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Abstract 
 

Web services transactions have some unique characteristics. A Web transaction may be 

composed of a number of individual Web services, executed across multiple loosely 

coupled autonomous systems. Each Web service may be executed on an independent 

system belonging to an independent provider. There raises the question whether Web 

transactions can and should be maintained as a single business unit in a similar way to 

how transactions are maintained in classical database systems. In classical database 

systems, the transaction management protocol and mechanism are constrained by the 

primary properties of atomicity, consistency, isolation and durability (ACID). These 

ACID properties are the cornerstone of maintaining data integrity in transaction 

management. However, ACID properties were meant for centralised systems and are 

better suited for short transactions. Unlike short transactions, Web services transactions 

may be long-running; they can take hours or even days depending on the application. 

Composing certain actions from loosely coupled distributed business processes across 

multiple distributed applications is one of the essentials of Web services transactions. 

The classic ACID model, which is tightly coupled, is therefore seen as too rigid to 

support all the requirements of the new Web transactions model.  

  

The research proposes a system that increases throughput while maintaining the 

consistency and correctness required by the particular applications that are using the 

model; the system is known as AuTrA (Adaptable user-defined Transaction relaxed 

Approach). AuTrA allows relaxation of each ACID property. The model is adaptable to 

meet different situations with different characteristics. For instance, in some cases it 

will be appropriate to relax atomicity, whereas in others it may be appropriate to relax 

isolation and atomicity while maintaining consistency. The research explores how 

transaction support for Web services can be customised to suit the needs of varying 

applications and result in improved service.  

 

The AuTrA prototype has been implemented. The experimental results show that the 

AuTrA application is able to support the basic features of Web services transaction 

management, allowing users to specify their correctness requirements, and it can 

increase throughput of transactions in models in a flexible and reliable manner. 

Additional facilities allow users to specify application-specific, non-ACID criteria that 



IX 

can increase throughput. Safeguards have also been implemented to prevent execution 

of inappropriate user specifications, such as relaxation of properties that may damage 

data integrity. AuTrA can be used as a tool by software developers who need to 

compose applications from independent Web services and who wish to build 

applications which result in improved performance while maintaining application-

required consistency. 
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Chapter 1: Introduction 
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1.1 Introduction 
 
 
This chapter discusses the motivation that led to the research, outlines the problem, 

provides the path for the research and states the contributions of the research. The 

structure of the thesis is also outlined in this chapter. 
 

1.2  Motivation  
 
 
Web services are programs that are self-contained, modular business applications that 

can be dynamically discovered and invoked across the Web. Web services are based on 

industry principal technologies such as SOAP, UDDI, WSDL and XML. They make 

available a variety of ways to incorporate several applications in business-to-business 

(B2B) communication through SOAP and WSDL standards. Different organisations are 

able to connect their applications with those of other organisations in order to do 

business across networks; this is made possible through the composition of component 

Web services. 

 

A transaction is a unit of work that may be made up of individual operations. For 

instance, a transaction which transfers an amount of money from one bank account to 

another may be made up of a number of operations. Traditionally in classical database 

systems, transactions should be completed in their entirety or not at all. For instance, in 

the transfer of money from one account to another it would not be good if the money 

was taken from one account but not added to the other. To achieve reliable transactions, 

strict ACID (atomicity, consistency, isolation, durability) properties have to be applied 

in traditional database systems. ACID properties are traditional properties for a 

transaction. Atomicity is based on an all-or-nothing policy; that is to say, the transaction 

must execute completely or not at all. Consistency implies that the transaction must be 

left in a state in which data or information is reliable and consistent. Isolation stresses 

that a transaction cannot show its uncommitted data to another transaction, meaning the 

transaction should finish before it can show its results to other transactions. Data that is 

committed needs to be saved; that is what durability implies. 
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However, in the Web environment a transaction may be composed of a variety of Web 

services, each of which may be seen as a mini-transaction in its own right. Maintenance 

of strict ACID properties becomes more difficult because of the fact that the Web 

transaction can be long-running (and it is not good to lock out resources for hours or 

days) and furthermore, Web services are owned by different providers, each of which 

may have their own policies which might conflict with a centralised transaction 

management system. In addition, many Web transactions may not need strict 

application of ACID properties, although in some circumstances these may be 

necessary. Thus the question arises of the applicability of ACID maintenance in a Web 

services environment. 

1.3 Transaction issues 
 
Web services transaction management has been an interesting topic to the research 

world and has constituted an important branch of data and systems research over the 

two last decades; first in the context of database systems and more latterly in the context 

of internet systems and e-commerce technologies. The major problem with traditional 

transaction management is the rigidness of the ACID properties, especially for long-

running transactions. This can be a drawback when it comes to business applications. A 

number of models have been proposed by researchers with respect to providing support 

for advanced transactions (e.g. distributed transactions, nested transactions and chained 

transactions) to meet some of the requirements of long-running transactions. The 

relaxing of the traditional ACID properties, for example, allows parts of the transaction 

to commit even if other parts fail, or allows intermediate results to be shown to other 

transactions. This can support collaborative work which is becoming key to today’s 

business environment and is characterised by long-running transactions. An example 

could be collaborative design. To lock a user out completely while another user runs a 

transaction may not be ideal. It may be preferable for a user to see uncommitted results 

rather than to wait for a long time to do their part of the work. Models introduced in the 

early eighties serve as building blocks for the current proposed models. 

 

In 1982, Moss introduced the nested transaction model to extend on flat transactions by 

dividing transactions into sub-transactions, i.e. parent and child transactions. A child 

can start after the parent has started and can commit locally. The parent also terminates 
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only when the child transaction has completed. When the child transaction commits the 

results, they cannot be seen immediately; they can be seen only after the parent 

transaction has completed. The idea of sub-transactions is good but could fail the 

modern business environment, which in some circumstances needs intermediate results 

to be shown due to the fact that the transactions can be long-running.  This would 

require the relaxation of isolation, which this nested transaction model does not support. 

However, since this model allows increased modularity, concurrency and finer recovery 

than traditional flat transactions, it has some advantages and it can increase 

performance. But with relaxed isolation it might have been even better. The nested 

transaction model and its extensions are more powerful than the traditional flat 

transactions but they are still only suitable for specific environments and are still a long 

way off supporting environments requiring long-running transactions. This model was 

aimed at federated database systems. 

 

In 1983 Lynch introduced a model that relaxed atomicity. The model allowed the 

modulation specification between operations for transaction execution. The modulation 

specification defines how each module can infuse with others, allowing each module to 

commit, even if some of its siblings have not committed. 

 

Garcia-Molina and Salem introduced the Saga model in 1987. Its main goal was to deal 

with long-running transactions. The model uses the concept of compensation and, 

similarly to the Moss model, it uses the concept of sub-transactions but it caters for 

long-running transactions, not specific federated databases. Saga is based on the idea of 

chained transactions, which decompose long-running transactions into small, 

sequentially-executing sub-transactions. According to Gray and Reuter in 1993, the idea 

originated from IBM’s Information Management System (IMS) and HP’s Allbase 

database products. In the Saga model, each transaction is allowed to commit 

individually, allowing partial results to be seen by other transactions. Compensation is 

used to undo all the effects if the whole transaction has to abort. The benefit of this 

model is that it allows the sub-transaction to commit, resulting in its intermediate results 

being shown to other transactions and thus relaxing isolation, which may be useful for 

the business environment. However, this model has never been implemented, but many 

models introduced after Saga used the foundation of Saga in terms of compensation 

implementation.  
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In 1990, Chrysanthis and Ramamritham proposed a novel approach, which moved 

towards customisable transactions. The motivation for this was that some transactions 

might need customisation according to user requirements. They developed a framework 

named ACTA (A Comprehensive TransAction Framework for Extended Transactions). 

The model unifies the existing models to capture the semantics and rationale for the 

concurrency and recovery properties of composite transactions. The relations between 

the transactions are articulated in the form of effects, i.e. the effects of transactions on 

other transactions and effects of transactions on objects they access. The effect on the 

transactions used commit-dependency and abort-dependency. Dependency exists 

between two transactions, T1 and T2. For example, in commit-dependency, a hotel 

service cannot book a hotel until the flight service has booked the flight. The abort-

dependency states that if the flight service aborts the booking of the flight, the hotel 

service must also abort the booking of the hotel. 

 

ACTA motivated the later ASSET (A System Supporting Extended Transactions) 

model introduced by Biliris et al. in 1994, which uses primitives at a programming 

language level based on ACTA building blocks, like history, delegation, dependency 

and conflict set.  

 

Since 1994 further models have been introduced which address transaction management 

in a Web environment and these are discussed in the literature review in Chapter 3. 

1.4  Research question  
 

Based on the above motivation, this research is interested in finding suitable user-

defined and customised ways to provide transaction support for the Web services 

environment. 

 

Hence, the main question that this research aims to answer is: 

 

Can transaction support for Web services be customised to suit the needs of 

varying applications and result in improved service? 
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1.5 Research aim 
 

Building on from the research question, this research assumes an improved service to be 

an increase in throughput of transactions while maintaining correctness according to 

application requirements. Throughput is the number of tasks successfully completed 

over a given period of time. Increase in throughput therefore means a better service to 

consumers, since tasks will be successfully completed with less delay. However, it is 

important that this improvement is not at the expense of correctness of the database and 

correctness should be maintained in accordance with user requirements. 

 

Thus the research aim is to develop a system that increases throughput while 

maintaining the consistency and correctness required by particular applications. 

 

It is conjectured that the above aim is achievable by relaxing some of the ACID 

requirements that are used in traditional transaction processing. The characteristics of 

Web-based transactions indicate that this is a plausible direction (Ramampiaro and 

Nydard 2004; Younas et al. 2006; Zhou, Wang and Jia 2004). Implementing a system 

which relaxes ACID properties in a manner that does not compromise correctness will 

be a matter for this research. 

 

1.6  Research design 
 

The research began with the literature review so that a good understanding of current 

work in the field of transaction management could be gained. Following the literature 

review, a model for Web-based transactions support was designed which is adaptable to 

different situations and the requirements of consumer and provider. The model was 

implemented and evaluated through simulation. The simulation consisted of a number 

of experiments in which batches of transactions were entered into a new transaction 

support system. The results were analysed, presented and discussed. Finally an 

evaluation was made of the project and scope for future work was outlined. Thus the 

research methodology was as follows: 
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• Formulation of the research question 

• Literature review 

• Model design 

• Model implementation 

• Design of evaluation method 

• Model evaluation 

• Presentation of results 

• Discussion of results 

The problem was approached by first analysing the current situation. This was done by 

a literature review of the existing Web services’ transaction protocols or models. The 

researcher conducted a literature review through reading different materials like 

journals, conference proceedings, magazines and books related to the research topic. 

The material which has been read is summarised in Chapter 2. Theoretical analysis and 

problem analysis was performed on the gathered information and summarised. Relevant 

themes from publications or papers were drawn upon during this phase and critically 

analysed. Analysis gave rise to the problem statement on which the research was based. 

From the summary gathered from the literature review, the models were compared and 

contrasted with each other. This was done by studying the scenarios of usage given in 

each paper and identifying the most important features of each model. Limitations of 

each model were identified and a gap was found which could be filled by the 

development of a more flexible and extensive model. Then a usage scenario was 

developed that included typical characteristics of the usage scenarios in the literature 

studied. The scenario was used (with subsequent extensions) to evaluate the new model 

and system developed in this research.  

 

The new model AuTrA (Adaptable user-defined Transaction relaxed Approach) was 

developed (see Chapter 3). To validate the new model, a prototype system was then 

designed and implemented (see Chapters 4 and 5). The system was also called AuTrA.  

A number of experiments were carried out to further validate the model. The 

experiments were based around three realistic business scenarios. 
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1.7  Contribution 
 

Many of the contributions centre around the development of the Adaptable User-defined 

Transaction relaxing Approach (AuTrA). 

 

The main contributions of the research are as follows:   

 

• A transaction support system, AuTrA, has been developed which allows Web 

services consumers to vary specific transaction support characteristics to suit 

their needs. Examples of this are:  to allow partial completion of a transaction if 

this is appropriate to the application but to specify full completion when 

required; or to allow intermediate results to be seen when this will increase 

throughput but not damage integrity. 

 

• The AuTrA system allows Web services providers to vary specific transaction 

support characteristics to suit their needs; in particular to ensure consistency is 

maintained  when required or to increase throughput when required. 

 

• The AuTrA system allows the relaxation of additional application-specific 

criteria to increase the throughput and success rate. As the name suggests, these 

are criteria that are specific to each application rather than generic like ACID 

properties. 

 

• The AuTrA system supports negotiation between the system and the consumer 

to allow reconsideration of requirements if there is a conflict between the 

provider and the consumer.  

 

• The work has yielded increased understanding of properties of Web-based 

transactions and the responsibilities of consumers and providers in the Web 

services environment. 
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1.8  Organisation of the thesis 
 

The thesis is organised as follows: 

 

Chapter 1 sets the scene and the problem statement, and states the contributions and 

organisation of the thesis. 
 
Chapter 2 introduces transaction models and Web services. It then concentrates on 

related work on relaxation of ACID properties in Web services transaction processing, 

providing a critical assessment of the literature, and it also discusses protocols for long-

running transactions. The main purpose of this chapter is to show how this work is 

based on existing research. Additionally the chapter aims to delineate the current state-

of-the-art in commercial and open source protocols. Also this chapter provides a 

succinct overview of the area in order to more clearly show the gap that is addressed in 

the thesis. 

 

Chapter 3 introduces AuTrA, the model and system developed as a major part of this 

research work. The chapter covers its underlying principles and also discusses the 

concept of correctness. 

 

Chapter 4 presents the AuTrA system in more detail, as a proof of concept prototype. It 

provides the framework of the proposed system and the mechanisms of how each 

component works to attain the research aim.  

 

Chapter 5 presents the simulation model that was developed to test the AuTrA system.  

This chapter also presents the strategy developed to evaluate AuTrA. The main idea of 

the chapter is to clarify how the research carried out the simulation, collected the raw 

data, and also to give the reason behind why each test case was chosen, emphasising 

what each case intended to show against the research aim.  

 

Chapter 6 analyses and evaluates the value and effectiveness of the proposed system, 

AuTrA, through a set of experiments. 
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Chapter 7 critically assesses the research, states its contribution and compares it with its 

closest rivals. The chapter also includes a discussion, conclusion and recommendation 

for further work. 
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2.1 Introduction 
 
This chapter discusses work related to this research. It sets the scene by presenting the 

concepts of transaction-processing, early transaction models, and characteristics of Web 

services. It then leads into work on relaxation of ACID properties for Web services 

transaction processing. Finally the state of the art in commercial and open source 

transaction protocols is discussed. 

 

 

ACID properties are rigid and can lead to resources being held for a long period, even 

days, for long-running business transactions. This situation is undesirable in a business 

world where good throughput is necessary. Due to the problems of the classic ACID 

properties for long-running transactions, a lot of research has proposed models that 

extend the traditional transaction model for the Web services environment. Since the 

eighties, different researchers have introduced different models that relax mainly 

atomicity and isolation; some work has also been done in relaxing consistency. 

Interestingly, until recently durability has not been relaxed but some significant 

commercial companies, for example IBM, have now introduced models that relax 

durability. In this chapter the research will discuss the following: related work on 

relaxation of atomicity, related work on relaxation of isolation, related work on a 

combination of relaxation of atomicity and isolation, related work on relaxation of 

consistency and a combination of any atomicity or isolation or both, and related work 

on relaxation of durability.  

 

2.2 Transactions 
 

A transaction is a collection of operations that performs a single logical function. 

Transactions are often used in business processing environments and often involve 

reading from and writing to a database. The following primitives are usually used to 

describe such transactions in programming environments: begin, read, write, commit 

and abort. Begin starts a new transaction, commit ends a transaction, stores changes 

made during a transaction and makes changes accessible to other transactions. Abort 
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ends a transaction and undoes all changes made during the transaction. An example of a 

transaction for booking a flight is shown in Figure 1.  

 
 

Figure 1 Transaction example for airline reservation (Elmagarmid 1992) 
 

 

In transaction processing, a DBMS preserves the database integrity and constraints 

using ACID properties. ACID stands for atomicity, consistency, isolation and 

durability. Let us consider the ACID properties. 

 

• Atomicity implies that the transaction is all-or-nothing. That is to say, the 

transaction operation is either completely performed or is not performed at all. 

When the transaction fails, the incomplete results must be undone.  

 

• Consistency concentrates on ensuring the data or information is reliable and 

consistent. For example, concerning the transaction in Figure 1, there could be a 

consistency requirement that the number of seats reserved is equal to the number 

of passengers that have reserved seats. This requirement would be checked as a 

post-condition of the transaction. At the start of a transaction the database should 

be in a consistent state, during the transaction processing the database may be in 
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an inconsistent state, but at the end of the transaction the database should be in a 

consistent state again. 

 

• Isolation stresses that a transaction cannot show its uncommitted data to another 

transaction. This means the transaction should finish before it can show its 

results to other transactions. Isolation does not allow concurrent access to data in 

a distributed database system.  

 
 

• Durability implies that at the end of the transaction if no failure has occurred, 

the updates of the data should be made persistent, on either the disk or any other 

suitable mode of backup. For instance, with regard to the transaction of Figure 1, 

at the end of the transaction the updates must be persistent and they can then 

safely be read by other transactions. 
 

In 1993, Gray and Reuter pointed out that the intention of transaction management in 

the context of databases is to guarantee the consistency of data in the incidence of 

failures and concurrent access. Often ACID properties are maintained through ensuring 

that transactions are executed in a serial manner whenever there is a potential conflict. 

This is achieved through locking and time-stamping. 

 
 

2.3 Some seminal transaction models 
 
 
Transaction models have developed as information processing has advanced. Business 

applications have over the last decade or so moved from centralised environments to 

distributed and mobile environments in line with technology advances. As disparate 

companies made their services available over the internet, the emergence of applications 

which utilised long-running selections of such services gave rise to the need for support 

for long-running transactions. Consequently, a need for models catering for the Web 

services environment arose because the models catering for the centralised environment 

were not fit for the new types of business application. For instance, a long-running 

transaction could run over hours or days, and it would be inappropriate to lock out all 

other transactions for this period of time. A lot of research has been carried out to 
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address the limitations caused by centralised transaction models. A wide range of 

extended models have been proposed. Important early models are: flat transaction 

model, nested transaction model, multilevel transaction model, Saga transaction model 

and spilt and join transaction model. These models are discussed in the following 

sections. 
 
 

2.3.1 Flat transaction model 

 
According to Gray and Reuter in 1993, the flat transaction model caters for the 

uncomplicated form of transactions. The key to arranging an application for atomic 

execution, i.e. all-or-nothing, is to use a flat transaction. For example, Figure 2 shows a 

flat transaction in which all the actions or processes inside begin and commit at the 

same level. In this model there is no possibility of components of the transaction 

committing unless all other components also commit and all components must commit 

for the owning transaction to commit. 

 

Figure 2 Flat transaction example (Gray and Reuter 1993) 
 

This item has been removed due to third party copyright. The 
unabridged version of the thesis can be viewed at the Lanchester 

Library, Coventry University.
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2.3.2 Nested transaction model 
 
 
A nested transaction model supports the division of large transactions into smaller 

transactions, referred to as sub-transactions. Moss introduced the nested transaction 

model in 1982 to take care of the flaws of flat transaction models (Moss 1982). 

Consider a transaction T3 for a hen party arrangement, which comprises booking the 

dancers and booking the venue. Figure 3 shows T3 in a nested transaction as the root 

transaction, the booking of the dancers is T4, while booking of the venue is T5; these are 

the sub-transactions. T4 and T5 further divided into T6, booking of the clothing, and T7, 

booking of instruments; these are sub-transactions of T4 and T5. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3 Nested transaction model example 
 
 
The nested transaction model follows the commit, rollback and visibility rules. The 

commit rule implies that the results from the sub-transactions are available to the root 

transaction. For example, in the above scenario, the booking of the clothing transaction 

(T6) results will be available to the booking of the dancers’ transaction (T4), and the 

results of the booking the dancers’ transaction will be available to the booking of the 

hen party transaction (T3). The rollback rule concentrates on making sure that when the 

T3 
 

 

T4 T5 

T7 T6 

Root transaction 

Sub-transactions 
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root transaction aborts, the sub-transactions roll back, even if the sub-transactions have 

finished. That is to say, when transaction T3 rolls back, T4, T5, T6 and T7 have to roll 

back, regardless of what they have done up until that point. This may be 

disadvantageous because time is wasted, which can be costly and is not a good thing for 

business. However, when T5 rolls back it does not mean that T3 has to roll back too. T3 

can simply ignore what happened to T5 and continue, or it can abort, or it can execute T5 

again. The visibility rule states that T4 and T5 changes become visible to T3 when T4 and 

T5 commit. If T4 and T5 are executing at the same time, changes made by each sub-

transaction are not visible between them. However, if the executions are one after the 

other, changes are visible between them. Generally, T4 and T5 are not always consistent 

but T3 is.  

 
Figure 4 Illustration of nested transactions 
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Unlike Figure 3, which shows that the transaction is at the same level in one block, 

Figure 4 shows that nested transactions are in different blocks and not at the same level. 

 

2.3.3 Multilevel transaction model 
 

 
Multilevel transaction models are different to nested transaction models, which have a 

fixed level of nesting (Weikum and Scheck 1992). Just as the nested transaction model 

takes care of the flaws of the flat transaction model, multilevel transaction models take 

care of some of the flaws of nested transaction models. Unlike nested transaction 

models, in multilevel transaction models sub-transactions can commit or abort 

autonomously and independently of the root transaction. The theory of transaction 

compensation attains this. Compensation can be expensive, especially if a lot of data 

needs to be compensated. Compensation transactions reverse the effects of already 

committed transactions. For example, in Figure 5 when transactions T5 and T4 commit, 

and if after they have committed T3 fails, a compensation transaction is activated and T4 

and T5 are compensated. Compensation transactions are useful, but having a lot of 

compensation would be expensive and complex. The similarity of the nested transaction 

model and the multilevel transaction model is that both are tree-based models. 

Compared to the nested transaction model tree, the multilevel transaction model tree is 

balanced. Nodes in a transaction tree match to operations at a certain level of abstraction 

in a layered system. Edges in a transaction tree signify the implementation of an 

operation. Concurrency control can be different in each level. The advantage of the 

multilevel transaction model is relaxation of serialisability for high concurrency. 
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Figure 5 Multilevel transaction model 

 
 

2.3.4 Saga transaction model 
 
 
According to Garcia-Molina and Salem (1987), Saga is a transaction model that caters 

for long-running transactions by relaxing the isolation property. Figure 6 shows a Saga 

transaction made up of series of ACID sub-transactions and related compensating 

transactions. Sub-transactions are allowed to commit individually. The role of the 

compensation transaction is to undo the effect if the whole of the Saga transaction has to 

abort. The Saga transaction only commits when the sub-transaction (T) and related 

compensation transactions (ct) have committed. If the sub-transaction fails, the whole 

Saga transaction will compensate as Figure 7 demonstrates. 
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Figure 6 Saga successful transaction example 
 
 
 

 
 

Figure 7 Saga unsuccessful transaction example 
 

The Saga model has not been fully implemented but has influenced a number of models 

since it was proposed. 
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2.3.5 Split and join transaction model 
 
 
In 1992, Kaiser and Pu introduced the split and join transaction model to aid open-

ended executions related to transactions. Activities of long-running transactions are of 

indecisive duration, uncertain development and are interactive with other concurrent 

activities. As a result, the split and join transaction model focuses on these 

characteristics. Figure 8 shows how T3 breaks up into two serialisable transactions, T4 

and T5. T4 and T5 results are later joined as one atomic unit.   
 

 
 

Figure 8 Illustration of the split and join transaction model 
 
The split and join transaction model allows the transfer of resources from one 

transaction to another. This allows locks to be executed in parallel; hence this does not 

break the serialisation rule. The drawback of this model is that it follows the 

serialisation criterion. That is to say, isolation is not relaxed; transactions must be 

isolated when running. Unlike the split and join transaction model, the multilevel model 

relaxes serialisation for high concurrency. Relaxing serialisation is beneficial to the 

business as it increases throughput. 

 

2.4    Web services 
 
 
This section describes the architectural ideas and technologies of Web services. 

According to Limthanmaphon and Zhang in 2004, Web services are services accessible 
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through the internet, which conduct transactions. The discovery, integration and 

execution of services is made possible by techniques defined by Web services standards 

(Chinnici et al. 2007). These standards include UDDI, WSDL XML and SOAP. UDDI 

(Universal Description, Discovery, and Integration) is an XML-based registry for 

businesses from different geographic locations to list themselves on the internet. UDDI 

can be compared to a telephone book’s white, yellow and green pages. Using UDDI, 

businesses register the business name, product, location or the Web services offered. 

WSDL (Web Service Description Language) is an XML language that contains 

information about the interface, semantics and administration of a call to a Web service, 

while SOAP (Simple Object Access Protocol) is a protocol specification for exchanging 

structured information in the implementation of Web services in computer networks. 

Web services can be combined to make higher-level applications. Services can be 

combined in two ways, which are orchestration or choreography. Orchestration involves 

a coordinator Web service that directs other services involved in the cooperation. The 

coordinating Web service is aware that the other Web services are involved in the 

composition process, but the other involved Web services are not aware of the 

cooperation. Thus orchestration is centralised with explicit definitions of operations and 

order of invocation of Web services. Compared to orchestration, choreography is not 

controlled by a main coordinator. Each Web service taking part in the choreography 

knows whom they are interacting with and when to participate. Choreography is mainly 

used for collaboration globally, enabling business partners from different geographic 

areas to participate together. The invoked Web services involved in the collaboration 

must be aware of the business process, operations to execute, messages to exchange and 

the precise time of message exchange. 

 

Important characteristics of Web services that are relevant to the topic of this research 

are that applications can be built using Web services offered by disparate organisations 

through the use of standard protocols and that Web services transactions, which form 

part of such applications, may be long-running which can cause resource-blocking.  

Consider again the hen party arrangements example of booking the venue and 

entertainment.  An attempt to book the venue might be put on hold while the venue 

booking service waits for confirmation of a cancellation.  This in turn might put the 

whole transaction on hold causing unacceptable delay unless an alternative transaction 

model which relaxes ACID properties is used.  
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2.5 Related work on transaction models which relax ACID 
properties 

 
 
In recent years much work has focused on relaxing different ACID properties, chiefly 

with the motivation of providing a more flexible environment for Web transactions, 

given their specific characteristics. In the next sections, a selection of models will be 

discussed, grouped according to which ACID properties are relaxed. A summary of the 

findings of this section is given in Appendix A. 

 
 

2.5.1 Relaxation of atomicity 
 
 
In 2005, Bhiri, Perrin and Godart developed a model for Web services’ composition 

which relaxes atomicity. The model caters for failure of atomicity required by designers 

in composite Web services. The researchers introduced Accepted Termination States 

(ATS). The ATS property is a correctness criterion for relaxing atomicity. ATS defines 

the Accepted Termination States of each component service. ATS is specified by 

designers and a composite service is not valid if there are some termination states that 

do not belong to the ATS specified by the designers. For example, the ATS can be 

completed, failed, compensatable or completed aborted.  Component transactions will 

have different sets of ATS. If, for example, the state failed does not belong to the ATS 

set of accepted terminations of a component service, then the existing transaction 

property says it must be retriable. Again, if the state compensatable does not belong to 

the ATS, then the existing property states that there is no need to be compensatable. 

This model can be used by different interaction patterns in the same structured 

transaction. This can be a benefit since it is flexible and can cater for different 

situations. It is a one-size-fits-all model for atomicity relaxation.  

 

In 2006, Ding, Wei and Huang introduced a model using new software called 

Internetware, which is designed for the open dynamic nature of the Web services 

environment. An Internetware application is composed of existing services, which are 

combined to form composite services according to the user’s requirements. Since the 

model is made of primitive services, its transactional capability is normally described by 

two properties: retriable and compensatable. According to Ding, Wei and Huang, the 
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existing research on transaction composite services (TCS) depends on the analysis of 

the composition structure and a handling mechanism in order to guarantee the atomicity. 

To enable relaxed atomicity the composition structure of TCS has to be analysed and 

there has to be a guarantee that there exists at least one must-succeed path after the non-

compensatable service. The proposed model relaxes atomicity. Users are able to define 

different relaxed atomicity constraints for different TCS according to application-

specific requirements, which include acceptable configuration and preference. This 

approach can handle complex application requirements, avoid unnecessary failure 

recoveries and perform the transaction management work automatically. Preference is 

used in places where more than one choice has to be made. The preferred one must 

succeed over the least preferred one. Consider transactions set up to examine different 

travel options. For example, where flight booking and train booking are invoked in 

parallel, the flight booking might be preferred and the train booking would then be 

compensated. Likewise, if money is an issue and a B & B and hotel are invoked in 

parallel, the B & B must succeed and the hotel must be compensated. Nevertheless, in a 

situation where there is no preference, any can succeed. The transaction management is 

done automatically by the system—not manually by the user. Since users define the 

relaxed criteria according to the application-specific requirements, users express their 

specific requirements through the set and order of TCS configurations, which must be 

acceptable. All acceptable TCS configurations are ordered according to preference. No 

matter which service succeeds or fails, the execution must end with a legal 

configuration.  

 

2.5.2 Relaxation of isolation 
 
 
Roberts and Srinivasan (2001) and Roberts et al. (2001) introduced Tentative Hold 

Policy (THP) in a W3C white paper. The basic concept behind the model was the 

support for long-running Web-based business transactions in which the entire business 

transaction may be made up of several component transactions, each perhaps operating 

at autonomous providers. In some cases, a business transaction may need all 

components to succeed for the complete transaction to be successful. Locking resources 

is not efficient for business as it could stop other customer transactions accessing the 

resource for a long time. This is known as blocking. As an alternative, the tentative hold 
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policy was introduced with which a transaction might put a tentative but non-blocking 

hold on an item. If another transaction also wishes to hold the item, the first transaction 

is informed so transactions have an awareness of the amount of interest in an item. This 

approach is different to the two-phase commit as the hold on items is tentative rather 

than absolute, and thus throughput is improved. Since the publication of the tentative 

hold policy, a number of variations of transaction management methods for long-

running, Web-based transactions have been developed. 
 
