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Abstrat

This work presents numerial analysis of ontatless eddy urrent �owmetering methods

inluding phase-shift and transient eddy urrent tehniques. Simple 2D and axisymmetri

theoretial models are onsidered where the �ow is approximated by a solid onduting

medium in the presene of a time varying magneti �eld. A 3D model is presented whih

has been developed for the further improvement of these �owmetering tehniques. The

3D model is designed to inorporate arbitrary exiting oils, in ontrast to the �xed oils

of the 2D models. The 3D model presented is veri�ed against the previous 2D models.

The onept of a resaled phase shift �owmeter, an improved phase shift �owmeter

with redued sensitivity to the variation of eletrial ondutivity of the liquid metals, is

presented. This improved design inorporates the medium-indued phase shift between

the sending and reeiving oils to the measurement sheme, whilst the original design

utilises only the phase shift indued by the �ow between reeiving oils. We show that the

e�et of ondutivity to the �ow-indued phase shift an be greatly redued by resaling

with the medium-indued phase shift. Two resalings are found: at lower a frequenies of

the applied �eld resaling of the �ow-indued phase shift with the square of the medium-

indued phase shift e�etively redues the e�et of ondutivity in the former. At higher

a frequenies, the same is ahieved by resaling the �ow-indued phase shift diretly

with the medium-indued phase shift.

Transient eddy urrent �owmeters operate by traking eddy-urrent markers exited

in the onduting �ow by magneti �eld pulses. The veloity is measured by traking

zero rossing points, spatial extrema or temporal extrema of the eletromotive fore

indued by the eddy urrents. It is found that temporal extrema of emf experiene a

time delay whih depends on the ondutivity of the medium and an be eliminated

by taking the di�erene of multiple-oil measurements. Zero rossing points and spatial

extrema travel synhronously with the medium. It is pointed out that symmetry of the

system is essential to the operation of transient eddy urrent �owmeters. Asymmetry of

a few perent in the eddy urrent distribution yields a drift in the detetion point with

a veloity orresponding to the magneti Reynolds number Rm = 0.1. This means that

a more aurate symmetri adjustment or alibration may be required for the transient

eddy urrent tehnique to be reliable at lower veloities (Rm . 1).

The results of this study may be useful for designing next generation phase-shift and

transient eddy-urrent �owmeters with higher auray and inreased robustness to the

variations of the eletrial ondutivity of liquid metal, whih may be required in some

metallurgial and other appliations.
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1 Introdution

The measurement of liquid metal �ows in an aurate and reliable way is important to

many metallurgial proesses, suh as dosing and asting, and also to the nulear industry

where molten metals are used as oolants for advaned reators. There are many prob-

lems with the measurement of liquid metal �ows using traditional �owmeters, inluding

indution �owmeters, due to the problems assoiated with liquid metals suh as hemial

aggressiveness or high temperatures whih an use orrosion and other ontat problems.

To solve the problems of ontat with liquid metals ontatless approahes have been

developed for liquid metal �ow measurement. Indution �owmeters have been made

ontatless by using apaitively-oupled eletrodes [20, 27℄. Most ontatless eletro-

magneti �owmeters now operate based on e�ets related to the eddy urrents, whih are

the loops of eletrial urrent indued within the onduting �ow by an applied magneti

�eld. Both the time variation of the magneti �eld or the movement of the ondutive

media within a stationary �eld an ause these eddy urrents. These eddy urrents, by

Lenz's law, will indue a magneti �eld whih will oppose the hanges to the external

�eld. The e�et of this �eld an be measured outside of the �ow thus avoiding the need

for eletrial ontat with the liquid metal.

An issue whih typially arises when taking measurements based on this indued

magneti �eld is the way in with veloity appears in the measurements. The veloity

measurement that an be taken of the �ow generally depend on the ondutivity, as

the value whih is measured is determined by the produt of ondutivity and veloity

and not by the �ow veloity. System whih measure the magneti Reynolds number

require alibration depending on the ondutivity. This leads to another problem based

on the thermal variation of ondutivity. The main objetive of this work is to identify

measurement systems whih are less a�eted by the ondutivity of the liquid metal �ow.

This thesis is split into 6 hapters. Following this introdution is a review of the

development of liquid metal �ow measurement, with speial fous on the phase shift

and transient eddy urrent �owmeters, this is aompanied by further disussion on the

problems assoiated with liquid metal �ow measurement. In hapter 3 the underlying

equations whih are used to develop the models presented later are introdued and dis-

ussed alongside disussion of boundary onditions typially found in the modelling of

�ows inluding those whih will be used in this work. Chapters 4 and 5 introdue and im-

plement two simple 2D models whih leads to reommendations on measurement systems

with redued dependene on ondutivity. Chapter 4 will fous of further development of

the phase shift �owmeter approah whilst hapter 5 will fous on the pulsed �eld, or tran-

sient eddy urrent �owmeter. Both hapters inlude some extra material relating to the

optimisation or sensitivities of the designs, with the important onsideration of symmetry

appearing in the latter hapter. Chapter 6 Introdues a further, fully three dimensional,
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model whih is designed to further investigate these optimisations, or sensitivities, by

allowing more omplete desriptions of the wire loops represented in the earlier models.

The model presented in this hapter is a basis for further work, and ould be used to

further develop the ideas in the previous hapters. Finally a summary of the onlusions

whih were developed throughout the work is given by hapter 7.
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2 Literature Review

In this setion a historial bakground of the development of eletromagneti �owmeters

for liquid metals, from the advent of eletromagneti �owmetering, is reviewed. Speial

attention is given to eddy urrent phase shift and pulsed �eld approahes whih are

developed later in this work. A review of other urrent developments in liquid metal

�owmetering is given next. The setion ends with a disussion of the general problems

assoiated with the �owmetering of liquid metals.

2.1 History of eletromagneti �owmeters for liquid metals

The onept of eletomagneti �ow measurement dates from Faraday's time. The basi

priniples are doumented from this time, for example in Faraday's own experimental

researhes in eletriity [14℄ originally published in 1832. In this histori work the onept

of magneti indution is well de�ned. Faraday is known to have attempted to take an

eletromagneti �ow measurement of the River Thames. Faraday's experiment onsisted

of measuring the voltage indued between a pair of eletrodes inserted either side of the

rivers �ow. The fundamental idea being that the ondutive �ow of the River in the

presene of the Earth's magneti �eld will indue a voltage aross the �ow, between the

two eletrodes. In an idealised model the magnitude of this voltage will be proportional to

the �ow rate. This type of �owmeter has beome the standard eletromagneti �owmeter,

generally referred to as an indution �owmeter.

There appears to be little development in the �eld from the 1830s until a novel ap-

pliation of the indution �owmeter was patented in 1917 [36℄. The devie spei�ed in

the patent measures the veloity of a ship relative to the body of water it is upon. The

measurement is taken using an outboard indution �owmeter, measuring how fast the

water is �owing in the ships frame of referene. Publiations from the 1930s start to

introdue the use of indution �owmeters on arti�ial �ows. The publiations from the

early 1930s appear to be the �rst whih onsider �ows other than water. For example the

experiments of Williams with opper sulphate[46℄ whih also not only suggests a liquid

metal �ow, in the form or merury, as a means to redue sensitivity to spurious e�ets but

also reognises the potential downfall that eletrodes introdued into the liquid an ause

a disturbane to the �ow. It was around this time that publiations for the appliation

of eletromagneti �owmeters for blood �ow measurement start, for example the Faraday

type indution �owmeter was employed in [22℄. In this work Kolin reognises that the

eletromagneti �owmeter has the advantage of providing instantaneous results.

With the advent of nulear reators the need for liquid metal systems developed,

for example the sodium-potassium alloy ooled Dounreay Fast Reator whih started

operation in 1959 [8℄. The development of ontrol systems for these fast reators required

aurate measurement of of the liquid metal oolants and as suh �ow meters for liquid
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metals beame a topi of interest and remained so for many years with investigations

ontinuing 20 years later [3℄.

Today there is still ative development in the �owmetering of liquid metals for nulear

ontrol appliations. An example of urrent study of liquid metal �ows is given in [6℄, in

whih the urrent state of the study of ooling blankets for fusion reators is outlined.

It is stated in this work that for reliable blanket designs �ow distributions will need to

be on�rmed by experimental data, showing the need for liquid metal �ow measurement

in researh appliations. For the new generations of fast breeder reators, the feasibility

of eddy urrent �owmeters has been shown both numerially through simulation and

experimentally in the Phenix reator [39℄. And more reently the appliation of eddy

urrent �owmeters to detet air pokets in oolants of the next generation of fast breeder

reators has been presented [25℄. This shows the �exibility of some liquid metal �ow

measurement tehniques by utilising a �owmeter as a method for deteting the existene

of a multi phase �ow.

2.1.1 Eddy Current Flowmeters

The development of eddy urrent �owmeters for liquid metals followed the advent of

�owmetering for liquid metals in the 1950s. The use of eddy urrent, or indued �eld,

�owmeters whih measure the the �ow-indued perturbation of an externally applied

magneti �eld an be found in a patent for 1948 [26℄. The devie presented has a sensor

within a streamlined apsule submerged within the �ow, the sensor onsists of a series

of sending and reeiving oils. The sending oils generate a magneti �eld whih due to

eddy urrents will be adveted with the �ow and the displaement of this �eld leads to

indued voltages in the reeiving oils.

The �rst appearane of utilising a phase shift for �ow measurement appears to ome

from advanes in blood �ow measurement [29℄, where the phase shift is indued by imper-

fetions in onstrution of the �owmeter . Further use of the indued magneti �eld for

liquid metal �ow measurement an be seen in[9℄where a sensor is immersed in a apsule

similar to that of Lehde and Lang's 1948 patent. The signi�ane of this paper to this

work is the suggestion that phase measurements taken along side magnitude measure-

ments an be used to determine �ow veloity independently of ondutivity.

A design of an eddy urrent �owmeter whih moved from the submerged apsule an

be found in [45℄ where the �ow passes through oils. The oaxial oils are introdued so

that the �uid passes through the region with the strongest magneti �eld. This paper

also highlights a short falling of the measurement tehnique whih is the dependene

of the measurement sheme on the temperature, or eletrial ondutivity, of the �uid.

Further work on eddy urrent �owmeters an be seen in [17℄ whih presents the idea of

the arrangements of external sending and reeiving oils being utilised suh that only

7



the signal indued by the �ow is measured and not any urrents indued diretly by

the applied �eld. The paper suggests that low frequeny measurements, by penetrating

the medium well, have an averaging e�et on the �ow pro�le whih ould provide a

measure of volumetri �ow rate. This idea of optimising the arrangement of eletrodes in

a ontatless measurement sheme depending on the nature of the applied �eld is further

disussed in [20℄, however in this paper this idea is applied to a transverse exiting �eld.

Consideration to eddy urrent �owmeters is given in Sherli�s text [35℄ under the name

of the indued �eld �owmeter and the problem of ondutivity dependene is disussed;

it is suggested that empirial alibration may be unavoidable. Many novel uses of the

indued �eld have been developed suh as �ow tomography [38℄ and appliations to

multiphase �ow [7℄, whih appears more reently in [25℄, were published in the early

2000s. The re-imagination of a fore deteting indued �eld �owmeter under the new

name of Lorentz fore veloimetry [41℄ seems to have heralded a resurgene in the topi

of ontatless �ow measurement.

The onept of a phase shift �owmeter was introdued in [31℄. The phase shift �ow-

meter operates on the priniple that the onduting �ow disturbs not only the amplitude

but also the phase distribution of the alternating applied �eld. This tehnique has the

advantage of being robust to many disturbanes due to the phase measurements being

a ratio of �eld strengths and not absolute values, however the problem of ondutivity

variation still exists. The robustness of the phase shift �owmeter to external disturbanes

suh as eletromagneti disturbane and noise has been demonstrated in [5℄. A reent

experimental investigation into measurements of liquid sodium loops utilised a phase shift

�owmeter whih was submerged in a apsule [23℄. This paper also shows the sensitiv-

ity of the devie to physial imperfetions, whih an be addressed to some extent by

alibration, and the problem of thermal variation of ondutivity.

2.1.2 Pulsed Field Flowmeters

The idea of modifying the design of an indution �owmeter to replae the harmonially

alternating applied �eld with a pulsed �eld approah is proposed in [37℄ where it is

applied to weakly onduing �ows, spei�ally referring to blood �ow measurements .

The square-wave approah utilised in this paper was suggested as a ompromise between

the DC approah, where polarisation of the eletrodes and environmental eletrial noise

are problemati, and an AC approah, where a transformer e�et an generate spurious

signals.

The appliation of a pulsed magneti �eld to a strongly onduting �ow, suh as a

liquid metal �ow was proposed in [47℄ whih again used a transverse �eld. In this work

the authors reognise the potential of a pulsed �eld approah in removing ondutivity

from the measurement sheme. The pulsed approah appears again in a ontatless way
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w e

dependene of the measurement sheme on ondutivity, and its thermal variation. The

paper reognises that the removal of ondutivity is a matter for either alibration or

additional devies.

The use of a pulsed �eld with liquid metals in a ontatless approah is omitted from

the disussions in Sherli�'s omprehensive text [35℄. This is likely due to the majority

of works disussed in this setion being published after the books �rst printing thus the

onept of a pulsed �eld approah not being well formed at the time. The pulsed �eld

approah has reappeared relatively reently under the guise of transient eddy urrent

�owmetering with both external oils [18℄ and with oils in an immersed apsule [24℄,

both designs operate by exiting and then traking transient eddy urrent markers as

they are arried along by the moving ondutor.

2.2 Some Reent Development in Liquid Metal Flow Measure-

ment

In addition to the eddy urrent and pulsed �eld �owmeters disussed above there are two

other popular designs of ontatless �ow measurement for liquid metal appliations. The

two methods, whih both appear in Sherli�'s well known text [35℄, are rotary �owmeters

and the Lorentz fore �owmeter. The Lorentz fore �owmeter originally appeared under

the name of fore �owmeter the addition of Lorentz to the name was adopted more

reently.

The rotary �owmeter an be found in a patent [34℄ from around the time liquid metal

9
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�ow measurement beame of interest. The patent presents a design with two �ywheels in

a spool type arrangement as shown in �gure 1. The two wheels have magnets attahed to

their inner faes with alternating orientations around the wheel. The wheels are attahed

to an axle in suh a way that opposite polarities fae eah other between the two wheels.

The patent laims that speed of rotation to be a measure of �uid �ow rate. The exat

pattern of magnets varies between di�erent works however the general rule of the layout

given in the patent above is maintained. This layout has the diretion the poles of the

magnets alternating around the axis of rotation. Where multiple disks are utilised, with

the �uid �owing between the disks, the magnets are oriented so that opposite poles

fae eah other aross the �ow. The proess of modelling these rotary �owmeters was

approahed in [4℄ whih inlude single disk designs. This paper also gives some disussion

towards the problem of frition in the bearing and the advantages of it being negligible

relative to the torque ating on the measurement system. The advantages of this design

inluding both a redued dependene on ondutivity and the ability to use eletrially

onduting pipe walls.

A novel rotary �owmeter design where the �ywheel is replaed by a ylindrial magnet

whih is magnetized perpendiularly to its axis is presented in [30, 32℄. The magnet is

allowed to freely rotate around this axle upon whih the magnet is mounted. The single

magnet design has the advantage of, in the limit of negligible frition in the bearing,

having a ontatless measurement tehnique whih is not dependent on ondutivity. The

rotary �owmeter is not a perfet solution to the problem of liquid metal �ow measurement

due to the slow response time to hanges in the �ow whih is due to inertia in the

�ywheel, also a problem whih is more pronouned in rotary �owmeters is the problem

of mehanial wear of moving parts.

The fore �owmeter has beome a topi of interest with reent developments being

arried out under the name Lorentz fore veloimetry [41, 42℄. Lorentz fore veloimetry

is a ontatless �owmetering tehnique whih operates by measuring the Lorentz fore

exerted on a magnet, or oil, by an indued magneti �eld. A typial setup is shown in

�gure 2. This measurement system omes with the problems of other ontatless teh-

niques, spei�ally the problem of ondutivity, with the Lorentz fore being proportional

to the Magneti Reynolds number and not just the veloity. One of the major issues with

the use of the Lorentz fore for measurement is that it is weak in relationship to the

applied �eld. In spite of this it seems reasonable to assume that attempting to measure

lower ondutivity �uids will lead to weaker indued �elds and therefore weaker fores

to measure. Despite this limitation there has been developments showing that the teh-

nique an be applied to �uids with ondutivity many orders of magnitude lower that

typial liquid metals [44℄. The paper demonstrates the method for ondutivities of or-

der 100 S/m and suggests for pratial appliations ondutivities of magnitude 10−3
S/m,

and in laboratory appliations 10−6
S/m, ould be measured for omparison typial liquid
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The Lorentz fore veloimetry approah has been applied to �ow tomography [19℄

where a series of loalised measurements were shown to detet two large jets in the �ow

pro�le, whih were introdued by an upstream obstrution. More reently a novel method

utilising time of �ight measurements with Lorentz fore �owmeters had been presented as

a method to remove the ondutivity dependene from the measurements [11, 12℄. This

is ahieved by the use of a pair of Lorentz fore veloimetry and a probe. The probe

reates vorties in the �ow whih are deteted by both the �owmeters, the time of �ight

of the vortex gives a measurement of the veloity of the �uid.

2.3 The Di�ulties of Liquid Metal Flow Measurement

The measurement of �ow rates of liquid metals presents some hallenges whih are not

present when dealing with other media. The �rst major di�erene whih is onsidered

here is that the ondutivity of liquid metals is typially signi�antly higher than that

of non metalli �uids. This higher ondutivity leads to di�erenes in how eletromag-

neti �owmeters are designed for liquid metals. The higher ondutivity leads to some

eletromagneti e�ets beoming more signi�ant. For example, when a high frequeny

alternating magneti �eld is used the skin e�et an prevent the �eld from e�etively

penetrating the �uid [2℄. The applied �eld will introdue eddy urrents within the �ow
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these eddy urrents an ause a distortion, or dampening, of the applied magneti �eld

[35℄. Conversely the in�uene of the magneti �eld on the body of the �ow is also muh

higher with the inreased ondutivity typial of liquid metals this is likely to ause a

pressure drop aross the �owmeter and may disrupt the �ow pro�le. The skin e�et

e�et an be negleted with low enough magneti Reynolds numbers, typially a value of

Rm ≪ 1 where indutive e�ets are outweighed by magneti di�usion.

In non-metalli �uid �ow the use of alternating magneti �elds has some advantages.

For example DC �elds an lead to temperature gradients between the eletrodes ausing

thermoeletri e�ets whih an adversely a�et the �owmeters performane. With an

alternating �eld the thermoeletri potential will be averaged out. They are also not a

onern when onsidering liquid metals as the higher thermal ondutivity will redue

temperature gradients.

There are physial e�ets whih our with liquid metal �ows and must be onsidered

when designing �ow meters. These e�ets inlude the temperature of the �ow, whih

for an appliation suh as nulear ooling is likely to be high whih in turn an lead to

inreased mehanial wear on omponents [13℄. This is the main reason more traditional

measurement systems suh as di�erential pressure �owmeters and Faraday type indution

�owmeters are unsuited to liquid metal appliations. Another property of many liquid

metals is hemial volatility. Great are has to be given to some liquid metals, as for

example, sodium is highly oxidising and an reat explosively with water. Gallium rapidly

weakens aluminium with the apillary e�et leading to damage far from the interfae

of the two materials [21℄. Traditional measurement tehniques, suh as partile image

veloimetry [15℄ and optial Doppler tomography [43, 33℄, are not possible with liquid

metal �ow due to the materials opaity.

