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A B S T R A C T

State estimation and trajectory planning are two crucial functions for autonomous systems, and in
particular for aerospace systems. Particle filters and sample-based trajectory planning approaches
have been widely considered to tackle non-linear models and non-Gaussian noises. However, these
approaches may produce erratic results due to the sampled approximation of the state density. In
addition, they have a high computational cost which limits their practical interest.

This thesis investigates the use of box kernel mixtures to describe multimodal probability density
functions. A box kernel mixture is a weighted sum of basic functions (e.g. uniform kernels) that integrate
to unity, and whose supports are bounded by boxes, i.e. vectors of intervals. This modelling approach
yields a more extensive description of the state density function while requiring a lower computational
load. New algorithms are developed, based on a derivation of the Box Particle Filter (BPF) for state
estimation, and of a particle based Chance Constrained optimisation (equivalently, failure probability
constraint) for trajectory planning under uncertainty.

In order to tackle ambiguous state estimation problems, a Box Regularised Particle Filter (BRPF) is
introduced. The BRPF consists of an improved BPF with a guaranteed resampling step, and a smoothing
strategy based on kernel regularisation. The proposed strategy is theoretically proved to outperform
the original BPF in terms of Mean Integrated Square Error (MISE), and empirically shown to reduce
the Root Mean Square Error (RMSE) of estimation. For Terrain Aided Navigation (TAN) BRPF reduces
computation load by 75% (4-fold reduction) compared to BPF, and by 97% (33-fold) compared to Particle
Filter for a similar performance budget. BRPF is shown to be robust to measurement ambiguity and
unknown-but-bounded measurement densities. BRPF is also integrated to federated and distributed
architectures to demonstrate its efficiency in multi-sensor and multi-agent systems.

In order to tackle constrained trajectory planning under non-Gaussian uncertainty, a Box Particle
Control (BPC) is introduced. BPC relies on an interval bounded kernel mixture state density description,
and consists of propagating the state density along a state trajectory at a given horizon. It yields a
more accurate description of the state uncertainty than previous particle based algorithms. A chance
constrained optimisation is performed, which consists of finding the sequence of future control inputs
that minimises a cost function, while ensuring that the probability of constraint violation (failure
probability) remains below a given threshold. For similar performance, BPC yields a computation load
reduction of 30% (1.4-fold reduction) with respect to Particle Control.

The use of box kernel mixtures in estimation algorithms (e.g. BRPF) and state control methods (e.g.
BPC), makes it possible to run complex estimation and control operations in real time on computationally
limited devices. The results are quite general and apply where (a) measurement is ambiguous, uncertain
but bounded, (b) computational load is constrained, (c) either state estimation (BRPF) or control (BPC)
are needed. These characteristics are of particular interest in the aerospace field.
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1
I N T R O D U C T I O N

State estimation and control are two key subsystems of autonomous aerospace vehicles. State estimation
aims to retrieve the vehicle’s current state (e.g. position, velocity) from available measurements (e.g.
GNSS, altimeter), provided there is some knowledge of its dynamics. It is also referred to as the
navigation system. The sensor and dynamical model knowledge is often not perfect, which introduces
some uncertainty in the estimation process. A state estimation algorithm generally outputs a point-wise
estimate of the vehicle’s state, associated with a confidence region that is likely to contain the actual
state. State control aims to bring the vehicle’s current state to a desired state (e.g. a desired position, or a
desired trajectory). State estimation uncertainty is often considered negligible, which makes the state
control problem deterministic.

In the aerospace field, there is an increasing demand for autonomy, particularly for the next gener-
ations of aerial and space vehicles. The on-board estimation and control systems will therefore have
to perform increasingly complex tasks to meet the requirements of current and future missions (e.g.
remote controlled drones, unmanned space exploration). The demand for autonomy is also constrained
by embedded hardware constraints. This can be either due to sensor cost reduction or some device
robustness requirements. In some applications, accurate sensors cannot be used and must be replaced
with other sensors providing less informative data. For example, GNSS measurements may be unavail-
able due to the environment characteristics (indoor navigation, jamming, underwater navigation, space
exploration), and must be replaced with more ambiguous measurements (e.g. vision sensors, or Terrain
Aided Navigation methods). This has a strong impact on the estimation and control performance, that
must compensate for the lack on information by more complex embedded algorithms.

Measurement ambiguity refers to cases where one measurement occurrence may correspond to several
possible states (e.g. a range measurement may correspond to a sphere of states around the sensor, and a
terrain sensing measurement may correspond to several geographic areas of similar terrain profiles).
Formally, ambiguities occur when the function relating the state to the measurements is not injective.
The presence of measurement ambiguities increases the complexity of state estimation, and may prevent
estimation algorithms from converging on a unique estimated state with a sufficiently narrow confidence
region.

When the vehicle’s future trajectory is constrained, measurement ambiguities become a critical issue.
Indeed, the uncertainty of the current state knowledge cannot be neglected and may yield further
constraint violations, for example the collision of obstacles, an unintentional intrusion in a restricted
area or the unforeseen pulling-out of an aircraft flight envelope. The embedded state control must
account for uncertainty at the cost of increased complexity to tackle such risks in an autonomous way.

The required increased complexity of embedded algorithms conflicts with the embedded computers
computational ability, which is often severely limited for hardware robustness and energy consumption
purposes. Therefore, the state estimation and state control have to meet a trade-off between performance
(accuracy, robustness to ambiguities) and their required computational complexity.

1
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1.1 motivation

This work aims to introduce new state estimation and trajectory planning algorithms that ensure
robustness to measurement ambiguities, accuracy enhancement with respect to existing methods and
computational load reduction. The algorithms developed in this thesis are designed to handle a large
class of problems, including non-linear dynamics and non-linear measurements with non-Gaussian
additive uncertainties. Some general properties are formally proved, while simulations illustrate their
performance in practical cases. The main application is Terrain Aided Navigation (TAN) which consists
of retrieving an aerial vehicle’s state (position, velocity, and potentially attitude) from its relative
elevation measurements with respect to the ground, given a Digital Elevation Model map (DEM) of the
flown-over area. This application involves severe measurements ambiguities leading to the failure of
many existing estimation methods. The trajectory planning algorithms will be evaluated for a number
of applications, including trajectory propagation from TAN estimation.

Stochastic state estimation algorithms rebuild a conditional state density given the past measurements
to determine the most probable current state of the vehicle. In the linear-Gaussian case, the state density
remains Gaussian, and the optimal estimation solution is provided by the Kalman Filter (KF, [Kal+60]).
However, in the case of non-Gaussian uncertainty, non-linear measurements, and severe ambiguities,
the KF and its derivatives fail to estimate the state. Some non-parametric estimation approaches have
therefore been introduced, such as the Particle Filter (PF, [GSS93]), which consists of approximating
the state density by a weighted sum of Dirac functions. A more accurate PF derivation was proposed,
called the Regularised Particle Filter (RPF [MOLG01]), which consists of smoothing the state density
approximation by a mixture of bounded stochastic kernels. Another approach called the Box Particle
Filter (BPF, [AGB07]) consists of approaching the state density by a mixture of weighted uniform
kernels bounded by box particles (vectors of intervals). At each time-step, box particles are dynamically
propagated and contracted with respect to the available measurements, which yields a weights update.
When triggered, a box resampling step replaces low-weighted box particles with subdivisions of high-
weighted ones. The estimation solution is shown to be robust to measurements ambiguities and requires
a 10 times lower computational load for typical problems than the conventional PF. However, the
robustness of BPF to ambiguity comes with low estimation accuracy and conservatism (unnecessarily
large confidence margins). Those drawbacks prevent it from being used for critical applications such as
aerospace navigation.

The BPF has proven to be robust to non-linear and ambiguous problems, but it may be conservative
and inaccurate. When the problem consists of a collection of various measurements of different types, it
does not appear suitable to process them all together in a BPF, since doing so may result in an increased
computational load and an inaccurate estimation. For example, it is common to have, in addition to
the TAN measurements (e.g. laser pointing toward the ground or radar altimeter), several Gaussian
sensors (e.g. magnetometer, anemometer, relative sensing toward other physical bodies or vehicles). An
allocation of the measurement inputs to dedicated local filters, including one or several BPF, can then
be considered. Local filters estimates can then be fused by a Gaussian filter (Federated architectures
[Car88]). However, in order to be integrated to a Gaussian federated architecture, the BPF output must
be Gaussian, or at least unimodal (i.e. with a single local maximum), which is not guaranteed. A study
of the BPF output density characteristics is therefore of interest.

A constrained trajectory planning algorithm consists of finding the future trajectory (defined by a
sequence of control inputs) that minimises a cost function (e.g. energy consumption, distance toward
objective state) while satisfying some constraints (e.g. collision avoidance or remaining in a flight
envelope). When the state uncertainty is not negligible, due for example to measurements ambiguities,
the trajectory planning must account for it and deterministic optimisation cannot be used. A way of
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making the problem deterministic is considering the worst case scenario by ensuring that all possible
states satisfy the constraints (e.g. H-infinity methods, or set-based predictive control). However, worst
case approaches may be too conservative and are likely to end with no solution. Another approach
consists of relaxing the constraints while keeping the problem deterministic by defining a new state
constraint that ensures that the probability of constraint violation remains below a desired threshold.
This approach, called Chance Constrained optimisation (Charnes [CCS58]), makes it possible to explicitly
estimate and manage the risk of constraint violation. This is referred to as failure probability estimation in
what follows. To tackle non-Gaussian uncertainties, sample-based Chance Constraint optimisation was
introduced (Pagnoncelli [PAS09], as well as Particle Control [Bla+10]), which consists of propagating a
set of weighted point-wise trajectories to evaluate the failure probability, given a potentially non-convex
feasible set (set of allowed trajectories). However, those approaches are only guaranteed to be efficient
for a large number of sample-trajectories (theoretically infinite). Furthermore, the sample-based failure
probability estimation is not differentiable with respect to the control sequence. This restricts Particle
Control to linear programming optimisation techniques, which limits its use to linear dynamics.

1.2 research questions

In the light of the above problems, this thesis answers the following research questions:

1. Can BPF be formalised for any box kernel and is it of practical use to do so?

2. Can the original BPF be modified to ensure that the actual state belongs to at least one box
particle? Uncertainties are assumed to be bounded and the dynamical and observation models are
continuous.

3. What is the impact of the choice of box resampling subdivision dimension on the filter’s perform-
ance? In particular, does accounting for observability enhance performance?

4. Does regularisation improve the BPF’s accuracy?

5. Can BPF-like algorithms be integrated to larger estimation architectures such as Gaussian federated
filters?

6. Does a box kernel mixture based failure probability estimation require a lower computational load
than a Dirac mixture method for similar performance?

7. Is the box kernel failure probability estimation approach compatible with the differentiable
optimisation scheme for trajectory planning?

1.3 contribution to knowledge

The work described in this thesis contributes to current knowledge the following:

• A state estimation filter based on a combination of the Box Particle Filter (BPF, [AGB07]) and the
Regularised Particle Filter (RPF, [MOLG01]), called the Box Regularised Particle Filter (BRPF);

• Significant improvements in the box resampling step for BPF and BRPF, leading to a guaranteed
state estimation consistency and a reduced conservatism;

• A generalisation of the BPF scheme leading to a box kernel mixture formulation (i.e. weighted
sum of kernel functions bounded by box supports);
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• A study of the integration of BRPF in federated filter architectures and their application to
multi-sensor filtering and collaborative navigation;

• A failure probability estimator based on uncertain trajectory prediction using mixtures of box
kernels, and its integration in a differentiable Chance Constrained optimisation scheme for
constrained trajectory planning under state uncertainty, called the Box Particle Control (BPC).

The use of box kernels mixtures in estimation algorithms (BPF, BRPF) and state control methods (BPC)
makes it possible to reduce the computational load of embedded algorithms. Complex autonomous
estimation and control operations can therefore be carried out in real time, while running on computa-
tionally limited devices. Furthermore, the future progress in embedded chips (e.g. Field Programmable
Gate Arrays) should allow the box particle based approaches to be used in an increasing number of
applications. They may present benefits to many industries, such as the aerospace field, automotive
engineering, autonomous robotics, or medical applications.

1.4 publications

The work on which this thesis is based has led the following publications:

Journal article

• N. Merlinge, K. Dahia, H. Piet-Lahanier, J. Brusey, N. Horri. ‘A Box Regularized Particle Filter for
state estimation with severely ambiguous and non-linear measurements’. Submitted to Automatica
(2018), decision of updated version submission by October 2018

Conference and workshop proceedings

• N. Merlinge, K. Dahia, H. Piet-Lahanier. ‘A Box Regularized Particle Filter for terrain navigation
with highly non-linear measurements’. In the 20th IFAC Symposium on Automatic Control in
Aerospace, ACA 2016, Sherbrooke, Quebec, Canada, IFAC-PapersOnLine 49.17, pp. 361-366.

• N. Merlinge, J. Marzat, L. Reboul. ‘Optimal guidance and observer design for target tracking
using bearing-only measurements’. In the ONERA-DLR Aerospace symposium, ODAS 2018,
Oberpfaffenhofen, Germany, http://w3.onera.fr/copernic/node/20

• N. Merlinge, H. Piet-Lahanier, K. Dahia. ‘Event-Triggered Model Predictive Control for target track-
ing with angles-only measurements’. In the 20th World Congress of the International Federation
of Automatic Control, Toulouse, France, IFAC 2017, IFAC-PapersOnLine, 50(1), pp. 15959-15964.

• N. Merlinge, K. Dahia, H. Piet-Lahanier, J. Brusey, N. Horri. ‘The Box Regularized Particle Filter:
A probabilistic set-membership observer’. In the 10th Summer Workshop on Interval Methods,
and 3rd International Symposium on Set Membership, Applications, Reliability and Theory,
Manchester, United Kingdom, SWIM-SMART 2017, http://www.aerospace.manchester.ac.uk/
our-research/ukim/news-and-events/swim-smart-2017/

• N. Merlinge, J. Brusey, N. Horri, K. Dahia, H. Piet-Lahanier. ‘Enhanced cooperative navigation
by data fusion from IMU, ambiguous terrain navigation, and coarse relative states’. In the 56th
Decision and Control Annual Conference, CDC 2017, Melbourne, Australia, IEEE, pp. 375-380.

• N. Merlinge, N. Horri, K. Dahia, H. Piet-Lahanier, J. Brusey. ‘Box Particle Control for aerospace
vehicles guidance under failure probability constraints’, 12th UKACC International Conference on
Control, Control 2018, Sheffield, United Kingdom
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1.5 thesis structure

The rest of the thesis is arranged as follows:
Chapter 2 presents a literature review on state estimation and state control, and in particular the

existing Box Particle Filter (BPF) approach for non-linear state estimation, and the Particle Control
approach (PC) for non-Gaussian Chance Constrained trajectory planning (Blackmore [Bla+10]).

Chapter 3 introduces the methodology used to evaluate the algorithm’s behaviour. Considered
dynamical and observation models are described, with a focus on the TAN application. Finally, some
evaluation criteria are defined.

Chapter 4 introduces a new approach to BPF called the Box Regularised Particle Filter (BRPF). To
begin, a general theoretical framework to describe the BPF scheme is described. An enhanced box
resampling approach is introduced. It guarantees that the estimated confidence region of the filter always
contains the actual state. Two box resampling subdivision techniques are subsequently introduced.
They are empirically shown to significantly improve the estimation accuracy. Finally, a stochastic kernel
smoothing approach is introduced. It is theoretically and empirically shown to improve the estimation
accuracy.

Chapter 5 studies the BRPF integration in federated architectures. The asymptotic unimodality of the
BRPF output density is discussed and BRPF is integrated in several federated architectures. Simulations
illustrate the federated BRPF performance for multi-sensor estimation and collaborative navigation
for formation flying. The interest of integrating BRPF in federated architectures is shown in terms of
computational load reduction and estimation accuracy.

Chapter 6 introduces a predicted failure probability estimator for Chance Constrained trajectory
planning. The approach is based on kernel mixtures bounded by box particles, in a similar framework
as in Chapter 4. The box kernel mixture density is propagated along a finite horizon trajectory, which
allows the failure probability to be estimated. The approach is shown to outperform the particle-based
approach in terms of probability estimation accuracy. Finally, the box failure probability estimator is
integrated in a differentiable optimisation scheme for Chance Constrained trajectory planning, leading
to the Box Particle Control (BPC) method. BPC is shown to be more robust and more computationally
efficient than the original Particle Control (PC). It can also be applied to non-linear dynamics, which is
not the case for PC.

Chapter 7 concludes the thesis and discusses possible directions for future work.





2
L I T E R AT U R E R E V I E W O N S TAT E E S T I M AT I O N A N D S TAT E C O N T R O L

This chapter provides the background for the work presented in the subsequent chapters of this thesis.
Section 2.1 provides a detailed statement on estimation theory and associated embedded algorithms.
The main points are particle filters with kernel estimation (Section 2.1.4) and the Box Particle Filter
(Section 2.1.6). Section 2.2 states a framework for collaborative estimation and federated architectures.
Section 2.3 provides an overview on constrained optimal control under state uncertainty with a focus
on chance constrained Particle Control.

2.1 estimation theory

Consider a system (e.g. an autonomous aircraft) whose evolution is described by a set of functions,
explicitly defined or derived from differential equations. These functions correspond to the evolution
model which provides a time description of the system’s variables of interest (e.g. position, velocity,
attitude etc.). These variables constitute the system state vector. The system does not usually dispose
of the full knowledge of its state vector. Its decision process is only derived from the information
available on the whole vector or some of its components. Since the dynamical model function is most
often a simplification of reality, the value of the system state vector obtained as the dynamical model
output can rapidly drift far from the actual system state vector. In order to limit this derivation, one
can use some measurements provided by sensors which are functions of the state vector components.
However, these measurements are obtained via imperfect sensors and thus do not give an exact output.
The estimation problem then consists of retrieving the system’s state vector description, given an
approximate dynamical model and noisy measurements. A specific aspect of the estimation problem
addressed here is the search for recursive state estimation. At each time-step, the state vector value
is derived from the previous state value, through an update performed either by the model or by
the measurement model or both. In this section, the problem is first presented in 2.1.1. Then, two
different formalisms to model uncertainty are introduced, beginning with the probabilistic framework in
Section 2.1.2. Under Gaussian assumptions, this framework yields Kalman-like filters (Section 2.1.3). For
non-Gaussian or non-linear problems, the Particle Filter (PF [GSS93] was introduced and is presented in
Section 2.1.4). However, the probabilistic density functions for involved uncertainties may be unknown,
with only some boundaries assumption on their support. This hypothesis yields the set-based framework
(Section 2.1.5). A focus will be made on intervals and boxes (Interval Analysis framework [Jau09]).
Although these two frameworks are not usually mixed, an approach named Box Particle Filter (BPF)
was introduced by Gning [AGB07] to take advantage of the robustness of Interval Analysis and the
accuracy of the Probabilistic framework. This approach is presented in Section 2.1.6. Finally, Section
2.1.7 gives an overview of estimation methods.
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8 literature review on state estimation and state control

2.1.1 State estimation: problem statement

The state vector x ∈ Rd defines the system at any time. It contains every value useful to describe the
system for a given application (e.g. position, velocity etc.). In addition, it is possible to act on the system
via a control input u ∈ Rdc . The state evolution can be represented by a differential equation:

ẋ = fc(x, u) (2.1)

where fc : Rd ×Rdc → Rd is the dynamical model.
However, this dynamical model fc is not an accurate description of the system evolution in the

general case (see Jazwinski [Jaz07]). This can be due to unmodeled dynamics, for example the complex
aerodynamic effects on an aircraft or structure elasticity, or unknown disturbances such as air pressure
variation or wind. These uncertainties can be modeled by an additive process noise w which is integrated
in equation 2.1. Therefore, the state x becomes a stochastic process.

In addition, a discrete-time state evolution is considered. At each time-step k ∈ N, variables and
vectors are noted with index k. Two consecutive time-steps are separated by a time dt > 0.

This manuscript deals with the following state evolution equation:

xk = fk(xk−1, uk) + wk (2.2)

where fk : Rd ×Rdc → Rd is the discrete dynamical model at time-step k.
The final objective of the control loop is bringing the state xk to a desired state. However, the state

is unknown and cannot be directly retrieved due to its initial uncertainty and the process noise. The
only available information about xk is the measurement vector mk ∈ Rdm obtained via some sensors.
Measurements are linked to the state by the observation equation:

mk = hk(xk) + vk (2.3)

where hk : Rd → Rdm is the observation model. It can be non-linear and may not explicitly involve all the
state variables. As sensors are imperfect, measurements must integrate a representation of sensor noise
and become stochastic vectors. In this work, sensor noise is modelled by an additive noise vk. For the
sake of brevity, it is assumed that fk = f ∀k and hk = h ∀k.

The goal of recursive State Estimation is determining the state at each time-step, given the dynamical
model and the measurements. The expected outputs are: the current estimate x̂k, and a confidence
indicator which quantifies the estimate uncertainty. Figure 2.1 illustrates the State Estimation process.

An iterative estimation algorithm often consists of two steps: the prediction step, which accounts for
the dynamical transition from time-step k − 1 to time-step k, and the correction step which accounts
for the measurements if available, as described by Algorithm 1 (e.g. see Thrun [TBF05]). The state
and its associated uncertainty can be described with several frameworks. The probabilistic framework
models the noises as random variables following a priori known statistical laws, and is introduced in
Sections 2.1.2 to 2.1.4. The set-based framework considers uncertainties as unknown-but-bounded and is
described in Section 2.1.5.
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𝐱𝒌 = position, velocity… 𝐦𝒌 = measurements  𝐱𝒌 = estimated position, velocity…

𝐱𝒌

𝑘

𝐦𝒌

𝑘

 𝐱𝒌

𝑘

(a) Actual state (b) Measurements (c) Estimate

Figure 2.1: Estimation scheme: an unknown state x (a) is estimated via some uncertain measurements m (b). The
estimate x̂ is associated with an estimation confidence area which must contain the actual state (c).

Algorithm 1 A general recursive estimator, made of two steps: The prediction step accounts for the
dynamics, and the correction step accounts for the measurements.

Inputs: initial state density p(x0), process noise characteristics, measurement noise characteristics.
Outputs: state estimate x̂k ∀k, and an associated uncertainty.

1: Initialisation: Initialise the state description using the state’s initial uncertainty.
2: for each time-step k do
3: Prediction step: propagate the state description from time-step k− 1 to time-step k using the

dynamical model f and the process uncertainty wk, as described in (2.2).
4: Correction step: update the state description using the knowledge of the measurement mk and

accounting for its uncertainty vk and its relationship with the state (2.3).
5: end for
6: Return estimate x̂k and an associated uncertainty.
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2.1.2 Probabilistic framework

The probabilistic framework aims to estimate the most probable current state xk given all the past
measurements Mk = {m1, ..., mk}. Mathematically, the most probable state corresponds to the highest
peak of the conditional density p(xk|Mk) of the state given the measurements’ trajectory. This idea is
illustrated in Figure 2.2.

The conditional state density can be managed in an iterative way by the Chapman-Kolmogorov
prediction equation (2.4), and the Bayes’ rule correction (2.5). These equations form a theoretical filter
named Optimal Filter. It represents the most accurate way of describing the conditional density evolution,
given a trajectory of measurements and their associated uncertainties.

In order to determine the conditional state density at current time-step, three other densities must be
known:

• The current measurement density p(mk|xk), which quantifies the distribution of the measurement,
conditionally to the actual state,

• The state transition p(xk|xk−1) which accounts for non-modeled dynamics,

• The initial state density is denoted p(x0), which quantifies the initial state uncertainty.

However, the Optimal Filter is not directly implementable in practice. In order to produce tractable
algorithms, several assumptions can be made, leading to a variety of estimation methods, as illustrated
in Figure 2.2.

The Optimal Filter framework is first introduced in what follows (page 10). Several estimation methods
derived from Optimal Filter are then introduced, such as the Kalman Filter (Linear Gaussian hypothesis,
page 13), the Extended Kalman Filter (Non-linear Gaussian hypothesis, page 15), with a focus on
the Particle Filter (Non-linear and non-Gaussian hypothesis, page 17). More advanced state density
estimation methods, such as kernel estimation (page 21) can be used to improve Particle Filter, leading
to the Regularised Particle Filter (RPF, page 23).

The theoretical optimal filter

This section introduces the theoretical iterative formulation for a state density prediction and correction.
A filter will refer to an algorithm that estimates the state density for the current time-step. A filter is
said to be optimal if it is theoretically equivalent to the Optimal Filter, under given hypotheses. Filters
are often coupled to an estimator that derive a point-wise estimate from the estimated density. At each
time-step k, the prior state density p(xk−1|Mk−1) is convoluted with the process noise density p(xk|xk−1)

by the Chapman-Kolmogorov equation:

p(xk|Mk−1) =
∫

Rd
p(xk|xk−1)p(xk−1|Mk−1)dxk−1 (2.4)

This yields the predicted state density p(xk|Mk−1), illustrated in Figure 2.3 (a). When a new measurement
mk is available, it is associated with a sensor noise density p(mk|xk) conditionally to the current state, as
illustrated in Figure 2.3 (b). The hypothesis is made that all measurements are independent and that the
state evolution process is Markovian, i.e. the state xk only depends on the previous state xk−1 (Norris
[Nor98]). Then, the posterior state density is obtained by the Bayes’ rule:

p(xk|Mk) =
1
qk

p(mk|xk)p(xk|Mk−1) (2.5)
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𝑝(𝐱𝒌|𝐦𝟏, … ,𝐦𝒌)
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𝒙𝒌
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 𝑝 𝐱𝒌 𝐌𝒌 =  

𝑖
𝑤𝑘
𝑖𝛿

𝐱𝑘
𝑖
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𝑤𝑘
𝑖𝐾𝑖(𝐱)

Kalman, 1960 Gordon, 1993 Musso, 2001

 𝒙
 𝑷

𝐱𝒌 = position, velocity… 𝐦𝒌 = measurement

Density:

Figure 2.2: Probabilistic estimation scheme and three different state density approximations: Gaussian filtering (e.g.
Kalman Filter), Diracs mixture (e.g. Particle Filter), and Kernel mixture (e.g. Regularised Particle Filter)

With qk = p(mk|Mk−1) =
∫

p(mk|xk)p(xk|Mk−1)dxk. The updating step (or correction step) is illustrated

in Figure 2.3 (c).
The estimate is the blue cross in Figure 2.3. The estimated covariance is the blue ellipse around the

estimate. The next section introduces three common approaches to determine a point-wise estimate
from the involved densities: the Maximum A Posteriori, the Maximum Likelihood, and the Lest Squares
estimators.

State estimators

The Optimal Filter, introduced in the previous section, is the exact formulation for the iterative estimation
of a conditional state density, given all past measurements. However, for many applications, a point-wise
state estimate is needed. In what follows, estimator refers to a method that derives a point-wise estimate
x̂k ∈ Rd from a density. A confidence region can also be derived, usually defined as the variance of the
estimator. Three estimators are commonly used:

• The Maximum A Posteriori (MAP) estimator (Gauvain [GL94]), defined by the state that maxim-
ises the posterior conditional density p(xk|Mk), illustrated in Figure 2.4 (a):

x̂k = argmax
xk

(p(xk|Mk)) (2.6)

If the posterior conditional density is unimodal, i.e. it has a unique global maximum, the MAP can
be considered as the optimal estimator in the sens that it provides the most probable state from
the Optimal Filter density. If there is no prior knowledge, the predicted density p(xk|Mk−1) is said
to be diffuse and is associated with an unbounded uniform density on Rd. The posterior density
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𝑝(𝐱𝑘|𝐌𝑘−1)
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=

×

𝑝(𝐱𝑘|𝐌𝑘−1)

𝑝(𝐱𝑘|𝐱𝑘−1)

𝑝(𝐱𝑘−1|𝐌𝑘−1)

=

∗

Convolution of the prior conditional
density with the state transition density.
The transition density accounts for the
deterministic dynamics 𝑓𝑘 and its
uncertainty (process noise 𝐰𝑘).

The predicted density is multiplied with the
measurement density, leading to the
posterior conditional density.
Its support is usually smaller than the
predicted density. It yields a refined
estimate  𝐱𝒌 and covariance  𝐏𝒌.
Then, one can iterate back to step (a) for
further time-steps.

Direction of travel (dynamics)

(c) Correction

(a) Prediction

 𝐱𝑘−1

 𝐱𝑘|𝑘−1 𝐦𝑘

(b) Predicted density, new measurement

 𝐱𝒌

 𝐏𝑘−1

 𝐏𝑘|𝑘−1

 𝐏𝑘

Step (a) results in the predicted conditional
density, whose support is usually larger
than the prior density.
A measurement 𝐦𝑘 is now available. It will
introduce information in the estimation.

Density

Density

Density

State space

State space

State space

Figure 2.3: Probabilistic iterative prediction-correction scheme. The prediction step (a) yields an inaccurate estimate
associated with a larger covariance (b). The measurement introduces some information, which refines
the estimate and the covariance (c). The actual state is illustrated by an aircraft. The estimate (e.g. the
aircraft’s center of mass) is the blue cross. The estimated covariance is the blue ellipse around the
estimate.



2.1 estimation theory 13

only depends on the likelihood, p(xk|Mk) ∝ p(mk|xk), and the MAP is equivalent to maximising
the likelihood.

• The Maximum Likelihood (ML) estimator (e.g. see Wasserman [Was13]), defined by the state that
maximises the measurement density p(mk|xk).

x̂k = argmax
xk

(p(mk|xk)) (2.7)

illustrated in Figure 2.4 (b). In practice, the MAP is often difficult to derive and can be approached
by the ML estimator. If the likelihood is Gaussian, a simpler estimator can be derived from the ML
estimator: the Least Squares estimator.

• The Least Squares (LS) estimator (e.g. see Lee [Lee05]) consists of maximising a Gaussian Like-
lihood p(mk|xk) ∝ exp

(
− 1

2 ∆xTR−1∆x
)

. It is equivalent to minimising the quantity ∆xTR−1∆x,

where ∆x , mk − h(xk) and R > 0, as illustrated in Figure 2.4 (c). Then, the Least Squares
estimator can be written as: x̂k = argmin

xk

(
∆xTR−1∆x

)
. It can be generalized to N independent

measurements mi
k ∈ Rdm of covariance Ri > 0, which yields then the solution:

x̂k =

(
N

∑
i=1

HTRi−1
H

)−1( N

∑
i=1

HTRi−1
mi

k

)
(2.8)

It corresponds to the average of all measurements, weighted by the inverse of their covariance, in
other words, their information (see Appendix A). Its variance is about VarLS = 1

N , which is greater
than the MAP variance ( 1

N2 ). Nevertheless, LS estimator is of strong practical interest due to its
low computational cost and is often used to approach the MAP and ML estimators.

The Optimal Filter and associated estimators can be derived given some assumptions on uncertainties
and models, yielding a variety of estimation algorithms (e.g. Kalman Filter, Particle Filter). In what
follows, p̂(x|M)) is denoted as the estimated conditional density, approximating the Optimal Filter’s
density p(xk|Mk). The next sections start with the linear Gaussian case, leading to the Kalman Filter.
These hypotheses are then gradually relaxed to introduce more general models and the corresponding
estimation methods. A focus on the Particle Filter is finally done.

2.1.3 Gaussian filters

This section presents some derivation of the Optimal Filter in the Gaussian case. This yields the Kalman
filters.

Linear Gaussian Hypothesis: the Kalman Filter

If the problem can be formulated with a linear dynamics and a linear dependency of the measurement
with respect to the state, and if all involved density are Gaussian, the Optimal Filter yields the Kalman
Filter (KF) equations [Kal+60]. Under these hypotheses, the Kalman Filter is the optimal solution to the
estimation problem. This section recalls the KF equations and its main properties.
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Optimal Filter:
Inputs: Prior density 𝑝 𝐱𝑘−1 𝐌𝑘−1)

Transition 𝑝 𝐱𝑘 𝐱𝑘−1)
Likelihood 𝑝 𝐦𝑘 𝐱𝑘)

Output: Posterior density 𝑝 𝐱𝑘 𝐌𝑘)

(a) Maximum A Posteriori (b) Maximum Likelihood (c) Least Squares

Figure 2.4: Maximum A Posteriori, Maximum Likelihood, and Least Squares estimators. These methods are used to
derive a point-wise state estimate x̂k from the Optimal Filter’s estimated state density. MAP, ML, and LS
estimators are equivalent in the Gaussian case, and LS is derived from ML.
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The state and measurements’ Linear Gaussian models are defined by:xk = Fk−1xk−1 + Bk−1uk + wk

mk = Hkxk + vk

(2.9)

where Fk−1, Bk−1, Hk are known matrices, and:
wk ∼ N (0d, Qk)

vk ∼ N (0dm , Rk)

x0 ∼ N (s0, P0)

(2.10)

where Qk ∈ Rd×d is the process covariance, Rk ∈ Rdm×dm the observation covariance, s0 ∈ Rd the initial
guess for the state value, and P0 ∈ Rd×d the initial state covariance.

Under these hypotheses, it can be shown that the theoretical conditional density p(xk|Mk) re-
mains Gaussian and can be fully described by its expectancy E [x ∼ p(xk|Mk)] and its covariance
Cov [x ∼ p(xk|Mk)]. As a result:

• The estimated density p̂(xk|Mk) = N (x̂k, P̂k) is always equal to the theoretical density p(xk|Mk)

derived from the optimal filter equations,

• Its expectancy x̂k = E [x ∼ p̂(xk|Mk)] is equal to the theoretical Maximum A Posteriori (MAP)
estimator (2.6), which is equivalent to the Maximum Likelihood (ML) estimator (2.7) and the Least
Squares estimator (2.8).

• The KF is said minimum variance, i.e. its covariance P̂k = Cov [x ∼ p(xk|Mk)] is equal to the variance
of the Optimal Filter’s posterior density. It is also equal to the MAP variance, the ML variance, and
the inverse of Fisher Information Matrix (FIM, see Appendix A). It is interesting to note that this
minimum variance property is kept if the process and/or measurements noises are non-Gaussian
(with linear dynamics and measurements).

The resulting Kalman Filter’s equations are presented in Algorithm 2. A detailed description of the
derivation of the KF’s equations from the optimal filter can be found in Jazwinski [Jaz70] or in Dahia
[Dah05, Appendix B].

Non-linear Gaussian Hypothesis: Extended Kalman Filter (EKF) and beyond

The Kalman filter has been extended to non-linear dynamical models and measurement equations:xk = f (xk−1, uk) + wk

mk = h(xk) + vk

(2.14)

with the same Gaussian uncertainties densities as previously (2.10).
Functions f : Rd ×Rdc → Rd and h : Rd → Rdm can be locally linearized at each time-step k, which

yields the gradient matrices:

Fk =
∂ f
∂x

∣∣∣
x=x̂k
∈ Rd×d

Hk =
∂h
∂x

∣∣∣
x=x̂k
∈ Rdm×d

(2.15)
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Algorithm 2 Kalman Filter
Inputs: initial state density N (s0, P0), process noise density N (0d×1, Qk), measurement density

N (0dm×1, Rk).
Outputs: state estimate x̂k ∀k, estimated covariance P̂k ∀k.

1: Initialisation: the initial estimate is x̂0 = s0, the initial covariance is P0.
2: for each time-step k do
3: Prediction step:

x̂k|k−1 = Fk−1x̂k−1 + Bk−1uk

P̂k|k−1 = Fk−1P̂k−1FT
k−1 + Qk

(2.11)

4: Correction step:

x̂k = x̂k|k−1 + Kk

(
mk −Hkx̂k|k−1

)
P̂k = (Id −KkHk) P̂k|k−1

(2.12)

where Kk is the Kalman gain defined by:

Kk = P̂k|k−1HT
k

(
Rk + HkP̂k|k−1HT

k

)−1
(2.13)

5: end for
6: Return x̂k, P̂k ∀k.
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This results in the Extended Kalman Filter (EKF). However, the filter’s convergence is conditioned
by the manual tuning (usually enlarging) of the process and measurements covariance matrices. Some
theoretical works have been done to quantify the impact of initial uncertainty and tuning on the filter’s
convergence. It results that the EKF can converge for tiny initial errors only (Karvonen [Kar+14]). In
practice, EKF remains of great interest for many applications where the dynamical model and the
measurements equation are only slightly non-linear, for example for an inertial sensor update via GNSS
navigation.

However, EKF may fails to converge when non-linearities are more severe or when the initial error
is too important. The Unscented Kalman Filter (UKF [WVDM00]) has been proposed to make it more
robust. UKF consists of describing the Gaussian state density approximation by a set of deterministically
chosen sigma-points in the state space (in practice, between four and ten points). Each sigma point
is independently propagated through the non-linear dynamics, and corrected through the non-linear
observation equation. Finally, the Gaussian state density is computed by a weighted sum of the
transformed sigma-points, which makes it possible to compute the state density using several local
linearisations. It results in a more robust algorithm to non-linearity, eventhough its convergence has
not been proved in the general case (Karvonen [Kar+14]). Linearisations in Gaussian filters introduce
errors that cannot be formalized in a general way. Furthermore, non-linear transformations of Gaussian
densities do not preserve the Gaussian quality. Two main approaches have been proposed in order to
account for these statements.

The first approach consists of bringing back non-linearities into a linear scheme by performing a
mapping from the state and measurement euclidean spaces to a new non-euclidean space in which
the equations become linear, e.g. Lie groups [Olv00]. This idea led to several designs of estimators
(e.g. on the Special Euclidean Group [Hua+11]). Adaptations of Kalman filters to Lie groups have
thus been proposed for the EKF in Markley [Mar03] or the UKF in Crassidis [CM03]. This yields to
new convergence and stability results, which is an active subject of research, e.g. with the Invariant
EKF [BB17]. These non-euclidean filters are useful for estimation problems that can be formulated in
Lie-Groups (e.g. attitude estimation, on the Lie groups of rotation matrices SO(3) (Special Orthogonal
group), or the quaternion group). However, they are not universal in terms of model. For example, they
may fail to tackle non-analytical non-linear measurements (e.g. for the terrain navigation problem, see
3.2). Furthermore, they are restricted to a known parametric family of densities (e.g. Gaussian densities
in the aforementioned algorithms).

Another approach is the Particle Filter, which consists of stochastically approximating the whole state
density with a representative sample of possible states. It is able to tackle model non-linearities and is
not limited to Gaussian densities. The Particle Filter is introduced in the next section.

2.1.4 Non-linear non-Gaussian filters: particle filters and kernel estimation

This section presents a way of deriving the Optimal Filter in non-linear and non-Gaussian cases by
using mixtures of kernels. The Particle Filter scheme is first introduced (Gordon [GSS93]), which
approximates the state density with a mixture of weighted Dirac deltas. The Regularised Particle Filter
(RPF, [MOLG01]) is then introduced. It is based on kernel estimation approaches (Silverman, [Sil86])
which brings more accuracy by considering mixtures of weighted bounded kernels.

The Sequential Importance Resampling Particle Filter

The Sequential Importance Resampling Particle Filter approach (SIR-PF [GSS93]) was introduced to
tackle non-linear dynamics and/or severely non-linear measurements. Uncertainties may also be non-
Gaussian. PF consists of empirically rebuilding the conditional state density by a set of weighted points
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{xi
k ∈ Rd, wi

k ∈ R+}i∈[1,N] called particles. They are associated with positive weights wi
k whose sum is

equal to 1. The estimated conditional density at time-step k− 1 is thus defined by a mixture of weighted
Dirac deltas, as illustrated in Figure 2.5.
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Figure 2.5: Particle Filter scheme: the conditional density is approximated with a mixture of diracs corresponding
to a cloud of weighted particles.

The estimated prior conditional density is defined by:

p̂(xk−1|Mk−1) ,
N

∑
i=1

wi
k−1δ(xk−1 − xi

k−1) (2.16)

where δ is the Dirac delta functions on Rd equal to 0 on Rd \ {0d} and to infinity on 0d. By the application
of the Chapman-Kolmogorov equation (2.4), one can approximate the predicted density:

p̂(xk|Mk−1) =
N

∑
i=1

wi
k−1δ(xk − xi

k) (2.17)

where {xi
k} is the set of predicted particles. Each propagated particle xi

k is obtained by a deterministic
dynamical propagation using model f , plus a random sample wi

k of the process noise:

xi
k = f (xi

k−1, uk) + wi
k (2.18)

The process noise density is assumed to be known. By the application of the Bayes’ rule (2.5), the
updated conditional density is approximated by a Dirac mixture with the same centers {xi

k}, but with
updated weights:

p̂(xk|Mk) =
N

∑
i=1

wi
kδ(xk − xi

k) (2.19)

with

wi
k = wi

k−1
1
qk

πm(mk − h(xi
k)) (2.20)

where πm : Rdm → R+ is the analytic measurement noise density p(mk|xk). The normalisation term qk
is:

qk =
N

∑
i=1

wi
k−1πm(mk − h(xi

k)) (2.21)
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and is equal to the quotient term in (2.5).
Formulation (2.19) provides an estimation of the posterior conditional state density. For practical

use, one can then derive a point-wise state estimate, associated with a confidence (e.g. the covariance
of the random vector associated with the estimated density). The Maximum A Posteriori (MAP, see
Section 2.1.2) can be numerically computed, either by weight selection (Dore [DRM07]), or by clustering
computation (Cheng [Che95], Murangira [MMD16]). Nevertheless, MAP computation often yields a
high computational load. In practice, the estimate is often computed via a Least Squares approximation
(LS, see Section 2.1.2), which corresponds to the barycentre of the weighted particle cloud, under
the assumption that the actual state density tends to a Gaussian function. The state estimate is then
computed by (2.23) and its covariance by (2.24).

The iterative updating process (2.20) asymptotically leads to disparate values of the weights. Since
the weights are normalised, one weight will tend to one while all other weight tend to zero. This is
called the weighting degeneracy phenomenon. In order to keep a representative set of particles, a resampling
step was introduced (Gordon [GSS93]). It consists of replacing the current set of particles with a new
one which describes the state density in a more accurate way in the neighbourhood of currently
high-weighted particles. The number of particles usually remains the same, although some adaptive
resampling methods have been proposed to make the number of particles decrease over time, based
on some convergence criteria, for example, the Kullback-Leibler Distance sampling (KLD-sampling
[Fox02]).

A large variety of sampling and resampling algorithms can be used in the context of PF. The most
commonly used is Multinomial Resampling (see Douc [DC05] and Li [LBD15] for a review on resampling
methods). Generally speaking, a resampling algorithm provides an integer value indicating how many
duplications of each particle will occur in the new sample: 0 if the particle is killed, 1 if it is kept, and n
if it is duplicated into n instances.

A brief description of Multinomial Resampling is provided here. This algorithm defines the number
of duplications of each particle with regard to the value of the weights. It is achieved by drawing N
independent values {ui}i∈[1,N] following a uniform law on [0, 1] and comparing them to the cumulative
sum of the weights (corresponding to their cumulative density). A duplication number ni can be
computed for each particle, corresponding to the number of uniform values lying into their cumulative
interval. Large weights will induce a greater number of duplications for their particles than for low-
weighted ones. Multinomial Resampling is summarized in Algorithm 3. After resampling, weights are
usually reset to 1/N.

Algorithm 3 Multinomial resampling

Input: particle weights {wi}i∈[1,N]

Output: number of new instances per particles {ni}i∈[1,N]

1: Initialise the duplication counters to ni = 0 ∀i ∈ [1, N]

2: for i = 1 to N do
3: Draw ui ∼ U[0,1]

4: Find j ∈ [1, N] such that ui ∈
]
∑

j−1
l=1 wl , ∑

j
l=1 wl

]
5: Count nj = nj + 1
6: end for
7: Return ni ∀i ∈ [1, N]

It is generally not necessary to resample at each time-step. Indeed, since the resampling aims to limit
degeneracy, it should only be performed when this phenomenon arises. Several triggering criteria have
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been proposed to detect degeneracy. The most commonly used is Kong and Liu criterion [KLW94],
based on the variance of the weights:

Neff =
1

∑i (wi
k)

2 (2.22)

The resampling is triggered if Neff < θeffN with θeff ∈ [0, 1] being tuning parameter. In practice, it is
often set between 0.3 and 0.7 for conventional PFs. Other criteria can also be used, for example Pham’s
criterion [Pha01], based on the weights’ entropy.

Whatever be the the triggering criterion, particle filters using a resampling step belong to the Sequential
Importance Resampling Particle Filters category (SIR-PF). The generic SIR-PF algorithm is summarized in
Algorithm 4 and illustrated in Figure 2.6. Under the hypothesis of an observable system, some proof of
the almost sure convergence of the estimated density p̂ toward the optimal filter density p has been
provided (Crisan [CD02]).

Algorithm 4 Sequential Importance Resampling Particle Filter
Inputs: initial state density p(x0), process noise density p(xk|xk−1), measurement density p(mk|xk).
Outputs: state estimate x̂k ∀k, estimated covariance P̂k ∀k.

1: Initialisation: The initial particle set (or particle cloud) is drawn as {xi
0, wi

0}i∈[1,N] such that the
initial estimated density (2.19) approaches p(x0).

2: for each time-step k do
3: Prediction step: Propagate particles using the dynamical model xi

k = f (xi
k−1, uk) + wi

k and the
process noise density xi

k ∼ p(xk|xk−1).
4: Correction step: Update weights using the measurement noise density wi

k = 1
qk

wi
k−1πm(mk −

h(xi
k)) where πm = p(mk − h(xk)|xk), and qk = ∑N

i=1 wi
k−1πm(mk − h(xi

k)).
5: Compute estimate E [ p̂(xk|Mk)]. It can be approximated by an empirical Least Squares estimator

(i.e. a barycentre) :

x̂k = ∑
i

wi
kxi

k (2.23)

6: Compute a confidence indicator, e.g. the covariance Cov [xk ∼ p̂(xk|Mk)]. It can be approximated
by:

P̂k = ∑
i

wi
k(x

i
k − x̂k)(x

i
k − x̂k)

T (2.24)

7: if a resampling criterion is satisfied, e.g. Neff < θeffN, see (2.22) then
8: Draw a new set of particles {xi

k, wi
k}i∈[1,N] using a resampling method, e.g. the multinomial

resampling (Algorithm 3).
9: Reset all weights to 1/N.

10: end if
11: end for
12: Return x̂k, P̂k ∀k.

However, although SIR-PF algorithms are able to tackle a larger variety of problems than parametric
filters, they are often limited in practice by the discrete characteristics of the density approximation.
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time
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Figure 2.6: Sequential Importance Resampling Particle Filter scheme

Indeed, if the process noise is too low, the resampling will tend to select only a few particles and will
asymptotically lead to N copies of a single particle. The estimate is thus not guaranteed to remain close
to the actual state, which often results in a filter non-convergence (see Section 3.5).

