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ABSTRACT 

Reducing anthropogenic GHG emissions globally is a key driver for the development of 

renewable energy sources. A key route towards achieving this is to replace fossil-based fuels 

with renewable and low carbon energy technologies such as biofuels from energy crops. 

Cereals and oil-seed crops such as corn, wheat, and soybean are the main feedstocks 

primarily used for biofuels production and the key characteristics of these crops are high 

biomass and energy yield per ha. However, there are concerns about the availability and 

sustainability of these crops for biofuels production in the face of a changing climate since 

crop productivity is inherently sensitive to climate. Therefore, an understanding of the 

impacts of climate change on energy crops production as feedstocks for biofuels production 

and their potential for life cycle GHG emissions reductions is crucial for making decisions on 

future biofuels production. 

This thesis examined potential climate change impacts on the productivity of two major 

biofuel crops: corn (Zea mays L.) and soybean (Glycine max) in Gainesville, USA and one 

major biofuel crop: wheat (Triticum spp.) in Rothamsted, UK.  The overall objective was to 

calculate the potential impacts of combined changes in climate variables: surface air 

temperature (T), precipitation (P), and atmospheric concentration of CO2 ([CO2]) on life 

cycle GHG emissions savings of biofuels from corn, soybean, and wheat. 

The methodology was underpinned by life cycle thinking. Life cycle assessment (LCA) 

models linked to cropping system models (CSM) were used in the analysis. In assessing the 

impact of climate change on corn, wheat, and soybean crops yields, two applications of the 

CERES (Crop-Environment Resource Synthesis) model: CERES-Wheat (for wheat) and 

CERES-Maize (for corn), and CROPGRO (Crop Growth) model application: CROPGRO-
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Soybean of the Decision Support System for Agrotechnology Transfer (DSSAT-CSM) 

v4.0.2.0 model were used using observed weather data from the baseline (1981-1990) period 

for each study site. These models describe, based on daily data, the basic biophysical 

processes taking place at the soil-plant-atmosphere interface as a response to the variability of 

different processes such as: photosynthesis, specific phenological phases, evapotranspiration, 

and water dynamics in soil. Compared with the baseline, T was projected to increase by +1.5, 

+2, +2.5, +3, +3.5, +4, +4.5, and +5 
o
C, P was projected to change by ±5, ±10, ±15, and 

±20%, and [CO2] was projected to increase by +70, +140, +210, +280, and + 350 ppm for 

Gainesville, USA. For Rothamsted, UK, T was projected to increase by +0.5, +1.5, +2.5, 

+3.5, and +4.5 
o
C, P was projected to change by ±10, and ±20%, and [CO2] was projected to 

increase by +70, +210, and + 350 ppm. 

Simulated yields output (grain/seeds and biomass) from the CSM models were used as inputs 

into the LCA models. Potential life cycle GHG emissions savings were calculated for corn-

based biofuels: corn bioethanol (CBE), corn integrated biomethanol (CIBM), and corn 

integrated bioelectricity (CIBE); soybean-based biofuels: soybean biodiesel (SBD), soybean 

integrated biomethanol (SIBM), and soybean integrated bioelectricity (SIBE); wheat-based 

biofuels: wheat bioethanol (WBE), wheat integrated biomethanol (WIBM), and wheat 

integrated bioelectricity (WIBE).  

Results indicated that under the baseline (1981-1990) scenario, production and use of CBE, 

CIBM, CIBE, SBD, SIBM, SIBE, WBE, WIBM, and WIBE could save -4743.32 kg CO2-

equiv. ha
-1

, -8573.31 kg CO2-equiv. ha
-1

, and -10996.7 kg CO2-equiv. ha
-1

, -2655.41 kg CO2-

equiv. ha
-1

, -3441.1 kg CO2-equiv. ha
-1

, and -1350.04 kg CO2-equiv ha
-1

, -2776.1 kg CO2-

equiv. ha
-1

, -500.87 kg CO2-equiv. ha
-1

 and -4648.93 kg CO2-equiv. ha
-1

 respectively, of the 

total life cycle GHG emissions of CO2, CH4, and N2O for the production and utilization of an 

energetically equivalent amount of fossil-based fuel counterpart, which they displaced. 
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However, model predictions of future life cycle GHG emissions savings for both crops 

showed that the responses of corn, soybean, and wheat to simultaneous changes in T, P, and 

[CO2] were different under different climate change scenarios. In the future period life cycle 

GHG emissions savings of corn-based biofuels was predicted to decline in all cases ranging 

from -4.2% to -46.1%, -2.6% to -37.7%, and -1.6% to -33.4% for CBE, CIBM, and CIBE, 

respectively compared with the baseline (1981-1990) period. In contrast, model predictions 

showed that life cycle GHG emissions savings of wheat-based biofuels would increase under 

all climate change scenarios ranging from +2.5% to +33.5%, +0.1% to +37.8%, and +1.0% to 

+34.4% for WBE, WIBM, and WIBE, respectively. On the other hand, the life cycle GHG 

emissions savings of soybean-based biofuels was predicted to increase by +0.22% to +27%, 

+0.1% to 28%, and +0.1% to +31.6% for SBD, SIBM, and SIBE, respectively under some 

climate change scenarios (e.g., [CO2] = 680; P = +20%; and T = +1.5 
o
C scenario) and also 

decline by -0.7% to -60.8%, -0.1% to -44.6%, and -0.1% to -82.6% for SBD, SIBM, and 

SIBE, respectively under some climate change scenarios (e.g., [CO2] = 400; P = -20%; and T 

= +5 
o
C scenario). 

These results revealed that the potential impacts of climate change on energy crops 

productivity and net life cycle GHG emissions savings could be very large and diverse, and 

that the anticipated life cycle GHG emissions reductions of biofuels would not be the same in 

the future. 
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CHAPTER 1: GENERAL INTRODUCTION TO THE 

RESEARCH 

 

1.1 Introduction 

During the first commitment period of the Kyoto Protocol of the United Nations Framework 

Convention on Climate Change (UNFCCC) [1], which started in 2008 and ended in 2012, 37 

industrialized countries, including China, Japan, and the European Union (EU) committed to 

reduce their greenhouse gas (GHG) emissions to an average of five percent against 1990 

baseline levels. Furthermore, during the second commitment period, countries such as the EU 

have committed to reduce their GHG emissions by at least 18 percent below 1990 levels in 

the eight-year period from 2013 to 2020 [1].  For instance, in an attempt to comply with the 

20/20/20 targets set by the EU, the UK is legally bound by the 2008 Climate Change Act 

(CCA), to achieve a mandatory 80% cut in the UK’s carbon emissions by 2050 and a 

benchmark 35% reduction by 2020, below 1990 baseline levels [2]. A key route towards 

achieving these targets is to replace fossil based fuels with renewable and low carbon energy 

technologies [3, 4]. Renewable energy from biomass has been acknowledged as a significant 

contributor to these [5-12]. Biomass as a renewable energy source contributes towards 

reducing greenhouse gas emissions, diversification of fuel supplies, and the development of 

long-term replacements for fossil fuels [13-15]. Cereals and oil-seed crops such as corn, 

wheat, and soybean are the main feedstock primarily used for biofuels production and the key 

characteristics of these crops are high biomass and energy yield per ha [16]. However there 

are concerns about the availability and sustainability of these crops for the biofuels 

production [17-22] in the face of a changing climate since crop productivity is inherently 



 2 

sensitive to a number of climatic factors, including temperature, precipitation, and 

atmospheric concentration of CO2 [23-28].   

Undoubtedly, climate change would have both benefits and drawbacks on the productivity of 

energy crops [29-32]. Increasing atmospheric GHG concentrations of CO2, CH4 and other 

gases in the atmosphere as a result of human activities are expected to induce significant 

warming over the next century and beyond [33]. According to the Intergovernmental Panel 

on Climate Change (IPCC) 5th Assessment Report (AR5) [34], climate change is expected to 

continue throughout the 21
st
 century.  Thus, since energy crop productivity is affected by 

climate change, the potential GHG reductions and net energy value (NEV) from energy crops 

would be at risk.  

Previous studies on the impact of climate change on crop production are mainly focused on 

food production [35-39] and bioenergy feedstock supply [40], while studies on climate 

change impacts on the yield of bioenergy crops mostly, only focused on feedstock supply 

without paying attention to the potential impact on biofuel production at the same time. Few 

studies linked biofuel production, energy crop and climate change together [16, 41]. 

Therefore, understanding the impacts of climate change on energy crops production such as 

corn, wheat, and soybean as feedstock for biofuels production and their potential for GHG 

emissions reductions is crucial for making decisions on future biofuels production. 

1.2 Energy and sustainability 

Sustainable development is now firmly on the agenda of all large and progressive companies. 

Sustainable development can be broadly defined as living, producing and consuming in a 

manner that meets the needs of the present without negatively affecting the ability of future 

generations to meet their own needs [42]. Sustainability is a key principle in natural resource 

management, and it involves operational efficiency, minimisation of environmental impact 
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and socio-economic considerations [43]. Environmental sustainability aspects are among the 

important issues in the current discussion about bioenergy production systems, since 

‘renewable’ does not mean ‘sustainable’. Sustainability of global energy systems is therefore, 

an important prerequisite for sustainable development. 

Energy demand to meet social and economic development and improve human welfare is 

increasing rapidly. Energy plays a key role in the growth and economic development of any 

nation. All societies require energy services to meet basic human needs (e.g., lighting, 

cooking, space comfort, mobility and communication) and to serve productive processes. 

Historically, the Earth has been experiencing an accelerated population growth, climate 

change, and soaring oil prices. Currently, there are nearly 7 billion people inhabiting the 

planet, and it is projected to reach 9.3 billion in 2050 and more than double to 15 billion by 

the end of the 21
st
 century [44, 45]. Energy demand is likely to continue to grow throughout 

the century. Substantial increase in the production of energy is therefore required to meet the 

growing demand for energy (Figure 1.1).  
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Figure 1.1: World total energy consumption 2005 to 2035 (1 BTU=1055J)  [46]. 

 

Meanwhile, over 80% of today’s energy is generated by conventional fossil fuels such as 

coal, crude oil, and natural gas (Figure 1.2) [46, 47]. However, global use of these 

conventional fossil fuels, which has increased to dominate energy supply, led to a rapid 

increase in atmospheric carbon dioxide (CO2) concentration, which raises a number of global 

concerns.  

Increased rate of depletion of fossil fuels [48] and the environmental impacts generated by 

the use of conventional fossil fuels [49] are some of the major concerns arising from the use 

of conventional fossil energy systems. The combustion of fossil fuels is by far the largest 

contributor to the increasing atmospheric concentration of GHG [50, 51]. GHG emissions 

resulting from the provision of energy services have contributed significantly to the historic 

increase in global atmospheric GHG concentrations. For instance, according to [52] the 

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University.
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European Environmental Agency (EEA) reported that the energy industry was responsible for 

almost 80% of the total GHG in the EU in 2009.  

 

Figure 1.2: Shares of energy sources in total global primary energy supply in 2008  [53]. 

 

 

Anthropogenic GHG emissions associated with the combustion of these conventional fossil 

fuels at or above current rates will cause further global warming and induce climate changes  

[50]. According to the IPCC [50] most of the observed increase in global average temperature 

since the mid-20th century is very likely due to the observed increase in anthropogenic GHG 

concentrations. In early 2013, atmospheric CO2 concentrations had increased to over 400 

ppm, or 39% above preindustrial levels and is further projected to grow in the future above 

660 ppm from the remaining fossil fuel deposits (see Figure 1.3)  [53]. 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can be viewed 
at the Lanchester library, Coventry University.
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Figure 1.3: Potential emissions from remaining fossil fuel resources deposit  [53]. 

 

Currently, there are a number of options  such as renewable energy sources for lowering 

GHG emissions from the energy system while still satisfying the global demand for energy 

services. In recent years, ambitious targets and climate policy measures have been formulated 

by many nations (e.g. EU, USA and Brazil) for the development and use of sustainable 

energy supplies typically driven by three major concerns: climate change, security of energy 

supply and rural development. One of the key components towards achieving these policy 

goals is securing the energy future through cleaner renewable energy sources that can supply 

electricity, thermal energy and mechanical energy, as well as produce fuels that are able to 

satisfy multiple energy service needs. These include bioenergy, solar energy, wind energy, 

hydropower energy and geothermal energy.  

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University.
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1.3 Biomass as a renewable energy source 

Biomass (e.g. wood) was the first fuel used by humanity. However, the rise in the use of 

fossil since the revolution has resulted in the decline in the use of biomass as a primary 

energy source in the developed world. For instance, at the beginning of the 21
st
 Century only 

3% of energy use in USA comes from biomass. In developing countries like the Sub-Saharan 

Africa fuel wood is the most important fuel resources and contribute over 90% of the fuel 

available for heating and cooking in these regions. 

Bioenergy from renewable biomass plays an important role in the daily livelihoods of billions 

of people all over the world and has large potential to mitigate climate change and at the 

same time if properly implemented  may provide huge benefits and contribute to economic 

and social development. It offers the opportunity to contribute to secure energy supply as 

well as the reduction of negative environmental and health impacts [5-12]. Biomass can be 

defined as “recent organic matter originally derived from plants as a result of the 

photosynthetic conversion process or from animals, and which is destined to be utilized as 

store of chemical energy to provide heat, electricity, or transport fuels” [54]. It is a fuel in the 

same sense as fossil fuels (coal, oil, and natural gas) though fossil fuels have higher energy 

values per unit mass, and has the potential to be a major contributor to the delivery of the 

ambitious targets set by many nations (e.g. EU, USA, China, India and Brazil) for renewable 

energy generation when produced in a sustainable fashion [55].  

Biomass resources (see Figure 1.4) can be classified into many different categories: 

fuelwood, agricultural and forest residues, organic wastes and, dedicated biomass production 

on different lands types (pasture, arable, and marginal lands). These can be directly used as 

feedstocks to produce electricity or heat, or can be used to create solid, liquid, gaseous fuels. 

They can also be used as feedstock for materials and chemicals. The range of bioenergy 
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technologies is broad and the technical maturity varies substantially. The deployment of 

bioenergy technologies has increased dramatically over the last few decades in many parts of 

the globe such as the USA and Brazil, and their share is projected to grow substantially in the 

future [56].  

 

Figure 1.4: Top: Shares of global primary biomass sources for energy Bottom: Fuel-wood used in 

developing countries [56]. 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can be viewed 
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Biomass is the largest and most important renewable energy option used all over the world 

providing about 50.2 EJ of bioenergy per year [15, 57]. In 2008, it was estimated that 

biomass accounted for 10.2% (out of the total 12.9% from renewable energy) of the total 

global primary energy supply (492 EJ) [58] (Figure 1.4). It will therefore play a crucial role 

in integrated systems of future energy supply and will be a valuable element in a new energy 

mix. Biomass currently contributes less than 10% and between 20-30% to the total energy 

share in developed and developing countries respectively [59-62].  However, in a number of 

countries (e.g. the Sub-Saharan Africa) biomass supplies 50-90% of the total energy demand  

[63]. There are projections that bioenergy from biomass could provide between 104.70-400 

EJ/yr by 2050 [10, 20, 64-67]. Biomass has the potential to become the world’s largest and 

most sustainable energy source and will be enough to meet the global energy demand in 2050  

[12, 68]. 

Dedicated bioenergy crops are now being grown commercially all over the world. These are 

plants grown specifically for energy generation that are able to produce high yields of 

biomass in a short period of time when grown on marginal land (e.g. in the USA) and/or with 

minimal  farming input of fertilizers and pesticides. A wide range of different bioenergy 

crops are being considered for biofuel applications including both established perennial C4 

grasses that utilizes the C4 photosynthetic pathway such as Miscanthus and switchgrass 

(Panicum virgatum), as well as C3 short rotation coppice (SRC) that utilizes the C3 

photosynthetic pathway such as willow and poplar. Dedicated bioenergy crops also include 

annuals, particularly corn (maize), wheat and soybeans, which currently make the largest 

contribution to bioenergy [22]. Other additional crops that can serve as bioenergy crops 

include sorghum, barley, sugarcane, oilseed, and palm oil.  
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1.3.1 Biomass potential for bioenergy 

Biomass resources such as agricultural and forestry feedstock, as well as industrial and 

municipal solid wastes seem sufficient to support globally ambitious renewable energy 

targets/climate policy goals in an environmentally responsible way (see Figure 1.5). Its 

energy potential is thought to be the most promising among the renewable energy sources 

(RES), due to its availability worldwide. Apart from that, biomass has the unique advantage 

among the rest of the RES, to be able to provide solid, liquid and gaseous fuels that can be 

stored, transported and utilized, far away from the point of origin. 

 

Figure 1.5: Environmentally compatible agricultural bioenergy potential  [69]. 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
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Although bioenergy crops currently contribute a relatively small proportion to the total 

energy produced from biomass, the proportion is set to grow over the next few decades. It 

was claimed that tens of millions of hectares of ‘unused’ land were available in many 

countries of Africa, Asia and Latin America (Figure 1.6), and projected that up to one-fifth of 

the world’s agricultural land would be planted for bioenergy crops by 2050 [15]. Currently, 

only about 14 million ha (1 – 2% of the world’s arable land) is devoted to bioenergy crops 

production, but this is expected to increase to 4% by 2030 and 20% by 2050 [69]. 

1.3.2.Biofuels as a substitute for conventional fossil fuels 

Biofuel, which provides about 10% of the total global energy supplies, is the most important 

renewable energy source used and could play a vital role in contributing towards reducing the 

dependence on finite fossil fuels, and reduce GHG emissions  [11, 12, 70-74]. However, 

meeting such ambitious climate change targets and making bioenergy system competitive 

will require its production in a sustainable fashion – since “renewable” does not mean 

“sustainable” [18]. Biofuel from biomass has been hailed as a potential and reliable 

alternative to conventional fossil fuels that could deliver important benefits, contributing to 

GHG emission reductions, and enhance the security of energy supply  [13, 75-79] (see Table 

1.1).  
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Figure 1.6: Global land suitability for bioenergy plantations under rainfed cultivation and advanced 

management systems that assume availability of sufficient nutrients and mechanization. The upper 

map shows suitability for herbaceous and woody lignocellulosic plants - switchgrass, miscanthus, 

poplar, and willow. Lower map shows suitability for maize, soybean, cassava and sugarcane  [58]. 
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Table 1.1: List of selected liquid and gaseous biofuels, technologies, status and engine applications  

[80]. 
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To comply with the global energy policy requirements, for example, in Europe, the EU 

Directive (EU Directive 2009/28/EC) on the promotion of the use of biofuels or other 

renewable fuels for transport within the EU which sets out the objective of 10% for biofuels 

in transport and also a minimum 35% reduction in GHG emissions to be achieved by biofuels 

during their life cycle by 2020 and 80% by 2050 below the 1990 baseline [81], dedicated 

agricultural bioenergy crops (e.g. switchgrass, willow, miscanthus, wheat, corn and soybean), 

agricultural and forest residues, and municipal solid wastes are being utilized as biofuel 

sources for both liquid fuels and electricity generation via either biological or 

thermochemical processes [7, 80, 82, 83]. Biofuels are potential low-carbon energy sources 

and, with the available conversion technologies, may substantially contribute to the 

renewable energy targets in the near future. 

Biofuels are now widely considered as key components towards achieving sustainable energy 

supply on a global scale. Biofuel is a renewable energy source, which can be used as a 

substitute for conventional petroleum based fuels. The replacement of fossil fuels with 

biomass-based fuels has the potential to provide significant reductions in GHG emissions, 

and is regarded to be effective because the carbon released was part of the modern carbon 

cycle (Figure 1.7). In the case of fossil fuels, however, long-buried carbon is released that 

adds to the modern cycle. The term biofuel is referred to as solid (e.g. bio-char, charcoal), 

liquid (bioethanol, biodiesel, biomethanol), or gaseous (biogas, biosynthesis gas, and 

hydrogen) fuels that are predominantly produced from renewable biomass [12]. Some of the 

major benefits of using biofuels are listed in Table 1.2. 
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Table 1.2: Major benefits and drawbacks of biofuels [12]. 
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Figure 1.7: Model of carbon cycle illustrating how energy carriers are derived from biomass. Biomass 

carbon is generated via photosynthesis upon fixing atmospheric CO2 with a simultaneous conversion 

of solar energy into chemical energy stored in biomass [61]. 

 

1.3.3 Biofuels Classification 

Biofuels can be classified into primary and secondary biofuels. Primary biofuels is referred to 

those biofuels that are used in an unprocessed form predominantly for heating, cooking, and 

electricity generation purposes (e.g. fuel wood, wood chips and pellets). Secondary biofuels 

are those produced through lignocellulosic biomass processing such as bioethanol, biodiesel, 

biogas, and biosyngas. Secondary biofuels can be further classified into first, second, and 

third-generation biofuels depending on the kind of raw material (biomass) feedstock used and 

This item has been removed due to third party copyright. The unabridged version of this thesis can 
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the technology employed for their production [84-89]. First-generation biofuel feedstocks are 

primarily grains/seeds and vegetable oil.  Second-generation feedstocks are predominantly 

lignocellulosic (non-food) materials such as agricultural residues. Third generation feedstocks 

are microalgal biomass. 

 

 

Figure 1.8: Main conversion option for biomass energy carriers  [58]. 
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First-generation bioethanol and biodiesel primarily produced from cereals grain and edible 

vegetable oil respectively are currently the most common form of biofuel. Biodiesel is made 

through a transesterification process to produce methyl ester. A number of methods for the 

conversion of biomass to useful biofuels have now been developed; some of these are 

presented in Figure 1.8. Properties of some selected liquid and gaseous biofuels are also 

given in Tables 1.3 and 1.4. 

 

Table 1.3: Properties of some liquid biofuels  [90]. 
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Table 1.4: Properties of some gaseous biofuels [90]. 

 

1.3.4 Current status and future projections for biofuels 

Over the last decade, global first-generation biofuel production from sugars, starches and 

vegetable oils has been increasing rapidly. Production of these biofuels has also been 

extensively investigated, and the production methods have proved successful in some parts of 

the world such as USA, Brazil, and China [15, 59, 91].  In the US, for example, between 

2000 and 2009, bioethanol production increased from 16.9 to 72.0 billion litres and is 

mandated to increase to 136 billion litres by 2022 while biodiesel production increased from 

0.8 to 14.7 billion litres [92]. Globally, approximately 33.3 million ha (Mha) of land under 

production of biofuels in 2008 may increase to as much as 82 Mha by 2020 [92]. The USA 

are the world’s largest bioethanol producer, and this accounts for 99% of their biofuel for 

road transport while the EU is so far the world’s largest biodiesel producer, and uses 
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considerably more biodiesel than bioethanol [93]. Between 1992 and 2007, production of 

biodiesel in the EU has grown significantly (36% per annum) [19]. Biofuel consumption in 

road transport has been increasing in recent years (Figure 1.5). Between 2005 and 2012, 

global biofuels (bioethanol and biodiesel) consumption has increased by about 221% (from 

777, 605 TJ in 2005 to 2, 498, 870 TJ in 2012 [94]. 

 

Table 1.5: Biofuel (bioethanol and biodiesel) consumption in road transport (in TJ)  [92]. 

 

 

However, production of first-generation biofuel from food crops has led to growing concerns 

over their sustainability [70, 78, 95-100]. Some of the issues of concern are: 

 Competition with food for their feedstock. 

 Land use change. 

 Effective CO2 emission savings limited by high fossil energy input during crop 

cultivation, and  
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 High cost of biofuels produced. 

These growing concerns on the sustainability of first-generation biofuels have generated 

intense interest in the production of second-generation biofuels (see section 1.3.3).  

According to [14], production of second-generation biofuels has the potential to providing 

benefits over the first-generation biofuels such as: 

 Consuming readily available high quantities of lignocellulosic residues and wastes 

 Making use of uncultivated (abandoned) - marginal land to produce supplementary 

non-food dedicated energy crops, and 

 Promoting rural development and improving the economic conditions in developing 

regions depending on feedstock choice and cultivation techniques. 

1.4 Biofuels support policies  

Over the past decades, the number of countries exploiting biomass opportunities for the 

provision of energy has increased rapidly and this has been driven by governmental policies 

in an attempt to reduce oil dependency, increase the share of renewable energies and 

contribute to a reduction in related global warming and climate change through reduced GHG 

emissions [89].  Many countries have set ambitious biofuels targets. For instance, the 

European Directive (EU Directive 2009/28/EC) on the promotion of the use of biofuels or 

other renewable fuels for transport within the EU sets out the objective of 10% for biofuels in 

transport and also a minimum 35% reduction in GHG emissions to be achieved by biofuels 

during their life cycle by 2020 and 80% by 2050 below the 1990 baseline [81]. Similarly, in 

July 2010, the USA Renewable Fuel Standard (RFS2) set out the objective of an aggregate of 

136.26 billion litres of renewable fuel to be used in transport, and also required producers of 

advanced and standard biofuels to reduce their life cycle GHG emissions by at least 50% and 

20% respectively [92]. The Scottish government has currently, set up the most ambitious 
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climate change goals in the world, with the Scotland Climate Change Act setting targets of 

42% emissions reduction by 2020 and 80% by 2050. 

1.5 Research aims and objectives 

The overall aim of this thesis was to evaluate the potential benefits and/or drawbacks of 

climate change on the productivity of energy and crops and how this would, in turn affect the 

GHG emissions reductions of biofuels produced from the crops. A reliable projection of how 

climate change will affect biofuel production would be of real benefit to policymakers for 

large-scale biofuels development. The aims envisioned by life cycle thinking using a life 

cycle assessment (LCA) approach, incorporating crop system modeling to determine crop 

yields and calculate the impact that climate change will have on the GHG emissions savings 

from biofuels when they are used as substitutes to conventional petroleum-based fossil fuels 

under baseline and climate change scenarios. The aims and their associated objectives are 

summarised as follows: 

Aim 1: 

To determine the impact of simultaneous changes in atmospheric air temperature (T), 

precipitation (P), and carbon dioxide concentration ([CO2]) on energy crops yields (chapter 

4). 

Associated objectives: 

 To calculate grain and biomass yields of corn (C4 crop) under baseline and future 

climate scenarios 

 To calculate grain and biomass yields of soybean (C3 crop) under baseline and future 

climate scenarios 

 To calculate grain and biomass yields of wheat (C3 crop) under baseline and future 

climate scenarios 
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Aim 2: 

To determine the impact of the resulting yields change on GHG emissions reductions of first-

generation biofuels (chapter 4). 

Associated objectives: 

 To calculate the GHG emissions reductions of bioethanol from corn for both baseline 

and future climate scenarios 

 To calculate the GHG emissions of bioethanol from wheat for both baseline and 

future climate scenarios 

 To calculate the GHG emissions reductions of biodiesel from soybean for both 

baseline and future climate scenarios. 

Aim 3: 

To determine the impact of the resulting yields change on GHG emissions reductions of 

second-generation biofuels (chapter 4). 

Associated objectives: 

 To calculate the GHG emissions reductions of biomethanol from corn through an 

integrated biomethanol production process for both baseline and future climate 

scenarios. 

