
 Coventry University

DOCTOR OF PHILOSOPHY

Customisable transaction support for web services

Neugebauer, Rose T.

Award date:
2012

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://pureportal.coventry.ac.uk/en/studentthesis/customisable-transaction-support-for-web-services(7fa94845-0630-49d7-ba1a-7b90c19a99f1).html

Customisable Transaction Support for
Web Services

Rose T. Neugebauer

A thesis submitted in partial fulfilment of University’s
requirements for Degree of Doctor of Philosophy

2012

I

Acknowledgement

This work would not have been realised if not for the support I got from my Director of

Studies, Professor Anne James. I should like to sincerely thank her for the direction,

guidance and encouragement she unlimitedly gave me. I highly appreciate the

opportunities she gave me to present and discuss the ideas relating to this work through

publications.

Additionally I would like to express my gratitude and admiration to Dr R. Iqabal,

Rafal, Fahmida who gave me technical comments, assistance and support during the

work.

I am incalculably indebted to the love and support my husband Frank Neugebauer gave

me over the years. Most of all I am grateful to my beloved Mum, sister Tebogo Levita

and brother Okeditse Khachana; this could not have been possible without their support

and encouragement.

II

Lists of Publications

• Khachana, T., James, A. and Iqbal, R. (2009) ‘Adaptive user-defined

transaction relaxing approach for CSCW’ in Borges, M.R.S., Shen, W. Pino,

J.A., Barthès, J-P. A., Luo, J., Ochoa, S.F. and Yong, J (eds.) Proceedings of

13th International Conference on Computer Supported Cooperative Work in

Design held on 22‒24 April 2009 at Santiago, IEEE, 362‒367.

• Khachana, R. T., James, A. and Iqbal, R. (2011) ‘Relaxation of ACID properties

in AuTrA, the adaptive user-defined transaction relaxing approach.’ Future

Generation Computer Systems 27 (1), 58‒66.

• Neugebauer. R. T., James, A. and Iqbal, R. (2011) ‘A General User-Defined

Negotiation Application based AuTrA System for Computer Supported

Collaboration Work’ in Shen, W., Barthès, J-P.A., Luo, J., Kropf, P.G., Pouly,

M., Yong, J., Xue, Y. and Ramos, M.P. (eds.) Proceedings of 15th International

Conference on Computer Supported Cooperative Work in Design held on 8‒10

June 2011 at Lausanne. IEEE, 131‒138.

III

Table of Contents

Acknowledgement .. I
Lists of Publications .. II
Table of Contents ... III
List of Figures .. VI
List of Tables .. VII
Abstract ... VIII
Chapter 1: Introduction... 1
1.1 Introduction ... 2
1.2 Motivation ... 2
1.3 Transaction issues ... 3
1.4 Research question .. 5
1.5 Research aim ... 6
1.6 Research design ... 6
1.7 Contribution .. 8
1.8 Organisation of the thesis .. 9
Chapter 2: Literature Review ... 11
2.1 Introduction ... 12
2.2 Transactions .. 12
2.3 Some seminal transaction models ... 14
2.3.1 Flat transaction model ... 15
2.3.2 Nested transaction model .. 16
2.3.3 Multilevel transaction model ... 18
2.3.4 Saga transaction model .. 19
2.3.5 Split and join transaction model .. 21
2.4 Web services ... 21
2.5 Related work on transaction models which relax ACID properties .. 23
2.5.1 Relaxation of atomicity ... 23
2.5.2 Relaxation of isolation... 24
2.5.3 Relaxation of atomicity and isolation .. 28
2.5.4 Relaxation of consistency and atomicity and isolation or both ... 32
2.5.5 Relaxation of durability and ACI .. 35
2.5.6 Other approaches to performance improvement in transaction models ... 37
2.6 Commercial and open source transaction protocols .. 38
2.6.1 Business Transaction Protocol (BTP) ... 39
2.6.1.1 Atoms transactions .. 40
2.6.1.2 Cohesion transactions ... 40
2.6.1.3 Qualifiers .. 41
2.6.1.4 Relationships in BTP .. 42
2.6.1.5 BTP transaction participants ... 42
2.6.2 WS-Transactions (WS-Tx) .. 43
2.6.2.1 WS-Coordination .. 44
2.6.2.2 WS-AtomicTransaction (WS-AT) .. 45
2.6.2.3 WS-BusinessActivity (WS-BA) ... 46
2.7 Comparison of the different approaches .. 49
2.8 Summary ... 51
Chapter 3: Requirements for a New Transaction Model .. 52
3.1 Introduction ... 53
3.2 Motivation to develop AuTrA ... 53
3.3 User-defined atomicity .. 55
3.4 User-defined isolation ... 57
3.5 Adaptable consistency ... 59
3.6 Adaptable durability .. 63
3.7 Application-specific criteria .. 65
3.8 Summary ... 67
Chapter 4: Presentation of AuTrA .. 68
4.1 Introduction ... 69
4.2 System overview ... 69

IV

4.3 AuTrA implementation ... 80
4.4 Main classes in AuTrA .. 89
4.4.1 Reader component ... 90
4.4.2 Requirements Tailor component ... 91
4.4.3 Requirements Negotiator component .. 91
4.4.4 Batch Manager component .. 92
4.4.5 Processing Timer component .. 94
4.4.6 Writer component .. 95
4.5 Summary ... 95
Chapter 5: Simulation Model and Evaluation Strategy .. 96
5.1 Introduction ... 97
5.2 Definitions of the key terms in the research .. 97
5.3 Simulation model .. 99
5.3.1 Simulation set-up ... 100
5.3.2 Simulation model settings and configuration .. 104
5.3.3 Mechanism for simulation relaxation of ACID and application-spefication properties 106
5.3.4 Simulation road map ... 107
5.3.5 Simulation road map summary .. 112
5.4 Evaluation strategy .. 113
5.4.1 Evaluation of the effect of relaxation of atomicity, consistency and isolation 113
5.4.2 Evaluation of the effect of relaxing durability and later tidying up ... 114
5.4.3 Evaluation of the effect of application-specific property relaxation ... 114
5.4.4 Evaluation of the effect of negotiation .. 114
5.4.5 Evaluation of the effect of tentative hold .. 115
5.5 Summary ... 115
Chapter 6: Experimental Evaluation ... 116
6.1 Introduction ... 117
6.2 Experimental set-up ... 117
6.3 Scenarios ... 119
6.3.1 The Travel Plan application .. 119
6.3.2 The Travel and Party application .. 123
6.3.3 The Big Party Arrangements application .. 124
6.4 The Experiments ... 125
6.4.1 Set 1 - Experiments to measure effect of relaxing atomicity, consistency and isolation 129
6.4.1.1 Experiment 1 ... 129
6.4.1.2 Experiment 2 ... 131
6.4.1.3 Experiment 3 ... 132
6.4.1.4 Experiment 4 ... 134
6.4.1.5 Summary of Set 1 experiments ... 136
6.4.2 Set 2 – Assessing the effect of durability relaxation with or without tidy-up 136
6.4.2.1 Experiment 5 ... 136
6.4.2.2 Experiment 6 ... 138
6.4.2.3 Experiment 7 ... 139
6.4.2.4 Experiment 8 ... 140
6.4.2.5 Experiment 9 ... 141
6.4.2.6 Summary of Set 2 experiments ... 143
6.4.3 Set 3 – Assessing effect of relaxation of application-specific properties 143
6.4.3.1 Experiment 10 ... 144
6.4.3.2 Experiment 11 ... 146
6.4.3.3 Experiment 12 ... 147
6.4.3.4 Summary of Set 3 experiments ... 149
6.4.4 Set 4 – Effect of negotiation on throughput .. 149
6.4.4.1 Experiment 13 ... 149
6.4.4.2 Summary of Set 4 experiments ... 151
6.4.5 Set 5 – Assessing effect of tentative hold .. 151
6.4.5.1 Experiment 14 ... 152
6.4.5.2 Experiment 15 ... 153
6.4.5.3 Summary of Set 5 experiments ... 155
6.5 Summary ... 155
Chapter 7: Discussion, Conclusion and Future Work... 156

V

7.1 Introduction ... 157
7.2 Discussion ... 157
7.3 Answering the research question ... 158
7.4 Comparison with other models .. 161
7.5 Correctness when relaxing a property ... 161
7.6 Transition from database to Web services ... 163
7.7 Targeted users of AuTrA ... 163
7.8 Conclusion ... 164
7.9 Future work ... 166
7.10 Closing remark .. 167
References .. 168
Appendix A ‒ Comparison of different Web-based transaction management models 177
Appendix B ‒ Comparison of key features of BTP, WS-Tx (BusinessActivity) and AuTrA 186
Appendix C – Raw data and evidence of statistical analysis of the experiments 187
Appendix D - AuTrA technologies examples .. 232
Appendix E ‒ Snippets of some of the inputs used in the experiments .. 235
Appendix F ‒ Acronyms .. 241

VI

List of Figures

Figure 1 Transaction example for airline reservation (Elmagarmid 1992) ... 13
Figure 2 Flat transaction example (Gray and Reuter 1993) .. 15
Figure 3 Nested transaction model example ... 16
Figure 4 Illustration of nested transactions ... 17
Figure 5 Multilevel transaction model .. 19
Figure 6 Saga successful transaction example .. 20
Figure 7 Saga unsuccessful transaction example .. 20
Figure 8 Illustration of the split and join transaction model ... 21
Figure 9 BTP stack (Little and Freud 2003) ... 40
Figure 10 BTP superior-inferior relationship (Little and Freud 2003) .. 42
Figure 11 WS-Transaction components (Cabrera et al. 2001) ... 44
Figure 12 WS-Transaction overview (Cabrera et al. 2001) ... 47
Figure 13 Pie chart showing summary of relaxation of ACID properties .. 50
Figure 14 Non-matching consumer and provider relaxation requirements: Example 1. 58
Figure 15 Consumer and provider ACID relaxation specification ... 61
Figure 16 Negotiation process .. 62
Figure 17 Non-matching consumer and provider relaxation requirements: Example 2 63
Figure 18 High level system diagram for AuTrA ... 71
Figure 19 The context diagram of AuTrA .. 72
Figure 20 Proposed AuTrA system workflow: Consumer’s perspective ... 74
Figure 21 Proposed AuTrA system workflow: Service provider’s perspective ... 75
Figure 22 Proposed AuTrA system workflow: Developer’s perspective ... 77
Figure 23 Detailed process flow of AuTrA system .. 79
Figure 24 AuTrA service provider front page .. 81
Figure 25 Service provider options in AuTrA .. 83
Figure 26 Application composition by service consumer .. 84
Figure 27 Application-specific criteria relaxation .. 85
Figure 28 Application-specific criteria selection .. 86
Figure 29 Application-specific criteria process .. 87
Figure 30 AuTrA negotiation ... 89
Figure 31 Web services registered with AuTrA ... 103
Figure 32 Corresponding database of Web services registered with AuTrA.. 104
Figure 33 Launching the AuTrA simulation application .. 107
Figure 34 Simulation process ... 108
Figure 35 Snippet of code difference ACID relaxation .. 109
Figure 36 Snippet of code for method of random delay ... 109
Figure 37 Snippet of code showing enforced agreement of provider requirements 110
Figure 38 Snippet of output showing bookings and processing time ... 111
Figure 39 Screen shot of the results analysis phase .. 112
Figure 40 Output with unsuccessful transaction examples ... 118
Figure 41 Scenario of composite Web services .. 121
Figure 42 Big Party Arrangements composition ... 125
Figure 43 Case 1 and Case 2 ACI relaxation .. 130
Figure 44 Cases 3, 4 and 5 ACI relaxation ... 131
Figure 45 Cases 6, 7 and 8 ACI relaxation ... 133
Figure 46 Case 2, Case 6, Case7 and Case 8 ACI relaxation ... 135
Figure 47 Case 9 and Case 10 ACID relaxation ... 137
Figure 48 Case 10 and Case 11 ACID relaxation ... 138
Figure 49 Case 10 and Case 11 relaxation with tidying-up .. 139
Figure 50 Case 3, Case 4, Case 5 and Case 10 ACID relaxation .. 140
Figure 51 Case 6, Case 7, Case 8, Case 16, Case 17 and Case 18 ... 142
Figure 52 Case 12 and Case 13 ACID relaxation ... 145
Figure 53 Case 13, Case 14, Case 15 and Case 19 ACID relaxation.. 146
Figure 54 Case 12 and Case 20 ACID relaxation ... 148
Figure 55 Case 13 and Case 14 ACID relaxation ... 150
Figure 56 ACID and application-specific relaxation with tentative hold ... 152
Figure 57 ACID, application-specific criteria, negotiation and tentative hold ... 154

VII

List of Tables

Table 1 Summary of relaxation of ACID properties .. 49
Table 2 Simulation used in the evaluation .. 101
Table 3 Mechanisms for simulation relaxation in AuTrA .. 106
Table 4 Examples of relaxation requests .. 122
Table 5 Consumer relaxation combinations used in the experiments ... 126
Table 6 Services provider relaxation requirements – Experiment Set 1 ... 129
Table 7 Service provider relaxation requirements ‒ Experiment Set 2 .. 136
Table 8 Service provider relaxation requirements ‒ Experiment Set 3 .. 143
Table 9 Service provider relaxation requirements ‒ Experiment Set 4 .. 149
Table 10 Service provider relaxation requirements ‒ Experiment Set 5 .. 151
Table 11 Summary of how the AuTrA system answers the research question ... 160

VIII

Abstract

Web services transactions have some unique characteristics. A Web transaction may be

composed of a number of individual Web services, executed across multiple loosely

coupled autonomous systems. Each Web service may be executed on an independent

system belonging to an independent provider. There raises the question whether Web

transactions can and should be maintained as a single business unit in a similar way to

how transactions are maintained in classical database systems. In classical database

systems, the transaction management protocol and mechanism are constrained by the

primary properties of atomicity, consistency, isolation and durability (ACID). These

ACID properties are the cornerstone of maintaining data integrity in transaction

management. However, ACID properties were meant for centralised systems and are

better suited for short transactions. Unlike short transactions, Web services transactions

may be long-running; they can take hours or even days depending on the application.

Composing certain actions from loosely coupled distributed business processes across

multiple distributed applications is one of the essentials of Web services transactions.

The classic ACID model, which is tightly coupled, is therefore seen as too rigid to

support all the requirements of the new Web transactions model.

The research proposes a system that increases throughput while maintaining the

consistency and correctness required by the particular applications that are using the

model; the system is known as AuTrA (Adaptable user-defined Transaction relaxed

Approach). AuTrA allows relaxation of each ACID property. The model is adaptable to

meet different situations with different characteristics. For instance, in some cases it

will be appropriate to relax atomicity, whereas in others it may be appropriate to relax

isolation and atomicity while maintaining consistency. The research explores how

transaction support for Web services can be customised to suit the needs of varying

applications and result in improved service.

The AuTrA prototype has been implemented. The experimental results show that the

AuTrA application is able to support the basic features of Web services transaction

management, allowing users to specify their correctness requirements, and it can

increase throughput of transactions in models in a flexible and reliable manner.

Additional facilities allow users to specify application-specific, non-ACID criteria that

IX

can increase throughput. Safeguards have also been implemented to prevent execution

of inappropriate user specifications, such as relaxation of properties that may damage

data integrity. AuTrA can be used as a tool by software developers who need to

compose applications from independent Web services and who wish to build

applications which result in improved performance while maintaining application-

required consistency.

1

Chapter 1: Introduction

2

1.1 Introduction

This chapter discusses the motivation that led to the research, outlines the problem,

provides the path for the research and states the contributions of the research. The

structure of the thesis is also outlined in this chapter.

1.2 Motivation

Web services are programs that are self-contained, modular business applications that

can be dynamically discovered and invoked across the Web. Web services are based on

industry principal technologies such as SOAP, UDDI, WSDL and XML. They make

available a variety of ways to incorporate several applications in business-to-business

(B2B) communication through SOAP and WSDL standards. Different organisations are

able to connect their applications with those of other organisations in order to do

business across networks; this is made possible through the composition of component

Web services.

A transaction is a unit of work that may be made up of individual operations. For

instance, a transaction which transfers an amount of money from one bank account to

another may be made up of a number of operations. Traditionally in classical database

systems, transactions should be completed in their entirety or not at all. For instance, in

the transfer of money from one account to another it would not be good if the money

was taken from one account but not added to the other. To achieve reliable transactions,

strict ACID (atomicity, consistency, isolation, durability) properties have to be applied

in traditional database systems. ACID properties are traditional properties for a

transaction. Atomicity is based on an all-or-nothing policy; that is to say, the transaction

must execute completely or not at all. Consistency implies that the transaction must be

left in a state in which data or information is reliable and consistent. Isolation stresses

that a transaction cannot show its uncommitted data to another transaction, meaning the

transaction should finish before it can show its results to other transactions. Data that is

committed needs to be saved; that is what durability implies.

3

However, in the Web environment a transaction may be composed of a variety of Web

services, each of which may be seen as a mini-transaction in its own right. Maintenance

of strict ACID properties becomes more difficult because of the fact that the Web

transaction can be long-running (and it is not good to lock out resources for hours or

days) and furthermore, Web services are owned by different providers, each of which

may have their own policies which might conflict with a centralised transaction

management system. In addition, many Web transactions may not need strict

application of ACID properties, although in some circumstances these may be

necessary. Thus the question arises of the applicability of ACID maintenance in a Web

services environment.

1.3 Transaction issues

Web services transaction management has been an interesting topic to the research

world and has constituted an important branch of data and systems research over the

two last decades; first in the context of database systems and more latterly in the context

of internet systems and e-commerce technologies. The major problem with traditional

transaction management is the rigidness of the ACID properties, especially for long-

running transactions. This can be a drawback when it comes to business applications. A

number of models have been proposed by researchers with respect to providing support

for advanced transactions (e.g. distributed transactions, nested transactions and chained

transactions) to meet some of the requirements of long-running transactions. The

relaxing of the traditional ACID properties, for example, allows parts of the transaction

to commit even if other parts fail, or allows intermediate results to be shown to other

transactions. This can support collaborative work which is becoming key to today’s

business environment and is characterised by long-running transactions. An example

could be collaborative design. To lock a user out completely while another user runs a

transaction may not be ideal. It may be preferable for a user to see uncommitted results

rather than to wait for a long time to do their part of the work. Models introduced in the

early eighties serve as building blocks for the current proposed models.

In 1982, Moss introduced the nested transaction model to extend on flat transactions by

dividing transactions into sub-transactions, i.e. parent and child transactions. A child

can start after the parent has started and can commit locally. The parent also terminates

4

only when the child transaction has completed. When the child transaction commits the

results, they cannot be seen immediately; they can be seen only after the parent

transaction has completed. The idea of sub-transactions is good but could fail the

modern business environment, which in some circumstances needs intermediate results

to be shown due to the fact that the transactions can be long-running. This would

require the relaxation of isolation, which this nested transaction model does not support.

However, since this model allows increased modularity, concurrency and finer recovery

than traditional flat transactions, it has some advantages and it can increase

performance. But with relaxed isolation it might have been even better. The nested

transaction model and its extensions are more powerful than the traditional flat

transactions but they are still only suitable for specific environments and are still a long

way off supporting environments requiring long-running transactions. This model was

aimed at federated database systems.

In 1983 Lynch introduced a model that relaxed atomicity. The model allowed the

modulation specification between operations for transaction execution. The modulation

specification defines how each module can infuse with others, allowing each module to

commit, even if some of its siblings have not committed.

Garcia-Molina and Salem introduced the Saga model in 1987. Its main goal was to deal

with long-running transactions. The model uses the concept of compensation and,

similarly to the Moss model, it uses the concept of sub-transactions but it caters for

long-running transactions, not specific federated databases. Saga is based on the idea of

chained transactions, which decompose long-running transactions into small,

sequentially-executing sub-transactions. According to Gray and Reuter in 1993, the idea

originated from IBM’s Information Management System (IMS) and HP’s Allbase

database products. In the Saga model, each transaction is allowed to commit

individually, allowing partial results to be seen by other transactions. Compensation is

used to undo all the effects if the whole transaction has to abort. The benefit of this

model is that it allows the sub-transaction to commit, resulting in its intermediate results

being shown to other transactions and thus relaxing isolation, which may be useful for

the business environment. However, this model has never been implemented, but many

models introduced after Saga used the foundation of Saga in terms of compensation

implementation.

5

In 1990, Chrysanthis and Ramamritham proposed a novel approach, which moved

towards customisable transactions. The motivation for this was that some transactions

might need customisation according to user requirements. They developed a framework

named ACTA (A Comprehensive TransAction Framework for Extended Transactions).

The model unifies the existing models to capture the semantics and rationale for the

concurrency and recovery properties of composite transactions. The relations between

the transactions are articulated in the form of effects, i.e. the effects of transactions on

other transactions and effects of transactions on objects they access. The effect on the

transactions used commit-dependency and abort-dependency. Dependency exists

between two transactions, T1 and T2. For example, in commit-dependency, a hotel

service cannot book a hotel until the flight service has booked the flight. The abort-

dependency states that if the flight service aborts the booking of the flight, the hotel

service must also abort the booking of the hotel.

ACTA motivated the later ASSET (A System Supporting Extended Transactions)

model introduced by Biliris et al. in 1994, which uses primitives at a programming

language level based on ACTA building blocks, like history, delegation, dependency

and conflict set.

Since 1994 further models have been introduced which address transaction management

in a Web environment and these are discussed in the literature review in Chapter 3.

1.4 Research question

Based on the above motivation, this research is interested in finding suitable user-

defined and customised ways to provide transaction support for the Web services

environment.

Hence, the main question that this research aims to answer is:

Can transaction support for Web services be customised to suit the needs of

varying applications and result in improved service?

6

1.5 Research aim

Building on from the research question, this research assumes an improved service to be

an increase in throughput of transactions while maintaining correctness according to

application requirements. Throughput is the number of tasks successfully completed

over a given period of time. Increase in throughput therefore means a better service to

consumers, since tasks will be successfully completed with less delay. However, it is

important that this improvement is not at the expense of correctness of the database and

correctness should be maintained in accordance with user requirements.

Thus the research aim is to develop a system that increases throughput while

maintaining the consistency and correctness required by particular applications.

It is conjectured that the above aim is achievable by relaxing some of the ACID

requirements that are used in traditional transaction processing. The characteristics of

Web-based transactions indicate that this is a plausible direction (Ramampiaro and

Nydard 2004; Younas et al. 2006; Zhou, Wang and Jia 2004). Implementing a system

which relaxes ACID properties in a manner that does not compromise correctness will

be a matter for this research.

1.6 Research design

The research began with the literature review so that a good understanding of current

work in the field of transaction management could be gained. Following the literature

review, a model for Web-based transactions support was designed which is adaptable to

different situations and the requirements of consumer and provider. The model was

implemented and evaluated through simulation. The simulation consisted of a number

of experiments in which batches of transactions were entered into a new transaction

support system. The results were analysed, presented and discussed. Finally an

evaluation was made of the project and scope for future work was outlined. Thus the

research methodology was as follows:

7

• Formulation of the research question

• Literature review

• Model design

• Model implementation

• Design of evaluation method

• Model evaluation

• Presentation of results

• Discussion of results

The problem was approached by first analysing the current situation. This was done by

a literature review of the existing Web services’ transaction protocols or models. The

researcher conducted a literature review through reading different materials like

journals, conference proceedings, magazines and books related to the research topic.

The material which has been read is summarised in Chapter 2. Theoretical analysis and

problem analysis was performed on the gathered information and summarised. Relevant

themes from publications or papers were drawn upon during this phase and critically

analysed. Analysis gave rise to the problem statement on which the research was based.

From the summary gathered from the literature review, the models were compared and

contrasted with each other. This was done by studying the scenarios of usage given in

each paper and identifying the most important features of each model. Limitations of

each model were identified and a gap was found which could be filled by the

development of a more flexible and extensive model. Then a usage scenario was

developed that included typical characteristics of the usage scenarios in the literature

studied. The scenario was used (with subsequent extensions) to evaluate the new model

and system developed in this research.

The new model AuTrA (Adaptable user-defined Transaction relaxed Approach) was

developed (see Chapter 3). To validate the new model, a prototype system was then

designed and implemented (see Chapters 4 and 5). The system was also called AuTrA.

A number of experiments were carried out to further validate the model. The

experiments were based around three realistic business scenarios.

8

1.7 Contribution

Many of the contributions centre around the development of the Adaptable User-defined

Transaction relaxing Approach (AuTrA).

The main contributions of the research are as follows:

• A transaction support system, AuTrA, has been developed which allows Web

services consumers to vary specific transaction support characteristics to suit

their needs. Examples of this are: to allow partial completion of a transaction if

this is appropriate to the application but to specify full completion when

required; or to allow intermediate results to be seen when this will increase

throughput but not damage integrity.

• The AuTrA system allows Web services providers to vary specific transaction

support characteristics to suit their needs; in particular to ensure consistency is

maintained when required or to increase throughput when required.

• The AuTrA system allows the relaxation of additional application-specific

criteria to increase the throughput and success rate. As the name suggests, these

are criteria that are specific to each application rather than generic like ACID

properties.

• The AuTrA system supports negotiation between the system and the consumer

to allow reconsideration of requirements if there is a conflict between the

provider and the consumer.

• The work has yielded increased understanding of properties of Web-based

transactions and the responsibilities of consumers and providers in the Web

services environment.

9

1.8 Organisation of the thesis

The thesis is organised as follows:

Chapter 1 sets the scene and the problem statement, and states the contributions and

organisation of the thesis.

Chapter 2 introduces transaction models and Web services. It then concentrates on

related work on relaxation of ACID properties in Web services transaction processing,

providing a critical assessment of the literature, and it also discusses protocols for long-

running transactions. The main purpose of this chapter is to show how this work is

based on existing research. Additionally the chapter aims to delineate the current state-

of-the-art in commercial and open source protocols. Also this chapter provides a

succinct overview of the area in order to more clearly show the gap that is addressed in

the thesis.

Chapter 3 introduces AuTrA, the model and system developed as a major part of this

research work. The chapter covers its underlying principles and also discusses the

concept of correctness.

Chapter 4 presents the AuTrA system in more detail, as a proof of concept prototype. It

provides the framework of the proposed system and the mechanisms of how each

component works to attain the research aim.

Chapter 5 presents the simulation model that was developed to test the AuTrA system.

This chapter also presents the strategy developed to evaluate AuTrA. The main idea of

the chapter is to clarify how the research carried out the simulation, collected the raw

data, and also to give the reason behind why each test case was chosen, emphasising

what each case intended to show against the research aim.

Chapter 6 analyses and evaluates the value and effectiveness of the proposed system,

AuTrA, through a set of experiments.

10

Chapter 7 critically assesses the research, states its contribution and compares it with its

closest rivals. The chapter also includes a discussion, conclusion and recommendation

for further work.

11

Chapter 2: Literature Review

12

2.1 Introduction

This chapter discusses work related to this research. It sets the scene by presenting the

concepts of transaction-processing, early transaction models, and characteristics of Web

services. It then leads into work on relaxation of ACID properties for Web services

transaction processing. Finally the state of the art in commercial and open source

transaction protocols is discussed.

ACID properties are rigid and can lead to resources being held for a long period, even

days, for long-running business transactions. This situation is undesirable in a business

world where good throughput is necessary. Due to the problems of the classic ACID

properties for long-running transactions, a lot of research has proposed models that

extend the traditional transaction model for the Web services environment. Since the

eighties, different researchers have introduced different models that relax mainly

atomicity and isolation; some work has also been done in relaxing consistency.

Interestingly, until recently durability has not been relaxed but some significant

commercial companies, for example IBM, have now introduced models that relax

durability. In this chapter the research will discuss the following: related work on

relaxation of atomicity, related work on relaxation of isolation, related work on a

combination of relaxation of atomicity and isolation, related work on relaxation of

consistency and a combination of any atomicity or isolation or both, and related work

on relaxation of durability.

2.2 Transactions

A transaction is a collection of operations that performs a single logical function.

Transactions are often used in business processing environments and often involve

reading from and writing to a database. The following primitives are usually used to

describe such transactions in programming environments: begin, read, write, commit

and abort. Begin starts a new transaction, commit ends a transaction, stores changes

made during a transaction and makes changes accessible to other transactions. Abort

13

ends a transaction and undoes all changes made during the transaction. An example of a

transaction for booking a flight is shown in Figure 1.

Figure 1 Transaction example for airline reservation (Elmagarmid 1992)

In transaction processing, a DBMS preserves the database integrity and constraints

using ACID properties. ACID stands for atomicity, consistency, isolation and

durability. Let us consider the ACID properties.

• Atomicity implies that the transaction is all-or-nothing. That is to say, the

transaction operation is either completely performed or is not performed at all.

When the transaction fails, the incomplete results must be undone.

• Consistency concentrates on ensuring the data or information is reliable and

consistent. For example, concerning the transaction in Figure 1, there could be a

consistency requirement that the number of seats reserved is equal to the number

of passengers that have reserved seats. This requirement would be checked as a

post-condition of the transaction. At the start of a transaction the database should

be in a consistent state, during the transaction processing the database may be in

14

an inconsistent state, but at the end of the transaction the database should be in a

consistent state again.

• Isolation stresses that a transaction cannot show its uncommitted data to another

transaction. This means the transaction should finish before it can show its

results to other transactions. Isolation does not allow concurrent access to data in

a distributed database system.

• Durability implies that at the end of the transaction if no failure has occurred,

the updates of the data should be made persistent, on either the disk or any other

suitable mode of backup. For instance, with regard to the transaction of Figure 1,

at the end of the transaction the updates must be persistent and they can then

safely be read by other transactions.

In 1993, Gray and Reuter pointed out that the intention of transaction management in

the context of databases is to guarantee the consistency of data in the incidence of

failures and concurrent access. Often ACID properties are maintained through ensuring

that transactions are executed in a serial manner whenever there is a potential conflict.

This is achieved through locking and time-stamping.

2.3 Some seminal transaction models

Transaction models have developed as information processing has advanced. Business

applications have over the last decade or so moved from centralised environments to

distributed and mobile environments in line with technology advances. As disparate

companies made their services available over the internet, the emergence of applications

which utilised long-running selections of such services gave rise to the need for support

for long-running transactions. Consequently, a need for models catering for the Web

services environment arose because the models catering for the centralised environment

were not fit for the new types of business application. For instance, a long-running

transaction could run over hours or days, and it would be inappropriate to lock out all

other transactions for this period of time. A lot of research has been carried out to

15

address the limitations caused by centralised transaction models. A wide range of

extended models have been proposed. Important early models are: flat transaction

model, nested transaction model, multilevel transaction model, Saga transaction model

and spilt and join transaction model. These models are discussed in the following

sections.

2.3.1 Flat transaction model

According to Gray and Reuter in 1993, the flat transaction model caters for the

uncomplicated form of transactions. The key to arranging an application for atomic

execution, i.e. all-or-nothing, is to use a flat transaction. For example, Figure 2 shows a

flat transaction in which all the actions or processes inside begin and commit at the

same level. In this model there is no possibility of components of the transaction

committing unless all other components also commit and all components must commit

for the owning transaction to commit.

Figure 2 Flat transaction example (Gray and Reuter 1993)

This item has been removed due to third party copyright. The
unabridged version of the thesis can be viewed at the Lanchester

Library, Coventry University.

16

2.3.2 Nested transaction model

A nested transaction model supports the division of large transactions into smaller

transactions, referred to as sub-transactions. Moss introduced the nested transaction

model in 1982 to take care of the flaws of flat transaction models (Moss 1982).

Consider a transaction T3 for a hen party arrangement, which comprises booking the

dancers and booking the venue. Figure 3 shows T3 in a nested transaction as the root

transaction, the booking of the dancers is T4, while booking of the venue is T5; these are

the sub-transactions. T4 and T5 further divided into T6, booking of the clothing, and T7,

booking of instruments; these are sub-transactions of T4 and T5.

Figure 3 Nested transaction model example

The nested transaction model follows the commit, rollback and visibility rules. The

commit rule implies that the results from the sub-transactions are available to the root

transaction. For example, in the above scenario, the booking of the clothing transaction

(T6) results will be available to the booking of the dancers’ transaction (T4), and the

results of the booking the dancers’ transaction will be available to the booking of the

hen party transaction (T3). The rollback rule concentrates on making sure that when the

T3

T4 T5

T7 T6

Root transaction

Sub-transactions

17

root transaction aborts, the sub-transactions roll back, even if the sub-transactions have

finished. That is to say, when transaction T3 rolls back, T4, T5, T6 and T7 have to roll

back, regardless of what they have done up until that point. This may be

disadvantageous because time is wasted, which can be costly and is not a good thing for

business. However, when T5 rolls back it does not mean that T3 has to roll back too. T3

can simply ignore what happened to T5 and continue, or it can abort, or it can execute T5

again. The visibility rule states that T4 and T5 changes become visible to T3 when T4 and

T5 commit. If T4 and T5 are executing at the same time, changes made by each sub-

transaction are not visible between them. However, if the executions are one after the

other, changes are visible between them. Generally, T4 and T5 are not always consistent

but T3 is.