Furthermore, if the measurement noise is too low, the actual conditional density may concentrate in
an area lacking of particles, which leads to ill estimated weights and further non-convergence. Some
derivations of the SIR-PF have been introduced to make it more stable. The Marginalised Particle
Filter (MPF [CR96]), also referred to as Rao-Blackwellized Particle Filter, tackles a class of estimation
problems where the state vector can be split in two part, namely the linear state and the non-linear
state. The assumption is made that the linear state conditionally depends on the non-linear state in a
linear-Gaussian way. The linear state can then be estimated via a Kalman Filter coupled to a Particle
Filter which only tackles the non-linear part of the state. It results in a higher robustness, since particle
diracs are maginalized on the non-linear dimensions only, which limits the curse of dimensionality (see
Giraud [Gir14]). However, marginalisation is not always possible in the general case. To tackle a larger
class of problems, the Regularised Particle Filter (RPF [MOLG01]) was introduced, based on the kernel
estimation theory of Silverman [Sil86]. The idea of kernel estimation is associating a non-zero volume
support to each particle so that the algorithm can use the particle to explore a complete neighbourhood
of the state space. The next sections introduce the kernel estimation concept and its application to
SIR-PF.

Kernel density estimation

This section introduces the kernel estimation scheme, which aims to estimate a density p(x) from a
sample of data {xi}i∈[1,N] (e.g. particles). A common way of approximating a density is the use of a
histogram, which consists of paving the state space in a number of intervals (bins) associated with the
frequency of samples occurrence in their domain, as illustrated in Figure 2.7 (a).

Silverman [Sil86] introduced a more accurate method called kernel estimation to tackle this issue.
A probabilistic kernel is a function from Rd to R which integrates to unity on Rd. The main idea is
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associating a probabilistic kernel function to each sample xi. The density to estimate is approached by a
weighted sum of probabilistic kernels, i.e. a mixture of kernels:

p̂(x) =
1
N

N

∑
i=1

Kh(x− xi) (2.25)

where Kh is a kernel defined by

Kh(x) =
1
hd K

(
1
h

x
)

(2.26)

with K a reference kernel from Rd to R such that
∫

R
K(x)dx = 1 and h > 0 a bandwidth.

A first version of the kernel estimator was introduced with uniform kernels, referred to the naive
estimator (Silverman [Sil86], Figure 2.7 (b)). A continuous approximation of the density can be obtained
by setting Kh to a smooth kernel, as illustrated in Figure 2.7 (c). The free parameters of kernel estimation
are the definition of kernel function K and the value of the bandwidth h.

The Mean Integrated Square Error (MISE) metric can be used to quantify the kernel estimator
estimated density p̂ fitting with the actual density p:

MISE( p̂, p) = E

[∫
Rd

( p̂(x)− p(x))2 dxk

]
(2.27)

An analytic approximation of the MISE can be derived for given kernel K of bandwidth h, in Rd

(Silverman [Sil86]):

MISE( p̂, p) =
h4

4
α2
∫

Rd
(O2 p(x))2dx +

β

Nhd (2.28)

where O2 p = d2 p
dx2 and

α =
∫

Rd
x2

1K(x)dx

β =
∫

Rd
K(x)2dx

(2.29)

with x1 ∈ R the first component of x. For a given kernel K, the optimal bandwidth h in terms of MISE
is:

hopt =

(
dβα−2

(∫
Rd

(O2 p(x))2dx
)−1

N−1

) 1
d+4

(2.30)

In practice, kernel estimation can be used in two drastically different ways. The first is an explicit
probability density function approximation based on (2.25), which can further be generalized as a
weighted mixture of kernels: p̂(x) = ∑N

i=1 wiKh(x − xi) with ∑i wi = 1. This kind of methods can
be linked to the Box Particle Filter (Gning [AGB07]), introduced in section 2.1.6. Some approaches
have also introduced Gaussian mixture (e.g, Kotecha [KD03], Nemeth [NFM16]), or ball bounded
supports mixture (Luo [LQ18b]). The second way of using kernel estimation is a stochastic smoothing
of point-wise sampled data. This approach has been introduced in the context of particle filters by
Musso [MOLG01], on the basis of Silverman’s theory [Sil86]. It consists of smoothing the particle states’
empirical distribution xi

k by adding random samples from a noise distribution defined by a specific
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kernel. The kernel and its bandwidth are optimally determined in terms of MISE. This results in a more
regular description of the density to be estimated. The algorithm is called Regularised Particle Filter
(RPF) and is introduced in the next section.
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Figure 2.7: Histogram (a), naive estimator (b), and kernel estimator (c), used to estimate a density from a set of
samples xi. The kernel estimator (Silverman [Sil86]) yields a continuous density.

The Regularised Particle Filter (RPF)

The Regularised Particle Filter (RPF) was introduced in Musso, Oudjane, and Le Gland [Oud00;
MOLG01] on the basis of kernel estimation (Silverman [Sil86]). The posterior density defined by a
mixture of Dirac functions (2.19) can be rewritten as a mixture of weighted kernels centered on each
particle xi

k, as in (2.25):

p̂(xk|Mk) =
N

∑
i=1

wi
kKh(xk − xi

k) (2.31)

The kernel is assumed to be symmetric such that Kh(−x) = Kh(x). In the special case of all the box
particles having the same weight, which is the case just after the resampling step, the kernel that
minimises the MISE (2.28) is the Epanechnikov kernel (see Appendix E):

Kopt(x) =


d+2
2cd

(
1− ‖x‖2

)
if ‖x‖ < 1

0 otherwise
(2.32)

where cd is the volume of the unit hypersphere in Rd. The associated optimal bandwidth is:

hopt = µA(K)N−
1

d+4

A(K) = [8c−1
d (d + 4)(2

√
π)d]

1
d+4

(2.33)

In case of a multimodal posterior state density (see Appendix B), the optimal bandwidth h may be
overevaluated. A tuning coefficient 0 < µ < 1 has been introduced in (2.33) to limit the impact of
regularisation on each individual mode. A robust version of RPF has been proposed where each mode
is estimated via clusters and is independently regularised (Murangira [Mur+11]). However, this process
has a high computational cost, which limits its use for embedded applications.
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The optimal bandwidth (2.33) is expressed for a normalised density whose covariance is a d dimen-
sional identity matrix. In practice, the kernel bandwidth must be adapted to the density’s covariance.
This can be done by computing the Cholesky decomposition of the empirical covariance of the resampled
set of particles (with all weights reset to 1/N) Ak = Chol

(
1
N ∑i(xi

k − x̂k)
T(xi

k − x̂k)
)

. Regularisation can
then be applied by adding an additive noise to each particle as a sample of AkKh. The regularisation
step is illustrated in Figure 2.8.
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Figure 2.8: Regularisation of a sample of particles after resampling. The Mean Integrated Square Error (MISE)
quantifies the fitting between the theoretical density p in red and the empirical density p̂ in blue.

The regularisation step helps the particle cloud to explore the state space in a more regular way
by adjusting the empirical density on the theoretical one. Performing this step after each resampling
brings more robustness and accuracy, since particles are less likely to concentrate in the actual density’s
distribution tail. However, the hypothesis is made that the actual density is unimodal, which is not
always the case in practice.

The RPF opened the way to a variety of kernel-based particle filters. Among them, one can cite the
Convolution Particle Filter (CPF [CR09]), which extends the kernel smoothing concept to the measure-
ments space. More generally, the Kernel Estimation scheme led to a variety of kernel-based particle
filters, e.g. the Kalman-Particle Kernel Filter (KPKF [Dah05], [PDM03]), or the Mixture Regularised
Rao-Blackwellized Particle Filter (MRPF [MMD16]).
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2.1.5 Set-based framework and Interval Analysis

The set-based framework is dedicated to cases where densities are unknown but bounded, i.e. where
the only available hypotheses on them are their supports. It aims to estimate the smallest bounded set
{Xk} which contains the state xk, given the measurement sets {m1}, ..., {mk}, as illustrated in Figure 2.9.
The following section briefly recalls the set-based estimation principle. Then, a focus on the interval
analysis framework is done.

𝑋𝑘 = 𝐱 ∈ {𝑋𝑘|𝑘−1} | 𝑔 𝐱 −𝐦𝑘 ∈ {𝑉𝑘}

Polytops Ellipsoids

Schweppe, 1968 Maksarov, 1996

{𝑋𝑘}

𝐱𝑘 = position, velocity… 𝐦𝑘 = measurements

Intervals and 
boxes

{𝑋𝑘}

Jaulin, 2001

{𝑋𝑘}

𝒙𝒌

Bounded set

Figure 2.9: Set-based estimation scheme and three different state set approaches: Polytopes, ellipsoids, and paving
of intervals, or boxes in the multidimensional case

Set estimation

In the set-based estimation scheme, the process and measurement noises are modelled by bounded sets
wk ∈ {Wk} and vk ∈ {Vk}. Therefore, let the measurement set be defined by:

{mk} =
{

y ∈ Rdm
∣∣y−mk ∈ {Vk}

}
(2.34)

Let {Xk−1} be the previous set of states set, and {Xk} the current set. The prediction step corresponds
to the propagation of all elements of the previous state set, plus the process uncertainty set:

{Xk|k−1} =
{

x ∈ Rd ∣∣ x− f (x’, uk) ∈ {Wk} , ∀x’ ∈ {Xk−1}
}

(2.35)

The correction step corresponds to the action of keeping only the subset of the predicted set which is
consistent with the measurement set:

{Xk} =
{

x ∈ {Xk|k−1}
∣∣ h(x) ∈ {mk}

}
(2.36)
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as introduced by Schweppe [Sch68]. Several methods have been proposed to describe these sets and
their evolution, as illustrated in Figure 2.9, including: intervals and boxes [Jau09], ellipsoids [MN96], and
polytopes [PLW94]. The output of these algorithms is therefore not seen as a point estimate associated
with an uncertainty, but as a bounded set guaranteed to contain the actual state. Figure 2.10 illustrates
the set-based prediction-correction scheme.

This thesis will focus on the interval scheme, which is described hereafter.

The prior state set {𝑋𝑘−1} is propagated via
the deterministic dynamics 𝑓𝑘 . The
dynamics uncertainty (process noise 𝐰𝑘) is
accounted by a set addition of the prior set
{𝑋𝑘−1} with the process noise set {𝑊𝑘}.

The predicted state set is intersected with
the measurement set, leading to the
posterior state set {𝑋𝑘}.
It is usually smaller than the predicted set,
which consists of a refined estimation.
Then, one can iterate back to step (a) for
further time-steps.

Direction of travel (dynamics)

(c) Correction

(a) Prediction

(b) Predicted set

Step (a) results in the predicted state set
{𝑋𝑘|𝑘−1}, which is usually larger than the

prior set.
A measurement set {𝑀𝑘} is now available
(often built from a sensor measurement
𝐦𝑘 and the measurement noise set {𝑉𝑘}). It
will introduce information in the
estimation. The measurement set is
illustrated in step (c).

State space

State space

{𝑋𝑘−1}

𝑓𝑘 𝑋𝑘−1 , 𝐮𝑘

{𝑊𝑘}

{𝑋𝑘|𝑘−1}

{𝑋𝑘}

{𝑀𝑘}

𝑊𝑘+

State space

𝐱𝑘−1

𝐱𝑘

𝐱𝑘

{𝑋𝑘|𝑘−1}

Figure 2.10: Set-based prediction-correction scheme
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Interval analysis

This section describes the interval analysis framework on Rd, based on Jaulin [Jau01].
A closed interval on R∪ [−∞, ∞] is a set defined by:

[x] = [x, x] , {x ∈ R∪ {−∞, ∞}
∣∣ x ≤ x ≤ x} (2.37)

with x ∈ R∪ {−∞} the lower bound and x ∈ R∪ {∞} the upper bound of the interval. By definition,
x ≤ x. By convention, ∅ is considered as an interval to ensure that the set of intervals is closed with
respect to intersection. Likewise, an open interval is defined as follows:

]x, x[, {x ∈ R∪ {−∞, ∞}
∣∣ x < x < x} (2.38)

Let us note IR the set containing all closed intervals on R.
Classic operations of real arithmetic, namely addition (+), subtraction (−), multiplication (∗) and

division (/) can be extended to intervals. For the sake of brevity, the multiplication of two intervals can
be denoted as [a][b] instead of [a] ∗ [b]. Let � be one of these operators, then its interval extension is:

[x]� [y] =
[{

x� y
∣∣ x ∈ [x], y ∈ [y]

}]
(2.39)

where [{·}] is the wrapping operator which yields a box containing the set {·}. In what follows, wrapping
will refer to every inclusion of real sets into interval sets. If operator � is continuous, then the set{

x� y
∣∣ x ∈ [x], y ∈ [y]

}
is an interval and the wrapping operator can be omitted. This formulation

remains valid for open-ended and unbounded intervals (see Jaulin [Jau01, Section 2.3.2]). Explicit
formulations of the four laws of arithmetic are provided in Table 2.1 for closed intervals. In the case of
interval division, the denominator interval must not contain zero.

An interval can be defined by its upper an lower bounds. An equivalent description is the definition
by its center and diameter. Their definitions are provided in Table 2.1. The diameter corresponds to the
Lebesgue Measure λ([x]).

A set of vectors of intervals in d ∈ N∗ dimensions can be defined by the Cartesian product of d
interval spaces, i.e. IRd = IR× ...× IR. A vector of d intervals is named a box and noted [x] ∈ IRd. Box
extension of lower bound, upper bound, center and diameter are defined as a vector of d terms that
correspond to each interval term’s bounds, center, or diameter. However, the Lebesgue measure of a
box is not equivalent to the box diameter, but to the volume of the box. Box diameter and box volume are
defined in Table 2.1. Arithmetic operations can be extended to boxes of same size by calculating the
resulting intervals term by term.

It is important to note that the properties of basic operators in IR differ from their properties in R.
The following list provides some practical properties:

• Addition and multiplication remain associative and commutative.

• Multiplication is no longer distributive with respect to addition. Instead, it only verifies the
subdistributivity property:

[x] ([y] + [z]) ⊂ [x][y] + [x][z] (2.40)

• If each element of (R,�) admits a symmetric element, it is no longer true for (IR,�). In terms of
algebraic structures, if (R,�) is a group, then (IR,�) is only a monoid. An example is given for
subtraction. In general, [x]− [x] 6= {0}. Indeed, it should be interpreted as:

[x]− [x] =
{

x− y
∣∣ x ∈ [x], y ∈ [x]

}
(2.41)
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Table 2.1: Interval Analysis operations

Operation Definition

Addition [a] + [b] = [a + b, a + b]

Subtraction [a]− [b] = [a− b, a− b]

Multiplication [a][b] = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)]

Division [a]/[b] = [a, a][1/b, 1/b] if 0 6∈ [b]

Intersection [a] ∩ [b] = [max(a, b), min(a, b)]

Diameter |[a]| = a− a = λ([a]) (∈ R)

Center c[a] = 1
2 (a + a)

By convention, |∅| = 0

Volume of a box |[a]| = ∏d
j=1 |[aj]| = λ([a]) (∈ R)

Diameter of a box δ[a] = [|[a1]|, ..., |[ad]|]T (∈ Rd)

Center of a box c[a] =
1
2 (a + a) (∈ Rd)

and not as [x]− [x] =
{

x− x
∣∣ x ∈ [x]

}
.

In other words, interval operators do not account for possible dependencies between input intervals.
The loss of properties expressed by (2.40) and (2.41) are direct consequences of the dependency effect that
will be described in next section.

Two key concepts in interval analysis applied to state estimation are described in what follows: the
inclusion function and the interval contraction.

Interval propagation via inclusion functions

In order to apply interval analysis to state estimation, it is necessary to describe the prediction step
(2.35). This is linked to a more general issue, which is the transformation of an interval or a box by a
function defined on Rd. Let f : Rd1 → Rd2 be a function. The transformation of an interval [x] by f is:

f ([x]) =
{

f (x)
∣∣ x ∈ [x]

}
(2.42)

which is not an interval in the general case, as illustrated in Figure 2.11. In order to define a function
from IRd1 to IRd2 , the inclusion function concept is defined by:

[ f ] ([x]) =
[{

f (x)
∣∣ x ∈ [x]

}]
(2.43)

which wraps f ([x]) to a inclusive box. The analytic expression of [ f ] can be determined from f using
the interval framework introduce in the previous section. If [ f ] provides the smallest box containing
f ([x]) for all [x] ∈ IRd1 , then [ f ] is said minimal. Concepts of inclusion function and minimal inclusion
function are illustrated in Figure 2.11 for a real function f , an arbitrary inclusion function [ f ] and the
minimal inclusion function [ fmin].

However, some conservatism may be introduced by the inclusion function formulation. It is the
consequence of two effects, known as wrapping effect and dependency effect. In the following chapters,
conservatism will refer to the evaluation of uncertainty with unnecessarily large margins (quantified by
the pessimism criterion, see Section 3.5).
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Input space Output space

𝑓([𝐱])

[𝑓𝑚𝑖𝑛]([𝐱])

[𝑓]([𝐱])

Figure 2.11: Concept of set transformation, inclusion function, and minimal inclusion function
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Figure 2.12: Illustration of the concept of wrapping effect for linear and non-linear transformations
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The wrapping effect qualifies the natural conservatism of intervals and boxes, whose edges are
colinear to the space base axis, causing lost space between the set f ([x]) and the box [ f ]([x]). The
wrapping effect can also be linked to discontinuities in function f . It can be intuitively understood with
an illustration provided in Figure 2.12.

The dependency effect qualifies the dependencies between interval variables, as described in previous
section with the properties of subdistributivity (2.40) and the loss of symmetry (2.41). In general, the
dependency effect arises when more than one instance of the same input variable are combined in
the same output variable of function f . For example, on R, the function f1 : x 7→ x2 is equivalent to
the function f2 : x 7→ x× x. However, once wrapped into the interval space, the two functions are not
equivalent anymore. Indeed, the resulting inclusion functions are respectively [ f1]([x]) = {x2

∣∣ x ∈
[x]} ⊂ R+ and [ f2]([x]) = {x × y

∣∣ x ∈ [x], y ∈ [x]} ⊂ R. For example, with [x] = [−2, 2], the first
inclusion function gives [ f1]([x]) = [0, 4] while the other one gives [ f2]([x]) = [−4, 4].

Sufficient conditions for an inclusion function to be minimal are provided by the following theorem:

Theorem 1. ([Jau01, theorem 2.2]) Consider a function defined by:

f : Rd → R

x 7→ f (x)
(2.44)

expressed as a finite composition of arithmetic operators and elementary functions. Let be x , [x1, ...xd]
T .

If:

1. All arithmetic operators and elementary functions involved are continuous,

2. Each input variable xi occurs at most once in the formal expression of f ,

then, the inclusion function [ f ] : IRd → IR defined by [ f ]([x]) =
[{

f (x)
∣∣ x ∈ [x]

}]
is minimal.

The first condition accounts for the wrapping effect, while the second condition deals with the
dependency effect, which is then removed. This theorem can be applied to any function of Rd1 to Rd2

since the function can be expressed as a vector of d2 functions from Rd1 to R.
The wrapping effect may also arise from the composition of functions. Consider the composition

of two functions f : Rd1 → Rd2 and g : Rd2 → Rd3 . Let h = g ◦ f be their composition. Then, once
wrapped into the interval space, the relation becomes:

[h] ([x]) ⊂ [g] ([ f ] ([x])) (2.45)

As a result, it is of interest to carefully design inclusion functions by choosing the best way of writing
real functions before wrapping them into interval spaces. A detailed analysis of the problem will help to
avoid discontinuities, multiple occurrences of input variables, and ill-writing of compositions, to satisfy
as much as possible Theorem 1.

In what follows, the natural inclusion function of a real function f will be called the naive inclusion
function obtained by directly wrapping f to the interval framework. Natural inclusion functions are
minimal in the case of linear applications, e.g. f : Rd1 → Rd2 defined by f (x) = Ax with A ∈ Rd2×d1 , by
direct application of Theorem 1. For nonlinear cases, several methods have been proposed to reduce
the concervatism of inclusion functions, namely (Jaulin [Jau01]): Centered inclusion functions, Mixed
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centered inclusion functions, and Taylor inclusion functions. Unfortunately, there is no general rule about
the minimal inclusion characteristics of such methods.

The inclusion function concept can be applied to interval state prediction. Let [xk−1] ∈ Rd be the
box containing the state xk−1 and f : Rd ×Rdc → Rd the discrete dynamical model. Then, by applying
(2.35), one can define the one-step-ahead prediction equation of an interval-based estimation algorithm:[

xk|k−1

]
= [ f ] ([xk−1], uk) + [wk] (2.46)

with

[ f ] ([xk−1], uk) =
[{

f (xk−1, uk)
∣∣ xk−1 ∈ [xk−1]

}]
(2.47)

Interval correction via set contraction

The state set has been propagated thanks to an inclusion defined in the previous section. In order to
update it using the measurements, as described by (2.36), the concept of Constraint Satisfaction Problem
(CSP) and of contractor must be defined. A CSP H is defined as follows (e.g. see Jaulin [Jau09]):

H : (G(x) = 0, x ∈ {x}) (2.48)

where {x} ⊂ Rd is the support of x = [x1, ..., xd]
T and G : Rd → R a function that links variables xi

with nG relations (called constraints). The solution set to H is:

S =
{

x ∈ {x}
∣∣ G(x) = 0

}
(2.49)

For intervals, a special case of (2.48) is:

H : (G(x) = 0, x ∈ [x]) (2.50)

Contracting H means replacing [x] by a smaller box [x′] such that S ⊂ [x′] ⊂ [x]. A contractor for H
refers to any operator that can be used to contract it. A contractor is said to be optimal if it provides the
smallest box [x′] which contains S . A wide variety of contractors have been proposed in the literature,
namely: Gauss elimination, Gauss-Seidel algorithm, Krawczyk method, linear programming, Newton method,
parallel linearization, and forward-backward propagation. A review can be found in Jaulin [Jau01].

The set-correction step defined by (2.36) is a special case of CSP where G represents the deterministic
observation equation:(

m− h(x) = 0, x ∈ {Xk|k−1}, m ∈ {mk}
)

(2.51)

In the interval case:(
m− h(x) = 0, x ∈ [xk|k−1], m ∈ [mk]

)
(2.52)

where [mk] = mk + [vk] ∈ IRdm is the measurement box, and [vk] the measurement noise density
support. The solution is:

[xk] ,
{[

x ∈ [xk|k−1]
∣∣ h(x) ∈ [mk]

}]
(2.53)
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This section introduced set-based estimation, with a specific focus on interval-based set estimation.
These approaches are of interest for their strong robustness to ambiguities and their ability to address
densities where the only available knowledge is their bounds. However, for non-linear cases (especially
non-linear measurements), the number of operations may grow rapidly, which limits their practical
use. Furthermore, they can be seen as worst-case approaches, which makes them often conservative
compared to probabilistic approaches. In order to take advantage of both probabilistic framework (see
Section 2.1.2) and set-based framework, several hybrid approaches have been proposed. In the state
estimation field, the Interval Kalman Filter [CWS97; JZZ16] can be cited, which keeps the KF properties
while being more robust to measurement outliers. In the context of non-linear state estimation, the Box
Particle Filter [AGB07] has been introduced and is described in next section.

2.1.6 The Box Particle Filter

The Box Particle Filter (BPF) was initially proposed by Gning [AGB07] as a bridge between Monte Carlo
methods and set-based approaches. The reader will find a synthesis of the BPF formalism in Gning
[Gni+13]. The prior conditional density is approximated by a weighted sum of N ∈N∗ uniform kernels,
corresponding to a box particle cloud, illustrated in Figure 2.13.

𝑝 𝐱𝒌 𝐌𝒌 ≈  𝑝 𝐱𝒌 𝐌𝒌 = 
𝑖
𝑤𝑘
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[𝐱𝑘
𝑖 ]
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𝒙𝒌

𝑝 𝐱𝒌 𝐌𝒌
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𝑖𝒰
[𝐱𝑘
𝑖 ]
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𝑖𝒰
[𝐱𝑘
𝑖 ] 𝑤𝑘

𝑖

1

0

Figure 2.13: Box Particle Filter scheme: the conditional density is approximated with a mixture of uniforms
corresponding to a cloud of weighted box particles.

The conditional density is defined by:

p̂(xk−1|Mk−1) =
N

∑
i=1

wi
k−1U[xi

k−1]
(2.54)

In the prediction step, the prior conditional density is propagated through the Chapman-Kolmogorov
equation (2.4).

The assumption can be made that the dynamical inclusion function [ f ] only modifies the support of
box [xi

k−1] without changing the box density nature:∫
Rd
U[xi

k−1]
p(xk|xk−1)dxk−1 ≈ U[ f ]([xi

k−1])+[wk ]
(2.55)

Although Gning [GMA10] proposed an alternative approach to obtain a more precise prediction,
approximation (2.55) is often chosen for computational reasons. Then, the resulting estimated conditional
density is approached by

p̂ (xk|Mk−1) =
N

∑
i=1

wi
k−1U[xi

k|k−1]
(2.56)
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with

[xi
k|k−1] = [ f ]

(
[xi

k−1], uk

)
+ [wk] (2.57)

In the correction step, the posterior conditional density is obtained by Bayes’ rule. By deriving (2.5), it
appears that each box [xi

k|k−1] has to be contracted with respect to the measurement box:

[xi
k] =

[{
xk ∈ [xi

k|k−1]
∣∣ h(xk) ∈ [mk]

}]
(2.58)

The contraction step (2.58) guarantees that each contracted box will contain every possible state which
is consistent with the current measurements. This makes BPF robust to measurement ambiguities. Thus,
the resulting posterior conditional density is:

p̂(xk|Mk) =
1
qk

N

∑
i=1

|[xi
k]|

|[xi
k|k−1]|

wi
k−1U[xi

k]
(2.59)

As a result, the updated weights are

wi
k =

1
qk

|[xi
k]|

|[xi
k|k−1]|

wi
k−1 (2.60)

The ratio between the volume of the contracted box and the volume of the propagated box can be
interpreted as an innovation. Finally, weights have to be normalised by

qk =
N

∑
i=1

|[xi
k]|

|[xi
k|k−1]|

wi
k−1 (2.61)

A state estimate x̂k can be deduced from the box particle cloud such that:

x̂k , E [xk ∼ p(xk|Mk)] ≈
N

∑
i=1

wi
k−1ci

k (2.62)

For the sake of brevity, the box particles centers are denoted ci
k , c[xi

k ]
(see Table 2.1). A confidence on

that estimation can be defined such that:

P̂k , Cov [xk ∼ p(xk|Mk)] ≈∑
i

wi
k(c

i
k − x̂k)(c

i
k − x̂k)

T (2.63)

As in a conventional particle filter, a resampling step is added to avoid the degeneracy problem,
when only a small number of box particles are consistent with the measurements and all others have
a near-zero weight. Published papers about BPF often use the Multinomial Resampling described in
Algorithm 3 to determine the number ni of new instances of each box particle. Nevertheless, since
box particles have a non-zero volume, Gning [AGB07] proposed to subdivide them instead of simply
duplicating them. This helps to increase the resolution of the filter’s exploration in the state space, even
for non-observed dimensions. For the sake of simplicity, each box is subdivided into ni sub-boxes along
one dimension dcut,i

k ∈ [1, d]. BPF is summarised in Algorithm 5.
However, there are few general and efficient method to select the dcut,i

k dimension. In Abdallah
[AGB07], box particles are subdivided along a fixed dimension, for a specific problem. In Gning
[GRM12], dcut,i

k is chosen randomly. Although this method is independent from the model, it is not



34 literature review on state estimation and state control

Algorithm 5 Box Particle Filter
Inputs: initial state density p(x0), process noise box [wk] ∀k, measurement noise box [vk] ∀k.
Outputs: state estimate x̂k ∀k, estimated covariance P̂k ∀k.

1: Initialisation: The initial box particle set (or box particle cloud) {[xi
0] ∈ IRd, wi

0 ∈ R+∗}i∈[1,N] is
drawn such that the initial estimated density (2.56) approaches the initial actual density p(x0). In
practice, it can be initialised with a regular paving on the state density’s support, which makes it
similar to an histogram.

2: for each time-step k do
3: Prediction step: Propagate box particles using the dynamics [xi

k|k−1] = [ f ]
(
[xi

k−1]
)

+ [wk]

4: Correction step: Contract each particle with respect to the measurement box [mk] (see contractors
in Section 2.1.5), such that [xi

k] =
[{

xk ∈ [xi
k|k−1]

∣∣ h(xk) ∈ [mk]
}]

5: Update weights by the ratio of the volume before and after contraction wi
k = 1

qk

|[xi
k]|

|[xi
k|k−1]|

wi
k−1,

with qk = ∑N
i=1 wi

k.
6: Compute the state estimate E [ p̂(xk|Mk)]. It can be approximated by a least-square estimator:

x̂k = ∑i wi
kci

k, where ci
k is the center of each particle (see Table 2.1).

7: Compute a confidence indicator, e.g. the covariance P̂k = ∑i wi
k(c

i
k − x̂k)(ci

k − x̂k)
T .

8: if a resampling criterion is satisfied, e.g. Neff < θeffN, see (2.22) then
9: Draw a new set of box particles {[xi

k], wi
k}i∈[1,N] using a resampling method, e.g. Multinomial

Resampling (Algorithm 3) to determine the number of new instances per box particles ni.
10: Replace low-weighted box particles with ni subdivisions of high-weighted particles along a

randomly picked dimension.
11: Reset all weights to 1/N.
12: end if
13: end for
14: Return x̂k, P̂k ∀k.
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optimal. Indeed, picking the dimension to cut randomly may lead to box shape degeneracy after
several resampling executions. This results in non-homogeneity in the boxes’ proportions, which may
cause a significant lack of accuracy in the case of partial or ambiguous measurements. De Freitas
[DF+16] proposes to subdivide each box particle along its larger side. This aims to avoid the box shape
degeneracy encountered with the random-subdivision strategy. However, side length comparison is only
possible if state parameters have similar order of magnitude. This results in a lack of generality. In Luo
[LQ18a], a more general method is introduced, relying on the gradient of observation function. However,
this formulation is limited to problems where all state variables are involved in the observation equation,
which is not the case, e.g. for Terrain Aided Navigation (see Section 3.2).

Furthermore, the Box Particle Filter assumes from the start that the box particles and the box
measurements are supports of uniform kernels. Although Gning [GMA12] has theoretically justified this
assumption, it may not be suitable for all descriptions, especially when some distribution hypothesis is
known about the measurements.

Finally, in spite of its high robustness, BPF turns often pessimistic and inaccurate when measurements
are ambiguous or do not bring enough information.

2.1.7 An overview of state estimation

Two main estimation schemes have been presented in the above sections, leading to a selection of several
emblematic approaches. Figure 2.14 illustrates the different approaches on a non-linear non-Gaussian
probability density function estimation.

To summarize, Probabilistic Estimation (Section 2.1.2) makes it possible to iteratively estimate a
conditional state density knowing a trajectory of measurements. The Kalman Filter (KF, see 2.1.3 on
page 13) is optimal for the Gaussian linear case and has minimum-variance for non-Gaussian linear
cases. It has been extended to non-linear cases (EKF, UKF, see 2.1.3 on page 15) but these approaches are
sub-optimal and suffer from their lack of guarantees. To cope with non-linear cases, recent approaches
have been introduced either to map the problem to a non-euclidean manifold (e.g, the Lie groups
mentioned in Section 2.1.3 on page 15), or empirically describe the non-linear propagation and update
of the density to be estimated, as in particle filters (see 2.1.4 on page 17). More advanced and robust
particle filters have been introduced by using Kernel Regularisation (see 2.1.4 on page 23). When
uncertainties are analytically unknown, but assumed bounded, set-based approaches make it possible
to perform robust and guaranteed estimation (see Section 2.1.5). However, for non-linear cases, these
approaches may suffer form high computational costs and are often conservative. In order to tackle
robust estimation to ambiguities and non-linearities, a set-based particle filter, called Box Particle Filter
was introduced (see Section 2.1.6). Although it is robust to non-linearities and ambiguities, it suffers
from conservatism and inaccuracy.
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Figure 2.14: Overview of different non-linear state estimation approaches
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2.2 collaborative estimation

The previous section introduced the iterative state estimation problem. It can be formalized either in the
Bayesian framework 2.1.2 or in the set-based framework 2.1.5. State estimation can be performed by a
single estimator on the basis of one or several sensor measurements (e.g. GNSS position measurement
combined with baro-altimeter measurement).

However, the sensors may be in different locations, for example embedded in different vehicles. They
thus need to communicate and exchange information. State estimation from such a sensor network can
be centralised (e.g. several vehicles sending information to a ground station) or distributed (e.g. each
vehicle performing its own estimation, given the available measured and exchanged data). It can also be
of interest to distribute the state estimation task to several algorithms collaborating together, even if all
sensors are localized in the same vehicle. This can bring robustness and reduce the computational load.

Section 2.2.1 introduces a graph-based formalism to describe a collaborative scheme. Section 2.2.2 then
introduces the Bayesian framework for collaborative estimation. Section 2.2.3 focuses on the federated
architecture which allows each measurement to be dealt with by a dedicated filter, suitable for their
specific characteristics (non-linearities, ambiguities, probabilistic hypotheses).

2.2.1 Graph representation

Consider a set of Na systems called agents, for example autonomous aircrafts, that can communicate
together. Their interactions can be modeled with the graph representation (Ren [RB08]). Each agent
represents one node i ∈ [1, Na] of the graph, as illustrated in Figure 2.15. The nodes are linked together
with weighted relations called arcs representing the ability of two agents to communicate.

The whole system’s state ξk can be either a common state from which each node seeks measurements
(e.g. several sensors measuring the position of a single aircraft), or a concatenation of several local states
forming a global state (e.g. concatenation of individual states of several vehicles flying in formation). In
the last case, the system’s state can be written:

ξk =
[
x1

k
T

, ..., xNa
k

T]T
∈ RdNa (2.64)

where xi
k is the individual state of each node.

In the field of graph theory, the global description of relations between nodes is called graph topology.
A graph topology can be described by the adjacency matrix A = {aij} ∈ RN×N which shows the weights
of the arcs from node j to node i. if j sends an information to i, then aij > 0. Else, aij = 0.

This framework can be extended to varying topologies, where the adjacency matrix is time-dependent.
The graph can be directed, as in Figure 2.15. The direction of an arc (j sends information to i) is
represented by an arrow. If the graph is not directed, then the arcs are equivalent to double-headed
arrows (j sends information to i and i sends information to j). Then, matrix A is symmetric.

Each agent communicates with a subset of agents called neighbours. The neighbours of agent i
correspond to the Ni non-zero adjacency coefficient of line i of matrix A: {j ∈ [1, Na]

∣∣ aij 6= 0}.
Intuitively, neighbours of i are the agents j giving information to agent i.

Three kinds of architectures can be considered: centralised, decentralised, or distributed architectures.

• A centralised architecture (Figure 2.16) refers to a fleet in which decision is performed in a
computation center i∗ (e.g, node i∗ = 1). The computation center can be an agent or a ground
station. It receives measurements from all agents j 6= i∗, processes them, and broadcast them back
the output (e.g. state estimation). Therefore, the adjacency coefficients satisfy ai∗ j > 0.
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Figure 2.15: Graph example
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Figure 2.16: Collaborative estimation with a centralised architecture. Each node is a local sensor (e.g. embedded on
different vehicles) that sends its measurements to a central node (by convention, i = 0) which processes
all measurements in a collaborative filter. The communication graph is defined by the adjacency
coefficients a0i, represented by switches for a case where a0i ∈ {0, 1}.

• In a decentralised architecture, the estimation is performed by all the agents with respect to their
own representation of the whole system.

• In a distributed architecture (Figure 2.17), the estimation is performed by all the agents with respect
to their local measurements and additional communications. If all agents can emit and receive
information, the graph is said to be fully connected and the non-diagonal adjacency coefficients
satisfy aij > 0 ∀i 6= j.

2.2.2 Collaborative fusion filters

The previous section presented a collaborative framework to formalize interactions between several
agents. Agents can represent various subsystems belonging to a larger system, e.g. different vehicles
belonging to a float, or different sensors embedded in a single vehicle. This section introduces the
Bayesian framework for collaborative state estimation. It will be referred to as fusion.

Denote fk the system’s dynamical model:

ξk = fk(ξk−1) + wk (2.65)

where ξk ∈ Rd is the system’s state and wk ∈ Rd the process noise. If the state is a collection of several
individual states (e.g. several vehicles flying in formation), then f is defined as:

fk(ξk) ,
[

f i
k(x

1
k)

T , ..., f i
k(x

Na
k )T

]T
(2.66)
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Figure 2.17: Collaborative estimation with a distributed architecture. Each node consists of a local sensor and a
filter. The node broadcasts its measurements to its neighbours and fuses its local measurements mi

k

with received measurements mij
k . The communication graph is defined by the adjacency coefficients aij.

Let us consider a node i which aims to estimate the system’s state ξk. In addition to its local measure-

ments mi
k ∈ Rdi

m , it also receives communicated measurements mij
k ∈ Rdj

m from its Ni neighbours. Local
measurements are linked to the system’s state with the local observation equation:

mi
k = hi

k(ξk) + vi
k (2.67)

where hi
k is the local observation equation and vi

k the local measurements noise. The local measurement
density is noted p(mi

k|ξk). Communicated measurements are modelled as follows:

mij
k = hij

k (ξk) + vij
k (2.68)

where hij
k is the collaborative observation equation and vij

k the local measurements noise. Exponent
ij indicates that data is received by agent i from agent j. The collaborative measurement density
is p(mij

k |ξk). For the sake of brevity, it is assumed that hi
k = hi ∀k, hij

k = hij ∀k, f i
k = f i ∀k, and

fk = f ∀k. In what follows, the joint measurements vector containing both local measurements mi
k

and communicated measurements will be considered: zi
k ,

[
mi

k
T , mi1

k
T , ..., mij

k
T

, ..., miNi
k

T
]T

. If the

measurements are statistically independent, the collaborative likelihood is:

p(zi
k|ξk) = p(mi

k|ξk)
Ni

∏
j=1

p(mij
k |ξk) (2.69)

Denote Zi
k the vector containing all the node measurements’ trajectory: Zi

k ,
[
zi

k
T , ..., zi

k
T
]T

Then, the
Optimal Filter (see Section 2.1.2) can be applied to this scheme.

Figure 2.16 illustrates a centralised collaborative architecture. As introduced in last section, each node
consists of a local sensor (e.g. embedded on different vehicles). It sends its measurements to the central
node (i = 0) which processes all measurements in a collaborative filter. The communication graph is
defined by the adjacency coefficients a0i.

Figure 2.17 illustrates a distributed collaborative architecture. Each node consists of both a local
sensor and a filter. It broadcasts its measurements to its neighbours and fuses its local measurements
mi

k with received measurements mij
k . This results in Na estimates ξi

k. If the graph is fully connected, i.e,
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aij > 0∀i, j, then every estimate tend to the centralised solution, i.e. the estimate that would be obtained
with a centralised filter. In what follows, the collaborative estimation scheme will be formalized in a
distributed way. To retrieve a centralised formulation, set i to 0.

Each agent has its own estimation ξ̂i
k ∈ Rd of the state vector ξk. In the linear Gaussian case, one can

consider to fuse all measurements contained in zi
k with a Kalman Filter. As stated by Verhaegen [VVD86],

the number of floating point operations per iteration for a Kalman Filter depends on d3
m (see Appendix C

for more details). For a collaborative Kalman Filter, the measurement’s contribution to the computational
load depends on N3

a , which may limit its use. As stated in Grocholsky [Gro02], the Kalman Filter’s
updating step cannot be simplified in a linear summation of all received innovations:

ξ̂i
k 6= ξ̂i

k|k−1 + Ki
k

(
mi

k −Hi
k ξ̂i

k|k−1

)
+ ∑

j 6=i
Kij

k

(
mij

k −Hij
k ξ̂i

k|k−1

)
(2.70)

since innovations mij
k −Hij

k ξ̂i
k|k−1 depend on the predicted state ξ̂i

k|k−1 and thus are not independent.
The KF equations also can be written in terms of information (see Appendix A). In the Gaussian

case, the information matrix is equivalent to the inverse of the covariance. The information form of
the Kalman Filter has been introduced by Maybeck [May82], and derived by Manyika [Man93]. The
Information Filter (IF) equations are obtained by introducing new state variables:

ŷi , Pi−1
ξ̂i

Ŷ
i
, Pi−1 (2.71)

Information from local measurements are defined as follows:

ii
k , Hi

k
T

Ri
k
−1

mi
k

Ii
k , Hi

k
T

Ri
k
−1

Hi
k

(2.72)

Likewise, information from communicated measurements are:

iij
k , Hij

k
T

Rij
k
−1

mij
k

Iij
k , Hij

k
T

Rij
k
−1

Hij
k

(2.73)

This leads to a linear additive formulation of the correction step:

ŷi
k = ŷk|k−1 + ii

k + ∑j 6=i aiji
ij
k

Ŷ
i
k = Ŷk|k−1 + Ii

k + ∑j 6=i aijI
ij
k

(2.74)

where information contribution are by definition independent. Factors aij ∈ R are the adjacency
coefficients of the communication graph. Note that the information form (2.74) is equivalent to a
Least-Squares solution (2.8). Then, the impact of measurements on the computational load only depends
on Na instead of N3

a . It can even further be reduced to the number of neighbours for agent i Ni ≤ Na by
only performing the correction for non-zero adjacency coefficients aij 6= 0.

Collaborative estimation for non-linear and/or non-Gaussian problems remains an active topic of
research. Collaborative information filters or KF have been extended to non-linear cases (e.g. Sharma
[ST08]). Although these approaches give good results with slightly non-linear measurements, they suffer
the same drawbacks as conventional EKF or non-linear information filters. Distributed Particle Filters
are also developped (Vazquez [VM17]). However, they often require a higher communication load than
deterministic Bayesian filter (Nerurkar [NRM09]). For unknown but bounded uncertainties, collaborative
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Figure 2.18: Federated filter architecture. Each node consists of a local sensor and a local filter. It broadcasts its
measurements to the Master Filter which fuses all received measurements together. In this figure,
the Federated Filter is illustrated for a centralised architecture. It can also be extended to distributed
schemes.

set-based approaches remain in the same framework than the one introduced in Section 2.1.5. A
Constraints Satisfaction Problem can be formulated to estimate a set containing the system’s state ξ

(Bethencourt [BJ13]).

2.2.3 Federated filters

The centralised and distributed architectures were defined in Section 2.2.1. For both architectures, the
formalism introduced in Section 2.2 can be applied. Several ways of organizing the fusion of gathered
measurements from the point of view of one agent i will be introduced.

A first filter implementation consists of gathering all measurements and performing the state estima-
tion in a single filter (e.g. Sharma [ST08], Li [LN13]). This strategy can be applied for centralised and
distributed architectures, as illustrated in Figure 2.16 and Figure 2.17. However, this single layer fusion
may not be robust to measurement ambiguities and measurements outliers.

In order to increase the robustness of fusion architectures, a two-layers architecture was introduced,
called Federated Filter (Carlson [Car88]). A federated filter architecture consists of a first layer of several
sensor-dedicated local filters running in parallel. Each local filter deals with measurement mi to provide a
first estimate x̂i

k of the system’s state. A second layer, which consist of one Master Filter (MF) fuses the
local estimates to obtain a high level estimation ξ̂k. This architecture is illustrated in Figure 2.18. Under
the hypothesis that all uncertainties involved in the second layer are Gaussian, the Master Filter may
consists of a Kalman Filter, which can be formulated as an information filter (2.74) (Manyika [Man93]).
The Federated Filter architecture can also be used in a distributed way. In this case, each agent has its
own Master Filter and receives either local measurements mij

k from agents j 6= i and processes itself
them into Na local filters. The Master Filter is shown to be globally optimal, in the sense that it tends
to the collaborative Optimal Filter solution (Carlson [Car88]). In practice, if the Master Filter update
frequency is lower than that of the local filters, the estimate is conservatively sub-optimal, which means
that it remains consistent with the measurements while being slightly pessimistic. This design yields
a lower computation load than single layer approaches, and opens the way to more efficient sensor
fault detection, failure isolation, and recovery capability. A faulty measurement or local estimate will
not deteriorate other local filters’ outputs and will be smoothed by them in the Master Filter’s fusion.
Federated filter architecture also allows non-linearities to be tackled by local dedicated filters in the
first layer, while the fusion itself is performed in a linear way by the Master Filter in the second layer.
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Carlson’s work [Car88] led to various applications, in particular cooperative navigation from non-linear
measurements (e.g. Sun [Sun04], Wang [WCG13]).

2.3 state control under state uncertainty and constraints

Section 2.1 introduced the state estimation problem and some existing solution to retrieve the state xk
given the past measurements Mk and the associated uncertainties. The objective of the control loop is
bringing the state to a desired state, or following a desired state trajectory. In most cases, the estimation
uncertainty (e.g. the estimate covariance) can be neglected after a reasonable number of measurements
(or at least asymptotically), which allows the control scheme to be deterministic. The state control block
consists of determining the control input uk ∈ Rdc to bring the next propagated state as close as possible
to the desired state, which is equivalent to minimising a cost function expressed at time-step k. If the
control problem is not constrained, the control solution can be reactive, i.e. only accounting for the
current state and desired state, for example pure pursuit or proportional navigation for interception
problems (Shneydor [Shn98]). Optimal analytic solutions can even be derived for particular dynamics
and cost functions (e.g. aircraft trajectory optimisation, Heymann [HBA96]).

If the state trajectory is constrained, reactive solutions are not sufficient to ensure the constraints
satisfaction. To tackle such problems, predictive approaches have been introduced (e.g. see Model
Predictive Control, MPC [ML99], and Optimal Control [Ber+05]). They rely on a constrained optimisation
of a future trajectory, providing a sequence of optimal future control inputs. Periodically repeating
the optimisation process while updating the starting point with the state estimate provides a feedback
control solution, given the past measurements.

However, in the presence of non-vanishing state uncertainty, the problem becomes more complex.
Early works on uncertain state control tackled unconstrained Gaussian state trajectories (e.g. Linear
Quadratic Gaussian control, LQG [Ath71]). In order to account for constrained problems, robust control
approaches consider the worst case trajectory, often subject to bounded uncertainties (e.g. robust MPC
[CM87b], tube-based MPC [Lim+10]). However, for some applications, robust constrained control
methods may end with conservative solutions. The conservatism can be moderated by relaxing the
constraints while still controlling the risk of their violation. To do so, chance constrained optimisation
introduces a failure probability constraint which is forced to remain below a desired level of error.

Figure 2.19 illustrates four emblematic control solutions. In this example, the coloured areas represent
the forbidden states, and the circles around the successive points of the trajectories are the state
uncertainties. The LQG provides the optimal unconstrained solution to a quadratic cost function under
linear dynamics and Gaussian uncertainty. The MPC provides an optimal (or near optimal) constrained
solution for a deterministic state. In the presence of uncertainty, constraints can be satisfied for the
trajectory expectation, but not for all possible trajectory realisations. The robust worst case control
provides a solution ensuring that all possible trajectories satisfy the constraints. However, the achieved
cost value (e.g. the amount of energy spent on the trajectory) is likely to be high. The chance constrained
MPC constitutes a trade-off between the unconstrained solution and the robust solution, by redefining
the constraints as a maximum admissible probability of constraint violation.