Many of the problems above are mitigated by using a ontatless approah whih,

by using low frequeny applied �elds, an be designed to avoid problems suh as the

skin e�et and magneti braking of the �ow. However, there is urrently no general

solution for suh a �owmeter. A signi�ant reason for this is that most ontatless �ow-

meter measurements rely on indued voltages whih are dependent on both the veloity

and ondutivity of the �ow. Many �owmeter designs mitigate the dependene on on-

dutivity by alibration. However the thermal variation of ondutivity an disrupt this

alibration. This thermal variation of the ondutivity of liquid metals an be harater-

ised by the Wiedemann�Franz law ,

κ
σ
= LT , where κ is the thermal ondutivity, σ is

the eletrial ondutivity, L is the Lorentz number (2.44 × 10−8WΩK−2
) and T is the

temperature. As an example of typial values the eletrial ondutivity of bismuth for

industrial appliations for the temperature range 545− 1423K an be found in [16℄. The

ondutivity of bismuth at 600K is given as 7.56× 105 and falls to 6.04× 105 at 1200K.
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3 Fundamental Equations

3.1 Equations Governing Eletrodynamis

Consider a partile arrying a harge q moving with a veloity ~v. There are three ele-

tromagneti fores whih an at upon the partile,

~F = q ~Es + q ~Ei + q~v × ~B, (1)

where

~Es is the eletrostati �eld and

~Ei is the eletri �eld indued by hanges in the

magneti �eld. The �rst term relates to the eletrostati �eld represents the eletrostati,

or Coulomb, fore. This fore is the mutual attrations, or repulsion, between eletri

harges. The term relating to the indued eletri �eld is spei� to the presene of a

magneti �eld with varies with time. The �nal term is aused by of the motion of a

harge relative to a magneti �eld, whih is alled the Lorentz fore.

At this point to further onsider the eletrostati �eld two laws shall be introdued,

namely Coulomb's law and Gauss' law. Firstly, Gauss' law states that the eletri �ux

through a hypothetial losed surfae is equal to the net eletri harge within that losed

surfae divided by ǫo, the permittivity of free spae.

~∇ · ~Es =
ρ

ǫ0
,

where ρ denotes the harge density. Coulomb's law states that the magnitude of eletro-

stati attration fores between two point harges is inversely proportional to the square

of the distane between them and diretly proportional to the produt of the magnitudes

of the harges. A onsequene of this is that the stati eletri �eld is irrotational

~∇× ~ES = 0.

As the �eld is irrotational it an be de�ned as the gradient of a potential,

~Es = −~∇φ,

where φ is the eletrostati potential.

The indued �eld is governed by Faraday's law of indution, whih will be generalised

later in the Maxwell-Faraday equation;

~∇× ~Ei = −∂ ~B

∂t
. (2)

It is also worth notie that the indued �eld is divergene free as there are no soures

within it giving

~∇ · ~Ei = 0.

The total eletri �eld an be de�ned as the sum of the eletri �elds,

~E = ~Es + ~Ei
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and has the properties:

~∇ · ~E =
ρ

ǫ0
(3)

~∇× ~E = −∂ ~B

∂t

We an now simplify equation (1), by using the total eletri �eld, giving the Lorentz

fore law below

~F = q( ~E + ~v × ~B) (4)

where

~F is the fore ating upon the harge q. The Lorentz fore law, when ombined

with the Maxwell equations, gives the foundations of lassial eletromagnetism.

3.2 The Maxwell Equations

The Maxwell equations are a set of partial di�erential equations underlying lassial

eletromagnetism. The equations onsist of Gauss' law, Gauss' law for magnetism, the

Maxwell-Farday equation and Ampère's iruital law.

3.2.1 Gauss' Law

Gauss' law has been introdued above and relates the distribution of eletri harges to

the resulting eletri �eld. The law equates the eletri �ux,

~ΦE , through a losed surfae

S to the to total harge Q ontained by the volume V bounded by that surfae divided

the permittivity of free spae,

~ΦE =
Q

ǫ0
. (5)

The eletri �ux an be expressed as the surfae integral of the eletri �eld,

~ΦE =

‹

S

~E · d~S (6)

where d~S represents the in�nitesimal area whih is an element of the surfae S. Divergene

theorem, often referred to a Gauss' theorem relates the �ux out of a region to the the

sum of all sinks and soures within the region. This is ahieved by equating the �ux

of a vetor �eld through a losed surfae to the divergene of said �eld over the region

enlosed by the surfae, in the ase of

~E this gives

‹

S

~E · d~S =

˚

V

~∇ · ~EdV.
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Substituting the volume integral for the eletri �ux in (5) gives us Gauss' law in the

following form

˚

V

(~∇ · ~E)dV =
Q

ǫ0
,

whih an be modi�ed to the form used earlier in equation (3) by moving to harge

density ρ whih gives the harge when integrated over the volume Q =
˝

V
ρdV .

˚

V

(~∇ · ~E)dV =
1

ǫ0

˚

V

ρdV

the integrands an now be equated giving the di�erential form of Gauss' law whih relates

the divergene of the eletri �eld to the total harge density

~∇ · ~E =
ρ

ǫ0
. (7)

3.2.2 Gauss' Law for Magnetism

Gauss' law for magnetism simply states that a magneti �eld must be divergene free

~∇ · ~B = 0. (8)

This ondition states that a magneti �eld has no sinks or soures, that is to say that

�eld lines form losed loops. This is equivalent to stating that a magneti �eld is a

solenoidal vetor �eld. A more physial interpretation of this is that there are no magneti

monopoles, thus no soures, and a in�nitesimal element generating a magneti �eld should

be represented as a dipole, analogous to how magnets always have a north and a south

pole.

3.2.3 Faraday's Law (the Maxwell-Faraday equation)

Faraday's law, or more spei�ally Faraday's law of indution, states that the indued

eletromotive fore in a losed iruit equals the negative of the rate of hange over time

of the magneti �ux enlosed by the iruit. The magneti �ux Φ is alulated in a similar

way to the eletri �ux in equation (6). However as we will be onsidering the rate of

hange over time of the �ux we will speify the time dependene of both the magneti

�eld and the surfae. We may also note that the integral is no longer over a losed surfae,

~Φ =

¨

S(t)

~B(~r, t) · d~S

where ~r is the position vetor. The eletromotive fore (e.m.f.) aused by the hange in

�ux an be de�ned by

E = −dΦ

dt
. (9)
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aA generalisation of Faraday's law is provided by the Maxwell-Faraday equation, whih

was introdued in equation (2). It states that a time-varying magneti �eld will always

aompany a spatially varying eletri �eld and vie versa. It is worth notiing that the

di�erential form of the Maxwell-Faraday equation,

~∇× ~E = −∂ ~B

∂t
,

is a weaker de�nition than the integral form as it is limited to the eletri �eld indued by

a time-varying magneti �eld as laimed in [10℄. The integral form gives the eletromotive

fore whih is generated in a ondutor by either a time varying magneti �eld or the

motion of the ondutor relative to the magneti �eld,

˛

∂S

~El · d~l = −
ˆ

S

∂ ~B

∂t
· d~S (10)

where ∂S is the losed ontour bounding the surfae S and d~l are the in�nitesimal line

elements omprising ∂S. ~El refers to the e�etive eletri �eld for eah line element whih

is equivalent to the �eld measured in the frame of referene moving with the line element

d~l and an be de�ned as

~El = ~E+~ul× ~B where ~ul is the veloity of the line element. The

di�erential form an be derived from the intergral form by employing the Kelvin-Stokes

theorem, whih equates the integral over a surfae of the url of a vetor �eld to the line

integral of the same �eld around the boundary of the surfae. Applied to the eletrostati

�eld onsidered here the Kelvin-Stokes theorem yields

˛

∂S

~E · d~l =
˛

S

~∇× ~E · d~S (11)

Here we have returned to the simpli�ed ase where the eletromotive fore is the result

of a time dependent magneti �eld and the loop is not in motion. With this assumption

ombining equations (10) and (11) yields

˛

S

(~∇× ~E) · d~S = −
ˆ

S

∂ ~B

∂t
· d~S.

Equating the integrands yields the di�erential form of the Maxwell Faraday given in

equation (2), thus showing that as desribed above the di�erential form is weaker than

the integral form as it requires more assumptions and thus is valid in less situations.
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3.2.4 Ampère's Ciruital Law

Ampère's iruital law equates the line integral of a magneti �eld around a losed loop

to the urrent �owing around the loop. The integral form an be written as

˛

∂S

~B · d~l = µ0

¨

S

~j · d~S (12)

where

~j is the urrent density and µ0 is the permeability of free spae. As with the

Maxwell-Faraday equation the Kelvin-Stokes theorem an be used to move to the dif-

ferential form. Applying the Kelvin-Stokes theorem to the magneti �eld instead of the

eletrostati �eld yields

˛

∂S

~B · d~l =
˛

S

(~∇× ~B) · d~S,

this an be substituted into equation (12) and then the integrands an be equated yielding

the di�erential form of Ampère's iruital Law

~∇× ~B = µ0
~j. (13)

We now onsider the limitations of this law in the form presented above. In this form

the law is aurate only in an magnetostati environment, whih is to say that urrents

in the system do not hange with time. This an be shown by taking the divergene of

(13)

~∇ · (~∇× ~B) = µ0
~∇ ·~j

whih as the divergene of a url is identially zero,

~∇ · (~∇× ~B) = 0

implies that the urrent density is also divergene free,

~∇ ·~j = 0.

While this is possible it is not the general ase, this an be seen by onsidering the

ontinuity equation for eletomagneti harge

~∇ ·~j = −∂ρ

∂t

where ρ is the harge density. This ontinuity equation is more fundamental and is based

on harge onservation, in physial terms it means that a harge leaving a di�erential

volume leads to a redution in the harge ontained in the volume, thus a negative rate

of hange for the harge density. It an be seen that Ampère's iruital law as stated above
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agrees with harge onservation when there is a onstant harge density, and thus the

magnetostati ondition for the law is satis�ed. A modi�ation to Ampère's iruital law

known as Maxwell's orretion provides an extension of the law beyond the magnetostati

environment. The law with the extension, in di�erential form, beomes

~∇× ~B = µ0
~j + µ0ǫ0

∂ ~E

∂t
. (14)

The addition term introdued by Maxwell's orretion, ǫ0
∂ ~E
∂t
, is alled the displaement

urrent and by again taking the divergene,

~∇ · (~∇× ~B) = µ0
~∇ · (~j + ǫ0

∂ ~E

∂t
),

we obtain

~∇ ·~j = −ǫ0 ~∇ · ∂
~E

∂t

applying Gauss's law given in equation (7) whih equates the divergene of the eletri

�eld to the harge density divided by the permittivity of free spae yields

~∇ ·~j = −ǫ0 ~∇ · ∂
~E

∂t
= −∂ρ

∂t

thus showing Maxwell's orretion satis�es the ontinuity equation for eletromagneti

harge.

3.2.5 Ohm's Law

Ohm's Law, whih states that in a ondutor the urrent between two points is propor-

tional to the voltage aross the two points with the onstant of proportionality being the

reiproal of the eletrial resistane of the ondutor. This an be generalised to a ur-

rent density being proportional to the eletri �eld, with the onstant of proportionality

being the ondutivity of the material,

~j = σ ~E.

When the ondutor is travelling within a magneti �eld the Lorentz fore term must be

added to aount for the motion indued urrents in the harge arrying medium. Giving

the form of Ohm's Law whih will be used in this work

~j = σ( ~E + ~v × ~B) (15)

this form is ommonly referred to as Ohm's law with magneti e�ets.
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3.2.6 The Vetor Potential

Gauss's Law for magnetism shows that magneti �eld are solenoidal �elds and thus an

be de�ned by a vetor potential. A vetor potential is de�ned as a vetor �eld whose url

is a given vetor �eld, i.e. the magneti �eld, in our ase

~∇× ~A = ~B,

where

~A is the magneti vetor potential. There is also some freedom in the de�nition of

the vetor potential, this omes about as it is de�ned by its url. Consider the Maxwell-

Faraday equation in terms of the vetor potential

~∇× ~E = −~∇× ∂ ~A

∂t

whih as the url of a gradient is zero leads to many solutions,

~E = −∂ ~A

∂t
− ~∇φ (16)

where φ is the salar potential, whih is a ontinuously di�erentiable salar funtion.

The salar potential an be further de�ned as φ → φ + f(t) where f is an arbitrary

ontinuously di�erentiable salar funtion. This property is referred to as gauge freedom

or gauge invariane. Later in this work the gauge invariane of the vetor potential �eld

is exploited to simplify alulations (see equation (24) and following).

3.3 Boundary Conditions

Boundary onditions are essential to ompletely de�ne a problem. The boundaries whih

are typially onsidered an inlude the hypothetial surfaes where �uid enters or leaves

the system and interfaes between di�erent materials. The interfaes between di�erent

materials will typially represent parts of the model suh as pipe walls where there are

materials adjaent with di�erent properties, suh as veloity and eletrial ondutivity.

Whilst in the models presented in this work a very simpli�ed onsideration is given

here to some important potential boundary onditions, whih ould be added to future

developments of the models.

This setion will disuss some important boundary onditions. Firstly, the eletro-

magneti boundaries at the pipe walls will be presented. Following this the interfaial

onditions whih will be used later in this work are introdued. Finally, some geometri

boundaries are disussed, inluding symmetri and periodi onditions.

In the models used in this work, the boundaries are relatively simple, the only physial

boundaries that exist are between free spae and the onduting medium. There are also
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boundaries aused by the alulations whih tie together di�erent regions of behaviours.

3.3.1 Eletromagneti Boundary Conditions

There are two formulations of eletromagnetism, ( ~E, ~B) the eletri and magneti �elds

and ( ~A, ϕ) the magneti vetor potential and magneti salar potential. Both of these

formulations are rigorous and omplete. This work is based on the ( ~A, ϕ) formulation

however the

~B �eld is also onsidered in some ases. As suh boundary onditions are

only required for

~A and ϕ are needed. The boundary onditions on A and ϕ whih are

utilised in this work are derived from the ontinuity of

~A aross an interfae and also its

non-tangental derivatives at the interfae.

The nature of the pipe walls is also important in modelling magneti �elds. In the

relatively simple ase of non-onduting walls there an be no urrent �ow between the

�uid and the wall. Hene the omponent of the urrent normal to the wall must be zero

~j · ~n = 0. (17)

The ondition for the eletrostati potential is derived from equations 15 & 16 whih

spei�es the derivative normal to the boundary to be,

∂φ

∂n
= ∂tAn + ~n · ~r × ~B = (∂tAn + ~B · ~n× ~r)|S. (18)

In the ase of onduting walls, with a non-zero eletrial ondutivity σw, there are two

boundaries to onsider: the wetted surfae and the dry surfae of the wall. Inside the

onduting wall we will have

~j = −σw
~∇φw

where φw is the eletro stati potential within the wall. As the wall is at rest the Poisson

equation

~∇2φ = ~∇ · (~v × ~B) (19)

whih an be derived by taking the divergene of Ohms Law (15), yields

~∇2φw = 0 (20)

in the pipe wall. The dry surfae ats in the same way as the non onduing walls with

being subjet to equations (17) and (18). The boundary at the wetted surfae is subjet

to the the two following onditions. Firstly, the potential di�erene normal to and aross

the boundary gives

φ− φw = σσw
∂φ

∂~n

and seondly the ontinuity of the urrent normal to and aross the boundary yields
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σ
∂φ

∂~n
= σw

∂φw

∂~n
.

These two onditions are su�ient to solve equations (19) and (20) aross the boundary.

δl

ds
s

Figure 3: Shemati of the region,s, whih appears at the pipe wall and is disussed in

the ontext of the jump ondition of the magneti �eld

The jump ondition for the tangental eletri �eld will now be spei�ed. The fomula-

tion utilises equation 11 and equation 10 whih when ombined yield

˛

S

~∇× ~E · d~s =
˛

ds

~E · d~l =
˛

s

∂ ~B

∂t
· d~S → 0

as the length of the setion, shown in �gure 3, of surfae tends to zero, dl → 0 then

[ET ], the hange in the tangental omponent of the eleti �eld aross the surfae, is seen

to be zero.,

[ET ]dl = 0 ⇒ [ET ] = 0.

3.3.2 Interfaial Conditions

Interfaial onditions our between di�erent di�erent regions of the model, suh as at

the interfae between the onduting media and either a pipe wall or free spae. The

boundary onditions imposed at these interfaes ensure the ontinuity of the magneti

�eld omponents. The ondition is that the vetor potential of the magneti �eld must

be ontinuous aross the interfae;

( ~BI − ~BO) · ~n = 0
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where

~BI and
~BO are the vetor potentials either side of the boundary and ~n is the vetor

normal to the boundary.

3.3.3 Symmetry Conditions

Symmetry onditions are onditions imposed on an axis of symmetry. One suh boundary

is an axis boundary suh as that found at r = 0, in ylindrial oordinates, with an

azimuthally invariant model. In this ylindrial system the value at the axis must be

regular and uniquely de�ned for all angles θ. The solution to this is that the azimuthal

omponent must be equal to zero suh that is does not vary with θ. In 2D this an be

seen by imposing an odd funtion between the x and −x axis whih also ensured a zero

value at the axis.

In the axisymmetri ylindrial ase both the magneti �eld and veloity �eld require

zero valued normal omponents at the axis. However, the omponent of either �eld

along the r = 0 axis is not required to be zero valued. Symmetry boundary onditions

are typially used to redue the omputational requirement of a model by exploiting or

imposing symmetries in the �elds and the geometry.

3.3.4 Periodi Boundary Conditions

Another example of a geometry de�ning boundary is periodi boundary onditions these

again an redue omputational e�ort. Periodi onditions are de�ned by mathing �eld

values and derivatives at either end of the alulation domain along the axis where the

periodiity is present. Periodiity is present in the models later in this thesis however it

is not inluded by design and is imposed due to the use of Fourier transforms. The region

of interest is relatively far from the periodi boundary and the results of the models will

not signi�antly a�eted by their usage. Due to the semi-analyti nature of the models

presented in this work there is no requirement for a alulation domain to be spei�ed

and the �elds an be diretly alulated at the required loation.
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Figure 4: Shemati diagram for the model with the applied �eld taking the form of a

harmoni wave.

4 Resaled Phase Shift Flowmeter

The phase shift �owmeter as introdued in [31℄ has beome a industrially available meas-

urement method for liquid metal �ows. The problem of the thermal variation of ondut-

ivity leading to a measurement sheme whih is dependent not only on the �ow rate but

also on the temperature of the onduting medium has been disussed in setion 2.3. The

purpose of this hapter is to introdue a method whih will be demonstrated theoretially

to redue the ondutivity dependene of the measurement sheme. The idea behind the

method is that phase shifts an be indued not only due to the �ow of the medium but

also due to the presene of the onduting medium itself. This phase shift indued by the

presene of the medium will depend predominately on the ondutivity of the medium

and as suh will be used to resale the measured phase shift thus reduing the ondutiv-

ity dependene. This hapter is split into three setions. Firstly the derivation for a two

dimensional model for the phase shift �owmeter is presented, with a ouple of di�erent

exiting �elds. Seondly the results of this model are presented inluding investigating

both the resaling for the phase shift and some physial properties. The hapter will end

with a brief summary of the �ndings.

4.1 Derivation

The model onsidered in this hapter, whih is shown in �gure 4 onsists of a layer of

onduing media of width 2H in the presene of an imposed magneti �eld. The model

is presented in Cartesian oordinates, with axes x and y oriented along the length of the

onduting medium and aross its width respetively. The model will be onsidered with

2 exiting �elds. Firstly, the �eld is a standing harmoni wave applied from above the

layer as shown in �gure 4. The seond �eld is generated by a oil represented by a ouple

of straight wires oriented along the z axis with oppositely �owing alternating urrents.
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Figure 5: Shemati diagram for the model with the applied �eld generated by two

straight wires with oppositely travelling urrents.

The wires are loated a distane of h above the x axis with a distane of 2s between

them, as shown in �gure 5.

