response to reference inventory of value 200 items 
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6.4 Test 2: To find the most profitable reference inventory level 

Table 6-1 represents the profit values obtained for a given numerical example. The profits 

were calculated separately for each of the five given demand patterns shown in Figure 6-2 and 

for eleven different reference inventory level values as given in Table 6-1. For each reference 

inventory level, the mean profit value of the five respective demand patterns is given in Table 

6-1 in order to simplify the analysis. 

 

reference 

inventory 

level  
ry  

Profit values mean 

Demand 1 Demand 2 Demand 3 Demand 4 Demand 5  

100 7766.17 6483.50 7336.78 7856.11 7475.33 7383.58 

90 8505.67 7156.72 7989.80 8720.04 8217.24 8117.89 

80 9227.42 7806.11 8618.55 9361.03 8718.64 8746.35 

70 9931.29 8434.09 9228.76 10218.50 9496.86 9461.90 

60 10617.18 9041.40 9817.43 10850.02 10209.68 10107.14 

50 11284.98 9626.18 10385.70 11412.98 10776.19 10697.21 

40 11934.62 10164.93 10915.41 12048.36 11216.19 11255.90 

30 12566.01 10639.83 11407.74 12742.25 11652.67 11801.70 

20 13179.07 10999.25 11843.51 13245.13 12229.72 12299.34 

10 13773.76 11287.35 12264.98 13540.19 12493.58 12671.97 

0 14350.00 11567.60 12672.20 13829.35 12665.78 13016.98 

Table 6-1: Profit values 

  

It can be observed that for each reference inventory level, the profit differs with respect to 

the demand trend. It can be noticed that for most cases of the reference inventory level, the best 

profits are obtained for Demand 4, (which is the constant demand with some randomness 

allowed), and Demand 1, (which is the constant demand). For the very low reference inventory 

levels the demand 1 is slightly more profitable than Demand 4, for higher inventory levels the 

Demand 4 generates slightly better profit then Demand 1 (see Table 6-2). It is related to the 

fact that both of these demand patterns are smooth and do not cause significant inventory 
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overshoots or backorders (which both would generate extra costs for the warehouse). It can be 

also noticed that Demand 3 and Demand 5 generate similar profits, smaller than Demand 4 and 

Demand 1, but greater than Demand 2. Their sudden changes of value are smaller than in the 

case of Demand 2, but greater than in case of demand 4 and Demand 1. Also, it can be noticed 

that regardless of the reference inventory level value, the lowest profits were obtained for 

Demand 2 (see Table 6-2), which is the demand pattern with two extremely different values. 

Based on the results obtained, it can be concluded that the more sudden and extreme changes 

in demand pattern, the more cost is generated due to overshoots in inventory levels (more 

goods stored) and order quantities (more goods bought). Table 6-2 presents the demand 

patterns in the order of profitability with respect to reference inventory levels. 

 

reference 

inventory 

level  
ry  

Profit 4 Profit 2 Profit 3 Profit  4 Profit  5 

100 Demand 4 Demand 1 Demand 5 Demand 3 Demand 2 

90 Demand 4 Demand 1 Demand 5 Demand 3 Demand 2 

80 Demand 4 Demand 1 Demand 5 Demand 3 Demand 2 

70 Demand 4 Demand 1 Demand 5 Demand 3 Demand 2 

60 Demand 4 Demand 1 Demand 5 Demand 3 Demand 2 

50 Demand 4 Demand 1 Demand 5 Demand 3 Demand 2 

40 Demand 4 Demand 1 Demand 5 Demand 3 Demand 2 

30 Demand 4 Demand 1 Demand 5 Demand 3 Demand 2 

20 Demand 1 Demand 1 Demand 5 Demand 3 Demand 2 

10 Demand 1 Demand 4 Demand 5 Demand 3 Demand 2 

0 Demand 1 Demand 4 Demand 5 Demand 3 Demand 2 

Table 6-2: Profit vs. Demand 

       

Figure 6-7 represents the monotonically decreasing function of a relationship of the mean 

profit to reference inventory level (the last column of Table 6-1). Therefore, it can be seen that 

for the considered numerical example, the backorder associated costs, do not affect the profit 

as much as the holding associated costs and 0ry   generates the highest profit for the 

organisation.  
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Figure 6-7: Mean profit in respect to reference inventory level 

 

Therefore, in general, the profit function (6.1) can be used by the system designer to decide 

which reference inventory level is the most profitable for the organization for real unit costs 

and prices of a case scenario, or can help to decide the unit costs and price adjustment for an 

arbitrarily selected inventory reference level. In the considered numerical example, setting the 

reference value to zero is recommended. Therefore further experiments are conducted for that 

particular value only.  

 

6.5 Test 3: To illustrate how demand pattern affects system 

behaviour 

The simulation was run for the recommended inventory reference level of zero items. The 

current section presents results of optimal order quantities, inventory levels and deterioration 

rate values, respectively, to each demand pattern. Each of the mentioned results are  presented 

twice, one on a common scale for all demand patterns and the second time on separate scales 

for each demand pattern.  

Figure 6-8 represents the optimal order quantities for all considered demand patterns on one 

scale, while Figure 6-9 represents the same results on separate scales for each demand to 

increase the visibility of the results.  
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Figure 6-8: Order quantities for 5 demands on one scale 

 

Observing Figure 6-8 and Figure 6-9 it can be noticed that order quantities are always above 

zero (accordingly to the model design) regardless of the demand pattern. It can be observed 

that the orders overshoot when the demand suddenly changes from one value to another and 

the more the sudden changes, the higher the overshoots. For instance, Demand 2 generates 

higher overshoots (at 5
th

 and 100
th

 time instances) in orders sizes (up to 600 items) than 

Demand 3 (up to 300 items, at 10
th

, 60
th

 and 150
th

 time instance). It happens because the 

difference in demand level at Demand 2 (see Figure 6-1or Figure 6-2) between time instances 

no 5 and no 100 is 100 more (100 items) than at demand 3 for time instances no 10, 60 and 150 

(50 items only). It explains partially the reason of Demand 2 being less profitable than demand 

3, as discussed in Section 6.4. In Figure 6-8 and Figure 6-9 it can also be observed that the 

overshoots of Demand 5 are slightly smaller (about 250 items) at time instances: 10, 60 and 

150 than Demand 3 (about 300 items) for the same time instances. Although the seasonal 

factor of the demand pattern in both of them are identical, the random factor is the factor which 

differs the two demands from each other (see Figure 6-1or Figure 6-2). It can be concluded 
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that the randomness slightly smoothens the overshoots. It would explain the observation that 

Demand 5 generates slightly better profit than Demand 3 in Section 6.4. 

 

Figure 6-9: Orders for 5 different demand patterns on separate scales 
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Nevertheless, the opposite conclusion can be drawn in the case of comparing Demand 1 and 

Demand 4 in Figure 6-8 and Figure 6-9. The overshoot of the 5
th

 time instance is slightly 

greater for the demand Pattern 4, compared to Demand 1, which differs from one another by 

the randomness added only (see Figure 6-1 or Figure 6-2). It again can be related with  

observations in Section 6.4., where it can be seen that for low inventory levels as a reference 

signal, the Demand 4 is slightly less profitable than Demand 1. In general in that case, the 

orders are reasonably low for most of the time, regardless of the demand pattern (as they 

remain at or near the demand trend line for most of the time). They do overshoot at the times 

instances when the demand suddenly fluctuates, but they stabilise and recover within the 

system delay to (when there is no randomness in the demand pattern) or within +/-5 items near  

(in the case of the randomness considered) the demand value.  

Figure 6-10 represents the inventory levels for all the considered demand patterns on one scale, 

while Figure 6-11 represents the same results on separate scales for each demand to increase 

the visibility of the results. It can be observed that the backorders as well as overshoots occur 

only in the case of sudden demand changes (see Figure 6-1or Figure 6-2). Also the backorders 

occur at the same time instances when the overshoots of orders occur and the overshoots occur 

when the orders go to zero level (see Figure 6-8 and Figure 6-9). If the demand suddenly 

increases, as in the case of, for instance, Demand 1 at the 5
th

 time instance, then the backorders 

occur for the same time instance in inventory levels. It is due to an insufficient number of 

goods stored in the warehouse with respect to the demanded number. At the same time 

instance the orders overshoot to (see Figure 6-8 and Figure 6-9) supply the warehouse the 

demanded items, which within the lead time delay drives the inventory back to the reference 

level of zero items. This behaviour is observed for all demand patterns.  

 

On the other hand if the demand suddenly decreases, as in the case of, for instance, Demand 2 

on the 50th day, then the overshoot of inventory levels occur for the same time instance in the 

respective inventory level. The overshoots stay in the system longer than the lead time delay 

only due to the fact that the order quantities (see Figure 6-8 and Figure 6-9) are not allowed to 

go below zero, therefore they can drive the inventory back to the zero level slower than in the 

case of backorders. Nevertheless this is observable for all demand patterns.  
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In Figure 6-10 and Figure 6-11 it can be also observed that overshoots and backorders are 

greater for larger demand changes. For instance, the backorders, related to Demand 5 at the 5
th

 

time instance, are larger (about 400 items) than in the case of Demand 3 at the same time 

instance (around 220 items).  Both the observations correlate with the fact that Demand 2 

generates the lowest profit for the company, shown in Section 6.4. In Figure 6-10 and Figure 

6-11 it can be seen that the inventory levels are kept on (in the case of lack of demand 

randomness) or near +/-5 items (in the case of considered randomness of a demand pattern) at 

the reference level for most of the simulation time. In the case of sudden demand fluctuations, 

they stabilise and converge quickly to or near to the reference level.  

