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Abstract 
 
The treatment of asthma still relies on primary therapy with bronchodilators; in particular b 

adrenergic receptor (bAR) agonists with a diverse range of short acting and long acting bARs 

available. An increase in the number of cardiovascular events with the use of bronchodilators 

have recently been reported including hypertrophy, heart failure, myocardial ischaemia and 

infarction.  Several subtypes of bAR receptors exist including the b1 Adrenergic Receptor 

(b1AR) and b2 Adrenergic Receptor (b2AR), both located in the heart. The effects of selective 

b2AR agonists were investigated in the Langendorff model of myocardial ischaemia 

reperfusion injury, isolated perfused rat hearts underwent 35 minutes of ischaemia and 120 

minutes of reperfusion. 

The selective b2AR long acting b agonists Formoterol and Salmeterol had no significant 

effect on infarct to risk ratio or time taken to depolarisation and hypercontracture in isolated 

cardiomyocytes. The non-selective b1AR agonist Isoproterenol has been show to induce 

myocardial ischaemia and infarction in rat hearts previously, here we demonstrated 

Isoproterenol (0.5µM) significantly decreased time taken to depolarisation and 

hypercontracture in isolated cardiomyocytes. The short acting b2AR agonist Salbutamol 

(0.01µ-1µM) significantly increased infarct to risk ratio in the Langendorff in addition to 

significantly decreasing time to hypercontracture in cardiomyocytes in the oxidative stress 

model highlighting a potential role of the mitochondrial permeability transition pore (mPTP). 

Activation of phosphorylated Akt and phosphorylated Erk1/2 via the PI3K/Akt signalling 

pathway and p44/p42 MAPK pathway were investigated by western blot analysis. 

Salbutamol significantly elevated expression of p-Akt in rat hearts exposed to reperfusion for 

20 and 120 minutes whilst reducing expression of p-Erk. Recorded elevated cleaved caspase 
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3 expression in Salbutamol treated hearts can be associated as a marker of increased in 

cardiomyocyte cell death.  

The b1AR antagonist CGP 20712 was administered in the presence of Salbutamol with 

minimal reduction in infarct size in rat hearts recorded and no significant change in time 

taken to hypercontracture in isolated cardiomyocytes suggesting that Salbutamol mediated 

toxicity is via b2AR activation. Confirmation of this was verified with the b2AR antagonist 

ICI 118, 551. Significant decrease in infarct size was recorded in addition to a significant 

increase in time to hypercontracture in the oxidative stress model. Further to this, caspase 3 

expression was significantly reduced in addition with p-Akt expression.  

With a potential role of the mitochondria and the mPTP contributing to Salbutamol induced 

myocardial injury, the Cyclophilin D inhibitor Cyclosporin A was administered in hearts and 

cardiomyocytes in the presence of Salbutamol. Infarct size was significantly reduced whilst 

time taken to hypercontracture significantly increased, suggesting that CsA treatment inhibits 

Salbutamol mediated injury via Cyclophilin D inhibition of the mPTP.  

 

To conclude, our results demonstrated that Salbutamol caused cardiotoxicity at tissue, 

cellular and protein level in conditions of ischaemia reperfusion injury. Further to this, 

inhibition of Cyclophilin D by CsA, or the use of the b2AR antagonist ICI 118, 551 inhibits 

Salbutamol induced toxicity.  
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1 Introduction 

1.1 Respiratory Disorders 

The human airways and lungs play a vital role in internal and external respiration, however 

their ability to function correctly and efficiently can be impeded by various 

pathophysiological disorders. Respiratory disorders can be grouped into several categories 

that include obstructive diseases (asthma, bronchitis, asthma), restrictive conditions (cystic 

fibrosis, pleural effusion, sarcoidosis) and vascular diseases (pulmonary oedema, pulmonary 

embolism). The more common respiratory disorders observed in patients worldwide 

according to the World Health Organisation (WHO), include chronic bronchitis, emphysema, 

pneumonia, chronic obstructive pulmonary disease and asthma. Within the UK 1 in 7 

individuals are affected by a form of chronic lung disease that may include chronic 

obstructive pulmonary diseases (WHO, 2004). 

These wide ranges of respiratory disorders can be treated broadly however in respect of 

disorders affecting the airways by bronchoconstriction, the use of a bronchodilator is 

required. In particular, Chronic Obstructive Pulmonary Disease (COPD) and Asthma are the 

two of the main respiratory disorders that contribute to an on going mortality effect   

1.2 Chronic Obstructive Pulmonary Disease  

Various respiratory issues cause constriction of the bronchioles due to inflammation of 

tracheal epithelial cells, which can be caused by a variety of extrinsic factors that include 

smoke, alcohol, dust and anaphylactic reactions (Elliott et al., 2007, Zhang et al., 2012). In 

more severe cases, diseases of the respiratory system can present as being acute or chronic in 

the form of asthma and COPD. A 2004 report from the WHO estimated 64 million people 

worldwide to be affected by COPD (WHO, 2004). An estimated 3 million people in the UK 

suffer from COPD, often unknowingly as stated by the Department of Health (DH, 2011). 
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The NHS reported to admitting 115,000 emergency patients with COPD in 2014 with 25,000 

of those patients dying (NHS, 2014). Typical symptoms include wheezing, increased mucus 

production (also seen is asthmatic patients), coughing and increased residual lung capacity in 

COPD patients (Aduen et al., 2007, Tantisuwat and Thaveeratitham, 2014).  

COPD has been defined as a “preventable and treatable disease state characterised by airflow 

limitation that is not fully reversible” by the American Thoracic Society and European 

Respiratory Society (Celli and MacNee, 2004). The structure and function of airway smooth 

muscle does not play a critical role in the development of COPD, however they do contribute 

to symptoms. The key mechanisms associated with COPD involve the thickening of the 

airway wall that is non-reversible (Brusasco et al., 2006). In comparison to asthma, COPD 

airway inflammation is driven by neutrophilic actions and an increase in numbers of 

macrophages (Brusasco, 2006). 

1.3 Asthma 

Asthma as an allergic disease, in contrast to COPD, is capable of airway inflammation 

reversal (Gibson and Simpson, 2009). The Global Initiative Report for Asthma (GINA) 

estimated worldwide asthma cases to be in the region of 300 million in 2004 with an increase 

to 400 million by the year 2025 (Masoli et al., 2004). More recent estimates with the use of 

World Health Organisation (WHO) surveys, have re-calculated the current number of 

reported cases of asthma to be 315 million as of 2014, with an estimated population of 623 

million worldwide to present with symptoms of the respiratory disorder (To et al., 2012).  

The mechanism of asthma involves mast cells, which are key in acute and chronic 

inflammation of the airways. The initiation and release of mediators such as inflammatory 

cytokines including IL-4, IL-5 and IL-3 are responsible for airway constriction (Bousquet et 

al., 2000, Lemanske and Busse, 2010). The IL-5 cytokine recruits and activates eosinophils, 
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which are responsible for the release of highly inflammatory granule-associated substances, 

resulting in continuous inflammation (Figure 1.1)(Jacobsen et al., 2007).  

More recently, a new category of respiratory disorder has emerged involving both asthma and 

COPD. This new category known as Asthma-Chronic Obstructive Pulmonary Disorder 

Overlap Syndrome (ACOS), presents in patients who demonstrate features of both asthma 

and COPD symptoms (Barrecheguren et al., 2015, Gibson and Simpson, 2009). The specific 

features of ACOS are still unclear, however it is accepted that suffers of asthma with 

eosinophillic inflammation of the airways can develop neutrophillic inflammation, which is 

usually only seen in COPD patients. Alleviation and primary treatment of COPD, asthma and 

ACOS is the use of bronchodilators to reduce bronchoconstriction (Dirkje, 2015).  

 

 

Figure 1.1 Representation of Chronic or Acute inflammation activation of the airways in response to an allergen in relation 

to asthma (Heinecke, 2000). 

This item has been removed due to 
3rd Party Copyright. The 

unabridged version of the thesis 
can be found in the Lancester 
Library, Coventry University.



 29 

1.4 Bronchodilators 

Respiratory diseases such as COPD, ACOS and asthma are treated with various categories of 

bronchodilators. Bronchodilators are the most potent drugs available and the first line of 

therapy prescribed to patients due to their effectiveness in alleviating symptoms i.e. 

bronchoconstriction (Dompeling et al., 1992, Donohue, 2004, Cazzola and Matera, 2008).  

Several categories of bronchodilators exist and are available for the treatment of asthma, with 

each category targeting different receptor types found in airway smooth muscles aiming to 

reduce/inhibit airway inflammation. These categories include anticholinergic muscarinic 

receptor antagonists, b Adrenergic Receptor Agonists (bARs), leukotriene receptor 

antagonists and corticosteroids (Wolthers, 2015, Hering, 2015). More specialised and novel 

categories of bronchodilators exist such as combination therapies of bARs and 

corticosteroids, phosphodiesterase inhibitors and specific potassium channel openers 

(Malerba et al., 2010).  

1.4.1 Muscarinic Antagonists 

The first category of bronchodilators is one of the oldest that exists in medicine, dating back 

as early as the 17th century, with patients recommended to smoke plant alkaloids (Jackson, 

2010). Parasympathetic activity of the vagal nerve in the airways induces constriction and 

increased mucus secretion from submucosal glands with the secretion of the neurotransmitter 

Acetylcholine (ACh) (Gross and Skorodin, 1984, Rodrigo and Rodrigo, 2002). However, 

ACh secretion is not restricted solely to the increased activity of the parasympathetic system, 

but can also be secreted from inflammatory cells and bronchial epithelial cells (Gosens et al., 

2006). The use of anticholinergic drugs as a therapeutic target has proved to be successful to 

alleviate symptoms of asthma by antagonising muscarinic receptors.  
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Five different subtypes of muscarinic receptors have been identified that are located in the 

airway smooth muscle known as M1, M2, M3, M4 and M5 (Alvarado-Gonzalez and Arce, 

2015). Specifically, M1, M2 and M3 receptors are found on the lining of the trachea and have 

been targeted to reduce the secretion of ACh. Examples of such drugs include a non-selective 

muscarinic antagonist of M1, M2 and M3 receptors, Ipratropium Bromide (Ailani et al., 1995). 

Once occupying the receptor site, secreted ACh is unable to activate the muscarinic receptors 

to initiate bronchoconstriction thus reducing bronchoconstriction. The onset of 

bronchodilation with the use of Ipratropium Bromide is approximately 30 minutes and can 

last up to 6 hours (Scullion, 2007).  

1.4.2 b Adrenergic Receptor Agonists 

Adrenergic receptors are abundant throughout the body in particular the lungs, heart, airway 

smooth muscle, lining of the trachea and are the primary targets for adrenergic receptor 

agonists. Adrenergic receptors are classed into 2 different sub-types, a adrenergic receptors 

(aARs) and b adrenergic receptors (bARs) (Strosberg, 1993, Strosberg, 1995). In therapeutic 

approaches to respiratory diseases such as COPD and asthma, bARs in particular have been 

targeted due to their mechanism of action to inhibit bronchoconstriction. Like muscarinic 

receptors, bARs are G protein coupled receptors (GPCRs) which will be discussed in detail 

later (Katritch et al., 2013).  

bARs have several different subtypes that are present in the trachea, these are predominantly 

the b1 Adrenergic Receptors (b1AR) and the b2 Adrenergic Receptors (b2AR) (Granneman, 

2001). bAR agonists have been designed to target the b2ARs selectively, however there are 

non-selective capabilities of bronchodilators that act on b1ARs that also achieve 

bronchodilation. As described earlier, asthma induces bronchoconstriction in response to an 

allergen or a non-allergen response such as exercise or cold-induced asthma (McFadden and 



 31 

Gilbert, 1994, Carlsen et al., 1998). Airway smooth muscles containing mast cells are 

stimulated by the release of pro-inflammatory cytokines, Immunoglobulin E (IgE), resulting 

in an increase in histamine production (Bradding et al., 2006). Histamine release in addition 

to leukotriene release, bind to corresponding receptors on the airway smooth muscle cells 

resulting in bronchoconstriction (Jarjour and Kelly, 2002). bAR agonists act directly on their 

respective receptors on airway smooth muscles and mast cells, which inhibit the release of 

pro-inflammatory mediators thus reducing bronchoconstriction (Grisanti et al., 2010). 

bARs are not only classified as selective and non-selective for their respective bAR subtypes, 

but can also be classed as long acting b agonists (LABA), short acting b agonists (SABA) 

and more recently, ultra long acting agonists (Anderson et al., 1994). Each of these 

classifications of drugs refers to the time taken to the onset of their effect and duration of 

time the effect lasts for. The specificity of bAR agonists is dependent on two properties of the 

drug, firstly the ability of the drug to bind to the receptor and secondly to produce a response 

i.e. affinity and efficacy (Baker, 2010).  

1.4.3 Isoproterenol 

One of the first bAR agonist to go to market was the non-selective bronchodilator 

Isoproterenol also known as Isoprenaline (Pearce and Hensley, 1998). Its non-selective 

ability to bind to either b1ARs or b2ARs, made it a very potent bronchodilator, however its 

affinity for b1ARs is considerably higher than that of b2ARs. Isoproterenol has been shown to 

induce myocardial ischaemia that is associated with increased oxidative stress, calcium 

overload, heart failure, ventricular hypertrophy and myocardial infarction and is used 

experimentally to induce myocardial ischaemia and heart failure in cardiomyocytes of 

varying species (Chen et al., 2014, Leenen et al., 2001, Zhang et al., 2005). The use of 

Isoproterenol is now limited for the treatment of asthma but is still used in rare circumstances 
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to treat torsades de pointes and bradycardia (Kim et al., 2014, Viskin, 1999b). Isoproterenol 

induced calcium overload will be discussed later on (see section 1.12). 

1.4.4 Salbutamol 

The SABA Salbutamol (also known as Albuterol) was the first designed selective b2AR 

agonist and has a high affinity for b2ARs in contrast to other SABAs (Bandaru et al., 2015, 

Dougall et al., 1991). The onset of the action of Salbutamol can be as quick as 5-30 minutes 

in asthmatic and COPD patients, and last for approximately 2-4 hours. Administration of 

Salbutamol causes bronchodilation in addition to the other b2AR agonists mentioned, can 

also cause positive inotropic and chronotropic effects on the heart and affect haemodynamics 

(Fowler et al., 2013). An interesting aspect of the chemical structure of Salbutamol has been 

investigated in regards to enantiomers. The asymmetric structural shape of bARs agonists in 

general can exist as optical isomers (Johnson, 2006). The S-Albuterol enantiomer is the most 

commonly form of the bronchodilator on the market, however affinity studies have shown 

that the R-Albuterol enantiomer is up to 100 times more potent than S-Albuterol. 

1.4.5 Formoterol & Salmeterol 

Both Formoterol and Salmeterol are LABAs that are selective for b2ARs in the trachea and 

bronchioles, however they do also affect haemodynamics of the heart. Initial studies of the 

novel drug Salmeterol demonstrated it as a partial agonist and to have a high selectivity for 

b2ARs when compared to Isoproterenol and Salbutamol (Ball et al., 1991). In contrast to 

Salmeterol, Formoterol is a full agonist that is more readily available to b2ARs and is less 

lipophilic allowing faster onset of action (Anderson, 1993). An advantage of Formoterol 

being a full agonist when compared to Salmeterol, is its ability to bring the same efficacy as 

Salmeterol but with occupying less receptors (Johnson, 2006).  
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Both of these LABAs have been shown to effect both potassium and glucose serum levels in 

rat and humans (Guhan et al., 2000). Of the 2, Salmeterol’s effects have been shown to last 

longer contributing to its novelty as a longer acting b agonist than Formoterol. Both of these 

LABAs can be used to alleviate symptoms of asthma and COPD for up to 8 hours at a time. 

Like Isoproterenol, both Salmeterol and Formoterol have been shown to cause inotropic and 

chronotropic effects in the heart, demonstrating its capability to act on b2ARs in the heart as 

well (Watson et al., 2013).  
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b Adrenergic Receptor Agonist Chemical Structure bAR Selectivity Short or Long Acting b Agonist 
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Table 1.1 Chemical structures of Isoproterenol, Formoterol, Salmeterol and Salbutamol with their respective b Adrenergic Receptor selectivity (Ball et al., 1991) 
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1.5 Cardiovascular effects of b Adrenergic Receptor Agonists 

The use of bAR agonists for the treatment of asthma or COPD is not without its adverse 

effects. Bronchodilators, in particular bAR agonists, have been shown to have positive 

chronotropic and inotropic effects of the heart (Ball et al., 1991, Carlsson et al., 1977, Watson 

et al., 2013). As mentioned earlier, several subtypes of bARs exist, however, of the 4 

subtypes (b1-b4), there is an abundance of b1ARs and b2ARs present in the myocardium 

(Nikolaev et al., 2010). Expression of both b1ARs and b2ARs have been identified in the 

heart with mRNA studies in rodent hearts and also in human ventricular myocytes (Brodde 

and Michel, 1999).  

The ratio of b1ARs:b2ARs in rat hearts has been approximated at a 60%:40% ratio in favour 

of b1ARs in the rat heart (Xiao and Lakatta, 1993). In the human heart, this ration is even 

more favourable to b1ARs with an approximate density of 75-80%, 15-18% b2AR density 

with the remainder as b3ARs (Lymperopoulos and Bathgate, 2013). The location of the bARs 

in the heart have been specifically located to the myocardium of the heart that is made up of 

individual cardiomyocytes, where at the cell crest surface, the b1ARs reside (Steinberg, 

2004). b2ARs have been identified to localise deep within the t-tubules of cardiomyocytes 

within invaginations known as caveolae (Cros and Brette, 2013, Calaghan and White, 2006). 

The activation of either of these receptors will be discussed in detail in section 1.4.  

Investigations into the distribution of bARs in the heart have shown varying concentrations 

of bARs dependent on the conditions in which the heart has been exposed to (Nikolaev et al., 

2010). In ‘healthy’ human and rat hearts, distribution of bARs exists as mentioned above in a 

favourable ratio of b1ARs:b2ARs, however, should an insult to the heart occur such as 

myocardial infarction (MI), ischaemic heart disease (IHD), heart failure (HF) or hypertrophy, 
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redistribution of the bARs has been recorded with patch clamp techniques identifying 

calcium release, a characteristic of bAR activation (Chen-Izu et al., 2000, Calaghan and 

White, 2006, Sutton and Sharpe, 2000).  Overstimulation of bARs can occur due to poor 

management of patients administering metered dose inhalers of bAR agonists (Lavorini et al., 

2008, Melani et al., 2004).  bARs, in particular the b2ARs have the ability to protect 

cardiomyocytes from overstimulation through receptor desensitisation (Johnson, 2006). This 

unique feature can occur in several ways, firstly, internalisation of the receptor and secondly 

direct uncoupling of the receptor to inhibit signalling (Johnson, 1998). b2 and b3 adrenergic 

receptors have also been associated with the heart however their exact functions are still not 

eleudicated. Recent studies have purported potential actions of either of these bARs. Moens 

and colleagues (2010) have described that the b3AR is similar to that of the b2AR that upon 

activation it can couple to either Gs or Gi subunits of G protein coupled receptors. However, 

unlike b2AR activation having to activate the Gs subunit before being able to initiate coupling 

of the Gi subunit, b3ARs can initiate either subunit directly, with suggestion that initiation of 

b3ARs occurs during over stimulation (Moens et al., 2010). Activation of b3ARs has been 

shown to cause vasodilation in rats and dogs and in b1/b2 knockout mice in addition to 

initiating negative inotropic effects when activated (Moens et al., 2010).  

An increased number of incidences of mortality have been reported with the use of 

bronchodilators. A meta-analysis of clinical trials involving treatment of COPD patients 

associated a link to the use of bronchodilators to increased numbers of mortality and 

morbidity, with underlying heart abnormalities (Singh et al., 2008). Further studies 

investigating the use of bARs have identified a similar finding with the use of the non-

selective bAR agonist Isoproterenol, with a link to inducing MI and IHD in patients and 
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increase mortality (Udelson et al., 1989, Senthil et al., 2007). Other bAR agonists have also 

been identified to increase mortality such as Salbutamol, with a multicentre randomised 

controlled trial abandoned due to the increase in mortality with the administration of 

Salbutamol (Gao Smith et al., 2012).  

Hospital cases have also been presented with patients presenting with MI upon salbutamol 

administration. However, further investigation into patient histories identified patients as 

having pre-existing cardiac diseases including IHD, cardiomyopathies and hypertrophy 

contributing deaths linked with the use of Salbutamol (Fisher et al., 2004). The Salmeterol 

Multicentre Asthma Research Trial (SMART) showed an increased number of deaths (805 

vs. 604) of the 25,180 participants with the use of the LABA Salmeterol when compared to 

Salbutamol although not statistically significant (Nelson et al., 2006, Hasford and Virchow, 

2006).  

1.6 G Protein Coupled Receptors 

GPCRs are the largest family of membrane proteins and for this reason are targeted for 

therapeutics in the pharmaceutical industry. GPCRs are capable of binding to guanosine 

nucleotides of which there are 3 types of subunits, alpha (a), beta (b) and gamma (γ). Briefly, 

GPCRs when inactive are bound to guanosine diphosphate (GDP) and upon activation GDP 

is released from the a subunit and binds to guanosine triphosphate (GTP) to become 

activated. Once activated, the a subunit separates from the other subunits and moves to its 

target protein (Neumann et al., 2014, Hamm, 1998). 

Several different families of GPCRs exist, all carrying common features between each group, 

one of which is the sharing of homology of a 7 transmembrane region (7TM) (Howard et al., 

2001). Further to this, the 7TM regions also contains 2 ends, one intracellular carboxyl 
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terminus spanning the TM5 and TM6 regions and extracellular amino terminus (Figure 1.2) 

(Katritch et al., 2013).  

2 key basic classes of GPCRs that we will be focussed on for the purpose of this thesis 

include the stimulatory (Gs) and inhibitory (Gi) proteins. These particular proteins when 

activated, release their a subunit, which binds to amplifier enzymes to either inhibit or 

activate the enzyme. The amplified enzyme is responsible for the production or inhibition of 

secondary messengers, which target specific protein kinases (Neumann et al., 2014). The 

amplifier enzyme to be addressed is the Adenylate Cyclase (AC) enzyme which produces 

cyclic Adenosine Monophosphate (cAMP) from Adenosine Triphosphate (ATP) (Kobilka, 

2007).  

 

Figure 1.2 Illustration of a G Protein Coupled Receptor with its 7 transmembrane region, amino terminus and 

carboxy terminus. Taken from (Neumann et al., 2014) 

 

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be found in the Lancester Library, Coventry 

University.



    

 

 

40 

1.6.1 b1 Adrenergic Receptor 

As mentioned earlier, bARs exist in a number of forms b1 b2 and b3, all of which signal 

through G protein coupled receptors. Unique features of these receptors upon activation are 

associated with their signalling cascades to bring about their desired effect, which tend to be 

influential on contractility of the heart and heart rate (Lymperopoulos and Bathgate, 2013). In 

reference to cardaic bARs activating via agonist stimulation, bARs are prone to 

desnesitisation meaning the response of the receptor becomes diminised. This is controlled by 

a regulatory protein kinase known as the GPCR kinase (GRKs) and b arrestins (Capote et al., 

2015) 

The b1ARs located on the cell crest of cardiomyocytes are capable of binding to only the Gs 

subunit of GPCRs (Madamanchi, 2007). Human bARs share 51% sequence homology 

between each subtype of bARs in their amino acid sequencing, meaning structural features 

are very similar (Warne et al., 2008). An integral part of GPCRs is the interaction they have 

with agonists, in this case bAR agonists such as Isoproterenol. The cytoplasmic loops 2 and 3 

(CL2, CL3) have been targeted, as they are responsible for the selectivity and activation of 

the G proteins. More specifically, the CL2 is responsible for the strength of the interaction 

with an agonist whilst CL3 is targeted for specificity of an agonist (Warne et al., 2008). 

Specific to b1ARs, formation of a a helix of the CL2 next to the surface membrane is 

believed to be structurally responsible, to activate the receptor (Fredriksson and Schioth, 

2005, Baker, 2005b).  

bARs agonists, selective or non-selective, have previously been demonstrated to influence 

the haemodynamics via activation of bARs present in the heart. Activation of the b1AR-Gs 

pathway increases cardiac contractility (inotropic effect) (Steinberg, 2004). Studies with 
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Isoproterenol acting on b1ARs demonstrated an increase in cAMP accumulation, after AC 

converts ATP into cAMP, which is responsible for influencing transportation of calcium 

(discussed in section 1.7) (Ponicke et al., 2006, Sadana and Dessauer, 2009). Increased levels 

of cAMP initiate the start of a signalling cascade initiated by Protein Kinase A (PKA). PKA 

has 2 subunits, regulatory and catalytic. cAMP bound to the regulatory subunit of PKA 

dissociates the catalytic subunit which can go on to phosphorylate intracellular proteins such 

as phospholamban, sarcoplasmic reticulum, calmodulin, ryanodine receptors (RyR), 

sarcoplasmic reticulum ATPase and L-type calcium channels (Hudecova et al., 2013, Yoo et 

al., 2009,  Zhu et al., 2005). 

1.6.2 b2 Adrenergic Receptor 

Detailed research of the b2AR is plentiful as it was one of the first and most stable GPCRs to 

be characterised by radio ligand binding in addition to being the first bAR to be determined 

structurally by crystallography (Rasmussen et al., 2011, Warne et al., 2008). Having 

discussed the ability of b2ARs able to re-distribute throughout the heart under strenuous 

conditions, another unique ability of the b2ARs is its signalling pathways, as it is able to 

activate not only to the Gs subunit, but also the Gi subunit (Ponicke et al., 2006, Xiao et al., 

2003). b2AR-GS pathway is identical to that described in the previous section of the b1AR-Gs 

pathway. Activation of the b2AR-Gi pathway is not dissimilar from that of the GS subunit 

pathway, however once the a subunit of the Gi pathway binds to GTP, direct inhibition of AC 

occurs thus stopping the signalling cascade to activate PKA, causing a reduction in activation 

of the previously mentioned proteins (Figure 1.3). This has been shown to occur in both 

human and rodent ventricular cardiomyocytes (Zhu et al., 2005). 
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Figure 1.3 Illustration of activation of either Stimulatory G Protein Coupled receptor (b1ARs/b2AR-Gs pathway). 

Activation of the b adrenergic receptore (bAR) initiates depolarisation spreading throughout the cardiomyocyte and 

deep within T-tubules initiating L-type Ca2+ channels (ICa). Increased Ca2+  can occur via revered Na+/Ca2+ exchanger 

(NCX rev). Influx of Ca2+ initates further release of Ca2+ from the Sarcoplasmic Reticulum (SR) via Ryanodine 

Receptors (RyR). Intracellular Ca2+ is removed from cytosol of cardiomyocyte through the SR Ca ATPase (SERCA) 

regulated by Phospholamban (PLB). Further removal of Ca2+ is removed via the sarcolemmal NCX (Brum et al., 

2006) 
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1.7 Cardiovascular Disease 

With increased mortalities reported in asthmatic patients as a result of treatment with 

bronchodilators, it is important to recognise underlying cardiovascular diseases (CVD) that 

may exist in patients in the wider population as was suggested by several trials (Singh et al., 

2007, Nelson et al., 2006). CVDs cover a wide range of heart irregularities that effect the 

myocardium, vasculature or rhythm of the heart. CVDs are the number 1 cause of death 

worldwide with an approximate 17.5 million people dying from a form of a CVD in 2012 

(WHO, 2015). Interestingly, analysis of these deaths identified 6.7 million as a result of 

ischaemic heart disease (IHD). New statistics from the British Heart Foundation (BHF) have 

identified IHD to be responsible for approximately 70,000 deaths in the UK each year, and 

currently 2.3 million people in the UK are living with Coronary Heart Disease (BHF, 2015). 

Risk factors that can contribute to CVDs are considered to be modifiable and non-modifiable, 

the latter includes age and sex whilst the former includes hypertension, smoking, obesity and 

diabetes mellitus (Sekhri et al., 2014). 

1.8 Ischaemic Heart Disease & Interventions 

IHD affects the myocardium due to a build-up of plaques in the coronary arteries. The most 

commonly affected arteries of the heart are the left descending coronary arteries, which 

provide the left ventricle with oxygenated blood and nutrients (Libby and Theroux, 2005) . 

Left ventricular function is paramount to blood flow to the whole body. The composition of 

plaque within arteries consists of fibrin, cholesterol, calcium and fats (Somers and Dawson, 

1997). Build-up of plaques line the walls of arteries causing them to become atherosclerotic 

resulting in stenosis of the lumen. Stenosis leads to a reduction in blood flow to targeted areas 

of the heart leading to the myocardium being at risk of becoming ischaemic known as 

myocardial ischaemia (Figure 1.4) (Fisher et al., 2014).  
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Interventions of IHD and CAD can come in a range of therapies. Firstly, diagnosis of IHD 

can be achieved by electrocardiograph stress test analysis or coronary angiography (Qaseem 

et al., 2012). Current pharmaceutical therapies can involve a range of thrombolytic drugs 

(Warfarin), ACE inhibitors, Nitrates and b blockers (Qaseem et al., 2012). Surgical 

intervention may also be necessary in more severe cases of IHD, which include angioplasty 

or coronary artery bypass graft (CABG).  

During an ischaemic period preceding reperfusion, the pathophysiology of the heart and 

blood vessels are altered significantly. During ischaemia, deprivation of nutrients and oxygen 

to areas of the myocardium cause biochemical and metabolic changes (Hausenloy and 

Yellon, 2013). A key mediator is the lack of oxygen which nullifies oxidative 

phosphorylation, which has a ‘downward spiral’ of events including depolarisation of the 

mitochondrial permeability pore (mPTP), ATP depletion and eventual inhibition of 

myocardial contractions (Hausenloy and Yellon, 2013). Compensatory mechanisms are 

initiated during ischaemic periods, however they are short lived. To maintain mitochondrial 

membrane potential, all available ATP is broken down as a result of ATP hydrolysis thus 

increasing inorganic phosphate (Hausenloy and Yellon, 2013, Pham et al., 2014). 

Aerobic respiration in ischaemic hearts becomes laboured and eventually switches to 

inefficient anaerobic respiration, accumulating lactate and increasing H+ ions thus decreasing 

pH leading to acidosis (Avkiran and Marber, 2002). Increased activity of the Na+/H+ 

exchanger compensates for elevated H+ ions within the myocardium. Ischaemic mediated 

ATP depletion maladaptive effects of Na+/K+ ATPase result in Na+ increase intracellularly. 

To compensate for this increase, activation of the Na+/Ca2+ exchanger is reversed, causing a 

detrimental increase in intracellular calcium concentration (Avkiran and Marber, 2002, 

Blaustein and Lederer, 1999, Herchuelz et al., 2002)  
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Figure 1.4 Illustration demonstrating plaque build up in left descending coronary arteries leading to Ischaemic Heart 

Disease and Myocardial Infarction (NLHBI, 2015) 

1.9 Myocardial Infarction 

Following untreated ischaemic injury, such as IHD, cardiomyocytes are unable to function 

appropriately due to the lack of oxygen and nutrients they require for respiration (Libby and 

Theroux, 2005). Continuing IHD with lack of any interventions results in cardiomyocyte cell 

death and increased damage to the myocardium, known as myocardial infarction (MI), 

commonly known as a heart attack. MI has been described as two classes, type 1 and type 2 

respectively (Alpert et al., 2014). With reference to type 1 MI, this is a result of 

atherosclerotic coronary arteries resulting in plaque rupture, leading to MI and necrotic cell 

death. Type 2 MI, on the other hand, can refer solely to the increase in demand of oxygen and 

decrease in myocardial blood flow (Alpert et al., 2014). The purpose of 
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pharmaceutical/surgical interventions of MI and IHD is the restoration of blood supply to the 

area of the myocardium that has become ischaemic. Successful intervention and restoration 

of blood flow to that area is known as reperfusion. Reperfusion, although imperative for 

cardiomyocyte and myocardium survival, has detrimental complications.  

1.10 Reperfusion Injury 

Highlighted in the previous sections, reperfusion is imperative to restore blood flow to areas 

of the myocardium that are ischaemic to re-establish oxygen and nutrient supply for correct 

cardiomyocyte function. However, as important as reperfusion is after ischaemia, further 

damage to cardiomyocytes ultimately leading to cell death, can be caused and is known as 

reperfusion injury (Moens et al., 2005). Reperfusion injury can have several effects on the 

myocardium ranging from arrhythmias, myocardial stunning, microvascular obstruction and 

lethal reperfusion injury (Hausenloy and Yellon, 2013, Garcia Gonzalez and Dominguez 

Rodriguez, 2006). Ventricular arrhythmias caused by reperfusion have been recorded in 

patients suffering from IHD and can be treated with adenosine or b blockers, however they 

can be self-terminated as well (Kin et al., 2004).  

Upon reperfusion, increased oxidative stress and calcium overload can cause irregular 

contractile function of cardiomyocytes, known as myocardial stunning, which is reversible 

(Kloner et al., 1998). Lethal reperfusion injury, being non-reversible, has the most 

detrimental effect on the myocardium. Contributing to this type of reperfusion injury is the 

combination of oxidative stress, mitochondrial permeability pore, calcium overload and 

hypercontracture of cardiomyocytes (Halestrap, 2010, Ong et al., 2015b). Measurement of 

MI size has been shown to increase in conditions of reperfusion injury, contributing up to 

50% of the size of the total damage (Yellon and Hausenloy, 2007). 
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1.11 Oxidative Stress  

One of the main stress mediators of ischaemia reperfusion injury is the production of oxygen 

free radicals known as Reactive Oxygen Species (ROS). Re-introduction of ROS has been 

shown to cause further detrimental effects to the myocardium such as lethal reperfusion 

injury (Ansley and Wang, 2013). Free radicals released upon reperfusion include the 

superoxide anion O2
-, hydroxyl radical OH- and peroxynitrite, all of which have been 

demonstrated to occur in reperfusion of myocardium in humans (Beard et al., 1994). 

Additional sources of ROS can include enzymes such as xanthine oxidase, cytochrome 

oxidase and cyclo-oyxgenase in addition to the oxidation of catecholamines (Moens et al., 

2005).  

During normal physiological conditions of the heart, mitochondria within cardiomyocytes 

respire producing ROS that are tolerable to the myocardium due to an effective antioxidant 

defence mechanism. Included in this defence mechanism are ROS scavengers such as 

superoxide dismutase (SOD), glutathione peroxidase and catalase (Tsutsui et al., 2011). The 

2 most effective scavengers are SOD and glutathione peroxidase, with SOD dismutating O2
- 

to H2O2, whilst glutathione peroxidase catalyses the reduction of H2O2 (Tsutsui et al., 2011, 

Venditti et al., 2014). In circumstances when ROS levels exceed that of the tolerability of the 

antioxidant defence mechanism, as seen in reperfusion injury, damage by ROS can occur in 

the myocardium. 

ROS can alter the phospholipid bilayer and proteins of cell membranes, causing lipid 

peroxidation, resulting in loss of membrane integrity and ultimately leading to cell death via 

necrosis or apoptosis (Braunersreuther and Jaquet, 2012). Interestingly, the importance of 

lipid peroxidation in lethal reperfusion injury was highlighted in studies of rats exposed only 

to ischaemia and not reperfusion, reducing MI with other studies demonstrating the reduction 
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of MI with the use of ROS scavengers (Moens et al., 2005). Further to direct detrimental 

effects of ROS, the O2
- anion is also capable of inhibiting the protective role of nitric oxide 

(NO), which is active to attempt to protect an ischaemic myocardium from further damage 

(Tsutsui et al., 2011).  In addition to the production of ROS by reperfusion injury, calcium 

ions (Ca2+) also contribute to the mechanism by which myocardial damage is caused. Normal 

mitochondrial calcium concentration is critical to the production of ATP via the respiratory 

chain with activation of mitochondrial dehydrogenases to increase supply of Nicotinamide 

adenine dinucleotide phosphate (NADH) (Denton, 2009, Halestrap and Pasdois, 2009). 

1.12 Calcium Regulation 

Calcium regulation is important for cardiomyocyte contraction playing a crucial role in 

excitation contraction coupling (Jafri, 2012). Depolarisation of individual cardiomyocytes 

occurs with activation of the Sodium/Calcium Exchanger (NCX), causing opening of L-type 

Calcium channels of the sarcolemma and release calcium into the cytosol (Fearnley et al., 

2011).  

Maladapted calcium regulation leading to uncontrolled calcium release can result in overload 

that is detrimental to cardiomyocytes (Baumgartner et al., 2009). Regulation of calcium 

stores, responsible for cardiac contraction, is stored within the sarcoplasmic reticulum (SR), 

with elevated calcium concentration Calcium Induced Calcium Release (CICR) causing the 

opening of Ryanodine Receptors (RyR) located on the SR membrane allowing an efflux of 

calcium ions from deep within t-tubules of the myocyte initiating cardiac contraction (Inesi 

and de Meis, 1989, Periasamy et al., 2008). An illustration of the organisation of these 

channels can be seen in Figure 1.5. Regulation of calcium concentration is maintained by the 

Sarcoplasmic Reticulum Calcium-ATPase pump (SERCA) and is influenced by 

concentrations of intracellular calcium and the inhibitory protein phospholamban (Louch et 
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al., 2012). As mentioned earlier, PKA phosphorylation of phospholamban prevents inhibition 

of SERCA thus allowing uptake of calcium ions into the SR. Another signalling protein 

Calmodulin dependent Protein Kinase II (CaMKII) is also capable of activating SERCA by 

inhibition of phospholamban (Diaz et al., 2005, Louch et al., 2012).  

An increase in cytosolic calcium resulting in calcium overload has a detrimental effect on 

cardiomyocytes in particular on the mitochondria (Orrenius et al., 2015). Swelling of the 

mitochondria as a result of calcium overload is one method of pro-apoptotic signalling upon 

rupture and release of the caspases into the cytosol (see Intrinsic Death Pathway) (Giorgi et 

al., 2012). The effects of calcium overload specifically on the mitochondria are described in 

the next section.  

Activation of bARs has been linked to increased intracellular calcium concentrations. This 

has also been demonstrated with the b1AR agonist Isoproterenol. Upon bAR activation, 

activation of the cAMP/PKA signalling cascade results in activation of L-type Calcium 

channels. Prolonged activation of bARs as a result of calcium overload causes an increase in 

ATP depletion within cardiomyocytes due to the inhibition of the N+/K+ATPase resulting in 

increased Na+ concentration, inhibiting the NCX leading to maladaptive calcium homeostasis 

(Garcia-Dorado et al., 2012). 
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Figure 1.4 Illustration of the location of L-type Calcium channels (Ca2+ channel), Sodium Calcium Exchanger (NCX), 

Potassium channel (K+) located on the surface membrane and within t-tubules of cardiomyocytes. Location of 

Ryanodine Receptors (RyR) and the Sarcoplasmic Reticulum Calcium ATPase pump (SERCA) located on the surface 

of the Sarcoplasmic Reticulum (SR). SERCA is regulated by the inhibitor phospholamban (PLB).  

Taken from (Louch et al., 2012).  