To derive the model we onsider a onduting medium, with eletrial ondutivity

σ, moving with veloity V in the x diretion, suh that ~v = ~exV . The exiting �eld, with

indution

~B, is alternating harmonially with angular frequeny ω.

The Maxwell-Faraday equation introdued in setion 3.2.3 gives the eletri �eld in-

dued in the onduting medium by the exiting �eld

~E = −∇Φ − ∂t ~A (21)

where

~A is the vetor potential of the magneti �eld, given by

~B = ∇× ~A, and where Φ

is the eletri potential.

Ohm's law gives the density of the eletri urrent in the moving medium,

~j = σ( ~E + ~v × ~B), (22)

where σ is the ondutivity of the medium. This an be presented in terms of the eletri

and vetor potentials as

~j = σ(−∇Φ− ∂tA + ~v ×∇× ~A) (23)

The gauge invariane of

~A is used to speify its divergene as

~∇ · ~A = −µ0σ(Φ− ~v · ~A)
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where µ0 is the vauum permeability. This de�nes the eletri potential as

Φ = ~v · ~A− 1

µ0σ
∇ · ~A (24)

whih simpli�es the derivation of the advetion di�usion equation below.

Now the advetion di�usion equation an be derived, to do this we shall start with

Maxwell's equation

~j =
1

µ0
∇× ~B − ǫ0∂t ~E. (25)

For this model we will ignore the displaement urrent, whih is negligible. The frequeny

of the alternation of the magneti �eld is su�iently low. This leads to Ampere's law:

~j =
1

µ0
∇× ~B. (26)

To derive the advetion di�usion equation, Ohm's law in terms of potentials (23) and

Ampere's law (26) shall be equated leading to

σ(−∇Φ− ∂tA + ~v ×∇× ~A) =
1

µ0
∇× ~B. (27)

Introduing the de�nition of the salar potential from above, whih utilises the gauge

invariane of

~A, and taking its gradient we obtain

∇Φ = ∇(~v · ~A)− 1

µ0σ
∇(∇ · ~A)

whih expands to

∇(~v · ~A)− 1

µ0σ
(∇2 ~A +∇×∇× ~A)

where ∇×∇× ~A = ∇× ~B. Expanding the vetor dot produt ∇(~v · ~A) an be done using

the identity

∇(~v · ~A) = (~v · ∇) ~A+ ( ~A · ∇)~v + ~v × (∇× ~A) + ~A× (∇× ~v),

from whih the zero terms shall be removed. These zero terms are ( ~A · ∇)~v = 0 and

~A× (∇×~v) = 0 and an both be explained by to the solid body motion desribed above

by ~v = ~exV .

In the ase of a simple laminar �ow pro�le with a veloity ~vp whih has some y-

dependene suh that ~vp = ~exV (y) this simpli�ation beomes impossible as ( ~A·∇)~vp 6= 0.

If this laminar ase was onsidered the derivation from this point would di�er signi�antly.

It is likely that an analyti solution would no longer prove suitable and the �ow inside

the ondutive layer would need to be solved numerially.
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The gradient of the salar potential an now be given as

∇Φ = (~v · ∇) ~A+ ~v × (∇× ~A)− 1

µ0σ
(∇2 ~A +∇× ~B)

Substituting this into equation (27) yields

−(~v · ∇) ~A− ~v × (∇× ~A) +
1

µ0σ
∇2 ~A+

1

µ0σ
∇× ~B − ∂tA + ~v ×∇× ~A =

1

µ0σ
∇× ~B,

whih simply redues to

∂t ~A + (~v · ~∇) ~A =
1

µ0σ
∇2 ~A, (28)

whih is the advetion di�usion equation for the magneti vetor potential.

We onsider that the system is invariant in the z diretion. Beause of this we an

de�ne the �eld by a single omponent of the vetor potential

~A = ~ezA. This is beause
~B has only two omponents, whih are both perpendiular to ~ez. This an be shown by

inspeting the omponents of ∇× ~A = ~B. We an see that for

~A = ~ezA the �eld is given

by

~B = [∂yA,−∂xA, 0]. Applying this to equation (28) along side the de�nition ~v = ~exV

yields

∂tA+ V ∂xA =
1

µ0σ
∇2A, (29)

The boundary onditions in this system are required at the interfaes S between the

onduting layer and free spae, whih ours at y = ±H . The ontinuity of

~B aross this

boundary implies the ontinuity of the derivative of

~A. The ontinuity of

~A follows by

onsidering the �eld through a region on the surfae of the interfae, S, and the boundary

of this region δS gives

´

S
~BdS =

¸

δS
~A · dl shrinking the region S to an in�nitesimal

width shows the ontinuity of

~A is required by the regularity (non-singularity) of

~B. The

ontinuity of

~A and its derivatives leads to the following

[A]S = [(~n · ~∇)A]S = 0, (30)

where ~n is the unit normal to the boundary, and [f ]S the hange in f aross the

surfae S.

Using the half-thikness of the layerH as the length sale and µ0σH
2
and time sale we

introdue a ouple of key dimensionless parameters. Firstly a dimensionless a frequeny

ω̄ = µ0σωH
2, (31)

where ω is the frequeny of alternation of the applied magneti �eld. The dimensionless

frequeny is typially of order 0 for example ω̄ ∼ 1 for a �ow of liquid sodium with

26



σ = 8.3× 106 S/m in a layer of half width H ∼ 0.1m with an a frequeny

ω
2π

∼ 60Hz.

Seondly the magneti Reynolds number, whih represents a dimensionless veloity

and gives an estimate of the e�ets of the motion indued indution ompared with the

magneti di�usion,

Rm = µ0σV H (32)

Again we note that in this work a signi�ant feature of the Magneti Reynolds number

is that it depends not only on the veloity by also on the ondutivity of the medium.

Using these dimensionless parameters equation (29) an be presented in a dimension-

less form

∂tA+Rm∂xA = ∇2A.

4.1.1 Solution for Standing Magneti Wave

This derivation will be used for two de�nitions of the magneti �eld, �rstly we will onsider

a �eld produed by a standing wave, whih alternates harmonially. Following this a �eld

generated by a ouple straight wires is presented. Shemati plots whih show both of

these two �eld de�nitions are given in �gure 4.

We de�ne the applied �eld for the �rst ase, the harmoni standing wave, with vetor

potential amplitude

~ezA0(~r, t) = ~ezÂ0(y) cos(kx) cos(ωt),

where k is the wavenumber, or spatial frequeny, in the x diretion. Outside of the

ondutive layer, where σ = 0, equation (29) for the vetor potential redues to

d2Â0

dy2
− k2Â0 = 0, (33)

whih has the solution

Â0(y; k) = C0e
|k|(y−1),

whih will tend to in�nity as y tends to in�nity. This is will our outside of our domain

of interest and is a onsequene of the de�ninition of the standing harmoni �eld with no

de�ned soure. where the onstant C0 is given by

C0 = Â0(1; k),

whih spei�es the amplitude of the Fourier mode with wavenumber k of the external

magneti �eld at the upper interfae between the ondutive medium and free spae. The

external magneti �eld refers to the �eld in the absense of the ondutinve layer, and an

be generated by setting σ = 0 within the layer.
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The external magneti �eld in the form of a standing wave, an be represented by a

superposition of two oppositely travelling waves

A0(~r, t) =
1

2

(

A+
0 (~r, t) + A−

0 (~r, t)
)

,

where A±
0 (~r, t) = Â0(y) cos(ωt ± kx). We an now look for a solution in the mathing

form

A(~r, t) =
1

2

(

A+(~r, t) + A−(~r, t)
)

,

where A±(~r, t) = ℜ
(

Â(y;±k)ei(ωt±kx)
)

are oppositely travelling waves.

We shall now use equation (28) to generate an equation for the �eld within the on-

dutive medium. The equation will now by applied in spetral spae allowing the deriv-

atives to be more simply expressed. Reognising that (~v · ∇)Â = V ∂xÂ as ~v has only an

x omponent yields

µ0σ∂tA+ µ0σV ∂xA = ∂2
xA+ ∂2

yA.

Evaluating the derivatives in spetral spae gives

µ0σiωÂ+ µ0σV ikÂ = −k2Â+
d2

dy2
Â

and substituting in the de�nitions for ω̄ and Rm yields

d2

dy2
Â− (k2 + iω̄ + kRm)Â = 0

Within the ondutive medium, the equation for a travelling �eld an now be given as

d2Â/dy2 − κ2Â = 0, (34)

where

κ(k) =
√

k2 + i(ω̄ + kRm). (35)

The general solution to equation (34) whih is present in the layer an be written as

Â(y; k) = C2 sinh(κy) +D2 cosh(κy). (36)

Above the layer the solution is given by

Â(y; k) = Â0(y; k) + Â1(y; k), (37)

where Â0(y; k) = C0e
|k|(y−1)

and Â1(y; k) = C1e
−|k|(y−1)

represent the applied and indued

�elds, respetively.
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Below the layer the solution deaying as y → −∞ is given by

Â(y; k) = C3e
|k|(y−1)

(38)

At this point we have and four unknown onstants C1, C2, C3, D2 whih require four

equations to be determined. The boundary onditions for the ontinuity of A and its

derivative normal to the boundary aross the two interfaes between the layer and free

spae provide the information to solve the system. At the interfae above the layer, y = 1,

the ontinuity of Â is given by

C2 sinh(κ) +D2 cosh(κ) = C0 + C1 (39)

and below the layer , at y = 1 the ondition is

D2 cosh(κ)− C2 sinh(κ) = C3 (40)

The ontinuity of the derivative normal to the boundary below the layer, y = −1, gives

κC2 cosh(κy)− κD sinh(κy) = |k|C3 (41)

substituting in the solution for C3 below the layer (40) gives

C2(|k| sinh(κ) + κ cosh(κy)) = D2(|k| cosh(κ) + κ sinh(κy))

and with the solution taken from above the layer (39) at y = 1,

κC2 cosh(κ) + κD2 sinh(κ) = |k|C0 − |k|C1

substituting in the solution for C1 taken from (39) gives

C2(|k| sinh(κ) + κ cosh(κy)) +D2(|k| cosh(κ) + κ sinh(κy)) = 2|k|C0

and as we already have C2(|k| sinh(κ) + κ cosh(κy)) = D2(|k| cosh(κ) + κ sinh(κy)) from

above we an state

C2(|k| sinh(κ) + κ cosh(κy)) = D2(|k| cosh(κ) + κ sinh(κy)) = |k|C0.

The four unknown onstants are found as
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C2 = C0|k|/(|k| sinh(κ) + κ cosh(κ)) (42)

D2 = C0|k|/(|k| cosh(κ) + κ sinh(κ)) (43)

C1 = D2 cosh(κ) + C2 sinh(κ)− C0 (44)

C3 = D2 cosh(κ)− C2 sinh(κ). (45)

4.1.2 Solution for The Pair of Straight Wires

The derivation above will now be used for a �eld generated by a ouple of straight wires

with oppositely �owing urrents, as shown in �gure 4(b). The physial interpretation

of these wires ould be that they represent two sides of a single oil or that they are

setions of two separate wide oils, where the oils are wide enough for the returning loop

to be negligible to the system in the proximity of the original wires. These two straight

wires arry a urrents of amplitude I0 in opposite diretions. These wires are orientated

along the z-axis and are loated at a height of h above the entre line of the layer and at

distanes ±s from the y-axis.

The free-spae distribution of the vetor potential amplitude whih as before will

onsist only of the z-omponent, is governed by

∇2A0 = −δ(~r − h~ey − s~ex) + δ(~r − h~ey + s~ex) (46)

whih is saled by µ0I0, δ(r) is the Dira delta funtion and ~r is the radius vetor. .

The Dira delta funtion is used to model the point urrents whih represent the two

wires. The equation for the free spae distribution is redued by the Fourier transform

Â(y; k) =
´∞
−∞A(x, y)eikxdx, whih onverts equation (46) into

d2Â0

dy2
=k2Â0 = δ(y=h)

∞̂

=∞

[δ(x+ s)]eikxdx− δ(y=h)

∞̂

=∞

[δ(x− s)]eikxdx

Colleting the integrals into the oe�ient f(k) =
´∞
=∞[δ(x− s)− δ(x+ s)]eikxdx yields

d2Â0

dy2
− k2Â0 = −f(k)δ(y − h), (47)

f(k) = eiks − e−iks = 2isin(ks). (48)

The solution of equation (47) deaying at y → ±∞ an be written as

Â0(y; k) = c(k)e−|k(y−h)|. (49)
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Integrating equation (47) over the singularity at y = h,

lim
ǫ�0

ˆ h+ǫ

h−ǫ

[
d2Â0

dy2
=k2Â0]δy = lim

ǫ�0

ˆ h+ǫ

h−ǫ

[=f(k)δ(y=h)]δy

whih evaluates to

[

d

dy
Â0

]

y=h

−
[

k2yÂ0

]

y=h
= −f(k),

we obtain the boundary ondition

[

d

dy
Â(y; k)

]

y=h

= −f(k).

Applying the boundary ondition shows the remaining oe�ient an be expressed as

c(k) =
f(k)

2|k| =
i sin(ks)

|k| . (50)

Solutions for the kth Fourier mode of the magneti vetor potential in the three

regions loated inside, above and below the layer have been derived above and are given

by equations (36, 37, 38) respetively. The oe�ients for these three equations follow

from the derivation above are given by equations (42-45). The onstant C0 is again given

by Â0(1; k) and is alulated by equation (49) with c(k) given by equation (50):

C0 =
i sin(ks)

|k| e−(1−h).

Finally, the omplex vetor potential

~A is reovered by the inverse Fourier transform of

Â given by

~A(x, y) =
1

2π

ˆ ∞

−∞
Â(y; k)e−ikxdk, (51)

whih an be e�iently alulated with the fast Fourier transform.

4.2 Results

This setion presents the main results obtained using model introdued above for a single

harmoni of the applied �eld and then for a �eld generated by a ouple of straight wires.

It is important to note that in this model, where the vetor potential has only one

omponent, the di�erene in the vetor potential between two points de�nes the linear

�ux density of the magneti �eld between two lines parallel to the vetor potential at

these two points. This an be shown by Stoke's theorem (11), whih in this ontext

means, the irulation of the vetor potential around a thin oil gives the magneti �ux

through that surfae the oil bounds. This also holds true for the derivative of the
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vetor potential and linear �ux density. This leads to the di�erene in amplitude of the

vetor potential between two points being proportional to the emf amplitude measured

by simple oil, whih would be represented by two straight wires oriented along the z-

axis. Assuming the seond wire to be su�iently far from the magneti �eld the vetor

potential amplitude of a single point would represent the emf measured by a wide oil

whih is only partially in the region of interest.

4.2.1 Results for A Single Harmoni

Before introduing the modi�ations to the measurement sheme for the phase shift

�owmeter, we will introdue the models behaviours as a basi for further development. In

this setion a single harmoni of the magneti �eld will be onsidered. This orresponds

to a �eld generated by a standing wave with wave number k. The phase distribution

and the �ux lines, both in phase with the applied �eld and shifted by π/2, are shown

in �gure 6. An important observation is that, although the �eld deays exponentially,

the phase distribution below the layer is invariant in the y−diretion. Although this is

only generally true for a �eld generated by a standing harmoni wave it leads to one of

the major advantages of the phase shift �owmeter, that the measurements of phase are

robust to variation of the vertial position of the measurement oils. The phase is de�ned

as the angle of the omplex �eld, when presented in polar form. It is alulated as the

artangent of the ratio between the �eld in phase and out of phase with the applied �eld,

ϕ = arctan(ℜ(A)
ℑ(A)

).

An example of the measurement sheme, presented in [31℄, prior to introduing any

resaling is given in �gure 7. It an be seen that for a given dimensionless frequeny, whih

depends on ondutivity, the phase di�erene an be used as a measure of magneti

Reynolds number, whih when knowing the ondutivity an equate to measuring the

veloity.

The phase distribution between two nodes of the applied magneti measured below

the onduting medium is shown in �gure 7(b). While at rest this phase distribution

is pieewise onstant varying only by jumps in the phase of π. These jumps in phase

our at the wave nodes, whih are loated at x = ±0.5π. Figure 7(b) shows that the

disontinuities in the phase are smoothed out when the onduting medium is in motion.

The smoothed disontinuities are shifted further downstream with inreasing values of

Rm. Another signi�ant feature of this phase variation, whih an also be seen in �gure

7(b), is that the strongest phase variation ours downstream of a node, whereas the

variation upstream of a node is relatively weak, this disparity is more pronouned at lower

values of Rm. This shows the importane of plaing the downstream measurement oil

lose to the node if low veloities are to be measured, as the sensitivity of to the veloity

is higher in these loations. This is also relevant to the resalings whih are disussed
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Figure 6: Magneti �ux lines generated by a standing harmoni wave, in phase (top) and

out of phase (middle) with the applied �eld, and the phase distribution (bottom) at rest

(left) with Rm = 1(right), with ω̄ = 1 and k = 1
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later. The signi�ane of the measurements upstream of a node being signi�antly less

a�eted by the motion of the �ow will beome apparent when introduing the resalings.

The variation of phase ϕ with Rm at low veloities is haraterized by the phase

sensitivity.

K =
1

π

∂ϕ

∂Rm

∣

∣

∣

∣

Rm=0

. (52)

The dependene of this quantity on the dimensionless frequeny ω̄ is plotted in �gure 8

for several observation points and wave numbers.

By observing that ϕ varies nearly linearly with ω̄, as given in equation (35), we an see

the variation of K with ω̄ an be redued. As ω̄ has a similar e�et to Rm the redution

an be ahieved by saling the phase variation with the phase itself, whih leads to the

relative phase sensitivity.

Kr = π
K

ϕ
=

∂ lnϕ

∂Rm

∣

∣

∣

∣

Rm=0

. (53)

As seen in �gure 8(,d), the relative phase sensitivity tends to onstant for given

observation point. Although the relative phase sensitivity is not ompletely independent

of ω̄ it an be seen that at higher values of ω̄ it varies muh less than the unsaled phase

sensitivity shown in 8(a,b) espeially at lower wave numbers. Following this idea the

e�et of ondutivity an be redued by saling the phase shift with a referene phase.

The referene phase ϕω is taken as the phase shift between the sending and the upstream

reeiving oils, as the phase shift upstream of a node is less a�eted by the motion of

the layer. At low ω̄ the referene phase varies diretly with ω̄ whih, similar to Rm, is

proportional to ondutivity.The following saling by the square of the referene phase,

ϕω, will redue variation with ondutivity

∆2ϕ =
∆0ϕ

ϕ2
ω

, (54)

where ∆0ϕ = ϕ+ − ϕ−is the di�erene between the downstream and upstream phases

whih are denoted by ϕ+ and ϕ− respetively.

For the resaled phase shift to be insensitive to σ it an not be dependent diretly on

ω̄ or Rm, but must be a funtion of these ontrol parameters suh that σ is eliminated.

Instead we hoose

Rm
ω̄

= V
ωH

to measure against, whih represents a dimensionless veloity,

this ratio shall be referred to as the relative veloity.

Figure 9 shows the resaled phase shift given by equation (54) has a weak dependene

on ω̄ as long as ω̄ is low. For su�iently low relative veloities the variation of the

resaled phase shift with ω̄ is weak up to ω̄ ∼ 1. This range of low relative veloities

depends on the loations of the observation points. With points loser to the nodes,

loated x = ±0.5π, the range of relative veloities, where the resaled phase di�erene
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Figure 9: Resaled phase shift ∆2ϕ between two observation points plaed below the

layer at ±x = 0.2π (top), 0.3π (middle) and 0.4π (bottom) versus the relative veloity

Rm/ω̄ for various dimensionless frequenies with k = 1 (left) and k = 0.75 (right)
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remains invariant with ω̄ is redued. Figure 9 shows that far enough from the nodes

the relationship between resaled phase di�erene and relative veloity is invariant for

a range of dimensionless frequeny from 0.1 to 1, whih orresponds to a hange of an

order of magnitude to the ondutivity. This range is supported by looking at the nature

of the hange of phase with dimensionless frequeny, as shown in �gure 10, where there

is a linear relationship for low dimensionless frequenies whih ontinues until ω̄ ≈ 1.