 

 

Figure 6-10: Inventory levels for 5 demand patterns on one scale 
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Figure 6-11: Inventory levels for 5 demand patterns on separate scales 
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Figure 6-12 represents the deterioration rates for all the considered demand patterns on one 

scale, while Figure 6-13 presents the same results on separate scales for each demand to 

increase the visibility of the results. The changes of the deterioration rate are representative 

(i.e. related) to the inventory level variations (see Figure 6-10 and Figure 6-11) over time 

regardless of demand pattern of Figure 6-1 or Figure 6-2 and are represented in Figure 6-12 

and Figure 6-13. They are consistent with the time varying deterioration rate mathematical 

description in (6.2). The deterioration never goes above one or below zero. It stays at value of 

one when there is no inventory stored at the current time instance. It decreases proportionally 

with the increase of inventory. The detailed relation between demand fluctuations and  

inventory levels, order quantities and deterioration rate values are discussed in Section 6.6 for 

the most profitable reference inventory level of zero items (although this theoretical level may 

be impractical in reality).  
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Figure 6-12: Deterioration rates for 5 demand patterns on one scale 
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Figure 6-13: Deterioration rates for 5 demand patterns on separate scales 
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6.6 Test 4: To illustrate how demand pattern affects system 

behaviour continued 

This section discusses results for the same numerical example as in Section 6.5, but the 

results are represented here in a different perspective. Figure 6-14 - Figure 6-18 show how the 

IC method deals with   different demand patterns with respect to inventory, orders and 

deterioration rate on the same figure. It also deals with how the demand pattern influences the 

optimal order quantities, which in turn control the inventory levels and deterioration, which is 

dependent on inventory levels. 

In Figure 6-14 the warehouse is initially empty and the orders are zero as the reference 

inventory level is zero, to keep the warehouse empty till the first demand occurs. The demand 

is zero too for first 4 time instances. The demand increases from 0 to 50 items at the 5
th

 time 

instance and then remains constant. As a response, the backorders of approximately 220 items 

initially occur in the warehouse (at 5
th

 time instance), since the warehouse was initially empty 

and no order was placed until now. The respective order quantities increase to 300 items at the 

5
th

 time instance to compensate for the backorders in the inventory levels. Then the order size 

quickly stabilizes and converges to 50 items (the demand level), within the lead time delay. In 

this way the inventory level is driven back to the reference zero items (empty warehouse) by 

appropriate replenishment. The inventory level remains at the reference level of zero items for 

the rest of the simulated periods due to the fact that the order size compensates for the constant 

demand of 50 items for the rest of the simulation. The deterioration rate of products remains at 

a value of one, since the warehouse inventory level never goes above zero. In practice the 

empty warehouse refers to a cross-docking center (whatever is purchased is immediately 

dispatched to the customer) (Rushton, Croucher and Baker, 2010).  
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Figure 6-14: Demand 1 and respective system response 
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In Figure 6-15 the warehouse is initially empty and the orders initially are zero as the 

reference inventory level is zero too, to keep the warehouse empty until the first demand 

occurs. The considered demand pattern is seasonal with only two values allowed. No items are 

initially demanded for the first 4 time instances. The demand increases drastically from 0 to 

100 items at the 5
th

 time instance. As a response, the backorders of 400 items occur in 

inventory levels, as no goods are  stored in the warehouse and 100 items are suddenly 

demanded. The orders suddenly overshoot to the level of 600 items to compensate for the 

backorders. The orders then stabilize and converge quickly (within the time delay) to the level 

of 100, which is the demand value, at that time instance. In this way once the inventory level 

has converged back to the reference inventory level within the lead time delay thanks to order 

size compensation, the orders can be equal to demanded number of goods to maintain the 

desired state. No difference is noticed in deterioration rate at that time instance.  

Then, at the 50
th

 time instance, the demand decreases to zero. As a response, the inventory 

builds up quickly (it overshoots to a value of 300 items) and the orders suddenly decrease to 

zero to compensate for the increased inventory. The orders are not allowed to go below zero 

therefore the process of driving the inventory back to the reference level takes more than the 

lead time delay. Eventually the inventory smoothly converges back to zero. The almost 

symmetric shape of deterioration rate line to inventory overshoots can be noticed at respective 

times as according to deterioration value design it decreases below zero only if inventory goes 

above zero (above reference level).  

As a result of the repetitive character of Demand 2, the whole cycle starts over again at the 

time instance 100.  
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Figure 6-15: Demand 2 and respective system response 
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Figure 6-16 shows the simulation results for the seasonal demand pattern when more values 

are allowed. Initially the warehouse is empty and the orders are zero as no goods are demanded 

at the beginning of the simulation. The demand changes are less extreme than in the case of 

Figure 6-15 (over 50 items most of the time, not 100 as it was with demand 2). The first non-

zero demand (of 50 items) occurs at the 10
th

 time instance. It can be observed that as a 

response, the backorders of about 220 items occur in inventories in the respective time, as there 

were no goods in the warehouse to satisfy the demand. The order quantities overshoot on the 

10
th

 day (up to 300 items) to compensate for the backorders and future demand. As the demand 

remains at the level of 50 till the 60
th

 time instance, the orders coverage to the demand value 

(50 items) to replenish the warehouse in what was sold. Through appropriate order size the 

inventory levels are driven back to the zero reference inventory level within the lead time 

delay. There is no difference observed in deterioration rate level at that time unit.  

Then, the sudden increase of demand from 50 to 100 items causes the backorders in 

inventories of approximately 220 items and overshoots in orders to the level of approximately 

350 items in order to control the inventory fluctuations. Again no difference in deterioration 

rate values is observed. The order quantity again converges to the demand value to replenish 

the warehouse on a daily basis with the sold number of goods. This way the inventory is driven 

back to zero items.  

Then the drop to zero of the demand at the 110
th

 time instance causes overshoots to the level 

of 300 items in inventories, as the inventory quickly builds up due to a system delay (back 

orders manage to take over control). The reduction of optimal orders to zero is observed in the 

respective time. The inventory converges smoothly and slowly to zero, but some extra time 

(apart from lead time delay) is needed as the orders cannot go below zero to speed up the 

inventory reduction process. It causes an analogous drop of the deterioration rate (below the 

constant level of one).  The deterioration rate drops below one only when the surplus inventory 

appears in the warehouse.  

The demand increases back to 50 items at the 150
th

 time instance which causes the same 

system response as at the 5
th

 time instance. The demand drop to zero at the 195
th

 time instance 

increases the inventories and zero orders when the simulation time finishes at the 200
th

 time 

instance.  
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Figure 6-16: Demand 3 and respective system response 
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Figure 6-17 shows the simulation results for the random demand pattern. Initially the 

warehouse is empty and as a result no order is placed till the first non-zero demand occurs. The 

demand is equal to zero for the initial time instances, then increases to the level of 50 items and 

then remains at similar level oscillating +/- 5 items. The system response is similar to that of 

Demand 1 with some more fluctuations of results added.  

For the sudden increase of demand at the 5
th

 time instance, the backorders of about 220 

items occur in the inventory levels, as there were  no goods in the warehouse to satisfy the 

demand. The orders overshoot (to a level of approximately 350 items) to take  control over the 

backorders at the respective time. This causes the inventory levels to converge to the reference 

level of zero items. The order size converge to the level of demand in order to sustain the 

replenishment of inventories at a similar level. Due to the demand variation of around a value 

of 50 items from the 6
th

 time instance onwards, the oscillations can be observed in inventory 

levels too. They oscillate near to zero items for the remainder of the simulation. It can be 

noticed that the order sizes tend to push the inventory level towards the reference point at any 

time by replenishing the warehouse on a daily basis by the amount which oscillates around the 

demanded number of goods. The oscillations are greater than +/-5 items due to lead time delay.  

The slight  deviations of the deterioration rate from the value of one are noticeable at any 

time instance the inventory goes above zero. As the inventory oscillates around zero on a daily 

basis, the frequency of inventory going slightly above zero is high as well, which can be 

observed as fluctuation in deterioration rate.  
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Figure 6-17: Demand 4 and respective system response 
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Figure 6-18 shows the results for a seasonal demand (of more than 2 values allowed) with 

some randomness allowed. Initially the warehouse is empty and as a result no order is placed 

until the first non-zero demand occurs. The demand is equal to zero (no sale requested) for the 

first 5 time instances. Then the first non-zero demand occurs at the 5
th

 time instance at a value 

of 5 items and just after, at the 10
th

 time instance when the demand suddenly increases (from 0 

to 50). These two demand changes cause backorders in inventory levels. The order size at the 

5
th

 time instance tends to drive the inventory back to the reference level of zero items, which is 

eventually not take place  due to the new demand change (the one at 10
th

 time instance) before 

the first orders goods manage to reach the warehouse due to the lead time delay. Therefore 

only the order overshoot (of around 300 items at 10
th

 time instance) manages to drive the 

inventory around the reference point within the lead time.  

The inventory remains near to the reference level due to constant inventory level correction 

corresponding to the appropriate order size (fluctuation around demand current value). The 

fluctuation of demand is greater than 5 items due to the lead time delay. The order quantities 

sustain inventory levels near  the current demand value.  

The first order size overshoot of 300 items refers to the sudden increase of demand from 0 

to 50 items at the 5
th

 time instance. The backorders of about 210 items occur in the inventory 

levels in a respective time instance which converge quickly to the reference inventory level. 

There is no difference noticed in the respective deterioration rate values. Then the next 

overshoot of orders of about 250 items and backorders in inventory of about 200 items refer to 

the demand increase of  around 100 at the 60
th

 time instance. They both then converge to the 

demand and the reference inventory levels, where they remain oscillating within the band of 

+/-50 items. Then the next difference in behavior can be noticed for the time instance of 110.
  