Figure 4 Illustration of nested transactions

18

Unlike Figure 3, which shows that the transaction is at the same level in one block,

Figure 4 shows that nested transactions are in different blocks and not at the same level.

2.3.3 Multilevel transaction model

Multilevel transaction models are different to nested transaction models, which have a

fixed level of nesting (Weikum and Scheck 1992). Just as the nested transaction model

takes care of the flaws of the flat transaction model, multilevel transaction models take

care of some of the flaws of nested transaction models. Unlike nested transaction

models, in multilevel transaction models sub-transactions can commit or abort

autonomously and independently of the root transaction. The theory of transaction

compensation attains this. Compensation can be expensive, especially if a lot of data

needs to be compensated. Compensation transactions reverse the effects of already

committed transactions. For example, in Figure 5 when transactions T5 and T4 commit,

and if after they have committed T3 fails, a compensation transaction is activated and T4

and T5 are compensated. Compensation transactions are useful, but having a lot of

compensation would be expensive and complex. The similarity of the nested transaction

model and the multilevel transaction model is that both are tree-based models.

Compared to the nested transaction model tree, the multilevel transaction model tree is

balanced. Nodes in a transaction tree match to operations at a certain level of abstraction

in a layered system. Edges in a transaction tree signify the implementation of an

operation. Concurrency control can be different in each level. The advantage of the

multilevel transaction model is relaxation of serialisability for high concurrency.

19

Figure 5 Multilevel transaction model

2.3.4 Saga transaction model

According to Garcia-Molina and Salem (1987), Saga is a transaction model that caters

for long-running transactions by relaxing the isolation property. Figure 6 shows a Saga

transaction made up of series of ACID sub-transactions and related compensating

transactions. Sub-transactions are allowed to commit individually. The role of the

compensation transaction is to undo the effect if the whole of the Saga transaction has to

abort. The Saga transaction only commits when the sub-transaction (T) and related

compensation transactions (ct) have committed. If the sub-transaction fails, the whole

Saga transaction will compensate as Figure 7 demonstrates.

20

Figure 6 Saga successful transaction example

Figure 7 Saga unsuccessful transaction example

The Saga model has not been fully implemented but has influenced a number of models

since it was proposed.

21

2.3.5 Split and join transaction model

In 1992, Kaiser and Pu introduced the split and join transaction model to aid open-

ended executions related to transactions. Activities of long-running transactions are of

indecisive duration, uncertain development and are interactive with other concurrent

activities. As a result, the split and join transaction model focuses on these

characteristics. Figure 8 shows how T3 breaks up into two serialisable transactions, T4

and T5. T4 and T5 results are later joined as one atomic unit.

Figure 8 Illustration of the split and join transaction model

The split and join transaction model allows the transfer of resources from one

transaction to another. This allows locks to be executed in parallel; hence this does not

break the serialisation rule. The drawback of this model is that it follows the

serialisation criterion. That is to say, isolation is not relaxed; transactions must be

isolated when running. Unlike the split and join transaction model, the multilevel model

relaxes serialisation for high concurrency. Relaxing serialisation is beneficial to the

business as it increases throughput.

2.4 Web services

This section describes the architectural ideas and technologies of Web services.

According to Limthanmaphon and Zhang in 2004, Web services are services accessible

22

through the internet, which conduct transactions. The discovery, integration and

execution of services is made possible by techniques defined by Web services standards

(Chinnici et al. 2007). These standards include UDDI, WSDL XML and SOAP. UDDI

(Universal Description, Discovery, and Integration) is an XML-based registry for

businesses from different geographic locations to list themselves on the internet. UDDI

can be compared to a telephone book’s white, yellow and green pages. Using UDDI,

businesses register the business name, product, location or the Web services offered.

WSDL (Web Service Description Language) is an XML language that contains

information about the interface, semantics and administration of a call to a Web service,

while SOAP (Simple Object Access Protocol) is a protocol specification for exchanging

structured information in the implementation of Web services in computer networks.

Web services can be combined to make higher-level applications. Services can be

combined in two ways, which are orchestration or choreography. Orchestration involves

a coordinator Web service that directs other services involved in the cooperation. The

coordinating Web service is aware that the other Web services are involved in the

composition process, but the other involved Web services are not aware of the

cooperation. Thus orchestration is centralised with explicit definitions of operations and

order of invocation of Web services. Compared to orchestration, choreography is not

controlled by a main coordinator. Each Web service taking part in the choreography

knows whom they are interacting with and when to participate. Choreography is mainly

used for collaboration globally, enabling business partners from different geographic

areas to participate together. The invoked Web services involved in the collaboration

must be aware of the business process, operations to execute, messages to exchange and

the precise time of message exchange.

Important characteristics of Web services that are relevant to the topic of this research

are that applications can be built using Web services offered by disparate organisations

through the use of standard protocols and that Web services transactions, which form

part of such applications, may be long-running which can cause resource-blocking.

Consider again the hen party arrangements example of booking the venue and

entertainment. An attempt to book the venue might be put on hold while the venue

booking service waits for confirmation of a cancellation. This in turn might put the

whole transaction on hold causing unacceptable delay unless an alternative transaction

model which relaxes ACID properties is used.

23

2.5 Related work on transaction models which relax ACID
properties

In recent years much work has focused on relaxing different ACID properties, chiefly

with the motivation of providing a more flexible environment for Web transactions,

given their specific characteristics. In the next sections, a selection of models will be

discussed, grouped according to which ACID properties are relaxed. A summary of the

findings of this section is given in Appendix A.

2.5.1 Relaxation of atomicity

In 2005, Bhiri, Perrin and Godart developed a model for Web services’ composition

which relaxes atomicity. The model caters for failure of atomicity required by designers

in composite Web services. The researchers introduced Accepted Termination States

(ATS). The ATS property is a correctness criterion for relaxing atomicity. ATS defines

the Accepted Termination States of each component service. ATS is specified by

designers and a composite service is not valid if there are some termination states that

do not belong to the ATS specified by the designers. For example, the ATS can be

completed, failed, compensatable or completed aborted. Component transactions will

have different sets of ATS. If, for example, the state failed does not belong to the ATS

set of accepted terminations of a component service, then the existing transaction

property says it must be retriable. Again, if the state compensatable does not belong to

the ATS, then the existing property states that there is no need to be compensatable.

This model can be used by different interaction patterns in the same structured

transaction. This can be a benefit since it is flexible and can cater for different

situations. It is a one-size-fits-all model for atomicity relaxation.

In 2006, Ding, Wei and Huang introduced a model using new software called

Internetware, which is designed for the open dynamic nature of the Web services

environment. An Internetware application is composed of existing services, which are

combined to form composite services according to the user’s requirements. Since the

model is made of primitive services, its transactional capability is normally described by

two properties: retriable and compensatable. According to Ding, Wei and Huang, the

24

existing research on transaction composite services (TCS) depends on the analysis of

the composition structure and a handling mechanism in order to guarantee the atomicity.

To enable relaxed atomicity the composition structure of TCS has to be analysed and

there has to be a guarantee that there exists at least one must-succeed path after the non-

compensatable service. The proposed model relaxes atomicity. Users are able to define

different relaxed atomicity constraints for different TCS according to application-

specific requirements, which include acceptable configuration and preference. This

approach can handle complex application requirements, avoid unnecessary failure

recoveries and perform the transaction management work automatically. Preference is

used in places where more than one choice has to be made. The preferred one must

succeed over the least preferred one. Consider transactions set up to examine different

travel options. For example, where flight booking and train booking are invoked in

parallel, the flight booking might be preferred and the train booking would then be

compensated. Likewise, if money is an issue and a B & B and hotel are invoked in

parallel, the B & B must succeed and the hotel must be compensated. Nevertheless, in a

situation where there is no preference, any can succeed. The transaction management is

done automatically by the system—not manually by the user. Since users define the

relaxed criteria according to the application-specific requirements, users express their

specific requirements through the set and order of TCS configurations, which must be

acceptable. All acceptable TCS configurations are ordered according to preference. No

matter which service succeeds or fails, the execution must end with a legal

configuration.

2.5.2 Relaxation of isolation

Roberts and Srinivasan (2001) and Roberts et al. (2001) introduced Tentative Hold

Policy (THP) in a W3C white paper. The basic concept behind the model was the

support for long-running Web-based business transactions in which the entire business

transaction may be made up of several component transactions, each perhaps operating

at autonomous providers. In some cases, a business transaction may need all

components to succeed for the complete transaction to be successful. Locking resources

is not efficient for business as it could stop other customer transactions accessing the

resource for a long time. This is known as blocking. As an alternative, the tentative hold

25

policy was introduced with which a transaction might put a tentative but non-blocking

hold on an item. If another transaction also wishes to hold the item, the first transaction

is informed so transactions have an awareness of the amount of interest in an item. This

approach is different to the two-phase commit as the hold on items is tentative rather

than absolute, and thus throughput is improved. Since the publication of the tentative

hold policy, a number of variations of transaction management methods for long-

running, Web-based transactions have been developed.

Park and Choi in 2003 introduced a model based on THP which uses two-phase commit

(2PC) protocol in combination with the THP protocol to ensure the atomicity of the

transaction. The proposed model of Park and Choi adaptively determines the hold

duration of the resources, which results in improved performance of the transaction.

This can be compared to the THP model of Roberts et al. (2001), which had a fixed

duration to hold the resources. A straightforward example is a situation in which Nancy

and John want to access their joint account at the same time. With Park and Choi’s

model, the time the account will be held is not fixed, as opposed to the fixed time in the

THP model. In Park and Choi’s approach, the holding of the account by both is flexible

to the environment. This results in fewer transactions being aborted and an

improvement in performance.

In 2003, Younas and Iqbal showed that even if Web services are mainly used for

developing and integrating business systems and applications, it is possible to support

collaboration editing applications (CAEs) by introducing a transactional approach in

collaborative applications. The proposed model is based on correctness criteria called

SACReD (semantic atomicity, consistency, resiliency, durability). The model relaxes

isolation by allowing component transactions to commit or abort independently, but it

has a strict all-or-nothing policy, which means that every component transaction has to

complete successfully if the composite transaction is to complete successfully,

otherwise the composite transaction fails.

In 2005, Haller, Schuldt and Türker introduced a model that relaxes isolation in a peer-

to-peer environment. They pointed out that the peer-to-peer environment typically

enables access to Web services in different peer environments. The novelty of the model

is that it ensures global correctness without depending on a serialisation graph. Global

26

correctness is achieved through communication among the peers in which dependent

transaction processes may be running. Rollback is used in case of failure.

Alrifai, Dolog and Nejdl in 2006 introduced a model that extends the WS-transaction

protocol (Cabrera et al. 2001) for concurrency control in Web services environments.

Agreement between the client and the service providers takes place before the service is

invoked, i.e. the client composes the process and identifies the deadline, then contacts

the service providers. The service providers which match the client deadline, whose

local schedulers can be synchronised, are selected. Then the execution plan is produced.

All the parties involved agree on the time for holding the exclusive lock during the

execution of the commit protocol. The protocol is non-blocking in the sense that the

output of the scheduling process is always a non-blocking schedule. The commit-order-

preserving scheduler ensures the correctness of the concurrency execution. The

mechanism avoids direct communication with the coordinators for security reasons.

However, the Alrifai, Dolog and Nejdl model sends twice the number of messages,

which can be time consuming and costly.

Yang, Liu and Ling in 2006 presented a transaction-aware protocol for a Web services

transaction coordinator (taTHP). This is done by the coordinator being able to know the

success probability of the transaction. This helps the coordinator to select the

transaction that will be successful and reject those that might not be successful. This

protocol grants maximum autonomy of isolation. This means that clients can think that

they are the only ones making a reservation on the resource. Clients cannot see how

many reservations have been made on a particular resource. For example, consider a

case where three people make a transaction of reserving a ticket. Transactions A, B and

C can reserve ticket number 456; the client of transaction A will not know that the

transaction B client has made a reservation on the same ticket. It allows several clients

to place a tentative hold on the same resource and confirm availability before the

completion of a transaction, just like with THP. When a client executes the actual

business transaction, the other clients will receive a notification informing them that the

reservation is no longer valid. THP tries to introduce a maximum hold size and duration

time in order to take care of the coordination situation, but it still has a problem in terms

of coordination. This is an issue, since THP does not know which request should be

granted and which ones should be rejected. This is because THP is not aware of the

27

transaction context and the success probability of the transaction. Being aware of

success probability can be vital since the resource manager will know which resources

can be granted most effectively.

Böttcher, Gruenwald and Obermeier in 2006 presented a model that reduces the number

of transaction aborts and blocks in a transaction. The model is based on the Web

services transaction specification and is an extension of existing atomic commit

protocols. The transaction enters the suspend phase after the read phase. The suspend

phase is non-blocking and in this phase the resource manager can still abort the

transaction if there is a need to grant a request to another transaction, and it is also used

to reduce the number of aborts in a situation of missing votes or conflicts. The new

approach identifies those sub-transactions that are repeatable or reusable instead of

aborting and restarting all sub-transactions of a global transaction.

Zhao, Moser and Mellior-Smith in 2008 introduced a reservation-based, extended

transaction protocol. Their protocol reserves (reservation phase) and cancels/confirms

(confirmation/cancellation phase) to coordinate the tasks of business activities across

multiple businesses. This protocol does not depend on compensation. The model

demonstrates that the use of compensating transactions has a much higher probability of

inconsistencies, especially when the data spreads across multiple enterprises, as is the

intention of the Web services environment.

Kumar and Barvey in 2009 proposed a Non-Blocking Commit Protocol (NBCP). Each

site, including coordinator and participant, maintains a database in its primary memory

as a transaction database. Every database maintains a transaction ID, primary memory

ID, transaction status, participant ID and vote from each participant. The transaction

database is deleted automatically after the transaction completion. The backup which

holds the replicate of the transaction database is kept in the primary memory backup.

The primary memory backup works concurrently with coordinator, in case of failure or

network delay. The coordinator and every participant also maintain a replicated copy of

themselves. NBCP relaxes isolation. The model is based on the idea of the two-phase

commit (2PC) protocol and is reliable in the sense that it can survive a coordinator or

participant crash.

28

In 2009, Wang, Li and Min introduced a model that relaxes isolation while ensuring

consistency in Web services transactions. The model extends the WS-Business Activity

protocol and is based on a transaction dependency graph distributed over multiple

nodes. The proposed graph named Web Services Transaction Dependency Coordination

Protocol (WSTDCP) is able to identify any transaction in an inconsistent state, using

dependency relations. The end-state dependency is sent to the coordinator, which will

ensure dependencies are removed appropriately so that transactions can enter the

complete state and compensation can take place if necessary.

2.5.3 Relaxation of atomicity and isolation

Different models that relax both atomicity and isolation have been introduced in

different research. In 1993, Godart introduced a framework that strived to involve

cooperative or collaborative work in transactions. Godart developed a framework to

support collaboration between software developers, based on the software development

process. This was the Coo approach which relaxes atomicity and isolation. The model

relaxes atomicity in the sense that long-duration transactions can save their partially

complete or halfway results. That is to say, long-running transactions save their

intermediate results, making use of the principle of partial rollback and therefore have

an advantage over traditional transaction models. This can be effective in the

cooperative or business world, in cases where the system crashes or there is power

failure. All work need not be lost; it is not all-or-nothing. Some of the components that

have been committed that are parts of the whole transaction, can be saved. For example,

T3 is a transaction made up of sub-transactions T4 and T5. If a crash or power failure

takes place, if T4 has finished and committed, while T5 is not yet committed, T3 can still

save the parts that have been completed by T4. Therefore, what T4 has already done will

not be wasted. This saves time because when T3 restarts it will only have T5 to process,

resulting in less time being needed for processing and a higher throughput.

Relaxed isolation allows several software processes to access these intermediate results

at the same time, while not violating the correctness criteria. To cater for the

incorrectness of data, which can be caused by dirty reading, the model uses three

different consistency levels: stable, semi-stable and unstable. A stable object is one that

29

has committed transaction results successfully and is completely consistent according to

the business requirements. Semi-stable objects are those in which the transactions are in

the process of generating tentative data but are violating some of the correctness criteria

and can be seen as not consistent enough. Lastly, unstable objects are those that do not

contain any correctness criteria at all. These objects are locked by some processes and

cannot be accessed until they become stable or semi-stable. These three objects are

stored in different databases. This model of correctness constraints and management of

activities is tailor-made, which is good for this type of collaboration. The use of three

different degrees of stability is a valuable idea, since it allows flexible support for

collaborative work, which is missing from the traditional transaction models.

Agrawal, Abbadi and Singh in 1993 suggested another model, which contributes to the

collaboration work and relaxes isolation and atomicity. Their main goal was to develop

a transaction model by merging flexible transaction models from collaborative

environments and semantic-based correctness criteria. They used a notion of relative

atomicity, which is used to state how a co-action can be interleaved relatively to other

co-actions without breaking the overall atomicity requirements for collaborative

activities. The models use a relative serialisability correctness criterion to check for

correctness execution, which is an additional relaxed criterion to the classic (conflict)

serialisability (SR). Thus, the fundamental assumption is that any execution obeying the

RSR criterion would maintain the consistency of the database, even if it is not

serialisable. The model extends the standard 2-phase lock protocol (2PL) to assure the

virtual serialisable execution. To handle conflicts, push-forward and push-backward

locks must be acquired before the connecting operation sets a normal lock. A push-

forward lock causes any conflicting operation to be delayed until the last operation of

the actual atomic unit with which it conflicts is run; a pull-backward lock is used to

move operations backward before the start of an atomic unit. A typical application area

is the design environment. However, to be able to specify relative atomicity, one must

know the complete sets of operations before the involved transactions can be executed.

Because one must know the complete set of operations beforehand, i.e. before the

transaction is executed, transactions which vary their operations according to

circumstance are not well supported. This can be a disadvantage for business

environments which need dynamic applications.

30

In 1995, Rusinkiewicz et al. introduced a model that relaxes atomicity and isolation.

The model allows users to investigate several alternatives to solve problems. The model

allows compensation, just like the other advanced transaction models.

Conradi et al. in 1997 used a similar concept to Godart’s Coo model. They introduced

the EPOS (Expert System for Program and ~og~ System Development) framework,

which is for quality-assured software engineering. The framework has a database to

manage the resources produced during the development stage and is similar to Coo in

the sense that it uses workspaces (both private and common workspaces) and it uses the

check-in and check-out mechanisms for interaction with other workspaces. To take care

of concurrency, EPOS uses locks to control access to a shared workspace. In order for

the users to know the actions that affect their work, awareness support is provided.

Awareness mechanisms are used to support correctness execution and aid in taking care

of access conflicts. EPOS uses nested transactions due to the fact that cooperative

transactions are long-running. This echoes the ideas of Kim et al. in 1984 and

Bancilhon, Kim and Korth in 1985.

The aim of Wäsch’s 1999 work was to develop a transaction model and a specification

language that would allow efficient information-sharing. The model is called CoAct and

was developed based on an extension of existing advanced transaction models. Their

motivation was to overcome the limitations imposed by the use of the standard ACID

model. The requirements for the transaction model were distinct as they used four

application scenarios: cooperative authoring, which was all about unplanned processes;

software engineering, looking at semi-structured processes; design for manufacturing,

using structured activities; and workflow, dealing primarily with automated business

processes. The model relaxes atomicity and isolation. Isolation is relaxed by dividing

work into packages, sending the packages to various workstations, where the work

packages are executed in parallel and then returning and merging the output later into a

single unit. The advantage of this model is that it has tried to cater for a variety of

applications, unlike the Coo or EPOS models.

In 2004, Ramampiaro and Nydard came up with an interesting approach by proposing a

model which provides transactional support that can be tailored to meet different needs

or situations and can also be modified following changes made in the actual

31

environment while work is performed. The model is called CAGIS-Trans(Cooperative

Agents in a Global Information Space-Transactions). The model tries to meet the flaws

of fixed criteria proposed by other researchers which make their models inadequate for

cooperative work. For example, other models did not allow users to specify their

relaxation. The proposed solution of the model relaxes isolation and atomicity. Unlike

Conradi et al. (1997) Rusinkiewicz et al. (1995) and Agrawal, Abbadi and Singh (1993),

whose models relax atomicity and isolation without customisation, in this case

atomicity and isolation are customisable. This means that users can decide whether to

relax atomicity or isolation or not. The drawback of not relaxing atomicity and isolation

may be the cost of the rollbacks.

In 2004 Younas, Eaglestone and Chao introduced a protocol for e-business transaction

management. The protocol was called Low Latency Resilient (LLR). The protocol

relaxes atomicity and isolation. For correctness criteria, the protocol applies SACReD

(Younas, Eaglestone and Holton 2000). The advantage of this protocol is allowance of

flexible components, meaning that a stated alternative could be executed in case of abort

of the current one. As a result, the number of transactions aborted is reduced. Since the

protocol allows individual components which are independent to commit, this results in

releasing the locks and reducing resource-blocking.

Fauvet et al. (2005) followed the direction of Robert et al. (2001) by proposing a THP

model that tentatively makes resource reservations and avoids resource-blocking. Just

like the original THP protocol, the model is aimed at ensuring atomicity of the

transaction. However, unlike the model of Robert et al., the presented model defines

different levels of atomicity. That implies that a transaction can still be committed even

if some of its component transactions are aborted. The model therefore relaxes

atomicity and isolation. This model is also similar to Bhiri, Perrin and Godart’s (2005)

model.

Younas et al. in 2006 introduced the commit protocol that is an extension of SACReD

(Younas, Eaglestone and Holton 2000). The protocol is used to ensure correctness and

reliability in distributed systems. The protocol aims at improving performance while

ensuring correctness and reliability. Transaction Commit Protocol for Composite Web

Services (TCP4CWS) relaxes atomicity and isolation.

32

In 2008, Choi et al. presented a model that maintains consistency while relaxing

isolation. The model is similar to the Alrifai, Dolog and Nejdl (2006) model and is

intended to fit with a representative WS-transaction standard, for easy amalgamation

into existing WS-transaction systems. The protocol uses a dependency management

protocol called Web services Transaction Dependency management Protocol (WTDP)

to detect inconsistency between dependent transactions. The WTDP detects the

inconsistency states of transactions with the notion of end-state dependence and can

recover them to the new consistency states. This inconsistency can happen in a case in

which a dominant transaction fails or aborts before completion. This protocol allows

participants to automatically supply related information to other participants. For

example, participant B will give information that participant C needs. Let’s say C needs

some information about the income of B for his transaction. B will constantly be

supplying that information during the process and that information will be closely

monitored. If it happens that B fails, C will be able to detect this and both transactions

will be rolled back to a consistent state. This model is better than Alrifai, Dolog and

Nejdl’s model (2006) since it sends half the messages of their model, which results in

this model being more efficient.

2.5.4 Relaxation of consistency and atomicity and isolation or both

Although the majority of the research has been done in relaxing atomicity and isolation,

Terry et al. in 1995 investigated a model that relaxes consistency. In this model, clients

can read and write to any replica without the need for coordination. That allows some

inconsistency. Inconsistency can be useful since it increases availability, in situations

where it can be tolerated because no vital information is needed. For example, in a call

centre application during peak hours, there might be no need to make some databases

consistent, depending on the kind of data the database is holding. Nevertheless, in

situations where it is vital to have consistency, such as calculating prescription dosages,

this model is not appropriate. Consistency in this model is finally achieved by making

certain that all update conflicts are resolved in a consistent manner by all servers. The

final consistency check may be done at a later time following a busy transaction period.

33

Pitoura and Bhargava in 1999 produced a model that relaxes consistency. In this model

the data or information that is situated in the same place is joined together to create

clusters. Joint consistency is required from clusters that come from the same collection.

Clusters are sites of distributed systems which are grouped together. Strongly connected

sites are grouped together and the same applies to the weakly connected sites. Direct

access is applied to local clusters to increase interaction between clusters and increase

availability. Two types of transactions are supported: weak and strong transactions. The

weakly consistent clusters are committed locally, and after committing the changes can

only be seen by weak transactions of the same physical cluster. Inconsistency is dealt

with by allowing controlled deviation among copies located in a weakly connected site.

That is to say, consistency is relaxed in the sense that integrity-constraints are ensured

only for data copies belonging to the same logical cluster.

Yu and Vahdah in 2002 proposed a model in which they looked at the classical strong

and hopeful consistency model for replicated services. They argued that replicated

services can benefit from some relaxed consistency. They introduced a model that

captured three independent application metrics, numerical error, order error and

staleness, which helped to capture consistency. A broad range of applications can

express their consistency semantics and, with the help of an application-dependent

algorithm, the target consistency level can be enforced. The optimistic approach used in

this model has been proposed before, but it has its drawbacks since it provides no limit

to the inconsistency of data exported to the client’s location and end user. On the other

hand, the proposed model has limits to the level of inconsistency allowed by

introducing consistency requirements. That is to say, the model can allow a certain level

of inconsistency. If the level of consistency is violated, data cannot be passed and the

operation will be blocked until the synchronisation of a remote replicate, as determined

by the system’s consistency requirements.

Zhou, Jin and Zheng in 2004 followed a similar direction to Yu and Vahdah. They

introduced the Tsinghua Object Data Store (TODS) in 2004. Their model was built as a

cluster object storage system to support the building of internet services. The model

relaxes consistency and, just like Yu and Vahdah’s model, different levels of

consistency are supported. TODS allows the system to continue when part of its storage

fails. For example, a system that has a lot of nodes will continue to run if some or one

34

node fails. TODS uses replication. This allows the model to cater for the requirements

of different services as it caters for different levels of consistency, meaning services

with varying consistency requirements can make use of the model. Such differentiation

is useful in the Web services environment.

In 2004, Zhou, Wang and Jia produced a model which emphasises that not all

distributed applications require strict consistency. For instance, applications in retail and

wholesale information storage and retrieval may not require strict consistency. They

introduced a model that relaxes consistency in the form of replication of data but

emphasised that when replication is used to improve access it can be expensive to

maintain data consistency. As a result, they introduced the use of ordering constraints to

express the corresponding set of operations provided by the replica group. The ordering

constraints can be defined in four categories: FIFO, which states that requests sent by

the same client are to be executed in the order they are sent; causal ordering which

states that if two requests have the nature of relationship, this relationship should be

kept at all replicas; total ordering which states that the request be delivered in a

predefined way and the ordering has to be consistent with the replicates; and total +

causal ordering which is the integration of total and causal ordering. FIFO and causal

ordering are needed from the client’s point of view, total ordering is often needed from

the replica group’s point of view, whereas total + causal ordering is used to give

satisfaction to both parties: client and replicate group. This model is valuable in the

sense that it improves the system efficiency and throughput and still maintains data

consistency. The approach is interesting, as it differentiates the needs of the client and

server in the maintenance of consistency.

Another model proposed by Lee et al. in 2009 relaxes consistency in the Web

environment. The model uses a similar concept to the use of replicas, as found in the

approach of Terry et al. (1995) to relaxing consistency. However, this is extended

through the concept of lease time through which the maintenance of consistency is

achieved. The model has three-tier hierarchies on which each group and node

independently and adaptively chooses the proper lease time and the protocol for each

proxy cache. The innovative part of this model is the fact that it uses adaptive multi-

levels for lease duration.

35

Another approach proposed by Younas and Mostefaoui in 2010 looked at transaction

management in a slightly different way, i.e. in the way of context awareness in mobile

services transactions. The approach incorporates SACReD (Younas Eaglestone and

Holton 2000) as the correctness criteria and relaxes atomicity, isolation and consistency.

This breaks the barrier of classic ACID properties, which may be too strict. The added

feature of this model, which is vital, is the fact that it is adaptive to the conditions and

the users’ needs. The system automatically adapts to the environment by taking into

account the context information such as location.

2.5.5 Relaxation of durability and ACI

The evolution of technology has led to some big commercial companies introducing

models that relax durability. IBM introduced (IBM SolidDB in 2009), which relaxes

durability. This means that at the end of the transaction, data is not made permanent

straight away. However, later, at a more convenient time, the database is brought up to

date. The system permits three different durability alternatives: strict durability, relaxed

durability and adaptive durability. Strict durability focuses on not allowing any

durability; this behaves like the traditional model that makes data permanent at the end

of the transaction. Adaptive durability is for HotStandby operations, i.e. the system

configuration has two servers, the main server and the secondary server. The primary

server is the one that executes all the jobs and the secondary server is the one to which

data is sent. Therefore the secondary server contains the same information as the primary

server. The primary server is a read-and-write database while the secondary is read only.

In this system, an application can choose between relaxed or strict durability. The

durability can be relaxed only when both servers are running; if not, the mode is strict

durability. This system allows greater throughput because it relaxes durability. However,

in some situations the system will have drawbacks. For example, imagine financial

services systems in which a broker is busy evaluating equity position and is buying

stock. While the broker is in the middle of the transaction process, the secondary server

fails. Failure of the secondary server means that the mode of the system switches from

adaptive relaxed durability to strict durability. Thus the transaction is delayed and the

broker misses his purchase. In this kind of scenario, when time is critical, a delay due to

36

strict durability caused by the failing of the secondary server can be unhelpful from a

business point of view.

IBM continued on the research above and released SolidDB Universal Cache system in

2009. This is an improvement on the previous system. However, this model focuses

more on using RAM to process all the information. Using RAM overcomes the difficulty

of the traditional disk-based database system, which can be very slow in I/O access. The

advantage of using memory to process information is an increase in processing speed,

resulting in a good throughput. Again, the system provides the support for distributed

transaction processing, through two-phase commit, by the use of the Java Transaction

API (JTA) interface. This improvement lets a system be fully interoperable with

principal application servers, such as the IBM Web Sphere Application Server, as they

manage complex applications requiring multiple data sources. The benefit of this system

is that not only does the model relax durability but it is also adaptable and can be used

by any application, be it a standard database application, a Web services application, or a

Web-based environment.

In 2009, (SYBASE 2009) introduced a system called the Adaptive Server Enterprise

(ASE) system. Their system relaxed durability by providing two levels of durability: in-

memory relaxation, just like the SolidDB Universal Cache system, or both in-memory

and disk-based relaxation of durability, similar to IBM’s SolidDB. The advantages of the

system are that one can choose to use the in-memory mode to relax durability, or the

disk-based mode to put some or all of the data in the memory or disk. In that way, if

there is a failure, the databases can be made persistent. This enables relaxed durability

databases to take advantage of many performance optimisations of in-memory

databases. The difference with the IBM model is that, in normal operation, the ASE

system does not write the logs at all. It is different from IBM Relaxed, in which

transaction logs are written all the time.

Another player that came in to relaxing of durability is Oracle, with the introduction of

(Oracle TimesTen in-memory database 2009). Oracle TimesTen in-memory database

functions on databases that fit exclusively in physical memory, using standard SQL

interfaces. The system uses transactional replication for high availability. The system

takes advantage of managing data in memory, and optimising data structures and

37

accessing algorithms. Thus database operations are executed very efficiently and as a

result the system achieves dramatic gains in responsiveness and throughput. To take

care of the lost update issue, the master database and the subscriber have an internal

mechanism that will confirm that the updates have been successfully committed. Oracle

TimesTen does this through providing two return-service options for applications to

verify that the replicated data is consistent between the master and subscriber databases

which are the return receipt service and return twosafe service. The return receipt

service synchronises the application with the replication technique by blocking the

application until replication confirms that the update has been received by the

subscriber. The return twosafe service enables fully synchronous replication by

blocking the application until replication confirms that the update has been both

received and committed by the subscriber. Using the return receipt service trades some

performance to ensure higher levels of data integrity and consistency between the

master and subscriber databases.

2.5.6 Other approaches to performance improvement in transaction models

Some transaction models use other techniques to improve performance without relaxing

ACID properties. Zhang et al. in 1999 introduced a model which uses a new timestamp

ordering (NTO) approach that runs both classic transactions and long-running

collaborative transactions in one system. In this model, in situations when there is a

crash, the transaction will not fail—instead a new time stamp will be given and the

transaction will incorporate recent updates and continue as normal. In long-running

collaborative transactions, NTO uses high priority on the last read or write conflict in

order to create the correctness criteria. This is through the concept of final

serialisability, meaning only the last read or write are given priority.

Awan and Younas in 2004 proposed an approach for efficient commit in Web services

transactions. The approach is called ‘priority commit protocols’. The model uses a

priority active network scheduling mechanism at each network node based on head-of-

line (HoL) scheduling mechanisms. The reason for using HoL is to reduce the queue

delay at each network node. The priority scheduling gives preferential priority to high

priority messages. The benefit of this approach is the improvement of the commit

38

process by the reduction of queues. This is particularly beneficial where Web traffic is

significant. However, the approach uses the strict ACID approach, which may be a

drawback in certain situations.

In 2006, Younas and Chao moved in a slightly different direction by presenting a model

to improve the performance of Web services transactions. The model is based on the

new tentative commit protocol (TCP). TCP is based on the concept of tentative commit

that allows transactions to tentatively commit on the shared data of Web services. In a

situation where there is network or system failure, the transaction is cancelled. The

protocol restricts tentative holds and thus may improve performance. Even though THP

improves throughput by increasing the commit chances of a composite Web services

transaction, the approach can sometimes be disadvantageous, since there may be

performance degradation due to multiple tentative holds and communications. This is

why TCP may be better in some contexts. The authors claim improvement in

performance and in future work throughput will be measured.