The saling given by equation (54) fails at higher values of ω̄ where the shielding

e�et auses the referene phase to vary non-linearly. In this ase, the phase shift is O(1)

over the skin layer with the harateristi thikness ∼ ω̄−1/2. It means that the total

phase shift due to the di�usion of magneti �eld through the whole onduting layer with

thikness O(1) varies as ϕ ∼ ω̄1/2 ∼ σ1/2
. Sine the external magneti �eld in the form

of a standing wave onsists of two oppositely travelling waves, the motion of the layer is

equivalent to the variation of the dimensionless frequeny by ∼ Rm ≪ 1. The respetive

phase shift between two reeiving oils an be estimated as

∆0ϕ ∼ ∂ϕ

∂ω̄
Rm ∼ ω̄−1/2Rm ∼ σ1/2.

This implies that for higher frequenies ω̄ & 1, resaling diretly with the referene phase

shift should lead to the ondutivity being eliminated from the measurement sheme. The

resaled phase shift whih is resaled diretly with the referene phase shall be denoted
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as ∆1ϕ and is de�ned as

∆1ϕ =
∆0ϕ

ϕ−
. (55)

The resaled phase shift ∆1ϕ is plotted in �gure 11 against the relative veloity for

two di�erent wavenumbers k = 1 and and k = 0.5 and various dimensionless frequenies.

For k = 1 the dependene of the resaled phase shift on ω̄ appears to be greatly redued

for ω̄ > 1. For k = 0.5, whih orresponds a wavelength of the applied magneti �eld

signi�antly larger than the thikness of the layer, the variation of ∆1ϕ with ω̄ is pra-

tially insigni�ant starting from ω̄ = 1. This implies that the measurement sheme is no

longer strongly dependant on the ondutivity of the �ow.

4.2.2 External Magneti Field Generated By A Couple Of Wires

In this setion we onsider the ase of an external magneti �eld generated by a ouple of

straight wires as shown in �gure 4(b). For the layer at rest, the magneti �eld distribution

is mirror-symmetri with respet to the x = 0 plane. This is analogous to a node in the

mono-harmoni standing wave onsidered in the previous setion. Correspondingly, when

the layer is at rest, there is a phase jump of π at x = 0. In ontrast to the previous ase,

the phase is no longer onstant on both sides of the disontinuity and varies horizontally

as well as vertially.

The relationship between the phase and frequeny for the two wire model is plotted

in �gure 13 as with the �eld generated by a standing wave the variation is linear for

low frequenies and for higher frequenies, where shielding disrupts this linearity and the

phase varies with the root of the dimensionless frequeny, ϕ ∝ ω̄
1

2
. The approximate

dimensionless frequeny for whih the linear behaviour fails is similar between the two

exiting �elds, and in both ases the variation of the phase with the root of the frequeny

is well established by ω̄ = 1.

The phase sensitivity is plotted against dimensionless frequeny for various measure-

ment points below the layer in �gure 14. It shows that the phase sensitivity attains a

maximum at an optimal frequeny, ω̄ ≈ 0.14. The low optimal frequeny an also be

shown from equation 50 whih shows the applied magneti �eld is dominated by low

wavenumber modes. Another important feature of the phase sensitivity is that its re-

dution above the optimal frequeny is gradual ompared with to its steep inrease at

sub-optimal frequenies. The loss of the sensitivity from working with a muh larger sim-

pli�ed value of ω̄ = 1 is relatively small. This loss beomes smaller still with observation

points further from the origin.

Figures 14(a,b) and 13 all show that the range of ω̄ where the phase sensitivity varies

linearly is rather short. Therefore there is a limited range for whih in the two wire model

resaling (54) may be appliable. Figure 15(a-) show the resaling with the square of

the referene phase applied to the two-wire model. It an be seen that the resaling fails
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Figure 11: Resaled phase shift ∆1ϕ between two observation points plaed below the

layer at ±xk/π = 0.2 (a,b), 0.3 (,d) and 0.4 (e,f) versus the relative veloity Rm/ω̄ for

k = 1 (a,,e) and k = 0.5 (b,d,f) at various dimensionless frequenies ω̄ & 1.
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for the range of frequenies for whih it is designed. It is likely that this resaling fails

at this range of frequenies beause the transition between the linear and square root

relationships of phase and frequeny, shown in �gure 13, ours at a lower frequeny in

this model ompared with the simple model for a harmoni standing wave. Figure 15(d)

shows that this resaling does indeed theoretially funtion very well with little hange to

the measurement for a hange of two orders of magnitude of the frequeny. This resaling

only works for a low enough range of frequenies and these frequenies are impratially

low.

At dimensionless frequenies near unity ω̄ ∼ 1, whih presents the main interest from

a pratial point of view, the resaling presented to handle the the non-linear variation

of the phase-shift, given by equation (55), is expeted to be suitable. This resaled

phase shift is plotted in �gure 16 against the relative veloity for several loations of the

observation points and various dimensionless frequenies. It an be seen that the resaled

phase shift ∆1ϕ depends predominantly on the relative veloity while its variation with

ω̄ is relatively weak. In �gure 16(d) the exeption to this is shown whih ours for

the large separations of the observation points, in this ase x = ±2.5, where the lines

for the di�erent dimensionless ondutivities do not ollapse well. This deterioration of

the resaling at larger separations of observation points may be due to the horizontal

variation of the referene phase mentioned above, whih was not present in the model

with the simple harmoni applied �eld.

42



ω (dimensionless frequency) 
0 0.1 0.2 0.3 0.4 0.5 1

0

0.2

0.4

1

1.2

x=0.2

x=0.5

x= 1

(a)

ω (dimensionless frequency) 

10
10

10 10 10

10

10

0.3
0.5

1

0

-1

-2

-2 -1 0 1
(b)

Figure 14: Phase sensitivity K given by equation (52) versus the dimensionless frequeny

ω̄ at various observation points at the bottom of the layer (a) and the same plotted on

log-log axis (b) .
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Figure 15: The resaled phase shift ∆2ϕ between two observation points plaed below

the layer at ±x = 0.5 (a,d), 1 (b), 1.5 (), versus the relative veloity Rm/ω̄ at various

dimensionless frequenies ω̄. Note that in (d) the range of frequenies presented are

signi�antly lower.
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Figure 16: The resaled phase shift ∆1ϕ between two observation points plaed below

the layer at ±x = 0.5 (a), 1 (b), 1.5 (), and 2.5 (d) versus the relative veloity Rm/ω̄
at various dimensionless frequenies ω̄.
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4.2.3 Optimising Layout
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Figure 17: Maximum di�erene in resaled phase shift measurement for dimensionless

veloities up to V max with measurement oils loated at x = ±0.5 (a) and x = ±1(b)
against sending oil height. Resale phase shift with �rst order resaling against dimen-

sionless veloity with exiting oils loated at x = ±0.5 () and x = ±5 (d) for various

dimensionless frequenies.

As previously shown the lateral positions of the reeiving oils have an e�et on how

well the resaling works. The horizontal position of the sending oils is now onsidered.

A suitable measurement of this is the maximum di�erene between any two lines, whih

relates physially to the maximum error in the resaled phase shift measurement aused

by removing ondutivity from the measurement sheme. Figure 17(a) and (b) show the

maximum di�erene in resaled phase measurement for dimensionless frequenies 1, 2, 3,

4 and 5. It an be seen that having the sending oil further out leads to lower variation

between di�erent dimensionless frequenies. It is also shown that in most ases having

the sending oil further from the �ow leads to lower di�erenes. It is shown that the

measurement sheme is more robust when looking only at lower veloities. �gure 17(d)

shows that when the wires representing the sending oil are taken the extreme and likely

impratial loations of x = ±5 that the lines ollapse better for a greater range. This
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an be seen to agree with the last point in the previous setion that further separated

observation points yield worse results, as here the opposite is shown, that having the

observation points loser together relative to the sending oil yields better results.

4.3 Summary

In this hapter, a theoretial design for an improved phase shift �owmeter has been

introdued. This design is shown to be able to redue the ondutivity dependene of

the measurement sheme. This is done by employing the referene phase shift whih is

indued on the �eld by the presene of the onduting layer to the measurement sheme.

A measure of the referene phase taken from the upstream reeiving oil. There are two

resalings introdued where a referene phase shift is used to resale the measurement

sheme. Firstly, for low frequenies ω̄ . 1, where there is a diret relationship between

phase shift and the frequeny, resaling the �ow-indued phase shift with the square of the

referene phase an help remove ondutivity from the measurement sheme. At higher

a frequenies ω̄ & 1, where the shielding e�et auses the variation of phase with the

frequeny the be non-linear, ondutivity an be removed from the measurement sheme

by resaling the �ow-indued phase shift diretly with the referene phase.
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5 Pulsed Field Flowmeter

In this setion we will onsider an axisymmetri ylindrial model. We shall again �rst

onsider a �eld represented by a standing wave and then The �eld generated by a number

of oils. In this model the e�et of a pulsed �eld will be onsidered for both of these �eld

de�nitions.

5.1 Mathematial Model

Consider a ylinder of in�nite length, oriented along the z-axis, radius R and ondutivity

σ moving at a veloity of ~v = ~ezv. The derivation for the ylindrial model starts

identially to the 2D Cartesian model. starting with the Maxwell Faraday equation,

Ohms law and its expansion and Amperes Law given by equations (21-23) and (25). In

this model, we shall again assume that the frequeny is low enough that we an neglet

the displaement urrent and use Amperes Law:

~j =
1

µ0

~∇× ~B. (56)

We onsider now that the magneti �eld is axisymmetri and in our ylindrial o-

ordinate system (with axis labelled r, φ and z) will have only r and z omponents. As

with the Cartesian model, presented in the previous hapter, the magneti �eld an be

represented by a single omponent of the vetor potential. However, in this model the

omponent whih will be used is the azimuthal omponent. This means we have a purely

azimuthal vetor potential,

~A = ~eφA. By evaluating the url it an be shown that

~B = −r−1~eφ × ~∇(rA).

A useful feature of this model is that the streamlines of

~B run along the isolines of rA.

This an be shown by appling the ross produt with the unit vetor in the azimuthal

diretion. The triple produt produed on the right hand an be simplifed using idenities

leading to, ~eφ× ~B = r−1~∇(rA). Taking the dot produt of this with ~B leads to

~B·~∇(rA) =

0 whih shows that the streamlines of

~B run along isolines of rA.

The advetion di�usion equation for this model takes the form

µ0σ(∂tA + v∂zA) = ~∇2A, (57)

whih is derived by applying Ampere's Law (56) to Ohm's Law (23) as is done to derive

equation (28) in the previous hapter. In free spae, equation (57) takes the form

(r−1(rA)′)′ + ∂2
zA = 0. (58)
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Figure 18: Pulse pro�le labeled wih key variables, T the length of one period of the

periodi signal, τ the time between pulses and δ whih sets the transition time while the

�eld turns on and o�.

where

′
denotes the derivative with respet to r. To solve this equation we now onsider

the eddy urrents indued by the external magneti �eld in the form of a single Fourier

harmoni whih varies as

A0(r, z, t) = Â0(r) sin(kz)f(t)

where, as before, k is the wave number in the z diretion and f(t) de�nes the time

variation of the applied �eld. The time variation due to the pulsed nature of the magneti

�eld is de�ned by

f(t) =

{

η(t) + η(τ − t)− η(T − t), 0 ≤ t < T

f(t− T ), t > T
=

N/2
∑

n=−N/2

fne
iωnt

This, �rstly, desribes the periodi nature of the pulsing of the �eld. Seondly, the fun-

tion is de�ned using the omplementary error funtion η(t)=erf(t/δ) = 2√
π

´∞
t/δ

e−t2dt.

This introdues a transition time δ whilst turning the �eld on or o�. This transition time

is neessary to suppress the Gibbs phenomenon in the Fourier series representation of

f(t).

The Fourier oe�ients fn for the modes are omputed using the FFT. These modes

are generated for dimensionless frequenies ωn = 2πn/T . The solution for the vetor
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potential an be represented in omplex form as

A(r, z, t) =

N/2
∑

n=−N/2

ℑ
[

Ân(r)fne
i(ωnt+kz)

]

(59)

where Ân is the solution to (60) given in general form by (61).

We an now write equation (58) in the following form

(r−1(rA)′)′ − r−2Â0 − k2Â0 = 0 (60)

For whih the general solution is

Ân(r) = CI1(kr) +Do
nK1(kr), (61)

where Iν(x) and Kν(x) are the modi�ed Bessel funtions of the �rst and seond kind

respetively, with order ν; C is an unknown onstant de�ned by the applied magneti

�eld and Do
n is an unknown onstant assoiated with the n-th time harmoni of the

indued magneti �eld.

5.1.1 Solution for Mono Harmoni Standing Wave

For the ase of the applied �eld taking the form of a standing wave, there are two regions

whih the system an be resolved in: inside the layer and outside of the layer. The

standing wave shall, as in the previous model, be represented by two oppositely travelling

waves.

We now set the radius of the onduting R as the length sale and the time sale

as µ0σH
2
. We an now introdue two key dimensionless parameters. A dimensionless

veloity, the magneti Reynolds number Rm = µ0σV H and the dimensionless frequeny,

ω̄n = µ0σωnR
2
. Outside the onduting ylinder, the solution is governed by equation

(61). Inside the onduting layer the solution is governed by equation (57), whih takes

the form

(r−1(rÂn)
′)′ − (k2

n + i(ω̄n + knRm))Ân = 0.

With the substitution κ = (k2
n + i(ω̄n + knRm))

1/2
the solution to this equation for the

�eld inside the onduting layer is given by

Ân(r) = Di
nI1(κr). (62)

This solution is hosen suh that the term onerning the modi�ed Bessel funtion of the

seond kind, Kν(x) , is omitted as it is not regular at r = 0. The ontinuity of the vetor

potential and its normal derivative at the interfae between the onduting region and
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free spae, r = R = 1, gives boundary onditions whih will lead to the solutions for the

unknown onstants Do
n and Di

n.

Firstly [Â]r=1 = 0 gives

Di
nI1(κ) = CI1(kn) +Do

nK1(kn) (63)

and [∂rÂ]r=1 = 0 gives

Di
n(I0(κ)−

1

κ
I1(κ)) = C(I0(kn)−

1

kn
I1(kn)) +Do

n(−K0(kn)−
1

kn
K1(kn)).

For the derivatives of the modi�ed Bessel funtions the reurrene relationship ∂zLν(z) =

Lν−1(z) − 1
z
Lν(z) found in [1℄, where L substitutes either Iν or eiπνKν , has been used.

Simple manipulation and substitution of these equations at the boundary yields solutions

for the two unknowns

Do
n = C

knI0(kn)I1(κ)− κI0(κ)I1(kn)

knK0(kn)I1(κ) + κI0(κ)K1(kn)

Di
n = C

kn(K0(kn)I1(kn) + I0(kn)K1(kn))

knK0(kn)I1(κ) + κI0(κ)K1(kn)
.

For this solution the urrent amplitude of the applied �eld is de�ned by C. as the

amplitude is irrelevant in our study we an set C = 1.

5.1.2 Solution for A Cirular Current Loop

The solution above, for a mono-harmoni applied �eld an be extended to the ase of

a oil, made of irular loops. Considering a single thin loop plaed azimutally with

radius rc loated axially at zc arrying a dimensionless urrent of jc. The free-spae

distribution of the vetor potential amplitude will onsist only of the φ-omponent and

an be desribed using the Dira delta funtion�

~∇2A0 = −jcδ(~r − rc~er − zc~ez), (64)

where δ(~r) is the Dira delta funtion. Note that as the model is azimuthally symmetri

the loop is oriented along the φ diretion with onstant r and z values. An axial Fourier

transform Â(r) =
´∞
−∞ A(r, z)eiknz dz onverts equation (64) to

(r−1(rÂ0)
′)′ − k2

nÂ0 = −jce
−iknzcδ(r − rc). (65)

The solution to this equation must be ontinuous aross the oil, r = rc, regular at r = 0

and deay as r → ∞. The last two onditions are met by our hoie of whih part of the
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solution to utilise,

Â0(r) = DII1(knr) +DKK1(knr)),

whih is based on the general solution given by equation (61).

In the regions 0 < r < R and R < r < rc, inside the ylinder and from the ylinder

to the oil, the solution an be taken as Â0(r) = DII1(knr) and from the oil to in�nity

the solution is given by Â0(r) = DKK1(knr).

The onstants DI and DK are solved by the boundary onditions on A at the oil.

The values at the oil must math and the hange in derivative is obtained by integrating

equation (65) over the singularity aused by the presene of the oil at r = rc. Giving

the boundary onditions, �rstly based on the value

[

Â0

]

r=rc
= 0, as

DII1(knrc) = DKK1(knrc)

and for the derivative

[

∂rÂ0

]

r=rc
= −jce

−iknzc
,

DI

(

I0(knrc)−
1

knrc
I1(knrc)

)

+DK(K0(knrc) +
1

knrc
K1(knrc)) = −jce

−iknzc ,

whih an be redued to, by subtrating the other boundary ondition, the following

form:

D1knI0(knrc) +DKknK0(knrc) = −jce
−iknzc

DI

(

I0(knrc)−
1

knrc
I1(knrc)

)

+
I1(knrc)

K1(knrc)

(

K0(knrc) +
1

knrc
K1(knrc)

)

= −2jce
−iknzc

In the region 0 < r < rc the solution an be taken as

Âo(r) = −jce
−iknzc

I1(knr)
I1(knrc)

kn

(

I0(knrc)
I1(knrc)

+ K0(knrc)
K1(knrc)

) ,

for the region rc < r < ∞, from the oil outwards, as

Âo(r) = −jce
−iknzc

K1(knr)
K1(knrc)

kn

(

I0(knrc)
I1(knrc)

+ K0(knrc)
K1(knrc)

) .

The vetor potential in physial spae is given by the inverse Fourier transform, om-

puted using the FFT.

This method an be applied to multiple urrent loops eah loop will have an ad-

ditive e�et on the �eld with urrent for eah oil being introdued by substituting
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C =
∑

c Dc/I1(knrc) into equation (61) where

Dc =
−jce

−iknzc

kn

(

I0(knrc)
I1(knrc)

+ K0(knrc)
K1(knrc)

)

and the summation is taken over the urrent loops.

5.2 Eigenmode Evolution

To desribe the basis of the pulsed �eld approah introdued above, the evolution of

separate eigenmodes shall be investigated. The separate eigenmodes will be sought in

the following omplex form,

A(r, z, t) = Â(r)eiknz−γt, (66)

where kn is a given real wave-number introdued in the derivation above and γ is an

unknown omplex deay rate. This omplex deay rate will be determined together with

the amplitude distribution Â(r) by solving the eigenvalue problem posed by equation (57).

If we remove the external magneti �eld, the solution for the region where measurements

would be taken, outside the ylinder, given be equation (63) an be expressed as

Â(r) = DoK1(knr), (67)

where Do
is an unknown onstant. Inside the ylinder, the general solution of equation

(57) is given by

Â(r) = DiJ1(αr),

where Di
is another unknown onstant, Jν(x) is the Bessel funtion of the �rst kind with

order ν, and α = (γ − k2
n − iknRm)

1/2
. The boundary onditions based on the ontinuity

of A and its derivative aross the surfae of the layer r = R = 1 an solve for the two

unknowns, D0
and Di

. Firstly the ontinuity ondition

[

Â
]

r=1
= 0 gives

DoK1(kn) = DiJ1(α)

And the derivative aross the boundary

[

∂rÂ
]

r=1
= 0 gives

Do(K0(kn) +
2

kn
K1(kn)) = Di(J0(α)−

2

α
J1(α)).

