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Abstract

This work presents numerical analysis of contactless eddy current flowmetering methods
including phase-shift and transient eddy current techniques. Simple 2D and axisymmetric
theoretical models are considered where the flow is approximated by a solid conducting
medium in the presence of a time varying magnetic field. A 3D model is presented which
has been developed for the further improvement of these flowmetering techniques. The
3D model is designed to incorporate arbitrary exciting coils, in contrast to the fixed coils
of the 2D models. The 3D model presented is verified against the previous 2D models.

The concept of a rescaled phase shift lowmeter, an improved phase shift flowmeter
with reduced sensitivity to the variation of electrical conductivity of the liquid metals, is
presented. This improved design incorporates the medium-induced phase shift between
the sending and receiving coils to the measurement scheme, whilst the original design
utilises only the phase shift induced by the flow between receiving coils. We show that the
effect of conductivity to the flow-induced phase shift can be greatly reduced by rescaling
with the medium-induced phase shift. Two rescalings are found: at lower ac frequencies of
the applied field rescaling of the flow-induced phase shift with the square of the medium-
induced phase shift effectively reduces the effect of conductivity in the former. At higher
ac frequencies, the same is achieved by rescaling the flow-induced phase shift directly
with the medium-induced phase shift.

Transient eddy current flowmeters operate by tracking eddy-current markers excited
in the conducting flow by magnetic field pulses. The velocity is measured by tracking
zero crossing points, spatial extrema or temporal extrema of the electromotive force
induced by the eddy currents. It is found that temporal extrema of emf experience a
time delay which depends on the conductivity of the medium and can be eliminated
by taking the difference of multiple-coil measurements. Zero crossing points and spatial
extrema travel synchronously with the medium. It is pointed out that symmetry of the
system is essential to the operation of transient eddy current flowmeters. Asymmetry of
a few percent in the eddy current distribution yields a drift in the detection point with
a velocity corresponding to the magnetic Reynolds number Rm = 0.1. This means that
a more accurate symmetric adjustment or calibration may be required for the transient
eddy current technique to be reliable at lower velocities (Rm < 1).

The results of this study may be useful for designing next generation phase-shift and
transient eddy-current flowmeters with higher accuracy and increased robustness to the
variations of the electrical conductivity of liquid metal, which may be required in some

metallurgical and other applications.
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1 Introduction

The measurement of liquid metal flows in an accurate and reliable way is important to
many metallurgical processes, such as dosing and casting, and also to the nuclear industry
where molten metals are used as coolants for advanced reactors. There are many prob-
lems with the measurement of liquid metal flows using traditional flowmeters, including
induction flowmeters, due to the problems associated with liquid metals such as chemical
aggressiveness or high temperatures which can use corrosion and other contact problems.
To solve the problems of contact with liquid metals contactless approaches have been
developed for liquid metal flow measurement. Induction flowmeters have been made
contactless by using capacitively-coupled electrodes [20, 27]. Most contactless electro-
magnetic lowmeters now operate based on effects related to the eddy currents, which are
the loops of electrical current induced within the conducting flow by an applied magnetic
field. Both the time variation of the magnetic field or the movement of the conductive
media within a stationary field can cause these eddy currents. These eddy currents, by
Lenz’s law, will induce a magnetic field which will oppose the changes to the external
field. The effect of this field can be measured outside of the flow thus avoiding the need
for electrical contact with the liquid metal.

An issue which typically arises when taking measurements based on this induced
magnetic field is the way in with velocity appears in the measurements. The velocity
measurement, that can be taken of the flow generally depend on the conductivity, as
the value which is measured is determined by the product of conductivity and velocity
and not by the flow velocity. System which measure the magnetic Reynolds number
require calibration depending on the conductivity. This leads to another problem based
on the thermal variation of conductivity. The main objective of this work is to identify
measurement systems which are less affected by the conductivity of the liquid metal flow.

This thesis is split into 6 chapters. Following this introduction is a review of the
development of liquid metal flow measurement, with special focus on the phase shift
and transient eddy current flowmeters, this is accompanied by further discussion on the
problems associated with liquid metal flow measurement. In chapter 3 the underlying
equations which are used to develop the models presented later are introduced and dis-
cussed alongside discussion of boundary conditions typically found in the modelling of
flows including those which will be used in this work. Chapters 4 and 5 introduce and im-
plement two simple 2D models which leads to recommendations on measurement systems
with reduced dependence on conductivity. Chapter 4 will focus of further development of
the phase shift flowmeter approach whilst chapter 5 will focus on the pulsed field, or tran-
sient eddy current flowmeter. Both chapters include some extra material relating to the
optimisation or sensitivities of the designs, with the important consideration of symmetry

appearing in the latter chapter. Chapter 6 Introduces a further, fully three dimensional,



model which is designed to further investigate these optimisations, or sensitivities, by
allowing more complete descriptions of the wire loops represented in the earlier models.
The model presented in this chapter is a basis for further work, and could be used to
further develop the ideas in the previous chapters. Finally a summary of the conclusions

which were developed throughout the work is given by chapter 7.



2 Literature Review

In this section a historical background of the development of electromagnetic flowmeters
for liquid metals, from the advent of electromagnetic flowmetering, is reviewed. Special
attention is given to eddy current phase shift and pulsed field approaches which are
developed later in this work. A review of other current developments in liquid metal
flowmetering is given next. The section ends with a discussion of the general problems

associated with the flowmetering of liquid metals.

2.1 History of electromagnetic flowmeters for liquid metals

The concept of electomagnetic flow measurement dates from Faraday’s time. The basic
principles are documented from this time, for example in Faraday’s own experimental
researches in electricity [14] originally published in 1832. In this historic work the concept
of magnetic induction is well defined. Faraday is known to have attempted to take an
electromagnetic flow measurement of the River Thames. Faraday’s experiment consisted
of measuring the voltage induced between a pair of electrodes inserted either side of the
rivers flow. The fundamental idea being that the conductive flow of the River in the
presence of the Earth’s magnetic field will induce a voltage across the flow, between the
two electrodes. In an idealised model the magnitude of this voltage will be proportional to
the flow rate. This type of flowmeter has become the standard electromagnetic lowmeter,
generally referred to as an induction flowmeter.

There appears to be little development in the field from the 1830s until a novel ap-
plication of the induction flowmeter was patented in 1917 [36]. The device specified in
the patent measures the velocity of a ship relative to the body of water it is upon. The
measurement is taken using an outboard induction flowmeter, measuring how fast the
water is flowing in the ships frame of reference. Publications from the 1930s start to
introduce the use of induction flowmeters on artificial flows. The publications from the
early 1930s appear to be the first which consider flows other than water. For example the
experiments of Williams with copper sulphate[46] which also not only suggests a liquid
metal flow, in the form or mercury, as a means to reduce sensitivity to spurious effects but
also recognises the potential downfall that electrodes introduced into the liquid can cause
a disturbance to the flow. It was around this time that publications for the application
of electromagnetic flowmeters for blood flow measurement start, for example the Faraday
type induction flowmeter was employed in [22|. In this work Kolin recognises that the
electromagnetic flowmeter has the advantage of providing instantaneous results.

With the advent of nuclear reactors the need for liquid metal systems developed,
for example the sodium-potassium alloy cooled Dounreay Fast Reactor which started
operation in 1959 [8]. The development of control systems for these fast reactors required

accurate measurement of of the liquid metal coolants and as such flow meters for liquid



metals became a topic of interest and remained so for many years with investigations
continuing 20 years later [3].

Today there is still active development in the lowmetering of liquid metals for nuclear
control applications. An example of current study of liquid metal flows is given in [6], in
which the current state of the study of cooling blankets for fusion reactors is outlined.
It is stated in this work that for reliable blanket designs flow distributions will need to
be confirmed by experimental data, showing the need for liquid metal low measurement
in research applications. For the new generations of fast breeder reactors, the feasibility
of eddy current flowmeters has been shown both numerically through simulation and
experimentally in the Phenix reactor [39]. And more recently the application of eddy
current flowmeters to detect air pockets in coolants of the next generation of fast breeder
reactors has been presented [25]. This shows the flexibility of some liquid metal flow
measurement techniques by utilising a flowmeter as a method for detecting the existence

of a multi phase flow.

2.1.1 Eddy Current Flowmeters

The development of eddy current flowmeters for liquid metals followed the advent of
flowmetering for liquid metals in the 1950s. The use of eddy current, or induced field,
flowmeters which measure the the flow-induced perturbation of an externally applied
magnetic field can be found in a patent for 1948 [26]. The device presented has a sensor
within a streamlined capsule submerged within the flow, the sensor consists of a series
of sending and receiving coils. The sending coils generate a magnetic field which due to
eddy currents will be advected with the flow and the displacement of this field leads to
induced voltages in the receiving coils.

The first appearance of utilising a phase shift for flow measurement appears to come
from advances in blood flow measurement [29], where the phase shift is induced by imper-
fections in construction of the flowmeter . Further use of the induced magnetic field for
liquid metal flow measurement can be seen in|9|where a sensor is immersed in a capsule
similar to that of Lehde and Lang’s 1948 patent. The significance of this paper to this
work is the suggestion that phase measurements taken along side magnitude measure-
ments can be used to determine flow velocity independently of conductivity.

A design of an eddy current flowmeter which moved from the submerged capsule can
be found in [45] where the flow passes through coils. The coaxial coils are introduced so
that the fluid passes through the region with the strongest magnetic field. This paper
also highlights a short falling of the measurement technique which is the dependence
of the measurement scheme on the temperature, or electrical conductivity, of the fluid.
Further work on eddy current flowmeters can be seen in [17] which presents the idea of

the arrangements of external sending and receiving coils being utilised such that only



the signal induced by the flow is measured and not any currents induced directly by
the applied field. The paper suggests that low frequency measurements, by penetrating
the medium well, have an averaging effect on the flow profile which could provide a
measure of volumetric flow rate. This idea of optimising the arrangement of electrodes in
a contactless measurement scheme depending on the nature of the applied field is further
discussed in [20], however in this paper this idea is applied to a transverse exciting field.

Consideration to eddy current flowmeters is given in Shercliffs text [35] under the name
of the induced field flowmeter and the problem of conductivity dependence is discussed;
it is suggested that empirical calibration may be unavoidable. Many novel uses of the
induced field have been developed such as flow tomography [38] and applications to
multiphase flow [7], which appears more recently in 25|, were published in the early
2000s. The re-imagination of a force detecting induced field lowmeter under the new
name of Lorentz force velocimetry [41] seems to have heralded a resurgence in the topic
of contactless flow measurement.

The concept of a phase shift flowmeter was introduced in [31]. The phase shift flow-
meter operates on the principle that the conducting flow disturbs not only the amplitude
but also the phase distribution of the alternating applied field. This technique has the
advantage of being robust to many disturbances due to the phase measurements being
a ratio of field strengths and not absolute values, however the problem of conductivity
variation still exists. The robustness of the phase shift lowmeter to external disturbances
such as electromagnetic disturbance and noise has been demonstrated in [5]. A recent
experimental investigation into measurements of liquid sodium loops utilised a phase shift
flowmeter which was submerged in a capsule [23]. This paper also shows the sensitiv-
ity of the device to physical imperfections, which can be addressed to some extent by

calibration, and the problem of thermal variation of conductivity.

2.1.2 Pulsed Field Flowmeters

The idea of modifying the design of an induction flowmeter to replace the harmonically
alternating applied field with a pulsed field approach is proposed in [37] where it is
applied to weakly conducing flows, specifically referring to blood flow measurements .
The square-wave approach utilised in this paper was suggested as a compromise between
the DC approach, where polarisation of the electrodes and environmental electrical noise
are problematic, and an AC approach, where a transformer effect can generate spurious
signals.

The application of a pulsed magnetic field to a strongly conducting flow, such as a
liquid metal flow was proposed in [47] which again used a transverse field. In this work
the authors recognise the potential of a pulsed field approach in removing conductivity

from the measurement scheme. The pulsed approach appears again in a contactless way
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dependence of the measurement scheme on conductivity, and its thermal variation. The
paper recognises that the removal of conductivity is a matter for either calibration or
additional devices.

The use of a pulsed field with liquid metals in a contactless approach is omitted from
the discussions in Shercliff’s comprehensive text [35]. This is likely due to the majority
of works discussed in this section being published after the books first printing thus the
concept of a pulsed field approach not being well formed at the time. The pulsed field
approach has reappeared relatively recently under the guise of transient eddy current
flowmetering with both external coils [18] and with coils in an immersed capsule [24],
both designs operate by exciting and then tracking transient eddy current markers as

they are carried along by the moving conductor.

2.2 Some Recent Development in Liquid Metal Flow Measure-

ment

In addition to the eddy current and pulsed field flowmeters discussed above there are two
other popular designs of contactless flow measurement for liquid metal applications. The
two methods, which both appear in Sherclift’s well known text [35], are rotary flowmeters
and the Lorentz force flowmeter. The Lorentz force flowmeter originally appeared under
the name of force flowmeter the addition of Lorentz to the name was adopted more
recently.

The rotary flowmeter can be found in a patent [34] from around the time liquid metal



flow measurement became of interest. The patent presents a design with two flywheels in
a spool type arrangement as shown in figure 1. The two wheels have magnets attached to
their inner faces with alternating orientations around the wheel. The wheels are attached
to an axle in such a way that opposite polarities face each other between the two wheels.
The patent claims that speed of rotation to be a measure of fluid flow rate. The exact
pattern of magnets varies between different works however the general rule of the layout
given in the patent above is maintained. This layout has the direction the poles of the
magnets alternating around the axis of rotation. Where multiple disks are utilised, with
the fluid flowing between the disks, the magnets are oriented so that opposite poles
face each other across the flow. The process of modelling these rotary flowmeters was
approached in [4] which include single disk designs. This paper also gives some discussion
towards the problem of friction in the bearing and the advantages of it being negligible
relative to the torque acting on the measurement system. The advantages of this design
including both a reduced dependence on conductivity and the ability to use electrically
conducting pipe walls.

A novel rotary flowmeter design where the flywheel is replaced by a cylindrical magnet
which is magnetized perpendicularly to its axis is presented in [30, 32|. The magnet is
allowed to freely rotate around this axle upon which the magnet is mounted. The single
magnet design has the advantage of, in the limit of negligible friction in the bearing,
having a contactless measurement technique which is not dependent on conductivity. The
rotary flowmeter is not a perfect solution to the problem of liquid metal flow measurement
due to the slow response time to changes in the flow which is due to inertia in the
flywheel, also a problem which is more pronounced in rotary flowmeters is the problem
of mechanical wear of moving parts.

The force flowmeter has become a topic of interest with recent developments being
carried out under the name Lorentz force velocimetry [41, 42|. Lorentz force velocimetry
is a contactless flowmetering technique which operates by measuring the Lorentz force
exerted on a magnet, or coil, by an induced magnetic field. A typical setup is shown in
figure 2. This measurement system comes with the problems of other contactless tech-
niques, specifically the problem of conductivity, with the Lorentz force being proportional
to the Magnetic Reynolds number and not just the velocity. One of the major issues with
the use of the Lorentz force for measurement is that it is weak in relationship to the
applied field. In spite of this it seems reasonable to assume that attempting to measure
lower conductivity fluids will lead to weaker induced fields and therefore weaker forces
to measure. Despite this limitation there has been developments showing that the tech-
nique can be applied to fluids with conductivity many orders of magnitude lower that
typical liquid metals [44]. The paper demonstrates the method for conductivities of or-
der 10°S/m and suggests for practical applications conductivities of magnitude 1073 S /m,

and in laboratory applications 107%S/m, could be measured for comparison typical liquid
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The Lorentz force velocimetry approach has been applied to flow tomography [19]
where a series of localised measurements were shown to detect two large jets in the flow
profile, which were introduced by an upstream obstruction. More recently a novel method
utilising time of flight measurements with Lorentz force flowmeters had been presented as
a method to remove the conductivity dependence from the measurements [11, 12|. This
is achieved by the use of a pair of Lorentz force velocimetry and a probe. The probe
creates vortices in the flow which are detected by both the flowmeters, the time of flight

of the vortex gives a measurement of the velocity of the fluid.

2.3 The Difficulties of Liquid Metal Flow Measurement

The measurement of flow rates of liquid metals presents some challenges which are not
present when dealing with other media. The first major difference which is considered
here is that the conductivity of liquid metals is typically significantly higher than that
of non metallic fluids. This higher conductivity leads to differences in how electromag-
netic flowmeters are designed for liquid metals. The higher conductivity leads to some
electromagnetic effects becoming more significant. For example, when a high frequency
alternating magnetic field is used the skin effect can prevent the field from effectively

penetrating the fluid [2|. The applied field will introduce eddy currents within the flow
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these eddy currents can cause a distortion, or dampening, of the applied magnetic field
[35]. Conversely the influence of the magnetic field on the body of the flow is also much
higher with the increased conductivity typical of liquid metals this is likely to cause a
pressure drop across the flowmeter and may disrupt the flow profile. The skin effect
effect can be neglected with low enough magnetic Reynolds numbers, typically a value of
Rm < 1 where inductive effects are outweighed by magnetic diffusion.

In non-metallic fluid flow the use of alternating magnetic fields has some advantages.
For example DC fields can lead to temperature gradients between the electrodes causing
thermoelectric effects which can adversely affect the flowmeters performance. With an
alternating field the thermoelectric potential will be averaged out. They are also not a
concern when considering liquid metals as the higher thermal conductivity will reduce
temperature gradients.

There are physical effects which occur with liquid metal flows and must be considered
when designing flow meters. These effects include the temperature of the flow, which
for an application such as nuclear cooling is likely to be high which in turn can lead to
increased mechanical wear on components [13]. This is the main reason more traditional
measurement systems such as differential pressure flowmeters and Faraday type induction
flowmeters are unsuited to liquid metal applications. Another property of many liquid
metals is chemical volatility. Great care has to be given to some liquid metals, as for
example, sodium is highly oxidising and can react explosively with water. Gallium rapidly
weakens aluminium with the capillary effect leading to damage far from the interface
of the two materials [21]. Traditional measurement techniques, such as particle image
velocimetry [15] and optical Doppler tomography [43, 33|, are not possible with liquid
metal flow due to the materials opacity.