On the other hand, Greenfield et al. in 2007 proposed a model called Promise which

provides a mechanism that clients can use to guarantee that they can rely on the

valiability of information resources remaining unaffected in the course of long-running

applications. Promise is an agreement between the client’s application and the services.

The clients’ application can agree on what resources they need in order to complete

successfully. The Promise service will look at the request for the resources and decide

either to grant the request for the promise of the resources or to deny it. Promise is

similar to the ConTract model of Wachter and Reuter in 1992, which used expressing

conditions to permit tasks within a workflow to complete successfully. The other model

that is similar to Promise was introduced by Gawlick and Kinkade in 1995. This model

reserves access to resources just like the Promise model.

2.6 Commercial and open source transaction protocols

Two well-known standards groups for Web services are W3C (2009) and OASIS

(2009). These groups have been actively involved in developing protocols for Web

services transactions. The use of the internet to perform transactions is common in the

39

business environment. This area of application is generally known as e-commerce. As

already discussed, protocols which support loosely coupled environments and do not

follow the classic locking of the resources, are needed to support transaction processing

in the new environment. W3C and OASIS have built on research in advanced

transaction models and have produced some well-defined standard protocols to support

the new requirements. The following sections introduce Business Transaction Protocol

(BTP) and Web Services Transactions (WS-Transactions). Their relationship to the

research is discussed as is the notion of middleware. A summary of the findings of this

section is given in Appendix B.

2.6.1 Business Transaction Protocol (BTP)

Business Transaction Protocol is a specification realised by OASIS (Little and Freud

2003). BTP supports transaction synchronisation of participants of services presented by

multiple independent companies as well as inside a single company. For handling the

synchronisation of change of state, BPT uses the two-phase completion protocol. The

two-phase completion protocol impedes transaction throughput because of the locking

of the resources during the process, but it ensures consistency. However, in some cases,

as discussed below, this approach is stronger than is necessary. Figure 9 shows the BTP

Stack which supports two types of transactions. These are atom transactions and

cohesion transactions.

40

Figure 9 BTP stack (Little and Freud 2003)

2.6.1.1 Atoms transactions

Atoms transactions are similar to the classic ACID model, which is that the whole

transaction takes either place or nothing. Thus all the participants in the related Web

services will see the same outcome, and either they accept it or reject it.

2.6.1.2 Cohesion transactions

The main idea in cohesion transaction was to relax atomicity and this allows certain

work to be completed or cancelled based on the main business rules. Because of this it

means that there could be a different transaction outcome to all-or-nothing. Thus

transactions can complete even if some work has been rejected. In this case, compared

to atoms transactions, the two-phase protocol gives the user a choice to define which

This item has been removed due to third party copyright. The unabridged version of the thesis can be
viewed at the Lanchester Library, Coventry University.

41

atom participants or standalone participants to prepare or cancel. It is a good idea when

using cohesion transactions to divide a work into units of transactions. This assists in

situations where the business activity encounters some situations in which it is useful to

cancel the atomic unit of a transaction with a warning and a confirm-set. A confirm-set

is a set of all participants that have to confirm in order to terminate the business activity.

Once the confirmation participants’ answers have been determined, the whole cohesion

transaction becomes an atoms transaction, resulting in all confirmation participants

seeing the same outcome. BTP allows relaxation of atomicity and isolation, and by so

doing, it allows tentative states of change during transaction processing. The completion

of a transaction is either confirmation or cancelling. BTP does not state how to

implement prepare, cancel or confirm. The advantage of BTP is being able to control

time between phases, meaning the application is able to choose the interchange, which

has been prepared before the termination. That is, BTP lets the participants inform the

coordinator well in advance what the decision will be and when it will be taken. For

example, the participants might say they will remain prepared for 24 hours and after that

they will cancel. This is known as forward operation and in the case of group

participation the services use the participants to supervise the outcome of the results.

The participants can leave the transaction at any time after the participants have

prepared. The leaving of a participant also shows that the participant is not interested in

the outcome of transaction.

2.6.1.3 Qualifiers

To take care of the long-running and loosely coupled environment, BTP introduced

Qualifiers. The main purpose of a Qualifier is to provide additional extended

information within the protocol. BTP gives the user the flexibility to extend the

Qualifiers’ implementation to suit the application requirements. For instance, it provides

Qualifiers like Time Out, when users can specify how long a transaction may be

allowed to wait before it times out. Allowing flexibility is a good thing, since the

protocol can be tailored, and this allows different applications with different needs to

use the protocol.

42

2.6.1.4 Relationships in BTP

The relationships in BTP are of Superior-Inferior type. The superior is always the

leader of the inferior. Superior is the one conveying the results. It can send the

CONFIRM to some atoms and CANCEL to others, provided it is composer of the

cohesion (see Figure 10).

Figure 10 BTP superior-inferior relationship (Little and Freud 2003)

Superiors can be composers, coordinators, sub-composers and sub-coordinators, and

inferiors can be sub-composers, sub-coordinators and participants. The coordinator of

the atoms sends the same outcome to the inferiors. In the superior-inferior hierarchy, the

sub-composers and sub-coordinators are inferiors to parent nodes in the trees but

superior to the children nodes.

2.6.1.5 BTP transaction participants

Just like in any other transaction, there are participants taking part in the transaction.

BTP have different types of participants, which are the initiator, the factory, the

This item has been removed due to third party copyright. The unabridged version of the
thesis can be viewed at the Lanchester Library, Coventry University.

43

coordinator, the terminator, the services participant and the enroller. The initiator is

responsible for starting the transaction depending on the program request. The request

containing information will be sent to the coordinator that will control the process. To

start the coordinator the initiator uses the factory. Again, the factory generates the

framework of the business transaction. The principal participant in BTP is the

coordinator, which is responsible for taking care of two-phase commit protocol. The

coordinator gets the information of the transaction outcome of the participants from the

terminator. The communication system from the inferior side is the services participant.

This works hand-in-hand within the enroller by passing the message it received from

the initiator to it. The participants act according to the information context request they

received from the enroller. The terminator gives the final decisions to the coordinator of

confirm or terminate.

2.6.2 WS-Transactions (WS-Tx)

WS-Transaction is a specification developed by BEA, IBM and Microsoft which

describes the means for transactional interoperability between domains and provides a

mechanism to combine transactional groupings of Web services into applications

(http://www.ibm.com/developerworks/library/specification/ws-tx/) Figure 11 shows the

relevant components for WS-Transaction. WS-Transaction supports two transaction

protocols: WS-AtomicTransaction for short duration ACID transactions; and WS-

BusinessActivity for long duration business transactions (Cabrera et al. 2009a and

2009b). WS-Transaction also works with the WS-Coordination specification. WS-

AtomicTransaction and WS-BusinessActivity can be combined in situations of business

transactions that are generally long-running, and which can be made up of several sub-

transactions that are atomic.

44

Figure 11 WS-Transaction components (Cabrera et al. 2001)

2.6.2.1 WS-Coordination

Web services require management concerning transaction management, replication,

workflow, caching and security. WS-Coordination (Cabrera et al. 2009c) is responsible

for the management of Web services, i.e. the outcome and the processing. The most

important part of WS-Coordination is the provision of generic coordination

communications for Web services.

The generic infrastructure or communication of WS-Coordination enables the

possibility of plugging in specific coordination protocols, for example a protocol for

This item has been removed due to third party copyright. The
unabridged version of the thesis can be viewed at the Lanchester

Library, Coventry University.

45

transaction management for security. Little and Freund, in 2003, pointed out that these

specific protocols work between the services. The coordinator or manager is responsible

for directing all the messages to the correct participants. The coordinator is responsible

for disseminating information about the votes in this case to all participants and

ensuring that all of them get the information. The context message directed to the

participants can be commit or abort, depending on the number of votes received from

participants.

New participants can opt for this context message to include the location or the endpoint

of the coordinator. The context also includes protocol-specific information in relation to

the actual coordination protocol used. Contexts use a SOAP header to encode messages

and WSDL to use a synchronous invocation style for sending requests. According to

Cabrera et al. (2009 c)., the coordination framework includes three elements, activation

service, registry service and coordination service, which represent the basic

responsibilities of all different kinds of coordination protocols between collaborative

services.

The activation service concentrates on creation of a new activity coordinator for a

particular application instance. The activation service also enables the nesting of

activities, indicating the association between new and existing activities. The

coordinator uses a specific coordination protocol, for example protocol configuration

and negotiation, which defines the negotiation between the Web services to determine

which coordination service model is to be used. It also defines the process for

communicating the results of a process. The registry service is responsible for

guaranteeing that registered Web services are driven through to completion by using the

selected protocol. The coordination service focuses on the definition and provision of

processing patterns. For example, the strict ACID transaction service provides a

protocol that defines a sequential processing: prepare, commit and rollback.

2.6.2.2 WS-AtomicTransaction (WS-AT)

There is a need to support short-running transactions. WS-AtomicTransaction (WS-AT)

is a protocol designed for this purpose. The initiator process begins the transaction

46

protocol and the transaction coordinator controls the transaction protocol. The general

purpose of the protocol is to ensure that the initiator and the participants agree on the

outcome of the transaction.

The WS-AT specification provides the description of the atomic transaction

coordination type that is used with the extensible coordination framework described in

WS-Coordination. This specification defines three specific agreement coordination

protocols for the atomic transaction coordination type: completion, volatile two-phase

commit and durable two-phase commit. The completion coordination type states that

the completion protocol starts the commit processing, according to the participants

registered by the protocol.

When the transaction is in process the coordinator will receive either a commit or

rollback message and then executes the volatile 2PC protocol prior to proceeding

through to the execution of the durable 2PC protocol. A status (either a committed or an

aborted message) of the transaction is transmitted back to the initiator of the

completion. Because WS-AT supports classic ACID transactions and is intended for

short-duration interactions among trusted partners, the coordinator directs all

participants to either commit or cancel using well-known 2PC protocol.

2.6.2.3 WS-BusinessActivity (WS-BA)

WS-AT specification works the same way as the traditional 2PC ACID transactions.

Therefore it is too rigid and not practical for long-running transactions. To avoid issues

caused by WS-AT in long-running business transactions, a second coordination type

called WS-BusinessActivity specification (Cabrera et al. 2009 c) was introduced. This

specification defines protocols that allow existing business process and work flow

systems to interoperate. A business activity usually consumes many resources, spans

multiple atomic transactions (even human interaction), and can require a long time to

complete.

An important aspect of WS-Transaction (see Figure 12) that differentiates it from

traditional transaction protocols is that a synchronous request/response model is not

47

assumed. This model derives from the fact that WS-Transaction is layered upon the

WS-Coordination protocol, the communication patterns of which are asynchronous by

default. WS-Coordination provides only context management. It allows contexts to be

created and activities to be registered with those contexts. WS-Transaction improves the

context management framework provided by WS-Coordination in two ways. First, it

extends the WS-Coordination context to create a transaction context. Second, it

augments the activation and registration services with a number of additional services

(Completion, CompletionWithAck, PhaseZero, 2PC, Outcome Notification,

BusinessAgreement, and BusinessAgreementWithComplete) and two protocol message

sets (one for each of the transaction models supported in WS-Transaction) to build a

fully-fledged transaction coordinator on top of the WS-Coordination protocol

infrastructure. WS-BusinessActivity, unlike WS-AtomicTransactions, is proposed for

long-duration transactions. The protocol provides ACID-relaxed transactions among

loosely coupled systems where locking resources is impractical or not desirable.

Figure 12 WS-Transaction overview (Cabrera et al. 2001)

This item has been removed due to third party copyright. The unabridged version of the thesis
can be viewed at the Lanchester Library, Coventry University.

48

The advantage of the protocol is the fact that sub-transactions may commit

autonomously of each other without having to wait for the root or parent transaction to

commit. In case of a sub-transaction failure, the client driving this business process may

decide whether the overall transaction should abort or simply ignore the failed sub-

transaction. Compensating actions are used to undo completed child tasks in the case of

transaction abort. On the other hand, the theory that all service operations can at all

times be compensated is not rational. When the number of transactions having access to

transitional results increases, the compensation of some operations becomes either too

expensive or even impossible.

WS-BusinessActivity relaxes isolation, that is to say results of completed tasks within

business activities can be seen prior to the completion of the business activity. These

tasks are in fact tentative and when they need to be compensated, business logic is

necessary to make it possible, especially if a business activity spans a long period and

has numerous participants which rely on the outcomes of the task that is to be

compensated. The WS-BusinessActivity specification provides the definition of two

Business Activity coordination types: AtomicOutcome or MixedOutcome. These are to

be used with the extensible coordination framework described in the WS-Coordination

specification. AtomicOutcome deals with atomic outcomes and does not relax atomicity

since all the participants in the direction commit or abort; it is all-or-nothing. The

coordinators that deal with mixed outcomes relax atomicity, since they lead each

individual participant to close or compensate. For example if T1 is a parent transaction

which has children T2, T3 and T4. Let us say T2 and T3 can commit but T4 cannot. The

parent transaction T1 can still commit, even if some parts of the transaction, i.e. T4, did

not commit. The protocol maintains consistency by the use of compensation.

The WS-BusinessActivity protocol specification introduced the relaxation of isolation

and atomicity, which is useful for long-running transactions. To maintain consistency

the protocol relies on compensation, which may be costly, especially when

compensation has to be used repeatedly to make the data consistent at the end of the

transaction.

49

2.7 Comparison of the different approaches

The various approaches investigated have been compared in terms of: the ACID

properties that are relaxed; distinguishing features; customisability; how inconsistency

is handled; and whether second chances may be given to the user to reconsider

requirements. The results of the comparison are tabulated in Appendices A and B. The

results were analysed and a summary of the findings is provided in Table 1.

Table 1 provides summarised information about the models evaluated in the literature

review in terms of their relaxation of ACID properties. There was no model that

allowed relaxation of all properties (as shown in Table 1). Combinations of properties

not shown in Table 1 were also relaxed by no models. Figure 13 represents the

findings as a pie chart.

Table 1 Summary of relaxation of ACID properties

ACID Relaxation Number of Models
No Relaxing of ACID properties 11
Atomicity Relaxation 5

Consistency Relaxation 7

Isolation Relaxation 12

Durability Relaxation 4

Atomicity and Isolation Relaxation 13

Atomicity, Consistency and Isolation Relaxation 1

Atomicity, Consistency, Isolation and Durability 0

50

Figure 13 Pie chart showing summary of relaxation of ACID properties

So far no approach allows customisable relaxation of any combination of ACID

properties nor permits service consumers to reconsider requirements if the relaxation

requested is not compatible to the business requirements of the provider. It was felt that

such a system would be beneficial, particularly for Web application developers, who

may wish to experiment with various relaxation strategies. Hence the development of

the Adaptable user-defined Transaction relaxing Approach (AuTrA) which is described

in Chapters 3 and 4.

No Relaxing of
ACID properties

21%
Atomicity
Relaxation

9%

Consistency
Relaxation

13% Isolation
Relaxation

23%

Durability
Relaxation

8%

Atomicity and
Isolation

Relaxation
24%

Atomicity,
Consistency and

Isolation
Relaxation

2%

Atomicity,
Consistency,
Isolation and

Durability
Relaxation

0%

Summary of Relaxation of ACID Properties

51

2.8 Summary

This chapter has provided an overview of the technologies and ideas from related work

that are relevant to this thesis. Previous work from both academia and commerce in

transaction management has been presented. Many models have been proposed

previously for relaxing ACID properties in the context of Web services. The models

proposed in the literature have benefits. For example, not holding resources when

relaxing isolation is an advantage to long-running Web services applications, because

holding resources can lead to deadlocks or can slow down processing time, which could

in turn lead to loss of revenue. Similarly allowing sub-transactions to complete when

the composite transaction fails can save on rollbacks without losing consistency in some

cases. Most of the work that has been investigated has relaxed atomicity and isolation

but some has relaxed consistency. Some major commercial players have also relaxed

durability. Some of the work investigated allows users to select what relaxation might

be appropriate for their applications. None of the related work allows relaxation of all

ACID property with or without customisation. AuTrA will provide this facility.

AuTrA is described in the next chapters.

52

Chapter 3: Requirements for a New
Transaction Model

53

3.1 Introduction

This chapter introduces the Adaptable user-defined Transaction relaxing Approach

(AuTrA). AuTrA is the system developed by this research to provide more flexible

support for transactions in a Web services environment. Its main characteristic is the

support for customisable relaxation of each of the ACID properties. In this chapter,

firstly the motivation for developing AuTrA is considered. Then the relaxation of each

of the ACID properties is discussed with consideration being given to correctness in

AuTrA. Finally the idea of using application-specific criteria in addition to ACID

criteria to improve composite transaction success rates is presented.

3.2 Motivation to develop AuTrA

The Adaptable user-defined Transaction relaxed Approach (AuTrA) model is proposed

to support Web services transactions. This model builds upon previous work in allowing

customisable relaxation of all four ACID properties, as well as enabling application-

specific criteria to be used to increase the success rate of transactions. AuTrA enables

varying relaxation of ACID properties, based on user-defined relaxation of atomicity

and isolation, and adaptable relaxation of consistency and durability, based on provider

requirements. In AuTrA, correctness of data is ensured by various techniques. These are

compensation, synchronisation, tentative hold and relaxation specification.

Additionally, application-specific criteria can be specified to reduce transaction abort

and restart.

Web services transactions are often of long duration and may be initiated from or

executed at globally disparate locations. It is therefore difficult to verify in advance the

release of the resources held by transactions. This can affect the performance of the

system, which in turn affects the business. This factor harshly affects the throughput of

transactions. The following are generic dimensions that are relevant to transaction

support for different areas of application:

• The interaction between the resources involved may be synchronous, i.e.

occurring at the same time, meaning that two different users or transactions may

54

require one resource at the same time; or the interaction may be asynchronous,

namely a resource may not be required at the same time by different

transactions.

• The users may not be in the same geographic location.

• Since the nature of work is long-running, the duration of the work may not be

known in advance and is volatile.

• The resources used allow sharing.

The research question (see Section 1.4) was:

Can transaction support for Web services be customised to suit the needs of

varying applications and result in improved service?

Building on from the research question, a research aim was established (see Section 1.5)

and this was to develop a system that increases throughput while maintaining the

consistency and correctness required by particular applications.

It was conjectured that the above aim could be achieved by relaxing some of the ACID

requirements that are used in traditional transaction processing. Therefore, the research

had to consider what properties could be relaxed. We see from the literature review that

atomicity, isolation, consistency and even durability can be relaxed. The circumstances

and consequences of relaxing these must be carefully considered. In related work, the

most common of the criteria to be relaxed are atomicity and isolation. Some research

has also investigated relaxing consistency. Few researchers have relaxed durability.

However, the commercial companies have relaxed durability in in-memory databases.

No work has relaxed all criteria within the same model with the particular relaxation

pattern customised according to the user. Can all or any ACID properties be relaxed in

one model if the need arises? And if so, is the application still a transaction? The answer

to this question depends on the definition of a transaction. If the definition includes the

requirements that ACID properties are maintained, then relaxing any can lead to

discussion as to whether the process concerned may still be termed a transaction.

However as we have seen in Chapter 2, many extended models of transaction

processing have been developed which permit some relaxation of these properties thus

implying a less restricted definition of a transaction. The definition of a transaction in

55

this work is discussed in more detail in chapter 5. In the analysis of the past research it

can be seen that it is very common that atomicity and isolation are relaxed in one model,

or that each ACID property is relaxed individually in one model. This can be seen in

appendices A and B and in the summary in Section 2.7. It can also be seen that no

model allows relaxation of all or any of the ACID properties. Another question is, what

type of user should have control over the transaction? Is it the consumer or the

provider? The relationship between these parties, their data, the nature of the service

and requirements of the application needs to be considered in order to answer this

question. Is it the service provider or the consumer who should have the final say as to

what can be relaxed, considering the business requirements and sometimes the

criticality of the information? The consumer may want transactions to run quickly but

the provider may not be prepared to allow this if it compromises data integrity. In the

following sections, the issues of relaxing each of the ACID properties are explored.

3.3 User-defined atomicity

The AuTrA system gives a provision of both strict atomicity and fully relaxed

atomicity. By strict atomicity, it is intended that the system works in the same way as

the classic ACID model. This is important in a situation where there is a need to

preserve atomicity. For example, consider that Chris has to make a bank transfer by

debiting one bank account X and crediting the other, Y. Assume only the first

transaction of debiting account X was completed, and that the crediting of account Y

failed. In this case the whole of Chris’ transaction has to fail. It is all-or-nothing, and in

this case the data integrity is very important. If the whole transaction does not fail, it

means that Chris will lose the money he debited from the account, and he will have to

try again to credit account Y, by debiting account X for a second time.

Nevertheless, there are situations where relaxation of atomicity is desirable. For

instance, there are scenarios in which there is no need to waste the work done before by

aborting the whole transaction. For example, consider travel arrangements to go for a

skiing holiday. The user will need a flight to the holiday location, a hotel and the rental

of skis. The user might not mind whether all of the services are booked or not. When

atomicity is relaxed, in the case where the booking of flight is completed but the ski and

56

hotel bookings fail, the flight booking can be committed rather than be wasted by failing

with the rest of the transaction.

Therefore, allowing the user to say if they want to relax atomicity or not should be

provided by the system. The user of the transaction must decide whether it is important

to maintain atomicity or not. In the case of a bank transfer, the user may insist on

atomicity maintenance but in the case of the holiday booking the user may decide to

relax atomicity. The user or service consumer therefore owns the decision over the

relaxation of atomicity.

As much as the user has the power over the relaxation of atomicity, the system also

allows the user to decide on the correctness of the composite transaction. This is done

before the user starts the transaction processing. So if the user is saying, ‘Yes, relax

atomicity’, it means that the user is happy that all or any of the bookings of flight, hotel

and restaurant are done. That defines the correctness criteria of the transaction. In other

words, it is okay if not all component transactions complete successfully. If the user

wants the correctness criteria of the transaction to be different, the user might choose

strict atomicity. It might be argued that a typical end-user does not have sufficient

knowledge on whether or not to relax atomicity. This could be true, but the area in

which AuTrA is intended to be applied is the area of middleware. It is envisaged that

application developers will utilise AuTrA to develop systems that are user-friendly and

that will support users in providing their appropriate application needs. Thus software

developers will analyse the application area, and in discussion with the users will

determine the types of application where relaxation of ACID properties like atomicity is

appropriate. In any case, as will be explained later in Section 3.5, the service provider

or data owner is in charge of consistency. Any request for relaxation received from a

user that does not fit with the integrity requirements of the provider, will be refused.

Application systems to help the user specify relaxation requirements can be developed.

For example, where an interface might say:

“You have asked us to book a flight, a hotel and skis. If we can’t get all three do you

want us to book some of the others anyway?”

57

The above is a question that can determine whether a user is prepared to relax atomicity

or not and is a question posed in a user-friendly way.

Relaxation of atomicity mainly has an impact on the service user or consumer, which is

the reason why the AuTrA gives the service consumer the final say over the relaxation

of atomicity. If relaxation of atomicity would cause the underlying database to be

inconsistent, then the criterion of consistency would come into play, which is controlled

by the service provider (see Section 3.5). Hence correctness of the database can be

maintained.

3.4 User-defined isolation

Similar to atomicity, the system will allow both full isolation and relaxed isolation. Full

isolation protects executing transactions from seeing each other’s incomplete results but

does mean that transactions can be delayed for long periods. Isolation allows multiple

transactions to read or modify data without knowing about each other because each

transaction is isolated from the others. This is achieved using low-level synchronisation

protocols on the underlying data. These can include two phase locking, time stamp

ordering or pessimistic locking. For relaxation of isolation, the system mechanism

processes the transactions concurrently. This is needed in areas where sharing of data is

common and where, processing composite Web transactions would otherwise incur

many delays through lock-outs.

AuTrA enables the user to specify whether isolation is relaxed or not. In AuTrA, if a

user of a transaction specifies that isolation may be relaxed, the user is in effect saying

that it does not mind if the transaction reads some data that may not be committed yet.

In non-critical applications, this drawback may be insignificant and may be quite

preferable than slower throughput. Provided the requested relaxation of isolation can be

restricted to the requesting transaction in that only that requesting transaction is

affected, then the relaxation of isolation can be owned by the user. If the relaxation of

isolation could cause serious damage to the underlying database, the transaction user

should not relax it. Thus it is the nature of the application, the function of the

58

transaction and the user’s awareness of this that will determine whether isolation should

be relaxed or not.

To determine whether or not the system might relax isolation, the application

developers will need to thoroughly analyse the application. In terms of user interface,

the system, in the case of a holiday booking application, might ask:

“Do you mind whether we use information that might not be guaranteed to be the

absolute latest information when we check whether flights, hotels and skis are

available?”

AuTrA uses tentative hold when atomicity has to be maintained and isolation is relaxed.

In this case, multiple holds can be allowed, but as soon as the resource is not available,

the other parties holding the same resource will be notified. In this case, all the

transactions will see the correct information but as soon as the correctness no longer

holds, the other transaction will know that the resource is not available anymore.

Consumer relaxation requirements

Atomicity Consistency Isolation Durability

No Yes No No

Provider relaxation requirements
Atomicity Consistency Isolation Durability

Yes Yes No No

Figure 14 Non-matching consumer and provider relaxation requirements: Example 1.

If relaxation of isolation would cause the underlying database to be inconsistent, then

the criterion of consistency would come into play, which is controlled by the service

provider (see Section 3.5). Hence correctness of the database can be maintained.

59

3.5 Adaptable consistency

When it comes to relaxation of consistency, the system allows both full consistency and

relaxation of consistency. It is important to leave data in a consistent manner. This

applies to areas where inconsistent data can lead to catastrophic decisions being taken.

That is the reason why there is still a need for strict consistency. For example, leaving

financial data with figures that are more than what is really in an account can result in

the account holder making big purchases, while in reality the money in the account is

not enough to go ahead with the purchasing. However, there are some scenarios in

which relaxation of consistency cannot do any harm and may instead add value like

increased throughput. This implies to circumstances like booking ski equipment for

hiring. In this case, even if the information is not correct, and the numbers of what is

available are not correct, there might be a way of dealing with that. For example,

imagine the ski equipment shop continues to book, even if the amount of equipment

available is negative the shop owner might have a backup of borrowing from a

neighbouring shop that has more than they need. With this mechanism in place the

transactions can be processed even if it appears that consistency rules are being broken,

as there is no possibility of catastrophic decisions being made. The worst event that can

happen is that a hirer comes to the shop and no skis are available. Whilst annoying, that

sort of event is not a critical one. In fact, businesses like airlines routinely overbook

seats and shops take orders without being absolutely sure whether they can fulfil them

or not. In these real-life situations, examples of compensating actions are refunds of

money for airline seat bookings that are not honoured and cancellation of retail orders

that cannot be fulfilled. Sometimes financial compensation may be offered.

In AuTrA the service provider owns relaxation of consistency. That is to say, unlike

atomicity and isolation, the service provider has the final say over the relaxation of

consistency. If the service provider sees that the relaxation of consistency damages data

integrity, the service provider will not relax consistency. Even if the user wants to relax

consistency, the service provider will not relax consistency if integrity is crucial. In this

case the system, instead of rejecting the user transaction outright, will give the user a

chance to rethink the requirements in line with the service provider’s needs.

60

Database consistency is specified through consistency rules such as “the number of

seats booked on plane X should not exceed the total number of seats on plane X”. In

the case of replicated databases, a consistency requirement might be that the value of

each replicated item is the same. Pre and post transaction rules might also be specified.

For instance a precondition of ordering an item might be that the quantity of that item in

stock is greater than 0. A post-condition might be that the quantity of that item in stock

is 1 less than the quantity of that item in stock at the start of the transaction.

The service provider is responsible for consistency maintenance of the databases used.

The consistency rules might be specified within the database but the service may be

given the power to override them if the business considers this to be appropriate. It

could be, however, that the database does not have a full set of consistency rules. The

service provider can only maintain the rules that exist. That is, the service providers of

component transactions have an agreement or “contract” with the database owner on

what can be relaxed and what cannot.

A consistency definition in a database might be:

Consistency: A = number of resources (e.g. seats, capacity)

 B = number of bookings

Consistency Requirement: B <= A

If relaxation of consistency is not permitted in the contract, consistency may not be

relaxed by any subsequent transaction and the service provider will ensure this.

However, if in the case of a particular application the business thinks it could be useful

sometimes to relax a consistency requirement such as above, then the service provider is

permitted to relax consistency. The service provider might then decide to relax rules like

the above to increase throughput and improve business, for example thinking that even

if stock is not available at the moment it can be procured later after the orders have been

received. Thus the service provider in some circumstances will decide to relax

consistency. In some circumstances the user may request that consistency be relaxed in

order to increase throughput. In this case, the service provider would say yes or no

depending on the back-end application requirement. If the data is such that consistency

cannot be relaxed, then AuTrA will allow negotiation between the service provider and

the user. The service provider will ask the user to rethink the requirement. If the user is

61

prepared to accept that consistency cannot be relaxed, then the transaction can go ahead.

Otherwise the transaction will be refused. The advantage of allowing negotiation is that

it will lead to the acceptance of more transactions rather than just rejecting those where

the consistency maintenance requirement varies between the consumer and the service

provider. Figure 15 shows the relationship between consumer-specified requirements

and provider relaxation specification in the context of AuTrA.

Consumer relaxation requirements

 Atomicity Consistency Isolation Durability
T1 Yes Yes Yes Yes
T2 Yes Yes Yes Yes
T3 Yes Yes Yes Yes
T4 Yes Yes Yes Yes
,,,,, Yes Yes Yes Yes
T20 Yes Yes Yes Yes

 Provider relaxation requirements

Figure 15 Consumer and provider ACID relaxation specification

This mechanism of allowing the users to rethink the transaction requirements is useful

for both the service provider and the user. That is, the service provider might not need

to reject the transaction, resulting in costly compensation being avoided. On the other

hand, in the situation where the user has chosen to relax atomicity, it means that the part

of the transaction which does not violate the consistency requirements can commit even

Atomicity Consistency Isolation Durability
Yes No Yes No

Negotiate

Some user requirements (consistency and

durability relaxation) not allowed by the

service provider relaxation specification. In

this case, the service provider asks the user to

rethink i.e. is the user happy if not all

requirements are met.

62

when other parts of the transaction have violated consistency requirements and need to

be aborted.

Figure 16 Negotiation process

User
AuTrA

Login

Home page with services list

Selection with user ACID requirements request

Requirement not allowed. Rethink the requirements

Allow the services provider’s requirements and continue

Confirmation

63

Additionally there are situations in which the user may not wish to relax consistency but

the provider might. Note that atomicity and isolation are determined by the consumer;

consistency and durability are determined by the provider. Consider the example shown

in Figure 17: Jake’s requirements include not relaxing consistency even if the provider

is prepared to relax it. In this case, the user has the final say on what will be relaxed.

The provider has the final say on consistency if the request is to relax consistency, but if

the user requests that consistency be maintained, then it is maintained even if the

provider was prepared to relax it.

Consumer relaxation requirements

Atomicity Consistency Isolation Durability

No No No No

Provider relaxation requirements

Atomicity Consistency Isolation Durability

No Yes No No

Figure 17 Non-matching consumer and provider relaxation requirements: Example 2

3.6 Adaptable durability

Data consistency is very important in business, and consistent data must be persistent at

the end of the transaction. Nevertheless, there are some situations in which it is not

necessary to save data. A system may have some mechanisms that assist in allowing full

durability or relaxed durability. For full durability at the end of the transaction all the

data has to be permanent. This is important in an area where the data needed is vital.

Thus, not making the data permanent might make the whole business dangerous. For

example, imagine that Doctor A at the end of the consultation does not save the

information of Patient B, who is allergic to penicillin. After some weeks, Patient B goes

to consult Doctor C. Doctor C prescribes penicillin to Patient B without knowing that it

is harmful, because there is nothing in Patient B’s record showing that; the transactions

which were supposed to show that were not saved. In this scenario, durability must be

strict.

64

However, there are some situations in which data does not need to be permanent. This is

true in a situation where there is a large volume of data that needs to be processed a

limited time. In this case, saving of data can be time-consuming, which is a drawback to

business when fast transactions have to be processed. An example is in the case of

sensors, where a lot of data will be coming in and, if the readings are coming very fast

and saving is done, it can result in the whole process being slowed down. It might not

matter if the writing of one or two readings is missed. Another example is the ski hire

shop. Normally an order for ski hire comes in and it is written to the database and the

user is issued with a slip to say the hire is agreed. If the system gets really busy and

there is no time to update the database or if the database goes down, the shop may carry

on taking orders and issuing agreements without updating the database. The owners

may decide to update the database later when business is quieter using the agreement

records sent by email, or even may decide not to update the database at all, hence

relaxing durability altogether. In the latter case, the recording exactly of who has hired

skis is not crucial to the business. Typically system mechanisms have two ways of not

saving data, i.e. relaxing durability and not tidying up at the end, or relaxing durability

and tidying it up at the end. By ‘at the end’, the time when everything is done and the

server is not busy anymore is intended—in other words, when the server is free to do

some more jobs. Then the system mechanism that allows the service providers to

transfer the data from the memory into the permanent place might or might not make

the data in the memory permanent, depending on the importance of durability to the

application.

