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Abstract 

Robust control is an aspect of control theory which explicitly considers uncertainties and how 

they affect robust stability in the analysis and design of control decisions. A basic 

requirement for optimal robust guaranteed control in a real life scenario is the stabilization of 

systems in the presence of uncertainties or perturbations. In this thesis, the system 

uncertainties are embedded into a norm bounded uncertainty elements. The perturbation 

function is modelled as a class of nonlinear uncertainty influencing a neutral system with 

infinite delay. It is assumed to have delay in state and is input dependent; which implies the 

effect of control action can directly or indirectly influence the nonlinear perturbation 

function. 

In recognition of the fact that stability and controllability are fundamental in obtaining the 

optimal robust guaranteed cost control design for neutral functional integro-differential 

systems with infinite delays (NFDSID), total asymptotic stability results were developed 

using Razumikhin technique, unique properties of eigenvalues, and the uniform stability 

properties of the functional difference operator for neutral systems. The new results, obtained 

using Razumikhin’s technique, extend and complement basic stability results in neutral 

systems to NFDSID. Novel sufficient conditions were developed for the null controllability 

of nonlinear NFDSID when the controls are constrained. By exploring the knowledge gained 

through other controllability results; conditions are placed on the perturbation function. This 

guaranteed that, if the uncontrolled system is uniformly asymptotically stable, and the 

controlled system satisfies a full rank condition, then the control system is null controllable 

with constraint if it satisfies some algebraic conditions. 



ii 
 

The investigation of optimal robust guaranteed cost control method has resulted in a novel 

delay dependent stability criterion for a nonlinear NFDSID with a given quadratic cost 

function. The new design is based on a model transformation technique, Lyapunov matrix 

equation and Lyapunov-Razumikhin stability approach. The Lyapunov-Razumikhin 

technique is adopted for this investigation because it is considered more scalable for optimal 

robust guaranteed cost control design for NFDSID. It is demonstrated that a memory less 

feedback control can be synthesized appropriately to ensure: (i) the closed-loop systems 

robust stability, and (ii) guarantee that the closed-loop cost function value remains within a 

specified bound. The problem of designing the optimal guaranteed cost controller is also 

realized in terms of inequalities. The Lyapunov-Krasovskii method is used to obtain stability 

conditions in comparison to the Razumikhin method. This method leads to linear matrix 

inequality (LMI) for the delay-independent case which is known to be conservative. 

To illustrate the potential practical applicability of the theoretical results; a cascade 

connection of two fully filled chemical solution mixers, and an integrated lossless 

transmission line which has a capacitance, inductance, resistance and terminated by a 

nonlinear function are modelled.  A neutral control system model for NFDSID is derived 

from each of these systems. Simulation studies on the transmission line system confirm the 

theoretical robust stability results. The new results and methods of analysis expounded in this 

thesis are explicit, computationally more effective than existing ones and will serve as a 

working document for the present and future generations in the comity of researchers and 

industries alike.  
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Nomenclature 

Denote the Euclidean space by 𝐸 = (−∞ ,∞) and  𝐸𝑛 as a real 𝑛 – dimensional Euclidean 

space with norm | ∙ | and let  𝐽 be any interval in 𝐸.  

Define the 𝑛-Euclidean norm ‖∙‖ on the length of a vector 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) by  ‖𝑥‖ =

√𝑥1
2 +⋯+ 𝑥1

2.  The absolute value norm | ∙ | is used to represent the norm in the various 

spaces as appropriate rather than using different symbols. 

The notation 𝑊2
(0)( 𝐽,  𝐸𝑛) will represent the Lebesgue space of square-integrable functions 

from 𝐽 to 𝐸𝑛. The convention  𝑊2
0(𝐽, 𝐸𝑛) = 𝐿2(𝐽, 𝐸

𝑛) is also adopted 

Let 𝜎 ≥ ℎ ≥ 0 be any given real numbers (𝜎 may be +∞) 

𝑊2
(1)([−ℎ, 0], 𝐸𝑛) is the Sobolev space of all absolutely continuous functions 𝑥: [−ℎ , 0] →

𝐸𝑛 with the property that the function 𝑡 → �̇�(𝑡) = (𝑑𝑥 𝑑𝑡⁄ ) belongs to 𝑊2
(0)([−ℎ , 0],  𝐸𝑛) 

𝐶 = 𝐶([−ℎ , 0], 𝐸𝑛)  represents the space of continuous function mapping the interval 

[−ℎ , 0] into 𝐸𝑛 with the norm ‖∙‖, where ‖𝜙‖ = sup−ℎ≤𝑠≤0|𝜙(𝑠)|, for 𝜙 ∈ 𝐶. 𝑆 is any 

compact and convex subset of 𝐶 

ℒ([−ℎ, 0], 𝐸𝑛) is a linear space with norm ‖ ∙ ‖ defined by ‖𝜙‖ = sup−ℎ≤𝑠≤0 |𝜙(𝑠)|.  

ℬ([−𝜎 , 0], 𝐸𝑛) is the Banach space of functions which are continuous and bounded on 

[−ℎ , 0] and such that  ‖𝜙‖ = sup−ℎ≤𝑠≤0|𝜙(𝑠)| + ∫ 𝑔(𝜃)|𝜃|𝑑𝜃
0

−𝜎
< ∞, where 𝑔: [−𝜎 , 0] →

(0,∞) is Lebesque integrable on [−𝜎 , 0], positive and non-decreasing. 
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The function 𝑔: [𝛼, 𝛽] → 𝐸  is said to be a bounded variation 𝑔 ∈ 𝔙([𝛼, 𝛽])  if 𝔙𝛼
𝛽(𝑔) =

sup𝒽∈[𝛼,𝛽] ∑ |𝑔(𝑥𝑘) − 𝑔(𝑥𝑘−1)|
𝑛
𝑘=1 , where 𝒽 = {𝛼 = 𝑥0 < ⋯ < 𝑥𝑛 = 𝛽}. 𝔙𝛼

𝛽(𝑔) is the total 

variation of 𝑔 on [𝛼, 𝛽]. 

Let 𝜏 ∈ 𝐸, so that 𝑥 ∈ 𝐶([𝜏 − ℎ , 𝜏 + 𝜎], 𝐸𝑛),  then given 𝑡 ∈ [𝜏, 𝜏 + 𝜎) define the symbol 

𝑥𝑡,  𝑥𝑡− ∈ 𝐶 or ℒ by 𝑥𝑡(𝑠) = 𝑥(𝑡 + 𝑠) for −ℎ ≤ 𝑠 ≤ 0 and  𝑥𝑡−(𝑠) = 𝑥(𝑡 + 𝑠) for −ℎ ≤ 𝑠 <

0 respectively with 𝑥𝑡−(𝑠) = 𝑥(𝑡−) for 𝑠 = 0. The convention 𝑥𝜎(𝑠) = 𝑥(𝑠) is adopted when 

𝑡 = 0. Also, the notations 𝑥, 𝑥ℎ and �̇�ℎ are used in some cases to denote 𝑥(𝑡), 𝑥(𝑡 − ℎ) and 

�̇�(𝑡 − ℎ) respectively. 

The controls 𝑢  of special interest are square integrable functions with values in 𝑚 -

dimensional unit cube  𝐶𝑚 of  𝐸𝑚,  where  𝐶𝑚 = {𝑢: 𝑢 ∈ 𝐸𝑚 , |𝑢𝑗| ≤ 1, 𝑗 = 1, 2,⋯ ,𝑚}. 

The set of admissible controls denoted by 𝑈 are functions 𝑢: [𝜎,∞) → 𝐶𝑚 which are square 

integrable on finite intervals with values in 𝐶𝑚 

The differential operator for neutral systems 𝒟 is defined by (𝒟𝑥)(𝑡) = �̇�(𝑡) = 𝑑𝑥(𝑡) 𝑑𝑡⁄ , 

almost everywhere on bounded interval of  𝐽. Higher powers of the operator 𝒟 are defined 

inductively by 𝒟𝑘+1 = 𝒟𝒟𝑘. 

The difference differential operator for neutral system 𝐷 is defined by 𝐷(𝑡)𝑥𝑡 = 𝑥(𝑡) −

𝐴0𝑥(𝑡 − ℎ) and the restriction on 𝐷 is given by 𝐷𝜙 = 𝜙(0) − 𝐴0𝜙(−ℎ)  

ℎ𝑘 represent time delays with ℎ𝑘 ∈ [ℎ𝑘, ℎ𝑘)  , where 0 < ℎ𝑘 < ℎ𝑘 < ℎ𝑘 ≤ ∞, 𝑘 = 1,⋯ , 𝑁. 

Whenever, 𝑁 = 1 the index is dropped and the delay is written as ℎ ∈ [ℎ, ℎ). The notations 

𝑁,𝑛 and 𝑚 are always considered being positive numbers in 𝐸 

The matrix measure 𝜇(∙) for a matrix 𝐴 is defined by 𝜇(𝐴) = [𝐴𝑇 + 𝐴] 2⁄ , where 𝐴𝑇 

represents the transpose of 𝐴. 
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𝑑1 =
𝜕

𝜕𝑥1
, 𝑑2 =

𝜕

𝜕𝑥2
, ⋯ , 𝑑𝑛 =

𝜕

𝜕𝑥𝑛
  denotes vector differentiation up to the 𝑛  vector 

variables  

The symbols 𝓊(𝑠), 𝓋(𝑠), and 𝑤(𝑠) represents continuous non-decreasing, and nonnegative 

functions. All other symbols for functions are appropriately defined to be linear, matrix or 

nonlinear functions 

The target set function 𝒢  is assumed to be either a singleton or a smooth manifold in 

𝐶([−ℎ , 0], 𝐸𝑛)  represented by 𝒢 = {(𝑡, 𝑥) ∈ 𝐽 × 𝐸𝑛: 𝑡 = ℊ(𝜚), 𝔡(𝜚), 𝜚 ∈ 𝐸𝑛} , where ℊ 

and 𝔡 are assumed to be continuously differentiable. That is, if  ℊ: 𝐸𝑛 → 𝐸  is the constant 

function 𝜚 → 𝜎  and 𝔡: 𝐸𝑛 → 𝐸𝑛  is the identity, then 𝒢 = {𝑡1} × 𝐸
𝑛  (fixed final time, free 

final state). If ℊ: 𝜚 = (𝜚1, ⋯ , 𝜚2) → 𝜚1 and 𝔡 is a constant function 𝜚 → 𝑥𝑡1(free final time, 

fixed final state).   

In circuit theory, dynamics of systems in lumped parameter are often considered to be 

function of time alone while the dynamics in distributed parameter are considered to be 

function of time and one or more variables. In the transmission lines modelled in this thesis, 

the voltage and currents are considered to depend on time 𝑡 and on the length of line 𝜉 (in 

meters).  The state variables of the systems are represented by 𝑖(𝜉, 𝑡) and 𝑣(𝜉, 𝑡) where 𝑣 is 

the voltage in Volts (V) across nodes and 𝑖 is the current in Amperes (A) that flows through 

them, while 𝑖0, 𝑣0 represents their initial current and voltage respectively. Other variables 

employed in the modelling are capacitances C, C1, C0   in Farad (F), the inductance L, L1  in 

Henry (H), the resistance R in Ohms (𝛺), and the impedance of the line Z in Ohms (𝛺). Here 

𝑣𝑝ℏ  represents the potential difference between two nodes 𝑝  and ℏ  of a network. 
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Chapter 1 

Introduction and outline of approach 

1.1. Introduction 

This thesis is devoted to the study of optimal robust control for a neutral functional 

differential system with infinite delays. Robust control explicitly considers uncertainties and 

how it affects the analysis and design of control decisions or rules governing a range of 

models. Using mathematical models in the analysis and design of such control decisions 

enables predictions to be made about the systems behaviour. It allows suitable analytical 

techniques and associated simulation tools to interpret systems behaviour predictions. In this 

Thesis the Lyapunov techniques will be explored in the analysis and design of robust control 

decisions while all simulations will be implemented using MATLAB
®
 and Simulink

®
 

R2015b. 

Robust control, which originated in the 1980s, from the applied mathematics and engineering 

branch of control theory is now one of the dominant approaches in control theory (Williams 

2008). A practical requirement for robust control is to stabilize a system in the presence of 

uncertainties or perturbations which may take the form of noise or an external disturbance on 

the system. Disturbances may also be caused by internal parameters (known as parametric 

uncertainties) through variations in measurements of the physical parameters, ageing of the 

physical parameter or changes in the operational conditions of the physical parameters of the 

systems. Many methods seeking to design controllers for such imperfectly known systems, so 

that the system responses meet the desired properties and get stabilised, have evolved over 

the years in control theory.  For example, the ideas of optimal control in the time-domain 



 

2 
 

which were introduced in the early 1960s and 1970s, largely through the works of Kalman on 

linear quadratic regulators (LQR) and filtering techniques (Williams 2008) has underwent a 

significant change. In effect, the LQR method uses a set of linear first order differential 

equations to represent the dynamics of the system to be controlled in state space model. The 

objective is to keep the state vector close to zero without excessive control effort. This is 

achieved through the minimization of a defined cost function. The overall solution is then 

provided by an optimal state feedback control whose state feedback matrix is obtained from 

an algebraic Riccati equation. Whilst the LQR approach was found to be robust in some 

model perturbations and the approach is still widely in use in some other forms, it is 

important to mention that the focus was on the optimality of the nominal system while the 

problems of plant uncertainty were largely ignored. The control approach started to change in 

the early 1970s and 1980s (Williams 2008) as theory and practice identified some of the 

shortcomings in the LQR approach.  Doyle in 1978, as reported in Bhattacharyya et al. 

(1995), demonstrated by a counter example that all the robustness properties (gain and phase 

margins) and some other properties of the LQR design vanish in an output feedback 

implementation. See also (Dullerud and Paganini 2013) on the effect of feedback on 

stabilization. Doyle’s observation spurred the research community to design feedback 

controllers that can have desirable robust properties.  

This innovation made control scientists move away from the LQR approach to look for a 

more desirable and robust approach. About the same period, some significant results were 

reported on the analysis of multivariate systems in the frequency domain. Bhattacharyya et al. 

(1995) reported that some solutions to robust stabilization problems were also realized. In 

particular, the problem of determining a controller for a prescribed level of unstructured 

perturbations was given by Kimura in 1984 for single input single output (SISO) systems; the 

multivariable robust stabilization problem was solved by Vidyasagar, Kimura, and Glover in 
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1986 (Bhattacharyya et al. 1995). These results were a by-product of an important line of 

research initiated by Zames (1981) on the optimal disturbance rejection problem which can 

be summarised as the product of designing a feedback controller that minimizes worst case 

effects over a class of disturbances on the system outputs (Bhattacharyya et al. 1995).  Zames 

fundamental paper of 1981 contained the solution of an 𝐻∞ sensitivity minimization problem 

for a special case of a system with a single right half plane zero which also influenced the 

development of an 𝐻∞ approach to control systems design as a more robust alternative to 

LQR. Unlike the LQR approach, where the quadratic cost could mean measuring the 

performances across frequencies with a 2-norm, the 𝐻∞ approach looks at the peak of losses 

across frequencies using an ∞-norm. Again, uncertainties sets in 𝐻∞  approach have no 

particular form but represent perturbations of the model which are bounded and are most 

often referred to as unstructured approach. 

Bhattacharyya et al. (1995) observed that the problem of stability under large parameter 

perturbations was almost completely ignored by control theory researchers during the 1960s 

and 1970s. However, the situation changed dramatically with the advent of a remarkable 

theorem (Kharitonov 1979) from V.L. Kharitonov which was published in 1973 that led to a 

resurgence of interest in the study of robust stability under real parametric uncertainty 

(Bhattacharyya et al. 1995). Researchers then started to believe that the robust control 

problem for real parametric uncertainties could be approached without conservatism and over 

bounding, and with computational efficiency built right into the theory. The theory also 

revealed the effectiveness and transparency of methods which exploit the algebraic and 

geometric properties of the stability region in parametric space instead of the blind 

formulation of optimization problems. This has spurred many researchers in the field over the 

last few years to obtain interesting research results and has laid solid foundations for the 

future development of robust stability and control under various perturbations. 
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1.2. Robust control problems and uncertainties 

This section outlines three basic scenarios associated with the discussions of robust control in 

Section 1.1. It serves to generate interest in the mathematical analysis and approach to be 

explored in dealing with stability and control of systems in this thesis.  

1.2.1. Stabilization 

Robustness in stability is a very important issue in design, analysis and evaluation of control 

systems and plays an important role in many other fields including economics, quantum 

mechanics, nuclear physics, numerical algorithms, mechanical and electrical engineering. 

Stability, literally speaking, means the ability of all signals in a system returning or decaying 

to zero when there are no excitations in the system. There are various stability properties 

identified in the literature whose implementation could be very impractical if the only way to 

determine them in a system were to do experiments or run simulations. Fortunately, these 

properties can be analysed using corresponding mathematical models. This thesis focuses on 

Lyapunov methods; see Section 1.3, on how to perform such analysis.  The Lyapunov stable 

definition in simple terms implies that a solution starting close to an equilibrium point stays 

near that point forever. It is asymptotically stable if the equilibrium point is Lyapunov stable 

and every solution that starts near the equilibrium point eventually converges to it.  

To illustrate the Lyapunov stability definitions consider the nonlinear system given by  

�̇� = 𝑓(𝑥, 𝑢),                                                                                                                              (1.1) 

where 𝑥 is the state, 𝑢 is the control input and suppose (0,0) is an equilibrium point of the 

system. The equilibrium point (0, 0)  is said to be (asymptotically) stable if zero is an 

(asymptotically) stable equilibrium point of �̇� = 𝑓(𝑥, 0). To stabilize the system, the first task 

is to investigate conditions under which it will be possible to stabilize such an equilibrium 
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point by using state feedback control. In this case, define a feedback control law 𝑢(𝑡) =

𝑔(𝑥(𝑡)) , where 𝑔  is a continuously differentiable function so that the closed-loop �̇� =

𝑓 (𝑥, 𝑔(𝑥(𝑡))) is asymptotically stable. The problem now is that of finding a function 𝑔 that 

maps the state 𝑥 to the control action 𝑢. Assume first that such a  𝑔 exists in order to examine 

some of its properties, and also assume that 𝑔(0) = 0 in order to make zero an equilibrium 

point of the closed-loop. By applying the Jacobian linearization method (Dullerud and 

Paganini 2013), the linearization of the closed-loop system will be given by �̇� = (𝐴 + 𝐵𝐹)𝑥, 

where 𝐴 = 𝑑1𝑓(0,0), 𝐵 = 𝑑2𝑓(0,0), 𝐹 = 𝑑𝑔(0) and 𝑑1, 𝑑2 denote vector differentiation by 

the first and second vector variables respectively. This shows that the closed-loop system is 

asymptotically stable if all the eigenvalues of 𝐴 + 𝐵𝐹 lie on the left half of the complex 

plane. Conversely, if the matrix 𝐹 exists such that 𝐴 + 𝐵𝐹 has all the stability properties it 

requires, then the state feedback law 𝑔(𝑥) = 𝐹𝑥 is able to stabilize the closed-loop system.  

1.2.2. Disturbances 

Achieving robust stability for controlled systems has been a typical issue for control research, 

and has often led to the introduction of feedback in systems which are already stable to 

improve some aspects of the design parameters of the system in order to obtain a more 

acceptable behaviour (Dullerud and Paganini 2013). The effects of environmental influences 

are one of the important concerns for design of systems. One of the main objectives for 

introducing feedback in this research is to render a system less sensitive to such unknown 

environmental influences. For example, consider Figure 1.1, which shows a dynamical 

system with feedback using a control law. 

The controller implements its actions based on the information it receives from the 

measurements. However, the output might show unexpected behaviour as a result of 
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disturbances acting on the systems if these were not considered during the control analysis 

and design.   

 

 

 

 

 

 

 

1.2.3. Unmodelled dynamics 

In most practical systems approximations are made to some physical parameters when 

modelling such systems with their nonlinearities. In some cases, where models are linearized 

or truncated and incorporated as norm-bounded operators, these approximations pose robust 

stability problems when applying feedback (Bhattacharyya et al. 1995).  To develop effective 

and useful practical systems therefore model developers must ensure uncertainty or 

unpredictability in the system are adequately compensated for by feedback (Dullerud and 

Paganini 2013). The latter approach which ensures adequate compensation for uncertainties 

in systems is adopted in this thesis to model, analyse and design the systems.  

1.3. Lyapunov’s stability concepts 

The concept of stability for non-autonomous nonlinear systems was first developed by 

Lyapunov in 1892. Lyapunov developed two methods; the direct and indirect methods for 

analysing the stability of systems. The Lyapunov’s direct method or Lyapunov’s second 

 

Dynamical system 

 

Control law 

Disturbance 

Control input 

    (Action) 

System output 

Measurement 

Figure 1.1: Illustration of disturbance on controlled system 
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method which is the focus of this research allows stability analysis to be extended to more 

general nonlinear non-autonomous systems, where the right hand side is allowed to depend 

explicitly on time. Unlike the root locus and frequency-response methods which are generally 

applicable to linear time invariant systems having single-input single-output structure, the 

Lyapunov’s method can be applied to linear and nonlinear systems of any order and the 

systems stability can also be analysed without necessarily solving their state equations (see 

Burghes and Graham 1980). 

The central idea of the Lyapunov’s direct method is the concept of generating a function 

(Lyapunov function) that essentially represents the system energy. It is possible to define the 

total energy of the system in terms of the second law of thermodynamics or alternatively, as 

the principle of minimum total potential energy. The principle of minimum total potential 

energy asserts that “a structure or body shall deform or displace to a position that minimizes 

its total potential energy” (Liu 2011). The principle of total minimum potential energy 

implies that, in any stable region of a system, the total energy of the system decreases 

towards some local minimum along all its part of evolution. It also implies that any state of 

an object in a physical system can only be made stable to small disturbances or perturbations 

if it were a local minimum of the body’s potential energy. 

1.4. Control concepts for the systems 

This section describes the fundamental properties of robustness that are inherent in the 

control design scheme adopted in this thesis. 

1.4.1. Feedback and robustness 

Feedback schemes are usually designed to deal with disturbances and provide robustness but 

can also be used to obtain an accurate account of every variation in a system despite 

disturbances and changes to internal parameters. Robustness therefore is considered as one of 
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the most valuable properties of feedback. Robustness in closed loop also depends on the 

structure of the feedback controller.  For systems with error feedback only the error signals 

may be accessible for measurement through the output and all robustness issues can be 

completely dealt with using feedback. For other feedback system, it is possible to separate 

their reference and process output measurements, and then deal with their robustness and 

disturbance issues using feedback to finally obtain the desired response to their command 

signals through feedforward designs. Controlling unstable systems with delays is intrinsically 

very challenging. Such systems can be better controlled by integrating the fundamental 

systems dynamics and having knowledge of all the other elements necessary for the design.  

In general feedback is known to:  

 Give accurate control gain to systems 

 Give account of all variations in a system 

 Give a linearizing effect to systems 

1.5. Motivation for research 

The existence of time delays in a dynamical system has been the source of poor system 

performance and even instability. Studies involving different time delays can be found in ship 

stabilization, control processes for pressure and heat transfer regulation. However, delays are 

sometimes deliberately introduced into feedback systems to improve system performances. 

See Kolmanovskii and Myshkis (1992) and references therein for details. There are well 

known developed fundamental theories for neutral delay differential systems, that is 

existence, uniqueness and continuous dependence of solution on parameters. However, 

unlike linear autonomous systems where Routh-Hurwitz criteria can be used as a standard 

sufficient condition for stability by checking the positivity of sequences of determinants 

in the principal sub-matrices, there is no standard sufficient condition of asymptotic 
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stability for neutral integro-differential systems because of the trivial nature of their 

solutions.  In fact, some well-known results for linear autonomous ordinary and delay 

differential systems cannot be extended to neutral differential systems. For example; a 

linear neutral system can have unbounded solutions even when the roots of its 

characteristic equations are purely imaginary. It is also known, see Gopalsamy (1992) and 

references therein, that if all the roots of the equations of a linear neutral system have 

negative real parts only and if the roots are uniformly bounded away from the imaginary 

axis, then the asymptotic stability for the trivial solution of the corresponding linear 

autonomous equation can be asserted. However, verifying the uniform boundedness away 

from the imaginary axis of all the roots of the equation is a very difficult task. The 

Lyapunov function and functional method is an alternative resort to the investigation of 

stability for these neutral systems. However, the difficulty in the Lyapunov methods is the 

lack of generalized rules for constructing the functions; they are merely based on the 

researchers experience and techniques. The Lyapunov methods are classified into 

Krasovskii and Razumikhin approaches (Hale and Verduyn Lunel 1993). The Krasovskii’s 

approach often leads to LMI results and can be applied to a wide range of problems. An 

important peculiarity of this method is in the consideration of a delay derivative upper bound 

constraint which is naturally excluded in Razumikhin’s based approaches (Briat 2011). The 

Razumikhin’s approach often leads to tedious manipulations and quasi-convex conditions but 

can yield structurally simpler and more scalable results, involving fewer variables, small 

matrix inequalities and simpler control design than the Krasovskii’s approach (Briat 2011). 

Therefore, this Thesis will focus more on the Razumikhin’s approach. 

However, stability and robustness are key factors that guarantee the performance of a 

practical control application. Delays and disturbances in system performances may cause 

fatal and serious damage to control applications if the key factors are not well compensated 
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for in the development of the design. To develop a control scheme for neutral integro-

differential systems with disturbances, it is therefore necessary to guarantee adequate level 

of stability and system performances. Control schemes are often designed for different 

purposes; for example, Kofman et al. (2008) presented a control design for perturbed 

multiple-input systems which guarantees any component-wise ultimate bound on the system 

state. He achieved his result by using eigenvalue/eigenvector assignment by state feedback 

and utilizing a component-wise bound computation procedure. This takes into account both 

the system and perturbation structures by performing component-wise analysis, thus avoiding 

the need for bounds on the norm of the perturbation. Soliman et al. (2011) designed a state 

feedback controller to investigate the guaranteed cost fault tolerant control with pole region 

constraints for power systems subject to actuator failures (either in power system stabilizers 

or flexible alternating current transmission systems). By using the linear matrix inequality 

technique, the feedback controllers ensured the closed-loop system achieves satisfactory 

oscillation damping and settling time with satisfactory cost performance. In recent years the 

advent of linear matrix inequality (LMI) optimization has significantly influenced the 

direction of research in robust control schemes. Lien (2006) considered a static output linear 

feedback control in stabilizing a class of uncertain neutral systems with time-varying delays 

via LMI and Lyapunov-Krasovskii approach, deriving a delay-dependent and delay-

independent criteria for the stabilization of the system while Lien et al. (2015) proposed a 

delay-dependent criteria for the design of a guaranteed cost control and achieved the 

minimization of cost function for a class of Takagi-Sugeno fuzzy time-delay systems on the 

basis of Lyapunov-Krasovskii and the LMI optimization approach. 

Inspired by the numerous applicable areas for neutral integro-differential systems with 

infinite delays, see Balachandran and Dauer (1996) and references therein, this research 

project aims to investigate the concept of optimal robust guaranteed cost control for such 
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systems and its perturbation in-line with the research aim and objectives given in Section 1.6 

by proposing a novel control strategy that is robust and reliable. 

1.6. Research aim/objectives 

The aim of this research is to investigate the optimal robust control of functional differential 

systems with infinite delays through the following objectives: 

 Formulate a neutral control system and find its stability; 

 Prove the system’s controllability using rank and algebraic conditions if it is stable; 

 Obtain the optimal control of the system with application to transmission lines; 

 Demonstrate the applicability of the result through simulation studies. 

1.7. Contributions of the thesis and peer reviewed works 

This section describes and then ranks the contributions of the thesis in terms of their 

significance: 

 Stability results 

 A new mathematical model for a neutral functional differential delay control system is 

developed. A novel extension of basic stability results in functional differential equations to 

neutral functional integro-differential systems with infinite delays is achieved by the 

investigation of total asymptotic stability properties for neutral functional integro-differential 

systems with infinite delay using the basic Lyapunov-Razumikhin technique. Furthermore, a 

new delay-independent condition which is less conservative and sufficient to make the 

system uniformly asymptotically stable is developed using LMI and the Lyapunov-

Krasovskii approach. The feasibility of the LMI which is sufficient to make the system 

uniformly asymptotically stable is solved by using the MATLAB’s LMI Toolbox. 
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 Control Results 

A novel null controllability result for neutral functional integro-differential systems with 

infinite delays is obtained by placing growth and continuity condition on the perturbation 

function. This condition guarantees that if the linear control base system has full rank with 

the condition that 𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0  for every complex 𝜆 , where 𝐾(𝜆)  is an 𝑛 × 𝑛 

polynomial matrix in 𝜆 constructed from the coefficient matrices of the control system and 

𝜉(exp(−𝜆ℎ)) is the transpose of [1, exp(−𝜆ℎ) ,⋯ ,  exp(−(𝑛 − 1)𝜆ℎ)], and the functional 

difference operator for the system is uniformly stable, with the linear uncontrolled system 

uniformly asymptotically stable, then the perturbed neutral system with infinite delay is null 

controllable with constraint. Again, a new stabilization criterion and memory-less state 

feedback controllers are proposed using LMI and the Lyapunov-Krasovskii approach whose 

corresponding design procedures are used to stabilize the system. 

 Robust optimal control results 

Results on time optimal control are extended to neutral functional differential systems with 

infinite delays. A new delay-dependent result for optimal robust guaranteed cost control has 

been established for the system by defining a quadratic cost function and making the resulting 

closed-loop system uniformly asymptotically stable. The result was obtained using a model 

transformation technique, Razumikhin approach and Lyapunov matrix equation through a 

state feedback control design which guarantees adequate performance on the given 

performance index. Further, stabilization condition for the controller is also derived through 

solving an optimization problem whose constraints are given by a set of inequalities.  
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 Application 

It has been shown that an interconnected network of lossless transmission lines which are 

each terminated by a nonlinear function in parallel with capacitance, resistance and an 

inductance is a natural model for a neutral functional differential system with infinite delays. 

Simulations studies are carried out in terms of stability and robust control on the model to 

show the applicability and effectiveness of the theoretical results and methods.  

The following peer review contributions were also made: 

Davies and Haas (2015c) ‘Null controllability of neutral system with infinite delays,’ 

European Journal of Control, http://dx.doi.org/10.1016/j.ejcon.2015.09.001 

Davies and Haas (2015e) ‘Robust guaranteed cost control for a nonlinear neutral system 

with infinite delay,’ European Control Conference, July 14-17, Linz, Austria 

Davies and Haas (2015b) ‘Delay-independent closed-loop stabilization of neutral systems 

with infinite delays,’ International Conference on Applied Mathematics and 

Computation (ICAMC), September, 17-18, Rome, Italy 

Davies and Haas (2015a) ‘Delay-independent closed-loop stabilization of neutral systems 

with infinite delays,’ World Academy of Science, Engineering and Technology, 

International Science Index 105, International Journal of Mathematical, 

Computational, Physical, Electrical and Computer Engineering, 9(9), 380-384. 

Davies and Haas (2015d) ‘Stability of neutral systems with infinite delays,’ International 

Conference on Systems Engineering (ICSE) 2015, September, 8-10, Coventry, 

United Kingdom 



 

14 
 

Davies and Haas (2013) ‘Optimal control of functional differential systems,’ United 

Kingdom Automatic Control Council (PhD Presentations) Conference, October 31, 

2013, Institution of Mechanical Engineers, Westminster, London 

Contributions and their order of importance 

 The most important contribution is the robust guaranteed cost control for neutral system 

with infinite delays which was presented at European Control Conference in July, 2015, 

Linz, Austria 

 The second most important contribution is Null controllability result for neutral system 

with infinite delays published in the European Journal of Control, 2015 

 The third most important contribution is the demonstration of the applicability of the 

theoretical result with simulations which is being prepared for Journal submission. 

 The fourth most important contribution is delay-independent closed-loop stabilization of 

neutral systems with infinite delays which was presented at International Conference on 

Applied Mathematics and Computation (ICAMC), 2015, Rome, Italy 

 The fifth most important result is the extension of total stability results to neutral 

systems with infinite delays which was presented at International Conference on 

Systems Engineering (ICSE), 2015, Coventry, United Kingdom 

1.8. Organisation and framework of the thesis 

This chapter has given a general overview of the investigations in this research project and 

subjects areas underpinning the research. The overview also gave clear indication of the 

importance of these subject areas in the development of some fundamental results in the 

thesis and in the proposed application of these results. The Lyapunov method, selected in 

this thesis to investigate the robust stability of the system has been introduced. The focus 

is on establishing robust guaranteed cost control for neutral integro-differential systems 
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with infinite delay. The approach will be first to ensure that the system is stable because 

of the trivial nature of their solution by obtaining total stability results and then 

controllability results for the systems which are the key issues that would guarantee 

optimal control of the system. The robust guaranteed cost control result of the system will 

then be obtained through feedback designs in order to compensate for all uncertainties on 

the system. 

The structure for the rest of the thesis as shown in the flow chart (Figure 1.2) is organized in 

the following order: 

Chapter 2 aims at providing literature exposition of some basic stability techniques and, 

control methods which are essential to this research project. Delay models as more realist ic 

models than the principle of causality: that is future states of systems are determined solely 

by the present and are independent of their past states in the system. The classifications of 

delay equations and their importance in real life applications are discussed.  The 

Razumikhin’s method is identified as a more appropriate method than Lyapunov-Krasovskii 

for the stability analysis of neutral integro-differential equation with infinite delays. The 

advantages which stem from the difficulty posed in constructing a Lyapunov functional for 

the whole state space is identified from literature and is discussed. Furthermore, different 

optimal control approaches for neutral systems and their advantages are introduced; with time 

optimal control and cost function methods known from literature as most useful tools for 

analytic design and applications presented. The potential application areas, which include a 

cascade of chemical control solution for two mixers and lossless transmission line models, 

are identified.  

Chapter 3 presents discussions on the relation between the potential application models 

identified in Chapter 2 and neutral functional differential equation. The derivation of a 



 

16 
 

general solution for an ideal lossless transmission line is given in terms of its voltage and 

current by representing the line equations of the transmission line as a system of first order 

partial differential equations. The solutions to this system of equations are then obtained by 

reducing the mixed boundary problem using D’Alembert’s solution for wave equations. The 

chapter reviews how to mathematically analyse and predict controlled chemical solutions 

which support processes in microbiological growth as well as the evolution in their model 

development. 

The chapter then develops a new mathematical model of a neutral functional differential 

control system by describing the state equations for a cascade connection of a two chemical 

solution control process to show one of the numerous applications of the type of system 

investigated in this thesis.  

Chapter 4 studies and gives fundamental results for total asymptotic stability for neutral 

integro-differential systems with infinite delays modelled in Chapter 3. It uses the Lyapunov-

Razumikhin technique discussed in Chapter 2. The study begins with a concise definition of 

terms, lemmas and theorems upon which the stability study hinges. It explores the basic 

Razumikhin stability theorems, the uniqueness property of the eigenvalues, and the Lyapunov 

matrix equation to establish these results. It continues by developing a delay-independent 

criterion for uniform asymptotic stability for the systems in terms of LMI using the 

Lyapunov-Krasovskii stability approach. The feasibility of the resulting LMI is solved by 

using the MATLAB’s LMI Toolbox. The chapter contains numerical examples depicting the 

various approaches. 

Chapter 5 examines the control methods for the neutral functional differential system with 

infinite delays based on the establishment of stability results in Chapter 4. It gives explicit 

algebraic conditions that can compute the controllability of such systems without the 
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knowledge of the controllability matrix.  In particular necessary and sufficient conditions are 

developed for null controllability of the systems when the controls are functions which are 

square integrable on finite intervals with values in an 𝑚-dimensional unit cube. The chapter 

also examines the stabilization of the system by using the standard Lyapunov-Krasovskii 

approach to derive new sufficient conditions that stabilises the system in terms of LMI whose 

feasibility solutions are solved by using the MATLAB’s LMI Toolbox. Some definitions, 

lemmas and theorems that are necessary for the investigation are given in their correct 

sequence. Numerical and simulated output examples are provided to illustrate the 

effectiveness of the results. 

Chapter 6 investigates time optimal and robust guaranteed cost control problems for neutral 

functional differential control systems with infinite delays. Using key results of Chapters 4 

and 5 on stability and controllability, easily computable criteria for the system to be normal 

and completely controllable are developed and the time optimal control for the neutral system 

with infinite delays formulated. Furthermore, methods for obtaining an optimal robust 

guaranteed cost control problem via state feedback control laws for the systems are presented 

using a transformation technique combined with the Lyapunov matrix equation and the 

Razumikhin approach. A guaranteed cost control gain for the system is also obtained through 

an optimization problem. The verification of the conditions developed in the chapter is 

simple; examples with simulated state outputs are also given to illustrate the robustness of the 

methods. 

Chapter 7 makes use of an example of a lossless transmission line to demonstrate the 

applicability of the research results. Simulation studies confirms expected theoretical results 

prior to the conclusion and further studies in Chapter 8 which draw all the key findings in this 

research thesis together and makes recommendations for further work. 
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Chapter 2 

Literature review 

2.1. Introduction 

This chapter reviews relevant literature on stability, controllability and optimal control to 

justify the direction of the research. Relevant practical applications of neutral systems are 

reviewed leading to the selection of appropriate models to demonstrate the applicability of 

this work. First, stability methods are discussed leading to the selection and thorough review 

of Lyapunov stability methods in this research. Similarly, the types of controllable dynamical 

systems and appropriate controllability methods are discussed and the most appropriate to 

this research highlighted. The advantages associated with optimal control system designs are 

reviewed prior to describing the types of optimal control design. Finally, examples of 

application of neutral systems are given leading to the selection and detailed description of 

transmission line modelling and control.  

2.2. Neutral functional differential systems 

As seen in Davies (2006) and the references therein differential equations, are an important 

tool that can harness interrelated systems’ components, which otherwise might continue to 

remain independent of each other, into a single system. It provides the means to analyse the 

inter-relationships that exist between these different components of a physical system. 

Physical systems which express the present states of a situation are the most commonly 

encountered systems in the theory of differential equations. However, a more realistic system 

would encompass not only the present but also the past states or history of the system, 

otherwise referred to as the property of after-effect or time delays. To have a good grasp of 
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the state at present (𝑡), some knowledge of the past (𝑡 − 𝑟), 𝑡 ≥ 0, 𝑟 > 0 is important. Such 

systems were formulated by Volterra in 1928 with application to predator-prey models. This 

principle permeates various aspect of life and has lately influenced much research. It is now 

well known that the existence of time delays in a dynamical system has been the source of 

oscillation, instability and poor system performances. 

In general, differential equations which involve the present as well as the past states of any 

physical system are called delay differential equations or functional differential equations. 

Research on the appearance of technical problems involving different delays can be found in 

the influence of hydro-shocks on the oscillations of turbines, feedback systems for 

hydroelectric power stations, ship stabilisation, control processes for pressure, heat transfer 

regulation, and time delays in feedback systems (see Kolmanovskii and Myshkis 1992 and 

references therein). However, they can also be introduced deliberately into feedback systems 

to improve system performance. 

Delay differential equations can be classified into two broad types: retarded functional 

differential equations and neutral functional differential equations. This thesis will focus 

attention on the latter type, in which the evolution rate of the process described by such 

equations depends on the past as well as the present history. That is, one in which the 

derivatives of the past history or derivatives of functional of the past history are involved as 

well as the present states of the system.  

Having introduced the concept of neutral functional differential systems, the following 

sections review stability methods, controllability results and optimal control of such system. 

2.3. Stability of neutral functional differential systems 

Stability analyses for functional differential systems have attracted considerable research 

effort because of their applicability in various fields of research. The three most relevant 
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stability methods among stability theories for retarded functional differential systems (see 

Hale 1977, and Hale and Verduyn Lunel 1993) that will be reviewed in this Section are; the 

Lyapunov functional, comparison principle and Razumikhin method. 

2.3.1. Lyapunov functional method 

The Lyapunov functional method requires the construction of a Lyapunov function in terms 

of the rate of change of a functional along solution trajectories. The use of a functional is a 

natural generalization of the direct method of Lyapunov for ordinary differential equations. 

However, there are no general rules for constructing Lyapunov functions.  The constructions 

are merely based on a researchers’ experience and some particular techniques. Lyapunov 

functions were first developed in the 1950s by A. M. Lyapunov for the study of stability of 

systems described by ordinary differential equations in his famous studies 'Collected Works 

of Academician' (Lyapunov 1967). Since then methods based on Lyapunov functions have 

been extended to study different kinds of stability of dynamical systems. For example, 

methods based on Lyapunov functions have been used to study:  

(i) chaotic signals (Winful and Rahman 1990) in an array of coupled lasers given by the 

model  

𝑑𝑥𝑗
𝑑𝑡

=
1

2
[𝜑(𝑛𝑗) −

1

𝜎𝑝
] (1 − 𝑖𝛼)𝑥𝑗 + 𝑖𝑘(𝑥𝑗+1 + 𝑥𝑗−1) ,

𝑑𝑛𝑗
𝑑𝑡

= 𝜑1 −
𝑛𝑗
𝜎𝑠
−𝜑(𝑛𝑗)|𝑥𝑗|

2
,                                         

}
 
 

 
 

                                              (2.1) 

where 𝑥𝑗 , 𝑛𝑗  are the evolution of mode amplitude and the population in the 𝑗𝑡ℎ  laser 

respectively, 𝜑 is the gain from lasing threshold of the uncoupled lasers, 𝜎𝑝, 𝜎𝑠 are the photon 

lifetime and lifetime of active populations respectively, 𝜑1 is the pump rate, 𝑘 is coupling 

strength between adjacent lasers and 𝛼 is a line width enhancement factor in semiconductor 
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lasers. See also (Pecora and Carroll 1990; 1991, and Carroll and Pecora 1991) for more 

studies on chaotic systems. 

(ii) the stability of stochastic systems by Jeetendra and Vivin (2012) given by 

𝑑𝑥(𝑡) = [(𝐴 + ∆𝐴(𝑡))𝑥(𝑡) + (𝐵 + ∆𝐵(𝑡))𝑥(𝑡 − ℎ(𝑡))]𝑑𝑡

+ [𝑔 (𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ(𝑡)))] 𝑑𝑤(𝑡),                                                      (2.2) 

where 𝐴,𝐵  are known real constant matrices with appropriate dimensions, 𝑤(𝑡)  is an 𝑚 

dimensional Brownian motion, ℎ(𝑡) ∈ [ℎ1 , ℎ2], ℎ̇(𝑡) ≤ 𝜇 < ∞ , 𝜇 > 0 , 𝑔(∙) ∈ ℝ𝑛×𝑛  is a 

nonlinear function, ∆𝐴(𝑡)  and ∆𝐵(𝑡)  are the parametric uncertainties with compatible 

dimensions. See also (Wei et al. 2007, Liu et al. 2009, and Deng et al. 2001) for more studies 

on the stability of stochastic systems. 

(iii) impulsive systems of the form (2.3) where the system states changes abruptly at certain 

moments of time by Naghshtabrizi et al. (2008) 

           �̇� = 𝑓𝑘(𝑥(𝑡), 𝑡),   𝑡 ≠ 𝜎𝑘 ,    ∀𝑘 ∈ ℕ,

𝑥(𝑠𝑘) = 𝑔𝑘(𝑥(𝜎𝑘
−), 𝜎𝑘),   𝑡 = 𝜎𝑘 ,   ∀𝑘 ∈ ℕ.

}                                                               (2.3) 

Here, 𝑓𝑘  and 𝑔𝑘  are locally Lipschitz functions from ℝ𝑛 × ℝ → ℝ𝑛  such that 𝑓𝑘(0, 𝑡) , 

𝑔𝑘(0, 𝑡) equals zero for all 𝑡 ≥ 0, and the impulse time sequence {𝜎𝑘} strictly increases in 

[𝜎0 , ∞) for some initial time 𝜎0. See also (Liu et al. 2012, Liu and Wang 2007, and Akhmet 

2003) for similar studies on impulsive systems. 

(iv) discrete time dynamical systems given by  𝑥𝑘+1 = 𝑓(𝑥𝑘) (Ahmadi and Parrilo 2008), 

where 𝑓:ℝ𝑛 → ℝ can be nonlinear, non-smooth, or uncertain. See also (Jiang and Wang 

2002, Feng 2002, and Haddad and Bernstein 1994) for more studies on discrete systems. 
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2.3.2. Comparison method 

The comparison principle requires finding an additional system with known stability 

properties, and then comparing that to the original time-delay system with an aim of 

establishing a comparison system free of delays from other previously reported stability 

criteria (see Liu and Marquez 2007). The comparison method has been used by a number of 

researchers; see for example (Knospe and Roozbehani 2003; 2006, Zhang et al. 2001; 2003). 

In particular, Knospe and Roozbehani (2006) demonstrated the use of the comparison 

principle to investigate stability of linear systems with multiple, time-invariant, independent 

and uncertain delays with each delay residing within a known interval outside zero given by 

the equation 

�̇� = 𝐴𝑥(𝑡) +∑𝐴𝑘𝑥(𝑡 − ℎ𝑘),

𝑁

𝑘=1

                                                                                            (2.4) 

where 𝐴𝑘 = 𝐻𝑘𝐹𝑘 , 𝐻𝑘 ∈ ℝ
𝑛×𝑞𝑘 , 𝐹𝑘 ∈ ℝ

𝑞𝑘×𝑛 , and ℎ𝑘 ∈ [ℎ𝑘, ℎ𝑘]. Establishing a delay free 

sufficient comparison system through the replacement of the elements with some parameters 

which satisfy certain conditions. It was also shown that robust stability of the comparison 

system guarantees stability of the original time-delay system without requiring any prior 

knowledge of the stability of the time-delay system for some fixed-delay.  

2.3.3. Razumikhin technique 

The Razumikhin technique is based on the application of Lyapunov functions. It essentially 

extends the stability theorem in Lyapunov’s sense. It is considered to rehabilitate applications 

of Lyapunov functions on functional differential equation to a considerable extent in the 

sense that it uses functions which are much easier and natural to explore the possibility of 

using the rate of change of a function on the whole state space to determine sufficient 

conditions for stability. The Razumikhin technique has been found in some cases to be 
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simpler and more visual than an application of a general functional, and has been applied 

successfully by various authors in their stability problems for retarded functional differential 

systems (see Hale 1974; 1977, Hale and Verduyn Lunel 1993, and Myshkis 1995). In 

particular, the Razumikhin technique and Lyapunov functions have been employed to study 

(i) impulsive delay system (Liu and Ballinger 2001) of the form 

�̇�(𝑡) = 𝑓(𝑡, 𝑥𝑡),    𝑡 ≠ 𝜎𝑘,

∆𝑥(𝑡) = 𝑔(𝑡, 𝑥𝑡−),   𝑡 = 𝜎𝑘,
}                                                                                                  (2.5) 

where 𝑓, 𝑔: 𝐽 × ℒ([−ℎ, 0], 𝐸𝑛) → 𝐸𝑛  are given functionals with 𝐽 ⊂ 𝐸+ , ∆𝑥(𝑡) = 𝑥(𝑡) −

𝑥(𝑡−) and 𝜎𝑘 > 𝜎0 = 0, 𝑘 = 0, 1, 2,⋯ satisfy  lim𝑘→∞ 𝜎𝑘 = ∞. See  (Liu et al. 2006, Shen 

and Yan 1998, and Stamova and Stamov 2001) for more examples on impulsive systems, (ii) 

discrete delay system by Liu and Marquez (2007) of the form  𝑥(𝑛 + 1) = 𝑓(𝑛, 𝑥𝑛), 𝑛 ≥

𝑛0, where 𝑓 ∈ 𝐶([−𝑚, 0], 𝐸𝑛), 𝑚,𝑛0 ∈ ℕ. See also (Zhang and Chen 1998, Liu and Hill  

2009, and Tsung-Lieh and Chien-Hua 1995) for more examples on discrete systems, (iii) 

stochastic delay system (Mao 1996) given by 𝑑𝑥(𝑡) = 𝑓(𝑡, 𝑥𝑡)𝑑𝑡 + 𝑔(𝑡, 𝑥𝑡)𝑑𝑤(𝑡), 𝑡 ≥ 0, 

where 𝑓: 𝐸+ × 𝐶([−ℎ, 0], 𝐸
𝑛) → 𝐸𝑛  and 𝑔:𝐸+ × 𝐶([−ℎ, 0], 𝐸

𝑛) → 𝐸𝑛×𝑚  satisfy linear 

growth and local Lipschitz conditions.  See (Liao and Mao (2000), Kolmanovskii and 

Myshkis (1992), and Kolmanovskii  and Nosov (1986)) for similar studies on stochastic 

systems.  