 To calculate the GHG emissions reductions of biomethanol from wheat through an 

integrated biomethanol production process for both baseline and future climate 

scenarios. 

 To calculate the GHG emissions reductions of biomethanol from soybean through an 

integrated biomethanol production process for both baseline and future climate 

scenarios. 

The structure of this thesis is summarised in Figure 1.1.  
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Figure 1.9: Structure of the Thesis 

Chapter 1 

• This presents the research background and motivation.  

•  It also presents the aims and objectoves of the research. 

Chapter 2 
•  This presents the review of existing literature relevant to the research.  

Chapter 3 
•  This section presents all the methodological approaches for the study. 

Chapter 4 
•  This presents all the findings from the research 

Chapter 5 

•  This section presents the general discussions of the studies, research 
limitations, and recommendations for further studies 

References 
•  This presents details of cited literature. 

Appendices 
•  This presents further details on model output results. 
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1.6 Summary 

This study examined the potential impacts of climate change on energy crop productivity, and 

the resulting GHG emissions reductions potential of biofuels produced from these crops. The 

study applied CSM simulation models in conjunction with baseline and projected (modified) 

10-yr historical climate data, and LCA models to assess the impact of simultaneous changes 

in T, P, and [CO2] on GHG emissions savings of first and second-generation biofuel 

technologies under baseline and climate changes scenarios. This was to understand the 

potential link between climate change and biofuels production since warming is likely to 

have positive (e.g. due to CO2 fertilization) as well as negative impacts on crop productivity 

in rainfed cropping systems, and biofuel production. 

Three annual, dedicated energy crops that are widely used for biofuel productions were used 

in the study using two datasets from the USA and UK as the leading producers of the crops. 

Corn and soybean were simulated for Gainesville, USA, and wheat was simulated for 

Rothamsted, UK. However, while it has been recognised that the exact nature and extent of 

the impacts of climate change on temperature and precipitation distribution pattern remain 

uncertain, and vary from region to region, it was not possible to carry out the evaluation for 

all the regions of the world. This lay the foundation for further research on energy crop’s 

response to individual as well as combined changes in T, P, and [CO2] using different 

datasets (regions) and energy crops. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

In 2013, the IPCC in its ARF5 [34] concluded that climate change would continue throughout 

the 21
st
 century. These would, however, pose serious threat on the productivity of energy 

crops and the climate mitigation potentials of biofuels. This chapter seeks to focus on climate 

change and its potential impacts on crop productivity and a sustainability assessment of 

bioenergy production chains through an LCA approach. It is important to consider what is 

currently known in order to draw out the relationship between crops productivity and climate 

change and an understanding of the life cycle assessment of biofuels. Further, as outlined in 

Chapter 1, an important aim of this thesis is to highlight the potential link between climate 

change and the GHG emissions savings of bioenergy systems. In order to do this, it is 

necessary to discuss what is currently available in the scientific literature about the 

implication of individual and/or simultaneous changes in T, P and [CO2] on energy crops 

production for biofuels.  

2.2 Constraints/critical issues to growth and sustainability of biofuels 

The use of biofuels largely depends on the potential of available feedstock sources, which 

largely depends on climate, land availability and the productivity of dedicated energy crops. 

Bioenergy is based on resources that can be utilized on a sustainable basis all around the 

world. In spite of all these potential benefits that can be obtained from the production and use 

of biofuels from agricultural bioenergy crops, scientific findings have revealed that biofuels 

can be anything from good to bad depending on the methods used to produce the bioenergy 



 27 

feedstock and process the fuel when compared with fossil fuels  [101-106].  Bioenergy from 

dedicated bioenergy crops could make a substantial contribution to the global bioenergy 

system if high yields can be sustained. 

Hence, sustainability of biofuels is the major challenge in increasing their production and 

varies significantly between the products and also depends on many factors. These critical 

issues are sensitive to bioenergy crop yields and the amount of land that could be made 

available for dedicated bioenergy crops production  [107]. These include: 

 Land-use change 

 Competition with food and feed production 

 Use of chemical fertilizers and pest control techniques, and 

 Climate change 

2.3 Climate change 

Climate change is one of the greatest threats to global security and prosperity, and has been 

attracting scientific and political concerns both nationally and internationally. Sir David King 

(former UK chief scientist) said “climate change is the severe problem we are facing today, 

more serious even than the threat of terrorism” [108]. The Stern Review on the Economics of 

Climate Change [109] reported that climate change presents a unique challenge for 

economics and is the greatest and widest-ranging market failure ever seen. There is an 

overwhelming scientific consensus that climate change is happening, and it is very likely to 

be primarily the result of anthropogenic GHG emissions. The increased concentrations of 

GHG are a direct consequence of human activities leading to global warming by 

strengthening the natural “greenhouse effect” [110].  

In its AR5 [34], the IPCC concluded that the observed increase in global average 

temperatures since the mid-20
th

 century is 90% due to the observed increase in anthropogenic 
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GHG concentrations. Atmospheric GHG concentrations have been increasing over the past 

century compared to the rather steady level experienced during the pre-industrial period. The 

most important GHG are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and 

Fluorinated gases (F-gases). There are three main categories of F-gases, which include 

hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6). A 

Global Warming Potential (GWP) has been calculated for each GHG as a measure of how 

long it averagely remains in the atmosphere and how strongly it absorbs energy and 

contribute to Earth warming. GHG and their GWP are shown in Table 2.1. 

 

Table 2.1: Global warming potential of the major GHG  [111]. 

 

Similarly, in 2007, the IPCC in its Fourth Assessment Report (AR4)  [50] reported that a 70% 

increase in GHG emissions have been observed between 1970 and 2004 and an increase of 

between 25-90% has been projected between 2000 and 2030 based on the IPCC’s Special 

Report on Emissions Scenarios (SRES)  [112] emission scenarios (A1T, A1B, A1FI, A2, B2, 

and B1 scenarios) has been projected. The A1 storyline and scenario family (A1T, A1F1, and 

A1B) describes a future world of very rapid economic growth, rapid introduction of new and 

more efficient technologies, and the global population that peaks in mid-century and declines 

thereafter. The three A1 scenario groups are distinguished by their technological emphasis: 

A1F1 – fossil intensive, A1T – non-fossil energy sources, and A1B – a balance across all 

sources. The A2 storyline describes a very heterogeneous world, with continuously 
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increasing global population with small technological change. The B1 storyline line describes 

a convergent world with the same global population that peaks in mid-century and declines 

thereafter, as in the A1 storyline, but with rapid ranges in economic structures. The B2 

storyline describes a world in which emphasis is on local solutions to economic, social, and 

environmental sustainability. It is a world with continuously increasing global population at a 

rate lower than A2. 

The energy, transportation, and agricultural sectors are the major contributors of GHG 

emissions. For instance, [113] reported that in the EU, the transportation, energy, and 

agriculture sectors are responsible for more than 20%, 60%, and 9% of GHG emissions 

respectively. CO2 is the primary GHG emitted through anthropogenic activities. For instance, 

in 2011, in the USA, CO2 accounted for about 84% of all USA GHG emissions compared to 

9% and 5% for CH4 and N2O, respectively. Global CO2 emission has significantly increased 

since 1900. For instance, between 1990 and 2012, global CO2 emission has increased by 

about 52% (34.5 in 2012 compared to 22.7 billion tonnes in 1990) [50]. CO2 emission by the 

six largest CO2 emitting countries is presented in Table 2.2. 

Global CO2 concentrations in the atmosphere have been increasing over the past century 

compared to the pre-industrial era (about 280 ppm). The 2013 concentration of CO2 (400 

ppm) was about 43% higher than in the mid-1800s [34]. 

 

Table 2.2: CO2 emissions by the six largest emitting countries in 1990, 2000, and 2012 (in billion 

tonnes of CO2) [3]. 
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2.3.1 Future climate change projections 

The IPCC has been established to predict future climate changes in response to human 

activities. The World Meteorological Organisation (WMO) and the United Nations 

Environmental Programme (UNEP) established the IPCC, to assess the scientific, technical 

and socio-economic information that are relevant for understanding the risk of human-

induced climate change. A set of descriptions of likely future global GHG emissions was 

used to project likely future climates resulting from human-induced forcing. For most of 

these scenarios, there are projections that the emissions and concentrations of the major 

GHG, such as CO2, CH4 and N2O are expected to increase in the 21
st
 century [114, 115] and 

this would cause a further increase in global temperatures and many other climatic changes 

during the 21
st
 century. 

Over the 20
th

 century, global surface air temperatures have already increased by 0.8 
o
C and 

are projected to increase by 1.4 – 5.8 
o
C during the 21

st
 century [3]. Figure 2.1 presents the 

multi-model global averages of surface warming (relative to 1980-99) for the scenarios A2, 

A1B and B1.  

 



 31 

 

Figure 2.1: Multi-model averages and assessed ranges for surface warming  [50] 

 

 

According to the IPCC’s AR4 report [50], all models indicate global increase in precipitation 

in the tropics and decrease in subtropics. Global increase in the mean water vapour, 

evaporation and precipitation are predicted to occur. Tropical and high latitude areas are 

projected to experience increase in intense precipitation events. In most subtropical and mid-

latitude areas, precipitation intensity is projected to increase but with longer period between 

rainfall events. Mid-continental areas are also predicted to stand a greater risk of drought in 

the future warm climate. Figure 2.2 below shows the projected patterns of precipitation 

changes.  
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Figure 2.2: Projected patterns of precipitation changes [50]. 

 

Given the long lifetime of GHG in the atmosphere and their role in progressive warming of 

the Earth’s climate, stabilizing GHG concentrations in the atmosphere at any level would 

require large reductions of global GHG emissions from current levels. In 2005, under the first 

phase of Kyoto protocol about 191 countries (e.g. Australia, Iceland, Norway and Croatia) 

had committed towards reducing their atmospheric CO2 emissions [1].  

In 2012, when the first phase of the Kyoto protocol ended, the group of industrialized 

countries (e.g. United Kingdom, Germany, Belgium and Denmark) committed to the Kyoto 

target had their 4.7% global CO2 reduction target met for the period 2008-2012 relative to the 

1990 base period. 

2.3.2 Climate change impacts on Agriculture 

The agricultural sector would be the most vulnerable to climate change [29, 116]. Therefore, 

climate change would have significant impacts on agricultural production of bioenergy crops 
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because of the high dependence of agriculture on the climate. Most studies of the impacts of 

changing climate on agriculture indicate that there will be negative effects over the next 

century. These could be impacted through: 

 High temperature effect on crop growth and productivity, increased occurrences of 

pest and diseases, and altered water availability. 

 Altered rainfall patterns. 

 Enhanced frequency of extreme weather events 

 Enhanced CO2 concentration in the atmosphere, and 

 Sea level rise and frequent flooding. 

2.3.2.1 Effect of high temperature on crop production 

Agricultural energy crops production will be affected by the projected increase in the mean 

temperature towards the end of the 21
st
 century [24, 30, 31, 35-37, 117, 118]. Temperature is 

a key determinant of the crops yield. High temperatures are expected to enhance high crop 

yield in the tropical regions due to high rates of biochemical reactions taking place in the 

crops resulting from high temperature. However, when the temperature exceeds the optimal 

limit for plant growth and development, crops negatively responds leading to decrease in net 

growth and yield. Energy crops are highly sensitive to atmospheric and/or soil temperature 

changes at various stages of their life cycle. For instance, [119] reported that yields are 

sensitive to brief episodes of hot temperatures if they coincide with critical stages of their 

development (e.g. when high temperature episode coincide with time of flowering). 

In recent years, energy crop’s response to high and fluctuating temperatures have been 

extensively studied [120-122]. Research findings have also shown the importance of 

temperature variability for annual crops yield [119]. Although crop yield is more sensitive to 
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precipitation than temperature, the predicted increase in the mean seasonal temperatures of 2-

4 
o
C could reduce annual crops yield. 

2.3.2.2 Effect of elevated atmospheric CO2 

Elevated atmospheric CO2 can enhance photosynthesis and improve crop yield. Improved 

water uptake efficiency is achieved under increased CO2 concentration. However, these all 

depends on the nature of the plant and other factors such as pest and diseases, nutrients and 

water availability [123-126]. C3 crops (e.g. rice, wheat, and soybeans) are more affected by 

increased atmospheric CO2 than C4 crops (e.g. maize, millet, and sorghum). Therefore 

increased crop productivity can be expected from C3 crops compared to C4 crops under 

increased CO2 concentration.  From a photosynthetic point of view, C3 crops first incorporate 

CO2 into a 3-carbon compound during photosynthesis. The crops use RUBISCO 

(ribulosediphosphate carboxylase) enzyme for CO2 uptake from the atmosphere to produce 

phosphoglycerate. While C4 crops first incorporate CO2 into a 4-carbon compound 

(oxaloacetate), using PEP Carboxylase (phosphoenol pyruvate carboxylase) enzyme.  

2.3.3 Study of climate change impact on agriculture  

A literature survey revealed that a number of tools have been applied to understand the 

potential impacts of climate change on agriculture. These include: 

 Global climate models 

 Controlled field experiments 

 Integrated climate – crop models 

 Statistical analyses of past climates 

Experimental data and/or crop growth simulation models are used to determine the potential 

impacts of climate change on crop yield based on understanding the drivers of climate 
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change. Large uncertainties in understanding different crop simulation models have been 

developed and are now widely used to evaluate the potential impacts of different variables in 

relation to climate change on crop yield. Some of these models are given in Table 2.4. 

Because of their huge importance in agriculture and sensitivity to climate change, current 

modelling studies focus on the impact of different climate parameters on cereal crops 

production. Some model projections include [116]: 

 Changes in crop yields due to seasonal changes in climate 

 Changes in production potential in relation to yield, available agricultural land, and 

lengthened/shortened growing seasons 

 Crops response to atmospheric compositions, such as CO2 and temperature 

 

Table 2.3: Crop models used in the study of climate change impacts on crops [127]. 

 

The impact of climate change on cereal crops production is mostly concerned with the 

climatic parameters such as, precipitation, temperature, and atmospheric CO2 concentrations. 
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Many recent studies [16, 41] have investigated the impacts of present and future climate 

change on the yield and yield components of agricultural crops. 

2.4 Study of sustainability of bioenergy systems 

Development of sound and effective environmental policies and strategies requires proper 

and reliable scientific basis. To attain the environmental goal of sustainable development, a 

number of methods (e.g. environmental performance evaluation, environmental auditing, risk 

assessment, and environmental impact assessment) have been used as environmental 

management tools in recent times, to study the environmental aspects and impacts of a 

product [128]. The following sections provide an overview of some of these tools and their 

applications in environmental management relating to biofuels production.  

2.4.1 Life Cycle Assessment (LCA) 

As technologies for the conversion of biomass to biofuels differ in their feedstocks 

requirement, feedstocks handling (pre-treatment), conversion processes as well as energy and 

materials inputs, they exhibit a range of life cycle energy and environmental performances.  

Life cycle assessment (LCA) often referred to as “cradle-to-grave”, is a methodology for 

assessing the environmental performance of a product. The life cycle concept is used to 

evaluate the entire life cycle of a product from raw material extraction and acquisition, 

through energy and material production, to use and end of life treatment and final disposal  

[129]. LCA can be defined as: 

“A process to evaluate the environmental burdens associated with a product by identifying 

and quantifying energy and materials used and wastes released into the environment; to 

assess the impact of those energy and material uses and releases to the environment; and to 

identify and evaluate opportunities to affect environmental improvements” [130]. 
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A complete LCA process includes stages of collecting data to produce an inventory of inputs 

and outputs to a process. The data may come from a variety of sources, and indeed may 

reside in a database within commercially available packages. The data will largely be 

quantifiable and thus form an objective basis for the interpretation stage. Interpretation on the 

other hand, is subjective in that the outputs will often be in terms of a set of parameters, 

which are not directly comparable, for example, resource consumption, gaseous emissions, 

and heavy metal release. Whilst there remains insufficient detail of the relative or absolute 

impact of these parameters on the environment, or where they impact in different locations, 

pathways or receptors, a direct comparison is impossible and so any interpretation of the 

overall impact is likely to require judgement and thus is subjective. 

In the late 1920s, forms of LCA were first used in the USA for defining corporate 

environmental strategy, and were later used by the government agencies as an aid for 

developing public policy towards promoting sustainable development in the 1970s [128]. 

Similarly, in the late 1990s, LCA emerged as a globally accepted standardised environmental 

management tool in the form of ISO 14040 series [128].  

Today, LCA is widely used to compare the environmental performance of two functionally 

equivalent products, or in some cases to assess the environmental performance of a single 

product. A generally accepted framework for performing LCA involves a phased approached 

comprising of four interrelated components otherwise called ‘4 Is’ (see Figure 2.3). 
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Figure 2.3: The interrelationship between the four phases of LCA [128] 

 

Over the years, the LCA methodology has been used globally as a valuable tool for decision 

making towards sustainability to evaluate the environmental and energy performances of 

different energy crops. However, there is general lack of local data in developing countries to 

improve the availability of data for LCA studies [131].  

[78] evaluated the energy balance and GHG emissions of different biofuels and biorefinery 

systems using an LCA methodology. The authors concluded that the determination of energy 

balance and environmental emissions from bioenergy systems is complex, and different 

combinations of feedstocks, conversion routes and biofuels; end-use applications and 

methodological assumptions lead to a wide range of results. [72] analysed the production of 

biofuels from agricultural crops in northern Europe based on area of cultivation and energy 

efficiency and GHG emissions. Results show that direct land-use changes have significant 
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impact on GHG balances for all biofuels studied. [72] also reported that the design of the 

production system may have significant impact on the energy and environmental 

performances of the biofuels. For example, whether or not renewable and fossil fuels are used 

in the conversion processes.  

[132] evaluated the energy and environmental performance from a cassava-based bioethanol 

production system. Results show that high-energy consumption comes from the ethanol 

conversion stage, which accounts for 78% of the total energy usage. [133] performed an 

energy and environmental evaluation of biodiesel production from palm oil finding that the 

highest energy consumption in the biodiesel (palm oil methyl ester – PEM) production 

system came from the transesterification process and a net energy ratio (NER) of 2.5 could be 

achieved. NER is a term used to describe the relationship between energy output of a system 

and the energy inputs needed to operate it. A comprehensive review of LCA studies for 

different transportation fuels including fossils and biofuels was conducted by [134]. Fuels 

reviewed include conventional gasoline (CG), conventional diesel (CD), liquefied petroleum 

gas (LPG), compressed natural gas (CNG), wheat-derived ethanol (E-W), corn-derived 

ethanol (E-Co), cassava-derived ethanol (E-C), sugarcane-derived ethanol (E-S), rapeseed-

derived biodiesel (BD-R) and soybean-derived biodiesel (BD-S). It was found that LPG and 

CNG have slightly lower life cycle fossil fuel use and GHG emissions than CG and CD. It 

was also found that bioethanol from different feedstock varies largely in terms of life cycle 

fossil fuel use and GHG emissions. E-Co and E-S seem to be much better choices compared 

with CG. Both BD-R and BD-S can offer substantial benefits in terms of life cycle fossil fuel 

use and GHG emissions. Replacing petroleum-based fuels with CNG or biofuels can reduce 

life cycle petroleum use significantly.  

[131] carried out a cradle-to-farm gate Life Cycle Assessment (LCA) to compare the 

environmental impacts and energy and water demand of rapeseed (Brassica napus L.) and 
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sunflower (Helianthus annuus L.) as potential crops for first-generation biodiesel production, 

in Chile. They evaluated the effects of nitrous oxide (N2O) and land use change associated 

with the crops production. They found that rapeseed production has a better environmental 

performance, lower water consumption, and lower energy demand compared to sunflower 

production. They also found that mineral fertilizers caused the highest environmental impact 

in terms of GHG emissions in both crops studied. [135] integrated LCA and LCC analyses to 

assess the environmental and economic performances of sugarcane based bioethanol in Brazil 

compared to gasoline, under two different scenarios: base case and future case scenarios. The 

base case scenario represents bioethanol production from sugarcane plus electricity 

generation from bagasse, whilst the future case scenario represents bioethanol production 

from both sugar cane and bagasse + electricity generation from wastes. Results showed that 

less GHG is emitted in the case of the base case scenario while the future case scenario is 

more economically attractive.  

The choice of system definitions and boundaries, functional unit, reference system as well as 

allocation methods are crucial in any LCA studies (see [78, 136-138]). [5] demonstrated and 

quantified the significant effects of methodological choices on the GHG and energy balance 

of biofuels based on a case study for the production of bioethanol from wheat in the Swiss 

context. They also demonstrated and quantified the effects of fuels blend and choices 

regarding vehicle/fuel performance. They found that the allocation of impacts between the 

co-products, the type of reference systems, the type of land-use change, and the type of fuel 

blend were all responsible for the large variation in the net GHG emissions of the bioethanol 

from wheat for transportation. An overview of the most important steps in calculating the 

energy and GHG balances of bioenergy systems producing electricity, heat and transportation 

biofuels from biomass residues or crops has been provided by Cherubini [137]. The author 

discussed the key methodological assumptions of LCA such as functional unit, allocation, 



 41 

reference system, system boundaries, and some of the factors affecting final outcomes. The 

factors considered are direct and indirect land-use change, organic carbon pool, N2O and NH4 

emissions from soils, and effects of residue removal.  

Few LCA studies on second-generation biofuel production systems are currently available  

[78]. [139] compared the technological features and life cycle environmental impacts of 

different lignocellulosic bioethanol conversion technologies finding that the conventional 

fossil fuels use reduction potential as well as GHG emissions reductions vary among the 

conversion processes. However, the bioethanol conversion technologies offered better 

environmental benefit in terms of GHG emissions reductions compared to gasoline. The 

environmental impacts associated with second-generation bioethanol from flax shrives (co-

product from pulp fibre production)  [140], Brassica carinata  [141], poplar biomass [142] 

and switchgrass [79] production and use in a flexi fuel vehicle (FFV) compared with 

conventional gasoline throughout their whole life cycle have been recently studied. Ethanol 

blended with gasoline (E10, E85 and E100) was evaluated, and studies show that cellulosic 

biomass feedstocks are promising options to making ethanol. They concluded that 

agricultural activities related to feedstock production were identified as notable contributors 

to the environmental performance. They also reported that there is the need for high yielding 

varieties, decline in the use of inorganic chemical fertilizers, and reduction in tillage in order 

to reduce these impacts. 

In order to assess the environmental benefits from the utilization of biofuels compared to 

fossil fuels, whole life cycles have to be determined. According to [78], LCA of biofuels 

largely depends on the type and management of feedstock, conversion routes, choice of 

location, by-products and co-products allocation, system boundaries, how the fuel is used, 

and reference energy system with which the biofuel chain is compared. An overview of the 

energy flow and the emissions for the evaluation of biofuels is shown in Figure 2.4. However, 
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the overall critical point of how biofuel production influences climate is the type of biomass 

feedstock because it determines the biomass (energy) yield per unit of land, the use of 

fertilizer  [143]. 

Figure 2.4: An overview of energy flow and emissions for all process steps in the LCA of biofuels  

[88] 

 

2.5 Carbon footprint of bioenergy systems 

Although the LCA methodology has been extensively used as a tool for assessing the 

environmental performance of bioenergy systems from dedicated energy crops, mainly 
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focusing on net energy balance and GHG emissions  [4, 5, 7, 9, 13, 70, 74, 79, 101, 144-154], 

its practical application is not always straight forward. Even LCA studies on similar products 

may yield different results, particularly when studying agricultural systems for which the 

parameters vary depending on their specific conditions [99, 100, 155, 156] feedstock types 

and the cropping systems, design of the specific production system, data quality, 

assumptions, methodologies and system boundaries, and choice of allocation methods  [8, 78, 

137, 157-160]. Other factors are the selection of impact categories, the choice of reference 

system, direct and indirect land-use change, treatment of biogenic carbon [161-163], and the 

effect of above ground biomass removal from soils [138, 164, 165]. For example, findings 

from [99], [166], and Wang [167] indicate that calculations of the net energy value (NEV) of 

biofuels are highly sensitive to assumptions about both system boundaries and key parameter 

values.  

2.6 Critical Issues in LCA of Biofuels 

The choice of allocation methods in LCA studies of bioenergy systems has always been one 

of the major critical issues essential for LCA outcomes, especially for global warming 

potential  [55, 167]. LCA studies require that environmental flows be attributed among 

products when a process yields multiple products through a value-based allocation (e.g. by 

economic value, energy content, or mass), or by crediting the production system through the 

displacement (sometimes referred to as substitution) method for co-products. The choice of 

co-product method can significantly influence the LCA outcomes of biofuel particularly 

when economic value is used as a reference. Substitution of avoided burden seems to be the 

most popular allocation method in practice, followed by partition based on mass, energy, and 

economic values. Most LCA studies have shown some conflicting LCA outcomes when 

using different allocation methods, in particular, the use of energy partitioning, mass 

partitioning, economic values as opposed to physical properties as a basis to allocate burdens 
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from multi-output processes, substitution of avoided burden [22, 168], and including or 

excluding biogenic emission of CO2 in the outcome of the LCA results [169]. For instance,  

[135] reported that the application of economic allocation leads to increased global warming 

potential (GWP) when replacing gasoline by ethanol fuels, while reduction of GWP is 

achieved when mass/energy allocation is used as well as in the system where biogenic CO2 is 

excluded. Mass and energy allocation methods were used in the study of corn bioethanol  

[170] and findings are that in the mass allocation method, the co-product credit was equal to 

the energy input of all production steps leading to creation of the co-product multiplied by the 

relative weight of the co-product. In the energy allocation method, the co-product credit was 

the amount of inherent energy (low heat value) within each product assuming complete 

combustion at 90% boiler efficiency. [170] employed market value allocation method 

whereby the co-product credit was equal to the relative value of each of the products such as 

ethanol and Distilers Dried Grains and Solubles (DDGS). The idea behind this market value 

allocation is that the actual cause for the production is the economic value of the products. An 

allocation problem can be avoided through a system expansion method. In some studies 

expanding the product system to include additional functions is applied [135, 157]. For 

example,  [70] employed the system expansion approach in the study of soybean. One of the 

co-products of soybean is soybean meal. Soybean meal is used in animal feed and assumed to 

be able to replace DDGS, which is also used in animal feed. 

Similarly, some authors have pointed out the importance of including direct and/or indirect 

land use change in the LCA of bioenergy systems [171]. The importance of making LCA 

assumptions with or without farm emission of N2O has been cited in the literature [164, 172].  

[164] showed that the effects of N2O emission could account for as much as 60% of the 

greenhouse gas footprint of a biofuel system. A number of recent studies have also focused 

on testing the effect of direct and indirect land use change on the LCA of bioenergy systems. 
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The expansion of land used for bioenergy crop production causes variable direct and indirect 

GHG emissions and other economic, social and environmental effects  [173-175]. Direct land 

use change (dLUC) occurs when new agricultural land for cultivation of bioenergy crops 

displaces prior land use, for example the conversion of forest and/or grassland into corn 

plantation [138], while indirect land use change (iLUC) can be illustrated as an increase in 

demand for forest log and forest residues in one place due to increased logging activities or 

deforestation in another place  [176]. Land use change has an impact on global warming, as it 

can be accompanied by sometimes, large changes in GHG emissions from soils [177]. [100] 

showed that including GHG emissions from dLUC and iLUC may change a net GHG benefit 

into a net cost. One possible solution for this issue is to shift from attributional to 

consequential LCA, in which consequences are specified at the functional unit level.  