Section 2.3.1 introduces the framework of constrained trajectory planning and its application to
feedback control under uncertainty. Section 2.3.2 introduces the chance constrained optimisation
framework and its applications to feedback control.
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Figure 2.19: Four emblematic optimal control approaches under state uncertainty. Solid lines represent the solution
trajectories (expectancies) while filled circles represent the state uncertainties (e.g. density supports for
bounded densities). The Linear Quadratic Gaussian (LQG, green trajectory) consists of the optimal
unconstrained control solution under Gaussian state uncertainty. The Model Predictive Control (MPC,
blue trajectory) consists of a constrained optimisation which does not account for uncertainty. In
other words, MPC satisfies the constraints for the state expectation only. The Chance Constrained
MPC (red trajectory) consists of keeping the probability of failure under a desired threshold. The
robust control approaches (brown trajectory) ensure that every possible state does not violate the
constraints. Although robust worst case control approaches yield the safer solution, they are often more
conservative than other approaches and may end with no solution.
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2.3.1 Trajectory planning

Trajectory optimisation

Consider the following deterministic estimation problem: finding the control sequence U = [uT
1 , ..., uT

K]
T ∈

RdcK which minimises a cost function J : RdcK × Rd(K+1) → R and satisfies the state constraints
G : Rd(K+1) → R and the control constraints Gc : RdcK → R along the state trajectory X = [xT

0 , ..., xT
K]

T ∈
Rd(K+1):

min
U

J(X, U), s.t.


G(X) ≤ 0

xk = f (xk−1, uk) ∀k ∈ [1, K]

Gc(U) ≤ 0

(2.75)

A commonly used formulation of the cost function J(X, U) is:

J(X, U) = UTRU + (X− Xd)TQ(X− Xd) +
K−1

∑
k=1

(uk+1 − uk)
TS(uk+1 − uk) (2.76)

where R, Q, and S are weighting positive definite matrices respectively quantifying the importance
of minimising the following: the control norm (often linked to energy expense), the desired state
achievement (which can either be a trajectory to track or a desired terminal state), and the control
smoothness (variation between two consecutive control inputs).

In what follows, the feasible set will refer to the set containing all admissible trajectories with respect
to the state constraints G:

F ,
{

X ∈ Rd(K+1) ∣∣ G(X) ≤ 0
}

(2.77)

Trajectory optimisation can be applied to feedback control, which consists of solving a new problem of
the form (2.75) at each time-step by propagating the trajectory from current time-step k to a given horizon
k + K. In this context, the initial state of the predicted trajectory x̂k is provided by a state estimator
(sometimes referred as an observer) given a trajectory of past measurements. Two main ways exist for
defining the prediction horizon. The first one consists of a final time horizon K which corresponds to
the time-step when the system reaches the terminal desired state. At each time-step k, the optimisation
is then performed on the basis of a prediction from k to K, as illustrated in Figure 2.20 (a). The second
one is the Receding Horizon Control scheme (RHC, [MM89]), also referred as Model Predictive Control
(MPC [ML99]). The RHC consists of solving problem (2.75) from current time-step k to horizon k + K,
with K a fixed horizon length, as illustrated in Figure 2.20 (b). Both approaches result for each time-step
k in a future control sequence U = [uT

k+1, ..., uT
k+K]

T whose only the first control input uk+1 is performed
to propagate the actual state xk+1 = f (xk, uk+1) + wk+1. At the next time-step k + 1, the initial predicted
state is updated via the current state estimation.

Differentiable optimisation

The most common optimisation methods to solve problem (2.75) belong to the differentiable optimisation
scheme. The term differential refers to the assumption that the cost function J and the constraints G,
xk − f (xk−1, uk), and Gc are differentiable with respect to the optimisation variable U = [uT

1 , ..., uT
K]

T .
Note that since X = [xT

0 , ..., xT
K]

T depends on U, G(X) also depends on U. Non-linear differentiable
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Figure 2.20: Two ways of integrating constrained optimisation into a control loop: The final state horizon control (a)
consists of regularly updating the optimal trajectory on a non-fixed time horizon (the trajectory lasts
until it reaches the desired state). The Receding Horizon Control (RHC) consists of regularly updating
the optimal trajectory on the basis of a fixed receding horizon. Although it yields sub-optimal solutions,
it has a lower computational load than optimal control approaches, which is of interest for embedded
applications.

optimisation solvers under inequality constraints rely on the Karush–Kuhn–Tucker conditions (KKT,
[KT14]) which state necessary conditions for admissible points.

Early approaches to satisfy KKT condeitions considered affine constraint satisfaction into gradient
descent methods (e.g. Calamai1 [CM87a]). Another way to deal with constraints is using cost penalisation,
i.e. writing an equivalent unconstrained problem (or a series of problems) by adding penalisation terms
in the cost function (e.g. Conn [CGT91]). If not carefully done, this may result in an unsolvable problem.
Nevertheless, advanced methods use this idea to tackle linear and non-linear convex problems (e.g.
interior-point method [PW00]). Other methods consider the resolution of a series of simpler quadratic
sub-problems to approach non-linear constrained problems, for example, the Sequential Quadratic
Programming methods (SQP, see Boggs [BT95], Gill [GMS05]). SQP can be extended to non-convex
problems (e.g. Curtis [CO12]).

In what follows, it is assumed that:

• The cost function J is differentiable with respect to U;

• The dynamical model f is differentiable with respect to the control input;

• The constraint G on the trajectory is differentiable with respect to U;

• The constraint Gc on the control sequence is differentiable.
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Trajectory planning under uncertainty and application to control

When the initial state and the dynamics become uncertain, the trajectory turns to a random variable.
Problem (2.75) becomes a stochastic problem and can no more be solved by deterministic optimisation
methods anymore:

min
U

J(X, U), s.t.



G(X) ≤ 0

xk = f (xk−1, uk) + wk ∀k ∈ [1, K]

x0 ∼ p(x0)

wk ∼ πx
k|k−1(xk − f (xk−1, uk)) ∀k ∈ [1, K]

Gc(U) ≤ 0

(2.78)

where p(x0) is the initial state density and πk|k−1 the process noise density at time-step k.
A variety of approaches have been introduced to solve problem (2.78) whose cost function and

constraints depending on X are stochastic. In the large majority of them, the cost function is replaced
with its expectation EX [J(X, U)]. A first solution to tackle uncertain constraints is replacing them with
penalisation terms which consist of their expectation in the cost function (see penalisation methods in the
previous section). However, this only guarantees that the constraints are satisfied for the expected value
of the trajectory.

In order to ensure that constraints are satisfied for all possible states, robust approaches consist of
deterministically solving the problem for the worst case scenario (e.g. see Bemporad [BM99]). Several
methods have been introduced, for example min-max formulations (Campo [CM87b]), or set-based
Model Predictive Control (e.g. with parallelotopes [BG00], ellipsoids [KRS00], or intervals [LP03]), that
rely on the same scheme as that described in Section 2.1.5.

However, these approaches are often conservative and may end with no solution. To reduce the
conservatism of such solutions while controlling the risk of constraint violation, the chance constraint
concept has been introduced (Charnes [CCS58]), and is described hereafter.

2.3.2 Stochastic optimisation under chance constraint

Chance constrained optimisation

It is possible to relax the worst case constraints while keeping the problem deterministic. In the Chance
Constrained optimisation (Charnes [CCS58]), the constraints G(X) ≤ 0 are re-written in terms of
probability of being violated P(G(X) > 0), or failure probability. The failure probability can be forced to
remain below a desired threshold δ ∈ [0, 1] (equivalently, one can define the probability P(G(X) ≤ 0) of
satisfying the constraints and force it to remain greater than 1− δ). This makes it possible to explicitly
estimate and master the risk of constraint violation. The cost function J must also be re-written in a
deterministic way. It is usually replaced with its expectation, which yields the following problem:

min
U

EX [J(X, U)] , s.t.

P(G(X) > 0) ≤ δ

Gc(U) ≤ 0
(2.79)

provided that the initial state and the process noise are characterised by known density: x0 ∼ p(x0),
and wk ∼ πx

k|k−1(xk − f (xk−1, uk)) ∀k ∈ [1, K].
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The failure probability is expressed by:

P(G(X) > 0) =
∫

X 6∈F
p(X)dX (2.80)

where F is the feasible set (2.77) and where p(X) represents the joint states densities at every predicted
time-steps:

p(X) , p(x0)
K

∏
i=1

p(xi|x0) (2.81)

where p(x0) is the initial state density and p(xi|x0) ,
∫

...
∫

p(x0)p(x1|x0)dx0...p(xi|xi−1)dxi−1 the ith

predicted state density (i times Chapman-Kolmogorov convolution (2.4)) The failure probability can
also be denoted P(X 6∈ F ). Some authors have tackled the normal law case [BLW06] and the uniform
law case [CEG06]. Nevertheless, these approaches are limited to analytical state densities and convex
feasible sets.

Note that the chance constraint formulation (2.80) quantifies the failure probability on the whole
trajectory X = [xT

0 , ..., xT
K]

T , given a trajectory density p. Instantaneous formulations have also been
introduced (e.g. Heirung [Hei+18], Calafiore [CF13], Mesbah [Mes+14]) and consist of the probability of
constraint violations on the state at a given predicted time-step. Such formulations are not equivalent
to (2.80) in the general case. Consider an example where the universe of X is a finite set of 10 possible
trajectories i, made of 10 time-steps k: Xi = [xi

0, ..., xi
9]

T . Assume that, for every control sequence k, the
state xi=k+1

k violates the constraints at time-step k. As a result, the instantaneous constraint violation
formulation yields a value of 0.1 at each time-step. However, the global failure probability formulation
(2.80) yields a value of 1, since all possible trajectories violate the constraints at lest once.

Sample methods for chance constrained optimisation

To tackle non-analytic densities and non-convex feasible sets, the sampled based chance constraint
optimisation consists of propagating a set of weighted point-wise trajectories to evaluate the failure
probability (Pagnoncelli [PAS09]). It has been applied to trajectory planning for control problems
(Particle Control [Bla+10; BOW11]). The initial state density p(x0) consists of a mixture of N Dirac deltas
of centers xi

0 and weights wi
0, likewise in the Particle Filter (2.19). Each particle xi

0 can be dynamically
propagated along the whole trajectory, given a control sequence U = [uT

1 , ..., uT
K]

T and K realisations of
the process noise wi

k:

xi
1 = f (xi

0, u1) + wi
1

...

xi
K = f (xi

K−1, uK) + wi
K

(2.82)

The failure probability can then be approached by:

P̂(X 6∈ F ) =
N

∑
i=1

wi
k1Xi 6∈F (2.83)

where Xi = [xi
0

T , ..., xKiT ]T . This approach is guaranteed efficient for a large number of sample-trajectories
(theoretically infinite). However, the number of particle is often constrained in practice due to computa-
tional limitations, and cannot guarantee the accuracy of the method. Furthermore, the sample-based
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Figure 2.21: Particle Control scheme (Blackmore [Bla+10]): the estimated failure probability consists of the sum of
the weights of the predicted trajectories violating the constraints only once

failure probability estimation is not differentiable with respect to the control sequence which constitutes
the optimisation variables. This restricts Particle Control to linear programming optimisation techniques,
which limits its use to linear dynamics (Blackmore [Bla+10]). Nevertheless, this kind of approach opens
the way to non-parametric densities and non-convex feasible sets problems.

Figure 2.21 illustrates the Particle Control scheme for a case where five trajectories violate the
constraints. If all weights are equal to wi

0 = 1
N and N = 20, then P(X 6∈ F ) = 0.25.

Application to guidance and control

Chance constrained trajectory planning can be applied to feedback guidance and control problems
when used in conjunction with a state estimation algorithm. Its integration in Receding Horizon Control
(RHC) and Model Predictive Control (MPC) has been widely considered (Schwarm [SN99], Oldewurtel
[OJM08], Primatesta [PB17], Heirung [Hei+18]). The sample-based formulation (Blackmore [Bla+10])
yielded several works on sample-based MPC and convergence studies (e.g. Calafiore [CF13]).

The chance constrained RHC scheme consists of solving problem (2.79) at each time-step k with an
initial state density p(xk|Mk) (provided, for example, by a probabilistic estimator), along the trajectory
from current time-step k to horizon k + K. It results in a future control sequence U = [uT

k+1, ..., uT
k+K]

T

whose only the first control input uk+1 is performed to propagate the actual state xk+1 = f (xk, uk+1) +

wk+1. Note that if measurements stop to be available during a period of time starting at time-step k,
the determined control input ensures that the chance constraint is satisfied until the prediction horizon
k + K, since the optimisation problem does not account for possible measurements in the uncertainty
propagation.
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M E T H O D O L O G Y

This chapter provides elements on the work’s methodology, in particular concerning the simulations
and their interpretation. The proposed estimation and trajectory planning algorithms are provided with
a general formulation. Simulations are presented in order to illustrate the theoretical results and to
evaluate the practical impact of the work.

Section 3.1 introduces the dynamical models used to evaluate the state estimation algorithms
(Chapters 4 and 5). Linear or time-varying linear dynamical models associated with negligible process
noise were chosen in order to focus on the impact of measurements ambiguities and non-linearities.
The considered models are the linear double integrator dynamics, and the Inertial Measurement Unit drift
dynamics (IMU).

Section 3.2 introduces the studied observation models. The work focuses on the Terrain Aided
Navigation (TAN) application. TAN constitutes a severely ambiguous problem and allows estimation
algorithms to be compared in a significant context. Furthermore, it belongs to a larger class of problems
that consist of state estimation from vector field measurements. Additional observation models such as
Cartesian measurements and polar measurements may be used in addition to the TAN problem, but do not
constitute the focus of the work.

Section 3.3 presents five TAN scenarios covering a large variety of measurements ambiguities. They
are featured and classified in terms of two ambiguity criteria: the lack of measurement information and
the level of posterior multimodality they yield.

Section 3.4 introduces the dynamical models used to evaluate the trajectory planning algorithms. Two
linear models are introduced: the longitudinal aircraft dynamics and the Clohessy-Wiltshire orbital relative
dynamics. A non-linear model will be also considered: the fixed-wing aircraft unicycle dynamics.

Section 3.5 defines the numerical criteria used to interpret the simulations: the Root Mean Square
Error (RMSE); the average confidence of an estimator; the non-convergence rate; the pessimism rate;
and the RMSE rate.

3.1 dynamical models for state estimation

Double integrator

In the following chapters, Double Integrator will refer to the dynamical model defined by:

ẋ =

[
03 I3

03 03

]
x +

[
03

I3

]
u + w (3.1)
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where the state x =
[
pT , VT]T

=
[
x, y, z, Vx, Vy, Vz

]T consists of three Cartesian positions and three
velocities, the control u ∈ R3 consists of three accelerations, and w ∈ R6 is the process noise. In practice,
it can be approximated by the Euler method, for a time-step dt ∈ R+:

xk =

[
I3 dtI3

03 I3

]
xk−1 +

[
03

dtI3

]
uk + wk (3.2)

In this thesis, the time-step is set to dt = 0.1 s for the simulations.

IMU model

Consider a vehicle whose state vector consists of its geographical position, velocity, and attitude in Earth
frame:

xk =
[
pT , VT , ψT

]T
∈ R9 (3.3)

where p =
[
pλ, pφ, ph

]T is the geographical position (respectively latitude (rad), longitude (rad), altitude
(m)), V ∈ R3 is the velocity vector (ms-1), and ψ = [ψ, θ, ϕ]T is the attitude (euler angles in rad, respect-
ively heading, pitch, roll). These values are unknown and have to be estimated by the navigation system.
The most commonplace navigation approach in the aerospace field relies on an Inertial Measurement
Unit (IMU).

The IMU measures the vehicle’s acceleration ma
k and the vehicle angular rate mω

k in the inertial
frame, via respectively three accelerometers and three gyrometers. The inertial frame is defined as a
Galilean reference frame. The initial vehicle’s state x0 is assumed to be known, as well as a gravity model
providing the gravitational accelerations for one given state. The combination of ma

k and the gravity
model yields the non-gravitational accelerations (specific accelerations), i.e. the vehicle acceleration
in Earth frame. The measured angular rate mω

k is also compensated by the Earth rotation rate, which
yields the specific angular rate. The IMU is coupled to a double integrator which integrates the specific
accelerations and angular rates to provide an estimate of the vehicle’s state, called IMU state x̂IMU

k
IMU accelerometers and gyrometers measurements are uncertain and can be modelled as follows:

ma
k = ak + ba,k + va

k

mω
k = ωk + bω,k + vω

k

(3.4)

where ak ∈ R3 and ωk ∈ R3 are the actual vehicle acceleration and the actual angular rate in the inertial
frame. Noises va

k ∈ R3 and vω
k ∈ R3 are associated with normally distributed random walk process

characterised by covariances Ra ∈ R3×3 and Rω ∈ R3×3. Vectors ba ∈ R3 and bω ∈ R3 are called IMU
bias. By iterative integration of IMU measurements, the IMU state drifts from the actual state and may
rapidly provide poor navigation information.

The IMU errors can be modeled as a state vector δxk which consists of the gap between the actual
state and the IMU state (9 state variables) and the IMU bias (6 state variables):

δxk =
[
δpT

k , δVT
k , δψT

k , bT
a,k, bT

ω,k

]T
∈ R15 (3.5)
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where δpk ∈ R3 is the metric position error, δVk the velocity error, δψk the attitude angles errors, and
ba,k, and bω,k the sensor bias. The inertial errors dynamics can be described by a linearised model:

δxk = Akδxk−1 + Bkwk (3.6)

where matrices Ak ∈ R15×15 and Bk ∈ R15×12 depend on the state, the gravity model, the measured
specific acceleration ma

k, and the IMU characteristics. The process noise wk ∈ R12 is a Gaussian random
process. Note that model (3.6) is independent from the carrier vehicle dynamical model, since the
dynamics is directly measured and integrated by the IMU and integrator system. Also, no explicit
control input is involved in (3.6). A complete derivation of inertial equations and inertial errors model
can be found in Britting [Bri71] and Dahia [Dah05]. Note that some more precise models can be used to
refine the IMU drift dynamics by involving additional variable such as sensors misalignments, or the
temperature of the system.

The inertial state has to be corrected using additional measurements (e.g. provided by GNSS, radio
navigation, or optical sensors). Knowledge of the IMU state drift allows the problem to be formalised
as a state estimation scheme. The use of an estimator (Section 2.1.1) makes it possible to estimate the
IMU errors (3.6) and to retrieve the actual state xk as a corrected IMU state. This estimation process is
called IMU hybridisation. The estimator is referred to as hybridisation filter and to the additional sensors
as hybridisation sensors. Figure 3.1 illustrates the IMU hybridisation scheme.

Hybridisation sensors
e.g., GNSS

System 𝐱𝑘

𝐦𝑘

IMU

Hybridisation Filter
Estimate of IMU drift 𝛅 𝐱𝑘

 𝐱𝑘

Corrected 
inertial state

Inertial state

𝐦𝑘
𝜔

Iterative double 
integrator

Acceleration, 
angular rate

 𝐱𝑘
𝐼𝑀𝑈

Gravity model

𝐠

𝐦𝑘
𝑎

Figure 3.1: IMU hybridization scheme: the IMU measures the vehicle accelerations and angular rates that are
integrated to produce an IMU state estimate. Since this estimate drifts, an hybridisation of the IMU with
additional measurements is needed, which provides a corrected state estimate.

3.2 observation models for state estimation

Cartesian measurements

Cartesian measurements refer to the following observation model:

mk =
[
I3 03

]
xk + vk ∈ R3 (3.7)

where the state consists of three positions pT
k ∈ R3 and three velocity variables vT

k ∈ R3: x = [pT
k , vT

k ]
T ∈

R6. This scheme can be extended to larger states (including for example attitude angles) and to other
measurements (e.g. velocity measurements).
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Figure 3.2: Relative measurements (βij, εij, rij)

Polar tracking

In the following, the polar tracking measurements are defined in the context of relative sensing from a
chaser vehicle i toward a target vehicle j. Their relative Line Of Sight (LOS) can be defined by a Cartesian
vector rij , [xij, yij, zij]T ∈ R3. Measurements consist of the bearing angle βij ∈ R, the elevation angle
εij ∈ R, and the range rij > 0. As illustrated in Figure 3.2, their relationship with rij is defined by:

βij

εij

rij

 =


atan

(
yij

xij

)
atan

(
zij√

xij2+yij2

)
√

xij2 + yij2 + zij2

+ vk ∈ R3 (3.8)

Terrain Aided Navigation (TAN)

The Terrain Aided Navigation problem will be referred to as TAN. It consists of estimating the state of a
mobile system (e.g. an aircraft) by only measuring the relative altitude with respect to the flown-over
terrain and an embedded terrain altitude map. This measurement can be performed by a radar-altimeter
or a LASER pointing toward the ground. TAN is of strong interest when exteroceptive sources of
navigation are unavailable (e.g. GNSS or radio-navigation). Such situations may occur when GNSS
is jammed or when the signal is unreachable. In this work, the TAN sensor is assumed to provide
the distance between the system and the ground along the vertical direction, i.e. the line between the
system’s center of mass and the center of the Earth (or the flown-over body in general). Figure 3.3
illustrates the following observation equation:

mk = zk −DEM(λk, φk) + vk (3.9)
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where (λk, φk, zk) are the system’s latitude, longitude, and altitude, DEM : R2 → R is the embedded
terrain map and vk ∈ R is the measurement noise. Unless a different measurement noise is specified,
the default density is a truncated Gaussian function defined by:

p(mk|xk) ∝ exp
(
−1

2
(mk − h(xk))

TR−1(mk − h(xk))

)
1[vk ]

(3.10)

Where R is a scalar covariance of 152 m2, and the density support is [vk] = [−3× 15,+3× 15] m (e.g.
see Murangira [Mur+11]).

There is no analytic description of DEM, which is assumed to be obtained from an embedded terrain
map. The system trajectory is assumed to be rectilinear uniform, and the measurement rate is 10Hz.

3.3 terrain aided navigation scenarios and their ambi-
guities

The estimation algorithms are tested on several terrain scenarios, corresponding to different levels
of ambiguities and information. Appendix A provides a definition of information, which quantifies
the informativeness of the measurements with regard to the state. Appendix B provides a definition
of measurement ambiguity in terms of posterior multimodalities, i.e. the number of maxima of the
posterior theoretical conditional density (2.5). Several conditions can cause multimodalities, such as the
non-injectivity of the observation model (2.3). The studied scenarios consist of various terrain types:

1. Scenario TAN Alps: a somewhat ambiguous terrain, plotted in Figure 3.4. This terrain is a typical
alpine topography taken from [Mur14, Scenario 1]. The resolution is 100 m. The trajectory duration
is 90 s (900 time-steps). The vehicle velocity is about 230 ms-1. An initial state uncertainty standard
deviation of 1 km is assumed in position and 4.2 ms-1 in velocity. Note that the geographic
coordinates of this scenario are fictitious.

2. Scenario TAN Canyon: a severely ambiguous terrain, plotted in Figure 3.5. This terrain is also an
alpine topography taken from [Mur14, Scenario 3]. The resolution is 100 m. The trajectory duration
is 100 s (1000 time-steps). The vehicle velocity is about 230 ms-1. An initial state uncertainty
standard deviation of 1 km is assumed in position and 4.2 ms-1 in velocity. Note that the geographic
coordinates of this scenario are fictitious.

3. Scenario TAN La Reunion: La Reunion island, plotted in Figure 3.6. This scenario consists of a
flyover of the sea during the first part, which only provides information on altitude (it is equivalent
to a flat terrain). During the second part, the volcanic island is flown-over, which finally provides
information on latitude and longitude. This terrain is available on the IGN website (French Institut
Géographique National) [IGN18]. The resolution is 250 m. The trajectory duration is 90 s (900 time-
steps). The vehicle velocity is about 230 ms-1. An initial state uncertainty standard deviation of
1 km is assumed in position and 4.2 ms-1 in velocity.

4. Scenario TAN Moon flyby: a lunar flyby scenario, plotted in Figure 3.7, obtained from Kaguya
mission [Kat+08], and available for example on the Map a planet website [USG18]. The map
resolution is 1 km. A circular equatorial orbit portion of 250 s (2500 time-steps) at an altitude of
100 km and a velocity of 1.6× 103 ms-1 is simulated. An initial state uncertainty standard deviation
of 40 km is assumed in position and 6.7 ms-1 in velocity. This scenario is a realistic case of severe
ambiguities due to lunar craters. Furthermore, planetary exploration in general is a good example
of where GNSS-denied navigation applies.
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5. Scenario TAN Sinusoidal terrain: a severely ambiguous theoretical terrain, plotted in Figure 3.8,
defined by:

z =

104 × sin(aλ) if λ > 0.28◦

104 × sin(aφ) else
(3.11)

with a = 2π
0.05 . The resolution is 100 m. The trajectory duration is 120 s (1200 time-steps). The

vehicle velocity is about 200 ms-1. An initial state uncertainty standard deviation of 1 km is
assumed in position and 4.2 ms-1 in velocity.

mk 
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Figure 3.3: Elevation measurement mi
k in terrain navigation
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Figure 3.4: Terrain map for Scenario TAN Alps, with the terrain elevation in meters (gray scale), and trajectory
(green line)



3.3 terrain aided navigation scenarios and their ambiguities 55

87.1 87.15 87.2 87.25 87.3 87.35 87.4 87.45 87.5 87.55

lon (°)

44.25

44.3

44.35

44.4

44.45

44.5

44.55

la
t 

(°
)

500

600

700

800

900

1000

1100

1200

Initial state

Final state

Figure 3.5: Terrain map for Scenario TAN Canyon, with the terrain elevation in meters (gray scale), and trajectory
(green line)

55 55.1 55.2 55.3 55.4 55.5 55.6 55.7 55.8 55.9 56

lon (°)

-21.6

-21.5

-21.4

-21.3

-21.2

-21.1

-21

-20.9

-20.8

la
t 

(°
)

0

500

1000

1500

2000

2500

3000

Initial state

Final state

Figure 3.6: Terrain map for Scenario TAN La Reunion, with the terrain elevation in meters (gray scale), and trajectory
(green line)



56 methodology

96 98 100 102 104 106 108 110 112 114 116

lon (°)

-5

-4

-3

-2

-1

0

1

2

3

4

5

la
t 

(°
)

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

Final stateInitial state

Figure 3.7: Terrain map for Scenario TAN Moon flyby, with the terrain elevation in meters (gray scale), and trajectory
(green line)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

lon (°)

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

la
t 
(°

)

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Initial state

Final state

Figure 3.8: Terrain map for Scenario TAN Sinusoidal terrain, with the terrain elevation in meters (gray scale), and
trajectory (green line)



3.4 dynamical models used for trajectory planning 57

4 8 16 32

number of modes

0.0398

0.1259

0.3981

th
e

o
re

ti
c
a

l 
u

n
c
e

rt
a

in
ty

 r
a

ti
o

Leve
l o

f a
m

biguity

Sc. 1

Sc. 2

Sc. 3

Sc. 4

Sc. 5

Figure 3.9: Quantification of the scenarios measurement ambiguity for Sc. 1 (Scenario TAN Alps), Sc. 2 (Scenario
TAN Canyon), Sc. 3 Scenario TAN La Reunion), Sc. 4 (Scenario TAN Moon flyby), and Sc. 5 (Scenario
TAN Sinusoidal terrain)

The measurements ambiguities can be evaluated in terms of informativeness (see Appendix A), and
posterior multimodalities (see Appendix B). Two criteria were chosen to evaluate these aspects:

• The theoretical uncertainty ratio defined by 1
K
√

ρ1
∑K

k=1
√

ρk, where ρk is the maximum eigenvalue
of the posterior state density covariance Cov [xk ∼ p(xk|Mk)]. The covariance is evaluated at each
time-step of a given scenario whose trajectory consists of K time-steps. This criterion quantifies
the lack of information in the measurements.

• The highest number of modes encountered by the posterior state density p(xk|Mk). This criterion
quantifies the ambiguity level due to the terrain non-linearities and profile similarities.

These scalar criteria have been numerically computed for all scenarios using a grid-based state density
evaluation (see Zhang [ZL08]). Scenarios can therefore be positioned in a frame whose axis represent the
two criteria (Figure 3.9). Ambiguity rises as the coordinates’ values grow. The five considered scenarios
appear to spray along a representative declination of terrain ambiguity cases.

3.4 dynamical models used for trajectory planning

Fixed-wing aircraft unicycle model

A fixed wing aircraft motion in the horizontal plane can be described by the unicycle model (e.g. jung
[JT08]):[

ẋ ẏ V̇ ψ̇

]T
=
[
V cos ψ V sin ψ 0 g

V tan ϕ

]T
(3.12)
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where x and y are the Cartesian position of the aircraft with respect to a reference point, V is the ground
speed, ψ is the heading, g is the gravity field value, and ϕ is the rolling angle, which can be taken as
the control input (also referred as bank angle). The assumption is made that the speed remains roughly
constant.

Fixed-wing aircraft longitudinal model

A fixed wing aircraft motion in the vertical plan can be linearised around an equilibrium point (Cook
[Coo12]):

ẋ = Fx + Bu (3.13)

where

F =



Xu Xw 0 −g cos θeq 0 0
Zu Zw ueq −g sin θeq 0 0

Mu + MẇZu Mw + MẇZw Mq + ueqMẇ −Mẇg sin θeq 0 0
0 0 1 0 0 0
0 −1 0 ueq 0 0
0 0 0 0 1 0


(3.14)

and

B =



Xδe Xδt

Zδe Zδt

Mδe + MẇZδe Mδt + MẇZδt

0 0
0 0
0 0


(3.15)

The state x = [u− ueq, w, θ̇, θ, ḣ, h]T consists of the deviation between the longitudinal body axis velocity
u and the equilibrium speed ueq > 0, the vertical body frame velocity w, the pitch derivative θ̇, the pitch
θ, the Earth frame vertical speed ḣ, and the altitude h. The control u = [δe, δτ ]T consists of the elevator
angle and the throttle longitudinal acceleration. Coefficients Xu, Xw, Zu, Zw, Mu, Mw, Mẇ, Zẇ, Zq and Mq
are the stability derivatives which depend on the aircraft’s aerodynamics and structural characteristics.
Coefficients Xδe , Xδt , Zδe , Zδt , Mδe and Mδt are the control derivatives.

Relative orbital motion (Clohessy-Wiltshire equations)

The Clohessy-Wiltshire relative model approaches the dynamics of the vector linking an orbital mobile
(e.g. a spacecraft) with another mobile orbiting the same celestial body (in what follows, the target).
Let x = [x, y, ẋ, ẏ]T be the state vector representing the relative Cartesian position and velocity of the
spacecraft with respect to the target in the relative coordinate system defined in Vallado [Val97] and
illustrated in Figure 3.10. The target is assumed to cruise on a near-circular orbit.
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Figure 3.10: Relative coordinate system used to express the Clohessy-Wiltshire dynamics

The relative Clohessy-Wiltshire dynamical model can be derived from the orbital motion equations
under the hypothesis of a close proximity between the target and the spacecraft:ẍ = 2ω2ẏ + 3ω2x + ux

ÿ = −2ω2 ẋ + uy

(3.16)

where [ux, uy]T is the control acceleration and ω the target’s orbital angular rate. This model is useful
for orbital rendezvous and collision avoidance applications.

3.5 evaluation criteria for state estimation and failure

probability evaluation

In the following chapters, algorithms will be evaluated with several criteria defined in this section.
Estimation algorithms outputs are a state estimate x̂k and a state confidence. In this manuscript, the
confidence is defined by the covariance matrix P̂k of the posterior conditional state density. Estimators
are evaluated by running Np simulations describing the universe of realisations of the involved random
variables (initial estimation error, process noise and measurement noise realisations).

The accuracy of an algorithms is evaluated using the Root Mean Square Error (RMSE) defined by:

RMSEχ(k) =

√√√√ 1
NMC

NMC

∑
i=1
‖χ̂k,i − χk,i‖2 (3.17)

where χk,i and χ̂k,i are respectively the actual state and the estimate for simulation i at time-step k. The
state χk,i can be the whole state x or only a sub-vector, e.g. position or velocity. The RMSE can also be
used for the failure probability estimation (see Section 2.3.2).
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The average confidence of a state estimator is obtained by:

σχ(k) =
1

NMC

NMC

∑
i=1

diag
(√

P̂χ
k,i

)
(3.18)

where P̂χ
k,i is the estimated covariance matrix of the state (or state sub-vector) χ for run i.

The non-convergence rate indicates the percentage of runs having an inconsistent estimation at a given
time-step. The consistency of estimation is a binary value which indicates if the actual state belongs or
not to the confidence region. For probabilistic estimators in the general case, one can define:

100
NMC

NMC

∑
i=1

1|x̂k−xk |≥nσx(k) (3.19)

where usually n = 3 (i.e. 3σ, a confidence of 99% for a Gaussian distribution).
A pessimism ratio can be defined by the ratio between the covariance and the RMSE. This quantifies

the consistency between the actual estimation error and the estimated confidence:

pessimism(k) =
σχ(k)

RMSEχ(k)
(3.20)

A ratio around 1 would characterize a good consistency between the estimation error and the associated
confidence. If the ratio is greater than 1, the estimator is said pessimistic, which means that it results in
an unnecessary large uncertainty on the estimate (also referred to as conservatism). If the ratio is lower
than 1, the estimator is optimistic. Too much optimism may lead to non-convergences. In this thesis, the
pessimism ratio is considered to be acceptable in the interval [0.8, 1.5], and to be pessimist (conservative)
if greater than 1.5.

An RMSE ratio can be defined as an improvement criterion between the initial state uncertainty (in
terms of initial RMSE) and the final RMSE. This provides a dimensionless normalised criterion:

r(k) =
RMSEχ(kend)

RMSEχ(1)
(3.21)

This criterion is of interest for problems where the measurements are regularly collected and the noise
characteristics remain unchanged (e.g. rejection or no occurrence of outlying data). A ratio lower than 1

indicates that the final RMSE is lower than the initial RMSE. In the specific case of the TAN application
(see Section 3.2), the ratio RMSE ratio is considered to be good if lower than 0.2 in position and than 0.8
in velocity, and very good if lower than 0.1 in position and than 0.6 in velocity.



4
T H E B O X R E G U L A R I S E D PA RT I C L E F I LT E R

Chapter 2 examined the background literature about state estimation. Two frameworks were introduced,
namely Bayesian estimation and Interval Analysis. These two frameworks yielded the Box Particle Filter
(BPF) framework.

BPF was introduced in Section 2.1.6, on the basis of previous works (Gning [Gni+13]). The BPF presents
very similar features to a conventional Particle Filter, introduced in Section 2.1.4. However, instead of
propagating a cloud of weighted point-wise particles, it propagates a set of weighted boxes, i.e. vectors
of intervals. These box particles are dynamically propagated and updated by measurements using the
Interval Analysis framework (e.g. see Jaulin [Jau09]) introduced in Section 2.1.5. The measurements and
their uncertainty are described as a bounded measurements box. From a probabilistic point of view,
box particles and box measurements correspond to uniform kernels’ supports. The BPF appears to
outperform the conventional Particle Filter in terms of robustness to ambiguities (see Appendix B) and
computational load (see Appendix C), since it can reach similar performances with far less particles (e.g.
a hundred times less in Gning [GRM12]). Nevertheless, BPF has several drawbacks:

• First, it is assumed that box particles and box measurements represent uniform kernels. When the
measurement density is bounded but not uniform, the resulting performances may not account
for this information. Several other density hypotheses have been considered in other formulations
of BPF, but there is no general formulation that would allow an arbitrary density function to be
applied;

• As in the conventional PF (see Section 2.1.4), BPF requires resampling steps that do not ensure
that the actual state still belongs to any box particle, potentially leading to non-convergences in
cases of severe ambiguities (see Section 3.5 for the definition of non-convergence);

• The BPF resampling operates subdivisions of high-weighted box particles. However, no efficient
method exists for selecting the choice of dimension to subdivide;

• Last, the BPF estimated density description relies on a mixture of box particles that often exactly
overlap, resulting in a jagged state density estimation. This may negatively impact the estimation
accuracy.

This chapter introduces several contributions to the BPF field:

• Section 4.1 introduces a theoretical derivation of BPF which relaxes the hypotheses on the box
kernels and measurement density. Indeed, these densities are no longer restricted to uniform
kernels. This allows the provision of a general framework that covers previous formulations of
BPF.

• Section 4.2 introduces a guaranteed version of the resampling step, named Guaranteed Resampling,
which leads to the guarantee that the actual state always belongs to at least one box particle after
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resampling. A theoretical proof is provided. Numerical simulations illustrate the robustness of the
algorithm on the Terrain Aided Navigation (TAN) application.

• Section 4.3 introduces two different ways of subdividing box particles. The first is presented
in Section 4.3.1. It is called Geometrical Subdivision and is based on a geometrical criterion.
It is limited to dynamical models of vehicles whose state description is expressed in terms of
Cartesian coordinates. The second is in Section 4.3.2. It relies on a Maximum Likelihood (ML)
Covariance criterion and can be used whatever the state description, the dynamical model and the
measurement model. Comparisons in terms of RMSE are performed between the random picking
method from the literature (Gning [Gni+13]), the Geometrical Subdivision and the Maximum
Likelihood Covariance subdivision.

• Section 4.4 introduces a Kernel Regularisation applied to BPF. On the basis of the Regularised
Particle Filter (RPF, [MOLG01], see Section 2.1.4), the regularisation process is extended to the box
particle scheme. It aims to smooth the estimated state density in order to improve the accuracy of
the estimate. The regularised version of BPF theoretically is formally proven to enhance the state
density estimation in terms of Mean Integrated Square Error, and simulations illustrate the impact
of regularisation on estimation accuracy.

Section 4.5 concludes this chapter by comparing the performances in terms of RMSE of the Box
Regularised Particle Filter (BRPF), derived from the BPF with the aforementioned contributions, with
conventional algorithms, such as the SIR-PF, and the conventional BPF. A computational load study is
also performed, in terms of theoretical floating-point operations per time-step (see Appendix C), and of
empirical computation time.

The main application investigated in this chapter is Terrain Aided Navigation (TAN). TAN scenarios
and modeling were presented in Section 3.2. For the sake of simplicity, the vehicle’s dynamical model
is a double integrator (see Section 3.1, equation (3.2)). More realistic models will be considered in
the following chapters. The performances of the algorithms are evaluated in terms of RMSE (see
equation (3.17)), estimated covariance (see equation (3.18)), RMSE ratio (see equation (3.19)), and
pessimism (see equation (3.20)), introduced in Section 3.5.

4.1 a more general formulation of the box particle fil-
ter

The Box Particle Filter relies on a description of the estimated conditional state density as a mixture of
uniform kernels bounded by boxes. The measurement density is also assumed to be a uniform density.
In this section, this framework is generalized to any kernel:

• Box particles [xi
k] are viewed as supports of bounded kernels πi

k : Rd → R, without any hypothesis
about the kernel’s other properties;

• The measurement density, denoted πm
k is assumed to be bounded by the box measurement [mk].

Nevertheless, the following equations remain valid for unbounded measurement density (the
measurement set is then an open set equal to [mk] = Rdm ).
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4.1.1 Principle and example

The prior conditional state density at time k− 1 is defined by a mixture of N kernels bounded by box
particles [xi

k−1] ∈ IRd and weighted by weights wi
k whose sum is unity:

p(xk−1|Mk−1) =
N

∑
i=1

wi
k−1πi

k−1(xk−1)1[xi
k−1]

(xk−1) (4.1)

where each box kernel πi
k−1 : Rd → R satisfies

∫
[xi

k−1]
πi

k−1(x)dx = 1.

The process noise density, i.e. the uncertainty on the dynamics, is defined by a bounded kernel
πx

k|k−1 : Rd → R whose support is [wk] ∈ IRd, such that
∫
[wk ]

πx
k|k−1(x)dx = 1. The measurement

density, i.e. the uncertainty on the measurements, is defined by a bounded kernel πm
k : Rdm → R whose

support is [vk] ∈ IRdm , such that
∫
[vk ]

πm
k (y)dy = 1.

At each step, the conditional state density p(x|M) is defined as a weighted mixture of box particle
kernels. This is illustrated in Figure 4.1 for a scalar case, with four box particles. The prediction step is
performed by applying the Chapman-Kolmogorov equation (2.4) to the prior density p(xk−1|Mk−1) =

∑i wi
kπi

k−1(xk−1)1[xi
k−1]

(xk−1). By distributivity of the summation, it is equivalent to independently

applying the Chapman-Kolmogorov equation to each box kernel πi
k−1. Weights are not modified during

the prediction. The correction step is obtained by applying Bayes’ rule to the predicted density, which is
equivalent to independently applying it to each predicted box kernel πi

k. Weights are then updated with
regard to the overlapping of each box kernel with the measurement density, which can be interpreted
as a consistency. The Optimal filter’s equations are derived in Section 4.1.2. This leads to a general
formulation of BPF equations, which covers various particular cases introduced in the literature.
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Figure 4.1: Illustration of the general box kernel formulation of the Box Particle Filter
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4.1.2 Derivation of the optimal filter’s equations

This section details the general BPF description by deriving the Optimal Filter’s equations (introduced
in Section 2.1.2). The assumption is made that the dynamical model f : Rd → Rd and the observation
model h : Rd → Rdm are continuous on their domain. Initial box kernels πi

0 : Rd → R are also assumed
to be continuous. Likewise, the measurement kernel πm

k : Rd → Rdm is assumed to be continuous at
each time-step.

Proposition 1. Let be the prior conditional density (4.1) defined by a mixture of N kernels πi
k−1 : Rd → R

bounded by box particles [xi
k−1] ∈ IRd and weighted by weights wi

k whose sum is unity. Then, the predicted
conditional density is equal to:

p(xk|Mk−1) =
N

∑
i=1

wi
k−1πi

k|k−1(xk)1[xi
k|k−1]

(xk) (4.2)

with 
[xi

k|k−1] , [ f ]([xi
k−1], uk) + [wk]

πi
k|k−1(xk) ,

∫
[xi

k−1]
πx

k|k−1(xk − f (x, uk))π
i
k−1(x)dx

(4.3)

where πx
k|k−1 : Rd → R is the process noise kernel and uk is some deterministic control input. The posterior

conditional density is:

p(xk|Mk) =
N

∑
i=1

wi
kπi

k(xk)1[xi
k ]
(xk) (4.4)

with 
[xi

k] ,
{

xk ∈ [xi
k|k−1]

∣∣ h(xk) ∈ [mk]
}

wi
k ∝ wi

k−1

∫
[xi

k ]
πm

k (mk − h(x))πi
k|k−1(x)dx

πi
k ,

1∫
[xi

k ]
πm

k πi
k|k−1dx

πm
k πi

k|k−1

(4.5)
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Proof. Derive the Optimal Filter’s equations (see Section 2.1.2) for the prediction and correction steps.

Prediction step

Applying the Chapman-Kolmogorov equation (2.4) to the prior density (4.1), one obtains:

p(xk|Mk−1) =
∫

Rd
p(xk|xk−1)p(xk−1|Mk−1)dxk−1

=
∫

Rd
πx

k|k−1(xk − f (xk−1, uk))
N

∑
i=1

wi
k−1πi

k−11[xi
k−1]

(xk−1)dxk−1

=
N

∑
i=1

(
wi

k−1

∫
[xi

k−1]
πx

k|k−1(xk − f (xk−1, uk))π
i
k−1(xk−1)1[xi

k−1]
(xk−1)dxk−1

) (4.6)

Define πi
k|k−1 as the ith predicted kernel, whose support is included in box particle [xi

k|k−1]:

πi
k|k−1(xk) ,

∫
[xi

k−1]
πx

k|k−1(xk − f (xk−1, uk))π
i
k−1(xk−1)dxk−1 (4.7)

For the sake of brevity, kernel arguments will be omitted in what follows. The predicted conditional
density can be written as:

p(xk|Mk−1) =
N

∑
i=1

wi
k−1πi

k|k−11[xi
k|k−1]

(4.8)

with

[xi
k|k−1] , [ f ]([xi

k−1], uk) + [wk] (4.9)

which yields (4.3).

Correction step

The correction step determines the posterior conditional distribution of the state with respect to the
predictive distribution (4.8) and the measurement density p(mk|xk) = πm

k . Bayes’ rule (2.5) leads to:

p(xk|Mk) = 1
qk

p(xk|Mk−1)p(mk|xk)

= 1
qk

(
N

∑
i=1

wi
k−1πi

k|k−11[xi
k|k−1]

)
πm

k

= 1
qk

N

∑
i=1

wi
k−1

(
πi

k|k−11[xi
k|k−1]

πm
k 1[mk ]

) (4.10)

As described by (2.58), each box kernel support [xi
k|k−1] is contracted to a box [xi

k] defined as the smallest

box that contains all the states of box [xi
k|k−1] that are consistent with the measurements [mk], defined by

the Constraints Satisfaction Problem
{

xk ∈ [xi
k|k−1]

∣∣ h(xk) ∈ [mk]
}

(see Section 2.1.5). The updated
box particle is obtained by applying an interval contraction algorithm. This box contraction step is the
direct consequence of the product of the two indicator functions, i.e.:

[xi
k] =

[{
x ∈ Rd ∣∣ 1[xi

k|k−1]
(x) 1[mk ]

(mk − h(x)) 6= 0
}]

(4.11)
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Thus:

p(xk|Mk) =
1
qk

N

∑
i=1

wi
k−1

(
πm

k πi
k|k−11[xi

k ]

)
(4.12)

Note that in the particular case of the measurement space being equal to the state space (i.e. h(xk) = xk),
the contraction is equivalent to the intersection [xi

k] = [xi
k|k−1] ∩ [mk].

However, the term πm
k πi

k|k−11[xi
k ]

no longer sums to unity and is therefore not a pdf. Indeed, the

support of the kernel πi
k|k−11[xi

k|k−1]
has been truncated by [xi

k] ⊂ [xi
k|k−1] whose volume is lower or equal

to that of [xi
k|k−1]. Furthermore, it is multiplied by the measurement kernel πm

k , which leads to a new

kernel proportional to πm
k πi

k|k−1. Therefore, it has to be normalised by
∫
[xi

k ]
πm

k πi
k|k−1dx, leading to:

p(xk|Mk) =
1
qk

N

∑
i=1

wi
k−1

∫[xi
k ]

πm
k πi

k|k−1dx∫
[xi

k ]
πm

k πi
k|k−1dx

πm
k πi

k|k−11[xi
k ]

 (4.13)

thus giving,

p(xk|Mk) =
1
qk

N

∑
i=1

(
wi

k−1

∫
[xi

k ]
πm

k πi
k|k−1dx

)
πi

k1[xi
k ]

(4.14)

where πi
k ,

1∫
[xi

k ]
πm

k πi
k|k−1dx

πm
k πi

k|k−1 is the updated kernel. This kernel is only defined if
∫
[xi

k ]
πm

k πi
k|k−1dx 6=

0, i.e. if box i is consistent with the measurement density. If not, it can be set by convention to wi
k = 0.

