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Abstra
t

This work presents numeri
al analysis of 
onta
tless eddy 
urrent �owmetering methods

in
luding phase-shift and transient eddy 
urrent te
hniques. Simple 2D and axisymmetri


theoreti
al models are 
onsidered where the �ow is approximated by a solid 
ondu
ting

medium in the presen
e of a time varying magneti
 �eld. A 3D model is presented whi
h

has been developed for the further improvement of these �owmetering te
hniques. The

3D model is designed to in
orporate arbitrary ex
iting 
oils, in 
ontrast to the �xed 
oils

of the 2D models. The 3D model presented is veri�ed against the previous 2D models.

The 
on
ept of a res
aled phase shift �owmeter, an improved phase shift �owmeter

with redu
ed sensitivity to the variation of ele
tri
al 
ondu
tivity of the liquid metals, is

presented. This improved design in
orporates the medium-indu
ed phase shift between

the sending and re
eiving 
oils to the measurement s
heme, whilst the original design

utilises only the phase shift indu
ed by the �ow between re
eiving 
oils. We show that the

e�e
t of 
ondu
tivity to the �ow-indu
ed phase shift 
an be greatly redu
ed by res
aling

with the medium-indu
ed phase shift. Two res
alings are found: at lower a
 frequen
ies of

the applied �eld res
aling of the �ow-indu
ed phase shift with the square of the medium-

indu
ed phase shift e�e
tively redu
es the e�e
t of 
ondu
tivity in the former. At higher

a
 frequen
ies, the same is a
hieved by res
aling the �ow-indu
ed phase shift dire
tly

with the medium-indu
ed phase shift.

Transient eddy 
urrent �owmeters operate by tra
king eddy-
urrent markers ex
ited

in the 
ondu
ting �ow by magneti
 �eld pulses. The velo
ity is measured by tra
king

zero 
rossing points, spatial extrema or temporal extrema of the ele
tromotive for
e

indu
ed by the eddy 
urrents. It is found that temporal extrema of emf experien
e a

time delay whi
h depends on the 
ondu
tivity of the medium and 
an be eliminated

by taking the di�eren
e of multiple-
oil measurements. Zero 
rossing points and spatial

extrema travel syn
hronously with the medium. It is pointed out that symmetry of the

system is essential to the operation of transient eddy 
urrent �owmeters. Asymmetry of

a few per
ent in the eddy 
urrent distribution yields a drift in the dete
tion point with

a velo
ity 
orresponding to the magneti
 Reynolds number Rm = 0.1. This means that

a more a

urate symmetri
 adjustment or 
alibration may be required for the transient

eddy 
urrent te
hnique to be reliable at lower velo
ities (Rm . 1).

The results of this study may be useful for designing next generation phase-shift and

transient eddy-
urrent �owmeters with higher a

ura
y and in
reased robustness to the

variations of the ele
tri
al 
ondu
tivity of liquid metal, whi
h may be required in some

metallurgi
al and other appli
ations.
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1 Introdu
tion

The measurement of liquid metal �ows in an a

urate and reliable way is important to

many metallurgi
al pro
esses, su
h as dosing and 
asting, and also to the nu
lear industry

where molten metals are used as 
oolants for advan
ed rea
tors. There are many prob-

lems with the measurement of liquid metal �ows using traditional �owmeters, in
luding

indu
tion �owmeters, due to the problems asso
iated with liquid metals su
h as 
hemi
al

aggressiveness or high temperatures whi
h 
an use 
orrosion and other 
onta
t problems.

To solve the problems of 
onta
t with liquid metals 
onta
tless approa
hes have been

developed for liquid metal �ow measurement. Indu
tion �owmeters have been made


onta
tless by using 
apa
itively-
oupled ele
trodes [20, 27℄. Most 
onta
tless ele
tro-

magneti
 �owmeters now operate based on e�e
ts related to the eddy 
urrents, whi
h are

the loops of ele
tri
al 
urrent indu
ed within the 
ondu
ting �ow by an applied magneti


�eld. Both the time variation of the magneti
 �eld or the movement of the 
ondu
tive

media within a stationary �eld 
an 
ause these eddy 
urrents. These eddy 
urrents, by

Lenz's law, will indu
e a magneti
 �eld whi
h will oppose the 
hanges to the external

�eld. The e�e
t of this �eld 
an be measured outside of the �ow thus avoiding the need

for ele
tri
al 
onta
t with the liquid metal.

An issue whi
h typi
ally arises when taking measurements based on this indu
ed

magneti
 �eld is the way in with velo
ity appears in the measurements. The velo
ity

measurement that 
an be taken of the �ow generally depend on the 
ondu
tivity, as

the value whi
h is measured is determined by the produ
t of 
ondu
tivity and velo
ity

and not by the �ow velo
ity. System whi
h measure the magneti
 Reynolds number

require 
alibration depending on the 
ondu
tivity. This leads to another problem based

on the thermal variation of 
ondu
tivity. The main obje
tive of this work is to identify

measurement systems whi
h are less a�e
ted by the 
ondu
tivity of the liquid metal �ow.

This thesis is split into 6 
hapters. Following this introdu
tion is a review of the

development of liquid metal �ow measurement, with spe
ial fo
us on the phase shift

and transient eddy 
urrent �owmeters, this is a

ompanied by further dis
ussion on the

problems asso
iated with liquid metal �ow measurement. In 
hapter 3 the underlying

equations whi
h are used to develop the models presented later are introdu
ed and dis-


ussed alongside dis
ussion of boundary 
onditions typi
ally found in the modelling of

�ows in
luding those whi
h will be used in this work. Chapters 4 and 5 introdu
e and im-

plement two simple 2D models whi
h leads to re
ommendations on measurement systems

with redu
ed dependen
e on 
ondu
tivity. Chapter 4 will fo
us of further development of

the phase shift �owmeter approa
h whilst 
hapter 5 will fo
us on the pulsed �eld, or tran-

sient eddy 
urrent �owmeter. Both 
hapters in
lude some extra material relating to the

optimisation or sensitivities of the designs, with the important 
onsideration of symmetry

appearing in the latter 
hapter. Chapter 6 Introdu
es a further, fully three dimensional,

4



model whi
h is designed to further investigate these optimisations, or sensitivities, by

allowing more 
omplete des
riptions of the wire loops represented in the earlier models.

The model presented in this 
hapter is a basis for further work, and 
ould be used to

further develop the ideas in the previous 
hapters. Finally a summary of the 
on
lusions

whi
h were developed throughout the work is given by 
hapter 7.
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2 Literature Review

In this se
tion a histori
al ba
kground of the development of ele
tromagneti
 �owmeters

for liquid metals, from the advent of ele
tromagneti
 �owmetering, is reviewed. Spe
ial

attention is given to eddy 
urrent phase shift and pulsed �eld approa
hes whi
h are

developed later in this work. A review of other 
urrent developments in liquid metal

�owmetering is given next. The se
tion ends with a dis
ussion of the general problems

asso
iated with the �owmetering of liquid metals.

2.1 History of ele
tromagneti
 �owmeters for liquid metals

The 
on
ept of ele
tomagneti
 �ow measurement dates from Faraday's time. The basi


prin
iples are do
umented from this time, for example in Faraday's own experimental

resear
hes in ele
tri
ity [14℄ originally published in 1832. In this histori
 work the 
on
ept

of magneti
 indu
tion is well de�ned. Faraday is known to have attempted to take an

ele
tromagneti
 �ow measurement of the River Thames. Faraday's experiment 
onsisted

of measuring the voltage indu
ed between a pair of ele
trodes inserted either side of the

rivers �ow. The fundamental idea being that the 
ondu
tive �ow of the River in the

presen
e of the Earth's magneti
 �eld will indu
e a voltage a
ross the �ow, between the

two ele
trodes. In an idealised model the magnitude of this voltage will be proportional to

the �ow rate. This type of �owmeter has be
ome the standard ele
tromagneti
 �owmeter,

generally referred to as an indu
tion �owmeter.

There appears to be little development in the �eld from the 1830s until a novel ap-

pli
ation of the indu
tion �owmeter was patented in 1917 [36℄. The devi
e spe
i�ed in

the patent measures the velo
ity of a ship relative to the body of water it is upon. The

measurement is taken using an outboard indu
tion �owmeter, measuring how fast the

water is �owing in the ships frame of referen
e. Publi
ations from the 1930s start to

introdu
e the use of indu
tion �owmeters on arti�
ial �ows. The publi
ations from the

early 1930s appear to be the �rst whi
h 
onsider �ows other than water. For example the

experiments of Williams with 
opper sulphate[46℄ whi
h also not only suggests a liquid

metal �ow, in the form or mer
ury, as a means to redu
e sensitivity to spurious e�e
ts but

also re
ognises the potential downfall that ele
trodes introdu
ed into the liquid 
an 
ause

a disturban
e to the �ow. It was around this time that publi
ations for the appli
ation

of ele
tromagneti
 �owmeters for blood �ow measurement start, for example the Faraday

type indu
tion �owmeter was employed in [22℄. In this work Kolin re
ognises that the

ele
tromagneti
 �owmeter has the advantage of providing instantaneous results.

With the advent of nu
lear rea
tors the need for liquid metal systems developed,

for example the sodium-potassium alloy 
ooled Dounreay Fast Rea
tor whi
h started

operation in 1959 [8℄. The development of 
ontrol systems for these fast rea
tors required

a

urate measurement of of the liquid metal 
oolants and as su
h �ow meters for liquid
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metals be
ame a topi
 of interest and remained so for many years with investigations


ontinuing 20 years later [3℄.

Today there is still a
tive development in the �owmetering of liquid metals for nu
lear


ontrol appli
ations. An example of 
urrent study of liquid metal �ows is given in [6℄, in

whi
h the 
urrent state of the study of 
ooling blankets for fusion rea
tors is outlined.

It is stated in this work that for reliable blanket designs �ow distributions will need to

be 
on�rmed by experimental data, showing the need for liquid metal �ow measurement

in resear
h appli
ations. For the new generations of fast breeder rea
tors, the feasibility

of eddy 
urrent �owmeters has been shown both numeri
ally through simulation and

experimentally in the Phenix rea
tor [39℄. And more re
ently the appli
ation of eddy


urrent �owmeters to dete
t air po
kets in 
oolants of the next generation of fast breeder

rea
tors has been presented [25℄. This shows the �exibility of some liquid metal �ow

measurement te
hniques by utilising a �owmeter as a method for dete
ting the existen
e

of a multi phase �ow.

2.1.1 Eddy Current Flowmeters

The development of eddy 
urrent �owmeters for liquid metals followed the advent of

�owmetering for liquid metals in the 1950s. The use of eddy 
urrent, or indu
ed �eld,

�owmeters whi
h measure the the �ow-indu
ed perturbation of an externally applied

magneti
 �eld 
an be found in a patent for 1948 [26℄. The devi
e presented has a sensor

within a streamlined 
apsule submerged within the �ow, the sensor 
onsists of a series

of sending and re
eiving 
oils. The sending 
oils generate a magneti
 �eld whi
h due to

eddy 
urrents will be adve
ted with the �ow and the displa
ement of this �eld leads to

indu
ed voltages in the re
eiving 
oils.

The �rst appearan
e of utilising a phase shift for �ow measurement appears to 
ome

from advan
es in blood �ow measurement [29℄, where the phase shift is indu
ed by imper-

fe
tions in 
onstru
tion of the �owmeter . Further use of the indu
ed magneti
 �eld for

liquid metal �ow measurement 
an be seen in[9℄where a sensor is immersed in a 
apsule

similar to that of Lehde and Lang's 1948 patent. The signi�
an
e of this paper to this

work is the suggestion that phase measurements taken along side magnitude measure-

ments 
an be used to determine �ow velo
ity independently of 
ondu
tivity.

A design of an eddy 
urrent �owmeter whi
h moved from the submerged 
apsule 
an

be found in [45℄ where the �ow passes through 
oils. The 
oaxial 
oils are introdu
ed so

that the �uid passes through the region with the strongest magneti
 �eld. This paper

also highlights a short falling of the measurement te
hnique whi
h is the dependen
e

of the measurement s
heme on the temperature, or ele
tri
al 
ondu
tivity, of the �uid.

Further work on eddy 
urrent �owmeters 
an be seen in [17℄ whi
h presents the idea of

the arrangements of external sending and re
eiving 
oils being utilised su
h that only

7



the signal indu
ed by the �ow is measured and not any 
urrents indu
ed dire
tly by

the applied �eld. The paper suggests that low frequen
y measurements, by penetrating

the medium well, have an averaging e�e
t on the �ow pro�le whi
h 
ould provide a

measure of volumetri
 �ow rate. This idea of optimising the arrangement of ele
trodes in

a 
onta
tless measurement s
heme depending on the nature of the applied �eld is further

dis
ussed in [20℄, however in this paper this idea is applied to a transverse ex
iting �eld.

Consideration to eddy 
urrent �owmeters is given in Sher
li�s text [35℄ under the name

of the indu
ed �eld �owmeter and the problem of 
ondu
tivity dependen
e is dis
ussed;

it is suggested that empiri
al 
alibration may be unavoidable. Many novel uses of the

indu
ed �eld have been developed su
h as �ow tomography [38℄ and appli
ations to

multiphase �ow [7℄, whi
h appears more re
ently in [25℄, were published in the early

2000s. The re-imagination of a for
e dete
ting indu
ed �eld �owmeter under the new

name of Lorentz for
e velo
imetry [41℄ seems to have heralded a resurgen
e in the topi


of 
onta
tless �ow measurement.

The 
on
ept of a phase shift �owmeter was introdu
ed in [31℄. The phase shift �ow-

meter operates on the prin
iple that the 
ondu
ting �ow disturbs not only the amplitude

but also the phase distribution of the alternating applied �eld. This te
hnique has the

advantage of being robust to many disturban
es due to the phase measurements being

a ratio of �eld strengths and not absolute values, however the problem of 
ondu
tivity

variation still exists. The robustness of the phase shift �owmeter to external disturban
es

su
h as ele
tromagneti
 disturban
e and noise has been demonstrated in [5℄. A re
ent

experimental investigation into measurements of liquid sodium loops utilised a phase shift

�owmeter whi
h was submerged in a 
apsule [23℄. This paper also shows the sensitiv-

ity of the devi
e to physi
al imperfe
tions, whi
h 
an be addressed to some extent by


alibration, and the problem of thermal variation of 
ondu
tivity.

2.1.2 Pulsed Field Flowmeters

The idea of modifying the design of an indu
tion �owmeter to repla
e the harmoni
ally

alternating applied �eld with a pulsed �eld approa
h is proposed in [37℄ where it is

applied to weakly 
ondu
ing �ows, spe
i�
ally referring to blood �ow measurements .

The square-wave approa
h utilised in this paper was suggested as a 
ompromise between

the DC approa
h, where polarisation of the ele
trodes and environmental ele
tri
al noise

are problemati
, and an AC approa
h, where a transformer e�e
t 
an generate spurious

signals.

The appli
ation of a pulsed magneti
 �eld to a strongly 
ondu
ting �ow, su
h as a

liquid metal �ow was proposed in [47℄ whi
h again used a transverse �eld. In this work

the authors re
ognise the potential of a pulsed �eld approa
h in removing 
ondu
tivity

from the measurement s
heme. The pulsed approa
h appears again in a 
onta
tless way

8



w e

dependen
e of the measurement s
heme on 
ondu
tivity, and its thermal variation. The

paper re
ognises that the removal of 
ondu
tivity is a matter for either 
alibration or

additional devi
es.

The use of a pulsed �eld with liquid metals in a 
onta
tless approa
h is omitted from

the dis
ussions in Sher
li�'s 
omprehensive text [35℄. This is likely due to the majority

of works dis
ussed in this se
tion being published after the books �rst printing thus the


on
ept of a pulsed �eld approa
h not being well formed at the time. The pulsed �eld

approa
h has reappeared relatively re
ently under the guise of transient eddy 
urrent

�owmetering with both external 
oils [18℄ and with 
oils in an immersed 
apsule [24℄,

both designs operate by ex
iting and then tra
king transient eddy 
urrent markers as

they are 
arried along by the moving 
ondu
tor.

2.2 Some Re
ent Development in Liquid Metal Flow Measure-

ment

In addition to the eddy 
urrent and pulsed �eld �owmeters dis
ussed above there are two

other popular designs of 
onta
tless �ow measurement for liquid metal appli
ations. The

two methods, whi
h both appear in Sher
li�'s well known text [35℄, are rotary �owmeters

and the Lorentz for
e �owmeter. The Lorentz for
e �owmeter originally appeared under

the name of for
e �owmeter the addition of Lorentz to the name was adopted more

re
ently.

The rotary �owmeter 
an be found in a patent [34℄ from around the time liquid metal

9
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�ow measurement be
ame of interest. The patent presents a design with two �ywheels in

a spool type arrangement as shown in �gure 1. The two wheels have magnets atta
hed to

their inner fa
es with alternating orientations around the wheel. The wheels are atta
hed

to an axle in su
h a way that opposite polarities fa
e ea
h other between the two wheels.

The patent 
laims that speed of rotation to be a measure of �uid �ow rate. The exa
t

pattern of magnets varies between di�erent works however the general rule of the layout

given in the patent above is maintained. This layout has the dire
tion the poles of the

magnets alternating around the axis of rotation. Where multiple disks are utilised, with

the �uid �owing between the disks, the magnets are oriented so that opposite poles

fa
e ea
h other a
ross the �ow. The pro
ess of modelling these rotary �owmeters was

approa
hed in [4℄ whi
h in
lude single disk designs. This paper also gives some dis
ussion

towards the problem of fri
tion in the bearing and the advantages of it being negligible

relative to the torque a
ting on the measurement system. The advantages of this design

in
luding both a redu
ed dependen
e on 
ondu
tivity and the ability to use ele
tri
ally


ondu
ting pipe walls.

A novel rotary �owmeter design where the �ywheel is repla
ed by a 
ylindri
al magnet

whi
h is magnetized perpendi
ularly to its axis is presented in [30, 32℄. The magnet is

allowed to freely rotate around this axle upon whi
h the magnet is mounted. The single

magnet design has the advantage of, in the limit of negligible fri
tion in the bearing,

having a 
onta
tless measurement te
hnique whi
h is not dependent on 
ondu
tivity. The

rotary �owmeter is not a perfe
t solution to the problem of liquid metal �ow measurement

due to the slow response time to 
hanges in the �ow whi
h is due to inertia in the

�ywheel, also a problem whi
h is more pronoun
ed in rotary �owmeters is the problem

of me
hani
al wear of moving parts.

The for
e �owmeter has be
ome a topi
 of interest with re
ent developments being


arried out under the name Lorentz for
e velo
imetry [41, 42℄. Lorentz for
e velo
imetry

is a 
onta
tless �owmetering te
hnique whi
h operates by measuring the Lorentz for
e

exerted on a magnet, or 
oil, by an indu
ed magneti
 �eld. A typi
al setup is shown in

�gure 2. This measurement system 
omes with the problems of other 
onta
tless te
h-

niques, spe
i�
ally the problem of 
ondu
tivity, with the Lorentz for
e being proportional

to the Magneti
 Reynolds number and not just the velo
ity. One of the major issues with

the use of the Lorentz for
e for measurement is that it is weak in relationship to the

applied �eld. In spite of this it seems reasonable to assume that attempting to measure

lower 
ondu
tivity �uids will lead to weaker indu
ed �elds and therefore weaker for
es

to measure. Despite this limitation there has been developments showing that the te
h-

nique 
an be applied to �uids with 
ondu
tivity many orders of magnitude lower that

typi
al liquid metals [44℄. The paper demonstrates the method for 
ondu
tivities of or-

der 100 S/m and suggests for pra
ti
al appli
ations 
ondu
tivities of magnitude 10−3
S/m,

and in laboratory appli
ations 10−6
S/m, 
ould be measured for 
omparison typi
al liquid

10
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The Lorentz for
e velo
imetry approa
h has been applied to �ow tomography [19℄

where a series of lo
alised measurements were shown to dete
t two large jets in the �ow

pro�le, whi
h were introdu
ed by an upstream obstru
tion. More re
ently a novel method

utilising time of �ight measurements with Lorentz for
e �owmeters had been presented as

a method to remove the 
ondu
tivity dependen
e from the measurements [11, 12℄. This

is a
hieved by the use of a pair of Lorentz for
e velo
imetry and a probe. The probe


reates vorti
es in the �ow whi
h are dete
ted by both the �owmeters, the time of �ight

of the vortex gives a measurement of the velo
ity of the �uid.

2.3 The Di�
ulties of Liquid Metal Flow Measurement

The measurement of �ow rates of liquid metals presents some 
hallenges whi
h are not

present when dealing with other media. The �rst major di�eren
e whi
h is 
onsidered

here is that the 
ondu
tivity of liquid metals is typi
ally signi�
antly higher than that

of non metalli
 �uids. This higher 
ondu
tivity leads to di�eren
es in how ele
tromag-

neti
 �owmeters are designed for liquid metals. The higher 
ondu
tivity leads to some

ele
tromagneti
 e�e
ts be
oming more signi�
ant. For example, when a high frequen
y

alternating magneti
 �eld is used the skin e�e
t 
an prevent the �eld from e�e
tively

penetrating the �uid [2℄. The applied �eld will introdu
e eddy 
urrents within the �ow

11
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these eddy 
urrents 
an 
ause a distortion, or dampening, of the applied magneti
 �eld

[35℄. Conversely the in�uen
e of the magneti
 �eld on the body of the �ow is also mu
h

higher with the in
reased 
ondu
tivity typi
al of liquid metals this is likely to 
ause a

pressure drop a
ross the �owmeter and may disrupt the �ow pro�le. The skin e�e
t

e�e
t 
an be negle
ted with low enough magneti
 Reynolds numbers, typi
ally a value of

Rm ≪ 1 where indu
tive e�e
ts are outweighed by magneti
 di�usion.

In non-metalli
 �uid �ow the use of alternating magneti
 �elds has some advantages.