In this time the order sizes drop very close to zero and inventory overshoots appear which 

reach almost 250 items. Here also the respective drop of deterioration rate to inventory level 

increase can be observed. All of them converge back to the regular levels. In general the 

deterioration rate falls below one proportionally to the inventory level in the current time 

instance. The  correction on a daily basis of inventory level through order size are noticeable 

through all simulation time in  the form of order fluctuations.  
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Figure 6-18: Demand 5 and respective system response 

 

From this designed experiment it can be concluded that for each demand pattern, the 

inventory behaviour is acceptably stable and would appear to be beneficial for practical 
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industrial applications. Therefore, it is considered that the optimal order quantities obtained are 

with respect to the given inventory levels and are satisfactory for efficient cost management.  

 

 

6.7 Summary 

In this chapter the simulation experiments were designed for a case scenario as realistic as 

the model would allow. The order quantities were prevented from going below zero items at 

any point in time. The mathematical description of the deterioration rate assured that the 

products were not allowed to deteriorate when the inventory was equal to or less than zero.  

 

From the simulation results it can be deduced that the inventory and order sizes respond 

according to the demand patters as expected. Fluctuations are proportional to demand changes 

and converge to the expected level with the system time delay (the inventory converges to the 

reference inventory level and the order quantities to demand current value) are reasonable. The 

deterioration rate behaves according to its mathematical definition and falls below one only 

when the inventory is above zero.  

 

A realistic profit function has been constructed, which considers the unit costs of storage 

and purchase, as well as normal and discounted unit prices (in the case of backorders, when a 

customer has to wait for a delivery). The profit function enables an assessment of what 

reference inventory level is more profitable for the organisation. This includes the high 

inventory levels, increasing the total holding costs or the low inventory levels increasing costs 

related to backorders. For the arbitrarily selected numerical unit costs and process values, the 

simulation was run for different demand patterns and the inventory level of zero items 

appeared to be the most profitable, as one would expect. Further experiments were then 

conducted for that value only. 

 

For each demand pattern, whether constant, seasonal, random or mixed, the inventory 

level converges quickly and stays at or near zero. It can be considered as a satisfactory result 

for industrial applications in the sense of both, inventory level reduction as well as reduction in 

inventory fluctuations.  
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7   FUTURE MODELLING AND SIMULATION RESULTS 

 

In Chapter 5 and Chapter 4, Section 4.5 both the verification of behaviour and the 

mathematical equivalency of IC against IMPC in the case where the tuning parameter was 

equal to zero  0ru   was presented. Nevertheless from Section 4.4 it can be noticed that the 

MPC for the given inventory model becomes insensitive to changes in the pN  and 
cN values 

when 0ru  . Therefore, the IMPC approach essentially becomes non predictive, rather it 

corresponds to a minimum variance approach or dead-beat controller with an inherent Smith 

predictor. This does not mean that the lack of model predictability is a disadvantage as long as 

the research aim is achieved (to design the inventory optimisation tool accessible for the OR 

community, which would keep the inventory close to the reference point and consider the 

system dynamics). Nevertheless, the current section examines the case of 0ru   scenario and 

presents the results for IMPC for different values of the tuning parameter. Based on the results 

it is then assessed whether a development of a mathematically equivalent formulation (hence 

alternative formulation) would be advantageous, and whether the potential improvement for 

0ru   would balance the inconvenience with respect to the increased complexity of the 

resulting IC model. It is found that the increased complexity of the IC model would be 

disproportionally high with respect to the difference in results obtained. The chapter justifies 

the decision of relaxing the need for a mathematically equivalent model to IMPC with 0ru  . 

Instead, it presents the simplified methods which generate similar results to IMPC with 0ru  , 

but are not strictly mathematically equivalent, but gives a fairly good approximation. It also 

satisfies the aim of making the method accessible to the OR community. The non-perishable 

and perishable cases are shown separately. Nevertheless, for many real case scenarios the 

initial IC model presented in Chapter 3 and its performance discussed in Chapter 6 would be 

sufficient, as the results do not differ much whether 0ru   or 0ru   for the inventory 

application.  

The approach developed here is systematic, although repetitive. The development aims to 

allow the reader to gain an insight into the way the approach has naturally evolved.  

Equation Chapter (Next) Section 1 
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7.1 IMPC Results for      

The current section presents a comparison of IMPC for 0ru   with IC, which enables 

only the case of the 0ru   scenario from definition, as a special case. As in the previous 

development, the non-perishable and perishable cases are presented separately. In each case, a 

simulation is designed to run for 200 time instances and 5, 18, 14p cn N N    and the 

demand pattern shown in Figure 7-1 (50 items for time instances between 6-55 and zero for the 

remaining time instances).  

 

Figure 7-1: Demand pattern 

 

7.1.1 Non-perishable case 

 

Figure 7-2 presents the inventory levels of IC and IMPC for 0ru  , upper plot and of IMPC 

for two different values of the tuning parameter ( 0.5ru   and 0.9ru  ), middle and lower plot. 

Here the reference inventory level is set to 50 and deterioration rate to 1 as the non-perishable 

case is considered.  

 

The IMPC state space model and IMPC and IC gains have the forms as follows. 

Form (3.3) and (3.4) 

 

        
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      
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      1 0 0 0 0y kT kT x   (7.2) 

  

From (3.64) or (3.66) 

for 0ru    5 5 4 3 2 1K           (7.3) 

for 0.5ru     3.1716 3.1716 2.5858 2.0000 1.4142 0.5858K      (7.4) 

for 0.9ru        2.7631 2.7631 2.2670 1.7708 1.2747 0.4961K   (7.5) 

In Figure 7-2 it can be noticed that the obtained inventory level looks the same.  

 

Figure 7-2: Inventory levels obtained with respect to ru  - non-perishable, separate plots  

 

To confirm whether the results are very similar Figure 7-3 shows the same results on one plot 

(upper) as well as (first from the left) with zoomed results of time instance 0-16 (second form 

the left) and 40-80 (third from the left) in the two lower plots.  
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All signals on one plot 

  

Zoomed values of 0-16 time instanes Zoomed values of 40-80 time instanes 

Figure 7-3: Inventory levels obtained with respect to 
ru  - non-perishable, one plot 

 

 

In both sets of results, Figure 7-2 and Figure 7-3 it is noted that, the differences obtained 

are barely noticeable even near the regions of sudden demand changes. Similar conclusions 

can be drawn from simulation runs for different settings. This justifies neglecting the 

importance of the tuning parameter for non-perishable inventory level control.   Therefore the 

IC can be considered to be both simple and sufficient for the given inventory application.  

 

 

7.1.2 Perishable case 

 

Figure 7-4 presents the inventory levels of IC ( 0ru  ), upper plot and of IMPC for two 

different values of the tuning parameter ( 0.5ru   and 0.9ru  ), middle and lower plots. The 

deterioration rate is set to 0.7.  

The IMPC state space model, IMPC and IC gains have the forms as follows. 
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Form (3.3) and (3.4) 

 

        

0.7 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0

1

0

0

10 1

0

k T kT u kT d kT

   
   
   
        
   
   
 

 
 
 
 


    


 
  

x x   (7.6) 

      1 0 0 0 0y kT kT x   (7.7) 

 From (3.64) or (3.66) 

for 0ru    1.9412 2.7731 2.5330 2.1900 1.7000 1.0000K      (7.8) 

for 0.5ru     1.2563 1.7947 1.6600 1.4675 1.1926 0.6327K      (7.9) 

for 0.9ru         1.0835 1.5479 1.4380 1.2810 1.0567 0.5413K   (7.10) 

 

Figure 7-4: Inventory levels obtained with respect to ru  - perishable, separate plots 
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In Figure 7-4 it can be noticed that the differences between results of different tuning 

parameters look relatively small. To increase the clarity of the results they have been printed 

again on one plot and shown in Figure 7-5, analogous to Figure 7-3 for the non-perishable 

case. 

 

 

All signals on one plot 

  

Zoomed reluts for time instances between 0-30 days Zoomed reluts for time instances between 40-80 days 

Figure 7-5: Inventory levels obtained with respect to 
ru  - perishable, one plot 

 

 

The differences in results obtained are mainly noticeable near the time instances where the 

demand suddenly changes (around 5 and 55 time instances). The result of 0.5ru   and 

0.9ru   are almost identical and both of them still do not differ much from the 0.0ru   

signal. The signals of 0.5ru   and 0.9ru   are slightly smoother around 5
th

, 10
th

, 55
th

 and 

62
nd

 time instances than for 0.0ru   (less sharp) but it does not affect the overall supply chain 

performance. The levels of overshoots is the same for all 
ru and the resilience (recovery from 

the disturbance) is almost the same (2 days more at most for 0.5ru   and 0.9ru   then
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0.0ru  ). It can be deduced that the differences in the results obtained (the minor fluctuations) 

are not significant for a practical inventory application. Similar conclusions can be drawn from 

simulation runs for different settings. Again it justifies neglecting the importance of the tuning 

parameter for non-perishable inventory level control. Therefore, as can be seen from the above, 

the IC can be considered to be both simple and sufficient for a given application.     

 

 

7.2 Attempt to Develop the Simplified Model for      

 

It was already stated that enabling 0ru   in the model would not bring about significant 

differences in the results for a given application. Nevertheless, if different applications of the 

same model are considered, where the precision of results are more vital, then it may be worth 

taking the case of 0ru   in the IC construction into consideration.  

An initial attempt was to analogously repeat the mathematical reformulation as presented 

in Chapter 5. The attempt had to be modified, however, due to an irregularity of the matrix 

T
Φ Φ+ R  in (3.61). It is found that the tuning parameter when differing from zero disrupts the 

consistency in the description identified in the form of T
Φ Φ  in (5.58). Therefore, the 

complexity of the general description of the inverse matrix  
1

T
Φ Φ+ R disproportionally 

increases. This, in turn, increases the complexity of the description of the gain vector K  and 

disables the construction of an equivalent method, which is ‘simplified’ with respect to IMPC. 

On the contrary, the alternative equivalent description would be significantly more complex.  