Similar to consistency relaxation, in AuTrA, the service provider owns relaxation of

durability. The question that might arise when relaxing durability and not making the

data changes permanent at the end is whether the data information is left inconsistent.

This is could be the case. However, the system gives the service provider a choice of

making the data consistent later (through delayed saving), and if the services provider

chooses not to do so, it means that it is acceptable for the data to be left in an

inconsistent way in that particular application. This latter situation would only arise if

the consistency property is relaxed. The service provider can enforce consistency by not

allowing the consistency property to be relaxed. However, relaxing durability even

when maintaining consistency can still lead to inaccurate representation of the real-

world situation. For example, a consistency requirement might be that the number of

65

orders of Product A is less or equal to the number of Products A held in stock. Let us

assume there are 20 instances of Product A in stock and orders for 15 of Product A. A

new order comes in for 3 of Product A. This order does not break the consistency

requirement as 18 is less than 20 and therefore is accepted but is not made durable. Thus

the database still says there are only 15 orders for Product A, even though 18 orders

have been accepted. This is an example of the database not representing an accurate

picture of the real world even though the consistency requirement has been maintained.

Let us consider again how the consistency property can relate to the durability property.

To illustrate the relaxation of durability, it is assumed that Perry decides to book 20 ski

passes. The provider decides to relax durability and not to tidy up at the end of the

transaction. The provider also does not relax the consistency requirement that before a

booking is made there must be enough items in stock to satisfy the booking. Perry’s

booking results in nothing deducted being from the system, and coincidently there were

only 20 tickets left, which means that when John comes to book 20 tickets, booking is

possible and there will still be 20 tickets left afterwards as durability is still relaxed. The

system allows the booking because there are tickets available according to the database

and the consistency rule is not broken, as when the bookings are made there seems to be

enough passes available. In this case, the maintenance of the consistency rule has not

stopped an inaccurate representation of the real-world situation in the database.

3.7 Application-specific criteria

An additional characteristic of AuTrA is the use of application-specific criteria.

Application-specific criteria concern the features that are unique to a particular

application, as opposed to generic features that are applicable to any application. For

example, when booking a restaurant one of the features that is not in a flight booking

but is found in a restaurant booking is the type of cuisine. This feature is specific to the

restaurant booking. On the other hand, there are specific aspects that are similar to both

applications, like dates. Both the restaurant and flight bookings will be interested in

dates, but they will be doing something different with regard to those dates, namely one

will be interested in capturing features that can be attributed to food, such as cuisine

66

type and food preference, and the other will be interested in capturing features to do

with flights, such as seat preference and dietary needs.

The system allows the users to decide whether they want to use application-specific

criteria or not in managing the transaction and in determining whether a component

transaction should fail or not. The system is generic in such a way that it can cater for

applications that have application-specific criteria or those without. The application-

specific criteria are used when what the user wanted as a first choice is not available.

The user has a choice of choosing the attributes that can be compromised and those that

cannot be compromised. For example, the choice can be price of cuisine, type of

cuisine, or the dates of the booking, so the user might say the dates have to stay as in the

initial request. For example, the cuisine has to be vegetarian, no compromise, but

anything else can be compromised to the best possibilities available. This means that a

transaction that might otherwise fail will succeed when application-specific criteria are

relaxed.

Application-specific criteria are based on the attributes that are specific to that

application and that can be compromised. This means that if many attributes can be

compromised, the read/write sequences will be complex. For example, John, who is

booking a hotel and flight, might have a one application-specific criterion that can be

compromised, which is date for hotel. Similarly, Kate might book the same resource

like John, but for her, she might be prepared to compromise both dates of flight and

hotel. Because there is extra reading and writing on Kate’s transaction (due to her

transaction continuing because she has offered greater flexibility), Kate’s processing

requires more time compared to John’s.

Having said that it is worth noting that Kate’s transaction is more flexible and the

chances of her transaction failing because of services providers’ not meeting the

requirements is less than that of John’s transaction.

67

3.8 Summary

This chapter has described the motivational concepts behind AuTrA. It delineates

relaxation of each ACID property as provided in AuTrA. In AuTrA, relaxation of ACID

properties is adaptable according to consumer requirements and services providers’

relaxation specifications. An additional feature to ACID properties that has been

introduced in AuTrA is application-specific property relaxation. Correctness of the data

is defined by the service provider through the specification of the requirement of

consistency.

68

Chapter 4: Presentation of AuTrA

69

4.1 Introduction

In this chapter, the architecture of the proposed system, AuTrA, is explained. AuTrA is

the system developed by this research to evaluate whether customisable transaction

support in the Web services environment can be useful. It has been implemented in

ASP.Net C# and runs in Microsoft Visual Studio 2008 on an SQL server on an IIS Web

server. It can be regarded as middleware, as it forms a layer between the service

consumers’ applications and the service providers’ services. An outline of each AuTrA

component is also given as well as an account of the process flows in the AuTrA system

for service provider, service consumer and application developer. The notation used in

the workflow diagrams follows the UML standard (Fowler 2003). Some screenshots

illustrating parts of the implemented system are also given.

4.2 System overview

The structure of AuTrA is given in Figure 18, while Figure 19 shows the context of

AuTrA . AuTrA has three types of user: a service provider, a service consumer, and an

application developer/tester. The service provider provides services to AuTrA that can

be offered to service consumers. A service consumer uses the services provided and

may compose and run applications based on them. The application developer builds

applications for service consumers by combining services. The application developer

helps consumers specify appropriate relaxation criteria. The application developer may

also test various relaxation criteria by creating batch files of transactions and running

them in AuTrA and analysing the results. This will help the developer make appropriate

judgement on which criteria to relax. The roles of service consumer and application

developer overlap in that both may compose applications based on services.

Let us consider the composition of AuTrA. AuTrA has an interface for service

consumers, service providers and application developers. It also has a core transaction

management layer which consists of the following components: Reader, Requirements

Tailor, Requirements Negotiator, Batch Manager, Processing Timer and Writer.

70

Requirements Tailor: This component will check whether the user’s ACID relaxation

request fits with the service provider’s requirements.

Requirements Negotiator: This component will give the consumer an opportunity to

re-specify the transaction requirements.

Batch Manager: This component is responsible for the main processing of the

applications. In AuTrA, transactions can be run singly or in batches. The batch

manager handles both modes and runs the transactions according to the specifications

set, for instance using concurrent or non-concurrent processing or maintaining or

relaxing the various criteria. The batch manager launches the applications and raises the

calls to the Web services used. It also communicates with the other components and

thus forms the central hub of AuTrA.

Reader: This component is responsible for reading from any input objects which

include the batch files or online input devices.

Processing Timer: This component calculates the processing time of the transactions.

Writer: This component writes the output of the processing. In the case of a batch run,

the output will be a file showing the outcome of all transactions in the run and the

processing time. In the case of an individual transaction run, the output is written to the

screen.

71

Figure 18 High level system diagram for AuTrA

User interface

Put
requirements

Compose
application

Run
application

Analyse
statistically

Set up batch
runs

Compose
application

Edit service Specify
requirements

Register
service

Interface for Consumers Interface for Providers Interface for Developers

AuTrA

External services

Requirements
Tailor

Requirements
Negotiator

Batch Manager

Reader

Writer

Processing
Timer

Transaction Management

72

 Figure 19 The context diagram of AuTrA

AuTrA System

State Requirements

Requested Service

Service Providers

Developers

Consumers

Request Service

Compose Application

Register Service

Specify requirements

Edit service

Compose Application

Set up Batch Run

Gather Statistics

73

Let us consider the system workflows from the perspectives of each of the user

categories. The proposed system workflow from a service consumer’s perspective is

presented in Figure 20, from the service provider’s perspective in Figure 21 and from

the developer’s perspective in Figure 22.

From a service consumer’s perspective, AuTrA has the following phases (see Figure

21):

Input User Requirements phase: This is where the consumer will have to put in the

requirements of the service they request through a Graphical User Interface (GUI).

After the users have put in what they want, the requirement will go to the Tailor

Requirements Phase.

Tailor Requirements Phase: The system takes the consumer’s requirements and

checks that they satisfy the business requirements or criteria of the component services.

For example, the business requirements or criteria might be to not relax durability and

consistency. This phase will check the user’s ACID specified request fits with the

service provider’s requirements.

74

Figure 20 Proposed AuTrA system workflow: Consumer’s perspective

Negotiation phase: Transactions that did not manage to go to the Continue process

from the Tailor Requirements process will come to the Negotiation process. The user

will be allowed an opportunity to re-specify their transaction requirements.

Commit phase: This is the process in which the transaction is committed, the data is

saved, and confirmation is provided to the user. If durability is relaxed, data saving is

not required. That is to say, the committed data is not made permanent, and therefore

working against the classic characteristics of ACID transactions.

Commit Input User
Requirements

Tailor
Requirements

Start
Transaction

Negotiate

Continue
Transaction

Abort

Specified requirements

allowed by service

provider?

Yes

No

No Yes

75

Figure 21 Proposed AuTrA system workflow: Service provider’s perspective

From a service provider’s perspective, AuTrA has the following phases (see Figure 21):

Register Service phase: This is where the providers who want to use AuTrA will

register their service.

Specify Requirements Phase: This is where the service provider will have to put in the

business requirements of the service they provide through a graphical user interface

(GUI). After the services provider has put in required business requirements, the

requirements will go to the Save Requirements phase.

Register
Service

Specify
Requirements

Save
Requirements

Service
Consumed

76

Save Requirements Phase: This is the process in which the required business

requirements are saved.

Service Consumed Phase: After the service has been set up it can be used repeatedly

by consumers.

77

Figure 22 Proposed AuTrA system workflow: Developer’s perspective

Tailor Requirements

Commit

Abort

Get Results Gather Statistics

Continue Transaction

Yes

No

End Run Batch

Upload Files

Start Run Batch

Yes No

List of composite transactions

<< iterative>>
or

<<concurrent>>

Start Composite Transaction

Sp
ec

ifi
ed

re
qu

ire
m

en
ts

al
lo

w
ed

 b
y

se
rv

ic
e

pr
ov

id
er

?

Change Requirements

Negotiate

78

Figure 22 shows the AuTrA system workflow from a developer’s perspective. In

Figure 22 the main batch processing is shown as iterative or concurrent as the mode of

processing will depend upon the relaxation specified. If isolation is relaxed the

processing will be concurrent. Otherwise the processing will be iterative. From an

application developer’s perspective, AuTrA has the following phases:

Upload File Phase: In this phase the developer will upload the files that are used to

experiment with different relaxation choices.

Run Batch Phase: This phase is when the uploaded batches are run. During this

process transactions will be committed or aborted and a record will be maintained of

which transactions are successful and which are not, together with timings.

Get Results Phase: The results of the batch run will be obtained which will show

which transactions were successful and which were not, as well as the processing times

for the transactions. The results will be available for both composite and component

transactions.

Gather Statistics Phase: The output of the batch transaction will be gathered as raw

data and this will be statistically analysed. The statistically analysed data will help

developers who are building the application to appropriately advise the users about

relaxation.

79

Figure 23 Detailed process flow of AuTrA system

Compose
Application

Select Services

Set up Relaxation
Criteria

Register Service

Set up Relaxation
Criteria

Run Application

Batch of
Transactions Single Transaction

Run Batch

Set up Relaxation
Criteria

Run Transaction

Upload Files

Get Results

Gather Statistics

Get Results

80

Figure 23 represents the complete workflow of AuTrA system workflow from all user

perspectives. It can be seen that the system allows two forms of interaction: real-time or

batch-processing-based. The real-time mode would be used by individual consumers

online when requesting a service or composing an application. Batch processing would

be used when, say, a company wished to process many transactions at an off-peak time.

Batch processing may also be used by application developers for experimental

purposes. In order to evaluate the AuTrA model, this research used batch processing to

mimic a real situation, where a lot of users process transactions concurrently (see

Chapter 5) .In this case AuTrA was configured to have random delays in launching

transactions from a batch (to mimic live multi-user situations). AuTrA was also

configured to allow simulated interaction with consumers for purposes of negotiation

when there was a mismatch in relaxation specifications.

4.3 AuTrA implementation

AuTrA been implemented in ASP.Net C# and runs in Microsoft Visual Studio 2008 on

an SQL server on an IIS Web server. AuTrA offers the following functionality:

• Service Registration

• Application Composition (by selecting registered services)

• ACID property relaxation specification by user

• ACID property relaxation specification by provider

• Application-specific criteria relaxation by user

• Negotiation of requirements

• Application execution coordination and monitoring

• Running of batch files of transactions

• Providing timings for transaction batch runs

Let us consider the service provider. The front page of the implemented AuTrA system

for the service provider is shown in Figure 24.

81

Figure 24 AuTrA service provider front page

Figure 24 shows that when the service provider logs in they are able to register a new

service, edit a service or delete a service. When choosing to register a new service the

provider will have to provide the name of the service, the URL and the service

description, which will give the user an overall picture of the service provided.

Furthermore, because the provider is responsible for deciding whether or not to relax

durability and consistency, the provider will have to specify its position on these items.

82

The position of the provider on these matters could in turn depend on the contracts that

it has with its database owner clients. The provider can choose to edit the services

according to their needs. For example, imagine that at the time the service provider first

registered their services, durability and consistency could be relaxed. This position was

consistent with the contracts the provider had with its database owner clients.

Nevertheless, as time went on they realised that the relaxation of consistency was no

longer acceptable, that only durability could be relaxed; the service provider can then

edit the consistency from relaxed consistency to strict consistency. Additionally the

provider can choose whether to tentatively hold the user transaction when atomicity and

isolation are relaxed by the user. When durability is relaxed the service provider has a

choice of tidying up the database at the end or not, as discussed in Section 3.5. The

point being made here is that the service provider can maintain consistency and

durability when these are essential to the needs of the business and can relax them when

they are not. As shown in Figure 25, the service provider has a choice of relaxing

consistency and durability (tidying up at the end or not), and using tentative hold.

Tentative hold is used to maintain atomicity and to maintain consistency.

83

Figure 25 Service provider options in AuTrA

Let us now consider the service consumer. The service consumers can choose to

compose an application, adding services that they wish to include in the composition.

Then, after composing application according to requirements, the consumer accepts the

composite service. A composite Web service is a combination of individual services the

84

consumer wants to use in a transaction. For example, in Figure 26, Sarah might choose

to have a transaction that involves booking a flight to go to Spain for a hen party, a

venue for the hen party and the restaurant to have a meal before the hen party.

Figure 26 Application composition by service consumer

85

Service consumers may also choose application-specific criteria to be relaxed. Using the

above scenario of Sarah’s trip, Sarah will be able to choose the application-specific

criteria that can be relaxed. Figure 27 shows how AuTrA offers Sarah a chance to relax

some requirements.

Figure 27 Application-specific criteria relaxation

86

Note that Sarah had a choice of services that can allow application-specific criteria to be

compromised. Even in those services that she has allowed to be compromised, it does

not mean that all the application-specific criteria in those services will be compromised.

She will choose which requirements she wants to be compromised. For example, Figure

28 illustrates the selection of criteria which can be flexible when running a particular

application. The flexibility is determined by the service consumer according to own

requirements.

Figure 28 Application-specific criteria selection

87

Figure 29 Application-specific criteria process

Sarah
AuTrA

Login

Home page with flight, hotel, ski list

Service selection and ACID requirements request

Compromise application-specific criteria
requirements?

Yes

Service selection allowing compromising
requirements

Service selection allowing compromising
requirements

Requirements/attributes selection to be
compromised

Requirements/attributes selection to be
compromised

Confirmation

88

After the service consumer has specified all relaxation requirements, the application is

run under the control of AuTrA. The processor checks whether the service provider

allows what the consumer wants to relax in terms of consistency and durability. If

allowed, the consumer’s transaction will finish with a summary of the transaction

details. This process is shown in Figure 29. However, if not allowed, the transaction

will go to a negotiation phase where the consumer is given a choice to re-specify the

requirement, continue with the transaction, or abort. Keep in mind that the only thing

Sarah can choose to change when re-specifying the requirement is the relaxing of

atomicity or isolation. The others are the provider’s choice, or she must abort to restart

the transaction. If she continues, the service provider’s requirements will be followed.

As mentioned above, AuTrA allows for some negotiation to take place when a user’s

requirements are not in accord with the service provider’s criteria for consistency and

durability. Let us consider an example. Mike has some requirements not allowed by the

service provider. This means that Mike might have asked to relax consistency or

durability and the services provider did not relax consistency and durability or either of

them. In this situation the system has a mechanism that will respond to Mike to inform

him that his request is not allowed. Mike has a choice of continuing — in this case his

requirements will not be followed where they clash with those of the provider — or

resetting his requirements to fit those of the service provider, or aborting (see Figure

30).

89

Figure 30 AuTrA negotiation

4.4 Main classes in AuTrA

This section provides an overview of the main classes and methods used in AuTrA.

The classes and methods can be grouped according to the main transaction management

components in AuTrA (see Figure 18 in section 4.2, System overview). These

components are Reader; Requirements Tailor; Requirements Negotiator; Batch

Manager; Processing Timer; and Writer. The following sections provide more detail of

the classes used in AuTrA.

90

4.4.1 Reader component

This component is responsible for opening and closing files as well as reading all inputs

to AuTrA. The launch of the transaction is also done in this component. The launch is

done with the communication between the StringParser class and the

PositionableStreamReader class.

Class: File Reader

Methods:

• void openFiles() – opens input file for each registered service.

• void closeFiles() – closes files opened by openFiles().

• User parseLine() – parses one line from each input file, creates new User object

from obtained data and returns it.

• Boolean hasFinishedReading() – returns true if any of input file readers reached

end of the file, otherwise returns false.

• void initializeParsers() – creates set of parsers corresponding to registered

services.

Class: InputFormData

Methods:

• void setName(String n)

• void setSurname(String s)

• void setAdd1(String a)

• void setAdd2(String a)

• void setAdd3(String a)

• void setMobile(String m)

• void setEmail(String e)

This class collects the consumer’s information from the input form. Each service has its

own specific implementation of this class.

91

Class: StringParser

Methods:

• User parseUserDetails(PositionableStreamReader streamReader) – parses user

information from input file and creates new User object which is returned.

• UserData parseLine(ref PositionableStreamReader streamReader, long id) –

parses one line of the input file and creates UserData object from the obtained

data.

 Each service has its own implementation of the StringParser object.

Class: PositionableStreamReader

Methods:

• PositionableStreamReader(String path) – position the reader in the full path of

where the reading is supposed to take place.

• String readLine() – read the consumers input line by line and return the line.

4.4.2 Requirements Tailor component

This component is responsible for tailoring the consumer requirements according to the

providers where necessary.

Class: ManagerImpl

Methods:

• void checkFlags() – checks set of ACID properties requirements specified in the

input file against the ones supported by chosen services.

4.4.3 Requirements Negotiator component

This component will handle negotiation in cases when the consumer requirements are

not allowed by the provider. The consumer will be given a choice of rethinking the

requirements.

92

Class: ManagerImpl

Methods:

• void agreeServicesFlags() – agrees set of ACID properties requirements

specified for chosen services.

• void agreeInputFlags() – agrees set of ACID properties requirements specified

in the input files.

4.4.4 Batch Manager component

This component handles the batches and the online interaction. In the case of the online

interaction, the running of the composite transaction is treated as if in a batch of 1.

Class: ManagerImpl

Methods:

• void runManager(String mode) – starts manager operation in separate thread.

The manager operation oversees the execution of each thread of work, where

each thread of work represents a composite transaction.

• void doWork(object modeObj) – coordinates reading, buffer management and

writing, and is called by runManager.

Class: Executer

Methods:

• void executeUsersRIsolationFalse(List<User> listOfUsers, String mode) –

executes calls to Web services for each user in the listOfUsers.

• void tentativeHold() – hold the resource for a certain amount of time.

Class: WebServicesCaller

Methods:

• Boolean callWebServices(ref User user, String mode, ref List<UserData>

servicesToRollback, ref List<UserData> notBookedServices) – executes each

chosen service and saves information on which services completed successfully

and which did not. The method returns true when all the services (component

transactions) for a user’s composite transaction have been executed.

93

Class: WebServicesConcurrentCaller

Methods:

• void callWebServices(List<User> usersList, String mode, ref List<UserData>

servicesToRollback, ref List<UserData> notBookedServices) – invokes

callWebCaller() concurrently.

• void callWebCaller(Object user) – creates new instance of WebServicesCaller

and invokes callWebServices() on it.

Class: BufferHandler

Methods:

• void appendUser(User user) – adds user object to the buffer, generating random

delay first if needed and flushing the buffer when full. The user object represents

a composite transaction.

• void generateRandomDelay(int low, int high) – generates random delay within

given range.

• void flush() – processes contents of the buffer, writes the output.

• void clearDictionary() – clears contents of the buffer.

Class: User

Methods:

• List<UserData> userDataList() - lists the userdata for the user. The user data

list shows which component transactions comprise the composite transaction

and shows the relaxation requirements.

Class: UserData

Methods:

• Boolean getrConsistencyFlag() – this will return true when the user requests to

relax consistency.

• Boolean getrDurabilityFlag() – this will return true when the user requests to

relax durability.

• Boolean getrAtomicityFlag() – this will return true when the user requests to

relax atomicity.

94

• Boolean getrIsolationFlag() – this will return true when the user requests to

relax isolation.

• Boolean getcriteriaFlag() – this will return true when the user compromises

application-specific criteria.

• void setrConsistencyFlag(String s) – this sets the flag for relaxing consistency.

• void setrDurabilityFlag(String s) – this sets the flag for relaxing durability.

• void setrAtomicityFlag(String s) – this sets the flag for relaxing atomicity.

• void setrIsolationFlag(String s) – this sets the flag for relaxing isolation.

• void setcriteriaFlag(String s) – this sets the flag for application-specific criteria.

Each service has its own implementation of the UserData object

Class: Criteria

• Abstract class which keeps information about the selected criteria; each service

has its own implementation of this class.

Class: CriteriaUtil

Method:

• void applyCriteria(ref UserData uData) – applies chosen criteria overriding ones

specified in the input file.

4.4.5 Processing Timer component

This is responsible for obtaining high precision of time measurements of the transaction

processing time.

Class: HiPerfTimer

Methods:

• void start() – starts the timer when the transaction begins.

• void stop() – stops the timer according delay time set.

• double duration() – returns the duration of the transaction processing.

95

4.4.6 Writer component

This component writes the output of the consumers request to an output object. The

output includes the outcome for each composite transaction, showing which component

transactions were successful and which were not. The output also includes the

transaction processing time.

Class: FileWriter

Methods:

• void write(List<User> userList) – writes to the output file information about

processing outcome for each User object from userList.

• void addTime() – adds to the output file information about the processing time.

• void writeOutput(Dictionary<int, List<User>> users) – writes processing

outcome for each entry in the buffer to the output file. Dictionary is a system-

defined name for the buffer.

4.5 Summary

AuTrA is a system that allows service providers to offer services to consumers.

Consumers may combine these services to make applications or composite services.

Providers may relax the ACID properties of consistency and durability. The consumer

may relax the ACID properties of atomicity and isolation and may also request to relax

consistency and durability. Consumers can also relax application-specific criteria. After

composing the application from available services, the consumers can either fill in

online forms to make an individual service request or use the batch processing mode, in

which a user can upload a set of input files and in that way many service requests may

be processed together. The next chapter describes the simulation model that was used to

test the AuTrA model and system implementation.

96

Chapter 5: Simulation Model and Evaluation
Strategy

97

5.1 Introduction

In this chapter the research discusses the key definitions, presents the simulation model
and the simulation road map which leads to experiments and results presented in
Chapter 6.

5.2 Definitions of the key terms in the research

This research uses the key terms transaction and throughput which are sometimes

defined differently by different research. McGovern, Stevens, and Mathew in 2003 said

“A transaction may be thought of as an interaction with the system, resulting in a

change to the system state, while the interaction is in process of changing state, any

number of events can interrupt the interaction, leaving the state change incomplete and

system state in an inconsistent, undesirable form. Any change to the system within a

transaction boundary, therefore has to ensure that the change leaves the system in a

stable and consistent state. A transactional unit of work is one in which the following

four fundamental transactional properties are satisfied: atomicity, consistency, isolation,

and durability (ACID).” On the other hand, Younas and Iqbal state: “Transaction is

defined as a unit of work wherein several operations can be treated as a logical work

performed.”

Definition 1: For this research a transaction is a process which executes a logical unit

of work a system, intending a change of system state. The logical unit of work may

consist of a number of individual operations. This research is considering composite

Web services transactions. The transaction in this research therefore is a composite Web

Service made up of component Web services. Each component Web service can be seen

as an individual operation within the composite transaction and could be a transaction in

the classical sense at the site of the service provider. Unlike McGovern, Stevens, and

Mathew in 2003, which says the fundamental transactional properties of ACID have to

be satisfied, this research uses an extended concept of a transaction in that a transaction

in this research does not need to satisfy the ACID properties. This research considers a

transaction which follows the rules of correctness agreed between the service consumer

and service provider to be a transaction, even where this means relaxing classic ACID

criteria.

98

In terms of throughput, Elnikety et al. in 2004 said “Throughput is the average number

of successful requests that clients issue per unit time.” The definition for Elnikey et al.’s

experimentation continues, “If a request fails or times out, it is not included in the

measured throughput and response time, even though some components of the system

may have executed parts of the request. Hence throughput is measured only for

successful requests.” On the other hand, Alrifai et al. in 2009 said: “The overall

throughput is measured by the number of terminated transactions per second.”

Definition 2: In the case of this research throughput is the number of successfully

completed composite WS-transactions from a given batch of composite WS-

transactions in which the time characteristics of long-running transactions are simulated.

To count as a successfully completed composite transaction, at least one component

transaction has to successfully complete. This is different from the definition by

Elnikety et al., which says that all parts of the request have to be successful. Our

definition of throughput is given below:

Definition 3: In the case of this research, throughput unit time is the average time it

takes one transaction to complete. This is measured when a batch of transactions are run

through the system. This measurement is directly related to throughput and is used as

the defining measure in the experimentation. A lower throughput unit time indicates

higher throughput.

Throughput =

Total execution time (ms)

Equation 1

Number of successfully completed
composite transactions

Throughput unit time =

Number of successfully completed
composite transactions

Equation 2
Total execution time (ms)

99

Definition 4: In the case of this research a successfully completed composite transaction

is considered to be a composite transaction when at least one component has succeeded,

provided that the correctness requirements set by the user allows for this. If the

correctness criteria set by the user insists on all components of a composite transaction

completing successfully then the composite transaction will only be considered to be

successful if all components have completed successfully. However, if the correctness

criteria have been set so that atomicity relaxation is allowed, then a composite

transaction will be considered to be successfully completed if some of its component

transactions have successfully completed.

Definition 5: In this research successful completion of a component transaction is

considered to be when the consumer goal was satisfied. For instance, if the consumer

wishes to book a restaurant on a particular day via a service and the booking is made,

then that is considered to be a successfully completed transaction. If the booking is not

made because of a lack of availability, then the component transaction would be

considered to be unsuccessful. This understanding is in line with our common

understanding of such consumer tasks. For instance, we might say to a friend, “Did you

manage to buy that book?” and the friend might answer, “No – I’m afraid I was

unsuccessful in that task.” The research did not specifically consider other lower level

types of failure such as logical error, system crash, or network failure. However, these

types of failure would also result in the consumer goal not being satisfied. Thus at the

AuTrA middleware level the transaction logic would still be applicable. AuTrA does

not at present have the functionality to capture these sorts of lower level failures, as this

aspect lies outside the scope of the research. Commercial middleware systems

commonly have error-handling functionality, and so this component would be added if

AuTrA were to be launched as a commercial product.

5.3 Simulation model

The AuTrA system was used as a test environment for a number of experiments. The

experiments were designed to simulate long-running composite Web transactions

occurring over a period of time. The simulation was achieved by composing an

application from individual Web services which had previously been created and

100

registered in AuTrA. To simulate such applications executed by various users over a

lapsed period of time, a batch file approach with random system-generated delays was

used. Thus sets of calls to the application with various parameters were put into batch

files and the batch files were used as input to AuTrA. AuTrA then utilised programmed

system delays to represent the long-running and event-based nature of such applications

in real life. Within the batch files various parameters were set to show the relaxation

requirements of both consumer and provider. During the batch run any requirements set

by the user which do not meet the service provider’s requirements will be changed so

that they follow the service provider’s requirements.

5.3.1 Simulation set-up

A personal computer was set up as a client-server machine to simulate Web usage.

AuTrA was run on this platform, which was also running IIS, SQL Server and Visual

Studio.net. Seven Web services were set up within AuTrA. The services were based

around the idea of travel and event booking and were called: Flight service, Hotel

service, Ski service, Entertainment service, Restaurant service, Invitation service and

Venue service. The simulation involved the idea of people making holiday and event

bookings over the Web. The services were registered within AuTrA. Figure 31 shows a

screen shot of the AuTrA back-end directory showing these services listed. Database

objects were set up on the server side to simulate the data banks held by service

providers. These database objects are shown registered on the server in Figure 32. The

seven Web services access these database objects during simulation in a similar way as

such services would do in real deployment. The services and database objects were

developed within ASP.net and written in C#. Appendix D shows the WSDL and a

SOAP message for one of the services. For the purposes of experimentation, three

applications (or composite transactions) were composed from these seven services. One

application consisted of three Web services, another of four Web services and the other

of seven Web services. Then for each application six sets of batches were set up for the

experimentation. In each set there was a batch file for each service. The sizes of the six

batch file sets for each composite transaction were varied as 20, 100, 200, 300, 400

and 500 transactions respectively. The experimental set up is summarised in Table 2.

101

Table 2 Simulation used in the evaluation

System Environment Microsoft

Internet Information Services Manager (IIS)

SQL Server

Visual Studio

ASP.net (Version3.5.0.0)

Software Environment AuTrA middleware (developed as part of this research)

Number of services 7 (developed as part of this research)

Names of services flight service, hotel service, ski service, restaurant service, entertainment

service, invitation service, venue service

Number of composite transaction types 3

Names of composite transaction types Travel Plan application

Travel and Party application

Big Party Arrangements application

Number and names of services for the three composite transaction types Travel Plan application - 3 services (flight service, hotel service, ski

service),

Travel and Party application – 4 services (flight service, hotel service,

restaurant service, and venue service)

Big Party Arrangements application -7 services (flight service, hotel

102

service, ski service, restaurant service, venue service, entertainment

service, and invitation service)

Number of batch file sets per composite transaction type 6

Number of composite transactions instances per batch file set 20,100,200,300,400,500

Number of batch files per batch file set Various –one batch file per service (component transaction)

Delay factor Random interval within a range

Transaction execution maximum interval ≤ 20 mins

Transaction execution minimum interval 0 mins

Attributes domain Natural numbers, names, dates

103

Figure 31 Web services registered with AuTrA

104

Figure 32 Corresponding database of Web services registered with AuTrA

5.3.2 Simulation model settings and configuration

The simulation model had settings and configurations which were configured in a

customised way. This was done in Web.config file and placed in the main directory of

AuTrA. The following parameters were configured:

• InputFilePath ‒ the file path (on the server) where the input files were uploaded.

• OutputFilePath ‒ the file path (on the server) where the output files was created.

105

• lRandomizerInterval ‒ the minimal time delay applied to each processed record.

• hRandomizerInterval ‒ the maximal time delay applied to each processed

record.

• tentativeHold ‒ the amount of time the tentative hold was performed when

applicable.

• Buffer ‒ the maximum number of records processed at a time (the size of

transaction set).

• DataPath ‒ the path to the file which stored information about registered

services.

• <connection string> tag – information about the connection string and name

which is used by external Web services.

106

5.3.3 Mechanism for simulation relaxation of ACID and application-spefication properties

The mechanisms for simulation of relaxation and maintenance of the ACID and application-specific properties is given in Table 3

Table 3 Mechanisms for simulation relaxation in AuTrA

Property Relaxation Method Maintenance
Atomicity Successful component transactions were allowed to commit

even if other components belonging to the same composite
transaction did not succeed

A composite transaction could only commit if
all component transactions committed i.e. all-
or-nothing. Tentative hold was used.

Consistency Consistency rules were not followed and tentative hold was
not used

Consistency rules were followed and tentative
hold was used

Isolation Component transactions from various composite
transactions were interleaved without regard to serialisation.
Locks and tentative hold were not used

Composite transactions were run in serial order

Durability No saving was made of updates during main processing
time but if “Tidy up” was used, saving was delayed to off-
peak time

All updates were saved during main processing

Application-specific Alternative criteria were used if user preference was not
possible

No compromise of user preference was allowed

107

5.3.4 Simulation road map

The simulation process involves logging into AuTrA, composing an application, setting

up an appropriate batch file with appropriate ACID and application-specific relaxation

requirements, running the batch files, tailoring the requirements, negotiation if

applicable and downloading results and then gathering statistics. Figure 33 shows a

screen shot of the launching of the AuTrA system and Figure 34 provides an overview

of the simulation process.

