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Abstract: The four-ball tester was used in this analysis to demonstrate the lubricity of tire pyrolysis
oil (TPO). The tribological performance of the tire pyrolysis oil was compared with diesel fuel (DF)
and their blends, DT10 (TPO 10%, Diesel 90%) and DT20 (TPO 20%, Diesel 80%). A scanning electron
microscope (SEM) was used to investigate the wear scar. In contrast to diesel fuel, TPO demonstrated
better antiwear behaviour in terms of higher load-carrying capacity. DT10, DT20, and TPO’s wear
scar diameter (WSD) was 22.35%, 16.01%, and 31.99% smaller than that of diesel at 80 kg load,
respectively. The scanning electron microscope micrographs showed that the TPO and DT10 had less
wear than their counterparts.

Keywords: sustainable materials; tire pyrolysis oil; tribology; wear; lubricity; diesel fuel;
sustainable development

1. Introduction

Alternative fuels have gained attention in diesel engines [1] because of the rapid deple-
tion of fossil fuels [2], climate change [3], economic challenges, and growth in population
and energy demand [4–7]. Though, food-based alternative fuels include palm oil, soybean,
sunflower, rapeseed, etc., are criticized worldwide because of deforestation, especially
the food-versus-fuel conflict. Subsequently, it is claimed that the transformation of food
production to fuel will generate a food shortage globally [8]. Therefore, the waste-to-fuel
conversion method has enormous potential that leads to alternative fuel to reduce the
pressure on conventional fuel and limit the waste problem [9,10]. The waste of solids is
a significant problem that leads to environmental and financial problems [11]. The open
dumping of waste tires creates a severe threat to the environment and participates in
climate change and global warming [12–15].

According to the European Automobile Manufacturers Association (EAMA), there
are currently 1.35 billion cars on the road worldwide [16], with two billion planned by
2035 [17]. It is reported that annually 1 billion waste tires are discarded, and about four
billion waste tires are currently in storage and dumpsites worldwide [18]. The static stirred
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batch pyrolysis reactor is used to process the waste tires to produce 44% weight char, 49%
weight oil, and 7% weight pyrolytic gases [19]. Subsequently, it is possible to purify about
44.5% of TPO as a fuel [20].

Tire pyrolysis oil (TPO) is formed by the waste vehicle tires’ pyrolysis operation,
and this is one of the primary waste tire materials. The potential use of tire pyrolysis
oil has impressed the investigators to investigate the use of it in boilers [21], furnaces,
and compression ignition (CI) engines [22–25] as renewable fuel [26]. The calorific value,
kinematic viscosity, and density of the TPO are somewhat close to that of diesel fuel (DF),
but the sulphur content is significantly greater than DF [27]. Raw TPO has high sulphur
content ranging from 0.55% to 3.95% [28]. Therefore, the distillation of TPO is an essential
part to lower the sulphur content for its use as a fuel to meet the strict emission level.
Nevertheless, the low sulphur content in the fuel decreases its lubricity [29]. However, the
TPO drawback seems to be that an up to 90% blend could be used along with the diesel,
alike after its fuel content has been filtered. In diesel engines, the TPO can be used in
operating the dual-fuel mode [30].

Yaqoob et al. studied the tribological characteristics of the TPO and their blend with
palm oil biodiesel on a four-ball tester. It is revealed that the BT10 (90% biodiesel-10% TPO)
shows favourable results in terms of wear and friction as compared to BT20, TPO, and
biodiesel [31]. Habibullah et al. examined the friction and wear of the Calophyllum ino-
phyllum biodiesel (CIB) and their blends with diesel fuel on a four-ball tester and reported
that the friction and wear decrease as the biodiesel concentration and load increase [32].
Mosarof et al. [33] performed the tribological analysis of the Calophyllum inophyllum and
palm oil biodiesel (PB) and their blends with DF at varying loads, temperatures, and at a
constant speed. With increasing biodiesel concentration, load, and temperature, friction
and wear tend to decrease. Mujtaba et al. [34] stated that B30 + ethanol fuel’s lubricity
decreases, while friction and wear tend to increase among other additives. B30 + dimethyl
carbonate (DMC) exhibited a low wear scar diameter (WSD), and B30 + nanoparticle TiO2
showed the best results with the lowest coefficient of friction and wear scar diameter
among other tested fuels. Awang et al. [35] determined the lubricity of the pyrolytic plas-
tic oil (PPO) and reported the lowest coefficient of friction by using the high-frequency
reciprocating rig (HFRR) based on the ASTM D6079 standard [36].

