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Abstract 

 

This thesis examined four key areas considered to contribute to why the efficacy of 

sodium bicarbonate (NaHCO3) as an ergogenic aid remains equivocal. Firstly, familiarisation 

to and test re-test reliability of continuous constant load cycling to exhaustion (TLIM) at 110% 

peak power output (WPEAK) were investigated. Results indicated two trials are required 

before participants become fully familiarised and reliable data are obtained and that daily 

biological variation was 6 ± 11% (16 ± 28 s). The primary aim of study two was to determine 

the most appropriate exercise intensity for future studies in this thesis. A secondary aim was 

to elucidate why certain participants appear to respond to NaHCO3 ingestion and others do 

not (Price and Simons 2010, Saunders et al. 2011). Therefore, we evaluated cycling TLIM at 

100%, 110% and 120% WPEAK in the same participants. NaHCO3 ingestion increased TLIM by 

17% compared to placebo (PLA) at 100% WPEAK. This was due, at least in part, to attenuated 

localised ratings of perceived exertion (RPEL). No difference in group level data was 

observed between treatments at 110% WPEAK or 120% WPEAK although there was marked 

inter and intra individual variance. Thirdly, in order to evaluate the efficacy of NaHCO3 at a 

tissue level we examined the effects of NaHCO3 on dynamic isolated muscle performance 

undergoing cyclical length changes.  Acute power output (PO) was on average 7.0% greater 

for NaHCO3 treated extensor digitorum longus (EDL) muscles and 3.6% greater for NaHCO3 

treated soleus (SOL) muscles compared to control (CON). Increases in PO were due to 

greater force production throughout shortening. Treatment of EDL and SOL did not alter the 

pattern of fatigue at a group level although similar to study 2 there was marked inter 

individual variation. Finally, to determine the effects of training status we evaluated the 

effects of 6 weeks high-intensity cycling training on the efficacy of NaHCO3. Overall, pre-

training TLIM was 10% greater with NaHCO3 compared to PLA with a benefit to harm odds 

ratio of 571. Overall, post-training TLIM was 6% greater with NaHCO3 compared to PLA with 

a benefit to harm odds ratio of 17. Similar to studies 2 and 3 individual variation was 

observed. Based on daily biological variation for TLIM of 6% (as determined in study 1) and a 



xix 
 

recommended benefit to harm odds ratio threshold of > 66, NaHCO3 improved TLIM before 

training only. We concluded that 6 weeks high-intensity cycling training reduces the 

effectiveness of NaHCO3 in previously non-cycling trained males. The change in efficacy is 

likely due to, at least in part, training induced changes in intracellular buffering capacity. 

 

In summary, NaHCO3 is an effective ergogenic aid for TLIM cycling at 100% WPEAK in 

non-cycling trained males. This is due, at least in part, to attenuated localised ratings of 

perceived exertion (RPEL). In contrast, 6-weeks high-intensity cycling training reduces the 

efficacy of NaHCO3 for TLIM cycling at 100% WPEAK in previously non-cycling trained males. 

The change in efficacy is likely due to, at least in part, training induced changes in 

intracellular buffering capacity. At a skeletal muscle level, NaHCO3 increases acute PO in 

both predominantly fast (EDL) and predominantly slow (SOL) twitch muscle fibres, due to 

greater force production throughout shortening.  
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Chapter 1 – Introduction 

 

During brief high-intensity exercise with a significant glycolytic component there is a 

concomitant increase of lactate (La-) and hydrogen (H+) ions in both working muscle and 

blood due to the accumulation and subsequent disassociation of lactic acid (Halestrap and 

Price 1999, Thomas et al. 2005, Philp, MacDonald, and Watt 2005). The La- quickly 

combines with another ion, such as Na+, to produce, for example sodium lactate (NaLa). The 

accumulation of lactate and/or H+ has been implicated as a cause of muscle fatigue (Sahlin, 

Tonkonogi, and Söderlund 1998, Allen, Lamb, and Westerblad 2008), which can be defined 

as any reduction in capacity to generate force or power output as a result of exercise 

(Vøllestad 1997). Although the ‘lactic acidosis’ theory of fatigue still divides academic opinion 

(Brooks 2001, Cairns 2006, Allen, Lamb, and Westerblad 2008) augmenting the body’s 

ability to neutralise excess H+ might prolong exercise capacity (Begum, Cunliffe, and Leveritt 

2005, Cairns 2006). The primary mechanism in which NaHCO3 is thought to exert ergogenic 

benefit is by augmenting the bioavailability of bicarbonate ions [HCO3
-] which combines with 

H+ to form carbonic acid (H2CO3) which is then (reversibly) converted into CO2 and H2O by 

carbonic anhydrase (Sahlin et al. 1978, Robergs 2002, Peart, Siegler, and Vince 2012). The 

CO2 is expelled through ventilation and H2O exists most likely as metabolic water. Indeed, 

[HCO3
-] is arguably the most important extracellular buffer (McNaughton, Siegler, and 

Midgley 2008, Poupin et al. 2012). Therefore, by undertaking exogenous supplementation of 

NaHCO3, several researchers have postulated that this might provide the body with added 

fatigue resistance during exercise against H+ induced disruptions in acid-base homeostasis 

(Lavender and Bird 1989, McNaughton 1992a,b, McNaughton, Ford, and Newbold 1997, 

McNaughton, Dalton, and Palmer 1999, Cameron et al. 2010, Price and Simons 2010). 

 

Despite the proposed biochemical basis for augmented H+ buffering with NaHCO3 

supplementation empirical research has delivered varied results (Matson and Tran 1993, 

Requena et al. 2005, McNaughton, Siegler, and Midgley 2008, Price and Simons 2010, 
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Peart, Siegler, and Vince 2012). The variable results in research evaluating the efficacy of 

NaHCO3 on exercise performance / capacity are due, at least in part, to variations in the 

dosage administered, degree of metabolic alkalosis induced, the intensity, duration and 

nature of the exercise undertaken, participant training status and pre-experimental 

procedures (Matson and Tran 1993, Maughan 1999, McNaughton, Siegler, and Midgley 

2008, Peart, Siegler, and Vince 2012). Although the first (0.3 g.kg-1 body mass; McNaughton 

1992a) and second (~ 60/90 mins pre-exercise; Renfree 2007, Price and Singh 2008) 

aspects have been addressed, the effects of NaHCO3 on exercise capacity over a range of 

exercise intensities within the same population have yet to be confirmed. By undertaking this 

study the following objectives will be achieved: (1) provide further evidence to the efficacy (or 

not) of NaHCO3 as an ergogenic aid, (2) evaluate the perceptual, physiological and 

biochemical responses to exercise after NaHCO3 ingestion in the same participants at 

different exercise intensities and (3) confirm whether individuals can be classified as either 

responders or non-responders to NaHCO3 (Price and Simons 2010, Saunders et al. 2011). 

Such evidence is likely to further elucidate how NaHCO3 affects exercise capacity (Price and 

Simons 2010). 

 

The wide variation in participant training status (both between and within studies) 

might also affect results in the area of NaHCO3 research. Aschenbach et al. (2000) 

suggested the highly trained wrestlers in their study might already possess a high 

intracellular buffering capacity which left little opportunity for enhanced extracellular 

buffering, such as through NaHCO3 ingestion, to be effective. However, it should be 

acknowledged that an ergogenic benefit following NaHCO3 supplementation has been 

reported in highly trained runners (McNaughton and Davies 1988, Bird, Wiles, and Robbins 

1995) and cyclists (Driller et al. 2012ab). Despite an individual’s training status potentially 

affecting responses to NaHCO3 ingestion (Linderman et al. 1992, Aschenbach et al. 2000, 

Peart, Siegler, and Vince 2012) and a number of studies having examined the effects of 

NaHCO3 ingestion prior to high-intensity training on a variety of physiological and 
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performance parameters (Edge, Bishop, and Goodman 2006, Thomas et al. 2007, Bishop et 

al. 2010), no research has examined how an acute change in training status might affect the 

efficacy of NaHCO3. Indeed, a recent meta-analysis suggests that untrained individuals are 

far more likely to observe ergogenic benefit than trained individuals (Peart, Siegler, and 

Vince 2012). Therefore, in evaluating the efficacy of NaHCO3 pre and post high-intensity 

training, the following three objectives will be achieved: (1) further examine the efficacy of 

NaHCO3 in healthy but non cycling trained males (2) examine the effects of 6 weeks high-

intensity cycling training on healthy but non cycling trained males and (3) examine how an 

acute change in training status affects the efficacy of NaHCO3. This evidence will help 

further elucidate how NaHCO3 affects exercise capacity. 

 

The ability to detect changes outside of day-to-day variation in exercise tests (i.e. 

sensitivity) is of particular importance in research where interventions such as nutritional 

supplementation are evaluated (Sewell and McGregor 2008). To minimise systematic bias, 

participants are often familiarised with the proposed tests before collecting performance data 

(Lavender and Bird 1989, Carey and Richardson 2003) and in performing enough such 

trials, learning effects or other systematic changes are diminished sufficiently so that reliable 

data can be obtained (Hopkins 2000).  However, there is little consistency in terms of pre-

experimental familiarisation within the literature evaluating the efficacy of NaHCO3 on 

exercise performance / capacity. Moreover, despite constant power tests to exhaustion (TLIM) 

being the most reliable physical performance test (Hopkins, Schabort, and Hawley 2001) 

there is a paucity of research evaluating their reliability (Morris et al. 2011). At the time of 

commencing this research (January 2010) no research had evaluated the reliability of TLIM 

using the minimum of 3 trials as recommended by Hopkins (2000). However, the recent 

publication by Saunders et al. (2012) who addressed the reliability of TLIM at 110% WMAX is 

acknowledged. The results of the Saunders et al. (2012) study in relation to the similar work 

presented here are discussed in greater detail in study 1 (chapter 4). In establishing the 

reliability of the TLIM cycling protocol, the following three objectives will be achieved: (1) 
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provide reliability data on cycling TLIM thus ensuring participants are optimally familiarised for 

the studies contained within this thesis, (2) establish the daily biological variation of healthy 

non cycling males undertaking TLIM cycling exercise in our laboratory and (3) assess whether 

the lack of consistency in pre-experimental procedures in previous research might have 

contributed to the equivocal results related to the efficacy of NaHCO3 as an ergogenic aid. 

 

In an attempt to elucidate the effects of modulating acid-base balance at a tissue 

level several studies have examined the effects of metabolic acidosis and alkalosis on 

isolated muscle performance.  Spriet et al. (1985) induced metabolic acidosis by lowering 

the [HCO3
-] in the isolated muscle perfusate from ~ 24 mM to ~ 13 mM. Metabolic acidosis 

significantly increased the rate of muscle tension decay and reduced absolute muscle 

tension in the gastrocnemius-plantaris-soleus muscle group in rats, during fatiguing isometric 

stimulation, when compared to CON. Conversely, Spriet et al. (1986) found that inducing 

metabolic alkalosis by increasing [HCO3
-] from ~ 21 mM to ~ 27 mM had no effect on peak 

isometric tension or tension decay compared to CON. Finally, Broch-Lips et al. (2007) 

examined the effect of 40 mM and 25 mM [HCO3
-] on isometric force production in isolated 

rat skeletal muscle. The elevated [HCO3
-] had no significant effect on force maintenance 

during continuous stimulation or recovery of force during brief tetanic stimulation in soleus or 

on tetanic force development in extensor digitorum longus muscles at 30°C. Similarly, 40 

mM of HCO3
- had no significant effect on isometric force maintenance during either 

continuous stimulation or intermittent stimulation protocols (1 s on, 3 s off) at 37°C (Broch-

Lips et al. 2007).  

 

Although the aforementioned in vitro studies have examined the effects of high and 

low [HCO3
-] on muscle performance the current body of isolated muscle research has a 

number of methodological concerns. For example, during mammalian locomotion muscles 

that are attached to moving skeletal structures, either directly or indirectly, undergo repetitive 

length changes (Josephson 1993). Approximation of such length changes in vitro facilitates 
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the evaluation of important components of exercise performance such as recovery from 

fatigue, (James, Wilson, and Askew 2004) as well the possible direct effects of ergogenic 

aids (Tallis et al. 2012) in mammalian muscle. As such, research using isometric muscle 

protocols has limited application to muscle performance during dynamic exercise which is 

exhibited in most mammalian locomotion. Furthermore, no research to date examining acid-

base balance at a tissue level has used concentrations of HCO3
- that are typically achieved 

in the blood of human participants (~ 32 mM; Kolkhorst et al. 2004, Price and Singh 2008, 

Lindh et al. 2008, Siegler et al. 2010) following the recommended supplementation dosage 

(0.3 g.kg-1; McNaughton 1992a). Moreover, there is a paucity of research that provides 

ecologically valid links between in vivo and in vitro exercise performance. Therefore, in vitro 

research that addresses these key gaps would provide useful data as to how augmented 

[HCO3
- ] might affect human exercise performance / capacity.  

 

In summary, the main aim of this thesis is to examine the effects of sodium bicarbonate 

(NaHCO3) on whole body and isolated skeletal muscle performance. This will be achieved 

by meeting the following specific objectives: 

 

• To establish the reliability of a suitable exercise protocol to use in the evaluation of 

oral NaHCO3 ingestion on human exercise performance 

 
• To evaluate the effects of NaHCO3 ingestion on exercise capacity over a range of 

exercise intensities in the same participants 

 
• To evaluate the effects of elevated levels of NaHCO3 on dynamic isolated muscle 

performance undergoing cyclical length changes 

 
• To evaluate how a change in training status might affect the efficacy of NaHCO3 

ingestion as an ergogenic aid  
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Chapter 2 – Literature Review 

 

2.1 Introduction 

 

Skeletal muscle fatigue as a result of high-intensity exercise is extremely complex, 

multi-factorial and is still not fully understood (Noakes 2000, Begum, Cunliffe, and Leveritt 

2005, Allen, Lamb, and Westerblad 2008, Artioli et al. 2010, Debold 2012). Furthermore, the 

numerous possible contributory factors are likely to vary and interact differently between 

individuals based on genetics, environmental conditions, training status / methods and 

dietary manipulation. However, based on the premise of this thesis, only fatigue based on 

specific metabolite accumulation will be examined (Figure 2.1). As such, the remaining 

content will focus on how NaHCO3 might attenuate exercise induced perturbations in acid-

base homeostasis. 

 

Figure 2.1 Possible sites/mechanisms of fatigue during high-intensity exercise (Begum, 

Cunliffe, and Leveritt 2005) 

This item has been removed due to third party copyright. The unabridged version of the thesis can 
be viewed at the Lanchester Library, Coventry University.
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To provide suitable context to the issues addressed by this the physiological and 

biochemical basis of acid-base homeostasis will be examined. Secondly, a review of the 

current literature related to the use of NaHCO3 and its’ effects on whole body and isolated 

skeletal muscle performance will be presented. With respect to whole body research (i.e. in 

humans) key areas for analysis will evaluate how variations in exercise duration, 

administration dosage / timing / method, loading regime, participant training status and 

exercise modality might influence the efficacy of NaHCO3 as an ergogenic aid. With respect 

to exercise modality, there will be a predominant focus on cycling as this is the exercise 

modality adopted within this thesis. However, a variety of other exercise modalities will also 

be analysed, albeit in less detail, to provide a fuller picture of the efficacy of NaHCO3 on 

exercise capacity and/or performance. The literature related to the impact of NaHCO3 on 

isolated muscle performance will consider, amongst others aspects variations in 

administration dosage and experimental protocol. 

 

2.1.1 Acid-Base Homeostasis 

 

 Acid-base homeostasis refers to the physiological and biochemical processes that 

take place in both humans and animals which aim to achieve an appropriate biological 

environment for optimal function and acid-base homeostasis is a vital function of living 

organisms (Adrogué and Adrogué 2001, Poupin et al. 2012). The status of this biological 

environment results from the balance between acids and bases that are produced / 

eliminated during biological functions. An acid is defined as any compound which forms 

hydrogen ions (H+) in solution and is often referred to as a proton donor. A base is defined 

as a compound that combines with H+ in solution and thus is often referred to as a proton 

acceptor (Drage and Wilkinson 2001). The difference in quantity between acids and bases 

within the body (i.e. the modulation of H+) is commonly referred to as acid-base balance 

(McNamara and Worthley 2001). 
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2.1.1.i The Hydrogen Ion and pH 

 

 The hydrogen ion is a single positively charged particle, the proton (H+), which is not 

orbited by any electrons and as such is the smallest ionic particle, and highly reactive. The 

pH scale was developed in order to simplify the quantification of H+ and is calculated as the 

negative logarithm of the H+ concentration. Due to the logarithmic nature of pH a change of 

one unit in pH represents a tenfold change in H+ concentration (Drage and Wilkinson 2001, 

Germann and Stanfield 2005; Equation 1). 

 

    pH = - log(10) [H+]  (Eq. 1) 

    

Equation 1 Formula for calculation of pH; [H+] is the hydrogen ion concentration 

 

  The physiological range for pH in blood plasma is 7.35 to 7.45 and for arterial blood 

7.38 to 7.42. Deviations of pH less than 7.35 and more than 7.45 are known as acidosis and 

alkalosis, respectively. Maintaining pH within the appropriate optimal range is crucial as 

deviations can cause deleterious effects to important physiological proteins such as 

enzymes. Moreover, acidosis can cause a decrease in the excitability of neurons, especially 

in the central nervous system (CNS) as well as cardiac arrhythmias and vasodilation of 

blood vessels to the skin due to impaired activity of catecholamines (Drage and Wilkinson 

2001, Germann and Stanfield 2005).  

 

2.1.1.ii Sources of perturbations of acid-base balance 

 

 Dietary intake can profoundly affect acid-base balance (Greenhaff, Gleeson, and 

Maughan 1988a,b) in the form of H+ from amino acids and fatty acids. Metabolic 

disturbances in acid-base balance can also be due to alterations in renal function, severe 

vomiting or diarrhoea. Additionally, during cellular metabolism a number of acids are 



9 
 

produced such as lactic acid and ketoacids (Germann and Stanfield 2005). However, it is the 

potentially acidotic metabolites (H+ / lactic acid) as a result of high-intensity exercise with 

which this thesis is primarily concerned. 

 

2.1.1.iii Defence against perturbations of acid-base balance 

 

Three key mechanisms defend the body against deleterious changes in acid-base 

balance that occur during high-intensity exercise. They are: (1) intracellular and extracellular 

buffers, (2) respiratory compensation and (3) renal compensation (McNamara and Worthley 

2001). Intracellular and extracellular buffering are biochemical processes which provide an 

immediate response to disturbances in acid-base balance. However, respiratory and renal 

compensation are slower reacting physiological processes which take minutes (respiratory), 

hours or even days (renal) to correct an acid-base disturbance. For example, within minutes 

of a decrease in blood pH, peripheral chemoreceptors activate an increase in alveolar 

ventilation thereby reducing pCO2. Given that CO2 is in equilibrium with H+ and HCO3
-, the 

law of mass action dictates that H+ and HCO3
- are reduced and as a consequence blood pH 

is elevated. If the acid-base disturbance is more chronic, perhaps through severe vomiting or 

diarrhoea, the renal system can compensate for changes in pH. The kidneys regulate 

decreases/increases in pH by increasing/decreasing H+ secretion and increasing/decreasing 

HCO3
- reabsorption, respectively. The kidneys can also synthesise new HCO3

- if the 

coupling process of increasing H+ secretion and HCO3
- reabsorption are insufficient to 

regulate reductions in pH (Germann and Stanfield 2005). Although it is acknowledged that all 

three play important biological roles, due to this thesis focussing on relatively short duration 

high-intensity exercise only intracellular and extracellular buffering will be discussed in the 

following section. 

 

2.2 Acid-base buffering 
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 An acid-base buffer is a compound that minimises changes in pH when an acid or 

base is added to, or removed from, a solution (McNamara and Worthley 2001) and is the 

initial defence against changes in pH (Adrogué and Adrogué 2001). The three main 

physiochemical buffers are: (1) bicarbonate ions [HCO3
-], (2) proteins and phosphates and 

(3) haemoglobin. Because a buffer must be able to release and bind H+ it is both an acid and 

a base (Drage and Wilkinson 2001, Germann and Stanfield 2005).  

  

2.2.1 Bicarbonate [HCO3
-] 

 

The bicarbonate/carbonic acid [HCO3
- / H2CO3] system is regarded as the major 

buffering system in the body (Cordat and Casey 2009, Poupin et al. 2012). This system 

functions in both the intracellular and extracellular fluid through the reversible reaction 

displayed in equation 2: 

 

HCO3
- + H+       H2CO3  CO2 + H2O      CO2        (Eq. 2) 

 

Equation 2 Interaction between HCO3
- and H+ in acid-base buffering (Robergs 2002) 

 

 The [HCO3
- / H2CO3] system functions with a pK’ of ~ 7.4, where pK’ refers to the pH 

at which half of the acid molecules are deprotonated (Robergs 2001). In other words this is 

the pH when there is equilibrium between the H+ that leaves and the H+ that re-attach to the 

acid functional group of the molecule. Strong acids have a pK’ much lower than ~ pH 7.0 

and weak acids have a pK’ much closer to ~ pH 7.0 (Robergs 2001, 2002).  However, 

because [HCO3
-] in isolation has a pK’ of 10.2 and [H2CO3] has a pK’ of 3.77 there is often 

confusion as to why the bicarbonate system is the body’s main blood buffer at physiological 

pH (Robergs 2002). Equation 2 is often shortened by exercise physiologists and in doing so 

fails to highlight the full range of reactions that take place that facilitate maintenance of acid-

base homeostasis (i.e. pK’ of ~ 7.4). The following three reaction constants (K1, 2, 3) are key 

Carbonic 
Anhydrase 
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to the [HCO3
- / H2CO3] system as described in equation 2, with the latter seemingly most 

unacknowledged in the exercise physiology literature. Most importantly it is the combination 

of K1, 2, 3 which raises the pK’ of this buffering system to ~ 7.4 making it very effective within 

the physiological pH range (Robergs 2002). 

  
K1= [H+] [HCO3

-] / [H2CO3] 

 K2 = [H2CO3] / [CO2d] [H2O] 

 K3 = [CO2d] / [CO2g] 

 Where KN = reaction constant; CO2d = dissolved CO2 and CO2g = gaseous CO2 

 
The active centres of the sarcolemma bound carbonic anhydrase (CA) isoforms 

(CAIV and CAXIV) are orientated towards the extracellular space. In accelerating the 

hydration/dehydration reaction outlined in equation 2, CAIV and CAXIV play crucial roles in 

maintaining sufficient release of H+ and lactate from skeletal muscle (Messonier et al. 2007) 

presumably in conjunction with monocarboxylate transporters (MCTs). Moreover cytosolic 

isoforms of CA (CAII and CAIII) might also play an important role in muscle pH and muscle 

lactate regulation during high-intensity exercise (Messonier et al. 2007). 

 

2.2.2 Proteins and phosphates 

 

Due to the amine (NH2) and carboxylic acid (COOH) groups, proteins also function 

as acid-base buffers. Owing to the relative alkalinity of blood plasma, proteins exist in their 

anionic form and act as bases by binding excess H+ (Equation 3). Examples of proteins that 

contribute to intracellular buffering capacity are histidine residues of proteins, free histidine 

and dipeptides such as carnosine and anserine (Begum, Cunliffe, and Leveritt 2005).  

 

NH2-protein-COO- + H+            NH2-protein-COOH (Eq. 3) 

 

Equation 3 Buffering of H+ by anionic proteins (Poupin et al. 2012) 
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Further excess H+ can also be added to an uncharged protein (Equation 4). Since 

both buffering reactions with proteins are reversible, proteins can also act as acids by 

releasing H+.  

 

NH2-protein-COOH + H+                NH4
+-protein-COOH     (Eq. 4) 

 

Equation 4 Buffering of H+ by uncharged proteins (Poupin et al. 2012) 

 

 Disodium hydrogen phosphate (Na2HPO4) and hydrogen phosphate (HPO4
2-) can 

also remove excess H+. This is in the form of urinary phosphate (H2PO4
-) and can be 

demonstrated through the following reactions (Equations 5 and 6):  

 

 Na2HPO4              HPO4
2-+ 2Na+         (Eq. 5) 

 HPO4
2- + H+          H2PO4

-      (Eq. 6) 

 

Equations 5 and 6 Buffering of H+ with disodium hydrogen phosphate (Na2HPO4) and 

hydrogen phosphate (HPO4
2-; Poupin et al. 2012) 

 

2.2.3 Haemoglobin 

 

 As haemoglobin (Hb) can bind to both CO2 and H+ it has a powerful utility in the 

modulation of acid-base balance. As deoxygenated Hb has the greatest affinity for both CO2 

and H+ the most powerful buffering with Hb occurs in the intracellular space (i.e. tissues). 

Dissolved CO2 passes into red blood cells down its concentration gradient where it combines 

with water to form carbonic acid (Equation 2). Subsequently H+ binds to reduced Hb to form 

HHb with the HCO3
- generated by this process being transported back into the plasma in 

exchange for chloride ions (Cl-; Equation 7). This exchange promotes equilibrium in that 

there is no net loss or gain of negative ions in red blood cells. In the lungs this process is 
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reversed and HHb recombines with HCO3
- to form CO2 which passes into the alveoli. The 

reduced Hb is reformed to return to the tissues (Drage and Wilkinson 2001). 

 

 H2CO3         HCO3
- + H+ + Hb          HHb + [HCO3

-       Cl-]   (Eq. 7) 

 

Equation 7 Buffering of H+ with haemoglobin (Hb; Drage and Wilkinson 2001). 

 

2.2.4 Fractional contribution of buffers 

 

Although the [HCO3
- / H2CO3] system is regarded as the major buffering system in the 

body (Drage and Wilkinson 2001, Poupin et al. 2012) the fractional contribution within the 

intracellular and extracellular environments differ. The [HCO3
- / H2CO3] system accounts for 

36% of intracellular fluid buffering with the remaining 64% buffered by proteins/phosphates. 

In contrast, the [HCO3
- / H2CO3] system accounts for 86% of extracellular fluid buffering, the 

remaining 14% by proteins/phosphates (Adrogué and Adrogué 2001, Poupin et al. 2012). 

Similarly large values for HCO3
- buffering have been observed during exercise in healthy 

male participants. Beaver, Wasserman and Whipp (1986) reported that during incremental 

exercise to exhaustion 92% of H+ is buffered by HCO3
- although the proposed split between 

intracellular and extracellular buffering of H+ is not reported. 

 

2.2.5 Monocarboxylate transporters (MCTs) 

 

Monocarboxylates are pivotal to cellular metabolism and central to their importance 

are their rapid translocation across the plasma membrane facilitated by a specific range of 

proton-linked monocarboxylate transporters (MCTs; Halestrap and Price 1999). According to 

Halestrap and Meredith (2004) only the first four (MCT1–MCT4) have been demonstrated 

experimentally to precipitate the proton-linked transport of metabolically important 

monocarboxylates such as lactate, pyruvate and ketone bodies. Of particular importance 
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during high-intensity exercise is the facilitated diffusion of lactate with a proton (H+) across 

the plasma membrane. Indeed, if efflux of lactic acid does not match production cytosolic pH 

can be compromised by increased intracellular concentrations of H+. This can lead to 

inhibition of important glycolytic enzymes such as phosphofructokinase (PFK; Halestrap and 

Price 1999).  

 

MCT1 is especially prevalent in cardiac and oxidative (red) skeletal muscle 

(Halestrap and Price 1999, Halestrap and Meredith 2004) but is universally expressed. 

According to Halestrap and Price (1999) MCT1 is up-regulated in response to increased 

work and therefore plays an important role in lactic acid oxidation. In contrast, MCT4 is 

dominant where lactic acid efflux is high and is therefore most prevalent in white muscle and 

other cells with a high glycolytic rate. As such both MCT1 and MCT4 play important roles 

during high-intensity exercise (Halestrap and Price 1999). Indeed, Thomas et al. (2005) 

found that endurance trained participants presented with 44% greater MCT1 than less 

trained participants. Moreover, MCT1 expression was negatively correlated (r = -0.56, P < 

0.05) with blood lactate after supramaximal exercise suggesting MCT1 might augment 

tolerance to fatigue. Although MCT4 was not reported to be statistically different between 

groups, MCT4 was 29% higher in trained individuals. This difference also demonstrated an 

extremely large effect size (not published) of 2.5 for differences in MCT4 (3.5 for MCT1) 

suggesting differences in MCT4 might also predispose endurance trained individuals to 

greater levels of fatigue tolerance from intracellular mechanisms. As for MCT1, MCT4 

expression was also negatively correlated (r = -0.61, P < 0.05) with blood lactate after 

supramaximal exercise (Thomas et al. 2005).  

 

 In summary, MCTs play an important role in both cellular metabolism and pH 

regulation. Specifically, MCT1 and MCT4 are important in the context of high-intensity 

exercise and function to facilitate lactate and H+ efflux out of the muscle cell. Therefore, both 
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MCT1 and MCT4 are likely to play important roles in bridging the intracellular and 

extracellular bicarbonate buffering systems during high-intensity exercise. 

 

2.2.6 Buffering during high-intensity exercise 

 

The demand on pH regulation within the muscle cell increases substantially during 

the transition from rest to exercise due to greater metabolic flux (Juel 2006). During brief 

high-intensity exercise with a significant anaerobic glycolysis component there is a 

concomitant increase of lactate (La-) and H+ ions in both working muscle and blood due to 

the accumulation and subsequent disassociation of lactic acid (Thomas et al. 2005, Philp, 

MacDonald and Watt 2005, Thomas et al. 2007). The La- quickly combines with another ion, 

such as Na+, to produce the salt (sodium) lactate (NaLa). The accumulation of lactate and/or 

H+ has been implicated as a cause of muscle fatigue (Matson and Tran 1993, Sahlin, 

Tonkonogi, and Söderlund 1998, Pilegaard et al. 1999, Allen, Lamb, and Westerblad 2008, 

Debold 2012). Nevertheless, as discussed in chapter 1, the ‘lactic acidosis’ theory of fatigue 

still divides academic opinion (Brooks 2001, Robergs, Ghiasvand, and Parker 2004, 

Requena et al. 2005, Lamb and Stephenson 2006, Bangsbo and Juel 2006, Cairns 2006, 

Allen, Lamb, and Westerblad 2008).  

 

As previously described, during high-intensity exercise various buffering mechanisms 

sequester H+ and thus prevent deleterious reductions in blood and muscular pH. As exercise 

progresses the intracellular buffering capacity is eventually exceeded and both lactate and 

H+ diffuse into the blood. Once intracellular buffering capacity is exceeded, the extracellular 

buffering mechanisms are stimulated (Matson and Tran 1993) of which the [HCO3
- / H2CO3] 

system contributes ~ 86% of total extracellular buffering capacity (Adrogué and Adrogué 

2001, Poupin et al. 2012). Therefore, by augmenting the bioavailability of extracellular 

[HCO3
-], through ingestion of NaHCO3, more H+ can be neutralised and exercise capacity 

might be prolonged (Begum, Cunliffe, and Leveritt 2005, Cairns 2006, Edge et al. 2006). 
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Based on this premise a number of researchers have examined the effects of NaHCO3 on 

exercise performance (Lavender and Bird 1989, McNaughton 1992a,b, McNaughton, Ford, 

and Newbold 1997, McNaughton, Dalton, and Palmer 1999, Cameron et al. 2010). 

 

2.3 The effects of NaHCO3 on whole body performance 

 

Attempts to attenuate the perturbations in acid-base homeostasis that occur during 

exercise date back to the early part of the 20th century. Dennig et al. (1931) reported signs of 

performance benefit (indicated as increased ability to accumulate oxygen debt) with induced 

metabolic alkalosis (using [NaHCO3] ingestion) but performance decrement, (indicated as 

decreased ability to accumulate oxygen debt) with induced metabolic acidosis (using 

ammonium chloride [NH4Cl] ingestion) during 15 minutes steady state treadmill running at 

9.3 Km.h-1. Although there are a number of methodological questions about this particular 

study it was the start of a thread of research, which runs to the present day evaluating how 

metabolic “buffers” such as NaHCO3 affect exercise performance. Although research 

examining the efficacy of NaHCO3 on exercise performance dates back to the early part of 

the 20th century the majority of research in this area spans the last 5 decades (Jones et al. 