For example DC �elds 
an lead to temperature gradients between the ele
trodes 
ausing

thermoele
tri
 e�e
ts whi
h 
an adversely a�e
t the �owmeters performan
e. With an

alternating �eld the thermoele
tri
 potential will be averaged out. They are also not a


on
ern when 
onsidering liquid metals as the higher thermal 
ondu
tivity will redu
e

temperature gradients.

There are physi
al e�e
ts whi
h o

ur with liquid metal �ows and must be 
onsidered

when designing �ow meters. These e�e
ts in
lude the temperature of the �ow, whi
h

for an appli
ation su
h as nu
lear 
ooling is likely to be high whi
h in turn 
an lead to

in
reased me
hani
al wear on 
omponents [13℄. This is the main reason more traditional

measurement systems su
h as di�erential pressure �owmeters and Faraday type indu
tion

�owmeters are unsuited to liquid metal appli
ations. Another property of many liquid

metals is 
hemi
al volatility. Great 
are has to be given to some liquid metals, as for

example, sodium is highly oxidising and 
an rea
t explosively with water. Gallium rapidly

weakens aluminium with the 
apillary e�e
t leading to damage far from the interfa
e

of the two materials [21℄. Traditional measurement te
hniques, su
h as parti
le image

velo
imetry [15℄ and opti
al Doppler tomography [43, 33℄, are not possible with liquid

metal �ow due to the materials opa
ity.

Many of the problems above are mitigated by using a 
onta
tless approa
h whi
h,

by using low frequen
y applied �elds, 
an be designed to avoid problems su
h as the

skin e�e
t and magneti
 braking of the �ow. However, there is 
urrently no general

solution for su
h a �owmeter. A signi�
ant reason for this is that most 
onta
tless �ow-

meter measurements rely on indu
ed voltages whi
h are dependent on both the velo
ity

and 
ondu
tivity of the �ow. Many �owmeter designs mitigate the dependen
e on 
on-

du
tivity by 
alibration. However the thermal variation of 
ondu
tivity 
an disrupt this


alibration. This thermal variation of the 
ondu
tivity of liquid metals 
an be 
hara
ter-

ised by the Wiedemann�Franz law ,

κ
σ
= LT , where κ is the thermal 
ondu
tivity, σ is

the ele
tri
al 
ondu
tivity, L is the Lorentz number (2.44 × 10−8WΩK−2
) and T is the

temperature. As an example of typi
al values the ele
tri
al 
ondu
tivity of bismuth for

industrial appli
ations for the temperature range 545− 1423K 
an be found in [16℄. The


ondu
tivity of bismuth at 600K is given as 7.56× 105 and falls to 6.04× 105 at 1200K.

12



3 Fundamental Equations

3.1 Equations Governing Ele
trodynami
s

Consider a parti
le 
arrying a 
harge q moving with a velo
ity ~v. There are three ele
-

tromagneti
 for
es whi
h 
an a
t upon the parti
le,

~F = q ~Es + q ~Ei + q~v × ~B, (1)

where

~Es is the ele
trostati
 �eld and

~Ei is the ele
tri
 �eld indu
ed by 
hanges in the

magneti
 �eld. The �rst term relates to the ele
trostati
 �eld represents the ele
trostati
,

or Coulomb, for
e. This for
e is the mutual attra
tions, or repulsion, between ele
tri



harges. The term relating to the indu
ed ele
tri
 �eld is spe
i�
 to the presen
e of a

magneti
 �eld with varies with time. The �nal term is 
aused by of the motion of a


harge relative to a magneti
 �eld, whi
h is 
alled the Lorentz for
e.

At this point to further 
onsider the ele
trostati
 �eld two laws shall be introdu
ed,

namely Coulomb's law and Gauss' law. Firstly, Gauss' law states that the ele
tri
 �ux

through a hypotheti
al 
losed surfa
e is equal to the net ele
tri
 
harge within that 
losed

surfa
e divided by ǫo, the permittivity of free spa
e.

~∇ · ~Es =
ρ

ǫ0
,

where ρ denotes the 
harge density. Coulomb's law states that the magnitude of ele
tro-

stati
 attra
tion for
es between two point 
harges is inversely proportional to the square

of the distan
e between them and dire
tly proportional to the produ
t of the magnitudes

of the 
harges. A 
onsequen
e of this is that the stati
 ele
tri
 �eld is irrotational

~∇× ~ES = 0.

As the �eld is irrotational it 
an be de�ned as the gradient of a potential,

~Es = −~∇φ,

where φ is the ele
trostati
 potential.

The indu
ed �eld is governed by Faraday's law of indu
tion, whi
h will be generalised

later in the Maxwell-Faraday equation;

~∇× ~Ei = −∂ ~B

∂t
. (2)

It is also worth noti
e that the indu
ed �eld is divergen
e free as there are no sour
es

within it giving

~∇ · ~Ei = 0.

The total ele
tri
 �eld 
an be de�ned as the sum of the ele
tri
 �elds,

~E = ~Es + ~Ei

13



and has the properties:

~∇ · ~E =
ρ

ǫ0
(3)

~∇× ~E = −∂ ~B

∂t

We 
an now simplify equation (1), by using the total ele
tri
 �eld, giving the Lorentz

for
e law below

~F = q( ~E + ~v × ~B) (4)

where

~F is the for
e a
ting upon the 
harge q. The Lorentz for
e law, when 
ombined

with the Maxwell equations, gives the foundations of 
lassi
al ele
tromagnetism.

3.2 The Maxwell Equations

The Maxwell equations are a set of partial di�erential equations underlying 
lassi
al

ele
tromagnetism. The equations 
onsist of Gauss' law, Gauss' law for magnetism, the

Maxwell-Farday equation and Ampère's 
ir
uital law.

3.2.1 Gauss' Law

Gauss' law has been introdu
ed above and relates the distribution of ele
tri
 
harges to

the resulting ele
tri
 �eld. The law equates the ele
tri
 �ux,

~ΦE , through a 
losed surfa
e

S to the to total 
harge Q 
ontained by the volume V bounded by that surfa
e divided

the permittivity of free spa
e,

~ΦE =
Q

ǫ0
. (5)

The ele
tri
 �ux 
an be expressed as the surfa
e integral of the ele
tri
 �eld,

~ΦE =

‹

S

~E · d~S (6)

where d~S represents the in�nitesimal area whi
h is an element of the surfa
e S. Divergen
e

theorem, often referred to a Gauss' theorem relates the �ux out of a region to the the

sum of all sinks and sour
es within the region. This is a
hieved by equating the �ux

of a ve
tor �eld through a 
losed surfa
e to the divergen
e of said �eld over the region

en
losed by the surfa
e, in the 
ase of

~E this gives

‹

S

~E · d~S =

˚

V

~∇ · ~EdV.

14



Substituting the volume integral for the ele
tri
 �ux in (5) gives us Gauss' law in the

following form

˚

V

(~∇ · ~E)dV =
Q

ǫ0
,

whi
h 
an be modi�ed to the form used earlier in equation (3) by moving to 
harge

density ρ whi
h gives the 
harge when integrated over the volume Q =
˝

V
ρdV .

˚

V

(~∇ · ~E)dV =
1

ǫ0

˚

V

ρdV

the integrands 
an now be equated giving the di�erential form of Gauss' law whi
h relates

the divergen
e of the ele
tri
 �eld to the total 
harge density

~∇ · ~E =
ρ

ǫ0
. (7)

3.2.2 Gauss' Law for Magnetism

Gauss' law for magnetism simply states that a magneti
 �eld must be divergen
e free

~∇ · ~B = 0. (8)

This 
ondition states that a magneti
 �eld has no sinks or sour
es, that is to say that

�eld lines form 
losed loops. This is equivalent to stating that a magneti
 �eld is a

solenoidal ve
tor �eld. A more physi
al interpretation of this is that there are no magneti


monopoles, thus no sour
es, and a in�nitesimal element generating a magneti
 �eld should

be represented as a dipole, analogous to how magnets always have a north and a south

pole.

3.2.3 Faraday's Law (the Maxwell-Faraday equation)

Faraday's law, or more spe
i�
ally Faraday's law of indu
tion, states that the indu
ed

ele
tromotive for
e in a 
losed 
ir
uit equals the negative of the rate of 
hange over time

of the magneti
 �ux en
losed by the 
ir
uit. The magneti
 �ux Φ is 
al
ulated in a similar

way to the ele
tri
 �ux in equation (6). However as we will be 
onsidering the rate of


hange over time of the �ux we will spe
ify the time dependen
e of both the magneti


�eld and the surfa
e. We may also note that the integral is no longer over a 
losed surfa
e,

~Φ =

¨

S(t)

~B(~r, t) · d~S

where ~r is the position ve
tor. The ele
tromotive for
e (e.m.f.) 
aused by the 
hange in

�ux 
an be de�ned by

E = −dΦ

dt
. (9)
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aA generalisation of Faraday's law is provided by the Maxwell-Faraday equation, whi
h

was introdu
ed in equation (2). It states that a time-varying magneti
 �eld will always

a

ompany a spatially varying ele
tri
 �eld and vi
e versa. It is worth noti
ing that the

di�erential form of the Maxwell-Faraday equation,

~∇× ~E = −∂ ~B

∂t
,

is a weaker de�nition than the integral form as it is limited to the ele
tri
 �eld indu
ed by

a time-varying magneti
 �eld as 
laimed in [10℄. The integral form gives the ele
tromotive

for
e whi
h is generated in a 
ondu
tor by either a time varying magneti
 �eld or the

motion of the 
ondu
tor relative to the magneti
 �eld,

˛

∂S

~El · d~l = −
ˆ

S

∂ ~B

∂t
· d~S (10)

where ∂S is the 
losed 
ontour bounding the surfa
e S and d~l are the in�nitesimal line

elements 
omprising ∂S. ~El refers to the e�e
tive ele
tri
 �eld for ea
h line element whi
h

is equivalent to the �eld measured in the frame of referen
e moving with the line element

d~l and 
an be de�ned as

~El = ~E+~ul× ~B where ~ul is the velo
ity of the line element. The

di�erential form 
an be derived from the intergral form by employing the Kelvin-Stokes

theorem, whi
h equates the integral over a surfa
e of the 
url of a ve
tor �eld to the line

integral of the same �eld around the boundary of the surfa
e. Applied to the ele
trostati


�eld 
onsidered here the Kelvin-Stokes theorem yields

˛

∂S

~E · d~l =
˛

S

~∇× ~E · d~S (11)

Here we have returned to the simpli�ed 
ase where the ele
tromotive for
e is the result

of a time dependent magneti
 �eld and the loop is not in motion. With this assumption


ombining equations (10) and (11) yields

˛

S

(~∇× ~E) · d~S = −
ˆ

S

∂ ~B

∂t
· d~S.

Equating the integrands yields the di�erential form of the Maxwell Faraday given in

equation (2), thus showing that as des
ribed above the di�erential form is weaker than

the integral form as it requires more assumptions and thus is valid in less situations.
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3.2.4 Ampère's Cir
uital Law

Ampère's 
ir
uital law equates the line integral of a magneti
 �eld around a 
losed loop

to the 
urrent �owing around the loop. The integral form 
an be written as

˛

∂S

~B · d~l = µ0

¨

S

~j · d~S (12)

where

~j is the 
urrent density and µ0 is the permeability of free spa
e. As with the

Maxwell-Faraday equation the Kelvin-Stokes theorem 
an be used to move to the dif-

ferential form. Applying the Kelvin-Stokes theorem to the magneti
 �eld instead of the

ele
trostati
 �eld yields

˛

∂S

~B · d~l =
˛

S

(~∇× ~B) · d~S,

this 
an be substituted into equation (12) and then the integrands 
an be equated yielding

the di�erential form of Ampère's 
ir
uital Law

~∇× ~B = µ0
~j. (13)

We now 
onsider the limitations of this law in the form presented above. In this form

the law is a

urate only in an magnetostati
 environment, whi
h is to say that 
urrents

in the system do not 
hange with time. This 
an be shown by taking the divergen
e of

(13)

~∇ · (~∇× ~B) = µ0
~∇ ·~j

whi
h as the divergen
e of a 
url is identi
ally zero,

~∇ · (~∇× ~B) = 0

implies that the 
urrent density is also divergen
e free,

~∇ ·~j = 0.

While this is possible it is not the general 
ase, this 
an be seen by 
onsidering the


ontinuity equation for ele
tomagneti
 
harge

~∇ ·~j = −∂ρ

∂t

where ρ is the 
harge density. This 
ontinuity equation is more fundamental and is based

on 
harge 
onservation, in physi
al terms it means that a 
harge leaving a di�erential

volume leads to a redu
tion in the 
harge 
ontained in the volume, thus a negative rate

of 
hange for the 
harge density. It 
an be seen that Ampère's 
ir
uital law as stated above
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agrees with 
harge 
onservation when there is a 
onstant 
harge density, and thus the

magnetostati
 
ondition for the law is satis�ed. A modi�
ation to Ampère's 
ir
uital law

known as Maxwell's 
orre
tion provides an extension of the law beyond the magnetostati


environment. The law with the extension, in di�erential form, be
omes

~∇× ~B = µ0
~j + µ0ǫ0

∂ ~E

∂t
. (14)

The addition term introdu
ed by Maxwell's 
orre
tion, ǫ0
∂ ~E
∂t
, is 
alled the displa
ement


urrent and by again taking the divergen
e,

~∇ · (~∇× ~B) = µ0
~∇ · (~j + ǫ0

∂ ~E

∂t
),

we obtain

~∇ ·~j = −ǫ0 ~∇ · ∂
~E

∂t

applying Gauss's law given in equation (7) whi
h equates the divergen
e of the ele
tri


�eld to the 
harge density divided by the permittivity of free spa
e yields

~∇ ·~j = −ǫ0 ~∇ · ∂
~E

∂t
= −∂ρ

∂t

thus showing Maxwell's 
orre
tion satis�es the 
ontinuity equation for ele
tromagneti



harge.

3.2.5 Ohm's Law

Ohm's Law, whi
h states that in a 
ondu
tor the 
urrent between two points is propor-

tional to the voltage a
ross the two points with the 
onstant of proportionality being the

re
ipro
al of the ele
tri
al resistan
e of the 
ondu
tor. This 
an be generalised to a 
ur-

rent density being proportional to the ele
tri
 �eld, with the 
onstant of proportionality

being the 
ondu
tivity of the material,

~j = σ ~E.

When the 
ondu
tor is travelling within a magneti
 �eld the Lorentz for
e term must be

added to a

ount for the motion indu
ed 
urrents in the 
harge 
arrying medium. Giving

the form of Ohm's Law whi
h will be used in this work

~j = σ( ~E + ~v × ~B) (15)

this form is 
ommonly referred to as Ohm's law with magneti
 e�e
ts.
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3.2.6 The Ve
tor Potential

Gauss's Law for magnetism shows that magneti
 �eld are solenoidal �elds and thus 
an

be de�ned by a ve
tor potential. A ve
tor potential is de�ned as a ve
tor �eld whose 
url

is a given ve
tor �eld, i.e. the magneti
 �eld, in our 
ase

~∇× ~A = ~B,

where

~A is the magneti
 ve
tor potential. There is also some freedom in the de�nition of

the ve
tor potential, this 
omes about as it is de�ned by its 
url. Consider the Maxwell-

Faraday equation in terms of the ve
tor potential

~∇× ~E = −~∇× ∂ ~A

∂t

whi
h as the 
url of a gradient is zero leads to many solutions,

~E = −∂ ~A

∂t
− ~∇φ (16)

where φ is the s
alar potential, whi
h is a 
ontinuously di�erentiable s
alar fun
tion.

The s
alar potential 
an be further de�ned as φ → φ + f(t) where f is an arbitrary


ontinuously di�erentiable s
alar fun
tion. This property is referred to as gauge freedom

or gauge invarian
e. Later in this work the gauge invarian
e of the ve
tor potential �eld

is exploited to simplify 
al
ulations (see equation (24) and following).

3.3 Boundary Conditions

Boundary 
onditions are essential to 
ompletely de�ne a problem. The boundaries whi
h

are typi
ally 
onsidered 
an in
lude the hypotheti
al surfa
es where �uid enters or leaves

the system and interfa
es between di�erent materials. The interfa
es between di�erent

materials will typi
ally represent parts of the model su
h as pipe walls where there are

materials adja
ent with di�erent properties, su
h as velo
ity and ele
tri
al 
ondu
tivity.

Whilst in the models presented in this work a very simpli�ed 
onsideration is given

here to some important potential boundary 
onditions, whi
h 
ould be added to future

developments of the models.

This se
tion will dis
uss some important boundary 
onditions. Firstly, the ele
tro-

magneti
 boundaries at the pipe walls will be presented. Following this the interfa
ial


onditions whi
h will be used later in this work are introdu
ed. Finally, some geometri


boundaries are dis
ussed, in
luding symmetri
 and periodi
 
onditions.

In the models used in this work, the boundaries are relatively simple, the only physi
al

boundaries that exist are between free spa
e and the 
ondu
ting medium. There are also
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boundaries 
aused by the 
al
ulations whi
h tie together di�erent regions of behaviours.

3.3.1 Ele
tromagneti
 Boundary Conditions

There are two formulations of ele
tromagnetism, ( ~E, ~B) the ele
tri
 and magneti
 �elds

and ( ~A, ϕ) the magneti
 ve
tor potential and magneti
 s
alar potential. Both of these

formulations are rigorous and 
omplete. This work is based on the ( ~A, ϕ) formulation

however the

~B �eld is also 
onsidered in some 
ases. As su
h boundary 
onditions are

only required for

~A and ϕ are needed. The boundary 
onditions on A and ϕ whi
h are

utilised in this work are derived from the 
ontinuity of

~A a
ross an interfa
e and also its

non-tangental derivatives at the interfa
e.

The nature of the pipe walls is also important in modelling magneti
 �elds. In the

relatively simple 
ase of non-
ondu
ting walls there 
an be no 
urrent �ow between the

�uid and the wall. Hen
e the 
omponent of the 
urrent normal to the wall must be zero

~j · ~n = 0. (17)

The 
ondition for the ele
trostati
 potential is derived from equations 15 & 16 whi
h

spe
i�es the derivative normal to the boundary to be,

∂φ

∂n
= ∂tAn + ~n · ~r × ~B = (∂tAn + ~B · ~n× ~r)|S. (18)

In the 
ase of 
ondu
ting walls, with a non-zero ele
tri
al 
ondu
tivity σw, there are two

boundaries to 
onsider: the wetted surfa
e and the dry surfa
e of the wall. Inside the


ondu
ting wall we will have

~j = −σw
~∇φw

where φw is the ele
tro stati
 potential within the wall. As the wall is at rest the Poisson

equation

~∇2φ = ~∇ · (~v × ~B) (19)

whi
h 
an be derived by taking the divergen
e of Ohms Law (15), yields

~∇2φw = 0 (20)

in the pipe wall. The dry surfa
e a
ts in the same way as the non 
ondu
ing walls with

being subje
t to equations (17) and (18). The boundary at the wetted surfa
e is subje
t

to the the two following 
onditions. Firstly, the potential di�eren
e normal to and a
ross

the boundary gives

φ− φw = σσw
∂φ

∂~n

and se
ondly the 
ontinuity of the 
urrent normal to and a
ross the boundary yields
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σ
∂φ

∂~n
= σw

∂φw

∂~n
.

These two 
onditions are su�
ient to solve equations (19) and (20) a
ross the boundary.

δl

ds
s

Figure 3: S
hemati
 of the region,s, whi
h appears at the pipe wall and is dis
ussed in

the 
ontext of the jump 
ondition of the magneti
 �eld

The jump 
ondition for the tangental ele
tri
 �eld will now be spe
i�ed. The fomula-

tion utilises equation 11 and equation 10 whi
h when 
ombined yield

˛

S

~∇× ~E · d~s =
˛

ds

~E · d~l =
˛

s

∂ ~B

∂t
· d~S → 0

as the length of the se
tion, shown in �gure 3, of surfa
e tends to zero, dl → 0 then

[ET ], the 
hange in the tangental 
omponent of the ele
ti
 �eld a
ross the surfa
e, is seen

to be zero.,

[ET ]dl = 0 ⇒ [ET ] = 0.

3.3.2 Interfa
ial Conditions

Interfa
ial 
onditions o

ur between di�erent di�erent regions of the model, su
h as at

the interfa
e between the 
ondu
ting media and either a pipe wall or free spa
e. The

boundary 
onditions imposed at these interfa
es ensure the 
ontinuity of the magneti


�eld 
omponents. The 
ondition is that the ve
tor potential of the magneti
 �eld must

be 
ontinuous a
ross the interfa
e;

( ~BI − ~BO) · ~n = 0
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where

~BI and
~BO are the ve
tor potentials either side of the boundary and ~n is the ve
tor

normal to the boundary.

3.3.3 Symmetry Conditions

Symmetry 
onditions are 
onditions imposed on an axis of symmetry. One su
h boundary

is an axis boundary su
h as that found at r = 0, in 
ylindri
al 
oordinates, with an

azimuthally invariant model. In this 
ylindri
al system the value at the axis must be

regular and uniquely de�ned for all angles θ. The solution to this is that the azimuthal


omponent must be equal to zero su
h that is does not vary with θ. In 2D this 
an be

seen by imposing an odd fun
tion between the x and −x axis whi
h also ensured a zero

value at the axis.

In the axisymmetri
 
ylindri
al 
ase both the magneti
 �eld and velo
ity �eld require

zero valued normal 
omponents at the axis. However, the 
omponent of either �eld

along the r = 0 axis is not required to be zero valued. Symmetry boundary 
onditions

are typi
ally used to redu
e the 
omputational requirement of a model by exploiting or

imposing symmetries in the �elds and the geometry.