Finally, the posterior conditional density is obtained:

p(xk|Mk) =
N

∑
i=1

wi
kπi

k1[xi
k ]

(4.15)

where the update of weights is, for k ≥ 1:

wi
k ,

1
qk

wi
k−1

∫
[xi

k ]
πm

k (mk − h(x))πi
k|k−1(x)dx (4.16)

The integral term in (4.16) can be interpreted as a consistency term between the box kernel πi
k|k−1(x)

whose support is restricted to box [xi
k] and the measurement kernel πm

k (mk − h(x)). This integral term
belongs to interval [0, 1]. If the box particle is not consistent with the measurement density, (4.16) ensures
that wi

k = 0. The normalisation quotient is:

qk = ∑
i

wi
k−1

∫
[xi

k ]
πm

k πi
k|k−1dx (4.17)

which yields (4.5).

Remark 1: link to previous work

The above development gives a general theoretical formulation of BPF. It provides a common framework
that covers a wide variety of particle and box particle filters. For example, in the case of null volume box
particles, the BPF can be linked to the Particle Filter described in Gordon [GSS93]. This can be derived
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from (4.12) when the box kernel πi
k1[xi

k ]
tends to a Dirac δci

k
, where ci

k is the center box particle i. The

updated weights are wi
k =

1
qk

wi
k−1πm

k
(
mk − h(ci

k)
)
.

Furthermore, in the case of uniform density functions, assuming that the state propagation of the box
always results in a uniform kernel, πi

k|k−1 ≈ U[ f ]([xi
k−1])+[wk ]

∀k ≥ 1 and with a uniform measurement

density πm
k = 1

|[mk ]|
, one obtains: wi

k =
1
qk

wi
k−1

1
|[mk ]|

|[xi
k ]|

|[xi
k|k−1]|

for non-empty contracted boxes and zero for

empty boxes. This is equivalent to the formulation proposed by Gning [Gni+13]:

wi
k ∝ wi

k−1
|[xi

k]|
|[xi

k|k−1]|
(4.18)

since all weights are normalised.
In the case of uniform box particles and non bounded measurement density (the box measurement

is then a set equal to the open box [mk] = Rdm ), the measurement update described in Blesa [BI+15],
wi

k =
1
qk

wi
k−1

1
|[xi

k ]|
∫
[xi

k ]
πm

k (mk − h(x))dx, is recovered.

Remark 2: implementation of box-kernels

The proposed general developments presented in the last sections make it possible to have a clear
overview on how the literature’s derivations of BPF are positioned in the Bayesian framework, and in
the assumptions done. Therefore, this general formulation of BPF has a theoretical interest.

However, the use of the exact formulation of box kernel propagation (4.3) and correction (4.5) may be
limited in practice:

• The exact formulation of each box-kernel’s propagation (4.3) may be intractable (i.e. deriving
πi

k|k−1 from πi
k−1 ∀(i, k)). For implementation simplicity, the hypothesis can be made that each

box kernel is defined via a reference kernel π:

πi
k−1(x) ≈

1
|[xi

k−1]|
π

(
x−xi

k−1
xi

k−1−xi
k−1

)
1[xi

k−1]
∀(i, k)

πi
k|k−1(x) ≈

1
|[xi

k|k−1]|
π

(
x−xi

k|k−1

xi
k|k−1−xi

k|k−1

)
1[xi

k|k−1]
∀(i, k)

(4.19)

where π : Rd → R+ integrates to unity on [0, 1], and [xi
•, xi
•] represent the bounds of box i. In Gning

[Gni+13], this approximation was done in the particular case of uniform kernels, which yields
π(x) = 1 ∀x. Such an approximation may introduce conservatism and results in a sub-optimal
propagation. A refined box propagation approach based on uniform mixtures was introduced in
Gning [GMA10], but its computational complexity may limit its use in practice.

• Integrating on Rd the composition (4.16) of the observation model h : Rd → Rdm with the
measurement density πm : Rdm → R rapidly becomes intractable for non-linear observation
models. Indeed, no explicit formulation can be derived as an expression of h, πi

k, and πm
k from

the weights update step (4.16) in the general case. This limits the practical use of the general
formulation for state estimation from ambiguous measurements, which is the purpose of this
work. For example, in the Terrain Aided Navigation (TAN) problem, the observation equation is a
function of a non-analytic Digital Elevation Model (DEM) stored in memory. Then, no analytic
solution can be derived from (4.16).
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Table 4.1: Simulation settings for the Box Particle Filter

Parameters Values

Initial uncertainty (std: m, m, ms-1, ms-1) [30, 30, 2, 2]
Process noise (std: m, m, ms-1, ms-1) [0.1, 0.1, 0.01, 0.01]
Measurement uncertainty, position (std: m) [10, 10]
Resampling threshold 0.7
Number of box particles 900

4.1.3 Numerical results

This section makes a comparison between the uniform BPF formulation (4.18) and the general formula-
tion (4.16) applied to the linear-Gaussian case:

wi
k =

1
qk

wi
k−1

1
|[xi

k|k−1]|

∫
[xi

k ]
πm

k (mk −Hx)dx (4.20)

where H ∈ Rdm×d is a known observation matrix, and with a truncated Gaussian measurement kernel
πm

k (y) ∝ exp
(
− 1

2 yTR−1y
)

1[vk ]
. In this case, R was chosen such that 1

2 δ[vk ]
= 3Diag

(√
R
)

. The chosen
dynamical model is the double integrator model (3.1) and the observation model is the Cartesian
measurements (3.7). The following points are to be checked:

1. The impact of truncated Gaussian measurement noise realisations on both formulations;

2. The impact of uniform measurement noise realisations on both formulations.

It can be expected that truncated Gaussian measurement noise would yield lower RMSE and covariance
with the Gaussian BPF formulation, while the uniform measurements would yield better results with
the uniform BPF formulation.

Figure 4.2 and Table 4.2 present the performances for both formulations in terms of Root Mean
Square Error (RMSE) and averaged covariance (100 Monte Carlo runs) for Gaussian measurements. By
accounting for the knowledge of the measurement density, the Gaussian BPF formulation can reach a
lower RMSE and a significantly lower estimated covariance than the uniform formulation, which makes
it less conservative (point 1). A Kalman Filter is added for comparison, since it tends to the optimal
solution in the linear-Gaussian case. Although the Gaussian BPF is closer to it than the uniform BPF, it
remains significantly sub-optimal. This can be explained by approximation (4.19), and by the wrapping
effect (see Section 2.1.5).

Figure 4.3 and Table 4.3 present the performances for both formulations (100 Monte Carlo runs) for
uniform measurements (point 2). In this context, the Gaussian BPF formulation yields a higher RMSE
than the uniform one and a potentially inconsistent covariance (non-convergence rate of 3% versus 0%
for uniform BPF).

Points 1 and 2 show that taking the right hypothesis on the measurement noise yields better results.
However, the general BPF formulation is difficult to implement in non-linear cases and does not appear
to be applicable to state estimation under severe ambiguities. In practice, the prediction and correction
steps can be computed in a sub-optimal but computationally efficient way with the uniform formulation
(4.18) (Gning [Gni+13]).
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Figure 4.2: Comparison between uniform and Gaussian measurement density for the Box Particle Filter with
Gaussian realisations: RMSE and filter’s average confidence (estimated covariance). The Gaussian
formulation of the likelihood allows the covariance to be lower, which yields less conservatism.

Table 4.2: Simulation results for point-mass dynamics with Cartesian measurements at final time-step. The Gaussian
measurement noise hypothesis yields the Box Particle Filter to lower Root Mean Square Error and
Covariance.

Kalman Filter BPF Uniform BPF Gaussian

Non-convergence rate (%) 0 1 2

RMSE (position, m) 3.41 7.31 5.34

RMSE (velocity, ms-1) 0.11 0.19 0.17

Covariance (position, m) 3.17 9.47 7.41

Covariance (velocity, ms-1) 0.10 0.80 0.30

Pessimism (position) 0.93 4.38 1.39

Pessimism (velocity) 0.90 1.92 1.78

RMSE ratio (position) 0.075 0.16 0.11

RMSE ratio (velocity) 0.041 0.070 0.064
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Figure 4.3: Comparison between uniform and Gaussian measurement density for the Box Particle Filter with uniform
realisations: RMSE and filter’s average confidence (estimated covariance). The Gaussian formulation of
the likelihood yields a RMSE discrepancy and an inconsistent confidence.

Table 4.3: Simulation results for point-mass dynamics with Cartesian measurements at final time-step. The Gaussian
measurement noise hypothesis yields the Box Particle Filter to higher Root Mean Square Error and a
higher non-convergence rate.

BPF Uniform BPF Gaussian

Non-convergence rate (%) 0 3

RMSE (position, m) 2.9 3.7
RMSE (velocity, ms-1) 0.29 0.46

Covariance (position, m) 13.4 12.7
Covariance (velocity, ms-1) 1.47 0.58

Pessimism (position) 4.68 3.43

Pessimism (velocity) 5.07 1.24

RMSE ratio (position) 0.063 0.082

RMSE ratio (velocity) 0.11 0.18
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4.2 a guaranteed version of multinomial resampling

In order to prevent degeneracy in the particle filter algorithm, where all the particles but one have
near-zero weights, resampling methods have been introduced, as mentioned in Section 2.1.4. Previous
works on BPF proposed to use the Multinomial Resampling approach (see Gning [AGB07; GMA10;
GRM12; GMA12; Gni+13; DF+16; MDPL16]). Multinomial Resampling however, does not take advantage
of the guaranteed characteristics of box propagation and box contraction. BPF is commonly used to
deal with bounded densities, which provides deterministic information about box particle consistency
with past measurements, that is, if box particle i is non-zero-weighted (wi

k 6= 0), then it has a non-zero
probability to contain the actual state xk. Multinomial Resampling aims to provide more instances of
high-weighted particles while removing low-weighted ones, but it does not differentiate low weighted
and zero-weighted particles. Making such a distinction would not be useful in the case of a measurement
density with a large or infinite distribution tail (e.g. Gaussian kernel), but is of strong interest in the
case of a bounded measurement support. When measurements are highly ambiguous, as in the Terrain
Aided Navigation problem, Multinomial Resampling may remove box particles containing the actual
state to the benefit of box particles that do not, leading to non-convergence.

Accounting for the knowledge of the deterministic consistency of box particles yields a derived version
of Multinomial Resampling, where only zero-weighted box particles would be removed and replaced.
In other words, all non-zero-weighted box particles are kept or subdivided and only zero-weighted box
particles are replaced with subdivisions of high-weighted box particles. The Guaranteed Resampling
method to determine the number of new instances per particle is described in Algorithm 6. In what
follows, Guaranteed BPF will refer to the BPF (Algorithm 5) using Guaranteed Resampling instead of
Multinomial Resampling.

Algorithm 6 Guaranteed Resampling

Input: particle weights {wi}i∈[1,N]

Output: number of new instances per particles {ni}i∈[1,N]

1: Initialise the duplication counters to:ni = 1 if wi
k 6= 0

ni = 0 if wi
k = 0

(4.21)

2: Compute the number of zero-weighted box particles (M ≤ N):

M = card
{

i ∈ [1, N]
∣∣ wi

k = 0
}

(4.22)

3: for i = 1 to M do
4: Draw ui ∼ U[0,1]

5: Find j ∈ [1, N] such that ui ∈
]
∑

j−1
l=1 wl , ∑

j
l=1 wl

]
6: Count nj = nj + 1
7: end for
8: Return ni ∀i ∈ [1, N]
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4.2.1 Principle and example

Figure 4.4 illustrates the effects of Guaranteed Resampling and Multinomial Resampling on an example
with a three dimensional state (x = [px, py, pz]T). The resampling step occurs after the correction
step, which consists of a box contraction step with respect to the measurements (4.11) and a weights’
update step (4.16). In this example, the actual state (the red cross) is contained in one single large box
[xix

k|k−1]. Only a small subset of it [xix
k ] ⊂ [xix

k|k−1] is consistent with the set of states consistent with the

measurements (the green set), defined by h−1([mk]) , {x ∈ Rd
∣∣ h(x) ∈ [mk]}. Therefore, by application

of (4.16), the associated weight wix
k will be small with respect to the box particles that are consistent

with [mk]. This is easily understandable in the case of uniform densities, where the weight update is

simply wi
k ∝ wi

k−1
|[xi

k ]|
|[xi

k|k−1]|
. The ratio of box particle volumes before and after contraction leads to a lower

weight if only a small sub-box of the box particle i is consistent with the measurements.
As a result, performing Multinomial Resampling may lead to the destruction of low-weighted

box particles, including the box particle [xix
k ] that actually contained the state, thus leading to non-

convergence. By always keeping non-zero weighted box particles, Guaranteed Resampling ensures
that the actual state xk always belongs to at least one box particle. The following section (Section 4.2.2)
provides a theoretical proof of this statement.

In addition, the computational load required for Guaranteed Resampling is less or equal to that
required for Multinomial Resampling. Indeed, Multinomial Resampling requires a sample of N uniform
random values, while Guaranteed Resampling only requires M ≤ N samples (see Algorithm 3 and
Algorithm 6).
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Figure 4.4: Illustration of Multinomial Resampling compared to Guaranteed Resampling, after the correction step.
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4.2.2 Theoretical justification of a Guaranteed Box Particle Filter

This section proves that Guaranteed Resampling (Algorithm 6) ensures that at least one box-particle
contains the actual state xk at each time-step k. This proof is provided using the general framework
presented in 4.1.2.

Proposition 2. If the initial actual state belongs to the initial box particle cloud, and given that:

• The dynamical model f and the observation model h are continuous functions (respectively C0(Rd, Rd)

and C0(Rd, Rdm)),

• The actual process noise xk − f (xk−1) belongs to support [wk] ∈ IRd,

• The actual measurement noise mk − h(xk) belongs to the interior of [vk] ∈ IRdm , i.e. h(xk) belongs to
the interior of the set [mk] , mk + [vk],

• The box particle kernels and the box measurement kernel are positive and continuous on their support,

Therefore, the Box Particle Filter (Algorithm 5) enhanced with Guaranteed Resampling (Algorithm 6) ensures
that the actual state always belong to at least one box particle:

∀k ≥ 0, ∃i xk ∈ [xi
k] (4.23)

Proof. Assume that the actual state xi
k is included in at least one box particle [xi

0]:

∃i ∈ [1, N] x0 ∈ [xi
0] (4.24)

and that the actual process noise belongs to support [wk] at each time-step:

xk − f (xk−1, uk) ∈ [wk] (4.25)

The dynamical model f is assumed to be continuous. Furthermore, assume that the actual state is
consistent with the measurement box, when a measurement is available and belongs to the interior of
the measurement box [mk] (i.e. cannot belong to its boundary, see Appendix D). In practice, this can be
achieved by adding a infinitesimal non-zero volume box [εm] ∈ IRdm to the measurement box, which
guarantees that h(x) does not belong to the boundary of [mk]:

h(xk) ∈ mk + [wk] ⊂ [mk]

[mk] , mk + [wk] + [εm]

λ ([εm]) > 0

(4.26)

where h is a continuous observation model.
In terms of probabilistic box-kernels πi

k(xk) and measurement density πm, assume that the actual
initial state has a non-zero probability to occur in box i defined in (4.24):

πi
0(x0) 6= 0 (4.27)
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and is consistent with the process noise, i.e. p(xk|xk−1) 6= 0 for the actual xk. Furthermore, assume that
the current actual state is consistent with the measurement density, when a measurement is available:

πm(mk − h(xk)) 6= 0 (4.28)

Moreover, πi and πm are assumed to be positive and continuous on their box-supports.

Prediction step

Assume that the prior actual stet xk−1 belongs to at least one prior box particle, i.e. ∃i ∈ [1, N], xk−1 ∈
[xi

k−1]. By definition of the inclusion functions introduced in Section 2.1.5, the propagation of the prior
actual state xk by f belongs to the inclusion function output:

xk−1 ∈ [xi
k−1]⇒ f (xk−1, uk) ∈ [ f ]([xi

k−1], uk) (4.29)

Provided that the actual process noise belongs to the box [wi
k] (4.25), the current actual state xk belongs

to the predicted box [xi
k|k−1]:{

f (xk−1, uk) ∈ [ f ]([xi
k−1], uk)

xk − f (xk−1, uk) ∈ [wk]
⇒ xk ∈ [ f ]([xi

k−1], uk) + [wk] = [xi
k|k−1] (4.30)

Considering the box kernel propagation equation (4.3) and that the box kernel has a non-zero value for
the actual state, i.e. πi

k−1(xk−1) 6= 0, the convolution of kernel πi
k−1 by p(xk|xk−1) yields:

xk−1 ∈ [xi
k−1]⇒ πi

k(xk)1[xi
k|k−1]

(xk) 6= 0 (4.31)

As a result, the actual state xk belongs to the predicted box particle:

xk−1 ∈ [xi
k−1]⇒ xk ∈ [xi

k|k−1] (4.32)

Furthermore, since kernels are continuous, box kernel πi
k is non-zero in a neighbourhood of xk.

Correction step

By definition of the contractors introduced in Section 2.1.5 and from (4.26), if the actual state belongs
to box particle i and is consistent with measurements [mk], then it still belongs to box particle i after
contraction: xk ∈ [xi

k|k−1]

h(xk) ∈ [mk]
⇒ xk ∈

{
x ∈ [xi

k|k−1]
∣∣ h(x) ∈ [mk]

}
⊂ [xi

k] (4.33)

Provided that the actual predicted measurement h(xk) always belongs to the interior of the measurement
box [mk] and that the observation model h is continuous, the posterior box always keeps a non-zero
volume, i.e. λ([xi

k]) > 0.
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Using (4.16), (4.31), and (4.28), the innovation pi
k(x) , πm

k (mk − h(x))πi
k|k−1(x) is non-zero for x = xk.

Since the kernels are positive and continueous, pi
k(x) > 0 on a neighbourhood of xk. Using (4.33), this

yields:

xk ∈ [xi
k|k−1]⇒ xk ∈ [xi

k]⇒
∫
[xi

k ]
πm

k (mk − h(x))πi
k|k−1(x)dx > 0 (4.34)

which finally leads to:

xk ∈ [xi
k|k−1]⇒ wi

k 6= 0 (4.35)

As a result,

xk−1 ∈ [xi
k−1]⇒

{
xk ∈ [xi

k]

wi
k 6= 0

(4.36)

Resampling step

In order to guarantee that at least one resampled particle [x̃i
k] contains the actual state, ensure that there

is at least one resampled box-particle j such that xk ∈ [xi
k]⇒ xk ∈ [x̃j

k]. Using (4.21) and step 6 combined
with (4.35) yields:

xk ∈ [xi
k]⇒ ni ≥ 1 (4.37)

which leads to a regular sub-paving of ni box particles whose convex hull is [xi
k]. Therefore, there is at

least one resampled particle [x̃j
k] that contains xk:

ni ≥ 1⇒ ∃j ∈ [1, N] xk ∈ [x̃j
k] (4.38)

By combining (4.24), (4.25), (4.26), (4.27), (4.28), (4.29), (4.30), (4.35), (4.37) and (4.38), under the hypo-
thesis that kernels are positive and continuous and by using algorithm 6:

∀k ∃i xk ∈ [xi
k] (4.39)

Remark

The above development proves that at least one box particle contains the actual state xk at each time-step
k, given an initial consistency (4.24), a process consistency (4.25), a measurement consistency (4.26) and
some assumptions on the box-kernels and the measurement density. However, this does not prove that
the estimation error and the filter’s uncertainty tend to zero or are stable (their derivatives tend to
zero). Nevertheless, the use of Guaranteed Resampling theoretically ensures that the non-convergence
rate (Section 3.5) is zero. Furthermore, Guaranteed Resampling only replaces box particles that became
inconsistent with respect to the measurements. Therefore, the resampling frequency tuning may not
significantly impact the results.
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4.2.3 Numerical results

The use of Guaranteed Resampling for BPF theoretically ensures that at least one box particle contains the
actual state. As a consequence, the BPF estimation is always consistent with respect to the measurements.
This is of particular interest for ambiguous estimation problems such as the TAN application. In this
section, experiments are designed to evaluate the following points:

1. The impact of Guaranteed Resampling on the BPF’s performance in terms of RMSE and estimated
covariance, compared to the original algorithm (Multinomial Resampling BPF, Gning [Gni+13]),

2. The relative impact of Guaranteed Resampling and Multinomial Resampling on the BPF’s non-
convergence rate,

3. The impact of the resampling frequency on Guaranteed Resampling’s performances, compared to
Multinomial Resampling.

The considered criteria, as introduced in Section 3.5 are: RMSE ratio (final RMSE divided by initial
RMSE), pessimism rate (final estimated standard deviation divided by final RMSE), and non-convergence
rate (percentage of simulation ending with an inconsistent estimation). To evaluate points 1, 2, and 3,
Guaranteed Resampling BPF is run on all the scenarios presented in Section 3.2. A focus is made on
Scenario TAN Moon flyby, which contains the most severely ambiguous measurements considered in
this work. Unless a different setting is explicitly stated, the BPF algorithm is tuned with N = 900 box
particles, no process noise and a resampling threshold of θeff = 0.7.

Impact of Guaranteed Resampling on RMSE, pessimism and non-convergences (points 1 and 2)

Figure 4.5 (a) shows the RMSE ratio on position and velocity, respectively defined as the norm of
the three positions variables and the three velocities, as introduced in 3.5. Table 4.4 presents the
averaged criteria on all scenarios, for a hundred runs. Guaranteed Resampling clearly yields a lower
RMSE than Multinomial Resampling, especially in position (a mean RMSE ratio of 0.14 versus 0.23,
which represents a 39% decrease). However, Guaranteed Resampling brings more conservatism than
Multinomial Resampling. This yields a significant pessimism rate increase (e.g. 1.29 to 2.62 in position,
which is twice as much).

Guaranteed Resampling also has a strong impact on the non-convergence rate, which is theoretically
ensured, as zero for all scenarios, as shown in Figure 4.5 (b). It can be noticed that the average
computation time per time-step remains the same.

Table 4.4: Simulation results using Guaranteed Resampling and Geometrical Subdivision, averaged on all scenarios
at the final time-step.

Multinomial Resampling Guaranteed Resampling

Non-convergence rate (%) 15.6 0

RMSE ratio (position) 0.23 0.14

RMSE ratio (velocity) 1.17 0.82

Pessimism (position) 1.29 2.62

Pessimism (velocity) 1.11 1.97

Computation time (ms) 11 11
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Figure 4.5: Root Mean Square Error ratios (a) and non-convergence rate (b) obtained for all scenarios, using the
Multinomial Resampling and the Guaranteed Resampling approaches. The Guaranteed Resampling
approach significantly outperforms Multinomial Resampling in terms of RMSE and ensures a zero
non-convergence rate.
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Table 4.5: Simulation results for Scenario TAN Moon flyby, at final time-step (the terrain resolution is 1000 m)

Multinomial Resampling Guaranteed Resampling

Non-convergence rate (%) 61 0

RMSE (position, m) 23958 2612

RMSE (velocity, ms-1) 13.1 7.05

Covariance (position, m) 16533 9923

Covariance (velocity, ms-1) 5.69 11.7
Pessimism (position) 1.18 3.79

Pessimism (velocity) 0.43 1.66

RMSE ratio (position) 0.33 0.06

RMSE ratio (velocity) 1.96 1.05

Focus on the lunar orbiter scenario

A focus is made on Scenario TAN Moon flyby, which represents the most significant improvement
between Multinomial Resampling and Guaranteed Resampling. Table 4.5 presents the results at the final
time-step for Scenario TAN Moon flyby, for a hundred runs. As theoretically expected, Guaranteed Res-
ampling leads to a non-convergence rate of 0%, while 61% of the simulations diverge with Multinomial
Resampling. The Guaranteed BPF RMSE is significantely lower (2km versus 24km in position, which
represents a 91% decrease).

Multinomial Resampling yields a final velocity RMSE ratio of 1.96, which means that the final error
is twice as much as the initial error. In other words, Multinomial Resampling downgrades the prior
knowledge. Although Guaranteed Resampling does not allow the filter to lower the velocity RMSE (ratio
of 1.05), it does not significantly increase the level of error, as does Multinomial Resampling. Figure 4.7
plots the RMSE in position and velocity for BPF using Multinomial Resampling (blue curves) and
Guaranteed Resampling (green curves). The prior information discrepancy over time by Multinomial
Resampling is clearly visible for the velocity RMSE.

As previously seen, Guaranteed Resampling leads to a more pessimistic estimation with a pessimism
ratio’s increase by 3 in position (1.18 to 3.79) and by 4 in velocity (0.43 to 1.66), compared to Multinomial
Resampling. Nevertheless, these pessimism rate comparisons are not strongly significant since Multi-
nomial Resampling produces a large majority of inconsistent estimations (61% of non-convergence).
Figure 4.6 illustrates the behavior of BPF using Multinomial Resampling (a) and Guaranteed Resampling
(b), in the same conditions (the same initial errors and measurements realisations). Figure 4.6 (a) illus-
trates a case where the use of Multinomial Resampling leads to a non-convergence. Again, Guaranteed
Resampling ensures the estimation consistency, but leads to a larger estimation confidence, as illustrated
in Figure 4.6 (b). Nevertheless, the estimation errors are significantly lower for all state variables.

Impact of the resampling frequency on the algorithm’s performances (point 3)

The resampling step is triggered by a threshold whose tuning directly impacts how often the resampling
algorithm is called. This section compares the behavior of original BPF and Guaranteed BPF for several
values of the N efficient threshold θeff (Kong and Liu [KLW94], see equation (2.22)). This threshold
quantifies the lower admissible fraction of the particles whose weights are said to be efficient. As
introduced in Chapter 2, Section 2.1.4, the resampling step is triggered if the estimated number of
efficient particles is below this threshold. Therefore, the resampling frequency grows with θeff.
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Figure 4.6: Comparison between estimations obtained with Multinomial Resampling (a) and Guaranteed Res-
ampling (b) on Scenario TAN Moon flyby. The actual trajectory is in green, the estimate is in red, and
box particles are in yellow.
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Figure 4.7: Comparison between the Root Mean Square Errors obtained with Multinomial Resampling and Guaran-
teed Resampling on Scenario TAN Moon flyby.

Table 4.6 compares the averaged performance of original BPF and Guaranteed BPF at the final
time-step for several values of θeff, on all scenarios for a hundred runs. For Multinomial Resampling, the
threshold appears difficult to tune since a balance between accuracy (low RMSE) and robustness (low
non-convergence rate) must be achieved. This imposes a problem dependant tuning, since high values
of θeff may lead to a high non-convergence rate (e.g. 68% for θeff = 0.9). On the contrary, Guaranteed
Resampling prevents RMSE discrepancy while θeff tends to 1. The RMSE ratios are globally kept equal
for the different values of θeff, which shows that the resampling frequency has a low impact on the
Guaranteed BPF performances (e.g. the averaged position RMSE ratio remains in the interval [0.15, 0.18]).
The minimum value is obtained for θeff = 0.7. Therefore, a tuning of θeff ∈ [0.5, 0.7] is advised. As
stated previously, Guaranteed Resampling yields more conservatism than Multinomial Resampling: the
pessimism ratio is greater than 1.8 for both position and velocity (recall that the value is considered to
be acceptable between 0.8 and 1.5).

Figure 4.8 plots the non-convergence rate obtained for all the scenarios, which highlights the non-
convergence risk of Multinomial Resampling. As shown in Table 4.6, Guaranteed Resampling ensures a
zero non-convergence rate for all values of θeff.
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Table 4.6: Simulation results for several values of the resampling frequency (set by θeff) averaged on all scenarios at
the final time-step

Multinomial Resampling Guaranteed Resampling

Resampling threshold θeff 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9

Non-convergence rate (%) 0.8 4.4 17 68 0 0 0 0

RMSE ratio (position) 0.17 0.17 0.23 1.03 0.18 0.16 0.15 0.17

RMSE ratio (velocity) 1.01 1.04 1.20 2.19 0.91 0.86 0.81 0.82

Pessimism (position) 1.95 1.69 1.22 0.89 2.19 2.35 2.45 2.39

Pessimism (velocity) 1.58 1.46 1.06 0.52 1.80 1.90 1.99 1.97
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Figure 4.8: Non-convergence rate obtained with Multinomial Resampling on all scenarios for several resampling
frequencies (set by θeff). The tuning of the threshold is highly case-dependant. On the contrary, Table 4.6
shows that the use of Guaranteed Resampling ensures a zero non-convergence rate whatever be the
threshold tuning.
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4.3 new ways of performing box resampling by subdivision

The previous section introduced a guaranteed version of Multinomial Resampling called Guaranteed
Resampling. It ensures that the actual state is contained by at least one box particle, which prevents the
algorithm from estimation inconsistency. It also yields a lower RMSE than using Multinomial Resampling.
However, it introduces conservatism and yields some unnecessary high estimated covariance. This
section introduces two new approaches that aim to lower the pessimism ratio and continues to decrease
the RMSE.

The BPF resampling step consists of replacing each box particle by a sub-paving of ni ∈ [0, N]

subdivisions of itself (see Chapter 2, Section 2.1.6). The number ni is computed by a resampling
algorithm, e.g. Multinomial Resampling (Algorithm 3), or Guaranteed Resampling (Algorithm 6), as
introduced in the previous section. If ni is zero, box particle i is removed. If ni is equal to one, box
particle i is kept as it is. If ni is greater than one, it is subdivided and yields ni new box particles. For the
sake of simplicity, a given box particle can be subdivided along a single state dimension di called the
cutting dimension. However, as developed in Section 2.1.6, the cutting dimension determination is often
problem-dependent. To the best of the author’s knowledge, only one general approach was proposed in
the literature (see Gning [Gni+13]). It consists of a uniform random choice over the state dimensions
{1, ..., d}. Although it is simple to implement, it is likely to produce degenerated box particles whose
diameters are disproportioned. This may yield inaccuracy, as experimentally shown in what follows.

This section is dedicated to the design of two methods to choose the cutting dimension during the
box resampling step. Their impact on the BPF’s performance is evaluated. Intuitively, they both rely
on a box diameter normalisation in order to subdivide each box along its longer normalised edge. The
normalisation operation is necessary to enable comparisons of box particle diameters since they do not
have the same order of magnitude in the general case. Figure 4.9 illustrates this idea.

A first approach consists of splitting the state vector into several sub-vectors w.r.t the orders of
magnitude of their diameters (e.g. positions or velocities). For each box, each sub-vector of diameters can
then be normalised by its euclidean norm. This results in a normalised vector of values between 0 and 1.
The largest defines the subdivision dimension for this box particle. This makes it possible to maintain
each sub-box squared proportional (in terms of intervals lengths in positions and velocities etc.), i.e.
to keep the edge lengths roughly equal for each sub-box. This approach is described in Section 4.3.1.
Figure 4.9 (a) illustrates this approach, described in the next section.

A second approach accounts for the information carried by measurements. Each box can be subdivided
along the dimension which corresponds to the state variable receiving the greater amount of information
from the measurements, given the box’s current diameter. In other words, each box is subdivided along
its side which is the larger with respect to the state estimation accuracy. This results in box particles
which have smaller intervals on dimensions receiving information (i.e. currently observed dimensions),
and larger intervals on non observed ones. It is achieved by normalising the box particle diameters by
the standard deviation of the maximum likelihood theoretical estimator. Figure 4.9 (b) illustrates this
approach. It is described in Section 4.3.2.

Whatever the subdivision method, Guaranteed Resampling (Section 4.2) retains its guaranteed
property, since the whole domain previously covered by non-zero weighted particles remains covered
by a sub-paving of them.

Section 4.3.3 evaluates the impact of the two subdivision approaches on the filter’s performance.
They are also compared with the original subdivision approach which consists of randomly picking
dcut,i

k (Gning [Gni+13]). Subdivision methods presented in this section can be equivalently used with
Multinomial Resampling or Guaranteed Resampling, since they are independent from the determination
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of the new instances number per particle ni. The performance of the subdivision approaches is discussed
in the context of both resampling algorithms (Multinomial and Guaranteed resampling approaches).

Maximum likelihood covariance in position 
and velocity:

Normalised diameter for box particle 𝑖:

𝐱𝑘
𝑖 = 𝑥𝑘

𝑖 × 𝑦𝑘
𝑖 × 𝑉𝑥𝑘

𝑖 × 𝑉𝑦𝑘
𝑖

20m

10m
3m/s

1m/s

Original box particle 𝑖 and its diameter

(a) Geometrical subdivision (b) Maximum likelihood covariance subdivision

0.90

0.45

0.95

0.32

Largest normalized diameter

 𝑑𝑘
𝑐𝑢𝑡,𝑖 = 3

Position box diameter norm: 22.3m
Velocity box diameter norm: 3.16m/s

Normalised diameter for box particle 𝑖:

2.7m/s

1.1m/s

1.1

3.3

1.1

0.9
Largest 
normalized 
diameter

 𝑑𝑘
𝑐𝑢𝑡,𝑖 = 2

Position box diameter Velocity box diameter 

18m
3m

20m

1m/s

1m/s

Subdivided box particle 𝑖 and its diameter 
(e.g., 𝑛𝑖 = 3) 

10m
1m/s1m/s

20m

3.3m
3m/s

1m/s

3.3m

3.3m

Subdivided box particle 𝑖 and its diameter 
(e.g., 𝑛𝑖 = 3) 

Figure 4.9: Illustration of the two approaches to subdivide boxes during resampling step: the Geometrical Subdivi-
sion and the Maximum Likelihood Covariance Subdivision, leading to ni new box particles after the
subdivision of particle i along dimension dcut,i

k
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4.3.1 Geometrical Subdivision

A first solution to normalise each box diameter vector δ[xi
k ]
∈ Rd is to account for each box particle

diameter’s orders of magnitude (see Table 2.1 in Chapter 2 for the box diameter definition). In what
follows, for the sake of brevity, each box particle diameter will be denoted δi

k. The following proposition
generalises for any box to be subdivided.

Proposition 3. Let be a box [x] = [x1]× ...× [xd] ∈ IRd such that its diameters can be rearranged by
n ∈N∗ sub-vectors of equal length d′ ∈N∗ such that nd′ = d:

δ , [|[x1]| , ..., |[xd]|]T =
[
δT

1 , ..., δT
n

]T
(4.40)

where each sub-vector p is composed of d′ interval diameters:

δp ,
[
δp,1, ..., δp,d′

]T
∈ Rd′ (4.41)

These coefficients are regrouped by order of magnitude, i.e.

∀(i, j) ∈ [1, d′]2, δp,i = O(δp,j) (4.42)

Then, the box diameter can be normalised by:

δ̃ ,
[

1
‖δ1‖

δT
1 , ...,

1
‖δn‖

δT
n

]T
=
[
δ̃1, ..., δ̃d

]T (4.43)

where ‖δj‖ is the euclidean norm of the diameter δj ∈ Rd′ with j ∈ [1, n]. The box can be subdivided in ni

new boxes (provided by a resampling algorithm, e.g. Algorithm 6) along the dimension that maximises the
normalised diameter:

dcut = argmax
j∈J1,dK

(δ̃j) (4.44)

Remark: In practice, the box diameters can also be rearranged by physical dimensions, that often
match with the orders of magnitude.

Examples: Consider a 6 dimensional state vector made of three metric positions pk ∈ R3 and three
velocities Vk ∈ R3. This state representation is commonplace. An example is the double integrator (3.1)
(see Section 3.1). Consider one box particle i whose sub-diameters are denoted δi

p,k ∈ R3 for the position

and δi
V,k ∈ R3 for the velocity. Then, by applying (4.43), each box particle diameter can be normalised

by:

δ̃i
k =

[
1

‖δi
p,k‖

δi
p,k

T
,

1
‖δi

V,k‖
δi

V,k
T
]T

(4.45)

Similarly, Geometrical Subdivision can be applied to IMU hybridisation (see Section 3.1). In this case,
the 15 state variables can be arranged in n = 5 sub-vectors of d′ = 3 variables, namely: metric position
errors, velocity errors, attitude angles errors, accelerometer bias, and gyrometers bias.
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Figure 4.9 (a) illustrates the Geometrial Subdivision approach. Consider a box particle of IR4 having
a diameter of δi

k = [20, 10, 3, 1]T . In this example, the state vector is made of two positions (x, y) and two
velocities (Vx, Vy). It can thus be split into two sub-vectors (position [x, y]T and velocity [Vx, Vy]T). The
euclidean norms of the diameters of the two sub-boxes for for box particle i are α = 22.3 m in position
and β = 3.16 m in velocity. Therefore, δ[xi

k ]
can be normalised via these diameters using (4.43). It results

in the normalised diameter vector δ̃i
k = [0.90, 0.45, 0.95, 0.32]T . Therefore, the larger normalised diameter

is Vx (dcut,i
k = 3). This results in ni new box particles (in this example, ni = 3) whose intervals on x, y, Vy

are equal; and whose intervals on Vx are obtained from a regular paving of interval on Vx of initial box
particle i. The resulting box shapes will then remain roughly squared proportional for each physical
dimension (position, velocity). This prevents them from degenerating to flat boxes, i.e. when at least one
edge’s length of the box tends to zero. The total number of box particles remains the same.

The computational load required by Geometrical Subdivision can be evaluated in terms of floating-
point operations, i.e. the total number of elementary operations (additions and multiplications). It can be
calculated using the complexity analysis introduced in Appendix C. Geometrical Subdivision requires a
total computational load of:

cGR = 4Nd + o(Nd) (4.46)

where d is the state dimension and N the number of box particles.

4.3.2 Maximum Likelihood Covariance Subdivision

In the previous section, a box subdivision approach has been introduced. It aims to select the subdivision
dimension along the larger box’s normalised side. The normalisation was performed by regrouping the
state parameters by sub-vectors of same order of magnitude in order to keep the box well proportioned.

This section introduces a subdivision approach based on the measurement information brought to
each state variable. The goal is to subdivide the boxes along their larger side with respect to the expected
estimation accuracy on this dimension. This requires to compute the lowest expected uncertainty along
each state dimension.

Principle and example

A first approach to compute the lowest expected uncertainty is the Cramer-Rao Lower Bound (CRLB),
defined as the inverse of the Fisher Information Matrix (FIM). However, as presented in Appendix A,
the FIM is not defined for bounded measurement densities, which prevents its use under the BPF’s
assumptions. Nevertheless, the optimal expected uncertainty can be approached by the covariance of
the Maximum Likelihood (ML) estimator. In the linear case, it was shown to be equal to the CRLB.
For non-linear cases, it asymptotically tends to the CRLB (Wasserman [Was13, Theorem 10.18]). Each
box particle’s diameter can then be normalised on each dimension by the ML estimator’s covariance.
For each box particle, the subdivision dimension corresponds to the largest normalised diameter’s
dimension.

Figure 4.9 (b) illustrates this approach in an example for one box particle. A box particle of IR4 has a
diameter of δi

k = [20, 10, 3, 1]T . Assume that the Maximum Likelihood estimator’s theoretical covariance
is known, whose computation is introduced in the next section. In this example, assume that the
lowest expected standard deviation is, for each state variable, 18 m, 3 m, 2.7 ms-1, and 1.1 ms-1. In this
example, the measurements provide more information about dimension y than about other dimensions.
Therefore, the Maximum Likelihood covariance is lower on this dimension than on other dimensions.
Diameter δi

k can be normalised using equation (4.48). This results in the normalised diameter vector
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δ̃i
k = [1.1, 3.3, 1.1, 0.9]T . Therefore, the dimension to subdivide is y (dcut,i

k = 2). It results in ni new box
particles (in this example, ni = 3) whose intervals on x, Vx, Vy are equal and whose intervals on y are
obtained from a regular paving of interval on y of initial box particle i. This can also be interpreted as
an increase of state density resolution on the most observed state dimension. The total number of box
particles remains the same.

Figure 4.10 (right side) illustrates this approach in an example for the whole box particle cloud. The
use of the Maximum Likelihood covariance aims to increase the resolution of the density description
on the dimensions whose ML’s covariance is the lowest while making the filter more stable on poorly
observed dimensions. Intuitively, this can be interpreted as waiting to get sufficient information before
subdividing boxes on a particular dimension. A higher accuracy can be expected, at least while using
Multinomial resampling, and a higher robustness. However, in the context of Guaranteed Resampling,
which naturally keeps all non-zero box particles, this may introduce some conservatism.

The next section describes the evaluation of the lowest expected uncertainty in terms of maximum
likelihood estimator covariance.
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Estimation of the lowest expected uncertainty and determination of dcut,i
k

Proposition 4. During the box subdivision resampling, each box can be subdivided along the edge that is the
most pessimistic compared to a lowest expected variance. Provided that:

• The measurement noise (associated with the likelihood density) has a covariance R ∈ Rdm×dm ,

• The observation model h is differentiable

The subdivision dimension dcut is chosen by picking the largest coefficient of a normalised box particle’s
diameter δ̃i

k = [δ̃i,1
k , ..., δ̃i,d

k ]T :

dcut,i
k = argmax

j∈J1,dK
(δ̃

i,j
k ) (4.47)

The normalised diameter is computed from the box particle’s prior diameter δ[xi
k ]

and the inverse of the Cholesky
decomposition of a semi-definite positive matrix Σk which represents the lowest expected uncertainty in terms
of covariance:

δ̃i
k , Chol (Σk)

−1 δi
k ∈ Rd (4.48)

where Σk ∈ Rd×d can be evaluated by:

Σk , P̂k +
1
2

N

∑
i=1

wi
k

(
Σi

k + Vi
k

)
(4.49)

where

Σi
k = Vec−1

((
λTi

k ⊗ Ti
k + (1− λ)Id2

)−1
Vec

(
λHi

k
T

RkHi
k + (1− λ)∆i

k

))
(4.50)

where Vi
k is obtained from the polar decomposition of Σi

k, Ti
k =

(
∂h
∂x

)T (
∂h
∂x

)
, Vec is the vectorization operator,

and ∆i
k is a diagonal matrix whose diagonal terms are the squared box’s diameters δi

k
2.

Proof. In the following, the analytic expression of Σk is derived, leading to equation (4.64).
The measurement density p(mk|xk) = πm

k (mk − h(xk)) is assumed to have a single maximum x̂i
k

inside the subset [xi
k] which satisfies:

x̂i
k = argmax

xk

(p(mk|xk)) (4.51)

Thus, one can link h(x̂i
k) and mk as h(x̂i

k) = mk. The measurement variance Cov [mk] = Rk ∈ Rdm×dm is
assumed to be known. As a result, the maximum likelihood satisfies:

Cov
[

h(x̂i
k)
]
= Cov [mk] = Rk (4.52)

On the other hand, the observation function h can be locally linearised to first order as follows:

h(x̂i
k) = h(xi

k) + Hi
k(x̂

i
k − xi

k) + o(x̂i
k − xi

k) (4.53)
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with Hi
k ,

∂h
∂x

∣∣∣
x=xi

k

∈ Rdm×d and xi
k = E

[
πi

k
]
.

This implies that:

h(x̂i
k)− h(xi

k) ≈ Hi
k(x̂

i
k − xi

k) (4.54)

and that(
h(x̂i

k)− h(xi
k)
) (

h(x̂i
k)− h(xi

k)
)T
≈ Hi

k(x̂
i
k − xi

k)(x̂
i
k − xi

k)
THT (4.55)

Thus, by taking the expectancy of both hand sides:

E
[(

h(x̂i
k)− h(xk)

) (
h(x̂i

k)− h(xk)
)T
]

≈ E
[
Hi

k(x̂
i
k − xk)(x̂

i
k − xk)

THi
k

T
]

= Hi
kE
[
(x̂i

k − xk)(x̂
i
k − xk)

T
]

Hi
k

T
= Hi

kCov[x̂i
k]H

i
k

T

(4.56)

Thus, the local maximum likelihood must satisfy:

Cov
[

h(x̂i
k)
]
≈ Hi

kΣi
kHi

k
T

(4.57)

with Σi
k , Cov[x̂i

k]. Therefore, by combining (4.52) and (4.57), one can write:

Hi
kΣi

kHi
k

T ≈ Rk (4.58)

In practice, since the actual state xk is unknown, Hi
k can be evaluated from Hi

k ≈
∂h
∂x

∣∣∣
x=ci

k

with ci
k

the center of the ith box particle. Equation (4.58) imposes a constraint on Σi
k which depends on the

observation equation.
However, if the rank of Rk is less than the rank of Σi

k, some additional information needs to be
added. Indeed, (4.58) only affects the coefficients of Σi

k that explicitly depend on the measurement in the
observation function h. In order to calculate the other coefficients, which are linked together through the
dynamical model f (), a possible solution is to introduce a dynamical information with ∆i

k , Diag
(

δi
k

2
)

.

Function Diag() transforms a vector of Rn into a diagonal matrix of Rn×n. Such techniques are known
as regularisation techniques (Neumaier [Neu98]). Therefore, the problem to solve is a trade-off between
the observation constraint and the state constraint:

Σi
k = argmin (J(Σ))

J(Σ) = λ
∥∥∥Hi

kΣHi
k

T −Rk

∥∥∥2

F
+ (1− λ)

∥∥Σ− ∆i
k

∥∥2
F

Σ > 0

(4.59)
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where λ ∈ (0, 1) is a tuning coefficient. Equation (4.59) can be solved by computing the derivative of J:

∂J
∂Σ = ∂

∂Σ

[
λtr
(
(Hi

kΣHi
k

T −Rk)
T(Hi

kΣHi
k

T −Rk)
)
+ (1− λ)tr

(
(Σ− ∆i

k)
T(Σ− ∆i

k)
)]

= 2λ ∂
∂Σ tr

(
(Hi

kΣHi
k

T
)T(Hi

kΣHi
k

T
)
)
− 2λ ∂

∂Σ tr
(

Hi
kΣHi

k
T

Rk

)
+(1− λ) ∂

∂Σ tr
(
Σ2)− 2(1− λ) ∂

∂Σ tr
(
Σ∆i

k
)

= 2λ
(

Hi
k

T
Hi

kΣHi
k

T
Hi

k

)
− 2λ

(
Hi

k
T

RkHi
k

)
+ 2(1− λ)Σ− 2(1− λ)∆i

k

(4.60)

Finally, the equation ∂J
∂Σ = 0 is equivalent to:

λTi
kΣTi

k + (1− λ)Σ = Ωi
k (4.61)

with Ti
k = Hi

k
T

Hi
k and Ωi

k , λHi
k

T
RkHi

k + (1− λ)∆i
k. Using the Kronecker product properties, denoted

⊗, derive (4.61) as follows:

(λTi
k ⊗ Ti

k + (1− λ)Id2)Vec(Σ) = Vec(Ωi
k) (4.62)

where Vec() : Rd×d → Rd2
stands for the column-wise concatenation of a matrix.