A further approach comprises the formulation of the simplified methods of the IC type, 

which is not necessarily mathematically equivalent, but generates similar results to the IMPC 

with 0ru  . The model of the non-perishable case is presented in the form of a UrIC 

Proposition and is termed here as the UrIC with reference to an inventory controller allowing

0ru  .  
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7.2.1 Non-perishable case 

UrIC Proposition 

Denoting cx  as a vector of the form 

 





[( 1) ] ( ) [( 1) ] [( 2) ]

[( 2) ] [( 3) ] ( ) [( 1) ] (... )
T

= I k T - I kT u k n T - u k n T

u k n T - u k n T u kT - u k T I kT

    

    

cx

 (7.11) 

 

where kT  represents the current time instance,   I kT  represents the current stock level and 

 u kT  defines the current order size, and denoting the  RI kT  as reference inventory level in 

time instance kT  and n  as the lead time delay, the gain vector K  as the transposed vector of 

dimension 1n  and where m  denotes the vector K  column index such that 

     1 1K K m K n     K  can be defined. Then the estimated values of the K  vector 

can be found as follows:   

 

 
 

     
   

1

2

1

1

1 (

2

)

1

K n a

K n a

n m n K m K n m Kn n

K K



 



      



  (7.12) 

For such a formulation of the vector, K  the current optimal order quantity can be found as 

follows: 

  
     

     

0 1 0

1

R

R

if u k T I kT kT
u kT

u k T I kT kT otherwise

       
 

     

c

c

Kx

Kx
 (7.13) 

 

where 1a  and 2a  are arbitrarily defined and are dependent on the values of  pN ,  
cN  and n .   

It should be highlighted here that the purpose of this section is to find a solution for a non-

control familiar OR specialist. In such a case the values of pN  and cN  can be arbitrarily 

decided here, based on the sensitivity of the results to the particular application parameter 

settings, and provide the system user with certain values of 1a  and 2a .  
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7.2.1.1 UrIC results 

The current numerical example presents the comparison of the simulation results of IMPC, 

for      and     and UrIC, where   is not considered for the definition and     . The 

aim of the numerical example is to verify if the UrIC method is sufficiently accurate, yet of a 

simple formulation.  

 

The simulation was conducted for 5, 18, 14, 50p c rn N N I      and 200 time 

instances. For the UrIC, the values of 1a  and 2a  were estimated respectively:  

 0.227 1.1410.4962 1.2801r ru and u    (7.14) 

Figure 7-6 and Figure 7-7 present the actual values of  1n K
 
and  nK

 
(solid blue lines) as 

well as its estimations of 1a
 
and 2a

 
(red dashed lines) with respect to the 

ru values.  

 

 

Figure 7-6:  
1

1n and aK  
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Figure 7-7:  
2

n and aK  

 

As can be observed from Figure 7-6 and Figure 7-7, the estimation would appear to be 

satisfactorily accurate for the given values of , ,r pn I N and 
cN .  

Table 7-1 and Table 7-2 compare the values obtained for the vector   for the IMPC and 

UrIC methods. It can be noticed that the values obtained from the UrIC method are quite close 

to the IMPC values.  

 

 

 

 

 

    ( )  ( )  ( )  ( )  ( )  ( ) 

0.1 4.1996 4.1996 3.3830 2.5665 1.7499 0.8166 

0.2 3.7912 3.7912 3.0672 2.3432 1.6192 0.7240 

0.3 3.5217 3.5217 2.8584 2.1952 1.5319 0.6633 

0.4 3.3250 3.3250 2.7059 2.0867 1.4675 0.6192 

0.5 3.1730 3.1730 2.5878 2.0026 1.4174 0.5852 

0.6 3.0509 3.0509 2.4929 1.9349 1.3768 0.5580 

0.7 2.9500 2.9500 2.4143 1.8787 1.3431 0.5356 

0.8 2.8646 2.8646 2.3479 1.8311 1.3143 0.5168 

0.9 2.7911 2.7911 2.2906 1.7900 1.2894 0.5006 

Table 7-1: K  values obtained by IMPC 
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    ( )  ( )  ( )  ( )  ( )  ( ) 

0.1 4.2817 4.2817 3.4448 2.6080 1.7711 0.8369 

0.2 3.7513 3.7513 3.0363 2.3212 1.6062 0.7150 

0.3 3.4734 3.4734 2.8213 2.1691 1.5169 0.6522 

0.4 3.2894 3.2894 2.6785 2.0676 1.4566 0.6109 

0.5 3.1538 3.1538 2.5730 1.9923 1.4115 0.5808 

0.6 3.0473 3.0473 2.4901 1.9329 1.3757 0.5572 

0.7 2.9603 2.9603 2.4222 1.8842 1.3461 0.5380 

0.8 2.8870 2.8870 2.3650 1.8430 1.3210 0.5220 

0.9 2.8239 2.8239 2.3157 1.8075 1.2993 0.5082 

Table 7-2: K  values obtained by UrIC 

 

From the above comparison it can be concluded that the UrIC method enables quite an 

accurate estimation of the IMPC gain K  regardless of the values of , ,r pn I N and 
cN . 

Therefore the simulation results for both methods are expected to be similar.  

 

The estimation was also carried out for other values of , ,r pn I N and 
cN . In all cases 

the estimations obtained for 
1a  and 

2a  were similar to those presented above. The K  values 

obtained based on the 
1a  and 

2a  estimation was also sufficiently accurate regardless of the 

simulation settings.  

 

Figure 7-9 and Figure 7-10 show the simulation results for the chosen values of the tuning 

parameter respectively: 0.1ru  , 0.5ru   and 0.9ru   for both IMPC and UrIC methods for 

the demand pattern shown in Figure 7-8, where the IMPC state space model has a form as in 

(7.1) and (7.2) and the IMPC and UrIC gains for give tuning parameter values are contained in 

Table 7-1 and Table 7-2. 
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Figure 7-8: Demand 

 

 

 

 

 

Figure 7-9: Results of IMPC in respect to tuning parameter 
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Figure 7-10: Results of UrIC in respect to tuning parameter 

 

 

From Figure 7-9 and Figure 7-10 it can be noticed that the inventory levels obtained using 

the UrIC method are almost the same as for the IMPC method. The difference between IMPC 

and UrIC results can be mainly noticed just near the time instances where the demand changes 

suddenly (5
th 

-10
th

 and 55
th

 - 62
 nd

). Similar simulations were run for different values of 
cN , pN  

and n  and in all cases the results were similar for both methods. Therefore, it can be concluded 
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that UrIC has been verified against IMPC and it gives satisfactory and similar results. Hence, if 

0ru   is needed for specific applications, the UrIC can be used by the OR community for non-

perishable applications, with an equally good performance to IMPC. 

 

 

7.2.2 Perishable case 

 

The current section presents an attempt at finding the ‘simplified’, hence not equivalent 

IMPC method for the perishable case. It can be immediately noticed that the method is no 

longer that simple and not as elegant in its description (LS). Nevertheless it can still be used by 

a non-control specialist. The least squares method was used here for finding the estimated 

values of the gain vector K . Once the values of K  are estimated, they can be used in the form 

of the following procedure: 

 

 

PUrIC Proposition 

Denote cx  as a vector of the form 

 





...

...
T

= I[(k -1)T] - I(kT) u[(k - n+1)T] -u[(k - n+2)T] u[(k - n+2)T] -u[(k - n+3)T]

u(kT)-u[(k -1)T] I( kT )

cx
 (7.15) 

 

where kT  represents current time instance,  I kT  represents the current stock level and 

 u kT  defines the current order size and denoting  RI kT  as the reference inventory level in 

time instance kT  and n  as the lead time delay, defining K  as a transposed vector of 1n  

dimension where m  denotes the K  vector column index such that 

     1 1K K m K n     K , where the each  mK  can be denoted by the function 
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  2 2 2 2 3 3 ˆ1 1 0 1 0 1 1r r r r r r mm n u m u u u u u                  K  

 (7.16) 

where vector 
m  is defined arbitrarily for each  K m . 

Then the optimal order quantities can be found as follows 

 

  
     

     

0 1 0

1

R

R

if u k T I kT kT
u kT

u k T I kT kT otherwise

       
 

     

c

c

Kx

Kx
 (7.17) 

 

It can be noticed that the user is provided with arbitrarily defined values for ˆ
m .  This makes 

the model less flexible, as the user cannot manipulate neither pN  and 
cN  nor n , but enables 

the non-control specialist, or OR familiar person to use the method.   

 

7.2.2.1 Estimation of parameters 

The values of 
m

 
are arbitrarily defined for the OR user, however in general they are obtained 

from the LS method in the following manner.  

 

For each  mK  the least squares (LS) estimation of the IMPC (non-zero tuning parameter 

case) is used to define a separate plane of points of values of  mK  for different deterioration 

rates   and tuning parameters 
ru  in 3 . The values for the 5n   case are contained in Table 

7-3, Table 7-5, Table 7-7, Table 7-9, Table 7-11 and Table 7-13. The plane shapes are shown 

in Figure 7-11, Figure 7-13, Figure 7-15, Figure 7-17, Figure 7-19 and Figure 7-21, 

respectively. Based on observations of the plane shapes and several numerical experiments, it 

was decided to represent the plane as a set of quadratic curves. It was observed that the front 

and side views of the planes can be fairly estimated as quadratic functions. Therefore the 3
rd

 

order assumption was made in 3 dimensional surfaces hence the 3 3  equation parameters 

resulted in a 9 1  vector of the following form. 
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m
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m

m

m

m












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







 
 
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 
 
 
 
 
 
 
 

   K  (7.18) 

where  ( ) 0.1, 0.2, 0.3, ... 1.0i   and ( ) 0, 0.1, 0.2, ... 0.9ru j   when 

, 1,2...10i j  . The values of ( )i and ( )ru j  are taken from any of the following tables: Table 

7-3, Table 7-5, Table 7-7, Table 7-9, Table 7-11 or Table 7-13 for i th  table row and j th  

table column. 