2.3.4. Relationship between retarded and neutral functional differential systems 

The analysis of different types of stability for linear systems of neutral functional differential 

equations is not as simple as that for retarded functional differential equations. Indeed, many 

surprising results occur even for autonomous systems (Hale and Verduyn Lunel 1993). It has 

been shown, in most cases, that stability of retarded systems would imply uniform stability 

for neutral systems. Again, one can have a result on asymptotic stability of a neutral system 
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and not have uniform asymptotic stability in the same system’s analysis.  This happens 

because uniform asymptotic stability of neutral systems is equivalent to exponential 

asymptotic stability. Hence, if the difference differential operator for a neutral system is 

stable, then the same relationship between the concepts of stability for linear autonomous 

equations for retarded functional differential equations can be obtained for neutral systems. 

That is, the difference differential operator plays a major role in neutral systems as in the case 

of the differential operator for retarded systems. It is important to know these relationships as 

a guide to deducing results that may appear from nonlinear neutral systems. 

2.3.5. Stability analysis of neutral functional differential systems 

The stability analyses of retarded functional differential systems have been extended to 

neutral functional differential systems; see for example (Hale and Cruz 1969, Hu and Hu 

1996, Hu et al. 2004, Li et al. 2007 and Yu 2013). This thesis will focus on the use of the 

Razumikhin technique because, for some neutral systems, it is difficult to construct the 

Lyapunov functional and the latter may require the analogue of the Razumikhin type 

technique. Classical results on neutral systems have been reported using the Razumikhin 

technique.  For example, Haddock et al. (1994) generalized the results of Cruz and Hale 

(1970) on Lyapunov-Razumikhin asymptotic stability theorems to develop an invariance 

principle of Lyapunov-Razumikhin type for the equation 𝑑 𝑑𝑡⁄ (𝐷𝑥𝑡) = 𝑓(𝑥𝑡) , where, 

𝑓: 𝐶([−ℎ, 0], 𝐸) → 𝐸𝑛  is completely continuous and 𝐷: 𝐶([−ℎ, 0],𝐸𝑛) → 𝐸𝑛  is linear, 

continuous and atomic at zero in the sense used by Hale (1977: 50). This method has 

provided an effective tool for the study of asymptotic stability of neutral functional 

differential equations.  Liu (2005), using some model transformation, the Lyapunov equation 

and decomposition technique, proposed delay-dependent criteria expressed in terms of 

Razumikhin-type theorem to derive a delay-dependent stability criteria for the neutral system 
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�̇�(𝑡) − 𝐴0�̇�(𝑡 − ℎ) = (𝐴1 + ∆𝐴)𝑥(𝑡) + (𝐵 + ∆𝐵)𝑥(𝑡 − ℎ),                                         (2.6) 

where 𝐴0, 𝐴1, 𝐵  are unknown constant matrices, and ∆𝐴, ∆𝐵  are linear parametric 

uncertainties with given bounds. This method allows for model transformation and 

decomposition techniques that would guarantee an allowable bound on the time delay which 

could allow neutral systems to be tolerated if the time delays are less than the obtained 

constant delay bounds. For neutral stochastic functional differential equations, Mao et al. 

(1998) employed the Razumikhin technique to study the 𝑝𝑡ℎ  moment exponential stability 

for a neutral stochastic system of the form 

𝑑[𝑥(𝑡) − 𝑔1(𝑥𝑡)] = 𝑓(𝑡, 𝑥𝑡)𝑑𝑡 + 𝑔2(𝑡, 𝑥𝑡)𝑑𝑤(𝑡),                                                          (2.7) 

where 𝑔1: 𝐶([−ℎ, 0], 𝐸
𝑛) → 𝐸𝑛 , 𝑔2: 𝐸+ × 𝐶([−ℎ, 0], 𝐸

𝑛) → 𝐸𝑛×𝑚 , and 𝑓: 𝐸+ ×

𝐶([−ℎ, 0], 𝐸𝑛) → 𝐸𝑛  are all continuous functionals, deriving results for almost sure 

exponential stability from the 𝑝𝑡ℎ  moment exponential stability. By generalizing the 

Lyapunov-Razumikhin techniques, Lopes (1975) studied the existence of periodic solutions 

of a certain neutral functional differential system, where he gave sufficient conditions for 

uniform ultimate boundedness and proved the same for his neutral system given by 

𝑑

𝑑𝑡
[𝑥(𝑡) − 𝑞𝑥(𝑡 − ℎ)] = 𝑔(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)).                                                              (2.8) 

Here, |𝑞| < 1  and 𝑔:𝐸 × 𝐶([−ℎ, 0], 𝐸𝑛) → 𝐸𝑛  is a continuous function. Some successful 

efforts have also been made by researchers through the use of the comparison method to 

investigate the stability of neutral systems. For example, Ionescu and Stefan (2009) have 

investigated the stability of a class of neutral systems given by  

𝑑

𝑑𝑡
[𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)] = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ),                                                      (2.9) 
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where 𝐴0, 𝐴1 and 𝐴2 are matrices of appropriate dimension using the comparison method to 

obtain two comparison systems whose robust stability gives a simple delay-dependent 

stability condition for the neutral system. These conditions guaranteed an a-priori upper 

bound for the degree of conservatism induced by the comparison method.  

2.3.6. Stability analysis of neutral systems with infinite delays 

Unlike applications of Lyapunov–Razumikhin technique to neutral functional differential 

equations with finite delays, the transition from finite to infinite neutral functional differential 

equations has received little attention as it brings difficulties in the use of the technique and 

would require a new result (Haddock et al. 1994) which may involve: 

 Comparison theorems using differential inequalities discussed in Section 2.3.2; 

 Conditions for pre-compactness of positive orbits; 

 Construction of various space phases and  

 The natural relationship between the difference differential operator for the neutral 

system and differential operator for retarded system discussed in Section 2.3.4. 

Having reviewed the research evolution it is now possible to use the natural relationship 

between neutral system and retarded systems to state the strategy adopted in investigating the 

total stability properties for NFDSID in this work. The main idea is to extend some basic 

stability results on Lyapunov-Razumikhin technique obtained by Murakami (1984) for the 

case of retarded functional differential systems to the case of NFDSID. This will be achieved 

by first applying a uniform stability property of the difference differential operator in the 

sense of Cruz and Hale (1970) to obtain new results for total stability. By decomposing a 

given neutral system with infinite delays into a sum of an equation with finite delays and its 

remainders, new perturbation result for the system with finite delays is first obtained using 

the Lyapunov-Razumikhin technique. The stability result of the original neutral system with 
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infinite delays is then analysed using the perturbation result of the system with finite delays. 

The comparison method will not be used in this thesis because the application in view will 

greatly depend on the stability of the actual system and not a comparative one. 

2.4. Controllability methods in retarded functional differential systems 

 Controllability plays an important role in control of systems. It represents a major concept in 

modern control theory and its application. In this work, controllability is concerned with the 

possibility of steering the neutral control system with infinite delay from an arbitrary initial 

state to an arbitrary final state using set of admissible controls (see Klamka 2007). There are 

alternative definitions of controllability in the literature which depend on the kind of 

dynamical linear and nonlinear delay control systems (Klamka 2007). The investigation into 

controllability of linear and nonlinear delay control systems plays a central role, faces some 

fascinating challenges and approaches in real life application with some independent results 

obtained. Heemels and Camlibel (2007) extended classical results obtained from 

unconstrained and input-constrained linear systems by Kalman and co-workers in the 1960’s 

(see Kalman et al. 1963). They established necessary and sufficient conditions for the 

controllability of a continuous-time linear system with input and state constraints of the form  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),
𝑦(𝑡) = 𝐴1𝑥(𝑡) + 𝐵1𝑢(𝑡),

}                                                                                                      (2.10) 

where all the matrices 𝐴,  𝐴1 𝐵,  𝐵1are of appropriate dimensions by imposing the condition 

of right-invertibility on its transfer matrix. That is, fully characterizing controllability for the 

class of right-invertible linear systems having either state and input constraint or a 

combination of them in terms of algebraic conditions.  Klamka (2007) studied controllability 

problems for finite-dimensional control systems described by linear stochastic ordinary 

differential state equations with a constant delay in the control 
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𝑑𝑥(𝑡) = (𝐴𝑥(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2𝑢(𝑡 − ℎ))𝑑𝑡 + 𝐴1𝑑𝑤(𝑡),                                                (2.11)  

 by formulating and proving necessary and sufficient conditions for stochastic relative exact 

controllability in a prescribed time interval using techniques from deterministic 

controllability problems. Here  𝐴, 𝐴1  are 𝑛 × 𝑛  dimensional constant matrices, 𝐵1  and 𝐵2 

are  𝑛 × 𝑚 dimensional constant matrices. It was shown that relative controllability of a 

deterministic linear associated dynamical system is equivalent to stochastic relative exact 

controllability and stochastic relative approximate controllability of the original linear 

stochastic dynamical system (2.11).  Sikora (2003) has proved theorems concerning relative 

and approximate relative controllability with constrained controls for linear dynamical 

systems with multiple constant delays in the state of the form 

�̇�(𝑡) = ∑𝐴𝑘𝑥(𝑡 − ℎ𝑘) + 𝐵𝑢(𝑡)

𝑀

𝑘=0

,   𝑡 ≥ 0,                                                                       (2.12) 

where 𝐴𝑘 , 𝑘 = 0, 1,⋯ ,𝑀 are 𝑛 × 𝑛 dimensional matrices with real elements, 𝐵 is an 𝑛 × 𝑚 

dimensional matrix with real elements, 0 = ℎ0 < ℎ𝑘 <  ℎ𝑚 , by exploiting the notions of 

supporting function for attainable sets and the general permutation matrix. Dacka (1982) 

extended the methods used in studying controllability of nonlinear systems described by 

ordinary differential equations with implicit derivative to study systems of equations with 

delays in control given by the equation  

�̇�(𝑡) = 𝐴(𝑡, 𝑥(𝑡))𝑥(𝑡) + 𝐵(𝑡, 𝑥(𝑡))𝑢(𝑡) + 𝐵1(𝑡, 𝑥(𝑡))𝑢(𝑤(𝑡)) − 𝑓(𝑡, 𝑥(𝑡), �̇�(𝑡))  (2.13) 

where 𝐴 is an 𝑛 × 𝑛 matrix, 𝐵, 𝐵1 are 𝑛 × 𝑚 matrices, 𝑓 is an 𝑛 × 1 vector and the function 

𝑤 is an absolutely continuous and strictly increasing on [𝜎, 𝑡1],  𝑡1 ≥ 𝑡, by using measure of 

non-compactness of a set and the Darbo’s fixed-point theorem.  Sinha and Yokomoto (1980) 
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have derived criterion for controllability of a nonlinear system with variable time delay of the 

form �̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝑓 (𝑡, 𝑥(𝑡 − ℎ(𝑡)), 𝑢(𝑡)) , where 𝐴(𝑡)  is an 𝑛 × 𝑛  matrix with 

continuous elements, −ℎ(𝑡) ≤ 𝑡 ≤ 0 , and 𝑓(∙)  is a continuous function, by comparing a 

nonlinear system with and without delay, and in so doing examined the controllability of their 

systems. The comparison principle introduced in Section 2.3.2 can be applied to many 

physical systems. However, for controllability of nonlinear systems the attempt by Sinha and 

Yokomoto (1980) to determine sufficient conditions on a nonlinear function that would 

guarantee the domain of null controllability of the system to be the whole space was the first 

in the literature known to the author. A grasp of controllability of different retarded systems 

in this section is necessary to understand the controllability of neutral systems which is the 

focus of this research. 

2.4.1. Controllability methods in neutral functional differential systems 

The investigations on controllability of retarded functional differential systems have been 

extended to the controllability of linear and nonlinear neutral functional differential systems. 

See for example (Gahl 1978, Onwuatu 1984, Khartovskii 2012, Sakthivel et al. 2012, and 

Metel’skii and Minyuk 2007). Most corresponding controllability results from retarded 

systems were obtained by using the properties and the concepts of the difference differential 

operator for the neutral system involved. This concept is also explored in new technologies 

such as repetitive controls and will form part of the research technique in the development of 

null controllability results for the system to be investigated.  Liu et al. (2007) have 

demonstrated the use of neutral functional differential systems in repetitive control by 

inserting artificial neutral delay into a control loop in order to boost the periodic signal 

control performance of the system.  In the study of hyperbolic equations (Hale 1977: 7) has 

noted that sometimes the boundary control of linear hyperbolic equations can be more 

effectively studied by looking at the corresponding control problem for neutral functional 
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differential systems. A key difference between analysing nonlinear neutral control systems 

and nonlinear retarded control systems is that it is possible to reverse the time orientation for 

a large class of neutral control systems (Underwood and Chukwu 1988).  

For linear autonomous systems of neutral type, Metel’skii and Minyuk (2008) have 

investigated the almost complete controllability of such systems of the form 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐴0�̇�(𝑡 − ℎ) + 𝐵𝑢(𝑡),   𝑡 > 0,                                         (2.14) 

where  𝐴, 𝐴2, 𝐴0 are 𝑛 × 𝑛 constant matrices and 𝐵 is a constant 𝑛 × 𝑚 matrix, by showing 

that a spectral condition for the systems is necessary and sufficient for almost complete 

controllability of their systems.  Khartovskii (2012) has obtained a criterion for the complete 

controllability of systems given by the equation 

�̇�(𝑡) −∑𝐴0𝑘�̇�(𝑡 − 𝑘ℎ)

𝑁

𝑘=1

=∑𝐴𝑘𝑥(𝑡 − 𝑘ℎ)

𝑁

𝑘=0

+∑𝐵𝑘𝑢(𝑡 − 𝑘ℎ)

𝑁

𝑘

,   𝑡 ≥ 0,                 (2.15) 

that involves solving boundary-value problems for ordinary linear differential equations with 

constant coefficients and calculating integrals of quasi-polynomial functions. Here 𝐴0𝑘 , 𝐴𝑘 

and 𝐵𝑘  are constant matrices of an appropriate dimension. Recently Khartovskii and 

Pavlovskaya (2013) proposed a control method for such systems of the form (2.15) having 

commensurate delays in both state and control in cases where the complete controllability 

conditions are violated. That is, controlling such systems with an incomplete rank by using 

the existence of a full rank system for which the constructive identifiability problem is dual to 

the controllability problem for the incomplete rank system. 

For nonlinear neutral systems, Gahl (1978) in his investigation of the controllability for 

nonlinear perturbation on a bounded interval for autonomous linear delay system of neutral 

type given by 
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�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐴2𝑥(𝑡 − 1) + 𝐴0�̇�(𝑡 − 1) + 𝐵𝑢(𝑡) + 𝐵1𝑢(𝑡 − ℎ)

+ 𝑓(𝑡, 𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡)),                                                                                 (2.16) 

have shown that if the linear delay neutral system is completely controllable then the 

perturbed system is completely controllable provided it satisfies certain growth and 

continuity conditions. Here, 𝐴, 𝐴2, 𝐴0  are constant matrices with appropriate dimensions 

and 𝑓 is a continuous function of 𝑡 which satisfies certain growth and continuity conditions.   

Onwuatu (1984) established sufficient conditions for the null controllability in a function 

space of linear and nonlinear neutral systems using a similar approach to that  Gahl  (1978). 

2.4.2. Controllability methods in retarded and neutral integro-differential systems 

The controllability of integro-differential systems has emerged in recent years with many 

researchers using the fixed point and other approaches to investigate such systems. 

Sivasundaram and Uvah (2008) gave sufficient conditions for the controllability of impulsive 

hybrid integro-differential systems in a finite interval given by the equation 

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∫𝐻(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠

𝑡

0

+ 𝐵(𝑡)𝑢(𝑡)                                                               (2.17) 

where 𝐴(𝑡), 𝐻(𝑡) ∈ ℒ[𝐸+, 𝐸𝑛
2
]  and 𝐵(𝑡) ∈ ℒ[𝐸+, 𝐸𝑛𝑚]. By using the Schaefer fixed point 

theorem and controls whose initial and final values can be assigned in advance so that the set 

of points attainable by the trajectory of the control process make the whole state space. 

Klamka (1999) has studied the relative controllability of semi-linear integro differential 

systems having infinite delays with both a linear and nonlinear part and with multiple lumped 

time varying delays in the control and state variables of the form 
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�̇�(𝑡) = 𝐿(𝑡, 𝑥𝑡) + ∫ 𝐴(𝑠)𝑥(𝑡 + 𝑠)𝑑𝑠
0

−∞

+∑𝐵𝑘(𝑡)𝑢(𝑤𝑘(𝑡))

𝑁

𝑘=0

+ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑤0(𝑡)), 𝑢(𝑤1(𝑡)),⋯ , 𝑢(𝑤𝑘(𝑡)),⋯ , 𝑢(𝑤𝑁(𝑡)) ),           (2.18) 

where the operator 𝐿, which is continuous in its first argument and linear in the other, is 

appropriately defined, 𝐴(𝑠)  is an 𝑛 × 𝑛  matrix whose elements are square integrable on 

(−∞, 0], 𝐵𝑘(𝑡) are 𝑛 × 𝑚 matrices which are continuous in 𝑡, 𝑓 is an 𝑛-dimensional vector 

function which is continuous in all its arguments and 𝑤𝑘(𝑡)  are twice continuously 

differentiable and strictly increasing functions on [𝜎, 𝑡1],  𝑡1 ≥ 𝑡. His results were obtained 

using Schauder’s fixed point theorem and information from the stability and relative 

controllability of the linear part. 

For the study of neutral integro-differential systems, Balachandran et al. (1997) have 

developed sufficient condition for asymptotic null controllability in their investigation for the 

null controllability of nonlinear neutral Volterra integro-differential systems given by the 

equation 

𝑑

𝑑𝑡
[𝑥(𝑡) − ∫ 𝐻(𝑡 − 𝑠)𝑥(𝑠)𝑑𝑠 − 𝑔(𝑡)

𝑡

0

]

= 𝐴𝑥(𝑡) + ∫ 𝐿(𝑡 − 𝑠)𝑥(𝑠)𝑑𝑠
𝑡

0

+ 𝐵(𝑡)𝑢(𝑡) + 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))           (2.19) 

where 𝐻(𝑡), 𝐿(𝑡) are continuous 𝑛 × 𝑛 matrix valued functions, 𝐵(𝑡) is a continuous 𝑛 × 𝑚 

matrix valued function, 𝐴 is a constant 𝑛 × 𝑛 matrix,  𝑓: 𝐸+ × 𝐸
𝑛 × 𝐸𝑚 → 𝐸𝑛  and 𝑔: 𝐸+ →

𝐸𝑛 are respectively continuous and absolutely continuous vector functions. The results were 

obtained by using the Leray-Schauder fixed point theorem. For other results on the 

controllability of neutral integro-differential system see (Balachandran and Balasubramaniam 

1994, Balachandran and Anandhi 2003, and  Korobov et al. 2001).  
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2.4.3. Controllability methods in neutral integro-differential systems with infinite 

delays 

This research development is connected with the general theory of neutral functional 

differential equations. An understanding of the stability and control evolution of these 

systems is therefore necessary for the advancement of these results.   

Balachandran and Dauer (1996) have studied the null controllability of nonlinear infinite 

delay systems with time varying multiple delays in control where they developed sufficient 

conditions for the null controllability of such systems described by the equation 

�̇�(𝑡) = 𝐿(𝑡, 𝑥𝑡) + ∫ 𝐴(𝑠)𝑥(𝑡 + 𝑠)𝑑𝑠
0

−∞

+∑𝐵𝑘(𝑡)𝑢(ℎ𝑘(𝑡))

𝑁

𝑘=0

+ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)),    (2.20) 

where the operator 𝐿 is appropriately defined and is continuous in its first argument, and 

linear in the other, 𝐴(𝑠) is an 𝑛 × 𝑛 matrix whose elements are square integrable on (−∞, 0], 

𝐵𝑘(𝑡) are 𝑛 × 𝑚 matrices which are continuous in 𝑡, 𝑓 satisfy some growth and continuity 

conditions and ℎ𝑘(𝑡) are twice continuously differentiable and strictly increasing functions 

on [𝜎, 𝑡1],  𝑡1 ≥ 𝑡 . The main idea used was to show that, if the uncontrolled system is 

uniformly asymptotically stable, and the linear system is controllable, then the nonlinear 

infinite delay system is null controllable. Davies (2006) has investigated the Euclidean null 

controllability of infinite neutral differential system of the form 

�̇�(𝑡) − 𝐴0�̇�(𝑡 − 1)

= 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − 1) +∫ 𝐴(𝑠)𝑥(𝑡 + 𝑠)𝑑𝑠
0

−∞

+ 𝐵𝑢(𝑡)

+ 𝐵1𝑢(𝑡 − ℎ),                                                                                                 (2.21) 

establishing computable criteria for such systems by exploiting the stability of the free system 

and rank criterion for properness (that is being controllable). Here , 𝐴0, 𝐴1, 𝐴2 are 𝑛 × 𝑛 
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matrices, 𝐵, 𝐵1  are 𝑛 ×𝑚  matrices, 𝐴(𝑠)  is an 𝑛 × 𝑛  matrix whose elements are square 

integrable on (−∞, 0], and 𝑓 is a continuous function which satisfies some growth condition. 

Onwuatu (1993) derived conditions for controllability of perturbed nonlinear systems with 

infinite delays in his study of null controllability for such neutral systems given by 

𝑑

𝑑𝑡
𝐷(𝑡, 𝑥𝑡) = 𝐿(𝑡, 𝑥𝑡) + 𝐵(𝑡)𝑢(𝑡) + ∫ 𝐴(𝑠)𝑥(𝑡 + 𝑠)𝑑𝑠

0

−∞

+ 𝑓(𝑡, 𝑥𝑡, 𝑢(𝑡)),                 (2.22) 

where 𝐵  is a 𝑛 × 𝑚  matrix function, 𝐴(𝑠)  is an 𝑛 × 𝑛  matrix whose elements are square 

integrable on (−∞, 0] ,  𝐿, 𝐷,  and 𝑓  satisfy the smoothness conditions (Onwuatu 1993) 

imposed on them. His conditions were obtained by the study of the stability of the free linear 

base system and the controllability of the linear controllable base system, with an assumption 

that the perturbation function satisfies some smoothness and growth conditions.  Dauer et al. 

(1998) extended on investigation of Onwuatu (1993) to establish sufficient conditions for null 

controllability of nonlinear neutral systems having both distributed and time-varying delays 

in control.  By showing that, if the linear control system is proper and the free system without 

controls is uniformly asymptotically stable, then the systems are null controllable provided 

the perturbation function satisfies some growth conditions. Their results were established by 

using the Schauder fixed point theorem. Recently, Sun et al. (2013) developed sufficient 

conditions for controllability of a fractional neutral stochastic integro-differential system with 

infinite delays of the form  

′𝐷𝜏

𝑑𝑡
[𝑥(𝑡) + 𝑔(𝑡, 𝑥𝑡)] = −𝐾𝑥(𝑡) + ∫ 𝐿(𝑡, 𝑠, 𝑥𝑠)𝑑𝑤(𝑠)

𝑡

0

+ 𝐵𝑢(𝑡)                                  (2.23) 

where ′𝐷𝜏 is the fractional order derivative, 𝜏 = (1 2⁄ , 1], 𝐾  is an infinitesimal generator of 

an analytic semigroup of a bounded linear operator, 𝑔 and 𝐿 are appropriate mappings as 

specified in Sun et al. (2013), by using fractional calculus and Sadovskii’s fixed point 
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principle. Bouzahir (2006) has proved a theorem on local existence and uniqueness of 

integral solutions for a class of partial neutral functional differential equations with infinite 

delays of the form 

𝜕

𝜕𝑡
𝐷𝑥𝑡 = 𝐾𝐷𝑥𝑡 + 𝐵𝑢(𝑡) + 𝑓(𝑡, 𝑥𝑡),   𝑡 ≥ 0,                                                                       (2.24) 

based on integrated semi-group theory and the Banach fixed point theorem. Here 𝐾 is a linear 

operator in ℬ, 𝐵 is bounded linear operator from the space of admissible control functions 

into ℬ, 𝐷 is a bounded linear operator from the phase space of function into ℬ and 𝑓 is a ℬ -

valued nonlinear continuous mapping on 𝐸+ × ℬ. 

From the foregoing, very little is known about the complete and null controllability of neutral 

integro-differential systems with infinite delays. This thesis aims to advance the results on 

null controllability through complete controllability for these systems by exploring the 

methods in the research evolution of  Davies (2006), Dauer et al. (1998), Balachandran and 

Dauer (1996), Khartovskii and Pavlovskaya (2013), Khartovskii (2012), and Metel’skii and 

Minyuk (2007) as a key issue for settling the optimal control problems for such systems in 

this thesis. 

2.5. Optimal control of neutral functional differential systems 

Optimal control theory is concerned with the determination of the best control signal that will 

cause the system of interest to satisfy some constraints, and at the same time minimise (or 

maximise) some performance criteria (see Kirk 1970: 3). Time optimal control of neutral 

functional differential equations is a subset of optimal control targeting systems such as 

transmission lines. See Section 2.6.1. Linear controllers of neutral systems are in most cases 

achieved by defining quadratic performance indices, see (Kent 1971).  A justification for 

linear optimal control according to Anderson and Moore (1990) is that, many engineering 
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plants, prior to the addition of a controller to them, are linear. A linear controller is simple to 

implement physically, and will frequently suffice.  

2.5.1. Advantages for optimal control of neutral functional differential systems 

The following are some advantages of finding a linear optimal control for neutral functional 

differential systems:  

 Solutions for the linear forms of systems are easier to compute. Linear optimal control 

results may be applied to their nonlinear counterpart by replacing the nonlinear 

problem by a sequence of linear problems (Lewis 1986). 

 Robustness properties, according to Anderson and Moore (1990), suggest that 

controller designs for nonlinear systems may sometimes be achieved by designing 

with assumption that the system is linear (even though it may not be a good 

approximation). By relying on this fact then, an optimally designed linear neutral 

system can tolerate nonlinearities without impairment of all its desirable properties. 

Linear optimal control of neutral systems can then provide a framework for a unified 

treatment of the classical control problems and extends the classes of neutral systems 

for which control designs may be achieved. 

2.5.2. Approaches in optimal control for neutral functional differential systems 

There is a significant amount of research available on optimal control of neutral functional 

differential equation with different approaches; most are concerned with finding optimal 

control of these systems through the definition of a quadratic or other cost function (see Kent 

1971, Banks and Kent 1972, Park and Kang 2001, and Chukwu 2001) and on the time 

optimal control method (see Chukwu  1988; 2001, Connor 1974, and Kent 1971). 
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2.5.3. Cost function method for optimal control of neutral functional differential 

systems 

Banks and Kent (1972) have demonstrated the use of a quadratic cost function in finding an 

optimal control by investigating the optimal control of systems governed by functional 

differential equations of retarded and neutral type given by the equations 

                           �̇�(𝑡) = 𝐴1(𝑡)𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + 𝑔(𝑢(𝑡), 𝑡),

�̇�(𝑡) − 𝐴0(𝑡)�̇�(𝑡 − ℎ) = 𝐴1(𝑡)𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + 𝑔(𝑢(𝑡), 𝑡),
}                       (2.25) 

where 𝐴0, 𝐴1 and 𝐴2 are matrices of appropriate dimension and the function 𝑔:𝐸𝑚 × 𝐸1 →

𝐸𝑛 is continuous. Here, necessary conditions for optimality of problems concerned with a 

wide class of nonlinear neutral systems were obtained by using the approach introduced by 

Neustadt (1969). These conditions were applicable to problems with general restraints on the 

controls. The procedure applied was to split the end condition into two conflicting inequality 

constraints and use the methods of Neustadt (1969) to prove that the maximum principle is a 

necessary and, in the case of normality and convexity, also a sufficient optimal condition. 

Park and Kang (2001) derived conditions for the optimal control problem of a linear neutral 

differential equation with time varying delays of the form 

𝑑

𝑑𝑡
[𝑥(𝑡) −∑𝐴−1𝑘𝑥(𝑡 − ℎ𝑘)

𝑁

𝑘=1

] = 𝐾𝑥(𝑡) +∑𝐴𝑘𝑥(𝑡 − ℎ𝑘)

𝑁

𝑘=1

+ 𝐵(𝑡)𝑢(𝑡),             (2.26) 

by defining a quadratic cost function and dealing with properties of the fundamental solutions 

and its adjoint state equations. Here, 𝐴−1𝑘  and 𝐴𝑘  are well defined operators in 𝑊2
(0)

, 𝐾 is 

defined as a closed linear operator which the infinitesimal generator of a semigroup on 𝑊2
(0)

, 

𝐵 ∈ 𝐿∞(𝐽,𝑊2
(0) ) , and 0 < ℎ1 < ℎ𝑘 < ℎ𝑁 . Chukwu (2001) studied an optimal control 

problem for a linear neutral control system of the form (2.26) in 𝐸𝑛, where he derived and 

proved conditions for the existence of an optimal control by defining an integral cost function 
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and using the properties of a fundamental matrix solution of the system. Here, 𝐴−1𝑘 and 𝐴𝑘 

are well defined matrices in 𝐸𝑛 , 𝐵 ∈ 𝐿∞(𝐽, 𝐸
𝑛𝑚 ), and 0 < ℎ1 < ℎ𝑘 < ℎ𝑁 . In economics, 

Boucekkine et al. (2012) have used two optimization methods to solve an optimal control 

problem for a linear neutral differential system arising in economics. The first one used was a 

variational method, while the second followed a dynamical programming approach through 

the reformulation of the latter as an ordinary differential equation in their appropriate state 

spaces. It was shown that the resulting Hamilton–Jacobi–Bellman (HJB) equation admitted a 

closed-form solution, and allowed for a finer characterization of the optimal dynamics when 

compared to the alternative vibrational method.  

2.5.4. Time-optimal control method for neutral functional differential systems 

The time-optimal control problem for neutral systems was implicitly touched upon by Kent 

(1971) as a consequence of a result on minimising a general cost function for nonlinear 

systems. In this investigation, he formulated a necessary condition for the time optimal 

control in the form of a maximum principle with no explicit general control law given. 

However, the first general rigorous solution of time optimal control for a linear system 

according to Chukwu (1988) was given by Bellman et al. (1956). Their approach, in terms of 

convex sets, has been the foundation for almost all subsequent investigation and included a 

proof of the existence of time optimal control which satisfies a maximum principle and a 

bang-bang principle. 

This research has been extended to neutral systems, for example Connor (1974) has studied 

time optimal control of neutral systems of the form (2.14) in 𝐸𝑛 , where  𝐴, 𝐴2, 𝐴0  are 

continuous  𝑛 × 𝑛  matrices and 𝐵 is a continuous 𝑛 × 𝑚 matrix by deriving a maximum 

principle for the time optimal problem for a linear neutral system having an integral 

constraint in the control. His results can be considered as an extension to those given by 
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Neustadt (1961) for ordinary differential systems. Chukwu (1988) has studied time optimal 

control problem for systems described by linear neutral systems given by 

𝑑

𝑑𝑡
𝐷(𝑡, 𝑥𝑡) = 𝐿(𝑡, 𝑥𝑡) + 𝐵(𝑡)𝑢(𝑡),   𝑡 ≥ 0                                                                           (2.27) 

where 𝐵 is 𝑛 × 𝑚 matrix function, 𝐿 and 𝐷 satisfy the smoothness conditions (Chukwu 1988) 

imposed on them. Here, he formulated a controllability condition for the systems, and 

developed criteria for the existence, form, uniqueness and general properties of the optimal 

control in function and Euclidean spaces. 

Motivated by the works of Chukwu (1988; 2001), Neustadt (1961), Connor (1974), Banks 

and Kent (1972), this thesis will advance this investigation by considering the problem of 

reaching a continuously moving target in minimum time by a trajectory of the control system 

described by NFDSID.  

2.6. Applications of neutral functional differential systems 

Neutral functional differential systems have applications in many fields. Before the 1960s, 

the stability of electric power systems was seldom threatened because of very conservative 

system designs which were based on fairly constant predictable load growth (Chukwu 2001). 

Environmental concerns, economic realities and other factors have now changed the 

situation, and led to the development of a new generation of equipment that is prone to cause 

network voltage collapse and acute instability (Chukwu 2001). Those responsible with power 

systems planning and operations in the real world have become increasingly concerned with 

the issue of stability for electric power systems.  As the regions of stability for the equation of 

motion for such systems are now better understood, it is predicted that time-optimal control 

of voltage and current fluctuations of systems will receive greater importance and more 

research attention. The natural models for these voltage and current fluctuation of problems 



 

41 
 

arising from transmission lines takes the form of a neutral functional differential equation 

(see Slemrod 1971, Wu and Xia 1996; 1999, Angelov 2013, Chukwu 2001, and Salamon 

1983).  

It is also well known that the natural resources of this planet are not evenly distributed 

(Vemuri 1978) and behaviour of systems in the world is not always exemplary. For example, 

biological populations consume resources available to them unevenly and are subject to 

diseases, decay, and environmental pollution. The main aim for mathematical modelling of 

biological population is to better understand the functioning of their food chains, webs and 

the limits of robustness with respect to their dependence on internal and external conditions. 

However, most population models used to describe real concepts of contemporary ecological 

systems  as observed in Vemuri (1978) are unrealistically simple, and may not effectively 

account for some intrinsic population cycle because of the randomness in natural phenomena. 

While the early mathematical model for population cycles was developed as a simple bilinear 

model (Morozov and Petrovskii 2009), later studies have shown that some important details 

of their system dynamics are not represented in the model and that even the smallest detail 

could have a crucial effect on a population cycle. Appropriate models that can effectively 

analyse, design, control and predict biological population dynamics has been a challenge for 

several decades now.  

This thesis is aimed at developing such a model in the form of NFDSID through a cascade 

connection of two mixers with controlled chemical solutions in Chapter 3 and will form the 

basis of stability and controllability investigations in Chapters 4 and 5 respectively. In 

addition, this thesis aims to apply the theoretical result to distributed networks containing 

lossless transmission lines by first modelling them into NFDSID and then carry out 

simulation studies presented in Chapter 7. 
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2.7. Concluding remarks 

In this chapter relevant background literature to be used in developing the required theorems, 

algebraic methods and applications in this thesis has been provided. The classifications of 

delay equations and their importance in real life applications were discussed.  Literatures 

about the neutral integro-differential equation with infinite delays, which has been identified 

as the subject for investigation in this thesis, were explicitly presented.  The Razumikhin’s 

method has been identified from literature as the most appropriate method for stability and 

stabilisation of the systems for this investigation and will be exploited in Chapter 3 and other 

chapters.  

The control procedures have been reported and the approaches to controllability and null 

controllability of neutral systems have been presented. Furthermore, optimal control methods 

for neutral systems and their advantages have been introduced. Time optimal control and cost 

function methods known from literature as useful tools for analytic design and applications 

have been presented.  

The potential application areas have been identified as transmission lines and cascade of 

controlled chemical solutions, they will be comprehensive analysed in Chapter 3, and chapter 

7 respectively.  
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Chapter 3 

Potential application areas 

3.1. Introduction 

In this chapter relevant practical applications of neutral systems are reviewed leading to the 

selection of appropriate models to demonstrate the applicability of model proposed in this 

work and for a successful application of the theoretical background in Chapter 2. The 

procedure in this chapter is first to review some concepts on transmission lines. Literature on 

transmission line theories is then reviewed with a focus on the general solution for an ideal 

lossless transmission line representation derived in terms of voltage and current. Next, 

literature on how transmission of controlled chemical solution can support processes in the 

modelling of population control processes is reviewed, and a new mathematical model for a 

neutral control system is developed by using a cascade connection of two mixers with 

chemical solutions.  

3.2. Transmission lines modelling 

A transmission line can be said to be a system of conductors whose cross-section made at any 

distance along the line remains constant, and are capable of providing a direct link to the 

energy transfer between the generator and the load. There are several types of transmission 

lines. Some common examples are given below. 
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3.2.1. Example of transmission lines 

 Striplines and microstrips 

These have short lengths not exceeding some centimetres. They are mostly used 

inside devices like amplifiers or filters. See Figure 3.1 and Figure 3.2 respectively. 

  

 

 

 

 

 

 

 

Figure 3.1: Strip-line                            Figure 3.2: Micro-strip 

 Twisted pairs and coaxial cables 

These are commonly used for cabling of buildings, but coaxial cables are also used 

sometimes for inter-continental communications. See Figure 3.3 and Figure 3.4 

respectively. 

 

 

 

 

 

 

 

Figure 3.3: Two wire line     Figure 3.4: Coaxial cable 
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 Optical fibres 

These are made from dielectric materials (see Figure 3.5) and are used to transmit 

microwave power over moderate distances. 

 

 

 

 

 

 

 

Figure 3.5: Optical fibre 

This thesis will only consider structures consisting of two metal conductors, namely micro-

strips, strip-lines and coaxial cables. Parallel-wire line is used in most of the diagrams to 

represent the circuit connections for simplicity; however, the theory is the same for all types 

of transmission lines. 

In order to derive the relationship between neutral differential systems and transmission lines 

in Chapter 7, this chapter will derive the differential behaviour of distributed circuits in terms 

of their voltage-current relationships to transmission lines. 

3.2.2. Lossy transmission lines  

Literature on transmission line theory very often deals with analysis for the ideal case without 

losses. Not addressing the transmission line theory for the general lossy case may be due to the 

fact that transmission systems require losses to be kept as low as possible to minimise its 

effect in the process of signal propagation.  Losses refer to the amount of signal transmitted 

that does not reach the receiving end and they occur in different ways. They could be as a 
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result of impedance mismatch that leads to reflected energy, coupling of lossy transmission 

lines to adjacent traces, radiations, conduction and di-electric losses. Gago-Ribas and Carril-

Campa (2012) have argued that, though transmission systems require very low losses in signal 

propagation, an analysis of the general lossy case would reveal that both the ideal lossless and 

low-lossy regime could be better explained and justified as a special case of the general lossy 

case. They added further that, a general analysis should allow for the parameterization of the 

effect of losses in behaviour of the parameters which would determine the final solution to a 

transmission line problem with specific boundary conditions. They stated that, parameterising 

the effect of losses in the system parameters can predict the ultimate behaviour of the problem 

and detect physical phenomenon associated with losses that may be of great practical interest.  

Gago-Ribas and Carril-Campa (2012) and Gago-Ribas et al. (2006) have identified complexity 

involved in analysing equations describing lossy transmission line models as a difficulty 

associated with studying lossy transmission line theories. They however gave a methodology 

that could be used to understand and predict the physical behaviour of the lossy transmission 

line problem by means of graphical representation which could help to avoid the complexity in 

analysing equations describing the model. 

The difficulties involved in analysing the lossy transmission line model must become more 

complex when the interconnections are terminated with nonlinear loads, like diodes or 

transistors.  The nonlinear terminators, together with coupled lossy transmission lines, could 

lead to a rather complicated simulation problem (see Dhaene and De Zutter 1992). The 

performance of high–speed transmission lines is usually determined and limited by the ability 

to transmit undisturbed and undistorted signals with the desired speed. Dhaene and De Zutter 

(1992) have given convolving transmission line impulse responses and use of lumped 

element equivalent circuits as the two basic ways of handling transmission lines in a 

transient-response simulation. They further formulated methodology for selecting the 
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minimal number of lumped elements needed to represent a lossy transmission line for a 

desired accuracy in a well-defined frequency range. The transient analysis of lossy 

transmission lines with nonlinear effects connected with semi-conductors becomes more 

interesting when the device is changing its state and/or when it is excited by a large-

amplitude signal. Djordjevic et al. (1986) have investigated such nonlinear effects in multi-

conductor transmission line systems by using time stepping and convolution with the 

transmission line impulse response method. The method was achieved by finding equivalent 

parameters of a suitable terminal (quasi-matched) multi-conductors transmission lines, which 

reduces the amount of computation required to obtain the final solution, and then computing 

the Green’s functions.  

For keeping desired accuracy in lossy transmission lines, Angelov and Hristov (2011) 

developed and obtained an analytical solution for a neutral system of the forms 

𝑑𝑣0(𝑡)

𝑑𝑡
= −

𝑑𝑖0(𝑡 − 𝑇)

𝑑𝑡
+
R

L
𝑣0(𝑡) +

R

L
𝑖0(𝑡 − 𝑇)

+
(2𝑒(R 𝐿⁄ ) (𝑡−𝑇)⁄ √𝐿E0(𝑡 − 𝑇 ) − (𝑣0(𝑡) − 𝑖0(𝑡 − 𝑇))Z0)

L0

−
2𝑒(R L⁄ ) (𝑡−𝑇)⁄ √LR0

L0
(

𝑒−(R L⁄ ) (𝑡−𝑇)⁄

2√L(𝑣0(𝑡) + 𝑖0(𝑡))
)

−
2𝑒(R L⁄ ) (𝑡−𝑇)⁄ √𝐿C0

−1

L0
(∫

𝑒−(R L⁄ ) (𝑡−𝑇)⁄ (𝑣0(𝑡) + 𝑖0(𝑡 − 𝑇))

2√L

𝑡

𝑇

𝑑𝑡)     (3.1) 

and 
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𝑑𝑖0(𝑡)

𝑑𝑡
= −

𝑑𝑣0(𝑡 − 𝑇)

𝑑𝑡
+
R

L
𝑣0(𝑡 − 𝑇) +

R

L
𝑖0(𝑡) −

2𝑒(R L⁄ ) (𝑡−𝑇)⁄ √LE1(𝑡 − 𝑇 )

L1

+
(𝑣0(𝑡) − 𝑖0(𝑡 − 𝑇))Z0

L1

−
2𝑒(R L⁄ ) (𝑡−𝑇)⁄ √L

L1
R1
𝑒−(R L⁄ ) (𝑡−𝑇)⁄

2√L
(𝑣0(𝑡 − 𝑇) − 𝑖0(𝑡))

−
2𝑒−(R L⁄ ) (𝑡−𝑇)⁄ √LC0

−1

L1
(∫

𝑒−(R L⁄ ) (𝑡−𝑇)⁄ (𝑣0(𝑡 − 𝑇) + 𝑖0(𝑡))

2√L

𝑡

𝑇

𝑑𝑡) (3.2) 

  in terms of voltage and current respectively, where 𝑡 ∈ [0, 𝑇], L1, C1 are characteristics of 

the nonlinear load on the line, R, C, L are specific parameters of the line, L0 is voltage on the 

inductor, C0 is the voltage of the condenser, and Z0 is the impedance of the line. Their result 

was obtained by developing conditions for the existence and uniqueness of periodic regimes. 

These conditions are then proved by finding an operator whose fixed points form a periodic 

solution of the neutral system.  Angelov (2012) has formulated conditions for the existence-

uniqueness of oscillatory regimes in lossy transmission lines terminated by in-series 

connected nonlinear RCL-load. This was achieved by transforming the mixed problem of 

hyperbolic systems to an initial value problem for a nonlinear neutral system similar to that in 

(3.1)-(3.2), and then introducing an operator representation of the oscillatory problem whose 

fixed points form an oscillatory solution of the initial value problem stated.  

3.2.3. Lossless transmission lines  

A transmission line is considered to be lossless if the conductors of the line have zero series 

resistance and the dielectric medium between the lines has infinite resistance. The equation of 

a lossless transmission line can be obtained from a circuit diagram (Figure 3.6 below) having 

conductance L per unit length and capacitance C per unit length, assuming that there are no 

losses in the line. 
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Figure 3.6: A circuit representation of lossless transmission line 

The series inductance determines the variation of the voltage from input to output of the cell, 

and the current flowing through the shunt capacitance determine the variation of current from 

the input to output of the cell. The line equations can be represented by a system of first order 

partial differential equations (Telegrapher’s equation) of the form (Orta 2012): 

𝜕𝑣

𝜕𝜉
+ L

𝜕𝑖

𝜕𝑡
= 0  ,                                                                                               (3.3) 

𝜕𝑖

𝜕𝜉
+ C

𝜕𝑣

𝜕𝑡
= 0  .                                                                                              (3.4) 

Differentiating equation (3.3) and (3.4) in terms of 𝜉 and 𝑡 respectively, gives 

𝜕2𝑣

𝜕𝜉2
+ L(

𝜕

𝜕𝑡
) (
𝜕𝑖

𝜕𝜉
) = 0 ,

(
𝜕

𝜕𝑡
) (
𝜕𝑖

𝜕𝜉
) + C

𝜕2𝑣

𝜕𝑡2
= 0 .

}
 
 

 
 

                                                                         (3.5) 

Making necessary substitution in terms of 𝑖(𝜉, 𝑡), a single order equation for the voltage 

𝑣(𝜉, 𝑡) alone is obtained as 

𝑖(ξ + ∆ξ , 𝑡)  

V(ξ+ ∆ξ , 𝑡)  

V(ξ , t) 

𝑖(ξ , t) 

∆ξ 
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𝜕2𝑣

𝜕𝜉2
− LC

𝜕2𝑣

𝜕𝑡2
= 0                                                                                       (3.6) 

The general solution for the voltage equation can be obtained from the wave equation (3.6). 

To solve (3.6), differentiate (3.3) and (3.4) in terms of 𝑡 and 𝜉 respectively and make the 

necessary substitution to obtain the initial conditions for the wave equation representing the 

ideal transmission line to get 

𝑣(𝜉, 0) = 𝑣0(𝜉) ,    𝑖(𝜉, 0) = 𝑖0(𝜉)  .                                                (3.7) 

Using a change of variable method, the solution of (3.6) using the initial conditions (3.7) can 

be obtained as follows. Define 

  𝜗 = 𝜉 − 𝑣𝑝ℏ𝑡 ,         𝜌 = 𝜉 + 𝑣𝑝ℏ𝑡  ,  

so that, 

 𝜉 =
1

2
(𝜗 + 𝜌) ,      𝑡 =

1

2𝑣𝑝ℏ
(𝜌 − 𝜗) . 

Now writing the wave equation in terms of the new variables and making use of calculus 

(multivariable chain rule) gives,  

𝜕𝑣

𝜕𝜉
=
𝜕𝑣

𝜕𝜗

𝜕𝜗

𝜕𝜉
+
𝜕𝑣

𝜕𝜌

𝜕𝜌

𝜕𝜉
=
𝜕𝑣

𝜕𝜗
+
𝜕𝑣

𝜕𝜌
 ,

𝜕𝑣

𝜕𝑡
=
𝜕𝑣

𝜕𝜗

𝜕𝜗

𝜕𝑡
+
𝜕𝑣

𝜕𝜌

𝜕𝜌

𝜕𝑡
= −𝑣𝑝ℏ (

𝜕𝑣

𝜕𝜗
−
𝜕𝑣

𝜕𝜌
) ,
}
 

 

                                                                     (3.8) 

and 



 

51 
 

𝜕2𝑣

𝜕𝜉2
=
𝜕

𝜕𝜗
(
𝜕𝑣

𝜕𝜗
+
𝜕𝑣

𝜕𝜌
) +

𝜕

𝜕𝜌
(
𝜕𝑣

𝜕𝜗
+
𝜕𝑣

𝜕𝜌
)

=
𝜕2𝑣

𝜕𝜗2
+ 2

𝜕2𝑣

𝜕𝜗𝜕𝜌
+
𝜕2𝑣

𝜕𝜌2
 ,

𝜕2𝑣

𝜕𝑡2
= 𝑣𝑝ℏ [

𝜕

𝜕𝜌
(
𝜕𝑣

𝜕𝜌
−
𝜕𝑣

𝜕𝜗
) 𝑣𝑝ℏ −

𝜕

𝜕𝜗
(
𝜕𝑣

𝜕𝜌
+
𝜕𝑣

𝜕𝜗
) 𝑣𝑝ℏ]

= 𝑣𝑝ℏ (
𝜕2𝑣

𝜕𝜌2
− 2

𝜕2𝑣

𝜕𝜗𝜕𝜌
+
𝜕2𝑣

𝜕𝜗2
) .