These boundary onditions lead to the following harateristi equation

αJ0(α)/K0(kn) + knJ1(α)/K1(kn) = 0. (68)
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Figure 19: Three lowest eddy urrent deay rates versus the wave number. Note that

modes for n ≥ 4 will have signi�antly higher deay rates, and thus signi�antly shorter

deay times.

This equation has real roots given by α whih de�ne the assoiated omplex deay rates

introdued in equation (66) as

γ = α2 + k2
n + iknRm. (69)

The most important result that follows from this expression is the phase speed is onstant,

shown by ℑ[γ]/kn = Rm. This is the speed at whih all eddy urrent patterns travel

regardless of their wave number. The orresponding physial veloity for the eddy urrent

patterns is given by Rmvm = v and is equal to that of the medium. Here vm = (µ0σR)−1

is the veloity sale for the model. This leads to the onlusion that the veloity of the

medium an be determined by measuring the phase veloity at whih an eddy urrent

pattern is adveted. This is the main onept underpinning how transient eddy-urrent

�owmetering operates.

The seond important result whih an be taken from equations (68&69) onerns

the deay rate given by the real part of the omplex assoiated deay rate ℜ[γ]. Figure
19 shows ℜ[γ] versus wavenumber kn for the �rst three dominant eigenmodes. It an

bee seen that the lowest deay rates our in the limit kn → 0 whih is assoiated with

long wave patterns. In this limit, the harateristi equation, given by equation (68), an

be redued to J0(κ) = 0 whih yields ℜ[γ1] ≈ 5.78. This means that the eddy urrent

amplitude drops by almost three orders of magnitude over the harateristi magneti

di�usion time tm = µ0σR
2
. The deay times of subsequent eigenmodes are signi�antly

shorter, as shown by the signi�antly higher rates in �gure 19. The �gure is limted to
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the domnant three modes as higher modes will have higher deay rates and will beome

insigni�ant due to their short deay times. This means that the period of time during

whih a traking a transient eddy urrent pattern is feasible is limited by a few magneti

di�usion time sales tm. This result also implies that the respetive dimensionless distane

over whih the pattern is adveted is limited by a few Rm.

The measurement of the phase veloity of the �eld indued by the eddy urrents is

not as simple as measurement would be for a simpler wave with onstant amplitude.

The phase veloity measures the rate at whih the phase propagates spatially. For a

simple wave with onstant amplitude, this is equivalent to the motion of a point of �xed

amplitude. In the ase of the deaying �eld, the only points with �xed amplitude are the

nodes, or points at whih the osillating amplitude passes through zero.

Along with the nodes of the osillating amplitude some other features are present,

whih behave similarly to that of a point of �xed amplitude, whos motion is equivilent

to the phase veloity. Firstly the spatial derivative an be used as loal spatial extrema

whih will be also �xed in the deaying wave. And seondly instead ofusing the �eld

amplitude to �nd a �xed point a temporal extrema of the �eld an be traed, where zero

rossings in the time derivative will also give �xed points in the deaying wave. This

time derivative of the magneti �ux is assoiated with the emf indued by the deaying

eddy urrents, E = −∂tΦ, whih gives rise to voltage in the pik-up oils. Finally the

extrema of the emf may also be used to measure the phase veloity of the eddy urrents.

Both spatial extrema, ∂zE = 0, and temporal extrema, ∂tE = 0, of the emf will have zero

rossing points whih ould be used for measurement.

5.3 Mono-Harmoni Eddy Current Distribution

In this setion, we onsider a pulsed external magneti �eld whih is swithed o� and on

periodially at the dimensionless time intervals τ = 3 and T − τ = 1. The �eld takes

the form of a standing wave whih represents a single harmoni for the �eld generated

by simple oils in the next setion. The eigenvalue analysis in the previous setion

suggests that these time intervals are long enough for the eddy urrents to develop. The

development of the eddy urrents is on�rmed by the time variation of the magneti �ux,

Φ = rA, whih is aused by the presene of the eddy urrents. This temporal variation

of the magneti �ux is shown in �gure 20(a) with wavenumber kn = 1 at z = 0.5 with

measurements taken at three di�erent radii with the onduting media at rest (Rm = 0).

The orresponding variation of the emf magnitude is plotted in �gure 20(b) for both the

layer at rest and in motion. When the ylinder is at rest (Rm = 0), the emf an be seen to

derease exponentially with time as predited by the previous eigenvalue analysis. When

the ylinder moves with veloity Rm = 1, the derease of emf is aompanied by a zero

rossing, whih ours at the time instant t ≈ 0.5, for the measurement loation z = 0.5.
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Figure 20: Variation of the magneti �ux Φ = rA over one time period at z = 0.5 and

r = 0.5, 1, 2 for the Fourier harmoni with the wave number kn = 1 for Rm = 0 (dashed)
and Rm = 1 (solid) (a); variation of the emf magnitude |∂tΦ| with time at the same

points for Rm = 0 (dashed) and Rm = 1 (solid) (b).
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This zero rossing point is seen as a usp on the semi-logarithmi plot of |E| in �gure

20(b). Shortly after passing through zero, emf is seen to attain a loal extremum, whih

is de�ned mathematially by a zero rossing of ∂tE .
Figure 21 shows the evolution of the magneti �eld pattern and the assoiated emf for

wave number kn = 1 after the external magneti �eld is swithed o� with the onduting

ylinder moving at a veloity given by Rm = 1. In the middle row the inreased density

of isolines show the loations of the zero rossings of the emf these zero rossings follow

losely to the motion of the medium as seen by there loations at z = tRm. This movement

of the zero rossing with the veloity of mediummeans that the veloity an be determined

diretly from measurements as Rm = z/t, where z is the axial distane of the observation

point from the wave node and t is the time at whih the emf passes through zero at that

point after swithing the �eld o�. The magneti �ux lines, whih are shown at the top

row of �gure 21, an be seen to run slightly in front of the �ux lines of the emf. This is due

to the e�et of advetion whih tilts the magneti �ux lines in the diretion of motion.

This an be seen in the upper left plot, where at t = 0, the �ux lines are pulled along in

the diretion of the �ow. In ontrast to this, the time derivative, whih is mathematially

equivalent to multiplying the dominating eigenmode, in equation (66), by −γ this has a

phase shift of arg(−γ) in the assoiated �eld pattern. This will ause the pattern of ∂tE ,
whih is shown in the bottom row of �gure 21, to lag slightly behind the pattern of E .
Note that the zero rossings of ∂tE , similar to those of E are marked by the inreased

density of the isolines. The spatial extrema of E are de�ned by the zero rossings of ∂zE .
With this simpli�ed mono-harmoni applied �eld the distribution is given by ∂zE = iknE
whih is shifted by a quarter wave length relative to that of E . Therefore the spatial

extrema of the emf in a mono-harmoni wave will move in exatly the same way as the

zero rossings.

Figure 22(a) shows that the emf for the distributions for both wave numbers kn =

1, 0.5 an be seen to deay in a good agreement with the analytially determined damping

rates, shown as dashed lines in the �gure.

Zero rossings outside the ylinder are shown in Fig. 21 to our synhronously along

a radius. For this reason here we hoose to fous on the emf distribution along the

surfae r = 1. Figure 22(b) shows the zero rossing positions of both E , ∂tE , ∂zE and ∂zΦ

against time for wave number kn = 1 at three di�erent veloities Rm = 0.1, 0.5, 1. The

zero rossing points of E and ∂zE move in exatly the same way with a veloity of Rm

starting from the node at z = 0. The temporal extrema points, whih orrespond to zero

rossings of ∂tE , also move at the same veloity as the medium but with a time delay

whih depends both on the wave number kn and the veloity Rm. This means that at

least two measurement points are required to eliminate this o�set and, thus, to determine

the veloity of the medium using temporal extrema of emf.
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Figure 21: The magneti �ux lines (Φ = onst) (left), the isolines of emf E = −∂tΦ
(middle), and of ∂tE = −∂2

ttΦ (right) for Rm = 1 at the time instants t = 0, 0.4, 0.8, 1.2
after a mono-harmoni external magneti �eld with the wave number kn = 1 has been

swithed o�. Subsequent isolevels di�er by a fator of two and luster around zero value.
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Figure 22: (b) Relative magnitude of E against time for mono-harmoni eddy urrent

distributions with kn = 0.5, 1 .() Axial zero rossing positions of E , ∂tE , ∂zE and ∂zΦ
for the eddy urrent distributions generated with Rm = 0.1, 0.5, 1 for kn = 1.
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Figure 23: The magneti �ux lines (Φ = onst) (left) and the isolines of ∂zE = −∂2
tzΦ

(right) at the time instants t = 0, 0.4, 0.8, 1.2 after the external magneti �eld generated

by a pair of anti-symmetri urrent loops with radius rc = 2 loated at zc = ±1 has been

swithed o�.

5.4 Eddy Currents Indued By Cirular Loops

The eddy urrents generated by more realisti oils are investigated in this setion. These

oils are represented by simple irular urrent loops. The �rst oil layout whih will be

onsidered is that of a pair of loops loated at zc = ±1 and rc = 2 arrying equal

but opposite urrents. This on�guration is designed to give similarities to a node in

the mono-harmoni distribution disussed previously, the symmetry plane at r = 0 is

analogous to suh a node.

As a result, the nature of the advetion of the �eld pattern by the moving medium,

whih is shown for Rm = 1 in �gure 23(left), is notieably similar to the �eld pattern

for the mono-harmoni eddy urrent distribution in �gure 21(left). In a similar manner,

the zero rossing points of both E and ∂tE move in the same way as they did in the

mono-harmoni wave. There is one substantial di�erene between the mono-harmoni

and anti-symmetri eddy-urrent distributions whih onerns the motion of spatial ex-

trema of emf. In this model, there are two suh extrema whih an be seen in �gure

23(right). These extrema are loated initially at the urrent loops where the inreased
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density of isolines show the loation of the zero rossings of ∂zE . It is obvious that these
extrema do not move at the same veloity. The right (downstream) extremum moves

notieably faster than the medium whereas the left (upstream) one moves not only muh

slower but also in the opposite diretion. In the example here the movement is slight but

it is pereivable that the upstream zero rossings do travel upstream, against the �ow

over time. The gap in between the zero rossings appears to grow fairly uniformly how-

ever physial measurements of this would be impratial. The main di�erene between

the spatial extrema in the previous mono-harmoni and the present two-loop eddy ur-

rent distributions is the absene of symmetry in the latter. It will be shown later that

symmetry is ruial to the transient eddy urrent �owmetering.

A single loop an generate an eddy urrent distribution with a spatially symmetri

emf extremum. However it will not have zero rossings in the emf amplitude. Figure 24

shows the evolution of the �eld generated by a urrent arrying oil at zc = 0 with radius

rc = 2 with the onduting ylinder in motion with a veloity Rm = 1. For a single oil,

the zero rossing are absent from the temporal evolution of the emf amplitude however

the spatial extrema of both the emf and magneti �ux are present. These extrema are

deteted as the zero rossings of the spatial derivative of either the magneti �ux ∂zΦ = 0

or the emf ∂zE = 0. These zero rossings move with the medium, as with the previous

model, however the nature of the relationship between the two movements are di�erent.

The axial extremum of emf, shown in the bottom row of �gure 24, is seen to move

without any time lag, as the zero rossings of the emf did in the anti-symmetri set-up.

The spatial extremum of the magneti �ux experienes a time lag similar to that of the

temporal emf maximum in the anti-symmetri set-up. Note that the axial extremum of

the magneti �ux an be deteted as a zero rossing of the radial �ux omponent Br

using, for example, a Hall sensor. At least two sensor oils are required to detet an

axial maximum of emf, whereas one oil an be used to detet zero rossing or temporal

extremum of emf in the anti-symmetri set-up however this requires two exitation oils.

Finally, we examine the e�et of a possible asymmetry in the initial eddy urrent

distribution generated by a two-oil set-up with opposite but slightly di�erent urrents.

To haraterize this kind of asymmetry we use the parameter

S = (j+ − j−)/(j+ + j−),

where j+ and j− are the urrents in the oils plaed with negative and positive z values

respetively. The temporal evolution of eddy urrent distribution with an initial asym-

metry of S = 5% generated by a pair of oils of radius rc = 2 plaed zc = ±1 is shown

in �gure 25 with the medium at rest (Rm = 0). With a value of S > 0 the urrent in

the left hand oil is greater than that of the right hand oil, whih leads to a initial emf

pattern whih is asymmetrial and tilts to the right. In the anti-symmetri distribution
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Figure 24: The magneti �ux lines (Φ = onst) (top), the isolines of ∂zΦ (middle) and

∂zE = −∂2
ztΦ (bottom) for Rm = 1 at the time instants t = 0, 0.4, 0.8, 1.2 after the

external magneti �eld generated by a single urrent loop loated rc = 2 and zc = 0 has

been swithed o�. Levels of subsequent isolines di�er by a fator of two and the inreased

density of isolines indiates zero value.
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Figure 25: The emf isolines for Rm = 0 at the time instants t = 0, 0.4, 0.8, 1.2 after the

external magneti �eld generated by a pair of opposite urrent loops loated at rc = 2
and zc = ±1 with the urrent asymmetry of S = 5% has been swithed o�.
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with S = 0 the Fourier mode for eah harmoni of the emf independently rosses zero

at the symmetry plane, zc = 0. In the asymmetri ase, S 6= 0, this symmetry is absent

and the zero rossing is a result of superposition of di�erent Fourier modes. The deay

rate whih depends on the wavenumber kn varies between the di�erent harmonis. The

variation of deay rate between Fourier modes leads to the zero rossing line in the asym-

metri distribution drifting. For S > 0 this drift is to the right as shown in �gure 25.

Conversely, for S < 0 the drift would be to the left.

As seen in �gure 26(a), after a relatively short initial transiene, the drift veloity

slightly inreases and appears to tend to a onstant value. This value rises with the

asymmetry S and is nearly the same for both zero rossings and temporal extrema of

the emf. The drift veloity averaged over the time interval from t = 0 to t = 2.5 is seen

in �gure 26(a) to inrease nearly linearly with S. At the same time, the drift veloity

redues with the inrease of axial separation between the oils whereas their radius has

a relatively weak e�et as shown in �gure 26(b).

5.5 Summary

A ylindrial model was onsidered as a basis for the investigation into a pulsed �eld,

or transient, eddy urrent �owmeter. This model initially onsidered a mono-harmoni

�eld and was extended to the ase of �elds generated by simple urrent arrying loops.

A numerial analysis was arried out onsidering several measurement shemes based on

di�erent harateristis of the magneti �eld indued by the eddy urrent. The approahes

onsidered either traed temporal or spatial maxima of the magneti �ux or the emf of

the indued �eld. Temporal extrema an be measured with a single measurement loop

whilst spatial extrema require a pair of loops to detet their passage.

We onsidered eddy urrent distributions generated by either two anti-symmetri

irular urrent loops or a single loop. In a single-loop set-up, whih generates a spatially

symmetri eddy urrent distribution, the spatial extremum of emf was found to travel

synhronously with the medium. In the anti-symmetri set-up, the zero rossing point

of emf as well as the subsequent temporal extremum was found to travel synhronously

with the medium. But this was not the ase for the two spatial extrema whih appear at

both urrent loops in this set-up. These two extrema were found to move at substantially

di�erent veloities from that of the medium. This result highlights the ruial importane

of symmetry to the measurement sheme.

The importane of symmetry was investigated further and it was shown that a di�er-

ene of a few perentage in the urrents between the exiting oils an lead to a drift of

Rm ∼ 0.1 with the typial parameters using in this hapter. This implies that transient

eddy urrent �owmetering is heavily dependent on symmetry, and with this reasonable

level of asymmetry an only be reliable for Rm > 1.
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Figure 26: (a) Axial position of zero rossing and its drift veloity along the surfae of

ylinder at rest (Rm = 0) against the time after the external magneti �eld generated by

a pair of opposite urrent loops loated at rc = 2 and zc = ±1 with the urrent asymmetry

S has been swithed o� . The upper and lower urves orrespond to the zero rossing of

emf (E = −∂tΦ) and its temporal derivative (∂tE), respetively. (b) Zero drift veloity

depending on the urrent asymmetry s in two irular loops with radii rc = 1.5, 2, 2.5
plaed at the axial positions ±zc = 0.5, 0.75, 1, 1.5, 2.
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6 3D model

In this hapter a 3D model is presented. This 3D model is designed to inlude more varied

designs of oils for both generating the magneti �eld and for taking measurements.

Firstly the derivation for the model is given along with the boundary onditions

required to solve the system. In this setion the proess of generating an applied �eld

based on the de�nition of the generating oils is also presented. Following this some proof

of onept results for the model are inluded.

6.1 Mathematial Basis

Consider a solid in�nitely long ylinder of radius R and eletrial ondutivity σ translat-

ing at a onstant veloity ~v = ~ezv parallel to its axis in an external magneti �eld

~Be(~r, t).

The external �eld is in general time-dependant and spatially three dimensional. The as-

soiated eletri �eld is governed by the Maxwell-Faraday equation

~E = −~∇ϕ − ∂t ~A,

where ϕ is the eletri potential and

~A is the vetor potential, whih de�nes the magneti

�eld as

~B = ~∇× ~A. The eddy urrent density indued in a moving medium is given by

Ohm's law

~j = σ( ~E + ~v × ~B) = σ(−~∇ϕ− ∂t ~A+ ~v × ~∇× ~A). (70)

Applying Ampere's law to equation (70) with the gauge (72) yields the following advetion-

di�usion equation for

~A

µ0σ(∂t ~A+ (~v · ~∇) ~A) = ~∇2 ~A, (71)

where µ0 is the vauum permeability.

In the ase of a more omplex �ow pro�le where the veloity is non unifom this step

would di�er signi�antly. One ause of this is the term ( ~A · ∇)~v, whih appears in the

identity for ~v × ~∇× ~A is nonzero for nonuniform veloity. If this ase was onsidered an

analyti solution is unlikely be suitable and the �ow inside the ondutive layer would

need to be solved numerially.

An equation analogous to equation (71) results also for

~B when url is applied to

equation (71). This will hold for all the equations derived in the following unless stated

otherwise. For the derivation of equation (71) we have introdued the gauge

~∇ · ~A+ µ0σ(Φ− ~v · ~A) = 0, (72)

whih de�nes the salar potential in the ondutor. In free spae (σ = 0) the gauge

redues to Coulomb gauge

~∇ · ~A = 0.

In the following, external magneti �eld is assumed to vary in time harmonially

as

~Ae(~r, t) =
~̂
Ae(~r) cos(ωt), and the solution is sought in the omplex form

~A(~r, t) =
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ℜ
[

~A(~r)eiωt
]

. Let us �rst onsider a spatial amplitude distribution of the external mag-

neti �eld in the form of a single Fourier mode

~A(~r) =
~̂
A(r)ei(kz+mφ), (73)

where (r, φ, z) are the ylindrial oordinates assoiated with geometry of the problem,

and k and m are the axial and azimuthal wave numbers, respetively. The assoiated

radial distribution of the magneti �eld amplitude is

~̂
B(r) = ~eri(mr−1Âz − kÂφ) + ~eφ(ikÂr − Â′

z) + ~ez

(

r−1(rÂφ)
′ − imr−1Âr

)

, (74)

where the prime denotes a derivative with respet r.

Using R, tm = µ0σR
2
and vm = (µ0σR)−1

as the length, time and veloity sales,

equation (71) an be written in the following dimensionless form

[

Dm − κ2
] ~̂
A− r−2

[

~erÂr − ~eφÂφ + i2m(~erÂφ − ~eφÂr)
]

= 0, (75)

where Dm ≡ d2

dr2
+ 1

r
d
dr
−
(

m
r

)2
and κ2 = k2+ i(ω̄+kRm); ω̄ = µ0σωR

2
and Rm = µ0σvR

are respetively the dimensionless frequeny and veloity. The latter is also known as the

magneti Reynolds number. For the free-spae region outside the ylinder, where σ = 0,

we have equation (75) with κ2 = k2.