Defining  
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7

8
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( )

( )

( )

( )

( )

( )
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m
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m
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
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 
 
 
 
 
 
 

    (7.19) 

and having the actual values of  , ,m i jK  from the tables: Table 7-3, Table 7-5, Table 7-7, 

Table 7-9, Table 7-11 and Table 7-13 for appropriate 1,2... 1m n   the LS method can be 

used to estimate the parameter vector ˆ
m  in the following manner.  

Define the matrix ( )m  such that  
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2 2 2 2 3 3

2 2 2 2 3 3

2 2 2 2

1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

1 (1) (3) (1) (3) (1) (3) (1)

( ,1,1)

( ,1,2)
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( ,10,10)
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 
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 
 
 

 

    

    

 

Therefore ( )m  is a matrix of 100 9  dimension such that 

( ) ( )K m m   

The values of the vector   are estimated as follows: 

1
ˆ ( ) ( ) ( ) ( )T T

m m m m K m  


      

which is the optimal estimate in the sense of least square error.  

The estimated vector ˆ
m  is used in the PUrIC Proposition as arbitrarily defined for 

straightforward OR user application.   

 

7.2.2.2 PUrIC results  

The current section presents the estimated values of gain vector K . The aim of this 

section is to decide if the PUrIC controller can provide similar performance to IMPC for 

 0,1ru   and  0,1   
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The simulation parameters were set as follows: 5n  , 14pN  , 8cN   for the IMPC method 

and 
m  values have been estimated as follows 

1 2 3

-0.2103 0.8793 0.9399

3.0438 2.2343 1.6850

 -0.8833 -1.8630

-2.7451 -2.6455

-2.9463 -0.8958

3.0051 4.0334

0.5449 0.8014

4.5145 2.3343

-1.6431 -2.1949

ˆ ˆ ˆ, ,

   
   
   
   
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        
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   

4 5
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for the PUrIC method.  

Firstly, the IMPC method was used for identifying the value of each element of gain K  

for different values for the deterioration rate   and tuning parameter 
ru . Then the respective 

values of gain K  were obtained using the PUrIC method. Both the IMPC and PUrIC values 

for  mK  were completed and stored in the tables as a set of three dimensional point 

dependent variables (based on the two variables   and 
ru ). Therefore they can be represented 

as planes in three dimensional space for comparison purposes and repetitive observations made 

for each of the planes separately.   

Table 7-3 shows the  1K  values obtained by IMPC with respect to   and 
ru .  Table 7-4  

shows the  1K  values obtained by PUrIC with respect to   and 
ru . Figure 7-11 represents 

the shape of the plane of the points represented in Table 7-3 (solid line) and Table 7-4 (starred 
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line). Figure 7-12 presents the difference between the IMPC and PUrIC values (note the 

difference in axes scales between the last two figures).  

 

   

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 0.1111 0.1010 0.0938 0.0882 0.0838 0.0800 0.0768 0.0740 0.0716 0.0694 

0.2 0.2499 0.2252 0.2082 0.1954 0.1852 0.1767 0.1696 0.1633 0.1579 0.1530 

0.3 0.4275 0.3816 0.3513 0.3288 0.3111 0.2966 0.2843 0.2738 0.2645 0.2563 

0.4 0.6598 0.5830 0.5342 0.4988 0.4712 0.4488 0.4300 0.4138 0.3998 0.3873 

0.5 0.9688 0.8472 0.7731 0.7202 0.6795 0.6466 0.6192 0.5957 0.5754 0.5574 

0.6 1.3834 1.1979 1.0890 1.0127 0.9545 0.9079 0.8691 0.8361 0.8075 0.7823 

0.7 1.9412 1.6655 1.5096 1.4022 1.3210 1.2563 1.2028 1.1573 1.1180 1.0835 

0.8 2.6893 2.2884 2.0700 1.9218 1.8106 1.7225 1.6498 1.5883 1.5352 1.4887 

0.9 3.6856 3.1140 2.8138 2.6127 2.4631 2.3450 2.2479 2.1660 2.0954 2.0336 

1 5.0000 4.1998 3.7940 3.5257 3.3274 3.1716 3.0439 2.9364 2.8439 2.7630 

Table 7-3:  K(1) values obtained by IMPC in respect to    and 
ru  

 

 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 0.0691 0.0182 0.0552 0.0517 0.0175 0.0374 0.1033 0.1702 0.2283 0.2678 

0.2 0.3167 0.2021 0.1381 0.1150 0.1229 0.1518 0.1920 0.2336 0.2667 0.2815 

0.3 0.5595 0.4177 0.3272 0.2780 0.2603 0.2642 0.2800 0.2977 0.3074 0.2994 

0.4 0.8247 0.6558 0.5390 0.4642 0.4217 0.4017 0.3942 0.3894 0.3774 0.3484 

0.5 1.1393 0.9435 0.8006 0.7009 0.6344 0.5913 0.5617 0.5358 0.5038 0.4556 

0.6 1.5304 1.3077 1.1392 1.0150 0.9253 0.8601 0.8097 0.7641 0.7136 0.6482 

0.7 2.0251 1.7757 1.5818 1.4337 1.3215 1.2353 1.1652 1.1014 1.0340 0.9533 

0.8 2.6505 2.3744 2.1556 1.9841 1.8502 1.7438 1.6553 1.5747 1.4921 1.3978 

0.9 3.4336 3.1311 2.8876 2.6933 2.5383 2.4129 2.3071 2.2111 2.1149 2.0089 

1 4.4016 4.0726 3.8048 3.5882 3.4131 3.2695 3.1477 3.0376 2.9296 2.8137 

Table 7-4: K(1) values obtained by PUrIC in respect to    and ru  
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Figure 7-11: IMPC points – solid line and PUrIC points – starred line for K(1) 

 

Figure 7-12: Difference between IMPC and PUrIC for K(1) 
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As can be observed, the estimated values are more accurate for middle values of 

deterioration rate and tuning parameter.  

Table 7-5 shows the  2K  values obtained by IMPC in respect to   and 
ru . Table 7-6 

shows the  2K  values obtained by PUrIC in respect to   and 
ru . The Figure 7-13 represents 

the shape of the plane of the points presented in Table 7-5 (solid line) and Table 7-6 (starred 

line). The Figure 7-14 represents the difference between the IMPC and PUrIC values (note the 

difference in scales between last two figures).   

 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.1111 1.0101 0.9380 0.8824 0.8376 0.8001 0.7682 0.7404 0.7159 0.6940 

0.2 1.2496 1.1261 1.0412 0.9771 0.9260 0.8837 0.8478 0.8167 0.7895 0.7652 

0.3 1.4251 1.2720 1.1708 1.0959 1.0369 0.9885 0.9477 0.9125 0.8818 0.8545 

0.4 1.6496 1.4576 1.3356 1.2470 1.1781 1.1220 1.0749 1.0346 0.9994 0.9683 

0.5 1.9375 1.6945 1.5461 1.4404 1.3590 1.2932 1.2383 1.1915 1.1507 1.1148 

0.6 2.3056 1.9965 1.8149 1.6878 1.5909 1.5131 1.4485 1.3936 1.3459 1.3039 

0.7 2.7731 2.3792 2.1566 2.0031 1.8872 1.7947 1.7183 1.6534 1.5972 1.5478 

0.8 3.3616 2.8605 2.5875 2.4022 2.2633 2.1531 2.0623 1.9854 1.9191 1.8608 

0.9 4.0951 3.4600 3.1264 2.9030 2.7368 2.6055 2.4977 2.4067 2.3282 2.2595 

1 5.0000 4.1998 3.7940 3.5257 3.3274 3.1716 3.0439 2.9364 2.8439 2.7630 

Table 7-5: K(2) values obtained by IMPC in respect to    and 
ru  

 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.0961 0.9216 0.8147 0.7623 0.7513 0.7683 0.8004 0.8343 0.8568 0.8548 

0.2 1.3090 1.1083 0.9756 0.8980 0.8622 0.8550 0.8632 0.8738 0.8735 0.8491 

0.3 1.5320 1.3052 1.1473 1.0452 0.9858 0.9557 0.9419 0.9312 0.9105 0.8665 

0.4 1.7791 1.5264 1.3438 1.2180 1.1360 1.0846 1.0505 1.0206 0.9818 0.9209 

0.5 2.0643 1.7859 1.5789 1.4304 1.3269 1.2555 1.2029 1.1560 1.1016 1.0264 

0.6 2.4016 2.0976 1.8669 1.6962 1.5725 1.4826 1.4132 1.3513 1.2837 1.1971 

0.7 2.8050 2.4756 2.2216 2.0297 1.8868 1.7798 1.6955 1.6206 1.5421 1.4468 

0.8 3.2886 2.9339 2.6570 2.4447 2.2838 2.1611 2.0636 1.9779 1.8910 1.7896 

0.9 3.8663 3.4865 3.1872 2.9553 2.7775 2.6406 2.5316 2.4372 2.3442 2.2396 

1 4.5521 4.1474 3.8262 3.5754 3.3818 3.2322 3.1135 3.0124 2.9159 2.8107 

Table 7-6: K(2) values obtained by PUrIC in respect to    and 
ru  
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Figure 7-13: IMPC points – solid line and PUrIC points – starred line for K(2) 

 

 

Figure 7-14: Difference between IMPC and PUrIC for K(2) 
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As can be observed from tables and figures, the estimated values are more accurate for the 

middle range of the deterioration rate and tuning parameter.  

 Table 7-7 shows the  3K  values obtained by IMPC in respect to   and 
ru . Table 7-8 

shows the  3K  values obtained by PUrIC in respect to   and 
ru . Figure 7-15 presents the 

shape of the plane of the points presented in Table 7-7 (solid line) and Table 7-8 (starred line). 