Park and Choi in 2003 introduced a model based on THP which uses two-phase commit 

(2PC) protocol in combination with the THP protocol to ensure the atomicity of the 

transaction. The proposed model of Park and Choi adaptively determines the hold 

duration of the resources, which results in improved performance of the transaction.  

This can be compared to the THP model of Roberts et al. (2001), which had a fixed 

duration to hold the resources. A straightforward example is a situation in which Nancy 

and John want to access their joint account at the same time. With Park and Choi’s 

model, the time the account will be held is not fixed, as opposed to the fixed time in the 

THP model. In Park and Choi’s approach, the holding of the account by both is flexible 

to the environment. This results in fewer transactions being aborted and an 

improvement in performance.  
 

In 2003, Younas and Iqbal showed that even if Web services are mainly used for 

developing and integrating business systems and applications, it is possible to support 

collaboration editing applications (CAEs) by introducing a transactional approach in 

collaborative applications. The proposed model is based on correctness criteria called 

SACReD (semantic atomicity, consistency, resiliency, durability). The model relaxes 

isolation by allowing component transactions to commit or abort independently, but it 

has a strict all-or-nothing policy, which means that every component transaction has to 

complete successfully if the composite transaction is to complete successfully, 

otherwise the composite transaction fails.  

 

In 2005, Haller, Schuldt and Türker introduced a model that relaxes isolation in a peer-

to-peer environment. They pointed out that the peer-to-peer environment typically 

enables access to Web services in different peer environments. The novelty of the model 

is that it ensures global correctness without depending on a serialisation graph. Global 
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correctness is achieved through communication among the peers in which dependent 

transaction processes may be running. Rollback is used in case of failure. 

 

Alrifai, Dolog and Nejdl in 2006 introduced a model that extends the WS-transaction 

protocol (Cabrera et al. 2001) for concurrency control in Web services environments. 

Agreement between the client and the service providers takes place before the service is 

invoked, i.e. the client composes the process and identifies the deadline, then contacts 

the service providers. The service providers which match the client deadline, whose 

local schedulers can be synchronised, are selected. Then the execution plan is produced. 

All the parties involved agree on the time for holding the exclusive lock during the 

execution of the commit protocol. The protocol is non-blocking in the sense that the 

output of the scheduling process is always a non-blocking schedule. The commit-order-

preserving scheduler ensures the correctness of the concurrency execution. The 

mechanism avoids direct communication with the coordinators for security reasons. 

However, the Alrifai, Dolog and Nejdl model sends twice the number of messages, 

which can be time consuming and costly.  

 

Yang, Liu and Ling in 2006 presented a transaction-aware protocol for a Web services 

transaction coordinator (taTHP). This is done by the coordinator being able to know the 

success probability of the transaction. This helps the coordinator to select the 

transaction that will be successful and reject those that might not be successful. This 

protocol grants maximum autonomy of isolation. This means that clients can think that 

they are the only ones making a reservation on the resource. Clients cannot see how 

many reservations have been made on a particular resource. For example, consider a 

case where three people make a transaction of reserving a ticket. Transactions A, B and 

C can reserve ticket number 456; the client of transaction A will not know that the 

transaction B client has made a reservation on the same ticket. It allows several clients 

to place a tentative hold on the same resource and confirm availability before the 

completion of a transaction, just like with THP. When a client executes the actual 

business transaction, the other clients will receive a notification informing them that the 

reservation is no longer valid. THP tries to introduce a maximum hold size and duration 

time in order to take care of the coordination situation, but it still has a problem in terms 

of coordination. This is an issue, since THP does not know which request should be 

granted and which ones should be rejected. This is because THP is not aware of the 
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transaction context and the success probability of the transaction. Being aware of 

success probability can be vital since the resource manager will know which resources 

can be granted most effectively. 

 

Böttcher, Gruenwald and Obermeier in 2006 presented a model that reduces the number 

of transaction aborts and blocks in a transaction. The model is based on the Web 

services transaction specification and is an extension of existing atomic commit 

protocols. The transaction enters the suspend phase after the read phase. The suspend 

phase is non-blocking and in this phase the resource manager can still abort the 

transaction if there is a need to grant a request to another transaction, and it is also used 

to reduce the number of aborts in a situation of missing votes or conflicts. The new 

approach identifies those sub-transactions that are repeatable or reusable instead of 

aborting and restarting all sub-transactions of a global transaction. 

 

Zhao, Moser and Mellior-Smith in 2008 introduced a reservation-based, extended 

transaction protocol. Their protocol reserves (reservation phase) and cancels/confirms 

(confirmation/cancellation phase) to coordinate the tasks of business activities across 

multiple businesses. This protocol does not depend on compensation. The model 

demonstrates that the use of compensating transactions has a much higher probability of 

inconsistencies, especially when the data spreads across multiple enterprises, as is the 

intention of the Web services environment. 

 

Kumar and Barvey in 2009 proposed a Non-Blocking Commit Protocol (NBCP). Each 

site, including coordinator and participant, maintains a database in its primary memory 

as a transaction database. Every database maintains a transaction ID, primary memory 

ID, transaction status, participant ID and vote from each participant. The transaction 

database is deleted automatically after the transaction completion. The backup which 

holds the replicate of the transaction database is kept in the primary memory backup. 

The primary memory backup works concurrently with coordinator, in case of failure or 

network delay. The coordinator and every participant also maintain a replicated copy of 

themselves. NBCP relaxes isolation. The model is based on the idea of the two-phase 

commit (2PC) protocol and is reliable in the sense that it can survive a coordinator or 

participant crash.  
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In 2009, Wang, Li and Min introduced a model that relaxes isolation while ensuring 

consistency in Web services transactions. The model extends the WS-Business Activity 

protocol and is based on a transaction dependency graph distributed over multiple 

nodes. The proposed graph named Web Services Transaction Dependency Coordination 

Protocol (WSTDCP) is able to identify any transaction in an inconsistent state, using 

dependency relations. The end-state dependency is sent to the coordinator, which will 

ensure dependencies are removed appropriately so that transactions can enter the 

complete state and compensation can take place if necessary. 

 

2.5.3 Relaxation of atomicity and isolation 
 

Different models that relax both atomicity and isolation have been introduced in 

different research. In 1993, Godart introduced a framework that strived to involve 

cooperative or collaborative work in transactions. Godart developed a framework to 

support collaboration between software developers, based on the software development 

process. This was the Coo approach which relaxes atomicity and isolation. The model 

relaxes atomicity in the sense that long-duration transactions can save their partially 

complete or halfway results. That is to say, long-running transactions save their 

intermediate results, making use of the principle of partial rollback and therefore have 

an advantage over traditional transaction models. This can be effective in the 

cooperative or business world, in cases where the system crashes or there is power 

failure. All work need not be lost; it is not all-or-nothing. Some of the components that 

have been committed that are parts of the whole transaction, can be saved. For example, 

T3 is a transaction made up of sub-transactions T4 and T5. If a crash or power failure 

takes place, if T4 has finished and committed, while T5 is not yet committed, T3 can still 

save the parts that have been completed by T4. Therefore, what T4 has already done will 

not be wasted. This saves time because when T3 restarts it will only have T5 to process, 

resulting in less time being needed for processing and a higher throughput. 

 

Relaxed isolation allows several software processes to access these intermediate results 

at the same time, while not violating the correctness criteria. To cater for the 

incorrectness of data, which can be caused by dirty reading, the model uses three 

different consistency levels: stable, semi-stable and unstable. A stable object is one that 
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has committed transaction results successfully and is completely consistent according to 

the business requirements. Semi-stable objects are those in which the transactions are in 

the process of generating tentative data but are violating some of the correctness criteria 

and can be seen as not consistent enough. Lastly, unstable objects are those that do not 

contain any correctness criteria at all. These objects are locked by some processes and 

cannot be accessed until they become stable or semi-stable. These three objects are 

stored in different databases. This model of correctness constraints and management of 

activities is tailor-made, which is good for this type of collaboration. The use of three 

different degrees of stability is a valuable idea, since it allows flexible support for 

collaborative work, which is missing from the traditional transaction models. 

 

Agrawal, Abbadi and Singh in 1993 suggested another model, which contributes to the 

collaboration work and relaxes isolation and atomicity. Their main goal was to develop 

a transaction model by merging flexible transaction models from collaborative 

environments and semantic-based correctness criteria. They used a notion of relative 

atomicity, which is used to state how a co-action can be interleaved relatively to other 

co-actions without breaking the overall atomicity requirements for collaborative 

activities. The models use a relative serialisability correctness criterion to check for 

correctness execution, which is an additional relaxed criterion to the classic (conflict) 

serialisability (SR). Thus, the fundamental assumption is that any execution obeying the 

RSR criterion would maintain the consistency of the database, even if it is not 

serialisable. The model extends the standard 2-phase lock protocol (2PL) to assure the 

virtual serialisable execution. To handle conflicts, push-forward and push-backward 

locks must be acquired before the connecting operation sets a normal lock. A push-

forward lock causes any conflicting operation to be delayed until the last operation of 

the actual atomic unit with which it conflicts is run; a pull-backward lock is used to 

move operations backward before the start of an atomic unit. A typical application area 

is the design environment. However, to be able to specify relative atomicity, one must 

know the complete sets of operations before the involved transactions can be executed. 

Because one must know the complete set of operations beforehand, i.e. before the 

transaction is executed, transactions which vary their operations according to 

circumstance are not well supported. This can be a disadvantage for business 

environments which need dynamic applications.  
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In 1995, Rusinkiewicz et al. introduced a model that relaxes atomicity and isolation. 

The model allows users to investigate several alternatives to solve problems. The model 

allows compensation, just like the other advanced transaction models. 
 
Conradi et al. in 1997 used a similar concept to Godart’s Coo model. They introduced 

the EPOS (Expert System for Program and ~og~ System Development) framework, 

which is for quality-assured software engineering. The framework has a database to 

manage the resources produced during the development stage and is similar to Coo in 

the sense that it uses workspaces (both private and common workspaces) and it uses the 

check-in and check-out mechanisms for interaction with other workspaces. To take care 

of concurrency, EPOS uses locks to control access to a shared workspace. In order for 

the users to know the actions that affect their work, awareness support is provided. 

Awareness mechanisms are used to support correctness execution and aid in taking care 

of access conflicts. EPOS uses nested transactions due to the fact that cooperative 

transactions are long-running. This echoes the ideas of Kim et al. in 1984 and 

Bancilhon, Kim and Korth in 1985.  

 

The aim of Wäsch’s 1999 work was to develop a transaction model and a specification 

language that would allow efficient information-sharing. The model is called CoAct and 

was developed based on an extension of existing advanced transaction models. Their 

motivation was to overcome the limitations imposed by the use of the standard ACID 

model. The requirements for the transaction model were distinct as they used four 

application scenarios: cooperative authoring, which was all about unplanned processes; 

software engineering, looking at semi-structured processes; design for manufacturing, 

using structured activities; and workflow, dealing primarily with automated business 

processes. The model relaxes atomicity and isolation. Isolation is relaxed by dividing 

work into packages, sending the packages to various workstations, where the work 

packages are executed in parallel and then returning and merging the output later into a 

single unit.  The advantage of this model is that it has tried to cater for a variety of 

applications, unlike the Coo or EPOS models.  

 

In 2004, Ramampiaro and Nydard came up with an interesting approach by proposing a 

model which provides transactional support that can be tailored to meet different needs 

or situations and can also be modified following changes made in the actual 
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environment while work is performed. The model is called CAGIS-Trans(Cooperative 

Agents in a Global Information Space-Transactions). The model tries to meet the flaws 

of fixed criteria proposed by other researchers which make their models inadequate for 

cooperative work. For example, other models did not allow users to specify their 

relaxation. The proposed solution of the model relaxes isolation and atomicity. Unlike 

Conradi et al. (1997) Rusinkiewicz et al. (1995) and Agrawal, Abbadi and Singh (1993), 

whose models relax atomicity and isolation without customisation, in this case 

atomicity and isolation are customisable. This means that users can decide whether to 

relax atomicity or isolation or not. The drawback of not relaxing atomicity and isolation 

may be the cost of the rollbacks. 

 

In 2004 Younas, Eaglestone and Chao introduced a protocol for e-business transaction 

management. The protocol was called Low Latency Resilient (LLR). The protocol 

relaxes atomicity and isolation. For correctness criteria, the protocol applies SACReD 

(Younas, Eaglestone and Holton 2000). The advantage of this protocol is allowance of 

flexible components, meaning that a stated alternative could be executed in case of abort 

of the current one. As a result, the number of transactions aborted is reduced. Since the 

protocol allows individual components which are independent to commit, this results in 

releasing the locks and reducing resource-blocking. 

 

Fauvet et al. (2005) followed the direction of Robert et al. (2001) by proposing a THP 

model that tentatively makes resource reservations and avoids resource-blocking. Just 

like the original THP protocol, the model is aimed at ensuring atomicity of the 

transaction. However, unlike the model of Robert et al., the presented model defines 

different levels of atomicity. That implies that a transaction can still be committed even 

if some of its component transactions are aborted. The model therefore relaxes 

atomicity and isolation. This model is also similar to Bhiri, Perrin and Godart’s (2005) 

model. 

 

Younas et al. in 2006 introduced the commit protocol that is an extension of SACReD 

(Younas, Eaglestone and Holton 2000). The protocol is used to ensure correctness and 

reliability in distributed systems. The protocol aims at improving performance while 

ensuring correctness and reliability. Transaction Commit Protocol for Composite Web 

Services (TCP4CWS) relaxes atomicity and isolation. 
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In 2008, Choi et al. presented a model that maintains consistency while relaxing 

isolation. The model is similar to the Alrifai, Dolog and Nejdl (2006) model and is 

intended to fit with a representative WS-transaction standard, for easy amalgamation 

into existing WS-transaction systems. The protocol uses a dependency management 

protocol called Web services Transaction Dependency management Protocol (WTDP) 

to detect inconsistency between dependent transactions. The WTDP detects the 

inconsistency states of transactions with the notion of end-state dependence and can 

recover them to the new consistency states. This inconsistency can happen in a case in 

which a dominant transaction fails or aborts before completion. This protocol allows 

participants to automatically supply related information to other participants. For 

example, participant B will give information that participant C needs. Let’s say C needs 

some information about the income of B for his transaction. B will constantly be 

supplying that information during the process and that information will be closely 

monitored. If it happens that B fails, C will be able to detect this and both transactions 

will be rolled back to a consistent state. This model is better than Alrifai, Dolog and 

Nejdl’s model (2006) since it sends half the messages of their model, which results in 

this model being more efficient. 

 

2.5.4 Relaxation of consistency and atomicity and isolation or both 
 

 
Although the majority of the research has been done in relaxing atomicity and isolation, 

Terry et al. in 1995 investigated a model that relaxes consistency. In this model, clients 

can read and write to any replica without the need for coordination. That allows some 

inconsistency. Inconsistency can be useful since it increases availability, in situations 

where it can be tolerated because no vital information is needed. For example, in a call 

centre application during peak hours, there might be no need to make some databases 

consistent, depending on the kind of data the database is holding. Nevertheless, in 

situations where it is vital to have consistency, such as calculating prescription dosages, 

this model is not appropriate. Consistency in this model is finally achieved by making 

certain that all update conflicts are resolved in a consistent manner by all servers. The 

final consistency check may be done at a later time following a busy transaction period.  
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Pitoura and Bhargava in 1999 produced a model that relaxes consistency. In this model 

the data or information that is situated in the same place is joined together to create 

clusters. Joint consistency is required from clusters that come from the same collection. 

Clusters are sites of distributed systems which are grouped together. Strongly connected 

sites are grouped together and the same applies to the weakly connected sites. Direct 

access is applied to local clusters to increase interaction between clusters and increase 

availability. Two types of transactions are supported: weak and strong transactions. The 

weakly consistent clusters are committed locally, and after committing the changes can 

only be seen by weak transactions of the same physical cluster. Inconsistency is dealt 

with by allowing controlled deviation among copies located in a weakly connected site. 

That is to say, consistency is relaxed in the sense that integrity-constraints are ensured 

only for data copies belonging to the same logical cluster.   

 

Yu and Vahdah in 2002 proposed a model in which they looked at the classical strong 

and hopeful consistency model for replicated services. They argued that replicated 

services can benefit from some relaxed consistency. They introduced a model that 

captured three independent application metrics, numerical error, order error and 

staleness, which helped to capture consistency. A broad range of applications can 

express their consistency semantics and, with the help of an application-dependent 

algorithm, the target consistency level can be enforced. The optimistic approach used in 

this model has been proposed before, but it has its drawbacks since it provides no limit 

to the inconsistency of data exported to the client’s location and end user. On the other 

hand, the proposed model has limits to the level of inconsistency allowed by 

introducing consistency requirements. That is to say, the model can allow a certain level 

of inconsistency. If the level of consistency is violated, data cannot be passed and the 

operation will be blocked until the synchronisation of a remote replicate, as determined 

by the system’s consistency requirements. 

 

Zhou, Jin and Zheng in 2004 followed a similar direction to Yu and Vahdah. They 

introduced the Tsinghua Object Data Store (TODS) in 2004. Their model was built as a 

cluster object storage system to support the building of internet services. The model 

relaxes consistency and, just like Yu and Vahdah’s model, different levels of 

consistency are supported. TODS allows the system to continue when part of its storage 

fails. For example, a system that has a lot of nodes will continue to run if some or one 
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node fails. TODS uses replication. This allows the model to cater for the requirements 

of different services as it caters for different levels of consistency, meaning services 

with varying consistency requirements can make use of the model. Such differentiation 

is useful in the Web services environment.  

 

In 2004, Zhou, Wang and Jia produced a model which emphasises that not all 

distributed applications require strict consistency. For instance, applications in retail and 

wholesale information storage and retrieval may not require strict consistency. They 

introduced a model that relaxes consistency in the form of replication of data but 

emphasised that when replication is used to improve access it can be expensive to 

maintain data consistency. As a result, they introduced the use of ordering constraints to 

express the corresponding set of operations provided by the replica group. The ordering 

constraints can be defined in four categories: FIFO, which states that requests sent by 

the same client are to be executed in the order they are sent; causal ordering which 

states that if two requests have the nature of relationship, this relationship should be 

kept at all replicas; total ordering which states that the request be delivered in a 

predefined way and the ordering has to be consistent with the replicates; and total + 

causal ordering which is the integration of total and causal ordering. FIFO and causal 

ordering are needed from the client’s point of view, total ordering is often needed from 

the replica group’s point of view, whereas total + causal ordering is used to give 

satisfaction to both parties: client and replicate group. This model is valuable in the 

sense that it improves the system efficiency and throughput and still maintains data 

consistency. The approach is interesting, as it differentiates the needs of the client and 

server in the maintenance of consistency. 

 

Another model proposed by Lee et al. in 2009 relaxes consistency in the Web 

environment. The model uses a similar concept to the use of replicas, as found in the 

approach of Terry et al. (1995) to relaxing consistency. However, this is extended 

through the concept of lease time through which the maintenance of consistency is 

achieved. The model has three-tier hierarchies on which each group and node 

independently and adaptively chooses the proper lease time and the protocol for each 

proxy cache. The innovative part of this model is the fact that it uses adaptive multi-

levels for lease duration. 
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Another approach proposed by Younas and Mostefaoui in 2010 looked at transaction 

management in a slightly different way, i.e. in the way of context awareness in mobile 

services transactions. The approach incorporates SACReD (Younas Eaglestone and 

Holton 2000) as the correctness criteria and relaxes atomicity, isolation and consistency. 

This breaks the barrier of classic ACID properties, which may be too strict. The added 

feature of this model, which is vital, is the fact that it is adaptive to the conditions and 

the users’ needs. The system automatically adapts to the environment by taking into 

account the context information such as location. 

 

2.5.5 Relaxation of durability and ACI 
 

 
The evolution of technology has led to some big commercial companies introducing 

models that relax durability. IBM introduced (IBM SolidDB in 2009), which relaxes 

durability. This means that at the end of the transaction, data is not made permanent 

straight away. However, later, at a more convenient time, the database is brought up to 

date. The system permits three different durability alternatives: strict durability, relaxed 

durability and adaptive durability. Strict durability focuses on not allowing any 

durability; this behaves like the traditional model that makes data permanent at the end 

of the transaction. Adaptive durability is for HotStandby operations, i.e. the system 

configuration has two servers, the main server and the secondary server. The primary 

server is the one that executes all the jobs and the secondary server is the one to which 

data is sent. Therefore the secondary server contains the same information as the primary 

server. The primary server is a read-and-write database while the secondary is read only. 

In this system, an application can choose between relaxed or strict durability. The 

durability can be relaxed only when both servers are running; if not, the mode is strict 

durability. This system allows greater throughput because it relaxes durability. However, 

in some situations the system will have drawbacks. For example, imagine financial 

services systems in which a broker is busy evaluating equity position and is buying 

stock. While the broker is in the middle of the transaction process, the secondary server 

fails. Failure of the secondary server means that the mode of the system switches from 

adaptive relaxed durability to strict durability. Thus the transaction is delayed and the 

broker misses his purchase. In this kind of scenario, when time is critical, a delay due to 
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strict durability caused by the failing of the secondary server can be unhelpful from a 

business point of view.   

 

IBM continued on the research above and released SolidDB Universal Cache system in 

2009. This is an improvement on the previous system. However, this model focuses 

more on using RAM to process all the information. Using RAM overcomes the difficulty 

of the traditional disk-based database system, which can be very slow in I/O access. The 

advantage of using memory to process information is an increase in processing speed, 

resulting in a good throughput. Again, the system provides the support for distributed 

transaction processing, through two-phase commit, by the use of the Java Transaction 

API (JTA) interface. This improvement lets a system be fully interoperable with 

principal application servers, such as the IBM Web Sphere Application Server, as they 

manage complex applications requiring multiple data sources. The benefit of this system 

is that not only does the model relax durability but it is also adaptable and can be used 

by any application, be it a standard database application, a Web services application, or a 

Web-based environment.  

 

In 2009, (SYBASE 2009) introduced a system called the Adaptive Server Enterprise 

(ASE) system. Their system relaxed durability by providing two levels of durability: in-

memory relaxation, just like the SolidDB Universal Cache system, or both in-memory 

and disk-based relaxation of durability, similar to IBM’s SolidDB. The advantages of the 

system are that one can choose to use the in-memory mode to relax durability, or the 

disk-based mode to put some or all of the data in the memory or disk. In that way, if 

there is a failure, the databases can be made persistent. This enables relaxed durability 

databases to take advantage of many performance optimisations of in-memory 

databases. The difference with the IBM model is that, in normal operation, the ASE 

system does not write the logs at all. It is different from IBM Relaxed, in which 

transaction logs are written all the time.  

 

Another player that came in to relaxing of durability is Oracle, with the introduction of 

(Oracle TimesTen in-memory database  2009). Oracle TimesTen in-memory database 

functions on databases that fit exclusively in physical memory, using standard SQL 

interfaces. The system uses transactional replication for high availability. The system 

takes advantage of managing data in memory, and optimising data structures and 
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accessing algorithms. Thus database operations are executed very efficiently and as a 

result the system achieves dramatic gains in responsiveness and throughput. To take 

care of the lost update issue, the master database and the subscriber have an internal 

mechanism that will confirm that the updates have been successfully committed. Oracle 

TimesTen does this through providing two return-service options for applications to 

verify that the replicated data is consistent between the master and subscriber databases 

which are the return receipt service and return twosafe service. The return receipt 

service synchronises the application with the replication technique by blocking the 

application until replication confirms that the update has been received by the 

subscriber. The return twosafe service enables fully synchronous replication by 

blocking the application until replication confirms that the update has been both 

received and committed by the subscriber. Using the return receipt service trades some 

performance to ensure higher levels of data integrity and consistency between the 

master and subscriber databases. 

 

2.5.6 Other approaches to performance improvement in transaction models  
 
 
Some transaction models use other techniques to improve performance without relaxing 

ACID properties. Zhang et al.  in 1999 introduced a model which uses a new timestamp 

ordering (NTO) approach that runs both classic transactions and long-running 

collaborative transactions in one system. In this model, in situations when there is a 

crash, the transaction will not fail—instead a new time stamp will be given and the 

transaction will incorporate recent updates and continue as normal. In long-running 

collaborative transactions, NTO uses high priority on the last read or write conflict in 

order to create the correctness criteria. This is through the concept of final 

serialisability, meaning only the last read or write are given priority. 

 

Awan and Younas in 2004 proposed an approach for efficient commit in Web services 

transactions. The approach is called ‘priority commit protocols’. The model uses a 

priority active network scheduling mechanism at each network node based on head-of-

line (HoL) scheduling mechanisms. The reason for using HoL is to reduce the queue 

delay at each network node. The priority scheduling gives preferential priority to high 

priority messages. The benefit of this approach is the improvement of the commit 
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process by the reduction of queues. This is particularly beneficial where Web traffic is 

significant. However, the approach uses the strict ACID approach, which may be a 

drawback in certain situations. 

 

In 2006, Younas and Chao moved in a slightly different direction by presenting a model 

to improve the performance of Web services transactions. The model is based on the 

new tentative commit protocol (TCP). TCP is based on the concept of tentative commit 

that allows transactions to tentatively commit on the shared data of Web services. In a 

situation where there is network or system failure, the transaction is cancelled. The 

protocol restricts tentative holds and thus may improve performance. Even though THP 

improves throughput by increasing the commit chances of a composite Web services 

transaction, the approach can sometimes be disadvantageous, since there may be 

performance degradation due to multiple tentative holds and communications. This is 

why TCP may be better in some contexts. The authors claim improvement in 

performance and in future work throughput will be measured.  

 

On the other hand, Greenfield et al. in 2007 proposed a model called Promise which 

provides a mechanism that clients can use to guarantee that they can rely on the 

valiability of information resources remaining unaffected in the course of long-running 

applications. Promise is an agreement between the client’s application and the services. 

The clients’ application can agree on what resources they need in order to complete 

successfully. The Promise service will look at the request for the resources and decide 

either to grant the request for the promise of the resources or to deny it. Promise is 

similar to the ConTract model of Wachter and Reuter in 1992, which used expressing 

conditions to permit tasks within a workflow to complete successfully. The other model 

that is similar to Promise was introduced by Gawlick and Kinkade in 1995. This model 

reserves access to resources just like the Promise model. 

 

2.6 Commercial and open source transaction protocols  
 
 
Two well-known standards groups for Web services are W3C (2009) and OASIS 

(2009). These groups have been actively involved in developing protocols for Web 

services transactions. The use of the internet to perform transactions is common in the 
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business environment. This area of application is generally known as e-commerce. As 

already discussed, protocols which support loosely coupled environments and do not 

follow the classic locking of the resources, are needed to support transaction processing 

in the new environment. W3C and OASIS have built on research in advanced 

transaction models and have produced some well-defined standard protocols to support 

the new requirements.  The following sections introduce Business Transaction Protocol 

(BTP) and Web Services Transactions (WS-Transactions). Their relationship to the 

research is discussed as is the notion of middleware. A summary of the findings of this 

section is given in Appendix B. 
 

2.6.1 Business Transaction Protocol (BTP) 
 
 
Business Transaction Protocol is a specification realised by OASIS (Little and Freud 

2003). BTP supports transaction synchronisation of participants of services presented by 

multiple independent companies as well as inside a single company. For handling the 

synchronisation of change of state, BPT uses the two-phase completion protocol. The 

two-phase completion protocol impedes transaction throughput because of the locking 

of the resources during the process, but it ensures consistency. However, in some cases, 

as discussed below, this approach is stronger than is necessary. Figure 9 shows the BTP 

Stack which supports two types of transactions. These are atom transactions and 

cohesion transactions.  
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Figure 9 BTP stack (Little and Freud 2003) 

 

2.6.1.1 Atoms transactions 
 
 
Atoms transactions are similar to the classic ACID model, which is that the whole 

transaction takes either place or nothing. Thus all the participants in the related Web 

services will see the same outcome, and either they accept it or reject it.  

 

2.6.1.2 Cohesion transactions 
 
 
The main idea in cohesion transaction was to relax atomicity and this allows certain 

work to be completed or cancelled based on the main business rules. Because of this it 

means that there could be a different transaction outcome to all-or-nothing. Thus 

transactions can complete even if some work has been rejected. In this case, compared 

to atoms transactions, the two-phase protocol gives the user a choice to define which 

This item has been removed due to third party copyright. The unabridged version of the thesis can be 
viewed at the Lanchester Library, Coventry University.
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atom participants or standalone participants to prepare or cancel. It is a good idea when 

using cohesion transactions to divide a work into units of transactions. This assists in 

situations where the business activity encounters some situations in which it is useful to 

cancel the atomic unit of a transaction with a warning and a confirm-set. A confirm-set 

is a set of all participants that have to confirm in order to terminate the business activity. 

Once the confirmation participants’ answers have been determined, the whole cohesion 

transaction becomes an atoms transaction, resulting in all confirmation participants 

seeing the same outcome. BTP allows relaxation of atomicity and isolation, and by so 

doing, it allows tentative states of change during transaction processing. The completion 

of a transaction is either confirmation or cancelling. BTP does not state how to 

implement prepare, cancel or confirm. The advantage of BTP is being able to control 

time between phases, meaning the application is able to choose the interchange, which 

has been prepared before the termination. That is, BTP lets the participants inform the 

coordinator well in advance what the decision will be and when it will be taken. For 

example, the participants might say they will remain prepared for 24 hours and after that 

they will cancel. This is known as forward operation and in the case of group 

participation the services use the participants to supervise the outcome of the results. 

The participants can leave the transaction at any time after the participants have 

prepared. The leaving of a participant also shows that the participant is not interested in 

the outcome of transaction. 

2.6.1.3 Qualifiers 
 

 
To take care of the long-running and loosely coupled environment, BTP introduced 

Qualifiers. The main purpose of a Qualifier is to provide additional extended 

information within the protocol. BTP gives the user the flexibility to extend the 

Qualifiers’ implementation to suit the application requirements. For instance, it provides 

Qualifiers like Time Out, when users can specify how long a transaction may be 

allowed to wait before it times out. Allowing flexibility is a good thing, since the 

protocol can be tailored, and this allows different applications with different needs to 

use the protocol. 