}
 
 
 
 

 
 
 
 

                        (3.9) 

Using (3.9), the wave equation in the new variable takes the form 

𝜕2𝑣

𝜕𝜗𝜕𝜌
= 0 ,      

or 

 
𝜕

𝜕𝜌
(
𝜕𝑣

𝜕𝜗
) = 0  .                                                                                                (3.10) 

Let the solution of (3.10) be given by 𝜕𝑣 𝜕𝜗⁄ = 𝑔(𝜗), where 𝑔 is a constant with respect to 

𝜌. Integrating (3.10) therefore gives 

𝑣(𝜗, 𝜌) = ∫𝑔(𝜗)𝑑𝜗 + 𝑔2(𝜌),                                                                                                 (3.11)   

where 𝑔2 is an arbitrary function of 𝜌. Denoting the integral of the arbitrary function 𝑔(𝜗) as 

𝑔1(𝜗), the general solution of the wave equation can be written as  

𝑣(𝜗, 𝜌) = 𝑔1(𝜗)𝑑𝜗 + 𝑔2(𝜌),                                                                                                    (3.12) 

Now, returning to the original variables and replacing 𝑔1 and 𝑔2 by 𝑣+ and 𝑣− in order to 

derive the expression of the current, from (3.3) it is known from Orta (2012) that there exists 

a unique solution (D’ Alembert solution), which is the general solution of the transmission 

line equation of the form  
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𝑣(𝜉, 𝑡) = 𝑣+(𝜉 − 𝑣𝑝ℏ𝑡) + 𝑣
−(𝜉 + 𝑣𝑝ℏ𝑡),

𝑖(𝜉, 𝑡) = 𝑌∞𝑣
+(𝜉 − 𝑣𝑝ℏ𝑡) − 𝑌∞𝑣

−(𝜉 + 𝑣𝑝ℏ𝑡),
}                                     (3.13) 

where 𝑌∞ = √C L⁄  is the characteristic admittance of the line, and the symbols 𝑣+  is a 

constant with respect to 𝜌 , that is, an arbitrary 𝜗 and 𝑣− represents an arbitrary function of 𝜌.  

To derive the expression of the current, put (3.3) in the form 

𝑖(𝜉, t) = −
1

L
∫
𝜕𝑣(𝜉, 𝑡)

𝜕𝜉
 𝑑𝑡 .                                                                                                  (3.14) 

Obtain an expression for 𝜕𝑣 𝜕𝜉⁄  from (3.13) as 

𝜕𝑣

𝜕𝜉
= �̇�+(𝜉 − 𝑣𝑝ℏ𝑡) + �̇�

−(𝜉 + 𝑣𝑝ℏ𝑡), 

and substitute in (3.14) so that, 

𝑖(𝜉, t) = −
1

L
{∫ �̇�+(𝜉 − 𝑣𝑝ℏ𝑡)𝑑𝑡 + ∫ �̇�

−(𝜉 + 𝑣𝑝ℏ𝑡) 𝑑𝑡}

= −
1

L
{−

1

𝑣𝑝ℏ
∫ �̇�+(𝜗)𝑑𝜗 +

1

𝑣𝑝ℏ
∫�̇�−(𝜌) 𝑑𝜌}

= 𝑌∞{𝑣
+(𝜉 − 𝑣𝑝ℏ𝑡) − 𝑣

−(𝜉 + 𝑣𝑝ℏ𝑡)} 

The values of 𝑣+(𝜗) and 𝑣−(𝜌) can be obtained in such a way that the initial conditions are 

satisfied by writing equation (3.13) with 𝑡 = 0 to obtain 

𝑣0(𝜉) = 𝑣
+(𝜉) + 𝑣−(𝜉),

𝑖0(𝜉) = 𝑌∞𝑣
+(𝜉) − 𝑌∞𝑣

−(𝜉).
}                                                                                                    (3.15)   

Rearranging (3.15) in terms of 𝑣+(𝜉) and 𝑣−(𝜉) gives 

𝑣+(𝜉) = 𝑣0(𝜉) + 𝑣
−(𝜉),

𝑣−(𝜉) = 𝑣+(𝜉) − Z∞𝑖0(𝜉).
}                                                                                                        (3.16)   
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Solve the sum and difference of (3.16) to obtain 

𝑣+(𝜉) =
1

2
(𝑣0(𝜉) + Z∞𝑖0(𝜉)),

𝑣−(𝜉) =
1

2
(𝑣0(𝜉) − Z∞𝑖0(𝜉)).

}                                                                                                (3.17)  

By replacing the argument 𝜉 in (3.17) with 𝜉 − 𝑣𝑝ℏ𝑡 in 𝑣+  and 𝜉 + 𝑣𝑝ℏ𝑡 in 𝑣− , the overall 

solution for 𝑡 > 0  can be obtained by substituting the new values of 𝑣+(𝜉)  and 𝑣−(𝜉) 

obtained in (3.17) into (3.13) and is given by 

𝑣(𝜉, 𝑡) =
1

2
[𝑣0(𝜉 − 𝑣𝑝ℏ𝑡) + 𝑣0(𝜉 + 𝑣𝑝ℏ𝑡)] =

Z∞

2
[𝑖0(𝜉 − 𝑣𝑝ℏ𝑡) + 𝑖0(𝜉 + 𝑣𝑝ℏ𝑡)] , 

𝑖(𝜉, 𝑡) =
𝑌∞

2
[𝑣0(𝜉 − 𝑣𝑝ℏ𝑡) + 𝑣0(𝜉 + 𝑣𝑝ℏ𝑡)] =

1

2
[𝑖0(𝜉 − 𝑣𝑝ℏ𝑡) + 𝑖0(𝜉 + 𝑣𝑝ℏ𝑡)] , 

where Z∞ = √L C⁄  is called the characteristic impedance of the line. 

An application of transmission lines regardless of the type means representation of some 

conductors into the circuit or sub-circuit, subject to some interconnections of distributed 

inductance and distributed capacitance, with or without resistance, resulting in the transfer of 

energy between a generator and a load. Significant research has been conducted on lossless 

transmission lines after Nagumo and Shimura (1961) derived a difference-differential 

equation from a transmission line with a tunnel diode on one end and presented self-

oscillatory phenomena in transmission lines with a negative resistance element. For example, 

Shimura (1967) extended the work of Nagumo and Shimura (1961) to systems consisting of a 

lossless transmission line terminated with a tunnel diode and a lumped parallel capacitance 

on one end, where he obtained a nonlinear differential-difference equation which he analysed 

theoretically using available nonlinear techniques and obtained results for nonlinear 

phenomena on self-oscillation, synchronization and asynchronous quenching in his 

distributed systems.  (Brayton 1966; 1967) introduced a more generalized difference-
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differential equation of the neutral type where he obtained a set of uncoupled partial 

differential equations known as the wave equation. The solution to these wave equations was 

first obtained by D’Alembert in 1747. Using this equation, which describes the behaviour of 

voltage and current changes and the initial conditions at the terminals, he obtained 

D’Alembert’s solution to the wave equation. He further analysed the existence of some 

periodic solutions of small amplitude that existed in transmission lines. 

Subsequent to this derived difference-differential equation and its application to lossless 

transmission lines, this topic has been investigated by many authors (see Ferreira 1986, Hale 

1977,  Krawcewicz et al. 1993, Lopes 1975; 1976, Slemrod 1971, Wu and Xia 1996, Angelov  

2013, Chukwu 2001, and Salamon 1983). In particular, Hale (1977) introduced a neutral 

functional differential equation with the stable operator 𝐷 (the differential difference operator 

for neutral systems) into an application of lossless transmission lines in his discussion of 

simple oscillatory regimes present in such transmission lines systems. He assumed that, if 

interaction of the components of the coupled systems takes place immediately, then the 

connection between the systems can be described by a system of linear hyperbolic partial 

differential equations. These equations would have boundary conditions that lead to 

differential equations with delays in the highest order derivatives. Lopes (1976) studied 

problems like that of Brayton (1967) which is governed by the same physical problem using a 

new technique that involves the use of Lyapunov functionals and deduced, the problem of 

stability and uniform boundedness for a scalar ordinary differential inequality under some 

assumptions. Slemrod (1971) considered a network circuit with a lossless transmission line 

with specific inductance and capacitance in his study of the nonexistence of oscillations in a 

nonlinear distributed network. By reducing the distributed problem to a nonlinear functional 

differential equation of the neutral type, he analysed how asymptotic stability of the 

equilibrium state for his neutral equation guaranteed nonexistence of oscillation for the 
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distributed network. The approach of this application used in this thesis is to reduce an 

equation of nonlinear interconnected lossless transmission lines into the form of a NFDSID 

and finding its range of application through a simulation output study of the model. 

3.3.  Population growth modelling  

The transmission of controlled chemical solution can support processes in microbiological 

growth, production of useful products, and death. Because of these processes, their evolution 

can be more efficiently modelled in the form of neutral functional differential system as it 

depends on their past histories. Using NFDSID will help to account for various intricate 

factors in their evolution such as the distribution effect on juvenile birth rate which is related 

to the environmental suitability and sustainability of matured organisms, and the integral of 

the unknown function can be used to satisfy this relation. 

It is shown in Gopalsamy (1992) that accumulation of metabolic products may seriously 

inconvenience a biological population, and one consequences of such accumulation can be a 

fall in the birth rate and an increase in the mortality rate. One of the simplest models 

describing species struggling for limited self-renewing food resources without consideration 

to migration, age heterogeneity, interaction with other species and other factors according to 

Kolmanovskii and Myshkis (1992) and references therein, is the logistic model 

�̇�(𝑡) = 𝜁[1 −𝑚−1𝑥(𝑡 − ℎ)]𝑥(𝑡).                                                                                          (3.18) 

where, 𝑥(𝑡)  represents the population, ℎ  is the production time of food resources, the 

constant 𝜁  represents the difference birth and death rates and 𝑚  represents the average 

population number.  It has been observed in Kolmanovskii and Myshkis (1992), that a drop in 

birth rate caused by accumulation of metabolic products can be expressed by a power of the 

integral term in the logistic equation of (3.18). 
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Some control measures can be introduced into system models in order to account for some 

action of various factors on the system, such a model was given by the bilinear delay model 

(see Kolmanovskii and Myshkis (1992) and references therein)  

�̇�1(𝑡) = 𝜁(𝑡)𝑥1(𝑡) − 𝑢(𝑡)𝑥1(𝑡) − 𝛽𝑥1(𝑡 − ℎ),

�̇�2(𝑡) = 𝜁(𝑡)𝛼−1𝑥1(𝑡) − 𝑢(𝑡)𝑥2(𝑡) + 𝑚𝑢(𝑡),
}                                                              (3.19) 

Here, the first equation of (3.19) is a balance equation of biological substrate when bacteria 

are introduced into a vessel with an entrance to enable nourishment of substances and another 

for extraction of resulting product, while the second equation represents the production of 

resulting mass by the bacteria. 𝑥1(𝑡) represents the volume of microbiological substances, 

𝑥2(𝑡) is the volume of  the resulting product,  𝑢(𝑡) is the volume of nourishing environment 

in the vessel, 𝜁 represents the rate of biological growth, 𝑥1(𝑡 − ℎ) is the account for loss of 

bacteria during a finite time ℎ,  𝛽 and 𝑚 are constant in the model, while 𝛼 is a rate of growth 

of the useful product. Sikora (2003)  has presented a chemical solution control system where 

he developed a mathematical model for a dynamical system with delay in state given by 

�̇�(𝑡) = 𝐴0𝑥(𝑡) − 𝐴1𝑥(𝑡 − ℎ) + 𝐵𝑢(𝑡),                                                                                 (3.20) 

where,  𝑥(𝑡) ∈ 𝐸𝑛, 𝑢(𝑡) ∈ 𝐸𝑚 are the state and control variables respectively, ℎ is a constant 

delay, 𝐴0, 𝐴1 are 𝑛 × 𝑛 matrices with real elements, while 𝐵 is an 𝑛 × 𝑚 matrix with real 

elements. Another method of modelling population control processes proposed in this thesis 

is by neutral functional differential equations. Baker et al. (2008) have illustrated with an 

example, roles that may be played by neutral system model which takes the form 

�̇� = 𝜁(𝛾; 𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ), �̇�(𝑡 − ℎ))                                                                          (3.21) 

where 𝛾 ∈ 𝐸𝑛, ℎ > 0, in their modelling of cell growth phenomena that display a time lag in 

reacting to events.  See also Lu and Ge (2004), and Tang and Tang (2012) for other neutral 

functional differential equation population models, and Payam and Mansour (2014) for 
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modelling delay population control processes using neutral functional differential equation 

dynamics. 

Having observed the use of mathematical analysis and design in the development of 

biological system models, the next section will be dedicated to the development of new 

NFDSID control system model that will enable the development, analysis and application of 

various stability and control techniques in-line with the research aim and objectives given in 

Section 1.6  

3.4. Formulation of neutral control system model  

One of the contributions of this thesis presented in this chapter is the development of a 

neutral differential delay system model. Following the methods of Sikora (2003), and 

Kolmanovskii and Myshkis (1992) a model for a neutral differential delay system is 

developed through a system of chemical solutions. Consider the cascade connection of two 

fully filled mixers according to the schematic diagram presented in Figure 3.7, where 𝐶𝑖𝑛1 

and 𝐶𝑖𝑛2  are the input concentrations of the product, 𝑄1
∗  and 𝑄2

∗  denotes the constant flow 

intensities for the concentrations 𝐶𝑖𝑛1 and 𝐶𝑖𝑛2 respectively, Vm1 and Vm2 are the volumes of 

Mixer 1 and Mixer 2 respectively, 𝐶1(𝑡) and 𝐶2(𝑡) represent the total length of solutions in 

Mixer 1 and Mixer 2 respectively, and ℎ  is a constant delay arising from the tap or the 

reactor. 

The chemical solution control process in Figure 3.7 below can be described by state 

equations as follows  

Vm𝑑𝐶1(𝑡)

𝑑𝑡
−
Vm
2

𝑑𝐶1(𝑡 − ℎ)

𝑑𝑡
= 𝑄1

∗𝐶𝑖𝑛1(𝑡) − 𝑄1
∗𝐶1(𝑡) − 𝑄1

∗𝐶1(𝑡 − ℎ) , 
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Vm𝑑𝐶2(𝑡)

𝑑𝑡
−
Vm
2

𝑑𝐶2(𝑡 − ℎ)

𝑑𝑡

= 𝑄2
∗𝐶𝑖𝑛2(𝑡) + 𝑄1

∗𝐶1(𝑡 − ℎ) − (𝑄1
∗ + 𝑄2

∗)𝐶2(𝑡) − (𝑄1
∗ + 𝑄2

∗)𝐶2(𝑡 − ℎ). 

After a transformation, the equations become 

𝑑𝐶1(𝑡)

𝑑𝑡
−
1

2

𝑑𝐶1(𝑡 − ℎ)

𝑑𝑡
=
𝑄1
∗

Vm
𝐶𝑖𝑛1(𝑡) −

𝑄1
∗

Vm
𝐶1(𝑡) −

𝑄1
∗

Vm
𝐶1(𝑡 − ℎ)                                  (3.22) 

𝑑𝐶2(𝑡)

𝑑𝑡
−
1

2

𝑑𝐶2(𝑡 − ℎ)

𝑑𝑡

=
𝑄2
∗

Vm
𝐶𝑖𝑛2(𝑡) −

(𝑄1
∗ + 𝑄2

∗)

Vm
𝐶2(𝑡) +

𝑄1
∗

Vm
𝐶1(𝑡 − ℎ)

−
(𝑄1

∗ +𝑄2
∗)

Vm
𝐶2(𝑡 − ℎ) .                                                                                  (3.23) 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Schematic diagram of a cascade connection of two mixers 

𝑑 

𝑑 2⁄  

𝑑 REACTOR 

REACTOR 

MIXER 2 

MIXER 1 

𝐶2(𝑡 − ℎ) 

𝐶1(𝑡 − ℎ) 

𝑄1
∗ 

𝐶𝑖𝑛1(𝑡) 

 

𝑄2
∗ 

𝐶𝑖𝑛2(𝑡) 

𝑄1
∗ + 𝑄2

∗ 

𝐶2(𝑡) 

𝐶1(𝑡) 

𝐶1(𝑡 − ℎ) 𝑑 2⁄  𝑄1
∗ 

𝐶2(𝑡 − ℎ) 
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If it is assumed that 𝐶1(𝑡) = 𝑥1(𝑡) , 𝐶2(𝑡) = 𝑥2(𝑡) , 𝐶𝑖𝑛1(𝑡) = 𝑢1(𝑡)  and 𝐶𝑖𝑛2(𝑡) = 𝑢2(𝑡) ,  

where Vm = Vm1 = Vm2, then a mathematical model for a neutral functional differential delay 

system is developed which is described by 

�̇� − 𝐴0�̇�(𝑡 − ℎ) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐵𝑢(𝑡),                                                   (3.24) 

where 

𝑥(𝑡) = (
𝑥1(𝑡)

𝑥2(𝑡)
) ,   𝑢(𝑡) = (

𝑢1(𝑡)

𝑢2(𝑡)
) ,   𝐴2 = (

−𝑄1
∗ Vm⁄     0

𝑄1
∗ Vm⁄ −(𝑄1

∗ +𝑄2
∗) Vm⁄

)  , 

𝐴1 = (
−𝑄1

∗ Vm⁄     0

  0 −(𝑄1
∗ + 𝑄2

∗) Vm⁄
) ,   𝐴0 = (

1 2⁄     0
  0 1 2⁄

)   ,   𝐵 = (
𝑄1
∗ Vm⁄     0

  0 𝑄2
∗ Vm⁄

) 

If it is assumed that the input concentration of the product in the neutral model above is 

associated with the accumulation of metabolic products, then a more active reaction may take 

place in the upper half of Mixer 2. The terms in (3.24) can then be further transformed to 

include an integral term to get a NFDSID of the form (4.1) with 𝑢 = 0 or (5.2) with control 

measures.   

3.5. Other application areas of neutral functional differential system  

Neutral functional differential systems can also be found in such applicable areas as 

population ecology, heat exchangers and robots in contact with rigid environments (see 

Kolmanovskii and Myshkis 1992, Kolmanovskii and Nosov 1986, Kuang 1993, and 

Niculescu 2001). Examples of applications in engineering include air craft stabilisation, 

manual control, micro wave oscillators, laser models, neural networks, nuclear reactor and 

ship stabilisation (see Hale and Verduyn Lunel 1993, and Burnham and Ersanilli 2011). 

Examples from biology include predator-prey models, spread of measles in metropolitan 

areas models and model for the analysis of gonorrhoea (see Hale and Verduyn Lunel 1993). 

Applications in economics include dynamics of capital growth of global economy (see 



 

60 
 

Chukwu  2001), and applications in drilling include oil well drilling processes (see Saldivar 

Marquez et al. 2015).  

These application areas have motivated extensive research in the area and are now extended 

to controllability of neutral functional control systems (see Onwuatu 1993, Chukwu 2001, 

Han 2002, Khartovskii and Pavlovskaya 2013, and Khartovskii 2012).  

 The study of integro-differential equations with infinite delays emerged in recent years as a 

branch of modern research owing to the difficulty that arises in presenting real-life situations 

in ecology, epidemics, population growth, and its connection with many fields of study such 

as continuum mechanics, system theory, viscoelasticity, and chemical oscillations (see 

Balachandran and Dauer 1996 and references therein).  

The controllability of integro-differential systems has attracted the attention of many 

researchers in recent years because of its applications in many engineering and scientific 

disciplines. Some of the application areas include unsteady aerodynamics and aero-elastic 

phenomena, viscoelastic panels in supersonic gas flow, fluid dynamics, electrodynamics of 

complex media, population growth, polymer rheology, sandwich system identification, 

materials with fading memory, diffusion of discrete particles in a turbulent fluid, heat 

conduction in materials with memory, lossless transmission lines, nuclear reactors and 

hereditary phenomena (see Sivasundaram and Uvah 2008). Balachandran et al. (1997) has 

noted that a nonlinear neutral Volterra integro-differential model is a good example for 

representing compartmental models such as the radiogram, where the two compartments 

correspond to the left and right ventricles of the heart and the pipes between these 

compartments represent the pulmonary and systematic circulation. Pipes coming out of and 

going back into the same compartment may represent shunts and the coronary circulation.  
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3.6. Concluding remarks  

This Chapter has reviewed applications of neutral system and focused on modelling two 

systems that will be exploited to validate and illustrate the theoretical results within this 

thesis. Following a review of transmission lines, it was found that voltage and current 

fluctuations arising from transmission lines can be conveniently modelled as neutral 

functional differential systems. The second application selected is addressing the 

determination of controlled chemical solution. A new neutral functional differential control 

system model with infinite delay was developed. The general form of the developed model in 

this chapter will form the fulcrum of the stability and control research analysis in Chapters 4 

and 5 respectively. These stability and control analysis are also the fundamental issues for 

establishing optimal control in Chapter 6 and the application to transmission line in Chapter 

7. 
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Chapter 4 

Stability methods 

4.1. Introduction 

In this chapter, the Razumikhin approach, which is the main focus of application in this 

thesis, is used to investigate the stability of the developed neutral system with infinite delays 

model given in (4.1). By using the well-established Razumikhin’s technique, new stability 

results are obtained which extend and complement basic stability results in functional 

differential equations to NFDSID. 

The widely used Lyapunov-Krasovskii approach, which often leads to Linear Matrix 

Inequality (LMI) results, is also used to investigate the system modelled in Chapter 3. The 

approach is based on embedding the infinite delay into a norm-bounded uncertainty element 

and constructing a Lyapunov functional in order to obtain a novel less conservative stability 

condition in terms of LMI. 

4.2. Model for a neutral system with infinite delay 

This chapter will consider a neutral functional differential system with infinite delays of the 

form     

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐴1𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + ∫𝐺(𝑠, 𝑥𝑠)𝑑𝑠

0

−∞

𝑥(𝑡) = 𝜙(𝑡),   𝑡 ∈ (−∞, 0] }
 

 
 ,                                                    (4.1) 

and its difference differential operator 
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𝐷(𝑡)𝑥𝑡 = 𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ). 

The restriction on its difference differential operator is given by  

𝐷𝜙 = 𝜙(0) − 𝐴0𝜙(−ℎ),                                                                                                (4.2) 

with the following assumptions: 

(i) 𝐴0 , 𝐴1 are 𝑛 × 𝑛 constant matrices 

(ii) 𝐴2(𝑡) is an 𝑛 × 𝑛 continuous matrix defined on [0 ,∞),  

where sup𝑡∈[0,∞)‖𝐴2(𝑡)‖ ≤ 𝑐 is a constant for some 𝑐 > 0 

(iii) 𝐺: (−∞ ,0] × 𝐸𝑛 → 𝐸𝑛 is a continuous function which satisfies |𝐺(𝑡, 𝑥)| ≤ 𝑀(𝑡)‖𝑥‖ 

for all (𝑡, 𝜙) ∈ (−∞, 0] × 𝐸𝑛, where ∫ 𝑀(𝑠)𝑑𝑠 < ∞
0

−∞
,  

(iv) The constant time delay ℎ is positive. 

Throughout this chapter, it is assumed that 𝐺 and 𝐷 satisfy sufficient smoothness conditions 

to ensure that a solution of (4.1) exists through each (𝜎, 𝜙) , is unique, and depends 

continuously upon (𝜎,𝜙) and can be extended to the right as long as the trajectory remains in 

a bounded set [𝜎,∞) × 𝐶.  These conditions are given in (Hale and Cruz 1969).               

Definitions which are required for this chapter will now be given 

Consider the neutral system 
𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝑓(𝑡, 𝑥𝑡) , and define the continuous function 

𝑓: [𝜎,∞) × 𝐶 → 𝐸𝑛  by using (4.1) as  𝑓(𝑡, 𝑥𝑡) = 𝐴1𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + ∫ 𝐺(𝑠, 𝑥𝑠)𝑑𝑠
0

−∞
. 

Definition 4.1: (Total Stability) 

The solution 𝑥 = 0 of (4.1) is totally stable if for each 𝜀 > 0 there exists a 𝛿 = 𝛿(𝜀) > 0 

such that if |𝑔(𝑡, 𝜙)| < 𝛿(𝜀) for all (𝑡, 𝜙) ∈ [𝜎,∞) × 𝐶, where  𝑔: [𝜎,∞) × 𝐶 → 𝐸𝑛  is any 
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continuous matrix function, then the solution  𝑥(𝑡, 𝜎, 𝜙, 𝑓 + 𝑔) of (4.1) satisfies ‖𝑥𝑡(𝜎,𝜙, 𝑓 +

𝑔)‖ < 𝜀 for 𝜎 ∈ [𝜏,∞), 𝑡 ≥ 𝜎, 𝜙 ∈ 𝐶. 

Definition 4.2: (Total Asymptotic Stability) 

The solution 𝑥 = 0 of (4.1) is totally asymptotically stable, if it is totally stable and there 

exist 𝛿0 > 0  and 𝛾0 > 0  with the property that for any 𝜀 > 0  there exist 𝛾(𝜀) > 0  and 

𝑇(𝜀) > 0 such that if |𝑔(𝑡, 𝜙)| < 𝛾(𝜀) then ‖𝑥𝑡(𝜎,𝜙, 𝑓 + 𝑔)‖ < 𝜀 for all 𝑡 ≥ 𝜎, 𝜙 ∈ 𝐶. 

Remark 4.1 

Note also that, the zero solution of (4.1) is totally stable if and only if for any 𝜀 > 0 there 

exists a  𝛿̅ = 𝛿̅(𝜀) > 0 such that if (𝜎,𝜙, 𝑝) ∈ [𝜏,∞) × 𝐶 × 𝐶 and sup𝑡≥𝜎|𝑝(𝑡)| < 𝛿̅(𝜀), then 

‖𝑥𝑡(𝜎, 𝜙, 𝑓 + 𝑝)‖ < 𝜀  for all 𝑡 ≥ 𝜎 . Moreover, the zero solution of (4.1) is totally 

asymptotically stable if and only if it is totally stable and there exists a 𝛿0̅ > 0 with the 

property that for any 𝜀 > 0 there exists �̅�(𝜀) > 0 and �̅�(𝜀) > 0 such that if 

(𝜎, 𝜙, 𝑝) ∈ [𝜏,∞) × 𝐶 × 𝐶  and sup𝑡≥𝜎|𝑝(𝑡)| < �̅�(𝜀)  then ‖𝑥(𝑡, 𝜎, 𝜙, 𝑓 + 𝑝)‖ < 𝜀  for all 

𝑡 ≥ 𝜎 + �̅�(𝜀). Note also that by employing the same arguments in Murakami (1984) and 

references therein 𝛿(∙), with respect to 𝛿0, 𝛾0, 𝛾(∙), 𝑇(∙) satisfies the condition in Definition 

4.1, if 𝛿(∙) = 𝛿̅(∙), 𝛿0 = min(𝛿̅(1), 𝛿0̅), 𝛾0 = 1, 𝛾(∙) = min(�̅�(∙), 𝛿̅(1)) and 𝑇(∙) = �̅�(∙) 

Consider the system 

𝐷(𝑡)𝑥𝑡 = 𝐷𝜙 +𝐾(𝑡) − 𝐾(𝜎),   𝑡 ≥ 𝜎
𝑥𝜎 = 𝜙,

}                                                                           (4.3) 

where, 𝐾 ∈ 𝐶([𝜏,∞), 𝐸𝑛), the space of continuous functions taking [𝜏,∞) into 𝐸𝑛, 𝜎 ∈ [𝜏,∞), 

𝜙 ∈ 𝐶, and 𝐷 is the restriction on the difference operator defined in (4.2). 
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Definition 4.3: (Uniform Stability) 

Suppose 𝑆 is a subset of 𝐶([𝜏,∞), 𝐸𝑛). The operator 𝐷(∙) is uniformly stable with respect to 𝑆 

if there are constants 𝑐, 𝑑  such that for any 𝜙 ∈ 𝐶 , 𝜎 ∈ [𝜏,∞)  and 𝐾 ∈ 𝑆 , the solution 

𝑥(𝜎, 𝜙, 𝐾) of (4.3) satisfies 

|𝑥𝑡(𝜎, 𝜙, 𝐾)| ≤ 𝑐|𝜙| + d max
𝜎≤𝑠≤𝑡

|𝐾(𝑠) − 𝐾(𝜎)|,   𝑡 ≥ 𝜎 ,                                                (4.4) 

Definition 4.4: (Uniform Stability) 

If 𝑆 = {0}  and 𝐷(𝑡, 𝜙) = 𝐷𝜙  is uniformly stable with respect to {0}  then relation (4.4) 

implies that the solution of the homogeneous difference equation 

{
𝐷(𝑡)𝑥𝑡 = 0,   𝑡 ≥ 𝜎
𝑥𝜎 = 𝜙, 𝐷𝜙 = 0  

 

are uniformly stable (Cruz  and Hale 1970). 

Definition 4.5 (Uniform Asymptotic Stability) 

The solution 𝑥 = 0 of (4.1) is uniformly asymptotically stable if and only if there exists 

constant 𝑐 > 0, 𝑘 > 0 such that |𝑥𝑡(𝜎,𝜙)| ≤ 𝑘 𝑒𝑥𝑝[−𝑐(𝑡 − 𝜎)]|𝜙|, for all 𝑡 ≥ 𝜎. 

The next three lemmas are due to Cruz and Hale (1970). They are very important for the 

analysis and development of the properties for operator 𝐷(∙), and for the overall stability 

result of this chapter in this section. 

Lemma 4.1 

Let 𝐴 be an 𝑛 × 𝑛 constant matrix. The operator 𝐷𝜙 = 𝜙(0) − 𝐴𝜙(−ℎ) is uniformly stable 

if all the roots of the equation 𝑑𝑒𝑡[𝐼 − 𝐴𝑟−ℎ] = 0 have moduli less than 1. This holds if  
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‖𝐴‖ < 1. 

Proof.  Assume in (4.3) that ℎ = 1, 𝜎 = 0, and let the matrix [𝐼 − 𝐴] be non-singular so that 

the 𝜉 = [𝐼 − 𝐴]−1𝐷𝜙, is well defined. If ℎ(𝑡) = 𝐾(𝑡) − 𝐾(0), 𝑦𝑡 = 𝑥𝑡 − 𝜉, 𝜑(𝜃) = 𝜙(0) −

𝜉  in (4.3), then 𝐷𝑦𝑡 = ℎ(𝑡),  where 𝑦0 = 𝜑, 𝐷𝜑 = 0 . Setting 𝑧 = (𝑧(1),⋯ , 𝑧(𝑁)) , 

𝑧(𝑘+1)(𝑡) = 𝑦(𝑡 − 𝑘) , 𝑘 = 0, 1,⋯ , 𝑁 − 1 , then the system can be written as  𝑧(𝑡) =

𝐴𝑧(𝑡 − 1) + ℎ∗(𝑡),   𝑡 ≥ 0, 𝑧0 = 𝜓, where, 𝑁  is an integer, |𝜓| ≤ 𝐿𝜑  for some constant 𝐿 , 

ℎ∗ = (ℎ, 0,⋯ ,0, 0) and the eigenvalues of 𝐴 have moduli less than 1. If 𝑘 < 𝑡 + 𝜃  is the 

greatest integer then, 𝑧(𝑡 + 𝜃) = 𝐴𝑘+1𝜓(𝑡 + 𝜃 − 𝑘 − 1) + ℎ∗(𝑡 + 𝜃) + 𝐴ℎ∗(𝑡 + 𝜃 − 1) +

⋯+ 𝐴𝑘ℎ∗(𝑡 + 𝜃 − 𝑘), for −1 ≤ 𝜃 ≤ 0. Therefore,  

|𝑧(𝑡 + 𝜃)| ≤ |𝐴𝑘+1| ∙ |𝜓| + [1 + |𝐴| +⋯+ |𝐴𝑘|] sup0≤𝑠≤𝑡|ℎ
∗(𝑠)| . More so, as 𝑘 → ∞ , 

|𝐴𝑘|1 𝑘⁄ < 1  since the eigenvalues of 𝐴  have moduli less than 1 . This implies the series 

converges and the lemma is proved.  ⎕ 

Lemma 4.2 

The operator 𝐷𝜙 is uniformly stable if there are constants 𝛼, 𝛽 > 0 such that for any 𝜙 ∈ 𝐶, 

𝜎 ∈ [𝜏,∞), the solution 𝑥(𝑡, 𝜎, 𝜙) of the homogeneous difference equation in Definition 4.4 

satisfies ‖𝑥𝑡(𝜎, 𝜙)‖ ≤ 𝛽‖𝜙‖𝑒
−𝛼(𝑡−𝜎) ,   𝑡 ≥ 𝜎. 

Proof.  Suppose 𝐷(𝑡)𝑥𝑡 = 0, 𝑥𝜎 = 𝜙, 𝑙(𝑠) be scalar function which is continuous and non-

decreasing for 𝑠 ∈ [0, 𝑟],  𝑙(0) = 0,  −𝑟 ≤ 𝜃 ≤ 0  such that |∫ 𝑑𝜃𝜇(𝑡, 𝜃)𝜑(𝜃)
0

−𝑠
| ≤

𝑙(𝑠) sup𝑠≤𝜃≤0|𝜑(𝜃)| , 𝑡 ∈ [𝜏,∞) , 𝜑 ∈ 𝐶 , where 𝜇(𝑡, 𝜃)  is an 𝑛 × 𝑛  matrix with bounded 

variation in 𝜃. Let  𝛼 > 0 be any positive constant so that 2𝑙(𝑟)(𝑒𝛼ℎ − 1)𝑒𝛼ℎ < 1. Assume 

in (4.4) that  𝑐 = 𝑑 , if 𝑦𝑡(𝜃) = 𝑒
𝛼(𝑡+𝜃−𝜎)𝑥𝑡(𝜃) ,  𝜑(𝜃) = 𝑒𝛼𝜃𝜙(𝜃) , −𝑟 ≤ 𝜃 ≤ 0 , then 

𝑦𝜎 = 𝜑  and it is easy to see that 𝐷(𝑡)𝑦𝑡 = 𝐷(𝜎)𝜑 + ℎ(𝑡, 𝑦𝑡) − ℎ(𝑡, 𝜑) , ℎ(𝑡, 𝛾) =
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∫ 𝑑𝜃𝜇(𝑡, 𝜃)(𝑒
−𝛼𝜃 − 1)𝛾(𝜃)

0

−𝑟
, for every 𝛾 ∈ 𝐶 .  The choice of 𝛼  in the equation implies 

|ℎ(𝑡, 𝛾)| ≤ |𝛾| 𝑒−𝛼𝑟 𝑐2⁄ . Since |𝜑| ≤ |𝜙|  and 𝐷(𝑡)  is a uniformly stable operator, |𝑥𝑡| ≤

𝑐|𝜙|, by the definition of 𝑦𝑡 and relation (4.4),  

|𝑦𝑡| ≤ (𝑐 +
1

2
) |𝜙| +

𝑒−𝛼𝑟

2𝑐
sup
𝜎≤𝑠≤𝑡

|𝑦𝑠| ≤ (𝑐 +
1

2
) |𝜙| +

𝑒−𝛼𝑟

2𝑐
𝑒𝛼(𝑡−𝜎) sup

𝜎≤𝑠≤𝑡
|𝑥𝑠|           (4.5)   

≤ (𝑐 +
1

2
) |𝜙| +

𝑒−𝛼𝑟

2
𝑒𝛼(𝑡−𝜎)|𝜙| , 𝑡 ≥ 𝜎.     

Since, |𝑦𝑡| ≥ 𝑒
−𝛼𝑟𝑒𝛼(𝑡−𝜎)|𝑥𝑡|, this latter inequality would yield 

|𝑥𝑡| ≤ 𝛽
′𝑒−𝛼(𝑡−𝜎)|𝜙| +

1

2
|𝜙|,   𝑡 ≥ 𝜎,                                                                                 (4.6)  

where, 2𝛽′ = (2𝑐 + 1)𝑒𝛼𝑟. Applying (4.6) in (4.5), gives the following  

𝑒𝛼𝑟|𝑦𝑡| ≤ 𝛽′|𝜙| +
1

2𝑐
sup
𝜎≤𝑠≤𝑡

(𝛽′|𝜙| +
1

2
𝑒𝛼(𝑠−𝜎)|𝜙|) ≤ 𝛽′ (1 +

1

2𝑐
) |𝜙| +

1

22𝑐
𝑒𝛼(𝑡−𝜎)|𝜙|.        

Therefore, |𝑥𝑡| ≤ 𝛽′ (1 +
1

2𝑐
) 𝑒−𝛼(𝑡−𝜎)|𝜙| +

1

2(2𝑐)
|𝜙|. Repeating the process gives  

|𝑥𝑡| ≤ 𝛽′ (1 +
1

2𝑐
+

1

(2𝑐)2
+⋯+

1

(2𝑐)𝑛
) 𝑒−𝛼(𝑡−𝜎)|𝜙| +

1

2(2𝑐)𝑛
|𝜙|, 

for all 𝑡 ≥ 𝜎 and every positive integer 𝑛. Since 𝑐 ≥ 1, it then implies that 

|𝑥𝑡| ≤
2𝑐𝛽′

2𝑐 − 1
𝑒−𝛼(𝑡−𝜎)|𝜙|,   𝑡 ≥ 𝜎 

which proves the lemma. ⎕ 
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Lemma 4.3 

If 𝐷(𝑡) is a uniformly stable operator with respect to 𝐶([𝜏,∞), 𝐸𝑛), then there are positive 

constants 𝛼, 𝑐, 𝑐1  and 𝑑  such that for any 𝑔 ∈ 𝐶([𝜏,∞), 𝐸𝑛) , 𝜎 ∈ [𝜏,∞) , the solution 

𝑥(𝜎, 𝜙, 𝑔) of the equation 

𝐷(𝑡)𝑥𝑡 = 𝑔(𝑡),   𝑡 ≥ 𝜎 ,
𝑥𝜎 = 𝜙 ,

}                                                                                                       (4.7) 

satisfies, 

|𝑥𝑡(𝜎,𝜙, 𝑔)| ≤ 𝑒
−𝛼(𝑡−𝜎) (𝑐1|𝜙| + 𝑐 sup

𝜎≤𝑣≤𝑡
|𝑔(𝑣)|) + 𝑑 sup

𝜎≤𝑣≤𝑡
|𝑔(𝑣)|,                            (4.8) 

for all 𝑡 ≥ 𝜎. The constants 𝑎, 𝑐, 𝑐1 and 𝑑 can be chosen so that for any 𝑠 ∈ [𝜎,∞) 

|𝑥𝑡(𝜎, 𝜙, 𝑔)| ≤ 𝑒−𝛼(𝑡−𝑠) (𝑐1|𝜙| + 𝑐 sup
𝜎≤𝑣≤𝑡

|𝑔(𝑣)|) + 𝑑 sup
𝑠≤𝑣≤𝑡

|𝑔(𝑣)|,                            (4.9) 

for all 𝑡 ≥ 𝜎 + 𝜏. 

Proof. By the method of proof in (Cruz and Hale 1970: 340), for any 𝑠 ∈ [𝜎,∞), there exists 

a constant 𝑁  which is independent of 𝑠, 𝜎  and an 𝑛 × 𝑛  matrix Φ  depending on 𝑠 ,  Φ =

(ϕ1,⋯ , ϕn), 𝜙𝑖 ∈ 𝐶, |𝜙𝑖| < 𝑁 such that 𝐷(𝑠)Φ = 𝐼. If  𝑦: [𝑠 − 𝜏,∞) → ∞ is defined by 

𝑦(𝑡) = {
Φ(𝑡)𝑔(𝑠),    𝑠 − 𝜏 ≤ 𝑡 ≤ 𝑠 ,

Φ(𝑠)𝑔(𝑡),   𝑡 ≥ 𝑠 ,           
                                                                                    (4.10) 

then 𝐷(𝑠)𝑦𝑠 = 𝐷(𝑠)Φ𝑔(𝑠) = 𝑔(𝑠). Therefore, for  𝑡 ≥ 𝑠, 

𝐷(𝑡)(𝑥𝑡 − 𝑦𝑡) = 𝑔
⋇(𝑡),                                                                                                         (4.11) 

where 𝑔⋇(𝑡) also depends upon 𝑠 and satisfies 𝑔⋇(𝑠) = 0, 

|𝑔⋇(𝑡)| ≤ 𝐿 sup
[max(𝑠,   𝑡−𝜏)]≤𝑣≤𝑡

|𝑔(𝑣)|                                                                                    (4.12) 
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for some constant 𝐿  independent of 𝑠  and 𝜎 . Also, from the definition of 𝑦  in (4.10), it 

follows that 

|𝑦𝑡| ≤ 𝑁 sup
[max(𝑠,   𝑡−𝜏)]≤𝑣≤𝑡

|𝑔(𝑣)| .                                                                                        (4.13) 

If  𝑧𝑡 = 𝑥𝑡 − 𝑦𝑡, then 𝐷(𝑠)𝑧𝑠 = 0. The next objective is to estimate the function 𝑧𝑡 satisfying 

the equation 

𝐷(𝑡)𝑧𝑡 = 𝑔
⋇(𝑡),   𝑡 ≥ 𝑠,   𝑧𝑠 = 𝜑,   𝐷(𝑠)𝜑 = 0,                                                             (4.14) 

in terms of its value 𝜑 at 𝑠 and |𝑔⋇(𝑣)| for 𝑣 ≥ 𝑠. The solution 𝑧(𝑠, 𝜑, 𝑔⋇) of (4.14) can be 

written as 𝑧𝑡(𝑠, 𝜑, 𝑔
⋇) = 𝑧𝑡(𝑠, 𝜑, 0) + 𝑧𝑡(𝑠, 0, 𝑔

⋇), 𝑡 ≥ 𝑠 . Since 𝐷(𝑡)  is uniformly stable 

with respect to 𝐶([𝜏,∞), 𝐸𝑛) , it follows then from (4.4) that |𝑧𝑡(𝑠, 𝜑, 𝑔
∗)| ≤ 𝑐|𝜑| +

𝑑 sup𝑠≤𝑣≤𝑡|𝑔
⋇(𝑣)|,  𝑡 ≥ 𝑠, |𝑧𝑡(𝑠, 0, 𝑔

⋇)| ≤ 𝑑 sup𝑠≤𝑣≤𝑡|𝑔(𝑣)|, 𝑡 ≥ 𝑠. Also, from Lemma 4.2, 

there are 𝛼, 𝛽 > 0  such that |𝑧𝑡(𝑠, 𝜑, 0)| ≤ 𝛽|𝜑|𝑒−𝛼(𝑡−𝑠), 𝑡 ≥ 𝑠 . Consequently, 

|𝑧𝑡(𝑠, 𝜑, 𝑔
⋇)| ≤ 𝛽|𝜑|𝑒−𝛼(𝑡−𝑠) + 𝑑 sup𝑠≤𝑣≤𝑡|𝑔

⋇(𝑣)|,   𝑡 ≥ 𝑠. 

Now, letting 𝑧𝑡 = 𝑥𝑡 − 𝑦𝑡, 𝜑 = 𝑥𝑠 − 𝑦𝑠 and using (4.11), (4.12) and (4.13), it is easily seen 

that there are positive constants 𝑐 ′, 𝑑 such that 

|𝑥𝑡(𝜎,𝜙, 𝑔)| ≤ 𝑒
−𝛼(𝑡−𝑠)[𝛽|𝑥𝑠(𝜎, 𝜙, 𝑔)| + 𝑐

′ sup𝜎≤𝑣≤𝑡|𝑔(𝑣)|] + 𝑑 sup[max(𝑠,   𝑡−𝜏)]≤𝑣≤𝑡|𝑔(𝑣)| ,

𝑡 ≥ 𝑠 . Since 𝐷(𝑡)  is uniformly stable with respect to 𝐶([𝜏,∞), 𝐸𝑛) , |𝑥𝑠(𝜎,𝜙, ℎ)|  can be 

estimated uniformly in terms of |𝜙|and sup𝜎≤𝑣|𝑔(𝑣)| to obtain constants 𝑐1, 𝑐 such that  

|𝑥𝑡(𝜎,𝜙, 𝑔)| ≤ 𝑒
−𝛼(𝑡−𝑠)[𝑐1|𝜙| + 𝑐 sup𝜎≤𝑣≤𝑡|𝑔(𝑣)|] + 𝑑 sup[max(𝑠,   𝑡−𝜏)]≤𝑣≤𝑡|𝑔(𝑣)| , 𝑡 ≥ 𝑠. 

For some 𝑠 = 𝜎 , this gives (4.8) and for 𝑡 ≥ 𝑠 + 𝜏 , this gives (4.9) which completes the 

proof.  ⎕ 
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The next lemma as proved is one of the contributions in this thesis and is developed 

following Theorem 1 of Sinha (1985) and Corollary 2 of Hale (1974) for functional 

differential equations with infinite delay; see also Corollary 3.8 of Davies (2006) and 

references therein for neutral functional differential systems with infinite delays. The lemma 

will play an important role in the control of the system (4.1). 

Lemma 4.4 

In system (4.1), assume that 𝐺  is an 𝑛 × 𝑛  matrix function whose elements are square 

integrable on (−∞, 0], and there is a  𝑐 > 0, and a constant  𝑚 such that   

|𝐺(𝜃)| ≤ 𝑚 𝑒𝑥𝑝(𝑐𝜃) ≤ 𝑚 for 𝜃 ∈ (−∞, 0] and if 

ℋ(𝜆) = {𝜆 ∈ 𝐶: 𝑅𝑒 𝜆 ≥  0 , det  △ (𝜆) = 0}, 

△ (𝜆) = 𝜆(𝐼 − 𝐴0𝑒𝑥𝑝(−𝜆ℎ)) − 𝐴1 − 𝐴2 exp(−𝜆ℎ) − ∫exp(𝜆𝜃) 𝐺(𝜃)𝑑𝜃

0

−∞

. 

Then the solution of (4.1) is uniformly asymptotically stable if  

|𝑋(𝑡, 𝑠)| ≤ 𝑘 𝑒𝑥𝑝(−𝛼(𝑡 − 𝜎)),  𝑡 ≥ 𝑠 ≥ 𝜎, 𝑘 > 0, 𝛼 > 0 

Proof: Let 𝑐 > 0  such that exp(−𝑐𝜃)|𝐺(𝜃)|  is Lebesgue integrable on (−∞, 0]  and if 

exp(−𝑐𝜃)|𝐺(𝜃)| ≤ 𝛾(𝜃) ≤ 𝑚, then |𝐺(𝜃)| ≤ 𝑚 𝑒𝑥𝑝(𝑐𝜃), 𝜃 ∈ (−∞, 0]. Let 

�̅� = 𝑚 𝑒𝑥𝑝(𝑐𝜃). Now defining the space ℂ using �̅� rather than |𝛾(𝜃)| such that if 

ℋ(𝜆) = {𝜆 ∈ ℂ𝑛: 𝑅𝑒 𝜆 ≥ 0, det  △ (𝜆) = 0}, where 

△ (𝜆) = 𝜆(𝐼 − 𝐴0𝑒𝑥𝑝(−𝜆ℎ)) − 𝐴1 − 𝐴2 exp(−𝜆ℎ) − ∫ exp(𝜆𝜃) 𝐺(𝜃)𝑑𝜃
0

−∞
, 
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then all conditions of Lemma 4.4 are satisfied and the solutions of (4.1) turns zero 

exponentially and uniformly following the conclusion of Sinha (1985). The hypothesis ℋ(∙) 

therefore implies that the spectrum of 𝑋 is less than 1, and is contained in the disk of radius 

𝑒𝑥𝑝(−𝛼𝑡) and centre zero. ⎕ 

4.3. Razumikhin’s approach for stability 

Here, we shall investigate the total stability of system (4.1) using a Razumikhin type 

argument. 

For neutral functional differential systems it is natural to use Lyapunov functions of the form 

𝑉(𝑡 , 𝐷𝜙), where 𝑉: [𝜏 , ∞) × 𝐶 → 𝐸 is continuous, and the derivative  𝑉 along the solution of 

(4.1) can be defined by �̇�(𝑡 , 𝐷𝜙) ∶=
𝜕𝑉(𝑡 ,𝐷𝜙)

𝜕𝑡
+ 〈 grad𝑉(𝑡 , 𝐷𝜙), 𝑓(𝑡 , 𝜙)〉, 

for 𝑡 ∈ [𝜏 , ∞),   𝜙 ∈ 𝐶 . Obviously, 
𝑑

𝑑𝑡
𝑉(𝑡 , 𝐷(𝑡)𝑥𝑡)  = �̇�(𝑡 , 𝐷(𝑡)𝑥𝑡) for 𝑡 ∈ [𝜏 ,∞), 𝑥𝑡 ∈ 𝐶 , 

where 𝑥(𝑡) is a solution of (4.1) on [𝜎 ,∞).  