1977, MacLaren and Morgan 1985, McNaughton 1992a,b, McNaughton, Dalton and Palmer 

1999, Price, Moss and Rance 2003, Vanhatalo et al. 2010).  However, despite the proposed 

biochemical basis for augmented H+ buffering empirical research has delivered varied 

results (Matson and Tran 1993, Ball, Greenhaff and Maughan 1996, Requena et al. 2005, 

McNaughton, Siegler, and Midgley 2008, Price and Simons 2010, Peart, Siegler, and Vince 

2012). The variable results in research evaluating the efficacy of NaHCO3 on exercise 

performance are due, at least in part, to variations in the dosage administered, degree of 

metabolic alkalosis induced, the intensity, duration and nature of the exercise undertaken, 

participant training status and pre-experimental procedures (Matson and Tran 1993, 

Maughan 1999, McNaughton, Siegler, and Midgley 2008, Peart, Siegler, and Vince 2012). 
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The remaining content of this chapter will consider, inter alia, how the aforementioned 

variations in experimental approach impact on the efficacy of NaHCO3 as an ergogenic aid. 

 

2.3.1 Dosage 

 

 Administration dosage plays a significant role as to whether an ergogenic effect is 

observed with NaHCO3 supplementation. Research by McKenzie et al. (1986) consisted of 

completing 6 x 60 s cycling bouts at 125% maximal oxygen uptake (V̇O2MAX) 1 hour after 

ingesting either placebo (PLA), 0.15 g.kg-1 NaHCO3, or 0.3 g.kg-1 NaHCO3. The final bout 

was continued until exhaustion and used as the performance trial. Total work done (TWD) 

and performance time to exhaustion (TLIM) were significantly greater for both NaHCO3 trials 

compared to PLA. However, there were no differences between the NaHCO3 trials for TWD 

and TLIM (133 kJ vs. 133 kJ and 111 s vs. 106 s for the 0.15 g.kg-1 and 0.3 g.kg-1 NaHCO3 

trials, respectively). No differences between the NaHCO3 trials were observed despite 

significantly higher pre-exercise pH and [HCO3
-] for the 0.3 g.kg-1 compared to the 0.15 g.kg-1 

dosage, respectively. However, when analysing the absolute changes in pH (7.42 vs. 7.40) 

and [HCO3
-] (27.9 vs. 25.4 mmol.l-1) it is plausible that such changes were not sufficiently 

biologically different and perhaps contributed to why no difference was observed between 

NaHCO3 trials. Subsequent research by Horswill et al. (1988) demonstrated that despite 

significantly elevated blood bicarbonate levels (26.8 to 30.6 mmol.l -1) and (26.1 to 30.9 

mmol.l -1) with ingestion of 0.15 g.kg-1 and 0.20 g.kg-1 NaHCO3, respectively, there was no 

significant difference in the work performed during a 2 mins cycle sprint compared to PLA or 

0.10 g.kg-1 NaHCO3.  Furthermore, no trend of improvement in work done with increased 

dose was observed. This led the authors to suggest that a specific threshold increase of pH 

was required and that this might be achieved ingesting dosages higher than 0.20 g.kg-1 

NaHCO3 (Horswill et al. 1988). 
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A key study in examining the efficacy of different dosages of NaHCO3 was completed 

by McNaughton (1992a). This study consisted of completing 1 min of sprint cycling on seven 

separate occasions after consuming; a PLA (calcium carbonate [CaCO3], 0.5 g.kg-1; PLA), 

nothing (CON) and NaHCO3 (dosages of 0.1, 0.2, 0.3, 0.4 and 0.5 g.kg-1 NaHCO3). 

Participants completed more work in the 0.2 (P < 0.05), 0.3, 0.4 and 0.5 g.kg-1 (P < 0.005) 

trials compared to CON with the 0.3 g.kg-1 dose facilitating the highest peak power output 

and work done (Figure 2.2). Despite showing no further improvement in performance, the 

0.4 and 0.5 g.kg-1 doses recorded higher levels of gastrointestinal (GI) distress leading the 

authors to conclude that the optimal dose of NaHCO3 for 60 s of sprint cycling is 0.3 g.kg-1, a 

dosage that has since been adopted widely (Kozak-Collins, Burke, and Schoene 1994, 

Horlidge-Horvat et al. 2000, Price and Simons 2010, Cameron et al. 2010, Price and Cripps 

2012). 

 

 

 
Figure 2.2 Peak power (W) during 60 s sprint cycling following control, placebo and doses of 

NaHCO3 of 0.1 to 0.5 g.kg-1. * P < 0.05 compared to CON (redrawn from McNaughton 

1992a). 
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Despite the results from McNaughton (1992a) resulting in 0.3 g.kg-1 becoming the 

‘gold standard’ NaHCO3 dosage, earlier research by Goldfinch, McNaughton, and Davies 

(1988) demonstrated that a higher dose (0.4 g.kg-1 ) facilitated a significantly faster 400 m 

running performance (1.52 s and 1.69 s faster than CON and PLA (CaCO3) respectively). 

This equated to a difference of ~ 10.5 and 11.5 m which was noted to be often the difference 

between first and last place (Goldfinch, McNaughton, and Davies 1988). However, several 

subjects experienced minor acute GI upsets as early as 30 mins post-exercise, and thus 

there appears to be a delicate balance between dosage, performance improvement and 

potential negative side-effects. In summary, to minimise GI discomfort (for human studies) 

and optimise the probability of ergogenic benefit, a dosage of 0.3 g.kg-1 NaHCO3 was 

adopted (McNaughton 1992a). Such a dosage typically achieves an increase of ~ 7 mM 

[HCO3
- ] (25 to 32mM; Price and Singh 2008, Lindh et al. 2008, Cameron et al. 2010, Siegler 

et al. 2010). 

 

2.3.2 Timing of ingestion 

 

Despite the considerable research evaluating NaHCO3 as an ergogenic aid there has 

been little consistency in the timing of exogenous ingestion. Studies have used ingestion 

periods of 3 hours pre-exercise (Jones et al. 19771, Sutton, Jones, and Toews 19812, 

McCartney, Heigenhauser, and Jones 1983), 2.5 hours pre-exercise (Parry-Billings and 

MacLaren 1986, George and MacLaren 19883, Gaitanos et al. 1991, Tiryaki and Atterbom 

1995), 2 hours pre-exercise (Wilkes, Gledhill, and Smyth 19834, Iwaoka et al. 19895, Kozak-

Collins, Burke, and Schoene 1994), 1.75 hours pre-exercise (Webster et al. 1993), 1.5 hours 

pre-exercise (McNaughton 1992b, Linderman et al. 1992, McNaughton, Ford, and Newbold) 

                                                           
1 Ingested over 3 hour period. No detailed schedule provided 

2 Ingested every 15 mins over 3 hours, 

3 Ingested in equal amounts every 30 mins over 2.5 hr period 

4 Ingested over 2 hour period 

5 Ingested 4 sets of capsules every 15 mins 2 hours pre-exercise 
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and 1 hour pre-exercise (Costill et al. 1984, Katz et al. 1984, McKenzie et al. 1986, Gao et 

al. 1988, Goldfinch, McNaughton, and Davies 1988, McNaughton 1992a, Price, Moss, and 

Rance 2003, Price and Simons 2010, Cameron et al. 2010).  

 

To determine the time-course of NaHCO3
 supplementation, Price and Singh (2008) 

measured the post-ingestion blood pH and bicarbonate concentrations every 30 mins for 180 

mins after ingesting a 0.3 g.kg-1 bolus of NaHCO3. The greatest increases in blood pH and 

blood bicarbonate concentration were achieved between 60 and 90 mins and at 60 mins, 

respectively, suggesting that when ingesting a bolus solution of 0.3 g.kg-1 of NaHCO3 an 

ingestion period of ~ 60 mins is likely to provide maximum opportunity for enhancing 

exercise capacity (Figure 2.3). 

 

Figure 2.3 Blood pH and blood bicarbonate concentrations at rest and at 30 minute intervals 

for 3 hours after ingestion of a sodium bicarbonate solution. *Significantly different from 0 

minute (P < 0.05); †significantly different from 60 minutes (P < 0.05). Reproduced in full with 

permission (Price and Singh 2008). 

 

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.
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The data presented by Price and Singh (2008) supports earlier work by Renfree 

(2007) whose research also suggested that optimal H+ buffering occurs between 60 and 90 

mins post-ingestion of 0.3 g.kg-1 of NaHCO3 and later work by Siegler et al. (2010) who 

demonstrated that blood buffering capacity (pH, base excess (BE) and [HCO3
-] measured) 

was significantly elevated after 60 mins when compared to 80, 100 and 120 mins after 

ingestion of 0.3 g.kg-1 NaHCO3. Combined, this evidence suggests that optimal ergogenic 

benefit may be achieved by ingestion 1 hour prior to exercise and, in part, might contribute to 

why some studies that have not observed ergogenic effects (McCartney et al. 1983, Parry-

Billings and MacLaren 1986, Lambert et al. 1993, Kozak-Collins, Burke, and Schoene 1994, 

Stephens et al. 2002).  However, it should be acknowledged that even when a 1 hour 

administration period is chosen, performance benefits are not automatically observed (Katz 

et al. 1984, Horswill et al. 1988, Vanhatalo et al. 2010). Moreover, even when ingestion time 

has not been ‘optimal’, performance benefits have still been observed (Jones et al. 1977, 

Sutton et al. 1981, Iwaoka et al. 1989, Swank and Robertson 1989, Lavender and Bird 1989, 

McNaughton, Ford, and Newbold 1997). Furthermore, Siegler et al. (2010) suggest that 

administration timing is important related to the dosage administered. This research showed 

that peak buffering occurred after 40 to 50 mins after ingesting 0.2 g.kg-1 NaHCO3 compared 

to 60 mins after ingesting 0.3 g.kg-1 NaHCO3, despite no differences in blood buffering 

capacity (pH, BE and [HCO3
-]) between trials. Indeed, such observations provide further 

evidence related to the equivocal nature of research in this area. However, exercise 

performance was not measured by Siegler et al. (2010) and therefore more research is 

required to demonstrate if such changes translate into differences in performance. In 

summary, to optimise the probability of ergogenic benefit, for the human studies in this thesis 

an ingestion period of 60 mins was adopted (Renfree 2007, Price and Singh 2008, Siegler et 

al. 2010). 

  

2.3.3 Pre-experimental procedures 
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Detecting changes outside of daily biological variance in exercise performance / 

capacity is important to nutritional supplementation research (Sewell and McGregor 2008). 

To minimise systematic bias, participants often perform a number of familiarisation tests 

before experimental data is collected (Lavender and Bird 1989, Carey and Richardson 2003, 

Hill et al. 2007). If enough such trials are undertaken, learning effects or other systematic 

changes are reduced sufficiently so that reliable performance data can be collected (Hopkins 

2000).  However, in the research evaluating the efficacy of NaHCO3 on exercise 

performance / capacity there is little consistency of approach in this regard which is likely to 

have contributed to the inconsistent experimental results (Requena et al. 2005). For 

example, a number of studies incorporating TLIM do not appear to have employed any 

familiarisation trials (Katz et al. 1984, Costill et al. 1984, McKenzie et al. 1986, Iwaoka et al. 

1989, Kozak-Collins, Burke, and Schoene 1994, Price and Simons 2010) whilst others don’t 

provide enough information to evaluate pre-experimental trial procedures (Rupp et al. 1983, 

MacLaren and Morgan 1985). Research using other exercise protocols is similarly 

inconsistent. For example, some studies do not report that participants undertook any 

familiarisation trials prior to experimental trials (Verbitsky et al. 1997, Price, Moss, and 

Rance 2003) and although McNaughton, Ford and Newbold (1997) afforded participants one 

control/habituation trial before experimental trials (60 s maximal work on cycle ergometer) 

participants were not given a warm up. Furthermore, although Mitchell et al. (1990) afforded 

participants two familiarisation trials, these were separated by 4 to 12 weeks. Such a time 

lag between trials is unlikely to have been suitable in fully familiarising participants to the 

experimental protocol. In contrast Lavender and Bird (1989) incorporated three full 

familiarisation sessions prior to experimental data collection. 

 

Despite being the most reliable physical performance test (Hopkins, Schabort, and 

Hawley 2001) due to the wide range of possible exercise modalities and protocols there is a 

relative paucity of research evaluating the reliability of TLIM. As already stated, at the time of 

commencing this research (Jan 2010) no research had reported the reliability of 110% TLIM 
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using the minimum of 3 trials as recommended by Hopkins (2000). However, we 

acknowledge a recent publication by Saunders et al. (2012) who addressed the reliability of 

TLIM at 110% WMAX, which was published whilst our work was under peer review. Our 

approach in evaluating the reliability of 110% WMAX TLIM can be found in chapter 4 (study 1). 

 

2.3.4 Exercise duration 

 

 Despite the biochemical basis for exogenous NaHCO3 supplementation providing 

performance benefits, research has failed to provide consistent and positive performance 

effects. For example, Parry-Billings and MacLaren (1986) failed to demonstrate ergogenic 

benefit during 3 x repeated Wingate anaerobic test (WAnT) performance (6 mins between 

bouts). However, the duration of exercise (30 seconds) might have been insufficient for 

beneficial results. Although glycogenolytic processes are initiated almost immediately during 

maximal dynamic exercise (Boobis, Williams, and Wootton 1982, Spriet 1990, Smith and Hill 

1991) maximum rates of glycolysis appear to occur after ~ 10 to 15 s during a WAnT test in 

healthy participants (Smith and Hill 1991). It should be pointed out here that Smith and Hill 

(1991) did not directly measure the glycolytic response. This was calculated based on a 

number of assumptions and derived by subtracting the ATP-PCr and aerobic contributions 

from the total work performed. As such, it is plausible that some small deviations from these 

figures might occur when directly measuring glycolytic response.  Irrespective of such 

potential small deviations during a WAnT test in healthy non-trained individuals a significant 

contribution to ATP re-synthesis is likely derived from the creatine kinase (CK) reaction. This 

biochemical process absorbs protons and therefore acts as an initial cellular buffer by 

minimising falls in pHi. Consequently, exogenously delivered HCO3
- might have limited effect 

because the maximum buffering capacity is not utilised during that timeframe (Parry-Billings 

and MacLaren 1986). The lack of ergogenic benefit when ingesting NaHCO3 prior to high-

intensity exercise of less than 1 min has further support in the literature (McCartney et al. 

1983, Katz et al. 1984, McNaughton 1992b) although this is not universal (Bishop et al. 
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2004, Douroudos et al. 2006). Interestingly, the contribution of aerobic and anaerobic energy 

sources during a WAnT also differs based on training status. For example, Granier et al. 

(1995) demonstrated that during a 30 s WAnT the contribution from aerobic and anaerobic 

energy sources for sprinters was ~ 25% and ~ 75%, respectively, and for endurance 

runners, ~ 40% and 60%, respectively. Therefore, training status and associated 

morphology (i.e. fibre type distribution) are likely to be important in evaluating performance 

outcomes (section 2.3.5).  

 

McNaughton (1992b) demonstrated that NaHCO3 ingestion had no effect on total 

work (TWD) and peak power (PPO) for cycling trials of 10 s and 30 s duration. However, 

PPO was significantly greater than CON and PLA for the trials lasting 120 s and 240 s. This 

equated to a ~ 8% greater PPO in the 120 s trial (both conditions) and 8.5% and 12% higher 

PPO in the 240 s trial for NaHCO3 compared to CON and PLA, respectively (Figure 2.4). 

The ergogenic effects were mirrored by significantly greater blood lactate (BLa) 

concentrations, whose augmented transfer out of the cell is likely to account for at least part 

the extra work completed in NaHCO3 trials (McNaughton 1992b).  

 

Figure 2.4 Peak power (W) during 10 s, 30 s, 120 s and 240 s high-intensity cycling 

following 0.3 g.kg-1 NaHCO3, 0.3 g.kg-1 CaCO3 (placebo) and nothing (CON). * P < 0.05 vs. 

CON and PLA of same duration (redrawn from McNaughton 1992b). 
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Previous research by Costill et al. (1984) involved participants completing four 1 min 

cycling bouts at 125% V̇O2MAX (1 min rest between bouts) with a 5th until exhaustion (TLIM) 

after consuming either 0.2 g.kg-1 of NaHCO3 or a 1 g NaCl drink. Both were dissolved in 400 

ml of water and consumed 1 hour before exercise. TLIM was 42% longer for alkalosis 

compared to PLA with times of 161 s and 114 s respectively (P < 0.01). Such work supports 

the hypothesis provided by Katz et al. (1984) who found no significant difference in TLIM for 

induced alkalosis compared to PLA using a single cycling bout of 125% V̇O2MAX but 

hypothesised that increasing exercise time through repeated bouts, presumably of similar 

intensity / duration, would likely result in an ergogenic effect being observed.  In contrast, 

Bouissou et al. (1988) found a 22% increase in TLIM at 125% V̇O2MAX in trained runners 

undertaking cycling exercise after 0.3 g.kg-1 NaHCO3. However, Katz et al. (1984) used a 

dosage of 0.2 g.kg-1 NaHCO3 and did not adopt any familiarisation trials which, in addition to 

difference in training status, might help explain differences in exercise capacity between the 

results presented by Katz et al. (1984) and Bouissou et al. (1988). 

 

Although the vast majority of research evaluating the efficacy of NaHCO3 

supplementation has adopted short-term high-intensity exercise protocols (up to ~ 10 mins) 

McNaughton, Dalton, and Palmer (1999) reported that participants performed significantly 

greater work (14%; P < 0.01) for NaHCO3 compared to PLA and CON during 1 hour cycling.  

To optimise performance (i.e. maximum work done) during the 1 hour cycling participants 

had to cycle at or above the lactate threshold and therefore NaHCO3 supplementation might 

have allowed for greater contractile performance due to augmented efflux of lactate and H+ 

from working muscles (McNaughton, Dalton, and Palmer 1999). In summary, NaHCO3 

seems most likely to exert ergogenic benefit during high-intensity exercise of 1 to 7 mins 

(Linderman and Fahey 1991, Matson and Tran 1993, Linderman and Gosselink 1994) or 

where participants exercise at or above the lactate threshold (McNaughton, Dalton, and 

Palmer 1999). Indeed, Requena et al. (2005) suggested that the equivocal nature of results 

in this area might be due to not all exercise protocols challenging muscle buffering capacity 
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equally. Therefore buffer efficacy might be, at least in part, protocol specific. Interestingly, 

the effects of NaHCO3 on exercise capacity over a range of durations within the same 

population have yet to be confirmed. Such evidence might help elucidate how NaHCO3 

affects exercise capacity (Price and Simons 2010) and confirm whether individuals can be 

classified as either responders or non-responders to NaHCO3 (Price and Simons 2010, 

Saunders et al. 2011). As such, we evaluated the effects of NaHCO3 on exercise capacity 

over a range of durations within the same population (study 2, chapter 5). 

 

2.3.5 Training status 

 

The wide variation in participant training status (both between and within studies) 

might also affect results in the area of NaHCO3 research. Male participant cohorts have 

included trained adult cyclists (Linderman et al. 1992), runners (Wilkes, Gledhill, and Smyth, 

1983, Goldfinch, McNaughton, and Davies 1988, Bird, Wiles, and Robbins 1995), wrestlers 

(Aschenbach et al. 2000), rugby players (Cameron et al. 2010) trained youth swimmers 

(Zajac et al. 2009) and moderately trained individuals (Iwaoka et al. 1989, Price, Moss, and 

Rance 2003, Price and Simons 2010). Female participant cohorts have included well trained 

adult cyclists (Kozak-Collins, Burke, and Schoene 1994) and moderately trained individuals 

(McNaughton, Ford, and Newbold 1997). As such it’s plausible that such cohort 

heterogeneity, where effects might also differ between exercise modes, could contribute to 

the equivocal results observed in this research area. 

 

Linderman et al. (1992) examined the effects of NaHCO3 on TLIM at 100% V̇O2MAX in 

well trained cyclists. The authors reported no ergogenic benefit and suggested that the 

highly trained status of their participants may have, at least partly, negatively affected the 

ability of NaHCO3 to demonstrate ergogenic benefit. Similarly, Brien and McKenzie (1989) 

suggested the lack of ergogenic benefit observed after NaHCO3 ingestion in Olympic rowers 

might be related to a greater intracellular buffer capacity. Finally, Aschenbach et al. (2000) 



27 
 

speculated that the highly adapted qualitative musculature of the well trained wrestlers in 

their study may have contributed to why no ergogenic benefit was observed. Specifically, 

Aschenbach et al. (2000) suggested that their well trained participants might possess a high 

intracellular buffer capacity of carnosine which leaves little room for augmented extracellular 

buffering to be utilised. This is supported by Parkhouse et al. (1985) who demonstrated that 

marathon runners and untrained subjects had significantly lower levels of intracellular 

carnosine and overall buffering capacity than rowers or sprint-trained individuals, grouped 

respectively.  Moreover, they also reported low/moderate but significant interrelationships 

between buffer capacity and carnosine levels (r = 0.69), buffer capacity and fast-twitch fibre 

composition (r = 0.51) and carnosine levels and fast-twitch fibre composition (r = 0.46). It 

was speculated that elevated carnosine levels and buffering capacity might be a function of 

high-intensity training (Parkhouse et al. 1985). Indeed, Suzuki et al. (2004) reported a 113% 

increase in carnosine levels after 8 weeks cycling sprint training in untrained males.  

 

Begum, Cunliffe, and Leveritt (2005) suggest that cells have evolved different proton 

buffering mechanisms to defend against changes in intracellular pH. They suggest 

intracellular non-bicarbonate buffering is predominated by the imidazole group which exists 

in free histidine, histidine residues and dipeptides such as carnosine (Figure 2.5). Therefore, 

whilst NaHCO3 may be an effective extracellular buffer, other non-bicarbonate buffering 

mechanisms, such as carnosine, might preclude NaHCO3 from demonstrating an ergogenic 

effect in specific trained populations (Parkhouse et al. 1985, Brien and McKenzie 1989, 

Matson and Tran 1993, Aschenbach et al. 2000, Derave et al. 2010). 
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Figure 2.5 Metabolism of carnosine (Begum, Cunliffe, and Leveritt 2005). 

 

The relationship between training status and observation of ergogenic benefit with 

NaHCO3 ingestion is not definitive.  Ergogenic benefit with NaHCO3 supplementation has 

been reported in highly trained runners (Goldfinch, McNaughton, and Davies 1988, Bird, 

Wiles, and Robbins 1995) and cyclists (Driller et al. 2012ab). Furthermore, McNaughton, 

Dalton, and Palmer (1999) reported that well trained cyclists performed significantly greater 

work (14%) for NaHCO3 compared to PLA and CON during 1 hour cycling. Paradoxically, a 

study using a protocol of similar duration to that adopted by McNaughton, Dalton, and 

Palmer (1999) found that time to complete a fixed amount of work (~ 470 kJ, ~ 30 mins) after 

an initial 30 mins at ~ 77% V̇O2PEAK was unaffected by NaHCO3 supplementation (Stephens 

et al. 2002). However, small, yet important, differences in experimental methodology 

(ingestion period, exercise protocol) might have played a role in the differing results for 

Stephens et al. (2002). Finally, it is possible that despite selection of potentially inappropriate 

participants (i.e. endurance trained athletes completing an all-out maximal type protocol) 

ergogenic effects might still be observed (Van Montfoort et al. 2004). The mechanisms are 

somewhat unclear but could be related to the specific interval training undertaken by these 

athletes, distance runners, which included brief high-intensity efforts (Van Montfoort et al. 

This item has been removed due to third party copyright. The unabridged 
version of the thesis can be viewed at the Lanchester Library, Coventry 

University.
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2004). Such training is likely to provide an appropriate experimental (i.e. familiarity with 

exercise intensity) and physiological (i.e. sufficient type II muscle fibre development) 

environment to optimise the chance of ergogenic benefit of NaHCO3. Moreover, it is 

plausible that a lack of volume of high-intensity training, such as in sprinters, in these 

individuals did not augment intracellular buffering sufficiently to negate the utilisation of 

augmented extracellular buffering from NaHCO3. However, this is largely speculative and 

warrants further investigation. 

 

Although a number of studies have examined the effects of NaHCO3 ingestion 

immediately prior to high-intensity training on a variety of physiological and performance 

parameters (Edge, Bishop, and Goodman 2006, Thomas et al. 2007, Bishop et al. 2010, 

Driller et al. 2012c), no research has evaluated the efficacy of NaHCO3 supplementation 

after a change in training status (i.e. before and after (not during) a period of training). As an 

individual’s training status might affect responses to NaHCO3 during exercise (Linderman et 

al. 1992, Aschenbach et al. 2000) and because untrained individuals are more likely to 

observe ergogenic benefit than trained individuals (Peart, Siegler, and Vince 2012) we 

evaluated the efficacy of NaHCO3 on exercise capacity in non-cycling trained males before 

and after 6 weeks high-intensity cycling training (study 4, chapter 7). Similar research has 

demonstrated training induced physiological changes (i.e. augmented levels of intracellular 

carnosine) that might impact the efficacy of NaHCO3 in this population (Suzuki et al. 2004). 

 

2.3.6 Exercise Mode 

  

The efficacy of NaHCO3 as an ergogenic aid has been examined in numerous 

exercise modes including running (Kindermann, Keul, and Huber 1977, MacLaren and 

Mellor 1985, Potteiger et al. 1996, Price and Simons 2010), leg press capacity (Webster et 

al. 1993, Portington et al. 1998), isokinetic knee flexion and extension (Coombes and 

McNaughton 1993), swimming (Pierce et al. 1993, Lindh et al. 2008, Pruscino et al. 2008), 
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2000 m rowing performance (Nielsen et al. 2002, Carr, Gore, Dawson 2011, Carr et al. 2012, 

Kupcis et al. 2012), water polo (Tan et al. 2010), skilled tennis performance (Wu et al. 2010), 

bench press performance (Materko, Santos, and Novaes 2008), forearm exercise (Raymer 

et al. 2004), judo (Artioli et al. 2006) and boxing performance (Siegler and Hirscher 2010). 

However, despite such a wide variety of exercise modes the majority of research evaluating 

the effects of NaHCO3 on exercise performance has used cycling as the exercise mode 

(Matson and Tran 1993). As such the main focus of this section will be to review the effects 

of NaHCO3 on cycling performance. Moreover, due to the amount of data related to NaHCO3 

and cycling performance and thus the potential for evaluation against new research, cycling 

was the exercise mode chosen for all whole body studies in this thesis (chapters 4, 5 and 7). 

 

2.3.6.i Cycling 

 

 Research examining the efficacy of NaHCO3 on cycling performance / capacity 

extends over at least 5 decades (Table 2.1). Jones et al. (1977) reported that TLIM at 95% 

V̇O2MAX was 62% and 174% greater for NaHCO3 compared to CON (CaCO3) and metabolic 

acidosis (ACD: NH4Cl), respectively, following 20 mins of exercise at 33% and 66% V̇O2MAX. 

Similarly Sutton et al. (1981) and Rupp et al. (1983) reported large ergogenic benefits of 

19% and 34% compared to CON trials (CaCO3 and lactose, respectively). In contrast Katz et 

al. (1984) found no difference between treatments for TLIM cycling at 125% V̇O2MAX although 

the authors subsequently hypothesised that adopting repeated bouts, presumably at the 

same or similar intensity with short recovery periods, would likely result in an ergogenic 

effect being observed. Indeed, MacLaren and Morgan (1985) found that TLIM cycling at 100% 

V̇O2MAX was 14% greater than PLA. In contrast, Bouissou et al. (1988) found a 22% increase 

in TLIM for trained runners undertaking cycling at 125% V̇O2MAX after ingesting 0.3 g.kg-1 

NaHCO3. However, differences in training status, and the fact that participants in the Katz et 

al. (1984) study ingested less NaHCO3 (0.2 g.kg-1) might have contributed to the differences 

in results between studies. A number of studies have also evaluated NaHCO3 on repeated 
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sprint cycling. Costill et al. (1984) and McKenzie et al. (1986) demonstrated that TLIM was 

42% and 45% longer for NaHCO3 compared to PLA in the final 1 min bout, of 5 and 6 bouts 

respectively, with 1 min rest between bouts, at 125% V̇O2MAX. 

 

A key study on repeated sprint cycling performance was undertaken by Lavender 

and Bird (1989). Twenty-three participants completed 10 x 10 s maximal sprints with 50 

seconds rest between each sprint after either NaHCO3 (ALK) or NaCl (PLA) at WAnT load 

(i.e. 7.5% body mass). These experimental trials were repeated three times for each 

treatment following three familiarisation trials. A further two trials were completed with an 

inert substance (CON; blackcurrant juice) to evaluate any possible ergogenic effects of the 

original PLA (NaCl). Mean power output (MPO) and peak power output (PPO) was 

significantly greater for ALK compared to PLA for 8/10 sprints (incl sprints 5-10) and sprints 

2 and 10, respectively. Interestingly, PLA also showed ergogenic benefit compared to CON 

in both MPO and PPO for sprints 7, 10 and 6, 7, 8, respectively (Lavender and Bird 1989). In 

contrast, Matsuura et al. (2007) reported no differences in MPO and PPO between ALK 

(NaHCO3) and PLA (CaCO3) after 10 x 10 s cycle sprints interspersed with either 30 s or 360 

s recovery.  However, it’s plausible that the different work-to-rest ratios and the subsequent 

physiological responses contributed to the differences in results. Bishop et al. (2004) 

evaluated the effects of NaHCO3 (ALK) on 5 x 6 s all-out sprints every 30 s. Work  done and 

PO were significantly greater during sprints 3, 4, and 5 for ALK compared to CON. In 

contrast Kozak-Collins, Burke, and Schoene (1994) reported no difference in the number of 

1 min intervals completed at 95% V̇O2MAX (followed by 1 min recovery at 60 W) between ALK 

(10 ± 0.9) and an equimolar dose of NaCl (PLA; 8.4 ± 0.9). 

 

Price, Moss, and Rance (2003) examined the effect of NaHCO3 using an exercise 

protocol resembling the intermittent profile of sports such as hockey or rugby. Participants 

completed repeated 3 minute blocks for 30 mins consisting of 90 s at 40% V̇O2MAX, 60 s at 

60% V̇O2MAX, 14 s maximal efforts followed by 16 s active rest after ingestion of either 
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NaHCO3 (ALK) or NaCl (PLA). The authors reported that ALK enabled sprint performance to 

be maintained similar to initial maximal sprint efforts whereas sprint performance declined for 

PLA. In a longer protocol, consisting of 2 x 36 mins periods of intermittent exercise (IST) 

Bishop and Claudius (2005) reported no significant performance differences (total work) 

between treatments in either period of the IST. However, 7 out of 18 of the second half 

sprints produced significantly more work for NaHCO3 compared to PLA.  

 

The efficacy of NaHCO3 on more traditional endurance cycling capacity has also 

been reported. Stephens et al. (2002) reported no difference in TLIM (~ 80% V̇O2PEAK: aim to 

complete set amount of work) between ALK and CaCO3 (PLA) after an initial 30 mins at ~ 

77% V̇O2PEAK, in trained cyclists. Similarly, Mitchell et al. (1990) reported no difference in TLIM 

at ~ 80 V̇O2MAX between ALK and PLA (intravenously administered NaHCO3 and NaCl, 

respectively) although both were significantly greater than CON (no infusion). This suggests 

that an exercise intensity ≥ 80 V̇O2MAX might be required to observe ergogenic benefit with 

ALK. In contrast, McNaughton, Dalton, and Palmer (1999) reported that MPO was ~ 14% 

greater for ALK compared to PLA and CON for trained cyclists (265 W (951 kJ) compared to 

233 W (839 kJ) and 232 W (836 kJ) respectively) during 60 mins maximal work.  
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Table 2.1 Summary of research that has evaluated the ergogenic effects of NaHCO3 on cycling capacity and/or performance. 