As a result, the solution Σi
k can be obtained by:

Σi
k = Vec−1

(
(λTi

k ⊗ Ti
k + (1− λ)Id2)−1Vec(Ωi

k)
)

(4.63)

where Vec−1() : Rd2 → Rd×d gives a d× d matrix representation of a d2 vector whose elements are
taken column-wise.

However, the resulting Σi
k matrix might not be positive definite. It can then be approximated by the

nearest positive definite matrix, in terms of Frobenius norm, by Σ
i
k = 1

2

(
Σi

k + Vi
k

)
, where Vi

k ∈ Rd×d

is obtained from the polar decomposition of Σi
k, i.e Σi

k = Ui
kVi

k with Ui
k

T
Ui

k = Id. This theorem is
developed in the work of Higham [Hig88].

The Maximum Likelihood covariance can therefore be approached by:

Σk , P̂k +
N

∑
i=1

wi
kΣ

i
k (4.64)

Each box diameter is normalised by the Cholesky decomposition of Σ, using (4.48) and the choice of
dcut is done using (4.44).

Remark

The computational load required by Maximum Likelihood Covariance Subdivision is obtained by
complexity analysis (see Appendix C):

cMLCS = Nd6 + 4Nd4 + (3 + 2dm)Nd2 + o(Nd) (4.65)

where d is the state dimension, dm the measurements dimension and N the number of box particles.
The cost cMLCS is thus of O(Nd6), that is significantly higher than the computation load required by
Geometrical Subdivision, which is about O(Nd). This high computational load is mainly due to the use
of Kronecker products and their inversion for each box particle in (4.63).
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4.3.3 Numerical results

This section compares three box-subdivision approaches for BPF resampling. The first, named Random
Subdivision, was introduced in Section 2.1.6 in reference to Gning [Gni+13]. It consists of randomly
picking dcut,i in {1, ..., d} for each box particle with a discrete uniform distribution. The second, called
Geometrical Subdivision (GS), is introduced in Section 4.3.1 and consists of choosing the largest box
diameter after euclidean normalisation. The third is the Maximum Likelihood Covariance Subdivision
approach (MLCS), introduced in Section 4.3.2. It consists of choosing the largest box diameter compared
with the lowest expected uncertainty on each state dimension. Experiments were designed to evaluate
the following points:

1. The relative impact of each subdivision approach on the filter’s RMSE and pessimism, in the
context of Guaranteed Resampling;

2. The relative impact of the resampling algorithm (Multinomial and Guaranteed Resampling
approaches) on each subdivision method’s performances;

3. The impact of measurement information on the RMSE in the context of Maximum Likelihood
Covariance Subdivision.

The considered criteria, as introduced in Section 3.5 are: RMSE ratio (final RMSE divided by initial
RMSE, quantifying the error of estimation), pessimism rate (final estimated standard deviation divided
by final RMSE, quantifying the conservatism) and non-convergence rate (percentage of simulation
ending with an inconsistent estimation). The empirical computational load is not discussed in this
section and will be tackled in Section 4.5 (see Table 4.13). To evaluate points 1, 2, and 3, the considered
BPF configurations are run on all of the scenarios presented in Section 3.2. Unless a different setting
is explicitly stated, the BPF algorithm is tuned with N = 900 box particles, no process noise and a
resampling threshold of θeff = 0.7.

Impact of each subdivision approach on the Guaranteed BPF’s performances (point 1)

The Guaranteed Resampling introduced in Section 4.2 prevents the filter from diverging. However, it
also yields a larger estimated covariance than Multinomial Resampling (and a higher pessimism ratio).
This section evaluates the impact of the three subdivision approaches on accuracy and conservatism.

Figure 4.11 and Table 4.7 show the RMSE ratios, non-convergence rates and pessimism ratios obtained
with the three approaches while using Guaranteed Resampling on all scenarios, for a hundred runs. The
random subdivision (Gning [Gni+13]) yields the highest RMSE ratio (0.15 in position, 0.81 in velocity).
Maximum Likelihood Covariance Subdivision slightly improves the averaged velocity RMSE ratio
(0.74, which represents a 9% decrease), but yields the same averaged position RMSE ratio (0.15). In
addition, it yields a slightly higher pessimism than the random picking approach (e.g. in position, 2.51
versus 2.45, which represents a 2.4% increase). Therefore, Maximum Likelihood Covariance Subdivision
appears to slightly introduce conservatism. Geometrical Subdivision yields the lowest RMSE in position
(0.091, which represents a 39% decrease) and in velocity (a 17% decrease). In addition, it yields a lower
pessimism in position (a 34% decrease). However, it fails to reduce the pessimism in velocity which
remains equal (a 1% increase). The three approaches appear to be conservative (recall that the value is
considered to be acceptable between 0.8 and 1.5).

The conservatism of Maximum Likelihood Covariance Subdivision is illustrated in Figure 4.12 (b)
for Scenario TAN Sinusoidal terrain. In this case, box particles have been mostly subdivided along the
latitude dimension during the first part of the trajectory. During the second part of the trajectory, box
particles have to be subdivided along the longitude dimension. The filter needs more time to converge
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than with Geometrical Subdivision (Figure 4.12 (a)), which keeps the box particles squared-proportional
along the whole trajectory. Multimodalities are then kept longer (two disjoint groups of box particles in
yellow can be noticed) and ambiguities may fail to be removed in a fixed time period. This also highlights
a drawback of the least square estimator for particle estimation (LS, see Chapter 2, Section 2.1.4). The
LS box particle state estimator is obtained by the weighted sum of the box particles expectations, i.e.
their centers, and is represented in red in Figure 4.12. The hypothesis is often made that the estimated
density tends to a unimodal density. In such a case, the least square estimator tends to the Maximum A
Posteriori estimator (MAP, see see Chapter 2, Section 2.1.2). However, in the case of multimodalities, it
may provide some estimate which does not belong to the conditional density support. Although MAP
evaluation approaches have been proposed for the Particle Filter as discussed in Chapter 2, they often
yield a high computational load and will not be considered in this work.

These simulations on different terrain types make it possible to conclude that Guaranteed Resampling
with Geometrical Subdivision provides lower RMSE and pessimism than the other approaches.

Random subdivision Geometrical sub. Maximum likelihood sub.
0

0.1

0.2

0.3
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RMSE ratio in position
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Sc. 3
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Sc. 5
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Random subdivision Geometrical sub. Maximum likelihood sub.

0.2

0.4

0.6

0.8

1

RMSE ratio in velocity

Figure 4.11: Root Mean Square Error ratios for the three subdivision approaches using Guaranteed Resampling on
all scenarios. Geometrical Subdivision associated to Guaranteed resampling is able to handle severe
ambiguities and provides better accuracy than other approaches.

Table 4.7: Simulation results for the three subdivision approaches using Guaranteed resampling, averaged on all
scenarios

Random Geometrical Maximum Likelihood
subdivision subdivision subdivision

Non-convergence rate (%) 0 0 0

RMSE ratio (position) 0.15 0.091 0.15

RMSE ratio (velocity) 0.81 0.67 0.74

Pessimism (position) 2.45 1.61 2.51

Pessimism (velocity) 1.99 1.79 2.12
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(a) Geometrical Subdivision

Time-step = 1150 - position error 2328.4m - velocity error 7.7m/s

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

lon (°)

-0.26

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

la
t 

(°
)

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

(b) Maximum Likelihood Covariance Subdivision

Figure 4.12: Example of estimation trajectory obtained with the Geometrical Subdivision approach (a) and the
Maximum Likelihood Covariance Subdivision approach (b), on Scenario TAN Sinusoidal terrain, using
Guaranteed Resampling. Actual state is in green, estimate in red, box particles in yellow, and the
box hull of all non-zero weighted particles in red. Associated to Guaranteed Resampling, Maximum
Likelihood Covariance Subdivision introduces too much conservatism, which may prevent it to remove
ambiguities.
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Table 4.8: Simulation results for the three subdivision approaches using Multinomial Resampling and Guaranteed
Resampling. RMSE ratios are averaged on Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN
La Reunion.

Multinomial Guaranteed
Figure 4.13 (a) Figure 4.13 (b)

Random Geom. Max. Lik. Random Geom. Max. Lik.

subdivision subdivision subdivision subdivision subdivision subdivision

RMSE ratio (pos) 0.15 0.13 0.12 0.13 0.096 0.11

RMSE ratio (vel) 0.99 0.89 0.84 0.67 0.54 0.61

Pessimism (pos) 1.45 1.05 1.22 3.42 2.67 3.58

Pessimism (vel) 1.33 1.06 1.34 2.46 2.82 2.87

Impact of the resampling algorithm on each subdivision approach (point 2)

In order to evaluate point 2, Multinomial BPF and Guaranteed BPF are compared in three scenarios:
Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion. The two other scenarios
(Scenario TAN Moon flyby, Scenario TAN Sinusoidal terrain) are excluded from this comparison because
Multinomial Resampling yields too many non-convergences on them (see Section 4.2). They would not
allow fair comparisons in terms of RMSE and pessimism ratios.

Figure 4.13 and Table 4.8 show the RMSE ratios obtained with the three approaches while using
Multinomial Resampling (a) and Guaranteed Resampling (b), for a hundred runs. For all subdivision
approaches, using Guaranteed Resampling yields a lower RMSE ratio and higher pessimism than using
Multinomial Resampling. The most extreme example is the Geometrical Subdivision case which holds a
significant improvement in velocity RMSE (a 39% decrease) and a huge increase in velocity pessimism
(1.7 times higher).

In the context of Multinomial Resampling, it can also be noticed that Maximum Likelihood Covariance
Subdivision yields slightly lower RMSE than Geometrical Subdivision. The Maximum Likelihood
Covariance Subdivision approach aims to favour box subdivision on the most observed state dimensions
while limiting it on the others. This is of interest in the context of Multinomial Resampling which may
delete some consistent box particles, since it increases the filter’s stability by making each box larger on
uncertain state dimensions. However, in the context of Guaranteed Resampling, the stability is ensured
by construction. Therefore, as seen in the previous section, Maximum Likelihood subdivision introduces
too much conservatism, which leads to lower accuracy.

To conclude, Multinomial Resampling yields non-convergences and a higher RMSE than Guaranteed
Resampling for all subdivision methods. Guaranteed Resampling however introduces a significant
conservatism.
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(a) Multinomial resampling
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Figure 4.13: Comparison between Root Mean Square Error ratios for the three subdivision approaches using Multi-
nomial Resampling (a) and Guaranteed resampling (b). Maximum Likelihood Covariance Subdivision
provides a better accuracy while using Multinomial Resampling, but is outperfomed by Geometrical
Subdivision with Guaranteed Resampling. RMSE ratios are presented on Scenario TAN Alps, Scenario
TAN Canyon, and Scenario TAN La Reunion.
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Impact of measurement information on the BPF’s RMSE (point 3)

This section evaluates the influence of the measurement information on the filter’s performances in the
context of the Maximum Likelihood Covariance Subdivision approaches (Section 4.3.2).

The influence of measurement information is tuned by parameter λ, in (4.59). High values of λ will
favour the subdivision of state variables that hold the highest information. Giving λ a high value is
equivalent to increasing the resolution of the box particle cloud along the state variable that has the
greatest information from the current measurements. As a result, a lower RMSE can be expected for
high values of λ than for low values of λ.

Figure 4.14 shows the RMSE ratios obtained for λ ∈ [0.1, 0.7] (using Guaranteed Resampling) on
all TAN scenarios. As expected, the RMSE ratio decreases when λ increases, for example 0.18 to 0.15
in position for λ = 0.1 and λ = 0.7 respectively, which represents a 16% decrease. Increasing λ also
yields less pessimism on observed dimensions, in this case positions, with a pessimism ratio decrease of
6.5%. However, estimation on non-observed dimensions becomes more conservative, with a pessimism
increase of 10% in velocity. However, this approach remains conservative (recall that the pessimism ratio
is considered to be acceptable between 0.8 and 1.5).

To conclude, increasing the tuning parameter λ yields a slightly better accuracy but introduces some
conservatism on non-observed state variables. Note that although the RMSE ratio tends to decrease
with λ on average, the observed variations remain small compared to the range of values, as shown by
Figure 4.14 (b). Therefore, it can be concluded that the tuning of λ has a limited impact on the filter’s
performances.

Table 4.9: Simulation results for several values of λ, averaged on all scenarios, using Guaranteed resampling.

Coefficient λ 0.1 0.3 0.5 0.7

Non-convergence rate (%) 0 0 0 0

RMSE ratio (position) 0.178 0.155 0.151 0.149

RMSE ratio (velocity) 0.837 0.772 0.741 0.741

Pessimism (position) 2.61 2.51 2.51 2.44

Pessimism (velocity) 1.93 2.05 2.12 2.13

4.3.4 Conclusion on subdivision methods

To conclude, two resampling subdivision approaches have been introduced and compared with the
existing random subdivision method. Table 4.10 summarises the pros and the cons of each approach, that
was previously discussed in more detail. These results tend to show that accounting for observability (i.e.
the use of MLCS) is not necessary as long as the filter is robust by construction (ensured by Guaranteed
Resampling).
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Figure 4.14: Comparison of RMSE ratios averaged on TAN scenarios with several values of λ (Maximum Likelihood
Covariance Subdivision in the context of Guaranteed Resampling): (a) averaged RMSE ratio, (b) RMSE
ratios for all scenarios.
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Table 4.10: Subdivision methods pros and cons

Method Pros Cons

Random
Subdivision
(Gning
[Gni+13])

Simple to implement

Yields poor performance with respect
to other methods,
Introduces some random sample
generation which makes it
non-deterministic.

Geometrical
Subdivision

Relatively simple to implement
(O(Nd) operations),
Yields the best RMSE when used in
conjunction with Guaranteed
Resampling, in the context of TAN,
Fully deterministic.

Downgraded performances when used
in conjunction with Multinomial
Resampling, in the context of TAN,
Limited to state representations
satisfying Proposition 3 axioms
(although this covers a large variety of
estimation problems).

Maximum
Likelihood
Covariance

Yields the best RMSE when used in
conjunction with Multinomial
Resampling, in the context of TAN,
Yields more robustness than other
methods by subdividing boxes along
the most observed dimensions,
Can be generalised to any state
description, dynamical model, and
observation model,
Fully deterministic.

Introduces too much conservatism
when used in conjunction with
Guaranteed Resampling, which makes
it less accurate than Geometrical
Subdivision, in the context of TAN,
More complex to implement (O(Nd6)
operations).
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4.4 the box regularisation

In the previous sections, a guaranteed resampling approach and two deterministic ways to subdivide
box particles have been introduced. However, whatever be the resampling methods, this operation ends
either with exactly superposed box particles or a regular paving of the state space. It yields a jagged
density approximation whose resolution is coarse. As a result, the posterior density p(xk|Mk) is often
poorly approximated, which may lead to a biased estimate. A possible solution to enhance the posterior
density approximation is by smoothing it. A smoothing approach, called kernel regularisation, was
presented by Musso [MOLG01] to improve the robustness of conventional particles filters and was
presented in Section 2.1.4. It is based on the theory of Silverman [Sil86] on kernel smoothing and density
estimation.

The objective of this section is to determine an optimal smoothing kernel applied to the box parameters
(centers and diameters), in terms of the Mean Integrated Square Error (MISE) criterion. An adaptation
of the kernel regularisation method to BPF is developped, which leads to an algorithm called Box
Regularised Particle Filter (BRPF). The regularisation takes place after the resampling operation and the
correction step that was previously presented. It is always triggered consecutively after the resampling
step.

4.4.1 Principle and example

Each box particle (in IRd) can be described by its center (ci
k ∈ Rd) and its diameter (di

k ∈ Rd), as
introduced in Section 2.1.5. Box particles are the d-dimensional supports of bounded kernels. The
estimated state conditional density is a weighted sum of these kernels, as developed in Section 4.1.2.
After a resampling by box subdivisions, the box particle cloud results in one or several groups of strictly
aligned or superposed box particles. The estimated density is thus quite jagged. This aliasing can be
interpreted as a high correlation between the particle parameters (centres and diameters). Regularisation
consists of smoothing the density by noising the box parameters with a carefully defined stochastic
noise. This noise is chosen to minimize the MISE criterion defined in Section 2.1.4, which quantifies a
distance between the theoretical conditional density and the estimated one. Theoretically, this results in
a more accurate estimation and a lower RMSE (Musso [MOLG01]).

Figure 4.15 illustrates the Box Regularisation principle on an example with three state variables
(x = [px, py, pz]T) and 10 box particles. Weights are represented by the box opacity. Regularisation occurs
after a resampling step, where 9 box particles were removed and replaced by 10 subdivisions of the same
box particle along the pz dimension. The estimated density (the blue curve) is illustrated before and after
regularisation. For readability, the density is illustrated as a marginalisation on one state dimension, for
example px. After resampling and before regularisation, the estimated density results in the mixture of
10 exactly superposed box particles kernels (in this example, uniform kernels). Therefore, the estimated
density is similar to a step function, which does not fit with the theoretical conditional density (the red
curve) obtained with the optimal filter. By smoothing the distribution of the box particles’ parameters,
regularisation makes the estimated density fit more closely to the theoretical conditional density. Note
that Guaranteed Resampling (Section 4.2) does not retain its guaranteed property, since the box particles
may be shifted. However, it can be assumed that the actual state remains covered by the box particle
cloud if the number of box particles is sufficiently high. The next section develops the formalism of Box
Regularisation.
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Figure 4.15: Illustration of the Box Regularisation principle, after a resampling involving a cloud of 10 box particles.
The estimated density (blue curve) is plotted before and after regularisation and compared with the
theoretical conditional density (red curve). For the sake of clarity, the density is marginalized on one
dimension.



4.4 the box regularisation 103

4.4.2 Kernel Regularisation applied to the Box Particle Filter

This section presents the Kernel Regularisation framework in the context of BPF.
Each box particle [xi

k] can be characterised by a vector of R2d which consists of their center ci
k ∈ Rd

and their diameter δi
k ∈ Rd. A vector description of a box particle is:

ξi
k

T
=
[
ci

k
T

, δi
k

T] ∈ R2d (4.66)

Let ξT
k =

[
ck

T , δk
T
]

be the random vector representing the boxes parameters (center and diameter).
Therefore, a new expression of the density’s approximation can be written, using a kernel density
centered on each box particle ξi

k.

p̂(ξk|Mk) = p̂(ck, δk|Mk) ≈
N

∑
i=1

wi
kKh(ξk − ξi

k) (4.67)

whereKh : R2d → R

Kh(ξ) =
1

h2d K
(

1
h ξ
) (4.68)

is the re-scaled kernel density K(.) and h ∈ R+∗ the kernel bandwidth. The kernel density is a symmetric
probability density function.

The regularisation step therefore consists of noising each box parameter:

ξi
k ← ξi

k + Chol(Ŝ)εi
k (4.69)

where εi
k ∼ Kh(ε

i
k) and Ŝ is the empirical covariance matrix of parameters ξi

k.
The kernel K(.) and bandwidth h are chosen to minimise the Mean Integrated Square Error (MISE,

equation (2.27)) between the theoretical posterior density and the corresponding regularised density.
As introduced in Section 2.1.4 (Silverman [Sil86]), an optimal choice of the kernel is the bounded
Epanechnikov kernel in terms of MISE asymptotic minimisation. It is assumed that all the box particles
have the same weight, which is the case during the resampling step; and that the actual posterior density
is asymptotically unimodal. For multimodal cases, a multiplicative coefficient µ ∈]0, 1] is introduced
to limit the regularisation impact on the filter’s stability (equation (2.33)). After kernel smoothing
regularisation, the box particle kernels mixture is guaranteed to better fit the optimal posterior density.
In practice, this will result in an improved estimation accuracy (RMSE), as will be experimentally shown
in the next section. The theoretical asymptotic BRPF posterior density can be approached by replacing
each box particle with an Epanechnikov kernel.

Proposition 5. Let us approach the asymptotic regularised BRPF posterior density by a mixture of Epanech-
nikov kernels:

p̂BRPF
∞ , lim

k→∞
p̂BRPF(xk|Mk) ≈

N

∑
i=1

wi
kKh(xk − ci

k) (4.70)
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where ci
k are the box particles centres and h the optimal bandwidth defined in (2.30). Let us approach the

asymptotic BPF posterior density without regularisation by a mixture of uniform kernels:

p̂BPF
∞ , lim

k→∞
p̂BPF(xk|Mk) ≈

N

∑
i=1

wi
kUδi

k
(xk − ci

k) (4.71)

If all weights are equal (during the resampling step), and if the actual density tends to a twice differentiable
function defined by p∞ , limk→∞ p(xk|Mk), then the resulting MISE of the BRPF is lower than the MISE
of the original BPF, ∀N, d ∈N∗:

MISE
(

p̂BRPF
∞ , p∞

)
< MISE

(
p̂BPF

∞ , p∞

)
(4.72)

Proof. The MISE obtained with a uniform mixture is minimised if the uniform kernels diameters are
equal to the optimal bandwidth h′ > 0 defined by (2.30), which provides a lower bound for the BPF’s
MISE:

MISE
(

p̂BPF
∞ , p∞

)
≥ MISEBPF , MISE

(
N

∑
i=1

wi
kUh′(xk − ci

k), p∞

)
(4.73)

For any kernel mixture, the lower reachable MISE is obtained by combining equation (2.28) with (2.30),
which yields:

MISE (•, p∞) =

(∫
Rd

(O2 p(x))2dx
) d

d+4
N
−4

d+4 α
2d

d+4 β
4

d+4

(
1
4

d
4

d+4 + d
−4

d+4

)
(4.74)

where d > 0 is the number of dimensions, α and β are the Kernel’s parameters defined in (2.29). The
ratio of two optimal MISE obtained with different kernel mixtures is thus:

r =
( α

α′

) 2d
d+4
(

β

β′

) 4
d+4

(4.75)

where (α, β) are the coefficients corresponding to a first kernel (Epanechnikov in what follows) and
(α′, β′) correspond to a second kernel (uniform in the following). The uniform kernels are approached
by beta kernels whose coefficients tend to unity. A more detailed description of the kernels coefficients
can be found in Appendix E. Applying this relation to the Epanechnikov and the uniform kernels yields:

MISE
(

p̂BRPF
∞ , p∞

)
MISEBPF =

(
3

4 + d

) 2d
4+d

2(d + 2)Γ
(

d
2 + 1

)
π

d
2 (4 + d)


4

4+d

(4.76)

where Γ : R→ R is the Gamma function. This ratio remains strictly bounded between 0 and 1, which
yields:

MISE
(

p̂BRPF
∞ , p∞

)
< MISEBPF ≤ MISE

(
p̂BPF

∞ , p∞

)
(4.77)
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Remark 1

The ratio between the BRPF theoretical asymptotic MISE and the BPF lower reachable MISE defined in
equation (4.76) is plotted in Figure 4.16 for d ∈ [1, 100]. The MISE enhancement between the regularised
asymptotic density (4.70) and the lower reachable value (4.73) for the BPF MISE (4.71) appears to be
significant. The next section will evaluate if the regularisation step improves the filter’s RMSE in practice.
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Figure 4.16: Ratio (4.76) between the Box Regularised Particle Filter’s theoretical asymptotic Mean Integrated Square
Error (MISE) and the original Box Particle Filter lower reachable MISE

Remark 2

The computational load (see Appendix C) required to perform the regularisation is:

creg = 4Nd2 + 2Ndcrandom + o(Nd) (4.78)

where d is the state dimension, N the number of box particles, and crandom the computational load
required to produce one random sample.

4.4.3 Numerical results

This section evaluates the following points:

1. The impact of regularisation on the filter’s performances, in the context of Guaranteed Resampling
and the Geometrical Subdivision approach;

2. The impact of regularisation on the filter’s robustness.

The considered criteria, as introduced in Section 3.5 are: RMSE ratio (final RMSE divided by initial
RMSE), pessimism rate (final estimated standard deviation divided by final RMSE), and non-convergence
rate (the percentage of simulation ending with an inconsistent estimation). Points 1 and 2 are evaluated
on all scenarios using Guaranteed Resampling and Geometrical Subdivision. Results for the first three
scenarios (Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion) are discussed
separately from those of the last two scenarios (Scenario TAN Moon flyby, Scenario TAN Sinusoidal
terrain). Indeed, their measurement ambiguities are stronger, leading to a different behaviour. Unless a
different setting is explicitly stated, the BRPF algorithm is tuned with N = 900 box particles, no process
noise and a resampling threshold of θeff = 0.7.

Kernel Regularisation aims to smooth the estimated conditional density in an optimal way, as
developed in the previous section and as illustrated in Figure 4.15. The smoothing effect of Kernel



106 the box regularised particle filter

Regularisation can be checked in simulation. Figure 4.17 shows the conditional density estimated by
BRPF for one run on Scenario TAN La Reunion, (a) before regularisation and (b) afterward. Box kernels
are taken as uniform densities (i.e. πi

k =
1
|[xi

k ]|
1[xi

k ]
in (4.5)). The regularisation kernel is an Epanechnikov

density, as described in (2.32). The conditional density after regularisation clearly appears smoothed,
which refines the estimation of its highest peaks corresponding to the most probable states, including the
actual state (blue circle). In order to gain a two dimensional illustration, the plotted density corresponds
to the marginalised density on latitude and longitude dimensions.
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Figure 4.17: Estimated conditional state density before and after one regularisation step (with µ = 0.1) for Scenario
TAN La Reunion. The regularisation step refines the resolution of the density estimation.

The RMSE ratios (the ratio between the final value of RMSE and the initial value) are displayed in
Figure 4.19 and Table 4.11 for Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion;
using Guaranteed Resampling and Geometrical Subdivision, for a hundred runs. A somewhat linear
decreasing progression with respect to the regularisation magnitude µ is obtained for the averaged
position RMSE. Velocity averaged RMSE is improved for µ = 0.1, but may suffer some discrepancy
for higher values, while the position remains improved. This highlights the importance of parameter
µ whose values must be kept around 0.1 in practice to avoid instabilities for the TAN application.
The reason why the actual optimal kernel bandwidth (2.33) must be lowered by µ is that the MISE
minimisation is performed under a unimodal asymptotic density hypothesis. In practice, regularisation is
performed when the density contains a number of modes (peaks), whose individual standard deviation
in the TAN context usually has an order of magnitude of 1

10 of the whole box particle cloud standard
deviation. Giving higher values to µ may result in non-convergence in the presence of multimodalities
(i.e. ambiguities). Figure 4.20 illustrates this tendency for µ ≥ 0.3. A significant improvement can be
observed in the final position RMSE between µ = 0 and µ = 0.2. The velocity RMSE is also slightly
improved until µ = 0.1 It then suffers some discrepancy for µ > 0.1. Higher values of µ lead to non-
convergences. A possible approach to make regularised particle filters more robust to multimodalities
is to perform some independent regularisation on each mode (Murangira [Mur+11]). However, such
methods are costly and are beyond the scope of this thesis. Note that regularisation does not significantly
reduce the conservatism (the pessimism ratios remain higher than 1.5).

Figure 4.18 shows the RMSE obtained in position for µ = 0 to µ = 0.2 along the whole trajectory on
Scenario TAN Alps. Again, although regularisation helps to reduce the final error, it may introduce
some instabilities if µ is too large, which can be the cause of a greater RMSE variability in the presence
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Table 4.11: Simulation results for different values of the regularisation parameter. Results are averaged on Scenario
TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion, at final time-step

Regularisation coefficient µ 0 0.1 0.2 0.3 0.4

Non-convergence rate (%) 0 0 0 16.3 33.8
RMSE ratio (position) 0.097 0.094 0.090 1.79 3.32

RMSE ratio (velocity) 0.620 0.614 0.630 3.14 14.8
Pessimism (position) 2.08 2.12 2.07 1.32 0.54

Pessimism (velocity) 2.37 2.39 2.32 2.00 2.60

Computation time1 (ms) 12 12 12 12 12

1. For µ = 0, the regularisation computation is not performed. The computation time difference between µ = 0 and µ > 0 appears negligible.

of multimodalities. In the present case, this phenomenon arises for µ = 0.2, although it does not yield
non-convergence until µ ≈ 0.3 (Figure 4.20).
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Figure 4.18: Position RMSE obtained for several values of µ on Scenario TAN Alps. The accuracy enhancement
clearly appears during the last part of the trajectory (zoomed plot).

However, for the most severe ambiguity cases (as encountered in Scenario TAN Moon flyby and
Scenario TAN Sinusoidal terrain) even low values of µ may yield non-convergences. Table 4.12 presents
the averaged results of these two scenarios for µ ∈ {0, 0.1}, for a hundred runs. These instabilities can
be explained by the fact that in both cases, the posterior box kernels mixture density is not unimodal.
Therefore, the regularisation hypotheses are not met, which makes the method unsuitable for such
cases. To conclude, regularisation can improve the RMSE but needs to be carefully tuned, and should be
avoided in the presence of strongly multimodal state densities.
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Figure 4.19: [
Root Mean Square Error ratios obtained for several values of the regularisation parameter µ (using
Guaranteed Resampling and Geometrical Subdivision)]Root Mean Square Error ratios obtained for
several values of the regularisation parameter µ (using Guaranteed Resampling and Geometrical

Subdivision), on Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion.
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Figure 4.20: Non-convergence percentage obtained for several values of the regularisation parameter µ (using
Guaranteed Resampling and Geometrical Subdivision) on Scenario TAN Alps, Scenario TAN Canyon,
and Scenario TAN La Reunion.



4.5 overview of the box regularised particle filter 109

Table 4.12: Averaged results for the impact of regularisation on the most ambiguous scenarios (Scenario TAN Moon
flyby, Scenario TAN Sinusoidal terrain) at final time-step

Regularisation coefficient µ 0 0.1

Non-convergence rate (%) 0 40

RMSE ratio (position) 0.077 0.569

RMSE ratio (velocity) 0.582 1.91

4.5 overview of the box regularised particle filter

This section summarises the chapter’s contributions to the Box Particle Filter field. The above develop-
ments are summarised in Algorithm 7, which is then called the Box Regularised Particle Filter. In order
to provide an overview of the BRPF’s performances with respect to existing approaches, simulations are
run to evaluate the following points:

1. The relative performances of BPF [Gni+13] and the different configurations of BRPF with respect
to the number of box particles;

2. The required computational loads for PF [GSS93], BPF [Gni+13] and the different configurations
of BRPF for a given number of (box) particles;

3. The computational load difference between BRPF and conventional Particle Filter for a similar
performance budget;

4. The impact of a non-symmetric unknown-but-bounded measurement density on BRPF.

Unless a different setting is explicitly stated, the BRPF algorithm is tuned with N = 900 box particles,
no process noise and a resampling threshold of θeff = 0.7.

Relative performances of BPF [Gni+13] and BRPF (point 1)

Figure 4.21 presents the RMSE ratios obtained for several values of the box particles number N,
averaged on Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion. A comparison
is made between the original BPF (Gning, [Gni+13]) in blue and four configurations of BRPF: The
Maximum Likelihood Covariance Subdivision (MLCS) with Multinomial Resampling (MR) in orange,
the Geometrical Subdivision (GS) with MR in yellow, the MLCS using Guaranteed Resampling (GR)
in purple, and the GS using RS in green. The regularisation is set up with µ = 0.1 (2.33). The use of
Guaranteed Resampling with both proposed subdivision methods (MLCS, GS) yields a better accuracy
than the use of Multinomial Resampling. In particular, original BPF is outperformed in both position
and velocity estimation, even for low values of N (e.g. N = 100). The configuration of BRPF involving
Guaranteed Resampling and Geometrical Subdivision appears to be the most accurate for the TAN
application. The obtained RMSE lowers as N increases. It can be noticed that the use of BRPF may help
to significantly reduce the number of box particles with respect to the BPF for equivalent accuracy. For
example, BRPF using GR and GS needs only 400 box particles to obtain similar RMSE in position as
BPF using 1600 box particles. According to Table 4.13, the theoretical computational load can then be
reduced by 75%.

By considering both performance budget and computational load in the context of the TAN application,
it appears that the most advantageous algorithm is the BRPF using Geometrical Subdivision and
Guaranteed Resampling.
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Computational load and complexity analysis (point 2)

Table 4.13 provides the orders of magnitude of the computational load for the conventional Particles
filter (SIR-PF), the conventional BPF and two configurations of BRPF. See Section 4.3.1 for Geometrical
Subdivision and see Section 4.3.2 for Maximum Likelihood Covariance Subdivision. Note that the
computational difference between Multinomial resampling and Guaranteed Resampling (see Section 4.2)
is negligible with respect to other terms. Regularisation is enabled and set up with µ = 1 (see Section 4.4).
Although EKF cannot robustly handle severe ambiguities and non-linearities such as those encountered
in the TAN application, its computational load is provided to give a comparison.

Theoretical computational loads are given in terms of the total number of floating-point operations
(flops, see Appendix C) for prediction, correction, resampling, estimate, regularisation and the total load,
obtained as the summation of the loads of all steps. The assumptions are made that the observation
equation load is lower than the squared dimension, i.e. ch < d2, as well as the random sample cost
crandom < d2. It can be noticed that the total load is usually driven by the prediction step, which is the
most costly. The order of magnitude of the computation time per time-step is globally the same for
the Particle Filter, BPF and BRPF using Geometrical Resampling (about 10 ms). An exception arises for
BRPF using Maximum Likelihood Covariance Subdivision, whose load is significantly higher than the
prediction’s (see (4.65) for a detailed analysis). Numerical evaluations of the flops’ orders of magnitude
are provided, assuming that particle filters use N = 103 particles (or box particles), the state dimension
is d = 6 and the measurements dimension is lower than the state dimension dm < d (for TAN, dm = 1).

Average empirical computation time per time-step is provided using a 1.6 GHz CPU running Matlab®

for the TAN application (non-linear measurement, see (3.9)) and double integrator linear dynamics
(see (3.1)). Computation times are averaged for time-steps when a resampling occurs, time-steps when
only prediction and correction step occur and for every time-step. Empirically, a resampling occurs on
average 2 to 5 % of the time, which makes its impact on the total computation load often insignificant.
Indeed, the averaged computation time for all time-steps remains of the order of magnitude of the
prediction and correction steps’ computation times. The BRPF using MLCS averagely takes about 40 ms
per time-step, which represents a majority of 10 ms steps and a few 1 s steps when a resampling occurs.

The empirical computation times are globally consistent with the theoretical computation loads in
terms of the relative order of magnitude. However, empirical values must be carefully interpreted and
may be biased by some intern parallelism of Matlab®. Also note that those times can be optimised by
taking advantage of the high level of parallelism of particle filtering, using for example GPU (Graphics
Processing Unit) or FPGA (Field Programmable Gate Array) chips, which is beyond the scope of this
thesis.
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Figure 4.21: Root Mean Square Error ratios obtained for several values of the box particles number N, for the original
BPF (Gning, [Gni+13]) in blue, and four configurations of BRPF: the Maximum Likelihood Covariance
Subdivision (MLCS) with Multinomial Resampling (MR) in orange, the Geometrical Subdivision (GS)
with MR in yellow, the MLCS using Guaranteed Resampling (GR) in purple, and the GS using GR
in green. The last configuration appears to be the most accurate for the TAN application, and the
resulting RMSE gets lower as N increases. RMSE ratios are averaged on Scenario TAN Alps, Scenario
TAN Canyon, and Scenario TAN La Reunion.
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Table 4.13: Computational load (flops) needed by BRPF, compared to previous works. The BRPF is declined in
two configurations: using Geometrical Subdivision (GS, see Section 4.3.1), and Maximum Likelihood
Covariance Subdivision (MLCS, see Section 4.3.2). A numerical example is provided for N = 103

particles, d = 6, dm < d, ch < d2, crandom < d2. The empirical computation time is obtained with a
1.6 GHz CPU running Matlab®. The average computation time is provided for one time-step where a
resampling occurs, and for one time-step where only prediction and correction steps occur. The average
of all time-steps without discrimination is also provided.

Algorithm EKF SIR-PF BPF BRPF

Verhaegen Karlsson Gning GS MLCS

[VVD86] [KSG05] [AGB07] Section 4.3.1 Section 4.3.2

Prediction O(d3) O(Nd2) O(Nd2) O(Nd2) O(Nd2)

Correction O(d2dm) O(Nch) O(Nch) O(Nch) O(Nch)

Resampling - O(N) O(Ncrandom) O(Nd) O(Nd6)

Regularisation - - - O(Nd2) O(Nd2)

Estimate O(d3) O(Nd2) O(Nd2) O(Nd2) O(Nd2)

Total O(d3) O(Nd2) O(Nd2) O(Nd2) O(Nd6)

e.g. O(102) O(104) O(104) O(104) O(106)

Empirical with
resampling (ms)

- 11 18 30 103

Emp. without
resampling (ms)

4 7 9 9 9

Empirical
average (ms)

4 10 11 12 40
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Relative computation load of SIR-PF [GSS93] and BRPF for similar performances (point 3)

Simulations have been run to test the conventional Particle Filter (SIR-PF) performances on the same
scenarios as the BRPF, for different values of the number of particles and box particles N on Scenario
TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion. The SIR-PF has been set-up with
a truncated Gaussian measurement noise assumption, which corresponds to the actual measurement
noise used for the simulation. Note that the RMSE have been computed keeping all the Monte Carlo
runs, including the non-convergent ones. Table 4.14 and Figure 4.22 present the averaged performances
obtained with the SIR-PF and the BRPF, for a hundred runs. The SIR-PF yields approximatively the same
averaged RMSE ratios with 30,000 particles than the BRPF with 100 box particles. Therefore, there is a
ratio of about O(102) particles between SIR-PF and BRPF, which corresponds to a 99% of computational
load reduction for an equal state dimension, according to Table 4.13. The empirical computation time per
time-step is 74 ms for the SIR-PF with 30, 000 particles and 2.5 ms for the BRPF with 100 box particles.
This represents a computation time gain of 97%, which tends to confirm the theoretical gain prediction.
Note that the BRPF also brings more robustness with a zero non-convergence rate.
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Figure 4.22: Root Mean Square Error ratios obtained for several values of the (box) particles number N, for the
SIR-PF (a), and BRPF (Geometrical Subdivision using Guaranteed Resampling) in (b). A similar RMSE
ratio can be reached for SIR-PF and BRPF for respectively 50, 000 particles and 400 box particles, which
represents approximately a ratio of 102 particles. RMSE ratios are averaged on Scenario TAN Alps,
Scenario TAN Canyon, and Scenario TAN La Reunion.
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Table 4.14: Averaged results for SIR-PF and BRPF on Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN
La Reunion, at final time-step.

SIR-PF BRPF

N 5,000 10,000 30,000 50,000 100 400 900 1,600

Non-convergence rate (%) 67 77 12 15 0 0 0 0

RMSE ratio (position) 0.49 0.33 0.23 0.16 0.21 0.12 0.09 0.08

RMSE ratio (velocity) 1.46 1.21 0.98 0.91 0.96 0.78 0.61 0.51

Emp. computation time (ms) 14 27 74 127 2.5 6.1 12 19
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Impact of the measurement density on BRPF (point 4)

Several bounded measurement densities were designed in order to check point 4:

• Truncated Gaussian density: This density was used in all simulations until then. It is defined by
(3.10).

• Truncated Rayleigh density: In this case, this density represents a noise whose expectation is
biased from −10 m with respect to an unbiased observation model expected value (mk = h(xk)).
Furthermore, the probability of mk ≥ h(xk) is zero. The truncated Rayleigh density used in the
simulations is defined by: p(mk|xk) = 0 if mk − h(xk) ∈ [0, ∞[

p(mk|xk) ∝ −(mk − h(xk))B−1 exp
(
− 1

2 (mk − h(xk))
TB−1(mk − h(xk))

)
1[vk ]

else
(4.79)

where B = 102 m2 is the parameter corresponding both to a variance and a bias. Although BRPF
must handle any density provided that its support is bounded by [vk], a higher BRPF estimation
error can be expected due to the measurement bias.

• Multimodal density: This density is obtained by the addition of three Gaussian densities cor-

responding to the normal laws N
(

20,
(

15
2

)2
)

, N
(
5, 52), N (−20,

(
15
2

)2
)

, and one Rayleigh

density (4.79) of parameter B = 102 m2. This density represents a bimodal measurement noise. A
higher BRPF estimation error may be expected due to the measurement modes.

• Uniform density: This density corresponds to the BRPF measurement noise assumption (see
Section 4.1, equation (4.18)). Therefore, a lower BRPF estimation error can be expected in the
context of an actual uniform measurement density than for other densities.

Table 4.15 and Figure 4.23 present the obtained results for a hundred runs. The BRPF appears robust
to unknown-but-bounded measurement densities, since all four bounded densities yield a zero non-
convergence rate. The RMSE ratios are not impacted in a significant way. One can notice a slightly
downgraded RMSE in the presence of systematically biased measurements (Rayleigh density). When
the actual measurement density matches with the BRPF assumption (i.e. uniform density), the RMSE is
slightly better than with other densities.
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Table 4.15: Averaged results for different measurement densities on all scenarios, at final time-step. An empirical
histogram of each density is provided (deep blue bars). The red line indicates the abscissa zero, which
corresponds to a perfect measurement mk = h(xk).
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Figure 4.23: Root Mean Square Error ratios obtained for different measurement densities (using Guaranteed
Resampling and Geometrical Subdivision), on all scenarios. BRPF appears to be robust to biased and
multimodal measurement densities.
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Algorithm 7 Box Regularised Particle Filter
Inputs: initial state density p(x0), process noise box [wk] ∀k, measurement noise box [vk] ∀k.
Outputs: state estimate x̂k ∀k, estimated covariance P̂k ∀k.

1: Initialisation: The initial box particle set (or box particle cloud) {[xi
0] ∈ IRd, wi

0 ∈ R+∗}i∈[1,N] is
drawn such that the initial estimated density (2.56) approaches the initial actual density p(x0). In
practice, it can be initialised with a regular paving on the state density’s support, which makes it
similar to an histogram.

2: for each time-step k do
3: Prediction step: Propagate box particles using the dynamics [xi

k|k−1] = [ f ]
(
[xi

k−1]
)

+ [wk]

4: Correction step: Contract each particle with respect to the measurement box [mk] (see contractors
in Section 2.1.5), such that: [xi

k] =
[{

xk ∈ [xi
k|k−1]

∣∣ h(xk) ∈ [mk]
}]

5: Update weights with the consistency term (4.16). Under the assumption of uniform box kernels
and uniform measurement density, the consistency term is the ratio between the volumes of the
box after and before contraction (2.60).

6: Compute the state estimate E [ p̂(xk|Mk)]. It can be approximated by a least-square estimator:
x̂k = ∑i wi

kci
k with ci

k the center of each particle (see Table 2.1).
7: Compute a confidence indicator, e.g. the covariance P̂k = ∑i wi

k(c
i
k − x̂k)(ci

k − x̂k)
T .

8: if a resampling criterion is satisfied, e.g. Neff < θeffN, see (2.22) then
9: Draw a new set of box particles {[xi

k], wi
k}i∈[1,N] using a resampling method, e.g. Multinomial

Resampling (Algorithm 3), or Guaranteed Resampling (Algorithm 6) to determine the number
of new instances per box particles ni.

10: Replace low-weighted (or zero-weighted) box particles with ni subdivisions of high-weighted
particles using Geometrical Subdivision (4.43), or Maximum Likelihood Covariance Subdivision,
(4.48) (4.47).

11: Reset all weights to 1/N.
12: Perform a regularisation on box particles’ centers and diameters by generating samples via the

Epanechnikov Kernel (2.32).
13: end if
14: end for
15: Return x̂k, P̂k ∀k.
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4.6 summary

This chapter showed that the BPF can be formalised for any box kernel mixture (research question 1). It
yields less pessimism, as shown in the linear-Gaussian case. However, it becomes rapidly intractable in
the presence of non-linearities and is therefore not of practical use to tackle ambiguous measurements.

A guaranteed formulation of Multinomial Resampling was then introduced which ensures that at
least one box particle contains the actual state (research question 2). This proves efficient in practice and
yields a lower RMSE while ensuring a zero non-convergence rate. However, it brings some conservatism
(higher pessimism rate).

The impact of two new subdivision resampling approaches was also studied (research question 3):
the Geometrical Subdivision (GS) based on a sub-box normalisation and the Maximum Likelihood
Covariance Subdivision (MLCS) based on observability. Although GS is less general than MLCS, it yields
a significantly lower computational load and a lower RMSE when used in conjunction with Guaranteed
Resampling. This tends to show that accounting for observability is not necessary as long as the filter’s
robustness is ensured by construction.

The kernel regularisation concept was introduced into the BPF scheme, leading to the Box Regularised
Particle Filter (BRPF, research question 4). It was proved that the BRPF’s MISE is necessarily lower than
the original BPF’s. In practice, it translates into a lower RMSE and does not have a significant impact
on the total computational load. However, regularisation must be tuned carefully in the presence of
multimodalities and may introduce instability.

Finally, the BRPF was compared to previous approaches. BRPF can reduce the computational load
by 75% (4-fold reduction) compared to BPF and by 97% (33-fold) compared to the SIR-P, for a similar
state-estimation accuracy. A theoretical complexity analysis of the algorithms is provided. The BRPF was
also run with different actual measurement noise, while the expected measurement distribution remains
uniform. The RMSE and pessimism rates are not significantly impacted by multimodal measurement
noise or biased noise, which confirms that BRPF can tackle unknown-but-bounded measurements.



5
B O X R E G U L A R I S E D PA RT I C L E F I LT E R I N F E D E R AT E D A R C H I T E C T U R E S

Chapter 4 introduced a new approach to the Box Particle Filter called the Box Regularised Particle
Filter (BRPF). BRPF is able to perform state estimation with high robustness to severely ambiguous and
non-linear measurements. The state is estimated via a cloud of weighted box particles. In probabilistic
terms, the estimated state density is approximated by a weighted mixture of bounded kernels whose
supports are the box particles. The measurement is assumed to be included in a box, and box particles
are contracted to keep only a subset of them which is consistent with the measurement set. For every
box, the weights quantify the probability to contain the actual state given the measurements. In order to
regroup box particles in the state space regions that are the most likely to contain the actual state, a
resampling step can be triggered. It consists of replacing low-weighted box particles with subdivisions
of high-weighted ones. The total number of box particles is kept.

By combining Interval Analysis and the probabilistic framework (see Chapter 2), BRPF can robustly
handle state density multimodalities (see Appendix B). In particular, the use of Guaranteed Resampling
introduced in Chapter 4, Section 4.2 ensures that the actual state always belongs to at least one box
particle. This ensures a zero non-convergence rate (see Section 3.5). As a result, BRPF is a suitable
solution for severely ambiguous estimation problems, such as Terrain Aided Navigation (TAN). BRPF
achieves a better accuracy than the original BPF (Gning, [Gni+13]) and the conventional Particle Filter
(Gordon, [GSS93]); and requires a significantly lower computation load for similar performances.