[178] reported that methodological challenges still exist in the LCA of bioenergy systems 

regarding the assessment of direct and indirect land use change emissions. According to  

[179], the problem of iLUC emissions in the GHG emissions savings due to substitution of 

fossil fuels by biofuels can be solved by a pay- back time indicator, as used by several 

authors (e.g. [100, 177, 180, 181]. The payback period is the period over which the annual 

GHG savings due to substitution of fossil fuels by biofuels equalize GHG emission from land 

use change. However, [182] argue that LUC GHG emissions may have a smaller contribution 

to the overall biofuel life cycle than previously thought. 

Crop yield has also been cited as one of the critical factors that could influence the LCA of 

bioenergy systems, particularly regarding net GHG emissions savings [143, 183, 184].  Yield 

increases have the potential to offset effects of indirect land use change [183]. Agricultural 

inputs such as fertilizer, seed, herbicides/pesticides, and machinery require fossil fuel in their 

production process. Fossil fuels are also required for field operations and application of farm 

inputs. There is growing attention [16, 40, 185] regarding the importance of bioenergy crops 
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yield in ability to produce biofuels mainly focusing on the impact of crop management 

practices, soil, and climate change and its variability. Past studies by [23] indicate that some 

of the basic responses to climate change can be individual or simultaneous changes in 

temperature (T) and precipitation (P). Studies by [186] indicate that precipitation is one of the 

leading factor affecting crop yields. In addition, temperature changes have been shown to 

affect crop productivity [187].  Similarly, studies that have monitored the influence of carbon 

dioxide concentration on crops have focused on the impact of increased atmospheric 

concentration of CO2 on growth and yields of energy crops [125, 188].  In [126] the impact of 

elevated CO2 on crop productivity was analysed and suggested that it may aid crop 

productivity due to its fertilization effect. According to [189], the rates of plant growth and 

development would continue to increase due enhanced metabolic rates at higher 

temperatures, combined with increased carbon availability. Thus, there is potential for 

interactive effects of multiple environmental factors such as T, [CO2] and P on the response 

of plants. 

[160] studied the impact of agricultural practices on bioethanol production and found that 

crop rotation used in corn production could make a significant difference in corn yields and 

net GHG emissions. [16] simulated the impact of irrigation, nitrogen fertilizer, and planting 

date on three maize cultivars (Dekalb DKC 6172, Pioneer 31D58, and Pioneer 31G98) for 

bioethanol production and found that crop management practices had a significant impact on 

ethanol feedstock yield and NEV. Similarly, [41] evaluated the effects of soil variability on 

the NEV of ethanol produced from maize in four different regions of South-eastern USA 

using the CERES-Maize model linked with life cycle bioethanol NEV calculations. Results 

show that soil variability significantly affects the NEV of bioethanol NEV for all the regions. 

Given the global concern regarding the vulnerability of bioenergy crops to climate change, 

there is growing interest on the potential link between biofuel production and climate change  
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[16, 40, 185]. Assessment of these potential impacts for instance, on GHG emissions savings 

requires the use of climate change models, crop system models, such as the DSSAT-CSM, 

combined with LCA models. However, few studies are currently available in the literature 

and most are based on the security of feedstock supply and/or on the NEV. For example, 

studies by [16] show that NEV of bioethanol produced from maize (corn) shows sensitivity to 

climate variability, with increases during La Nina years and decreases during El Nino years 

for maize grown under both rain-fed and irrigated conditions in Mitchel County, Georgia, 

USA. [190] also investigated the impact of wind damage on biofuel feedstock production, 

and assessed the effect that a future potential increase in tropical cyclone intensity would 

have on energy security, rural development and climate change mitigation measures in the 

Philipines in 2050. Results suggest a modest decrease in biofuel feedstock productivity that is 

shown to affect the Philippine’s policy goals. However much remains to be understood 

regarding the potential link between extreme climate changes and the GHG emissions 

reduction of biofuels. [40] studied the impact and implications of weather, climate, and soil 

variability on switchgrass production in the south-eastern USA using Agricultural Land 

Management Alternative with Numerical Assessment Criteria (ALMANAC) model. 

Simulations were performed under different climate and land use scenarios using 1950s, 

1960s, and 1980s Tennessee River Valley regional weather data. Their study showed that the 

average annual simulated switchgrass yield across the region was significantly higher for the 

1950s and the 1980s climate than for the 1960s climate due to climate change. However, 

future climatic changes were not included in the study. [191] studied how climate change will 

impact future production of switchgrass, corn, sorghum, winter wheat, and soybean in the 

central United States. They used a combination of National Centre for Atmospheric Research 

(NCAR) and climate change scenarios, regional climate (RegCM), and crop productivity 

models (EPIC) to predict the changes in crop yields. CO2 fertilization effects were also 
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evaluated in the study. The authors found negative impacts on crops yield from increased 

temperatures, and positive impacts from increased precipitation and atmospheric CO2. [192] 

studied the potential distribution of bioenergy crops in Europe under present (1961-1990) and 

future climate (2020, 2050, and 2080). They used outputs from four different global climate 

models (HadCM3, CSIRO2, PCM, and CGCM2) to predicts the potential climatic 

distribution of oil crops (oilseed rape, linseed, field mustard, hemp, sunflower, safflower, 

castor oil, olive, and groundnut), cereals (barley, wheat, oat, and rye), starch crops (potato, 

sugar beet, Jerusalem artichoke, and sugarcane), and solid biofuel crops (cardoon, sorghum, 

kenaf, prickly pear, whole crop maize, reed canary grass, miscanthus, and eucalyptus) under 

four IPCC emission scenarios (A1F1, A2, B1, and B2) [112]. They used simple elevation and 

climatic data (climatic requirements – maximum and minimum temperature, maximum and 

minimum precipitation per annum) for each crop to determine (using a simple program 

written in FORTRAN) whether each crop could grow in each grid cell under current and 

future climate. However, no account of yield was taken in their study. They found that all 

models and scenarios highlighted the vulnerability of southern Europe to climate change. 

[193] evaluated the effects of global climate change on the land availability for liquid 

biofuels production in Brazil using PRECIS model projections for temperature and 

precipitation at a 50 km x 50 km square resolution for the 2071-2100 period to analyse the 

impact of climate change on the geographical distribution of sugarcane (for bioethanol), and 

soybean, dende nuts, castor beans, and sunflower (for biodiesel). The study followed a 

methodological procedure described by [192] given the projections for maximum and 

minimum temperature for 2080, 2090, and 2100 under A2 and B2 scenarios. They found that 

biofuel production in the region would suffer from changes in the climate in those regions. 

Other climatic variables such as atmospheric CO2 concentration and precipitation were not 

considered in their study. 
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[194] also assessed the potential impacts of climate change on wheat production as a biofuel 

crop in southern Saskatchewan, Canada, using DSSAT-CSM to simulate biomass and grain 

yield under three climate change scenarios (CGCM3 with the forcing scenarios of IPCC 

SRES A1B, A2 and B1) [112] in the 2050s. Compared with the baseline, precipitation was 

projected to increase every month under all three scenarios except in July and August and in 

June for A2, when it is projected to decrease, while annual mean air temperature was 

projected to increase by 3.2, 3.6 and 2.7 
°
C for A1B, A2 and B1, respectively. The model 

predicted increases in both biomass and grains yield by 28, 12 and 16% without the direct 

effect of CO2 and 74, 55 and 41% with combined effects (climate and CO2) for A1B, A2 and 

B1, respectively. Similarly, [195] evaluated the effects of future environmental changes of 

CO2 enrichment and water stress on the growth and biodiesel production of Jatropha curcas 

under two levels of CO2 concentration (ambient and elevated) and three water regimes (well 

watered, moderate drought, and severe drought). Elevated CO2 was found to enhance 

biomass accumulation of J. curcas by 31.5, 25.9, and 14.4% under well-watered, moderate 

drought, and severe drought treatments, respectively. However, no study is currently 

available on the impacts of climate change on GHG emissions savings of biofuels [196].  

2.7 Summary 

There is consensus that increased atmospheric GHG concentrations are warming the world’s 

climate, which is expected to continue even if the current concentration level is maintained. 

Climate change, which is increasingly recognized as one of the greatest challenges of our 

time will have far reaching consequences on so many sectors such as health, transport and 

agriculture. Climate change and sustainable production of biofuels from dedicated energy 

crops intersect in the agricultural sector, which is highly climate-sensitive. Most research on 

the impact of climate change focuses mainly on agricultural productivity (food security) due 
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to its sensitivity to weather and climate. Climate change is expected to have negative as well 

as positive impacts on agricultural productivity depending on so many factors such as the 

nature of the crop, region, and warming scenarios.  

At the same time it has been accepted with accumulating evidence that bioenergy from 

energy crops could help in reducing AGW. However, bioenergy production also relies on 

agricultural production of dedicated energy crops. Thus, due to the vulnerability of 

agriculture to weather and climate variable such as temperature, precipitation, and CO2, 

climate change will therefore have substantial impacts on energy crop yields by the end of the 

21
st
 century.  

Numerous studies have been conducted to estimate the impacts of warming on agricultural 

productivity in terms of food production. Few studies are currently available on the impact of 

warming on energy crops productivity for bioenergy production, most of which only focuses 

on either feedstock supply and/or NEV. Novel estimate of the link between climate change, 

energy crop yields, and net GHG emissions savings resulting from the production and 

utilization of biofuels as alternatives for conventional fossil fuels is therefore very crucial for 

coherent decision-making processes regarding biofuels, agriculture, and climate change 

polices that would provide strategic direction on what to prioritize. It is envisaged that this 

thesis will contribute to a better understanding of how future climate change would impact 

agricultural production of energy crops for biofuels production. 

Assessment of these potential impacts requires the use of climate change models, cropping 

system models such as the DSSAT-CSM combined with LCA models. The methodology 

(presented in the next section – Chapter 3) was underpinned by life cycle thinking.  
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CHAPTER 3: RESEARCH METHODOLOGY 

 

3. 1 Introduction 

This Chapter describes the design of the modelling approach required to achieve the research 

aims and objectives as stated in Chapter 1. A comprehensive and integrated life cycle 

approach was employed. The methodology couples climate change projection to CSM 

modelling, which was then linked to LCA modelling. Potential impacts of future climate 

change were calculated for different scenarios of climate change. There are three main 

components to the research: firstly, climate change scenarios were constructed in the 

DSSAT-CSM [197, 198] based on changes in daily climate variables (temperature, 

precipitation and atmospheric CO2); secondly, the potential effects of the combined changes 

in temperature (T), amount of precipitation (P), and atmospheric CO2 concentration ([CO2]) 

on grain and biomass yields of energy crops (corn, soybean, and wheat) were calculated; and 

thirdly, the effects of these yield changes on life cycle GHG emissions savings resulting from 

production and use of first and second-generation biofuels as alternatives to conventional 

fossil fuels were also calculated. The flowchart that summarizes the different studies carried 

out is shown in Figure 3.1. 

Projected changes in energy crops yield were calculated using the DSSAT-CSM model with 

the observed climate data (1981-1990) and projected climate change scenarios. The GHG 

emissions savings were calculated using an LCA approach according to the ISO 14044 

standard [128] using yield outputs from the DSSAT-CSM model and life cycle inventory data 

from the ecoinvent database [199].  
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This methodology is unique in its ability to cover all the process chains from climate change 

projection, bioenergy crop production, bioenergy conversion, bioenergy distribution, and 

biofuel-based net life cycle GHG emissions reductions from conventional fossil-based fuels 

replacement. 

 

Figure 3.1: Flowchart showing summary of studies 

 

 

3. 2 Energy crops yield calculation (Aim 1) 

3.2.1 Cropping system models 

The DSSAT-CSM model [197, 198] was used to investigate the effect of simultaneous 

changes in T, P, and [CO2] on corn, soybean, and wheat grain and biomass yields. The 

Section 4.2 

Investigation of the impacts of climate change (simultaneous changes in 
temperature, amount of precipitation, and CO2 concentration on grain 
and biomass (straw) yields of C4 crop (corn) and C3 crops (soybean and 
wheat) as feedstocks for biofuels production (Chapter 4, section 4.2). 

 

Section 4.3 

Investigation of the potential impacts of the resulting grain yields 
change from section 4.1 on the life cycle GHG emissions savings of 
first generation biofuels: bioethanol from corn and wheat, and 
biodiesel from soybean (Chapter 4, section 4.3). 

Section 4.4 

Investigation of the potential impacts of the resuling changes in 
both grain and biomass (straw) yields on the life cycle GHG 
emissions savings of second generation biofuels: integrated 
biomethanol and integrated biolectricityfrom corn, soybean, and 
wheat (Chapetr 4, section 4.4). 
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DSSAT-CSM is a software application program that comprises crop simulation models for 

simulating the growth of over 27 crops and is supported by database management programs 

for soil, weather, and crop management and experimental data and has been validated for 

over 100 different countries worldwide (see [197]). DSSAT-CSM simulates growth, 

development and yield of a crop growing on a uniform area of land under prescribed or 

simulated management as well as the changes in soil water, carbon, and nitrogen that take 

place under the cropping system over time. DSSAT-CSM is structured using the modular 

approach described by [200] and [201]. The primary modules for DSSAT-CSM are for 

weather, soil, plant, the soil-plant-atmosphere interface, and management components. 

Further details are described in [197]. 

The DSSAT model comprises the CERES-Maize, CERES-Wheat (Crop Environment 

Resource Synthesis-Maize and Wheat) and CROPGRO-Soybean (Crop Growth-Soybean) 

models for simulating the growth and yield of corn, wheat, and soybean, respectively as a 

function of the soil-plant-atmosphere dynamics, and they have been used for many 

applications such as regional assessments of the impact of climate variability and climate 

change and energy crops production [194, 202].  

The CERES-Maize, CERES-Wheat and CROPGRO-Soybean models are predictive, 

deterministic models, which stimulate physical, physical, and chemical processes in crop and 

its associated environment. The models are constructed to simulate primary crop processes as 

a function of weather, crop management practices, and soil conditions. CERES-Maize derives 

daily rates of crop growth (Plant Growth, Regulator, PGR, g plant
− 1

 d
− 1

) as the product of 

light intercepted by the canopy (Incident Photosynthetically Active Radiation, IPAR, MJ 

plant
− 1

 d
− 1

) and radiation use efficiency (RUE, g MJ
− 1

)  [202]. The rate of development in 

CERES-Maize is controlled by temperature (growing degree-days: GDD). Daily crop growth 
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is calculated by converting intercepted photosynthetically active radiation (PAR) into crop 

dry matter with a crop-specific RUE parameter  [197]. 

The CERES-Maize, CERES-Wheat, and CROPGRO-Soybean models require a minimum 

data set for model operation. The contents of such a dataset are shown in Table 3.1. The 

dataset encompass data on the site where the model is to be applied, daily weather during the 

growing cycle, the characteristics of the soil at the start of the growing cycle or crop 

sequence, and the management of the crop (e.g. seeding rate, fertilizer applications, and 

irrigation). 

The models require detailed farm level management practices, soil profiles, genetic 

coefficients describing the crop cultivar, and daily meteorological conditions (precipitation, 

solar radiation, atmospheric concentration of CO2, and maximum and minimum temperature). 

They simulate physiological crop responses on a daily basis as a function of climate factors 

(daily maximum and minimum temperature, precipitation, and solar radiation), soils, and 

crop management practices (cultivar, planting date, row spacing, plant population, and 

planting depth). The models have been applied extensively in many different parts of the 

world for climate change applications [41, 118, 203-209]. These models compute important 

biophysical and biochemical processes, like photosynthesis, respiration and transpiration or 

the dynamics of carbon and water at the leaf-level and are therefore able to simulate the effect 

of increasing temperatures, changing precipitation and elevated atmospheric CO2 

concentration on crop development and yield [25]. 
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Table 3.1: Contents of minimum data sets for operation and evaluation of the DSSAT-CSM model  

[197]. 

 

This item has been removed due to third party copyright. The unabridged version of this thesis 
can be viewed at the Lanchester library, Coventry University.
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3.2.2 Climate data and climate change scenarios 

Any climate change scenario must adopt a reference baseline period from which to calculate 

changes in climate. This serves as the base on which data sets that represent climate change 

are constructed. This study adopted the 1981-1990 (10-year) baseline period from the 

standard 30-year (1961-1990) normal baseline period as defined by the World Meteorological 

Organisation (WMO), which provides a standard reference for climate change impact studies 

[50]. Observed 10 year (1981-1990) climate data were obtained for Gainesville, USA 

(29.6514
o
 N, 82.3250

o
 W) and Rothamsted, UK (51° 48' 00" N, 00° 22' 00" W), representing 

daily minimum/maximum air temperature and precipitation. The 10-year observed daily 

climate data was used as baseline climate scenario. This scenario looked at simulations 

derived from the unmodified observed climate data. 

Based on the climate change predictions given in Tables 3.2 and 3.3, climate change 

scenarios were generated for each study site using the observed climate data. Scenarios were 

created using a combination of changes in temperature, precipitation and atmospheric CO2. 

Projections were made using the “environmental modification” section of the XBuild module 

in DSSAT-CSM model, which generate climate change scenarios using various combinations 

of temperature, precipitation, and atmospheric CO2 levels (Figure 3.2). Daily changes in the 

climate variables were applied to the observed daily climate records. The atmospheric 

concentration of CO2 was considered as 330 ppm for the baseline period, which is the default 

value in the DSSAT-CSM software for the normal baseline reference period (1961-1990), 

which also provides a standard reference for climate change impact studies [50] increasing 

with +70ppm (400 ppm)  +70 ppm x 3 (540 ppm) and +70 ppm x 5 (680 ppm) in the future 

reference to the baseline concentration [115]. However, in early 2013, atmospheric CO2 

concentrations had increased to about 400 ppm, and is further projected to grow in the future 

above 660 ppm from the remaining fossil fuel deposits [53]. 
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Figure 3.2: Screen shot of environmental modification applications window of the DSSAT model. 

The factor pull-down menu provides 3 options: “Add”, “Multiply” and “Replace”. For an 

environmental variable (i.e. minimum and maximum temperature, precipitation, and CO2), a value 

was entered in the adjustment box and the type of adjustment was specified using the menu items in 

the factor pull-down menu. 

 

To assess the effect of changes in climatic conditions on the yield of corn and soybean, 320 

different climate change scenarios were provided to CERES-Maize (corn) and CROPGRO-

Soybean (soybean) for different temperature, precipitation and CO2 conditions as shown in 

Table 3.2. For wheat, 60 different scenarios of climate change were provided to CERES-

Wheat for different temperature, precipitation, and CO2 conditions as shown in Table 3.3. 

  

 

Environmental 

modifications 

feature of the 

DSSAT models 

Adjustment box 
 

 

Climate scenario 

selection 

 

 

Factor pull-

down menu 

options 
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Table 3.2: Simulated temperature, precipitation, and CO2 concentration ranges for corn and soybean 

(Gainesville, USA, dataset). 

Crop CO2 (ppm) Precipitation 

(%) 
Temperature (

o
C) 

+1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5 

Corn 

and 

Soybea

n 

400, 470, 

540, 610, 

and 680 

-20 

        -15 

        -10 

        -5 

        +5 

        +10 

        +15 

        +20 

        

 

 

 

Table 3.3: Simulated temperature, precipitation, and CO2 concentration ranges for wheat 

(Rothamsted, UK, dataset). 

Crop CO2 

(ppm) 

Precipitation 

(%) 

Temperature (
o
C) 

Wheat  

400, 540, 

and 680 

+0.5 +1.5 +2.5 +3.5 +4.5 

-20      

-10      

10      

20      

 

 

Observed climate, soil, and crop management practice data from Gainesville, USA was used 

for corn and soybean, and Rothamsted, UK was used for wheat.  Corn and wheat grains are 

the most common feedstocks used today for bioethanol, and soybeans for biodiesel. 

Agricultural residues such as corn stover, wheat straw, and soybeans stalks also have the 

potential for being used as biofuel feedstocks [15]. Besides data availability, one of the 

criteria of selecting suitable study sites was their representativeness for the crops.  
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The baseline climate data were modified as follows:  

 Corn and soybean: for daily and maximum temperature changes, the baseline data 

were altered by +1.5, +2.0, +2.5, +3.0, +3.5, +4.0, +4.5, and +5.0 
o
C, and for 

precipitation changes of ±5, ±10, ±15, and ±20% of the baseline. The baseline CO2 

concentration of 330 ppm was altered by +70, +140, +210, +280, and +350 ppm. The 

ranges were based on the summary projections by the IPPC in its AR4 [50]. 

 Wheat: daily minimum and maximum temperature were altered by +0.5, +1.5, +2.5, 

+3.5, and +4.5 
o
C, and ±10 and ±20% for precipitation. Baseline CO2 concentration 

was altered by +70, +210, and +350 ppm. The ranges were based on the summary 

projections based on the IPCC AR5 report [34]. 

3.2.3 Soil data 

Soil characteristics play a very important role in the crops ability to extract water and 

nutrients for its growth. The soil must provide a satisfactory environment for crops growth if 

crops are to grow to their potential. 

The generic deep sandy loam (SALO) soil [198] and sandy clay loam (SCL) soil [210] 

provided with the DSSAT-CSM model were used for Gainesville, USA, and Rothamsted, 

UK, respectively The data includes soil physical properties (soil texture, soil bulk density and 

soil water retention characteristics) and soil chemistry (soil organic matter, mineral nitrogen, 

and pH.). Tables 3.4 and 3.5 show the profile of the soils used in the study. The soils were 

chosen to test the models sensitivity to future climate change under growth conditions that are 

only limited by weather variables (such as air temperature, solar radiation, precipitation, and 

atmospheric CO2).  
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Table 3.4: Summary of the soil characteristics for the SALO soil, Gainesville, USA [198]. 

 

 

Table 3.5: Summary of the soil characteristics for the SCL soil, Rothamsted, UK [210]. 

 

3.2.4 Crop management data 

Simulations were run for the three major crops widely grown for energy purposes – corn, 

soybean, and wheat for the cultivars McCurdy 84aa, PIO332, and Maris Funden, 

respectively. Because crop yield varied not only due to variability in weather, but also soil 

properties, cultivar and management practices, the most common optimal yield conditions, 

This item has been removed due to third party copyright. The unabridged version of this thesis can 
be viewed at the Lanchester library, Coventry University.

This item has been removed due to third party copyright. The unabridged version of this thesis 
can be viewed at the Lanchester library, Coventry University.
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and a high yielding cultivar for each crop were carefully selected and fixed throughout the 

study. Crop cultivars were selected by conducting several experiments using different crop 

cultivars and the high yielding cultivars were chosen for each crop.  

Simulations were run under rain fed conditions to examine the effect of climate change 

scenarios on the energy crops yield. Irrigated condition was not considered because studies 

by [16, 41, 196] showed that the energy balance of maize ethanol showed that the energy 

balance of maize ethanol in the Southeastern USA varied much more across years under 

rainfed conditions than irrigated conditions as a result of weather and climate variability. The 

crop management data includes planting date, plant population (per ha), row spacing, 

planting depth, planting method, fertilization, and herbicides application. A common 

management data were adopted for each crop for all simulations. Simulated plants 

populations (plants m
-2

) for the respective crops were: corn - 7.2, soybean - 22, and wheat - 

277. Planting depth (cm) was 7, 3, and 4 for corn, soybean and wheat, respectively. 

Simulated raw spacing (cm) for the respective crops was: corn – 61, soybean – 76, and wheat 

– 17. 

Energy crop biomass production typically requires fertilizers, since Nitrogen (N) and 

Phosphorus (P) are often the major limiting nutrients in agricultural soils. N mass fraction in 

plants ranges between 1% and 6% and is absorbed as nitrate or ammonium, while P mass 

fraction in plants is 0.1–0.5% or up to 1.0% and is generally absorbed as dihydrogen 

phosphate or monohydrogen phosphate depending on soil pH [211]. Thus, simulations were 

also run under nutrients limiting conditions. N, K, and P mineral fertilizers were simulated to 

ensure that the soil contains sufficient supply of growth nutrients and also to supplement 

nutrients loss due to crop residue removal from the field [79, 139]. In the DSSAT-CSM 

model, fertilizer materials (N, P, K) are applied differently in the application pull-down 

menu. N, K, and P were simulated in the form of urea/ammonium nitrate, potassium sulphate, 
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and single superphosphate, respectively. High N treatment was simulated for corn and wheat, 

soil mineral N was set to 180 kg ha
-1

 each, and 130 kg ha
-1

 for soybean [212-214].  

3.2.5 Validation of the models 

A number of studies involving the evaluation of climate change impact on crop productivity 

have been conducted for CERES-Maize (e.g. [26, 215-219]), CERES-Wheat (e.g. [220-225]), 

and CROPGRO-Soybean (e.g. [226-232]). However, to ensure the accuracy of the model 

predictions, the average simulated grain and biomass yields were compared with observed 

yield data. The summary of the models validation is given in Table 3.6. 

 

 

 

Table 3.6: Observed and simulated average grain and biomass yields  [233, 16, 187]. 

Crop Grain yield (kg ha
-1

) Biomass yield (kg ha
-1

) 

Simulated Observed Simulated Observed 

Corn 12984 11525 11404 22171 

Soybean 3927 2700 2330 22400 

Wheat 5955 7700 5895 5408 

 

3.3 GHG emissions calculation 

3.3.1 LCA model 

GHG emissions from the crop yields under baseline and climate change scenarios as 

explained in section 3.2.2 were calculated for first generation biofuels: bioethanol and 

biodiesel, and second generation biofuels: biomethanol and bioelectricity using a life cycle 

assessment (LCA) approach in accordance with the ISO 14044 standard [128]. The LCA 

methodology employed in the study advocates the system boundary expansion method – 
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“displacement method” or “substitution method” for LCA [72, 234]. The LCA steps are 

described in subsequent sections.  

Models were developed using GaBi v4.4 software [235]. GaBi v4.4 is a powerful modeling, 

reporting & diagnostic software tool for LCA developed by the PE INTERNATIONAL  

[236] with about 5570 LCI (Lifecycle Inventory) datasets. It is the most trusted product 

sustainability solution for LCA with over 10,000 users [236]. GaBi models every element of 

a product or system from a life-cycle perspective. It also provides an easily accessible and 

constantly refreshed content database that details the costs, energy and environmental impact 

of sourcing and refining every raw material or processed component of a manufactured item. 

The crop yields were based on simulated model outputs from the DSSAT-CSM model and 

were used as inputs for the LCA models. In this study, average energy crop yields over 10 

years were taken to smooth out annual variations due to temperature and precipitation 

differences. Baseline and climate change scenarios were created in the GaBi v4.4 software 

from the resulting simulated crop grain/seed and stover/stalk yields using ‘if’ function 

formula as shown in Figure 3.3.  
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Figure 3.3: Screen shot showing an example of corn grain yields inputs in GaBi model as a function 

of climate scenario. 