 

 

 



42 

2.6.1.4 Relationships in BTP 
 
 
The relationships in BTP are of Superior-Inferior type. The superior is always the 

leader of the inferior. Superior is the one conveying the results. It can send the 

CONFIRM to some atoms and CANCEL to others, provided it is composer of the 

cohesion (see Figure 10). 

 

 

 

Figure 10  BTP superior-inferior relationship (Little and Freud 2003) 
 
 
Superiors can be composers, coordinators, sub-composers and sub-coordinators, and 

inferiors can be sub-composers, sub-coordinators and participants. The coordinator of 

the atoms sends the same outcome to the inferiors. In the superior-inferior hierarchy, the 

sub-composers and sub-coordinators are inferiors to parent nodes in the trees but 

superior to the children nodes. 

 

2.6.1.5 BTP transaction participants 
 
 
Just like in any other transaction, there are participants taking part in the transaction. 

BTP have different types of participants, which are the initiator, the factory, the 

This item has been removed due to third party copyright. The unabridged version of the 
thesis can be viewed at the Lanchester Library, Coventry University.
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coordinator, the terminator, the services participant and the enroller. The initiator is 

responsible for starting the transaction depending on the program request. The request 

containing information will be sent to the coordinator that will control the process. To 

start the coordinator the initiator uses the factory. Again, the factory generates the 

framework of the business transaction. The principal participant in BTP is the 

coordinator, which is responsible for taking care of two-phase commit protocol. The 

coordinator gets the information of the transaction outcome of the participants from the 

terminator. The communication system from the inferior side is the services participant. 

This works hand-in-hand within the enroller by passing the message it received from 

the initiator to it. The participants act according to the information context request they 

received from the enroller. The terminator gives the final decisions to the coordinator of 

confirm or terminate. 

 

2.6.2 WS-Transactions (WS-Tx) 
 
 
WS-Transaction is a specification developed by BEA, IBM and Microsoft which 

describes the means for transactional interoperability between domains and provides a 

mechanism to combine transactional groupings of Web services into applications 

(http://www.ibm.com/developerworks/library/specification/ws-tx/) Figure 11 shows the 

relevant components for WS-Transaction.  WS-Transaction supports two transaction 

protocols: WS-AtomicTransaction for short duration ACID transactions; and WS-

BusinessActivity for long duration business transactions (Cabrera et al. 2009a and 

2009b).  WS-Transaction also works with the WS-Coordination specification. WS-

AtomicTransaction and WS-BusinessActivity can be combined in situations of business 

transactions that are generally long-running, and which can be made up of several sub-

transactions that are atomic. 
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Figure 11 WS-Transaction components (Cabrera et al. 2001) 
 
 
 

2.6.2.1 WS-Coordination 
 
 
Web services require management concerning transaction management, replication, 

workflow, caching and security. WS-Coordination (Cabrera et al. 2009c) is responsible 

for the management of Web services, i.e. the outcome and the processing. The most 

important part of WS-Coordination is the provision of generic coordination 

communications for Web services.   

 

The generic infrastructure or communication of WS-Coordination enables the 

possibility of plugging in specific coordination protocols, for example a protocol for 

This item has been removed due to third party copyright. The 
unabridged version of the thesis can be viewed at the Lanchester 

Library, Coventry University.
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transaction management for security. Little and Freund, in 2003, pointed out that these 

specific protocols work between the services. The coordinator or manager is responsible 

for directing all the messages to the correct participants. The coordinator is responsible 

for disseminating information about the votes in this case to all participants and 

ensuring that all of them get the information. The context message directed to the 

participants can be commit or abort, depending on the number of votes received from 

participants. 

 

New participants can opt for this context message to include the location or the endpoint 

of the coordinator. The context also includes protocol-specific information in relation to 

the actual coordination protocol used. Contexts use a SOAP header to encode messages 

and WSDL to use a synchronous invocation style for sending requests. According to 

Cabrera et al. (2009 c)., the coordination framework includes three elements, activation 

service, registry service and coordination service, which represent the basic 

responsibilities of all different kinds of coordination protocols between collaborative 

services.  

 

The activation service concentrates on creation of a new activity coordinator for a 

particular application instance. The activation service also enables the nesting of 

activities, indicating the association between new and existing activities. The 

coordinator uses a specific coordination protocol, for example protocol configuration 

and negotiation, which defines the negotiation between the Web services to determine 

which coordination service model is to be used. It also defines the process for 

communicating the results of a process. The registry service is responsible for 

guaranteeing that registered Web services are driven through to completion by using the 

selected protocol. The coordination service focuses on the definition and provision of 

processing patterns. For example, the strict ACID transaction service provides a 

protocol that defines a sequential processing: prepare, commit and rollback.  

 

2.6.2.2 WS-AtomicTransaction (WS-AT) 
 
 
There is a need to support short-running transactions. WS-AtomicTransaction (WS-AT) 

is a protocol designed for this purpose. The initiator process begins the transaction 
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protocol and the transaction coordinator controls the transaction protocol. The general 

purpose of the protocol is to ensure that the initiator and the participants agree on the 

outcome of the transaction.  

 

The WS-AT specification provides the description of the atomic transaction 

coordination type that is used with the extensible coordination framework described in 

WS-Coordination. This specification defines three specific agreement coordination 

protocols for the atomic transaction coordination type: completion, volatile two-phase 

commit and durable two-phase commit. The completion coordination type states that 

the completion protocol starts the commit processing, according to the participants 

registered by the protocol. 

 

When the transaction is in process the coordinator will receive either a commit or 

rollback message and then executes the volatile 2PC protocol prior to proceeding 

through to the execution of the durable 2PC protocol. A status (either a committed or an 

aborted message) of the transaction is transmitted back to the initiator of the 

completion. Because WS-AT supports classic ACID transactions and is intended for 

short-duration interactions among trusted partners, the coordinator directs all 

participants to either commit or cancel using well-known 2PC protocol.  

 

2.6.2.3 WS-BusinessActivity (WS-BA) 
 
 
WS-AT specification works the same way as the traditional 2PC ACID transactions. 

Therefore it is too rigid and not practical for long-running transactions. To avoid issues 

caused by WS-AT in long-running business transactions, a second coordination type 

called WS-BusinessActivity specification (Cabrera et al. 2009 c) was introduced. This 

specification defines protocols that allow existing business process and work flow 

systems to interoperate. A business activity usually consumes many resources, spans 

multiple atomic transactions (even human interaction), and can require a long time to 

complete.       

 

An important aspect of WS-Transaction (see Figure 12) that differentiates it from 

traditional transaction protocols is that a synchronous request/response model is not 
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assumed. This model derives from the fact that WS-Transaction is layered upon the 

WS-Coordination protocol, the communication patterns of which are asynchronous by 

default. WS-Coordination provides only context management. It allows contexts to be 

created and activities to be registered with those contexts. WS-Transaction improves the 

context management framework provided by WS-Coordination in two ways. First, it 

extends the WS-Coordination context to create a transaction context. Second, it 

augments the activation and registration services with a number of additional services 

(Completion, CompletionWithAck, PhaseZero, 2PC, Outcome Notification, 

BusinessAgreement, and BusinessAgreementWithComplete) and two protocol message 

sets (one for each of the transaction models supported in WS-Transaction) to build a 

fully-fledged transaction coordinator on top of the WS-Coordination protocol 

infrastructure. WS-BusinessActivity, unlike WS-AtomicTransactions, is proposed for 

long-duration transactions. The protocol provides ACID-relaxed transactions among 

loosely coupled systems where locking resources is impractical or not desirable. 

 

 
 

Figure 12  WS-Transaction overview (Cabrera et al. 2001) 
 
 

This item has been removed due to third party copyright. The unabridged version of the thesis 
can be viewed at the Lanchester Library, Coventry University.
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The advantage of the protocol is the fact that sub-transactions may commit 

autonomously of each other without having to wait for the root or parent transaction to 

commit. In case of a sub-transaction failure, the client driving this business process may 

decide whether the overall transaction should abort or simply ignore the failed sub-

transaction. Compensating actions are used to undo completed child tasks in the case of 

transaction abort. On the other hand, the theory that all service operations can at all 

times be compensated is not rational. When the number of transactions having access to 

transitional results increases, the compensation of some operations becomes either too 

expensive or even impossible. 

 

WS-BusinessActivity relaxes isolation, that is to say results of completed tasks within 

business activities can be seen prior to the completion of the business activity. These 

tasks are in fact tentative and when they need to be compensated, business logic is 

necessary to make it possible, especially if a business activity spans a long period and 

has numerous participants which rely on the outcomes of the task that is to be 

compensated. The WS-BusinessActivity specification provides the definition of two 

Business Activity coordination types: AtomicOutcome or MixedOutcome. These are to 

be used with the extensible coordination framework described in the WS-Coordination 

specification. AtomicOutcome deals with atomic outcomes and does not relax atomicity 

since all the participants in the direction commit or abort; it is all-or-nothing. The 

coordinators that deal with mixed outcomes relax atomicity, since they lead each 

individual participant to close or compensate. For example if T1 is a parent transaction 

which has children T2, T3 and T4.  Let us say T2 and T3 can commit but T4 cannot. The 

parent transaction T1 can still commit, even if some parts of the transaction, i.e. T4, did 

not commit. The protocol maintains consistency by the use of compensation.  

 

The WS-BusinessActivity protocol specification introduced the relaxation of isolation 

and atomicity, which is useful for long-running transactions. To maintain consistency 

the protocol relies on compensation, which may be costly, especially when 

compensation has to be used repeatedly to make the data consistent at the end of the 

transaction. 
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2.7 Comparison of the different approaches 
 
 
The various approaches investigated have been compared in terms of: the ACID 

properties that are relaxed; distinguishing features; customisability; how inconsistency 

is handled; and whether second chances may be given to the user to reconsider 

requirements. The results of the comparison are tabulated in Appendices A and B.  The 

results were analysed and a summary of the findings is provided in Table 1.  

 
 
 
Table 1 provides summarised information about the models evaluated in the literature 

review in terms of their relaxation of ACID properties. There was no model that 

allowed relaxation of all properties (as shown in Table 1). Combinations of properties 

not shown in Table 1 were also relaxed by no models.   Figure 13 represents the 

findings as a pie chart. 

 

 
Table 1 Summary of relaxation of ACID properties 

 
  
ACID Relaxation Number of Models 
No Relaxing of ACID properties 11 
Atomicity Relaxation 5 

Consistency Relaxation 7 

Isolation Relaxation 12 

Durability Relaxation 4 

Atomicity and Isolation Relaxation 13 

Atomicity, Consistency and Isolation Relaxation 1 

Atomicity, Consistency, Isolation and Durability  0 
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Figure 13 Pie chart showing summary of relaxation of ACID properties 
 

 

So far no approach allows customisable relaxation of any combination of ACID 

properties nor permits service consumers to reconsider requirements if the relaxation 

requested is not compatible to the business requirements of the provider. It was felt that 

such a system would be beneficial, particularly for Web application developers, who 

may wish to experiment with various relaxation strategies. Hence the development of 

the Adaptable user-defined Transaction relaxing Approach  (AuTrA) which is described 

in Chapters 3 and 4. 
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2.8 Summary 
 
 
This chapter has provided an overview of the technologies and ideas from related work 

that are relevant to this thesis. Previous work from both academia and commerce in 

transaction management has been presented. Many models have been proposed 

previously for relaxing ACID properties in the context of Web services. The models 

proposed in the literature have benefits. For example, not holding resources when 

relaxing isolation is an advantage to long-running Web services applications, because 

holding resources can lead to deadlocks or can slow down processing time, which could 

in turn lead to loss of revenue. Similarly allowing sub-transactions to complete when 

the composite transaction fails can save on rollbacks without losing consistency in some 

cases. Most of the work that has been investigated has relaxed atomicity and isolation 

but some has relaxed consistency. Some major commercial players have also relaxed 

durability. Some of the work investigated allows users to select what relaxation might 

be appropriate for their applications.  None of the related work allows relaxation of all  

ACID property with or without customisation. AuTrA will provide this facility.   

AuTrA is described in the next chapters. 
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3.1 Introduction 
 
 
This chapter introduces the Adaptable user-defined Transaction relaxing Approach 

(AuTrA). AuTrA is the system developed by this research to provide more flexible 

support for transactions in a Web services environment. Its main characteristic is the 

support for customisable relaxation of each of the ACID properties. In this chapter, 

firstly the motivation for developing AuTrA is considered. Then the relaxation of each 

of the ACID properties is discussed with consideration being given to correctness in 

AuTrA. Finally the idea of using application-specific criteria in addition to ACID 

criteria to improve composite transaction success rates is presented. 

 

3.2 Motivation to develop AuTrA 
 

The Adaptable user-defined Transaction relaxed Approach (AuTrA) model is proposed 

to support Web services transactions. This model builds upon previous work in allowing 

customisable relaxation of all four ACID properties, as well as enabling application-

specific criteria to be used to increase the success rate of transactions. AuTrA enables 

varying relaxation of ACID properties, based on user-defined relaxation of atomicity 

and isolation, and adaptable relaxation of consistency and durability, based on provider 

requirements. In AuTrA, correctness of data is ensured by various techniques. These are 

compensation, synchronisation, tentative hold and relaxation specification. 

Additionally, application-specific criteria can be specified to reduce transaction abort 

and restart. 

 

Web services transactions are often of long duration and may be initiated from or 

executed at globally disparate locations. It is therefore difficult to verify in advance the 

release of the resources held by transactions. This can affect the performance of the 

system, which in turn affects the business. This factor harshly affects the throughput of 

transactions. The following are generic dimensions that are relevant to transaction 

support for different areas of application: 

 

• The interaction between the resources involved may be synchronous, i.e. 

occurring at the same time, meaning that two different users or transactions may 
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require one resource at the same time; or the interaction may be asynchronous, 

namely a resource may not be required at the same time by different 

transactions. 

• The users may not be in the same geographic location. 

• Since the nature of work is long-running, the duration of the work may not be 

known in advance and is volatile.  

• The resources used allow sharing.  

 

The research question (see Section 1.4) was:  

 

Can transaction support for Web services be customised to suit the needs of 

varying applications and result in improved service? 

 

Building on from the research question, a research aim was established (see Section 1.5) 

and this was to develop a system that increases throughput while maintaining the 

consistency and correctness required by particular applications. 

 

It was conjectured that the above aim could be achieved by relaxing some of the ACID 

requirements that are used in traditional transaction processing.   Therefore, the research 

had to consider what properties could be relaxed. We see from the literature review that 

atomicity, isolation, consistency and even durability can be relaxed.  The circumstances 

and consequences of relaxing these must be carefully considered. In related work, the 

most common of the criteria to be relaxed are atomicity and isolation. Some research 

has also investigated relaxing consistency. Few researchers have relaxed durability. 

However, the commercial companies have relaxed durability in in-memory databases. 

No work has relaxed all criteria within the same model with the particular relaxation 

pattern customised according to the user. Can all or any ACID properties be relaxed in 

one model if the need arises? And if so, is the application still a transaction? The answer 

to this question depends on the definition of a transaction.  If the definition includes the 

requirements that ACID properties are maintained, then relaxing any can lead to 

discussion as to whether the process concerned may still be termed a transaction.  

However  as we have seen in Chapter 2, many extended models of transaction 

processing have been developed which permit some relaxation of these properties thus 

implying a less restricted definition of a transaction.  The definition of a transaction in 
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this work is discussed in more detail in chapter 5. In the analysis of the past research it 

can be seen that it is very common that atomicity and isolation are relaxed in one model, 

or that each ACID property is relaxed individually in one model. This can be seen in 

appendices A and B and in the summary in Section 2.7.  It can also be seen that no 

model allows relaxation of all or any of the ACID properties.  Another question is, what 

type of user should have control over the transaction?  Is it the consumer or the 

provider? The relationship between these parties, their data, the nature of the service 

and requirements of the application needs to be considered in order to answer this 

question. Is it the service provider or the consumer who should have the final say as to 

what can be relaxed, considering the business requirements and sometimes the 

criticality of the information? The consumer may want transactions to run quickly but 

the provider may not be prepared to allow this if it compromises data integrity. In the 

following sections, the issues of relaxing each of the ACID properties are explored.  

 

3.3 User-defined atomicity 
 
 
The AuTrA system gives a provision of both strict atomicity and fully relaxed 

atomicity. By strict atomicity, it is intended that the system works in the same way as 

the classic ACID model. This is important in a situation where there is a need to 

preserve atomicity. For example, consider that Chris has to make a bank transfer by 

debiting one bank account X and crediting the other, Y. Assume only the first 

transaction of debiting account X was completed, and that the crediting of account Y 

failed. In this case the whole of Chris’ transaction has to fail. It is all-or-nothing, and in 

this case the data integrity is very important. If the whole transaction does not fail, it 

means that Chris will lose the money he debited from the account, and he will have to 

try again to credit account Y, by debiting account X for a second time. 

 

Nevertheless, there are situations where relaxation of atomicity is desirable. For 

instance, there are scenarios in which there is no need to waste the work done before by 

aborting the whole transaction. For example, consider travel arrangements to go for a 

skiing holiday. The user will need a flight to the holiday location, a hotel and the rental 

of skis. The user might not mind whether all of the services are booked or not. When 

atomicity is relaxed, in the case where the booking of flight is completed but the ski and 
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hotel bookings fail, the flight booking can be committed rather than be wasted by failing 

with the rest of the transaction.  

 

Therefore, allowing the user to say if they want to relax atomicity or not should be 

provided by the system. The user of the transaction must decide whether it is important 

to maintain atomicity or not. In the case of a bank transfer, the user may insist on 

atomicity maintenance but in the case of the holiday booking the user may decide to 

relax atomicity. The user or service consumer therefore owns the decision over the 

relaxation of atomicity. 

 

As much as the user has the power over the relaxation of atomicity, the system also 

allows the user to decide on the correctness of the composite transaction. This is done 

before the user starts the transaction processing. So if the user is saying, ‘Yes, relax 

atomicity’, it means that the user is happy that all or any of the bookings of flight, hotel 

and restaurant are done. That defines the correctness criteria of the transaction. In other 

words, it is okay if not all component transactions complete successfully. If the user 

wants the correctness criteria of the transaction to be different, the user might choose 

strict atomicity. It might be argued that a typical end-user does not have sufficient 

knowledge on whether or not to relax atomicity. This could be true, but the area in 

which AuTrA is intended to be applied is the area of middleware. It is envisaged that 

application developers will utilise AuTrA to develop systems that are user-friendly and 

that will support users in providing their appropriate application needs. Thus software 

developers will analyse the application area, and in discussion with the users will 

determine the types of application where relaxation of ACID properties like atomicity is 

appropriate.  In any case, as will be explained later in Section 3.5, the service provider 

or data owner is in charge of consistency. Any request for relaxation received from a 

user that does not fit with the integrity requirements of the provider, will be refused.  

Application systems to help the user specify relaxation requirements can be developed.  

For example, where an interface might say:  

 

“You have asked us to book a flight, a hotel and skis. If we can’t get all three do you 

want us to book some of the others anyway?” 
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The above is a question that can determine whether a user is prepared to relax atomicity 

or not and is a question posed in a user-friendly way.  

 

Relaxation of atomicity mainly has an impact on the service user or consumer, which is 

the reason why the AuTrA gives the service consumer the final say over the relaxation 

of atomicity. If relaxation of atomicity would cause the underlying database to be 

inconsistent, then the criterion of consistency would come into play, which is controlled 

by the service provider (see Section 3.5). Hence correctness of the database can be 

maintained. 

 

3.4  User-defined isolation 
 
 
Similar to atomicity, the system will allow both full isolation and relaxed isolation. Full 

isolation protects executing transactions from seeing each other’s incomplete results but 

does mean that transactions can be delayed for long periods. Isolation allows multiple 

transactions to read or modify data without knowing about each other because each 

transaction is isolated from the others. This is achieved using low-level synchronisation 

protocols on the underlying data. These can include two phase locking, time stamp 

ordering or pessimistic locking. For relaxation of isolation, the system mechanism 

processes the transactions concurrently. This is needed in areas where sharing of data is 

common and where, processing composite Web transactions would otherwise incur 

many delays through lock-outs.  

 

AuTrA enables the user to specify whether isolation is relaxed or not. In AuTrA, if a 

user of a transaction specifies that isolation may be relaxed, the user is in effect saying 

that it does not mind if the transaction reads some data that may not be committed yet. 

In non-critical applications, this drawback may be insignificant and may be quite 

preferable than slower throughput. Provided the requested relaxation of isolation can be 

restricted to the requesting transaction in that only that requesting transaction is 

affected, then the relaxation of isolation can be owned by the user. If the relaxation of 

isolation could cause serious damage to the underlying database, the transaction user 

should not relax it. Thus it is the nature of the application, the function of the 
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transaction and the user’s awareness of this that will determine whether isolation should 

be relaxed or not.   

To determine whether or not the system might relax isolation, the application 

developers will need to thoroughly analyse the application. In terms of user interface, 

the system, in the case of a holiday booking application, might ask: 

 

“Do you mind whether we use information that might not be guaranteed to be the 

absolute latest information when we check whether flights, hotels and skis are 

available?” 

 

AuTrA uses tentative hold when atomicity has to be maintained and isolation is relaxed. 

In this case, multiple holds can be allowed, but as soon as the resource is not available, 

the other parties holding the same resource will be notified. In this case, all the 

transactions will see the correct information but as soon as the correctness no longer 

holds, the other transaction will know that the resource is not available anymore.  

 

Consumer relaxation requirements 

Atomicity  Consistency Isolation Durability 

No Yes No No 

 
 
 

Provider relaxation requirements 
Atomicity  Consistency Isolation Durability 

Yes Yes No No 

 

Figure 14 Non-matching consumer and provider relaxation requirements: Example 1. 
 
 
If relaxation of isolation would cause the underlying database to be inconsistent, then 

the criterion of consistency would come into play, which is controlled by the service 

provider (see Section 3.5). Hence correctness of the database can be maintained. 
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3.5  Adaptable consistency 
 
 
When it comes to relaxation of consistency, the system allows both full consistency and 

relaxation of consistency. It is important to leave data in a consistent manner. This 

applies to areas where inconsistent data can lead to catastrophic decisions being taken. 

That is the reason why there is still a need for strict consistency. For example, leaving 

financial data with figures that are more than what is really in an account can result in 

the account holder making big purchases, while in reality the money in the account is 

not enough to go ahead with the purchasing. However, there are some scenarios in 

which relaxation of consistency cannot do any harm and may instead add value like 

increased throughput. This implies to circumstances like booking ski equipment for 

hiring. In this case, even if the information is not correct, and the numbers of what is 

available are not correct, there might be a way of dealing with that. For example, 

imagine the ski equipment shop continues to book, even if the amount of equipment 

available is negative the shop owner might have a backup of borrowing from a 

neighbouring shop that has more than they need. With this mechanism in place the 

transactions can be processed even if it appears that consistency rules are being broken, 

as there is no possibility of catastrophic decisions being made. The worst event that can 

happen is that a hirer comes to the shop and no skis are available. Whilst annoying, that 

sort of event is not a critical one. In fact, businesses like airlines routinely overbook 

seats and shops take orders without being absolutely sure whether they can fulfil them 

or not. In these real-life situations, examples of compensating actions are refunds of 

money for airline seat bookings that are not honoured and cancellation of retail orders 

that cannot be fulfilled. Sometimes financial compensation may be offered. 

 

In AuTrA the service provider owns relaxation of consistency. That is to say, unlike 

atomicity and isolation, the service provider has the final say over the relaxation of 

consistency. If the service provider sees that the relaxation of consistency damages data 

integrity, the service provider will not relax consistency. Even if the user wants to relax 

consistency, the service provider will not relax consistency if integrity is crucial. In this 

case the system, instead of rejecting the user transaction outright, will give the user a 

chance to rethink the requirements in line with the service provider’s needs. 
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Database consistency is specified through consistency rules such as “the number of 

seats booked on plane X should not exceed the total number of seats on plane X”.  In 

the case of replicated databases, a consistency requirement might be that the value of 

each replicated item is the same. Pre and post transaction rules might also be specified.  

For instance a precondition of ordering an item might be that the quantity of that item in 

stock is greater than 0. A post-condition might be that the quantity of that item in stock 

is 1 less than the quantity of that item in stock at the start of the transaction.   

The service provider is responsible for consistency maintenance of the databases used. 

The consistency rules might be specified within the database but the service may be 

given the power to override them if the business considers this to be appropriate. It 

could be, however, that the database does not have a full set of consistency rules. The 

service provider can only maintain the rules that exist. That is, the service providers of 

component transactions have an agreement or “contract” with the database owner on 

what can be relaxed and what cannot.   

 

A consistency definition in a database might be: 

 

Consistency:  A = number of resources (e.g. seats, capacity) 

   B = number of bookings 

Consistency Requirement: B <= A  

 

If relaxation of consistency is not permitted in the contract, consistency may not be 

relaxed by any subsequent transaction and the service provider will ensure this. 

However, if in the case of a particular application the business thinks it could be useful 

sometimes to relax a consistency requirement such as above, then the service provider is 

permitted to relax consistency. The service provider might then decide to relax rules like 

the above to increase throughput and improve business, for example thinking that even 

if stock is not available at the moment it can be procured later after the orders have been 

received. Thus the service provider in some circumstances will decide to relax 

consistency.  In some circumstances the user may request that consistency be relaxed in 

order to increase throughput. In this case, the service provider would say yes or no 

depending on the back-end application requirement. If the data is such that consistency 

cannot be relaxed, then AuTrA will allow negotiation between the service provider and 

the user. The service provider will ask the user to rethink the requirement. If the user is 
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prepared to accept that consistency cannot be relaxed, then the transaction can go ahead.  

Otherwise the transaction will be refused. The advantage of allowing negotiation is that 

it will lead to the acceptance of more transactions rather than just rejecting those where 

the consistency maintenance requirement varies between the consumer and the service 

provider. Figure 15 shows the relationship between consumer-specified requirements 

and provider relaxation specification in the context of AuTrA. 

 
 

Consumer relaxation requirements 
 

 Atomicity Consistency Isolation Durability 
T1 Yes Yes Yes Yes 
T2 Yes Yes Yes Yes 
T3 Yes Yes Yes Yes 
T4 Yes Yes Yes Yes 
,,,,, Yes Yes Yes Yes 
T20 Yes Yes Yes Yes 
     
 

 
 

 
 
 
 
 

 
  

 
  Provider relaxation requirements 

 
Figure 15 Consumer and provider ACID relaxation specification 

 
 

This mechanism of allowing the users to rethink the transaction requirements is useful 

for both the service provider and the user. That is, the service provider might not need 

to reject the transaction, resulting in costly compensation being avoided. On the other 

hand, in the situation where the user has chosen to relax atomicity, it means that the part 

of the transaction which does not violate the consistency requirements can commit even 

Atomicity Consistency Isolation Durability 
Yes No Yes No 

 
Negotiate 

Some user requirements (consistency and 

durability relaxation) not allowed by the 

service provider relaxation specification. In 

this case, the service provider asks the user to 

rethink i.e. is the user happy if not all 

requirements are met. 
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when other parts of the transaction have violated consistency requirements and need to 

be aborted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 16 Negotiation process 
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Additionally there are situations in which the user may not wish to relax consistency but 

the provider might. Note that atomicity and isolation are determined by the consumer; 

consistency and durability are determined by the provider. Consider the example shown 

in Figure 17:  Jake’s requirements include not relaxing consistency even if the provider 

is prepared to relax it. In this case, the user has the final say on what will be relaxed. 

The provider has the final say on consistency if the request is to relax consistency, but if 

the user requests that consistency be maintained, then it is maintained even if the 

provider was prepared to relax it.  

 

Consumer relaxation requirements 

Atomicity  Consistency Isolation Durability 

No No No No 

 
 

Provider relaxation requirements 

Atomicity  Consistency Isolation Durability 

No Yes  No No 

 
Figure 17 Non-matching consumer and provider relaxation requirements:  Example 2 

 

3.6   Adaptable durability 
 
 
Data consistency is very important in business, and consistent data must be persistent at 

the end of the transaction. Nevertheless, there are some situations in which it is not 

necessary to save data. A system may have some mechanisms that assist in allowing full 

durability or relaxed durability. For full durability at the end of the transaction all the 

data has to be permanent. This is important in an area where the data needed is vital. 

Thus, not making the data permanent might make the whole business dangerous. For 

example, imagine that Doctor A at the end of the consultation does not save the 

information of Patient B, who is allergic to penicillin. After some weeks, Patient B goes 

to consult Doctor C. Doctor C prescribes penicillin to Patient B without knowing that it 

is harmful, because there is nothing in Patient B’s record showing that; the transactions 

which were supposed to show that were not saved. In this scenario, durability must be 

strict. 
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However, there are some situations in which data does not need to be permanent. This is 

true in a situation where there is a large volume of data that needs to be processed a 

limited time. In this case, saving of data can be time-consuming, which is a drawback to 

business when fast transactions have to be processed. An example is in the case of 

sensors, where a lot of data will be coming in and, if the readings are coming very fast 

and saving is done, it can result in the whole process being slowed down. It might not 

matter if the writing of one or two readings is missed. Another example is the ski hire 

shop. Normally an order for ski hire comes in and it is written to the database and the 

user is issued with a slip to say the hire is agreed. If the system gets really busy and 

there is no time to update the database or if the database goes down, the shop may carry 

on taking orders and issuing agreements without updating the database. The owners 

may decide to update the database later when business is quieter using the agreement 

records sent by email, or even may decide not to update the database at all, hence 

relaxing durability altogether. In the latter case, the recording exactly of who has hired 

skis is not crucial to the business. Typically system mechanisms have two ways of not 

saving data, i.e. relaxing durability and not tidying up at the end, or relaxing durability 

and tidying it up at the end. By ‘at the end’, the time when everything is done and the 

server is not busy anymore is intended—in other words, when the server is free to do 

some more jobs. Then the system mechanism that allows the service providers to 

transfer the data from the memory into the permanent place might or might not make 

the data in the memory permanent, depending on the importance of durability to the 

application. 

 

Similar to consistency relaxation, in AuTrA, the service provider owns relaxation of 

durability. The question that might arise when relaxing durability and not making the  

data changes permanent at the end is whether the data  information is left inconsistent. 