 

1.13 Mitochondrial Permeability Transition Pore 

With increased ROS and calcium production as a direct result of ischaemia reperfusion 

injury, studies have identified these stressors to directly affect the integrity of mitochondria 

by increasing the permeability of the mitochondrial membrane, in particular affecting the 

mitochondrial permeability transition pore (mPTP) (Halestrap and Pasdois, 2009, Halestrap 

and Richardson, 2015). This phenomenon of sudden permeabilisation of the inner 

mitochondrial membrane is known as mitochondrial permeability transition (Zoratti and 

Szabo, 1995). The mPTP is a non-selective pore and is permeable to molecules less than 

This item has been removed due to 3rd Party Copyright. The unabridged 
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1.5kDa in size, controlling the opening of the inner mitochondrial pore, particularly during 

physiological stressed conditions such as ischaemia reperfusion (Hung and Lee, 1998, Riojas-

Hernandez et al., 2015). The structure of the mPTP has not fully been elucidated, however 

several components have been suggested to make up the mPTP. Studies inhibiting the 

opening of the mPTP with the use of ATP, ADP, and bongkrekic acid, all of which inhibit the 

Adenine Nucleotide Translocase (ANT) (Halestrap and Brenner, 2003). The most abundant 

protein identified in the mPTP are Voltage Dependent Anion Channels (VDAC) (McCommis 

and Baines, 2012). Unlike ANTs, VDACs have been identified to be located on the outer 

mitochondrial permeability pore linking the cytoplasm of the cardiomyocyte to the matrix of 

the mitochondria (McCommis and Baines, 2012, Halestrap, 2010) (Figure 1.5). Support for 

VDACs involvement of opening of the mPTP and structure has been supported with 

successful blockage of VDACs with monoclonal antibodies that inhibited mitochondrial 

permeability transition (McCommis and Baines, 2012).  

Another proposed component of the mPTP is the matrix protein cyclophilin D (Cyp D) 

(Halestrap and Pasdois, 2009, Giorgio et al., 2010). Successful inhibition of the mPTP 

opening with cyclosporin A (CsA) was further investigated and was discovered to inhibit the 

matrix protein later to be named cyclophilin D (Crompton et al., 1999, Giorgio et al., 2010). 

The effects of CsA on the mPTP as a whole, and in particular on the Cyp D protein is to 

desensitise it to calcium thus reducing it from initiating mitochondrial permeability transition 

from mPTP opening. Studies using Cyp D knockout mice supported this point as isolated 

mitochondria were shown to have a high resistance to calcium induced mPTP opening 

(Halestrap, 2010, Nakagawa et al., 2005). The use of CsA in the rat ventricular and atrial 

cardiomyocytes has been demonstrated to protect against drug induced toxicity by 

Doxorubicin and prevent premature opening of the mPTP (Gharanei et al., 2013, 
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Shanmuganathan et al., 2005) 

Consequences of premature opening of the mPTP in conditions of ischaemia reperfusion 

cause the contents of the mitochondria to be released into the cytosol of cardiomyocytes. 

Contents within mitochondria contain pro-death signalling proteins that can initiate cell death 

in several ways which are discussed later. 

 

 

Figure 1.5 Proposed structure of the Mitochondrial Permeability Transition Pore with VDAC penetrating the 

Outer Mitochondrial Membrane (OMM) with the ANT connecting to the Inner Mitochondrial Membrane (IMM). 

Cyclophilin D attached to the ANT (D) within the matrix of the mitochondria. Illustration taken from Crow et al., 

2004.  
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1.14 Myocardial Cell Death 

Several mechanisms of cell death have been identified that include necrosis and apoptosis, 

which is also divided into a sub category of autophagy. Each of these cell death mechanisms 

have been shown to occur in different stages of ischaemia and reperfusion injury, all 

collaborating to increase the amount on MI tissue. The exact favoured mechanism of cell 

death in cardiomyocytes remains elusive however strong evidence does support that these 

cell death types do, in fact, occur. 

1.14.1 Necrosis 

Necrotic cell death has been considered to be a passive form of cell death as it does not 

require ATP (Edinger and Thompson, 2004). Characteristics of necrotic cell death include 

breakdown of the cell membrane, ATP depletion, inflammation resulting from the release of 

pro-inflammatory cytokines and cellular swelling that can lead to cell rupture (Proskuryakov 

et al., 2003, Taimor et al., 1999). Necrosis has been described as accidental/unregulated form 

of cell death when first described, however more recent studies have challenged this view 

with a concept that necrotic cell death can also be ‘programmed’ i.e. recognisable signalling 

proteins to initiate necrosis (Kung et al., 2011, Danial and Korsmeyer, 2004). Interestingly, in 

cases of acute myocardial infarction, necrotic cell death has been shown to take place in 

addition to apoptosis as a result of pro-apoptotic mediators, which will be discussed in detail 

in the apoptosis section (Pasotti et al., 2006).   

Necrotic cell death has been strongly linked to ischaemia in the heart and has been 

demonstrated in rodents and humans, with an increased probability or reversing necrotic cell 

death in the first 30-40 minutes of ischaemia as shown by Pasotti and colleagues (2006). The 

use of a b2AR agonist Clenbuterol in Wistar rat cardiomyocytes were shown to induce cell 
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death and switch the mechanism of cardiomyocyte death from apoptosis to necrosis, a 

phenomenon known as secondary necrosis (Silva, 2010, Burniston et al., 2005). Burniston 

and colleagues (2005) observations in rat cardiomyocytes with this particular bAR agonist, 

found that cardiomyocytes initiated inflammatory responses as a result of secondary 

apoptosis increasing myocardial damage and injuring adjacent cardiomyocytes.  

1.14.2 Apoptosis 

Apoptosis, in contrast to necrosis, is dependent on ATP and is also known as programmed 

cell death. When cells in the body become un-repairable, are no longer needed or are injured 

due to a severe insult, an internal signalling cascade can destroy them. Apoptosis is 

specifically targeted and will not affect neighbouring cells and can be initiated in a variety of 

ways including extrinsic factors and intrinsic factors. Characteristics of apoptosis include 

shrinkage of the cell, potential swelling of mitochondria towards the end point of apoptosis 

and caspase activation (Kung et al., 2011). The main mediators of executing apoptosis are the 

family of caspases located in the cytosol of cells in particular cardiomyocytes (McIlwain et 

al., 2013).  bAR induced apoptosis has been recorded in rat cardiomyocytes, however 

apoptosis can be activated via one of two pathways named the extrinsic or intrinsic pathway 

(Crow et al., 2004). b1AR activation has been linked to promoting cell apoptosis via the GS 

subunit, whilst b2AR activation has been shown to be anti-apoptotic via Gi subunit activation 

(Woo et al., 2015). Specifically, pro-apoptotic signalling via b1AR activation can occur via 2 

pathways, firstly as described earlier, activation of b1AR-GS initiates the cAMP/PKA 

pathway increasing calcium concentration which can have a detrimental effect on the opening 

of the mPTP (see 1.13). Prolonged activation of this particular pathway initiates 

cardiomyocyte apoptosis via the CaMKII when concentration levels are significantly elevated 

(Zhu et al., 2003). Activation of CaMKII via calcium signalling initiates apoptosis signalling 
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kinase 1 which can activate the stress activated MAPK c-Jun N-terminal (JNK) pathway 

(Olofsson et al., 2008) 

In addition to being ATP dependent in contrast to necrosis, myocardial induced apoptosis is 

not linked to the ischaemic phase, but is a result of the reperfusion phase (McCully et al., 

2004). How exactly apoptosis contributes to myocardial injury during reperfusion is linked to 

one of two pathways that can initiate apoptosis, which will be discussed next.  

1.14.3 Autophagy 

A subclass of apoptotic cell death is known as autophagy. Autophagy is initiated when there 

is a requirement for the bulk degradation of proteins and organelles. 3 different types of 

autophagy have been identified, 1. Macroautophagy, 2. Microautophagy, 3. Chaperon-

mediated autophagy (Nishida et al., 2009). Autophagy initiated cell death involves the 

formation of an autophagosome that can engulf the whole organelle that can then attach to a 

lysosome to be digested. Autophagy can be seen as cytoprotective when engulfing damaged 

mitochondria that can release pro-apoptotic factors such as cytochrome c thus inhibiting 

apoptosis. Enhanced autophagy activity in cultured cardiomyocytes has been demonstrated to 

protect against ischaemia reperfusion injury (Hamacher-Brady et al., 2006). In severe 

circumstances of injury and insult, such as ischaemia reperfusion injury, autophagy cell death 

can still be initiated, however due to the increased number of stimuli (ROS, calcium, 

endoplasmic reticulum), a large area of the cytosol can damaged releasing pro-apoptotic 

proteins initiating apoptosis (Hamacher-Brady et al., 2007, Nishida et al., 2009). 
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1.14.4 Extrinsic Death Pathway 

As mentioned previously, apoptotic cell death can be mediated via 2 signalling pathways. 

The first of these pathways, known as the Extrinsic Death Pathway, involves stimuli external 

to the cell that interact with receptors on the cell surface such as Death receptors (Muzio et 

al., 1996). Some examples of the ligands that can interact with such cell surface proteins 

include, Fas and Tumor Necrosis Factor (TNFa). Upon ligand receptor interaction the 

formation of the Death-Inducing-Signalling-Complex (DISC) occurs (Petros et al., 2004). 

Upon Fas ligand interaction with its corresponding receptor, recruitment of Fas-associated 

via death domain (FADD) initiates recruitment of procaspase-8. Activated cleaved caspase-8 

initiates a signalling cascade activating caspase-3 and Bid a pro-apoptotic protein (Crow et 

al., 2004). Further examples of external stimuli include catecholamine drugs such as 

Isoproterenol and other bARs.  

1.14.5 Intrinsic Death Pathway 

Internal stimuli that can initiate the Intrinsic Death Pathway include ROS, calcium overload 

and DNA damage, all possible outcomes of reperfusion injury. Fundamental to this particular 

pathway activation is the family of Bcl-2 proteins, which are categorised as anti-apoptotic 

(Bcl-2, Bcl-Xl) and pro-apoptotic (Bid, Bad, Bim, Bmf, Noxa, Puma, BNip-3, Nix) (Petros et 

al., 2004). The pro-apoptotic proteins are separated further as multi-domain pro-apoptotics 

and BH3-only pro-apoptotics (Bid, Bad, Bim) (Crow et al., 2004), (Krautwald et al., 2010).  

The pro-apoptotic proteins Bax or Bak are recruited in myocardial infarction induced 

apoptosis. Bax in its inactive state in response to a stimulus such as ROS, translocates to the 

mitochondria forming pores in the outer mitochondrial membrane (Basanez et al., 2002). This 

allows the contents of the mitochondria, crucially cytochrome c, into the cytosol of the 
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cardiomyocyte initiating apoptosis (Lassus et al., 2002). Mitochondria play a key role in the 

activation of the Intrinsic Death Pathway as the contents within the mitochondria contain 

several pro-apoptotic proteins (cytochrome c, DIABLO a second mitochondria-derived 

activator of caspases (SMAC) and high temperature requirement protein 2 (htrA2)) (Crow et 

al., 2004, Yang et al., 2003, van Empel et al., 2005) . These proteins, when released into the 

cytosol, can continue the signalling cascade that will ultimately lead to cardiomyocyte cell 

death. 

Cytochrome c release, as a pro-apoptotic protein, has been associated with mPTP opening 

and mitochondrial rupture. Once released into the cytoplasm, the Apoptotic Protease 

Activating Factor-1 (APAF-1) is recruited and further recruits procaspase-9 (Crow et al., 

2004). Activation of this particular caspase signals further down the cascade and activates 

procaspase-3. Activated caspase-3 is then involved in further activation and recruitment of 

procaspase-9 increasing the caspase concentration thus causing a rapid onset of apoptosis. It 

has been shown in hearts of transgenic mice deficient of procaspase-9, a remarkable decrease 

in infarction size when hearts were exposed to conditions of ischaemia reperfusion (Crow et 

al., 2004). 

Having discussed the importance of mitochondria initiating the Intrinsic Death Pathway, 

another stress mediate of reperfusion injury is oxidative stress acting directly on the 

mitochondria. Oxidative stress promotes the Poly ADP Ribosome Polymerase (PARP), 

which recruits the Apoptotic Inducing Factor (AIF) (Hong et al., 2004). AIF is responsible 

for DNA dismemberment and mitochondrial release of cytochrome c, both of which promote 

apoptosis (Figure 1.6).  
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Figure 1.6 Mitochondrial regulation of apoptosis displaying both Intrinsic Death Pathway (Left) and Extrinsic Death 

Pathway (Right). Taken from (Tait and Green, 2012) 
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1.15 Signalling Pathways  

The activation of the death pathways that are associated with cardiomyocyte apoptosis is one 

aspect of a signalling cascade. Further signalling pathways can be both pro-apoptotic and 

anti-apoptotic depending on the length of time and volume of signalling proteins that are 

recruited. 2 pathways that have been associated promoting anti-apoptotic effects against 

myocardial injury include the phosphoinositide 3-kinase (PI3K)/Protein Kinase B (Akt) 

pathway and the extracellular regulatory kinase (Erk) 1/2 pathway. 

1.15.1 PI3K/Akt signalling pathway 

Activation of the PI3K/Akt pathway has been linked to several cellular functions such as cell 

proliferation, growth and attenuation of apoptosis induced by myocardial ischaemia 

reperfusion injury (Hausenloy and Yellon, 2004). Akt (Protein Kinase B), a serine-threonine 

kinase, mediates several pro-apoptotic proteins via inhibition or phosphorylation to prevent 

apoptosis, in particular Bad and caspase-9 (Jeong et al., 2008).  

Activation of PI3K phosphorylates the membrane of phosphatidylinositol 4,5 bisphosphate 

(PIP) that then goes on to generate PIP3,4 and 5. The recruitment of Akt and phosphoinositide 

dependent kinase-1 (PDK1) by PIP2 and PIP3, moves them to the cell membrane activating 

Akt (Nagoshi et al., 2005). PI3Ks can be divided into several classes determined by their 

structure and substrate specificity (Vanhaesebroeck et al., 1997). Of particular interest of the 

classes is the association of the IB class with activation by b subunits of GPCRs (activated by 

bAR agonists) (Naga Prasad et al., 2001). A strong association of activation of Akt has been 

made with rat hearts in the model of ischaemia reperfusion (Hausenloy et al., 2005).  

Akt in its active form can regulate several downstream targets such as the forkhead 

transcription factor, nitric oxide synthase, glycogen synthase kinase-3, BAD and nuclear 
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factor kB (Mockridge et al., 2000). The Bcl-2 family member BAD, when phosphorylated at 

Serine 136 by Akt, binds to 14-3-3 proteins. These particular 14-3-3 proteins interact with 

BAD at serine 136 but have also been shown to interact at serine 112, both capable of 

inhibiting pro-apoptotic signalling (Masters et al., 2001). Upon BAD activation, the proteins 

translocate to the mitochondria bound to Bcl-2 and Bcl-Xl where it can form pores inducing 

cell apoptosis via leakage of mitochondrial contents. BAD in its active form is found within 

the cytosol continuously bound to 14-3-3 proteins thus inhibiting apoptotic signalling 

(Masters et al., 2001). The PI3K inhibitor Wortmannin has been shown to inhibit the anti-

apoptotic effects of Akt activation in both rabbit and rat hearts (Armstrong, 2004). Akt is a 

key signalling protein during ischaemia reperfusion as it allows cells to avoid apoptosis and 

maintain their cellular function by phosphorylating downstream targets such as Bad at 

serine136 and caspase-9, both pro-apoptotic proteins when activated (Mullonkal and Toledo-

Pereyra, 2007). 

Activation of Akt has been linked with bARs, in particular with Isoproterenol. Rat cardiac 

endothelial cells, have been demonstrated to initiate the PI3K/Akt pathway as a result of 

production or pro-inflammatory cytokines leading to elevated levels of phosphorylated Akt in 

the presence of the bAR agonist Isoproterenol (Chandrasekar et al., 2004).  

Investigations into the acute activation of Akt can be beneficial for anti-apoptotic effects, 

however more recent studies are exploring the effects of chronic activation (Mullonkal and 

Toledo-Pereyra, 2007, Nagoshi et al., 2005). Although acute activation of Akt has been 

demonstrated to promote cell survival, chronic activation of Akt has been linked to induce 

cell apoptosis and promote cardiac abnormalities such as hypertrophy, heart failure and 

increased myocardial infarction(Mullonkal and Toledo-Pereyra, 2007), (O'Neill and Abel, 

2005). Shiojima and colleagues (2005) in their model with transgenic overexpression of 
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activated Akt an increase in severe cardiac dysfunction, also supported by a similar model by 

Nagoshi (Nagoshi et al., 2005, Shiojima et al., 2005).  

1.15.2 Mitogen-Activated Protein Kinases 

Complex signal transductions within the heart are co-ordinated with the use of signalling 

proteins in response to stimuli (Yang et al., 2013). The mitogen-activated protein kinases 

(MAPK) are one group of signalling proteins that are responsible for signalling cascades to 

execute instructions such as cardiac development, metabolism, cell proliferation and 

apoptosis (Rose et al., 2010). Associated to the MAPK family are four types of MAPKs that 

initiate signalling cascades, these include Extracellular Signal Regulated Kinases (ERK 1/2), 

c-Jun NH2 Terminal Kinase (JNK), p38 kinase and big MAPK (Vandamme et al., 2014, Yang 

et al., 2013). Activation of any of these MAPK initiate a signalling cascade involving several 

different MAPKs including, a MAPK kinase kinase (MAPKKK), MAPK kinase and a 

MAPK (Figure 1.7)(Rose et al., 2010). 
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Figure 1.7 Illustration of the Mitogen-Activated Protein Kinase cascade. Activation of the MAPK pathway results in 

a downward cascade from MAPK kinase kinase (MAPKKK) activating MAPK kinase furhter activating MAPK via 

phosphorylation  (Bak et al., 2012). 

 

1.15.3 ERK 1/2 Signalling Pathway 

Two variants of ERK exist in the forms ERK1 and ERK2, both approximately 80% identical 

to each other with similar signalling capabilities. ERK 1/2 has been demonstrated in a variety 

of species to regulate cytokinesis, cell death and proliferation. Due to importance and 

abundance of ERK 1/2 in various processes mentioned, ERK 1/2 has been shown to be 

involved in the formation of cancers and cardiovascular diseases such as cardiac hypertrophy 

(Kehat and Molkentin, 2010). Activation of ERK 1/2 can be via GPCRs, insulin growth 

factors, fibroblast growth factors and cytokines. Several different scaffold proteins are 
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associated with ERK 1/2 such as Ras and b arrestin (Rose et al., 2010). Activation of the 

signalling mediator Ras by tyrosine kinase activates Raf. Activated Raf is responsible for the 

phosphorylation of the MEK1/2 thus activating ERK 1/2 via phosphorylation (Rose et al., 

2010).  

ERK 1/2 activation has been shown to be a key component in the RISK pathway leading to 

cardioprotection of cardiomyocytes exposed to ischaemia reperfusion injuries (Hausenloy et 

al., 2005). ERK 1/2 activation has been shown to protect against drug induced myocardial 

injury such Doxorubicin (Takemura and Fujiwara, 2007). Elevated ERK 1/2 expression in 

response to a cardiac injury such as ischaemia reperfusion has shown to elevate expression of 

nitric oxide synthase, endothelial nitric oxide and Bcl-2 (Rose et al., 2010). Further work 

with adult rat cardiomyocytes has shown cardioprotective effects of ERK 1/2 with interaction 

of alternative pathways such as the TNF a induced apoptotic signalling pathway. ERK 1/2 

signalling has also been demonstrated to compensate for the loss of Akt signalling in post 

reperfusion in rat hearts to initiate cardioprotective mechanisms (Miki et al., 2007). 

Overexpression of active Ras in transgenic mouse hearts demonstrated to have 

cardiomyocyte hypertrophy (Hunter et al., 1995, Zhang et al., 2003). Strong links to the 

influence of calcium concentration by expression of ERK 1/2 have also been investigated, in 

particular the activation of the Ras/Raf/MEK/ERK pathway. In vitro and vivo experiments 

with ventricular myocytes have demonstrated the direct effect of Ras activation of the SR, 

reduces L-type Ca2+ channels and decreased SERCA activation and increased activity of 

phospholamban (Zheng et al., 2004).   
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Aims  

The aims of this thesis were: 

1. Investigate the effects of Short and Long acting b adrenergic receptor agonists in a 

model of ischaemia reperfusion injury.  

2. Identify the effects of Short and Long acting b agonists on the mitochondrial 

permeability transition pore in a model of oxidative stress 

3. Identify any signalling pathway protein expressions associated with any observed 

detrimental/protective effects on the rat myocardium. 

4. Confirm activation of a specific subtype of the b adrenergic receptors that results in 

the observed effect on the rat myocardium. 

5. Investigate the role of the mitochondrial permeability transition pore in response to 

increased reactive oxygen species in a model of oxidative stress. 

6. Inhibit the detrimental effects of reactive oxygen species with the use of the 

cyclophilin D inhibitor, Cyclosporin A. 

7. In the presence of an identified toxic b adrenergic receptor agonist, co-administer the 

cyclophilin D inhibitor, Cyclosporin A to observe if reversal of injury can be 

obtained.  
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2 Chapter 2 – Material & Methods 

2.1 Animals 
Male Sprague Dawley rats, 12weeks (350g ± 50g), 18 month (450g ± 50g) and 24 month 

(500g ± 25g) old, were initially purchased from Charles River (Margate, UK) and were then 

raised to the appropriate age with free access to pellet chow and water. The rats were kept 

and raised in accordance with the Home Office Guidance on the Operation (Scientific 

Procdures) Act 1986 (The Stationary Office, UK) 

2.2 Chemicals & Drugs  
Salbutamol hemisulfate, Salmeterol, Formoterol hemifumarate, Isoproterenol, Cyclosporin A 

(CsA), ICI 118, 551 hydrochloride, CGP 20712 dihydrochloride,  Wortmannin and U0126 

were all purchased from Tocris (Bristol, UK). Salbutamol, ICI 118, 551, CGP 20712 and 

Isoproterenol were all dissolved in ultrapure water. Formoterol, Wortmannin and U0126 were 

dissolved in di-methyl sulfoxide (DMSO) ensuring the final concentration of DMSO was 

<0.02%. Salmeterol and CsA were dissolved in ethanol ensuring the final concentration of 

ethanol was, 0.01%. All salts used were acquired from Fisher Scientific (Loughborough, 

UK). 

2.3 Langendorff Perfused Heart Model 

2.3.1 Isolation of the Rat Heart 
Rats were sacrificed by cervical dislocation in accordance with a schedule 1 Home Office 

procedure (1986) and their hearts were excised and placed into ice cold Krebs Heinsleit 

Buffer (KHB). The aorta was exposed and cannulated onto the Langendorff apparatus (Figure 

2.1), followed by perfusion with KHB (118mM NaCl, 12mM Glucose, 25mM NaHCO3, 

4.8mM KCl, 1.2mM KH2PO4, 1.2mM MgSO4, 1.7mM CaCl2, gassed with 95% O2, 5% CO2 

(BOC gases, UK)), pH maintained at 7.4 and temperature kept at 37oC ± 0.5oC throughout 
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the experiment. Time taken from excision of the heart to perfusion with KHB was kept to an 

absolute minimum i.e less than 3 minutes. Retrograde perfusion of the heart, forces KHB to 

flow through the coronary vessels allowing perfusion of the myocardium. 

The left atrium was cut away and an iso-volumic latex balloon connected to a physiological 

pressure transducer (AD Instruments, Oxford, UK), was inserted into the left ventricle via the 

removed left atrium and inflated between 5-10mmHg.  Haemodynamic data such as left 

ventricular developed pressure (LVDP), heart rate (HR) and coronary flow (CF) were 

collected at regular intervals throughout the experiment. The LVDP was recorded as 

measurement of the end diastolic pressure in millimeteres per mercury (mmHg) for a one-

minute period. The heart rate was calculated via analysis of a one-minute period of the 

represented electrocardiogram trace. Coronary flow was measured by collecting the effluent 

and measuring the volume in millilitres (ml). Haemodynamic data were collected using Chart 

5 (v5.1.2) and analysed using Graphpad Prism (v6.0.1). All haemodynamic data was 

calculated as a percentage of the average stabilisation period. 
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Figure 2.1 Photograph of Langendorff apparatus 
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2.3.2 Langendorff protocol & Reperfusion studies 

The protocol followed is illustrated in Figure 2.2. Hearts were allowed to stabilise for 20 

minutes followed by a period of regional ischaemia for 35minutes. Previous studies have 

indicated periods of ischaemia between 5-20 minutes followed by reperfusion caused 

myocardial stunning with no myocardial injury but only cellular dsyfunction (Kalogeris et al., 

2012). Reperfusion periods greater than 20 minutes have been shown to cause significant 

irreversible myocardial injury, mimicking injury observed in myocardial infarction (Yellon 

and Hausenloy, 2007). To induce ischaemia the left anterior descending coronary arteries 

were occluded. This was achieved by inserting a curved surgical suture under the coronary 

artery and its thread passed through 2 pipette tips to form a snare, tightening of the snare, 

initiated ischaemia. Ischaemia was confirmed by a decrease in LVDP.  The heart was then 

reperfused for 120 minutes by removing the snare. 
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2.3.3 Infarct Size & Data Analysis 

After reperfusion the coronary arteries were re-occluded by tightening the snare and infused 

with 0.25% Evans Blue in saline (Sigma, Dorset, UK) into the heart via the aorta to delineate 

the non-risk area of the heart (Figure 2.3). Immediately after infusion, the hearts were 

weighed and frozen overnight at -20oC. The frozen heart was cut into 2mm transverse 

sections and incubated in 1% triphenyltetrazolium solution (TTC) for 15minutes at 37oC. 

Following incubation with TTC, the heart slices were fixed in 10% Formalin solution for a 

 

Figure 2.2  Illustration of Langendorff protocol  

Hearts underwent stabilisation for 20 minutes followed by 120minutes perfusion for normoxic studies. 

Ischaemia reperfusion studies were stabilised for 20minutes followed by 35minutes of ischaemia and reperfused for 

120minutes. At the onset of reperfusion the drug were administered (± Isoproterenol (0.1µM-0.5µM), salmtereol 

(0.1µM), formotereol (0.1µM-0.5µM), salbutamol (0.001µM-1µM), ICI 118, 551 (0.0014µM), CGP 20712 

(0.0012µM), cyclosporin A (0.2µM), wortmanin (0.1µM), U0126 (10µM) 
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minimum of 4 hours to fixate the infarct tissue. Heart slices were transferred between 2 

perspex blocks held together with bulldog clips and traced onto an acetate sheet. A 

computerized planimetry package (Image Tool v3.0, NICH) was used to calculate the 

percentage of infarct tissue compared to the area at risk and expressed as percentage of the 

Infarct-Risk ratio (I/R) (Figure 2.3.4). This was calculated by measuring each individual 

2mm transverse heart slice measuring the percentage of infarct tissue, risk tissue and viable 

tissue with an overall average for I/R obtained from all individual slices (Figure 2.4). Infarct 

size was calculated as percentage of the area at risk, which represents the “entire perfusion 

bed distal to the occluded coronary artery” (Redfors et al., 2012).  

 

 

 

 

 

 

 

Figure 2.3 Photograph of rat heart after infusion with Evans Blue delineating risk area from non risk area. 
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Figure 2.4 Illustration of Heart Slice drawn on acetate sheet. 

The blue shaded area shown indicates the area of the heart that was continuously perfused throughout the experiment 

and is not at risk. The Area of Risk (red) was the portion of the heart subjected to ischaemia containing risk tissue (red) 

and infarcted tissue (cream). 

 

2.3.4 Exclusion Criteria 

Hearts were excluded if coronary flow was less than 8ml/min during stabilisation and also 

any hearts that had a LVDP less than100mmHg during the same period. Hearts were also 

excluded if during the reperfusion phase went under fibrillation longer than 5minutes or 

could not be restored to a normal rhythm in the same amount of time. Hearts that underwent 

the Langendorff ischaemia reperfusion protocol were excluded from the data if the area at 

risk was less than 35%,  

2.4 Adult Rat Ventricular Myocyte Isolation 

Rats were sacrificed by cervical dislocation and the hearts excised and hung on a modified 

constant flow (14ml/min) Langendorff apparatus (Figure 2.5). Hearts were perfused for 3-4 

minutes with calcium free modified Krebs Heinsleit Buffer (116mM NaCl, 25mM NaHCO3, 

5.4mM KCl, 0.4mM MgSO4, 10mM glucose, 20mM taurine, 5mM Sodium Pyruvate and 

0.9mM Na2PO4 as described by (Maddock et al., 2002)). The buffer was then switched and 

the hearts perfused with digestion buffer (0.075% Worthingtons Type II Collagenase, 4.4µl 
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CaCl2 and pH adjusted to 7.4 with 1M NaOH). Hearts were perfused for 7 minutes with the 

digestion buffer and the effluent was collected and reused.   

 

Figure 2.5 Photograph of modified Langendorff rig for Myocyte Isolation 

 

After perfusion with digestion buffer, the atria of the heart was cut away, the ventricles were 

cut into smaller sections and re-suspended in fresh digestion buffer for 10 minutes on an 

orbital shaker. The digestion buffer was aspirated and passed through a sterile nylon mesh 

into a sterile 50ml falcon tube with the undigested tissue re-suspended in fresh digestion 

buffer and allowed to be further digested on the orbital shaker for 10 minutes. The filtrate 

was centrifuged for 2 minutes at 600rpm. Using a sterile pipette to remove and discard the 

supernatant, the pellet was re-suspended in freshly prepared restoration buffer containing: 

116mM NaCl, 25.0mM NaHCO3, 5.4mM KCl, 0.4mM MgSO4 .7.H2O, 10mM glucose, 

20mM taurine, 5mM pyruvate 0.9mM Na2HPO4.12H2O, 1% BSA and 1% Pen-Strep, pH 7.4.  
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Post isolation, the myocytes received 5 doses of CaCl2 over 30 minutes to bring the final 

concentration to 1.25mM to prevent calcium overload. The myocytes were incubated at 37oC 

until used in restoration buffer.  

2.4.1 Exclusion Criteria 

Isolations were discarded if the viability was below 65%. For the oxidative stress model, 

dishes were discarded if myocytes had not stuck down successfully or less than 3 cells were 

visible in the field of view during confocal microscopy.  

2.5 Hypoxia/Reoxygenation Studies 

2.5.1 Hypoxia/Reoxygenation 

After myocytes had been isolated, the cells were counted using a haemocytometer. The 

myocytes were centrifuged at 600rpm for 2 minutes and the restoration buffer discarded. The 

pellet was re-suspended in 15ml Hypoxic Buffer (12mM KCl, 0.49mM MgCl2, 0.9mM 

CaCl2, 4mM HEPES, 10mM 2-Deoxy-D-glucose and 20mM Lactate) placed in a petri dish 

and incubated at 37oC with conditions of 5% CO2, <1% O2 using a Galaxy 48R CO2 

incubator, (New Brunswick, Eppendorf, Stevenage, UK). Myocytes were incubated in 

hypoxic conditions for 2 hours. The cells were re-suspended in the Hypoxic Buffer and 

centrifuged at 600rpm for 2 minutes. The supernatant was discarded and the cells were re-

suspended in restoration buffer. Cells were re-oxygenated for 4 hours in the presence or 

absence of the drugs and incubated at 37oC.  

2.5.2 MTT Assay 

The use of the tetrazolium salt MTT (3−[4,5−dimethylthia−zol−2−yl]−2,5−diphenyl 

tetrazolinum bromide) is widely used to determine cell viability, cytotoxicity and 

proliferation (Wang et al., 2011). This is determined by the ability of the dehydrogenase 

enzymes of the mitochondria within the myocytes being able to reduce the MTT to a purple 
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formazon product that can then be analysed using spectrophotometry (Abe and Matsuki, 

2000). 

2.5.2.1 Preparation of 96 Well Plate 

After the myocytes were successfully isolated and underwent hypoxia, they were counted 

again using a haemocytometer and re-suspended in the desired volume of restoration buffer 

to achieve 10,000 cells per 50µl.  

Drugs were diluted in restoration buffer and pre-aliquoted into a 96 well plate. The outer 

wells were left as blanks and 2 columns dedicated to a normoxic control and 

Hypoxia/Reoxygenation (H/R) control. 50µl of cells were added to the drugs and incubated at 

37oC for 4 hours. After incubation with the drugs, 20µl of MTT (5mg/ml) (Sigma, UK) was 

added to each well and the plate wrapped in foil and incubated for a 2 hours. Following MTT 

incubation, 100µl lysis buffer (15% SDS in 50% dimethyl formamide) was added to each 

well and incubated overnight.  

2.5.2.2 Data Analysis 

Plates were read at an absorbance of 480nm using a plate reader (StingRay v1.1.3). Values 

were converted as a percentage compared to Normoxic control values. Data was plotted using 

GraphPad Prism (v6.0.1). 

2.5.3 Flow Cytometry – FACS  

The Fluorescence Assimilated Cell Sorter (FACS, Becton Dickinson) was used to detect the 

fluorescence of myocytes when treated in the presence or absence of drugs and detected for 

cleaved Caspase-3. 
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2.5.3.1 Cleaved Caspase-3 Activity 

Following the Hypoxia/Reoxygenation protocol as described in section 3.7.1, myocytes were 

treated in the presence or absence of the drugs of interest and re-suspended in restoration 

buffer. Myocytes were transferred to 1.5ml eppendorf tubes and centrifuged at 1200rpm for 2 

minutes. The supernatant was discarded and the cells re-suspended with 500µl of 3% 

formaldehyde in Phosphate Buffered Saline (PBS) and allowed to fix for 10 minutes at room 

temperature to prevent any further cellular activities. The eppendorfs were then centrifuged at 

1200rpm for 2 minutes followed by discarding the supernatant and replacing it with ice-cold 

90% Methanol. Cells were stored overnight at -20oC, or incubated on ice for 30 minutes. 

Myocytes suspended in methanol were centrifuged at 1200rpm for 2 minutes; supernatant 

discarded and washed 3 times in 200µl incubation buffer (0.5% BSA in PBS), after each 

wash, the myocytes were re-suspended and then spun down. The myocytes were blocked for 

10 minutes with 200µl incubation buffer followed by incubation for 1 hour at room 

temperature with the Cleaved Capsase-3 conjugated with Alex Fluor 488 (1:100) (Cell 

Signalling Technologies, UK) and covered in foil. The myocytes were spun down at 

1200rrpm for 2 minutes and the antibody buffer removed and washed 3 times in incubation 

buffer. After the 3rd wash, the myocytes were re-suspended in 500µl PBS and transferred to 

FACS tubes for analysis. 

2.5.3.2 Data Analysis 

Alexa Fluor 488 is excited on FL-1 at 495nM and emits at 519nM. Histograms were plotted 

for each of the groups showing the mean fluorescence for 10,000 cell counts. The mean 

fluorescence were normalised against control values and graphs plotted using GraphPad 

Prism (v6.0.1).  
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2.6 Oxidative Stress Model 

As mentioned earlier the opening of the mPTP results in oxidative stress. To mimic the 

conditions of oxidative stress the fluorochrome tertramethylrhoadmine methyl ester (TMRM) 

can be used to investigate the effects of the drugs specifically on the mPTP. TMRM is 

positively charged, which specifically penetrates and quenches within the mitochondria. 

Laser stimulation of TMRM creates ROS, which causes the mPTP to open and release its 

contents into the cytoplasm. This phenomenon can be detected via real time confocal 

microscopy. 

2.6.1 Confocal Microscopy 

6 x 60mm sterile petri dishes (Fisher Scientific) were coated with Laminin (1mg/ml diluted in 

6.5ml ddH2O) (Sigma, UK) and isolated myocytes were allowed to adhere to the laminin 

coated dishes for 2 hours at 37oC. Dishes were then incubated for 15 minutes with 

microscopy buffer (Calcium free modified KHB, 10 mM HEPES and 1.2µM CaCl2, pH 7.4) 

containing 3µM TMRM. The TMRM buffer was aspirated and further incubated for 10 

minutes with microscopy buffer in the presence or absence of the drugs of interest. 

Using a Zeiss 510 LSM confocal microscope, in turn, each petri dish was placed on the 

heated stage (37oC) and the myocytes were observed with a x20 objective lens. The 543-nm 

channel of the HeNe laser was used to stimulate TMRM. The use of a 585-nm long pass filter 

was used to collect TMRM fluorescence. Images were analysed using Zeiss software AIM 

2.8 (Carl Zeisss Ltd, UK).  

2.6.2 Data Analysis 

Upon laser stimulation of the TMRM, the time to depolarisation was recorded and 

represented by the time taken for an increase in light intensity (Figure 2.6). The second 

reading taken was time to the onset of hypercontracture as a result of opening of the mPTP 
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and the release of the contents of the mitochondria into the cytoplasm resulting in ATP 

depletion and eventual cell death.  

 

 

 

Figure 2.6 Graph indicating the intensity measured of a single cardiomyocyte over time 

Increase in intensity indicates the release of TMRM into the cardiomyocyte which in turn represents the start of 

depolarisation. After the plateau phase a decline in intensity represents the start of hypercontracture. 

 

2.7 Western Blotting 

2.7.1 Tissue Collection 

Hearts were excised and hung as described in section. Hearts were stabilised for 20 minutes 

followed by 35 minutes of regional ischaemia. The hearts were exposed to different lengths 

of reperfusion i.e. 5 minutes, 20 minutes or 120 minutes in the absence or presence of the 

drugs. A 5-minute reperfusion period was used to observe if an onset of exacerbation of 
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myocardial injury occurred in the presence of the drug. A 20-minute reperfusion period was 

selected in line with previous studies recording significant myocardial injury during in this 

time period (Kalogeris et al., 2012). Reperfusion for 120 minutes was used to observe if 

exacerbation of myocardial injury continued throughout exposure to the heart in the presence 

of the drug. Once the reperfusion time had elapsed, the heart was cut using a sterile scalpel 

and the left ventricle isolated. The ventricle was wrapped in silver foil and snap frozen in 

liquid nitrogen. The heart tissue was labelled and stored at    -80oC for future analysis. 
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2.7.2 Protein Extraction 

Approximately 60mg of the frozen samples were cut into smaller pieces and placed in 

labelled eppendorf tubes without allowing the samples to thaw. Each eppendorf tube 

contained 400µl of cold lysis buffer (100 mM NaCl, 10 mM (pH 7.6) Tris, 1 mM (pH 8) 

EDTA, 2 mM Sodium pyrophosphate, 2 mM sodium fluoride, 2 mM β-glycerophosphate, 0.1 

mg/ml PMSF, 0.1 µg/ml aprotinin, cocktail tablet, phosSTOP and leupeptin. The samples 

were homogenised using an IKA Labortechnik T25 homogeniser. Once homogenised the 

samples were spun at 11,000rpm at 4oC for 10 minutes. The supernatant was removed and 

aliquoted into newly labelled eppendorf tubes and the pellet discarded.  The supernatant 

protein concentrations were measured using spectrophotometry at 280nm using the 

NanoDrop system (NanoDrop Technology, Delaware, USA). 