3.3.4 Periodi
 Boundary Conditions

Another example of a geometry de�ning boundary is periodi
 boundary 
onditions these

again 
an redu
e 
omputational e�ort. Periodi
 
onditions are de�ned by mat
hing �eld

values and derivatives at either end of the 
al
ulation domain along the axis where the

periodi
ity is present. Periodi
ity is present in the models later in this thesis however it

is not in
luded by design and is imposed due to the use of Fourier transforms. The region

of interest is relatively far from the periodi
 boundary and the results of the models will

not signi�
antly a�e
ted by their usage. Due to the semi-analyti
 nature of the models

presented in this work there is no requirement for a 
al
ulation domain to be spe
i�ed

and the �elds 
an be dire
tly 
al
ulated at the required lo
ation.
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Figure 4: S
hemati
 diagram for the model with the applied �eld taking the form of a

harmoni
 wave.

4 Res
aled Phase Shift Flowmeter

The phase shift �owmeter as introdu
ed in [31℄ has be
ome a industrially available meas-

urement method for liquid metal �ows. The problem of the thermal variation of 
ondu
t-

ivity leading to a measurement s
heme whi
h is dependent not only on the �ow rate but

also on the temperature of the 
ondu
ting medium has been dis
ussed in se
tion 2.3. The

purpose of this 
hapter is to introdu
e a method whi
h will be demonstrated theoreti
ally

to redu
e the 
ondu
tivity dependen
e of the measurement s
heme. The idea behind the

method is that phase shifts 
an be indu
ed not only due to the �ow of the medium but

also due to the presen
e of the 
ondu
ting medium itself. This phase shift indu
ed by the

presen
e of the medium will depend predominately on the 
ondu
tivity of the medium

and as su
h will be used to res
ale the measured phase shift thus redu
ing the 
ondu
tiv-

ity dependen
e. This 
hapter is split into three se
tions. Firstly the derivation for a two

dimensional model for the phase shift �owmeter is presented, with a 
ouple of di�erent

ex
iting �elds. Se
ondly the results of this model are presented in
luding investigating

both the res
aling for the phase shift and some physi
al properties. The 
hapter will end

with a brief summary of the �ndings.

4.1 Derivation

The model 
onsidered in this 
hapter, whi
h is shown in �gure 4 
onsists of a layer of


ondu
ing media of width 2H in the presen
e of an imposed magneti
 �eld. The model

is presented in Cartesian 
oordinates, with axes x and y oriented along the length of the


ondu
ting medium and a
ross its width respe
tively. The model will be 
onsidered with

2 ex
iting �elds. Firstly, the �eld is a standing harmoni
 wave applied from above the

layer as shown in �gure 4. The se
ond �eld is generated by a 
oil represented by a 
ouple

of straight wires oriented along the z axis with oppositely �owing alternating 
urrents.
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h

Figure 5: S
hemati
 diagram for the model with the applied �eld generated by two

straight wires with oppositely travelling 
urrents.

The wires are lo
ated a distan
e of h above the x axis with a distan
e of 2s between

them, as shown in �gure 5.

To derive the model we 
onsider a 
ondu
ting medium, with ele
tri
al 
ondu
tivity

σ, moving with velo
ity V in the x dire
tion, su
h that ~v = ~exV . The ex
iting �eld, with

indu
tion

~B, is alternating harmoni
ally with angular frequen
y ω.

The Maxwell-Faraday equation introdu
ed in se
tion 3.2.3 gives the ele
tri
 �eld in-

du
ed in the 
ondu
ting medium by the ex
iting �eld

~E = −∇Φ − ∂t ~A (21)

where

~A is the ve
tor potential of the magneti
 �eld, given by

~B = ∇× ~A, and where Φ

is the ele
tri
 potential.

Ohm's law gives the density of the ele
tri
 
urrent in the moving medium,

~j = σ( ~E + ~v × ~B), (22)

where σ is the 
ondu
tivity of the medium. This 
an be presented in terms of the ele
tri


and ve
tor potentials as

~j = σ(−∇Φ− ∂tA + ~v ×∇× ~A) (23)

The gauge invarian
e of

~A is used to spe
ify its divergen
e as

~∇ · ~A = −µ0σ(Φ− ~v · ~A)
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where µ0 is the va
uum permeability. This de�nes the ele
tri
 potential as

Φ = ~v · ~A− 1

µ0σ
∇ · ~A (24)

whi
h simpli�es the derivation of the adve
tion di�usion equation below.

Now the adve
tion di�usion equation 
an be derived, to do this we shall start with

Maxwell's equation

~j =
1

µ0
∇× ~B − ǫ0∂t ~E. (25)

For this model we will ignore the displa
ement 
urrent, whi
h is negligible. The frequen
y

of the alternation of the magneti
 �eld is su�
iently low. This leads to Ampere's law:

~j =
1

µ0
∇× ~B. (26)

To derive the adve
tion di�usion equation, Ohm's law in terms of potentials (23) and

Ampere's law (26) shall be equated leading to

σ(−∇Φ− ∂tA + ~v ×∇× ~A) =
1

µ0
∇× ~B. (27)

Introdu
ing the de�nition of the s
alar potential from above, whi
h utilises the gauge

invarian
e of

~A, and taking its gradient we obtain

∇Φ = ∇(~v · ~A)− 1

µ0σ
∇(∇ · ~A)

whi
h expands to

∇(~v · ~A)− 1

µ0σ
(∇2 ~A +∇×∇× ~A)

where ∇×∇× ~A = ∇× ~B. Expanding the ve
tor dot produ
t ∇(~v · ~A) 
an be done using

the identity

∇(~v · ~A) = (~v · ∇) ~A+ ( ~A · ∇)~v + ~v × (∇× ~A) + ~A× (∇× ~v),

from whi
h the zero terms shall be removed. These zero terms are ( ~A · ∇)~v = 0 and

~A× (∇×~v) = 0 and 
an both be explained by to the solid body motion des
ribed above

by ~v = ~exV .

In the 
ase of a simple laminar �ow pro�le with a velo
ity ~vp whi
h has some y-

dependen
e su
h that ~vp = ~exV (y) this simpli�
ation be
omes impossible as ( ~A·∇)~vp 6= 0.

If this laminar 
ase was 
onsidered the derivation from this point would di�er signi�
antly.

It is likely that an analyti
 solution would no longer prove suitable and the �ow inside

the 
ondu
tive layer would need to be solved numeri
ally.
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The gradient of the s
alar potential 
an now be given as

∇Φ = (~v · ∇) ~A+ ~v × (∇× ~A)− 1

µ0σ
(∇2 ~A +∇× ~B)

Substituting this into equation (27) yields

−(~v · ∇) ~A− ~v × (∇× ~A) +
1

µ0σ
∇2 ~A+

1

µ0σ
∇× ~B − ∂tA + ~v ×∇× ~A =

1

µ0σ
∇× ~B,

whi
h simply redu
es to

∂t ~A + (~v · ~∇) ~A =
1

µ0σ
∇2 ~A, (28)

whi
h is the adve
tion di�usion equation for the magneti
 ve
tor potential.

We 
onsider that the system is invariant in the z dire
tion. Be
ause of this we 
an

de�ne the �eld by a single 
omponent of the ve
tor potential

~A = ~ezA. This is be
ause
~B has only two 
omponents, whi
h are both perpendi
ular to ~ez. This 
an be shown by

inspe
ting the 
omponents of ∇× ~A = ~B. We 
an see that for

~A = ~ezA the �eld is given

by

~B = [∂yA,−∂xA, 0]. Applying this to equation (28) along side the de�nition ~v = ~exV

yields

∂tA+ V ∂xA =
1

µ0σ
∇2A, (29)

The boundary 
onditions in this system are required at the interfa
es S between the


ondu
ting layer and free spa
e, whi
h o

urs at y = ±H . The 
ontinuity of

~B a
ross this

boundary implies the 
ontinuity of the derivative of

~A. The 
ontinuity of

~A follows by


onsidering the �eld through a region on the surfa
e of the interfa
e, S, and the boundary

of this region δS gives

´

S
~BdS =

¸

δS
~A · dl shrinking the region S to an in�nitesimal

width shows the 
ontinuity of

~A is required by the regularity (non-singularity) of

~B. The


ontinuity of

~A and its derivatives leads to the following

[A]S = [(~n · ~∇)A]S = 0, (30)

where ~n is the unit normal to the boundary, and [f ]S the 
hange in f a
ross the

surfa
e S.

Using the half-thi
kness of the layerH as the length s
ale and µ0σH
2
and time s
ale we

introdu
e a 
ouple of key dimensionless parameters. Firstly a dimensionless a
 frequen
y

ω̄ = µ0σωH
2, (31)

where ω is the frequen
y of alternation of the applied magneti
 �eld. The dimensionless

frequen
y is typi
ally of order 0 for example ω̄ ∼ 1 for a �ow of liquid sodium with
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σ = 8.3× 106 S/m in a layer of half width H ∼ 0.1m with an a
 frequen
y

ω
2π

∼ 60Hz.

Se
ondly the magneti
 Reynolds number, whi
h represents a dimensionless velo
ity

and gives an estimate of the e�e
ts of the motion indu
ed indu
tion 
ompared with the

magneti
 di�usion,

Rm = µ0σV H (32)

Again we note that in this work a signi�
ant feature of the Magneti
 Reynolds number

is that it depends not only on the velo
ity by also on the 
ondu
tivity of the medium.

Using these dimensionless parameters equation (29) 
an be presented in a dimension-

less form

∂tA+Rm∂xA = ∇2A.

4.1.1 Solution for Standing Magneti
 Wave

This derivation will be used for two de�nitions of the magneti
 �eld, �rstly we will 
onsider

a �eld produ
ed by a standing wave, whi
h alternates harmoni
ally. Following this a �eld

generated by a 
ouple straight wires is presented. S
hemati
 plots whi
h show both of

these two �eld de�nitions are given in �gure 4.

We de�ne the applied �eld for the �rst 
ase, the harmoni
 standing wave, with ve
tor

potential amplitude

~ezA0(~r, t) = ~ezÂ0(y) cos(kx) cos(ωt),

where k is the wavenumber, or spatial frequen
y, in the x dire
tion. Outside of the


ondu
tive layer, where σ = 0, equation (29) for the ve
tor potential redu
es to

d2Â0

dy2
− k2Â0 = 0, (33)

whi
h has the solution

Â0(y; k) = C0e
|k|(y−1),

whi
h will tend to in�nity as y tends to in�nity. This is will o

ur outside of our domain

of interest and is a 
onsequen
e of the de�ninition of the standing harmoni
 �eld with no

de�ned sour
e. where the 
onstant C0 is given by

C0 = Â0(1; k),

whi
h spe
i�es the amplitude of the Fourier mode with wavenumber k of the external

magneti
 �eld at the upper interfa
e between the 
ondu
tive medium and free spa
e. The

external magneti
 �eld refers to the �eld in the absense of the 
ondu
tinve layer, and 
an

be generated by setting σ = 0 within the layer.
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The external magneti
 �eld in the form of a standing wave, 
an be represented by a

superposition of two oppositely travelling waves

A0(~r, t) =
1

2

(

A+
0 (~r, t) + A−

0 (~r, t)
)

,

where A±
0 (~r, t) = Â0(y) cos(ωt ± kx). We 
an now look for a solution in the mat
hing

form

A(~r, t) =
1

2

(

A+(~r, t) + A−(~r, t)
)

,

where A±(~r, t) = ℜ
(

Â(y;±k)ei(ωt±kx)
)

are oppositely travelling waves.

We shall now use equation (28) to generate an equation for the �eld within the 
on-

du
tive medium. The equation will now by applied in spe
tral spa
e allowing the deriv-

atives to be more simply expressed. Re
ognising that (~v · ∇)Â = V ∂xÂ as ~v has only an

x 
omponent yields

µ0σ∂tA+ µ0σV ∂xA = ∂2
xA+ ∂2

yA.

Evaluating the derivatives in spe
tral spa
e gives

µ0σiωÂ+ µ0σV ikÂ = −k2Â+
d2

dy2
Â

and substituting in the de�nitions for ω̄ and Rm yields

d2

dy2
Â− (k2 + iω̄ + kRm)Â = 0

Within the 
ondu
tive medium, the equation for a travelling �eld 
an now be given as

d2Â/dy2 − κ2Â = 0, (34)

where

κ(k) =
√

k2 + i(ω̄ + kRm). (35)

The general solution to equation (34) whi
h is present in the layer 
an be written as

Â(y; k) = C2 sinh(κy) +D2 cosh(κy). (36)

Above the layer the solution is given by

Â(y; k) = Â0(y; k) + Â1(y; k), (37)

where Â0(y; k) = C0e
|k|(y−1)

and Â1(y; k) = C1e
−|k|(y−1)

represent the applied and indu
ed

�elds, respe
tively.
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Below the layer the solution de
aying as y → −∞ is given by

Â(y; k) = C3e
|k|(y−1)

(38)

At this point we have and four unknown 
onstants C1, C2, C3, D2 whi
h require four

equations to be determined. The boundary 
onditions for the 
ontinuity of A and its

derivative normal to the boundary a
ross the two interfa
es between the layer and free

spa
e provide the information to solve the system. At the interfa
e above the layer, y = 1,

the 
ontinuity of Â is given by

C2 sinh(κ) +D2 cosh(κ) = C0 + C1 (39)

and below the layer , at y = 1 the 
ondition is

D2 cosh(κ)− C2 sinh(κ) = C3 (40)

The 
ontinuity of the derivative normal to the boundary below the layer, y = −1, gives

κC2 cosh(κy)− κD sinh(κy) = |k|C3 (41)

substituting in the solution for C3 below the layer (40) gives

C2(|k| sinh(κ) + κ cosh(κy)) = D2(|k| cosh(κ) + κ sinh(κy))

and with the solution taken from above the layer (39) at y = 1,

κC2 cosh(κ) + κD2 sinh(κ) = |k|C0 − |k|C1

substituting in the solution for C1 taken from (39) gives

C2(|k| sinh(κ) + κ cosh(κy)) +D2(|k| cosh(κ) + κ sinh(κy)) = 2|k|C0

and as we already have C2(|k| sinh(κ) + κ cosh(κy)) = D2(|k| cosh(κ) + κ sinh(κy)) from

above we 
an state

C2(|k| sinh(κ) + κ cosh(κy)) = D2(|k| cosh(κ) + κ sinh(κy)) = |k|C0.

The four unknown 
onstants are found as
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C2 = C0|k|/(|k| sinh(κ) + κ cosh(κ)) (42)

D2 = C0|k|/(|k| cosh(κ) + κ sinh(κ)) (43)

C1 = D2 cosh(κ) + C2 sinh(κ)− C0 (44)

C3 = D2 cosh(κ)− C2 sinh(κ). (45)

4.1.2 Solution for The Pair of Straight Wires

The derivation above will now be used for a �eld generated by a 
ouple of straight wires

with oppositely �owing 
urrents, as shown in �gure 4(b). The physi
al interpretation

of these wires 
ould be that they represent two sides of a single 
oil or that they are

se
tions of two separate wide 
oils, where the 
oils are wide enough for the returning loop

to be negligible to the system in the proximity of the original wires. These two straight

wires 
arry a
 
urrents of amplitude I0 in opposite dire
tions. These wires are orientated

along the z-axis and are lo
ated at a height of h above the 
entre line of the layer and at

distan
es ±s from the y-axis.

The free-spa
e distribution of the ve
tor potential amplitude whi
h as before will


onsist only of the z-
omponent, is governed by

∇2A0 = −δ(~r − h~ey − s~ex) + δ(~r − h~ey + s~ex) (46)

whi
h is s
aled by µ0I0, δ(r) is the Dira
 delta fun
tion and ~r is the radius ve
tor. .

The Dira
 delta fun
tion is used to model the point 
urrents whi
h represent the two

wires. The equation for the free spa
e distribution is redu
ed by the Fourier transform

Â(y; k) =
´∞
−∞A(x, y)eikxdx, whi
h 
onverts equation (46) into

d2Â0

dy2
=k2Â0 = δ(y=h)

∞̂

=∞

[δ(x+ s)]eikxdx− δ(y=h)

∞̂

=∞

[δ(x− s)]eikxdx

Colle
ting the integrals into the 
oe�
ient f(k) =
´∞
=∞[δ(x− s)− δ(x+ s)]eikxdx yields

d2Â0

dy2
− k2Â0 = −f(k)δ(y − h), (47)

f(k) = eiks − e−iks = 2isin(ks). (48)

The solution of equation (47) de
aying at y → ±∞ 
an be written as

Â0(y; k) = c(k)e−|k(y−h)|. (49)
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Integrating equation (47) over the singularity at y = h,

lim
ǫ�0

ˆ h+ǫ

h−ǫ

[
d2Â0

dy2
=k2Â0]δy = lim

ǫ�0

ˆ h+ǫ

h−ǫ

[=f(k)δ(y=h)]δy

whi
h evaluates to

[

d

dy
Â0

]

y=h

−
[

k2yÂ0

]

y=h
= −f(k),

we obtain the boundary 
ondition

[

d

dy
Â(y; k)

]

y=h

= −f(k).

Applying the boundary 
ondition shows the remaining 
oe�
ient 
an be expressed as

c(k) =
f(k)

2|k| =
i sin(ks)

|k| . (50)

Solutions for the kth Fourier mode of the magneti
 ve
tor potential in the three

regions lo
ated inside, above and below the layer have been derived above and are given

by equations (36, 37, 38) respe
tively. The 
oe�
ients for these three equations follow

from the derivation above are given by equations (42-45). The 
onstant C0 is again given

by Â0(1; k) and is 
al
ulated by equation (49) with c(k) given by equation (50):

C0 =
i sin(ks)

|k| e−(1−h).

Finally, the 
omplex ve
tor potential

~A is re
overed by the inverse Fourier transform of

Â given by

~A(x, y) =
1

2π

ˆ ∞

−∞
Â(y; k)e−ikxdk, (51)

whi
h 
an be e�
iently 
al
ulated with the fast Fourier transform.

4.2 Results

This se
tion presents the main results obtained using model introdu
ed above for a single

harmoni
 of the applied �eld and then for a �eld generated by a 
ouple of straight wires.

It is important to note that in this model, where the ve
tor potential has only one


omponent, the di�eren
e in the ve
tor potential between two points de�nes the linear

�ux density of the magneti
 �eld between two lines parallel to the ve
tor potential at

these two points. This 
an be shown by Stoke's theorem (11), whi
h in this 
ontext

means, the 
ir
ulation of the ve
tor potential around a thin 
oil gives the magneti
 �ux

through that surfa
e the 
oil bounds. This also holds true for the derivative of the
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ve
tor potential and linear �ux density. This leads to the di�eren
e in amplitude of the

ve
tor potential between two points being proportional to the emf amplitude measured

by simple 
oil, whi
h would be represented by two straight wires oriented along the z-

axis. Assuming the se
ond wire to be su�
iently far from the magneti
 �eld the ve
tor

potential amplitude of a single point would represent the emf measured by a wide 
oil

whi
h is only partially in the region of interest.

4.2.1 Results for A Single Harmoni


Before introdu
ing the modi�
ations to the measurement s
heme for the phase shift

�owmeter, we will introdu
e the models behaviours as a basi
 for further development. In

this se
tion a single harmoni
 of the magneti
 �eld will be 
onsidered. This 
orresponds

to a �eld generated by a standing wave with wave number k. The phase distribution

and the �ux lines, both in phase with the applied �eld and shifted by π/2, are shown

in �gure 6. An important observation is that, although the �eld de
ays exponentially,

the phase distribution below the layer is invariant in the y−dire
tion. Although this is

only generally true for a �eld generated by a standing harmoni
 wave it leads to one of

the major advantages of the phase shift �owmeter, that the measurements of phase are

robust to variation of the verti
al position of the measurement 
oils. The phase is de�ned

as the angle of the 
omplex �eld, when presented in polar form. It is 
alulated as the

ar
tangent of the ratio between the �eld in phase and out of phase with the applied �eld,

ϕ = arctan(ℜ(A)
ℑ(A)

).

An example of the measurement s
heme, presented in [31℄, prior to introdu
ing any

res
aling is given in �gure 7. It 
an be seen that for a given dimensionless frequen
y, whi
h

depends on 
ondu
tivity, the phase di�eren
e 
an be used as a measure of magneti


Reynolds number, whi
h when knowing the 
ondu
tivity 
an equate to measuring the

velo
ity.

The phase distribution between two nodes of the applied magneti
 measured below

the 
ondu
ting medium is shown in �gure 7(b). While at rest this phase distribution

is pie
ewise 
onstant varying only by jumps in the phase of π. These jumps in phase

o

ur at the wave nodes, whi
h are lo
ated at x = ±0.5π. Figure 7(b) shows that the

dis
ontinuities in the phase are smoothed out when the 
ondu
ting medium is in motion.

The smoothed dis
ontinuities are shifted further downstream with in
reasing values of

Rm. Another signi�
ant feature of this phase variation, whi
h 
an also be seen in �gure

7(b), is that the strongest phase variation o

urs downstream of a node, whereas the

variation upstream of a node is relatively weak, this disparity is more pronoun
ed at lower

values of Rm. This shows the importan
e of pla
ing the downstream measurement 
oil


lose to the node if low velo
ities are to be measured, as the sensitivity of to the velo
ity

is higher in these lo
ations. This is also relevant to the res
alings whi
h are dis
ussed
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 �ux lines generated by a standing harmoni
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out of phase (middle) with the applied �eld, and the phase distribution (bottom) at rest

(left) with Rm = 1(right), with ω̄ = 1 and k = 1
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 �eld(b) at various dimension-

less velo
ities de�ned by Rm.
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later. The signi�
an
e of the measurements upstream of a node being signi�
antly less

a�e
ted by the motion of the �ow will be
ome apparent when introdu
ing the res
alings.

The variation of phase ϕ with Rm at low velo
ities is 
hara
terized by the phase

sensitivity.

K =
1

π

∂ϕ

∂Rm

∣

∣

∣

∣

Rm=0

. (52)

The dependen
e of this quantity on the dimensionless frequen
y ω̄ is plotted in �gure 8

for several observation points and wave numbers.

By observing that ϕ varies nearly linearly with ω̄, as given in equation (35), we 
an see

the variation of K with ω̄ 
an be redu
ed. As ω̄ has a similar e�e
t to Rm the redu
tion


an be a
hieved by s
aling the phase variation with the phase itself, whi
h leads to the

relative phase sensitivity.