 

3.3.2 System boundaries 

The system boundary in this study as shown in Figures 3.4-3.6 included energy crop 

(feedstock) production and transportation, biofuels processing, and biofuels distribution to 

service station or national grid (where applicable). The importance of including land-use 

change emissions in the GHG balance of biofuels was highlighted by [100] and  [177]. Direct 

land use (transformation from non-arable to arable land for biofuels production purposes) was 
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included in the analysis and crop farming activities such as planting, seeds, application of 

herbicides, harvesting, and fertilizers were also included. Upstream activities such as 

manufacturing of equipment/machines and chemicals were taken into account. The average 

100 km feedstock transportation data was considered in the study [142]. Waste heat produced 

in the biofuel processing stage was not considered throughout this thesis since energy 

recovery from waste was not within the scope of the study.  

3.3.2.1 First-generation biofuels – (Aim 2) 

As explained in the previous chapter, CERES-Maize (corn), CERES-Wheat (wheat) and 

CROPGRO-Soybeans (soybeans) simulation grain yields data were used as input for biofuels 

production. Production of corn bioethanol (CBE) was compared to conventional gasoline  [4, 

150] and soybean biodiesel (SBD) was also compared with conventional petroleum diesel  

[237]. The life cycle GHG emissions savings of gasoline and biodiesel as substitutes for 

fossil gasoline and diesel respectively were calculated based on their respective models.  A 

fuel substitution ratio (see equation 3.8) of 0.62033 was calculated for bioethanol and 

0.88069 for biodiesel. In terms of co-products allocation, DDGS formed as a co-product 

during the bioethanol production process replaces corn meal using a substitution ratio of 1 

based on the protein content of the by-products and their relevance as food components  [96, 

157]. Soybean meal produced as a by-product of biodiesel production was considered as a 

substitute for rape meal, the glycerine produced from esterification plants was considered as a 

substitute for conventional glycerine in equal parts - substitution ratio of 1 [238, 239].  The 

system boundary for first-generation technologies is given in Figure 3.4.  
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Figure 3.4: System boundaries of first-generation technologies (CBE, WBE & SBD). 

 

3.2.2.2 Second-generation biofuels – (Aim 3) 

For second-generation biofuels, whole crop utilization (both grain and by-products) was 

considered in the study. This involves combined production of both first-generation biofuels 

from grain and second-generation biofuels from by-products: corn stover from corn, wheat 

straw from wheat, and soybeans stalks from soybeans. 
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For corn integrated biomethanol (CIBM) production, corn grains yield was assumed to be 

used for the production bioethanol (as discussed in 3.3.2.1) and corn stover yield, which is 

the by-product of corn was assumed to be used for biomethanol production through biomass 

gasification and biomethanol synthesis process. For wheat integrated biomethanol production 

(WIBM), wheat grains yield was considered to be for bioethanol production (as previously 

described) and wheat straw, a by-product of wheat was assumed to be used for biomethanol 

production. Similarly, soybeans seeds yield was used for biodiesel production and the stalks 

yield was assumed to be channeled into biomethanol production for soybeans integrated 

biomethanol (SIBM) production. Figure 3.5 shows the system for biomethanol production. 
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Figure 3.5: System boundary for integrated biomethanol production process. 

 

Three technologies were also considered for bioelectricity production: corn integrated 

bioelectricity (CIBE), soybean integrated bioelectricity (SIBE), and wheat integrated 

bioelectricity (WIBE). For CIBE production, corn grain yield was utilized for the production 

bioethanol (as discussed in 3.3.2.1) and corn stover yield (by-product of corn) was utilized 

for bioelectricity production through a BIGCC process. For SIBE, soybean seeds yield was 

utilized for biodiesel production and the stalks yield was utilized for bioelectricity production 

through a BIGCC process. For WIBE, wheat grains yield was utilized for bioethanol 

production (as previously described), and wheat straw, a by-product of wheat was utilized be 
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used for bioelectricity production through a BIGCC process. The system boundary for 

bioelectricity production is given in Figure 3.6.  

 

Figure 3.6: System boundary for integrated bioelectricity production process  

 

3.3.3 Functional unit 

The functional unit is defined as a hectare (ha). All impact assessments are of biofuels from 

energy crop feedstock produced per ha of land (net GHG emissions savings expressed in kg 

CO2-eq. per ha per annum).  
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3.3.4 Key assumptions 

Many LCA studies ignored the environmental impact of residue removal for bionergy 

production [144]. It has been recognized that residues removal for bioenergy production 

purposes may have strong environmental influence on many factors such as N2O emission 

from soil, nitrate leaching and changes in soil carbon pools  [79, 139]. Residue removal from  

from the field may lead to nutrients loss from soil , which must be added to replenish the  soil 

for successful subsequent crop production. It was assumed that 80% of the residues (corn 

stover/soybean stalks/wheat straw) from agricultural cultivation are collected in round bales 

and converted to biofuels and the rest are left (incorporated) on the field to maintain soil 

organic carbon (SOC) and soil fertility [71, 137]. Land use change (land transformation from 

non-agricultural to arable land) was also considered to account for the depletion of soil 

carbon pools and additional GHG emissions, which occurs when non-agricultural land is 

transformed to arable land for biofuel purposes.  

3.3.5 Reference system 

The biofuels produced were compared to their respective fossil counterparts [5]. Co-products 

from the biofuels pathway also replace existing animal feeds and chemicals (where 

applicable). The LCA of petroleum-based fossil fuels – gasoline and diesel included 

extraction of crude oil, transportation to the refinery, refining, and distribution to service 

station (point of use). 

3.3.6 Life cycle inventory (LCI) 

LCA models for the biofuel technologies considered were constructed using LCI data from 

ecoinvent v2.0 database [199]. An example of the model for biodiesel from soybeans is 

shown in Figure 3.7. ‘US’ (LCI data based on production technologies in the USA) and 
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‘RER’ (LCI data based on production technologies in Europe) LCI datasets were 

preferentially selected in the study. However, limited availability of data has always been one 

of the critical issues in LCA studies, where data were not available, ‘CH’ LCI (inventory data 

based on production technologies from Switzerland). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Screen shot showing an example of life cycle model for biodiesel production 

showing the entire unit processes and the input flows for each unit process. 
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3.3.6.1 Input/output data 

Data output from the crop system model and LCI data from the ecoinvent database were used 

in the compilation. The life cycle of the biofuels was divided into: 

 Crop production and management data (materials and energy inputs during farm 

operations), data output (crop yields/ha) from the DSSAT-CSM model, and all 

transportation involved in the process. 

 Biofuel conversion at the plant, which includes material processing techniques 

(energy and materials used in converting crops into energy products - biofuels), and 

transportation. 

 Biofuel distribution to the users at the service station. 

Output data is the calculated life cycle impact assessment (LCIA) of the processes. 

3.3.7 Life cycle impact assessment (LCIA) 

The cumulative LCIA results from ecoinvent for GHG warming potential were taken by 

applying the CML2001, 100 years GWP methodology [240] due to its relevance to current 

legislative goals for climate change mitigation [50]. An example of model calculation using 

the CML2001, GWP is shown in Figure 3.8. The calculation of lifecycle GHG emissions 

includes carbon dioxide (CO2) of fossil origin and soil carbon, methane (CH4) and nitrous 

oxide (N2O) based on their relative contribution to global warming (GW).  
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Figure 3.8: Screen shot showing the window for selecting the LCA calculation methodology. 

 

These GHG emissions were aggregated to give a single figure for emissions, which is 

expressed in expressed as kg CO2-equiv. ha
-1 

yr
-1

. The analysis accounts for the GHG 

emissions from energy crop cultivation (farm operations), biofuel conversion processes, and 

distribution to regional storage (equation 3.1). 
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                    (3.1) 

3.3.7.1 Crop cultivation 

Total GHG emissions associated with cultivation of energy crops were calculated as the sum 

of GHG emissions from changes in soil carbon due to land use change (transformation to 

arable land), farm machinery, herbicides, feedstocks (grain/straw) collection from field, 

loading, transportation, and transport of farm fertilizers and seeds. Using the farming input 

data described in Tables 3.7, 3.8, and 3.9, the model calculates the GHG emissions from corn, 

soybeans and wheat cultivation, respectively for no-till system (equation 3.2). This data was 

obtained from the ecoinvent database, the University of Florida’s Institute of Food and 

Agricultural Sciences (UF/IFAS) extension services and simulated (experimental) data from 

the DSSAT-CSM models. The fertilization data for each of the crops considered was 

carefully selected since crop yields are affected by the rate of fertilizer application. The effect 

was first determined on whole crop yield (grain/seeds and residues) by simulating crop yields 

using variable fertilization rates. The optimum fertilization rate with the highest output 

(grains/seeds plus residue yield) were chosen and applied in this study for crop yield 

simulation.  

       (3.2) 

Where, GHGseed, are the emissions involved in seed production and transport, GHGN-fert, 

GHGP-fert, and GHGK-fert, are the emissions involved in the production and transport of 

nitrogen, phosphate, and potassium fertilizers respectively. GHGherb, are the emissions 

involved in the production and transport of herbicides, GHGfossil, are the emissions from fossil 

fuel use during farm operations such as sowing, balling, fertilizers and herbicides application, 

GHGGHGGHGGHG distribprocessfarmbiofuels .


GHGGHGGHGGHG

GHGGHGGHGGHGGHGGHG

equipmentsonpreoperatifossilstransport

herbfertKfertPfertNseedfarm
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and harvesting, GHGtransport, are the total emissions involved during biomass transportation 

from farm to the processing plant, GHGpreoperations, are the emissions from soil during land 

transformation, and GHGequipment are emissions from manufacture of farm machinery.  

 

Table 3.7: Inventory data for the cultivation of 1 ha of corn [199, 214, 213]. Grain and stover yields 

output depend on climate scenario 

Inputs Amount Unit 

US: application of plant protection products, by field sprayer [work 

processes] 

10000 sqm 

US: baling [work processes] stover yield pcs. 

US: combine harvesting [work processes] 10000 sqm 

US: fertilising, by broadcaster [work processes] 30000 sqm 

US: loading bales [work processes] quantity of 

bales  

pcs. 

US: maize seed IP, at regional storehouse [seed] 20 kg 

US: sowing [work processes] 10000 sqm 

US: atrazine, at regional storehouse [Pesticide] 3 kg 

US: potassium sulphate, as K2O, at regional storehouse [mineral fertiliser] 90 kg 

US: single superphosphate, as P2O5, at regional storehouse [mineral 

fertiliser] 

90 kg 

US: transport, lorry >16t, fleet average [Street] quantity of 

bales 

tkm 

US: urea, as N, at regional storehouse [organics] 180 kg 

CH: transformation, to arable, non-irrigated [ecoinvent] 10000 sqm 

Outputs 

US: corn stover, at farm [plant production]   kg 

US: corn grain, at farm [plant production]  kg 

 

 

 

Table 3.8: Inventory data for the cultivation of 1 ha of soybeans [199, 241]. It is important to note that 

seed and stalk yields output depend on climate scenario. 

Inputs Amount Unit 

US: application of plant protection products, by field sprayer [work processes] 10000 sqm 

US: baling [work processes] stalks yield pcs. 

US: combine harvesting [work processes] 10000 sqm 

CH: fertilising, by broadcaster [work processes] 20000 sqm 

CH: loading bales [work processes] quantity of bales pcs. 

US: soybeans, at regional storehouse [seed] 70 kg 

US: sowing [work processes] 10000 sqm 

US: glyphosate, at regional storehouse [Pesticide] 4 kg 

US: potassium sulphate, as K2O, at regional storehouse [mineral fertiliser] 65 kg 

US: single superphosphate, as P2O5, at regional storehouse [mineral fertiliser] 65 kg 

US: transport, lorry >16t, fleet average [Street] quantity of bales tkm 

US: urea, as N, at regional storehouse [organics] 130 kg 

Transformation, to arable, non-irrigated [ecoinvent] 10000 sqm 

Outputs 

US: soybean, stalk [fuels]  kg 

US: soybean, at farm [plant production]  kg 
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Table 3.9: Inventory data for the cultivation of 1 ha of wheat [199]. It is important to note that grain 

and straw yields output depend on climate scenario. 

Inputs Amount  Unit 

CH: application of plant protection products, by field sprayer [work 

processes] 

10000 sqm 

CH: baling [work processes] straw yield pcs. 

CH: combine harvesting [work processes] 10000 sqm 

CH: fertilising, by broadcaster [work processes] 30000 sqm 

CH: loading bales [work processes] quantity of 

bales 

pcs. 

CH: sowing [work processes] 10000 sqm 

CH: wheat seed IP, at regional storehouse [seed] 100 kg 

RER: 2,4-D, at regional storehouse [Pesticide] 1.1 kg 

RER: potassium sulphate, as K2O, at regional storehouse [mineral 

fertiliser] 

65 kg 

RER: single superphosphate, as P2O5, at regional storehouse [mineral 

fertiliser] 

65 kg 

RER: transport, lorry >16t, fleet average [Street] quantity of 

bales 

tkm 

RER: urea, as N, at regional storehouse [organics] 180 kg 

Transformation, to arable, non-irrigated [ecoinvent] 10000 sqm 

Outputs 

CH: wheat grains, at farm [plant production]  kg 

CH: wheat straw, at farm [plant production]  kg 

 

 

3.3.7.2 Biofuel processing  

GHG emissions associated with the production of biofuel were calculated using data from the 

ecoinvent database (equation 3.3).  

             (3.3) 

Where GHGpre-treatment, are the emissions involved during biomass pre-treatment such as 

drying, and milling, GHGchem/enz are the emissions during the production and transport of the 

chemicals and/or enzymes used in the conversion process, GHGwater are the emissions 

involved in the production and supply of tap water used in the processing plant, GHGelectricity 

are the emissions during the production of electricity used in the biofuel processing, 

GHGGHG

GHGGHGGHGGHGGHG

treatmentfacilities

yelectricitwaterenzChemtreatmentpreprocess




 /
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GHGfacilities are the emissions involved in the construction of the biofuel processing plant, and 

GHGtreatment are the emissions during wastewater treatment from the production process. 

Process modules data inventories for the biofuels considered are described in the following 

subsections. 

3.3.7.2.1 First generation corn bioethanol (CBE) and wheat bioethanol (WBE) 

This was undertaken to evaluate the net life cycle GHG emissions associated with bioethanol 

production from corn and wheat grain as potential replacement for energetically equivalent 

petrol (gasoline) from fossil crude oil. The resulting flow charts for CBE model from corn 

and WBE model wheat grain are illustrated in Appendices J and K respectively. The flow 

charts were delineated into separate sub-processes, mainly to assist with process chain 

specifications and subsequent LCI data requirement. 

3.3.7.2.1.1 Grains in distillery 

LCI data as shown in Tables 3.10 and 3.11 refers to the data inputs for the production of 

hydrated bioethanol 95% (d.b), and dried distiller grains with soluble (DDGS) (wet basis) 

from 1 kg of grains as obtained from the ecoinvent database. The multi-output process 

delivers the product and co-product 'bioethanol, 95% in H2O’, and 'DDGS’, respectively. The 

process described corresponds to the dry-milling grains-to-bioethanol technology including 

all necessary transport of the grain to the processing plant (assumed 100 km radius).  
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Table 3.10: LCI input data for corn grains, in distillery, referred to the production of bioethanol (95% 

in H2O) from 1 kg corn grain  [199]. 

 

 

 

 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can 
be viewed at the Lanchester library, Coventry University.
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Table 3.11: LCI data for wheat grains, in distillery, referred to the production of bioethanol (95% in 

H2O) from 1 kg wheat grain  [199]. 

 

 

 

3.3.7.2.1.2 Bioethanol, 99.7% in H2O, from grains, at distillation 

LCI data presented in Table 3.12 refers to the production of 1 kg bioethanol (99.7% in H2O) 

through distillation process.  

Table 3.12: LCI data for the distillation of bioethanol (95% in water) to bioethanol (99.7% in H2O)  

[199].  

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University.

This item has been removed due to third party copyright. The unabridged version of this thesis 
can be viewed at the Lanchester library, Coventry University.
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3.3.7.2.2 First generation soybean biodiesel (SBD) 

This option was undertaken to evaluate the net life cycle GHG emissions associated with 

biodiesel production from soybean seed as a potential replacement for energetically 

equivalent fossil diesel from crude oil. The resulting flow charts for SBD model from 

soybean is illustrated in Appendix L. 

3.3.7.2.2.1 Soybeans, in oil mill 

LCI data as shown in Table 3.13 refers to the production of soybean oil and soybean meal 

from 1 kg soybean grains. The multi-output process delivers the product and co-product 

soybean and soybean meal, respectively. The process describes a typical oil mill designed for 

soybean oil solvent extraction (including pre-cracking of soybeans, dehulling, oil extraction, 

meal processing, and oil purification), within the US context.  

 

Table 3.13: LCI data for soybean seeds, in oil mill process, referred to the conversion of 1 kg soybean 

seeds to oil and meal  [199]. 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University.
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3.3.7.2.2.2 Soybeans oil, in transesterification plant 

LCI dataset as depicted in Table 3.14 refers to the production of soybean methyl ester 

(biodiesel), and glycerin, from 1 kg soybean oil. The multi-output production process delivers 

soybean methyl ester (biodiesel) as main product and glycerine as co-product. The process 

described a typical vegetable oil esterification plant designed for the production of methyl 

ester (biodiesel). 

 

Table 3.14: LCI data for soybean oil, in esterification plants, referred to 1 kg soybean oil  [199]. 

 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can 
be viewed at the Lanchester library, Coventry University.
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3.3.6.3 Second generation biofuels 

3.3.6.3.1 Biomass Integrated Gasification and Biomethanol synthesis (BIGBMS) 

These models for combined production of corn grain bioethanol from grain and biomethanol 

from stover/DDGS, CIBM, wheat grain bioethanol from grain and biomethanol from 

straw/DDGS, WIBM, and soybean seed biodiesel and biomethanol from stalk/glycerine, 

SIBM are illustrated in Appendices M, N, and O respectively. 

 LCI dataset in Table 3.15 refers to the full-methanol steam reforming of syngas derived from 

biomass gasification (subsequent processing of the syngas is considered). The process 

describes the production of biomethanol derived from syngas through integrated biomass 

gasification and biomethanol synthesis system (Figure 3.6). Biomass gasification was carried 

out at 900
o
C and the technology corresponds to an average indirectly heated, atmospheric, 

circulating fluidized bed gasification, followed by a low temperature wet gas treatment. The 

gasifier was first modeled using an Excel application and later transferred to GaBi LCA 

software for LCA analyses based on process technology reported in  [242]. The gasification 

model predicts the mass, composition, higher heating value, and the energy content of syngas 

produced per 1 kg of the dry biomass – corn stover, wheat straw, soybeans stalks, DDGS 

from corn and wheat bioethanol, glycerine from soybeans biodiesel,  (see Table 3.16). The 

composition (% wt) of the resulting syngas at the outlet of the gasifier is detailed in Table 

3.17. Comparison of the calculated syngas compositions with published data from [242-244] 

validated this model. Biomethanol yield from the resulting syngas was simulated using 

CAPE-OPEN to CAPE-OPEN (COCO) simulation environment software [245], which is 

based on the process model described in [246] and validated by data from the ecoinvent 

database [212, 240]. 
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Table 3.15: LCI flows for integrated biomass gasification and biomethanol synthesis, at plant, referred 

to 1 kg of biomass residue - Corn Integrated Biomethanol (CIBM), Wheat Integrated Biomethanol 

(WIBM) and Soybean Integrated Biomethanol (SIBM) synthesis  [199]. Biomethanol output depends 

on syngas yield from gasification, which also depend on feedstock material.  

 

 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University.
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Table 3.16: Composition of the crop residues and co-products used as inputs into the gasification 

model (% dry ash-free basis) [247-249]. 

 Corn stover DDGS Soybeans stalks Glycerine Wheat straw 

C 51.89 44.93 47.7 58.05 43.2 

H 5.45 7.26 6.6 10.58 5 

O 41.48 36.45 47.0 29.82 39.4 

N 0.84 5.31 0.6 0.19 0.4 

S 0.34 1.04 0.10 0.01 0.2 

Moisture (%) 10.4 - - - 10.5 

Heating value (MJ/kg) 20.4 23.8 16.96 16.0 17.0 

Ash (%) 8.1 5.8 6.08 1.19 5.6 

Volatile matter (%) 77.4 82.6 68.95 - 75.3 

Fixed carbon - - 15.62 - - 

 

 

 

Table 3.17: Gasification outputs result from the gasification models. 

 Corn stover DDGS Soybeans stalks Glycerine Wheat straw 

Syngas 

yield 

(kg/kg) 

2.857415 3.231709 3.049947 4.428656 3.335195 

 

Syngas 

compositio

n (% wt)  

Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry 

CO 17.77

7 

18.97

8 

14.59

2 

15.873 11.532 12.806 16.765 17.846 14.72

4 

15.57

2 

 

CO2 21.92

8 

23.40

9 

19.14

7 

20.827 22.607 25.105 13.593 14.469 21.64

7 

22.89

4 

 

CH4 3.106

9 

3.316

8 

2.769

1 

3.0121 2.4452 2.7153 2.9539 3.1445 0.985 1.042 

 

H2 0.670

9 

0.716

2 

0.804

2 

0.8747 0.6637 0.7370 0.9773 1.0404 0.647 0.685 

 

H2O 6.327

2 

0 8.067

7 

0 9.9477 0 6.0587 0 5.450 0 

N2 50.18

9 

53.57

9 

54.61

9 

59.412

7 

52.802

9 

58.635

8 

59.651

6 

63.498

8 

56.54

7 

59.80

7 

HHV 

(MJ/kg) 

4.473

7 

4.775

9 

4.154

0 

4.5186 3.4655 3.8483 4.7223 5.0268 2.954 3.123 
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3.3.6.3.2 Biomass integrated gasification and combined cycle (BIGCC) 

These models for combined production of corn grain bioethanol from grain and bioelectricity 

from stover/DDGS, CIBE, wheat grain bioethanol from grain and bioelectricity from 

straw/DDGS, WIBE, and soybean seed biodiesel and bioelectricity from stalk/glycerine, 

SIBE are illustrated in Appendices P, Q, and R respectively. 

LCI data in Table 3.18 refers to the generation of bioelectricity from 1 kg corn stover, wheat 

straw, soybeans stalks, DDGS from corn and wheat bioethanol, and crude glycerine from 

soybeans biodiesel. The technology corresponds to typical BIGCC system (Figure 3.11). Dry 

biomass enters the gasification plant to obtain a synthesis gas (syngas), which after a cleaning 

process is sent to a gas turbine for complete combustion to generate electric power. The 

characteristics of the biomass feedstocks are given in Table 3.16. The gasifier and the syngas 

turbine plants were first modelled using an Excel application and later transferred to GaBi 

LCA Software for LCA analyses based on process technology reported by  [242].  

 

Figure 3.9: Schematic representation of the BIGCC plant 

 

The gasification model predicts the mass, composition, higher heating value, and the energy 

content of syngas produced per 1 kg of the dry biomass, while the gas turbine model predicts 

the electric power output from the gas turbine from the resulting syngas (dry, nitrogen free). 

The composition (% wt) of the resulting syngas at the outlet of the gasifier is detailed in 

Table 3.17. Comparison of the calculated syngas compositions with published data from  

[242-244] validated this model. Cleaned (dry, nitrogen free) syngas is passed into a gas 
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turbine engine where it is burnt to generate electricity. The syngas turbine model predicts the 

amount of electricity that can be produced from the resulting amount of syngas. Electric 

power output of the gas turbine was calculated using an electric power efficiency of 40%  

[250, 251]. The electric power output (nelec-p (MJ)) was evaluated with reference to the high 

heating value (HHV) (MJ kg
-1

) of dry syngas and is defined as: 

                       (3.4) 

Where PCO is the percentage weight of CO in syngas, PH2 is the percentage weight of H2 in 

syngas, PCH4 is the percentage weight of CH4 in syngas, and msyngas is the total mass (kg) of 

syngas. 

 

Table 3.18: LCI flows for integrated biomass gasification and combined cycle (bioelectricity 

production), at plant, referred to conversion of 1 kg biomass residue - corn stover/wheat 

straw/soybeans stalks  [199]. Bioelectricity output depends on biomass feedstock. 

Inputs Amount Unit 

US: electricity, medium voltage, at grid  0.0958439 MJ 

US: synthetic gas plant  9.3343E-10 pcs 

US: tap water, at user  0.14326 kg 

CH: transport, lorry 20-28t, fleet average  0.041306 tkm 

CH: treatment, sewage, from residence, to wastewater treatment, class 2  6.0945E-5 m
3
 

CH: silica sand, at plant  0.012598 kg 

CH: dolomite, at plant  0.010157 kg 

RER: industrial furnace, natural gas  1.8939E-9 pcs 

US: sodium hydroxide, 50% in H2O, production mix, at plant  0.00082799 kg 

US: sulphuric acid, liquid, at plant  0.0032898 kg 

US: stover/straw/stalks, dry biomass  1 kg 

US: zeolite, powder, at plant  0.0020803 kg 

RER: disposal, inert waste, 5% water, to inert material landfill  0.022755 kg 

RER: disposal, ash mixture, pure, 0% water, to municipal incineration  0.002238 kg 

RER: disposal, ash mixture, pure, 0% water, to sanitary landfill  0.0016905 kg 

RER: disposal, zeolite, 5% water, to inert material landfill  0.0020803 kg 

Output 

US: electricity, medium voltage, at grid [supply mix]   MJ 

 
40.0)( 42 XMJ

m
HHVHHVHHV

n
syngas

PCHPHPCO

pelec
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3.3.6.4 Biofuel distribution 

 GHG emissions due to biofuel distribution were calculated equation 3.5. 

      (3.5) 

where, GHGtransport are the emissions during biofuel transport from the plant to the service 

station, GHGtreatment are emissions during wastewater treatment from the fuel service station, 

GHGdisposal are the emissions involved in the disposal of municipal solid wastes from the fuel 

station to sanitary landfill, GHGelectricity are the emissions during the production of electricity 

used in the station, and GHGreg-dist are emissions involved in the construction of service 

station. Data inventories for the distribution of the biofuels are described in the following 

subsections. 

3.3.6.4.1 Bioethanol, 99.7% in H2O, from grains, at service station 

In Table 3.19, LCI data refers to the distribution of 1 kg of anhydrous bioethanol 99.7% in 

water from the processing plant to the fuel service station including all necessary transport 

(assumed 150 km by road). 

 

 

 

 

 

 

GHGGHGGHGGHGGHGGHG distregyelectricitdisposaltreatmenttransportondistributi 
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Table 3.19: LCI data for the distribution of 1 kg anhydrous bioethanol, 99.7% in H2O, from 

processing plant to the service station  [199]. 