This is could be the case. However, the system gives the service provider a choice of 

making the data consistent later (through delayed saving), and if the services provider 

chooses not to do so, it means that it is acceptable for the data to be left in an 

inconsistent way in that particular application. This latter situation would only arise if 

the consistency property is relaxed. The service provider can enforce consistency by not 

allowing the consistency property to be relaxed. However, relaxing durability even 

when maintaining consistency can still lead to inaccurate representation of the real-

world situation. For example, a consistency requirement might be that the number of 
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orders of Product A is less or equal to the number of Products A held in stock. Let us 

assume there are 20 instances of Product A in stock and orders for 15 of Product A. A 

new order comes in for 3 of Product A. This order does not break the consistency 

requirement as 18 is less than 20 and therefore is accepted but is not made durable. Thus 

the database still says there are only 15 orders for Product A, even though 18 orders 

have been accepted. This is an example of the database not representing an accurate 

picture of the real world even though the consistency requirement has been maintained. 

 

Let us consider again how the consistency property can relate to the durability property. 

To illustrate the relaxation of durability, it is assumed that Perry decides to book 20 ski 

passes. The provider decides to relax durability and not to tidy up at the end of the 

transaction. The provider also does not relax the consistency requirement that before a 

booking is made there must be enough items in stock to satisfy the booking. Perry’s 

booking results in nothing deducted being from the system, and coincidently there were 

only 20 tickets left, which means that when John comes to book 20 tickets, booking is 

possible and there will still be 20 tickets left afterwards as durability is still relaxed. The 

system allows the booking because there are tickets available according to the database 

and the consistency rule is not broken, as when the bookings are made there seems to be 

enough passes available. In this case, the maintenance of the consistency rule has not 

stopped an inaccurate representation of the real-world situation in the database. 

 

3.7   Application-specific criteria 
 
 
An additional characteristic of AuTrA is the use of application-specific criteria. 

Application-specific criteria concern the features that are unique to a particular 

application, as opposed to generic features that are applicable to any application. For 

example, when booking a restaurant one of the features that is not in a flight booking 

but is found in a restaurant booking is the type of cuisine. This feature is specific to the 

restaurant booking. On the other hand, there are specific aspects that are similar to both 

applications, like dates. Both the restaurant and flight bookings will be interested in 

dates, but they will be doing something different with regard to those dates, namely one 

will be interested in capturing features that can be attributed to food, such as cuisine 
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type and food preference, and the other will be interested in capturing features to do 

with flights, such as seat preference and dietary needs.  

 

The system allows the users to decide whether they want to use application-specific 

criteria or not in managing the transaction and in determining whether a component 

transaction should fail or not. The system is generic in such a way that it can cater for 

applications that have application-specific criteria or those without. The application-

specific criteria are used when what the user wanted as a first choice is not available. 

The user has a choice of choosing the attributes that can be compromised and those that 

cannot be compromised. For example, the choice can be price of cuisine, type of 

cuisine, or the dates of the booking, so the user might say the dates have to stay as in the 

initial request. For example, the cuisine has to be vegetarian, no compromise, but 

anything else can be compromised to the best possibilities available. This means that a 

transaction that might otherwise fail will succeed when application-specific criteria are 

relaxed. 

 

Application-specific criteria are based on the attributes that are specific to that 

application and that can be compromised. This means that if many attributes can be 

compromised, the read/write sequences will be complex. For example, John, who is 

booking a hotel and flight, might have a one application-specific criterion that can be 

compromised, which is date for hotel. Similarly, Kate might book the same resource 

like John, but for her, she might be prepared to compromise both dates of flight and 

hotel. Because there is extra reading and writing on Kate’s transaction (due to her 

transaction continuing because she has offered greater flexibility), Kate’s processing 

requires more time compared to John’s.  

 

Having said that it is worth noting that Kate’s transaction is more flexible and the 

chances of her transaction failing because of services providers’ not meeting the 

requirements is less than that of John’s transaction. 
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3.8    Summary 
 
 
This chapter has described the motivational concepts behind AuTrA. It delineates 

relaxation of each ACID property as provided in AuTrA. In AuTrA, relaxation of ACID 

properties is adaptable according to consumer requirements and services providers’ 

relaxation specifications. An additional feature to ACID properties that has been 

introduced in AuTrA is application-specific property relaxation. Correctness of the data 

is defined by the service provider through the specification of the requirement of 

consistency. 
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4.1 Introduction 
 
 
In this chapter, the architecture of the proposed system, AuTrA, is explained. AuTrA is 

the system developed by this research to evaluate whether customisable transaction 

support in the Web services environment can be useful. It has been implemented in 

ASP.Net C# and runs in Microsoft Visual Studio 2008 on an SQL server on an IIS Web 

server. It can be regarded as middleware, as it forms a layer between the service 

consumers’ applications and the service providers’ services. An outline of each AuTrA 

component is also given as well as an account of the process flows in the AuTrA system 

for service provider, service consumer and application developer. The notation used in 

the workflow diagrams follows the UML standard (Fowler 2003). Some screenshots 

illustrating parts of the implemented system are also given.  
 

4.2 System overview 

 
 
The structure of AuTrA is given in Figure 18, while Figure 19 shows the context of 

AuTrA . AuTrA has three types of user: a service provider, a service consumer, and an 

application developer/tester. The service provider provides services to AuTrA that can 

be offered to service consumers. A service consumer uses the services provided and 

may compose and run applications based on them. The application developer builds 

applications for service consumers by combining services. The application developer 

helps consumers specify appropriate relaxation criteria. The application developer may 

also test various relaxation criteria by creating batch files of transactions and running 

them in AuTrA and analysing the results. This will help the developer make appropriate 

judgement on which criteria to relax. The roles of service consumer and application 

developer overlap in that both may compose applications based on services. 

 

Let us consider the composition of AuTrA. AuTrA has an interface for service 

consumers, service providers and application developers. It also has a core transaction 

management layer which consists of the following components: Reader, Requirements 

Tailor, Requirements Negotiator, Batch Manager, Processing Timer and Writer. 
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Requirements Tailor: This component will check whether the user’s ACID relaxation 

request fits with the service provider’s requirements.  

 

Requirements Negotiator: This component will give the consumer an opportunity to 

re-specify the transaction requirements.  

 

Batch Manager: This component is responsible for the main processing of the 

applications. In AuTrA, transactions can be run singly or in batches.  The batch 

manager handles both modes and runs the transactions according to the specifications 

set, for instance using concurrent or non-concurrent processing or maintaining or 

relaxing the various criteria.  The batch manager launches the applications and raises the 

calls to the Web services used. It also communicates with the other components and 

thus forms the central hub of AuTrA. 

Reader: This component is responsible for reading from any input objects which 

include the batch files or online input devices.  

 

Processing Timer: This component calculates the processing time of the transactions. 

 

Writer: This component writes the output of the processing.  In the case of a batch run, 

the output will be a file showing the outcome of all transactions in the run and the 

processing time. In the case of an individual transaction run, the output is written to the 

screen.
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Figure 18 High level system diagram for AuTrA 
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 Figure 19 The context diagram of AuTrA
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Let us consider the system workflows from the perspectives of each of the user 

categories. The proposed system workflow from a service consumer’s perspective is 

presented in Figure 20, from the service provider’s perspective in Figure 21 and from 

the developer’s perspective in Figure 22.  

 

From a service consumer’s perspective, AuTrA has the following phases (see Figure 

21): 

 

Input User Requirements phase: This is where the consumer will have to put in the 

requirements of the service they request through a Graphical User Interface (GUI). 

After the users have put in what they want, the requirement will go to the Tailor 

Requirements Phase. 

 

Tailor Requirements Phase: The system takes the consumer’s requirements and 

checks that they satisfy the business requirements or criteria of the component services. 

For example, the business requirements or criteria might be to not relax durability and 

consistency. This phase will check the user’s ACID specified request fits with the 

service provider’s requirements.  
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Figure 20 Proposed AuTrA system workflow: Consumer’s perspective 
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will be allowed an opportunity to re-specify their transaction requirements.  

 

Commit phase: This is the process in which the transaction is committed, the data is 

saved, and confirmation is provided to the user. If durability is relaxed, data saving is 

not required. That is to say, the committed data is not made permanent, and therefore 

working against the classic characteristics of ACID transactions. 
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Figure 21 Proposed AuTrA system workflow: Service provider’s perspective 
 

From a service provider’s perspective, AuTrA has the following phases (see Figure 21): 

 

Register Service phase: This is where the providers who want to use AuTrA will 

register their service. 

 

Specify Requirements Phase: This is where the service provider will have to put in the 

business requirements of the service they provide through a graphical user interface 

(GUI). After the services provider has put in required business requirements, the 

requirements will go to the Save Requirements phase. 
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Save Requirements Phase: This is the process in which the required business 

requirements are saved.  

 

Service Consumed Phase:  After the service has been set up it can be used repeatedly 

by consumers. 
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Figure 22 Proposed AuTrA system workflow: Developer’s perspective 
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Figure 22 shows the AuTrA system workflow from a developer’s perspective.  In 

Figure 22 the main batch processing is shown as iterative or concurrent as the mode of 

processing will depend upon the relaxation specified.  If isolation is relaxed the 

processing will be concurrent.  Otherwise the processing will be iterative. From an 

application developer’s perspective, AuTrA has the following phases: 
 
 
Upload File Phase: In this phase the developer will upload the files that are used to 

experiment with different relaxation choices. 

 

Run Batch Phase: This phase is when the uploaded batches are run. During this 

process transactions will be committed or aborted and a record will be maintained of 

which transactions are successful and which are not, together with timings.   

 
 
 
Get Results Phase: The results of the batch run will be obtained which will show 

which transactions were successful and which were not, as well as the processing times 

for the transactions. The results will be available for both composite and component 

transactions. 

 

Gather Statistics Phase: The output of the batch transaction will be gathered as raw 

data and this will be statistically analysed. The statistically analysed data will help 

developers who are building the application to appropriately advise the users about 

relaxation. 
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Figure 23 Detailed process flow of AuTrA system 
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Figure 23 represents the complete workflow of AuTrA system workflow from all user 

perspectives.  It can be seen that the system allows two forms of interaction: real-time or 

batch-processing-based. The real-time mode would be used by individual consumers 

online when requesting a service or composing an application. Batch processing would 

be used when, say, a company wished to process many transactions at an off-peak time. 

Batch processing may also be used by application developers for experimental 

purposes.  In order to evaluate the AuTrA model, this research used batch processing to 

mimic a real situation, where a lot of users process transactions concurrently (see 

Chapter 5) .In this case AuTrA was configured to have random delays in launching 

transactions from a batch (to mimic live multi-user situations).  AuTrA was also 

configured to allow simulated interaction with consumers for purposes of negotiation 

when there was a mismatch in relaxation specifications. 
 

 

4.3 AuTrA implementation 
 

AuTrA been implemented in ASP.Net C# and runs in Microsoft Visual Studio 2008 on 

an SQL server on an IIS Web server. AuTrA offers the following functionality: 

• Service Registration 

• Application Composition (by selecting registered services) 

• ACID property relaxation specification by user 

• ACID property relaxation specification by provider 

• Application-specific criteria relaxation by user 

• Negotiation of requirements 

• Application execution coordination and monitoring 

• Running of batch files of transactions 

• Providing timings for transaction batch runs 

 

Let us consider the service provider. The front page of the implemented AuTrA system 

for the service provider is shown in Figure 24. 
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Figure 24 AuTrA service provider front page 
 

 

Figure 24 shows that when the service provider logs in they are able to register a new 

service, edit a service or delete a service. When choosing to register a new service the 

provider will have to provide the name of the service, the URL and the service 

description, which will give the user an overall picture of the service provided. 

Furthermore, because the provider is responsible for deciding whether or not to relax 

durability and consistency, the provider will have to specify its position on these items. 
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The position of the provider on these matters could in turn depend on the contracts that 

it has with its database owner clients. The provider can choose to edit the services 

according to their needs. For example, imagine that at the time the service provider first 

registered their services, durability and consistency could be relaxed. This position was 

consistent with the contracts the provider had with its database owner clients. 

Nevertheless, as time went on they realised that the relaxation of consistency was no 

longer acceptable, that only durability could be relaxed; the service provider can then 

edit the consistency from relaxed consistency to strict consistency. Additionally the 

provider can choose whether to tentatively hold the user transaction when atomicity and 

isolation are relaxed by the user. When durability is relaxed the service provider has a 

choice of tidying up the database at the end or not, as discussed in Section 3.5. The 

point being made here is that the service provider can maintain consistency and 

durability when these are essential to the needs of the business and can relax them when 

they are not. As shown in Figure 25, the service provider has a choice of relaxing 

consistency and durability (tidying up at the end or not), and using tentative hold. 

Tentative hold is used to maintain atomicity and to maintain consistency. 
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Figure 25 Service provider options in AuTrA 
 
 
Let us now consider the service consumer. The service consumers can choose to 

compose an application, adding services that they wish to include in the composition. 

Then, after composing application according to requirements, the consumer accepts the 

composite service. A composite Web service is a combination of individual services the 



84 

consumer wants to use in a transaction. For example, in Figure 26, Sarah might choose 

to have a transaction that involves booking a flight to go to Spain for a hen party, a 

venue for the hen party and the restaurant to have a meal before the hen party. 

 

 

 
 

 
Figure 26 Application composition by service consumer  
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Service consumers may also choose application-specific criteria to be relaxed. Using the 

above scenario of Sarah’s trip, Sarah will be able to choose the application-specific 

criteria that can be relaxed. Figure 27 shows how AuTrA offers Sarah a chance to relax 

some requirements. 

 

 
   
 

Figure 27 Application-specific criteria relaxation  
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Note that Sarah had a choice of services that can allow application-specific criteria to be 

compromised. Even in those services that she has allowed to be compromised, it does 

not mean that all the application-specific criteria in those services will be compromised. 

She will choose which requirements she wants to be compromised. For example, Figure 

28 illustrates the selection of criteria which can be flexible when running a particular 

application. The flexibility is determined by the service consumer according to own 

requirements. 

 

 
 

 
Figure 28 Application-specific criteria selection 
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Figure 29 Application-specific criteria process 
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After the service consumer has specified all relaxation requirements, the application is 

run under the control of AuTrA. The processor checks whether the service provider 

allows what the consumer wants to relax in terms of consistency and durability. If 

allowed, the consumer’s transaction will finish with a summary of the transaction 

details. This process is shown in Figure 29. However, if not allowed, the transaction 

will go to a negotiation phase where the consumer is given a choice to re-specify the 

requirement, continue with the transaction, or abort. Keep in mind that the only thing 

Sarah can choose to change when re-specifying the requirement is the relaxing of 

atomicity or isolation. The others are the provider’s choice, or she must abort to restart 

the transaction. If she continues, the service provider’s requirements will be followed. 

 

As mentioned above, AuTrA allows for some negotiation to take place when a user’s 

requirements are not in accord with the service provider’s criteria for consistency and 

durability. Let us consider an example. Mike has some requirements not allowed by the 

service provider. This means that Mike might have asked to relax consistency or 

durability and the services provider did not relax consistency and durability or either of 

them. In this situation the system has a mechanism that will respond to Mike to inform 

him that his request is not allowed. Mike has a choice of continuing — in this case his 

requirements will not be followed where they clash with those of the provider — or 

resetting his requirements to fit those of the service provider, or aborting (see Figure 

30).   
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Figure 30 AuTrA negotiation 
 

4.4 Main classes in AuTrA 

 

This section provides an overview of the main classes and methods used in AuTrA.  

The classes and methods can be grouped according to the main transaction management 

components in AuTrA (see Figure 18 in section 4.2, System overview).  These 

components are Reader; Requirements Tailor; Requirements Negotiator; Batch 

Manager; Processing Timer; and Writer.  The following sections provide more detail of 

the classes used in AuTrA. 
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4.4.1 Reader component 

 

This component is responsible for opening and closing files as well as reading all inputs 

to AuTrA.  The launch of the transaction is also done in this component. The launch is 

done with the communication between the StringParser class and the 

PositionableStreamReader class. 

 

Class: File Reader  

Methods: 

• void openFiles() – opens input file for each registered service. 

• void closeFiles() – closes files opened by openFiles(). 

• User parseLine() – parses one line from each input file, creates new User object 

from obtained data and returns it.  

• Boolean hasFinishedReading() – returns true if any of input file readers reached 

end of the file, otherwise returns false. 

• void initializeParsers() – creates set of parsers corresponding to registered 

services.  

 

Class: InputFormData  

Methods: 

• void setName(String n)  

• void setSurname(String s) 

• void setAdd1(String a) 

• void setAdd2(String a) 

• void setAdd3(String a) 

• void setMobile(String m) 

• void setEmail(String e) 

 

This class collects the consumer’s information from the input form. Each service has its 

own specific implementation of this class.  
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Class: StringParser  

Methods: 

• User parseUserDetails(PositionableStreamReader streamReader) – parses user 

information from input file and creates new User object which is returned. 

• UserData parseLine(ref PositionableStreamReader streamReader, long id) – 

parses one line of the input file and creates UserData object from the obtained 

data. 

 

 Each service has its own implementation of the StringParser object.  

 

Class: PositionableStreamReader 

Methods: 

• PositionableStreamReader(String path) – position the reader in the full path of 

where the reading is supposed to take place. 

• String readLine() – read the consumers input line by line and return the line. 
   

4.4.2 Requirements Tailor component 

 

This component is responsible for tailoring the consumer requirements according to the 

providers where necessary. 

 

Class: ManagerImpl 

Methods: 

• void checkFlags() – checks set of ACID properties requirements specified in the 

input file against the ones supported by chosen services.  

 

4.4.3 Requirements Negotiator component 

 

This component will handle negotiation in cases when the consumer requirements are 

not allowed by the provider. The consumer will be given a choice of rethinking the 

requirements. 
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Class: ManagerImpl 

Methods: 

• void agreeServicesFlags() – agrees set of ACID properties requirements 

specified for chosen services.  

• void agreeInputFlags() – agrees set of ACID properties requirements specified 

in the input files.  

 

4.4.4 Batch Manager component 

 

This component handles the batches and the online interaction.  In the case of the online 

interaction, the running of the composite transaction is treated as if in a batch of 1.  

 

Class: ManagerImpl  

Methods: 

• void runManager(String mode) – starts manager operation in separate thread. 

The manager operation oversees the execution of each thread of work, where 

each thread of work represents a composite transaction. 

• void doWork(object modeObj) – coordinates reading, buffer management and 

writing, and is called by runManager. 

 

Class: Executer  

Methods: 

• void executeUsersRIsolationFalse(List<User> listOfUsers, String mode) – 

executes calls to Web services for each user in the listOfUsers. 

• void tentativeHold() – hold the resource for a certain amount of time.  

 

Class: WebServicesCaller  

Methods: 

• Boolean callWebServices(ref User user, String mode, ref List<UserData> 

servicesToRollback, ref List<UserData> notBookedServices) – executes  each 

chosen service and saves information  on which services completed successfully 

and which did not. The method returns true when all the services (component 

transactions) for a user’s composite transaction have been executed. 
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Class: WebServicesConcurrentCaller   

Methods:  

• void callWebServices(List<User> usersList, String mode, ref List<UserData> 

servicesToRollback, ref List<UserData> notBookedServices) – invokes 

callWebCaller() concurrently. 

• void callWebCaller(Object user) – creates new instance of WebServicesCaller 

and invokes callWebServices() on it.  

 

Class: BufferHandler  

Methods: 

• void appendUser(User  user) – adds user object to the buffer, generating random 

delay first if needed and flushing the buffer when full. The user object represents 

a composite transaction. 

• void generateRandomDelay(int low, int high) – generates random delay within 

given range.  

• void flush() – processes contents of the buffer, writes the output.  

• void clearDictionary() – clears contents of the buffer.  

 

Class: User  

Methods: 

• List<UserData>  userDataList() - lists the userdata for the user.  The user data 

list shows which component transactions  comprise the composite transaction 

and shows the relaxation requirements.  

 

Class: UserData  

Methods: 

• Boolean getrConsistencyFlag( ) – this will return true when the user requests to 

relax consistency.       

• Boolean getrDurabilityFlag( ) – this will return true when the user requests to 

relax durability. 

• Boolean getrAtomicityFlag( ) – this will return true when the user requests to 

relax atomicity. 
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• Boolean getrIsolationFlag( ) – this will return true when the user requests to 

relax isolation. 

• Boolean getcriteriaFlag() – this will return true when the user compromises 

application-specific criteria.  

• void setrConsistencyFlag(String s) – this sets the flag for relaxing consistency. 

• void setrDurabilityFlag(String s) – this sets the flag for relaxing durability.  

• void setrAtomicityFlag(String s) – this sets the flag for relaxing atomicity.  

• void setrIsolationFlag(String s) – this sets the flag for relaxing isolation.  

• void setcriteriaFlag(String s) – this sets the flag for application-specific criteria.    

 

Each service has its own implementation of the UserData object 

 

Class: Criteria  

• Abstract class which keeps information about the selected criteria; each service 

has its own implementation of this class.  

 

Class: CriteriaUtil  

Method: 

• void applyCriteria(ref UserData uData) – applies chosen criteria overriding ones 

specified in the input file.  

 

4.4.5 Processing Timer component 

 

This is responsible for obtaining high precision of time measurements of the transaction 

processing time. 

 

Class: HiPerfTimer   

Methods: 

• void start() – starts the timer when the transaction begins. 

• void stop() – stops the timer according delay time set. 

• double duration() – returns the duration of the transaction processing.   
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4.4.6 Writer component 

 

This component writes the output of the consumers request to an output object.   The 

output includes the outcome for each composite transaction, showing which component 

transactions were successful and which were not. The output also includes the 

transaction processing time. 

 

Class: FileWriter  

Methods: 

• void write(List<User> userList) – writes to the output file information about 

processing outcome for each User object from userList.  

• void addTime() – adds to the output file information about the processing time.  

• void writeOutput(Dictionary<int, List<User>> users) – writes processing 

outcome for each entry in the buffer to the output file. Dictionary is a system- 

defined  name for the buffer.  
 

4.5 Summary 
 

AuTrA is a system that allows service providers to offer services to consumers. 

Consumers may combine these services to make applications or composite services. 

Providers may relax the ACID properties of consistency and durability. The consumer 

may relax the ACID properties of atomicity and isolation and may also request to relax 

consistency and durability. Consumers can also relax application-specific criteria. After 

composing the application from available services, the consumers can either fill in 

online forms to make an individual service request or use the batch processing mode, in 

which a user can upload a set of input files and in that way many service requests may 

be processed together. The next chapter describes the simulation model that was used to 

test the AuTrA model and system implementation.   
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5.1 Introduction 
 
In this chapter the research discusses the key definitions, presents the simulation model 
and the simulation road map which leads to experiments and results presented in 
Chapter 6. 
 

5.2 Definitions of the key terms in the research 
 
 
This research uses the key terms transaction and throughput which are sometimes 

defined differently by different research. McGovern, Stevens, and Mathew in 2003 said 

“A transaction may be thought of as an interaction with the system, resulting in a 

change to the system state, while the interaction is in process of changing state, any 

number of events can interrupt the interaction, leaving the state change incomplete and 

system state in an inconsistent, undesirable form. Any change to the system within a 

transaction boundary, therefore has to ensure that the change leaves the system in a 

stable and consistent state. A transactional unit of work is one in which the following 

four fundamental transactional properties are satisfied: atomicity, consistency, isolation, 

and durability (ACID).” On the other hand, Younas and Iqbal state: “Transaction is 

defined as a unit of work wherein several operations can be treated as a logical work 

performed.” 

 

Definition 1: For this research a transaction is a process which executes a logical unit 

of work a system, intending a change of system state. The logical unit of work may 

consist of a number of individual operations. This research is considering composite 

Web services transactions. The transaction in this research therefore is a composite Web 

Service made up of component Web services. Each component Web service can be seen 

as an individual operation within the composite transaction and could be a transaction in 

the classical sense at the site of the service provider. Unlike McGovern, Stevens, and 

Mathew in 2003, which says the fundamental transactional properties of ACID have to 

be satisfied, this research uses an extended concept of a transaction in that a transaction 

in this research does not need to satisfy the ACID properties. This research considers a 

transaction which follows the rules of correctness agreed between the service consumer 

and service provider to be a transaction, even where this means relaxing classic ACID 

criteria.  
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In terms of throughput, Elnikety et al. in 2004 said “Throughput is the average number 

of successful requests that clients issue per unit time.” The definition for Elnikey et al.’s 

experimentation continues, “If a request fails or times out, it is not included in the 

measured throughput and response time, even though some components of the system 

may have executed parts of the request. Hence throughput is measured only for 

successful requests.” On the other hand, Alrifai et al. in 2009 said: “The overall 

throughput is measured by the number of terminated transactions per second.”  

 

Definition 2: In the case of this research throughput is the number of successfully 

completed composite WS-transactions from a given batch of composite WS-

transactions in which the time characteristics of long-running transactions are simulated. 

To count as a successfully completed composite transaction, at least one component 

transaction has to successfully complete. This is different from the definition by 

Elnikety et al., which says that all parts of the request have to be successful. Our 

definition of throughput is given below: 

 

 

 

 

 

 

 

Definition 3:  In the case of this research, throughput unit time is the average time it 

takes one transaction to complete. This is measured when a batch of transactions are run 

through the system. This measurement is directly related to throughput and is used as 

the defining measure in the experimentation. A lower throughput unit time indicates 

higher throughput. 

 

 

 

 

 

 

 

 
Throughput = 

Total execution time (ms) 

Equation 1 

Number of successfully completed 
composite transactions 

 
Throughput unit time = 

Number of successfully completed 
composite transactions 

Equation 2 
Total execution time (ms) 
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Definition 4: In the case of this research a successfully completed composite transaction 

is considered to be a composite transaction when at least one component has succeeded, 

provided that the correctness requirements set by the user allows for this. If the 

correctness criteria set by the user insists on all components of a composite transaction 

completing successfully then the composite transaction will only be considered to be 

successful if all components have completed successfully. However, if the correctness 

criteria have been set so that atomicity relaxation is allowed, then a composite 

transaction will be considered to be successfully completed if some of its component 

transactions have successfully completed. 

 

Definition 5: In this research successful completion of a component transaction is 

considered to be when the consumer goal was satisfied. For instance, if the consumer 

wishes to book a restaurant on a particular day via a service and the booking is made, 

then that is considered to be a successfully completed transaction. If the booking is not 

made because of a lack of availability, then the component transaction would be 

considered to be unsuccessful. This understanding is in line with our common 

understanding of such consumer tasks. For instance, we might say to a friend, “Did you 

manage to buy that book?” and the friend might answer, “No – I’m afraid I was 

unsuccessful in that task.” The research did not specifically consider other lower level 

types of failure such as logical error, system crash, or network failure. However, these 

types of failure would also result in the consumer goal not being satisfied. Thus at the 

AuTrA middleware level the transaction logic would still be applicable. AuTrA does 

not at present have the functionality to capture these sorts of lower level failures, as this 

aspect lies outside the scope of the research. Commercial middleware systems 

commonly have error-handling functionality, and so this component would be added if 

AuTrA were to be launched as a commercial product.  

 

5.3 Simulation model 
 
 
The AuTrA system was used as a test environment for a number of experiments. The 

experiments were designed to simulate long-running composite Web transactions 

occurring over a period of time. The simulation was achieved by composing an 

application from individual Web services which had previously been created and 
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registered in AuTrA. To simulate such applications executed by various users over a 

lapsed period of time, a batch file approach with random system-generated delays was 

used. Thus sets of calls to the application with various parameters were put into batch 

files and the batch files were used as input to AuTrA.  AuTrA then utilised programmed 

system delays to represent the long-running and event-based nature of such applications 

in real life. Within the batch files various parameters were set to show the relaxation 

requirements of both consumer and provider. During the batch run any requirements set 

by the user which do not meet the service provider’s requirements will be changed so 

that they follow the service provider’s requirements. 

 

5.3.1 Simulation set-up 
 

 
A personal computer was set up as a client-server machine to simulate Web usage.  

AuTrA was run on this platform, which was also running IIS, SQL Server and Visual 

Studio.net. Seven Web services were set up within AuTrA. The services were based 

around the idea of travel and event booking and were called: Flight service, Hotel 

service, Ski service, Entertainment service, Restaurant service, Invitation service and 

Venue service. The simulation involved the idea of people making holiday and event 

bookings over the Web. The services were registered within AuTrA.  Figure 31 shows a 

screen shot of the AuTrA back-end directory showing these services listed. Database 

objects were set up on the server side to simulate the data banks held by service 

providers. These database objects are shown registered on the server in Figure 32. The 

seven Web services access these database objects during simulation in a similar way as 

such services would do in real deployment. The services and database objects were 

developed within ASP.net and written in C#. Appendix D shows the WSDL and a 

SOAP message for one of the services. For the purposes of experimentation, three 

applications (or composite transactions) were composed from these seven services. One 

application consisted of three Web services, another of four Web services and the other 

of seven Web services. Then for each application six sets of batches were set up for the 

experimentation. In each set there was a batch file for each service. The sizes of the six 

batch file sets for each composite transaction were varied as 20, 100,  200,  300, 400 

and 500 transactions respectively. The experimental set up is summarised in Table 2. 
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Table 2 Simulation used in the evaluation 

System Environment Microsoft 

Internet Information Services Manager (IIS) 

SQL Server 

Visual Studio 

ASP.net ( Version3.5.0.0) 

Software Environment AuTrA middleware (developed as part of this research) 

Number of services  7 (developed as part of this research) 

Names of services  flight service, hotel service, ski service, restaurant service, entertainment 

service, invitation service, venue service 

Number of composite transaction types 3 

Names of composite transaction types Travel Plan application 

Travel and Party application 

Big Party  Arrangements application 

 

Number and names of services for the three composite transaction types  Travel Plan application  - 3 services (flight service, hotel service, ski 

service),   

Travel and Party application – 4 services (flight service, hotel service, 

restaurant service, and venue service) 

Big Party Arrangements application -7 services (flight service, hotel 
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service, ski service, restaurant service,  venue service, entertainment 

service, and  invitation service )  

 

  

Number of batch file sets per composite transaction type  6 

Number of  composite transactions instances per batch file set 20,100,200,300,400,500 

Number of batch files per batch file set Various –one batch file per service (component transaction)  

Delay factor Random interval within a range 

Transaction execution  maximum interval   ≤ 20 mins 

Transaction execution minimum interval 0 mins 

Attributes domain Natural numbers, names, dates 
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Figure 31 Web services registered with AuTrA 
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Figure 32 Corresponding database of Web services registered with AuTrA 
 
 

5.3.2 Simulation model settings and configuration  
 
 
The simulation model had settings and configurations which were configured in a 

customised way. This was done in Web.config file and placed in the main directory of 

AuTrA. The following parameters were configured:  

 

• InputFilePath ‒ the file path (on the server) where the input files were uploaded.  