Many of the problems above are mitigated by using a contactless approach which,
by using low frequency applied fields, can be designed to avoid problems such as the
skin effect and magnetic braking of the flow. However, there is currently no general
solution for such a flowmeter. A significant reason for this is that most contactless flow-
meter measurements rely on induced voltages which are dependent on both the velocity
and conductivity of the flow. Many flowmeter designs mitigate the dependence on con-
ductivity by calibration. However the thermal variation of conductivity can disrupt this
calibration. This thermal variation of the conductivity of liquid metals can be character-
ised by the Wiedemann—Franz law , £ = LT, where k is the thermal conductivity, o is
the electrical conductivity, L is the Lorentz number (2.44 x 107 *WQK ~2) and T is the
temperature. As an example of typical values the electrical conductivity of bismuth for
industrial applications for the temperature range 545 — 1423 K can be found in [16]. The
conductivity of bismuth at 600K is given as 7.56 x 10° and falls to 6.04 x 10° at 1200K.

12



3 Fundamental Equations

3.1 Equations Governing Electrodynamics

Consider a particle carrying a charge ¢ moving with a velocity v. There are three elec-

tromagnetic forces which can act upon the particle,
F = qE, + qE; + qv x B, (1)

where E; is the electrostatic field and Ej is the electric field induced by changes in the
magnetic field. The first term relates to the electrostatic field represents the electrostatic,
or Coulomb, force. This force is the mutual attractions, or repulsion, between electric
charges. The term relating to the induced electric field is specific to the presence of a
magnetic field with varies with time. The final term is caused by of the motion of a
charge relative to a magnetic field, which is called the Lorentz force.

At this point to further consider the electrostatic field two laws shall be introduced,
namely Coulomb’s law and Gauss’ law. Firstly, Gauss’ law states that the electric flux
through a hypothetical closed surface is equal to the net electric charge within that closed

surface divided by e¢,, the permittivity of free space.
6 : Es = £7
€o

where p denotes the charge density. Coulomb’s law states that the magnitude of electro-
static attraction forces between two point charges is inversely proportional to the square
of the distance between them and directly proportional to the product of the magnitudes

of the charges. A consequence of this is that the static electric field is irrotational
ﬁ X ES =0.

As the field is irrotational it can be defined as the gradient of a potential, ES = —6¢,
where ¢ is the electrostatic potential.
The induced field is governed by Faraday’s law of induction, which will be generalised

later in the Maxwell-Faraday equation;

V x By =—— (2)
It is also worth notice that the induced field is divergence free as there are no sources
within it giving
V-E; =0.

The total electric field can be defined as the sum of the electric fields, E=F,+ EZ
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and has the properties:

=,
I

o p
V- — 3
. ®)
I OB
VxE = ———
ot
We can now simplify equation (1), by using the total electric field, giving the Lorentz

force law below

F=q(E+7¥xB) (4)

where F is the force acting upon the charge q. The Lorentz force law, when combined

with the Maxwell equations, gives the foundations of classical electromagnetism.

3.2 The Maxwell Equations

The Maxwell equations are a set of partial differential equations underlying classical
electromagnetism. The equations consist of Gauss’ law, Gauss’ law for magnetism, the

Maxwell-Farday equation and Ampére’s circuital law.

3.2.1 Gauss’ Law

Gauss’ law has been introduced above and relates the distribution of electric charges to
the resulting electric field. The law equates the electric ﬂux,cf g, through a closed surface
S to the to total charge () contained by the volume V bounded by that surface divided

the permittivity of free space,

L

(5)

E:

4
€0 ’
The electric flux can be expressed as the surface integral of the electric field,

5E:#E-d§ (6)
S

where dS represents the infinitesimal area which is an element of the surface S. Divergence
theorem, often referred to a Gauss’ theorem relates the flux out of a region to the the
sum of all sinks and sources within the region. This is achieved by equating the flux
of a vector field through a closed surface to the divergence of said field over the region

enclosed by the surface, in the case of E this gives

#E.dgz// . Edv
S Vv

14



Substituting the volume integral for the electric flux in (5) gives us Gauss’ law in the

///V(ﬁﬁ)dvz g

which can be modified to the form used earlier in equation (3) by moving to charge

following form

density p which gives the charge when integrated over the volume Q = [[[, pdV'.

///V(ﬁ-ﬁ)dvz%///vpdv

the integrands can now be equated giving the differential form of Gauss’ law which relates

the divergence of the electric field to the total charge density

v.-E="L. (7)

€o
3.2.2 Gauss’ Law for Magnetism

Gauss’ law for magnetism simply states that a magnetic field must be divergence free
V-B=0. (8)

This condition states that a magnetic field has no sinks or sources, that is to say that
field lines form closed loops. This is equivalent to stating that a magnetic field is a
solenoidal vector field. A more physical interpretation of this is that there are no magnetic
monopoles, thus no sources, and a infinitesimal element generating a magnetic field should
be represented as a dipole, analogous to how magnets always have a north and a south

pole.

3.2.3 Faraday’s Law (the Maxwell-Faraday equation)

Faraday’s law, or more specifically Faraday’s law of induction, states that the induced
electromotive force in a closed circuit equals the negative of the rate of change over time
of the magnetic flux enclosed by the circuit. The magnetic flux ® is calculated in a similar
way to the electric flux in equation (6). However as we will be considering the rate of
change over time of the flux we will specify the time dependence of both the magnetic

field and the surface. We may also note that the integral is no longer over a closed surface,

5:// B(7.1)- S
S(t)

where 7 is the position vector. The electromotive force (e.m.f.) caused by the change in

flux can be defined by
dd
= ——. 9
&=-— (9)
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aA generalisation of Faraday’s law is provided by the Maxwell-Faraday equation, which
was introduced in equation (2). It states that a time-varying magnetic field will always
accompany a spatially varying electric field and vice versa. It is worth noticing that the
differential form of the Maxwell-Faraday equation,

L OB
E=__=
V X 5

is a weaker definition than the integral form as it is limited to the electric field induced by
a time-varying magnetic field as claimed in [10]. The integral form gives the electromotive
force which is generated in a conductor by either a time varying magnetic field or the

motion of the conductor relative to the magnetic field,

%EZ i = /a .d§ (10)

where 05 is the closed contour bounding the surface S and dl are the infinitesimal line
elements comprising 05. Ej refers to the effective electric field for each line element which
is equivalent to the field measured in the frame of reference moving with the line element
dl'and can be defined as El = E+ﬁl x B where 1 is the velocity of the line element. The
differential form can be derived from the intergral form by employing the Kelvin-Stokes
theorem, which equates the integral over a surface of the curl of a vector field to the line
integral of the same field around the boundary of the surface. Applied to the electrostatic
field considered here the Kelvin-Stokes theorem yields

%E-df:¢ﬁxﬁ-d§ (11)
oS S

Here we have returned to the simplified case where the electromotive force is the result
of a time dependent magnetic field and the loop is not in motion. With this assumption

combining equations (10) and (11) yields

Lo 0B
é(vXE) ds & .dS.

Equating the integrands yields the differential form of the Maxwell Faraday given in
equation (2), thus showing that as described above the differential form is weaker than

the integral form as it requires more assumptions and thus is valid in less situations.
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3.2.4 Ampére’s Circuital Law

Ampeére’s circuital law equates the line integral of a magnetic field around a closed loop

to the current flowing around the loop. The integral form can be written as

95 Bdl= uo//}~d§ (12)
oS S

where j is the current density and 1o is the permeability of free space. As with the
Maxwell-Faraday equation the Kelvin-Stokes theorem can be used to move to the dif-

ferential form. Applying the Kelvin-Stokes theorem to the magnetic field instead of the

ygé-df:yg(ﬁxé)~d§,
oS S

this can be substituted into equation (12) and then the integrands can be equated yielding

electrostatic field yields

the differential form of Ampére’s circuital Law
V x B = poj. (13)

We now consider the limitations of this law in the form presented above. In this form
the law is accurate only in an magnetostatic environment, which is to say that currents
in the system do not change with time. This can be shown by taking the divergence of
(13)

—

V- (VxB)=puV-j
which as the divergence of a curl is identically zero,
V- (VxB)=0

implies that the current density is also divergence free,

=

V-j=0.

While this is possible it is not the general case, this can be seen by considering the

continuity equation for electomagnetic charge

where p is the charge density. This continuity equation is more fundamental and is based
on charge conservation, in physical terms it means that a charge leaving a differential
volume leads to a reduction in the charge contained in the volume, thus a negative rate

of change for the charge density. It can be seen that Ampére’s circuital law as stated above
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agrees with charge conservation when there is a constant charge density, and thus the
magnetostatic condition for the law is satisfied. A modification to Ampére’s circuital law
known as Maxwell’s correction provides an extension of the law beyond the magnetostatic

environment. The law with the extension, in differential form, becomes

—

oE

ot (14

V x B = o] + ftoéo—-

The addition term introduced by Maxwell’s correction, eo%—?, is called the displacement

current and by again taking the divergence,

- = o - OF
VAV xB) = V- (] +c0),
we obtain
I _ JE
V- j = —€0v 8t

applying Gauss’s law given in equation (7) which equates the divergence of the electric

field to the charge density divided by the permittivity of free space yields

IR = aE 8p
Vo=V = Ty

thus showing Maxwell’s correction satisfies the continuity equation for electromagnetic
charge.
3.2.5 Ohm’s Law

Ohm’s Law, which states that in a conductor the current between two points is propor-
tional to the voltage across the two points with the constant of proportionality being the
reciprocal of the electrical resistance of the conductor. This can be generalised to a cur-
rent density being proportional to the electric field, with the constant of proportionality

being the conductivity of the material,
j=oFE.

When the conductor is travelling within a magnetic field the Lorentz force term must be
added to account for the motion induced currents in the charge carrying medium. Giving

the form of Ohm’s Law which will be used in this work

j=0(E+7xB) (15)

this form is commonly referred to as Ohm’s law with magnetic effects.
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3.2.6 The Vector Potential

Gauss’s Law for magnetism shows that magnetic field are solenoidal fields and thus can
be defined by a vector potential. A vector potential is defined as a vector field whose curl

is a given vector field, i.e. the magnetic field, in our case

V x A= B,
where A is the magnetic vector potential. There is also some freedom in the definition of

the vector potential, this comes about as it is defined by its curl. Consider the Maxwell-

Faraday equation in terms of the vector potential

—

OxEo vy A
ot

which as the curl of a gradient is zero leads to many solutions,

E=—-——"—-V¢ (16)

where ¢ is the scalar potential, which is a continuously differentiable scalar function.
The scalar potential can be further defined as ¢ — ¢ + f(¢) where f is an arbitrary
continuously differentiable scalar function. This property is referred to as gauge freedom
or gauge invariance. Later in this work the gauge invariance of the vector potential field

is exploited to simplify calculations (see equation (24) and following).

3.3 Boundary Conditions

Boundary conditions are essential to completely define a problem. The boundaries which
are typically considered can include the hypothetical surfaces where fluid enters or leaves
the system and interfaces between different materials. The interfaces between different
materials will typically represent parts of the model such as pipe walls where there are
materials adjacent with different properties, such as velocity and electrical conductivity.
Whilst in the models presented in this work a very simplified consideration is given
here to some important potential boundary conditions, which could be added to future
developments of the models.

This section will discuss some important boundary conditions. Firstly, the electro-
magnetic boundaries at the pipe walls will be presented. Following this the interfacial
conditions which will be used later in this work are introduced. Finally, some geometric
boundaries are discussed, including symmetric and periodic conditions.

In the models used in this work, the boundaries are relatively simple, the only physical

boundaries that exist are between free space and the conducting medium. There are also
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boundaries caused by the calculations which tie together different regions of behaviours.

3.3.1 Electromagnetic Boundary Conditions

There are two formulations of electromagnetism, (E, 5) the electric and magnetic fields
and (/T, ¢) the magnetic vector potential and magnetic scalar potential. Both of these
formulations are rigorous and complete. This work is based on the (/T, ) formulation
however the B field is also considered in some cases. As such boundary conditions are
only required for A and @ are needed. The boundary conditions on A and ¢ which are
utilised in this work are derived from the continuity of A across an interface and also its
non-tangental derivatives at the interface.

The nature of the pipe walls is also important in modelling magnetic fields. In the
relatively simple case of non-conducting walls there can be no current flow between the

fluid and the wall. Hence the component of the current normal to the wall must be zero

j-i=0. (17)

The condition for the electrostatic potential is derived from equations 15 & 16 which
specifies the derivative normal to the boundary to be,
O

8—n:8tAn+ﬁ-F><§:(8tAn+§-ﬁxf‘)|S. (18)

In the case of conducting walls, with a non-zero electrical conductivity o, there are two
boundaries to consider: the wetted surface and the dry surface of the wall. Inside the

conducting wall we will have
j: _O-wﬁ(bw

where ¢,, is the electro static potential within the wall. As the wall is at rest the Poisson
equation
V2=V - (7x B) (19)

which can be derived by taking the divergence of Ohms Law (15), yields

V2, =0 (20)

in the pipe wall. The dry surface acts in the same way as the non conducing walls with
being subject to equations (17) and (18). The boundary at the wetted surface is subject
to the the two following conditions. Firstly, the potential difference normal to and across

the boundary gives
¢
on

and secondly the continuity of the current normal to and across the boundary yields

¢_¢wzaaw
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on Y on’

These two conditions are sufficient to solve equations (19) and (20) across the boundary.

d ds
0l

Figure 3: Schematic of the region,s, which appears at the pipe wall and is discussed in
the context of the jump condition of the magnetic field

The jump condition for the tangental electric field will now be specified. The fomula-

tion utilises equation 11 and equation 10 which when combined yield

%ﬁxﬁ-ds*:yﬁ E~df:y§a—8~d§—>0
S ds sat

as the length of the section, shown in figure 3, of surface tends to zero, dl — 0 then
[Er], the change in the tangental component of the electic field across the surface, is seen

to be zero.,

3.3.2 Interfacial Conditions

Interfacial conditions occur between different different regions of the model, such as at
the interface between the conducting media and either a pipe wall or free space. The
boundary conditions imposed at these interfaces ensure the continuity of the magnetic
field components. The condition is that the vector potential of the magnetic field must

be continuous across the interface;

(é[—go)ﬁzo
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where B 7 and EO are the vector potentials either side of the boundary and 7 is the vector

normal to the boundary.

3.3.3 Symmetry Conditions

Symmetry conditions are conditions imposed on an axis of symmetry. One such boundary
is an axis boundary such as that found at » = 0, in cylindrical coordinates, with an
azimuthally invariant model. In this cylindrical system the value at the axis must be
regular and uniquely defined for all angles 6. The solution to this is that the azimuthal
component must be equal to zero such that is does not vary with 6. In 2D this can be
seen by imposing an odd function between the x and —xz axis which also ensured a zero
value at the axis.

In the axisymmetric cylindrical case both the magnetic field and velocity field require
zero valued normal components at the axis. However, the component of either field
along the r = 0 axis is not required to be zero valued. Symmetry boundary conditions
are typically used to reduce the computational requirement of a model by exploiting or

imposing symmetries in the fields and the geometry.

3.3.4 Periodic Boundary Conditions

Another example of a geometry defining boundary is periodic boundary conditions these
again can reduce computational effort. Periodic conditions are defined by matching field
values and derivatives at either end of the calculation domain along the axis where the
periodicity is present. Periodicity is present in the models later in this thesis however it
is not included by design and is imposed due to the use of Fourier transforms. The region
of interest is relatively far from the periodic boundary and the results of the models will
not significantly affected by their usage. Due to the semi-analytic nature of the models
presented in this work there is no requirement for a calculation domain to be specified

and the fields can be directly calculated at the required location.
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Figure 4: Schematic diagram for the model with the applied field taking the form of a
harmonic wave.

4 Rescaled Phase Shift Flowmeter

The phase shift flowmeter as introduced in [31]| has become a industrially available meas-
urement method for liquid metal flows. The problem of the thermal variation of conduct-
ivity leading to a measurement scheme which is dependent not only on the flow rate but
also on the temperature of the conducting medium has been discussed in section 2.3. The
purpose of this chapter is to introduce a method which will be demonstrated theoretically
to reduce the conductivity dependence of the measurement scheme. The idea behind the
method is that phase shifts can be induced not only due to the flow of the medium but
also due to the presence of the conducting medium itself. This phase shift induced by the
presence of the medium will depend predominately on the conductivity of the medium
and as such will be used to rescale the measured phase shift thus reducing the conductiv-
ity dependence. This chapter is split into three sections. Firstly the derivation for a two
dimensional model for the phase shift flowmeter is presented, with a couple of different
exciting fields. Secondly the results of this model are presented including investigating
both the rescaling for the phase shift and some physical properties. The chapter will end

with a brief summary of the findings.

4.1 Derivation

The model considered in this chapter, which is shown in figure 4 consists of a layer of
conducing media of width 2H in the presence of an imposed magnetic field. The model
is presented in Cartesian coordinates, with axes x and y oriented along the length of the
conducting medium and across its width respectively. The model will be considered with
2 exciting fields. Firstly, the field is a standing harmonic wave applied from above the
layer as shown in figure 4. The second field is generated by a coil represented by a couple

of straight wires oriented along the z axis with oppositely flowing alternating currents.
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Figure 5: Schematic diagram for the model with the applied field generated by two
straight wires with oppositely travelling currents.

yi

The wires are located a distance of h above the z axis with a distance of 2s between
them, as shown in figure 5.

To derive the model we consider a conducting medium, with electrical conductivity
o, moving with velocity V' in the x direction, such that v = €, V. The exciting field, with
induction B , is alternating harmonically with angular frequency w.

The Maxwell-Faraday equation introduced in section 3.2.3 gives the electric field in-

duced in the conducting medium by the exciting field
E=-Vd—-9A (21)

where A is the vector potential of the magnetic field, given by B =V x ff, and where @
is the electric potential.