100µl of the supernatants were aliquotted to a set of newly labelled eppendorffs and were 

diluted with 100µl of Sample Buffer (Tris 100mM (pH 6.8), DTT 200mM, SDS 2 %, 

Bromophenol blue 0.2 % and glycerol 20 %) followed by heating for 10 minutes at 90oC and 

finally centrifuged at 11,000rpm for 30 seconds. Samples were stored at -20oC for further 

use. 

2.7.3 Gel Electrophoresis 

Any kDa Tris-Glycine (4-15%) pre-cast gradient gels were purchased from Bio-Rad, UK. 

The use of gradient gels allows the migration of proteins until the decreasing pore size 

(determined by the increasing acrylamide concentration) obstructs any further migration. This 

allows a broad range of molecular weights to be separated from the sample. The use of 

gradient gels allows proteins with similar molecular weights to separate more advantageously 

when compared to fixed concentration gels (Walker, 2014). The gels were placed in the 

Mini-Protean III system and locked in place. The inner chamber of the 2 gels, were filled 
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with approximately 125ml running buffer (glycine 14.42 g/l, SDS 1.0 g/l, Tris 3.0 g/l) and the 

combs removed. 60µg of protein containing sample buffer was loaded into each well. The 

outside chamber of the system was filled with approximately 400ml running buffer. A dual 

coloured molecular marker and biotinylated ladder (Bio Rad, UK, Cell Signalling 

Technologies, UK) were assigned to 2 of the 12 available wells. The gel was run at 130V for 

1 hour 30 minutes using the PowerPac 300 (Bio-Rad, UK). 

2.7.4 Protein Transfer 

Following the gel electrophoresis stage, the gel casket was opened and the gel placed onto a 

Hybond-P Polyvinyl Difluoride (PVDF) membrane. The PVDF membrane was part of a 

Trans-Blot Turbo transfer pack (Bio-Rad, UK). Each pack contained Whatman filter paper 

and a PVDF membrane all pre soaked in transfer buffer (glycine 14.4g/L, tris 3g/L, 30% 

methanol). The Trans-Blot Turbo modules were assembled as per the manufactures’ 

instructions and transferred for 7 minutes at 1.3A, 25V. The Trans-Blot Turbo modules were 

disassembled and the polyacrylamide gels were discarded after being stained with Coomassie 

Blue to ensure successful transfer.  The PVDF membrane was cut to size and placed in 15ml 

Blocking buffer containing 5% Milk in Tris Buffered Saline with 1% Tween-20 (TBS/T) on 

an orbital shaker for 1 hour. 

2.7.5 Immunoblotting 

After blocking, membranes were washed for 5 minutes x3 in 15ml TBS/T. Membranes were 

incubated overnight on an orbital shaker, with antibody buffer (5% milk in TBS/T), at 4oC 

with the primary antibody of the protein of interest. The proteins of interest for this thesis 

were phosphorylated-Akt (Ser473), total Akt, phosphorylated p44/42 (Thr/202/Try204), total 

p44/42 (Cell Signalling Technologies, UK). 
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Following incubation, membranes were washed for 5 minutes x3 with TBST and incubated 

with secondary antibody (1:10000) with Anti-rabbit antibody HRP linked IgG and HRP 

linked anti-biotin, for 1 hour at room temperature. 3 final washes in TBST were done before 

analysing the membranes. 

 

2.7.6 Detection & Densitometry 

A 1:1 mix of Super Signal West Femto (Pierce Biotechnologies, UK), an enhanced 

chemiluminescent (ECL), was mixed in a foil covered falcon tube. 1ml of the ECL was 

carefully pipetted onto the surface of the membrane, placed on top of a single sheet of 

acetate, and spread evenly. Using the imaging machine, ChemiDoc XRS (Bio-Rad, UK), the 

membranes were exposed and chemiluminescence detected. Quantity One software (v4.5.2) 

was used to analyse the bands detected.  

2.7.7 Stripping and Re-Probing 

To determine the amount of total protein present on the membranes, membranes were 

stripped of the previous antibody by boiling in ddH2O for 5 minutes. The membranes were 

then blocked again for 1 hour in blocking buffer and further probed with the next desired 

antibody (Total Akt, ERK or GAPDH) and incubated overnight on an orbital shaker (Section 

Error! Reference source not found. & 2.7.6). The housekeeping gene, glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), was used throughout all western blot experiments to 

ensure equal protein loading and used as a normaliser. The use of housekeeping gene ensures 

that expression of the gene remains constant and independent of the experimental protocol 

allowing the date to be normalised against its value .  
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3 Chapter 3: The role of long and short acting badrenergic 

receptor agonists in myocardial ischaemia/reperfusion injury 

3.1 Introduction 

Asthma is a chronic inflammatory disease that affects the airways leading to airflow 

obstruction and bronchospasm affecting around 200-300 million people worldwide annually 

in addition to affecting 10% of the UK adult population (Sharpe et al., 2015, Netuveli et al., 

2005). The common symptoms of asthma are shortness of breath, wheezing and coughing 

and are routinely relieved by the administration of bronchodilators (Apter, 2015). Initially, 

acute exacerbations of asthma have initially been managed by use of a non-specific β1 and β2 

adrenergic receptor (bAR) agonist Isoproterenol (Shukla et al., 2015). The adverse cardiac 

side effects of Isoproterenol resulted in its withdrawal from the market in 1998 due to its use 

being associated with increased morbidity and mortality in asthmatic patients in particular 

increase in myocardial infarction (Kurland et al., 1979, Rona et al., 1963), (Pearce and 

Hensley, 1998, Shukla et al., 2015) . 

  

A number of studies identified that asthma patients with an increased risk of cardiovascular 

disease, pre-existing heart disease and patients with previous myocardial infarction or heart 

failure were susceptible to an increased risk of mortality when using bARs such as 

Isoproterenol to alleviate asthma symptoms (Krenek et al., 2009). 

 

Inhalation therapies of b2 adrenergic receptor (b2AR) agonists are the preferred method of 

administration due to the abundance of b2 adrenergic receptors available in the smooth 
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muscle of the trachea (30-40,000 per cell) as well as epithelial and endothelial cells of the 

lung (Larocca et al., 2011).  

 

Two types of bAR-agonists are available; short acting beta adrenergic receptor agonists 

(SABA), available since the 1960’s or long acting beta agonists (LABA), introduced in the 

1990’s (Beasley et al., 2009). Each of these categories of bAR-agonists alleviates the 

symptoms for a different duration of time by acting on b2ARs located in the bronchioles 

(Wasilewski et al., 2014).  

 

Acute asthma exacerbations are managed by the use of the short acting β2 adrenergic receptor 

agonists (β2ARs) such as Salbutamol (Ventolin™) that provides an almost instantaneous 

response that lasts between 1-3 hours (Chen et al., 2002, Giembycz and Newton, 2006). Long 

acting beta b2ARs, Salmeterol and Formoterol, are used in long-term management of 

respiratory symptoms in patients with recurrent moderate to severe asthma or chronic 

obstructive pulmonary disease (Ball et al., 1991, Beasley et al., 2010, Guhan et al., 2000). 

 

Non-selective bARs like Salbutamol and Isoproterenol are not solely restricted to affecting 

the respiratory system and are also known to have an affect on the cardiovascular system via 

activation of b1AR within the myocardium, leading to an increase in chronotropy and 

inotropy (Barbato, 2009). Numerous studies have identified that 60% of bARs in the 

myocardium belong to the b1 subtype and b2ARs making up for the majority of the rest of the 

receptors with a small proportion of the recently identified b3 and b4ARs (Gonzalez-Munoz 

et al., 2011).  
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Isoproterenol is a non-selective bAR agonist that activates both b1 and/or b2 adrenergic 

receptors, which in turn can affect both the cardiovascular and the respiratory systems 

(Strauss et al., 1986, Yoo et al., 2009). Salbutamol was marketed as the first b2AR selective 

agonist for the treatment of asthma as it has been shown to have a 29 times greater affinity 

for b2ARs than b1ARs (Chong et al., 2003). Furthermore, higher affinity targeted drugs such 

as Salmeterol and Formoterol and the SABA Salbutamol have also been introduced 

(Molenaar et al., 2007).  

 

Studies investigating the cardiac safety profile of bronchodilators have recently identified an 

increased risk in morbidity and mortality with the use of these drugs in patients with 

underlying cardiovascular diseases such as myocardial ischaemia, myocardial infarction or 

heart failure (Iribarren et al., 2012, Schanen et al., 2005).  

 

Coronary heart disease (CHD) affects approximately 2.3 million people within the UK and is 

responsible for over 74,000 deaths annually in addition to ischaemic heart disease (IHD) 

causing 12.9 million deaths in 2010 (Bellocchia et al., 2013, Lozano et al., 2012). More 

specifically Onufrak et al., (2009) suggest that adult patients with asthma have a 2-fold 

increase in the risk of developing CHD (Onufrak et al., 2008).   

 

Progressive atherosclerosis of the coronary arteries leads to narrowing of the coronary 

arteries leading to myocardial ischaemia where there is an insufficient delivery of oxygen and 

nutrients to meet demand (Ansley and Wang, 2013). The duration of the ischaemia can be as 

short as a few minutes or prolonged for several hours to cause sufficient damage (Hearse, 

1990). In ischaemic conditions, cardiac contractility is reduced, which in turn can lead to 
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decreased ventricular blood pressure and loss of diastolic motion of the heart (Mani, 2008, 

Shine, 1973, Javadov et al., 2014).  

 

Physiological changes have also been observed during ischaemia to the myocardium 

including ATP depletion, catabolite build up, oxygen depletion and carbon dioxide 

accumulation (Raedschelders et al., 2012, Ansley and Wang, 2013, Machado et al., 2009). 

Myocardial ischaemia can be reversed pharmacologically with the use of thrombolytics or 

mechanically with the use of coronary artery stenting, or in severe cases via coronary artery 

bypass grafting (CABG) (Garzon et al., 2002, Hoffman et al., 2003).  

 

Restoration of coronary blood flow to the ischaemic region is referred to as reperfusion 

(Yellon and Hausenloy, 2007). Reperfusion of the ischaemic myocardium is imperative to 

salvage reversibly damaged tissue but in it self can lead to cardiomyocyte death, a process 

termed as reperfusion injury (Hausenloy and Yellon, 2013). Reperfusion increases the 

production of ROS, calcium overload and free radicals, which impair myocardial function 

and induces cell death via apoptosis and necrosis and have been shown to involve premature 

opening of the mitochondrial permeability transition pore (mPTP) (Zorov et al., 2014). This 

process is known as ischaemia reperfusion (IR) injury (Bell and Yellon, 2011, Burniston et 

al., 2005, Raedschelders et al., 2012). The release of cytochrome c from within the 

mitochondria initiates a cascade leading to apoptosis, this phenomenon can been seen during 

reperfusion in contrast to ischaemia, which is thought to cause cell death by necrosis (Buja, 

2005, Freude et al., 2000).  

 

In light of recent evidence, the clinical use of b adrenergic receptor agonists has been 

strongly associated with an increased risk of ischaemic heart disease, heart failure and 
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myocardial infarction leading to premature death. There is an imperative need to assess the 

role of long and short acting b adrenergic receptor agonists in cardiac models of ischaemia 

reperfusion injury (Salpeter et al., 2004, Singh et al., 2008, Au et al., 2000). 

3.2 Aims 

The aims of the current study were to investigate the effects of long acting b adrenergic 

receptor agonists Salmeterol/Formoterol and short acting b adrenergic receptor agonists 

Isoproterenol/Salbutamol in both the isolated perfused Langendorff heart model of ischaemia 

reperfusion injury and the oxidative stress cardiac myocyte model to determine any 

detrimental effect they may have on the rat heart.  

3.3 Methods 

3.3.1 Langendorff protocol 

Briefly, Sprague-Dawley rats were sacrificed by cervical dislocation and cannulated to the 

Langendorff setup and perfused with KHB as described in section 2.3. Hearts were allowed 

to stabilise for 20 minutes followed by 35 minutes of regional ischaemia and 120 minutes of 

reperfusion. One minute before the onset of reperfusion hearts were randomly assigned to 

one of the following groups of drug treatment administered throughout reperfusion: a) 

Control (KHB) b) Isoproterenol (0.1µM, 0.5µM), c) Salmeterol (0.1µM), d) Formoterol 

(0.1µM, 0.5µM), e) Salbutamol (0.001µM-1µM), (Fig 1.1). Haemodynamic data were 

collected throughout the study. At the end of the experiment hearts underwent infarct to risk 

ratio analysis. Control data collected for infarct to risk ratio was used for all Langendorff 

experiments throughout this chapter.  
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3.3.2 Adult rat cardiac myocyte isolation 

Briefly, male Sprague Dawley rats were sacrificed by cervical dislocation and the hearts 

excised and cannulated onto modified Langendorff apparatus and perfused with a constant 

flow rate of 14ml/min as described in section 2.4. Hearts were perfused for 3-4 minutes with 

calcium free modified Krebs Heinsleit Buffer. The buffer was then switched and the hearts 

perfused with digestion buffer for 7 minutes. Isolated ventricular myocytes were used for the 

oxidative stress model (section 2.6) using confocal microscopy. Myocytes were treated with 

one of the following drugs: a) Control (KHB) b) Isoproterenol (0.1µM, 0.5µM), c) 

Salmeterol (0.1µM), d) Formoterol (0.5µM), e) Salbutamol (0.1µM) f) positive control FCCP 

(1 µM). 

3.3.3 Statistical analysis 

All haemodynamic data are presented as a mean of the stabilisation period ± SEM. 

Haemodynamic data was statistically analysed using a two-way analysis of variance 

ANOVA. Where statistical significance was found between groups a One-Way ANOVA with 

a Fishers Least Significance Test post hoc was used to determine significance at various time 

points. A one-way ANOVA with a Fishers Least Significance Test post hoc test was used to 

determine significance between infarct to risk ratio %, time to depolarisation and 

hypercontracture. A significance level of p<0.05 was considered to be statistically significant.  
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3.4 Results 

3.4.1 The role of Isoproterenol in myocardial ischaemia reperfusion injury. 

3.4.1.1 Haemodynamics 

Throughout the Langendorff study, left ventricular developed pressure, heart rate and 

coronary flow were monitored. Hearts were subjected to 35 minutes of ischaemia and 120 

minutes of reperfusion with Isoproterenol (0.1µM or 0.5µM) administered throughout the 

reperfusion period.  

 

A decrease in LVDP was observed after 5minutes of regional ischaemia in non-treated IR 

control hearts and Isoproterenol (0.1µM or 0.5µM) groups. Overall, there was no significant 

difference between the groups at any of the time points (p>0.05, Figure 3.1).  

 

Figure 3.1 The effects of Isoproterenol (IsoP) (0.1µM or 0.5µM) on left ventricular developed pressure in isolated rat 

hearts subjected to 35 minutes ischaemia and 120 minutes reperfusion. Isoproterenol (0.1µM or 0.5µM)  was 

administered throughout reperfusion. Data presented as mean ± SEM. n=6-8. 
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Heart rate for IR control values showed minimal fluctuation throughout the protocol with no 

statistical significance between either of the Isoproterenol groups (0.1µM or 0.5µM) at any 

time points when compared to time matched controls (Figure 3.2). 

 

Figure 3.2 The effects of Isoproterenol (IsoP) at 0.1µM or 0.5µM on heart rate in isolated rat hearts subjected to 

35 minutes ischaemia and 120 minutes reperfusion. Isoproterenol was administered at the onset and throughout 

reperfusion. Data presented as mean ±SEM. n=6-8 

 

Occlusion of the left coronary artery significantly reduced coronary flow after 5 minutes post 

occlusion in all groups. Administration of Isoproterenol (0.1µM or 0.5µM) throughout 

reperfusion had no significant effect on coronary flow compared to time matched controls 

(p>0.05, Figure 3.3). Interestingly, Isoproterenol (0.1µM or 0.5µM) treated hearts did 

decrease coronary flow when compared to time matched control hearts.   
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Figure 3.3 The effects of Isoproterenol (IsoP) (0.1µM or 0.5µM) on coronory flow in isolated rat hearts 

subjected to 35 minutes ischaemia and 120 minutes reperfusion. Isoproterenol (0.1µM or 0.5µM) was 

administered at the onset and throughout reperfusion. Data presented as mean ±SEM. n=6-8 

 

 

3.4.1.2 The effect of Isoproterenol on Infarct Size to Risk Ratio in isolated hearts 
subjected to ischaemia reperfusion injury. 

 

Hearts were subjected to 35 minutes of ischaemia and 120 minutes of reperfusion in the 

presence and absence of Isoproterenol (0.1µM or 0.5µM) throughout reperfusion followed by 

TTC staining to determine infarct size to risk ratio (%).   

 

Administration of Isoproterenol (0.5µM) throughout reperfusion significantly increased I/R 
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administered at reperfusion had no significant effect on I/R (%) when compared with IR 

control (45% ± 3% vs. 51% ± 2%, p>0.05, Figure 3.4).  

 

Figure 3.4 Infarct to risk ratio (%) in isolated prefused hearts subjected to 35 minutes of ischaemia and 120 minutes 

reperfusion in the presence and absences of Isoproterenol (0.1µM or 0.5µM) throughout the reperfusion period. Data 

presented as ±SEM. n=6-8. ***p<0.001 vs. normoxic, ###p<0.001 vs. IR, $$$p<0.001 vs. IsoP 0.1µM. 
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3.4.1.3 Effect of Isoproterenol on isolated cardiomyocytes in an Oxidative Stress Model 
 

Continuous oxidative stress to cardiomyocytes via laser stimulation of TMRM loaded 

cardiomyocytes causes the mitochondrial permeability transition (mPTP) to open (Falchi et 

al., 2005). Opening of the mPTP pore allows the contents of the mitochondria including the 

TMRM to leak into the cytosol of the cardiomyocyte causing an increase in fluorescence that 

can be detected and measured as the point of depolarisation. 

 

Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP 0.1µM) was used as a 

positive control for its mitochondrial membrane potential uncoupling properties (Saotome et 

al., 2005). Administration of FCCP (1µM) significantly decreased the time to depolarisation 

when compared to control (51 ± 7s vs. 234 ± 18s, p<0.001, Figure 3.5). Administration of 

FCCP (1µM) also significantly reduced the time to hypercontracture compared to the non-

treated control group (69 ± 7s vs. 663 ± 40s p<0.001, Figure 3.6). 

 

Cardiomyocytes subjected to laser stimulation in the presence of Isoproterenol (0.5µM) 

significantly decreased the time to depolarisation compared to the non-treated control group 

(179 ± 18s vs. 234 ± 18s control, p<0.001, Figure 3.5) and hypercontracture (442 ± 16s vs. 

663 ± 40s control, p<0.001, Figure 3.6). 
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Figure 3.5 The effects of Isoproterenol (0.5µM) or FCCP on time taken to depolarisation in isolated rat 

cardiomyocytes in a model of oxidative stress. Data presented as mean ±SEM n=6-8. **p<0.01 vs. control, 
###p<0.001 vs. Control. 
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Figure 3.6  The effects of Isoproterenol (0.5µM) or FCCP on time taken to hypercontracture in isolated rat 

cardiomyocytes in a model of oxidative stress. Data presented as Mean ±SEM n=6-8. ***p<0.001 vs. control, 
###p<0.001 vs. Control. 
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3.4.2 The role of Salmeterol & Formoterol in myocardial ischaemia reperfusion injury. 

3.4.2.1 Haemodynamics  

Isolated hearts were subjected to 35 minutes of ischaemia and 120 minutes of reperfusion in 

the presence and absence of the long acting beta agonists Salmeterol (0.1µM) or Formoterol 

(0.1µM or 0.5µM) throughout reperfusion. LVDP significantly improved with Formoterol 

(0.5µM) when compared to time matched control IR hearts 15 minutes post reperfusion (104 

± 17% vs. 79 ± 7%, p<0.05, Formoterol 0.1µM, 107 ± 7% vs. 79 ± 7%, p<0.05 at 15 minutes 

reperfusion, Formoterol 0.5µM, Figure 3.7). An elevated LVDP continued throughout 

reperfusion for both concentrations of Formoterol, with Formoterol (0.5µM) maintaining an 

elevated LVDP when compared to IR time matched control  (100 ± 7% vs. 68 ± 5%, p<0.01 

at 120 minutes reperfusion, Figure 3.7).  

 

In contrast to Formoterol (0.1µ or 0.5µM), Salmeterol (0.1µM) showed no significant change 

in LVDP when compared to IR time matched control hearts throughout reperfusion (81.9 ± 

7% vs. 79 ± 7%, p>0.05 at 15 minutes reperfusion, Figure 3.7). 
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Figure 3.7 The effect of LABA Formoterol (0.1µM or 0.5µM) or Salmeterol (0.1µM) on left ventricular developed 

pressure in isolated rat hearts subjected to 35 minutes ischaemia and 120 minutes reperfusion. Formoterol (0.1µM or 

0.5µM) or Salmeterol (0.1µM) were administered at the onset and throughout reperfusion. Data presented as mean 

±SEM. n=6-8 *p<0.05 vs I/R, **p<0.01 vs I/R. 

 

Administration of Salmeterol (0.1µM) or Formoterol (0.1µM or 0.5µM) throughout 

reperfusion significantly increased heart rate when compared to IR time matched control 

hearts as shown in Figure 3.8 (156 ± 13% vs. 68 ± 5%, p<0.001, Salmeterol 0.1µM)  (142 ± 

24% vs. 68 ± 5%, p<0.05, Formoterol 0.1µM) (146 ± 11% vs. 68 ± 5%, p<0.001, Formoterol 

0.5µM at 120 minutes reperfusion respectively, Figure 3.8).   
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Figure 3.8 The effect of Formoterol (0.1µM or 0.5µM) or Salmeterol (0.1µM) on heart rate in isolated rat 

hearts subjected to 35 minutes ischaemia and 120 minutes reperfusion. Formoterol (0.1µM or 0.5µM) or 

Salmeterol (0.1µM) was administered at the onset and throughout reperfusion. Data presented as mean 

±SEM. n=6-8. *p<0.05 vs. time matched heart control**p<0.01 vs.  time matched heart rate control, 

***p<0.001 vs. time matched heart rate control. 

 

Administration of Formoterol (0.1µM or 0.5µM) at reperfusion significantly increased 

coronary flow throughout the reperfusion when compared to IR control (115 ± 14% vs. 77 ± 

6%, p<0.01, Formoterol (0.1µM) at 120 minutes reperfusion) (112±17% vs. 77 ± 6%, 

p<0.05, Formoterol (0.5µM) respectively at 120minutes reperfusion, Figure 3.9).  

Administration of Salmeterol (0.1µM) showed no statistical change in coronary flow when 

compared to time matched control IR heart (p>0.05, Figure 3.9). 
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Figure 3.9 The effect of Formoterol (0.1µM or 0.5µM) or Salmeterol (0.1µM) on coronary flow in isolated rat hearts 

subjected to 35 minutes ischaemia and 120 minutes reperfusion.  Formoterol (0.1µM or 0.5µM) or Salmeterol 

(0.1µM) was administered at the onset and throughout reperfusion. Data presented as mean ±SEM. n=6-8. *p<0.05 

vs. time matched control**p<0.01 vs.  time matched control. 

 

3.4.2.2 The effect of Salmeterol or Formoterol on Infarct to Risk Ratio 
Hearts were subjected to 35 minutes of ischaemia and 120 minutes of reperfusion. In the 

presence of Salmeterol (0.1µM or 1µM) or Formoterol (0.1µM or 0.5µM) no significant 

changes in infarct to risk ratio was observed  (p>0.05, Figure 3.10).  

A significant increase in I/R was recorded in IR hearts when compared to normoxic hearts 

(51 ± 2% vs. 6 ± 1%, p<0.001, Figure 3.10). 
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Figure 3.10 Infarct to risk ratio (%) in isolated prefused hearts subjected to 35 minutes of ischaemia and 120 minutes 

reperfusion in the presence and absences of Salmeterol (0.1µM or 0.5µM) & Formoterol (0.1µM or 0.5µM) 

throughout the reperfusion period. Data presented as ±SEM. n=6-8. ***p<0.001 vs. normoxic.  

 

3.4.2.3 The effect of Formoterol and Salmeterol on isolated cardiomyocytes in an 
Oxidative Stress Model 

Isolated cardiomyocytes were pre-treated with TMRM and subjected to laser stimulation 

leading to ROS generation resulting in mitochondrial depolarisation and hypercontracture. 

Pre-treatment with Salmeterol (0.1µM) had no significant effect on the time to depolarisation 

(228 ± 5s vs. 255 ± 15s, p>0.05, Figure 3.11). 
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previous experiment. Normoxic and control IR data included has been used from previous 

experiment. 

 

Figure 3.11 The effects of Salmeterol (0.1µM), Formoterol (0.5µM) and FCCP (0.1µM) on time taken to 

hypercontracture in isolated rat cardiomyocytes in a model of oxidative stress. Data presented as mean ±SEM. n=8. 
***p<0.001 vs. control, vs. SalM 0.1µM, vs. Form 0.5µM. 

 

Pre-incubation of cardiomyocytes with Salmeterol (0.1µM) significantly decreased time to 

hypercontracture compared to non-treated control (544 ± 12 vs. 663 ± 40s, p<0.001, Figure 

3.12). Administration of Formoterol (0.5µM) also significantly decreased time taken to the 

onset of hypercontracture when compared to non-treated control (499 ± 20s vs. 663 ±40s, 

p<0.001, Figure 3.12).  
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Figure 3.12 The effects of Salmeterol (0.1µM), Formoterol (0.5µM) and FCCP (0.1µM) on time taken to 

hypercontracture in isolated rat cardiomyocytes in a model of oxidative stress.  Data presented as mean ± SEM. n=8. 
***p<0.001 vs. control, *p<0.05 vs. control, ###p<0.001 vs. FCCP.  

 

3.4.3 The role of Salbutamol on myocardial ischaemia reperfusion injury. 

3.4.3.1 Haemodynamics 

Hearts were subjected to 35 minutes ischaemia and 120 minutes of reperfusion where 

Salbutamol was administered throughout the reperfusion period. Administration of 

Salbutamol (0.001µM – 1µM) was shown to have no effect on LVDP at all time points post 

reperfusion when compared to IR control hearts (p>0.05, Figure 3.13). 
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Figure 3.13 The effect of Salbutamol (0.001-1µM) on left ventricular developed pressure in isolated rat hearts subjected 

to 35 minutes ischaemia and 120 minutes reperfusion. Salbutamol was administered at the onset and throughout 

reperfusion. Data presented as mean ±SEM. n=6-8. 

 

Administration of Salbutamol (0.3µM and 1µM) throughout reperfusion significantly 

increased heart rate when compared to IR time matched controls (109±3% vs. 92 ± 6%, 

p<0.05, 0.3µM Salbutamol at 120 minutes reperfusion) (132 ± 7% vs. 92 ± 6%, p<0.001, 

1µM Salbutamol at 120 minutes reperfusion). Interestingly, there was no statistical 

significance between 1µM or 0.3µM concentrations of Salbutamol, however at the onset of 

reperfusion, the highest Salbutamol concentration (1µM) recorded a 30% higher heart rate 

than that recorded by Salbutamol 0.3µM (132 ± 12% vs. 95 ± 3%, 1µM, 107±7 vs. 95±3%, 

0.3µM at 15 minutes reperfusion, p>0.05 Figure 3.14). 
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Figure 3.14 The effect of Salbutamol (0.001-1µM) on heart rate in isolated rat hearts subjected to 35 minutes 

ischaemia and 120 minutes reperfusion. Salbutamol was administered at the onset and throughout reperfusion. Mean 

±SEM. n=6-8. *p<0.05 vs. IR control, ***p<0.001 vs. IR control.  

 

Salbutamol (0.001µM- 0.1µM) had no significant effect on coronary flow when compared 

with IR control hearts (p>0.05, Figure 3.15), interestingly, a noticeable decline in coronary 

flow was observed with the highest concentration of Salbutamol (1µM) in comparison to all 

other concentrations and IR control values at 120 min of reperfusion (67 ± 4% vs. 77 ± 4% at 

120 minutes reperfusion, Figure 3.15). 
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Figure 3.15 The effect of Salbutamol (0.001-1µM) on coronary flow inisolated rat hearts subjected to 35 minutes 

ischaemia and 120 minutes reperfusion. Salbutamol (0.001-1µM) was administered at the onset and throughout 

reperfusion. Data presented as mean ±SEM. n=6-8 

 

3.4.3.2 The effect of Salbutamol (0.001-1µM) on Infarct to Risk Ratio in isolated hearts 
subjected to ischaemia reperfusion injury  

 

Salbutamol (0.001µM, 0.003µM, 0.01µM) showed no statistical change in I/R when 

compared to IR control hearts (Figure 3.16). In contrast Salbutamol at higher concentrations 

(0.03µM, 0.1µM, 0.3µM and 1µM) significantly increased I/R ratio when compared to IR 

control hearts (62 ± 3% vs. 51 ± 2%, p<0.01, 0.03µM) (76 ± 4 % vs. 51 ± 2%, p<0.001, 

0.1µM) (77 ± 2% vs. 51 ± 2%, p<0.001, 0.3µM) (78 ± 1% 51 ± 2%, p<0.001, 1µM, Figure 

3.16).  
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Figure 3.16 Infarct to risk ratio (%) in isolated prefused hearts subjected to 35 minutes of ischaemia and 120 minutes 

reperfusion in the presence and absences of Salbutamol (0.001µM- 1µM) throughout the reperfusion period. Data 

presented as ±SEM. n=6-8. ***p<0.001 vs. normoxic, ##p<0.01 vs. IR control, ###p<0.001 vs. IR control. 

 

3.4.3.3 The effect of Salbutamol on isolated cardiomyocytes in an Oxidative Stress Model 
 

Isolated cardiomyocytes were pre-treated with TMRM and subjected to laser stimulation 

leading to ROS generation, mitochondrial depolarisation and hypercontracture. Pre-treatment 

with Salbutamol (0.1µM) had no significant effect on the time to depolarisation (226 ± 14s vs 

255 ± 13s, p>0.05, Figure 3.17). Normoxic and control IR data included has been used from 

previous experiment. 
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Figure 3.17 The effects of Salbutamol (0.1µM) and FCCP on time taken to depolarisation in isolated rat 

cardiomyocytes in a model of oxidative stress. Data presented as mean ±SEM. n=6-8. ***p<0.001 vs. Control), 
###p<0.001 vs. Control.  

 

Salbutamol (0.1µM) significantly decreased the time to hypercontracture in isolated 

cardiomyocytes when compared to non-treated control groups (524 ± 23s vs. 663 ± 40s, 

p<0.001, Figure 3.18) As a positive control FCCP caused a significant decrease in time to 

hypercontracture compared with non-treated control cardiomyocytes (67 ± 7s vs. 663 ± 40s, 

p<0.001, Figure 3.18). 
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Figure 3.18 The effects of Salbutamol (0.1µM) FCCP (1µM) on time taken to hypercontracture in isolated rat 

cardiomyocytes in a model of oxidative stress. n=6-8. ***p<0.001 vs. control, ###p<0.001 vs FCCP. Data presented as 

mean ± SEM. n=6-8.  
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3.5 Discussion 
 

The use of b adrenergic receptor agonists has recently been an area of controversy with an 

increase in morbidity and mortality reported in asthma patients, in particular patients with 

underlying cardiovascular diseases (Machado et al., 2009). Singh and colleagues (2008) were 

one of the earliest groups to identify an increase in MI and mortalities with a meta analysis of 

randomised controlled tests involving patients with underlying heart conditions and severe 

cases of COPD and asthma (Singh et al., 2008). Conclusions drawn from the meta-analysis 

were that bronchodilators used for long periods of time (30 days) did increase events of MI, 

stroke and death (Ortega and Peters, 2010, Wijesinghe et al., 2009, Cates et al., 2013).   

 

The aim of the current chapter was to examine the role of short and long acting b adrenergic 

receptor agonists in a myocardial model of ischaemia reperfusion injury. This study identifies 

the chronotropic effects caused by b agonists Salmeterol, Formoterol and Salbutamol at the 

onset of reperfusion. Further to this, significant increases in infarct to risk ratio with 

Salbutamol and Isoproterenol were also recorded and a potential link to an effect of bARs on 

the mPTP pore in an oxidative stress model.  

 

The administration of Isoproterenol was shown by first shown by Bloom and Davies (1972) 

induce MI and initiate a Ca2+ overload in rat hearts resulting in ATP depletion (Krenek et al., 

2009, Senthil et al., 2007). Isoproterenol as a partial bAR agonist is non selective to b1ARs or 

b2ARs (Kapel'ko et al., 2014). Previous studies have shown Isoproterenol administration to 

cause myocardial ischaemia in normoxic hearts when administered intravenously into rats 

(Wexler and Greenberg, 1978). Administering Isoproterenol (0.5µM) at the onset of 

reperfusion, a significant increase in infarct to risk ratio was observed (Figure 3.4). With 
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evidence from previous studies demonstrating the effects of Isoproterenol causing MI and 

ischaemic damage in normoxic conditions, we can further develop these findings with 

Isoproterenol exacerbating myocardial injury when administered at reperfusion (Palfi et al., 

2005). Communal and colleagues showed that blockade of bARs in rat cardiomyocytes with 

Propranolol, a non-selective beta adrenergic receptor blocker, or blockade of PKA and 

voltage dependent calcium channels, abolished the adverse effects of Isoproterenol 

(Communal et al., 1998). With evidence of abolishing the initiation of Isoproterenol induced 

apoptosis via bAR blockade, we can purport in our results with Isoproterenol in the 

reperfusion injury model, exacerbation of myocardial injury is a result of Isoproterenol 

induced apoptosis via bAR activation.  

 

The activation of b1ARs in particular has been shown to be pro-apoptotic in mouse and rat 

heart models further reinforced with specific blocking of the Gi subunit of the bARs with 

pertussis toxin (Tong et al., 2005). A higher ratio of b1ARs:b2AR within the heart allows the 

high affinity of Isoproterenol to bind more readily to the available b1ARs. Interestingly, 

reports of chronic activation of bARs has been linked to pro-apoptotic tendencies (Zhu et al., 

2003). Activation of b1ARs activates the Gs subunit and the cAMP/protein kinase A (PKA) 

signalling pathway. Activation of this pathway phosphorylates target proteins further down 

the signalling cascade including L-type calcium channels, phospholamban and troponin I 

(Steinberg, 1999). The use of the specific PKA inhibitor, KT5720, abolished apoptotic cell 

death in cardiomyocytes, induced by phenylephrine an Isoproterenol isoform, highlighting an 

involvement with PKA in cardiomyocyte apoptosis (Perez-Schindler et al., 2011, Iwai-Kanai 

et al., 1999).  
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The reduction in time of depolarisation and hypercontracture with Isoproterenol, as seen in 

Figure 3.5 & Figure 3.6, can be linked to Isoproterenol’s metabolites in particular the quinone 

metabolites (Rathore et al., 2000). Isoproterenol as a catecholamine is oxidated, producing 

ROS stimulating lipid peroxidation (Ansley and Wang, 2013). This particular increase in 

lipid peroxidation is another source of ROS production and was demonstrated in rat heart 

tissue by measurement of malonyldialdehyde in addition to measurement of antioxidant 

enzymes such as superoxide dismutase (Rathore et al., 1998). Initial dosing of rats with 

Isoproterenol reduced malonyldildehyde and was observed to cause cardiac hypertrophy, a 

suggested ‘defence’ mechanism to increased ROS, however continued Isoproterenol 

administration caused an increase in malonyldildehyde and decreased antioxidant enzymes, 

with the failure of the antioxidant system being culpable for the damaging effects of ROS in 

the heart (Kirshenbaum and Singal, 1992, Kirshenbaum et al., 1995, Rathore et al., 1998).  

 

During IR O2
�- radicals increase damage to the mitochondrial electron transport system in 

addition to other sources of ROS such as cytochrome p450 and production of xanthine 

oxidase (Raedschelders et al., 2012). In addition to the degradation of TMRM to produce 

ROS, a possible further source of ROS may be provided from the electron transport chain as 

a result of an increase in xanthine oxidase. We observed Isoproterenol to significantly 

decrease (p<0.001) the time taken to depolarisation and hypercontracture in the oxidative 

stress model. These findings allow us to purport that in the presence of Isoproterenol an 

increase in oxidative stress is occurring and may be causing further stress on the 

mitochondria of cardiomyocytes. Previous studies have shown that increased ROS act on the 

mPTP leading to premature opening and inducing apoptosis (Ansley and Wang, 2013, 

Andersson et al., 2011, Halestrap and Richardson, 2015). These studies provide future 

direction to investigate Isoproterenol’s involvement directly on the mPTP. 
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The long acting b2 adrenergic receptor agonists Formoterol and Salmeterol demonstrated 

significant changes in some haemodynamic data. Both Formoterol (0.5µM) and Salmeterol 

(0.1µM) increased heart rate at the onset of reperfusion. Formoterol (0.1µM and 0.5µM) also 

statistically increased LVDP and coronary flow, however Salmeterol (0.1µM) showed no 

change in coronary flow (Figure 3.9). 

 

All positive inotropes increase cardiac output but are not correlated to heart rate, however, 

positive inotropes do increase myocardial oxygen demand and consumption, which could be 

detrimental to patients with an existing ischaemic heart (Watson et al., 2013). Increase in 

coronary flow resistance has been shown in human subjects as a result of decreased 

vasodilatory effects on the smooth muscle surrounding arteries, which may explain the 

elevated coronary flow readings shown in our studies seen with Formoterol (0.1µM and 

0.5µM) (Guhan et al., 2000). Watson and colleagues (2013) experiments in the Langendorff 

model used a combination of the b1AR blocker atenolol and b2AR Formoterol and 

demonstrated similar findings to ours in addition to increase HR as atenolol wore off (Watson 

et al., 2013).  

 

In contrast to normoxic experiments carried out (data not shown), in the presence of 

Formoterol, heart rate was elevated higher at the onset of reperfusion in the Langendorff 

model in comparison to an elevated heart rate during normoxic naive conditions. This further 

increase in heart rate still remains unclear as shown in a study in healthy human subjects by 

Guhan and colleagues (2000) demonstrating elevated heart rates with Formoterol at 4 times 

the recommended dose (Guhan et al., 2000). With the exception of Levosalbutamol, all other 

b agonists exist in a racemic mixture (equal R & S enantiomers) (Handley et al., 2002). 
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Handley and colleagues (2002) through radioligand displacement at b adrenoceptors 

determined the affinity of Formoterol to be far greater for b2ARs than b1ARs and also 

observed increased heart rate in adult rat hearts (Handley et al., 2002, Bremner et al., 1993)  

 

Administration of b agonists are associated with increases in heart rate with stimulation of 

b1ARs, but an increase was observed with Formoterol which acts as a specific b2AR agonist, 

due to its 200 fold higher affinity for b2ARs  (Guhan et al., 2000, Handley et al., 2002). 