Kr = π
K

ϕ
=

∂ lnϕ

∂Rm

∣

∣

∣

∣

Rm=0

. (53)

As seen in �gure 8(
,d), the relative phase sensitivity tends to 
onstant for given

observation point. Although the relative phase sensitivity is not 
ompletely independent

of ω̄ it 
an be seen that at higher values of ω̄ it varies mu
h less than the uns
aled phase

sensitivity shown in 8(a,b) espe
ially at lower wave numbers. Following this idea the

e�e
t of 
ondu
tivity 
an be redu
ed by s
aling the phase shift with a referen
e phase.

The referen
e phase ϕω is taken as the phase shift between the sending and the upstream

re
eiving 
oils, as the phase shift upstream of a node is less a�e
ted by the motion of

the layer. At low ω̄ the referen
e phase varies dire
tly with ω̄ whi
h, similar to Rm, is

proportional to 
ondu
tivity.The following s
aling by the square of the referen
e phase,

ϕω, will redu
e variation with 
ondu
tivity

∆2ϕ =
∆0ϕ

ϕ2
ω

, (54)

where ∆0ϕ = ϕ+ − ϕ−is the di�eren
e between the downstream and upstream phases

whi
h are denoted by ϕ+ and ϕ− respe
tively.

For the res
aled phase shift to be insensitive to σ it 
an not be dependent dire
tly on

ω̄ or Rm, but must be a fun
tion of these 
ontrol parameters su
h that σ is eliminated.

Instead we 
hoose

Rm
ω̄

= V
ωH

to measure against, whi
h represents a dimensionless velo
ity,

this ratio shall be referred to as the relative velo
ity.

Figure 9 shows the res
aled phase shift given by equation (54) has a weak dependen
e

on ω̄ as long as ω̄ is low. For su�
iently low relative velo
ities the variation of the

res
aled phase shift with ω̄ is weak up to ω̄ ∼ 1. This range of low relative velo
ities

depends on the lo
ations of the observation points. With points 
loser to the nodes,

lo
ated x = ±0.5π, the range of relative velo
ities, where the res
aled phase di�eren
e
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k = 1 (a,
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remains invariant with ω̄ is redu
ed. Figure 9 shows that far enough from the nodes

the relationship between res
aled phase di�eren
e and relative velo
ity is invariant for

a range of dimensionless frequen
y from 0.1 to 1, whi
h 
orresponds to a 
hange of an

order of magnitude to the 
ondu
tivity. This range is supported by looking at the nature

of the 
hange of phase with dimensionless frequen
y, as shown in �gure 10, where there

is a linear relationship for low dimensionless frequen
ies whi
h 
ontinues until ω̄ ≈ 1.

The s
aling given by equation (54) fails at higher values of ω̄ where the shielding

e�e
t 
auses the referen
e phase to vary non-linearly. In this 
ase, the phase shift is O(1)

over the skin layer with the 
hara
teristi
 thi
kness ∼ ω̄−1/2. It means that the total

phase shift due to the di�usion of magneti
 �eld through the whole 
ondu
ting layer with

thi
kness O(1) varies as ϕ ∼ ω̄1/2 ∼ σ1/2
. Sin
e the external magneti
 �eld in the form

of a standing wave 
onsists of two oppositely travelling waves, the motion of the layer is

equivalent to the variation of the dimensionless frequen
y by ∼ Rm ≪ 1. The respe
tive

phase shift between two re
eiving 
oils 
an be estimated as

∆0ϕ ∼ ∂ϕ

∂ω̄
Rm ∼ ω̄−1/2Rm ∼ σ1/2.

This implies that for higher frequen
ies ω̄ & 1, res
aling dire
tly with the referen
e phase

shift should lead to the 
ondu
tivity being eliminated from the measurement s
heme. The

res
aled phase shift whi
h is res
aled dire
tly with the referen
e phase shall be denoted
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as ∆1ϕ and is de�ned as

∆1ϕ =
∆0ϕ

ϕ−
. (55)

The res
aled phase shift ∆1ϕ is plotted in �gure 11 against the relative velo
ity for

two di�erent wavenumbers k = 1 and and k = 0.5 and various dimensionless frequen
ies.

For k = 1 the dependen
e of the res
aled phase shift on ω̄ appears to be greatly redu
ed

for ω̄ > 1. For k = 0.5, whi
h 
orresponds a wavelength of the applied magneti
 �eld

signi�
antly larger than the thi
kness of the layer, the variation of ∆1ϕ with ω̄ is pra
-

ti
ally insigni�
ant starting from ω̄ = 1. This implies that the measurement s
heme is no

longer strongly dependant on the 
ondu
tivity of the �ow.

4.2.2 External Magneti
 Field Generated By A Couple Of Wires

In this se
tion we 
onsider the 
ase of an external magneti
 �eld generated by a 
ouple of

straight wires as shown in �gure 4(b). For the layer at rest, the magneti
 �eld distribution

is mirror-symmetri
 with respe
t to the x = 0 plane. This is analogous to a node in the

mono-harmoni
 standing wave 
onsidered in the previous se
tion. Correspondingly, when

the layer is at rest, there is a phase jump of π at x = 0. In 
ontrast to the previous 
ase,

the phase is no longer 
onstant on both sides of the dis
ontinuity and varies horizontally

as well as verti
ally.

The relationship between the phase and frequen
y for the two wire model is plotted

in �gure 13 as with the �eld generated by a standing wave the variation is linear for

low frequen
ies and for higher frequen
ies, where shielding disrupts this linearity and the

phase varies with the root of the dimensionless frequen
y, ϕ ∝ ω̄
1

2
. The approximate

dimensionless frequen
y for whi
h the linear behaviour fails is similar between the two

ex
iting �elds, and in both 
ases the variation of the phase with the root of the frequen
y

is well established by ω̄ = 1.

The phase sensitivity is plotted against dimensionless frequen
y for various measure-

ment points below the layer in �gure 14. It shows that the phase sensitivity attains a

maximum at an optimal frequen
y, ω̄ ≈ 0.14. The low optimal frequen
y 
an also be

shown from equation 50 whi
h shows the applied magneti
 �eld is dominated by low

wavenumber modes. Another important feature of the phase sensitivity is that its re-

du
tion above the optimal frequen
y is gradual 
ompared with to its steep in
rease at

sub-optimal frequen
ies. The loss of the sensitivity from working with a mu
h larger sim-

pli�ed value of ω̄ = 1 is relatively small. This loss be
omes smaller still with observation

points further from the origin.

Figures 14(a,b) and 13 all show that the range of ω̄ where the phase sensitivity varies

linearly is rather short. Therefore there is a limited range for whi
h in the two wire model

res
aling (54) may be appli
able. Figure 15(a-
) show the res
aling with the square of

the referen
e phase applied to the two-wire model. It 
an be seen that the res
aling fails
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Figure 11: Res
aled phase shift ∆1ϕ between two observation points pla
ed below the

layer at ±xk/π = 0.2 (a,b), 0.3 (
,d) and 0.4 (e,f) versus the relative velo
ity Rm/ω̄ for

k = 1 (a,
,e) and k = 0.5 (b,d,f) at various dimensionless frequen
ies ω̄ & 1.
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y, ω̄ at the bottom of the layer for various Rm values

for the range of frequen
ies for whi
h it is designed. It is likely that this res
aling fails

at this range of frequen
ies be
ause the transition between the linear and square root

relationships of phase and frequen
y, shown in �gure 13, o

urs at a lower frequen
y in

this model 
ompared with the simple model for a harmoni
 standing wave. Figure 15(d)

shows that this res
aling does indeed theoreti
ally fun
tion very well with little 
hange to

the measurement for a 
hange of two orders of magnitude of the frequen
y. This res
aling

only works for a low enough range of frequen
ies and these frequen
ies are impra
ti
ally

low.

At dimensionless frequen
ies near unity ω̄ ∼ 1, whi
h presents the main interest from

a pra
ti
al point of view, the res
aling presented to handle the the non-linear variation

of the phase-shift, given by equation (55), is expe
ted to be suitable. This res
aled

phase shift is plotted in �gure 16 against the relative velo
ity for several lo
ations of the

observation points and various dimensionless frequen
ies. It 
an be seen that the res
aled

phase shift ∆1ϕ depends predominantly on the relative velo
ity while its variation with

ω̄ is relatively weak. In �gure 16(d) the ex
eption to this is shown whi
h o

urs for

the large separations of the observation points, in this 
ase x = ±2.5, where the lines

for the di�erent dimensionless 
ondu
tivities do not 
ollapse well. This deterioration of

the res
aling at larger separations of observation points may be due to the horizontal

variation of the referen
e phase mentioned above, whi
h was not present in the model

with the simple harmoni
 applied �eld.
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Figure 14: Phase sensitivity K given by equation (52) versus the dimensionless frequen
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ω̄ at various observation points at the bottom of the layer (a) and the same plotted on
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Figure 15: The res
aled phase shift ∆2ϕ between two observation points pla
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Figure 16: The res
aled phase shift ∆1ϕ between two observation points pla
ed below

the layer at ±x = 0.5 (a), 1 (b), 1.5 (
), and 2.5 (d) versus the relative velo
ity Rm/ω̄
at various dimensionless frequen
ies ω̄.
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Figure 17: Maximum di�eren
e in res
aled phase shift measurement for dimensionless

velo
ities up to V max with measurement 
oils lo
ated at x = ±0.5 (a) and x = ±1(b)
against sending 
oil height. Res
ale phase shift with �rst order res
aling against dimen-

sionless velo
ity with ex
iting 
oils lo
ated at x = ±0.5 (
) and x = ±5 (d) for various

dimensionless frequen
ies.

As previously shown the lateral positions of the re
eiving 
oils have an e�e
t on how

well the res
aling works. The horizontal position of the sending 
oils is now 
onsidered.

A suitable measurement of this is the maximum di�eren
e between any two lines, whi
h

relates physi
ally to the maximum error in the res
aled phase shift measurement 
aused

by removing 
ondu
tivity from the measurement s
heme. Figure 17(a) and (b) show the

maximum di�eren
e in res
aled phase measurement for dimensionless frequen
ies 1, 2, 3,

4 and 5. It 
an be seen that having the sending 
oil further out leads to lower variation

between di�erent dimensionless frequen
ies. It is also shown that in most 
ases having

the sending 
oil further from the �ow leads to lower di�eren
es. It is shown that the

measurement s
heme is more robust when looking only at lower velo
ities. �gure 17(d)

shows that when the wires representing the sending 
oil are taken the extreme and likely

impra
ti
al lo
ations of x = ±5 that the lines 
ollapse better for a greater range. This
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an be seen to agree with the last point in the previous se
tion that further separated

observation points yield worse results, as here the opposite is shown, that having the

observation points 
loser together relative to the sending 
oil yields better results.

4.3 Summary

In this 
hapter, a theoreti
al design for an improved phase shift �owmeter has been

introdu
ed. This design is shown to be able to redu
e the 
ondu
tivity dependen
e of

the measurement s
heme. This is done by employing the referen
e phase shift whi
h is

indu
ed on the �eld by the presen
e of the 
ondu
ting layer to the measurement s
heme.

A measure of the referen
e phase taken from the upstream re
eiving 
oil. There are two

res
alings introdu
ed where a referen
e phase shift is used to res
ale the measurement

s
heme. Firstly, for low frequen
ies ω̄ . 1, where there is a dire
t relationship between

phase shift and the frequen
y, res
aling the �ow-indu
ed phase shift with the square of the

referen
e phase 
an help remove 
ondu
tivity from the measurement s
heme. At higher

a
 frequen
ies ω̄ & 1, where the shielding e�e
t 
auses the variation of phase with the

frequen
y the be non-linear, 
ondu
tivity 
an be removed from the measurement s
heme

by res
aling the �ow-indu
ed phase shift dire
tly with the referen
e phase.
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5 Pulsed Field Flowmeter

In this se
tion we will 
onsider an axisymmetri
 
ylindri
al model. We shall again �rst


onsider a �eld represented by a standing wave and then The �eld generated by a number

of 
oils. In this model the e�e
t of a pulsed �eld will be 
onsidered for both of these �eld

de�nitions.

5.1 Mathemati
al Model

Consider a 
ylinder of in�nite length, oriented along the z-axis, radius R and 
ondu
tivity

σ moving at a velo
ity of ~v = ~ezv. The derivation for the 
ylindri
al model starts

identi
ally to the 2D Cartesian model. starting with the Maxwell Faraday equation,

Ohms law and its expansion and Amperes Law given by equations (21-23) and (25). In

this model, we shall again assume that the frequen
y is low enough that we 
an negle
t

the displa
ement 
urrent and use Amperes Law:

~j =
1

µ0

~∇× ~B. (56)

We 
onsider now that the magneti
 �eld is axisymmetri
 and in our 
ylindri
al 
o-

ordinate system (with axis labelled r, φ and z) will have only r and z 
omponents. As

with the Cartesian model, presented in the previous 
hapter, the magneti
 �eld 
an be

represented by a single 
omponent of the ve
tor potential. However, in this model the


omponent whi
h will be used is the azimuthal 
omponent. This means we have a purely

azimuthal ve
tor potential,

~A = ~eφA. By evaluating the 
url it 
an be shown that

~B = −r−1~eφ × ~∇(rA).

A useful feature of this model is that the streamlines of

~B run along the isolines of rA.

This 
an be shown by appling the 
ross produ
t with the unit ve
tor in the azimuthal

dire
tion. The triple produ
t produ
ed on the right hand 
an be simplifed using idenities

leading to, ~eφ× ~B = r−1~∇(rA). Taking the dot produ
t of this with ~B leads to

~B·~∇(rA) =

0 whi
h shows that the streamlines of

~B run along isolines of rA.

The adve
tion di�usion equation for this model takes the form

µ0σ(∂tA + v∂zA) = ~∇2A, (57)

whi
h is derived by applying Ampere's Law (56) to Ohm's Law (23) as is done to derive

equation (28) in the previous 
hapter. In free spa
e, equation (57) takes the form

(r−1(rA)′)′ + ∂2
zA = 0. (58)
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Figure 18: Pulse pro�le labeled wih key variables, T the length of one period of the

periodi
 signal, τ the time between pulses and δ whi
h sets the transition time while the

�eld turns on and o�.

where

′
denotes the derivative with respe
t to r. To solve this equation we now 
onsider

the eddy 
urrents indu
ed by the external magneti
 �eld in the form of a single Fourier

harmoni
 whi
h varies as

A0(r, z, t) = Â0(r) sin(kz)f(t)

where, as before, k is the wave number in the z dire
tion and f(t) de�nes the time

variation of the applied �eld. The time variation due to the pulsed nature of the magneti


�eld is de�ned by

f(t) =

{

η(t) + η(τ − t)− η(T − t), 0 ≤ t < T

f(t− T ), t > T
=

N/2
∑

n=−N/2

fne
iωnt

This, �rstly, des
ribes the periodi
 nature of the pulsing of the �eld. Se
ondly, the fun
-

tion is de�ned using the 
omplementary error fun
tion η(t)=erf
(t/δ) = 2√
π

´∞
t/δ

e−t2dt.

This introdu
es a transition time δ whilst turning the �eld on or o�. This transition time

is ne
essary to suppress the Gibbs phenomenon in the Fourier series representation of

f(t).

The Fourier 
oe�
ients fn for the modes are 
omputed using the FFT. These modes

are generated for dimensionless frequen
ies ωn = 2πn/T . The solution for the ve
tor
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potential 
an be represented in 
omplex form as

A(r, z, t) =

N/2
∑

n=−N/2

ℑ
[

Ân(r)fne
i(ωnt+kz)

]

(59)

where Ân is the solution to (60) given in general form by (61).

We 
an now write equation (58) in the following form

(r−1(rA)′)′ − r−2Â0 − k2Â0 = 0 (60)

For whi
h the general solution is

Ân(r) = CI1(kr) +Do
nK1(kr), (61)

where Iν(x) and Kν(x) are the modi�ed Bessel fun
tions of the �rst and se
ond kind

respe
tively, with order ν; C is an unknown 
onstant de�ned by the applied magneti


�eld and Do
n is an unknown 
onstant asso
iated with the n-th time harmoni
 of the

indu
ed magneti
 �eld.

5.1.1 Solution for Mono Harmoni
 Standing Wave

For the 
ase of the applied �eld taking the form of a standing wave, there are two regions

whi
h the system 
an be resolved in: inside the layer and outside of the layer. The

standing wave shall, as in the previous model, be represented by two oppositely travelling

waves.

We now set the radius of the 
ondu
ting R as the length s
ale and the time s
ale

as µ0σH
2
. We 
an now introdu
e two key dimensionless parameters. A dimensionless

velo
ity, the magneti
 Reynolds number Rm = µ0σV H and the dimensionless frequen
y,

ω̄n = µ0σωnR
2
. Outside the 
ondu
ting 
ylinder, the solution is governed by equation

(61). Inside the 
ondu
ting layer the solution is governed by equation (57), whi
h takes

the form

(r−1(rÂn)
′)′ − (k2

n + i(ω̄n + knRm))Ân = 0.

With the substitution κ = (k2
n + i(ω̄n + knRm))

1/2
the solution to this equation for the

�eld inside the 
ondu
ting layer is given by

Ân(r) = Di
nI1(κr). (62)

This solution is 
hosen su
h that the term 
on
erning the modi�ed Bessel fun
tion of the

se
ond kind, Kν(x) , is omitted as it is not regular at r = 0. The 
ontinuity of the ve
tor

potential and its normal derivative at the interfa
e between the 
ondu
ting region and
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free spa
e, r = R = 1, gives boundary 
onditions whi
h will lead to the solutions for the

unknown 
onstants Do
n and Di

n.

Firstly [Â]r=1 = 0 gives

Di
nI1(κ) = CI1(kn) +Do

nK1(kn) (63)

and [∂rÂ]r=1 = 0 gives

Di
n(I0(κ)−

1

κ
I1(κ)) = C(I0(kn)−

1

kn
I1(kn)) +Do

n(−K0(kn)−
1

kn
K1(kn)).

For the derivatives of the modi�ed Bessel fun
tions the re
urren
e relationship ∂zLν(z) =

Lν−1(z) − 1
z
Lν(z) found in [1℄, where L substitutes either Iν or eiπνKν , has been used.

Simple manipulation and substitution of these equations at the boundary yields solutions

for the two unknowns

Do
n = C

knI0(kn)I1(κ)− κI0(κ)I1(kn)

knK0(kn)I1(κ) + κI0(κ)K1(kn)

Di
n = C

kn(K0(kn)I1(kn) + I0(kn)K1(kn))

knK0(kn)I1(κ) + κI0(κ)K1(kn)
.

For this solution the 
urrent amplitude of the applied �eld is de�ned by C. as the

amplitude is irrelevant in our study we 
an set C = 1.

5.1.2 Solution for A Cir
ular Current Loop

The solution above, for a mono-harmoni
 applied �eld 
an be extended to the 
ase of

a 
oil, made of 
ir
ular loops. Considering a single thin loop pla
ed azimutally with

radius rc lo
ated axially at zc 
arrying a dimensionless 
urrent of jc. The free-spa
e

distribution of the ve
tor potential amplitude will 
onsist only of the φ-
omponent and


an be des
ribed using the Dira
 delta fun
tion�

~∇2A0 = −jcδ(~r − rc~er − zc~ez), (64)

where δ(~r) is the Dira
 delta fun
tion. Note that as the model is azimuthally symmetri


the loop is oriented along the φ dire
tion with 
onstant r and z values. An axial Fourier

transform Â(r) =
´∞
−∞ A(r, z)eiknz dz 
onverts equation (64) to

(r−1(rÂ0)
′)′ − k2

nÂ0 = −jce
−iknzcδ(r − rc). (65)

The solution to this equation must be 
ontinuous a
ross the 
oil, r = rc, regular at r = 0

and de
ay as r → ∞. The last two 
onditions are met by our 
hoi
e of whi
h part of the
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solution to utilise,

Â0(r) = DII1(knr) +DKK1(knr)),

whi
h is based on the general solution given by equation (61).

In the regions 0 < r < R and R < r < rc, inside the 
ylinder and from the 
ylinder

to the 
oil, the solution 
an be taken as Â0(r) = DII1(knr) and from the 
oil to in�nity

the solution is given by Â0(r) = DKK1(knr).

The 
onstants DI and DK are solved by the boundary 
onditions on A at the 
oil.

The values at the 
oil must mat
h and the 
hange in derivative is obtained by integrating

equation (65) over the singularity 
aused by the presen
e of the 
oil at r = rc. Giving

the boundary 
onditions, �rstly based on the value

[

Â0

]

r=rc
= 0, as

DII1(knrc) = DKK1(knrc)

and for the derivative

[

∂rÂ0

]

r=rc
= −jce

−iknzc
,

DI

(

I0(knrc)−
1

knrc
I1(knrc)

)

+DK(K0(knrc) +
1

knrc
K1(knrc)) = −jce

−iknzc ,

whi
h 
an be redu
ed to, by subtra
ting the other boundary 
ondition, the following

form:

D1knI0(knrc) +DKknK0(knrc) = −jce
−iknzc

DI

(

I0(knrc)−
1

knrc
I1(knrc)

)

+
I1(knrc)

K1(knrc)

(

K0(knrc) +
1

knrc
K1(knrc)

)

= −2jce
−iknzc

In the region 0 < r < rc the solution 
an be taken as

Âo(r) = −jce
−iknzc

I1(knr)
I1(knrc)

kn

(

I0(knrc)
I1(knrc)

+ K0(knrc)
K1(knrc)

) ,

for the region rc < r < ∞, from the 
oil outwards, as

Âo(r) = −jce
−iknzc

K1(knr)
K1(knrc)

kn

(

I0(knrc)
I1(knrc)

+ K0(knrc)
K1(knrc)

) .

The ve
tor potential in physi
al spa
e is given by the inverse Fourier transform, 
om-

puted using the FFT.