• OutputFilePath ‒ the file path (on the server) where the output files was created.  
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• lRandomizerInterval ‒ the minimal time delay applied to each processed record. 

• hRandomizerInterval ‒ the maximal time delay applied to each processed 

record. 

• tentativeHold ‒ the amount of time the tentative hold was performed when 

applicable.  

• Buffer ‒ the maximum number of records processed at a time (the size of 

transaction set).  

• DataPath ‒ the path to the file which stored information about registered 

services. 

• <connection string> tag – information about the connection string and name 

which is used by external Web services. 
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5.3.3 Mechanism for simulation relaxation of ACID and application-spefication properties 
 

 
The mechanisms for simulation of relaxation and maintenance of the ACID and application-specific properties is given in Table 3 

 
Table 3 Mechanisms for simulation relaxation in AuTrA 

 
Property Relaxation Method Maintenance 
Atomicity Successful component transactions were allowed to commit 

even if other components belonging to the same composite 
transaction did not succeed 

A composite transaction could only commit if 
all component transactions committed i.e. all-
or-nothing. Tentative hold was used. 

Consistency Consistency rules were not followed and tentative hold was 
not used 

Consistency rules were followed and tentative 
hold was used 

Isolation Component transactions from various composite 
transactions were interleaved without regard to serialisation. 
Locks and tentative hold were not used 

Composite transactions were run in serial order  

Durability No saving was made of updates during main processing 
time but if “Tidy up” was used, saving was delayed to off-
peak time 

All updates were saved during main processing 

Application-specific Alternative criteria were used if user preference was not 
possible 

No compromise of user preference was allowed 
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5.3.4 Simulation road map 
 
 
The simulation process involves logging into AuTrA, composing an application, setting 

up an appropriate batch file with appropriate ACID and application-specific relaxation 

requirements, running the batch files, tailoring the requirements, negotiation if 

applicable and downloading results and then gathering statistics. Figure 33 shows a 

screen shot of the launching of the AuTrA system and Figure 34 provides an overview 

of the simulation process. 

 

 
 
 

Figure 33 Launching the AuTrA simulation application 
 

After opening the login page and logging in to AuTrA, the main page shown previously 

in Figure 24 will display. From here, applications can be composed and relaxation of 

properties can be specified. After this, the application can be run in real-time or batch 

mode. For the experimental simulation, a batch file approach was used to simulate 

multi-user interaction over a period of time. Random delays between starting 

transactions in the batch were configured to achieve this.  New batch files can be set up 
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offline for any new applications that are composed in AuTrA. Appendix E shows some 

example batch files used in the experimentation. AuTrA collects data during the run for 

analysis later. During the running, the consumer relaxation requirements are checked 

against those of the service provider.  The code snippet in Figure 35 shows how 

requirements representing consumer requirements are checked against the provider 

requirements. The consumer requirements will be checked against the service provider 

requirements until the batch is finished. After all the transactions in the batch are 

processed, the total processing time will be returned with the list of transaction 

outcomes. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

   
Figure 34 Simulation process 

Compose 
Application 

Set up Relaxation 
Requirements 

Create Batch File 

Upload Batch File 

Run Batch 

Get Results 

Gather Statistics  
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Figure 35 Snippet of code difference ACID relaxation 
 

During the batch processing a random delay method was used which mimics the 

processing time of real-world transactions. As stated previously the minimum time set 

was 0 minutes and the maximum set for each transaction was <= 20 minutes. When 

tentative hold was checked during the simulation the tentative hold time was added to 

the maximum transaction processing time. As explained in Section 5.3.2, the hold time 

was specified in the Web.config file. When isolation was relaxed, transactions were 

processed concurrently and when isolation was not relaxed, transactions were processed 

one after the other. Figure 36 shows the snippet of code specifying the random delay. 

 

 
 
        

 
 
 
 

Figure 36 Snippet of code for method of random delay  
 
 

private void agreeInputFlags() 
        { 
            Boolean[] flags = new Boolean[] { true, true, 
true, true  }; 
 
            foreach (var userData in tmpUser.userDataList) 
            { 
                if (!userData.rAtomicityFlag) 
                { 
                    flags[0] = false; 
                } 
                if (!userData.rIsolationFlag) 
                { 
                    flags[1] = false; 
                } 
                if (!userData.rConsistencyFlag) 
                { 
                    flags[2] = false; 
                } 
                if (!userData.rDurabilityFlag) 
                { 
                    flags[3] = false; 
                } 
   };        
 

private static void generateRandomDelay(int low, int high) 
        { 
            Random r = new Random(); 
            HiPerfTimer.delay = r.Next(low, high); 
 
        } 
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In cases where the simulation input file did not agree with ACID relaxation 

requirements of the service provider in terms of consistency and durability, the system 

asks the user to consider changing requirements; this is the Negotiation phase. If the 

user agrees to continue, their requirements for consistency and durability are changed to 

those of the provider. This code is shown in Figure 37. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 37 Snippet of code showing enforced agreement of provider requirements  
 

In the case where the simulation input file and the relaxation requirements of the service 

provider match, the model will process the transaction until the stop time (the maximum 

random delay time) is reached. The results will be committed in the database of the Web 

service if the durability was relaxed and tidying up at the end of the transaction is 

required. Then the output will be downloaded from the model in a text file. This file 

includes the processing time in milliseconds.  Figure 38 shows an example of the output 

file contents. 

 

public void agreeServicesFlags() 
        { 
            ArrayList tmpFlagsList = new ArrayList(); 
            flagsList = new Boolean[5] { true, true, true, true, true }; 
            foreach (WebServiceWrapper ws in listOfChosenServices) 
            { 
                Boolean[] list = new Boolean[5]; 
                list[0] = true; 
                list[1] = true; 
                list[2] = ws.ConsistencyFlag; 
                list[3] = ws.DurabilityFlag; 
                list[4] = ws.TentativeHoldFlag; 
 
                tmpFlagsList.Add(list); 
 
            } 
 
 



111 

 
Figure 38 Snippet of output showing bookings and processing time 

 
The research took the processing time of the batch of transactions and used Equation 

(2) given in Section 5.2 to calculate the throughput unit time. The output of the different 

transaction sets (there were batches of 20, 100, 200, 300, 400 and 500 transactions for 

each application) were input into Excel for analysis and comparison. Each batch was 

run three times for each application and the average throughput unit times were 

calculated. Excel was used to produce graphs to illustrate the experimental results. 

Figure 39 provides a screenshot from this process. The results were analysed 

statistically to check significance. The results of the experiments are presented in 

Chapter 6 and the statistical significance testing is presented in Appendix C. 
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Figure 39 Screen shot of the results analysis phase 
 
 

5.3.5 Simulation road map summary 
 
 

A batch file approach with configured delays was used to simulate the event-based 

nature and long-running nature of the types of transaction considered in this research. 

The user logs in and composes the required application from the services on offer. The 

user will be asked if any service criterion is flexible—if so, the user can choose the 

criteria that he/she allows to be compromised. Having developed the application, the 

user can upload batch files.  AuTrA has experimental batch files set up for all registered 

services.  The user could alternatively set up new experimental batch files.  Then the 

relevant batch set can be run. The relaxation requirements are checked and if there are 

some requirements that are not allowed by the service provider the system goes to 

negotiation, after which the user either continues (which means changing requirements 

to agree with the service provider’s requirements) or aborts  the  transaction.  After the 
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user has agreed with the service provider’s requirements the batch processing will 

continue to run until the whole batch is finished. Then the output will be downloaded 

and raw data collected.  

 
 

5.4 Evaluation strategy 
 

The strategy for evaluating whether the main aim of the research was achieved was 

experimental evaluation. The aim of the research was to develop a system that increases 

throughput while maintaining the consistency and correctness required by particular 

applications.  Given the above aim it was conjectured that relaxing ACID properties 

and also supporting application-specific property relaxation would increase throughput. 

To test this conjecture, the experimental evaluation broke down into the following five 

main areas:  

• Measuring the effect of relaxing atomicity, consistency and isolation properties 

in terms of throughput. 

• Measuring the effect of relaxing durability and later tidying up in terms of 

throughput. 

• Measuring the effect of application-specific property relaxation in terms of 

throughput. 

• Measuring the effect of negotiation in terms of throughput. 

• Measuring the effect of tentative hold in terms of throughput. 

 

The above areas were tested to prove that AuTrA works, and also to shed more light on 

the effects of relaxation of ACID and application-specific criteria. The findings will 

enable better advice and support to be given to AuTrA users and also can be used by 

future researchers and developers working in this area. The following sections discuss 

each area of evaluation. 

 

5.4.1 Evaluation of the effect of relaxation of atomicity, consistency and 
isolation  

 

Experiments were performed to see if the relaxing of atomicity, consistency and 

isolation has any effect on transaction throughput. Furthermore it was intended to find 
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the comparative and combined effects of relaxing these properties.  As well as 

contributing to answering the research question, finding out such information would 

enable better advice and support to be provided for users of AuTrA. This area was 

covered by Experiment Set 1. 

 

5.4.2 Evaluation of the effect of relaxing durability and later tidying up  
 

This evaluation was carried out to find the effect on throughput of relaxing durability 

and then either tidying up or not tidying up at the end of the composite transaction. 

Tidying up refers to delayed saving. Updates may not be saved during peak processing 

time if durability is relaxed, but if tidying up is used, saving would occur later, 

theoretically at a less busy time.  This area is covered in Experiment Set 2. 

 

5.4.3 Evaluation of the effect of application-specific property relaxation 
 
 
This evaluation was carried out to find out the effect on throughput of relaxing 

application-specific property requirements. These sorts of properties relate to individual 

component transactions.  For instance, in booking a venue a consumer may prefer the 

location to be London but may be prepared to relax this requirement. Relaxing such a 

requirement may enable the composite transaction to succeed, whereas otherwise it 

would have failed. Such properties are not related to ACID properties but the research 

considered application-specific property relaxation to be a useful addition because at the 

application level, it has an effect on the success or otherwise of a composite transaction. 

This area was covered by Experiment Set 3. 

 

5.4.4 Evaluation of the effect of negotiation  
 

 
AuTrA includes a Negotiation phase. This allows consumers to rethink their 

requirements if these do not meet with the requirements of the service provider in terms 

of consistency and durability relaxation. It was conjectured that allowing negotiation 

and subsequent change in consumer requirements specification will achieve greater 

throughput because instead of aborting transactions when requirements did not match, 
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such transactions could continue after successful negotiation and the changing of 

relaxation requirements. Therefore the research needed to find the effect of negotiation 

on transaction throughput. This area was covered by Experiment Set 4. 

 

5.4.5 Evaluation of the effect of tentative hold  
 

The research went further to explore the effect on throughput of tentative hold. 

Tentative hold is used to maintain atomicity. It can also be used to maintain consistency 

while relaxing isolation. Thus it was considered important to find out what effect its use 

had. This area was covered by Experiment Set 5. 

 

5.5 Summary 
 
 
In this chapter the key terms used in the research were defined. The simulation model of 

the research was introduced together with the simulation process and the evaluation 

strategy. In summary, AuTrA, the system developed in this research, was used as a 

platform for the simulation.  AuTrA enables Web services to be registered, applications 

to be composed and batches of composite transaction instances to be executed and 

timed. The simulation consisted of a number of batch files representing different sets of 

component transaction instances. The batches were run varying ACID relaxation, 

application-specific relaxation, negotiation and tentative hold. This was done to evaluate 

the research aim. The results were recorded and analysed. These experimental results 

are discussed in the next chapter. 

. 
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Chapter 6: Experimental Evaluation 
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6.1 Introduction 

 
 
This chapter presents the experimental results which were run to assess the effectiveness 

of the proposed system. The experiments fall into five groups which explore: the effects 

of relaxing the ACID properties and various combinations of these; the use of later tidy-

up when relaxing durability; the relaxation of application-specific properties; the use of 

negotiation; and the use of tentative hold. This chapter discusses the scenarios and 

provides the results of the experiments. 

 

6.2 Experimental set-up 
 

The simulation platform is described in chapter 5.  Three applications were set up using 

the Web Services registered.  These applications were the Travel Plan Scenario, the 

Travel with Party Scenario and the Big Party Arrangements scenario.  The applications 

were set up as composite Web transactions made up of component Web services.  

 

In the simulation, batch files are processed by AuTrA using a configured delay 

mechanism to represent concurrent transactions starting at various times by different 

users over an extended period. There are six batch files of component transaction 

instances for each service in the composite transaction.  These six batch files consist of 

20, 100, 200, 300, 400 and 500 component transaction instances respectively. The 

component transaction instances across the batch files are linked via an identifier (the 

transaction number) to make up a composite transaction. The complete set of batch files 

for a composite transaction processing simulation is called a batch file set.  The 

transaction instances in the batch file in the scenarios developed have the purpose of 

booking something e.g. a flight, hotel or restaurant.  Underlying databases have been set 

up for each service representing the reservation status of the item being booked.  The 

transaction instances in the batch files include some booking requests which will not be 

able to be fulfilled because of unavailability. If this happens the component transaction 

will be considered to be unsuccessful (see Figure 40).  A random delay of between 0-20 

minutes between transactions was used to represent the long-running nature of many 

Web transactions.  
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Figure 40 Output with unsuccessful transaction examples 
 

As stated in Chapter 5, the evaluation strategy included five different sets of 

experiments: 

 

Set 1 ‒ Experiments to measure effect of relaxing atomicity, consistency and isolation 

 

Set 2 – Experiments to measure the effect of relaxing durability and later tidying-up 

when relaxing durability 

 

Set 3 – Experiments to measure the effect of relaxation of application-specific 

properties 

 

Set 4 – Experiments to measure the effect of negotiation 

 

Set 5 ‒ Experiments to measure the effect of tentative hold 

 

In all experiment sets, AuTrA was used as a test platform and throughput unit time was 

used a comparative measure. According to the definitions given earlier, throughput is 

the number of successfully completed composite transactions over a given period of 

time. Throughput unit time is the average time taken to complete one composite 

transaction. Thus smaller throughput unit times indicate greater throughput. Three 

scenarios were set up to use in the experiments. Section 6.3 provides more detail about 

the scenarios. 
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6.3 Scenarios 
 

Three different scenarios where assumed to carry out the experimental evaluation of 

AuTrA. All three scenarios were from the travel, tourism and leisure domain. 

Composite transaction types (or applications) were set up in AuTrA to represent the 

scenarios. The three composite transactions were the Travel Plan application, the Travel 

and Party application and the Big Party Arrangements application. They were composed 

of 3, 4 and 7 component transactions respectively. The reason for adopting three 

scenarios of different sizes was to demonstrate how AuTrA can be used to compose 

various sorts of composite transactions from an underlying set of component 

transactions. The scenarios were developed in this research for the purpose of 

experimentation and are similar to the types of scenarios used by other researchers in 

the same field. For instance, Younas et al. in 2006 used a travel scenario to demonstrate 

their model. The following sections describe the scenarios in more detail. 
 

6.3.1 The Travel Plan application 

 

The Travel Plan application is made up of three Web services related to travelling. Note 

that the scenarios were made up by the research. A description of the imaginary 

scenario follows: 

SouthBots is an airline company that offers cheap cost tickets. The airline allows the 

users to use a Web-based environment to book the flights. SouthBots is an international 

company with offices around the continent. The headquarters are in London. Each 

office is connected to the head office through the internet. Booking of plane tickets can 

be done online or by going to travel agents. 

 

Rainbow is a ski resort located in a popular area of Europe. Rainbow ski resort offers a 

magnificent panorama and, as it is built up around mountain villages, it offers a 

traditional atmosphere. Rainbow ski resort offers affordable prices for ski passes, lifts 

and equipment. Users can use the internet to book anything they need related to skiing.  
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Chalet Hotel is a family business and has been an attraction in the heart of Swiss resorts 

since the 18th century. The hotel has been home to thousands of well-known artists and 

other influential people. The hotel has many rooms. Booking of rooms is online or by 

telephone. 

 

The three businesses have seen the advertisement of AuTrA system since they are all 

targeting the same market, i.e. people going for a ski holiday in Switzerland. The 

companies decided to join forces and use the AuTrA system in the belief that it will 

facilitate business. The companies have made some risk assessments of using AuTrA 

and optional relaxing of ACID properties; they make a contract. The services provider 

specification includes relaxing ACI (atomicity, isolation and consistency) properties but 

not D (durability).   

 

SouthBots decided to relax consistency because the companies did not see any harm in 

not having consistent data at the end of the transaction. By relaxing consistency, in this 

case, booking is done even if the number of seats is negative. The airline has a backup 

of two planes always on standby with different capacities. That is, when a lot of seats 

have been booked beyond the capacity of the scheduled plane, a bigger plane on 

standby can be used, but if not a smaller standby plan can be used. The reason this plane 

can go when it is not scheduled is because the runway where the plane lands and takes 

off is owned by the airline and they have set aside time for this kind of situation for the 

plane to land when necessary. 

 

The hotel, as advertised on the home page, has a lot of rooms available, but if there are 

more rooms booked than the ones available because of relaxation of consistency, the 

hotel will distribute residents to other hotels that have vacant rooms. This hotel is in 

partnership with other hotels, which have made a deal that excess bookings can be 

passed over to the group which has rooms available, and it has worked very well in 

aiding business. 
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The ski resort equipment provider also relaxed consistency because there is a local ski 

shop that rents equipment to ski resorts like Rainbow, so if it happens that there is more 

equipment booked than Rainbow has, Rainbow will borrow some equipment from 

another local shop. This helps because it means Rainbow does not have to turn down 

new customers when, although there is no ski equipment left in their shop, they can 

access supplies from elsewhere. 
 
 
 
 
 
 

 
 

Figure 41 Scenario of composite Web services 
 
 
 
Let us consider a scenario in which three users want to make travel arrangements to go 

for a skiing holiday to Switzerland. In reality, they will need a flight to the holiday 

location, a hotel and rental of ski equipment to go skiing. They all go to AuTrA Web 
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services to make their holiday travel bookings. The assumption that the research makes 

is that the three users access AuTrA more or less at the same time. AuTrA has access to 

different services, which include component services for SouthBots Airline, Chalet 

Hotel and Rainbow Ski Resort. Services can be combined through AuTrA to form 

composite business transactions. The user requirements in terms of ACID property 

relaxation would be stated before the transaction is run. 
 

AuTrA will process and execute the request of the output as shown in Figure 40, 

making sure that the business criteria or rules, i.e. the requirements set by the service 

provider, are met while also following the user’s requirements, i.e. the requirements set 

by the service consumer. The consumer, on the one hand, and the data owner on the 

other control the relaxation of ACID properties.  

 
 
 

Table 4 Examples of relaxation requests 
 

 
 

Table 4 shows examples of possible relaxation requirements of the users of the travel 

plan application. Different users will have different relaxation selected depending on 

 Relax 
Atomicity 

Relax  
Isolation 

Relax 
Consistency 

Relax 
Durability 

Sarah Yes Yes No No 

Betty No No No No 

Jane Yes No No No 

T4 Yes Yes Yes Yes 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
T20 Yes Yes Yes Yes 
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their needs. T20,  for example, might be a transaction belonging to John, who relaxed all 

ACID properties. Other transactions might have relaxed different ACID properties. The 

table illustrates the possibility of different selections. 

 

6.3.2 The Travel and Party application 
 

The Travel and Party application consists of two of the previously described Travel Plan 

application services and two additional services related to party celebrations. The two 

services from the Travel Plan scenario are the flight service and the hotel service. The 

two additional party services are a restaurant service and a venue service, provided by 

Salut Restaurant and Asienhaus Garten respectively.  

 

Salut Restaurant provides fine cuisine prepared with quality ingredients with a 

combination of flavours, imagination and, above all, a consistent standard of all these 

qualities throughout the meal. The restaurant is international with a lot of restaurants in 

Europe and it dominates the market in America. The use of internet technology for 

booking has contributed to the success of the restaurant. 

 

Asienhaus Garten is a multi-room, multi-occasion venue, making it the perfect place for 

any event, day or night. Asienhaus Garten provides the perfect space and atmosphere 

for many different types of events. The experienced team are at the disposal of guests to 

provide the highest standards of coordination. The following areas are in Asienhaus 

Garten: the bar, which mixes a natural warm decor with contemporary design, giving a 

laid-back atmosphere for lunch, networking and drinks receptions; the restaurant, which 

can be perfectly matched to the client’s needs; the private dining area, which is suitable 

for personal services, with a stunning floor and glass ceiling; and Kakos Place, with 

glam decor, which is a perfect milieu for an evening of glamour. Bookings and 

reservations are processed online. 

In summary, this application uses a flight service, hotel service, restaurant service and 

venue service. 
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6.3.3 The Big Party Arrangements application 

 
 
The Big Party Arrangements application consists of the previously described Travel 

Plan application services and the Travel and Party application services combined with 

two other services related to party celebrations. The two additional party services are 

provided by Alfredo Entertainment and Liebe Creations.  

 

 

Alfredo Entertainment established itself as a mobile entertainment service. For that 

reason, it has a competitive edge over its competitors that are not mobile. The company 

specialises in any kind of entertainment that is thinkable, for all events, be they 

children’s parties, wedding events, birthdays, hen parties, stag nights and many more. 

The company has the knowledge, the experience and the personnel to satisfy their 

clientele’s entertainment needs. The online services offer a selection of services, quotes, 

bookings and calendar. 
 

Liebe Creations has been creating event cards for the past 20 years. The business 

supplies any invitation cards, menus and thank you cards, which are custom-made and 

handmade. The business supplies both the local and international market. To make the 

process easy everything is done online. 

 
 
The research assumes that the seven providers team up to offer a composite service for a 

user making some party arrangements. The services that the user might need are shown 

in Figure 42. They are:  flight service, hotel service, ski service, restaurant service, 

entertainment service, invitation service and venue service. 
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Figure 42  Big Party Arrangements composition 
 

 

6.4 The Experiments 
 

 

In this section, 15 experiments are presented grouped according to the evaluation 

strategy outlined in Chapter 5. A number of user relaxation cases were set up as shown 

in Table 5. There are a number of combinations of relaxation criteria that the consumer 

can request in the transaction processing, but only the ones shown in Table 5 are 

presented in the experiments as these are representative for the purposes of evaluation. 

Each experiment was carried out in the context of one of the scenarios outlined in 

section 6.3. The experiments measure the throughput unit time (see section 5.2, 

Definitions of the key terms in the research).  A lower throughput unit time indicates 

increased throughput. 

Big Party Arrangement Services  

Restaurant Service 

Hotel Service 

Flight Service 

Entertainment 
Service 

Ski Service 

Venue Service 

Invitation Service 
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Table 5 Consumer relaxation combinations used in the experiments 
 

Cases Relaxed Atomicity Relaxed Consistency Relaxed Isolation Relaxed Durability Application-Specific Criteria Scenario used  

Case 1 No No No No Not used Travel Plan 

 

Case 2 Yes Yes Yes No Not used Travel Plan 

 

Case 3 Yes No No No Not used Travel Plan  

Travel and Party 

Case 4 No Yes No No Not used Travel Plan  

Travel and Party 

Case 5 No No Yes No Not used Travel Plan  

Travel and Party 
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Case 6 Yes Yes No No Not used Travel Plan  

Big Party 

Case 7 Yes No Yes No Not used Travel Plan  

Big Party 

Case 8 No Yes Yes No Not used Travel Plan  

Big Party 

Case 9 No No No No Not used Travel and Party 

 

Case 10 No No No Yes Not used Travel and Party  

Big Party 

Case 11 Yes No No Yes Not used Travel and Party 

 

Case 12 No No No No No Big Party 

 

Case 13 Yes Yes Yes Yes Yes Big Party 

 

Case 14 Yes  Yes Yes Yes No Big Party 
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Case 15 Yes Yes Yes  No Yes Big Party 

 

Case 16 Yes Yes No Yes No Big Party 

 

Case 17 No Yes Yes Yes No Big Party 

 

Case 18 Yes No Yes Yes No Big Party 

 

Case 19 Yes Yes Yes No No Big Party 

 

Case 20 No No No No Yes Big Party 
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6.4.1 Set 1 - Experiments to measure effect of relaxing atomicity, consistency 
and isolation 

 
 
In this section, a number of experimental results based on the Travel Plan application 

are reported.  For these experiments the focus is on the services providers’ relaxation 

specification shown in Table 6.The experiments are conducted to show the effect of 

relaxation of combinations of atomicity, consistency and isolation properties. 

 

Table 6 Services provider relaxation requirements – Experiment Set 1  
 
 

 
 

6.4.1.1 Experiment 1 
 
 
In this experiment, the research concentrated on two cases: Case 1 (when no ACID 

properties are relaxed) and Case 2 (when atomicity, consistency and isolation are 

relaxed). 

 

Relax Atomicity Relax Consistency Relax Isolation Relax Durability 

YES YES YES NO 
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Figure 43 Case 1 and Case 2 ACI relaxation 
 
 
From the experiment, it is clear that the relaxing of atomicity, consistency and isolation 

(ACI) gives a better throughput than when none of the ACID properties is relaxed. The 

statistical analysis shows a significant difference and is described in Appendix C. 
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6.4.1.2 Experiment 2 
 
 
For this experiment, the research explored three cases: Case 3 (which relaxes only 

atomicity), Case 4 (which relaxes only consistency) and Case 5 (which relaxes only 

isolation). The main point of this experiment was to investigate the individual effect of 

relaxation of each of atomicity, consistency and isolation and compare these to see 

which property when relaxed gives the greatest throughput. 

 

 
 

Figure 44 Cases 3, 4 and 5 ACI relaxation 
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The experiments show that atomicity relaxation produced the least throughput 

compared to consistency and isolation. Isolation has the greatest throughput. This is 

because relaxing isolation allows the transactions to be processed concurrently. The 

maintenance of strict isolation requires a serialisable schedule, which means that 

transactions often have to wait for each other to finish. The differences between the 

lines in the graph were found to be statistically significant as evidenced in Appendix C. 

 

6.4.1.3 Experiment 3 
 
 
Here the research looked at three cases: Case 6 (relaxes atomicity and consistency), 

Case 7 (relaxes atomicity and isolation) and Case 8 (relaxes consistency and isolation). 

The research investigated this to see the effect of each ACI property on the others. That 

is, the aim was to find out which combination of ACI property relaxation gives the best 

throughput and which combinations do not. Note that even if the throughput is not the 

greatest when compared with other combinations, there is improved throughput 

compared to not relaxing ACID properties at all. 
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Figure 45 Cases 6, 7 and 8 ACI relaxation 
 

The experiment shows that the combination of relaxing consistency and isolation has 

the best throughput. The throughput resulting from the relaxation of atomicity and 

isolation is close to that resulting from the relaxation of isolation and consistency. 
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relaxation of consistency produces better throughput compared to atomicity relaxation, 

it is not so much of a difference and including isolation in the combination narrows the 

gap more. Again the differences between all the lines in the graph were found to be 

statistically significant (see Appendix C). 

 

6.4.1.4 Experiment 4 
 
 
In this experiment, the research investigated Case 2 (when atomicity, consistency and 

isolation are relaxed), Case 6 (relaxation of atomicity and consistency), Case 7 

(relaxation of atomicity and isolation) and Case 8 (relaxation of consistency and 

isolation). The main question behind this experiment was: Does the number of relaxed 

ACI properties have an influence on transaction throughput? 
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Figure 46 Case 2, Case 6, Case7 and Case 8 ACI relaxation 
 

The experiment shows that when a number of ACID properties are relaxed, a better 

throughput is achieved compared to when fewer ACID properties are relaxed. Again the 

differences in the lines in the graph were found to be statistically significant (see 

Appendix C). 
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6.4.1.5 Summary of Set 1 experiments 
 

 

These experiments demonstrated that relaxing all ACI properties improved throughput. 

It also showed that relaxing any of atomicity, consistency and isolation also improved 

throughput. The difference between relaxing any property and not relaxing it was 

statistically significant (see Appendix C).  

 

6.4.2 Set 2 – Assessing the effect of durability relaxation with or without tidy-up 
 
This set of experiments was based on the Travel and Party Arrangements application, 

with the exception of Experiment 9 which was based on the Big Party Arrangements 

application. This set of experiments focused on assessing the effect on throughput of 

relaxing the durability property. The set also investigated the effect of later tidy-up (i.e. 

delayed saving). The service provider requirements specified in Table 7 were assumed. 
 

Table 7 Service provider relaxation requirements ‒ Experiment Set 2 
 
 
 

 
 
 

6.4.2.1 Experiment 5 
 

 
 
The research measured throughput in Case 9 (when none of the ACID properties is 

relaxed) and Case 10 (where durability alone is relaxed). In this experiment tidying up 

of the data at the end of the transaction processing was not done. That is, the data was 

not saved at a later stage. 

 

Relax Atomicity Relax Consistency Relax Isolation Relax Durability 

YES YES YES YES 
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Figure 47 Case 9 and Case 10 ACID relaxation 

 
 
The experiment shows that the relaxation of durability increases throughput, which can 

be a benefit for the processing during peak time. However data is not saved. Statistical 

analysis shows that the difference between the lines in the graph is significant (see 

Appendix C). 
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6.4.2.2 Experiment 6 
 
 
The experiment focused on Case 11 (relaxing atomicity and durability), and compared it 

with Case 10 (where durability alone is relaxed). There was no saving at the end of the 

transaction processing period. 

 

 

 
 

 
Figure 48 Case 10 and Case 11 ACID relaxation 
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The experiment shows that relaxing atomicity and durability achieves better throughput 

than relaxing durability alone. Statistical analysis shows that the difference between the 

lines in the graph is significant (see Appendix C). 