Figure 33 Launching the AuTrA simulation application

After opening the login page and logging in to AuTrA, the main page shown previously

in Figure 24 will display. From here, applications can be composed and relaxation of

properties can be specified. After this, the application can be run in real-time or batch

mode. For the experimental simulation, a batch file approach was used to simulate

multi-user interaction over a period of time. Random delays between starting

transactions in the batch were configured to achieve this. New batch files can be set up

108

offline for any new applications that are composed in AuTrA. Appendix E shows some

example batch files used in the experimentation. AuTrA collects data during the run for

analysis later. During the running, the consumer relaxation requirements are checked

against those of the service provider. The code snippet in Figure 35 shows how

requirements representing consumer requirements are checked against the provider

requirements. The consumer requirements will be checked against the service provider

requirements until the batch is finished. After all the transactions in the batch are

processed, the total processing time will be returned with the list of transaction

outcomes.

Figure 34 Simulation process

Compose
Application

Set up Relaxation
Requirements

Create Batch File

Upload Batch File

Run Batch

Get Results

Gather Statistics

109

Figure 35 Snippet of code difference ACID relaxation

During the batch processing a random delay method was used which mimics the

processing time of real-world transactions. As stated previously the minimum time set

was 0 minutes and the maximum set for each transaction was <= 20 minutes. When

tentative hold was checked during the simulation the tentative hold time was added to

the maximum transaction processing time. As explained in Section 5.3.2, the hold time

was specified in the Web.config file. When isolation was relaxed, transactions were

processed concurrently and when isolation was not relaxed, transactions were processed

one after the other. Figure 36 shows the snippet of code specifying the random delay.

Figure 36 Snippet of code for method of random delay

private void agreeInputFlags()
 {
 Boolean[] flags = new Boolean[] { true, true,
true, true };

 foreach (var userData in tmpUser.userDataList)
 {
 if (!userData.rAtomicityFlag)
 {
 flags[0] = false;
 }
 if (!userData.rIsolationFlag)
 {
 flags[1] = false;
 }
 if (!userData.rConsistencyFlag)
 {
 flags[2] = false;
 }
 if (!userData.rDurabilityFlag)
 {
 flags[3] = false;
 }
 };

private static void generateRandomDelay(int low, int high)
 {
 Random r = new Random();
 HiPerfTimer.delay = r.Next(low, high);

 }

110

In cases where the simulation input file did not agree with ACID relaxation

requirements of the service provider in terms of consistency and durability, the system

asks the user to consider changing requirements; this is the Negotiation phase. If the

user agrees to continue, their requirements for consistency and durability are changed to

those of the provider. This code is shown in Figure 37.

Figure 37 Snippet of code showing enforced agreement of provider requirements

In the case where the simulation input file and the relaxation requirements of the service

provider match, the model will process the transaction until the stop time (the maximum

random delay time) is reached. The results will be committed in the database of the Web

service if the durability was relaxed and tidying up at the end of the transaction is

required. Then the output will be downloaded from the model in a text file. This file

includes the processing time in milliseconds. Figure 38 shows an example of the output

file contents.

public void agreeServicesFlags()
 {
 ArrayList tmpFlagsList = new ArrayList();
 flagsList = new Boolean[5] { true, true, true, true, true };
 foreach (WebServiceWrapper ws in listOfChosenServices)
 {
 Boolean[] list = new Boolean[5];
 list[0] = true;
 list[1] = true;
 list[2] = ws.ConsistencyFlag;
 list[3] = ws.DurabilityFlag;
 list[4] = ws.TentativeHoldFlag;

 tmpFlagsList.Add(list);

 }

111

Figure 38 Snippet of output showing bookings and processing time

The research took the processing time of the batch of transactions and used Equation

(2) given in Section 5.2 to calculate the throughput unit time. The output of the different

transaction sets (there were batches of 20, 100, 200, 300, 400 and 500 transactions for

each application) were input into Excel for analysis and comparison. Each batch was

run three times for each application and the average throughput unit times were

calculated. Excel was used to produce graphs to illustrate the experimental results.

Figure 39 provides a screenshot from this process. The results were analysed

statistically to check significance. The results of the experiments are presented in

Chapter 6 and the statistical significance testing is presented in Appendix C.

112

Figure 39 Screen shot of the results analysis phase

5.3.5 Simulation road map summary

A batch file approach with configured delays was used to simulate the event-based

nature and long-running nature of the types of transaction considered in this research.

The user logs in and composes the required application from the services on offer. The

user will be asked if any service criterion is flexible—if so, the user can choose the

criteria that he/she allows to be compromised. Having developed the application, the

user can upload batch files. AuTrA has experimental batch files set up for all registered

services. The user could alternatively set up new experimental batch files. Then the

relevant batch set can be run. The relaxation requirements are checked and if there are

some requirements that are not allowed by the service provider the system goes to

negotiation, after which the user either continues (which means changing requirements

to agree with the service provider’s requirements) or aborts the transaction. After the

113

user has agreed with the service provider’s requirements the batch processing will

continue to run until the whole batch is finished. Then the output will be downloaded

and raw data collected.

5.4 Evaluation strategy

The strategy for evaluating whether the main aim of the research was achieved was

experimental evaluation. The aim of the research was to develop a system that increases

throughput while maintaining the consistency and correctness required by particular

applications. Given the above aim it was conjectured that relaxing ACID properties

and also supporting application-specific property relaxation would increase throughput.

To test this conjecture, the experimental evaluation broke down into the following five

main areas:

• Measuring the effect of relaxing atomicity, consistency and isolation properties

in terms of throughput.

• Measuring the effect of relaxing durability and later tidying up in terms of

throughput.

• Measuring the effect of application-specific property relaxation in terms of

throughput.

• Measuring the effect of negotiation in terms of throughput.

• Measuring the effect of tentative hold in terms of throughput.

The above areas were tested to prove that AuTrA works, and also to shed more light on

the effects of relaxation of ACID and application-specific criteria. The findings will

enable better advice and support to be given to AuTrA users and also can be used by

future researchers and developers working in this area. The following sections discuss

each area of evaluation.

5.4.1 Evaluation of the effect of relaxation of atomicity, consistency and
isolation

Experiments were performed to see if the relaxing of atomicity, consistency and

isolation has any effect on transaction throughput. Furthermore it was intended to find

114

the comparative and combined effects of relaxing these properties. As well as

contributing to answering the research question, finding out such information would

enable better advice and support to be provided for users of AuTrA. This area was

covered by Experiment Set 1.

5.4.2 Evaluation of the effect of relaxing durability and later tidying up

This evaluation was carried out to find the effect on throughput of relaxing durability

and then either tidying up or not tidying up at the end of the composite transaction.

Tidying up refers to delayed saving. Updates may not be saved during peak processing

time if durability is relaxed, but if tidying up is used, saving would occur later,

theoretically at a less busy time. This area is covered in Experiment Set 2.

5.4.3 Evaluation of the effect of application-specific property relaxation

This evaluation was carried out to find out the effect on throughput of relaxing

application-specific property requirements. These sorts of properties relate to individual

component transactions. For instance, in booking a venue a consumer may prefer the

location to be London but may be prepared to relax this requirement. Relaxing such a

requirement may enable the composite transaction to succeed, whereas otherwise it

would have failed. Such properties are not related to ACID properties but the research

considered application-specific property relaxation to be a useful addition because at the

application level, it has an effect on the success or otherwise of a composite transaction.

This area was covered by Experiment Set 3.

5.4.4 Evaluation of the effect of negotiation

AuTrA includes a Negotiation phase. This allows consumers to rethink their

requirements if these do not meet with the requirements of the service provider in terms

of consistency and durability relaxation. It was conjectured that allowing negotiation

and subsequent change in consumer requirements specification will achieve greater

throughput because instead of aborting transactions when requirements did not match,

115

such transactions could continue after successful negotiation and the changing of

relaxation requirements. Therefore the research needed to find the effect of negotiation

on transaction throughput. This area was covered by Experiment Set 4.

5.4.5 Evaluation of the effect of tentative hold

The research went further to explore the effect on throughput of tentative hold.

Tentative hold is used to maintain atomicity. It can also be used to maintain consistency

while relaxing isolation. Thus it was considered important to find out what effect its use

had. This area was covered by Experiment Set 5.

5.5 Summary

In this chapter the key terms used in the research were defined. The simulation model of

the research was introduced together with the simulation process and the evaluation

strategy. In summary, AuTrA, the system developed in this research, was used as a

platform for the simulation. AuTrA enables Web services to be registered, applications

to be composed and batches of composite transaction instances to be executed and

timed. The simulation consisted of a number of batch files representing different sets of

component transaction instances. The batches were run varying ACID relaxation,

application-specific relaxation, negotiation and tentative hold. This was done to evaluate

the research aim. The results were recorded and analysed. These experimental results

are discussed in the next chapter.

.

116

Chapter 6: Experimental Evaluation

117

6.1 Introduction

This chapter presents the experimental results which were run to assess the effectiveness

of the proposed system. The experiments fall into five groups which explore: the effects

of relaxing the ACID properties and various combinations of these; the use of later tidy-

up when relaxing durability; the relaxation of application-specific properties; the use of

negotiation; and the use of tentative hold. This chapter discusses the scenarios and

provides the results of the experiments.

6.2 Experimental set-up

The simulation platform is described in chapter 5. Three applications were set up using

the Web Services registered. These applications were the Travel Plan Scenario, the

Travel with Party Scenario and the Big Party Arrangements scenario. The applications

were set up as composite Web transactions made up of component Web services.

In the simulation, batch files are processed by AuTrA using a configured delay

mechanism to represent concurrent transactions starting at various times by different

users over an extended period. There are six batch files of component transaction

instances for each service in the composite transaction. These six batch files consist of

20, 100, 200, 300, 400 and 500 component transaction instances respectively. The

component transaction instances across the batch files are linked via an identifier (the

transaction number) to make up a composite transaction. The complete set of batch files

for a composite transaction processing simulation is called a batch file set. The

transaction instances in the batch file in the scenarios developed have the purpose of

booking something e.g. a flight, hotel or restaurant. Underlying databases have been set

up for each service representing the reservation status of the item being booked. The

transaction instances in the batch files include some booking requests which will not be

able to be fulfilled because of unavailability. If this happens the component transaction

will be considered to be unsuccessful (see Figure 40). A random delay of between 0-20

minutes between transactions was used to represent the long-running nature of many

Web transactions.

118

Figure 40 Output with unsuccessful transaction examples

As stated in Chapter 5, the evaluation strategy included five different sets of

experiments:

Set 1 ‒ Experiments to measure effect of relaxing atomicity, consistency and isolation

Set 2 – Experiments to measure the effect of relaxing durability and later tidying-up

when relaxing durability

Set 3 – Experiments to measure the effect of relaxation of application-specific

properties

Set 4 – Experiments to measure the effect of negotiation

Set 5 ‒ Experiments to measure the effect of tentative hold

In all experiment sets, AuTrA was used as a test platform and throughput unit time was

used a comparative measure. According to the definitions given earlier, throughput is

the number of successfully completed composite transactions over a given period of

time. Throughput unit time is the average time taken to complete one composite

transaction. Thus smaller throughput unit times indicate greater throughput. Three

scenarios were set up to use in the experiments. Section 6.3 provides more detail about

the scenarios.

119

6.3 Scenarios

Three different scenarios where assumed to carry out the experimental evaluation of

AuTrA. All three scenarios were from the travel, tourism and leisure domain.

Composite transaction types (or applications) were set up in AuTrA to represent the

scenarios. The three composite transactions were the Travel Plan application, the Travel

and Party application and the Big Party Arrangements application. They were composed

of 3, 4 and 7 component transactions respectively. The reason for adopting three

scenarios of different sizes was to demonstrate how AuTrA can be used to compose

various sorts of composite transactions from an underlying set of component

transactions. The scenarios were developed in this research for the purpose of

experimentation and are similar to the types of scenarios used by other researchers in

the same field. For instance, Younas et al. in 2006 used a travel scenario to demonstrate

their model. The following sections describe the scenarios in more detail.

6.3.1 The Travel Plan application

The Travel Plan application is made up of three Web services related to travelling. Note

that the scenarios were made up by the research. A description of the imaginary

scenario follows:

SouthBots is an airline company that offers cheap cost tickets. The airline allows the

users to use a Web-based environment to book the flights. SouthBots is an international

company with offices around the continent. The headquarters are in London. Each

office is connected to the head office through the internet. Booking of plane tickets can

be done online or by going to travel agents.

Rainbow is a ski resort located in a popular area of Europe. Rainbow ski resort offers a

magnificent panorama and, as it is built up around mountain villages, it offers a

traditional atmosphere. Rainbow ski resort offers affordable prices for ski passes, lifts

and equipment. Users can use the internet to book anything they need related to skiing.

120

Chalet Hotel is a family business and has been an attraction in the heart of Swiss resorts

since the 18th century. The hotel has been home to thousands of well-known artists and

other influential people. The hotel has many rooms. Booking of rooms is online or by

telephone.

The three businesses have seen the advertisement of AuTrA system since they are all

targeting the same market, i.e. people going for a ski holiday in Switzerland. The

companies decided to join forces and use the AuTrA system in the belief that it will

facilitate business. The companies have made some risk assessments of using AuTrA

and optional relaxing of ACID properties; they make a contract. The services provider

specification includes relaxing ACI (atomicity, isolation and consistency) properties but

not D (durability).

SouthBots decided to relax consistency because the companies did not see any harm in

not having consistent data at the end of the transaction. By relaxing consistency, in this

case, booking is done even if the number of seats is negative. The airline has a backup

of two planes always on standby with different capacities. That is, when a lot of seats

have been booked beyond the capacity of the scheduled plane, a bigger plane on

standby can be used, but if not a smaller standby plan can be used. The reason this plane

can go when it is not scheduled is because the runway where the plane lands and takes

off is owned by the airline and they have set aside time for this kind of situation for the

plane to land when necessary.

The hotel, as advertised on the home page, has a lot of rooms available, but if there are

more rooms booked than the ones available because of relaxation of consistency, the

hotel will distribute residents to other hotels that have vacant rooms. This hotel is in

partnership with other hotels, which have made a deal that excess bookings can be

passed over to the group which has rooms available, and it has worked very well in

aiding business.

121

The ski resort equipment provider also relaxed consistency because there is a local ski

shop that rents equipment to ski resorts like Rainbow, so if it happens that there is more

equipment booked than Rainbow has, Rainbow will borrow some equipment from

another local shop. This helps because it means Rainbow does not have to turn down

new customers when, although there is no ski equipment left in their shop, they can

access supplies from elsewhere.

Figure 41 Scenario of composite Web services

Let us consider a scenario in which three users want to make travel arrangements to go

for a skiing holiday to Switzerland. In reality, they will need a flight to the holiday

location, a hotel and rental of ski equipment to go skiing. They all go to AuTrA Web

122

services to make their holiday travel bookings. The assumption that the research makes

is that the three users access AuTrA more or less at the same time. AuTrA has access to

different services, which include component services for SouthBots Airline, Chalet

Hotel and Rainbow Ski Resort. Services can be combined through AuTrA to form

composite business transactions. The user requirements in terms of ACID property

relaxation would be stated before the transaction is run.

AuTrA will process and execute the request of the output as shown in Figure 40,

making sure that the business criteria or rules, i.e. the requirements set by the service

provider, are met while also following the user’s requirements, i.e. the requirements set

by the service consumer. The consumer, on the one hand, and the data owner on the

other control the relaxation of ACID properties.

Table 4 Examples of relaxation requests

Table 4 shows examples of possible relaxation requirements of the users of the travel

plan application. Different users will have different relaxation selected depending on

 Relax
Atomicity

Relax
Isolation

Relax
Consistency

Relax
Durability

Sarah Yes Yes No No

Betty No No No No

Jane Yes No No No

T4 Yes Yes Yes Yes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
T20 Yes Yes Yes Yes

123

their needs. T20, for example, might be a transaction belonging to John, who relaxed all

ACID properties. Other transactions might have relaxed different ACID properties. The

table illustrates the possibility of different selections.

6.3.2 The Travel and Party application

The Travel and Party application consists of two of the previously described Travel Plan

application services and two additional services related to party celebrations. The two

services from the Travel Plan scenario are the flight service and the hotel service. The

two additional party services are a restaurant service and a venue service, provided by

Salut Restaurant and Asienhaus Garten respectively.

Salut Restaurant provides fine cuisine prepared with quality ingredients with a

combination of flavours, imagination and, above all, a consistent standard of all these

qualities throughout the meal. The restaurant is international with a lot of restaurants in

Europe and it dominates the market in America. The use of internet technology for

booking has contributed to the success of the restaurant.

Asienhaus Garten is a multi-room, multi-occasion venue, making it the perfect place for

any event, day or night. Asienhaus Garten provides the perfect space and atmosphere

for many different types of events. The experienced team are at the disposal of guests to

provide the highest standards of coordination. The following areas are in Asienhaus

Garten: the bar, which mixes a natural warm decor with contemporary design, giving a

laid-back atmosphere for lunch, networking and drinks receptions; the restaurant, which

can be perfectly matched to the client’s needs; the private dining area, which is suitable

for personal services, with a stunning floor and glass ceiling; and Kakos Place, with

glam decor, which is a perfect milieu for an evening of glamour. Bookings and

reservations are processed online.

In summary, this application uses a flight service, hotel service, restaurant service and

venue service.

124

6.3.3 The Big Party Arrangements application

The Big Party Arrangements application consists of the previously described Travel

Plan application services and the Travel and Party application services combined with

two other services related to party celebrations. The two additional party services are

provided by Alfredo Entertainment and Liebe Creations.

Alfredo Entertainment established itself as a mobile entertainment service. For that

reason, it has a competitive edge over its competitors that are not mobile. The company

specialises in any kind of entertainment that is thinkable, for all events, be they

children’s parties, wedding events, birthdays, hen parties, stag nights and many more.

The company has the knowledge, the experience and the personnel to satisfy their

clientele’s entertainment needs. The online services offer a selection of services, quotes,

bookings and calendar.

Liebe Creations has been creating event cards for the past 20 years. The business

supplies any invitation cards, menus and thank you cards, which are custom-made and

handmade. The business supplies both the local and international market. To make the

process easy everything is done online.

The research assumes that the seven providers team up to offer a composite service for a

user making some party arrangements. The services that the user might need are shown

in Figure 42. They are: flight service, hotel service, ski service, restaurant service,

entertainment service, invitation service and venue service.

125

Figure 42 Big Party Arrangements composition

6.4 The Experiments

In this section, 15 experiments are presented grouped according to the evaluation

strategy outlined in Chapter 5. A number of user relaxation cases were set up as shown

in Table 5. There are a number of combinations of relaxation criteria that the consumer

can request in the transaction processing, but only the ones shown in Table 5 are

presented in the experiments as these are representative for the purposes of evaluation.

Each experiment was carried out in the context of one of the scenarios outlined in

section 6.3. The experiments measure the throughput unit time (see section 5.2,

Definitions of the key terms in the research). A lower throughput unit time indicates

increased throughput.

Big Party Arrangement Services

Restaurant Service

Hotel Service

Flight Service

Entertainment
Service

Ski Service

Venue Service

Invitation Service

126

Table 5 Consumer relaxation combinations used in the experiments

Cases Relaxed Atomicity Relaxed Consistency Relaxed Isolation Relaxed Durability Application-Specific Criteria Scenario used

Case 1 No No No No Not used Travel Plan

Case 2 Yes Yes Yes No Not used Travel Plan

Case 3 Yes No No No Not used Travel Plan

Travel and Party

Case 4 No Yes No No Not used Travel Plan

Travel and Party

Case 5 No No Yes No Not used Travel Plan

Travel and Party

127

Case 6 Yes Yes No No Not used Travel Plan

Big Party

Case 7 Yes No Yes No Not used Travel Plan

Big Party

Case 8 No Yes Yes No Not used Travel Plan

Big Party

Case 9 No No No No Not used Travel and Party

Case 10 No No No Yes Not used Travel and Party

Big Party

Case 11 Yes No No Yes Not used Travel and Party

Case 12 No No No No No Big Party

Case 13 Yes Yes Yes Yes Yes Big Party

Case 14 Yes Yes Yes Yes No Big Party

128

Case 15 Yes Yes Yes No Yes Big Party

Case 16 Yes Yes No Yes No Big Party

Case 17 No Yes Yes Yes No Big Party

Case 18 Yes No Yes Yes No Big Party

Case 19 Yes Yes Yes No No Big Party

Case 20 No No No No Yes Big Party

129

6.4.1 Set 1 - Experiments to measure effect of relaxing atomicity, consistency
and isolation

In this section, a number of experimental results based on the Travel Plan application

are reported. For these experiments the focus is on the services providers’ relaxation

specification shown in Table 6.The experiments are conducted to show the effect of

relaxation of combinations of atomicity, consistency and isolation properties.

Table 6 Services provider relaxation requirements – Experiment Set 1

6.4.1.1 Experiment 1

In this experiment, the research concentrated on two cases: Case 1 (when no ACID

properties are relaxed) and Case 2 (when atomicity, consistency and isolation are

relaxed).

Relax Atomicity Relax Consistency Relax Isolation Relax Durability

YES YES YES NO

130

Figure 43 Case 1 and Case 2 ACI relaxation

From the experiment, it is clear that the relaxing of atomicity, consistency and isolation

(ACI) gives a better throughput than when none of the ACID properties is relaxed. The

statistical analysis shows a significant difference and is described in Appendix C.

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 1

Case 2

131

6.4.1.2 Experiment 2

For this experiment, the research explored three cases: Case 3 (which relaxes only

atomicity), Case 4 (which relaxes only consistency) and Case 5 (which relaxes only

isolation). The main point of this experiment was to investigate the individual effect of

relaxation of each of atomicity, consistency and isolation and compare these to see

which property when relaxed gives the greatest throughput.

Figure 44 Cases 3, 4 and 5 ACI relaxation

0

2

4

6

8

10

12

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 3

Case 4

Case 5

132

The experiments show that atomicity relaxation produced the least throughput

compared to consistency and isolation. Isolation has the greatest throughput. This is

because relaxing isolation allows the transactions to be processed concurrently. The

maintenance of strict isolation requires a serialisable schedule, which means that

transactions often have to wait for each other to finish. The differences between the

lines in the graph were found to be statistically significant as evidenced in Appendix C.

6.4.1.3 Experiment 3

Here the research looked at three cases: Case 6 (relaxes atomicity and consistency),

Case 7 (relaxes atomicity and isolation) and Case 8 (relaxes consistency and isolation).

The research investigated this to see the effect of each ACI property on the others. That

is, the aim was to find out which combination of ACI property relaxation gives the best

throughput and which combinations do not. Note that even if the throughput is not the

greatest when compared with other combinations, there is improved throughput

compared to not relaxing ACID properties at all.

133

Figure 45 Cases 6, 7 and 8 ACI relaxation

The experiment shows that the combination of relaxing consistency and isolation has

the best throughput. The throughput resulting from the relaxation of atomicity and

isolation is close to that resulting from the relaxation of isolation and consistency.

Looking at the individual relaxation of ACI properties it is clear that even if the

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 6

Case 7

Case 8

134

relaxation of consistency produces better throughput compared to atomicity relaxation,

it is not so much of a difference and including isolation in the combination narrows the

gap more. Again the differences between all the lines in the graph were found to be

statistically significant (see Appendix C).

6.4.1.4 Experiment 4

In this experiment, the research investigated Case 2 (when atomicity, consistency and

isolation are relaxed), Case 6 (relaxation of atomicity and consistency), Case 7

(relaxation of atomicity and isolation) and Case 8 (relaxation of consistency and

isolation). The main question behind this experiment was: Does the number of relaxed

ACI properties have an influence on transaction throughput?

135

Figure 46 Case 2, Case 6, Case7 and Case 8 ACI relaxation

The experiment shows that when a number of ACID properties are relaxed, a better

throughput is achieved compared to when fewer ACID properties are relaxed. Again the

differences in the lines in the graph were found to be statistically significant (see

Appendix C).

0

1

2

3

4

5

6

7

8

9

0 200 400 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 2

Case 6

Case 7

Case 8

136

6.4.1.5 Summary of Set 1 experiments

These experiments demonstrated that relaxing all ACI properties improved throughput.

It also showed that relaxing any of atomicity, consistency and isolation also improved

throughput. The difference between relaxing any property and not relaxing it was

statistically significant (see Appendix C).

6.4.2 Set 2 – Assessing the effect of durability relaxation with or without tidy-up

This set of experiments was based on the Travel and Party Arrangements application,

with the exception of Experiment 9 which was based on the Big Party Arrangements

application. This set of experiments focused on assessing the effect on throughput of

relaxing the durability property. The set also investigated the effect of later tidy-up (i.e.

delayed saving). The service provider requirements specified in Table 7 were assumed.

Table 7 Service provider relaxation requirements ‒ Experiment Set 2

6.4.2.1 Experiment 5

The research measured throughput in Case 9 (when none of the ACID properties is

relaxed) and Case 10 (where durability alone is relaxed). In this experiment tidying up

of the data at the end of the transaction processing was not done. That is, the data was

not saved at a later stage.

Relax Atomicity Relax Consistency Relax Isolation Relax Durability

YES YES YES YES

137

Figure 47 Case 9 and Case 10 ACID relaxation

The experiment shows that the relaxation of durability increases throughput, which can

be a benefit for the processing during peak time. However data is not saved. Statistical

analysis shows that the difference between the lines in the graph is significant (see

Appendix C).

0

2

4

6

8

10

12

14

16

18

0 200 400 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 9

Case 10

138

6.4.2.2 Experiment 6

The experiment focused on Case 11 (relaxing atomicity and durability), and compared it

with Case 10 (where durability alone is relaxed). There was no saving at the end of the

transaction processing period.

Figure 48 Case 10 and Case 11 ACID relaxation

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 10

Case 11

139

The experiment shows that relaxing atomicity and durability achieves better throughput

than relaxing durability alone. Statistical analysis shows that the difference between the

lines in the graph is significant (see Appendix C).

6.4.2.3 Experiment 7

In this experiment, the research investigated the impact that tidying-up will have on the

throughput of the transactions. The research repeated Experiment 6, but this time,

although durability was relaxed during processing, there was a tidy-up at the end of the

transaction processing period so that data was saved.

Figure 49 Case 10 and Case 11 relaxation with tidying-up

0

2

4

6

8

10

12

14

16

0 200 400 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 10 + Tidy Up

Case 11 + Tidy Up

Case 10

Case 11

140

The tidying up of the data has an impact on the throughput compared to not tidying up.

Thus throughput decreases when tidy-up is included. Statistical analysis shows that the

differences between the lines in the graph are significant (see Appendix C).

6.4.2.4 Experiment 8

This experiment compared Case 3 (relaxing atomicity), Case 4 (relaxation of

consistency), Case 5 (relaxation of isolation) and Case 10 (relaxation of durability). The

experiment was performed to find out how relaxing durability compared to other

relaxations.

Figure 50 Case 3, Case 4, Case 5 and Case 10 ACID relaxation

The results show that durability has better throughput when relaxed compared to

atomicity and consistency. However durability has lower throughput compared to

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 3

Case 4

Case 5

Case 10

141

isolation. There is a significance difference between the lines of the graphs (see

Appendix C).

6.4.2.5 Experiment 9

For this experiment, the exploration was on Case 6 (relaxing atomicity and

consistency), Case 7 (relaxing atomicity and isolation), Case 8 (relaxing consistency

and isolation), Case 16 (relaxing atomicity, consistency and durability), Case 17

(relaxation of consistency, isolation and durability) and Case 18 (relaxation of

atomicity, isolation and durability). The purpose of this experiment was to see the

effects of relaxation of durability with other combinations of relaxation.

142

Figure 51 Case 6, Case 7, Case 8, Case 16, Case 17 and Case 18

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

Case 6

Case 16

Case 7

Case 8

Case 17

Case 18

143

The statistical analysis showed there is significant difference between the lines in the

graphs. All cases were statistically significantly different from one another apart from

Cases 17 and 18. The cases which directly compared relaxing durability against not

relaxing durability were: Case 6 versus Case 16; Case 7 versus Case 18; and Case 8

versus Case 17. The cases in each of these pairs were all significantly different and this

showed that relaxing durability increases throughput when used in combination with

other relaxations. The two cases with the best throughput were Case 17 and Case 18.

Both these included relaxation of isolation showing again the strong effect of isolation

relaxation. The different factors in Case 17 and Case18 were the relaxation of

consistency in Case 17 and the relaxation of atomicity in Case 18. The fact that Case

17 and Case 18 were not significantly different shows that atomicity and consistency

relaxation have similar effects when combined with isolation and durability relaxation.

6.4.2.6 Summary of Set 2 experiments

These experiments demonstrated that relaxing durability improved throughput. When

relaxing durability with atomicity, greater throughput was achieved. Tidying up at the

end of the batch run, i.e. saving any data that was not saved during the batch run,

decreases throughput, but in many situations this will be a necessary task. The

difference between the graph lines resulting from this set of experiments was found to

be statistically significant.

6.4.3 Set 3 – Assessing effect of relaxation of application-specific properties

Table 8 Service provider relaxation requirements ‒ Experiment Set 3

Relax Atomicity Relax Consistency Relax Isolation Relax Durability

YES YES YES YES

144

This set of experiments was based on the Big Party Arrangements application. It

focused on assessing the effect on throughput of relaxing application-specific

properties. The service provider relaxation requirements shown in Table 8 were

assumed.

6.4.3.1 Experiment 10

For this experiment the research evaluated the scenario where all seven services were

selected and used Case 12 (relaxing none of the ACID properties and not relaxing any

application-specific criteria) and Case 13 (relaxing all ACID properties and relaxing the

application-specification criteria). The application-specific criteria are: price, capacity

of the restaurant, location of the restaurant, type of cuisine, location of the venue, price

of the venue, location of the entertainment, price of the entertainment, price of

invitation, and best possible date of flight, hotel and ski. The customer might be

prepared to compromise on these, in other words to relax them in terms of not insisting

on a particular value for them, e.g. being prepared to fly on 5th August instead of 6th

August. Such compromising should increase throughput.

145

Figure 52 Case 12 and Case 13 ACID relaxation

The experiment shows that relaxing all ACID properties with application-specific

criteria results in increased throughput. Statistical analysis shows that the differences

between the lines in the graph are significant (see Appendix C).

0

5

10

15

20

25

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 12

Case 13

146

6.4.3.2 Experiment 11

The experiment measured throughput in Case 13 (relaxing all ACID properties and the

application-specification criteria), Case 14 (relaxation of all ACID properties but not

application-specific criteria), Case 15 (relaxing atomicity, consistency, isolation and

application-specific criteria) and Case 19 (relaxing atomicity, consistency and isolation

and not application-specific criteria). These cases were chosen because the research

wanted to investigate the effect of application-specific criteria relaxation on throughput.

Figure 53 Case 13, Case 14, Case 15 and Case 19 ACID relaxation

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 13

Case 14

Case 15

Case 19

147

Looking at experimental results it is clear that including application-specific criteria

increases the throughput of transactions; the results of Case 13 are better that the results

of Case 14 and the results of Case 15 are better those of Case 19. The experiment also

shows that relaxing all ACID properties with application-specific criteria improves

throughput compared with just relaxing ACI with application-specific criteria. Thus

relaxing durability is shown again to be effective in improving throughput. Statistical

analysis shows that these differences are statistically significant (see Appendix C).

6.4.3.3 Experiment 12

In this experiment, the research further measured the impact of relaxation of

application-specific criteria by comparing Case 20 (relaxation of application-specific

criteria but no relaxation of ACID criteria) with Case 12 (no relaxation of application-

specific criteria or ACID criteria). Application-specific criteria for this experiment are

price, capacity of the restaurant, location of the restaurant, type of cuisine, location of

the venue, price of the venue, location of the entertainment, price of the entertainment,

price of invitation, and date of flight, hotel and ski. In Case 20 the user is prepared to

compromise on any of these but not on ACID property maintenance.

148

Figure 54 Case 12 and Case 20 ACID relaxation

The research shows that relaxation of application-specific criteria increases the

throughput of the transaction. The results of Case 20 were better than for Case 12 in

terms of throughput of transactions. Statistical analysis shows that these differences are

statistically significant (see Appendix C).

16.5

17

17.5

18

18.5

19

19.5

20

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 12

Case 20

149

6.4.3.4 Summary of Set 3 experiments

The experiments in Set 3 provide results which show that application-specific criteria

relaxation is effective in improving throughput. The results were shown to be

statistically significant.

6.4.4 Set 4 – Effect of negotiation on throughput

Table 9 Service provider relaxation requirements ‒ Experiment Set 4

Relax Atomicity Relax Consistency Relax Isolation Relax Durability

YES NO YES NO

This set consists of just one experiment which was based on the Big Party

Arrangements application and investigated the effect of negotiation. The service

provider relaxation specification assumed is shown in Table 9.