Ohm’s law gives the density of the electric current in the moving medium,
j=0(E+7xB), (22)

where o is the conductivity of the medium. This can be presented in terms of the electric

and vector potentials as
J=0(=V® —A+TxV xA) (23)
The gauge invariance of Ais used to specify its divergence as

VA= —pgo(®—7-A)
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where 1o is the vacuum permeability. This defines the electric potential as

d=0-A——V-A (24)

1
Moo
which simplifies the derivation of the advection diffusion equation below.

Now the advection diffusion equation can be derived, to do this we shall start with

Maxwell’s equation

— ]_ — —
Jj=—V X B —¢0L. (25)
Ho

For this model we will ignore the displacement current, which is negligible. The frequency

of the alternation of the magnetic field is sufficiently low. This leads to Ampere’s law:

— ]_ —
Jj=—VxB5. (26)
Ho
To derive the advection diffusion equation, Ohm’s law in terms of potentials (23) and

Ampere’s law (26) shall be equated leading to

—, 1 —
0(-V® -0 A+1xVxA) = —V xB. (27)
Ho
Introducing the definition of the scalar potential from above, which utilises the gauge

invariance of ff, and taking its gradient we obtain

—. —,

1
Vo =V(@@-A)—-—V(V-A
(5 4)~ V(v 4)

which expands to
1

V(i-A
(v-A) oo

(VZA+V x V x A)

-,

where V x V x A = V x B. Expanding the vector dot product V(#- A) can be done using
the identity

—, — —

V(T A) = (T-V)A+ (A-V)T+Tx (VxA) +Ax (VX7

from which the zero terms shall be removed. These zero terms are (A - V)7 = 0 and
A% (V x ¥) = 0 and can both be explained by to the solid body motion described above
by v = €, V.

In the case of a simple laminar flow profile with a velocity ¢, which has some y-
dependence such that v}, = €,V (y) this simplification becomes impossible as (X-V)v; # 0.
If this laminar case was considered the derivation from this point would differ significantly.
It is likely that an analytic solution would no longer prove suitable and the flow inside

the conductive layer would need to be solved numerically.
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The gradient of the scalar potential can now be given as

— -, 1 — —
V(IJ:(U-V)A+77><(VxA)—M—U(V2A+V><B)
0

Substituting this into equation (27) yields

—(T-V)A =T x (V x /f)+iv%
o0

1 — — 1 —
+—VXB—-0A+1UxVxA=—V X B,
Koo Moo

which simply reduces to

- =

QA+ (T-V)

_ g (28)
Moo
which is the advection diffusion equation for the magnetic vector potential.

We consider that the system is invariant in the 2z direction. Because of this we can
define the field by a single component of the vector potential A = &,A. This is because
B has only two components, which are both perpendicular to €;. This can be shown by
inspecting the components of V x A = B. We can see that for A = &, A the field is given
by B = [0,A, —0, A, 0]. Applying this to equation (28) along side the definition ¥ = &,V
yields

1
KA+ VO,A=—V?A, (29)
Moo

The boundary conditions in this system are required at the interfaces S between the
conducting layer and free space, which occurs at y = £ H. The continuity of B across this
boundary implies the continuity of the derivative of A. The continuity of A follows by
considering the field through a region on the surface of the interface, S, and the boundary
of this region 4.5 gives [ BdS = g%s“f' dl shrinking the region S to an infinitesimal
width shows the continuity of Alis required by the regularity (non-singularity) of B. The

continuity of A and its derivatives leads to the following
[A]s = [(7- V)Als =0, (30)

where 77 is the unit normal to the boundary, and [f]s the change in f across the
surface S.
Using the half-thickness of the layer H as the length scale and jioo H? and time scale we

introduce a couple of key dimensionless parameters. Firstly a dimensionless ac frequency

W= poowH?, (31)

where w is the frequency of alternation of the applied magnetic field. The dimensionless

frequency is typically of order 0 for example w ~ 1 for a flow of liquid sodium with
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0 =83 x 10°S/m in a layer of half width H ~ 0.1 m with an ac frequency = ~ 60 Hz.
Secondly the magnetic Reynolds number, which represents a dimensionless velocity
and gives an estimate of the effects of the motion induced induction compared with the

magnetic diffusion,

Rm = uooVH (32)

Again we note that in this work a significant feature of the Magnetic Reynolds number
is that it depends not only on the velocity by also on the conductivity of the medium.
Using these dimensionless parameters equation (29) can be presented in a dimension-

less form

A+ Rmd, A = V2A.

4.1.1 Solution for Standing Magnetic Wave

This derivation will be used for two definitions of the magnetic field, firstly we will consider
a field produced by a standing wave, which alternates harmonically. Following this a field
generated by a couple straight wires is presented. Schematic plots which show both of
these two field definitions are given in figure 4.
We define the applied field for the first case, the harmonic standing wave, with vector
potential amplitude
& Ao(7,t) = &, Ao(y) cos(kz) cos(wt),

where k is the wavenumber, or spatial frequency, in the z direction. Outside of the

conductive layer, where o = 0, equation (29) for the vector potential reduces to

— k24, =0, (33)

which has the solution
Ao(y; k) = Coe|k‘(y_1),

which will tend to infinity as y tends to infinity. This is will occur outside of our domain
of interest and is a consequence of the defininition of the standing harmonic field with no

defined source. where the constant Cj is given by
Co = Ao(1; k),

which specifies the amplitude of the Fourier mode with wavenumber k& of the external
magnetic field at the upper interface between the conductive medium and free space. The
external magnetic field refers to the field in the absense of the conductinve layer, and can

be generated by setting o = 0 within the layer.
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The external magnetic field in the form of a standing wave, can be represented by a

superposition of two oppositely travelling waves

Ao(7t) = = (Ag (7 1) + Ay (7, 1))

DO | —

~

where AZ(7,t) = Ao(y) cos(wt & kx). We can now look for a solution in the matching

form

A7 t) = % (AT (7 t) + A= (71)),

where A%(7,t) = R <121(y, ik)ei(“tikz)> are oppositely travelling waves.

We shall now use equation (28) to generate an equation for the field within the con-
ductive medium. The equation will now by applied in spectral space allowing the deriv-
atives to be more simply expressed. Recognising that (¥ V)A — V8, A as ¥ has only an

x component yields
poo LA + 1o VO,A = 02 A + 8514.

Evaluating the derivatives in spectral space gives

R R - a2 .
pooiwA + pooVikA = —k*A + FA
Y

and substituting in the definitions for w and Rm yields

&, .

Within the conductive medium, the equation for a travelling field can now be given as
d?A)dy? — K*A =0, (34)

where

k(k) = V2 +i(@ + kRm). (35)
The general solution to equation (34) which is present in the layer can be written as

~

A(y; k) = Cysinh(ky) + Dy cosh(ky). (36)

Above the layer the solution is given by

Aly; k) = Ao(y; k) + Ai(y; k), (37)

where Ag(y; k) = Coel¥l@=1 and A, (y; k) = Cre M@=Drepresent the applied and induced
fields, respectively.
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Below the layer the solution decaying as y — —oc is given by

A(y; k) = Csellv—1) (38)

At this point we have and four unknown constants C4, Cy, C3, Dy which require four
equations to be determined. The boundary conditions for the continuity of A and its
derivative normal to the boundary across the two interfaces between the layer and free
space provide the information to solve the system. At the interface above the layer, y = 1,

the continuity of A is given by
Cysinh(k) + Dy cosh(k) = Cy + Cy (39)

and below the layer , at ¥y = 1 the condition is

Dy cosh(k) — Cysinh(k) = C (40)
The continuity of the derivative normal to the boundary below the layer, y = —1, gives
kCy cosh(ky) — kD sinh(ky) = |k|Cs (41)

substituting in the solution for C3 below the layer (40) gives
Cs(|k| sinh(k) + k cosh(ky)) = Do(|k| cosh(k) + k sinh(ky))
and with the solution taken from above the layer (39) at y = 1,
kCy cosh(k) + KDy sinh(k) = |k|Cy — |k|C
substituting in the solution for C taken from (39) gives
Cs(|k| sinh(k) + & cosh(ky)) + Da(|k| cosh(k) + ksinh(ky)) = 2|k|Cy

and as we already have Cy(|k|sinh(k) 4+ x cosh(ky)) = Ds(|k| cosh(k) 4 x sinh(ky)) from

above we can state
Cs(|k| sinh(k) + k cosh(ky)) = Da(]k| cosh(k) + rsinh(ky)) = |k|Co.

The four unknown constants are found as
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Cy = Cylk|/(|k|sinh(k) + K cosh(k))
Dy = Cylk|/(|k| cosh(k) + k sinh(k))
Cy = Dscosh(k) + Cysinh(k) — Cy
C3 = Dsycosh(k) — Cysinh(k).

42
43
44
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(
(45

)
)
)
)

4.1.2 Solution for The Pair of Straight Wires

The derivation above will now be used for a field generated by a couple of straight wires
with oppositely flowing currents, as shown in figure 4(b). The physical interpretation
of these wires could be that they represent two sides of a single coil or that they are
sections of two separate wide coils, where the coils are wide enough for the returning loop
to be negligible to the system in the proximity of the original wires. These two straight
wires carry ac currents of amplitude [, in opposite directions. These wires are orientated
along the z-axis and are located at a height of h above the centre line of the layer and at
distances +s from the y-axis.

The free-space distribution of the vector potential amplitude which as before will

consist only of the z-component, is governed by

V2Ay = —6(7 — he, — s&,) + 6(7 — hé, + sé,) (46)

which is scaled by poly, d(r) is the Dirac delta function and  is the radius vector.
The Dirac delta function is used to model the point currents which represent the two
wires. The equation for the free space distribution is reduced by the Fourier transform
A(y; k) = [ A(x,y)e**dz, which converts equation (46) into

d?A A r ‘ r .
dy20 —k*Ag = 6(y—h) /[5(x + 8)|e**dx — §(y—h) /[5(x — 8)]e**da

Collecting the integrals into the coefficient f(k) = [ [6(x — s) — 0(x + s)]e™dx yields

o kAo = ~ ()5l ~ b), (47)
f(k) = e — e = 2sin(ks). (48)

The solution of equation (47) decaying at y — £o0o can be written as

Ao(y; k) = c(k)e He=m, (49)

30



Integrating equation (47) over the singularity at y = h,

' h+e dQAO - ' h+e
lim hﬂf[dyg—%rAd5y==§g»h_gi*f@ﬁﬂy*hﬂéy
which evaluates to J
—A — |k*yA = —f(k
{woLh Wydd] | =—f0),

we obtain the boundary condition

[%A@@Lﬂz—ﬂm

Applying the boundary condition shows the remaining coefficient can be expressed as

_ f(k) _ isin(ks)
W= =

(50)

Solutions for the kth Fourier mode of the magnetic vector potential in the three
regions located inside, above and below the layer have been derived above and are given
by equations (36, 37, 38) respectively. The coefficients for these three equations follow
from the derivation above are given by equations (42-45). The constant Cj is again given
by Ag(1; k) and is calculated by equation (49) with ¢(k) given by equation (50):

_asin(ks) g
7T

Finally, the complex vector potential A is recovered by the inverse Fourier transform of

A given by

Y 1 < —ikx
A(z,y) = g/ A(y; k)e " dk, (51)

[e.9]

which can be efficiently calculated with the fast Fourier transform.

4.2 Results

This section presents the main results obtained using model introduced above for a single
harmonic of the applied field and then for a field generated by a couple of straight wires.
It is important to note that in this model, where the vector potential has only one
component, the difference in the vector potential between two points defines the linear
flux density of the magnetic field between two lines parallel to the vector potential at
these two points. This can be shown by Stoke’s theorem (11), which in this context
means, the circulation of the vector potential around a thin coil gives the magnetic flux

through that surface the coil bounds. This also holds true for the derivative of the
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vector potential and linear flux density. This leads to the difference in amplitude of the
vector potential between two points being proportional to the emf amplitude measured
by simple coil, which would be represented by two straight wires oriented along the z-
axis. Assuming the second wire to be sufficiently far from the magnetic field the vector
potential amplitude of a single point would represent the emf measured by a wide coil

which is only partially in the region of interest.

4.2.1 Results for A Single Harmonic

Before introducing the modifications to the measurement scheme for the phase shift
flowmeter, we will introduce the models behaviours as a basic for further development. In
this section a single harmonic of the magnetic field will be considered. This corresponds
to a field generated by a standing wave with wave number k. The phase distribution
and the flux lines, both in phase with the applied field and shifted by 7/2, are shown
in figure 6. An important observation is that, although the field decays exponentially,
the phase distribution below the layer is invariant in the y—direction. Although this is
only generally true for a field generated by a standing harmonic wave it leads to one of
the major advantages of the phase shift lowmeter, that the measurements of phase are
robust to variation of the vertical position of the measurement coils. The phase is defined
as the angle of the complex field, when presented in polar form. It is calulated as the
arctangent of the ratio between the field in phase and out of phase with the applied field,
w= arctan(%).

An example of the measurement scheme, presented in [31], prior to introducing any
rescaling is given in figure 7. It can be seen that for a given dimensionless frequency, which
depends on conductivity, the phase difference can be used as a measure of magnetic
Reynolds number, which when knowing the conductivity can equate to measuring the
velocity.

The phase distribution between two nodes of the applied magnetic measured below
the conducting medium is shown in figure 7(b). While at rest this phase distribution
is piecewise constant varying only by jumps in the phase of w. These jumps in phase
occur at the wave nodes, which are located at x = +0.57. Figure 7(b) shows that the
discontinuities in the phase are smoothed out when the conducting medium is in motion.
The smoothed discontinuities are shifted further downstream with increasing values of
Rm. Another significant feature of this phase variation, which can also be seen in figure
7(b), is that the strongest phase variation occurs downstream of a node, whereas the
variation upstream of a node is relatively weak, this disparity is more pronounced at lower
values of Rm. This shows the importance of placing the downstream measurement coil
close to the node if low velocities are to be measured, as the sensitivity of to the velocity

is higher in these locations. This is also relevant to the rescalings which are discussed
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later. The significance of the measurements upstream of a node being significantly less
affected by the motion of the flow will become apparent when introducing the rescalings.
The variation of phase ¢ with Rm at low velocities is characterized by the phase

sensitivity.

Kot % . (52)
T ORm g,

The dependence of this quantity on the dimensionless frequency @ is plotted in figure 8

for several observation points and wave numbers.

By observing that ¢ varies nearly linearly with @, as given in equation (35), we can see
the variation of K with w can be reduced. As w has a similar effect to Rm the reduction
can be achieved by scaling the phase variation with the phase itself, which leads to the
relative phase sensitivity.

K 0Olnyp

K,=n— =
7T<,0 ORm

(53)

Rm=0

As seen in figure 8(c,d), the relative phase sensitivity tends to constant for given
observation point. Although the relative phase sensitivity is not completely independent
of @ it can be seen that at higher values of w it varies much less than the unscaled phase
sensitivity shown in 8(a,b) especially at lower wave numbers. Following this idea the
effect of conductivity can be reduced by scaling the phase shift with a reference phase.
The reference phase ¢, is taken as the phase shift between the sending and the upstream
receiving coils, as the phase shift upstream of a node is less affected by the motion of
the layer. At low w the reference phase varies directly with w which, similar to Rm, is
proportional to conductivity. The following scaling by the square of the reference phase,
Y, Will reduce variation with conductivity

Aoy

2 Y
w

Agp = (54)
where Agp = ¢, — p_is the difference between the downstream and upstream phases
which are denoted by ¢, and ¢_ respectively.

For the rescaled phase shift to be insensitive to ¢ it can not be dependent directly on
w or Rm, but must be a function of these control parameters such that ¢ is eliminated.
Instead we choose }%m = % to measure against, which represents a dimensionless velocity,
this ratio shall be referred to as the relative velocity.