Fuel supplies the energy and is used as a lubricant with swift modernization and
technological progress [37,38]. The engine life majorly depends on the lubricity of the
engine. The engine’s lubricity reduces friction between moving parts, decreasing energy
consumption, and friction strength [39]. In car engines, the fuel lubricates the fuel pump
and injector in particular [40]. Engine fuel lubrication is determined by fuel inlet tempera-
ture (>60 ◦C) [41]. Consequently, TPO has gained popularity as a supplement for diesel, and
the current demand to conduct research related to the wear and friction characteristics of en-
gine fuel are imperative. To our understanding, there is a great deal of research available on
tire oils’ combustion, emission properties, and performance in diesel engines [22–26,42–45],
but there is no technical study investigating the tribological characteristics of TPO.

The recent research examines the wear and friction characteristics of TPO and its blend
with diesel at different testing parameters to concentrate on the gap. TPO, pure diesel, and
their blends DT10 (TPO 10%, Diesel 90%) and DT20 (TPO 20%, Diesel 80%) are explored in
this study. In the present study, the experimental study of wear and friction characteristics
of the TPO is examined through the four-ball tester (FBT).

2. System Description and Methodology
2.1. Refining and Production of Tire Pyrolysis Oil

Steel wires and fibres were removed from the automobile tires, and then the tires were
cut into small pieces. Waste tire pieces were carried out in a chamber for the pyrolysis
technique. The pyrolysis chamber’s reaction temperature was changed from 400 to 600 ◦C
in the high production of liquid tire pyrolysis oil, Murillo et al. [46] verified that 500 ◦C was
the optimum temperature. The plant supplied the highest liquid oil yield with 49 wt.%,
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solid and gas yields were 44 wt.% and 7 wt.%, respectively [19]. There is a quite complicated
solution of C5–C16 organic chemicals and a large number of unsaturated compounds in
tire pyrolysis oil. The overall aliphatic and aromatic compound concentrations were 42.1%
and 49.8% by weight, respectively [47].

The waste tire pyrolysis oil was procured from the pyrolysis industry located in
Malaysia. The purification process of the waste TPO was carried out in the laboratory. At
the start, the waste TPO was heated at 110 ◦C to remove the moisture amount. Then, in
this waste TPO, 8% H2SO4 was utilized to prepare a hydro-sulphuric acid treatment at a
temperature of 70 ◦C by using a hotplate for four hours. After that process, the mixture was
allowed there for 48 h. Finally, that mixture was distilled by using the vacuum distillation
unit. After the distillation process, the TPO’s sulphur content reduced from 0.87% to 0.03%.
Through this process, TPO was obtained for testing in this experimental study.

The DF was procured from a local company. The magnetic stirrer was used to gen-
erate the DT10 and DT20 blends. In this experimental research, the diesel fuel, DT10,
DT20, and TPO are used as tested fuel and the main physical properties of the tested
fuels are determined and listed in Table 1. The equipment used for this experiment is
listed in Table 2.

Table 1. The thermochemical and physical properties of the tested fuels.

Tested Samples Density
(kg/m3) (15 ◦C)

Kinematic Viscosity
(mm2/s) (40 ◦C)

Lower Heating
Value (MJ/kg) Cetane Index

DF 845.3 3.36 44.49 51.72
DT10 849 3.17 44.81 51.71
DT20 854 2.98 44.68 51.68
TPO 946 2.23 41.81 51.65

Table 2. Details of apparatuses and instruments used for the experimental study [31].

Properties/Instruments Standard/Mode Apparatus Made Model Accuracy

Calorific value ASTM D240 [48] Bomb Calorimeter IKA, Oxford, UK C2000 ±0.1% MJ/kg
Kinematic viscosity ASTM D7042 [49] Stabinger viscometer Anton Paar, St Albans, UK SVM 3000 ±0.35%

Density ASTM D4052 [50] Stabinger viscometer Anton Paar, St Albans, UK SVM 3000 ±0.1 kg/m3