 

3.3.6.4.2 Soybean methyl ester (biodiesel), at service station 

LCI data as shown in Table 3.20 refers to the distribution of 1 kg of soybean methyl ester 

(biodiesel) to the fuel service station including all necessary transport (assumed 150 km by 

road).  

 

 

 

 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University.
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Table 3.20: Input flows for the distribution of 1 kg soybeans biodiesel to the service station  [199]. 

 

3.3.6.4.3 Biomethanol, from biomass, at service station 

LCI data as depicted in Table 3.21 refers to the distribution of 1 kg biomethanol from the 

processing plant to the fuel service station including all necessary transport (assumed 150 km 

by road). 

Table 3.21: Input flows for the distribution of 1 kg biomethanol to the service station  [199]. 

 

This item has been removed due to third party copyright. The unabridged version of this thesis can be 
viewed at the Lanchester library, Coventry University.

This item has been removed due to third party copyright. The unabridged version of this thesis 
can be viewed at the Lanchester library, Coventry University.
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3.3.7 GHG emissions reduction due to fossil fuels replacement 

The GHG emissions savings (GHGsavings) from the biofuel produced (e.g. Figure 3.10) was 

calculated as the difference between emissions from biofuel production (GHGbiofuel) (see 

equation 3.1) and emissions saved from fossil fuel replacement (GHGf-saved) (see equation 

3.7) plus emissions saved from co-products replacement (GHGcp-saved). Calculations were 

made for both baseline and projected climate change scenarios (e.g. Figure 3.11). 

                      (3.6) 

   (3.7) 

Where, GHGf-extraction, GHGf-processt, GHGf-dist. and GHGf-combust are the fossil-derived GHG 

emissions from fossil fuel extraction, processing, distribution, and combustion of the 

displaced fossil fuel equivalent (fossilequiv.) respectively. Combustion of the displaced fossil 

fuel is defined by the equation below. 

                (3.8) 

Where, Carbonoxfactor is the fossil carbon oxidation factor of 0.99  [49]  used in calculating the 

carbon emissions from burning fossil fuels, MWCO2 is the molecular weight of CO2, and 

MWCarbon is the molecular weight of carbon in the displaced fossil-based fuel (fossil 

equivalent). The displaced fossil fuel equivalent (fossilequiv.), which is the amount (kg) of the 

replaced fossil reference system, is defined by the equation below. 

                                      (3.9) 

Where, biofuelproduced, is the amount of biofuel produced per ha, and Sr is the substitution ratio 

between the biofuel and the conventional fossil fuel (equation 3.10). 

     GHGGHGGHGGHG savedcpsavedfbiofuelsavings
CF
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                                                             (3.10) 

Where, CVbiofuel, is the calorific value of the biofuel produced in MJ/kg, and CVfossilfuel, is the 

calorific value of the displaced fossil reference system also in MJ/kg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Print screen of SBD showing products substitution  
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Figure 3.11: GaBi LCA calculations showing different climate change scenarios. 

 

3.4 Summary 

A number of studies that span several disciplines and methods have been conducted on the 

link between agriculture, climate, and yields of crops. This span from controlled field 

experiments; statistical analyses of past climates to integrated climate-crop models have been 

applied to understand the potential impacts of climate change on agriculture. These different 

approaches have different strengths and weaknesses. For instance, carrying field experiments 

to determine the crop’s response to climate change is practically difficult, expensive, as well 
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as time consuming. However, there are several attempts for utilizing CSM models that are 

easy to operate, and inexpensive. The models take into account various factors such as 

weather, soil, and crop management practices for specified regions. The DSSAT-CSM is one 

of the advanced packages widely being used today. 

This chapter describes the novel approach applied for estimating the potential link between 

climate change, yields, and life cycle GHG emissions savings for common annual crops 

grown in the USA: corn and soybean. Corn and soybean are the most prevalent energy crops 

in the USA, and are the predominant source of feedstock for bioethanol and biodiesel 

production respectively. Wheat is the commonest crop grown in the UK, and like corn, is 

commonly used for bioethanol production. These crops were simulated using dataset for the 

location where they are grown in each country, and where there is availability of data in 

suitable format accepted by the CSM model.  
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CHAPTER 4: RESULTS 

4.1  Introduction 

This section presents the main empirical findings of the research.  An analysis of the 

impact of climate change (combined effects of changing T, P, and [CO2]) on potential 

average yields of corn, soybean, and wheat as feedstock for biofuel production is first 

presented. As earlier explained in the previous section (section 3), three climate 

variables were considered. These are (i) atmospheric air temperature, T (+1.5, +2, 

+2.5, +3, +3.5, +4, +4.5, and +5 
o
C – corn and soybean at Gainesville, USA) and 

(+0.5, +1.5, +2.5, +3.5, and +4.5 
o
C – for wheat at Rothamsted, UK) (ii) precipitation, 

P (+20, +15, +10, +5, -20, -15, -10, and -5% – for corn and soybean at Gainesville, 

USA) and (+20, +10, -20, and -10% - for wheat at Rothamsted, UK) (iii) atmospheric 

CO2 concentration, [CO2] (400, 470, 540, 610, and 680 ppm – for corn and soybean 

at Gainesville, USA) and (400, 540, and 680 ppm – for wheat at Rothamsted, UK). 

Next, this section also presents the empirical results for the calculation of the potential 

life cycle GHG emissions of first-generation biofuels: CBE, WBE, and SBD, and 

second-generation biofuels: CIBM, WIBM, SIBM, CIBE, WIBE, and SIBE for the 

baseline (1981 – 1990) and the future climate change scenarios (based on the climate 

change scenarios given in section 3). 
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4.2  Investigation of the impact of climate change on energy crop yields -   

(Aim 1)  

4.2.1  Corn  

The CERES-Maize simulated the average potential grain and stover yields of corn 

under the baseline and different climate change scenarios described in section 3. The 

climate change scenarios were applied for the years 1981 – 1990 (10 years), which 

represent the baseline condition and run for the simultaneous effect of changing T, P, 

and [CO2]. In Tables 4.1 and 4.2 results of the simulated average potential grain yield 

under climate change scenarios along with the average grain yield for the baseline 

scenario are presented. Simulated corn grain yield for the baseline scenario was 12984 

kg ha
-1

, which is more than the simulated potential yield for all the climate change 

scenarios. CERES-Maize model output showed that simultaneous changes in T, 

[CO2], and P will have a negative effect on corn grain yield for all the climate change 

scenarios considered. The potential grain yield was predicted to decrease by 4% to 

40% compared with the baseline scenario. 

In all climate change scenarios, it was observed that the CERES-Maize simulation 

result showed increased potential corn grain yield under the impact of rising [CO2]. 

For instance, under (T = +1.5 
o
C; P = +20%; and [CO2] = 400 ppm) scenario, corn 

grain yield was reduced by about 9% compared with the baseline yield; however, 

under (T = +1.5 
o
C; P = +20%; and [CO2] = 680 ppm), corn grain yield was reduced 

by about 4% compared with the baseline yield. These suggest some positive impact of 

increasing [CO2] on corn grain yield, probably due to CO2 fertilization.  

Similarly, corn biomass (stover) yield exhibited similar patterns to those of corn grain 

in response to changes in T, P, and [CO2]. Simulated corn stover yield for the 
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baseline scenario was 11404 kg ha
-1

. In contrast, corn stover yield was predicted to 

decrease and also increase under some climate change scenarios. Reduction in stover 

yield range from -1 to -18% relative to baseline condition under some scenarios (at T 

= +1.5 to +3.0 
o
C), and on the other hand, under some climate change scenarios corn 

stover yield was predicted to increase by +1 to +2% compared with the baseline 

scenario. For instance, at (T = +5 
o
C; P = -20%; and [CO2] = 400 ppm) scenario, corn 

stover showed a yield decrease of -18%, whilst at (T = +1.5 
o
C; P = +20%; and [CO2] 

= 680 ppm) scenario corn stover yield was predicted to increase by +2% compared 

with the baseline scenario. 
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4.2.1.1  Corn grain  

Table 4.1: CERES-Maize simulations of the impact of climate change scenarios on average potential 

grain yield (kg ha
-1

) of corn at Gainesville, USA. The simulated average potential grain yield for the 

baseline scenario = 12984 kg ha
-1

. 

CO2 (ppm) Precipitation  

(%) 

Temperature (oC) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 11567.9 11253 10710.2 10041.6 9513.5 8768.7 8101.1 7764.1 

-15 11688.4 11353.3 10882.4 10254.5 9725.7 8964.5 8219.4 7946.9 

-10 11745.6 11462.7 11005.7 10420.1 9937.2 9134.6 8375.1 8034.5 

-5 11771.8 11557.9 11083.7 10514.6 10071.2 9359.4 8522.2 8129 

5 11843.2 11607.1 11165.1 10637.5 10201.1 9536 8717 8302.4 

10 11874.6 11623.7 11181.5 10667.3 10266.2 9585.5 8819.8 8421.5 

15 11881.4 11639.7 11223.4 10679.3 10298.2 9636.7 8829.7 8487.6 

20 11884.1 11647.4 11232.3 10715.2 10311 9699.5 8895.4 8526.9 

470 -20 11749.9 11466.1 10974.3 10293.4 9763.9 9068.1 8337.2 8026.5 

-15 11850.8 11569.6 11095.1 10565 10015.5 9211.3 8467 8156.5 

-10 11887.5 11662.9 11177.6 10682.8 10231.4 9424.3 8612.4 8258.4 

-5 11921.4 11712.7 11284.6 10761 10342.2 9631.8 8772.3 8386.9 

5 11955.1 11774.2 11343.9 10863 10418.9 9770.2 8981.9 8558.2 

10 11963.8 11801.3 11366.1 10872.4 10471.9 9836.4 9028.1 8676.9 

15 11968 11810.1 11374.6 10891.7 10489.5 9889 9058.2 8719.7 

20 11971.8 11816 11381.6 10909.2 10499.4 9925 9115.2 8785.8 

540 -20 11956.2 11661.8 11201.4 10622.5 10098.9 9311.3 8543.6 8270.9 

-15 11992.9 11762.4 11278.1 10804.7 10316 9507.5 8744.6 8411.2 

-10 12019.8 11833.9 11403 10892.2 10471.2 9743.5 8901.3 8510.5 

-5 12045.5 11859.3 11437.1 10989.7 10548.2 9863.2 9064.5 8629.7 

5 12102.2 11890.2 11499.1 11061.3 10636.5 9999.6 9209.8 8789.3 

10 12118.5 11901.4 11508 11074.9 10657.7 10056.7 9261.7 8869.8 

15 12122.8 11907.3 11536.3 11076.5 10668.5 10087.9 9311.9 8907.2 

20 12110.4 11929.8 11515.9 11102.4 10697.9 10105.4 9349.5 8965.9 

610 -20 12158.1 11883.9 11445.9 10980.7 10486.2 9628.2 8832.1 8512 

-15 12177.2 11958.1 11505.7 11072.3 10669.8 9867 9024 8659.7 

-10 12204 12001.4 11586.5 11135 10755.3 10064.3 9184.4 8805.1 

-5 12224.2 12043.3 11616.7 11195.3 10835.1 10143.8 9327.3 8941.1 

5 12267.8 12090 11663.1 11232.7 10885.5 10272.1 9460.9 9084.5 

10 12260.8 12096.9 11675.2 11250.5 10884.9 10305.2 9531.3 9137.5 

15 12266.1 12100.7 11702.1 11259.7 10911.6 10329.6 9563.4 9186.7 

20 12266.5 12104.4 11705.1 11265 10937.4 10347.9 9584.8 9248.6 

680 -20 12305.7 12120.6 11653.7 11230.8 10846.1 9978.4 9152.2 8770.7 

-15 12316 12176.8 11746.3 11274.1 10926 10203.8 9338.3 8934.4 

-10 12339.3 12224.6 11795 11351.2 11000.9 10325.5 9523.4 9096.3 

-5 12338.4 12243 11832.8 11369.9 11068.4 10387.8 9577.6 9207.6 

5 12368.2 12269.4 11858.6 11403.5 11112.7 10507.6 9713.6 9356.4 

10 12373.7 12288.6 11863.6 11427.7 11123.7 10535.5 9755.2 9410.2 

15 12379.3 12280.8 11883.1 11432.9 11141.8 10578.5 9780.1 9456.4 

20 12410.8 12312.4 11885.6 11435 11151.9 10606.5 9803.5 9486.7 
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4.2.1.2  Corn stover  

Table 4.2: CERES-Maize simulations of the impact of climate change scenarios on average potential 

stover (biomass) yield (kg ha
-1

) of corn at Gainesville, USA. The simulated average stover yield for the 

baseline scenario = 11404 kg ha
-1

. 

CO2 (ppm) Precipitation  

(%) 

Temperature (oC) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 11060.5 10898.4 10834.8 10639.9 10401.6 10061.9 9862.4 9334.7 

-15 11092.2 10966.6 10905.4 10728.6 10482.6 10172.9 9968.5 9423.6 

-10 11137.7 10994.2 10969.4 10833.1 10587.9 10230.1 10061.2 9514.5 

-5 11158.8 11028.9 10970.8 10877.8 10669 10329.1 10123.2 9597.4 

5 11253.2 11122.6 11054.8 10934.5 10730.6 10428.4 10272.6 9728.5 

10 11287.3 11177.7 11116 10982.7 10760.4 10475.4 10280.6 9742.3 

15 11299.2 11206.3 11169 11042.8 10821.4 10517.6 10335.7 9779.5 

20 11307.4 11222.8 11211.6 11099.9 10888.2 10540 10368.6 9814 

470 -20 11191.4 11051.8 10992.3 10832 10608.1 10301.1 10073.4 9516.3 

-15 11216.9 11106.9 11041.6 10928.4 10685.7 10375 10174.2 9627.2 

-10 11251.8 11119.4 11095.3 10985.9 10784.8 10473.3 10269.2 9711.5 

-5 11288 11151.8 11121.1 10998.7 10835.4 10562.1 10360.7 9800.3 

5 11370.3 11254 11201.1 11074.4 10918.3 10595.3 10455.8 9903.2 

10 11390.7 11292.1 11263.9 11140.1 10935.1 10642.7 10482.9 9921.4 

15 11395.4 11314.2 11304.2 11198.7 10996.7 10651.1 10540.1 9964.5 

20 11402.4 11317.6 11322.3 11240.9 11058.2 10712 10564.9 10024.4 

540 -20 11298.7 11191.2 11131.9 11027.5 10795 10502.8 10332 9732.8 

-15 11332.5 11202.3 11195.9 11080.1 10870.5 10583.1 10406.2 9819.2 

-10 11358 11236.1 11215.9 11129.9 10940.9 10677.3 10497 9932.2 

-5 11411.3 11270.9 11249.3 11149.4 10973.4 10716.5 10593.8 10007.4 

5 11457.1 11372.8 11343.8 11227.1 11045.5 10763.8 10638.7 10107.5 

10 11464.2 11394.8 11388.8 11287.8 11105.6 10762.3 10697 10129.1 

15 11471.4 11398.3 11408.6 11334.1 11164.5 10816.9 10700.8 10193 

20 11482 11408.4 11417 11351.4 11209.8 10872.8 10763.5 10228.7 

610 -20 11412.2 11302.7 11301 11201.3 11003.7 10728.6 10586.2 10004.4 

-15 11435.8 11329.1 11342 11238.2 11082 10794.2 10664.4 10079 

-10 11470.5 11354.8 11351.9 11270.9 11125.8 10840.8 10763.9 10188.2 

-5 11516.3 11421 11384.3 11321.9 11138.7 10860.8 10796.4 10264.4 

5 11539.8 11466.1 11480.5 11404.8 11220.4 10903 10863.8 10345.7 

10 11550.9 11472.9 11508 11449.9 11284.2 10933.1 10868.5 10400.9 

15 11562.9 11484.7 11511 11467.5 11327.1 10989.8 10911.9 10425.8 

20 11567.9 11502.8 11520.5 11479.7 11347.4 11046.7 10971 10452.5 

680 -20 11506.5 11415.4 11432.9 11322.5 11193.3 10903.3 10806.3 10249.5 

-15 11527.8 11431.5 11440.2 11385 11220.4 10959.6 10887.8 10338.5 

-10 11575.6 11469.6 11469 11413.8 11250.2 10981.5 10963.1 10419 

-5 11597.6 11516.6 11527.1 11445.5 11277.3 10992.8 10987 10484.9 

5 11622.2 11537.6 11580.4 11548 11370.7 11043.6 11048.3 10550.5 

10 11628.2 11552.1 11586 11574.6 11424.7 11087.1 11050.6 10587.2 

15 11633 11565 11596.9 11585.1 11457.7 11142.9 11104.2 10602 

20 11638.1 11571.6 11614.1 11591.5 11463.8 11173 11160 10657.7 
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4.2.2  Soybean  

The CROPGRO-Soybean simulated the average potential seed and stalks yield of 

soybean under the baseline and climate change scenarios described in the previous 

section (Chapter 3). Similar to corn, the climate change scenarios were applied for the 

years 1981-1990 (10 years), which represent the baseline condition and run for the 

simultaneous effect of changing T, P, and [CO2]. Simulation results for the soybean 

seed and stalk yields are presented in Tables 4.3 and 4.4 respectively. Simulated 

average potential soybean seed yield for the baseline scenario was 3972 kg ha
-1

. The 

prediction results of soybean under climate change scenarios showed that soybean 

seed yield will both decrease and increase in some climate scenarios under the 

influence of combined changes in T, P, and [CO2] compared with the baseline 

scenario.  The reduction in the potential seed yield due to the impact of climatic 

conditions exhibited an increasing trend, which range from -0.8 to -59%. Similarly, 

the predicted increase in soybean seed yield range from +0.4 to 21.1%.  Results also 

showed that increased atmospheric [CO2] would have positive impact on the yield of 

soybean. For instance, under (T =1.5; P = +20; and [CO2] = 400 ppm), soybean seed 

yield was predicted to increase by +2.2%. However, under (T = 1.5; P = +20; and 

[CO2] = 680 ppm), soybean seed yield was predicted to increase by +21.1% 

compared with the baseline scenario. This suggests that rising atmospheric levels of 

CO2 would enhance the seed yield of soybean. 

Unlike soybean seed, model prediction results showed that predicted climate changes 

would have a positive impact on soybean stalk yield in all climate change scenarios 

studied. Simulated average potential soybean stalks yield for the baseline scenario 

was 2330 kg ha
-1

. Model prediction showed that he average soybean stalks yield 

would increase by +2.7 to 34.9% compared with the baseline scenario.  
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4.2.2.1  Soybean seed  

Table 4.3: CROPGRO-Soybean simulations of the impacts of climate change scenarios on average 

potential seed yield (kg ha
-1

) of soybean at Gainesville, USA. The simulated average seed yield for the 

baseline scenario = 3927 kg ha
-1

. 

CO2 (ppm) Precipitation (%) Temperature (oC) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 3441.4 3287.4 3089.3 2923.5 2650.3 2432.7 2188.6 1929 

-15 3591.2 3434.2 3225.7 3038.9 2799.1 2539.2 2291.1 2001.3 

-10 3695.4 3531.2 3336.5 3159.6 2903.5 2655.6 2361.6 2083 

-5 3809 3652 3458.7 3255.7 3008.7 2751.2 2480.7 2146.2 

5 3945.7 3791.7 3643.9 3466.7 3208.1 2946.6 2634.5 2268.8 

10 3978.2 3844.8 3707.5 3521.6 3284.6 3007 2688.3 2313.8 

15 3999.3 3873.5 3740.1 3569.6 3354.3 3073.9 2754.1 2370.5 

20 4017.4 3896.8 3780.8 3595.7 3378.8 3111.3 2787.2 2416.5 

470 -20 3784 3623.6 3439.2 3228.8 2940.6 2692.5 2427.6 2136.7 

-15 3940.1 3775.8 3560.3 3366.4 3083.9 2817.5 2544.7 2238.2 

-10 4053.6 3878.4 3684.6 3473.8 3220.9 2939.8 2636.4 2308.6 

-5 4183.1 4009 3813.2 3589.3 3346.5 3054.5 2745.3 2383.7 

5 4311.7 4162.9 4009.7 3806.9 3533 3253.5 2911.2 2519.4 

10 4339.7 4202.7 4063.4 3878.7 3614.7 3311.7 2974.3 2559 

15 4369.5 4225.6 4103 3914.3 3683.7 3380.7 3025.9 2619.6 

20 4382.5 4254.5 4131.8 3948.5 3716.8 3421.9 3074.3 2666.6 

540 -20 4038.2 3856 3680.2 3466.3 3146.8 2891.5 2596.8 2286.7 

-15 4189.7 4029.5 3792.5 3578.5 3306.4 3012.4 2719.6 2402.2 

-10 4333.1 4152.5 3840 3705.1 3435.4 3142.5 2826.5 2492.5 

-5 4451.8 4270.9 4060.3 3831.7 3573.2 3263 2945.7 2554.6 

5 4577.2 4426.7 4267.9 4057.7 3770.5 3483.1 3118.9 2703.8 

10 4603.3 4461.1 4318.2 4126.1 3865.7 3537.1 3174 2735.2 

15 4632.3 4500.7 4359.2 4163.2 3926 3615.8 3237.1 2799.9 

20 4646.2 4519.1 4390.2 4203.4 3956.6 3649 3286.5 2844.3 

610 -20 4216.7 4025.7 3864.6 3629 3313.4 3023.7 2725.3 2397.8 

-15 4376.1 4209.6 3963.5 3761.3 3456.1 3156.8 2848.5 2518.3 

-10 4520.3 4335.1 4122 3890.1 3595.8 3287.6 2959.2 2610.7 

-5 4642.2 4467.3 4246.9 4013.4 3736.7 3422.6 3083.7 2674.5 

5 4765.8 4612.8 4447.8 4236.2 3939.9 3639.7 3257.7 2829.8 

10 4792.7 4647.6 4499.1 4301.7 4037.4 3695.6 3316 2865.7 

15 4826 4681.5 4538 4341.9 4094 3768.2 3384.7 2923.4 

20 4837.4 4699.6 4571.4 4381.9 4128.1 3809.4 3436.1 2967.6 

680 -20 4347.1 4146 3985.9 3749.8 3414.9 3135.1 2813.5 2481.8 

-15 4507.5 4326.6 4089.7 3886.3 3577 3256.2 2943.6 2603.2 

-10 4656.6 4465.6 4248.9 4015.7 3710.4 3395.5 3067.1 2698.6 

-5 4776 4598.4 4379.3 4138.1 3852.3 3531.9 3178.6 2769 

5 4902.9 4730.6 4577.7 4360.8 4063.9 3751 3365.7 2920.4 

10 4929.4 4777.9 4628 4428.9 4158.5 3811.3 3422.7 2966.2 

15 4959.8 4812.8 4680 4466.1 4214.3 3890.9 3489.1 3029.8 

20 4976.8 4830.3 4704.2 4511.5 4248.7 3923.3 3536.7 3065.5 
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4.2.2.2  Soybean stalks  

Table 4.4: CROPGRO-Soybean simulations of the impacts of climate change scenarios on average 

potential stalks yield (kg ha
-1

) of soybean at Gainesville, USA. The simulated average stalks yield for 

the baseline scenario = 2330 kg ha
-1

. 

CO2 (ppm) Precipitation  

(%) 

Temperature (oC) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 2503 2518 2547 2555 2555 2514 2454 2395 

-15 2517 2537 2575 2593 2598 2570 2527 2480 

-10 2537 2563 2605 2613 2635 2614 2581 2570 

-5 2557 2581 2623 2646 2670 2661 2637 2612 

5 2576 2613 2666 2701 2736 2749 2740 2737 

10 2589 2623 2672 2726 2764 2776 2776 2784 

15 2588 2630 2686 2743 2787 2815 2816 2831 

20 2591 2633 2689 2748 2800 2840 2860 2878 

470 -20 2748 2769 2795 2807 2814 2777 2710 2661 

-15 2762 2784 2824 2847 2857 2831 2798 2759 

-10 2789 2813 2849 2878 2894 2879 2848 2840 

-5 2804 2835 2877 2914 2929 2929 2903 2887 

5 2822 2863 2923 2960 2996 3017 3011 3022 

10 2834 2874 2928 2990 3022 3039 3044 3069 

15 2835 2878 2935 3000 3047 3086 3087 3119 

20 2836 2881 2944 3006 3061 3106 3130 3161 

540 -20 2919 2941 2974 2987 2997 2959 2893 2852 

-15 2935 2958 3000 3037 3044 3017 2982 2951 

-10 2955 2983 2954 3058 3073 3064 3035 3046 

-5 2973 3007 3054 3089 3112 3109 3097 3081 

5 2996 3039 3099 3138 3174 3199 3200 3224 

10 3007 3047 3103 3166 3209 3224 3233 3266 

15 3006 3051 3109 3178 3230 3266 3277 3314 

20 3013 3056 3118 3181 3240 3286 3314 3356 

610 -20 3041 3060 3094 3115 3121 3087 3027 2986 

-15 3058 3081 3124 3154 3170 3145 3115 3088 

-10 3073 3107 3143 3187 3199 3192 3167 3183 

-5 3095 3122 3179 3209 3239 3240 3226 3215 

5 3121 3159 3224 3266 3298 3326 3329 3361 

10 3128 3172 3225 3290 3333 3351 3362 3397 

15 3127 3172 3232 3304 3358 3390 3406 3454 

20 3133 3177 3242 3305 3370 3414 3444 3491 

680 -20 3121 3147 3181 3205 3212 3175 3116 3083 

-15 3143 3168 3212 3241 3261 3235 3204 3184 

-10 3157 3191 3233 3275 3288 3285 3261 3274 

-5 3179 3208 3264 3299 3330 3330 3316 3317 

5 3205 3237 3312 3357 3388 3415 3423 3456 

10 3215 3259 3312 3377 3423 3442 3455 3499 

15 3210 3260 3320 3391 3448 3481 3502 3548 

20 3217 3265 3328 3392 3459 3503 3534 3585 
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4.2.3  Wheat  

The CERES-Wheat simulated the average potential grain and straw yields of wheat 

under baseline and future climate change scenarios as described in Chapter 3. The 

climate change scenarios were applied for the years 1981-1990 (10 years), which 

represent the baseline condition and run for the combined effect of changing T, P, and 

[CO2]. In Tables 4.5 and 4.6 results of the simulated average potential grain yield 

under climate change scenarios along with the average grain yield for the baseline 

scenario are presented. Simulated wheat grain and straw yields for the baseline 

scenario was 5955 kg ha
-1

 and 5895 kg ha
-1

 respectively. The prediction results of the 

CERES-Wheat showed that wheat grain would increase under the influence of future 

climate changes (combined changes in T, [CO2], and P) in all climate changes 

scenarios. The potential wheat grain yield was predicted to increase by +2.5 to 25.7% 

compared with the baseline scenario. 