Formoterol (0.5µM) demonstrated a significant increase in heart rate linked to elevated 

coronary flow, which was investigated by Watson and colleagues in Wistar rats in a 

Langendorff model by administering Atenolol, a b1AR blocker (Watson et al., 2013). This 

study supported our findings with Formoterol affecting heart rate and coronary flow with a 

secondary effect on LVDP and further confirmed the affect was via b2AR activation with the 

blockade of b1ARs (Watson et al., 2013). In support of our findings, other groups have also 

determined Formoterol (and Salmeterol) to effect the QTc interval in human subjects in a 

dose dependent manner causing tachycardia (Viskin, 1999a). The observed positive effects 

we have demonstrated with Salmeterol and Formoterol can be associated strongly with the 

activation of GPCR’s and the release of calcium. Upon b2AR activation by Formoterol or 

Salmeterol, activation of the cAMP/PKA signalling cascade results in activation of L-type 

Calcium channels. Increased levels of cAMP initiate the start of a signalling cascade initiated 

by Protein Kinase A (PKA). cAMP bound to PKA phosphorylates intracellular proteins such 

as phospholamban, sarcoplasmic reticulum, calmodulin, ryanodine receptors (RyR), 

sarcoplasmic reticulum ATPase and L-type calcium channels increasing levels of cytosolic 

calcium (Yoo et al., 2009, Hudecova et al., 2013, Zhu et al., 2005). Increased concentration 

of calcium as a result of the depolarisation signal spreading through the t-tubules releasing 
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calcium into the sarcoplasmic reticulum. This increased calcium initiates cardiomyocyte 

contraction when bound to troponin.  

Like Formoterol, Salmeterol has been shown to be a full agonist, however is slower acting 

than Formoterol in the Langendorff rat heart model (Watson et al., 2013, Guhan et al., 2000). 

Salmeterol’s effect on heart rate has been shown to affect the QTc interval in humans 

indicating its interaction with bARs and hearts being susceptible to arrhythmias such as 

tachycardia (Guhan et al., 2000, Handley et al., 2002). It has been suggested that Salmeterol’s 

(b2AR agonist) structure makes it less effective on the bARs compared to Formoterol 

resulting in a much slower effect on haemodynamics due to it being more lipophilic than 

Formoterol (Anderson, 1993, Smyth et al., 1993).  

 

Normoxic and control IR data were used from the previous experiment and could be 

considered a limiting factor. Although this can be concerning when using the same control 

data, the use of control infarct to risk data is widely accepted from other labs within our field 

(Bell et al., 2011). In addition, as the protocol is examining the area at risk with infarcted 

tissue, no further cellular activity will occur to affect the results. For this reason, we are able 

to directly compare hearts treated with drug groups to this data throughout the thesis. We 

observed no exacerbation of infarct to risk ratio in the Langendorff model in the presence of 

Salmeterol when compared to IR control hearts. This suggests that activation of the b2AR 

does not have a link to apoptotic cell death and that Salmeterol has no damaging effects, 

which was seen with the specific b2AR agonist Salbutamol which will be discussed later. 

Further to this finding, b2ARs link to the Gi subunit has been suggested to be anti-apoptotic, 

however there was no further evidence to suggest Salmeterol reduced the I/R injury when 

compared to IR control hearts (Figure 3.10). 
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Our studies showed that Salbutamol (1µM) showed a chronotropic effect due to its action on 

bARs, however clarity is needed to determine whether the damaging effects are due to the 

activation of b1 or b2ARs which will be discussed in Chapter 4. Other studies in horses 

showed increases in cardiac output with nebulisation of horses with Salbutamol thus 

supporting Salbutamol’s inotropic and chronotropic effects (M. Patschova, 2010).  

 

Interestingly, a clinical study by (Gao Smith et al., 2012) used intravenous Salbutamol to 

investigate the toxicity, however the trial was terminated due to a high number of mortalities 

recorded with administration of Salbutamol in the non-placebo groups. The study failed to 

determine any cellular mechanisms or rationale of Salbutamol induced toxicity resulting in 

mortalities (Gao Smith et al., 2012). The concentration of Salbutamol administered to 

patients was 10µM in a group of 161 patients that were randomly assigned the drug. It was at 

this concentration the study was abandoned due to the high rate of mortalities, with 

suggestions of Salbutamol toxicity at this particular concentration (Gao Smith et al., 2012). In 

relation to their findings, we have demonstrated at concentrations lower than 10µM, there is 

an exacerbation of I/R ratio when compared to IR hearts. Au and colleagues (2000) analysed 

several studies associated with b-agonists and myocardial infarction and angina. Their 

findings could not suggest a direct effect of b-agonists to cause myocardial ischaemia, 

however a link with the use of b-agonists demonstrated to cause a seven fold increase in 

patients with underlying cardiovascular disease to develop myocardial infarction (Au et al., 

2002, Au et al., 2000). 
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In normoxic conditions, Salbutamol (0.1µM) did not cause any significant damage to the 

heart in the Langendorff model (data not shown). However, the inotropic effect of 

Salbutamol was observed and similar to the HR haemodynamic data observed in hearts 

treated in a reperfusion injury model. In isolated perfused hearts subjected to 35 minutes of 

ischaemia and 120 minutes of reperfusion, administration of Salbutamol (0.03µM-1µM) 

throughout reperfusion, significantly increased infarct size to risk ratio (p<0.001), with an 

EC50 value of 38.6nM.  Our calculated EC50 value is below recorded human plasma 

concentrations of Salbutamol that have been shown to be above 0.1µM when administered 

via metered dose inhalers (Rodrigo et al., 1996). A Salbutamol concentration of 0.1µM was 

selected as the standard concentration for the remainder of experiments throughout this thesis 

as it was the lowest concentration at which the maximum amount of myocardial damage was 

recorded in the Langendorff model and well within the limits of other studies (Gao Smith et 

al., 2012, Rodrigo et al., 1996). Patients that have been hospitalised presenting with angina or 

myocardial infarction were found to be significantly more likely to have previously been 

administered a meter-dosed inhaler up to 3 months prior to their admission, suggesting a 

potential link between bronchodilators, angina and myocardial infarction (Au et al., 2000).  

 

Our study demonstrated Salbutamol, as a b2AR agonist, to increase myocardial injury in the 

model of ischaemia reperfusion; however, we have also demonstrated that other SABA b2AR 

agonists show no increase in infarct to risk ratio. A potential explanation for this varying 

effect may be linked to the dual pathway signalling capability of b2ARs switching between Gi 

and Gs subunits of GPCRs. The involvement of both b1AR and b2ARs in the presence of 

Salbutamol will be discussed in detail in Chapters 5 and 6.  
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Administration of Salbutamol, Formoterol and Salmeterol were seen to have no effect on the 

time taken to depolarisation, but were seen to significantly decrease the time taken to 

hypercontracture in comparison to non-treated control group. This increase in 

hypercontracture can strongly be linked to increased calcium released as a result of b2AR 

agonist activation of the GPCRs as described earlier. It is worth noting that time taken to 

depolarisation was reduced, but not significantly. The mPTP has been shown to remain 

closed in ischaemic conditions and open during reperfusion, when levels of reactive oxygen 

species and calcium are increasing initiating release of pro-apoptotic proteins from within the 

mitochondria (Husainy et al., 2012). The sarcoplasmic reticulum acts as a main source of 

calcium required for excitation contraction coupling in cardiac muscle via calcium induced 

calcium release involving RyR receptors (Baumgartner et al., 2009). The structure of the 

mPTP still remains an enigma but strong evidence supports that several components are 

responsible for forming the mPTP; voltage dependant anion channel (VDAC) (Vyssokikh 

and Brdiczka, 2004)adenine nucleotide translocator (ANT) (Zamzami and Kroemer, 2001) 

and cyclophilin D (Baines and Molkentin, 2005). Cross talk between β1AR and β2AR 

receptors affecting the mitochondrial death pathway is a potential route for this apoptotic 

effect (Fajardo et al., 2011) bAR activation has been a target of investigation for cell 

survival, however in relation to premature opening of the mPTP, this can be linked to the 

activation of the Gs subunit and increase in calcium release, specifically the phosphorylation 

of L-type Ca2+ channels and phospholamban increasing the SR uptake of Ca2+ via SR ATPase 

(Cros and Brette, 2013). The mode of action of calcium specifically on the mPTP is still not 

clear, however the effect of calcium is suggested to act specifically on the cyclophilin D and 

VDAC components of the pore (Basso et al., 2005), (Schlattner et al., 2001). 
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The distribution of bARs within cardiomyocytes are influential and key to interaction with 

ligands, with β1ARs found more readily available at the surface of cardiomyocytes (Nikolaev 

et al., 2010), upon stimulation they can activate the adenylyl cyclase/cAMP/PKA pathway 

that in turn can lead to apoptosis (Dakka et al., 1997). In contrast the distribution of β2ARs, 

which have been described to be anti-apoptotic, are found deep within the t-tubules of the 

cardiomyocytes making them less favourable for ligand interaction in the presence of high 

affinity drugs(Lyon et al., 2009).  Cardioprotection has been seen within cardiomyocytes in a 

scenario of preconditioning and is mediated by β2AR – Gi activation. This occurs in a similar 

way to β1AR activation where by β2AR couples to the Gs -subunit leading to PKA activation, 

however in this case PKA activation further phosphorylates the β2AR causing it to shift its 

coupling from Gs to Gi (Tong et al., 2005). Nikolaev and colleagues (2010) showed that β2-

ARs in myocytes isolated from rats with a failing heart, redistribute from deep within the t-

tubules onto the crest of the cell. They observed cAMP signals in the cell crest and along the 

t-tubules, which are identical to signals upon β1AR activation, providing a possible 

explanation for cell apoptosis via b2AR activation, when in normal conditions, activation of 

β2ARs protects the myocytes from stress/damage such as that of ischaemia/reperfusion 

injury.  

 

The findings discussed in this chapter demonstrate that the b2AR agonists Isoproterenol, 

Formoterol, Salmeterol and Salbutamol can induce stress to the myocardium affecting the 

cardiomyocytes, however how they influence and affect the mPTP still remains unclear in 

addition to the activation of specific b receptors. With the specific b2AR agonists, their 

signalling pathways are linked to an increase in calcium via Gs stimulation irrespective of the 

‘favourable’ Gi coupled subunit resulting in positive chronotropic and inotropic effects. Little 
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is known about the detrimental effects of Salbutamol in both an oxidative stress model and 

Langendorff model in addition to signalling proteins. The suggestion for its non-selective 

behaviour may be the cause of its toxicity. Further work is needed to investigate the toxic 

effects of Salbutamol discussed in this chapter through antagonising the b1 and b2 adrenergic 

receptors in addition to investigating the cellular pathways that may be involved causing the 

increase in injury to the myocardium.  
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4 Chapter 4: The effect of short acting badrenergic receptor 

agonist Salbutamol in myocardial ischaemia/reperfusion 

injury. 

4.1 Introduction 

Data presented in Chapter 3 investigated the effects of long acting b-adrenergic receptor 

agonists Formoterol and Salmeterol, and short long acting b-adrenergic receptor agonists 

Isoproterenol and Salbutamol on isolated perfused rat hearts exposed to ischaemia 

reperfusion and isolated cardiomyocytes in the model of oxidative stress. Salbutamol in 

particular demonstrated a significant increase in infarction and cell death in addition to 

significantly decreasing the time taken to hypercontracture in the oxidative stress model. In 

contrast, no significant changes were observed with the other bronchodilators used. In this 

chapter the effects of Salbutamol on cell signalling proteins and cell viability are investigated 

by means of MTT analysis, Western blotting and flow cytometry.  

 

Salbutamol is widely used in the treatment of reactive airway disease such as asthma 

(Gonzalez-Munoz et al., 2011). Salbutamol’s structural design allows it as a ligand to 

specifically target b2ARs and initiate bronchodilation via activation of the G protein coupled 

receptor pathway involving adenylyl cyclase/cAMP pathway via the activation of the coupled 

Gi subunit (Anderson, 2006, Bhattacharya et al., 2010). b2ARs located on the surface of 

trachea and bronchioles are easily activated and targeted upon inhalation of Salbutamol thus 

making it an established treatment for respiratory disease (Selroos, 2014). Distribution of 

b2ARs are not restricted to the lining of the trachea and bronchioles but have also been 

acknowledged in the heart co-existing with b1ARs with a distribution of 56% b1ARs to 44% 
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b2ARs identified specifically within the rat heart (Xiao and Lakatta, 1993). b2ARs have 

shown to be even more localised within caveolae within cardiomyocytes, located within t-

tubules of the cardiomyocyte (Cros and Brette, 2013, Calaghan and White, 2006).  

 

During conditions of ischaemia, an increased demand on cardiomyocytes occurs as a result of 

an insufficient supply of blood and oxygen due to occlusion of the coronary arteries. The 

development of myocardial ischaemia as a result of the coronary occlusion causes an 

increased demand on neighbouring cardiomyocytes to compensate for a reduction in cardiac 

metabolism and a decrease in energy via ATP depletion resulting in cardiomyocyte cell death 

(Javadov et al., 2014). Triggers such as necrosis of cardiomyocytes initiate tissue repair via 

leakage of cytokines such as TGF-b1 leading to remodelling of ventricles in order to 

maintain cardiac output (Desmouliere et al., 1993, Dorn, 2009). During conditions of MI and 

congestive heart failure (CHF) b2ARs have been shown to relocate to the surface of 

cardiomyocytes with a reduction of up to 50% of b1ARs by interaction with the b1AR kinase 

(b1ARK) causing desensitisation of the b1ARs via direct phosphorylation of the b1AR (Cross 

et al., 1999, Ungerer et al., 1993, Coughlin et al., 1995). 

 

Salbutamol at high concentrations has been linked to cause hypertrophy, a symptom that 

occurs during (and follows) MI and dilated cardiomyopathy in addition to increased reports 

of mortality when Salbutamol was administered intravenously. However results were unclear 

as to how Salbutamol directly contributed to the deaths, the data only shows the increase in 

mortality in groups administered with Salbutamol. (Rubin et al., 1983, Natale et al., 1999, 

Giallauria et al., 2008, Spitzer et al., 1992, Au et al., 2000). Although Salbutamol has positive 

chronotropic effects on the heart via activation of b1ARs, an understanding as to its effect on 
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the heart during IR is crucial having already investigated and shown its detrimental effects on 

infarct to risk ratio, haemodynamics and effects on the opening of the mPTP (Chapter 3). 

 

Several cell signalling pathways have been identified that are activated during IR that are 

responsible for the onset of cell death in addition to cell survival signalling. These pathways 

include PI3K/Akt/Bad, MEK1/2/Erk 1/2 and JNK 1/2, the first 2 being linked with 

cytoprotection and major proteins involved in the Reperfusion Injury Salvage Kinase 

pathway (RISK) (Armstrong, 2004, Hausenloy and Yellon, 2004). Involvement of 

phosphorylated Akt can be regulatory of apoptosis, with an up regulation of Akt suppressing 

apoptosis via inhibition of its pro-apoptotic targets such as Bad. Prolonged activation or over 

expression of Akt however can also induce apoptosis. Akt activation initiated by stresses 

such as IR, allows phosphorylation at one of its two phosphorylation sites, serine 473 or 

threonine 308 (Cross et al., 1995). Mockridge and colleagues (2000) demonstrated that Akt 

could be dually phosphorylated during IR. With several isoforms of Akt identified, Akt1 is of 

particular interest due to its involvement with cardiomyocytes and its abundance within the 

heart (Matsui and Rosenzweig, 2005, Mullonkal and Toledo-Pereyra, 2007). Phosphorylation 

of Akt1 inhibits apoptosis due to Akt inhibiting pro-apoptotic proteins i.e. Bad, a member of 

the Bcl-2 family, caspase- 9 and c-Raf (Cardone et al., 1998, Hausenloy et al., 2005, Hussain 

et al., 2013). Additionally IR has also shown to activate signalling cascades linked to MAPKs 

such as Erk1/2 and the stress activated proteins JNK/SAPK (Armstrong, 2004, Mockridge et 

al., 2000) These 2 signalling proteins are initiated with stresses such as ROS produced in 

conditions of IR. Similar to Akt, Erk and JNK have different isoforms, which can influence 

different pathways independently. Activation of bARs by bronchodilators as those mentioned 

in previous chapters has been shown to supress JNK activity, in turn promoting cell survival 

(Anderson et al., 2014).   
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The involvement of caspases is an important factor to examine due to their involvement in 

initiating apoptosis; caspase 3 in particular is shown to be involved with cardiomyocytes 

during injury and inflammatory responses (Grunenfelder et al., 2001, Hussain et al., 2013). 

Activation of caspase 3 cleaves Bcl-2 proteins promoting release of cytochrome c, a pro-

apopototic protein triggering apoptosis (Kirsch et al., 1999).  

Investigating the survival and stress signalling proteins allows an indication of the possible 

pathways involved in Salbutamol mediated injury during conditions of IR. 

4.2 Aims 

The aims of this study were to determine the cell signalling pathways associated with 

Salbutamol induced myocardial injury including the signalling proteins p-Akt (Ser473), p-

Erk(Thr202/Tyr204) and cleaved caspase 3. Focussing on the survival proteins, Akt and Erk 

will indicate initially any stress caused by Salbutamol. The cytotoxic effects of Salbutamol 

were also investigated in cardiomyocytes by the use the MTT assay. 
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4.3 Methods 

4.3.1 Isolated perfused heart preparation 

Briefly, Sprague-Dawley rats were sacrificed by cervical dislocation and cannulated to the 

Langendorff setup and perfused with KHB as described in section 2.3. Hearts were allowed 

to stabilise for 20 minutes followed by 35 minutes of regional ischaemia and 120 minutes of 

reperfusion. One minute before the onset of reperfusion hearts were administered Salbutamol 

(0.001µM-1µM) in the absence or presence of Wortmannin (0.1µM) or U0126 (10µM). At 

the end of the experiment hearts underwent infarct to risk ratio analysis. Haemodynamic data 

were collected throughout the study.  

For western tissue collection, hearts were reperfused with Salbutamol (0.001µM-1µM) for 

either 5, 20 or 120 minutes in the presence or absence of Wortmannin (0.1µM) or U0126 

(10µM). After the time elapsed, hearts were removed and the left ventricle removed and snap 

frozen in liquid nitrogen.  

 

4.3.2 Western blot analysis 

Analysis of tissue by western blot was carried out as described in section 2.7. Briefly, 

following gel electrophoresis, proteins were transferred to a PVDF membrane and probed for 

the phosphorylated and total forms of the proteins: phospho-Akt (Ser473) (1:1000) and 

phospho-p44/p42 (Erk 1/2, Thr202/Tyr204) (1:1000).  
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4.3.3 Adult rat cardiac myocyte isolation 

Briefly, male Sprague Dawley rats were sacrificed by cervical dislocation and the hearts 

excised and cannulated onto modified Langendorff apparatus and perfused with a constant 

flow rate of 14ml/min as described in section 2.4. Hearts were perfused for 3-4 minutes with 

calcium free modified Krebs Heinsleit Buffer. The buffer was then switched and the hearts 

perfused with digestion buffer for 7 minutes. Isolated ventricular myocytes were used for the 

MTT assay and flow cytometric analysis of cleaved caspase 3 as described previously in 

sections 2.5.2, 2.5.3. Isolated myocytes were treated with Salbutamol (0.1µM) in the 

presence or absence of Wortmannin (0.1µM) or U0126 (10µM).  

 

4.3.4 Statistical analysis 

All data were presented as a mean of the stabilisation period ± SEM. Infarct size, times taken 

to depolarisation and hypercontracture, western blot data and flow cytometric data were 

tested using one way ANOVA with a Fishers Least Significance Test post hoc to determine 

any significance between groups. Haemodynamic data was statistically analysed using a two-

way analysis of variance ANOVA. p<0.05 was considered to be significant. 
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4.4 Results 

4.4.1 Cytotoxic effects of Salbutamol on isolated rat cardiomyocytes 

The MTT assay was used to investigate the effects Salbutamol (0.001µM-1µM) had on 

isolated ventricular rat myocytes exposed to 2 hours of hypoxic conditions followed by 2 

hours of re-oxygenation, when administered during re-oxygenation. A significant decrease in 

cell viability when comparing hypoxic re-oxygenated (HR) cells with normoxic cells was 

observed (100 ± 2.9% vs. 209 ± 8%, p<0.001, Figure 4.1). A significant decrease in MTT 

reductase activity (i.e. decreased cell viability) was observed when Salbutamol (0.1µM or 

1µM) was administered during re-oxygenation when compared to HR cardiomyocytes 

(0.1µM, 76 ± 1%, 1µM, 72 ± 1% vs. 100 ± 2.9%, p<0.05, Figure 4.1). 
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Figure 4.1 MTT reductase activity in cardiomyocytes exposed for 2 hours hypoxia and 4 hours re-oxygenation 

where Salbutamol (0.001-1µM) was added throughout re-oxygenation. Data presented as mean ± SEM. n=6-8. 
***p<0.001 vs. Normoxic, #p<0.05 vs. HR.  
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4.4.2 The effects of Salbutamol on p-Akt473 in a model of ischaemia reperfusion by 
assessment of western blotting. 

 

To determine the role of the PI3K/Akt cell signalling pathway in Salbutamol mediated 

cytotoxicity, isolated hearts were subjected to IR where Salbutamol was administered 

throughout reperfusion and underwent western blot analysis to assess p-Akt status. 

Investigation into the signalling protein Akt (Ser473) was carried out at 3 separate time 

periods (5, 20 and 120 minutes) of reperfusion. Hearts administered with Salbutamol 

(0.001µM-1µM) for 5 minutes at the onset and throughout reperfusion showed no significant 

change in expression of phosphorylated Akt when compared to time-matched control IR 

groups (Figure 4.2). Interestingly, a lower expression of p-Akt (p>0.05) was observed at 

0.1µM and 1µM concentrations when compared to time matched IR control (0.1µM, 85 ± 

4%, 1µM, 93 ± 9% vs. 100 ± 12%, p>0.05, Figure 4.2).  
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Figure 4.2 The effects of Salbutamol (0.001µM – 1µM) administration at the onset of reperfusion on the 

expression of phosphorylated Akt (Ser473) after exposure to 35 minutes ischaemia and 5 minutes of 

reperfusion. Data presented as mean ±SEM. n=3. 

 

Figure 4.3 Representative blot of p-Akt and t-Akt when Salbutamol (0.001µM-1µM) was administered 

throughout reperfusion for 5 minutes after 35minutes ischaemia  
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Hearts were subjected to 35 minutes of ischaemia followed by 20 minutes of reperfusion and 

were administered with Salbutamol (0001.1µM- 1µM) at the onset and throughout 

reperfusion for 20 minutes. A significant increase in expression of p-Akt was recorded in 

hearts administered with Salbutamol (0.1µM, 1µM) when compared to time matched IR 

control hearts (0.1µM, 240 ± 7%, 1µM, 220 ± 32% vs. 100 ± 19%, p<0.01, Figure 4.4).  
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Figure 4.4 The effects of Salbutamol (0.001µM – 1µM) administration at the onset of reperfusion on the 

expression of phosphorylated Akt (Ser473) after exposure to 35 minutes ischaemia and 20 minutes of 

reperfusion. Data presented as mean ±SEM. n=3. ***p<0.001 vs. normoxic, **p<0.01 vs. normoxic, ###p<0.001 vs. 

IR 20 Mins, ##p<0.01 vs. IR 20 Mins 

 

Figure 4.5 Representative blot of p-Akt and t-Akt when Salbutamol (0.001µM-1µM) was administered 

throughout reperfusion for 20 minutes after 35 minutes ischaemia. 
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Hearts were subjected to 35 minutes of ischaemia followed by 120 minutes of reperfusion 

and were administered with Salbutamol (0001.1µM- 1µM) at the onset and throughout 

reperfusion. Hearts administered with Salbutamol (0.1µM and 1µM) showed a significant 

increase in p-Akt expression when compared to hearts subjected to normoxic conditions 

(0.1µM, 192 ± 4%, 1µM, 255 ± 25% vs. 79 ± 6%, p<0.05, Figure 4.6).  

A significant increase in p-Akt expression was also observed with the same concentrations 

when compared to IR time matched controls (0.1µM, 192 ± 4%, 1µM, 255 ± 25% vs. 100 ± 

11, p<0.05, Figure 4.6).  
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Figure 4.6 The effects of Salbutamol (0.001µM – 1µM) administration at the onset of reperfusion on the 

expression of phosphorylated Akt (Ser473) after exposure to 35 minutes ischaemia and 120 minutes of 

reperfusion. Data presented as mean ±SEM. n=3. *p<0.05 vs. normoxic, #p<0.05 vs. IR 120 Mins 

 

Figure 4.7 Representative blot of p-Akt and t-Akt when Salbutamol (0.001µM-1µM) was administered 

throughout reperfusion for 120 minutes after 35 minutes ischaemia. 
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4.4.3 The effects of Salbutamol on signaling protein p-Erk 1/2 (p44/p42) in a model of 
ischaemia reperfusion by assessment of western blotting. 

 

Expression of the Mitogen Activating Protein Kinase (MAPK) Erk1/2 (p44/42) 

(Thr202/Tyr204) was investigated to determine the role of intracellular p-Erk. Three separate 

time periods (5, 20, 120 minutes) of reperfusion were used after 35 minutes of ischaemia to 

measure the level of activity of the specific signaling protein in the presence and absence of 

Salbutamol (0.001µM-1µM). 

Hearts were subjected to 35 minutes of ischaemia followed by 5 minutes of reperfusion and 

were administered with Salbutamol (0001.1µM- 1µM) at the onset and throughout 

reperfusion. 

 

No significant decrease in expression of p-Erk was observed when IR control hearts were 

compared to normoxic hearts, however a significant decrease in p-Erk was found between 

concentrations of Salbutamol (0.001µM-0.1µM) when compared to time matched IR control 

hearts (0.001µM, 40 ± 10%, 0.01µM, 36 ± 3%, 0.1µM, 33 ± 10%, vs. 100 ± 33%, p<0.05, 

Figure 4.8). Interestingly, an increase in p-Erk expression was observed at the highest 

concentration of Salbutamol (1µM) when compared to time matched control hearts (63 ± 

28% vs. 100 ± 33%, p>0.05, Figure 4.8).  
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Figure 4.8 The effects of Salbutamol (0.001µM – 1µM) administration at the onset of reperfusion on the expression of 

phosphorylated Erk (p44/p42) after exposure to 35 minutes ischaemia and 5 minutes of reperfusion. Data presented 

as mean ±SEM. n=3. *p<0.05 vs. normoxic, ##p<0.01 vs. IR 5 Mins. 

 

Figure 4.9 Representative blot of p-Erk and t-Erk when Salbutamol (0.001µM-1µM) was administered throughout 

reperfusion for 5minutes after 35 minutes ischaemia 
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Hearts were subjected to 35 minutes of ischaemia followed by 20 minutes of reperfusion and 

were administered with Salbutamol (0001.1µM- 1µM) at the onset and throughout 

reperfusion. Hearts	 administered	 with	 Salbutamol	 (0.001µM-1µM)	 demonstrated	 a	

significant	 decrease	 in	 Erk	 expression	 when	 compared	 to	 time	 matched	 IR	 control	

hearts	(0.001µM,	34	±	11,	0.01µM,	44	±	4%,	0.1µM,	39	±	6%,	1µM,	39	±	15%	vs.	100	±	

28%,	p<0.01,	Figure 4.10).	
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Figure 4.10 The effects of Salbutamol (0.001µM – 1µM) administration at the onset of reperfusion on the expression 

of phosphorylated Erk (p44/p42) after exposure to 35 minutes ischaemia and 20 minutes of reperfusion. Data 

presented as mean ±SEM. n=3. **p<0.01 vs. normoxic, ##p<0.01 vs. IR 20 Mins 

 

Figure 4.11 Representative blot of p-Erk and t-Erk when Salbutamol (0.001µM-1µM) was administered throughout 

reperfusion for 20 minutes after 35 minutes ischaemia	

Normoxic IR 20 Mins 0.001µM 0.01µM 0.1µM 1µM
0

50

100

150

R
el

at
iv

e 
D

en
si

ty
 p

-E
rk

1/
2 

/ T
ot

al
 E

rk
 a

s 
co

m
pa

re
d 

to
 IR

 C
on

tr
ol

**

**
**

**

##

##
##

##

Salbutamol



    

 

 

137 

Hearts were subjected to 35 minutes of ischaemia followed by 120 minutes of reperfusion 

and were administered with Salbutamol (0001.1µM- 1µM) at the onset and throughout 

reperfusion. 

 

In the presence of Salbutamol (0.001µM-1µM) a significant decrease in p-Erk expression 

was recorded when comparing time matched controls to Normoxic hearts (100 ± 23% vs. 205 

± 20%, p<0.001, Figure 4.12). No significance in p-Erk expression was observed with any 

concentration of Salbutamol (0.001µM-1µM) when compared to time matched IR control 

hearts (p>0.05, Figure 4.12). 
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Figure 4.12 The effects of Salbutamol administration at the onset of reperfusion (0.001µM – 1µM) on the expression 

of phosphorylated Erk (p44/p42) after exposure to 35 minutes ischaemia and 120 minutes of reperfusion. Data 

presented as mean ±SEM. n=3. ***p<0.01 vs. normoxic. 

 

Figure 4.13 Representative blot of p-Erk and t-Erk when Salbutamol (0.001µM-1µM) was administered throughout 

reperfusion for 120 minutes after 35 minutes ischaemia	
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4.4.4 The effects of Salbutamol on cleaved caspase-3 expression in cardiomyocytes 
subjected to hypoxia/re-oxygenation injury 

 

Isolated cardiomyocytes were exposed to hypoxia for 2 hours followed by 4 hours re-

oxygenation in the absence or presence of Salbutamol (0.001µM-1µM) throughout the re-

oxygenation period. Assessment of expression of cleaved caspase 3 was done by flow 

cytometry analysis. HR control cardiomyocytes expressed significantly higher levels of 

cleaved caspase 3 when compared to normoxic cardiomyocytes (100 ± 3% vs. 23 ± 13%, 

p<0.01, Figure 4.14). 

Cardiomyocytes treated with Salbutamol (0.001µM  – 1µM) significantly increased 

expression of cleaved caspase 3 when compared to HR control cardiomyocytes (0.001µM, 

190 ± 14%, 0.01µM, 213 ± 15%, 0.1µM, 190 ± 22%, 1µM, 200 ± 19% vs. 100 ± 52%, 

p<0.001, Figure 4.14). 
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Figure 4.14 The effects of Salbutamol (0.001µM – 1µM) administered throughout re-oxygenation on expression of 

cleaved caspase 3 in cardiomyocytes treated for 2 hours in hypoxia and 4 hours of re-oxygenation. Data presented as 

mean ±SEM. n=6-8. ***p<0.001 vs. Normoxic, **p<0.01 vs. Normoxic, ##p<0.01 vs. HR.	

	

	

	

	

	

	

Normoxic HR 0.001µM 0.01µM 0.1µM 1µM
0

50

100

150

200

250
C

le
av

ed
 c

as
pa

se
 3

 a
ct

iv
ity

 (%
 o

f H
R

)

**

***

***

***

***

##
##

##
###

***
##***

##

Salbutamol



    

 

 

141 

4.4.5 Cytometric effects of Salbutamol on isolated cardiomyocytes with co-administration 
of Salbutamol with PI3K inhibitor Wortmannin 

 

Isolated cardiomyocytes were exposed to hypoxia for 2 hours followed by 4 hours re-

oxygenation in the absence or presence of Salbutamol (0.1µM) co-administered with the 

PI3K inhibitor Wortmannin (0.1µM) throughout the re-oxygenation period. Assessment of 

cell viability was undertaken and a significant decrease in MTT reductase activity was 

observed in cardiomyocytes in the presence of Salbutamol (0.1µM) when compared to 

normoxic and HR cardiomyocytes (Normoxic, 209 ± 8% p<0.001, HR, 100 ± 2% vs. 75 ± 

1%, p<0.05, Figure 4.15). Cardiomyocytes in the presence of the PI3K inhibitor Wortmannin 

and Salbutamol recorded a significant increase in MTT reductase activity when compared to 

Salbutamol alone (SalB + Wort, 96 ± 2% vs. 75 ±1%, p<0.01, Figure 4.15) 
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Figure 4.15 MTT reductase activity in cardiomyocytes exposed for 2 hours hypoxia and 4 hours re-oxygenation where 

Salbutamol (0.1) was added throughout re-oxygenation to cardiomyocytes treated with Wortmannin (0.1µM). Data 

presented as mean ± SEM. n=6-8. ***p<0.001 vs. Normoxic, #p<0.05 vs. HR, $$p<0.01 vs. 0.1µM.	
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4.4.5.1 The effects of Salbutamol co-administered with PI3K inhibitor Wortmannin on 
the signaling protein p-Akt in a model of ischaemia reperfusion by assessment of 
western blotting 

 

Hearts were subjected to 35 minutes of ischaemia followed by 20 minutes of reperfusion and 

were administered with Salbutamol (0.1µM) at the onset and throughout reperfusion. The 

effect of Wortmannin (0.1µM)  alone on the expression of Akt significantly decreased when 

compared to IR control hearts (41 ± 4% vs. 100 ± 12%, p<0.05, Figure 4.16). Interestingly, p-

Akt expression in hearts treated with Salbutamol (0.1µM) alone was significantly higher 

when compared to hearts administered with a combination of Salbutamol (0.1µM) and 

Wortmannin (0.1µM) (240 ± 7% vs. 114 ± 18%, Figure 4.16). Normoxic, control IR 20 

minute data included has been used from previous experiment. 
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Figure 4.16 The effects of Salbutamol (0.1µM) administration at the onset of reperfusion on the expression 

of phosphorylated Akt (Ser473) after exposure to 35 minutes ischaemia and 20 minutes of reperfusion in 

hearts treated in the presence or absence of Wortmannin (0.1µM). Data presented as mean ±SEM. n=3. 
**p<0.01 vs. Normoxic, *p<0.05 vs. Normoxic, #p<0.05 vs. IR 20 Mins, $p<0.05 vs. 0.1µM, £p<0.05 vs SalB + 

Wort.  

 

Figure 4.17 Representative blot of p-Akt and t-Akt when Salbutamol (0.1µM) was administered throughout 

reperfusion for 20 minutes after 35 minutes ischaemia in the presence and absence of Wortmannin (0.1µM).  
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4.4.5.2 The effect of co administration Salbutamol and PI3K inhibitor Wortmannin on 
signalling protein cleaved caspase 3 by assessment of flow cytometry 

 

Isolated cardiomyocytes were exposed to hypoxia for 2 hours followed by 4 hours re-

oxygenation in the absence and presence of Salbutamol (0.1µM) throughout the re-

oxygenation period. Cardiomyocytes were also treated in the presence or absence of the PI3K 

inhibitor Wortmannin (0.1µM). Assessment of expression of cleaved caspase 3 was done by 

flow cytometric analysis. 

 

A significant increase in cleaved caspase 3 levels was recorded in HR control groups when 

compared to the normoxic group (100 ± 3% vs. 23 ± 13%, p<0.05). 

Cleaved caspase 3 expression in cardiomyocytes co-administered with Wortmannin (0.1µM) 

and Salbutamol (0.1µM) showed a significant increase when compared to normoxic 

cardiomyocytes (102 ± 23% vs. 23 ± 13%, p<0.05). A significant increase in levels of 

caspase 3 was recorded when comparing the adjunct administration of Salbutamol (0.1µM) 

and Wortmannin (0.1µM) with HR control cardiomyocytes (102 ± 23% vs. 136 ± 24%, 

p<0.05). Interestingly cardiomyocytes treated with Wortmannin (0.1µM) alone showed a 

significant increase in expression of cleaved caspase when compared to HR control 

cardiomyocytes (136 ± 24% vs. 100 ± 3%, p<0.01, Figure 4.18).  
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Figure 4.18 The effects of a Salbutamol dose response (0.1µM) on expression of cleaved caspase 3 in the 

presence of PI3K inhibitor Wortmannin (0.1µM). Data presented as mean ±SEM. n=6-8. ***p<0.001 vs. 

Normoxic  **p<0.01 vs. Normoxic, *p<0.05 vs. Normoxic, ##p<0.01 vs. HR, #p<0.05 vs. HR, $p<0.05 vs. 

Wortmannin (0.1µM). 
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4.4.6 Cytometric effects of Salbutamol on isolated cardiomyocytes with co-administration 
of Salbutamol with MAP Kinase Kinase inhibitor U0126 

 

A significant increase in MTT reductase activity was observed with co-administration of 

U0126 and Salbutamol (0.1µM) when compared to cardiomyocytes administered with 

Salbutamol (0.1µM) alone (SalB + U0126, 96 ±2% vs. 75 ±1%, p<0.01, Figure 4.19).  

 

 

Figure 4.19 The MTT cytotoxic effect of Salbutamol (0.1µM) on the viability of cardiomyocytes in the 

presence of U0126 (10µM). Data presented as mean ± SEM. n=6-8. ***p<0.001 vs. Normoxic, #p<0.05 vs. HR, 
$$p<0.01 vs. 0.1µM. 
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4.4.6.1 The effects of Salbutamol co-administered with MAP Kinase Kinase inhibitor 
U0126 on the signaling protein p-Erk in a model of ischaemia reperfusion by 
assessment of western blotting 

 

Hearts were subjected to 35minutes of ischaemia followed by 20 minutes of reperfusion in 

the presence of Salbutamol (0.1µM) at the onset and throughout reperfusion. Hearts treated 

alone with the Erk inhibitor U0126 (10µM) showed a significant decrease in expression of p-

Erk when compared to both IR time matched control hearts (U0126, 13 ±8% vs. 100 ±25%, 

p<0.05). Interestingly, p-Erk expression significantly increased with co administration of 

U0126 (10µM) with Salbutamol (0.1µM) when compared to hearts administered with 

Salbutamol alone (0.1µM) (SalB + U0126, 77 ±11% vs. 13 ±6%, p<0.001, Figure 4.20). 

Normoxic and control IR 20 data included has been used from previous western blots.  
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Figure 4.20 The effects of Salbutamol (0.1µM)) on the expression of phosphorylated Erk 1/2  (p44/p42) after exposure 

to 35 minutes ischaemia and 20 minutes of reperfusion in the absence and presence of Erk inhibitor U0126 (10µM). 

Data presented as mean ±SEM. n=3. ***p<0.01 vs. Normoxic, **p<0.01 vs. Normoxic,  ###p<0.001 vs. IR 20 Mins, 
#p<0.05 vs. IR 20 Mins, $$$p<0.01 vs. 0.1µM, £££p<0.05 vs. U0126. 

 

Figure 4.21 Representative blot of p-Erk and t-Erk in the presence of Salbutamol (0.1µM) when administered with or 

without U0126 (10µM) 
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4.4.6.2 The effect of co administration of Salbutamol and MAP Kinase Kinase inhibitor 
U0126 on signalling protein cleaved caspase 3 by assessment of flow cytometry 

 

Isolated cardiomyocytes were exposed to hypoxia for 2 hours followed by 4 hours re-

oxygenation in the absence and presence of Salbutamol (0.1µM) throughout the re-

oxygenation period. Cardiomyocytes were also treated in the presence or absence of the Erk 

inhibitor U0126 (10µM). Assessment of expression of cleaved caspase 3 was done by flow 

cytometry analysis. 

Cleaved caspase 3 expressions were significantly affected by co-administration of 

Salbutamol (0.1µM) and U0126 (10µM) in comparison to HR cardiomyocytes (SalB + 

U0126, 190 ±15% vs. 100 ±19%, p<0.05). However, no significant change was observed 

when comparing cardiomyocytes administered with Salbutamol (0.1µM) alone with 

cardiomyocytes co-administered with U0126 (10µM) (Figure 4.22). 