This method 
an be applied to multiple 
urrent loops ea
h loop will have an ad-

ditive e�e
t on the �eld with 
urrent for ea
h 
oil being introdu
ed by substituting
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C =
∑

c Dc/I1(knrc) into equation (61) where

Dc =
−jce

−iknzc

kn

(

I0(knrc)
I1(knrc)

+ K0(knrc)
K1(knrc)

)

and the summation is taken over the 
urrent loops.

5.2 Eigenmode Evolution

To des
ribe the basi
s of the pulsed �eld approa
h introdu
ed above, the evolution of

separate eigenmodes shall be investigated. The separate eigenmodes will be sought in

the following 
omplex form,

A(r, z, t) = Â(r)eiknz−γt, (66)

where kn is a given real wave-number introdu
ed in the derivation above and γ is an

unknown 
omplex de
ay rate. This 
omplex de
ay rate will be determined together with

the amplitude distribution Â(r) by solving the eigenvalue problem posed by equation (57).

If we remove the external magneti
 �eld, the solution for the region where measurements

would be taken, outside the 
ylinder, given be equation (63) 
an be expressed as

Â(r) = DoK1(knr), (67)

where Do
is an unknown 
onstant. Inside the 
ylinder, the general solution of equation

(57) is given by

Â(r) = DiJ1(αr),

where Di
is another unknown 
onstant, Jν(x) is the Bessel fun
tion of the �rst kind with

order ν, and α = (γ − k2
n − iknRm)

1/2
. The boundary 
onditions based on the 
ontinuity

of A and its derivative a
ross the surfa
e of the layer r = R = 1 
an solve for the two

unknowns, D0
and Di

. Firstly the 
ontinuity 
ondition

[

Â
]

r=1
= 0 gives

DoK1(kn) = DiJ1(α)

And the derivative a
ross the boundary

[

∂rÂ
]

r=1
= 0 gives

Do(K0(kn) +
2

kn
K1(kn)) = Di(J0(α)−

2

α
J1(α)).

These boundary 
onditions lead to the following 
hara
teristi
 equation

αJ0(α)/K0(kn) + knJ1(α)/K1(kn) = 0. (68)
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Figure 19: Three lowest eddy 
urrent de
ay rates versus the wave number. Note that

modes for n ≥ 4 will have signi�
antly higher de
ay rates, and thus signi�
antly shorter

de
ay times.

This equation has real roots given by α whi
h de�ne the asso
iated 
omplex de
ay rates

introdu
ed in equation (66) as

γ = α2 + k2
n + iknRm. (69)

The most important result that follows from this expression is the phase speed is 
onstant,

shown by ℑ[γ]/kn = Rm. This is the speed at whi
h all eddy 
urrent patterns travel

regardless of their wave number. The 
orresponding physi
al velo
ity for the eddy 
urrent

patterns is given by Rmvm = v and is equal to that of the medium. Here vm = (µ0σR)−1

is the velo
ity s
ale for the model. This leads to the 
on
lusion that the velo
ity of the

medium 
an be determined by measuring the phase velo
ity at whi
h an eddy 
urrent

pattern is adve
ted. This is the main 
on
ept underpinning how transient eddy-
urrent

�owmetering operates.

The se
ond important result whi
h 
an be taken from equations (68&69) 
on
erns

the de
ay rate given by the real part of the 
omplex asso
iated de
ay rate ℜ[γ]. Figure
19 shows ℜ[γ] versus wavenumber kn for the �rst three dominant eigenmodes. It 
an

bee seen that the lowest de
ay rates o

ur in the limit kn → 0 whi
h is asso
iated with

long wave patterns. In this limit, the 
hara
teristi
 equation, given by equation (68), 
an

be redu
ed to J0(κ) = 0 whi
h yields ℜ[γ1] ≈ 5.78. This means that the eddy 
urrent

amplitude drops by almost three orders of magnitude over the 
hara
teristi
 magneti


di�usion time tm = µ0σR
2
. The de
ay times of subsequent eigenmodes are signi�
antly

shorter, as shown by the signi�
antly higher rates in �gure 19. The �gure is limted to
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the domnant three modes as higher modes will have higher de
ay rates and will be
ome

insigni�
ant due to their short de
ay times. This means that the period of time during

whi
h a tra
king a transient eddy 
urrent pattern is feasible is limited by a few magneti


di�usion time s
ales tm. This result also implies that the respe
tive dimensionless distan
e

over whi
h the pattern is adve
ted is limited by a few Rm.

The measurement of the phase velo
ity of the �eld indu
ed by the eddy 
urrents is

not as simple as measurement would be for a simpler wave with 
onstant amplitude.

The phase velo
ity measures the rate at whi
h the phase propagates spatially. For a

simple wave with 
onstant amplitude, this is equivalent to the motion of a point of �xed

amplitude. In the 
ase of the de
aying �eld, the only points with �xed amplitude are the

nodes, or points at whi
h the os
illating amplitude passes through zero.

Along with the nodes of the os
illating amplitude some other features are present,

whi
h behave similarly to that of a point of �xed amplitude, whos motion is equivilent

to the phase velo
ity. Firstly the spatial derivative 
an be used as lo
al spatial extrema

whi
h will be also �xed in the de
aying wave. And se
ondly instead ofusing the �eld

amplitude to �nd a �xed point a temporal extrema of the �eld 
an be tra
ed, where zero


rossings in the time derivative will also give �xed points in the de
aying wave. This

time derivative of the magneti
 �ux is asso
iated with the emf indu
ed by the de
aying

eddy 
urrents, E = −∂tΦ, whi
h gives rise to voltage in the pi
k-up 
oils. Finally the

extrema of the emf may also be used to measure the phase velo
ity of the eddy 
urrents.

Both spatial extrema, ∂zE = 0, and temporal extrema, ∂tE = 0, of the emf will have zero


rossing points whi
h 
ould be used for measurement.

5.3 Mono-Harmoni
 Eddy Current Distribution

In this se
tion, we 
onsider a pulsed external magneti
 �eld whi
h is swit
hed o� and on

periodi
ally at the dimensionless time intervals τ = 3 and T − τ = 1. The �eld takes

the form of a standing wave whi
h represents a single harmoni
 for the �eld generated

by simple 
oils in the next se
tion. The eigenvalue analysis in the previous se
tion

suggests that these time intervals are long enough for the eddy 
urrents to develop. The

development of the eddy 
urrents is 
on�rmed by the time variation of the magneti
 �ux,

Φ = rA, whi
h is 
aused by the presen
e of the eddy 
urrents. This temporal variation

of the magneti
 �ux is shown in �gure 20(a) with wavenumber kn = 1 at z = 0.5 with

measurements taken at three di�erent radii with the 
ondu
ting media at rest (Rm = 0).

The 
orresponding variation of the emf magnitude is plotted in �gure 20(b) for both the

layer at rest and in motion. When the 
ylinder is at rest (Rm = 0), the emf 
an be seen to

de
rease exponentially with time as predi
ted by the previous eigenvalue analysis. When

the 
ylinder moves with velo
ity Rm = 1, the de
rease of emf is a

ompanied by a zero


rossing, whi
h o

urs at the time instant t ≈ 0.5, for the measurement lo
ation z = 0.5.
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Figure 20: Variation of the magneti
 �ux Φ = rA over one time period at z = 0.5 and

r = 0.5, 1, 2 for the Fourier harmoni
 with the wave number kn = 1 for Rm = 0 (dashed)
and Rm = 1 (solid) (a); variation of the emf magnitude |∂tΦ| with time at the same

points for Rm = 0 (dashed) and Rm = 1 (solid) (b).
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This zero 
rossing point is seen as a 
usp on the semi-logarithmi
 plot of |E| in �gure

20(b). Shortly after passing through zero, emf is seen to attain a lo
al extremum, whi
h

is de�ned mathemati
ally by a zero 
rossing of ∂tE .
Figure 21 shows the evolution of the magneti
 �eld pattern and the asso
iated emf for

wave number kn = 1 after the external magneti
 �eld is swit
hed o� with the 
ondu
ting


ylinder moving at a velo
ity given by Rm = 1. In the middle row the in
reased density

of isolines show the lo
ations of the zero 
rossings of the emf these zero 
rossings follow


losely to the motion of the medium as seen by there lo
ations at z = tRm. This movement

of the zero 
rossing with the velo
ity of mediummeans that the velo
ity 
an be determined

dire
tly from measurements as Rm = z/t, where z is the axial distan
e of the observation

point from the wave node and t is the time at whi
h the emf passes through zero at that

point after swit
hing the �eld o�. The magneti
 �ux lines, whi
h are shown at the top

row of �gure 21, 
an be seen to run slightly in front of the �ux lines of the emf. This is due

to the e�e
t of adve
tion whi
h tilts the magneti
 �ux lines in the dire
tion of motion.

This 
an be seen in the upper left plot, where at t = 0, the �ux lines are pulled along in

the dire
tion of the �ow. In 
ontrast to this, the time derivative, whi
h is mathemati
ally

equivalent to multiplying the dominating eigenmode, in equation (66), by −γ this has a

phase shift of arg(−γ) in the asso
iated �eld pattern. This will 
ause the pattern of ∂tE ,
whi
h is shown in the bottom row of �gure 21, to lag slightly behind the pattern of E .
Note that the zero 
rossings of ∂tE , similar to those of E are marked by the in
reased

density of the isolines. The spatial extrema of E are de�ned by the zero 
rossings of ∂zE .
With this simpli�ed mono-harmoni
 applied �eld the distribution is given by ∂zE = iknE
whi
h is shifted by a quarter wave length relative to that of E . Therefore the spatial

extrema of the emf in a mono-harmoni
 wave will move in exa
tly the same way as the

zero 
rossings.

Figure 22(a) shows that the emf for the distributions for both wave numbers kn =

1, 0.5 
an be seen to de
ay in a good agreement with the analyti
ally determined damping

rates, shown as dashed lines in the �gure.

Zero 
rossings outside the 
ylinder are shown in Fig. 21 to o

ur syn
hronously along

a radius. For this reason here we 
hoose to fo
us on the emf distribution along the

surfa
e r = 1. Figure 22(b) shows the zero 
rossing positions of both E , ∂tE , ∂zE and ∂zΦ

against time for wave number kn = 1 at three di�erent velo
ities Rm = 0.1, 0.5, 1. The

zero 
rossing points of E and ∂zE move in exa
tly the same way with a velo
ity of Rm

starting from the node at z = 0. The temporal extrema points, whi
h 
orrespond to zero


rossings of ∂tE , also move at the same velo
ity as the medium but with a time delay

whi
h depends both on the wave number kn and the velo
ity Rm. This means that at

least two measurement points are required to eliminate this o�set and, thus, to determine

the velo
ity of the medium using temporal extrema of emf.
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Figure 21: The magneti
 �ux lines (Φ = 
onst) (left), the isolines of emf E = −∂tΦ
(middle), and of ∂tE = −∂2

ttΦ (right) for Rm = 1 at the time instants t = 0, 0.4, 0.8, 1.2
after a mono-harmoni
 external magneti
 �eld with the wave number kn = 1 has been

swit
hed o�. Subsequent isolevels di�er by a fa
tor of two and 
luster around zero value.
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Figure 22: (b) Relative magnitude of E against time for mono-harmoni
 eddy 
urrent

distributions with kn = 0.5, 1 .(
) Axial zero 
rossing positions of E , ∂tE , ∂zE and ∂zΦ
for the eddy 
urrent distributions generated with Rm = 0.1, 0.5, 1 for kn = 1.
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Figure 23: The magneti
 �ux lines (Φ = 
onst) (left) and the isolines of ∂zE = −∂2
tzΦ

(right) at the time instants t = 0, 0.4, 0.8, 1.2 after the external magneti
 �eld generated

by a pair of anti-symmetri
 
urrent loops with radius rc = 2 lo
ated at zc = ±1 has been

swit
hed o�.

5.4 Eddy Currents Indu
ed By Cir
ular Loops

The eddy 
urrents generated by more realisti
 
oils are investigated in this se
tion. These


oils are represented by simple 
ir
ular 
urrent loops. The �rst 
oil layout whi
h will be


onsidered is that of a pair of loops lo
ated at zc = ±1 and rc = 2 
arrying equal

but opposite 
urrents. This 
on�guration is designed to give similarities to a node in

the mono-harmoni
 distribution dis
ussed previously, the symmetry plane at r = 0 is

analogous to su
h a node.

As a result, the nature of the adve
tion of the �eld pattern by the moving medium,

whi
h is shown for Rm = 1 in �gure 23(left), is noti
eably similar to the �eld pattern

for the mono-harmoni
 eddy 
urrent distribution in �gure 21(left). In a similar manner,

the zero 
rossing points of both E and ∂tE move in the same way as they did in the

mono-harmoni
 wave. There is one substantial di�eren
e between the mono-harmoni


and anti-symmetri
 eddy-
urrent distributions whi
h 
on
erns the motion of spatial ex-

trema of emf. In this model, there are two su
h extrema whi
h 
an be seen in �gure

23(right). These extrema are lo
ated initially at the 
urrent loops where the in
reased
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density of isolines show the lo
ation of the zero 
rossings of ∂zE . It is obvious that these
extrema do not move at the same velo
ity. The right (downstream) extremum moves

noti
eably faster than the medium whereas the left (upstream) one moves not only mu
h

slower but also in the opposite dire
tion. In the example here the movement is slight but

it is per
eivable that the upstream zero 
rossings do travel upstream, against the �ow

over time. The gap in between the zero 
rossings appears to grow fairly uniformly how-

ever physi
al measurements of this would be impra
ti
al. The main di�eren
e between

the spatial extrema in the previous mono-harmoni
 and the present two-loop eddy 
ur-

rent distributions is the absen
e of symmetry in the latter. It will be shown later that

symmetry is 
ru
ial to the transient eddy 
urrent �owmetering.

A single loop 
an generate an eddy 
urrent distribution with a spatially symmetri


emf extremum. However it will not have zero 
rossings in the emf amplitude. Figure 24

shows the evolution of the �eld generated by a 
urrent 
arrying 
oil at zc = 0 with radius

rc = 2 with the 
ondu
ting 
ylinder in motion with a velo
ity Rm = 1. For a single 
oil,

the zero 
rossing are absent from the temporal evolution of the emf amplitude however

the spatial extrema of both the emf and magneti
 �ux are present. These extrema are

dete
ted as the zero 
rossings of the spatial derivative of either the magneti
 �ux ∂zΦ = 0

or the emf ∂zE = 0. These zero 
rossings move with the medium, as with the previous

model, however the nature of the relationship between the two movements are di�erent.

The axial extremum of emf, shown in the bottom row of �gure 24, is seen to move

without any time lag, as the zero 
rossings of the emf did in the anti-symmetri
 set-up.

The spatial extremum of the magneti
 �ux experien
es a time lag similar to that of the

temporal emf maximum in the anti-symmetri
 set-up. Note that the axial extremum of

the magneti
 �ux 
an be dete
ted as a zero 
rossing of the radial �ux 
omponent Br

using, for example, a Hall sensor. At least two sensor 
oils are required to dete
t an

axial maximum of emf, whereas one 
oil 
an be used to dete
t zero 
rossing or temporal

extremum of emf in the anti-symmetri
 set-up however this requires two ex
itation 
oils.

Finally, we examine the e�e
t of a possible asymmetry in the initial eddy 
urrent

distribution generated by a two-
oil set-up with opposite but slightly di�erent 
urrents.

To 
hara
terize this kind of asymmetry we use the parameter

S = (j+ − j−)/(j+ + j−),

where j+ and j− are the 
urrents in the 
oils pla
ed with negative and positive z values

respe
tively. The temporal evolution of eddy 
urrent distribution with an initial asym-

metry of S = 5% generated by a pair of 
oils of radius rc = 2 pla
ed zc = ±1 is shown

in �gure 25 with the medium at rest (Rm = 0). With a value of S > 0 the 
urrent in

the left hand 
oil is greater than that of the right hand 
oil, whi
h leads to a initial emf

pattern whi
h is asymmetri
al and tilts to the right. In the anti-symmetri
 distribution
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Figure 24: The magneti
 �ux lines (Φ = 
onst) (top), the isolines of ∂zΦ (middle) and

∂zE = −∂2
ztΦ (bottom) for Rm = 1 at the time instants t = 0, 0.4, 0.8, 1.2 after the

external magneti
 �eld generated by a single 
urrent loop lo
ated rc = 2 and zc = 0 has

been swit
hed o�. Levels of subsequent isolines di�er by a fa
tor of two and the in
reased

density of isolines indi
ates zero value.
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Figure 25: The emf isolines for Rm = 0 at the time instants t = 0, 0.4, 0.8, 1.2 after the

external magneti
 �eld generated by a pair of opposite 
urrent loops lo
ated at rc = 2
and zc = ±1 with the 
urrent asymmetry of S = 5% has been swit
hed o�.
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with S = 0 the Fourier mode for ea
h harmoni
 of the emf independently 
rosses zero

at the symmetry plane, zc = 0. In the asymmetri
 
ase, S 6= 0, this symmetry is absent

and the zero 
rossing is a result of superposition of di�erent Fourier modes. The de
ay

rate whi
h depends on the wavenumber kn varies between the di�erent harmoni
s. The

variation of de
ay rate between Fourier modes leads to the zero 
rossing line in the asym-

metri
 distribution drifting. For S > 0 this drift is to the right as shown in �gure 25.

Conversely, for S < 0 the drift would be to the left.

As seen in �gure 26(a), after a relatively short initial transien
e, the drift velo
ity

slightly in
reases and appears to tend to a 
onstant value. This value rises with the

asymmetry S and is nearly the same for both zero 
rossings and temporal extrema of

the emf. The drift velo
ity averaged over the time interval from t = 0 to t = 2.5 is seen

in �gure 26(a) to in
rease nearly linearly with S. At the same time, the drift velo
ity

redu
es with the in
rease of axial separation between the 
oils whereas their radius has

a relatively weak e�e
t as shown in �gure 26(b).

5.5 Summary

A 
ylindri
al model was 
onsidered as a basis for the investigation into a pulsed �eld,

or transient, eddy 
urrent �owmeter. This model initially 
onsidered a mono-harmoni


�eld and was extended to the 
ase of �elds generated by simple 
urrent 
arrying loops.

A numeri
al analysis was 
arried out 
onsidering several measurement s
hemes based on

di�erent 
hara
teristi
s of the magneti
 �eld indu
ed by the eddy 
urrent. The approa
hes


onsidered either tra
ed temporal or spatial maxima of the magneti
 �ux or the emf of

the indu
ed �eld. Temporal extrema 
an be measured with a single measurement loop

whilst spatial extrema require a pair of loops to dete
t their passage.

We 
onsidered eddy 
urrent distributions generated by either two anti-symmetri



ir
ular 
urrent loops or a single loop. In a single-loop set-up, whi
h generates a spatially

symmetri
 eddy 
urrent distribution, the spatial extremum of emf was found to travel

syn
hronously with the medium. In the anti-symmetri
 set-up, the zero 
rossing point

of emf as well as the subsequent temporal extremum was found to travel syn
hronously

with the medium. But this was not the 
ase for the two spatial extrema whi
h appear at

both 
urrent loops in this set-up. These two extrema were found to move at substantially

di�erent velo
ities from that of the medium. This result highlights the 
ru
ial importan
e

of symmetry to the measurement s
heme.

The importan
e of symmetry was investigated further and it was shown that a di�er-

en
e of a few per
entage in the 
urrents between the ex
iting 
oils 
an lead to a drift of

Rm ∼ 0.1 with the typi
al parameters using in this 
hapter. This implies that transient

eddy 
urrent �owmetering is heavily dependent on symmetry, and with this reasonable

level of asymmetry 
an only be reliable for Rm > 1.
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Figure 26: (a) Axial position of zero 
rossing and its drift velo
ity along the surfa
e of


ylinder at rest (Rm = 0) against the time after the external magneti
 �eld generated by

a pair of opposite 
urrent loops lo
ated at rc = 2 and zc = ±1 with the 
urrent asymmetry

S has been swit
hed o� . The upper and lower 
urves 
orrespond to the zero 
rossing of

emf (E = −∂tΦ) and its temporal derivative (∂tE), respe
tively. (b) Zero drift velo
ity

depending on the 
urrent asymmetry s in two 
ir
ular loops with radii rc = 1.5, 2, 2.5
pla
ed at the axial positions ±zc = 0.5, 0.75, 1, 1.5, 2.
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6 3D model

In this 
hapter a 3D model is presented. This 3D model is designed to in
lude more varied

designs of 
oils for both generating the magneti
 �eld and for taking measurements.

Firstly the derivation for the model is given along with the boundary 
onditions

required to solve the system. In this se
tion the pro
ess of generating an applied �eld

based on the de�nition of the generating 
oils is also presented. Following this some proof

of 
on
ept results for the model are in
luded.

6.1 Mathemati
al Basis

Consider a solid in�nitely long 
ylinder of radius R and ele
tri
al 
ondu
tivity σ translat-

ing at a 
onstant velo
ity ~v = ~ezv parallel to its axis in an external magneti
 �eld

~Be(~r, t).

The external �eld is in general time-dependant and spatially three dimensional. The as-

so
iated ele
tri
 �eld is governed by the Maxwell-Faraday equation

~E = −~∇ϕ − ∂t ~A,

where ϕ is the ele
tri
 potential and

~A is the ve
tor potential, whi
h de�nes the magneti


�eld as

~B = ~∇× ~A. The eddy 
urrent density indu
ed in a moving medium is given by

Ohm's law

~j = σ( ~E + ~v × ~B) = σ(−~∇ϕ− ∂t ~A+ ~v × ~∇× ~A). (70)

Applying Ampere's law to equation (70) with the gauge (72) yields the following adve
tion-

di�usion equation for

~A

µ0σ(∂t ~A+ (~v · ~∇) ~A) = ~∇2 ~A, (71)

where µ0 is the va
uum permeability.