The proofs of the next two theorems follow along the lines of the proofs of Theorem 1 and 2 

of Murakami (1984) mutatis mutandis using properties of 𝐷𝜙 which are given in Lemma 4.2 

and Lemma 4.3.  The theorems are part of the contributions of the thesis in this chapter. 

Theorem 4.1 

Suppose there is a continuous function 𝛼(𝛿), 𝛿 > 0, satisfying 𝓋(𝛽𝜂) ≤ 𝓊(𝛼(𝛿)), where 𝜂 

is a positive constant, 𝛽 = ‖𝐷‖. Let 𝐷 be uniformly stable, 𝑓: [𝜏 , ∞) × 𝐶 continuous and 𝑓 

maps [𝜏 ,∞) × (bounded sets of 𝐶 ) into bounded set of 𝐸𝑛 . Suppose there are constant 

𝑘 , 𝑟 > 0  and continuous non-decreasing, nonnegative functions 𝓊(𝑠), 𝓋(𝑠), 𝑤(𝑠)  with 

𝓊(𝑠), 𝓋(𝑠), 𝑤(𝑠) > 0  for 𝑠 > 0  and 𝓊(0), 𝓋(0), 𝑤(0) = 0 , and there is a continuous 

function 
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𝑉: [𝜏 ,∞) × 𝐶 → 𝐸 such that 

(i) 𝓊(|𝑥|) ≤ 𝑉(𝑡 , 𝑥) ≤ 𝓋(|𝑥|) 

(ii) |𝑉(𝑡 , 𝑥) − 𝑉(𝑡 , 𝑦)| ≤ 𝑘|𝑥 − 𝑦|, 

 𝑡 ∈ [𝜎 ,∞) , |𝑥|, |𝑦| ≤ 𝑟 

(iii) �̇�(𝑡 , 𝜙) ≤ −𝑤(|𝐷𝜙|), for all (𝑡, 𝜙) ∈ [𝜏 , ∞) × 𝐶 satisfying  

𝑉(𝑡 , 𝐷𝜙) = sup𝜃≤0 𝑉(𝑡 + 𝜃 , 𝜙(𝜃)).  

Then the zero solution of system (4.1) is totally stable and 𝛿(∙) in Definition 4.1 can be 

chosen so that it depends on only the functions 𝓊 , 𝓋 , 𝑤 and the constants 𝑘 , 𝑟. 

Proof: Let 𝜀  be a positive number (which can be taken less than 𝑟 ). Let 𝜂 = 𝜂(𝜀) be a 

positive constant so that 𝓋(𝛽𝜂) < 𝓊(𝛼(𝛿)). Set 𝑐 ∶= 𝑤(𝛽𝜂), an define 𝛿 = 𝛿(𝜀) by 

𝛿(𝜀) ∶= min(𝛽𝜂, 𝑐 𝑘⁄ ). Then by Remark 4.1, it suffices to show that if 

(𝜎, 𝜙, 𝑝) ∈ [𝜏,∞) × 𝐶 × 𝐶  and sup𝑡≤𝜎|𝑝(𝑡)| < 𝛿(𝜀), then |𝑥(𝑡)| < 𝛼(𝛿) < 𝜀  for all 𝑡 ≥ 𝜎 , 

where 𝑥(𝑡) = 𝑥𝑡(𝜎, 𝜙, 𝑓 + 𝑝). Suppose this is not true, then there exists a 𝑇 > 𝜎 such that 

|𝑥(𝑡)| = 𝜀  and |𝑥(𝑡)| < 𝜀  for all 𝑡 < 𝑇 . Now, set 𝑉(𝑡) = 𝑉(𝑡, 𝑥(𝑡)) , and note that 

sup𝜃≤0 𝑉(𝜎 + 𝜃) < 𝑉(𝑇), since  

sup
𝜃≤0

𝑉(𝜎 + 𝜃) ≤ sup
𝜃≤0

𝓋(|𝜙(𝜃)|) < 𝓋(𝛿) < 𝓋(𝛽𝜂) < 𝓊(𝛼(𝛿)) ≤ 𝑉(𝑇) 

by (i). Hence, there is a 𝑇0  with 𝜎 < 𝑇0 ≤ 𝑇  such that 𝑉(𝑇0) = sup𝓊≤𝑇 𝑉(𝓊) =:𝑀 . This 

implies 𝛽𝜂 ≤ |𝑥(𝑇0)| ≤ 𝜀, since |𝑥(𝑇0)| ≤ |𝑥(𝑇)| = 𝜀 and  

𝓋(𝛽𝜂) < 𝓊(𝜀) ≤ 𝑉(𝑇) ≤ 𝑉(𝑇0) ≤ 𝓋(|𝑥(𝑇0)|) by (i). Moreover, 𝑉(𝑇0) = 𝑀 ≥ 𝑉(𝓊) for all 

𝓊 ≤ 𝑇0 , which gives 𝑉(𝑇0, 𝑥𝑇0) ≤ −𝑤(|𝐷(𝑇0)𝑥𝑇0|) ≤ −𝑐  by (iii), and consequently 

�̇�(𝑇0) ≤ �̇�(𝑇0, 𝑥𝑇0) + 𝑘|𝑝(𝑇0)| < −𝑐 + 𝑘𝛿(𝜀) < 0  by (ii). Therefore, there is a  𝑇1 < 𝑇0 , 

such that 𝑉(𝑇1)  < 𝑉(𝑇0) = 𝑀 which is a contradiction to the contraposition. ⎕ 
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Theorem 4.2 

Let 𝑉: [𝜏 ,∞) × 𝐶 → 𝐸 be the function satisfying conditions (i) and (ii) in Theorem 4.1, and if 

in addition there exists constant ℎ > 0, a continuous non-decreasing, nonnegative function 

𝑤(𝑠) > 0  for 𝑠 > 0 , 𝑤(0) = 0 , and a continuous function 𝜌(𝑠) > 𝑠  for 𝑠 > 0  such that 

condition (iii) in Theorem 4.1 is strengthened to 

(iv) �̇�(𝑡 , 𝜙) ≤ −𝑤(|𝐷𝜙|) 

for all (𝜎, 𝜙) ∈ [𝜏,∞) × 𝐶  satisfying 𝜌(𝑉(𝑡 , 𝐷𝜙)) ≥ sup−ℎ≤𝜃≤0 𝑉(𝑡 + 𝜃 , 𝜙(𝜃)) . Then the 

zero solution of (4.1) is totally asymptotically stable, and 𝛿0 , 𝛾0 , 𝛿(∙), 𝛾(∙) , and 𝑇(∙) in 

Definition 4.2 can be chosen so that 𝛿0 , 𝛾0 , 𝛿(∙), and 𝛾(∙) depend only on the functions 

𝓊 , 𝓋, 𝑤 , 𝜌 and the constants 𝑘 , 𝑟 while 𝑇(∙) depends also on the constant ℎ. 

Proof: Since condition (iv) implies condition (iii) of Theorem 4.1, it follows from Definition 

4.1 that, the zero solution of (4.1) is totally stable with 𝛿(∙) which depends only on the 

function 𝓊 , 𝓋, 𝑤 and the constants 𝑘 , 𝑟.  Now, choose a positive constant 𝛿0 so that if 

(𝜎, 𝜙, 𝑝) ∈ [𝜏,∞) × 𝐶 × 𝐶  and sup𝑡≥𝜎|𝑝(𝑡)| < 𝛿0 , then |𝑥𝑡(𝜎, 𝜙, 𝑓 + 𝑝)| < 𝑟  for all 𝑡 ≥ 𝜎 . 

Let 𝜀 be a given positive number (which can be chosen less than 𝛿0),  and let 𝜂 and 𝑐 be the 

numbers as defined in the proof of Theorem 4.1. Take a number 𝑎 > 0 such that  

𝑎 = 𝑎(𝜀) ∶= inf{𝜌(𝑠) − 𝑠:  𝓊(𝜀) ≤ 𝑠 ≤ 𝓋(𝛽𝜂), 0 < 𝛽𝜂 ≤ 𝑟} . Let 𝑁 = 𝑁(𝜀)  be the first 

positive integer such that 𝓊(𝜀) − 𝑁𝑎 ≥ 𝓋(𝛽𝜂) and set 𝛾(𝜀) = min(𝛿0, 𝑐 2𝑘⁄ ) and  

𝑇(𝜀) = 2𝑁𝓋(𝛽𝜂) 𝑐⁄ + (𝑁 − 1)ℎ. By Remark 4.1, it suffices to show that if  

(𝜎, 𝜙, 𝑝) ∈ [𝜏,∞) × 𝐶 × 𝐶  and sup𝑡≥𝜎|𝑝(𝑡)| < 𝛾(𝜀) , then |𝑥𝑡(𝜎,𝜙, 𝑓 + 𝑝)| ≤ 𝜀  for all 

𝑡 ≥ 𝜎 + 𝑇(𝜀). Set 𝑥(𝑡) = 𝑥(𝑡, 𝜎, 𝜙, 𝑓 + 𝑝) and 𝑉(𝑡) = 𝑉(𝑡, 𝑥(𝑡, 𝜎, 𝜙, 𝑓 + 𝑝)), and first show 

that  
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𝑉(𝑡1) ≤ 𝓊(𝜀) + (𝑁 − 1)𝑎  for 𝑡1 ∈ [𝜎, 𝜎 + 2𝓋(𝛽𝜂) 𝑐⁄ ] .                                              (4.15) 

Suppose that 𝑉(𝑡) > 𝓊(𝜀) + (𝑁 − 1)𝑎 for all 𝑡 ∈ [𝜎, 𝜎 + 2𝓋(𝛽𝜂) 𝑐⁄ ]. It follows then that 

𝜌(𝑉(𝑡)) > 𝑉(𝑡) + 𝑎 > 𝓊(𝜀) + 𝑁𝑎 ≥ 𝓋(𝛽𝜂) ≥ sup−ℎ≤𝜃≤0 𝑉(𝑡 + 𝜃) for some 

𝑡 ∈ [𝜎, 𝜎 + 2𝓋(𝛽𝜂) 𝑐⁄ ] , since |𝑥(𝑡)| ≤ 𝛽𝜂 ≤ 𝑟 . It then follows from condition (iv) of 

Theorem 4.2 that, 
𝑑

𝑑𝑡
𝑉(𝑡) ≤ 𝑘|𝑝(𝑡)| − 𝑤(|𝐷(𝑡)𝑥𝑡|) < 𝑘𝛾(𝜀) − 𝑐 ≤ −𝑐 2⁄   for all 

 𝑡 ∈ [𝜎, 𝜎 + 2𝓋(𝛽𝜂) 𝑐⁄ ]. Hence, 

𝑉(𝜎 + 2𝓊(𝛽𝜂) 𝑐⁄ ) < 𝑉(𝜎) + (−𝑐 2⁄ ) × 2𝓋(𝛽𝜂) 𝑐⁄ ≤ 𝑉(𝛽𝜂) − 𝑉(𝛽𝜂) = 0.  

This is a contradiction to the claim and therefore (4.15) holds. Next is to show that  

𝑉(𝑡) ≤ 𝓊(𝜀) + (𝑁 − 1)𝑎,   for  𝑡 ≥ 𝜎 + 2𝓋(𝛽𝜂) 𝑐⁄  .                                                      (4.16) 

Suppose that 𝑉(𝑡2) > 𝓊(𝜀) + (𝑁 − 1)𝑎 for 𝑡2 ∈ [𝜎 + 2𝓋(𝛽𝜂) 𝑐⁄ ,∞), then it follows from 

(4.16) that there exists 𝑡3 ∈ [𝑡1, 𝑡2) which satisfies 𝑉(𝑡3) = 𝓊(𝜀) + (𝑁 − 1)𝑎 and �̇�(𝑡3) ≥ 0. 

Observe also that 𝜌(𝑉(𝑡3)) ≥ 𝑉(𝑡3 + 𝜃)  for 𝜃 ∈ [−ℎ, 0]  and |𝑥(𝑡3)| ≥ 𝛽𝜂 .  Then, by the 

condition (iv) of Theorem 4.2, �̇�(𝑡3) ≤ 𝑘|𝑝(𝑡3)| − 𝑤(|𝐷(𝑡3)𝑥𝑡3|) ≤ −𝑐 2 < 0⁄ , which is a 

contradiction to �̇�(𝑡3) ≥ 0 and therefore (4.16) holds. What is remains to show that  

|𝑥(𝑡)| ≤ 𝜀,   for all  𝑡 ≥ 𝜎 + 𝑇(𝜀)                                                                                      (4.17) 

Now, if 𝑁 = 1 , then (4.16) implies 𝑉(𝑡) ≤ 𝓊(𝜀)  for all 𝑡 ≥ 𝜎 + 𝑇(𝜀) , and hence the 

inequality (4.17) holds. Suppose 𝑁 ≥ 2, repeating the same arguments as in the proof of 

(4.15), it can be shown that 𝑉(𝑡4) ≤ 𝓊(𝜀) + (𝑁 − 2)𝑎 for 

𝑡4 ∈ [𝜎 + 2𝓋(𝛽𝜂) 𝑐 + ℎ,⁄  𝜎 + 4𝓋(𝛽𝜂) 𝑐 + ℎ ⁄ ]  by (4.16). Following the same type of 

argument as in the proof of (4.16) therefore gives 𝑉(𝑡) ≤ 𝓊(𝜀) + (𝑁 − 2)𝑎 for all  
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𝑡 ≥ 𝜎 + 4𝓋(𝛽𝜂) 𝑐 + ℎ ⁄ .  Repeating the procedure over and again gives 

𝑉(𝑡) ≤ 𝓊(𝜀) + (𝑁 − 𝑗)𝑎  for all 𝑡 ≥ 𝜎 + 2𝑗𝓋(𝛽𝜂) 𝑐 + (𝑗 − 1)ℎ⁄  where 𝑗 = 1, 2,⋯ ,𝑁 . It 

follows therefore that 𝑉(𝑡) ≤ 𝓊(𝜀) for all 𝑡 ≥ 𝜎 + 𝑇(𝜀), and hence (4.17) holds. ⎕ 

The results of Theorem 4.1 and Theorem 4.2 will now be used to investigate the total 

asymptotic stability for the system. It is clear from the conditions imposed on system (4.1) 

that, the function 𝑓: [𝜏 ,∞) × 𝐶 → 𝐸𝑛 can be defined by 

𝑓(𝑡, 𝑥𝑡) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + ∫ 𝐺(𝑠, 𝑥𝑠)𝑑𝑠
0

−∞
 is in 𝐸𝑛 , as an application of Theorem 

4.2, the asymptotic stability of the system (4.1) will now be investigated. 

It is known from established result in matrix theory (Frommer and Hashemi 2013) that there 

is a symmetric positive definite matrix 𝑃 such that the equation 𝑃𝐴1 + 𝐴1
𝑇𝑃 = −𝐼, is called 

the Lyapunov matrix equation, where 𝐼 is the identity matrix and 𝐴1
𝑇 is the transpose of 𝐴1. 

Let 𝜆 and 𝛼 be positive numbers such that 𝜆2 and 𝛼2 are the least and greatest eigen-values of 

𝑃 respectively. Then, it is clear that,  

𝜆2|𝐷(𝑡)𝑥𝑡|
2 ≤ 〈𝑃𝐷(𝑡)𝑥𝑡, 𝐷(𝑡)𝑥𝑡〉 ≤ 𝛼2|𝐷(𝑡)𝑥𝑡|

2, for all 𝐷(𝑡)𝑥𝑡 ∈ 𝐸
𝑛. 

Making use of the assumptions on the system (4.1), and following the methods in Murakami 

(1984), a new theorem is developed as a contribution of the thesis in this chapter by using an 

idea from Theorem 8.2.6 in Burton (1983). 

4.3.1. Application of the Razumikhin approach 

 Theorem 4.3 

Let all the assumptions on system (4.1) be satisfied, and suppose that    
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‖𝑃‖(𝑐 + ∫𝑀(𝑠)𝑑𝑠

0

−∞

) < 𝜆 2𝛼⁄ .                                                                                       (4.18) 

Then the zero solution of (4.1) is totally asymptotically stable. 

Proof. Given relation (4.18), choose a constant 𝜇 > 1 so that  

1 −
2𝜇𝛼‖𝑃‖ (𝑐 + ∫ 𝑀(𝑠)𝑑𝑠

0

−∞
)

𝜆
= 𝑙 > 0 . 

For any ℎ ∈ (ℎ1, ∞), consider the system 

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐴1𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + ∫𝐺(𝑠, 𝑥𝑠)𝑑𝑠

0

−ℎ

  .                                                (4.19) 

Observe first that by Lemma 4.1, 𝐷𝜙 is uniformly stable. Further, Theorem 2.2 in Chukwu 

(1981) has demonstrated that, whenever it is required, the solution 𝑥 ≡ 0 of 

𝑑

𝑑𝑡
[𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)] = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))  is uniformly asymptotically stable, where 

𝑓(𝑡, 0,0) = 0, and by Theorem 2 of  Izé and Freiria (1981), this is totally stable. 

Now, let  𝑉(𝐷(𝑡)𝑥𝑡) = 〈𝑃𝐷(𝑡)𝑥𝑡, 𝐷(𝑡)𝑥𝑡〉. It is necessary to prove that 𝑉(𝐷(𝑡)𝑥𝑡) satisfies 

all the conditions in Theorem 4.2 for system (4.19). It is obvious that conditions (i) and (ii) of 

Theorem 4.1 holds. Assume now that 𝜇2𝑉(𝐷𝜙) ≥ 𝑉(𝜙(𝜃)), so that 𝜇2𝛼2|𝐷𝜙|2 ≥ 𝜆2|𝜙(𝜃)|2 

and hence |𝜙(𝜃)| ≤ 𝜇𝛼|𝐷𝜙| 𝜆⁄  for all 𝜃 ∈ [−ℎ, 0]. Then, the derivative 𝑉(𝑡, 𝐷𝜙) of 𝑉 along 

the solution of equation (4.19) is given by 
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�̇�(𝑡, 𝐷𝜙) = 〈𝑃 [𝐴1𝜙(0) + 𝐴2𝜙(−ℎ) + ∫𝐺(𝑠, 𝜙(𝑠))𝑑𝑠

0

−ℎ

] ,   𝐷𝜙〉

+ 〈𝑃𝐷𝜙, 𝐴1𝜙(0) + 𝐴2𝜙(−ℎ) + ∫𝐺(𝑠, 𝜙(𝑠))𝑑𝑠

0

−ℎ

〉

= 〈(𝑃𝐴1 + 𝐴1
𝑇𝑃)𝜙(0), 𝐷𝜙〉 + 2 〈𝑃𝐷𝜙,𝐴2𝜙(−ℎ) + ∫𝐺(𝑠, 𝜙(𝑠))𝑑𝑠

0

−ℎ

〉

≤ −|𝐷𝜙|2 + 2|𝐷𝜙|‖𝑃‖(𝑐 + ∫𝑀(𝑠)𝑑𝑠

0

−∞

) ∙ sup−ℎ≤𝜃≤0|𝜙(𝜃)| ≤ −𝑙|𝐷𝜙|
2 

Thus, the condition of Theorem 4.2 also holds as 𝑤(𝑠) = 𝑙𝑠2 and 𝜌(𝑠) = 𝜇2𝑠. Therefore, the 

zero solution of (4.19) is totally asymptotically stable with 𝛿0, 𝛾0 , 𝛿(∙) , 𝛾(∙) and 𝑇(ℎ, ∙) , 

where 𝛿0 , 𝛾0 , 𝛿(∙) and  𝛾(∙) are independent of ℎ. 

Now, let 𝜀 ∈ (0, 𝛾0 ) be given and select a constant ℎ(𝜀) > ℎ1, such that 

𝛾0 ∙ ∫ 𝑀(𝑠)𝑑𝑠 < min(𝛿(𝜀) 2⁄ , 𝛾(𝜀) 2⁄ )
−ℎ(𝜀)

−∞
. If 𝑄 ∈ 𝐸𝑛  and |𝑄(𝑡, 𝜙)| < 𝛿(𝜀) 2⁄  for all 

(𝑡, 𝜙) ∈ [𝜎,∞) × 𝐶 , then |∫ 𝐺(𝑠, 𝜙(𝑠))𝑑𝑠
−ℎ(𝜀)

−∞
+𝑄(𝑡, 𝜙)| < 𝜀 ∙ ∫ 𝑀(𝑠)𝑑𝑠 +

−ℎ(𝜀)

−∞
𝛿(𝜀) 2⁄ ≤

𝛿(𝜀), for all (𝑡, 𝜙) ∈ [𝜎,∞) × 𝐶 . Therefore, if (𝑡, 𝜙, 𝑄) ∈ [𝜎,∞) × 𝐶 × 𝐶  and |𝑄(𝑡, 𝜙)| <

𝛿(𝜀) 2⁄   for all (𝑡, 𝜙) ∈ [𝜎,∞) × 𝐶, then from the total stability of the zero solution of (4.19) 

it follows that ‖𝑥𝑡(𝜎,𝜙)‖ < 𝜀 for all 𝑡 ≥ 𝜎, where 𝑥(𝑡, 𝜎, 𝜙) denotes a solution of 

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡 , 𝑥𝑡) + ∫ 𝐺(𝑠, 𝑥𝑠)𝑑𝑠

0

−ℎ(𝜀)

+ ∫ 𝐺(𝑠, 𝑥𝑠)𝑑𝑠

−ℎ(𝜀)

−∞

+𝑄(𝑡, 𝑥𝑡) 

through (𝜎, 𝜙) . Hence, the zero solution of equation (4.1) is totally stable. Similarly, if 

(𝜎, 𝜙, 𝑄) ∈ [𝜏,∞) × 𝐶 × 𝐶  and |𝑄(𝑡, 𝜙)| < 𝛾(𝜀) 2⁄  for all (𝑡, 𝜙) ∈ [𝜎,∞) × 𝐶 , then we 
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obtain ‖𝑥𝑡(𝜎,𝜙)‖ < 𝜀  for all 𝑡 ≥ 𝜎 + 𝑇(ℎ(𝜀), 𝜀) . Hence the solution of (4.1) is totally 

asymptotically stable. ⎕ 

4.4. Lyapunov functional approach for stability 

Here, a delay-independent criterion for the asymptotic stability of the system (4.1) will be 

developed and proved in terms of LMI using the standard Lyapunov-Krasovskii approach. 

Some lemmas and definition that are required for the development of the criterion are also 

given 

Definition 4.6 (Linear Matrix inequality) 

LMI has the form  

𝐴(𝑥) = 𝐴0 +∑𝑥𝑘𝐴𝑘

𝑛

𝑘=1

> 0, 

where, 𝑥 ∈ 𝐸𝑛, 𝐴𝑘 = 𝐴𝑘
𝑇 ∈ 𝐸𝑛×𝑛, 𝑘 = 0,⋯ , 𝑛  are symmetric matrices and 𝑥𝑇𝐴(𝑥)𝑥 > 0, for 

𝑥 > 0 . Also the set {𝑥: 𝐴(𝑥) > 0}  is convex. Nonlinear (convex) inequalities can be 

converted to LMI using the basic ideas from Schur complements given in Lemma 4.6.  

Lemma 4.5 

For any matrices 𝐷 and 𝐸 with appropriate dimensions and any positive scalar 𝜏, then 

𝐷𝑇𝐸 + 𝐸𝑇𝐷 ≤ 𝜏𝐷𝑇𝐷 + 𝜏−1𝐸𝑇𝐸 

Proof: The proof is given in Khargonekar et al. (1990). ⎕ 

Lemma 4.6 

The linear matrix inequality (Boyd et al. 1994) 

(
𝐴(𝑥) 𝐴1(𝑥)

𝐴1
𝑇(𝑥) 𝐴2(𝑥)

) > 0 
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where 𝐴(𝑥) = 𝐴𝑇(𝑥) , 𝐴2(𝑥) = 𝐴2
𝑇(𝑥) , and 𝐴1(𝑥)  depend affinely on 𝑥 , is equivalent to 

𝐴2(𝑥) > 0, 𝐴(𝑥) − 𝐴1(𝑥)𝐴2
−1(𝑥)𝐴1

𝑇(𝑥) > 0. Here, 𝐴(𝑥), 𝐴2(𝑥), and 𝐴1(𝑥) are LMIs 

Proof: The proof is given in Boyd et al. (1994). ⎕ 

4.4.1. Application of the Lyapunov functional approach 

Using the Lyapunov-Krasovskii approach a new delay-independent criterion for the 

asymptotic stability of the system (4.1) will now be developed as a contribution of the thesis 

in this section 

Theorem 4.4 

Let system (4.1) be as defined with 𝐺 satisfying the condition ‖𝐺(𝑡, 𝑥𝑠)‖ ≤ 𝑀(𝑡)‖𝑥‖ for all 

(𝑡, 𝜙) ∈ (−∞, 0] × 𝐶, where ∫ 𝑀(𝑠)𝑑𝑠 = −𝑙 < ∞
0

−∞
. System (4.1) is asymptotically stable 

for all ℎ ≥ 0 if there exists positive symmetric matrices 𝑃, 𝑃1 > 0, and some positive scalars 

𝜏0, 𝜏1, 𝜏2 > 0 which satisfy the following LMI 

𝒵(𝑋, 𝑃1, 𝜏0, 𝜏1, 𝜏2) =

(

 

𝒵11    𝒵12                
∗      𝒵22                   

(𝐴2 + 𝑋𝐴1
𝑇𝐴2) (𝐴0 + 𝑋𝐴1

𝑇𝐴0)

0 0
    ∗          ∗
    ∗           ∗

           𝐴2
𝑇𝐴2 − 𝑅 + 𝜏1𝐴2

𝑇𝐴2 𝐴2
𝑇𝐴0

∗ 𝐴0
𝑇𝐴0 − 𝐼 + 𝜏2𝐴0

𝑇𝐴0)

 

< 0,                                                                                                                  (4.20) 

where,  

𝒵11 = 𝑋𝐴1
𝑇 + 𝐴1𝑋 − 2𝑙𝑋, 

        𝒵12  = [𝑋𝐴1
𝑇      𝜏0𝑋𝐴1

𝑇        𝑋𝑃1      𝐿𝑋        𝐿𝑋        𝐿𝑋        𝐿𝑋], 

𝒵22 = diag{−𝐼,   − 𝜏0𝐼,   − 𝑃1 ,   − 𝐼,   − 𝜏0𝐼,   − 𝜏1𝐼,   − 𝜏2𝐼}, 

Proof: Let the Lyapunov function candidate be given by  
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𝑉 = 𝑉1 + 𝑉2 + 𝑉3                                                                                                                     (4.21) 

where, 

𝑉1 = 𝑥
𝑇(𝑡)𝑃𝑥(𝑡) ,                                                                                                                    (4.22) 

𝑉2 = ∫ �̇�𝑇(𝑡 + 𝑠)�̇�(𝑡 + 𝑠)𝑑𝑠

0

−ℎ

,                                                                                               (4.23) 

𝑉3 = ∫𝑥𝑇(𝑡 + 𝑠)𝑃1𝑥(𝑡 + 𝑠)𝑑𝑠

0

−ℎ

                                                                                            (4.24) 

Taking the derivative of 𝑉 along the solution of (4.1) gives 

�̇�1 = 𝑥
𝑇(𝐴1

𝑇𝑃 + 𝑃𝐴1)𝑥 + 2𝑥
𝑇𝑃𝐴2𝑥ℎ + 2𝑥

𝑇𝑃𝐴0�̇�ℎ + 2𝑥
𝑇𝑃 ∫ 𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

 .             (4.25) 

�̇�2 = �̇�
𝑇�̇� − �̇�ℎ

𝑇�̇�ℎ

= 𝑥𝑇𝐴1
𝑇𝐴1𝑥 + 𝑥ℎ

𝑇𝐴2
𝑇𝐴2𝑥ℎ + �̇�ℎ

𝑇𝐴0
𝑇𝐴0�̇�ℎ +( ∫ 𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

)

𝑇

∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

+ 2𝑥𝑇𝐴1
𝑇𝐴2𝑥ℎ + 2𝑥

𝑇𝐴1
𝑇𝐴0�̇�ℎ + 2𝑥ℎ

𝑇𝐴2
𝑇𝐴0�̇�ℎ + 2𝑥

𝑇𝐴1
𝑇 ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

+ 2𝑥ℎ
𝑇𝐴2

𝑇 ∫ 𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

+ 2�̇�ℎ
𝑇𝐴0

𝑇 ∫ 𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

− �̇�ℎ
𝑇�̇�ℎ .                         (4.26) 

�̇�3 = 𝑥
𝑇P1𝑥 − 𝑥ℎ

𝑇P1𝑥ℎ .                                                                                                            (4.27) 

where 𝑥, 𝑥ℎ  and �̇�ℎ  denote 𝑥(𝑡), 𝑥(𝑡 − ℎ)  and �̇�(𝑡 − ℎ)  respectively. The term 

(∫ 𝐺(𝑡, 𝑥𝑠)𝑑𝑠
0

−∞
)
𝑇

∫ 𝐺(𝑡, 𝑥𝑠)𝑑𝑠
0

−∞
  in (4.26) can be simplified using Jensen’s Inequality (Gu 

et al. 2003: 305) as follows, 
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( ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

)

𝑇

∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

= ( ∫‖𝐺(𝑡, 𝑥𝑠)𝑑𝑠‖

0

−∞

)

𝑇

∫‖𝐺(𝑡, 𝑥𝑠)𝑑𝑠‖

0

−∞

≤ ( ∫𝑀(𝑠)𝑑𝑠‖𝑥‖

0

−∞

)

𝑇

∫𝑀(𝑠)𝑑𝑠‖𝑥‖

0

−∞

≤ ( ∫|𝑀(𝑠)𝑑𝑠|

0

−∞

) ∫|𝑀(𝑠)𝑑𝑠|‖𝑥‖. ‖𝑥‖

0

−∞

                                                

≤ 𝑙 ∫𝑀(𝑠)𝑑𝑠‖𝑥‖2

0

−∞

≤ 𝑙2‖𝑥‖2 = 𝑙2𝑥𝑇𝑥 .                                               (4.28) 

Applying Lemma 4.5 with (4.28) to the following terms in equations (4.25) and (4.26) gives; 

2𝑥𝑇𝑃 ∫ 𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

≤ −2𝑥𝑇𝑃𝑙𝑥                                                                                              (4.29)     

2𝑥𝑇𝐴1
𝑇 ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

≤ 𝜏0𝑥
𝑇𝐴1

𝑇𝐴1𝑥 + 𝜏0
−1 ( ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

)

𝑇

∫ 𝐺(𝑡, 𝑥)𝑑𝑠

0

−∞

      

≤ 𝜏0𝑥
𝑇𝐴1

𝑇𝐴1𝑥 + 𝜏0
−1𝑙2𝑥𝑇𝑥                                                                          (4.30) 

2𝑥ℎ
𝑇𝐴2

𝑇 ∫𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

≤ 𝜏1𝑥ℎ
𝑇𝐴2

𝑇𝐴2𝑥ℎ + 𝜏1
−1 ( ∫ 𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

)

𝑇

∫𝐺(𝑡, 𝑥)𝑑𝑠

0

−∞

 

≤ 𝜏1𝑥ℎ
𝑇𝐴2

𝑇𝐴2𝑥ℎ + 𝜏1
−1𝑙2𝑥𝑇𝑥                                                               (4.31) 

2�̇�ℎ
𝑇𝐴0

𝑇
∫𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

≤ 𝜏2�̇�ℎ
𝑇𝐴0

𝑇𝐴0�̇�ℎ+ 𝜏2
−1 ( ∫𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

)

𝑇

∫𝐺(𝑡,𝑥𝑠)𝑑𝑠

0

−∞

≤ 𝜏2�̇�ℎ
𝑇𝐴0

𝑇𝐴0�̇�ℎ + 𝜏2
−1𝑙2𝑥𝑇𝑥                                                                 (4.32) 

where 𝜏0, 𝜏1, 𝜏2 > 0 are scalars to be chosen. 
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The overall derivative of  𝑉 along the solution of (4.1) can now be expressed as follows 

�̇� = �̇�1 + �̇�2 + �̇�3 ≤ 𝜆
𝑇(𝑡)𝔐(𝑃, 𝑃1, 𝜏0, 𝜏1, 𝜏2)𝜆(𝑡),                                                 (4.33) 

where 

𝔐(𝑃, 𝑃1, 𝜏0, 𝜏1, 𝜏2) = (

𝔐11 (𝑃𝐴2 + 𝐴1
𝑇𝐴2) (𝑃𝐴0 + 𝐴1

𝑇𝐴0)

∗ 𝑀22 𝐴2
𝑇𝐴0

∗ ∗ 𝐴0
𝑇𝐴0 − 𝐼 + 𝜏2𝐴0

𝑇𝐴0

), 

and  𝜆(𝑡) = [𝑥𝑇 , 𝑥ℎ
𝑇 ,  �̇�ℎ

𝑇]𝑇, so that, 

𝔐11 = 𝐴1
𝑇𝑃 + 𝑃𝐴1 − 2𝑃𝑙 + 𝐴1

𝑇𝐴1 + 𝜏0𝐴1
𝑇𝐴1 + 𝑃1 + 𝑙

2𝐼 + 𝜏0
−1𝑙2𝐼 + 𝜏1

−1𝑙2𝐼 + 𝜏2
−1𝑙2𝐼              

𝔐22 = 𝐴2
𝑇𝐴2 − 𝑃1 + 𝜏1𝐴2

𝑇𝐴2. 

Pre and most multiplying 𝔐(∙) by Γ−𝑇 and Γ; and now using the Schur complement gives 

𝒵(𝑋, 𝑃1, 𝜏0, 𝜏1, 𝜏2) where  

Γ = (
𝑋 0 0
0 𝐼 0
0 0 𝐼

) 

It then follows that �̇� is negative definite since  𝔐(∙) < 0 is equivalent to 𝒵(∙) < 0, which 

implies that that the system (4.1) is asymptotically stable (see Hale and Verduyn Lunel 

1993). ⎕ 

4.5. Examples on stability methods 

In this section, numerical examples are given as contributions of the thesis to illustrate the 

applicability of the stability methods discussed in this chapter. 

4.5.1. Example using Razumikhin’s approach  

Consider the neutral system 
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�̇�(𝑡) − 𝐴0�̇�(𝑡 − ℎ) = 𝐴1𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + ∫𝐺(𝑠, 𝑥𝑠)𝑑𝑠

0

−∞

,                            (4.34) 

where 

𝐺(𝑡, 𝑥𝑡) = (−

0
[sin(𝑥(𝑡) + 𝑥(𝑡 − ℎ))] ∙ 𝑥(𝑡 − ℎ)

1 + 𝑡2
) , 

𝐴0 = (
 0 1 2⁄

1 2⁄  0
) ,    𝐴1 = (

−1    1
  1 −2

) ,   𝐴2 = (
0 3 2⁄

0 −1 2⁄
). 

The difference operator by definition is given by 𝐷(𝑡)𝑥𝑡 = 𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ) , so that 

𝐷𝜙 = 𝜙(0) − 𝐴0𝜙(−ℎ) for ℎ > 0 and the function  

𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + ∫𝐺(𝑠, 𝑥𝑠)𝑑𝑠

0

−∞

 

is in 𝐸𝑛. Now, use Lemma 4.1 to check that, the operator 𝐷 is uniformly stable as follows: 

The condition det[𝐼 − 𝐴𝑟−ℎ] = 0 of Lemma 4.1 gives, 

( 1 −0.5𝑟−h

−0.5𝑟−ℎ 1
) = 0 , 

which implies 1 − 1 4⁄ 𝑟−2ℎ = 0, and 𝑟 = (1 2⁄ )
1

ℎ. Hence, the operator 𝐷 is uniformly stable 

if ℎ > 0. Let  𝑃 = (
 1 1 2⁄

1 2⁄ 1 2⁄
) , be the symmetric positive definite matrix with 𝜆2 = 0.19 

and  𝛼2 = 1.31 as the least and greatest eigen-values, and observe that  

(
 1 1 2⁄

1 2⁄ 1 2⁄
)(
−1      1
 1 −2

)  + (
−1      1
 1 −2

) (
 1 1 2⁄

1 2⁄ 1 2⁄
) ,  

satisfies the Lyapunov matrix equation. Next check that the function 𝐺(𝑡, 𝑥𝑡) satisfies all the 

conditions and |𝐺(𝑡, 𝑥𝑠)| ≤ 𝑀(𝑡)‖𝑥‖, where 𝑀(𝑡) = −1 1 + 𝑡2⁄  , and 
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∫−𝑑𝑡 (1 + 𝑡2) = [− tan−1 𝑡]−∞
0 = −𝜋 2⁄ < ∞⁄

0

−∞

. 

Moreover, ‖𝑃‖ ∫ −𝑑𝑡 (1 + 𝑡2)⁄ < 𝜆 2𝛼⁄ − 𝑐‖𝑃‖
0

−∞
, which satisfies the condition of 

Theorem 4.3. Also, let ℎ = 1 be arbitrarily chosen and let 𝜇 = 2, it follows then that, the 

condition of Theorem 4.2 is also satisfied for 

�̇�(𝑡) − 𝐴0�̇�(𝑡 − ℎ) = 𝐴1𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + ∫𝐺(𝑠, 𝑥𝑠)𝑑𝑠

0

−1

 ,                             (4.35)   

with ℎ ∈ [0.5,∞)  and 𝑙 = 0.86 . Now, choose ℎ(𝜀) = 2  , 𝛾0 = 4 , 𝛿(𝜀) 2⁄ = 5 4⁄  , and  

𝛾(𝜀) 2⁄ = 3 2⁄ , so that |𝑄(𝑡, 𝜙)| < 5 4⁄   and |∫ 𝐺(𝑠, 𝜙(𝑠))𝑑𝑠
−ℎ(𝜀)

−∞
+𝑄(𝑡, 𝜙)| ≤ 5 2⁄ . Hence, 

from the total stability of equation (4.35), it follows that ‖𝑥𝑡(𝜎,𝜙)‖ < 𝜀, where 𝑥(𝑡, 𝜎, 𝜙) 

represents a solution of  

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡 , 𝑥𝑡) + ∫𝐺(𝑠, 𝑥𝑠)𝑑𝑠

0

−2

 + ∫ 𝐺(𝑠, 𝑥𝑠)𝑑𝑠

−2

−∞

+𝑄(𝑡, 𝑥𝑡)  . 

Thus equation (4.34) is totally stable, and similarly totally asymptotically stable if 

|𝑄(𝑡, 𝜙)| < 3 2⁄ .⎕ 

4.5.2. Example using Lyapunov’s functional approach  

Consider the neutral system with infinite delay given by 

�̇�(𝑡) − 𝐴0�̇�(𝑡 − ℎ) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

,                             (4.36) 

where, 

𝐴0 = (
 0 0.4
0.4  0

) ,   𝐴1 = (
−1 0
  0 −1

) ,   𝐴2 = 𝛼 (
0 1
1 0

), 

𝐺(𝑡, 𝑥(𝑡)) = (
0

−exp(𝑡 − 3) × sin 𝑥(𝑡) ∙ 𝑥(𝑡)
) .  
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Note that, the function 𝐺(𝑡, 𝑥𝑠) satisfies its conditions with, 

𝑀(𝑡) = −exp(𝑡 − 3) × sin 𝑥(𝑡) ;   ∫ 𝑀(𝑡)𝑑𝑡
0

−∞
= −exp(−3) 2⁄ = 𝑙 = −0.02489. 

Now, to determine the stability bound of 𝛼 is to show that the delay-independent criterion in 

(4.20) of Theorem 4.4 satisfies the asymptotic stability for (4.36). By solving the LMI given 

in (4.20) of Theorem 4.4, the bound of 𝛼  for asymptotic stability is found to be  |𝛼| ≤

0.8448 and the solutions of the LMI for 𝛼 = 0.8448 are given by 

𝑃 = (
 1.0000 0
0  1.0000

),      𝑃1 = (
 0.8746 0
0  0.8746

),    𝜏0 = 0.0249,

𝜏1 = 0.0249,   𝜏2 = 0.1500. 

4.5.3. Comparative example with other Lyapunov’s results  

In this section, the  bound of 𝛼 for the asymptotic stability of (4.36) without the infinite delay 

term is compared with result obtained in Example 2 of Park and Won (2000) with other 

corresponding results as follows;  

Li (1988):  |𝛼| ≤ 0.2  

Hu and Hu (1996): |𝛼| ≤ 0.2  

Park and Won (2000): |𝛼| ≤ 0.9165 

This Thesis (Theorem 4.4):  |𝛼| ≤ 0.9165. 

It is observed that Theorem 4.4 gives a less conservative bound of 𝛼 than all the proposed 

methods contained in Park and Won (2000) and produces the same result as that of Park and 

Won (2000) for the case without the infinite delay term, that is when  𝐺 = 0. The MATLAB 

code for this example is given in Appendix I. 
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4.6. Concluding remarks 

In this chapter, total asymptotic stability results for neutral integro-differential systems 

having infinite delays are presented by using the Lyapunov-Razumikhin technique. The 

results were obtained by exploring the uniform stability properties of the functional 

difference operator for neutral systems, the basic Razumikhin stability theories, and the 

uniqueness property of the eigenvalues from the existence of symmetric positive definite 

matrix from Lyapunov matrix equation.  

Furthermore, by using the Lyapunov-Krasovskii stability approach, a new delay independent 

condition which is sufficient to make the system uniformly asymptotically stable is 

developed. This new condition was then expressed in terms of LMI and solved by using the 

MATLAB’s LMI Toolbox. The MATLAB code written for the problem in Example 4.5.2 is 

given in Appendix I. All the theoretical analyses in this chapter were illustrated with 

numerical example. These stability results play important role in the control methods and are 

utilized in Chapter 5. 
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Chapter 5 

Control methods 

5.1. Introduction 

Having justified the stability of the system in-line with the research aim and objectives in 

Chapter 4, and the broadly reviewed literature in Chapter 2 which has led to the selection of 

appropriate models for the potential application of this work in Chapter 3; the aim of this 

chapter is to develop a neutral functional differential delay control system and investigate its 

controllability. Various controllability methods for the neutral control system are 

investigated. Relevant propositions, lemmas, theorems and definitions that would aid the 

development and computations of the results are stated and proved. Algebraic conditions are 

developed for the complete and null controllability results of the system. Some examples 

illustrating the design procedure and effectiveness of the theoretical results are given with 

some simulation output to illustrate the viability of the methods developed. 

Since controllability is one of the most important structural properties of dynamical systems 

used to design model based controllers and estimators, this chapter aims at establishing the 

necessary results by focussing on the control of interest introduced in the Glossary of 

notation. It is common knowledge that controls can be assumed to be either (i) restrained or 

(ii) unrestrained; but is required only to be square integrable on finite intervals (Chukwu 

1979). In the latter case, a non-singularity assumption for the controllability matrix of the 

system is a necessary and sufficient condition for null controllability. In the former case, 

which is the control of interest in this thesis, such conditions are no longer sufficient for null 

controllability and an additional condition of stability for the uncontrolled system is required 



 

88 
 

(Chukwu 1979). Dauer et al. (1998) has demonstrated this method by obtaining a null 

controllability result using the Schauder fixed point theorem. There result was based on the 

uniform asymptotic stability of the uncontrolled system and a properness assumption on the 

linear control system, the latter being equivalent to the non-singularity of the controllability 

matrix. However, evaluating controllability analytically for linear time varying systems, 

unlike time-invariant systems, is challenging even for very simple systems since it involves 

the evaluation of the controllability matrices. The controllability matrix may be calculated by 

computational methods provided that all the exact time-varying elements in the linear time 

varying systems are known. The control is assumed to be restrained in this chapter and the 

null controllability result obtained by Schauder’s fixed point theorem method, the chapter 

aims to avoid the cumbersome computation of controllability matrices by introducing an 

equivalent rank condition which is simple to compute and generalizes to neutral systems. The 

method will extend the results from Underwood and Chukwu (1988), Jacobs and Langenhop 

(1976), Rivera Rodas and Langenhop (1978) to NFDSID.  By using the Schauder fixed point 

theorem, growth and continuity conditions will be placed on the perturbation function which 

will guarantee that: if the linear control base system has full rank with the condition that 

𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0 for every complex 𝜆, (where 𝐾(𝜆) is an 𝑛 × 𝑛 polynomial matrix in 

𝜆 constructed from the coefficient matrices of the control base system, and 𝜉(exp(−𝜆ℎ)) is 

the transpose of [1, exp(−𝜆ℎ) ,⋯ ,  exp(−(𝑛 − 1)𝜆ℎ)] ), and the functional difference 

operator for the system uniformly stable, with the linear uncontrolled system uniformly 

asymptotically stable, then the perturbed neutral system with infinite delay is null 

controllable with constraint.  

Further, by using the standard Lyapunov-Krasovskii approach, which often leads to Linear 

Matrix Inequality (LMI), a new delay-independent condition which is sufficient to make the 

neutral system with infinite delays uniformly asymptotically stable is developed. The novel 
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condition is obtained by embedding the infinite delay into a norm bounded uncertainty 

element, memory-less state feedback controllers are designed which stabilize the system 

using the feasible solution of the resulting LMI which is less conservative.  

5.2. Control model for neutral system with infinite delay 

This chapter considers neutral functional differential system with infinite delays of the form: 

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡 , 𝑥, 𝑥𝑡, 𝑢) + ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃

0

−∞

𝑥(𝑡) = 𝜙(𝑡),   𝑡 ∈ (−∞, 0] }
 

 
 ,                                                             (5.1) 

and its perturbation 

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡 , 𝑥, 𝑥𝑡, 𝑢) + ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃

0

−∞

+ 𝑓(𝑡, 𝑥𝑡, 𝑢(𝑡))                                    (5.2) 

through its linear base control system  

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡, 𝑥, 𝑥𝑡, 𝑢),                                                                                                          (5.3) 

and its free system 

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡, 𝑥 , 𝑥𝑡, 0)  + ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃

0

−∞

  ,                                                        (5.4) 

where the functional difference operator 𝐷:𝐸 × 𝐶 → 𝐸𝑛 for the system is defined Section 4.2  

by 𝐷(𝑡)𝑥𝑡 = 𝑥(𝑡) − 𝐴0(𝑡)𝑥(𝑡 − ℎ), and  

𝐿(𝑡, 𝑥, 𝑥𝑡, 𝑢) = 𝐴1(𝑡)𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + 𝐵(𝑡)𝑢(𝑡), 

with the following assumptions: 

(i) 𝐴0(𝑡), 𝐴1(𝑡) and 𝐴2(𝑡) are continuous 𝑛 × 𝑛 matrices 

(ii) 𝐵(𝑡), is a continuous 𝑛 × 𝑚 matrix 

(iii) 𝐴(𝜃) is an 𝑛 × 𝑛 matrix whose elements are square integrable on (−∞, 0] 
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(iv) 𝑓: [𝜎,∞) ×𝑊2
(1) × 𝐸𝑚 → 𝐸𝑛 is a nonlinear continuous matrix function. 

It is assumed that 𝑓 satisfies sufficient smoothness conditions to ensure that: (i) a solution of 

(5.2) exists through each (𝜎, 𝜙), (ii) it is unique, and (iii) it depends continuously upon (𝜎, 𝜙) 

and (iv) it can be extended to the right as long as the trajectory remains in a bounded set 

[𝜎,∞) × 𝐶. These conditions are given in Cruz and Hale (1970).     

If 𝐾(𝑡, 𝜎):𝑊2
(1) →𝑊2

(1)
 is defined by 𝐾(𝑡, 𝜎)𝜙 = 𝑥𝑡(𝜎,𝜙), 𝜙 ∈ 𝑊2

(1), 𝑡 ≥ 𝜎, where 𝑥(𝜎, 𝜙) 

is a solution of (5.3) with 𝑢 = 0, then by the variation of constants formula given in (5.5), 

there exist an 𝑛 × 𝑛 matrix function 𝑋(𝑡, 𝑠) defined for 0 ≤ 𝑡 ≤ 𝑠, 𝑡 ∈ 𝐽 = [𝜏,∞), continuous 

in 𝑠 from the right, and of bounded variation in 𝑠;  𝑋(𝑡, 𝑠) = 0, 𝑡 < 𝑠 ≤ 𝑡1, such that 𝑋(𝑡, 𝑠) 

satisfies 

𝜕𝑋(𝑡, 𝑠)

𝜕𝑠
= 𝐿(𝑡, 𝑋𝑡(∙, 𝑠), 0),   𝑡 ≥ 𝑠. 