6.2 Boundary Conditions

Boundary onditions at the interfae S between onduting and insulating regions follow

from the ontinuity of the magneti �eld and its vetor potential

[

~̂
B
]

S
=

[

~̂
A
]

S
= 0, (76)

where []S denotes the jump of the enlosed quantity aross S. In addition, ontinuity of

the magneti �eld (74) requires

[

Â′
φ

]

S
=

[

Â′
z

]

S
= 0. (77)

Thus the vetor potential has two more boundary onditions than the magneti �eld

though both are governed by the same equation (74). This due to the di�erent additional

onstraints imposed on eah quantity whih will be disussed later.
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6.2.1 Boundary Conditions for Magneti Vetor Potential

The solution of equation (75) for non-axisymmetri modes (m 6= 0) is ompliated by the

oupling of radial and azimuthal omponents. This oupling is removed by the substitu-

tion

Â± =
1√
2
(Âr ± iÂφ). (78)

The radial and azimuthal omponents an be reovered from the deoupling variables Â±

by

Âr =
1√
2
(Â− + Â+), (79)

Âφ =
i√
2
(Â− − Â+). (80)

The substitution redues equation (75) to

[

Dm±1 − κ2
]

Â± = 0, (81)

[

Dm − κ2
]

Â = 0, (82)

where Â ≡ Âz is used to simplify the notation. Then the general solution of equations

(81,82) inside the ylinder (r < 1) an be written as

Âi
±(r) = C i

±Im±1(κr), (83)

Âi(r) = C iIm(κr), (84)

whereas in the free spae between the ylinder and the oil generating the �eld (1 ≤ r <

rc) we have

Âo
±(r) = Co

±Km±1(kr) + Ce
±Im±1(kr), (85)

Âo(r) = CoKm(kr) + CeIm(kr), (86)

where Iν(x) and Kν(x) are the modi�ed Bessel funtions of the �rst and seond kind with

order ν [1℄, Ce
± and Ce

are supposed to be given onstants de�ning the external magneti,

whilst C i,o
± and C i,o

are unknown onstants. A similar general solution an be written

also for the magneti �eld. Note that the solution obtained above is not appliable to

k = 0 whih needs to be onsidered separately.

It is also important to note that there are six unknown onstants but only �ve bound-

ary onditions (76, 77) for the vetor potential. To determine the unknown onstants we

need to take into aount that the vetor potential in the free spae has to satisfy not
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only equation (81) but also Coulomb gauge

~∇ · ~A = 0, whih an be written as

(

r(Âo
+ + Âo

−)
)′

+ im(Âo
+ − Âo

−) + i2krÂo = 0. (87)

First of all, this onstraint has to be satis�ed by the external magneti �eld itself, whih

results in

Ce
+ + Ce

− = −i2Ce. (88)

Assuming this to be the ase, we obtain from equation (87)

Co
+ + Co

− = i2Co, (89)

whih is the required additional onstraint on the unknown oe�ients.

The unknown oe�ients C i,o, whih de�ne the z-omponent of vetor potential, an

be determined independently from the rest. For this omponent, boundary onditions

(76,77) take the form

C iIm(κ)− CoKm(k) = CeIm(k), (90)

C iκI ′m(κ)− CokK ′
m(k) = CekI ′m(k), (91)

and yield

C i = C̃e(kI ′m(k)Km(k)− kK ′
m(k)Im(k)), (92)

Co = −C̃e(κI ′(κ)Im(k)− kI ′m(k)Im(κ)), (93)

where C̃e = Ce/ (κI ′m(κ)Km(k)− kK ′
m(k)Im(κ)) ; I

′
m(x) = (Im−1(x) + Im+1(x)) /2 and

K ′
m(x) = − (Km−1(x) +Km+1(x)) /2 [1℄. For the remaining four unknown onstants C i,o

± ,

we have a system of four linear equations. The �rst equation is the gauge ondition (89).

Two more equations, one for the plus and another for the minus sign in the index, follow

from boundary ondition (76)

C i
±Im±1(κ)− Co

±Km±1(k) = Ce
±Im±1(k). (94)

The boundary ondition (77) for the azimuthal omponents yields the fourth equation

κ
(

C i
+I

′
m+1(κ)− C i

−I
′
m−1(κ)

)

−k
(

Co
+K

′(k) + Co
−K

′
m−1(k)

)

= k
(

Ce
+I

′(k)− Ce
−I

′(k)
)

, (95)

whih after some algebra an be written as

(C i
+ − C i

−)κIm(κ) + (Co
+ − Co

−)kKm(k) = (Ce
+ − Ce

−)kIm(k). (96)
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The solution of these four linear omplex equations is straightforward but too lengthy to

be written expliitly. Alternatively, equations (77, 94, 96) an easily be solved numerially

using, for example, the omplex LU fatorisation routines from the LAPACK software

pakage or their MATLAB implementation.

For the solution to be useful, we need to onsider also the speial ase of k = 0,

whih appears in the Fourier series representation of the general �eld distribution derived

later. For k = 0, the Bessel funtions, whih are partiular solutions of equations (81,82),

redue as follows Im(kr) → r|m|, Km(kr) → r−|m|
for m 6= 0 and K0(kr) → ln r, where

the last ase of m = 0 is pratially irrelevant as disussed later. Firstly, as a result of

these substitutions Coulomb gauge (87) redues to

Ce
+ = Co

− = 0, m > 0; (97)

Ce
− = Co

+ = 0, m < 0; (98)

Ce
+ + Ce

− = 0, m = 0. (99)

Note that equation (99) does not onstrain oe�ients Co
±, whih means that the indued

vetor potential outside the ylinder for mode k = m = 0 satis�es Coulomb gauge

automatially. These oe�ients desribe radial and azimuthal omponents of vetor

potential whih vary as ∼ r−1. It means that the respetive vetor potential is purely

irrotational and, thus, not assoiated with any physial magneti �eld. On the other

hand, aording to equations (79) and (99), external vetor potential for this mode an

have only the azimuthal omponent. It means that we may assume the indued vetor

potential to be purely azimuthal as well, whih orresponds to

C i,o
+ + C i,o

− = 0.

This ondition an be interpreted also as a gauge whih removes the irrotational radial

omponent of the indued vetor potential for mode k = m = 0. By the same argument

one an set Ce = 0 for this mode, whih removes irrotational axial omponent of the

external vetor potential, and owing to equations (92,93) the respetive indued �eld as

well. This ondition as well as equations (97,98) anel the terms of the indued vetor

potential varying as ∼ ln r. It means that we an ignore this speial ase and use the

following substitutions Im(k) → 1, Km(k) → 1, kI ′m(k) → |m| and kK ′
m(k) → −|m| in

equations (92, 93,94,95) when k = 0. The same holds also for κ = 0 whih ours when

k = ω̄ = 0.

6.2.2 Boundary Conditions for The Magneti Field

~B

Now let us turn to the solution for the magneti �eld

~̂
B whih an be written in the

same form as equations (83�86) for

~̂
A. In this ase, we use D instead of C to denote the
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six unknown oe�ients. We have the same number of unknown oe�ients as for the

vetor potential, but only three boundary onditions (76) whih require the ontinuity of

the magneti �eld aross the interfae and lead to the equations analogue to equations

(90,94) for the vetor potential. In ontrast to the vetor potential, the magneti �eld

has to be solenoidal not only outside the ylinder but in also inside it, whih leads to two

more equations

Do
+ +Do

− = i2Do, (100)

κ(Di
+ +Di

−) = −i2kDi, (101)

and a onstraint on the external magneti �eld analogous to equation (88). The the last

required equation follows from the irrotationality of the magneti �eld in the free spae

Do
+ = Do

−. (102)

The same onstraint applies also to the external magneti �eld.

Instead of solving for the magneti �eld diretly using the equations obtained above,

one an solve for the vetor potential and then use this solution to �nd �nd the magneti

�eld, if required. Therefore, we need to express the oe�ients de�ning magneti �eld in

the terms of those de�ning the vetor potential. This an be done using and expression

(74), whih yields

B̂± = i(mr−1Â∓ Â′ ± ikÂ±), (103)

B̂ = −i((Â+ − Â−)
′ + r−1((m+ 1)Â+ + (m− 1)Â−))/2 (104)

Using the basi properties of of Bessel funtions, after some algebra we obtain

Di
± = ∓(kC i

± + iκC i), (105)

Do
± = ∓k(Co

± − iCo), (106)

Di = −iκ(C i
+ − C i

−)/2, (107)

Do = ik(Co
+ − Co

−)/2, (108)

whih hold for k 6= 0 and and κ 6= 0. It an be easily veri�ed that the relations

above indeed satisfy the solenoidality and irrotationality onstraints de�ned by equa-

tions (100�101). For k = 0, using the same approah as before, we �nd from equations
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(103,104)

Do = −i(m− 1)Co
−, D

o
+ = i2mCo, Do

− = 0, m ≥ 0;

Do = −i(m + 1)Co
+, D

o
− = i2mCo, Do

+ = 0,m < 0;

Do = Do
± = 0,m = 0.

For κ 6= 0, the oe�ients Di
±and Di

remain de�ned by equations (105,107), but for

κ = k = 0 redue to

Di = −i(m + 1)C i
+, D

i
− = i2mC i, Di

+ = 0,m ≥ 0;

Di = −i(m − 1)C i
−, D

i
+ = i2mC i, Di

+ = 0, m < 0;

Di = −i(C i
+ − C i

−), D
i
± = 0, m = 0.

6.2.3 A omment on the urrent at the boundary

We now onsider the ondition for the normal omponent of urrent jn at the boundary.

As the urrent annot travel in free spae, where σ = 0, the normal omponent of

urrent must vanish at the boundary: jn = 0. This is an impliit boundary ondition

whih is satis�ed automatially owing to the onditions obeyed by the magneti vetor

potential. Aording to Ampere's law µ0
~j = ~∇× ~B, the absene of eletri urrent outside

onduting medium,

~∇× ~∇× ~A = ~∇~∇ · ~A− ~∇2 ~A = 0, is ensured by the Coulomb gauge

and the Laplae's equation, whih are both satis�ed by

~A in the free spae. Consequently,

the vanishing of jn at the boundary depends on the ontinuity of ~n · ~∇ × ~B aross the

boundary. This is ensured by the ontinuity of tangential omponents of

~B aross the

boundary, whih, in turn, follows from the ontinuty of

~A and the normal derivatives of

its tangental omponents. Note that only ∂nAn an be disontinious aros the boundary

but it a�ets only the ontinuity of Br but not that of Bφ or Bz.

6.3 The Applied Field

Now let us onsider a general external 3D magneti �eld and represent its vetor potential

by a double Fourier series in axial and azimuthal diretions

~Ae(~r) =

(M,N)
∑

(m,n)=−(M,N)

~̂
Ae

n,m(r)e
i(knz+mφ),

where kn = nk and k is the fundamental wave number. Aording to solution (85, 86),

the amplitude distribution of eah Fourier mode in a ylindrial region enlosing the
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symmetry axis but not the oil generating the �eld an be written as

~̂
Ae

n,m(r) = ~e+C
e
+;m,nIm+1(knr) + ~e−C

e
−;m,nIm−1(knr) + ~ezC

e
m,nIm(knr),

where ~e± = 1√
2
(~er ± i~eφ) and Ce

±;m,n and Ce
m,n are the oe�ients whih need to be

determined for a given

~Ae(~r). This is done numerially by �rst omputing

~Ae(~r) at disrete

points ~rm,n formed by the nodes of a uniform retangular grid (φm; zn) = (mπ/M,−M ≤
m < M ;nL/N,−N ≤ n < N) overing the surfae of ylinder r = 1 in the −L ≤ z < L,

where L is an axial ut-o� length.

6.3.1 Field generated by an arbitrary oil

To generate the free spae �eld produed by an arbitrary oil on the grid above the oil

is represented by a series of straight wire setions. The wire setions must form a losed

loop. The �eld generated by the oil an be approximated by the sum of �elds generated

by these disrete wire setions. The �eld generated by a �nite urrent is given by

~A(~r) =
µ0I0
4π

ˆ

L

d~r′

|~r − ~r′|

Speifying a set of wire elements W with straight individual elements w with a �nite

lengths Lw. The urrent in eah wire element is given by

~j = ~ewI0 where ~ew is a unit

vetor in the diretion of the wire element and I0 is the urrent in the loop. The equation

for the �eld generated by a single �nite wire element is given by

Aw(r, z) =
µ0I0
4π

ˆ Lw/2

−Lw/2

1

|r~er + z ~ez − ~ezz′|
dz′.

with the solution, in the frame of referene of the wire element, given as:

Aw(rw, zw) = ~ew
µ0I0
2πrw

ln

√

r2w + (L
2
− zw)2 + (L

2
− zw)

√

r2w + (L
2
+ zw)2 − (L

2
+ zw)

where rw and zw are radial and axial positions from the wire element. After transforming

to a single artesian frame of referene by applying the following transforms of rw → r

and zw → z to the above equation

z = ~ew · ~D

r =

√

~D · ~D − z2
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where

~D = ~r − ~rw. An approximation of the �eld generated by an arbitrary oil an be

given as the sum of all its individual elements

~Ae(~r) =
W
∑

w

~Aw(r, z).

This an be simply extended to multiple oils by inorporating all of their elements into

W and their urrents into I0.

6.4 Results

The 3D model desribed in setion has been developed as a tool to support further

researh, as suh in this work its usage is presented as a proof of onept and will not

ontain novel results.

6.4.1 Comparison To Axisymmetri Model

For validation we will now ompare the results of this 3D model with axisymmetri

analyti model presented in hapter 5. For this omparison a single axisymmetri oil of

radius rc = 2 plaed at zc = 0 will be used. In the 3D model this oil is represented by 90

wire segments. In the omparison both models use 1024 points in z, 128 points in φ and

100 points in r. Figure 27 shows that the φ omponent of the vetor potential for both

models are equal for various magneti Reynolds numbers and dimensionless frequenies.

Note that the imaginary omponent gives the �eld out of phase with the applied �eld

whih gives the indued �eld. The imaginary omponents are omitted for dimensionless

frequeny ω̄ = 0, orresponding to a ondutivity of σ = 0, beause they are identially

zero in the absene of a onduting medium. The results are presented in a artesian

oordinate system (x, y, z) with the positive x-axis oriented along φ = 0. The �elds are

transformed to artesian F (r, φ, z) → F (x, y, z) by the following transformations:

F (x, y, z) =







~ex

~ey

~ez






·







~erF (r, φ, z) cos(φ)− ~eφF (r, φ, z) sin(φ)

~erF (r, φ, z) sin(φ) + ~ephiF (r, φ, z) cos(φ)

~ezF (r, φ, z)







Figure 28 shows the magneti �ux lines for the applied and indued �eld for the

axisymmetri oil above. The �gures were generated using ParaView software. Note the

dual symmetry in the theta plane and the z = 0 plane.

The isolines of the y-omponent vetor potential for the axisymmetri oil are shown

in the y = 0 plane in �gure 29. The vetor potential is antisymmetri about x = 0 whih

orresponds to symmetry between φ = 0 and φ = π as is required by the axisymmetri

oil. With Rm = 0 the vetor potential is symmetri aross z = 0 whih is expeted
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Figure 27: Axial distribution of the azimuthal omponent of vetor potential indued at

the ylinder surfae (r = 1) by a o-axial irular urrent loop of radius rc = 2 plaed at

zc = 0 for various dimensionless frequenies ω̄ and magneti Reynolds numbers Rm. The
solid lines were omputed using an axisymmetri analytial model and dots 3D model.

for this oil. This symmetry is broken when the ylinder is in motion Rm 6= 0. The

ontinuity of the vetor potential Ây and its derivatives ∂xÂy and ∂zÂy an be seen at

the pipe wall (x = ±1), whih is required by the boundary onditions (76,77).

The isolines of the x-omponent of the magneti �eld (B̂x) in the y = 0 plane are

shown in �gure 30. Note that the single azimuthal omponent present in

~A leads to two

omponents, r and z, in ~B as is expeted from

~B = ~∇ × ~A. The ontinuity of B̂x and

its derivative ∂xB̂x at the pipe wall an also be seen in �gure 30. The x-omponent is

shown to be antisymmetri about the x-axis, whih again orresponds to symmetry in φ.

Again with Rm = 0 the �eld is symmetri aross z = 0, and this symmetry is broken by

the motion of the ylinder.

Figure 31 shows the isolines of the z-omponent the magneti �eld B̂z in the y = 0

plane. The symmetry aross z = 0 is also present in B̂z for Rm = 0. The ontinuity

B̂z at the pipe walls is required for the value but not for the derivatives. With Rm = 0,

the z-omponent of the applied �eld, shown by the real omponent in �gure 31 appears

smooth. However as ω 6= 0 this is not the ase as the indued �eld shown by the imaginary

omponent is also present, but annot be seen as it is dominated by the applied �eld.

6.4.2 A Non-Axisymmetri Example

To demonstrate the ability of this model to go beyond the the models presented in

hapters 4 and 5, a oil whih requires resolving in 3D is presented. The oil is of radius
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Figure 28: Real (left) and imaginary (right) parts of the magneti �ux lines for ω̄ = 1 and
Rm = 1 indued by a irular urrent loop of radius rc = 2 plaed oaxially at zc = 0.
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Figure 29: Isolines of the real (left) and imaginary (right) parts of Ây in the y = 0 plane

for ω̄ = 1, Rm = 0 (top) and Rm = 1 (bottom) indued by a irular urrent loop of

radius rc = 2 plaed oaxially at zc = 0.
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Figure 30: Isolines of the real (top) and imaginary (bottom) parts of B̂x in the y = 0
plane for ω̄ = 1, Rm = 0 (left) and Rm = 1 (right) indued by a irular urrent loop of

radius rc = 2 plaed oaxially at zc = 0.
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Figure 31: Isolines of the real (top) and imaginary (bottom) parts of B̂z in the y = 0
plane for ω̄ = 1, Rm = 0 (left) and Rm = 1 (right) indued by a irular urrent loop of

radius rc = 2 plaed oaxially at zc = 0.
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rc = 2 plaed in the x = 2 plane entred at (yc = 0, zc = 0). The magneti �ux lines for

this oil are shown in �gure 32 for the applied and indued magneti �elds.

The vetor potential in the y = 0 plane is shown in �gure 33. The antisymmetry in

z in the oil in this plane leads to the antisymmetri vetor potential for Rm = 0. This

symmetry is seen to be broken when Rm 6= 0. The ontinuity of Ây and its derivative

∂xÂy an be seen at the pipe wall (x = ±1), whih as before is required by the boundary

onditions (76,77).

Isolines of the omponents of the vetor potential in the x = 0 plane for oil entred

at (yc = 0, zc = 0) in the x = 2 plane are given in �gure 34 for Rm = 0 and in �gure

35 with Rm = 1. Symmetry about z = 0 for Rm = 0 an be seen in Âz whereas Âx

and Ây are antisymmetri about z = 0. These three symmetries ease to exist when the

ylinder is in motion Rm 6= 0. Similarly about the y-axis the Âx and Âz omponents are

antisymmetri and the Ây omponent is symmetri. These symmetries are una�eted by

the �ow whih is also symmetri about this axis. These symmetries are equivalent to the

symmetries in the oil with the anti symmetries aused by the opposite urrents found

at opposite sides of the oil.

The x-axis is normal to the �gures plane and thus Âx is equivalent to Âφ in this

plane. The ontinuity of the values of Âx, Ây and Âz whih is required by the boundary

onditions an be seen. The derivatives ∂yÂx and ∂yÂz are also smooth, as required. In

ontrast the derivatives of Ây, whih is equivalent to Âr in this plane, are not required

to be smooth aross the ylinder wall. These ontinuities hold for both the ylinder in

motion and at rest.

