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Abstract 

The Urban Waste Water Treatment Directive increases government regulatory 

pressure required to ensure phosphate discharged by Waste Water Treatment 

Works (WWTWs) meet consent. Bricks from construction waste have been 

viewed as an alternative treatment medium for phosphate. This thesis 

examines the use of recycled bricks and novel brick-like materials to afford an 

opportunity for the provision of a green solution to issues associated with 

phosphate removal and recovery. 

This thesis builds on existing studies on the use of recycled bricks, firstly 

eliminating the problem associated with use of powdered form of clay material 

by pelletising these materials. The pellets developed performed better than 

conventional brick dust. The composition of pelletised material was modified to 

ascertain the extent of phosphate adsorption. Optimization of pelletised 

material was carried out in batch studies, and phosphate removal was found to 

vary with elemental composition and increase with treatment time among other 

factors. The maximum adsorption capacity was 42.37 mg/g, 70.42 mg/g and 

52.91 mg/g for AlMFCP, CaMFCP and FeMFCP respectively. The modified 

pellets show a faster kinetic that was up to five times faster than FCP signifying 

that the modified pellets will require a reactor that was five times smaller in size 

than FCP. Physisorption was the dominant adsorption mechanism supported 

by some pore diffusion for AlMFCP and FeMFCP but the dominant mechanism 

for adsorption using CaMFCP was chemisorption supported by some physical 

diffusion processes. Acidic pH favoured adsorption using FeMFCP, and slightly 

acidic pH for AlMFCP while adsorption using CaMFCP was favoured at acidic 

and neutral pH. Phosphate adsorption achieved using materials of this study 

was compared to materials of other studies through the comparison of 

adsorption isotherms. Pellets modified with calcium carbonate showed the best 

performance and was consequently used in further studies. Phosphate 

adsorption involved different mechanisms at different stages but tending to 

physisorption as the dominant mechanism. 

Fixed bed column study performed on the pellets showed the practicability of a 

full-scale application in a wastewater treatment plant. Increase in bed height 



vi 
 

and column diameter improved adsorption capacity due to longer empty bed 

contact time (EBCT) between the adsorbent and phosphate in solution. Higher 

flow rate hindered adsorption as a result of shorter contact between adsorbent 

and phosphate in solution. The column with column diameter of 2 cm, bed 

height of 10 cm and influent phosphate concentration of 20 mg/L showed the 

shortest retention time of 1.75 minutes, followed by the column with a bed 

height of 10 cm, column diameter of 5 cm and influent phosphate concentration 

of 20 mg/L. 

Phosphate sorbed to materials in this study was recycled as a slow release 

fertilizer for agricultural production. The spent adsorbent compared favourably 

with yield obtained from KH2PO4 fertilizer. The yield increased with increase in 

application rate of phosphate with 382.17 kgP/ha producing the highest yield. 

The performance of pots with P added in the form of phosphate sorbed to 

CaMFCP was similar to pots with P added in the form of KH2PO4 when 

germination rate, plant height and WM yield were considered while pots with 

added KH2PO4 showed a better DM yield than pots with P added in the form of 

phosphate sorbed to CaMFCP. Relative effectiveness of fertilizer showed 

improvement as growth progressed. At the latter stages, yield using phosphate 

from spent filter materials surpassed KH2PO4 fertilizer. This demonstrated that 

spent fired clay pellets could be used as a slow release fertilizer for agricultural 

purpose thereby offering a green and cost effective option for phosphate 

removal in wastewater and the management of the resultant waste pellets. 
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1 Chapter One: Background of Study 

The provision of access to clean water has always been a priority for many 

countries. With the global human population estimated at 7billion (UNFRA 2011 

Estimate), there is a greater urgency for the provision of clean drinking water. 

There have been several arguments that a growth in population will presumably 

increase water scarcity (Postel 1998, Rijsberman 2006). Water scarcity can be 

categorised as physical scarcity with a physical absence or low presence of 

water and economic scarcity which could be attributed to insufficient investment 

or development of human capacity in the water sector (Kummu et al 2010, 

Rijsberman 2006).  Physical water scarcity has been has been experienced in 

the arid and semi-arid regions of North Africa, Asia, and in parts of middle and 

southern Africa (Kummu et al 2010). The industrialised countries are currently 

not affected by water scarcity (Koehler 2008). 

The availability of clean water can be affected by several factors and these 

include water pollution. Water pollution can be attributed to different sources, 

but anthropogenic sources such as industrial discharge, agricultural activity, 

and sewage discharge constitute a major cause of water pollution (Palma et al 

2010, Donohue 2006). Pollutants from anthropogenic sources found in 

wastewater constitute a major channel for this pollution and the pollutants from 

these anthropogenic sources include BTEX (Nourmoradi 2013, Nourmoradi 

2012, Aivalioti 2012), phenolic compounds (Tam et al 2009, Hameed 2008), 

Heavy metals (Feng 2012), PCBs (Prieto et al 2010), and nutrients such as 

nitrogen and phosphorus (Husband et al 2012, Kamiyango 2009 and Boujelben 

2008). Excessive or elevated nutrients in the water system may enhance the 

increase in plant based organic matter hence causing eutrophication and algal 

blooms (Vohla et al 2011, Mateus and Pinho 2010, Smith and Schindler 2009, 

Tam et al 2009 and Wang et al 2005). Phosphate has been cited as a vital and 

limiting nutrient in freshwater system and has been suggested that a decrease 

in phosphate can effectively control eutrophication in coastal and fresh water 

systems (Mateus and Pinho 2009, Smith 2003 and Tyrrell 1999). Other 

researchers argue that nitrogen and phosphorus both play roles in the water 

systems and a reduction in both nutrients is essential in controlling 

eutrophication (Paerl 2009) and some others citing nitrogen as the limiting 
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nutrient in which a reduction will bring about a decrease in eutrophication (Lewis 

and Wurtzbaugh 2008).  

Phosphates in wastewater may originate may originate from industrial use of 

phosphate as a raw material, domestic use of phosphate-containing detergents 

and runoff from application of phosphate fertilizers to agricultural lands 

(Kamiyango et al 2009). As eutrophication is a major issue, the effective and 

efficient removal of phosphate during wastewater treatment is crucial. The 

Urban Waste Water Treatment Directive (91/271/EEC) mandates an 80% 

reduction in phosphorus level or an effluent phosphorus concentration of 2mg/L 

P for 10,000- 100,000 p.e and 1mg/L for population estimate greater than 

100,000. This directive has led to a decreasing low level of phosphorus in 

wastewater effluent during treatment through increased government regulatory 

pressure (Vohla et al 2011). 

Several methods of phosphorus removal from wastewater have been employed 

in wastewater treatment. These include chemical precipitation involving the 

addition of calcium iron and aluminium salts, this is the commonly used and the 

most effective method of phosphorus removal in wastewater treatment plant 

(WWTP), and often resulting in high phosphorus removal levels (Clark et al 

1997 Ebeling et al 2003). The major drawbacks of the method are the high 

volume of sludge produced (Hussain et al 2011) and the high cost of chemicals 

required for dosing (Kahraman et al 2012). Biological phosphorus removal has 

also been used in wastewater treatment (Hascoet and Florentz 1985, 

Hernandez et al 2006, Monclus et al 2010) and it depends on a combination of 

factors such as pH and temperature for effective performance (Jia et al 2013, 

Coma et al 2012). Consequently, it has a variable and inconsistent removal rate 

which may require a complimentary treatment to produce low effluent levels 

(Morse et al 1998, Brix and Arias 2005).  

Adsorption of phosphate to suitable materials is becoming a frequently used 

method of removing phosphate in wastewater treatment. This could be 

attributed to its advantages over chemical precipitation and biological 

phosphorus removal. The advantages which include low cost, capacity to 

produce re-usable solids and simplicity makes this method a favourable option 

in wastewater treatment (Chen et al 2013, Jia et al 2013). Fe, Al and Ca are the 
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elements that are often credited with phosphate sorption and it is assumed that 

if these elements are present in any medium in a substantial amount, then that 

medium can be used for phosphate removal (Fondu et al 2010). 

Several studies have been conducted using various low cost adsorbents such 

as: alunite (Ozacar 2006, Ozacar 2003), fly ash (Li et al 2006, Cheung et al 

2000), opoka (Brogowski and Renman 2004, Hylander and Siman 2001 and 

Johansson and Gustafsson 2000), Polonite (Gustafsson et al 2008), sand 

(Vohla et al 2008, Farahbakhshazad and Morrison 2003), zeolite (Jiang et al 

2013, Ning et al 2008), blast furnace slag (Johansson and Gustafsson 2000), 

LWA/LECA (Vohla et al 2005, Zhu et al 2003, Johansson 1997), ochre (Littler 

et al 2013), red mud (Huang et al 2008) and clay (Kaminyango et al 2009, Dable 

et al 2008) for the removal of phosphorus from wastewater. The studies have 

been carried out as a laboratory, small scale constructed wetland or a full scale 

constructed wetland with the adsorbents used as filter media (Vohla et al 2011).  

Clay has been studied as a low cost adsorbent in the removal of phosphate 

from wastewater and different phosphate removal rates has been recorded. In 

a phosphate removal study done with raw and acid treated clay from Malawi, 

Kamiyango et al 2009 reported that a brick dosage of 60g/L was required for a 

removal rate of 80% using the acid treated clay while the raw clay only achieved 

a maximum removal rate of 60%. It was argued that different phosphate 

removal mechanisms were responsible for phosphate removal at different pH. 

At a low pH, removal is believed to occur through phosphate adsorption to iron 

oxide, while the phosphates were precipitated out by metal ions at a higher pH. 

A separate study conducted on two different clay types showed the uptake 

mechanism was adsorption to Aluminium oxides and 80% removal was 

achieved using 5g/L brick dosage (Dable et al 2008).  

Bricks have been shown to be capable of removing wastewater pollutants. A 

study on the ability of bricks to adsorb ferrous ions showed that its ability 

increased after acid treatment (Dehou et al 2008). The adsorption 

characteristics of bricks has been shown to be higher that of sand beds 

(Selvaraju and Pushpavanam 2009), and this was attributed to the presence 

metal oxides and hydroxides particularly that of aluminium in the bricks. Another 

reason for the higher adsorptive property was the greater specific surface area 
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of the bricks as it leads to a larger reaction and binding sites for phosphates 

lending credence to the capability of bricks to remove pollutants from 

wastewater. 

The use of bricks in the removal of phosphates from wastewater has been 

reported. Gurang 2005 reported a 75-98% removal using different bricks types. 

An analysis of the Fe:Al:Ca ratio showed that the removal best occurred when 

the ratio was between 1:4:4-1:4:6 with the optimum ratio at 1:4:5. Another study 

recorded average phosphate removal ratio 70% and it was observed that the 

phosphate removal decreased with increasing pH and the optimum pH range 

was between 3 and 4 (Taylor 2005). 

Antwi (2009) studied the adsorption capacity of bricks from different geologic 

regions of the UK and found the bricks that had the best adsorption capacity 

were from the “Essex” region of the UK. The study showed that adsorption of 

the bricks occurred within two pH ranges, and was found to increase when pH 

decreased from 4 to 6 and increased when pH increased from neutral to 12. 

This finding is consistent with the assumption that different phosphate removal 

mechanism are responsible for phosphate uptake, at low pH, removal is by 

adsorption to Al or Fe ions while at high pH, removal is by precipitation by Ca 

ions (Dable et al 2008).  The studies also showed that phosphate adsorption 

also increased with increasing brick dosage and a phosphate solution brick 

dosage ratio of 1:10 was optimum.  

A study on the adsorptive characteristics of bricks showed an increased 

adsorption with increasing pH with the optimum pH range lies between 4 and 

7. Phosphate adsorption was not found to be significantly affected by 

temperature, but the concentration of the phosphate solution affected the 

uptake of phosphate as it increased with an increase in phosphate solution (Jia 

et al 2013). 

The potential of the bricks to be used as an adsorbent for an extended period 

was shown in the study by Antwi 2009, by saturating bricks with phosphate 

solution over a period of time and the bricks dust was found to reach saturation 

after 43 days.  
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The generation of huge amounts of bricks from the building and construction 

industry poses a huge environmental challenge with its disposal. A reuse or 

recycling of these bricks in wastewater treatment will provide an environment-

friendly method of disposal, thus making a valuable resource out of waste. As 

little study has been conducted in determining the feasibility of the use of bricks 

in wastewater treatment, an extended study could be done to determine how 

long it will take to saturate a laboratory scale treatment plant to assess its 

suitability and feasibility for use as an adsorbent in wastewater. 

Using bricks in a dust or powdered form increased the turbidity of the water thus 

contributing to increased cost of treatment as additional cost will be required to 

remove the suspended solids from the water. The production of clay pellets 

which would be suitable for wastewater treatment will address the problem.  

The recycling of the phosphate adsorbed by the pellets could be valuable when 

the disposal cost of the bricks after use in wastewater treatment and the finite 

global phosphorus pool are considered. The ability of the spent bricks to re-

release the adsorbed phosphate could be studied and the potential of using the 

saturated pellets as a source of slow release fertilizer for plant growth 

assessed. Studies done on different filter material to evaluate its potential and 

availability of the adsorbed phosphorus to be used for plant production showed 

that adsorbed phosphorus in filter materials could be released for use by plant 

(Hylander et al 2006, Hylander and Siman 2001). 

1.1 Statement of the Problem 

The preceding introduction highlights the potential of fired clay pellets for use 

as a filter material and adsorbent in wastewater treatment (Jia et al 2013, Antwi 

2009, Gurang 2005). This study seeks to provide an insight into the 

effectiveness of the use of fired clay pellets in wastewater treatment by 

determining the adsorption characteristics and evaluating the potential for its 

use as a slow release fertilizer. 

The study will seek to answer the following questions: 

i. What factors will affect the adsorption of phosphate by clay pellets? 

ii. How will the composition of the clay pellets affect the adsorption? 
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iii. What is the mechanism for the removal of phosphate during the 

treatment? 

iv. Which element(s) is primarily responsible for the uptake of 

phosphate? 

v. Can elemental composition be modified to improve removal 

efficiency? 

vi. How will the performance of the clay pellets be affected when used 

in a fixed bed column study? 

vii. Can the adsorbed phosphate be used as a slow release fertilizer? 

 

1.2 Research Aim and Objectives 

The aim of this research was to assess the removal of phosphates from 

wastewater using clay tiles, maximise the phosphate adsorption capacity of the 

clay tiles, determine the suitability of the use of the clay tiles in a fixed bed 

column study and evaluate the potential for the production of a slow release 

fertilizer. 

The specific objectives of this research will be to: 

i. Investigate the optimum firing temperature for the clay pellets. 

ii. Identify the key elements within the parent clay responsible for 

phosphate adsorption. 

iii. Explore ways to optimise the capacity of clay pellets.  

iv. Investigate the predominant phosphate removal mechanism. 

v. investigate the performance of the clay tiles in a continuous flow 

column and its applicability in wastewater treatment, and 

vi. Investigate the potential for the production of a slow release fertilizer. 

1.3 Thesis Outline 

This research will start by reviewing existing literature on the different methods 

used in wastewater treatment for the removal of phosphates. Emphasis will be 

placed on the use of different clay-based adsorbents in the removal of 

phosphates from wastewater. The performances of laboratory-scale 

experimental studies used for phosphates removal from wastewater will also 

be reviewed. 
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a. Chapter One will expound the background, problem statement of the 

study, aim and objectives of the study. 

b. Chapter Two will review relevant published literature on studies 

conducted to assess the treatment of wastewater with particular 

emphasis on the phosphate removal using different adsorbents. The 

performance of clay-based materials as adsorbent for phosphate 

removal form wastewater will also be reviewed in the chapter. 

c. Chapter Three will describe the experimental procedure for the 

laboratory and greenhouse experiments including the experimental 

design and methodology. 

d. Chapter Four will present the data from the laboratory experiments using 

brick dust as phosphate adsorbing material.  

e. Chapter Five will discuss the data from studies utilizing clay pellets fired 

in the laboratory. 

f. Chapter Six will discuss the modification of the pellets using salts of 

calcium, aluminium and iron. 

g. Chapter Seven will discuss the fixed bed column study using the pellets 

that performed best in the previous chapter. 

h. Chapter Eight will discuss the results from the greenhouse trial using 

spent pellets obtained from the study in from Chapter Eight as a 

phosphate source 

i. The summary and conclusion of the research will be presented in 

Chapter Nine.  
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2 Chapter Two Review of Related Literature  

2.1 Phosphorus 

Phosphorus is a poly atomic multivalent non-metal element with atomic number 

15 and atomic weight of 30.974. It belongs to Period 3 and is the second 

element in Group 15 of the periodic table. The name phosphorus is derived 

from the Greek word phosphoros meaning bringer of light. Phosphorus was 

discovered by the German Alchemist Hennig Brand through the distillation of 

urine. It is a very reactive element and it is never found in its pure state in nature. 

It commonly exists as three allotropes: white phosphorus, red phosphorus and 

black phosphorus. White phosphorus is a waxy, transparent solid which 

sometimes appears slightly yellowish. It has a boiling point of 280oC and a 

melting point of 44oC. White phosphorus can sublime when stored in a vacuum, 

if exposed to light. It is phosphorescent, giving off a greenish-white glow. It is 

the least stable and most reactive of the three allotropes. It self-ignites at 30oC 

and is insoluble in water, but is soluble in benzene, carbon disulphide and 

chloroform. 

Red phosphorus is a red powder that is produced by heating white phosphorus 

in the presence of a catalyst to 240oC. It is a non-toxic, odourless, and 

chemically active allotrope of phosphorus. It is not phosphorescent unlike white 

phosphorus. Freshly prepared red phosphorus is highly reactive and ignites at 

temperature around 300 oC. Prolonged storage or heating produces a more 

stable product that does not spontaneously ignite in air.  Red phosphorus is 

insoluble in most liquids. It has several uses including the production of safety 

matches, pyrotechnics, fertilizers, incendiary shells in organic synthesis 

reactions and certain flame retardants. 

Black phosphorus is the least reactive allotrope of phosphorus. It is the most 

thermodynamically stable allotrope of phosphorus. It exists in three known 

crystalline state (orthorhombic, rhombohedral, and as a simple cubic). It is 

insoluble in most solvents, non-flammable and chemically inert (Zhao et al 

2017). Black phosphorus can be produced by applying extreme pressure to 

white phosphorus or by using metal salts as catalyst at ambient conditions. It 

can conduct electricity despite being a non-metal. Black phosphorus can be 
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exfoliated to produce phosphorene, a graphene-like 2D material with thermal 

transport and charge properties. Black phosphorus has several uses in optical 

application and is also used in semi-conductors. 

2.2 Uses of phosphorus 

One of the most important uses of phosphorus is for the manufacture of 

ammonium fertilizers. Phosphorus also plays a vital role during the production 

of steel, and is also used for the production of special glasses and fine 

chinaware. It is also used in the manufacture of detergents. 

Biologically, phosphorus is essential to all living things. It forms the phosphate-

sugar backbone of DNA and RNA. It is also used for energy transfer within the 

cells as part of ATP (adenosine triphosphate).It also forms a major components 

of bones and teeth in vertebrates and exoskeletons of invertebrates.  

2.2.1 Phosphorus and Eutrophication 

The presence of excessive or elevated levels of nutrients such as nitrogen and 

phosphorus in water systems can stimulate an increase in plant based organic 

matter (Vohla et al. 2011, Mateus & Pinho 2010, Smith & Schindler 2009, Tam 

et al. 2009, Wang et al. 2005), this increase is commonly referred to as 

eutrophication is a critical water quality issue for aquatic ecosystems 

(Mainstone & Parr 2002, Jarvie et al. 2006, Paerl et al. 2009, Smith & Schindler 

2009). Eutrophication produces a brown or green coloration to the water 

thereby decreasing the ‘perceived aesthetic value’ of the water body. 

Phosphorus (P) has been cited as a vital and limiting nutrient in freshwater 

system and has been suggested that a decrease in phosphorus can effectively 

control eutrophication in coastal and fresh water systems (Mateus and Pinho 

2010, Smith 2003 and Tyrrell 1999). The limitation factor of a nutrient element 

is a combination of the biological requirements of the proliferating species and 

the availability of the nutrients (Elser 2012). Phosphorus has been known to be 

the primary nutrient responsible for eutrophication in upstream freshwater and 

this could be attributed to the large watershed areas which are responsible for 

the capture, accumulation and mobilization of relatively huge quantity of 

biologically available nitrogen when compared to phosphorus (Wetzel 2001, 

Paerl 2009) Phosphorus as a nutrient element is generally in short supply in 
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freshwater systems and river and hence has the highest potential to limit plant 

growth (Mainstone & Parr 2002).  

The concept of “limiting nutrient” is based on the premise that growth in all 

organisms occur as a result of each cell splitting into two identical cells and all 

the nutrients must be available in sufficient quantities for this to occur ( Hilton 

et al. 2006). The cell multiplication will continue until one of more nutrients fall 

below a concentration where further growth cannot occur and that nutrient is 

termed “limited” and subsequent growth is determined by availability of the 

“limiting nutrient” (Hilton et al. 2006).   

 A reduction in phosphorus has been suggested to control eutrophication in 

freshwater and marine ecosystems (Paerl et al. 2009). Other researchers argue 

that nitrogen and phosphorus both play roles in the water systems and a 

reduction in both nutrients is essential in controlling eutrophication (Paerl 2009) 

and some others cite nitrogen as the limiting nutrient in which a reduction will 

bring about a decrease in eutrophication (Lewis & Wurtzbaugh 2008).   

One of the major effects of eutrophication on aquatic environment is a series of 

significant changes to an ecological system. An assessment of Lake Victoria in 

Sub-Saharan Africa indicated that there had been a replacement of diatoms as 

the prevalent algal plankton by cyanobacteria (Kling et al. 2001). Other changes 

to the ecology of the lake as described by Nyenje et al. (2010) include the boom 

in algal and water-hyacinth production, a collapse of the indigenous fish stock. 

The collapse in the fish stock was attributed to the loss of deep water oxygen 

linked to eutrophication. Increased incidence of fish kill and loss of coral reef 

communities has also been reported by several sources (Smith 2003, Smith & 

Schindler 2009). 

A visible effect of eutrophication can be seen in the proliferation of 

phytoplankton and aquatic macrophytes (Hilton 2006), this proliferation could 

result in the development of bloom of harmful nitrogen-fixing cyanobacteria. 

Increased nutrient loading is often linked to these harmful algal blooms which 

alter the interactions that exist between organisms and their aquatic 

environment (Nyenje et al. 2010). Toxins which have severe neuro- and 

hepatotoxic effects in humans and other animals are produced when water 
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containing these cyanobacteria are consumed (Heisler et al. 2008, Conley et 

al. 2009, Smith & Schindler 2009, Arai & Sparks 2007). 

Another effect of eutrophication is the depletion of oxygen in the aquatic 

environment. The accumulation and subsequent decomposition of organic 

matter leads to loss of oxygen and the generation of harmful gases such as 

hydrogen sulphide and methane. This anaerobic condition can cause the 

suffocation of fishes and other invertebrate species (Nyenje et al. 2010, Smith 

& Schindler 2009).  

 The modification of the ecological integrity of aquatic environment is another 

effect associated with eutrophication. This could cause significant alteration in 

the physiology of the phytoplankton communities and their reaction to nutrients 

variation, and a decline in the composition and diversity of fish and other macro 

invertebrate species (Nyenje et al. 2010).  

Eutrophication has also been shown to affect the biogeochemical cycling of 

organic and inorganic contaminants and intensify the uptake of airborne toxic 

contaminants by lakes and other water bodies as reported in the study of the 

behaviour of polychlorinated biphenyls (PCBs) and mercury in lakes in Canada 

(Smith & Schindler 2009). 

2.2.1.1 Phosphorus and Wastewater 

Wastewater is the spent or used water from various sources including 

households, industrial and commercial waste stream, and storm water. 

Wastewater typically contains about 0.06% dissolved or suspended solids, 

which is carried in 99.94% water flow. This high water to solid ratio is crucial for 

the transportation of solid through the sewer system (Drinan and Spellman 

2013). The specific constituents of wastewater usually vary in concentration 

and type dependent on the source of wastewater. The typical composition of 

an average domestic wastewater is shown in Table 2.1. 
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Table 2.1: Typical composition of untreated domestic wastewater  

Source: Drinan and Spellman (2013) 

The physical characteristic (colour, odour, and temperature) of domestic 

wastewater varies, and wastewater volume is usually expressed in cubic metre 

per person per day. Wastewater volume is an important parameter in design of 

wastewater treatment plant. Typical volume of wastewater received by a 

treatment works fluctuates throughout the day, ranging between 50 and 200% 

of the average daily flow. This is referred to as diurnal flow variation.   

Phosphorus in water exists in different forms. Phosphorus in wastewater exists 

in many different forms. The common forms are orthophosphate, 

polyphosphates and organically-bound phosphates. Organically-bound 

phosphates are phosphate compounds with –P-O-C bonds and they constitute 

about 4% of total phosphorus in wastewater. Organic phosphate in wastewater 

comes from various sources as the form part of cell walls (phospoholipids), or 

are constituents of phosphoramides, phosphate esters or phosphor-organic 

insecticides. Organic phosphate can be degraded biologically and/or 

chemically to orthophosphates in a water environment. 

Polyphosphates are condensed orthophosphates compounds with –P-O-P 

bonds and are basic constituents of detergents and water softeners. These 

different forms tend to end up as orthophosphate. Polyphosphates hydrolyze in 

water to produce soluble orthophosphate while the bacterial decomposition of 

organically-bound phosphate also produces orthophosphate. Orthophosphate 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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is the predominant phosphorus species found in wastewater (Hammer and 

Hammer 2008; Masters and Ella 2008).  

2.2.2 Processes and Operations of a Wastewater Treatment Plant 

Wastewater treatment usually comprises of primary, secondary or tertiary 

(advanced) treatment processes depending on the level of purification required. 

Primary treatment often employs physical processes to remove pollutants that 

are floatable, settleable or simply too large to pass through simple screening 

devices. These processes include skimming, sedimentation, and screening. 

Typically, 35% of biological oxygen demand (BOD) and 60% of suspended 

solids (SS) is removed during primary treatment. In secondary treatment, the 

physical processes are enhanced with the employment of micro-organisms for 

the removal of waste. These microbial actions oxidize organics present in the 

wastewater and this process occurs under controlled conditions. Secondary 

treatment can remove up to 90% of BOD and SS. Although the removal of BOD 

is the primary aim of secondary treatment, about one half of nitrogen and one 

third of phosphorus are also removed during the process. To reduce 

phosphorus concentration to consent levels, advanced or tertiary treatment is 

usually required. A flow diagram of a treatment plant employing primary and 

secondary treatment is shown in Figure 2.1.  
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Figure 2.1: Schematic of a typical wastewater treatment facility providing primary and secondary treatment  
Source: Masters and Ela (2014) 

 

Primary treatment usually begins with screening to remove large floating 

objects that may clog small pipes or damage the pumps. Screens typically 

consist of parallel steel bars with gaps between 2 and 7 cm followed by a wire 

mesh screen with smaller openings. To avoid problems associated with 

disposal of materials collected on the screens, a comminuter is used to grind 

the coarse material to small pieces that can be left in the wastewater flow. The 

wastewater then flows into a grit chamber where heavy sand and grit settle out 

and onto a primary settling tank (primary clarifier or sedimentation basin) where 

water flow is reduced to allow SS settle out by gravity. Detention time lasts 

between 1.5 and 3 hours and allows the removal of up to 40% of BOD and 65% 

of SS. The solid that settle out is known as primary sludge is usually removed 

for further processing.  

The aim of secondary treatment is to remove BOD and SS beyond what can be 

achieve by sedimentation. Micro-organisms are employed in either suspended 

growth or attached growth treatment. In suspended growth treatment, the 

microbes are suspended and allowed to move with the water; while the 

microbes in the attached growth treatment are fixed on a stationary surface and 

water flows past the microbes. Activated sludge, aerated lagoons and 

membrane bioreactors are the commonly used suspended growth processes.  

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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In activated sludge system, extra oxygen is usually injected into the system and 

the microbial mass is often increased artificially by the separation and return of 

a large portion of microbes in the reactor effluent to the activated sludge tank. 

Oxygen is injected into the bioreactor using diffusers which maintains the 

aerobic conditions required to facilitate the microbial decomposition of organic 

matter and also agitates the microbial cells and wastewater. The wastewater-

microbial cells mixture is often referred to as mixed liquor. The main advantage 

of an activated sludge system is the small land area required as there is greater 

contact between the microbes and wastewater with a given volume of space. 

Membrane bioreactor (MBR) is used in suspended growth bioreactors to reduce 

the size of secondary treatment tanks and improve SS separation efficiency. 

The MBR draws water from mixed liquor into hollow fibre membranes 

submerged in activated sludge aeration tanks. MBRs exude nearly all the 

microbial cells from the secondary effluent; hence sludge mixed liquor must be 

continuously bled off the aeration tank by a waste activated sludge line to 

maintain the desired mixed liquor concentration. The efficient removal of 

bacteria is a major advantage of MBR. Fouling of membranes poses a huge 

challenge that contributes to the high cost of building and and operating an 

MBR when compared to other treatment options. 

The trickling filter is a commonly used attached growth system in wastewater 

treatment. A trickling filter consists of a rotating distribution arm that sprays 

wastewater over a circular bed of plastic packing or other coarse materials 

(Masters and Ela 2014). Plastic media is preferred as it can be engineered to 

produce a higher surface area for microbial growth per volume of filter. The 

gaps between the packing allow the circulation of air required to maintain 

aerobic conditions. A layer of slime, consisting mainly of bacteria but also 

including algae, protozoa, fungi, insect larvae, worms and snails, that can 

absorb and consume waste as it trickles through the bed is used to cover the 

media. A cross-sectional diagram of a trickling filter is shown in Figure 2.2. 
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Figure 2.2: Cross-section of a trickling filter  
Source: Hammer and Hammer 2008 

  

The accumulating slime periodically drops off the packing material into the 

wastewater where it is removed in the secondary settling tank. Effluent from the 

filter can be recycled into the incoming flow allowing a more efficient organics 

removal and preventing the biological slimes from drying out or dying during 

low flow conditions (Masters and Ela 2014). 

Rotating Biological Contactors (RBC) is a variation of the trickling filter. An RBC 

consists of closely spaced, circular, plastic discs with a diameter of 3.6m that 

are attached to a horizontal rotating shaft. A biomass film grows on the surface 

of the discs and comes in contact with wastewater as the RBC rotates and the 

bottom of each disc is submerged in the tank containing the wastewater to be 

treated. While rotated out of the wastewater, the microbes are supplied with 

oxygen and they absorb organics when submerged in wastewater. Higher 

efficiency treatment can be achieved when the modular RBC units are placed 

in series. RBCs have an advantage over trickling filters as the solid media can 

be kept wet at all times under varying load conditions.  

2.3 Phosphate Removal from Wastewater  

Different methods have been employed for the removal of phosphorus from 

wastewater in conventional wastewater treatment plant. The methods 

commonly used are chemical precipitation, advanced biological removal, 

physical method or the combination of two or more methods.  

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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2.3.1 Chemical Precipitation 

The most reliable and well established process for phosphate removal from 

wastewater is the use of chemical precipitation. It involves the addition of 

calcium, iron or aluminium salts, and it is the most commonly used and effective 

method of phosphorus removal in wastewater treatment plant (WWTP), often 

resulting in high phosphorus removal levels (Clark et al. 1997 Ebeling et al. 

2003). Chemical precipitation as a method for removing phosphates from 

wastewater several advantages and these include the simplicity of its 

application (Wang et al. 2006). The major disadvantage of chemical 

precipitation is the production of chemical sludge with its attendant high cost of 

treatment and final disposal (Bertanza et al. 2013). Chemical precipitation of 

phosphorus can occur either as a pre-treatment, co-treatment or post-

treatment.  

a. Pre-Treatment:  

In pre-treatment, the chemicals are usually added before the primary 

settling tank (PST). The addition of the salt is followed by rapid mixing, 

flocculation and primary sedimentation and has a removal efficiency of 

90% with the final phosphorus concentration lower than 0.5mg/L. Solids 

separation is often enhanced by the addition of anionic polymers before 

flocculation. The advantage of pretreatment is that the same amount of 

chemical is required for the removal of Biological oxygen demand (BOD) 

and settled solids (SS). The disadvantages of pre-treatment include the 

production of more sludge and the use of more chemical than required 

for co-treatment or post-treatment. 

b. Co-Treatment:  

Co-treatment or precipitation is suitable for use in activated sludge plant 

and the chemicals are added directly to the aeration tanks or just before 

it. This is advantageous because there is a lower need for chemicals in 

co-treatment as a result of the coagulation-flocculation and adsorption 

processes occurring in the activated sludge alongside continuous sludge 

circulation. Co-treatment leads to the creation of best available 

conditions for coagulation and flocculation as it allows for the choice of 
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best dosage point. Rapid mixing and flocculation is usually not achieved 

as the velocity gradient and turbulence levels may not provide the ideal 

conditions required. This is one of the disadvantages of co-treatment. 

Another disadvantage is a lower phosphorus removal efficiency of about 

85% is obtained and phosphorus concentration in the final effluent could 

also be higher at about 1mg/L.  

c. Post-Treatment:  

In post-treatment, chemicals are added after secondary clarification to 

the inflow of the final settling tank (FST). Post-treatment is usually done 

in the tertiary or final settling tank and it gives the highest phosphorus 

removal efficiency of about 95% removal with phosphorus concentration 

in the effluent lower than 0.5%. The chemical reaction is usually stronger 

due to the formation of orthophosphates by the microbial activity in 

previous treatments. The disadvantages of post-treatment include the 

high cost of treatment plant as big ponds are required, and the ratio of 

metal ion to phosphorus is usually higher than required for other dosing 

points.   

The various points that could be used for the addition of chemical precipitate 

are shown in Figure 2.3. 

 
Source: Morse et al. 1998 

Figure 2.3: A diagram showing the various points for addition of chemical precipitants 

Salts of multivalent ions of Al, Fe and Ca are most commonly used to precipitate 

phosphate from the wastewater and the general reaction involved in the 

precipitation of phosphate in wastewater is represented in Equation 2.1:  

  M3+ + PO4
3- → MPO4↓    Equation 2.1 

Where M is a multivalent metal. 

Some materials have been removed due to 3rd party copyright. 
The unabridged version can be viewed in Lancester Library - 
Coventry University.
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The commonly used salts for chemical precipitation are: 

i. Iron salts:  

In the precipitation of phosphorus from wastewater various forms of iron salts 

are commonly used.  Fe2+ and Fe3+ forms of iron can react with 

orthophosphates to form strengite (FePO4) and vivianite Fe3(PO4)2.8H2O 

respectively. Fe3+ is the principally responsible for the removal of phosphorus; 

Fe3+ forms strong complexes or precipitates with tripolyphosphates and 

pyrophosphates before adsorbing onto iron (III) hydroxo-phosphates surfaces 

(Yeoman et al. 1988). This precipitation is dependent on the phosphate 

concentration, Fe3+ dosage, pH and temperature.  

When Fe2+ form is to be used it has to be first oxidized to Fe3+. This oxidation 

is dependent on different operating conditions such as a high oxygen 

concentration of 0.15g O2/ Fe2+g, catalytic activity, pH and the presence of 

inhibitory material e.g. sulphur (Yeoman et al. 1988). The use of Fe2+ from the 

removal of wastewater has been the subject of several studies. Wang et al. 

(2006) achieved a 90.6% reduction in total phosphorus using ferrous sulphate 

at a Fe:P ratio of 1.3:1. An earlier study achieved an 85% total phosphorus 

removal using a Fe:P of 1.5:1 (Clark et al. 1997).  

Stoichiometrically, 1 mol of Fe3+ is required to remove 1 mol of phosphorus. 

However, during the precipitating process, a competing reaction of Fe3+ with 

hydroxyl ions to form hydroxides also occurs. This competing reaction of 

hydroxyl ions phosphate ions for Fe3+ for  along with the need to destabilize 

colloids such as influent organics and iron phosphates, and the reaction of 

bicarbonate ions to produce iron hydroxides indicates that a higher 

stoichiometric mass ratio of Fe:P is required (Yeoman et al.1988, de Haas et 

al. 2000).  

Ferric chloride is most widely used iron salt for chemical precipitation (de Haas 

2000), other iron salt such as ferric sulphate, ferrous sulphate and ferrous 

chloride are also used in precipitating phosphate in wastewater treatment. The 

Fe3+ combines with PO4
3- to form ferric phosphate; the basic reaction is 

represented in Equation 2.2: 
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Fe3+ + HnPO4
3-n ↔ FePO4 + nH+    Equation 2.2 

The reaction is slow under neutral pH and lime is often added as a pH corrector 

to enhance coagulation. Zhou et al. (2008) achieved over 95% phosphorus 

removal using ferric chloride as a precipitant. 

ii. Aluminium salts:  

Aluminium sulphate or alum (Al2(SO4)3.18H2O) and aluminium chloride (AlCl3) 

are also commonly used in WWTP for precipitating phosphates. It requires 

three times the amount of ferric salts. The basic reaction is represented in 

Equation 2.3  

Al3+ + HnPO4
3-n ↔ AlPO4 nH+                   Equation 2.3 

The chemical reaction for the precipitation of phosphates from wastewater 

using aluminium sulphate is represented as shown in Equation 2.4: 

 Al2(SO4)3.14H2O + 2PO4
3- → 2AlPO4↓ + 3SO4

2- + 14H2O  Equation 2.4 

The quantity of aluminium required for effective precipitation is dependent on 

the concentration of soluble phosphate and colloids in the wastewater (Yeoman 

et al. 1988). The pH also affects precipitation significantly, for effective removal 

to be achieved the pH must be high enough to buffer the aluminium sulphate 

(Yeoman et al. 1988). Other factors that influence the precipitation of aluminium 

phosphates are the metal to phosphate dosage level, calcium and bicarbonate 

activity of the water 

When alum is added to water, it dissociates to produce trivalent Al3+ ions which 

further hydrates to form hexa aquo aluminium ion (Al(H2O6)3+. These hexa aquo 

aluminium ions can undergo quick hydrolytic reactions to produce solid 

aluminum hydroxide Al(OH)3, [Al(H2O)5OH]2+ as well as other soluble polymeric 

and oligomeric compounds (Yang et al. 2006, Omoike and vanLoon 1999).  

Aluminium hydroxide is a strong precipitant for orthophosphates with 

precipitation occurring almost immediately (de Bashan and Bashan 2004).  

Removal of phosphates by Al(OH)3 can occur through adsorption on the 

surface or co precipitation by incorporating soluble phosphorus into its 
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structure, through the integration of Al-OH-Al and Al-PO4-Al linkages into an 

aluminium hydroxypahosphate (Omoike and vanLoon 1999).   

High adsorption capacity of phosphates by aluminum hydroxide can be 

sustained over long periods. Baker et al (1998) obtained over 99% phosphate 

removal after two years using a column packed with activated aluminum oxide, 

silica sand and limestone. A 55% phosphate adsorption within the first 20 

minutes after application was obtained using air-dried alum sludge. 

iii Calcium salts:  

Calcium hydroxide or slaked lime is also used for the precipitation of 

phosphates. It is commonly used to raise the pH of wastewater primarily to 

enhance removal of suspended solids. When the pH value increases above 10, 

the excess Ca2+ will react with phosphate to produce hydroxylapatite. The 

reactions can be summarized as shown in Equations 2.5 and 2.6: 

Ca(HCO3)2 + Ca(OH)2 →2CaCO3↓ + 2H2O  Equation 2.5 

10Ca2+ + 6PO4
3- + 2OH- ↔ Ca10(PO4)*6(OH)↓   Equation 2.6 

The quantity of lime required is dependent on the pH of the wastewater and pH 

correction to neutral is often required before subsequent treatment or disposal. 

The major drawbacks of precipitation using lime is the high volume of sludge 

produced (Hussain et al 2011) and the cost of chemicals required for dosing 

(Kahraman et al 2012).  

2.3.2 Enhanced Biological Phosphorus Removal (EBPR) 

Biological phosphorus removal has also been used in wastewater treatment 

(Hascoet and Florentz 1985, Hernandez et al 2006, Monclus et al 2010). It 

involves the use of polyphosphate accumulating organisms (PAOs). 

Conventional biological nutrient removal (BNR) processes is inadequate for the 

maximization of nutrients and organics removal as all microbial population, 

phosphorus accumulating bacteria, autotrophic and heterotrophic bacteria, 

compete with each other for growth and maintenance under the same operating 

conditions (Peng et al. 2011). As a result, the need to optimize the BNR process 

to provide favourable growth conditions for the microbes is essential.  
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Enhanced biological phosphorus removal (EBPR) was developed as a 

wastewater treatment method based on the selective enrichment of bacteria 

accumulating inorganic polyphosphate as a building block for their cells (De-

Bashan and Bashan 2004). It involves microbial metabolic cycling through 

several microbial-accumulated polymers such as polyphosphates, poly-β-

hydroxyalkanoates (PHA), and glycogen which is induced by the alternation of  

the incubating conditions of wastewater between an initial carbon rich 

anaerobic incubation and a carbon deficient aerobic condition (De-Bashan and 

Bashan 2004). EBPR requires the presence of anaerobic and/or anoxic zone 

with a high readily degradable chemical oxygen demand before the aerobic 

zone in an activated sludge system making the anaerobic-aerobic cycle an 

integral requirement for EBPR (Morse et al 1998, de Bashan and Bashan 

2004).  

PAOs have the ability to take up phosphate in excess over their basic metabolic 

requirements and store them as intracellular polyphosphate; hence net 

phosphorus removal is obtained when PAOs are removed in waste activated 

sludge (Bertanza et al 2013, Oehmen 2007). PAOs are micro-organisms that 

can take up carbon sources such as volatile fatty acids (VFAs) under anaerobic 

conditions and store them as carbon polymers such as poly-β-

hydroxyalkanoates (PHAs) intracellularly (Zhang et al 2011). The energy 

required for the transformation of VFAs to carbon polymer is generated 

primarily through the splitting of polyphosphates and the release of phosphates 

from the cells (Oehmen et al. 2007).  

Under aerobic conditions, PAOs are capable of using the stored PHA as energy 

source for biomass growth, phosphorus uptake, glycogen replenishment and 

storage of polyphosphate (Oehmen et al. 2007). The uptake of 

orthophosphates in the aerobic zone is greater than that taken up in the 

anaerobic zone and the orthophosphates are incorporated into new intracellular 

microbial polyphosphates. Some PAOs known as denitrifying PAOs (DPAOs) 

are able to use nitrate or nitrite as electron acceptors in place of oxygen under 

anoxic conditions as such performing simultaneous phosphorus uptake and 

denitrification. 
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 Total phosphorus removal have been reported in long term operation of a 

typical anaerobic-anoxic-aerobic EBPR (Chaung and Ouyang 2000;  Merzouki 

et al. 1999) EBPR often produces an inconsistent phosphorus removal rate 

which may require complimentary treatment to produce low effluent levels 

(Morse et al 1998, Brix and Arias 2005).  

2.4 Phosphate Removal through the Use of adsorbents 

Adsorption of phosphorus to suitable materials is becoming a frequently used 

method of removing phosphorus in wastewater treatment. This could be 

attributed to its advantages over chemical precipitation and biological 

phosphorus removal. These advantages include low cost, capacity to produce 

re-usable solid, simplicity make this method a favourable option in wastewater 

treatment (Chen et al. 2013, Jia et al. 2013). Fe, Al and Ca are the elements 

that are often credited with phosphate sorption and it is assumed that if these 

elements are present in any medium in a substantial amount, then that medium 

can be used as a substrate for phosphate removal (Fondu et al. 2010). Removal 

of phosphates by adsorption occurs when phosphates in the wastewater is 

bound to the oxyhydroxides of Al or Fe (Pratt et al. 2012, Pratt et al. 2007 Arias 

et al. 2001). 

Several studies have been conducted using various low cost adsorbents such 

as: alunite (Ozacar 2006, Ozacar 2003), fly ash (Li et al 2006, Cheung et al 

2000), opoka (Brogowski and Renman 2004, Hylander and Siman 2001 and 

Johansson and Gustafsson 2000), Polonite (Gustafsson et al 2008), sand 

(Vohla et al 2007, Farahbakhshazad and Morrison 2003), zeolite (Jiang et al 

2013, Ning et al 2008), blast furnace slag (Johansson and Gustafsson 2000), 

LWA/LECA (Vohla et al 2005, Zhu et al 2003, Johansson 1997), ochre (Littler 

et al 2013), red mud (Huang et al 2008) and clay (Kaminyango et al 2009, Dable 

et al 2008) for the removal of phosphorus from wastewater. The studies have 

been carried out as a laboratory, small scale constructed wetland or a full scale 

constructed wetland with the adsorbents used as filter media (Vohla et al 2009).  

2.5 Adsorption of Phosphate from Wastewater Using Clay-Based Adsorbents 

Clay refers to naturally occurring material composed of fine-grained minerals 

with a maximum particle dimension of 5 µm that become plastic when wet and 

hard when dried or fired (Aksu et al. 2015; Guggenheim and Martin 1995). Clay 



24 
 

minerals refer to the phyllosilicate minerals or other minerals that impart 

plasticity to clay (Guggenheim and Martin 1995). They belong to the family of 

phyllosilicates minerals and are characterised by platy morphology due to the 

arrangement of atoms in their structure. Clay minerals are differentiated by the 

presence of layered polymeric silicate tetrahedral sheets linked to Al, Fe, or Mg 

oxide octahedral sheets (Ismadji et al 2015). They are formed by chemical 

weathering actions involving other silicate containing mineral found on the earth 

surface.  

Clay minerals were initially classified by Grim (1962) based on the differences 

between the clay minerals into two broad categories as either amorphous or 

crystalline. The details of the classification are shown in Table 2.2. 
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Table 2.2: The Grim’s classification of clay minerals (Murray 2007) 

Source: Ismadji et al (2015) 

2.5.1 Properties of clay minerals 

The presence of charges within the clay mineral is responsible for the properties 

exhibited by the clay minerals (Gupta et al. 2009). Swelling and cation 

exchange capacity are some of the important properties of clay mineral that is 

attributed to the presence of these charges (Ismadji et al. 2015). 

2.5.1.1 Charge 

Clay minerals commonly carry charges which are the basis for their exchange 

capacity and swelling properties. These charges are either structural or surface. 

The structural charges are permanent charges which can occur as a result of 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry University.
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the ion substitution or in some instances due to structural defect (Eslinger and 

Pevear 1988). These charges charges originate from the interior of the layers 

in the clay minerals (Ismadji et al. 2015). The surface charge on the other hand, 

occurs as a result of chemical reactions on the surface of the clay minerals or 

by adsorption of surfactant ions (Eslinger and Pevear 1988). Surface charges 

originate from the basal surface of tetrahedral sheets for clay minerals with 2:1 

layer type, basal surface of the octahedral and tetrahedral sheets for clay 

minerals with 1:1 layer type clay minerals and the edges of the layers of 1:1 

and 2:1 clay minerals (Eslinger and Pevear 1988).  