 

6.4.2.3 Experiment 7 
 
 
In this experiment, the research investigated the impact that tidying-up will have on the 

throughput of the transactions. The research repeated Experiment 6, but this time, 

although durability was relaxed during processing, there was a tidy-up at the end of the 

transaction processing period so that data was saved. 

 

 
 
 

Figure 49 Case 10 and Case 11 relaxation with tidying-up 
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The tidying up of the data has an impact on the throughput compared to not tidying up. 

Thus throughput decreases when tidy-up is included. Statistical analysis shows that the 

differences between the lines in the graph are significant (see Appendix C). 

 

6.4.2.4 Experiment 8 
 
 

This experiment compared Case 3 (relaxing atomicity), Case 4 (relaxation of 

consistency), Case 5 (relaxation of isolation) and Case 10 (relaxation of durability). The 

experiment was performed to find out how relaxing durability compared to other 

relaxations. 

 

 
Figure 50 Case 3, Case 4, Case 5  and Case 10 ACID relaxation 
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isolation. There is a significance difference between the lines of the graphs (see 

Appendix C). 

 

6.4.2.5 Experiment 9 
 
 

For this experiment, the exploration was on Case 6 (relaxing atomicity and 

consistency), Case 7 (relaxing atomicity and isolation), Case 8 (relaxing consistency 

and isolation), Case 16 (relaxing atomicity, consistency and durability), Case 17 

(relaxation of consistency, isolation and durability) and Case 18 (relaxation of 

atomicity, isolation and durability).  The purpose of this experiment was to see the 

effects of relaxation of durability with other combinations of relaxation. 
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Figure 51 Case 6, Case 7, Case 8, Case 16, Case 17  and Case 18 
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The statistical analysis showed there is significant difference between the lines in the 

graphs.  All cases were statistically significantly different from one another apart from 

Cases 17 and 18. The cases which directly compared relaxing durability against not 

relaxing durability were: Case 6 versus Case 16; Case 7 versus Case 18; and Case 8 

versus Case 17.  The cases in each of these pairs were all significantly different and this 

showed that relaxing durability increases throughput when used in combination with 

other relaxations.   The two cases with the best throughput were Case 17 and Case 18.  

Both these included relaxation of isolation showing again the strong effect of isolation 

relaxation.  The different factors in Case 17 and  Case18 were the relaxation of 

consistency in Case  17 and the relaxation of  atomicity in Case 18.  The fact that Case 

17 and Case 18 were not significantly different shows that atomicity and consistency 

relaxation have similar effects when combined with isolation and durability relaxation.  

 

6.4.2.6 Summary of Set 2 experiments 
 

These experiments demonstrated that relaxing durability improved throughput. When 

relaxing durability with atomicity, greater throughput was achieved. Tidying up at the 

end of the batch run, i.e. saving any data that was not saved during the batch run, 

decreases throughput, but in many situations this will be a necessary task. The 

difference between the graph lines resulting from this set of experiments was found to 

be statistically significant.  

 
 

6.4.3 Set 3 – Assessing effect of relaxation of application-specific properties 
 

Table 8 Service provider relaxation requirements ‒ Experiment Set 3 
 

 

Relax Atomicity Relax Consistency Relax Isolation  Relax Durability 

YES YES YES YES 
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This set of experiments was based on the Big Party Arrangements application. It 

focused on assessing the effect on throughput of relaxing application-specific 

properties. The service provider relaxation requirements shown in Table 8 were 

assumed. 

 

6.4.3.1 Experiment 10 
 

 
For this experiment the research evaluated the scenario where all seven services were 

selected and used Case 12 (relaxing none of the ACID properties and not relaxing any 

application-specific criteria) and Case 13 (relaxing all ACID properties and relaxing the 

application-specification criteria). The application-specific criteria are: price, capacity 

of the restaurant, location of the restaurant, type of cuisine, location of the venue, price 

of the venue, location of the entertainment, price of the entertainment, price of 

invitation, and best possible date of flight, hotel and ski. The customer might be 

prepared to compromise on these, in other words to relax them in terms of not insisting 

on a particular value for them, e.g. being prepared to fly on 5th August instead of 6th 

August. Such compromising should increase throughput. 
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Figure 52 Case 12 and Case 13 ACID relaxation 
 
 

The experiment shows that relaxing all ACID properties with application-specific 

criteria results in increased throughput. Statistical analysis shows that the differences 

between the lines in the graph are significant (see Appendix C). 
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6.4.3.2 Experiment 11 
 
 
The experiment measured throughput in Case 13 (relaxing all ACID properties and the 

application-specification criteria), Case 14 (relaxation of all ACID properties but not 

application-specific criteria), Case 15 (relaxing atomicity, consistency, isolation and 

application-specific criteria) and Case 19 (relaxing atomicity, consistency and isolation 

and not application-specific criteria). These cases were chosen because the research 

wanted to investigate the effect of application-specific criteria relaxation on throughput. 

 

 

 
 
 

 
 

Figure 53 Case 13, Case 14, Case 15 and Case 19 ACID relaxation 
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Looking at experimental results it is clear that including application-specific criteria 

increases the throughput of transactions; the results of Case 13 are better that the results 

of Case 14 and the results of Case 15 are better those of Case 19. The experiment also 

shows that relaxing all ACID properties with application-specific criteria improves 

throughput compared with just relaxing ACI with application-specific criteria. Thus 

relaxing durability is shown again to be effective in improving throughput. Statistical 

analysis shows that these differences are statistically significant (see Appendix C). 

 

6.4.3.3 Experiment 12 
 

In this experiment, the research further measured the impact of relaxation of 

application-specific criteria by comparing Case 20 (relaxation of application-specific 

criteria but no relaxation of ACID criteria) with Case 12 (no relaxation of application-

specific criteria or ACID criteria). Application-specific criteria for this experiment are 

price, capacity of the restaurant, location of the restaurant, type of cuisine, location of 

the venue, price of the venue, location of the entertainment, price of the entertainment, 

price of invitation, and date of flight, hotel and ski. In Case 20 the user is prepared to 

compromise on any of these but not on ACID property maintenance. 
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Figure 54 Case 12 and Case 20 ACID relaxation 
 

 

The research shows that relaxation of application-specific criteria increases the 

throughput of the transaction. The results of Case 20 were better than for Case 12 in 

terms of throughput of transactions. Statistical analysis shows that these differences are 

statistically significant (see Appendix C). 
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6.4.3.4 Summary of Set 3 experiments 
 

The experiments in Set 3 provide results which show that application-specific criteria 

relaxation is effective in improving throughput. The results were shown to be 

statistically significant. 

 

6.4.4 Set 4 – Effect of negotiation on throughput 
 

 
 

Table 9 Service provider relaxation requirements ‒ Experiment Set 4 
 

 

Relax Atomicity  Relax Consistency Relax Isolation  Relax Durability 

YES NO YES NO 

 

This set consists of just one experiment which was based on the Big Party 

Arrangements application and investigated the effect of negotiation. The service 

provider relaxation specification assumed is shown in Table 9. 

 

6.4.4.1 Experiment 13 
 
 
In this experiment the effect of negotiation on throughput is assessed. Negotiation 

allows differences between consumer and provider relaxation specifications to be 

resolved during processing, thus allowing the possibility of continuing the transaction 

rather than aborting. Assume that the service providers of the Party Arrangements 

Application found that it is not good for the business to have inconsistency of data at the 

end of the transaction, and for that reason the service providers change the relaxation of 

ACID properties set previously to the one shown in Table 8. The consumer’s 

requirements Case 13 (relaxing all ACID properties and the application-specification 

criteria) and Case 14 (relaxing all ACID properties but not the application-specification 

criteria) was surveyed. 
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Figure 55 Case 13 and Case 14 ACID relaxation 
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The experiment shows that negotiation results in lower throughput compared to when a 

transaction does not go through negotiation. This is expected, as negotiation takes time. 

If negotiation succeeds the transaction will continue. If negotiation fails the transaction 

will have to restart. If one compares negotiation with restarting, it can be seen that 

negotiation has a better throughput than restarting. This is because in many cases 

negotiation will avoid an abort and restart and instead will allow a transaction to 

continue after a change in relaxation specification. Statistical analysis shows that the 

differences between all the lines in the graph are significant (see Appendix C). 

 

6.4.4.2 Summary of Set 4 experiments 
 
This set of experiments has shown that negotiation can be useful for improving 

throughput. Although negotiation takes additional processing time in the given batch 

run, it can avoid a transaction having to be aborted and restarted, which saves time in 

the bigger picture. 

 

6.4.5 Set 5 – Assessing effect of tentative hold 
 

Table 10 Service provider relaxation requirements ‒ Experiment Set 5 
 

 

 
 
This experiment set is based on the Big Party Arrangement scenario with Case 4, Case 5 

and Case 10 user requirements assumed and 6 minutes tentative hold configured. 

 

 

 

 

 

Relax Atomicity Relax Consistency Relax Isolation Relax Durability 

YES NO NO YES 
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6.4.5.1 Experiment 14 
 

 
The focus of this experiment was to analyse the effect of tentative hold. A variety of 

cases were chosen and for each case the use of tentative hold was measured.  In this 

experiment, throughput is measured for Case 4 (just consistency relaxed), Case 5 (just 

isolation relaxed) and Case 10 (just durability relaxed) with relaxation of application-

specific criteria and varying inclusion of tentative hold. 

 

 

 
 

 
Figure 56 ACID and application-specific relaxation with tentative hold 
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It is clear that the tentative hold adds a considerable amount of processing time to the 

transaction. Statistical analysis confirms that this difference is significant (see Appendix 

C). 

 

6.4.5.2 Experiment 15 
 

 

The focus of this experiment was to analyse the effect of negotiation and tentative hold. 

The same cases were chosen as those used in Experiment 14 but this time the effect of 

both negotiation and tentative hold was measured.  Note that tentative hold depends on 

the time the resource is set to be held. For example, the flight service might say that the 

ticket can be put on hold for two days, and when two days are up, the resource has to be 

confirmed or aborted. The more time the resource is held, the less the throughput.  
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Figure 57 ACID, application-specific criteria, negotiation and tentative hold  

 

From the experiment it is apparent that negotiation with tentative hold reduces the 

throughput of the transaction, depending on the time set for the resource to be on hold. 

Statistical analysis shows that the differences between the lines in the graph are 

statistically significant (see Appendix C) 
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6.4.5.3 Summary of Set 5 experiments 
 
 
These experiments demonstrated that using tentative hold decreased throughput.  

However, tentative hold is necessary to ensure atomicity and also to maintain 

consistency when isolation is relaxed. Thus it will be needed in some circumstances in 

spite of decreasing throughput. The difference between the graph lines in this 

experiment set was statistically significant.  
 

6.5 Summary 
 
 
In this chapter, an experimental evaluation of AuTrA was conducted using assumed 

scenarios. The different scenarios assumed varied consumer and provider requirements 

for the purposes of evaluation of the system. Statistical analysis showed that the 

findings of all the experiments have statistical significance. Thus part of the research 

question was answered, namely that throughput could be increased by customisation of 

ACID and application-specific criteria, hence improving service. The results of the 

experiments are discussed in the next chapter. 
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Chapter 7: Discussion, Conclusion and Future 
Work 
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7.1 Introduction 
 
This chapter discusses the results from the previous chapter and compares AuTrA with 

related work. In section 7.2, the discussion focuses on issues of throughput with respect 

relaxing ACID and application-specific properties. Section 7.3 discusses how AuTrA 

has answered the research question. Section 7.4 compares AuTrA with other models 

and section 7.5 comments on correctness when relaxing ACID properties. Section 7.6 

looks back at this research in the context of the transition from centralised database to 

Web services, while section 7.7 discusses the targeted users of AuTrA. A conclusion to 

the research is given in section 7.8 and section 7.9 discusses future work. 

 

7.2  Discussion  
 
 
 
The experimental results verify that relaxation of ACID properties outperforms the 

classic ACID model, which is very rigid and is not suitable for long-running 

transactions, such as those found in Web service environments. It is clear that the 

number of ACID properties relaxed has an impact on the transaction throughput. That 

is, the more ACID properties are relaxed the better the transaction throughput. In 

addition, each individual ACID property generates a different level of throughput and 

this is a key to the throughput level of different combinations. Relaxing isolation has the 

best throughput of all the properties. This is because the transactions are processed 

concurrently; there is no waiting, which reduces throughput significantly. Relaxed 

durability is second to relaxed isolation. This is because when durability is relaxed there 

is no input/output (I/O) for writing which saves time. With atomicity and consistency 

relaxation, there is saving at the end of the transaction and that is the reason why 

relaxing these two have lower throughput compared to durability. When tidy-up 

(delayed saving) is used with durability relaxation, the increase in throughput is less 

than when tidy-up is not used. However in most circumstances it will be necessary to 

use tidy-up to preserve data integrity. 

 

The consequence of application-specific criteria relaxation on the improvement of the 

service is a matter worthy of discussion. When the number of criteria which may be 

relaxed is greater, it means there will be more searches, reads and writes resulting in 
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longer transaction-processing time. However, relaxation of application-specific criteria 

means that more transactions are successful, hence an improvement in throughput as 

shown in the experimentation. Overall the experiments showed that relaxing 

application-specific criteria improved throughput. 

 

Negotiation is about giving the users who wished to relax either consistency or 

durability when the provider does not allow that, an opportunity to change their minds. 

If negotiation is successful, fewer ACID properties are relaxed. As seen from the 

results, the fewer ACID properties that are relaxed, the lower the transaction 

throughput. Allowing negotiation can be seen as a disadvantage in terms of throughput 

because of the reduction in the number of ACID properties relaxed and also the process 

of a provider and consumer negotiating adds time to the whole transaction. However 

negotiation may avoid restart, which would be even more time-consuming because the 

transaction concerned would have to start from the beginning rather than negotiating 

and continuing. Furthermore, successful negotiation avoids transaction abort, which 

includes compensation and is costly. Generally, this type of negotiation adds value to 

the transaction processing. 

 

The novelty of the AuTrA system is the support for relaxation of ACID or application-

specific properties according to the application’s requirements and with the aim of 

increasing throughput. This allows service consumers to request to relax any ACID 

property but the service providers must define requirements regarding consistency and 

durability. This is important and fundamental in relation to maintaining correctness. 
 
 

7.3 Answering the research question 
 
 
To find whether the research aim has been achieved or not, let us reiterate the research 

question the thesis has endeavoured to answer: 

 

Can transaction support for Web services be customised to suit the needs of 

varying applications and result in improved service? 
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Without a doubt, the research question has been answered through investigation of the 

problem, definition of the requirements, design and implementation of the AuTrA 

system as a prototype Web transaction management framework, and experimental 

evaluation of AuTrA using scenarios. AuTrA optionally relaxes ACID properties 

according to the users’ needs, thereby meeting business requirements. This makes the 

AuTrA system suitable for varying applications and varying transaction requirements.  

 

A research aim was developed from the research question.  This was: 

 

To develop a system that increases throughput while maintaining the consistency and 

correctness required by particular applications. 

 

It was conjectured that the above research aim could be achieved by relaxing the ACID 

properties that are used in traditional transaction processing. A transaction management 

framework AuTrA and associated experimentation was designed to test this conjecture.  

The experimentation has shown that AuTrA enables throughput to increase while 

implementing safeguards to protect the data according to the requirements of the service 

provider. This is achieved through appropriate relaxation of ACID properties. A further 

conjecture was that relaxation of application-specific properties could also increase 

throughput.  Experiments were designed to test this and it has been shown that 

relaxation of application-specific properties can indeed increase throughput. 

 

From the research question arises another question: 

 

Has any other research been done which also answers the thesis research 

question?  

 

From the related work, it is clear that a considerable amount of work has been done in 

relation to transaction management. This prompted the research to further investigate 

related work and identify the elements important in answering the research question. 

That is, this research discovered what is missing in the existing related work, has 

improved previous work and hopefully taken understanding of the subject area further 

forward.  
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The outline of how the research answered the research question in terms of transaction 

processing requirements is summarised in Table 11. 

 

Table 11 Summary of how the AuTrA system answers the research question  

 

Transaction processing requirements  How it is supported by the research  

Customisation: User-defined atomicity and 

isolation 

Allows users to specify the requirements 

Correctness: Maintaining transaction 

consistency 

Provider-specified relaxation  

Customisation: Adaptable consistency and 

durability 

Provider-specified relaxation 

Customisation: Non-ACID improvement 

of throughput 

Use of application-specific criteria 

Improvement of throughput Experiments show how relaxation of 

various properties and combinations of 

these improves throughput 
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7.4 Comparison with other models 

 
The AuTrA system is different from other models.  Detailed comparisons are provided 

in Appendix A, Appendix B and section 2.7, Comparison of the different approaches.  

The major differences are recapped in this section:  

 

• Optional relaxation of all ACID properties: No other model relaxes all ACID 

properties. Some models like CaGIS-Trans customise relaxation of ACID 

properties, but only cater for atomicity and isolation. Ding, Wei and Huang’s 

(2006) model also customises relaxation but caters for atomicity only. 

 

 

• Negotiation: No other model, to the researcher’s knowledge, gives the user a 

choice to rethink requirements. 

 
 

• Application-specific criteria relaxation: No other model has formalised this 

aspect as a means of improving transaction throughput to the researcher’s 

knowledge. 

 

• The difference between standard protocols (such as WS-BA and BTP) and 

AuTrA is that relaxation of ACID properties in AuTrA is not required to be 

hardcoded like in the standard protocols. That is to say, for the standard 

protocols to relax ACID properties it has to be hardcoded by the programmer, 

which means it cannot be changed when the user wants to relax something 

different as may be required when needs change. Also these standard protocols 

do not include negotiation and application-specific criteria which might be 

useful to business in terms of increasing throughput. 

 

7.5 Correctness when relaxing a property 
 
 
A question arises of how AuTrA maintains correctness if ACID criteria are relaxed. In 

the classical database field, it is well known that consistency can be achieved through 
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serialisation of concurrent transaction schedules (Silberschatz, Korth, and Sudarshan 

2010). However, research has been done which shows that serialisation is a drawback 

when it comes to non-atomic transactions. For example Ramamritham and Chrysanthis 

in 1996 proposed a model which has more flexible correctness criteria. They developed 

a categorisation of different correctness criteria centred on database consistency 

requirements and transaction correctness properties. This model showed that relaxed 

serialisation is needed in distributed transactions. Another model which relaxed 

serialisation was the one by Guo, Tang, and Li, 2007. They argued that serialisation is 

too strict a correctness criterion for autonomous distributed systems. They proposed a 

model called weak serialisation. Their model separated the transactions into atomic 

transaction units according to application information. Interleaving amongst atomic 

transactions was allowed to increase parallelism. This model is a non-serialisation 

model and maintains consistency at higher levels of semantics.  

 

Apart from the use of serialisation to maintain consistency, other different consistency 

methods like the use of data integrity or defining correctness rules can be used. For 

example, in flight-booking the number of bookings should not exceed the number of 

seats available. When relaxing durability and tidying up later, the “correct” database is 

produced from the memory transaction log, and when not tidying up it can be produced 

from the last checkpoint in the past transaction history log on secure storage (the 

absolute latest held in the memory log may be lost). 

 

In terms of relaxing atomicity there is no loss of data consistency in the database.  

However, the user might receive inconsistent data when relaxing isolation that could 

have an effect on the correctness of the database. Therefore relaxation of isolation 

should only be used in non-critical applications. AuTrA leaves it to the user to decide 

whether the application is critical or not, but since a bad judgement could affect 

database correctness, the service provider has final decision on consistency and may use 

tentative hold in order to take care of incorrectness of data that might happen when 

tentative hold is not applied. Tentative hold will slow throughput but is necessary in 

some circumstances. 

 

When it comes to consistency the correctness of the database is defined in terms of 

consistency rules, e.g. a rule might be the allowing of bookings even if the number of 
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bookings exceeds the number of seats available. In other words, an inconsistent 

database according to the real world is deemed correct according to the business 

application, in that it meets the business rules. For instance, some airlines might 

deliberately overbook their flights, meaning that the number of bookings exceeding the 

number of seats is acceptable in the database. Sometimes overbooking may be to the 

level of a certain number of seats. The rule may be that the number of bookings must be 

less or equal to the number of seats plus ten. The point here is that consistency is 

relative to the application, and what is deemed acceptable in one application might be 

deemed as dangerously unacceptable in another. AuTrA allows flexibility, in that 

consistency can be relaxed according to the application requirements. 

 

7.6 Transition from database to Web services  
 
 
It is clear that the advance of technology has led to globalisation, more complex 

transactions, and the development of transaction management theory and practice from 

traditional centralised databases to decentralised internet environments. In today’s 

environment a transaction may involve businesses which are geographically located in 

different places, even in different continents. Such transactions are typically long-

running and the centralised database approach cannot take care of this sort of 

transaction because originally it was designed for simpler centralised database 

transactions. The ACID properties are well established for transaction management in 

traditional databases. It was thought that this type of support would also be useful for 

Web business transactions. However, research showed that the ACID approach is too 

rigid for Web transactions. For this reason, this research has built on the findings of 

other research to develop a new transaction model that is flexible and suitable for the 

new environment. 

7.7 Targeted users of AuTrA 
 
 

It is envisaged that AuTrA will be used primarily in a software development house.  

Software developers will be able to use AuTrA to build applications for customers from 

various Web services that providers have offered up to the internet. The software 

developers will establish the user requirements regarding relaxation through analysis 
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and discussion with users and will build suitable interfaces that support such 

requirements.   

 

User-friendly interfaces can be built so that in some cases users can specify relaxation 

requirements dynamically. For instance, there could be a question such as: “If it is not 

possible to book the flight, hotel and skis, do you want the system to book whatever it 

can?” This type of question can be used to find out if a user is prepared to relax 

atomicity. To find out if a user is prepared to relax isolation the following sort of 

question can be asked: “Do you need your information quickly? ‒ There may be other 

users updating the data at the moment – does it matter if the data provided to you is not 

absolutely the latest data? – If it doesn’t matter then your transaction can be run 

quicker.”   

 

AuTrA will also be useful to system developers who might be experimenting with the 

response times for the system under development. Developers might want to use AuTrA 

to relax some of the ACID properties to find out the response time of each ACID 

property while the system is being developed, and depending on this decide on how to 

advise the customer on the final version and use of their application. 

 

Another type of user might be a software-hosting company which hosts systems and 

applications for others in the cloud. The clients for their hosting company might be 

interested in high throughput for their application, for instance, sensor applications 

which gather data in real time and need fast processing. Strict durability and consistency 

is likely to be unnecessary in these types of application. The hosting company has 

possibilities of using AuTrA to relax some ACID properties that will suit the business 

needs of their clients’ applications and systems. 

 

7.8 Conclusion 
 

 

Efficient online transaction management is essential for the modern online business. 

Technology evolution has delivered Web services, which have become an essential 

component in the infrastructure for such business. Improvement in Web services 

transaction management is the key to smoothing the progress of business in terms of 
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better transaction processing and hence better throughput. Much interesting work has 

lately contributed to the development of improved Web services transaction 

management. This has been described in the earlier part of this thesis, but it was noted 

that there was still room for a more flexible approach to Web transaction management 

and hence the formulation of the research question of this thesis. 

 

The thesis has demonstrated how the research question has been answered. 

Experimental evaluation of AuTrA was performed and the results show that relaxation 

of ACID properties increases throughput, resulting in business enhancement. The 

experiments also showed that relaxation of non-ACID, application-specific 

requirements improve the throughput of transactions. AuTrA points out that consistency 

and durability of data is the responsibility of the business or service provider. That is to 

say, the providers set the relaxation specification that maintains consistency and 

durability. Users can opt to relax atomicity and isolation. 

 

One might argue that if relaxing all ACID properties improves the service because it 

increases  throughput, why not relax all ACID properties at all times? The research 

reiterates that relaxing consistency and durability sometimes might affect the data 

integrity of the business application. As a result, for the sake of the consistency of data, 

not all ACID properties can be relaxed, even if increased throughput is desired. In this 

case, the business must choose to maintain consistency of data over the throughput. 

 

AuTrA has answered the research question showing that it is possible to optionally relax 

ACID properties according to the business requirements, while maintaining the 

correctness needed by the application. There is support for relaxation to be specified 

either by service provider or service consumer. The provider’s relaxation specification 

determines which ACID properties can be relaxed in terms of consistency and 

durability, while the user determines which ACID properties can be relaxed with regard 

to atomicity and isolation. Negotiation gives the consumer a chance to rethink the 

requirements if they disagree with the provider’s requirements. Another feature is 

application-specific criteria relaxation which supports alternative consumer 

requirements if the first requirement cannot be met. Tentative hold plays a role of 

maintaining consistency when isolation is relaxed and also when atomicity is not 

relaxed. AuTrA is a Web-based product, designed for the fast growing area of Web 
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services, now becoming known as “the cloud”, where the growth of global and virtual 

businesses can flourish. AuTrA makes an important contribution to this area, which in 

the future will need to support many different types of application and will need 

innovative mechanisms to do so. 

 

7.9  Future work 
 
 
Whilst AuTrA has made some important contributions to the area of transaction 

management in Web services, there are still some issues that need to be addressed in the 

future. One of those issues is the dependency relationships between transactions which 

AuTrA at present does not consider. At the moment, the AuTrA system assumes that 

there is no dependency between the transactions, but if the AuTrA is to be used by any 

application, dependency mechanisms that will maintain consistency if needed by the 

business requirement have to be implemented. At present, AuTrA enables composition 

of applications through sequential composition only. More complex workflow 

composition facilities need to be added. 

 

Another issue that needs attention in the future is consistency from the services 

consumer’s point of view. The AuTrA system takes care of consistency from the 

services provider’s side, but it does not have a mechanism in place that caters for 

consistency of information the services requester receives. For example, in a situation 

where isolation is relaxed, dirty reading may occur, and the consumer might receive 

incorrect information caused by dirty reading and might act upon it. At present, AuTrA 

handles this case by relaxing isolation only at the consumer’s request based on the 

assumption that the consumer understands the problem and is prepared to accept some 

risk of incorrect data. In many circumstances this is a reasonable assumption, but there 

could be other circumstances in which an additional safety net may be useful, 

notwithstanding that the inclusion of such a safety net would slow down processing. In 

the future, AuTrA should have some additional mechanism that will verify the 

consistency of information before the service requester receives it in cases with which it 

is felt that this feature would be useful.  
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Again, in the agenda for future work is the released AuTrA to be used by everyday 

users, which means they will be people who do not know anything about ACID 

properties and relaxation. Therefore, for the system to be used by the end user, the 

relaxation of ACID properties has to be communicated in simple English. For example, 

if the user wants to relax atomicity when booking a flight, a hotel and skis, the interface 

might offer a question as follows: “We might not be able to book everything. Which of 

the following is it essential that we book?” Then there would be a check box for the user 

to tick the components that are essential in case it is not possible to book all. This would 

be relaxing atomicity, because only part of the booking may be done. Relaxing isolation 

may be communicated by words such as the following: “In processing your transaction, 

we will access the very latest data but some of the data may not yet be fully verified. Is 

it okay to proceed in this way or alternatively would you prefer a slower process which 

accesses only verified data, even if it may not be the very latest data?” The sentiment 

could alternatively be communicated via option boxes. The application would only 

allow the user to ask for relaxation of atomicity and isolation, and the service provider 

would determine whether to relax consistency and durability. This would ensure the 

consistency and correctness of the database. The area of involving end users in the 

transaction configuration process will require further research and will be application-

dependent to ensure that safely critical systems are not compromised. At present, 

AuTrA is seen primarily as a software developer’s tool. 

 

7.10 Closing remark 

 
More and more businesses are seeking an edge that can help them to be better than their 

competitors. As a result, the internet and e-commerce future will depend on high 

transaction throughput to meet the demands of businesses seeking that elusive edge. 

AuTrA delivers adaptable relaxation of ACID properties according to the business 

requirements, as well as using application-specific criteria to increase transaction 

throughput while still maintaining application-defined consistency. Thus it is hoped that 

this research work makes a positive contribution towards fulfilling future requirements 

of internet-based business systems as we move deeper into the internet age. 
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Appendix A ‒ Comparison of different Web-based transaction management models     

  
Table A1 summarises the difference and similarities between the various Web-based transaction models that have been studied which includes 
authors and year of publication.         
 