 

Author(s) NaHCO3 
Dosage 
(g.kg-1 body 
mass) 

Protocol n Results Ergogenic 
Benefit 

Jones et al. 
(1977) 

0.3 g.kg.-1 20 mins each at 33% and 66%  V̇O2MAX 
and then 95%  V̇O2MAX until fatigue after: 
(1) CaCO3 (CON), (2) NH4Cl (ACD) and 
(3) NaHCO3 (ALK) 

5 males TLIM @ 95% V̇O2MAX were 438 +/- 120 s, (ALK), 
160 +/- 22 s (ACD) and 270 +/- 13 s (CON). This 
equates to 62% and 174% greater TLIM for ALK 
than CON and ACD respectively  

Yes 

Sutton et al. 
(1981) 

0.3 g.kg.-1 20 mins each at 33% and 66%  V̇O2MAX  
and then 95%  V̇O2MAX  until fatigue 
after: (1) CaCO3 (CON), (2) NH4Cl 
(ACD) and (3) NaHCO3 (ALK) 

5 males TLIM @ 95% V̇O2MAX was significantly greater for 
ALK compared to ACD and greater for ALK 
compared to CON and CON compared to ACD ( 
both n/s) with times of 5.44 +/- 1.05 min (ALK), 
3.13 +/- 0.97 min (ACD) and 4.56 +/- 1.31 min 
(CON). This equates to 73%  and 19% greater 
TLIM for ALK than ACD  and CON respectively  

Yes 

Rupp et al. 
(1983) 

0.3 g.kg.-1 20 mins at 66% V̇O2MAX, 95% until 
fatigue under after:(1) NaHCO3 (ALK) 
(2) Lactose (PLA) 

4 males TLIM was 34% higher with ALK Yes 

Inbar et al. 
(1983) 

Inconsistent 
data reported 

30 s WAnT test against 4.41 J per pedal 
revolution per kg body weight after: (1) 
NaHCO3 (ALK) and (2) NaCl (PLA) 

13 males (active 
not  trained) 

Significantly higher mean power outputs (1.3 %) 
were observed with NaHCO3 ingestion compared 
to PLA. This was observed in 11 / 13 participants 

Yes 

McCartney et 
al. (1983) 

0.3 g.kg.-1 30 s Maximal effort at 100 rev.min-1 

under 4 conditions: (1) CaCO3 (PLA), (2) 
NH4Cl (ACD), (3) NaHCO3 (ALK), (4) 
Respiratory Acidosis (5% CO2 
humidified air inspired) 

6 males 
(regularly  
active) 

Maximal PPO, MPO and TWD were lower for 
ACD but not significantly different to ALK 

No 

Kowalchuk, 
Heigenhauser, 
and Jones 
(1984) 

0.3 g.kg.-1 Continuous incremental cycling test (+ 
0.2 kg.min-1) after: (1) CaCO3 (PLA), (2) 
NH4Cl (ACD), and (3) NaHCO3 (ALK) 

6 healthy males TLIM was 7% and 8% greater for ALK and CON 
compared to CON, respectively. No difference 
was observed between ALK and CON 

No 
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Author(s) NaHCO3 
Dosage 
(g.kg-1 body 
mass) 

Protocol n Results Ergogenic 
Benefit 

Costill et al. 
(1984) 

0.2 g.kg-1 5 x 1 min bouts at 125% V̇O2MAX (1 min 
rest), 5th until fatigue after: (1) NaHCO3 
(ALK) and (2) PLA (NaCl) 

10 males, 1 
female 

TLIM was 42% higher for the ALK trial compared to 
PLA with times of 161 s and 114 s respectively 

Yes 

Katz et al. 
(1984) 

0.2 g.kg.-1 

(per 6ml 
solution) 

TLIM at W 125% V̇O2MAX after: (1) 
NaHCO3 (ALK) and (2) NaCl (PLA) 

8 males TLIM was not significantly different between trials No 

MacLaren & 
Morgan (1985) 

0.25 g.kg-1 TLIM at 100% V̇O2MAX after NaHCO3 
(ALK) or placebo (PLA) 

7 males TLIM was significantly longer for NaHCO3 (14%) 
compared to PLA 

Yes 

McKenzie et al. 
(1986) 

0.15 and 0.3 
g.kg-1 

6 x 1 min bouts at 125% V̇O2MAX (1 min 
rest), 6th until fatigue under two 
conditions: under 3 conditions: (1) Low 
NaHCO3 (LOW), (2) High NaHCO3 
(HIGH) and (3) Placebo (PLA) 

6 males TWD was significantly higher for LOW and HIGH 
compared to PLA but there were no differences 
between LOW and HIGH trials. TLIM was also 
significantly higher (~ 45%)  for ALK compared to 
PLA 

Yes 

Parry-Billings & 
MacLaren 
(1986) 

0.3 g.kg.-1 3 x 30 s WAnT (6 mins recovery) under 
4 conditions: (1) PLA (NaCl), (2) ALK1 
(NaHCO3), (3) ALK2 (NaCit), (4)COMB 
(NaHCO3 + NaCit) 

6 males (active) Mean and peak power were significantly reduced 
by successive WAnT tests but no differences  
between treatments 

No 

Bouissou et al. 
(1988) 

0.3 g.kg.-1 TLIM at 125% V̇O2MAX after: (1) CaCO3 
(PLA) and (2) NaHCO3 (ALK) 

Six healthy 
males (runners) 

TLIM was 22% greater for ALK compared to PLA Yes 

Horswill et al. 
(1988) 

0.10,  0.15,  
and 0.20 
g.kg-1 

4 x 2 mins sprints under 4 conditions: (1) 
PLA, (2) 0.10 g.kg-1 (LOW), (3) 0.15 g.kg 
(MED) and 0.20 g.kg-1 (HIGH) NaHCO3 

9 males 
(endurance 
trained) 

Work performed during 2 mins cycle sprint was 
not significantly different between ALL trials 
despite elevated HCO3 levels post ingestion for 
MED and HIGH 

No 

Iwaoka et al. 
(1989) 

0.2 g.kg-1 Cycling at 40% V̇O2MAX for 40 mins, then 
15 mins at 12% above RCT (respiratory 
compensation threshold) and then TLIM 
at 95% V̇O2MAX after (1) NaHCO3 (ALK) 
(2) Starch (PLA)  

6 males (1) TLIM for ALK was significantly greater (49%) 
than PLA (2.98 min vs. 2.00 min; P < 0.05) 

Yes 
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Author(s) NaHCO3 
Dosage 
(g.kg-1 body 
mass) 

Protocol n Results Ergogenic 
Benefit 

Lavender and 
Bird (1989) 

0.3 g.kg -1 

(200ml 1hr 
and 200ml 
2hrs pre) 

10 x 10 s maximal sprints with 50 
seconds rest between each one (against 
pre-calculated load from WAnT test) 
under 3 conditions: (1) 3 x NaHCO3, (2) 
3 x  PLA (NaCl), (3) 2 x CON 

8 males and 15 
females (n = 12 
for CON) 

MPO was significantly greater for ALK than PLA 
for 8/10 sprints (incl sprints 5-10) and PPO was 
greater in sprints 2 and 10.  PLA showed  
ergogenic effect vs. CON in both MPO and PPO 
for sprints 7, 10 and 6, 7, 8 respectively 

Yes 

Cho et al. 
(1990) 

0.3 g.kg-1 TLIM during 1-km and 3-km time trial and 
V̇O2MAX assessment under after: (1) 
NaHCO3 (ALK) and (2) CaCO3 (PLA) 

6 competitive 
cyclists 

TLIM was not different for 1-km but was 1.5% 
faster in 3-km race for ALK compared to PLA.  
V̇O2MAX was 5.5% greater for ALK compared to 
PLA 

Yes 

Mitchell et al. 
(1990) 

~ 20 g in 
total (1.3% of 
1.5 L 
solution) 

~ 80 V̇O2MAX to exhaustion under 3 
conditions: (1) NaHCO3 (ALK) (2) NaCl 
(PLA; 13.5 g in 1.5) - both intravenously 
administered - and (3) no infusion 
(CON) 

8 males TLIM was significantly greater (~ 68%) for both ALK 
and PLA compared to CON with TLIM of 31.9 ± 
5.8 min, 31.8 ± 4.1 min and 19.0 ± 2.9 min 
respectively  but no differences observed between 
ALK and PLA 

No 

McNaughton et 
al. (1991) 

0.4 g .kg-1 60 s maximal work under three 
conditions: (1) ALK (NaHCO3), (2) PLA 
(CaCO3) and (3) control (CON) 

8 males (well 
trained) 

During ALK 7% more work was completed 
compared to both PLA and CON 

Yes 

Housh et al. 
(1991) 

0.3 g.kg.-1 Discontinuous and continuous cycling at 
fatigue threshold after: (1) NaHCO3 
(ALK) and (2) NH4Cl (ACD) 

18 males There was no difference in working capacity (PO) 
at the fatigue threshold in either condition 

No 

Linderman et 
al. (1992) 

0.2 g.kg-1 100% V̇O2MAX (70 rev.min-1) under 4 
conditions: (1), PLA, (2) P/B, (3) PAK 
and (4) ALK (NaHCO3) 

8 males (well 
trained) 

There was no significant difference between all 4 
trials in the ability to maintain Power-max. 

No 

McNaughton 
(1992a) 

0.3 g.kg-1 60 s maximal work under 7 conditions 
(1) PLA (CaCO3), (2) CON, (3)-(7) 
NaHCO3 with 0.1 g.kg-1 to 0.5 g.kg-1 
(with 0.1 g.kg-1 increases) 

9 active males Participants completed more work in the 0.2 (P < 
0.05), 0.3, 0.4 and 0.5 g.kg (P <0.005) trials 
compared to CON and PLA with a 0.3 g.kg-1 dose 
providing the optimal ergogenic effect  

Yes 

McNaughton 
(1992b) 

0.3 g.kg-1 Max work in 10, 30, 120 and 240 s 
under 3 conditions: (1) ALK (NaHCO3) 
(2) PLA (CaCO3) and (3) CON 

4 * 8 males 
(aerobically 
active) 

ALK had no effect on TWD and PPO for 10 and 
30 s trials but was , significantly higher in the 120 
and 240 s trials 

Yes 
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Author(s) NaHCO3 
Dosage 
(g.kg-1 body 
mass) 

Protocol n Results Ergogenic 
Benefit 

Lambert et al 
(1993) 

0.3 g.kg-1 5 mins cycling at 70, 80 and 90% 
V̇O2MAX, with 5 mins rest periods and 
then 100% V̇O2MAX to exhaustion after: 
(1) NaHCO3 (ALK) and (2) CaCO3 (PLA) 

6 males TLIM was NOT significantly different between 
conditions with times of 173 s and 184s for ALK 
and PLA respectively 

No 

Kozak-Collins, 
Burke, and 
Schoene 1994 

0.3 g.kg-1 1 min intervals at 95% V̇O2MAX, 1 min 
recovery (60W) till exhaustion after: (1) 
NaHCO3 (ALK) and (2) NaCl (PLA; 
equimolar dose) 

7 females 
(competitive 
cyclists) 

No difference was found in the number of intervals 
completed between two trials 

No 

Verbitsky et al. 
(1997) 

0.4 g.kg-1 2 mins fatiguing FES, 3 mins cycling, 2 
mins post-exercise FES and then FES 
during 40 mins recovery period (only for 
2 and 3) under 3 conditions: (1) 100% 
V̇O2MAX (CON1), (2) 117% V̇O2MAX 
(CON2) and (3) 117% V̇O2MAX + 
NaHCO3 ingestion (ALK) 

6 males Peak and residual torque was significantly higher 
post 3 mins cycling for ALK compared to CON1 
and CON2. Post-load torque was also higher than 
pre-load torque for ALK but lower for CON1 and 
CON2. During recovery peak torque was higher in 
ALK than CON2 

Yes 

McNaughton et 
al. (1997) 

0.3 g.kg-1 1 x 60 s maximal bout under 3 
conditions: (1) CON, (2) PLA (NaCl) and 
(3) ALK (NaHCO3). PLA was equimolar  
to experimental treatment) 

10 females 
(moderately 
active but non 
cycling trained) 

TWD and PPO were significantly higher for 
NaHCO3 than CON and PLA with NaHCO3 

Yes 

McNaughton et 
al. (1999) 

0.5 g.kg-1 for 
5 days 
(chronic) 
taken in 4 
equal 
amounts 

60 s HIE on cycle ergometer under 3 
conditions: (1) Pre-ingestion (Pre), (2) 
experimental (5 days supp with 
NaHCO3; ALK) and (3) One month post 
(CON) trials.  

8 males (7 
metabolite data) 

TWD and PPO significantly higher for ALK 
compared to CON and Pre  

Yes 

McNaughton, 
Dalton and 
Palmer (1999) 

0.3 g.kg -1 60 mins cycle - maximal work completed 
under 3 conditions: (1) ALK (NaHCO3) 
and (2) PLA (NaCl; equimolar dose) and 
(3) CON 

10 males (highly 
trained) 

Average power was significantly greater for ALK 
(~ 14%) than PLA and CON (265 W (951 kJ) 
compared to 233 W (839 kJ) and 232 W (836 kJ) 
respectively). 

Yes 

McNaughton 
and Thompson 
(2001) 

0.5 g.kg -1 3  x 90 s maximal work (1 bout on 3 
separate days) after: (1) acute ingestion 
(bout 1 only) of NaHCO3 (AI) or(2) 5-
days chronic ingestion of NaHCO3 (CI) 

8 males Significantly more work was completed during AI 
and CI compared to CON during test 1. However, 
more work was also completed in tests 2 and 3 
compared to CON for CI but not AI. 

Yes 
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Author(s) NaHCO3 
Dosage 
(g.kg-1 body 
mass) 

Protocol n Results Ergogenic 
Benefit 

Stephens et al. 
(2002) 

0.3 g.kg-1 30 mins @ ~ 77% V̇O2PEAK and then ~ 
30 mins @ ~ 80% V̇O2PEAK (aim to 
complete set amount of work) after: (1) 
NaHCO3 (ALK) and (2) CaCO3 (PLA) 

7 trained males Performance times to complete the set amount of 
work (part 2) were not significantly different 
between treatments 

No 

Marx et al. 
(2003) 

0.3 g.kg-1 90 s maximal work after: (1) NaHCO3 
(ALK) and (2) NaCl (PLA). Both 
solutions were mixed with dextrose 

10 males There were no differences in mean or peak 
power, or total work between ALK and CON 

No 

Price, Moss, 
and Rance 
(2003) 

0.3 g.kg-1 Repeated 3 mins blocks (for 30 mins 
consisting of: 90s at 40% V̇O2MAX 60s at 
60% V̇O2MAX, 14s maximal effort, 16s 
active rest after: (1) NaHCO3 (ALK) and 
(2) NaCl (PLA) 

8 males 
(moderately 
trained) 

NaHCO3 ingestion enabled sprint performance to 
be maintained similar  to initial maximal sprint 
during 30 mins of high-intensity intermittent 
exercise than compared to PLA 

Yes 

Bishop et al. 
(2004) 

0.3 g.kg-1 5 x 6 s all-out sprints every 30 s after:(1) 
NaHCO3 (ALK),  (2) NaCl - equimolar to 
ALK (PLA) 

10 females 
(moderately 
active but non 
cycling trained) 

Significantly more work was completed after 
ingesting the NaHCO3 compared to CON  with 
work and power output also significantly higher 
during sprints 3, 4, and 5 

Yes 

Bishop and 
Claudius 
(2005) 

2 x 0.2 g.kg-1 2 x 36 mins halves of intermittent 
exercise after: (1) NaHCO3 (ALK) and 
(2) equimolar dose of NaCl (PLA) 

7 intermittent 
trained females 

No significant differences (total work) between 
treatments in either half of the IST. However, 7 / 
18 of the second half sprints produced 
significantly more work for NaHCO3 compared to 
PLA 

Yes 

Douroudos et 
al. (2006) 

0.3 or 0.5 
g.kg-1 

MPO was measured from WAnT before 
and after 5-days supplementation with: 
(1) fruit juice (PLA), (2) 0.3 g.kg-1 
NaHCO3 (MED), or 0.5 g.kg-1 NaHCO3 
(HIGH).  

24 males MPO was significantly greater for HIGH, but not 
MED or PLA after 5-days supplementation 

Yes 

Matsuura et al. 
(2007) 

0.3 g.kg-1 10 x 10 s cycle sprints interspersed with 
either 30 s or 360 s recovery after: (1) 
NaHCO3 (ALK) or (2) CaCO3 (PLA) 

8 healthy males No differences in MPO and PPO between ALK 
and PLA. Additionally there were no differences in 
SEMG activity between ALK and PLA 

No 

Zabala et al. 
(2008) 

0.3 g.kg-1 3 x 30 s WAnT (30 mins recovery) after: 
(1) NaHCO3 (ALK) or (2) NaCl (PLA)  

9 elite BMX 
riders 

There were no differences in MPO, PPO, time to 
PPO or RPE between ALK and PLA 

No 
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Author(s) NaHCO3 
Dosage 
(g.kg-1 body 
mass) 

Protocol n Results Ergogenic 
Benefit 

Siegler et al. 
(2008) 

0.3 g.kg-1 TLIM at 120% V̇O2MAXafter: (1) NaHCO3 
(ALK) and (2) CaCO3 (PLA). Recovery 
was monitored after each trial in 
passive/active forms (total of 4 trials) 

9 males There was no difference in TLIM between ALK and 
PLA 

No 

Vanhatalo et 
al. (2010) 

0.3 g.kg-1 3 mins all out sprints against fixed 
resistance after:(1) NaHCO3 (ALK) and 
(2) NaCl (PLA) 

8 males (active) Despite statistically significant increases in both 
pH and bicarbonate between treatments  no 
performance differences found in total work done 
or critical power for NaHCO3 and PLA respectively 

No 

Zinner et al. 
(2011) 

0.3 g.kg-1 4 x 30 sec maximal sprints interspersed 
by 5 mins passive after: (1) NaHCO3 
(ALK) and (2) CaCO3 (PLA) 

11 well trained 
males 

MPO was significantly greater for ALK during 
sprints 3 and 4. There were no differences in PPO 
although the effect size for sprint 4 (0.37) 
suggests a possible PPO effect in the latter 
stages of repeated sprinting exercise with ALK 

Yes 

Saunders et al. 
(2011) 

0.3 g.kg-1 TLIM at 110% WPEAK after: (1) NaHCO3 
(ALK) and (2) Maltodextrin (PLA) to 
assess total work done (TWD) 

21 males No difference in TWD between ALK and PLA for 
group data However, when participants with GI 
distress were removed from the analysis (n=4), 
TWD was ~ 5% greater for ALK compared to PLA 

Yes 

Wahl et al. 
(2011) 

0.3 g.kg-1 3 x 30 s WAnT (15 mins recovery) after 
(1) NaHCO3 (ALK) or (2) NaCl (PLA) 

11 males MPO was significantly greater for bouts 3 and 4 
for ALK compared to PLA. Also, the fatigue index 
was significantly lower in bout 4 for ALK 
compared to PLA 

Yes 

Zabala et al. 
(2011) 

0.3 g.kg-1 4 x 30 s all-out efforts interspersed with 
5 mins passive recovery and 60 mins at 
50% PPO after: (1) NaHCO3 (ALK) or 
(2) CaCO3 (PLA) 

10 elite BMX 
riders 

There were no differences in MPO, PPO, time to 
PPO, CMJ post or RPE between ALK and PLA 

No 

Driller et al. 
(2012a) 

0.3 g.kg-1 2 mins maximal test under 3 conditions: 
(1) ALK (NaHCO3), (2) PLA (NaCl) and 
CON (Maltodextrin) 

8 well trained 
males 

MPO was significantly greater in ALK compared to 
PLA (2.1%) and CON (3.2%). PPO was also 
significantly greater in ALK compared to PLA 
(5.8%) and CON (9.6%) 

Yes 

Driller et al. 
(2012b) 

0.3 g.kg.-1  or 
0.4 g.kg.-1  

per day for 3 
days (4 equal 
doses) 

4 mins maximal test under 3 conditions: 
(1) Acute ALK (NaHCO3),  (2) Chronic 
ALK (NaHCO3)  and (3) PLA (Cellulose) 

8 well trained 
males 

MPO was 3.2% and 2.2% greater compared to 
PLA for Acute ALK and Chronic ALK, respectively. 
No differences for MPO between ALK conditions, 
although trend for Acute ALK being most 
beneficial 

Yes 
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Overall, 62% (28 out of 45) of studies examining cycling performance reported an 

ergogenic benefit with exogenous NaHCO3 supplementation during cycling (Table 2.1). 

However, when ‘optimal’ research characteristics such as (1) dosage (0.3 g.kg-1; 

McNaughton 1992a), (2) pre-exercise ingestion time (60-90 mins; Renfree 2007, Price and 

Singh 2008) and (3) exercise duration (~ 1 to 7 mins of high intensity exercise (Linderman 

and Fahey 1991, Matson and Tran 1993, Linderman and Gosselink 1994) or where exercise 

intensity is at or close to the lactate threshold (McNaughton, Dalton, and Palmer 1999)) are 

considered, this increases to 78% (7 out of 9 studies). A further twenty two studies met two 

of the three optimal characteristics outlined with performance benefit dropping to 68% (15 

out of 22 studies) and when only one characteristic was met this dropped to 33% (4 out of 12 

studies). In summary, there appears to be a relationship between the chances of observing a 

performance benefit in a cycling protocol and the number of ‘optimal’ research 

characteristics already outlined having been met. However, it must be acknowledged that 

whilst dosage, ingestion time and exercise duration are key components of experimental 

design, there are many other factors that contribute to the results examining the effects of 

NaHCO3 on exercise performance. Indeed, ergogenic benefit was still observed by Inbar et 

al. (1983) and Douroudos et al. (2006) when none of these experimental characteristics 

were met. 

 

2.3.6.ii Running 

 

Research evaluating the efficacy of NaHCO3 on running performance dates back 

over 80 years. Dennig et al. (1931) reported signs of performance benefit (increased oxygen 

debt) with NaHCO3 ingestion during 15 mins steady state treadmill running. However, 

although less in number, similarly to cycling the vast body of research in this area spans the 

last 5 decades (Kindermann, Keul, and Huber 1977, Wilkes, Gledhill, and Smyth 1983, Bird, 

Wiles, and Robbins 1995, Van Montfoort et al. 2004, Price and Simons 2010). Kindermann, 

Keul, and Huber (1977) found that NaHCO3 infusion had no impact on 400 m running time 
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although there are a number of methodological concerns (dosage, infusion timings) with this 

study. In contrast Goldfinch, McNaughton, and Davies (1988) demonstrated that 0.4 g.kg-1 

NaHCO3 facilitated significantly faster 400 m running performance compared to CON and 

PLA, the differences in time equating to the difference between first and last place in a race 

(Goldfinch, McNaughton, and Davies 1988). Similarly, Wilkes, Gledhill, and Smyth (1983) 

reported that 800 m time was faster after ingesting 0.3 g.kg-1 NaHCO3 compared to CON 

(2.9 s) and PLA (2.2 s), these differences also equivalent to the difference between first and 

last place. Finally, Bird, Wiles, and Robbins (1995) reported that 1500 m performance time 

was 2.9 s faster after ingesting 0.3 g.kg-1 NaHCO3 compared to PLA and 4.1 s faster 

compared to CON. In contrast Tiryaki and Atterbom (1995) reported no differences in 600 m 

time after NaHCO3 ingestion compared to PLA or sodium citrate (NaCit) ingestion. However, 

the authors reported a significant training effect between pre and post baseline tests which 

might have confounded results. 

 

Other studies have evaluated the effects of NaHCO3 on running capacity (i.e. TLIM) as 

opposed to time to complete a set distance (i.e. 400 m or 800 m). George and MacLaren 

(1988) reported that after ingestion of 0.2 g.kg-1 NaHCO3 endurance running at a velocity 

corresponding to 4.0 mmol.l-1 blood lactate was 17% greater than PLA (NaCl) and 44% 

greater than metabolic acidosis (ACD; NH4Cl). Potteiger et al. (1996) found that ingestion of 

0.3 g.kg-1 NaHCO3 resulted in 29% and 66% increases in exercise capacity compared to PLA 

and NaCit trials, respectively, when running at 110% of the lactate threshold immediately 

after 30 mins running at the lactate threshold. Similarly, Van Montfoort et al. (2004) reported 

that 0.3 g.kg-1 NaHCO3 improved TLIM against sodium lactate (2.6%), NaCit (5.2%) and NaCl 

(6.4%) during high-intensity treadmill running designed to elicit volitional exhaustion in ~ 1 to 

2 mins with a ~ 2 % incline. Finally, Price and Simons (2010) examined the effects of 

NaHCO3 on TLIM at 120% v-V̇O2MAX after intermittent high-intensity running akin to that 

adopted by individuals undertaking interval-type training. NaHCO3 had no affect on TLIM 

compared to PLA (NaCl) at a group level although there was significant variation in capacity. 
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This led the authors to suggest an individualised approach should be adopted for NaHCO3 

ingestion. 

 

2.3.6.iii Swimming 

 

 Gao et al. (1988) compared NaHCO3 (ALK) and NaCl (PLA) against a control trial 

(CON) on 5 x 100 yard intervals swims (2 mins rest between each swim) in well-trained 

swimmers. Performance times for swims 4 and 5 were quicker for ALK compared to PLA 

and CON.  Likewise, Lindh et al. (2008) reported that 200 m swimming performance was 

faster in elite swimmers after NaHCO3 compared to CON and PLA. Similarly, during 4 x 50 m 

front crawl sprints interspersed by 1 min passive recovery, total swim time and swimming 

speed during the first 50 m sprint, respectively, were faster for NaHCO3 compared to PLA 

(Zajac et al. 2009).  

  

However, not all research examining NaHCO3 on swimming performance has 

demonstrated ergogenic benefit. Pierce et al. (1992) reported that NaHCO3 had no effects on 

100 yard (as part of relay) or 200 yard (solo) swimming performance. In the research 

conducted by Pruscino et al. (2008), six elite male swimmers completed 2 maximal 200 m 

freestyle swims with 30 mins passive rest after consuming either 0.3 g.kg-1 NaHCO3, 6.2 

mg.kg-1 caffeine, a combination of NaHCO3 and caffeine or PLA (glucose). The authors 

reported no significant difference in mean performance time between all four treatments for 

both maximal swims. However, closer analysis revealed moderate effect sizes of 0.6 and 0.8 

when comparing the NaHCO3-caffeine combination to PLA. Moreover, effect sizes of 0.2 and 

0.4 were evident when comparing NaHCO3 to PLA suggesting that ergogenic benefit for the 

NaHCO3-caffeine combination and NaHCO3 alone were demonstrated, at least in some 

individuals, compared to PLA (Pruscino et al. 2008). 

 

2.3.7 Other physiological responses 
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A number of studies have evaluated the potential beneficial physiological effects of 

NaHCO3 on cycling (Table 2.2). More simply, rather than focussing purely on exercise 

performance / capacity researchers have looked at the effects of NaHCO3 on other 

physiological parameters such as V̇O2 kinetics (Kolkhorst et al. 2004, Berger et al. 2006), 

EMG activity (Kostra and Cafarelli 1982, Yamanaka et al. 2011), muscle fibre conduction 

(Hunter et al. 2009), vascular endothelial growth factor (VEGF) production (cytokines 

involved in angiogensis; Wahl et al. 2011), metabolic distribution (Galloway and Maughan 

1996) and serum prolactin production (Vega et al. 2006). Due to the limited research on 

NaHCO3 and its effects on serum prolactin production (Vega et al. 2006), VEGF production 

(Wahl et al. 2011) and metabolic distribution (Galloway and Maughan 1996) it is difficult to 

compare and contrast results and thus properly evaluate the efficacy of NaHCO3 on these 

parameters. Therefore, the remainder of this section will examine research into possible 

beneficial physiological effects on V̇O2 kinetics (Kolkhorst et al. 2004, Berger et al. 2006) and 

EMG activity (Kostra and Cafarelli 1982, Yamanaka et al. 2011). 

 

V̇O2 kinetics can be divided into cardio-dynamic, rapid and slow components 

(Kolkhorst et al. 2004; Figure 2.6) although there can be slight variations of these definitions 

within the literature. Kolkhorst et al. (2004) reported that NaHCO3 ingestion slowed the rapid 

component of V̇O2 kinetics by 25% and decreased the amplitude of the slow component (A3) 

by 29%. The authors suggested that the reduction in amplitude of A3 was due to diminished 

fatigue which could help to explain, at least in part, why ergogenic benefits have been 

observed in high-intensity exercise. Based on observations from previous research that 

acidemia might increase muscle perfusion during heavy exercise, Kolkhorst et al. (2004) 

speculated that the slowing of the rapid component was due to reduced perfusion in working 

muscle. It was subsequently speculated that O2 delivery might limit mitochondrial respiration 

at the onset of high-intensity exercise. Berger et al. (2006) reported that NaHCO3 ingestion 

significantly reduced pulmonary V̇O2 (pV̇O2) during the slow component after 6 mins of 

exercise but also that the pV̇O2 slow component occurred ~ 23% later (147 vs. 120 sec). 
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Although the amplitude of the slow component (A3) was reported as not being significantly 

different (P = 0.08), A3 for NaHCO3 was 19% lower than CON (ES = 0.8). Therefore, in 

contrast to the reported results this suggests NaHCO3 did decrease the amplitude of the 

slow component in this study to a similar level observed by Kolkhorst et al. (2004). 

 

 

Figure 2.6 A three-component exponential model demonstrating cardio-dynamic (1), rapid 

(2), and slow (3) components of V̇O2 kinetics; Where V̇O2base is the steady-state V̇O2 at the 

onset of exercise and A1, A2, and A3 are amplitudes of each component (Kolkhorst et al. 

2004). 

  

Interestingly, Zoladz et al. (2005) reported that NaHCO3 ingestion significantly 

reduced time spent during the fast-component by ~ 25% compared to PLA at 87% V̇O2MAX 

although no difference was observed at 40% V̇O2MAX. Therefore, it’s plausible that V̇O2 

kinetics are only modulated by NaHCO3 ingestion above a certain threshold of exercise 

intensity. According to Zoladz et al. (2005) this might be due to changes in the rate of 

oxidative phosphorylation in the working muscles, presumably a rate increase which would 

theoretically lessen the demand on anaerobic glycolysis from type II muscles which are 

This item has been removed due to third party copyright. The unabridged version of the thesis can be viewed 
at the Lanchester Library, Coventry University.
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utilised extensively during high-intensity exercise. However, muscle metabolites were not 

measured by Zoladz et al. (2005) and therefore more research is required to elucidate 

changes in V̇O2 kinetics with NaHCO3 ingestion at different exercise intensities. In contrast, 

not all studies demonstrate an improvement in V̇O2 kinetics with NaHCO3 ingestion. Santalla 

et al. (2003) reported no difference in the amplitude of the V̇O2 slow component in 2 x 6 mins 

cycling at 90% V̇O2MAX. However, as described in section 2.3.5 it is plausible that the elite 

status of the participants in the Santalla et al. (2003) study might be one reason why their 

results differ to Kolkhorst et al. (2004) and Berger et al. (2006). 

 

According to Yamanaka et al. (2011) the use of electromyography (EMG) and 

perceived sense of effort can provide an estimate of central motor command during 

exercise. Yamanaka et al. (2011) reported that NaHCO3 ingestion had no effects on 

integrated EMG (iEMG), effort sense in the legs or ventilatory response during or after 2 

mins intense cycling exercise. Similarly, Kostra and Cafarelli (1982) found that there was no 

difference in iEMG or sensory response between NaHCO3 and PLA trials. However, sensory 

activity was greater for the acidotic trial (NH4Cl) compared to NaHCO3 and PLA suggesting 

that sensory activity might be influenced by changes in acid-base balance. Finally, despite 

no differences in EMG activity Hunter et al. (2009) reported significantly faster muscle fibre 

conduction velocity after NaHCO3 compared to PLA (CaCO3) concomitant with a reduced 

rate of force decline. It was suggested that an increase in extracellular pH alters the 

sarcolemma to increase muscle fibre conduction velocity. Therefore, it is possible that 

NaHCO3 increases muscle fibre conduction velocity which attenuates force decline through 

attenuation of neuromuscular fatigue (Hunter et al. 2009). In turn this might subsequently 

attenuate self-reported sensory responses and potentially V̇O2 kinetics. 