Figure 9 shows the rescaled phase shift given by equation (54) has a weak dependence
on w as long as w is low. For sufficiently low relative velocities the variation of the
rescaled phase shift with w is weak up to w ~ 1. This range of low relative velocities
depends on the locations of the observation points. With points closer to the nodes,

located x = +0.57, the range of relative velocities, where the rescaled phase difference

35



xk/ & —0.45
0.7 | 4 08¢ xk/ = -0.4 ]
e " xk/ = -0.3
206 | =0 |
= xk/ © =-0.45 ‘EO 6L |
o5 L xk/ n=-04 [JT
o /= -0.5 e
< xk/ n 0.3 30.5 L |
047 =
= :20.4 3 |
Z0s | N
f03 | *
< <
230.2 r B 30'2 | |
~ ~
0.1 r 101 |
(a)
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
@ (dimensionless frequency) @ (dimensionless frequency)
0 0
-0.01 + xk/ n =-0.45 |]
-0.5 ¢ 1 xk/ n=-04
-0.02 xk/ n=-0.3
¢t R
v —-0.03 - 1
E
z =0.04 ]
E15 ¢ 1z
iz 2005 | ]
g 9l I
g 5006 ]
z 3
£ b
Fas | 1 Zo007t ]
[
, xk/ 7 —0.45 -0.08 ]
“l xk/ n =-04 i 0.09 | |
xk/ % = 0.3 (¢ d
35 ! . . . -0.1 I . !
0 1 2 3 4 5 0 0.5 1 1.5 2
@ (dimensionless frequency) @ (dimensionless frequency)

Figure 8: The phase sensitivity (a,b) and the relative phase sensitivity (c,d) versus the
dimensionless frequency @ at various horizontal observation positions below the layer for

k=1 (ac) and k = 0.5 (b,d)

36



e 0.25 @ =0.1 1
- & =04
QN 02 — &=07 ]
8 —a=1
5]
Z 015t ;
5
2 017 1
a
z
g 0.05 ¢ 1
3
~
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rm/® (dimensionless &«xV)
. osl & =01 |
- =04
« <4 8 o
4 0.25 @ =0.7
g 51
£ o2t
<
EORER 1
S0t |
=
=
= =
E 0.05 = 1
0.1 0.2 0.3 0.4 5 0.6
Rm/® (dimensionless &«V)
057 3 =01
S & =0.4
q 047 & 0.7 1
g —a=1
5
k> 0.3 r 1
5
202t 1
z
T 01t 1
8 =
~ =
005 01 015 02 025 03 035 04

Rm/® (dimensionless &xV)

Rescalled phase difference A , ¢ / 1 Rescalled phase difference A , ¢ / 7

Rescalled phase difference A , ¢

o
s
=

o
=

b
=}
S

0.2

0.15

0.1

0.05

0.2

el
|

€l
|

el
Il
o o o o
W o

el
Il

L L L L

Rm/w (dimensionless &«V)

0.2 0.4 0.6 0.8 1 1.2
Rm/® (dimensionless &«xV)
®»=0.1
— =02
- =03
T » =05 1
0.2 0.4 0.6 0.8 1
Rm/® (dimensionless &«xV)
o =0.1 1
— =02
© =03 1
T w=05
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 9: Rescaled phase shift Asp between two observation points placed below the
layer at £2 = 0.27 (top), 0.37 (middle) and 0.47 (bottom) versus the relative velocity
Rm/w for various dimensionless frequencies with k£ =1 (left) and k& = 0.75 (right)

37



10 T T T T
— Rm—0
— Rm—0.25
—— Rm= 0.5
— 0.5
11'101' ®"1
~
o
)
z
=
[a W
10° :
10-1 1 I() I1 2
10 10 10 10

Dimensionless Frequency, ©

Figure 10: Phase versus the dimensionless frequency, w at the bottom of the layer for
various wavenumbers and Rm = 0.1

remains invariant with @ is reduced. Figure 9 shows that far enough from the nodes
the relationship between rescaled phase difference and relative velocity is invariant for
a range of dimensionless frequency from 0.1 to 1, which corresponds to a change of an
order of magnitude to the conductivity. This range is supported by looking at the nature
of the change of phase with dimensionless frequency, as shown in figure 10, where there
is a linear relationship for low dimensionless frequencies which continues until w = 1.
The scaling given by equation (54) fails at higher values of w where the shielding
effect causes the reference phase to vary non-linearly. In this case, the phase shift is O(1)
over the skin layer with the characteristic thickness ~ @~'/2. It means that the total
phase shift due to the diffusion of magnetic field through the whole conducting layer with

/2~ ¢'/2. Since the external magnetic field in the form

thickness O(1) varies as ¢ ~ @
of a standing wave consists of two oppositely travelling waves, the motion of the layer is
equivalent to the variation of the dimensionless frequency by ~ Rm < 1. The respective

phase shift between two receiving coils can be estimated as

0
Agp ~ —?Rm ~ o YV2Rm ~ o'/2
0w

This implies that for higher frequencies @ 2 1, rescaling directly with the reference phase
shift should lead to the conductivity being eliminated from the measurement scheme. The

rescaled phase shift which is rescaled directly with the reference phase shall be denoted
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as A1y and is defined as
Arp=—. (55)

The rescaled phase shift A;¢ is plotted in figure 11 against the relative velocity for
two different wavenumbers k£ = 1 and and k£ = 0.5 and various dimensionless frequencies.
For k = 1 the dependence of the rescaled phase shift on w appears to be greatly reduced
for w > 1. For k = 0.5, which corresponds a wavelength of the applied magnetic field
significantly larger than the thickness of the layer, the variation of A;p with @ is prac-
tically insignificant starting from w = 1. This implies that the measurement scheme is no

longer strongly dependant on the conductivity of the flow.

4.2.2 External Magnetic Field Generated By A Couple Of Wires

In this section we consider the case of an external magnetic field generated by a couple of
straight wires as shown in figure 4(b). For the layer at rest, the magnetic field distribution
is mirror-symmetric with respect to the = 0 plane. This is analogous to a node in the
mono-harmonic standing wave considered in the previous section. Correspondingly, when
the layer is at rest, there is a phase jump of 7w at = 0. In contrast to the previous case,
the phase is no longer constant on both sides of the discontinuity and varies horizontally
as well as vertically.

The relationship between the phase and frequency for the two wire model is plotted
in figure 13 as with the field generated by a standing wave the variation is linear for
low frequencies and for higher frequencies, where shielding disrupts this linearity and the
phase varies with the root of the dimensionless frequency, ¢ w2. The approximate
dimensionless frequency for which the linear behaviour fails is similar between the two
exciting fields, and in both cases the variation of the phase with the root of the frequency
is well established by w = 1.

The phase sensitivity is plotted against dimensionless frequency for various measure-
ment points below the layer in figure 14. It shows that the phase sensitivity attains a
maximum at an optimal frequency, w ~ 0.14. The low optimal frequency can also be
shown from equation 50 which shows the applied magnetic field is dominated by low
wavenumber modes. Another important feature of the phase sensitivity is that its re-
duction above the optimal frequency is gradual compared with to its steep increase at
sub-optimal frequencies. The loss of the sensitivity from working with a much larger sim-
plified value of & = 1 is relatively small. This loss becomes smaller still with observation
points further from the origin.

Figures 14(a,b) and 13 all show that the range of w where the phase sensitivity varies
linearly is rather short. Therefore there is a limited range for which in the two wire model
rescaling (54) may be applicable. Figure 15(a-c) show the rescaling with the square of

the reference phase applied to the two-wire model. It can be seen that the rescaling fails
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for the range of frequencies for which it is designed. It is likely that this rescaling fails
at this range of frequencies because the transition between the linear and square root
relationships of phase and frequency, shown in figure 13, occurs at a lower frequency in
this model compared with the simple model for a harmonic standing wave. Figure 15(d)
shows that this rescaling does indeed theoretically function very well with little change to
the measurement for a change of two orders of magnitude of the frequency. This rescaling
only works for a low enough range of frequencies and these frequencies are impractically
low.

At dimensionless frequencies near unity w ~ 1, which presents the main interest from
a practical point of view, the rescaling presented to handle the the non-linear variation
of the phase-shift, given by equation (55), is expected to be suitable. This rescaled
phase shift is plotted in figure 16 against the relative velocity for several locations of the
observation points and various dimensionless frequencies. It can be seen that the rescaled
phase shift A;p depends predominantly on the relative velocity while its variation with
w is relatively weak. In figure 16(d) the exception to this is shown which occurs for
the large separations of the observation points, in this case x = 4+2.5, where the lines
for the different dimensionless conductivities do not collapse well. This deterioration of
the rescaling at larger separations of observation points may be due to the horizontal
variation of the reference phase mentioned above, which was not present in the model

with the simple harmonic applied field.
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As previously shown the lateral positions of the receiving coils have an effect on how
well the rescaling works. The horizontal position of the sending coils is now considered.
A suitable measurement of this is the maximum difference between any two lines, which
relates physically to the maximum error in the rescaled phase shift measurement caused
by removing conductivity from the measurement scheme. Figure 17(a) and (b) show the
maximum difference in rescaled phase measurement for dimensionless frequencies 1, 2, 3,
4 and 5. It can be seen that having the sending coil further out leads to lower variation
between different dimensionless frequencies. It is also shown that in most cases having
the sending coil further from the flow leads to lower differences. It is shown that the
measurement scheme is more robust when looking only at lower velocities. figure 17(d)
shows that when the wires representing the sending coil are taken the extreme and likely

impractical locations of x = 45 that the lines collapse better for a greater range. This
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can be seen to agree with the last point in the previous section that further separated
observation points yield worse results, as here the opposite is shown, that having the

observation points closer together relative to the sending coil yields better results.

4.3 Summary

In this chapter, a theoretical design for an improved phase shift flowmeter has been
introduced. This design is shown to be able to reduce the conductivity dependence of
the measurement scheme. This is done by employing the reference phase shift which is
induced on the field by the presence of the conducting layer to the measurement scheme.
A measure of the reference phase taken from the upstream receiving coil. There are two
rescalings introduced where a reference phase shift is used to rescale the measurement
scheme. Firstly, for low frequencies w < 1, where there is a direct relationship between
phase shift and the frequency, rescaling the flow-induced phase shift with the square of the
reference phase can help remove conductivity from the measurement scheme. At higher
ac frequencies @ 2 1, where the shielding effect causes the variation of phase with the
frequency the be non-linear, conductivity can be removed from the measurement scheme

by rescaling the flow-induced phase shift directly with the reference phase.
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5 Pulsed Field Flowmeter

In this section we will consider an axisymmetric cylindrical model. We shall again first
consider a field represented by a standing wave and then The field generated by a number
of coils. In this model the effect of a pulsed field will be considered for both of these field

definitions.

5.1 Mathematical Model

Consider a cylinder of infinite length, oriented along the z-axis, radius R and conductivity
o moving at a velocity of ¥ = ¢€;v. The derivation for the cylindrical model starts
identically to the 2D Cartesian model. starting with the Maxwell Faraday equation,
Ohms law and its expansion and Amperes Law given by equations (21-23) and (25). In
this model, we shall again assume that the frequency is low enough that we can neglect

the displacement current and use Amperes Law:

j=Lvx B (56)
Ho

We consider now that the magnetic field is axisymmetric and in our cylindrical co-
ordinate system (with axis labelled r, ¢ and z) will have only r and z components. As
with the Cartesian model, presented in the previous chapter, the magnetic field can be
represented by a single component of the vector potential. However, in this model the
component which will be used is the azimuthal component. This means we have a purely

azimuthal vector potential, A= ésA. By evaluating the curl it can be shown that
B =—r'e, x V(rA).

A useful feature of this model is that the streamlines of B run along the isolines of rA.
This can be shown by appling the cross product with the unit vector in the azimuthal
direction. The triple product produced on the right hand can be simplifed using idenities
leading to, € x B= 7’_16(7*14). Taking the dot product of this with B leads to éﬁ(rA) =
0 which shows that the streamlines of B run along isolines of rA.

The advection diffusion equation for this model takes the form
L0 (0, A + v9,A) = V2A, (57)

which is derived by applying Ampere’s Law (56) to Ohm’s Law (23) as is done to derive

equation (28) in the previous chapter. In free space, equation (57) takes the form

(rt(rA)) +0’A=0. (58)
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where ' denotes the derivative with respect to r. To solve this equation we now consider
the eddy currents induced by the external magnetic field in the form of a single Fourier

harmonic which varies as

Ap(r, z,t) = flo(r) sin(kz) f(t)

where, as before, k is the wave number in the z direction and f(t¢) defines the time

variation of the applied field. The time variation due to the pulsed nature of the magnetic
field is defined by

W4 —t-nT-1, 0<t<T & . .,
f(t)_{ flt 1), t>T _n;mf"e

This, firstly, describes the periodic nature of the pulsing of the field. Secondly, the func-
tion is defined using the complementary error function n(t)=erfc(t/d) = % j;;fi e~ dt.
This introduces a transition time § whilst turning the field on or off. This transition time
is necessary to suppress the Gibbs phenomenon in the Fourier series representation of
£(t).

The Fourier coefficients f,, for the modes are computed using the FFT. These modes

are generated for dimensionless frequencies w,, = 2wn/T. The solution for the vector
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potential can be represented in complex form as

N/2

A(r,z,t) = Z R [An(r)fnei(w"sz)] (59)

n=—N/2

where A, is the solution to (60) given in general form by (61).

We can now write equation (58) in the following form
(r ' (rA)) = r Ay — KAy =0 (60)
For which the general solution is

A, (r) = CI,(kr) + DK, (kr), (61)

where [,(z) and K, (x) are the modified Bessel functions of the first and second kind
respectively, with order v; C' is an unknown constant defined by the applied magnetic
field and D¢ is an unknown constant associated with the n-th time harmonic of the

induced magnetic field.

5.1.1 Solution for Mono Harmonic Standing Wave

For the case of the applied field taking the form of a standing wave, there are two regions
which the system can be resolved in: inside the layer and outside of the layer. The
standing wave shall, as in the previous model, be represented by two oppositely travelling
waves.

We now set the radius of the conducting R as the length scale and the time scale
as o H?. We can now introduce two key dimensionless parameters. A dimensionless
velocity, the magnetic Reynolds number Rm = pgoV H and the dimensionless frequency,
O = poowpR?. Outside the conducting cylinder, the solution is governed by equation
(61). Inside the conducting layer the solution is governed by equation (57), which takes
the form

(rt(rA,)) — (K2 +i(@, + k,Rm)) A, = 0.

With the substitution & = (k2 + i(w, + kan))l/2 the solution to this equation for the
field inside the conducting layer is given by

A, (r) = D! I (kr). (62)

This solution is chosen such that the term concerning the modified Bessel function of the
second kind, K, (x) , is omitted as it is not regular at » = 0. The continuity of the vector

potential and its normal derivative at the interface between the conducting region and
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free space, r = R = 1, gives boundary conditions which will lead to the solutions for the
unknown constants D2 and D! .

A

Firstly [A],—; = 0 gives

D! I(k) = CL(k,) + D2 K, (ky,) (63)

and [&A]r:l = 0 gives

4 1 1 1
Dy (o) = - 11(s) = ClIo(hkn) = - Ti(ka)) + DY~ Kaofkn) — - Ka(kn)).
For the derivatives of the modified Bessel functions the recurrence relationship 0,L,(z) =
Ly,-1(z) — LL,(2) found in [1], where L substitutes either I, or ¢"™K,, has been used.
Simple manipulation and substitution of these equations at the boundary yields solutions

for the two unknowns

o kndo(B) (k) — Io(k) Ty (R
Dn - Ck’nKQ(k’n)Il(/{) + /QIQ(K,)Kl(kJn)

Dz‘ _ Ckn(KO(kn)Il(kn) + Io(k:n)Kl(k:n))
no k’nKQ(k’n)Il(K,) + K,I()(K,)Kl(k’n) '

For this solution the current amplitude of the applied field is defined by C. as the

amplitude is irrelevant in our study we can set C' = 1.

5.1.2 Solution for A Circular Current Loop

The solution above, for a mono-harmonic applied field can be extended to the case of
a coil, made of circular loops. Considering a single thin loop placed azimutally with
radius 7. located axially at z. carrying a dimensionless current of j.. The free-space
distribution of the vector potential amplitude will consist only of the ¢-component and

can be described using the Dirac delta function,,

V2Ag = —job(F — 168, — 2.8.), (64)

where 0(7) is the Dirac delta function. Note that as the model is azimuthally symmetric
the loop is oriented along the ¢ direction with constant r and z values. An axial Fourier

transform A(r) = [*°_ A(r, z)e’** dz converts equation (64) to
(r Y (rdy)) — k2 Ay = —jee *nZ5(r — ). (65)

The solution to this equation must be continuous across the coil, r = r,, regular at r = 0

and decay as r — oo. The last two conditions are met by our choice of which part of the
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solution to utilise,
Ao(r) = DiIi(k,r) + DKy (kyr)),

which is based on the general solution given by equation (61).

In the regions 0 < r < R and R < r < r,, inside the cylinder and from the cylinder
to the coil, the solution can be taken as Ay(r) = D;I1(k,r) and from the coil to infinity
the solution is given by Ag(r) = D Ky (k,r).

The constants D; and Dy are solved by the boundary conditions on A at the coil.
The values at the coil must match and the change in derivative is obtained by integrating
equation (65) over the singularity caused by the presence of the coil at r = r.. Giving

the boundary conditions, firstly based on the value [/Alo} =0, as

r=T¢

Dlll(knrc) - DKKl(k:nrc)

)

and for the derivative [&AO] = —jpe hnze
r=rc¢

1 - —iknz
D[ ([O<knrc) — k‘ Kl(kn'rc» = —Jc€ o c’

nTc

1
[1<knrc>) + DK(K0<]€YLTC) + L

n’rc

which can be reduced to, by subtracting the other boundary condition, the following
form:
len[(](knTc) -+ DKan(](knrc) — _jcefiknzc

[1 (kn'rc)
Kl (knrc)

In the region 0 < r < r, the solution can be taken as

1 A
Dy (IO(knrc) - ﬁll(kn%)) + (Kg(k‘nrc) + Kl(k;nrc)) = —2j e thnze

kn’rc

11 (knr)
A (T) — _j e*iknzc Il(knrc)

Io(knre) | Ko(knre)\’
kn <I§)(k5n7"c) _'_ K?(’%ﬂ"c))

for the region r. < r < oo, from the coil outwards, as

Ki(knr)
AO _ ‘c —iknze Ky (knre) )
(T) Jc€ k;n <Io(k?n7'c) + Ko(k‘nT‘c)>

Il(knrc) Kl(knrc)

The vector potential in physical space is given by the inverse Fourier transform, com-
puted using the FFT.
This method can be applied to multiple current loops each loop will have an ad-

ditive effect on the field with current for each coil being introduced by substituting
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C =>.D./I(k,r.) into equation (61) where
_jcefiknzc

IO(k?nT'c) KO(k‘nrc)
kn <Il(k5n7"c) _'_ Kl(’%ﬂ"c))

D. =

and the summation is taken over the current loops.

5.2 Eigenmode Evolution

To describe the basics of the pulsed field approach introduced above, the evolution of
separate eigenmodes shall be investigated. The separate eigenmodes will be sought in

the following complex form,

A(r, z,t) = A(r)eF=t, (66)

where k,, is a given real wave-number introduced in the derivation above and v is an
unknown complex decay rate. This complex decay rate will be determined together with
the amplitude distribution fl(r) by solving the eigenvalue problem posed by equation (57).
If we remove the external magnetic field, the solution for the region where measurements

would be taken, outside the cylinder, given be equation (63) can be expressed as
A(r) = DKy (ar), (67)

where D° is an unknown constant. Inside the cylinder, the general solution of equation
(57) is given by
A(r) = D'Jy(ar),

where D' is another unknown constant, .J,(z) is the Bessel function of the first kind with
order v, and o = (y — k2 — ikan)l/ ? . The boundary conditions based on the continuity
of A and its derivative across the surface of the layer r = R = 1 can solve for the two

unknowns, D° and D?. Firstly the continuity condition [A] = 0 gives

r=1

D°Ky(k,) = D"Jy(a)

And the derivative across the boundary [&A} = 0 gives
r=1
o 2 i 2
D?(Ko(ka) + 1= FKi(ka)) = D'(Jo(@) — = Ji(e)).

These boundary conditions lead to the following characteristic equation
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Figure 19: Three lowest eddy current decay rates versus the wave number. Note that
modes for n > 4 will have significantly higher decay rates, and thus significantly shorter
decay times.