Wear and friction ASTM D2266 [51] Four-ball testers DUCOM, Karnataka, India TR-30L-IAS –
Wear scar

diameter (WSD) ASTM D4172 [52] Optical microscope IKA, Oxford, UK C2000 ±0.01 mm

Scanning Electron
Microscope (SEM) X30/X2000 [53] Scanning

electron microscope Hitachi, Tokyo, Japan S3400N 3.0 nm at 30 kV

2.2. Test Arrangement

A four-ball tester was used in this research study, which helps develop and study
innovative lubricants in tribology. This equipment’s operation is that four balls were used
to evaluate the specimen; however, three balls were locked together in the fuel specimen
tub, and one ball was rotating, which carried on the upper end via a collection of electric-
motor spindles at a constant speed. The schematic figure of the FBT and the experimental
configuration is shown in Figure 1. The inspected fuel was loaded into the fuel tub. The
four-ball tester has features listed in Table 3.

The lever was used to implement the load onto the bottom-locked balls, and the
frictional torque was calculated through an adjusted arm using the spring attached with
the friction recording tool. In such an experiment, balls made of carbon–chromium steel
were used, and the balls’ specifications are recorded in Table 4. Four new balls were washed
with acetone and then dried with tissue paper and air.
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Figure 1. Schematic diagram of the four-ball tribometer [31].

Table 3. Detailed properties of the four-ball tester [31].

Specification Units Detail Accuracy

Model – Make: DUCOMTR-30L-IAS –
Speed RPM 300–3000 1

Oil Temperature ◦C Ambient temperature to 100 0.5
Maximum axial load N 10,000 0.5

Scar range µm 100–4000 0.5
Test ball diameter mm 12.7 –

Power V/Hz/VA 380/50/3/2000 –
Image measuring system – Microscope220 V, 50 Hz –

Image acquisition system – Web camera, 12 MP
(Megapixels) –

Software – Winducom 2010 –

Table 4. The specifications and operating parameters of the test and balls.

Test Conditions Units Details

Standard – ASTM D2266 [51]
Load kg 40, 50, 63, and 80
Speed rpm 1800

Temperature of Fuel ◦C 27
Test period s 300

Test ball materials – Carbon–chromium steel (SKF)

Material composition – 0.12% P; 0.45% Si; 1.46% Cr; 0.06% Ni; 2.15% Zn;
0.07% S; 0.42% Mn; 10.2% C; and 85.06% Fe;

Ball diameter mm 12.7
Ball material hardness (HRc) – 62

Ball material surface roughness µm 0.1 C.L. A
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2.3. Test Method

For the experiment’s preparation on the four-ball tester, the cup of oil and four balls of
steel were cleaned using acetone. Three balls of steel were fixed in the oil tub and secured
as per the recommended torque, and then the testing oils were drained towards the oil tub
till the three balls of steel were fully encased. One steel ball was grasped through a collet
then attached to the instrument. This experiment used the ASTM standard D2266 [51], and
its time period was 300 s with a constant speed of 1800 rpm, loads of 40, 50, 63, and 80 kg,
and the oil’s temperature at 27 ◦C. The values of different parameters were calculated and
analysed by software. The four-ball tests’ requirements are displayed in Table 4. After the
test was completed, the three balls from the cup were collected for the measurement of the
wear surface’s diameter through the optical microscope and the SEM study.

2.3.1. Friction Assessment

Winducom 2010 software was utilized to measure values of the mean friction coef-
ficient. Additionally, it was calculated by Equation (1). With the load cell’s usage in the
instrument, the frictional torque was calculated (IP-239 standard, 1986 [54]). The same
technique was also used by Habibullah et al. [32], Mosarof et al. [33], and Zulkifli et al. [55].
Where µ = coefficient of friction, T = frictional torque (Nm), W = load (N), and r = the
distance measured between the contact surface centre on the lowest balls, and the axis of
rotation is 3.67 mm.

T =
µ× r× 3W√

6
(1)

µ =
T ×
√

6
r× 3W

(2)

2.3.2. Wear Assessment

According to the standard ASTM D4172 [52], the wear scar diameter of steel balls with
the 0.01 mm resolution would be evaluated by an optical microscope. To capture the image
of the wear scar, the optical microscope utilized the software in computer. Moreover, the
wear scar diameter was calculated using the software, so this procedure was performed for
every test of the fuel.

2.3.3. Flash Temperature Parameter Assessment

Equation (3) was used to measure the flash temperature parameter for all fuels. This
is a vital factor for oils/lubricants when controlling the critical flash temperature while
conducting the fourball test.