 

2.3.8 Perceptual responses 
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A number of perceptual responses such as subjective ratings of fatigue or effort 

(Poulus et al. 1974, Swank and Robertson 1989, 2002, Galloway and Maughan 1996, 

Yamanaka et al. 2011) and perceived readiness to exercise (Zabala et al. 2008, 2011) have 

also been evaluated in relation to potential beneficial psychological effects of NaHCO3 on 

cycling (Table 2.2). For example, Poulus et al. (1974) demonstrated that ~ 0.3 g.kg-1 

NaHCO3 had no effect on the subjective feeling of fatigue of trained male subjects 

undertaking an incremental cycling to exhaustion. However, as the NaHCO3 was 

administered intravenously, this may have contributed to the results. In contrast, Swank and 

Robertson (1989) highlighted that differentiated RPE for legs (RPEL), chest (RPEC) and 

whole body (RPEWB) were significantly lower during 3 x 5 mins cycling (10 mins rest between 

bouts) at 90% V̇O2 MAX after a 0.3 g.kg-1 NaHCO3 bolus (ALK-B) and staggered administration 

(ALK-S; 0.12 g.kg-1) compared to PLA. Whole body RPE was also lower after the ALK-B 

compared to ALK-S administration although there were no differences in RPEC and RPEL. In 

the same participant cohort, although published 13 years later, Swank and Robertson (2002) 

reported that recovery of RPEL was 8% greater for ALK-B compared to ALK-S and PLA at 1 

and 2 mins during post-exercise recovery. Additionally, after 2 mins recovery of RPETB was 

9% greater compared  to ALK-S and PLA. However, some caution should be applied when 

interpreting these results. Swank and Robertson (1989, 2002) state that the participants 

were endurance trained females. However, the mean V̇O2MAX of 43.5 ± 5.0 ml.kg-1.min-1 

suggests a low trained cohort. As such the results highlight a benefit of using NaHCO3 in 

similar populations, rather than endurance trained female cyclists. Furthermore the 

staggered NaHCO3 dosage used in ALK-S did not augment acid-base balance as much as 

the ALK-B trial which is likely to have impacted results (Swank and Robertson 1989, 2002). 

Price, Moss and Rance (2003) highlighted no difference in RPE between trials of 30 mins of 

intermittent cycling exercise and Yamanaka et al. (2011) reported no differences during 2 

mins intense cycling.  In contrast, Galloway and Maughan (1996) found that RPE was 

greater after 40 mins cycling at ~ 70% V̇O2 MAX with NaHCO3 compared to PLA.  In order to 

help clarify the inconsistent results in this area we examined the effects of NaHCO3 on 
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differentiated RPE during high-intensity cycling at different exercise intensities in the same 

population (chapter 5) and before and after 6 weeks high intensity training (chapter 7). 

 

Overall, 56% (9 out of 16) of studies examining cycling performance showed a 

physiological or perceptual benefit with exogenous NaHCO3 supplementation during cycling 

(Table 2.2). However, when ‘optimal’ research characteristics, as outlined previously are met 

this increases to 75% (3 out of 4 studies). In contrast physiological or perceptual benefit 

dropped to 50% when only 2 (4 out of 8 studies) or 1 (2 out of 4 studies) of the outlined 

optimal characteristics outlined were employed. In summary, there appears to be a 

relationship between the chances of observing a physiological or perceptual benefit in a 

cycling protocol and the number of ‘optimal’ research characteristics already outlined having 

been met. However, this relationship appears less clear than for performance / capacity 

based research which might be expected due to the variety of physiological or perceptual 

mechanisms being examined whereas exercise performance / capacity research is arguably 

more homogenous to interpret.  
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Table 2.2 Summary of research that has evaluated the potential mechanistic effects of NaHCO3 on cycling 

 

Author(s) NaHCO3 Dosage 
(g.kg-1 body 
mass) 

Protocol n Results Benefit 

Poulus et al. 
(1974) 

~ 0.3 g.kg-1 4 x incremental exercise tests (10 W.min-1) 
under 3 conditions: (1) ALK (NaHCO3), (2) 
PLA (NaCl) and CON (no infusion) 

6 
trained 
males 

ALK had no effect on subjective ratings of fatigue 
during exercise 

No 

Kostra and 
Cafarelli 
(1982) 

0.3 g.kg-1 15 mins at 50% V̇O2 MAX, followed by 15 mins 
at 80% V̇O2 MAX after: (1) NaHCO3 (ALK), (2) 
CaCO3 (PLA) and (3) NH4Cl (ACD) 

6 males There was no difference in integrated EMG (iEMG) or 
sensory response between ALK and PLA. However, 
sensory activity was greater for ACD compared to PLA 
and ALK 

No 

Swank and 
Robertson 
(1989) 

0.3 g.kg-1 or 0.12 
g.kg -1and 0.18 
g.kg-1 prior to 
exercise  

3 * 90% V̇O2 MAX for 5 mins (10 mins rest 
between) after: (1) CaCO3 (PLA), (2) 
NaHCO3-Bolus (ALK-B) or (3) NaHCO3-
Staggered (ALK-S). 0.06 g.kg-1 CaCO3 also 
administered prior to exercise in PLA and 
ALK-B to blind against ALK-S 

6 
trained 
females 

RPE for Legs (L), Chest (C) and Total Body (TB) were 
significantly lower for ALK-B and ALK-S compared to 
PLA. RPE-TB was also lower for ALK-B compared to 
ALK-S although there were no differences in C and L 

Yes 

Galloway and 
Maughan 
(1996) 

0.3 g.kg-1 1-h cycling at ~ 70% V̇O2 MAX after: (1) 
NaHCO3 (ALK) and (2) CaCO3 (PLA) 

7 
healthy 
males 

BLa significantly greater during ALK at all time points. 
No differences in any other metabolites were observed 
(glucose, glycerol, FFA). RPE and V̇O2 were also 
greater for ALK than PLA 

No 

Neilsen et al. 
(2002) 

Unclear 5 mins handgrip exercise, 2 s at 40% MVC, 
followed by 1 s after: (1) NaHCO3 (ALK) and 
(2) Saline (PLA) via IV administration 

9 
healthy 
males 

IV infusion of NaHCO3 attenuated the reduction in pHi 
at the end of exercise where pHi was at its nadir 

Yes 

Swank and 
Robertson 
(2002) 

0.3 g.kg-1 or 0.12 
g.kg -1and 0.18 
g.kg-1 prior to 
exercise  

3 * 90% V̇O2 MAX for 5 mins (10 mins rest 
between) after: (1) CaCO3 (PLA), (2) 
NaHCO3-Bolus (ALK-B) or (3) NaHCO3-
Staggered (ALK-S). 0.06 g.kg-1 CaCO3 also 
administered prior to exercise in PLA and 
ALK-B to blind against ALK-S 

6 
females 

Average recovery of RPEL and RPEC was 8% greater 
for ALK-B compared to ALK-S and PLA at 1 and 2 
mins during recovery. Additionally, RPEO was 10% 
greater after 1 min recovery compared to PLA and 
RPEO was 9% greater after 2 mins recovery compared 
to ALK-S and PLA 

Yes 

Santalla et al. 
(2003) 

0.3 g.kg-1 2 * 90% V̇O2 MAX for 6 mins (8 mins active 
recovery) after: (1) NaHCO3 (ALK) or (2) PLA 

7 elite 
cyclists 

ALK did not attenuate the V̇O2 slow component No 

Kolkhorst et 
al. (2004) 

0.3 g.kg-1 6 mins bout 25 W above ventilatory threshold 
after: (1) NaHCO3 (ALK), (2)H2O only (CON) 

9 males, 
1 female 

ALK slowed the rapid component of V̇O2 kinetics and 
also decreased the amplitude of the slow component 

Yes 
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Author(s) NaHCO3 Dosage 
(g.kg-1 body 
mass) 

Protocol n Results Benefit 

Zoladz et al. 
(2005) 

0.25 g.kg-1 2 x 6 mins (40% V̇O2MAX and 87% V̇O2MAX 
interspersed by 20 mins recovery) after (1) 
NaHCO3 (ALK) or placebo (PLA) 

7 males ALK significantly reduced time spent during fast-
component compared to PLA at87% V̇O2MAX. No 
difference was observed at 40% V̇O2MAX 

Yes 

Berger et al. 
(2006) 

0.3 g.kg-1 3 mins at 20 W, then 6 mins step test at ~ 
80% pV̇O2MAX (283 +/- 31 W) after: (1) 
NaHCO3 (ALK), (2) NaCl (PLA) on 3 
occasions (i.e. 6 tests) 

7 males ALK significantly reduced pV̇O2 during the pV̇O2 slow 
component after 6 mins of exercise. The pV̇O2 slow 
component was delayed longer with ALK (147 vs. 120 
s; ~ 23% longer) 

Yes 

Vega et al. 
(2006) 

Unclear Incremental exercise after: (1) NaHCO3 
(ALK) and (2) Saline (CON) 

7 males 
(active) 

No difference in TLIM between ALK and CON. However, 
post-exercise ALK attenuated the increase of serum 
prolactin production 

Yes 

Siegler et al. 
(2008) 

0.3 g.kg.-1 TLIM at 120% V̇O2 MAX after: (1) NaHCO3 
(ALK) and (2) CaCO3 (PLA). Recovery was 
monitored after each trial in passive/active 
forms (total of 4 trials) 

9 males ALK attenuated post-exercise acid-base recovery more 
than PLA regardless of whether active or passive 
recovery was undertaken (although ALK-Active is 
probably most efficient) 

Yes 

Zabala et al. 
(2008) 

0.3 g.kg.-1 3 x 30 s WAnT (30 mins recovery after: (1) 
NaHCO3 (ALK) or (2) NaCl (PLA) 

9 elite 
BMX 
riders 

Perceived readiness to exercise improved in ALK prior 
to WAnT 2 and 3 (although no ergogenic benefit was 
subsequently observed) 

Yes 

Hunter et al. 
(2009) 

0.3 g.kg-1 MVC was measured pre and post 1 hour of 
submaximal cycling at 105% of LT after: (1) 
NaHCO3 (ALK) and (2) CaCO3 (PLA). MVC 
pre-exercise with electrical stimulation 
whereas MVC post-exercise undertaken with 
and without (sustained) stimulation 

8 
trained 
cyclists 

Muscle fibre conduction measured during sustained 
(50 s) MVC was greater for ALK compared to PLA. 
Additionally muscle fibre conduction was greater post-
ingestion of ALK than pre-ingestion which might help to 
prevent force decline indicating better fatigue 
resistance (i.e. attenuation of neuromuscular fatigue) 

Yes 

Zabala et al. 
(2011) 

0.3 g.kg.-1 3 x 30 s WAnT (15 mins recovery) after: (1) 
NaHCO3 (ALK) or (2) NaCl (PLA) 

10 elite 
BMX 
riders 

There were no differences in perceived readiness to 
exercise between WAnT trials 

No 

Yamanaka et 
al. (2011) 

0.3 g.kg.-1 2 mins at 105-110% of WMAX after: (1) 
NaHCO3 (ALK) or (2) CaCO3 (PLA). Warm 
up consisted of 6 mins at 20 W and recovery 
was 30 mins at 20 W 

6 males ALK did not affect integrated EMG (iEMG), effort sense 
in the legs or ventilatory response during or after 2 
mins intense cycling exercise 

No 

Wahl et al. 
(2011) 

0.3 g.kg.-1 4 x 30 s all-out efforts separated by 5 mins 
passive recovery and 60 mins at 50% PPO 
after: (1) NaHCO3 (ALK) or (2) CaCO3 (PLA) 

11 
males 

ALK had no effect on VEGF compared to PLA No 
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2.3.9 Gastrointestinal discomfort 

 

One of the biggest disadvantages of NaHCO3 supplementation is that of GI 

discomfort (Burke and Pyne 2007). Symptoms can include nausea, stomach pain, diarrhoea 

and occasionally vomiting (Kolkhorst et al. 2004, Carr et al. 2011). Such effects are a serious 

practical consideration for individuals, especially for athletes in a competitive setting (Burke 

and Pyne 2007). A number of studies have reported GI distress after consumption of 

NaHCO3 (McNaughton, Ford, and Newbold 1997, Kolkhorst et al. 2004, Cameron et al. 

2010, Saunders et al. 2011, Driller et al. 2012b). McNaughton, Ford, and Newbold (1997) 

observed GI distress in 30% of their participants (3/10) when consuming the ‘optimal’ dose 

of 0.3g.kg-1, although overall group performance was still improved after NaHCO3. Similarly, 

Price, Moss, and Rance (2003) reported an ergogenic benefit even though gut fullness (GF) 

and abdominal discomfort (AD) were significantly higher for NaHCO3 compared to PLA. In 

contrast, Cameron et al. (2010) highlighted that the severity and incidence of GI symptoms 

in elite rugby players might have been a major contributor to the lack of any performance 

improvement during a rugby specific protocol. Similarly, Saunders et al. (2011) found no 

difference in total work done (TWD) TLIM at 110% WPEAK for group data. However, when 

participants with GI distress were removed from the analysis (n=4), TWD was ~ 5% greater 

for NaHCO3 compared to PLA. This led the authors to classify participants as either 

responders or non-responders to NaHCO3 (Price and Simons 2010, Saunders et al. 2011). 

This aspect is addressed in study 2 of this thesis (chapter 5) from both capacity (i.e. TLIM), 

perceptual (AD, GF, RPE etc.) and physiological (BLa, pH, HR etc.) responses. 

 

Carr et al. (2011) analysed different ingestion protocols by varying fluid intake, 

ingestion timing, co-ingesting a small meal and using either capsules or a solution for 

NaHCO3 ingestion. The authors suggest substantial blood alkalosis is achieved 120-150 

mins before exercise (presumably at the end of the staggered ingestion) and GI symptoms 

reduced when NaHCO3 was co-ingested with a high carbohydrate meal. However, as 
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performance was not measured, and presumably some enhanced tolerance of NaHCO3 

occurred within the crossover design, more research is required to substantiate these 

results. The reduction of GI discomfort after combined NaHCO3-carbohydrate intake is 

supported by Price and Cripps (2012) who reported that ingesting a combined NaHCO3-

carbohydrate beverage resulted in lower AD and GF after 15 mins absorption compared to 

the NaHCO3-only beverage, although no difference in performance was observed. 

Interestingly, the absorption period used by Price and Cripps (2012) was 60 mins and 

carbohydrate was ingested as a solution rather than a meal (Carr et al. 2011) and thus 

further research is required to fully elucidate the effects of combined NaHCO3-carbohydrate 

ingestion on exercise performance. 

 

In order to prevent GI distress affecting competitive performance individuals should 

attempt a trial period, prior to competitive performance, to determine if habituation to 

NaHCO3 lessens these issues and facilitates ergogenic benefit (McNaughton, Ford, and 

Newbold 1997, Cameron et al. 2010). This would appear especially important for 

mesomorphs with higher than typical athletic body mass (i.e. > 85kg; Cameron et al. 2010).  

One method that might ameliorate potential GI discomfort is that of NaHCO3 ‘loading’ where 

individuals consume NaHCO3 over several days or consume multiple acute doses prior to 

exercise, as opposed to a one-off acute dose (Burke and Pyne 2007). Such approaches are 

reviewed in section 2.3.10. 

 

2.3.10 Loading regime 

 

Most of the research evaluating NaHCO3 as an ergogenic aid has used acute 

supplemental boluses. However, McNaughton et al. (1999) demonstrated that after 5-days 

NaHCO3 supplementation (0.5 g.kg-1 per day consumed in 4 equal amounts) work done 

(TWD) and peak power (PPO) increased during 60 s maximal work by 10% and 14% and 

10% and 14%, respectively, when compared to pre-supplementation and CON (i.e. after 



51 
 

NaHCO3 washout) trials. The authors suggested that the body stored the extra bicarbonate 

and utilised this to enhance performance during the 60 s maximal cycling exercise. However, 

[HCO3
-], pH, and base excess did not change after their initial significant increases (24h) 

which led the authors to suggest that similar ergogenic benefits might be observed with an 

ingestion period of less than 5-days. Moreover, the values achieved of ~ 28 mM, 7.45 and 

10.42 for [HCO3
-], pH, and base excess, respectively, are similar to those usually seen with 

acute administration of 0.3 g.kg-1 NaHCO3. 

 

Similarly, McNaughton and Thompson (2001) examined 90 s cycling performance 

after either an acute dose (0.5 g.kg-1) or chronic ingestion (0.5 g.kg-1 per day for 6 days) of 

NaHCO3. Cycling performance was measured on day 1 (CON), day 7 (last day of 

supplementation for chronic ingestion group and ingestion for acute group) and days 8 and 9 

(no ingestion). Here, NaHCO3 ingestion facilitated greater work done compared to PLA in 

both NaHCO3 conditions although there was more work done (compared to CON) on the 

final 2 days (i.e. days 8 and 9) in the chronic condition. Therefore, chronic NaHCO3 ingestion 

can improve work done two days after ingestion has ceased (McNaughton and Thompson 

2001). In a similar experiment to McNaughton et al. (1999), Douroudos et al. (2006) 

demonstrated that MPO during 30 s WAnT was significantly greater after 5-days of 0.5 g.kg-1 

per day of NaHCO3 compared to both 0.3 g.kg-1 per day NaHCO3 and CON groups. 

Therefore although NaHCO3 loading might improve subsequent short duration high-intensity 

exercise performance a threshold of 0.5 g.kg-1 NaHCO3 per day seems to exist when 

ingestion over a period of 1-day or longer is considered. 

 

In a study by Bishop and Claudius (2005) participants ingested two x 0.2 g.kg-1 

NaHCO3 or 0.138 g.kg-1 NaCl (PLA), 90 and 20 minutes before prolonged intermittent 

cycling. Cycling consisted of two ~ 36 minute periods of 18 x ~ 2 minute blocks which 

included a 4 s all out sprint, 100 seconds active recovery at 35% V̇O2PEAK and 20 s rest. This 

loading regime increased plasma [HCO3
- ] by 5.5 mmol.l-1  which is similar to that reported 
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for a single 0.3 g.kg-1 dose of NaHCO3 (5.3 mmol.l -1; Matson and Tran 1993). Moreover, 

more work was completed in 7 out of 18 sprints after staggered NaHCO3 ingestion during 

the second period of the exercise protocol designed to mimic the intermittent nature of field 

hockey (Bishop and Claudius 2005). These results suggest that ‘stacking’ NaHCO3 loads 

could be utilised by those who suffer GI disturbances with a single NaHCO3 bolus. However, 

it should be noted that higher increases of [HCO3
- ] (6.9 mmol.l-1) have also been observed 

with single 0.3 g.kg-1 doses of NaHCO3 (Siegler et al. 2008), although variation in 

administration timing will account, at least in part, for difference observed between studies. 

Recent research by Siegler et al. (2010) evaluated the time course of acid-base balance 

over 2 hours after 0.1 g.kg-1, 0.2 g.kg-1 and 0.3 g.kg-1 NaHCO3. Base excess, pH and [HCO3
- 

] peaked after ~ 50 and 65 mins for 0.2 g.kg-1 and 0.3 g.kg-1 NaHCO3, respectively. The 

results presented by Siegler et al. (2010), which are supported by Renfree (2007) and Price 

and Singh (2008), further ratify the choice of a 60 mins ingestion period for the human 

studies in this thesis. 

 

2.3.11 Placebo effect 

 

 McClung and Collins (2007) evaluated the effects of NaHCO3 on 1000 m running 

performance under 4 experimental conditions. Participants ingested either 0.3 g.kg-1 

NaHCO3 or a PLA (NaCl) and were told that they were receiving NaHCO3 or they were not 

receiving NaHCO3. Interestingly, although the ‘Told/Given’ condition resulted in the fastest 

1000 m running performance, the ‘Told/Not Given’ condition performed better than the ‘Not 

Told/Given’ and ‘Not Given/Not Told’ conditions by ~ 1.8 % (3.4 s) and 1.5 % (2.8 s). Based 

on the average running speed for all conditions of 5.4 m.s-1 this equates to ~ 18 m and ~ 15 

m respectively, very possibly the difference between first and last place in a competitive 

race. Therefore, in isolating the potential psychological effects (i.e. ‘Told/Not Given’) the 

authors demonstrate that factors such as ergogenic expectancy might help athletes out-

perform those who take ergogenic aids but don’t have such expectancy (i.e. Not Told/Given). 
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More simply, McClung and Collins (2007) have demonstrated that psychological factors (i.e. 

the placebo effect) might play a role in whether an ergogenic benefit is observed with 

NaHCO3. However, it’s important to point out that such expectancy has been eliminated from 

this thesis as much as possible by blinding participants to experimental solutions and by 

taste matching them as near as possible. Moreover, recent research using a similar 

endurance trained cohort to that of McClung and Collins (2007), albeit in cycling, 

demonstrated that during 2 min maximal cycling MPO and PPO were significantly greater for 

NaHCO3 compared to PLA (NaCl) and CON (Driller et al. 2012a). Additionally, McClung and 

Collins (2007) only used a ‘pinch’ of NaCl (exact amount unclear) as the PLA which might 

have caused taste matching issues which theoretically might have impacted on results. More 

research evaluating the possible psychological effects on performance, such as placebo, is 

warranted (Beedie 2007). 

 

2.4 The effects of NaHCO3 on isolated muscle performance 

  

In an attempt to clarify the effects of perturbations in acid-base balance at a tissue 

level several studies have examined the effects of metabolic alkalosis and acidosis on 

isolated muscle performance. Such an approach is useful in assessing mammalian muscle 

function as this eliminates the role of central fatigue (Allen, Lamb, and Westerblad 2008) 

which can be affected by numerous factors such as mood or emotional state, 

intrinsic/extrinsic motivation and/or pre-experimental nutritional status. By isolating the 

muscle, scientists can examine direct muscular responses which might provide valuable 

mechanistic evidence as to how the imposed intervention affects muscle function during 

exercise performance. The literature evaluating the effects of NaHCO3 on isolated muscle 

performance will be split into amphibian and mammalian muscle categories due to the 

biological differences between species which could impact on whether NaHCO3 affects 

muscle performance.  
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2.4.1 Amphibian muscle 

 

Mainwood and Lucier (1972) examined the time course of recovery in isolated frog 

sartorius muscles superfused in Ringer’s solution. After 200 s electrical stimulation (400 

impulses at 2.s-1) isometric (muscle held at constant length) twitch tension fell to 10–30% of 

its resting value. When the muscle was superfused in Ringer’s solution of 25 mmol.l-1 [HCO3
-

] tension measured 80–90% of resting values at the end of 60 mins recovery. In contrast, 

when the solution was reduced to 1 mmol.l-1 [HCO3
-] isometric twitch tension recovered to 

only 30–40% of resting values (Mainwood and Lucier 1972). Using the same protocol 

Mainwood, Worsley-Brown and Paterson (1972) examined the metabolic changes in frog 

sartorius muscle. The authors reported that muscle lactate remained elevated after 75 mins 

recovery in the 1 mmol.l-1 [HCO3
-] solution but that muscle lactate levels had returned to 

almost resting levels in the 25 mmol.l-1 [HCO3
-] solution. This was suggested to be largely 

due to greater efflux of lactate with the peak rate of lactate efflux being 133% greater in the 

25 mmol.l-1 [HCO3
-] solution. Interestingly, Mainwood and Worsley-Brown (1975) found that 

the efflux of lactate was reduced further for muscles superfused in 1 mmol.l-1 buffer 

(imidazole) solution with potassium sulphate induced depolarisation. The rate of lactate 

efflux did drop slightly (5-10%) in muscles superfused in the 25 mmol.l-1 buffer solution but 

this was still 100% greater than the rate of lactate efflux in muscles superfused in 1 mmol.l-1 

buffer (imidazole) solution. Therefore, efflux of lactate might also be dependent on 

membrane potential in addition to buffer perfusate concentration (Mainwood and Worsley-

Brown 1975). 

 

The effect of low (6.6) and high (7.9) extracellular pH (pHe) on power output in frog 

sartorius muscle has also been examined by adjusting pCO2 as opposed to muscle 

perfusate (Stevens 1988). This study, which used the work-loop technique (as described in 

chapter 6), reported that mass specific maximum power (i.e. W.kg-1) was ~ 25% lower at low 

pHe. However, some caution should be applied when interpreting these results. For 
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example, it is unlikely that the reported levels of pHe would be achieved in vivo (certainly in 

humans) and the physiological perfusate used was 5 mM lower in NaHCO3 (i.e. 20 mM) than 

reported previously. Nevertheless, these results support the result previously presented 

suggesting that the physiological concentration of the extracellular buffer fluid and/or 

associated pH is likely to have substantial effects on amphibian skeletal muscle (Mainwood 

and Lucier 1972, Mainwood, Worsley-Brown and Paterson 1972, Mainwood and Worsley-

Brown 1975). 

 

2.4.2 Mammalian muscle 

 

Hirche et al. (1974) examined the effects of changes in acid-base homeostasis on 

the rate of lactic acid permeation from isolated dog gastrocenemii. Metabolic acidosis (ACD) 

and metabolic alkalosis were induced by infusions of hydrochloric acid (HCl; ACD) and 

NaHCO3 (ALK-S) or trishydroxymethylamino-methane (ALK-T), respectively. The authors 

reported that lactate efflux was ~ 150% greater for ALK-T and ACT-S compared to ACD 

supporting the work by Mainwood, Worsley-Brown and Paterson (1972) who found similar 

results in frog muscle. 

 

Recognising that experiments on amphibian muscle can not necessarily be 

translated to mammalian muscle, Mainwood and Cechetto (1980) evaluated the effects of 

bicarbonate concentration on fatigue and recovery in isolated rat diaphragm muscle. 

Muscles were incubated for 30 mins in solutions of 2, 10 or 25 mM [HCO3
-] and were 

subjected to 24 supramaximal pulses (i.e. 0.2 s at 120 Hz) once a minute for 30 mins. 

Fatigue was then induced by increasing the train frequency to 2 Hz.  Once fatigue had 

developed (~ 3 mins) the train frequency returned to pre-fatigue levels for 30 mins recovery. 

Experiments were completed at both 30°C and 37°C. The authors reported that isometric 

tension reduced to ~ 25% of pre-fatigue control values regardless of experimental solution or 

temperature. However, after ~ 6 mins recovery isometric tension recovered ~ 100% with the 
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25 mM [HCO3
-] solution whereas recovery was ~ 50% for the 2 mM [HCO3

-] solution. At the 

same time point isometric tension recovered ~ 75-90% for the 10 mM [HCO3
-] solution. 

Interestingly, patterns of recovery were largely similar regardless of temperature although 

generally higher at 37°C (Mainwood and Cechetto 1980). 

 

Spriet et al. (1985) induced metabolic acidosis by lowering the [HCO3
-] in the isolated 

muscle perfusate from ~ 24 mM to ~ 13 mM. Metabolic acidosis significantly increased the 

rate of muscle tension decay and reduced absolute muscle tension in the gastrocnemius-

plantaris-soleus muscle group of rats, during fatiguing isometric stimulation, compared to the 

~ 24 mM solution. Conversely, Spriet et al. (1986) found that inducing metabolic alkalosis by 

increasing the [HCO3
-] to ~ 27 mM had no effect on peak isometric tension or tension decay 

compared to CON (~ 21 mM) in the gastrocnemius-plantaris-soleus muscle group of rats. 

Finally, Broch-Lips et al. (2007) examined the effect of 40mM and 25mM [HCO3
-] on 

isometric force production in isolated rat skeletal muscle. The elevated HCO3
- had no 

significant effect on force maintenance during continuous stimulation or recovery of force 

during brief tetanic stimulation in soleus or on tetanic force development in extensor 

digitorum longus muscles at 30°C. Similarly, 40 mM of HCO3
- had no significant effect on 

isometric force maintenance during either continuous stimulation or intermittent stimulation 

protocols (1 s on, 3 s off) at 37°C (Broch-Lips et al. 2007).  

 

It is important to acknowledge that metabolic acidosis or alkalosis induced in the 

extracellular space, through modulation of [HCO3
-], is not the sole component of acid-base 

balance that might impact on isolated muscle performance. Indeed, Wetzel et al. (2001) 

report that extracellular carbonic anhydrase plays a critical role in both H+ and lactate 

transport in rat skeletal muscle. In contrast, intracellular carbonic anhydrase did not 

contribute to H+ and lactate kinetics, which was posited to be because of the high 

concentration of non-HCO3
- buffers in the intracellular space. Similar to the work by Stevens 

(1988), Lannergren and Westerblad (1991) examined the effects of modulating acid-base 
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balance in flexor brevis feet muscle in mice by increasing CO2. The authors reported that 

tetanic tension reduced to ~ 80% of maximum further demonstrating the complex nature of 

acid-base balance and muscle performance. 

 

Overall the data examining the effects of acid-base changes on both amphibian and 

mammalian muscle suggest an important role for [HCO3
-] in terms of muscle performance, 

possibly through facilitating efflux of lactate/H+ and/or maintenance of an optimal 

physiological milieu for cellular functioning (i.e. pH). However, it’s important to acknowledge 

that not all studies report that lactic acid/lactate have a detrimental impact in isolated muscle 

performance. Indeed, Nielsen, de Paoli, and Overgaard (2001) report that in rat soleus 

muscles lactic acid had protective effects on muscle excitability and force against increases 

in extracellular potassium (K+
e) which has been suggested to contribute to muscle fatigue 

(Bangsbo et al. 1996, Bangsbo and Juel 2006). This was demonstrated by adding lactic acid 

to the perfusate which also had levels of K+
e (11 mM) usually seen in skeletal muscle during 

intense exercise. By adding lactic acid recovery of force increased from ~ 30 % to ~ 100% of 

control values (4 mM K+
e). However, as Nielsen, de Paoli, and Overgaard (2001) did not 

adjust extracellular [HCO3
-] it is unclear how this might further affect isolated muscle 

performance. 

 

Although the aforementioned in vitro studies have examined the effects of high and 

low [HCO3
-] on muscle performance the current body of isolated muscle research has a 

number of methodological concerns. For example, during mammalian locomotion muscles 

that are attached to moving skeletal structures, either directly or indirectly, undergo repetitive 

length changes (Josephson 1993). Approximation of such length changes in vitro facilitates 

the evaluation of important components of exercise performance such as recovery from 

fatigue (James, Wilson, and Askew 2004) as well the possible direct effects of ergogenic 

aids (Tallis et al. 2012) in mammalian muscle. As such, research using isometric muscle 

protocols has limited application to muscle performance during dynamic exercise which is 
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exhibited in many muscles during mammalian locomotion. Moreover, to the best of our 

knowledge only one study has examined the effects of changes in acid-base balance at an 

isolated muscle level using a protocol that mimics cyclical length changes that occur in 

locomotion (Stevens 1988). However, acid-base balance was modulated by adjusting pCO2 

as opposed to extracellular perfusate. Moreover, the physiological perfusate used was lower 

than observed in typical resting levels (i.e. 20 vs. 25mM) and the muscle used was 

amphibian rather than mammalian. Furthermore, no research reported to date examining 

acid-base balance at a tissue level has used levels of [HCO3
-] that are typically achieved in 

the blood of human participants (~32mM; Kolkhorst et al. 2004, Price and Singh 2008, Lindh 

et al. 2008, Siegler et al. 2010) following the recommended supplementation dosage (0.3 

g.kg-1; McNaughton 1992a). Therefore, in vitro research that addresses these key gaps 

would provide useful data as to how augmented [HCO3
-] might affect human exercise 

performance / capacity (study 3, chapter 6).  
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Chapter 3 – General Methods 

 

This chapter outlines the common experimental methods used within this thesis. A 

more detailed description of specific methods completed for each individual study is 

described in the appropriate chapter. 

 

3.1 Ethics 

 

University ethics approval was applied for and obtained for each individual study. 

Before taking part in each study, human participants were supplied with a document that 

outlined the purpose of the proposed research, how the study would be carried out and what 

would be expected of them, should they agree to participate. If participants were agreeable 

to the suggested research, they were then provided with an informed consent form which 

they completed and signed. Each participant was free to withdraw from the study at any 

stage. 

 

The study examining the effects of NaHCO3 on isolated muscle performance 

(chapter 6) was carried out in accordance with the British Home Office Animals (Scientific 

Procedures) Act 1986, Schedule 1. 

 

3.2 Participation screening 

 

Participants were requested to avoid caffeine for at least 12 hours prior to exercise, 

alcohol and strenuous exercise for at least 24 hours prior to exercise and to adopt the same 

mixed balanced diet on each testing day. For studies involving oral ingestion of NaHCO3 

(chapters 5 and 7) participants were specifically requested to avoid low carbohydrate intake 

which may induce mild metabolic acidosis which can negatively affect high-intensity exercise 

cycling capacity when compared with a normal mixed diet (Greenhaff, Gleeson and 
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Maughan 1988a,b). Diet adherence was checked verbally prior to each trial. Furthermore, 

participants were screened to ensure that they were not currently undertaking or had 

undertaken a nutritional regime involving any alkalotic buffers such as NaHCO3, NaCit or β-

alanine within the previous 3-6 months. This information was included in the participant 

information sheet provided and confirmed verbally before participants gave written informed 

consent. Each participant also completed a general health screening questionnaire (GHQ) 

before each trial. Participants reported for each trial two to three hours postprandial after the 

same pre-exercise meal and at the same time of day to avoid any circadian rhythm effects 

on performance (Reilly 1990). 