Surface charge is produced as a result of the hydrolysis of Al-OH or Si-OH 

bonds along the clay lattices and depending on the pH of the solution and silica 

structure, the net surface charge can either be positive or negative as shown in 

Equations 2.6 and 2.7.   

 SiOH + OH- → SiO- + H2O (pH > pHzpc)   Equation 2.6 

 SiOH + H+ → SiOH+  (pH < pHzpc)    Equation 2.7 

The pH at which the net surface charge is zero is referred to as zero point of 

charge (pHzpc). Clay has a higher affinity for cations when the pH is higher than 

pHzpc as the clay net surface charge is negative, while at pH lower than pHzpc 

the net surface charge is positive and the attraction for anions is higher. The 

pHzpc of selected clay minerals is shown in Table 2.3 

Table 2.3: pHzpc of selected clay minerals 

Source: Ismadji et al. (2015) 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry University.
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2.5.1.2 Swelling 

Swelling refers to hydration of clay leading to increase in volume. The swelling 

capacity of the clay is dependent on the clay mineral present. A 1:1 clay mineral 

such as Kaolinite has a low cation exchange capacity about 3.3 meq/100g, and 

is a non-swelling clay that is migratory and easily dispersible. A 2:1 layer clay 

such montmorillonite, on the other hand, possess a high cation exchange 

capacity between 90 and 150 meq/100g and will easily adsorb cations which 

would increase dispersion and degree of swelling (Aksu et al. 2015).  

2.5.2 Mechanism of phosphate adsorption by clay 

Phosphate adsorption on Fe and Al oxides involves ligand exchange 

mechanism and is believed to be improved by increasing ionic strength (Cornell 

and Schwertmann 2003).  Ligand exchange occurs when anions with specific 

affinity for metal ions in hydroxylated minerals are absorbed out of proportion 

to their concentration or behaviour in aqueous solutions. (Goldberg and Sposito 

1985). These anions, such as phosphate ions are adsorbed beyond the 

neutralisation limit of positive surface sites and adsorption on negatively 

charged surfaces have been known to occur. The mechanism for this as 

proposed by Rajan et al. (1974) suggested the reaction of protons dissociated 

from anions with surface hydroxyls to form water could lead to the displacement 

of the formed water by the anions on negatively charged surface.  

In ligand exchange, hydroxyl groups present on metal ions of the clay are 

replaced with phosphate ions in aqueous solution hence capturing the 

phosphate ions by forming inner-sphere complex on the clay surface and 

releasing the hydroxyl ions into the solution (Zhu and Zhu 2007). The release 

of hydroxyl ions leads to an increase in the pH of the solution and this is a 

crucial indication of the presence of ligand exchange mechanism. 

The generalised ligand exchange reaction for phosphate adsorption is 

expressed in Equation 2.8: 

aSOH (s) + HnPOn-3
(aq) + nH+

(aq) ↔ SaHnPO4(s) + nH2O + a-nOH(aq) Equation 2.8 

where S is the metal ion in the clay, n ≤ 3 is the degree of protonation of the 

phosphate ion. 
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The surface complexes formed by ligand exchange are referred to as inner-

sphere complexes as they do not contain water between the surface Lewis acid 

sites. The phosphate ions and are held together by covalent or ionic bonds 

(Goldberg and Sposito 1985), and is represented as Equations 2.9 and 2.10: 

≡M-OH + H2PO4
- ↔ ≡M – (H2PO4) + OH-  Equation 2.9 

 2 ≡M-OH + HPO4
2- ↔ M2 – (HPO4) +2OH-  Equation 2.10 

Outersphere complexes can also be formed by electrostatic attraction with 

water retained between the ligand and the exchange sites; the reaction is 

represented as Equations 2.11 and 2.12:  

 ≡M-OH2
+ + H2+PO4

- ↔ ≡M – (OH2
+) (H2PO4

-)   Equation 2.11 

 ≡M – OH2
+ + HPO4

2- ↔ ≡M – (OH2
+) (HPO4

2-  Equation 2.12 

Precipitation is another mechanism which phosphate is removed from 

wastewater by clay. Precipitation of phosphate occurs when the solubility of the 

product of the precipitate is exceeded by the product of the solution 

concentrations of the components of the precipitate (Loganathan et al. 2014). 

The precipitation reaction for Al, Fe and Ca is expressed as Equations 2.13-

2.15: 

 Al3+ + PO4
3- → AlPO4↓     Equation 2.13 

 Fe3+ + PO4
3- → FePO4↓     Equation 2.14 

 5Ca2- + 4OH- + 3HPO4
- → Ca2OH(PO4)3 + 3H2O Equation 2.15 

2.5.3 Adsorption using Different Clay-based Adsorbent 

The efficiencies of removing phosphates by various clay-based adsorbents, the 

methods used and kinetic and equilibrium models explaining the sorption data 

are presented in Table 2.4. 

2.5.3.1 Clay 

The use of clay as an adsorbent for water pollutant has been widely reported. 

Weng et al. (2007) investigated the adsorption of Cu (II) using spent activated 

clay derived from the refining edible oil. Adsorption of Cu (II) ions was reported 

to occur within 5 min following pseudo-second order kinetics and obeying 
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Langmuir isotherm with ΔGo values between -5.73 and -7.26 kcal/mol 

suggesting a spontaneous process and an adsorption mechanism that was 

predominantly controlled by specific surface interaction. The high surface area 

and net negative charges on clay surfaces have been suggested to be 

responsible for the adsorption capacity for cations exhibited by clay (Gupta et 

al. 2009). It has been suggested that the predominantly negatively charged 

surface of clays does not allow for substantial anions adsorption (Loganathan 

et al. 2014). This contradicts the result reported by Dable et al. (2008), in that 

study, about 80% phosphate adsorption was achieved using Neiki-Agneby clay 

and adsorption increased with increasing pH and optimum adsorption was 

found to occur between pH 3 and 6. However, the presence of alkali and 

metallic trivalent oxides and hydroxides within the clay was suggested to be 

responsible for the adsorption.  

A lower phosphate adsorption rate was reported using using Kaolinite and 

bentonite from Iran (Moharami and Jalali 2013). In that study, adsorption 

capacity was 0.32 and 0.28 mg/g respectively. Bentonite was unaffected by pH 

while Kaolinite achieved optimum adsorption at pH 2. Adsorption could be 

described by Langmuir and Freundlich isotherms. Adsorption was suggested 

to occur through precipitation by Ca2+ as shown by the speciation of 

phosphates.  

Precipitation by Ca2+ was also suggested as the mechanism of adsorption of 

phosphate using Kaolinite from Malawi (Kamiyango et al. 2009). Adsorption 

using raw clay was favoured at acidic pH 3, while clay treatment with acid 

increased the pH range to slightly acidic pH of 5. Acid treatment also improved 

phosphate adsorption by increasing removal efficiency to 98.5% from 69.7%, 

adsorption using raw clay was reported to follow pseudo-second order kinetics. 

Similar rate order was also reported for adsorption using smectite and kaolin 

from Tunisia with optimum pH for adsorption at pH 5 described by Freundlich 

isotherm (Hamdi and Srasra 2012). Adsorption capacity (26.38 and 28.01 mg/g) 

was better when derived from the pseudo-second order kinetic model 

compared to 0.23 and 0.24 mg/g when derived from pseudo-first order kinetics 

for kaolinite and smectite respectively. Vyshak and Jayalekshmi (2014) 

investigating phosphate removal using Kattand clay reported a decrease in 
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phosphate with increase in pH with optimum adsorption at acidic pH while 

Mallikarjun and Mise (2013) achieved optimum adsorption at pH 9.  

pH is an important factor affecting adsorption of anions in solid-liquid interface. 

The surface charge on the surface of clay is known to change with pH hence 

affecting adsorption of phosphate at different pH. (Hamdi and Srasra 2012). 

Adsorption is believed to be greater at pH lower than pHzpc which is the pH at 

which the net surface charge is zero. 

2.5.4 Modification of clay  

Modification is suggested to affect improve adsorption capacity by improving 

the surface area through its effect on the surface and micropore structure of the 

clay (Kim et al. 1997, Wu et al. 2001). Modification of clay could occur through 

the addition of a metallic ion or through heat and acid treatment among others. 

Calcination is one of the methods of heat treatment for clay. Calcined Kanuma 

clay achieved an adsorption capacity of 2.24 mg/g with adsorption decreasing 

with increase in pH and temperature. Adsorption followed pseudo-second order 

kinetic and was described by Freundlich isotherm. The inner-sphere ion 

exchange was suggested as the removal mechanism and adsorbed phosphate 

could be desorbed using NaoH indicating a possible use of the adsorbed 

phosphate as fertilizer. Gu et al (2013) and Jia et al. (2013) reported the 

potential of brick for use as adsorbent for phosphate removal. Adsorption 

capacity using novel porous bricks was 3.6 mg/g and adsorption was controlled 

by the pseudo-first order kinetics and Langmuir isotherm could be used to 

describe the adsorption (Gu et al. 2013). Jia et al. (2013) suggested the 

protonation of Al3+ and Fe3+ on the surface of the brick as affected by pH was 

responsible for the variation in adsorption. Coating of bricks with manganese 

and iron oxide was reported to affect adsorption as a function of pH. Optimum 

pH was between 4 and 5 using manganese coated bricks and pH 5 using iron 

coated bricks (Boujelben et al. 2008, Boujelben et al. 2014). Coating Light 

Expanded Clay Aggregates (LECA) improved the adsorption of phosphate. 

Adsorption was found to be higher using Al-coated LECA than Fe-coated LECA 

at pH higher than 6 (Yaghi and Hartikainen 2013) due to the fact that at higher 

pH, Al maintains more aqua groups in its coordinated sphere than Fe. 

Phosphate adsorption was higher at pH 4 using Fe-LECA, this contradicts 
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results by Boujelben et al. (2008) where optimum pH was achieved at pH 5. 

Phosphate adsorption using Fe is believed to be optimum at pH between 3 and 

4.    

2.5.4.1 Modification using addition of polyvalent metals 

The addition of polyvalent metal to clay improves the adsorption capacity as a 

result of increase in the cation content. Increased cation would result in the 

uptake of negatively charged ions. The addition of 10% Al2O3 to bentonite 

improved the adsorption of phosphate from 14 to 18 mg/g (Osalo et al. 2013). 

It was suggested the addition of Al2O3 to bentonite increased the increased the 

surface area and polarity of the bentonite hence increasing adsorption. 

Langmuir isotherm could be used to describe adsorption. Sips isotherm was 

used to describe the adsorption of phosphate on Al/Mg-montmorillonite rich 

bentonite (Chmielewska et al. 2013) with maximum adsorption capacity derived 

from the Sips isotherm as 58.9 mg/g while the adsorption followed pseudo-first 

order rate order. 

2.5.4.2 Pillared Clays 

The modification of the adsorbent can be done by interchanging a layer in the 

structure of the absorbent as is known in pillaring. The polycations of multivalent 

metals act as “pillars” between the clay layer give rise to modified clay known 

as pillared clays (PILCs) with specific surface area and permanent porosity, and 

on calcination the resulting material have metal oxide pillars which prop open 

the clay sheets, as such exposing the internal surfaces of the clay layers 

(Shanableh and Elsergany 2013, Baksh 1992). In principle, any metal oxide or 

salt that can form polynuclear species on hydrolysis can be inserted as pillars 

(Tian et al. 2009) and all layered clay of the phyllosilicate family and other 

layered clay can be used as host (Baksh et al 1992). 

Pillared clay has been reported to improve phosphate adsorption (Tian et al. 

2009, Yan et al. 2010, El-Sergany and Shanableh 2012, Shanableh and El-

Sergany 2013, Shanableh et al 2016). Two-metal pillaring was reported to 

improve adsorption better than pillaring with a single metal. Tian et al. (2009) 

reported an increase in adsorption from 6.67 to 8.9 mg/g when lanthanum was 

added with aluminium during pillaring. Adsorption decreased with increase in 

temperature and followed pseudo-first order kinetic and was described by 
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Freundlich isotherm. Fe/Al pillared clay (PILC) was reported to perform better 

than Fe or Al PILC (Shanableh and El-Sergany 2013, Shanableh et al 2016). 

Faster adsorption was achieved using Al-PILC but Al/Fe-PILC recorded higher 

adsorption (Shanableh and El-Sergany 2013). Optimum adsorption was 

achieved when equal proportion of Al and Fe was used to prepare Al/Fe-PILC 

(Shanableh et al 2016). However, Yan et al. (2010) reported a decrease in the 

performance of Fe and Al-PILC when combined. The removal efficiency 

decreased from 99% using Fe-PILC to 97% when Fe-Al-PILC was used. 

Different adsorption mechanisms have been suggested for PILCs. Yan et al. 

(2010) suggested adsorption of Fe-Al-PILC occurred through ligand exchange 

where the surface functional groups of Al-OH and Fe-OH contributed to 

adsorption through protonation. It was suggested adsorption was 

chemisorption following pseudo-second order kinetics. Ion exchange was 

suggested as the mechanism for the adsorption of Fe-PILC, Al-PILC and Fe-

Al-PILC where OH- was exchanged with phosphate. The adsorption of 

phosphate using Al-PILC and LaAl-PILC was described using the Langmuir 

isotherm and followed pseudo-first second kinetics (Tian et al. 2009). The 

adsorption was spontaneous and exothermic as confirmed by the relative 

values of Δ Go (-18.14 – 16.48 kJ/mol and -19.24 – 18.67 kJ/mol) and ΔHo (-

61.33 and -36.73 kJ/mol) for LaAl-PILC and Al-PILC respectively. 

pH is one of the factors affecting adsorption of phosphate using PILCs, 

adsorption was favoured at acidic pH with optimum adsorption between pH 3 

and 4 (Tian et al. 2009, Yan et al. 2010, El-Sergany and Shanableh 2012, 

Shanableh and El-Sergany 2013, Shanableh et al 2016). 

2.5.4.3 Double layered hydroxides (LDH) 

Double layered hydroxides (LDHs) also known as hydrotalcite-like-compounds 

(HTIcs) or anionic clays are clay minerals with hydroxide sheets that has a net 

positive charge on the layer as result of the partial substituition of trivalent for 

divalent cations (Das et. al. 2006, Zhou et. al. 2011). The net positive charge is 

balanced by intercalated anions and water molecules present within the 

interlayer space (Das et. al. 2006). Positive charges are produced through 

isomorphous substitution of Mg2+ in the brucite-like sheet with multivalent 
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cations and ionization of surface hydroxyl groups (Loganathan et al. 2014). The 

calcination of LDHs causes the formation of active composite metal oxides 

through the loss of the layer structure. Subsequent rehydration leads to the 

reconstruction of the original structure and adsorption of anions occurs via 

anion intercalation, this process is known as memory effect (Loganathan et al. 

2014). Reconstruction of calcined LDH precursors using the memory effect is 

one of the mechanisms for removal of anions by LDH. The other mechanisms 

are surface precipitation, surface sorption and interlayer anion exchange 

(Loganathan et al. 2014). The presence of a high charge density sheet and an 

exchangeable anion interlayer makes LDHs excellent adsorbents (Cheng et al. 

2010). 

Mg/Fe LDH was used to investigate the adsorption of phosphate in batch and 

column studies using artificial wastewater and wastewater effluent (Seida and 

Nakano 2002). Adsortion was reported to increase with a decrease in pH, this 

was due to an increase in Mg2+ released from LDH into the solution at lower pH 

leading to higher phosphate removal.  

Calcination is reported to improve the sorption of anions using LDHs. An 

increase in the surface area of Zn-Al LDH from 51.87 to 81.2 m2/g as calcination 

temperature increased from 0 to 300oC before decreasing to 29.28 m2/g when 

the calcination temperature increased to 600oC was reported by Cheng et al. 

(2010). This increase in surface area corresponded with an increase in 

phosphate adsorption achieving a maximum adsorption of 41.26 mg/g when 

LDH was calcined at 300oC. Calcination at 600oC caused the formation of 

ZnAl2O3 which do not partake in the reconstruction of the layered structure, 

from the mineral phase. Adsorption followed pseudo-second order kinetic and 

was better described using Langmuir isotherm. 

The adsorption of phosphate by LDH can be improved by the release of 

polyvalent cations. The release of Ca2+ from CaFe-LDH was shown to promote 

the adsorption of phosphate which followed a pseudo-second order kinetics and 

Freundlich isotherm could also be used describe the process while adsorption 

using MgAl-NO3 LDH could be described using Langmuir isotherm but also 

followed pseudo-second order kinetics (Khitous et. al. 2016). Adsorption using 

Mg/Al-NO3 LDH was unaffected by pH between pH 3 and 7, this however, 
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indicated different mechanisms were responsible for adsorption at different pH. 

Adsorption at lower pH was dominated by electrostatic attraction which 

occurred between positively charged surface of the LDH and negatively 

charged phosphate ions. While anion exchange of H2PO4
- with NO3

- present 

within the interlayer was the major adsorption mechanism at higher pH (Khitous 

et. al. 2016). 

Higher valency cations within the interlayer of LDH can increase phosphate 

sorption due to the production of more positive charges and the ratio of divalent 

to trivalent cation can have a significant effect on phosphate sorption. Das et 

al. (2006) compared the ability of LDH with Mg-Al molar ratio of 2:1, 3:1 and 4:1 

to remove phosphate from artificial wastewater. A decrease in phosphate 

adsorption with increasing Mg-Al ration was reported. This decrease was 

attributed to a higher Al3+ concentration at lower Mg-Al molar ratio leading to a 

higher net positive charge on the LDH interlayer compared to samples with 

lower Al3+ concentration at higher Mg-Al molar ratio. 
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Table 2.4: Characteristics of sorptive removal of phosphate from water by clay-based adsorbents 

Adsorbent 

Adsorption 
method 
Column (C), 
Batch (B), 
Field (F), 
Constructed 
wetland (CW);  
Water type 
wastewater 
(W), 
artificial(A), 
fresh river (R), 
brackish (Br) 

Concentration 
(mg/L) Initial (I) 
Equilibrium (E) 

Volume of solution-
ml (vol),  Adsorbent 
dosage (S) Column 
diameter (D), bed 
height (H), Flow rate 
(Q) 

pH/Temp 
Adsorption 
capacity and 
major findings 

Isotherm 
models used. 
*Best to fit  data 

Kinetic models 
used. *Best to fit  
data 

Adsorption 
Efficiency (%) 

References 

Kaolinite (raw) 
B; 
A 

I 10 
Vol 10 
S 40 g/L 

2-12/;  
20 and 40oC 

0.15 mg/g 
Optimum pH  3 

- 
Pseudo-first 
order, pseudo-
second order* 

69.7 
Kamiyango et al. 
2009 

Kaolinite (acid 
treated) 

Optimum pH 5   98.5 

Neiki-Agneby 
clay 

B; 
A 

I 100 
Vol 25 
S 200 g/L 

3-6 

   80 

Dable et al. 2008 
Green Anyama 
Clay 

    

Beige Anyama 
Clay 

    

Bentonite 

B; 
A 

5-250 mg/L 
Vol 20 
S 25-250 g/L 

2-10; 
25-45 oC 

0.28 mg/g 
Sorption was 
unaffected by 
pH 

Freundlich, 
Langmuir* 
isotherm 

 

38 

Moharami and 
Jalali 2013 

Kaolinite 

0.32 mg/g 
Optimum 
sorption pH 2 
 

Freundlich*, 
Langmuir 
isotherms 

75 

Zeolite 0.37 mg/g 34 
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Optimum 
sorption pH 6 

Clay 
B; 
A 

5 mg/L 
Vol 100 
S 0.05 g/L 

4-10 
Sorption 
increased with 
pH to pH 9 

Freundlich, 
Langmuir* 
isotherms 

- - 
Mallikarjun and 
Mise 2013 

Kuttanad clay 
B; 
A 

2-20 mg/L 
Vol 100 
S 2.5-25 g/L 

2-12 
Room temp. 

0.61 mg/g 
Optimum pH 3. 
Sorption 
declined as pH 
increased to 9 
before 
increasing. 

Freundlich*, 
Langmuir 
isotherms 

Pseudo-first 
order*, pseudo 
second order 
models 

61-84 
Vyshak and 
Jayalekshmi 2014 

Tarbarka clay 
(Clay T) 

B; 
A 

50-1000 mg/L 
Vol 30 
S 6.67 g/L 

3-9 

Sorption 
increased 
slightly with 
increase in pH to 
pH 5 before 
reducing 

Freundlich*, 
Langmuir 
isotherms 

Pseudo-first 
order, pseudo 
second order* 

- 
Hamdi and Srasra 
2011 

Gabes clay (Clay 
G) 

Zeolite 

Optimum pH 4-
5. Sorption 
increases 
steeply as pH 
increased from 
3 to 4 before 
reducing sharply 
as pH increased 
to 7. 

Bentonite 

B; 
A 

0.5-5 mg/L 
Vol 100 
S 10 g/L 

Room temp. 

14 mg/g Freundlich, 
Langmuir* 
isotherms 
 

- 

90 

Osalo et al. 2013 Bentonite-
Alumina 

18 mg/g 
Addition of 
Al2O3 improved 
sorption 

97 

Al/Mg-
montmorillonite 
rich bentonite 

B; 
A 

300 mg/L 
Vol 30 
S 10 g/L 

8-8.9 
25-60 oC 

58.9 mg/g 
 

Freundlich, 
Langmuir, 
Redlich-
Peterson, Sips* 
isotherms 

Lagergren-first 
order, pseudo-
second order*, 
intra-particle 
diffusion, film and 

- 
Chmielewska et 
al. 2013 
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pore diffusion 
models 

Calcined 
Kanuma clay 

B; 
A 

0.5-50 mg/L 
Vol 20 
S 50 g/L 

2-12; 
5-35 oC 

2.24 mg/g 
Sorption 
decreased with 
increase in 
temp. Optimum 
pH 6. Sorption 
declined sharply 
as pH increased 
to 12.  

Freundlich*, 
Langmuir 
isotherms 

Pseudo-first 
order, pseudo-
second order* 
models 

- Yang et al. 2015 

Iron oxide-
coated crushed 
bricks  

B; 
A 

5-30 mg/L 
Vol 25/250 
S 20/40 g/L 

2.3-10.8 
10-40 oC 

Langmuir Qm 
1.75 mg/g 
Optimum pH 5 
Decrease in 
sorption beyond 
pH 5 
 

Langmuir*, 
Freundlich, 
isotherms 

- = 
Boujelben et. al. 
2008 

Manganese 
oxide-coated 
crushed bricks 

B; 
A 

5-30 mg/L 
Vol 25 and 250 
S 20 and 40 g/L 

2.3-10.8 
10-40 oC 

Optimum pH 4-
5. Sorption 
decreased as pH 
increased from 
5 to 10 

Freundlich, 
Langmuir* 
isotherms 

Pseudo-first 
order, pseudo 
second order* 
models 

- 
Boujelben et. al. 
2014 

Novel porous 
bricks 

B; 
A 

50-2000 mg/L 
Vol 1.2 L 
 

7 
25 oC 

3.6 mg/g 
Freundlich, 
Langmuir* 
isotherm 

Pseudo-first 
order*, pseudo 
second order, 
Elovich models 

- Gu et. al. 2013 

Used bricks 
B; 
A 

5-50 mg/L S 1-60 g/L 
2-12 
15-35 oC 

Optimum 
adsorbent 
dosage 20 g/L. 
Optimum pH 5. 
Sorption 
increased when 
pH increased 
from 2 to 5 
before declining 

- - 85.3 Jia et. al.2013 
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sharply as pH 
increased to 12 

Light Expanded 
Clay Aggregates 
(Leca®) 

C; 
A 

200 mgP/L 
D 30cm 
H 50 cm 
Q 0.6L/2hr 
 

- 

0.5 kgP/m3 
 

- - 
15 

Johansson 1997 

Leca-Opoka 
mixtire 

160 mgP/L 1-1.37 kgP/m3 52-71 

Lightweight 
aggregates 
(LWA) 

B; 
A 

0-320 mg/L 
Vol 200 
S 40 

22 oC     Zhu et. al. 1997 

LECA 

B; 
A 

10-200 μgP/L 
Vol 50/100 
S ½ g/L 

3-8; 
room temp 

Sorption was 
higher when 
coated with Al 
or Fe, 
decreasing with 
increase in pH. 
Fe-LECA had 
better sorption 
than Al-LECA at 
pH below 6. 

Langmuir 

Pseudo-first 
order* and 
pseudo-second 
order 

- 
Yaghi and 
Hartikainen 2013 

Al-LECA 

Fe-LECA 

Leca Filtralite 
NR (LWA NR) 

B, CW; 
A 

7.7 mg/L 

C: vol 500 
S: NR 72g/L, MR 
146.2 g/L 
CW: Liquid depth 
0.4m 
H 0.47m 

B: 7.5 
22 oC 

B: LWA MR 
shown to be 
better 
adsorbent 
CW: 1.1 gP/kg –
LWA MR, 0.3 
gP/kg LWA NR 
Life expectancy: 
Without plants- 
LWA NR 1 yr, 
LWA MR 2 yrs. 
Saturation not 
reached after six 
years  

Langmuir* and 
Freundlich 
isotherms 

- - 
Mateus and Pinho 
2010 Leca Filtralite 

MR (LWA MR) 

Fe-pillared 
bentonite 

B; 
A, W 

A 0-50 mg/L 
W 7.8 mg/L 

Vol 50 
S: A 2 g/L, W 1-2 g/L 

A 5-8 
W 7.3; 

Freundlich*, 
Langmuir*, 

Pseudo-first 
order, pseudo 

A 92 
W 79.5-94 

Shanableh and 
Elsergany 2013 
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Al-pillared 
bentonite 2.4 

25 oC Sorption 
declined with 
pH.  
Al bentonite 
exhibited faster 
initial 
adsorption 
rates, while 
Fe/Al-Fe  
bentonites 
achieved higher 
adsorption 
capacity  

Temkin 
isotherms 

second order* 
models 

A 88 
W 75.6-93.6 

Al-Fe-pillared 
bentonite A 

A 94.4 
W 72.4-92.6 

Al-Pillared 
montmorillonite 

B; 
A 

5 and 10 mgP/L 
Vol 40 
S 2.5 g/L 

3-8; 
25-35 oC 

6.67 mg/g 
Sorption 
decreased with 
increase temp, 
optimum pH 3-4 

Freundlich*, 
Langmuir and 
Tempkin 
isotherms 

Pseudo-first 
order*, pseudo-
second order, 
pseudo-third 
order models 

 

Tian et. al. 2009 

La-Al Pillared 
montmorillonite 

8.90 mg/g 
Sorption 
decreased with 
increase temp 
optimum pH 3 

 

Al-pillared 
bentonite 

B; 
A 

50 mgP/L 
Vol 50 
S 2 g/L 

5; 
25 oC 

Sorption 
increased with 
decrease in 
particle size 

Freundlich, 
Langmuir 
isotherms 

Pseudo-first 
order, pseudo 
second order* 

- 
El-Sergany and 
Shanableh 2012 

Al-pillared 
bentonite 

B; 
A 

25-60 mg/L 
Vol 25 
S 4 g/L 

1-10 
 

Optimum 
sorption pH 3, 
declined sharply 
as pH increased Freundlich, 

Langmuir 
isotherm 

Pseudo-first 
order, pseudo 
second 
order*models 

97 

Yan et al. 2010 
Fe-pillared 
bentonite 

Sorption > 90% 
at all pH, 
optimum pH 3. 

99 

Fe-Al-pillared 
bentonite 

Optimum 
sorption pH 3, 

97 
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declined sharply 
as pH increased 

Al-intercalated 
acid activated 
bentonite 
beads: Al-ABn, 
Al-ABn-AB 

B, C; 
A, W 

B: 
A: 2-60 mg/L 
W: 4.5 mg/L 
C: 
2.3/4.54 mg/L 
 

B: 
Vol 50 
S 1-5 g/L 
C: 
D 1cm 
Q 0.75/0.2 ml/min 

B: 
A: 3-10 
25-65 oC 
W: 3/7.8 
C: 3/5 
 

Optimum pH 3. 
Sorption 
declined with 
increase in pH 

Freundlich*, 
Langmuir 
isotherms 

Pseudo-first 
order, pseudo 
second 
order*models 

Al-ABn 98 
Al-ABn-AB 95 

Pawar et al. 2016 

Ferric modified 
Laterite 

B; 
A 

5-50 mg/L 
Vol  50 
S 5 g/L 

3-9; 
25-45 oC 

9-31.36 mg/g 
Sorption 
decreased with 
increase pH 

Freundlich*, 
Langmuir 
isotherms 

Pseudo-first 
order, pseudo-
second 
order*models 

50-90 Huang et al. 2013 

Electrochemical
ly modified clay 

B; 
A 

5-50 mg/L 
Vol 50 
S 4-20 g/L 

2-12; 
25-35 oC 

Optimum pH 6 
Freundlich*, 
Langmuir 
isotherms 

Pseudo-first 
order, pseudo-
second order* 
models 

- Yang et al. 2013 

Chemically 
modified clay 

B; 
A 

5-50 mg/L 
Vol 50 
S 4-20 g/L 

2-12; 
15-35 oC 

4.01 mg/g 
Optimum pH 6 

Freundlich*, 
Langmuir 
isotherms 

Pseudo-first 
order, pseudo-
second order* 
models 

 Yang et al. 2013 

Facile prepared 
magnetic 
diatomite clay 
(MDC) 

B; 
A 

0-500 mg/L 
Vol 20 
S 1-25 g/L 

2-10; 
25oC 

MDC 11.8 mg/g, 
MIC 5.48 mg/g 
Sorption 
decreased with 
increase in pH.   

Langmuir*, 
Freundlich, 
Dubinin-
Radushkevich 
isotherms 

Pseudo-first 
order, pseudo-
second order* 
models 

>90 Cheng et al. 2016 

Facile prepared 
magnetic illite 
clay (MIC) 

Fe-modified 
Bentonite 

B; 
A 

5-250 mg/L 
Vol 20 
S 25-250 g/L 

2-10; 
25-45 oC 

30.51 mg/Kg  
Sorption less 
dependent on 
pH, increased 
slightly when pH 
increased from 
8 to 10 

Freundlich*, 
Langmuir 
isotherms 

- 

91.04  

Moharami and 
Jalali 2015 

Fe-modified 
Kaolinite 

30.90 mg/Kg 
Sorption 
dependent on 

92.6  
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pH. Higher 
sorption at 
acidic pH 

Fe-modified 
Zeolite 

32.70 mg/Kg 
Sorption 
increased with 
increase in pH. 

98 

Modified clay 
mineral 

B; 
A 

10-200 
Vol 50 
S 2 g/L 

3-9; 
25 oC 

4.88-75.98 mg/g 
Sorption 
generally 
increased with 
increase in pH 

- - 78.1-98.6 Jiang et al. 2014 

Zenith 
bentonite 

B; 
A 

0.05-5 mg/L 
Vol 50 
S 0.4 g/L 

5-9; 
5-35 oC 

4.12 mg/g 
Optimum pH 7, 
sorption 
declined as pH 
became 
alkaline. 

Freundlich, 
Langmuir 
isotherm 

Pseudo-first 
order, pseudo-
second order* 

49 

Zamparas et al. 
2012 

Zenith/Fe 
bentonite 

11.15 mg/g 
Optimum pH 6 
and slight 
decline as pH 
increased 

84 

Phoslock® 

11.59 mg/g 
Optimum pH 6 
and slight 
decline as pH 
increased 

87 

Al10 SBA-15 (Al 
modified 
mesoporous 
silicate) 

B; 
A 

10 mg/L 
Vol 100 
S 0.1-0.4 g/L 

6.7-7.2; 
Room temp 

710 μmol/g 

Langmuir 
isotherm 

Pseudo-second 
order  

 

Jang et al. 2004 

Al30 SBA-15 

315 μmol/g 
Sorption 
decreased with 
increase in 
added Al 
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Mg/Al-
hydrotalcite 
kaolin clay 

B; 
A 

50 mg/L 
Vol 50 
S 8 g/L 

2.5-11.5 
 25-45 oC 

2.49-10.95 mg/g 
Sorption >90 for 
pH 3-10 

Langmuir*, 
Freundlich, 
Dubinin-
Radushkevich 
isotherms 

Pseudo-first 
order, pseudo-
second order* 

62.62-95 Deng and Shi 2015 

La5 exfoliated 
vermiculite 

B; 
A 

1-100 mg/L 
Vol 50 and 200 
S 0.1 and 1 g/L 

3-11 

20.8-71.7 mg/g 
High sorption 
recorded 
between pH 3 
and 7 before 
declining 
sharply as pH 
increased to 8. 
Coexisting 
anions had no 
effect. 

Freundlich, 
Langmuir* and 
Dubinin-
Radushkevich 
isotherm 

Pseudo-first 
order, pseudo-
second order* 

 Huang et al. 2014 

Mg/Fe layered 
double 
hydroxides 

B, C; 
A, W 

B 1-1500 mgP/L, C 
0.2 mgP/L 

B: Vol 10, S 5 g/L; 
C: H 1mm, Q 20 
ml/h 

B: pH 2-8 
C: pH 7.4 

Sorption 
increased with 
decrease in pH. 
Mg was 
released from 
LDH, increasing 
with decrease in 
pH 

Langmuir  C >80 
Seida and Nakano 
2002 

Calcined Mg/Al 
layered double 
hydroxides 

B;  
A 

30-70 mg/L 
Vol 50 
S 0.4-5 g/L 

2-11 

28.32-53.66 
mg/g 
Optimum pH 5, 
sorption 
declined steeply 
as pH increased 
from 6 to 8. 
Sorption 
decreased as 
temp increased 

Freundlich, 
Langmuir 
isotherms 

First order >90 Das et. al. 2006 

MgAl-NO3 
layered double 
hydroxide 

B; 
W 

30-200 mg/L 
Vol 50 
S 0.5-5 g/L 

2-8 
Optimum 
sorbent dosage 
was 2 g/L. 

Freundlich, 
Langmuir* and 
Dubinin-

Pseudo-second 
order 

pH 2 90 
pH 2-7 >98 

Khitous et. al. 
2016 



43 
 

Sorption was 
constant 
bewtween pH 3 
and 8. 

Radushkevich 
isotherms 

Zn-Al layered 
double 
hydroxide 

B; 
W 

20 mg/L 
Vol 50/250 
S 0.4 g/L 

6.8 

49.98 mg/g 
Sorption 
increased with 
increase in 
calcination 
temperature to 
300 oC the 
decreased. 
 

Freundlich, 
Langmuir* 
isotherms 

Pseudo-first 
order, pseudo-
second order* 
and Elovich 

 Cheng et al. 2010 

Kaolinite 

B; 
A 

0.05-10 mmol/L 
Vol 50 
S 1 g/L 
 

5; 
25 oC 

Sorption GKA 
>GKM > 
kaolinite. One-
site Langmuir 
described 
sorption on 
kaolinite better 
while two-site 
Langmuir 
described 
sorption on GKA 
and GKM better. 

Freundlich, 
Langmuir* 
isotherms 

- - Wei et. al. 2013 

Geothite-
kaolinite 
mixture (GKM) 

Geothite-
kaolinite 
association 
(GKA) 

Red soil/ground 
burnt patties 

C 5 and 15 mg/L 
D 4.5 cm;  
H 10-20 cm 
Q 2.5-7.5 ml/min 

 

50 % 
breakthrough 
time declined 
with decrease in 
bed height, 
increased with 
increased flow 
rate and 
influent conc 

- - - Rout et al. 2014 

Palygorskite 
B; 
A 

5-150 mgP/L 
Vol 100, 500; 
S 1 g/L 

4-9 
2.5-6.1 mg/g 
Sorption 
declined with 

Freundlich*, 
Langmuir 
isotherms 

Pseudo-first 
order, pseudo-
second order, 

- Ye et al. 2006 Acid treated 
palygorskite 
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Acid/thermal 
treated 
palygoskite 

increase in pH. 
Sorption 
acid/thermal 
treated > acid 
treated > 
unmodified 

Elovich*, power 
function 

Palygorskite 

B; 
A 

5-1000 mg/L 
Vol 25 
S 20 g/L 

3-9; 
25oC 

Sorption 
declined with 
increase in pH. 
Maximum 
sorption 
occurred when 
palygorskite 
was heated to 
700 oC before 
reducing 

Freundlich 
isotherm 

Pseudo-first* 
order, pseudo-
second order*, 
Elovich, intra-
particle diffusion* 

 Gan et al. 2009 

Thermal treated 
palygoskite 

Pseudo-first 
order, pseudo-
second order*, 
Elovich, intra-
particle diffusion 

Phoslock® 
B; 
R, Br 

620 μg/L 
Vol 40 
S 0.6 g/L 

7.5-8.9 
Sorption 
declined as pH 
increased  

- - - Reitzel et al. 2013 

Phoslock® 
B; 
W, Diary W 

Diary W: 8.33 
mg/L 
W: 13.02 mg/L 

Vol 100 
S: Dairy W 0-10 g/L, 
W 0-8.28 g/L 

Diary W 
7.67, W 
7.38; 
25 oC 

1:100 
phosphate to 
adsorbent ratio 
optimum for 
total phosphate 
removal from 
diary effluent, 
higher ratio 
required for W.  

Langmuir - 50-100 
Kurzbaum and 
Shalom 2016 

Phoslock® 
B, F; 
A, W 

B 1 mg/L, F 
0.98mg/L 
 

Vol 4L 
S 0.23 g/L 

B 5-9 
10-40 oC; 
F 9 

Maximum 
adsorption 
capacity 
increased with 
increase in 
initial 
concentration 
and pH. 
Sorption 

Langmuir 
Pseudo-second 
order 

F 85 
Haghseresht et al. 
2009 
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declined with 
increase in pH 
from 5 to 9 
F: Total 
phosphorus 
conc declined 
sharply during 
the first three 
days. 

Bephos™ 
B; 
A 

0.05-20 mg/L 
Vol 50 
S 0.4 g/L 

5-9; 
5-35 oC 

Sorption > 80% 
reported at all 
pH studied 
optimum pH 7. 
Sorption 
declined as 
salinity 
increased 

Freundlich*, 
Langmuir*, 
Redlich-
Peterson, 
Temkin 
isotherms 

Pseudo-first 
order, pseudo-
second order* 

87-94 
Zamparas et al. 
2013 
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2.5.5 Man-made products 

2.5.5.1 Light-Weight Aggregates (LWA) and Light Expanded Clay Aggregates (LECA) 

Light-weight aggregate (LWA) and Light Expanded Clay Aggregates (LECA) are 

commercially produced clay aggregates primarily used in the construction industry but 

have found application in wastewater treatment. LECA is an aggregate of burnt clay 

produced at high temperature around 1200oC in a rotary kiln. During firing, organic 

compounds present in the clay are burnt off causing the clay to expand creating 

honeycombed bubble spaces inside the clay while the outside surface melts and is 

sintered. The resulting pellet is porous, lightweight, and chemically inert with a neutral 

pH and non-biodegradable (Malakootian et al. 2009; Nkansah et al. 2012). 

Several studies have been conducted to show the effectiveness of LWA/LECA to 

remove pollutants from wastewater. Johansson (1997) reported a low phosphate 

removal (14-15%) averaging 0.5 kgP/m3 when Swedish LECA was used in a column 

study. However, phosphate sorption increased 1.26 kg P/m3 when LECA was mixed 

with Opoka and was suggested the CaCO3 present in Opoka increased the reactivity 

and phosphate sorption capacity of the LECA. Drizo et al. (1999) also reported low 

phosphate removal when LECA was used in a batch study with a phosphate 

adsorption maximum of 0.42 g/Kg derived from the Langmuir equation. Similar results 

were obtained by Vohla et al. (2005) for the removal of phosphate using Estonian LWA 

in a batch study. They reported a phosphate retention capacity between 0.1 and 0.2 g 

P/mg.  

Zhu et al. (1997) on the other hand, reported phosphate sorption capacity of 3465 mg 

P/kg using a US manufactured LWA. Phosphate sorption was shown to be dependent 

on the chemical properties of the LWA. The metal content of the LWA had a 

relationship with phosphate sorption with Ca having the strongest correlation. 

Precipitation of phosphate by Ca was suggested as the predominant removal 

mechanism when LWA was used. 

Mateus and Pinho (2010) studied the performance of two types of LWA in a batch and 

constructed wetland (CW) system. The estimated design capacity of the CW was 1.1 

g p/kg and 0.3 g P/kg and life expectancy of the bed without plants was 2 and 1 years 

for LWA MR and LWA NR respectively. The pilot scale CW study achieved a maximum 
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phosphate removal of 93% with the plants contributing only 7% of phosphate removal 

and bed saturation not achieved after six years. 

2.5.5.2 Phoslock® 

Phosphate precipitation by lanthanum was reported in the 1970s to be more effective 

than either aluminium or iron (III) salts over a wide pH range between 4.5 and 8.5 

(Melnyk et al. 1974; Recht et al. 1970 in Haghseresht et al. 2009). Lanthanum 

precipitates phosphate in the reaction expressed in Equation 2.16: 

 La3+ + PO4
3- → LaPO4   Equation 2.16 

The La-PO4 complex can form at low pH levels and is highly insoluble. The solubility 

of La-PO4 complex is reported to reduce with an increase in temperature with a 

solubility product of up to Ksp = -26.40 at 70 oC, where Ksp is the solubility product 

(Firsching and Brune 1991).  

The use of lanthanum in phosphate removal can be toxic to aquatic life depending on 

the concentration and application rates (Douglas et al. 2004). The incorporation of 

lanthanum into clay mineral, to overcome the toxic effect to aquatic life, produced a 

lanthanum-modified bentonite called Phoslock®. Phoslock® was developed in the late 

1990s by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) 

Australia. 

Studies have shown a decrease in phosphate adsorption with increase in pH using 

Phoslock®. Haghseresht et al. (2009), reported a decline in phosphate adsorption as 

the pH increased from 5 to 9. Reitzel et al. (2013) also reported a decrease in 

phosphate adsorption as the pH increased from 7.5 to 8.9. The reduced adsorption at 

higher pH was attributed to the presence of insoluble La(OH)3 formed at higher pH 

against La(OH)+ being the most likely species formed between pH 5 and 7. 

The theoretical adsorption capacity of Phoslock® is about 10.6 mgP/g, although an 

adsorption capacity of 14.4 mgP/g (Kurzbaum and Shalom 2016) and 11.06 mgP/g 

using Phoslock® modified bentonite (Zamparas et al. 2012) have ben reported. 

Haghseresht et al. (2009) obtained a maximum adsorption capacity that increased 

from 9.54 to 10.54 mg/g as the temperature increased from 10 to 30 oC. Adsorption of 

phosphate using Phoslock® followed the pseudo-second order kinetic.  
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2.6 Adsorption Theory 

Adsorption is a process where a liquid or gas accumulates on the surface of a liquid 

or solid (also known as adsorbent), forming a film or adsorbate (Zamparas 2015). It 

can be defined as the enrichment of chemical species from a fluid phase on the surface 

of a liquid or a solid (Worch 2012). Adsorption usually occurs between two phases, 

specifically liquid-liquid, gas-liquid, gas-solid or liquid-solid interphases. Adsorption 

occurs in most natural systems and has wide industrial applications. Solid surfaces 

are usually characterized by active energy-rich sites that can interact with solutes in 

the adjacent fluid phase due to their specific spatial or electronic properties (Worch 

2012). Interactions on the surface of the adsorbent occur due the active forces within 

the phase of surface boundaries resulting in characteristic boundary energies. 

Typically, active sites are energetically heterogeneous. The basic terms of adsorption 

is illustrated in Figure 2.4. 

Figure 2.4: Basic terms of adsorption 
Source: Worch 2012 

 

One of the driving forces for adsorption is the affinity of the solute for the solid as a 

result of electrical attraction between the solute and the solid; hence adsorption occurs 

via van der Waals attraction (Cecen and Aktas 2012). This type of adsorption is termed 

physical adsorption or physisorption where intermolecular attraction occurs between 

favourable energy sites and no exchange of electrons is involved. 

Chemical adsorption or chemisorption occurs where there is an exchange of electrons 

between specific surface sites and the solute molecules, forming a chemical bond. 

Chemically bonded adsorbed molecules cannot move freely on the surface or within 

the interphase. 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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1.1.2 Factors affecting Adsorption 

2.6.1.1 Contact time 

Contact time is one of the factors affecting adsorption of phosphate. Adsorption 

typically increases with increasing time. Uptake is usually rapid at the initial stages of 

adsorption as a result of a large concentration gradient between the fluid and available 

adsorption sites. As the adsorbate is taken out of solution, the rate of adsorption 

decreases until equilibrium is achieved. Contact time required to attain equilibrium 

varies between adsorbents and pollutants. Adsorption of phosphate by most 

adsorbents typically achieves equilibrium within 60 minutes. Adsorption of phosphate 

by calcite attained equilibrium after 15 minutes of contact (Karageorgious et al. 2007); 

while equilibrium was achieved after 30 minutes using iron hydroxide-eggshell waste 

(Mezenner and Bensmaili 2009). Slower phosphate uptake by adsorbents have also 

reported. Dable et al. (2008) reported the adsorption of phosphate using crude clays 

achieved equilibrium after 4 hours. Equilibrium was also achieved after 4 hours using 

layered double hydroxides (Das et al. 2006). Adsorption processes that occur in less 

than one hour are generally considered to be more favourable than those requiring 

longer contact times. 

2.6.1.2 pH  

pH of the solution is one of the factors that affect the adsorption of anions. The surface 

charges of clay adsorbents are dependent on the pH of the solution. At lower pH, the 

clay surface would have a net positive charge and its attraction to anions will increase 

leading to higher adsorption of anions. The net negative charge at higher pH results 

in a reduction in the adsorption of anions. The adsorption of phosphate has been 

studied at different pH. Kamiyango et al. (2009) obtained maximum adsorption of 

phosphate using raw kaolinite at pH 3. Similar results were also obtained by Huang et 

al. (2015) using Zr/Al pillared montmorillonite and Vyshak and Jayalekshmi (2014) 

using Kuttanad clay. High phosphate adsorption was obtained at pH between 5 and 5 

using calcined Kanuma clay (Yang et al. 2015), used brick (Jia et al. 2013), acid 

treated kaolinite (Kamiyango et al. 2009), and iron oxide coated crushed bricks 

(Boujelben et al. 2008). Other studies have shown the adsorption of phosphate was 

unaffected by the pH of the solution. Deng and Shi (2015) reported high phosphate 
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sorption (over 90%) for pH 3 to 10 using Mg/Al hydrotalcite kaolin clay, while Moharami 

and Jalali (2013) reported phosphate adsorption using bentonite was unaffected by 

pH when studied at a pH range between 2-10.  

The various results on the effect of pH on the adsorption of phosphates indicate its 

complicated nature. Most studies suggest the optimum pH for the adsorption of 

phosphate is between 4 and 7 (slightly acidic to near neutral). 