In the 
ase of a more 
omplex �ow pro�le where the velo
ity is non unifom this step

would di�er signi�
antly. One 
ause of this is the term ( ~A · ∇)~v, whi
h appears in the

identity for ~v × ~∇× ~A is nonzero for nonuniform velo
ity. If this 
ase was 
onsidered an

analyti
 solution is unlikely be suitable and the �ow inside the 
ondu
tive layer would

need to be solved numeri
ally.

An equation analogous to equation (71) results also for

~B when 
url is applied to

equation (71). This will hold for all the equations derived in the following unless stated

otherwise. For the derivation of equation (71) we have introdu
ed the gauge

~∇ · ~A+ µ0σ(Φ− ~v · ~A) = 0, (72)

whi
h de�nes the s
alar potential in the 
ondu
tor. In free spa
e (σ = 0) the gauge

redu
es to Coulomb gauge

~∇ · ~A = 0.

In the following, external magneti
 �eld is assumed to vary in time harmoni
ally

as

~Ae(~r, t) =
~̂
Ae(~r) cos(ωt), and the solution is sought in the 
omplex form

~A(~r, t) =
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ℜ
[

~A(~r)eiωt
]

. Let us �rst 
onsider a spatial amplitude distribution of the external mag-

neti
 �eld in the form of a single Fourier mode

~A(~r) =
~̂
A(r)ei(kz+mφ), (73)

where (r, φ, z) are the 
ylindri
al 
oordinates asso
iated with geometry of the problem,

and k and m are the axial and azimuthal wave numbers, respe
tively. The asso
iated

radial distribution of the magneti
 �eld amplitude is

~̂
B(r) = ~eri(mr−1Âz − kÂφ) + ~eφ(ikÂr − Â′

z) + ~ez

(

r−1(rÂφ)
′ − imr−1Âr

)

, (74)

where the prime denotes a derivative with respe
t r.

Using R, tm = µ0σR
2
and vm = (µ0σR)−1

as the length, time and velo
ity s
ales,

equation (71) 
an be written in the following dimensionless form

[

Dm − κ2
] ~̂
A− r−2

[

~erÂr − ~eφÂφ + i2m(~erÂφ − ~eφÂr)
]

= 0, (75)

where Dm ≡ d2

dr2
+ 1

r
d
dr
−
(

m
r

)2
and κ2 = k2+ i(ω̄+kRm); ω̄ = µ0σωR

2
and Rm = µ0σvR

are respe
tively the dimensionless frequen
y and velo
ity. The latter is also known as the

magneti
 Reynolds number. For the free-spa
e region outside the 
ylinder, where σ = 0,

we have equation (75) with κ2 = k2.

6.2 Boundary Conditions

Boundary 
onditions at the interfa
e S between 
ondu
ting and insulating regions follow

from the 
ontinuity of the magneti
 �eld and its ve
tor potential

[

~̂
B
]

S
=

[

~̂
A
]

S
= 0, (76)

where []S denotes the jump of the en
losed quantity a
ross S. In addition, 
ontinuity of

the magneti
 �eld (74) requires

[

Â′
φ

]

S
=

[

Â′
z

]

S
= 0. (77)

Thus the ve
tor potential has two more boundary 
onditions than the magneti
 �eld

though both are governed by the same equation (74). This due to the di�erent additional


onstraints imposed on ea
h quantity whi
h will be dis
ussed later.
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6.2.1 Boundary Conditions for Magneti
 Ve
tor Potential

The solution of equation (75) for non-axisymmetri
 modes (m 6= 0) is 
ompli
ated by the


oupling of radial and azimuthal 
omponents. This 
oupling is removed by the substitu-

tion

Â± =
1√
2
(Âr ± iÂφ). (78)

The radial and azimuthal 
omponents 
an be re
overed from the de
oupling variables Â±

by

Âr =
1√
2
(Â− + Â+), (79)

Âφ =
i√
2
(Â− − Â+). (80)

The substitution redu
es equation (75) to

[

Dm±1 − κ2
]

Â± = 0, (81)

[

Dm − κ2
]

Â = 0, (82)

where Â ≡ Âz is used to simplify the notation. Then the general solution of equations

(81,82) inside the 
ylinder (r < 1) 
an be written as

Âi
±(r) = C i

±Im±1(κr), (83)

Âi(r) = C iIm(κr), (84)

whereas in the free spa
e between the 
ylinder and the 
oil generating the �eld (1 ≤ r <

rc) we have

Âo
±(r) = Co

±Km±1(kr) + Ce
±Im±1(kr), (85)

Âo(r) = CoKm(kr) + CeIm(kr), (86)

where Iν(x) and Kν(x) are the modi�ed Bessel fun
tions of the �rst and se
ond kind with

order ν [1℄, Ce
± and Ce

are supposed to be given 
onstants de�ning the external magneti
,

whilst C i,o
± and C i,o

are unknown 
onstants. A similar general solution 
an be written

also for the magneti
 �eld. Note that the solution obtained above is not appli
able to

k = 0 whi
h needs to be 
onsidered separately.

It is also important to note that there are six unknown 
onstants but only �ve bound-

ary 
onditions (76, 77) for the ve
tor potential. To determine the unknown 
onstants we

need to take into a

ount that the ve
tor potential in the free spa
e has to satisfy not
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only equation (81) but also Coulomb gauge

~∇ · ~A = 0, whi
h 
an be written as

(

r(Âo
+ + Âo

−)
)′

+ im(Âo
+ − Âo

−) + i2krÂo = 0. (87)

First of all, this 
onstraint has to be satis�ed by the external magneti
 �eld itself, whi
h

results in

Ce
+ + Ce

− = −i2Ce. (88)

Assuming this to be the 
ase, we obtain from equation (87)

Co
+ + Co

− = i2Co, (89)

whi
h is the required additional 
onstraint on the unknown 
oe�
ients.

The unknown 
oe�
ients C i,o, whi
h de�ne the z-
omponent of ve
tor potential, 
an

be determined independently from the rest. For this 
omponent, boundary 
onditions

(76,77) take the form

C iIm(κ)− CoKm(k) = CeIm(k), (90)

C iκI ′m(κ)− CokK ′
m(k) = CekI ′m(k), (91)

and yield

C i = C̃e(kI ′m(k)Km(k)− kK ′
m(k)Im(k)), (92)

Co = −C̃e(κI ′(κ)Im(k)− kI ′m(k)Im(κ)), (93)

where C̃e = Ce/ (κI ′m(κ)Km(k)− kK ′
m(k)Im(κ)) ; I

′
m(x) = (Im−1(x) + Im+1(x)) /2 and

K ′
m(x) = − (Km−1(x) +Km+1(x)) /2 [1℄. For the remaining four unknown 
onstants C i,o

± ,

we have a system of four linear equations. The �rst equation is the gauge 
ondition (89).

Two more equations, one for the plus and another for the minus sign in the index, follow

from boundary 
ondition (76)

C i
±Im±1(κ)− Co

±Km±1(k) = Ce
±Im±1(k). (94)

The boundary 
ondition (77) for the azimuthal 
omponents yields the fourth equation

κ
(

C i
+I

′
m+1(κ)− C i

−I
′
m−1(κ)

)

−k
(

Co
+K

′(k) + Co
−K

′
m−1(k)

)

= k
(

Ce
+I

′(k)− Ce
−I

′(k)
)

, (95)

whi
h after some algebra 
an be written as

(C i
+ − C i

−)κIm(κ) + (Co
+ − Co

−)kKm(k) = (Ce
+ − Ce

−)kIm(k). (96)
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The solution of these four linear 
omplex equations is straightforward but too lengthy to

be written expli
itly. Alternatively, equations (77, 94, 96) 
an easily be solved numeri
ally

using, for example, the 
omplex LU fa
torisation routines from the LAPACK software

pa
kage or their MATLAB implementation.

For the solution to be useful, we need to 
onsider also the spe
ial 
ase of k = 0,

whi
h appears in the Fourier series representation of the general �eld distribution derived

later. For k = 0, the Bessel fun
tions, whi
h are parti
ular solutions of equations (81,82),

redu
e as follows Im(kr) → r|m|, Km(kr) → r−|m|
for m 6= 0 and K0(kr) → ln r, where

the last 
ase of m = 0 is pra
ti
ally irrelevant as dis
ussed later. Firstly, as a result of

these substitutions Coulomb gauge (87) redu
es to

Ce
+ = Co

− = 0, m > 0; (97)

Ce
− = Co

+ = 0, m < 0; (98)

Ce
+ + Ce

− = 0, m = 0. (99)

Note that equation (99) does not 
onstrain 
oe�
ients Co
±, whi
h means that the indu
ed

ve
tor potential outside the 
ylinder for mode k = m = 0 satis�es Coulomb gauge

automati
ally. These 
oe�
ients des
ribe radial and azimuthal 
omponents of ve
tor

potential whi
h vary as ∼ r−1. It means that the respe
tive ve
tor potential is purely

irrotational and, thus, not asso
iated with any physi
al magneti
 �eld. On the other

hand, a

ording to equations (79) and (99), external ve
tor potential for this mode 
an

have only the azimuthal 
omponent. It means that we may assume the indu
ed ve
tor

potential to be purely azimuthal as well, whi
h 
orresponds to

C i,o
+ + C i,o

− = 0.

This 
ondition 
an be interpreted also as a gauge whi
h removes the irrotational radial


omponent of the indu
ed ve
tor potential for mode k = m = 0. By the same argument

one 
an set Ce = 0 for this mode, whi
h removes irrotational axial 
omponent of the

external ve
tor potential, and owing to equations (92,93) the respe
tive indu
ed �eld as

well. This 
ondition as well as equations (97,98) 
an
el the terms of the indu
ed ve
tor

potential varying as ∼ ln r. It means that we 
an ignore this spe
ial 
ase and use the

following substitutions Im(k) → 1, Km(k) → 1, kI ′m(k) → |m| and kK ′
m(k) → −|m| in

equations (92, 93,94,95) when k = 0. The same holds also for κ = 0 whi
h o

urs when

k = ω̄ = 0.

6.2.2 Boundary Conditions for The Magneti
 Field

~B

Now let us turn to the solution for the magneti
 �eld

~̂
B whi
h 
an be written in the

same form as equations (83�86) for

~̂
A. In this 
ase, we use D instead of C to denote the
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six unknown 
oe�
ients. We have the same number of unknown 
oe�
ients as for the

ve
tor potential, but only three boundary 
onditions (76) whi
h require the 
ontinuity of

the magneti
 �eld a
ross the interfa
e and lead to the equations analogue to equations

(90,94) for the ve
tor potential. In 
ontrast to the ve
tor potential, the magneti
 �eld

has to be solenoidal not only outside the 
ylinder but in also inside it, whi
h leads to two

more equations

Do
+ +Do

− = i2Do, (100)

κ(Di
+ +Di

−) = −i2kDi, (101)

and a 
onstraint on the external magneti
 �eld analogous to equation (88). The the last

required equation follows from the irrotationality of the magneti
 �eld in the free spa
e

Do
+ = Do

−. (102)

The same 
onstraint applies also to the external magneti
 �eld.

Instead of solving for the magneti
 �eld dire
tly using the equations obtained above,

one 
an solve for the ve
tor potential and then use this solution to �nd �nd the magneti


�eld, if required. Therefore, we need to express the 
oe�
ients de�ning magneti
 �eld in

the terms of those de�ning the ve
tor potential. This 
an be done using and expression

(74), whi
h yields

B̂± = i(mr−1Â∓ Â′ ± ikÂ±), (103)

B̂ = −i((Â+ − Â−)
′ + r−1((m+ 1)Â+ + (m− 1)Â−))/2 (104)

Using the basi
 properties of of Bessel fun
tions, after some algebra we obtain

Di
± = ∓(kC i

± + iκC i), (105)

Do
± = ∓k(Co

± − iCo), (106)

Di = −iκ(C i
+ − C i

−)/2, (107)

Do = ik(Co
+ − Co

−)/2, (108)

whi
h hold for k 6= 0 and and κ 6= 0. It 
an be easily veri�ed that the relations

above indeed satisfy the solenoidality and irrotationality 
onstraints de�ned by equa-

tions (100�101). For k = 0, using the same approa
h as before, we �nd from equations
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(103,104)

Do = −i(m− 1)Co
−, D

o
+ = i2mCo, Do

− = 0, m ≥ 0;

Do = −i(m + 1)Co
+, D

o
− = i2mCo, Do

+ = 0,m < 0;

Do = Do
± = 0,m = 0.

For κ 6= 0, the 
oe�
ients Di
±and Di

remain de�ned by equations (105,107), but for

κ = k = 0 redu
e to

Di = −i(m + 1)C i
+, D

i
− = i2mC i, Di

+ = 0,m ≥ 0;

Di = −i(m − 1)C i
−, D

i
+ = i2mC i, Di

+ = 0, m < 0;

Di = −i(C i
+ − C i

−), D
i
± = 0, m = 0.

6.2.3 A 
omment on the 
urrent at the boundary

We now 
onsider the 
ondition for the normal 
omponent of 
urrent jn at the boundary.

As the 
urrent 
annot travel in free spa
e, where σ = 0, the normal 
omponent of


urrent must vanish at the boundary: jn = 0. This is an impli
it boundary 
ondition

whi
h is satis�ed automati
ally owing to the 
onditions obeyed by the magneti
 ve
tor

potential. A

ording to Ampere's law µ0
~j = ~∇× ~B, the absen
e of ele
tri
 
urrent outside


ondu
ting medium,

~∇× ~∇× ~A = ~∇~∇ · ~A− ~∇2 ~A = 0, is ensured by the Coulomb gauge

and the Lapla
e's equation, whi
h are both satis�ed by

~A in the free spa
e. Consequently,

the vanishing of jn at the boundary depends on the 
ontinuity of ~n · ~∇ × ~B a
ross the

boundary. This is ensured by the 
ontinuity of tangential 
omponents of

~B a
ross the

boundary, whi
h, in turn, follows from the 
ontinuty of

~A and the normal derivatives of

its tangental 
omponents. Note that only ∂nAn 
an be dis
ontinious a

ros the boundary

but it a�e
ts only the 
ontinuity of Br but not that of Bφ or Bz.

6.3 The Applied Field

Now let us 
onsider a general external 3D magneti
 �eld and represent its ve
tor potential

by a double Fourier series in axial and azimuthal dire
tions

~Ae(~r) =

(M,N)
∑

(m,n)=−(M,N)

~̂
Ae

n,m(r)e
i(knz+mφ),

where kn = nk and k is the fundamental wave number. A

ording to solution (85, 86),

the amplitude distribution of ea
h Fourier mode in a 
ylindri
al region en
losing the
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symmetry axis but not the 
oil generating the �eld 
an be written as

~̂
Ae

n,m(r) = ~e+C
e
+;m,nIm+1(knr) + ~e−C

e
−;m,nIm−1(knr) + ~ezC

e
m,nIm(knr),

where ~e± = 1√
2
(~er ± i~eφ) and Ce

±;m,n and Ce
m,n are the 
oe�
ients whi
h need to be

determined for a given

~Ae(~r). This is done numeri
ally by �rst 
omputing

~Ae(~r) at dis
rete

points ~rm,n formed by the nodes of a uniform re
tangular grid (φm; zn) = (mπ/M,−M ≤
m < M ;nL/N,−N ≤ n < N) 
overing the surfa
e of 
ylinder r = 1 in the −L ≤ z < L,

where L is an axial 
ut-o� length.

6.3.1 Field generated by an arbitrary 
oil

To generate the free spa
e �eld produ
ed by an arbitrary 
oil on the grid above the 
oil

is represented by a series of straight wire se
tions. The wire se
tions must form a 
losed

loop. The �eld generated by the 
oil 
an be approximated by the sum of �elds generated

by these dis
rete wire se
tions. The �eld generated by a �nite 
urrent is given by

~A(~r) =
µ0I0
4π

ˆ

L

d~r′

|~r − ~r′|

Spe
ifying a set of wire elements W with straight individual elements w with a �nite

lengths Lw. The 
urrent in ea
h wire element is given by

~j = ~ewI0 where ~ew is a unit

ve
tor in the dire
tion of the wire element and I0 is the 
urrent in the loop. The equation

for the �eld generated by a single �nite wire element is given by

Aw(r, z) =
µ0I0
4π

ˆ Lw/2

−Lw/2

1

|r~er + z ~ez − ~ezz′|
dz′.

with the solution, in the frame of referen
e of the wire element, given as:

Aw(rw, zw) = ~ew
µ0I0
2πrw

ln

√

r2w + (L
2
− zw)2 + (L

2
− zw)

√

r2w + (L
2
+ zw)2 − (L

2
+ zw)

where rw and zw are radial and axial positions from the wire element. After transforming

to a single 
artesian frame of referen
e by applying the following transforms of rw → r

and zw → z to the above equation

z = ~ew · ~D

r =

√

~D · ~D − z2
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where

~D = ~r − ~rw. An approximation of the �eld generated by an arbitrary 
oil 
an be

given as the sum of all its individual elements

~Ae(~r) =
W
∑

w

~Aw(r, z).

This 
an be simply extended to multiple 
oils by in
orporating all of their elements into

W and their 
urrents into I0.

6.4 Results

The 3D model des
ribed in se
tion has been developed as a tool to support further

resear
h, as su
h in this work its usage is presented as a proof of 
on
ept and will not


ontain novel results.

6.4.1 Comparison To Axisymmetri
 Model

For validation we will now 
ompare the results of this 3D model with axisymmetri


analyti
 model presented in 
hapter 5. For this 
omparison a single axisymmetri
 
oil of

radius rc = 2 pla
ed at zc = 0 will be used. In the 3D model this 
oil is represented by 90

wire segments. In the 
omparison both models use 1024 points in z, 128 points in φ and

100 points in r. Figure 27 shows that the φ 
omponent of the ve
tor potential for both

models are equal for various magneti
 Reynolds numbers and dimensionless frequen
ies.

Note that the imaginary 
omponent gives the �eld out of phase with the applied �eld

whi
h gives the indu
ed �eld. The imaginary 
omponents are omitted for dimensionless

frequen
y ω̄ = 0, 
orresponding to a 
ondu
tivity of σ = 0, be
ause they are identi
ally

zero in the absen
e of a 
ondu
ting medium. The results are presented in a 
artesian


oordinate system (x, y, z) with the positive x-axis oriented along φ = 0. The �elds are

transformed to 
artesian F (r, φ, z) → F (x, y, z) by the following transformations:

F (x, y, z) =







~ex

~ey

~ez






·







~erF (r, φ, z) cos(φ)− ~eφF (r, φ, z) sin(φ)

~erF (r, φ, z) sin(φ) + ~ephiF (r, φ, z) cos(φ)

~ezF (r, φ, z)







Figure 28 shows the magneti
 �ux lines for the applied and indu
ed �eld for the

axisymmetri
 
oil above. The �gures were generated using ParaView software. Note the

dual symmetry in the theta plane and the z = 0 plane.

The isolines of the y-
omponent ve
tor potential for the axisymmetri
 
oil are shown

in the y = 0 plane in �gure 29. The ve
tor potential is antisymmetri
 about x = 0 whi
h


orresponds to symmetry between φ = 0 and φ = π as is required by the axisymmetri



oil. With Rm = 0 the ve
tor potential is symmetri
 a
ross z = 0 whi
h is expe
ted
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Figure 27: Axial distribution of the azimuthal 
omponent of ve
tor potential indu
ed at

the 
ylinder surfa
e (r = 1) by a 
o-axial 
ir
ular 
urrent loop of radius rc = 2 pla
ed at

zc = 0 for various dimensionless frequen
ies ω̄ and magneti
 Reynolds numbers Rm. The
solid lines were 
omputed using an axisymmetri
 analyti
al model and dots 3D model.

for this 
oil. This symmetry is broken when the 
ylinder is in motion Rm 6= 0. The


ontinuity of the ve
tor potential Ây and its derivatives ∂xÂy and ∂zÂy 
an be seen at

the pipe wall (x = ±1), whi
h is required by the boundary 
onditions (76,77).

The isolines of the x-
omponent of the magneti
 �eld (B̂x) in the y = 0 plane are

shown in �gure 30. Note that the single azimuthal 
omponent present in

~A leads to two


omponents, r and z, in ~B as is expe
ted from

~B = ~∇ × ~A. The 
ontinuity of B̂x and

its derivative ∂xB̂x at the pipe wall 
an also be seen in �gure 30. The x-
omponent is

shown to be antisymmetri
 about the x-axis, whi
h again 
orresponds to symmetry in φ.

Again with Rm = 0 the �eld is symmetri
 a
ross z = 0, and this symmetry is broken by

the motion of the 
ylinder.

Figure 31 shows the isolines of the z-
omponent the magneti
 �eld B̂z in the y = 0

plane. The symmetry a
ross z = 0 is also present in B̂z for Rm = 0. The 
ontinuity

B̂z at the pipe walls is required for the value but not for the derivatives. With Rm = 0,

the z-
omponent of the applied �eld, shown by the real 
omponent in �gure 31 appears

smooth. However as ω 6= 0 this is not the 
ase as the indu
ed �eld shown by the imaginary


omponent is also present, but 
annot be seen as it is dominated by the applied �eld.

6.4.2 A Non-Axisymmetri
 Example

To demonstrate the ability of this model to go beyond the the models presented in


hapters 4 and 5, a 
oil whi
h requires resolving in 3D is presented. The 
oil is of radius
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Figure 28: Real (left) and imaginary (right) parts of the magneti
 �ux lines for ω̄ = 1 and
Rm = 1 indu
ed by a 
ir
ular 
urrent loop of radius rc = 2 pla
ed 
oaxially at zc = 0.

76



−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

Figure 29: Isolines of the real (left) and imaginary (right) parts of Ây in the y = 0 plane

for ω̄ = 1, Rm = 0 (top) and Rm = 1 (bottom) indu
ed by a 
ir
ular 
urrent loop of

radius rc = 2 pla
ed 
oaxially at zc = 0.
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Figure 30: Isolines of the real (top) and imaginary (bottom) parts of B̂x in the y = 0
plane for ω̄ = 1, Rm = 0 (left) and Rm = 1 (right) indu
ed by a 
ir
ular 
urrent loop of

radius rc = 2 pla
ed 
oaxially at zc = 0.
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Figure 31: Isolines of the real (top) and imaginary (bottom) parts of B̂z in the y = 0
plane for ω̄ = 1, Rm = 0 (left) and Rm = 1 (right) indu
ed by a 
ir
ular 
urrent loop of

radius rc = 2 pla
ed 
oaxially at zc = 0.
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rc = 2 pla
ed in the x = 2 plane 
entred at (yc = 0, zc = 0). The magneti
 �ux lines for

this 
oil are shown in �gure 32 for the applied and indu
ed magneti
 �elds.