This equation has real roots given by a which define the associated complex decay rates

introduced in equation (66) as
v =a®+ k2 + ik, Rm. (69)

The most important result that follows from this expression is the phase speed is constant,
shown by S[v]/k, = Rm. This is the speed at which all eddy current patterns travel
regardless of their wave number. The corresponding physical velocity for the eddy current
patterns is given by Rmuv,, = v and is equal to that of the medium. Here v,, = (oo R)™*
is the velocity scale for the model. This leads to the conclusion that the velocity of the
medium can be determined by measuring the phase velocity at which an eddy current
pattern is advected. This is the main concept underpinning how transient eddy-current
flowmetering operates.

The second important result which can be taken from equations (68&69) concerns
the decay rate given by the real part of the complex associated decay rate R[y]. Figure
19 shows R[y] versus wavenumber k, for the first three dominant eigenmodes. It can
bee seen that the lowest decay rates occur in the limit k£, — 0 which is associated with
long wave patterns. In this limit, the characteristic equation, given by equation (68), can
be reduced to Jy(k) = 0 which yields R[y;] ~ 5.78. This means that the eddy current
amplitude drops by almost three orders of magnitude over the characteristic magnetic
diffusion time t,, = ppoR?. The decay times of subsequent eigenmodes are significantly

shorter, as shown by the significantly higher rates in figure 19. The figure is limted to
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the domnant three modes as higher modes will have higher decay rates and will become
insignificant due to their short decay times. This means that the period of time during
which a tracking a transient eddy current pattern is feasible is limited by a few magnetic
diffusion time scales t,,. This result also implies that the respective dimensionless distance
over which the pattern is advected is limited by a few Rm.

The measurement of the phase velocity of the field induced by the eddy currents is
not as simple as measurement would be for a simpler wave with constant amplitude.
The phase velocity measures the rate at which the phase propagates spatially. For a
simple wave with constant amplitude, this is equivalent to the motion of a point of fixed
amplitude. In the case of the decaying field, the only points with fixed amplitude are the
nodes, or points at which the oscillating amplitude passes through zero.

Along with the nodes of the oscillating amplitude some other features are present,
which behave similarly to that of a point of fixed amplitude, whos motion is equivilent
to the phase velocity. Firstly the spatial derivative can be used as local spatial extrema,
which will be also fixed in the decaying wave. And secondly instead ofusing the field
amplitude to find a fixed point a temporal extrema of the field can be traced, where zero
crossings in the time derivative will also give fixed points in the decaying wave. This
time derivative of the magnetic flux is associated with the emf induced by the decaying
eddy currents, £ = —0,®, which gives rise to voltage in the pick-up coils. Finally the
extrema of the emf may also be used to measure the phase velocity of the eddy currents.
Both spatial extrema, 0,€ = 0, and temporal extrema, 0;€ = 0, of the emf will have zero

crossing points which could be used for measurement.

5.3 Mono-Harmonic Eddy Current Distribution

In this section, we consider a pulsed external magnetic field which is switched off and on
periodically at the dimensionless time intervals 7 = 3 and 7' — 7 = 1. The field takes
the form of a standing wave which represents a single harmonic for the field generated
by simple coils in the next section. The eigenvalue analysis in the previous section
suggests that these time intervals are long enough for the eddy currents to develop. The
development of the eddy currents is confirmed by the time variation of the magnetic flux,
® = rA, which is caused by the presence of the eddy currents. This temporal variation
of the magnetic flux is shown in figure 20(a) with wavenumber k, = 1 at z = 0.5 with
measurements taken at three different radii with the conducting media at rest (Rm = 0).
The corresponding variation of the emf magnitude is plotted in figure 20(b) for both the
layer at rest and in motion. When the cylinder is at rest (Rm = 0), the emf can be seen to
decrease exponentially with time as predicted by the previous eigenvalue analysis. When
the cylinder moves with velocity Rm = 1, the decrease of emf is accompanied by a zero

crossing, which occurs at the time instant ¢ ~ 0.5, for the measurement location z = 0.5.
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Figure 20: Variation of the magnetic flux ® = rA over one time period at z = 0.5 and
r = 0.5, 1, 2 for the Fourier harmonic with the wave number k,, = 1 for Rm = 0 (dashed)
and Rm = 1 (solid) (a); variation of the emf magnitude |0;®| with time at the same
points for Rm = 0 (dashed) and Rm =1 (solid) (b).
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This zero crossing point is seen as a cusp on the semi-logarithmic plot of |£] in figure
20(b). Shortly after passing through zero, emf is seen to attain a local extremum, which
is defined mathematically by a zero crossing of 0,€.

Figure 21 shows the evolution of the magnetic field pattern and the associated emf for
wave number k, = 1 after the external magnetic field is switched off with the conducting
cylinder moving at a velocity given by Rm = 1. In the middle row the increased density
of isolines show the locations of the zero crossings of the emf these zero crossings follow
closely to the motion of the medium as seen by there locations at z = ¢ Rm. This movement
of the zero crossing with the velocity of medium means that the velocity can be determined
directly from measurements as Rm = z/t, where z is the axial distance of the observation
point from the wave node and ¢ is the time at which the emf passes through zero at that
point after switching the field off. The magnetic flux lines, which are shown at the top
row of figure 21, can be seen to run slightly in front of the flux lines of the emf. This is due
to the effect of advection which tilts the magnetic flux lines in the direction of motion.
This can be seen in the upper left plot, where at ¢t = 0, the flux lines are pulled along in
the direction of the flow. In contrast to this, the time derivative, which is mathematically
equivalent to multiplying the dominating eigenmode, in equation (66), by —v this has a
phase shift of arg(—~) in the associated field pattern. This will cause the pattern of 9,€,
which is shown in the bottom row of figure 21, to lag slightly behind the pattern of &£.
Note that the zero crossings of 0,€, similar to those of £ are marked by the increased
density of the isolines. The spatial extrema of £ are defined by the zero crossings of 0.€.
With this simplified mono-harmonic applied field the distribution is given by 0.€ = ik, £
which is shifted by a quarter wave length relative to that of £. Therefore the spatial
extrema of the emf in a mono-harmonic wave will move in exactly the same way as the
ZEero crossings.

Figure 22(a) shows that the emf for the distributions for both wave numbers &, =
1, 0.5 can be seen to decay in a good agreement with the analytically determined damping
rates, shown as dashed lines in the figure.

Zero crossings outside the cylinder are shown in Fig. 21 to occur synchronously along
a radius. For this reason here we choose to focus on the emf distribution along the
surface r = 1. Figure 22(b) shows the zero crossing positions of both &, 9,€, 0.€ and 0,P
against time for wave number k, = 1 at three different velocities Rm = 0.1, 0.5, 1. The
zero crossing points of £ and 9,€ move in exactly the same way with a velocity of Rm
starting from the node at z = 0. The temporal extrema points, which correspond to zero
crossings of 0,€, also move at the same velocity as the medium but with a time delay
which depends both on the wave number k, and the velocity Rm. This means that at
least two measurement points are required to eliminate this offset and, thus, to determine

the velocity of the medium using temporal extrema of emf.
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Figure 21: The magnetic flux lines (& = const) (left), the isolines of emf & = —0,P
(middle), and of 8, = —92® (right) for Rm =1 at the time instants ¢t = 0, 0.4, 0.8, 1.2
after a mono-harmonic external magnetic fi8ld with the wave number k, = 1 has been
switched off. Subsequent isolevels differ by a factor of two and cluster around zero value.
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Figure 22: (b) Relative magnitude of £ against time for mono-harmonic eddy current
distributions with %k, = 0.5, 1 .(c) Axial zero crossing positions of £, 9;€, 0.€ and 0,P
for the eddy current distributions generated with Rm = 0.1, 0.5, 1 for k, = 1.
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Figure 23: The magnetic flux lines (® = const) (left) and the isolines of 9, = —92®
(right) at the time instants ¢t = 0, 0.4, 0.8, 1.2 after the external magnetic field generated
by a pair of anti-symmetric current loops with radius r. = 2 located at z. = £1 has been
switched off.

5.4 Eddy Currents Induced By Circular Loops

The eddy currents generated by more realistic coils are investigated in this section. These
coils are represented by simple circular current loops. The first coil layout which will be
considered is that of a pair of loops located at z. = +1 and r. = 2 carrying equal
but opposite currents. This configuration is designed to give similarities to a node in
the mono-harmonic distribution discussed previously, the symmetry plane at » = 0 is
analogous to such a node.

As a result, the nature of the advection of the field pattern by the moving medium,
which is shown for Rm = 1 in figure 23(left), is noticeably similar to the field pattern
for the mono-harmonic eddy current distribution in figure 21(left). In a similar manner,
the zero crossing points of both £ and 0;€ move in the same way as they did in the
mono-harmonic wave. There is one substantial difference between the mono-harmonic
and anti-symmetric eddy-current distributions which concerns the motion of spatial ex-
trema of emf. In this model, there are two such extrema which can be seen in figure

23(right). These extrema are located initially at the current loops where the increased
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density of isolines show the location of the zero crossings of 0,€. It is obvious that these
extrema do not move at the same velocity. The right (downstream) extremum moves
noticeably faster than the medium whereas the left (upstream) one moves not only much
slower but also in the opposite direction. In the example here the movement is slight but
it is perceivable that the upstream zero crossings do travel upstream, against the flow
over time. The gap in between the zero crossings appears to grow fairly uniformly how-
ever physical measurements of this would be impractical. The main difference between
the spatial extrema in the previous mono-harmonic and the present two-loop eddy cur-
rent distributions is the absence of symmetry in the latter. It will be shown later that
symmetry is crucial to the transient eddy current flowmetering.

A single loop can generate an eddy current distribution with a spatially symmetric
emf extremum. However it will not have zero crossings in the emf amplitude. Figure 24
shows the evolution of the field generated by a current carrying coil at z. = 0 with radius
r. = 2 with the conducting cylinder in motion with a velocity Rm = 1. For a single coil,
the zero crossing are absent from the temporal evolution of the emf amplitude however
the spatial extrema of both the emf and magnetic flux are present. These extrema are
detected as the zero crossings of the spatial derivative of either the magnetic lux 9,% = 0
or the emf 0, = 0. These zero crossings move with the medium, as with the previous
model, however the nature of the relationship between the two movements are different.

The axial extremum of emf, shown in the bottom row of figure 24, is seen to move
without any time lag, as the zero crossings of the emf did in the anti-symmetric set-up.
The spatial extremum of the magnetic flux experiences a time lag similar to that of the
temporal emf maximum in the anti-symmetric set-up. Note that the axial extremum of
the magnetic flux can be detected as a zero crossing of the radial flux component B,
using, for example, a Hall sensor. At least two sensor coils are required to detect an
axial maximum of emf, whereas one coil can be used to detect zero crossing or temporal
extremum of emf in the anti-symmetric set-up however this requires two excitation coils.

Finally, we examine the effect of a possible asymmetry in the initial eddy current
distribution generated by a two-coil set-up with opposite but slightly different currents.

To characterize this kind of asymmetry we use the parameter
S=0+—7-)/U++7-),

where j, and j_ are the currents in the coils placed with negative and positive z values
respectively. The temporal evolution of eddy current distribution with an initial asym-
metry of S = 5% generated by a pair of coils of radius r. = 2 placed z, = +1 is shown
in figure 25 with the medium at rest (Rm = 0). With a value of S > 0 the current in
the left hand coil is greater than that of the right hand coil, which leads to a initial emf

pattern which is asymmetrical and tilts to the right. In the anti-symmetric distribution
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Figure 24: The magnetic flux lines (® = const) (top), the isolines of 9,® (middle) and
0,E = —9%4® (bottom) for Rm = 1 at the time instants ¢ = 0, 0.4, 0.8, 1.2 after the
external magnetic field generated by a single current loop located r. = 2 and z. = 0 has
been switched off. Levels of subsequent isolines differ by a factor of two and the increased
density of isolines indicates zero value.
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Figure 25: The emf isolines for Rm = 0 at the time instants ¢t = 0, 0.4, 0.8, 1.2 after the
external magnetic field generated by a pair of opposite current loops located at r. = 2
and 2z, = %1 with the current asymmetry of S = 5% has been switched off.
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with S = 0 the Fourier mode for each harmonic of the emf independently crosses zero
at the symmetry plane, z. = 0. In the asymmetric case, S # 0, this symmetry is absent
and the zero crossing is a result of superposition of different Fourier modes. The decay
rate which depends on the wavenumber k,, varies between the different harmonics. The
variation of decay rate between Fourier modes leads to the zero crossing line in the asym-
metric distribution drifting. For S > 0 this drift is to the right as shown in figure 25.
Conversely, for S < 0 the drift would be to the left.

As seen in figure 26(a), after a relatively short initial transience, the drift velocity
slightly increases and appears to tend to a constant value. This value rises with the
asymmetry S and is nearly the same for both zero crossings and temporal extrema of
the emf. The drift velocity averaged over the time interval from ¢ = 0 to ¢t = 2.5 is seen
in figure 26(a) to increase nearly linearly with S. At the same time, the drift velocity
reduces with the increase of axial separation between the coils whereas their radius has

a relatively weak effect as shown in figure 26(b).

5.5 Summary

A cylindrical model was considered as a basis for the investigation into a pulsed field,
or transient, eddy current flowmeter. This model initially considered a mono-harmonic
field and was extended to the case of fields generated by simple current carrying loops.
A numerical analysis was carried out considering several measurement schemes based on
different characteristics of the magnetic field induced by the eddy current. The approaches
considered either traced temporal or spatial maxima of the magnetic flux or the emf of
the induced field. Temporal extrema can be measured with a single measurement loop
whilst spatial extrema require a pair of loops to detect their passage.

We considered eddy current distributions generated by either two anti-symmetric
circular current loops or a single loop. In a single-loop set-up, which generates a spatially
symmetric eddy current distribution, the spatial extremum of emf was found to travel
synchronously with the medium. In the anti-symmetric set-up, the zero crossing point
of emf as well as the subsequent temporal extremum was found to travel synchronously
with the medium. But this was not the case for the two spatial extrema which appear at
both current loops in this set-up. These two extrema were found to move at substantially
different velocities from that of the medium. This result highlights the crucial importance
of symmetry to the measurement scheme.

The importance of symmetry was investigated further and it was shown that a differ-
ence of a few percentage in the currents between the exciting coils can lead to a drift of
Rm ~ 0.1 with the typical parameters using in this chapter. This implies that transient
eddy current flowmetering is heavily dependent on symmetry, and with this reasonable

level of asymmetry can only be reliable for Rm > 1.
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Figure 26: (a) Axial position of zero crossing and its drift velocity along the surface of
cylinder at rest (Rm = 0) against the time after the external magnetic field generated by
a pair of opposite current loops located at r. = 2 and z. = &1 with the current asymmetry
S has been switched off . The upper and lower curves correspond to the zero crossing of
emf (£ = —0,®) and its temporal derivative (9,€), respectively. (b) Zero drift velocity
depending on the current asymmetry s in two circular loops with radii r. = 1.5, 2, 2.5
placed at the axial positions +2. = 0.5, 0.75, 1, 1.5, 2.
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6 3D model

In this chapter a 3D model is presented. This 3D model is designed to include more varied
designs of coils for both generating the magnetic field and for taking measurements.
Firstly the derivation for the model is given along with the boundary conditions
required to solve the system. In this section the process of generating an applied field
based on the definition of the generating coils is also presented. Following this some proof

of concept results for the model are included.

6.1 Mathematical Basis

Consider a solid infinitely long cylinder of radius R and electrical conductivity o translat-
ing at a constant velocity v = €,v parallel to its axis in an external magnetic field ée(ﬁ t).
The external field is in general time-dependant and spatially three dimensional. The as-
sociated electric field is governed by the Maxwell-Faraday equation E = —ﬁgp — 8tff,
where ¢ is the electric potential and A is the vector potential, which defines the magnetic
field as B = V x A. The eddy current density induced in a moving medium is given by
Ohm’s law

j=0(E+7xB)=0(-Vo—8,A+7xV xA). (70)
Applying Ampere’s law to equation (70) with the gauge (72) yields the following advection-

diffusion equation for A

poo (DA + (5 V) A) = V?4, (71)

where pi is the vacuum permeability.

In the case of a more complex flow profile where the velocity is non unifom this step
would differ significantly. One cause of this is the term (/T V)v, which appears in the
identity for o x V x A is nonzero for nonuniform velocity. If this case was considered an
analytic solution is unlikely be suitable and the flow inside the conductive layer would
need to be solved numerically.

An equation analogous to equation (71) results also for B when curl is applied to
equation (71). This will hold for all the equations derived in the following unless stated

otherwise. For the derivation of equation (71) we have introduced the gauge

-,

V- A+ poo(®—7-A) =0, (72)

which defines the scalar potential in the conductor. In free space (¢ = 0) the gauge
reduces to Coulomb gauge V-A=0.

In the following, external magnetic field is assumed to vary in time harmonically
as A°(Ft) = Xe(ﬂ cos(wt), and the solution is sought in the complex form A(7,t) =
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R [ff(f‘)ew} . Let us first consider a spatial amplitude distribution of the external mag-

netic field in the form of a single Fourier mode
A(F) = Alr)eitismo), (73)

where (r, ¢, z) are the cylindrical coordinates associated with geometry of the problem,
and k£ and m are the axial and azimuthal wave numbers, respectively. The associated

radial distribution of the magnetic field amplitude is
B(r) = &i(tmr A, — kAy) + &,(ikA, — A') + &, <r*1(r121¢)’ - imr*IAr) . (74)

where the prime denotes a derivative with respect r.
Using R, t,, = pooR? and v,, = (uooR)™! as the length, time and velocity scales,

equation (71) can be written in the following dimensionless form
(D = i3] A= r72 (64, = 8,4y + i2m(5, Ay — E,4,)| =0, (75)

where D,, = % +1d _ (m)2 and k? = k> +i(w+kRm); @ = poowR? and Rm = poovR

rdr r

are respectively the dimensionless frequency and velocity. The latter is also known as the
magnetic Reynolds number. For the free-space region outside the cylinder, where o = 0,

we have equation (75) with x? = k2.