 

3.3 Equipment 

3.3.1 Height and body mass 

 

Height was measured using a stadiometer (Model 220, Seca, Hamburg, Germany) 

and body mass measured by digital floor standing scales (Model 770, Seca, Hamburg, 

Germany). 

 

3.3.2 Cycle ergometry 

 

The mode of exercise undertaken in all in vivo (i.e. human) studies (chapters 4, 5 and 

7) was cycle ergometry (Monark 824E Ergomedic, Monark, Varberg, Sweden). The 

ergometer was calibrated by adding 4 Kg to the cradle and measuring the distance between 

the flywheel and the cradle during manual movement of the flywheel. The manufacturer’s 

handbook recommended a distance of between 30 to 80 mm and for this setup the distance 

was typically ~ 55mm. Before commencing the initial peak oxygen uptake test, participants 

(in conjunction with the researcher) selected the seat and pedal strap positions that they felt 

most comfortable with ensuring the leg was slightly flexed when the feet reached the bottom 

of each rotation. These positions were adopted for all subsequent trials in that study. This 
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process was repeated for any participants who volunteered in more than one study to ensure 

consistency of process between participants. 

 

3.3.3 Expired gas collection and analysis 

 

Expired gas was sampled and analysed using an online breath-by-breath system 

(Metamax 3B, Cortex Biophysik, Leipzig, Germany) as per manufacturer guidelines. Before 

every test, this system was calibrated with gas concentrations (5% CO2 and 15% O2, British 

Oxygen Company, Surrey, UK) using a 6L antistatic re-breathable bag (Harvard Apparatus 

Ltd, Kent, UK), flow rate using a 3L calibration syringe (Hans Rudolf Inc, Kansas, USA) and 

atmospheric pressure using a manual wall mounted mercury barometer (F.Dalton & Co Ltd, 

Watford, UK). A face mask was secured over the participant’s mouth and nose using a mesh 

harness covering the top of the head ensuring the mouthpiece was securely attached.  

Unless otherwise specified, breath-by-breath data were averaged over the last sixty seconds 

of the pre-exercise rest period (baseline) and for the last ten seconds of an exercise bout. 

Participants were blinded to the clock during rest to minimise any anticipatory changes in 

baseline physiology. Key data analysed calculated, oxygen consumption (V̇O2), carbon 

dioxide production (V̇CO2), minute ventilation (V̇E) and respiratory exchange ratio (RER). 

 

3.3.4 Heart rate 

 

Heart rate (HR) was measured using a telemetric HR monitor (Polar FS1, Kempele, 

Finland) which recorded HR as a ‘one-off’ reading in real time. Baseline HR data was taken 

at the end of seated rest periods and remaining HR data was collected at pre-selected 

intervals during and post-exercise (see 3.6.1 and 3.6.2). 

 

3.4 Perceptual variables 

3.4.1. Ratings of perceived exertion 
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Ratings of perceived exertion (RPE) were measured using the Borg Scale (6-20; 

Borg, 1982). During familiarisation and experimental trials, RPE was collected for both 

overall and local fatigue. Local fatigue (RPEL) was defined as exertion specific to the leg 

musculature and overall fatigue (RPEO) was defined as a more general cardiovascular 

perception of fatigue (Robertson et al. 1986, Swank and Robertson 1989). Only RPEO was 

collected for the graded incremental test. For continuous work trials to volitional exhaustion 

(TLIM), RPE were recorded post-exercise and after 1 min (chapter 4), 1 and 2 mins (chapter 

5) or 1, 2 and 3 mins (chapter 7) of exercise. Previous research in well trained males has 

demonstrated that measuring RPE in the first two minutes of short-term high intensity 

exercise is reliable (Doherty et al. 2001). 

 

3.4.2. Abdominal discomfort and gut fullness 

 

During experimental trials, ratings of abdominal discomfort (AD) and gut fullness (GF) 

were measured using an 11 point Likert scale (0-10; sections 10.1 and 10.2). Similar scales 

have been used in previous research using NaHCO3 supplementation (Price, Moss, and 

Rance 2003, Price and Cripps 2012). Data were sought pre NaHCO3 ingestion, 30 mins post 

ingestion, 60 mins post ingestion (pre-exercise) and immediately post-exercise. 

 

3.5 Blood variables 

3.5.1 Blood lactate 

 

Blood was collected by means of finger-prick capillary samples. The finger was wiped 

with an isopropyl alcohol swab (Medlock Medical, Oldham, UK) and then punctured using a 

1.8 mm lancing device (Safety Lancet, Sarstedt, Germany). The initial blood was wiped 

away using a tissue and the subsequent 20 µL was collected in a sodium heparinised 

capillary tube (EKF Diagnostic, Magdeburg, Germany). This was then added to a 1mL 

Eppendorf tube (EKF Diagnostic, Magdeburg, Germany) and mixed well. Samples were then 
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analysed for blood lactate concentration (Biosen C_line, EKF Diagnostic, Magdeburg, 

Germany). 

 

3.5.1.i Reliability of Biosen C_line analyser 

 

The test-retest reliability of the Biosen C_line analyser (EKF Diagnostic, Magdeburg, 

Germany) was evaluated in two ways. Firstly, using samples of known concentration 

supplied by the manufacturer (2.0, n=10; 7.0, n=10; 12.0, n=4; and 18.0, n=10) mmol.l-1) and 

secondly, using blood samples collected at rest and after a range of high intensity exercise 

(n=29). Figures 3.1 and 3.2 highlight very high test-retest reliability for both methods, with R2 

values of 0.99, in line with previous analysis (Davison et al. 2000). Within-measurement CV 

of 1.2%, 0.4%, 0.1% and 0.5% were observed for the 2.0, 7.0, 12.0 and 18.0 mmol.l-1 

standards, respectively. The mean within-measurement CV for physiological samples was 

0.4%.  

  
 

Figure 3.1 Biosen C_line test-retest reliability: Samples of known concentration 
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Figure 3.2 Biosen C_line test-retest reliability: Physiological samples 

 

3.5.2 Base excess, pH and [HCO3
-] 

 

Base excess (BE), pH and bicarbonate ion concentration [HCO3
-] were collected 

using finger-prick capillary samples. The same cleaning and lancing procedure was used as 

outlined in section 3.5.1 The sample was collected in a 100 µL clinitube (Radiometer Medical 

ApS, Copenhagen, Denmark), capped at both ends and mixed. Samples were then analysed 

using a blood gas analyser (ABL5 radiometer, Radiometer Medical ApS, Copenhagen, 

Denmark). 

 

3.5.2.i Reliability of blood gas analyser (ABL5 Radiometer) 

 

The test-retest reliability of the blood gas analyser (ABL5 radiometer, Radiometer 

Medical ApS, Copenhagen, Denmark) was completed by using samples of known 

concentration (7.12 (n=5), 7.15 (n=5), 7.38 (n=5), 7.62 (n=5); n=20). Figure 3.3 highlights 

very high test-retest reliability (R2 = 0.99). Within-measurement CV of 0.1%, 0.2%, 0.2% and 

0.1% were observed for the 7.12, 7.15, 7.38 and 7.62 standards, respectively. 
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Figure 3.3 ABL5 radiometer test-retest reliability: Samples of known concentration 

 

3.6 Exercise protocols 

3.6.1 Graded incremental exercise test 

 

A graded incremental exercise test to ascertain peak oxygen uptake (V̇O2PEAK) was 

completed by all participants prior to experimental trials. This test also identified the average 

peak minute power (WPEAK) achieved by participants which was used to calculate the relative 

power output for subsequent exercise bouts.  After gaining informed consent and completing 

the general health screening questionnaire (GHQ), both height and body mass were 

measured. Participants were then seated and rested quietly for five minutes with baseline 

ventilatory data analysed over the final minute (section 3.3.3). Heart rate was recorded 

(section 3.3.4) at the end of rest and baseline blood lactate (BLa) was taken before mounting 

the ergometer (section 3.5.1). 

 

Cycling commenced on the ergometer (Monark 824E Ergomedic, Monark, Varberg, 
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stage, HR and RPEO were recorded. Upon completion of each stage 0.5 kg (35 W) load was 

added to the cradle. This process continued until volitional exhaustion with the researcher 

providing verbal feedback for maintenance of the specified cadence and to complete a 

maximal effort. Heart rate and RPEO were recorded at volitional exhaustion and further BLa 

samples were taken immediately and five minutes post-exercise. WPEAK was calculated as 

the mean power achieved during the final minute of the test (Lamberts et al. 2012). If 

exercise ceased across stages, the appropriate duration undertaken at each power output 

was used to calculate a pro-rata WPEAK. For example, if a participant stopped exercising 40 

seconds into stage 6, the following calculation was undertaken. WPEAK = (20 s / 60 s) * 210 

W (stage 5) + (40 s / 60 s) * 245 W (stage 6) = (70 + 163) = 233 W. 

 

3.6.1.i Reliability 

 

Eight healthy and active, but none specifically trained males completed two 

incremental exercise tests to volitional exhaustion to ascertain their peak oxygen uptake and 

associated WPEAK. The same pre-exercise screening process was carried out as described in 

section 3.2 and trials were conducted 3-7 days apart. The procedure for the exercise test 

followed the same protocol as outlined in section 3.6.1.   

 

Mean age, body mass and height were 21.4 ± 4.8 years, 85.2 ± 13 Kg and 179.4 ± 

5.6 cm, respectively. The data collected from both tests are presented in table 3.1. 

Unfortunately, due to equipment error, respiratory data was unable to be collected for n=3 on 

test 2 and thus due to unequal groups (n=8 vs. n=5) a Mann-Whitney U test was used to 

analyse this data. RPE was analysed using a Wilcoxon test due to non normality of data. For 

the remaining variables paired t-tests were used. The appropriate parametric (Pearson; r) or 

non-parametric correlations (Spearman’s Rho; ρ) were also applied where appropriate. 
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Table 3.1 Physiological data from repeat graded incremental tests 

 

 Physiological Data Correlation Data 
Variable Test 1 Test 2  ± SE P CVWS r r2 P 

Performance time (s) 1043 ± 104 1045 ± 86 2 ± 27 0.88 2.1% 0.93 0.87 0.001  

WPEAK (Watts) 255 ± 24 253 ± 18 -2 ± 11 0.71 2.9% 0.75 0.57 0.03  

V̇O2 (l.min-1) ** 3.59 ± 0.6 3.48 ± 0.8 ** -0.1 ± 0.4 0.83 * 8.0% 0.87 0.76 0.05  

V̇O2 (ml.kg-1.min-1) ** 42 ± 13 42 ± 16 ** -0.8 ± 4.5 0.62 * 8.3% 0.82 0.67 0.09 

V̇E  (l.min-1) ** 111.4 ± 12.6 113.9 ± 9.3 ** -2.5 ± 7.0 0.52 * 5.0% 0.46 0.21 0.43 

End-exercise HR (bpm-1) 195 ± 7 192 ± 7 -3 ± 3 0.10 1.2% 0.87 0.76 0.01  

End-exercise RER ** 1.01 ± 0.15 0.96 ± 0.06 ** 0.01 ± 0.04 0.72 * 3.9% 0.56 0.31 0.32 

End-exercise BLa (mmol.l-1) 12.2 ± 1.8 11.9 ± 2.2 -0.1 ± 1.2 0.93 8.4% 0.65 0.42 0.08 

5 mins post-exercise BLa 
(mmol.l-1) 11.2 ± 1.9 10.8 ± 2.4 -0.4 ± 1.0 0.52 8.7% 0.79 0.63 0.02  

RPEO 20 ± 1 20 ± 0 0.1 ± 0.3 0.50 0.4% 0.75 0.56 0.03  
Note: * P based on n=8 vs. n=5 (Mann Whitney U test) ** n=5 (including correlation and CVWS data) 

 

 

 

 

Figure 3.4 Correlation between performance times for repeated graded incremental exercise 

tests 
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There were no significant differences between incremental test 1 and 2 for any of the 

variables measured (Table 3.1). There were significant correlations for performance time 

(Figure 3.4), WPEAK, V̇O2 (l.min-1), end-exercise HR (Figure 3.5), 5 mins post-exercise BLa 

and RPEO. The correlations for V̇O2 (ml.kg-1.min-1) and post-exercise BLa approached 

significance (Table 3.1). 

 

 

Figure 3.5 Correlation between end post-exercise heart rate (HR) for repeated graded 

incremental exercise tests 
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Table 3.2). With the exception of post-exercise HR there is ≥ 85% likelihood of negligible 

difference between tests 1 and 2 in all variables (Table 3.2) with effect sizes lower than the 

smallest worthwhile change of 0.2 * between-subject SD. Moreover, a difference of 3 bpm-1 

for post-exercise HR between test 1 and 2 is more likely to represent daily biological 

variation and hence unlikely to be physiologically different (Table 3.1, Figure 3.5). 

 

Combined with the correlation data and traditional statistical analysis previously 

presented (Table 3.1) we conclude that one graded incremental test is sufficient to ascertain 

V̇O2PEAK / WPEAK for use in subsequent experimental trials. These results are supported by 

previous data examining V̇O2MAX during successive maximal cycle ergometer tests in a 

similar participant cohort to that used in the present study (Foster et al. 2007). 

 

Table 3.2 Magnitude based inferences for repeated incremental test data 

 
Variable SWC T2 >T1 T1 = T2 T2 < T1 ES 

Performance time  1.8% 7.0% 88.5% 4.4% 0.02 

WPEAK 1.7% 3.8% 84.6% 11.7% 0.10 

End-exercise HR 0.7% 1.7% 11.2% 87.1% 0.35 

End-exercise BLa 3.3% 0.6% 98.7% 0.7% 0.14 

5 mins post-exercise BLa 4.0% 0.1% 99.2% 0.6% 0.16 
Note: SWC = smallest worthwhile change, 0.2 * B-S SD (%), ES = Effect Size (standardised mean difference) 

 

3.6.1.ii Validity 

 

Bird and Davison (1997) outline a number of criteria that require consideration in 

establishing maximal oxygen uptake (V̇O2MAX) in adults. They are: (1) final HR within 10 bpm-

1 of the age-related maximum (we calculated this as 208 – (0.7 * age); Tanaka, Monahan, 

and Seals 2001), (2) ~ 5 min post-exercise BLa of 8 mmol.l-1 or greater, (3) subjective 

fatigue and volitional exhaustion, (4) RPE rating of 19-20 on the Borg Scale or equivalent 
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and (5) RER ≥ 1.15. It is also stated that a plateau in oxygen uptake, defined as an increase 

in oxygen uptake of less than 2 ml.kg-1 or 3% with an increase in exercise intensity should 

also be considered. However, there is no universally accepted definition of the V̇O2 plateau 

(Astorino, White, and Dalleck 2009). Furthermore, a ‘true’ V̇O2MAX may not be achieved due 

to local muscular fatigue when using an unfamiliar mode of exercise such as a cycle 

ergometer in none cycling specifically trained participants (Astorino, White, and Dalleck 

2009). In the absence of such a plateau, and where other parameters have been met, 

participants are deemed to have reached their V̇O2PEAK.  

 

With the exception of a post-exercise RER of ≥ 1.15 participants met all criteria as 

outlined by Bird and Davison (1997). In parallel with visual inspection of each participants 

V̇O2 data, we conclude that participants reached V̇O2PEAK rather than V̇O2MAX. As such the 

graded incremental protocol utilised within this thesis is sufficient to ascertain participants’ 

V̇O2PEAK and WPEAK during one exercise bout. 

 

3.6.2 Time to volitional exhaustion (TLIM) 

 

For all human studies a time to volitional exhaustion (TLIM) protocol was adopted. 

This involved participants cycling at a pre-determined power output (calculated from initial 

incremental test, see section 3.6.1) until they were unable to maintain that power output for a 

specific period of time (e.g. ~ 3 to 4 seconds) or they stopped exercising completely. This 

protocol was chosen due to its wide adoption in the evaluation of ergogenic aids (Hill et al. 

2007, Sale et al, 2011, Saunders, et al. 2011). Moreover, using a TLIM protocol appears the 

most likely to demonstrate ergogenic benefit for NaHCO3 supplementation (Matson and Tran 

1993). 

 

 Upon completion of baseline data collection, the participant mounted the ergometer 

and commenced a warm up consisting of cycling at 70 rev.min-1 for 4 min at 50% WPEAK, 1 
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min at 75% WPEAK and then 2 min at 70 W. After a verbal countdown the test commenced 

with participants blinded to the clock throughout. The cadence of 70 rev.min-1 was chosen as 

research examining a range of power outputs (100 – 300 W) and cycling cadences (30 – 120 

rev.min-1) during constant load cycling found 70 rev.min-1 to be optimal from both metabolic 

and respiratory perspectives (Ansley and Cangley 2009). Moreover, this cadence has been 

adopted by research examining the efficacy of NaHCO3 ingestion on 100% WPEAK cycling 

performance (Linderman et al. 1992). 

 

 A stationary start was employed which has previously been used in evaluating high-

intensity cycling in a laboratory setting with active but not specifically cycling trained males, 

similar to the present study (Wittekind, Micklewright, and Beneke, 2011). The location of the 

desktop online breath-by-breath system (lab bench adjacent to cycle ergometer) meant that 

small adjustments in participant posture were possible but not sufficient space was afforded 

to substantially affect participant performance. The test was ceased the second time the 

cadence dropped below 70 rev.min-1 for more than 3 or 4 seconds or if the participant was 

unable to re-establish the required cadence within 3 to 4 seconds. Upon completion of the 

test, the participant was encouraged to cycle for 5 minutes at 70 W (unloaded cradle) to 

warm down and avoid syncope.  

 

3.7 Treatment 

 

For experimental studies 2 (chapter 5) and 4 (chapter 7) treatments were either 0.3 

g.kg-1 body mass NaHCO3 (McNaughton 1992a) or 0.1 g.kg-1 body mass NaCl (PLA). 

Treatments were administered single blind as per similar research (Price, Moss, and Rance 

2003). Treatment solutions constituted of 4 ml.kg-1 water and 1 ml.kg-1 of double strength no 

added sugar orange squash (Sainsbury’s, London, UK). In contrast to previous research 

pilot testing suggested that 0.3 g.kg-1 body mass NaHCO3 and an equimolar dosage of NaCl 
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(0.21 g.kg-1 body mass) were unable to be matched for taste. Therefore, a dosage of 0.1 

g.kg-1 of NaCl was used to match taste as closely as possible. All solutions were refrigerated 

overnight before consumption to enhance palatability (Price and Singh 2008). 

 

3.8 Statistical analysis 

 

Statistical analysis was completed using PASW (SPSS; v17, Chicago, USA). For all 

analyses, standard normality and homogeneity of variance/sphericity (Shapiro-Wilk and 

Mauchly tests respectively) were checked prior to using parametric tests (i.e. t-tests, 1, 2 or 

3-way repeated measures ANOVA). For interactions, Tukeys’ post hoc analysis was 

undertaken by calculating the difference required between means for significance at the level 

of P < 0.05 (Vincent 1999). For any violations of sphericity, degrees of freedom were 

corrected using Huynh-Feldt (ε >0.75) or Greenhouse-Geiser (ε < 0.75) values for ε, where 

applicable (Field 2005). Where normality of data was not confirmed, non parametric tests 

were used (i.e. Wilcoxon, Mann Whitney U or Friedman). Traditional statistical significance 

was accepted at P < 0.05 although, where appropriate, exact P values are presented. The 

within-subject coefficient of variation (CVWS) was calculated as the mean within-subject SD / 

mean variable scores (Hopkins, Schabort and Hawley 2001). Other figures quoted are mean 

values ± standard deviation unless otherwise stated.  

 

3.8.1 Magnitude based inferences 

 

In addition to the traditional statistical analysis, magnitude based inferences, as 

described by Batterham and Hopkins (2006) and Hopkins et al. (2009) are presented where 

appropriate. Using the calculated test statistic, P value and the smallest worthwhile change 

(SWC) a specialist spreadsheet (Hopkins 2007) was used to calculate the probabilities of 

whether a specific outcome is (1) positive / beneficial, (2) trivial / negligible or (3) negative / 

harmful.  The SWC for studies 1 and 2 (chapters 4 and 5) was calculated as 0.2 * between-
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subject SD of peak power from the baseline incremental test. For study 4 (chapter 7) the 

SWC was calculated for both pre and post-training incremental tests and used to calculate 

probability of changes based on pre and post-training TLIM performance, respectively. 

Calculation of SWC using this approach was suggested by both Professors Will Hopkins and 

Alan Batterham (2012, personal communications). A standardised change between trials 

was calculated as the effect size (ES = change in mean / pooled between-subject SD) and 

compared, where appropriate, against the smallest worthwhile change of 0.2 * between-

subject SD (Hopkins 2004). Where appropriate odds ratios are presented the recommended 

benefit: harm threshold is > 66. More simply, this means that for the given variable there is > 

25% chance of benefit and < 0.5% chance of harm (Hopkins 2007). 

 

3.8.2 Missing data 

 

Unfortunately, due to operator/equipment error, a small amount of experimental data 

could not be recorded (0.7% of total). To avoid deleting otherwise complete datasets (i.e. 

decreased power of statistical analysis), these values were calculated using an adapted 

version of hot deck imputation (HDI; Schafer and Graham 2002). Hot deck imputation uses 

data from other observations within the data set to estimate missing values. Where possible, 

data from other tests from the same participant was used. The percentage of data estimated 

using this method from each study is detailed below along with specific examples. This 

unobtainable data is confined to blood pH and HR data only from experimental trials only. No 

performance time (TLIM), BLa, respiratory or perceptual data or data from any incremental 

test or the isolated muscle study (chapter 6) was estimated using this method.  

 

• Study 1 (chapter 4) – HDI Data = 0.8% (5 / 638) 
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- Resting pH for trial two (FAM2) for  participant 1 (completed study 1 and 2) was 

estimated as the mean of their resting pH for FAM1 and FAM3 and the six 

experimental sessions (EXP01-EXP06) 

 

- Post-exercise HR for FAM1, participant 11 was estimated as resting HR trial 1 plus 

the mean difference between pre and post-exercise HR for the other 32 trials 

 
 

• Study 2 (chapter 5) – HDI Data = 0.2% (5 / 2520) 

 

- 5 mins post-exercise HR for the 100% WPEAK PLA and 120% WPEAK NaHCO3 trials, 

for participant 1 was estimated as the mean post-exercise HR from all other 

experimental trials (EXP02-EXP05) 

 

• Study 4 (chapter 7) – HDI Data = 1.5% (27 / 1800). The reason that this figure is 

relatively higher than previous studies relates to the fact that pH, BE and [HCO3
-] are 

collected as one sample which equates to three pieces of data per unobtainable 

sample 

 

- Pre NaHCO3 ingestion values for pH, BE and [HCO3
-] for participant 5 in the post-

training PLA trial were calculated as the mean pH, BE and [HCO3
-], from the pre-

ingestion and pre-exercise values from the pre-training PLA trial and the pre-exercise 

values from the post-training PLA trial 

 

- 5 mins post-exercise pH, BE and [HCO3
-] values for participant 2 in the pre-training 

PLA trial were calculated as post-exercise value plus mean difference of post and 5 

mins post-exercise values for all other participants 
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Chapter 4 - Familiarisation to and reproducibility of cycling at 110% peak power 

output. 

4.1 Abstract 

 

This study investigated the familiarisation to and test re-test reproducibility of 

constant load cycling at 110% peak power output (WPEAK). Eleven healthy, but not cycle 

trained, males performed a graded incremental exercise test to ascertain WPEAK followed by 

three trials (T1, T2 and T3) at 110% WPEAK to exhaustion. Trials were separated by ~ 7 days.  

Although there was no difference in time to exhaustion (TLIM) between T1 and T2 (P = 0.100) 

and T2 and T3 (P = 0.095) respectively, a difference was observed between T1 and T3 (P = 

0.046). Correlation coefficients, coefficients of determination, limits of agreement (LoA) and 

within-subject coefficient of variation (CVWS) improved across trials demonstrating T2 and T3 

had the strongest relationship (T1 vs. T3: r = 0.73; r2 = 0.53; Bias = 40 s; CVWS = 14%; T1 

vs. T2: r = 0.66; r2 = 0.43; Bias = 24 s; CVWS = 10%; T2 vs. T3: r = 0.97; r2 = 0.95; Bias = 16 

s; CVWS = 7%). There was no difference across trials for cardiorespiratory (HR, RER, V̇E, 

V̇O2,), blood (BLa, pH) or perceptual variables (RPEL, RPEO). In conclusion, constant load 

cycling at 110% WPEAK is a reliable protocol when assessing supramaximal exercise capacity 

after completion of two familiarisation trials. 

 

4.2 Introduction 

 

In order to be of optimal value a performance test must be reliable, valid and 

sensitive (Mendez-Villaneuva, Bishop, and Hamer 2007, Currell and Jeukendrup 2008). 

However, no research on the validity of physical performance measures has included 

reliability of the criterion measure(s) (Hopkins, Schabort, and Hawley 2001). Until such work 

is completed Hopkins, Schabort, and Hawley (2001) suggest that tests of high reliability 

should be used as only these tests can have high validity. Reliability of performance testing 
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refers to the consistency of performance on repeated tests with greater reliability resulting in 

more precise performance data (Hopkins 2000, Hopkins, Schabort, and Hawley 2001, Watt, 

Hopkins, and Snow 2002). The main components of reliability are systematic bias such as 

learning effects or fatigue and random error due to biological or mechanical variation 

(Atkinson and Nevill 1998). To minimise systematic bias participants are often familiarised 

with the proposed tests before collecting performance data (Carey and Richardson 2003). 

By performing enough familiarisation trials, learning effects or other systematic changes are 

diminished sufficiently so that reliable performance data can be obtained (Hopkins 2000). 

Indeed, there is clear evidence of a learning effect between the first two trials of anaerobic 

performance tests and thus a minimum of one familiarisation trial before experimental testing 

is required (Hopkins, Schabort, and Hawley 2001, Barfield et al. 2002). Research evaluating 

the reliability of singular or repeated high-intensity cycling sprints (Capriotti, Sherman, and 

Lamb 1999, Glaister et al. 2003, Mendez-Villaneuva, Bishop, and Hamer 2007) found that 

high reliability is achieved after two familiarisation trials. This research regarded high 

reliability as exhibiting a CVWS of ~ 2-4%.  

 

Hopkins, Schabort, and Hawley (2001) analysed the reliability of physical 

performance tests by converting the performance criteria from constant power time to 

exhaustion tests (TLIM), into an estimate of mean power output and comparing its reliability 

against a range of other physical performance tests. The authors reported that although the 

CV is greater for constant power tests (~ 16%) this is because a small change in power 

output will result in a much larger change in time to exhaustion (TLIM). Indeed, the authors 

suggest that constant power tests are the most reliable physical performance test (Hopkins, 

Schabort, and Hawley 2001). 

 

The generation of supramaximal power during brief ‘all-out’ exercise is an important 

facet of many sports (Mendez-Villaneuva, Bishop, and Hamer 2007). A number of tests, 

such as the Wingate Anaerobic cycling Test (WAnT; Ayalon, Inbar, and Bar-Or 1974, Inbar, 
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Bar-Or, and Skinner 1996) and the 6 s maximal cycling sprint test (Mendez-Villaneuva, 

Bishop, and Hamer 2007) have been developed to provide such measures of anaerobic 

performance. However, both the 6 s maximal cycling sprint tests and 30 s WAnT tests are 

focussed almost exclusively on anaerobic energy provision and are therefore most suitable 

for measuring exercise capacity up to ~ 30 seconds. Other performance measures, such as 

constant load exercise to volitional exhaustion (e.g. 110% of WPEAK) or ‘all-out’ exercise for 

longer than 60 seconds, incorporates a greater contribution of ATP from aerobic metabolism 

(Gastin et al. 1995). Studies that have examined the physiological responses to high 

intensity workloads lasting between 60 and 180 seconds have either utilised constant 

duration tests (Carey and Richardson 2003, Carter et al. 2005, Burnley, Doust, and 

Vanhatalo 2006) or a combination of constant load and constant duration cycling (Doherty 

et. al. 2003) and thus have not examined time to volitional exhaustion as the outcome 

measure. Studies adopting cycling at 110% V̇O2PEAK have either compared performance time 

against other exercise intensities (Gastin et al. 1995), assessed maximal accumulated 

oxygen deficit (MAOD; Weber and Schneider 2001, Bertuzzi et al. 2010) or evaluated 

ergogenic aids (Hill et al. 2007, Sale et al. 2011, Saunders et al. 2011). At the time of 

starting this study there was no reported research which sufficiently assessed the reliability 

of TLIM at 110% V̇O2PEAK. It is acknowledged that Saunders et al. (2012) have published a 

similar study in the interim period and analysis of this research will be incorporated into 

section 4.5 (Discussion). 

 

The ability to detect changes outside of day-to-day variation in exercise performance 

/ capacity (i.e. sensitivity) is of particular importance in research where an intervention such 

as nutritional supplementation is evaluated (Hill et al. 2007, Sewell and McGregor 2008, 

Sale et al. 2011, Saunders et al. 2011, O’Hara et al. 2012). Despite assertions that time-

trials may be more sensitive in detecting changes in endurance capacity, constant load tests 

are at least as sensitive (Amann, Hopkins, and Marcora 2008). Although such measures 

have been investigated in trained cyclists there is little research in those with little experience 
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of laboratory testing (Sewell and McGregor 2008). This lack of research exists despite the 

large amount of studies in which non-specifically trained but recreationally active individuals 

form the experimental cohort and indeed the large amount of nutritional products purchased 

and consumed by this population. Therefore, the aim of this study was to investigate the 

familiarisation to and test re-test reliability of continuous supramaximal cycling at 110% peak 

power output (WPEAK) in recreationally active male participants not well accustomed to 

cycling. We hypothesised that two trials would be required before participants become fully 

familiarised and reliable data was obtained. 

 

4.3 Methods 

4.3.1 Participants 

 

Eleven healthy males volunteered to take part in this study (mean ± SD: age 23.6 ± 

3.7 years, body mass 74.3 ± 10.7 kg, height 175 ± 4 cm, peak oxygen uptake (V̇O2PEAK) 41.0 

± 6.2 ml.kg-1.min-1) which had received University Ethics Committee approval. All 

participants were recreationally active undertaking 2-3 exercise sessions (e.g. football, 

rugby, and/or running) per week. None were specifically cycling trained.  

 

4.3.2 Pre-experimental procedures 

 

Participants were requested to avoid alcohol and strenuous exercise for at least 24 

hours prior to exercise, to maintain the same balanced mixed diet and to avoid caffeine for at 

least 12 hours before tests. Adherence to these pre-test guidelines was checked verbally 

prior to each trial. All participants gave written informed consent and completed a general 

health screening questionnaire before each bout. Participants reported for each trial two 

hours postprandial and at the same time of day to avoid any circadian rhythm effects on 

performance (Reilly 1990). Trials were carried out seven days apart. 

 



79 
 

4.3.3 Study design 

 

Participants visited the laboratory on four separate occasions. Trials were separated 

by ~ 7 days. Each participant performed a graded incremental exercise test to ascertain 

peak power output (WPEAK) followed by three exercise trials (T1, T2 and T3) at 110% WPEAK 

to exhaustion (TLIM). We adopted TLIM as criteria for exercise capacity because of its wide 

adoption in evaluating ergogenic aids (Hill et al. 2007, Sale et al, 2011, Saunders, et al. 

2011). The intensity of 110% WPEAK was chosen as this intensity appears with some 

frequency within the sports science literature (Gastin et al. 1995, Weber and Schneider 

2001, Hill et al. 2007, Bertuzzi et al. 2010, Sale et al, 2011, Saunders, et al. 2011) but at the 

time of commencing this research the associated reliability had not been reported. 

Furthermore, it has been acknowledged that evaluation of protocols in non trained 

participants is lacking (Sewell and McGregor 2008). 