 

Table A 1 Comparison of different transaction Web-based transaction models 
 

Year Model Author(s) Relaxation 
 

Distinguishing 
feature(s) 

Customisable Management of 
inconsistency 

Reconsidering 
the 
requirements 
by users 

   A C I D     
1982 Nested transaction  Moss N N N N Sub-transactions(parent 

and child) 
N N/A N 

1983 Modulation 
specification 

Lynch Y N N N Multilevel atomicity N N/A N 

1987 Saga Garcia-Molina 
and Salem 

Y N Y N Compensation similar 
to nested transaction 
but caters for long 
transactions  

N Compensation N 

1990 ACTA Chrysanthis 
and 
Ramamritham 

N N N N Customisable, captures 
semantics and rationale 
for the recovery 
properties of the 
composite transactions; 
commit and abort-
dependency 

Y N/A N 
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1992 Open-nested and 
multilevel  

Weikum and 
Schek 

Y N Y N Use of semantics-based 
concurrency control; 
serialisability as the 
correctness criterion 

N Serialisability as the 
correctness criterion 

N 

1992 Cooperation 
transaction 
hierarchy  

Nodine and 
Zdonik 

N N N N Three levels of the tree: 
root, transaction 
groups, 
cooperation 
transactions; user-
defined criteria 
(patterns and conflicts) 

Y N/A N 

1992 Split and join Keiser and Pu N N N N Splits a running 
transaction into two or 
more transactions and 
later joins transactions 
by merging their 
resources 

N N/A N 

1993 Coo 
  

Godart Y N Y N Three consistency 
levels: stable, semi-
stable, unstable 

N Safety constraints N 

1993 Semantics-based 
correctness criteria 

Agrawal, 
Abbadi and 
Singh 

Y N N N Relative atomicity N N/A N 

1994 ASSET (A System 
Supporting 
Extended 
Transactions) 

Biliris et al. N N N N Introduced 
new primitives: 
delegation, 
dependency, conflict 
set 
 

N N/A N 

1995 Cooperative Rusinkiewicz Y N N N User investigation Y N/A N 
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transaction et al. facility; retraction of 
decision; compensation 

1995 Bayou Terry et al.  N Y N N Use of replicate to 
allow relaxation of 
consistency 

N Update conflicts 
resolved in a 
consistent manner by 
all servers 

N 

1997 Software 
engineering 
database 

Conradi et al. N N Y N Software engineering 
focus; two types of 
locking: mandatory and 
cooperative; user 
awareness; conflict 
change detection  

N User awareness; 
conflict change 
detection 

N 

1997 RTF( Reflective 
Transaction 
Framework) 

Barga and Pu  N N N N Transactional adapters: 
transaction manager 
adapter, lock adapter, 
conflict adapter, log 
adapter  

N N/A N 
 
 
 
 
 
 
 
 
 
 
 
 

1999 Data consistency Pitoura and 
Bhagava 

N Y N N Clusters: weak and 
strong transactions 

N Data integrity 
constraints are 
ensured only for data 
copies belonging to 
the same logical 

N 
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clusters 
1999 Transactional 

Support for 
Cooperative 
Applications 

Wäsch Y N Y N Caters for ad-hoc 
activities 

Y Not discussed N 

1999 NTO (New 
Timestamp 
Ordering) 

Zhang et al. N N N N  Use of high priority  on 
the last read or last 
write conflict write for 
correctness criteria 

Y N/A N 

2001 Tentative Hold 
Protocol 

Robert and 
Srinivasan 

N N Y N Tentative  non-
blocking holds; user 
awareness 

N Tentative Hold N 

2002 Design and 
Evaluation of 
Conit-based 
Continuous 
Consistency for 
Replicated 
Services. 

Yu and 
Vahdah 

N Y N N Replicate services; 
consistency spectrum 

N Allowance of certain 
inconsistency level; If 
this is passed 
operation will be 
blocked until 
synchronisations of 
the replicate as 
determined by the 
system consistency 

N 

2003 SACReD Younas and 
Iqbal 

N N Y N Collaborative editing 
focus; semantics 
atomicity; resilience 

N Correctness criteria 
based on SACReD 

N 

2003 BTP Little and 
Freud 

Y N Y N Two sub-protocols 
(atoms and cohesion) 

Y Compensation N 

2003 Efficient THP Park and Choi N N Y N Optimisation of THP 
through adaptive hold 
duration 

Y Tentative hold N 

2004 TODS Zhou, Jin and N Y N N Different levels of N Local consistency N 
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Zheng consistency  
 
 

2004 Update ordering Zhou, Wang 
and Jia 

N Y N N Replication with data 
update ordering 

N Differentiates needs of 
clients and server in 
maintaining 
consistency  

N 

2004 Priority Commit 
Protocol 

Awan and 
Younas 

N N N N Head-of-line (HoL) 
scheduling mechanisms 
at network nodes. 

N N/A N 

2004 Low-latency 
resilient 

Younas  
Eaglestone and 
Chao 

Y N Y N Flexible components 
transaction, i.e. use of 
alternatives 

Y Correctness criteria 
based on SACReD 

N 

2004 CAGIS-Trans Ramampiaro 
and Nydard 

Y N Y N Focus on cooperative 
work; adaptability of 
atomicity and isolation 
relaxation; 

Y Users specify suitable 
correctness constraints 

N 

2005 Accepted 
termination states 

Bhiri, Perrin 
and Godart 

Y N N N Flexible definition by 
user acceptable 
termination states 

Y N/A N 

2005 Composite model Fauvet et al. Y N Y N Based on THP; 
different levels of 
atomicity. 

Y N/A N 

2005 Decentralised 
coordination of 
transaction process 
in peer-to-peer 
environment 

Haller, 
Schuldt, and  
Türker 

N N Y N Global correctness 
without depending on 
global serialisation 
graph. 

N Correctness ensured 
decentralised 
serialisation graph 
testing 

 

2005 A framework for 
ensuring 

Choi et al. N N Y N Web services 
transaction dependency 

N The mechanism 
effectively detects 

N 
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consistency of Web 
services 
transactions 

management Protocol 
(WTDP). 

inconsistent states of 
transactions with a 
notion of a completion 
dependency and 
recovers them to 
consistent states 

2006 User-defined 
atomicity 

Ding ,Wei and 
Huang 

Y N N N Adaptive user-defined 
atomicity 

Y N/A N 

2006 Tentative commit 
protocol 

Younas and 
Chao 

N N N N Similar to THP but 
tentative commit 
replaces tentative holds 

N N/A N 

2006 Transactions 
concurrency 
control in Web 
services 
environment 

Alrifai, Dolog 
and Nejdl 
 
 
 
 
 
 
 

N N Y N Non-blocking 
scheduler 

N Commit order 
preserving transaction 
scheduler 

N 

2006 Transaction 
Commit Protocol 
for Composite Web 
Services 

Younas et.al Y N Y N Alternative transaction N Tentative commit N 

2006 Transaction 
awareness protocol 

Yang, Liu and 
Ling 

N N Y N THP transaction 
context awareness; 
success probability 

Y Tentative hold N 
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2006 Reducing sub-
transaction abort 
and blocking time 
within atomic 
commit protocol 

Böttcher, 
Gruenwald, 
and 
Obermeier, S. 

N N Y N Non-blocking and 
reduction of transaction 
aborts 

N Not discussed 
 
 
 
 
 
 
 
 
 
 

N 

2006 Network-based 
Composition 
(NetCom)  

Younas, Awan 
and Duce 

N N N N P2P architecture N N/A N 

2007 Promise Greenfield et 
al. 

N N N N Resources held based 
on promise; no other 
transaction allowed to 
see a promised 
resource; provides 
isolation 

N N/A N 
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2007 Tentative Hold 
Protocol (THP) 

Robert et al. N N Y N Compensation N Compensation N 

2008 Reservation-based 
extended protocol 

Zhao, Moser 
and Melliar-
Smith 

N N Y N No use of 
compensation  

N Not discussed 
 

N 

2009 WS-
BusinessActivity 

Cabrera et al. 
2009b 

Y N Y N Coordinates a set of 
distributed  Web 
services to reach a 
jointly outcome; 
includes WS-
Coordinator 

Y Compensation N 

2009 Non-Blocking 
Commit Protocol 
(NBCP) 

Kumar and 
Barvey  

N N Y N Two-phase commit 
(2PC) protocol 

N Not discussed 
 

N 

2009 Lease-based 
consistency 

Lee et al. N Y N N Replicates; lease time 
adaptively 

Y Lease time N 

2009 Ensuring 
consistency on 
Web services 
transactions 

Wang et al. N N Y N Web services 
transaction dependency 
coordination protocol 
(WSTDCP) 

N End state dependency N 

2009 IBM SolidDB  N N N Y HotStandby Y Delayed saving N 
 
 
 

2009 IBM Universal 
Cache 

 N N N Y In-memory  Y Dual Database N 

2009 ASE  N N N Y In-memory and in-
memory/disk-based 

Y Dual Database N 

2009 Oracle Ten-Times 
 

 N N N Y Transaction replicates Y Replicates N 
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2010 Context aware  Younas and 

Mostefaoui 
Y Y Y N Context awareness Y Correctness criteria 

based on SACReD 
N 

2011 AuTrA Khachana, 
James and 
Iqbal 

Y Y Y Y Full adaptability to 
relax ACID properties  
depending on the 
requirements and 
contracts; use of 
negotiation phase 

Y Service provider’s 
specification 

Y 
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Appendix B ‒ Comparison of key features of BTP, WS-Tx (BusinessActivity) and AuTrA 
 
 
This appendix provides a summary table which compares business standard protocols with AuTrA. The following table summarises the 
differences and similarities. 
 

Table B 1 Comparison of key features of BTP, WS-Tx (BusinessActivity) and AuTrA 
 
 BTP WS-BusinessActivity AuTrA 
Distinguishing Feature Two sub-protocols 

(atoms and cohesion) 
Coordinates a set of distributed Web services 
(example, Atomic Transactions) to reach a joint 
outcome; includes WS-Coordination; dynamic 

Full adaptability to relax ACID 
properties  depending on the 
requirements and contracts; use of 
negotiation phase 

Atomicity Relaxation Yes Yes Yes 

Consistency Relaxation No No Yes 

Isolation Relaxation Yes Yes Yes 

Durability Relaxation No No Yes 

Customisable No No Yes 

Review of the 

Characteristics Entered 

by the User 

No No Yes 

Management of 

Inconsistency 

Compensation Compensation service providers application contracts 
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Appendix C – Raw data and evidence of statistical analysis of the experiments 
 
 
This appendix presents the raw data and the statistical analysis of the experiments. There are different methods that can be used to statistically 

analyse the data like CHITEST, t-test, ANOVA (Analysis of Variance), and Tukey Test.  

 

CHITEST ‒ chi-squared (χ2) test. Chi-squared tests are only appropriate for frequency data, i.e. counts. Since the research data are not frequency 

data, this test is not suitable for the analysis. 

 

t-test ‒ This is used to compare two groups (referred to as Cases in this research) of observations, but since the research has more than two 

groups to compare, this is not the correct method to statistically analyse the data, because of multiple comparison which can lead to high error 

rates. 

 

ANOVA‒ This is used to find the significance of differences between groups. This method was suitable in this research because the raw data 

consists of many groups (in this research these are called Cases). ANOVA can be used for experiments that involve single or multiple factors.  In 

the case of this research there were 2 factors which influenced the results.  These were the cases (identified by the particular relaxation 

specification) and the transaction batch size.  Thus 2 way ANOVA was the correct method to use for this research. ANOVA assumes that the 

data from the different groups come from populations where the observations have a normal distribution and the variance is the same for each 

group. ANOVA can determine that there is significant difference between groups but does not show which of the groups are statistically 

significantly different. 
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Tukey's test ‒ also referred to Tukey's HSD (Honest Significant Difference) test is a multiple comparison method used following ANOVA to find 

which means are significantly different from one another. Tukey's test and t-test are based on a similar formula.  However Tukey's test is more 

acceptable than t-test, because it has a lower rate of error when doing multiple comparisons. Therefore the Tukey test is more suitable for 

multiple comparisons. Tukey’s test is more specific than ANOVA.  Tukey’s test shows which groups from a set are statistically significantly 

different. 

 

 

In statistical significance testing, the p-value is the probability of getting a test statistic at least as large as the one that was actually observed, 

assuming that the null hypothesis is true. The null hypothesis is rejected when the p-value is less than the significance level α, which is often 0.05 

or 0.1.  The result is said to be statistically significant when the null hypothesis is rejected. ANOVA reports a p-value and an F-ratio. The F-ratio 

describes the variance of the group means.  The F-ratio is calculated as a factor of the largest variance over the smallest variance of the group 

means across the groups.  The null hypothesis is rejected if the F-ratio is higher than a crucial value as given in established statistical tables and 

dependent on degrees of freedom (DF).  In the results provided below, the F-ratio is presented as Fx,y where X and y are the relevant DFs of the 

factor under consideration, namely Cases, and the Error respectively. The Error refers to the interaction between the factors, Cases and 

Transactions.  

 

 

This research used Minitab for undertaking the ANOVA and Tukey tests. 
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Statistical Significance Testing 

 

In the following sections the data from each experiment presented in Chapter 6 is processed in order to check statistical significance. For each 

experiment a table is given which shows the number of transactions in each batch and the throughput unit time for each case tested. 

 

Experiment 1 Raw data and Tukey analysis output 

 

Table C 1 Case 1 and Case 2 Raw Data 
No. of transactions in a set Case 1  Case 2 

20 16.04 1.43 

100 15.99 1.39 

200 15.89 1.30 

300 15.85 1.20 

400 15.79 1.20 

500 15.65 1.19 
  

 
H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing no ACID properties and (b) relaxing Atomicity, 

Consistency and Isolation.  
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H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxation of no ACID properties and (b) relaxing 

Atomicity, Consistency and Isolation.  

 
 
General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       2  Case1; Case2 
 
 
Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF  Seq SS  Adj SS  Adj MS          F      P 
Transactions   5    0,14    0,14    0,03      13,92  0,006 
Cases          1  638,02  638,02  638,02  307727,09  0,000 
Error          5    0,01    0,01    0,00 
Total         11  638,18 
 
 
S = 0,0455339   R-Sq = 100,00%   R-Sq(adj) = 100,00% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time      Fit  SE Fit  Residual  St Resid 
  6     15,6500  15,7117  0,0348   -0,0617     -2,10 R 
 12      1,1900   1,1283  0,0348    0,0617      2,10 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases  N    Mean  Grouping 
Case1  6  15,868  A 
Case2  6   1,285    B 
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Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case1  subtracted from: 
 
       Difference       SE of           Adjusted 
Cases    of Means  Difference  T-Value   P-Value 
Case2      -14,58     0,02629   -554,7    0,0000 
 
 
 
 

The research reports  from ANOVA , the F ratio, with both DFs ,  and  the p-value. The research also reports the results from Tukey. There were 

significant differences between cases (2 way ANOVA gives F1, 5 = 307727.09 and p<0.001). Tukey’s HSD test confirmed both cases were 

significantly different from one another. 

 

Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey ’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxation of  no ACID 

properties and (b) relaxing Atomicity, Consistency and Isolation.” 
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Experiment 2 Raw data and Tukey analysis output 

 

Table C 2 Case 3, Case 4 and Case 5 Raw Data 
No. of transactions in a set Case 3 Case 4 Case 5 

20 10.58 9.66 1.94 

100 10.52 9.51 1.89 

200 10.50 9.44 1.84 

300 10.37 9.37 1.74 

400 10.22 9.29 1.68 

500 10.19 9.13 1.60 

 

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and (b) relaxing Consistency and (c) 

relaxing Isolation.  

 

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and (b) relaxing Consistency and (c) 

relaxing Isolation.  

 

General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       3  Case3; Case4; Case5 
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Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS   Adj MS         F      P 
Transactions   5    0,371    0,371    0,074     47,81  0,000 
Cases          2  266,501  266,501  133,251  85845,04  0,000 
Error         10    0,016    0,016    0,002 
Total         17  266,888 
 
 
S = 0,0393983   R-Sq =  99,99%   R-Sq(adj) = 99,99% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time     Fit  SE Fit  Residual  St Resid 
  7      9,6600  9,6006  0,0263    0,0594      2,02 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases  N    Mean  Grouping 
Case3  6  10,397  A 
Case4  6   9,400    B 
Case5  6   1,782      C 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case3  subtracted from: 
 
       Difference       SE of           Adjusted 
Cases    of Means  Difference  T-Value   P-Value 
Case4      -0,997     0,02275    -43,8    0,0000 
Case5      -8,615     0,02275   -378,7    0,0000 
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Cases = Case4  subtracted from: 
 
       Difference       SE of           Adjusted 
Cases    of Means  Difference  T-Value   P-Value 
Case5      -7,618     0,02275   -334,9    0,0000 
 
 
 
 
  

The research reports  from ANOVA , the F ratio, with both DFs,  and  the p-value. The research also reports the results from Tukey. The research 

reports the F ratio, with both DFs, and the  p-value.  The research also reports the results from Tukey. There were significant differences between 

cases (2 way ANOVA gives F2, 10 = 85845.04, p<0.001).  Tukey’s HSD test confirmed all cases were significantly different from one another. 

 

 

Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey ’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and (b) 

relaxing Consistency and (c) relaxing Isolation.” 
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Experiment 3 and Experiment 4 Raw Data and Tukey Analysis Output 

 

 Table C 3 Case 2, Case 6, Case 7 and Case 8 Raw Data. 
No. of transactions in a set Case 2 Case 6 Case 7 Case 8 

20 1.43 7.93 1.80 1.72 

100 1.39 7.89 1.76 1.69 

200 1.30 7.82 1.72 1.63 

300 1.20 7.71 1.68 1.59 

400 1.20 7.64 1.64 1.52 

500 1.19 7.55 1.54 1.49 

 

 

H0 - There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, Consistency and Isolation and (b) 

relaxing Atomicity with Consistency and (c) relaxing Atomicity with Isolation and (d) relaxing Consistency with Isolation  

 

H1- There is a difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, Consistency and Isolation and (b) 

relaxing Atomicity with Consistency and (c) relaxing Atomicity with Isolation and (d) relaxing Consistency with Isolation. 
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General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       4  Case2; Case6; Case7; Case8 
 
 
Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS  Adj MS         F      P 
Transactions   5    0,232    0,232   0,046     36,30  0,000 
Cases          3  175,176  175,176  58,392  45747,76  0,000 
Error         15    0,019    0,019   0,001 
Total         23  175,427 
 
 
S = 0,0357266   R-Sq = 99,99%   R-Sq(adj) = 99,98% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time      Fit   SE Fit  Residual  St Resid 
  6     7,55000  7,61458  0,02188  -0,06458     -2,29 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases  N   Mean  Grouping 
Case6  6  7,757  A 
Case7  6  1,690    B 
Case8  6  1,607      C 
Case2  6  1,285        D 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
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All Pairwise Comparisons among Levels of Cases 
Cases = Case2  subtracted from: 
 
       Difference       SE of           Adjusted 
Cases    of Means  Difference  T-Value   P-Value 
Case6      6,4717     0,02063   313,75    0,0000 
Case7      0,4050     0,02063    19,63    0,0000 
Case8      0,3217     0,02063    15,59    0,0000 
 
 
Cases = Case6  subtracted from: 
 
       Difference       SE of           Adjusted 
Cases    of Means  Difference  T-Value   P-Value 
Case7      -6,067     0,02063   -294,1    0,0000 
Case8      -6,150     0,02063   -298,2    0,0000 
 
 
Cases = Case7  subtracted from: 
 
       Difference       SE of           Adjusted 
Cases    of Means  Difference  T-Value   P-Value 
Case8    -0,08333     0,02063   -4,040    0,0053 
 
 
 
 

The research reports  from ANOVA , the F ratio, with both  DFs,  and  the p-value. The research also reports the results from Tukey.. There was 

significant differences between cases (2 way ANOVA gives F3, 15 = 45747.76, p<0.001).  Tukey’s HSD test confirmed all cases were 

significantly different from one another. 
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Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey ’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, 

Consistency and Isolation and (b) relaxing Atomicity with Consistency and (c) relaxing Atomicity with Isolation and (d) relaxing Consistency 

with Isolation.” 

 

Experiment 5 Raw data and Tukey analysis output 

 

Table C 4 Case 9 and Case 10 Raw Data 
No. of transactions in a set Case 9  Case 10 

20 16.77 8.47 

100 16.55 8.37 

200 16.44 8.32 

300 16.33 8.23 

400 16.21 8.12 

500 16.10 8.01 

 

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing no ACID properties and (b) relaxing Durability   

 

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing no ACID properties and (b) relaxing Durability.  
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General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       2  Case10; Case9 
 
 
Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS   Adj MS         F      P 
Transactions   5    0,418    0,418    0,084     24,61  0,002 
Cases          1  199,105  199,105  199,105  58675,21  0,000 
Error          5    0,017    0,017    0,003 
Total         11  199,539 
 
 
S = 0,0582523   R-Sq = 99,99%   R-Sq(adj) = 99,98% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time      Fit  SE Fit  Residual  St Resid 
  1     16,7700  16,6933  0,0445    0,0767      2,04 R 
  7      8,4700   8,5467  0,0445   -0,0767     -2,04 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases   N    Mean  Grouping 
Case9   6  16,400  A 
Case10  6   8,253    B 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
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Cases = Case10  subtracted from: 
 
       Difference       SE of           Adjusted 
Cases    of Means  Difference  T-Value   P-Value 
Case9       8,147     0,03363    242,2    0,0000 
 
 
 
 

The research reports  from ANOVA , the F ratio, with both  DFs,  and  the p-value. The research also reports the results from Tukey. There was 

significant differences between cases (2 way ANOVA gives F1, 5 = 58675.21, p<0.001). Tukey’s HSD test confirmed all cases were significantly 

different from one another. 

 

Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing no ACID properties 

and (b) relaxing Durability.” 
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Experiment 6 and Experiment 7 Raw Data and Tukey Analysis Output 

 
Table C 5 Case 10 & Tidy-up, Case 10, Case 11 & Tidy-up and  Case11 Raw Data 

No. of transactions in a set Case 10 & Tidy-up Case 10 Case 11 Tidy-up Case 11 

20 14.00 8.47 13.44 7.69 

100 13.89 8.37 13.36 7.63 

200 13.80 8.32 13.30 7.54 

300 13.75 8.23 13.24 7.49 

400 13.70 8.12 13.19 7.37 

500 13.67 8.01 13.15 7.21 

 

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Durability and (b) relaxing Durability with Tidy- 

up and (c) relaxing Durability and  Atomicity and (d) relaxing Durability and  Atomicity with Tidy-up 

 

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Durability and (b) relaxing Durability with Tidy-up 

and (c) relaxing Durability and Atomicity and (d) relaxing Durability and  Atomicity with Tidy-up. 

 

General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       4  Case10; Case10+ Tidy Up; Case11; Case11+ Tidy Up 
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Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS  Adj MS         F      P 
Transactions   5    0,407    0,407   0,081     44,92  0,000 
Cases          3  195,465  195,465  65,155  35975,24  0,000 
Error         15    0,027    0,027   0,002 
Total         23  195,899 
 
 
S = 0,0425572   R-Sq = 99,99%   R-Sq(adj) = 99,98% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time     Fit  SE Fit  Residual  St Resid 
 24      7,2100  7,2925  0,0261   -0,0825     -2,45 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases            N    Mean  Grouping 
Case10+ Tidy Up  6  13,802  A 
Case11+ Tidy Up  6  13,280    B 
Case10           6   8,253      C 
Case11           6   7,488        D 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case10  subtracted from: 
 
                 Difference       SE of           Adjusted 
Cases              of Means  Difference  T-Value   P-Value 
Case10+ Tidy Up      5,5483     0,02457   225,81    0,0000 
Case11              -0,7650     0,02457   -31,14    0,0000 
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Case11+ Tidy Up      5,0267     0,02457   204,58    0,0000 
 
 
Cases = Case10+ Tidy Up  subtracted from: 
 
                 Difference       SE of           Adjusted 
Cases              of Means  Difference  T-Value   P-Value 
Case11               -6,313     0,02457   -256,9    0,0000 
Case11+ Tidy Up      -0,522     0,02457    -21,2    0,0000 
 
 
Cases = Case11  subtracted from: 
 
                 Difference       SE of           Adjusted 
Cases              of Means  Difference  T-Value   P-Value 
Case11+ Tidy Up       5,792     0,02457    235,7    0,0000 
 
 
 

 
The research reports  from ANOVA , the F ratio, with both DFs,  and  the p-value. The research also reports the results from Tukey. There was 

significant differences between cases (2 way ANOVA gives F3,15 = 35975.24, p<0.001).  Tukey’s HSD test confirmed all cases were significantly 

different from one another. 

 

Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Durability and (b) 

relaxing Durability with Tidy-up and (c) relaxing Durability and Atomicity and (d) relaxing Durability with Atomicity with Tidy-up.” 
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Experiment 8 Raw Data and Tukey Analysis Output 

 
Table C 6 Case 3, Case 4 and Case 5  and Case 10 Raw Data 

No. of transactions in a set Case 3 Case 4 Case 5 Case 10 

20 12.40 11.37 2.36 8.47 

100 12.31 11.29 2.21 8.37 

200 12.23 11.14 2.10 8.32 

300 12.17 11.05 2.01 8.23 

400 12.10 11.06 1.98 8.12 

500 12.03 11 1.90 8.01 

 

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, and (b) relaxing Consistency, (c) 

relaxing Isolation, (d) relaxing Durability.  

 

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, and (b) relaxing Consistency, (c) 

relaxing Isolation, (d) relaxing Durability.  

 

 

General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       4  Case 10; Case 3; Case 4; Case 5 
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Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS   Adj MS         F      P 
Transactions   5    0,570    0,570    0,114     20,59  0,000 
Cases          3  371,031  371,031  123,677  22328,82  0,000 
Error         15    0,083    0,083    0,006 
Total         23  371,684 
 
 
S = 0,0744237   R-Sq = 99,98%   R-Sq(adj) = 99,97% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time     Fit  SE Fit  Residual  St Resid 
 20      8,7000  8,4958  0,0456    0,2042      3,47 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases    N    Mean  Grouping 
Case 3   6  12,207  A 
Case 4   6  11,152    B 
Case 10  6   8,308      C 
Case 5   6   2,093        D 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case 10  subtracted from: 
 
        Difference       SE of           Adjusted 
Cases     of Means  Difference  T-Value   P-Value 
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Case 3       3,898     0,04297     90,7    0,0000 
Case 4       2,843     0,04297     66,2    0,0000 
Case 5      -6,215     0,04297   -144,6    0,0000 
 
 
Cases = Case 3  subtracted from: 
 
        Difference       SE of           Adjusted 
Cases     of Means  Difference  T-Value   P-Value 
Case 4       -1,05     0,04297    -24,6    0,0000 
Case 5      -10,11     0,04297   -235,4    0,0000 
 
 
Cases = Case 4  subtracted from: 
 
        Difference       SE of           Adjusted 
Cases     of Means  Difference  T-Value   P-Value 
Case 5      -9,058     0,04297   -210,8    0,0000 
 
 
 
 
 

The research reports  from ANOVA , the F ratio, with both DFs,  and  the p-value. The research also reports the results from Tukey. There was 

significant differences between cases (2 way ANOVA gives F3,15 = 22328,82, p<0.001).  Tukey’s HSD test confirmed all cases were significantly 

different from one another. 

 

Interpreting the Results 

 

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity, and (b) 

relaxing Consistency, (c) relaxing Isolation, (d) relaxing Durability.”. 
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Experiment 9 Raw Data and Tukey Analysis Output 

 
Table C 7 Cases 6, Case 7 and Case 8, Case 16, Case 17 and Case 18 Raw Data 

No. of transactions 

in a set 

Case 6 Case7 Case 8 Case 16 Case 17 Case 18 

20 12.01 3.75 2.70 9,71 1.97 2.01 

100 11.97 3.69 2.65 9,67 1.95 1.99 

200 11.85 3.69 2.60 9,53 1.90 1.98 

300 11.74 3.61 2.51 9,41 1.85 1.95 

400 11.59 3.55 2.51 9,14 1.82 1.91 

500 11.47 3.50 2.46 9,01 1.80 1.89 

 

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and Consistency (b) relaxing 

Consistency and Isolation (c) relaxing Atomicity and Isolation (d) relaxing Atomicity, Consistency  and Durability and (e) relaxing Consistency, 

Isolation and Durability and (f) relaxing Atomicity, Isolation and Durability.  

 

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and Consistency (b) relaxing 

Consistency and Isolation (c) relaxing Atomicity and Isolation (d) relaxing Atomicity, Consistency and Durability and (e) relaxing Consistency, 

Isolation and Durability and (f) relaxing Atomicity, Isolation and Durability. 
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General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       6  Case 16; Case 17; Case 18; Case 6; Case 7; Case 8 
 
 
Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS   Adj MS         F      P 
Transactions   5    0,535    0,535    0,107     11,45  0,000 
Cases          5  550,610  550,610  110,122  11791,91  0,000 
Error         25    0,233    0,233    0,009 
Total         35  551,378 
 
 
S = 0,0966374   R-Sq = 99,96%   R-Sq(adj) = 99,94% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time     Fit  SE Fit  Residual  St Resid 
 24      9,0100  9,2303  0,0534   -0,2203     -2,74 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases    N    Mean  Grouping 
Case 6   6  11,767  A 
Case 16  6   9,412    B 
Case 7   6   3,632      C 
Case 8   6   2,572        D 
Case 18  6   1,955          E 
Case 17  6   1,882          E 
 
Means that do not share a letter are significantly different. 
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Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case 16  subtracted from: 
 
         Difference       SE of           Adjusted 
Cases      of Means  Difference  T-Value   P-Value 
Case 17      -7,530     0,05579   -135,0    0,0000 
Case 18      -7,457     0,05579   -133,6    0,0000 
Case 6        2,355     0,05579     42,2    0,0000 
Case 7       -5,780     0,05579   -103,6    0,0000 
Case 8       -6,840     0,05579   -122,6    0,0000 
 
 
Cases = Case 17  subtracted from: 
 
         Difference       SE of           Adjusted 
Cases      of Means  Difference  T-Value   P-Value 
Case 18     0,07333     0,05579    1,314    0,7745 
Case 6      9,88500     0,05579  177,171    0,0000 
Case 7      1,75000     0,05579   31,366    0,0000 
Case 8      0,69000     0,05579   12,367    0,0000 
 
 
Cases = Case 18  subtracted from: 
 
        Difference       SE of           Adjusted 
Cases     of Means  Difference  T-Value   P-Value 
Case 6      9,8117     0,05579   175,86    0,0000 
Case 7      1,6767     0,05579    30,05    0,0000 
Case 8      0,6167     0,05579    11,05    0,0000 
 
 
Cases = Case 6  subtracted from: 
 
        Difference       SE of           Adjusted 
Cases     of Means  Difference  T-Value   P-Value 
Case 7      -8,135     0,05579   -145,8    0,0000 
Case 8      -9,195     0,05579   -164,8    0,0000 
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Cases = Case 7  subtracted from: 
 
        Difference       SE of           Adjusted 
Cases     of Means  Difference  T-Value   P-Value 
Case 8      -1,060     0,05579   -19,00    0,0000 
 
 
 
 
 

The research reports  from ANOVA , the F ratio, with both  DFs,  and  the p-value. The research also reports the results from Tukey. There was 

significant differences between cases (2 way ANOVA gives F5,25 = 11791,91, p<0.001).  Tukey’s HSD test confirmed all cases were significantly 

different from one another apart from Case 17 and Case 18. 