We will now look at the magneti �eld produed by the same oil. As before in the

axisymmetri example in the y = 0 slie where there is a single non-zero omponent of

~A the de�nition of the vetor potential

~B = ~∇ × ~A leads to the remaining omponents

being non-zero in

~B. The non-zero omponents of

~B in the y = 0 plane are shown in

�gure 36 with Rm = 0 and �gure 37 with Rm = 1. The ontinuity of B̂x and its normal

(x) derivative at the boundary is maintained. Only the value of B̂z is required to be

ontinuous, as an be seen its derivatives are not smooth at the boundary.

The magneti �eld omponents in the x = 0 plane generated by the oil above, in phase

and out of phase with the applied �eld, for a stationary ylinder and ylinder in motion

are shown in �gures 38 and 39, respetively. We an see that the omponent normal to the

plane, B̂y, is the only omponent for whih the derivative aross the boundary is smooth.

This is beause it is de�ned by the tangential derivatives of tangential omponents of

~A,

whih are ontinuous aross the interfae The other omponents of

~B are dependent on

the Âr omponent whih has been shown to not be smooth in this plane. We an see

the expeted symmetries in the y axis with B̂x being symmetri and B̂y and B̂z being

antisymmetri. The symmetries in the z axis, symmetri for B̂x and B̂y but antisymmetri

for B̂z, are again broken by Rm 6= 0.
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Figure 32: Real (left) and imaginary (right) parts of the magneti �ux lines for ω̄ = 1
and Rm = 1 indued by a irular urrent loop of radius rc = 2 plaed parallel to the

(y, z)-plane at ~xc = (2, 0, 0).

81



−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

Figure 33: Isolines of the real (left) and imaginary (right) parts of Ây in the y = 0 plane

for ω̄ = 1 and Rm = 0 (top) and Rm = 1 (bottom) indued by a irular urrent loop of

radius rc = 2 plaed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 34: Isolines of the real (left) and imaginary (right) parts of Âx (top), Ây (middle)

and Âz (bottom) in the x = 0 plane for ω̄ = 1 and Rm = 0 indued by a irular urrent

loop of radius rc = 2 plaed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 35: Isolines of the real (left) and imaginary (right) parts of Âx (top), Ây (middle)

and Âz (bottom) in the x = 0 plane for ω̄ = 1 and Rm = 1 indued by a irular urrent

loop of radius rc = 2 plaed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 36: Isolines of the real (left) and imaginary (right) parts of B̂x (top) and B̂z

(bottom) in the y = 0 plane for ω̄ = 1 and Rm = 0 indued by a irular urrent loop of

radius rc = 2 plaed parallel to the (y, z)-plane at ~xc = (2, 0, 0).

85



−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

Figure 37: Isolines of the real (left) and imaginary (right) parts of B̂x (top) and B̂z

(bottom) in the y = 0 plane for ω̄ = 1 and Rm = 1 indued by a irular urrent loop of

radius rc = 2 plaed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 38: Isolines of the real (left) and imaginary (right) parts of B̂x (top), B̂y (middle)

and B̂z (bottom) in the x = 0 plane for ω̄ = 1 and Rm = 0 indued by a irular urrent

loop of radius rc = 2 plaed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 39: Isolines of the real (left) and imaginary (right) parts of B̂x (top), B̂y (middle)

and B̂z (bottom) in the x = 0 plane for ω̄ = 1 and Rm = 1 indued by a irular urrent

loop of radius rc = 2 plaed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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7 Conlusions

This work has introdued three models whih are designed to be used for the development

of eddy urrent �owmeters. In hapter 4 a 2D model was used to investigate improvements

to the phase shift �owmeter. Seondly, in hapter 5 a axisymmetri ylindrial model was

introdued whih was designed to investigate the pulsed �eld, or transient eddy urrent,

�owmetering tehnique. Finally, the mathematial basis for a fully three dimensional

ylindrial model was presented in hapter 6 as a means for future investigation.

7.1 Resaled Phase Shift Flowmeter

The onept of an improved phase shift �owmeter has been presented in hapter 4. The

resaled measurement sheme whih has been presented is muh less suseptible to the

variation of the eletrial ondutivity of a liquid metal �ow than the original design

introdued in [31℄. The resaling has been arried out by introduing a seond phase shift

to the measurement sheme. Previously, only the internal phase shift whih is indued

by the �ow and taken as a measurement between two reeiving oils was onsidered. In

this work, the external phase shift was introdued whih is the phase shift between the

sending and reeiving oils. In ontrast to the internal phase shift, the external phase

shift is relatively una�eted by the veloity of the �ow and depends predominantly on

the ondutivity of the layer. By resaling the internal phase shift with the external, a

measurement sheme is produed whih an strongly redue the e�et of ondutivity on

the veloity measurements. For a reasonable range of ondutivities the e�et has been

shown to be virtually eliminated. Multiple approahes to this resaling were investigated

and two e�etive resalings were found. The hoie between these two resalings depends

on the a frequeny of the applied �eld. At low frequenies ω̄ . 1, when the phase shift

varies diretly with the frequeny, the ondutivity an be eliminated by resaling the

internal phase shift with the square of the external phase shift. At higher a frequenies

ω̄ & 1, where the shielding e�et makes the variation of phase with the frequeny non-

linear, the ondutivity an be eliminated by resaling the internal phase shift diretly

with the external one. Note that for the example of a liquid sodium �ow with σ =

8.3 × 106 S/m and hannel half width giving the harateristi size as H ∼ 0.1m the

dimensionless parameters ω̄ ∼ 1 and Rm ∼ 1 orrespond to a frequeny

ω
2π

∼ 60Hz and

veloity v ∼ 1m/s, respetively.

The appliability of the �rst resaling is limited to relatively low frequenies, espeially

for realisti sending oils whih generate the magneti �eld dominated by long-wave

harmonis. A potential disadvantage of using low a frequenies may be the relatively

low sensitivity of the phase-shift �owmeter. From this point of view, it seems more

attrative to operate the �owmeter in the frequeny range with a moderate shielding

e�et where the seond (diret) resaling is appliable. The results presented in this
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hapter may be useful for designing a next-generation phase-shift �owmeter whih will

have inreased robustness to the variations of the eletrial ondutivity of liquid metal,

whih may be required in some metallurgial and other appliations.

7.2 Transient Eddy Currents

A numerial investigation has been arried out into the transient transient eddy-urrent

�owmetering method for liquid metal appliations. The priniple of the transient eddy

urrent design is to reate an eddy urrent, for example with a pulse of a magneti �eld,

and then somehow trak the urrent as it is adveted by a onduting �ow. The eigenvalue

analysis showed that eddy urrents deay by roughly three orders of magnitude during

the harateristi magneti di�usion time, given by τm = µ0σR
2
, whih is about 0.1s for

a typial liquid sodium �ow with σ = 8.3 × 106 S/m [28℄ with the length sale given by

the radius of the pipe, of R = 0.1m. A onsequene of this is that the distane travelled

by an eddy urrent during the time it is measurable sales with Rm. Thus for for small

Rm the measurement devie must be plaed su�iently lose to the generating oil(s).

Several measurement systems were investigated, traking di�erent features of the eddy

urrent distribution. These features whih were onsidered were the zero rossing points

of the magneti �ux and the extrema and spatial derivatives. The temporal derivative

is equivalent to the emf, E , and the extrema are identi�ed by the zero rossing in the

derivatives. Alongside the emf, the extrema given by zero rossings in its temporal and

spatial derivatives were also investigated. The number of measurement oils whih are

required varies between the types of extrema. Temporal extrema requires only one loop

whilst spatial extrema require two measurement oils to detet.

With a mono-harmoni eddy urrent distribution, the zero rossings of the emf and its

spatial extrema behave in the same way, and remain separated by a quarter wavelength.

The veloity of the �ow an be alulated by v = z/t where t is the time after the pulse

generating the eddy urrent when the value of E or ∂zE passes through zero at and z is

the distane the zero rossing has travelled during that time. The temporal extrema of

the emf follow after the zero rossing whih ompliates the measurement sheme as this

delay depends on the ondutivity of the medium as well as the eddy urrent distribution.

This delay an be removed by using two pik-up oils plaed at z1 and z2 then the veloity

of the medium an be found as v = (z2 − z1)/(t2 − t1), where t1 and t2 are the times at

whih temporal extrema are deteted in the respetive oil, note that the measurement

loops must be su�iently far from the initial zero rossing point.

More realisti eddy urrent distributions were onsidered. These were generated by

either two anti-symmetri irular urrent loops or a single urrent loop. In the anti-

symmetri set-up, the zero rossing point of emf as well as the subsequent temporal

extremum was found to travel synhronously with the medium in the same way as with
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the mono-harmoni wave onsidered before. But this was not the ase for the two spatial

extrema whih appear at both urrent loops in this set-up. These two extrema were

found to move at substantially di�erent veloities from that of the medium. This result

highlights the ruial importane of symmetry. The symmetry holds for zero rossing

points of emf but not for the two spatial extrema in the anti-symmetri set-up. In a

single-loop set-up where a a spatially symmetri eddy urrent distribution is generated,

the spatial extremum of emf was found to travel synhronously with the medium, as was

the ase in the mono-harmoni wave. In this set-up, the veloity of the medium an be

determined by also traking axial extremum of the magneti �ux, whih oinides with

the zero rossing of the radial omponent of the magneti �eld. It has to be noted that

beause of the initial tilt of the magneti �ux lines in the diretion motion, the extremum

of magneti �ux arrives at a given observation point ahead that of emf. This time lead an

be eliminated similarly to the delay of temporal extremum of emf by using two sensors

as disussed above.

Finally, we analysed the e�et of a possible urrent asymmetry in the two-loop set-up,

and showed that it gives rise to a drift of the emf zero rossing point. this leads to the

onlusion that symmetry of the system is ruial for transient-eddy �owmetering. It an

be inferred that a tilted single loop would also lead to an asymmetri initial eddy urrent

distribution and would give rise to a drift of the emf zero rossing point. Asymmetry of a

few per ent was found to result in the zero drift with a dimensionless veloity Rm ∼ 0.1.

For the harateristi parameters used at the beginning of this setion, the respetive

physial veloity is v ∼ 0.1m/s. It means that with this level of asymmetry, whih is not

unlikely in pratie, transient eddy urrent �owmetering an be reliable only for the �ows

with Rm & 1. At lower veloities, a more aurate symmetry adjustment or alibration

of the devie may be required. The results of this study may be useful for designing more

aurate and reliable transient eddy-urrent �owmeters for liquid metals.

7.3 Three Dimensional Model

The mathematial bakground for a three dimensional model had been derived. This

model is designed to provide a framework for modelling ontatless eletromagneti �ow-

meters, spei�ally for eddy urrent �owmeters suh as the phase shift �owmeter or a

transient eddy urrent �owmeter. The model has been designed to operate with a simple

uniform �ow pro�le de�ned by the magneti Reynolds number of the �ow. The models

is designed with �elds generated by alternating urrents in mind and a dimensionless

frequeny is another input to the system. A set of boundary onditions for solving the

model along with justi�ation for there validity is also presented.

A tehnique for applying this model for a arbitrary exiting oils along with results

for some simple oil designs are inluded, with the simple oil designs the possibility of
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multiple oils is introdued. The arbitrary nature of the shape of the oil has not been

displayed however as the oil is represented by a series of straight wire elements any

wire is possible from simple polygons to omplex solenoidal designs. This model was

reated to support researh into liquid metal �owmeters. In its urrent state it an be

used rereate some existing �owmeters to investigate improving auray and sensitivity

of the sending and reeiving oils, though varied oil designs. With the addition of a

pulsed �eld approah, whih an be implemented in a nearly idential way to hapter 5

this model ould be used to further test the e�et of asymmetry suh as investigating

the tilted single loop disussed above. In further work this model ould serve as a basis

for introduing a simple �ow pro�le into these models, suh as a Poiseuille �ow, whih

would take the model loser still to reality. The limit of the alulation domain based

on the urrent layer an be simply removed by utilising the solution for the oil as the

applied �eld throughout the free spae in the model, allowing inlusion of measurement

oils further from the pipe.
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A Appendix

A.1 Code Files

A.1.1 Phase Shift Flowmeter Code for Chapter 4

1 function [Ar]=TwoD_simple(rm,wbar,k,xrange,yrange)

2 % Solution for a field genreated by standing harmoninc wave

3 %

4 % Axy=flowmeter.TwoD_simple(1,1,1,-5:0.1:5,-2:0.1:1)

5

6 %%%%%%%%%%%%%%%%%%%%%%%%% Calc Ay+ & Ay- %%%%%%%%%%%%%%%%%%%%%%%%%%%

7 Arp=zeros(size(yrange,2),size(xrange,2));

8 [ka,c0,c1,c2,c3,d2]=coeffs(k);

9 for m=1:numel(yrange)

10 y=yrange(m);

11 for n=1:numel(xrange)

12 x=xrange(n);

13 Arp(m,n)=A(y,k)*exp(1i*k*x);

14 end

15 end

16

17 [ka,c0,c1,c2,c3,d2]=coeffs(-k);

18 Arn=zeros(size(yrange,2),size(xrange,2));

19 for m=1:numel(yrange)

20 y=yrange(m);

21 for n=1:numel(xrange)

22 x=xrange(n);

23 Arn(m,n)=A(y,-k)*exp(1i*-k*x);

24 end

25 end

26

27 %%%%%%%%%%%%%%%%%%%%%%%% Combines Ay+ & Ay- into A %%%%%%%%%%%%%%%%%%%%%%

28 Ar=1/2*(Arp+Arn);

29

30 %%%%%%%%%%%%%%%%%%%%%%%%%%% NESTED FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Solution %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 function res=A(y,k)

33 if y<=-1

34 res=c3*exp(abs(k)*(y+1));

35 elseif y>=1

36 res=c0*exp(abs(k)*(y-1))+c1*exp(-1*abs(k)*(y-1));

37 else

38 res=c2*sinh(ka*y)+d2*cosh(ka*y);

39 end

40 end

41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Coefficients %%%%%%%%%%%%%%%%%%%%%%%%%%%%
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42 function [ka,c0,c1,c2,c3,d2]=coeffs(k)

43 ka=sqrt(k^2+1i*(wbar+k*rm));

44 c0=1/(k^2); %sets amplitude of function based on k

45 c2=c0*abs(k)/(abs(k)*sinh(ka)+ka*cosh(ka));

46 d2=c0*abs(k)/(abs(k)*cosh(ka)+ka*sinh(ka));

47 c1=d2*cosh(ka)+c2*sinh(ka)-c0;

48 c3=d2*cosh(ka)-c2*sinh(ka);

49 end

50 end
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1 function [Axy,X,Y]=TwoD_2wire(rm,wbar,N,xlimit,Y,s,h1,h2)

2 % Solution for a field genreated by 2 wires

3 %

4 % Axy=flowmeter.TwoD_2wire(0,1,1024,5,-2:0.1:1.5,1,1,1)

5 % for specific y values enter y_step_size as a cell containing the

6 % required y value caclulation is made for x in the range

7 % -1*xlimit > x => xlimit with x step size 2*xlimit/N

8 %

9 % wire positions are given by s, h & h1 with the wires being located in

10 % the two positions given by (-s,1+h1) and (s,1+h2), thus symmetrically

11 % about the y axis as a distace of s and heights h1 and h2 above the flow

12 %

13 % options for output [Axy],[Axy,X],[Axy,X,Y]

14

15 %%%%%%%%%%%%%%%%%%%%%%%%% SETUP VARIABLES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % setup variables

17 J = fftshift(-N/2:N/2-1);

18 klimit=N*pi/xlimit;

19 K=J*klimit/N;

20 h1=h1+1; h2=h2+1; % as field generated h above boundary at 1

21

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SOLUTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 % genreates A(hat)(y:k)

24 Ayk=complex(zeros(size(Y,2),size(J,2))); % Matrix to be filled in loop

25

26 for iK=1:N % k counter

27 k=K(iK); % current k value

28 [ka,c1,c2,c3,d2]=coeffs(k,wbar,rm,s,h1,h2); % generates coefficients

29 Ayk(:,iK)=A(Y,k,ka,c1,c2,c3,d2,s,h1,h2); % generate A(hat)(y;k)

30 end

31

32 %%%%%%%%%%%%%%%%%%%%%%% Inverse Fourier Transform %%%%%%%%%%%%%%%%%%%%%%%

33 % calulate inverse dicrete fourier transform of A(hat)

34 Axy=fftshift( ifft(Ayk,[],2) ,2);

35 % generates X values as second output if varargout exits

36 X=((2*xlimit/N)-xlimit):(2*xlimit/N):xlimit;

37 end

38

39

40 %%%%%%%%%%%%%%%%%%%%%%%%%%% SUB-FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

41 %%%%%%%%%%%%%%%%%%%%%%%%%%% Coefficient Function %%%%%%%%%%%%%%%%%%%%%%%%%%

42 function [ka,c1,c2,c3,d2]=coeffs(k,wbar,rm,s,h1,h2)

43 ka=sqrt(k^2+1i*(wbar+k*rm));

44

45 c0=A0(1,k,s,h1,h2);

46
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47 c2=c0*abs(k)/(abs(k)*sinh(ka)+ka*cosh(ka));

48 d2=c0*abs(k)/(abs(k)*cosh(ka)+ka*sinh(ka));

49 c1=d2*cosh(ka)+c2*sinh(ka)-c0;

50 c3=d2*cosh(ka)-c2*sinh(ka);

51 end

52

53 %%%%%%%%%%%%%%%%%%%%%%%% Function for solution %%%%%%%%%%%%%%%%%%%%%%%%%%

54 function res=A(y,k,ka,c1,c2,c3,d2,s,h1,h2)

55 belowLayer = y<-1;

56 aboveLayer = y>1;

57 inLayer = ~(belowLayer | aboveLayer);

58 res = complex(zeros(numel(y),1));

59

60 if any(belowLayer)

61 res(belowLayer) = c3*exp(abs(k)*(y(belowLayer)+1));

62 end

63 if any(aboveLayer)

64 res(aboveLayer) = A0(y(aboveLayer),k,s,h1,h2)...

65 + c1*exp(-1*abs(k)*(y(aboveLayer)-1));

66 end

67 if any(inLayer)

68 res(inLayer) = c2*sinh(ka*y(inLayer))+d2*cosh(ka*y(inLayer));

69 end

70

71 end

72

73 %%%%%%%%%%%%%%%%%%%%%%%%%% A0(y;k) function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

74 function res=A0(y,k,s,h1,h2)

75 if round(k*10000)==0;

76 res=zeros(size(y)); % if k close to 0, A0(y;k) set to 0

77 else

78 res= exp( 1i*k*s)*exp(-1*abs(k*(y-h1)))/(2*abs(k))...

79 -exp(-1i*k*s)*exp(-1*abs(k*(y-h2)))/(2*abs(k));

80 end

81 end

100



A.1.2 Transient Eddy Current Flowmeter Code for Chapter 5

1 function [ Adt,z ] = Cycol_squarewave_2wire(rm,Ff,N,zlimit,r,s,h,nPoints...

2 ,tau,padTo)

3 %FLOWMETER_Cycol_SQUAREWAVE_2wire

4 % Axisymmetric model with field generate by 2 wires with pulsed current.

5 % Adt = flowmeter.Cycol_squarewave_simple(x,y,k,Rm,Ff,nPoints,tau,padTo)

6 freqs = waveshape_frequencies(nPoints,Ff);

7 ftpdt = waveshape_gaussianFilter_squareWave_derivative( nPoints,tau );

8 data = complex(zeros(N,numel(r),nPoints)); % prealloc

9 for ifreq = 1:nPoints

10 if freqs(ifreq)==0

11 data(:,:,ifreq)=0;

12 else

13 data(:,:,ifreq)=Cycol_2wire(r,N,zlimit,rm,freqs(ifreq),h,s);

14 end

15 end % generate solutions for frequencies

16 if ~exist(’padTo’,’var’); padTo = numel(points); end

17 [Adt] = waveshape_ifft_PaddingAndDerivative(data,ftpdt,padTo);

18 if nargout>1

19 [~,z] = Cycol_2wire(r,N,zlimit,0,1,h,s);

20 end

21 end

22

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% SUB FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 function [ frequencies ] = waveshape_frequencies( nPoints,...