 

4.3.4 Incremental exercise test 

 

On the first visit to the laboratory, participants completed a graded incremental 

exercise test on a cycle ergometer (Monark 824E Ergomedic, Monark, Varberg, Sweden) to 

ascertain V̇O2PEAK and WPEAK. Before commencing the exercise test, each participant 

selected the seat and pedal strap positions that felt most comfortable ensuring that the leg 

was slightly flexed when the feet reached the bottom of each duty cycle. These settings were 

adopted for all subsequent trials. The full incremental exercise test protocol can be found in 

section 3.6.1. 

 

4.3.5 Experimental trials 

 

On the three subsequent visits to the laboratory, participants cycled to volitional 

exhaustion (TLIM) at a relative power output of 110% WPEAK. The cadence of 70 rev.min-1 was 
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chosen as research examining a range of power outputs (100 – 300 W) and cycling 

cadences (30 – 120 rev.min-1) during constant load cycling found 70 rev.min-1 to be optimal 

from both metabolic and respiratory perspectives (Ansley and Cangley 2009).  As the 

participants in the present study were not well trained cyclists and the 110% WPEAK test uses 

~ 80% aerobic energy (Gastin et al. 1995) the cadence of 70 rev.min-1 would likely optimise 

TLIM and thus enhance familiarisation to the test.  

 

Once breathing in to the online breath-by-breath system participants sat quietly for 

fifteen minutes. On completion of the rest period, HR was noted and blood samples were 

taken for measurement of blood lactate concentration (BLa) and pH. Cardiorespiratory and 

blood data were collected as per sections 3.3.3, 3.3.4 and 3.5.1, 3.5.2 respectively. On 

completion of the rest period the participant mounted the ergometer and commenced a 

warm up consisting of; cycling at 70 rev.min-1 for four minutes at 50% WPEAK (general 

cardiovascular stage), one minute at 75% WPEAK (medium intensity stage), and then two 

minutes at 70 W (unloaded cradle; maintenance stage). By using a variety of exercise 

intensities this protocol was designed to ensure participants were adequately warmed up 

prior to each trial.  After a verbal countdown the test commenced with participants blinded to 

the clock. Stationary starts have been successfully been used in evaluating high-intensity 

cycling performance in a laboratory setting with active but not specifically cycle trained males 

(Wittekind, Micklewright, and Beneke 2011) similar to the subject cohort in the present study. 

All participants achieved the required cadence within ~ 10 to 15 seconds. After any initial 

drop in cadence the researcher verbally encouraged the participant to re-establish the 

desired cadence to ensure consistent power output was maintained. The test was ceased 

the second time the cadence dropped below 70 rev.min-1 for more than 3 or 4 seconds or if 

the participant was unable to re-establish the required cadence within 3 to 4 seconds as 

outlined in section 3.6.2. Local RPE (RPEL) and overall RPE (RPEO) were recorded after 

one minute and upon cessation of exercise (Robertson et al. 1986, Swank and Robertson 

1989; section 3.4.1). Capillary blood samples were taken immediately on volitional 
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exhaustion (BLa) and five minutes post-exercise (BLa, pH). Upon completion of the test, the 

participant was encouraged to cycle for five minutes to warm down and to avoid syncope. 

 

4.3.6 Statistical analysis 

 

Statistical analysis was completed using PASW (SPSS; v17, Chicago, USA). 

Statistical significance, normality and homogeneity of variance/sphericity of data was 

assessed / adjusted as outlined in section 3.8. Exercise capacity (TLIM) and other variables 

were analysed by one-way repeated measures ANOVA and subsequent pairwise 

comparisons (least significant difference; LSD) with the exception of RPEO which was 

analysed using a Friedman test due to non-normality of data. The difference between RPEL 

and RPEO for each trial was therefore evaluated using separate Wilcoxon tests. The LSD 

comparisons were chosen as they are the most powerful when analysing 3 levels/groups 

(Maxwell and Delaney 2004, Cardinal and Aitken 2006, Howell 2007).  

 

 Test re-test reliability was determined using a combination of Bland-Altman plots 

(bias, limits of agreement), Pearson correlation coefficients (r), coefficient of determination 

(r2) and within-subject coefficient of variation (CVWS). The CVWS was calculated as the mean 

within-subject SD / mean variable scores (Hopkins, Schabort, and Hawley 2001). Figures 

quoted are mean values ± standard deviation unless otherwise stated. Confidence intervals 

(95%CI) which define the range for which the true value of the statistic is 95% likely to fall 

(Watt, Hopkins and Snow 2002) were calculated as ± 1.96 * SE for individual trials, where 

SE = SD / √n (Streiner 1996) and for mean difference scores as ± 1.96 * SE for where SE = 

SD / √2 (Hopkins 2000, Hopkins, Schabort and Hawley 2001).  

 

 In addition to the traditional statistical analysis, magnitude based inferences, are 

presented where appropriate as outlined by section 3.8.1. For TLIM the smallest worthwhile 
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change (%) was calculated as 0.2 * between-subject CV of WPEAK derived from the baseline 

incremental exercise test (Hopkins 2000, Hopkins 2004). 

 

4.4 Results 

 

Mean V̇O2, V̇E, HR, RER, blood lactate concentration (BLa) and RPEO values at the 

end of the initial peak oxygen uptake test exercise were 3.0 ± 0.5 l.min-1, 114 ± 21 l.min-1, 

185 ± 12 bpm-1, 1.05 ± 0.00, 10.3 ± 2.5 mmol.l-1 and 20 ± 0 respectively. This data supports 

the criteria for achievement of valid peak oxygen uptake tests (Bird and Davison 1997). 

Average WPEAK in the final minute of the test was 225 ± 29 W and therefore mean 110% 

WPEAK was 247 ± 32 W. A significant difference was observed for TLIM across trials (P = 

0.049; Figure 4.1, Table 4.1). Although there was no significant difference in TLIM between 

T1 and T2 (LSD: P = 0.100) and T2 and T3 (LSD: P = 0.095) respectively, there was a 

significant difference between T1 and T3 (LSD: P = 0.046; Figure 4.1).  

 

Figure 4.1 Time to volitional exhaustion (TLIM) at 110% WPEAK (n=11). * T 3 > T1; P < 0.05 

 

There was no difference across trials for cardiorespiratory (HR, RER, V̇E, V̇O2,), blood 

(BLa, pH) or perceptual variables (RPEL, RPEO; Table 4.1). A significant difference was 
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observed between mean RPEL (20 ± 0) and RPEO (19 ± 1) at the end of exercise (P = 0.017, 

P = 0.011 and P = 0.026 for T1, T2 and T3 respectively; Table 4.1). Correlation coefficients 

(r), coefficient of determination (r2), limits of agreement (LoA) and improved across trials 

demonstrating T2 and T3 to have the strongest relationship (Figure 4.2; Table 4.2).  

Table 4.1 Physiological data from each TLIM trial 

  
Trial 

  
  

 
T1 T2 T3 Mean P  

TLIM (s) ± SD 223 ± 45 248 ± 59 263 ± 82 * 245 ± 64 0.049  

95%CI (s) 197 – 250  213 – 282  215 – 312  207 – 282  N/A  

V̇O2 (l.min-1) 3.2 ± 0.7 3.2 ± 0.6 3.3 ± 0.7 3.2 ± 0.7 0.33  

V̇O2 (ml.kg-1.min-1) 43 ± 7 44 ± 8 44 ± 8 44 ± 8 0.75  

V̇E  (l.min-1) 123 ± 23 121 ± 14 129 ± 23 124 ± 20 0.32  

HR (bpm-1) 183 ± 11 185 ± 11 185 ± 10 184 ± 10 0.12  

RER 1.12 ± 0.1 1.09 ± 0.1 1.10 ± 0.2 1.10 ± 0.1 0.52  

BLa (mmol.l-1) 11.9 ± 2.0 11.7 ± 2.0 12.3 ± 2.4 12.0 ± 2.1 0.76  

5 mins post-ex BLa (mmol.l-1) 11.6 ± 2.6 11.5 ± 2.3 11.7 ± 2.9 11.6 ± 2.5 0.76  

5 mins post -exercise pH 7.24 ± 0.04 7.23 ± 0.05 7.23 ± 0.06 7.24 ± 0.05 0.47  

RPEO 19 ± 1 19 ± 1 19 ± 1 19 ± 1 0.91  

RPEL 20 ± 0 20 ± 0 20 ± 0   20 ± 0 # 1.00  

Note: All values from end of exercise otherwise stated. * T3 > than T1 (P < 0.05) # RPEL > than RPEO (P < 0.05) 
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Magnitude based inferences for TLIM (Table 4.3) demonstrated that T1 and T3 had a 

~ 40% chance of substantial difference. Interestingly, data for T1 and T2 and T2 and T3 

were somewhat similar with both pairs of trials demonstrating ~ 25/75% chance of 

substantial change and negligible difference, respectively. However, the standardised 

change in mean (i.e. effect size) was lowest for T2 vs. T3, further demonstrating T2 and T3 

had the strongest relationship (Table 4.2, Figure 4.2). 

 

Table 4.2 Summary of reliability data between trials for TLIM 

 

 
 T1 vs. T2 T1 vs. T3 T2 vs. T3 

Mean bias (s) ± SE 

Limits of Agreement 

95% CI 

 

24 ± 31 

-63 – 111 

-37 –  86 

40 ± 41 

-74 – 154 

-41 – 121 

16 ± 20 

-40 – 71 

-24 – 55 

Within-subject CV  10% 14% 7% 

Effect Size  0.5 0.6 0.2 

r  0.66 0.73 0.97 

r2  0.43 0.53 0.95 

 

 

Table 4.3 Magnitude based inference data for TLIM 

 Trial Comparison (A, B) SWC # A > B Negligible A < B 

T1 vs.T3 2.6% 0.0% 62.0% 37.9% 

T1 vs. T2 2.6% 0.1% 77.6% 22.4% 

T2 vs. T3 2.6% 0.1% 76.6% 23.3% 

     Note: # SWC calculated as 0.2 * between-subject SD of baseline WPEAK 
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       ` 

Figure 4.2 Relationship between exercise capacity in each trial (left panel) and Bland-

Altman plots (right panel). Top to bottom; T1 vs. T2, T1 vs. T3 and T2 vs. T3). Dotted lines 

represent limits of agreement (+/- 1.96 SDs; 95% confidence) and solid line is mean bias 

between trials. 
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4.5 Discussion 

 

The aim of this study was to determine the familiarisation to and test re-test reliability 

of constant load cycling at 110% WPEAK in non-specifically cycle trained individuals.  These 

results support our hypothesis that two familiarisation trials are required to minimise 

systematic bias. Therefore, for the human studies within this thesis (study 2, chapter 5; study 

4, chapter7) two familiarisation trials will be undertaken prior to experimental data collection. 

Although magnitude based inferences suggested there was a 25% chance of substantial 

change between T2 and T3, correlation coefficients (r), coefficient of determination (r2), limits 

of agreement (LoA) and within-subjects CV (CVWS) improved across trials demonstrating T2 

and T3 to have the strongest relationship. This is supported by the reduction in effect sizes 

across trials with effect sizes for T1 vs. T3 and T1 vs. T2 greater than the smallest 

worthwhile change (Figure 4.2; Table 4.2; Hopkins 2004). These results are supported by 

previous research which demonstrated that familiarisation to predominantly anaerobic 

maximal intensity cycling requires two trials (Capriotti, Sherman, and Lamb 1999, Glaister et 

al. 2003, Mendez-Villaneuva, Bishop, and Hamer 2007). Similar to the present study, 

participants in these studies were unfamiliar with the exercise protocol used and not 

specifically cycle trained. Furthermore, the CVWS for the present study (7%) was much lower 

than that reported in a meta-analysis on the reliability of TLIM (16%; Hopkins, Schabort, and 

Hawley 2001) as well as that reported elsewhere in studies using TLIM (Hinckson and 

Hopkins 2005, Amann, Hopkins, and Marcora 2008). In contrast, CVWS in the present study 

was similar to that reported in highly trained cyclists (Laursen, Shing, and Jenkins 2003). 

 

At the time of starting this study there was no reported research which sufficiently 

assessed the reliability of TLIM at 110% WPEAK. However, in the interim period research was 

completed addressing the reliability of constant load cycling at 110% WPEAK. In accordance 

with the results of the present study Saunders et al. (2012) demonstrated that 2 

familiarisation trials are required to afford high reliability before experimental trials. Despite a 
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similar overall result, mean TLIM for T2 and T3 of the present study (256 ± 70 s) is almost 

double that reported (135 ± 20 s) by Saunders et al. (2012). Moreover, TLIM for 120% WPEAK 

in the CON trial of study 2 (170 ± 30 s; chapter 5) was 26% higher than the 135 ± 20 s 

(110% WPEAK) reported by Saunders et al. (2012). Moreover, in the present study 110% 

WPEAK was 247 ± 32 W which is considerably lower than the 337 ± 54 W reported by 

Saunders et al. (2012). As similar participant cohorts were used these differences are most 

likely due to the different cycle ergometers and incremental test protocols used. Despite 

such large differences in TLIM between studies, physiological data was very similar. Blood 

lactate at the end of exercise (12.0 ± 2.1 vs. 12.1 ± 2.1 mmol.l-1), 5 mins post-exercise (11.6 

± 2.5 vs. 11.8 ± 1.9 mmol.l-1) and pH 5 mins post-exercise (7.24 ± 0.05 vs. 7.24 ± 0.05) was 

almost identical between the present study and Saunders et al. (2012), respectively. 

Therefore, despite adopting slightly different methods to calculate 110% WPEAK the results of 

the present study and that of Saunders et al. (2012) were largely similar. Both studies agree 

that 2 familiarisation trials are required before experimental data collection when evaluating 

nutritional interventions that modulate acid-base balance (i.e. pH, [HCO3
-], BE) during 

exercise. 

 

In the present study blood lactate (BLa) at the end of exercise and 5 mins post-

exercise was similar to other studies incorporating supramaximal cycling tests to exhaustion 

(125% V̇O2MAX, Katz et al. 1984, Costill et al. 1984) and the mean reduction in pH of 0.17 

units from pre-exercise to 5 mins post-exercise is similar to that reported in other studies 

using high-intensity cycling (Kozak-Collins, Burke, and Schoene 1994, Saunders et al. 

2012). At the end of exercise HR (184 ± 10 bpm-1) was similar to that found in other research 

using both 105% (187 ± 11 bpm-1) and 115% (186 ± 9 bpm-1) supramaximal cycling 

(Astorino, White, and Dalleck 2009) and also within the 10 bpm-1 of age predicted maximum 

(191 ± 3 bpm-1; Tanaka, Monahan and Seals 2001) as outlined by Bird and Davison (1997). 

Moreover, ratings of perceived exertion (RPE) at the end of exercise were the same as 

those found in supramaximal (120% V̇O2MAX) running to exhaustion (Price and Simons 
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2010). In contrast, despite mean TLIM being almost identical to similar research (Astorino, 

White, and Dalleck 2009) RER at the end of exercise was lower in the present study (1.10 ± 

0.13 vs. 1.35 ± 0.17). However, Astorino, White, and Dalleck (2009) did not report the 

nutritional approach undertaken by their sedentary participants and exercise capacity had a 

considerably higher variance, all of which could explain this difference. Therefore, as 

physiological data (1) meets the requirements set out by Bird and Davison (1997), (2) is 

similar to other research using a similar exercise intensity and (3) is not significantly different 

across trials,  we can be confident that 2 familiarisation trials are needed to ensure reliable 

data is collected during subsequent experimental trials. 

 

Weber and Schneider (2001) evaluated the reliability of maximal accumulated 

oxygen deficit (MAOD) during cycling at 110% and 120% of V̇O2PEAK. They observed a 

similar relationship (r = 0.95; r2 = 0.90) to that of the present study when comparing repeated 

exercise capacity at 110% V̇O2PEAK. The authors suggested that this relationship was 

observed with only one familiarisation trial. However, participants actually completed 

fourteen exercise sessions before the main experimental trials, the final session being a 

familiarisation test at either 110% or 120% V̇O2PEAK. Furthermore, due to the randomisation 

of experimental sessions between 110% or 120% V̇O2PEAK, it is likely that participants 

completing their 110% trials will have done so after completing at least one trial at 120% 

V̇O2PEAK. The increased number of exercise sessions is probably why this study reported a 

smaller difference in TLIM between trials (1.3%) and lower CV (4%) than the present study 

(6% and 7% respectively). However, it should be acknowledged that the CV calculated from 

Weber and Schneider (2001) is between-participants/trials as the within-subjects data was 

not available. With such a small change in TLIM at 110% V̇O2PEAK (1.3%) it is likely the CVWS 

would be < 4%. 

 

Two studies examining the reproducibility of TLIM at 100% V̇O2PEAK in trained cyclists 

established that TLIM was significantly longer in the second trial of two. Laursen, Shing, and 
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Jenkins (2003) observed a difference of 8 s / 3% (CVWS = 6%) and Costa et al. (2011) 

reported a difference of 15 s / 7% (CVWS not given). Similarly, Martin, Diedrich, and Coyle 

(2000) evaluated the time course of learning within maximal cycling over consecutive days. 

They reported that active but non cycle trained males needed at least two days to 

demonstrate reliable data for maximal cycling, whereas reliable data was observed after only 

one day for trained cyclists. Such research suggests that reliable data for trained cyclists is 

achieved with just one familiarisation trial whereas at least two familiarisation trials are 

required with unfamiliar/untrained participants. Unfortunately neither study of trained athletes 

conducted a third trial and therefore it is not possible to ascertain whether further increases 

in TLIM may occur and thus if more familiarisation trials are required.  

 

Previous research has evaluated cycling at both 105% and 115% V̇O2MAX as methods 

to confirm attainment of V̇O2MAX in sedentary individuals (Astorino, White, and Dalleck 2009). 

Although significant correlations for V̇O2 across trials at both 105% and 115% V̇O2MAX were 

observed, exercise time was not related (r2 = 0.19) across trials at 115% V̇O2PEAK. Similar to 

the results of the present study this further demonstrates that in non-specifically trained 

individuals at least 3 trials are required to suitably assess test re-test reliability (Hopkins 

2000). Indeed, one limitation of the present study is that a further plateau in TLIM might have 

occurred after a fourth (or more) trial(s). Moreover, conducting a fourth trial might also result 

in a reduction in the slight heteroscedasticity between T2 and T3 observed in participants 

who cycled for the longest durations (Figure 4.2). However, it is well acknowledged that 

motivation to maintain power output in the face of fatigue is likely to be more variable in 

longer tests (Hopkins, Schabort, and Hawley 2001).  In contrast, O’Hara et al. (2012) 

reported that trained cyclists, who generally produce more reliable repeated exercise 

performance than non-trained cyclists (Hopkins, Schabort, and Hawley 2001) had a greater 

level of variance (demonstrated by limits of agreement data and CV of 32%) over 4 

familiarisation trials when evaluating the reliability of TLIM  at the end of an endurance cycling 

test. In contrast, our data demonstrates high reliability between T2 and T3 (r = 0.97, r2 = 
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0.95, CVWS = 7%) with only this data falling within the a priori limits of agreement (Figure 

4.2).  

 

Learning effects on successive trials can be a considerable source of test-retest 

measurement error (Atkinson and Nevill 1998). Our results demonstrated that in three 

successive supramaximal cycling trials to volitional exhaustion, a significant improvement in 

exercise capacity occurred between the first and third trials (18%; 40 s; ES = 0.6). This 

improvement in capacity was achieved without significant changes in any physiological 

measurements. Therefore, such improvement may be due, at least in part, to psychological 

factors outside of experimental manipulation such as conscious or subconscious changes in 

effort due to recognition of the “final trial” (Hickey et al. 1992, Martin, Diedrich, and Coyle 

2000). An improvement in r2 values across trials culminated in a strong and significant 

relationship between T2 and T3 and only this relationship demonstrated all data to be within 

95% limits of agreement combined with the lowest bias between trials. Finally, the 6% (16 s) 

difference between T2 and T3 is similar to the differences of 7% (15 s) (Costa et al. 2011) 

and 3% (8 s) (Laursen, Shing, and Jenkins 2003) in studies comparing reliability at 100% 

V̇O2PEAK in competitive cyclists. Therefore, by undertaking at least two familiarisation trials 

the test re-test measurement error in non cycle trained individuals is significantly reduced to 

~ 6% / 16 s and therefore high reliability afforded.  

 

To the best of our knowledge there are no guidelines as to what constitutes a valid 

supramaximal exercise test. Indeed, Hopkins, Schabort, and Hawley (2001) note that no 

research on the validity of anaerobic performance measures has included reliability of the 

criterion measure(s), suggesting that tests of high reliability be used as only these tests can 

have high validity. Our results demonstrate that constant load supramaximal cycling at 110% 

WPEAK achieves similar maximal physiological values to an incremental exercise test to 

V̇O2PEAK (Bird and Davison 1997). Furthermore, although there was a significant difference 

between local fatigue (RPEL) and cardiovascular fatigue (RPEO) at volitional exhaustion, the 
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closeness of the values (20 ± 0 and 19 ± 1 respectively) demonstrate that TLIM in this study 

was unlikely to be limited by the early onset of localised muscular fatigue which can occur 

when undertaking unfamiliar exercise (Smith, Price, and Doherty 2001). Moreover, TLIM in 

the present study is similar to previous studies of male and female non trained participants 

cycling at 110% V̇O2PEAK (225 s) (Weber and Schneider 2001) and 105% V̇O2PEAK (224 s and 

250 s) (Astorino, White, and Dalleck 2009). In contrast, Gastin et al. (1995) reported shorter 

exercise durations of 186 s and 208 s for 110% WPEAK cycling undertaken at either 90 

rev.min-1 or 70 rev.min-1 in groups of moderately trained or mixed trained and untrained 

males respectively. The difference in training status and chosen cadence may have 

contributed to the observed difference(s) in TLIM between Gastin et al. (1995) and the 

present study.  

 

In summary, the ability to detect changes outside of day-to-day variation in exercise 

capacity (i.e. sensitivity) is of particular importance in research where an intervention such 

as nutritional supplementation is evaluated (Hill et al. 2007, Sewell and McGregor 2008, 

Sale et al, 2011, Saunders et al. 2011, O’Hara et al. 2012, Saunders et al. 2012). Due to the 

pervasiveness of nutritional supplements within the field of sports science and the clear link 

to the field of strength and conditioning and physical rehabilitation it is important that 

researchers and sports practitioners can evaluate exercise capacity data regarding such 

interventions accurately. Moreover, with a considerable number of nutritional ergogenic aids 

purchased and consumed by the non-elite athlete it is important to ensure that this 

population is accurately reflected within the sports science literature. In conclusion, TLIM 

cycling at 110% WPEAK is a valid and reliable exercise protocol when assessing high intensity 

exercise capacity with a significant aerobic component. We recommend that at least two 

familiarisation trials are completed prior to experimental data collection for participants 

unfamiliar with such exercise. It is our contention that completing two familiarisation tests 

represents a good balance between scientific control, logistical reality and participant 

adherence whilst concomitantly minimising the possibility of training effects (Hill et al. 2007, 
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Sale et al. 2011, Saunders et al. 2012). For the subsequent human studies within this thesis, 

(study 2 and study 4; chapters 5 and 7, respectively), two familiarisation trials will be 

undertaken prior to experimental data collection. 
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Chapter 5 – Evaluating the effects of sodium bicarbonate (NaHCO3) on high intensity 

cycling capacity 

5.1 Abstract 

 

Ten healthy, non-cycling trained males (age: 21.2 ± 2.2 years, body mass: 75.9 ± 

13.4 kg, height: 178 ± 6 cm, V̇O2PEAK: 46 ± 10 ml.kg-1.min-1) performed a graded incremental 

exercise test, two familiarisation trials and six experimental trials. Experimental trials 

consisted of cycling to volitional exhaustion at 100%, 110% and 120% WPEAK, 60 mins after 

ingesting either 0.3 g.kg-1 body mass sodium bicarbonate (NaHCO3) or 0.1 g.kg-1 body mass 

sodium chloride (NaCl; PLA). At the group level NaHCO3 ingestion increased capacity (TLIM) 

by 17% at 100% WPEAK (327 vs. 383 s; P = 0.02) although not at 110% WPEAK (249 vs. 254 s; 

P = 0.66) or 120% WPEAK (170 vs. 175 s; P = 0.60; PLA and NaHCO3 respectively). 

However, there was marked inter and intra individual variance at 110% and 120% WPEAK. 

Heart rate (P = 0.02), blood lactate (P = 0.001), pH (P < 0.001), [HCO3
-], (P < 0.001), and 

base excess (P < 0.001) were greater in all NaHCO3 trials. NaHCO3 attenuated localised 

ratings of perceived exertion (RPEL) to a greater extent than PLA only at 100% WPEAK (P < 

0.02). Ratings of abdominal discomfort and gut fullness were mild but higher for NaHCO3. 

NaHCO3 ingestion significantly improves continuous constant load cycling at 100% WPEAK 

due to, in part, attenuation of RPEL. 

 

5.2 Introduction 

 

The efficacy of sodium bicarbonate (NaHCO3) as an ergogenic aid remains equivocal 

(Requena et al. 2005, Price and Simons 2010, Saunders et al. 2011). Maughan (1999) 

suggests the lack of agreement between studies is due to variations in the dosage 

administered, degree of metabolic alkalosis induced and the intensity, duration and nature of 

the exercise undertaken. Although the first (0.3 g.kg-1 body mass; McNaughton 1992) and 

second (~ 60/90 mins pre-exercise; Price and Singh 2008, Renfree 2007) aspects have 
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been addressed, the effects of NaHCO3 on exercise capacity over a range of intensities 

within the same population have yet to be confirmed (Price and Simons 2010).  

 

Two factors that increase the likelihood of an ergogenic benefit being observed with 

NaHCO3 ingestion are using a high-intensity exercise protocol of between 1 to 7 minutes 

(Linderman and Fahey 1991, Linderman and Gosselink 1994, Matson and Tran 1993) and 

constant load exercise to exhaustion (TLIM; Matson and Tran 1993). However, despite TLIM 

representing the most reliable type of performance test (Hopkins, Schabort, and Hawley 

2001) many studies evaluating the efficacy of NaHCO3 on cycling performance have used 

either Wingate, repeated sprints or fixed duration ‘all-out’ protocols which have provided 

inconsistent results. For example, no ergogenic benefit for NaHCO3 was reported using a 

fixed cadence (100 rev.min-1) 30 s effort (McCartney, Heigenhauser, and Jones 1983) or 

repeated Wingate protocols (Parry-Billings and MacLaren 1986). In contrast, NaHCO3 has 

been shown to facilitate improvements in both work done and power output during 5 x 6 s all 

out sprints separated by 30 s recovery (Bishop et al. 2004) and single Wingate tests (Inbar 

et al. 1983), although the latter study did not include a familiarisation process which may 

have affected results. Moreover, NaHCO3 had no effect on critical power, total work done or 

peak power during a 3 mins all out cycling protocol (~ 100% V̇O2PEAK) based on the critical 

power model (Vanhatalo et al. 2010). 

 

Results using constant power protocols appear more consistent. Exercise capacity 

(TLIM) at 100% V̇O2MAX was 14% greater with NaHCO3 (MacLaren and Morgan 1985) and 

more recently, Saunders et al. (2011) found that when participants who suffered GI distress 

were removed from the analysis, NaHCO3 was shown to enhance total work done by 5% at 

110% WPEAK. Similarly, two other studies have demonstrated that TLIM at 125% V̇O2MAX 

cycling was 42% (Costill et al. 1984) and 45% (McKenzie et al. 1986) longer after NaHCO3 

although TLIM was measured on the fifth and sixth bout following an intermittent protocol of 

repeated 1 min bouts (1 min rest between bouts). 
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At present, no study has compared the efficacy of NaHCO3 at different exercise 

intensities within the same population. Such research is important as this might help 

elucidate the mechanisms for how NaHCO3 affects performance (Price and Simons 2010) 

and why certain participants appear to respond to NaHCO3 ingestion and others do not 

(Price and Simons 2010, Saunders et al. 2011). Therefore, the purpose of this study was to 

compare TLIM cycling capacity at 100%, 110% and 120% WPEAK in the same participants. 

Exercise at these intensities should sufficiently stress the glycolytic energy system but result 

in appreciably different capacity times (TLIM) within the 1 to 7 minute window within which 

NaHCO3 is regarded to be most effective (Linderman and Fahey 1991, Matson and Tran 

1993, Linderman and Gosselink 1994). It was hypothesised that NaHCO3 would improve TLIM 

at all intensities. 

 

5.3 Methods 

5.3.1 Participants 

 

Ten healthy and active males volunteered to take part in this study (age 21.2 ± 2.2 

years, body mass 75.9 ± 13.4 kg, height 178 ± 6 cm, V̇O2PEAK 46 ± 10 ml.kg-1.min-1) which 

had received University Ethics Committee approval. All participants were recreationally 

active undertaking 2 to 3 exercise bouts per week (e.g. football, rugby and/or running). None 

were specifically cycling trained.  

 

5.3.2 Study design 

 

Participants visited the laboratory on nine separate occasions. On the first occasion 

participants completed an incremental test on a cycle ergometer to determine V̇O2PEAK and 

peak mean minute power (WPEAK; section 3.6.1). Based on the results from study 1 (chapter 

4), on the second and third visits participants undertook two TLIM familiarisation trials at 110% 

WPEAK. On the subsequent six visits participants cycled to volitional exhaustion at a constant 
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load equivalent to 100%, 110% or 120% WPEAK at 70 rev.min-1, 60 minutes after consuming 

either 0.3 g.kg-1 body mass NaHCO3 or 0.1 g.kg-1 body mass NaCl (PLA) as described in 

section 3.6.2. Section 3.7 describes the treatment administration in more detail and 

participant screening and pre-experimental procedures are outlined in sections 3.2 and 3.3. 

At the end of the study participants completed an achievement goal questionnaire (AGQ; 

Conroy, Elliot, and Hofer 2003). The AGQ describes different goal orientated approaches 

that participants might use to achieve competence in sporting activities. They responded on 

a scale of 1 = “not at all like me” to 7 = “completely like me” (Conroy, Elliot, and Hofer 2003). 

The results were analysed to determine whether any difference in TLIM performance could be 

attributed to differences in participant’s self reported achievement goal strategies. A full list 

of the questions can be found in Table 5.2 (section 5.4.5.iii). 

 

5.3.3 Protocol overview 

 

After five minutes seated resting heart rate (HR, section 3.3.4), perceived readiness 

to exercise (PRE; Nurmekivi et al. 2001, section 10.3), abdominal discomfort (AD) and gut 

fullness (GF; Price, Moss, and Rance 2003, section 3.4.2) were recorded. Blood samples 

were then taken for blood lactate concentration ([BLa]), pH, base excess (BE) and 

bicarbonate ion concentration ([HCO3
-]). Blood was collected and analysed as outlined in 

sections 3.5.1 and 3.5.2. After baseline measurements were completed the participant 

consumed the NaHCO3 or PLA drink within the first 5 mins of the 60 mins pre-exercise 

period (Price and Simons 2010). Participants remained seated throughout and were allowed 

to consume water ad libitum to minimise gastrointestinal (GI) discomfort. The mean volume 

of water consumed was monitored and estimated at ~ 350 ml. Perceived readiness to 

exercise (PRE), AD and GF were recorded 30 mins and 60 mins following ingestion and HR 

was recorded and further blood samples taken 60 mins following ingestion. Forty-five 

minutes after ingestion, participants started breathing into the breath-by-breath gas 

collection system as previously indicated (section 3.3.3). Baseline data was averaged over 
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the last sixty seconds of the pre-exercise period and for the last ten seconds of exercise. 

Expired gas was analysed for calculation of V̇O2 and measurement of V̇E.  

 

After baseline data had been collected the participant started a warm up consisting of 

cycling at 70 rev.min-1 for 4 mins at 50% of the subsequent trial intensity (i.e. 100, 110 or 

120% WPEAK), 1 min at 75% of the subsequent trial intensity and then 2 mins at 70 W. This 

warm-up protocol was chosen to prepare participants for the relevant trial by differentiating 

the warm up intensity based on subsequent exercise intensity. The typical difference in 

power output between warm-ups was ~ 25 W for each participant. The participant completed 

the TLIM test at 100%, 110% or 120% WPEAK as described in section 3.6.2.  Ratings of 

perceived exertion (RPE 6-20, Borg 1982) for local RPE (RPEL), representing the exercising 

muscles, and overall RPE (RPEO), reflective of cardiovascular strain were recorded as 

described in section 3.4.1. Abdominal discomfort, GF and HR were recorded and blood 

samples taken for BLa, pH, BE and [HCO3
-] immediately post-exercise and final blood 

samples taken 5 mins post-exercise. Upon completion of the test, the participant was 

encouraged to cycle for 5 mins at 70 W (unloaded cradle) to warm down and avoid syncope.  