However, for other types of measurements (e.g. GNSS or magnetometer), the BRPF’s estimate may be
sub-optimal with respect to the Optimal Filter MAP estimator (see Section 2.1.2):

• Taking into account specific noise density’s hypotheses is not straightforward in BRPF. Chapter 4,
Section 4.1 introduced a general formulation of BPF which theoretically allows accounting for
any probabilistic knowledge from the measurements. However, this formulation can be rapidly
intractable in practice, e.g. for non-linear measurements, which limits its use. As a consequence, the
practical formulation of BRPF assumes that the measurement’s density is a uniform kernel. This is
a suitable approximation for unknown-but-bounded densities, but is sub-optimal for example for
actually Gaussian densities.

• The dynamical propagation of box particles is based on inclusion functions (see Chapter 2,
Section 2.1.5). Dynamical inclusion propagation returns a propagated box containing the output
set corresponding to the propagation of the prior box. However, correlation between state variables
is lost at the box particle level, since the box’s edges are aligned with the state space basis. Therefore,
during the contraction step, BRPF cannot explicitly establish any link between explicitly measured
state variables and indirectly observed ones, as does a Kalman gain, by accounting for non-
diagonal coefficients of the predicted covariance matrix (see Chapter 2, equation (2.13)). In other
words, BRPF (and BPF in general) can only contract each box particle along the directly measured
dimensions (explicit inputs of function h), and not along all the observed dimensions, which
depend on h and the dynamics f , (see for example Robenack [Röb03]). In the TAN application for

119



120 box regularised particle filter in federated architectures

example, only the position variables are explicitly involved in the observation model. Therefore,
velocities and possibly other variables such as attitude angles, are estimated in a sub-optimal way.

Section 2.2 examined the literature about collaborative state estimation architectures, in particular
federated architecture, where measurements are processed in a first layer by several dedicated local
filters whose local estimates are fused by a Master Filter in a second layer. A possible approach to tackle
multi-sensor fusion in the presence of ambiguities would be to integrate BRPF to such an architecture.
Therefore, severely ambiguous measurements would be tackled by a dedicated BRPF, while other
measurements would be processed by other local filters (e.g. Kalman Filters). The local estimates would
then be fused in a Master Filter (for example a collaborative Kalman Filter [OS09] or a collaborative
Information Filter [Man93]).

This chapter is organized as follows: Section 5.1 discusses the conditions for the BRPF density output
to be unimodal. Section 5.2 studies the integration of BRPF in a centralised federated architecture.
Numerical results illustrate the practical interest of such an architecture. Section 5.3 applies this scheme
to a distributed architecture. Simulations illustrate the interest of this approach, in terms of RMSE and
covariance stability, in the context of collaborative navigation in a fleet of vehicles.

5.1 asymptotic unimodality of the box regularised particle

filter

In order to implement a BRPF as a component of a Bayesian federated architecture (using for example
a Kalman Filter as a master filter), a unimodal approximation is needed for the BRPF posterior state
density. It was shown in Chapter 4 that the state conditional density estimated by the BRPF may be
multimodal, i.e. may have several maxima. It clearly appears in Figure 4.12 where the particle cloud is
made of the union of two disjoint box particle clusters of non-zero weights. In what follows, a cluster will
refer to the union of several box particles

⋃
i∈I [xi

k] where I is an indexing set of box particles belonging
to the cluster (see Appendix D). A cluster can be reduced to a single box particle.

The box particle cloud represents the estimated state density support p̂(xk|Mk) It can be deduced that
the estimated density may have several local maxima, called modes. When these modes are relatively
distant from one another as in Figure 4.12, the unimodal assumption is no longer valid.

The causes of multimodalities are discussed in Appendix B. Multimodalities in the posterior con-
ditional state density can be caused by (a) a nonlinear observation equation h, (b) a multimodal
measurement density p(mk|xk), or (c) some non observed state variables. In the context of BRPF, case
(b) has no impact on the box particle cloud connectedness since the measurement density support is
assumed to be contained in the measurement box [mk] (see Section 4.5). BRPF’s robustness to this case
was experimentally shown in Table 4.15. Case (c) does not strictly produce multiple local maxima, but
may yield a density support discrepancy along unobserved dimensions. Provided that h is injective and
continuous on the particle cloud domain and p(mk|xk) is unimodal, the contracted box particle cloud
remains connected. The focus will then be on non-linear and non-injective observations.

5.1.1 Asymptotic unimodality using Multinomial Resampling

Even if the estimated state density is multimodal, it is possible to make an asymptotic unimodality
assumption. The BRPF (Algorithm 7) consists of iterating three main steps: a box prediction (4.9),
a weight update (4.16) and, if needed, a resampling step by replacing low-weighted boxes with
subdivisions of high-weighted boxes. The resampling step can be performed using several methods. In
the literature, the most commonly used method is Multinomial Resampling, presented in Section 2.1.4,
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Algorithm 3. Chapter 4, Section 4.2 introduced a guaranteed version of Multinomial Resampling called
Guaranteed Resampling (Algorithm 6).

In the context of the Particle Filter, King [KF00] showed that Multinomial Resampling yields to
asymptomatic state density unimodality. In other words, even in the case of an actual multimodal state
density, all samples of a finite particle cloud collapse in the neighbourhood of one of the modes that has
a non-zero probability of being the wrong mode, which may lead to a non-convergence, as k tends to
infinity. This asymptotic behaviour is illustrated in Figure 5.1. Since Multinomial Resampling only takes
weights as inputs, these results are directly applicable to BPF and BRPF. Unfortunately, this is not the
case for Guaranteed Resampling.

𝑘 = 100 𝑘 = 250 𝑘 = 400

 𝑝 𝐱𝑘 𝐌𝑘)  𝑝 𝐱𝑘 𝐌𝑘)  𝑝 𝐱𝑘 𝐌𝑘)

𝑘 = 900

 𝑝 𝐱𝑘 𝐌𝑘)

Figure 5.1: Posterior conditional state density obtained with a Box Regularised Particle Filter using Multinomial
Resampling in the terrain measurements case (Scenario TAN Alps) for one run. The state density
converges to a single mode (which may be the wrong one), as shown in King [KF00].

5.1.2 Asymptotic multimodality using Guaranteed Resampling

Guaranteed Resampling (Algorithm 6) ensures that all box particles [xi
k] that have a non-zero probability

to contain the actual state xk are kept in the cloud. This yields more robustness, but also ensures
that every box particle [xi

k] containing at least one state consistent with the measurements box (i.e.
∃x ∈ [xi

k], h(x) ∈ [mk]) is guaranteed to be kept in the cloud.
The initial box particle cloud is assumed to form a connected set

⋃N
i=1[x

i
0] containing the actual state

x0. This can be achieved in practice by initialising box particles as a regular paving containing the initial
state density support {x ∈ Rd

∣∣ p(x) > 0}. However, in the event of multimodalities occurring in the
posterior conditional state density p(xk|Mk) (in particular, the non monotony of h), the box particle
cloud may not remain connected.

In order to provide an asymptotic unimodal approximation of the estimated state density p̂(xk|Mk),
the focus will first be on the existence of a unique connected cluster containing the actual state. Finally,
the posterior density unimodality characteristics will be discussed.

5.1.3 Existence, connectedness, and uniqueness of the actual cluster

It is first shown that there is always a unique connected box particle cluster containing the actual state.
Each box particle forms a connected set by construction. It is assumed that the dynamical model f is
continuous.

Proposition 6. Consider a BRPF (Algorithm 7) using Guaranteed Resampling (Algorithm 6) and no
regularisation (µ = 0 in (2.33)), initialised with a connected box particle cloud whose union contains the
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actual state. The dynamical model f and the observation model h are assumed to be continuous. Then, for
every time-step k, there exists a unique larger connected cluster {χk} ⊂ Rd containing the actual state xk,
called the actual cluster.

Proof. Define the prior actual cluster {χk−1} =
⋃

i∈Ik−1
[xi

k−1] where Ik−1 is an indexing set. Box particles
indexed by Ik−1 are assumed to satisfy the following axioms. At least one of them contains the actual
state xk−1, their union {χk−1} is connected and is disjoint from any box particle which does not belongs
to it. In other words, {χk−1} is the largest connected cluster containing the actual state. It is assumed
that the initial box particle cloud is connected and contains the actual state. Then, the indexing set
I0 = [1, N] contains every box particle. The prediction step keeps the predicted actual cluster {χk|k−1}
as a connected set, provided that the dynamics f is continuous (see Appendix D), and is defined by:

{χk|k−1} ,
⋃

i∈Ik|k−1

[xi
k|k−1] (5.1)

where the indexing set is kept:

Ik|k−1 = Ik−1 (5.2)

When a measurement mi
k ∈ Rdm is available, each box particle is contracted with respect to the

measurement box [mi
k] ∈ IRdm (see Section 4.1). Unfortunately, the resulting cluster

⋃
i∈Ik|k−1

[xi
k] may

result in a non-connected set after applying the contraction step to box particles of the predicted actual
cluster {χk|k−1}. Nevertheless, assume that there exists a neighbourhood Ek of the actual state which
satisfies:

x ∈ Ek ⇒ x ∈ {Xk}
xk ∈ Ek

(5.3)

where {Xk} is the theoretical set containing all states being consistent with the measurements since
k = 0 (see Section 2.1.5, equation (2.36)). In what follows Ek will refer to the actual neighbourhood. This
concept is illustrated in Figure 5.2 (a). The actual neighbourhood is an open subset of the consistent set
{Xk} containing all prior states being consistent with the measurements. Such a neighbourhood Ek exists
if the observation model h is continuous and if the actual predicted measurement h(xk) always belongs
to the interior of the measurement box [mk], i.e. it cannot belong to its boundary, see Appendix D. Note
that these assumptions are also required for the proof of guarantee of Guaranteed Resampling (see
Section 4.2.2). In what follows, it will be considered that these two conditions are satisfied.

Figure 5.2 (b) illustrates the resulting box particle cloud after at least one contraction step. The box
particle cloud may not remain connected. It therefore results in the union of several disjoint clusters.
Figure 5.3 illustrates the consistent set and the resulting empirical box particle clusters for a simulation
on Scenario TAN Alps. The contraction step ensures that each box particle containing a consistent
point x ∈ Rd such that h(x) ∈ [mk] before contraction keeps this point after contraction. Formally,
[xi

k] , [{x ∈ [xi
k|k−1]

∣∣ h(x) ∈ [mk]}] yields:

∀x ∈ [xi
k|k−1], h(x) ∈ [mk]⇒ x ∈ [xi

k] (5.4)
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State space
Actual state 𝐱𝑘

Actual neighbourhood ℰ𝑘

Set of consistent states with measurements

(a) Actual state, actual neighbourhood, and consistent set

Actual state 𝐱𝑘

Actual cluster 𝜒𝑘

State space

(b) Resulting box particle cloud and clusters

Figure 5.2: Illustration of (a) the actual state, the actual neighbourhood, and the consistent set (all states consistent
with prior measurements). This configuration yields a box particle cloud made of several disjoint clusters
(b). One of them necessarily contains the actual state and is called the actual cluster.
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(b) Resulting box particle cloud and clusters

Figure 5.3: Simulation of the actual state (green line), and the consistent set (green areas) containing the actual
neighbourhood, obtained for Scenario TAN Alps, at t = 10 s (a). This configuration yields a box particle
cloud made of several disjoint clusters (red boxes) (b). One of them necessarily contains the actual state
and is called the actual cluster.



5.1 asymptotic unimodality of the box regularised particle filter 125

In particular, every particle containing at least one element of the actual neighbourhood keeps it after
contraction:

∀x ∈ [xi
k|k−1], x ∈ Ek ⇒ x ∈ [xi

k] (5.5)

Then, every pair of box particles belonging to the connected cluster {χk|k−1} and having a non-
empty intersection which contains at least one element of the actual neighbourhood, has a non-empty
intersection after contraction and then forms a connected union: x ∈ [xi

k|k−1] ∩ [xj
k|k−1], ∀i, j ∈ Ik|k−1

x ∈ Ek

⇒ x ∈ [xi
k] ∩ [xj

k], ∀i, j ∈ Ik|k−1 (5.6)

Then, an updated cluster can be derived as a subset of {χk|k−1} defined by: {χk} ,
⋃

i∈Ik
[xi

k] with Ik the
new indexing set of all box particles satisfying that their union is connected, and one of them contains
the actual state xk. This results in the following indexing set:

Ik =
{

i ∈ Ik|k−1
∣∣ [xi

k] ∩ Ek 6= ∅
}

(5.7)

In particular, the contraction step ensures that if a box particle [xi
k|k−1] contains the actual state xk before

the contraction step, it still contains it afterwards, as shown by (4.33) in Section 4.2. Then, cluster {χk}
contains at least the box particle that contains the actual state. Cluster {χk} also contains all the pairs of
box particles whose intersection contains at least one element of Ek. To conclude, the contraction step
yields the largest connected subset of the predicted actual cluster that contains the actual state. This
new cluster can be defined as an updated actual cluster.

Guaranteed Resampling ensures that the actual state always belongs to at least one box particle
(Section 4.2). In addition, it guarantees that all the other states xk ∈ Rd such that the state density
is non-zero p(xk|Mk) > 0 still belong to at least one box particle after resampling. In particular, box
particles containing at least one element of neighbourhood Ek are always kept or subdivided. Then,
all box particles of cluster {χk} are kept or subdivided. If a box particle i is subdivided, it results in a
subpaving of ni new box particles. By definition, a subpaving is a connected set, since consecutive boxes
of the paving have non-empty intersections that consist of at least a common edge (Jaulin [Jau01]). Since
none of the box particles belonging to the actual cluster are removed, and since subdivided box particles
result in a connected subpaving, the actual cluster remains connected after Guaranteed Resampling is
applied. A resampled cluster {χ′k} ,

⋃
i∈I′k

[xi
k] can be defined, where I′k is a new indexing set:

I′k ,
{

i ∈ [1, N]
∣∣ [xi

k] ∩ Ek 6= ∅, ∃j ∈ Ik, [xi
k] ∩ [xj

k] 6= ∅
}

(5.8)

It was shown that there is always a largest connected union of box particles, called cluster {χk},
which contains the actual state xk. Furthermore, this cluster is unique. This can easily be proved by
contradiction: assume that there are two disjoint connected clusters {χ1

k} and {χ2
k} that contain the

actual state xk. Then, they have at least one element in common and they are not disjoint. Their union is
connected and has a non-empty intersection with the actual cluster:

(
{χ1

k} ∪ {χ
2
k}
)
∩ {χk} 6= ∅.
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5.1.4 Asymptotic convergence to a unimodal posterior density via regularisation

The previous section showed that the actual state always belongs to a connected cluster of box particles.
In other words, there is always a neighbourhood of the actual state belonging to at least one non-zero
weighted box particle. Therefore, the posterior estimated density p̂(xk|Mk) is always non-zero in the
actual state’s neighbourhood.

This section shows that regularisation (see Section 4.4) makes the posterior estimated density to
asymptotically tend to a unimodal density.

Proposition 7. Let us consider the BRPF set up with a regularisation parameter µ > 0, for a unidimensional
state. Then the posterior state density tends to a unimodal function for a sufficiently high number of
regularisation steps (i.e. resampling steps).

Proof. It was shown in Oudjane [Oud00] that the regularisation step is equivalent to a convolution of
the posterior state density p̂(xk|Mk) with a kernel K : R→ R+ satisfying:∫

K(t)dt = 1,
∫

tK(t)dt = 0 (5.9)

Therefore, it can be shown that n ∈ N∗ convolutions with K of variance VK are equivalent to one
convolution with a kernel of variance nVK. Let K(X) =

∫
K(t) exp (2iπXt) dt be the Fourier transform

of K. The first and second order derivatives of K are:

OK(X) = 2πi
∫

tK(t) exp (2iπXt) dt

O2K(X) = −4π2
∫

t2K(t) exp (2iπXt) dt
(5.10)

With X = 0:

K(0) = 1

OK(0) = 0

O2K(0) = −4π2
∫

t2K(t)dt = −4π2Var [t ∼ K] = −4π2VK

(5.11)

The Fourier transform of the n convolutions of K, denoted ~nK, is the n power of K’s Fourier transform,
which yields:

O2Kn(0) = −4π2Var [t ∼ ~nK] (5.12)

On the other hand, the differentiation of Kn yields:

O2Kn = n(n− 1)Kn−2(OK)2 + nKn−1O2K (5.13)

Combining (5.13) with (5.11) for X = 0 yields:

O2Kn(0) = nO2K(0) = −4nπ2VK (5.14)

Finally, combining (5.12) with (5.14) yields:

Var [t ∼ ~nK] = nVK (5.15)
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Therefore, n convolutions of p̂(xk|Mk) with K are equivalent to one convolution with a kernel of variance
nVK. The assumption is made that the posterior estimated density p̂(xk|Mk) is non-zero in the actual
state’s neighbourhood (Proposition 6). As a result, for n sufficiently high, the posterior density is
smoothed at a point that makes it unimodal.

Remark

The above proof is provided for d = 1 dimension. In what follows, the same result for d > 1 dimensions
will be admitted. A numerical study is provided in the next section for the TAN application.

5.1.5 Numerical study: application to Terrain Aided Navigation

This section experimentally checks the following hypotheses:

1. Multinomial Resampling ensures an asymptotic unimodality of the posterior density,

2. Regularisation acts as a smoothing operation on p̂(xk|Mk) and makes it unimodal.

To do so, define two criteria: the percentage of runs ending with more than one connected cluster at
the final time-step, called the non-connected rate and the percentage of runs ending with more than
one local maximum, called the multimodality rate. According to hypothesis 1, lower multimodality and
non-connected rates can be expected for Multinomial Resampling than for Guaranteed Resampling.
According to hypothesis 2, lower multimodality and non-connected rates can be expected with regular-
isation (µ > 0 in equation (2.33)) than without (µ = 0). The study was performed with four settings for
BRPF: with Multinomial or Guaranteed Resampling and with µ = 0 or µ = 0.1. Table 5.1 shows the
obtained criteria on Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion, on a
hundred runs.

Hypothesis 1 is not validated in this case as Multimodal Resampling leads to a significantly higher
multimodality rate than Guaranteed Resampling. However, trajectories consist of a thousand time-steps,
which leads only to about O(10) resampling triggering per run. This is not enough to evaluate an
asymptotic behaviour. Nevertheless, it can be concluded that Guaranteed Resampling yields lower
non-connected and multimodality rates in practice. This is probably due to its conservatism, leading to
a higher pessimism rate, as shown in Chapter 4.

Hypothesis 2 is validated, despite the low number of resampling and regularisation steps per
simulation. Indeed, performing regularisation (µ = 0.1) yields significantly less multimodality. It can be
concluded that regularisation makes the BRPF more compatible with Gaussian federated architectures
than a fully deterministic Box Particle Filter, as long as it does not threaten the filter’s stability (see
Section 4.4).
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Table 5.1: Non-connected rate (percentage of runs ending with more than one connected cluster) and Multimodality
rate (percentage of runs ending with more than one local maximum), on Scenario TAN Alps, Scenario TAN
Canyon, and Scenario TAN La Reunion, at final time-step. Guaranteed Resampling and regularisation
tend to lower the number of modes.

Multinomial Resampling Guaranteed Resampling

Regularisation parameter µ = 0 µ = 0.1 µ = 0 µ = 0.1

Non-connected rate (%) 9.3 4.7 3.0 2.3
Multimodality rate (%) 21.3 16.7 16.0 6.0

5.2 centralised federated architecture

This section studies the integration of BRPF in centralised federated architectures with a Gaussian
Master Filter (e.g. Kalman Filter). The problem is first described in Section 5.2.1. Section 5.1 studied the
conditions for the BRPF’s posterior conditional state estimated density to be unimodal, at least in an
asymptotic way. Under this hypothesis, the BRPF can be integrated to a federated architecture.

5.2.1 Principle

This section states the BRPF integration scheme in federated architectures, on the basis of the framework
introduced in Chapter 2, Section 2.2. Figure 5.4 illustrates the centralised case where at least one BRPF
is involved to tackle TAN ambiguities in conjunction with other sensors.

Local sensor 1
Severe ambiguity

e.g., radar-altimeter

Local sensor 2
e.g., GNSS

Local sensor 𝑁𝑎
e.g., magnetometer
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Figure 5.4: Box Regularised Particle Filter integrated to a federated architecture. Nonlinearities and ambiguities are
dealt with in a first layer, and local estimates are fused together in a second layer. Sensor measurements
mi

k are preprocessed in a dedicated local filter in the first layer. Then, local estimates xi
k are sent to the

Master Filter to be fused. Communication existence between each node i (sensor and local filter) and the
Master Filter is modelled by coefficients ai. Local filters can also be identity transfer functions, i.e. some
local measurements can be directly sent to the Master Filter without preprocessing.

Consider a system represented by its state ξk ∈ Rd. Denote f the system’s dynamical model:

ξk = f (ξk−1, uk) + wk (5.16)

where wk is the system’s process noise and uk the system’s deterministic control input.
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Local sensors

The measurements’ relationship with the system’s state is defined as follows:[
m1

k
T

, ..., mNa
k

T]T
= h(ξk) + vk (5.17)

where h is the system’s observation model and vk the measurement noise. The observation model may
contain severely non-linear terms, which might make it difficuly to estimate the state in a single filter,
or may yield sub-optimal estimation. The state vector ξ is assumed to be globally identifiable (Ljung
[LG94]).

The system is able to gather measurements from Na local sensors. This scheme can be applied to various
cases like IMU hybridisation or collaborative navigation for formation flying. Figure 5.4 illustrates the
case of an aerial vehicle navigation system equipped with various sensors that can be used during
different phases of a mission. For example, the GNSS may not be available because of jamming or
signal loss. The TAN radar-altimeter can be used in the case of GNSS denied situation provided that the
aircraft flies over a known terrain. Other sensors can also be used, such as magnetometers.

Local filters

A dedicated local filter can be associated with each local sensor i. Define a local state xi
k ∈ Rdi

. Its
dynamical model is defined as follows:

xi
k = f i(xi

k−1, uk) + wi
k (5.18)

where f i is the local dynamical model and wi
k the process noise. Local measurements are modelled as

follows:

mi
k = hi(ξk) + vi

k (5.19)

where hi
k is the local observation model and vi

k the local measurement noise. This results in several
decoupled observation models that are easier to process independently. Non-linearities can then be
tackled by dedicated filters which can be run in parallel. This has the benefit of avoiding the involvement
of the global observation model h (5.17).

Coefficient ai ∈ {0, 1} quantifies if node i (local sensor and local filter) is enabled (ai = 1) or disabled
(ai = 0). They can be associated with adjacency coefficients of a graph (see Section 2.2.1). Local filters

provide local estimates covariance x̂i
k associated with local covariances P̂

i
k.

Master filter

The Master Filter fuses all the available local estimates together with the system dynamics (5.16). The
local estimates form a set of virtual measurements that are assumed to depend on the state in a linear
way:

x̂i
k = Hiξk + υ̂i

k (5.20)

where Hi ∈ Rdi×d and υ̂i
k ∈ Rdi

m a noise of covariance P̂
i
k. This results in a federated estimate ξ̂k.

Equation (5.20) can be extended to non-linear dependency, but this is beyond the scope of this work.
The objective of this architecture is dealing with non-linearities in the first layer only, at a local level.
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5.2.2 Application to multi-sensor navigation

This section implements the BRPF in federated architectures to illustrate two advantages of this approach
with respect to a single level BRPF, dealing with all the measurements together:

1. BRPF permits robust state estimation from ambiguous, non-linear, non-Gaussian measurements,
but is sub-optimal for Gaussian measurements. Dealing with Gaussian measurements in dedicated
Gaussian filters would yield a near-optimal solution,

2. BRPF computational load depends on the square state dimension d2 (see Chapter 4, Table 4.13).
Therefore, it is of interest to reduce the BRPF dynamics dimension as much as possible. Federated
architectures allow the BRPF to focus on state variables involved in non-linearities, while the Master
Filter’s output can be of a higher dimension. This can be interpreted as an implicit marginalisation.
Furthermore, Gaussian measurements are tackled in a near optimal way by dedicated Gaussian
filters.

Federated architectures are compared with the BRPF only architecture where a BRPF processes all
the measurements together, under the uniform measurement hypothesis (see Chapter 4, Section 4.1,
equation (4.18)). In this section, all BRPF implementations are set up with Guaranteed Resampling (see
Section 4.2), Geometrical Subdivision (see Section 4.3.1) and Kernel Regularisation (with µ = 0.1, see
Section 4.4). Unless a different setting is explicitly stated, the BRPF algorithm is tuned with N = 900
box particles, no process noise and a resampling threshold of θeff = 0.7.

Accounting for Gaussian measurements

The first example implements a 6-dimensional double integrator dynamical model with Terrain Aided
Navigation (TAN) and velocity measurements. The control input is assumed to be zero. The state vector
is modelled by three positions pk ∈ R3 and three velocities vk ∈ R3:

ξk =
[
pT

k , vT
k

]T
∈ R6 (5.21)

The TAN radar altimeter measurements, denoted m1
k ∈ R in what follows, are assumed to have

bounded uncertainty. They are modelled as presented in Section 3.2, equation (3.7). The velocity
measurements, denoted m2

k ∈ R3 in what follows, are assumed to be linear-Gaussian:

m2
k = vk + υ2

k (5.22)

where υ2
k ∈ R3 is associated with a random vector following a Normal law. Measurement frequencies

for each sensor may be different. An active sensor i is associated with an adjacency coefficient ai = 1,
while an inactive sensor yields ai = 0. The proposed federated architecture illustrated in Figure 5.5
consists of:

• One BRPF, processing the radar-altimeter measurements in conjunction with a Digital Elevation
Model (DEM, see Section 3.2);

• One Master Filter (here, a Kalman Filter), estimating the system’s state ξk from the BRPF’s output
(position p̂1

k only) and the velocity measurement m2
k .

Both filters use the 6-dimensional double integrator dynamical model (See Section 3.1, equation (3.1)).
Note that the BRPF estimates a 6-dimensional vector, but only the position dimensions are used by the
Master Filter. Simulation settings (noises and frequencies) are presented in Table 5.2. The regularisation
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step is enabled for Scenario TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion, with
µ = 0.1. It is disabled for Scenario TAN Sinusoidal terrain and Scenario TAN Moon flyby. The
computational load required by the Kalman Filter is negligible with respect to that required by the BRPF
(see Section 4.5 and Appendix C): d3 � Nd2 with d = 6 and N = 900. Therefore, it can be considered
that both architectures (BRPF only and the federated architecture) have a similar computational load.

Table 5.2: Federated architecture settings

Parameter Value

Radar altimeter uncertainty bounds ±45 m

Radar altimeter actual density Truncated Gaussian (st.d 15 m)

Radar altimeter frequency 10 Hz

Velocity sensor (standard deviation) [2, 2, 2] ms-1

Velocity sensor frequency 1 Hz

Process noise in position (st.d) [20, 20, 5] m

Process noise in velocity (st.d) [0.1, 0.1, 0.1] ms-1

Initial uncertainty in position (st.d) [1000, 1000, 100] m

Initial uncertainty in velocity (st.d) [3, 3, 1] ms-1

Figure 5.7 illustrates the RMSE obtained on Scenario TAN Alps for the federated architecture’s output
(the green curve), and BRPF alone (all the measurements are processed together by the BRPF, the blue
curve). Velocity RMSE converges in a faster way, which illustrates the interest of processing Gaussian
measurements in a Gaussian filter. These results are confirmed for all the scenarios, as illustrated in
Figure 5.6 and Table 5.3, on a hundred runs. RMSE in position appears slightly downgraded, but not in
a significant way. The velocity RMSE is significantly improved.

Radar-altimeter

Velocity sensor

System 𝛏𝑘

 𝛏𝑘Master filter
𝑑 = 6

𝐦𝑘
1

𝐦𝑘
2

BRPF
𝑑1 = 6

 𝐩𝑘
1

position

velocity

𝑎1

𝑎2

DEM map

Figure 5.5: Box Regularised Particle Filter integrated to a federated architecture. BRPF tackles the ambiguous and
non-linear TAN problem and provides a position estimate to the Gaussian Master Filter (e.g. Kalman
Filter). The Master Filter estimates the whole state vector (position, measurement) from the BRPF’s
position estimation under Gaussian asymptotic hypothesis and the Gaussian velocity measurements.
The BRPF and the Master Filter use the same 6-dimensional dynamical model.
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Figure 5.6: Root Mean Square Error ratios obtained for the Box Regularised Particle Filter in a federated architecture
described in Figure 5.5, and BRPF alone (all measurements are processed together by one BRPF), on all
scenarios.

Table 5.3: Averaged results for one Box Regularised Particle Filter alone and the federated architecture on Scenario
TAN Alps, Scenario TAN Canyon, and Scenario TAN La Reunion, at final time-step.

Single BRPF Federated architecture

Non-convergence rate (%) 0 0

RMSE ratio (position) 0.061 0.065

RMSE ratio (velocity) 0.16 0.10

Pessimism (position) 1.3 1.3
Pessimism (velocity) 1.26 1.49
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Figure 5.7: Root Mean Square Error obtained for the Box Regularised Particle Filter in a federated architecture
described in Figure 5.5, (green curve), and BRPF alone (all measurements are processed together by
the BRPF, blue curve), on Scenario TAN Alps. The federated architecture allows the Kalman Filter to
process Gaussian measurements (velocity) while the BRPF deals with non-linearities and ambiguities
(TAN problem). BRPF only proves to be sub-optimal in Gaussian measurement filtering, which yields a
higher velocity RMSE than for the federated architecture.
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Extending the state vector without increasing the computational load

A second example implements a 15-dimensional IMU hybridisation dynamical model, updated with
TAN measurements, velocity measurements, and attitude measurements. The aircraft trajectory is
assumed to be a straight and level flight.

The TAN radar altimeter measurements are denoted m1
k ∈ R, the velocity measurements are denoted

m2
k ∈ R3 and are assumed to be linear-Gaussian. The attitude measurements are denoted m3

k ∈ R3 and
are assumed to be linear-Gaussian:

m3
k = [ψk, θk, ϕk]

T + υ3
k (5.23)

where ψk, θk, and ϕk are the attitude Euler angles (respectively heading, pitch, roll), and υ3
k ∈ R3 is

associated with a random vector following a Normal law. The IMU measurements are denoted mα
k ∈ R3

for the acceleration and mω
k ∈ R3 for the angular rate. The proposed federated architecture illustrated

in Figure 5.8 consists of:

• One double integrator transfer function integrating the IMU measurements and providing a state
IMU estimate ξ̂IMU

k which consists of the vehicle IMU position, the IMU velocity, and the IMU
attitude, given an initial IMU state;

• One BRPF, updating the IMU position from the radar-altimeter measurements, in conjunction with
a Digital Elevation Model, the IMU estimate, and the velocity sensor;

• One Master Filter (here, a Kalman Filter), estimating the system’s state ξk from the BRPF’s output
(position p̂1

k only), the velocity measurements m2
k , and the attitude measurements m2

k . The estimate
ξ̂k consists of the nine updated IMU state variables (positions, velocities, and attitude angles) and
six estimated biases (accelerometer and gyrometer biases).

The Master Filter uses the 15-dimensional IMU error propagation model (See Section 3.1, equation (3.6)).
The BRPF uses a simplified 6-dimensional IMU error propagation model, whose process noise consists
of a marginalisation of the attitude and biases drift. Simulation settings (noises and frequencies) are
presented in Table 5.4, for a hundred runs. This federated architecture appears to have a significantly
lower computational load when compared to the single BRPF (15-dimensional BRPF dealing with
all measurements togather). Indeed, the BRPF computational load per time-step is about Nd2 (see
Section 4.5 and Appendix C). Since the federated architecture yields a significant BRPF state dimension
reduction from 15 to 6 with respect to a unique BRPF, the theoretical computation gain is therefore of
60% for an equal number of box particles.

Figure 5.9 illustrates the RMSE obtained on Scenario TAN Alps for the federated architecture’s output
(the green curve), and BRPF alone (all measurements are processed together by the BRPF, the blue curve),
for a hundred runs. Velocity RMSE converges in a faster way, which illustrates the interest of processing
Gaussian measurements in a Gaussian filter. Pitch and roll angles also converge in a faster way than for
BRPF only. Nevertheless, the heading angle does not benefit from the federated architecture. Indeed,
when a vehicle performs a straight and level flight, the heading is dynamically decoupled from the other
state variables, and thus is not observable (see Nordlund [Nor02]). Therefore, the slow convergence
observed on the heading dimension RMSE is only due to the attitude sensor (st.d. of 1 °). On the contrary,
the pitch and roll angles benefit from their dynamical correlations with the velocity and position state
variables, which allow them to converge faster than the heading in a Gaussian Master Filter (here, a
KF). However, when attitude is only estimated by a BRPF, the dynamical couplings are not explicitly
accounted (see the wrapping effect in Section 2.1.5). It yields a slower and less accurate convergence of
these variables that only benefit from the attitude sensor. These results are confirmed in all scenarios, as
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shown in Table 5.5. The RMSE ratios yielded by the federated architecture remain acceptable (globally
lower or equal than 0.2), except for the heading which is only observed via the attitude sensor. The
pessimism ratios are significantly reduced with respect to the single BRPF in position and velocity
(respectively a 87% and a 26% decrease). The attitude angles’ pessimism ratios increase due to the
dramatic improvement of the estimation accuracy but remain lower than 1.5 (maximum value of 1.24
for the pitch). The empirical computation gain between a 15-dimensional BRPF alone and a federated
architecture including a 6-dimensional BRPF is about 60% (12 ms versus 30 ms per time-step), which
confirms the theoretical computational load predictions.

To conclude, the Gaussian federated architecture yields a lower computational load while significantly
improving the estimation accuracy and reducing the conservatism.

Table 5.4: Federated architecture settings

Parameter Value

Radar altimeter uncertainty bounds ±45 m

Radar altimeter actual density Truncated Gaussian (st.d 15 m)

Radar altimeter frequency 10 Hz

Velocity sensor (standard deviation) [2, 2, 2] ms-1

Velocity sensor frequency 1 Hz

Attitude sensor (st.d) [1, 1, 1] °

Attitude sensor frequency 10 Hz

Accelerometer biases (st.d) [3, 3, 3] 10−5 ms-2

Gyrometer biases (st.d) [5, 5, 5] 10−4 °s-1

Process noise in position (st.d) [20, 20, 5] m

Process noise in velocity (st.d) [0.1, 0.1, 0.1] ms-1

Process noise in attitude (st.d) [1, 1, 1] 10−8 °

Process noise in acc. biases (st.d) [5, 5, 5] 10−8 ms-2

Process noise in gyr. biases (st.d) [1, 1, 1] 10−8 °s-1

Initial uncertainty in position (st.d) [1000, 1000, 100] m

Initial uncertainty in velocity (st.d) [3, 3, 1] ms-1

Initial uncertainty in attitude (st.d) [3, 3, 3] °
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Figure 5.8: Box Regularised Particle Filter integrated to a federated architecture in the context of IMU hybridisa-
tion with TAN, velocity, and attitude measurements. In addition to separating severely ambiguous
measurements (radar-altimeter) from Gaussian ones, this architecture allows the BRPF to only run a
6-dimensional dynamical model, while the Master Filter estimate the whole state vector (15 dimensions).
The federated architecture allows the computational load to be significantly reduced with respect to a
15-dimensional BRPF estimation that would be, in addition, sub-optimal.

Table 5.5: Averaged results for the single Box Regularised Particle Filter and the federated architecture on all
scenarios, at final time-step.

Single BRPF Federated architecture

Non-convergence rate (%) 0 0

RMSE ratio (position) 0.15 0.21

RMSE ratio (velocity) 0.49 0.14

RMSE ratio (heading) 0.51 0.55

RMSE ratio (pitch) 0.53 0.03

RMSE ratio (roll) 0.53 0.03

Pessimism (position) 2.74 1.36

Pessimism (velocity) 1.37 1.01

Pessimism (heading) 0.55 1.01

Pessimism (pitch) 0.62 1.24

Pessimism (roll) 0.48 1.11

Time (ms) 30 12
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Figure 5.9: Root Mean Square Error obtained for Box Regularised Particle Filter in the federated architecture
described by Figure 5.8 (green curve), and BRPF alone (all measurements are processed together by the
BRPF, blue curve), on Scenario TAN Alps. The federated architecture allows Gaussian measurements
to be processed in a near-optimal way by the Master Filter (Kalman Filter) while BRPF deals with
ambiguities (TAN problem).
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5.3 distributed federated architectures

5.3.1 Principle

Consider Na ∈N∗ agents gathering local measurements, relative measurements, and communicated
information to retrieve their own state vector xi

k ∈ Rd, as illustrated in Figure 5.10.

BRPF 1
 𝐱𝑘
1

BRPF j
 𝐱𝑘
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 𝐱𝑘
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𝐦𝑗𝑖

𝐦𝑖𝑗

𝐦1 𝐦𝑗

…

Local measurements

Relative measurements

Communicated estimates

Figure 5.10: Collaborative estimation scheme: each system i uses a BRPF to estimate its own state xi
k from its local

measurements mi
k. In order to improve its estimation quality, it is allowed to exchange its estimate x̂i

k

with its connected neighbors (e.g. j) and to get some relative measurements mij
k .

Define a generic scheme where measurements and communications consist of:

• A measurement vector mi
k ∈ Rdm , which may be highly nonlinear and ambiguous with a potentially

unknown-but-bounded uncertainty.

• Na − 1 relative measurement vectors mij
k (j 6= i). They are obtained from the relative states

xij
k , xj

k − xi
k, such that:

mij
k = hr(xij

k ) + vij
k (5.24)

The relative dynamics is denoted:

xij
k = f r(xij

k−1, ui
k) + wij

k (5.25)

where f r : Rd ×Rdc → Rd is the relative dynamics and wij
k is associated with a random vector

modelling the model uncertainty, as well as the uncertain control input of agent j.

• Communicated information consists of the other agents BRPF outputs x̂j
k associated with covariance

P̂
j
k ∈ Rd×d.
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Agent i collects all the available estimates from agents j 6= i and combines them with the corresponding

relative estimates x̂ij
k (associated with covariance P̂

ij
k ∈ Rd×d) to retrieve a local estimate of its state i

given the knowledge obtained from j, i.e.:

x̂i|j
k = x̂j

k − x̂ij
k (5.26)

which can be used as a pseudo-measurement to update the state of agent i. It can be associated with the
following covariance, under the assumption that x̂j

k and x̂ij
k are statistically independent:

P̂
i|j
k = P̂

j
k + P̂

ij
k (5.27)

In a distributed federated architecture, each measurement vector (local and relative) can be processed
by dedicated filters. If the local absolute measurement vector mi

k is highly ambiguous and nonlinear
with respect to the state, it can be associated with a box [mi

k] ∈ IRdm and can be processed by a local
BRPF (e.g. in the TAN case). If some local absolute measurements are linear-Gaussian, they can be
processed by additional Gaussian filters or be directly sent to the Master Filter, as developed in the
previous section. For the sake of brevity, this case will not be detailed here.

If the relative estimation problem is linearisable and near-Gaussian, each relative state xij
k , xj

k − xi
k

between agent j and agent i can be estimated by a KF or an EKF, as illustrated in Figure 5.11.
The Master Filter, taken as an information filter (see Section 2.2.2), can estimate the agent’s state xi

k
from all the available local estimates, namely, the local BRPF i estimate xi

k and the conditional local

estimates from other agents x̂i|j
k (j 6= i):

x̂i
k,MF = P̂k,MF

 P̂
i
k|k−1,MF

−1
x̂i

k|k−1,MF + P̂
i
k
−1

x̂i
k + ∑Na

j=1
j 6=i

aij P̂
i|j
k
−1

x̂i|j
k


P̂k,MF =

 P̂
i
k|k−1,MF

−1
+ P̂

i
k
−1

+ ∑Na
j=1
j 6=i

aij P̂
i|j
k
−1
−1 (5.28)

where the predicted estimates are obtained by:

x̂k|k−1,MF = f (x̂k−1,MF, uk)

P̂k|k−1,MF = Fk−1P̂k−1,MFFT
k−1 + Qk

(5.29)

where f is the dynamical model and Qk ∈ Rd×d the process noise covariance.
This distributed federated architecture holds the previously presented advantages: near-optimal

processing of Gaussian measurements and potential dimension reduction (the Master Filter being able
to extend the state dimension to additional state variables).

The availability of communication and relative sensing can be modelled by two graphs (see Chapter 2,
Section 2.2.1). For the sake of simplicity, assume that the communication graph and the relative sensing
graph are equal and that each relative filter ij produces the associated relative estimate x̂ij

k at a greater or
equal rate than the communication’s rate from j to i occurs. No delays are considered for communications
and for measurements. The adjacency coefficients are denoted aij ∈ {0, 1}.
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Figure 5.11: Two stages fusion architecture for distributed BRPF: each agent i gets its local measurement box [mi
k]. A

first estimate x̂i
k is done by the BRPF. Simultaneously, an Extended Kalman Filter provides an estimation

of the relative states x̂i
k using the relative measurements mij

k . Then, the Master Filter fuses a unimodal
approximation of the own state estimate, the relative estimates, and unimodal approximations of the
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Figure 5.12: One stage fusion architecture for distributed BRPF: each agent i gets its local measurement box [mi
k], the

relative measurement boxes [mij
k ] with respect to other agents j 6= i, and the communicated estimation

box [x̂j
k]. By combining these sets, viewed as a whole measurement box, [mi

k]× [mij
k ]× [x̂j

k], the filter
can improve its estimate quality. However, such a single state BRPF appears less accurate than a BRPF
integrated to a federated architecture.
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Figure 5.13: BRPF integrated to a distributed federated architecture in the context of IMU hybridisation with
TAN, relative measurements, and communicated BRPF estimates. Two agents i and j among the Na
vehicles are represented, with j 6= i. Local absolute measurements mi

k are obtained from a radar

altimeter, local relative measurements mij
k (j 6= i) are Line Of Sight (LOS) angles and range, and

communicated information are BRPF estimates x̂i
k. The BRPF is assumed to run with a 6-dimensional

IMU hybridisation model. The Na − 1 relative EKF filters run with a 6-dimensional relative state model.
The Master Filter runs with a 15-dimensional IMU hybridisation model and fuses local filters outputs
in a linear way.
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Figure 5.14: Communication protocol

5.3.2 Application to cooperative navigation in a fleet of vehicles

This section applies the distributed federated architecture introduced in Section 5.3.1 to a formation
flying case. Absolute measurements mi

k are radar altimeter for Terrain Aided Navigation (TAN), in the

context of IMU hybridisation (see Section 3.1). Relative measurements mij
k are polar measurements (See

Section 3.2). The range measurements are obtained with a low frequency and a high uncertainty, which
makes the relative sensing coarse. Communicated information consists of the BRPF output in terms

of estimated position and velocity x̂i
k, as well as the associated covariances P̂

i
k. The BRPF model can

be reduced to a 6-dimensional model, as introduced in Section 5.2. Since the vehicles fly in formation
and in near straight and level flight evolutions, the relative dynamics can be approximated as a double
integrator (see Section 3.1). It is assumed that the communication graph is fully connected. However, in
practice, a vehicle cannot receive and emit information at the same time. The chosen communication
protocol consists of periodic rotations illustrated in Figure 5.14. Other protocols could also be used, such
as event-triggered communications (e.g. Zhang [Zha+14], Viel [Vie+17]), but this is outside the scope of
this work.

Comparison to a single layer fusion architecture

In this section, the distributed federated architecture is compared with a single layer BRPF, where
the LOS measurements, the communicated states and the terrain navigation measurements are fused
at the same time. Therefore, in addition to the basic cost cBRPF = O(Nd2) (See Section 4.5), the box
contraction operation derived from the polar tracking observation model (see Section 3.2) requires about
O(102Nni

k) elementary operations, with N the number of box particles and ni
k the number of received

communications at a current time. With N = 103, ni
k = 1, and d = 15, the single layer architecture

would require about O(105) operations per time-step. Since this architecture does not require any
additional filtering layer and fuses only one communicated measurement at a time, the computation
load is independent from the total number of vehicles Na. However, it has a high cost that can be
dramatically reduced by the federated strategy.

A conventional Kalman Filter requires cEKF(d, dm) = 4d3 + 3d2dm + 2dd2
m + d3

m/6 operations, with
d and dm the state dimension and the measurements dimension respectively. Based on the same
methodology, the proposed Master Filter requires cMF(d, dm, ni

k) = 4d2 + 6d3 + d3
mni

k − d3
m + 3d2

mni
k −

2d2
m − 2d + dm operations. Then, the proposed architecture requires the following number of operations:

ctotal = (Na− 1)cEKF(dEKF, dLOS)+ cBRPF(dBRPF, N)+ cMF(dMF, dEKF, ni
k), with dEKF = 6, dLOS = 3, dMF =
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Figure 5.15: UAVs trajectories (green) above a mountainous terrain (gray-scale)

15, Na the number of vehicles and ni
k = 1. Under these conditions, each EKF computational load is

about cEKF(6, 3) = O(102), the local BRPF computational load is about cBRPF(6, 103) = O(104), and the
Master Filter computational load is about cMF(15, 6, 1) = O(104). Therefore, the whole architecture
requires a total number of operations of about O(102(Na − 1) + 104), which is equivalent to O(104) if
Na � 103, which is the case for the considered type of scenario (Na = O(10)). Therefore, one less order
of magnitude operations can be expected per time-step than with the single layer BRPF architecture.

Simulation results

A numerical simulation is considered with four fixed-wing UAVs flying in formation over a mountainous
terrain, as illustrated in Figure 5.15. Table 5.6 describes the simulation parameters. In the multi-agent
context, the global RMSE is defined, which consists of the average of the Na agent’s RMSE:

RMSEk =
1

Na

Na

∑
i=1

RMSEi
k (5.30)

Likewise, a global pessimism ratio can be defined. Unless a different setting is explicitly stated, the
BRPF algorithm is tuned with N = 900 box particles, no process noise and a resampling threshold of
θeff = 0.7.