    

 

 

151 

 

Figure 4.22 The effects of a Salbutamol dose response (0.1µM) on expression of cleaved caspase 3 in the 

presence of Erk inhibitor U0126 (10µM). Isolated myocytes were exposed to 2 hours hypoxia followed by 4 

hours reoxygenation in the presence or abscene of the drug. Data presented as mean ±SEM. n=6-8. ***p<0.01 

vs. Normoxic, *p<0.05 vs. Normoxic, #p<0.05 vs. HR.	
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4.5 Discussion 

In Chapter 3 the effects of long and short acting beta agonists on the whole heart and their 

effects on the mPTP were investigated. From Chapter 3, Salbutamol as a short acting beta 

agonist was identified to exacerbate myocardial injury in the model of ischaemia reperfusion 

injury. In this chapter we investigated the signalling pathways associated with Salbutamol 

mediated injury in ischaemia reperfusion. 

In this chapter we demonstrate Salbutamol administered to isolated adult cardiomyocytes in 

conditions of hypoxia and re-oxygenation caused a reduction in the viability of 

cardiomyocytes. We also demonstrate the varying effects that Salbutamol had on the 

signalling proteins p-Akt, p-Erk and cleaved caspase 3 in the presence and absence of the Akt 

and Erk pathway inhibitors, Wortmannin and U0126.  

4.5.1 The effect of Salbutamol on cardiomyocytes and the PI3K/Akt signalling pathway 
 

Cardiomyocytes are dependent on oxidative phosphorylation, which provides up to 95% of 

the required energy for contraction and metabolism (Chiong et al., 2011). During hypoxic 

conditions cardiomyocyte function is hindered with a dramatic decrease in ATP levels due to 

an increase in anaerobic respiration and are countered by an increase in AMP levels (Matsui 

et al., 2007). In such conditions, cardiomyocytes undergo cell death via apoptosis or necrosis, 

however the clarity between the choices of type of cell death during early stages of HR is still 

unclear (Hausenloy and Yellon, 2004, Yan et al., 2005, Zhao et al., 2001).  

 

Cardiomyocytes exposed to HR conditions in the presence of Salbutamol were shown to have 

a cytotoxic effect reducing the viability of cardiomyocytes when compared to control HR 

cardiomyocytes (Figure 4.1). A range of Salbutamol doses (0.001µM-1µM) were used in 

these experiments. As mentioned previously, 0.1µM Salbutamol was recorded in our studies 
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to induce the most significant myocardial injury at the lowest concentration of Salbutamol 

administered (Figure 3.16). For this reason, Salbutamol 0.1µM was used as the standard 

concentration for all experiments. Increasing concentrations of Salbutamol up to 1µM is well 

within previous studies that have administered Salbutamol before observing any detrimental 

effects (Gao Smith et al., 2012). Although the use of the MTT assay enables detection of cell 

viability, it is unable to detect what stage of cellular injury is occurring or determine the type 

of cell death i.e. apoptosis or necrosis (Gomez et al., 1997, Piper et al., 1984). As a result we 

were unable to determine a more accurate measure of cells that may have been in early 

phases of apoptosis or necrosis to include in the results. 

 

Investigation into levels of p-Akt expression showed that Salbutamol at higher concentrations 

(0.01µM, 0.1µM & 1µM), significantly elevated expression of p-Akt in hearts reperfused for 

20 and 120 minutes, but no elevation was observed in hearts reperfused for 5 minutes. Acute 

activation of the PI3K/Akt pathway in some studies has been shown to protect against IR 

injury by recruitment of Akt, an anti-apoptotic/ pro survival protein (Hausenloy and Yellon, 

2004, Fujio et al., 2000). A variety of factors are capable of inducing cardioprotection against 

IR injury such as growth hormones and cellular stresses, which have all been shown to 

activate the common downstream target Akt (Matsui and Rosenzweig, 2005). Previous in 

vitro studies with adenoviral expression of PI3K in rat cardiomyocytes showed a reduction in 

HR induced apoptosis (Dhanasekaran et al., 2008). Downstream targets of Akt 

phosphorylation, such as Bad, have been shown to locate subcellularly and bind with 14-3-3 

proteins causing inhibition and restricting them within the cytoplasm of the cell. Inhibition of 

Bad by phosphorylation at the serine136 site prevents dephosphorylation of Bad to occur and 

not to activate downward cascade protein targets such as Bax or Bak (Mullonkal and Toledo-

Pereyra, 2007, Kim et al., 2001). Isolated rat hearts excised are immediately submerged in 
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ice-cold KH buffer to slow down metabolic rate. Although time was minimised to attach the 

heart to the Langendorff apparatus, whilst submerged in the KH buffer, global ischaemia may 

occur (Bell et al., 2011). The recorded elevated expression levels of p-Akt and p-Erk 

observed in our studies at 5 minutes perfusion may be explained by this phenomenon as 

shown by previous groups (Schwartz and Lagranha, 2006, Yellon and Hausenloy, 2007). 

These groups demonstrated with short spells of ischaemia followed by reperfusion expression 

of p-Akt and p-Erk elevated. Initial trauma to the heart after excision may also activate pro-

survival proteins. Our time matched controlled normoxic hearts exposed to 20 and 120 

perfusion showed decreasing expression levels of p-Akt (Figure 4.4, Figure 4.6). As hearts 

were perfused for longer periods of time i.e. 20 and 120 minutes, levels of p-Akt were 

reduced. This was also observed in expression levels of p-Erk (Figure 4.8, Figure 4.10, 

Figure 4.12). Studies in transgenic mouse hearts have demonstrated initial elevated levels of 

p-Erk and p-Akt, which then declined over time. The consequence of such down regulation 

of both these proteins lead to increased myocyte apoptosis (Li et al., 2009). The integrity of 

normoxic hearts will naturally degrade as a result of increasing levels of necrotic cell death 

over the period of perfusion (Bell et al., 2011).  

 

Interestingly, expression of p-Akt in IR time matched control hearts compared to Salbutamol 

(0.1µM) at 20 and 120 minutes showed a significant increase. Our findings support previous 

work presenting elevated expression of p-Akt in models of IR injury/HR conditions that 

cause no protection against injury such as studies carried out by Gharanei and colleagues 

with the use of the anti cancer drug Doxorubicin. Here the authors showed an increase in 

reperfusion injury in the Langendorff model in addition to elevated p-Akt levels with 

Doxorubicin (1µM) (Gharanei et al., 2013). Other studies involving the non-selective bAR 
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Isoproterenol also have been shown to elevate p-Akt expression in addition to causing 

hypertrophy of mouse cardiomyocytes (Condorelli et al., 2002). 

 

As shown previously in Chapter 3, an increase in infarct to risk ratio occurs in the presence of 

Salbutamol (0.1µM) exacerbating injury to the rat heart. Further to this we now have 

demonstrated in the presence of Salbutamol (0.1µM) expression of p-Akt increases. This 

provides an alternative concept of the perception that p-Akt can solely be an anti-apoptotic 

signalling protein but may in fact contribute to the exacerbation of myocardial injury as 

observed in the previous chapter. 

 

Nagoshi and colleagues (2005) showed that prolonged or repetitive activation of Akt could 

lead to increased IR injury mainly through feedback inhibition of upstream pathways such as 

PI3K (Nagoshi et al., 2005). They further showed with the use of transgenic mice 

overexpressing Akt demonstrated increased LVDP, coronary flow (also recorded in Chapter 

3) in addition to increased reperfusion injury.  

 

Other studies have used transgenic mice with specific cardiac activation of Akt causing an 

increase in mortalities. One of these studies by Matsui and colleagues (2005) established an 

overexpression of active Akt increased mortalities in mice as a result of cardiac enlargement 

in the form of hypertrophy (Matsui and Rosenzweig, 2005). Other detrimental cardiac 

dysfunctions resulting from chronic p-Akt expression included increase in I/R ratios (Matsui 

and Rosenzweig, 2005, O'Neill and Abel, 2005). 

 

Salbutamol’s effect on haemodynamics (Chapter 3) showed a dose dependent increase in 

LVDP, which can cause an increased pressure overload on cardiac function, specifically 
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within the left ventricle. Similar results have been shown to encourage hypertrophy in both a 

maladaptive and adaptive manner (Nagoshi et al., 2005, Shiojima et al., 2005). The activation 

of p-Akt by Salbutamol directly occurs via activation of bARs that are coupled to GPCRs, 

specifically Salbutamol’s selective activation of b2ARs is linked to the Gi subunit which is 

linked to the regulation and activation of Akt. (Larocca et al., 2011).  

 

Wortmannin was used as an irreversible non-selective PI3K inhibitor. Previous studies have 

successfully blocked the PI3K pathway in rat hearts with Wortmannin (0.1µM) (Ravingerova 

et al., 2009). In keeping with this, a 0.1µM concentration of Wortmannin was used in all 

experimental protocols. With the inhibition of the PI3K pathway by Wortmannin (0.1µM) in 

the presence of Salbutamol (0.1µM), expression of p-Akt was significantly reduced close to 

expression levels observed in IR time matched control hearts. Hearts administered with 

Wortmannin (0.1µM) alone decreased expression of p-Akt significantly more than hearts co-

administered with Salbutamol and Wortmannin, confirming that activation of bARs with 

Salbutamol (0.1µM) is linked to the increased expression of p-Akt via the PI3K pathway 

(Figure 4.16). Normal activation of the PI3K has been shown to promote cell survival by 

inhibiting apoptosis by increased expression of p-Akt (Jeong et al., 2012). Hearts treated 

alone with Wortmannin showed a significant decrease (p<0.05) in p-Akt expression when 

compared to normoxic hearts. This supports previous findings of the inhibitory properties of 

Wortmannin and demonstrates in our experiments that inhibition of the PI3K pathway is 

successful.  

 

Interestingly, hearts treated with Wortmannin (0.1µM) and Salbutamol (0.1µM) had p-Akt 

expression elevated higher than compared to hearts treated alone with Wortmannin (0.1µM) 

indicating an alternative pathway may be involved in the activation of p-Akt, independent of 
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the PI3K pathway. This mechanism of elevating p-Akt indirectly may be that of a completely 

independent pathway or via cross-talk.  

 

To establish a potential link of cross-talk between p-Akt and another signalling pathway, 

hearts were treated in the presence of the Erk inhibitor U0126 (10µM) and Salbutamol 

(0.1µM). Previous studies have used U0126 successfully to inhibit Erk activation in the 

Langendorff model (Hussain et al., 2014). From these studies the concentration of 10µM was 

used throughout the experimental protocol.  

4.5.2 The effect of Salbutamol on phosphorylated Erk 1/2 (p44/p42) MAPK pathway  
 

Activation of p-Erk is also linked to prompting cell survival via the RISK pathway and has 

been shown to activate through growth hormone receptors via activation of the Ras/Raf 

pathway and GPCRs (Armstrong, 2004, Mendoza et al., 2011). The Erk 1/2 signalling 

pathway has been shown to be an anti-apoptotic pathway and linked to cardioprotection of 

the heart (Lu and Xu, 2006, Hausenloy et al., 2005). We demonstrated a varying effect of 

Salbutamol (0.001-1µM) on expression of phosphorylated Erk. Interestingly, expression of p-

Erk in the presence of Salbutamol (0.1µM) significantly decreased when compared to IR time 

matched controls, implying Salbutamol’s activation of the b2ARs does not recruit p-Erk 

signalling. 

 

p-Erk’s role is similar to that of p-Akt, inhibiting downstream targets such as the 

phosphorylation of Bad, the difference being p-Erk phosphorylates Bad at Serine112 in 

contrast to p-Akt’s phosphorylation of Bad at Serine136 (Datta et al., 2000, Tan et al., 1999). 

Interestingly, p-Erk expression in the presence of Wortmannin (0.1µM) increased 

significantly when compared to time matched IR control hearts (data not shown). We can 
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purport that upon administration of Salbutamol (0.1µM) in the absence of PI3K pathway, 

increase in p-Erk expression compensates for the inhibition of p-Akt expression to promote 

cardiomyocyte survival. We can postulate this shift from p-Akt activation to increased Erk 

activation may be a deliberate protection response of the heart in order to minimise the 

stresses observed by IR injury in order to continue the phosphorylation of Bad.  

 

Contrasting effects have been shown for Erk 1 and Erk 2 pathways, each identified having a 

different part to play on cell survival. In vivo studies expressing only the Erk2 pathway 

increased infarct to risk ratio in mice after IR, in addition, Erk1 null mice showed similar 

levels of infarct to risk ratio in wild type mice (Lips et al., 2004, Pearson et al., 2001). 

Interestingly, we have seen in both p-Akt and p-Erk studies carried out, a delay in 

phosphorylation of both proteins. Ischaemia alone has previously been shown not to be 

enough of an insult to the heart to elevate p-Akt or p-Erk expression significantly, however 

introduction of a reperfusion period greater than 10 minutes increases these proteins 

expression (Armstrong, 2004, Omura et al., 1999). One study in an in vivo rat model of IR, 

showed levels of p44 Erk to decrease during ischaemia, followed by an increase in Erk after 

reperfusion for 30 minutes (Omura et al., 1999).  

 

Further investigation into the involvement of p38 inducing apoptosis in rat cardiomyocytes 

may suggest a reason for the observed reduction in Erk expression in the presence of 

Salbutamol in a cross-talk dependent mechanism as elevated levels of p38 expression has 

been shown to inhibit p-Erk via serine-threonine protein phosphatase 2A (PPA2)(Liu and 

Hofmann, 2004, Zhou et al., 2002).  
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Having established both p-Akt and p-Erk to be active in the presence of Salbutamol (0.1µM) 

and IR conditions, previous studies have suggested a favourable response upon activation of 

these proteins via the RISK pathway to initiate cardioprotection (Hausenloy and Yellon, 

2004, Hausenloy et al., 2005, Maddock et al., 2002). In contrast to these findings, we have 

demonstrated a detrimental effect on the heart with activation of these proteins from our 

studies with cardiomyocyte cytotoxicity, mPTP and infarct to risk ratio (Chapter 3).  

 

A further similarity between p-Akt and p-Erk is a link to hypertrophy, which we have already 

discussed in response to elevated Akt expression. bARs stimulation has shown to lead to p-

Erk induced hypertrophy in rodent models in vitro and in cultured cardiomyocytes, brought 

about by the Ras-Erk signalling cascade (Bueno and Molkentin, 2002, Kim et al., 2008, 

Yamazaki et al., 1993).  

 

During IR conditions, hypertrophy may manifest due to the similarity of conditions such as 

calcium overload as was investigated by Allard and colleagues using the calcium channel 

blocker Verapamil (Allard et al., 1994). They found in rodent hypertrophied hearts, an 

increase in ventricular events occurred with IR conditions. In contrast, when administering 

calcium antagonists such as Verapamil, a reduction in reperfusion injury events was observed 

highlighting a role of Calcium in a model of IR injury. (Allard et al., 1994, Baxter and 

Yellon, 1992, Baxter and Yellon, 1993).  

 

4.5.3 Cross-talk between the signalling cascades of p-Akt, and p-Erk 
 

We have observed behaviours of signalling proteins to act differently from what has been 

considered to be the ‘norm’ based on previous studies, such as cardioprotection. Signalling 
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cascades are still not fully understood, however evidence from our studies propose an 

interaction between the PI3K pathway and p-Erk pathway influencing each other in a positive 

or negative manner, which is referred to as cross-talk (Mendoza et al., 2011, Yang et al., 

2011).  

 

Increased levels of p-Akt in addition to decreased expression of p-Erk in the presence of 

Salbutamol (0.1µM) were recorded, which confirms that Salbutamol’s interaction at b2ARs 

has the ability to increase p-Akt more readily than p-Erk. There is evidence of suppression of 

p-Erk by overexpression of p-Akt, which was also seen by Moelling and collegaues 

(Moelling et al., 2002). Moelling and colleagues showed Raf-Akt cross-talk can be regulated 

in a concentration dependent manner, and found rapid activation of p-Akt with insulin growth 

factor 1 supressed Raf kinase activity via phosphorylation of serine259. A potential cross-talk 

mechanism between these cascades has been linked to the ability of Akt to negatively 

regulate Erk by the abrogation of the Raf-Erk cascade (Mendoza et al., 2011, Suire et al., 

2002).  

 

Collectively, our data confirms upon administration of Salbutamol in IR conditions, an 

increase in p-Akt is observed. Through p-Akt’s high level of expression, cross talk exists 

between the Akt-Erk pathways in a suppression manner as seen by their respective protein 

expression levels. A common link in mechanisms involving coronary heart failure, ischaemia 

reperfusion injury, hypertrophy and cardiomyopathy involve Akt in an over expressive 

manner. However, the selectivity of Salbutamol needs to be investigated to clarify through 

which GPCR subunit the discussed signalling proteins are activated as contrasting literature 

indicates specific recruitment of these signalling proteins via the Gs or Gi subunits, both of 
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which are linked to b2ARs in addition to activation of the Gs subunit solely through b1AR 

stimulation.  
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5 Chapter 5: Role of b1 Adrenergic Receptor Signalling in 

Salbutamol Mediated Injury In The Presence of b1 Adrenergic 

Receptor Antagonist CGP 20712  

5.1 Introduction 

Data from the previous chapter (Chapter 4) demonstrated Salbutamol mediated exacerbation 

of I/R injury and associated with cell signalling mechanisms and potential crosstalk between 

these signalling mechanisms in isolated rat heart that may contribute to the toxic effects of 

Salbutamol. However, how these signalling proteins are activated in the presence of 

Salbutamol still remains unclear due to the complexities of b adrenergic receptor activation, 

coupling and signalling. In this chapter we specifically determine the role of the b1 adrenergic 

receptor (b1ARs) in Salbutamol mediated injury using the b1AR antagonist CGP 20712 to 

investigate the selectivity of Salbutamol and how it affects signalling proteins and 

cytotoxicity via b2 adrenergic receptor (b2ARs) activation. 

 

The structure of b1ARs has been closely linked to the structure of b2ARs due to the latter 

being the first GPCR to be successfully cloned (Dixon et al., 1986, Steinberg, 1999). More 

recent crystallography studies have determined a 67% identical similarity between b1 and b2 

receptors in the human heart (Warne et al., 2008). Differences between bAR structures are 

mainly determined by their extracellular cytoplasmic loops (Scarselli et al., 2007). 

Cytoplasmic loops (CL) 2 and 3 of GPCRs are responsible for ligand interaction, selection 

and activation of the receptor (Warne et al., 2008). The CL2 within b1ARs forms a short a 

helix that allows the formation of hydrogen bonds between adjacent amino acids Tyr149 and 

the a helix3 located close to the membrane surface and more readily available in 
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cardiomyocytes than b2ARs (Warne et al., 2008). Although similarities exist between the 

bARs there is still a specificity of agonists and antagonists for a particular bAR subtype, such 

as the antagonist CGP 20712 having over 500 times greater in affinity for b1ARs than b2ARs 

and the b2 antagonist ICI 118,551 (Cherezov et al., 2007, Warne et al., 2008).  

Acute or chronic activation of b1ARs can bring about a variety of effects such as 

vasodilation, increase in heart rate and have been linked to necrotic and apoptotic cell death 

in cardiomyocytes (Communal et al., 1998, Communal et al., 1999, Zaugg et al., 2000). bAR 

activation is not restricted solely to selective b agonists, but can also be activated by non-

selective b agonists such as Isoproterenol (Ruzsnavszky et al., 2014). Upon activation of 

b1ARs by an agonist, such as Salbutamol, the Gs subunit of the GPCRs is activated initiating 

the cAMP/PKA pathway (Iwai-Kanai et al., 1999, Zhu et al., 2003).  

 

Activation of this pathway promotes the increase of cytosolic calcium mediating an increase 

in heart rate and force of contraction (Zornoff et al., 2009). This pathway has been suggested 

to be responsible for cardiac apoptosis within the myocardium and cardiomyocytes. Zhu and 

colleagues (2003) with the use of b2AR knockout mice, demonstrated that independent of the 

cAMP/PKA pathway, the activation of calmodulin kinase II (CaMKII) also initiates 

ventricular myocyte cell apoptosis in the presence of Isoproterenol (Zhu et al., 2003).  

 

b1ARs offer a range of therapeutic attributes whether it is through targeting by agonists such 

as Isoproterenol, Dobutamine or b-blocker drugs for heart failure, angina or hypertension 

(Wang et al., 2014). Overstimulation/activation of bARs can cause the receptors to be 

compromised and desensitise leading to a maladaptive response (Penn et al., 1999, Zhu et al., 

2003). Activation of b1ARs longer than 30 minutes has been shown to cause desensitisation 
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of the cAMP/PKA pathway, resulting in cardiac apoptosis via a cAMP/PKA independent 

pathway (Zhu et al., 2003).  

 

Distribution of b1ARs has been investigated through various techniques of radio ligand 

binding, immunohistochemistry and activation of cAMP (Cros and Brette, 2013, He et al., 

2005). These studies have identified the majority of b1ARs are located toward the cell crest 

namely the sarcolemma of ventricular myocytes and within t-tubules (Cros and Brette, 2013). 

The location and distribution of b1ARs are important within cardiomyocytes for activation 

for chronotropic and inotropic effects, however as discussed, overstimulation can cause 

desensitisation of these receptors (Esposito et al., 2002). Conditions such as ischaemia 

reperfusion injury, congestive heart failure and myocardial infarction can also contribute to 

effecting b1ARs on cardiac cell surfaces via remodelling (Lyon et al., 2009, Nikolaev et al., 

2010). Cardiac remodelling covers a range of aspects such as coronary vessel remodelling 

and specific bAR remodelling that can be affected by stresses such as IR injury and 

myocardial infarction (Heusch, 2013, Yellon and Hausenloy, 2007). Remodelling of 

cardiomyocytes involves the redistribution of bARs previously located in ‘normal’ healthy 

locations to new positions. Although this remodelling process does not directly affect the 

function of b1ARs, a linked effect is the redistribution of b2ARs from deep within t-tubules to 

the cell crest shifting the ratio of b1:b2 in favour of an increased b2AR expression (Heusch, 

2013, Lyon et al., 2009).  

 

Previously, we have seen the effect of Salbutamol on the mitochondrial permeability 

transition pore (mPTP) in a model of oxidative stress (Chapter 3). It has been established that 

the mPTP plays an important role in managing the contents of the mitochondria in both 
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normal and stress conditions such as increased ROS and increase in Ca2+
 ions and is linked to 

cardiac apoptosis and necrosis (Baines, 2009, Machado et al., 2009).  With the structure of 

the mPTP still unclear, a common postulation of its structure includes a voltage dependent 

anion channel, adenine nucleotide translocator and a matrix protein cyclophilin D (Baines, 

2009, Javadov et al., 2009). The combination of a b1AR antagonist CGP 20712 with 

Salbutamol will help identify if activation of b2ARs plays a significant role in the detrimental 

effects of Salbutamol. Cellular stresses such as ROS and calcium overload have been shown 

to effect the expression levels of p-Akt and p-Erk, in particular during reperfusion injury 

(Hausenloy and Yellon, 2004, Schwartz and Lagranha, 2006). With the antagonist CGP 

20712 present in hearts administrated with Salbutamol, the expression of these signalling 

proteins can be determined to see what, if any, effect they have on the Salbutamol 

administration in a model of ischaemia reperfusion injury.  

 

5.2 Aims 

The aims of the current study were to investigate the effects of the short acting b adrenergic 

receptor agonist Salbutamol by using the isolated perfused Langendorff heart model of 

ischaemia reperfusion injury, the oxidative stress cardiac myocyte model and the MTT assay. 

Salbutamol was administered in the presence and absence of the b1AR antagonist CGP 20712 

to determine the role of b1AR signalling in Salbutamol induced myocardial injury. 
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5.3 Methods 

5.3.1 Langendorff protocol 

Briefly, Sprague-Dawley rats were sacrificed by cervical dislocation and cannulated to the 

Langendorff setup and perfused with KHB as described in section 2.3. Hearts were allowed 

to stabilise for 20 minutes followed by 35 minutes of regional ischaemia and 120 minutes of 

reperfusion. One minute before the onset of reperfusion hearts were administered Salbutamol 

(0.1µM) in the absence or presence of b Adrenergic Receptor antagonists CGP 20712 

(0.0014µM). At the end of the experiment hearts underwent infarct to risk ratio analysis. 

Haemodynamic data were collected throughout the study.  

For western tissue collection, hearts were reperfused with Salbutamol (0.1µM) for either 5, 

20 or 120 minutes in the presence or absence of CGP 20712 (0.0014µM). After the time 

elapsed, hearts were removed and the left ventricle removed and snap frozen in liquid 

nitrogen.  

5.3.2 Western blot analysis 

Analysis of tissue by western blot was carried out as described in section 2.7. Briefly, 

following gel electrophoresis, proteins were transferred to a PVDF membrane and probed for 

the phosphorylated and total forms of the proteins: phospho-Akt (Ser473) (1:1000) and 

phospho-p44/p42 (Erk 1/2, Thr202/Tyr204) (1:1000).  
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5.3.3 Adult rat cardiac myocyte isolation 

Briefly, male Sprague Dawley rats were sacrificed by cervical dislocation and the hearts 

excised and cannulated onto modified Langendorff apparatus and perfused with a constant 

flow rate of 14ml/min as described in section 2.4. Hearts were perfused for 3-4 minutes with 

calcium free modified Krebs Heinsleit Buffer. The buffer was then switched and the hearts 

perfused with digestion buffer for 7 minutes. Isolated ventricular myocytes were used for the 

oxidative stress model, MTT assay and flow cytometric analysis of cleaved caspase 3 as 

described previously in sections 2.5.2, 2.5.3, 2.6. Myocytes were assigned to one of the 

following groups: a) Control (KHB) b) Salbutamol (0.1µM) c) CPG 20712 + Salbutamol d) 

CGP 20712 (0.0014µM). 

 

5.3.4 Statistical analysis 

All data were presented as a mean of the stabilisation period ± SEM. Infarct size, times taken 

to depolarisation and hypercontracture and western blot data were tested using one way 

ANOVA with a Fishers Least Significance Test post hoc test to determine any significance 

between groups. p<0.05 was considered to be significant. 
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5.4 Results 

5.4.1 Effect of Salbutamol co-administered with CGP 20712 on cardiomyocytes assessed 

by MTT 

Cardiomyocytes administered with Salbutamol (0.1µM) and CGP 20712 (0.0014µM) were 

treated in hypoxic conditions and re-oxygenated (HR). A significant decrease in MTT 

reductase activity was recorded via spectrophotometry analysis when HR control 

cardiomyocytes were compared to normoxic cardiomyocytes (HR, 100 ± 3% vs. 209 ± 8%, 

p<0.01, Figure 5.1). Salbutamol (0.1µM) significantly decreased MTT reductase activity 

when compared to HR cardiomyocytes (HR, 100 ± 3% vs. 76 ± 1%, p<0.05, Figure 5.1). 

Interestingly, Salbutamol in the presence of CGP 20712 caused a significant increase in 

reductase activity when compared to cardiomyocytes treated alone with Salbutamol (SalB + 

CGP 20712, 94 ± 4% vs. 76 ± 1%, Figure 5.1). Cardiomyocytes treated with CGP 20712 

alone showed no significance when compared to HR cardiomyocytes.  
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Figure 5.1 The MTT cytotoxic effect of Salbutamol (0.1µM) on the viability of cardiomyocytes in the 

presence and absence of b1 adrenergic receptor antagonist CGP 20712 (0.0014µM). Data presented as mean 

± SEM. n=6-8. **p<0.01 vs. Normoxic, #p<0.05 vs. HR, $p<0.05 vs. SalB 0.1µM 
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5.4.1.1 The effect of Salbutamol with co-administration of CGP 20712 on Infarct to Risk 
Ratio in isolated hearts subjected to ischaemia reperfusion injury  

 

Hearts were administered with Salbutamol (0.1µM) in the presence and absence of b1AR 

antagonist CGP 20712 (0.0014µM) and underwent 35 minutes ischaemia followed by 120 

minutes reperfusion. Salbutamol (0.1µM) significantly increased I/R ratio when compared to 

IR control hearts (SalB 0.1µM, 76 ± 3% vs. 51 ± 2%, p<0.001).  

Interestingly, Salbutamol in the presence of CGP 20712 (0.0014µM) abrogated the IR ratio 

effect caused by hearts treated alone with Salbutamol (63 ± 4% vs. 76 ± 3%, p<0.01, Figure 

5.2). Control IR data included has been used from previous experiment. 
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Figure 5.2 Infarct size to risk ratio (%) in isolated perfused hearts subjected to 35 minutes of ischaemia and 

120 minutes reperfusion in the presence and absence of Salbutamol (0.1µM) and with co-administration of 

b1AR antagonist CGP 20712 (0.0014µM) throughout the reperfusion period. Data presented as mean 

±SEM. n=6-8. ***p<0.001 vs. IR,  ###p<0.001 vs. SalB 0.1µM,  ##p<0.01 vs. SalB 0.1µM. 
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5.4.1.2 Effect of Salbutamol in the presence or absence of the b1AR antagonist CGP 
20712 in a model of Oxidative Stress 

 

Cardiomyocytes were subjected to laser stimulation in the presence of Salbutamol (0.1µM) in 

addition to the presence and absence of CGP 20712 (0.0014µM). Cardiomyocytes subjected 

to administration with Salbutamol (0.1µM) alone decreased time to the onset of 

depolarisation however it did not reach significance when compared to control (218 ± 20s vs. 

234 ± 18s). No significant change in time to the onset of depolarisation was observed in 

cardiomyocytes administered with Salbutamol and CGP 20712 when compared to control 

cardiomyocytes (221 ± 17s vs. 234 ± 18s, Figure 5.3). 
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Figure 5.3 The effects of Salbutamol (0.1µM) on time taken to depolarisation in isolated rat cardiac 

myocytes in a model of oxidative stress in the presence or absence of b1AR antagonist CGP 20712 

(0.0014µM).  Data presented as mean ±SEM. n=6-8.  
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Salbutamol (0.1µM) significantly decreased the time to hypercontracture in isolated 

cardiomyocytes when compared to non-treated control groups (524 ± 23s vs. 663 ± 40s, 

p<0.001, Figure 5.4). Co-administration of Salbutamol (0.1µM) and CGP 20712 (0.0014µM) 

significantly decreased time taken to hypercontracture when compared to non-treated control 

groups also (528 ± 8s vs. 663 ± 40s, p<0.01). Interestingly, cardiomyocytes treated with b1-

AR antagonist CGP 20712 alone, significantly increased the time taken to hypercontracture 

when compared to Salbutamol treated groups (626 ± 18s vs. 528 ± 8s, p<0.05, Figure 5.4).  
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Figure 5.4 The effects of Salbutamol (0.1µM on time taken to hypercontracture in isolated rat cardiac 

myocytes in a model of oxidative stress in the presence or absence of b1AR antagonist CGP 20712 

(0.0012µM). n=6-8. Data presented as mean ±SEM. n=6-8.***p<0.001 vs. control, **p<0.01 vs. control, 
#p<0.05 vs. SalB (0.1µM), $p<0.05 vs. SalB + CGP 20712.  
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5.4.1.3 The effect of Salbutamol on signalling protein p-Akt by assessment of Western 
blotting with co-administration of b1AR antagonist CGP 20712 

 

Investigation into the signalling protein p-Akt (Ser473), was carried out in the presence of 

Salbutamol (0.1µM) in the absence or presence of CGP 20712 (0.0014µM). Hearts were 

reperfused with Salbutamol in combination with CGP 20712 for 120 minutes throughout 

reperfusion after 35 minutes ischaemia. IR control hearts showed a significant increase in 

levels of p-Akt when compared to normoxic hearts (100 ± 14% vs. 69 ± 20%, p<0.01). 

Hearts treated with Salbutamol (0.1µM) significantly increased levels of p-Akt when 

compared to IR control hearts (240 ± 10% vs. 100 ± 14%, p<0.001, Figure 5.5).  

Interestingly, co-administration of Salbutamol (0.1µM) and CGP 20712 (0.0014µM) 

significantly decreased levels of p-Akt when compared to Salbutamol treated hearts, 

suggesting presence of CGP 20712 abrogates the effect of Salbutamol on p-Akt activation 

(42 ± 10% vs. 240 ± 10%, p<0.01, Figure 5.5). Co-administration of Salbutamol (0.1µM) and 

CGP 20712 (0.0014µM) also significantly decreased levels of p-Akt when compared to IR 

control hearts (42 ± 10% vs. 100 ± 14%, p<0.01) 

Levels of p-Akt in hearts administered with CGP 20712 (0.0014µM) alone showed a 

significant decrease when compared to time matched IR control hearts however a decrease 

was observed (47 ± 1% vs. 100 ± 14%, p<0.05). Normoxic, control IR and Salbutamol data 

included has been used from previous experiment. 

 



    

 

 

177 

 

Figure 5.5 The effects of Salbutamol (0.1µM) on the levels of phosphorylated p-Akt after exposure to 35 minutes 

ischaemia and 20 minutes of reperfusion in the presence and absence of CGP 20712 (0.0014µM). Data presented as 

mean ±SEM. n=3. ***p<0.001 vs. Normoxic, *p<0.05 vs. Normoxic, ##p<0.001 vs. IR, #p<0.05 vs. IR,  $$$p<0.001 vs. 

SalB (0.1µM).  

 

Figure 5.6 Representative blot of p-Akt and t-Akt when Salbutamol (0.1µM) was administered throughout 

reperfusion for 120 minutes after 35 minutes ischaemia in the presence and absence of CGP 20712 (0.0014µM) 
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5.4.1.4 The effect of Salbutamol on signalling protein p-Erk by assessment of Western 
blotting with co-administration of b1AR antagonist CGP 20712 

 

Administration of Salbutamol (0.1µM) in the presence and absence of CGP 20712 

(0.0014µM) had a no significant change on levels of p-Erk when compared to control IR 

control hearts. Interestingly, a significant decrease in p-Erk was observed when hearts were 

co-administered with Salbutamol(0.1µM) and CGP 20712 (0.0014µM) when compared to 

Salbutamol alone (43 ± 14% vs. 75 ± 26%, p<0.05, Figure 5.7). Normoxic, control IR and 

Salbutamol data included has been used from previous experiment. 
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Figure 5.7 The effects of Salbutamol (0.1µM) on the levels of phosphorylated Erk after exposure to 35 minutes 

ischaemia and 120 minutes of reperfusion in the presence and absence of CGP 20712 (0.0014µM). Data 

presented as mean ±SEM. n=3. *p<0.05 vs. IR.  

 

Figure 5.8 Representative blot of p-Erk and t-Erk when Salbutamol (0.1µM) was administered throughout 

reperfusion for 120 minutes after 35 minutes ischaemia in the presence and absence of CGP 20712 (0.0014µM) 
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5.4.1.5 The effect of Salbutamol on signalling proteins cleaved caspase 3 with co-
administration of the b1AR antagonist CGP 20712 by assessment of flow 
cytometry 

	

Hearts	 treated	 with	 the	 co-administration	 of	 Salbutamol	 (0.1µM)	 and	 CGP	 20712		

(0.0014µM)	 significantly	 increased	 (p<0.01)	 levels	 of	 activated	 caspase	 3	 when	

compared	to	HR	cardiomyocytes	(214	±	73%	vs.	100	±	20%,	p<0.01)	(Figure 5.9).	
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Figure 5.9 The effects of a Salbutamol (0.1µM) on cleaved caspase 3 in the absence and presence of CGP 20712 

(0.0014µM). Isolated myocytes were exposed to 2 hours hypoxia followed by 4 hours reoxygenation in the presence or 

abscene of the drug. Data presented as mean ±SEM. n=6-8. ***p<0.001 vs. Normoxic, *p<0.05 vs. Normoxic, ##p<0.01 

vs. HR, #p<0.05 vs. HR. 	
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5.5 Discussion 

It has been reported that Salbutamol can cause and exacerbate injury on the heart in 

conditions of myocardial ischaemia and in patients with underlying ischaemic heart disease, 

hypertrophy or cardiomyopathy (Odigie-Okon et al., 2010). Salbutamol as a specific b2AR 

agonist allows it to target these receptors specifically due to its high affinity (Bandaru et al., 

2015, Dougall et al., 1991). Any toxic effect we have observed from previous studies, we 

assumed to be due to the activation of the b2AR based on affinity values alone. However, it is 

possible that partial agonists, such as Salbutamol, in higher concentrations are capable of 

acting non-specifically on other receptors. With this attribute, we must investigate 

Salbutamol’s effect by the sole activation of the b2ARs. As an experimental model, the use of 

Isoproterenol to induce myocardial ischaemia and infarction is widely accepted in addition to 

developing models of heart failure via ventricular hypertrophy (Upaganlawar and Balaraman, 

2011).  

 

In this study, we antagonised the b1ARs with the specific antagonist CGP 20712 in the 

presence of Salbutamol and investigated the effect on cardiomyocytes, cytotoxicity, 

signalling proteins and infarct to risk ratio. Normoxic and control IR data for this protocol 

were used from previous experiments as discussed in section 3.5. 

  

We have previously demonstrated that administration of Salbutamol (0.1µM-1µM) 

exacerbates myocardial ischaemia reperfusion injury with an increase in infarct size and have 

also observed a decrease in MTT reductase activity in cardiomyocytes exposed to HR 

conditions (Figure 5.1 & Figure 5.2). The current study investigated the effects of Salbutamol 



    

 

 

183 

(0.1µM) co-administered with CGP 20712 (0.0012µM) in the model of cytotoxicity and in 

the model of isolated perfused rat heart model and myocardial ischaemia reperfusion injury. 

 

Co-administration of CGP 20712 with Salbutamol increased MTT reductase activity similar 

to levels observed in HR control cardiomyocytes; whilst Salbutamol treated cardiomyocytes 

reduced MTT reductase activity. This increase in reductase activity with CGP 20712 and 

Salbutamol implies a decrease of injury to cardiomyocytes. A similar finding was reflected in 

the model of ischaemia reperfusion. In the presence of Salbutamol and CGP 20712, a 

decrease in infarct to risk (I/R) ratio was observed when compared to hearts administered 

with Salbutamol (0.1µM) alone, however the size of the I/R ratio was not reduced to IR 

control levels and was still significantly higher.  

 

The MTT assay is sensitive in detecting cell viability, as a result some results may not reflect 

similar results seen in other models such as the ischaemia reperfusion injury model 

(Steenbergen et al., 1978, Gomez et al., 1997). MTT assay sensitivity is unable to determine 

between apoptosis or necrosis nor the early stages of cardiomyocyte cell death and therefore 

can determine that ‘healthy rod shaped’ cardiomyocytes in addition to those cardiomyocytes 

undergoing cell death rather than cardiomyocytes that had completed the cell death process, 

explaining a stronger protective effect of CGP 20712 on cardiomyocytes (Gomez et al., 1997, 

Piper et al., 1984).  

 

A reduction in the I/R ratio in hearts co-administered with Salbutamol and CGP 20712, when 

compared to hearts treated with Salbutamol alone, indicates that there is some activation of 

b1ARs, however Salbutamol’s exacerbation of injury indicate an involvement of the b2ARs. 