Now, define the 𝑛 × 𝑛 matrix function 𝑋0 as 

𝑋0(𝑠) = {
0,        − ℎ ≤ 𝑠 < 0
𝐼,              𝑠 = 0.      

 

Here 𝑋(𝑡, 𝑡) = 𝐼 is the identity matrix. Write 𝐾(𝑡, 𝑠)𝑋0(𝑠) = 𝑋(𝑡 + 𝜎, 𝑠) = 𝑋𝑡(∙ , 𝑠), so that 

𝐾(𝑡, 𝑠)𝐼 = 𝑋(𝑡, 𝑠).  

A solution 𝑥 of (5.3) through (𝜎,𝜙) satisfies the equation 

𝑥𝑡(𝜎, 𝜙, 𝑢) = 𝐾(𝑡, 𝜎)𝜙 + ∫𝑇(𝑡, 𝜎)𝑋0𝐵(𝑠)𝑢(𝑠)𝑑𝑠

𝑡

𝜎

, 

or 



 

91 
 

𝑥𝑡(𝜎,𝜙, 𝑢) = 𝑥𝑡(𝜎, 𝜙, 0) + ∫𝑋(𝑡, 𝑠)𝐵(𝑠)𝑢(𝑠)𝑑𝑠

𝑡

𝜎

.                                                         (5.5) 

The representation of the form (5.5) will be referred to as the variation of constants formula 

in this thesis. In a similar manner, any solution of system (5.2) will be given by 

𝑥𝑡(𝜎,𝜙, 𝑢, 𝑓) = 𝑥𝑡(𝜎, 𝜙, 0) + ∫𝑋(𝑡, 𝑠)𝐵(𝑠)𝑢(𝑠)𝑑𝑠

𝑡

𝜎

+∫𝑋(𝑡, 𝑠) ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃𝑑𝑠

0

−∞

𝑡

𝜎

+∫𝑋(𝑡, 𝑠)

𝑡

𝜎

𝑓(𝑠, 𝑥𝑠, 𝑢(𝑠))𝑑𝑠  ,                                                                    (5.6) 

Define the matrix function  𝑍(∙) by 

𝑍(𝑡, 𝑠) = 𝑋(𝑡, 𝑠)𝐵(𝑠),                                                                                                                (5.7) 

for 𝑡 ≥ 𝑠 ≥ 𝜎, it follows then from (5.6) that  

𝑥𝑡(𝜎, 𝜙, 𝑢, 𝑓) = 𝑥𝑡(𝜎,𝜙, 0) + ∫𝑍(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠

𝑡

𝜎

 + ∫𝑋(𝑡, 𝑠) ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃𝑑𝑠

0

−∞

𝑡

𝜎

+ ∫𝑋(𝑡, 𝑠)

𝑡

𝜎

𝑓(𝑠, 𝑥𝑠, 𝑢(𝑠))𝑑𝑠    .                                                               (5.8) 

Some definitions which underpin the subject of investigation in this chapter will now be 

given 

Definition 5.1: (Proper) 

The system (5.3) is proper on [𝜎, 𝑡1] if 𝜂
𝑇𝑍(𝑡1, 𝑠) = 0 almost everywhere 𝑠 ∈ [𝜎, 𝑡1] implies 

𝜂 = 0 for 𝜂 ∈ 𝐸𝑛, where 𝜂𝑇  is the transpose of 𝜂. If (5.3) is proper on each interval [𝜎, 𝑡1], 

then the system is said to be proper in 𝐸𝑛. Where 𝜂 is as defined in the proof of Proposition 

5.1 
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Definition 5.2: (Controllable) 

System (5.3) is said to be controllable on [𝜎, 𝑡1], if for each function 𝜙 ∈ 𝑊2
(1)([−ℎ, 0], 𝐸𝑛), 

there is a control 𝑢 ∈ 𝐿2([𝜎, 𝑡1], 𝐸) such that the 𝑥𝑡1(𝜎, 0, 𝑢) = 𝜙. 

Definition 5.3: (Completely controllable) 

System (5.3) is said to be completely controllable on [𝜎, 𝑡1], if for each function 𝜙 ∈ 𝑊2
(1)

,  

𝑥1 ∈ 𝐸
𝑛 there is an admissible control 𝑢 ∈ 𝐿2([𝜎, 𝑡1], 𝐸) such that the solution 𝑥(𝜎,𝜙, 𝑢) of 

(5.3) satisfies 𝑥𝜎(𝜎, 𝜙, 𝑢) = 𝜙, 𝑥𝑡1(𝜎,𝜙, 𝑢) = 𝑥1. It is completely controllable on [𝜎, 𝑡1] with 

constraints, if the above holds with 𝑢 ∈ 𝑈. 

Definition 5.4: (Null controllable) 

The system (5.2) is null-controllable on [𝜎, 𝑡1]  if for each 𝜙 ∈ 𝑊2
(1)([−ℎ , 0], 𝐸𝑛) , there 

exists a 𝑢 ∈ 𝐿2([𝜎, 𝑡1], 𝐸
𝑚)  such that the solution of (5.2) satisfies 𝑥𝜎(𝜎,𝜙, 𝑢, 𝑓) = 𝜙 , 

𝑥𝑡1(𝜎,𝜙, 𝑢, 𝑓) = 0. The system (5.2) is null-controllable with constraints if the above holds 

with control 𝑢 ∈ 𝑈 

Definition 5.5: (Domain of null controllability) 

The domain 𝔘 of null-controllability of (5.3) with constraints is the set of all initial functions 

𝜙 ∈ 𝑊2
(1)

 for which the solution 𝑥(𝜎, 𝜙, 𝑢) of (5.3) with 𝑥𝜎(𝜎, 𝜙, 𝑢) = 𝜙, 𝑥𝑡1(𝜎,𝜙, 𝑢) = 0 at 

some 𝑡1, 𝑢 ∈ 𝑈 

Definition 5.6: (Reachable set) 

The reachable set of (5.3) is a subset of 𝐸𝑚 given by  

𝒫(𝜎, 𝑡) = {∫𝑍(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠:  𝑢 ∈ 𝐿2([𝜎, 𝑡],  𝐸
𝑚)

𝑡

𝜎

} . 

If the controls are in 𝐿2([𝜎, 𝑡], 𝐶
𝑚), we define the constraint reachable set by 
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𝑅(𝜎, 𝑡) = {∫𝑍(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠:  𝑢 ∈ 𝐿2([𝜎, 𝑡], 𝐶
𝑚)

𝑡

𝜎

} , 

where 𝑈 = 𝐿2
𝑙𝑜𝑐([𝜎, 𝑡], 𝐶𝑚). 

Definition 5.7: (Controllability Matrix) 

The controllability matrix of (5.3) will be given by 

𝑊(𝜎, 𝑡) = ∫𝑍(𝑡, 𝑠)𝑍𝑇(𝑡, 𝑠)𝑑𝑠

𝑡

𝜎

 , 

where  𝑍𝑇 is the transpose of 𝑍. 

5.3. Necessary and sufficient conditions for controllability 

This section develops and proves necessary and sufficient controllability and null 

controllability conditions for the system (5.2) by exploring the method described in Jacobs 

and Langenhop (1976), Rivera Rodas and Langenhop (1978). Some controllability results 

which are relevant to this investigation are also given. 

Lemma 5.1 

The system (5.3) is completely controllable if and only if 𝑊(𝜎, 𝑡1) is non-singular 

Proof. The proof is similar to that of Dauer and Gahl (1977) for retarded systems; it is done 

mutatis mutandis in applying to system (5.3). Assume 𝑊(𝜎, 𝑡1) is non-singular. Let 𝜙  be 

continuous on 𝑊2
(1)

, and let 𝑥1 ∈ 𝐸
𝑛. Let 𝑢 be the admissible control function given by  

𝑢(𝑡) = 𝑍𝑇(𝑡, 𝑠)𝑊(𝜎, 𝑡)−1[𝑥1 − 𝑥𝑡(𝑡1, 0)]  , 

for 𝑡 ∈ [𝜎, 𝑡1]. Hence, from equation (5.5) it follows that  

𝑥𝑡(𝑡1, 𝑢) = 𝑥𝑡(𝑡1, 0) + ∫ 𝑍(𝑡1, 𝑠)𝑍(𝑡1, 𝑠)
𝑇𝑊(𝜎, 𝑡1)

−1 × [𝑥1 − 𝑥𝐿(𝑡1, 0)]𝑑𝑠 = 𝑥1

𝑡1

𝜎

 . 
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Now, assume 𝑊(𝜎, 𝑡)  is singular. Then, there exists a row vector v ≠ 0  such that 

v𝑊(𝜎, 𝑡1)v
𝑇 = 0. It follows that ∫ v𝑍(𝑡1, 𝑠)(v𝑍(𝑡1, 𝑠))

𝑇
𝑑𝑠 = 0 .

𝑡1

𝜎
 Therefore, v𝑍(𝑡1, 𝑠) = 0 

almost everywhere for all 𝑡 ∈ [𝜎, 𝑡1]. Therefore, v ∫ 𝑍(𝑡1, 𝑠)𝑢(𝑠)𝑑𝑠 = 0
𝑡1

𝜎
, for all admissible 

𝑢. Since  {∫ 𝑍(𝑡1, 𝑠)𝑢(𝑠)𝑑𝑠|𝑢 is admissible 
𝑡1

𝜎
} is a vector space which is orthogonal to 𝑣, it 

cannot be equal to 𝐸𝑛. It follows from equation (5.5) that {𝑥𝑡(𝑡1, 𝑢)| 𝑢 is admissible} cannot 

be equal to 𝐸𝑛. Therefore the system (5.3) is not completely controllable on [𝜎, 𝑡1], and the 

proof is complete. ⎕ 

Proposition 5.1 

The system (5.3) is controllable on [𝜎, 𝑡1] if and only if 0 ∈ int 𝑅(𝜎, 𝑡) 

Proof. Since  𝑅(𝜎, 𝑡) is known to be a closed and convex subset of 𝐸𝑛, there exists a point 

𝑦1 , on the boundary of 𝑅(𝜎, 𝑡), which implies that there is a support plane 𝜋  of 𝑅(𝜎, 𝑡) 

through 𝑦1, that is, 𝜂𝑇(𝑦 − 𝑦1) ≤ 0 for each 𝑦 ∈ 𝑅(𝜎, 𝑡), where 𝜂 ≠ 0 is an outward normal 

to 𝜋. If 𝑢1 is the control corresponding to 𝑦1 then 𝜂𝑇 ∫𝑍(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠 ≤𝜂𝑇 ∫𝑍(𝑡, 𝑠)𝑢1(𝑠)𝑑𝑠 , 

for each 𝑢 ∈ 𝐶𝑚. Since the control function lie in an 𝑚-dimensional unit cube 𝐶𝑚 in 𝐸𝑚, this 

last inequality holds for each 𝑢 ∈ 𝐶𝑚 if and only if  

𝜂𝑇∫𝑍(𝑡1, 𝑠)𝑢(𝑠)𝑑𝑠 ≤∫|𝜂
𝑇𝑍(𝑡1, 𝑠)𝑢1(𝑠)|𝑑𝑠 = 𝑦1 =∫|𝜂

𝑇𝑍(𝑡1, 𝑠)|𝑑𝑠 , 

 and 𝑢1(𝑠) = sgn 𝜂
𝑇𝑍(𝑡1, 𝑠) . Now 0 ∈ 𝑅(𝜎, 𝑡)  always, if 0  where not in the interior of 

𝑅(𝜎, 𝑡), then 0 would be on the boundary. Hence, from the preceding arguments, this implies 

that 0 = ∫|𝜂𝑇𝑍(𝑡1, 𝑠)|𝑑𝑠 , so that 𝜂𝑇𝑍(𝑡1, 𝑠) = 0 almost everywhere 𝑠 ∈ [𝜎, 𝑡1]. This by the 

definition of properness implies that the system is not proper. Since  𝜂 ≠ 0, this completes 

the proof. ⎕ 
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Proposition 5.2 

The system (5.3) is completely controllable with constraint on [𝜎, 𝑡1]  if and only if 0 ∈

𝑅(𝜎, 𝑡) 

Proof.  Assume (5.3) is completely controllable, then by Lemma 5.1, 𝑊 is non-singular. Note 

that 𝑊 non-singular is equivalent to 𝑊 being positive definite and this in turn is equivalent to  

𝜂𝑇𝑍(𝑡1, 𝑠) = 0 almost everywhere on [𝜎, 𝑡1] which implies 𝜂 = 0. This by definition implies 

that system (5.3) is proper. Hence by Proposition 5.1, this holds if and only if  0 ∈ 𝑅(𝜎, 𝑡). ⎕ 

Proposition 5.3 

The following are equivalent for system (5.3). 

(i) 𝑊(𝜎, 𝑡) is non-singular, 

(ii) System (5.3) is completely controllable on [𝜎, 𝑡1], 𝑡1 > 𝜎 

(iii) System (5.3) is proper on [𝜎, 𝑡1], 𝑡1 > 𝜎 

Proof. The idea in this proof is to show that (i) ⇒ (ii), (ii) ⇒ (iii) and (iii) ⇒ (i). To show that 

(i) ⇒  (ii): Define the operator 𝐾: 𝐿2([𝜎, 𝑡1], 𝐸
𝑚) →  𝐸𝑚  by 𝐾(𝑢) = ∫ 𝑍(𝑡1, 𝑠)𝑢(𝑠)𝑑𝑠

𝑡1

𝜎
, 

where 𝐾 is a continuous linear operator from a Hilbert space to another. Thus, 𝑅(𝐾) ⊆ 𝐸𝑛 is 

a linear subspace and its orthogonal complement satisfies the relation 

{𝑅(𝐾)}⊥ = 𝑁(𝐾∗)                                                                                                                     (5.9) 

where 𝐾∗ is the adjoint of  𝐾, 𝐾∗: 𝐸𝑛 → 𝑈 ⊆ 𝐿2. By the non-singularity of the controllability 

matrix 𝑊(𝜎, 𝑡1), the symmetric operator 𝐾𝐾∗ = 𝑊(𝜎, 𝑡1) is positive definite and hence 

{𝑅(𝐾)}⊥ = {0}, and therefore 𝑁(𝐾∗) = {0} by (5.9). For any 𝑐 ∈ 𝐸𝑛, 𝑢 ∈ 𝐿2,  

〈𝑐, 𝐾𝑢〉 = 〈𝐾∗𝑐, 𝑢〉, 〈𝑐, 𝐾𝑢〉 = 〈𝑐, ∫ 𝑍(𝑡1, 𝑠)𝑢(𝑠)𝑑𝑠
𝑡1

𝜎
〉 = ∫ 𝑐𝑇[𝑍(𝑡1, 𝑠)]𝑢(𝑠)𝑑𝑠 .

𝑡1

𝜎
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Thus, 𝐾∗ is given by  𝑐 → 𝑐𝑇[𝑍(𝑡1, 𝑠)] , 𝑠 ∈ [𝜎, 𝑡1].  𝑁(𝐾
∗) is therefore the set of all 𝑐 ∈ 𝐸𝑛 

such that 𝑐𝑇[𝑍(𝑡1, 𝑠)] = 0, almost everywhere in [𝜎, 𝑡1]. Since 𝑁(𝐾∗) = {0}, all such 𝑐 are 

equal to zero, that is 𝑐 = 0. This establishes the properness of system (5.3). 

(ii) ⇒ (iii): The task now is to show that, system (5.3) is relatively controllable on each 

interval [𝜎, 𝑡1] . Let 𝑐 ∈ 𝐸𝑛 , if system (5.3) is proper then 𝑐𝑇[𝑍(𝑡1, 𝑠)] = 0  almost 

everywhere  𝑠 ∈ [𝜎, 𝑡1]  for each 𝑡1  implies 𝑐 = 0 . Thus, ∫ 𝑐𝑇[𝑍(𝑡1, 𝑠)]𝑢(𝑠)𝑑𝑠 = 0
𝑡1

𝜎
 for 

𝑢 ∈ 𝐿2 . It follows that the only vector orthogonal to the set 

𝑅(𝜎, 𝑡1) = {∫ 𝑍(𝑡1, 𝑠)𝑢(𝑠)𝑑𝑠: 𝑢 ∈ 𝐿2
𝑡1

𝜎
}  is the zero vector. Hence, {𝑅(𝜎, 𝑡1)}

⊥ = {0}. That is 

𝑅(𝜎, 𝑡1) = 𝐸
𝑛. This establishes relative controllability on [𝜎, 𝑡1] of system (5.3). 

(iii) ⇒ (i): Next is to show that if system (5.3) is relatively controllable then 𝑊(𝜎, 𝑡1) is non-

singular. Assume for a contradiction that 𝑊(𝜎, 𝑡1) is singular, then there exists an 𝑛 vector 

v ≠ 0  such that v𝑊(𝜎, 𝑡1)v
𝑇 = 0 . Then, ∫ ‖v[𝑍(𝑡1, 𝑠)]‖

2𝑑𝑠 = 0
𝑡1

𝜎
, this implies that 

‖v[𝑍(𝑡1, 𝑠)]‖
2 = 0 almost everywhere 𝑠 ∈ [𝜎, 𝑡1], hence v[𝑍(𝑡1, 𝑠)] = 0, almost everywhere 

𝑠 ∈ [𝜎, 𝑡1]. This contradicts the assumption of properness of the system since  𝑣 ≠ 0 and this 

completes the proof. ⎕ 

Lemma 5.2  

The system (5.3) is completely controllable on [𝜎, 𝑡1] if and only if it is controllable on 

[𝜎, 𝑡1]. 

Proof. The proof follows immediately from Proposition 5.1 and 5.2. ⎕ 

5.3.1. Controllability results 

Necessary and sufficient controllability conditions for systems (5.3) will now be developed in 

this section  
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Let 𝑥: [𝛼, 𝛽] → 𝐸𝑞 ,   𝑞 a positive integer, be absolutely continuous and define the differential 

operator for neutral systems 𝒟 by (𝒟𝑥)(𝑡) = �̇�(𝑡) = 𝑑𝑥(𝑡) 𝑑𝑡⁄ , almost everywhere on [𝛼, 𝛽]. 

Higher powers of the operator 𝒟 are defined inductively by 𝒟𝑘+1 = 𝒟𝒟𝑘, with domain equal 

to all 𝑥: [𝛼, 𝛽] → 𝐸𝑞 , such that 𝒟𝑘𝑥 is absolutely continuous on [𝛼, 𝛽]. Note that, 𝒟0 refers to 

the identity (𝒟0 𝑥)(𝑡) = 𝑥(𝑡), 𝑡 ∈ [𝛼, 𝛽]. 

Define 𝑊2,0
𝑝 (𝜏, 𝐸𝑞), where 𝑝 is a nonnegative integer to be the collection of all 𝑥: (−∞, 𝜏] →

𝐸𝑞  such that 𝑥(𝑡) = 0 for 𝑡 ≤ 0 and the restriction of 𝑥 on [0, 𝜏] is in 𝑊2
𝑝([0, 𝜏], 𝐸𝑞), adopt 

the convention 𝑊2
0([0, 𝜏], 𝐸𝑞) = 𝐿2([0, 𝜏], 𝐸

𝑞). For 𝑓 ∈ 𝑊2,0
𝑝 (𝜏, 𝐸𝑞) define the shift operator 

𝒮 by  

(𝒮𝑓)(𝑡) = 𝑓(𝑡 − ℎ) ,   𝑡 ≤ 𝜏 .                                                                                              (5.10) 

Define 𝒮0 to be the identity operator on 𝑊2,0
𝑝 (𝜏, 𝔼𝑞) and take 𝒮𝑘+1 = 𝒮𝒮𝑘, 𝑘 = 0, 1, 2,⋯ by 

inductively using (5.10), so that for any integer 𝓇 ≥ 1,  𝑔𝓇 :𝑊2,0
𝑝 (𝜏, 𝐸𝑞) → 𝑊2,0

𝑝 (𝜏, (𝐸𝑞)𝓇) 

can be defined by 𝑔𝓇𝑓 = [𝒮0𝑓, 𝒮1𝑓,⋯ , 𝒮𝓇−1𝑓]𝑇 .  

Observe from the definition of the differential operator  𝒟, and the shift operator 𝑆 that for 

𝑝 ≥ 1, if the function space 𝑊2,0
𝑝 (𝜏, 𝐸𝑞) is taken as a common domain for the operators 𝑆 and 

𝒟, then  𝒮 and 𝒟 commute in this setting and each commutes with multiplication by a scalar 

(element in 𝐸). The operators 𝒟  , 𝒮  and multiplication by a scalar all commute with the 

coordinate projections; that is, if 𝑥 ∈ 𝑊2,0
𝑝 (𝜏, 𝐸𝑞) and (𝑥)𝑖 = 𝑥𝑖 denotes the 𝑖th component of 

𝑥, then (𝒮𝑥)𝑖 = 𝒮𝑥𝑖  and (𝒟𝑥)𝑖 = 𝒟𝑥𝑖  for all 𝑖 = 1,… , 𝑞 . Note also that, for an operation 

with 𝛼 ∈ 𝐸 on functions in 𝑊2,0
𝑝 (𝜏, 𝐸𝑞), 𝒟𝛼 = 𝛼𝒟 is different from a scalar with value 𝛼 for 

which the operation (𝒟𝛼)(𝑡) = 0. 

For any 𝑛 × 𝑛 matrix 𝐴 and 𝑛 × 𝑚 matrix 𝐵, one can define 𝑛 × 𝓇𝑚 matrix by  



 

98 
 

𝑃𝓇[𝐴, 𝐵] = [𝐵, 𝐴𝐵,⋯ ,𝐴𝓇−1𝐵], for integers 𝓇 ≥ 1. Consider the neutral system 

(𝑑 𝑑𝑡⁄ )(𝑥 − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐵𝑢(𝑡),                                     (5.11) 

with the assumption that 𝐴𝑖 , 𝑖 = 0, 1, 2 are 𝑛 × 𝑛 constant matrices, and 𝐵 chosen to be 𝑛 × 1 

constant real matrix. Then, the solution 𝑥(∙, 0, 𝑢) of (5.11) is the restriction to [−ℎ, 0] of the 

solution 𝑥 ∈ 𝑊2,0
(1)(𝜏, 𝐸𝑛) of the equation 

(𝐼𝒟 − 𝐴0𝒮𝒟 −𝐴1 − 𝐴2𝒮)𝑥 = 𝐵𝑢  . 

Now define the matrix 𝐴(𝒟, 𝒮) by the equation 

𝐴(𝒟, 𝒮) = 𝐼𝒟 − 𝐴0𝒮𝒟 −𝐴1 − 𝐴2𝒮, 

and let 

�̌�(𝒟, 𝒮) = adj 𝐴(𝒟, 𝒮) , 

where “adj” denotes the transposed matrix of cofactors. Some basic relationship exists 

between these two operators which by Jacobs and Langenhop (1976) can be expressed as 

�̌�(𝒟, 𝒮) = ∑ �̌�𝑖(𝒟)𝒮
𝑖

𝑛−1

𝑖=0

= ∑�̂�𝑖(𝒮)𝒟
𝑖

𝑛−1

𝑖=0

,                                                                          (5.12) 

where the 𝑛 × 𝑛  matrix polynomials �̌�𝑖(𝒟) , �̂�𝑖(𝒮)  are at most of degree 𝑛 − 1  in their 

argument. Using the polynomial �̌�𝑖(𝒟) in (5.12) define a unique matrix operator by 

𝐾(𝒟) = [𝑃0(𝒟)𝐵, 𝑃1(𝒟)𝐵,⋯ ,𝑃𝑛−1(𝒟)𝐵]. 

Now, the operator 𝐾(𝒟) can be written in the form of a polynomial to get 

𝐾(𝒟) = ∑𝐾𝑖𝒟
𝑛−1−𝑖 ,                            

𝑛−1

𝑖=0

                                                                            (5.13) 

where, 𝐾𝑖  , 𝑖 = 0, 1,⋯ , 𝑛 − 1 are 𝑛 × 𝑛 constant real matrices, and let 𝜉(exp(−𝜆ℎ)) be the 

transpose of [1, exp(−𝜆ℎ) ,⋯ ,  exp(−(𝑛 − 1)𝜆ℎ)] for all complex numbers 𝜆 , ℎ > 0. 
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Theorem 5.1 

Let 𝜏 > 𝑛ℎ, then system (5.11) is controllable on [0, 𝜏] if and only if rank  𝑃𝑛[𝐴0, 𝐵] = 𝑛  

and 𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0 for every complex 𝜆. 

Proof. This is Theorem 3.4 of Rivera Rodas and Langenhop (1978). ⎕ 

Corollary 5.1 

Let 𝜏 > 𝑛ℎ, and assume that system (5.3) satisfies the following 

(i) rank 𝑃𝑛[𝐴0, 𝐵] = 𝑛; 

(ii) 𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0, for every complex 𝜆, 

Then, system (5.3) is completely controllable on [0, 𝜏]. 

Proof. If condition (i) and (ii) holds, then by Theorem 5.1, the system (5.3) is controllable on 

[0, 𝜏]. This, by Lemma 5.2, implies that system (5.3) is completely controllable on [0, 𝜏]. 

Conversely, if system (5.3) is completely controllable on [0, 𝜏], then it is controllable by 

Lemma 5.2, and by Theorem 5.1, rank  𝑃𝑛[𝐴0, 𝐵] = 𝑛  and 𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0 for every 

complex 𝜆, and the proof is complete. ⎕ 

5.3.2. Null controllability result 

This section can now focus on the null controllability result for the neutral system with 

infinite delay as given by equation (5.2). The results of this section are part of the 

contributions of the thesis in this chapter. 

Theorem  5.2 

Consider system (5.1), and assume the following 

(i) 𝐴0, 𝐴1, 𝐴2are 𝑛 × 𝑛 constant matrices, 𝐵 is 𝑛 × 1 constant real matrix 
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(ii) for 𝜏 > 𝑛ℎ, rank  𝑃𝑛[𝐴0, 𝐵] = 𝑛 ; 

(iii) 𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0, for every complex 𝜆, 

(iv) 𝑠𝑢𝑝{Re(𝜆), det Δ( 𝜆) = 0} < 0, with 

Δ(𝜆) = 𝜆(𝐼 − 𝐴0 exp(−𝜆ℎ)) − 𝐴1 − 𝐴2 exp(−𝜆ℎ) − ∫exp(𝜆𝜃) 𝐴(𝜃)𝑑𝜃

0

−∞

 

(v) and 𝐷𝜙 = 𝜙(0) − 𝐴0𝜙(−ℎ) is uniformly stable. 

Then, system (5.1) is null controllable with constraints on (0, 𝜎), 𝜎 > 𝜏. 

Proof. Because of (i), (ii) and (iii), system (5.1) is controllable on [0, 𝜏] by Theorem 5.1. 

Hence, 0 ∈ Int 𝑅(0, 𝜏) by Proposition 5.1. By condition (iv), and (v) the system (5.1) with 

𝑢 = 0  satisfies 𝑥𝑡(∙, 𝜙, 0) → 0  as 𝑡 → ∞ . Hence, at some 𝑡1 > 0, 𝑥𝑡1(0, 𝜙, 0) ∈ Int 𝑅(0, 𝜏) 

and hence 0 ∈ Int 𝔘, the domain of null controllability of (5.1). Suppose for the contrary that 

0 ∉ Int 𝔘. Since 𝑥 = 0 is a solution of (5.1) with 𝑢 = 0, then 0 ∈𝔘. This implies that, there 

exists a sequence {𝜙𝑖} ⊆ 𝑊2
(1)

 such that 𝜙𝑖 → 0 as 𝑖 → ∞ and 𝜙𝑖 ∉ 𝔘, for any 𝑖, therefore 

𝜙𝑖 ≠ 0. It follows from the variation of constants formula (5.5) that: 

𝑥𝑡𝑖(0, 𝜙𝑖 , 𝑢) = 𝑥𝑡(0, 𝜙𝑖, 0) + ∫ 𝑍(𝑡1, 𝑠)𝑢(𝑠)𝑑𝑠
𝑡1

𝜎
. Let 𝑧𝑖 = 𝑥𝑡1(0, 𝜙𝑖 , 0). Then, since 𝜙𝑖 ∉ 𝔘, 

𝑥𝑡1(0, 𝜙𝑖 , 𝑢) ≠ 0, for any 𝑖, and so 𝑧𝑖 ∉ 𝑅(0, 𝑡1), for any 𝑡1 > 0 and 𝑧𝑖 ≠ 0. However 𝑧𝑖 → 0 

as 𝑖 → ∞, and 0 ∉ Int 𝑅(0, 𝑡1) which is a contradiction. Therefore, 0 ∈ Int𝔘, and hence there 

exists a ball 𝑆2 around 0 which is contained in 𝔘. Again, by (iv) there exists some 𝑡2 < ∞, 

𝑥𝑡2(∙, 𝜙, 0) ∈ 𝑆2. Therefore, using 𝑡2 as initial point and 𝑥𝑡2(∙, 𝜙, 0) ≡ 𝜓 as initial function, 

there exists 𝑢 ∈ 𝑈 and 𝑡3 > 𝑡2 such that, the solution 𝑥(𝑡2, 𝑥𝑡1(∙, 𝜙, 0), 𝑢) of (5.1) satisfies 

𝑥𝑡3(∙, 𝑡1, 𝑥𝑡1 , 𝑢) = 0, and the proof is complete. ⎕ 

 



 

101 
 

Remark 5.1 

The conditions imposed on Theorem 5.2 constrain 𝑈 in a box but these conditions can also 

allow the constraint set 𝑈 to be an arbitrary compact set as shown in Theorem 5.3. This is 

possible because the null controllability of linear neutral system, in general, depends on the 

length of the time interval over which the system operates (Jacobs and Langenhop 1976). 

Therefore restrictions on interval could be made based on the requirements for the 

controllability of the linear controllable base system. Again, these conditions are made 

possible from the definition of 𝑈  because by Theorem 5.1, if the conditions  

rank  𝑃𝑛[𝐴0, 𝐵] = 𝑛 , and 𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0 for every complex 𝜆 holds on [𝜎, 𝑡1], 𝑡1 ≥

𝑡  then (5.3) is controllable. This means 𝑅(𝜎, 𝑡) = 𝑊2
(1)

. Now define a map 𝐾  taking 

𝐿2([𝜎, 𝑡], 𝐸
𝑚) → 𝑊2

(1)
by 𝐾(𝑢) = 𝑥𝑡(∙, 𝜎, 𝜙, 𝑢) . Because 𝐾  is a continuous linear 

transformation of  𝐿2 onto 𝑊2
(1)

 it is open (Hale 1977). From the definition of  𝑈, there is an 

open ball 𝑆 ⊆ 𝑈  around zero, so that 𝐾(𝑆) ⊆ 𝐾(𝑈) = 𝑅(𝜎, 𝑡1) . Therefore, 0 ∈ 𝐾(𝑆) ⊆

𝑅(𝜎, 𝑡1) . This implies that 𝐾(𝑆)  is open, since 𝑆  is open and therefore 0 ∈ int 𝑅(𝜎, 𝑡) . 

Moreover, if it is assumed that (5.3) is completely controllable on [𝜎, 𝑡1] then by Lemma 5.1, 

𝑊(𝜎, 𝑡1) is non-singular which in turn is equivalent to 𝜂𝑇𝑍(𝑡1, 𝑠) = 0 almost everywhere on 

[𝜎, 𝑡1], and 𝜂 = 0, this implies properness of (5.3) by Definition 5.1, hence 0 ∈ 𝑅(𝜎, 𝑡) by 

Proposition 5.2, and therefore completely controllable on (0, 𝜎), 𝜎 > 𝜏 with constraint. 

Theorem 5.3 

Assume for system (5.2) that 

(i) the constraint set 𝑈 is an arbitrary compact set of  𝐸𝑚 

(ii) 𝐷𝜙 = 𝜙(0) − 𝐴0𝜙(−ℎ) is uniformly stable 
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(iii) the system (5.4) is uniformly asymptotically stable; so that the solution of (5.4) 

satisfies ‖𝑥𝑡(𝜎, 𝜙, 0)‖ ≤ 𝑘 𝑒𝑥𝑝(−𝛼(𝑡 − 𝜎))‖𝜙‖, 𝛼 > 0 , 𝑘 > 0. 

(iv) the system (5.3) is completely controllable  

(v) The continuous function 𝑓 satisfies |𝑓(𝑡, 𝑥(∙), 𝑢(∙))| ≤ exp(−𝑏𝑡) 𝜋(𝑥(∙), 𝑢(∙)), 

for all (𝑡, 𝑥(∙), 𝑢(∙)) ∈ [𝜎,∞) ×𝑊2
(0)
× 𝐿2, where 𝜋 = ∫ 𝜋(𝑥(∙), 𝑢(∙))𝑑𝑠 ≤

∞

𝜎

𝑀 < ∞, and 𝑏 − 𝛼 ≥ 0. 

Then, the system (5.2) is null controllable. 

Proof. By (iv), 𝑊−1 exists for each 𝑡1 > 𝜎. Assuming the pair of functions 𝑥, 𝑢 forms a pair 

to the integral equations  

𝑢(𝑡) = −𝑍(𝑡1, 𝑠)
𝑇𝑊−1(𝜎, 𝑡1) [𝑥𝑡1(𝜎,𝜙, 0) + ∫ 𝑋(𝑡1, 𝑠) ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃𝑑𝑠

0

−∞

𝑡1

𝜎

     

+ ∫ 𝑋(𝑡1, 𝑠)

𝑡1

𝜎

𝑓(𝑠, 𝑥(∙), 𝑢(∙))𝑑𝑠] ,                                                            (5.14) 

for some suitably chosen  𝑡1 ≥ 𝑡 ≥ 𝜎, 𝑢(𝑡) = 𝑣(𝑡), 𝑡 ∈ [𝜎 − ℎ, 𝜎] 

𝑥(𝑡) = 𝑥𝑡(𝜎, 𝜙, 0) + ∫𝑍(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠

𝑡

𝜎

 + ∫𝑋(𝑡, 𝑠) ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃𝑑𝑠

0

−∞

𝑡

𝜎

+∫𝑋(𝑡, 𝑠)

𝑡

𝜎

𝑓(𝑠, 𝑥(∙), 𝑢(∙))𝑑𝑠 ,                                                   (5.15) 

𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [𝜎 − ℎ, 𝜎]. 

Then 𝑢 is square integrable on [𝜎 − ℎ, 𝑡1] and 𝑥 is a solution of (5.2) corresponding to 𝑢 with 

initial state 𝑥𝜎(𝑡) = 𝜙. Also, 𝑥(𝑡1) = 0. It is necessary to show now that  𝑢: [𝜎, 𝑡1] → 𝑈 is in 

the arbitrary compact constraint subset of 𝐸𝑚, that is |𝑢(𝑡)| ≤ 𝑎1, for some constant 𝑎1 > 0. 

By (ii) and (iii), and the continuity of 𝐵 in compact intervals, it follows that for some 

𝑑1 > 0, 𝑑2 > 0, |𝑍(𝑡1, 𝑠)
𝑇𝑊−1(𝜎, 𝑡1)| ≤ 𝑑1, 
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|𝑥𝑡1(𝜎,𝜙, 0) + ∫ 𝑋(𝑡1, 𝑠) ∫ 𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃𝑑𝑠
0

−∞

𝑡1

𝜎
| ≤ 𝑑2 exp(−𝛼(𝑡1 − 𝜎)).  

Hence,  

|𝑢(𝑡)| ≤ 𝑑1 [𝑑2 exp(−𝛼(𝑡1 − 𝜎)) + ∫ 𝑘 𝑒𝑥𝑝(−𝛼(𝑡 − 𝑠))

𝑡1

𝜎

exp(−𝑏𝑠) 𝜋(𝑥(∙), 𝑢(∙))𝑑𝑠] 

and therefore, 

|𝑢(𝑡)| ≤ 𝑑1𝑑2 exp(−𝛼(𝑡1 − 𝜎)) + 𝑑1𝑘𝑀𝑒𝑥𝑝(−𝛼(𝑡1)),                                                (5.16) 

Since 𝑏 − 𝛼 ≥ 0 and  𝑠 ≥ 𝜎 ≥ 0. Hence, 𝑡1 from (5.16) can be chosen sufficiently large such 

that |𝑢(𝑡)| ≤ 𝑎1 , 𝑡 ∈ [𝜎, 𝑡1], showing that 𝑢 is admissible control. It remains to prove the 

existence of a pair of the integral equations (5.14) and (5.15). Let ℬ represent the Banach 

space of all functions (𝑥, 𝑢): [𝜎 − ℎ, 𝑡1] × [𝜎 − ℎ, 𝑡1] → 𝐸𝑛 × 𝐸𝑚, where 

𝑥 ∈ ℬ([𝜎 − ℎ, 𝑡1], 𝐸
𝑛); 𝑢 ∈ 𝐿2([𝜎 − ℎ, 𝑡1], 𝐸

𝑚) with the norm defined by 

‖(𝑥, 𝑢)‖ = ‖𝑥‖2 + ‖𝑢‖2, where ‖𝑥‖2 = {∫ |𝑥(𝑠)|𝑑𝑠
𝑡1

𝜎−ℎ
}
1 2⁄

; ‖𝑢‖2 = {∫ |𝑢(𝑠)|𝑑𝑠
𝑡1

𝜎−ℎ
}
1 2⁄

.  

Define the operator 𝐾:ℬ → ℬ by 𝐾(𝑥, 𝑢) = (𝑦, 𝑤), where  

𝑤(𝑡) = −𝑍(𝑡1, 𝑠)
𝑇𝑊−1(𝜎, 𝑡1) [𝑥𝑡1(𝜎, 𝜙, 0) + ∫ 𝑋(𝑡1, 𝑠) ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃𝑑𝑠

0

−∞

𝑡1

𝜎

     

+ ∫ 𝑋(𝑡1, 𝑠)

𝑡1

𝜎

𝑓(𝑠, 𝑥𝑠, 𝑢(𝑠))𝑑𝑠] ,                                                               (5.17) 

for 𝑡 ∈ 𝐽 = [𝜎, 𝑡1] and 𝑣(𝑡) = 𝑤(𝑡) for 𝑡 ∈ [𝜎 − ℎ, 𝜎]. 

𝑦(𝑡) = 𝑥𝑡(𝜎, 𝜙, 0) + ∫𝑍(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠

𝑡

𝜎

 + ∫𝑋(𝑡, 𝑠) ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃𝑑𝑠

0

−∞

𝑡

𝜎

+∫𝑋(𝑡, 𝑠)

𝑡

𝜎

𝑓(𝑠, 𝑥𝑠, 𝑢(𝑠))𝑑𝑠 ,                                                                   (5.18) 

for 𝑡 ∈ 𝐽  and 𝑦(𝑡) = 𝜙(𝑡) for 𝑡 ∈ [𝜎 − ℎ, 𝜎]. 

It is clear from (5.16) that |𝑣(𝑡)| ≤ 𝑎1 for 𝑡 ∈ 𝐽 and also 𝑣 ∶ [𝜎 − ℎ, 𝜎] → 𝑈, so that 
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|𝑣(𝑡)| ≤ 𝑘. Hence, ‖𝑣‖2 ≤ 𝑎1(𝑡1 + ℎ − 𝜎)
1 2⁄ = 𝑏0. Again, 

|𝑦(𝑡)| ≤ 𝑑2 exp(−𝛼(𝑡1 − 𝜎)) + 𝑑3∫|𝑣(𝑠)|𝑑𝑠

𝑡

𝜎

+ 𝑘𝑀𝑒𝑥𝑝(−𝛼(𝑡1)), 

where 𝑑3 = 𝑠𝑢𝑝|𝑍(𝑡, 𝑠)|. Since 𝛼 > 0, 𝑡 ≥ 𝜎 ≥ 0, it follows that  

|𝑦(𝑡)| ≤ 𝑑2 + 𝑑3𝑎1(𝑡 − 𝜎) + 𝑘𝑀 = 𝑏1, 𝑡 ∈ 𝐽  and |𝑦(𝑡)| ≤ sup|𝜙(𝑡)| = 𝛿 , 𝑡 ∈ [𝜎 − 𝜏, 𝜎] . 

Hence, if 𝜆 = max[𝑏1, 𝛿], then ‖𝑦‖2 ≤ 𝜆(𝑡1 + ℎ − 𝜎)
1 2⁄ = 𝑏2 < ∞ . Let 𝑟 = max[𝑏1, 𝑏2] . 

Then letting 𝑄(𝑟) = {(𝑥, 𝑢) ∈ ℬ: ‖𝑥‖2 ≤ 𝑟 , ‖𝑢‖2 ≤ 𝑟} , it follows that 𝐾:𝑄(𝑟)  → 𝑄(𝑟) . 

Now, since 𝑄(𝑟) is closed, bounded and convex, by Riesz theorem (see Kantorovich and 

Akilov 1982), it is relatively compact under the transformation 𝐾. Hence, the Schauder’s 

fixed point theorem implies that 𝐾  has a fixed point, and therefore system (5.2) is null 

controllable. ⎕ 

5.4. Stabilisation of the system 

This section investigates the stabilisation of the neutral functional differential system with 

infinite delays. A less conservative delay - independent stability criterion is developed in 

terms of LMI for the NFDSID.  A state feedback controller is designed for the stabilisation of 

the system using the feasible solution of the resultant LMI which is solved using the LMI 

toolbox in MATLAB. The criterion developed in this section forms part of the contribution of 

the thesis in this chapter 

The asymptotic stability result of the system (5.4) with 𝐴(∙) given as 𝐺(∙), where 𝐺  is as 

defined in Section 4.2 (iii) was established in Section 4.4 using the Lyapunov-Krasovskii 

approach.  The interest now is to design a state feedback controller 𝑢(𝑡) that will stabilize the 

control base system (5.1) with 𝐴(∙) in Section 5.2 (iii) now defined as 𝐺(∙) in Section 4.2 

(iii). Let 
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𝑢(𝑡) = −𝐵𝑇𝑃𝑥(𝑡) ,                                                                                                          (5.19) 

where 𝑃 ∈ 𝐸𝑛×𝑛 is a positive-definite matrix to be designated. 

The closed-loop system design for system (5.1), using (5.19) is defined by  

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = (𝐴1 − 𝐵𝐵

𝑇𝑃)𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + ∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

.                  (5.20) 

The task now is to ensure that system (5.20) is closed-loop asymptotically stable. 

Theorem 5.4 

Consider the system (5.1) and all its assumptions; if there exists positive symmetric matrices 

𝑃, 𝑃1 > 0, some positive scalars 𝜏4, ⋯ , 𝜏6 > 0  and a positive-definite symmetric matrix 

𝑋 ∈ 𝐸𝑛×𝑛 which satisfy the following LMI 

𝒵(𝑋, 𝑃1, 𝜏4, ⋯ , 𝜏6)

=

(

 

 𝒵11      𝒵12
∗        𝒵22

                            
(𝐴2 + 𝑋𝐴1

𝑇𝐴2 − 𝐵𝐵
𝑇𝐴2)     (𝐴0 + 𝑋𝐴1

𝑇𝐴0 − 𝐵𝐵
𝑇𝐴0)

   0  0
∗           ∗
∗            ∗

                            𝐴2
𝑇𝐴2 − 𝑃1 + 𝜏5𝐴2

𝑇𝐴2               𝐴2
𝑇𝐴0

∗       𝐴0
𝑇𝐴0 − 𝐼 + 𝜏6𝐴0

𝑇𝐴0 )

 

< 0,                                                                                                                                            (5.21) 

so that, 

𝒵11 = 𝑋𝐴1
𝑇 + 𝐴1𝑋 − 2𝐵𝐵

𝑇 − 2𝑙𝑋 − 2𝑋𝐴1
𝑇𝐵𝐵𝑇 − 2𝐵𝐵𝑇𝑙𝑋, 

            𝒵12 = [𝑋𝐴1
𝑇       𝐵𝐵𝑇     𝜏4𝑋𝐴1

𝑇      𝑃1𝑋      𝐿𝑋      𝐿𝑋       𝐿𝑋       𝐿𝑋],      

𝒵22 = diag{−𝐼,   − 𝐼,   − 𝜏4𝐼,   − 𝑃1 ,   − 𝐼,   − 𝜏4𝐼,   − 𝜏5𝐼,   − 𝜏6𝐼}, 

where 𝑋 = 𝑃−1. Then, the system (5.1) is closed-loop asymptotically stable, and the input 

𝑢(𝑡) = −𝐵𝑇𝑃𝑥(𝑡) is a controller for the system (5.1). 



 

106 
 

Proof. Let the Lyapunov function be given by 𝑉 = 𝑉1 + 𝑉2 + 𝑉3 

where,  

𝑉1 = 𝑥
𝑇(𝑡)𝑃𝑥(𝑡), 

𝑉2 = ∫ �̇�𝑇(𝑡 + 𝑠)�̇�(𝑡 + 𝑠)𝑑𝑠

0

−ℎ

 

and 

𝑉3 = ∫𝑥𝑇(𝑡 + 𝑠)𝑃1𝑥(𝑡 + 𝑠)𝑑𝑠

0

−ℎ

 

Taking the derivative of 𝑉 along the solution of (5.1) gives 

�̇�1 = 𝑥
𝑇(𝐴1

𝑇𝑃 + 𝑃𝐴1 − 2𝑃𝐵𝐵
𝑇𝑃)𝑥 + 2𝑥𝑇𝑃𝐴2𝑥ℎ + 2𝑥

𝑇𝑃𝐴0�̇�ℎ

+ 2𝑥𝑇𝑃 ∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

 .                                                                                      (5.22) 

�̇�2 = �̇�
𝑇�̇� − �̇�ℎ

𝑇�̇�ℎ

= 𝑥𝑇𝐴1
𝑇𝐴1𝑥 + 𝑥

𝑇𝑃𝐵𝐵𝑇𝐵𝐵𝑇𝑃𝑥 + 𝑥ℎ
𝑇𝐴2

𝑇𝐴2𝑥ℎ + �̇�ℎ
𝑇𝐴0

𝑇𝐴0�̇�ℎ

+ ( ∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

)

𝑇

∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

− 2𝑥𝑇𝐴1
𝑇𝐵𝐵𝑇𝑃𝑥 + 2𝑥𝑇𝐴1

𝑇𝐴2𝑥ℎ

+ 2𝑥𝑇𝐴1
𝑇𝐴0�̇�ℎ − 2𝑥

𝑇𝑃𝐵𝐵𝑇𝐴2𝑥ℎ − 2𝑥
𝑇𝑃𝐵𝐵𝑇𝐴0�̇�ℎ + 2𝑥ℎ

𝑇𝐴2
𝑇𝐴0�̇�ℎ

+ 2𝑥𝑇𝐴1
𝑇 ∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

− 2𝑥𝑇𝑃𝐵𝐵𝑇 ∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

+ 2𝑥ℎ
𝑇𝐴2

𝑇 ∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

+ 2�̇�ℎ
𝑇𝐴0

𝑇 ∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

− �̇�ℎ
𝑇�̇�ℎ .                                                                      (5.23) 
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�̇�3 = 𝑥
𝑇𝑃1𝑥 − 𝑥ℎ

𝑇𝑃1𝑥ℎ .                                                                                                         (5.24) 

Applying Lemma 4.5 with (4.28) to the term 2𝑥𝑇𝑃𝐵𝐵𝑇 ∫ 𝐺(𝑡, 𝑥s)𝑑𝑠
0

−∞
 in equation (5.23) 

gives; 

−2𝑥𝑇𝑃𝐵𝐵𝑇 ∫𝐺(𝑡, 𝑥s)𝑑𝑠

0

−∞

≤ −2𝑥𝑇𝑃𝐵𝐵𝑇𝑙𝑥 ,                                                                       (5.25) 

Using (5.25) and inequalities (4.28) – (4.32) in Section 4.4.1 of Chapter 4, the overall 

derivative of 𝑉  along the solution of (5.1) can be expressed as �̇� = �̇�1 + �̇�2 + �̇�3 ≤

𝜆𝑇(𝑡)𝔐(𝑃, 𝑃1, 𝜏4, ⋯ , 𝜏6)𝜆(𝑡), 

where 

𝔐(𝑃,𝑃1, 𝜏4, 𝜏5, 𝜏6) = (

𝔐11 (𝑃𝐴2 + 𝐴1
𝑇𝐴2 − 𝑃𝐵𝐵

𝑇𝐴2) (𝑃𝐴0 + 𝐴1
𝑇𝐴0 − 𝑃𝐵𝐵

𝑇𝐴0)

∗ 𝐴2
𝑇𝐴2 − 𝑃1 + 𝜏5𝐴2

𝑇𝐴2 𝐴2
𝑇𝐴0

∗ ∗ 𝐴0
𝑇𝐴0 − 𝐼 + 𝜏6𝐴0

𝑇𝐴0

), 

and 𝜆(𝑡) = [𝑥𝑇 , 𝑥ℎ
𝑇 ,  �̇�ℎ

𝑇]𝑇, so that, 

𝔐11 = 𝐴1
𝑇𝑃 + 𝑃𝐴1 − 2𝑃𝐵𝐵

𝑇𝑃 − 2𝑃𝑙 − 2𝐴1
𝑇𝐵𝐵𝑇𝑃 − 2𝑃𝐵𝐵𝑇𝑙 + 𝐴1

𝑇𝐴1 + 𝑃𝐵𝐵
𝑇𝐵𝐵𝑇𝑃

+ 𝜏4𝐴1
𝑇𝐴1 + R + 𝑙

2𝐼 + 𝜏4
−1𝑙2𝐼 + 𝜏5

−1𝑙2𝐼 + 𝜏6
−1𝑙2𝐼 

Pre and most multiplying 𝔐(∙) by Γ−𝑇and Γ; and now using the Schur complement gives 

𝒵(𝑋, 𝑃1, 𝜏4, 𝜏5, 𝜏6) 

where 

Γ = (
𝑋 0 0
0 𝐼 0
0 0 𝐼

) 



 

108 
 

It follows then that �̇� is negative definite since  𝔐(∙) < 0 is equivalent to 𝒵(∙) < 0, which 

implies that the system (5.1) is closed-loop asymptotically stable  (see Hale and Verduyn 

Lunel 1993). ⎕ 

Remark 5.2 

The problems in Theorem 4.4 and 5.4 are feasibility problems. The solution can be found by 

solving it in the form of a generalized eigenvalue problem see Boyd et al. (1994) for details. 