Figure 7-16 presents the difference between the IMPC and PUrIC values (note the difference 

in axes scales between last two figures).  

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.1110 1.0100 0.9379 0.8824 0.8375 0.8001 0.7681 0.7403 0.7158 0.6940 

0.2 1.2480 1.1248 1.0401 0.9761 0.9251 0.8828 0.8470 0.8160 0.7888 0.7646 

0.3 1.4170 1.2653 1.1650 1.0907 1.0322 0.9842 0.9436 0.9087 0.8782 0.8511 

0.4 1.6240 1.4365 1.3172 1.2306 1.1631 1.1081 1.0620 1.0224 0.9879 0.9574 

0.5 1.8750 1.6431 1.5013 1.4001 1.3220 1.2590 1.2063 1.1613 1.1221 1.0875 

0.6 2.1760 1.8902 1.7219 1.6039 1.5137 1.4413 1.3811 1.3298 1.2853 1.2461 

0.7 2.5330 2.1827 1.9840 1.8468 1.7430 1.6600 1.5913 1.5330 1.4824 1.4380 

0.8 2.9520 2.5256 2.2925 2.1339 2.0148 1.9201 1.8420 1.7758 1.7186 1.6683 

0.9 3.4390 2.9240 2.6525 2.4702 2.3343 2.2269 2.1385 2.0637 1.9992 1.9427 

1 4.0000 3.3832 3.0693 2.8611 2.7071 2.5858 2.4863 2.4024 2.3301 2.2668 

Table 7-7: K(3) values obtained by IMPC in respect to    and 
ru  

 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.1119 0.9529 0.8514 0.7961 0.7757 0.7790 0.7946 0.8113 0.8178 0.8028 

0.2 1.2942 1.1139 0.9917 0.9161 0.8759 0.8599 0.8566 0.8550 0.8435 0.8110 

0.3 1.4917 1.2904 1.1478 1.0528 0.9939 0.9599 0.9396 0.9216 0.8946 0.8473 

0.4 1.7095 1.4872 1.3248 1.2111 1.1346 1.0842 1.0484 1.0161 0.9759 0.9166 

0.5 1.9524 1.7094 1.5277 1.3960 1.3030 1.2375 1.1881 1.1436 1.0926 1.0239 

0.6 2.2254 1.9618 1.7612 1.6124 1.5041 1.4249 1.3636 1.3089 1.2495 1.1740 

0.7 2.5335 2.2495 2.0305 1.8654 1.7428 1.6514 1.5799 1.5170 1.4515 1.3721 

0.8 2.8817 2.5774 2.3405 2.1598 2.0240 1.9218 1.8419 1.7730 1.7038 1.6230 

0.9 3.2749 2.9505 2.6962 2.5007 2.3528 2.2412 2.1546 2.0817 2.0111 1.9317 

1 3.7181 3.3737 3.1024 2.8930 2.7341 2.6146 2.5230 2.4480 2.3785 2.3031 

Table 7-8: K(3) values obtained by PUrIC in respect to    and 
ru  
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Figure 7-15: IMPC points – solid line and PUrIC points – starred line for K(3) 

 

 

Figure 7-16: Difference between IMPC and PUrIC for K(3) 
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As can be observed from tables and figures, the estimated values are more accurate for the 

middle values of deterioration rate and tuning parameter.  

Table 7-9 shows the  4K  values obtained by IMPC in respect to   and 
ru . Table 7-10 

shows the  4K  values obtained by PUrIC in respect to   and 
ru . Figure 7-17 presents the 

shape of the plane of the points presented in Table 7-9 (solid line) and Table 7-10 (starred 

line). Figure 7-18 presents the difference between the IMPC and PUrIC values (note the 

difference in axes scales between last two figures).  

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.1100 1.0092 0.9372 0.8817 0.8369 0.7995 0.7676 0.7399 0.7154 0.6936 

0.2 1.2400 1.1182 1.0343 0.9710 0.9204 0.8786 0.8430 0.8123 0.7853 0.7613 

0.3 1.3900 1.2430 1.1456 1.0734 1.0164 0.9696 0.9301 0.8961 0.8663 0.8398 

0.4 1.5600 1.3837 1.2713 1.1894 1.1255 1.0734 1.0296 0.9920 0.9592 0.9301 

0.5 1.7500 1.5404 1.4116 1.3194 1.2482 1.1905 1.1423 1.1009 1.0649 1.0331 

0.6 1.9600 1.7130 1.5669 1.4639 1.3851 1.3217 1.2688 1.2236 1.1844 1.1498 

0.7 2.1900 1.9018 1.7375 1.6235 1.5369 1.4675 1.4100 1.3610 1.3184 1.2810 

0.8 2.4400 2.1069 1.9237 1.7984 1.7041 1.6288 1.5666 1.5137 1.4679 1.4277 

0.9 2.7100 2.3284 2.1259 1.9893 1.8872 1.8061 1.7393 1.6826 1.6337 1.5907 

1 3.0000 2.5665 2.3445 2.1966 2.0868 2.0000 1.9287 1.8684 1.8164 1.7707 

Table 7-9: K(4) values obtained by IMPC in respect to    and 
ru  

 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.1231 0.9812 0.8856 0.8271 0.7968 0.7854 0.7841 0.7836 0.7750 0.7491 

0.2 1.2726 1.1159 1.0057 0.9332 0.8891 0.8645 0.8503 0.8373 0.8166 0.7791 

0.3 1.4316 1.2601 1.1359 1.0499 0.9931 0.9564 0.9307 0.9070 0.8763 0.8293 

0.4 1.6006 1.4144 1.2765 1.1777 1.1091 1.0616 1.0260 0.9933 0.9545 0.9004 

0.5 1.7801 1.5794 1.4282 1.3173 1.2378 1.1806 1.1366 1.0967 1.0518 0.9929 

0.6 1.9706 1.7555 1.5914 1.4692 1.3798 1.3141 1.2631 1.2176 1.1688 1.1073 

0.7 2.1727 1.9434 1.7668 1.6338 1.5354 1.4625 1.4060 1.3568 1.3059 1.2442 

0.8 2.3870 2.1436 1.9549 1.8118 1.7054 1.6264 1.5659 1.5147 1.4638 1.4042 

0.9 2.6139 2.3565 2.1562 2.0038 1.8902 1.8064 1.7433 1.6919 1.6431 1.5877 

1 2.8541 2.5829 2.3712 2.2101 2.0903 2.0029 1.9388 1.8889 1.8441 1.7954 

Table 7-10: K(4) values obtained by PUrIC in respect to    and ru  
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Figure 7-17: IMPC points – solid line and PUrIC points – starred line for K(4) 

 

 

Figure 7-18: Difference  between IMPC and PUrIC for K(4) 
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As can be observed from tables and figures, the estimated values are more accurate for the 

middle range of deterioration rate and tuning parameter.  

 Table 7-11 shows the  5K  values obtained by IMPC in respect to   and 
ru . Table 7-12 

shows the  5K  values obtained by PUrIC with respect to   and 
ru . Figure 7-19 presents the 

shape of the plane of the points presented  in Table 7-11 (solid line) and Table 7-12 (starred 

line). Figure 7-20 presents the difference between the IMPC and PUrIC values (note the 

difference in axes scales between last two figures). 

 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.1000 1.0008 0.9300 0.8753 0.8311 0.7942 0.7627 0.7353 0.7111 0.6895 

0.2 1.2000 1.0849 1.0055 0.9452 0.8971 0.8571 0.8232 0.7938 0.7679 0.7448 

0.3 1.3000 1.1685 1.0809 1.0155 0.9638 0.9212 0.8851 0.8539 0.8266 0.8022 

0.4 1.4000 1.2518 1.1564 1.0864 1.0316 0.9866 0.9487 0.9160 0.8874 0.8620 

0.5 1.5000 1.3348 1.2322 1.1581 1.1005 1.0536 1.0141 0.9802 0.9506 0.9243 

0.6 1.6000 1.4177 1.3084 1.2308 1.1708 1.1222 1.0815 1.0466 1.0162 0.9892 

0.7 1.7000 1.5006 1.3853 1.3044 1.2425 1.1926 1.1509 1.1153 1.0842 1.0567 

0.8 1.8000 1.5836 1.4627 1.3791 1.3157 1.2647 1224 1.1862 1.1547 1.1268 

0.9 1.9000 1.6667 1.5408 1.4550 1.3903 1.3386 1.2957 1.2592 1.2275 1.1995 

1 2.0000 1.7499 1.6197 1.5321 1.4664 1.4142 1.3711 1.3344 1.3026 1.2746 

Table 7-11: K(5) values obtained by IMPC in respect to    and 
ru  

 

 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.1173 0.9977 0.9112 0.8513 0.8119 0.7865 0.7690 0.7530 0.7323 0.7006 

0.2 1.2141 1.0877 0.9945 0.9283 0.8826 0.8514 0.8282 0.8067 0.7808 0.7441 

0.3 1.3098 1.1766 1.0770 1.0047 0.9535 0.9170 0.8890 0.8632 0.8332 0.7929 

0.4 1.4044 1.2645 1.1587 1.0808 1.0245 0.9836 0.9516 0.9224 0.8896 0.8470 

0.5 1.4979 1.3513 1.2396 1.1565 1.0958 1.0510 1.0160 0.9844 0.9500 0.9065 

0.6 1.5904 1.4373 1.3199 1.2320 1.1673 1.1195 1.0823 1.0494 1.0146 0.9715 

0.7 1.6820 1.5224 1.3996 1.3073 1.2392 1.1890 1.1505 1.1173 1.0833 1.0420 

0.8 1.7727 1.6068 1.4787 1.3824 1.3115 1.2597 1.2207 1.1883 1.1562 1.1181 

0.9 1.8627 1.6904 1.5574 1.4575 1.3843 1.3316 1.2931 1.2624 1.2334 1.1998 

1 1.9520 1.7734 1.6357 1.5325 1.4576 1.4047 1.3675 1.3397 1.3151 1.2873 

Table 7-12: K(5) values obtained by PUrIC in respect to    and ru  
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Figure 7-19: IMPC points – solid line and PUrIC points – starred line for K(5) 

 

 

Figure 7-20: Difference between IMPC and PUrIC for K(5) 
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As can be observed from tables and figures, the estimated values are more accurate for the 

middle range of deterioration rate and tuning parameter.  