6.2 Boundary Conditions

Boundary conditions at the interface S between conducting and insulating regions follow

from the continuity of the magnetic field and its vector potential

4],- 4,0 i

where [ denotes the jump of the enclosed quantity across S. In addition, continuity of

the magnetic field (74) requires

[A;} s [A/Z] s 0 (77)

Thus the vector potential has two more boundary conditions than the magnetic field
though both are governed by the same equation (74). This due to the different additional

constraints imposed on each quantity which will be discussed later.
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6.2.1 Boundary Conditions for Magnetic Vector Potential

The solution of equation (75) for non-axisymmetric modes (m # 0) is complicated by the
coupling of radial and azimuthal components. This coupling is removed by the substitu-

tion
1

V2

The radial and azimuthal components can be recovered from the decoupling variables Ay
by

Ar = — (A, +iA,). (78)

A = —=(A-+Ay), (79)

A

Ay = (A Ay, (80)

The substitution reduces equation (75) to

A

[Disr — K*] Ay = 0, (81)
(D, —r*]A = 0, (82)

[E——

where A = A, is used to simplify the notation. Then the general solution of equations
(81,82) inside the cylinder (r < 1) can be written as

Al(r) = CLllyy(kr), (83)
Al(r)y = C'Ln(kr), (84)

whereas in the free space between the cylinder and the coil generating the field (1 < r <

r.) we have

Ai(’l") = CiKm:tl(k:T) + Ci]mil(k”l"), (85)
A°(r) = C°K,(kr)+ C°IL,,(kr), (86)

where I,(z) and K, (z) are the modified Bessel functions of the first and second kind with
order v [1], C% and C*° are supposed to be given constants defining the external magnetic,
whilst C%° and C*° are unknown constants. A similar general solution can be written
also for the magnetic field. Note that the solution obtained above is not applicable to
k = 0 which needs to be considered separately.

It is also important to note that there are six unknown constants but only five bound-
ary conditions (76, 77) for the vector potential. To determine the unknown constants we

need to take into account that the vector potential in the free space has to satisfy not
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only equation (81) but also Coulomb gauge V-A= 0, which can be written as
. N . . .
(r(A2 + A2)) +im(Ag — A2) + i2krd® = 0. (87)

First of all, this constraint has to be satisfied by the external magnetic field itself, which
results in

C¢ +C° = —i2C°, (88)

Assuming this to be the case, we obtain from equation (87)
CT+C2 = 120°, (89)

which is the required additional constraint on the unknown coefficients.
The unknown coefficients C*°, which define the z-component of vector potential, can

be determined independently from the rest. For this component, boundary conditions
(76,77) take the form

C'Ly(k) — C°Kpy(k) = C°ILy(k), (90)
C'kl’ (k) — C°kK! (k) = C°kI’ (k), (91)
and yield
Ct o= CkI (k) Knm(k) — kK. (k)L (k)), (92)
C° = —CkI'(K)In(k) — kI (E)L.(k)), (93)

where C¢ = C¢/ (kI',(K)Kpn(k) — kK, (k) In(k)); I',(2) = (Im—1(x) 4 Lnyi(z)) /2 and
K' (2) = — (Kp_1(2) + Kpy1(x)) /2 [1]. For the remaining four unknown constants C°,
we have a system of four linear equations. The first equation is the gauge condition (89).
Two more equations, one for the plus and another for the minus sign in the index, follow

from boundary condition (76)
Cft]m:tl(/{') — CiKm:tl(k:) == Cilm:tl(k:) (94)
The boundary condition (77) for the azimuthal components yields the fourth equation

K (Ci[r/nﬂ("‘f) - Ci]rln—l(f{’))
—k (Cj)rK'(k) + C’fK;n_l(k:)) =k (Cif/(k) — Cff/(k:)) , (95)

which after some algebra can be written as

(CL — C)ELy(K) + (C9 — COkK, (k) = (C5 — C) k1, (k). (96)
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The solution of these four linear complex equations is straightforward but too lengthy to
be written explicitly. Alternatively, equations (77, 94, 96) can easily be solved numerically
using, for example, the complex LU factorisation routines from the LAPACK software
package or their MATLAB implementation.

For the solution to be useful, we need to consider also the special case of k = 0,
which appears in the Fourier series representation of the general field distribution derived
later. For k = 0, the Bessel functions, which are particular solutions of equations (81,82),
reduce as follows I, (kr) — 1™ K,,(kr) — r=I™ for m # 0 and Ky(kr) — Inr, where
the last case of m = 0 is practically irrelevant as discussed later. Firstly, as a result of

these substitutions Coulomb gauge (87) reduces to

ce=C° =0, m>0; (97)
ce=C{ =0, m<0 (98)
ce+C =0, m=0. (99)

Note that equation (99) does not constrain coefficients C'¢, which means that the induced
vector potential outside the cylinder for mode £k = m = 0 satisfies Coulomb gauge
automatically. These coefficients describe radial and azimuthal components of vector
potential which vary as ~ r~!. It means that the respective vector potential is purely
irrotational and, thus, not associated with any physical magnetic field. On the other
hand, according to equations (79) and (99), external vector potential for this mode can
have only the azimuthal component. It means that we may assume the induced vector

potential to be purely azimuthal as well, which corresponds to
P+ =0.

This condition can be interpreted also as a gauge which removes the irrotational radial
component of the induced vector potential for mode £k = m = 0. By the same argument
one can set C° = 0 for this mode, which removes irrotational axial component of the
external vector potential, and owing to equations (92,93) the respective induced field as
well. This condition as well as equations (97,98) cancel the terms of the induced vector
potential varying as ~ Inr. It means that we can ignore this special case and use the
following substitutions I,,,(k) — 1, K,,,(k) — 1, kI/ (k) — |m| and kK],(k) — —|m/| in
equations (92, 93,94,95) when k& = 0. The same holds also for x = 0 which occurs when
k=dw=0.

6.2.2 Boundary Conditions for The Magnetic Field B

Now let us turn to the solution for the magnetic field B which can be written in the

same form as equations (83-86) for A. In this case, we use D instead of C' to denote the
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six unknown coefficients. We have the same number of unknown coefficients as for the
vector potential, but only three boundary conditions (76) which require the continuity of
the magnetic field across the interface and lead to the equations analogue to equations
(90,94) for the vector potential. In contrast to the vector potential, the magnetic field
has to be solenoidal not only outside the cylinder but in also inside it, which leads to two

more equations

DS +D° = 2D", (100)
k(D +D") = —i2kD’, (101)

and a constraint on the external magnetic field analogous to equation (88). The the last

required equation follows from the irrotationality of the magnetic field in the free space
D =D°. (102)

The same constraint applies also to the external magnetic field.

Instead of solving for the magnetic field directly using the equations obtained above,
one can solve for the vector potential and then use this solution to find find the magnetic
field, if required. Therefore, we need to express the coefficients defining magnetic field in

the terms of those defining the vector potential. This can be done using and expression
(74), which yields

B: = i(mr AT A +ikAy), (103)
B = —i((Ay —A) +r Y ((m+ DA, + (m—1A))/2 (104)

Using the basic properties of of Bessel functions, after some algebra we obtain

Dy = F(kCL+irC"), (105)
D = Fk(C% —iC?), (106)
D' = —ix(C" —C")/2, (107)
D° = ik(C9 —C°)/2, (108)

which hold for £ # 0 and and x # 0. It can be easily verified that the relations
above indeed satisfy the solenoidality and irrotationality constraints defined by equa-

tions (100-101). For k = 0, using the same approach as before, we find from equations
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(103,104)

D° = —i(m —1)C°, D} = i2mC®, D° = 0,m > 0;
D’ = —i(m +1)C%, D° = i2mC°, D = 0,m < 0;
D° = D% = 0,m = 0.

For k # 0, the coefficients D’and D’ remain defined by equations (105,107), but for

k = k = 0 reduce to

D' = —i(m+1)C%, D" =i2mC", D}, = 0,m > 0;
D' = —i(m — 1)C., D\, =i2mC", D = 0,m < 0;
D'=—i(C,L —C"), D}, =0,m =0.

6.2.3 A comment on the current at the boundary

We now consider the condition for the normal component of current j, at the boundary.
As the current cannot travel in free space, where ¢ = 0, the normal component of
current must vanish at the boundary: j, = 0. This is an implicit boundary condition
which is satisfied automatically owing to the conditions obeyed by the magnetic vector
potential. According to Ampere’s law /Loj = VX é, the absence of electric current outside
conducting medium, VxVXxA=VV-A-V24= 0, is ensured by the Coulomb gauge
and the Laplace’s equation, which are both satisfied by A in the free space. Consequently,
the vanishing of j,, at the boundary depends on the continuity of 7 - V x B across the
boundary. This is ensured by the continuity of tangential components of B across the
boundary, which, in turn, follows from the continuty of A and the normal derivatives of
its tangental components. Note that only 0, A,, can be discontinious accros the boundary
but it affects only the continuity of B, but not that of By or B.,.

6.3 The Applied Field

Now let us consider a general external 3D magnetic field and represent its vector potential

by a double Fourier series in axial and azimuthal directions

(M,N)

A= Y At

(m,n)=—(M,N)

where k,, = nk and k is the fundamental wave number. According to solution (85, 86),

the amplitude distribution of each Fourier mode in a cylindrical region enclosing the
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symmetry axis but not the coil generating the field can be written as

A2 () = E.CS Tt (Rnr) + E-C Lt (Bar) + €05, L (),

where €, = %(é’r +iey) and CF,, , and Cy,  are the coefficients which need to be
determined for a given A¢(7). This is done numerically by first computing A¢(7) at discrete
points 7, , formed by the nodes of a uniform rectangular grid (¢,; z,) = (mn /M, —M <
m < M;nL/N,—N <n < N) covering the surface of cylinder r = 1 in the —L < z < L,

where L is an axial cut-off length.

6.3.1 Field generated by an arbitrary coil

To generate the free space field produced by an arbitrary coil on the grid above the coil
is represented by a series of straight wire sections. The wire sections must form a closed
loop. The field generated by the coil can be approximated by the sum of fields generated

by these discrete wire sections. The field generated by a finite current is given by

> 1 dr’
A(m _ Holo _
A [, |7 — 7|
Specifying a set of wire elements W with straight individual elements w with a finite
lengths L,. The current in each wire element is given by j = &,1, where &, is a unit
vector in the direction of the wire element and I is the current in the loop. The equation
for the field generated by a single finite wire element is given by
Luw/2 1

Ay(r, z) = #olo dz'.
Am J_p, 0 rér + z€; — €22

with the solution, in the frame of reference of the wire element, given as:

tolo \/7’%0 +(5 — )+ (5 — 20)
Aw(Tw, 20w) = €w2 In
T
i+ Bzt — (& +2,)

where 7, and z,, are radial and axial positions from the wire element. After transforming
to a single cartesian frame of reference by applying the following transforms of r,, — r

and z, — z to the above equation

-]l

Z =€y
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where D = 7 — ry,. An approximation of the field generated by an arbitrary coil can be

given as the sum of all its individual elements

This can be simply extended to multiple coils by incorporating all of their elements into

W and their currents into I.

6.4 Results

The 3D model described in section has been developed as a tool to support further
research, as such in this work its usage is presented as a proof of concept and will not

contain novel results.

6.4.1 Comparison To Axisymmetric Model

For validation we will now compare the results of this 3D model with axisymmetric
analytic model presented in chapter 5. For this comparison a single axisymmetric coil of
radius r. = 2 placed at z. = 0 will be used. In the 3D model this coil is represented by 90
wire segments. In the comparison both models use 1024 points in z, 128 points in ¢ and
100 points in r. Figure 27 shows that the ¢ component of the vector potential for both
models are equal for various magnetic Reynolds numbers and dimensionless frequencies.
Note that the imaginary component gives the field out of phase with the applied field
which gives the induced field. The imaginary components are omitted for dimensionless
frequency w = 0, corresponding to a conductivity of ¢ = 0, because they are identically
zero in the absence of a conducting medium. The results are presented in a cartesian
coordinate system (z,y, z) with the positive z-axis oriented along ¢ = 0. The fields are

transformed to cartesian F'(r, ¢, z) — F(z,y, z) by the following transformations:

€ e F(r, ¢, 2) cos(¢) — exF (1, ¢, 2) sin(¢)
F(r,y,2) =1 €, | - | &F(r,¢,2)sin(¢) + e F(r, ¢, z) cos(¢)
e_»z €;F(7’, (bv Z)

Figure 28 shows the magnetic flux lines for the applied and induced field for the
axisymmetric coil above. The figures were generated using ParaView software. Note the
dual symmetry in the theta plane and the z = 0 plane.

The isolines of the y-component vector potential for the axisymmetric coil are shown
in the y = 0 plane in figure 29. The vector potential is antisymmetric about x = 0 which
corresponds to symmetry between ¢ = 0 and ¢ = 7 as is required by the axisymmetric

coil. With Rm = 0 the vector potential is symmetric across z = 0 which is expected
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Vector potential A

Figure 27: Axial distribution of the azimuthal component of vector potential induced at
the cylinder surface (r = 1) by a co-axial circular current loop of radius r. = 2 placed at
z. = 0 for various dimensionless frequencies w and magnetic Reynolds numbers Rm. The
solid lines were computed using an axisymmetric analytical model and dots 3D model.

for this coil. This symmetry is broken when the cylinder is in motion Rm # 0. The
continuity of the vector potential Ay and its derivatives @Ay and azfly can be seen at
the pipe wall (z = £1), which is required by the boundary conditions (76,77).

The isolines of the x-component of the magnetic field (BI) in the y = 0 plane are
shown in figure 30. Note that the single azimuthal component present in A leads to two
components, r and z, in B as is expected from B =V x A. The continuity of B, and
its derivative 9, B, at the pipe wall can also be seen in figure 30. The z-component is
shown to be antisymmetric about the x-axis, which again corresponds to symmetry in ¢.
Again with Rm = 0 the field is symmetric across z = 0, and this symmetry is broken by
the motion of the cylinder.

Figure 31 shows the isolines of the z-component the magnetic field B, in the y=20
plane. The symmetry across z = 0 is also present in B, for Rm = 0. The continuity
B, at the pipe walls is required for the value but not for the derivatives. With Rm = 0,
the z-component of the applied field, shown by the real component in figure 31 appears
smooth. However as w # 0 this is not the case as the induced field shown by the imaginary

component is also present, but cannot be seen as it is dominated by the applied field.

6.4.2 A Non-Axisymmetric Example

To demonstrate the ability of this model to go beyond the the models presented in

chapters 4 and 5, a coil which requires resolving in 3D is presented. The coil is of radius
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Figure 28: Real (left) and imaginary (right) parts of the magnetic flux lines for w = 1 and
Rm =1 induced by a circular current loop of radius r. = 2 placed coaxially at z. = 0.
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Figure 29: Isolines of the real (left) and imaginary (right) parts of fly in the y = 0 plane
for o = 1, Rm = 0 (top) and Rm = 1 (bottom) induced by a circular current loop of
radius r. = 2 placed coaxially at z. = 0.
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Figure 30: Isolines of the real (top) and imaginary (bottom) parts of B, in the y = 0
plane for @ =1, Rm = 0 (left) and Rm = 1 (right) induced by a circular current loop of
radius r. = 2 placed coaxially at z. = 0.
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Figure 31: Isolines of the real (top) and imaginary (bottom) parts of B, in the y = 0
plane for @ =1, Rm = 0 (left) and Rm = 1 (right) induced by a circular current loop of
radius r. = 2 placed coaxially at z. = 0.
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r. = 2 placed in the z = 2 plane centred at (y. = 0, z. = 0). The magnetic flux lines for
this coil are shown in figure 32 for the applied and induced magnetic fields.

The vector potential in the y = 0 plane is shown in figure 33. The antisymmetry in
z in the coil in this plane leads to the antisymmetric vector potential for Rm = 0. This
symmetry is seen to be broken when Rm # 0. The continuity of Ay and its derivative
8,61213/ can be seen at the pipe wall (x = +1), which as before is required by the boundary
conditions (76,77).

Isolines of the components of the vector potential in the x = 0 plane for coil centred
at (y. = 0,z. = 0) in the z = 2 plane are given in figure 34 for Rm = 0 and in figure
35 with Rm = 1. Symmetry about z = 0 for Rm = 0 can be seen in A, whereas A,
and fly are antisymmetric about z = 0. These three symmetries cease to exist when the
cylinder is in motion Rm # 0. Similarly about the y-axis the A, and A, components are
antisymmetric and the fly component is symmetric. These symmetries are unaffected by
the flow which is also symmetric about this axis. These symmetries are equivalent to the
symmetries in the coil with the anti symmetries caused by the opposite currents found
at opposite sides of the coil.

The z-axis is normal to the figures plane and thus A, is equivalent to fld, in this
plane. The continuity of the values of A,, fly and A, which is required by the boundary
conditions can be seen. The derivatives 6yf1x and 8yflz are also smooth, as required. In

contrast the derivatives of A,, which is equivalent to A, in this plane, are not required

ys
to be smooth across the cylinder wall. These continuities hold for both the cylinder in
motion and at rest.

We will now look at the magnetic field produced by the same coil. As before in the
axisymmetric example in the y = 0 slice where there is a single non-zero component of
A the definition of the vector potential B =V x A leads to the remaining components
being non-zero in B. The non-zero components of B in the y = 0 plane are shown in
figure 36 with Rm = 0 and figure 37 with Rm = 1. The continuity of B, and its normal
(z) derivative at the boundary is maintained. Only the value of B, is required to be
continuous, as can be seen its derivatives are not smooth at the boundary.

The magnetic field components in the x = 0 plane generated by the coil above, in phase
and out of phase with the applied field, for a stationary cylinder and cylinder in motion
are shown in figures 38 and 39, respectively. We can see that the component normal to the
plane, By, is the only component for which the derivative across the boundary is smooth.
This is because it is defined by the tangential derivatives of tangential components of ff,
which are continuous across the interface The other components of B are dependent on
the A, component which has been shown to not be smooth in this plane. We can see
the expected symmetries in the y axis with B, being symmetric and By and B, being
antisymmetric. The symmetries in the 2z axis, symmetric for B, and By but antisymmetric

for B., are again broken by Rm # 0.