Table 5.7 presents the RMSE, the estimated uncertainty (standard deviations), and the resulting
pessimism ratios obtained with BRPF alone (Figure 5.12) and the federated architecture (Figure 5.11

and Figure 5.13), for a hundred runs. A significant improvement can be noticed in RMSE with the
federated architecture compared to BRPF alone: 14% decreasing in position and 15% in velocity, while
the attitude RMSE remains the same. The federated architecture also appears more accurate in terms
of conservatism: 67% decreasing of the pessimism ratio in position, 64% in velocity and roughly 60%
in attitude. This yields a significantly less conservative estimation. The pessimism ratio remains lower
than 1.5 for the federated architecture, while the BRPF yields a pessimism ratio greater than 2. The
computational load is reduced by 42%. These results confirm the ability of federated architecture to
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Table 5.6: Simulation configuration

General Value

Communication update rate ∆tcom = 1 s
Number of vehicles Na = 4
Relative distance 103 m
Absolute velocity 200 ms-1

IMU initial position error (std)
[
103, 103, 102] m

IMU initial velocity error (std) [2, 2, 1] ms-1

IMU initial attitude error (std) [
5× 10−3, 5× 10−3, 5× 10−3

]
rad

IMU accelerometer biases (std) [
10−2, 10−2, 10−2

]
ms-2

IMU gyrometer biases (std) [
10−4, 10−4, 10−4

]
rad s-2

Measurements

Radar-altimeter error (support) vk ∈ [−45,+45]m
Relative angles error (std) σβ = 1◦ and σε = 1◦

Relative range error (std) σr = 500 m
Radar-altimeter update rate ∆tRA = 0.1 s
Relative angles update rate ∆tβ = 0.1 s and ∆tε = 0.1 s

Relative range update rate ∆tr = 5 s

Navigation Filter (BRPF) N = 900, θeff = 0.5

Master Filter

Process noise in position (std) [80, 80, 10] ms-1

Process noise in velocity (std) [2, 2, 1] ms-1

Process noise in attitude (std)
[
10−3, 10−3, 10−3] rad s-2

Accelerometer biases (std)
[
10−6, 10−6, 10−6] ms-2

Gyrometer biases (std)
[
10−8, 10−8, 10−8] rad s-2

refine the BRPF estimate while reducing its computational load. Furthermore, the approach remains
valid for coarse relative measurements.

The pessimism ratio reduction is of strong interest for the formation flying application. Figure 5.16

plots the formation estimation uncertainties at the final time-step. The solid thin ellipses represent the
estimation uncertain zone (3σ) for the BRPF alone, while the the dotted ellipses represent the Master
Filter’s estimated uncertainty (3σ). In the studied case, the relative measurements are very coarse, which
result in highly uncertain relative estimates. Figure 5.17 shows the (Na − 1) EKF outputs from the
point of view of agent 1 (with Na = 4). Despite these uncertainties, the absolute navigation estimation
performed by the Master Filter appears to be significantly refined.
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Table 5.7: Averaged results for the single Box Regularised Particle Filter and the federated architecture on all
scenarios, at final time-step.

Single BRPF Federated architecture

Non-convergence rate (%) 0 0

RMSE (position, m) 126 108

RMSE (velocity, ms-1) 4.8 4.1
RMSE (heading, degree) 0.38 0.38

RMSE (pitch, degree) 0.41 0.41

RMSE (roll, degree) 0.41 0.41

Estimated st.d (position, m) 495 161

Estimated st.d (velocity, ms-1) 11.4 4.12

Estimated st.d (heading, degree) 0.77 0.30

Estimated st.d (pitch, degree) 0.77 0.30

Estimated st.d (roll, degree) 0.68 0.30

Pessimism (position) 3.93 1.48

Pessimism (velocity) 2.37 0.99

Pessimism (attitude) 2.02 0.73

Time (ms) 24 14

BRPF confidence

Federated architecture confidence
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Figure 5.16: Confidence estimation with the federated architecture (Master Filter output) and with BRPF only, for
vehicles 1, 2, 3 and 4.
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Figure 5.17: Relative estimates and associated uncertainties for vehicle 1 toward vehicles 2, 3 and 4. This figure
illustrates how inaccurate the relative estimates can be (relative Extended Kalman Filters outputs).
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5.4 summary

This chapter showed that BPF-like algorithms can be integrated to federated architectures, provided that
the estimated posterior conditional density tends to a unimodal function (research question 5). It was
first recalled that Multinomial Resampling theoretically yields an asymptotic unimodal posterior density.
However, this does not appear in practice, since the number of resampling steps is not sufficient during
the considered scenarios (about O(10)). Furthermore, it was shown in Chapter 4 that Multinomial
Resampling may threaten the filter’s robustness. It was then stated that Guaranteed Resampling tends
to keep all possible modes, which may yield an asymptotic multimodal posterior density. In practice,
it yields less multimodality than Multinomial Resampling, due to its conservatism and to the low
number of resampling steps. Finally, regularisation was shown to act as a smoothing operation which
theoretically transforms the posterior density into a unimodal function. This is confirmed in practice
for both resampling approaches. To conclude, BRPF can be implemented in federated architecture and
benefits from regularisation.

BRPF was then implemented in several federated architectures, where it tackled TAN measurements
while dedicated filters dealt with Gaussian measurements. First, such an architecture yields a more
accurate estimation from Gaussian measurements, which would suffer from the wrapping effect if only
tackled in the BRPF. In addition, the conservatism is significantly reduced. Then, federated architectures
make it possible to marginalise the state vector estimated by the BRPF to focus on the state variable
involved in measurement ambiguities (e.g. TAN measurements). This results in a significantly lower
computational load than a BRPF estimating a full dimension state. Finally, this scheme can be extended
to distributed federated architecture for collaborative estimation in a fleet. The architecture remains
robust, accurate and computationally efficient for non-linear and coarse Gaussian measurements coming
in complement to TAN measurements.





6
T R A J E C T O RY O P T I M I S AT I O N U N D E R S TAT E U N C E RTA I N T Y A N D
C O N S T R A I N T S : T H E B O X PA RT I C L E C O N T R O L

Chapter 2 introduced the approach of Chance Constrained predictive control in the presence of state
uncertainty. The problem consists of finding the optimal sequence of control inputs that minimises
a cost function while keeping the probability of state constraint violation below a desired threshold.
At each time-step k, a constrained optimisation is performed along a predicted state trajectory (e.g.
going from k to k + n for receding horizon control with n > 1, or going from k to k f for optimal
control). To perform the Chance Constrained optimisation, a failure probability estimator must be
designed. In the context of non-Gaussian densities and non-convex constraints, possible approaches
are the sampling methods (Pagnoncelli, [PAS09]), which consist of propagating a cloud of weighted
particles. However, sampling methods (e.g. Particle Control by Blackmore [Bla+10]), suffer from the
fact that a large number of particle samples (theoretically infinite) is needed to meet the constraints
in a guaranteed way. Reducing the number of particles leads to an uncontrolled loss of accuracy in
the constraints evaluation and may cause unforeseen constraint violation. In addition, the point-wise
particle description of the state pdf leads to non-differentiable constraints. Blackmore [Bla+10] has thus
proposed a Mixed-Integer-Linear-Programming formulation of the problem, which limits it to the linear
case.

This chapter introduces a Chance Constraint estimator based on box particle propagation, on the
basis of the framework introduced in Chapter 4. The main differences between a Box Particle Filter and
a box particle Chance Constraint estimation are that the state density is propagated along a trajectory of
several time-steps and that no measurements are introduced during the predicted trajectory. The focus
will be on the failure probability estimation problem, and the Chance Constrained optimisation for
trajectory planning. The integration of the trajectory planning approach in a Receding Horizon Control
or an optimal control scheme is out of the scope of this work and can be considered as future research.
The chapter is organised as follows:

• In Section 6.1, the propagation of box particles on several time-steps is discussed. A minimal
inclusion propagation formulation is introduced for linear time-varying dynamical models.

• In Section 6.2, the box kernel based Chance Constraint formulation is introduced. Numerical
comparisons are done with the point-wise particle based chance constraint existing approaches.

• In Section 6.3, the box kernel Chance Constraint estimator integration in a differentiable optim-
isation is studied, leading to the Box Particle Control method (BPC). The main point is to ensure
that the constraints are differentiable with respect to the sequence of future control inputs, which
constitute the optimisation variables. Numerical comparisons are done against the point-wise
particle based chance constraint approach (Blackmore [Bla+10])), and the ability of BPC to handle
non-linear models is experimentally demonstrated.

149
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6.1 box particle density propagation on a trajectory

Chapter 4 introduced the box kernel mixture formulation of a state density:

p(xk|Mk) =
N

∑
i=1

wi
kπi

k(xk)1[xi
k ]
(xk) (6.1)

where xk ∈ Rd is the state at time-step k, Mk is the measurements’ trajectory until k, and πi
k : Rd → R a

kernel that sums to unity on the box domain [xi
k].

In practice, each box kernel πi
k can be approached using a reference kernel π, as stated in Section 4.1.2:

πi
k(x) ≈

1
|[xi

k]|
π

(
x− xi

k

xi
k − xi

k

)
1[xi

k ]
∀(i, k) (6.2)

where π : Rd → R+ integrates to unity on [0, 1], and [xi
k, xi

k] represents the bounds of box i. Under this
assumption, πi

k can be described via its box support [xi
k].

The propagation of probability density (6.1) along a trajectory from time-step k to time-step k + n can
be done using n times the interval propagation (2.43) introduced in Chapter 2. However, even if the
one-step-ahead inclusion function is minimal, the propagation of each box [xi

k] on several time-steps
may not be minimal due to an accumulation of wrapping effects (see Section 2.1.5, equation (2.45) on
inclusion functions composition).

6.1.1 Problem formulation and example

In Chapters 4 and 5, inclusion functions were used for one-step-ahead predictions. Assuming that some
interval contraction regularly occurs thanks to the measurement’s information, it was sufficient to derive
an inclusion function from the recursive state propagation equation (2.2). Inclusion functions were
then assumed to be minimal or near-minimal. However, in the context of trajectory planning, inclusion
functions are used for a whole trajectory, which yields a number of propagation steps.

From Theorem 1, Section 2.1.5, inclusion functions are minimal if they do not have any formal
repetitions of the input variables (dependency effect) and if the function is continuous. In addition, the
composition of two inclusion functions is not equal to the inclusion function of their composition (see
equation (2.45)).

However, when an inclusion propagation is performed recursively (e.g. k time-steps from time 0),
the inclusion function is composed n times with itself, which may introduce an accumulation of the
wrapping effect. Indeed, consider Moor’s example (e.g. see Nickel [Nic86]) which consists of a two
dimensional linear dynamical model defined by xk = Fxk−1 with:

F =

[
1 u

−u 1

]
(6.3)

where u > 0. Figure 6.1 (a) illustrates the successive boxes (blue boxes [xk]) obtained with the recursive
inclusion function defined by:

[xk] =
[{

Fx
∣∣ x ∈ [xk−1]

}]
(6.4)
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The filled blue areas {xk} are the actual propagation of the initial box [x0] defined by:

{xk} =
{

Fx
∣∣ x ∈ {xk−1}

}
(6.5)

Although it is minimal for the first propagation step, the inclusion function defined in (6.4) is not
minimal for k ≥ 2 because of wrapping effect accumulation. The output box [xk] can rapidly become
excessively large, which yields a huge conservatism. Figure 6.1 (b) illustrates the successive boxes
(red boxes) that would be obtained with a minimal inclusion function. The next section proposes the
formulation of a minimal inclusion propagation for linear time-varying systems.

State space

[𝐱0]

{𝐱
3 }

𝐱1

𝐱2

𝐱3

State space

[𝐱0]

{𝐱
3 }

𝐱1

𝐱2

𝐱3

(a) Recursive inclusion propagation (b) Minimal inclusion propagation

Figure 6.1: Moor’s example (e.g. see Nickel [Nic86]): output [xk] (blue thin boxes) of the non-minimal inclusion
function obtained with the naive wrapping of the recursive propagation (a), and minimal inclusion
function output (red boxes) (b). The propagated set {xk} (blue filled areas) is obtained by exact set
propagation of the initial box [x0].

6.1.2 Minimal inclusion trajectory propagation

Let [xk−1] ∈ Rd be the box containing the state xk−1 and f : Rd ×Rdc → Rd the discrete dynamical
model. Then, by applying (2.35), the one-step-ahead prediction equation of an interval-based estimation
algorithm can be defined:[

xk|k−1

]
= [ f ] ([xk−1], uk) + [wk] (6.6)

with

[ f ] ([xk−1], uk) =
[{

f (xk−1, uk)
∣∣ xk−1 ∈ [xk−1]

}]
(6.7)

For a prediction on n > 1 time-steps, the dynamical model f has to be composed n times with itself
as follows:

xk+n|k = f (...( f (xk, uk+1) + wk, ...), uk+n) + wk+n (6.8)
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By applying property (2.45), this may result in an increasing wrapping effect.
For nonlinear cases, there is no general solution except carefully designing the one-step-ahead

prediction (6.6) using Theorem 1, or deriving an analytic solution of the dynamics differential equation
denoted [F]([x0, Uk]) in what follows and defined by:

[F]([xk], Uk:k+n, [Wk:k+n]) =
[{

f (... f (x, uk) + wk, ..., uk+n) + wk+n
∣∣ x ∈ [xk], wi ∈ [wi] ∀i ∈ [k, k + n]

}]
(6.9)

where Uk:k+n = [uT
k , ..., uT

k+n]
T ∈ Rdk is the sequence of control inputs, and [Wk:k+n] = [wi

k] × ...×
[wi

k+n] ∈ IRdk the sequence of process noise box supports.
For time-varying linear systems, an analytic formulation obtained by recursion can be derived. Let a

dynamical model be defined by:

xk+1 = Fkxk + Bkuk+1 + wk+1 (6.10)

The n times composition of (6.10) to propagate state xk to time-step k + n (n > 0) is equivalent to:

xk+n|k =
k+n−1

∑
j=k

(
k+n−1

∏
l=j+1

Fl

) (
Bjuj+1 + wj+1

)
+

(
k+n−1

∏
l=k

Fl

)
xk (6.11)

This formulation has the great advantage of directly mapping xk to xk+n in an analytic way, which helps
avoiding multiple one-step-ahead compositions. It can now be wrapped into intervals:

[
xk+n|k

]
=

k+n−1

∑
j=k

(
k+n−1

∏
l=j+1

Fl

) (
Bjuj+1 + [wj+1]

)
+

(
k+n−1

∏
l=k

Fl

)
[xk] (6.12)

which is the minimal inclusion function for a multiple-steps prediction of the model (6.10), by applying
Theorem 1. It can be applied to locally linearised non-linear systems. It is of strong interest in state
estimation when several consecutive prediction steps occur without receiving any measurement (pure
prediction). It is also worth using in predictive control, while predicting a future trajectory. In the case
of a linear system such that Fk = F and Bk = B ∀k, then (6.12) becomes:

[
xk+n|k

]
=

k+n−1

∑
j=k

(
Fn−1 (Buj+1 + [wj+1]

))
+ Fn[xk] (6.13)

6.2 box particle chance constraint estimation

This section aims to evaluate the probability of constraint violation (failure probability) via the propaga-
tion of a box particle cloud of bounded kernels. For the sake of brevity, the initial time-step of the
predicted trajectory is denoted k = 0 and the prediction horizon is K.

6.2.1 Principle and example

Chapter 2 introduced the Particle Control (Blackmore [Bla+10]) which relies on a sample-based Chance
Constraint calculation. Consider the example illustrated in Figure 6.2 (a). The initial state density p(x0) is
approximated as a mixture of N weighted Dirac functions whose weights are denoted wi

0 with ∑i wi
0 = 1.
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The cloud of N particles is propagated for each time-step, yielding N particle trajectories. Since no
measurement input is considered, the weights wi

k remain the same as initial weights. It can then be
considered that each trajectory is associated with a timeless weight wi , wi

0. The number of trajectories
violating the constraints for all time-steps is then computed. For example, three trajectories violate
the constraints at time-step k = 2 and two additional trajectories violate the constraints at time-step
k = 3. Consider that the weights wi of those five trajectories are 0.08, 0.02, 0.05, 0.03, 0.07 respectively.
The estimated failure probability is the sum of the weights of the trajectories violating the constraints:
p̂ = 0.25.

This chapter introduces a box particle kernel based Chance Constraint estimation. As illustrated
in Figure 6.2 (b), it relies on a continuous integration of the propagated state box densities on the
constraints domain. The initial state density p(x0) is approximated by a mixture of N weighted bounded
kernels whose weights are denoted wi

0 with ∑i wi
0 = 1. Each box particle is then propagated, leading

to N box trajectories [xi
0]× ...× [xi

K] until a final time-step K. At each time-step, each box kernel πi
k is

integrated on the constraints domain (a set of forbidden states). Note that for uniform box kernels,
the integration corresponds to the ratio of the area of the the intersection of box particle i with the
constraints domain, by the box particle area. The results of this integration are then weighted by weights
wi and summed. For example, consider that one box particle intersects the constraint set at time-step
k = 2. Consider that the integration of its box kernel on the constraint domain yields the value of 0.75,
weighted by a weight of 0.2. Consider that two additional boxes violate the constraints at time-step
k = 3, yielding a kernel integration of 0.6 and 0.4 respectively. Their weights are both equal to 0.1.
Finally, the weighted sum of the box kernel integrations is p̂ = 0.25.

The box kernel approach has the advantage of being continuous, thanks to the smooth state density
approximation by the bounded kernels mixture. It can then be used with less sampling parameters
than particle based chance constraint approaches. Under some hypotheses that will be discussed in
Section 6.3, it can be implemented in differentiable optimisation schemes, which is not possible with the
sample-based chance constraint.
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Initial state density

𝑘 = 0

𝑘 = 1

𝑘 = 2

𝑘 = 3
𝑘 = 4

2 additional trajectories violate 
the constraints at 𝑘 = 3
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(a) Particle based chance-constraint estimation (b) Box particle based chance-constraint estimation

Figure 6.2: The particle based chance-constraint estimation consists of the weighted sum of indicator functions
associated with each particle-trajectory violating the constraints (a). The box particle chance constraint
evaluation relies on the integration of box kernels on the constraints’ domain (b).
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6.2.2 Theoretical description

Consider that the initial time-step of the trajectory prediction is k = 0. Note the predicted state and
predicted box particles as xk , x0+k|0 and [xi

k] , [xi
0+k|0]. Let K denote the prediction horizon.

The use of a mixture of bounded kernels implies that the failure probability has to be computed
from a continuous sum of functions, which makes it a priori intractable in formulation (2.80). This
section introduces a derivation of the failure probability which makes the problem tractable. Intuitively,
it consists of evaluating the proportion of possible trajectories which fall out of the feasible set, as
illustrated in Figure 6.2.

Proposition 8. Let us consider the state density (6.1) at time-step 0. Considering a feasible domain F ⊂
Rd(K+1) for the state trajectory X representing the set of admissible trajectories w.r.t. K + 1 constraints
gi(xi) ≤ 0:

F ,

Xk = [xT
0 , ..., xT

K]
T

∣∣∣∣∣∣∣∣
g0(x0) ≤ 0

...

gK(xK) ≤ 0

 (6.14)

Then, the probability of X violating the constraints (failure probability) can be approached by:

P̂(X 6∈ F ) =
N

∑
i=1

wi
0

∫
[xi

0]∩C0

πi
0(x0)dx0

+
K

∑
k=1

N

∑
i=1

wi
k

(∫
[xi

k ]∩Ck

πi
k(xk)dxk −

∫
{[ f ]([xi

k−1]∩Ck−1,uk)+[wk ]}∩Ck

πi
k(xk)dxk

) (6.15)

where Ci ∈ Rd represents the forbidden set of states at time-step i.

Ci ,
{

x
∣∣ gi(x) > 0

}
(6.16)

Proof. In a continuous state and discrete time scheme, the theoretical failure probability P(X 6∈ F ) (2.80)
can be interpreted as the sum, for each time-step k, of the conditional probability of current state xk
violating the constraints (xk ∈ Ck), given that it has always satisfied them:

P(X 6∈ F ) =
K

∑
k=1

P
(
xk ∈ Ck

∣∣ Xk−1 ∈ Fk−1
)

(6.17)

where Xk−1 = [xT
0 , ..., xT

k−1]
T is the trajectory from initial time-step 0 to time-step k− 1 < K, and Fk−1 is

the feasible domain along this trajectory, i.e.:

Fk−1 ,

Xk−1 = [xT
0 , ..., xT

k−1]
T

∣∣∣∣∣∣∣∣
g0(x0) ≤ 0

...

gk−1(xk−1) ≤ 0

 (6.18)
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The instantaneous failure probability can be defined as a probability measure of the instantaneous
propagated state densities p(xk) on a domain Ik:

P
(
xk ∈ Ck

∣∣ Xk−1 ∈ Fk−1
)
=
∫
Ik

p(xk)dxk (6.19)

where the integration domain is:

Ik =

{
xk ∈ Ck

∣∣∣∣∣ xj 6∈ Cj ∀j < k

xj = f j(x0, Uj, Wj) ∀j ≤ k

}
(6.20)

where f i:j(xi, Ui:j, Wi:j) , f (... f (xi, ui+1) + wi+1, ..., uj) + wj is the state trajectory from xi to xj, with the
control sequence Ui+1:j = [uT

i+1, ..., uT
j ]

T and the process noise realisations Wi+1:j = [wT
i+1, ..., wT

j ]
T with

i < j. Domain I is equal to:

Ik = {xk ∈ Ck} \ Xk (6.21)

with Xk =
{

xk
∣∣ ∨

j<k xj ∈ Cj, xk = f (j:k)(xj, Uj:k, Wj:k)
}

, in other words, Ik represents the set of all states
xk that violate the current constraints minus the set Xk of states xk that had not previously satisfied the
constraints (at least once). This yields the following failure probability formulation:

P(X 6∈ F ) =
∫

x0∈C0

p(x0)dx0 +
K

∑
k=1

(∫
xk∈Ck

p(xk)dxk −
∫

xk∈Xk

p(xk)dxk

)
(6.22)

which represents the probability measure of initial states violating the initial constraints g0(x0) ≤ 0⇔
x0 6∈ C0, plus the incremental probability measures of additional trajectories violating the constraints
gk(xk) ≤ 0⇔ xk 6∈ Ck at time-steps k ∈ [1, K].

Now, using the proposed box density approximation (6.1) for p(xk), and by distributivity of the
integration, an estimation of the failure probability is obtained:

P(X 6∈ F ) =
N

∑
i=1

wi
0

∫
[xi

0]∩C0

πi
0(x0)dx0 +

K

∑
k=1

N

∑
i=1

wi
k

(∫
[xi

k ]∩Ck

πi
k(xk)dxk −

∫
[xi

k ]∩Xk

πi
k(xk)dxk

)
(6.23)

with wi
k = wi

0 ∀k. However, this formulation is still difficult to evaluate because of the integration
domain Xk. Thus, make the Markovian assumption that Xk is equivalent to the set of states that have
violated the constraints at the previous time-step:

Xk ≈
{

xk
∣∣ xk−1 ∈ Ck−1, xk = f (xk−1, uk, wk)

}
(6.24)

Therefore, the integration domain [xi
k] ∩ Xk can be approached by:

[xi
k] ∩ Xk ≈ {[ f ]([xi

k−1] ∩ Ck−1, uk) + [wk]} ∩ Ck (6.25)

which yields (6.15).
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Remark 1:

The integral of a known kernel πi
k : Rd → R on a box domain [d] = [d, d] ∈ IRd is equal to the

difference of the Cumulative Density Function (CDF) Πi
k : Rd → R of πi

k on the domain boundaries:∫
D

πi
k(xk)dxk = Πi

k(d)−Πi
k(d) (6.26)

This formulation has the advantage of being computationally simple. A box approximation of the
integration domain [xi

k]∩ Ck yields an outer-approximation of the integral
∫
[xi

k ]∩Ck
πi

k(xk)dxk. The second
domain formulation (6.25) is also a box approximation. Under those box integration domain approxima-
tions and by the use of (6.26), the theoretical complexity of the NK kernel integrations in equation (6.15)
may be neglected.

Remark 2:

If box kernels are uniform functions, i.e.:

πi
k(x) =

1
|[xi

k]|
1[xi

k ]
(x) (6.27)

Then the box particle failure probability estimation (6.15) becomes:

P̂(X 6∈ F ) =
N

∑
i=1

wi
0
|[xi

0] ∩ C0|
|[xi

0]|
+

K

∑
k=1

N

∑
i=1

wi
k
|[xi

k] ∩ Ck| − |{[ f ]([xi
k−1] ∩ Ck−1, uk) + [wk]} ∩ Ck|
|[xi

k]|
(6.28)

Remark 3:

A complexity analysis (see Appendix C) of one complete trajectory prediction leads to a number of
elementary operations of approximately 2NKd3. By a comparison with the Particle Control (Blackmore
[Bla+10]), the ratio between BPC (with NBPC box particles) and PC (with NPC particles) computational
loads is:

r ,
2NBPCKd3

NPCKd3 = 2
NBPC
NPC

(6.29)

By ensuring that the support of the state density is included in the union of all the box particles, the
BPC is expected to require fewer (box) particles than the PC, typically resulting in r < 1.

6.2.3 Numerical results

This section compares the failure probability estimation performance of the particle based estimation
(Blackmore [Bla+10]) and the box particle based estimation defined by equation (6.15). Numerical
simulations were defined to evaluate the following points:

1. The relative performance of each failure probability estimation approach in terms of probability
RMSE;

2. The relative empirical computation time for both approaches, which is expected to be described
by (6.29).



6.2 box particle chance constraint estimation 157

For both approaches, the particle and box particle clouds are initialised from a given initial state x0
associated with a given density p(x0). The particle and box particle clouds are propagated via a given
dynamical model associated to a given process noise density p(xk|xk−1). A hundred Monte Carlo runs
are performed by using different initial state realisations taken as samples of p(x0) and different process
noise realisations, taken as truncated Gaussian samples. Therefore, each run yields a different random
trajectory Xi. For each run i, the estimated failure probability P̂(Xi 6∈ F ) is compared to a reference
failure probability value P(Xi 6∈ F ) computed via a representative particle based estimation consisting
of 104 trajectories. The number of particles and box particles under consideration does not exceed 103

particles, which makes it possible to consider that the set of 104 reference trajectories is representative of
the actual state density. The failure probability RMSE is defined by:

RMSEP̂ =

√√√√ 1
NMC

NMC

∑
i=1

(
P̂(Xi 6∈ F )− P(Xi 6∈ F )

)2
(6.30)

where NMC = 100 is the number of runs. The initial state density p(x0) is chosen so that actual failure
probability covers the range of all its possible values between 0 and 1.

The first example consists of a uniform initial density p(x0) = U[x0]
, where [x0] ∈ IR4 is the initial

support of the state x. The state is defined by:

x = [x, y, Vx, Vy]
T (6.31)

The dynamical model under consideration is the double integrator (3.1) introduced in Section 3.1.
Figure 6.3 shows one run example for the particle based approach (a) and the box particle estimation
(b). The initial state density support is [−1.5, 1.5] m ×[−1.5, 1.5] m ×[1.35, 1.65] ms-1 ×[1.35, 1.65] ms-1.
The initial box particle cloud is defined by a regular paving. Each box particle weight is computed
via a histogram method. The control input is assumed to be zero for all runs in the whole trajectory.
The control optimisation will be considered in the next section. No process noise is considered in this
example.

Table 6.1 presents the RMSE obtained for the probability failure estimation P̂(X 6∈ F ) for both
approaches, for several values of the particle or box particle number N. The box particle based approach
outperforms the particle estimation by providing a lower RMSE of about one order of magnitude, even
for low values of N (0.0042 for the box particle approach and 0.0858 for the particle based approach,
with N = 15). This highlights the interest of the kernel density approximation which does not require
many kernels to approach a given density. The computation time ratio between box particle estimation
and particle estimation is slightly higher that 2 (as theoretically expected for the same number of
particles and box particles). This can be explained by the computational load of the kernel integral
computation in (6.15) that was neglected in the theoretical complexity analysis.

Another example consists of an initial box particle cloud obtained from the Box Regularised Particle
Filter (BRPF) introduced in Chapter 4, in the context of Terrain Aided Navigation (TAN). The guidance
problem consists of determining a trajectory that satisfies some keep-out-zones constraints at an early
stage of the navigation process, where the state estimation problem is not yet solved. In a real TAN
scenario, the forbidden areas could represent urban zones that must not be flown-over.

For each run, the initial estimate is drawn from a uniform density function in the same way as in
Chapter 4. After 100 time-steps (t = 10 s) of TAN estimation, the BRPF box particle cloud output is
taken as the initial box distribution for trajectory propagation, as illustrated in Figure 6.4. The box
particle cloud is then propagated along a 50 time-steps trajectory (with a time sample of 1 s, which
represents a prediction horizon of 50 s).
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Figure 6.3: (a) Particle based chance-constraint estimation from particle trajectories (in green, with the final cloud in
blue at the prediction horizon). (b) Box particle based chance-constraint estimation from box particle
trajectories. Two disjoints set of states are to be avoided, represented by red obstacles areas. For this
particular run, the failure probability is P(X 6∈ F ) = 0.412
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Table 6.1: RMSE obtained for the failure probability estimation (100 runs) on the case presented in Figure 6.3, with
respect to the number of particles and box particles. Empirical computation times are provided for one
trajectory propagation of 20 time-steps.

Number of particles or box
particles N

15 30 100 250 400 600 900

RMSE for particle based
estimation

0.0858 0.0613 0.0404 0.0279 0.0231 0.0184 0.0147

RMSE for box particle
estimation

0.0042 0.0037 0.0036 0.0022 0.0022 0.0020 0.0019

Computation time for particle
estimation (ms)

2 2 3 4 5 7 9

Computation time for box
particle estimation (ms)

7 8 8 10 11 14 19

Table 6.2: RMSE obtained for the failure probability estimation (100 runs) on the TAN case presented in Figure 6.4,
with respect to the number of particles and box particles. Empirical computation times are provided for
one trajectory propagation of 50 time-steps

Number of particles or box particles N 100 400 900

RMSE for particle based estimation 0.0138 0.0068 0.0037

RMSE for box particle estimation 0.0019 0.0019 0.0018

Time for particle estimation (ms) 5 12 22

Time for box particle estimation (ms) 15 30 48

Figure 6.4 (b) shows the initial box particle cloud in yellow (corresponding to the BRPF output at
current time, t = 10 s), the box trajectories in green (corresponding to K = 50 successive predicted
box particle clouds) and the final box particle cloud at the prediction horizon time in blue. Two
fixed forbidden areas are represented in red and referred to as obstacles. The dynamical model is a
double integrator with a Gaussian process noise whose standard deviation is [10, 10] m in position and
[0.5, 0.5] ms-1 in velocity. The control input is assumed to be zero for all runs.

Table 6.2 presents the RMSE obtained for the probability failure estimation P̂(X 6∈ F ) for both
approaches, for several values of the particle or box particle number N, initialised in the Box Particle
Filter at t = 0. The box particle based approach again outperforms the particle estimation in terms of
RMSE, for all values of N (e.g. 0.0019 for the box particle approach and 0.0138 for the particle based
approach, with N = 100). For this example, it can be considered that the box particle probability
estimation requires a number of box particles about 10 times lower than the number of particles required
by the original approach. The theoretical complexity analysis (6.29) suggests that the box particle
approach requires 5 times less operations than the particle estimation approach. However, the empirical
computation time per trajectory yields a less optimistic ratio (about 1.5 times less), which still suggest
that the box particle chance constraint estimation approach yields a computational load reduction with
respect to the original method.
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(b) Box particle trajectory prediction from BRPF estimation (from t = 10 s to t = 60 s), and forbidden
areas

Figure 6.4: BRPF current estimation (a) and box trajectories prediction (b) with two areas to bed avoided (referred
as obstacles, in red). The box trajectories are in green, and their end-points are in yellow for the initial
cloud (current estimation) and in blue for the final cloud (at the prediction horizon).



6.3 bpc integration within a differentiable optimisation scheme 161

6.3 bpc integration within a differentiable optimisation

scheme

In the previous sections, a failure probability estimation was defined (6.23) using an approximation
of the state density p(xk) by a weighted kernels mixture (6.1) bounded by box particles. This section
studies the integration of the box chance constraint estimation in a differentiable optimization scheme.
The objective is to determine an optimal control sequence trajectory U which minimises a cost function
J(X, U) while satisfying the chance constraint on the state trajectory P̂(X 6∈ F ) < δ, where δ is specified.
It is stated that:

• The cost function expectation Ĵ(X, U) is differentiable with respect to the control sequence if the
deterministic cost function J is differentiable;

• The chance constraint P̂(X(U) 6∈ F )− δ is differentiable if box kernels πi
k are differentiable on

their box domain [xi
k] and if the boundaries of integration domains in (6.15) are differentiable. To

do so, a smooth formulation of min and max functions is introduced via sigmoid functions.

6.3.1 Problem and example

The constrained trajectory optimisation problem can be formalised as follows:

min
U

Ĵ(X, U), s.t. P̂(X(U) 6∈ F )− δ ≤ 0 (6.32)

Note that a desired failure probability δ = 0 is equivalent to an optimal robust control approach. Indeed,
the box trajectory propagation ensures that the actual trajectory remains in the union of all boxes.

The cost function Ĵ(X, U) represents the expectation of the original cost function J taken as a random
variable. It can be approximated by:

Ĵ(X, U) =
N

∑
i=1

wi
0 J(Ci, U) ≈ E [J(X, U)] (6.33)

with Ci = [ci
0, ..., ci

K] the trajectory of the center of box particle i. This definition is an extension of
the cost proposed for point-wise particle representing Dirac functions in Blackmore [Bla+10]. In what
follows, assume that Ĵ(X, U) is differentiable, which is true if the initial cost J is differentiable. A typical
and practical way of defining the cost function is the quadratic formulation (2.76) which imposes a
tradeoff between control effort and guidance efficiency.

However, in the general case, the constraints P̂(X(U) 6∈ F )− δ are not differentiable with respect
to the control sequence. The estimated failure probability P̂(X(U) 6∈ F ) consists of a sum of kernels
integrations on two domains: [xi

k] ∩ Ck which represents the intersection between box particle i with the
constraints domain at time-step k, and [xi

k] ∩ Xk which represents the intersection of [xi
k] with the set of

all states belonging to trajectories that have violated the constraints in the past.
The bounds of each box particle [xi

k] depend on the dynamical inclusion function [ f ]([xk−1, uk]), or
[F]([x0], Uk, [Wk]) if a minimal analytic inclusion solution exists (see (6.12) for linear systems). Therefore,
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the bounds of the integration domains [xi
k] ∩ Ck and [xi

k] ∩ Xk depend on the control inputs sequence U.
They are computed via interval intersection, using the non-differentiable min and max functions:

[a] ∩ [b] =

[max(a, b), min(a, b)] if max(a, b) ≤ min(a, b)

∅ else
(6.34)

This may result in non-smooth boundaries with respect to the control sequence U. In addition, in
non-linear cases, the bounds of [xi

k] may depend on additional non-smooth interval operations, such as
the interval multiplication:

[a][b] = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)] (6.35)

In what follows, a smoothing method of the failure probability constraints is proposed in order to
compute their gradient.

6.3.2 Differentiable failure probability constraint

The failure probability constraint (6.23) can be differentiated with respect to the control sequence U
using the Leibniz integral rule. This implies that:

1. The kernel Π has to be differentiable on its support;

2. The boundaries of the integration domains must be differentiable.

Condition 1 can be achieved using a smooth kernel Π, e.g. a beta kernel. Condition 2 requires two
statements. First, the intersection of the forbidden set Ck and the current box [xi

k] may produce non-
smooth boundaries. To tackle this issue, approximate the intersection [c] = [c, c] of two intervals
[a] = [a, a] and [b] = [b, b] by a smooth analytic function. The exact intersection [c] = [a] ∩ [b] can be
formulated as:c = max(a, b) = 1a>ba + (1− 1a>b)b

c = min(a, b) = (1− 1a>b)a + 1a>bb
(6.36)

The indicator function 1x>y can be approximated by a smooth function such that:

1x>y ≈
1
2

(
1 + tanh

(
x− y

ε

))
(6.37)

where ε > 0 is a scale parameter. This formulation converges to the actual intersection when ε→ 0. It
can be generalised to d dimensions by performing it independently on each dimension. In addition, the
box particle bounds defined by the inclusion propagation must be differentiable. This is guaranteed for
linear models by the use of (6.12). Although this condition does not prevent the use of the method for
nonlinear models, a case by case analysis must be done.

In the next section, numerical results are presented for one control sequence optimisation, to highlight
the gain in robustness and the potential computational load reduction.
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6.3.3 Numerical results

This section evaluates the BPC trajectory optimisation scheme introduced in Sections 6.2 and 6.3 in
terms of accuracy and the ability to handle non-linear dynamics. A comparison with the Particle Control
approach (PC, Blackmore [Bla+10]) is provided for linear cases. Experiments were designed to evaluate
the following points:

1. The relative performance of BPC and PC in terms of actual failure probability for linear dynamical
models in the presence of a convex feasible set F ;

2. The relative performances of both approaches for linear dynamical models in the presence of a
non-convex feasible set F ;

3. The BPC behavior in the presence of a non-linear dynamical model.

As mentioned in Section 6.2, the actual failure probability is computed from a representative set of 104

reference trajectories whose initial states are samples of the initial state density p(x0) and controlled by
the control sequences computed by BPC and PC approaches.

Two linear applications are first presented to illustrate the performance of BPC compared to PC
[Bla+10]: an aircraft flight envelope protection guidance problem, and a spacecraft orbital collision
avoidance. A third example consists of an aircraft trajectory planning modelled by a non-linear unicycle
dynamics, in the context of Terrain Aided Navigation. The maximum failure probability δ is chosen
equal to 0.1, for consistency with the results presented in [Bla+10]. It is then switched to a lower value
to evaluate how the BPC scales with δ. BPC is implemented with a Sequential Quadratic Programming
(SQP) optimisation method (see Section 2.3.1).

Application to aircraft flight envelope protection (point 1)

The first example illustrates the method’s performance for a convex feasible set. Consider a fixed-wing
autonomous aircraft whose longitudinal dynamics is described by the following model (see Section 3.4),
corresponding to a McDonnell-Douglas F-4C Phantom, linearised around an equilibrium point xeq ∈ R6

(Cook [Coo12]):

ẋ =


−0.068 −0.011 0 −9.81 0 0

0.023 −2.10 375 0 0 0

0.011 −0.160 −2.20 0 0 0

0 0 1 0 0 0

0 −1 0 377 0 0

0 0 0 0 1 0

x +


−0.41 1.00

−77.0 −0.09

−61.0 −0.11

0 0

0 0

0 0

u (6.38)

where the state x = [u− ueq, w, θ̇, θ, ḣ, h]T consists of the deviation between the longitudinal body axis
velocity u and the equilibrium speed ueq = 377 ms-1, the vertical body frame velocity w, the pitch
derivative θ̇, the pitch θ, the Earth frame vertical speed ḣ and the altitude h. The control u = [δe, δτ ]T

consists of the elevator angle and the throttle longitudinal acceleration. The initial state x0 is assumed to
be close to the equilibrium xeq, which consists of u ≈ ueq, h ≈ 300 m and all other values close to zero.

The objective in the considered scenario is to achieve a step altitude input up to 1, 000 m. This
problem is constrained by a flight envelope which consists of a convex hull defined by: 300 ≤ u ≤
640 ms-1, |ḣ| ≤ 30 ms-1, |δe| ≤ 1 rad, 0 ≤ δτ ≤ 3 ms-2. The cost function (2.76) is defined by
R = 0.1, Q = 10−7, S = 1.

For the sake of simplicity, the multimodal initial state density is constructed from a mixture of two
Gaussian densities N (µ1, σ2

1 ) and N (µ2, σ2
2 ). The initialization of the box particle cloud is done by

a regular paving of the state’s support. Weights are initialised by a histogram approach. The initial
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state density is chosen as: µ1 = x0, µ2 = x0 + [0, 0, 0, 0,−0.5,−5]T , σ1 = [0.1, 0.1, 0.001, 0.0001, 0.1, 3]T ,
σ2 = [0.1, 0.1, 0.001, 0.0001, 0.1, 3]T . Such a multimodality on h and ḣ can be encountered when the
altitude is measured by a radar altimeter [Ber99]. It can be caused by the rebounding of the waves on
surfaces of different altitudes such as the ground or a forest canopy.

Figure 6.5 shows the empirical failure probability and the actual failure probability standard deviation,
versus the number of particles and box particles. Similar results were reported in [Bla+10] for the
Particle Control. The Box Particle Control appears more robust than the Particle Control, and requires a
fewer number of particles for similar performances. As expected, it tends to overestimate the failure
probability, which makes it a little more conservative. Nevertheless, this ensures a security margin in
the constraint satisfaction, which makes it more robust to potential estimation errors, as illustrated by
the standard deviation box around the empirical failure probability.

Figure 6.6 shows the time evolution of one of the constrained variables ḣ and the actual altitude h
obtained by applying the resulting control inputs in open loop. The desired state is achieved despite a
significant state uncertainty along the trajectory prediction.

Figure 6.5: Actual failure probability with both methods, associated to its standard deviation, for a maximum
desired failure probability of δ = 0.1.

Figure 6.6: Box particle trajectories for the ḣ dimension and actual altitude (open loop).
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Application to spacecraft orbital collision avoidance (point 2)

A second example illustrates the method performances for a non-convex feasible set. The problem
consists of a spacecraft orbital collision avoidance. Let x = [x, y, ẋ, ẏ]T be the state vector representing
the relative Cartesian position and velocity of the spacecraft with respect to a non-maneuvering obstacle
(e.g. a satellite). The obstacle is assumed to be located on a near-circular low earth orbit. The considered
relative dynamical model is Clohessy-Wiltshire (see Section 3.4), derived under the hypothesis of a close
proximity between the obstacle and the spacecraft. The orbital angular rate is set to ω = 0.00117744rad/s,
which corresponds to a 90 minutes low Earth orbit.

The initial state is chosen such that it leads to a collision with the obstacle (located at the origin) if
no maneuver is performed, x0 = [−42.5,−75,−0.00024, 0.099]T . The cost function (2.76) is determined
by R = 1, Q = S = 0. The feasible set is defined by [x, y]T ∈ R2 \ [−10, 10]× [−10, 10] m, and
|ux,y| ≤ 10−5 ms-2.

The multimodal initial state density is constructed from a mixture of two Gaussian densities
N (µ1, σ2

1 ) and N (µ2, σ2
2 ). The initial state density is defined by: µ1 = x0, µ2 = x0 + [0.4, 0.4, 0, 0]T ,

σ1 = [0.1, 0.1, 10−4, 10−4]T , σ2 = [0.3, 0.3, 10−4, 10−4]T . Such a multimodality can be encountered for
several configurations of orbital relative sensing (Corazzini [CH99]).

Figure 6.7 shows the actual failure probability and its standard deviation, versus the number of
particles and box particles. The conclusion is the same as in the first example. This illustrates the ability
of BPC to tackle non-convex feasible sets. The authors of [Bla+10] suggest using a number of particles
NPC from 100 to 200 for similar cases. For the BPC, it is suggested to use about 20 ≤ NBPC ≤ 40 box
particles for the presented cases. Thus, the computational ratio between the two methods defined by
(6.29) is about r ≤ 0.4, which represents at least a 60% reduction in terms of the number of elementary
operations. Fewer box particles can be used, which may lead to a slightly more conservative behaviour
while still guaranteeing that P(X 6∈ F ) ≤ δ.

Figure 6.8 shows the relative trajectory of the spacecraft with respect to the obstacle to avoid, as well
as the control inputs.

Figure 6.7: Actual failure probability with both methods, associated to its standard deviation, for a maximum
desired failure probability of δ = 0.1.
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Final box 
particle 
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Figure 6.8: Box particle cloud trajectory for an orbital collision avoidance with an obstacle (red box) and control
input norm. The box trajectories prediction corresponding to the optimal control sequence which
minimises the cost function J while satisfying the chance-constraint P(X 6∈ F ) < δ = 0.1. The feasible
domain F corresponds to all trajectories that do not intersect the obstacle area. The actual trajectory
obtained without performing the manoeuvre (black dash curve) would not have satisfied the constraints
since it yields a collision. The actual trajectory obtained by applying the optimal control sequence
satisfies the chance-constraint.
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Application to bank to turn control with TAN measurements inputs (point 3)

A third example presents a non-linear bank to turn trajectory planning for an autonomous aircraft
whose navigation is tackled by a BRPF receiving Terrain Aided Navigation (TAN) measurements. The
state density is initialised in the same way as the TAN simulation introduced in Section 6.2, with the
same initial uncertainty and the same process noise. The initial state corresponds to the navigation
scenario Scenario TAN Alps (t = 10 s), i.e. a position of 42.89 ° in latitude and 106.5 ° in longitude
(recalling that the geographic coordinates of this scenario are fictitious). The initial speed is 231 ms-1

with a heading of 328 °. The uncertainty on the state has a variance around 103 m in position and 3 ms-1

in velocity. The dynamics of the aircraft is described by the non-linear unicycle model introduced in
Section 3.4. The forbidden state areas are the same as those defined in Section 6.2 and can represent
no-flight-zones (e.g. urban areas). The control input is the aircraft’s bank angle (or rolling angle) and is
limited to ±25 °. The cost function is set up with Q = 0 (no desired state or trajectory) and R = S = 1.
Since the Particle Control (Blackmore [Bla+10]) is limited to the linear case, only BPC is studied in this
section in order to evaluate its behaviour in the presence of a non-linear dynamical model.

Figure 6.9 (a) shows the averaged actual failure probability and its standard deviation while applying
the BPC control sequences computed on a hundred Monte Carlo runs, with a maximum desired failure
probability of 0.1. The BPC yields a slightly conservative solution, which appears reasonable with
respect to the actual failure probability standard deviation. In other words, BPC ensures that the chance
constraint P(X 6∈ F ) < δ is satisfied with a consistent and reasonable security margin. Conservatism
decreases when the number of box particles increases. Figure 6.9 (b) shows how the BPC solution scales
with δ = 0.01. The standard deviation does not scale proportionally to δ, which is probably due to the
wrapping effect of the box particle density propagation (see Chapter 2, Section 2.1.5). Nevertheless, the
actual failure probability distribution remains consistent with the desired failure probability. The BPC
solution still meets the chance constraint P(X 6∈ F ) < δ.

Figure 6.10 (a) shows the box trajectory prediction corresponding to the optimal control sequence
plotted in Figure 6.10 (b) for one run with δ = 0.1. The obtained trajectory has drifted from its original
course (without manoeuvre, Figure 6.4 (b)) to meet the chance constraint. Figure 6.10 (b) plots the
corresponding bank control input (rolling angle) which satisfies the control constraints (rolling angle
limited to ±25 °).
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(b) Actual failure probability for BPC (δ = 0.01)

Figure 6.9: Actual failure probability for BPC, associated to its standard deviation, for a maximum desired failure
probability of δ = 0.1 (a) and δ = 0.01 (b).
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Figure 6.10: Box trajectories prediction (a) corresponding to the optimal control sequence (b) which minimises the
cost function J while satisfying the chance-constraint P(X 6∈ F ) < δ = 0.1. The feasible domain F
corresponds to all trajectories that do not intersect the two red areas referred to as obstacles.
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6.4 summary

This chapter introduced a box particle based chance constrained trajectory optimisation scheme called
Box Particle Control (BPC). An analytic formulation of the box chance constraint estimator is provided
in (6.15). The BPC approach appears more accurate than the Particle Control approach (Blackmore
[Bla+10]) and requires a lower computational load for the same performances (about a 30% reduction),
as evaluated by several examples (research question 6).