All agonists and antagonists have an efficacy and affinity for receptors (Strange, 2008). It is 
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the level of efficacy and/or affinity that determines how an agonist (full or partial) is subtype 

selective not only to receptor type, but also sub-receptor type i.e. GS or Gi (Baker, 2010). 

Salbutamol has a 29 times greater affinity for b2ARs than b1AR’s in the racemic version of 

Salbutamol (Cockcroft and Swystun, 1997), interestingly the ‘R’ enantiomer of Salbutamol 

has 150 times greater affinity for b2AR’s than S-Salbutamol(Ameredes and Calhoun, 2006). 

Salbutamol administered in clonal CHO-K1 cell lines transfected with a range of beta-

adrenergic receptors (b1, b2 and b3), showed to have a very high affinity and efficacy for 

b2ARs over other any other type b-adrenoceptors such as Formoterol and Salmeterol (Baker, 

2010). With a high affinity of CGP 20712 for b1ARs, we can be conclude in our experiments 

that b1ARs were antagonised allowing Salbutamol to solely act on b2ARs thus confirming 

that the toxicity of Salbutamol is occurring via activation of the b2ARs in the Langendorff 

model of ischaemia reperfusion injury, however some injury is caused by activation of b1-

ARs.  

 

All b-adrenergic receptors are capable of binding to GS pathway, however b2ARs are unique 

and capable of binding to the Gi pathway (Baker, 2010, Brodde and Michel, 1999). 

Cardiomyocyte apoptosis via activation of bARs has been strongly linked with specific 

activation of the b1AR, which is only able to activate the GS pathway (Spear et al., 2007). 

Either b1AR or b2AR-GS activation initiates coupling adenylyl cyclase to increase cAMP 

levels, which further activates Protein Kinase A (PKA) (Desantiago et al., 2008). The 

activation of PKA is key to activating signalling proteins shown to initiate cell apoptosis and 

necrosis in a dependent and independent manner (Spear et al., 2007). Active PKA 

phosphorylates several of the sarcolemma signalling proteins including L-type Ca2+ channels, 

phospholamban and ryanodine receptors, all of which contribute to the influx and efflux of 
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Ca2+ ions, which at high concentrations can cause apoptosis by altering the permeability of 

mitochondria (Kamp and Hell, 2000, Kaumann and Molenaar, 1997). In contrast, Gi pathway 

activation is able to inhibit the GS pathway cascade by inhibition of the production of 

adenylyl cyclase thus reducing cAMP production resulting in a decrease in levels of calcium 

levels and also an increase in pro-survival proteins such as Akt and MAPK (Hill and Baker, 

2003).  

 

PKA is also involved in the switching of b2ARs from GS to Gi by direct phosphorylation of 

b2ARs by uncoupling them from GS and enhancing binding to Gi (Martin et al., 2004). In 

addition to PKA, the specialist GPCR kinase (GRK) GRK2 has been shown to directly 

phosphorylate the b2AR-GS pathway to uncouple GS and encourage Gi coupling, especially on 

agonist activated b2ARs (Pavoine and Defer, 2005). Elevated GRKs levels recruit b-arrestins 

to bind to GS to prevent any further binding by b2ARs thus encouraging binding to Gi (Zhu et 

al., 2012). The influence and importance of GRKs role has been shown in mouse and rat 

cardiomyocytes by inhibition of GRK directly via GiCT (specific Gi inhibitor peptide) and 

mutations at sites of GRK phosphorylation whereby PKA phosphorylation levels alone were 

not sufficient enough to cause b2AR-Gi activation (DeGeorge et al., 2008, Liu et al., 2009, 

Wang et al., 2008). Liu and colleagues, in addition to demonstrating the influence of GRKs 

on Gi coupling, showed that the concentration of GRKs is dose dependent on an agonist i.e. a 

higher concentration of agonist activates GRKs (Liu et al., 2009).  

 

In the presence of Isoproterenol (non selective bAR agonist), concentrations <0.1µM showed 

minute activity of GRKs however concentrations >0.1µM, GRKs were active and an increase 

in Gi coupling was recorded (Liu et al., 2009). The importance of GRK in pro-survival 
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signalling has been demonstrated in studies in myocardial ischaemia and hypertension, as 

with the inhibition of GRK, an increase in apoptotic cardiomyocyte was recorded (Hata and 

Koch, 2003, Zhu et al., 2012). With the activation of GS pathway as the primary link to the 

induction of cardiomyocyte apoptosis and the activation of Gi linked to being anti-apoptotic, 

we propose that Salbutamol’s toxic effect is via activation of b2AR-GS pathway.  

 

In the model of oxidative stress a significant decrease in time taken to the onset of 

hypercontracture was recorded in cardiomyocytes administered with Salbutamol and also 

with the co-administration of CGP 20712 when compared to control cardiomyocytes. 

Interestingly, a decrease in time taken to the onset of depolarisation (no significance) was 

observed similarly in cardiomyocytes administered with Salbutamol and CGP 20712 when 

compared to control. This decrease can be linked to the change in the mitochondria 

permeability of the cardiomyocytes, in particular to ROS and Ca2+
 (Szalai et al., 1999).  

 

Isoproterenol’s ability to induce myocardial ischaemia and infarction in rat hearts has been 

investigated extensively. As discussed in Chapter 3, the production of catecholamines by 

Isoproterenol is a factor contributing to damaging of the myocardium and can induce 

myocardial ischaemia and/or infarction in hearts via production of ROS(Navarro-Sobrino et 

al., 2010, Lobo Filho et al., 2011). The use of Isoproterenol on rat myocardium demonstrated 

a significant reduction in Superoxide Dismutase (SOD), an antioxidant as a protective feature 

of the myocardium against free radicals (Dhalla et al., 2000, Halestrap et al., 1997b). 

Isoproterenol’s maladaptive effect on the sodium/calcium exchanger (NCX) has been shown 

in pancreatic beta cells to increase levels of calcium ions which has lead to calcium 

dependent cell apoptosis (Hudecova et al., 2013). In relation to our findings with Salbutamol, 

we can postulate that upon Salbutamol induced calcium release a similar effect may occur on 
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the NCX resulting in the premature opening of the mPTP as seen in our experiments. The 

calcium release as a result of a maladaptive NCX has been localised to the endoplasmic 

reticulum causing complete depletion of calcium stores increasing stress on the mPTP 

(Herchuelz et al., 2002). In Chapter 3 we demonstrated the chronotropic effects of both 

Isoproterenol and Salbutamol. With increase in heart rate, the number of cardiac cycles 

increases thus resulting in more cardiomyocyte contractions. Work by Bell and colleagues 

(2006) in rat cardiomyocytes used Isoproterenol to demonstrate a correlation between 

intracellular calcium release and ATP synthesis (Bell et al., 2006). Their findings showed that 

with increasing cardiac cycles, an increase in ATP occurs. However, in respect to our 

findings with Salbutamol inducing premature opening of the mPTP resulting in faster times 

to the onset of hypercontracture, we can apply this logic that with increased Salbutamol 

induced calcium release as a stressor to the mPTP, an increase in ATP demand would be 

required. At the point of reperfusion the sarcoplasmic reticulum experiences a calcium 

overload triggering Sarcoplasmic Reticulum Ca2+-ATPase (SERCA), which increases uptake 

of calcium, however due to the increased calcium from reperfusion, calcium levels exceed 

those that can be handled thus initiating release from ryanodine receptors (Ruiz-Meana and 

Garcia-Dorado, 2009). The ‘window of opportunity’ has been highlighted in respect of the 

time immediately after reperfusion as a very detrimental time to mitochondria (Hausenloy et 

al., 2005).  

 

With the activation of b2AR-GS pathway in the presence of Salbutamol, reported elevated 

release of Ca2+
 from the sarcoplasmic reticulum occurs thus elevating intracellular Ca2+

 

within cardiomyocytes through the mPTP (Keller et al., 2014). The elevated release of Ca2+ is 

regulated with an influx into mitochondria (Giorgi et al., 2012). This increase in cytosol Ca2+ 

can causes a calcium overload initiating pro-apoptotic proteins in particular cytochrome c 
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(Joza et al., 2001). The increased concentration of Ca2+ in conjunction with the elevated ROS 

from laser stimulation of TMRM causes increased stress within the mitochondria, which 

initiates the opening of the mPTP (Giorgi et al., 2012). The time to the onset of 

hypercontracture seen with the co-administration of Salbutamol and CGP on cardiomyocyte 

hypercontracture is no different when compared to cardiomyocytes treated with Salbutamol 

alone. This further support Salbutamol’s toxic effect is via activation of b2ARs.  

 

The mPTP is still debated in regards to its structure and specific functionality, however the 

inclusion of the Voltage Dependent Anion Channel (VDAC) as a part of the mPTP, has been 

described to be responsible in particular for the movement of Ca2+ across the outer 

mitochondrial membrane. The location of VDAC between the cytosol and mitochondria are 

located in close proximity between mitochondria and the sarcoplasmic reticulum (Shoshan-

Barmatz et al., 2006, Szabadkai et al., 2006). Further high-resolution 3D electron topography 

identified that up to 20% of the mitochondria surface is in contact with the sarcoplasmic 

reticulum making Ca2+ available a lot quicker for uptake directly by mitochondria rather than 

previously thought vesicular transport of Ca2+ (Marsh et al., 2001). With such a close 

proximity between the sarcoplasmic reticulum and mitochondria, Salbutamol b2AR-GS 

activation would allow a more rapid release of Ca2+ thus causing a Ca2+ overload leading to a 

faster depolarisation time and faster time to the onset of hypercontracture that we consider 

the initiation of cell death via apoptosis. In addition to Ca2+ overload, which is present during 

myocardial ischaemia and reperfusion, in conjunction with ROS, further damage to the 

mitochondria initiates cardiomyocyte death. ROS initiation alone is sufficient enough to 

cause mitochondrial damage, however a combination of both these stresses would be 

‘overwhelming’ and detrimental to the composition and functioning of the mPTP in any 

cardiomyocyte. This can be linked to the scenario we observed in the oxidative stress model 
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that both Ca2+ overload and ROS initiate the rapid onset of hypercontracture due to the 

delay’s observed in depolarisation. Activation of Protein Kinase C (PKC), another regulatory 

kinase of Ca2+, is also activated upon bAR stimulation. In doing so, direct phosphorylation by 

PKC on p66Shc has shown to cause an increase in free radicals via oxidation of cytochrome c 

once p66Shc has translocated into the mitochondria (Giorgi et al., 2012, Pinton et al., 2007, 

Pinton et al., 2008). This action of p66Shc may give further reason to the toxic effect of 

Salbutamol by production of ROS causing premature opening of the mPTP. 

 

Control and Salbutamol data obtained from other western blots have been used throughout 

the results section. A limiting factor of such practice can be the degradation of the collected 

tissue samples due to the time elapsed between running the gels. To minimise this, raw tissue 

samples were snap frozen in liquid nitrogen (as described in section 2.7.1) in order to freeze 

or cellular activity. This sample can be kept for a long period of time and homogenised when 

required. Further to this, to prevent any further phosphorylation of samples during the 

homogenisation stage, a phosphorylation inhibitor (Phos-STOP) was added. The time 

between running gels was kept to a minimum with all gels being run and probed for each 

study in this thesis within 1-2 months to minimize any parameters of the experiment that may 

affect the data. To further reduce this as a limiting factor, a housekeeping gene, GAPDH, was 

used in all western experiments to ensure equal loading due to its high expression in rat tissue 

(Mahmood and Yang, 2012).  

 

Elevated levels of p-Akt were observed in hearts treated with Salbutamol (0.1µM). These 

findings have been recorded in previous studies that also identified elevated activity of the 

PI3K/Akt pathway and p-Erk levels in neonatal rat cardiomyocytes in response to bAR 

stimulation (Pavoine and Defer, 2005, Steinberg, 2004,, Steinberg, 2004, Zhang et al., 2011). 
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We have previously discussed in detail the detrimental effects of chronic activation of p-Akt 

(Chapter 4) as a mechanism that may contribute to the increased I/R ratios we have recorded 

with Salbutamol treated hearts. Interestingly, the combination of b1AR antagonist CGP 

20712 with Salbutamol, significantly decreased expression of p-Akt when compared to 

Salbutamol treated hearts (Figure 5.5). However, with elevated I/R ratios recorded with 

Salbutamol and CGP 20712 when compared to IR control hearts, and a recorded decrease in 

p-Akt expression, another signalling pathway must be recruited in order to initiate 

cardiomyocyte cell death. One such pathway we propose is the p-Erk pathway. Previous 

studies have identified cross talk between Akt and Erk, specifically at the Akt Raf 1 level. In 

these circumstances, increased levels of p-Akt inhibit Raf 1 at serine259 (Moelling et al., 

2002). CGP 20712 administration to Salbutamol treated hearts showed, although not 

significant, a decrease in expression of p-Erk. Recruitment of this particular MAPK is a key 

protein in the reperfusion injury salvage kinase pathway (RISK) (Hausenloy et al., 2005). 

Our recorded levels of p-Erk were lower than time matched control IR hearts suggesting that 

the reduced recruitment of p-Erk is not able to inhibit downstream pro-apoptotic proteins 

such as BAD by phosphorylation at serine112 by ERK activated p90RSK (Lu and Xu, 2006).  

 

A significant elevation in levels of cleaved caspase 3 activity was recorded in hearts treated 

alone with Salbutamol (0.1µM)(Figure 5.9). Activation of cleaved caspase 3 has been linked 

to the release of cytochrome c from mitochondria initiating the caspase 9- caspase 3 cascade 

leading to cell apoptosis (Li et al., 2010). The formation of an apoptosome with cytochrome 

c, Apaf-1 and initiator caspase 9 allows caspase 9 to cleave further effector caspases as part 

of the intrinsic cell death pathway (Parsons and Green, 2010). Emphasis on the importance of 

caspase 3 activation, linked to reperfusion injury, has been demonstrated by Hussain and 

colleagues (2014) by inhibition of caspase 3 activation through adenosine receptors in rat 
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hearts (Hussain et al., 2014). Further to this, bARs, as mentioned earlier, have been linked to 

inducing apoptosis via the mitochondrial death pathway, in particular via activation of the 

b1AR/Gs pathway (Communal and Colucci, 2005). Increased cleaved caspase 3 with 

Salbutamol treated hearts compared to IR control hearts identifies that cardiomyocytes are 

undergoing an additional source of stress other than that caused by reperfusion. With the 

administration of b1AR antagonist CGP 20712, an increase was in cleaved caspase 3 was 

recorded when compared to Salbutamol treated hearts. This increase may be explained with a 

link to the selective activation of cardiomyocyte b2ARs and the observed detrimental effects 

in the Langendorff model and oxidative stress model that has been observed in this chapter. 

In contrast to previous studies of that b2AR activation results in anti-apoptotic signalling 

pathways, we demonstrate the opposite effect of activation of the b2AR receptor. The 

resulting effects of antagonising the b2AR will be discussed in the next chapter (Chapter 6).  

 

This study confirms that the b2AR receptor is responsible for some toxicity observed with 

Salbutamol in the model of ischaemia reperfusion and in cardiomyocytes. Investigation of 

signalling proteins suggest that the mechanism by which Salbutamol causes its toxicity is via 

dual activation of both the b2AR-Gs and Gi pathways, with suggestions of desensitisation of 

bARs and ventricular remodelling. Chronic activation of p-Akt has been shown to increase 

maladaptive effects of pro-survival signalling leading to increased myocardial infarction, 

hypertrophy and heart failure. Further to this, rapid activation of p-Akt has also been shown 

to inhibit expression of p-Erk at by inhibition of Raf 1 of the Ras/Raf/Erk signalling pathway. 

Activation of such pathways has shown to increase ROS and a suggestion of Salbutamol’s 

effect influencing Calcium release by the sarcoplasmic reticulum, with both these stresses 
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being detrimental to the cardiomyocytes due to the opening of the mPTP causing premature 

cardiomyocyte death.   

Further investigations into the possibility of non-selective behaviour of Salbutamol must be 

carried out to determine if activation of b1ARs contribute to the toxicity. 
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6 Chapter 6: The Effect Of The Short Acting b Adrenergic 

Receptor Agonist Salbutamol in Myocardial Ischaemia 

Reperfusion Injury In The Presence of b2 Adrenergic Receptor 

Antagonist ICI 118, 551 

6.1 Introduction 

With the use of the b1AR antagonist CGP 20712, it was established that Salbutamol’s 

detrimental effect on the heart was via activation of the b2AR receptor cell signalling 

pathway (Chapter 5). Activation of the b2ARs was shown to increase in levels of Akt and 

reduced levels of Erk. In this chapter we focus on using the b2AR antagonist ICI 118, 551 to 

establish if there may be a non-selective capability of Salbutamol to activate b1ARs that may 

contribute to the toxicity caused by Salbutamol. In addition to using the b2AR antagonist, co-

administration of ICI 118, 551 and CGP 20712 in the presence of Salbutamol was also 

investigated to observe if the toxic effect of Salbutamol could be abolished.  

 

Partial agonists, such as Salbutamol, must occupy a higher proportion of receptors than full 

agonists to cause a therapeutic effect (Johnson, 2001). b2ARs have a 67% identical homology 

to b1ARs and other GPCRs (Warne et al., 2008, Johnson, 2006). Typically the b2AR structure 

includes a 7 transmembrane region made up of a helices and 3 extracellular loops with a 

carboxy-terminus (Johnson, 2006, Mialet-Perez et al., 2004). b2ARs exist in an equilibrium 

state between inactive and active. Activation of b2ARs is similar to that of b1ARs as both are 

bound to Gs subunits, shifting the equilibrium to a high-energy active state (Rasmussen et al., 

2011, Warne et al., 2008).  
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The Gs subunit attached with a guanosine diphosphate (GDP) is replaced by guanosine 

triphosphate (GTP) upon activation by a ligand, such as Salbutamol. Rather than eliciting a 

conformational change of the receptor, Salbutamol, as well as other partial and full agonists, 

has shown to stabilise the receptor in their active states ( Johnson, 2006, Onaran et al., 1993). 

Swaminath and colleagues (2005) suggested that the aromatic ring of Salbutamol interacts 

with the second extracellular loop of the b2AR and the carboxy-terminal end of 

transmembrane 6 (Swaminath et al., 2005). 

 

Stimulation of Gs subunits activates the adenylyl cyclase (AC)-cAMP-PKA pathway, which 

results in the release of calcium ions from the sarcoplasmic reticulum in addition to other 

sources (Zaugg et al., 2000, Zhu et al., 2003). Unlike b1ARs, which only have the capability 

of binding to Gs subunits, b2ARs can also bind and activate the Gi subunit causing an 

inhibitory effect (Woo and Xiao, 2012). The inhibitory effects of b2AR-Gi  stimulation has 

been shown to reduce levels of AC, cAMP and PKA (Duarte et al., 2012).  

 

Distribution of b2ARs are widespread on a variety of tissues such as the lining of the trachea, 

smooth muscle lining in the lungs and coronary endothelial, vascular smooth muscle and 

cardiomyocytes in the heart (Barbato et al., 2005). In normal healthy hearts the distribution of 

b1:b2 adrenergic receptors is in favour of b1 with an approximate ratio of 80%:20% located at 

the cell crest of cardiomyocytes (Cros and Brette, 2013). The specific distribution of b2ARs 

are focussed deep within the t-tubules, which are deep sarcolemmal invaginations found at 

the Z line (Cros and Brette, 2013). Cros and Brette (2013) also described that the 

compartmentalization of b2ARs was also confined specifically within the caveolae, which are 

located along the surface of the sarcolemma and t-tubules (Cros and Brette, 2013, Balijepalli 
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and Kamp, 2008). During detrimental conditions to the heart such as heart failure, 

cardiomyopathy, ischaemic heart disease and myocardial infarction, the re-distribution of 

bARs has been observed, in particular the redistribution and number of bARs in favour of 

b2ARs (Nikolaev et al., 2010). Using a combination of scanning ion conductance microscopy 

(SICM) with the detection of cAMP production, Nicolaev and colleagues (2010) confirmed 

the redistribution of b2ARs in the failing myocardium after inducing heart failure via 

myocardial infarction in the rat heart. Specifically, the b2ARs were shown to redistribute 

from the t-tubules to the cell crest (Nikolaev et al., 2010).  

 

Overexpression of b2ARs in rat hearts was shown to cause an increase in ischaemic injury, 

contradictory to the suggestion of the b2AR-Gi pathway promoting cell survival via activation 

of  Erk MAPK (Cross et al., 1999). 

Desensitization and cardiac remodelling are common attributes in the failing heart effecting 

bARs (Heusch, 2013). The effect of desensitization on b2ARs is to protect the receptor itself 

during short-term stimulation, however during overstimulation for long periods of time, the 

receptor can become maladaptive and cause further damage via internalisation (Lipsky et al., 

2008). An example of a maladaptive response of b2ARs has been noted in the coronary 

arteries. Normal b2AR stimulation within coronary arteries induces vasodilation, whereas in 

hearts with mild atherosclerotic coronary arteries, the vasodilation response was reduced, 

further still, in stenotic coronary arteries treated with Salbutamol, a vasoconstrictive response 

was recorded leading to some patients presenting with symptoms of angina (Barbato et al., 

2005). 
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The use of antagonists on bARs can be therapeutic to the heart to treat conditions including 

angina, arrhythmias, cardiomyopathy, hypertension and patients who have suffered from 

acute myocardial infarction (Frishman, 2013). The use of the antagonist ICI 118, 551 has a 

550-fold specificity for b2ARs over b1ARs (Baker, 2005a, Warne et al., 2008). The 

mechanism by which ICI 118, 551 antagonises the receptor is through its high affinity for the 

receptor and shifting the activation state of the b2AR towards the inactive state. b-antagonists 

do not compete with full or partial agonists for receptor activation at the same site of the 

bAR, this is a result of antagonists and agonists interacting with the bARs at different sites 

(Johnson, 2001, Johnson, 2006).  

6.2 Aims 

The aims of the current study were to investigate the effects of the short acting b adrenergic 

receptor agonist Salbutamol by using the isolated perfused Langendorff heart model of 

ischaemia reperfusion injury, the oxidative stress cardiac myocyte model, the MTT assay. 

Salbutamol was administered in the presence and absence of the b2AR antagonist ICI 118, 

551 to determine the role of b2AR signalling in Salbutamol induced myocardial injury. 
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6.3 Methods 

6.3.1 Langendorff protocol 

Briefly, Sprague-Dawley rats were sacrificed by cervical dislocation and cannulated to the 

Langendorff setup and perfused with KHB as described in section 2.3. Hearts were allowed 

to stabilise for 20 minutes followed by 35 minutes of regional ischaemia and 120 minutes of 

reperfusion. One minute before the onset of reperfusion hearts were administered Salbutamol 

(0.1µM) in the absence or presence of b Adrenergic Receptor antagonists CGP 20712 

(0.0014µM). At the end of the experiment hearts underwent infarct to risk ratio analysis. 

Haemodynamic data were collected throughout the study.  

For western tissue collection, hearts were reperfused with Salbutamol (0.1µM) for either 5, 

20 or 120 minutes in the presence or absence of ICI 118, 551 (0.0012µM). After the time 

elapsed, hearts were removed and the left ventricle removed and snap frozen in liquid 

nitrogen.  

6.3.2 Western blot analysis 

Analysis of tissue by western blot was carried out as described in section 2.7. Briefly, 

following gel electrophoresis, proteins were transferred to a PVDF membrane and probed for 

the phosphorylated and total forms of the proteins: phospho-Akt (Ser473) (1:1000) and 

phospho-p44/p42 (Erk 1/2, Thr202/Tyr204) (1:1000).  
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6.3.3 Adult rat cardiac myocyte isolation 

Briefly, male Sprague Dawley rats were sacrificed by cervical dislocation and the hearts 

excised and cannulated onto modified Langendorff apparatus and perfused with a constant 

flow rate of 14ml/min as described in section 2.4. Hearts were perfused for 3-4 minutes with 

calcium free modified Krebs Heinsleit Buffer. The buffer was then switched and the hearts 

perfused with digestion buffer for 7 minutes. Isolated ventricular myocytes were used for the 

oxidative stress model, MTT assay and flow cytometric analysis of cleaved caspase 3 as 

described previously in sections 2.5.2, 2.5.3, 2.6. Myocytes were assigned to one of the 

following groups: a) Control (KHB) b) Salbutamol (0.1µM) c) ICI 118, 551 + Salbutamol d) 

ICI 118, 551 (0.0012µM). 

6.3.4 Statistical analysis 

All data were presented as a mean of the stabilisation period ± SEM. Infacrt size, times taken 

to depolarisation and hypercontracture and western blot data were tested using one way 

ANOVA with a Fishers Least Significance Test post hoc test to determine any significance 

between groups. p<0.05 was considered to be significant. 
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6.4 Results 

6.4.1 Effect of Salbutamol co-administered with ICI 118 551 on cardiomyocytes assessed 

by MTT  

Cardiomyocytes underwent 2 hours hypoxia followed by administered with Salbutamol 

(0.1µM) and ICI 118, 551 (0.0012µM) for 2 hours re-oxygenation (HR). A significant 

decrease in MTT reductase activity was recorded via spectrophotometry analysis when HR 

control cardiomyocytes were compared to Normoxic cardiomyocytes (100 ± 3% vs. 209 ± 

8%, p<0.01, Figure 6.1) Salbutamol (0.1µM) significantly decreased MTT reductase activity 

when compared to HR cardiomyocytes (76 ± 1% vs. 100 ± 3%, p<0.05, Figure 6.2) 

Interestingly, Salbutamol (0.1µM) in the presence of ICI 118, 551 (0.0012µM) caused a 

significant increase in reductase activity when compared to cardiomyocytes treated alone 

with Salbutamol (0.1µM) (129 ± 2% vs. 76 ± 1%, Figure 6.1).  
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Figure 6.1 The MTT cytotoxic effect of Salbutamol (0.1µM) on the viability of cardiomyocytes in the 

presence and absence of b2 adrenergic receptor antagonist ICI 118, 551 (0.0012µM). Data presented as mean 

± SEM. n=6-8. **p<0.01 vs. Normoxic, #p<0.05 vs. HR, $p<0.05 vs. SalB 0.1µM 
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6.4.1.1 The effect of Salbutamol with co-administration of ICI 118, 551 on Infarct to Risk 
Ratio in isolated hearts subjected to ischaemia reperfusion injury  

 

Hearts administered with Salbutamol (0.1µM) in the presence and absence of b2AR 

antagonist ICI 118, 551 (0.0012µM) underwent 35 minutes ischaemia followed by 120 

minutes reperfusion. Salbutamol significantly increased I/R ratio when compared to IR 

control hearts (76 ± 3% vs. 51 ± 2%, p<0.001, Figure 6.2). Interestingly, Salbutamol in the 

presence of ICI 118, 551 abrogated the I/R ratio effect caused by hearts treated alone with 

Salbutamol (51 ± 3% vs. 76 ± 3%, p<0.001, Figure 6.2). A significant decrease in I/R ratio 

was observed in hearts administered with a combination of both bAR antagonists ICI 118, 

551 (0.0012µM), CGP 20712 (0.0014µM) and Salbutamol (0.1µM) when compared to hearts 

treated with Salbutamol (0.1µM) alone (52 ± 3% vs. 76 ± 3%, p<0.001, Figure 6.2). 

Hearts treated with ICI 118, 551 alone had no significance on I/R ratio when compared to 

control hearts. Control IR and Salbutamol data has been used from previous experiment.  
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Figure 6.2 Infarct size to risk ratio (%) in isolated perfused hearts subjected to 35 minutes of ischaemia and 

120 minutes reperfusion. Hearts were reperfused in the presence of Salbutamol (0.1µM) with co-

administration of b2AR antagonist ICI 118, 551 (0.0012µM) alone or in the presence of both b1AR 

antagonists CGP 20712 (0.0014µM). Data presented as mean ±SEM. n=6-8. ***p<0.001 vs. IR,  ###p<0.001 vs. 

SalB 0.1µM 
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6.4.1.2 Effect of Salbutamol in the presence or absence of the b1AR antagonist ICI 118, 
551 in a model of Oxidative Stress 

 

Cardiomyocytes were subjected to laser stimulation in the presence of Salbutamol (0.1µM) in 

addition to the presence and absence of ICI 118, 551 (0.0012µM). Cardiomyocytes subjected 

to administration with Salbutamol (0.1µM) alone had no significant change on time to the 

onset of depolarisation when compared to control cardiomyocytes (226 ± 15s vs. 234 ± 18s, 

p>0.05, Figure 6.3). No significant change was observed in cardiomyocytes administered 

with the combination of Salbutamol (0.1µM) and ICI 118, 551 (0.0012µM) when compared 

to cardiomyocytes treated alone with Salbutamol (0.1µM) (230 ± 16s vs. 226 ± 15s, p>0.05, 

Figure 6.3). Cardiomyocytes were also treated with the combination of both bAR antagonists, 

ICI 118, 551 (0.0012µM), CGP 20712 (0.0014µM) and Salbutamol (0.1µM) however, no 

significant change in the time taken to the onset of depolarisation when compared to 

Salbutamol (0.1µM) treated cardiomyocytes (237 ± 15s vs. 226 ± 15s, p>0.005, Figure 6.3).  
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Figure 6.3 The effects of Salbutamol (0.1µM) on time taken to depolarisation in isolated rat cardiac 

myocytes in a model of oxidative stress in the presence or absence bsAR antagonist ICI 118,551 (0.0012µM).  

Data presented as mean ±SEM. n=6-8.  
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Salbutamol (0.1µM) significantly decreased the time to hypercontracture in isolated 

cardiomyocytes when compared to non-treated control groups (524 ± 23s vs. 663 ± 40s, 

p<0.001, Figure 6.4). Co-administration of Salbutamol (0.1µM) and ICI 118, 551 

(0.0012µM) significantly increased time taken to hypercontracture when compared to 

Salbutamol treated groups (601 ± 30s vs. 663 ± 40s, p<0.05, Figure 6.4). Interestingly, 

cardiomyocytes treated with both b1AR antagonist CGP 20712 (0.0014µM) and b2AR 

antagonist ICI 118, 551 (0.0012µM) in the presence of Salbutamol (0.1µM), significantly 

increased time taken to hypercontracture when compared to Salbutamol treated groups (592 ± 

10s vs. 528 ± 8s, p<0.05, Figure 6.4). Cardiomyocytes treated with both antagonists showed 

no significant effect in hypercontracture when compared to non-treated control groups. 
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Figure 6.4 Effects of Salbutamol (0.1µM) on time taken to hypercontracture in isolated rat cardiac myocytes 

in a model of oxidative stress. Salbutamol (0.1µM) treated cardiomyocytes were co-administered with b2AR 

antagonist ICI 118, 551 (0.0012mM) alone or a combination with b1AR antagonist CGP 20712 (0.0014µM). 
n=6-8. Data presented as mean ±SEM. n=6-8.**p<0.01 vs. control, #p<0.05 vs. SalB (0.1µM). 

 

 

 

 

 

Control SalB (0.1µM) SalB (0.1µM)
+ 

ICI 118 551
(0.0012µM)

ICI 118 551
(0.0012µM)

SalB (0.1µM) 
+ 

ICI 118 551 
(0.0012µM)

+ 
CGP 20712
(0.0014µM)

ICI 118 551
(0.0012µM)

+ 
CGP 20712
(0.0012µM)

0

200

400

600

800

Ti
m

e 
ta

ke
n 

to
 H

yp
er

co
nt

ra
ct

ur
e 

(s
ec

on
ds

)

**

# #

#



    

 

 

207 

6.4.1.3 The effect of Salbutamol on signalling protein p-Akt by assessment of Western 
blotting with co-administration of b2AR antagonist ICI 118, 551  

 

Investigation into the signalling protein p-Akt (Ser473), was carried out in the presence of 

Salbutamol (0.1µM) in the absence or presence of the b2AR antagonist, ICI 118, 551 

(0.0012µM) and in the absence or presence of b1AR antagonist CGP 20712 (0.0014µM). 

Hearts were reperfused with Salbutamol (0.1µM) in combination with ICI 118, 551 

(0.0012µM) for 120 minutes throughout reperfusion after 35 minutes ischaemia.  

 

IR control hearts showed a significant increase in levels of p-Akt when compared to 

normoxic hearts (100 ± 14% vs. 69 ± 20%, p<0.01). Hearts treated with Salbutamol (0.1µM) 

significantly increased levels of p-Akt when compared to IR control hearts (240 ± 10% vs. 

100 ± 14%, p<0.001, Figure 6.5). 

 

Interestingly, co-administration of Salbutamol (0.1µM) and ICI 118, 551 (0.0012µM) 

significantly decreased levels of p-Akt when compared to Salbutamol treated hearts, 

suggesting the presence of ICI 118, 551 abrogates the effect of Salbutamol on p-Akt 

activation (85 ± 8% vs. 240 ± 10%, p<0.001, Figure 6.5).  

 

Hearts treated with both antagonists ICI 118, 551 (0.0012µM) and CGP 20712 (0.0014µM) 

in the presence of Salbutamol (0.1µM), significantly decreased p-Akt expression when 

compared to hearts treated alone with Salbutamol (0.1µM) (33 ± 4% vs. 240 ± 10%, p<0.001, 

Figure 6.5). Interestingly, this combination significantly decreased p-Akt expression levels 

below levels seen in control IR hearts (33 ± 4% vs. 100 ± 14%, p<0.01, Figure 6.5). Control, 

IR time matched control and Salbutamol data has been obtained from previous western blot. 
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Figure 6.5 The effects of Salbutamol (0.1µM) on the levels of phosphorylated Akt after exposure to 35 

minutes ischaemia and 20 minutes of reperfusion in the presence of ICI 118, 551 (0.0012µM) or combination 

of both b1AR antagonist CGP 20712 (0.0014µM) and b2AR antagonist ICI 118, 551. Data presented as mean 

±SEM. n=6-8. *p<0.05 vs. Normoxic, ###p<0.001 vs. IR, #p<0.05 vs. IR, $$$p<0.001 vs. SalB (0.1µM), £p<0.05 

ICI 118, 551 (0.0012µM).

 

Figure 6.6 Representative blot of p-Akt and t-Akt when Salbutamol (0.1µM) was administered throughout 

reperfusion for 120 minutes after 35 minutes ischaemia in the presence and absence of ICI 118, 551 

(0.0012µM) or a combination of both b1AR antagonist CGP 20712 and b2AR antagonist ICI 118, 551 
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6.4.1.4 The effect of Salbutamol on signalling protein p-Erk by assessment of Western 
blotting with co-administration of b2AR antagonist ICI 118,551 

 

Administration of Salbutamol (0.1µM) had no significant effect on expression of p-Erk. 

Administration of Salbutamol (0.1µM) in the presence and absence of ICI 118, 551 

(0.0012µM) significantly decreased levels of p-Erk when compared to IR control hearts (75 ± 

16% vs. 100 ± 18%, p<0.05, Figure 6.7).  

Hearts administered with Salbutamol (0.1µM) in the presence of ICI 118, 551 (0.0012µM), 

had a significant decrease on levels of p-Erk when compared to IR control hearts (75 ± 16% 

vs. 100 ± 18%, p<0.05, Figure 6.7). Interestingly this same combination did not abrogate the 

effects of hearts treated alone with Salbutamol (0.1µM) (71 ± 16% vs. 75 ± 16%, p>0.05, 

Figure 6.7). 

Hearts that were treated with both b receptor antagonists CGP 20712 (0.0014µM) and ICI 

118, 551 (0.0012µM) in the presence of Salbutamol (0.1µM), significantly decreased levels 

of p-Erk when compared to hearts treated alone with Salbutamol (0.1µM) (41 ± 4% vs. 75 ± 

16%, p<0.05, Figure 6.7). In addition to this comparison, a statistical decrease was also 

observed in levels of p-Erk when both antagonists were present with Salbutamol treated 

hearts when compared to Salbutamol treated hearts with b2AR antagonists ICI 118, 551 alone 

(41 ± 4% vs. 71 ± 16%, p<0.05, Figure 6.7). Control, IR time matched control and 

Salbutamol data has been obtained from previous western blot. 
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Figure 6.7 The effects of Salbutamol (0.1µM) on the levels of phosphorylated Erk after exposure to 35 

minutes ischaemia and 120 minutes of reperfusion in the presence of ICI 118, 551 (0.0012µM) or 

combination of both b1AR antagonist CGP 20712 (0.0014µM) and b2AR antagonist ICI 118, 551. Data 

presented as mean ±SEM. n=6-8. *p<0.05 vs. Normoxic, ##p<0.01 vs. IR, #p<0.05 vs. IR, $$p<0.01 vs. SalB 

(0.1µM), $p<0.05 vs. SalB (0.1µM), ££p<0.01 vs. SalB + ICI 118, 551, £p<0.05 vs. SalB + ICI 118, 551. 

 

Figure 6.8 Representative blot of p-Erk and t-Erk when Salbutamol (0.1µM) was administered throughout 

reperfusion for 120 minutes after 35 minutes ischaemia in the presence and absence of ICI 118, 551 

(0.0012µM) or a combination of both b1AR antagonist CGP 20712 and b2AR antagonist ICI 118, 551 
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6.4.1.5 The effect of Salbutamol on signalling proteins cleaved caspase 3 with co-
administration of the b2AR antagonist ICI 118, 551 by assessment of flow 
cytometry 

 

Cardiomyocytes were treated in the presence and absence of the bAR antagonists CGP 20712 

(0.0014µM) and ICI 118, 551 (0.0012µM) in the presence of Salbutamol (0.1µM). 

Cardiomyocytes treated with Salbutamol (0.1µM) alone showed a significant increase in 

cleaved caspase 3 activity when compared to non treated control HR cardiomyocytes (190 ± 

23% vs. 100 ± 20%, p<0.05, Figure 6.9). 

Cardiomyocytes treated with the co-administration of Salbutamol (0.1µM) and ICI 118, 551  

(0.0012µM) significantly decreased levels of activated cleaved caspase 3 when compared to 

HR cardiomyocytes (71 ± 12% vs. 100 ± 20%, p<0.05, Figure 6.9). Interestingly, the co-

administration of ICI 118, 551 and Salbutamol also significantly abrogated levels of activated 

caspase 3 when compared to Salbutamol (0.1µM) treated cardiomyocytes (19 ± 23% vs. 71 ± 

12%, p<0.01, Figure 6.9). Cardiomyocytes treated with both antagonists significantly 

increased activated caspase 3 levels when compared to HR control myocytes (185 ± 35% vs. 

100 ± 20%, Figure 6.9). 
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Figure 6.9 The effects of a Salbutamol (0.1µM) on levels of cleaved caspase in the presence of ICI 118, 551 

(0.0012µM) or combination of both b1AR antagonist CGP 20712 (0.0014µM) and b2AR antagonist ICI 118, 

551. Isolated myocytes were exposed to 2 hours hypoxia followed by 4 hours reoxygenation in the presence 

or abscene of the drug. Data presented as mean ±SEM. n=6-8. ***p<0.001 vs. Normoxic, **p<0.01 vs. 