80



Figure 32: Real (left) and imaginary (right) parts of the magnetic flux lines for @ = 1
and Rm = 1 induced by a circular current loop of radius r. = 2 placed parallel to the
(y, z)-plane at Z. = (2,0,0).
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Figure 33: Isolines of the real (left) and imaginary (right) parts of Ay in the y = 0 plane
for o =1 and Rm = 0 (top) and Rm = 1 (bottom) induced by a circular current loop of
radius r. = 2 placed parallel to the (y, z)-plane at 7, = (2,0,0).
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Figure 34: Isolines of the real (left) and imaginary (right) parts of A, (top), A, (middle)
and A, (bottom) in the x = 0 plane for w = 1 and Rm = 0 induced by a circular curre nt
loop of radius 7. = 2 placed parallel to the (y, z)-plane at Z. = (2,0, 0).
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Figure 35: Isolines of the real (left) and imaginary (right) parts of A, (top), A, (middle
and A, (bottom) in the x = 0 plane for w = 1 and Rm = 1 induced by a circular current
of radius r. = 2 placed parallel to the
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Figure 36: Isolines of the real (left) and imaginary (right) parts of B, (top) and B.
(bottom) in the y = 0 plane for @ = 1 and Rm = 0 induced by a circular current loop of
radius r. = 2 placed parallel to the (y, z)-plane at 7, = (2,0,0).
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Figure 37: Isolines of the real (left) and imaginary (right) parts of B, (top) and B.
(bottom) in the y = 0 plane for @ = 1 and Rm = 1 induced by a circular current loop of
radius r. = 2 placed parallel to the (y, z)-plane at 7, = (2,0,0).
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Figure 38: Isolines of the real (left) and imaginary (right) parts of B, (top), B, (middle)
and B, (bottom) in the x = 0 plane for w = 1 and Rm = 0 induced by a circular current
loop of radius r. = 2 placed parallel to the (y, z)-plane at Z. = (2,0, 0).
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7 Conclusions

This work has introduced three models which are designed to be used for the development
of eddy current flowmeters. In chapter 4 a 2D model was used to investigate improvements
to the phase shift flowmeter. Secondly, in chapter 5 a axisymmetric cylindrical model was
introduced which was designed to investigate the pulsed field, or transient eddy current,
flowmetering technique. Finally, the mathematical basis for a fully three dimensional

cylindrical model was presented in chapter 6 as a means for future investigation.

7.1 Rescaled Phase Shift Flowmeter

The concept of an improved phase shift flowmeter has been presented in chapter 4. The
rescaled measurement scheme which has been presented is much less susceptible to the
variation of the electrical conductivity of a liquid metal flow than the original design
introduced in [31]. The rescaling has been carried out by introducing a second phase shift
to the measurement scheme. Previously, only the internal phase shift which is induced
by the flow and taken as a measurement between two receiving coils was considered. In
this work, the external phase shift was introduced which is the phase shift between the
sending and receiving coils. In contrast to the internal phase shift, the external phase
shift is relatively unaffected by the velocity of the flow and depends predominantly on
the conductivity of the layer. By rescaling the internal phase shift with the external, a
measurement, scheme is produced which can strongly reduce the effect of conductivity on
the velocity measurements. For a reasonable range of conductivities the effect has been
shown to be virtually eliminated. Multiple approaches to this rescaling were investigated
and two effective rescalings were found. The choice between these two rescalings depends
on the ac frequency of the applied field. At low frequencies @ < 1, when the phase shift
varies directly with the frequency, the conductivity can be eliminated by rescaling the
internal phase shift with the square of the external phase shift. At higher ac frequencies
w 2 1, where the shielding effect makes the variation of phase with the frequency non-
linear, the conductivity can be eliminated by rescaling the internal phase shift directly
with the external one. Note that for the example of a liquid sodium flow with ¢ =
8.3 x 10°S/m and channel half width giving the characteristic size as H ~ 0.1m the
dimensionless parameters w ~ 1 and Rm ~ 1 correspond to ac frequency 5= ~ 60 Hz and
velocity v ~ 1 m/s, respectively.

The applicability of the first rescaling is limited to relatively low frequencies, especially
for realistic sending coils which generate the magnetic field dominated by long-wave
harmonics. A potential disadvantage of using low ac frequencies may be the relatively
low sensitivity of the phase-shift flowmeter. From this point of view, it seems more
attractive to operate the flowmeter in the frequency range with a moderate shielding

effect where the second (direct) rescaling is applicable. The results presented in this
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chapter may be useful for designing a next-generation phase-shift lowmeter which will
have increased robustness to the variations of the electrical conductivity of liquid metal,

which may be required in some metallurgical and other applications.

7.2 Transient Eddy Currents

A numerical investigation has been carried out into the transient transient eddy-current
flowmetering method for liquid metal applications. The principle of the transient eddy
current design is to create an eddy current, for example with a pulse of a magnetic field,
and then somehow track the current as it is advected by a conducting flow. The eigenvalue
analysis showed that eddy currents decay by roughly three orders of magnitude during
the characteristic magnetic diffusion time, given by 7, = jgo B2, which is about 0.1s for
a typical liquid sodium flow with ¢ = 8.3 x 10°S/m [28| with the length scale given by
the radius of the pipe, of R = 0.1m. A consequence of this is that the distance travelled
by an eddy current during the time it is measurable scales with Rm. Thus for for small
Rm the measurement device must be placed sufficiently close to the generating coil(s).

Several measurement systems were investigated, tracking different features of the eddy
current distribution. These features which were considered were the zero crossing points
of the magnetic flux and the extrema and spatial derivatives. The temporal derivative
is equivalent to the emf, £, and the extrema are identified by the zero crossing in the
derivatives. Alongside the emf, the extrema given by zero crossings in its temporal and
spatial derivatives were also investigated. The number of measurement coils which are
required varies between the types of extrema. Temporal extrema requires only one loop
whilst spatial extrema require two measurement coils to detect.

With a mono-harmonic eddy current distribution, the zero crossings of the emf and its
spatial extrema behave in the same way, and remain separated by a quarter wavelength.
The velocity of the flow can be calculated by v = z/t where ¢ is the time after the pulse
generating the eddy current when the value of £ or 0. passes through zero at and z is
the distance the zero crossing has travelled during that time. The temporal extrema of
the emf follow after the zero crossing which complicates the measurement scheme as this
delay depends on the conductivity of the medium as well as the eddy current distribution.
This delay can be removed by using two pick-up coils placed at z; and 2, then the velocity
of the medium can be found as v = (2o — 21)/(t2 — t1), where ¢; and ¢, are the times at
which temporal extrema are detected in the respective coil, note that the measurement
loops must be sufficiently far from the initial zero crossing point.

More realistic eddy current distributions were considered. These were generated by
either two anti-symmetric circular current loops or a single current loop. In the anti-
symmetric set-up, the zero crossing point of emf as well as the subsequent temporal

extremum was found to travel synchronously with the medium in the same way as with
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the mono-harmonic wave considered before. But this was not the case for the two spatial
extrema which appear at both current loops in this set-up. These two extrema were
found to move at substantially different velocities from that of the medium. This result
highlights the crucial importance of symmetry. The symmetry holds for zero crossing
points of emf but not for the two spatial extrema in the anti-symmetric set-up. In a
single-loop set-up where a a spatially symmetric eddy current distribution is generated,
the spatial extremum of emf was found to travel synchronously with the medium, as was
the case in the mono-harmonic wave. In this set-up, the velocity of the medium can be
determined by also tracking axial extremum of the magnetic flux, which coincides with
the zero crossing of the radial component of the magnetic field. It has to be noted that
because of the initial tilt of the magnetic flux lines in the direction motion, the extremum
of magnetic flux arrives at a given observation point ahead that of emf. This time lead can
be eliminated similarly to the delay of temporal extremum of emf by using two sensors
as discussed above.

Finally, we analysed the effect of a possible current asymmetry in the two-loop set-up,
and showed that it gives rise to a drift of the emf zero crossing point. this leads to the
conclusion that symmetry of the system is crucial for transient-eddy flowmetering. It can
be inferred that a tilted single loop would also lead to an asymmetric initial eddy current
distribution and would give rise to a drift of the emf zero crossing point. Asymmetry of a
few per cent was found to result in the zero drift with a dimensionless velocity Rm ~ 0.1.
For the characteristic parameters used at the beginning of this section, the respective
physical velocity is v ~ 0.1 m/s. It means that with this level of asymmetry, which is not
unlikely in practice, transient eddy current lowmetering can be reliable only for the flows
with Rm 2 1. At lower velocities, a more accurate symmetry adjustment or calibration
of the device may be required. The results of this study may be useful for designing more

accurate and reliable transient eddy-current flowmeters for liquid metals.

7.3 Three Dimensional Model

The mathematical background for a three dimensional model had been derived. This
model is designed to provide a framework for modelling contactless electromagnetic flow-
meters, specifically for eddy current flowmeters such as the phase shift flowmeter or a
transient eddy current flowmeter. The model has been designed to operate with a simple
uniform flow profile defined by the magnetic Reynolds number of the flow. The models
is designed with fields generated by alternating currents in mind and a dimensionless
frequency is another input to the system. A set of boundary conditions for solving the
model along with justification for there validity is also presented.

A technique for applying this model for a arbitrary exciting coils along with results

for some simple coil designs are included, with the simple coil designs the possibility of

91



multiple coils is introduced. The arbitrary nature of the shape of the coil has not been
displayed however as the coil is represented by a series of straight wire elements any
wire is possible from simple polygons to complex solenoidal designs. This model was
created to support research into liquid metal flowmeters. In its current state it can be
used recreate some existing flowmeters to investigate improving accuracy and sensitivity
of the sending and receiving coils, though varied coil designs. With the addition of a
pulsed field approach, which can be implemented in a nearly identical way to chapter 5
this model could be used to further test the effect of asymmetry such as investigating
the tilted single loop discussed above. In further work this model could serve as a basis
for introducing a simple flow profile into these models, such as a Poiseuille flow, which
would take the model closer still to reality. The limit of the calculation domain based
on the current layer can be simply removed by utilising the solution for the coil as the
applied field throughout the free space in the model, allowing inclusion of measurement

coils further from the pipe.
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A Appendix

A.1 Code Files

A.1.1 Phase Shift Flowmeter Code for Chapter 4

function [ Ar] =TwoD_si npl e(rm wbar, k, xr ange, yr ange)
% Solution for a field genreated by standi ng harnoni nc wave
3 %

4 % Axy=fl owret er. TwoD sinmple(1,1,1,-5:0.1:5,-2:0.1:1)

[N

N

8 Calc Ay+ & Ay-
7| Arp=zeros(size(yrange, 2), size(xrange, 2));
8 [ ka, c0, cl1, c2, c3, d2] =coef f s(Kk);
of for nel:nunel (yrange)

10 y=yrange(m;

11 for n=1:nunel (xrange)

12 x=xr ange(n);

13 Arp(m n) =A(y, k) *exp( 1li xk*x);
14 end

15 end

16
17 [ ka, c0, cl, c2,c3,d2] =coeffs(-k);

18] Arn=zeros(size(yrange, 2), si ze(xrange, 2));
19| for mel:nunel (yrange)

20 y=yrange(nj;

21 for n=1:nunel (xrange)

22 x=xr ange(n);

23 Arn(m n) =A(y, - k) xexp( i *- kxx);
24 end

25 end

26

o Conbi nes Ay+ & Ay-

27

28

29

30

31

32

33

34 res=c3~exp(abs(k)*(y+1));

35 el seif y>=1

36 res=cO+exp(abs(k)=*(y-1))+clxexp(-1lxabs(k)*(y-1));
37 el se

38 res=c2+si nh( ka*y) +d2*cosh(kax*y) ;

39 end

40

41 Coefficients

97

into A %0086000880008088800084




42

43

a4

45

46

47

48

49

50

function [ka, cO, cl, c2, c3, d2] =coef f s(k)
ka=sqrt (k”2+1i = (wbar +kxrm ) ;
c0=1/ (k"2); %sets anplitude of function based on k
c2=c0+abs(k)/ (abs(k)*si nh(ka) +kaxcosh(ka));
d2=c0+abs(k)/ (abs(k)*cosh(ka) +kaxsi nh(ka));
cl=d2+cosh(ka) +c2*si nh(ka) - cO;
c3=d2+cosh(ka) - c2*si nh(ka) ;

end

end
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[N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

N

43

a4

45

46

function [ Axy, X, Y] =TwoD 2wi re(rmwbar, N, xlimt,Y,s, hl, h2)
% Solution for a field genreated by 2 wires
%
% Axy=fl owret er. TwoD 2wi re(0, 1, 1024,5,-2:0.1:1.5,1,1,1)
% for specific y values enter y step_size as a cell containing the
%required y value caclulation is nade for x in the range
%-1xxlimt >x =>xlimt with x step size 2«xlimt/N
%
% wi re positions are given by s, h & hl with the wires being located in
% the two positions given by (-s,1+hl) and (s, 1+h2), thus symetrically
% about the y axis as a distace of s and heights hl and h2 above the fl ow
%
% options for output [Axy],[Axy, X],[Axy, X Y]

0o SETUP VARI ABLES %80880808880888808808888088088084

% setup vari abl es

J = fftshift(-N2:N2-1);
kKlimt=Nepi/xlimt;
K=J+klimt/N,

hl=h1+1; h2=h2+1; % as field generated h above boundary at 1

% genreates A(hat) (y: k)
Ayk=conpl ex(zeros(size(Y,2),size(J,2))); % Mtrix to be filled in | oop

for i K=1: N % k counter
k=K(i K); % current k val ue
[ka, cl, c2,c3,d2] =coeffs(k,wbar,rms, hl, h2); % generates coefficients
Ayk(:,i Ky=A(Y, k, ka, c1,c2,c3,d2, s, hl, h2); % generate A(hat) (y; k)
end

WOBBBBBBBB08886 | nver se Fourier Transfor m %98880008000800880088004

% cal ulate inverse dicrete fourier transformof A(hat)
Axy=fftshift( ifft(Ayk,[],2) ,2);
% generates X val ues as second output if varargout exits
X=((2*xlimt/N-xlimt):(2*xlimt/Ny:xlimt;

end

SUB- FUNCTI ONS

o Coefficient Function

function [ka, cl, c2,c3, d2] =coeffs(k,wbar,rms, hl, h2)
ka=sqrt (k"2+1i = (wbar +kxrm ) ;

c0=A0(1, k, s, h1, h2);
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47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

c2=c0*abs(k)/ (abs(k)*si nh(ka)+kaxcosh(ka));
d2=c0*abs(k)/ (abs(k)*cosh(ka) +ka*si nh(ka));
cl=d2*cosh(ka) +c2*si nh(ka) - c0
c3=d2*cosh(ka) - c2xsi nh(ka) ;

end

® ® Function for solution
function res=A(y, k, ka, c1, c2, c3,d2, s, hl, h2)
bel owLayer = y<-1;
abovelLayer = y>1;
i nLayer = ~(bel owLayer | abovelLayer);
res = conpl ex(zeros(nunel (y),1));

i f any(bel owLayer)
res(bel owLayer) = c3*exp(abs(k)=*(y(bel onLayer)+1));
end
i f any(abovelayer)
res(abovelLayer) = AO(y(abovelLayer), k,s, hl, h2)..
+ clxexp(-1lxabs(k)*(y(abovelLayer)-1));

end
i f any(inLayer)

res(inLayer) = c2xsinh(kary(inLayer))+d2+«cosh(kaxy(inLayer));
end

8 6 AO(y; k) function
function res=A0(y, k, s, hl, h2)
i f round(k*10000) ==0;
res=zeros(size(y)); %if k close to 0, AO(y;k) set to O
el se
res= exp( 1lixk+s)xexp(-1l+abs(kx(y-hl)))/(2+xabs(k))...
-exp(-1li xkxs)xexp(-1+xabs(k+(y-h2)))/(2+«abs(k));
end
end
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A.1.2 Transient Eddy Current Flowmeter Code for Chapter 5

[N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2

s

25

26

27

28

29

30

31

3

N

33

34

35

36

37

38

39

40

41

42

43

44

45

function [ Adt,z ] = Cycol squarewave 2wire(rm Ff,N,zlinmit,r,s, h,nPoints...
, tau, padTo)
%-LONWWETER_Cycol _SQUAREWAVE 2wi r e
% Axi synmretric nodel with field generate by 2 wires with pul sed current.
% Adt = fl owneter. Cycol _squarewave_si npl e(x,y, k, Rm Ff, nPoi nts, t au, padTo)
freqgs waveshape_frequenci es(nPoints, Ff);
ftpdt waveshape gaussi anFil ter _squareWave derivative( nPoints,tau );
data = conpl ex(zeros(N, nurel (r),nPoints)); %prealloc
for ifreq = 1:nPoints
if fregs(ifreq)==

data(:,:,ifreq)=0;
el se

data(:,:,ifreq)=Cycol _2wire(r,N zlinmt,rmfreqs(ifreq),h,s);
end

end % generate solutions for frequencies
if ~exist(’'padTo’,’var’); padTo = nunel (points); end
[Adt] = waveshape_ifft Paddi ngAndDeri vati ve(data, ft pdt, padTo) ;
i f nargout>1
[~,2z] = Cycol _2wire(r,N,zlinit,0,1,h,s);
end

5 SUB FUNCTI ONS 98
function [ frequencies ]| = waveshape_frequenci es( nPoints,. ..
Fundanent al Frequency )

9% O0LS_WAVESHAPE FREQUENCI ES
% generates frequenci es form nunebr of points nad fundanental frequency
frequenci es = (0: Fundanent al Frequency: (nPoi nts-1)=*. ..
Fundanent al Frequency) - Fundanent al Fr equency*nPoi nt s/ 2;
end

function [ ftpdt ] = waveshape_gaussi anFilter_squareWave_derivative(...
nPoi nt s, t au)
% O0OLS_WAVESHAPE _GAUSSI ANFI LTER_SQUAREWAVE_DERI VATI VE
% ft pdt = WAVESHAPE_GAUSSI ANFI LTER_SQUAREWAVE _DERI VATI VE( nPoi nts,tau )
% generates fourier transformof tine derivative of square wave with a
% gaussian filter with nPoints and a hal fwi dth of the peaks of tau

tu = nPoi nts/4; % i ndex of upward peak
td = 3/4*nPoi nts-1; % i ndex of downward peak
height =1 ; % maxi mum hei ght of peaks
Au = hei ght; % set hei ght up