2.6.1.3 Initial Concentration 

Adsorption efficiency typically decreases with increase in the concentration of the 

adsorbate while the amount adsorbed increase with initial concentration. The removal 

efficiency of Kuttanad clay decreased as the concentration of phosphate in the solution 

increased from 2 to 20 mg/L (Vyshak and Jayalekshmi 2014). The amount of 

phosphate adsorbed using ZnCl2 activated coir pith carbon increased from 1.45 to 

4.15 mg/g as the concentration of phosphate increased from 10 to 40 mg/L 

(Namasivayam and Sangeetha 2004). 

2.6.1.4 Temperature 

Adsorption usually involves specific reactions between the adsorbent and adsorbate, 

therefore the effect of temperature is not the same for all adsorption processes (Cecen 

and Aktas 2012). Most adsorption reactions are endothermic with adsorption 

increasing with increasing temperature. Increase in temperature is suggested to 

increase the rate of diffusion of the adsorbate to the active sites of the adsorbent 

leading to increased adsorption (Cecen and Aktas 2012). Namasivayam and 

Sangeetha (2004) using ZnCl2 activated coir pith carbon reported an increase in the 

adsorption of phosphate as the temperature increased for 35 to 60 oC. The study 

conducted by Das et al. (2006) contradicted that study. In the study, adsorption of 

phosphate decreased as the temperature increased from 30 to 70oC when layered 

double hydroxide was used.    

2.6.1.5 Surface area 

The extent of adsorption is usually considered as a function of total available active 

sites on the adsorbent. This means that a larger surface area would enhance 

adsorption. Specific surface area refers to the proportion of the total surface area that 
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is available for adsorption. Particle size and porosity are two properties that influence 

the total surface area of an adsorbent. The more porous or finely divided an adsorbent 

is, the higher the adsorption per unit mass of the adsorbent (Cecen and Aktas 2012). 

The presence of bulges or cavities on or within the increase the porosity, and 

consequently, the surface area of the adsorbent.  

2.6.1.6 Effect of Competing Anions 

Wastewater contains different ions which could impacts its treatment, as there might 

be competitive adsorption between phosphates and other anions that co-exists in 

wastewater. These anions include, NO3
-, CO3

-, Cl-, F-, SO4
2- and SeO3

2-. It is 

suggested that divalent anions have a more disruptive effect on phosphate adsorption 

than monovalent anions Das et al (2006) studying the effect of two monovalent anions 

(NO3
- and Cl-) and two divalent anions (SO4

2- and SeO3
2-) on the adsorption of 

phosphate by LDH reported about 40 and 25% decline in phosphate adsorption when 

SeO3
2- and SO4

2- were introduced to the system. A 10 and 15% reduction in phosphate 

adsorption was reported in the same study when NO3
- and Cl- was added. 

The presence of SO4
2- was also reported to reduce the adsorption of phosphate by Al 

pillared clay from 92.2 to 78% (Tian et al. 2009). The presence of Cl- has also been 

shown to compete with phosphate ions for adsorption sites thereby reducing 

adsorption of phosphate (Chen et al. 2002). 

 

1.1.3 Kinetic Models 

2.6.1.7 Pseudo First Order Kinetics 

The pseudo-first order kinetic model explains the relationship between the rate the 

sorption sites of the adsorbents are occupied and the number of unoccupied sites. 

Pseudo-first order kinetic model is based on the assumption that the rate of occupation 

of the adsorption sites is proportional to the number of unoccupied sites (Ghasemi et 

al. 2012). It is defined using the Lagergreen equation as shown in Equation 2.16:  

 ln (qe – qt) = ln qe – (k1t)                     Equation 2.16 (Zhou et al. 2013) 

Where 
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qe and qt is the amount of phosphate adsorbed at equilibrium and time t (mins) 

k1 is the rate constant of adsorption (min-1). 

The linear plot of ln (qe-qt) against time was used to determine the rate constant k1, 

2.6.1.8 Pseudo Second Order Kinetics 

The pseudo-second order kinetic is used to describe the dependency of the 

adsorption capacity of the adsorbent on time and can be determined from the 

equilibrium adsorption capacity and rate constant. The model is based on the 

assumption that chemical sorption involving valence forces through sharing or 

exchange of electrons between phosphate ions and the adsorbent may be a rate 

limiting step. Pseudo-second order model is used to determine initial rate of 

adsorption and half time adsorption. The pseudo-second order kinetic can be 

expressed as shown in Equation 2.17 

t/qt = 1/k2qe
2 + t/qe                     Equation 2.17   (Zhou et al. 2011)  

Where  

qt and qe is the amount of phosphate adsorbed at equilibrium and time t (mins) 

And k2 is the pseudo-second order rate constant (g/mg/min) 

The linear plot of t/qt against time is used to determine qe and k2 from the slope and 

intercept respectively. 

2.6.1.9 Elovich Kinetic Model 

Elovich kinetic model has been used to chemisorption of gases onto heterogeneous 

surfaces and solid systems and it is now used to study the removal of pollutants from 

aqueous solutions (Yuan 2015). It is used to describe second order kinetic with the 

assumption that the solid surface has heterogeneous energy but do not propose any 

mechanism for adsorption (Mezenner and Bensmaili 2009). The model assumes that 

adsorption sites increase exponentially with adsorption implying a multilayer 

adsorption. Elovich kinetic model is used to determine adsorption rate and desorption 

rate. The Elovich kinetic model is represented as shown in Equation 2.18: 

                
𝒅𝒒

𝒅𝒕
 = ae

-αq                           Equation 2.18 (Qiu et al. 2009) 
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Where q is the amount of amount of phosphate adsorbed at time t 

a is the adsorption constant 

α is the initial rate of adsorption (mg/g/min) 

Integration of Equation 2.19 assuming the boundary conditions of q= 0 at t= 0 and q= 

q at t= t yields 

               q = α ln(aα) + α lnt             Equation 2.19 

The linear form of Equation 2.19 is Equation 2.20: 

                qt = 
𝒍𝒏𝜶𝒃

𝒃
 + 

𝟏

𝒃
𝐥𝐧 𝒕                  Equation 2.20 (Yakout and Elsherif 2010) 

Where α is the initial rate of adsorption (mg/g/min), and  

b is related to the extent of surface coverage and activation energy for chemisorption 

(g/mg) 

A plot of qt against ln t yields a straight line with α and b determined using the slope 

and intercept respectively. 

2.6.1.10 The Bangham’s Kinetic Model (Pore Diffusion Model) 

The Bangham’s kinetic model is used to evaluate the dominance of pore diffusion in 

the adsorption process (Subha and Namasivayam 2008). The Bangham’s kinetic 

model assumes that pore diffusion is the only rate controlling step during adsorption 

(Yaneva et al. 2012). It is expressed as Equation 2.21: 

   Log Log [ 
𝐂𝐨

𝐂𝐨−𝐪𝐭𝐌
] = Log [ 

𝐤𝐨

𝟐.𝟑.𝟑𝑽
] + αLog t   Equation 2.21 

Where Co is the initial concentration (mg/L) 

V is the volume of the solution (ml) 

M is the mass of the adsorbent (g/L) 

qt is the amount of phosphate adsorbed at time t, and 

ko and α are constants 
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The plot of Log Log [Co/ (Co- Mqt)] against Log yields a straight line and ko and α were 

determined from the slope and intercept 

2.6.1.11 Intraparticle Diffusion 

The diffusion mechanism can be explained using the intra particle diffusion theory 

proposed by Weber and Morris (1963), the model in Equation 2.22:  

             qt = Kdi √t + Ci                  Equation 2.22 (Acelas et al. 2015) 

Where Kdi is the intra particle rate constant (mg g-1 mins-0.5), Ci is the intercept, nd t is 

time (mins) 

The model is based on a multi-step uptake process. The first step involves the mass 

transfer of phosphate molecules from the bulk phosphate solution to the clay surface, 

while the second step is the intra particle diffusion of phosphate molecules on the tiles 

(Zhou, Jiang and Wei 2013).  

The plot of the adsorbate uptake qt (mg/g) against the square root of time (minutes) 

t1/2 resulted in a linear relationship and Kdi and C values were obtained from this plot. 

2.6.2 Adsorption Isotherm 

2.6.2.1 Langmuir Isotherm 

The Langmuir model is used to describe a monolayer sorption on sets of distinct 

localized sorption sites. It was initially used to describe the adsorption of gases onto 

activated carbon but has also been used to generally describe the adsorption of 

adsorbates onto adsorbents. It is based on the following assumptions: 

i) There is a fixed number of available adsorption sites on the surface of the 

adsorbent; 

ii) No transmigration of the adsorbate occurs in the plane of the surfaces; 

iii) There is uniform energy of monolayer sorption onto the adsorbent surface and 

each site can hold a maximum of one molecule;  

iv) There is no interaction between the sorbed molecules;  

v) All sorption sites are alike on a microscopic scale (Balouch et al. 2013).  

The linear for of the Langmuir isotherm is represented as follows in Equation 2.23: 
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𝑪𝒆

𝑪𝒂𝒅𝒔
=

𝟏

𝑸𝒃
+

𝑪𝒆

𝑸
    Equation 2.23  (Balouch et al. 2013) 

Where Ce is the equilibrium concentration of phosphate (mg/L) 

Cads is the amount of phosphate sorbed at equilibrium 

 b is the sorption constant (L/mg) at a given temperature, related to the energy of 

sorption 

And Q is the maximum sorption capacity (mg/g) 

The Langmuir isotherm model is represented by Equation 2.24: 

 qe = 
𝑸𝒎𝑲𝑳𝑪𝒆

𝟏+𝑲𝑳𝑪𝒆
    Equation 2.24 (Dada et al. 2012) 

Where Ce is the equilibrium constant (mg/L) 

qe is the amount of phosphate adsorbed equilibrium (mg/g) 

Qm is the maximum monolayer coverage capacity (mg/g) 

KL is the Langmuir isotherm constant (L/mg)  

A dimensionless constant or separation factor (RL) is represented by Equation 2.25: 

 RL = 
𝟏

𝟏+𝑲𝑳𝑪𝒐
    Equation 2.25  (Foo and Hameed 2010) 

RL is used to describe the favourable nature of the adsorption process where RL>1 is 

unfavourable, RL= 0 is linear, 0<RL<1 is favourable and RL=0 is irreversible (Foo and 

Hameed 2010; Yuan et al. 2015). A plot of 1/qe against 1/Ce yielded a straight line 

graph with the values of Qm and KL calculated from the slope and intercept 

respectively. 

2.6.2.2 Freundlich Isotherm 

The Freundlich isotherm is used to describe the relationship solid phase capacity 

based on multilayer adsorption and equilibrium liquid (Balouch et al. 2013). This 

isotherm is based on the assumption that adsorption occurs on heterogeneous 

surfaces and active sites with different energy (Boujelben 2013). The linear form of the 

Freundlich isotherm model is represented as follows in Equations 2.26 – 2.27: 



56 
 
 

  lnQ = lnKf + 
𝟏

𝒏
lnCe  Equation 2.26  (Boujelben 2013) 

The isotherm is expressed as: 

        Qe = KfCe1/n  n> 1          Equation 2.27 (Hutson and Yang 1997; Dada et al. 

2012) 

Where Kf is the Freundlich isotherm constant  

n is adsorption intensity 

Ce is the equilibrium concentration of adsorbate (mg/L) 

Qe is the amount of phosphate adsorbed at equilibrium (mg/g) 

The linear form of Equation 2.28 is expressed as 

      Log Qe = Log Kf + 
𝟏

𝒏
 Log Ce   Equation 2.28  (Dada et al. 2012) 

 The plot of Log qe against Log Ce yielded a straight line and n and Kf was calculated 

from the slope and intercept. 

Where Kf and n are Freundlich constant and represent the adsorption capacity and 

adsorption intensity respectively. Kf and n are derived from the intercept and slope of 

a graph of ln Q against lnCe  

Where Q is the sorbed phosphate and  

Ce is the equilibrium concentration of phosphate in the solution 

2.6.2.3 Tempkin Adsorption Isotherm 

The Tempkin adsorption isotherm model was initially used to describe the adsorption 

of hydrogen onto platinum electrodes in an acidic solution (Foo and Hameed 2010). 

The isotherm contains a factor that considers interaction between adsorbate (Dada et 

al. 2012). The model is based on the assumption that heat of adsorption of all 

molecules in the layer will decrease linearly rather than logarithmic with coverage, 

when extremely low and high concentration are not considered (Tempkin and Pyzhev 

1940; Foo and Hameed 2010, Dada et al. 2012). It also assumes that there is a uniform 

distribution of bounding energy up to some maximum bonding energy (Inyinbor et al. 
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2016). The heat of adsorption is characterized by uniform distribution of binding 

energies up to some maximum binding energy Foo and Hameed 2010). The model is 

represented as shown in Equations 2.29 – 2.32: 

        qe = 
𝑹𝑻

𝒃
 ln (ATCe)            Equation 2.29 (Tempkin and Pyzhev 1940; Dada 2012) 

     qe = 
𝑹𝑻

𝒃𝑻
 ln AT + [𝑹𝑻

𝒃
] ln Ce          Equation 2.30 

      B = 
𝑹𝑻

𝒃𝑻
                                       Equation 2.31 

     qe = B ln AT + B ln Ce                    Equation 2.32 

Where AT is Tempkin isotherm equilibrium binding constant (L/g) 

BT is the Tempkin isotherm constant 

R is universal gas constant (8.314 J/mol/K) 

T is temperature at 298K 

And B is constant related to heat of sorption (J/mol) 

AT and bT was determined from the intercept and slope of the plot of qt against ln t. 

2.6.2.4 Dubinin-Radushkevich Adsorption Isotherm 

Dubinin-Radushkevich adsorption isotherm is used to describe the adsorption 

mechanism with a Gaussian energy distribution on to a heterogeneous surface 

(Dabrowski 2001; Dada 2012). Dubinin-Radushkevich adsorption isotherm does not 

assume homogeneous surface or constant sorption potential and but helps to 

determine the apparent energy of adsorption (Al-Anber 2011). The model is expressed 

as shown in Equation 2.33:  

       ln qe = ln qs  - βε2                       Equation 2.33 

Where qe is the amount of phosphate adsorbed at equilibrium (mg/g) 

qm is the theorethical isotherm saturation capacity (mg/g) 

β is the Dubinin-Radushkevich isotherm constant (mol2/kJ2) 

ε is the Polanyi potential, which is equal to 
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      ε = RT ln (1+
𝟏

𝑪𝒆
 )                            Equation 2.34 

Where is the universal gas constant (8.314 J/mol/K) 

The model is usually applied to distinguish the physical and chemical adsorption with 

its mean free energy, E (kJ/mol)  which is the energy required to remove a molecule 

of adsorbate from its location in the sorption site to infinity (Foo and Hameed 2010). E 

is computed from Equation 2.35: 

        E = [ 𝟏

√𝟐𝜷
 ]                                    Equation 2.35 

2.7 Phosphorus retention in filter materials and suitability for plant production 

2.7.1 Desorption of phosphates  

Desorption studies have been carried out to assess the re-usability of adsorbents and 

recovery of adsorbed phosphates. Desorption involves the immersion of spent 

adsorbents in acidic or alkaline solution, usually HCl or NaOH solution, or distilled 

water with different pH. Das et al. (2006) obtained a maximum desorption of 63% of 

adsorbed phosphate by spent LDH when 0.1M NaOH solution was used. 

Namasivayam and Sangeetha (2004) reported a desorption rate of around 30% for 

pH2 and 50% for pH 11 of adsorbed phosphate using spent ZnCl2 activated coir pith 

carbon. Xia et al. (2016) obtained a desorption rate of 92.46, 93.04 and 98.84% in 5, 

10, and 15% w/v NaOH solution using spent MnFe2O4 nanoparticles.  

Competition between phosphate ions and OH- for the adsorption sites is suggested to 

be one of the mechanisms for the release of adsorbed phosphate. Competition 

between phosphate ions and OH- for the adsorption sites would lead to the release of 

phosphate ions from the surface of the adsorbents (Xia et al. 2016). An increase in the 

pH of the desorption solution indicates the adsorption of OH- from the solution. 

The ability of spent adsorbent to desorb adsorbed phosphates indicates the potential 

for the recovery of the phosphates or regeneration of adsorbed phosphates. The 

assessment of the plant availability of adsorbed phosphate is an important criterion on 

the feasibility of the use of the phosphate as plant fertilizer. 
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2.7.2 Recovery and Plant Availability of Adsorbed Phosphate 

The regeneration of the phosphate adsorbed by the bricks could valuable when 

considering the disposal cost of the bricks after use in wastewater treatment and the 

finite global phosphorus pool. The potential of the bricks to re-release the adsorbed 

phosphate could be studied and the feasibility of using the spent bricks as a medium 

for plant growth assessed. Studies done on different filter materials to evaluate the 

potential and availability of the sorbed phosphorus to be used for plant production 

showed that adsorbed phosphorus in filter materials could be released for use by plant 

(Hylander et al 2006, Hylander and Siman 2001). Kvarnstrom et al. (2004) showed 

that substrates from two infiltration basins used in phosphorus adsorption studies 

could be used as nutrient source in agriculture even though the phosphorus 

accumulation in the materials were low and supplementary fertilization will be required. 

Another study by Cucarella et al. 2008 carried out to investigate the plant availability 

of adsorbed phosphate on 3 different substrate showed that the substrates could be 

used as source of plant nutrition as yield was increased and soil fertility improved 

through increasing pH, cation exchange capacity and availability of nutrients.  

The fertilizer effectiveness of recovered phosphate in terms of uptake could be similar 

to commercial fertilizer even though the recovered phosphates have lower solubility in 

water (Karunanithi et al. 2015). The biomass of total phosphate uptake can be used 

to compare the performance of adsorbed phosphates to commercial fertilizers. 

Hylander et al. (2006) obtained a relative fertilizer effectiveness of 76% using 

phosphate adsorbed to crystalline steel-works furnace slag as a fertilizer source for 

the production of barley. Bauer et al. (2007) compared the effectiveness of calcium 

phosphate recovered from swine wastewater with triple super phosphate for the 

production of ryegrass and obtained similar results of 4.8 g/pot for both sources with 

the control producing 4.2 g/pot. Yao et al. (2013) obtained an 85% germination rate 

compared to 53% for control when phosphate adsorbed to engineered biochar was 

used as a source of fertilizer. 
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2.8 Summary  

This chapter identified the problem associated with excess phosphorus in the 

environment which provides the basis of this research. The current methods of treating 

phosphorus in wastewater and their limitations were discussed.  

The theories supporting the concepts investigated in this study was also described. 

These include the theories relating to adsorption, isotherms, kinetic modelling and 

fixed bed column study. 

Previous studies on adsorption as a method for the removal of phosphate in 

wastewater was also discussed. There was an emphasis on the use of clay and clay-

based adsorbents for phosphate removal. The factors that could influence the 

adsorption of phosphate were highlighted.  

The use of fired clay pellets for the removal of phosphates has not been fully explored 

and will provide an aspect of this research. Ways of developing a method of 

pelletization that will be suitable for use in wastewater treatment will also be explored. 

This thesis will also explore ways of developing a “green” approach to the re-use of 

the pellets used in this study for a greenhouse experiment. 
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3 Methodology 

This chapter presents details of the materials and experimental procedures utilized 

during the process of this research. 

3.1 Materials 

3.1.1 Analytical Reagents 

Potassium dihydrogen phosphate (KH2PO4), was used as the source of 

orthophosphate throughout this study. Other reagents used include concentrated 

sulphuric acid (H2SO4 ρ=1.84g/ml), concentrated nitric acid (HNO3 ρ=1.51 g/ml) 

Ammonium molybdate (NH4)6Mo7O24.4H2O, Hydrazinium sulphate (N2H6SO4), Tin (II) 

chloride SnCl2.H2O, Sodium Hydroxide (NaOH), Disodium ethylene diamine tetra-

acetic acid (Na2-EDTA C10H12O8N2Na2), Iron (II) sulphate heptahydrate (FeSO4.7H20), 

Alumimium sulphate hexadecahydrate (Al2(SO4)3.16H2O), Calcium carbonate 

(CaCO3), Potassium nitrate (KNO3), Calcium nitrate (Ca(NO3)2.4H2O, Magnesium 

sulphate (MgSO4), Manganese chloride (MnCl2.4H2O), Zinc sulphate heptahydrate 

(ZnSO4.7H2O), Copper (II) sulphate pentahydrate (CuSO4.5H2O), Boric acid (H3BO3), 

Molybdic acid (H2MoO4.H2O), Ethylene diamine tetraacetic acid (EDTA), Potassium 

hydroxide (KOH) The reagents used in this study were of analytical grade and 

obtained from Fisher Scientific or Sigma Aldrich UK. 

The reverse osmosis (RO) water used in the preparation of stock solution and 

standards was purified by reverse osmosis in Coventry University.  

3.1.2 Bricks and Clay: 

The materials used in this study are clay and bricks from the WH Collier Brickworks in 

Marks Tey, Colchester. The parent clay used by this brickwork was boulder clay 

formed from the middle Pleistocene Lacustrine sediments during the Hoxnian 

Interglacial period that occurred about 400,000 years ago. These sediments have 

several stratified layers from which an estimation of the duration of the Hoxnian 

Interglacial period can be made. An ancient manuscript described the boulder clay as 

sediments deposited in a north westerly direction, indicating that the ice flow was 

probably from the North Sea towards the Atlantic (Peach and Horne 1881).  
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The clay when dug from the ground was a bluish-grey material that slowly changed 

colour to brown on exposure to air caused by the oxidation of iron compounds found 

within the clay. The brick work was visited and samples of the freshly dug clay were 

collected in polyethene bags, the bags were sealed to prevent the clay from drying out 

due to moisture loss and stored at room temperature in the laboratory. Fired bricks 

were also collected from the brick work.  

3.1.3 Determination of Moisture Content of Clay 

An empty weighing tub was weighed using an analytical balance and the mass written 

down. Clay was added to the weighing tub and weighed; the mass of the added clay 

was determined by subtracting the mass of the empty clay from the mass of the 

weighing tub + clay. The clay + weighing tub was put in an oven at 105oC for 24 hours 

or until a constant mass was attained. The clay and weighing boat was    measured 

again and the moisture content determined using Equation 3.1-3.4: 

Initial mass of clay = (Mass of clay + tub) – Mass of tub  Equation 3.1  

Final Mass of clay = (Mass of clay and tub after drying) – Mass of TubEquation 3.2 

Δ in mass of clay = Initial mass of clay – Final mass of clay  Equation 3.3 

 % Moisture content = 
𝜟 𝒊𝒏 𝒎𝒂𝒔𝒔 𝒐𝒇 𝒄𝒍𝒂𝒚

𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒎𝒂𝒔𝒔 𝒐𝒇 𝒄𝒍𝒂𝒚
x100   Equation 3.4 

 

3.1.4 Preparation of Clay Pellets 

250g of clay was weighed out and reverse osmosis (RO) water added and worked into 

the clay to improve plasticity. The clay was then spread using a squeegee unto a 

stainless steel grid measuring 1cm x 1cm x 1.5mm which served as a mould for the 

pellets. It was left to air dry for 2 days before before firing in a Lenton Thermal Design 

General Purpose Chamber furnace ECF/12/22 using the following temperature 

programme shown in (Figure 3.1): 

i. The temperature of the furnace was raised to 120oC by ramping the 

temperature by 8oC every minute and allowed to remain at 120oC for 15 

minutes. 
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ii. The temperature was then increased by 12oC every minute to 540oC 

over a 30 minute period and allowed to remain at 540oC for another 15 

minutes. 

iii. The temperature was further increased to 740oC over a 30 minute period 

at an increase rate of 24oC every minute and allowed to remain at 740oC 

for another 15 minutes. 

iv. The temperature was finally increased to 960oC at an increase rate of 

21oC every minute for 45 minutes and allowed to remain at that 

temperature for 15 minutes the furnace switched off and allowed to cool 

overnight. 

At the end of the firing regime, the clay pellets had a terracotta colour. The firing 

temperature was varied with the final firing temperature at 540oC, 740oC, 800oC, 850 

oC, 900 oC, 960oC, 1000 oC, 1050oC and 1200oC. 

 

Figure 3.1: Firing temperature programme of furnace used in the production of the clay pellets 

The firing regime was chosen based on the duration of the total firing time, and the 

final firing temperature programme was used for the optimization of firing temperature. 

The initial experiments were done at the final temperature of 960oC, at this 

temperature there complete adsorption and there was the need to assess adsorption 

within this temperature range ±100oC. The pellets during air drying and after firing are 

shown in Figure 3.2. 
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Figure 3.2: Clay Pellets a) during air drying; and b) after firing 

3.1.5 Modification of Clay Pellets 

Salts of iron (Fe), calcium (Ca) and aluminium (Al) commonly used as coagulants in 

wastewater treatment works were used to chemically modify the clay to optimize 

phosphorus absorption before use in the preparation of clay tiles. The salts used were 

Calcium carbonate (CaCO3), Iron (II) sulphate heptahydrate (FeSO4.7H20), 

Alumimium sulphate hexadecahydrate (Al2(SO4)3.16H2O). Modification to the clay was 

done after water has been added before the drying stage and amendments were done 

by adding the appropriate quantity of aluminium, calcium or iron salt using the following 

ratio:  

All modifications to the clay were done before the drying stage.  

i. Ca modified fired clay pellets (CaFMCP) was prepared using the following 

ratio:  

a. 0.2 g Ca  0.5g of CaCO3 : 50g clay 

b. 0.4 g Ca  1g of CaCO3 : 50g clay 

c. 1 g Ca   2.5g of CaCO3 : 50g clay 

d. 2 g Ca   5g of CaCO3 : 50g clay 

e. 4 g Ca   10g of CaCO3: 50g clay 

 

ii. Al modified fired clay pellets (AlFMCP) was prepared using the following 

ratio: 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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a. 0.04 g Al  0.5g of Al2(SO4)3.16H2O: 50g clay 

b. 0.08 g Al  1g of Al2(SO4)3.16H2O: 50g clay 

c. 0.2 g Al  2.5g of Al2(SO4)3.16H2O: 50g clay 

d. 0.4 g Al  5g of Al2(SO4)3.16H2O: 50g clay 

e. 0.8 g Al   10g of Al2(SO4)3.16H2O: 50g clay 

 

iii. Fe modified fired clay pellets (FeFMCP) 

a. 0.2g Fe  1g FeSO47H20: 50 g clay 

b. 0.4g Fe  2g FeSO47H20: 50 g clay 

c. 1g Fe   5g FeSO47H20: 50 g clay 

d. 2g Fe   10g FeSO47H20: 50 g clay 

e. 4g Fe    20g FeSO47H20: 50 g clay 

 The clay tiles were then fired using the programme outlined previously. 

The experimental levels for the preparation of modified clay pellets were determined 

by adding an increasing amount of the salts to the clay. The amount of metal added 

was determined from the mass of the salt. An attempt was made to maintain a constant 

amount of metal added for each sample. However, AlFMCP showed an negative effect 

on adsorption when the same amount of Ca was added, so the method was altered to 

add same mass of CaCO3 and determine the concentrataion of Al added from the 

mass of Al2(SO4)3.16H2O. Hence, AlMFCP and CaMFCP have the same mass of 

added salt but FeMFCP and CaMFCP have the same amount of added metal. 

3.1.6 Characterization of Clay Tiles 

 A microphotograph image of the clay tiles was obtained by using the Scanning 

Electron Microscope model JSM-6060LV JEOL Ltd, in the Advance Joining Research 

Centre, Faculty of Engineering Coventry University. 
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Figure 3.3: Scanning Electron Microscope model JSM-6060LV 

3.2 Equipments 

3.2.1 Flow Injection Analyzer 

The flow injection analyzer system is manufactured by FOSS and comprises of the 

FIAstar 5000 analyzer unit with a 120 vial 5057 sampler, and a method cassette P with 

720nm and 1000nm interference filters. The parameter settings for detection are: 

Wavelength (λ)    Measuring = 720nm, Reference = 1000nm 

Signal filtration   1second sliding mean 

Injection volume   40µl 

Injection time    15 seconds 

Fill time     30 seconds 

Measuring Time   45 seconds 

Sampler cup duration time  30 seconds 

Sampler wash duration time 15 seconds 

Pump speed     40 rpm 

Evaluation    Absorbance peak height   

  

The spectrophotometric method for the determination of dissolved phosphorus in 

water is based on the chemical reaction between orthophosphates and molybdate ions 

under acidic conditions to form 12-molybdophosphoric heteropolyacid. Detection 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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occurs either on a resultant molybdophosphate product when using molybdenum blue 

method or on the yellow molybdovanadophosphate complex, when using continuous 

flow methods like the flow injection method. The acceptance of the molybdenum blue 

method as a routine method for the determination of phosphorus can be attributed to 

its high sensitivity (Miro et al. 2003). 

The use of hydrazine and Tin (II) chloride as reducing agents have proven to give the 

best overall results in terms of quicker reactions, wider dynamic ranges and lower 

detection limits, despite the relatively unstable nature of Tin (II) chloride (van Staden 

and van der Merwe 1997). 

3.2.2 Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) 

A Perkin Elmer Optima 5300 inductively coupled plasma optical emission 

spectrometer (ICP-OES) was used for the multi element analysis. ICP-OES presents 

an efficient and effective method for the quick multi-element analysis of a wide range 

and scale of samples (Krejčová et al. 2007). Quantitative and qualitative information 

can be obtained from the ICP-OES about a sample. The qualitative information is 

derived from the wavelength at which electromagnetic radiation emission or radiation 

by the atom occurs and this indicates the element present in the sample, while the 

quantity of the emitted or absorbed radiation indicates the quantitative measurement 

of the level of the elements present (Cazes 2005). 

During the analysis the samples were subjected to high temperatures which caused 

them to dissociate into atoms resulting in a significant amount of excitation and 

collision, which in turn caused the atoms to emit their characteristic radiation. The 

intensity of the light emitted at specific wavelength was measured and used to 

determine the concentration of the elements present (Cazes 2005). 

The optimal operating conditions for the ICP-OES was as follows:   

Plasma Viewing Height   5 mm 

Peak Search Window   0.03 nm 

Plasma Power    1.4 kW 

Plasma Gas Flow Rate  15ml/min  

Auxiliary Gas Flow Rate   1.5ml/min 
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Nebuliser Pressure     150 KPa 

The viewing configuration of the atmospheric pressure argon plasma was axial. The 

emission wavelength (λ) used in this study is shown in Table 3.1 

 

Table 3.1: Elements and Wavelengths for ICP-OES Analysis 

Element Emission Wavelength λ (nm) 

Ca 317.933 

Fe 238.204 

Al 396.153 

Mg 285.213 

P 213.617 

3.3 Preparation of Reagents: 

3.3.1 Preparation of Ammonium Molybdate Reagent ● 

In a 500ml volumetric flask, about 250ml of RO water was added, 5g of Ammonium 

molybdate ((NH4)6Mo7O24•4H2O) was thed added to the flask and mixed. 17.5ml of 

concentrated sulfuric acid (H2SO4) was added, mixed carefully and made up to mark 

with RO water. The content was transferred to reagent bottle labeled ● to correspond 

to the mark on the designated tubing on the FIAstar 5000. The reagent was stable for 

several months. 

3.3.2 Preparation of Stannous Chloride Reagent ●● 

1g of Hydrazinium sulphate (N2H6SO4) and 0.1g of stannous chloride (SnCl2) was 

weighed into a 500ml volumetric flask and about 250ml of RO water was added and 

the flask was shaken vigorously to dissolve the salt. 14ml of concentrated sulphuric 

acid (H2SO4) was then added and carefully mixed and the reagent made up to mark 

with RO water and mixed again. The content was transferred into a reagent bottle 

labeled ●● corresponding to the tubing on the FIAstar 5000. The reagent was stable 

for one week when stored in a refrigerator and allowed to resume room temperature 

before use. A fresh reagent was prepared each week. 
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3.3.3 Preparation of Rinsing Solution 

65g of sodium hydroxide (NaOH) and 6g of Disodium EDTA (C10H12O8N2Na2) was 

dissolved in 1000ml volumetric flask and made up to mark with RO water. The solution 

was stable for one (1) month. 

3.3.4 Preparation of Stock Standard Solution 

0.4393g of Potassium dihydrogen phosphate was dissolved in RO water in a 1000ml 

volumetric flask and made up to mark. The solution was stored in an amber 

borosilicate glass bottle in a refrigerator. This solution was stable for at least three (3) 

months. 

3.3.5 Preparation of Calibrating Standard 

0.5ml, 1ml, 2mls, 3mls and 5mls of the stock standard solution were pipette into 100ml 

volumetric flask labeled 0.5mg/L PO4, 1mg/L PO4, 2mg/L PO4, 3mg/L PO4, and 5mg/L 

PO4 respectively and made up to mark with RO water. The resulting solution a 

concentration of 0.5mg/L PO4, 1mg/L PO4, 2mg/L PO4, 3mg/L PO4 and 5mg/L PO4. 

The calibrating standard was prepared daily and the Flow Injection Analyzer was 

calibrated daily. 

3.3.6 Carrier Solution 

The carrier solution used in the analysis was RO water. 

3.3.7 Preparation of Hoagland’s Solution 

0.51g of KNO3, 1.18g of Ca(NO3)2.4H2O and 0.49g of MgSO4.7H2O were dissolved in 

a 1000ml volumetric flask.1 ml of micronutrient stock and 1ml of iron stock solution 

was added and made up to mark with RO water. 

3.3.8 Preparation of Micronutrient Stock Solution 

2.8mg of H3BO3, 1.81g MnCl2.4H2O, 0.22g ZnSO4.7H2O, 0.08g CuSO4.5H2O, and 

0.02g H2MoO4.H2O was dissolved in a 1000ml volumetric flask containing RO water, 

0.25 ml of the iron stock solution  was added and made up to mark with RO water. 

3.3.9 Preparation of Stock Iron Solution 

26.1g of EDTA was dissolved in 286ml of RO water containing approximately 19g of 

KOH. In a 500ml volumetric flask, 24.9g FeSO4.7H2O was dissolved and made up to 
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mark with RO water. The iron sulphate solution was added slowly to the potassium 

EDTA solution and aerated overnight while stirring. The solution was made up to 

1000ml and stored in an amber borosilicate bottle.  

3.4 Determination of Limit of Detection 

The limit of detection and instrument Quantization Limit (IQL) was calculated using the 

slope of the calibration graph and the standard deviation of the response, as a daily 

calibration was carried out; these calculations were done using the graph that has the 

best R2 value. This was to ensure accuracy and to minimize any error that may occur 

from a poor calibration. The mean and standard deviation (σ) was determined from 10 

replicates of 1ppm calibration standard. Walfish (2006) expressed the equations used 

in calculating the Limit of Detection (LOD), Instrument Quantization Limit (IQL) and the 

relative standard deviation as shown in Equations 3.5-3.7: 

LOD = 3.3σ/S    Equation 3.5 

IQL = 10σ/S     Equation 3.6 

RDS = σn-1/mean*100   Equation 3.7 

`Where:  σ = standard deviation of the responses 

  S = slope of the calibration graph 

 

3.5 Batch Experiment 

Orthophosphate was the form of phosphate used in this study. Phosphorus in 

wastewater exists in many different forms. The common forms are orthophosphate, 

polyphosphates and organically-bound phosphates. These different forms tend to end 

up as orthophosphate. Polyphosphates which are condensed orthophosphates 

hydrolyze in water to produce soluble orthophosphate while the bacterial 

decomposition of organically-bound phosphate also produces orthophosphate. 

Orthophosphate is the predominant phosphorus species found in wastewater 

(Hammer and Hammer 2008; Masters and Ella 2008), hence orthophosphate was 

chosen as the phosphate species and an aqueous solution of KH2PO4 was used as 
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the artificial wastewater for this study. Typical phosphorus concentration in municipal 

wastewater averages 8-10 mg/L. 

3.5.1 Determination of the Effect of Phosphate Concentration 

5g clay tiles was measured into correctly labeled 250ml Erlenmeyer flasks containing 

200 ml of 100mg/l, 250mg/l, 500mg/|l, 750mg/l and 1000mg/l phosphate solution. The 

Erlenmeyer flasks were then be placed in a rotary shaker for continuous shaking for 

72 hours in an orbital motion at 170rpm. Aliquots were drawn into centrifuge tubes at 

regular interval; these were centrifuged at 5300 rpm for 45 minutes and filtered using 

a 125mm Whatman filter paper before analysis using the FIAstar 5000 analyzer. The 

experiment will be done in triplicates.  

Adsorbed phosphate was calculated as the difference in the concentration of 

phosphate added and the phosphate concentration in the equilibrating solution.  

3.5.2 Determination of the Effect of Adsorbent Dosage 

150 ml of 50mg/l phosphate solution was measured into correctly labeled 250ml 

Erlenmeyer flasks containing 0.5g, 1g, 1.5g, 2g, 2.5g and 3g of FCP yielding a dosage 

concentration of 3.33 g/L, 6.67 g/L, 10 g/L, 13.33 g/L, 16.67 g/l, 20 g/L, and 33.33 g/L 

respectively. The Erlenmeyer flasks were then be placed in an orbital shaker for 

continuous shaking for 120 minutes in an orbital motion at 170rpm at room 

temperature. Aliquots were drawn into centrifuge tubes after 30, 60, 90, and 120 

minutes, these were centrifuged at 5300 rpm for 45 minutes and filtered using a 

125mm Whatman filter paper before analysis using the FIAstar 5000 analyzer. The 

experiments were done in triplicates.  

Adsorbed phosphate was calculated as the difference in the concentration of 

phosphate added and the phosphate concentration in the equilibrating solution. 

3.5.3 Determination of the Effect of pH 

3g of FCP was measured into correctly labeled 250ml Erlenmeyer flask containing 150 

ml of 50mg/L phosphate solution, the pH of the phosphate solution was adjusted to 2 

by adding an adequate volume of dilute hydrochloric acid. The Erlenmeyer flasks were 
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placed in an orbital shaker for continuous shaking for 120 minutes in an orbital motion 

at 170rpm at room temperature. Aliquots were drawn into centrifuge tubes after 30, 

60, 90, and 120 minutes, these were centrifuged at 5300 rpm for 45 minutes and 

filtered using a 125mm Whatman filter paper before analysis using the FIAstar 5000 

analyzer. The experiments were done in triplicates. The steps were repeated for 

treatments at pH 3, 4, 5, 6, 7, 8, 10 and 12. For pH 7 – 11 the pH was adjusted by 

adding adequate volumes of NaOH solution. 

Adsorbed phosphate was calculated as the difference in the concentration of 

phosphate added and the phosphate concentration in the equilibrating solution.  

3.5.3.1 Determination of Point of Zero Charge (pHpzc) 

The point of zero charge (pHpzc) was determined using the pH drift method following 

the procedure described by Rivera-Utrilla et al. (2001). The pH drift method which 

provide a fast but reliable method for the determination of pHpzc was originally 

developed for activated carbon has been used in the for the determination of pHpzc in 

clay (Moharami and Jalali 2013). The method has been compared to the standard 

method of zeta potentiometric titration and mass titration with similar results.  

 20 ml of 0.01M NaCl into correctly labelled 50 ml Erlenmeyer flask. The pH of each 

flask adjusted to 2, 3, 4, 5, 6, 7, 8, 10, and 12 by adding the appropriate amount of 

0.1M HCl or 0.1M NaOH solution. 0.06g of the adsorbents was added to each flask 

and left undisturbed for 48 hours. The final pH was measured after 48 hours. A graph 

of final pH was plotted against the initial pH and the pHpzc was the point where the line 

of the final pH versus initial pH crossed the line equal to final pH. 

3.5.3.2 Determination of the Effect of Temperature 

3g of FCP was measured into correctly labeled 250ml Erlenmeyer flasks containing 

150 ml of 50mg/L phosphate solution. The Erlenmeyer flasks will then be placed in a 

water bath shaker for continuous shaking for 120 minutes in an orbital motion at 

170rpm, at a set temperature of 20oC. Aliquots were drawn into centrifuge tubes every 

five minutes, these were centrifuged at 5300 rpm for 45 minutes and filtered using a 

125mm Whatman filter paper before analysis using the FIAstar 5000 analyzer. The 
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experiment was done in triplicates. These steps were repeated for treatments at 25oC, 

30oC and 35oC.    

Adsorbed phosphate was calculated as the difference in the concentration of 

phosphate added and the phosphate concentration in the equilibrating solution.  

3.5.3.3 Determination of the Effect of Contact Time 

3g of FCP was measured into correctly labeled 250ml Erlenmeyer flask containing 

150ml of 50mg/l phosphate solution. The Erlenmeyer flask was then placed in an 

orbital shaker for continuous shaking for 120 minutes at 170rpm. Aliquots were drawn 

into centrifuge tubes every ten minutes for 30 minutes and every 30 minutes thereafter. 

These were centrifuged at 5300 rpm for 45 minutes and filtered using a 125mm 

Whatman filter paper before analysis using the FIAstar 5000 analyzer. This experiment 

was done in triplicates.  

Adsorbed phosphate was calculated as the difference in the phosphate concentration 

added and the phosphate concentration in the equilibrating solution. 

3.5.3.4 Determination of Effect of Firing Temperature 

3g of FCP fired at a final temperature of 540oC was measured into a 250ml Erlenmeyer 

flask containing 150ml of 50mg/l phosphate solution. The Erlenmeyer flask was then 

placed in an orbital shaker for continuous shaking for 120 minutes at 170rpm. Aliquots 

were drawn into centrifuge tubes after 30, 60, 90, and 120 minutes. These were 

centrifuged at 5300 rpm for 45 minutes and filtered using a 125mm Whatman filter 

paper before analysis using the FIAstar 5000 analyzer. This experiment was done in 

triplicates. The experiment was repeated for clay tiles that had final temperature of 

740oC, 800oC, 850 oC, 900 oC, 960oC, 1000 oC, 1050oC and 1200oC. 

Adsorbed phosphate was calculated as the difference in the phosphate concentration 

added and the phosphate concentration in the equilibrating solution. 

3.5.3.5 Determination of Effect of Clay Pellets Modification 

3g of clay pellets modified by the addition of different aluminium, calcium and iron salt 

was measured into correctly labeled 250ml Erlenmeyer flask containing 150ml of 
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50mg/l phosphate solution. The Erlenmeyer flask was then placed in an orbital shaker 

for continuous shaking for 120 minutes at 170rpm. Aliquots were drawn into centrifuge 

tubes every five minutes for 30 minutes. These were centrifuged at 5300 rpm for 45 

minutes and filtered using a 125mm Whatman filter paper before analysis using the 

FIAstar 5000 analyzer. This experiment was done in triplicates.  

Adsorbed phosphate was calculated as the difference in the phosphate concentration 

added and the phosphate concentration in the equilibrating solution. 

3.6 Continuous Flow Experiment 

A fixed bed column experiment was performed in the laboratory to investigate the 

adsorption of phosphate using the Calcium modified fired clay pellets (CaMFCP) in a 

continuous flow mode. A fixed film reactor for phosphorus removal was not used in 

this study, the use of a biofilm allows for the biological removal of phosphorus by 

alternating between aerobic and anaerobic conditions. This study used a fixed bed 

column to assess the performance of the clay pellets for the removal of phosphate in 

a continuous flow mode. 

Glass columns with internal diameter of 4cm and length of 100cm and PET 

(polyethylene terephthalate) plastic bottles with internal diameter 6cm and height 

21cm was used in the column test. Glass wool was placed in the bottom of the column 

to prevent any loss of CaMFCP. The column was operated in a down flow mode and 

phosphate solution was pumped through the column using Gilson MINIPULS 3 

peristaltic pump.  The parameters investigated in the column experiment were bed 

height, initial phosphate concentration, flow rate and column diameter. Effluents were 

collected three times a week for analysis using FIAstar 5000 analyser. Adsorbed 

phosphate was calculated as the difference between influent phosphate concentration 

and the concentration of phosphate in the effluent. The schematic diagram and set up 

for the fixed bed column experiment is shown in Figures 3.4 and 3.5 respectively. 
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Figure 3.4: Schematic diagram of the fixed bed column experiment: (1) reservoir with phosphate 
solution; (2) peristaltic pump; (3) filter material; (4) glass wool; (5) effluent. 

 

Figure 3.5: The set up for the fixed bed column experiment 

 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry University.
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3.6.1 Effect of bed height 

The effect of bed height on the fixed bed adsorption of phosphate using CaMFCP was 

investigated at a constant initial phosphate concentration of 20mg/l. The glass 

columns with an internal diameter of 4 cm and length of 100 cm were filled to a height 

of 10 cm, 20cm and 30cm using 101.11g, 220.67g and 278.87 g of CaMFCP 

respectively. The flow rate was 2.25 ml/min. 

3.6.2 Effect of initial phosphate concentration  

The effect of initial phosphate concentration on the fixed bed adsorption of phosphate 

using CaMFCP was investigated using PET columns with internal diameter of 6 cm 

and length of 21 cm filled to a height of 10 cm with 208.66 g of CaMFCP. 10 mg/l, 20 

mg/l and 50 mg/l phosphate solution was passed through Column 1, Column 2 and 

Column 3 respectively.  

3.6.3 Effect of column diameter 

In the laboratory the diameter of columns in continuous flow experiment can be scaled 

down on the condition that the H/dbed ratio is greater than 1 as small H/dbed ratio leads 

to low pressure drop. 

The effect of column internal diameter on the fixed bed adsorption of phosphate using 

CaMFCP was investigated at a constant initial phosphate concentration of 20 mg/L. 

The columns with internal diameter of 2.5 cm, 5 cm and 6 cm were filled to a height of 

10 cm using 32.57 g, 130.77g and 208.66 g of CaMFCP respectively. The flow rate 

was 2.4 ml/min. 

3.6.4 Effect of adsorbate flow rate 

The effect of adsorbate flow rate on the fixed bed adsorption of phosphate using 

CaMFCP was investigated using glass columns with an internal diameter of 4 cm filled 

to a height of 10 cm. Phosphate solution had a constant initial phosphate concentration 

of 20 mg/L and the flow rate was 1.7 ml/min, 2 ml/min and 2.6 ml/min for Column 1, 

Column 2, and Column 3 respectively.  

The breakthrough concentration (Cb) was fixed at 10% of initial concentration (Co) and 

the exhaustion concentration (Ce) was fixed at 50% of initial concentration. The time 

required to the breakthrough concentration and exhaustion concentration was 
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designated as tb and te respectively, while the volume to breakthrough concentration 

and exhaustion concentration was Vb and Ve respectively. The column was allowed to 

run till total exhaustion. 

3.6.5 Determination of breakthrough point  

In a continuous flow column, the concentration profile of the adsorbate and adsorbent 

vary in time and space and could be described by the aid of a breakthrough curve 

(Chu 2004; Malkoc and Nuhoglu 2006). The breakthrough curve typically chows the 

progression of the area of mass transfer as the fluid moves through the column.  