25 FundamentalFrequency )

26 %TOOLS_WAVESHAPE_FREQUENCIES

27 % generates frequencies form numebr of points nad fundamental frequency

28 frequencies = (0:FundamentalFrequency:(nPoints-1)*...

29 FundamentalFrequency) - FundamentalFrequency*nPoints/2;

30 end

31

32 function [ ftpdt ] = waveshape_gaussianFilter_squareWave_derivative(...

33 nPoints,tau)

34 %TOOLS_WAVESHAPE_GAUSSIANFILTER_SQUAREWAVE_DERIVATIVE

35 % ftpdt = WAVESHAPE_GAUSSIANFILTER_SQUAREWAVE_DERIVATIVE( nPoints,tau )

36 % generates fourier transform of time derivative of square wave with a

37 % gaussian filter with nPoints and a halfwidth of the peaks of tau

38 tu = nPoints/4; % index of upward peak

39 td = 3/4*nPoints-1; % index of downward peak

40 height = 1 ; % maximum height of peaks

41 Au = height; % set height up

42 Ad = -height; % set height down

43 tp = 1:nPoints; % time indicies

44 if tau == 0

45 % do not apply filter
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46 pdt = zeros(size(tp));

47 pdt([tu,td+1])=[Au,Ad];

48 else

49 % derivative of points (with gaussian filter if tau ~=0)

50 pdt = Au*(exp(-1*((tp-tu)/tau).^2)) + Ad*(exp(-1*((tp-td)/tau).^2));

51 end

52 ftpdt = fftshift(fft(pdt)); % generate ftpointsdt

53 end

54

55 function [A,z] = Cycol_2wire(r,N,zlimit,rm,wbar,h,s)

56 % solution for 2 wire axisymmetric model ac with frequency wbar

57 k = localGenerateK(N,zlimit);

58 A = RKSolution(r,k,rm,wbar,h,s); % generate A(k,r)

59 A = fftshift(ifft(A,[],1),1); % transform to A(z,r)

60 A = bsxfun(@times,r.’,A.’);% rescale and convert A(z,r) to A(r,z)

61 if nargout>1

62 z=((2*zlimit/N)-zlimit):(2*zlimit/N):zlimit;

63 end

64 end

65

66 function k = localGenerateK(N,zlimit)

67 J = fftshift((-N/2):(N/2 -1));

68 k = J*pi/zlimit;

69 end

70

71 function Ark = RKSolution(r,k,rm,wbar,h,s)

72 % Generates A(r,k) from A(r)

73 Ark = complex(zeros(numel(k),numel(r))); % prealloc

74 for ik = 1:numel(k)

75 if k(ik) == 0 % tolerance?

76 Ark(ik,:) = 0;

77 continue

78 end

79 Ark(ik,:) = RSolution(r,k(ik),wbar+k(ik)*rm,h,s);

80 end

81 end

82

83 function [Ar] = RSolution(r,k,wbar,h,s)

84 % generates A(r)

85 % logical indices

86 in_layer = r<1;

87 layer_to_wire = (r<h) & ~in_layer;

88 beyond_wire = r>=h;

89 % prealloc

90 Ar = complex(zeros(1,numel(r)));

91 A0 = Azero(h,k,s);

92 k=abs(k);
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93 [A,C,D] = coeffs(k,wbar,h);

94 if any(in_layer)

95 Ar(in_layer) = A0*D* besseli(1, kappa(k,wbar)*r(in_layer) );

96 end

97 if any(layer_to_wire)

98 Ar(layer_to_wire)= A0*besseli(1, k*r(layer_to_wire)) +...

99 A0*C* besselk(1, k*r(layer_to_wire) );

100 end

101 if any(beyond_wire)

102 Ar(beyond_wire) = A0*A*besselk(1, k*r(beyond_wire)) +...

103 A0*C*besselk(1, k*r(beyond_wire) );

104 end

105 end

106

107 function A0 = Azero(h,k,s)

108 % Calulates A0

109 bkh = besselwrapper(abs(k)*h);

110 I0 = bkh(1);

111 I1 = bkh(2);

112 K0 = bkh(3);

113 K1 = bkh(4);

114 A0 = h*2*1i*sin(k*s)*K1 /( abs(k)*( I0*K1 + K0*I1));

115 end

116

117 function [A,C,D] = coeffs(k,wbar,h)

118 x = kappa(k,wbar);

119 bk = besselwrapper(k);

120 bx = [besseli(0,x), besseli(1,x)];

121 A = besseli(1,k*h)./besselk(1,k*h);

122 C = ( -x * bk(2)/bx(2) + k * bk(1)/bx(1) )./ ...

123 ( x * bk(4)/bx(2) + k * bk(3)/bx(1) );

124 D = ( k * bk(2)/bk(4) + k * bk(1)/bk(3) )./ ...

125 ( k * bx(2)/bk(4) + x * bx(1)/bk(3) );

126 end

127

128 function out = kappa(k,wbar)

129 out = sqrt(k^2+1i*wbar);

130 end

131

132 function [out] = besselwrapper(in)

133 % wrapper funciton for bessel functions

134 out = zeros(numel(in),4);

135 out(:,1) = besseli(0,in);

136 out(:,2) = besseli(1,in);

137 out(:,3) = besselk(0,in);

138 out(:,4) = besselk(1,in);

139 end
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140

141 function [Adt] = waveshape_ifft_PaddingAndDerivative(data,ftpdt,padTo)

142 %TOOLS_WAVESHAPE_IFFT_PADDINGANDDERIVATIVE

143 % Adt = TOOLS_WAVESHAPE_IFFT_PADDINGANDDERIVATIVE(data,ftpdt,padTo)

144 % calculates idft of data scaled with ftpdt in 3rd dimension

145 % optional 3rd input allows symmetric padding of the spectrum

146 Adt = bsxfun(@times,data,permute(ftpdt,[3,1,2]));

147 if nargin>2

148 if padTo>size(Adt,3)

149 Adt = localSymmetricPadArrayIn3rdDimension(Adt,padTo);

150 end

151 end

152 Adt=real(ifft(ifftshift(Adt,3),[],3));

153 end

154

155 function out = localSymmetricPadArrayIn3rdDimension(array,padTo)

156 % Pad array (in spectral space) for finer resolution in real.

157 out = complex(zeros(size(array,1),size(array,2),padTo));

158 arrayStart = floor((padTo-size(array,3))/2);

159 arrayEnd = arrayStart+size(array,3)-1;

160 out(:,:,arrayStart:arrayEnd)=array;

161 end

104



A.1.3 3D Model Codes for Chapter 6

1 function [New_field,TT,RR,ZZ] = Cycol_3d(inputfile,coiltype,coildim)

2 %

3 inputs.(inputfile);

4 % Provide coil, generate field, FFT

5 nR_gen = 1;

6 [tt,rr,zz] = makeCylindricalPoints(...

7 [-R_grid,R_grid,-Z_domain,Z_domain],[nT,nR_gen,nZ]);

8 [TT,RR,ZZ] = ndgrid(tt,rr,zz);

9 XX = RR.*cos(TT); YY = RR.*sin(TT);

10 [wire_points] = makecoil(coiltype,coildim);

11 [field] = generate_coil_field(wire_points,XX,YY,ZZ); % ’double’,[-1,1]);

12 [field] = field_to_cylindrical(field,TT);

13 [FTfield] = fftshift(fft( fftshift(fft( field ,[],1),1) ,[],3),3);

14 R = linspace(0,R_grid,nR);

15 % Generate Field

16 [New_field] = Scaled_main_loop(FTfield,nZ,nT,R,R_wall,R_domain,...

17 v,mu0,Sigma,omega,k);

18 if nargout>1;[TT,RR,ZZ]=ndgrid(tt,R,zz);end

19 end

20

21 function [New_field] = Scaled_main_loop(FTfield,nZ,nT,...

22 R,R_wall,R_domain,v,mu0,sigma,omega,k)

23 %% Applied field coeffs ( at r=R_domain )

24 AtR = FTfield(:,:,:,1); ArR = FTfield(:,:,:,2); AzR = FTfield(:,:,:,3);

25 FpR = ArR+1i.*AtR; FmR = ArR-1i.*AtR;

26 %% inputs for main loop

27 nN = nZ; N = (-nN/2:1:nN/2-1); % z modes

28 nM = nT; if nM==1; M=0; else M = (-nM/2:1:nM/2-1); end % theta modes

29 %% Pre loop allocation

30 r_in_flow = R < R_wall ;

31 Fp = zeros(size(R)); Fm = zeros(size(R)); Az = zeros(size(R));

32 Field_spec = complex(zeros(numel(M),numel(R),numel(N),3));

33 %% Main loop

34 fprintf(’Entering main loop... \n’)

35 for i_n= 1:numel(N)

36 %% Loop variables

37 n=N(i_n); %% wavenumber in z dir

38 kn = k*n;

39 if n==0;kn=1e-10;end

40 x=kappa(v,kn,mu0,sigma,omega); kn=abs(kn);

41 %% inner loop

42 for i_m=1:numel(M); % ####

43 %% Loop variables

44 m = M(i_m); %wavenumber in theta dir

45 M_temp = [m-1 , m , m+1];
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46 BESSI_x = bsxfun(@besseli, M_temp.’,x*R(r_in_flow)) ;

47 BESSI_k = bsxfun(@besseli, M_temp.’,kn*R(~r_in_flow));

48 BESSK_k = bsxfun(@besselk, M_temp.’,kn*R(~r_in_flow));

49 %% Scaled bessel functions for boundary conditions

50 scaled = 1;

51 BESSI_r_domain = besseli(M_temp,kn*R_domain,scaled) ;

52 BESSI_r_wall_x = besseli(M_temp,x*R_wall,scaled) ;

53 BESSI_r_wall_k = besseli(M_temp,kn*R_wall,scaled) ;

54 BESSK_r_wall_k = real(besselk(M_temp,kn*R_wall,scaled)) ;

55 %% Scaling Exponents

56 Scale_Exponent_I_k_Domain =-abs(real(kn*R_domain));

57 Scale_Exponent_Dbar = -Scale_Exponent_I_k_Domain;

58 Scale_Exponent_I_x_Wall = -abs(real(x*R_wall));

59 Scale_Exponent_I_k_Wall = -abs(real(kn*R_wall));

60 Scale_Exponent_K_k_Wall = kn*R_wall;

61 %% set Dbars

62 Dbarp = FpR(i_m,1,i_n)./ BESSI_r_domain( 3 );

63 Dbarm = FmR(i_m,1,i_n)./ BESSI_r_domain( 1 );

64 Dbar = AzR(i_m,1,i_n)./ BESSI_r_domain( 2 );

65 %% solve boundary condition matrix

66 lastwarn(’’)

67 [C,Cp,Cm,D,Dp,Dm] = Scaled_solve_boundary_condition_matrix(...

68 BESSI_r_wall_x(2),BESSI_r_wall_x(3),BESSI_r_wall_x(1),...

69 BESSI_r_wall_k(2),BESSI_r_wall_k(3),BESSI_r_wall_k(1),...

70 BESSK_r_wall_k(2),BESSK_r_wall_k(3),BESSK_r_wall_k(1),...

71 Dbar,Dbarp,Dbarm,...

72 Scale_Exponent_I_k_Wall,Scale_Exponent_Dbar,...

73 Scale_Exponent_K_k_Wall,R_wall,kn,x,m) ;

74 % Calculate coefficients (& remove scaling)

75 Dbarp = Dbarp.*exp(-Scale_Exponent_Dbar);

76 Dbarm = Dbarm.*exp(-Scale_Exponent_Dbar);

77 Dbar = Dbar .*exp(-Scale_Exponent_Dbar);

78 %

79 Cp = Cp.*exp(Scale_Exponent_I_x_Wall);

80 Cm = Cm.*exp(Scale_Exponent_I_x_Wall);

81 C = C .*exp(Scale_Exponent_I_x_Wall);

82 %

83 Dp = Dp.*exp(Scale_Exponent_K_k_Wall);

84 Dm = Dm.*exp(Scale_Exponent_K_k_Wall);

85 D = D .*exp(Scale_Exponent_K_k_Wall);

86 % Generate field components (in and out of flow)

87 Fp( r_in_flow) = Cp.*BESSI_x(3,:) ;

88 Fp(~r_in_flow) = Dbarp*BESSI_k(3,:) + Dp*BESSK_k(3,:) ;

89

90 Fm( r_in_flow) = Cm.*BESSI_x(1,:) ;

91 Fm(~r_in_flow) = Dbarm*BESSI_k(1,:) + Dm*BESSK_k(1,:) ;

92
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93 Az( r_in_flow) = C.*BESSI_x(2,:) ;

94 Az(~r_in_flow) = Dbar.*BESSI_k(2,:) + D*BESSK_k(2,:) ;

95 % Transform back from decoupling variables

96 At = 1/2i*(Fp-Fm) ;

97 Ar = 1/2 *(Fp+Fm) ;

98 % Store f(theta,r,z)

99 Field_spec(i_m,:,i_n,1) = At ;

100 Field_spec(i_m,:,i_n,2) = Ar ;

101 Field_spec(i_m,:,i_n,3) = Az ;

102 end

103 end

104 % Invert FFT

105 New_field = ifft(ifft(ifftshift(ifftshift(Field_spec,3),1),[],3),[],1);

106 end

107

108 function [C,Cp,Cm,D,Dp,Dm] = Scaled_solve_boundary_condition_matrix(...

109 ix,ipx,imx,ik,ipk,imk,kk,kpk,kmk,Dbar,Dbarp,Dbarm,...

110 Scale_Exponent_I_k_Wall,Scale_Exponent_Dbar,...

111 Scale_Exponent_K_k_Wall,R,k,x,m)

112 Scale_Exponent_RHS = Scale_Exponent_Dbar + Scale_Exponent_I_k_Wall;

113 %% Solve coefficients for Az

114 LHS1 = [... C , D

115 x*(ipx+imx) , k*(kmk+kpk) ;

116 ix , -kk ];

117 RHS1 = [...

118 k*Dbar*(imk+ipk) ;

119 Dbar*ik ];

120 RHS1 = RHS1*exp( -Scale_Exponent_RHS);

121 SOL1 = LHS1\RHS1;

122 C = SOL1(1);

123 D = SOL1(2);

124 %% Solve coefficients for F+-

125 LHS2 = [... C+ , C- , D+ , D-

126 x*ix-(m+1)/R*ipx , -(x*ix+(m-1)/R*imx) , -(-k*kk-(m+1)/R*kpk) ,...

127 -k*kk+(m-1)/R*kmk ;

128 0 , 0 , kk , kk ;

129 ipx , 0 , -kpk , 0 ;

130 0 , imx , 0 , -kmk ];

131 RHS2 = [Dbarp*(k*ik-(m+1)/R*ipk) - Dbarm*(k*ik+(m-1)/R*imk) ;

132 (Dbarp+Dbarm+2i*Dbar)*ik+2i*D + 2i*D*exp(Scale_Exponent_K_k_Wall...

133 + Scale_Exponent_RHS) ;

134 Dbarp*ipk ;

135 Dbarm*imk ];

136 RHS2 = RHS2*exp(-Scale_Exponent_RHS);

137 SOL2 = LHS2\RHS2;

138 Cp = SOL2(1); Cm = SOL2(2); Dp = SOL2(3); Dm = SOL2(4);

139 end
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140

141 function x = kappa(v,kn,mu0,sigma,w)

142 x = sqrt( kn.^2+1i*mu0*sigma*(w+v.*kn) );

143 end

144

145 function f = generate_coil_field(wire_points,grid1,grid2,grid3)

146 % Generates field for the coil defined by wire_points

147 f=0;for icoil = 1:numel(wire_points)

148 f=f+single_coil_field(wire_points{icoil},grid1,grid2,grid3);

149 end

150 end

151

152 function [t,r,z] = makeCylindricalPoints(limits,npoints)

153 % generates cylindrical grid

154 if numel(limits)==4;limits = [-pi,pi,limits];end

155 t = linspace(limits(1),limits(2),npoints(1)+1);t(end)=[];

156 r = linspace(limits(3),limits(4),npoints(2));

157 z = linspace(limits(5),limits(6),npoints(3)+1);z(end)=[];

158 end

159

160 function [fieldtrz] = field_to_cylindrical(fieldxyz,TT)

161 % converts cartesian field to cylindrical field

162 fieldtrz(:,:,:,1)=fieldxyz(:,:,:,2).*cos(TT)-fieldxyz(:,:,:,1).*sin(TT);

163 fieldtrz(:,:,:,2)=fieldxyz(:,:,:,1).*cos(TT)+fieldxyz(:,:,:,2).*sin(TT);

164 fieldtrz(:,:,:,3)=fieldxyz(:,:,:,3);

165 end
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Numerical analysis of transient eddy-current

flowmetering method

Richard Looney and Jānis Priede

Flow Measurement Research Centre, Coventry University, UK

E-mail: J.Priede@coventry.ac.uk

Abstract. We present a comprehensive numerical analysis of transient eddy-

current flowmetering method for liquid metals. This type of flowmeter operates by

tracking eddy-current markers excited by the magnetic field pulses in the flow of a

conducting liquid. Using a simple mathematical model, where the fluid flow is replaced

by a translating cylinder, a number possible alternative measurement schemes are

considered. The velocity of the medium can be measured by tracking zero crossing

points and spatial or temporal extrema of the electromotive force (emf) induced by

transient eddy currents in the surrounding space. Zero crossing points and spatial

extrema of the emf travel synchronously with the medium whereas temporal extrema

experience an initial time delay which depends on the conductivity and velocity of

the medium. Performance of transient eddy-current flowmetering depends crucially

on the symmetry of system. Eddy current asymmetry of a few per cent makes the

detection point drift with a velocity corresponding to a magnetic Reynolds number

Rm ∼ 0.1. With this level of asymmetry transient eddy-current flowmetering can be

reliably applicable only to flows with Rm & 0.1. A more accurate symmetry adjustment

or calibration of flowmeters may be necessary at lower velocities.

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in Lancester 
Library - Coventry University.
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Concept of Improved Electromagnetic Phase-Shift

Flowmeter for Liquid Metals with Variable

Conductivity

Richard Looney and Jānis Priede

Flow Measurement Research Centre, Coventry University, UK

E-mail: J.Priede@coventry.ac.uk

Abstract. We present a concept of an improved phase-shift flowmeter that has a

significantly reduced sensitivity to the variation of the electrical conductivity of a

liquid metal. A simple theoretical model of the flowmeter is considered where the flow

is approximated by a solid finite-thickness conducting layer moving in the presence

of an ac magnetic field. In contrast to the original design [Priede et al., Meas. Sci.

Technol. 22 (2011) 055402], where the flow rate is determined by measuring only the

phase shift between the voltages induced in two receiving coils, the improved design

measures also the phase shift between the sending and the upstream receiving coil.

These two phase shifts are referred to as internal and external ones, respectively. We

show that the effect of electrical conductivity on the internal phase shift, which is

induced by the flow, can be strongly reduced by rescaling it with the external phase

shift, which depends mostly on the conductivity of medium. Two different rescalings

are found depending on the ac frequency. At low frequencies, when the shielding effect

is negligible, the effect of conductivity is strongly reduced by rescaling the internal

phase shift with the external one squared. At higher frequencies, the same is achieved

by rescaling the internal phase shift directly with the external one.

Keywords: Electromagnetic flowmeter, liquid metal, eddy current

PACS numbers: 41.20.Gz, 47.60.Dx, 47.65.-d, 47.80.Cb

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in 
Lancester Library - Coventry University.


	Mathematical modelling  cs
	Mathematical modelling_Redacted