Normoxic, *p<0.05 vs. Normoxic, #p<0.05 vs. HR, $$p<0.01 vs. SalB (0.1µM), £p<0.05 vs. SalB + ICI 118, 551. 
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6.5 Discussion 

In the previous chapter (Chapter 5) we investigated the role of the b1AR, in Salbutamol 

induced toxicity using the specific antagonist CGP 20712. We established that Salbutamol’s 

partially mediated injury could be linked to the activation of the b1AR. Salbutamol as an 

adrenergic receptor agonist has been shown to have a higher affinity for b2ARs compared 

with b1ARs, approximately 150 times greater (Bandaru et al., 2015, Dougall et al., 1991). To 

determine the role of the b2ARs in Salbutamol mediated injury, we used the b2AR specific 

antagonist ICI 118, 551 in the presence of Salbutamol and investigated its effects on 

cardiomyocytes, cytotoxicity, signalling proteins and infarct to risk ratio. 

 

6.5.1 The effect of the co-administration of ICI 118, 551 and Salbutamol in a model of 
ischaemia reperfusion and cytotoxicity 

 

In previous chapters (Chapters 3, 4 & 5) we have demonstrated that administration of 

Salbutamol at higher concentrations (0.1µM-1µM) exacerbates myocardial ischaemia 

reperfusion injury with an increase in infarct size. In addition, we have also seen an increase 

in cytotoxicity in cardiomyocytes treated with Salbutamol.  

Figure 6.1 shows a significant decrease in reductase activity in cardiomyocytes treated with 

Salbutamol (0.1µM) alone when compared to HR control cardiomyocytes. Co-administration 

of ICI 118, 551 (0.0012µM) and Salbutamol (0.1µM) significantly increased the reductase 

activity when compared to cardiomyocytes treated alone with Salbutamol (0.1µM). 

Interestingly, reductase activity in cardiomyocytes treated with Salbutamol and ICI 118,551 

increased to levels higher than the reductase activity recorded in control HR cardiomyocytes. 
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This observation suggests the cytotoxic effect observed in Salbutamol (0.1µM) treated 

cardiomyocytes can be linked activation of b2ARs.  

 

Control IR and Salbutamol data have been used from previous Langendorff ischaemia 

reperfusion experiments as discussed in 3.5. With a significant increase of infarction recorded 

in hearts treated alone with Salbutamol (0.1µM), administration of the b1AR antagonist was 

shown to reduce infarct size (Chapter 5) but not significantly. In contrast to this finding, 

hearts administered with Salbutamol (0.1µM) and the b2AR antagonist ICI 118, 551 

(0.0012µM), infarction size was significantly reduced to IR control levels. This confirms that 

the majority of Salbutamol mediated injury is linked specifically to the activation of the 

b2AR. Interestingly, when both bARs were antagonised in the presence of Salbutamol; 

infarction size was also significantly reduced to levels similar to those found in IR control 

hearts (Figure 6.2). 

 

b2ARs are able to couple to both the Gs and Gi subunits of GPCRs. With a majority of injury 

recorded via activation of the b2ARs by Salbutamol we must first establish any link that may 

exist with either the Gs or Gi subunits to increased heart abnormalities. Such abnormalities 

that have been linked to the activation of b2ARs are cardiomyopathies (in particular 

Takotsubo cardiomyopathy), tachycardia, heart failure and with our studies increase in 

reperfusion injury in presence of Salbutamol (Nikolaev et al., 2010, Salpeter et al., 2004, Zeb 

et al., 2011).   

 

Studies that have treated cardiomyocytes with pertussis toxin (as a Gi inhibitor) showed 

increased inotropic activity, which are features associated with Gs stimulation (Xiao et al., 
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1995, Xiao et al., 2003). Further to this, mice overexpressed with specific human b2ARs 

confirmed this increase in inotropic activity (Bisognano et al., 2000).  

Interestingly, studies by Foerster and colleagues (2003) with pertussis toxin in rat 

cardiomyocytes concluded that 2 types of pertussis toxin sensitive Gi proteins existed known 

as Gai-2 and Gai-3 (Foerster et al., 2003, Pavoine and Defer, 2005). Each of these subtypes 

of the Gi subunit isoforms demonstrated to have different roles that hindered or promoted 

survival of the transgenic mice used during their studies. Ultimately their findings indicated 

the activation of Gai-2 isoform promoted survival in the mice whereas Gai-3 activation 

effected regulation of Calcium, which may be one plausible link to Salbutamol mediated 

injury during b2AR activation (Foerster et al., 2003). Should there be a strong regulatory 

effect of Calcium by Gai-3 this may give rise to an additional source of stress to 

cardiomyocytes in addition to increased ROS produced as a result of reperfusion 

(Braunersreuther and Jaquet, 2012).  

 

Direct phosphorylation of the b2ARs by either PKA or PKC uncouples b2ARs from the Gs 

subunit and switches coupling from the Gs subunit to the Gi subunit (Daaka et al., 1997). It is 

important to understand that upon phosphorylation of either of the bARs in cardiomyocytes, 

activation of the adenylyl cyclase pathway increases levels of cAMP ultimately resulting in 

increased PKA phosphorylation of several proteins to initiate L-type Ca2+ channels for 

cardiac function (Gerhardstein et al., 1999, Kamp and Hell, 2000). Other suggestions of how 

the Gs/Gi switch occurs is the involvement of G protein coupled receptor kinases (GRKs), 

discussed previously in Chapter 3 (Wang et al., 2008). Research has shown that activation of 

GRKs directly phosphorylates the bAR-Gs pathway and increases b-arrestin binding  
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It has been advocated that predominant activation of the b1-Gs pathway promotes cell death 

whilst activation of the b2-Gi pathway predominantly promotes cell survival (Amin et al., 

2011, Communal et al., 1999). However, such studies suggesting cell survival through 

activation via b2ARs and cell death via b1ARs has been challenged by our findings of 

Salbutamol mediated injury in a cytotoxic model and ischaemia reperfusion model. Further to 

this, the use of Isoproterenol, a non-selective bAR agonist, has also been shown to increase 

myocardial injury through activation of both b1 and b2ARs, also seen in Chapter 3 

(Homburger et al., 1981, Shin et al., 2014). Explanation for this dual promotion of cell death 

from activation of either of the bARs has been linked to the ability of bARs activating the b2-

Gs pathway. How exactly the b2-Gs subunit is activated over the Gi subunit is still unclear in 

addition to how stressors of Salbutamol and reperfusion injury are involved in mechanisms to 

promote cardiomyocyte death.  

 

Suggestions of receptor desensitisation and receptor internalisation have been described 

previously, especially as a result of pathophysiological events causing redistribution b2ARs 

to the cell crest of cardiomyocytes whilst internalising b1ARs (Madamanchi, 2007, Nikolaev 

et al., 2010). With evidence of redistribution of b2ARs during detrimental myocardial events 

such as heart failure, myocardial ischaemia and myocardial infarction, reduction in the ratio 

of b1ARs: b2ARs is shifted significantly in b2ARs favour (Lyon et al., 2009, Nikolaev et al., 

2010).  

 

Extensive research has been carried out in relation to the stressors of reperfusion injury such 

as Calcium overload and increased ROS activity and their direct effects on the Mitochondrial 

Permeability Transition Pore (mPTP) (Shimoke et al., 2003). 
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Our studies have indicated a delay in the time taken to the onset of depolarisation in 

cardiomyocytes loaded with TMRM when stimulated with a laser when compared to control 

cardiomyocytes in the presence of Salbutamol (0.1µM). A significant decrease in time taken 

to the onset of hypercontracture was observed in cardiomyocytes treated with Salbutamol 

(0.1µM) alone. Interestingly, a significant increase in time taken to hypercontracture was 

recorded in cardiomyocytes treated with Salbutamol and ICI 118, 551. This demonstrates that 

antagonising the b2AR does in fact inhibit Salbutamol mediated injury via the mPTP pore. 

How this is achieved can still not be clearly defined. Upon laser stimulation, TMRM, which 

specifically quenches within mitochondria of the cardiomyocyte, degrades, increasing the 

production of ROS, which can act directly on the mPTP pore (Joshi and Bakowska, 2011). 

During ischaemia ROS can increase from <50% to 90% within the mitochondrial matrix, as 

was demonstrated by Loor and colleagues (2011). The recorded effect of cardiomyocytes 

treated alone with Salbutamol (0.1µM) compared to control cardiomyocytes in the model of 

oxidative stress, shows that there is an increase in stress causing a significant decrease in time 

to hypercontracture, however it can be purported that this reduction is not due to an increase 

in ROS. In other studies, Doxorubicin induced a significant decrease in time to depolarisation 

and hypercontracture in a model of oxidative stress as a result of further increase in ROS 

caused by Doxorubicin (Gharanei et al., 2013). 

 

Another possible source of stress must be considered to explain this reduction in time taken 

to hypercontracture in the presence of Salbutamol and how it is affecting the mPTP. One 

such source related to opening of the mPTP is Calcium overload and ATP depletion 

(Baumgartner et al., 2009). 
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Activation of the b2AR-GS pathway increases Ca2+
 release from the sarcoplasmic reticulum 

thus elevating intracellular Ca2+
 within cardiomyocytes through the mPTP as shown in 

previous studies (Giorgi et al., 2012). We can suggest from previous literature that elevated 

Ca2+ may be linked to Salbutamol when activating b2ARs. An increase in cytosolic Ca2+ can 

cause a calcium overload activating pro-apoptotic proteins such as cytochrome c (Joza et al., 

2001). Premature opening of the mPTP has already been linked to increased levels of ROS in 

conjunction with increased Ca2+ concentration (Giorgi et al., 2012). Studies by Baumgartner 

and colleagues (2009) used mitochondria from pancreatic cells to determine the role of 

Calcium in inducing apoptosis via the mPTP. Their findings emphasised the importance of a 

relationship between ROS and increased Ca2+ released from stores such as the endoplasmic 

reticulum to initiate apoptosis. Only when Ca2+ ions were elevated in addition to elevated 

ROS, due to ischaemia followed by reperfusion, was apoptosis induced (Baumgartner et al., 

2009).  

 

Activation of b2ARs have been shown to cause an increase in intracellular Calcium, from our 

studies we have shown Salbutamol can bind to and activate these receptors in the rat heart. 

Such a response from activated b2ARs can suggest an increase in Calcium in addition to the 

increased ROS as a result of ischaemia reperfusion. Such conditions, in particular increased 

ROS, we have observed in the oxidative stress and Langendorff models in the presence of 

Salbutamol.  

 

The delay in onset of depolarisation in cardiomyocytes with Salbutamol may be explained by 

the time taken for Calcium to be released upon activation of b2ARs that are located on the 

cardiomyocyte cell crest (Nikolaev et al., 2010, Wright et al., 2014). Salbutamol in the 
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presence of ICI 118,551, significantly reduced the time taken to the onset of hypercontracture 

due to b2ARs being antagonised. We can propose, Salbutamol in the presence of the b2AR 

antagonist, reduces activation of the receptors, and with support from other studies, this may 

reduce any further release of Calcium via the b2AR-Gs pathway thus reducing calcium 

overload that may lead to premature opening of the mPTP.  

 

Control, IR time matched control and Salbutamol data has been included from other western 

blots. The limiting factors and consequences of this have been discussed previously in section 

5.5. The significant increase in expression of p-Akt observed in hearts treated with 

Salbutamol (0.1µM) has been discussed in detail in Chapter 4, however it is worth re-

iterating that some studies have indicated that prolonged or repetitive activation of p-Akt has 

been linked to increased IR injury (Nagoshi et al., 2005). This increase in p-Akt has also been 

shown to increase mortalities in transgenic mice with specific cardiac activation of Akt, in 

addition to increased I/R ratios, as seen in hearts treated Salbutamol (Matsui and Rosenzweig, 

2005, O'Neill and Abel, 2005). Having recorded a significant increase in expression of p-Akt 

with Salbutamol, we can purport a potential link to increased Calcium levels having 

identified Salbutamol mediated injury is predominately via b2AR activation via Gs  subunit 

and/or Gi in particular the Gai-3 isoform (Pavoine and Defer, 2005). Interestingly, hearts 

treated with Salbutamol in the presence of the b2AR antagonist, ICI 118, 551, significantly 

reduced expression of p-Akt to control IR levels. Interestingly, in comparison to b1ARs 

antagonised by CGP 20712 (Chapter 5), expression of p-Akt was seen to be much lower in 

hearts treated with Salbutamol in the presence of CGP 20712. This observation can link the 

affinity of Salbutamol for b2AR-Gi pathway and also link the inhibitory effects caused by 

activation of this particular pathway (Salazar et al., 2013). 
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Akt has been identified to have 3 separate isoforms, of particular interest is the Akt1 isoform 

which is linked to the heart (Yu et al., 2015). A possible link in our experiments regarding 

increased p-Akt expression is an increase in intracellular calcium. Salbutamol as a positive 

inotrope increases calcium release from the endoplasmic reticulum via ryanodine receptors, 

having activated the b2AR (Prakash et al., 1997). This increase in calcium can further release 

calcium via calcium-induced calcium release from the sarcoplasmic reticulum in 

cardiomyocytes (Chaanine and Hajjar, 2011). With this response initiated by Salbutamol, the 

sarcoendoplasmic reticulum calcium ATPase (SERCA) replenishes calcium stores in the 

sarcoplasmic reticulum by pumping calcium ions from the cytoplasm leading to increased 

cardiomyocyte contractions (Chaanine and Hajjar, 2011).  

 

Salbutamol mediated toxicity via activation of b2ARs was abolished in the presence of b2AR 

antagonist ICI 118, 551 in addition to decreasing expression levels of p-Akt. Interestingly, 

although not significant (p>0.05), p-Erk expression in hearts treated with ICI 118, 551 and 

Salbutamol remained similar to hearts treated with Salbutamol alone. This expression of p-

Erk may act as a compensatory mechanism for the significant loss of p-Akt expression to 

promote cell survival. As discussed in Chapter 5, p-Erk expression is linked to the inhibition 

of pro-apoptotic signalling proteins (Gao Smith et al., 2012). However, in Chapter 5, hearts 

treated with Salbutamol and b1AR antagonist CGP 20712 demonstrated elevated p-Akt levels 

and supressed p-Erk as a result of Akt/Raf 1 cross-talk (Moelling et al., 2002, Zhou et al., 

2015).  

 

Cleaved caspase 3 activity, as discussed in Chapter 5, are strongly associated to 

mitochondrial cell death due to the release of pro-apoptotic signalling proteins (McIlwain et 

al., 2013). Cardiomyocytes treated with Salbutamol and ICI 118, 551 significantly decreased 
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caspase 3 levels when compared to Salbutamol treated cardiomyocytes (Figure 6.9) and 

returned caspase 3 levels to those observed in control HR cardiomyocytes. With such a 

significant decrease in caspase 3 activity, this further suggests and highlights the activation of 

b2ARs mediates Salbutamol induced toxicity in contrast to previous work suggesting the anti-

apoptotic effects of b2AR/Gi signalling pathway (Shin et al., 2014).  

 

This study confirms that activation of b2ARs is predominately responsible for Salbutamol 

mediated injury in the model of ischaemia reperfusion and in cardiomyocytes. Antagonising 

the b2AR receptor with ICI 118, 551 abolished the toxic effects of Salbutamol in the model of 

reperfusion injury. 

 

Investigation of signalling proteins highlight that increased activation of p-Akt in rat hearts 

treated alone with Salbutamol contributes to myocardial injury. Explanations for the observed 

increase in p-Akt expression remain limited, however some links from other research indicate 

the involvement of calcium in addition to ROS and chronic activation of p-Akt. In our studies 

of oxidative stress, an emphasis can be made that ROS is affecting the mPTP pore directly as 

seen in the decrease in time to the onset of hypercontracture, however the time taken to the 

onset of depolarisation is not significantly reduced as expected in the presence of Salbutamol. 

This contributes to Salbutamol not degrading or increasing levels of ROS.  

 

Activation of the Gai-3 isoform of the b2-Gi subunit could be proposed as the favoured 

pathway resulting in increased myocardial injury, however this requires further investigation. 

Other explanations for Salbutamol mediated injury via b2AR activation can again be linked to 
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b1AR receptor internalisation and desensitisation in addition to ventricular cardiomyocyte 

remodelling involving the migration of b2ARs to the cardiomyocyte cell crest.  

Further investigation into the role of the mPTP and ROS should be carried out. Once 

identifying a potential link between the two, the reversal or reduction of Salbutamol mediated 

injury in a model of ischaemia reperfusion and oxidative stress can be investigated.  
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7 Chapter 5: The role of Cyclosporin A in Preventing 

Salbutamol Mediated  Myocardial Injury 

7.1 Introduction 

In previous chapters we have identified that the bronchodilator Salbutamol exacerbates 

myocardial injury in a model of reperfusion injury. How exactly this occurs, has been linked 

to the activation the b1AR-Gs pathway and the b2AR-Gs and Gi pathway (Chapters 5 & 6). In 

the model of oxidative stress, a decrease in time taken to the onset of depolarisation and 

hypercontracture was observed in the presence of Salbutamol. Previous studies had shown 

that the use of Isoproterenol is capable of inducing myocardial ischaemia and infarction in 

addition to maladaptive responses with the Na/Ca exchanger (Herchuelz et al., 2002). As a 

result, we could apply this information and purport a similar scenario with the use of 

Salbutamol in rat hearts.    

 

Studies in chapters 3-6 have discussed an involvement of the mitochondrial permeability 

transition pore (mPTP) in bAR agonist mediated exacerbation of ischaemia reperfusion 

injury. Having reinforced the involvement of the mPTP in stress conditions similar to those 

found in reperfusion injury, investigation into the prevention/reversal of such injury would be 

the next logical step. Further to this, we could investigate if Salbutamol mediated injury 

could be reduced by means of targeting the mPTP. 

 

The mPTP is a non-selective pore and capable of opening in normal conditions allowing 

movement of small molecules across the mitochondrial membrane (Halestrap and Pasdois, 

2009). The mPTP has been identified as a key component maintaining mitochondrial 

integrity especially when involved in the events of reperfusion injury (Lemasters et al., 
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2012). In normal circumstances the mPTP regulates the passing of molecules less than 

1.5kDa in size from the outer mitochondrial membrane to the inner mitochondrial membrane 

(Halestrap and Pasdois, 2009). 

 

Increase in stress factors such as oxidative stress or increased calcium concentration can 

cause the mPTP to open resulting in cell death in two different manners. The first is the lack 

of ability to synthesise Adenosine Triphosphate (ATP) via oxidative phosphorylation 

(Halestrap and Pasdois, 2009). A further detriment to cardiomyocytes is ATPase breaking 

down ATP produced by glycolysis leading to necrotic cell death (Dedkova and Blatter, 2012, 

Maddock et al., 2002). The second method in response to the same stressors involves 

mitochondrial swelling, initiating apoptosis (Dedkova and Blatter, 2012, Halestrap, 1982, 

Green and Kroemer, 2004). This phenomenon is a result of increased permeability of the 

inner mitochondrial membrane (Halestrap and Pasdois, 2009). With increased permeability 

allowing more molecules into the mitochondria causing swelling of the mitochondrial matrix 

and eventually rupturing of the outer mitochondrial membrane, releasing pro-apoptotic 

proteins into the cardiomyocyte cytoplasm such as cytochrome c ( Dedkova and Blatter, 

2012, Sesso et al., 2012). 

 

The components making up the mPTP are continuously debated in regards to its specific 

composition and functions of the proposed components. One of the most recent proposals for 

the formation of the mPTP includes adenine nucleotide translocase (ANT), voltage-

dependent anion channel (VDAC), phosphate carrier (PiC) and most importantly for our 

studies cyclophilin D (Cyp D) (Green and Kroemer, 2004, Karch and Molkentin, 2014, 

Halestrap and Davidson, 1990, Szabo et al., 1993, Lemasters et al., 2012, Lopez-Erauskin et 

al., 2012). In respect of Cyp D as a “known mitochondrial localized cyclophilin protein”, this 
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has been targeted for therapeutic reasons to prevent premature opening of the mPTP to 

prevent cardiomyocyte death (Karch and Molkentin, 2014). The use of the 

immunosuppressant cyclosporin A (CsA) as early as 1997 was found to inhibit the opening of 

the mPTP by specifically inhibiting Cyp D its activity (Halestrap et al., 1997a). The initial 

clinical use of CsA has been in the surgical field as a potent immunosuppressant post 

successful transplantation of an organ (Rezzani, 2006). Inhibition of Cyp D was found to 

protect hearts against ischaemia reperfusion injury via delaying the opening if the mPTP 

(Hausenloy et al., 2003, Song et al., 2015). Loss of mitochondrial function as a result of poor 

calcium handling and increased ROS leads to mitochondrial dysfunction ultimately resulting 

in prolonged opening of the mPTP leading to cardiomyocyte apoptosis (Song et al., 2015).  

 

Simulating ischaemia in the model of reperfusion injury by the physical tightening of the 

ligature around the left descending coronary artery reduces oxygen and nutrient supply to left 

ventricle (Bell et al., 2011). This reduction in nutrient hinders the left ventricle increasing 

ischaemic tissue which if not reperfused will become infarcted. However, as paramount it is 

to reperfuse the ischaemic area of the heart, an accumulation of calcium and ROS occurs, and 

upon reperfusion introduces these stressors to the previously ischaemic tissue resulting in 

further damage and further increase in infarcted tissue (Bell et al., 2011, Hussain et al., 2014). 

In conditions such as these, increase in ROS and calcium act as stressors affecting the 

function of cardiomyocytes and ultimately lead to the phenomenon known as ischaemia 

reperfusion injury (Bell et al., 2011, Ong et al., 2015b).  

 

To highlight the importance of Cyp D involvement in opening of the mPTP, Cyp D knockout 

mice showed to be highly resistant to mPTP opening when subjected to  calcium overload, 

similar to wild type mice treated with CsA (Nakagawa et al., 2005).  
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By targeting the Cyp D component of the mPTP with a drug such as CsA, we can determine 

if hearts and cardiomyocytes treated with Salbutamol does in fact initiate cell death via 

premature opening of the mPTP or via another pathway that we may have eluded.  

 

7.2 Aims 

The aims of the current study were to investigate the effects of the short acting b adrenergic 

receptor agonist Salbutamol by using the isolated perfused Langendorff heart model of 

ischaemia reperfusion injury, the oxidative stress cardiac myocyte model and the MTT assay. 

Salbutamol was administered in the presence and absence of Cyclosporin A to determine 

whether Salbutamol mediated injury can be reduced or prevented with inhibition of 

cyclophilin D in the mitochondrial permeability transition pore.  

 

7.3 Methods 

7.3.1 Langendorff protocol 

Briefly, Sprague-Dawley rats were sacrificed by cervical dislocation and cannulated to the 

Langendorff setup and perfused with KHB as described in section 2.3. Hearts were allowed 

to stabilise for 20 minutes followed by 35 minutes of regional ischaemia and 120 minutes of 

reperfusion. One minute before the onset of reperfusion hearts were administered Salbutamol 

(0.1µM) in the absence or presence of b Adrenergic Receptor antagonists CGP 20712 

(0.0014µM). At the end of the experiment hearts underwent infarct to risk ratio analysis. 

Haemodynamic data were collected throughout the study.  

For western tissue collection, hearts were reperfused with Salbutamol (0.1µM) for either 5, 

20 or 120 minutes in the presence or absence of CsA (0.2µM). After the time elapsed, hearts 
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were removed and the left ventricle removed and snap frozen in liquid nitrogen. Control IR 

data have been used from previous experiments.  

7.3.2 Western blot analysis 

Analysis of tissue by western blot was carried out as described in section 2.7. Briefly, 

following gel electrophoresis, proteins were transferred to a PVDF membrane and probed for 

the phosphorylated and total forms of the proteins: phospho-Akt (Ser473) (1:1000) and 

phospho-p44/p42 (Erk 1/2, Thr202/Tyr204) (1:1000).  

7.3.3 Adult rat cardiac myocyte isolation 

Briefly, male Sprague Dawley rats were sacrificed by cervical dislocation and the hearts 

excised and cannulated onto modified Langendorff apparatus and perfused with a constant 

flow rate of 14ml/min as described in section 2.4. Hearts were perfused for 3-4 minutes with 

calcium free modified Krebs Heinsleit Buffer. The buffer was then switched and the hearts 

perfused with digestion buffer for 7 minutes. Isolated ventricular myocytes were used for the 

oxidative stress model, MTT assay and flow cytometric analysis of cleaved caspase 3 as 

described previously in sections 2.5.2, 2.5.3, 2.6. Myocytes were assigned to one of the 

following groups: a) Control (KHB) b) Salbutamol (0.1µM) c) CsA + Salbutamol d) CsA 

(0.2µM). 

7.3.4 Statistical analysis 

All data were presented as a mean of the stabilisation period ± SEM. Infarct size, times taken 

to depolarisation and hypercontracture and western blot data were tested using one way 

ANOVA with a Fishers Least Significance Test post hoc test to determine any significance 

between groups. p<0.05 was considered to be significant. 
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7.4 Results 

7.4.1 Effect of Salbutamol co-administered with Cyclosporin A on cardiomyocytes 

assessed by MTT 

Isolated cardiomyocytes were subjected to 2 hours of hypoxia and 4 hours of reoxygenation 

where Salbutamol (0.1µM) was administered throughout the reoxygenation period in the 

presence and absence of CsA (0.2µM). Cardiomyocytes treated with Salbutamol (0.1µM) 

significantly decreased reductase activity when compared to HR control cardiomyocytes (75 

± 1% vs. 209 ± 8%, p<0.001, Figure 7.1). Cardiomyocytes treated alone with CsA (0.2µM) 

when compared to control HR cardiomyocytes significantly increased reductase activity (141 

± 2% vs. 100 ± 3%, p<0.01, Figure 7.1).  

 

Interestingly, cardiomyocytes administered with both Salbutamol (0.1µM) and CsA (0.2µM) 

when compared to cardiomyocytes treated with Salbutamol (0.1µM) recorded a significant 

increase in reductase activity (162 ± 2% vs. 75 ± 1%, p<0.05, Figure 7.1). This indicates that 

CsA (0.2µM) in the presence of Salbutamol (0.1µM) abrogates the cytotoxic effect 

Salbutamol (0.1µM) alone has on cardiomyocytes during hypoxia/reoxygenation injury.  
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Figure 7.1 The MTT cytotoxic effect of Salbutamol (0.1µM) on the viability of cardiomyocytes in the 

presence and absence of Cyclosporin A (0.2µM). Data presented as mean ± SEM. n=6-8. ***p<0.001 vs. 

Normoxic, ##p<0.01 vs. HR,  #p<0.05 vs. HR, $p<0.05 vs. SalB (0.1µM)  

 

7.4.1.1 The effect of Salbutamol with co-administration of Cyclosporin A on Infarct to 
Risk Ratio in isolated hearts subjected to ischaemia reperfusion injury  

 

Isolated perfused hearts were subjected to 35min ischaemia and 120 minutes of reperfusion 

where Salbutamol (0.1µM) was administered in the presence and absence of CsA (0.2µM) 

throughout the reperfusion period. Salbutamol (0.1µM) significantly increased I/R ratio when 

compared to IR control hearts (SalB 0.1µM, 76 ± 3% vs. 51 ± 2%, p<0.001, Figure 7.2). 
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Interestingly, hearts treated alone with CsA (0.2µM) significantly decreased I/R ratio when 

compared to IR control hearts (39 ± 2% vs. 51 ± 2%, p<0.001, Figure 7.2). 

  

Hearts treated with Salbutamol (0.1µM) and CsA (0.2µM) when compared to hearts treated 

with Salbutamol (0.1µM) alone, abrogated the damaging effect of Salbutamol (0.1µM) (46 ± 

2% vs. 76 ± 3%, p<0.001, Figure 7.2). Control IR and Salbutamol data have been used from 

previous experiments.  
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Figure 7.2 Infarct size to risk ratio (%) in isolated perfused hearts subjected to 35 minutes of ischaemia and 

120 minutes reperfusion in the presence and absence of Salbutamol (0.1µM) and with co-administration of 

Cyclosporin A (0.2µM) throughout the reperfusion period. Data presented as mean ±SEM. n=6-8. ***p<0.001 

vs. IR,  ###p<0.001 vs. SalB 0.1µM,  ##p<0.01 vs. SalB 0.1µM. 

 

7.4.1.2 Effect of Salbutamol in the presence or absence Cyclosporin A in a model of 
Oxidative Stress 

 

Cardiomyocytes were subjected to laser stimulation in the presence of Salbutamol (0.1µM) in 

addition to the presence and absence of Cyclosporin A (0.2µM). Cardiomyocytes subjected to 

administration with Salbutamol (0.1µM) alone decreased time to the onset of depolarisation 

however it did not reach significance when compared to control (226 ± 15s vs. 255 ± 13s, 
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p>0.05, Figure 7.3). Cardiomyocytes administered alone with Cyclosporin A (0.2µM) 

significantly increased time taken to the onset of depolarisation when compared to non-

treated control cardiomyocytes (325 ± 12s vs. 255 ± 13s, p<0.01, Figure 7.3).  

 

Interestingly, the co-administration of Salbutamol (0.1µM) and Cyclosporin A (0.2µM) 

significantly abrogated the effect observed in cardiomyocytes treated alone with Salbutamol 

(0.1µM) (325 ± 22s vs. 226 ± 15s, p<0.001, Figure 7.3). 

 

Figure 7.3 The effects of Salbutamol (0.1µM) on time taken to depolarisation in isolated rat cardiac 

myocytes in a model of oxidative stress in the presence or absence of Cyclosporin A (0.2µM).  Data 

presented as mean ±SEM. n=6-8. **p<0.01 vs. Control,  ###p<0.001 vs. SalB (0.1µM),  ##p<0.01 vs. SalB 

0.1µM. 

 

Control SalB (0.1µM) SalB (0.1µM) 
+ CsA (0.2µM)

CsA (0.2µM)
0

100

200

300

400

Ti
m

e 
ta

ke
n 

to
 D

ep
ol

ar
is

at
io

n 
(s

ec
on

ds
)

** **

### ###



    

 

 

233 

Salbutamol (0.1µM) significantly decreased the time to hypercontracture in isolated 

cardiomyocytes when compared to non-treated control groups (524 ± 23s vs. 663 ± 40s, 

p<0.01, Figure 7.4). Cardiomyocytes treated alone with Cyclosporin A (0.2µM) significantly 

increased time taken to the onset of hypercontracture when compared to non-treated control 

cardiomyocytes (741 ± 17s vs. 663 ± 40s, p<0.001).  

 

Interestingly, the co-administration of Salbutamol (0.1µM) and Cyclosporin A (0.2µM) 

significantly increased the time taken to the onset of hypercontracture when compared to 

cardiomyocytes treated alone with Salbutamol (0.1µM)(662 ± 17s vs. 525 ± 23s, p<0.01, 

Figure 7.4).  
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Figure 7.4 The effects of Salbutamol (0.1µM) on time taken to hypercontracture in isolated rat cardiac 

myocytes in a model of oxidative stress in the presence or absence of Cyclosporin A (0.2µM). n=6-8. Data 

presented as mean ±SEM. n=6-8.**p<0.01 vs. control, *p<0.05 vs. control, ###p<0.01 vs. SalB (0.1µM), 
##p<0.01 vs. SalB (0.1µM). 
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7.4.1.3 The effect of Salbutamol on signalling protein p-Akt by assessment of Western 
blotting with co-administration of Cyclosporin A 

 

Investigations into the signalling protein p-Akt (Ser473), was carried out in the presence of 

Salbutamol (0.1µM) in the absence or presence of Cyclosproin A (0.2µM). Hearts were 

reperfused with Salbutamol (0.1µM) in combination with Cyclosproin A (0.2µM) for 120 

minutes throughout reperfusion after 35 minutes ischaemia.  

 

IR control hearts showed a significant increase in levels of p-Akt when compared to 

normoxic hearts (100 ± 14% vs. 69 ± 20%, p<0.01, Figure 7.5). Hearts treated with 

Salbutamol (0.1µM) significantly increased levels of p-Akt when compared to IR control 

hearts (240 ± 10% vs. 100 ± 14%, p<0.001, Figure 7.5).  

 

Hearts treated alone with Cyclosporin A (0.2µm) significantly decreased expression of p-Akt 

when compared to IR control hearts (28 ± 4% vs. 100 ± 20%, p<0.05). Interestingly, hearts 

treated with the co-administration of Salbutamol (0.1µM) and Cyclosporin A (0.2µM) 

abrogated the expression of p-Akt seen in hearts treated with Salbutamol (0.1µM) alone (35 ± 

4% vs. 240 ± 8%, p<0.001, Figure 7.5). Control, IR time matched control and Salbutamol 

data have been used from previous western blots run.  
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Figure 7.5 The effects of Salbutamol (0.1µM) on the levels of phosphorylated p-Akt after exposure to 35 minutes 

ischaemia and 120 minutes of reperfusion in the presence and absence of Cyclosporin A (0.2µM). Data presented as 

mean ±SEM. n=3. ***p<0.001 vs. Normoxic, *p<0.05 vs. Normoxic, ###p<0.001 vs. IR, #p<0.05 vs. IR,  $$$p<0.001 vs. 

SalB (0.1µM). 

 

Figure 7.6 Representative blot of p-Akt and t-Akt when Salbutamol (0.1µM) was administered throughout 

reperfusion for 120 minutes after 35 minutes ischaemia in the presence and absence of Cyclosporin A (0.2µM). 
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7.4.1.4 The effect of Salbutamol on signalling protein p-Erk by assessment of Western 
blotting with co-administration of Cyclosporin A 

 

Investigation into the signalling protein p-Erk was carried out in the presence of Salbutamol 

(0.1µM) in the absence or presence of Cyclosproin A (0.2µM). Hearts treated with 

Salbutamol (0.1µM) alone had no significant change on expression of p-Erk when compared 

to IR control hearts (75 ± 11% vs. 100 ± 28%, p>0.05, Figure 7.5).  

 Hearts treated in the presence of Salbutamol (0.1µM) and Cyclosporin A (0.2µM) 

significantly decreased levels of p-Erk when compared to control IR control hearts (18 ± 5% 

vs. 100 ± 28%, p<0.05, Figure 7.7) Hearts treated with Cyclosporin A (0.2µM) alone 

significantly abrogated with increase in levels p-Erk recorded in IR control hearts (43 ± 5% 

vs. 100 ± 28%, p<0.05, Figure 7.7). Control, IR time matched control and Salbutamol data 

have been used from previous western blots run. 
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Figure 7.7 The effects of Salbutamol (0.1µM) on the levels of phosphorylated Erk after exposure to 35 minutes 

ischaemia and 120 minutes of reperfusion in the presence and absence of Cyclosporin A (0.2µM). Data presented as 

mean ±SEM. n=3. *p<0.05 vs. Normoxic, #p<0.05 vs. IR, $p<0.05 vs. SalB (0.1µM). 

 

Figure 7.8 Representative blot of p-Erk and t-Erk when Salbutamol (0.1µM) was administered throughout 

reperfusion for 120 minutes after 35 minutes ischaemia in the presence and absence of Cyclosporin A (0.2µM). 
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7.4.1.5 The effect of Salbutamol on signalling proteins cleaved caspase 3 activity with co-
administration of Cyclosporin A 

 

Control HR cardiomyocytes were seen to have significantly higher levels of cleaved caspase 

3 when compared to non-treated normoxic cardiomyocytes (100 ± 20% vs. 31 ± 22%, 

p<0.05, Figure 7.7). Interestingly, cardiomyocytes treated with Salbutamol (0.1µM) alone 

expressed higher levels of cleaved caspase 3 activity when compared to HR control 

cardiomyocytes (190 ± 23% vs. 100 ± 20%, p<0.001, Figure 7.7).  

 

Hearts co-administration with Salbutamol (0.1µM) and Cyclosporin A (0.2µM) did not 

significantly abrogate the effect observed in cardiomyocytes treated alone with Salbutamol 

(0.1µM) (143 ± 20 % vs. 190 ± 23%, p>0.05, Figure 7.7). 
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Figure 7.9 The effects of a Salbutamol (0.1µM) on cleaved caspase 3 in the absence and presence of CsA 

(0.2µM). Data presented as mean ±SEM. n=6-8. ***p<0.001 vs. Normoxic, *p<0.05 vs. Normoxic, ##p<0.01 vs. 

HR, #p<0.05 vs. HR. 
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7.5 Discussion 

In the previous chapter (Chapter 6), we investigated the role of the b2AR in Salbutamol 

induced toxicity using the specific antagonist ICI 118, 551, establishing that Salbutamol 

mediated injury could strongly be linked to the activation of the b2AR. A decrease in the time 

taken to the onset of depolarisation and hypercontracture was recorded in addition to a 

significant increase in these times by antagonising the bAR receptors as seen in Chapters 5 & 

6. Our findings from these studies identified Salbutamol to cause increased stress and to 

cardiomyocytes and the mPTP. It remains unclear from our studies which stressor (ROS or 

calcium) is specifically responsible for the premature opening of the mPTP.  

 

Previous literature has highlighted Salbutamol’s involvement with calcium signalling due to 

its positive inotropic and chronotropic nature, however the assessment of Salbutamol’s 

involvement with an increase in ROS is limited. Previous work by Zhang and colleague 

(2005) have used the non-selective bAR Isoproterenol in rat hearts and showed that this bAR 

induced oxidative stress via increase in ROS in addition to cardiac remodelling (Zhang et al., 

2005, Hudecova et al., 2013, Capozza et al., 1992) 

 

To determine the role of oxidative stress in Salbutamol mediated injury, we used the Cyp D 

inhibitor CsA in the presence of Salbutamol and investigated its effects on cardiomyocytes, 

cytotoxicity, signalling proteins and infarct to risk ratio. 

 

Having identified in previous chapters the exacerbation of I/R ratio in hearts treated with 

Salbutamol (0.1µM-1µM) and increase in cytotoxicity, the co-administration of CsA (0.2µM) 

with Salbutamol (0.1µM) was recorded. Figure 7.1 shows a significant decrease in reductase 
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activity in cardiomyocytes treated with Salbutamol (0.1µM) alone when compared to HR 

control cardiomyocytes. Cardiomyocytes treated with Salbutamol (0.1µM) and CsA (0.2µM) 

showed a significant increase in reductase activity when compared to cardiomyocytes treated 

alone with Salbutamol (0.1µM). This significant increase illustrates CsA is capable of 

inhibiting the cytotoxic effects of Salbutamol and interestingly able to increase the reductase 

activity higher than control HR cardiomyocytes. This increase was also mimicked in 

cardiomyocytes treated alone with CsA. This effect of CsA initially suggests the importance 

of Cyp D in response to the stressors produced by Salbutamol in cardiomyocytes, and the 

affinity of CsA able to inhibit Cyp D.  

 

A variety of pharmacological agents have previously been shown to induce cardiotoxicity 

and exacerbate I/R ratio in rat hearts such as Isoproterenol, Doxorubicin and Ipratropium 

Bromide (Gharanei et al., 2013, Harvey et al., 2014, Lobo Filho et al., 2011). Interestingly, 

the co-administration of CsA and Isoproterenol has recently been carried out and was shown 

to prevent Isoproterenol mediated injury in rat hearts, highlighting the importance of a role 

for the mPTP in cardiomyocyte apoptosis (Khaliulin et al., 2014).  