The integration of estimator (6.15) in a differentiable optimisation scheme is studied, leading to a
smooth formulation of the constraint gradient (research question 7). BPC is able to tackle non-linear
dynamical models, such as a unicycle bank to turn dynamics. Finally, BPC appears to be a good
trade-off between robustness to state uncertainty and computational load reduction for a wide variety
of problems, including non-linear dynamics with non-Gaussian state uncertainty and a non-convex
feasible set.

The BPC was evaluated for a single trajectory planning occurrence and appears suitable for integration
in a Receding Horizon Control (RHC) such as a Model Predictive Control scheme (MPC). The study of
the convergence of BPC in such a scheme will be tackled in future works. Chance constraint approaches
are also suitable for integration in uncertain dynamics control problems, such as hybrid systems and
jump Markov models (e.g. see some application examples in Blackmore [Bla+10]). The study of the
integration of BPC in such uncertain dynamics is also a future axis of research.



7
C O N C L U S I O N

This thesis investigated the use of kernel mixtures bounded by box particles for state estimation and
trajectory planning. Based on this idea, a state estimation algorithm called the Box Regularised Particle
Filter (BRPF) was introduced, as well as a chance constrained trajectory planning method called the
Box Particle Contol (BPC). These approaches aim to tackle severe measurements ambiguities and safe
control under a constrained and uncertain trajectory.

Chapter 4 described the BRPF approach, mainly based on the original Box Particle Filter (BPF
[AGB07], see Chapter 2, Section 2.1.6) and on the Regularised Particle Filter (RPF [MOLG01], Chapter 2,
Section 2.1.4). The assumption is made that uncertainties are bounded. Chapter 5 studied the implement-
ation of BRPF within a federated architecture [Car88] (Chapter 2, Section 2.2.3). Chapter 6 described the
BPC approach, derived from the Particle Control trajectory planning approach (PC [Bla+10], Chapter 2,
Section 2.3.2)

BRPF was evaluated on the Terrain Aided Navigation scheme (TAN), which consists of a severely
ambiguous problem (a highly non-linear and non-injective observation model) and was compared
to previous approaches (BPF [AGB07], and conventional Particle Filter SIR-PF [GSS93]). For similar
performances, BRPF yields a computational load reduction of 75% with respect to the original BPF, and
of 97% with respect to the SIR-PF. BRPF is shown to be robust to severe ambiguities and unknown-
but-bounded measurement uncertainties. BPC was applied to optimisation for a non-convex feasible
set with non-Gaussian state uncertainty, for example flight envelope protection, spacecraft collision
avoidance and fixed-wing aircraft trajectory determination. In particular, trajectory planning from an
initial multimodal BRPF estimation output was investigated. The BPC Computational load was found
to be reduced by 30% compared to the PC for similar failure probability estimation performance.

The thesis answered the following research questions:

1. Can BPF be formalised for any box kernel and is it of practical use to do so?
BPF can be theoretically formalised for any box kernel mixture and any measurement density
(Section 4.1). Formally accounting for the right measurement density increases the estimation
accuracy. However, it becomes rapidly intractable in the presence of non-linearities and is therefore
not of practical use to tackle ambiguous measurements such as the TAN case. In addition,
measurement density may be unknown. In practice, the original BPF uniform kernel formulation
is robust enough to handle such cases as experimentally shown in Section 4.5.

2. Can the original BPF be modified to ensure that the actual state belongs to at least one box particle?
BPF can be modified such that it always yields a consistent estimate. A guaranteed formulation
was derived from Multinomial Resampling which ensures that at least one box particle contains
the actual state (Guaranteed Resampling, Section 4.2). This proves efficient in practice by ensuring
a zero non-convergence rate (Section 4.2.3). In addition, it yields a higher estimation accuracy than
the original BPF.
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3. What is the impact of the choice of box resampling subdivision dimension on the filter’s performance? In
particular, does accounting for observability enhance performance?
Two subdivision resampling approaches were introduced: the Geometrical Subdivision (GS,
Section 4.3.1), based on a sub-box normalisation and the Maximum Likelihood Covariance
Subdivision (MLCS, Section 4.3.2), based on observability. Although GS is less general than
MLCS, it yields a significantly lower computational load and a higher accuracy when used in
conjunction with Guaranteed Resampling (see Section 4.3.3). This tends to show that accounting
for observability is not necessary as long as the filter’s robustness is ensured by construction.

4. Does regularisation improve the BPF’s accuracy?
The kernel regularisation concept was derived for the BPF scheme, leading to the Box Regularised
Particle Filter (BRPF, Section 4.4). It was proved that the BRPF is necessarily better than the original
BPF in terms of density estimation (Mean Integrated Square Error criterion, Proposition 5). In
practice, it translates into a higher accuracy, and does not have a significant impact on the total
computational load (see Section 4.4.3). However, regularisation must be tuned carefully in the
presence of multimodalities and may introduce instability.

5. Can BPF-like algorithms be integrated to larger estimation architectures such as Gaussian federated filters?
It was shown showed that BPF algorithms can be integrated within Gaussian federated architec-
tures, provided that the estimated posterior conditional density tends to a unimodal function
(see Section 5.1). In particular, BRPF asymptotically yields an estimated unimodal density (Pro-
position 7). BRPF was implemented in several federated architecture, where it tackles TAN
measurements while dedicated filters deal with Gaussian measurements. Such an architecture
allows a more accurate estimation from Gaussian measurements, which would suffer from the
wrapping effect if only tackled in the BRPF. The conservatism is also significantly reduced. In
addition, federated architectures make it possible to marginalise the state vector estimated by the
BRPF to focus on the state variable involved in measurements ambiguities (e.g. TAN measurements,
Section 5.2). This results in a significantly lower computational load than a BRPF estimating a full
dimension state. Finally, this scheme can be extended to distributed federated architecture for
collaborative estimation in a fleet (Section 5.3).

6. Does a box kernel mixture based failure probability estimation require a lower computational load than a
Dirac mixture method for similar performance?
An analytic formulation of a box kernel failure probability estimator was introduced (Section 6.2).
In practice, this estimation method is more accurate than the original Particle Control approach
(Blackmore [Bla+10]) and requires a lower computational load for the same performances (see
Section 6.2.3).

7. Is the box kernel failure probability estimation approach compatible with the differentiable optimisation
scheme for trajectory planning?
The integration of the box kernel failure probability estimator in a differentiable optimisation
scheme yields a smooth formulation of the constraint gradient (Section 6.3). BPC is able to tackle
non-linear dynamical models, such as a unicycle bank to turn dynamics. Finally, BPC appears to
be a good trade-off between robustness to state uncertainty and computational load reduction for
a wide variety of problems, including non-linear dynamics with non-Gaussian state uncertainty
and a non-convex feasible set.

Several future research directions and challenges can be drawn from this work. Theoretical and
empirical comparisons were made between Multinomial Resampling and its guaranteed derivation.
A comparison between different resampling approaches could be done, as well as the feasibility and



conclusion 173

impact of their guaranteed derivations. For example, techniques such as Residual Resampling, Stratified
Resampling, or Metropolis-Hastings could be studied (see for example Douc [DC05] and Li [LBD15]).
The box subdivision step could also be further studied. It would be interesting to investigate if some
observability based box subdivision method could yield a better accuracy than the GS method and a
lower computational load than the MLCS approach. Regularisation was theoretically shown to enhance
the estimated density fitting with the actual density, which empirically translates into a higher accuracy.
Further theoretical studies could tackle the formal convergence proof of this approach, for example in
terms of estimation error bound. In addition, the BRPF could be studied on other classes of problems
than state estimation. For example, it would be interesting to evaluate its impact on parametric estimation
for uncertain dynamics, for example to estimate some model parameters (e.g. stability and control
derivatives [Coo12]), or some disturbance parameters (e.g. wind effects on an aircraft). Furthermore, the
interest of BRPF could be evaluated on Simultaneous Localisation And Mapping (SLAM) problems, on
the basis of previous works done on BPF (see for example Luo [LQ18a]).

Future axes of research can also be mentioned for BPC. This thesis was focused on the trajectory
planning problem, using box particle estimation. Further research could implement BPC in a feedback
loop, coupled with a stochastic estimator. In particular, BPC could be studied in a Receding Horizon
Control scheme (e.g. Model Predictive Control) in terms of stability. This would allow constrained
feedback control problems to be tackled together with multimodal state densities. The robustness of
the obtained control scheme could be studied with respect to the initial state uncertainty, the transition
uncertainty, and the measurement noise. The integration of sample-based chance constrained approaches
in RHC has already been tackled for the original point-wise Particle Control, which could be used as
a basis for its extension to the box particle scheme. In this thesis, BPC was studied in the context of
linear and non-linear dynamics. It would be of interest to evaluate how the approach scales with more
severely non-linear dynamics (e.g., aerodynamic models). In addition, sample-based chance constrained
optimisation can also tackle uncertain dynamical models, for example Markov Jump models, for which
some parameters have a given probability to change their value. This could extend the BPC approach to
fault tolerant trajectory planning and control.

State estimation and control under uncertainty and ambiguity are linchpins to the success of many
modern applications in the aerospace field and autonomous robotics. This thesis provides a significant
improvement in the quality of these functions at minimal computational cost.





A
I N T R O D U C T I O N T O I N F O R M AT I O N T H E O RY

Information theory aims to mathematically quantify the informativeness carried by a random vector
(e.g. a measurement or an estimate). Information is usually derived from the associated probability
density function and quantifies its compactness. A review of information theory can be found in
Grocholsky [Gro02]. In this appendix, two ways of defining information are introduced. The link
between information and the Maximum Likelihood estimator is then introduced.

Definitions of information

Let y be a random vector taking values in Rm associated with density p(y). A scalar definition of
information can be found in Papoulis [PP91]. It is based on the definition of entropy H:

H , −Ey [log(p(y))] (A.1)

where Ey[ f (y)] =
∫

Rm
f (y)p(y)dy is the mathematical expectation. The entropic information i is defined

as the opposite of H:

i = −H (A.2)

However, this scalar value does not independently capture the information of each variable in the
vectorial case.

Another definition of information is the Fisher Information Matrix (FIM) for conditional densities.
Let y be a random vector taking values in Rm associated with conditional density p(y|θ) with θ taking
values in Rn. The FIM is defined (e.g. see Tichavsky [Tic+98]) by:

I = −Ey|θ

[
∂2

∂θ2 log (p(y|θ))
]
∈ Rn×n (A.3)

where Ey|θ[ f (y, θ)] =
∫

Rm
f (y, θ)p(y|θ)dy is the mathematical expectation. It can be generalised to N

independent random vectors yi. The conditional density is then ∏N
i=1 p(yi|θ). It can be interpreted as

the expectation of the likelihood curvature with respect to θ. The larger is the likelihood’s support, the
less informative is the measurement. Entropic information can be derived from the FIM’s determinant
(e.g. see Grocholsky [Gro02]).

The FIM is defined if the following axioms are satisfied (e.g. see Lu [Lu+17]):

• Existence and absolute integrability w.r.t y of the first two derivatives of p(y|θ) w.r.t θ,

• The support of p(y|θ) is independent from θ.
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Those conditions are met for a large variety of densities, including Gaussian distribution. However,
they do not hold for bounded densities whose support boundaries depend on the conditional variable
θ, e.g. bounded measurements, as found in the Box Particle Filter scheme (see Section 2.1.6).

For Gaussian densities such that p(y|θ) = 1

(2π)
d
2 |P|

1
2

exp
(
− 1

2 (y−Hθ)TP−1(y−Hθ)
)

, where H ∈

Rm×n, the FIM is equal to the inverse of covariance P:

I = P−1 (A.4)

The FIM in the context of state estimation

An information formulation can be derived from the state estimation framework. Under Gaussian
assumptions, it led to the Information Filter, introduced by Maybeck [May82] and derived by Manyika
[Man93].

The FIM is also used to quantify the information brought by the measurements to the state. In this case,
the conditional density is the likelihood p(m|x), where m is the measurement, taking values in Rdm , and
x the state, taking values in Rd. The inverse of the FIM is usually referred to as the Cramér-Rao Lower
Bound (CRLB) and quantifies the lowest covariance reachable by any estimator for a given estimation
problem. In that context, the conditional density is the joint density of all measurements’ densities.
Its vectorial form in the discrete-case has been introduced by Galdos [Gal80]. In order to reduce the
computational cost, an iterative formulation for recursive estimation has been derived by Tichavsky
[Tic+98]. It provides an analytic expression of the minimal covariance reachable at any time-step by an
estimator, starting from a given initial state covariance.

FIM and CRLB computation for bounded likelihood remain an active area of research. An extention
of (A.3) to this case has been introduced by Lu [Lu+17], but this formulation is complex to compute in
practice. Nevertheless, it relies on the Maximum Likelihood estimator (see (2.7) in Section 2.1.2), whose
covariance asymptotically approaches the CRLB (Wasserman [Was13, Theorem 10.18]).



B
M U LT I M O D A L D E N S I T I E S A N D M E A S U R E M E N T S A M B I G U I T I E S

This appendix introduces the concept of multimodality. A density is said to be multimodal if it has
several local maxima. It is said to be unimodal if it has only one maximum. This manuscript focuses on
posterior conditional state density multimodalities caused by ambiguous measurements, on the way of
designing robust estimators.

Link between state density, likelihood, and measurements ambiguities

Multimodalities in the posterior conditional state density p(xk|Mk) can have three causes:

• The measurement model h is not injective or is not continuous, which may lead to several possible
states {x1

k , ..., xn
k } being consistent with one single value of measurements mk = h(xi

k) ∀i. The
Bayes correction step (2.5) from the prior density will produce a conditional posterior density
having n local maxima whose values xi

k are called modes. Figure B.1 (a) illustrates this case for the
Terrain Aided Navigation (TAN) case, assuming that the state is made of a single variable x ∈ R.
In practice, the unknown state may consist of three positions, three velocities and potentially other
variables such as the angles of attitude.

• The measurement density p(m|x) may itself be multimodal, as illustrated in Figure B.1 (b). Again,
Bayes’ rule leads to a multimodal posterior conditional density.

• The measurement model may be incomplete, in the sense that it does not explicitly involve all
state variables to be estimated. An illustration is provided in Figure B.1 (c), where the state is
made of two positions x = [p1, p2]

T and the measurement model only involves p2: h(x) = p2. In
such a case, the posterior conditional density does not result in a multimodal density, but has an
infinite number of maxima. This case can be linked to a lack of information on one dimension. It
can be quantified by the information theory (Appendix A).

In practice, an ambiguous problem may consist of a combination of these three cases. For example,
the TAN application consists of a severely non-linear measurement model depending on a Digital
Elvation Model (DEM) (3.9). The DEM non-linearities may cause non-injective observations and state
multimodalities, as illustrated in Figure B.1 (a). Furthermore, in practice, the measurement density may
depend on the overflown terrain. For example, a sand desert may produce a unimodal measurement
noise, while a forest often yields a bimodal density, due to the double rebound of the electromagnetic
wave on the ground and on the canopy, as stated in Bergman [Ber99]. This adds the case illustrated in
Figure B.1 (b) to the previous state multimodalities. In addition, the TAN model (3.9) only involves
position variables (latitude, longitude, altitude). Velocity variables are not explicitly observed, which
again adds some ambiguity (a case similar to Figure B.1 (c)).

This thesis focuses on case (a), while remaining robust to cases (b) and (c), with the Box Particle
Filter (Section 2.1.6). Figure B.2 shows the evolution of p(xk|Mk) in case (a) for Scenario TAN Alps,

177



178 multimodal densities and measurements ambiguities

State space

𝑝 𝐱𝑘 𝐌𝑘)

𝐱𝑘
1

Measurement 
space

𝑝 𝐦𝑘 𝐱𝑘)

ℎ 𝐱𝑘

Terrain

𝐷𝐸𝑀(𝐱)

𝐦𝑘

𝐱𝑘
2 𝐱𝑘

3

𝐱𝑘

(a) Non injective-continuous measurement model case

State space

𝑝 𝐱𝑘 𝐌𝑘)

𝐱𝑘
1

Measurement 
space

𝑝 𝐦𝑘 𝐱𝑘)

ℎ 𝐱𝑘
Terrain

𝐷𝐸𝑀(𝐱)

𝐦𝑘

𝐱𝑘
2

𝐱𝑘

(b) Multimodal likelihood case

State space

𝑝 𝐱𝑘 𝐌𝑘)

Measurement 
space

𝑝 𝐦𝑘 𝐱𝑘)

𝐦𝑘 = ℎ 𝐱𝑘 = 𝑝2

𝐱𝑘

𝑝2

𝑝1

(c) Incomplete measurements case

Figure B.1: Posterior density multimodalities can be caused by three types of measurement ambiguity: non injective
measurements (a), multimodal likelihood (b), and incomplete measurements (c). In (a) and (b), the
posterior state density is in blue and holds several modes caused by measurements non-linearities or
measurement multimodalities. Cases (a) and (b) are Terrain Aided Navigation (TAN) examples. In (c),
the posterior density is represented in blue shades in the state space and has an infinite number of
maxima (incomplete Cartesian measurements). Note that the posterior density p(xk|Mk) is represented
here assuming that no prior knowledge is available (diffuse prior conditional density p(xk|Mk−1) ≈ UR),
in order to highlight the impact of ambiguities (e.g. first gathered measurement).
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Figure B.2: Posterior conditional state density obtained on a non injective terrain measurement case (Scenario TAN
Alps). The posterior density can be multimodal even if the likelihood is unimodal (Gaussian for this
example). This highlights that the likelihood may not be representative of multimodalities. Nevertheless,
if the measurements asymptotically contain enough information, the posterior density may converge to
a unimodal density.

with a Gaussian measurement density. This illustrates the impact of non-injective measurements on the
posterior density’s multimodality. Figure B.1 (a) also illustrates that the likelihood (defined either as the
measurement density or as the joint density of several measurements) may not be representative of the
problem’s ambiguity. This highlights the fact that mathematical criteria such as the Fisher Information
Matrix (A.3) do not account for multimodalities, even though they account for non-linearities.

Two approaches are possible in order to quantify the level of ambiguity for a given problem. First, it
is possible to numerically estimate the posterior conditional density p(xk|Mk) and count the number of
local maxima, for example by Monte Carlo Simulations coupled to a clustering algorithm (e.g. Murangira
[Mur+11]).





C
C O M P L E X I T Y A N A LY S I S

The complexity of algorithms can be evaluated in terms of their computational load. In this work, the
computational load is defined as the total number of elementary operations (namely, additions and
multiplications) required to perform them. Elementary operations are here considered as floating-point
operations (also referred as flops).

This complexity criterion is often used in the state estimation area. It has been used to evaluate the
cost of various implementations of the Kalman Filter, see Verhaegen [VVD86], or to compare several
derivations of the Particle Filter, see Karlsson [KSG05]. Table C.1 presents the flops number for several
matrix and box operations used in this work. The total number of flops is obtained by adding the
number of multiplications and additions. Note that subtractions are associated with additions, and that
divisions are associated with multiplications.

Table C.1: Complexity analysis for matrix and box operations

Operation Size Multiplications Additions

Matrix addition A + B A, B ∈ Rn×m nm
Matrix multiplication AB A ∈ Rn×m, B ∈ Rm×l nml (m− 1)ln
Matrix inversion A−1 A ∈ Rn×n n3

Kronecker product A⊗ B A ∈ Rn×m, B ∈ Rp×q nmpq
Box center c[x] [x] ∈ IRn n n

Box diameter δ[x] [x] ∈ IRn n

Box volume |[x]| [x] ∈ IRn n− 1 n
Box Propagation A[x] A ∈ Rn×m, [x] ∈ IRm 2nm 2(m− 1)n
Box Addition [x] + [y] [x] ∈ IRn, [y] ∈ IRn 2n
Box Multiplication [x][y] [x] ∈ IRn, [y] ∈ IRn 8n

However, some operations cannot be quantified in terms of flops, for example the random number
generation, or very nonlinear functions. For consistency with previous works (e.g. Karlsson [KSG05]),
the theoretical cost of one random sample is denoted crandom (without distinction of distributions). The
computational load of nonlinear dynamical propagation is noted c f ∈ N. Similarly, the observation
model computational load is noted ch ∈N. Furthermore, some computational costs may be neglected,
for example a 1 flop scalar operation with respect to a 103 flops of a 10× 10 matrix inversion. In such a
case, the neglected terms will be indicated by a o(), e.g. o(n3). Furthermore, for algorithm comparisons,
only the most significant terms will be considered. Significant terms are denoted by a O(), e.g. O(n3).
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For example, the naive implementation of the KF yields the following number of flops per time-step,
as stated by Verhaegen [VVD86]:

cKF =
3
2

d3 + d2
(

3dm +
1
2

d
)
+ d

(
3
2

d2
m + d2

)
+

1
6

d3
m (C.1)

where d is the state dimension and dm the measurements dimension.
The Particle Filter yields the following number of flops per time-step, assuming a linear dynamics, as

stated in Karlsson [KSG05]:

cPF = N
(

4d2 + d + dcrandom + ch

)
+ o(Nd) (C.2)

Note that Karlsson [KSG05] made the computation for the Marginalized PF. However, the computational
load of conventional PF can be easily derived from it.



D
E L E M E N T S O F T O P O L O G Y

In what follows, some useful topological properties on Euclidean sets are recalled. All definitions are
provided in the particular case of Rd (see Simmons [Sim63] for more general definitions).

Metric: A metric d on an Euclidean set (e.g. Rd) is an application from Rd to R+ which satisfies
the following conditions. Let x, y, z ∈ Rd: Non-negativity: d(x, y) ≥ 0, identity: d(x, y) = 0 ⇔ x = y,
symmetry: d(x, y) = d(y, x), and triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

neighbourhood: A neighbourhood of a point x ∈ Rd is a subset of Rd which contains at least an open
set containing x.

Open/closed set: In Rd, an open set is a subset of Rd which contains at least one open ball centered
on each of its elements. Intuitively, it is a set which does not contain its boundary. A closed set is a set
that contains its boundary.

Interior: Let S be a subset of an euclidean set (e.g, Rd). The interior of S is the set containing all
points that do not belong to its boundary. The interior is an open subset of S .

Ball: An open ball on a metric set (e.g. Rd with distance d) is a set defined by a center p ∈ Rd

and a radius r ∈ R+∗: B(p, r) =
{

x ∈ Rd
∣∣ d(p), x) < r)

}
. A closed ball is defined by: B(p, r) ={

x ∈ Rd
∣∣ d(p, x) ≤ r)

}
.

Topology: Let S 6= ∅ be a non-empty subset of Rd. A topology on S is a subset τ ⊆ P(S) of the
power set that satisfies the following axioms: The union of arbitrary subsets of τ is an element of τ,
the intersection of any two elements of τ is an element of τ, S is an element of τ. S is said to be a
topological set (e.g. Rd).

Power set: The power set of a set S is the set containing all of the subsets of S . It is noted: P(S) ,
{T

∣∣ T ⊆ S}.
Connected/disconnected set: A set S is connected if there exists a continuous function φ from [0, 1]

to S which satisfies:

∀x, y ∈ S
{

φ(0) = x

φ(1) = y
(D.1)

In other words every pair of elements of S can be linked by a continuous path which belongs to S . Here
are some properties:

• The output set of a continuous function is connected if the input set is connected,

• The union of two connected sets is connected if their intersection is non-empty,

• A topological set (e.g. a subset of Rd) is said to be disconnected if it is the union of two disjoint
nonempty open sets.

Disjoint sets: Two sets are said to be disjoint sets if they have no element in common.
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Convex set: Let S be an euclidean set (e.g. a subset of Rd). It is convex if for every pair of its points,
every point on the straight line segment that joins the pair of points is also within S .

Indexing set: An indexing set I of another set S is a set whose elements label (or index) the elements
of S . A mapping is done from I to S .

Mapping: Let S and T be two sets. A mapping from S to T is a binary relation on S × T which
associates each element of S with exactly one element of T .



E
K E R N E L S C H A R A C T E R I S T I C S

Epanechnikov kernel

The Epanechnikov kernel is defined in d dimensions by:

Ke(x) =


d+2
2cd

(
1− ‖x‖2

)
if ‖x‖ < 1

0 otherwise
(E.1)

where cd is the volume of the unit hypersphere in Rd and d ∈ N∗ the dimension. If a multivariate

function can be expressed in terms of a radial function of radius r =
√

∑d
i=1 x2

i which is invariant by
angles θ ∈ [0, 2π] and φi ∈ [0, π], ∀i ∈ [1, d], then its multivariate integral can be expressed by (Miller
[Mil64]):∫

Rd
K(x)dx =

∫
f (r)rd−1dr

∫ 2π

0
dθg(d) (E.2)

where f is the function expression only depending on r > 0, and g(d) is:

g(d) ,
d−2

∏
i=1

∫ π

0
sind−1−i φidφi =

π
d
2−1

Γ
(

d
2

) (E.3)

The Epanechnikov kernel satisfies this condition, and can thus be rewritten:

Ke(r) =

 d+2
2cd

(
1− r2) if r ∈ [0, 1]

0 otherwise
(E.4)

Applying (E.2) to the α and β parameters definition (2.29) yields:

α =
∫

Rd
x2

1Ke(x)dx =
π

d
2

cd(4 + d)Γ
(

d
2 + 1

) (E.5)

where Γ : R→ R is the Gamma function (Artin [Art15]), and:

β =
∫

Rd
Ke(x)2dx =

2(d + 2)π
d
2

c2
d(4 + d)Γ

(
d
2 + 1

) (E.6)
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Beta kernel

The symmetric Beta kernel is defined in d dimensions by:

Kb(x) =

∏d
i=1

(xi)
a−1(1−xi)

a−1

B(a,a) if x ∈ [0, 1]d

0 otherwise
(E.7)

where B is the Beta function. Applying the α and β parameters definition (2.29) yields:

α =
∫

Rd
x2

1Kb(x)dx =
Γ(a)Γ(2 + a)

B(a, a)Γ(2a + 2)
(E.8)

and

β =
∫

Rd
Kb(x)

2dx =

(
Γ(2a− 1)2

B(a, a)2Γ(4a− 2)

)d

(E.9)

The beta kernel Kb tends to a uniform density when a→ 1+.



F
R É S U M É E N F R A N Ç A I S

L’autonomie d’un engin aérospatial requiert de disposer d’une boucle de navigation-guidage-pilotage
efficace et sûre. Cette boucle intègre des filtres estimateurs et des lois de commande qui doivent dans
certains cas s’accommoder de non-linéarités sévères et être capables d’exploiter des mesures ambiguës.
De nombreuses approches ont été développées à cet effet et parmi celles-ci, les approches particulaires
présentent l’avantage de pouvoir traiter de façon unifiée des problèmes dans lesquels les incertitudes
d’évolution du système et d’observation peuvent être soumises à des lois statistiques quelconques.
Cependant, ces approches ne sont pas exemptes de défauts dont le plus important est celui du coût
de calcul élevé. D’autre part, dans certains cas, ces méthodes ne permettent pas non plus de converger
vers une solution acceptable. Des adaptations récentes de ces approches, combinant les avantages du
particulaire tel que la possibilité d’extraire la recherche d’une solution d’un domaine local de description
et la robustesse des approches ensemblistes, ont été à l’origine du travail présenté dans cette thèse.

Cette thèse présente le développement d’un algorithme d’estimation d’état, nommé le Box Regularised
Particle Filter (BRPF), ainsi qu’un algorithme de commande, le Box Particle Control (BPC). Ces algorithmes
se basent tous deux sur l’utilisation de mixtures de noyaux bornés par des boites (i.e. des vecteurs
d’intervalles) pour décrire l’état du système sous la forme d’une densité de probabilité multimodale.
Cette modélisation permet un meilleur recouvrement de l’espace d’état et apporte une meilleure
cohérence entre la prédite et la vraisemblance. L’hypothèse est faite que les incertitudes incriminées
sont bornées. L’exemple d’application choisi est la navigation par corrélation de terrain qui constitue
une application exigeante en termes d’estimation d’état.

Pour traiter des problèmes d’estimation ambiguë, c’est-à-dire lorsqu’une valeur de mesure peut
correspondre à plusieurs valeurs possibles de l’état, le Box Regularised Particle Filter (BRPF) est introduit.
Le BRPF est une évolution de l’algorithme de Box Particle Filter (BPF) et est doté d’une étape de ré-
échantillonnage garantie et d’une stratégie de lissage par noyau (Kernel Regularisation). Le BRPF assure
théoriquement une meilleure estimation que le BPF en termes de Mean Integrated Square Error (MISE).
La précision d’estimation du BRPF est empiriquement évaluée sur plusieurs cas de navigation par
corrélation de terrain. L’algorithme permet une réduction significative du coût de calcul par rapport aux
approches précédentes pour des performances similaires (75% de réduction par rapport au BPF, 97%
par rapport au filtre particulaire). Le BRPF est également étudié dans le cadre d’une intégration dans
des architectures fédérées et distribuées, ce qui démontre son efficacité dans des cas multi-capteurs et
multi-agents.

Un autre aspect de la boucle de navigation–guidage-pilotage est le guidage qui nécessite de planifier la
future trajectoire du système. Pour tenir compte de l’incertitude sur l’état et des contraintes potentielles
de façon versatile, une approche nommé Box Particle Control (BPC) est introduite. Comme pour le BRPF,
le BPC se base sur des mixtures de noyaux bornés par des boites et consiste en la propagation de la
densité d’état sur une trajectoire jusqu’à un certain horizon de prédiction. Ceci permet d’estimer la
probabilité de satisfaire les contraintes d’état au cours de la trajectoire et de déterminer la séquence
de futures commandes qui maintient cette probabilité au-delà d’un certain seuil, tout en minimisant
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un coût. Pour des performances similaires, le BPC permet de réduire la charge de calcul de 30% par
rapport à une approche stochastique de référence (le Particle Control).

Cette thèse tente de répondre aux questions de recherche suivantes:

1. Le BPF peut-il être formalisé pour n’importe quel type de noyau borné et de densité de mesure, et cela a-t-il
un intérêt pratique?
Les précédents travaux ayant portés sur le BPF (Gning [Gni+13]) n’ont considéré que des mixtures
de boites portant des noyaux uniformes, ainsi que des bruits de mesure uniformes. Dans la Sec-
tion 4.1, nous proposons une formalisation générale du BPF en termes de type de noyaux utilisés
pour la mixture servant à approximer la densité d’état et de densité de bruit de mesure (Propos-
ition 1). Nous avons mis expérimentalement en évidence que la prise en compte d’hypothèses
probabilistes précises sur le bruit de mesure permet d’améliorer les performances du filtre en
terme de précision (Root Mean Square Error, RMSE) et de robustesse (nombre de non-convergences).
Des simulations ont été réalisées avec un modèle d’observation linéaire Gaussien puis linéaire
uniforme (Section 4.1.3). Cependant, la formulation générale du BPF devient rapidement non
résoluble pour des cas non-linéaires, comme par exemple la navigation par corrélation de terrain
(Terrain Aided Navigation, TAN). De plus, les propriétés statistiques du bruit de mesure ne sont pas
toujours connues. En pratique, la formulation uniforme du BPF de Gning [Gni+13] est suffisam-
ment robuste pour traiter les cas ambigus et non-linéaires (par exemple, l’application de TAN). Il
est donc possible de formaliser le BPF sous forme d’une mixture de noyaux quelconques et pour
n’importe quel type de bruit de mesure, mais nous n’y avons pas décelé d’intérêt pratique pour
les cas de mesure non-linéaire et ambigüe. Des simulations ont permis de mettre en évidence
la robustesse de la formulation uniforme du filtre à des bruits de mesure dont la densité est
inconnue-mais-bornée (Section 4.5).

2. L’algorithme original du BPF peut-il être modifié pour garantir que l’état réel soit nécessairement contenu
dans au moins une box particle du nuage de boites?
L’algorithme de BPF (Gning [Gni+13]) se compose de trois étapes réalisée périodiquement:
prédiction (propagation des box particles), correction (mise à jour des poids des box particles,
quantifiant leur probabilité de contenir l’état réel sachant la nouvelle mesure capteur, si celle-ci est
disponible), et ré-échantillonnage (remplacement des box particles ayant une faible probabilité de
contenir l’état par des subdivisions des box particles ayant un poids fort). Les étapes de prédiction
et de correction assurent que si l’état réel est contenu par au moins une boite à un pas de temps
donné, il le restera au pas de temps suivant. Cependant, l’étape de ré-échantillonnage n’assure
pas cette propriété et peut en pratique faire diverger le filtre. La technique de ré-échantillonnage
utilisée le plus souvent dans la littérature est le ré-échantillonnage multinomial (Algorithme 3).
Dans la Section 4.2, nous développons une version garantie du ré-échantillonnage multinomial,
nommée Guaranteed Resampling (GR, algorithme 6). Le BPF, une fois modifié dans son étape de
ré-échantillonnage, garantit qu’au moins une box particle contient nécessairement l’état réel à
chaque instant (Proposition 2). En pratique, cela se traduit par un taux de non-convergence égal
à zéro (Section 4.2.3). L’intérêt pratique est démontré à travers l’application de navigation par
corrélation de terrain.

3. Quel est l’impact du choix de la dimension de subdivision des box particles lors de l’étape de ré-échantillonnage?
La prise en compte de l’observabilité a-t-elle un impact positif sur les performances du filtre?
L’étape de ré-échantillonnage du BPF consiste à remplacer les box particles ayant un poids faible
par des subdivisions de celles ayant un poids fort. Le nombre de nouvelles particules nées de la
subdivision d’une particule donnée est déterminé par l’algorithme de ré-échantillonnage, et est
compris entre zéro (box particle supprimée) et N (nombre total de box particles). La méthode
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utilisée dans la littérature pour l’étape de subdivision consiste à choisir au hasard une dimen-
sion de subdivision pour chaque boite (Gning [Gni+13]). Bien qu’elle soit indépendante de la
modélisation du système étudié, cette approche introduit un phénomène de dégénérescence des
box particles, aboutissant à des boites dont certaines arrêtes sont de longueur tendant vers zéro.
Dans la Section 4.2, nous introduisons deux méthodes de subdivision. La première, basée sur une
partition du vecteur d’état en une collection de sous-vecteurs de taille égale, permet de normaliser
les longueurs des arrêtes de chaque boite afin de la subdiviser le long de l’arrête normalisée la
plus longue (Proposition 3). Cette méthode, nommée Geometrical Subdivision (GS), ne prend pas en
compte l’observabilité du système et permet de conserver des box particles proportionnées. La
seconde méthode consiste à subdiviser chaque box particle selon la dimension qui contient le plus
d’information apportée par les mesures. (voir l’annexe A qui définit le concept d’information).
Comme l’hypothèse est faite que l’incertitude de mesure est bornée, l’information ne peut pas être
calculée au sens de Fisher. Elle peut cependant être approximée par la variance de l’estimateur de
maximum de vraisemblance. Ceci permet de définir la méthode de Maximum Likelihood Covari-
ance Subdivision (MLCS, Proposition 4), qui prend en compte l’observabilité (ici définie comme
l’information apportée à l’état par la mesure). Nous mettons expérimentalement en évidence que
les deux méthodes améliorent notablement la précision d’estimation du filtre par rapport à la
méthode de subdivision aléatoire (Gning [Gni+13]). La méthode MLCS améliore légèrement la
précision du filtre par rapport à la méthode GS dans le cadre du ré-échantillonnage multinomial.
Cependant, dans le contexte du Guaranteed Resampling, la méthode GS offre des résultats signi-
ficativement meilleurs, ce qui tend à montrer que la prise en compte de l’observabilité dans la
subdivision des boites n’est pas nécessaire lorsque le filtre assure sa robustesse par construction
(grâce à l’algorithme de ré-échantillonnage garanti).

4. Les techniques de régularisation par noyaux peuvent-elles améliorer la précision d’estimation du BPF?
Quelle que soit la méthode employée pour subdiviser les box particles lors du ré-échantillonnage,
cette opération résulte en un nuage de particules dont beaucoup se superposent exactement sur
certaines dimensions. Ceci produit une estimation de densité d’état très échelonnée qui gagnerait
à être lissée afin de mieux approximer la densité vraie. Ce phénomène peut être interprété
comme un manque d’indépendance statistique entre les paramètres des boites (définies par leurs
centres et leurs diamètres). Une méthode possible pour lisser la distribution de ces paramètres
est la régularisation (Kernel Regularisation). Développée à l’origine pour le filtre particulaire
(Musso [MOLG01]) sur la base des travaux de Silverman [Sil86], cette approche permet de bruiter
les paramètres des box particles selon une distribution optimale au sens du critère de MISE (Mean
Integrated Square Error), qui quantifie la précision de l’approximation de la densité vraie par la
mixture de box particles. Ceci permet de définir le Box Regularised Particle Filter (BRPF), qui assure
une MISE asymptotique plus faible que le BPF original (Section 4.4, Proposition 5). En pratique,
cela se traduit par une meilleure précision d’estimation du filtre (Section 4.4.3). Cependant, en cas
de multimodalités dues aux ambiguïtés de mesure (voir Annexe B), un paramètre de réglage est
introduit pour limiter l’impact de la régularisation qui peut rendre le filtre instable.

5. Les algorithmes d’estimation de type BPF peuvent-ils être intégrés dans des architectures fédérées?
Les filtres de type BPF (et en particulier le BRPF) permettent de résoudre des problèmes
d’estimation ambigus, non-linéaires et d’incertitude de mesure inconnue-mais-bornée. Cependant,
le BPF apparait peu précis dans le cas de mesures linéaires et/ou Gaussiennes, comparée aux
filtres de type Kalman aux hypothèses plus restrictives. Une approche possible pour traiter des
mesures aux caractéristiques disparates est l’utilisation d’une architecture d’estimation fédérée
(Carlson [Car88]). Dans ce type d’architecture, chaque mesure est pré-traitée indépendamment
dans un filtre dédié, produisant une première estimation locale de l’état. Les filtres locaux forment
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une première couche de filtres. Les estimations locales d’état sont ensuite fusionnées dans un
second filtre appelé Master Filter (voir Section 2.2.3). Ceci permet de traiter les ambiguïtés et les
non-linéarités dans la première couche, puis de fusionner de façon linéaire les estimations proven-
ant de l’ensemble des mesures pré-traitée. Nous étudions plus particulièrement le cas de Master
Filter Gaussian (ex, filtre de Kalman ou sa formulation d’information). Afin d’intégrer le BPF à
une telle architecture en temps que filtre local (traitant par exemple les mesures de corrélation
de terrain), l’incertitude sur son estimation doit être proche d’une Gaussienne. Nous discutons
les hypothèses permettant cette approximation dans la Section 5.1. Dans le cadre de l’utilisation
du ré-échantillonnage multinomial (Algorithme 3), la densité d’état a postériori du filtre tend
asymptotiquement vers une densité unimodale (i.e. n’ayant qu’un seul maximum, King [KF00]),
qui peut être approximée par une Gaussienne. Dans le cadre de l’utilisation du ré-échantillonnage
garanti (Algorithme 6), cette propriété asymptotique n’est plus assurée. Nous avons néanmoins
établi que (a) l’utilisation du ré-échantillonnage garanti assure que la densité a posteriori est
non-nulle au voisinage de l’état vrai (Proposition 6) et (b) l’utilisation de la régularisation (BRPF,
Section 4.4) permet de lisser asymptotiquement la densité a posteriori pour les états scalaires,
aboutissant à une densité unimodale (Proposition 7), assimilable à une Gaussienne. Cette propriété
est admise pour les états vectoriels et vérifiée expérimentalement dans le cas de navigation par
corrélation de terrain. Ceci justifie la possibilité d’intégration du BRPF dans une architecture
fédérée. Plusieurs types d’architectures fédérées sont testées en simulation: architecture centralisée
pour des applications multi-capteurs (Section 5.2.1) et architecture distribuée pour de la navigation
coopérative au sein d’une flotte de véhicules (Section 5.3). Les résultats montrent plusieurs intérêts
des architectures fédérées par rapport à une architecture en une seule couche où un BRPF traiterait
toutes les mesures: meilleure précision d’estimation, moins d’incertitude sur l’estimation et un
coût de calcul plus faible (Sections 5.2.2 et 5.3.2).

6. L’utilisation de mixture de noyaux bornés par des boites est-elle avantageuse en termes de coût de calcul
pour l’estimation d’une probabilité d’échec, comparée à l’utilisation plus classique d’une mixture de Diracs?
Nous nous plaçons maintenant dans le cadre d’une optimisation sous contrainte de trajectoire
future (jusqu’à un horizon de prédiction K = k + n), prédite à partir de la connaissance courante
de l’état du système (instant k). Par exemple, un véhicule se trouvant en un point A (état
courant) souhaite se rendre en un point B (objectif) en évitant un obstacle situé sur son chemin
(contrainte). Dans le cas déterministe, l’optimisation sous contrainte peut être réalisée à partir
des méthodes d’optimisation différentiable (Section 2.3.1). Lorsque la trajectoire est incertaine, elle
peut être modélisée comme un vecteur aléatoire, ce qui rend beaucoup plus difficile l’optimisation.
Afin de ramener le problème dans un cadre déterministe, les approches ensemblistes considèrent
l’ensemble des trajectoires possibles comme un domaine borné qu’il est possible de forcer à
rester en dehors de l’ensemble des contraintes d’état (ex, Bemporad [BM99]). Cependant, ces
méthodes sont parfois trop conservatives et peuvent ne pas trouver de trajectoire solution. Afin
de relaxer les contraintes, des approches d’optimisation stochastique proposent de contraindre
la probabilité que la trajectoire d’état ne satisfasse pas les contraintes au lieu des contraintes
elles-mêmes. Cette approche, appelée chance constrained optimisation (Charnes [CCS58]), permet de
maitriser le risque de ne pas satisfaire les contraintes (probabilité d’échec, par exemple la collision
avec un obstacle). La probabilité d’échec maximale admissible est choisie a priori. L’implémentation
de l’optimisation sous contrainte de probabilité d’échec n’est cependant pas aisée. Des travaux
ont proposé des formulations pour des états Gaussiens et uniformes ([BLW06; CEG06]) dans le
cadre d’espaces admissibles convexes (espace des trajectoires satisfaisant les contraintes). Pour
traiter des cas plus complexes dans lesquels la densité d’état n’est pas analytique et/ou l’espace
admissible est non-convexe, une méthode d’optimisation de type particulaire a été proposée (Sample
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Average Approximation for chance constrained optimisation, Pagnoncelli [PAS09]). Cette approche a été
appliquée dans le cadre du guidage de véhicules par Blackmore [Bla+10] (Particle Control). Ces
approches d’optimisation contrainte sous incertitude d’état peuvent être utilisées dans des cas
de commande avec retour d’état. Elles ont été largement appliquées à la commande prédictive
(Model Predictive Control), par exemple par Calafiore [CF13]. Dans cette thèse, nous nous limiterons
cependant à l’étude de l’optimisation d’une trajectoire à un instant donné. L’intégration des
méthodes d’optimisation sous contrainte de probabilité d’échec dans un contrôleur de type MPC
est donc au delà du périmètre que nous avons défini. Dans la Section 6.2, nous introduisons
une nouvelle formulation de la probabilité d’échec construite à partir de la propagation d’une
mixture de noyaux bornés par des boites (Proposition 8). Nous montrons par des simulations que
la précision de l’estimation de probabilité d’échec est supérieure à celle obtenue avec les méthodes
particulaires classiques (Blackmore [Bla+10]) pour une même charge de calcul. Ceci permet, à
performances égales, de diminuer le coût de calcul de façon significative.

7. La formulation d’estimateur de probabilité d’échec par mixture de noyaux peut-elle être utilisée dans des
algorithmes classiques d’optimisation différentiable?
La formulation de l’estimation de probabilité d’échec évoquée ci-dessus n’est malheureusement
pas différentiable par rapport aux variables d’optimisation (ici, la séquence des commandes
déterminant la future trajectoire). Cette propriété rend le problème non différentiable et empêche
l’utilisation de méthodes d’optimisation classiques (par exemple les méthodes SQP, voir Boggs
[BT95]). Nous proposons donc une méthode de lissage du gradient de la probabilité d’échec afin
de la rendre différentiable, au moyen d’une fonction sigmoïde approximant la fonction indicatrice
dans les opérations de calcul d’intervalles. Des simulations mettent en évidence l’efficacité de la
méthode sur plusieurs scénarios, impliquant des non-linéarités de dynamique (modèle d’avion
sous forme d’unicycle) et de fortes multimodalités (estimation de l’état initial issue du BRPF pour
la navigation par corrélation de terrain), en Section 6.3.3.

L’algorithme Box Regularised Particle Filter (BRPF) présenté dans cette thèse permet une réduction
significative du coût de calcul de l’estimation d’état à partir de mesures non-linéaires et ambigües par
rapport aux approches précédentes étudiées (Box Particle Filter [Gni+13] et Filtre Particulaire [GSS93]).
De futurs axes de recherches peuvent être dégagés de ce travail. Premièrement, nous n’avons étudié que
la méthode de ré-échantillonnage multinomial et sa formulation garantie. L’impact d’autres méthodes de
ré-échantillonnage sur les performances du BPF et la faisabilité d’une formulation garantie seraient des
points intéressants à étudier. L’étude de la subdivision des boites lors du ré-échantillonnage pourrait elle
aussi être poursuivie. En effet, les résultats présentés dans cette thèse tendent à montrer que la prise en
compte de l’observabilité n’est pas nécessaire, mais d’autres méthodes pourraient être envisagées pour
l’étudier, impliquant éventuellement un coût de calcul moindre que la méthode de Maximum Likelihood
Covariance Subdivision. Enfin, l’intérêt de la régularisation dans le BRPF a été montré théoriquement
en termes de MISE et empiriquement en termes de RMSE. Une preuve théorique de convergence de
l’erreur d’estimation pourrait être envisagée.

La méthode de Box Particle Control (BPC) permet de réaliser une optimisation de trajectoire contrainte
sous incertitude multimodale. Le BPC permet la prise en compte de non-linéarités de dynamique et
présente un coût de calcul inférieur aux approches précedentes (Particle Control [Bla+10]). L’intégration
du BPC dans le contexte de commande prédictive (MPC) semble être un point important pour son
implémentation dans des véhicules autonomes. De nombreuses études de ce type ont déjà été menées
dans le cadre des méthodes particulaires et pourraient servir de base à l’intégration du BPC dans une
commande de type MPC. Les méthodes d’optimisation particulaire sont également capables de traiter
des problèmes de dynamique incertaine (ex: modèles hybrides, modèles à sauts Markoviens [Bla+10]).
L’extension du BPC à de telles applications est un axe important pour de futures recherches.
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En conclusion, les algorithmes d’estimation et de guidage développés dans cette thèse permettent
de réduire significativement le coût de calcul par rapport aux approches précédentes. L’utilisation des
mixtures de noyaux bornés par des boites permet de développer des algorithmes d’estimation et de
commande versatiles, efficaces et robustes, pouvant être embarqués sur des engins aux performances de
calcul limitées, ce qui bénéficiera au domaine aérospatial, et plus généralement à la robotique autonome.
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