Ad = - height; % set hei ght down

tp = 1:nPoints; % tine indicies

if tau ==

% do not apply filter
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46

4

b

48

49

50

52

53

54

5

al

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

pdt = zeros(size(tp));
pdt ([tu, td+1]) =[ Au, Ad] ;
el se
% derivative of points (with gaussian filter if tau ~=0)
pdt = Aux(exp(-1+((tp-tu)/tau).”2)) + Ad*(exp(-1*((tp-td)/tau).”2));
end
ftpdt = fftshift(fft(pdt)); % generate ftpointsdt
end

function [A z] = Cycol _2wire(r, N, zlimt,rmwbar, h,s)
% solution for 2 wire axisymmetric nodel ac with frequency wbar

k = local GenerateK(N, zlinit);

A = RKSol ution(r, k,rmwbar, h,s); %agenerate A(k,r)

A= fftshift(ifft(A[],1),1); %transformto A(z,r)

A = bsxfun(@ines,r.’”,A’);%rescale and convert A(z,r) to A(r,z)

i f nargout>1
z=((2*zlimt/N)y-zlimt):(2+*zlimt/N:zlimt;
end
end

function k = |l ocal GenerateK(N, zlimt)
J = fftshift((-N2): (N2 -1));
k = J*pi/zlimt,;

end

function Ark = RKSol ution(r, k, rmwbar, h, s)
% CGenerates A(r,k) fromA(r)
Ark = conpl ex(zeros(nunel (k),nunmel (r))); % prealloc
for ik = 1:nunel (k)

if k(ik) == 0 %tolerance?
Ark(ik,:) = 0;
conti nue
end
Ark(ik,:) = RSolution(r,k(ik),wbar+k(ik)*rmh,s);
end
end

function [Ar] RSol ution(r, k, wbar, h, s)
% generates A(r)
% | ogi cal indices
in_layer = r<i;
layer _to wire = (r<h) & ~in_layer;
beyond wire = r>=h;
% preal | oc

Ar = conmpl ex(zeros(1, nunel (r)));
A0 = Azero(h,k,s);
k=abs(k);
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116

117
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119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

[A C D = coeffs(k,wbar, h);
if any(in_layer)
Ar(in_layer) = AOxD+ besseli (1, kappa(k,wbar)=r(in_Ilayer) );
end
if any(layer_to wire)
Ar(layer_to_wire)= AOxbesseli (1, kxr(layer_to_wire)) +..
A0+ C+ bessel k(1, kxr(layer_to wire) );
end
i f any(beyond_wire)
Ar (beyond_wire) = AOxAxbessel k(1, kxr(beyond_wire)) +..
AO* Cxbessel k(1, kxr(beyond wire) );
end
end

function A0 = Azero(h, Kk, s)
% Cal ul ates A0
bkh = bessel wrapper (abs(k)*h);

10 = bkh(1);
1 = bkh(2);
KO = bkh(3);
K1 = bkh(4);
A0 = h*2x1li*sin(kxs)*KLl /( abs(k)*( 10Kl + KO*I1));

end

function [A C Dl = coeffs(k,wbar, h)
x = kappa(k, wbar);
bk = bessel w apper (k) ;
bx = [besseli (0, x), besseli(1,x)];
A = besseli (1, kxh)./bessel k(1, kxh);
C=( -x * bk(2)/bx(2) + k * bk(1)/bx(1) )./
( x * bk(4)/bx(2) + k * bk(3)/bx(1) );
( k * bk(2)/bk(4) + k * bk(1)/bk(3) )./
( k * bx(2)/bk(4) + x * bx(1)/bk(3) );

D

end

function out = kappa(k, wbar)
out = sqgrt(k"2+1i xwbar);
end

function [out] = bessel wrapper(in)
% wr apper funciton for bessel functions
out = zeros(nunel (in), 4);
out(:,1) = besseli(0,in);

out(:,2) = besseli(1,in);

out(:,3) = besselk(0,in);

out(:,4) = besselk(1,in);
end
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147
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function [Adt] = waveshape_ifft_Paddi ngAndDeri vative(data, ftpdt, padTo)
%rOCLS_WAVESHAPE_| FFT_PADDI NGANDDERI VATI VE

% Adt

= TOOLS_WAVESHAPE_| FFT_PADDI NGANDDERI VATI VE( dat a, f t pdt , padTo)

% cal cul ates idft of data scaled with ftpdt in 3rd di nension
% optional 3rd input allows symetric paddi ng of the spectrum

Adt =

bsxfun( @i nmes, dat a, pernute(ftpdt,[3,1,2]));

i f nargi n>2
i f padTo>size(Adt, 3)
Adt = | ocal Symmetri cPadArrayl n3rdD nensi on( Adt, padTo) ;

end
end

Adt=real (ifft(ifftshift(Adt,3),[],3));

end

function out = | ocal Syimetri cPadArrayl n3rdDi nensi on(array, padTo)

% Pad
out =

array (in spectral space) for finer resolution in real.
conpl ex(zeros(size(array, 1), si ze(array, 2), padTo) ) ;

arrayStart = floor((padTo-size(array, 3))/2);
arrayEnd = arrayStart+si ze(array, 3)-1;

out (:,

end

c,arrayStart: arrayEnd) =array;
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A.1.3 3D Model Codes for Chapter 6

function [New field, TT,RR ZZ] = Cycol _3d(inputfile,coiltype,coildim

2 %

3 i nputs. (inputfile);

4 % Provide coil, generate field, FFT

5 nR_gen = 1,

6] [tt,rr,zz] = nmakeCylindrical Points(...

7 [-Rgrid, R grid,-Z domain,Z donmain], [nT, nR_gen, nZ]);

8 [TT,RR ZZ] = ndgrid(tt,rr,zz);

9 XX = RR *cos(TT); YY = RR *sin(TT);

10 [wire_points] = nakecoil (coiltype,coildim;

11 [field] = generate_coil _field(wire_points, XX YY,ZZ); % ' double ,[-1,1]);
12 [field] = field_to_cylindrical(field,TT);

3| [FTfield] = fftshift(fft( fftshift(fft( field ,[]1,1),1) ,[]1,3),3);

14 R = linspace(0,R grid, nR);

15 % CGenerate Field

16 [New field] = Scal ed main_|oop(FTfield, nZ nT,RR wall,R donain,...

17 v, mu0, Si gna, onega, k) ;
18 if nargout>1;[TT, RR, ZZ] =ndgrid(tt, R, zz); end

19| end

[N

20

2

function [New field] = Scal ed_mai n_| oop(FTfield, nz nT,...

[y

22 R R wal | , R donmai n, v, mu0, si gm, onega, k)
23] 90 Applied field coeffs ( at r=R_domain )
2] AtR = FTfield(:,:,:,1); AR = FTfield(:,:,:,2); AzR = FTfield(:,:,:,3);

s FpR = ArR+li . *AtR FnR = ArR-1i . *At R

26 %0 i nputs for main | oop

271 nNnN=nZ N=(-nN2:1:nN2-1); % z nodes

28] nM=nT, if nM=1;, MO0; else M= (-nM2:1:nM2-1); end %theta nodes
29 %% Pre | oop allocation

30 r inflow=R < R wall

31 Fp = zeros(size(R)); Fm = zeros(size(R)); Az = zeros(size(R);

32 Fi el d_spec = compl ex(zeros(nunel (M, nurel (R), nunel (N), 3));

33 %% Mai n | oop

sa| fprintf(’Entering main loop... \n")

ss| for i_n= 1:nunel (N)

36 %% Loop vari abl es

37 n=N(i _n); %6 wavenunber in z dir

38 kn = k=*n;

39 i f n==0; kn=1e-10; end

40 x=kappa(v, kn, mu0, si gna, onega) ; kn=abs(kn);
a1 %% i nner | oop

42 for i_n¥l:nunel (M; % ####

43 %% Loop vari abl es

44 m= Mi_nm,; %wavenunber in theta dir
45 Mtenp = [m1, m, ml];
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BESSI _x = bsxfun(@esseli, Mtenmp.’ ,x*xR(r_in_flow)) ;
BESSI _k = bsxfun( @esseli, Mtenmp. ,kn*xR(~r_in_flow);
BESSK_k = bsxfun( @essel k, Mtenmp.’' ,kn*xR(~r_in_flow);

%% Scal ed bessel functions for boundary conditions
scaled = 1;
BESSI _r _dormai n

bessel i (M tenp, kn*R _donai n, scal ed) ;
BESSI r_wall _x besseli (Mtenp, xxR wal |, scal ed) ;
BESSI _r_wall _k besseli (M_tenp, kn*R wal |, scal ed) ;
BESSK r_wal | _k = real (bessel k(M tenp, kn*R wal |, scal ed)) ;
%% Scal i ng Exponents

Scal e_Exponent | _k Dommi n =-abs(real (kn*R_donain));
Scal e_Exponent _Dbar = -Scal e_Exponent | _k_ Domai n;
Scal e_Exponent _| _x_Wall -abs(real (xxR wall));

Scal e_Exponent _| _k_Wall -abs(real (knxR wal l));

Scal e_Exponent _K k_\Wal | kn*R wal | ;

%6 set Dbars

Dbarp = FpR(i_m1,i_n)./ BESSI _r_domain( 3 );
Dbarm = FrR(i _m1,i_n)./ BESSI _r_domain( 1 );
Dbar = AzR(i_m1,i_n)./ BESSI _r_domain( 2 );

%% sol ve boundary condition matrix

lastwarn(’’)

[C, Cp,Cm D, Dp, DMl = Scal ed_sol ve_boundary_condition_matrix(...
BESSI r_wal |l _x(2),BESSI _r_wall_x(3),BESSI _r_wall _x(1),...
BESSI r_wall _k(2),BESSI r_wall _k(3),BESSI _r_wall _k(1),...
BESSK r_wal | _k(2),BESSK r_wal |l _k(3),BESSK r_wal |l _k(1),...
Dbar, Dbar p, Dbarm . . .
Scal e_Exponent | _k Wal |, Scal e_Exponent Dbar, ...
Scal e_Exponent _K k_Wall,R wal |, kn,x, m ;

% Cal cul ate coefficients (& renove scaling)

Dbarp = Dbar p. xexp(-Scal e_Exponent _Dbar);

Dbar m = Dbar m xexp( - Scal e_Exponent _Dbar) ;
Dbar = Dbar .=*exp(-Scal e_Exponent_Dbar);
%

Cp = Cp. xexp(Scal e_Exponent _| _x_Wall);

Cm = Cm *exp(Scal e_Exponent _| _x_Vall);

C = C .+*exp(Scal e_Exponent | _x_Vall);

%

Dp = Dp.*exp(Scal e_Exponent _K k_Wall);

Dm = Dm *exp( Scal e_Exponent _K_k_Wal |);

D = D .=+xexp(Scal e_Exponent K k Wall);

% Cenerate field conponents (in and out of flow)

Fp( r_in_flow = Cp.=*BESSI_x(3,:) ;

Fp(~r_in_flow = Dbarp*BESSI_k(3,:) + Dp*BESSK k(3,:) ;

Fm( r_in_flow = Cm=*BESSI_x(1,:) ;
Frm(~r _in_fl ow) Dbar mBESSI _k(1,:) + DmBESSK k(1,:) ;
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Az( r_in_flow = C *BESSI_x(2,:) ;
Az(~r_in_flow) = Dbar.*BESSI_k(2,:) + D+BESSK k(2,:) ;
% Transform back from decoupling vari abl es

At = 1/2ix(Fp-Fm) ;

Ar = 1/2 =(Fp+Fm) ;

% Store f(theta,r, z)

Field spec(i_m:,i_n,1) = At ;

Field spec(i_m:,i_n,2) = Ar ;

Field spec(i_m:,i_n,3) = Az ;
end

end

% | nvert FFT

New field = ifft(ifft(ifftshift(ifftshift(Field_spec,3),1),[]1,3),[]1,1);
end

function [C,Cp,Cm D, Dp, Dni = Scal ed_sol ve_boundary_condition_matrix(...
i X,ipx,im,ik,ipk,ink,kk, kpk, knk, Dbar, Dbar p, Dbarm . . .
Scal e_Exponent _| _k _Wal |, Scal e_Exponent _Dbar, ...
Scal e_Exponent _K k _Wall, R k, x, m
Scal e_Exponent _RHS = Scal e_Exponent _Dbar + Scal e_Exponent _| _k_ValI;
%6 Sol ve coefficients for Az
LHS1 = [... C, D
x* (i px+i nx) , kx(knk+kpk) ;

i X , -kk 1;
RHS1 = [...
k= Dbar * (i nk+i pk) ;
Dbar *i k 1;
RHS1 = RHS1x*exp( -Scal e_Exponent RHS);
SCOL1 = LHS1\ RHSI;
C = SO.1(1);
D = SOL1(2);
%0 Sol ve coefficients for F+-
LHS2 = [... C+ , C , D+ , D-

xxi X-(m1l) /Reipx , -(x*xix+(m1)/Reimx) , -(-kxkk-(m1)/Rekpk) ,...
-kxkk+(m 1)/ Reknk ;
0 , 0 , kk , kk ;
i px , 0 , -kpk , 0 ;
0 , X , 0 , -knk T;
RHS2 = [ Dbar px(k*i k- (mtl)/Rxi pk) - Dbarm(k+i k+(m 1)/ Rxi nk) ;
( Dbar p+Dbar m+2i » Dbar ) i k+2i *D + 2i »Drexp(Scal e_Exponent K k_Val |l ...
+ Scal e_Exponent _RHS) ;
Dbar pxi pk ;
Dbar mxi nk 1;
RHS2 = RHS2xexp(-Scal e _Exponent RHS);
SOL2 = LHS2\ RHS2;
Cp = SOL2(1); Cm= SOL2(2); Dp = SOL2(3); Dm= SOL2(4);
end

107




140

141

142

143

144

145

146

147

148

149

151

152

153

154

156

157

158

159

161

162

163

164

165

function x = kappa(v, kn, mu0, si gma, w)

X = sqgrt( kn.”2+1i *xmu0O*si gmax (w+v. xkn) );
end
function f = generate coil field(w re_points,gridl,grid2,grid3)

% Cenerates field for the coil defined by wire_points
f=0;for icoil = 1:nunel (w re_points)
f=f+single_coil _field(w re_points{icoil},gridl, grid2,grid3);
end
end
function [t,r,z] = makeCylindrical Points(limts, npoints)
% generates cylindrical grid
if nunel (limts)==4;linmts = [-pi,pi,limts];end
t = linspace(limts(1l),limts(2),npoints(1)+1);t(end)=[];
r = linspace(limts(3),linmts(4),npoints(2));
z = linspace(limts(5),limts(6),npoints(3)+1);z(end)=[];
end
function [fieldtrz] = field_to_cylindrical(fieldxyz, TT)

% converts cartesian field to cylindrical field
fieldtrz(:,:,:,)=fieldxyz(:,:,:,2).*xcos(TT)-fieldxyz(:,:,:,1).*sin(TT);
fieldtrz(:,:,:,2)=fieldxyz(:,:,:,1).+cos(TT)+fieldxyz(:,:,:,2).*sin(TT);
fieldtrz(:,:,:,3)=fieldxyz(:,:,:,3);

end
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arXiv:1705.02939v2 [physics.ins-det] 21 Sep 2017

Numerical analysis of transient eddy-current
flowmetering method

Richard Looney and Janis Priede

Flow Measurement Research Centre, Coventry University, UK

E-mail: J.Priede@coventry.ac.uk

Abstract. We present a comprehensive numerical analysis of transient eddy-
current flowmetering method for liquid metals. This type of flowmeter operates by
tracking eddy-current markers excited by the magnetic field pulses in the flow of a
conducting liquid. Using a simple mathematical model, where the fluid flow is replaced
by a translating cylinder, a number possible alternative measurement schemes are
considered. The velocity of the medium can be measured by tracking zero crossing
points and spatial or temporal extrema of the electromotive force (emf) induced by
transient eddy currents in the surrounding space. Zero crossing points and spatial
extrema of the emf travel synchronously with the medium whereas temporal extrema
experience an initial time delay which depends on the conductivity and velocity of
the medium. Performance of transient eddy-current flowmetering depends crucially
on the symmetry of system. Eddy current asymmetry of a few per cent makes the
detection point drift with a velocity corresponding to a magnetic Reynolds number
Rm ~ 0.1. With this level of asymmetry transient eddy-current flowmetering can be
reliably applicable only to flows with Rm 2 0.1. A more accurate symmetry adjustment
or calibration of flowmeters may be necessary at lower velocities.

Some materials have been removed due to 3rd party
copyright. The unabridged version can be viewed in Lancester
Library - Coventry University.
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Concept of Improved Electromagnetic Phase-Shift
Flowmeter for Liquid Metals with Variable
Conductivity

Richard Looney and Janis Priede

Flow Measurement Research Centre, Coventry University, UK

E-mail: J.Priede@coventry.ac.uk

Abstract. We present a concept of an improved phase-shift flowmeter that has a
significantly reduced sensitivity to the variation of the electrical conductivity of a
liquid metal. A simple theoretical model of the flowmeter is considered where the flow
is approximated by a solid finite-thickness conducting layer moving in the presence
of an ac magnetic field. In contrast to the original design [Priede et al., Meas. Sci.
Technol. 22 (2011) 055402], where the flow rate is determined by measuring only the
phase shift between the voltages induced in two receiving coils, the improved design
measures also the phase shift between the sending and the upstream receiving coil.
These two phase shifts are referred to as internal and external ones, respectively. We
show that the effect of electrical conductivity on the internal phase shift, which is
induced by the flow, can be strongly reduced by rescaling it with the external phase
shift, which depends mostly on the conductivity of medium. Two different rescalings
are found depending on the ac frequency. At low frequencies, when the shielding effect
is negligible, the effect of conductivity is strongly reduced by rescaling the internal
phase shift with the external one squared. At higher frequencies, the same is achieved
by rescaling the internal phase shift directly with the external one.

Keywords: Electromagnetic lowmeter, liquid metal, eddy current

PACS numbers: 41.20.Gz, 47.60.Dx, 47.65.-d, 47.80.Cb
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