The mass transfer zone (MTZ) typically moves from the inlet point to the outlet point 

with the saturated zone behind the MTZ. As the MTZ progresses towards the outlet, 

the effluent concentration rises until a maximum is reached and this maximum 

concentration is referred to as breakthrough concentration. And beyond this point, the 

effluent concentration rises quickly up to the influent concentration at this point no 

more adsorption can be achieved. The breakthrough concentration could be described 

as the minimum detectable or maximum allowable concentration in the effluent. 

The throughput effluent volume was calculated Equation 3.8 

 Veff = Qt Equation 3.8   (Malkoc and Nuhoglu 2006) 

Where Q is the volumetric flow rate in l/hr 

 t is the total flow time (days)  

The breakthrough curve also showed the loading behaviour of phosphate as it was 

removed in a fixed bed column and was expressed in terms of adsorbed phosphate 

concentration (Cad), influent phosphate concentration (Co), effluent phosphate 

concentration (Ct), or the ratio of the effluent phosphate concentration to the influent 

phosphate concentration (Ct/Co) as a function of time or volume of effluent for a given 

bed height (Aksu and Gonen 2004; Malkoc and Nuhoglu 2006). The breakthrough 

curve could be derived from the plot of effluent concentration against the volume of 

phosphate solution treated (Littler 2011).  
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The area under the breakthrough curve A was obtained by plotting the adsorbed 

concentration (Cad; mg/l) against time (t, hr). The total quantity of adsorbed phosphate 

(qt) by the column for a given influent concentration and flow rate was calculated as:  

 𝒒𝒕 =
𝑸𝑨

𝟏𝟎𝟎𝟎
=

𝑸

𝟏𝟎𝟎𝟎
 ∫ 𝑪𝒂𝒅𝒅𝒕

𝒕=𝒕𝒕𝒐𝒕𝒂𝒍

𝒕=𝟎
  Equation 3.9 (Gupta and Babu 

2010) 

Where Q is the volumetric flow rate and Cad = Co – Ct. 

The total amount of phosphate (Pt) passed through the column was calculated as 

𝑷𝒕 =
𝑪𝟎𝑸𝒕𝒕𝒐𝒕𝒂𝒍

𝟏𝟎𝟎𝟎
      Equation 3.10 (Gupta and Babu 

2010) 

The total percentage of phosphate (S) removed was calculated as 

 𝒔 =
𝒒𝒕

𝑷𝒕
 𝒙 𝟏𝟎𝟎     Equation 3.11 (Gupta and Babu 

2010) 

The empty bed contact time (EBCT) can be described as the time required for the 

phosphate solution to fill the empty column. The EBCT was calculated from the 

following equation: 

 𝑬𝑩𝑪𝑻 = 𝑩𝒆𝒅
𝑽𝒐𝒍𝒖𝒎𝒆

𝒇𝒍𝒐𝒘 𝒓𝒂𝒕𝒆
    Equation 3.12 (Gupta and Babu 

2010) 

The rate of saturation of adsorbent can also used to describe the performance of a 

fixed bed. The adsorbent usage rate Ur is defined as the rate of saturation of adsorbent 

per litre of solution passed through the column. Ur can be calculated from the equation: 

 Ur = 
𝒎𝒄

𝑽𝒃
 

𝑽𝒄𝝆

𝑽𝒄𝑵𝒃
=  

𝝆

𝑵𝒃
              Equation 3.13 (Singh, Srivastava and Mall 

2009) 

Where mc is the mass of adsorbent in the column (g), Vb is the volume of solution 

treated at 50% breakthrough, Vc is the volume of adsorbent in the bed (l), Nb is bed 
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volumes to breakthrough, and ρ is the apparent density of adsorbent in the column 

(g/cm3).  

3.7 Kinetic and Isotherm Experiment 

3.7.1 Kinetic Experiment 

3g of clay tiles was weighed into correctly labeled 250ml Erlenmeyer flasks containing 

150ml of 50mg/l phosphate solution. Two drops of chloroform will be added to inhibit 

microbial activity. The Erlenmeyer flasks will then be placed in a water bath shaker for 

continuous shaking for 120 minutes in an orbital motion at 170rpm, at a set 

temperature of 25oC. Aliquots will be drawn into correctly labeled centrifuge tubes at 

10, 20, 30, 40, 60, 90 and 120 minutes, these were centrifuged at 5300rpm for 45 

minutes and filtered using a 125mm Whatman filter paper before analysis using the 

FIAstar 5000 analyzer. The absorbed PO4 was calculated as the difference in PO4 

added and the phosphate in the equilibrating solution. An aliquot at time 0min was 

drawn immediately on the addition of the phosphate solution before shaking 

commences. The experiment was repeated for 20, 30 and 35oC. The experiments 

were done in triplicates. 

The rate of adsorption was determined from the amount of phosphate adsorbed at 

different times and the adsorption data from Section 3.8.1 used to evaluate for the 

pseudo-first order, pseudo-second order, Elovich kinetic and Bangham’s pore 

diffusion models to determine which model best suits the adsorption. 

3.7.2 Adsorption Isotherm 

The result of the experiment described in Section 3.6.1 was used in the study of the 

adsorption isotherm. The equilibrium adsorption capacity was derived from the 

isotherm data and Langmuir, Freundlich, Tempkin and Dubinin-Radushkeivich (D-R) 

isotherm models were used to analyze the relationship between the quantities of 

phosphate adsorbed onto the clay. 
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3.8 Thermodynamic Studies 

A thermodynamic study was carried out to describe the relationship between 

temperature and the adsorption of phosphates using the data from experiments 

described in Section 3.6.4. The concept of thermodynamics assumes entropy is the 

driving force in an isolated system where energy cannot be gained or lost. 

Thermodynamics describes the energy changes between the molecules during 

collision. Gibbs free energy (ΔG), entropy (ΔS) and enthalpy (ΔH) and activation 

energy (Ea) was used to describe the energy changes during the adsorption of 

phosphates. 

Gibbs free energy (ΔG), entropy (ΔS) and enthalpy (ΔH) was calculated using the 

following Equations 3.14 and 3.15: 

  ∆G  = -RT ln(kd)   Equation 3.14 

  ΔG = ΔHo – ΔSo    Equation 3.15    

Where T is temperature in Kelvin and ΔH and ΔS corresponds to the slope and 

intercept respectively of a graph of ln Kd against 1/K. 

While the activation energy Ea was derived from the Arrhenius equation as shown in 

Equation 3.16: 

  lnKd = lnA - 
𝐄𝐚

𝐑𝐓
  Equation 3.16  (Agarry et al. 2013) 

Where Kd is the rate constant 

A is the Arrhenius constant J/mol/K) 

Ea is the activation energy (KJ/mol) 

R is the universal constant (J/molK)  

T is temperature in K 

Ea obtained from the slope of plotting ln Kd against 1/T 

3.9 Green House Experiment 

A greenhouse experiment was conduct to assess the availability of the adsorbed 

phosphate and evaluate its potential for use a slow release fertilizer. Ryegrass was 
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grown using the P-enriched filter materials as fertilizer. The experiment was conducted 

in the greenhouse in Coventry University, temperature within the greenhouse was 

between 19 and 22oC with a minimum of a 16 hour photoperiod supplied by daylight 

and 400W high pressure sodium son/T lamps. 

The experiment was carried out following the procedure by Hylander et al. (2006) and 

Hylander and Siman (2000) described as follows. 

3.9.1 Pot Experiment 

750ml pots was filled to about three quarters full with 400g artificial soil prepared using 

the OECD (1984) guideline for testing chemicals and consisted of 10% sphagnum 

peat, 20% kaolin clay and 70% industrial sand, the pH of which was adjusted to 6.0 

±0.5 using calcium carbonate. The soil was mixed with four different concentrations of 

phosphate (0.03g P, 0.1g P, 0.2g P and 0.3g P) in the form phosphate sorbed to 

CaMFCP (PSC) obtained from the fixed bed column experiment and allowed to 

equilibrate. Three control experiments were set up, the first two controls had 0.1g P 

and 0.3g P added in the form of KH2PO4 and the third control had no phosphorus 

loading. Each pot received as basic fertilizer 50 mL of a quarter strength Hoagland’s 

solution during each cropping cycle. The experiment was done in triplicates. The 

phosphate application rate is presented in Table 3.2. 

Table 3.2: Application rate of phosphate (kgP/ha) 

Concentration of 
phosphate (mgP) 

Application 
rate (kgP/ha) 

0 0 
0.03 38.22 
0.1 127.39 
0.2 254.78 
0.3 382.17 

 

Perennial ryegrass Lolium perenne L was used in this study. Ryegrass is a member 

of the grass family Poaceae, it is a widely cultivated and is often used for landscaping 

purposes. It is a quick growing grass with germination occurring within four days under 

favourable conditions. It is a low growing bunch-type grass that is considered as a high 

quality forage but could also be cultivated as a hay crop. Best yield is obtained in 

fertile, well-drained soils but could adapt to different soil type and climatic conditions. 
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It also has to ability to regenerate quickly. The perennial ryegrass seeds used in this 

study was obtained from Rolawan Ltd, UK. 

0.1g (approximately 40 seeds) of ryegrass Lolium perenne was sown per pot and 

germination occurred from four days after planting. 3 pots were allocated to each 

treatment. The germination rate was determined from the emergence of the plant up 

to 15 days after planting.  The moisture content of the soil was maintained at between 

60% of the maximum water holding capacity by watering three times a week.  

The plant height was measured at 3 and 7 days after germination, and on a weekly 

basis till harvest. The ryegrass was grown for a 30-day period after which the blades 

were cut 1cm above the soil surface, and weighed. The growth cycle was repeated 

four times.  The harvested grass was dried at 55oC in an oven for 3 days, fresh and 

dry weight was measured before and after drying. The data collect was subjected to 

ANOVA and linear regression using Excel. 

The set up for the greenhouse experiment is presented in Figure 3.6. 

 
Figure 3.6: Greenhouse experiment a) prior to harvest; b) post harvest. 

The plant height was measured at 3 and 7 days after germination, and on a weekly 

basis till harvest. The ryegrass was grown for a 30-day period after which the blades 

will be cut 1cm above the soil surface, and weighed. The growth cycle was repeated 

four times.  The harvested grass was dried at 55oC in an oven for 3 days, fresh and 

dry weight was measured before and after drying and the dried grass was milled. The 

milled ryegrass was analysis for Al, B, Ca, Cu, Fe, K, Mg, Mn, Mo, P, S and Zn using 

ICP-OES after microwave assisted digestion. 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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The data collect was subjected to ANOVA and linear regression using Excel. 

3.9.2 Soil pH 

 5g of air-dried soil was weighed into an Erlenmeyer flask and 12.5ml of RO water 

added to give a soil:water ratio of 1:2.5. The pH was measured using a JENWAY 

automated pH meter after calibration with pH buffer of 4 and 7 (Boen et al. 2013). 

3.9.3 Plant available Phosphorus 

Plant available phosphorus was extracted using Egner et al. (1960) as described by 

Hylander and Siman (2001). 5g of air-dried soil was weighed into an Erlenmeyer flask 

and 200ml of 0.4M acetic acid and 0.1M ammonium lactate solution with the pH 

adjusted to 3.75 by adding the appropriate volume of dilute HCL. This gave a soil 

weight:solution ratio of 1:20 (Hylander and Siman 2001, Cucarella 2008). The flask 

was then placed in a shaker for continuous orbital shaking for 90 minutes. The 

suspension was filtered using a 125mm Whatman filter paper before analysis using 

the FIAstar 5000 analyzer. 

3.10 Data Analysis 

The results obtained from the experiments carried out in this study was analyzed using 

the one way Analysis of Variance (ANOVA) and regression analysis using the Excel 

to analyze the effect of the operating conditions on the removal of phosphate. 

Correlation coefficient values was used to determine the confidence level of data from 

kinetic and isotherm experiments. 

3.10.1 Removal Efficiency 

Removal efficiency was calculated as 

% Removal = 
(𝑪𝒐−𝑪𝒕)

𝑪𝒐
100    Equation 3.38 

Where Co is the initial concentration of phosphates and 

Ct is the concentration at time t 
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3.10.2 Adsorption Capacity 

Adsorption capacity describes the amount of an adsorbate that can be held onto the 

surface of an adsorbent, it was determined from the following equation 

  Qt = 
(𝑪𝒐−𝑪𝒕)𝑽

𝒎
  Equation 3.39 

Where qt is the adsorption capacity at time t (mgP/g pellet) 

Co is the initial phosphate concentration 

Ct is phosphate concentration at time t 

V is the volume of the aliquot in (L), and 

M is the mass of bricks (g) 

3.11 Health and Safety 

The ethical approval given to this project indicated that it was a low risk project. The 

COSHH requirements for this project were met. However, the following essential 

health and safety measures were taken into consideration during the period of 

laboratory analysis. 

i. The general laboratory safety rules were strictly followed. 

ii. The material Safety Data Sheet (MSDS) of all the reagents used in this 

study was consulted. 

iii. The conditions for the handling and storage of all reagents requiring special 

conditions were followed as stipulated in those conditions. 

iv. Appropriate personal protective equipments (PPE) were used throughout 

the analysis.  

v. Waste disposal and handling was done in line with existing regulations. 
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4 A Mechanistic Evaluation of the Adsorption of Phosphate from Wastewater 

using Waste Bricks 

4.1 Introduction 

An estimated 30 – 40% of lakes and reservoirs all over the world have been affected 

by euthrophication, according to the United Nation Environment Programme (UNEP) 

(Zamparas at al. 2012; Pawar et al. 2016). Phosphate is an essential macronutrient, 

and excessive levels could trigger eutrophication through the proliferation of algae and 

aquatic plants (Yoon et al. 2014). It is therefore essential reduce phosphates to 

acceptable levels before discharge to receiving water bodies. 

Chemical precipitation involving salts of aluminium, calcium and iron is a well-

established and reliable method for the treatment of phosphate in wastewater to 

acceptable limit of 1-2 mg/L (Xie et al. 2015; Pawar et al. 2016). Adsorption is viewed 

as a low cost alternative to the commonly used chemical precipitation (Yan et al. 2014) 

and has been widely investigated using various materials such as: oyster shells (Chen 

et al. 2012), waste alum sludge (Babatunde and Zhao 2010), dolomite (Karaca et al. 

2004), and oxide tailings (Zeng et al. 2004).  

Clay minerals and clay adsorbents has also been used for the removal of phosphate 

Tunisian clay minerals (Hamdi and Srasra 2011), kaolinite (Kamiyango et al. 2009), 

used bricks (Jia et al. 2013), and Al3+/Fe3+-modified bentonite (Shanableh et al. 2016). 

Used bricks from construction waste could pose an environmental challenge in 

disposal. An estimated 31.8 million tonnes per annum of demolition waste is generated 

in England and Scotland annually (CRWP 2009). These demolition wastes have high 

content of aluminium, calcium and iron and could be applied for phosphate removal in 

wastewater. The aim of this study was to investigate the potential of used bricks to 

adsorb phosphate from wastewater. 

4.2 Effect of contact time 

An experiment was carried out to investigate the effect of contact time on the 

adsorption of phosphate using brick dust. The result is presented in Figure 4.1. 
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Figure 4.1: Effect of contact time on the adsorption of phosphate using brick dust (n=3) standard 
error bars shown. Adsorption conditions: initial concentration 20mg/l, pH 6.7, adsorbent dose 5g, 
room temperature. 

Phosphate adsorption increased with increase in contact time from 0.27 to 0.59 mg/g 

as the contact time increased from 10 to 60 minutes. After the first 10 minutes, 45% 

of the phosphate was adsorbed, increasing to 60% during the next 10 minutes. 

Phosphate removal followed a typical adsorption pattern, where there was an initial 

fast removal of phosphate which slowed as the concentration declined until all the 

phosphate was taken out of the solution.  The kinetic profile showed an initial fast 

uptake of phosphate during the first ten minutes of contact indicated by a steeper 

gradient before showing a more gradual uptake before plateauing after 40 minutes as 

the phosphate was taken out of solution. The initial fast uptake is due to the presence 

of a large number of empty adsorption sites available, as phosphate are taken out of 

solution, the number of these sites decreases and the slope becomes more gradual 

as the rate of adsorption reduces. The rate of reaction plateaus when it reaches 

equilibrium or all the phosphate has been taken out of solution.  

The standard deviation for the curve was between 0 and ± 0.03, when compared with 

the value of the Y-axis, the error bars appeared larger.  
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4.3 Effect of brick dosage 

The effect of the mass of brick dust on the adsorption of phosphate form wastewater 

was investigated using various dosage of brick dust from 6.67 to 33.33 g/L. Phosphate 

adsorption increased with increasing dosage of brick dust as shown in Figure 4.2. 

 

Figure 4.2: Effect of adsorbent dosage on the adsorption of phosphate by brick dust using standard 
experimental conditions (n=3), standard error bars shown 

The increase in the amount of brick dust used led to an increase in the number of 

active sorption sites available for the adsorption of phosphate (Yaneva et al. 2013). 

Increase in the dosage of the adsorbent resulted in an increase in the surface area 

hence, provided more vacant available sites for adsorption (Mor et al. 2016). This 

result is consistent with results reported in various studies. Jia et al. (2013) reported 

an increase in the removal of phosphate as the dosage of used bricks increased from 

5 to 30 g/L. Rahni et al. (2014) also reported an increase in phosphate adsorption with 

an increase in the dosage of modified bentonite-derived hydrogel from 10 to 40 g/L. 

Pawar et al. (2016) reported an increase in the removal of phosphate as the dosage 

of aluminium-pillared acid activated bentonite beads and alginate aluminium-pillared 

acid activated bentonite beads increased from 1 to 5 g/L.  

The amount of phosphate adsorbed per unit mass of brick dust decreased as dosage 

increased as shown in Figure 4.3  
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Figure 4.3: Amount of phosphate adsorbed per unit mass of brick dust using standard 
experimental conditions (n=3), standard error bars shown 

The decrease in the amount of phosphate adsorbed per unit mass as the dosage 

increased could be attributed to surplus available sorption sites as a result of increased 

surface area (Albadarin et al. 2012). The decrease could also be as a result of the 

splitting effect of the concentration gradient (Albadarin et al. 2012). This is due to the 

fixed initial concentration of phosphate in the system and phosphate ions can only 

occupy a certain number of available active sites. When the mass of adsorbent 

increases the total number of phosphate ions in the system remains the same hence, 

the total amount of phosphate ions adsorbed is unaffected.  

4.4 Effect of temperature 

The effect of temperature on the adsorption of phosphate using brick dust was studied 

at different temperatures for 20 to 35oC. The result is presented in Figure 4.4. 
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Figure 4.4: Effect of temperature on the adsorption of phosphate using brick dust. Adsorption 
conditions: initial concentration 20mg/l, pH 6.7, adsorbent dose 33.33g/l, room temperature. 

Phosphate adsorption was shown to decrease with increase in temperature (Figure 

4.4). Decrease in the adsorption of phosphate from 0.59 mg/g at 20oC to 0.47 mg/g at 

35oC suggests an exothermic reaction between the brick dust and phosphate 

molecules (Tian et al. 2009). Phosphate ions can exhibit the inclination to migrate to 

the bulk solution from the solid phase as the temperature of the solution increases 

(Karaca et al. 2004). This along with the increase in the rate of desorption of adsorbed 

phosphate from the surface of the brick dust could result in the decrease in the 

adsorption reported in this study (Mall et al. 1996). Decrease in the adsorption of 

phosphate with increase in temperature usually indicates low energy requirement for 

the adsorption. Phosphate adsorption like most adsorption process is usually 

endothermic, but Kose and Kivanc (2011) reported a decrease in phosphate 

adsorption with an increase in temperature using calcined waste eggshell, this result 

is similar to those reported in this study. 

4.4.1 Adsorption kinetics modelling 

The kinetics of adsorption of phosphate from wastewater was investigated using the 

pseudo-first order, pseudo-second order, Elovich, Bangham’s and intraparticle 

diffusion kinetic models (Section 2.7.1) to determine the rate order and adsorption 

mechanism for brick dust. 
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Figure 4.5: Kinetic model plot for the adsorption of phosphate using brick dust: a) Pseudo-first order kinetic model; b) Pseudo-second order kinetic model; 
c) Elovich kinetic model; and d) Bangham’s kinetic model 
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The pseudo-first order plot of ln (qe-qt) showed a linear relationship that fits the 

experimental data (Figure 4.5a). The first rate constant (k1) decreased from -0.05 to -

0.03/min as the temperature increased from 20 to 25oC but was no change in the rate 

constant beyond 25oC (Table 4.1). The equilibrium adsorption capacity (qe) calculated 

from the slope increased from 10.46 to 22.94 mg/g when the temperature increased 

from 20 to 25oC before reducing to 19.42 mg/g when the temperature increased to 

35oC. This inconsistency in the parameters of the pseudo-first order kinetic model 

indicates the model does not describe properly the adsorption of phosphate using brick 

dust. 

The pseudo-second order showed a good linear relationship with the experimental 

data and also had a better fit than the pseudo-first order model with R2 > 0.94 at all 

temperatures studied (Figure 4.5b). The pseudo-second order model is based on the 

assumption that each phosphate ion is adsorbed onto two adsorption sites which 

allows a stable binuclear bond to form. The rate constant (k2) and initial rate of reaction 

(h) decreased with increase in temperature. The rate constant decreased  from 0.06 

to 0.03 g/mg/min while the initial rate of reaction decreased from 0.04 to 0.02 mg/g/min 

as temperature increased from 20 to 35oC (Table 4.1), this corresponds with the 

decrease in the rate of adsorption with increase in temperature reported in Section 

4.4. The decrease in the value of k2 as temperature increased could be attributed to 

the propensity of phosphate ions to migrate from the solid phase to the bulk phase as 

the temperature of the solution increases (Ho and McKay 1998; Karaca et al. 2004). 

Decrease in the rate constant with increase in temperature has been reported in 

literature. Karaca et al. (2004) reported a decrease in k2 as the temperature increased 

when dolomite was used as an adsorbent for the removal of phosphate.  

The applicability of Elovich equation showed the model could be used to describe the 

adsorption of phosphate using brick dust. The plot of qt against lnt showed a good fit 

to the experimental data (Figure 4.5c). The values of the initial adsorption rate (α) and 

desorption constant (b) varied as a function of temperature. Initial adsorption rate 

increased from 0.82 to 0.86 mg/g/min as the temperature increased from 20 to 25 oC 

before declining to 0.76 mg/g/min as the temperature increased to 35oC (Table 4.1). 

The desorption constant fluctuated with temperature with b increasing from 5.1 to 5.9 

g/mg when the temperature increased from 20 to 25oC before reducing to 5.38 g/mg 
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at 30oC and increasing slightly to 5.46 g/mg at 35oC. Overall the desorption rate was 

lowest at 20oC, and could explain the higher adsorption at 20oC reported in Section 

4.4. 

Table 4.1: Kinetic model adsorption parameters of adsorption of phosphate onto brick dust. 
Adsorption conditions: initial concentration 20mg/l, pH 6.7, adsorbent dose 33.33g/l, room 
temperature 

Kinetic model Parameter 20oC 25oC 30oC 35oC 

 Qe exp (mg/g) 5.35    

Pseudo-first 
order 

k1 (/min) -0.05 -0.03 -0.03 -0.03 

qe (mg/g)  10.46 22.94 21.74 19.42 

R2 0.818 0.9523 0.9526 0.966 

Pseudo-
second order 

k2 (g/mg/min) 0.06 0.05 0.04 0.03 

h (mg/g/min) 0.04 0.04 0.02 0.02 

R2 0.9686 0.9498 0.9601 0.96 

Elovich  α (mg/g/min) 0.82 0.86 0.78 0.76 

b (g/mg) 5.1 5.97 5.38 5.46 

R2 0.9445 0.9326 0.9599 0.9731 

Bangham’s ko (mL/g/L  44 39.35 51.20 61.84 

α  9.50 x10-3 9.90 x10-3 6.07 x10-3  4.07 x10-3 

R2 0.9587 0.965 0.9897 0.9803 

 

Bangham’s kinetic model showed a good linear relationship with the R2 values greater 

than 0.95 for all temperatures studied (Figure 4.5d). Linearity of the kinetic plot was 

better than all the other models studied indicating the Bangham’s equation can be 

used to describe the kinetic of adsorption of phosphate using brick dust. Bangham’s 

constants ko and α fluctuated with variation in temperature. The value of ko decreased 

from 44 to 39.35 mL/g/L when the temperature increased from 20oC to 25oC before 

increasing to 51.2 mL/g/L and 61.84 mL/g/L as the temperature increased to 30 and 

35oC respectively. α increased from 9.5 x10-3 to 9.9 x10-3 when the temperature 

increased from 20oC to 25oC before reducing to 6.07 x10-3 and 4.07 x10-3 as the 
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temperature increased to 30 and 35oC respectively. The fluctuation in the parameters 

does not show a trend that could be derived as the function of temperature. The high 

R2 shows indicated the involvement of pore diffusion but it was not a rate limiting step 

in the adsorption of phosphate using brick dust.   

Adsorption is a complex multistep process with the adsorption mechanism involving 

mass transfer, surface reaction mechanisms and diffusion. The pseudo-second order 

model showed the best fit which indicates the adsorption of phosphate was primarily 

chemisorption and this suggests that each phosphate molecule was attached to two 

active sites on the adsorbent and the process was irreversible. The Bangham’s 

diffusion model showed multi stage adsorption and the correlation coefficient (R2) 

obtained from the Bangham’s model ranged between 0.9587 – 0.9897 indicated that 

pore diffusion was involved in the uptake of phosphate onto brick dust, however it was 

not the only rate controlling step. It could be concluded that the adsorption of 

phosphate onto brick dust was a chemical reaction with physical diffusion process. 

4.4.2 Thermodynamic Study 

The temperature dependence of the adsorption process is often associated with 

changes in the thermodynamic parameters of Gibbs free energy (∆Go), enthalpy (∆Ho) 

and entropy (∆So) and are used to determine the spontaneous nature of the adsorption 

process and evaluate the applicability of the adsorbent (Huang et al. 2015). The 

parameters were determined using the following equations described in Section 2.7.1. 

A plot of ln Kd against 1/T (Figure 4.6) using data obtained in Figure 4.5a, yielded a 

straight line graph showing a linear relationship between the logarithm of the rate 

constant and the inverse of temperature with ∆Ho and ∆So values calculated from the 

slope and intercept of the Van’t Hoff plot and ΔG was calculated using Equation 3.14 

(Ifelebuegu 2012, Mezenner and Bensmaili 2009). The thermodynamic parameters for 

the adsorption of phosphate by brick dust are shown in Table 4.2. 
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Figure 4.6: Van’t Hoff plot for the adsorption of phosphate using brick dust 

 

Table 4.2: Gibbs free energy (ΔG) for the adsorption of phosphate by brick dust. 

Temp (oC) ΔGo 

20 -0.588 

25 -0.595 

30 -0.603 

35 -0.61 

 

Table 4.3: Thermodynamic parameters for the adsorption of phosphate by brick dust 

Parameter Brick dust 

ΔHo (KJ/mol) -0.139 

ΔSo (KJ/mol/K) 1.53 x10-3 

Ea (J/mol) 0.012 

A 0.572 

 

The values of Gibbs free energy (∆Go) obtained at all temperatures studied were 

negative, this indicates the spontaneous nature of the adsorption of phosphate onto 

brick dust and was a thermodynamically favourable process (Table 4.2). The decrease 

in the ∆Go from -0.588 KJ/mol to -0.61/mol implies an increase in the spontaneity of 

the adsorption process at higher temperature and is similar to those obtained by the 
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use of mixed lanthanum/aluminum pillared montmorillonite for the adsorption of 

phosphate (Tian et al 2009).  This trend however, contradicts the results reported in 

Section 4.4, where adsorption decreased with increase in temperature. The values of 

∆Go suggests a physisorption process as values of ∆Go for physisorption process are 

generally between -20 KJ/mol and 0 KJ/mol. The negative value of ∆Ho (-0.139KJ) 

confirmed the exothermic nature of the process (Table 4.3). The positive value of ∆So 

(1.53 x10-3 KJ/mol/K) indicated the increased randomness at the solid-solution 

interface during the adsorption of phosphate onto brick dust and a good affinity of 

phosphate ions towards brick dust (Huang 2015). The value of the activation energy 

Ea (0.012J/mol) indicated a relatively low energy barrier and confirmed the exothermic 

nature of the adsorption process. 

4.5 Effect of initial concentration of phosphate  

The effect of the initial concentration on the adsorption of phosphate was studied on 

various concentrations of phosphate ranging from 10 to 50 mg/L and the result is 

presented in Figure 4.7. 

 

Figure 4.7: Effect of initial concentration on removal efficiency of fired clay pellets using 5g FCP 
and 200ml phosphate solution (n=3), standard error bars shown 
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Removal efficiency decreased as the initial concentration of phosphate increased. 

Higher removal efficiency at lower concentration could be attributed to the increase in 

the ratio of available active sites to the amount of phosphate ions present in the 

solution. At lower concentration, there is an excess of adsorption sites and as a result 

adsorption saturation could not be reached (Rout et al. 2014). As concentration 

increased, the ratio of adsorbent to phosphate ions present in solution decreased and 

active sites were more difficult to find due to the fixed number of available sites for any 

given mass of absorbent (Das et al. 2006). This result in greater competition between 

phosphate ions present in solution for the available active sites resulting in decreased 

removal efficiency as the concentration increased. These results are similar to the 

results obtained by Rout et al. (2014). In that study, the removal efficiency reduced 

from 99.97 to 94% when the initial concentration increased from 1 to 20 mg/L. 

 

Figure 4.8: The effect of initial concentration on amount of phosphate adsorbed by FCP using 5g 
clay pellets and 200ml phosphate solution (n=3), standard error bars shown. 
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concentration (Figure 4.8) as a result of an increase in the number of phosphate ions 
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increase in the phosphate ion concentration led to a corresponding increase in the 

generation of driving force required to lower the mass transfer resistance between the 

brick dust and the phosphate solution thus leading to an increase in the amount of 

phosphate ions adsorbed (Albadarin et al. 2012, Hameed and El-Khaiary 2008). These 

results are similar those reported by Karaca et al. (2004). The amount of phosphate 

adsorbed increased 9.74 to 52.91 mg/g as the concentration of phosphate increased 

from 10 to 60 mg/L when dolomite for the adsorption of phosphate.  

4.5.1 Adsorption Isotherm 

The adsorption isotherm of the adsorption of phosphate using brick dust was 

investigated using the Langmuir, Freundlich, Tempkin and Dubinin-Radushkeivich 

isotherm models to determine the model that describes the adsorption. The data from 

Section 4.5 was used for the analysis of the adsorption isotherm. The isotherms were 

analysed using theories discussed in Section 2.7.2. 
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Figure 4.9: The adsorption isotherm plots for the adsorption of phosphate using brick dust: a) Langmuir adsorption isotherm; b) Freundlich adsorption 
isotherm; c) Tempkin; and d) Dubinin-Radushkevich adsorption isotherm 
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The maximum adsorption capacity, Qm (5.35 mg/g) was determined from the slope 

of Langmuir isotherm (Figure 4.9a). Langmuir isotherm constant (KL) and RL was 

determined as 0.25 L/mg and 0.04 respectively (Table 4.4). Langmuir isotherm had 

the best fit out of all isotherm models studied except Tempkin isotherm. The RL 

value was less than 1 indicating phosphate adsorption using brick dust was a 

favourable process. A good fit to Langmuir isotherm describes a monolayer sorption 

where each phosphate molecule is adsorbed on distinct localized sorption sites with 

no transmigration of the adsorbate in the plane of the surfaces giving uniform 

energies of monolayer sorption onto the adsorbent surface (Balouch et al. 2013). 

Adsorption that follows Langmuir isotherm model could indicate physiosorption as 

a mechanism of adsorption. The Qm was similar to results obtained by Shanableh 

et al. (2016) using Al3+-modified bentonite adsorbent for the adsorption of 

phosphate. 

Table 4.4: Adsorption isotherm parameters for the adsorption of phosphate onto brick dust 

Adsorption Isotherm 
Model Parameter Brick dust 

Langmuir Isotherm 

Qm (mg/g) 5.35 

KL (L/mg) 0.25 

RL  0.04 

R2 0.9865 

Freundlich Isotherm 

kf (mg/g) 1.08 
𝟏

𝒏
 0.4557 

n 2.19 

R2 0.9777 

Temkin Isotherm 

AT (L/mg) 1.19 

b  1287.51 

B (J/mol) 1.89 

R2 0.9897 

Dubinin-Radushkeivich 
Isotherm 

B (mol2/kJ2) 2.84 x10-7 

E (kJ/mol) 1.35 

R2  0.9351 
 

Dubinin-Radushkevich (D-R) isotherm model was employed to determine the nature 

of the adsorption of phosphate on brick dust. The R2 value of D-R isotherm (0.9351) 

was lower than Langmuir and Tempkin isotherms (Figure 4.9d). The value of E is 

used to predict the type of adsorption, E value < 8 kJ/mol is classified as physical 
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adsorption. The value of E in this study was 1.35kJ/mol indicating the adsorption 

was a physical process (Table 4.4). The E value obtained in this study was similar 

to result obtained by Kose and Kivanc (2011). 

Freundlich isotherm model is used to determine the heterogeneity of the adsorption 

surface. The adsorption data showed a good fit with the isotherm as the R2 (0.9777) 

(Figure 4.9b). Adsorption intensity n is used to describe the heterogeneity of the 

adsorption surface, a smaller 1/n value indicates a more heterogeneous surface 

and an n value between one and ten indicates a favourable process. The value of 

1/n and n study of 0.46 and 2.19 respectively obtained from this study showed the 

surface was heterogeneous and adsorption was favourable (Table 4.4). 

Tempkin adsorption can be used to determine heat of sorption which could be used 

to describe the adsorption process. Tempkin isotherm showed the good fit with the 

experimental data for all isotherms studied (Figure 4.9c). AT and B value were 1.19 

L/mg and 1.89 J/mol respectively (Table 4.4). The positive value of B means the 

adsorption was exothermic confirming the result of the kinetic study.  

4.6 Conclusions 

This study showed the potential for recycled house bricks for use as an adsorbent 

for phosphate removal from wastewater. Batch experiments indicated adsorption 

was affected by dosage of adsorbent, contact time, initial concentration of 

phosphate and temperature. Adsorption was shown to decrease with increase in 

temperature. This is advantageous as application in wastewater treatment would 

not require additional input of heat and could be carried out at prevailing 

temperature thereby saving operational cost.  

The kinetic study indicated adsorption was governed by several mechanisms with 

various processes dominating different stages of adsorption.  

Isotherm studies showed the adsorption could be described by Langmuir, 

Freundlich, Tempkin and Dubinin-Radushkeivich isotherms with maximum 

adsorption capacity of 5.35 mg/g.  

Thermodynamic investigation showed removal of phosphate by brick dust was 

feasible, exothermic and spontaneous in nature. 
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4.7 Limitation of study 

The application of ground brick as used in this study is shown to be low cost and 

highly efficient adsorbent for the removal of phosphate in wastewater treatment. 

However, there remain the problem of dispersed brick powder in solution increasing 

turbidity and attendant issues associated with the removal of suspended solids 

would pose technical challenges for its application.  

Therefore there is a need to develop a material that can overcome this challenge. 

The next chapter will assess the development of clay pellets that could address the 

problem while maintaining its applicability. 
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5 Adsorptive properties of Fired Clay Pellets (FCP) 

5.1 Introduction 

Excessive or elevated nutrients in the water system may enhance the increase in 

plant-based organic matter hence causing eutrophication and algal blooms Vohla 

et al. (2011). Eutrophication is a major issue hence, the effective and efficient 

removal of phosphate during wastewater treatment is crucial. The Urban Waste 

Water Treatment Directive mandates an 80% reduction in phosphorus level or an 

effluent phosphate concentration of 2mg/L P for 10,000- 100,000 p.e and 1mg/L for 

population estimate greater than 100,000. This directive has led to a decreasing low 

level of phosphate in wastewater effluent during treatment through increased 

government regulatory pressure Vohla et al. (2011). 

Several methods of phosphate removal have been employed in wastewater 

treatment. These include chemical precipitation involving the addition of calcium, 

iron and aluminium salts. It is the most commonly used and the most effective 

method of phosphate removal in wastewater treatment plant (WWTP), and often 

results in high phosphate removal levels Clark et al. (1997). The major drawbacks 

of the method are the high volume of sludge produced and the cost of chemicals 

required for dosing.  

Adsorption of phosphate to suitable materials is becoming a frequently used method 

of removing phosphate in wastewater treatment. This could be attributed to its 

advantages over chemical precipitation and biological phosphorus removal. These 

advantages include low cost, capacity to produce re-usable solid, the simplicity 

make this method a favourable option in wastewater treatment (Jia et al. 2013). Fe, 

Al and Ca are the elements that are often credited with phosphate sorption, and it 

is assumed that if these elements are present in any medium in a substantial 

amount, then that medium can be used for phosphate removal (Fondu et al. 2010) 

Several studies have been conducted using various low-cost adsorbents such as: 

alunite ((Ozacar 2003), fly ash (Cheung and Venkitachalam 2000),  opoka 

(Brogowski and Renman 2004), Polonite (Gustafsson et al. 2008), Lightweight 

aggregate (LWA)/Light Expanded Clay Aggregate (LECA) (Johansson 1997, Zhu et 

al. 1997), ochre (Littler et al. 2013),  red mud (Huang et al. 2008) and clay (Dable 
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et al. 2008, Kamiyango et al 2009) for the removal of phosphate from wastewater. 

The studies have been carried out in a laboratory, small-scale constructed wetland 

or a full-scale constructed wetland with the adsorbents used as filter media (Vohla 

et al. 2007).  

The use of fired clay for removal of pollutants in wastewater treatment has been 

reported (Hauge et al 1994, Mohapatra et al. 2009, Tikariha et al 2013). The results 

from Chapter 4 show the potential for bricks to be used as a suitable adsorbent for 

the treatment of phosphate pollution. However, there were problems associated 

with the use of brick dust as an adsorbent in wastewater treatment. Dust particles 

remained suspended in water hence increasing turbidity. This could lead to further 

technical problems to the operations and increased production cost. The 

development of a material that could address this problem could be seen viable 

solution. 

The aim of this chapter was to develop a method of pelletization that was suitable 

for use in wastewater treatment. This chapter investigated the feasibility of 

employing fired clay pellets for the removal of phosphate from wastewater. The 

phosphate adsorptive properties such firing temperature of the pellets, pH, sorption 

kinetics, isotherm and thermodynamics) were investigated in batch experiments.  

5.2 Characterization of Clay Tiles 

SEM micrograph images of the clay tiles before adsorption showed a surface 

morphology with a rough and irregular surface with visible pores measuring 

between 2 and 10µm in diameter. The irregular surface and presence of pores could 

be assumed to contribute to the total surface area hence, acting as active sites for 

the uptake of phosphates (Figure 5.1a). The surface of the tiles used in phosphate 

adsorption show the presence of prism-like crystals that are assumed to be 

phosphate crystallized out from the solution (Figure 5.1b). 
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5.3 Effect of Firing Temperature on the Adsorption of Phosphate by FCP 

The effect of final firing temperature on clay tiles on the removal of phosphate was 

studied at three temperatures: 540oC, 740oC and 960oC, to determine the optimum 

firing temperature for the tile. The experiment was conducted using 150 ml of 50mg/l 

orthophosphate solution, 3g clay tiles and samples were taken at 30, 60 and 120 

minutes for analysis. An attempt was made to fire the tiles at 1200oC but this was 

not successful as it led to the vitrification of the clay which could be attributed to its 

high iron content (Big Ceramic Store n.d.). 

     

Figure 5.2: Effect of firing temperature on the adsorption of phosphate using FCP using standard 
experimental conditions 

The adsorption of phosphate using the clay tiles was found to increase with increase 

in temperature (Figure 5.2) with complete adsorption occurring when the firing 
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Figure 5.1: (a) FCP before adsorption; (b) FCP after adsorption 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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temperature was increased to 960oC consequently, the optimization of firing 

temperature was conducted (Figure 5.3). 

 

Figure 5.3: The effect of firing temperature on the adsorption of phosphate FCP using standard 
experimental conditions 

The adsorption of phosphate increased from 1.35 to 2.49 mg/g as the firing 

temperature increased to 750 to 800oC and remaining stable up to 960oC before 

decreasing slightly to 2.41 mg/g at 1000oC before declining sharply to 0.21 mg/g at 

1050oC. 

The use of fired (calcined) materials for phosphate adsorption from wastewater has 

been reported: layered double hydroxides, Das (2006); alunite Ozacar (2003); 

dolomite Yuan et al. (2015), Karaca et al. (2006); palygorskite Chen et al. (2011). 

There has been limited research on the effect of firing temperature of clay for use 

as an adsorbent in water and wastewater treatment. A pivotal study in this area was 

the research conducted by Hauge et al. (1994) on defluoridation of drinking water 

which showed fluoride adsorption decreased with increasing firing temperature. 

Flouride adsorption using clay fired at 600oC was found to be most effective, while 

those fired above 700oC and above showed a decreased fluoride adsorption (Hague 

et al. 1994, Mohapatra et al. 2009). Tikariha and Sahu (2013) reported an increase 

in fluoride adsorption as firing temperature increased to 600oC before declining 

when using clay as a low cost adsorbent for defluoridation of water. Another study 
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focusing on the removal of Cr(VI) using fired brick clay showed a decrease in the 

removal of Cr(VI) when firing temperature increased from 200oC to 600oC (Priyantha 

and Bandaranayaka 2011). These findings are contrary to results obtained in this 

study which showed an increase in the adsorption of phosphate with increase in 

firing temperature 

Firing of clay generally reduces water trapped between the silicate sheets of the 

clay producing hard granules that, even when fully saturated with water, do not 

disintegrate easily (Ogutu and Williams 2009). During fluid bed drying occurring 

between 120oC and 174oC, which is the first stage of calcination, moisture content 

is reduced to 6% - 9% from 40% - 45% and further moisture reduction is achieved 

up to  0% in some cases when the temperature is between 460oC and 800oC. 

Sorption properties of clay are enhanced during firing as a result of the aggregation 

of clay particles creating a stable porous internal structure (Ogutu and Williams 

2009). Although firing may reduce the exchange capacity of the clay, internal pores 

and surface binding can ensure the retention of the sorption properties. Heat 

treatment has been shown to cause the collapse of the interlayer in 2:1 Ca-

montmorillonite through the incorporation of cations into the tetrahedral or 

unoccupied octahedral sheets when the firing temperature was between 200oC and 

400oC (Bray et al. 1998). The physiochemical properties such as micromesopore 

volume, specific area and total surface acidity generally decrease with increasing 

temperature when the temperature exceeds 450oC. Acidic binding has been shown 

to increase with increasing temperature particularly at the regions of dehydration 

and dehydroxylation occurring at 1000C to 500oC and 550oC to 700oC respectively 

(Noyan et al. 2006). 

Decomposition of the silicate layer in the clay sheets and the collapse of the 

mesopore and micropore due to inter- and intraparticle sintering occurs when the 

temperature is increased causing a rapid decline in the specific surface area and 

specific micromesopore volume (Noyan et al. 2006). This could cause the sudden 

decline in the adsorption of phosphate using clay tiles fired at 1050oC seen in this 

study.  
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5.4 Effect of Adsorbent Dosage on the Removal of Phosphates 

The effect of dosage of FCP on the adsorption of phosphate from wastewater was 

investigated using different mass of FCP ranging from 0.5 g to 5 g; 150 ml of 50mg/L 

orthophosphate solution. The total amount of phosphate available for adsorption 

from this solution was 7.5 mg. This experiment did not test the maximum phosphate 

adsorption capacity of the FCP but was limited to the amount of phosphate available 

for adsorption; consequently the results of this experiment are discussed based on 

the amount of phosphate available for adsorption. The result of the experiment is 

presented in Figure 5.4.  

 

Figure 5.4: Effect of adsorbent dosage on the adsorption of phosphate by FCP using standard 
experimental conditions (n=3), standard error bars shown. 

The adsorption of phosphate was observed to increase with an increase in dosage 

of FCP (Figure 5.4); however, there was no change in the adsorption of phosphates 

between 20 and 33.33 g/L FCP. This could be attributed to the overlapping of active 

reaction sites as the mass of FCP increased. The increase in the dosage of FCP 

led to an increase in the removal efficiency of the FCP due to a greater surface area 

and consequently increased available binding sites for phosphates adsorption 

(Yadev et al. 2006; Yang et al. 2013). 

As phosphate ions were taken out of solution, the rate of adsorption decreases due 

to the fact that although, there was still a large amount of active available reaction 

sites, there is a decrease in the amount of phosphate ions in solution hence 
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reducing the chance of phosphate ion encountering an available site to which would 

led to a decrease in the rate of adsorption as it progressed until the phosphate ions 

were completely removed. 

An increase in the removal efficiency of phosphate due to an increase in the mass 

of adsorbent has reported by Kamiyango et al. (2009), Jia et al. (2013), Yoon et al. 

(2014), and Dey et al. (2014).  

There was a decrease in the amount of phosphate adsorbed per unit FCP with an 

increase in dosage of FCP and this could be attributed to the prevalence of vacant 

or surplus adsorption sites and increased surface area available for adsorption 

(Albadarin et al. 2012; Ashekuzzaman and Jiang 2014). The decrease in adsorbed 

phosphate may also be due to the splitting effect of the concentration gradient 

between phosphate ions and FCP, where an increase in dosage of FCP led to a 

decrease in the amount of phosphate adsorbed per unit mass of FCP (Rathinam et 

al. 2010; Albadarin et al. 2012).  

5.5 Effect of Contact Time on the Removal of Phosphate from Wastewater using FCP 

5.5.1 Rate of Adsorption 

An experiment was carried out to study the effect of contact time on the adsorption 

of phosphate by FCP. The aim of the experiment was to evaluate the effect of 

contact time on the removal of phosphate by FCP. The result of the experiment is 

presented in Figure 5.5. 
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Figure 5.5: Effect of contact time on the adsorption of phosphate by FCP. This experiment was 
carried out using 3g clay tiles, 150 ml of 50 mg/l phosphate solution. 

The kinetic profile of FCP displayed a fast uptake of phosphate in the first 30 

minutes, and then plateauing as complete removal was obtained (Figure 5.5). 

There was a fast initial adsorption period followed by a gradual uptake as the 

phosphate was removed from solution by FCP.  This is consistent with the results 

obtained by Gu et al. (2013) who analysed removal of phosphorus and nitrogen 

using novel porous bricks incorporated with wastes and minerals. The method of 

pelletization used in this experiment provided a better performance in the removal 

of phosphate than conventional brick dust. 