 

IR control data from previous Langendorff ischaemia reperfusion experiments have been 

included as discussed in section 3.5. The significant decrease in I/R ratio in hearts treated 

with Salbutamol in the presence of either the b1AR antagonist CGP 20712 or b2AR 

antagonist ICI 118, 551, highlighted Salbutamol can mediate myocardial injury via activation 

of bARs, particularly b2ARs (Chapter 5 & 6). Interestingly, using CsA as an adjunct therapy 

with Salbutamol significantly decreased I/R ratio in rat hearts to levels similar to control IR 

hearts. Hearts treated alone with CsA also showed a significant decrease in I/R ratio. This 
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confirms not only that CsA is capable of preventing Salbutamol mediated injury, but also 

CsA treatment alone is capable of preventing I/R ratio in hearts exposed to reperfusion injury 

conditions.  

 

CsA has been identified as an inhibitor of Cyp D as early as 1988, however the manner and 

importance of this component has been continuously debated (Crompton et al., 1988), 

(Halestrap et al., 1997a, Halestrap, 2010, Ong et al., 2015b). Adding to the complexities of 

understanding the mPTP is the general understanding of the components that contribute to the 

structure of the pore. These components have been scrutinised and extensively researched 

and it is now widely accepted that the mPTP comprises of a VDAC, ANT, Cyp D and PiC 

component (Green and Kroemer, 2004, Karch and Molkentin, 2014, Halestrap and Davidson, 

1990, Szabo et al., 1993, Lemasters et al., 2012, Lopez-Erauskin et al., 2012). However, these 

components are continuously contested in regards to their exact functions and contributions 

to formation of the mPTP. In respect of Cyp D’s interaction with CsA, two suggestions have 

been made as to how inhibition can occur, the first being the direct interaction of CsA with 

the Cyp D component (Waldmeier et al., 2003). The second involves the inhibition of 

calcineurin-mediated dephosphorylation of Bad, which ultimately inhibits apoptosis 

(Waldmeier et al., 2003).  

 

Cardiomyocytes treated with Salbutamol alone showed to significantly decrease time taken to 

the onset of hypercontracture and also a decrease in time taken to the onset of depolarisation 

(Figure 7.3). Salbutamol in the presence of CsA (0.2µM) significantly increased the time 

taken to the onset of depolarisation and hypercontracture reiterating the inhibitory effects of 

CsA on premature opening of the mPTP. Interestingly, CsA nullifies the effect seen in 

cardiomyocytes treated with Salbutamol alone, returning the hypercontracture time back to 
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control levels, thus preventing the cardiotoxic effects of Salbutamol. Further to this, CsA 

treatment alone in cardiomyocytes significantly increased time to depolarisation and 

hypercontracture highlighting the abrogating effect of CsA in a model of oxidative stress. 

Several clinical trials with the use of CsA to investigate its reversible effects of ischaemia 

reperfusion injury have been successful but not conclusive. Song and colleagues (2015) meta-

analysis of several of these trials concluded that sample sizes of each of the trials were too 

small to determine a true beneficial effect of CsA reducing reperfusion injury (Song et al., 

2015). Interestingly, like the rodent model of inhibition of reperfusion injury with CsA, pig 

hearts were also protected with administration of CsA, emphasising the importance of the 

mPTP regulating cardiomyocyte apoptosis (Skyschally et al., 2010). 

 

A unique feature of the mPTP is the suggestion of the critical timing in which the pore 

remains closed and conditions under which it opens. In particular, Hausenloy and colleagues 

(2003) characterised such timings. With the use of the Cyp D inhibitor Sangliferhrin A, they 

identified during ischaemic conditions that the mPTP remained closed in rat cardiomyocytes. 

Interestingly, the mPTP was shown to open during the first several minutes of reperfusion, 

emphasising the importance of ROS and calcium as triggers of mPTP opening (Hausenloy et 

al., 2003, Ong et al., 2015a). This group also linked inhibition of the mPTP to a reduction in 

infarct size with Sangliferhrin A, similar to the observations we have made with the adjunct 

therapy of Salbutamol and CsA.  

 

More recent studies have purported an alternate composition of the mPTP but still include the 

above-mentioned components. Of particular interest are the proposed inclusion of the Bcl-2 

family members Bax and Bak contributing as part of outer mitochondrial membrane part of 

the mPTP (Karch and Molkentin, 2014). The physical link between the outer mitochondrial 
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membrane and inner mitochondrial membrane has been considered to be directly via the 

mPTP, however, Karch and colleagues (2013) have proposed that the formation of the outer 

mitochondrial membrane is solely due to a pore formation formed between Bax and Bak, 

which then allow passage of larger molecules across the outer mitochondrial membrane onto 

the inner mitochondrial membrane where the widely accepted components of the mPTP are 

present (Karch et al., 2013). They do stress that the Bcl-2 family proteins still remain part of 

the mPTP formation however; they act separately to the inner mitochondrial membrane 

components of the mPTP (Karch et al., 2013). The groups’ experiments using Bax/Bak 

knockout mice concluded that necrotic cell death and apoptosis were unable to occur 

highlighting the importance of Bax and Bak in mPTP pore formation.  

 

As discussed previously (Chapter 5), depolarisation time was reduced but not significantly in 

cardiomyocytes treated with Salbutamol. Salbutamol’s affinity for bARs and release of 

calcium stores has been discussed in detail previously (Chapter 3). With a proposed increase 

in calcium upon Salbutamol activation, these excess levels of calcium, in addition to ROS 

production as a result of reperfusion/TMRM degradation, may also be a major contributing 

factor to the premature opening of the mPTP (Joshi and Bakowska, 2011). Experiments with 

Isoproterenol induced calcium release question whether the calcium efflux mechanisms can 

handle the increased rate at which influx of calcium into the mitochondria occurs (Bell et al., 

2006). In normal conditions of cardiomyocyte at rest, elevated calcium concentration within 

the inner mitochondria membrane will increase the mitochondrial permeability transition 

allowing the mitochondria to lose solutes via the mPTP (Wong et al., 2012). The rate at 

which calcium is able to be transported has been reported to be very slow, in particular the 

Na+/Ca2+ exchanger (Bell et al., 2011). However, during reperfusion, the mPTP is subjected 

to a spike in calcium concentration in addition to frurther elevated calcium levels induced by 
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Salbutamol. With extremely high levels of calcium, simultaneous opening of mPTP’s result 

in release of cytochrome c initiating the caspase cascade, supported by our findings showing 

elevated caspase 3 levels (Figure 7.7) (Murphy and Steenbergen, 2008, McIlwain et al., 

2015).  

 

With Salbutamol’s chronotropic effect (Chapter 3) and evidence of increased inotropy, the 

energetics of cardiomyocytes will alter dramatically to compensate for Salbutamol induced 

calcium release (Casoni et al., 2014, Prakash et al., 1997). Bell and colleagues (2011) in rat 

cardiomyocytes demonstrated when cardiomyocytes are stimulated to beat rapidly from rest, 

ATP levels deplete in order for contraction (Bell et al., 2006). We can propose from Bell and 

colleagues work in addition to our findings that Salbutamol may induce calcium release 

within cardiomyocytes causing premature opening of the mPTP resulting in more rapid ATP 

depletion. With this theory, this may give an explanation for the observed decreased time to 

the onset of hypercontracture in the presence of Salbutamol. 

Our proposal can also be linked with studies that found administration of Isoproterenol 

induced calcium release, which has been directly linked to increased infarct size and 

premature opening of the mPTP (Xiong et al., 1994, Bell et al., 2006, Mukherjee et al., 2015) 

 

Control, IR time matched control and Salbutamol data have been included from other western 

blots that have been run. Limiting factors and consequences of this have been discussed 

previously in section 5.5. The Expression of signalling protein p-Erk was not effected 

significantly with the administration of Salbutamol and CsA. Increased expression of p-Akt 

has been shown to promote cell survival in combination with elevated levels of p-Erk. Our 

findings show that Salbutamol with CsA significantly reduced p-Akt expression when 

compared to hearts treated with Salbutamol alone (Miyamoto et al., 2009). This emphasises a 
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link between p-Akt expression and Salbutamol mediated injury, i.e. elevated levels of p-Akt 

has a role for Salbutamol induced cardiotoxicity. Studies by Gharanei and colleagues (2013) 

showed a similar finding with Doxorubicin. In rat hearts treated with the adjunct therapy of 

CsA and Doxorubicin, p-Akt expression was reduced significantly (Gharanei et al., 2013). 

They suggested that the reduction on p-Akt expression was a factor of the reperfusion injury 

salvage kinase (RISK) pathway to bring about some protection of the heart to the insult 

caused by Doxorubicin. We can postulate that reduction of p-Akt expression by CsA 

administration in the presence of Salbutamol is a method by which the heart can initiate the 

RISK pathway in order to prevent reperfusion injury (Davidson et al., 2006, Gharanei et al., 

2013, Hausenloy and Yellon, 2007). Interestingly, both expression levels of p-Akt and p-Erk 

were significantly reduced in the presence of CsA alone. This is in contrast to findings by 

other groups that have shown increases in these particular survival proteins as they are a part 

of the RISK pathway (Halestrap and Pasdois, 2009). A possible elucidation for our observed 

results is activation of p-Akt by phosphorylation at threonine 308 instead of serine473. 

Interestingly, Kwiatkowska and colleagues (2011) demonstrated a down regulation of p-Akt 

with CsA that did not cause a detrimental effect to cellular apoptosis. Further studies into the 

investigation of CsA activation of AktThr308  by western blotting would clarify this.  

 

In conclusion, we have identified that Salbutamol mediated injury can be prevented in a 

model of oxidative stress and myocardial reperfusion injury with administration of the 

cyclophilin D inhibitor CsA. We can also emphasise from this study the importance of p-Akt 

expression in inducing Salbutamol mediated injury. Future studies may look at different 

components of the mPTP and specifically target other components such as the use of 

Bonkergic acid to lock the ANT in a confirmation (Wong et al., 2012).   
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8 General Discussion 

8.1 Rationale 

The primary therapy for alleviating symptoms associated with respiratory disorders has been 

the use of bronchodilators, in particular the treatment and management of asthma and 

Chronic Obstructive Pulmonary Disorder (COPD). The most recent published material from 

the Global Asthma Report (2014) identified an approximate 334 million sufferers of asthma 

worldwide in addition to an estimated 65 million people suffering from COPD. 3 million 

people worldwide were reported to have died as a result of COPD in 2005 with an estimated 

increase of 30% to the present date (WHO, 2005). Wide and diverse ranges of 

bronchodilators are available on the market including steroid inhalers, anti-cholinergic drugs 

and b2 adrenergic receptor agonists (b2ARs). 

 

Previous clinical studies have shown effectiveness of these different classes of 

bronchodilators and have been shown to alleviate symptoms rapidly and improve quality of 

life in patients over the past 60 years (Castle et al., 1993, Guyatt et al., 1997, Ellepola and 

Samaranayake, 2001, Smith and Parry-Billings, 2003, Rodrigo and Castro-Rodriguez, 2005). 

 

More recently, a number of clinical studies have associated with the use of bronchodilators 

with an increase in morbidity and morality in patients, especially those with underlying 

cardiovascular conditions (Singh et al., 2008, Macie et al., 2008). Such underlying 

cardiovascular conditions include myocardial ischaemia, myocardial infarction, 

cardiomyopathies, hypertrophy and heat failure (Au et al., 2000, Suissa et al., 2003).  
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Of particular interest in relation to our studies were the increasing number of reported 

cardiovascular events linked with b adrenergic receptor agonists (bARs), in particular the 

short acting bAR agonist Salbutamol (Burggraaf et al., 2001, Suissa et al., 2003,).  

Salbutamol was one of the first selective b2AR agonists launched and has been widely used 

since its launch in 1968 to alleviate symptoms of asthma (Icha, 2007). 

 

The primary aim of our work was to characterise the cardiovascular effects of currently 

prescribed bARs agonists (excluding Isoproterenol). In the study we assessed the role of 

short and long acting bARs agonists in a relevant cardiovascular model of ischaemia 

reperfusion injury using isolated perfused rat hearts (Bell et al., 2011, Hudecova et al., 2013, 

Fajardo et al., 2011). Having characterised the adverse cardiovascular effects of bAR 

agonists we further investigated the associated cell signalling pathways and their effects on 

the mitochondrial permeability transition pore. Figures 8.2-Figure 8.6 illustrate a summary of 

some of the key findings involved with treatment with Salbutamol in the presence of various 

types of inhibitors in the Langendorff model (Figure 8.2), oxidative stress model (Figure 8.3 

& Figure 8.4) and western blot analysis (Figure 8.5, Figure 8.6).  

 

8.2 Role of b2AR agonists on Myocardial Ischaemia Reperfusion injury and the 
Mitochondrial Permeability Transition Pore 

 

From our studies using the Langendorff model in Chapter 3, we identified the haemodynamic 

effects of the bAR agonists in addition to investigating the effects they had on myocardial 

infarction during ischaemia reperfusion injury. Isoproterenol, a non-selective bAR agonist, 

had no significant effect on Left Ventricular Developed Pressure (LVDP), Heart Rate (HR), 

or Coronary Flow (CF) (Figure 3.1, Figure 3.2, Figure 3.3). Interestingly, a decline (p>0.05) 
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in LVDP was observed in hearts administered with Isoproterenol (0.5µM). This decline in 

LVDP can be linked to previous studies that have identified Isoproterenol to induce 

myocardial ischaemia, hypertrophy and heart failure (Leenen et al., 2001). Left ventricular 

pressure overload has been reported to induce ventricular hypertrophy that can lead to heart 

failure in hearts administered with Isoproterenol thus reducing the LVDP (Chen et al., 2014).  

  

An increase in LVDP, HR and CF was seen with the administration of selective long acting 

b2AR agonists Formoterol and Salmeterol (Figure 3.7, Figure 3.8, Figure 3.9). This 

observation was consistent with previous work by other groups in regards to the positive 

inotropic and chronotropic effects of these particular b2AR agonists, Watson and colleagues 

(2013) showing a 20% increase in coronary flow in rat hearts (Guhan et al., 2000, Watson et 

al., 2013). These particular agonists activate the b2AR GPCR Gs pathway initiating the 

signalling cascade involving calcium release via the cAMP/PKA pathway. Opening of L-type 

calcium channels in response to either of the b2AR agonists increases cytosolic calcium 

concentrations leading to further calcium induced calcium release via ryanodine receptors on 

the sarcoplasmic reticulum. This increase in calcium concentration is then available to 

increase excitation contraction coupling of cardiomyocytes (Diaz et al., 2005, Louch et al., 

2012).  

 

In isolated hearts and cardiomyocytes subjected to ischaemia and reperfusion injury, b2AR 

agonists Salmeterol and Formoterol were shown to have no significant effects when 

compared to non-treated controls in both myocardial infarction and on isolated 

cardiomyocytes (Figure 3.10, Figure 3.11, Figure 3.12). Previous studies have suggested 

activation of bAR can initiate contrasting effects of apoptosis. Specifically, activation of 
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b1ARs initiates pro-apoptotic signalling in contrast to b2AR activation promoting anti-

apoptotic signals (Communal and Colucci, 2005, Zhu et al., 2005). Its has been suggested by 

Zhu and colleagues (2005) that the ability of b2ARs to dually bind to both Gs and Gi subunits 

allows it to inhibit the anti apoptotic effects of b1AR-Gs signalling (Zhu, et al., 2005). 

  

In contrast, administration of the non-selective bAR agonists Isoproterenol and Salbutamol 

demonstrated significant increased size in infarct to risk ratio and decreased cardiac myocyte 

viability, with Salbutamol also initiating an increase in cleaved caspase 3 activity (Figure 

3.16, Figure 4.1). A number of previous studies have shown that Isoproterenol induces 

myocardial injury as a result of the quinine metabolite produced by Isoproterenol increasing 

reactive oxygen species (ROS) thus causing damage to mitochondria as seen in a number of 

different models and species including canine, rat and humans (Andersson et al., 2011), 

(Hunt and Ross, 1990, Krenek et al., 2009, Herrmann et al., 2014).  

 

Previous clinical trials in patients administered with Salbutamol have been abandoned due to 

a high mortality rate (Gao Smith et al., 2012). In this particular study, a multicentre double 

blind placebo-controlled in the UK was carried out with 162 patients assigned to the 

Salbutamol group. Intravenous administration of Salbutamol (15µg/kg) increased the number 

of mortalities in the measured 28-day period patients were monitored. Another clinical trial 

involving nebulization of Salbutamol in patients suffering from Acute Lung Injury (ALI) was 

also abruptly stopped due to the high incidence of mortality in patients. In this study, 20.5% 

of the 282 patients that participated died as a result of treatment with Salbutamol (Matthay et 

al., 2011).  
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Salbutamol mediated myocardial injury is a phenomenon that has not previously been 

investigated especially in a pre-clinical model of ischaemia reperfusion injury. We 

demonstrated the administration of Salbutamol increased infarct size in a concentration 

dependent manner, especially at higher concentrations of Salbutamol (0.01µM-1µM) in 

addition to an increase in cytotoxicity (Figure 3.16, Figure 4.1).  

 

Activation of bARs has been shown to activate the cAMP-PKA dependent pathway, which in 

turn results in an increased release of calcium ions from the sarcoplasmic reticulum as a 

plausible link to increased myocardial injury via calcium overload (Zhu et al., 2003). 

Interestingly, Isoproterenol mediated myocardial injury has also been associated with calcium 

overload, where the co-administration of calcium channel blockers prevented this injury 

(Setaro et al., 1990). Having identified Salbutamol as unique short acting b agonist we 

continued our investigations focusing on the mPTP. 

 

Isolated ventricular rat cardiomyocytes were administered with bAR agonists to observe the 

time taken to the onset of depolarisation and hypercontracture to determine the role of the 

mPTP in bAR agonist mediated myocardial injury. Interestingly, Isoproterenol was the only 

bAR agonist to record a significant decrease in time to depolarisation compared to non-

treated controls in addition to a significant decrease in time to hypercontracture (Figure 3.5, 

Figure 3.6). The mechanism of hypercontracture results in irreversible cardiomyocyte 

shortening and is initiated by several factors including increased ROS and increased calcium 

concentrations. In respect to the b2AR Salbutamol, previous studies have indicated significant 

increase in calcium concentration in response to bAR activation (Halestrap, 2010). This 

significant rise in calcium concentration in addition to the increased ROS as a result of 
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reperfusion, are detrimental to the mPTP causing premature opening releasing the contents of 

the mitochondria into the cytosol (see section 8.5). The release of cytochrome c as a result of 

mPTP opening initiates several caspases including caspase 3, which were elevated in the 

presence of Salbutamol treated hearts (Figure 4.14). This suggested that Salbutamol has a 

role inducing cardiomyocyte cell death (Shin et al., 2014).  

 

The administration of Salbutamol, Salmeterol or Formoterol was seen to decrease the time to 

depolarisation and significantly reduce the time to hypercontracture (Figure 3.11, Figure 

3.12). The time taken to depolarisation represents opening of the mPTP, which can be 

initiated with increased ROS or increased calcium ions (Andrews et al., 2012). Isoproterenol 

induced myocardial injury and has previously been demonstrated to be associated with 

increased ROS and calcium overload by non-selective activation of either b1AR or b2AR 

(Andersson et al., 2011, Hudecova et al., 2013). The rate at which calcium is able to be 

transported in relation to release from the sarcoplasmic reticulum through ryanodine 

receptors or removed into the cytosol, has been reported to be very slow, in particular when 

controlled by the Na+/Ca2+ exchanger (Bell et al., 2011). During reperfusion, cardiomyocyte 

mitochondria are subjected to a spike in calcium concentration in addition to further elevated 

calcium levels induced by Salbutamol resulting in the premature opening of the mPTP.  

 

With the observed chronotropic effects of Salbutamol, cardiac myocyte energetics will alter 

to compensate the additional Salbutamol induced calcium release (Casoni et al., 2014, 

Prakash et al., 1997). We propose Salbutamol induced calcium release causes premature 

opening of the mPTP inducing rapid ATP depletion similar to the findings by Mukherjee and 

Colleagues (2015) who demonstrated the change in mitochondrial energetics in rat myocytes.  
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8.3 Identifying Salbutamol b Adrenergic Receptor selectivity in mediating myocardial 
injury 

 

Having identified Salbutamol’s effect in a model of ischaemia reperfusion injury and 

oxidative stress, identification of the specific bAR subtype that mediates this injury was 

further investigated. To date, four bAR subtypes have been identified as b1, b2, b3 and b4 with 

a large proportion of research focussed on the activity of b1ARs and b2ARs (Zaugg et al., 

2000). Antagonising b1 or b2ARs independently with ICI, 118 551 and CGP 20712 

respectively, we identified that Salbutamol mediated injury was predominantly via activation 

of the b2ARs. Both b1 and b2ARs are able capable of activating the bAR-Gs-cAMP pathway 

resulting in increased calcium release from the sarcoplasmic reticulum and may explain 

calcium mediated myocardial injury with Salbutamol (Communal et al., 1999, Heubach et al., 

2004,). A summary of the involvement of ICI 118, 551 and CGP 20712 can be seen in Figure 

8.2-Figure 8.4 with respect to the Langendorff and oxidative stress model. 

 

To determine the specific role of b2ARs in Salbutamol medicated injury we used the selective 

b2AR antagonist ICI 118,551 (Beer et al., 1988). Our claims can be concluded from 

myocardial injury being significantly reduced in the presence of the b2AR antagonist ICI 118, 

551, only allowing activation of the b1ARs (Figure 6.2). Suggestions of contrasting effects of 

activation of bARs has been suggested with b1ARs promoting cell apoptosis and b2ARs 

promoting cell survival (Communal and Colucci, 2005). Contrary to these groups, we 

propose that Salbutamol mediated cardiomyocyte apoptosis is via b2AR activation due to its 

capability of binding not only to the Gs subunit, but also the Gi subunit. Activation of the 

b2AR-Gi pathway has inhibitory effects on adenylyl cyclase thus reducing calcium release 

(Zhu et al., 2005). We also demonstrated with the b1AR antagonist CGP 20712 that 
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Salbutamol mediated injury was significantly reduced compared to control hearts however 

not to levels as seen with ICI 118, 551 (Figure 5.2).   

 

The involvement of G-protein couples receptor kinases (GRKs) have been linked to directly 

phosphorylate and uncouple the b2AR-Gs pathway to encourage Gi pathway activation, 

however this also has been suggested to contribute to cell apoptosis via different isoforms of 

the Gi subunit existing (Violin et al., 2006). In particular, the Gai-3 isoform has been linked 

to regulation of calcium, which may be the pathway in which Salbutamol b2AR-Gi pathway 

activation may continue to contribute to cellular apoptosis (Foerster et al., 2003). 

 

Further to bAR subtypes, distribution of bARs in the heart must also be considered. The ratio 

of bARs is in favour of b1ARs compared to b2ARs (Lyon et al., 2009). During cardiovascular 

events, this redistribution has been shown to shift in favor of b2ARs from deep within t-

tubules of cardiomycoytes to the cell crest (Nikolaev et al., 2010). As a result of 

internalisation, re-distribution of b2ARs to the cell crest of cardiomyocytes enable more 

interaction with Salbutamol that is present and compensate for the loss of b1ARs. Such 

redistribution of b2ARs could explain, in addition to Salbutamol’s high affinity for b2ARs, 

our proposals of Salbutamol mediated injury as concentration of the b2AR subtype would be 

significnatly higher in hearts with underlying heart conditions such as myocardial ischaemia. 

With diminished expression and distribution of b1ARs in such conditions, b2AR-Gs activation 

may be promoted over b2AR-Gi activation to compensate for the loss of adenyly cyclase 

activation (Nikolaev et al., 2010).  
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The distribution of bARs also potentially may play an influential role in Salbutamol mediated 

injury. In conditions of ischaemia, receptor internalisation and desensitisation of b1ARs have 

been suggested. Further to this re-distribution, the effect of Salbutamol increasing 

intracellular calcium concentrations may give rise to detrimental concentrations that effect 

the mPTP pore in conjunction with increased ROS production as a result of reperfusion. The 

combination of these particular conditions gives strong arguments as to how Salbutamol may 

mediate its cardiotoxic effects. 

8.4 Cell Signalling 
 

Our studies investigated the cell signalling proteins p-Akt and p-Erk and identified that in the 

model of ischaemia reperfusion, Salbutamol (0.1µM) significantly increased levels of p-Akt 

with no significant change observed in p-Erk (Figure 4.6, Figure 4.8). The activation of the 

PI3K/Akt pathway has been linked to activation of the bARs in particular via b2AR/Gi 

pathway in circumstances of promoting cell survival (Xu et al., 2010). Such survival has been 

shown to be mediated with increased recruitment of the PI3K pathway thus increasing the 

levels of p-Akt promoting anti-apoptotic effects (Hausenloy and Yellon, 2004). However, our 

studies up to this point have demonstrated that Salbutamol mediates injury in a model of 

ischaemia reperfusion increasing myocardial infarction (Figure 3.16). Elevated levels of p-

Akt and prolonged activation have been shown to cause deleterious effects to hearts such as 

increase in infarction size, hypertrophy and heart failure (Matsui and Rosenzweig, 2005, 

O'Neill and Abel, 2005). Nagoshi and colleagues (2005) suggested that increase expression 

of p-Akt might activate the cardioprotective properties of the heart, however activation of the 

PI3K may be dependent and a link to inducing cardiomyocyte apoptosis (Nagoshi et al., 

2005). Elevated levels of cleaved caspase 3 were recorded with cardiomyocytes treated with 
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Salbutamol (Figure 4.14). The activation of the PI3K/Akt pathway has been shown to inhibit 

activation of caspase 3 thus inhibiting cell apoptosis (Wu et al., 2000). Against these 

findings, we have demonstrated that caspase 3 levels still remain elevated significantly with 

elevated expression of p-Akt suggesting that cardiomyocyte apoptosis is still occurring in the 

presence of Salbutamol.  

 

The different isoforms of Akt have varying effects and regulatory properties, in particular the 

Akt1 isoform has been shown to regulate calcium levels in the heart directly (Yu et al., 2015). 

In combination with previous work identifying Salbutamol induced calcium release and in 

addition to our findings of elevated p-Akt we can purport a link to this particular isoform of 

Akt that may give reasoning to a mechanism by which Salbutamol mediated myocardial 

injury can occur (Santi and Lee, 2010). Figure 8.5 illustrates an overview of the levels of p-

Akt expression in rat hearts administered with Salbutamol in the presence of various 

inhibitors used throughout the thesis.  

 

Although shown not to be significant, levels of p-Erk still need to be considered as a potential 

link to Salbutamol mediated injury (Figure 4.8). A proposal of crosstalk between elevated p-

Akt levels inhibiting the levels of p-Erk has been put forward, similar to our findings 

(Moelling et al., 2002). Moelling et al., (2002) showed Raf-Akt cross talk in a concentration 

dependent manner, suggesting prolonged rapid activation of p-Akt suppressed the Raf-Erk 

pathway activation thus diminishing levels of p-Erk as seen in our studies (Mendoza et al., 

2011, Suire et al., 2002). Figure 8.6 illustrates the non-significant effect of hearts reperfused 

for 20 minutes with Salbutamol. Interestingly, the combination of inhibitors did have some 

significant effects, most notably Salbutmaol + Wortmannin, further supporting our 

postulation of a cross talk link between p-Erk and p-Akt.  
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Overall, from our findings we can postulate that p-Akt, via the PI3K/Akt signalling cascade, 

is recruited and responsible for Salbutamol mediated injury in a model of ischaemia 

reperfusion in addition to direct activation of this pathway by ROS (Takano et al., 2003). 

Details of how this particular study could be elaborated are discussed later. Interestingly, 

levels of p-Akt were inhibited in the presence of the b2AR antagonist ICI 118, 551 

confirming that p-Akt is recruited in the presence of Salbutamol (Figure 6.5). Further to this, 

linking this same adjunct treatment in the Langendorff model, ICI 118, 551 inhibited 

Salbutamol mediated injury, thus reinforcing our proposal that p-Akt is a key signalling 

protein linked to Salbutamol mediated injury.  

8.5 Role of mPTP in Salbutamol mediated myocardial injury 
 

With previous evidence of the mPTP playing a detrimental role in mitochondrial integrity 

during ischaemia-reperfusion injury and our evidence of Salbutamol mediated injury via 

premature opening of the mPTP, a focus on abolishing this injury by targeting the mPTP was 

evaluated. The use of Cyclosporin A (CsA) has been documented to inhibit the opening of 

the mPTP, more specifically inhibiting the cyclophilin D (Cyp D) component of the mPTP 

(Halestrap et al., 1997a, Halestrap, 2010, Ong et al., 2015b).  

 

Cyp D has been identified to be one of the components to make up the mPTP however this its 

structure and role is still debated (Karch and Molkentin, 2014). The adjunct therapy of 

Salbutamol and CsA significantly increased the time taken to the onset of depolarisation and 

hypercontracture compared to hearts treated alone with Salbutamol (Figure 7.3, Figure 7.4). 

Previously, we have discussed Salbutamol induced calcium release in addition to increase in 

ROS as a result of ischaemia reperfusion. The protective manner of CsA in our studies has 

been shown to inhibit these effects both in the model of oxidative stress and in cell signalling. 
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Interestingly, similar to expression levels of p-Akt with hearts treated with Salbutamol 

antagonised with ICI 118, 551, CsA significantly decreased p-Akt expression (Figure 7.6). 

CsA treated hearts also abrogated the expression of p-Akt. These findings reaffirm our 

previous proposal that p-Akt plays a key role in Salbutamol mediated injury. Although 

Salbutamol and CsA adjunct therapy demonstrated to nullify Salbutamol mediated injury in 

our studies, application of this particular adjunct therapy in patients is highly unlikely. CsA in 

a clinical setting is a successful immunosuppressant, however complications have been 

shown with CsA post surgery nephrotoxicity and hepatotoxicity (Rezzani, 2006). Further to 

this, meta-analysis of several small sample sized clinical trials with administration of CsA in 

patients undergoing cardiac surgery showed inconclusive reduction of infarct size (Song et 

al., 2015).  

 

Salbutamol as a chronotropic drug, increases intracellular calcium via activation of b2AR 

activation of L-type calcium channels through the cAMP/PKA signalling pathway, which 

affects cellular energetics including ATP consumption (Casoni et al., 2014). With such 

increase in calcium, increased contraction of cardiomyocytes can cause rapid depletion of 

ATP causing premature opening of the mPTP as we seen in our studies (Bell et al., 2006). 

Our findings confirm that of previous studies that premature opening of the mPTP can be 

inhibited with the Cyp D inhibitor, CsA. In addition to this we identified that CsA treated 

hearts can abolish Salbutamol mediated injury as seen in the Langendorff and 

cardiomyocytes. Further to this, we propose that premature opening of the mPTP by 

Salbutamol is a contribution of the increased stress of calcium release as observed by 

previous studies using the non selective bAR Isoproterenol (Xiong et al., 1994, Bell et al., 

2006, Mukherjee et al., 2015) Prolonged activation of bARs as a result of calcium overload 

causes an increase in ATP depletion within cardiomyocytes due to the inhibition of the 
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N+/K+ATPase resulting in increased Na+ concentration that inhibits the NCX leading to 

maladaptive calcium homeostasis (Garcia-Dorado et al., 2012). 

8.6 Future Directions & Limitations 

 
Our studies identified the cardiotoxic effects of Salbutamol in a model of ischaemia 

reperfusion injury (Figure 8.2). These findings can be further elaborated on via investigation 

into further specific cell signalling mechanisms by which Salbutamol exacerbates myocardial 

infarction. 

 

Firstly, further studies into the activation of the b2AR-Gs pathway could be carried out with 

use of the Gi inhibitor Pertussis Toxin (PTX) (Rybin et al., 2003). With inhibition of the Gi 

pathway, further clarification could be made as to whether the sole cardiotoxic effect of 

Salbutamol is via the b1/2AR-Gs pathway. Further to this, the Gs pathway inhibitor Cholera 

Toxin (CTX) could also be used to identify whether activation of the b2AR-Gi pathway can 

also induce cell apoptosis. Further to the use of CTX, transgenic mice specifically expressing 

the Gai-3 isoform of the Gi subunit in combination with CTX could help clarify further the 

pathway of Salbutamol toxicity and further knowledge in understanding the various isoforms 

of the Gi subunit (Foerster et al., 2003).  

 

Elaborative work on signalling proteins may prove to be useful, in particular investigating a 

relationship of p-Akt with the stress activated MAPK p-Jnk. Having previously proposed a 

crosstalk link between p-Akt and p-Erk, further cross talk links may exist with other 

signalling cascades. Inhibition of the PI3K/Akt pathway with Wortmannin may clarify the 

signalling cascade by which Akt expression occurs. Our preliminary studies with 
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Wortmannin showed no significant decrease in expression of p-Akt. This suggests that 

activation of p-Akt could be a result of another signalling cascade via cross talk (data not 

shown). Increased expression of p-Erk in the presence of Wortmannin (data not shown) can 

further link to a potential crosstalk between p-Akt and p-Erk in contrast to findings of p-Akt 

inhibition of p-Erk (Mendoza et al., 2011, Suire et al., 2002). Further investigation into these 

particular pathways may elaborate the complexities of intracellular pathway signalling in 

addition to the use of the p44/p42 pathway inhibitor U0126 (Zhu et al., 2003).  

 

Our studies reaffirmed previous studies in relation to haemodynamics with the observed 

increase inotropic and chronotropic effects of Salbutamol (Mettauer et al., 1985, Tzoufi et al., 

2005). Previous studies by other groups have looked at in detail the relationship of 

Salbutamol and calcium release, however investigation into the relationship of Salbutamol 

and calcium and its effects directly on the mPTP should be further investigated (Woo and 

Xiao, 2012). The use of the FURA-2 fluorescent dye in isolated cardiomyocytes may give 

clarification on the movement of intra-cellular calcium in the mitochondria and its direct 

effects on the mPTP pore with potential to identify if Salbutamol induced calcium release is 

as potent as we proposed (Lipp and Niggli, 1993). Further work with calcium spark detection 

may also contribute to a broader understanding of the movement of Salbutamol mediated 

intracellular calcium movement from the sarcoplasmic reticulum via ryanodine receptors 

(Lindner et al., 2002).  

A rudimentary approach in the Langendorff model may be the use of a calcium blocker such 

as verapamil and note the effect on I/R ratio in the presence of Salbutamol, or alternatively 

the use of a calcium-chelating agent to highlight the importance of Salbutamol induced 

calcium release in premature opening of the mPTP. The use of the Langendorff model as an 

ex-vivo model of ischaemia reperfusion injury has enabled some interesting findings in 
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relation to Salbutamol mediated injury. An in-vivo model of our studies with surgical ligation 

of the coronary arteries in rats followed by pro-longed treatment with Salbutamol may further 

our knowledge and understanding as to the mechanisms by which Salbutamol exacerbates 

ischaemia reperfusion injury.  

8.7 Overall Conclusion 
 

To conclude, the data presented from these studies demonstrate for the first time the 

exacerbation of infarct size in rat hearts, signalling proteins and ROS in a model of ischaemia 

reperfusion in the presence of the bAR agonist Salbutamol. In a model of oxidative stress, 

Salbutamol does not induce premature opening of the mPTP however it does cause premature 

hypercontracture and subsequent cardiac myocyte apoptosis. The mechanism by which this 

occurs remains unclear but we can propose the involvement of calcium in addition to ROS is 

a contributing factor.  

 

We propose that the signalling protein p-Akt via the PI3K pathways plays a key role in 

Salbutamol mediated injury via prolonged activation as shown by other groups (Nagoshi et 

al., 2005). We can confirm that the majority of Salbutamol mediated injury is via activation 

of the b2ARs with some toxicity occurring as a result of activation of b1ARs. A potential 

therapeutic target for the future administration of Salbutamol in patients with underlying 

heart disease could be the use of the Cyp D inhibitor CsA, as we are the first group to 

demonstrate the adjunct therapy of CsA and Salbutamol reduces myocardial infarction. A 

summary diagram in Figure 8.1 depicts the proposed signalling cascade of Salbutamol 

mediated injury from data that was collected throughout this project.  
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Figure 8.1 Proposed signalling pathway of Salbutamol mediated toxicity in cardiomyocytes. Activation of either b1AR 

or b2AR can increase phosphorlated Akt and decrease phoshorylated Erk. The use of U0126 inhibited MEK1/2 

pathway activation in the rat heart, whilst PI3K inhibitor Wortmannin (Wort) decreased expression of p-Akt. 

Elevated levels of p-Akt were shown to surpress levels of p-Erk expression. Further down the signalling cascade, 

Cyclosporin A (CsA) was shown to inhibit opening of the mPTP, whilst Salbutamol meditated injury via elevated p-

Akt signalling activated a significant increase in  cleaved caspase 3 concnetration initiating cell death (Caspase 3).  
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Figure 8.2 Summary graph illustrating  Infarct to Risk ratio (%) of hearts treated with Salbutamol in the presence of 

b1AR antagonist CGP, 20712, b2AR antagonist ICI 118, 551 and Cyclophilin D inhibitor Cyclosporin A (CsA). Data 

extracted from previous chapters. ***p<0.001 vs. I/R, **p<0.01 vs. IR, ###p<0.001 vs. SalB (0.1µM), ##p<0.01 vs. SalB 

(0.1µM).  
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Figure 8.3 Summary graph illustrating the effects of Salbutamol on time taken to depolarisation in isolated 

cardiomyocytes in a model of oxidative stress in the presence of b1AR antagonist CGP, 20712, b2AR antagonist ICI 

118, 551 and Cyclophilin D inhibitor Cyclosporin A (CsA). Data extracted from previous chapters. **p<0.01 vs. 

Control, ###p<0.001 vs. SalB (0.1µM).  
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Figure 8.4 Summary graph illustrating the effects of Salbutamol on time taken to hypercontracture in isolated 

cardiomyocytes in a model of oxidative stress in the presence of b1AR antagonist CGP, 20712, b2AR antagonist ICI 

118, 551 and Cyclophilin D inhibitor Cyclosporin A (CsA). Data extracted from previous chapters. ***p<0.001 vs. 

Control,  **p<0.01 vs. Control, ##p<0.01 vs. SalB (0.1µM), #p<0.05 vs. SalB (0.1µM).  
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Figure 8.5 The effects of Salbutamol on the expression of phosphorylated Akt (Ser473) in the presence of b1AR 

antagonist CGP, 20712 (0.0014µM), b2AR antagonist ICI 118, 551 (0.0012µM) and Cyclophilin D inhibitor CsA 

(0.2µM), Wortmannin (0.1µM) and U0126 (10µM). Hearts exposed to 35 minutes ischaemia and 20 minutes of 

reperfusion. Data extracted from previous chapters. **p<0.01 vs. IR 20 Mins, ###p<0.001 vs. SalB (0.1µM), ##p<0.01 vs. 

SalB (0.1µM), #p<0.05 vs. SalB (0.1µM).  
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Figure 8.6 The effects of Salbutamol on the expression of phosphorylated Erk (p44/p42) in the presence of b1AR 

antagonist CGP, 20712 (0.0014µM), b2AR antagonist ICI 118, 551 (0.0012µM) and Cyclophilin D inhibitor CsA 

(0.2µM), Wortmannin (0.1µM) and U0126 (10µM). Hearts exposed to 35 minutes ischaemia and 20 minutes of 

reperfusion. Data extracted from previous chapters. *p<0.05 vs. IR 20 Mins, #p<0.05 vs. SalB (0.1µM). 
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