In this chapter, the solutions were found by utilizing the MATLAB’s LMI Control Toolbox 

(Gahinet et al. 1995) which implements the interior point algorithm. 

5.5. Examples on control methods 

In this section, the numerical examples used in Chapter 4 are given to illustrate the 

applicability of the control methods discussed in this chapter. These examples are part of the 

contributions made to the thesis in this chapter. 

5.5.1. Example on null controllability 

Consider the neutral control system 

(𝑑 𝑑𝑡⁄ )(𝑥 − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2(𝑡)𝑥(𝑡 − ℎ) + 𝐶0 ∫exp (𝑣𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃

0

−∞

+ 𝐵𝑢(𝑡)                                                                                                                   (5.26) 

and its perturbation 

(𝑑 𝑑𝑡⁄ )(𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐶0 ∫exp (𝑣𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃

0

−∞

+ 𝐵𝑢(𝑡) + 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ), 𝑢(𝑡)).                                                             (5.27) 

Its linear control base system is given by 
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(𝑑 𝑑𝑡⁄ )(𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐵𝑢(𝑡),                                       (5.28) 

and its free system 

(𝑑 𝑑𝑡⁄ )(𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐶0 ∫exp (𝑣𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃,

0

−∞

(5.29) 

where, 

𝐴0 = (
 0 1 2⁄

1 2⁄  0
) ,    𝐴1 = (

−1    1
  1 −2

) ,   𝐴2 = (
0 1 2⁄

0 −1 2⁄
),     

𝐶0 = (
0        0
0 −1 4⁄

) , 𝐵 = (
0
1
)  . 

𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ), 𝑢(𝑡)) = (
0

exp (– αt)sin(𝑥(𝑡) + 𝑥(𝑡 − ℎ)) ∙ cos 𝑢(𝑡)) , α > 0,   

 

The uniform stability of the system  𝐷𝜙 = 𝜙(0) − 𝐴0𝜙(−ℎ) for ℎ > 0 has been computed in 

Example 4.5.1 of Chapter 4. The total asymptotic stability of (5.29) is similarly computed in 

Example 4.5.1.  Next, the characteristic root of (5.29) is given by 

(4 − exp(−2𝜆ℎ))𝜆2 + (12 − 2 exp(−𝜆ℎ) − exp(−2𝜆ℎ))𝜆 + 4

+ (𝜆 + 1) ∫ exp (𝜆 + 𝑣)𝜃𝑑𝜃

0

−∞

= 0 ,                                                                (5.30) 

and all the roots of (5.29) have negative real part.  Hence by Lemma 4.4 of Chapter 4, system 

(5.29) is uniformly asymptotically stable. 

Finally, check that system (5.28) is controllable as follows: 

rank[𝐵, 𝐴0𝐵] = rank (
 0 1 2⁄
 1 0

) = 2 , 

              𝑃0(𝜆) = adj(𝐼 𝜆 − 𝐴1)                                                                                       

= adj (
 𝜆 + 1 −1
−1  𝜆 + 2

) = (
 𝜆 + 2 1
1  𝜆 + 1

) ,  
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              𝑃1(𝜆) = adj(−𝐴0𝜆 − 𝐴2)                                                         

= adj [(
 0 −𝜆 2⁄

−𝜆 2⁄  0
) − (

0 1 2⁄

0 −1 2⁄
)] = (

1 2⁄ (𝜆 + 1) 2⁄

𝜆 2⁄         0 
) , 

    𝐾(𝜆) = [𝑃0(𝜆)𝐵, 𝑃1(𝜆)𝐵] = (
1 (𝜆 + 1) 2⁄

 1 + 𝜆          0
) ,  

𝐾(𝜆)𝜉(exp(−𝜆ℎ)) = (
 1 (𝜆 + 1) 2⁄

1 + 𝜆          0
) (

   1
exp(−𝜆ℎ)

) . 

Observe that for all complex 𝜆, ℎ > 0, 

𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ (
0
0
) . 

Therefore system (5.28) is controllable on (0, 𝜏), 𝜏 > 2ℎ  

Moreover,  

|𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ), 𝑢(𝑡))| = |exp (– αt)sin(𝑥(𝑡) + 𝑥(𝑡 − ℎ)) ∙ cos𝑢(𝑡)| ≤ exp (– αt) ∙ 1  

Hence, all the conditions of Theorem 5.3 are satisfied and system (5.27) is null controllable. 

5.5.2. Example on stabilisation 

Using the modelled system (4.1) in Section 4.2 of Chapter 4 with an assumption that the 

systems matrices are equivalent to the following 

𝐴0 = (
 0.5 0
0  0.5

) ,   𝐴1 = (
−1 0
  0 −2

) ,   𝐴2 = (
−1 0
1 −2

) ,   𝐵 = (
1 0
0 1

), 

with, 

  𝐺(𝑡, 𝑥𝑠) = (
0

−exp(𝑡 − 3) × sin 𝑥(𝑡) ∙ 𝑥(𝑡)
) . 

Solving the LMI (5.21) gives 𝜏4 = 0.1849, 𝜏5 = 54.6079, 𝜏6 = 1.6422,  

𝑋 = (
 0.1449 0
0  0.1449

)  and 𝑃1 = (
387.8617   0

 0 387.8617
). 

Therefore the stabilizing feedback controller 𝑢(𝑡) for the system (5.26) is 
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𝑢(𝑡) = −𝐵𝑇𝑃𝑥(𝑡) = −𝐵𝑇𝑋−1𝑥(𝑡) = −(
6.9027 0
0 6.9027

)𝑥(𝑡). 

5.6. Simulation studies 

The stability and controllability of the open-loop system (5.27) can be illustrated using 

Simulink® and MATLAB® based simulation studies. The simulation model parameters are 

given as defined in (5.27) with the default parameter setting and a square wave input where α 

and 𝑣 are chosen to be 2 and 1 respectively with ℎ = 0.25𝑠. Figure 5.1 depicts the stability 

and controllability of the states when the simulation is performed with the linear control base 

system i.e. (5.28), and when the simulation is carried out with the perturbation function (see 

(5.27)). The amplitude of the internal state 𝑥1 from the system response is observed to be 

slightly higher with the perturbation function whilst it exhibits a faster response when the 

simulation is done without the perturbation function. The settling times for the systems 

without the perturbation function are also observed to be faster; this is as expected and 

depends on the assumptions placed on the perturbation function. The simulation showed that, 

the system (5.29) is stable and the overall control system (5.27) is controllable.  

 

Figure 5.1: Simulation of control input and system states with perturbation function and linear control 

base system 
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5.7. Concluding remarks 

Necessary and sufficient conditions have been developed and proved for the complete 

controllability and null controllability of neutral functional differential control system with 

infinite delays, when the controls are functions that are square integrable on finite intervals 

with values in an 𝑚-dimensional unit cube. It has been proved that when the system has full 

rank, a sufficient condition for the complete controllability of the system is that 

𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0, for every complex  𝜆, where 𝐾(𝜆) is an 𝑛 × 𝑛 polynomial matrix in 

𝜆 constructed from the coefficient matrices of the system and 𝜉(exp(−𝜆ℎ)) is the transpose 

of [1, exp(−𝜆ℎ) ,⋯ ,  exp(−(𝑛 − 1)𝜆ℎ)]. Furthermore, it has been shown that if the above 

controllability conditions hold and the uncontrolled system is uniformly asymptotically 

stable, then the neutral functional differential control system is null controllable with 

constraints. Null controllability has an important relationship with stability in the 

development of modern control systems and will play an essential role in establishing the 

optical control of the system in Chapter 6.  

Furthermore, new sufficient conditions are derived for the stabilisation of the neutral systems 

with infinite delays. The new stabilization conditions were obtained by using the Lyapunov 

stability approach which are then expressed in terms of LMI and solved by using the 

MATLAB’s LMI Toolbox. The stabilization of the system was obtained by designing a state 

feedback control law which is presented in terms of LMI and solved by using the 

MATLAB’s LMI Toolbox.  The MATLAB code written for the problem in Example 5.5.2 is 

given in Appendix II 

Numerical and simulated output examples were provided to demonstrate the effectiveness of 

the new results. 
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Chapter 6 

Optimal robust control for neutral systems 

6.1. Introduction 

Having settled the stability and controllability problems which are key issues for the NFDSID 

in Chapters 3 and 4 respectively, this chapter investigates the time optimal control problem of 

the system. The robust guaranteed cost control problem for the neutral system having infinite 

delay with a given quadratic cost function is also presented. A delay-dependent stability 

criterion is proposed based on a model transformation technique. A state feedback control 

law is then designed using the Razumikhin stability approach and the Lyapunov matrix 

equation to ensure not only the closed-loop systems robust stability but guarantee that the 

closed-loop cost function value remains within a specified bound. The problem of designing 

the optimal guaranteed cost controller is also given in terms of inequalities.  

The approach in this chapter will be first to focus on settling the time optimal control for the 

neutral control systems with infinite delays. This is because finding an optimal control for 

neutral systems is quite challenging even though interesting results are expected in this 

chapter. Because of the challenges most, studies conducted on optimal control for neutral 

systems are based on relevance and are required to achieve specific objectives. For example, 

the optimal control study by Mordukhovich and Wang (2004) was based on dynamical 

systems that linearly depend on delayed velocity variables which are governed by neutral 

functional – differential inclusion models. 
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However, investigation into time optimal control problems for linear neutral control systems 

deserves particular attention because of their significant theoretical results and number of 

important applications.  The main idea in time optimal control theory is to steer the system 

within the shortest time interval from some point in the given allowable initial states to a 

suitable point on the target set of allowable final states.  Chukwu (1988) has demonstrated 

this by formulating a controllability condition for such systems, and developing criteria for 

existence, form, uniqueness and general properties of an optimal control in function and 

Euclidean spaces. Exploring the methods in Chukwu (1988), the time optimal control 

problem for the neutral control system with infinite delays will be investigated in this chapter. 

Next, the optimal robust guaranteed cost control for the NFDSID is investigated. This is to 

enable the design of the control systems to be not just stable but guarantee an adequate level 

of performance in the presence of uncertainties in the system. This will be done by defining a 

quadratic cost function that will provide a bound on the performance index so that the 

performance degradation will lie within this range. Some interesting efforts have been made 

by Lien (2006), Park (2003), Xu et al. (2003), and Fernando et al. (2013) to address this 

robust performance problem. In particular, Lien (2006) obtained stabilisation results with 

guaranteed cost using linear matrix inequality (LMI) and Krasovskii approach for a class of 

uncertain neutral systems with time-varying delay.  Using a similar approach Park (2003) 

designed a feedback control system that was robustly stable for a closed-loop cost function 

value within a specified upper bound for an uncertain neutral type equation with a nonlinear 

parameter uncertainty. The motivation for the optimal robust guaranteed cost control of 

NFDSID investigation in this chapter is connected with its wide range of applicable areas as 

observed in Balachandran and Dauer (1996) and references therein. This chapter will 

therefore use a model transformation technique to derive, in terms of the Razumikhin 

approach and the Lyapunov matrix equation, a novel simple delay-dependent stability 
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condition which is sufficient to make the closed-loop system uniformly asymptotically stable 

and guarantee adequate level of performance. Furthermore, a stabilisation criterion for the 

guaranteed cost controller is derived by conversion into a constrained optimization problem 

with constraints given by a set of inequalities. 

6.2. Preliminaries and basic definitions for time optimal control problem 

Consider the neutral functional differential control system with infinite delays given by 

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡 , 𝑥, 𝑥𝑡, 𝑢) + ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑡

0

−∞

𝑥(𝑡) = 𝜙(𝑡),   𝑡 ∈ (−∞, 0] }
 

 
 ,                                                                     (6.1) 

Its linear base control system  

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡, 𝑥 , 𝑥𝑡, 𝑢),                                                                                                          (6.2) 

 

and its perturbation 

𝑑

𝑑𝑡
𝐷(𝑡)𝑥𝑡 = 𝐿(𝑡 , 𝑥𝑡, 𝑢) + ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑡 + 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))

0

−∞

𝑥(𝑡) = 𝜙(𝑡),   𝑡 ∈ (−∞, 0] }
 

 
                           (6.3) 

Here, the set of admissible controls considered are measureable  𝑢: [𝜎, 𝑡1] → 𝐶𝑚 , 𝑡1 > 𝜎 , 

where 𝐶𝑚 is the unit cube in 𝐸𝑚, such controls will simply be denoted by 𝑢 ∈ 𝐶𝑚,   𝑥(𝑡) ∈

𝐸𝑛   is the state variable, with  𝐷(𝑡)𝑥𝑡 = 𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ) , and 𝐿(𝑡, 𝑥𝑡, 𝑢) = 𝐴1𝑥(𝑡) +

𝐴2(𝑡)𝑥(𝑡 − ℎ) + 𝐵𝑢(𝑡), so that the following assumptions holds: 

𝐻0:         𝐴0 , 𝐴1, 𝐴2 are 𝑛 × 𝑛 constant matrices 

𝐻1: 𝐵 is an 𝑛 × 𝑚 constant matrix 
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𝐻2:  𝐺: (−∞ ,0] × 𝐶 → 𝐸𝑛 is a continuous matrix function which satisfies ‖𝐺(𝑡, 𝑥𝑠)‖ ≤

𝑀(𝑡)‖𝑥‖ for all (𝑡, 𝜙) ∈ (−∞, 0] × 𝐶, where ∫ 𝑀(𝑡)𝑑𝑠 = 𝛾0 < ∞
0

−∞
.     

𝐻3: 𝑓: 𝐸 × 𝐶 × 𝐶 → 𝐸𝑛, is a continuous matrix function which satisfies the condition 

 ‖𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))‖ ≤ 𝛾1‖𝑥‖ + 𝛾2‖𝑥(𝑡 − ℎ)‖.  

where, 𝛾0  defined in 𝐻2, and  𝛾1, 𝛾2 as defined in 𝐻3 are positive constants less than 

𝛿, where 𝛿 is as defined in (6.10). 

𝐻4: ℎ is a constant delay with ℎ̇ = 0 

It is assumed that the continuous matrix functions 𝐺  and 𝑓  satisfy some smoothness 

conditions to ensure that a solution of (6.3) exists through each (𝜎, 𝜙), 𝑡 ≥ 𝜎 ≥ 0, is unique, 

depends continuously upon (𝜎,𝜙) and can be extended to the right as long as its trajectory 

remains in a bounded set [𝜎,∞) × 𝐶. These conditions are given in Cruz and Hale (1970). 

The properties of the reachable sets given in Definition 5.2 of Section 5.2 will now be 

summarized as a proposition because of their importance in the next section as follows; 

Proposition 6.1  

(i)     0 ∈ 𝑅(𝜎, 𝑡) for each 𝑡 ≥ 𝜎, 

(ii)     𝑋(𝑡, 𝑠)𝑅(𝜎, 𝑠) ⊆ 𝑅(𝜎, 𝑡), for 𝜎 ≤ 𝑠 ≤ 𝑡, 

(iii)     𝑅(𝜎, 𝑡) is compact in  𝐸𝑛, and convex 

(iv)      𝑡 → 𝑅(𝜎, 𝑡) is continuous in the Hausdorff metric (Chukwu 1988). 

(v)      0 ∈ 𝒫(𝜎, 𝑡) for each 𝑡 ≥ 𝜎, 

(vi)      𝑋(𝑡, 𝑠)𝒫(𝜎, 𝑠) ⊆ 𝒫(𝜎, 𝑡), for 𝜎 ≤ 𝑠 ≤ 𝑡, 

(vii)    𝒫(𝜎, 𝑡) is compact in 𝐶 

(viii)    𝑡 → 𝒫(𝜎, 𝑡) is continuous in the Hausdorff metric. 
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Also 

(ix) 𝒜(𝜎, 𝑡)  is compact and convex, where 𝒜(𝜎, 𝑡)  is the attainable set given in 

Definition 6.1  

Proof. See  Chukwu (1988). 

 Definition 6.1: (Attainable set) 

Let 𝑆 be a compact and convex subset of  𝐶. The attainable set 𝒜(𝜎, 𝑡) of (6.2) at time 𝑡 is 

defined by 

𝒜(𝜎, 𝑡) = {𝑥(𝑡, 𝜙, 𝑢): 𝜙 ∈ 𝑆, 𝑢 ∈ 𝐶𝑚} ⊂ 𝐸𝑛 

Definition 6.2: (Main time optimal control problem) 

Let ℳ represent the metric space of all nonempty compact subsets of 𝐸𝑛 with the metric 𝜌 

defined as follows: The distance of a point 𝑥 from 𝒜(𝜎, 𝑡1) is given by 

𝑑𝒜(𝑥) = inf{|𝑥 − 𝛼|: 𝛼 ∈ 𝒜(𝜎, 𝑡)}, 

𝑁𝒜(𝜀) = {𝑥 ∈ 𝐸
𝑛: 𝑑𝒜(𝑥) ≤ 𝜀},  

𝜌(𝜀1, 𝜀2) = inf{𝜀: 𝒜(𝜎, 𝑡1) ⊆ 𝑁𝒜(𝜀) and 𝒜(𝜎, 𝑡2) ⊆ 𝑁𝒜(𝜀)}.  

The target set in system (6.2) is the continuous set function 𝒢: [𝜏, ∞) → ℳ. The problem of 

reaching 𝒢 in minimum time will be called the main time optimal control problem, where 𝒢 is 

as defined in the Nomenclature. 

Definition 6.3: (Extremal control) 

The control 𝑢 ∈ 𝐶𝑚 is an extremal control on [𝜎, 𝑡1] if for some 𝜙 ∈ 𝐶 and each 𝑡 ∈ [𝜎, 𝑡1] 

the solution 𝑥(𝜎,𝜙, 𝑢) of (6.2) through  𝜎, 𝜙 belongs to the boundary 𝜕𝒜(𝜎, 𝑡) of  𝒜(𝜎, 𝑡). 
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Definition 6.4: (Convex) 

Let 𝑆 ⊆ 𝐶  be a set. 𝑆  is strictly convex if for every 𝑥1, 𝑥2 ∈ 𝑆 , 𝑥1 ≠ 𝑥2 , the open line 

segment {𝑥1 + (1 − 𝜆)𝑥2:  0 < 𝜆 < 1} is in the interior of  𝑆. 

Definition 6.5: (Controllable to target) 

Let 𝑧𝑡 ∈ 𝐶([−ℎ, 0], 𝐸
𝑛) be a target point function which is time varying. The system (6.2) is 

controllable to the target if for each 𝜙 ∈ 𝐶  there exists a 𝑡1 ≥ 𝜎  and admissible control 

𝑢 ∈ 𝐿2([𝜎, 𝑡1], 𝐶
𝑚)  such that the solution of equation (6.1) satisfies 𝑥𝜎(𝜎,𝜙, 𝑢) = 𝜙 , 

𝑥𝑡1(𝜎,𝜙, 𝑢) = 𝑧𝑡1 . 

6.3. Normal and completely controllable systems 

This section derives necessary and sufficient conditions for an autonomous system, which is a 

special case of system (6.2), to be normal and completely controllable. It then gives 

conditions for the existence of time optimal control. The result of this section follows the 

pattern of Chukwu (2001).  Some theorems and propositions from Chukwu (2001) that are 

necessary for the development of our results are also given. The main result of this Section is 

then formulated and given in the form of a theorem. 

Lemma 6.1 

The set 𝒜(𝜎, 𝑡) is convex and compact. Also, 𝑅(𝜎, 𝑡) is convex and compact and satisfies the 

monotonicity relation 

𝑋(𝑡, 𝑠)𝑅(𝜎, 𝑠) ⊆ 𝑅(𝜎, 𝑡),      𝜎 ≤ 𝑠 ≤ 𝑡 ,                                                                             (6.4) 

also 0 ∈ 𝑅(𝜎, 𝑡) for each 𝑡 ≥ 𝜎. 
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Proof. The convexity of 𝒜(𝜎, 𝑡) follows trivially from that of 𝑆 and 𝐶𝑚 . That of 𝑅(𝜎, 𝑡) 

follows from the convexity of 𝐶𝑚 . The compactness of 𝑆  and continuity of 𝑥(𝑡, 𝜎, ∙ ,0) 

implies that 𝑥(𝑡, 𝜎, 𝑆, 0) is bounded. Also, since 𝑍(𝑡, 𝑠) is integrable and 𝑢 ∈ 𝐶𝑚, 𝒜(𝜎, 𝑡) is 

bounded in 𝐸𝑛 and therefore 𝑅(𝜎, 𝑡) is also bounded. It follows from the weak compactness 

argument and the compactness of 𝑆  that  𝒜(𝜎, 𝑡)  is closed in 𝐸𝑛 ; The same weak 

compactness argument implies that 𝑅(𝜎, 𝑡) is closed. It is now necessary to prove relation 

(6.4) to complete the proof.  If  𝑟 ∈ 𝑅(𝜎, 𝑠); then for some 𝑢 ∈ 𝐶𝑚,  

𝑟 = ∫ 𝑍(𝑠, 𝜏)𝑢(𝜏)𝑑𝜏
𝑠

𝜎
. Define the control 

𝑢⋇(𝜏) = {
𝑢(𝜏),      𝜎 ≤ 𝜏 ≤ 𝑠
    0,         𝑠 < 𝜏 ≤ 𝑡 .

 

Then 𝑢⋇(𝜏) ∈ 𝐶𝑚. Now, consider the point 

𝑝 = 𝑋(𝑡, 𝑠)𝑟 = ∫𝑋(𝑡, 𝑠)𝑍(𝑠, 𝜏)𝑢(𝜏)𝑑𝜏

𝑠

𝜎

 

= ∫𝑋(𝑡, 𝑠)𝑍(𝑠, 𝜏)𝑢(𝜏)𝑑𝜏

𝑠

𝜎

+∫𝑋(𝑡, 𝑠)𝑍(𝑠, 𝜏)𝑢(0)𝑑𝜏

𝑡

𝑠

= ∫𝑋(𝑡, 𝑠)𝑍(𝑠, 𝜏)𝑢(𝜏)𝑑𝜏

𝑠

𝜎

+∫𝑋(𝑡, 𝑠)𝑍(𝑠, 𝜏)0𝑑𝜏

𝑡

𝑠

               

= ∫𝑍(𝑠, 𝜏)𝑢⋇(𝜏)𝑑𝜏

𝑡

𝜎

∈ 𝑅(𝜎, 𝑡) 

Hence, the relation (6.4) holds and the proof is complete. ⎕ 

 

 



 

120 
 

Lemma 6.2 

Let 𝐶0𝑚 = {𝑢 ∈ 𝐶𝑚: |𝑢𝑘| = 1,   𝑘 = 1, 2, ⋯ ,𝑚, }  be the bang-bang control on [𝜎, 𝑡] . If 

𝒜0(𝜎, 𝑡) = {𝑥(𝑡, 𝜙, 𝑢0): 𝜙 ∈ 𝑆, 𝑢0 ∈ 𝐶0𝑚}, and  𝑅0(𝜎, 𝑡) = {∫ 𝑍(𝑡, 𝑠)𝑢0(𝑠)𝑑𝑠:  𝑢0 ∈ 𝐶0𝑚
𝑡

𝜎
}, 

then  𝑅0(𝜎, 𝑡) = 𝑅(𝜎, 𝑡) and 𝒜0(𝜎, 𝑡) = 𝒜(𝜎, 𝑡) for each 𝑡 ≥ 𝜎.  

Proof. Observe that the matrix 𝑍(𝑡, 𝑠) = 𝑋(𝑡, 𝑠)𝐵(𝑠) ∈ 𝐿2([𝜎, 𝑡], 𝐸
𝑛×𝑚), because 𝑋(𝑡, 𝑠) ∈

𝐶([𝜎, 𝑡], 𝐸𝑛×𝑛) and 𝐵(∙) ∈ 𝐿2([𝜎, 𝑡], 𝐸
𝑛×𝑚). It follows from Chukwu (2001) that 

𝑅0(𝜎, 𝑡) = 𝑅(𝜎, 𝑡) for each 𝑡 ≥ 𝜎  and therefore  𝒜0(𝜎, 𝑡) = 𝒜(𝜎, 𝑡). ⎕ 

Lemma 6.3 

The attainable set 𝒜(𝜎, 𝑡): [𝜎,∞) → 𝑟𝑛 is continuous  

Proof. The idea is to show that there exists a constant 𝑚 > 0 such that ‖𝑥𝑡(𝜎, 𝜙, 𝑢)‖ ≤ 𝑚 for 

𝑡 ∈ [𝜎, 𝑡1], 𝜙 ∈ 𝑆,  𝑢 ∈ 𝐶
𝑚, the rest of the proof follows the method of Chukwu (2001) by 

showing that 𝒜(𝜎, 𝑡) is an equicontinuous subset of 𝐶([𝜎 − ℎ, 𝑡1], 𝐸
𝑛). As a consequence 

𝑡 → 𝑥(𝑡, 𝜎, 𝜙, 𝑢) is uniformly continuous in 𝜙 and 𝑢, the continuity of 𝑡 → 𝒜(𝜎, 𝑡) follows 

similarly from this argument. ⎕ 

Proposition 6.2  

Assume for the main time optimal control problem that the pair 𝜙 ∈ 𝑆,  𝑢 ∈ 𝐶𝑚 exists such 

that 𝑥(𝑡, 𝜙, 𝑢) ∈ 𝒢 for some time 𝑡, then there is an optimal pair 𝜙 ∈ 𝑆,  𝑢 ∈ 𝐶𝑚. 

Proof.  Assume that 𝒜(𝑡)⋂𝒢(𝑡) ≠ ∅ for some 𝑡 ≥ 𝜎, 𝜙 ∈ 𝑆. Now define the a minimal time 

function, 𝑡⋇(𝑆) = inf{𝑡 ≥ 𝜎: 𝒜(𝑡)⋂𝒢(𝑡) ≠ ∅} , where 𝒜(𝑡) = 𝒜(𝑡, 𝑆) , by using the 

compactness and continuity of 𝒜(𝑡)  and 𝒢(𝑡) , it follows from Chukwu (2001) that 

𝒜(𝑡⋇)⋂𝒢(𝑡⋇) ≠ ∅. ⎕ 

Proposition 6.3  

Assume that system (6.2) is controllable to the target. Then there exists an optimal control 

that stabilises (6.2). 
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Proof. From the variation of constants formula (5.5) in Section 5.2 of Chapter 5, system (6.2) 

controllability to the target is equivalent to 𝑥𝑡1(𝜎, 𝜙, 𝑢) = 𝑧𝑡1, for some 𝑡1, that is  

𝑤𝑡1 = 𝑧𝑡1 −𝐾(𝑡, 𝜎)𝜙 − ∫ 𝐾(𝑡, 𝜎)𝑋0𝐵(𝑠)𝑢(𝑠)𝑑𝑠
𝑡

𝜎
. This is equivalent to 𝑤𝑡1 ∈ 𝑅(𝜎, 𝑡1). Let 

𝑡⋇ = inf{𝑡: 𝑤𝑡 ∈ 𝑅(𝜎, 𝑡)}. Now 𝜎 ≤ 𝑡⋇ ≤ 𝑡1. There is a non-increasing sequence of times 𝑡𝑛 

converging to 𝑡⋇, and a sequence of controls 𝑢𝑛 ∈ 𝐿2([𝜎, 𝑡1), 𝐶
𝑚) with 𝑤𝑡𝑛 = 𝑦(𝑡𝑛 , 𝑢

𝑛) =

𝑋𝑡𝑛(∙, 𝑠)𝐵(𝑠)𝑢
𝑛(𝑠)𝑑𝑠 ∈ 𝑅(𝜎, 𝑡𝑛). Also, 

‖𝑤𝑡⋇ − 𝑦(𝑡
⋇, 𝑢𝑛)‖ ≤ ‖𝑤𝑡⋇ −𝑤𝑡𝑛‖ + ‖𝑤𝑡𝑛 − 𝑦(𝑡

⋇, 𝑢𝑛)‖ ≤ ‖𝑤𝑡⋇ − 𝑤𝑡𝑛‖ + 𝐼 

where 𝐼 as defined in Section 5.2 of Chapter 5 will be given by 

                       𝐼 ≤ ‖∫ 𝑋𝑡𝑛(∙, 𝑠)𝐵(𝑠)𝑢
𝑛(𝑠)𝑑𝑠 − ∫ 𝑋𝑡𝑛(∙, 𝑠)𝐵(𝑠)𝑢

𝑛(𝑠)𝑑𝑠

𝑡⋇

𝜎

𝑡𝑛

𝜎

‖

+ ∫‖𝑋𝑡𝑛(∙, 𝑠)𝐵(𝑠)𝑢
𝑛(𝑠) − 𝑋𝑡⋇(∙, 𝑠)𝐵(𝑠)𝑢

𝑛(𝑠)‖𝑑𝑠

𝑡

𝜎

≤ ∫‖𝑋𝑡𝑛(∙, 𝑠)𝐵(𝑠)𝑢
𝑛(𝑠)‖𝑑𝑠

𝑡𝑛

𝑡⋇

+ ∫‖[𝑋𝑡𝑛(∙, 𝑠) − 𝑋𝑡⋇(∙, 𝑠)]𝐵(𝑠)𝑢
𝑛(𝑠)‖𝑑𝑠

𝑡⋇

𝜎

. 

Because 𝑋𝑡𝑛(∙, 𝑠)𝐵(𝑠)𝑢
𝑛(𝑠) is integrable and [𝑡𝑛 , 𝑡

⋇] < ∞, the first term on the right hand 

side of the inequality tends to zero as 𝑡𝑛 → 𝑡⋇.  Now ‖𝑋𝑡𝑛(∙, 𝑠)‖ ≤ 𝛽 < ∞ for all 𝑡𝑛 , 𝑠 for 

some 𝛽  from Chukwu (2001) and references therein, also 𝑋𝑡𝑛(∙, 𝑠) → 𝑋𝑡⋇(∙, 𝑠) in the uniform 

topology of  𝐶. By the bounded convergence theorem, the second summand on the left hand 

side tends to zero as 𝑛 → ∞. Again, from continuity of solution in time and the continuity of 

the target, ‖𝑤𝑡⋇ −𝑤𝑡𝑛‖ → 0  as 𝑡𝑛 → 𝑡⋇  therefore, 𝑤𝑡⋇ =  lim𝑛→∞ 𝑦(𝑡
⋇, 𝑢𝑛) . Because 

𝑅(𝜎, 𝑡⋇)  is closed and 𝑦(𝑡⋇, 𝑢𝑛) ∈ 𝑅(𝜎, 𝑡⋇) , 𝑤(𝑡⋇) = 𝑦(𝑡⋇, 𝑢𝑛)  for some 

𝑢⋇ ∈ 𝐿2([𝜎, 𝑡1), 𝐶
𝑚) and by definition 𝑡⋇, 𝑢⋇ is optimal. ⎕ 
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Observe from Proposition 6.3 that at the time of hitting a target 𝑤𝑡 ∈ 𝐶 in system (6.2)  

𝑤𝑡 − 𝐾(𝑡, 𝜎)𝜙 ≡ 𝑧(𝑡) = ∫𝐾(𝑡, 𝜎)𝑋0𝐵(𝑠)𝑢(𝑠)𝑑𝑠

𝑡

𝜎

. 

That is reaching 𝑤𝑡 in time 𝑡 corresponds to 𝑤𝑡 −𝐾(𝑡, 𝜎)𝜙 ≡ 𝑧(𝑡) ∈ 𝑅(𝜎, 𝑡) 

Proposition 6.4 

If 𝑢⋇ is the optimal control that is used to hit 𝑤𝑡 in minimum time 𝑡⋇ then 𝑧(𝑡⋇) ∈ 𝜕𝑅(𝜎, 𝑡⋇), 

that is 𝑧(𝑡⋇) is on the boundary (𝜕) of the constrained reachable set. 

Proof.  See Chukwu (1988). 

Theorem 6.1 

Assume that the solution of (6.1) is pointwise complete, and the conditions on Proposition 6.1 

hold. Let 𝑢⋇ be optimal on [𝜎, 𝑡⋇]. Then 𝑢⋇ is an extremal control on [𝜎, 𝑡⋇] and there is a 

nonzero 𝑛 dimensional row vector v⋇ depending on 𝑡⋇ and 𝜙⋇ ∈ 𝑆 such that  

{𝑢⋇(𝑡)}𝑗 = sgn{v
⋇𝑋(𝑡⋇, 𝑡)𝐵(𝑡)}𝑗,   𝜎 ≤ 𝑡 ≤ 𝑡⋇,                                                                       (6.5) 

for each 1 ≤ 𝑗 ≤ 𝑚 for which {v⋇𝑋(𝑡⋇, 𝑡)𝐵(𝑡)}𝑗 ≠ 0. 

Proof. Suppose 𝑢⋇  is extremal on [𝜎, 𝑡⋇] , note then that  𝑥(𝑡⋇, 𝜎, 𝜙⋇, 𝑢⋇) ∈ 𝜕𝒜(𝜎, 𝑡⋇) , 

𝜎 ≤ 𝑡 ≤ 𝑡⋇. Since, 𝒜(𝜎, 𝑡⋇) is convex and closed, there is a supporting hyperplane 𝜋 through 

𝑥⋇ = 𝑥(𝑡⋇, 𝜎, 𝜙⋇, 𝑢⋇) such that 𝒜(𝜎, 𝑡⋇) lies on one side of 𝜋. Let 𝜂 be a unit normal to 𝜋 

which is directed away from 𝒜(𝜎, 𝑡⋇). Clearly, for each 𝑢 ∈ 𝐶𝑚, 𝑥(𝑡⋇) = 𝑥(𝑡⋇, 𝜎, 𝜙⋇, 𝑢⋇) ∈

𝒜(𝜎, 𝑡⋇) such that   

〈𝜂, 𝑥⋇〉 = sup{〈𝜂, 𝑥〉|𝑥 ∈ 𝒜(𝜎, 𝑡⋇)}                                                                                      (6.6) 

It follows from the variation of constants formula (5.5) in Section 5.2 that, after the 

cancelling out of the 𝑥0 terms it is equivalent to the following 
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〈𝜂, ∫ 𝑍(𝑡⋇, 𝑠)𝑢(𝑠)𝑑𝑠

𝑡⋇

𝜎

〉 ≤ 〈𝜂, ∫ 𝑍(𝑡⋇, 𝑠)𝑢⋇(𝑠)𝑑𝑠

𝑡⋇

𝜎

〉 = ∫ 𝜂𝑇𝑍(𝑡⋇, 𝑠)𝑢⋇(𝑠)𝑑𝑠

𝑡⋇

𝜎

, 

for all 𝑢 ∈ 𝐶𝑚. Define 𝛾(𝑠) = 𝜂𝑇𝑍(𝑡⋇, 𝑠) so that,   

∫ 𝛾(𝑠)𝑢⋇(𝑠)𝑑𝑠
𝑡⋇

𝜎
≤ ∑ ∫ 𝛾𝑖(𝑠)𝑠𝑔𝑛 𝛾𝑖(𝑠)𝑑𝑠

𝑡⋇

𝜎
𝑚
𝑖=1 .  Hence, it is clear that on any interval of 

positive length where 𝛾(𝑠) ≠ 0, it must be that 𝑢𝑖
⋇(𝑠) = 𝑠𝑔𝑛 𝛾𝑖(𝑠) for 𝑖 = 1,⋯ ,𝑚, 0 ≤ 𝑡 ≤

𝑡⋇ and the theorem is proved. ⎕ 

Corollary 6.1 

If the system (6.2) is normal on [𝜎, 𝑡⋇] then 𝑢⋇(𝑡), the optimal control is uniquely determined 

by (6.5) and is bang-bang. 

Proof. See Chukwu (2001). ⎕ 

6.3.1. Time optimal control for neutral systems with an infinite delay 

The time optimal control for the neutral system with an infinite delay, which is the main 

result of this section, will now be formulated. 

Consider an autonomous system of the form (6.2) defined by 

𝑑

𝑑𝑡
(𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐵𝑢(𝑡),   𝑡 ≥ 0

𝑥(𝑡) = 𝜙(𝑡),   𝑡 ∈ [−ℎ, 0],
}                          (6.7) 

where 𝐴0, 𝐴1 and 𝐴2 are 𝑛 × 𝑛 matrices and 𝐵 is an 𝑛 × 𝑛, 𝑢 ∈ 𝐶𝑚 and 𝜙 ∈ 𝐶([−ℎ, 0],𝐸𝑛). 

For each admissible control 𝑢 ∈ 𝐿1([−ℎ, 0], 𝐶
𝑚) on the above equation, there exists a unique 

solution to (6.7) on [−ℎ,∞)  through 𝜙  (Chukwu 2001). Furthermore, by Hale (1977) if 

𝐴0 ≠ 0, this solution exists on E and is unique.  The fundamental matrix of  
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𝑑

𝑑𝑡
(𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ),                                                           (6.8) 

is a solution of the equation (6.8) with initial data 

𝑋0(𝑡) = {
0,   𝑡 < 0                                        
 I,   𝑡 = 0 ,   (𝐼 is the identity)

 

for which 𝑋(𝑡) − 𝐴0𝑋(𝑡 − ℎ) is continuous and satisfies (6.8) for 𝑡 ≥ 0 except at 𝑘ℎ, 𝑘 =

0, 1, 2,⋯ . Indeed 𝑋(𝑡) has a continuous first derivative on each interval (𝑘ℎ, (𝑘 + 1)ℎ) , 

𝑘 = 0, 1, 2,⋯, the right and left hand limits of  𝑋(𝑡) exists at each 𝑘ℎ, 𝑘 = 0, 1, 2,⋯, so that 

𝑋(𝑡) is of bounded variation on each compact interval and satisfies 

𝑋(𝑡) − 𝐴0𝑋(𝑡 − ℎ)  = 𝐴1𝑋(𝑡) + 𝐴2𝑋(𝑡 − ℎ),   

𝑡 ≠  𝑘ℎ,   𝑘 = 0, 1, 2,⋯. 

Again, if  𝑋(𝑡) is the fundamental matrix solution of (6.8), then the solution 𝑥(𝜙, 𝑢) of (6.7) 

is given by 

𝑥(𝑡, 𝜙, 𝑢) = 𝑥(𝑡, 𝜙, 0) + ∫𝑋(𝑡 − 𝑠)𝐵𝑢(𝑠)𝑑𝑠

𝑡

0

,   

where,  

𝑥(𝑡, 𝜙, 0) = 𝑋(𝑡)(𝜙(0) − 𝐴0𝜙(−ℎ)) + 𝐴2 ∫𝑋(𝑡 − 𝑠 − ℎ)𝜙(𝑠)𝑑𝑠

0

−ℎ

− 𝐴0 ∫𝑑𝑋(𝑡 − 𝑠 − ℎ)𝜙(𝑠).

0

−ℎ

 

A computational criterion for complete controllability of (6.1) will now be developed in the 

next theorem as part of the contributions of the thesis in this session and will be used in the 
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proof of Theorem 6.2 which the main result of this session.  To develop this criterion, 

introduce an algebraic notation by following the method used in Chukwu (2001) and 

references therein for neutral systems as; 

𝑄𝑘(𝑠) = 𝐴1𝑄𝑘−1(𝑠) + 𝐴2𝑄𝑘−1(𝑠 − ℎ) + 𝐴0𝑄𝑘(𝑠 − ℎ),  

𝑘 = 0, 1, 2,⋯ ;      𝑠 = 0, ℎ, 2ℎ,⋯ 

𝑄0(0) = 𝐼,   𝑄0(𝑠) ≡ 0,   𝑖𝑓 𝑠 < 0. 

Theorem 6.2 

A necessary and sufficient condition for the system (6.2) to be normal on the interval [0, 𝑡1] 

is that for each 𝑟 = 1, 2,⋯ ,𝑚, the matrix  

𝑄𝑘(𝑡1) = {𝑄𝑘(𝑠)𝑏𝑟 , 𝑘 = 0, 1,⋯ , 𝑛 − 1,   𝑠 ∈ [0, 𝑡1]}, 

where 𝑏𝑟 is the 𝑟𝑡ℎ  component of 𝐵. 

Observe that Theorem 6.2 is the algebraic condition for complete controllability proof given 

in Chukwu (2001) for properness on [0, 𝑡1], and by Proposition 5.3 of Section 5.3 in Chapter 

5 this is equivalent to the system being completely controllable on [0, 𝑡1]  . It is also 

completely controllable for 𝑡1 = 𝜏 by Corollary 5.1 of Section 5.3.1 in Chapter 5. The main 

result will now be formulated using the conditions for normal and complete controllable 

systems. 

Theorem 6.3 

Consider (6.1), and assume the following 

(i) 𝐴0, 𝐴1, 𝐴2 are 𝑛 × 𝑛 constant matrices, 𝐵 is 𝑛 × 1 constant real matrix 

(ii) for  𝜏 > 𝑛ℎ,  rank 𝑃𝑛[𝐴0, 𝐵] = 𝑛; 
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(iii) 𝐾(𝜆)𝜉(exp(−𝜆ℎ)) ≠ 0, for every complex  𝜆, 

(iv) 𝑠𝑢𝑝{Re(𝜆), detΔ( 𝜆) = 0} < 0, with 

Δ(𝜆) = 𝜆(𝐼 − 𝐴0 exp(−𝜆ℎ)) − 𝐴1 − 𝐴2 exp(−𝜆ℎ) + ∫exp(𝜆𝜃) 𝐴(𝜃)𝑑𝜃

0

−∞

 

(v) and 𝐷𝜙 = 𝜙(0) − 𝐴0𝜙(−ℎ) is uniformly stable. 

Then there is a time optimal control which drives any 𝜙 ∈ 𝐶([−ℎ, 0], 𝐸𝑛) in minimum time 

𝑡⋇ and is given by 𝑢𝑖
⋇(𝑡) = 𝑠𝑔𝑛(𝑐𝑇𝑋(𝑡⋇ − 𝑡)𝐵)𝑖,    𝑖 = 1, 2,⋯ ,𝑚,   0 ≤ 𝑡 ≤ 𝑡⋇. 

Proof. By (i) – (iii) system (6.1) is completely controllable by Corollary 5.1 of Section 5.3.1 

and therefore normal. By condition (iv) and (v), system (6.1) with 𝑢 = 0 satisfies Lemma 4.2 

and 4.4 of Section 4.2 in Chapter 4, that is 𝑥𝑡(∙, 𝜙, 0) → 0  as 𝑡 → ∞ , and therefore null 

controllable by Theorem 5.2 of Section 5.3.2 in Chapter 5. It follows from the null 

controllability of (6.1) that an optimal control exists by Proposition 6.2 which is extremal by 

Theorem 6.1 and is determined uniquely by (6.5) because of Corollary 6.1. ⎕ 

6.4. Robust guaranteed cost control for the neutral system with infinite delay 

This section forms part of the contributions of the thesis in this chapter and is concerned with 

finding guaranteed optimal control for the neutral system with infinite delay through the 

definition of a quadratic cost function.  The main results will be given in terms of theorems 

and proofs which are based on the Razumikhin approach and the Lyapunov matrix equation. 

Consider the neutral functional differential control system with infinite delays and its 

perturbation given in (6.3). Now, let the initial time be zero and 𝑥(𝑡) be the solution of (6.3) 

through (0, 𝜙).  Since 𝑥(𝑡) is extendable for 𝑡 ≥ 0 one can use the model transformation 
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technique (see Gu et al. 2003) to write, 𝑥(𝑡) − 𝑥(𝑡 − ℎ) = ∫ �̇�(𝑡 + 𝜃)𝑑𝜃
0

−ℎ
 for 𝑡 ≥ ℎ. So that, 

(6.3) using this expression can be written in the form 

�̇�(𝑡) − 𝐴0�̇�(𝑡 − ℎ)

= (𝐴1 + 𝐴2)𝑥(𝑡) − 𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃

0

−ℎ

 + 𝐵𝑢(𝑡) + 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝑥))

+ ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

,                                                                                          (6.9) 

for 𝑥(𝑡) = 𝜙(𝑡),   𝑡 ∈ [−2ℎ, 0] , ℎ > 0. 

Let  

ℴ =
𝜆𝑚𝑖𝑛(𝑄)

2𝜆𝑚𝑎𝑥(𝑃)
,                                                                                                                            (6.10) 

𝛿 = √
𝜆𝑚𝑖𝑛(𝑃)

𝜆𝑚𝑎𝑥(𝑃)
  .                                                                                                                             (6.11) 

Let 𝑃,  and 𝑄 be symmetric positive definite matrices involved in the following Lyapunov 

equation  

(𝐴1 + 𝐴2)
𝑇𝑃 + 𝑃(𝐴1 + 𝐴2) = −𝑄,                                                                                        (6.12) 

where 𝐴1 + 𝐴2 is a Hurwitz stable matrix. 

Associated with (6.3) is the quadratic cost function given by 

𝒥 = ∫(𝑥𝑇(𝑡)𝑄1𝑥(𝑡) + 𝑢
𝑇(𝑡)𝑄2𝑢(𝑡))𝑑𝑡

∞

0

,                                                                             (6.13) 

where 𝑄1 ∈ 𝐸
𝑛×𝑛 and 𝑄2 ∈ 𝐸

𝑚×𝑚 are positive definite matrices. 
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Now, define a state feedback controller 𝑢(𝑡) for (6.3) as 

𝑢(𝑡) = −𝐵𝑇𝑃𝑥(𝑡) ,                                                                                                                   (6.14) 

where 𝑃 ∈ 𝐸𝑛×𝑛 is a symmetric positive definite matrix to be designated. 

The closed-loop design for system (6.3), using (6.13), (6.14) and the transformed equation 

(6.9) is defined by  

�̇�(𝑡) − 𝐴0�̇�(𝑡 − ℎ)

= (𝐴1 + 𝐴2 − 𝐵𝐵
𝑇𝑃)𝑥(𝑡) − 𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃

0

−ℎ

+ 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))

+ ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

.                                                                                           (6.15) 

The task now is to ensure that system (6.15) is asymptotically stable and the closed loop 

value of (6.13) satisfies 𝒥 ≤ 𝒥⋇ , where 𝒥⋇  is the guaranteed cost for the output feedback 

control. 