Table 7-13 shows the  6K  values obtained by IMPC in respect to   and 
ru . Table 7-14 

shows the  6K  values obtained by PUrIC with respect to   and 
ru . Figure 7-21 presents the 

shape of the plane of the points presented in Table 7-13 (solid line) and Table 7-14 (starred 

line). Figure 7-22 presents the difference between the IMPC and PUrIC values.  

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.0000 0.9091 0.8442 0.7942 0.7538 0.7201 0.6913 0.6663 0.6443 0.6246 

0.2 1.0000 0.9012 0.8332 0.7819 0.7410 0.7071 0.6784 0.6535 0.6317 0.6123 

0.3 1.0000 0.8924 0.8213 0.7687 0.7273 0.6933 0.6646 0.6399 0.6183 0.5992 

0.4 1.0000 0.8830 0.8087 0.7548 0.7129 0.6787 0.6501 0.6256 0.6042 0.5853 

0.5 1.0000 0.8729 0.7955 0.7403 0.6979 0.6637 0.6352 0.6108 0.5896 0.5710 

0.6 1.0000 0.8624 0.7818 0.7255 0.6826 0.6483 0.6199 0.5957 0.5747 0.5563 

0.7 1.0000 0.8514 0.7678 0.7104 0.6671 0.6327 0.6043 0.5803 0.5595 0.5413 

0.8 1.0000 0.8400 0.7535 0.6951 0.6515 0.6170 0.5887 0.5648 0.5442 0.5262 

0.9 1.0000 0.8284 0.7392 0.6798 0.6359 0.6014 0.5731 0.5493 0.5289 0.5111 

1 1.0000 0.8166 0.7248 0.6645 0.6203 0.5858 0.5576 0.5340 0.5138 0.4961 

Table 7-13: K(6) values obtained by IMPC in respect to    and 
ru   

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1.0078 0.9058 0.8305 0.7769 0.7400 0.7150 0.6968 0.6805 0.6611 0.6338 

0.2 1.0087 0.9038 0.8257 0.7694 0.7300 0.7025 0.6819 0.6634 0.6420 0.6126 

0.3 1.0079 0.9001 0.8192 0.7604 0.7187 0.6891 0.6666 0.6464 0.6235 0.5928 

0.4 1.0053 0.8946 0.8112 0.7501 0.7063 0.6750 0.6511 0.6297 0.6058 0.5746 

0.5 1.0010 0.8875 0.8016 0.7384 0.6929 0.6602 0.6353 0.6132 0.5891 0.5579 

0.6 0.9952 0.8790 0.7908 0.7256 0.6787 0.6449 0.6194 0.5972 0.5734 0.5430 

0.7 0.9881 0.8691 0.7786 0.7118 0.6637 0.6293 0.6036 0.5818 0.5589 0.5299 

0.8 0.9796 0.8579 0.7654 0.6971 0.6480 0.6133 0.5880 0.5671 0.5457 0.5187 

0.9 0.9700 0.8457 0.7511 0.6815 0.6319 0.5972 0.5726 0.5532 0.5338 0.5097 

1 0.9594 0.8324 0.7360 0.6653 0.6153 0.5811 0.5577 0.5401 0.5235 0.5029 

Table 7-14: K(6) values obtained by PUrIC in respect to    and ru  
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Figure 7-21: IMPC points – solid line and PUrIC points – starred line for K(6) 

 

 

Figure 7-22: Difference between IMPC and PUrIC for K(6) 
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As can be observed from tables and figures, the estimated values are more accurate for the 

middle range of deterioration prate and tuning parameter.  

 

The simulation of inventory levels was run for the demand pattern presented in Figure 7-1 

and chosen values of   and 
ru . The Figure 7-23 presents the results for 0.7 and 

ru 0.1, 

ru 0.5 and 
ru 0.9. As it can be observed in Figure 7-23, the results obtained do not 

significantly differ between each other and would seem to be a good estimation of IMPC 

results shown in Figure 7-9.  Similar tests were conducted for different simulation settings and 

the conclusion was always similar. Therefore the estimation can be used for inventory control.  

The IMPC state space model and IMPC gains have the forms as follows. 

From (3.3) and (3.4) 

 

        

0.7 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0

1

0

0

10 1

0

k T kT u kT d kT

   
   
   
        
   
   
 

 
 
 
 


    


 
  

x x   (7.20) 

  

      1 0 0 0 0y kT kT x   (7.21) 

  

From (3.64) or (3.66) 

for 0.1ru    1.6655 2.3792 2.1827 1.9018 1.5006 0.8514K      

(7.22) 

for 0.5ru     1.2563 1.7947 1.6600 1.4675 1.1926 0.6327K      

(7.23) 

for 0.9ru        1.0835 1.5479 1.4380 1.2810 1.0567 0.5413K   (7.24) 

Gains of PUrIC method were obtained from (7.12) and (7.14) as follows 

for 0.1ru    1.7757 2.4756 2.2494 1.9434 1.5224 0.8691K               (7.25) 
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for 0.5ru     1.2353 1.7798 1.6514 1.4625 1.1890 0.6293K       (7.26) 

for 0.9ru        0.9533 1.4468 1.3721 1.2442 1.0420 0.5299K   (7.27) 

 

 

 

Zoomed results for time instances of 0-22 days 

 

Zoomed results for time instances of 45-90 days 

 

Figure 7-23: Inventory levels obtained with PUrIC  
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7.3 Summary 

The chapter has investigated the possible directions, which can be taken for making the 

model sensitive to the tuning parameter being different to zero for various order sizes. Two 

separate paths have been chosen for finding simplified approaches requiring little knowledge 

of control and aimed at the OR familiar specialist: for non-perishable and perishable products. 

Neither of them are mathematically equivalent to the original IMPC with the tuning parameter 

being different from zero, but they do provide sufficiently accurate estimations and would 

appear to perform sufficiently similarly to IMPC with the tuning parameter different to zero. 

The mathematical equivalent formulation was not developed due to the much reduced 

regularity of the description, hence lack of complex mathematical description. Therefore the 

initial idea of searching for a mathematically equivalent form which is actually simpler in 

description than the original IMPC method with tuning parameter was relaxed.  

 

What is also an important conclusion of the current chapter is the fact that the difference in 

the results obtained between the IMPC with and without the tuning parameter different to zero 

is usually insignificant for the inventory application considered. Therefore, there was not a 

strong need to use the alternative methods for the non-control familiar practitioners. 

Nevertheless, whether applied or not, the proposed methods of the current chapter can become 

an inspiration for future extensions of the IC model.  
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8 CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE DIRECTIONS 

 

8.1 Conclusions 

 

The thesis has presented a novel control approach to inventory management. The common 

approaches to inventory modelling and optimisation, which are widely used by the operational 

research (OR) community usually involve discrete event simulation, and classical 

mathematical methods of optimisation. Discrete event simulation approaches enable 

consideration of many perspectives influencing the system at the same time. Nevertheless, it is 

a quasi-optimisation approach with the optimisation only through comparison of different 

scenarios coupled with sensitivity analyses. The results obtained can improve the performance 

of the system but are not necessarily optimal in practice. The classical mathematical methods, 

in turn, enable optimal results to be achieved but the consideration of system dynamics 

becomes extremely complex in terms of a mathematical description. Therefore, such models 

are usually constructed under unrealistic assumptions, such as, for example, that the customer 

demand is at least partially known in advance. In practice such models are applicable only in a 

very few and narrow group of industries, where the business structure requires pre-paid 

transactions, such as e.g. in the case of the car manufacturing industry. In most of the real-life 

case scenarios, the demand is uncertain and unpredictable, and the development of a model, 

which could deal with such an unknown demand rather than not accurately predicting it, would 

be beneficial for many industrial organisations. Furthermore, the mathematical optimisation 

models often over-simplify the real case problem through unrealistic assumptions such as zero 

lead time and/or constant deterioration rate of a product.  

 

In this thesis, a state space representation of an inventory system has been constructed, 

which enabled a straightforward accommodation/design of the lead time as well as inventory 

deterioration (both are included in the system state matrix), for a discrete-time system or as a 

system delay and deterioration coefficient for a continuous-time system. The developed 

approach also enabled the modelling of the unknown system demand in the form of a system 

disturbance.  
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Appropriate selection of the closed loop system, where the current inventory is on-line 

compared on-line with a target inventory level, enabled the consideration of system dynamics 

related to varying and previously unknown demand. The feedback loop itself enables the 

updating of the current information and the appropriate choice of control algorithm enables on-

line optimisation based on the current inventory level. In this way, instead of predicting the 

demand and then conducting an optimisation based on the potential inaccurate prediction, the 

system deals with the actual demand changes (modelled as a system disturbance) and adapts to 

them at every subsequent time instance. The approach described is that of applied control 

theory, and this forms the pivotal step in this thesis.  