Flash temperature parameter =
F

D1.4 (3)

where, F = load (kg), D = diameter of mean wear scar (mm).

3. Result and Discussion
3.1. Friction Performance

At the start of the testing, the recorded friction behaviour was not stable because
of the experiment’s time interval. After a few seconds, the stabilized friction behaviour
was recorded, also known as the steady-state condition. In the first 10 s, the time interval
coefficient of friction was displayed. The friction coefficient at the average steady-state of
the last hundred seconds was collected and plotted to time in Figure 2.
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Figure 2. Diesel, TPO, and their blends’ coefficient of friction performance with time; (a) Run-in period and (b) Steady-
state condition.

Diesel fuel shows a higher coefficient of friction than other test fuel samples in the
run-in period. The TPO and its blended samples generate better friction protection be-
haviour than diesel fuel. TPO, DT10, and DT20 display 49.9, 28.71 and 20.9% lower un-
steady coefficients of friction than diesel fuel. DT10 and DT20 show smooth behaviours
of the steady-state coefficient of friction compared to pure diesel and TPO, which show
fluctuating behaviours.

At the boundary lubrication condition as per the adopted testing conditions, the
lubricating oil viscosity is the main factor that influences the thickness of the film dividing
the surfaces and resultantly defines the behaviour of friction [56]. The viscosity of the
lubricating oil is important. At the four-ball contact configuration, high temperatures were
recorded, resulting in a decrease in oil viscosity and a higher average friction coefficient.
Therefore, the comparison of friction profiles shows the poor friction behaviour of TPO.
The comparative analysis of diesel–TPO and biodiesel–TPO blended fuels’ coefficients of
friction are shown in Figure 3 [31]. Biodiesel shows a better coefficient of friction than other
fuels. It is mainly due to the higher viscosity and oxygen content in biodiesel [57].
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Figure 3. Comparative analysis of diesel–TPO and biodiesel–TPO blended fuels’ coefficients of
friction, this study with the literature [31].

3.2. Wear Performance

The wear of interacting tribo-pairs occurs when metal-to-metal interaction occurs at
boundary lubrication conditions. The wear behaviour of all considered oils is shown in
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Figure 4. The profiles clearly show that at low loads, i.e., 40, 50, and 63 kg, TPO showed
poor antiwear behaviour. However, TPO has shown better wear prevention at greater loads,
i.e., 80 kg. This trend also indicated TPO’s high load-holding capability as considered to
other considered samples. The ability to increase contact temperatures at higher loads
resulted in slight viscous oil, which increased the chance of tribo-pair surface contact. DT10
showed better wear behaviour as compared to DF, TPO, and DT20 at low and high loads.
The WSD of DT10, DT20, and TPO was 22.35, 16.01 and 31.99%, respectively, less than diesel
at the 80 kg load. TPO’s high sulphur content decreases wear behaviour, and its association
with diesel tends to boost lubricating properties [31,58]. Diesel has a low sulphur content,
which causes lubricity concerns; however, Mello et al. [29] found that higher sulphur
content increases lubricity. TPO has a higher load-carrying capacity, which indicates that it
can handle heavier loads and be used in high-pressure situations [31]. Wear and friction
between the surface contacts will minimize the amount of oxygen in biodiesel [33]. Thermal
energy was produced in sliding contact surfaces, which the protective films were able
to minimize, and the protective films increased the lubricity in this method [59]. The
comparative analysis of the wear scar diameters of diesel–TPO and biodiesel–TPO blended
fuel is shown in Figure 5 [31]. At higher loads, the TPO, DT10, and DT20 show better
antiwear behaviour than the other fuels, and it is mainly due to the higher sulphur content
in the TPO [29].
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Figure 5. Comparative analysis of the wear scar diameters of diesel–TPO and biodiesel–TPO blended
fuels, this study with the literature [31].
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3.3. Flash Temperature Parameter