 

Interpreting the Results 

 

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing Atomicity and 

Consistency (b) relaxing Consistency and Isolation (c) relaxing Atomicity and Isolation (d) relaxing Atomicity, Consistency and Durability and 

(e) relaxing Consistency, Isolation and Durability and (f) relaxing Atomicity, Isolation and Durability”. 
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Experiment 10 Raw data and Tukey analysis output 

 
Table C 8 Case 12 and Case 13 Raw Data 

No. of transactions in a set Case 12 Case 13 

20 19.51 1.13 

100 19.05 1.06 

200 18.77 0.99 

300 18.03 0.91 

400 17.67 0.80 

500 17.34 0.75 

 

 

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific 

criteria and (b) relaxing no ACID properties and no application-specific criteria  

 

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific 

criteria and (b) relaxing no ACID properties and no application-specific criteria. 
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General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       2  Case 12; Case 13 
 
 
Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF  Seq SS  Adj SS  Adj MS        F      P 
Transactions   5    2,47    2,47    0,49     2,02  0,230 
Cases          1  914,03  914,03  914,03  3730,51  0,000 
Error          5    1,23    1,23    0,25 
Total         11  917,73 
 
 
S = 0,494990   R-Sq = 99,87%   R-Sq(adj) = 99,71% 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases    N     Mean  Grouping 
Case 12  6  18,3950  A 
Case 13  6   0,9400    B 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case 12  subtracted from: 
 
         Difference       SE of           Adjusted 
Cases      of Means  Difference  T-Value   P-Value 
Case 13      -17,46      0,2858   -61,08    0,0000 
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The research reports  from ANOVA , the F ratio, with both DFs,  and  the p-value. The research also reports the results from Tukey. There was 

significant differences between cases (2 way ANOVA gives F1,5 = 3730.51, p<0.001).  Tukey’s HSD test confirmed all cases were significantly 

different from one another. 

 

Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties 

and application-specific criteria and (b) relaxing no ACID properties and no application-specific criteria.” 

 

Experiment 11 Raw data and Tukey analysis output 

Table C 9 Case 13, Case 14, Case 15 and Case 19 Raw Data 
No. of transactions in a set Case 13 Case 14 Case 15 Case 19 

20 1.13 1.63 1.87 2.30 

100 1.06 1.59 1.81 2.25 

200 0.99 1.55 1.79 2.19 

300 0.91 1.49 1.75 2.17 

400 0.80 1.45 1.69 2.10 

500 0.75 1.40 1.63 2.06 
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H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific 

criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing Atomicity, Consistency, Isolation and 

application-specific criteria and (d) relaxing Atomicity, Consistency, Isolation and no application-specific criteria. 

 

H1‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific 

criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing Atomicity, Consistency, Isolation and 

application-specific criteria and (d) relaxing Atomicity, Consistency, Isolation and no application-specific criteria. 

 

  
General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       4  Case 13; Case 14; Case 15; Case 19 
 
 
Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS   Adj MS        F      P 
Transactions   5  0,21018  0,21018  0,04204    41,71  0,000 
Cases          3  4,80763  4,80763  1,60254  1590,18  0,000 
Error         15  0,01512  0,01512  0,00101 
Total         23  5,03293 
 
 
S = 0,0317455   R-Sq = 99,70%   R-Sq(adj) = 99,54% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time      Fit   SE Fit  Residual  St Resid 
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 19     1,13000  1,07417  0,01944   0,05583      2,22 R 
 23     0,80000  0,85167  0,01944  -0,05167     -2,06 R 
 24     0,75000  0,80167  0,01944  -0,05167     -2,06 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases    N    Mean  Grouping 
Case 19  6  2,1783  A 
Case 15  6  1,7567    B 
Case 14  6  1,5183      C 
Case 13  6  0,9400        D 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case 13  subtracted from: 
 
         Difference       SE of           Adjusted 
Cases      of Means  Difference  T-Value   P-Value 
Case 14      0,5783     0,01833    31,55    0,0000 
Case 15      0,8167     0,01833    44,56    0,0000 
Case 19      1,2383     0,01833    67,56    0,0000 
 
 
Cases = Case 14  subtracted from: 
 
         Difference       SE of           Adjusted 
Cases      of Means  Difference  T-Value   P-Value 
Case 15      0,2383     0,01833    13,00    0,0000 
Case 19      0,6600     0,01833    36,01    0,0000 
 
 
Cases = Case 15  subtracted from: 
 
         Difference       SE of           Adjusted 
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Cases      of Means  Difference  T-Value   P-Value 
Case 19      0,4217     0,01833    23,01    0,0000 
 
 
 
  

The research reports  from ANOVA , the F ratio, with both  DFs,  and  the p-value. The research also reports the results from Tukey. There was 

significant differences between cases (2 way ANOVA gives F3, 15 = 1590.18, p<0.001).  Tukey’s HSD test confirmed all cases were significantly 

different from one another. 

 

Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties 

and application-specific criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing Atomicity, Consistency, 

Isolation and application-specific criteria and (d) relaxing Atomicity, Consistency, Isolation and no application-specific criteria.” 
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Experiment 12 Raw data and Tukey analysis output 

 

Table C 10 Case 12 and Case 20 Raw Data 
No. of transactions in a set Case 12 Case 20 

20 19.51 18.97 

100 19.05 18.46 

200 18.77 17.60 

300 18.03 17.47 

400 17.67 17.45 

500 17.20 17.20 

 

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific 

criteria and (b) relaxing no ACID properties but relaxing application-specific criteria  

 

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific 

criteria and (b) relaxing no ACID properties but relaxing application-specific criteria  
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General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       2  Case 12; Case 20 
 
 
Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF  Seq SS  Adj SS  Adj MS      F      P 
Transactions   5  5,6692  5,6692  1,1338  17,12  0,004 
Cases          1  0,8640  0,8640  0,8640  13,05  0,015 
Error          5  0,3311  0,3311  0,0662 
Total         11  6,8643 
 
 
S = 0,257320   R-Sq = 95,18%   R-Sq(adj) = 89,39% 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases    N   Mean  Grouping 
Case 12  6  18,40  A 
Case 20  6  17,86    B 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case 12  subtracted from: 
 
         Difference       SE of           Adjusted 
Cases      of Means  Difference  T-Value   P-Value 
Case 20     -0,5367      0,1486   -3,612    0,0153 
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The research reports from ANOVA , the F ratio, with both  DFs,  and  the p-value. The research also reports the results from Tukey. There were 

significant differences between cases (2 way ANOVA  gives F1,5 = 13.05, p<0.05) and Tukey’s HSD test confirmed both cases were significantly 

different from one another. 

 

Interpreting the results 

 

In the ANOVA table, the p-value <0.05 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties 

and application-specific criteria and (b) relaxing no ACID properties but relaxing application-specific criteria.” 

 

Experiment 13 Raw data and Tukey analysis output 

 

Table C 4 Case 13, Case 14, Case 13 & Restart, Case 13 & Negotiation, Case 14 & Restart and Case 14 & Negotiation Raw Data 
No. of transactions in a set Case 13 Case 14 Case13& Restart Case13& Negotiation Case14& Restart Case14& Negotiation 

20 1.13 1.63 4.10 2.88 5.00 3.96 

100 1.06 1.59 4.05 2.69 4.99 3.88 

200 0.99 1.55 4.02 2.56 4.92 3.85 

300 0.91 1.49 4.00 2.33 4.88 3.79 

400 0.80 1.45 3.96 2.28 4.86 3.75 

500 0.75 1.40 3.95 2.25 4.80 3.72 
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H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties and application-specific 

criteria and (b) relaxing all ACID properties and no application-specific criteria  and (c) relaxing all ACID properties and application-specific 

criteria with Restart and (d) relaxing  all ACID properties and no application-specific criteria with Restart and (e) relaxing all ACID properties 

and application-specific criteria with Negotiation and (f) relaxing all  ACID properties and no application-specific criteria with Negotiation.   

 

H1‒ There is a difference between groups, i.e. between (a) relaxing all ACID properties and application-specific criteria and (b) relaxing all 

ACID properties and no application-specific criteria and (c) relaxing all ACID properties and application-specific criteria with Restart and (d) 

relaxing  all ACID properties and no application-specific criteria with Restart and (e) relaxing all ACID properties and application-specific 

criteria with Negotiation and (f) relaxing all ACID properties and no application-specific criteria with Negotiation.   

 

 
General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       6  Case  13  Restart without Negotiation; Case 13; 
                             Case 13 with Negotiation; Case 14; Case 14 
                             Restart without Negotiation; Case 14  with 
                             Negotiation 
 
 
Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS   Adj MS        F      P 
Transactions   5   0,4148   0,4148   0,0830    14,54  0,000 
Cases          5  72,1509  72,1509  14,4302  2530,23  0,000 
Error         25   0,1426   0,1426   0,0057 
Total         35  72,7082 
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S = 0,0755189   R-Sq = 99,80%   R-Sq(adj) = 99,73% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time      Fit   SE Fit  Residual  St Resid 
 19     2,88000  2,66444  0,04174   0,21556      3,43 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases                                  N    Mean  Grouping 
Case 14  Restart without Negotiation   6  4,9083  A 
Case  13  Restart without Negotiation  6  4,0133    B 
Case 14  with Negotiation              6  3,8250      C 
Case 13 with Negotiation               6  2,4983        D 
Case 14                                6  1,5183          E 
Case 13                                6  0,9400            F 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
All Pairwise Comparisons among Levels of Cases 
Cases = Case  13  Restart without Negotiation  subtracted from: 
 
                                      Difference       SE of           Adjusted 
Cases                                   of Means  Difference  T-Value   P-Value 
Case 13                                   -3,073     0,04360   -70,49    0,0000 
Case 13 with Negotiation                  -1,515     0,04360   -34,75    0,0000 
Case 14                                   -2,495     0,04360   -57,22    0,0000 
Case 14  Restart without Negotiation       0,895     0,04360    20,53    0,0000 
Case 14  with Negotiation                 -0,188     0,04360    -4,32    0,0027 
 
 
Cases = Case 13  subtracted from: 
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                                      Difference       SE of           Adjusted 
Cases                                   of Means  Difference  T-Value   P-Value 
Case 13 with Negotiation                  1,5583     0,04360    35,74    0,0000 
Case 14                                   0,5783     0,04360    13,26    0,0000 
Case 14  Restart without Negotiation      3,9683     0,04360    91,01    0,0000 
Case 14  with Negotiation                 2,8850     0,04360    66,17    0,0000 
 
 
Cases = Case 13 with Negotiation  subtracted from: 
 
                                      Difference       SE of           Adjusted 
Cases                                   of Means  Difference  T-Value   P-Value 
Case 14                                  -0,9800     0,04360   -22,48    0,0000 
Case 14  Restart without Negotiation      2,4100     0,04360    55,27    0,0000 
Case 14  with Negotiation                 1,3267     0,04360    30,43    0,0000 
 
 
Cases = Case 14  subtracted from: 
 
                                      Difference       SE of           Adjusted 
Cases                                   of Means  Difference  T-Value   P-Value 
Case 14  Restart without Negotiation       3,390     0,04360    77,75    0,0000 
Case 14  with Negotiation                  2,307     0,04360    52,90    0,0000 
 
 
Cases = Case 14  Restart without Negotiation  subtracted from: 
 
                           Difference       SE of           Adjusted 
Cases                        of Means  Difference  T-Value   P-Value 
Case 14  with Negotiation      -1,083     0,04360   -24,85    0,0000 
 
 
 
 
 

The research reports  from ANOVA , the F ratio, with both  DFs,  and  the p-value. The research also reports the results from Tukey. There were 

significant differences between cases (2 way ANOVA gives F5,25 = 2530.23, p<0.001) and Tukey’s HSD test confirmed all cases were 

significantly different from one another. 



223 

Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “There is no difference in transaction throughput between groups, i.e. between (a) relaxing all ACID properties 

and application-specific criteria and (b) relaxing all ACID properties and no application-specific criteria and (c) relaxing all ACID properties and 

application-specific criteria with Restart and (d) relaxing all ACID properties and no application-specific criteria with Restart and (e) relaxing all 

ACID properties and application-specific criteria with Negotiation and (f) relaxing all ACID properties and no application-specific criteria with 

Negotiation.” 
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Experiment 13 and Experiment 14 Raw Data and Tukey Analysis Output 

 

Table C 5 Case 4 & Criteria + Negotiation + Tentative Hold, Case 4 & Criteria + Tentative Hold, Case 4 & Criteria,  
Case 5 & Criteria +  Negotiation + Tentative Hold, Case 5 & Criteria + Tentative Hold, Case 5 & Criteria,  

Case 10 & Criteria + Negotiation + Tentative Hold, Case 10 & Criteria + Tentative Hold, Case 10 & Criteria 
 
No. of 

transactions 

in a set 

Case 4 & 

Criteria+ 

Negotiation+ 

Tentative 

Hold 

Case 4 & 

Criteria+ 

Tentative 

Hold 

Case 4 

& 

Criteria  

Case 5 & 

Criteria+ 

Tentative 

Hold 

Case 5 & 

Criteria+ 

Negotiation+ 

Tentative Hold 

Case 5 

& 

Criteria  

Case 10 & 

Criteria+ 

Negotiation+ 

Tentative Hold 

Case 10 & 

Criteria 

Tentative 

Hold  

Case 10 

& 

Criteria 

20 24.98 21.00 15.40 9.20 12.50 4.01 19.50 17.04 12.02 

100 24.90 20.40 15.30 9.05 12.42 3.77 19.42 16.95 11.87 

200 24.85 19.88 14.95 8.00 12.32 3.64 19.36 16.88 11.49 

300 24.77 19.68 14.20 7.92 12.27 3.51 19.30 16.88 11.35 

400 24.72 19.54 13.90 7.85 12.20 2.92 19.24 16.72 10.98 

500 24.65 19.46 13.38 7.77 12.14 2.58 19.19 16.64 10.08 

 

 

H0 ‒ There is no difference in transaction throughput between groups, i.e. between (a) relaxing Consistency and application-specific criteria with 

Negotiation and Tentative Hold and (b) relaxing Consistency and application-specific criteria with Tentative Hold and without Negotiation  and  

(c) relaxing Consistency and application-specific criteria with neither Negotiation nor Tentative Hold (d) relaxing Isolation and application-
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specific criteria with Negotiation and Tentative Hold and (e) relaxing Isolation and application-specific criteria with Tentative Hold and without 

Negotiation and (f) relaxing Isolation and application-specific criteria with neither Negotiation nor Tentative Hold and (g) relaxing Durability 

and application-specific criteria with Negotiation and Tentative Hold, and (h)  relaxing Durability and application-specific criteria with Tentative 

Hold and without Negotiation and (i) relaxing Durability and application-specific criteria with neither Negotiation nor Tentative Hold. 

 

H1 ‒ There is a difference in transaction throughput between groups, i.e. between (a) relaxing Consistency and application-specific criteria with 

Negotiation and Tentative Hold and (b) relaxing Consistency and application-specific criteria with Tentative Hold and without Negotiation  and  

(c) relaxing Consistency and application-specific criteria with neither Negotiation nor Tentative Hold (d) relaxing Isolation and application-

specific criteria with Negotiation and Tentative Hold and (e) relaxing Isolation and application-specific criteria with Tentative Hold and without 

Negotiation  and (f) relaxing Isolation and application-specific criteria with neither Negotiation nor Tentative Hold and (g) relaxing Durability 

and application-specific criteria with Negotiation and Tentative Hold, and (h) relaxing Durability and application-specific criteria with Tentative 

Hold and without Negotiation and (i) relaxing Durability and application-specific criteria with neither Negotiation nor Tentative Hold. 

 

 

General Linear Model: Throughput Unit Time versus Transactions; Cases  
 
Factor        Type   Levels  Values 
Transactions  fixed       6  20; 100; 200; 300; 400; 500 
Cases         fixed       9  Case 10& Criteria; Case 10& Criteria + Tentative 
                             hold; Case 10& Criteria +Negotiation + Tentative 
                             hold; Case 4& Criteria; Case 4& Criteria 
                             +Negotiation + Tentative  hold; Case 4& Criteria 
                             Tentative  hold; Case 5& Criteria; Case 5& 
                             Criteria  + Tentative  hold; Case 5& Criteria 
                             +Negotiation + Tentative  hold 
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Analysis of Variance for Throughput Unit Time, using Adjusted SS for Tests 
 
Source        DF   Seq SS   Adj SS  Adj MS        F      P 
Transactions   5     7,45     7,45    1,49    14,63  0,000 
Cases          8  2052,10  2052,10  256,51  2519,41  0,000 
Error         40     4,07     4,07    0,10 
Total         53  2063,62 
 
 
S = 0,319084   R-Sq = 99,80%   R-Sq(adj) = 99,74% 
 
 
Unusual Observations for Throughput Unit Time 
 
     Throughput 
Obs   Unit Time      Fit  SE Fit  Residual  St Resid 
 30     13,3800  13,9735  0,1625   -0,5935     -2,16 R 
 42     10,0800  10,7502  0,1625   -0,6702     -2,44 R 
 
R denotes an observation with a large standardized residual. 
 
 
Grouping Information Using Tukey Method and 95,0% Confidence 
 
Cases                                             N    Mean  Grouping 
Case 4& Criteria +Negotiation + Tentative  hold   6  24,812  A 
Case 4& Criteria Tentative  hold                  6  19,993    B 
Case 10& Criteria +Negotiation + Tentative  hold  6  19,335      C 
Case 10& Criteria + Tentative  hold               6  16,852        D 
Case 4& Criteria                                  6  14,522          E 
Case 5& Criteria +Negotiation + Tentative  hold   6  12,308            F 
Case 10& Criteria                                 6  11,298              G 
Case 5& Criteria  + Tentative  hold               6   8,298                H 
Case 5& Criteria                                  6   3,405                  I 
 
Means that do not share a letter are significantly different. 
 
 
Tukey Simultaneous Tests 
Response Variable Throughput Unit Time 
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All Pairwise Comparisons among Levels of Cases 
Cases = Case 10& Criteria  subtracted from: 
 
                                                  Difference       SE of 
Cases                                               of Means  Difference 
Case 10& Criteria + Tentative  hold                    5,553      0,1842 
Case 10& Criteria +Negotiation + Tentative  hold       8,037      0,1842 
Case 4& Criteria                                       3,223      0,1842 
Case 4& Criteria +Negotiation + Tentative  hold       13,513      0,1842 
Case 4& Criteria Tentative  hold                       8,695      0,1842 
Case 5& Criteria                                      -7,893      0,1842 
Case 5& Criteria  + Tentative  hold                   -3,000      0,1842 
Case 5& Criteria +Negotiation + Tentative  hold        1,010      0,1842 
 
                                                           Adjusted 
Cases                                             T-Value   P-Value 
Case 10& Criteria + Tentative  hold                 30,14    0,0000 
Case 10& Criteria +Negotiation + Tentative  hold    43,62    0,0000 
Case 4& Criteria                                    17,50    0,0000 
Case 4& Criteria +Negotiation + Tentative  hold     73,35    0,0000 
Case 4& Criteria Tentative  hold                    47,20    0,0000 
Case 5& Criteria                                   -42,85    0,0000 
Case 5& Criteria  + Tentative  hold                -16,28    0,0000 
Case 5& Criteria +Negotiation + Tentative  hold      5,48    0,0001 
 
 
Cases = Case 10& Criteria + Tentative  hold  subtracted from: 
 
                                                  Difference       SE of 
Cases                                               of Means  Difference 
Case 10& Criteria +Negotiation + Tentative  hold        2,48      0,1842 
Case 4& Criteria                                       -2,33      0,1842 
Case 4& Criteria +Negotiation + Tentative  hold         7,96      0,1842 
Case 4& Criteria Tentative  hold                        3,14      0,1842 
Case 5& Criteria                                      -13,45      0,1842 
Case 5& Criteria  + Tentative  hold                    -8,55      0,1842 
Case 5& Criteria +Negotiation + Tentative  hold        -4,54      0,1842 
 
                                                           Adjusted 
Cases                                             T-Value   P-Value 
Case 10& Criteria +Negotiation + Tentative  hold    13,48    0,0000 
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Case 4& Criteria                                   -12,65    0,0000 
Case 4& Criteria +Negotiation + Tentative  hold     43,21    0,0000 
Case 4& Criteria Tentative  hold                    17,05    0,0000 
Case 5& Criteria                                   -72,99    0,0000 
Case 5& Criteria  + Tentative  hold                -46,43    0,0000 
Case 5& Criteria +Negotiation + Tentative  hold    -24,66    0,0000 
 
 
Cases = Case 10& Criteria +Negotiation + Tentative  hold  subtracted from: 
 
                                                 Difference       SE of 
Cases                                              of Means  Difference 
Case 4& Criteria                                      -4,81      0,1842 
Case 4& Criteria +Negotiation + Tentative  hold        5,48      0,1842 
Case 4& Criteria Tentative  hold                       0,66      0,1842 
Case 5& Criteria                                     -15,93      0,1842 
Case 5& Criteria  + Tentative  hold                  -11,04      0,1842 
Case 5& Criteria +Negotiation + Tentative  hold       -7,03      0,1842 
 
                                                          Adjusted 
Cases                                            T-Value   P-Value 
Case 4& Criteria                                  -26,13    0,0000 
Case 4& Criteria +Negotiation + Tentative  hold    29,73    0,0000 
Case 4& Criteria Tentative  hold                    3,57    0,0236 
Case 5& Criteria                                  -86,47    0,0000 
Case 5& Criteria  + Tentative  hold               -59,91    0,0000 
Case 5& Criteria +Negotiation + Tentative  hold   -38,14    0,0000 
 
 
Cases = Case 4& Criteria  subtracted from: 
 
                                                 Difference       SE of 
Cases                                              of Means  Difference 
Case 4& Criteria +Negotiation + Tentative  hold       10,29      0,1842 
Case 4& Criteria Tentative  hold                       5,47      0,1842 
Case 5& Criteria                                     -11,12      0,1842 
Case 5& Criteria  + Tentative  hold                   -6,22      0,1842 
Case 5& Criteria +Negotiation + Tentative  hold       -2,21      0,1842 
 
                                                          Adjusted 
Cases                                            T-Value   P-Value 
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Case 4& Criteria +Negotiation + Tentative  hold    55,86    0,0000 
Case 4& Criteria Tentative  hold                   29,70    0,0000 
Case 5& Criteria                                  -60,34    0,0000 
Case 5& Criteria  + Tentative  hold               -33,78    0,0000 
Case 5& Criteria +Negotiation + Tentative  hold   -12,01    0,0000 
 
 
Cases = Case 4& Criteria +Negotiation + Tentative  hold  subtracted from: 
 
                                                 Difference       SE of 
Cases                                              of Means  Difference 
Case 4& Criteria Tentative  hold                      -4,82      0,1842 
Case 5& Criteria                                     -21,41      0,1842 
Case 5& Criteria  + Tentative  hold                  -16,51      0,1842 
Case 5& Criteria +Negotiation + Tentative  hold      -12,50      0,1842 
 
                                                          Adjusted 
Cases                                            T-Value   P-Value 
Case 4& Criteria Tentative  hold                   -26,2    0,0000 
Case 5& Criteria                                  -116,2    0,0000 
Case 5& Criteria  + Tentative  hold                -89,6    0,0000 
Case 5& Criteria +Negotiation + Tentative  hold    -67,9    0,0000 
 
 
Cases = Case 4& Criteria Tentative  hold  subtracted from: 
 
                                                 Difference       SE of 
Cases                                              of Means  Difference 
Case 5& Criteria                                     -16,59      0,1842 
Case 5& Criteria  + Tentative  hold                  -11,69      0,1842 
Case 5& Criteria +Negotiation + Tentative  hold       -7,68      0,1842 
 
                                                          Adjusted 
Cases                                            T-Value   P-Value 
Case 5& Criteria                                  -90,04    0,0000 
Case 5& Criteria  + Tentative  hold               -63,48    0,0000 
Case 5& Criteria +Negotiation + Tentative  hold   -41,72    0,0000 
 
 
Cases = Case 5& Criteria  subtracted from: 
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                                                 Difference       SE of 
Cases                                              of Means  Difference 
Case 5& Criteria  + Tentative  hold                   4,893      0,1842 
Case 5& Criteria +Negotiation + Tentative  hold       8,903      0,1842 
 
                                                          Adjusted 
Cases                                            T-Value   P-Value 
Case 5& Criteria  + Tentative  hold                26,56    0,0000 
Case 5& Criteria +Negotiation + Tentative  hold    48,33    0,0000 
 
 
Cases = Case 5& Criteria  + Tentative  hold  subtracted from: 
 
                                                 Difference       SE of 
Cases                                              of Means  Difference 
Case 5& Criteria +Negotiation + Tentative  hold       4,010      0,1842 
 
                                                          Adjusted 
Cases                                            T-Value   P-Value 
Case 5& Criteria +Negotiation + Tentative  hold    21,77    0,0000 
 
 
 
 

The research reports  from ANOVA , the F ratio, with both  DFs,  and  the p-value. The research also reports the results from Tukey. There was 

significant differences between cases (2 way ANOVA gives F8, 40 = 2519.41, p<0.001) and Tukey’s HSD test confirmed all cases were 

significantly different from one another. 

 

Interpreting the results 

 

In the ANOVA table, the p-value <0.001 and Tukey’s HSD test confirmed all cases were significantly different from one another so the research 

rejects the null hypothesis that “between (a) relaxing Consistency and application-specific criteria with Negotiation and Tentative Hold and (b) 

relaxing Consistency and application-specific criteria with Tentative Hold and without Negotiation and (c) relaxing Consistency and application-
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specific criteria with neither Negotiation nor Tentative Hold (d) relaxing Isolation and application-specific criteria with Negotiation and 

Tentative Hold and (e) relaxing Isolation and application-specific criteria with Tentative Hold and without Negotiation  and (f) relaxing Isolation 

and application-specific criteria with neither Negotiation nor Tentative Hold and (g) relaxing Durability and application-specific criteria with 

Negotiation and Tentative Hold, and (h)  relaxing Durability and application-specific criteria with Tentative Hold and without Negotiation  and 

(i) relaxing Durability and application-specific criteria with neither Negotiation nor Tentative Hold.” 

 

Summary 

 

In all experiments using the ANOVA test, there is high significant difference between the groups in the experiment and furthermore Tukey 

revealed the significance between each case in the group in the experiments. Thus it is clear that relaxing ACID properties makes a significant 

difference in throughput compared to not relaxing ACID properties. Relaxing additional application-specific criteria also makes a significant 

difference compared to not relaxing these criteria. Use of Tentative Hold decreases throughput significantly. Use of Negotiation, when compared 

to abort and restart, increases throughput significantly. 
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Appendix D - AuTrA technologies examples 
 
 

This appendix shows examples of the SOAP and WSDL technologies used in the 

AuTrA system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure D1 Flight booking service: SOAP message 

 
 
With the help of SOAP, the users can post the request and transport it to the correct end 

point. (Figure D1) 
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Figure D2  Flight booking service: WSDL data type definition 
 
 
 
 
 
Figure D2 shows the WSDL example of a flight booking service which has been 

registered in AuTrA. 
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Figure D3 Flight booking service: WSDL concrete segment 
 

 
The binding of the abstract to the concrete segment is through the port address of the 

PlaneBookingSoap port as shown in Figure D3. 
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Appendix E ‒ Snippets of some of the inputs used in the experiments 

 
This appendix shows some snippets of the inputs used in the experiments.  In section E1 

the user interface for transaction composition is shown and in section E2 example 

snippets of the batch files used as inputs to the experiments are shown. 

 

E1 User interface for transaction composition 

 

When the user wants to book flight, hotel and ski in one composite transaction, he or 

she has to choose which services he wants. For example, Figure E1 shows that the user 

wants to book flight, restaurants and venue in one transaction, meaning the composite 

service of the user’s transaction will consist of three component services. 
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Figure E1 Composite service realisation 
 

 

After the user accepts the services from which to create a composition service, the user 

has to input the required information, like date, number of travellers and number of 

rooms required. Different Web services will require different information. 
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Figure E2 Input upload 

 

Input batch files can be uploaded using the upload button shown in Figure E2. The 

continue button will run the composite service. The system then breaks down the input 

to the composite service into inputs to component services for processing. 

 

E3 Example Batch File Input 

 

 
Figure E3 shows example batch file input where none of the ACID properties are 

relaxed in a composite transaction made up of flight service, hotel service and ski 

service.  
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Figure E3 Flight input 
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Figure E4 Ski input 
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Figure E5 Hotel input 
 

 

The snippets shown in Figures E3, E4 and E5 were part of the input used in  

Experiment 1 Case 1 of the Travel Plan application.  
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Appendix F ‒ Acronyms 
 
2PC 2-Phase Commit 

ACI Atomicity, Consistency, Isolation 

ACID Atomicity, Consistency, Isolation, Durability 

ACTA A Comprehensive TransAction Framework for Extended Transactions 

ANOVA Analysis of Variance 

API  Application Programming Interface 

API(JTA) Application Programming Interface (Java Transaction API) 

ASE Adaptive Server Enterprise 

ASSET A System Supporting Extended Transactions 

ATS Accepted Termination States 

AuTrA Adaptable user-defined Transaction relaxing Approach 

BTP Business Transaction Protocol 

CAEs Collaboration Editing Applications 

CAGIS-Trans Cooperative Agents in a Global Information Space-Transactions 

COO COOperating software developers COOrdination 

CSCW Computer Supported Cooperative Work 

DF Degrees of Freedom 

FIFO First in First Out 
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EPOS Expert System for Program and ~og~ System Development 

HoL Head of Line 

HSD Honest Significant Difference 

IIS Internet Information Server 

IMSD Information Management System Dynamics 

JTA Java Transaction API 

LLR Low-Latency Resilient 

NBCP Non-Blocking Commit Protocol 

NTO New Timestamp Ordering 

RTF Reflective Transaction Framework 

SACReD Semantic Atomicity, Consistency, Resiliency, Durability 

SOAP Simple Object Access Protocol 

SQL Structured Query Language 

taTHP transaction-aware Tentative Hold Protocol 

TCS Transaction Composite Services 

TCP4CWS Transaction Commit Protocol for Composite Web Services 

THP Tentative Hold Protocol 

TODS Tsinghua Object Data Store 

UDDI Universal Description, Discovery, and Integration 

URL Uniform Resource Locator 
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WS-AT WS-AtomicTransaction 

WS-BA WS-BusinessActivity 

WSDL Web Services Description Language 

WS-Tx Web Services Transactions 

WTDP Web Services Transaction Dependency management Protocol 

WSTDCP Web Services Transaction Dependency Coordination Protocol 

XML Extensible Markup Language 
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