The ve
tor potential in the y = 0 plane is shown in �gure 33. The antisymmetry in

z in the 
oil in this plane leads to the antisymmetri
 ve
tor potential for Rm = 0. This

symmetry is seen to be broken when Rm 6= 0. The 
ontinuity of Ây and its derivative

∂xÂy 
an be seen at the pipe wall (x = ±1), whi
h as before is required by the boundary


onditions (76,77).

Isolines of the 
omponents of the ve
tor potential in the x = 0 plane for 
oil 
entred

at (yc = 0, zc = 0) in the x = 2 plane are given in �gure 34 for Rm = 0 and in �gure

35 with Rm = 1. Symmetry about z = 0 for Rm = 0 
an be seen in Âz whereas Âx

and Ây are antisymmetri
 about z = 0. These three symmetries 
ease to exist when the


ylinder is in motion Rm 6= 0. Similarly about the y-axis the Âx and Âz 
omponents are

antisymmetri
 and the Ây 
omponent is symmetri
. These symmetries are una�e
ted by

the �ow whi
h is also symmetri
 about this axis. These symmetries are equivalent to the

symmetries in the 
oil with the anti symmetries 
aused by the opposite 
urrents found

at opposite sides of the 
oil.

The x-axis is normal to the �gures plane and thus Âx is equivalent to Âφ in this

plane. The 
ontinuity of the values of Âx, Ây and Âz whi
h is required by the boundary


onditions 
an be seen. The derivatives ∂yÂx and ∂yÂz are also smooth, as required. In


ontrast the derivatives of Ây, whi
h is equivalent to Âr in this plane, are not required

to be smooth a
ross the 
ylinder wall. These 
ontinuities hold for both the 
ylinder in

motion and at rest.

We will now look at the magneti
 �eld produ
ed by the same 
oil. As before in the

axisymmetri
 example in the y = 0 sli
e where there is a single non-zero 
omponent of

~A the de�nition of the ve
tor potential

~B = ~∇ × ~A leads to the remaining 
omponents

being non-zero in

~B. The non-zero 
omponents of

~B in the y = 0 plane are shown in

�gure 36 with Rm = 0 and �gure 37 with Rm = 1. The 
ontinuity of B̂x and its normal

(x) derivative at the boundary is maintained. Only the value of B̂z is required to be


ontinuous, as 
an be seen its derivatives are not smooth at the boundary.

The magneti
 �eld 
omponents in the x = 0 plane generated by the 
oil above, in phase

and out of phase with the applied �eld, for a stationary 
ylinder and 
ylinder in motion

are shown in �gures 38 and 39, respe
tively. We 
an see that the 
omponent normal to the

plane, B̂y, is the only 
omponent for whi
h the derivative a
ross the boundary is smooth.

This is be
ause it is de�ned by the tangential derivatives of tangential 
omponents of

~A,

whi
h are 
ontinuous a
ross the interfa
e The other 
omponents of

~B are dependent on

the Âr 
omponent whi
h has been shown to not be smooth in this plane. We 
an see

the expe
ted symmetries in the y axis with B̂x being symmetri
 and B̂y and B̂z being

antisymmetri
. The symmetries in the z axis, symmetri
 for B̂x and B̂y but antisymmetri


for B̂z, are again broken by Rm 6= 0.
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Figure 32: Real (left) and imaginary (right) parts of the magneti
 �ux lines for ω̄ = 1
and Rm = 1 indu
ed by a 
ir
ular 
urrent loop of radius rc = 2 pla
ed parallel to the

(y, z)-plane at ~xc = (2, 0, 0).
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Figure 33: Isolines of the real (left) and imaginary (right) parts of Ây in the y = 0 plane

for ω̄ = 1 and Rm = 0 (top) and Rm = 1 (bottom) indu
ed by a 
ir
ular 
urrent loop of

radius rc = 2 pla
ed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 34: Isolines of the real (left) and imaginary (right) parts of Âx (top), Ây (middle)

and Âz (bottom) in the x = 0 plane for ω̄ = 1 and Rm = 0 indu
ed by a 
ir
ular 
urrent

loop of radius rc = 2 pla
ed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 35: Isolines of the real (left) and imaginary (right) parts of Âx (top), Ây (middle)

and Âz (bottom) in the x = 0 plane for ω̄ = 1 and Rm = 1 indu
ed by a 
ir
ular 
urrent

loop of radius rc = 2 pla
ed parallel to the (y, z)-plane at ~xc = (2, 0, 0).

84



−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

−4 −3 −2 −1  0  1  2  3  4

z

−3

−2

−1

 0

 1

 2

 3

x

Figure 36: Isolines of the real (left) and imaginary (right) parts of B̂x (top) and B̂z

(bottom) in the y = 0 plane for ω̄ = 1 and Rm = 0 indu
ed by a 
ir
ular 
urrent loop of

radius rc = 2 pla
ed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 37: Isolines of the real (left) and imaginary (right) parts of B̂x (top) and B̂z

(bottom) in the y = 0 plane for ω̄ = 1 and Rm = 1 indu
ed by a 
ir
ular 
urrent loop of

radius rc = 2 pla
ed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 38: Isolines of the real (left) and imaginary (right) parts of B̂x (top), B̂y (middle)

and B̂z (bottom) in the x = 0 plane for ω̄ = 1 and Rm = 0 indu
ed by a 
ir
ular 
urrent

loop of radius rc = 2 pla
ed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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Figure 39: Isolines of the real (left) and imaginary (right) parts of B̂x (top), B̂y (middle)

and B̂z (bottom) in the x = 0 plane for ω̄ = 1 and Rm = 1 indu
ed by a 
ir
ular 
urrent

loop of radius rc = 2 pla
ed parallel to the (y, z)-plane at ~xc = (2, 0, 0).
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7 Con
lusions

This work has introdu
ed three models whi
h are designed to be used for the development

of eddy 
urrent �owmeters. In 
hapter 4 a 2D model was used to investigate improvements

to the phase shift �owmeter. Se
ondly, in 
hapter 5 a axisymmetri
 
ylindri
al model was

introdu
ed whi
h was designed to investigate the pulsed �eld, or transient eddy 
urrent,

�owmetering te
hnique. Finally, the mathemati
al basis for a fully three dimensional


ylindri
al model was presented in 
hapter 6 as a means for future investigation.

7.1 Res
aled Phase Shift Flowmeter

The 
on
ept of an improved phase shift �owmeter has been presented in 
hapter 4. The

res
aled measurement s
heme whi
h has been presented is mu
h less sus
eptible to the

variation of the ele
tri
al 
ondu
tivity of a liquid metal �ow than the original design

introdu
ed in [31℄. The res
aling has been 
arried out by introdu
ing a se
ond phase shift

to the measurement s
heme. Previously, only the internal phase shift whi
h is indu
ed

by the �ow and taken as a measurement between two re
eiving 
oils was 
onsidered. In

this work, the external phase shift was introdu
ed whi
h is the phase shift between the

sending and re
eiving 
oils. In 
ontrast to the internal phase shift, the external phase

shift is relatively una�e
ted by the velo
ity of the �ow and depends predominantly on

the 
ondu
tivity of the layer. By res
aling the internal phase shift with the external, a

measurement s
heme is produ
ed whi
h 
an strongly redu
e the e�e
t of 
ondu
tivity on

the velo
ity measurements. For a reasonable range of 
ondu
tivities the e�e
t has been

shown to be virtually eliminated. Multiple approa
hes to this res
aling were investigated

and two e�e
tive res
alings were found. The 
hoi
e between these two res
alings depends

on the a
 frequen
y of the applied �eld. At low frequen
ies ω̄ . 1, when the phase shift

varies dire
tly with the frequen
y, the 
ondu
tivity 
an be eliminated by res
aling the

internal phase shift with the square of the external phase shift. At higher a
 frequen
ies

ω̄ & 1, where the shielding e�e
t makes the variation of phase with the frequen
y non-

linear, the 
ondu
tivity 
an be eliminated by res
aling the internal phase shift dire
tly

with the external one. Note that for the example of a liquid sodium �ow with σ =

8.3 × 106 S/m and 
hannel half width giving the 
hara
teristi
 size as H ∼ 0.1m the

dimensionless parameters ω̄ ∼ 1 and Rm ∼ 1 
orrespond to a
 frequen
y

ω
2π

∼ 60Hz and

velo
ity v ∼ 1m/s, respe
tively.

The appli
ability of the �rst res
aling is limited to relatively low frequen
ies, espe
ially

for realisti
 sending 
oils whi
h generate the magneti
 �eld dominated by long-wave

harmoni
s. A potential disadvantage of using low a
 frequen
ies may be the relatively

low sensitivity of the phase-shift �owmeter. From this point of view, it seems more

attra
tive to operate the �owmeter in the frequen
y range with a moderate shielding

e�e
t where the se
ond (dire
t) res
aling is appli
able. The results presented in this
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hapter may be useful for designing a next-generation phase-shift �owmeter whi
h will

have in
reased robustness to the variations of the ele
tri
al 
ondu
tivity of liquid metal,

whi
h may be required in some metallurgi
al and other appli
ations.

7.2 Transient Eddy Currents

A numeri
al investigation has been 
arried out into the transient transient eddy-
urrent

�owmetering method for liquid metal appli
ations. The prin
iple of the transient eddy


urrent design is to 
reate an eddy 
urrent, for example with a pulse of a magneti
 �eld,

and then somehow tra
k the 
urrent as it is adve
ted by a 
ondu
ting �ow. The eigenvalue

analysis showed that eddy 
urrents de
ay by roughly three orders of magnitude during

the 
hara
teristi
 magneti
 di�usion time, given by τm = µ0σR
2
, whi
h is about 0.1s for

a typi
al liquid sodium �ow with σ = 8.3 × 106 S/m [28℄ with the length s
ale given by

the radius of the pipe, of R = 0.1m. A 
onsequen
e of this is that the distan
e travelled

by an eddy 
urrent during the time it is measurable s
ales with Rm. Thus for for small

Rm the measurement devi
e must be pla
ed su�
iently 
lose to the generating 
oil(s).

Several measurement systems were investigated, tra
king di�erent features of the eddy


urrent distribution. These features whi
h were 
onsidered were the zero 
rossing points

of the magneti
 �ux and the extrema and spatial derivatives. The temporal derivative

is equivalent to the emf, E , and the extrema are identi�ed by the zero 
rossing in the

derivatives. Alongside the emf, the extrema given by zero 
rossings in its temporal and

spatial derivatives were also investigated. The number of measurement 
oils whi
h are

required varies between the types of extrema. Temporal extrema requires only one loop

whilst spatial extrema require two measurement 
oils to dete
t.

With a mono-harmoni
 eddy 
urrent distribution, the zero 
rossings of the emf and its

spatial extrema behave in the same way, and remain separated by a quarter wavelength.

The velo
ity of the �ow 
an be 
al
ulated by v = z/t where t is the time after the pulse

generating the eddy 
urrent when the value of E or ∂zE passes through zero at and z is

the distan
e the zero 
rossing has travelled during that time. The temporal extrema of

the emf follow after the zero 
rossing whi
h 
ompli
ates the measurement s
heme as this

delay depends on the 
ondu
tivity of the medium as well as the eddy 
urrent distribution.

This delay 
an be removed by using two pi
k-up 
oils pla
ed at z1 and z2 then the velo
ity

of the medium 
an be found as v = (z2 − z1)/(t2 − t1), where t1 and t2 are the times at

whi
h temporal extrema are dete
ted in the respe
tive 
oil, note that the measurement

loops must be su�
iently far from the initial zero 
rossing point.

More realisti
 eddy 
urrent distributions were 
onsidered. These were generated by

either two anti-symmetri
 
ir
ular 
urrent loops or a single 
urrent loop. In the anti-

symmetri
 set-up, the zero 
rossing point of emf as well as the subsequent temporal

extremum was found to travel syn
hronously with the medium in the same way as with
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the mono-harmoni
 wave 
onsidered before. But this was not the 
ase for the two spatial

extrema whi
h appear at both 
urrent loops in this set-up. These two extrema were

found to move at substantially di�erent velo
ities from that of the medium. This result

highlights the 
ru
ial importan
e of symmetry. The symmetry holds for zero 
rossing

points of emf but not for the two spatial extrema in the anti-symmetri
 set-up. In a

single-loop set-up where a a spatially symmetri
 eddy 
urrent distribution is generated,

the spatial extremum of emf was found to travel syn
hronously with the medium, as was

the 
ase in the mono-harmoni
 wave. In this set-up, the velo
ity of the medium 
an be

determined by also tra
king axial extremum of the magneti
 �ux, whi
h 
oin
ides with

the zero 
rossing of the radial 
omponent of the magneti
 �eld. It has to be noted that

be
ause of the initial tilt of the magneti
 �ux lines in the dire
tion motion, the extremum

of magneti
 �ux arrives at a given observation point ahead that of emf. This time lead 
an

be eliminated similarly to the delay of temporal extremum of emf by using two sensors

as dis
ussed above.

Finally, we analysed the e�e
t of a possible 
urrent asymmetry in the two-loop set-up,

and showed that it gives rise to a drift of the emf zero 
rossing point. this leads to the


on
lusion that symmetry of the system is 
ru
ial for transient-eddy �owmetering. It 
an

be inferred that a tilted single loop would also lead to an asymmetri
 initial eddy 
urrent

distribution and would give rise to a drift of the emf zero 
rossing point. Asymmetry of a

few per 
ent was found to result in the zero drift with a dimensionless velo
ity Rm ∼ 0.1.

For the 
hara
teristi
 parameters used at the beginning of this se
tion, the respe
tive

physi
al velo
ity is v ∼ 0.1m/s. It means that with this level of asymmetry, whi
h is not

unlikely in pra
ti
e, transient eddy 
urrent �owmetering 
an be reliable only for the �ows

with Rm & 1. At lower velo
ities, a more a

urate symmetry adjustment or 
alibration

of the devi
e may be required. The results of this study may be useful for designing more

a

urate and reliable transient eddy-
urrent �owmeters for liquid metals.

7.3 Three Dimensional Model

The mathemati
al ba
kground for a three dimensional model had been derived. This

model is designed to provide a framework for modelling 
onta
tless ele
tromagneti
 �ow-

meters, spe
i�
ally for eddy 
urrent �owmeters su
h as the phase shift �owmeter or a

transient eddy 
urrent �owmeter. The model has been designed to operate with a simple

uniform �ow pro�le de�ned by the magneti
 Reynolds number of the �ow. The models

is designed with �elds generated by alternating 
urrents in mind and a dimensionless

frequen
y is another input to the system. A set of boundary 
onditions for solving the

model along with justi�
ation for there validity is also presented.

A te
hnique for applying this model for a arbitrary ex
iting 
oils along with results

for some simple 
oil designs are in
luded, with the simple 
oil designs the possibility of
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multiple 
oils is introdu
ed. The arbitrary nature of the shape of the 
oil has not been

displayed however as the 
oil is represented by a series of straight wire elements any

wire is possible from simple polygons to 
omplex solenoidal designs. This model was


reated to support resear
h into liquid metal �owmeters. In its 
urrent state it 
an be

used re
reate some existing �owmeters to investigate improving a

ura
y and sensitivity

of the sending and re
eiving 
oils, though varied 
oil designs. With the addition of a

pulsed �eld approa
h, whi
h 
an be implemented in a nearly identi
al way to 
hapter 5

this model 
ould be used to further test the e�e
t of asymmetry su
h as investigating

the tilted single loop dis
ussed above. In further work this model 
ould serve as a basis

for introdu
ing a simple �ow pro�le into these models, su
h as a Poiseuille �ow, whi
h

would take the model 
loser still to reality. The limit of the 
al
ulation domain based

on the 
urrent layer 
an be simply removed by utilising the solution for the 
oil as the

applied �eld throughout the free spa
e in the model, allowing in
lusion of measurement


oils further from the pipe.
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A Appendix

A.1 Code Files

A.1.1 Phase Shift Flowmeter Code for Chapter 4

1 function [Ar]=TwoD_simple(rm,wbar,k,xrange,yrange)

2 % Solution for a field genreated by standing harmoninc wave

3 %

4 % Axy=flowmeter.TwoD_simple(1,1,1,-5:0.1:5,-2:0.1:1)

5

6 %%%%%%%%%%%%%%%%%%%%%%%%% Calc Ay+ & Ay- %%%%%%%%%%%%%%%%%%%%%%%%%%%

7 Arp=zeros(size(yrange,2),size(xrange,2));

8 [ka,c0,c1,c2,c3,d2]=coeffs(k);

9 for m=1:numel(yrange)

10 y=yrange(m);

11 for n=1:numel(xrange)

12 x=xrange(n);

13 Arp(m,n)=A(y,k)*exp(1i*k*x);

14 end

15 end

16

17 [ka,c0,c1,c2,c3,d2]=coeffs(-k);

18 Arn=zeros(size(yrange,2),size(xrange,2));

19 for m=1:numel(yrange)

20 y=yrange(m);

21 for n=1:numel(xrange)

22 x=xrange(n);

23 Arn(m,n)=A(y,-k)*exp(1i*-k*x);

24 end

25 end

26

27 %%%%%%%%%%%%%%%%%%%%%%%% Combines Ay+ & Ay- into A %%%%%%%%%%%%%%%%%%%%%%

28 Ar=1/2*(Arp+Arn);

29

30 %%%%%%%%%%%%%%%%%%%%%%%%%%% NESTED FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Solution %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 function res=A(y,k)

33 if y<=-1

34 res=c3*exp(abs(k)*(y+1));

35 elseif y>=1

36 res=c0*exp(abs(k)*(y-1))+c1*exp(-1*abs(k)*(y-1));

37 else

38 res=c2*sinh(ka*y)+d2*cosh(ka*y);

39 end

40 end

41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Coefficients %%%%%%%%%%%%%%%%%%%%%%%%%%%%
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42 function [ka,c0,c1,c2,c3,d2]=coeffs(k)

43 ka=sqrt(k^2+1i*(wbar+k*rm));

44 c0=1/(k^2); %sets amplitude of function based on k

45 c2=c0*abs(k)/(abs(k)*sinh(ka)+ka*cosh(ka));

46 d2=c0*abs(k)/(abs(k)*cosh(ka)+ka*sinh(ka));

47 c1=d2*cosh(ka)+c2*sinh(ka)-c0;

48 c3=d2*cosh(ka)-c2*sinh(ka);

49 end

50 end
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1 function [Axy,X,Y]=TwoD_2wire(rm,wbar,N,xlimit,Y,s,h1,h2)

2 % Solution for a field genreated by 2 wires

3 %

4 % Axy=flowmeter.TwoD_2wire(0,1,1024,5,-2:0.1:1.5,1,1,1)

5 % for specific y values enter y_step_size as a cell containing the

6 % required y value caclulation is made for x in the range

7 % -1*xlimit > x => xlimit with x step size 2*xlimit/N

8 %

9 % wire positions are given by s, h & h1 with the wires being located in

10 % the two positions given by (-s,1+h1) and (s,1+h2), thus symmetrically

11 % about the y axis as a distace of s and heights h1 and h2 above the flow

12 %

13 % options for output [Axy],[Axy,X],[Axy,X,Y]

14

15 %%%%%%%%%%%%%%%%%%%%%%%%% SETUP VARIABLES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % setup variables

17 J = fftshift(-N/2:N/2-1);

18 klimit=N*pi/xlimit;

19 K=J*klimit/N;

20 h1=h1+1; h2=h2+1; % as field generated h above boundary at 1

21

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SOLUTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 % genreates A(hat)(y:k)

24 Ayk=complex(zeros(size(Y,2),size(J,2))); % Matrix to be filled in loop

25

26 for iK=1:N % k counter

27 k=K(iK); % current k value

28 [ka,c1,c2,c3,d2]=coeffs(k,wbar,rm,s,h1,h2); % generates coefficients

29 Ayk(:,iK)=A(Y,k,ka,c1,c2,c3,d2,s,h1,h2); % generate A(hat)(y;k)

30 end

31

32 %%%%%%%%%%%%%%%%%%%%%%% Inverse Fourier Transform %%%%%%%%%%%%%%%%%%%%%%%

33 % calulate inverse dicrete fourier transform of A(hat)

34 Axy=fftshift( ifft(Ayk,[],2) ,2);

35 % generates X values as second output if varargout exits

36 X=((2*xlimit/N)-xlimit):(2*xlimit/N):xlimit;

37 end

38

39

40 %%%%%%%%%%%%%%%%%%%%%%%%%%% SUB-FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

41 %%%%%%%%%%%%%%%%%%%%%%%%%%% Coefficient Function %%%%%%%%%%%%%%%%%%%%%%%%%%

42 function [ka,c1,c2,c3,d2]=coeffs(k,wbar,rm,s,h1,h2)

43 ka=sqrt(k^2+1i*(wbar+k*rm));

44

45 c0=A0(1,k,s,h1,h2);

46
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47 c2=c0*abs(k)/(abs(k)*sinh(ka)+ka*cosh(ka));

48 d2=c0*abs(k)/(abs(k)*cosh(ka)+ka*sinh(ka));

49 c1=d2*cosh(ka)+c2*sinh(ka)-c0;

50 c3=d2*cosh(ka)-c2*sinh(ka);

51 end

52

53 %%%%%%%%%%%%%%%%%%%%%%%% Function for solution %%%%%%%%%%%%%%%%%%%%%%%%%%

54 function res=A(y,k,ka,c1,c2,c3,d2,s,h1,h2)

55 belowLayer = y<-1;

56 aboveLayer = y>1;

57 inLayer = ~(belowLayer | aboveLayer);

58 res = complex(zeros(numel(y),1));

59

60 if any(belowLayer)

61 res(belowLayer) = c3*exp(abs(k)*(y(belowLayer)+1));

62 end

63 if any(aboveLayer)

64 res(aboveLayer) = A0(y(aboveLayer),k,s,h1,h2)...