In contrast, compared with the baseline scenario, the prediction results of wheat straw 

yield under climate change showed that wheat straw yield would both decrease and 

increase in some climate change scenarios under the influence of combined changes 

in T, P, and [CO2]. This means that the predicted climate changes will have both 

negative and positive impact on wheat straw yield. Model prediction showed that the 

reduction rate in wheat straw yield was variable between -2.7 and -34.9%. Among the 

entire climate changes used in the study, increased atmospheric [CO2] also showed 

increased in straw yield similar to grain yield. 
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4.2.3.1  Wheat grain  

Table 4.5: CERES-Wheat simulations of the impacts of climate change scenarios on average 

potential grain yield (kg ha
-1

) of wheat at Rothamsted, UK. The simulated average grain yield 

for the baseline scenario = 5955 kg ha
-1

. 

CO2 (ppm) 
Precipitation (%) 

  

Temperature (oC) 

400 

0.5 1.5 2.5 3.5 4.5 

-20 6807 7388 7633 7805 7475 

-10 6717 7294 7546 7716 7407 

10 6341 6975 7209 7446 7195 

20 6106 6767 7016 7283 7064 

540 

-20 7213 7700 7755 7947 7665 

-10 7091 7583 7646 7854 7594 

10 6663 7254 7344 7595 7376 

20 6409 7045 7159 7436 7247 

680 

-20 7582 7941 7850 8018 7731 

-10 7430 7821 7754 7937 7663 

10 7008 7474 7458 7691 7475 

20 6739 7253 7286 7544 7350 

 

 

4.2.3.2  Wheat straw  

Table 4.6: CERES-Wheat simulations of the impacts of climate change scenarios on average 

potential straw yield (kg ha
-1

) of wheat at Rothamsted, UK. The simulated average straw yield 

for the baseline scenario = 5895 kg ha
-1

. 

CO2 (ppm) 
Precipitation (%) 

  

Temperature (oC) 

400 

0.5 1.5 2.5 3.5 4.5 

-20 5768 5631 6568 7559 8646 

-10 5846 5707 6690 7641 8638 

10 5746 5717 6769 7759 8732 

20 5751 5645 6729 7750 8729 

540 

-20 5850 5792 7183 8417 9481 

-10 5875 5899 7304 8545 9578 

10 5811 5809 7335 8567 9578 

20 5707 5817 7337 8564 9580 

680 

-20 5911 5970 7635 9089 10028 

-10 5879 6025 7730 9154 10058 

10 5859 6013 7780 9209 10054 

20 5709 5983 7756 9178 9984 
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4.3  Investigation of the impacts of climate change on life cycle GHG 

emissions of first-generation biofuels - (Aim 2)  

Life cycle GHG emissions savings for bioethanol from corn, CBE; and wheat, WBE; 

and biodiesel from soybean, CBE life cycle models were calculated for the baseline 

and future climates. Trends in the change in potential life cycle GHG emissions 

savings of CBE, WBE, and SBD under baseline and the future climate change 

scenarios were compared using a scatter plots as shown in Figures 4.1 to 4.3.  

4.3.1  Corn bioethanol (CBE) 

Life cycle GHG emissions savings were calculated under the baseline and future 

climate change scenarios by the CBE model. Model output results presented in 

Appendix A were plotted to analyze the trend in life cycle GHG emissions savings 

under different scenarios (see Figure 4.1). The calculated life cycle GHG emissions 

savings for CBE from the baseline period was -4743.32 kg CO2-equiv. ha
-1

. 

Compared with the baseline, the calculated life cycle GHG emissions savings for 

CBE life cycle model decreased in all the climate change scenarios. The predicted 

reduction in the life cycle GHG emissions savings for CBE ranges from -4.2 to -

46.1%. Air surface temperature, T, had the largest impact on the life cycle GHG 

emissions savings of CBE. In general, for CBE, the higher the temperature, the higher 

the reduction in the potential life cycle GHG emissions savings. For example, at 

([CO2] = 400 ppm; P = -20%; T = +1.5 
o
C) scenario, reduction in the GHG emissions 

savings for CBE was -12.1% compared with the baseline scenario.  However, at 

([CO2] = 400 ppm; P = -20%; T = +3.5 
o
C) and ([CO2] = 400 ppm; P = -20%; T = +5 

o
C) scenario, compared with the baseline scenario, the reduction in the life cycle GHG 

emissions savings was -30% and -46.1% respectively.  
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Similarly, results indicated that life cycle GHG emissions savings of CBE would be 

affected by changes in precipitation amount, P. For instance, at (P = -20%; T = +2 
o
C; 

[CO2] = 400 ppm) and (P = +20%; T = +2 
o
C; [CO2] = 400 ppm) the predicted 

reduction in the life cycle GHG emissions savings for CBE was -19% and -15% 

respectively. This suggests that increased P would minimize the reduction in the life 

cycle GHG emissions savings of CBE. 
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Figure 4.1: Calculated life cycle GHG emissions savings of CBE (kg CO2-equiv. ha
-1

) from 

scenarios of future climate projections based on simultaneous changes in T, P, and [CO2]. 

The calculated life cycle GHG emissions savings of CBE from the 1981 - 1990 baseline 

scenario is also shown. 
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4.3.2  Wheat bioethanol (WBE)  

For WBE model, life cycle GHG emissions savings results presented in Appendix B 

were plotted for both the baseline and future climate change scenarios (see Figure 

4.2). The calculated life cycle GHG emissions savings from the baseline period was -

2776.1 kg CO2-equiv. ha
-1

. Unlike CBE, WBE life cycle model results showed that 

life cycle GHG emissions savings for WBE would increase under future climate 

change scenarios (see Figure 4.2). Compared with the baseline period, the life cycle 

GHG emissions savings was predicted to increase by +2.5 to 33.5% in future climate 

periods. Unlike CBE, increased T coupled with decreased P and increased [CO2] was 

predicted to have positive impact on potential life cycle GHG emissions savings for 

WBE. For instance, at (T = +0.5 
o
C; P = +20%; [CO2] = 400 ppm) scenario, the 

potential life cycle GHG emissions savings was predicted to increase by +2.5 

compared with the baseline period. But, at (T = +3.5 
o
C; P = +20%; [CO2] = 400 

ppm) and (T = +4.5 
o
C; P = +20%; [CO2] = 400 ppm) compared with the baseline 

period, the potential life cycle GHG emissions savings for WBE was predicted to 

increase by +23.3%. Furthermore, at (T = +0.5 
o
C; P = -20%; [CO2] = 540 ppm) and 

(T = +0.5 
o
C; P = +20%; [CO2] = 540 ppm) scenario, the potential life cycle GHG 

emissions savings for WBE was predicted to increase by +19.7% and +7.7% 

respectively. This means that WBE responds positively to reducing precipitation 

amounts with increasing temperature and atmospheric CO2 levels.  
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Figure 4.2: Calculated life cycle GHG emissions savings of WBE (kg CO2-equiv. ha
-1

) from 

scenarios of future climate projections based on simultaneous changes in T, P, and [CO2]. 

The calculated life cycle GHG emissions savings of WBE from the 1981 - 1990 baseline 

scenario is also shown. 
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4.3.3  Soybean biodiesel (SBD)  

The life cycle GHG emissions savings results of SBD model are presented in 

Appendix C. Trends in the change in potential life cycle GHG emissions savings of 

SBD in climate change scenarios are presented in Figure 4.3, along with the life cycle 

GHG emissions savings from the baseline period. The calculated life cycle GHG 

emissions savings from the baseline period was -2655.41 kg CO2-equiv. ha
-1

. 

However, SBD model output showed that increasing T, P, and [CO2] will have both 

positive and negative effect on life cycle GHG emissions savings of SBD production 

chain. A +0.22 to +27% increase and -0.7 to -60.8% decrease in the life cycle GHG 

emissions savings of SBD was predicted across the future climate change scenarios 

compared with the baseline period. When [CO2] = 400 ppm and T = +1.5 
o
C, only 

increased P from +5% to +20% had positive impact on the life cycle GHG emissions 

of SBD from +1.3 to +3.6% compared with the baseline scenario. But when [CO2] = 

540 and 680 ppm, the life cycle GHG emissions savings increases with increasing 

[CO2], T, and P. Reductions in P amounts have been shown to have positive impact 

on the GHG emissions savings of SBD under certain conditions. For instance, at (P = 

-5%; T = +2.5 
o
C; [CO2] = 540 ppm) and (P = -20%; T = +3.5 

o
C; [CO2] = 680 ppm) 

scenarios, +6% and +4.1% increase was predicted respectively compared with the 

baseline period. This suggests some improvements in the life cycle GHG emissions 

savings of SBD with increased [CO2] coupled with increased P, and T. However, 

increased T above +4 
o
C will have negative impact on the GHG emissions savings 

even if there is increase in [CO2] and P.  
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Figure 4.3: Calculated life cycle GHG emissions savings of SBD (kg CO2-equiv. ha
-1

) from 

scenarios of future climate projections based on simultaneous changes in T, P, and [CO2]. 

The calculated life cycle GHG emissions savings of SBD from the 1981 - 1990 baseline 

scenario is also shown. 
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4.4 Investigation of the impacts of climate change on life cycle GHG 

emissions of second-generation biofuels - (Aim 3)  

Simulated potential life cycle GHG emissions savings of second-generation biofuel 

production chains from corn: CIBM and CIBE; wheat: WIBM and WIBE, and 

soybean: SIBM and SIBE are presented in this sub-section. The potential life cycle 

GHG emissions savings were calculated for the baseline condition and future climates 

period. Charts were plotted using the models output data presented in Appendices D – 

I.  

Presented in Appendices D, E, and F are the life cycle GHG emissions savings results 

of CIBM, SIBM, and WIBM, respectively. And the life cycle GHG emissions savings 

results of CIBE, SIBE, and WIBE are presented in Appendices G, H, and I 

respectively. 

4.4.1  Corn integrated biomethanol (CIBM) & corn integrated bioelectricity 

(CIBE) 

Trends in the change in potential life cycle GHG emissions savings of CIBM and 

CIBE with the main effects of climate change scenarios are presented in Figures 4.4 

and 4.5 respectively. Model outputs showed that net life cycle GHG emissions 

savings of -8573.31 kg CO2-equiv. ha
-1

 and -10996.7 kg CO2-equiv. ha
-1

 could be 

achieved for CIBM and CIBE, respectively for the baseline period. However, under 

climate change, model prediction showed that combined changes in T, P, and [CO2] 

would have negative impact on the potential life cycle GHG emissions savings of 

both CIBM as well as CIBE. Compared with the baseline scenario, the life cycle 
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GHG emissions savings of CIBM would decline by -2.6 to -37.7%, whilst CIBE 

would decline by -1.6 to -33.4%. As expected, the scenarios of increasing T had the 

highest impact on life cycle GHG emissions savings for CIBM and CIBE, particularly 

under scenarios with decreasing P. For example, CIBM at (P = +20%; T = +1.5 
o
C; 

[CO2] = 400 ppm), (P = +20%; T = +5 
o
C; [CO2] = 400 ppm), (P = -20%; T = +1.5 

o
C; [CO2] = 400 ppm), and (P = -20%; T = +5 

o
C; [CO2] = 400 ppm) scenarios had a 

-6.8%, -31.6%, -9.5%, and -37.7% reduction respectively, compared with the baseline 

scenario. Similarly, at (P = +20%; T = +1.5 
o
C; [CO2] = 400 ppm), (P = +20%; T = 

+5 
o
C; [CO2] = 400 ppm), (P = -20%; T = +1.5 

o
C; [CO2] = 400 ppm), and (P = -

20%; T = +5 
o
C; [CO2] = 400 ppm) scenarios, CIBE had a -5.5%, -27.7%, -8.1%, and 

-33.4% reduction in life cycle GHG emissions savings respectively, compared with 

the baseline scenario. Model outputs also showed that scenarios of increasing [CO2] 

would have positive impact on life cycle GHG emissions savings of both CIBM and 

CIBE. Though still less than the value for the baseline scenario, increased [CO2] was 

predicted to reduce the negative impact of increased T. For instance, at ([CO2] = 400; 

P = -10%; T = +5 
o
C), ([CO2] = 540; P = -10%; T = +5 

o
C), and ([CO2] = 680; P = -

10%; T = +5 
o
C) CIBM had a reduction of -35.9%, -31.3%, and -26.3% respectively, 

compared with the baseline scenario. The same pattern was also exhibited by CIBE, 

which had a reduction of -31.3%, -27.3%, and -22.4% respectively, under same 

scenarios. Scenarios of increasing P also were shown to have positive impact on life 

cycle GHG emissions savings of both CIBM as well as CIBE. For example, under 

([CO2] = 540; P = -20%; T = +5 
o
C) and ([CO2] = 540; P = +20%; T = +5 

o
C) 

scenarios, CIBE had a reduction of -29.3% and -23.8% respectively, whilst CIBM had 

a reduction of -33.4% and -27.7% respectively, compared with the baseline period. 
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Figure 4.4: Calculated life cycle GHG emissions savings of CIBM (kg CO2-equiv. ha
-1

) from 

scenarios of future climate projections based on simultaneous changes in T, P, and [CO2]. 

The calculated life cycle GHG emissions savings of CIBM from the 1981 - 1990 baseline 

scenario is also shown. 
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Figure 4.5: Calculated life cycle GHG emissions savings of CIBE (kg CO2-equiv. ha
-1

) from 

scenarios of future climate projections based on simultaneous changes in T, P, and [CO2]. 

The calculated life cycle GHG emissions savings of CIBE from the 1981 - 1990 baseline 

scenario is also shown. 
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4.4.2  Soybean integrated biomethanol (SIBM) & soybean integrated 

bioelectricity (SIBE) 

For the trend of life cycle GHG emissions savings change for SIBM and SIBE, 

models output indicated that life cycle GHG emissions savings would be both 

positively as well as negatively affected across some scenarios of climate change. 

Models calculation showed that SIBM and SIBE had a net life cycle GHG emissions 

savings of -3441.1 kg CO2-equiv. ha
-1

 and -1350.04 kg CO2-equiv ha
-1

 respectively 

under the baseline scenario. Compared with the baseline period, SIBE was predicted 

to have between -0.1 to -82.6% reductions in life cycle GHG emissions savings. On 

the other hand, model predictions showed that reduction in life cycle GHG emissions 

savings for SIBM would range from -0.1 to -44.6%.  Similarly, compared with the 

baseline period, increase in life cycle GHG emissions savings of SIBE and SIBM 

ranges between +0.1 to +31.6% and +0.1 to +28% respectively. For SIBE, highest 

reduction (-82.6%) was observed at ([CO2] = 400; P = -20%; T = +5 
o
C) scenario and 

lowest reduction (-0.1%) was recorded at ([CO2] = 680; P = -5%; T = +3.5 
o
C) 

scenario. Moreover, highest increase (+31.6%) in life cycle GHG emissions savings 

was recorded at ([CO2] = 680; P = +20%; T = +1.5 
o
C) and lowest increase (+0.1%) 

was recorded at ([CO2] = 540; P = +10%; T = +3.5 
o
C) for SIBE.   

For SIBM, highest reduction (-44.6%) was observed at ([CO2] = 400; P = -20%; T = 

+5 
o
C) scenario and lowest reduction (-0.1%) was recorded at ([CO2] = 680; P = 

+15%; T = +5 
o
C) scenario. furthermore, highest increase (+28%) in life cycle GHG 

emissions savings was also recorded at ([CO2] = 680; P = +20%; T = +1.5 
o
C) and 
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lowest increase (+0.1%) was recorded at ([CO2] = 540; P = +15%; T = +4.5 
o
C) for 

SIBM.   

Clearly, as shown in Figures 4.6 and 4.7, it appears that the scenarios of increasing 

[CO2] and P will have a positive impact on life cycle GHG emissions savings of both 

SIBE and SIBM.  
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Figure 4.6: Calculated life cycle GHG emissions savings of SIBM (kg CO2-equiv. ha
-1

) from 

scenarios of future climate projections based on simultaneous changes in T, P, and [CO2]. 

The calculated life cycle GHG emissions savings of SIBM from the 1981 - 1990 baseline 

scenario is also shown. 
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Figure 4.7: Calculated life cycle GHG emissions savings of SIBE (kg CO2-equiv. ha
-1

) from 

scenarios of future climate projections based on simultaneous changes in T, P, and [CO2]. 

The calculated life cycle GHG emissions savings of SIBE from the 1981 - 1990 baseline 

scenario is also shown.  
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4.4.3  Wheat integrated biomethanol (WIBM) & wheat integrated bioelectricity 

(WIBE) 

For WIBM and WIBE productions chains, models calculation showed that WIBM 

had life cycle GHG emissions savings of -500.87 kg CO2-equiv. ha
-1

 and WIBE had -

4648.93 kg CO2-equiv. ha
-1

 from the baseline scenario. However, models prediction 

showed that both WIBM  & WIBE are associated with increase in life cycle GHG 

emissions savings across all the climate change scenarios considered compared with 

the baseline scenario. Thus, both WIBM & WIBE would be positively affected by 

simultaneous changes in T, P, and [CO2]. Compared with the baseline period, the 

predicted increase ranges from +0.1 to +37.8% for WIBM, and +1.0 to +34.4% for 

WIBE.  

As shown in Figures 4.8 and 4.9, life cycle GHG emissions savings of WIBM & 

WIBE would increase with increase in T. For instance, under (T = 0.5 
o
C; P = +10%; 

[CO2] = 400 ppm) scenario, WIBM was predicted to incur a +2.1% increase 

compared with the baseline period. Also under (T = 1.5 
o
C; P = +10%; [CO2] = 400 

ppm), (T = 3.5 
o
C; P = +10%; [CO2] = 400 ppm), and (T = 4.5 

o
C; P = +10%; [CO2] 

= 400 ppm) scenario, model prediction showed that WIBM would incur a +7.3%, 

+25.3%, and +29.5% increase respectively, compared with the baseline scenario. 

Compared to WIBM, similar trend was also exhibited by WIBE in response to 

increasing T. Moreover, scenarios of increasing [CO2] have been shown to have 

positive impact on life cycle GHG emissions savings of both WIBM & WIBE. For 

example, under ([CO2] = 400; T = 0.5 
o
C; P = -20%), ([CO2] = 540; T = 0.5 

o
C; P = -
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20%), and ([CO2] = 680; T = 0.5 
o
C; P = -20%) scenarios, a +9.4%, +14.1%, and 

+17.8% increase was predicted for WIBE. 

In addition, decreased in P coupled with increased [CO2] have been shown to have 

positive impact on life cycle GHG emissions savings of both WIBE & WIBM. For 

instance, a +10.4% increase was recorded for WIBM under (P = -20%; T = 0.5 
o
C; 

[CO2] = 540 ppm) scenario and a +2.3% increase was incurred under (P = +20%; T = 

0.5 
o
C; [CO2] = 540 ppm) scenario. 
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Figure 4.8: Calculated life cycle GHG emissions savings of WIBM (kg CO2-equiv. ha
-1

) from 

scenarios of future climate projections based on simultaneous changes in T, P, and [CO2]. 

The calculated life cycle GHG emissions savings of WIBM from the 1981 - 1990 baseline 

scenario is also shown. 
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Figure 4.9: Calculated life cycle GHG emissions savings of WIBE (kg CO2-equiv. ha
-

1
) from scenarios of future climate projections based on simultaneous changes in T, P, 

and [CO2]. The calculated life cycle GHG emissions savings of WIBE from the 1981 

- 1990 baseline scenario is also shown. 
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4.5  Summary 

Investigations on the potential impact of climate change on corn, soybean, and wheat 

showed that changing T, P, and [CO2] would have substantial effect on the yields and 

their life cycle GHG emissions savings. It was also revealed that for the chosen 

climate change scenarios and crop, corn feedstock yields as well as life cycle GHG 

emissions savings of CBE, CBM, and CIBE would be negatively affected by climate 

change. By comparison, soybean yields and life cycle GHG emissions savings of 

SBD, SIBM, and SIBE would be both positively, as well as negatively affected by the 

predicted changes in T, P, and [CO2] in this analysis. In contrast, wheat yields would 

be positively affected by changing T, P, and [CO2] across all the chosen climate 

change scenarios. Results also showed that increased T had the most significant 

impact on energy crop yields, though the degree of the impact varied with the type of 

crop. Corn, soybean, and wheat responded differently to changing T, P, and [CO2].  

Overall, results suggest that combined changes in T, P, and [CO2] could have 

substantial impact on energy crop yields as feedstock for biofuels and the resulting 

life cycle GHG emissions savings from these biofuels when they are used as 

alternatives to conventional fossil fuels. 
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CHAPTER 5: OVERAL DISCUSSIONS 

5.1 Introduction 

Reducing anthropogenic GHG emissions globally is a key driver for the development 

of large-scale renewable biofuels [252, 253]. The cereals: corn, soybean, and wheat 

are being promoted by many governments such as the EU and USA, as potential 

biofuel feedstock sources and possible replacements of fossil fuels such as gasoline 

and diesel due to the environmental benefits derived from their production and 

utilization [13, 152, 254-256]. It has been acknowledged that LCA as a decision 

support tool can yield valuable insights about potential environmental effects of 

biofuels production and can support robust strategic decision-making [257, 258]. 

Most LCA studies indicate significant life cycle GHG emissions benefits of using 

biofuels over conventional fossil fuels [259, 260].  

Nonetheless, the net life cycle GHG emissions savings resulting from production and 

utilization of biofuels is being subjected to changes in the future due to projected 

changes in climatic conditions. However, assessment of the potential impacts of 

climate change on life cycle GHG emissions savings of biofuels from dedicated 

energy crops was not adequately addressed.  

As previously reported (Chapter 4), the studies involves series of experiments 

designed in order to evaluate the impact of projected combined changes in T, P, and 

[CO2] on life cycle GHG emissions savings of corn, soybean, and wheat-based 

biofuels. This section is designed to present an overview of the results obtained with 

limitations of the research, and recommendations for future work. 
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5.2 The baseline scenario  

Although biofuels at certain stages of their life cycle (e.g., farm operations, 

transportation, and processing) exhibits negative environmental impacts, production 

and utilization of biofuels as replacement for fossil fuels tended to be more 

environmentally beneficial when they are used as replacement for conventional fossil-

based fuels. 

Under the baseline (1981 – 1990) scenario, this analysis suggest that production and 

use of corn-based biofuels: CBE, CIBM, and CIBE could save -4743.32 kg CO2-

equiv. ha
-1

, -8573.31 kg CO2-equiv. ha
-1

, and -10996.7 kg CO2-equiv. ha
-1

 

respectively, of the total life cycle GHG emissions of CO2, CH4, and N2O for the 

production and utilization of an energetically equivalent amount of fossil gasoline and 

electricity, respectively. Similarly, soybean-based biofuels: SBD, SIBM, and SIBE 

could save -2655.41 kg CO2-equiv. ha
-1

, -3441.1 kg CO2-equiv. ha
-1

, and -1350.04 kg 

CO2-equiv ha
-1

 respectively, of the total life cycle GHG emissions of CO2, CH4, and 

N2O for the production and utilization of an energetically equivalent amount of fossil 

diesel, gasoline, and electricity, respectively. Findings from this thesis also suggest 

that wheat-based biofuels: WBE, WIBM, and WIBE could save -2776.1 kg CO2-

equiv. ha
-1

, -500.87 kg CO2-equiv. ha
-1

 and -4648.93 kg CO2-equiv. ha
-1

 respectively, 

of the total life cycle GHG emissions of CO2, CH4, and N2O of production and 

utilization of an energetically equivalent amount of fossil gasoline and electricity, 

respectively. Nonetheless, it is important to note that for greater sustainability we 

require a large negative value for the life cycle GHG emissions savings. 
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These results are in agreement with findings from studies conducted by [6, 97, 170, 

261] that showed that production and use of biofuels would save the net life cycle 

GHG emissions of energetically equivalent amount of fossil fuel they displaced either 

totally or as a blending component of fuel engine [262]. For instance, according to [6] 

and Larson [97], life cycle GHG emissions savings of -4290 kg CO2-eq ha
-1

 yr
-1 

and -

4900 kg CO2-eq ha
-1

 yr
-1

, respectively could be achieved from corn when grown on 

marginal land in the US Midwest. In addition, result from [97] showed that life cycle 

GHG emissions savings of about -2100 kg CO2-equiv. ha
-1

 yr
-1 

could be achieved 

from soybean biodiesel.  

However, it is important to note that the net life cycle GHG emissions savings varies 

greatly across crops and production technologies. Among the three crops, corn 

provides higher benefits in terms of high net life cycle GHG emissions savings than 

wheat and soybean, probably due to higher total biomass yield per ha. Meanwhile, 

CIBE saves more life cycle GHG emissions than CIBM and CBE. On the other hand, 

WIBM saves more life cycle GHG emissions than WBE and WIBE. Similarly, SIBM 

saves far more life cycle GHG emissions than SIBE and SBD. In general, these 

findings suggest that production and utilization of second-generation biofuels could 

offer more net life cycle GHG emissions savings than conventional grain/seed based, 

first-generation biofuels. 

5.3 The climate change scenarios 

Under climate change scenarios, findings from this study showed that biofuels 

feedstock production and net life cycle GHG emissions savings are affected by 

climate change. Future production of biofuels feedstocks and production processes are 

likely to have lower and/or higher life cycle GHG emissions savings depending on the 
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type of feedstock, as a result of reduction in yield due to climate change. Climatic 

factors such as T, P, and [CO2] could determine the average yield response of 

bioenergy crops.  Clearly, this study illustrates that biofuel feedstocks respond 

differently to changing climate based on their photosynthetic metabolic pathway (i.e. 

C3 and C4 pathways). Crop yields response was higher in C3 crops than C4 crops. 

In future climate change scenarios, models prediction showed that energy crops 

productivity and net life cycle GHG emissions savings from corn-based biofuels: 

CBE, CIBM, and CIBE responded to changes in T, P, and [CO2]. Moreover, changes 

in T, P, and [CO2] expected at the end of the century could make corn-based biofuels 

production not environmentally sustainable. The net life cycle GHG emissions 

savings for CBE, CIBE, and CIBM decreased significantly under all projected climate 

change scenarios even with the direct effects of CO2. Atmospheric air temperature, T, 

was shown to be the most relevant climatic factor, which has the highest effect on 

crops yield and net life cycle GHG emissions savings [119, 263]. However, increased 

atmospheric [CO2] tended to reduce the combined effects of increased T and 

changing P.  

Moreover, the effects of simultaneous changes in T, P, and [CO2] on life cycle GHG 

emissions clearly pointed that there is a substantial effects of climate change on 

sustainability of corn-based biofuels. The negative effects of climate change on life 

cycle GHG emissions savings of corn-based biofuels relative to baseline scenario 

were mainly due to the decrease in corn grain and stover yields ha
-1

 that corresponded 

to the biofuel output used in lieu of a fossil fuel equivalent. Comparing baseline and 

future climate change scenarios, life cycle GHG emissions savings results of corn-
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based biofuels suggests that simultaneous changes in T, P, and [CO2] could cause a 

reduction of between -4.2-46.1%, -2.6-37.7%, and -1.6-33.4% in net life cycle GHG 

emissions savings of CBE, CIBM, and CIBE respectively, in Gainesville, USA by the 

end of the 21
st
 century. Studies conducted by [264] in the USA, which produces 41% 

of the world's corn and 38% of the world's soybeans showed that average corn yields 

would decrease by -30 to -46% before the end of the century under the slowest (B1) 

warming scenario and decrease by -63 to -82% under the most rapid warming 

scenario (A1FI). 