Definition 6.6 

For the system (6.3) and cost function (6.13), if there exists a control law 𝑢⋇(𝑡) and a positive 

𝒥⋇ such that for all admissible uncertainty, the closed-loop (6.15) is asymptotically stable and 

the closed loop value of the cost function (6.13) is less than or equal to 𝒥⋇, then 𝒥⋇  is a 

guaranteed cost function and 𝑢⋇ is the guaranteed cost control law of the system (6.3) and the 

cost function (6.13) (Park  2003). 

6.4.1. Designing a guaranteed cost controller 

The main result for this section will be derived by developing appropriate conditions and 

utilizing the Lyapunov matrix equation, and the Razumikhin approach for stabilisation of the 
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closed-loop system (6.15). The method of selecting a guaranteed cost controller that would 

ensure the minimization of  𝒥⋇ for the neutral system (6.3) will also be given. 

Theorem 6.4 

Let the difference system 𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ) = 0  be uniformly stable. Given 𝑄1 > 0  and 

𝑄2 > 0 , 𝑢(𝑡) = −𝐵𝑇𝑃𝑥(𝑡)  is a robust guaranteed cost controller for (6.3), if there exist 

positive-definite matrices 𝑃 and 𝑄 satisfying (6.12) such that 𝐴1 + 𝐴2 is Hurwitz stable matrix 

satisfying  

ℴ − ‖𝐵𝐵𝑇𝑃‖ − 𝛾1 − 𝛾0

𝛿 [
‖(𝐴1 + 𝐵𝐵𝑇𝑃)𝑇𝐴0‖ + ‖𝐴0

𝑇‖(𝛾1 + 𝛾0) + ‖𝐴2‖ ×

(‖𝐴1 + 𝐵𝐵𝑇𝑃‖ + ‖𝐴2‖ + 𝛾1 + 𝛾2 + 𝛾0) + 𝛿‖𝐴0
𝑇‖(‖𝐴2‖ + 𝛾2) + 𝛾2

]

> 0.                 (6.16) 

Then, (6.3) with (6.13) is uniformly asymptotically stable i.e. the system can tolerate 

perturbation for any constant time delay 0 ≤ ℎ < ℎ⋇ , and the guaranteed cost is given by 

𝒥⋇ = 𝑥𝑇(0)𝑃𝑥(0), where 𝑃 = 𝑋−1. 

Proof: Consider (6.12) given by (𝐴1 + 𝐴2)
𝑇𝑃 + 𝑃(𝐴1 + 𝐴2) = −𝑄,  and let the following 

positive definite function be the Lyapunov function 

  𝑉(𝑥(𝑡)) = [𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)]
𝑇𝑃[𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)].                                              (6.17) 

Thus, taking the derivative of  𝑉 in (6.17) along the solutions of (6.15) gives the following     



 

130 
 

�̇�(𝑥(𝑡)) =   [(𝐴1 + 𝐴2 − 𝐵𝐵
𝑇𝑃)𝑥(𝑡) − 𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃

0

−ℎ

+ 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))

+ ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

]

𝑇

𝑃[𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)]

+ [𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)]
𝑇𝑃 [(𝐴1 + 𝐴2 − 𝐵𝐵

𝑇𝑃)𝑥(𝑡) − 𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃

0

−ℎ

+ 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)) + ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

] 

=  2[𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)]
𝑇𝑃 [(𝐴1 + 𝐴2 − 𝐵𝐵

𝑇𝑃)𝑥(𝑡) − 𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃

0

−ℎ

+ 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)) + ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

] 

= 2𝑥𝑇(𝑡)𝑃 [(𝐴1 + 𝐴2 − 𝐵𝐵
𝑇𝑃)𝑥(𝑡) − 𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃

0

−ℎ

+ 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))

+ ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

]

− 2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃 [(𝐴1 − 𝐵𝐵

𝑇𝑃)𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))

+ ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

] 
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= 𝑥𝑇(𝑡)[(𝐴1 + 𝐴2)
𝑇𝑃 + 𝑃(𝐴1 + 𝐴2) − 2𝑃𝐵𝐵

𝑇𝑃]𝑥(𝑡) − 2𝑥𝑇(𝑡)𝑃𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃

0

−ℎ

+ 2𝑥𝑇(𝑡)𝑃𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)) + 2𝑥𝑇(𝑡)𝑃 ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

− 2𝑥𝑇(𝑡)(𝐴1 − 𝐵𝐵
𝑇𝑃)𝑇𝑃𝐴0𝑥(𝑡 − ℎ) − 2𝑥

𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝐴2𝑥(𝑡 − ℎ)

− 2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))

− 2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃 ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

.                                                            (6.18) 

The following terms in (6.18) are further simplified such that:  

2𝑥𝑇(𝑡)𝑃𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)) ≤  2𝑥𝑇(𝑡)𝑃𝛾1𝑥(𝑡) + 2𝑥
𝑇(𝑡)𝑃𝛾2𝑥(𝑡 − ℎ).     

2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))

≤ 2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝛾1𝑥(𝑡) + 2𝑥

𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝛾2𝑥(𝑡 − ℎ) .  

2𝑥𝑇(𝑡)𝑃 ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

≤ 2𝑥𝑇(𝑡)𝑃𝛾0𝑥(𝑡) .                                                                        (6.19) 

Observe that because of the substituting of (6.14) in (6.9), the model transformation technique 

used and the assumption on Lemma 4.1 of Section 4.2 in Chapter 4, the expression 

2𝑥𝑇(𝑡)𝑃𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃
0

−ℎ
 can be estimated by 

2𝑥𝑇(𝑡)𝑃𝐴2 ∫ �̇�(𝑡 + 𝜃)𝑑𝜃

0

−ℎ

≤ 2𝑥𝑇(𝑡)𝑃𝐴2 ∫[(𝐴1 − 𝐵𝐵
𝑇𝑃)𝑥(𝑡 + 𝜃) + 𝐴2𝑥(𝑡 − ℎ + 𝜃)

0

−ℎ

+ (𝛾1𝑥(𝑡 + 𝜃) +    𝛾2𝑥(𝑡 − ℎ + 𝜃)) + 𝛾0𝑥(𝑡 + 𝜃)]𝑑𝜃                           (6.20) 
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 The overall derivative of  𝑉 along the solution of (6.15) can now be expressed as follows 

�̇�(𝑥(𝑡)) ≤ 𝑥𝑇(𝑡)[(𝐴1 + 𝐴2)
𝑇𝑃 + 𝑃(𝐴1 + 𝐴2) − 2𝑃𝐵𝐵

𝑇𝑃]𝑥(𝑡)

− 2𝑥𝑇(𝑡)𝑃𝐴2 ∫[(𝐴1 − 𝐵𝐵
𝑇𝑃)𝑥(𝑡 + 𝜃) + 𝐴2𝑥(𝑡 − ℎ + 𝜃)

0

−ℎ

+ (𝛾1𝑥(𝑡 + 𝜃) + 𝛾2𝑥(𝑡 − ℎ + 𝜃)) + 𝛾0𝑥(𝑡 + 𝜃)]𝑑𝜃

+ [2𝑥𝑇(𝑡)𝑃𝛾1𝑥(𝑡) + 2𝑥
𝑇(𝑡)𝑃𝛾2𝑥(𝑡 − ℎ)] + 2𝑥

𝑇(𝑡)𝑃𝛾0𝑥(𝑡)

− 2𝑥𝑇(𝑡)(𝐴1 − 𝐵𝐵
𝑇𝑃)𝑇𝑃𝐴0𝑥(𝑡 − ℎ) − 2𝑥

𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝐴2𝑥(𝑡 − ℎ)

− [2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝛾1𝑥(𝑡) + 2𝑥

𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝛾2𝑥(𝑡 − ℎ)]

− 2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝛾0𝑥(𝑡) 

≤ 𝑥𝑇(𝑡)[(𝐴1 + 𝐴2)
𝑇𝑃 + 𝑃(𝐴1 + 𝐴2)]𝑥(𝑡) − 2𝑥

𝑇(𝑡)𝑃𝐵𝐵𝑇𝑃𝑥(𝑡)

− 2𝑥𝑇(𝑡)𝑃𝐴2 ∫[(𝐴1 − 𝐵𝐵
𝑇𝑃)𝑥(𝑡 + 𝜃) + 𝐴2𝑥(𝑡 − ℎ + 𝜃)

0

−ℎ

+ (𝛾1𝑥(𝑡 + 𝜃) + 𝛾2𝑥(𝑡 − ℎ + 𝜃)) + 𝛾0𝑥(𝑡 + 𝜃)]𝑑𝜃

+ [2𝑥𝑇(𝑡)𝑃𝛾1𝑥(𝑡) + 2𝑥
𝑇(𝑡)𝑃𝛾2𝑥(𝑡 − ℎ)] + 2𝑥

𝑇(𝑡)𝑃𝛾0𝑥(𝑡)

− 2𝑥𝑇(𝑡)(𝐴1 − 𝐵𝐵
𝑇𝑃)𝑇𝑃𝐴0𝑥(𝑡 − ℎ) − 2𝑥

𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝐴2𝑥(𝑡 − ℎ)

− [2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝛾1𝑥(𝑡) + 2𝑥

𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝛾2𝑥(𝑡 − ℎ)]

− 2𝑥𝑇(𝑡 − ℎ)𝐴0
𝑇𝑃𝛾0𝑥(𝑡) − 𝑥(𝑡)(𝑄1 + 𝑃𝐵𝑄2𝐵

𝑇𝑃)𝑥(𝑡).                     (6.21) 

Now, using the Razumikhin type theorem, assume for any nonnegative number 𝑞 > 1,  the 

following inequality holds: 

𝑉(𝑥(𝜉)) < 𝑞2𝑉(𝑥(𝑡)),   𝑡 − 2ℎ ≤ 𝜉 ≤ 𝑡.                                                                            (6.22) 

Hence,  

‖𝑥(𝜉)‖ < 𝑞𝛿‖𝑥(𝑡)‖.                                                                                                                (6.23) 

Substituting equation (6.23) into (6.21) gives the following inequality 
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�̇�(𝑥(𝑡)) ≤ −�̂�‖𝑥(𝑡)‖2,                                                                                                           (6.24)  

where  �̂� = 𝑤 + (𝑄1 + 𝑃𝐵𝑄2𝐵
𝑇𝑃), and 

𝑤 = 𝜆𝑚𝑖𝑛(𝑄) − 2{‖𝐵𝐵
𝑇𝑃‖ + 𝛾1 + 𝛾0

+ 𝑞𝛿ℎ[‖𝐴2‖(‖𝐴1 + 𝐵𝐵
𝑇𝑃‖ + ‖𝐴2‖ + 𝛾1 + 𝛾2 + 𝛾0) + ‖(𝐴1 + 𝐵𝐵

𝑇𝑃)𝑇𝐴0‖

+ ‖𝐴0
𝑇‖(𝛾1 + 𝛾0) + 𝑞𝛿‖𝐴0

𝑇‖(‖𝐴2‖ + 𝛾2) + 𝛾2]}𝜆𝑚𝑎𝑥(𝑃). 

Here, the conditions (6.22), (6.23) and (6.24) by the Razumikhin theory implies that  

�̇�(𝑥(𝑡)) ≤ −𝑥𝑇(𝑡)(𝑄1 + 𝑃𝐵𝑄2𝐵
𝑇𝑃)𝑥(𝑡) ≤ 0,                                                               (6.25) 

and since 𝑄1 > 0  and 𝑄2 > 0  , if condition (6.16) of Theorem 6.4 is satisfied, then a 

sufficiently small 𝑞 > 1  exists such that 𝑤 > 0 , which implies �̂� > 0  . Thus, by the 

Razumikhin Theorem (see Hale and Verduyn Lunel 1993),  (6.15) is uniformly asymptotically 

stable since �̇�(𝑥(𝑡)) < 0, �̂� > 0 based on the above proof for Theorem 6.4. Furthermore, 

integrating (6.25) from 0 to ∞, gives 

∫ �̇�(𝑥(𝑡))

∞

0

≤ 𝑉(𝑥(0)) − 𝑉(𝑥(∞))  

≤  ∫ 𝑥𝑇(𝑡)(𝑄1 + 𝑃𝐵𝑄2𝐵
𝑇𝑃)𝑥(𝑡)

∞

0

𝑑𝑡 + ∫ 𝑥𝑇(𝑡)𝑤𝑥(𝑡)𝑑𝑡

∞

0

             

≤ ∫ 𝑥𝑇(𝑡)(𝑄1 + 𝑃𝐵𝑄2𝐵
𝑇𝑃)𝑥(𝑡)

∞

0

𝑑𝑡. 

Considering that (6.15) is asymptotically stable leads to 𝑥(∞) → 0, and hence, 

∫ 𝑥𝑇(𝑡)(𝑄1 + 𝑃𝐵𝑄2𝐵
𝑇𝑃)𝑥(𝑡)

∞

0

𝑑𝑡 ≤ 𝑉(𝑥(0)) ≤ 𝑥𝑇(0)𝑃𝑥(0) ≝ 𝒥⋇.⎕                    (6.26) 
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Remark 6.1 

 The selection in (6.12) guarantees 𝑄 > 0 when 𝑃 = 𝐼, and maximizes 𝛿 when  𝑃 = 𝐼. The 

maximum bound for the time delay becomes 

ℎ⋇ = ℴ + ‖𝐵𝐵𝑇𝑃‖ + 𝛾1 + 𝛾0  

+ 𝛿(‖(𝐴1 + 𝐵𝐵
𝑇𝑃)𝑇𝐴0‖ + ‖𝐴0

𝑇‖(𝛾1 + 𝛾0) + 𝛿‖𝐴0
𝑇‖(‖𝐴2‖ + 𝛾2) + 𝛾2

+ ‖𝐴2‖(‖𝐴2‖‖𝐴1 + 𝐵𝐵
𝑇𝑃‖ + 𝛾1 + 𝛾2 + 𝛾0)) .                                     (6.27) 

for  0 ≤ ℎ < ℎ⋇. 

6.4.2. Designing optimal robust controller that minimizes the guaranteed cost 

Theorem 6.5 

Consider system (6.15) and (6.13). Suppose the following optimization problem 

min
𝑋>0,   ℎ⋇>0  

ℎ⋇ .                                                                                                                             (6.28) 

Subject to; 

(i) inequality (6.16), such that 𝑤 > 0 

(ii) 𝑥𝑇(0)𝑋−1𝑥(0) < ℎ⋇, 

has a solution with  𝑋 > 0, ℎ⋇ > 0, then (6.14) is an optimal robust guaranteed cost control 

law which ensures the minimization of (6.26) for the system (6.15). 

Proof. The proof of (i) in (6.28) is clear by Theorem 6.4. Also, by Lemma 4.6 of Chapter 4, 

the inequality (6.28) (ii) can be expressed equivalent as  (
−ℎ⋇ 𝑥𝑇(0)

𝑥(0) −𝑋
) < 0.  It therefore 

follows from (6.26) that 𝒥⋇ ≤ ℎ⋇.  Thus, the minimization for (6.26) follows from the 

minimization of 𝒥⋇ ≤ ℎ⋇ and the proof is complete. ⎕ 

6.5. Examples on optimal control for neutral systems with infinite delays 

Here, numerical examples will be given as an illustration to the methods proposed. 
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6.5.1. Example on time optimal control 

Consider the neutral control system with infinite delays 

(𝑑 𝑑𝑡⁄ )(𝑥 − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐶0 ∫exp (𝑣𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃,

0

−∞

+ 𝐵𝑢(𝑡)                                                                                                         (6.29) 

and its linear control base system 

(𝑑 𝑑𝑡⁄ )(𝑥 − 𝐴0𝑥(𝑡 − ℎ)) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐵𝑢(𝑡).                                       (6.30) 

where, 

𝐴0 = (
 0 1 2⁄

1 2⁄  0
) ,    𝐴1 = (

−1    1
  1 −2

) ,   𝐴2 = (
0 1 2⁄

0 −1 2⁄
),     

𝐶0 = (
0        0
0 −1 4⁄

) , 𝐵 = (
0
1
)  . 

The uniform stability of the system 𝐷(𝑡)𝑥𝑡 = 𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)  for ℎ > 0  has been 

computed in Example 4.5.1 of Chapter 4. The uniform asymptotic stability of (6.29) with 

𝑢 = 0 has also been calculated in Example 5.5.1 of Chapter 5. 

Next is to deduce the optimal control law by determining the fundamental matrix, 𝑋(𝑡), as 

follows. 

First evaluate the eigenvalues of  𝐴1  as −2.6180 and −0.3820 and obtain the associated 

matrix of eigenvectors as 

𝑋(𝑡) = (
1.6180exp(−2.6180 𝑡) 0.6180exp(−0.3820 𝑡)

−2.6180exp(−2.6180 𝑡) 0.3820exp(−0.3820 𝑡)
) . 

Verify also that the matrix inverse is given by 
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𝑋−1(𝑡) = (
0.1708exp(2.6180 𝑡) −0.2764exp(2.6180 𝑡)

1.1708exp(0.3820 𝑡) 0.7236exp(0.3820 𝑡)
) , 

and at 𝑡 = 0 

𝑋−1(0) = (
0.1708 −0.2764
1.1708 0.7236

) . 

Therefore, the principal fundamental matrix on [0, ℎ] is given by  

𝑋(𝑡) = exp(𝐴1𝑡)

= (0.2764𝑒
−2.6180𝑡 + 0.7236𝑒−0.3820𝑡 0.4472𝑒−0.3820𝑡 − 0.4472𝑒−2.6180𝑡

0.4473𝑒−0.3820𝑡 − 0.4472𝑒−2.6180𝑡 0.7236𝑒−2.6180𝑡 + 0.2764𝑒−0.3820𝑡
) . 

Now, selecting 𝑐𝑇𝑋(𝑡 − 𝑠), 𝑡 − 𝑠 ∈ [0, ℎ] gives 

(𝑐1, 𝑐2)𝑋(𝑡 − 𝑠)

= (𝑐1(0.2764𝑒
−2.6180(𝑡−𝑠) + 0.7236𝑒−0.3820(𝑡−𝑠))

+ 𝑐2(0.4473𝑒
−0.3820(𝑡−𝑠) − 0.4472𝑒−2.6180(𝑡−𝑠)),   𝑐1(0.4472𝑒

−0.3820(𝑡−𝑠)

− 0.4472𝑒−2.6180(𝑡−𝑠)) + 𝑐2(0.7236𝑒
−2.6180(𝑡−𝑠) + 0.2764𝑒−0.3820(𝑡−𝑠))), 

and 

(𝑐1, 𝑐2)𝑋(𝑡 − 𝑠)𝐵

= 𝑐1(0.4472𝑒
−0.3820(𝑡−𝑠) − 0.4472𝑒−2.6180(𝑡−𝑠))

+ 𝑐2(0.7236𝑒
−2.6180(𝑡−𝑠) + 0.2764𝑒−0.3820(𝑡−𝑠)),   𝑡 − 𝑠 ∈ [0,ℎ].   

Therefore (𝑢1, 𝑢2) = 𝑠𝑔𝑛((𝑐1, 𝑐2)𝑋(𝑡 − 𝑠)𝐵), where 

𝑢2 = 𝑠𝑔𝑛 (𝑐1(0.4472𝑒
−0.3820(𝑡−𝑠) − 0.4472𝑒−2.6180(𝑡−𝑠))

+ 𝑐2(0.7236𝑒
−2.6180(𝑡−𝑠) + 0.2764𝑒−0.3820(𝑡−𝑠))), 
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is the  time optimal control which drives the system to target. 

6.5.2. Example on robust guaranteed cost control problem 

Consider the perturbed neutral control system given by 

�̇�(𝑡) − 𝐴0�̇�(𝑡 − ℎ) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − ℎ) + 𝐵𝑢(𝑡) + ∫𝐺(𝑡, 𝑥𝑠)𝑑𝑠

0

−∞

+ 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)),                                                                                 (6.31) 

where, 

𝐴0 = (
 0 1 2⁄

1 2⁄  0
) ,   𝐴1 = (

−2    0
  0 −1

) ,   𝐴2 = (
−1 0
−1 −1

), 

𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)) = (
0

0.1 × sin(𝑥(𝑡) + 𝑥(𝑡 − ℎ)). (𝑥(𝑡) + 𝑥(𝑡 − ℎ))), 

𝐺(𝑠, 𝑥𝑠) = (
0

exp(𝑡 − 3) ∙ 𝑥(𝑡)
) , 𝐵 = (

0
1
). 

and let 𝑥(𝑡) = [exp(𝑡)−exp(2𝑡)]𝑇 , −0.2 ≤ 𝑡 ≤ 0. 

The uniform stability of the system 𝐷(𝑡)𝑥𝑡 = 𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ)  for ℎ > 0  has been 

computed in Example 4.5.1 of Chapter 4 and note that the function 𝐺(𝑡, 𝑥𝑡) satisfies its 

conditions with 𝑀(𝑡) = exp(𝑡 − 3) , where ∫ 𝑀(𝑡)𝑑𝑡
0

−∞
= exp(−3) = 0.0498.  Also, 

|𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ))| ≤ 0.1‖𝑥(𝑡)‖ + 0.1‖𝑥(𝑡 − ℎ)‖ . Associated with (6.31) is the cost 

function (6.13) with 𝑄1 = 𝐼 and 𝑄2 = 0.1𝐼. The aim now is to find a maximum delay bound to 

guarantee that the resulting closed-loop subsystem design from the controller 𝑢(𝑡) for system 

(6.31) and the cost function (6.13) is uniformly asymptotically stable. Normally, when a 

control input is not forced to (6.31), for example when 𝑢(𝑡) = 0, the system becomes unstable 

within some delay limits when the states of the system approach infinity.  

Set 𝑄 = 𝐼 and observe from (6.12) that, the matrix (𝐴1 + 𝐴2)is Hurwitz stable with,  
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𝑃 = (
0.1833 −0.0500
−0.0500 0.2500

). 

Therefore, 

𝜆𝑚𝑖𝑛(𝑃) = 0.1566, 𝜆𝑚𝑎𝑥(𝑃) = 0.2768, 𝜆𝑚𝑖𝑛(𝑄) = 1, 

ℴ = 1.8064, 𝛿 = 0.7522, 𝛾0 = 0.0498, 𝛾1 = 𝛾2 = 0.1,  and 

‖(𝐴1 + 𝐵𝐵
𝑇𝑃)𝑇𝐴0‖ = 1.0004,   ‖𝐴0

𝑇‖(𝛾1 + 𝛾0) =  0.0749, 

‖𝐴2‖(‖𝐴1 + 𝐵𝐵
𝑇𝑃‖ + ‖𝐴2‖ + 𝛾1 + 𝛾2 + 𝛾0) = 6.2595,   

‖𝐴0
𝑇‖(‖𝐴2‖ + 𝛾2) = 0.8590,   𝛾2 = 0.1,   

(ℴ − ‖𝐵𝐵𝑇𝑃‖ − 𝛾1 − 𝛾0) =  1.4016. 

Using (6.16) gives ℎ = 0.2307  and a maximum bound 0 ≤ ℎ < ℎ⋇ = 7.4795. Now, setting 

𝑃 = 𝐼, using (6.12) gives 𝑄 = (
6 1
1 4

). Therefore, 𝜆𝑚𝑖𝑛(𝑃) = 1,  𝜆𝑚𝑎𝑥(𝑃) = 1,  𝛿 = 1, 

𝜆𝑚𝑖𝑛(𝑄) = 3.5858,   𝛾0 = 0.0498,   𝛾1 = 𝛾2 = 0.1,  and ℴ = 1.7929 , which gives ℎ =

 0.0776 and  ℎ⋇ =  8.9353 

Note, that if 𝐴0 =  𝑓 = 𝐺 = 𝐵 = 0, the results obtained are equivalent to that of Su and 

Huang (1992) when the linear parameter uncertainties Δ𝐴 = Δ𝐴1 = 0. 

The stabilizing optimal control law 𝑢(𝑡) for (6.31) when 𝑄 = 𝐼 is  

𝑢(𝑡) = −𝐵𝑇𝑃𝑥(𝑡) = −𝐵𝑇𝑋−1𝑥(𝑡)  = −[1.1541    4.2308]𝑥(𝑡) 

and the optimal guaranteed cost of the closed-loop system is given by 𝒥⋇ ≤ ℎ⋇ =  7.6930. 

Simulation results of this section are given under the heading ‘effects of delay on simulation’. 

6.5.3. Comparative results with other examples 

Consider the neutral system investigated in example 2 (Table 1) of Liu (2005). Let 

𝑓 = 𝐺 = 𝐵 = 0 for (6.31) with 
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𝐴0 = (
 c 0
0  c

) , |c| < 1,  

 𝐴1 = (
−2   0
 0 −0.9

) , 𝐴2 = (
−1 0
−1 −1

),  

𝑄 = (
0.1 0
0 0.1

). 

Table 6.1 shows a comparison of this result and others using the above assumptions. The 

comparison shows that the result obtained by using this proposed method is less conservative. 

Table 6.1: Maximum delay bound for 𝒄 when 𝑓 = 𝐺 = 𝐵 = 0 

|𝑐| 0.90 0.70 0.50 0.30 0.10 0 

Han (2002) 0.99 2.73 3.62 4.10 4.33 4.56 

Liu (2005) 3.37 3.66 3.96 4.26 4.56 4.70 

This thesis result 8.14 7.67 7.20 6.73 6.27 6.03 

 

Also, example 3 of Liu (2005), where 

𝐴0 = (
 c 0
0  c

) , |c| < 1, 𝐴1 = (
−2 −0.6
−0.5 −2

) , 

     𝐴2 = (
−1 0.2
0.5 −1

) , 𝑄 = (
6 0.4
0.4 6

), 

with 𝑓 = 𝐺 = 𝐵 = 0  in (6.31), c = 0.2  and 𝑃 = 𝐼 . The maximum bound of the delay is 

obtained using the conditions of Theorem 6.4 and Remark 6.1, as  

ℎ = 0.4585 < ℎ⋇ =   8.9071 , and therefore (6.31) under these assumptions is uniformly 

asymptotic stable. 

Now, using the same conditions and system matrices above, the asymptotic stability 

condition in Remark 2, Liu (2005) for the criterion given  by:  ‖𝐴0‖ + ℎ‖𝐴2‖ < 1 and 
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𝜇(𝐴1 + 𝐴2) + ‖𝐴0‖‖𝐴1 + 𝐴2‖ + ℎ‖(𝐴1 + 𝐴2)
𝑇𝐴2‖ < 0 

does not satisfy the maximum bound for c = 0.2. i.e. ‖𝐴0‖ + ℎ‖𝐴2‖ = 12.3242 > 1 and 

𝜇(𝐴1 + 𝐴2) + ‖𝐴0‖‖𝐴1 + 𝐴2‖ + ℎ‖(𝐴1 + 𝐴2)
𝑇𝐴2‖ = 35.5183 > 0. 

Table 6.2 shows a comparison of the result obtained in this thesis and that given in example 1 

of El Haoussi and Tissir (2010), where 

𝐴0 = (
−0.2 0
0.2 −0.1

) , 𝐴1 = (
−0.9   0.2
 0.1 −0.9

) , 

   𝐴2 = (
−1.1 −0.2
−0.1 −1.1

) ,          𝑄 = (
4 0
0 4

). 

Here, the maximum bound of the delay is obtained on the assumption that 𝑓 = 𝐺 = 𝐵 = 0 in 

(6.31), with 𝑃 = 𝐼, 𝛿 = 1. Under these assumptions (6.31) is uniformly asymptotically stable 

using the conditions of Theorem 6.4 and Remark 6.1. 

Table 6.2: Maximum delay bound (ℎ⋇)  comparison 

Methods ℎ⋇ 

Chen (2006) 1.5497 

El Haoussi and Tissir (2010) 1.7191 

This thesis result 5.0512 

 

These comparative studies have shown the criterion developed in this paper to be less 

conservative, robust and easy to compute. 

6.5.4. Effects of delay on simulation 

The simulation of the above example for different values of delays within the bound and 

outside the bound has been examined and the effects of the time delay on the optimal 
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performance analyzed for both the controlled and uncontrolled system. For computer 

simulation purposes, the perturbation function was chosen as 

𝑓 = 0.1 𝑥(𝑡) sin(𝑡) + 0.1𝑥(𝑡 − ℎ) sin(𝑡), 

with frequency of 1Hz and amplitude equal to 1 on Simulink setting. 

The Simulations were carried out in Simulink with the default parameter setting. Figure 6.1 

and Figure 6.2 depict the simulation of the system within the delay bounds. i.e.  

ℎ = 0.1690 and ℎ = 0.2306 respectively, while Figure 6.3 shows when the delay is outside 

the range ℎ⋇ = 7.4795. Figure 6.4 shows the control law for ℎ = 0.1690 and ℎ = 0.2306 

resulting in the stabilisation of controlled states in Figure 6.1 and Figure 6.2. As shown in the 

simulated output results below; settling time is faster when the delay ℎ ≥ 0.2306 see Figure 

6.2. Oscillations are observed on the uncontrolled system when the time delay is at ℎ =

0.1690, see Figure 6.1. The states are approaching zero as time increases.  

 

Figure 6.1: Simulation example for ℎ = 0.1690 
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Figure 6.2: Simulation example for ℎ = 0.2306 

 

 

Figure 6.3: Simulation example for ℎ = 7.4795 
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Figure 6.4: Control law for the system 

6.6. Concluding remarks 

The chapter presented results of investigations covering the time optimal control problem for 

neutral functional differential control systems with infinite delays; necessary and sufficient 

conditions for normality and complete controllability conditions of the system were deduced. 

The bang-bang form of optimal control has been given for zero targets. Easily computable 

criteria for the system to be normal and completely controllable were developed. Also proved 

is the condition for the system to be null controllable. Methods for obtaining an optimal 

robust guaranteed cost control problem via state feedback control laws for the system were 

presented. A new robust guaranteed cost control result has been obtained with a 

transformation technique combined with the Lyapunov matrix equation and the Razumikhin 

approach. A guaranteed cost control gain was obtained by solving an optimization problem. 

The checking of the stabilisation criterion is simple and the example illustrates the robustness 

of the methods. 
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Furthermore, an optimal robust guaranteed cost control problem was obtained using state feed-

back control laws for a class of nonlinear neutral systems having infinite delays. A new result 

has been obtained using a transformation technique combined with the Lyapunov matrix 

equation and the Razumikhin approach. A guaranteed cost control gain for the system was 

also obtained by solving an optimization problem.  

The checking of the conditions developed in this chapter is simple and the example with 

simulated state outputs illustrates the robustness of the method. 
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Chapter 7 

Application of results to  

lossless transmission line 

7.1. Introduction 

This chapter presents the application of the theoretical work carried out in this thesis to 

lossless transmission lines, a special case of the general system investigated in this project. 

The stability and control of voltage with current fluctuations are key issues for system 

planners in transmission lines (see Chukwu 2001). Transmission lines have previously been 

modelled as a single neutral functional differential equation (Nagumo and Shimura 1961, 

Brayton 1967, Shimura 1967, Slemrod 1971, Lopes 1976, Wu and Xia 1996, Zhihong et al. 

2012, Angelov 2012, and Angelov 2014) to analyse the phenomena of the existence of 

periodic solutions (Wu and Xia 1996), self-oscillations (Nagumo and Shimura 1961),  and 

synchronization and asynchronous quenching (Shimura 1967) arising from lossless 

transmission lines terminated by nonlinear lumped circuits. To date, no attention has been 

given to robust guaranteed control of transmission lines terminated with nonlinear lumped 

circuits such as those used as basic elements in the design of digital computers using these 

methods. This chapter will therefore bridge such a gap by analysing the robust guaranteed 

control for such systems with and without the nonlinearity.  

The novel approach is to first formulate the mixed boundary conditions in terms of voltage 

and current changes for the system using Kirchoff’s law and then use d’Alembert’s solution 

to reduce the mixed problem to an initial value problem for NFDSID.  
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The first section of this chapter reviews existing operational conditions in transmission lines. 

The second section describes the application to lossless transmission lines through a 

mathematical derivation of NFDSID from the model. The third section presents robust 

guaranteed control results which is essentially an application of the results developed in 

Chapter 6 to the transmission line models. 

7.2. Operational conditions in transmission lines 

Transient instability in power systems and in particular transmission lines terminated by 

nonlinear lumped circuit in parallel with capacitance, and a series combination of inductance 

and resistance in power systems is the focus of this chapter. 

Decreasing of power system stability margins beyond a certain operational condition can 

lead to frequent power system collapses if power system control measures are not put in 

place. Kundur et al. (2004) have observed that power system stability is similar to the 

stability of any other dynamical system, and has some fundamental mathematical 

underpinnings. There are several definitions of power system stability aimed at 

encompassing all practical scenarios see (Fouad and Vittal 1991, Ernst et al. 2004, and 

Kundur et al. 2004). For example, power system stability is defined by Ernst et al. (2004) as 

the property of a power system that enables it to remain in a state of equilibrium under 

normal operating conditions and to regain an acceptable state of equilibrium after a 

disturbance, while Kundur et al. (2004) in a joint task force of IEEE/CIGRE on stability 

terms and definition defined power system stability “as the ability of an electronic power 

system, for a given initial operating condition, to regain a state of operating equilibrium after 

being subjected to a physical disturbance with most system variables bounded so that 

practically the entire system remains intact”. However, the study of power system stability 

under transient conditions is a complex task because the mathematical underpinnings that 
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describe even the simplest systems that are often modelled into differential or partial 

differential equations are nonlinear in nature (Gless 1966). Moreover, as power systems 

continue to experience growing interconnections through the use of new technologies, highly 

diversified operations with devices interacting with the power system in stressed conditions 

has led to the emergence of different forms of power system instability including voltage 

stability (Kundur et al. 2004, and Althowibi and Mustafa 2013). 

7.2.1. Voltage stability 

Voltage stability is “the ability of a power system to maintain steady voltages on all buses in 

the system after being subjected to a disturbance from a given initial operating condition” 

(Kundur et al. 2004). Voltage stability may be short-term or long-term based on their 

classification in Kundur et al. (2004) and are often studied using static or dynamic analysis 

approaches (Althowibi and Mustafa 2013). Voltage instability occurs more often when power 

systems are operated close to the transmission line full capacity and this has been seen as a 

serious threat to power system stability and operations. Common causes of voltage instability 

include unexpected load increase, insufficient active and reactive power supply of the 

transmission line network, progressive drop in bus voltages, overvoltage, and self-excitation 

(Kundur et al. 2004, and Althowibi and Mustafa 2013). Voltage instability in transmission 

lines can be limited by operating within designed operational guidelines (Althowibi and 

Mustafa 2013). 

7.3. Application to lossless transmission lines 

Power is a practical problem that confronts industrial activities, requiring optimal control for 

effective use of power. Stability and control of voltages with current fluctuations are key 

issues for system planners in transmission lines. The natural models for these voltages and 

current fluctuations arising in transmission lines are mathematical models for neutral 



 

148 
 

functional differential equations. The act of driving fluctuations of voltages to their stable 

equilibrium state as rapidly as possible has been termed the time optimal control problem 

(Chukwu  2001). 

7.3.1. Network of flip – flop circuit 

 

Some dynamical systems possess multiple equilibria and are used as a memory device in the 

design of digital computers; the flip-flop circuit has such dynamics and serves as the basic 

element in a digital computer (see Chukwu 2001 and references therein for details). A 

standard model is given below in Figure 7.1, while an interconnection of these models is 

given in Figure 7.2. The portion between 𝜉 = 0 and 𝜉 = 𝑙 is a lossless transmission line with 

inductance per unit length  𝐿 and capacitance per unit length C. The current flowing through 

the 𝑘𝑡ℎ  line at time 𝑡 and distance 𝜉 is denoted by 𝑖𝑘, while 𝑣𝑘 is the voltage across it at both  

𝜉  and 𝑡 . The function 𝑔(𝑣𝑘)  is a nonlinear function of 𝑣𝑘  and gives the current in the 

indicated box in the direction shown. 

 

 

 

 

 

 

 

 

Figure 7.1: Fundamental diagram of a flip-flop circuit 

𝑅0 

𝑖 = 𝑔(𝑣) 
C1 

𝑖 

R1 

L1 

R0 

E(𝑡) 

𝜉 = 0 𝜉 = 𝑙 
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The focus of this Section is to derive a novel state space equation in terms of current and 

voltage changes for a NFDSID associated with a network of  𝑁 mutually connected lossless 

transmission lines which are interconnected in a decentralized form. The aim of this 

derivation is to analyse the stability behaviour of the systems through simulation output 

studies in state space form. One advantage of this new form of analysis is that the state space 

form will also enable application of the optimal robust control results developed in Chapter 6. 

The reason for studying multi-connected systems is that previously studied single 

transmission line circuits are assumed not to be affected by changes in the electrical dynamics 

of other lines. However, in real life a voltage is induced by fields of the first line and current 

from the second line when a second transmission line is placed near the first line. The 

magnetic field generated by the closeness of the networks produces inductive coupling 

without necessarily being physically connected. Further, the electric field lines that start from 

one end and terminate on the other produce capacitive coupling even when they may not be 

electrically connected. The following assumptions are therefore made for ease of 

applicability. 

 The transmission lines considered are lossless.  

 All coupled lossless transmission line networks are identical and each of them is a 

uniformly distributed lossless transmission line terminated with a nonlinear function 

in parallel with capacitance, resistance and inductance.  

 All lossless transmission line networks are resistively coupled and all other forms of 

coupling are negligible on the system. 
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Figure 7.2: 𝑁 mutually connected transmission line network 

 It is a well-known fact that the relation of the voltage 𝑣𝑘 and the current 𝑖𝑘 in a transmission 

line obeys the following Telegraphers’ equations 

𝜕𝑣𝑘
𝜕𝑥

= −𝐿
𝜕𝑖𝑘
𝜕𝑡
  ,   

𝜕𝑖𝑘
𝜕𝑥

= −C
𝜕𝑣𝑘
𝜕𝑡

 ,                                                                                           (7.1) 

where 0 < 𝜉 < 𝑙,   𝑡 > 0, 𝑘 = 1, 2,⋯ ,𝑁 .  In (7.1), 𝑖𝑘 or 𝑣𝑘 can be eliminated accordingly to 

give  

𝜕2𝑣𝑘
𝜕𝑥2

= 𝐿C
𝜕2𝑣𝑘
𝜕𝑡2

  ,   
𝜕2𝑖𝑘
𝜕𝑥2

= 𝐿C
𝜕2𝑖𝑘
𝜕𝑡2

 .                                                                                  (7.2) 

Now, when 𝑁 networks are interconnected the middle lines in each circuit are influenced by 

an interacting term, this interaction term will be represented by 𝐺𝑘(∙) . The boundary 

conditions of the circuit at the ends  𝜉 = 0 and 𝜉 = 𝑙 are given by 

 𝐻0:  E(𝑡) = 𝑣𝑘(0, 𝑡) + R0𝑖𝑘(0, 𝑡),                                                 

 𝐻1:  𝑖𝑘(𝑙, 𝑡) = C1
𝑑𝑣𝑘(𝑙,𝑡)

𝑑𝑡
+ 𝑔(𝑣𝑘(𝑙, 𝑡)) + 𝐼𝑘 + 𝑖𝑘(𝑡), 

𝑅0 
𝑖𝑘 = 𝑔(𝑣𝑘) C1 

𝑖𝑘 

R1 

L1 

R0 

E(𝑡) 

𝑁𝑘  

𝑁3 𝑁2 𝑁1 𝑁𝑘 

𝑁1 = 𝑁2 ∷∷ 𝑁𝑘 ,   𝑘 = 1, 2,⋯ ,𝑁   
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 𝐻2:  𝑣𝑘(𝑙, 𝑡) = 𝐿1
𝑑𝑖𝑘(𝑡)

𝑑𝑡
+ R1𝑖𝑘( 𝑡)                                                  

where  E(𝑡) is an external source of ac voltage, 𝐼𝑘  is term for the network coupling current so 

that 𝑣𝑘+1(𝑙, 𝑡) − 𝑣𝑘(𝑙, 𝑡) = R𝐼𝑘. The current-voltage characteristics of the nonlinear function 

are given by 𝑔(𝑣𝑘(𝑙, 𝑡)) . The empirical characteristics of the chosen nonlinear function 

𝑔(𝑣𝑘(𝑙, 𝑡)) at the 𝑘𝑡ℎ circuit as shown in Figure 7.3 satisfies that in Slemrod (1971) and is 

such that 𝑔(0) = 0, and has a very steep maximum afterwards, which is followed by a 

slanting positive minimum and after which the function increases. The system (7.1) with the 

boundary conditions 𝐻0 and 𝐻1 may possess one or multiple equilibrium points if the term 

with capacitor C in 𝐻1 is set to zero as shown in Figure 7.3 below. 

 

Figure 7.3: Current-voltage characteristics of the nonlinear function 

The system (7.1) with boundary conditions 𝐻0  , 𝐻1  and 𝐻2  will now be converted into a 

NFDSID as part of the contributions of the thesis in this chapter as follows.  
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First, note that there exists a unique general solution (D’Alembert solution) for  𝑖𝑘(𝜉, 𝑡) and 

𝑣𝑘(𝜉, 𝑡) which are given by 

{
𝑣𝑘(𝜉, 𝑡) = 𝜙𝑘(𝜉 − 𝑏𝑡) + 𝜓𝑘(𝜉 + 𝑏𝑡),   

 𝑖𝑘(𝜉, 𝑡) =
1

z
[𝜙𝑘(𝜉 − 𝑏𝑡) − 𝜓𝑘(𝜉 + 𝑏𝑡)],

                                                                      (7.3) 

where 𝑏 = 1 √𝐿C⁄  is the propagation velocity of waves and Z = √𝐿 C⁄  is the characteristic 

impedance of the line. The equation (7.3) can be expressed equivalently as 

{
2𝜙𝑘(𝜉 − 𝑏𝑡) = 𝑣𝑘(𝜉, 𝑡) + Z𝑖𝑘(𝜉, 𝑡),

2𝜓𝑘(𝜉 + 𝑏𝑡) = 𝑣𝑘(𝜉, 𝑡) − Z𝑖𝑘(𝜉, 𝑡),
                                                                               (7.4) 

This implies that by setting 𝜉 = 0  and replacing 𝑡  by 𝑡 − 𝑙 𝑏⁄   and using (7.4) with the 

boundary conditions gives 

{
2𝜙𝑘(−𝑏𝑡) = 𝑣𝑘 (𝑙, 𝑡 +

𝑙

𝑏
) + Z𝑖𝑘 (𝑙, 𝑡 +

𝑙

𝑏
) ,

2𝜓𝑘(𝑏𝑡) = 𝑣𝑘 (𝑙, 𝑡 −
𝑙

𝑏
) − Z𝑖𝑘 (𝑙, 𝑡 −

𝑙

𝑏
) .

                                                                (7.5) 

Now using the boundary condition 𝐻0 and these expressions in the general solution (7.3), an 

equation for the current can be derived as follows. Substitute 𝑣𝑘(0, 𝑡) and 𝑖𝑘(0, 𝑡) into 𝐻0 

E(𝑡) = 𝜙𝑘(−𝑏𝑡) + 𝜓𝑘(𝑏𝑡) + 
R0
Z
𝜙𝑘(−𝑏𝑡) −

R0
Z
𝜓𝑘(𝑏𝑡), 

which gives  

E(𝑡) =
Z + R0
Z

𝜙𝑘(−𝑏𝑡) +
Z − R0
Z

𝜓𝑘(𝑏𝑡), 

So that, 

𝜙𝑘(−𝑏𝑡) =
ZE(𝑡)

Z + R0
−
Z − R0
Z + R0

𝜓𝑘(𝑏𝑡).                                                                              (7.6) 
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This implies that, 

𝜙𝑘(𝑙 − 𝑏𝑡) =
ZE (𝑡 −

𝑙

𝑏
)

Z + R0
−
Z − R0
Z + R0

𝜓𝑘(𝑏𝑡 − 𝑙).                                                             (7.7) 

Substituting (7.7) into (7.4) at 𝜉 = 𝑙, and replacing 𝑡 by 𝑡 − 𝑙 𝑏⁄  gives  

𝑣𝑘(𝑙, 𝑡) + 𝑍𝑖𝑘(𝑙, 𝑡) =
ZE (𝑡 −

𝑙

𝑏
)

Z + R0
−
Z − R0
Z + R0

× 2𝜓𝑘(𝑏𝑡 − 𝑙).                                         (7.8) 

Observe from the definition of  2𝜓𝑘(𝑏𝑡) that, 2𝜓𝑘(𝑏𝑡 − 𝑙) is equivalent to 2𝜓𝑘(𝑏(𝑡 − 𝑙 𝑏⁄ )) 

for 𝑡 = 𝑡 − 𝑙 𝑏⁄  and can be defined by, 

2𝜓𝑘(𝑏𝑡 − 𝑙) = 𝑣𝑘 (𝑙, 𝑡 −
2𝑙

𝑏
) − 𝑧𝑖𝑘 (𝑙, 𝑡 −

2𝑙

𝑏
). 

Substituting 2𝜓𝑘(𝑏𝑡 − 𝑙) into equation (7.8) gives 

𝑣𝑘(𝑙, 𝑡) + 𝑍𝑖𝑘(𝑙, 𝑡) =
ZE (𝑡 −

𝑙

𝑏
)

Z + R0
−
Z − R0
Z + R0

{𝑣𝑘 (𝑙, 𝑡 −
2𝑙

𝑏
) − Z𝑖𝑘 (𝑙, 𝑡 −

2𝑙

𝑏
)}, 

Expanding and rearranging the above equation gives 

𝑖𝑘(𝑙, 𝑡) −
Z − R0
Z + R0

𝑖𝑘 (𝑙, 𝑡 −
2𝑙

𝑏
)

=
ZE (𝑡 −

𝑙

𝑏
)

Z + R0
−
𝑣𝑘(𝑙, 𝑡)

Z
−
Z − R0
Z + R0

×
𝑣𝑘 (𝑙, 𝑡 −

2𝑙

𝑏
)

Z
,                          (7.9) 

Now letting,  

𝜎(𝑡) =
ZE (𝑡 −

𝑙

𝑏
)

Z + R0
,   𝑟 =

Z − R0
Z + R0

,   ℎ =
2𝑙

𝑏
 , 

and substituting  𝜎 , 𝑟 and  ℎ  into (7.9) gives 
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𝑖𝑘(𝑙, 𝑡) − 𝑟 𝑖𝑘(𝑙, 𝑡 − ℎ) = 𝜎(𝑡) −
𝑣𝑘(𝑙, 𝑡)

Z
−
𝑟 𝑣𝑘(𝑙, 𝑡 − ℎ)

Z
,                                            (7.10) 

Note that using the boundary condition 𝐻0 and the expressions (7.4) and (7.5) in the general 

solution (7.3) gives the following equations 

{
𝑣𝑘(𝑙, 𝑡) + Z𝑖𝑘(𝑙, 𝑡) = 𝜎(𝑡) − 𝑟 × 2𝜓𝑘(𝑏𝑡 − 𝑙)

𝑣𝑘(𝑙, 𝑡 − ℎ) − Z𝑖𝑘(𝑙, 𝑡 − ℎ) = 2𝜓𝑘(𝑏𝑡 − 𝑙)
                                                              (7.11) 

Now using (7.11) and the second boundary condition 𝐻1 gives 

𝑣𝑘(𝑙, 𝑡) + Z [C1
𝑑𝑣𝑘(𝑙, 𝑡)

𝑑𝑡
+ 𝑔(𝑣𝑘(𝑙, 𝑡)) +

1

R
(𝑣𝑘+1(𝑙, 𝑡) − 𝑣𝑘(𝑙, 𝑡)) + 𝑖𝑘( 𝑡)]

= 𝜎(𝑡) − 𝑟[𝑣𝑘(𝑙, 𝑡 − ℎ) − Z𝑖𝑘(𝑙, 𝑡 − ℎ)]. 

Expressing 𝑖𝑘(∙) in terms of 𝑣𝑘(∙)  in the above equation gives, 

𝑣𝑘(𝑙, 𝑡) + Z [C1
𝑑𝑣𝑘(𝑙, 𝑡)

𝑑𝑡
+ 𝑔𝑘(𝑣𝑘(𝑙, 𝑡)) +

1

R
(𝑣𝑘+1(𝑙, 𝑡) − 𝑣𝑘(𝑙, 𝑡))  + 𝑖𝑘( 𝑡)]

= 𝜎(𝑡) − 𝑟𝑣𝑘(𝑙, 𝑡 − ℎ)

+ Z𝑟 [C1
𝑑𝑣𝑘(𝑙, 𝑡 − ℎ)

𝑑𝑡
+ 𝑔𝑘(𝑣𝑘(𝑙, 𝑡 − ℎ))

+
1

R
(𝑣𝑘+1(𝑙, 𝑡 − ℎ) − 𝑣𝑘(𝑙, 𝑡 − ℎ))]. 