The effect of different fuels on flash temperature parameters under different tem-
peratures is represented in Figure 6. The flash temperature parameter of different fuels
decreases with the increase in the fuel’s temperature. The flash temperature parameter is
inversely proportional to the wear scar diameter. TPO shows the highest flash temperature
parameter of 25.67 ◦C at 80 kg load compared to other fuels. DT10 displays the better flash
temperature parameter results, which are close to the diesel fuel at low loads. However, the
lowest flash temperature parameter value is diesel fuel (14.96 ◦C). A higher flash tempera-
ture parameter level increases lubrication efficiency, whereas a lower flash temperature
parameter level allows lubrication films to break down [60]. The oxidation process may
affect lubricating performance [61]. TPO has a higher oxygen content as compared to diesel
fuel [12]. Furthermore, the oxidation process provides improved lubricating efficiency
outcomes in a limited time period [61]. The comparative analysis of flash temperature
parameters of diesel–TPO and biodiesel–TPO blended fuel is shown in Figure 7 [31].
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3.4. SEM Analysis

To understand the antiwear behaviour of considered oil samples, tested balls’ damaged
interfaces were described using a scanning electron microscope (SEM). As TPO has depicted
improved wear avoidance at greater load i.e., 80 kg, the relevant worn surfaces were
analysed using SEM. Figure 8a–i illustrates the SEM micrographs of the damaged interfaces
of examined balls below 80 kg for tested fuel samples. Figure 8a–c presents the micrographs
of the DF, which shows adhesive wear and a rougher surface than those of the TPO
sample (Figure 8d–l). Similarly, Figure 8d–f shows less material removal than Figure 8g–i,
respectively. Figure 8b,c,e,f,h,i,k,l show when the wear scar diameter tends to increase,
there is an increment in the TPO blend ratio. TPO has higher oxygen and sulphur content.
The oxidation process improves lubricating performance, while the higher sulphur content
improves antiwear properties [12,57,61].
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4. Conclusions

This experimental research used a four-ball tester to identify the tribological perfor-
mance of TPO blended with DF. All tested fuels were tested for 300 s at 40, 50, 63, and
80 kg loads, at a constant speed (1800 rpm), and the same temperature (27 ◦C) using the
ASTM D2266 standard [51]. The TPO’s tribological performance was compared to that
of the DT10 (TPO 10%, Diesel 90%) and DT20 (TPO 20%, Diesel 80%) diesel fuels. The
four-ball tribometer is a common research rig used in the lubricant industry to assist in
manufacturing new lubricants and greases. So, it was used to research the tribological
performance of the diesel fuel blend with TPO. The significant conclusions of this research
are as follows:

• Diesel fuel showed 49.9%, 28.71%, and 20.9% higher unsteady friction coefficients
than TPO, DT10, and DT20, respectively. DT10 and DT20 displayed smooth behaviour
of the steady-state friction coefficient compared to diesel’s fluctuating performance.

• DT10 exhibited better wear behaviour relative to diesel, TPO, and DT20 at low and
high loads. The WSD of DT10, DT20, and TPO were 22.35, 16.01, and 31.99%, respec-
tively, smaller than diesel at the load of 80 kg.

• TPO showed a higher load-carrying capacity, which shows its potential to use at
higher loads and in extreme pressure conditions.

• The wear behaviours of considered blends showed that a reasonable friction behaviour
and a greater load-holding capability could be obtained for a specific use.

• TPO displayed the highest flash temperature parameter of 25.67 ◦C at 80 kg load
compared to other fuels. DT10 displayed the better flash temperature parameter
results, close to the diesel fuel at low loads. However, the lowest flash temperature
parameter value was credited to diesel fuel (14.96 ◦C).

• The SEM micrographs revealed that the TPO and DT10 display lower metal extrusion
than DT20 and diesel fuel.

The research outcome recommends that in aspects of wear and friction, DT10 displays
favourable tribological results. Therefore, it can be utilized to improve its life in the engine.
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Abbreviations

ASTM American society for testing and materials
BD Biodiesel
BT10 TPO 10%, Biodiesel 90%
BT20 TPO 20%, Biodiesel 80%
CIB Calophyllum inophyllum biodiesel
CI Compression ignition
COF Coefficient of friction
DF Diesel fuel
DT10 TPO 10%, Diesel 90%
DT20 TPO 20%, Diesel 80%
EDX Energy dispersive X-ray
EU European Union
FBT Four ball tribometer
FTP Flash temperature parameter
GC-MS Gas chromatography-mass spectroscopy
MO Mongongo-oil
PB Palm oil biodiesel
PCT Passenger car type
SEM Scanning electron microscope
TPO Tire pyrolysis oil
TT Truck tire
WSD Wear scar diameter
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