Consequently, the predicted decline in net life cycle GHG emissions savings would 

have important impact on the environmental sustainability of corn-based biofuels and 

climate change mitigation goals aimed at reducing global GHG emissions for 

example, the Renewable Fuel Standard (RFS2) set by the US government, which set 

out the objective of an aggregate of 136.26 billion litres of renewable fuel to be used 

in transport, and also required producers of advanced and standard biofuels to reduce 

their life cycle GHG emissions by at least 50% and 20% respectively [92]. This 

situation could lead to land expansion (land use change) in order to close the yield gap 

and making producers more vulnerable to government policy changes [15, 72, 192, 

265]. Also as the yield goes down, this would create more pressure on the feedstock 

supply leading to high-rise in feedstock price.  

Furthermore, it is essential to adopt additional adaptation measures that will serve to 

reduce the negative impacts of projected climate change and variability on biofuel 

feedstocks productivity and net life cycle GHG emissions savings. According to 

[120], there are two primary approaches for adapting crops to climate change: (i) 

improving existing crop cultivars and developing new crops, and (ii) developing new 

cropping systems and methods for field crops management. These includes 
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adjustment of planting dates and crop variety; crop relocation; improved land 

management e.g., erosion control and soil protection through tree planting [34]. 

Investigations conducted by [266] showed that a combination of early planting for 

spring – summer crops and the use of slower-maturing winter cereal cultivars could 

help in maintaining crop yields. Irrigation was also shown to be essential as a means 

to increase crop yields as well as to decrease inter-annual variability in crop yields 

due to climate change [41].  

The effect of combined changes in on corn grain yield was in agreement with 

previous studies that demonstrated the effect of climate change on energy crop 

production (e.g., [16, 30-32, 41, 267-272]). Findings from [266] suggested that the 

decline in corn grain yield was as a result of combined effects of changing climate, 

specifically due to warmer air temperatures, which accelerated plant phenology, 

reducing dry matter accumulation and crop yields by -10 to -40%.  Warmer air 

temperatures have been shown to reduce crop yields by making the crop to grow more 

quickly thereby reducing the amount of time that seeds have to grow and mature  

[23]. In a study conducted by [273], it was found that increased average temperatures 

of 1.7 
o
C could reduce the time to flowering of crops by 11 days leading to a decline 

in total biomass and grain yield. However, the effect of increased temperature on crop 

productivity will depend on the crop’s optimal temperature for growth and 

reproduction: for temperatures lower than the optimum value, an increase in 

temperature will be positive for crop production; for temperatures higher than the 

optimum value an increase on temperature will be negative for crop production [272]. 

Findings from a study conducted by [264] suggested that crop yields increase with 
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temperature of up to 29 °C for corn and 30 °C for soybeans grown in the USA, but 

that temperatures above these thresholds would be very harmful.  

Investigations of the impact of climate change on soybean production and net life 

cycle GHG emissions of SBD, SIBM, and SIBE predicted contrasting results to that 

of corn-based biofuels. Soybean, being a C3 crop tended to be more sensitive to 

combined changes in T, P, and [CO2]. This is in agreement with [23] who reported 

that C3 crops are generally more sensitive to changes in climatic factors such as 

temperature, rainfall, and elevated CO2. Soybean-based biofuels are likely to 

experience both reduction and increase in feedstocks yields, and life cycle GHG 

emissions savings depending on changes in T, P, and [CO2]. Model predictions 

suggests that combined changes in T, P, and [CO2] projected at the end of the 21
st
 

century could cause -0.7 to -60.8%, -0.1 to -44.6%, and -0.1 to -82.6% reduction in 

net life cycle GHG emissions savings of SBD, SIBM, and SIBE respectively. And on 

the other hand, climate change could also cause an increase in net life cycle GHG 

emissions savings of +0.22 to +27%, +0.1 to +28%, and +0.1 to +31.6% for SBD, 

SIBM, and SIBE respectively. These expected changes could make soybean-based 

biofuels not environmentally sustainable as well as more environmentally sustainable 

depending on climate change scenario, compared with the baseline period. Based on 

the simulated results, highest reductions in net life cycle GHG emissions are expected 

when [CO2] = 400; P = -20%; and T = +5 
o
C, and lowest reductions when [CO2] = 

680; P = -5%; and T = +3.5 
o
C.  Whilst highest increases in net life cycle GHG 

emissions savings are expected when [CO2] = 680; P = +20%; and T = +1.5 
o
C and 

lowest increases when [CO2] = 540; P = +10%; and T = +3.5 
o
C.  

Clearly, as shown in the previous section (chapter 4) it appears that the scenarios of 

increasing [CO2] and P will have a positive impact on life cycle GHG emissions 
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savings of soybean-based biofuels. The decrease in net GHG emissions savings per ha 

for soybean-based biofuels was mainly driven by increased air T, which caused 

significant decrease in the harvestable grain/seed and biomass yields of soybean. 

Furthermore, as the atmospheric [CO2] increases coupled with warming (increased T 

of up to +4.5 
o
C) the life cycle GHG emissions savings for soybean-based biofuels 

improve even higher than that of the current baseline scenario. Also the potential 

GHG emissions savings gap between CBE and SBD per ha rapidly closes with 

increasing [CO2]. This demonstrated that SBD production would be similar, if not 

better, in a warmer (at T not above +4.5 
o
C) and CO2 enriched future. This might not 

be unconnected with the photosynthetic advantage that soybean (a typical C3 crop) 

has over corn (a typical C4 crop) at considerably high T and elevated atmospheric 

[CO2] than today’s condition (400 ppm) [274]. It has been revealed that at elevated 

CO2, stimulation of photosynthesis is the driving force for increased growth and yield 

of C3 crops [32, 126, 194, 275-278]. Therefore, a dangerous combination for climate 

change would be increased warming without increased atmospheric level of CO2. 

According to [274] “We should be less concerned about rising CO2 and rising 

temperatures and more worried about the possibility that future CO2 will suddenly 

stop increasing”. This work therefore, argues that even with increasing atmospheric 

levels of [CO2], rising temperature is of great concern. Overall, T appeared to have a 

relatively higher impact as compared to P and [CO2] changes. 

Model results as presented in the previous section (chapter 4) shows that in future 

climate change scenarios, wheat productivity and net life cycle GHG emissions 

savings of wheat-based biofuels: WBE, WIBM and WIBE responded to changes in T, 

P, and [CO2]. Nevertheless, the expected changes in T, P, and [CO2] at the end of the 
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21
st
 century could make wheat-based biofuels production more environmentally 

sustainable relative to the baseline condition. Under all future climate change 

scenarios, net GHG emissions savings for WBE, WIBM, and WIBE increased 

significantly. This was in agreement with findings from  [279, 280]. 

As in the case of corn and soybean, atmospheric air temperature was also shown to be 

the most relevant climatic factor on wheat yields [119, 263]. In comparison with corn-

based and soybean-based biofuels, wheat-based biofuels would have a more positive 

response to increasing T coupled with elevated [CO2]. Thus, contrary to corn and 

soybean increased T and [CO2] coupled with decreased P increased wheat yields and 

the resulting net life cycle GHG emissions savings. In a study by [284], elevated CO2 

concentration and increased air temperature (up to 3 
o
C) have been found to increase 

wheat yields, particularly at sufficient nitrogen fertilization and relatively dry 

conditions. In a study conducted by [273] using Free Air Carbon dioxide Enrichment 

(FACE) experiment, largest increase in wheat yield was found to occur with elevated 

atmospheric CO2 concentration in dry and high nitrogen treatments, whereas little or o 

response was observed in wet and low nitrogen supply treatments. 

The positive response to the temperature and CO2 increase is likely due to the unique 

photosynthetic ability of C3 crops. A study of the impact of increased temperature 

and CO2 on C3 crops predicted a generally increasing trend in net photosynthesis with 

warmer temperatures and elevated CO2 until optimum temperature is reached [281].  

In another study [32] both photosynthetic rate and optimum temperature has been 

found to be higher at elevated atmospheric CO2 concentration because, increasing 

atmospheric CO2 concentration stimulates both net photosynthetic carbon assimilation 

and biomass production for C3 crops. It was also revealed that at elevated CO2 

concentration the optimum temperature and net photosynthesis of C3 crops tend to 
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increase by +5 
o
C and +42% respectively, compared to lower CO2 levels [281]. 

However, regardless of CO2 level, photosynthesis gradually decreased at temperatures 

higher than the optimum temperature since increase in temperature reduces crops 

photosynthetic efficiency and stimulates photorespiration [282, 283]. There have been 

reports that changes in atmospheric CO2 levels might play a key role in nutrients and 

water uses, such as evapotranspiration, which in turn indirectly affect net 

photosynthesis and yield, especially under water deficit conditions [17, 276]. It was 

also revealed that elevated CO2 and increased temperatures reduces 

evapotranspiration with ample nitrogen fertilizer [273]. Thus, elevated CO2 and 

increased temperature are expected to have positive impact on wheat grain yield in 

future climate change conditions.  

Similar to soybean, wheat response to atmospheric [CO2] was higher than that of corn 

due to their photosynthetic difference. Soybean and wheat being C3 crops have been 

shown to have a better photosynthetic advantage than corn (C4 crop) at elevated CO2 

concentrations with increasing temperature [126, 188, 202, 224, 274, 282]. The 

effects of combined changes in T, P, and [CO2] on life cycle GHG emissions clearly 

demonstrated that there is also a substantial effects of climate change on sustainability 

of wheat-based biofuels.  

The positive effects of changing T, P, and [CO2] on life cycle GHG emissions savings 

of wheat-based biofuels relative to baseline scenario were mainly due to the increase 

in wheat grain and straw yields that corresponded to the biofuel output used in lieu of 

a fossil fuel equivalent. Comparing baseline and future climate change scenarios, life 

cycle GHG emissions savings results of wheat-based biofuels suggests that 
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simultaneous changes in T, P, and [CO2] could cause an increase of between +2.5 to 

+33.5%, +0.1 to +37.8%, and +1.0 to +34.4% in net life cycle GHG emissions 

savings of WBE, WIBM, and WIBE respectively. The predicted increase in net life 

cycle GHG emissions savings would have important impacts on the environmental 

sustainability of wheat-based biofuels and climate change mitigation goals aimed at 

reducing global GHG emissions.  For example, in meeting the European Directive 

(EU Directive 2009/28/EC) on the promotion of the use of biofuels or other 

renewable fuels for transport within the EU, which sets out the objective of 10% for 

biofuels in transport and also a minimum 35% reduction in GHG emissions to be 

achieved by biofuels during their life cycle by 2020 and 80% by 2050 below the 1990 

baseline [81].  

In general, simultaneous changes in T, P, and [CO2] would have substantial impact on 

energy crop productivity and net life cycle GHG emissions savings. Increasing 

atmospheric levels of [CO2] would benefit bioenergy crops production due to the 

aerial fertilization effect. CO2 being an aerial fertilizer would enhance plant growth 

and development considering the fact that it is the primary raw material used by crops 

in the synthesis of organic matter via photosynthesis. The more CO2 there is in the 

atmosphere, the better crops can perform this vital function even under stressed 

conditions because CO2 sequestration ability of the crop rises along with atmospheric 

CO2 concentration [125, 285]. Atmospheric CO2 concentration of 475-600 ppm has 

been shown to increase leaf photosynthetic rates of crops by +40% [269, 283]. 

According to [278] elevated CO2 decreases stomatal conductance of water by an 

average of  -22%, which decreases overall water use by the crop. However, the 

magnitude of the overall effect will depend on other determinants such as air 

temperature and plant size [282]. A review of existing knowledge by [286] on 



135 

 

interactive influences of atmospheric CO2 concentration, temperature and soil 

moisture on crop growth, development and yield as well as on plant water use 

efficiency (WUE), and uptake efficiencies of soil-immobile nutrients revealed that 

elevated atmospheric CO2 would increase leaf and canopy photosynthesis, especially 

in C3 crops. It was also found that elevated CO2 would increase biomass yield, reduce 

transpiration of most crop and improve WUE [286]. 

5.3 Conclusion 

A robust methodology that integrates climate change projection and cropping system 

modelling coupled to life cycle assessment modelling for assessing the impact of 

changing climate on life cycle GHG emissions savings of biofuels has been 

developed. CSM models linked to LCA models were found to be suitable for 

investigating the impact of future climate on productivity and environmental 

sustainability of biofuels from dedicated energy crops: corn, soybean and wheat.  

As is shown in this thesis, the potential impacts of climate change on energy crops 

productivity and net life cycle GHG emissions savings could be very large and 

diverse, and that the anticipated life cycle GHG emissions reductions of biofuels 

would not be the same in the future. However, policy makers do not consider climate 

change when designing policies for the promotion of large-scale biofuels production.  

By the end of the 21
st
 century, climate change could have negative effects on the 

environmental sustainability of corn-based biofuels. In contrast, climate change is 

expected to have both benefits and drawbacks on the environmental sustainability of 

soybean-based biofuels depending on climate change scenario. Furthermore, future 
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climatic conditions are expected to have beneficial effects on the environmental 

sustainability of wheat-based biofuels. 

Temperature will have a more devastating effect on the GHG emissions reductions for 

all the crops and technologies considered. Apparently, the GHG emissions savings 

will continue to decline with rising air temperature. For corn, even an increase of 1.5 

o
C will have a significant negative effect on life cycle GHG emissions savings for all 

the technologies considered. The highest impact will be when the air temperature rises 

by up to 5 
o
C. However, the life cycle GHG emissions savings of soybean-based and 

wheat-based biofuels will be affected positively by a temperature increase of up to 4.5 

o
C depending on future climate scenario. Nevertheless, direct effect of increasing 

levels of atmospheric CO2 has been projected to minimize the severe impact of these 

increasing temperatures. 

‘Multi – output’ or ‘integrated’ system as used in this thesis for combined production 

of biofuel and bioelectricity could be a promising option for sustainable bioenergy 

production system and the potential life cycle GHG emissions savings are directly 

proportional to the energy crop’s dry biomass yield per ha. As the yield increases, the 

resulting life cycle GHG emissions savings from its production also increases 

considerably, and vice versa. It is also worth noting that the relationship between 

direct and indirect energy inputs due to energy crop cultivation and yield per unit land 

is non – linear since all inputs are done on per unit land basis not per yield. High yield 

could be attained for instance; per ha with very small energy input and a very low 

yield could also be obtained with very high energy input per ha. 

While it is widely anticipated that biofuels would play a key role in achieving the 

IPCC’s target of 50 – 80% reduction in global GHG emissions through renewable 
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options by 2050, this thesis suggests that the potential GHG emissions reductions 

from biofuels will be affected by climate change. Thus, the life cycle GHG emissions 

savings of biofuels cannot be taken for granted. Policy measures are therefore 

required for the deployment and expansion of bioenergy systems from dedicated 

energy crops in the face of a changing climate. This will significantly require some 

strategies for improving the productivity of existing energy crops and an 

understanding of the complex relationship between energy crops and the environment. 

High yielding and climate change resilient energy crops are therefore required for the 

deployment of large-scale bioenergy system. But care must also be taken in choosing 

which energy crop to grow in a changing climate. Crops like wheat and soybean  (C3 

crops) that thrives well in warmer climates have an edge over corn (C4 crop). Checks 

should also be conducted on this present work either by using real field test or 

simulations study. Findings from this research should also be taken into account by 

policy makers in designing an action plan for the deployment of large-scale bioenergy 

system. Care should also be taken in choosing the best value crop (crop with the most 

benefit) which offers more energy and GHG balance per unit mass (kg) of the crop. 

This can be identified by either taking into account the grain/seed or total biomass 

yield per ha (when whole crop is considered) or usage in terms of high calorific value 

per unit mass (kg). 

5.4 Research limitations 

By reflecting on the research process, it is easy to see where improvements could be 

made. Although the methodological approach was carefully considered and the tools 

used were carefully selected, given the complex nature of CSM and LCA studies, 
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there are a number of points regarding the research. The use of CSM and LCA models 

as robust and efficient tools for informing or making policy decisions requires 

extensive data gathering. Uncertainty and variability are inherent in the LCA of 

biofuels, especially in the assessment of new technologies. In each of the tools applied 

in this research, data availability and quality has always been the limiting factors for 

complete environmental effects assessment.  

5.5 Recommendations for future research work 

This modeling approach can also be applied for investigating the impact of climate 

change on productivity and net GHG emissions reductions potential of different 

energy crops, biofuels technologies, and different regions of the world. Studies should 

be carried out to assess the impact of individual changes in T, P, and [CO2] on the 

carbon footprint of biofuels in order to investigate whether or not the result will agree 

well with that of simultaneous (combined) change. More research is also required 

under field conditions to better understand the feedback between changes in P, T, and 

the magnitude of the CO2 fertilization effect on energy crops yield. Better 

understanding of the underlying mechanisms of potential changes in crop tolerance to 

stress under elevated CO2 is particularly important.  

Further research on the impact of extreme weather events such as drought, flood, and 

wind on energy crops productivity and on crops adaptation to changing climate is also 

required for decision makers to develop effective strategies and policies to tackle 

future climate change impacts and its consequences on biofuels production.   
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Appendices 

Appendix A: Corn bioethanol (CBE) model output  

CML2001, GWP100 years, life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline 

scenario: = -4743.31678 kg CO2-equiv. ha
-1

] 

CO2 (ppm) Precipitation 

(%) 

Temperature (oC) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 -4168.8 -4033.8 -3819.3 -3545.3 -3321.7 -3006.1 -2732.1 -2557.7 

-15 -4217.9 -4078.2 -3891.6 -3634.8 -3410.3 -3090.9 -2786.6 -2635.6 

-10 -4243.8 -4122.7 -3944.5 -3707.4 -3500.7 -3161.3 -2854.4 -2677.0 

-5 -4255.6 -4162.3 -3974.7 -3747.6 -3559.2 -3256.2 -2916.4 -2720.4 

5 -4291.1 -4189.2 -4013.2 -3799.8 -3614.4 -3332.7 -3004.0 -2798.3 

10 -4306.1 -4200.2 -4024.7 -3815.3 -3642.0 -3355.7 -3044.3 -2845.4 

15 -4309.74 -4208.78 -4045.27 -3825.01 -3659.49 -3379 -3052.76 -2873.96 

20 -4311.47 -4213.14 -4052.3 -3843.67 -3670.07 -3405.08 -3080.85 -2892.01 

470 -20 -4249.97 -4128.85 -3934.37 -3658.54 -3435.65 -3141.67 -2840.87 -2674.09 

-15 -4290.99 -4173.37 -3985.07 -3771.31 -3539.12 -3203.08 -2899.39 -2733.54 

-10 -4308.08 -4210.37 -4021.39 -3821.55 -3630.67 -3293.43 -2963.44 -2779.92 

-5 -4324.2 -4232.29 -4064.79 -3852.75 -3677.62 -3380.87 -3032.77 -2836.93 

5 -4344.14 -4264.62 -4094.4 -3898.44 -3714.18 -3436.99 -3121.54 -2911.61 

10 -4349.21 -4278.28 -4108.26 -3907.62 -3736.01 -3466.5 -3141.63 -2958.87 

15 -4351.23 -4283.54 -4114.94 -3920.01 -3748 -3487.47 -3158.06 -2979 

20 -4353.28 -4286.1 -4119.17 -3930.32 -3757.02 -3506.49 -3182.12 -3009.53 

540 -20 -4338.51 -4216.02 -4033.66 -3801.84 -3580.49 -3252.4 -2942.24 -2786.54 

-15 -4355.5 -4255.7 -4068.61 -3876.47 -3670.5 -3334.77 -3025.94 -2847.88 

-10 -4368.02 -4286.1 -4118.41 -3914.38 -3736.24 -3433.64 -3093.98 -2895.69 

-5 -4382.43 -4298.83 -4134.37 -3953.59 -3768.64 -3483.06 -3165.03 -2947.96 

5 -4408.14 -4319.35 -4166.25 -3987.74 -3808.75 -3539.6 -3224.79 -3017.9 

10 -4415.02 -4325.52 -4173.48 -3998.11 -3822 -3561.47 -3249.72 -3050.74 

15 -4417.28 -4328.09 -4186.06 -4002.64 -3831.14 -3578.1 -3269.37 -3070.55 

20 -4413.4 -4337.61 -4178.91 -4014.08 -3846.3 -3589.57 -3289.16 -3096.18 

610 -20 -4425.88 -4311 -4142.14 -3954.51 -3747.32 -3393.56 -3074.87 -2902.37 

-15 -4435.23 -4341.81 -4168.64 -3992.92 -3824.67 -3491.09 -3155.4 -2965.57 

-10 -4448.49 -4360.66 -4200.6 -4019.83 -3861.3 -3571.03 -3225.6 -3030.81 

-5 -4460.14 -4382.4 -4214.97 -4047.37 -3893.13 -3603.35 -3283.39 -3089.64 

5 -4478.92 -4404.2 -4240.98 -4068.79 -3919.46 -3656.34 -3340.55 -3151.76 

10 -4477.16 -4407.43 -4247.96 -4079.46 -3924.62 -3671.63 -3368.07 -3176.84 

15 -4480.22 -4409.9 -4258.58 -4084.49 -3938.53 -3685.83 -3384.1 -3197.9 

20 -4480.8 -4412.85 -4260.54 -4087.56 -3950.19 -3697.69 -3397.34 -3224 

680 -20 -4490.7 -4411.7 -4233.33 -4061.1 -3901.99 -3543.23 -3216.78 -3022.75 

-15 -4496.47 -4434.71 -4269.62 -4083.06 -3935.06 -3634.81 -3295.36 -3093.33 

-10 -4509.49 -4456.34 -4290.81 -4115.19 -3966.43 -3683.54 -3373.02 -3162.5 

-5 -4511 -4467.41 -4310.29 -4125.08 -3994.72 -3708.5 -3395.92 -3210.94 

5 -4524.56 -4479.35 -4324.73 -4146.69 -4019.68 -3758.94 -3453.49 -3273.81 

10 -4527.19 -4487.97 -4327.13 -4158.26 -4028.48 -3773.37 -3469.71 -3297.63 

15 -4529.75 -4486.06 -4335.56 -4161.15 -4038.25 -3794.65 -3483.83 -3316.68 

20 -4542.32 -4498.79 -4337.98 -4162.5 -4042.65 -3807.98 -3497.56 -3333.06 
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Appendix B: Soybean biodiesel (SBD) model output 

CML2001, GWP100 years, life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline 

scenario = -2655.41 kg CO2-equiv. ha
-1

] 

CO2 (ppm) Precipitation 

(%) 

Temperature (
o
C) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 -2237.87 -2102.59 -1929.26 -1783.02 -1541.1 -1345.46 -1124.98 -890.852 

-15 -2371.53 -2233.95 -2052.06 -1887.94 -1675.96 -1443.8 -1221 -960.998 

-10 -2465.24 -2321.72 -2152.33 -1996.26 -1771.07 -1550.04 -1287.32 -1039.83 

-5 -2567.28 -2429.98 -2261.84 -2083.74 -1866.75 -1638.08 -1396.82 -1098.82 

5 -2689.69 -2555.99 -2428.93 -2274.54 -2048.07 -1817.45 -1540.43 -1216.39 

10 -2719.41 -2603.73 -2485.68 -2324.96 -2117.83 -1872.88 -1590.67 -1259.62 

15 -2738.02 -2629.65 -2515.56 -2368.69 -2181.21 -1934.93 -1651.81 -1313.21 

20 -2754.27 -2650.5 -2551.82 -2392.16 -2203.84 -1969.85 -1684.29 -1357.33 

470 -20 -2558.9 -2418.38 -2256.96 -2071.52 -1816.82 -1594.46 -1355.06 -1093.94 

-15 -2698.14 -2554.23 -2366.29 -2196.24 -1946.81 -1709.04 -1465.09 -1190.87 

-10 -2800.59 -2647.17 -2478.16 -2293.58 -2070.79 -1820.79 -1549.9 -1259.05 

-5 -2916.34 -2764.41 -2594.05 -2398.45 -2184.53 -1925.96 -1650.29 -1328.94 

5 -3031.51 -2902.7 -2771.37 -2594.45 -2354.5 -2108.52 -1804.98 -1458.83 

10 -3057.17 -2938.74 -2819.28 -2660.19 -2428.72 -2161.64 -1863.23 -1497.28 

15 -3083.63 -2959.31 -2854.85 -2692.44 -2491.62 -2226.12 -1912.02 -1554.54 

20 -3095.22 -2985.11 -2881 -2723.15 -2521.94 -2264.05 -1957.98 -1599.19 

540 -20 -2796.31 -2636.56 -2483.27 -2294.79 -2012.59 -1783.79 -1518.07 -1240.52 

-15 -2931.62 -2791.42 -2584.58 -2397.75 -2157.31 -1895.02 -1633.22 -1349.93 

-10 -3060.04 -2902.14 -2723.33 -2511.37 -2273.63 -2013.61 -1731.7 -1436.74 

-5 -3166.45 -3008.71 -2825.61 -2625.7 -2398.46 -2123.56 -1841.72 -1494.25 

5 -3279.15 -3148.98 -3012.68 -2829.36 -2577.64 -2324.94 -2002.51 -1636.67 

10 -3303.05 -3180.02 -3057.51 -2891.95 -2664.46 -2374.56 -2053.68 -1667.5 

15 -3328.66 -3215.37 -3094.25 -2925.66 -2719.37 -2447.28 -2112.73 -1728.25 

20 -3341.48 -3232.03 -3122.35 -2961.48 -2747.18 -2478.11 -2159.14 -1770.59 

610 -20 -2963.17 -2795.4 -2655.2 -2448.09 -2169.05 -1910.07 -1641.51 -1348.56 

-15 -3105.54 -2959.76 -2744.94 -2568.05 -2298.94 -2032.11 -1756.95 -1462.61 

-10 -3234.31 -3072.77 -2886.66 -2684.48 -2424.74 -2151.32 -1858.72 -1551.27 

-5 -3343.84 -3190.91 -2999.85 -2795.25 -2552.39 -2274.32 -1973.22 -1610.07 

5 -3455.16 -3322.42 -3180.99 -2996.64 -2736.57 -2472.76 -2134.71 -1758.11 

10 -3479.49 -3354.17 -3226.49 -3056.37 -2825.43 -2524.06 -2188.72 -1792.49 

15 -3508.9 -3384.19 -3261.44 -3092.98 -2877.35 -2591.16 -2252.72 -1847.69 

20 -3519.43 -3400.58 -3291.74 -3128.47 -2908.41 -2629.37 -2300.97 -1889.5 

680 -20 -3084.4 -2908.2 -2768.88 -2561.54 -2265.49 -2015.06 -1726.03 -1429.93 

-15 -3228.02 -3069.63 -2863.03 -2685 -2412.56 -2126.61 -1847.57 -1544.7 

-10 -3361.06 -3194.38 -3005.51 -2802.04 -2532.63 -2253.57 -1961.04 -1635.66 

-5 -3468.37 -3313.2 -3123.22 -2912.15 -2661.31 -2377.59 -2063.73 -1701.1 

5 -3582.62 -3432.35 -3302.36 -3113.53 -2852.86 -2577.73 -2237.12 -1845.18 

10 -3606.8 -3475.82 -3346.9 -3175.28 -2939.15 -2633.07 -2289.9 -1888.84 

15 -3633.36 -3506.8 -3393.52 -3209.23 -2990.36 -2706.37 -2352.08 -1948.68 

20 -3648.92 -3522.65 -3415.53 -3249.5 -3021.62 -2736.64 -2396.54 -1982.96 
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Appendix C: Wheat bioethanol (WBE) model output 