6.4.4.1 Experiment 13

In this experiment the effect of negotiation on throughput is assessed. Negotiation

allows differences between consumer and provider relaxation specifications to be

resolved during processing, thus allowing the possibility of continuing the transaction

rather than aborting. Assume that the service providers of the Party Arrangements

Application found that it is not good for the business to have inconsistency of data at the

end of the transaction, and for that reason the service providers change the relaxation of

ACID properties set previously to the one shown in Table 8. The consumer’s

requirements Case 13 (relaxing all ACID properties and the application-specification

criteria) and Case 14 (relaxing all ACID properties but not the application-specification

criteria) was surveyed.

150

Figure 55 Case 13 and Case 14 ACID relaxation

0

1

2

3

4

5

6

0 200 400 600

Th
ro

ug
hp

ut
 U

ni
t T

im
e(

m
in

)

Number of Transactions

Case 13

Case 14

Case 13 & Negotiation

Case 14 & Negotiation

Case 13 & Restart
without Negotiation

Case 14 & Restart
without Negotiation

151

The experiment shows that negotiation results in lower throughput compared to when a

transaction does not go through negotiation. This is expected, as negotiation takes time.

If negotiation succeeds the transaction will continue. If negotiation fails the transaction

will have to restart. If one compares negotiation with restarting, it can be seen that

negotiation has a better throughput than restarting. This is because in many cases

negotiation will avoid an abort and restart and instead will allow a transaction to

continue after a change in relaxation specification. Statistical analysis shows that the

differences between all the lines in the graph are significant (see Appendix C).

6.4.4.2 Summary of Set 4 experiments

This set of experiments has shown that negotiation can be useful for improving

throughput. Although negotiation takes additional processing time in the given batch

run, it can avoid a transaction having to be aborted and restarted, which saves time in

the bigger picture.

6.4.5 Set 5 – Assessing effect of tentative hold

Table 10 Service provider relaxation requirements ‒ Experiment Set 5

This experiment set is based on the Big Party Arrangement scenario with Case 4, Case 5

and Case 10 user requirements assumed and 6 minutes tentative hold configured.

Relax Atomicity Relax Consistency Relax Isolation Relax Durability

YES NO NO YES

152

6.4.5.1 Experiment 14

The focus of this experiment was to analyse the effect of tentative hold. A variety of

cases were chosen and for each case the use of tentative hold was measured. In this

experiment, throughput is measured for Case 4 (just consistency relaxed), Case 5 (just

isolation relaxed) and Case 10 (just durability relaxed) with relaxation of application-

specific criteria and varying inclusion of tentative hold.

Figure 56 ACID and application-specific relaxation with tentative hold

0

5

10

15

20

25

0 100 200 300 400 500 600

Case 4 & Criteria +
Tentative hold

Case 10 & Criteria +
Tentative hold

Case 4 & Criteria

Case 10 & Criteria

Case 5 & Criteria+
Tentative hold

Case & 5 Criteria

153

It is clear that the tentative hold adds a considerable amount of processing time to the

transaction. Statistical analysis confirms that this difference is significant (see Appendix

C).

6.4.5.2 Experiment 15

The focus of this experiment was to analyse the effect of negotiation and tentative hold.

The same cases were chosen as those used in Experiment 14 but this time the effect of

both negotiation and tentative hold was measured. Note that tentative hold depends on

the time the resource is set to be held. For example, the flight service might say that the

ticket can be put on hold for two days, and when two days are up, the resource has to be

confirmed or aborted. The more time the resource is held, the less the throughput.

154

Figure 57 ACID, application-specific criteria, negotiation and tentative hold

From the experiment it is apparent that negotiation with tentative hold reduces the

throughput of the transaction, depending on the time set for the resource to be on hold.

Statistical analysis shows that the differences between the lines in the graph are

statistically significant (see Appendix C)

0

5

10

15

20

25

30

0 200 400 600

Th
ro

ug
hp

ut
 U

ni
t t

im
e(

m
in

)

Number of Transactions

Case 4 & Criteria +
Negotiate +Tentative hold

Case 4 & Criteria
+Tentative hold

Case 10 & Criteria +
Negotiate +Tentative hold

Case 10 & Criteria
+Tentative hold

Case 4 & Criteria

Case 5 & Criteria +
Negotiate +Tentative hold

Case 10 & Criteria

Case 5 & Criteria
+Tentative hold

Case 5 & Criteria

155

6.4.5.3 Summary of Set 5 experiments

These experiments demonstrated that using tentative hold decreased throughput.

However, tentative hold is necessary to ensure atomicity and also to maintain

consistency when isolation is relaxed. Thus it will be needed in some circumstances in

spite of decreasing throughput. The difference between the graph lines in this

experiment set was statistically significant.

6.5 Summary

In this chapter, an experimental evaluation of AuTrA was conducted using assumed

scenarios. The different scenarios assumed varied consumer and provider requirements

for the purposes of evaluation of the system. Statistical analysis showed that the

findings of all the experiments have statistical significance. Thus part of the research

question was answered, namely that throughput could be increased by customisation of

ACID and application-specific criteria, hence improving service. The results of the

experiments are discussed in the next chapter.

156

Chapter 7: Discussion, Conclusion and Future
Work

157

7.1 Introduction

This chapter discusses the results from the previous chapter and compares AuTrA with

related work. In section 7.2, the discussion focuses on issues of throughput with respect

relaxing ACID and application-specific properties. Section 7.3 discusses how AuTrA

has answered the research question. Section 7.4 compares AuTrA with other models

and section 7.5 comments on correctness when relaxing ACID properties. Section 7.6

looks back at this research in the context of the transition from centralised database to

Web services, while section 7.7 discusses the targeted users of AuTrA. A conclusion to

the research is given in section 7.8 and section 7.9 discusses future work.

7.2 Discussion

The experimental results verify that relaxation of ACID properties outperforms the

classic ACID model, which is very rigid and is not suitable for long-running

transactions, such as those found in Web service environments. It is clear that the

number of ACID properties relaxed has an impact on the transaction throughput. That

is, the more ACID properties are relaxed the better the transaction throughput. In

addition, each individual ACID property generates a different level of throughput and

this is a key to the throughput level of different combinations. Relaxing isolation has the

best throughput of all the properties. This is because the transactions are processed

concurrently; there is no waiting, which reduces throughput significantly. Relaxed

durability is second to relaxed isolation. This is because when durability is relaxed there

is no input/output (I/O) for writing which saves time. With atomicity and consistency

relaxation, there is saving at the end of the transaction and that is the reason why

relaxing these two have lower throughput compared to durability. When tidy-up

(delayed saving) is used with durability relaxation, the increase in throughput is less

than when tidy-up is not used. However in most circumstances it will be necessary to

use tidy-up to preserve data integrity.

The consequence of application-specific criteria relaxation on the improvement of the

service is a matter worthy of discussion. When the number of criteria which may be

relaxed is greater, it means there will be more searches, reads and writes resulting in

158

longer transaction-processing time. However, relaxation of application-specific criteria

means that more transactions are successful, hence an improvement in throughput as

shown in the experimentation. Overall the experiments showed that relaxing

application-specific criteria improved throughput.

Negotiation is about giving the users who wished to relax either consistency or

durability when the provider does not allow that, an opportunity to change their minds.

If negotiation is successful, fewer ACID properties are relaxed. As seen from the

results, the fewer ACID properties that are relaxed, the lower the transaction

throughput. Allowing negotiation can be seen as a disadvantage in terms of throughput

because of the reduction in the number of ACID properties relaxed and also the process

of a provider and consumer negotiating adds time to the whole transaction. However

negotiation may avoid restart, which would be even more time-consuming because the

transaction concerned would have to start from the beginning rather than negotiating

and continuing. Furthermore, successful negotiation avoids transaction abort, which

includes compensation and is costly. Generally, this type of negotiation adds value to

the transaction processing.

The novelty of the AuTrA system is the support for relaxation of ACID or application-

specific properties according to the application’s requirements and with the aim of

increasing throughput. This allows service consumers to request to relax any ACID

property but the service providers must define requirements regarding consistency and

durability. This is important and fundamental in relation to maintaining correctness.

7.3 Answering the research question

To find whether the research aim has been achieved or not, let us reiterate the research

question the thesis has endeavoured to answer:

Can transaction support for Web services be customised to suit the needs of

varying applications and result in improved service?

159

Without a doubt, the research question has been answered through investigation of the

problem, definition of the requirements, design and implementation of the AuTrA

system as a prototype Web transaction management framework, and experimental

evaluation of AuTrA using scenarios. AuTrA optionally relaxes ACID properties

according to the users’ needs, thereby meeting business requirements. This makes the

AuTrA system suitable for varying applications and varying transaction requirements.

A research aim was developed from the research question. This was:

To develop a system that increases throughput while maintaining the consistency and

correctness required by particular applications.

It was conjectured that the above research aim could be achieved by relaxing the ACID

properties that are used in traditional transaction processing. A transaction management

framework AuTrA and associated experimentation was designed to test this conjecture.

The experimentation has shown that AuTrA enables throughput to increase while

implementing safeguards to protect the data according to the requirements of the service

provider. This is achieved through appropriate relaxation of ACID properties. A further

conjecture was that relaxation of application-specific properties could also increase

throughput. Experiments were designed to test this and it has been shown that

relaxation of application-specific properties can indeed increase throughput.

From the research question arises another question:

Has any other research been done which also answers the thesis research

question?

From the related work, it is clear that a considerable amount of work has been done in

relation to transaction management. This prompted the research to further investigate

related work and identify the elements important in answering the research question.

That is, this research discovered what is missing in the existing related work, has

improved previous work and hopefully taken understanding of the subject area further

forward.

160

The outline of how the research answered the research question in terms of transaction

processing requirements is summarised in Table 11.

Table 11 Summary of how the AuTrA system answers the research question

Transaction processing requirements How it is supported by the research

Customisation: User-defined atomicity and

isolation

Allows users to specify the requirements

Correctness: Maintaining transaction

consistency

Provider-specified relaxation

Customisation: Adaptable consistency and

durability

Provider-specified relaxation

Customisation: Non-ACID improvement

of throughput

Use of application-specific criteria

Improvement of throughput Experiments show how relaxation of

various properties and combinations of

these improves throughput

161

7.4 Comparison with other models

The AuTrA system is different from other models. Detailed comparisons are provided

in Appendix A, Appendix B and section 2.7, Comparison of the different approaches.

The major differences are recapped in this section:

• Optional relaxation of all ACID properties: No other model relaxes all ACID

properties. Some models like CaGIS-Trans customise relaxation of ACID

properties, but only cater for atomicity and isolation. Ding, Wei and Huang’s

(2006) model also customises relaxation but caters for atomicity only.

• Negotiation: No other model, to the researcher’s knowledge, gives the user a

choice to rethink requirements.

• Application-specific criteria relaxation: No other model has formalised this

aspect as a means of improving transaction throughput to the researcher’s

knowledge.

• The difference between standard protocols (such as WS-BA and BTP) and

AuTrA is that relaxation of ACID properties in AuTrA is not required to be

hardcoded like in the standard protocols. That is to say, for the standard

protocols to relax ACID properties it has to be hardcoded by the programmer,

which means it cannot be changed when the user wants to relax something

different as may be required when needs change. Also these standard protocols

do not include negotiation and application-specific criteria which might be

useful to business in terms of increasing throughput.

7.5 Correctness when relaxing a property

A question arises of how AuTrA maintains correctness if ACID criteria are relaxed. In

the classical database field, it is well known that consistency can be achieved through

162

serialisation of concurrent transaction schedules (Silberschatz, Korth, and Sudarshan

2010). However, research has been done which shows that serialisation is a drawback

when it comes to non-atomic transactions. For example Ramamritham and Chrysanthis

in 1996 proposed a model which has more flexible correctness criteria. They developed

a categorisation of different correctness criteria centred on database consistency

requirements and transaction correctness properties. This model showed that relaxed

serialisation is needed in distributed transactions. Another model which relaxed

serialisation was the one by Guo, Tang, and Li, 2007. They argued that serialisation is

too strict a correctness criterion for autonomous distributed systems. They proposed a

model called weak serialisation. Their model separated the transactions into atomic

transaction units according to application information. Interleaving amongst atomic

transactions was allowed to increase parallelism. This model is a non-serialisation

model and maintains consistency at higher levels of semantics.

Apart from the use of serialisation to maintain consistency, other different consistency

methods like the use of data integrity or defining correctness rules can be used. For

example, in flight-booking the number of bookings should not exceed the number of

seats available. When relaxing durability and tidying up later, the “correct” database is

produced from the memory transaction log, and when not tidying up it can be produced

from the last checkpoint in the past transaction history log on secure storage (the

absolute latest held in the memory log may be lost).

In terms of relaxing atomicity there is no loss of data consistency in the database.

However, the user might receive inconsistent data when relaxing isolation that could

have an effect on the correctness of the database. Therefore relaxation of isolation

should only be used in non-critical applications. AuTrA leaves it to the user to decide

whether the application is critical or not, but since a bad judgement could affect

database correctness, the service provider has final decision on consistency and may use

tentative hold in order to take care of incorrectness of data that might happen when

tentative hold is not applied. Tentative hold will slow throughput but is necessary in

some circumstances.

When it comes to consistency the correctness of the database is defined in terms of

consistency rules, e.g. a rule might be the allowing of bookings even if the number of

163

bookings exceeds the number of seats available. In other words, an inconsistent

database according to the real world is deemed correct according to the business

application, in that it meets the business rules. For instance, some airlines might

deliberately overbook their flights, meaning that the number of bookings exceeding the

number of seats is acceptable in the database. Sometimes overbooking may be to the

level of a certain number of seats. The rule may be that the number of bookings must be

less or equal to the number of seats plus ten. The point here is that consistency is

relative to the application, and what is deemed acceptable in one application might be

deemed as dangerously unacceptable in another. AuTrA allows flexibility, in that

consistency can be relaxed according to the application requirements.

7.6 Transition from database to Web services

It is clear that the advance of technology has led to globalisation, more complex

transactions, and the development of transaction management theory and practice from

traditional centralised databases to decentralised internet environments. In today’s

environment a transaction may involve businesses which are geographically located in

different places, even in different continents. Such transactions are typically long-

running and the centralised database approach cannot take care of this sort of

transaction because originally it was designed for simpler centralised database

transactions. The ACID properties are well established for transaction management in

traditional databases. It was thought that this type of support would also be useful for

Web business transactions. However, research showed that the ACID approach is too

rigid for Web transactions. For this reason, this research has built on the findings of

other research to develop a new transaction model that is flexible and suitable for the

new environment.

7.7 Targeted users of AuTrA

It is envisaged that AuTrA will be used primarily in a software development house.

Software developers will be able to use AuTrA to build applications for customers from

various Web services that providers have offered up to the internet. The software

developers will establish the user requirements regarding relaxation through analysis

164

and discussion with users and will build suitable interfaces that support such

requirements.

User-friendly interfaces can be built so that in some cases users can specify relaxation

requirements dynamically. For instance, there could be a question such as: “If it is not

possible to book the flight, hotel and skis, do you want the system to book whatever it

can?” This type of question can be used to find out if a user is prepared to relax

atomicity. To find out if a user is prepared to relax isolation the following sort of

question can be asked: “Do you need your information quickly? ‒ There may be other

users updating the data at the moment – does it matter if the data provided to you is not

absolutely the latest data? – If it doesn’t matter then your transaction can be run

quicker.”

AuTrA will also be useful to system developers who might be experimenting with the

response times for the system under development. Developers might want to use AuTrA

to relax some of the ACID properties to find out the response time of each ACID

property while the system is being developed, and depending on this decide on how to

advise the customer on the final version and use of their application.

Another type of user might be a software-hosting company which hosts systems and

applications for others in the cloud. The clients for their hosting company might be

interested in high throughput for their application, for instance, sensor applications

which gather data in real time and need fast processing. Strict durability and consistency

is likely to be unnecessary in these types of application. The hosting company has

possibilities of using AuTrA to relax some ACID properties that will suit the business

needs of their clients’ applications and systems.

7.8 Conclusion

Efficient online transaction management is essential for the modern online business.

Technology evolution has delivered Web services, which have become an essential

component in the infrastructure for such business. Improvement in Web services

transaction management is the key to smoothing the progress of business in terms of

165

better transaction processing and hence better throughput. Much interesting work has

lately contributed to the development of improved Web services transaction

management. This has been described in the earlier part of this thesis, but it was noted

that there was still room for a more flexible approach to Web transaction management

and hence the formulation of the research question of this thesis.

The thesis has demonstrated how the research question has been answered.

Experimental evaluation of AuTrA was performed and the results show that relaxation

of ACID properties increases throughput, resulting in business enhancement. The

experiments also showed that relaxation of non-ACID, application-specific

requirements improve the throughput of transactions. AuTrA points out that consistency

and durability of data is the responsibility of the business or service provider. That is to

say, the providers set the relaxation specification that maintains consistency and

durability. Users can opt to relax atomicity and isolation.

One might argue that if relaxing all ACID properties improves the service because it

increases throughput, why not relax all ACID properties at all times? The research

reiterates that relaxing consistency and durability sometimes might affect the data

integrity of the business application. As a result, for the sake of the consistency of data,

not all ACID properties can be relaxed, even if increased throughput is desired. In this

case, the business must choose to maintain consistency of data over the throughput.

AuTrA has answered the research question showing that it is possible to optionally relax

ACID properties according to the business requirements, while maintaining the

correctness needed by the application. There is support for relaxation to be specified

either by service provider or service consumer. The provider’s relaxation specification

determines which ACID properties can be relaxed in terms of consistency and

durability, while the user determines which ACID properties can be relaxed with regard

to atomicity and isolation. Negotiation gives the consumer a chance to rethink the

requirements if they disagree with the provider’s requirements. Another feature is

application-specific criteria relaxation which supports alternative consumer

requirements if the first requirement cannot be met. Tentative hold plays a role of

maintaining consistency when isolation is relaxed and also when atomicity is not

relaxed. AuTrA is a Web-based product, designed for the fast growing area of Web

166

services, now becoming known as “the cloud”, where the growth of global and virtual

businesses can flourish. AuTrA makes an important contribution to this area, which in

the future will need to support many different types of application and will need

innovative mechanisms to do so.

7.9 Future work

Whilst AuTrA has made some important contributions to the area of transaction

management in Web services, there are still some issues that need to be addressed in the

future. One of those issues is the dependency relationships between transactions which

AuTrA at present does not consider. At the moment, the AuTrA system assumes that

there is no dependency between the transactions, but if the AuTrA is to be used by any

application, dependency mechanisms that will maintain consistency if needed by the

business requirement have to be implemented. At present, AuTrA enables composition

of applications through sequential composition only. More complex workflow

composition facilities need to be added.

Another issue that needs attention in the future is consistency from the services

consumer’s point of view. The AuTrA system takes care of consistency from the

services provider’s side, but it does not have a mechanism in place that caters for

consistency of information the services requester receives. For example, in a situation

where isolation is relaxed, dirty reading may occur, and the consumer might receive

incorrect information caused by dirty reading and might act upon it. At present, AuTrA

handles this case by relaxing isolation only at the consumer’s request based on the

assumption that the consumer understands the problem and is prepared to accept some

risk of incorrect data. In many circumstances this is a reasonable assumption, but there

could be other circumstances in which an additional safety net may be useful,

notwithstanding that the inclusion of such a safety net would slow down processing. In

the future, AuTrA should have some additional mechanism that will verify the

consistency of information before the service requester receives it in cases with which it

is felt that this feature would be useful.

167

Again, in the agenda for future work is the released AuTrA to be used by everyday

users, which means they will be people who do not know anything about ACID

properties and relaxation. Therefore, for the system to be used by the end user, the

relaxation of ACID properties has to be communicated in simple English. For example,

if the user wants to relax atomicity when booking a flight, a hotel and skis, the interface

might offer a question as follows: “We might not be able to book everything. Which of

the following is it essential that we book?” Then there would be a check box for the user

to tick the components that are essential in case it is not possible to book all. This would

be relaxing atomicity, because only part of the booking may be done. Relaxing isolation

may be communicated by words such as the following: “In processing your transaction,

we will access the very latest data but some of the data may not yet be fully verified. Is

it okay to proceed in this way or alternatively would you prefer a slower process which

accesses only verified data, even if it may not be the very latest data?” The sentiment

could alternatively be communicated via option boxes. The application would only

allow the user to ask for relaxation of atomicity and isolation, and the service provider

would determine whether to relax consistency and durability. This would ensure the

consistency and correctness of the database. The area of involving end users in the

transaction configuration process will require further research and will be application-

dependent to ensure that safely critical systems are not compromised. At present,

AuTrA is seen primarily as a software developer’s tool.

7.10 Closing remark

More and more businesses are seeking an edge that can help them to be better than their

competitors. As a result, the internet and e-commerce future will depend on high

transaction throughput to meet the demands of businesses seeking that elusive edge.

AuTrA delivers adaptable relaxation of ACID properties according to the business

requirements, as well as using application-specific criteria to increase transaction

throughput while still maintaining application-defined consistency. Thus it is hoped that

this research work makes a positive contribution towards fulfilling future requirements

of internet-based business systems as we move deeper into the internet age.

168

References

• Agrawal, D., Abbadi, A. E. and Singh, A. K. (1993). ‘Consistency and Orderability:

Semantics-Based Correctness Criteria for Databases’. ACM Transactions on

Database Systems, 18 (3), 460‒486.

• Alrifai, M., Dolog, P. and Nejdl, W. (2006). ‘Transaction Concurrency Control in

Web Service Environment’ in Bernstein, A., Gschwind, T. and Zimmermann, W.

(eds.) Proceedings of 4th IEEE European Conference of Web Services held 4‒6

December 2006 at Zurich IEEE Computer Society, 109‒118.

• Awan, I. and Younas, M. (2004). ‘Analytical Modelling of Priority Commit

Protocol for Reliable Web Applications.’ 19th ACM Symposium on Applied

Computing held 14‒17 March 2004 at Nicosia. New York: ACM Press, 313‒317.

• Bancilhon, F., Kim, W. and Korth, H. F. (1985). ‘A model of CAD transactions’ in

Pirotte, A. and Vassiliou, Y. (eds.) Proceedings of 11th International Conference on

Very Large Data Bases held 21‒23 August 1985 at Stockholm. Morgan Kaufmann,

25–33.

• Bernstein, P. Hadzilacos, V. and Goodman, N. (1987). ‘Concurrency Control and

Recovery in Database Systems.’ Reading: Addison-Wesley.

• Bernstein P. A. (1993). ‘Middleware – An Architecture for Distributed System

Services.’ Digital Equipment Corp., Cambridge Research Lab., Report CRL 93/6.

• Bernstein P. A. (1996). ‘Middleware: A Model for Distributed System Services.’

Communications of the ACM 39 (2), 86‒98.

• Bhiri, S., Perrin, O. and Godart, C. (2005) ‘Ensuring Required Failure Atomicity of

Composite Web Services’ in Ellis, A. and Hagino, T. (eds.) Proceedings of the 14th

International Conference on World Wide Web, ACM WWW held 10‒14 May 2005

at Chiba. New York: ACM, 138‒147.

• Biliris, A., Dar, S., Gehani, N. H., Jagadish, H. V. and Ramamritham, K. (1994).

‘ASSET: A System for Supporting Extended Transactions’ in Snodgrass, R. T. and

Winslett, M. (eds.) Proceedings of the ACM SIGMOD International Conference on

Management of Data held 24‒27 May 1994 at Minneapolis. ACM Press, 44‒54.

• Britannica Concise Encyclopaedia. Copyright 1994–2008.

169

• Böttcher, S., Gruenwald, L. and Obermeier, S. (2006) ‘Reducing Sub-Transaction

Abort and Blocking Time within Atomic Commit Protocols.’ Lecture Notes on

Computer Science. Springer, 4042/2006, 59‒72.

• Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T. and Thatte, S.

(2001). ‘Web Services Transaction (WS-Transaction).’ BEA Systems, International

Business Machines Corporation, Microsoft Corporation, Inc.,

<http://www.ibm.com/developerworks/library/wstranspec>. [28 November 2010].

• Cabrera, L. F., Copeland, G., Cox, W., Feingold, M., Freund, T., Johnson, J., Kaler,

C., Klein, J., Langworthy, D., Nadalin, A., Orchard, D., Robinson, I. Shewchuk, J.,

Storey, T. and Thatte, S. (2009a) ‘Web Services Atomic Transaction Framework

(WSAtomicTransaction)’.<http://download.boulder.ibm.com/ibmdl/pub/software/

dw/library/WS-Atomic Transaction.pdf.> [12 February 2010]

• Cabrera, L. F., Copeland, G., Cox, W., Feingold, M., Freund, T., Johnson, J., Kaler,

C., Klein, J., Langworthy, D., Nadalin, A., Orchard, D., Robinson, I., Shewchuk, J.,

Storey, T. and Thatte, S. (2009b). ‘Web Services Business Activity Framework

(WSBusinessActivity)’.<http://download.boulder.ibm.com/ibmdl/pub/software/dw/

library/ WSBusinessActivity.pdf.> [12 February 2010]

• Cabrera, L. F., Copeland, G., Cox, W., Feingold, M., Freund, T., Johnson, J.,

Kaler, C., Klein, J., Langworthy, D., Nadalin, A., Orchard, D., Robinson, I.

Shewchuk, J., Storey, T. and Thatte, S. (2009c). ‘Web Services Coordination

Framework (WS-Coordination)’. http://download.boulder.ibm.com/ibmdl/

pub/software/dw/library/ WS-Coordination.pdf. [12 February 2010]

• Cambridge Dictionary Online (2011). Cambridge: Cambridge University Press.

[2011]

• Ceri, S. and Pelagatpi, G. (1984). ‘Distributed Databases: Principles and Systems.’

New York: McGraw-Hill.

• Chen, P. P-S. (1976). ‘The Entity-Relationship Model ‒ Toward a Unified View of

Data.’ ACM Transactions on Database Systems 1 (1), 9‒36.

• Chinnici, R., Moreau, J-J., Ryman, A. and Weerawarana, S. (2007). ‘Web Services

Description Language (WSDL) Version 2.0 Part 1: Core Language, World Wide

Web Consortium, Recommendation’. http://www.w3.org/TR/2007/REC-wsdl20-

20070626. [12 May 2010]

170

• Choi, S., Jang, H., Kim, J., Kim, S. M., Song, J. and Lee, Y. (2005) ‘Maintaining

Consistency Under Isolation Relaxation of Web Services Transactions’ in Anne

H.H., Ngu, Kitsuregawa, M., Neuhold. E.J., Chung J-Y., Sheng, Q.Z. (eds.)

International Conference of Web Information System Engineering Proceedings of

Lecture Computer Science held on 20‒22 November 2005 at New York. Springer

3807/2005, 245‒257.

• Chrysanthis, P. K. and Ramamritham, K. (1990). ‘ACTA: A Framework for

Specifying and Reasoning about Transaction Structure and Behaviour’ in Garcia-

Molina, H. and Jagadish, H. V. (eds.) Proceedings of the ACM, SIGMOD

International Conference on Management of Data held on June 1990 at Atlanta

City. ACM Press, 19(2) 194‒203.

• Codd, E. F. (1990) ‘The Relational Model for Database Management.’ 2nd edn.

Reading, Mass. Los Altos, CA: Addison Wesley Publishing.

• Conradi, R., Larsen, J. O., Nguyen, M., Wang, A. I. and Liu, C. (1997).

‘Transaction Models for Software Engineering Database.’ Proceedings of Dagstuhl

Workshop on Software Engineering Databases held on 17‒21 March 1997, FRG.

• Ding, X., Wei, J. and Huang, T. (2006). ‘User-defined Atomicity Constraints: A

More Flexible Transaction Model for Reliable Service Composition’ in Liu. Z and J.

He (ed.) 8th International Conference on Formal Engineering Methods.

Proceedings of Lecture Notes in Computer Science held on 1‒3 November 2006 at

Macao. Springer, 4260/2006, 168‒184.

• Elnikety, S. Tracey, J. Nahum, E and Zwaenepoel, W. (2004). “A Method for

Transparent Admission Control and Request Scheduling in E-Commerce Web

Sites” in Feldman, S.I. Uretsky, M. Najork, M. and Wills, C.E (eds.) Proceedings

of 13th World Wide Web Conference held on 17‒22 Manhattan. ACM, 276‒286.

• Elmagarmid, A. K., (ed.) (1992). ‘Transaction Models for Advanced Database

Applications.’ San Mateo, CA: Morgan Kaufmann.

• Eswaran, K., Grary, J., Lorie, R. and Traiger, I. (1976). ‘The Notions of Consistency

and Predicate Locks in a Database System’ in Morgan H. (ed.) Communication of

the ACM 19(11), 624‒632.

• Fauvet, M. C., Duarte, H., Dumas, M. and Benatallah, B. (2005). ‘Handling

Transactional Properties in Web Service Composition’ in Anne H.H., Ngu,

Kitsuregawa, M., Neuhold. E.J., Chung J-Y., Sheng, Q. Z. (eds.) Proceedings of 6th

171

International Conference on Web Information Systems Engineering held on 20‒22

November 2005 at New York. Springer: 3806/2005, 273‒289.

• Fowler, M. (2003). ‘UML Distilled: A Brief Guide to the Standard Object Modelling

Language’. 3rd edn. London: Addison-Wesley Professional

• Fussell, D., Kedem, Z. M. and Silberschatz, A. (1981). ‘A Deadlock Removal Using

Partial Rollback in Database Systems’ in Lein, Y. E. (ed.). Proceedings of the ACM

SIGMOD International Conference on Management of Data held on 29 April‒

1 May 1981 at Ann Harbor. ACM Press, 65‒73.

• Garcia-Molina, H. and Salem, K. (1987). ‘Sagas’ in Dayal, U. and Traiger, I. L.

(eds.) Proceedings of the ACM International Conference on Management of Data,

SIGMOD 87, held on May 27‒29 at San Francisco. ACM Press, 249‒259.

• Gawlick, D. and Kinkade, D. (1985). ‘Varieties of Concurrency Control in IMS/VS

Fast Path’. Database Engineering Bulletin 8(2), 3‒10.

• Glass, G. V. and Hopkins, K. D. (1984). ‘Statistical Methods in Education and

Psychology’. 2nd edn. Englewood Cliffs, N. J. : Prentice-Hall.

• Godart, C. (1993) ‘Coo: A Transactional Model to Support Cooperating Software

Developers Coordination’ in Sommerville, I. and Paul, M. (eds.) 4th European

Software Engineering Conference, Proceedings Lecture Notes in Computer Science.

held on 13‒17 September at Garmisch-Partenkirchen. Springer, 717, 361‒379.

• Gray, J., McJones, P. R., Blasgen, M. W., Lindsay, B. G., Lorie, R. A., Price, T. G.,

Putzolu, G. R. and Traiger, I. L. (1981). ‘The recovery manager of the system R

database manager’. ACM Computing Surveys, 13(2), 223‒243.

• Gray, J. and Reuter, A. (1993). ‘Transaction Processing: Concepts and

Techniques’. San Mateo, CA. Morgan Kaufmann.

• Green, P. E., Tull, D. S. and Albaum, G. (1993). ‘Research for Marketing

Decisions’ 5th edn., Upper Saddle River, N. J. and Prentice-Hall.

• Greenfield, P., Fekete, A., Jang, J., Kuo, D. and Nepal, S. (2007) ‘Isolation support

for services-based applications: a position paper.’ in Roscoe, T (ed.) Proceedings of

3rd Biennial Conference on Innovative Data Systems Research (CIDR) held on 7‒10

January 2007 at Asilomar. 314‒323.

• Guo, Y., Xi J., Tang, D. and Li, X. (2007). ‘Correctness Criterion for Transaction

Management in Loosely Coupled System’ in Li. K., Jesshope, C. R., Jin, H. and

Gaudiot, J-L. (eds.) IFIP International Conference on Network and Parallel

172

Computing-Workshop. Proceedings of Lecture Notes in Computer Science held on

September 18‒21 2007 at Dalian. Springer, 975‒982.

• Haller, K. Schuldt, H. and Türker, C. (2005). ‘Decentralised coordination of

transactional processes in peer-to-peer environments’ in Herzog, O., Schek, H-J.,

Fuhr, N., Chowdhury, A. and Teiken, W. (eds.) Proceedings of the ACM CIKM,

International Conference on Information and Knowledge Management held on 31

October to 5 November 2005, at Bremen. ACM, 28‒35.

• IBM SolidDB (2009) [1 August 2010]

• Kaiser, G. E. and Pu, C. (1992). ‘Dynamic Restructuring of Transactions’ in

Elmagarmid, A. K., (ed.) Database Transaction Models for Advanced Applications.

San Mateo, CA. Morgan Kaufmann Publishers, 265‒295.

• Kerlinger F. N. (1973). ‘Foundations of Behavioural Research’ 2nd edn. London:

Holt, Rinehard and Winston.

• Kim, W., Lorie, R. A., McNabb, D. and Plouffe, W. (1984). ‘A Transaction

Mechanism for Engineering Design Databases’ in Dayal, U., Schlageter, G. and

Seng, L. H. (eds.) Proceedings of the 10th International Conference on Very Large

Data Bases held on 27‒31 August 1984 at Singapore. Morgan Kaufmann, 355‒362.

• Kohler W. (1981). ‘A Survey of Techniques for Synchronisation and Recovery in

Decentralised Computer Systems’, ACM Computing Survey. New York, N.Y.,

13(2), 149‒183.