Diffusion is one of the major mechanisms for the transfer of solute onto a solid. The 

phosphate ions diffuse through the fluid film surrounding the tiles and through the 

pores to adsorption sites (Ragheb 2013). During the initial stage of the adsorption, 

the rate of adsorption is faster as there is a high concentration gradient between the 

fluid film and the available adsorption sites. The concentration gradient reduces as 

phosphate ions are taken out of solution thus reducing the rate of reaction until an 

equilibrium concentration (plateau value) is reached (Figure 5.5). 

The increased adsorption of phosphate with an increase in time results from a 

decline in the boundary layer resistance to mass transfer of phosphate in the bulk 

solution and an increase in the mobility of the hydrated phosphate ions (Kumar et 
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al. 2010). The results are consistent with findings reported from Sousa et al (2012) 

and Lalley et al. (2015). 

5.6 Kinetic Models 

 The kinetics of the adsorption of phosphate from wastewater using FCP was 

examined to determine the rate order and adsorption mechanism using Pseudo-

first, pseudo-second order, intraparticle diffusion, Elovich and Bangham’s kinetic 

models. 

5.6.1.1 Pseudo- First Order Kinetics 

The pseudo-first order kinetic model explains the relationship between the rate the 

sorption sites of the adsorbents are occupied and the number of unoccupied sites. 

It is defined using the Lagergreen Equation as presented in Equation 2.16:  

 ln (qe – qt) = ln qe – (k1t)       Equation 2.16 (Zhou et al. 2013) 

Where 

qe and qt is the amount of phosphate adsorbed at equilibrium and time t (mins) 

k1 is the equilibrium rate constant of adsorption (min-1). 

The linear plot of ln (qe-qt) against time (Figure 5.6a) was used to determine the 

rate constant k1, 

5.6.1.2 Pseudo Second Order Kinetics 

The pseudo-second order kinetic is used to describe the dependency of the 

adsorption capacity of the adsorbent on time and can be calculated using the 

equilibrium adsorption capacity and rate constant. The pseudo-second order kinetic 

is expressed thus in Equation 2.17: 

t/qt = 1/k2qe2 + t/qe                     Equation 2.17   (Zhou et al. 2011)  

Where  

qt and qe is the amount of phosphate (mg/g) adsorbed at equilibrium and time t 

(mins) 

k2qe
2 is the initial adsorption rate when t→0 

And k2 is the pseudo-second order rate constant (g/mg/min) 
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The linear plot of t/qt against time (Figure 5.6b) is used to determine qe and k2 using 

the slope and intercept respectively. 

5.6.1.3 Elovich Kinetic Model 

Elovich kinetic model has been used to chemisorption of gases onto heterogeneous 

surfaces and solid systems and it is now used to study the removal of pollutants 

from aqueous solutions (Yuan 2015). It is used to describe second order kinetic 

with the assumption that the solid surface has heterogeneous energy but do not 

propose any mechanism for adsorption (Mezenner and Bensmaili 2009). The 

Elovich kinetic model is represented as: 

                
𝒅𝒒

𝒅𝒕
 = ae

-αq                           Equation 2.18 (Qiu et al. 2009) 

Where q is the amount of amount of phosphate adsorbed at time t 

a is the adsorption constant 

α is the initial rate of adsorption (mg/g/min) 

Integration of Equation 2.18 assuming the boundary conditions of q= 0 at t= 0 and 

q= q at t= t yields 

               q = α ln(aα) + α lnt             Equation 2.19 

The linear form of this equation is expressed: 

                qt = 
𝒍𝒏𝜶𝒃

𝒃
 + 

𝟏

𝒃
𝐥𝐧 𝒕                Equation 2.20 (Yakout and Elsherif 2010) 

Where α is the initial rate of adsorption (mg/g/min), and  

b is related to the extent of surface coverage and activation energy for 

chemisorption (g/mg) 

A plot of qt against ln t yields a straight line (Figure 5.6c) with α and b determined 

using the slope and intercept respectively. 
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5.6.1.4 The Bangham’s Kinetic Model (Pore Diffusion Model) 

The Bangham’s kinetic model is used to evaluate the dominance of pore diffusion 

in the adsorption process (Subha and Namasivayam 2008). It is expressed as 

Equation 2.21: 

   Log Log [ 
𝐂𝐨

𝐂𝐨−𝐪𝐭𝐌
] = Log [ 

𝐤𝐨

𝟐.𝟑.𝟑𝑽
] + αLog t   Equation 2.21 

Where Co is the initial concentration (mg/L) 

V is the volume of the solution (ml) 

M is the mass of the adsorbent (g/L) 

qt is the amount of phosphate adsorbed at time t, and 

ko and α are constant 

The plot of Log Log [Co/ (Co- Mqt)] against Log t (Figure 5.6d) yields a straight line 

and ko and α were determined from the slope and intercept 
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Figure 5.6: Kinetic model plot for the adsorption of phosphate using FCP: a) Pseudo-first order kinetic model; b) Pseudo-second order kinetic model; c) 
Elovich kinetic model; and d) Gangham’s kinetic model 
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A pseudo-first order plot of ln (qe-qt) against t showed a linear relationship that fits 

the experimental data. The first order rate constant and the equilibrium adsorption 

capacity qe (Table 5.1) were calculated from the slope of the graph. The R2 value 

for FCP was 0.98 showing a better fit than the pseudo second order kinetic model. 

The better fit shown by the pseudo first order model indicates that individual 

phosphate ions were adsorbed onto individual adsorption site on the  surface of  

and within the tile which does not allows for the formation of binuclear bonding  

(Yaghi and Hartikainen 2013; Cheung 2001).      

The pseudo-second order plot of t/qt also showed a strong linear relationship with 

R2 value of 0.95 and the theoretical qe of FCP was not close to the experimental 

data (Table 5.1). It could be assumed that each phosphate ion is adsorbed onto two 

adsorption sites on the surface of the tile which allows the formation of a stable 

binuclear bond. Another assumption of the pseudo second order kinetic is based on 

the chemisorption being the rate limiting step. 

Table 5.1: Kinetic model adsorption parameters of adsorption of phosphate onto FCP. Adsorption 
conditions: initial concentration 50mg/l, pH 6.7, adsorbent dose 20g/l, room temperature 

Kinetic Model Parameter FCP 
 Qe exp (mg/g) 13.24 

Pseudo- first order 

K1 (/min) 0.02 

qe (mg/g) 10.85 

R2 0.9794 

Pseudo- second order 

k2 (g/mg/min) 0.03 

qe (mg/g) 2.72 

h (mg/g/min) 0.71 

R2 0.9537 

Elovich Model 
α (mg/g/min) 0.32 

b (g/mg) 1.10 

R2 0.9872 

Bangham’s model 

ko (mL/g/L) 0.41 

α 0.11 

R2 0.9755 
 

The applicability of Elovich equation to the kinetic data shows that Elovich equation 

can be used to describe properly the kinetics of phosphate adsorption on FCP 

(Mezenner and Bensmali 2009; Yakout and Elsherif 2010). The kinetic plot of the 

Elovich showed a strong linear relationship with R2 value of 0.99 when FCP was 
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used, the kinetic parameters obtained from the Elovich equation are listed in Table 

5.1. The correlation coefficient of Elovich kinetic model was better than all the kinetic 

models studied. This indicates that diffusion was a rate limiting step, and could be 

said that diffusion was not the only rate limiting step and other mechanisms are 

involved in the adsorption process (Singh and Majumder 2015). 

 

The Bangham’s kinetic showed a good linear relationship with R2 values of 0.98 

using FCP. The good linearity of the kinetic plot shows Bangham’s Equation could 

be used to describe the kinetics of the adsorption, however, the better R2 value of 

FCP (0.99) for the Elovich kinetic model indicates that although pore diffusion was 

involved in the adsorption of phosphate, it was not the only rate controlling step. 

5.6.1.5  Intra-particle Diffusion 

The adsorption mechanism of solute onto an adsorbent can be described using the 

intra particle diffusion theory proposed by Weber and Morris (1963), the model is 

expressed as Equation 2.22: 

             qt = Kdi √t + Ci                  Equation 2.22 (Acelas et al. 2015) 

Where  

Kdi is the intra-particle diffusion rate constant (mg g-1 mins-0.5) 

Ci is the intercept  

And t is time (mins) 

The plot of the adsorbate uptake qt (mg/g) against the square root of time (minutes) 

√t results in a linear relationship and Kdi and C values were obtained from this plot. 

 

A plot of the qt against √t should yield a linear relationship if intra-particle diffusion 

is involved in the adsorption of phosphate by the clay tiles. A line passing through 

the origin indicates that intra-particle diffusion is the rate controlling step and the 

slope of the linear curve is the diffusion rate constant. When the line does not pass 

through the origin, it shows a degree of boundary layer control indicating that intra-

particle diffusion is not the only rate controlling step and other kinetic models may 

be operating simultaneously to control the rate of reaction (Mezenner and Bensmaili 

2009). The slope of the plot indicates the rate constant of intra-particle diffusion 
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while the intercept is proportional to the thickness of the boundary layer (Haung et 

al. 2014).  

 

The model is based on a two phase uptake process: the mass transfer of phosphate 

molecules from the bulk phosphate solution to the clay surface and then the intra 

particle diffusion of phosphate molecules on the FCP (Zhou et al. 2013). The intra-

particle diffusion of adsorption of phosphate by FCP is shown in Figure 5.7. 

 

 

Figure 5.7: Intraparticle diffusion model plot of qt (mg/g) against t1/2 (mins) for the adsorption 
of 50mg/l phosphate solution using 3g FCP. 

The plot in Figure 5.7 show a multi-linear profile that do not pass through the origin 

and indicated a poor fit (R2 = 0.78). The profile for FCP shows a multi-step process, 

where the initial section could be described as the area of fast uptake as a result of 

the boundary layer diffusion on the surface of the FCP involving the mass transfer 

of phosphate molecules from the aqueous solution to the clay surface. This is due 

to the initial concentration of the phosphate solution. The second stage of the profile 

shows a gradual adsorption of phosphate in which the rate of adsorption is limited 

by the intra-particle diffusion (Huang et al. 2014). The latter stage shows a 

decreasing adsorption as a result of the low residual phosphate concentration in the 

solution (Huang et al. 2014, Ifelebuegu 2012).  
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This profile indicates that other mechanisms could be involved in the adsorption 

process as the value of C, rate constant of intra-particle diffusion was 0.27. If the 

value of C was zero then the adsorption rate of the entire adsorption process would 

governed by intra-particle diffusion (Huang 2014). 

5.7 Effect of pH on Phosphate Adsorption 

 

 

Figure 5.8: Effect of pH on the removal of phosphate by FCP using standard experimental 
conditions (n=3), standard error bars shown.  

The effect of pH on phosphate adsorption was studied at pH between 2 and 12 

using 150 ml of 50mg/l phosphate solution. It was observed that phosphate 

adsorption increased sharply when pH increased from 2 to 3, followed by a slight 

decline as pH increased to 12 (Figure 5.8). The highest level of phosphate 

adsorption was achieved at pH 4. The results obtained were consistent with the 

study by Rout et al. (2014) on the mechanism for the adsorption of phosphate onto 

solid waste. Phosphate adsorption with other water-adsorbent interfaces is strongly 

dependent on pH (Das et al. 2006; Tian et al. 2009). The general trend reported for 

the effect of pH on phosphate adsorption follows the pattern described in Figure 

5.8, however, it is suggested that phosphate adsorption can occur within two pH 

ranges (Kamiyango et al. 2009) although phosphate adsorption across three pH 

ranges have also been known to occur (Petrik 2005 cited in Taylor 2005:30). Haung 

et al. (2008) reported phosphate adsorption using red mud decreasing with 
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increasing pH, due to the alkaline properties of red mud at low pH resulting in 

greater adsorption of acidic ions. This contradicts the results of this study as 91% 

removal was obtained at pH 12. The high removal efficiency at pH 12 could be 

attributed to the effect of calcium ions on the adsorption process. The final pH of the 

solution was found to increase from 3 to 11.78 (Figure 5.9) 

 

Figure 5.9: Final pH of phosphate solution at the end of contact using FCP. 

An increase in the pH of the solution could also be due to the release of hydroxyl 

ions from the surface of the clay (Boujelben et al. 2008). Phosphate adsorption is 

found to generally decrease with increase in pH (Goldberg and Sposito 1985) and 

phosphate ions could be adsorbed when net negative surface charge exists. This 

could be attributed to the adsorption of protonated anions on negatively charged 

surface after the dissociation of the protons. These protons would react with the 

hydroxyls found on the surface of the FCP to form water which are the readily 

replaced by anions (Goldberg and Sposito 1985). The ligand exchange is used to 

describe this process. Ligand exchange refers to the adsorption mechanism that 

occurs when anions with specific affinity for metal ions in a hydroxylated mineral 

enter the coordination layer of its surface to adsorb disproportionately to its activity 

in an aqueous solution (Goldberg and Sposito 1985).   

The increase in the pH could also be attributed to the increase in Ca2+ ions in the 

solution as a result of dissolution of Ca2+ from the surface of the clay tile. The 
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concentration of Ca2+ was found to increase from 6,277 mg/kg to 26,100 mg/kg at 

the end of contact. 

Clay used in FCP predominantly contains oxides of metals such as Ca, Fe and Al; 

and nonmetals such as Si. These oxides play a role in phosphate adsorption as 

they are hydroxylated when in contact with water and positive or negative charged 

developed on the interface depending on the pH (Mall et al. 1996). The positive 

charged interface serves as bonding sites for phosphates adsorption. 

The results obtained for the study indicate a region of high removal efficiency 

between pH 4 and 8. Different phosphate adsorption mechanisms are assumed to 

be responsible for phosphate uptake at different pH as phosphate can exist as 

H2PO4
-, PO4

3- and HPO4
2- depending on the pH of the solution (Das et al. 2006; 

Huang et al 2014). The high phosphate adsorption observed at pH 4 suggests the 

surface of the tiles served as an active adsorption site for the bonding of monovalent 

H2PO4
-, replacing hydroxyl ions (OH-) on the tile surfaces as described by ligand 

exchange mechanism (Yoon et al. 2014). This could also be attributed to the 

accumulation of positive charges on the surface of the FCP which increased its 

attraction for negatively charged phosphate ions (Xue et al. 2009; Agyei et al. 2002; 

Goldberg and Sposito 1985). Another possible explanation is at lower pH, the FCP 

surface carries a more positive charge and thus attracting more negatively charged 

monovalent H2PO4
- ions in solution (Chikratar 2006). As the pH increases, the 

surface of the FCP becomes more negatively charged resulting in the increased 

repulsion between the negatively charged phosphate ions and the FCP surface 

(Xue et al. 2009; Ou et al. 2007). 

The surface charge of the FCP is dependent on the pH, at lower pH the surface is 

positively charged and at higher pH the surface is negatively charged. Surface 

charges on the FCP are produced as a result of the hydrolysis of the Si-OH or Al-

OH bonds along the clay lattice (Ismadji et al. 2015). These charges could be 

negatively or positively charged depending on the pH of the solution and the 

structure of the silica

The zero point of charge refers to the pH at which the total net charge of the surface 

of the clay is zero. The zero point charge of the clay tiles was 8.13 and was 

determined using the method described by Rivera-Utrilla et al. (2001) and is within 
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the range reported for smectite which is the predominant mineral  found in the clay 

(Mnasri et al. 2014; Arfaoui et al. 2012). When the pH is less than pHzpc the clay 

surface has a net positive charge and the propensity to attract anions increases. 

When pH is greater than pHzpc the clay surface is negatively charged and the 

attraction of anions decreases. Phosphate adsorption in this study was found to be 

higher at pH lower than pHzpc. This result is consistent with results reported by 

Moharami and Jalali (2013) and Kamiyango et al. (2009). 

The presence of positive charged H+ is another possible mechanism for phosphate 

adsorption at lower pH. These ions when in solution can induce the formation of 

protonated surfaces which supports the electrostatic attraction of phosphate 

species to the tile surface (Huang et al 2014).  

 

Figure 5.10: pH range for phosphate adsorption by different species Source: Petrik Laboratories 
Inc. In Taylor (2005) 

 

Phosphorus adsorption is believed to be dominated by different species at different 

pH (Figure 5.10). Fe dominates phosphate adsorption at pH range of 5 and below 

while Al dominates between pH 5 and 6 while Ca is primarily responsible for 

adsorption at pH above 7 (Petrik 2005 cited in Taylor 2005:30). Calcium is believed 

to possess a higher ability to form complexes with phosphate hence precipitating it 

out in solution at pH between 8.5 and 10 (Nassef 2012). Increased phosphate 

removal with increasing pH was reported by Chen et al. (2013) using hydrothermally 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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modified oyster shell material, phosphate adsorption was found to be at its 

maximum at pH 11. 

The result presented in this study show the highest phosphate adsorption occurred 

at pH 4 (Figure 5.8), and it can be assumed that phosphate adsorption at this pH 

was controlled primarily by Fe3+ and has been reported to be the dominant species 

responsible for phosphate fixation at pH 5 and below (Li et al. 2014; Yoon et al. 

2014; Boujelben 2008) (Figure 5.10). Aluminium has also been reported to be 

responsible for phosphate adsorption at low pH (Tanada et al. 2003). Several 

studies have also shown that improved phosphate adsorption at pH between 4 and 

5 can also be attributed to Al as shown in Figure 6.5.3. A study conducted by 

Altundogan and Tumen (2001) reported improved phosphate adsorption under 

acidic conditions with the maximum phosphate adsorption occurring at pH 4.5. 

Another study on the adsorption of phosphate using aluminium pillared bentonite 

reported a maximum phosphate adsorption at pH 3 (Yan et al 2010).  

Phosphate adsorption at pH 2 was lower than other pH and this could be due to The 

prevalence of H2PO4
- as the predominate form of phosphate ion at lower pH which 

has a weak interaction with the cationic group thereby leading to the decreased 

adsorption seen.  

Aluminium could be assumed to be the most likely cation responsible for phosphate 

adsorption at pH between 5 and 7 shown in Figure 6.5.1. 
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5.8 Effect of Temperature on the adsorption of phosphate by FCP 

 

Figure 5.11: The effect of temperature on the removal of phosphate by brown clay tiles using 
standard experimental conditions (n=3) standard error bars shown. 

Phosphate adsorption was found to decrease with increase in temperature (Figure 

5.11) suggesting an exothermic reaction between the phosphate molecules and 

clay surface (Tian et al. 2009, Das et al. 2006). This indicates a low energy 

requirement for the adsorption of phosphate by FCP, i.e. phosphate adsorption is 

favoured at lower temperature The decrease in adsorption with increase in 

temperature could be also be attributed to an increase in the rate of desorption of 

the adsorbed phosphate from the surface of the FCP (Mall et al. 1996). An increase 

in the number of adsorption sites influenced by the disintegration of some of the 

internal bonds around the edge of the active sites of the FCP as a result of the 

exothermic nature of the adsorption could be responsible for the increased 

adsorption of phosphates at lower temperature observed in this study. 

Adsorption reactions are normally thought to be endothermic reactions with the rate 

of adsorption increasing with increasing temperature (Zeng et al. 2004; 

Namasivayam and Prathap 2005; Huang et al. 2008); however, phosphate 

adsorption has also been shown to be exothermic in nature. Das et al. (2006) using 

double layered hydroxides to remove phosphate from aqueous solution; Kose and 

Kivanc (2011) using calcined waste eggshell and Yuan et al. (2015) using dolomite 
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mineral reported a decrease in phosphate adsorption with increasing temperature. 

These results are similar to those obtained in this study. 
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Figure 5.12: Kinetic model plot for the adsorption of phosphate using FCP: a) Pseudo-first order kinetic model; b) Pseudo-second order kinetic model; 
c) Elovich kinetic model; and d) Gangham’s kinetic model.  
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5.8.1 Kinetic Model 

The data obtained in Section 5.6 were analysed using the kinetic models described earlier in 

Section 5.4.2 (Figure 5.12) and the kinetic parameters are presented in Table 5.2. 

Table 5.2: Kinetic model adsorption parameters of adsorption of phosphate onto clay pellets at different 
temperature. Adsorption conditions: initial concentration 50mg/l, pH 6.7, adsorbent dose 20g/l 

Kinetic Model Parameter 20oC 25oC 30oC 35oC 
 Qe exp (mg/g)  13.24   

Pseudo- first order 
K1 (/min) -0.006 -0.023 -0.031 -0.041 

qe (mg/g) 52.00 15.60 17.30 13.32 

R2 0.9556 0.8989 0.9471 0.9632 

Pseudo- second order 

k2 (g/mg/min) 0.06 0.46 0.35 0.23 

qe (mg/g) 2.27 0.67 0.77 1.00 

h (mg/g/min) 0.31 0.21 0.21 0.24 

R2 0.7883 0.7837 0.9098 0.9227 

Elovich Model 
α (mg/g/min) 0.26 2.56 0.88 1.06 

b (g/mg) 1.02 1.53 3.58 4.01 

R2 0.9949 0.8872 0.8132 0.9085 

Bangham’s model 
ko (mL/g/L) 73.47 54.58 29.24 26.03 

α  0.10 0.11 0.21 0.27 

R2 0.966 0.973 0.8658 0.9454 
 

The pseudo-first order kinetic plot showed a good fit for all temperature studied except 25 oC 

indicating the applicability of the pseudo-first order kinetic model to the study. The values of 

K1 decreased from -0.006/min to -0.041/min as temperature increased from 20 to 35 oC 

confirming phosphate adsorption decreased with increase in temperature (Table 5.2). 

Conformity to pseudo-first order kinetic model normally indicates the adsorption process is 

usually physisorption. This indicates a loose binding between the phosphate and FCP, 

probably due to electrostatic attraction between them, in which there is little perturbation in 

the electronic structure of phosphate and FCP. It also indicates electrons are not shared or 

exchanged between phosphate and the adsorbent.  

The pseudo-second kinetic plot did not show a good fit using the experimental data. R2 was 

between 0.79 and 0.93. The k2 value was found to decrease from 0.41 g/mg/min to 0.23 

g/mg/min when the temperature increased form 20oC to 35oC confirming the decrease in 

phosphate adsorption with increase in temperature. The initial rate of adsorption h also 

decreased from 0.31 (mg/g/min) to 0.21 mg/g/min when the temperature increased from 20oC 
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to 30oC. The poor fit of the pseudo-second order kinetic model to the adsorption data indicates 

the removal mechanism was not chemisorption. 

The adsorption data from the study did not give a good correlation using the Elovich kinetic 

model indicating the model could not be used to de describe the result. The values of b 

increased from 1.02 g/mg at 20oC to 4.01 g/mg at 35oC indicating there were more available 

sites for phosphate adsorption (Yakout and Elsherif 2010). The fluctuation in the value of α 

as temperature increased could mean the rate of desorption was greater than adsorption 

resulting in the decrease in adsorption with increase in temperature. The R2 values indicated 

diffusion could be a mechanism for adsorption, but it was not the rate limiting stem and other 

mechanisms were involved. 

The Bangham’s kinetic model showed a good correlation with R2 values >0.9 except for 30oC. 

The good linearity shows the model can be used to describe the kinetics of phosphate 

adsorption using FCP. The ko value decreased from 73.47 mL/g/L to 26.03 mL/g/L when the 

temperature increased form 20oC to 35oC and the value of α increased with increase in 

temperature.  

The good correlation of the Bangham’s kinetic model indicates that pore diffusion was a rate 

controlling step. As the pseudo-first order kinetic model also showed a good linearity, it could 

be said the adsorption mechanism was a physical process with pore diffusion as a rate limiting 

step.  

5.8.2 Thermodynamic Parameters 

The temperature dependence of the adsorption process is often associated with changes in 

the thermodynamic parameters. These parameters include Gibbs free energy (∆Go), enthalpy 

(∆Ho) and entropy (∆So) and are used to determine the spontaneous nature of the adsorption 

process and evaluate the applicability of the adsorbent (Huang et al. 2015). The parameters 

were determined using the following Equations 3.14-3.16: 

 ∆G  = -RT ln(kd)   Equation 3.14 

 ∆Go = (∆Ho) – (∆So)   Equation 3.15 

 -RT ln(kd) = (∆Ho) – T(∆So) Equation 3.16 

Where  
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 R is the universal gas constant (joules/mole/K) 

 T is temperature in Kelvin (K) 

 Kd (qe-CT) is the quantity of phosphate adsorbed on to the clay tile (1/g) 

A plot of ln Kd against 1/T (Figure 5.13) using data obtained in Figure 5.12a, yielded a 

straight line graph showing a linear relationship between the logarithm of the rate constant 

and the inverse of temperature with ∆Ho and ∆So values calculated from the slope and 

intercept of the Van’t Hoff plot and ΔG was calculated using Equation 3.14 (Ifelebuegu 2012, 

Mezenner and Bensmaili 2009). The thermodynamic parameters for the adsorption of 

phosphate by FCP are shown in Table 5.3. 

 

Figure 5.13: Van’t Hoff plot for the adsorption of phosphate by FCP. 

 

Table 5.3: Thermodynamic parameters for the adsorption of phosphate by FCP. 

Temp (oC) ΔGo (KJ/mol) ΔHo (KJ) ΔSo (KJ/mol) 

20 -16.5 -8.87 0.026 

25 -16.63   
30 -16.76   
35 -16.89   
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The value of ∆Go obtained at all temperature studied was negative, this indicated the 

spontaneous nature of the adsorption of phosphate onto FCP and adsorption was a 

thermodynamically favourable process (Table 5.3). The decrease in the ∆Go from -16.5 

KJ/mol to -16.89KJ/mol implied an increase in the spontaneity of the adsorption process at 

higher temperature confirming a decrease in adsorption as the temperature increased and 

was similar to those obtained by the use of mixed lanthanum/aluminum pillared 

montmorillonite for the adsorption of phosphate (Tian et al 2009).  The values of ∆Go suggests 

a physisorption process as values of ∆Go for physisorption process are generally between -

20 KJ/mol and 0 KJ/mol. The negative value of ∆Ho (-8.87KJ) confirmed the exothermic nature 

of the process. The positive value of ∆So indicated the increased randomness at the solid-

solution interface during the adsorption of phosphate onto FCP and a good affinity of 

phosphate ions towards the FCP (Huang 2015). The negative value of the activation energy 

Ea (-0.22J/mol) indicated the absence of an energy barrier and confirmed the exothermic 

nature of the adsorption process. 

5.9 Effect of initial concentration on the adsorption of phosphates by FCP  

The effect of initial concentration on the adsorption of phosphates by clay tiles was studied 

using 200ml of 100, 250, 500, 750 and 1000mg/L phosphate solution and the total reaction 

time was 72 hours.  

5.9.1 Effect of initial concentration on the adsorption of phosphate 

The effect of initial concentration on phosphate adsorption was assessed by varying the 

concentration of ortho-phosphate solution while maintaining all other experimental conditions. 

The result from this experiment was also used to evaluate the adsorption isotherms. The 

removal efficiency of FCP was observed to increase as the initial concentration decreased 

(Figure 5.14). However, complete phosphate removal was obtained using all concentrations 

of phosphate solution except when 750 mg/L and 1000 mg/L was used. 
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Figure 5.14: Effect of initial concentration on removal efficiency of clay pellets using 5g FCP and 200ml 
phosphate solution (n=3), standard error bars shown. 

Adsorption saturation could not be reached under lower initial concentration due to the 

availability of more reaction sites when compared to the amount of phosphate molecules 

present in the solution (Rout et al 2014). This resulted in higher removal efficiency or complete 

removal obtained using lower initial concentration of phosphate solution. As the initial 

concentration increased, the amount of free active adsorption sites declined and were harder 

to find due to the fixed number of total available adsorption sites for any given mass of 

adsorbent (Das et al. 2006); thus there was increased competition between phosphate 

molecules for these available active sites at a higher concentration resulting in the reduced 

removal efficiency seen as the initial concentration increased.  

The difference in the extent of phosphate adsorption could also be attributed to the fact that 

all the adsorption sites are initially vacant and the concentration gradient of the solute is 

relatively high. As the extent of adsorption decreases over time, the remaining vacant surface 

adsorption sites are difficult to occupy due to the repulsive forces that exist between the 

phosphate ions adsorbed to the surface of the FCP and the bulk solution (Mezenner and 

Bensmaili 2009).   
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Figure 5.15: The effect of initial concentration on amount of phosphate adsorbed by FCP using 5g clay 
pellets and 200ml phosphate solution (n=3), standard error bars shown. 

The amount of phosphate adsorbed by FCP was found to increase with increasing 

concentration (Figure 5.15). This was due to an increase in the number of phosphate ions 

available for binding unto the active sites of the FCP surface resulting in a higher probability 

of collision between the phosphate ions and the surface of the FCP (Dawodu and Akpomie 

(2014). The increase in the phosphate ion concentration resulted in a corresponding increase 

in the generation of driving force required to lower the mass transfer resistance between the 

FCP and the phosphate solution (Albadarin et al. 2012, Hameed and El-Khaiary 2008). 

Another possible explanation could be attributed to the fact that at lower concentration the 

ratio of phosphate ions to available surface area is large; consequently phosphate adsorption 

is dependent on the initial concentration of the solution (Arivoli et al. 2014). As the 

concentration increases, the ratio of available reaction sites to phosphate- ions reduces 

causing adsorption of phosphate to be dependent on the amount of phosphate ions present. 

5.9.2 Adsorption Isotherm 

The adsorption data using FCP discussed in the Section 5.9.1 were analyzed using 

Langmuir, Freundlich, Tempkin and Dubinin-Radushkeivich Isotherm models to determine 

the model that best fit the adsorption of phosphate onto FCP. Results are presented in Figure 

5.16.
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Figure 5.16: The adsorption isotherm plots for the adsorption of phosphate using FCP: a) Langmuir adsorption isotherm; b) Freundlich adsorption 
isotherm; c) Tempkin; and d) Dubinin-Radushkevich adsorption Isotherm 



132 
 

The maximum adsorption capacity, Qm (13.23 mg/g) was determined from the slope 

of Langmuir isotherm (Figure 5.16a). KL and RL was determined as 0.09 L/mg and 

0.02 respectively (Table 5.4). Langmuir isotherm had a better fit than Freundlich 

and Tempkin models. This indicates a monolayer adsorption where phosphate ions 

are adsorbed on identical and equivalent localized sites on the FCP without lateral 

interaction between the adsorbed phosphates and the adjacent sites. The RL value 

was less than 1 indicating phosphate adsorption using FCP was a favourable 

process. The Qm implies a significant potential for phosphate removal from 

wastewater using FCP on an industrial scale and is similar to results obtained by 

Yan et al. (2014) on the removal of phosphate from etching wastewater using 

calcined alkaline residue. Qm obtained using FCP (Qm = 13.23 mg/g) was higher 

than those using brick dust (Qm = 5.35 mg/g) in Section 4.3.4.1, this indicates FCP 

developed in this study showed a better performance that the conventional brick 

dust used in Chapter 4. 

Dubinin-Radushkevich (D-R) isotherm model was employed to determine the nature 

of the adsorption of phosphate on FCP. The R2 value of D-R isotherm was higher 

than Langmuir isotherm (Figure 5.16d). The value of E is used to predict the type 

of adsorption, E value < 8 kJ/mol is classified as physical adsorption. The value of 

E in this study was 2.87kJ/mol indicating the adsorption was a physical process 

(Table 5.4). This confirms result of the kinetic study which showed the adsorption 

was physisorption. The E value obtained in this study is similar to result obtained by 

Kose and Kivanc (2011). 

Freundlich isotherm model is used to determine the heterogeneity of the adsorption 

surface. The adsorption data did not fit the isotherm as the R2 for Freundlich 

isotherm was lower than all the isotherms studied (Figure 5.16b). Adsorption 

intensity n is used to describe the heterogeneity of the adsorption surface, a smaller 

1/n value indicates a more heterogeneous surface and an n value between one and 

ten indicates a favourable process. The value of 1/n and n in this study was 0.26 

and 3.81 respectively showing the surface was heterogeneous and adsorption was 

favourable (Table 5.4). 

Tempkin adsorption can be used to determine heat of sorption which could be used 

to describe the adsorption process. Tempkin isotherm did not give a good fit with 
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the experimental data (Figure 5.16c). AT and B value were 1.08 L/mg and 35.58 

J/mol respectively (Table 5.4). The positive value of B means the adsorption was 

exothermic confirming the result of the kinetic study.  

Table 5.4: Adsorption isotherm constants for the adsorption of phosphate onto FCP 

Adsorption Isotherm Model Parameter FCP 

Langmuir Isotherm 

Qm (mg/g) 13.23 

KL (L/mg) 0.09 

RL  0.02 

R2 0.9096 

Freundlich Isotherm 

kf (mg/g) 6.50 
1

𝑛
 0.2626 

n 3.81 

R2 0.5688 

Temkin Isotherm 

AT (L/mg) 1.08 

b  68.50 

B (J/mol) 35.58 

R2 0.7989 

Dubinin-Radushkeivich 
Isotherm 

B (mol2/kJ2) 0.06 

E (kJ/mol) 2.87 

R2  0.9537 
 

5.10  Effect of perforation  

FCP showed an improved performance in the removal of phosphate when 

compared with conventional brick dust in wastewater treatment. Adsorption takes 

place on active sites on the adsorbent. These sites, however, are limited based on 

the amount and corresponding surface area of the adsorbent. An increase in the 

active sites of the adsorbent would consequently increase adsorption as there 

would be more active sites for the adsorption of phosphate. Perforation of the pellets 

could lead to an increase in the number of available active sites for adsorption 

thereby increasing phosphate adsorption.  

To study the effect of perforation on the adsorption of phosphates, an experiment 

was designed to artificially increase the pores of the clay tile. RO water was added 

to the clay to improve manageability, after incorporating the water into the clay, it 

was spread using a squeegee unto metal grid described earlier in this chapter, and 

hair brush with different sized bristles and wire brush were rolled over it, creating 
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holes on the clay as it rolled along. The clay was left for air dry for 2 days and fired 

using the firing programme described in Section 3.2.2. The pellets produced using 

perforation with a hair brush was designated as HB pellets while those produced 

using wire brush was designated WB pellets. Results are presented in Figure 5.17. 

 

 

Figure 5.17: The effect of perforation on the adsorption of clay pellets using standard 
experimental conditions 

There was an increase in the performance of the tiles with perforation and the 

performance increased with perforation (Figure 5.17). Complete phosphate 

adsorption was achieved by the perforated pellets after 30 minutes; consequently 

there was the need to study the rate of reaction of the perforated pellets within 30 

minutes (Figure 5.18). 
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Figure 5.18: The effect of perforation on the performance of clay tiles within 30 minutes (n=3) 
standard error bars shown. 

The performance of the tiles increased with increase in the perforation. The increase 

in the adsorption of phosphate from the solution could be due to the increase 

number of adsorption sites as a result of the increase in the size and quantity of the 

pores in the perforated clay. There is no study where an adsorbent was artificially 

perforated hence there was not data to compare this result.  

The data obtained were analysed using the kinetic models described earlier in 

Section 4.8 (Figure 5.19) and the kinetic parameters are presented in Table 5.5. 
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Table 5.5: Kinetic model adsorption parameters of adsorption of phosphate onto perforated clay 
pellets at different temperature. Adsorption conditions: initial concentration 50mg/l, pH 6.7, 
adsorbent dose 20g/l 

Kinetic Model 
Parameter Unmodified 

Hair Brush 
Perforated 

Wire Brush 
Perforated 

Pseudo- first order 
K1 (/min) -0.024 -0.028 -0.024 

qe (mg/g) 18.73 8.26 11.24 

R2 0.9519 0.9393 0.9627 

Pseudo- second order 

k2 (g/mg/min) 0.062 0.074 0.06 

qe (mg/g) 1.27 2.65 2.50 

h (mg/g/min) 0.10 0.52 0.38 

R2 0.5626 0.5859 0.7979 

Elovich Model 

α (mg/g/min) 0.57 4.63 3.85 

b (g/mg) 2.22 0.84 0.95 

R2 0.8574 0.9942 0.9921 

Bangham’s model 
ko (mL/g/L) 42.51 99.03 68.3 

α  7.29 10.69 7.8 

R2 0.9633 0.9839 0.9983 
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Figure 5.19: Kinetic model plot for the adsorption of phosphate using perforated FCP: a) Pseudo-first order kinetic model; b) Pseudo-second order 
kinetic model; c) Elovich kinetic model; and d) Bangham’s kinetic model 
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The pseudo-first order kinetic plot showed a good correlation of the experimental 

data which shows the applicability of the adsorption data to the model. The R2 value 

was >0.9 in all cases (Figure 5.19a). The k1 value decreased from -0.024 t0 -0.028 

when the pellets were perforated (Table 5.5). The better fit also showed each 

phosphate ion was adsorbed on individual sites on the pellet as explained in Section 

5.4.2; and the mechanism for adsorption could be physisorption.  

The pseudo-second-order kinetic model did not show a good correlation of the 

experimental data (Figure 5.19b). The low correlation coefficient showed the model 

could not be used to describe the adsorption and the adsorption mechanism was 

not chemisorption. 

The applicability of the Elovich kinetic model to the experimental data was indicated 

by the good linearity of the plot of qt against ln t (Figure 5.19c). The R2 value of the 

HB and WB tiles were >0.99. The initial rate of adsorption α increased from 0.57 

mg/g/min to 4.63 mg/g/min and 3.85 mg/g/min when HB and WB were used 

respectively, while the value of b reduced from 2.2 g/mg to 0.84 g/mg and 0.95 g/mg 

(Table 5.5). This means the rate of adsorption was higher than desorption leading 

to increased adsorption when the perforated pellet was used (Yakout and Elsherif 

2010). 

The Bangham’s kinetic model showed good linear relationship with the data 

indicating its applicability in describing the adsorption process (Figure 5.19d). This 

means pore diffusion was a pore controlling step but as the Elovich and pseudo-

first-order also showed good linearity particularly when using the perforated pellets, 

it could be said pore diffusion was not the only limiting step but other mechanisms 

were involved in the adsorption. 

5.11 Summary and Conclusion  

This study showed the potential of fired clay pellets for use for phosphate removal 

in wastewater treatment. Phosphate adsorption increased with increase in firing 

temperature from 750 oC to 800 oC before decreasing as the firing temperature 

increased from 1000 oC to 1050 oC. At 1050 oC, the adsorption capacity of the 

pellets had deteriorated due to the decomposition of the silicate layer in the clay 

sheets and the collapse of the mesopore and micropore due to sintering from 
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increased firing temperature. An earlier attempt to fire the pellets at 1200oC resulted 

in the vitrification of the pellets. 

Phosphate adsorption increased with increase in contact time and adsorbent 

dosage. Acidic pH favoured adsorption with pH 3-4 as optimum, adsorption declined 

slightly in neutral and alkaline pH but phosphate removal was greater than 90% at 

all pH except pH 2. Perforation of the pellets before firing increased phosphate 

adsorption. 

Adsorption followed pseudo-first order rate kinetics and was spontaneous and 

exothermic (Gibbs free energy -16.5 kJ/mol, and enthalpy -8.87 kJ/mol). Adsorbed 

phosphate increased with increased in initial concentration of phosphate but 

removal efficiency decreased with increase in phosphate. The experimental data 

showed good correlation with Langmuir and Dubinin-Radushkeivich isotherm and 

Qm derived from Langmuir isotherm was 13.23 mg/g. The adsorption was 

predominantly by physisorption supported by some diffusion. Perforation of the clay 

pellets improved the performance in the removal of phosphate. This study 

developed a method of palletization that provided better performance than 

conventional brick dust for the removal of phosphate in wastewater treatment. 

Pellets used in this study have shown the potential for use in removal off phosphate 

in wastewater treatment. In a bid to further improve the performance of the pellets, 

the composition of the elements responsible for phosphate adsorption (Al, Ca, and 

Fe) will be modified in order to maximise the phosphate adsorption capacity of the 

pellets. The effect of modification of the elemental composition of the pellets will be 

explored further in the next chapter to determine the elemental composition that will 

ensure optimum adsorption.  
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6 Evaluation of the impact of compositional modification on the adsorptive 

properties of clay pellets 

6.1 Introduction 

An improvement in the removal of phosphate in water treatment was obtained using 

pellets developed in the preceding chapter. The maximum adsorption capacity 

increased to 13.23 mg/g when compared to 5.35 mg/g obtained using conventional 

brick dust. This improvement can be further enhanced through the modification of 

the pellets by varying the composition of the elements responsible for adsorption of 

phosphate. 

Aluminium, calcium and iron are elements often credited with phosphate sorption 

and it is assumed that if these elements are present in any medium in a substantial 

amount, then that medium can be used as a substrate for phosphate removal 

(Fondu et al. 2010). Studies have been conducted using various low cost 

adsorbents containing considerable quantities of one or more of these elements for 

the removal of phosphates in wastewater treatment. These adsorbents include 

alunite (Ozacar 2006), zeolite (Jiang et al. 2013), LECA (Vohla et al. 2005; 

Johansson 1997), ochre (Littler et al. 2013), red mud (Huang et al. 2008), clay 

(Kamiyango et al. 2009) and fired clay pellets (Edet et al. 2016).  

The modification of any adsorbent could be done through acid or heat treatment of 

the material, coating with metal salt or exchanging a layer in the adsorbent as 

obtained in pillaring.  Pillaring is the interchanging of a layer in the structure of an 

absorbent mostly clay. Pillared clays are synthesised by exchanging Ca2+, K+ or Na+ 

present in the clay with hydroxyl cations of Fe, Al, Ti (Baksh et al. 1992).  The 

polycations of these multivalent metals act as “pillars” between the clay layers which 

give rise to modified clay known as pillared clays (PILCs) with high specific surface 

area and permanent porosity, and on calcination the resulting material have metal 

oxide pillars which prop open the clay sheets, exposing the internal surfaces of the 

clay layers (Shanableh and Elsergany 2013; Baksh et al. 1992). In principle, any 

metal oxide or salt that can form polynuclear species on hydrolysis can be inserted 

as pillars (Tian et al. 2009) and all layered clay of the phyllosilicate family and other 

layered clay can be used as host (Baksh et al. 1992). 
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Clays in the natural phase consist of aluminous silicates and in this phase, the 

cationic metal of Al3+, Mn3+ and Fe3+ are available as hydroxides (Dable et al. 2008). 

Ion exchange has been proposed as a possible removal mechanism for phosphate 

adsorption by clays. It is assumed an exchange occurs between PO4
3- and OH-

 

located on the positively charged surface of the clay (Tian et al. 2009). The ion 

exchange mechanism is represented by a simplified reaction as follows: 

Clay-Metal ≡ OH- + PO4
3- ↔ Clay–Metal ≡ PO4

3- + OH- (Equation 6.1) Shanableh 

and Elsergany (2013). 

The performance of adsorbents can be enhanced through modification of the 

adsorbent, and one of the methods of modification is the change in the composition 

of the adsorbent. The objective of this experiment was to explore ways of modifying 

the composition of the key elements of Al, Ca, and Fe within the parent clay to 

determine the extent and rate of adsorption in order to maximize phosphate 

adsorption. The modification of the clay was done through the addition of Aluminium 

sulphate (Al2(SO4)3, Calcium carbonate (CaCO3), Iron (III) chloride (FeCl3) and Iron 

(II) sulphate (FeSO4) as these elements have been known to be crucial in increasing 

the phosphate adsorption capacity and these salts have been used in conventional 

wastewater treatment for the removal of phosphate. The salts were added to clay 

before firing using the programme outlined in Section 3.2.2. SEM micrograph 

images of the modified FCP are presented in Figure 6.1a-f. 
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Figure 6.1: SEM micrographs of the modified fires clay pellets (a) AlMFCP before adsorption; (b) 
AlMFCP after adsorption; (c) CaMFCP before adsorption; (d) CaMFCP after adsorption; (e) 
FeMFCP before adsorption; (f) FeMFCP after adsorption   

The SEM micrographs of the modified pellets (Figure 6.1 a-f) revealed surface 

morphology that was rough and irregular. The rough textured surfaces acted as 

adsorption sites for the uptake of phosphate. The micrographs obtained after 

Some materials have been removed due to 3rd party copyright. The unabridged version 
can be viewed in Lancester Library - Coventry University.
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adsorption showed buildup of deposit with the deposit on FeMFCP showing a more 

even distribution. 

6.2 Effect of Al2(SO4)3 modification on the performance of fired clay  

The effect of aluminium modification on the performance of FCP in the adsorption 

was investigated by the addition of Aluminium sulphate (Al2(SO4)3). One of the 

commonly used salts for the precipitation of phosphate in WWTWs is Aluminium 

sulphate. 0.5, 1. 2.5, 5 and 10 g of Al2(SO4)3 was added to 50 g of clay, equating to 

0.04, 0.08, 0.2,0.4 and 0.8 g of Al respectively was added to the clay. The result of 

this study is presented in Figure 6.2. 

 

Figure 6.2: Effect of Al2(SO4)3 modification on the adsorption of phosphate by FCP using standard 
experimental conditions (n=3); standard error bars shown. 

 

Addition of Al2(SO4)3.16H2O was shown to improve the performance of clay tile in 

the adsorption of phosphate from wastewater (Figure 6.2). The increase in Al 

concentration was found to have a random effect on phosphate adsorption within 

the first 15 minutes of contact when Al concentration was between 0.04g and 0.2g. 

Phosphate adsorption was highest at 10 minutes (2.21 mgP/g pellet), when 0.2 g Al 

was added to the clay pellets. 0.04g Al, 0.08g Al and 0.2g Al all achieved complete 
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phosphate removal after 20 minutes of contact. Phosphate removal was shown to 

decrease as the concentration of Al increased beyond 0.2g Al/g pellet.  

The basic reaction between aluminium and phosphate is represented as: 

 Al3+ + HnPO4
n-3 ↔ AlPO4↓ + nH+    Equation 6.2 

 Al3+ + PO4
3- ↔ AlPO4↓     Equation 6.3 

This basic reaction involves aluminium groups on the surface of the clay pellets and 

phosphate ions present in solution. Surface groups on the clay pellets will ionise 

when contact with water causing positive aluminium groups to develop due to the 

protonation of the aluminium surface groups. This protonation of the aluminium 

groups leads to profusion of positive charges on the pellets surface that reacts with 

phosphate ions in solution.  

The reaction between aluminium sulphate and phosphate could be expressed as: 

Al2(SO4)3.16H2O → Al2O3 + 3SO3 + 16H2O   Equation 6.4 

Al2O3.2Al(OH)3 +3H + 3PO4
3- → Al2O3)n.Al2(OH)3.AlPO4 +H2O  Equation 6.5 

The interaction of Al with phosphate is usually dependent on the density of the 

surface charges of the Al species (Boisvert at al. 1997). Lowered pH usually leads 

to increased cationic charges hence increased phosphate removal by Al (Boisvert 

at al. 1997). Phosphate removal by Al species is believed to occur largely through 

the complexation due to several interactions between Al and phosphates with the 

concentration of Al, phosphates and pH as major determinants. Optimum pH for 

adsorption by aluminium ions is between pH 4-6, as adsorption has been reported 

to decrease as the pH increases to 7 (Nassef 2012). 

Phosphate removal from wastewater is believed to occur through three 

mechanisms.    