CML2001, GWP100 years, life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline 

scenario = -2776.10 kg CO2-equiv. ha
-1

] 

CO2 

(ppm) 

Precipitation 

(%) 

Temperature (
o
C) 

0.5 1.5 2.5 3.5 4.5 

400 -20 -3230.12 -3535.45 -3748.59 -3926.50 -3838.69 

-10 -3187.63 -3490.61 -3711.495 -3884.91 -3800.92 

10 -2974.04 -3317.44 -3534.34 -3747.63 -3693.25 

20 -2846.26 -3197.86 -3425.66 -3657.94 -3621.53 

540 -20 -3458.56 -3719.31 -3867.33 -4076.76 -4013.19 

-10 -3394.13 -3664.56 -3818.13 -4036.88 -3982.69 

10 -3155.21 -3477.45 -3656.01 -3897.46 -3863.76 

20 -3007.82 -3364.11 -3555.26 -3810.47 -3793.56 

680 -20 -3665.03 -3865.88 -3957.50 -4172.50 -4095.60 

-10 -3579.40 -3805.09 -3913.19 -4133.83 -4061.05 

10 -3347.49 -3614.77 -3755.95 -4004.30 -3958.15 

20 -3188.02 -3491.66 -3660.09 -3921.47 -3884.02 
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Appendix D: Corn integrated biomethanol (CIBM) model output 

CML2001, GWP100 years, life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline 

scenario = -8573.31 kg CO2-equiv. ha
-1

] 

CO2 (ppm) Precipitation 

(%) 

Temperature (
o
C) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 -7757.22 -7552.03 -7258.05 -6863.69 -6528.86 -6055.64 -5660.51 -5342.91 

-15 -7827.35 -7621.97 -7365.27 -6996.64 -6659.32 -6186.04 -5750.1 -5460.59 

-10 -7869.06 -7685.31 -7445.76 -7109.87 -6796.14 -6288.48 -5855.03 -5530.34 

-5 -7888.24 -7743.39 -7485.86 -7170.35 -6886.81 -6430.34 -5947.08 -5601.4 

5 -7950.71 -7794.36 -7550.55 -7248.62 -6970 -6547.73 -6087.61 -5725.96 

10 -7976.14 -7818.06 -7575.83 -7277.13 -7011.39 -6585.94 -6142.16 -5790.42 

15 -7982.89 -7834.12 -7611.83 -7299.87 -7044.56 -6623.69 -6162.45 -5834.37 

20 -7986.54 -7842.61 -7628.15 -7333.95 -7069.56 -6661.86 -6205.01 -5863.93 

470 -20 -7886.11 -7702.98 -7436.1 -7045.05 -6713.49 -6274.27 -5839.11 -5526.77 

-15 -7944.54 -7770.92 -7511.25 -7210.02 -6863.07 -6367.63 -5933.09 -5623.64 

-10 -7972.88 -7821.89 -7568.12 -7285.91 -7000.42 -6503.28 -6033.41 -5698.85 

-5 -8000.16 -7856.21 -7629.74 -7329.27 -7070.84 -6633.5 -6140.14 -5788.85 

5 -8040.09 -7915.8 -7682.07 -7402.15 -7132.83 -6713.16 -6273.18 -5904.54 

10 -8050.16 -7940.14 -7710.75 -7425.11 -7164.47 -6759.98 -6304.2 -5970.02 

15 -8053.6 -7950.74 -7726.22 -7451.15 -7190.47 -6789.09 -6335.35 -6003.74 

20 -8057.48 -7954.68 -7734.8 -7471.74 -7212.53 -6824.27 -6371.24 -6053.97 

540 -20 -8020.84 -7841.19 -7590.36 -7266.71 -6935.78 -6453.9 -6015.75 -5711.11 

-15 -8048.88 -7895.49 -7647.12 -7374.04 -7067.21 -6576.02 -6138.63 -5806.45 

-10 -8069.63 -7941.25 -7716.25 -7432.37 -7165.71 -6722.25 -6243.54 -5888.28 

-5 -8097.46 -7963.81 -7742.86 -7487.41 -7213.91 -6794.05 -6353.42 -5969.78 

5 -8139.01 -8007.74 -7800.57 -7545.37 -7278.82 -6876.59 -6439.82 -6078.74 

10 -8149.27 -8019.53 -7817.56 -7569.09 -7306.25 -6905.24 -6482.38 -6125.71 

15 -8153.45 -8023.5 -7837.44 -7582.71 -7328.04 -6936.24 -6508.99 -6162.43 

20 -8150.07 -8037.75 -7829.38 -7600.68 -7355.54 -6960.61 -6545.49 -6202.2 

610 -20 -8155.05 -7985.13 -7761.64 -7497.19 -7190.73 -6677.74 -6232.98 -5909.02 

-15 -8171.3 -8030.22 -7803.44 -7554.04 -7305.88 -6817.48 -6352.33 -6004.87 

-10 -8194.55 -8059.38 -7847.32 -7595.01 -7361.53 -6930.83 -6461.53 -6109.11 

-5 -8217.51 -8099.03 -7871.66 -7639.83 -7405.73 -6976.85 -6543.28 -6199.45 

5 -8246.21 -8135.28 -7921.9 -7681.81 -7454 -7053.85 -6629.96 -6294.96 

10 -8245.71 -8140.68 -7935.67 -7703.35 -7471.35 -7079.03 -6667.11 -6337.22 

15 -8251.73 -8145.88 -7950.2 -7712.9 -7496.81 -7107.14 -6695.46 -6369.16 

20 -8253.32 -8152.77 -7954.35 -7718.98 -7515.56 -7132.21 -6722.71 -6408.06 

680 -20 -8256.29 -8136.84 -7903.94 -7658.07 -7426.44 -6904.39 -6456.87 -6108.56 

-15 -8267.43 -8169.91 -7953.11 -7697.41 -7474.62 -7034.73 -6574.17 -6216.54 

-10 -8292.52 -8204.79 -7985.88 -7744.63 -7521 -7102.76 -6689.26 -6321.24 

-5 -8298.15 -8227.16 -8021.2 -7762.93 -7562.87 -7137.61 -6723.47 -6396.15 

5 -8320.13 -8246.41 -8049.09 -7808.39 -7611.27 -7212.66 -6809.68 -6490.07 

10 -8324.59 -8260.2 -8053.18 -7828.08 -7631.81 -7238.91 -6831.49 -6527.61 

15 -8328.77 -8259.8 -8066.13 -7833.63 -7650.16 -7276.24 -6859 -6555.23 

20 -8346.22 -8277.72 -8072.16 -7836.47 -7656.99 -7298.82 -6886.36 -6586.07 
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Appendix E: Soybean integrated biomethanol (SIBM) model output 

CML2001, GWP100 years, life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline 

scenario = -3441.1 kg CO2-equiv. ha
-1

] 

CO2 (ppm) Precipitation 

(%) 

Temperature (
o
C) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 -3159.1 -3046.68 -2907.66 -2781.93 -2567.14 -2372.43 -2145.93 -1907.81 

-15 -3284.94 -3173.04 -3031.04 -2894.56 -2708.92 -2488.45 -2268.6 -2013.67 

-10 -3378.39 -3264.29 -3135.45 -3000.99 -2812.34 -2605.33 -2355.17 -2129.8 

-5 -3479.23 -3369.64 -3241.9 -3095.57 -2915.22 -2707.59 -2481.1 -2203.71 

5 -3597.66 -3497.92 -3412.29 -3293.17 -3110.05 -2911.96 -2661.41 -2372.17 

10 -3630.71 -3545.44 -3465.75 -3350.74 -3186.33 -2975.01 -2724.46 -2434.65 

15 -3646.72 -3572.04 -3499.46 -3398.28 -3254.39 -3050.1 -2799.26 -2506.33 

20 -3662.68 -3592.08 -3533.18 -3421.69 -3281.15 -3093.92 -2850.65 -2569.6 

470 -20 -3569.72 -3455.73 -3325.75 -3167.26 -2944.73 -2728.34 -2481.45 -2224.49 

-15 -3700.52 -3584.04 -3437.68 -3298.51 -3082.18 -2857.75 -2624.25 -2360.8 

-10 -3805.32 -3681.42 -3549.82 -3400.82 -3211.22 -2981.58 -2725.18 -2462.86 

-5 -3915.78 -3796.78 -3667.07 -3512.38 -3330.15 -3100.59 -2842.51 -2549 

5 -4027.26 -3933.92 -3848.08 -3709.98 -3515.41 -3307.78 -3035.22 -2733.54 

10 -4056.19 -3971.55 -3893.18 -3783.73 -3594.63 -3366.22 -3103.85 -2791.77 

15 -4080.19 -3991.86 -3928.35 -3817.48 -3663.29 -3447.57 -3169.22 -2868.25 

20 -4090.99 -4016.31 -3956.18 -3847.83 -3697.39 -3491.5 -3232.06 -2929.42 

540 -20 -3868.18 -3737.62 -3618.44 -3457.78 -3212.36 -2989.74 -2720 -2452.56 

-15 -3996.51 -3883.83 -3721.72 -3574.82 -3364.94 -3118.24 -2867.86 -2600.46 

-10 -4120.78 -3994.94 -3842.54 -3686.46 -3483.08 -3247.62 -2982.47 -2726.23 

-5 -4224.48 -4101.87 -3963.4 -3803.87 -3613.9 -3368.3 -3111.93 -2795.24 

5 -4336.33 -4242.8 -4152.56 -4009.8 -3804.77 -3593.24 -3307.49 -2995 

10 -4363.19 -4274.46 -4194.41 -4079.72 -3899.8 -3650.11 -3369.84 -3043.9 

15 -4385.41 -4307.9 -4230.1 -4115.81 -3959.31 -3736.2 -3444.82 -3122.45 

20 -4400.37 -4325.25 -4259.67 -4149.14 -3989.14 -3773.84 -3505 -3181.57 

610 -20 -4078.86 -3939.66 -3832.61 -3659.5 -3414.85 -3167.49 -2898.29 -2617.18 

-15 -4213.98 -4096.35 -3927.67 -3786 -3555.29 -3305.57 -3045.9 -2770.73 

-10 -4336 -4210 -4063.23 -3906.29 -3681.84 -3435.51 -3162.91 -2898.16 

-5 -4444.52 -4322.59 -4182.18 -4015.91 -3815.68 -3569.32 -3294.81 -2966.77 

5 -4556.68 -4458.31 -4366.08 -4223.94 -4009.45 -3789.59 -3491.01 -3173.06 

10 -4581.87 -4493.17 -4406.98 -4289.28 -4106.29 -3847.96 -3555.87 -3222.04 

15 -4607.47 -4519.82 -4441.6 -4328.95 -4165.2 -3927.52 -3635.25 -3300.27 

20 -4619.89 -4536.93 -4473.63 -4360.98 -4198.93 -3973.75 -3697.58 -3356.36 

680 -20 -4227.51 -4084.41 -3978.15 -3806.37 -3547.12 -3305.81 -3018.96 -2739.16 

-15 -4366.3 -4238.5 -4077.63 -3934.44 -3702.82 -3435.62 -3171.99 -2892.84 

-10 -4491.59 -4361.04 -4214.9 -4055.78 -3823.26 -3573.97 -3301.95 -3019.74 

-5 -4598.15 -4475.25 -4335.29 -4165.85 -3959.04 -3707.15 -3421.32 -3099.88 

5 -4712.91 -4595.9 -4518.95 -4374.38 -4158.84 -3928.42 -3630.12 -3299.07 

10 -4739.51 -4645.77 -4558.49 -4439.45 -4253.39 -3991.39 -3693.38 -3359.87 

15 -4760.52 -4673.79 -4603.99 -4476.77 -4311.68 -4076.46 -3772.69 -3438.13 

20 -4777.92 -4690.43 -4627.62 -4513.04 -4345.07 -4114.62 -3828.56 -3487.53 
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Appendix F: Wheat integrated biomethanol (WIBM) model output 

CML2001, GWP100 years, life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline 

scenario = -5003.87 kg CO2-equiv. ha
-1

] 

CO2 

(ppm) 

 

Precipitatio

n (%) 

 

 

Temperature (
o
C) 

 
0.5 1.5 2.5 3.5 4.5 

400 -20 -5346.20 -5553.02 -6165.84 -6772.12 -7187.89 

-10 -5344.16 -5548.00 -6188.50 -6772.68 -7150.98 

10 -5110.64 -5399.99 -6068.29 -6705.28 -7098.77 

20 -5000.35 -5261.99 -5954.41 -6622.19 -7034.23 

540 -20 -5584.63 -5788.02 -6549.43 -7293.71 -7720.39 

-10 -5539.22 -5788.33 -6560.98 -7316.65 -7737.52 

10 -5299.72 -5582.67 -6432.23 -7203.81 -7632.76 

20 -5122.71 -5486.46 -6344.38 -7125.82 -7571.83 

680 -20 -5794.19 -5997.89 -6833.91 -7682.90 -8041.13 

-10 -5704.24 -5969.28 -6837.97 -7678.32 -8024.30 

10 -5490.88 -5796.19 -6722.14 -7589.17 -7931.85 

20 -5282.35 -5674.13 -6626.81 -7502.14 -7834.79 
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Appendix G: Corn integrate bioelectricity (CIBE) model output  

Life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline scenario = -10996.7 kg 

CO2-equiv. ha
-1

] 

CO2 (ppm) Precipitation 

(%) 

Temperature (
o
C) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 -10107.6 -9867.98 -9560.49 -9124.71 -8739.24 -8193.83 -7756.31 -7326.57 

-15 -10184.5 -9952.42 -9682.71 -9276.51 -8886.91 -8347.83 -7868.45 -7463.14 

-10 -10235.9 -10021.6 -9776.8 -9411.95 -9046.11 -8462.42 -7993.07 -7552.21 

-5 -10259.5 -10087.1 -9817.2 -9481.93 -9154.02 -8625.31 -8098.3 -7640.88 

5 -10342.1 -10158 -9899.74 -9572.24 -9250.29 -8763.81 -8270.58 -7793.3 

10 -10374.7 -10193.4 -9938.02 -9611 -9298.02 -8812 -8326.83 -7860.7 

15 -10384 -10215.5 -9985.29 -9646.51 -9344.15 -8858.72 -8358.83 -7912.55 

20 -10389.4 -10227.5 -10010.7 -9692.72 -9383.35 -8901.65 -8408.37 -7949.44 

470 -20 -10264.3 -10051.5 -9772.01 -9346.89 -8967.76 -8463.29 -7979.74 -7549.02 

-15 -10328.2 -10131.2 -9857.64 -9532.34 -9133.83 -8572.35 -8095.15 -7669.46 

-10 -10363.9 -10184.8 -9925.91 -9620.45 -9292.24 -8728.9 -8215.65 -7762.58 

-5 -10398.9 -10226 -9993.02 -9666.53 -9373.41 -8877.99 -8341.83 -7871.45 

5 -10456.3 -10307.3 -10062.3 -9755.5 -9453.01 -8964.7 -8495.08 -8009.01 

10 -10470.7 -10339.8 -10104.4 -9792.43 -9488.22 -9021.6 -8531.86 -8078.36 

15 -10475.2 -10355 -10128.4 -9830.92 -9527.31 -9052.49 -8575.16 -8121.23 

20 -10480.5 -10359.7 -10140.8 -9860.47 -9562.44 -9100.61 -8616.32 -8184.19 

540 -20 -10421.9 -10219.4 -9955.93 -9610.1 -9229.76 -8685.79 -8211.34 -7779.37 

-15 -10457.1 -10276 -10026.3 -9728.6 -9377.24 -8824.97 -8349.98 -7893.07 

-10 -10483.3 -10329 -10099.7 -9797.52 -9490.7 -8991.22 -8474.19 -7998.91 

-5 -10522.4 -10358.9 -10133.4 -9856.7 -9545.8 -9071.34 -8604.64 -8096.39 

5 -10573.7 -10424.5 -10211.2 -9931.17 -9626.03 -9163.94 -8700.59 -8226.62 

10 -10585.5 -10441 -10237.7 -9967.79 -9666.23 -9192.28 -8755.54 -8278.18 

15 -10591.2 -10445.7 -10261.8 -9991.25 -9700.54 -9234.87 -8782.95 -8328.48 

20 -10590 -10462.1 -10255.5 -10012.9 -9737.67 -9271.13 -8832.77 -8375.83 

610 -20 -10580.2 -10387 -10163.2 -9877.51 -9529.06 -8957.61 -8482.59 -8034.99 

-15 -10601.5 -10437.7 -10213.7 -9942.2 -9660.85 -9111.29 -8618.56 -8146.69 

-10 -10632.1 -10472.3 -10259.6 -9990.12 -9725.81 -9234.55 -8748.9 -8274.15 

-5 -10664.8 -10526 -10290.9 -10045.8 -9772.75 -9284.81 -8837.56 -8380.67 

5 -10698.5 -10571.9 -10361.6 -10105.4 -9838.38 -9370.78 -8938.56 -8493.46 

10 -10700.3 -10578.7 -10381.2 -10136.5 -9869.28 -9402.36 -8976.7 -8547.45 

15 -10708.9 -10586.4 -10396.3 -10149.8 -9903.86 -9442.52 -9014.28 -8584.68 

20 -10711.5 -10597.2 -10402.5 -10158.5 -9926.93 -9479.67 -9054.09 -8629.26 

680 -20 -10701.5 -10562.7 -10333.5 -10064.1 -9805.06 -9221.38 -8753.25 -8286.62 

-15 -10717.1 -10599.1 -10384.2 -10116.8 -9859 -9363.69 -8887.87 -8413.51 

-10 -10752.4 -10642.1 -10423.1 -10170.1 -9911.72 -9436.37 -9018.96 -8535.32 

-5 -10762.7 -10674.5 -10470.8 -10195.1 -9959.34 -9473.62 -9058.25 -8624.23 

5 -10789.9 -10698.2 -10510 -10262.4 -10027.6 -9559.47 -9157.48 -8732.09 

10 -10795.6 -10715.1 -10515.3 -10287.7 -10059.6 -9594.96 -9179.79 -8777.44 

15 -10800.8 -10717.4 -10530.5 -10295.5 -10085 -9644.15 -9218.69 -8808.2 

20 -10819.4 -10736.7 -10540.2 -10299.7 -10093.1 -9673.13 -9257.9 -8850.88 
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Appendix H: Soybean integrated bioelectricity (SIBE) model output  

Life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline scenario = -1350.04 kg 

CO2-equiv. ha
-1

]. 

CO2 (ppm) Precipitation (%) Temperature (
o
C) 

1.5 2 2.5 3 3.5 4 4.5 5 

400 -20 -1085.34 -999.777 -890.104 -797.651 -644.776 -521.346 -382.315 -234.652 

-15 -1169.73 -1082.69 -967.567 -863.77 -729.788 -583.217 -442.639 -278.564 

-10 -1228.85 -1138.03 -1030.79 -932.124 -789.711 -650.139 -484.283 -327.939 

-5 -1293.24 -1206.36 -1099.9 -987.24 -850.001 -705.545 -553.204 -365.011 

5 -1370.5 -1285.83 -1205.28 -1107.55 -964.262 -818.462 -643.453 -438.695 

10 -1389.22 -1315.95 -1241.11 -1139.28 -1008.21 -853.357 -675.021 -465.786 

15 -1400.98 -1332.29 -1259.92 -1166.83 -1048.14 -892.378 -713.467 -499.424 

20 -1411.23 -1345.45 -1282.82 -1181.64 -1062.38 -914.322 -733.777 -527.074 

470 -20 -1287.01 -1198.11 -1095.98 -978.731 -817.746 -677.412 -526.458 -361.686 

-15 -1374.93 -1283.88 -1164.92 -1057.35 -899.681 -749.553 -595.56 -422.466 

-10 -1439.54 -1342.47 -1235.49 -1118.71 -977.846 -819.94 -648.905 -465.152 

-5 -1512.61 -1416.45 -1308.59 -1184.81 -1049.55 -886.155 -712.078 -509.086 

5 -1585.3 -1503.7 -1420.42 -1308.44 -1156.63 -1001.09 -809.301 -590.507 

10 -1601.46 -1526.42 -1450.67 -1349.84 -1203.41 -1034.55 -845.951 -614.576 

15 -1618.17 -1539.4 -1473.11 -1370.16 -1230.27 -1075.07 -876.573 -650.518 

20 -1625.49 -1555.69 -1489.59 -1389.54 -1262.13 -1098.94 -905.404 -678.525 

540 -20 -1436.2 -1335.14 -1238.11 -1118.95 -940.568 -796.164 -628.575 -453.385 

-15 -1521.63 -1432.92 -1302.01 -1183.76 -1031.79 -866.174 -700.908 -522.039 

-10 -1602.68 -1502.76 -1376.72 -1255.46 -1105.15 -940.884 -762.88 -576.43 

-5 -1669.84 -1569.99 -1454.06 -1327.56 -1183.84 -1010.14 -832.101 -612.602 

5 -1740.94 -1658.47 -1572.05 -1456.01 -1296.77 -1136.96 -933.206 -701.902 

10 -1755.99 -1678.05 -1600.36 -1495.43 -1351.46 -1168.19 -965.379 -721.179 

15 -1772.18 -1700.37 -1623.55 -1516.67 -1386.06 -1213.94 -1002.48 -759.335 

20 -1780.24 -1710.87 -1641.26 -1539.29 -1403.59 -1233.33 -1031.62 -785.887 

610 -20 -1541.04 -1434.94 -1346.17 -1215.19 -1038.83 -875.342 -705.926 -520.999 

-15 -1630.93 -1538.7 -1402.73 -1290.81 -1120.67 -952.178 -778.442 -592.574 

-10 -1712.23 -1609.98 -1492.2 -1364.22 -1200.03 -1027.28 -842.5 -648.139 

-5 -1781.34 -1684.57 -1563.55 -1434.11 -1280.5 -1104.77 -914.565 -685.14 

5 -1851.56 -1767.49 -1677.8 -1561.1 -1396.6 -1229.75 -1016.12 -777.976 

10 -1866.89 -1787.49 -1706.55 -1598.73 -1452.58 -1262.05 -1050.08 -799.528 

15 -1885.49 -1806.46 -1728.6 -1621.79 -1485.27 -1304.26 -1090.31 -834.132 

20 -1892.11 -1816.79 -1747.69 -1644.21 -1504.84 -1328.29 -1120.62 -860.369 

680 -20 -1617.26 -1505.79 -1417.58 -1286.44 -1099.33 -941.255 -758.898 -571.946 

-15 -1707.91 -1607.7 -1476.93 -1364.29 -1192.03 -1011.46 -835.275 -643.983 

-10 -1791.92 -1686.42 -1566.87 -1438.08 -1267.77 -1091.44 -906.699 -701.024 

-5 -1859.62 -1761.42 -1641.09 -1507.55 -1348.88 -1169.59 -971.326 -742.166 

5 -1931.69 -1836.57 -1754.06 -1634.52 -1469.64 -1295.65 -1080.37 -832.534 

10 -1946.92 -1863.94 -1782.21 -1673.44 -1524 -1330.49 -1113.57 -859.91 

15 -1963.73 -1883.51 -1811.63 -1694.83 -1556.24 -1376.62 -1152.63 -897.491 

20 -1973.53 -1893.5 -1825.5 -1720.27 -1575.94 -1395.64 -1180.57 -918.971 
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Appendix I: Wheat integrated bioelectricity (WIBE) model output 

CML2001, GWP100 years, life cycle GHG emissions savings (kg CO2-equiv. ha
-1

) [Baseline 

scenario = -4648.93 kg CO2-equiv. ha
-1

] 

CO2 

(ppm) 

  

Precipitation 

(%) 

  

Temperature (
o
C) 

0.5 1.5 2.5 3.5 4.5 

400 

 

 

 

-20 -5133.23 -5447.18 -5901.49 -6328.25 -6476.51 

-10 -5102.97 -5413.81 -5887.32 -6299.90 -6431.99 

10 -4838.74 -5220.33 -5705.06 -6171.59 -6331.67 

20 -4695.44 -5068.76 -5573.10 -6068.16 -6249.92 

540 

 

 

 

-20 -5410.14 -5691.68 -6175.74 -6693.47 -6863.89 

-10 -5342.99 -5654.16 -6147.68 -6677.55 -6851.50 

10 -5058.35 -5422.15 -5971.48 -6524.95 -6717.06 

20 -4868.06 -5295.86 -5858.04 -6425.93 -6638.16 

680 

 

 

 

-20 -5657.43 -5897.90 -6380.59 -6954.72 -7081.61 

-10 -5553.34 -5841.70 -6352.14 -6925.81 -7049.38 

10 -5286.63 -5623.83 -6185.78 -6791.90 -6932.15 

20 -5072.20 -5477.84 -6071.95 -6691.22 -6832.42 
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Appendix J: Corn bioethanol (CBE) model 

Flow Chart for the Production of Bioethanol from Corn Grain 
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Appendix K: Wheat bioethanol (WBE) model 

Flow Chart for the Production of Bioethanol from Wheat Grain 
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Appendix L: Soybean biodiesel (SBD) model 

Flow Chart for the Production of Biodiesel from Soybean Seed 
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Appendix M: Corn integrated biomethanol (CIBM) model 

Flow Chart for the Integrated Production of Bioethanol from Corn Grain Using Stover 

and DDGS as Fuel Sources for Biomethanol Synthesis 

 



 172 

Appendix N: Wheat integrated biomethanol (WIBM) model 

Flow Chart for the Integrated Production of Bioethanol from Wheat Grain Using 

Straw and DDGS as Fuel Sources for Biomethanol Synthesis 
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Appendix O: Soybean integrated biomethanol (SIBM) model 

Flow Chart for the Integrated Production of Biodiesel from Soybean Seed Using Stalk 

and Glycerine as Fuel Sources for Biomethanol Synthesis 
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Appendix P: Corn integrated bioelectricity (CIBE) model 

Flow Chart for the Integrated Production of Bioethanol from Corn Grain Using Stover 

and DDGS as Fuel Sources for Bioelectricity Production 
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Appendix Q: Wheat integrated bioelectricity (WIBE) model 

Flow Chart for the Integrated Production of Bioethanol from Wheat Grain Using 

Straw and DDGS as Fuel Sources for Bioelectricity Production 
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Appendix R: Soybean integrated bioelectricity (SIBE) model 

Flow Chart for the Integrated Production of Biodiesel from Soybean Seed Using Stalk 

and Glycerine as Fuel Sources for Bioelectricity Production 
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