• Kumar, S. and Barvey, S. (2009). ‘Non-Blocking Commit Protocol (NBCP)’.

International Journal of Computer Science and Network Security 9(8), 172‒177.

• Kung H. T., and Robinson, J. T. (1981) ‘On Optimistic Methods for Concurrency

Control’. ACM Transactions on Database Systems, 6(2), 213‒226.

• Lee, B., Lim, S., Kim J. H. and Fox, G. C. (2009). ‘Lease-based Consistency

Schemes in the Web Environment.’ Future Generation Computer Systems 25 (1), 8‒

19.

• Limthanmaphon, B. and Zhang, Y. (2004). ‘Web Service Composition Transaction

Management’ in Schewe, K-D and Williams, H.E. (eds.). Proceedings of 15th

Australasian Database Conferences held on 18‒22 January 2004 at Dunedin.

Australian Computer Society, 171‒179.

• Lin, Y. and Son, S. H. (1990). ‘Concurrency Control in Real-Time Database by

Dynamic Adjustment of Serialization Order.’ Proceedings of the 11th IEEE Real-

173

Time Systems Symposium held on 5‒7 December 1990 at Lake Buena Vista. IEEE

Computer Society Press, 104‒112.

• Little, M. and Freund, T. (2003). ‘A Comparison of Web Services Transaction

Protocols’. IBM DeveloperWorks article, http://www-106.ibm.com/

developerworks/Webservices/library/ws-comproto/.> [12 February 2010]

• Luck, D. J. and Rubin, R. S. (1992). ‘Marketing Research’. New Delhi: Prentice-

Hall of India.

• Lynch, N. A. (1983). ‘Multilevel atomicity – A New Correctness Criterion for

Database Concurrency Control.’ ACM Transactions on Database Systems, 8 (4).

484‒502.

• McGovern, J., Tyagi, S., Stevens, M. and Mathew, S. (2003) ‘Java Web Services

Architecture.’ San Fransisco, CA. Morgan Kaufmann.

• Moss, J. E. B. (1982). ‘Nested Transactions and Reliable Distributed Computing.’

Proceedings of the 2nd IEEE Symposium on Reliability in Distributed Software and

Database Systems, SRDSDS 1982 held on August 1982 at Pittsburgh. ACM New

York, N.Y. 33‒39.

• Navathe, S. B. and Schkolnick, M. (1978). ‘View Representation in Logical

Database Design’ in Lowenthal, E. I. and Dale, N. B. (eds.) Proceedings of

SIGMOD Conference held on 31 May‒2 June 1978 at Austin. ACM, 144‒156.

• Nodine, M. H. and Zdonik, S. B. (1992). ‘Cooperative Transaction Hierarchies:

Transaction Support for Design Applications’. VLDB Journal, 1 (1), 41‒80.

• Oracle TimesTen in-memory database (2009) [1 August 2010].

• Park, J. and Choi, K. S. (2003). ‘Design of an Efficient Tentative Hold Protocol for

Automated Coordination of Multi-Business Transactions.’ Proceedings IEEE

International Conference on Electronic Commerce held on 24‒27 June 2003 at

Newport Beach, CA. IEEE Computer Society, 215‒222.

• Peltz, C. (2003). ‘Web Services Orchestration and Choreography.’ Hewlett-Packard

Company. CA, USA. IEEE Computer Society Press 36 (10), 46‒52.

• Pitoura, E. and Bhargava, B. (1999). ‘Data Consistency in Intermittently Connected

Distributed Systems.’ IEEE Transactions on Knowledge and Data Engineering 11

(6). 896‒915.

174

• Rahman, Q. A., Abubakar, A., Sirajuddin, S., Islam, S. M. S. and Razzaque, M. A.

(2006). ‘Marker-free Human Motion Capture.’ .Crawley: The University of Western

Australia

• Ramamritham, K. and Chrysanthis, P. K. (1996). A Taxonomy of Correctness

Criteria in Database Applications.’ VLDB (Very Large Data Bases) 5 (1),85‒97.

• Ramampiaro, H. and Nydard, M. (2004). ‘CAGIS-Trans: Providing Adaptable

Transactional Support for Cooperative Work-Extended Treatment.’ Information

Technology and Management, 5(1‒2), 23‒64.

• Roberts, J., and Srinivasan, K. (2001). ‘Tentative hold policy part 1: white paper.’

<http://www.w3.org/TR/tenthold-1.> [28 November 2010]

• Roberts, J., Collier, T., Malu, P. and Srinivasan, K. (2001). ‘Tentative hold protocol,

part 2: technical specification.’ <http://www.w3.org/TR/2001/NOTEtenthold-2-

20011128/.> [28 November 2011]

• Rosenkrantz, D., Stearns, R. and Lewis, P. (1978). ‘System-level Concurrency

Control for Distributed Database Systems.’ ACM Transactions. Database System 3

(2), 178‒198.

• Ruh, W., Maginnis, F. and Brown, W. (2000). ‘Enterprise Application Integration:

A Wiley Tech Brief.’ New York, N.Y., USA: John Wiley & Sons, Inc.

• Rusinkiewicz, M., Klas, W., Tesch, T., Walsch, J. and Muth, P. (1995). ‘Towards a

Cooperative Transaction Model: The Cooperative Activity Model’ in Dayal, U.,

Gray, P. M. D., Nishio, S. (eds.) Proceedings of 21st on VLDB (Very Large Data

Base) Conference held on 11‒15 September 1995 at Zurich. Morgan Kaufmann,

194–205.

• Silberschatz, A., Korth, H. F. and Sudarshan, S. (2010). ‘Database System

Concepts.’ 6th edn. New York: McGraw-Hill.

• Spahni, S., Scherrer, J. R., Sauquet, D. and Sottile, P. A. (1998). ‘Consensual

Trends for Optimizing the Constitution of Middleware.’ ACM SIGCOMM Computer

Communication Review 28 (5).

• Sybase (2009). ‘Getting Started with In-Memory Database in Adaptive Server

Enterprise 15.5’ [1 August 2010].

• Sybase (2009). ‘ ASE In-Memory Databases. Business White Paper’ [1 August

2010].

175

• Terry, D. B., Theimer, M. M., Petersen, K., Demers, A. J., Spreitzer, M. J. and

Hauser, C. H. (1995). ‘Managing Update Conflicts in Bayou, A Weakly Connected

Replicated Storage System.’ in Jones, M.B. (ed.) Proceedings of 15th ACM

Symposium on Operating Systems Principles held on 3‒6 December 1995 at Copper

Mountain Resort. ACM New York, 172‒183.

• Wang, X-J., Li, X-M. and Min, L-J. (2009). ‘Ensuring Consistency of Web services

Transaction.’ The Journal of China Universities of Posts and Telecommunications

16 (4), 59‒66.

• Wächter, H. and Reuter, A. (1992). ‘The ConTract Model’ in Elmagarmid, A.K.

(ed.) Database Transaction Models for Advanced Applications. San Mateo, CA:

Morgan Kaufmann, 219‒263.

• Weikum, G. and Scheck, H. J. (1992). ‘Concepts and Applications of Multilevel

Transactions and Open Nested Transactions’ in Elmagarmid, A. K. (ed.) Database

Transaction Models for Advanced Applications. San Mateo, CA: Morgan

Kaufmann, 515‒553

• Wäsch, J. (1999). ‘Transactional Support for Cooperative Applications’, PhD thesis,

GMD/IPSI and Darmstadt University of Technology.

• Yang, X. W., Liu, Z. and Ling, W. X. (2006) ‘taTHP: A Transaction-Aware

Protocol for Web Services Transaction Coordination.’ Proceedings of TENCON

2006 IEEE Region 10 Conference held on 14‒17 November 2006 at Hong Kong

IEEE, 1‒4.

• Younas, M., Eaglestone, B. and Holten, R. (2000). ‘A Review of Multidatabase

Transactions on the Web. From the ACID to the SACReD’ in Lings, B. and Jeffery,

K.G. (ed.). British National Conference on Databases, BNCOD. Proceedings of

Lecture Notes in Computer Science held on 3‒5 July at Exeter. Springer, 140‒152.

• Younas, M. and Iqbal, R. (2003). ‘Developing Collaborative Editing Applications

Using Web services.’ IEEE Distributed Systems Online Journal of Collaborative

Computing 4 (9).

• Younas, M., Eaglestone, B. and Chao, K-M. (2004) ‘A low-latency resilient

protocol for e-business transactions.’ International Journal of Web Engineering and

Technology 1(3), 278‒296.

• Younas, M., Chao, K. M., Lo, C. C. and Li, Y. (2006). ‘An Efficient Transaction

Commit Protocol for Composite Web Services’ in Martins, D. (ed.) Proceedings of

176

The IEEE 20th International Conference on Advanced Information Networking and

Applications held on 18‒20 April at Vienna. IEEE Computer Society, 591‒596.

• Younas, M. and Chao, K. (2006). ‘A Tentative Commit Protocol for Composite

Web Services.’ Journal of Computer System Science 72 (7), 1226‒1237.

• Younas, M., Awan, I. and Duce, D. (2006). ‘An efficient composition of Web

services with active network support.’ Expert Systems with Applications 31 (4),

859‒869.

• Younas, M. and Mostéfaoui, S. K. (2010) ‘Context-aware Mobile Services

Transactions’ in Hussain, F. (ed.) Proceedings of 24th IEEE International

Conference on Advanced Information Networking and Applications held 20‒23

April 2010 at Perth. IEEE Computer Society, 705‒712.

• Yu, H. and Vahdah, A. (2002). ‘Design and Evaluation of Conit-based Continuous

Consistency for Replicated Services.’ ACM Transactions on Computer Systems 20

(3), 239‒282.

• Zhang, Y., Kambayashi, Y., Jia, X., Yang Y. and Sun, C. (1999). ‘On Interactions

Between Co-existing Traditional and Cooperative Transactions.’ International

Journal of Cooperative Information Systems 8 (2‒3), 87‒10.

• Zhao, W., Moser, L. E. and Melliar-Smith, P. M. (2008) ‘A Reservation-Based

Extended Transaction Protocol.’ IEEE Transactions on parallel and distributed

systems 19, (2), 188‒203.

• Zhou, F., Jin, C. and Zheng, W. (2004). ‘TODS: Cluster Object Storage Platform

Designed for Scalable Services.’ Future Generation Computer Systems 20(4), 549‒

563.

• Zhou, W., Wang, L. and Jia, W. (2004). ‘An Analysis of Update Ordering in

Distributed Replication Systems.’ Future Generation Computer Systems 20 (4),

565‒590.

177

Appendix A ‒ Comparison of different Web-based transaction management models

Table A1 summarises the difference and similarities between the various Web-based transaction models that have been studied which includes
authors and year of publication.

Table A 1 Comparison of different transaction Web-based transaction models

Year Model Author(s) Relaxation

Distinguishing
feature(s)

Customisable Management of
inconsistency

Reconsidering
the
requirements
by users

 A C I D
1982 Nested transaction Moss N N N N Sub-transactions(parent

and child)
N N/A N

1983 Modulation
specification

Lynch Y N N N Multilevel atomicity N N/A N

1987 Saga Garcia-Molina
and Salem

Y N Y N Compensation similar
to nested transaction
but caters for long
transactions

N Compensation N

1990 ACTA Chrysanthis
and
Ramamritham

N N N N Customisable, captures
semantics and rationale
for the recovery
properties of the
composite transactions;
commit and abort-
dependency

Y N/A N

178

1992 Open-nested and
multilevel

Weikum and
Schek

Y N Y N Use of semantics-based
concurrency control;
serialisability as the
correctness criterion

N Serialisability as the
correctness criterion

N

1992 Cooperation
transaction
hierarchy

Nodine and
Zdonik

N N N N Three levels of the tree:
root, transaction
groups,
cooperation
transactions; user-
defined criteria
(patterns and conflicts)

Y N/A N

1992 Split and join Keiser and Pu N N N N Splits a running
transaction into two or
more transactions and
later joins transactions
by merging their
resources

N N/A N

1993 Coo

Godart Y N Y N Three consistency
levels: stable, semi-
stable, unstable

N Safety constraints N

1993 Semantics-based
correctness criteria

Agrawal,
Abbadi and
Singh

Y N N N Relative atomicity N N/A N

1994 ASSET (A System
Supporting
Extended
Transactions)

Biliris et al. N N N N Introduced
new primitives:
delegation,
dependency, conflict
set

N N/A N

1995 Cooperative Rusinkiewicz Y N N N User investigation Y N/A N

179

transaction et al. facility; retraction of
decision; compensation

1995 Bayou Terry et al. N Y N N Use of replicate to
allow relaxation of
consistency

N Update conflicts
resolved in a
consistent manner by
all servers

N

1997 Software
engineering
database

Conradi et al. N N Y N Software engineering
focus; two types of
locking: mandatory and
cooperative; user
awareness; conflict
change detection

N User awareness;
conflict change
detection

N

1997 RTF(Reflective
Transaction
Framework)

Barga and Pu N N N N Transactional adapters:
transaction manager
adapter, lock adapter,
conflict adapter, log
adapter

N N/A N

1999 Data consistency Pitoura and
Bhagava

N Y N N Clusters: weak and
strong transactions

N Data integrity
constraints are
ensured only for data
copies belonging to
the same logical

N

180

clusters
1999 Transactional

Support for
Cooperative
Applications

Wäsch Y N Y N Caters for ad-hoc
activities

Y Not discussed N

1999 NTO (New
Timestamp
Ordering)

Zhang et al. N N N N Use of high priority on
the last read or last
write conflict write for
correctness criteria

Y N/A N

2001 Tentative Hold
Protocol

Robert and
Srinivasan

N N Y N Tentative non-
blocking holds; user
awareness

N Tentative Hold N

2002 Design and
Evaluation of
Conit-based
Continuous
Consistency for
Replicated
Services.

Yu and
Vahdah

N Y N N Replicate services;
consistency spectrum

N Allowance of certain
inconsistency level; If
this is passed
operation will be
blocked until
synchronisations of
the replicate as
determined by the
system consistency

N

2003 SACReD Younas and
Iqbal

N N Y N Collaborative editing
focus; semantics
atomicity; resilience

N Correctness criteria
based on SACReD

N

2003 BTP Little and
Freud

Y N Y N Two sub-protocols
(atoms and cohesion)

Y Compensation N

2003 Efficient THP Park and Choi N N Y N Optimisation of THP
through adaptive hold
duration

Y Tentative hold N

2004 TODS Zhou, Jin and N Y N N Different levels of N Local consistency N

181

Zheng consistency

2004 Update ordering Zhou, Wang
and Jia

N Y N N Replication with data
update ordering

N Differentiates needs of
clients and server in
maintaining
consistency

N

2004 Priority Commit
Protocol

Awan and
Younas

N N N N Head-of-line (HoL)
scheduling mechanisms
at network nodes.

N N/A N

2004 Low-latency
resilient

Younas
Eaglestone and
Chao

Y N Y N Flexible components
transaction, i.e. use of
alternatives

Y Correctness criteria
based on SACReD

N

2004 CAGIS-Trans Ramampiaro
and Nydard

Y N Y N Focus on cooperative
work; adaptability of
atomicity and isolation
relaxation;

Y Users specify suitable
correctness constraints

N

2005 Accepted
termination states

Bhiri, Perrin
and Godart

Y N N N Flexible definition by
user acceptable
termination states

Y N/A N

2005 Composite model Fauvet et al. Y N Y N Based on THP;
different levels of
atomicity.

Y N/A N

2005 Decentralised
coordination of
transaction process
in peer-to-peer
environment

Haller,
Schuldt, and
Türker

N N Y N Global correctness
without depending on
global serialisation
graph.

N Correctness ensured
decentralised
serialisation graph
testing

2005 A framework for
ensuring

Choi et al. N N Y N Web services
transaction dependency

N The mechanism
effectively detects

N

182

consistency of Web
services
transactions

management Protocol
(WTDP).

inconsistent states of
transactions with a
notion of a completion
dependency and
recovers them to
consistent states

2006 User-defined
atomicity

Ding ,Wei and
Huang

Y N N N Adaptive user-defined
atomicity

Y N/A N

2006 Tentative commit
protocol

Younas and
Chao

N N N N Similar to THP but
tentative commit
replaces tentative holds

N N/A N

2006 Transactions
concurrency
control in Web
services
environment

Alrifai, Dolog
and Nejdl

N N Y N Non-blocking
scheduler

N Commit order
preserving transaction
scheduler

N

2006 Transaction
Commit Protocol
for Composite Web
Services

Younas et.al Y N Y N Alternative transaction N Tentative commit N

2006 Transaction
awareness protocol

Yang, Liu and
Ling

N N Y N THP transaction
context awareness;
success probability

Y Tentative hold N

183

2006 Reducing sub-
transaction abort
and blocking time
within atomic
commit protocol

Böttcher,
Gruenwald,
and
Obermeier, S.

N N Y N Non-blocking and
reduction of transaction
aborts

N Not discussed

N

2006 Network-based
Composition
(NetCom)

Younas, Awan
and Duce

N N N N P2P architecture N N/A N

2007 Promise Greenfield et
al.

N N N N Resources held based
on promise; no other
transaction allowed to
see a promised
resource; provides
isolation

N N/A N

184

2007 Tentative Hold
Protocol (THP)

Robert et al. N N Y N Compensation N Compensation N

2008 Reservation-based
extended protocol

Zhao, Moser
and Melliar-
Smith

N N Y N No use of
compensation

N Not discussed

N

2009 WS-
BusinessActivity

Cabrera et al.
2009b

Y N Y N Coordinates a set of
distributed Web
services to reach a
jointly outcome;
includes WS-
Coordinator

Y Compensation N

2009 Non-Blocking
Commit Protocol
(NBCP)

Kumar and
Barvey

N N Y N Two-phase commit
(2PC) protocol

N Not discussed

N

2009 Lease-based
consistency

Lee et al. N Y N N Replicates; lease time
adaptively

Y Lease time N

2009 Ensuring
consistency on
Web services
transactions

Wang et al. N N Y N Web services
transaction dependency
coordination protocol
(WSTDCP)

N End state dependency N

2009 IBM SolidDB N N N Y HotStandby Y Delayed saving N

2009 IBM Universal
Cache

 N N N Y In-memory Y Dual Database N

2009 ASE N N N Y In-memory and in-
memory/disk-based

Y Dual Database N

2009 Oracle Ten-Times

 N N N Y Transaction replicates Y Replicates N

185

2010 Context aware Younas and

Mostefaoui
Y Y Y N Context awareness Y Correctness criteria

based on SACReD
N

2011 AuTrA Khachana,
James and
Iqbal

Y Y Y Y Full adaptability to
relax ACID properties
depending on the
requirements and
contracts; use of
negotiation phase

Y Service provider’s
specification

Y

186

Appendix B ‒ Comparison of key features of BTP, WS-Tx (BusinessActivity) and AuTrA

This appendix provides a summary table which compares business standard protocols with AuTrA. The following table summarises the
differences and similarities.

Table B 1 Comparison of key features of BTP, WS-Tx (BusinessActivity) and AuTrA

 BTP WS-BusinessActivity AuTrA
Distinguishing Feature Two sub-protocols

(atoms and cohesion)
Coordinates a set of distributed Web services
(example, Atomic Transactions) to reach a joint
outcome; includes WS-Coordination; dynamic

Full adaptability to relax ACID
properties depending on the
requirements and contracts; use of
negotiation phase

Atomicity Relaxation Yes Yes Yes

Consistency Relaxation No No Yes

Isolation Relaxation Yes Yes Yes

Durability Relaxation No No Yes

Customisable No No Yes

Review of the

Characteristics Entered

by the User

No No Yes

Management of

Inconsistency

Compensation Compensation service providers application contracts

187

Appendix C – Raw data and evidence of statistical analysis of the experiments

This appendix presents the raw data and the statistical analysis of the experiments. There are different methods that can be used to statistically

analyse the data like CHITEST, t-test, ANOVA (Analysis of Variance), and Tukey Test.

CHITEST ‒ chi-squared (χ2) test. Chi-squared tests are only appropriate for frequency data, i.e. counts. Since the research data are not frequency

data, this test is not suitable for the analysis.

t-test ‒ This is used to compare two groups (referred to as Cases in this research) of observations, but since the research has more than two

groups to compare, this is not the correct method to statistically analyse the data, because of multiple comparison which can lead to high error

rates.

ANOVA‒ This is used to find the significance of differences between groups. This method was suitable in this research because the raw data

consists of many groups (in this research these are called Cases). ANOVA can be used for experiments that involve single or multiple factors. In

the case of this research there were 2 factors which influenced the results. These were the cases (identified by the particular relaxation

specification) and the transaction batch size. Thus 2 way ANOVA was the correct method to use for this research. ANOVA assumes that the

data from the different groups come from populations where the observations have a normal distribution and the variance is the same for each

group. ANOVA can determine that there is significant difference between groups but does not show which of the groups are statistically

significantly different.

188

Tukey's test ‒ also referred to Tukey's HSD (Honest Significant Difference) test is a multiple comparison method used following ANOVA to find

which means are significantly different from one another. Tukey's test and t-test are based on a similar formula. However Tukey's test is more

acceptable than t-test, because it has a lower rate of error when doing multiple comparisons. Therefore the Tukey test is more suitable for

multiple comparisons. Tukey’s test is more specific than ANOVA. Tukey’s test shows which groups from a set are statistically significantly

different.

In statistical significance testing, the p-value is the probability of getting a test statistic at least as large as the one that was actually observed,

assuming that the null hypothesis is true. The null hypothesis is rejected when the p-value is less than the significance level α, which is often 0.05

or 0.1. The result is said to be statistically significant when the null hypothesis is rejected. ANOVA reports a p-value and an F-ratio. The F-ratio

describes the variance of the group means. The F-ratio is calculated as a factor of the largest variance over the smallest variance of the group

means across the groups. The null hypothesis is rejected if the F-ratio is higher than a crucial value as given in established statistical tables and

dependent on degrees of freedom (DF). In the results provided below, the F-ratio is presented as Fx,y where X and y are the relevant DFs of the

factor under consideration, namely Cases, and the Error respectively. The Error refers to the interaction between the factors, Cases and

Transactions.

This research used Minitab for undertaking the ANOVA and Tukey tests.

189

Statistical Significance Testing

In the following sections the data from each experiment presented in Chapter 6 is processed in order to check statistical significance. For each

experiment a table is given which shows the number of transactions in each batch and the throughput unit time for each case tested.

Experiment 1 Raw data and Tukey analysis output

Table C 1 Case 1 and Case 2 Raw Data
No. of transactions in a set Case 1 Case 2

20 16.04 1.43

100 15.99 1.39

200 15.89 1.30

300 15.85 1.20

400 15.79 1.20

500 15.65 1.19

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing no ACID properties and (b) relaxing Atomicity,

Consistency and Isolation.

190

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxation of no ACID properties and (b) relaxing

Atomicity, Consistency and Isolation.

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 2 Case1; Case2

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,14 0,14 0,03 13,92 0,006
Cases 1 638,02 638,02 638,02 307727,09 0,000
Error 5 0,01 0,01 0,00
Total 11 638,18

S = 0,0455339 R-Sq = 100,00% R-Sq(adj) = 100,00%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 6 15,6500 15,7117 0,0348 -0,0617 -2,10 R
 12 1,1900 1,1283 0,0348 0,0617 2,10 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case1 6 15,868 A
Case2 6 1,285 B

191

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case1 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case2 -14,58 0,02629 -554,7 0,0000

The research reports from ANOVA , the F ratio, with both DFs , and the p-value. The research also reports the results from Tukey. There were

significant differences between cases (2 way ANOVA gives F1, 5 = 307727.09 and p<0.001). Tukey’s HSD test confirmed both cases were

significantly different from one another.

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey ’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxation of no ACID

properties and (b) relaxing Atomicity, Consistency and Isolation.”

192

Experiment 2 Raw data and Tukey analysis output

Table C 2 Case 3, Case 4 and Case 5 Raw Data
No. of transactions in a set Case 3 Case 4 Case 5

20 10.58 9.66 1.94

100 10.52 9.51 1.89

200 10.50 9.44 1.84

300 10.37 9.37 1.74

400 10.22 9.29 1.68

500 10.19 9.13 1.60

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and (b) relaxing Consistency and (c)

relaxing Isolation.

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and (b) relaxing Consistency and (c)

relaxing Isolation.

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 3 Case3; Case4; Case5

193

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,371 0,371 0,074 47,81 0,000
Cases 2 266,501 266,501 133,251 85845,04 0,000
Error 10 0,016 0,016 0,002
Total 17 266,888

S = 0,0393983 R-Sq = 99,99% R-Sq(adj) = 99,99%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 7 9,6600 9,6006 0,0263 0,0594 2,02 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case3 6 10,397 A
Case4 6 9,400 B
Case5 6 1,782 C

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case3 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case4 -0,997 0,02275 -43,8 0,0000
Case5 -8,615 0,02275 -378,7 0,0000

194

Cases = Case4 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case5 -7,618 0,02275 -334,9 0,0000

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. The research

reports the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There were significant differences between

cases (2 way ANOVA gives F2, 10 = 85845.04, p<0.001). Tukey’s HSD test confirmed all cases were significantly different from one another.

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey ’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and (b)

relaxing Consistency and (c) relaxing Isolation.”

195

Experiment 3 and Experiment 4 Raw Data and Tukey Analysis Output

 Table C 3 Case 2, Case 6, Case 7 and Case 8 Raw Data.
No. of transactions in a set Case 2 Case 6 Case 7 Case 8

20 1.43 7.93 1.80 1.72

100 1.39 7.89 1.76 1.69

200 1.30 7.82 1.72 1.63

300 1.20 7.71 1.68 1.59

400 1.20 7.64 1.64 1.52

500 1.19 7.55 1.54 1.49

H0 - There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, Consistency and Isolation and (b)

relaxing Atomicity with Consistency and (c) relaxing Atomicity with Isolation and (d) relaxing Consistency with Isolation

H1- There is a difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, Consistency and Isolation and (b)

relaxing Atomicity with Consistency and (c) relaxing Atomicity with Isolation and (d) relaxing Consistency with Isolation.

196

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 4 Case2; Case6; Case7; Case8

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,232 0,232 0,046 36,30 0,000
Cases 3 175,176 175,176 58,392 45747,76 0,000
Error 15 0,019 0,019 0,001
Total 23 175,427

S = 0,0357266 R-Sq = 99,99% R-Sq(adj) = 99,98%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 6 7,55000 7,61458 0,02188 -0,06458 -2,29 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case6 6 7,757 A
Case7 6 1,690 B
Case8 6 1,607 C
Case2 6 1,285 D

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time

197

All Pairwise Comparisons among Levels of Cases
Cases = Case2 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case6 6,4717 0,02063 313,75 0,0000
Case7 0,4050 0,02063 19,63 0,0000
Case8 0,3217 0,02063 15,59 0,0000

Cases = Case6 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case7 -6,067 0,02063 -294,1 0,0000
Case8 -6,150 0,02063 -298,2 0,0000

Cases = Case7 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case8 -0,08333 0,02063 -4,040 0,0053

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey.. There was

significant differences between cases (2 way ANOVA gives F3, 15 = 45747.76, p<0.001). Tukey’s HSD test confirmed all cases were

significantly different from one another.

198

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey ’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity,

Consistency and Isolation and (b) relaxing Atomicity with Consistency and (c) relaxing Atomicity with Isolation and (d) relaxing Consistency

with Isolation.”

Experiment 5 Raw data and Tukey analysis output

Table C 4 Case 9 and Case 10 Raw Data
No. of transactions in a set Case 9 Case 10

20 16.77 8.47

100 16.55 8.37

200 16.44 8.32

300 16.33 8.23

400 16.21 8.12

500 16.10 8.01

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing no ACID properties and (b) relaxing Durability

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing no ACID properties and (b) relaxing Durability.

199

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 2 Case10; Case9

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,418 0,418 0,084 24,61 0,002
Cases 1 199,105 199,105 199,105 58675,21 0,000
Error 5 0,017 0,017 0,003
Total 11 199,539

S = 0,0582523 R-Sq = 99,99% R-Sq(adj) = 99,98%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 1 16,7700 16,6933 0,0445 0,0767 2,04 R
 7 8,4700 8,5467 0,0445 -0,0767 -2,04 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case9 6 16,400 A
Case10 6 8,253 B

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases

200

Cases = Case10 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case9 8,147 0,03363 242,2 0,0000

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There was

significant differences between cases (2 way ANOVA gives F1, 5 = 58675.21, p<0.001). Tukey’s HSD test confirmed all cases were significantly

different from one another.

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing no ACID properties

and (b) relaxing Durability.”

201

Experiment 6 and Experiment 7 Raw Data and Tukey Analysis Output

Table C 5 Case 10 & Tidy-up, Case 10, Case 11 & Tidy-up and Case11 Raw Data

No. of transactions in a set Case 10 & Tidy-up Case 10 Case 11 Tidy-up Case 11

20 14.00 8.47 13.44 7.69

100 13.89 8.37 13.36 7.63

200 13.80 8.32 13.30 7.54

300 13.75 8.23 13.24 7.49

400 13.70 8.12 13.19 7.37

500 13.67 8.01 13.15 7.21

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Durability and (b) relaxing Durability with Tidy-

up and (c) relaxing Durability and Atomicity and (d) relaxing Durability and Atomicity with Tidy-up

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Durability and (b) relaxing Durability with Tidy-up

and (c) relaxing Durability and Atomicity and (d) relaxing Durability and Atomicity with Tidy-up.

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 4 Case10; Case10+ Tidy Up; Case11; Case11+ Tidy Up

202

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,407 0,407 0,081 44,92 0,000
Cases 3 195,465 195,465 65,155 35975,24 0,000
Error 15 0,027 0,027 0,002
Total 23 195,899

S = 0,0425572 R-Sq = 99,99% R-Sq(adj) = 99,98%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 24 7,2100 7,2925 0,0261 -0,0825 -2,45 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case10+ Tidy Up 6 13,802 A
Case11+ Tidy Up 6 13,280 B
Case10 6 8,253 C
Case11 6 7,488 D

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case10 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case10+ Tidy Up 5,5483 0,02457 225,81 0,0000
Case11 -0,7650 0,02457 -31,14 0,0000

203

Case11+ Tidy Up 5,0267 0,02457 204,58 0,0000

Cases = Case10+ Tidy Up subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case11 -6,313 0,02457 -256,9 0,0000
Case11+ Tidy Up -0,522 0,02457 -21,2 0,0000

Cases = Case11 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case11+ Tidy Up 5,792 0,02457 235,7 0,0000

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There was

significant differences between cases (2 way ANOVA gives F3,15 = 35975.24, p<0.001). Tukey’s HSD test confirmed all cases were significantly

different from one another.

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Durability and (b)

relaxing Durability with Tidy-up and (c) relaxing Durability and Atomicity and (d) relaxing Durability with Atomicity with Tidy-up.”

204

Experiment 8 Raw Data and Tukey Analysis Output

Table C 6 Case 3, Case 4 and Case 5 and Case 10 Raw Data

No. of transactions in a set Case 3 Case 4 Case 5 Case 10

20 12.40 11.37 2.36 8.47

100 12.31 11.29 2.21 8.37

200 12.23 11.14 2.10 8.32

300 12.17 11.05 2.01 8.23

400 12.10 11.06 1.98 8.12

500 12.03 11 1.90 8.01

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, and (b) relaxing Consistency, (c)

relaxing Isolation, (d) relaxing Durability.

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, and (b) relaxing Consistency, (c)

relaxing Isolation, (d) relaxing Durability.

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 4 Case 10; Case 3; Case 4; Case 5

205

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,570 0,570 0,114 20,59 0,000
Cases 3 371,031 371,031 123,677 22328,82 0,000
Error 15 0,083 0,083 0,006
Total 23 371,684

S = 0,0744237 R-Sq = 99,98% R-Sq(adj) = 99,97%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 20 8,7000 8,4958 0,0456 0,2042 3,47 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case 3 6 12,207 A
Case 4 6 11,152 B
Case 10 6 8,308 C
Case 5 6 2,093 D

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case 10 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value

206

Case 3 3,898 0,04297 90,7 0,0000
Case 4 2,843 0,04297 66,2 0,0000
Case 5 -6,215 0,04297 -144,6 0,0000

Cases = Case 3 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 4 -1,05 0,04297 -24,6 0,0000
Case 5 -10,11 0,04297 -235,4 0,0000

Cases = Case 4 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 5 -9,058 0,04297 -210,8 0,0000

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There was

significant differences between cases (2 way ANOVA gives F3,15 = 22328,82, p<0.001). Tukey’s HSD test confirmed all cases were significantly

different from one another.

Interpreting the Results

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, and (b)

relaxing Consistency, (c) relaxing Isolation, (d) relaxing Durability.”.