One of the mechanisms is the adsorption of phosphate ions onto Al(OH)3.  It is 

believed that phosphate can be removed from solution by adsorption to Al(OH)3 

flocs formed system through outer sphere complexation. A higher Al/P ratio is 

usually required for the formation of sufficient flocs. The introduction of clay allows 

the flocs that carry a weak positive charge to adsorb on the surface of the negatively 
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charged clay platelets surface and flocculation and settlement of the Al(OH)3 coated  

clay was faster.  

The addition of clay has been reported to improve the chemical precipitation of 

phosphate from solution. Ozacar and Sengil (2003) reported an improvement in the 

precipitation of phosphate from solution using Al2(SO4)3.18H2O when clay was 

injected into the system. The addition of aluminium in the form of Al(NO3)3.9H2O 

was reported to improve the performance of mesoporous silicates in the adsorption 

of phosphates (Shin et al. 2004). The addition of aluminium to the mesoporous 

silicates imparted a phosphate adsorbing capacity that was previously absent.  

These results are similar to those reported in this study.  

An increase in the concentration of the Al3+ has been reported to reduce the 

adsorption of phosphate by mesoporous silicates (Shin et al. 2004). The study 

showed a decrease in Qm from 862µmol/g to 619µmol/g when the amount of 

aluminium impregnated into the mesoporous silicates increased from 10% to 30%. 

It was opined that the addition of aluminium increased the number of active sites 

present but Al30-SBA-15 had less active sites than Al10-SBA-15 as a result of the 

poor pore structure of Al30-SBA-15. The mesopore structure was believed to have 

been partially destroyed by the attack of the surplus Al on the silicate framework. 

The low P/Al ratio was also suggested to have contributed to the higher phosphate 

adsorption exhibited by Al10-SBA-15. The P/Al ratio reduced from .231 in Al10-SBA-

15 to 0.0556 in Al30-SBA-15 as the percentage of aluminium in the mesoporous 

silicate increased.  

In order to eliminate the deficit attributed to low P/Al ratio during phosphate removal, 

Ozacar and Sengil (2003) suggested an increase in the concentration of clay within 

the system. In a study assessing the effect of clay injection on the precipitation of 

phosphate, an increase in the concentration of clay from 0mg/L to 20mg/L led to an 

increase in phosphate removal from 50% 83% using an AL/P ratio of 1.76. The 

addition of 150mg/L clay to the system increased phosphate removal to 95.8%.  

It was hypothesised that phosphate was removed from the solution by adsorption 

to Al(OH)3 flocs formed system through outer sphere complexation. A higher Al/P 

ratio is usually required for the formation of sufficient flocs. The introduction of clay 

allows the flocs that carry a weak positive charge to adsorb on the surface of the 

negatively charged clay platelets surface and flocculation and settlement of the 
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Al(OH)3 coated  clay was faster. Osalo et al. (2013) reported an improvement in the 

performance of bentonite from 90% to 97% when 10% of the mass of bentonite was 

replaced with Al2O3.   

Another reason for the decrease in phosphate adsorption at higher concentration of 

Al could be due to the effect of sulphate ions on the uptake of phosphate from 

aqueous solutions. Sulphate ions have been reported to have a variable effect on 

the uptake of phosphate. Kamiyango et al. (2009) reported increasing sulphate 

concentration had no effect on the adsorption of phosphate using kaolintic clay. The 

addition of sulphuric acid to kaolin was reported to improve the performance of the 

clay to remove phosphate from 45% to 75% when the concentration of the acid 

increased from 2M to 4M (Onu et al. 2015). However, an increase in the 

concentration of the acid beyond 4M did not improve adsorption. The improved 

performance of the acid modified clay was not attributed to the presence of sulphate 

ions in the system but to an increased H+ concentration which enhanced the 

adsorption of negatively charged phosphate ions. This is contrary to the results of 

this study as the increase in the concentration of sulphate had variable effect on the 

uptake of phosphate. An increase in the sulphate concentration in the clay pellets 

from 0.92g/g to 4.6g/g led to a decline in phosphate sorption from 97% to 3.36%, 

while phosphate removal was unaffected when the sulphate concentration was 

between 0.23g/g and 0.92g/g clay pellet. 

The presence of SO4
2- has been also reported to reduce the adsorption of 

phosphate by aluminium pillared clays (Tian et al. 2009). In that study, the addition 

of 0.5mmol/L SO4
2- was found to reduce phosphate adsorption from 92.2% to 78%.   

6.3 Phosphate Adsorption using Fired Calcium Modified Clay Pellets (CaFMCP) 

The effect of calcium modification on the performance of FCP in the adsorption was 

investigated by the addition of (CaCO3) which is commonly used for the precipitation 

of phosphate in WWTWs. 0.5, 1. 2.5, 5 and 10 g of CaCO3 was added to 50 g of 

clay, resulting in 0.2, 0.4, 1, 2 and 4 g of Ca added to the clay. The result of this 

study is presented in Figure 6.3. 
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Figure 6.3: Effect of CaCO3 modification on the adsorption of phosphate by FCP using standard 
experimental conditions (n=3); standard error bars shown. 

There was an improvement in the phosphate uptake by the CaCO3 modified fired 

clay pellets (CaMFCP). The kinetic profile indicates complete phosphate removal 

was obtained within 30 minutes of contact (Figure 6.3). All subsequent experiment 

was done using 30 minutes as the total contact time. 

Phosphate adsorption was shown to increase with the addition of CaCO3; these 

findings are consistent with those reported by Chen et al. (2009) on phosphate 

removal and recovery through crystallization of hydroxyapatite using xonotlite as 

seed crystal and Hosni et al. (2008) on the removal of phosphate by calcium 

hydroxide from synthetic wastewater. There was an increase in the phosphate 

adsorbing capacity of FCP as the concentration of Ca increased. This trend could 

be attributed to the presence of excess calcium ions in system and is consistent 

with results obtained by Kaminyango et al. (2009). They reported an increase in the 

removal efficiency of kaolinite for the removal of phosphate from aqueous solutions 

when the concentration of calcium ions increased.  

CaMFCP showed a faster kinetic, achieving complete removal within 15 minutes of 

contact, than unmodified FCP. The time required for unmodified FCP to achieve 

was 60 minutes and this was four times more than the time required by CaMFCP 

(Section 6.4.1). The faster kinetic exhibited by CaMFCP would mean a smaller 
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reactor volume would be required when CaMFCP was used for the removal of 

phosphate in wastewater treatment. 

Phosphate adsorption has been shown to increase with increasing calcium ion 

concentration, this is due to the greater ability of calcium ions to form complexes 

with phosphate and precipitate it in the solution as the concentration of calcium ion 

increases (Nassef et al. 2012).  

The displacement of Al3+ from the clay surface by Ca2+ and the subsequent 

interaction with OH- to form metallic hydroxide imparts a positive charge to the tile 

surface allowing for PO4
3- to bind with the positively charged surface. This 

interaction between the Ca2+ and the negatively charged clay surface is believed to 

occur through Coulombic interactions (Ren et al. 2012).  

Another possible mechanism for phosphate removal was through the precipitation 

of calcium phosphate as apatite from the solution. Calcium carbonate decomposes 

into CaO when heated above 800oC. The CaO could partially fuse with SiO2 present 

in the clay to form CaSiO3 represented by the following equations: 

CaO + SiO2 → CaSiO3  Equation 6.6 (Yu et al. 2010) 

5CaSiO3 + SiO2 + 5H2O → Ca5(Si6O18H2).4H2O  Equation 6.7 (Yu et 

al. 2010). 

The formation of CaSiO3 contributes to the active Ca2+ distribution within the clay 

lattice that could react with free phosphate ions (Chen et al. 2013). The reaction 

between Ca2+ and phosphate containing solution under neutral or alkaline 

conditions will most likely result in the precipitation of calcium phosphate as hydroxyl 

apatite (Littler et al. 2013) and could be represented by following equations: 

Ca5(Si6O18H2).4H2O + 3H2PO4
- → Ca5(PO4)3OH↓ + 6H2SiO3 + 2H2O     Equation 

6.8 

5Ca2+ + 3HPO2- + 4OH- → Ca5(PO4)3OH↓ + 3H2O     Equation 6.9 (Chen et al. 

2013) 

The equilibrium dissolution of CaO would also increase the availability of free Ca2+ 

that acts as nuclei for the precipitation of phosphate (Kaasik et al. 2008).  
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The dissociation of CaCO3 to CaO is believed to increase the pH of the solution, as 

final pH increased from 7 to 10.5 after 30 minutes of contact. At pH range of 8.5 – 

10 the ability of Ca2+ to form complexes with phosphate and precipitate it out of 

solution increases (Nassef 2012). The effect of pH on the adsorption of phosphate 

by CaMFCP will be discussed in greater detail in Section  6.5.4. 

6.4 Phosphate Adsorption Using Fired Iron Modified Clay Pellets  

The addition of iron salts is commonly used to remove phosphate during wastewater 

treatment. Chemical precipitation through the addition of aluminium and iron salts 

has been widely used to supplement biological treatment for the removal of 

phosphate in wastewater treatment. The most commonly used Fe salts for the 

removal of phosphate are ferric chloride, ferric and ferrous sulphates (Nassef 2012).  

The use of various Fe-based adsorbent has been widely reported to improve the 

adsorption of phosphate in wastewater treatment (Caravelli et al. 2010; Mezenner 

and Bensmaili 2009; Yaghi and Hartikainen 2013; Yoon et al. 2014). The objective 

of this section was to attempt to improve the phosphate adsorbing capacity of FCP 

by the addition of iron salt through the manipulation of the concentration of Fe in the 

clay. 

6.4.1 FeCl3 Modified Fired Clay Pellet 

The addition of Fecl3 to clay tiles had an adverse effect on the uptake of phosphate. 

Phosphate adsorption reduced as the concentration of Fe added to the clay 

increased (Figure 6.4). 
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Figure 6.4: Effect of FeCl3 addition on the adsorption of phosphate by FCP using standard 
experimental conditions (n=3); standard error bars shown. 

The negative effect of FeCl3 addition could be attributed to the effect of chloride on 

the structure of the clay. It was observed during the addition of FeCl3 that the 

consistency was not plastic but had a gritty feel during the preparation of the pellets. 

It is believed that the addition of FeCl3 caused a collapse of the clay structure that 

is integral to the adsorptive properties attributed to clay. 

The negative effect of the FeCl3 addition could also be due to the impact of chloride 

on the adsorption of phosphate. The presence of chloride during phosphate 

adsorption has been shown to compete with phosphate ions for adsorption sites, 

thus reducing the removal of phosphate from solution (Chen et al. 2002; Zhao and 

Sengupta 1998). The possible ion exchange reaction can be described using the 

following equation: 

  n[R+ - Cl-] + HPO4
3- → [Rn+n – HPO4

3-] + nCl- + H+  Equation 6.10 (Chen et al. 

2002) 

 Where R represent the positively charged functional group of the ion exchanger 

and [ ] represent the solid phase.  
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The presence of Cl- in the system would cause the reaction to be shifted to the left 

as Cl- competes for available reaction sites leading to decreased phosphate 

removal (Chen et al. 2002). 

However, the use of FeCl3 has been reported in the removal of phosphate from 

wastewater. Fytianos et al. (1998) studied the modeling of phosphorus removal from 

aqueous and wastewater samples using ferric iron reported 63% phosphorus 

removal using 1:1 Fe:P ratio and complete removal when the Fe excess increased 

to 155% (Fe:P ratio of 2.55:1). Fe:P ratio of 5.24 has been reported in the removal 

of phosphate from wastewater. Fe:P ratio of 3 has been used to achieved a 

phosphate adsorption of more than 95% by ferric chloride (Zhou et al. 2008).  

6.4.2 FeSO4 modified fired clay pellets 

The effect of iron modification on the performance of FCP in the adsorption was 

also investigated by the addition of FeSO4 which also used for the precipitation of 

phosphate in WWTWs. 1, 2, 5, 10 and 20 g of FeSO4.7H2O was added to 50 g of 

clay, equating to 0.2, 0.4, 1, 2 and 4 g of Fe added to the clay. The result of this 

study is presented in Figure 6.5. 

 

Figure 6.5: Effect of FeSO4 modification on the adsorption of phosphate by FCP using standard 
experimental conditions (n=3); standard error bars shown 
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The addition of FeSO4 was shown to have a variable effect on the performance of 

FCP in the removal of phosphate (Figure 6.5). The performance of FCP using lower 

concentrations of 0.2g and 0.4g Fe/g pellet was better than those obtained using 

higher Fe concentration of 1g, 2g and 4g Fe/g pellet. Phosphate adsorption 

generally decreased with increase in Fe concentration.  

FeSO4.7H2O decomposes on heating to produce iron (III) oxide, the reaction is 

expressed: 

 FeSO4.7H2O → FeSO4 + 7H2O   Equation 6.11 

 FeSO4 → Fe2O3 + SO2 + SO3   Equation 6.12 

The presence of Fe3+ in the adsorbent could cause the rapid hydrolysis and 

precipitation of hydrous iron (III) (hydr)oxide with a reactive surface functional group 

and high surface area that could replace Al3+ on the FCP surface (Neethling et al. 

2008). The iron (III) (hydr)oxide surface serves as the binding sites for the 

adsorption of phosphates. Ligand exchange with surface hydroxyl group is the initial 

process in the reaction with iron (III) (hydr)oxide and phosphates (Bastin et al. 1999; 

Yoon et al. 2014). Phosphate adsorption occurs when PO4
3- replaces OH- on the 

surface of the iron (III) (hydr)oxide (Yoon et al. 2014).   

Stoichiometrically, 1 mole of Fe3+ is required to remove 1 mole of phosphate. 

However, during the precipitating process, a competing reaction of Fe3+ with 

hydroxyl ions to form hydroxides also occurs. This competing reaction of hydroxyl 

ions with phosphate ions for Fe3+ indicates that a higher stoichiometric mass ratio 

of Fe:P is required (de Haas et al. 2000; Yeoman et al.1988).  

The reaction between Fe3+ and PO4
3- can be summarized by the following equation 

 Fe3+ + PO4
3- → FePO4↓      Equation 6.13  (Nassef 2012) 

 Fe3+ + HnPO4
3-n ↔ FePO4↓ + nH+   Equation 6.14 (Martin 2010 

The use of ferric oxide has been reported to improve the adsorption of phosphate. 

Pan et al. (2009) reported an enhanced phosphate removal form waste effluents 

using polymer-based nanosized hydrated ferric oxides, while 80% phosphate 

removal was achieved using iron oxide tailings consisting mainly of magnetite 

(Fe3O4) (Zeng et al. 2004). The result of this study is in part similar to these studies. 
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Phosphate adsorption improved at lower concentration of Fe and decreased at 

higher concentration.  

This decrease in phosphate adsorption with increase in Fe concentration could be 

attributed to the presence of sulphate within the system as the concentration of 

sulphate was about twice the concentration of Fe in the system. The effect of 

sulphate on the adsorption of phosphate has already been discussed in Section 

6.1. 

6.5 Effect of combined compositional modification clay pellets 

The effect of compositional modification of FCP through the addition of Al2(SO4)3 

and other metal salts on the adsorption of phosphate was investigated by comparing 

the performance  of single modification with the combination of two or more metal 

salt modification. The aim of this experiment was to determine if the contact time 

could be further reduced from 15 minutes obtained using modified clay pellets. It 

was believed that the combined effect of the elements as Al/Ca, Al/Fe, Ca/Fe or 

Al/Ca/Fe could improve the performance of the pellets beyond what was obtained 

using single element modification. The modifications investigated were; i) addition 

of Al2(SO4)3 alone; ii) addition of  Al2(SO4)3 with CaCO3; iii) addition of  Al2(SO4)3 

with FeSO4; and iv) addition of  Al2(SO4)3 with perforation of pellets. The 

modifications were repeated with CaCO3 and FeSO4 as the added salts. The results 

of this study are presented in Figure 6.6. 
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Figure 6.6: Effect of composition modification on the adsorption of phosphate by FCP: a) addition of Al2(SO4)3 and other modifications; b) addition of 

CaCO3 and other modifications; and c) addition of FeSO4 and other modifications. 
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The use of multi-element modification of clay to improve phosphate adsorption from 

wastewater has been reported (Tian et al. (2009) using lanthanum/aluminum 

pillared montmorillonite; Zhu et al. (2009) using hydroxyiron/aluminum 

montmorillonite complex; Cheng et al. (2010) using Zn-Al layered double 

hydroxides; Yan et al. (2010) using hydroxy-iron-aluminum pillared bentonites; 

Shanableh and Elsergany (2013) using Al-Fe-modified bentonite and Xu et al. 

(2016) using Ca-layered double hydroxides.  Phosphate adsorption was shown to 

improve with the combination of different modification. Adsorption using Al2(SO4)3 

modified FCP followed the order Al perforated >Al modified = Al/Ca modified > Al/Fe 

modified = Al/Ca/Fe modified > unmodified pellets (Figure 6.6a). Pellets modified 

with CaCO3 exhibited an improvement in the performance and adsorption was in 

the order Ca modified > Ca perforated > Al/Ca modified > Ca/Fe modified > Al/Ca/Fe 

modified >unmodified pellets (Figure 6.4.1b), while phosphate adsorption using 

pellets modified with FeSO4 was Fe modified > Fe perforated > Ca/Fe modified > 

Al/Fe = Al/Ca/Fe modified > unmodified pellets (Figure 6.4.1c). There was 

considerable improvement in the performance of the unmodified pellets at all 

treatments studied. Addition of CaCO3 to Al2(SO4)3 or FeSO4 improved the 

performance of the pellets over the addition of Al2(SO4)3 to FeSO4.  

Combinations of iron and aluminium modification to improve phosphate adsorption 

have been reported to have varying effect on adsorption. Yan et al. (2010) reported 

greater adsorption using Fe-bentonite than Al-bentonite of Fe-Al-bentonite. 

Adsorption followed the order Fe-bentonite > Al-bentonite > Fe-Al-bentonite. Zhu et 

al. (2009) reported an increase in the performance montmorillonite for phosphate 

adsorption when modified with hydroxyaluminum and hydroxyiron. The rate of 

adsorption was HyFeAl-Mt0.5 > HyFeAl- Mt0.2 > HyAl-Mt > HyFe-Mt. Yaghi and 

Hartikainen (2013) reported a better adsorption using Fe coated LECA than Al 

coated LECA, while Shanableh et al. (2016) reported a higher adsorption when Al3+ 

was combined with Fe3+ to modify bentonite. Bentonite modified with Fe3+ 

performed better than those modified with Al3+ alone. In this study, similar result was 

obtained using Al or Fe alone, but Fe showed faster rate of adsorption. The 

adsorption order for Shanableh et al. (2016) was Al/Fe> Fe > Al. 

Phosphate adsorption mechanism of Calcium is usually dominated by precipitation 

of phosphates out of the solution through the formation of hydroxyapatite (Xu et al. 
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2016). Precipitation is initiated by the reaction of Ca with SiO2 present in the clay to 

form CaSiO3 which in turn contributes to the active Ca2+ pool within the clay Yu et 

al. 2010, Chen et al. 2013). The active Ca2+ in turn reacts with phosphate ions in 

solution to precipitate calcium phosphate as hydroxyapatite (Littler et al. 2013). The 

reactions are represented by Equations 6.6 – 6.9. Precipitation was thus 

considered as a possible mechanism for the adsorption of phosphate in this study. 

Ligand exchange via inner-sphere or outer-sphere complexation is another 

mechanism responsible for the uptake of phosphate by Al/Fe oxides and clay 

minerals (Zhu et al. 2009, Yang et al. 2015). The anions such as phosphate forms 

a covalent bond with the metal cation on the surface of the adsorbent leading to the 

release of OH- previously bonded to the surface of the adsorbent (Loganathan et al. 

2014). The surface functional groups form strong inner-sphere complexes through 

a covalent bond between the ligand and metal ions (Wang et al. 2016) and is 

described using Equations 6.15 – 6.16  

 ≡M-OH + H2PO4
- ↔ ≡M – (H2PO4) + OH-  Equation 6.15 

 2 ≡M-OH + HPO4
2- ↔ M2 – (HPO4) +2OH-  Equation 6.16 

These inner–sphere complexes could be monodentate, bidentate or binuclear 

depending on the concentration of the phosphate solution, density and reactivity of 

the surface functional groups (Zhu et al. 2009). The outer-sphere complexes are 

formed via electrostatic attraction involving the retention of a water molecule 

between the ligand and exchange sites (Bradl 2004; Wang et al. 2016). The 

formation of outer-sphere complexes is represented by Equations 6.17 and 6.18: 

 ≡M-OH2
+ + H2+PO4

- ↔ ≡M – (OH2
+) (H2PO4

-)   Equation 6.17 

 ≡M – OH2
+ + HPO4

2- ↔ ≡M – (OH2
+) (HPO4

2-  Equation 6.18 

 

An increase in the pH of the solution coupled with a decrease in phosphate 

concentration in the solution usually indicates the release of OH- from the surface 

of the adsorbent signifying the adsorption of phosphate by the surface complex 

(Yang et al. 2006). This indicates ligand exchange may be a mechanism for the 

adsorption of phosphate within that system. There was an increase in the final pH 
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of the solution. The final pH of the solution from initial pH between 3 and 12 

averaged 10.35 for AlMFCP; 10.34 for CaMFCP; and 9.40 for FeMFCP (Figure 

6.5.3.1). The increase in the final pH of the solution implies ligand exchange 

between phosphate in the solution and OH- released form the surface of the pellets 

was a possible mechanism of phosphate adsorption by the pellets.  

Phosphate adsorption is a complicated process due to the variation in the formation 

of phosphate-metal complexes and the different adsorption behaviour exhibited by 

different phosphate species on the same adsorbent. Hence, phosphate adsorption 

by the pellets could be a complicated interplay of precipitation, ion exchange and 

some ligand exchange.  

Perforation was shown to improve the performance of the pellets in the adsorption 

of phosphate in every category; however this was not explored further as the test of 

structural integrity of perforated bricks was not within the scope of this study. Further 

research could be done using perforated bricks as the potential for phosphate 

adsorption in wastewater treatment was exhibited.  

6.6 Adsorptive properties of modified fired clay pellets 

6.6.1 Effect of contact time on the adsorption of phosphate using modified fired clay pellets 

 

Figure 6.7: Effect on contact time on the adsorption of phosphate by modified clay pellets using 
standard experimental conditions (n=3); standard error bars shown. 
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Sorption of phosphate increased with increasing contact time. The kinetic profile 

showed a fast adsorption at the initial stage of the adsorption which slowed as it 

progressed (Figure 6.7). Equilibrium concentration was achieved after 15 minutes 

of contact when CaFMCP and FeFMCP were used, and during 20 minutes when 

AlFMCP was used. During the first five minutes of adsorption, AlFMCP and 

CaFMCP showed an identical rate of adsorption. The overall rate of phosphate 

removal followed the order CaFMCP> FeFMCP> AlFMCP> unmodified pellets 

(Figure 6.7). During the initial stages of adsorption, the concentration gradient 

between the available sorption sites on the pellet surface and the phosphate fluid 

film surrounding the pellets is large as a result the rate of adsorption is faster. As 

phosphate is taken out of the solution, the concentration gradient decreases leading 

to a decrease in the rate of adsorption during the later stages (Baraka et al. 2012).  

Phosphate removal was greater than 90% within the first 15 minutes when modified 

clay pellets were used. Higher phosphate removal during the initial stages of 

adsorption has been reported. Boujelben et al. (2008) achieved an equilibrium 

concentration after 15 minutes using iron oxide coated crushed bricks; Hamdi and 

and Srasra (2012) reported an equilibrium concentration obtained within two hours 

when two types of Tunisian clay  minerals were used. Similar result was also 

reported by Yan et al. (2010) using Al and Fe pillared bentonite. A short contact time 

is crucial in the application of an adsorbent in wastewater treatment, consequently 

it is essential that an adsorbent possess a rapid reaction with the phosphate ions 

(Kamiyango et al. 2011). 

6.6.2 Effect of adsorbent dosage on the adsorption of phosphate using modified clay pellets 

The effect of adsorbent dosage on the removal of phosphate using modified clay 

pellets was studied under standard experimental conditions stated in Section 3.6.2. 



159 
 

 

Figure 6.8: Effect of adsorbent dosage on the adsorption of phosphate by modified clay pellets 
using standard experimental conditions (n=3); standard error bars shown.   

Sorption of phosphate increased with increasing dose of adsorbent (Figure 6.8). 

Maximum phosphate removal was observed when 13.33 g/L of CaMFCP and 

FeMFCP was used; subsequent increase in adsorbent dosage did not result in any 

change. However, AlMFCP did not achieve maximum removal until 20 g/L of the 

pellets was used.  

The increase in sorption is due to the increase in the quantity of active sites available 

for sorption of phosphate ions as the mass of the adsorbent increases. Similar trend 

was reported by Deng and Shi (2015) using mesoporous modified kaolin clay; and 

Ni et al. (2015) using red mud- polyaluminum chloride composite coagulant. The 

effect of adsorbent dosage on the adsorption of phosphate has been discussed 

extensively in Section 5.3. 

 

6.6.3 Effect of pH on the adsorption of phosphate using modified clay pellets 

The effect of pH on the adsorption phosphate on modified FCP was investigated at 

pH between pH 2 and 12, using 150 ml of 50 mg/L phosphate solution. 
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Figure 6.9: Effect of pH on the adsorption of phosphate by modified clay pellets using standard 
experimental conditions (n=3); standard error bars shown. 

One of the crucial factors affecting the adsorption of anions at water-adsorbent 

interface is pH (Tian et al. 2009, Zamparas et al. 2012). Phosphate adsorption by 

modified clay pellets was observed to be affected by pH (Figure 6.9). Phosphate 

adsorption increased from 0.96 mg/g at pH 2 reaching a maximum of 2.25 mg/g 

between pH 5 and 6 before decreasing slightly to 2 mg/g between pH 7 and 10  and 

declining further to 0.56 mg/g at pH 12 using AlMFCP. Phosphate adsorption using 

CaMFCP increased from 0.48 mg/g at pH 2 to 2.5 mg/g between pH 3 and 4 and 

between pH 7 and 8 before decreasing to 2.04 mg/g as the pH increased to 12. 

Adsorption was greater than 80% at all pH studied using CaMFCP. There was a 

decrease in adsorption from 2.5 mg/g to 2.06 mg/g as the pH increased from pH 4 

to 6, before increasing once more to 2.5 mg/g as the pH increased to 7.   

A delay in phosphate adsorption or a phenomenon known as hysterersis was 

observed between pH 4 and 7 when CaMFCP was used. Several reasons have 

been postulated for this phenomenon. Jiang et al. (2014) suggested that phosphate 

adsorption was in a non-equilibrium state and was consequently dependent on the 

pH, ionic strength of the solution and adsorption function as affected by the 

characteristics of the adsorbent. It was also suggested the presence of H+ and OH- 
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in the solution as a result of pH could hinder adsorption. This however, does not 

explain the increase in adsorption as pH increased from pH 6 to pH 7. 

Different species is thought to be responsible for phosphate adsorption at different 

pH (Figure 5.10). Fe is believed to dominate adsorption at pH below 5, while Al is 

the dominant species responsible for phosphate adsorption at pH range between 5 

and 6 and Ca is responsible for adsorption at pH above 7. Nassef (2012) reported 

optimum phosphate adsorption at pH between 4 and 6 using aluminium sulphate to 

precipitate phosphate from solution. Babatunde and Zhao (2010) reported a 

decrease in maximum phosphate adsorption capacity evaluated from the Langmuir 

isotherm from 31.9 mg/g at pH 4 to 10.9 mg/g at pH 9 when waste alum sludge was 

used to remove phosphate from aqueous solution. Ozacar (2003) reported a 

decrease in phosphate adsorption as pH increased from 5 to 8 when alunite was 

used for the adsorption of phosphate from aqueous solution. These studies show a 

pH range between 4 and 6 as optimum pH for phosphate adsorption with aluminium 

as the dominant species responsible for adsorption and these results are similar to 

those obtained in this study. 

Phosphate adsorption increased with increasing pH from 2 to 10 with maximum 

adsorption at pH 10 using alginate calcium carbonate composite beads for the 

adsorption of phosphate ions (Mahmood et al. 2015). Optimum adsorption typically 

occurs at pH below 6. (Pawar et al. (2016) pH 6 using aluminium-pillared acid 

activated bentonite beads; Yan et al. (2010) pH 4 using Al-, Fe- and Al-Fe-modified 

bentonites; Shanableh and Elsergany (2013) pH 5 using Fe- and Al-Fe-modified 

bentonites; Hamdi and Srasra (2011) pH 5 using Tunisian clay; Yang et al. (2015) 

using calcined Kanuma clay; Jia et al. (2013) pH 5 using used bricks). These finding 

are similar to the results in this study using Al and Fe modified clay pellets. Optimum 

phosphate adsorption at pH higher than 6 has also been reported in literature, 

Moharami and Jalali (2013) reported high phosphate adsorption at pH 2 to 10 using 

Iranian clay, while Deng and Shi (2015) reported higher phosphate adsorption at 

pH 7 and 8 using Mg-Al hydrotalcite-loaded kaolin clay. The result obtained in this 

study using CaMFCP showed optimum adsorption could be attained at two pH 

ranges below and above pH 6. This result is silimar to that reported by Kamiyango 

et al. (2009) using kaolinite from Linthipe. Phosphate adsorption between pH range 

of 5 and 8 is crucial as this is the practical pH for wastewater treatment (Shanableh 



162 
 

and Elsergany 2013). Result of this study indicates CaMFCP and AlMFCP could be 

used in wastewater treatment; CaMFCP is more suitable due to the higher 

adsorption (2.5 mg/g) obtained within the pH range. 

Ion exchange has also been suggested as one of the phosphate removal 

mechanisms using metal modified clay adsorbents (Shanableh et al. 2016) where 

OH- on the surface of the adsorbent is replaced with PO4
3-. The mechanism is 

represented as Equation 6.14: 

Clay-Metal ≡ OH- + PO4
3- ↔ Clay–Metal ≡ PO4

3- + OH- (Equation 6.14) Shanableh 

and Elsergany (2013). 

Increase in OH- concentration of the solution associated with increase in metal-OH 

surface bonds usually indicates ion exchange as an adsorption mechanism in the 

removal of phosphate (Kasama et al. 2004, Yan et al. 2010, Shanableh et al. 2016). 

Decrease in phosphate adsorption with increasing pH can be attributed to 

competition between phosphate and OH- and changes in the surface charges of the 

pellets. The surface charges of the pellets is produced by the hydrolysis of the Al-

OH or Si-OH bonds along the clay lattice and is dependent on the pH of the solution 

(Ismadji et al. 2015). The pH at zero point of charge (pHzpc) is an important factor in 

adsorption. The pellet surface will be positively charged at pH below pHzpc and 

negatively charged a pH above pHzpc. The pHzpc was 8.54, 8.58 and 8.64 for 

AlMFCP, CaMFCP and FeMFCP respectively. Increased adsorption of phosphate 

would occur at lower pH resulting from increased attraction between the positively 

charged surface of the pellets and phosphate ion due to increased positive charges 

on the surface (Babatunde et al. 2009; Pawar et al. 2016). As the pH increases, the 

surface becomes increasingly negatively charged, hence attraction for phosphate 

ions decrease leading to lower adsorption due to increased competition between 

the OH- and phosphate ions. Adsorption in this study was higher at pH lower than 

pHzpc, and is consistent with results reported by Moharami and Jalali (2013). 

Increase in OH- concentration with increase in pH is confirmed by the increase in 

pH of the solution after adsorption (Figure 6.10). 
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Figure 6.10: Final pH of phosphate solution at the end of contact using modified FCP. 

Different phosphate species dominate at different pH (Figure 6.11). 

Figure 6.11: Distribution of phosphate species in solution as a function of pH (Kamiyango et al. 
2009). 
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2007). Ligand exchange is one of the adsorption mechanisms for the adsorption of 

phosphate on clay minerals and Al/Fe oxides (Zhu et al. 2009). Protonation of metal 

oxides resulting in adequate adsorption sites for the uptake of phosphate occur at 

suitable pH (Equation 6.19): 

 ≡M-OH + H+ → ≡M-OH+    Equation 6.19 

Where M is a metal such as Al, Ca, Fe etc. 

Phosphate exists as H2PO4
- and HPO4

2- at lower pH and is taken out of solution via 

phosphate-hydroxyl monodentate and proptonation of adsorbed phosphate and the 

process is represented as: 

 ≡M-OH2
+ + PO4

3- + 2H+ → ≡M-PO4 -2H + H2O  Equation 6.20 

 ≡M-OH2
+ + PO4

3- + H+ → ≡M-PO4
2- -H +H2O  Equation 6.21 

As the pH decreases further, the metal oxides and hydroxides becomes less stable 

and dissolves leading to a decrease in number of available sites for adsorption 

(Yang et al. 2015). This could be responsible for the low adsorption obtained for pH 

2 in this study. At higher pH, HPO4
2- and PO4

3- are the dominant species and 

phosphate adsorption is as described in Equations 6.22 and 6.23: 

 ≡M-OH2
+ + PO4

3- → ≡M-PO4
2- + H2O    Equation 6.22 

 ≡M-OH2
+ + PO4

3- + H+ → ≡M-PO4
2- -H +H2O  Equation 6.23 

The increase in OH- concentration as a result of continued increase in pH leads to 

deprotonation of oxides/hydroxides that could destroy the OH- groups causing the 

materials to become more negatively charged (Equation 6.24).  

 ≡M – OH → ≡M – O- + H+      Equation 6.24 

This leads to decrease in phosphate adsorption due to electrostatic repulsion 

between the increasing negatively charged surface and phosphate ions (Yang et al. 

2015). This could also be attributed to the decrease in adsorption reported in this 

study. Low adsorption at extreme pH obtained in this study is similar to those 

obtained by Yang et al. (2015) using calcined Kanuma clay and Yan et al. (2010) 
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using Al- bentonite and Fe-Al-bentonite. Low phosphate adsorption was at pH below 

3 and above 10. 

6.6.4 Effect of temperature 

The effect of temperature on the adsorption of phosphate was studied at 20, 25, 30 

and 35 oC and the result presented in Figure 6.12. 

 

Figure 6.12: Effect of temperature on the adsorption of phosphate by modified clay pellets 
using standard experimental conditions (n=3); standard error bars shown. 

Phosphate sorption declined with increase in temperature (Figure 6.12) indicating 

a low energy requirement for the adsorption of phosphate using Al and Fe modified 

clay pellets, CaMFCP was however, not effected by temperature. An increase in the 

number of adsorption sites influenced by the disintegration of some of the internal 

bonds around the edge of the active sites of the FCP as a result of the exothermic 

nature of the adsorption could be responsible for the increased adsorption of 

phosphates at lower temperature observed in this study. A decrease in phosphate 

adsorption with increase in temperature has been reported in literature. Das et al. 

(2006) using double layered hydroxides to remove phosphate from aqueous 

solution reported a decline in the adsorption of phosphate when temperature 

increased; this is similar to the trend reported in this study. 
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It has been suggested that effect of temperature on adsorption process is more 

pronounced on the position of the equilibrium rather that the rate of adsorption 

(Kamiyango et al. 2011). In this study, the rate of adsorption for AlMCFP and 

FeMCP was affected by temperature. The rate of adsorption was found to decrease 

as the temperature decreased.  

Adsorption Kinetic Model 

The data obtained from the investigation of the effect of temperature on the 

adsorption of phosphate using modified clay pellets were analysed using the kinetic 

models described in Section 5.6 (Figure 6.13 - 6.15) and the kinetic parameters 

are presented in Table 6.1 - 6.3. 



167 
 

 
Figure 6.13: Kinetic model plot for the adsorption of phosphate using AlMFCP: a) Pseudo-first order kinetic model; b) Pseudo-second order kinetic model; 
c) Bangham’s kinetic model; and d) Elovich kinetic model 
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Figure 6.14: Kinetic model plot for the adsorption of phosphate using CaMFCP: a) Pseudo-first order kinetic model; b) Pseudo-second order kinetic model; 
c) Elovich kinetic model; and d) Bangham’s kinetic model. 
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Figure 6.15: Kinetic model plot for the adsorption of phosphate using FeMFCP: a) Pseudo-first order kinetic model; b) Pseudo-second order kinetic model; 
c) Elovich kinetic model; and d) Bangham’s kinetic model 
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Table 6.1: Kinetic model adsorption parameters of adsorption of phosphate onto AlMFCP at 
different temperature. Adsorption conditions: initial concentration 50mg/l, pH 6.7, adsorbent 
dose 20g/l 

Kinetic model Parameter 20oC 25oC 30oC 35oC 
Pseudo-first 

order 
k1 (/min) -0.05 -0.03 -0.028 -0.04 

R2 0.9528 0.9335 0.9672 0.9352 

Pseudo-
second order 

k2 
(g/mg/min) 0.13 0.08 0.03 0.07 

h (mg/g/min) 0.95 0.58 0.34 0.54 
R2 0.9741 0.8997 0.7736 0.9209 

Elovich 

α (mg/g/min) 1.46 -0.64 -0.97 2.34 
b (g/mg) 1.55 0.81 0.95 1.13 

R2 0.9264 0.9859 0.9984 0.9775 

Bangham’s 

ko (mL/g/L 39.23 229.12 105.50 65.10 
α 0.022 0.002 0.006 0.011 

R2 0.9401 0.9916 0.9965 0.9947 
 

 

Table 6.2: Kinetic model adsorption parameters of adsorption of phosphate onto CaMFCP at 
different temperature. Adsorption conditions: initial concentration 50mg/l, pH 6.7, adsorbent 
dose 20g/l 

Kinetic model Parameter 20oC 25oC 30oC 35oC 
Pseudo-first 

order 
k1 (/min) -0.076 -0.062 -0.056 -0.08 

R2 0.9623 0.9477 0.9801 0.9326 
Pseudo-

second order 
k2 

(g/mg/min) 
0.273 0.128 0.161 0.262 

h (mg/g/min) 1.86 0.98 1.17 1.81 
R2 0.9909 0.9634 0.9779 0.9904 

Elovich α (mg/g/min) 2.51 1.22 1.55 2.45 
b (g/mg) 1.98 1.35 1.52 1.93 

R2 0.8181 0.8425 0.8568 0.8257 
Bangham’s ko (mL/g/L 150.54 378.93 285.86 241.08 

α 0.11 0.04 0.05 0.08 
R2 0.9082 0.9176 0.9802 0.9126 

 

The pseudo-first order kinetic plot showed a good fit for all three pellets types 

studied indicating the applicability of the pseudo-first order kinetic model to the study 

(Figure 6.13a - 6.15a). The values of k1 decreased with increase in temperature 

confirming phosphate adsorption decrease with increase in temperature (Table 6.1 

and 6.2). K1 decreased from 0.05/min to 0.028/mins, 0.076/min to 0.056/min when 

temperature increased form 20oC to 30oC for AlMFCP and CaMFCP respectively. 

The value of K1 decreased from 0.002/min to 0.04/min using FeMFCP when the 
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temperature increased from 25oC to 35oC. Conformity to pseudo-first order kinetic 

model normally indicates physiosorption. 

The pseudo-second kinetic plot showed a good fit using the experimental data for 

CaMFCP, R2 was greater than 0.96 for all the temperatures studied (Figure 6.14b). 

The adsorption rate constant k2 value was found to increase from 0.128 g/mg/min 

to 0.262 g/mg/min when the temperature increased form 25oC to 35oC confirming 

the increase in phosphate adsorption using CaMFCP with increase in temperature. 

The initial rate of adsorption (h) also increased from 0.98 (mg/g/min) to 1.81 

mg/g/min when the temperature increased from 25oC to 30oC (Table 6.2). The 

pseudo-second order kinetics could be used to describe the adsorption of 

phosphate on CaMFCP. Good fit to pseudo-second order model indicates the 

adsorption of phosphate by CaMFCP occurred primarily via chemisorption and this 

suggests that each phosphate molecule was attached to two active sites on the 

adsorbent and the adsorption process was irreversible. 

Table 6.3: Kinetic model adsorption parameters of adsorption of phosphate onto FeMFCP at 
different temperature. Adsorption conditions: initial concentration 50mg/l, pH 6.7, adsorbent 
dose 20g/l 

Kinetic model Parameter 20oC 25oC 30oC 35oC 
Pseudo-first 

order 
k1 (/min) -0.02 -0.002 -0.03 -0.04 

R2 0.9668 0.9242 0.9319 0.9404 

Pseudo-
second order 

k2 
(g/mg/min) 0.06 0.34 0.11 0.05 

h (mg/g/min) 0.36 1.36 0.56 0.27 
R2 0.8282 0.9446 0.858 0.7851 

Elovich 

α (mg/g/min) 0.26 0.20 0.22 0.37 
b (g/mg) 0.97 0.95 0.92 1.17 

R2 0.9963 0.9317 0.9516 0.934 

Bangham’s 

ko (mL/g/L 203.45 237.28 182.54 104.46 
α 0.002 0.001 0.002 0.004 
R2 0.945 0.9824 0.9875 0.9759 

 

The pseudo-second order kinetic plot did not show a good fit for AlMFCP and 

FeMFCP (Figure 6.13b and 6.15b). The R2 values for AlMFCP ranged 0.7736 at 

30oC to 0.9741. The R2 of the plot for 25oC and 35oC was 0.8997 and 0.9209 

respectively. The R2 for FeMFCP ranged from 0.7851 to 0.9446 for 35oC and 25oC 

respectively. The adsorption rate constant (k2) values for AlMFCP and FeMFCP 

decreased with increase in temperature from 0.13 g/mg/min to 0.07 g/mg/min and 
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from 0.34 g/mg/min to 0.05 g/mg/min when the temperature increase from 20oC to 

35oC and from 25oC to 35oC for AlMFCP and FeMFCP respectively (Table 6.1 and 

6.3). The inconsistency in the kinetic parameters of the pseudo-second order kinetic 

model suggests the adsorption mechanism for AlMFCP and FeMFCP were 

complicated with interactions of different processes.  

The adsorption data from the study gave a good fit using AlMFCP and FeMFCP for 

the Elovich kinetic model, The R2 was greater than 0.92 for all temperatures studied, 

indicating the model could be used to describe the results (Figures 6.13d and 

6.15c). The adsorption data for CaMFCP did not give a good fit, R2 values were 

between 0.81 and 0.86 (Figure 6.14c). The values of b for adsorption using AlMFCP 

increased from 1.55 g/mg at 20oC to 1.13 g/mg at 35oC (Table 6.1), CaMFCP 

decreased from 1.98 g/mg to 1.93 g/mg and FeMFCP increased from 0.97 g/mg to 

1.17 g/mg as the temperature increased from 20oC to 35oC respectively (Table 6.2 

and 6.3). An increase in the value of b indicates there were more available sites for 

phosphate adsorption, while a decrease signifies a decrease in the number of sites 

available for adsorption (Yakout and Elsherif 2010). The initial rate of adsorption (α) 

did not follow any specific trend; there were fluctuations in the values of α across 

the temperatures and type of pellets (Table 6.1 - 6.3). The fluctuation in the value 

of α as temperature increased could mean the rate of desorption was greater than 

adsorption resulting in the decrease in adsorption with increase in temperature. The 

R2 values indicated diffusion could be a mechanism for adsorption, but it was not a 

rate limiting step and other mechanisms were involved. 

The Bangham’s kinetic model showed a good correlation with R2 values >0.9 at all 

temperature for all pellet types (Figure 6.13c and 6.14d- 6.15d). The good linearity 

shows the model can be used to describe the kinetics of phosphate adsorption using 

modified clay pellets. The kinetic constants derived from the Bangham’s equation 

are listed in Table 6.1 - 6.3, and was observed the value of ko and α varied as a 

function of temperature. The value of ko generally decreased as the temperature 

increased from 25oC to 35oC. ko decreased from 229.12 mL/g/L to 65.1 mL/g/L using 

AlMFCP when the temperature increased from 25oC to 35oC (Table 6.1). The value 

of ko decreased from 378.93mL/g/L to 241.08mL/g/L and 237.28 mL/g/L to 104.46 

mL/g/L when the temperature increased from 25oC to 35oC using CaMFCP and 
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FeMFCP (Table 6.2 and 6.3). The value of α generally decreased when the 

temperature increased from 20oC to 35oC using AlMFCP and CaMFCP, and 

increased as the temperature increased using FeMFCP.  

The good correlation of the Bangham’s kinetic model indicates that pore diffusion 

could be a rate controlling step. As the pseudo-first order kinetic model also showed 

a good linearity and there were variations in the trend of all kinetic models studied 

as a function of temperature, it could be said the adsorption mechanism for AlMFCP 

and FeMFCP was predominantly physisoprtion but complicated with interactions of 

different mechanisms.  

The pseudo-second order kinetic model showed a better fit for CaMFCP than 

pseudo-first order kinetic model. A good fit to the pseudo-second order usually 

indicates chemisorption involving valency forces through exchange or sharing of 

electrons between CaMFCP and phosphate could be a rate limiting step. This 

suggests that each phosphate molecules was attached to two adjacent active sites 

on the CaMFCP and the process was irreversible. The Bangham’s diffusion model 

also showed a good fit for CaMFCP, this indicates that pore diffusion was involved 

in the uptake of phosphate by CamFCP. The multistep process of the model 

signifies that pore diffusion was not the only rate limiting step for the uptake of 

phosphate by CaMFCP and could be concluded that the adsorption of phosphate 

by CaMFCP was a chemical process coupled with some physical diffusion process. 

The pseudo-first order kinetic model showed a better fit for AlMFCP and FeMFCP 

suggesting physisorption as a mechanism for the adsorption of phosphate using 

these pellets. The pellets also showed a good fit to Bangham’s pore diffusion model. 

This suggests the adsorption of phosphate using AlMFCP and FeMFCP involved 

an electrostatic attraction between the phosphate and the pellets supported by 

physical diffusion processes (See Section 5.6.1).   

6.6.4.1 Intra-particle Diffusion 

The adsorption mechanism of phosphate onto modified FCP was investigated using 

intra-particle diffusion theory described in Section 5.6.1.5. A plot of the qt against 

√t (Figure 6.16) should yield a linear relationship if intra-particle diffusion is involved 

in the adsorption of phosphate by FCP. A line passing through the origin indicates 

intra-particle diffusion was the rate controlling step and the slope of the linear curve 



174 
 

is the diffusion rate constant. When the line does not pass through the origin, it 

shows a degree of boundary layer control indicating that intra-particle diffusion was 

not the only rate controlling step and other kinetic models may have been operating 

simultaneously to control the rate of reaction (Mezenner and Bensmaili 2009). The 

slope of the plot indicated the rate constant of intra-particle diffusion while the 

intercept was proportional to the thickness of the boundary layer (Haung et al. 

2014).  

 

Figure 6.16: Intraparticle diffusion model plot of qt (mg/g) against √t (mins) for the adsorption 
of 50mg/l phosphate solution using 3g FCP. 