 

5.3.4 Statistical analysis 

 

Statistical analysis was completed using PASW (SPSS; v17, Chicago, USA). 

Statistical significance, normality and homogeneity of variance/sphericity of data was 

assessed / adjusted as outlined in section 3.8. Exercise capacity (TLIM; s) for 110% and 

120% WPEAK was analysed by paired t-tests whereas TLIM for 100% WPEAK was analysed 

using a Wilcoxon test due to non-normality of data. Exercise capacity data was also 

analysed for the whole group (n=30; Wilcoxon test) and for specific time groups (TLIM < 5 

mins, n=19, paired t-test; >= 5 mins, n=11, Wilcoxon test). All cardiorespiratory, perceptual 

and blood variables were analysed by 3-way (time * treatment * intensity) repeated 

measures ANOVA. Where significance was achieved for main effects pairwise comparisons 
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(least significant difference; LSD) were undertaken. LSD comparisons were chosen as they 

are the most powerful when analysing 3 levels/groups (Maxwell and Delaney 2004, Cardinal 

and Aitken 2006, Howell 2007). For interactions, Tukeys’ post hoc analysis was undertaken 

by calculating the difference required between means for significance at the level of P < 0.05 

(Vincent 1999). The time points considered for HR and blood variables were pre-ingestion (-

60), pre-exercise (0), immediately post-exercise and five minutes post-exercise. Respiratory 

data (V̇O2 and V̇E) was considered at rest and post-exercise.  

  

 Values for RPEL and RPEO were analysed at 1 min and 2 mins during exercise and 

at volitional exhaustion. Abdominal discomfort and GF were analysed pre-ingestion, 30 mins 

post-ingestion, pre-exercise and post-exercise. Finally, PRE was analysed pre-ingestion, 30 

mins post-ingestion and pre-exercise. Figures quoted are mean values ± standard deviation 

unless otherwise stated. Correlation coefficients (Spearman’s ρ and Pearson’s r for non-

parametric and parametric data, respectively) and effect sizes (ES) reported where 

appropriate. For ANOVA ES are reported as partial η2 and for between trial comparisons ES 

was calculated as the change in means divided by the pooled SD of the compared trials. 

Confidence intervals (95%CI) which define the range for which the true value of the statistic 

is 95% likely to fall (Watt, Hopkins, and Snow 2002) were calculated as ± 1.96 * SE for 

individual trials, where SE = SD / √n (Streiner 1996) and for mean difference between trials 

as ± 1.96 * SE for where SE = SD / √2 (Hopkins 2000). The AGQ data was correlated 

against affects on TLIM. In addition to the traditional statistical analysis, magnitude based 

inferences are presented where appropriate (Hopkins et al. 2009). Odds ratios (benefit: 

harm) are also presented for TLIM data where a value of > 66 (i.e. > 25% chance of benefit 

and < 0.5% chance of harm; Hopkins 2007) representing the recommended threshold 

(3.8.1). 

 

5.4 Results 

5.4.1 Preliminary tests 
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V̇O2, V̇E, HR, blood lactate (BLa) and RPE at the end of the peak oxygen uptake test 

were 3.44 ± 0.85 l.min-1, 117.1 ± 21.7 l.min-1, 186 ± 8 bpm-1, 10.8 ± 1.8 mmol.l-1 and 19.9 ± 

0.3, respectively. This data supports the criteria for achievement of valid maximal peak 

oxygen uptake tests (Bird and Davison 1997). Mean minute power (WPEAK) was 228 ± 37 W.  

 

5.4.2 Exercise capacity (TLIM) 

  

 TLIM (± SE) at 100% WPEAK was 17% greater after NaHCO3 ingestion (383 ± 44 vs. 

327 ± 29 s; P < 0.02). In contrast, TLIM was not different between NaHCO3 and PLA at 110% 

WPEAK (254 ± 22 vs. 249 ± 20 s; P = 0.66) or 120% WPEAK (175 ± 14 vs. 170 ± 9 s; P = 0.60; 

Table 5.1, Figure 5.1). Although there were no group level differences at 110% WPEAK and 

120% WPEAK, individual performance was variable (Table 5.2). 

 

Table 5.1 Differences in TLIM between NaHCO3 and PLA trials at 100%, 110% and 120% 

WPEAK 

 

 Note: * Significantly different from PLA (P = 0.02). CI represents confidence interval  

 

 

 

 

 

 100%  WPEAK 110%  WPEAK 120%  WPEAK 

Mean difference (s) ± SE  57 ± 44 * 5 ± 24 5  ± 21 

95%CI (s)  -30  –  143 -42  – 52 -35 – 46 

Effect Size  0.5 0.1 0.1 
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Table 5.2 Individual level comparisons of exercise capacity (TLIM) at each exercise intensity   

Note: * All TLIM is in seconds. % change figures in bold represent higher than daily variation (6%). 

 

The increase in TLIM of 17% at 100% WPEAK for NaHCO3 equated to a ~ 40% chance 

of beneficial change. In contrast chances of beneficial change for NaHCO3 at 110% WPEAK 

and 120% WPEAK were 1.1% and 1.3%, respectively. The benefit to harm odds-ratios of 4 and 

6 respectively, were much lower than the 6702 observed for the difference in TLIM at 100% 

WPEAK (Table 5.3). 

 

 Table 5.3 Probability of beneficial, trivial or harmful outcomes for 100%, 110% and 120%  

Note: * SWC based on 0.2 x B-S SD of initial incremental test; # A separate t-test was run for 100% WPEAK to ensure 

compatibility with the magnitude based inference analysis 

Participant  PLA100 SBC100 PLA110 SBC110 PLA120 SBC120 SBC / PLA (% Change) 

1 195 228 157 177 119 118 17% 13% -0.8% 

2 303 378 308 369 176 130 25% 20% -26% 

3 550 757 368 385 203 253 38% 5% 25% 
4 375 337 249 250 188 219 -10% 0.4% 16% 
5 329 360 257 248 199 184 9% -4% -8% 

6 307 330 228 211 187 181 7% -7% -3% 

7 280 353 245 236 133 154 26% -4% 16% 
8 313 371 291 225 195 210 19% -23% 8% 
9 296 358 216 251 160 134 21% 16% -16% 

10 317 358 172 188 141 169 13% 9% 20% 

Mean 327 383 249 254 170 175 17% 2% 3% 

SE 29 44 20 22 9 14 4% 4% 5% 

Intensity SWC * Beneficial Trivial Harmful 

Benefit: 
Harm Odds 

Ratio 

100% WPEAK
# 3.2% 37.5% 62.4% 0.0% 6702 

110% WPEAK 3.2% 1.1% 98.6% 0.3% 4 

120% WPEAK 3.2% 1.3% 98.4% 0.2% 6 
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Figure 5.1 Effect of NaHCO3 treatment on TLIM at 100%, 110% and 120% WPEAK (± SD) * P 

= 0.02) 

 

 

 

Figure 5.2 Effect of NaHCO3 treatment on TLIM (± SD) split by time category; # P = 0.01). 
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 Overall exercise capacity was 9% greater for NaHCO3 (P = 0.01; ES = 0.2) with TLIM 

(± SE) of 271 ± 23 vs. 249 ± 17 s for NaHCO3 and PLA respectively.  When grouped for time 

TLIM was 16% greater (55 s; P = 0.01, ES = 0.6) after NaHCO3 when TLIM was more than 5 

mins but no difference between treatments was observed when TLIM was less than 5 mins (3 

s; P = 0.67, ES = 0.1; Figure 5.2). No order effect was found between trials (P = 0.09).  

 

 Table 5.4 outlines a summary of each 3-way ANOVA. Briefly, a time * treatment * 

intensity interaction was only observed for blood pH. Time * treatment interactions were 

observed for [BLa], BE, [HCO3
-], AD, GF and RPEL and intensity * time interactions for HR, 

RPEL and RPEO. Only one intensity * treatment interaction was observed (RPEL).  

 

Table 5.4 Summary of statistical interactions 

Note: ✓ (P < 0.05); ✓✓ (P < 0.01); ✓✓✓ (P < 0.001); ### (P = 0.01); +++ (P = 0.06); x (N/S). 

Interactions 

Measure Int * Treat Int * Time Time  * Treat Int * Time * Treat 

HR x ✓ x x 

BLa x x ✓✓ x 

pH x x 
✓✓✓ ### 

BE x x 
✓✓✓ x 

[HCO3
-] x x 

✓✓✓ x 

AD x x 
✓✓✓ x 

GF x x +++ x 

PRE x x x x 

RPEL ✓ ✓✓✓ ✓✓ x 

RPEO x ✓✓✓ x x 

V̇O2 x x x x 

V̇E x x x x 

RER x ✓ ✓ x 
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5.4.3 Cardio-respiratory variables 

 

A main effect for treatment (P = 0.02; ES = 0.5) and an intensity * time interaction (P 

= 0.02; ES = 0.2) were observed for HR.  NaHCO3 ingestion elevated HR when compared to 

PLA by 5 bpm-1 (P = 0.001) pre-exercise and at volitional exhaustion (72 ± 11 vs. 67 ± 10 

and 185 ± 9 vs. 180 ± 9 bpm-1, respectively). HR at volitional exhaustion was lower at 120% 

than 110% WPEAK (P < 0.05; 180 ± 9 bpm-1, 184 ± 9 bpm-1, respectively) but not at 100% 

WPEAK (183 ± 9 bpm-1).  Main effects for time were observed for both V̇E (P < 0.001; ES = 

1.0) and V̇O2 (P < 0.001; ES = 1.0).  

 

5.4.4 Blood variables 

  

 A treatment * time interaction was observed for BLa (P = 0.002; ES = 0.6). At the end 

of exercise, BLa was greater (P < 0.01) for NaHCO3 (14.1 ± 2.3 mmol.l-1) than PLA (11.9 ± 

2.3 mmol.l-1). A significant correlation was observed for the difference in TLIM and difference 

in BLa at the end of exercise between treatments at 110% (r = 0.71; P = 0.02) but not at 

100% (ρ = 0.30; P = 0.41) and 120% WPEAK (r = 0.54; P = 0.11). 

 

There was an intensity * treatment * time interaction for pH (P = 0.01; ES = 0.3). 

There was no difference in pH between any trial pre-ingestion (PLA; 7.42 ± 0.02 vs. 7.41 ± 

0.03 vs. 7.42 ± 0.01; NaHCO3; 7.42 ± 0.01 vs. 7.41 ± 0.01vs. 7.41 ± 0.01). Post-ingestion pH 

was similarly elevated from baseline with NaHCO3 ingestion (7.47 ± 0.01 vs. 7.47 ± 0.03 vs. 

7.48 ± 0.02; 100%, 110% and 120% WPEAK, respectively). There was a decrease in pH 

during the ingestion period for PLA. At the end of the ingestion period pH dropped 0.03 units 

(7.42 ± 0.02 to 7.39 ± 0.02; P < 0.001; ES = 1.3) although remained within normal 

physiological range (7.38 – 7.42). There were no differences in pH between intensities for 

NaHCO3 post-exercise (7.30 – 7.31) or 5 mins post-exercise (7.33 – 7.34). However, pH was 

significantly greater post-exercise for 100% compared to 110% WPEAK (P < 0.05; 7.25 ± 0.03 
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vs. 7.22 ± 0.03) and 5 mins post-exercise (P < 0.01; 7.27 ± 0.04 vs.7.23 ± 0.04) for PLA 

(Figure 5.3). 

 

 

 

 

Figure 5.3 pH, and [HCO3
-] pre ingestion, during absorption, pre-exercise and end-exercise 

(Error bars represent SD. Some have been omitted for clarity). 
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Table 5.5 Base excess (BE) and [HCO3
-] values for NaHCO3 and PLA pre-exercise, at the 

end of exercise and 5 mins post-exercise. 

 

 BE (mmol.l-1) [HCO3
-] mmol.l-1 

 NaHCO3 PLA NaHCO3 PLA 

Pre-exercise 7.4 ± 2.1 -0.1 ± 1.4 31.8 ± 2.2 24.5 ± 1.4 

End-exercise -8.1 ± 2.5 -13.0 ± 2.2 17.0 ± 2.0 13.3 ± 1.7 

5 mins post-exercise -7.5 ± 3.3 -12.4 ± 3.1 17.0  ±  2.7 13.7 ± 2.3 

 

There were time * treatment interactions for BE (P < 0.001; ES = 0.9) and [HCO3
-] (P 

< 0.001; ES = 0.9). Although similar at rest, BE and [HCO3
-] were greater pre-exercise, post-

exercise and 5 mins post-exercise after NaHCO3 (all P < 0.01, Table 5.5, Figure 5.3).  

 

5.4.5 Perceptual variables 

5.4.5.i Abdominal discomfort (AD), gut fullness (GF) and perceived readiness to exercise 

(PRE) 

 

A time * treatment interaction (P < 0.001; ES = 0.6) was observed for abdominal 

discomfort (AD). Overall, AD was 1.5 units higher with NaHCO3 with differences observed at 

30 mins post-ingestion (0.7 ± 0.8 vs. 3.0 ± 2.4, P < 0.01), pre-exercise (0.6 ± 0.6 vs. 2.7 ± 

2.0, P < 0.01) and post-exercise (0.9 ± 1.0 vs. 2.3 ± 1.8, P < 0.01), respectively. Gut fullness 

(GF) was not different between treatments (P = 0.13) or intensity (P = 0.43). However, there 

was a main effect for time (P = 0.02; ES = 0.4) and the time * treatment interaction 

approached significance (P = 0.055; ES = 0.3). The highest level of GF was recorded 30 

mins post-ingestion (3.0 ± 2.0 vs. 2.1 ± 2.7; NaHCO3 and PLA respectively) and coincided 

with peak AD. Abdominal discomfort and GF demonstrated modest correlations at 30 mins 

post-ingestion (ρ = 0.30, P < 0.02) and pre-exercise (ρ = 0.26; P = 0.04). There were no 

differences observed for PRE. 
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5.4.5.ii Ratings of perceived exertion (RPE) 

 

There were intensity * treatment (P = 0.02; ES = 0.4), time * treatment (P = 0.007; ES 

= 0.4) and intensity * time (P < 0.001; ES = 0.7) interactions for localised RPE (RPEL). 

Overall, NaHCO3 attenuated RPEL to a greater extent than PLA at 100% WPEAK after 1 min 

(P < 0.01; 12.8 ± 2.1 vs.14.3 ± 1.5) and 2 mins (P < 0.01; 14.6 ± 1.8 vs.16.1 ± 1.6) of 

exercise. Although RPEL was similar at the end of exercise for each intensity RPEL was 

higher (P < 0.01) after 1 min during 120% WPEAK (15.4 ± 1.9) compared to 100% (13.6 ± 2.0) 

and 110% WPEAK (13.7 ± 1.9). RPEL also increased (P < 0.05) with exercise intensity after 2 

mins (15.4 ± 1.8, 16.3 ± 1.5 and 18.1 ± 1.5 for 100%, 110% and 120% WPEAK respectively; 

Figure 5.4). Correlations were observed between TLIM and RPEL after 1 min and 2 mins of 

exercise for NaHCO3 (r = -0.38; P = 0.04; r = -0.61; P < 0.001, respectively). 

 

There was an intensity * time interaction for overall RPE (RPEO; P < 0.001; ES = 0.5). 

Although there was no difference at the end of exercise between exercise intensities (17.6 ± 

2.6) RPEO was higher (P < 0.01) after 1 min and 2 min for 120% (13.2 ± 2.6 and 15.7 ± 2.3) 

compared to 100% WPEAK (11.7 ± 2.3 and 13.5 ± 2.5) and 110% WPEAK (12.1 ± 2.5 and 14.4 ± 

2.5; Figure 5.5). No correlations were observed between TLIM and RPEO. 

 

5.4.5.iii Achievement goal questionnaire (AGQ) 

 

 Table 5.6 highlights the complete results from the achievement goal questionnaire 

(AGQ), by participant. Table 5.7 highlights the significant correlations that were observed 

between AGQ responses and the absolute difference in TLIM (s) between treatments and the 

% difference in TLIM between treatments, at 100%, 110% and 120% WPEAK. Although 

significant correlations were observed there was no consistent pattern for differences in TLIM 

between participants at 100% and 110% and 120% WPEAK (Tables 5.2, 5.7). 
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Figure 5.4 Local RPE (RPEL) between treatments after 1 and 2 mins of exercise and at the end of exercise for 100% (left), 110% (middle) and 

120% (right) WPEAK (* P < 0.01). 
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Figure 5.5 Overall RPE (RPEO) between treatments after 1 and 2 mins of exercise and at the end of exercise for 100% (left), 110% (middle) 

and 120% (right) WPEAK. 

8

10

12

14

16

18

20

1 Min 2 Min End-Ex

PLA 100
NaHCO3 100

8

10

12

14

16

18

20

1 Min 2 Min End-Ex

PLA 110
NaHCO3 110

8

10

12

14

16

18

20

1 Min 2 Min End-Ex

PLA 120
NaHCO3 120

R
P

E
O
 

Time 



109 
 

Table 5.6 Achievement goal questionnaire (AGQ) results by participant 

Section 1: Mastery Approach 1 2 3 4 5 6 7 8 9 10 Q Mean SD 
(1 ) It is important to me to perform as well as I possibly can 6 7 7 5 7 7 6 7 7 7 6.6 0.7 
(2) I want to perform as well as it is possible for me to perform 7 7 7 5 7 7 6 7 7 7 6.7 0.7 
(3) It is important for me to master all aspects of my performance 6 7 6 4 6 4 5 6 7 6 5.7 1.1 

Participant Mean 6.3 7.0 6.7 4.7 6.7 6.0 5.7 6.7 7.0 6.7 
  SD 0.6 0.0 0.6 0.6 0.6 1.7 0.6 0.6 0.0 0.6 
  

             Section 2: Mastery Avoidance 1 2 3 4 5 6 7 8 9 10 Q Mean SD 
(4) I worry that I may not perform as well as I possibly can 4 3 6 3 4 6 6 5 2 3 4.2 1.5 
(5) Sometimes I am afraid that I may not perform as well as I would like 3 5 6 1 3 6 6 6 4 3 4.3 1.8 
(6) I’m often concerned that I may not perform as well as I can perform 3 2 6 4 3 7 6 5 1 4 4.1 1.9 

Participant Mean 3.3 3.3 6.0 2.7 3.3 6.3 6.0 5.3 2.3 3.3 
  SD 0.6 1.5 0.0 1.5 0.6 0.6 0.0 0.6 1.5 0.6 
  

             Section 3: Performance Approach 1 2 3 4 5 6 7 8 9 10 Q Mean SD 
(7) It is important to me to do well compared to others 5 6 4 6 7 6 4 6 6 2 5.2 1.5 
(8) It is important for me to perform better than others 5 5 4 5 7 5 3 5 4 2 4.5 1.4 
(9) My goal is to do better than most other performers 5 5 5 2 5 5 2 4 7 3 4.3 1.6 

Participant Mean 5.0 5.3 4.3 4.3 6.3 5.3 3.0 5.0 5.7 2.3 
  SD 0.0 0.6 0.6 2.1 1.2 0.6 1.0 1.0 1.5 0.6 

  
             Section 4: Performance Avoidance 1 2 3 4 5 6 7 8 9 10 Q Mean SD 
(10) I just want to avoid performing worse than others 2 2 1 4 1 4 2 3 1 2 2.2 1.1 
(11) My goal is to avoid performing worse than everyone else 1 1 1 1 1 5 5 3 1 2 2.1 1.7 
(12) It is important for me to avoid being one of the worst performers in the 
group 4 2 3 5 1 6 5 5 2 3 3.6 1.6 

Participant Mean 2.3 1.7 1.7 3.3 1.0 5.0 4.0 3.7 1.3 2.3 
  SD 1.5 0.6 1.2 2.1 0.0 1.0 1.7 1.2 0.6 0.6 

  



110 
 

Table 5.7 Significant correlations between AGQ responses and absolute differences in TLIM 

(top) and % differences in TLIM (bottom) at 100%, 110% and 120% WPEAK (* = Pearson’s r, # = 

Spearman’s ρ) 

Diff  (s) Q3 Q5 Q6 Q7 Q9 Q11 

100% N/A N/A N/A N/A N/A N/A 

110% 0.68, P = 0.03 # N/A N/A N/A N/A 0.71, P = 0.02 # 

120% N/A N/A 0.64, P < 0.05 * N/A N/A N/A 

       
Diff (%) Q3 Q5 Q6 Q7 Q9 Q11 

100% N/A 0.71, P = 0.02 * N/A N/A N/A N/A 

110% 0.68, P = 0.03 # N/A 0.64, P < 0.05 * N/A N/A 0.66, P = 0.04  # 

120% N/A N/A 0.65, P = 0.04 * 0.73, P = 0.02  #  0.66, P = 0.04  * N/A 
 

5.5 Discussion 

 

This study evaluated the effects of NaHCO3 in the same participants across the 

range of maximal and supramaximal exercise intensities reported in previous studies. All 

experimental trials achieved the peak physiological values reported in the preliminary 

incremental test and thus represent valid (supra)maximal work.  In contrast to our original 

hypothesis, the efficacy of NaHCO3 differed between exercise intensities. At the group level 

NaHCO3 ingestion facilitated augmented exercise capacity only when exercising at 100% 

WPEAK with participants cycling for 17% longer (~ 1 min) than PLA. The increase in TLIM of 

17% at 100% WPEAK for NaHCO3 equated to a ~ 40% chance of beneficial change.. In 

contrast chances of beneficial change for NaHCO3 at 110% WPEAK and 120% WPEAK were 

1.1% and 1.3%, respectively. The benefit to harm odds-ratios of 4 and 6 respectively, were 

much lower than the 6702 observed for the difference in TLIM at 100% WPEAK (Table 5.3).  

Based on the recommended benefit to harm odds-ratio of > 66 NaHCO3 ingestion would be 

recommended for TLIM at 100% WPEAK but not at 110% or 120% WPEAK (Hopkins 2007, 
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Hopkins et al. 2009). The 17% increase in TLIM at 100% WPEAK is also considerably greater 

than the daily variation observed in pilot testing and suggests that NaHCO3 supplementation 

can be important in improving exercise capacity where TLIM lasts between 5 and 10 minutes. 

Such a finding is in contrast to the 1 to 7 minute window previously reported (Linderman and 

Fahey 1991, Matson and Tran 1993, Linderman and Gosselink 1994).  

 

Improvements in exercise capacity at 100% WPEAK were observed in nine of the ten 

participants. However, capacity at 110% and 120% WPEAK was more variable with 40% and 

50% of participants showing improved TLIM. Interestingly, all participants demonstrated 

improved capacity after NaHCO3 for at least one intensity, 70% demonstrated improvement 

at two intensities and one participant improved at all three intensities. Interestingly, 30% of 

participants demonstrated opposing exercise capacity at 110% and 120% WPEAK. Combined 

exercise capacity data demonstrated an overall ergogenic benefit for NaHCO3 of 9% which 

is also higher than the daily variation in TLIM observed in pilot testing. It is possible that part 

of this variation may be explained by the untrained nature of the participants involved, 

although all participants completed two full familiarisation sessions before experimental trials 

as described in study 1 (chapter 4). Furthermore, based on the AGQ data, it would seem 

that variance in TLIM performance at different exercise intensities is not explained by goal 

orientation. Such variability of performance with NaHCO3 ingestion has been previously 

reported suggesting that participants were either ‘responders’ or ‘non-responders’ (Price and 

Simons 2010, Saunders et al. 2011), a method previously used to classify responses to 

other ergogenic aids (Syrotuik and Bell 2004).  However, such research only examined the 

effects of NaHCO3 on performance at one exercise intensity. The results of the present study 

are, to the best of our knowledge, the first to challenge this assumption and suggest that 

such a classification for NaHCO3 ingestion is too simplistic. Such variation in performance 

after NaHCO3 is in accordance with the results of studies 3 and 4 (chapters 6 and 7, 

respectively). Further investigation to understand the mechanisms involved is warranted.  
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 Differences in exercise capacity at different exercise intensities might be explained 

by the rate of change in pH (Lavender and Bird 1989, Price, Moss, and Rance 2003). 

Indeed, Messonier et al.  (2007) observed that greater power output was achieved when the 

rate of decrease in intramuscular pH was slowest, although this relationship has been 

questioned (Bishop 2007). Assuming the rate of change in pH increases with exercise 

intensity this might explain why capacity was greater and RPEL was attenuated only at 100% 

WPEAK with NaHCO3 ingestion. Furthermore this might explain why a greater magnitude of 

ergogenic benefit has been observed for NaHCO3 during exercise of 4 to 8 minutes 

compared to 1 to 4 minutes (Matson and Tran 1993). Moreover, it’s possible that after a 

certain threshold of pH change, membrane transporters such as monocarboxylate 

transporter 1 (MCT1), monocarboxylate transporter 4 (MCT4) or the sodium-hydrogen 

exchanger (NHE) become saturated and therefore less effective. Further research is 

warranted, particularly on the rate of change in pH, during exercise, with and without 

NaHCO3. 

  

 Messonier et al. (2007) found that participants who had the lowest work capacity 

during CON trials gained the most benefit from alkalotic buffering, possibly because of lower 

levels of MCT1 and MCT4. Assuming no significant changes in MCT1 and MCT4 between 

trials in the current study our results suggest that the roles of such transporters are less 

clear. In the present study, participants who improved exercise capacity with NaHCO3 at 

110% WPEAK had a greater initial WPEAK than participants whose capacity was higher with 

PLA (244 ± 42 W vs. 183 ± 13 W). In contrast, participants who performed better with 

NaHCO3 at 120% WPEAK had a lower WPEAK than those who improved with PLA (228 ± 18 W 

vs. 260 ± 34 W). Moreover, participants who demonstrated no difference in TLIM at 110% had 

a greater WPEAK than participants who showed no difference at 120% (235 ± 12 W vs.181 ± 

35 W). This preliminary analysis suggests that performance in baseline trials is not 

necessarily a reliable predictor of subsequent exercise capacity with NaHCO3 ingestion.  
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 NaHCO3 ingestion attenuated RPEL after 1 and 2 mins of exercise during the 100% 

WPEAK trial. TLIM was also significantly correlated with RPEL but not RPEO at the same time 

points. Attenuation of both RPEL and RPEO has been observed at 80% (Robertson et al. 

1986) and 90% V̇O2MAX (Swank and Robertson 1989) with NaHCO3 ingestion. Peripheral 

signals of exertion from active muscles are associated with blood acid-base changes 

(Robertson et al. 1986), supporting the correlation of higher pH values with lower RPEL 

ratings. However, such sensory mechanisms may only contribute to these peripheral signals 

once a specific metabolic ceiling has been reached, such as the lactate threshold where 

metabolic acidosis is likely minimal (Robertson et al. 1986). Therefore, once this metabolic 

ceiling is met, peripheral signals of exertion are likely to increase with exercise intensity. As 

exercise intensity increases, so will the associated biochemical and physiological changes. 

Therefore, it is possible that RPEL was only attenuated at 100% WPEAK because the 

associated biochemical and physiological changes during exercise at 110% and 120% 

WPEAK occurred at a rate that prevented NaHCO3 from exhibiting enough of an effect to 

positively influence TLIM. An explanatory mechanism is yet to be fully elucidated but might be 

linked to the attenuation of perceived exertion by endogenous opioids (Sgherza et al. 2002), 

which in itself is likely driven by exercise intensity. Similarly it could be that pre-exercise 

alkalosis attenuates the stress response (i.e. specific heat shock proteins such as HSP72) 

during exercise (Peart et al. 2011) and concomitantly facilitates the attenuation of RPEL. 

However, it should be acknowledged that no performance benefit was observed in the study 

evaluating the effects of NaHCO3 on HSP72 although the 4 mins ‘all-out’ protocol used is 

likely to have been a contributory factor (Peart et al. 2011). The observation that RPEL was 

greater than RPEO at each time point is consistent with previous research demonstrating that 

RPEL comprises a greater percentage of the overall perception of effort in cycle exercise in 

previously untrained males (Hetzler et al. 1991, Hampson et al. 2001). Further research is 

warranted on the role of NaHCO3 and modulation of RPEL. 
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 Patterns of pH, BE and [HCO3
-] were largely similar for both treatments, regardless of 

intensity (i.e. similar absorption patterns and physiological end-points) and comparable to 

previous research (Price, Moss, and Rance 2003,  Price and Simons 2010, Cameron et al. 

2010). One exception was the pattern of pH post-exercise. Absolute pH values post-exercise 

were more variable for PLA (Figure 5.2).This might be due to individual variation in 

endogenous concentrations of (non-bicarbonate) intracellular buffers such as carnosine 

(Begum, Cunliffe, and Leveritt 2005). Although somewhat speculative, NaHCO3 

administration may normalise intracellular differences between individuals and provide a 

more uniform biological starting point to compare performance. This might be achieved by 

facilitating biochemical transport of H+ and La- ions in individuals with lower capacity of 

intracellular buffers and/or MCT1, MCT4 or NHE and thus explain why post-exercise pH 

regulation with NaHCO3 was more consistent than in PLA trials. 

 

 Despite improvement in exercise capacity only occurring at 100% WPEAK, BLa at the 

end of exercise, and 5 mins post-exercise, was greater by 2.2 mmol.l-1 for NaHCO3 

compared to PLA at all intensities. This is consistent with previous research which proposed 

that performance improvement may not occur unless a difference of > 2 mmol.l-1 BLa is 

observed when using NaHCO3 or sodium citrate administration (Ibanez et al. 1995). Despite 

showing an ergogenic benefit for NaHCO3 in the present study, the correlation between the 

difference in TLIM and difference in BLa at the end of exercise between treatments at 100% 

WPEAK was low and insignificant suggesting that enhanced performance is not necessarily 

greatly contributed to by augmented metabolic flux. 

  

 Previous research suggests that performance after NaHCO3 ingestion can be 

affected by gastrointestinal (GI) distress (Cameron et al. 2010, Saunders et al. 2011). 

Saunders et al. (2011) found that NaHCO3 did not enhance performance at 110% WPEAK. 

However, when participants who suffered GI distress (n=4) were removed from the analysis, 

NaHCO3 was shown to enhance total work done by 5%. In the present study peak ratings of 
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AD (3.0 vs. 0.7) and GF (3.0 vs. 2.1) were greater for NaHCO3 than PLA trials although 

these absolute scores represent only mild AD or GF. Consequently, there is minimal 

likelihood that either AD or GF impacted on the overall results in this study. In contrast, 

individual scores for both AD and GF ranged from 0 to 8 at 30 mins post-ingestion and 0 to 6 

at 60 mins post-ingestion with NaHCO3. Therefore, it is possible that AD and GF impacted at 

an individual level and only in specific trials.  For example, the one participant who did not 

improve at 100% WPEAK (-10% with NaHCO3) suffered from GI distress in all trials although 

GI distress did not prevent improvement in exercise capacity at 120% WPEAK (+16%).  This 

improvement occurred during the last trial and was accompanied by lower AD and GF 

ratings than reported at 100% and 110% WPEAK. Additionally, one participant who improved 

only at 100% WPEAK (+9%) did so in the last NaHCO3 trial. Despite recording mid-high AD 

(6.0) after 30 minutes, in line with the 110% and 120% NaHCO3 trials (8.0 and 6.0), AD 

dropped substantially pre-exercise (2.0 vs. 6.0). Such results suggest that improved GI 

tolerance to NaHCO3 over time may have contributed to improvements in exercise capacity 

in those individuals. Nevertheless one participant who reported mid-high (6.0) AD 30 mins 

pre-exercise and pre-exercise had the highest increase in TLIM (+38%) at 100% WPEAK with 

NaHCO3. Thus, GI distress does not always negatively influence performance (Price and 

Simons 2010). 