Expanding and rearranging the above equation now gives the following, 

ZC1
𝑑𝑣𝑘(𝑙, 𝑡)

𝑑𝑡
− ZC1𝑟 

𝑑𝑣𝑘(𝑙, 𝑡 − ℎ)

𝑑𝑡

= 𝜎(𝑡) − 𝑣𝑘(𝑙, 𝑡) − 𝑟𝑣𝑘(𝑙, 𝑡 − ℎ) − Z𝑖𝑘( 𝑡) − Z𝑔𝑘(𝑣𝑘(𝑙, 𝑡))

+ Z𝑟𝑔𝑘(𝑣𝑘(𝑙, 𝑡 − ℎ)) −
Z

R
(𝑣𝑘+1(𝑙, 𝑡) − 𝑣𝑘(𝑙, 𝑡))

+
Z𝑟

R
(𝑣𝑘+1(𝑙, 𝑡 − ℎ) − 𝑣𝑘(𝑙, 𝑡 − ℎ)) 
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Dividing through by Z and setting 𝑥𝑘(𝑡) = 𝑣𝑘(𝑙, 𝑡) , with E(𝑡) = 0  at the initial condition 

gives 

C1 [
𝑑𝑥𝑘(𝑡)

𝑑𝑡
− 𝑟

𝑑𝑥𝑘(𝑡 − ℎ)

𝑑𝑡
]

= −
𝑥𝑘(𝑡)

Z
−
𝑟𝑥𝑘(𝑡 − ℎ)

Z
− 𝑖𝑘(𝑡) − 𝑔𝑘(𝑥𝑘(𝑡)) + 𝑟𝑔𝑘(𝑥𝑘(𝑡 − ℎ))

−
1

R
(𝑣𝑘+1(𝑙, 𝑡) − 𝑣𝑘(𝑙, 𝑡)) +

𝑟

R
(𝑣𝑘+1(𝑙, 𝑡 − ℎ) − 𝑣𝑘(𝑙, 𝑡 − ℎ)) + 𝑢(𝑡), (7.12) 

where 𝑢(𝑡) is a control function generated by the control device at 𝑥 = 0 and is related to 

E(𝑡) Chukwu (2001). Note that the coupling term can be rearranged as                                     

1

R
(−𝑣𝑘+1(𝑙, 𝑡) − 𝑟𝑣𝑘(𝑙, 𝑡 − ℎ) + 𝑟𝑣𝑘+1(𝑙, 𝑡 − ℎ) + 𝑣𝑘(𝑙, 𝑡)) and since the resistances at the 

connections are very small 𝑣𝑘(𝑙, 𝑡) and  𝑣𝑘+1(𝑙, 𝑡 − ℎ) refer to different points. 

Again, using the boundary condition 𝐻2 and (7.11) gives 

𝐿1
𝑑𝑖𝑘(𝑡)

𝑑𝑡
+ R1𝑖𝑘(𝑡)  + Z𝑖𝑘(𝑙, 𝑡) = 𝜎(𝑡) − 𝑟𝑣𝑘(𝑙, 𝑡 − ℎ) + Z𝑖𝑘(𝑙, 𝑡 − ℎ), 

Rearranging the above equation gives the following, 

𝐿1
𝑑𝑖𝑘(𝑡)

𝑑𝑡
+ R1𝑖𝑘(𝑡)  = 𝜎(𝑡) − Z𝑖𝑘(𝑙, 𝑡) + Z𝑖𝑘(𝑙, 𝑡 − ℎ) − 𝑟𝑣𝑘(𝑙, 𝑡 − ℎ), 

Now, setting 𝑥𝑘(𝑡) = 𝑣𝑘(𝑙, 𝑡) and using (7.10), noting that E(𝑡) = 0 and  𝑣𝑘(𝑙, 𝑡 − ℎ) due to 

𝑖𝑘(𝑡) will be zero at 𝜉 = 𝑙 gives  

𝐿1
𝑑𝑖𝑘(𝑡)

𝑑𝑡
= −R1𝑖𝑘(𝑡) + 𝑥𝑘(𝑡) − 𝑟𝑥𝑘(𝑡 − ℎ).                                                                      (7.13) 

Equations (7.12) and (7.13) can be put in the vector or state space form to get 
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𝑑

𝑑𝑡
[𝑥𝑘(𝑡) − 𝐴0𝑘𝑥𝑘(𝑡 − ℎ)]

= 𝐴1𝑘𝑥𝑘(𝑡) + 𝐴2𝑘𝑥𝑘(𝑡 − ℎ) + 𝑓𝑘(𝑡, 𝑥𝑘(𝑡), 𝑥𝑘(𝑡 − ℎ))

+ ∫𝐺𝑘(𝑥𝑘(𝑠), 𝑥𝑘(𝑠 − ℎ)) 𝑑𝑠

0

−∞

+ 𝐵𝑢(𝑡)                                                       (7.14) 

where 𝑥𝑘(𝑡) = (𝑣𝑘(𝑡), 𝑖𝑘(𝑡))
𝑇
 

𝐴0𝑘 =∑(
𝑟 0
0 0

) ,   𝐴1𝑘 =∑

(

 
−

1

ZC1
−
1

C1
1

𝐿1
−
R1
𝐿1)

  , 𝐴2𝑘 =∑(

−
𝑟

ZC1
0

−
𝑟

𝐿1
0
) ,   

𝑓𝑘(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)) =∑(−𝑔𝑘
(𝑥𝑘(𝑡)) + 𝑟𝑔𝑘(𝑥𝑘(𝑡 − ℎ))

0
)  ,   𝐵 = (

1
0
) 

𝐺𝑘(𝑥𝑘, 𝑥𝑘(𝑡 − ℎ)) =
1

R
(𝑣𝑘(𝑙, 𝑡) − 𝑟𝑣𝑘(𝑙, 𝑡 − ℎ)) . 

7.4. Simulation output studies for the wave patterns 

In this section, a transmission line system without the nonlinear function is modelled in 

MATLAB/SIMULINK to compare with the simulation study of the nonlinear model. The 

behaviour of the system to changes in resistance and capacitance of the line is investigated 

for a single and then an interconnected system in line with the stability studies in Chapter 4. 

The simulation output studies in this section and Section 7.5 are part of the contributions of 

the thesis in this chapter.  The Simulink models of this set-up are given in Appendix III and 

IV. 

7.4.1. Changing resistance R0 of the systems 

 

Consider a supply source of 220 𝑉  lossless transmission line sent from the plant to a 

receiving station. The wave pattern for the distributed network models is shown in Figures 
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7.1 and 7.2. Such lines have been observed with an inductance 𝐿 = 1.75𝑚𝐻 and capacitance 

C = 0.01𝐹 per unit length of line in metres. The resistance at the beginning of the line is 

given by R0 = 10𝛺. The receiving end parameters are a nonlinear function 𝑔(𝑣) = −0.5𝑣 +

(𝑣 − 1)3 + 1  in parallel with capacitor  C1 = 10𝑝𝐹, resistance R1 = 100𝛺 and inductance 

𝐿1 = 1𝑝𝐻.  

The simulation output studies Figures 7.4-7.11 was done with different values R0 =  10  and 

R0 = 0.001 for both systems in order to observe its effect on the transmission lines. The 

simulation output studies shows that the current and voltage waveforms changes with change 

in R0 . The oscillation patterns are the same for the single distributed system and the 

interconnected systems. It is observed that the waveform of the oscillation is distorted for 

both the nonlinear single and distributed systems. The amplitude of oscillation for the 

systems without nonlinearity increases as R0 is reduced and assumes a constant pattern when 

R0 is further reduced below Z. However, reducing R0 increases the amplitude and reduces the 

wavelength for the system with nonlinear function and its interconnection but becomes 

unstable when R0 is further reduced to a value less than Z. The amplitude of oscillations is in 

general higher with the systems without the nonlinear function.  

 

Figure 7.4: Current and voltage waveforms for interconnected system without nonlinearity, R0 = 10 
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Figure 7.5: Current and voltage waveforms for interconnected system with nonlinearity R0 = 10 

 

 

Figure 7.6: Current and voltage waveforms for system without nonlinearity, R0 = 10 
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Figure 7.7: Current and voltage waveforms for the nonlinear system with R0 = 10 

 

 

Figure 7.8: Current and voltage waveforms for interconnected system without nonlinearity, R0 =

0.001 
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Figure 7.9: Current and voltage waveforms for interconnected system with nonlinearity, R0 = 0.001 

 

 

Figure 7.10: Current and voltage waveforms for system without nonlinearity, R0 = 0.001 



 

161 
 

 

Figure 7.11: Current and voltage waveforms for the nonlinear system with R0 = 0.001 

These results are expected, and conform to the theoretical analysis in Chapter 4 and the 

discussion on Section 2.3.4 about the role of the difference differential operator for a neutral 

system. That is, stability of the system depends on the functional difference operator 𝐷 and 

that the uniform stability of the system is possible when ‖𝐴0‖ < 1 (Lemma 4.1 of Chapter 4). 

Also note from the transmission line derivations that the value of  𝑟 depends on R0 and hence 

the oscillation patterns observed are in agreement.   

7.4.2. Changing capacitance 𝐂 of the systems  

 

The simulation output studies of Figures 7.12-7.19 shows that the current and voltage 

waveforms changes with changes in C for C = 100, 10−4 F with R0 = 10 𝛺. The waveforms 

of the oscillation are the same for the single distributed system without nonlinearity and its 

interconnected systems. It is however, observed that the waveforms of the oscillations gets an 

oval shape for the system with nonlinear function and its interconnection. The shape 



 

162 
 

continues to get diminished and the oscillation disappears as  C  is further reduced. The 

behaviour is also expected as C  indirectly determines the value of  𝑟 which depends on Z and 

is the key element in  𝐴0. This behaviour can also be obtained by integrating and analysing 

the neutral integro-differential control system derived. The stable oscillations observed in this 

section are in agreement with the mathematical analysis for existence of stable and periodic 

oscillations, see for example Nagumo and Shimura (1961), Wu and Xia (1996), Angelov 

(2013), and Angelov (2014). The simulation output analysis in this section also conforms to 

the mathematical observations of Brayton (1967). 

 

Figure 7.12: Current and voltage waveforms for interconnected system with nonlinearity, C = 100 
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Figure 7.13: Current and voltage waveforms for interconnected system without nonlinearity, C = 100 

 

Figure 7.14: Current and voltage waveforms for system with nonlinearity, C = 100 
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Figure 7.15: Current and voltage waveforms for system without nonlinearity, C = 100 

 

 

Figure 7.16: Current and voltage waveforms for interconnected system with nonlinearity, C = 0.0001 
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Figure 7.17: Current and voltage waveforms for interconnected system without nonlinearity, C =

0.0001 

 

Figure 7.18: Current and voltage waveforms for system with nonlinearity, C = 0.0001 
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Figure 7.19: Current and voltage waveforms for system without nonlinearity, C = 0.0001 

7.5. Optimal robust control for transmission line systems 

The distributed network model shown in Figure 7.1 is considered to have a supply source of 

220 volts with 2000m lossless transmission line from the plant to a receiving station. The 

network has an inductance 𝐿 = 1.75𝑚𝐻 and capacitance C = 9.5𝜇𝐹 per unit length of line in 

metres. The resistance at the beginning of line is given by R0 = 10𝛺 . The receiving end 

parameters are a nonlinear function 𝑔(𝑣) = −0.5𝑣 + (𝑣 − 1)3 + 1  in parallel with capacitor 

C1 = 37𝑚𝐹, resistance R1 = 5𝛺 and inductance 𝐿1 = 95𝑚𝐻. The parameter setups for this 

chapter are obtained following Zhihong et al. (2012). The propagative velocity of the waves 

and the characteristic impedance of the line can be calculated as follows 

𝑏 =
1

√𝐿C
=

1

√1.75 × 10−3 × 9.5 × 10−6
= 7.76 × 103 m/𝑠 .  
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Z = √
𝐿

C
= √

1.75 × 10−3

9.5 × 10−6
= 13.57 𝛺. 

The time taken to reach a unit length in metres can be obtained as 

𝑡 =
𝑙

𝑏
=  

2000 m

7.76 × 103 m/𝑠
= 0.26𝑠. 

The delayed time (ℎ) and reflective coefficient of voltage at the receiving end (𝑟) for the 

transmission line can be calculated as follows 

ℎ =
2𝑙

𝑏
=

2 × 2000 m

7.76 × 103 m/𝑠
= 0.52𝑠. 

𝑟 =
𝑍 − 𝑅0
𝑍 + 𝑅0

= 
13.57 − 10

13.57 + 10
= 0.15. 

Having obtained the transmission line parameters, the parameters in the state space form of 

the transmission line equation (7.14) in Figure 7.1 can be obtained with 

ZC1 = 13.57 × 0.037 = 5.02 × 10
−1 

R1
𝐿1
=

5

0.09 5
= 52.63 

𝑟

𝐿1
=

0.15

0.09 5
= 1.58 

𝑟

ZC1
=

0.15

13.57 × 0.037
= 0.30. 

where, 

𝐴0 = (
0.15 0
0 0

) ,   𝐴1 = (
−1.99 −27.03
10.53 −52.63

),    𝐴2 = (
−0.30 0
−1.58 0

) ,   
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To ensure that the closed loop design for (7.14) is uniformly asymptotically stable, obtain 

𝑓(𝑥(𝑡), 𝑥(𝑡 − ℎ))  as defined in (7.14) from the nonlinear system 𝑔(𝑣) = −0.5𝑣 +

(𝑣 − 1)3 + 1  so that 𝑟𝑔(𝑣 − ℎ) = −0.075(𝑣 − 0.52) + 0.15(𝑣 − 1.52)3 + 0.15 . Now, 

finding the roots of  𝑔(𝑣), and 𝑟𝑔(𝑣 − ℎ) respectively and choosing values less than 𝛿 (see 

assumption 𝐻3 in Section 6.2 of Chapter 6) in each gives  

𝑓𝑘(𝑡, 𝑥(𝑡), 𝑥(𝑡 − ℎ)) = −𝑔𝑘(𝑥𝑘(𝑡)) + 𝑟𝑔𝑘(𝑥𝑘(𝑡 − ℎ)) ≤ 0.2877‖𝑥(𝑡 − ℎ)‖.   

Now set 𝑄 = 𝐼  and observe from (7.14) that matrices (𝐴1 + 𝐴1) are Hurwitz stable with 

𝑃 = (
 0.0970 0.0103
 0.0103  0.0112

), 𝜆𝑚𝑖𝑛(𝑃) = 0.0100, 𝜆𝑚𝑎𝑥(𝑃) = 0.0982, 𝜆𝑚𝑖𝑛(𝑄) = 1,  

 ℴ = 5.0917, 𝛿 = 0.3196, 𝛾0 = 0, 𝛾1 = 0, 𝛾2 = 0.2877, and  

‖(𝐴1 + 𝐵𝐵
𝑇𝑃)𝑇𝐴0‖ = 4.0629,   ‖𝐴0

𝑇‖(𝛾1 + 𝛾0) =  0, 

‖𝐴2‖(‖𝐴1 + 𝐵𝐵
𝑇𝑃‖ + ‖𝐴2‖ + 𝛾1 + 𝛾2 + 𝛾0) = 99.1823,   

‖𝐴0
𝑇‖(‖𝐴2‖ + 𝛾2) = 0.2844,   (ℴ − ‖𝐵𝐵𝑇𝑃‖ − 𝛾1 − 𝛾0) =  4.9916. 

The performance of a single system in (7.14) with 𝐺𝑘(∙) = 0 has been examined using (6.15) 

and the values above for simulation within delay bounds ℎ = 0.0481 and 0 ≤ ℎ < ℎ∗ =

5.0295. The perturbation function is chosen as 𝑓 = 0.2877𝑥(𝑡 − ℎ) sin(𝑡) for simulation 

purposes with frequency 2 Hz, and amplitude of 2.  Figures 7.20 and 7.21 show the simulated 

outputs for a single system of (7.14) with 𝐺𝑘(∙) = 0.   
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Figure 7.20: Robust stability performance for single transmission line with ℎ = 0.0481 

 

 

Figure 7.21: Robust stability performance for single transmission line with ℎ = 5.0295 
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The performance for (7.14) with four interconnected systems, see Figure 7.2, with 𝑁 = 4 has 

also been examined (see Figure 7.22 and Figure 7.23), with the following parameter values  

𝐴0 = (
0.6 0
0 0

) ,   𝐴1 = (
−7.96 −108.12
42.12 −210.52

),    𝐴2 = (
−1.2 0
−6.32 0

) ,   𝛾0 = 0.1998 ,

𝛾1 = 0,   𝛾2 = 0.2877.  

where 𝛾0 is obtained from the definition of  𝐺𝑘(∙) using Lemma 4.4 and assumption (iii) in 

Section 4.2 of Chapter 4 (see Appendix V for details). Setting 𝑄 = 𝐼  in this case gives, 

𝑃 = (
0.0243 0.0026
 0.0026  0.0028

) , 𝜆𝑚𝑖𝑛(𝑃) = 0.0025, 𝜆𝑚𝑎𝑥(𝑃) =  0.0246, 𝜆𝑚𝑖𝑛(𝑄) = 1, ℴ =

20.3566, 𝛿 = 0.3196, and  

‖(𝐴1 + 𝐵𝐵
𝑇𝑃)𝑇𝐴0‖ = 65.0450,   ‖𝐴0

𝑇‖(𝛾1 + 𝛾0) =  0.1199, 

‖𝐴2‖(‖𝐴1 + 𝐵𝐵
𝑇𝑃‖ + ‖𝐴2‖ + 𝛾1 + 𝛾2 + 𝛾0) = 1582.6,   

‖𝐴0
𝑇‖(‖𝐴2‖ + 𝛾2) = 4.0324,   (ℴ − ‖𝐵𝐵

𝑇𝑃‖ − 𝛾1 − 𝛾0) =  20.1324. 

The simulated results (Figure 7.20 and 7.22) have shown that the settling time for states x1 

and x2 which represent current and voltage respectively is faster when the delay is minimal for 

ℎ = 0.0481𝑠. Similar to that in Section 7.4, the amplitude for the state x1 is observed to be 

lower than that for state x2 because of the actions of the nonlinear function which is a function 

of the voltage. See also Figure 7.3 for its characteristic. As expected, higher oscillations are 

observed for the uncontrolled state x2 than for  x1. The observations in the simulated outputs 

in this section can be interpreted in terms of robust stability and control with parametric effects 

making reference to Section 7.4. The controlled state x1  is observed to be uniformly 

asymptotically stable because its oscillations are uniformly stable. There are no distortions in 

shapes as can also be seen in Section 7.4. Its dynamics were not distorted when compared with 

the system without nonlinearity; this shows that current passing through the systems can be 
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used or stored but its overall output not deformed. The effort of the applied control is to bring 

the oscillations effect due to the nonlinear function and its parallel capacitance in the 

uncontrolled state x2  to zero steady state as time increases. Meanwhile, repeated spikes 

observed in Figures (7.21 and 7.23) when operating outside the minimum delay ℎ = 4.1363 

could be due to the actions of the nonlinear function and its parallel capacitance. At some 

points in transmission, when the transient times becomes very fast, the capacitor acts like a 

short circuit making reflected wave magnitude to be equal to incident wave and of opposite 

polarity causing the voltage to drop to zero, when the capacitor starts charging reflection 

subsides until the transmission is normalized. The amplitudes of the spikes are higher with the 

interconnected system because of their increased magnitude. Also, the observation at the 

beginning of Figures 7.20 and 7.22 follows similar action from the nonlinear function and 

inductor in parallel. In this case the current cannot change instantaneously so the reflected 

wave takes the same magnitude and polarity as the incident wave causing voltage increase at 

that point. The reflected wave subsides when the current through the inductor increases and 

the transmission becomes normalized. 

 

Figure 7.22: Robust stability performance for interconnected transmission line, ℎ = 0.0481 
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Figure 7.23: Robust stability performance for interconnected transmission line, ℎ = 5.0295 

7.6. Concluding remarks 

It was shown that a lossless transmission line network with N  mutually interconnected 

lossless transmission lines terminated with a nonlinear function in parallel with capacitance, 

resistance and inductance gives rise to NFDSID. Stability of the oscillation and 

corresponding amplitude of the nonlinear interconnected lossless transmission line system 

was investigated using output simulation studies. The telegrapher’s equation was first used to 

reduce the equation describing this transmission line system to a NFDSID. This was made 

possible by deriving some boundary conditions in terms of voltage and current changes 

through Kirchoff’s law to formulate a mixed boundary problem.  The NFDSID was then 

obtained by reducing the mixed boundary problem using D’Alembert’s solution for wave 

equations and boundary conditions at the terminals. The operational conditions in 

transmission lines were reviewed and the behaviour of the transmission line system to 

changes in resistance and capacitance of the line was observed for single and then 
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interconnected systems in line with existing stability studies which were found to be 

effective.  

The optimal robust control problem via state feedback law for NFDSID was also obtained by 

applying the results from Chapter 5. Specific conditions for the stability behaviour of the 

states were analysed using simulation output studies and the applicability of the theory 

analysis to lossless transmission line was demonstrated in this chapter through derivations 

and several simulation examples. The guaranteed robust control applied to coupling 

phenomenon in this chapter will a new avenue in the treatment of modern high-speed 

integrated circuits used in the design of digital computers. More so, the repeating spikes 

observed while operating outside the required delay limit can motivate a new circuit study for 

a pseudo-pulse generator if the rise and fall times are known.  
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Chapter 8 

Conclusions and further-work 

8.1. Conclusion 

This chapter describes a conclusion of the work based on all the theoretical and simulated 

results obtained, prior to giving suggestion for a further work as indicated in the title of the 

chapter.  

First, the thesis investigated the stability of NFDSID by extending fundamental stability 

results of functional differential equation to neutral functional integro-differential system 

with infinite delays. Lyapunov methods in general are known to be the cornerstones in time 

domain analysis of neutral functional differential systems. New results on total asymptotic 

stability results was presented using the uniform stability properties of the functional 

difference operator for neutral systems, Razumikhin stability theories, and the uniqueness 

property of the eigenvalues. The Lyapunov-Razumikhin technique is adopted for this 

investigation rather than resort to Lyapunov functional method which has a practical 

difficulty associated with the construction of functional. It is also considered more scalable 

for optimal robust guaranteed cost control design since in practice, continuous model 

parameters are often obtained from measured data. It was easier to embed the uncertainties 

into norm bounded elements by reason of measurements and obtain stability results by the 

Razumikhin method. It is important to note that investigation into existence and uniqueness 

studies for solutions of NFDSID was bypassed as they have previously been added by (Hale 

and Verduyn Lunel 1993, Cruz and Hale 1970). 
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The next investigation was on the realization that, when designing robust controls for 

NFDSID which consider uncertainties explicitly, their stability and controllability properties 

are key issues to be analysed. Controllability results in this thesis were established with the 

controls assumed to be restrained and null controllability result obtained using Schauder’s 

fixed point theorem. The novel results obtained in this thesis have shown that, the 

controllability of NFDSID can be computed without the knowledge of the controllability 

matrix. Unlike the conditions in Dauer et al. (1998), the controllability conditions introduced 

in this Thesis were explicit and computationally more effective. In this Thesis, the 

computation of the controllability matrix is not required since it is obtained by an equivalent 

rank condition. It generalises to neutral systems the rank condition in Davies (2006). Indeed, 

applying the rank condition from (Davies 2006) to systems (5.3) with 𝐴1 = 𝐴2 = 0 on [0, 𝜏], 

𝑢 ∈ 𝐿2([0, 𝜏], 𝐸
𝑚)  satisfying 𝑥(𝑡) = 0 , −ℎ ≤ 𝑡 ≤ 0  would result in 𝑟𝑎𝑛𝑘 𝐵 = 𝑛  which 

limits the results to retarded systems. This thesis has introduced a different rank condition, 

see (Corollary 5.1, (i)) based on Rivera Rodas and Langenhop (1978). The rank condition 

alone is not considered to be necessary and sufficient; the algebraic requirement in (Corollary 

5.1, (ii)) makes it sufficient as well as necessary for controllability. Therefore the 

controllability condition in this Thesis generalizes the results of null controllability to neutral 

systems with infinite delays and yields a less conservative result.  

The condition (ii), which relates to the initial condition or structure of the information for the 

system considered, and (iii) of Theorem 5.3 imposed in this Thesis, ensure that the error 

signals are contained within the neighbourhood of the origin as time increases and not 

asymptotically tend to zero. Conditions (ii) and (iii) are required for null controllability when 

the controls are restrained. They make the system less conservative being able to handle 

internal and external disturbances that may prevent signals from converging asymptotically to 

zero. 
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Perturbations cause conservatism as they do not vanish in some cases when the state 

approximates the origin. It makes uniform asymptotic stability impossible for such systems 

that have non-vanishing perturbations (Kofman 2005). Therefore, condition (v) of Theorem 

5.3 was imposed in this thesis to preserve system properties and directional consideration. 

Ignoring or altering condition (v) may affect the system’s properties differently and even lead 

to conservatism.  

By using the stability and controllability results, new easily computable criteria for the time 

optimal control for the neutral functional integro-differential systems with infinite delays 

were formulated and proved. Furthermore, a novel method for obtaining an optimal robust 

guaranteed cost control problem via memoryless state feedback control laws for the system 

was presented using a transformation technique, combined with the Lyapunov matrix 

equation and the Razumikhin approach. The utilization of memoryless feedback controllers 

was based on the fact that the delay does not need to be explicitly known for simulation 

purposes. Information that may not be readily available and, consequently using memory-less 

feedback control, may have a structure that will be more implementable in real life control.  

A guaranteed cost control gain for the system was also presented through an optimization 

problem. A particular advantage of using the Razumikhin technique based optimal robust 

control strategy was that it provided a direct method of assuring uniform asymptotic stability. 

The checking of the conditions developed in using this strategy for the design of the optimal 

robust guaranteed cost control for the system was also simple and easily verifiable.  

Furthermore, the well-known Lyapunov functional method was considered for the 

investigation of the system as a comparison with the Razumikhin’s approach by constructing 

a Lyapunov functional along the solution path. A new delay-independent condition that was 

sufficient to make the system asymptotically stable was obtained through LMI expressions.  
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To assess the potential for practical application of the theoretical work, Chukwu’s (2001) 

statement that “it is possible that some dynamical systems possess multiple equilibria and are 

therefore suited to be used as a memory device in the design of a digital computer, the flip-

flop circuit has such dynamics and serves as the basic element in a digital computer” was 

critically evaluated in terms of transmission lines. An integrated lossless transmission line 

network terminated with a nonlinear function in parallel with capacitance, resistance and 

inductance was modelled and investigated. The equation obtained by reducing the 

transmission line model to a neutral system with an infinite delay serves as a special case of 

the general NFDSID considered in the thesis. It was found that a natural model for these 

voltages and current fluctuations arising in the network of the integrated circuits were a 

mathematical model for NFDSID and its perturbation. The act of driving those fluctuations of 

voltages to its stable equilibrium state as rapidly as possible was termed the time optimal 

control problem for the NFDSID.  

NFDSID is considered to appear in variety of real life applications and, in this thesis it has 

originated out from theoretical study of 𝑁 mutually interconnected lossless transmission line 

network terminated with a nonlinear function. The Razumikhin technique which was the 

basic concept in the theoretical investigation was explored in developing optimal robust 

control strategy for this interconnected transmission line evaluation. The mathematical 

approaches of analysis to the problems in this thesis were quite new and the salient features in 

these strategies and results presented are: 

(i) The simplicity in checking their stability results using the unique properties of eigenvalues 

and the difference differential operator for the system.  

(ii) The simplicity in obtaining controllability and null controllability results by a rank 

condition which generalizes to neutral systems.  
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(iii) Their clear insight about the systems application and to the optimal robust control 

strategy for the systems and their perturbations.  

Though there are previous studies in this area and there have been great interest in the study 

of these systems in recent years, to the best of the researchers knowledge none have derived 

NFDSID from studying interconnected transmission lines. The new results and methods of 

analysis expounded in this Thesis are therefore more explicit, computationally more effective 

than existing ones and will serve as a working document for the present and future 

generations in the comity of researchers and industries alike. 

8.2. Further-work 

This research work can be extended to study conditions that would preserve the 

controllability and null controllability results when both system and input matrices undergo 

some parameter uncertainties. The problem of controllability of linear parameter uncertainty 

in systems has received considerable research effort from control audience because of its 

significance in theory and its applications. These uncertainties in control systems analysis and 

design can be structured if the uncertain parameter is an elemental part of the system and 

input matrices, or unstructured if the parameter uncertainties are contained in the systems 

matrices only. If 𝛼𝑖 are introduced into system (5.2) as uncertain parameters, and the constant 

𝑛 × 𝑛 , 𝑛 × 1 matrices 𝐴𝑖  and 𝐵𝑖 , (𝑖 = 1, 2,⋯ ,𝑚) respectively, depends linearly on 𝛼𝑖  for 

information, then (5.2) will be of the form  

(𝑑 𝑑𝑡⁄ )(𝑥(𝑡) − 𝐴0𝑥(𝑡 − ℎ))

= (𝐴1 + ∆𝐴1)𝑥(𝑡) + (𝐴2 + ∆𝐴2)𝑥(𝑡 − ℎ) + (𝐵 + ∆𝐵)𝑢(𝑡)

+ ∫𝐴(𝜃)𝑥(𝑡 + 𝜃)𝑑𝜃

0

−∞

+  𝑓(𝑡, 𝑥𝑡, 𝑢(𝑡)),                                                     (8.1) 
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where ∆𝐴1 = ∑ 𝛼𝑖𝐴1𝑖
𝑚
𝑖=1 ,  ∆𝐴2 = ∑ 𝛼𝑖𝐴2𝑖

𝑚
𝑖=1 ,  ∆𝐵 = ∑ 𝛼𝑖𝐵𝑖

𝑚
𝑖=1 , (𝑖 = 1, 2,⋯ ,𝑚).  

The question of null controllability for (8.1) on [0, 𝜏] would then depend on the stability of 

(8.1) when 𝑢 = 0; which can be estimated by using matrix norm or spectral radius (Tai et al. 

2009), and the controllability of the system which is relative to the controllable base for (8.1) 

amongst other assumptions on Theorem 5.3. That is, suppose the control base for (8.1) is 

controllable on the interval [0, 𝜏], then the uncertain system (8.1) is controllable on [0, 𝜏] for 

all ℎ > 0  sufficiently small if it satisfies Corollary 5.1 and the conditions that 

rank  𝑃𝑛[𝐴0, 𝐵𝑖] = 𝑛 , and  det[𝐺𝑛−1𝛼𝑖 ,   𝐺𝑛−2𝛼𝑖 ,⋯,   𝐺1𝛼𝑖,   𝐺0𝛼𝑖] ≠ 0 , (𝑖 = 1, 2,⋯ ,𝑚) . 

This criterion can be easily proved by introducing an 𝑛(𝑛 − 1) × 𝑛(𝑛 − 1) matrix G, with an 

𝑛2 × 𝑛2  matrix 𝐹 ; establishing their dependence and exploring their algebraic properties. 

This will involve a more extensive investigation in terms of these uncertainties to develop a 

potentially accurate and a more dependable optimal robust control design for system (8.1). 

A further possibility of extending this research work is to carry out investigations in discrete 

form based on the systems assumptions. This may provide some benefit in terms of model 

accuracy in simulation time and a potentially more improved control for the system. In this 

case, the optimal robust control development and design using Razhuminkhin technique can 

be usefully extended.   

With regards to the stabilisation design for neutral systems with infinite delays, this thesis 

only implicitly treated it as a comparative method using the Lyapunov-Krasovskii approach 

which often leads to LMIs. A short coming with the method is that the resultant matrix 

evaluation is usually not an LMI because of the presence of the distributed delays and the 

perturbation function. It may therefore be considered useful to investigate other methods of 

converting the resultant matrices obtained using this method into an LMI or develop other 

means of solving these matrices in order to get novel results that would stabilise the system 
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asymptotically. A delay-dependant approach in such investigation would give better results as 

they are known to be more effective than delay-independent criteria.  

Moreover, there is room for improvement in the application of the theoretical results to 

transmission lines in Chapter 7.  In Chapter 7, the stability and control of the system was 

examined and discussed in terms of voltage with current fluctuations through simulation 

studies for an interconnected network of a distributed transmission lines, which are each 

terminated by a nonlinear function in parallel with capacitance, resistance and an inductance. 

By reducing the distributed equations describing the systems, a nonlinear neutral differential 

system with an infinite delay was obtained. In this consideration, the network of transmission 

lines was considered lossless; this was because losses are required to be kept as low as 

possible in transmission systems to minimise their impact in the overall signal propagated.  

However, it will be of interest for system planners and power users if this work could be 

extended to allow the parameterization for the effect of losses in the behaviour of the system 

parameters, that would determine the final solution to a lossy transmission line network. A 

novel result could be achieved by deriving the resulting neutral equations to the network, 

analysing the oscillatory behaviour and making a comparative simulation studies. 

Another possibility for extension of this thesis work is in the area of designing model-based 

controllers, process-monitoring and regulation and in filtering and fault detection. All the 

state variables for the system considered in this thesis may rarely be available for direct 

online measurements. In most cases, for process-monitoring purposes, there is a need to 

design an observer for NFDSID that would reliably estimate the variables. Various methods 

used in observer design includes algebraic, geometric, inversion approaches, generalized 

inverse, singular-valued decomposition, input-output representation of systems and 

Kronecker canonical form techniques see Dong et al. (2014), Busawon (2014) and references 

therein for details. However, novel state observer design can easily be proposed for the 
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system with perturbation considered in this thesis using the transformation technique and 

Lyapunov functional method. The observer for the system can be obtained in the form of an 

adaptive control and the stability in form of LMI. The observer can be designed so that it 

depends on the feasible solutions of the LMI which can easily be solved using MATLAB’s 

LMI Toolbox.   

. 
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Appendix I 

Code for example using Lyapunov’s approach in Section 4.5.2 of Chapter 4 

 

%% MATRIX VALUES  

A=[-1,0;0,-1] 

C=[0,0.8448;0.8448,0] 

D=[0,0.4;0.4,0] 

I=[1,0;0,1] 

L=-0.02489 

 

%% INITIALIZING 

setlmis([]); 

X=lmivar(1,[2 0]); 

R=lmivar(1,[2 0]); 

U=lmivar(1,[1 0]); 

V=lmivar(1,[1 0]); 

W=lmivar(1,[1 0]); 

 

  %% Main Coding 

lmiterm([1 1 1 X],1,A','s');                    % LMI #1: X*A'+A*X 

  lmiterm([1 1 1 X],2*L,-1);               % LMI #1: -2*L*X (NON SYMMETRIC?) 

  lmiterm([1 2 1 X],A,1);                         % LMI #1: A*X 

  lmiterm([1 2 2 0],-I);                          % LMI #1: -I 

  lmiterm([1 3 1 X],1,L);                         % LMI #1: X*L 

  lmiterm([1 3 3 0],-I);                          % LMI #1: -I 

  lmiterm([1 4 1 U],1,A*X);                       % LMI #1: U*A*X 

  lmiterm([1 4 4 U],1,-I);                 % LMI #1: -U*I (NON SYMMETRIC?) 

  lmiterm([1 5 1 X],1,L);                         % LMI #1: X*L 

  lmiterm([1 5 5 U],1,-I);                 % LMI #1: -U*I (NON SYMMETRIC?) 

  lmiterm([1 6 1 X],1,L);                         % LMI #1: X*L 

  lmiterm([1 6 6 V],1,-I);                 % LMI #1: -V*I (NON SYMMETRIC?) 

  lmiterm([1 7 1 X],1,L);                         % LMI #1: X*L 

  lmiterm([1 7 7 W],1,-I);                 % LMI #1: -W*I (NON SYMMETRIC?) 

  lmiterm([1 8 1 -R],1,X);                        % LMI #1: R'*X 

  lmiterm([1 8 8 R],1,-1);                        % LMI #1: -R 

  lmiterm([1 9 1 X],A*C',1);                      % LMI #1: A*C'*X 

  lmiterm([1 9 1 0],C');                          % LMI #1: C' 

  lmiterm([1 9 9 V],1,C'*C);               % LMI #1: V*C'*C (NON SYMMETRIC?) 

  lmiterm([1 9 9 R],1,-1);                        % LMI #1: -R 

  lmiterm([1 9 9 0],C'*C);                        % LMI #1: C'*C 

  lmiterm([1 10 1 0],D'+A*D');                    % LMI #1: D'+A*D' 

  lmiterm([1 10 9 0],C*D');                       % LMI #1: C*D' 

  lmiterm([1 10 10 W],1,D'*D);             % LMI #1: W*D'*D (NON SYMMETRIC?) 

  lmiterm([1 10 10 0],D'*D-I);                    % LMI #1: D'*D-I 
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  lmiterm([-2 1 1 X],1,1);                        % LMI #2: X 

  

  lmiterm([-3 1 1 R],1,1);                        % LMI #3: R 

  

  lmiterm([-4 1 1 U],1,1);                        % LMI #4: U 

  

  lmiterm([-5 1 1 V],1,1);                        % LMI #5: V 

  

  lmiterm([-6 1 1 W],1,1);                        % LMI #6: W 

  

  RRR=getlmis; 

 

  %% TEST FEASIBILITY 

[tmin,Xfeas]=feasp(RRR) 

P=dec2mat(RRR,Xfeas,X) 

R=dec2mat(RRR,Xfeas,R) 

r0=dec2mat(RRR,Xfeas,U) 

r1=dec2mat(RRR,Xfeas,V) 

r2=dec2mat(RRR,Xfeas,W) 

 

 

%% OUTPUT of LMI 

Solver for LMI feasibility problems L(x) < R(x) 

    This solver minimizes  t  subject to  L(x) < R(x) + t*I 

    The best value of t should be negative for feasibility 

 Iteration   :    Best value of t so far  

  

     1                        0.669788 

     2                        0.240455 

     3                        0.240455 

     4                        0.240455 

     5                        0.079776 

     6                        0.079776 

***                 new lower bound:    -0.167671 

     7                        0.020053 

***                 new lower bound:    -0.074947 

     8                        0.020053 

     9                    6.207959e-03 

***                 new lower bound:    -0.042371 

    10                    6.207959e-03 

***                 new lower bound:    -0.012742 

    11                    4.829127e-03 

    12                    2.399568e-03 

    13                    1.344639e-03 

***                 new lower bound:    -0.010126 

    14                    9.667752e-04 

***                 new lower bound: -7.973276e-03 

    15                    4.087294e-04 
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***                 new lower bound: -6.243150e-03 

    16                    4.087294e-04 

***                 new lower bound: -4.863177e-03 

    17                    4.087294e-04 

***                 new lower bound: -1.303494e-03 

    18                    1.850116e-04 

    19                    1.850116e-04 

***                 new lower bound: -3.688659e-04 

    20                    9.026033e-05 

    21                    6.525857e-05 

***                 new lower bound: -8.434159e-05 

    22                    2.507302e-05 

    23                    1.047373e-05 

***                 new lower bound: -2.201073e-05 

    24                    4.971172e-06 

    25                    4.971172e-06 

***                 new lower bound: -1.964643e-05 

    26                    2.370210e-06 

***                 new lower bound: -5.500865e-06 

    27                    -9.162452e-07 

 

 Result:  best value of t: -9.162452e-07 

          f-radius saturation:  0.000% of R =  1.00e+09 

  

tmin = -9.1625e-07 

 

 

Xfeas = 

 

       1.0000 

       0.8746 

       0.0249 

       0.0294 

       0.1500 

 

P = 

       1.0000         0 

            0    1.0000 

 

R = 

       0.8746         0 

           0    0.8746 

 

r0 = 0.0249 

 

r1 = 0.0294 

 

r2 = 0.1500 
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Appendix II 

Code for example on stabilisation in Section 5.5.2 of Chapter 5 

 

%% MATRIX VALUES  

A=[-1,0;0,-2] 

C=[-1,0;1,-2] 

D=[0.5,0;0,0.5] 

I=[1,0;0,1] 

L=-0.02489 

B=[1,0;0,1] 

%% INITIALIZING 

setlmis([]); 

X=lmivar(1,[2 0]); 

R=lmivar(1,[2 0]); 

U=lmivar(1,[1 0]); 

V=lmivar(1,[1 0]); 

W=lmivar(1,[1 0]); 

 

  %% Main Coding 

lmiterm([1 1 1 X],1,A','s');                    % LMI #1: X*A'+A*X 

  lmiterm([1 1 1 X],L,-1,'s');           % LMI #1: -2*L*X (NON SYMMETRIC?) 

  lmiterm([1 1 1 X],1,-A'*B*B','s');% LMI #1: -2*X*A'*B*B' (NON SYMMETRIC?) 

  lmiterm([1 1 1 X],-B*B'*L,1,'s');   % LMI #1: 2*B*B'*L*X (NON SYMMETRIC?) 

  lmiterm([1 1 1 0],-2*B*B');                     % LMI #1: -2*B*B' 

  lmiterm([1 2 1 X],A,1);                         % LMI #1: A*X 

  lmiterm([1 2 2 0],-I);                          % LMI #1: -I 

  lmiterm([1 3 1 0],B*B');                        % LMI #1: B*B' 

  lmiterm([1 3 3 0],-I);                          % LMI #1: -I 

  lmiterm([1 4 1 U],1,A*X);                       % LMI #1: U*A*X 

  lmiterm([1 4 4 U],1,-I);                 % LMI #1: -U*I (NON SYMMETRIC?) 

  lmiterm([1 5 1 X],R,1);              % LMI #1: R*X: a PLACE OF DIFFERENCE 

  lmiterm([1 5 5 R],1,-1);                        % LMI #1: -R 

  lmiterm([1 6 1 X],1,L);                         % LMI #1: X*L 

  lmiterm([1 6 6 0],-I);                          % LMI #1: -I 

  lmiterm([1 7 1 X],1,L);                         % LMI #1: X*L 

  lmiterm([1 7 7 U],1,-I);                 % LMI #1: -U*I (NON SYMMETRIC?) 

  lmiterm([1 8 1 X],1,L);                         % LMI #1: X*L 

  lmiterm([1 8 8 V],1,-I);                 % LMI #1: -V*I (NON SYMMETRIC?) 

  lmiterm([1 9 1 X],1,L);                         % LMI #1: X*L 

  lmiterm([1 9 9 W],1,-I);                 % LMI #1: -W*I (NON SYMMETRIC?) 

  lmiterm([1 10 1 X],C'*A,1);                   % LMI #1: C'*A*X 

  lmiterm([1 10 1 0],C'-C'*B*B');             % LMI #1: C'-C'*B*B' 

  lmiterm([1 10 10 V],1,C'*C);            % LMI #1: V*C'*C (NON SYMMETRIC?) 

  lmiterm([1 10 10 R],1,-1);                      % LMI #1: -R 
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  lmiterm([1 10 10 0],C'*C);                      % LMI #1: C'*C 

  lmiterm([1 11 1 X],D'*A,1);                   % LMI #1: D'*A*X 

  lmiterm([1 11 1 0],D'-D'*B*B');              % LMI #1: D'-D'*B*B' 

  lmiterm([1 11 10 0],D'*C);                   % LMI #1: D'*C 

  lmiterm([1 11 11 W],1,D'*D);            % LMI #1: W*D'*D (NON SYMMETRIC?) 

  lmiterm([1 11 11 0],D'*D-I);                    % LMI #1: D'*D-I 

  

  lmiterm([-2 1 1 X],1,1);                        % LMI #2: X 

  

  lmiterm([-3 1 1 R],1,1);                        % LMI #3: R 

  

  lmiterm([-4 1 1 U],1,1);                        % LMI #4: U 

  

  lmiterm([-5 1 1 V],1,1);                        % LMI #5: V 

  

  lmiterm([-6 1 1 W],1,1);                        % LMI #6: W 

  

  RRR=getlmis; 

 

   %% TEST FEASIBILITY 

[tmin,Xfeas]=feasp(RRR) 

X=dec2mat(RRR,Xfeas,X) 

R=dec2mat(RRR,Xfeas,R) 

r4=dec2mat(RRR,Xfeas,U) 

r5=dec2mat(RRR,Xfeas,V) 

r6=dec2mat(RRR,Xfeas,W) 

 

%% OUTPUT of LMI 

 

Solver for LMI feasibility problems L(x) < R(x) 

    This solver minimizes  t  subject to  L(x) < R(x) + t*I 

    The best value of t should be negative for feasibility 

 

 Iteration   :    Best value of t so far  

  

     1                        0.981564 

     2                        0.782327 

     3                        0.350122 

     4                        0.145377 

     5                        0.145377 

     6                        0.052453 

     7                        0.052453 

     8                       -0.012032 

 

 Result:  best value of t:    -0.012032 

          f-radius saturation:  0.000% of R =  1.00e+09 

  

 

tmin =  -0.0120 
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Xfeas = 

      0.1449 

    383.8617 

      0.1849 

     54.6079 

      1.6422 

 

 

X = 

      0.1449         0 

           0    0.1449 

 

 

R = 

  383.8617         0 

           0  383.8617 

 

 

r4 =  0.1849 

 

 

r5 = 54.6079 

 

 

r6 = 1.6422 
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Appendix III 

 

Simulink model set-up for single transmissions discussed in Section 7.4 of Chapter 7 

 

III1: Simulink model for single transmission line without nonlinear function 

 

III 2: Simulink model for single transmission line with nonlinear function 
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Appendix IV 

 

Simulink model set-up for interconnected transmission lines discussed in Section 7.4 of 

Chapter 7 

 

IV1: Simulink model for interconnected transmission lines without nonlinear functions 

 

IV2: Simulink model for interconnected transmission lines with nonlinear functions 
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Appendix V 

Obtaining 𝛾0 from the definition of  𝐺𝑘(∙) using Lemma 4.4 in Section 4.2 of Chapter 4, and 

the resistance of the interconnection R = 0.01 with the following system matrices 

𝐴0 = (
0.6 0
0 0

) ,   𝐴1 = (
−7.96 −108.12
42.12 −210.52

),    𝐴2 = (
−1.2 0
−6.32 0

), 

gives 

det △ (𝜆) = (
𝜆 − 0.6𝜆 exp(−𝜆ℎ) + 7.96 + 1.2 exp(−𝜆ℎ) 108.12

−42.12 + 6.32 exp(−𝜆ℎ) 𝜆 + 210.52
) − 48 = 0. 

Since oscillations appears at the imaginary axis when an eigenvalue from the characteristic 

equation crosses it, by setting 𝜆 = 𝑖𝑤 as the condition on △ (𝜆) under which an imaginary 

eigen-vector exists and substituting this into △ (𝜆) above gives 

0.4 𝑤4 − 93.368𝑖𝑤3 − 5799.0592𝑤2 − 48 = 0. 

Using MATLAB in solving the above polynomial gives 

𝑤1 = −0.09𝑖; 𝑤2 = 29.60 + 116.71𝑖; 𝑤3 = −29.60 + 116.71𝑖; 𝑤4 = 0.09𝑖. 

Now, since only one pair of roots can cross the imaginary axis for the first time before 

oscillation begins, choosing 𝑤2 as a critical value and finding its eigen-vector gives 

𝑥 = (
11870+ 678.43𝑖
4130.2 − 1059.7𝑖

) . 

Then the general solution for the system is obtained as 
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𝑣 = 𝐶1 exp(29.60𝑡) (
11870 cos(116.71𝑡) − 678.43 sin(116.71𝑡)

4130.2 cos(116.71𝑡) + 1059.7 sin(116.71𝑡)
)

+ 𝐶2 exp(29.60𝑡) (
11870 sin(116.71𝑡) + 678.43 cos(116.71𝑡)

4130.2 sin(116.71𝑡) − 1059.7 cos(116.71𝑡)
), 

and the constants are obtained as 𝐶1 = 0.0591 and 𝐶2 = 0.0252. Substituting this in 𝐺𝑘(∙) 

using assumption (iii) in Section 4.2 gives 

(
𝐶1
R
+ 𝑟𝐶2) ∫ exp(29.60𝑠)𝑑𝑠 < ∞

0

−∞

, 

so that  𝛾0 = 0.1998. 
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