The plot in Figure 6.16 show a multi-linear profile that do not pass through the origin 

and indicated a poor fit (R2 = 0.86 AlMFCP; 0.75 CaMFCP and 0.79 FeMFCP). 

There was some degree of boundary layer control in the adsorption of phosphate 

using modified FCP as the plots did not pass through the origin. The profile for 

modified FCP showed multi-step processes, where the initial sections could be 

described as the area of fast uptake as a result of the boundary layer diffusion on 

the surface of the modified FCP. This involved the mass transfer of phosphate 

molecules from the aqueous solution to the pellet surface influenced by the initial 

concentration of the phosphate solution. The second stage of the profile indicated 

a gradual adsorption of phosphate in which the rate of adsorption is limited by the 

intra-particle diffusion (Huang et al. 2014). The latter stages showed a decreasing 

adsorption as a result of the low residual phosphate concentration in the solution 

(Huang et al. 2014, Ifelebuegu 2012).  
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This profile indicates that other mechanisms were involved in the adsorption 

process as the value of intercept C, was 0.74, 1 and 0.12 for AlMFCP, CaMFCP 

and FeMFCP respectively. If the value of C was zero then the adsorption rate of the 

entire adsorption process would governed by intra-particle diffusion (Huang 2014). 

6.6.4.2 Thermodynamic parameters 

The temperature dependence of the adsorption process is often associated with 

changes in the thermodynamic parameters. These parameters Gibbs free energy 

(∆Go), enthalpy (∆Ho) and entropy (∆So) were determined using Equations 3.14-

3.16. 

A plot of ln Kd against 1/T (Figure 6.17) using data obtained in Figure 6.13a- 6.15a, 

yielded a straight line graph showing a linear relationship between the logarithm of 

the rate constant and the inverse of temperature with ∆Ho and ∆So values calculated 

from the slope and intercept of the Van’t Hoff plot while ΔGo was calculated using 

Equation 3.14 (Ifelebuegu 2012, Mezenner and Bensmaili 2009). The 

thermodynamic parameters for the adsorption of phosphate by modified FCP are 

shown in Table 6.4 and 6.5. 

 
Figure 6.17: Van’t Hoff plot for the adsorption of phosphate by modified FCP. 
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Table 6.4: Gibbs free energy (∆Go) for the adsorption of phosphate using modified FCP 

 ∆Go (KJ/mol) 

Temp (oC) Al2(SO4)3 CaCO3 FeSo4 

20 -0.378 -0.529 -0.579 

25 -0.498 -0.531 -0.578 

30 -0.618 -0.533 -0.576 

35 -0.738 -0.535 -0.575 
 

 

Table 6.5: Thermodynamic parameters for the adsorption of phosphate by modified FCP.   

 Al2(SO4)3 CaCO3 FeSo4 

ΔHo (KJ/mol) 6.66 -0.417 -0.667 

ΔSo (KJ/mol/K) -0.024 3.82 x10-4 3.03 x10-4 

Ea (J/mol) 0.20 -3.33 x10-3 0.003 

A 1.11 0.59 1.79 
 
 

The values of ∆Go obtained for all pellets type at all temperatures studied were 

negative, this indicated the spontaneous nature of the adsorption of phosphate onto 

FCP and adsorption was a thermodynamically favourable process (Table 6.4). The 

decrease in ∆Go as temperature increased suggests an increase in the spontaneity 

of the adsorption process at higher temperature and is similar to the trend reported 

by Tian et al (2009) on the use of mixed lanthanum/aluminum pillared 

montmorillonite for the adsorption of phosphate. The decrease in ΔGo contradicts 

the result of the effect of temperature (Figure 6.12) as increased spontaneity should 

increase adsorption. The values of ∆Go suggests a physisorption process as values 

of ∆Go for physisorption process are generally between -20 KJ/mol and 0 KJ/mol. 

However, due to the inconsistencies with the results and trends in this study, the 

adsorption mechanism could be said to be complicated with an interaction of 

different processes. The negative value of ∆Ho (-0.42 kJ for CaMFCP and -0.67 kJ 

for FeMFCP) confirmed the exothermic nature of the process (Table 6.5). The 

positive value of ∆So (3.82 x10-4 for CaMFCP and 3.03 x10-4 for FeMFCP) indicated 

the increased randomness at the solid-solution interface during the adsorption of 

phosphate onto FCP and a good affinity of phosphate ions towards the FCP (Huang 

2015). This is consistent with the higher adsorption capacity reported for these 

pellets (Table 6.6). The negative value of the activation energy Ea (-3.33 x10-3 

J/mol) for CaMFCP indicated the absence of an energy barrier, while the low 
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activation energy Ea of 0.2 J/mol and 0.003 J/mol for AlMFCP and FeMFCP 

respectively signified a low energy barrier for the adsorption of phosphate using 

AlMFCP and FeMFCP.  

The results of the thermodynamic study confirm the absence of a single process 

being predominantly responsible as the adsorption mechanism using the modified 

pellets as an adsorbent for wastewater treatment. 

6.6.5 Effect of initial concentration 

The effect of the initial concentration of phosphate solution using modified fired clay 

pellets was investigated by varying the concentration of the phosphate solution from 

50 mg/L to 1000 mg/L while maintaining other experimental conditions. Complete 

phosphate removal was achieved for all phosphate concentrations studied except 

750 mg/L and 1000 mg/L (Figure 6.18). This result was also used to evaluate the 

adsorption isotherms. 

 

Figure 6.18: Effect of initial concentration on removal efficiency of clay pellets using 5g FCP and 
200ml phosphate solution (n=3), standard error bars shown.  
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ratio of available active sites on the surface of the pellets to total phosphate ions 

present in the solution is high; hence phosphate ions are sorbed on the active sites 

and taken out of solution (Teka and Enyew 2014; Das et al. 2006). An increase in 

the concentration of the phosphate solution reduces the ratio of available active 

sites to total phosphate ions present; making available active sites harder to find 

due to the fixed number of available active sites for any given mass of adsorbent. 

The decline in the ratio increases competition for available sites between the 

phosphate molecules thus leading to a reduction in the removal efficiency seen at 

higher concentration.  

Complete phosphate removal achieved at lower concentration is due the availability 

of excess active sites in relation to phosphate ions present in the solution, 

consequently adsorption saturation was not achieved at the lower concentrations 

(Rout et al. 2014).   

 

 

Figure 6.19: The effect of initial concentration on amount of phosphate adsorbed by FCP using 
5g clay tiles and 200ml phosphate solution (n=3), standard error bars shown. 
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surface of modified FCP. A higher concentration of phosphate also increases the 

concentration gradient between the phosphate solution and the solid phase 

resulting in an increase in the amount of phosphate taken out of solution (Nawar et 

al. 2015).  

The generation of the driving force required to reduce the mass transfer resistance 

between the phosphate solution and modified FCP increases as the amount of 

phosphate ions available for adsorption increases at higher concentration. This 

corresponding increase in the generation of the driving force consequently results 

in an increase in the amount of phosphate taken out of the solution (Albadarin et al. 

2012, Hameed and El-Khaiary 2008). 

6.6.6 Adsorption Isotherms 

The adsorption data using FCP discussed in the previous section were analyzed 

using Langmuir, Freundlich, Tempkin and Dubinin-Radushkeivich Isotherm models 

described in Section 2.7.2 to determine the model that best fit the adsorption of 

phosphate onto modified FCP. 

The Langmuir isotherm parameters Qm, KL and RL obtained using Equation 2.24 

and Equation 2.25 were calculated from the slope and intercept of a plot of 1/qe 

against 1/Ce (Figures 6.20a – 6.22a).  

The Freundlich isotherm parameters Kf, 1/n and n obtained using Equation 2.27 

were calculated from the slope and intercept of a plot of Log qe against Log Ce 

(Figures 6.20b – 6.22b). 

The Tempkin isotherm parameters AT, b, B obtained using Equations 2.29 – 2.32 

were calculated from the slope and intercept of the plot of qt against ln t (6.20c - 

6.22c).  

Dubinin-Radushkevich (D-R) adsorption isotherm model is usually applied to 

distinguish the physical and chemical adsorption using the mean free energy E.  E 

(kJ/mol) is the energy required to remove a molecule of adsorbate from its location 

in the sorption site to infinity (Foo and Hameed 2010). The D-R isotherm parameters 

B and E obtained using Equations 2.33- 2.35 were calculated from the slope and 

intercept of the plot of ln qe against ε2 (Figures 6.20d - 6.22d). 
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Figure 6.20: The adsorption isotherm plots for the adsorption of phosphate using AlMFCP: a) Langmuir adsorption isotherm; b) Freundlich adsorption 
isotherm; c) Tempkin; and d) Dubinin-Radushkevich adsorption Isotherm. 
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The adsorption isotherm plots for the adsorption of phosphate using AlMFCP are 

shown in Figure 6.20. The Langmuir isotherm showed the best fit (R2 = 0.9749) of 

all the isotherms studied (Figure 6.20a). KL and RL was determined as 0.6L/mg and 

0.03 respectively (Table 6.6). The RL value was less than 1 signifying the adsorption 

of phosphate using ALMFCP was a favourable process. The maximum adsorption 

capacity Qm was 42.37 mg/g was greater than 13.23 mg/g reported for FCP 

(Section 5.7.1), this implies a significant potential for the industrial application of 

AlMFCP for the removal of phosphates from wastewater. The Qm is similar to those 

reported in literature. Cheng et al. (2009) reported Qm of 44.11 mg/g using zinc-

aluminum layered double hydroxides to remove phosphate from sewage sludge 

filtrate. Hamdi and Srasra (2012) obtained 42.19 mg/g when a Tunisian Smectite 

clay was used to remove phosphate ions from aqueous solution. 

The nature of the adsorption of phosphate on AlMFCP was determined using D-R 

isotherm model. The R2 value of the D-R isotherm was 0.9351 (Figure 6.20d). The 

value of E is used to predict the nature of the adsorption process. E values less than 

8 kJ/mol usually indicate a physical adsorption, while values between 8 and 16 

kJ/mol indicate a chemical adsorption (Kose and Kivanc 2011). The value of E for 

the adsorption of phosphate on AlMFCP was 2.7 kJ/mol (Table 6.6), this indicates 

adsorption was a physical process.  

Freundlich isotherm model is used to describe the heterogeneity of the adsorption 

surface. The adsorption data for the adsorption of phosphate did not give a good fit 

for Freundlich isotherm with an R2 of 0.7004 (Figure 6.20b). Adsorption intensity n 

is used to describe the heterogeneity of the adsorption surface, a smaller 1/n value 

indicates a more heterogeneous surface and an n value between one and ten 

indicates a favourable process (Nawar et al. 2015). The value of n and 1/n for this 

study was 4.22 and 0.24 respectively (Table 6.6), indicating the adsorption was 

favourable and the surface of AlMFCP was heterogeneous. 

Tempkin isotherm model is used to evaluate the heat of sorption which could be 

used to describe the adsorption process. Tempkin isotherm did not give a good fit 

with the data for the adsorption of phosphate on AlMFCP (Figure 6.20c). AT and B 

value was 1.07 L/mg and 36.80 J/mol respectively (Table 6.6). The positive value 

of B means the adsorption was exothermic confirming the result of the kinetic study. 
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Table 6.6: Adsorption isotherm parameters for the adsorption of phosphate onto modified FCP 

Adsorption Isotherm 
Model Parameter AlMFCP CaMFCP FeMFCP 

Langmuir Isotherm 

Qm (mg/g) 42.37 70.42 52.91 

KL (L/mg) 0.60 0.69 0.52 

RL  0.03 0.03 0.04 

R2 0.9749 0.9895 0.9668 

Freundlich Isotherm 

kf (mg/g) 8.34 10.04 8.80 
𝟏

𝒏
 0.2371 0.2049 0.2311 

n 4.22 4.85 4.33 

R2 0.7004 0.6332 0.695 

Temkin Isotherm 

AT (L/mg) 1.07 1.13 1.08 

b  66.23 130.26 78.37 

B (J/mol) 36.80 18.71 31.10 

R2 0.8502 0.8074 0.8557 

Dubinin-Radushkeivich 
Isotherm 

B (mol2/kJ2) 0.07 0.06 0.07 

E (kJ/mol) 2.70 2.86 2.70 

R2  0.9351 0.9797 0.9429 
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Figure 6.21: The adsorption isotherm plots for the adsorption of phosphate using CaMFCP: a) Langmuir adsorption isotherm; b) Freundlich adsorption 
isotherm; c) Tempkin; and d) Dubinin-Radushkevich adsorption Isotherm 
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The adsorption isotherm plots for the adsorption of phosphate from wastewater 

using CaMFCP are shown in Figure 6.21. The Langmuir isotherm showed the best 

fit (R2 = 0.9895) with the experimental data (Figure 6.20a). KL and RL were 

estimated from the slope of the plot as 0.69 L/mg and 0.03 respectively (Table 6.6). 

RL also known as separation factor is a dimensionless constant used in predicting 

the affinity between the adsorbent and adsorbate (Al-Fatlawi and Neamah 2015). 

The adsorption of phosphate using CaMFCP was a favourable process as the RL 

value was less than 1. RL values between zero and one signifies a favourable 

process. The Langmuir affinity constant KL was 0.69 L/mg, indicating a high affinity 

of CaMFCP towards phosphate ions (Pawar et al. 2016). The maximum adsorption 

capacity Qm was 70.42 mg/g (Table 6.6) this is higher than 13.23 mg/g obtained 

using FCP (Section 5.7.1) indicating a better performance by CaMFCP. The 

maximum adsorption capacity demonstrates that that CaMFCP has a significant 

potential for use on an industrial scale in removing phosphate from wastewater. The 

Qm is similar to those reported by Huang (2014) 69.8 - 79.6 mg/g using La(OH)3- 

modified exfoliated vermiculites as phosphate adsorbent.  

The experimental data did not give a good fit using Freundlich isotherm model with 

R2 = 0.6332 (Figure 6.21b) and could not be used to describe the adsorption. 

Adsorption intensity n is used to describe the heterogeneity of the adsorption 

surface, a smaller 1/n value indicates a more heterogeneous surface and an n value 

between one and ten indicates a favourable process (Nawar et al. 2015). The 

degree of linearity between the adsorption and solution concentration is also 

evaluated using n. An n value of one signifies a linear adsorption, n values less than 

one indicates a chemical process, while n values greater than one shows adsorption 

is a physical process (Al-Fatlawi and Neamah 2015).  The value of n and 1/n for this 

study was 4.85 and 0.2 respectively (Table 6.6), indicating the adsorption was 

favourable and the surface of CaMFCP was heterogeneous and adsorption was a 

physical process. 

The nature of the adsorption of phosphate on CaMFCP was determined using D-R 

isotherm model. The R2 value of the D-R isotherm was 0.9797 (Figure 6.5.6.2d). 

The value of E is used to predict the nature of the adsorption process. E value less 

than 8 kJ/mol usually indicates a physical adsorption, while values between 8 and 

16 kJ/mol indicate a chemical adsorption (Kose and Kivanc 2011). The value of E 
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for the adsorption of phosphate on CaMFCP was 2.86 kJ/mol (Table 6.6), this 

indicates adsorption of phosphate using CaMFCP was a physical process.  

Tempkin isotherm model is used to evaluate the heat of sorption which could be 

used to describe the adsorption process. Tempkin isotherm did not give a good fit 

with the data (R2 = 0.8074) for the adsorption of phosphate on CaMFCP (Figure 

6.21c). AT and B value was 1.13 L/mg and 18.71 J/mol respectively (Table 6.6). 

The positive value of B means the adsorption was exothermic confirming the result 

of the kinetic study.    

 



186 
 

 
Figure 6.22: The adsorption isotherm plots for the adsorption of phosphate using FeMFCP: a) Langmuir adsorption isotherm; b) Freundlich adsorption 
isotherm; c) Tempkin; and d) Dubinin-Radushkevich adsorption Isotherm 
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The adsorption isotherm plots for the adsorption of phosphate using FeMFCP are 

shown in Figure 6.22. The Langmuir isotherm showed the best fit (R2 = 0.9668) of all 

the isotherms studied (Figure 6.22a) similar to those shown by AlMFCP and CaMFCP 

discussed earlier in this section. RL and KL was determined as 0.04 and 0.52L/mg 

respectively (Table 6.6). The RL value was less than 1 signifying the adsorption of 

phosphate using FeMFCP was a favourable process. The maximum adsorption 

capacity Qm was 52.91 mg/g was also higher than the value obtained using FCP 

(Section 5.7.1), implying a significant potential for the industrial application of 

FeMFCP for the removal of phosphates from wastewater. The Qm is similar to those 

reported by Vyshak and Jayalekshmi (2014), who obtained a Qm of 52.63 mg/g using 

Kuttanad clay for the purification of phosphate contaminated water. 

The nature of the adsorption of phosphate on FeMFCP was determined using D-R 

isotherm model. The R2 value of the D-R isotherm was 0.9429 (Figure 6.22d). E is 

used to predict the nature of the adsorption process, E value less than 8 kJ/mol usually 

indicates a physical adsorption, while values between 8 and 16 kJ/mol indicate a 

chemical adsorption (Kose and Kivanc 2011). The value of E for the adsorption of 

phosphate on FeMFCP was 2.7 kJ/mol (Table 6.6), this indicates adsorption was a 

physical process.  

Freundlich isotherm model is used to describe the heterogeneity of the adsorption 

surface. The adsorption data for the adsorption of phosphate did not give a good fit for 

Freundlich isotherm with an R2 of 0.695 (Figure 6.22b). Kf obtained from Freundlich 

isotherm was 8.8 mg/g and is similar the value reported by Pawar et al. (2016) using 

alginate immobilized aluminium-pillared acid activated bentonite beads. Adsorption 

intensity, n is used to describe the heterogeneity of the adsorption surface, a smaller 

1/n value indicates a more heterogeneous surface and n value between one and ten 

indicates a favourable process (Nawar et al. 2015). The value of n and 1/n for this 

study was 4.33 and 0.23 respectively (Table 6.6), indicating the adsorption was 

favourable and the surface of FeMFCP was heterogeneous. 

Tempkin isotherm model is used to evaluate the heat of sorption which could be used 

to describe the adsorption process. Tempkin isotherm did not give a good fit with the 

data (R2 = 0.8557) for the adsorption of phosphate on FeMFCP (Figure 6.22c). AT 

and B value was 1.08 L/mg and 31.10 J/mol respectively (Table 6.6). The positive 
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value of B means the adsorption was exothermic confirming the result of the kinetic 

study.    

6.7 Conclusion 

This study has shown the potential for the use of modified clay pellets as a material 

for phosphate removal in wastewater treatment. The increase in the amount of 

phosphate adsorbed was shown to increase sharply as the concentration increased. 

This is a good characteristic of materials that could have industrial application for use 

in wastewater treatment. High phosphate adsorption rate at lower concentration will 

allow the treatment of large volume of wastewater before the pellets could be replaced 

or regenerated (Hamdi and Srasra 2012). Typical influent phosphate concentration in 

wastewater is 10 mg/L, lower than the concentration used in this study. There was a 

decrease in the contact time required for complete removal of phosphate. The 

maximum adsorption capacity was 42.37 mg/g, 70.42 mg/g and 52.91 mg/g for 

AlMFCP, CaMFCP and FeMFCP respectively. The modified pellets show a faster 

kinetic that was up to five times faster than FCP signifying that the modified pellets will 

require a reactor that was five times smaller in size than was required for FCP. 

Performance using pellets with combined modification was not better than those with 

single modification. All three pellets showed good correlation with pseudo-first order 

and Bangham’s kinetic model but there were variations in kinetic parameters as a 

function of temperature. This indicates physisorption as the dominant adsorption 

mechanism supported by some pore diffusion for AlMFCP and FeMFCP but the 

dominant mechanism for adsorption using CaMFCP was chemisorption supported by 

some physical diffusion processes. Acidic pH favoured adsorption using FeMFCP, and 

slightly acidic pH for AlMFCP while adsorption using CaMFCP was favoured at acidic 

and neutral pH. This means CaMFCP can be used in wastewater treatment without 

the need to adjust the pH, thereby reducing operational cost. The adsorption 

capacities of the pellets were in order CMFCP > FeMFCP > AlMFCP. The Langmuir 

affinity constant were also in the order CMFCP > FeMFCP > AlMFCP, signifying 

CaMFCP had a higher affinity for phosphate ions than AlMFCP and FeMFCP, 

consequently, CaMFCP was chosen for use in the column experiment and subsequent 

greenhouse trial. 
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7 Adsorption performance of a fixed bed column for the removal of phosphate 

using calcium carbonate modified clay pellets (CaMFCP) 

7.1 Introduction 

Phosphate is known to cause eutrophication of aquatic bodies which results in long-

term and short term problems in the affected water bodies. One of the major effects of 

eutrophication is the proliferation of algae and other aquatic plants which leads to fish 

kill as a result of loss of deep water oxygen (Smith 2003, Smith and Schindler, Nyenje 

et al. 2010). Phosphate in municipal wastewater originate from anthropogenic sources  

domestic use of detergent, commercial and industrial use of phosphate as a raw 

material (Hammer and Hammer 2008, Kamiyango et al 2009, Miranzadeh et al. 2012). 

It is therefore essential to achieve low phosphate levels during wastewater treatment 

before discharge.  

Chemical precipitation is an effective method, often results in high phosphate removal 

levels for phosphate removal in wastewater treatment plant (WWTWs.) The simplicity 

of the process makes it an attractive option in wastewater treatment (Clark et al. 1997). 

The major drawback of the chemical precipitation is the huge cost associated with 

chemical precipitation and sludge handling (Bertenza et al. 2013). The use of 

adsorbent for phosphate removal will provide an advantage of low cost and the 

reusability of the adsorbent over the commonly used precipitation (Chen et al. 2013).  

The preceding chapter showed the potential of modified clay pellets for use in 

wastewater treatment using batch studies. Fixed bed column experiment is a more 

efficient method in studying adsorption process for industrial application in wastewater 

treatment (Gupta and Babu 2010). Fixed bed column experiment is usually used to 

provide more realistic laboratory result as it simulates the conditions obtained in 

wastewater treatment plants, compared to short-termed batch experiments which can 

lead to over estimation of adsorption capacities (Rout et al. 2014). Parameters that aid 

in design of adsorption column include flow rate, bed height, and column diameter and 

adsorbate concentration. Determination of breakthrough time for adsorption and other 

adsorption parameters allows for effective use of the column (Gupta and Babu 2010). 

The use of bricks or fired clay in fixed bed study for the adsorption of phosphate from 

wastewater has not been extensively studied. This study investigated the use of 
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Calcium modified fired clay pellets (CaMFCP) in a fixed bed column study. CaMFCP 

was chosen as the adsorbent for this study and the subsequent greenhouse 

experiment based on its performance in the previous chapter (See Chapter 6).  The 

breakthrough times and effect of adsorption parameters of flow rate, bed height, and 

column diameter and adsorbate concentration were investigated. The data obtained 

were analysed using Thomas, Adam-Bohart and Yoon-Nelson models to determine 

adsorption performance.   

The fixed bed column experiment was conducted following the procedure described 

in Section 3.7 and the performance parameters of the column are shown in Table 7.1. 

Table 7.1: Fixed bed performance parameters of CaMFCP for the adsorption of phosphate 

Parameter 
Co 

(mg/L) 
D 

(cm) 
Q 

(ml/min) 
H 

(cm) 
tb 

(Days) 
ttotal 

(Days) 
Ptotal 
(mg) 

qtotal 

(mg) Veff (l) 

Removal 
Efficiency 

(%) 
EBCT 

(mins) 
Ur 

(kg/m3) 

Co 

10 6 2.49 10 68 101 3611.76 1946.27 361.18 53.89 47.39 0.76 

20 6 2.49 10 57 80 5721.60 3069.71 286.08 53.65 56.02 1.05 

50 6 2.49 10 36 61 10906.80 4837.83 218.14 44.36 53.68 1.71 

Bed Height 

20 5 2.50 10 36 57 4104.00 1941.80 205.20 47.31 16.87 0.78 

20 5 2.50 20 46 82 5904.00 2535.62 295.20 42.95 33.74 1.06 

20 5 2.50 30 64 103 7416.00 3533.76 370.80 47.66 50.63 1.21 

Flow Rate 

20 4 1.70 10 68 93 4553.28 2621.36 227.66 57.57 34.84 0.71 

20 4 2.00 10 54 80 4608.00 2469.20 230.40 53.59 29.62 0.69 

20 4 2.60 10 47 68 5091.84 2646.86 254.59 51.98 22.78 0.58 

Column 
Diameter 

20 2.5 2.39 10 22 36 2471.04 1069.20 123.55 43.27 1.75 0.26 

20 5 2.39 10 47 68 4667.52 2527.09 233.38 54.14 17.58 0.81 

20 6 2.39 10 55 78 5353.92 2902.10 267.70 54.21 56.02 1.10 

 

7.1.1 Effect of influent phosphate concentration 

The effect of influent phosphate concentration on the performance of CaMFCP was 

investigated using varying concentrations of phosphate from 10 – 50 mg/L, bed height 

of 10 cm and column diameter of 6 cm. The results showed breakthrough time 

decreased with an increase in influent concentration as the active sites on CaMFCP 

were quickly saturated as there was increase in the amount of phosphate present at 

higher concentration (Table 7.1). The adsorbent usage rate also increased with 

increasing influent concentration while the throughput volume of solution treated 

increased with a decrease in influent concentration. The decrease in the throughput 

volume was as a result of lower concentration gradient brought about by a slower 

transport of phosphate molecules due to a decrease in the mass transfer coefficient. 

The breakthrough curves obtained from the study evaluating the effect of influent 

phosphate concentration showed the steepness of the curves increased with increase 
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in influent phosphate concentration (Figure 7.1). The increase in steepness indicated 

a relative decrease in the mass transfer zone as influent phosphate concentration 

increased. 

 

Figure 7.1: Effect of influent phosphate concentration on the experimental breakthrough curves 
(bed height 10 cm; column diameter 6 cm; temperature 25oC ±2 oC; pH 6.5) 

The amount of phosphate adsorbed by the column increased with increasing 

concentration. This is as a result of a higher concentration gradient obtained as influent 

phosphate concentration increases which cause a faster movement of phosphate 

molecules (Woumfo et al. 2015). A higher influent phosphate concentration also 

provided a greater driving force that enabled the transfer process overcome the mass 

transfer resistance leading to an increase of phosphate adsorbed (Nur et al. 2014; 

Rout et al. 2014). A higher driving force for mass transfer due to increased influent 

phosphate concentration caused the adsorbent to achieve saturation at a faster rate 

leading to a decrease in the exhaustion time and length of the adsorption zone. On 

the other hand, the longer exhaustion time exhibited by the column with a lower influent 

phosphate concentration was due to a lower driving force as a result of reduced mass 

transfer coefficient (Rout et al. 2014).  

7.1.2 Effect of bed height 

The effect of bed depth on the performance of CaMFCP for the removal of phosphate 

in a fixed bed study was investigated using varying bed depth between 10 and 30 cm. 
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The influent phosphate concentration was 20 mg/l and column diameter was 5 cm. An 

increase in bed depth increased the mass of adsorbent in the column providing a larger 

service area for the adsorption of phosphate. The results showed breakthrough time 

increased from 36 to 64 days with increase in bed depth (Table 7.1). The throughput 

volume of solution (Veff) treated was shown to increase as the bed depth increased. 

This increase could be due to an increased contact time between the CaMFCP and 

phosphate ions as evidenced by the increasing EBCT with increasing bed depth. The 

increase in the throughput volume was also due to the increase in the availability of 

adsorption sites as the mass of the adsorbent increased with bed height. The 

adsorbent usage rate also increased with increase in bed depth. The slope of the 

breakthrough curve was more gradual as the bed depth increased (Figure 7.2) 

indicating the presence of an expanded mass transfer zone as bed depth increased.  

An increase in the mass of CaMFCP in the column created a longer distance for the 

mass transfer zone to move from the entrance of the bed towards the exit thus 

increasing the breakthrough time. Phosphate adsorption by the column was also 

shown to increase as a result of the expanded mass transfer zone, qtotal increased from 

1941.80 to 3533.76 mg as the bed depth increased from 10 cm to 30 cm. Yan et al. 

(2014) reported a similar increase in value of qe from 54.45 to 78.08 mg/g when the 

bed height 15 to 25 cm when using calcined alkaline residue for the removal of 

phosphate from etching wastewater. The decrease in the slope of the breakthrough 

curve with increased bed depth also increased the contact time resulting in a longer 

exhaustion time from 57 to 103 days and higher phosphate removal efficiency as the 

bed height increased from 10 cm to 30 cm (Figure 7.2). Similar increase in exhaustion 

time from 310 to 700 minutes was reported obtained by Yan et al. (2014) when bed 

height increased from 15 to 25 cm. 
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Figure 7.2: Effect of bed height on the experimental breakthrough curves (initial phosphate 
concentration 20 mg/l; column diameter 5 cm; temperature 25oC ±2 oC; pH 6.5) 

The amount of phosphate adsorbed was also shown to increase with an increase in 

bed depth. The increase in the amount of phosphate adsorbed is evident in the 

decreased steepness of the breakthrough curve (Figure 7.2) associated with the 

longer EBCT as bed height increased. This increase in phosphate adsorption could 

be attributed to the increase in surface area of the adsorbent which provided more 

available binding sites for the adsorption of phosphate ions (Gupta and Babu 2010). 

7.1.3 Effect of adsorbate flow rate 

The effect of phosphate solution flow rate on the performance of CaMFCP for the 

removal of phosphate in a fixed bed study was investigated using varying flow rate 

between 1.7 and 2.6 ml/min. The influent phosphate concentration was 20 mg/l and 

column diameter was 4 cm and bed height was 10 cm. 

The result showed a decrease in the breakthrough time from 68 to 47 days (Table 

7.1). The decrease in the breakthrough time as a result of the exchange of more 

phosphate ions with the adsorption sites on CaMFCP within a shorter time (Li et al. 

2013). The EBCT decreased from 34.84 to 22.78 minutes as the flow rate increased. 

The slope of the breakthrough curve was steeper as the flow rate increased (Figure 

7.3) indicating the presence of an extended mass transfer zone as the flow rate 

decreased. An increase in the flow rate resulted in the quick movement of the mass 

transfer zone along the column causing an early saturation of the columns at higher 
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flow rate. The decrease in the steepness of the breakthrough curve with decrease in 

flow rate resulted in higher contact time and subsequent increase in exhaustion time 

from 68 to 93 days when the flow rate decreased from 2.6 ml/min to 1.7 ml/min. The 

higher contact time at lower flow rate between the phosphate ions and CaMFCP 

resulted in higher removal efficiency as the flow rate decreased. Lower phosphate 

removal efficiency at higher flow rate could also be as a result in the reduction in the 

external mass film resistance at the surface of CaMFCP when the flow rate increased, 

leading to decreased contact time and subsequent removal efficiency (Han et al. 2009; 

Woumfo et al. 2015). The through put volume of solution (Veff) treated was shown to 

increase from 227.66 to 254 litres as the flow rate increased, while the adsorbent rate 

usage decreased from 0.71 to 0.58 kg/m3. 

 
Figure 7.3: Effect of adsorbate flow rate on the experimental breakthrough curves (initial phosphate 
concentration 20 mg/l; column diameter 4 cm; bed height 10 cm; temperature 25oC ±2 oC; pH 6.5) 

However, the amount of phosphate passing through the column increased with 

increasing flow rate leading to an increase in the amount of phosphate adsorbed by 

the column as the flow rate increased (Table 7.1). The amount of phosphate adsorbed 

by the columns was shown to increase from 2621 to 2646 mg as the flow rate 

increased. The result of this study contradicts those reported by Xu et al. (2009) on 

the adsorption of phosphate from aqueous solution onto modified wheat residue. In 

that study, adsorbed phosphate was reported to decrease from 67.4 to 64.4 mg/g 

when the flow rate increased from 1 to 10 ml/min. It is suggested that an increase in 
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the EBCT with increase in flow rate does not allow for sufficient interaction between 

the adsorbate in solution and adsorbent (Sun et al. 2014). However, an increase in 

flow rate led to a corresponding increase in the volume of solution passing through the 

column (Table 7.1), consequently increasing the Ptotal available for adsorption. This 

increase in Ptotal could result in the increase in the qtotal obtained in this study. 

7.1.4 Effect of column diameter 

The effect of column diameter on the performance of CaMFCP for the removal of 

phosphate in a fixed bed study was investigated using varying diameter of the column 

between 2.5 and 6 cm. The influent phosphate concentration was 20 mg/l, flow rate 

was 2.39 ml/min and bed height was 10 cm. 

An increase in the diameter of the column led to an increase in the mass of CaMFCP 

in the column from 32.57g to 208.52g. The breakthrough time was shown to increase 

from 22 to 55 days as the column diameter increased from 2.5 cm to 6 cm. Exhaustion 

time was also reported to increase from 36 to 78 days, which led to a subsequent 

increase in the through put volume (Veff) from 123.55 litres using column diameter of 

2.5 cm to 267.70 litres when a column with diameter of 6 cm was used. This increase 

in Veff as a result of an increase in the mass of CaMFCP present in the column led to 

an increase in the quantity of active sites available for adsorption. The adsorbent 

usage rate was shown to increase with increase in column diameter. The slope of the 

breakthrough curve was steeper as the column diameter decreased (Figure 7.4) 

indicating the expansion of the mass transfer zone as the column diameter increased. 

The decrease in the steepness of the breakthrough curve also indicated a higher 

contact time between the phosphate ions and CaMFCP as EBCT was reported to 

increase from 1.75 minutes to 56.02 minutes. This increase in contact time resulted in 

a longer exhaustion time from 36 to 78 days and subsequent higher removal efficiency 

of 54.21% reported using 6cm column diameter (Table 7.1). 
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Figure 7.4: Effect of column diameter on the experimental breakthrough curves (initial phosphate 
concentration 20 mg/l; flow rate 2.39 ml/min; bed height 10 cm; temperature 25oC ±2 oC; pH 6.5) 

The amount of phosphate adsorbed was also shown to increase with an increase in 

bed depth. The increase in the amount of phosphate adsorbed is evident in the 

decreased steepness of the breakthrough curve (Figure 7.4) associated with the 

longer EBCT as column diameter increased. This increase in phosphate adsorption 

could be attributed to the increase in surface area of the adsorbent which provided 

more available binding sites for the adsorption of phosphate ions (Gupta and Babu 

2010). 

7.2 Modelling of fixed bed adsorption data 

The prediction of the concentration-time profile from the breakthrough curve is 

essential when used in full scale wastewater treatment. This prediction is assisted by 

the successful design of the fixed bed adsorption column. To predict and analyse the 

dynamics of phosphate adsorption onto CaMFCP, Bed Depth Service Time (BDST), 

Thomas, Yoon-Nelson and Adams-Bohart models were applied to the experimental 

data for Ct/Co ratio from 0.04 to 0.6 reported in Section 7.2. 

7.2.1 Bed Depth Service Time (BSDT) 

The Bed Depth Service Time (BSDT) is the commonly used model in predicting the 

performance of adsorption columns with known bed depths. The constants obtained 

from the model are used to scale up height of adsorption bed for a given influent 
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concentration and flow rates. The model is based on the assumption that the 

adsorption rate is dependent on the surface interaction between the adsorbate and 

unused adsorbent (Rout et al. 2014). The design criterion is based on the prediction 

of service time of the bed where the service time is the time required to remove a 

specific amount of adsorbate by the adsorbent before the regeneration of the 

adsorbent is needed. The model states that there is an existing linear relationship 

between bed height (H) and service time (t) and is represented as: 

 t = 
𝑵𝒐

𝑪𝒐𝑽
H - 

𝟏

𝑲𝒃𝒅𝑪𝒐
𝐥𝐧[

𝑪𝒐

𝑪𝒃
− 𝟏]   Equation 7.1 (Hutchins 1973) 

where V is the linear velocity (cm3/h), t is time (days), H is the bed height (cm), No is 

the adsorption capacity of the bed (mg/g) and KBD is the BDST rate constant (L/mg/h) 

Co is the influent phosphate concentration (mg/L) and Cb is the desired phosphate 

concentration (mg/L).  

Assuming t=0  

 Ho = 
𝑽

𝑲𝑩𝑫𝑵𝒐
𝐥𝐧 (

𝑪𝒐

𝑪𝒃
) − 𝟏 Equation 7.2 (Mohan and Sreelakshmi 2008) 

Where Ho is the minimum height required to produce the effluent concentration Cb. Ho 

is also known as the critical bed depth. 

Equation 7.2  can also be expressed as 

 t = aH x b 

where a = slope = 
𝑵𝒐

𝑪𝒐𝑽
   Equation 7.3 (Mohan and Sreelakshmi 2008) 

and b = intercept = 
𝟏

𝑲𝒂𝑪𝒐
𝐥𝐧 (

𝑪𝒐

𝑪𝒃
− 𝟏) Equation 7.4 (Mohan and Sreelakshmi 2008) 

A plot of t against H yielded a straight line and No and KBD evaluated from the slope 

and intercept respectively (Figure 7.5). 

The model fitting was done by linear regression analysis and predicted curves 

obtained at various experimental conditions. The BDST plots for 10%, 50% 

breakthroughs and exhaustion are shown in Figure 7.5. The No, KBD and R2 values 

are given in Table 7.2. 
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Figure 7.5: BDST plot for different bed height (flow rate 2.5 ml/min; influent phosphate 

concentration 20 mg/L) 

There was an increase in the slope of the breakthrough with a corresponding increase 

in the adsorption capacity (No) of the columns from 4200 mgP/g to 6900 mgP/g (Table 

7.2).  

Table 7.2: BDST parameters for adsorption of phosphate onto CaMFCP 

Parameter No (mg/L) kBD (L/mg min) R2 

tb10 4200 0.11 0.9423 

tb50 4200 7.26 x10-5 0.9735 

te 6900 7.98 x10-6 0.9975 

 

The BDST constant kBD is used to show the rate of transfer of adsorbate from the liquid 

phase onto the solid phase. High kBD values allow breakthrough to be avoided even 

when a shorter bed is used while low kBD values would require deeper bed to avoid 

breakthrough (Jahangiri-rad et al. 2014). This is confirmed by the increase in the 

critical bed depth, which was determined as 7.1 cm, 14.76 cm and 15.07 cm with KBD 

of 0.11 L/mg min, 7.26 x10-5 L/mg min and 7.98 x10-6 L/mg min for 10%, 50% 

breakthroughs and exhaustion respectively. This suggested that application of 

CaMFCP in a bed with a short depth could be used effectively while avoiding 

breakthrough.  
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Adsorption capacity obtained using BDST was lower than the total capacity of the 

adsorbent. The increase in the adsorption capacity from 4200 to 6900 mg/L when the 

bed depth increased from 10 to 20 cm corresponded with an increase in the contact 

time as the bed height increased allowing more phosphate ions to adsorb onto 

CaMFCP. Similar trend has been reported in several studies. Sun et al. (2014) 

reported an increase in the adsorption capacity of calcined Mg3-Fe layered double 

hydroxides from 1104.95 mg/L to 1742.05 mg/L for the adsorption of phosphates when 

the breakthrough increased from 10% to 60%. The low adsorption capacity exhibited 

at lower breakthroughs suggests the availability of unused active sites for adsorption 

of phosphate ions as the column remained unsaturated. The high R2 values (>0.94) 

indicate the applicability of BDST model for the adsorption of phosphate using 

CaMFCP. 

Extrapolation of 50% breakthrough did not pass through the origin at t =0, which shows 

the adsorption of phosphate ions onto CaMFCP involves several processes as 

discussed in Section 6.5. Diffusion of adsorbate into the adsorbent is believed to be 

one of the mechanisms involved in the adsorption of phosphates from solution. A good 

R2 obtained from the Elovich kinetic model usually indicates diffusion as a rate limiting 

step, but there were fluctuations in the values of kinetic parameters as a function of 

temperature (Section 6.5.4.1). Other kinetic models studied also showed these 

fluctuations in kinetic parameters indicating one process was not the dominant 

adsorption mechanism but the adsorption was a result of the interaction of several 

processes.  

7.2.2 Thomas model 

Thomas model is widely used to describe the adsorption rate constant, adsorption 

process and maximum solid phase concentration of adsorbate on adsorbent in a fixed 

bed column. It is based on the assumption that the adsorption follows second rate 

reaction kinetics, Langmuir kinetics of adsorption and desorption and there is no axial 

dispersion. The model is expressed as: 

 
𝑪𝒕

𝑪𝒐
=  

𝟏

𝟏+𝐞𝐱𝐩 [
𝑲𝑻𝑯

𝑸
(𝒒𝒐𝑴−𝑪𝒐𝑽)]

      Equation 7.5 
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Where KTH is the Thomas model rate constant (ml/h/mg), qo is maximum solid phase 

concentration of the solute (mg/g), V is the effluent volume (L), m is the mass of 

adsorbent (g) and Q is the volumetric flow rate (ml/h). 

The linearised  form of the model is expressed as: 

 ln[
𝑪𝒐

𝑪𝒕
− 𝟏] = 

𝒌𝑻𝑯𝒒𝒐𝒎

𝑸
  - kTHCot Equation 7.6 (Lim and Aris 2014) 

Where kTH is the Thomas kinetic constant (ml/h/mg), qo is the maximum solid phase 

concentration (mg/g), Co is the influent phosphate concentration, Q is the volumetric 

flow rate (ml/hr) and t is the total flow time. The values of KTH and qo were obtained 

from the plot of ln(Co/Ct – 1) against time (Figure 7.6). 

The model fitting was done by linear regression analysis and predicted curves 

obtained at various experimental conditions. 

The Thomas model (Thomas 1944; Woumfo et al. 2015) assumes the flow of 

phosphate solution through the column follows plug flow behaviour. The model is 

based on the assumption that phosphate ions migrate from the solution to a film 

surrounding the pellets before diffusing to the surface of the pellets followed by 

adsorption on the active sites (Han et al. 2009). KTH and qo obtained using Equation 

7.6 are shown in Table 7.3. 

Table 7.3: Parameters of Adams-Bohart and Thomas models for the adsorption of phosphate by 
fired clay pellets under different experimental conditions. 

     Adams -Bohart model Thomas model 

Parameter 
Co 

(mg/l) 

D 

(cm) 
Q 

(ml/min) H (cm) 
KAB x10-3 
(l/mg/hr) 

No 
(mg/l) R2 

KTH 
(ml/h/mg) 

qo 
(mg/g) R2 

Initial 
Conc 

10 6 2.49 10 7.54 419.30 0.9644 0.69 0.1 0.9393 

20 6 2.49 10 3.89 679.52 0.8861 0.28 0.25 0.937 

50 6 2.49 10 2.37 1070.20 0.9866 0.11 1.02 0.9639 

Bed 
Height 

20 5 2.50 10 5.46 797.50 0.9788 0.27 0.40 0.9931 

20 5 2.50 20 4.91 516.90 0.9866 0.32 0.28 0.9821 

20 5 2.50 30 4.46 433.63 0.7881 0.38 0.18 0.8696 

Flow Rate 

20 4 1.70 10 3.78 1280.48 0.9793 0.35 0.25 0.9853 

20 4 2.00 10 4.76 1205.99 0.9774 0.35 0.36 0.9839 

20 4 2.60 10 4.24 1388.07 0.9707 0.27 0.55 0.9757 

Column 
Diameter 

20 2.5 2.39 10 9.07 1461.28 0.9577 0.25 4.15 0.981 

20 5 2.39 10 4.62 1004.21 0.9795 0.29 0.46 0.9821 

20 6 2.39 10 4.22 643.78 0.9187 0.29 0.25 0.952 
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The results shown in Table 7.3 indicated the Thomas kinetic constant (KTH) decreased 

from 0.69 ml/h/mg to 0.11 ml/h/mg when influent concentration increased form 10 mg/l 

to 50 mg/l while the maximum solid phase concentration of phosphate (qo) increased 

from 0.10 mg/g to 1.02 mg/g as influent concentration Increased. This is due to the 

concentration gradient acting as the driving force for the adsorption of phosphate onto 

CaMFCP. A higher phosphate concentration as the influent concentration increased 

resulted in a greater driving force which led to a higher qo value as the concentration 

increased. This trend is similar to those reported by Li et al. (2013) on phosphate 

removal using nanosized FeOOH modified anion resin; Sun et al. (2014) on phosphate 

adsorption using calcined Mg3-Fe layered double hydroxides and Yan et al. (2014) 

using calcined alkaline waste residue.  
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Figure 7.6: Thomas plot for the adsorption of phosphate on CaMFCP: Effect of (a) bed height; (b) influent phosphate concentration; (c) flow rate; and (d) 
column diameter. 
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The Thomas kinetic rate constant (KTH) increased with an increase in bed height and 

column diameter. KTH increased from 0.27 to 0.38 ml/h/mg as the bed height increased 

from 10 to 30 cm and from 0.25 to 0.29 ml/h/mg as the column diameter increased 

from 2.5 cm to 6 cm. The maximum solid phase concentration qo decreased with 

increase in bed height and column diameter from 0.40 to 0.18 mg/g as the bed height 

increased from 10 to 30 cm and also decreased from 4.15 to 0.25 mg/g as column 

diameter increased from 2.5 to 6 cm. The increase in flow rate resulted in a decrease 

of the Thomas kinetic rate constant. (KTH). The Thomas kinetic rate constant 

decreased from 0.35 to 0.27 ml/h/mg as the flow rate increased from 1.7 to 2.6 mL/min. 

However, qo was shown to increase with an increase in flow rate from 0.25 to 0.55 

mg/g as the flow rate increased from 1.7 to 2.6 mL/min. The value of qo increased 

noticeably from 0.10 to 1.02 mg/g, but the value of KTH decreased as the initial influent 

concentration increased from 10 to 50 mg/L. The good fit of the Thomas model to the 

experimental data shows could be suitably used to describe the adsorption of 

phosphate onto CaMFCP where pore or film diffusion was not a rate limiting step. 

 

7.2.3 Yoon-Nelson Model 

Yoon-Nelson model is commonly used to predict the exhaustion time and behaviour 

of the adsorption process for a given adsorbate concentration. It is based on the 

assumption that the rate of decrease in the probability of adsorption of adsorbate 

molecules is directly proportional to the adsorbate molecule adsorption and the 

adsorbate breakthrough on the adsorbent (Kavak and Ozturk 2004; Nwabanne and 

Igbokwe 2012). The model is expressed as: 

 
𝑪𝒕

𝑪𝒐
= 

(𝐞𝐱𝐩(𝑲𝒚𝒏𝒕)− 𝝉𝑲𝒚𝒏)

𝟏+(𝐞𝐱𝐩(𝑲𝒚𝒏𝒕)− 𝝉𝑲𝒚𝒏) 
    Equation 7.7  

Where is KYN is the Yoon-Nelson constant (L/h) and τ is the time required for 50% 

breakthrough. A linearised form of the equation for a one component system is 

expressed as  

  

               𝒍𝒏
𝑪𝒕

𝑪𝒐−𝑪𝒕
= 𝑲𝒚𝒏𝒕 −  𝝉𝑲𝒚𝒏    Equation 7.8 
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Where KYN is the Yoon-Nelson constant (ml/min); and τ is the time required for 50% 

breakthrough (mins) and are obtained from the plot of ln[Ct/(Co-Ct)] against t (Figure 

7.7). 