 

A popular approach within the OR community usually relates to obtaining an optimal 

inventory level (for inventory keeping benefits and cost balance) based on the estimation of 

demand. The presence of inventory fluctuations are usually not normally of any concern to the 

OR researcher. The control theoretic approach, on the other hand, aims at keeping the 

inventory as close as possible to the reference point. In this way the inventory level 

fluctuations are automatically reduced and several problems related to varying inventory levels 

can thus be avoided. Fluctuating inventory levels are accompanied by the attendant problem of 

storage capacity. Either the storage space becomes unused and, as a consequence, 

unnecessarily maintained, or the storage capacity becomes exhausted. Moreover, the problem 

of planning human resources becomes a complex issue with fluctuating inventory. This leads 

to there being either too little or too much manpower in the warehouse. The same concerns 

apply to capital equipment and machinery. The issue of product deterioration also becomes a 

controllable problem if the inventory is fluctuating. Additionally, backorders occur more often, 

which also generate additional cost. All of these unnecessary costs might be mitigated, if 

systematic approaches of control engineering could be deployed. Moreover, inventory level 

fluctuations of one supply chain can easily affect many others in the form of a bullwhip 

instability effect. It is commonly understood that the higher the fluctuations the more the cost 

in terms of lost revenue in a given particular supply chain node as well as in those connected. 

Ideally, the supply chain, even if not owned by the same organisation, should collaborate for 

the purpose of the common goal. Therefore, the reduction of varying inventory in one supply 

chain node will in practice bring about cost savings for all connected supply chain members. 

Indeed, it is against this background that the motivation for conducting the work in this thesis 

has been based.  
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In the thesis a number of novel algorithms have been developed for inventory control 

purposes. Initially, based on the principles of model based control, the Smith predictor was a 

first attempt for a continuous system scenario and was aimed at reducing the negative 

influence of the lead time in an inventory system, which is referred to here as a system delay. 

The continuous system design considered here was straightforward. It referred to the well 

documented and established case in the OR literature of the balance equation. This is where the 

future inventory level is equal to the current, but decreased by the number of deteriorated 

products, plus the number of goods which have been ordered in the past and delivered to the 

warehouse, minus the number of goods being sold. In this scenario, the inventory levels are 

changing (fluctuating) smoothly, but were never kept particularly close to an inventory 

reference level. Moreover, the approach considers deliveries and demands as continuous 

variables, which is usually an unrealistic assumption in practice. Unless some specific 

application of a continuous inventory control system can be imagined, the inventory level 

control systems are more truthfully, at least in the case of periodic review, more of a discrete-

time sampled data nature, being controlled at every time instance, e.g. each day.   

   

The next control algorithm considered was the dead-beat model based controller, whose 

mathematical formulation enabled the verification of the logic of the periodic review inventory 

state space representation. This way the discrete-time inventory model was demonstrated to be 

correctly constructed which made it a valuable stepping stone in the development and 

evaluation of other model based control techniques and applications. Attention was then given 

to model predictive control (MPC), which by definition potentially incorporates both the dead-

beat and Smith predictor actions as inherent constituent parts. It was applied to the previously 

verified discrete inventory system. This approach enabled efficient control of inventory levels 

with respect to specification of the reference set point, and a satisfactory cost reduction for 

industrial purposes, has been elaborated. 

 

Although the application of control theory to inventory control seems to be extremely 

beneficial with respect to on-line optimisation, keeping inventory at the target level and 

consideration of system dynamics (varying demand, lead time delay and varying deterioration 

rate) it is surprising that such an approach does not appear to have gained significant attention. 

A possible reason for this could be due to the fact that the OR community, which dedicates 

much of its work and attention to inventory performance improvement, is typically unfamiliar 

with control theory. Control theory is in itself an extensive branch of science / engineering and 
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as such does not appear in curriculum of taught OR courses. This identified gap prompts the 

need to build a communication bridge between the OR and control theory communities; thus 

making the techniques of control theory accessible to researchers in OR who are non-control 

specialists, via a transformation, providing a link and a better understanding of a common 

mathematical framework. In response to this need, the thesis has presented what could be 

described as the first step in this bridge building process. 

 

The developed method was obtained via a mathematical reformulation of the MPC 

approach used for the specific inventory state space model, which was subsequently termed 

IMPC in the thesis, for the case when the tuning parameter within the MPC was set equal to 

zero. The proposed approach which has been developed in this thesis is termed the inventory 

controller (IC). It has been evaluated and mathematically demonstrated to be equivalent to the 

IMPC approach. Particular attention was paid to the mathematical simplification which 

specifically relates to the inventory problem. It has been shown that the technique is applicable 

to problems, where the state space model has a particular form, regardless whether it is an 

inventory problem or indeed something else. The IMPC results for the case when the tuning 

parameter differs from zero, have also been presented and shown to provide a near, but not 

exact, mathematical equivalence. In the development of the mathematically reduced approach, 

the MPC algorithm displays an independence towards changes in the prediction and control 

horizons, effectively being a non-predictive scheme. Nevertheless, the developed simplified 

method of IC, being equivalent to IMPC for the non-tuning parameter case, brings the 

advantage of straightforward application for the non-control familiar OR society. It generates 

satisfactory results from an industrial warehouse point of view as well as bridging the gap 

between the mathematical precision of control theory and the expectation of OR practitioners 

in industry.  

 

The IC method represents a first step towards converting the MPC to a non-control 

engineering form, and only the basic case, when the tuning parameter was set to zero, has been 

considered here. For those, who would be interested to continue obtaining simplified methods 

for the non-zero tuning parameter case, several findings and guidelines have been presented in 

the thesis. There is probably little to be gained in the case of the current application (the 

inventory control problem), as the difference in the results was found to be insignificant when 

the tuning parameter was considered. Nevertheless, if there is an interest in applying the 
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technique for systems which are analogous to the state space representation, consideration of 

the tuning parameter might appear beneficial.  

 

It is concluded, therefore, that the developed IC technique can be applied to other 

problems of OR within industrial applications, provided the state space model can be 

represented in a similar way. Several possible further applications and methods of modelling 

the system variables are proposed below.  

 

8.2 Recommendations for future directions 

Consider a fish breeding pond. The system output would refer here to the number of adult 

fish, the deterioration factor could refer to the number of individuals, which have died. The 

pond is periodically replenished / supplied by new born entities of an optimal quantity (the 

control variable), which become adults following a constant delay. The disturbance here could 

refer to the number of individuals which have been sold. The benefits of the application of 

such a model can be understood as follows. Maintaining too many fish in the pond can create 

unnecessary costs related to feeding as well as a higher risk of fish becoming unhealthy due to 

over population. Too little, on the other hand, can bring the risk of not satisfying demand. 

 

Consider a greenhouse as another application. The system output would represent the 

number of fully grown plants which are ready for sale, deterioration rate would represent the 

number of plants, which have reached maturity and/or are of poor quality. The control variable 

would refer to optimal number of small plants, or seeds, which could be sown to grow and be 

ready for sale after a certain delay. The disturbance could refer to the number of plants which 

have been harvested for sale.  

 

Finally, consider a single product manufacturing, assembling, or packing line, which 

consumes a certain amount of time (system delay) to complete the process. The system output 

would refer to number of finished goods, deterioration rate would refer to the number of goods 

which are faulty and are not exploitable. The control variable could refer to the optimal amount 

of raw materials, which should be delivered to the production line to maintain the finished 

goods inventory level. The disturbance could represent the number of goods being sold by the 

manufacturing plant.  
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The above examples enlighten the applicability rang of the developed control approach to 

the traditional OR inventory problems.  

 

8.3 Overall Summary 

The main contribution of the thesis has been that of realising that the MPC formulation 

itself has an exploitable form and a special pattern based upon which a mathematical reduction 

can be deduced. In the case of a prior known state space model, the mathematical 

reformulation can be carried out based on an utilisation of the model parameter values. The 

demonstration of the mathematical equivalency between the IMPC and IC methods was shown 

in the thesis in a systematic step-by-step form. Starting from recognition the key patterns in the 

mathematical description, each of the IMPC gain components have been developed and 

separately demonstrated via a sequence of mathematical propositions. The simplified forms of 

the IMPC gain components are then combined to give the final alternative form of the IMPC. 

If there is further interest in conducting similar reformulations of MPC in other areas of OR, 

the sequence of propositions and their demonstrations presented in the thesis should provide a 

set of guidelines for further research and development in bridging the gap between the OR and 

control communities. 
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Appendix I – Guidelines for demonstration of Proposition 5 and 

Proposition 11 

 

Proposition 5 is a special case of Proposition 11 in this case of 1i  , therefore demonstrating 

Proposition 11 is sufficient for demonstrating both propositions. The demonstration of Proposition 

11 is extremely extensive in description, hence it refers to the multiplication of   
1

T T
Φ Φ Φ Φ  

only, to ensure that the identity matrix is obtained as a result of the multiplication. Here, the 

guidelines for demonstrating the procedure are elaborated.   

 

Firstly, define a matrix such that 
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As both matrices, i.e.  T
Φ Φ  and  

1
T

Φ Φ  are symmetric, their product is symmetric too and it can 

be denoted as follows 
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From (5.70) in Proposition 11 and (5.61) it mey be deduced that 
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It must now be shown that 11a  as well as every other element on the diagonal are equal to 1. It must 

alo be shown that any element which is not located in the diagonal is qual to zero.  

Firstly, the demonstration must be conducted separately for elements  11a , 12a  and 22a  in an 

analogous way to the following: 

 

Define pz N n  . Assuming 2z    
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Assume now that for some 2z  , that 
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Therefore 
11 1a  , regardless of the values of the prediction and control horizons or lead time delay.  

 

Then, for , [3, 3]p cm r N N    the generic formulation of the 
mra  element, where m  and r  denote 

row and column indices, can be deduced from (5.70) in Proposition 11 and (5.61). 
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Then, it must be demonstrated that 1mma  . 

The inductive demonstration can be conducted for the assumption of 2z m   and 2z m   

separately.  

 

Then, the generic formulation of non-diagonal elements is deduced as follows: 
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Then, it must be demonstrated that for m r   the elements 0mra  . 

This inductive demonstration can be conducted for the assumption of 1z g   and 1z g   

separately. 
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where 

,a  b   and c  are scalars defined in Proposition 11 and p cS N N  .  
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