207

Experiment 9 Raw Data and Tukey Analysis Output

Table C 7 Cases 6, Case 7 and Case 8, Case 16, Case 17 and Case 18 Raw Data

No. of transactions

in a set

Case 6 Case7 Case 8 Case 16 Case 17 Case 18

20 12.01 3.75 2.70 9,71 1.97 2.01

100 11.97 3.69 2.65 9,67 1.95 1.99

200 11.85 3.69 2.60 9,53 1.90 1.98

300 11.74 3.61 2.51 9,41 1.85 1.95

400 11.59 3.55 2.51 9,14 1.82 1.91

500 11.47 3.50 2.46 9,01 1.80 1.89

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and Consistency (b) relaxing

Consistency and Isolation (c) relaxing Atomicity and Isolation (d) relaxing Atomicity, Consistency and Durability and (e) relaxing Consistency,

Isolation and Durability and (f) relaxing Atomicity, Isolation and Durability.

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and Consistency (b) relaxing

Consistency and Isolation (c) relaxing Atomicity and Isolation (d) relaxing Atomicity, Consistency and Durability and (e) relaxing Consistency,

Isolation and Durability and (f) relaxing Atomicity, Isolation and Durability.

208

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 6 Case 16; Case 17; Case 18; Case 6; Case 7; Case 8

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,535 0,535 0,107 11,45 0,000
Cases 5 550,610 550,610 110,122 11791,91 0,000
Error 25 0,233 0,233 0,009
Total 35 551,378

S = 0,0966374 R-Sq = 99,96% R-Sq(adj) = 99,94%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 24 9,0100 9,2303 0,0534 -0,2203 -2,74 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case 6 6 11,767 A
Case 16 6 9,412 B
Case 7 6 3,632 C
Case 8 6 2,572 D
Case 18 6 1,955 E
Case 17 6 1,882 E

Means that do not share a letter are significantly different.

209

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case 16 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 17 -7,530 0,05579 -135,0 0,0000
Case 18 -7,457 0,05579 -133,6 0,0000
Case 6 2,355 0,05579 42,2 0,0000
Case 7 -5,780 0,05579 -103,6 0,0000
Case 8 -6,840 0,05579 -122,6 0,0000

Cases = Case 17 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 18 0,07333 0,05579 1,314 0,7745
Case 6 9,88500 0,05579 177,171 0,0000
Case 7 1,75000 0,05579 31,366 0,0000
Case 8 0,69000 0,05579 12,367 0,0000

Cases = Case 18 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 6 9,8117 0,05579 175,86 0,0000
Case 7 1,6767 0,05579 30,05 0,0000
Case 8 0,6167 0,05579 11,05 0,0000

Cases = Case 6 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 7 -8,135 0,05579 -145,8 0,0000
Case 8 -9,195 0,05579 -164,8 0,0000

210

Cases = Case 7 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 8 -1,060 0,05579 -19,00 0,0000

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There was

significant differences between cases (2 way ANOVA gives F5,25 = 11791,91, p<0.001). Tukey’s HSD test confirmed all cases were significantly

different from one another apart from Case 17 and Case 18.

Interpreting the Results

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and

Consistency (b) relaxing Consistency and Isolation (c) relaxing Atomicity and Isolation (d) relaxing Atomicity, Consistency and Durability and

(e) relaxing Consistency, Isolation and Durability and (f) relaxing Atomicity, Isolation and Durability”.

211

Experiment 10 Raw data and Tukey analysis output

Table C 8 Case 12 and Case 13 Raw Data

No. of transactions in a set Case 12 Case 13

20 19.51 1.13

100 19.05 1.06

200 18.77 0.99

300 18.03 0.91

400 17.67 0.80

500 17.34 0.75

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific

criteria and (b) relaxing no ACID properties and no application-specific criteria

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific

criteria and (b) relaxing no ACID properties and no application-specific criteria.

212

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 2 Case 12; Case 13

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 2,47 2,47 0,49 2,02 0,230
Cases 1 914,03 914,03 914,03 3730,51 0,000
Error 5 1,23 1,23 0,25
Total 11 917,73

S = 0,494990 R-Sq = 99,87% R-Sq(adj) = 99,71%

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case 12 6 18,3950 A
Case 13 6 0,9400 B

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case 12 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 13 -17,46 0,2858 -61,08 0,0000

213

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There was

significant differences between cases (2 way ANOVA gives F1,5 = 3730.51, p<0.001). Tukey’s HSD test confirmed all cases were significantly

different from one another.

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties

and application-specific criteria and (b) relaxing no ACID properties and no application-specific criteria.”

Experiment 11 Raw data and Tukey analysis output

Table C 9 Case 13, Case 14, Case 15 and Case 19 Raw Data
No. of transactions in a set Case 13 Case 14 Case 15 Case 19

20 1.13 1.63 1.87 2.30

100 1.06 1.59 1.81 2.25

200 0.99 1.55 1.79 2.19

300 0.91 1.49 1.75 2.17

400 0.80 1.45 1.69 2.10

500 0.75 1.40 1.63 2.06

214

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific

criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing Atomicity, Consistency, Isolation and

application-specific criteria and (d) relaxing Atomicity, Consistency, Isolation and no application-specific criteria.

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific

criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing Atomicity, Consistency, Isolation and

application-specific criteria and (d) relaxing Atomicity, Consistency, Isolation and no application-specific criteria.

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 4 Case 13; Case 14; Case 15; Case 19

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,21018 0,21018 0,04204 41,71 0,000
Cases 3 4,80763 4,80763 1,60254 1590,18 0,000
Error 15 0,01512 0,01512 0,00101
Total 23 5,03293

S = 0,0317455 R-Sq = 99,70% R-Sq(adj) = 99,54%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid

215

 19 1,13000 1,07417 0,01944 0,05583 2,22 R
 23 0,80000 0,85167 0,01944 -0,05167 -2,06 R
 24 0,75000 0,80167 0,01944 -0,05167 -2,06 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case 19 6 2,1783 A
Case 15 6 1,7567 B
Case 14 6 1,5183 C
Case 13 6 0,9400 D

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case 13 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 14 0,5783 0,01833 31,55 0,0000
Case 15 0,8167 0,01833 44,56 0,0000
Case 19 1,2383 0,01833 67,56 0,0000

Cases = Case 14 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 15 0,2383 0,01833 13,00 0,0000
Case 19 0,6600 0,01833 36,01 0,0000

Cases = Case 15 subtracted from:

 Difference SE of Adjusted

216

Cases of Means Difference T-Value P-Value
Case 19 0,4217 0,01833 23,01 0,0000

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There was

significant differences between cases (2 way ANOVA gives F3, 15 = 1590.18, p<0.001). Tukey’s HSD test confirmed all cases were significantly

different from one another.

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties

and application-specific criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing Atomicity, Consistency,

Isolation and application-specific criteria and (d) relaxing Atomicity, Consistency, Isolation and no application-specific criteria.”

217

Experiment 12 Raw data and Tukey analysis output

Table C 10 Case 12 and Case 20 Raw Data
No. of transactions in a set Case 12 Case 20

20 19.51 18.97

100 19.05 18.46

200 18.77 17.60

300 18.03 17.47

400 17.67 17.45

500 17.20 17.20

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific

criteria and (b) relaxing no ACID properties but relaxing application-specific criteria

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific

criteria and (b) relaxing no ACID properties but relaxing application-specific criteria

218

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 2 Case 12; Case 20

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 5,6692 5,6692 1,1338 17,12 0,004
Cases 1 0,8640 0,8640 0,8640 13,05 0,015
Error 5 0,3311 0,3311 0,0662
Total 11 6,8643

S = 0,257320 R-Sq = 95,18% R-Sq(adj) = 89,39%

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case 12 6 18,40 A
Case 20 6 17,86 B

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case 12 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 20 -0,5367 0,1486 -3,612 0,0153

219

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There were

significant differences between cases (2 way ANOVA gives F1,5 = 13.05, p<0.05) and Tukey’s HSD test confirmed both cases were significantly

different from one another.

Interpreting the results

In the ANOVA table, the p-value <0.05 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties

and application-specific criteria and (b) relaxing no ACID properties but relaxing application-specific criteria.”

Experiment 13 Raw data and Tukey analysis output

Table C 4 Case 13, Case 14, Case 13 & Restart, Case 13 & Negotiation, Case 14 & Restart and Case 14 & Negotiation Raw Data
No. of transactions in a set Case 13 Case 14 Case13& Restart Case13& Negotiation Case14& Restart Case14& Negotiation

20 1.13 1.63 4.10 2.88 5.00 3.96

100 1.06 1.59 4.05 2.69 4.99 3.88

200 0.99 1.55 4.02 2.56 4.92 3.85

300 0.91 1.49 4.00 2.33 4.88 3.79

400 0.80 1.45 3.96 2.28 4.86 3.75

500 0.75 1.40 3.95 2.25 4.80 3.72

220

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific

criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing all ACID properties and application-specific

criteria with Restart and (d) relaxing all ACID properties and no application-specific criteria with Restart and (e) relaxing all ACID properties

and application-specific criteria with Negotiation and (f) relaxing all ACID properties and no application-specific criteria with Negotiation.

H1‒ There is a difference between groups, i.e. between (a) relaxing all ACID properties and application-specific criteria and (b) relaxing all

ACID properties and no application-specific criteria and (c) relaxing all ACID properties and application-specific criteria with Restart and (d)

relaxing all ACID properties and no application-specific criteria with Restart and (e) relaxing all ACID properties and application-specific

criteria with Negotiation and (f) relaxing all ACID properties and no application-specific criteria with Negotiation.

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 6 Case 13 Restart without Negotiation; Case 13;
 Case 13 with Negotiation; Case 14; Case 14
 Restart without Negotiation; Case 14 with
 Negotiation

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 0,4148 0,4148 0,0830 14,54 0,000
Cases 5 72,1509 72,1509 14,4302 2530,23 0,000
Error 25 0,1426 0,1426 0,0057
Total 35 72,7082

221

S = 0,0755189 R-Sq = 99,80% R-Sq(adj) = 99,73%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 19 2,88000 2,66444 0,04174 0,21556 3,43 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case 14 Restart without Negotiation 6 4,9083 A
Case 13 Restart without Negotiation 6 4,0133 B
Case 14 with Negotiation 6 3,8250 C
Case 13 with Negotiation 6 2,4983 D
Case 14 6 1,5183 E
Case 13 6 0,9400 F

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time
All Pairwise Comparisons among Levels of Cases
Cases = Case 13 Restart without Negotiation subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 13 -3,073 0,04360 -70,49 0,0000
Case 13 with Negotiation -1,515 0,04360 -34,75 0,0000
Case 14 -2,495 0,04360 -57,22 0,0000
Case 14 Restart without Negotiation 0,895 0,04360 20,53 0,0000
Case 14 with Negotiation -0,188 0,04360 -4,32 0,0027

Cases = Case 13 subtracted from:

222

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 13 with Negotiation 1,5583 0,04360 35,74 0,0000
Case 14 0,5783 0,04360 13,26 0,0000
Case 14 Restart without Negotiation 3,9683 0,04360 91,01 0,0000
Case 14 with Negotiation 2,8850 0,04360 66,17 0,0000

Cases = Case 13 with Negotiation subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 14 -0,9800 0,04360 -22,48 0,0000
Case 14 Restart without Negotiation 2,4100 0,04360 55,27 0,0000
Case 14 with Negotiation 1,3267 0,04360 30,43 0,0000

Cases = Case 14 subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 14 Restart without Negotiation 3,390 0,04360 77,75 0,0000
Case 14 with Negotiation 2,307 0,04360 52,90 0,0000

Cases = Case 14 Restart without Negotiation subtracted from:

 Difference SE of Adjusted
Cases of Means Difference T-Value P-Value
Case 14 with Negotiation -1,083 0,04360 -24,85 0,0000

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There were

significant differences between cases (2 way ANOVA gives F5,25 = 2530.23, p<0.001) and Tukey’s HSD test confirmed all cases were

significantly different from one another.

223

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties

and application-specific criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing all ACID properties and

application-specific criteria with Restart and (d) relaxing all ACID properties and no application-specific criteria with Restart and (e) relaxing all

ACID properties and application-specific criteria with Negotiation and (f) relaxing all ACID properties and no application-specific criteria with

Negotiation.”

224

Experiment 13 and Experiment 14 Raw Data and Tukey Analysis Output

Table C 5 Case 4 & Criteria + Negotiation + Tentative Hold, Case 4 & Criteria + Tentative Hold, Case 4 & Criteria,
Case 5 & Criteria + Negotiation + Tentative Hold, Case 5 & Criteria + Tentative Hold, Case 5 & Criteria,

Case 10 & Criteria + Negotiation + Tentative Hold, Case 10 & Criteria + Tentative Hold, Case 10 & Criteria

No. of

transactions

in a set

Case 4 &

Criteria+

Negotiation+

Tentative

Hold

Case 4 &

Criteria+

Tentative

Hold

Case 4

&

Criteria

Case 5 &

Criteria+

Tentative

Hold

Case 5 &

Criteria+

Negotiation+

Tentative Hold

Case 5

&

Criteria

Case 10 &

Criteria+

Negotiation+

Tentative Hold

Case 10 &

Criteria

Tentative

Hold

Case 10

&

Criteria

20 24.98 21.00 15.40 9.20 12.50 4.01 19.50 17.04 12.02

100 24.90 20.40 15.30 9.05 12.42 3.77 19.42 16.95 11.87

200 24.85 19.88 14.95 8.00 12.32 3.64 19.36 16.88 11.49

300 24.77 19.68 14.20 7.92 12.27 3.51 19.30 16.88 11.35

400 24.72 19.54 13.90 7.85 12.20 2.92 19.24 16.72 10.98

500 24.65 19.46 13.38 7.77 12.14 2.58 19.19 16.64 10.08

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Consistency and application-specific criteria with

Negotiation and Tentative Hold and (b) relaxing Consistency and application-specific criteria with Tentative Hold and without Negotiation and

(c) relaxing Consistency and application-specific criteria with neither Negotiation nor Tentative Hold (d) relaxing Isolation and application-

225

specific criteria with Negotiation and Tentative Hold and (e) relaxing Isolation and application-specific criteria with Tentative Hold and without

Negotiation and (f) relaxing Isolation and application-specific criteria with neither Negotiation nor Tentative Hold and (g) relaxing Durability

and application-specific criteria with Negotiation and Tentative Hold, and (h) relaxing Durability and application-specific criteria with Tentative

Hold and without Negotiation and (i) relaxing Durability and application-specific criteria with neither Negotiation nor Tentative Hold.

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Consistency and application-specific criteria with

Negotiation and Tentative Hold and (b) relaxing Consistency and application-specific criteria with Tentative Hold and without Negotiation and

(c) relaxing Consistency and application-specific criteria with neither Negotiation nor Tentative Hold (d) relaxing Isolation and application-

specific criteria with Negotiation and Tentative Hold and (e) relaxing Isolation and application-specific criteria with Tentative Hold and without

Negotiation and (f) relaxing Isolation and application-specific criteria with neither Negotiation nor Tentative Hold and (g) relaxing Durability

and application-specific criteria with Negotiation and Tentative Hold, and (h) relaxing Durability and application-specific criteria with Tentative

Hold and without Negotiation and (i) relaxing Durability and application-specific criteria with neither Negotiation nor Tentative Hold.

General Linear Model: Throughput Unit Time versus Transactions; Cases

Factor Type Levels Values
Transactions fixed 6 20; 100; 200; 300; 400; 500
Cases fixed 9 Case 10& Criteria; Case 10& Criteria + Tentative
 hold; Case 10& Criteria +Negotiation + Tentative
 hold; Case 4& Criteria; Case 4& Criteria
 +Negotiation + Tentative hold; Case 4& Criteria
 Tentative hold; Case 5& Criteria; Case 5&
 Criteria + Tentative hold; Case 5& Criteria
 +Negotiation + Tentative hold

226

Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
Transactions 5 7,45 7,45 1,49 14,63 0,000
Cases 8 2052,10 2052,10 256,51 2519,41 0,000
Error 40 4,07 4,07 0,10
Total 53 2063,62

S = 0,319084 R-Sq = 99,80% R-Sq(adj) = 99,74%

Unusual Observations for Throughput Unit Time

 Throughput
Obs Unit Time Fit SE Fit Residual St Resid
 30 13,3800 13,9735 0,1625 -0,5935 -2,16 R
 42 10,0800 10,7502 0,1625 -0,6702 -2,44 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95,0% Confidence

Cases N Mean Grouping
Case 4& Criteria +Negotiation + Tentative hold 6 24,812 A
Case 4& Criteria Tentative hold 6 19,993 B
Case 10& Criteria +Negotiation + Tentative hold 6 19,335 C
Case 10& Criteria + Tentative hold 6 16,852 D
Case 4& Criteria 6 14,522 E
Case 5& Criteria +Negotiation + Tentative hold 6 12,308 F
Case 10& Criteria 6 11,298 G
Case 5& Criteria + Tentative hold 6 8,298 H
Case 5& Criteria 6 3,405 I

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests
Response Variable Throughput Unit Time

227

All Pairwise Comparisons among Levels of Cases
Cases = Case 10& Criteria subtracted from:

 Difference SE of
Cases of Means Difference
Case 10& Criteria + Tentative hold 5,553 0,1842
Case 10& Criteria +Negotiation + Tentative hold 8,037 0,1842
Case 4& Criteria 3,223 0,1842
Case 4& Criteria +Negotiation + Tentative hold 13,513 0,1842
Case 4& Criteria Tentative hold 8,695 0,1842
Case 5& Criteria -7,893 0,1842
Case 5& Criteria + Tentative hold -3,000 0,1842
Case 5& Criteria +Negotiation + Tentative hold 1,010 0,1842

 Adjusted
Cases T-Value P-Value
Case 10& Criteria + Tentative hold 30,14 0,0000
Case 10& Criteria +Negotiation + Tentative hold 43,62 0,0000
Case 4& Criteria 17,50 0,0000
Case 4& Criteria +Negotiation + Tentative hold 73,35 0,0000
Case 4& Criteria Tentative hold 47,20 0,0000
Case 5& Criteria -42,85 0,0000
Case 5& Criteria + Tentative hold -16,28 0,0000
Case 5& Criteria +Negotiation + Tentative hold 5,48 0,0001

Cases = Case 10& Criteria + Tentative hold subtracted from:

 Difference SE of
Cases of Means Difference
Case 10& Criteria +Negotiation + Tentative hold 2,48 0,1842
Case 4& Criteria -2,33 0,1842
Case 4& Criteria +Negotiation + Tentative hold 7,96 0,1842
Case 4& Criteria Tentative hold 3,14 0,1842
Case 5& Criteria -13,45 0,1842
Case 5& Criteria + Tentative hold -8,55 0,1842
Case 5& Criteria +Negotiation + Tentative hold -4,54 0,1842

 Adjusted
Cases T-Value P-Value
Case 10& Criteria +Negotiation + Tentative hold 13,48 0,0000

228

Case 4& Criteria -12,65 0,0000
Case 4& Criteria +Negotiation + Tentative hold 43,21 0,0000
Case 4& Criteria Tentative hold 17,05 0,0000
Case 5& Criteria -72,99 0,0000
Case 5& Criteria + Tentative hold -46,43 0,0000
Case 5& Criteria +Negotiation + Tentative hold -24,66 0,0000

Cases = Case 10& Criteria +Negotiation + Tentative hold subtracted from:

 Difference SE of
Cases of Means Difference
Case 4& Criteria -4,81 0,1842
Case 4& Criteria +Negotiation + Tentative hold 5,48 0,1842
Case 4& Criteria Tentative hold 0,66 0,1842
Case 5& Criteria -15,93 0,1842
Case 5& Criteria + Tentative hold -11,04 0,1842
Case 5& Criteria +Negotiation + Tentative hold -7,03 0,1842

 Adjusted
Cases T-Value P-Value
Case 4& Criteria -26,13 0,0000
Case 4& Criteria +Negotiation + Tentative hold 29,73 0,0000
Case 4& Criteria Tentative hold 3,57 0,0236
Case 5& Criteria -86,47 0,0000
Case 5& Criteria + Tentative hold -59,91 0,0000
Case 5& Criteria +Negotiation + Tentative hold -38,14 0,0000

Cases = Case 4& Criteria subtracted from:

 Difference SE of
Cases of Means Difference
Case 4& Criteria +Negotiation + Tentative hold 10,29 0,1842
Case 4& Criteria Tentative hold 5,47 0,1842
Case 5& Criteria -11,12 0,1842
Case 5& Criteria + Tentative hold -6,22 0,1842
Case 5& Criteria +Negotiation + Tentative hold -2,21 0,1842

 Adjusted
Cases T-Value P-Value

229

Case 4& Criteria +Negotiation + Tentative hold 55,86 0,0000
Case 4& Criteria Tentative hold 29,70 0,0000
Case 5& Criteria -60,34 0,0000
Case 5& Criteria + Tentative hold -33,78 0,0000
Case 5& Criteria +Negotiation + Tentative hold -12,01 0,0000

Cases = Case 4& Criteria +Negotiation + Tentative hold subtracted from:

 Difference SE of
Cases of Means Difference
Case 4& Criteria Tentative hold -4,82 0,1842
Case 5& Criteria -21,41 0,1842
Case 5& Criteria + Tentative hold -16,51 0,1842
Case 5& Criteria +Negotiation + Tentative hold -12,50 0,1842

 Adjusted
Cases T-Value P-Value
Case 4& Criteria Tentative hold -26,2 0,0000
Case 5& Criteria -116,2 0,0000
Case 5& Criteria + Tentative hold -89,6 0,0000
Case 5& Criteria +Negotiation + Tentative hold -67,9 0,0000

Cases = Case 4& Criteria Tentative hold subtracted from:

 Difference SE of
Cases of Means Difference
Case 5& Criteria -16,59 0,1842
Case 5& Criteria + Tentative hold -11,69 0,1842
Case 5& Criteria +Negotiation + Tentative hold -7,68 0,1842

 Adjusted
Cases T-Value P-Value
Case 5& Criteria -90,04 0,0000
Case 5& Criteria + Tentative hold -63,48 0,0000
Case 5& Criteria +Negotiation + Tentative hold -41,72 0,0000

Cases = Case 5& Criteria subtracted from:

230

 Difference SE of
Cases of Means Difference
Case 5& Criteria + Tentative hold 4,893 0,1842
Case 5& Criteria +Negotiation + Tentative hold 8,903 0,1842

 Adjusted
Cases T-Value P-Value
Case 5& Criteria + Tentative hold 26,56 0,0000
Case 5& Criteria +Negotiation + Tentative hold 48,33 0,0000

Cases = Case 5& Criteria + Tentative hold subtracted from:

 Difference SE of
Cases of Means Difference
Case 5& Criteria +Negotiation + Tentative hold 4,010 0,1842

 Adjusted
Cases T-Value P-Value
Case 5& Criteria +Negotiation + Tentative hold 21,77 0,0000

The research reports from ANOVA , the F ratio, with both DFs, and the p-value. The research also reports the results from Tukey. There was

significant differences between cases (2 way ANOVA gives F8, 40 = 2519.41, p<0.001) and Tukey’s HSD test confirmed all cases were

significantly different from one another.

Interpreting the results

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research

rejects the null hypothesis that “between (a) relaxing Consistency and application-specific criteria with Negotiation and Tentative Hold and (b)

relaxing Consistency and application-specific criteria with Tentative Hold and without Negotiation and (c) relaxing Consistency and application-

231

specific criteria with neither Negotiation nor Tentative Hold (d) relaxing Isolation and application-specific criteria with Negotiation and

Tentative Hold and (e) relaxing Isolation and application-specific criteria with Tentative Hold and without Negotiation and (f) relaxing Isolation

and application-specific criteria with neither Negotiation nor Tentative Hold and (g) relaxing Durability and application-specific criteria with

Negotiation and Tentative Hold, and (h) relaxing Durability and application-specific criteria with Tentative Hold and without Negotiation and

(i) relaxing Durability and application-specific criteria with neither Negotiation nor Tentative Hold.”

Summary

In all experiments using the ANOVA test, there is high significant difference between the groups in the experiment and furthermore Tukey

revealed the significance between each case in the group in the experiments. Thus it is clear that relaxing ACID properties makes a significant

difference in throughput compared to not relaxing ACID properties. Relaxing additional application-specific criteria also makes a significant

difference compared to not relaxing these criteria. Use of Tentative Hold decreases throughput significantly. Use of Negotiation, when compared

to abort and restart, increases throughput significantly.

232

Appendix D - AuTrA technologies examples

This appendix shows examples of the SOAP and WSDL technologies used in the

AuTrA system.

Figure D1 Flight booking service: SOAP message

With the help of SOAP, the users can post the request and transport it to the correct end

point. (Figure D1)

233

Figure D2 Flight booking service: WSDL data type definition

Figure D2 shows the WSDL example of a flight booking service which has been

registered in AuTrA.

234

Figure D3 Flight booking service: WSDL concrete segment

The binding of the abstract to the concrete segment is through the port address of the

PlaneBookingSoap port as shown in Figure D3.

235

Appendix E ‒ Snippets of some of the inputs used in the experiments

This appendix shows some snippets of the inputs used in the experiments. In section E1

the user interface for transaction composition is shown and in section E2 example

snippets of the batch files used as inputs to the experiments are shown.

E1 User interface for transaction composition

When the user wants to book flight, hotel and ski in one composite transaction, he or

she has to choose which services he wants. For example, Figure E1 shows that the user

wants to book flight, restaurants and venue in one transaction, meaning the composite

service of the user’s transaction will consist of three component services.

236

Figure E1 Composite service realisation

After the user accepts the services from which to create a composition service, the user

has to input the required information, like date, number of travellers and number of

rooms required. Different Web services will require different information.

237

Figure E2 Input upload

Input batch files can be uploaded using the upload button shown in Figure E2. The

continue button will run the composite service. The system then breaks down the input

to the composite service into inputs to component services for processing.

E3 Example Batch File Input

Figure E3 shows example batch file input where none of the ACID properties are

relaxed in a composite transaction made up of flight service, hotel service and ski

service.

238

Figure E3 Flight input

239

Figure E4 Ski input

240

Figure E5 Hotel input

The snippets shown in Figures E3, E4 and E5 were part of the input used in

Experiment 1 Case 1 of the Travel Plan application.

241

Appendix F ‒ Acronyms

2PC 2-Phase Commit

ACI Atomicity, Consistency, Isolation

ACID Atomicity, Consistency, Isolation, Durability

ACTA A Comprehensive TransAction Framework for Extended Transactions

ANOVA Analysis of Variance

API Application Programming Interface

API(JTA) Application Programming Interface (Java Transaction API)

ASE Adaptive Server Enterprise

ASSET A System Supporting Extended Transactions

ATS Accepted Termination States

AuTrA Adaptable user-defined Transaction relaxing Approach

BTP Business Transaction Protocol

CAEs Collaboration Editing Applications

CAGIS-Trans Cooperative Agents in a Global Information Space-Transactions

COO COOperating software developers COOrdination

CSCW Computer Supported Cooperative Work

DF Degrees of Freedom

FIFO First in First Out

242

EPOS Expert System for Program and ~og~ System Development

HoL Head of Line

HSD Honest Significant Difference

IIS Internet Information Server

IMSD Information Management System Dynamics

JTA Java Transaction API

LLR Low-Latency Resilient

NBCP Non-Blocking Commit Protocol

NTO New Timestamp Ordering

RTF Reflective Transaction Framework

SACReD Semantic Atomicity, Consistency, Resiliency, Durability

SOAP Simple Object Access Protocol

SQL Structured Query Language

taTHP transaction-aware Tentative Hold Protocol

TCS Transaction Composite Services

TCP4CWS Transaction Commit Protocol for Composite Web Services

THP Tentative Hold Protocol

TODS Tsinghua Object Data Store

UDDI Universal Description, Discovery, and Integration

URL Uniform Resource Locator

243

WS-AT WS-AtomicTransaction

WS-BA WS-BusinessActivity

WSDL Web Services Description Language

WS-Tx Web Services Transactions

WTDP Web Services Transaction Dependency management Protocol

WSTDCP Web Services Transaction Dependency Coordination Protocol

XML Extensible Markup Language

	PhD cover
	Customisable TransactionSupport for Web Services_Redacted4
	Acknowledgement
	Lists of Publications
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Transaction issues
	1.4 Research question
	1.5 Research aim
	1.6 Research design
	1.7 Contribution
	1.8 Organisation of the thesis
	Chapter 2: Literature Review
	2.1 Introduction
	2.2 Transactions
	2.3 Some seminal transaction models
	2.3.1 Flat transaction model
	2.3.2 Nested transaction model
	2.3.3 Multilevel transaction model
	2.3.4 Saga transaction model
	2.3.5 Split and join transaction model
	2.4 Web services
	2.5 Related work on transaction models which relax ACID properties
	2.5.1 Relaxation of atomicity
	2.5.2 Relaxation of isolation
	2.5.3 Relaxation of atomicity and isolation
	2.5.4 Relaxation of consistency and atomicity and isolation or both
	2.5.5 Relaxation of durability and ACI
	2.5.6 Other approaches to performance improvement in transaction models
	2.6 Commercial and open source transaction protocols
	2.6.1 Business Transaction Protocol (BTP)
	2.6.1.1 Atoms transactions
	2.6.1.2 Cohesion transactions
	2.6.1.3 Qualifiers
	2.6.1.4 Relationships in BTP
	2.6.1.5 BTP transaction participants
	2.6.2 WS-Transactions (WS-Tx)
	2.6.2.1 WS-Coordination
	2.6.2.2 WS-AtomicTransaction (WS-AT)
	2.6.2.3 WS-BusinessActivity (WS-BA)
	2.7 Comparison of the different approaches
	2.8 Summary
	Chapter 3: Requirements for a New Transaction Model
	3.1 Introduction
	3.2 Motivation to develop AuTrA
	3.3 User-defined atomicity
	3.4 User-defined isolation
	3.5 Adaptable consistency
	3.6 Adaptable durability
	3.7 Application-specific criteria
	3.8 Summary
	Chapter 4: Presentation of AuTrA
	4.1 Introduction
	4.2 System overview
	4.3 AuTrA implementation
	4.4 Main classes in AuTrA
	4.4.1 Reader component
	4.4.2 Requirements Tailor component
	4.4.3 Requirements Negotiator component
	4.4.4 Batch Manager component
	4.4.5 Processing Timer component
	4.4.6 Writer component
	4.5 Summary
	Chapter 5: Simulation Model and Evaluation Strategy
	5.1 Introduction
	5.2 Definitions of the key terms in the research
	5.3 Simulation model
	5.3.1 Simulation set-up
	5.3.2 Simulation model settings and configuration
	5.3.3 Mechanism for simulation relaxation of ACID and application-spefication properties
	5.3.4 Simulation road map
	5.3.5 Simulation road map summary
	5.4 Evaluation strategy
	5.4.1 Evaluation of the effect of relaxation of atomicity, consistency and isolation
	5.4.2 Evaluation of the effect of relaxing durability and later tidying up
	5.4.3 Evaluation of the effect of application-specific property relaxation
	5.4.4 Evaluation of the effect of negotiation
	5.4.5 Evaluation of the effect of tentative hold
	5.5 Summary
	Chapter 6: Experimental Evaluation
	6.1 Introduction
	6.2 Experimental set-up
	6.3 Scenarios
	6.3.1 The Travel Plan application
	6.3.2 The Travel and Party application
	6.4 The Experiments
	6.4.1 Set 1 - Experiments to measure effect of relaxing atomicity, consistency and isolation
	6.4.1.1 Experiment 1
	6.4.1.2 Experiment 2
	6.4.1.3 Experiment 3
	6.4.1.4 Experiment 4
	6.4.1.5 Summary of Set 1 experiments
	6.4.2 Set 2 – Assessing the effect of durability relaxation with or without tidy-up
	6.4.2.1 Experiment 5
	6.4.2.2 Experiment 6
	6.4.2.3 Experiment 7
	6.4.2.4 Experiment 8
	6.4.2.5 Experiment 9
	6.4.2.6 Summary of Set 2 experiments
	6.4.3 Set 3 – Assessing effect of relaxation of application-specific properties
	6.4.3.1 Experiment 10
	6.4.3.2 Experiment 11
	6.4.3.3 Experiment 12
	6.4.3.4 Summary of Set 3 experiments
	6.4.4 Set 4 – Effect of negotiation on throughput
	6.4.4.1 Experiment 13
	6.4.4.2 Summary of Set 4 experiments
	6.4.5 Set 5 – Assessing effect of tentative hold
	6.4.5.1 Experiment 14
	6.4.5.2 Experiment 15
	6.4.5.3 Summary of Set 5 experiments
	6.5 Summary
	Chapter 7: Discussion, Conclusion and Future Work
	7.1 Introduction
	7.2 Discussion
	7.3 Answering the research question
	7.4 Comparison with other models
	7.5 Correctness when relaxing a property
	7.6 Transition from database to Web services
	7.7 Targeted users of AuTrA
	7.8 Conclusion
	7.9 Future work
	7.10 Closing remark
	References
	Appendix A ‒ Comparison of different Web-based transaction management models
	Appendix B ‒ Comparison of key features of BTP, WS-Tx (BusinessActivity) and AuTrA
	Appendix C – Raw data and evidence of statistical analysis of the experiments
	Appendix D - AuTrA technologies examples
	Appendix E ‒ Snippets of some of the inputs used in the experiments
	Appendix F ‒ Acronyms