The model fitting was done by linear regression analysis and predicted curves 

obtained at various experimental conditions. The values of KYN and τ are shown in 

Table 7.4. 

Table 7.4: Parameters of Yoon-Nelson model for the adsorption of phosphate by fired clay pellets 
under different experimental conditions. 

  Yoon-Nelson model 

Parameter Co (mg/l) D (cm) Q (ml/min) H (cm) 
KYN 

(ml/min) τ (days) R2 

Initial Conc 

10 6 2.49 10 0.097 71 0.9393 

20 6 2.49 10 0.102 56 0.9366 

50 6 2.49 10 0.153 35 0.9647 

Bed Height 

20 5 2.50 10 0.154 36 0.9931 

20 5 2.50 20 0.130 48 0.9862 

20 5 2.50 30 0.112 56 0.8076 

Flow Rate 

20 4 1.70 10 0.101 69 0.9869 

20 4 2.00 10 0.126 56 0.9852 

20 4 2.60 10 0.114 47 0.972 

Column 
Diameter 

20 2.5 2.39 10 0.234 21 0.987 

20 5 2.39 10 0.120 48 0.9827 

20 6 2.39 10 0.110 56 0.9595 
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Figure 7.7: Yoon-Nelson plot for the adsorption of phosphate on CaMFCP: Effect of (a) bed height; (b) influent phosphate concentration; (c) flow rate; and 
(d) column diameter 
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The Yoon-Nelson kinetic rate constant (KYN) was found to increase from 0.097 to 0.153 

ml/min as influent concentration increased from 10 mg/l to 50 mg/l while the time 

required to achieve 50% breakthrough (τ) was found to decrease from 71 to 35 days 

as the influent concentration increased (Table 7.4). KYN increased from 0.101 to 0.126 

ml/min as the flow rate increased from 1.7 ml/min to 2 ml/min before decreasing to 

0.114 ml/min as the flow rate increased to 2.6 ml/min, while the time required to 

achieve 50% breakthrough (τ) decreased from 69 to 47 days when the flow rate 

increased from 1.7 ml/min to 2.6 ml/min. This is as a result of an increase in the amount 

of phosphate ions available for adsorption as a result of increased concentration and 

higher flow rate leading a faster saturation of the adsorption sites and consequently a 

shorter breakthrough time. A similar trend has been reported in studies by Chen et al. 

(2012) using modified corn stalk for hexavalent chromium adsorption from aqueous 

solution; and Rout et al. (2014) using a mixture of red soil and ground burnt patties to 

remove phosphate from aqueous solution. 

On the contrary, the value of KYN decreased from 0.154 to 0.112 ml/min while τ 

increased from 36 to 56 days as the bed height increased from 20 to 30 cm. Also, KYN 

decreased from 0.234 ml/min to 0.11 ml/min while τ increased from 21 to 56 days as 

the column diameter increased from 2.5 cm to 6 cm. The increase in the breakthrough 

time as the bed height and column diameter increased is due to a higher number of 

available adsorption sites leading to a longer retention time. The effluent adsorbate 

concentration ratio increases more rapidly as the bed height increases with a smaller 

bed height corresponding to a less amount of phosphate ions adsorbed the column 

and time required to saturate the column (Babu and Gupta 2005). Higher breakthrough 

time (τ) usually corresponds to greater adsorption by the column. A high KYN value 

indicates a smaller MTZ with greater mass transfer coefficient and lower mass transfer 

resistance between the phosphate molecules and CaMFCP leading to ease of 

adsorption. This ease of adsorption could be attributed to the decrease in τ with an 

increase in KYN and vice versa reported in this study. 

The overall good fit of the experimental data to Yoon and Nelson model shows the 

model can be used to predict the breakthrough curve and characteristic parameters 

for the adsorption of phosphate using CaMFCP.  
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7.2.4 Adams-Bohart Model 

The Adams-Bohart model is used to describe the initial stage of operation of a 

breakthrough curve. It is based on the theory of surface reaction where it is assumed 

the rate of adsorption is proportional to the residual capacity of the adsorbent and the 

concentration of the adsorbing species (Han et al. 2009, Lim and Aris 2014). The linear 

form of Adams-Bohart equation is expressed as 

 ln[
𝑪𝒕

𝑪𝒐
] = 𝑲𝒂𝒃𝑪𝒐𝒕 − 𝑲𝒂𝒃𝑵𝒂(

𝑯

𝑼𝒐
)    Equation 7.9 

where KAB is the Adam-Bohart constant representing the mass transfer coefficient 

(l/mg/min), Na is the saturation concentration (mg/l), Uo is the superficial velocity 

(cm/min), H is the bed height (cm) and t is the total flow time (days). The parameters 

were derived from the plot of ln Ct/Co against time (Figure 7.8). 
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Figure 7.8: Adams-Bohart plot for the adsorption of phosphate on CaMFCP: Effect of (a) bed height; (b) influent phosphate concentration; (c) flow rate; 
and (d) column diameter. 
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Mass transfer coefficient (KAB) decreased with increase in influent concentration while 

the saturation concentration (Na) increased with increasing influent concentration 

(Table 7.3). KAB decreased from 7.54 x10-3 L/mg/min to 2.37 x10-3
 L/mg/hr, while 

saturation concentration (Na) increased from 419.30 to 1070.20 mg/L as influent 

phosphate concentration increased from 10 mg/L to 50 mg/L. Low KAB value indicates 

smaller resistance to phosphate adsorption and higher phosphate ion concentration 

resulted in a reduction to the mass transfer resistance. The decrease in KAB with 

increasing influent concentration suggests the role of external mass transfer on the 

kinetics of the system during the initial stages of adsorption (Han et al. 2009). 

The mass transfer coefficient (KAB) and saturation concentration decreased with 

increase in bed height and column diameter. KAB decreased from 5.46 x10-3 L/mg/hr 

to 4.46 x10-3 L/mg/hr while the saturation concentration decreased from 797.50 to 

433.63 mg/L when the bed height increased from 10 cm to 30 cm.   The increase in 

the diameter of the column also resulted in a decrease in KAB from 2.52 x10-4 to 5.40 

x10-5 L/mg/min and a decrease in the saturation concentration (No) from 1461.28 to 

643.78 mg/L as the column diameter increased from 2.5 cm to 6 cm.  

On the other hand, the flow rate had a variable effect on the KAB and No. The KAB 

increased from 3.78 to 4.76 L/mg/hr as the flow rate increased from 1.7 to 2 ml/min 

before reducing to 4.24 L/mg/hr as the flow rate increased to 2.6 ml/min. Similarly, No 

decreased from 1280.48 to 1205.99 mg/L before increasing to 1388.07 mg/L as the 

flow rate increased from 1.7 ml/min to 2.6 ml/min. This trend is inconsistent with that 

reported in a study by Woumfo et al. (2015) on phosphate removal from aqueous 

solution using an andosol-bagasse mixture.  In that study, KAB increased from 3.30 

x10-3 L/mg/min to 8.20 x10-3 L/mg/min while No decreased from 1049.91 mg/L to 691.5 

mg/L when the flow rate increased from 4 ml/min to 8 ml/min. 

Reaction and mass transfer in a liquid/solid system occurs across a film at the 

liquid/solid interphase. The dominance of mass transfer is affected by the condition of 

the system. Mass transfer dominates as the adsorption mechanism at low flow rate 

while reaction between the analyte in solution and the solid phase is dominant at 

higher flow rate. An increase in the mass transfer resistance with increase in bed 

height usually indicates the dominance of external mass transfer as the adsorption 
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mechanism; this was not the case in this study. The variable trend on the effect of flow 

rate and the decrease of mass transfer resistance with increase in bed height indicates 

mass transfer was not the dominant adsorption mechanism for adsorption by the 

columns confirming results from Sections 6.5 and 7.3.1 that several mechanisms 

were involved in the uptake of phosphate using CaMFCP. 

7.3 Up scaling models 

Up scaling of data obtained from Section 7.2 were done using EBCT and BDST model 

discussed in Section 7.3.1. The up scaling calculation was carried out using data 

obtained from columns with the following parameters from Section 7.2: 10 mg/L 

influent phosphate concentration, 10 cm and 20 cm bed height, and 6cm column 

diameter designated as Column 1, Column 2, Column 3 and Column 4 respectively, 

and data for Moreton WWTW (Littler 2012) as shown in Table 7.4. 

Table 7.5: Moreton WWTW Data (Littler 2012) 

Dry Weather Flow 
(DWF) m2/day 

Population Equivalent 
(p.e) 

Total phosphorus 
load (kg/day) 

Average influent 
phosphorus 

concentration (mg/L)  

1086 4157 10.4 9.6 
 
 
 

The area flow rate of Column 1 was 53.21 L/hr/m2 would require an area of 84.84 m2 

to maintain the area flow rate. Using an influent concentration of 9.6 mg/L, an 

operational time of 68 days and 63.2 tonnes of CaMFCP would be required. The data 

for other columns are presented in Table 7.5. 

Table 7.6: Scaling up data 

Column Column 1 Column 2 Column 3 Column 4 

Diameter (m) 10.33 7.43 12.06 10.69 

Height (m) 20 20 20 20 

Area flow rate 
(L/hr/m2) 532.14 937.5 93.75 51.07 

Surface Area (m2) 85.04 48.27 48.27 88.29 

Operational 
lifespan (days) 68 36 46 55 

Adsorbent mass 
(tonnes) 63.20 30.50 66.60 65.60 

Tonnage usage 
(tonnes/hour) 0.93 0.85 1.45 1.20 
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Column 2 was the most efficient column and would require 30.5 tonnes of CaMFCP 

with a filter bed lifespan of 36 days. The annual demolition waste produced in England 

and Scotland is approximately 31.8 million tonnes per annum (Mtpa) out of which the 

concrete and ceramic waste constitute 65.8% amounting to approximately 21 million 

tonnes annually (CRWP 2007). The construction waste generated would be sufficient 

for use for a year round treatment of wastewater at this treatment works. However, 

considering this is a small WWTW, the large scale implementation of this technology 

is not very feasible. 

7.3.1 Up scaling using Empty Bed Contact Time (EBCT) 

The empty bed contact time plot of the columns with different bed height against 

adsorbent usage rate is given in Figure 7.9. 

 

Figure 7.9: EBCT plot for columns of different bed heights (10, 20 and 30 cm; influent concentration 
20 mg/L; column diameter 5 cm; flow rate 2.5 ml/min) 
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more than the 10 cm column, suggesting tall column might not be very efficient for the 

removal of phosphate using CaMFCP. 

10 cm column has the lowest usage rate of 0.78 kg/m3 with an EBCT of 16.87 minutes, 

while the 30 cm column has a usage rate and EBCT of 1.21 kg/m3 and 50.63 minutes 

respectively (Table 7.1). This suggests a 300% increase in EBCT would result in a 

156% in usage rate implying and increase in the filter size would not yield a 

corresponding increase in the adsorbent usage rate. 

Using EBCT of 16.87 minutes, a filter size of 85.34 m3 containing 0.44 tonne of pellets 

would be required to treat wastewater at Moreton WWTW daily. The filter would be 

able to treat 339618.36 m3 of water which is equivalent to 312 days’ worth of 

wastewater, giving a new adsorbent usage rate of 0.0014 tonne/day. This however, 

may be an overestimation of the lifespan and performance of the column. 

7.3.2 Up scaling using Bed Depth Service Time (BDST) 

Using the principle discussed in Section 7.3.1, a column with an area of 43.35 m2 

would be required to treat the daily volume of water at Moreton WWTW with an area 

flow rate of 937.5 L/hr/m2 assuming the bed depth as 20 m and service time of the 

column as 68 days. This would give a column with diameter of 7.43 m and volume of 

867.16 m3 holding 25.79 tonnes of clay pellets. These values suggest BDST might not 

be suitable for the design of the column and EBCT model could be a better alternative 

or other plant options may be applied for the use of CaMFCP.  

7.4 Summary and Conclusion 

Fixed bed column test was carried out under different conditions to investigate the 

adsorption of phosphate using CaMFCP. Effect of influent phosphate conditions, bed 

height, flow rate and column diameter was investigated. All columns were allowed to 

run till exhaustion. Effluents were sampled regularly to measure the concentration of 

phosphate and the column stopped when effluent phosphate concentration equaled 

influent phosphate concentration.  

The column with column diameter of 2 cm, bed height of 10 cm and influent phosphate 

concentration of 20 mg/L showed the shortest retention time of 1.75 minutes, followed 

by the column with a bed height of 10 cm, column diameter of 5 cm and influent 

phosphate concentration of 20 mg/L while the longest retention time was 56.02 
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minutes exhibited by the columns with bed height of 10 cm, influent phosphate 

concentration of 20 mg/L, and column diameter of 6 cm. The total volume of solution 

treated by the columns were found to increase with an increase in bed height and 

column diameter but decreased with an increase in influent phosphate concentration 

and flow rate. The increase in the total volume of solution treated did not however, 

correspond with the increase in the amount of pellet used. For instance, there was a 

50% increase in the amount of pellets used by the column with a bed height of 20 cm 

over the column with bed height of 10 cm but only a 30% in volume of solution treated. 

The amount of phosphate available for adsorption and adsorbed increased as the 

different parameters increased.  

Phosphate- enriched materials obtained from this study could be used sustainably 

rather than go to landfill. The phosphate sorbed to these pellets could be recycled and 

one of the options would be for use in agriculture. A minimum of 2400 mg of phosphate 

was adsorbed by the column in this study; this phosphate could ensure a “green” 

approach to agriculture with the phosphate sorbing materials having an additional 

benefit for use as a liming material or in improving soil structure. 

The next chapter will investigate the availability of phosphate sorbed to CaMFCP to 

plants as a form of a slow release fertilizer. 
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8 Calcium-modified fired clay pellet as an adsorbent for the removal of 

phosphate from waste water and its potential for a slow release fertilizer 

8.1 Introduction 

Phosphate in wastewater is a source of pollution as elevated levels lead to 

euthrophication of aquatic bodies (Smith and Schindler 2009). The Urban Wastewater 

Treatment Directive mandates effluent concentration of 1-2 mg/L for wastewater 

treatment works (WWTWs).  

Conventional method for the removal of phosphate involves chemical precipitation 

using iron, aluminium and calcium salts (Clark et al. 1997). Chemical precipitation has 

a major disadvantage of being an expensive treatment option. Adsorption on to low 

cost adsorbent is viewed as an alternative low cost option for phosphate removal from 

wastewater (Jia et al. 2013). Sorption of phosphate on to suitable materials consists 

of the chemical, physical and biological processes involved in the retention of 

phosphate on these materials (Zhu et al 1997; Hylander et al. 2006). These phosphate 

enriched materials could be reused by effectively recycling adsorbed phosphate in 

agricultural production rather than sent to landfill.  

Recycled bricks and other clay adsorbents have been effectively used for the 

adsorption of phosphate (Johansson 1997; Zhu et al. 2003; Kamiyango et al. 2009; 

Jia et al. 2013). Phosphate enriched materials have been used as a fertilizer source 

to provide phosphate for agricultural production. 

The objective of this study was to investigate the potential of the use of phosphate 

sorbed to Calcium modified fired clay pellets discussed in Chapter Seven as an 

effective fertilizer source for the production of ryegrass.  

8.2 Soil analysis 

8.2.1 Soil pH 

The pH of the soil decreased from 6.5 before planting to 6.12, this decrease could be 

attributed to a decrease in the concentration of Ca in the soil and relative increase in 

the concentration of Fe due to the leaching of Fe from the soil post-planting (Figures 

8.1- 8.2). 
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8.2.2 Analysis of elemental content 

An analysis of the elemental content of the soil (Ca, Al, Fe, Mg, and P) was conducted 

to determine the concentration of Al, Ca, Fe, Mg and P in the soil before and after 

planting. The results are presented in Figures 8.1- 8.2. 

 
Figure 8.1: Concentration of elements in the soil pre-planting 

 
Figure 8.2: Concentration of elements in the soil post-planting 
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There was a general increase in the concentration of elements pre-planting with an 

increase in the concentration of added phosphate (P) in the form of phosphate sorbed 

to CaMFCP (PSC). This is as a result of the increase in the mass of added material 

as the concentration of P increased. The mass of added material increased from 0.87 

to 8.65g as application rate of phosphate increased from 38.22 to 382.17 kgP/ha. Ca 

concentration increased from 1395 to 2482 mg/kg while the concentration of Al 

increased from 297 to 399 mg/kg when the as application rate of phosphate increased 

from 38.22 to 382.17 kgP/ha. Similarly, the concentration of Fe increased from 509 to 

544 mg/ kg while that of Mg increased from 59 to 77 mg/kg under the same conditions 

(Figure 8.1).  

The concentration of the elements decreased post-planting except for Fe. The 

concentration of Fe increased from 509 to 665.5 mg/kg when the application rate of 

phosphate was 38.22 kgP/ha. This increase in concentration of Fe could be as a result 

of the release of Fe from the clay added to the soil. The concentration of Ca declined 

from 2482 to 1049 mg/g while the concentration of Al and Mg decreased from 399 to 

259 mg/kg and 77 to 55 mg/kg respectively when the application rate of phosphate 

was 38.22 kgP/ha. Similar trend was also reported for all the levels of added 

phosphate (Figure 8.2).  

The pots with P added in the form of KH2PO4 also exhibited a similar trend, the 

concentration of Ca decreased from 2577 mg/kg pre-planting to 908 mg/kg post-

planting when 382.17 kgP/ha of phosphate was applied. The concentration of Al and 

Mg also decreased from 231 to 134 mg/kg and from 57 to 41 mg/kg respectively under 

the same conditions. 

8.3 Growth parameters 

8.3.1 Germination rate 

The effect of application rate of phosphate on the germination rate of ryegrass was 

investigated and results are presented in Figure 8.3. 



217 
 

 

Figure 8.3: Germination rate of ryegrass as a function of added phosphate sorbed to CaMFCP 
(n=3), standard error bars shown 
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92.50% and 93.33% when PSC and KH2PO4 respectively was used. 
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p value = 4.28 E-39 <0.05 =α or (F= 229.99 >3.08= F-crit) was obtained for pot with 

127.39 kgP/ha applied and p value = 7.99E-40 < 0.05 = α or (F= 239.15 >3.08 = F-

crit) for pots with 382.17 kgP/ha applied. The p values < 0.05 suggests a significant 

difference between the germination rate of ryegrass using added P in the form of PSC 

and KH2PO4. 

The difference in germination rate was not attributed to the difference in the amount 

of added P but is believed to be as a result of the sowing depth of the seed. As 

germination usually occurs near the soil surface, burying the seeds in the soil could 

have resulted in the low initial germination rate observed in this study. High 

germination rates are often observed in ryegrass and 100% germination has been 

reported (Nnadi 2009). The average germination rate of 85% obtained in this study 

could be attributed to error during sowing. 

8.3.2 Plant height 

The effect of P application on the growth of ryegrass was studied as a function of the 

height of ryegrass. The height was measured weekly during each four week growing 

cycle. The result is presented in Figures 8.4a-d. 
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Figure 8.4: Plant height of ryegrass: a) 1st growing cycle; b) 2nd growing cycle; c) 3rd growing cycle and d) 4th growing cycle; (n=3) standard error bars 
shown
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Plant height typically increased along each crop cycle as time progressed and also 

increased with increase in amount of added P. Plant height increased from 5.43cm in 

week 1 to 19.67 cm in week 4 during the first crop cycle when the P application rate was 

38.22 kgP/ha (Figure 8.4a). The initial growth rate of ryegrass was slow as evidenced in 

the plant height (Figure 8.4a). The slow growth at the initial stages could be attributed to 

the establishment level of the crop. A more proportionate growth rate was observed at 

weekly intervals during subsequent crop cycles for all treatment levels as plants became 

more established. The rate of growth between harvest and the first weekly reading after 

harvest during the second to the fourth crop cycles was greater than the rate of growth 

between germination and the first weekly reading of the first crop cycle.  

The third crop cycle showed the highest growth rate. Plant height at the end of the fourth 

week was between 19.5 cm for the pot with 38.22 kgP/ha applied and 23 cm for the pot 

with application rate of 382.17 kgP/ha.  

Plant height increased with increasing phosphate levels applied. Plant height increased 

from 18.37 cm to 20.83 cm by the end of the second cropping cycle when P level 

increased form 32.22 kgP/ha to 382.17 kgP/ha when P was added in the form of PSC. 

During the same period, plant height in pots with added KH2PO4 increased form 18.62 

cm to 22.13 cm when added P levels was 127.39 kgP/ha and 382.17 kgP/ha respectively. 

Plant height increased from 18.13 cm to 20.50 cm using PSC as the added P levels 

increased form 38.22 kgP/ha to 382.17kgP/ha by the end of the fourth cropping cycle. 

Plant height also increased from 18.03 cm to 20.73cm when the P level increased from 

127.39 kgP/ha to 382.17 kgP/ha when added as KH2PO4 during the same period. 

There was comparable results obtained using both forms of phosphate. Plant height was 

higher using PSC when 127.39 kgP/ha was applied during the second cropping cycle. A 

higher pant height of 22.13 cm was obtained using 382.17 kgP/ha in the form of KH2PO4 

during the same period.  

The same pattern was obtained during the fourth cropping cycle. Plant height using PSC 

was 18.43 cm and 18.03 cm using KH2PO4 when 127.39 kgP/ha was applied. While the 
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plant height was 20.50 cm and 20.73 cm when 382.17 kgP/ha was applied in the form of 

PSC and KH2PO4 respectively.  

p value = 2.01 E-34 <0.05 =α or (F= 292.5 >3.13= F-crit) was obtained for pots with 127.39 

kgP/ha applied and p value = 2.63 E-31 < 0.05 = α or (F= 231.07 >3.12 = F-crit) for pots 

with 382.17 kgP/ha applied. The p values < 0.05 suggests a significant difference 

between the plant height of ryegrass using added phosphate in the form of phosphate 

PSC and added in the form of KH2PO4.  

Overall, plant height increased with increasing P levels using both forms of phosphate 

was applied and showed similar results when the two forms of P applied were compared. 

8.3.3 Effect of phosphate application on the wet matter (WM) yield of ryegrass 

 The effect of application of phosphate on the yield of ryegrass was investigated as a 

function of the fresh biomass yield. The fresh weight of the grass was measured after 

harvesting every four weeks, where the grass blades were cut 1cm above the soil. The 

wet matter (WM) yield of ryegrass is presented in Figure 8.5. 

 

Figure 8.5: Effect of phosphate application on the wet matter yield (WM) of ryegrass, (n=3) standard 
error bars shown 
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WM yield increased with increase in rate of P application (Figure 8.5). WM yield for pots 

with P in the form of PSC increased from 2806.79 to 3252.65 kg/ha when the rate of P 

application increased from 38.22 to 382.17 kgP/ha during the first crop cycle and from 

2751.59 to 3490.45 kg/ha during the fourth crop cycle as the rate of P application 

increased from 38.22 to 382.17 kgP/ha. Similar trend was observed during all four harvest 

cycles. The ryegrass yield from the pot with no added P decreased from 1893.84 kg/ha 

to1549.89 kg/ha. Highest WM yield was obtained after the second cycle for the pots with 

P application rate of 38.33 and 127.39 kgP/ha, while highest yield was obtained after the 

third crop cycle when 254.78 and 382.17 kgP/ha of P in the form of PSC was applied. 

The application of P in the form of KH2PO4 increased WM yield from 3562.63 to 3626.33 

kgP/ha during the first crop cycle and from 3176.22 to 3452.23 kg/ha during the fourth 

crop cycle as the rate of application increased from 127.29 to 382.17 kgP/ha.  

Yield from the second harvest was greater than yield from the first harvest in all cases for 

pots with P added in the form of PSC. Similar trend was also observed in the crops where 

P was applied in the form of KH2PO4, this increase could be due to the fact that the grass 

was not fully established during the first crop cycle.  

WM yield was highest at the end of the second cropping cycle for all pots with P added in 

the form of PSC except pots with P level of 254.78 kgP/ha. While highest yield was 

obtained at the end of the second cropping cycle for pots with P level of 127.39 kgP/ha; 

and at the end of the third cropping cycle for pots with P level of 382.17 kgP/ha added in 

the form of kH2PO4. WM yield of ryegrass from pots with P added in the form of PSC was 

comparable to yield from pots with P added as KH2PO4. WM yield of 3150.74 kg/ha and 

3176.22 kg/ha was obtained with P level of 127.39 kgP/ha in the form of P added as PSC 

and KH2PO4. The WM yield of pots with P in the form of PSC (3490.45 kg/ha) was higher 

than those obtained from pots with added KH2PO4 (3452.23kg/ha) when 382.17 kgP/ha 

was applied. 

P value = 9.7 E-07 <0.05 =α or (F=17.04 > 3.13 = F-crit) was obtained from the pots with 

P level of 127.39 kgP/ha and p value = 3.24 E-09 <0.05 =α or (F=26.37 > 3.13 = F-crit 

was obtained from pots with 382.17 kgP/ha applied. The p values < 0.05 suggests a 
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significant difference between the WM yield of rye grass using added P in the form of 

PSC and added in the form of KH2PO4.    

8.3.4 Effect of phosphate application on the dry matter (DM) yield of ryegrass  

The effect of application of P on the yield of ryegrass was investigated as a function of its 

dry biomass yield. The DM weight of the grass was measured after oven-drying harvested 

grass blades at 55oC for 3 days. The DM yield of ryegrass is presented in Figure 8.6. 

 

Figure 8.6: Effect of phosphate application on the dry matter yield (DM) of ryegrass, (n=3) standard 
error bars shown 
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kgP/ha. Hylander and Siman (2001) reported an increase in DM yield of barley as the rate 

of application of P increased form 0.2 µmol/pot to 2.3 µmol/pot using P sorbed to LECA.  

DM yield of the pots with no added P decreased from 360.93 kg/ha at the end of the first 

cropping cycle to 208.07 kg/ha at the end of the fourth cropping cycle. A decline in the 

DM yield was obtained when 127.39 kgP/ha was added to the pots in the form of KH2PO4. 

DM yield decreased from 696.39 kg/ha at the end of the first cropping cycle to 552.02 

kg/ha at the end of the fourth cropping cycle. While the pots with 382.17 kgP/ha added in 

the form of KH2PO4 showed an increase in DM yield from 709.13 kg/ha at the end of the 

first cropping cycle to 751.59 kg/ha at the end of the second cropping cycle before 

decreasing to 602.97 kg/ha at the end of the fourth cropping cycle. 

The pots with P added as KH2PO4 showed a better DM yield than pots with P added in 

the form of PSC. The DM yield of pots with P added in the form of PSC was 505.31, 

641.19, 692.14 and 560.51kg/ha, while those with P added as KH2PO4 were 590.23, 

692.14, 743.10 and 607.22 kg/ha for the first, second, third and fourth cropping cycle 

respectively when 127.39 kgP/ha was applied. Similarly, DM yield was 696.39, 611.46, 

573.25 and 552.02 kg/ha for pots with P added in the form of PSC; and 709.13, 811.04, 

751.59 and 602.97 for pots with P added as KH2PO4 at the end of the first, second, third 

and fourth cropping cycle respectively when 382.17 kgP/ha was applied. 

p value = 7.91 E-14 <0.05 =α or (F=48.21 > 3.13 = F-crit) was obtained from the pots that 

had 127.39 kgP/ha applied and p value = 4.73 E-13 <0.05 =α or (F=44.04 > 3.13 = F-crit 

was obtained from pots that had 382.17 kgP/ha applied. The p values < 0.05 suggests a 

significant difference between the DM yield of rye grass using added phosphate in the 

form of PSC and added in the form of KH2PO4.    

The response of ryegrass to different P levels varied along the crop cycle. Maximum DM 

yield was obtained during the third crop cycle for all levels of phosphate applied except 

when 38.22 kgP/ha was applied. DM yield increased from 505.31 kg/ha during the first 

crop cycle to 577.49 kg/ha during the third crop cycle before reducing to 535.03 kg/ha 

using 127.39 kgp/ha in the form of PSC. DM yield using 382.17 kgP/ha in the form of PSC 

also increased from 590.23 kg/ha during the first crop cycle to 743.1 kg/ha during the third 
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crop cycle before reducing to 607.22 kg/ha by the end of the fourth crop cycle. DM yield 

using 38.22kgP/ha in the form of PFC increased to a highest yield of 496.82 kg/ha during 

the second crop cycle from 484.08 kg/ha obtained during the first crop cycle before 

declining to 382.17 kg/ha by the end of the fourth crop cycle. The results presented in 

Figures 8.5 and 8.6 show application of P as PSC could produce three harvest of 

ryegrass without the need for the application of supplementary phosphate. The increase 

in yield along the crop cycle could suggest the slow mineralization of phosphate with 

relation to time (Correa and Da Silva 2016). 

8.3.5 Fertilizer Effectiveness of Applied Phosphate  

The fertilizer effectiveness of the applied P was described as the relative effectiveness 

(RE%) of P sorbed on CaMFCP (PSC) in increasing ryegrass dry matter yield in relation 

to the yield with standard fertilizer - KH2PO4 (Hylander et al. 2006). 

The relative effectiveness is determined as  

 RE (%) = [
(𝒚𝒊𝒆𝒍𝒅 𝒘𝒊𝒕𝒉 𝑷𝑺𝑪)−(𝒚𝒊𝒆𝒍𝒅 𝒘𝒊𝒕𝒉 𝒄𝒐𝒏𝒕𝒓𝒐𝒍)

(𝒚𝒊𝒆𝒍𝒅 𝒘𝒊𝒕𝒉 𝑲𝑯𝟐𝑷𝑶𝟒)−𝒚𝒊𝒆𝒍𝒅 𝒘𝒊𝒕𝒉 𝒄𝒐𝒏𝒕𝒓𝒐𝒍)
]*100  Equation 8.1 

The relative effectiveness of PSC is presented in Figure 8.7. 
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Relative effectiveness of PSC increased along the crop cycle. Low relative effectiveness 

of 43.18 and 44 % for WM and DM yield respectively was obtained at first harvest when 

127.39 khgP/ha was applied while the 67.74 and 64.29% for wet and dry wet respectively 

as the relative effectiveness of applying 382.17 kgP/ha. This could be as a result of the 

plants not being fully established during the first crop cycle. With progression of the crop 

cycle, the performance of PSC improved and 100% effectiveness in DM yield using 

382.17 kgP/ha was achieved and over 100 % during the fourth cycle. This shows the 

performance of PSC in increasing the yield of ryegrass equaled that KH2PO4 when used 

as a fertilizer source. The figures obtained during the first cycle are higher to those 

obtained by Hylander et al. (2006) using phosphate sorbed to different media as a 

phosphate fertilizer for the production of barley. In that study, the highest relative 

effectiveness of 76% was obtained using crystalline steel-works furnace slag as 

phosphate fertilizer.   

8.3.6 Yield Response 

One of the measures of functional relationships between application rate of fertilizer and 

yield response is the quadratic yield response model and this accounts for more variability 

and is a more biologically acceptable model for the analysis of relationships between 

application rate of fertilizer and yield response (Morrison et al. 1980 cited in Pawlett et al. 

2015). 

The quadratic yield response model is based on the assumption that yield (t/ha) is related 

to the rate of fertilizer application (kgP/ha) and is represented as  

 y = a + bx – cx2     Equation 8.2 

where a, b and c are the regression coefficients, y is the yield of ryegrass (t/ha) and x is 

the rate of p applied (kgP/ha) 

The first order differential is expressed as: 

 
𝒅𝒚

𝒅𝒙
 = b - 2cx      Equation 8.3 
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Equating to zero, the fertilizer rate at the maximum of yield response is derived as 

Equations 8.4 and 8.5 as follows:  

 
𝒅𝒚

𝒅𝒙
 = b – 2cx = 0     Equation 8.4 

 ⇒ xmax = 
𝒃

𝟐𝒄
       Equation 8.5 

When the differential is equated to the price ratio (RP) defined as the ratio of the price of 

phosphate fertilizer Pp (£/kg) to the price of ryegrass Pr (£/t), the most economical rate of 

phosphate application (PMERP) can be identified as expressed in Equations 8.6 and 8.7: 

 
𝒅𝒚

𝒅𝒙
 = b – 2cx = RP = 

𝑷𝒑

𝑷𝒓
    Equation 8.6 

 ⇒ PMERP = 
𝒃−𝑹𝒑

𝟐𝒄
      Equation 8.7 

The polynomial relationship between phosphate fertilizer application rate and yield 

response of applied phosphate is shown in Figure 8.8.  
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Figure 8.8: Quadratic yield response curve for phosphate application of ryegrass. 

Yield produced from the pots with 38.22 and 127.39 kgP/ha in the form of PSC were 

respectively were significantly less (p = 0.02 and 0.04) than those obtained using higher 

application rates (Table 8.1). Adjusted R2 values for yields obtained using 254.78 and 

382.17 kgP/ha were not acceptable; hence the results are not reported.  

 

Table 8.1: Polynomial coefficient between yield response and fertilizer application rate of phosphate 
(kgP/ha) 

Phosphate application rate 
(kgP/ha) Polynomial equation R2 (adjusted) p 

O -52.227 + 420.38 0.9866 0.0008 

38.22 -26.53x2 + 99.99x + 408.72 0.7043 0.02 

127.39 -20.168x2 + 113.15x + 408.72 0.969 0.04 

254.78  0.1132 0.04 

382.17  -0.49978 0.01 
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The negative coefficients of the square terms suggest a decrease in the yield of ryegrass 

above certain level of phosphate application under the prevailing conditions. This could 

justify the use of quadratic functions to describe the response curve of ryegrass to 

phosphate application. The fertilizer rate at the maximum of yield response (xmax) was 

estimated at 2.82 kgP/ha while the most economical rate of phosphate application (PMERP) 

was estimated at 2.81 kgP/ha.   

8.4 Summary and conclusion 

Concentration of Al, Ca,Fe, Mg, and phosphate present in the soil before planting, 

increased with increase in the application rate of phosphate due to an increase in the 

amount of material added to provide the required phosphate level. Concentration of Al, 

Ca, Mg and Fe reduced during the planting period while the concentration of Fe 

increased. This increase in concentration of Fe could be as a result of the release of Fe 

from the added clay.  

Phosphate application rates used in this study were 0. 38.22, 127.39, 254.78 and 382.17 

kgP/ha for phosphate applied in the form of PSC, and 127.39 and 382.17 kgP/ha for 

phosphate applied in the form of KH2PO4. Yield of ryegrass increased for all application 

rates up to a maximum by the third cropping cycle. The yield also increased with increase 

in application rate of phosphate with 382.17 kgP/ha producing the highest yield. The 

performance of pots with P added in the form of PSC was similar to pots with P added in 

the form of KH2PO4 when germination rate, plant height and WM yield were considered 

while pots with added KH2PO4 showed a better DM yield than pots with P added in the 

form of PSC. Relative effectiveness of phosphate in the form of PSC increased from 44% 

during the first crop cycle to a maximum of 100% during the third cycle before declining 

to 96% by the end of the fourth crop cycle when 127.39 kgP/ha of phosphate in the form 

of PSC was used. 382.17 kgP/ha phosphate in the form of PSC showed an increase in 

relative effectiveness from 64 to 103% from the first to the fourth crop cycle. This shows 

the potential for the use of phosphate sorbed to CaMFCP as a source of phosphate for 

ryegrass. 

Xmax was estimated at 2.82 kgP/ha, which is 13 times less than the lowest application rate 

of phosphate used in this study. This implies application rate above xmax (2.82 kgP/ha) 
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may not result in any yield benefit. Growth parameters of germination rate, plant height, 

fresh and dry matter yield were all significantly more as the application rate of phosphate 

increased.  

Quadratic response curve could be used to describe the yield of ryegrass as the values 

of the squared term were negative, however, the adjusted R2 values for 254.78 and 

382.17 kgP/ha were not acceptable. 
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9 Summary, Conclusion and Recommendation for Further Research 

9.1 Chapter 5 Summary 

This chapter reported the results of the kinetic test showed equilibrium in adsorption of 

phosphate using brick dust occurred within 60 minutes using adsorbent dosage of 33.33 

g/L and adsorption increased with contact time from 0.27 to 0.59 mg/g. The profile showed 

a typical fast initial uptake associated with vacant adsorption sites at the start of the 

experiment. Removal efficiency increased with brick dosage but decrease with amount of 

phosphate adsorbed per unit mass of brick dust, 33.33 g/L achieved highest phosphate 

removal. Adsorption was affected by temperature as it decreased from 0.59 mg/g at 20oC 

to 0.47 mg/g at 35oC. This indicated adsorption was exothermic. Variation in kinetic 

properties as a function of temperature indicated the adsorption mechanism of phosphate 

using brick dust was a complicated process with interaction of different mechanisms but 

tending to physisorption as the dominant mechanism. Gibbs free energy value of -0.59 to 

-0.61 kJ/mol and enthalpy value of -0.139 J/mol indicated adsorption was spontaneous 

and exothermic while positive entropy value of 1.53 x10-3 showed a good affinity of 

phosphate towards brick dust and activation energy of 0.012 J/mol indicated a relatively 

low energy barrier. Adsorption of phosphates per unit mass of brick dust increased with 

increase in concentration as a result of an increase in the rate of collision between 

phosphate ions and the surface of the brick dust, while a decrease in the removal 

efficiency showed greater competition between phosphate ions and available adsorption 

sites. Qm derived from Langmuir isotherm was 5.35 mg/g, RL value of 0.04 indicated 

adsorption was a favourable process. Experimental data showed a good fit to Langmuir 

and Tempkin isotherms. The Dubinin-Radushkeivich E value of 1.35 J/mol indicated 

physisorption and the positive value of B (1.89 J/mol) from Temkin isotherm confirmed 

the exothermic nature of adsorption. The result showed the potential of brick dust for the 

adsorption of phosphate. However, the issues associated with suspended solid from the 

dust necessitated the further development of brick based adsorbent material to address 

the problem. 
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9.2 Chapter 6 Summary 

This chapter reported the adsorption of phosphate using fired clay pellets increased from 

0.25 to 2.49 mg/g as firing temperature increased from 540oC to 800oC. Optimum firing 

temperature was 850oC with adsorption declining when the pellets were fired at 1050oC. 

The decline in phosphate adsorption at a firing temperature of 1050oC was attributed to 

collapse of the pores due to sintering. Adsorption increased from 0.26 to 7.48 mgP as 

dosage increased from 3.33 to 33.33 g/L. A characteristic kinetic profile was obtained as 

a function of contact time. Phosphate adsorption was affected by pH, and optimum 

adsorption occurred at pH 3. Phosphate adsorption was higher at pH lower that 8.13 

which was the pHzpc. High phosphate removal was obtained at neutral pH indicating the 

applicability of FCP for use in wastewater treatment without the need for pH adjustment. 

Phosphate adsorption decreased from 2.04 to 0.98 mg/ as temperature increased from 

20 to 35oC indicating an exothermic reaction. The adsorption data showed a good fit with 

pseudo-first order and Bangham’s kinetic models indicating adsorption was physisorption 

supported by some diffusion. Gibbs free energy values of -16.5 to -16.89 kJ/mol and 

enthalpy value of -8.87 confirmed the exothermic nature of adsorption and indicated 

adsorption was spontaneous. The positive value of entropy 0.026 kJ/mol indicated a good 

affinity for phosphate ions toward FCP. The negative value of activation energy (-0.22 

J/mol) indicated the absence of an energy barrier also confirming the exothermic nature 

of the adsorption. Adsorption increased with an increase in phosphate concentration. Qm 

derived from the Langmuir isotherm was 13.23 mg/g and RL of 0.02 indicated adsorption 

of phosphates onto FCP was favourable. The adsorption data did not show a good fit with 

Freundlich isotherm, the positive B value from Temkin isotherm confirmed exothermic 

adsorption confirming the results from the kinetic study. Perforation of the pellets 

improved the performance of the pellets and the rate of adsorption increased with 

perforation. The pellets were modified in further study to investigate the effect of the 

elemental composition. The method of pelletization provided a better performance than 

the conventional brick dust used by most researchers. 
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9.3 Chapter 7 Summary 

This chapter reported the results obtained from the modification of the clay pellets by the 

addition of metal salts. Addition of Al2(SO4)3, CaCO3 and FeSO4 improved phosphate 

adsorption. Increase in the concentration of CaCO3 increased phosphate adsorption 

while an increase in Al2(SO4)3 and FeSO4 concentration decreased phosphate adsorption 

probably due to the increase in the concentration of sulphate within the pellets. Phosphate 

adsorption increased with an increase in contact time, phosphate concentration and 

adsorbent dosage. Combining modification did not substantially improve adsorption; 

hence experiments on determining the adsorptive properties of modified clay were carried 

out on the single modification pellets. Adsorption using FeMFCP and CaMFCP was 

favoured at acidic pH, with optimum adsorption at pH 3-4 for FeMFCP and pH 3-4 and 7-

8 for CaMFCP. Adsorption using AlMFCP was favoured at slightly acidic pH with optimium 

adsorption at pH 5-6. The results show CaMFCP could be employed in wastewater 

treatment as high adsorption was obtained at neutral pH. Temperature affected 

adsorption using FeMFCP and AlMFCP while adsorption using CaMFCP was unaffected 

by temperature. All three pellets types showed good fit to pseudo-first order kinetics and 

the rate of reaction (k1) decreased with an increase in temperature for CaMFCP. 

Phosphate adsorption using CaMFCP showed a good fit to the pseudo-second order 

kinetic model. Elovich and Bangham’s kinetic models did not show good fit with the 

experimental data for CaMFCP. AlMFCP showed a good fit to Bangham’s model. 

FEMFCP did not show a good fit with pseudo-second order but showed better fit for 

Bangham’s and Elovich kinetic models. Gibbs free energy was negative for all pellet types 

at all temperature and indicated spontaneous nature of adsorption and the values 

indicated adsorption was physisorption. The variations in kinetic parameters as a function 

of temperature suggested adsorption mechanism was predominatly physisorption 

supported by other mechanisms. Langmuir isotherm showed the best fit for all the 

isotherms studied, Qm derived from Langmuir was 42.37, 70.42 and 52.91 mg/g for 

AlMFCP, CaMFCP and FeMFCP respectively, RL values of less than 1, and n values 

were between 1 and 10 which indicated adsorption was favourable. Adsorption and 

Langmuir affinity constant were in the order CMFCP > FeMFCP > AlMFCP signifying 
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CaMFCP had higher affinity for phosphate and was used for the fixed bed column study 

and greenhouse trial. 

9.4 Chapter 8 Summary 

The slope of the breakthrough curve decreased with increase in bed height and column 

diameter but increase with an increase in phosphate concentration and flow rate. EBCT 

increased with an increase in phosphate concentration, bed height and column diameter 

but decreased with an increase in flow rate.  Throughput volume increased with an 

increase in bed height and column diameter but decreased with an increase in phosphate 

concentration. The amount of phosphate adsorbed by the column increased with an 

increase in the adsorption parameters.  An increase in the mass transfer resistance with 

an increase in bed height usually indicates the dominance of external mass transfer as 

the adsorption mechanism; this was not the case in this study confirming results from 

previous that several mechanisms were involved in the uptake of phosphate using 

CaMFCP. The overall good fit of the experimental data to Yoon and Nelson model 

indicated the model could be used to predict the breakthrough curve and characteristic 

parameters for the adsorption of phosphate using CaMFCP and the Thomas model could 

be used to describe adsorption of phosphate onto CaMFCP as pore or film diffusion were 

not rate limiting steps. The results from the modelling confirmed adsorption was not 

controlled by any single mechanism. The results from the modelling also indicated 

CaMFCP could have potential application in a full scale treatment. 

9.5 Chapter 9 Summary 

Phosphate application rates used in this study were 0. 38.22, 127.39, 254.78 and 382.17 

kgP/ha for phosphate applied in the form of PFC, and 127.39 and 382.17 kgP/ha for 

phosphate applied in the form of KH2PO4. The yield of ryegrass increased for all 

application rates up to a maximum by the third cropping cycle. The yield also increased 

with increase in the application rate of phosphate with 382.17 kgP/ha producing the 

highest yield. Relative effectiveness of phosphate in the form of PFC increased from 44% 

during the first crop cycle to a maximum of 100% during the third cycle before declining 

to 96% by the end of the fourth crop cycle when 127.39 kgP/ha of phosphate in the form 

of PSC was used. 382.17 kgP/ha phosphate in the form of PSC showed an increase in 
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relative effectiveness from 64 to 103% from the first to the fourth crop cycle. This indicated 

a performance that was equal or better that those obtained using artificial fertilizer. This 

showed the potential for the use of phosphate sorbed to CaMFCP as a source of 

phosphate for ryegrass. 

Xmax was estimated at 2.82 kgP/ha, which is 13 times less than the lowest application rate 

of phosphate used in this study. This implies application rate above xmax may not result in 

any yield benefit. Growth parameters of germination rate, plant height, fresh and dry 

matter yield were all significantly more as the application rate of phosphate increased.  

The results indicate phosphate sorbed to CaPMFCP has the potential for .for use as a 

slow release fertilizer  

9.6 Conclusion 

Fired clay pellets were investigated as adsorbent for the removal of phosphate from 

wastewater and the potential for the spent adsorbent to be reused as a slow release 

fertilizer for plant in agricultural processes. The results obtained demonstrated that fired 

clay pellets could be applied in wastewater treatment for the effective removal of 

phosphate. The mechanism of adsorption was not governed by any single process. 

However, results suggest that adsorption may be influenced by physisorption with 

elements of chemisorption and pore diffusion. pH played a major role in adsorption and 

CaMFCP could be used for the removal of phosphate from wastewater in large scale 

plants at neutral pH without the need for pH adjustment. Decrease in adsorption with an 

increase in temperature is advantageous as there would be no additional energy cost as 

adsorption could be carried out at prevailing environmental temperature. 

9.6.1 Contribution to Knowledge 

The following can be claimed as addition to knowledge in this field:  

 A fired brick like material suitable for use in the removal of phosphate from 

wastewater treatment was developed and firing temperature for the pellets was 

optimised. 
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 A method of pelletization was developed which provided a better performance than 

the conventional brick dust employed. 

 The mechanisms of removal of phosphate from wastewater by fired clay pellets 

were postulated. 

 Industrial scale application of the fired clay pellets was modified and simulated.  

 The potential application of the spent adsorbent as a slow release fertilizer was 

demonstrated and confirmed. 

9.7  Areas for Further Research 

The structural integrity of the pellets was not tested; the effect of CaCO3 addition on 

strength could be researched further. The elemental composition of the combined 

modification could be altered to investigate the extent of adsorption. Multiple elemental 

modifications were only carried out at the optimum concentration for the individual 

elements.
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