65 + c1*exp(-1*abs(k)*(y(aboveLayer)-1));

66 end

67 if any(inLayer)

68 res(inLayer) = c2*sinh(ka*y(inLayer))+d2*cosh(ka*y(inLayer));

69 end

70

71 end

72

73 %%%%%%%%%%%%%%%%%%%%%%%%%% A0(y;k) function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

74 function res=A0(y,k,s,h1,h2)

75 if round(k*10000)==0;

76 res=zeros(size(y)); % if k close to 0, A0(y;k) set to 0

77 else

78 res= exp( 1i*k*s)*exp(-1*abs(k*(y-h1)))/(2*abs(k))...

79 -exp(-1i*k*s)*exp(-1*abs(k*(y-h2)))/(2*abs(k));

80 end

81 end
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A.1.2 Transient Eddy Current Flowmeter Code for Chapter 5

1 function [ Adt,z ] = Cycol_squarewave_2wire(rm,Ff,N,zlimit,r,s,h,nPoints...

2 ,tau,padTo)

3 %FLOWMETER_Cycol_SQUAREWAVE_2wire

4 % Axisymmetric model with field generate by 2 wires with pulsed current.

5 % Adt = flowmeter.Cycol_squarewave_simple(x,y,k,Rm,Ff,nPoints,tau,padTo)

6 freqs = waveshape_frequencies(nPoints,Ff);

7 ftpdt = waveshape_gaussianFilter_squareWave_derivative( nPoints,tau );

8 data = complex(zeros(N,numel(r),nPoints)); % prealloc

9 for ifreq = 1:nPoints

10 if freqs(ifreq)==0

11 data(:,:,ifreq)=0;

12 else

13 data(:,:,ifreq)=Cycol_2wire(r,N,zlimit,rm,freqs(ifreq),h,s);

14 end

15 end % generate solutions for frequencies

16 if ~exist(’padTo’,’var’); padTo = numel(points); end

17 [Adt] = waveshape_ifft_PaddingAndDerivative(data,ftpdt,padTo);

18 if nargout>1

19 [~,z] = Cycol_2wire(r,N,zlimit,0,1,h,s);

20 end

21 end

22

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% SUB FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 function [ frequencies ] = waveshape_frequencies( nPoints,...

25 FundamentalFrequency )

26 %TOOLS_WAVESHAPE_FREQUENCIES

27 % generates frequencies form numebr of points nad fundamental frequency

28 frequencies = (0:FundamentalFrequency:(nPoints-1)*...

29 FundamentalFrequency) - FundamentalFrequency*nPoints/2;

30 end

31

32 function [ ftpdt ] = waveshape_gaussianFilter_squareWave_derivative(...

33 nPoints,tau)

34 %TOOLS_WAVESHAPE_GAUSSIANFILTER_SQUAREWAVE_DERIVATIVE

35 % ftpdt = WAVESHAPE_GAUSSIANFILTER_SQUAREWAVE_DERIVATIVE( nPoints,tau )

36 % generates fourier transform of time derivative of square wave with a

37 % gaussian filter with nPoints and a halfwidth of the peaks of tau

38 tu = nPoints/4; % index of upward peak

39 td = 3/4*nPoints-1; % index of downward peak

40 height = 1 ; % maximum height of peaks

41 Au = height; % set height up

42 Ad = -height; % set height down

43 tp = 1:nPoints; % time indicies

44 if tau == 0

45 % do not apply filter
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46 pdt = zeros(size(tp));

47 pdt([tu,td+1])=[Au,Ad];

48 else

49 % derivative of points (with gaussian filter if tau ~=0)

50 pdt = Au*(exp(-1*((tp-tu)/tau).^2)) + Ad*(exp(-1*((tp-td)/tau).^2));

51 end

52 ftpdt = fftshift(fft(pdt)); % generate ftpointsdt

53 end

54

55 function [A,z] = Cycol_2wire(r,N,zlimit,rm,wbar,h,s)

56 % solution for 2 wire axisymmetric model ac with frequency wbar

57 k = localGenerateK(N,zlimit);

58 A = RKSolution(r,k,rm,wbar,h,s); % generate A(k,r)

59 A = fftshift(ifft(A,[],1),1); % transform to A(z,r)

60 A = bsxfun(@times,r.’,A.’);% rescale and convert A(z,r) to A(r,z)

61 if nargout>1

62 z=((2*zlimit/N)-zlimit):(2*zlimit/N):zlimit;

63 end

64 end

65

66 function k = localGenerateK(N,zlimit)

67 J = fftshift((-N/2):(N/2 -1));

68 k = J*pi/zlimit;

69 end

70

71 function Ark = RKSolution(r,k,rm,wbar,h,s)

72 % Generates A(r,k) from A(r)

73 Ark = complex(zeros(numel(k),numel(r))); % prealloc

74 for ik = 1:numel(k)

75 if k(ik) == 0 % tolerance?

76 Ark(ik,:) = 0;

77 continue

78 end

79 Ark(ik,:) = RSolution(r,k(ik),wbar+k(ik)*rm,h,s);

80 end

81 end

82

83 function [Ar] = RSolution(r,k,wbar,h,s)

84 % generates A(r)

85 % logical indices

86 in_layer = r<1;

87 layer_to_wire = (r<h) & ~in_layer;

88 beyond_wire = r>=h;

89 % prealloc

90 Ar = complex(zeros(1,numel(r)));

91 A0 = Azero(h,k,s);

92 k=abs(k);
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93 [A,C,D] = coeffs(k,wbar,h);

94 if any(in_layer)

95 Ar(in_layer) = A0*D* besseli(1, kappa(k,wbar)*r(in_layer) );

96 end

97 if any(layer_to_wire)

98 Ar(layer_to_wire)= A0*besseli(1, k*r(layer_to_wire)) +...

99 A0*C* besselk(1, k*r(layer_to_wire) );

100 end

101 if any(beyond_wire)

102 Ar(beyond_wire) = A0*A*besselk(1, k*r(beyond_wire)) +...

103 A0*C*besselk(1, k*r(beyond_wire) );

104 end

105 end

106

107 function A0 = Azero(h,k,s)

108 % Calulates A0

109 bkh = besselwrapper(abs(k)*h);

110 I0 = bkh(1);

111 I1 = bkh(2);

112 K0 = bkh(3);

113 K1 = bkh(4);

114 A0 = h*2*1i*sin(k*s)*K1 /( abs(k)*( I0*K1 + K0*I1));

115 end

116

117 function [A,C,D] = coeffs(k,wbar,h)

118 x = kappa(k,wbar);

119 bk = besselwrapper(k);

120 bx = [besseli(0,x), besseli(1,x)];

121 A = besseli(1,k*h)./besselk(1,k*h);

122 C = ( -x * bk(2)/bx(2) + k * bk(1)/bx(1) )./ ...

123 ( x * bk(4)/bx(2) + k * bk(3)/bx(1) );

124 D = ( k * bk(2)/bk(4) + k * bk(1)/bk(3) )./ ...

125 ( k * bx(2)/bk(4) + x * bx(1)/bk(3) );

126 end

127

128 function out = kappa(k,wbar)

129 out = sqrt(k^2+1i*wbar);

130 end

131

132 function [out] = besselwrapper(in)

133 % wrapper funciton for bessel functions

134 out = zeros(numel(in),4);

135 out(:,1) = besseli(0,in);

136 out(:,2) = besseli(1,in);

137 out(:,3) = besselk(0,in);

138 out(:,4) = besselk(1,in);

139 end
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140

141 function [Adt] = waveshape_ifft_PaddingAndDerivative(data,ftpdt,padTo)

142 %TOOLS_WAVESHAPE_IFFT_PADDINGANDDERIVATIVE

143 % Adt = TOOLS_WAVESHAPE_IFFT_PADDINGANDDERIVATIVE(data,ftpdt,padTo)

144 % calculates idft of data scaled with ftpdt in 3rd dimension

145 % optional 3rd input allows symmetric padding of the spectrum

146 Adt = bsxfun(@times,data,permute(ftpdt,[3,1,2]));

147 if nargin>2

148 if padTo>size(Adt,3)

149 Adt = localSymmetricPadArrayIn3rdDimension(Adt,padTo);

150 end

151 end

152 Adt=real(ifft(ifftshift(Adt,3),[],3));

153 end

154

155 function out = localSymmetricPadArrayIn3rdDimension(array,padTo)

156 % Pad array (in spectral space) for finer resolution in real.

157 out = complex(zeros(size(array,1),size(array,2),padTo));

158 arrayStart = floor((padTo-size(array,3))/2);

159 arrayEnd = arrayStart+size(array,3)-1;

160 out(:,:,arrayStart:arrayEnd)=array;

161 end
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A.1.3 3D Model Codes for Chapter 6

1 function [New_field,TT,RR,ZZ] = Cycol_3d(inputfile,coiltype,coildim)

2 %

3 inputs.(inputfile);

4 % Provide coil, generate field, FFT

5 nR_gen = 1;

6 [tt,rr,zz] = makeCylindricalPoints(...

7 [-R_grid,R_grid,-Z_domain,Z_domain],[nT,nR_gen,nZ]);

8 [TT,RR,ZZ] = ndgrid(tt,rr,zz);

9 XX = RR.*cos(TT); YY = RR.*sin(TT);

10 [wire_points] = makecoil(coiltype,coildim);

11 [field] = generate_coil_field(wire_points,XX,YY,ZZ); % ’double’,[-1,1]);

12 [field] = field_to_cylindrical(field,TT);

13 [FTfield] = fftshift(fft( fftshift(fft( field ,[],1),1) ,[],3),3);

14 R = linspace(0,R_grid,nR);

15 % Generate Field

16 [New_field] = Scaled_main_loop(FTfield,nZ,nT,R,R_wall,R_domain,...

17 v,mu0,Sigma,omega,k);

18 if nargout>1;[TT,RR,ZZ]=ndgrid(tt,R,zz);end

19 end

20

21 function [New_field] = Scaled_main_loop(FTfield,nZ,nT,...

22 R,R_wall,R_domain,v,mu0,sigma,omega,k)

23 %% Applied field coeffs ( at r=R_domain )

24 AtR = FTfield(:,:,:,1); ArR = FTfield(:,:,:,2); AzR = FTfield(:,:,:,3);

25 FpR = ArR+1i.*AtR; FmR = ArR-1i.*AtR;

26 %% inputs for main loop

27 nN = nZ; N = (-nN/2:1:nN/2-1); % z modes

28 nM = nT; if nM==1; M=0; else M = (-nM/2:1:nM/2-1); end % theta modes

29 %% Pre loop allocation

30 r_in_flow = R < R_wall ;

31 Fp = zeros(size(R)); Fm = zeros(size(R)); Az = zeros(size(R));

32 Field_spec = complex(zeros(numel(M),numel(R),numel(N),3));

33 %% Main loop

34 fprintf(’Entering main loop... \n’)

35 for i_n= 1:numel(N)

36 %% Loop variables

37 n=N(i_n); %% wavenumber in z dir

38 kn = k*n;

39 if n==0;kn=1e-10;end

40 x=kappa(v,kn,mu0,sigma,omega); kn=abs(kn);

41 %% inner loop

42 for i_m=1:numel(M); % ####

43 %% Loop variables

44 m = M(i_m); %wavenumber in theta dir

45 M_temp = [m-1 , m , m+1];
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46 BESSI_x = bsxfun(@besseli, M_temp.’,x*R(r_in_flow)) ;

47 BESSI_k = bsxfun(@besseli, M_temp.’,kn*R(~r_in_flow));

48 BESSK_k = bsxfun(@besselk, M_temp.’,kn*R(~r_in_flow));

49 %% Scaled bessel functions for boundary conditions

50 scaled = 1;

51 BESSI_r_domain = besseli(M_temp,kn*R_domain,scaled) ;

52 BESSI_r_wall_x = besseli(M_temp,x*R_wall,scaled) ;

53 BESSI_r_wall_k = besseli(M_temp,kn*R_wall,scaled) ;

54 BESSK_r_wall_k = real(besselk(M_temp,kn*R_wall,scaled)) ;

55 %% Scaling Exponents

56 Scale_Exponent_I_k_Domain =-abs(real(kn*R_domain));

57 Scale_Exponent_Dbar = -Scale_Exponent_I_k_Domain;

58 Scale_Exponent_I_x_Wall = -abs(real(x*R_wall));

59 Scale_Exponent_I_k_Wall = -abs(real(kn*R_wall));

60 Scale_Exponent_K_k_Wall = kn*R_wall;

61 %% set Dbars

62 Dbarp = FpR(i_m,1,i_n)./ BESSI_r_domain( 3 );

63 Dbarm = FmR(i_m,1,i_n)./ BESSI_r_domain( 1 );

64 Dbar = AzR(i_m,1,i_n)./ BESSI_r_domain( 2 );

65 %% solve boundary condition matrix

66 lastwarn(’’)

67 [C,Cp,Cm,D,Dp,Dm] = Scaled_solve_boundary_condition_matrix(...

68 BESSI_r_wall_x(2),BESSI_r_wall_x(3),BESSI_r_wall_x(1),...

69 BESSI_r_wall_k(2),BESSI_r_wall_k(3),BESSI_r_wall_k(1),...

70 BESSK_r_wall_k(2),BESSK_r_wall_k(3),BESSK_r_wall_k(1),...

71 Dbar,Dbarp,Dbarm,...

72 Scale_Exponent_I_k_Wall,Scale_Exponent_Dbar,...

73 Scale_Exponent_K_k_Wall,R_wall,kn,x,m) ;

74 % Calculate coefficients (& remove scaling)

75 Dbarp = Dbarp.*exp(-Scale_Exponent_Dbar);

76 Dbarm = Dbarm.*exp(-Scale_Exponent_Dbar);

77 Dbar = Dbar .*exp(-Scale_Exponent_Dbar);

78 %

79 Cp = Cp.*exp(Scale_Exponent_I_x_Wall);

80 Cm = Cm.*exp(Scale_Exponent_I_x_Wall);

81 C = C .*exp(Scale_Exponent_I_x_Wall);

82 %

83 Dp = Dp.*exp(Scale_Exponent_K_k_Wall);

84 Dm = Dm.*exp(Scale_Exponent_K_k_Wall);

85 D = D .*exp(Scale_Exponent_K_k_Wall);

86 % Generate field components (in and out of flow)

87 Fp( r_in_flow) = Cp.*BESSI_x(3,:) ;

88 Fp(~r_in_flow) = Dbarp*BESSI_k(3,:) + Dp*BESSK_k(3,:) ;

89

90 Fm( r_in_flow) = Cm.*BESSI_x(1,:) ;

91 Fm(~r_in_flow) = Dbarm*BESSI_k(1,:) + Dm*BESSK_k(1,:) ;

92
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93 Az( r_in_flow) = C.*BESSI_x(2,:) ;

94 Az(~r_in_flow) = Dbar.*BESSI_k(2,:) + D*BESSK_k(2,:) ;

95 % Transform back from decoupling variables

96 At = 1/2i*(Fp-Fm) ;

97 Ar = 1/2 *(Fp+Fm) ;

98 % Store f(theta,r,z)

99 Field_spec(i_m,:,i_n,1) = At ;

100 Field_spec(i_m,:,i_n,2) = Ar ;

101 Field_spec(i_m,:,i_n,3) = Az ;

102 end

103 end

104 % Invert FFT

105 New_field = ifft(ifft(ifftshift(ifftshift(Field_spec,3),1),[],3),[],1);

106 end

107

108 function [C,Cp,Cm,D,Dp,Dm] = Scaled_solve_boundary_condition_matrix(...

109 ix,ipx,imx,ik,ipk,imk,kk,kpk,kmk,Dbar,Dbarp,Dbarm,...

110 Scale_Exponent_I_k_Wall,Scale_Exponent_Dbar,...

111 Scale_Exponent_K_k_Wall,R,k,x,m)

112 Scale_Exponent_RHS = Scale_Exponent_Dbar + Scale_Exponent_I_k_Wall;

113 %% Solve coefficients for Az

114 LHS1 = [... C , D

115 x*(ipx+imx) , k*(kmk+kpk) ;

116 ix , -kk ];

117 RHS1 = [...

118 k*Dbar*(imk+ipk) ;

119 Dbar*ik ];

120 RHS1 = RHS1*exp( -Scale_Exponent_RHS);

121 SOL1 = LHS1\RHS1;

122 C = SOL1(1);

123 D = SOL1(2);

124 %% Solve coefficients for F+-

125 LHS2 = [... C+ , C- , D+ , D-

126 x*ix-(m+1)/R*ipx , -(x*ix+(m-1)/R*imx) , -(-k*kk-(m+1)/R*kpk) ,...

127 -k*kk+(m-1)/R*kmk ;

128 0 , 0 , kk , kk ;

129 ipx , 0 , -kpk , 0 ;

130 0 , imx , 0 , -kmk ];

131 RHS2 = [Dbarp*(k*ik-(m+1)/R*ipk) - Dbarm*(k*ik+(m-1)/R*imk) ;

132 (Dbarp+Dbarm+2i*Dbar)*ik+2i*D + 2i*D*exp(Scale_Exponent_K_k_Wall...

133 + Scale_Exponent_RHS) ;

134 Dbarp*ipk ;

135 Dbarm*imk ];

136 RHS2 = RHS2*exp(-Scale_Exponent_RHS);

137 SOL2 = LHS2\RHS2;

138 Cp = SOL2(1); Cm = SOL2(2); Dp = SOL2(3); Dm = SOL2(4);

139 end
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140

141 function x = kappa(v,kn,mu0,sigma,w)

142 x = sqrt( kn.^2+1i*mu0*sigma*(w+v.*kn) );

143 end

144

145 function f = generate_coil_field(wire_points,grid1,grid2,grid3)

146 % Generates field for the coil defined by wire_points

147 f=0;for icoil = 1:numel(wire_points)

148 f=f+single_coil_field(wire_points{icoil},grid1,grid2,grid3);

149 end

150 end

151

152 function [t,r,z] = makeCylindricalPoints(limits,npoints)

153 % generates cylindrical grid

154 if numel(limits)==4;limits = [-pi,pi,limits];end

155 t = linspace(limits(1),limits(2),npoints(1)+1);t(end)=[];

156 r = linspace(limits(3),limits(4),npoints(2));

157 z = linspace(limits(5),limits(6),npoints(3)+1);z(end)=[];

158 end

159

160 function [fieldtrz] = field_to_cylindrical(fieldxyz,TT)

161 % converts cartesian field to cylindrical field

162 fieldtrz(:,:,:,1)=fieldxyz(:,:,:,2).*cos(TT)-fieldxyz(:,:,:,1).*sin(TT);

163 fieldtrz(:,:,:,2)=fieldxyz(:,:,:,1).*cos(TT)+fieldxyz(:,:,:,2).*sin(TT);

164 fieldtrz(:,:,:,3)=fieldxyz(:,:,:,3);

165 end
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Numerical analysis of transient eddy-current

flowmetering method

Richard Looney and Jānis Priede

Flow Measurement Research Centre, Coventry University, UK

E-mail: J.Priede@coventry.ac.uk

Abstract. We present a comprehensive numerical analysis of transient eddy-

current flowmetering method for liquid metals. This type of flowmeter operates by

tracking eddy-current markers excited by the magnetic field pulses in the flow of a

conducting liquid. Using a simple mathematical model, where the fluid flow is replaced

by a translating cylinder, a number possible alternative measurement schemes are

considered. The velocity of the medium can be measured by tracking zero crossing

points and spatial or temporal extrema of the electromotive force (emf) induced by

transient eddy currents in the surrounding space. Zero crossing points and spatial

extrema of the emf travel synchronously with the medium whereas temporal extrema

experience an initial time delay which depends on the conductivity and velocity of

the medium. Performance of transient eddy-current flowmetering depends crucially

on the symmetry of system. Eddy current asymmetry of a few per cent makes the

detection point drift with a velocity corresponding to a magnetic Reynolds number

Rm ∼ 0.1. With this level of asymmetry transient eddy-current flowmetering can be

reliably applicable only to flows with Rm & 0.1. A more accurate symmetry adjustment

or calibration of flowmeters may be necessary at lower velocities.

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in Lancester 
Library - Coventry University.
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Concept of Improved Electromagnetic Phase-Shift

Flowmeter for Liquid Metals with Variable

Conductivity

Richard Looney and Jānis Priede

Flow Measurement Research Centre, Coventry University, UK

E-mail: J.Priede@coventry.ac.uk

Abstract. We present a concept of an improved phase-shift flowmeter that has a

significantly reduced sensitivity to the variation of the electrical conductivity of a

liquid metal. A simple theoretical model of the flowmeter is considered where the flow

is approximated by a solid finite-thickness conducting layer moving in the presence

of an ac magnetic field. In contrast to the original design [Priede et al., Meas. Sci.

Technol. 22 (2011) 055402], where the flow rate is determined by measuring only the

phase shift between the voltages induced in two receiving coils, the improved design

measures also the phase shift between the sending and the upstream receiving coil.

These two phase shifts are referred to as internal and external ones, respectively. We

show that the effect of electrical conductivity on the internal phase shift, which is

induced by the flow, can be strongly reduced by rescaling it with the external phase

shift, which depends mostly on the conductivity of medium. Two different rescalings

are found depending on the ac frequency. At low frequencies, when the shielding effect

is negligible, the effect of conductivity is strongly reduced by rescaling the internal

phase shift with the external one squared. At higher frequencies, the same is achieved

by rescaling the internal phase shift directly with the external one.

Keywords: Electromagnetic flowmeter, liquid metal, eddy current

PACS numbers: 41.20.Gz, 47.60.Dx, 47.65.-d, 47.80.Cb

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in 
Lancester Library - Coventry University.
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