  

 One minor limitation of the present study is that changes in haemoconcentration 

were not measured. Theoretically, this could have impacted on the differences observed in 

blood results in the present study. However, we suggest this is very unlikely based on 

Kozak-Collins, Burke, and Schoene (1994) and Driller et al. (2012a) who noted that although 

haematocrit increased at the end of exercise there was no difference between NaHCO3 and 

NaCl trials. These findings suggest that the intravascular fluid status was the same for both 

trials and that differences in fluid status did not impact results. Moreover, the exercise 

protocol used by Kozak-Collins, Burke, and Schoene (1994) was far longer than the present 
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study and is thus more likely to have demonstrated significant changes in 

haemoconcentration. 

  

 In conclusion, the results of this study suggest that NaHCO3 ingestion improves 

continuous constant load cycling at 100% WPEAK. Exercise at other intensities (110% and 

120% WPEAK) also resulted in improvement in exercise capacity in some participants but this 

appears more variable. More research is required to elucidate the mechanisms for why 

improvement in exercise capacity with NaHCO3 ingestion for the same population may differ 

between exercise intensity. Specifically future research should focus on the role of localised 

RPE, the rate of pH change during exercise, whether increased tolerance to NaHCO3 

influences exercise capacity and whether a change in training status affects the efficacy of 

NaHCO3 as an ergogenic aid. 
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Chapter 6 – The effects of elevated levels of sodium bicarbonate (NaHCO3) on the 

acute power output and time to fatigue of maximally stimulated mouse soleus and 

extensor digitorum longus muscles 

 

6.1 Abstract 

 

This study examined the effects of elevated buffer capacity (~ 32mM [HCO3
-]) 

through administration of sodium bicarbonate (NaHCO3) on maximally stimulated isolated 

mouse soleus (SOL) and extensor digitorum longus (EDL) muscles undergoing cyclical 

length changes at 37°C. The elevated buffering capacity was of an equivalent level to that 

achieved in humans with acute oral supplementation. The acute effects of elevated [HCO3
-] 

were evaluated on (1) maximal acute power output (PO) and (2) time to fatigue to 60% of 

maximum CON PO (TLIM60), the level of decline in muscle PO observed in humans 

undertaking similar exercise, using the work loop technique. Acute PO was on average 7.0 ± 

4.8 % greater for NaHCO3 treated EDL muscles (P < 0.001; ES = 2.0) and 3.6 ± 1.8 % 

greater for NaHCO3 treated SOL muscles (P < 0.001; ES = 2.3) compared to CON. 

Increases in PO were due to greater force production throughout shortening. The acute 

effects of NaHCO3 on EDL were significantly greater (P < 0.001; ES = 0.9) than on SOL. 

Treatment of EDL (P = 0.22; ES = 0.6) and SOL (P = 0.19; ES = 0.9) did not alter the pattern 

of fatigue. Although significant differences were not observed in whole group data, the 

fatigability of muscle performance was variable suggesting, that there may be inter-individual 

differences in response to NaHCO3 supplementation. These results present the best 

indication to date that NaHCO3 has direct peripheral effects on mammalian skeletal muscle 

resulting in increased acute power output. 

 

6.2 Introduction 
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In the early part of the 20th century, research suggested that lactic acid accumulation 

was a predominant cause of skeletal muscle fatigue in intact (Fletcher and Hopkins 1907) 

and isolated skeletal muscle (Hill and Kupaloc 1929), such fatigue occurring most rapidly 

under anaerobic conditions and during rapid contractions, respectively. Based on the 

understanding that lactic acid accumulation during exercise could be, at least in part, 

neutralised by extracellular buffers, Dennig et al. (1931) evaluated the effects of a known 

alkalotic buffer on exercise performance. It was reported that orally ingested sodium 

bicarbonate (NaHCO3) improved running performance. 

 

Contemporary biochemical understanding suggests that during high-intensity 

exercise there is a concomitant increase of La- and H+ ions in both working muscle and 

blood. This is due to the accumulation and subsequent disassociation of lactic acid 

(Requena et al. 2005, Thomas et al. 2005). The increase in H+ (as opposed to accumulation 

of lactic acid per se) and subsequent decrease in pH has been implicated in the cause of 

muscle fatigue (Requena et al. 2005, Allen, Lamb, and Westerblad 2008). Therefore, 

augmenting muscle’s ability to neutralise excess H+, through ingestion of alkalotic buffers, 

may prolong exercise capacity (Begum, Cunliffe, and Leveritt 2005).  

 

The mechanism by which NaHCO3 ingestion is thought to modulate exercise 

performance is by increasing extracellular buffering capacity, facilitating greater efflux of La- 

and H+ from the working muscle and thus facilitating prolonged muscular contraction and 

hence exercise performance (Requena et al. 2005). Numerous studies in humans have 

examined the effect of alkalotic buffers such as NaHCO3 on whole body exercise 

performance (MacLaren and Morgan 1985, McNaughton 1992a, Lindh et al. 2008). 

However, results in human studies remain somewhat equivocal due to factors such as 

inconsistencies in experimental approach (Requena et al. 2005, McNaughton, Siegler, and 

Midgley 2008). Nevertheless, when key methodological components such as dosage (0.3 

g.kg-1; McNaughton 1992a, Requena et al. 2005), timing of ingestion (~ 60/90 mins pre-
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exercise, Renfree 2007, Price and Singh 2008) and exercise protocol (constant load 

exercise to exhaustion; Matson and Tran 1993, Hopkins et al. 2001) are adopted ergogenic 

benefit is more likely to be observed (Matson and Tran 1993).  

 

In an attempt to elucidate the effects of modulating acid-base balance at a tissue 

level several studies have examined the effects of metabolic acidosis (ACD) and alkalosis 

(ALK) on isolated muscle performance. Spriet et al. (1985) induced ACD by lowering the 

[HCO3
-] in the isolated muscle perfusate from ~ 24mM to ~ 13 mM. This significantly 

increased the rate of muscle tension decay and reduced absolute muscle tension in the 

gastrocnemius-plantaris-soleus muscle group, during fatiguing isometric stimulation, when 

compared to CON. Conversely, Spriet et al. (1986) found that inducing ALK by increasing 

the [HCO3
-] from ~ 21 mM to ~ 27 mM had no effect on peak isometric tension or tension 

decay compared to CON. Furthermore, Broch-Lips et al. (2007) examined the effect of 40 

mM and 25 mM [HCO3
-] on isometric force production in isolated rat skeletal muscle. The 

elevated [HCO3
-] had no significant effect on force maintenance during continuous 

stimulation or recovery of force during brief tetanic stimulation in either SOL or EDL muscles 

at 30°C. Similarly, 40 mM of HCO3
- had no significant effect on isometric force maintenance 

during either continuous stimulation or intermittent stimulation protocols (1 s on; 3 s off) at 

37°C in SOL. No significant effects were also observed on force production in EDL muscle 

(Broch-Lips et al. 2007).  

 

Although the studies noted have examined the effects of high and low [HCO3
-] on 

muscle performance the current body of in vitro isolated muscle research has a number of 

methodological concerns. This is particularly so when trying to apply the results to in vivo 

human muscle performance. For example, no research to date has used concentrations of 

HCO3
- that are typically achieved in the blood of human participants (~ 32 mM; Kolkhorst et 

al. 2004, Price and Singh 2008; Lindh et al. 2008; Siegler et al. 2010) following the 

recommended supplementation dosage (0.3 g.kg-1; McNaughton 1992, Requena et al. 
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2005). Moreover, during mammalian locomotion muscles that are attached to moving 

skeletal structures, either directly or indirectly, undergo repetitive length changes (Josephson 

1993). Approximation of such length changes in vitro facilitates the evaluation of important 

components of exercise performance such as tolerance to the effects of fatigue in 

mammalian muscle (James, Wilson, and Askew 2004). Unfortunately, previous research that 

has used elevated [HCO3
-] and simulated in vivo exercise performance used isometric 

muscle contractions (Broch-Lips et al. 2007). Unlike the work loop method, isometric 

contractions do not consider maximal force production in terms of any interaction between 

activation and relaxation time and/or any passive resistance to muscle lengthening that 

occurs during cyclical length changes during mammalian locomotion. 

 

To the best of our knowledge, no research has examined the effects of NaHCO3 on 

isolated mammalian muscle during such cyclical length changes. Therefore, the aim of this 

study was to investigate the efficacy of elevated buffer capacity ([HCO3
-]) through 

administration of NaHCO3, on maximally stimulated isolated mouse soleus (SOL) and 

extensor digitorum longus (EDL) muscles undergoing cyclical length changes at 

physiological temperature (37°C). The first objective was to evaluate the acute effects of 

NaHCO3 on isolated muscle maximal PO and the second objective was to evaluate the 

effects of NaHCO3 on isolated muscle fatigued at the intensity that evoked maximal PO. 

Both objectives were achieved using the work loop technique which has previously been 

used to evaluate the direct effects of other nutritional ergogenic aids on muscle performance 

(James, Wilson, and Askew 2004, James et al., 2005, Tallis et al. 2012).  

 

6.3 Methods  

6.3.1 Dissection 

 

Eight-to-ten week old female white mice (strain CD1, Charles River, UK) were bred 

and kept at the University. The mice were weighed (body mass: 31.9 ± 1.9 g, n = 24) and 
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then killed by cervical dislocation in accordance with the British Home Office Animals 

(Scientific Procedures) Act 1986, Schedule 1. The use of animals in this study was approved 

by the University Ethics Committee. 

 

For the acute protocol a different muscle was taken from each hind limb of each 

mouse (e.g. SOL: right hind limb; EDL: left hind limb) alternating with each animal. This 

process was undertaken to counterbalance any effects of anatomical dominance that may 

exist in this cohort of animals, with each individual muscle acting as its own control. For the 

fatigue protocol the same muscle was taken from each limb of the same animal so that 

muscles could be directly compared between treatments (NaHCO3 vs. CON).  

 

In total, 48 muscles were evaluated from 24 mice (objective 1, acute muscle 

performance: SOL n=8, EDL n=8; objective 2, fatigue resistance: SOL n=16 and EDL: n=16 

(8 each for NaHCO3 and CON). Throughout the dissection procedure the muscle preparation 

was maintained in refrigerated and oxygenated (95% O2; 5% CO2) Krebs-Henseleit solution 

(NaCl 118mM; KCl 4.75mM; MgSO4 1.18 mM; NaHCO3 25 mM; KH2PO4 1.18 mM; glucose 

10 mM; CaCl2 2.54 mM; pH 7.59 ± 0.03 at room temperature prior to oxygenation and pH 

7.46 ± 0.03 at experimental temperature (37°C) after oxygenation). 

 

Soleus (SOL) and extensor digitorum longus (EDL) muscles were isolated from the 

hind limbs and then pinned out at approximately their resting length at laboratory 

temperature (24-25oC). For each preparation the tendon and a small piece of bone was left 

attached at the proximal and distal ends.  Aluminium foil T-clips were wrapped around each 

tendon, leaving the bone at the back of the clip, to prevent tendon slippage during muscle 

activation (James et al. 2005). 

 

6.3.2 Experimental set-up 
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Each muscle preparation was attached via the foil clips to a force transducer (UF1, 

Pioden Controls Ltd., Kent, UK) and a displacement transducer (V201, Ling Dynamic 

Systems, Hertfordshire, UK) at opposing ends in one of two identical set-ups.  Position of the 

motor arm was detected using a Linear Variable Displacement Transformer (LVDT; DFG5.0, 

Solartron Metrology, Sussex, UK). Throughout the experimental procedure the muscle was 

maintained at standard physiological temperature (37 ± 0.2oC; Askew and Marsh 1997) in 

circulating oxygenated Krebs-Henseleit solution. The preparation was stimulated via parallel 

platinum electrodes whilst held at constant length to generate a series of isometric twitches. 

The electrodes were not in contact with the nerve branch or the fibre itself but stimulated the 

muscle via the surrounding fluid.  

 

6.3.3 Isometric protocol 

 

Muscle length and stimulus amplitude (12-16V for SOL; 14-18V for EDL) were 

optimised in order to achieve maximal isometric twitch force. The muscle length that 

corresponded to maximal isometric twitch force was measured using an eyepiece graticule 

fitted to a microscope, and was defined as L0. Mean muscle fibre length was calculated as 

85% of L0 for SOL and 75% of L0 for EDL (James, Altringham, and Goldspink 1995, James, 

Wilson, and Askew 2004). Maximal isometric tetanic force was also measured by subjecting 

the preparation to a burst of electrical stimuli (350 ms for SOL; 250 ms for EDL; James, 

Wilson, and Askew 2004, James et al. 2005). Stimulation frequency was optimised to yield 

maximal tetanic force (140 Hz for SOL; 200 Hz for EDL; Askew, Young, and Altringham 

1997, James, Altringham, and Goldspink 1995, James, Wilson, and Askew 2004). After each 

tetanic stimulation a 5 minutes rest period was imposed to ensure that the muscle recovered 

fully. Upon completion of the final 5 minute rest period, each preparation was subjected to 

the following work loop protocol. 

 

6.3.4 Work loop protocol 
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The work loop technique assesses the power output of isolated muscle whilst 

undergoing cyclical length changes (Josephson 1985; James et al. 2005).  Starting at L0, 

each muscle was subjected to four sinusoidal length change cycles per set, at a total 

symmetrical strain of 0.10 (10% of L0). More simply the muscle was lengthened by 5% from 

L0, followed by a shortening to 5% shorter than L0, before returning to L0 (i.e. 100% to 105% 

to 95% to 100%). This was repeated 4 times per set. Each complete sinusoidal length 

change yields one work loop. A strain of 10% was used as it yields maximum power in vitro 

at the cycle frequencies used in the present study (James, Altringham, and Goldspink 1995). 

 

Length changes were delivered at a cycle frequency of 5Hz for SOL and 8Hz for 

EDL. For SOL the 5Hz cycle frequency represents that what elicits maximal power output in 

vitro and is attainable in vivo (James, Altringham, and Goldspink 1995, Askew and Marsh 

1997, Askew, Young, and Altringham 1997). Although 10-12Hz represents the range of cycle 

frequencies that elicit maximal power for EDL muscle, mice are unable to attain a stride 

frequency much greater than 8Hz (James, Altringham, and Goldspink 1995).  

 

 Muscle stimulation and length changes were controlled using custom written 

software (Testpoint, CEC, Massachusetts, USA) via a D/A board (KPCI3108, Keithley 

Instruments, Ohio, USA).  Data were sampled at a rate of 10 kHz and a work loop was 

formed by plotting force against length. The area of a work loop represents the net work 

done by the muscle during a single length change cycle (Josephson 1985). The muscles 

were electrically stimulated and the stimulus burst duration (i.e. total duration of stimulation 

in each length change cycle) was altered until maximal net power output was achieved. The 

burst duration that achieved maximal power output was typically 60 ms for SOL and 59 ms 

for EDL. These values are similar to those found in previous studies using the work loop 

technique (James, Wilson, and Askew 2004, Vassilakos et al. 2009). Stimulation phase 

shifts (i.e. the time at which stimulation commenced, stated with respect to the time that the 

muscle reached maximum length; such that a negative value indicates that stimulation 
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started before maximal muscle length was reached) of -10 ms and -2 ms were used for SOL 

and EDL respectively (Tallis et al. 2012). The second loop of each set of four work loops was 

used as an indicative measure of performance for each trial (James et al. 2005, Tallis et al. 

2012).  A 10 minute rest was given between each set of work loop trials to ensure sufficient 

recovery (James, Wilson, and Askew 2004).  

 

6.3.5 Treatment solutions 

  

The composition of the control (CON; standard Krebs- Henseleit) solution was: NaCl 

118mM; KCl 4.75mM; MgSO4 1.18 mM; NaHCO3 25 mM; KH2PO4 1.18 mM; glucose 10 mM; 

CaCl2 2.54 mM; pH 7.59 ± 0.03 at room temperature prior to oxygenation and pH 7.46 ± 

0.03 at experimental temperature (37°C) after oxygenation. The composition of the 

experimental (NaHCO3) solution was: NaCl 111 mM; KCl 4.75 mM; MgSO4 1.18 mM; 

NaHCO3 32 mM; KH2PO4 1.18 mM; glucose 10 mM; CaCl2 2.54 mM; pH 7.74 ± 0.02 at room 

temperature prior to oxygenation and pH 7.56 ± 0.03 at experimental temperature (37°C) 

after oxygenation. The experimental solution was designed to replicate the concentration of 

NaHCO3 achieved in human blood after oral supplementation (~ 32 mM [HCO3
-], Price and 

Singh 2008, Lindh et al. 2008, Cameron et al. 2010, Siegler et al. 2010) and was equimolar 

in Na+ content to CON. 

 

6.3.6 Objective 1: Acute protocol - the effects of NaHCO3 on maximal power output 

 

Muscle preparations were subjected to sets of 4 work loops at 10 minute intervals 

over a period of 130 minutes. The acute protocol consisted of 3 sets of 4 work loops as 

control measurements in standard Krebs-Henseleit solution (Pre-CON), followed by 6 sets of 

4 work loops as treatment measurements in either the CON or NaHCO3 solutions (i.e. the 

treatment intervention) and 4 final sets of 4 work loops as control measurements in the CON 

solution (Post-CON, washout).  
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6.3.7 Objective 2: Fatigue protocol - the effects of NaHCO3 on skeletal muscle fatigue 

 

The fatigue protocol consisted of 3 sets of 4 work loops as control measurements in 

standard Krebs-Henseleit solution (Pre-CON), followed by 3 sets of 4 work loops as 

treatment measurements in either the CON or NaHCO3 solutions (i.e. the treatment 

intervention). Data from the acute protocol indicated that 3 sets of work loops allowed the 

muscle to become fully accustomed to the treatment intervention. Ten minutes following the 

last treatment measurement the muscles were subjected to a fatigue run consisting of 100 

consecutive work loops (12.5 s duration at 0.125 s (8Hz length change cycle frequency) per 

work loop for EDL; 20 s duration at 0.20 s (5Hz length change cycle frequency) per work 

loop for SOL). Ten minutes after the fatigue protocol was completed (i.e. rest period) muscle 

preparations were then subjected to 6 further sets of 4 work loops at 10 minute intervals over 

a period of 60 minutes in standard Krebs-Henseleit solution (post-CON). These post-fatigue 

measurements were conducted to assess the rate of recovery of muscle function after the 

experimental intervention and to verify that decreases in performance during the fatigue 

protocol were due to fatigue and not death of muscle fibres.  

 

6.3.8 Muscle mass and dimension calculations 

 

At the end of the experiment the muscle was disconnected from the apparatus and 

the tendons and bones removed leaving the muscle intact. The muscle was blotted on tissue 

paper to remove excess fluid and then placed on an electronic balance (Mettler Toledo 

B204-S, Zurich, Switzerland) to determine the wet muscle mass. All muscles were analysed 

for muscle quality (pre-treatment isometric stress (i.e. twitch/tetanus) [force normalised to 

muscle cross-sectional area] and normalised (mass specific) power output. Mean muscle 

cross-sectional area was calculated from mean fibre length, muscle mass and an assumed 

muscle density of 1060 kg m-3 (Méndez and Keys 1960). Isometric stress was calculated as 
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force divided by mean muscle cross-sectional area. Muscle power output was normalised to 

muscle mass to express power as W.kg-1.   

 

6.3.9 Power output analysis 

 

In humans PO decreases to ~ 60% of maximum during sprint running of ~ 20 s 

(Cheetham et al. 1986) which most closely resembles the protocol used in this study. 

Therefore analysis of PO during the fatigue run was analysed until the muscle had 

decreased to 60% of maximum PO (TLIM60) for both EDL and SOL.  

 

In the absence of vascular perfusion, isolated muscle PO may reduce over time due 

to the progressive development of an anoxic core (Barclay 2005). In order to avoid 

deterioration in muscle performance masking the effects of NaHCO3 on acute PO a first 

order regression equation was calculated using the control data and washout data to identify 

the linear relationship between muscle power output and time (Tallis et al. 2012). In the 

present study power output of muscle preparations typically decreased by 12% (EDL) and 

4% (SOL) between pre-CON and post-CON control measurements. Therefore, the 

regression equation was used to determine theoretical control muscle power output for each 

time point during NaHCO3 treatment to allow performance during treatment to be compared 

with the theoretical control performance of the muscle being tested (Tallis et al. 2012). 

 

6.3.10 Statistical analysis 

 

Statistical analysis was completed using PASW (SPSS; v17, Chicago, USA) and 

Excel (Microsoft; v2007, Redmond, USA).  For all analyses, assumptions for parametric 

tests were carried out as per section 3.8.  Based on this initial analysis a number of different 

parametric (independent and paired t-tests, single factor repeated measures ANOVA) and 

non-parametric (Mann-Whitney U, Wilcoxon, Friedman) tests were utilised. Statistical 
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significance was accepted at P < 0.05. For comparisons of muscle quality (muscle stress 

and mass-specific power output) before treatment, between groups (i.e. acute treatment vs. 

fatigue treatment vs. fatigue CON), where significance was achieved using single factor 

ANOVA, pairwise comparisons (least significant difference; LSD) were undertaken. LSD 

comparisons were chosen as they are the most powerful when analysing 3 levels/groups 

(Howell 2007). Figures quoted are mean values ± standard deviation (SD) unless otherwise 

stated. For ANOVA effect sizes (ES) are reported as the partial η2 value. Elsewhere the 

effect size was calculated as the mean difference divided by the root mean squared 

standard deviation.  

 

6.4 Results 

6.4.1 Muscle quality 

 

There was no significant difference in the tetanic stress (SOL: P = 0.82; EDL: P = 

0.44) or twitch stress (SOL: P = 0.47; EDL: P = 0.75), before treatment, between any of the 

treatment groups (i.e. acute treatment vs. fatigue treatment vs. fatigue CON muscles). 

Similarly, there was no significant difference in [pre-treatment] mass-specific PO for EDL 

muscles (P = 0.22; i.e. acute treatment vs. fatigue treatment vs. fatigue CON muscles). In 

contrast there was a significant difference (P = 0.049) between the mass-specific PO of the 

SOL muscles used in the acute protocol compared to SOL muscles used in the NaHCO3 

condition during fatigue (post-hoc LSD: P = 0.02). However, as these muscles are not 

directly compared this has minimal impact on the results. Most importantly, there was no 

significant difference in the pre-treatment mass-specific PO between SOL muscles 

subsequently used in NaHCO3 and CON fatigue trials (i.e. muscles from the same animal; 

post hoc LSD P = 0.33). Therefore, any differences between experimental trials during 

fatigue were due to the applied treatment. Table 6.1 outlines twitch and tetanus values and 

mass-specific work loop PO for SOL and EDL. 
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Table 6.1 Isometric stress and work loop power output for SOL and EDL muscles before 

treatment (Data represented as mean ± SD; n=24 for each muscle type) 

 

  SOL EDL 

Twitch Stress (kN m2) 39 ± 12 36 ± 12 

Tetanus Stress (kN m2) 227 ± 59 154 ± 46 

Power Output (W.kg –1) 38 ± 11 65 ± 18 

 

6.4.2 The acute effects of NaHCO3 on maximally stimulated EDL and SOL muscles 

 

There was no difference in PO for EDL and SOL between pre and post treatment 

CON work loops (P = 0.55, P = 0.53, respectively) demonstrating consistency of 

performance either side of treatment (Figure 6.1). Therefore, all CON results were pooled 

and compared against the PO achieved during the NaHCO3 treatment (Tallis et al. 2012).  

 

 

 
 

Figure 6.1 The acute effects of NaHCO3 on maximally stimulated mouse soleus (SOL) and 

EDL muscles. Vertical dotted lines represent timings of the start and end of the treatment 

(n=8 for each muscle; Values are displayed as a percentage of theoretical control work loop 

power output [horizontal dotted line] and data represented as mean ± SD). 
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Power output was on average 7.0 ± 4.8 % greater for NaHCO3 treated EDL muscles 

(P < 0.001; ES = 2.0) and 3.6 ± 1.8 % greater for NaHCO3 treated SOL muscles (P < 0.001; 

ES = 2.3) compared to CON (Figure 6.1). The acute effects of NaHCO3 on EDL were 

significantly greater (P < 0.001; ES = 0.9) than on SOL (Figure 6.1). The increase in acute 

PO as observed in Figure 6.1 was due to an increase in the force generated during 

shortening (Figure 6.2). 

 

6.4.3 The effects of NaHCO3 on fatigue of maximally stimulated EDL and SOL muscles 

6.4.3.i Extensor digitorum longus (EDL) 

 

 At a group level there was no significant difference between treatments in the time 

taken for EDL power output to reduce to 60% of maximum (TLIM60; CON: 2.55 ± 0.32 s; work 

loop 20 ± 3, NaHCO3: 2.36 ± 0.27 s; work loop 19 ± 2, P = 0.21; ES = 0.6) i.e. no significant 

difference in the pattern of fatigue. However, of the 8 paired muscles, % PO at TLIM60 was 

greater in CON on 4 occasions, twice for NaHCO3 with the remaining two pairs equal thus 

demonstrating marked inter-individual variation. The mean % of maximal control PO (i.e. PO 

recorded at each time point [every second work loop] for each muscle was pooled) produced 

by EDL until TLIM60 was not different between CON and NaHCO3 (87 ± 14% and 87 ± 14% 

respectively, P = 0.97) but significantly reduced over time (P < 0.001; Figure 6.3). However, 

as shown in Figure 6.1, NaHCO3 increased initial PO by ~ 7% in EDL, so PO would be 

higher in NaHCO3 than in CON for the initial section of the fatigue protocol shown in Figure 

6.3.  
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Figure 6.2 Typical work loop shapes for EDL (top) and SOL (bottom) during acute protocol. 

Dotted lines represent NaHCO3 treatment and full lines represent CON. 
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Figure 6.3 The effects of NaHCO3 on TLIM60 in maximally stimulated mouse EDL muscle 

(n=8 per treatment. Values are displayed as a % of maximal control work loop PO ± SD. 

Each 0.25 s represents 2 work loops, i.e. values are only shown for every other work loop).  

 

6.4.3.ii Soleus (SOL) 

 

At a group level there was no significant difference between treatments for TLIM60 for 

SOL (NaHCO3: 5.58 ± 0.79 s; work loop 28 ± 4, CON: 4.93 ± 0.73 s; work loop 25 ± 4, P = 

0.18; ES = 0.9) i.e. no significant difference in the pattern of fatigue. However, of the 8 

paired muscles, % PO at TLIM60 was greater in NaHCO3 on 5 occasions and on 3 occasions 

for CON which similar to EDL demonstrates marked inter-individual variation. The mean % 

of maximal control PO produced by SOL until TLIM60 was not different between CON and 

NaHCO3 (84 ± 14% and 85 ± 12%, respectively, P = 0.47) but significantly reduced over time 

(P < 0.001; ES = 0.9; Figure 6.4). However, as shown in Figure 6.1, NaHCO3 increased 

initial PO by 3.6% in SOL, so mass specific power output would be higher in NaHCO3 than in 

CON for the initial section of the fatigue protocol shown in Figure 6.4. 
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Figure 6.4 The effects of NaHCO3 on TLIM60 in maximally stimulated mouse SOL muscle 

(n=8 per treatment. Values are displayed as a % of maximal control work loop PO ± SD. 

Each 0.40 s represents 2 work loops, i.e. values are only shown for every other work loop).  

 

6.4.4 Rate of recovery of PO after fatigue of maximally stimulated EDL and SOL muscles 

6.4.4.i Extensor digitorum longus (EDL)  

 

There was a significant difference between treatments in the recovery of PO for EDL 

(P = 0.04, ES = 0.2). Over the sixty minute recovery period CON demonstrated a greater 

mean recovery (62 ± 25 %) than NaHCO3 (56 ± 27 %). Individual comparisons (i.e. treatment 

* time) revealed that recovery of PO was greater for CON (35 ± 11 %) compared to NaHCO3 

(24 ± 12 %) after 10 minutes (P = 0.03; Figure 6.5). Recovery of PO for EDL post muscle 

fatigue increased over time (P < 0.001; ES = 0.8) with both CON (84 ± 34 %) and NaHCO3 

(78 ± 18 %) peaking in absolute terms after sixty minutes recovery. Overall, the combined 

mean PO after 50 minutes recovery was 73 ± 22 % which did not increase further (post hoc 

LSD: P = 0.13).  
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6.4.4.ii Soleus (SOL)  

  

In contrast to EDL, there was no significant difference in recovery between 

treatments (P = 0.19). Overall, after 60 minutes of recovery NaHCO3 demonstrated a mean 

recovery of 92 ± 7% of control maximal PO compared with 90 ± 9% for CON (Figure 6.5). 

Recovery of PO for SOL post muscle fatigue increased over time (P < 0.001; ES = 0.4) with 

both CON (93 ± 7 %) and NaHCO3 (96 ± 9 %) peaking after twenty minutes recovery. 

Overall, the combined mean PO after 20 minutes recovery was 94 ± 8 % which did not 

significantly increase further during recovery (post hoc LSD: P > 0.13 in all cases).  

 

 Figure 6.5 The effects of NaHCO3 on recovery after fatigue in maximally stimulated mouse 

SOL and EDL muscles (n=8 per treatment. Values are displayed as a % of maximal work 

loop PO ± SD).* P = 0.03. 

 

Recovery of mean maximum control power output for combined data was 
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6.5). Importantly, both EDL (~ 80%) and SOL (~ 90%) muscles recovered almost completely 

within one hour of the fatigue run demonstrating that fatigue, rather than damage, was the 

overwhelming reason for performance decreases during the fatigue protocol. 

 

6.6 Discussion 

6.6.1 Muscle quality 

 

The mean SOL tetanic stress of 227 kN m-2 measured in the present study is slightly 

higher, but similar to, a range of 189 to 224 kN m-2 of previously published values, measured 

in mouse SOL muscle at a similar temperature (Brooks and Faulkner 1988, James, 

Altringham, and Goldspink 1995, Askew, Young, and Altringham 1997, Tallis et al. 2012). 

Likewise the mean SOL mass specific power output of 38 W.kg-1 measured in the present 

study is slightly higher than previously published values that range from 31.7 to 34 W.kg-1 

(James, Altringham, and Goldspink 1995, Askew, Young, and Altringham 1997, Tallis et al 

2012). The mean EDL tetanic stress of 154 kN m-2 measured in the present study is 

relatively low when compared to previously published values that range from 230 to 243 kN 

m-2 (Brooks and Faulkner 1988, James, Altringham, and Goldspink 1995, Askew and Marsh 

1997). Likewise the mean EDL mass specific power output of 65 W.kg-1 measured in the 

present study is relatively low when compared to the previously published value of 98 W.kg-1 

measured under similar conditions (James, Altringham, and Goldspink 1995). As the stability 

of the muscle preparations over time in this study was comparable to previous studies it 

seems unlikely that the lower EDL stress value is due to muscle damage. Therefore, the 

variation in muscle stress and mass specific power between studies would most likely be 

due to differences in muscle fibre type and morphology between the strains and ages of 

mice used in different studies.  

 

6.6.2 The acute effects of NaHCO3 on maximally stimulated EDL and SOL muscles 
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In the present study, isolated mouse muscles incubated at 37°C in modified Krebs-

Henseleit solution (~ 32 mM [HCO3
-]) generated greater acute power output (EDL = 7.0 ± 4.8 

%; SOL = 3.6 ± 1.8 %; Figure 6.1) during cyclical contractions than CON muscles incubated 

in standard Krebs-Henseleit solution (~ 25 mM [HCO3
-]). By analysing typical work loop 

shapes (Figure 6.2) we have demonstrated that the increase in power output is due to 

increased force generation during shortening.  This is the first study to demonstrate such 

novel findings. In contrast, Broch-Lips et al. (2007) found no significant difference in 

isometric force production in the presence of a greater [HCO3
-] (~ 40 mM [HCO3

-]) in both 

SOL and EDL rat muscles. However, Broch-Lips et al. (2007) used isometric contractions 

whereas the work-loop technique used within the present study subjects the isolated muscle 

to activation and length change patterns that better approximate in vivo locomotory function 

(Josephson 1985).  By approximating the type of dynamic muscle activities that are likely to 

occur in many sporting activities, the results of the present study give the best indication to 

date that NaHCO3 has direct effects on acute skeletal muscle performance in mammals, by 

means of augmented force production during shortening. Such data provides important 

supporting mechanistic evidence for the acute ergogenic effect observed in humans 

(McNaughton 1992a, McNaughton, Ford, and Newbold 1997)  

 

6.6.3 The effects of NaHCO3 on time to fatigue of maximally stimulated EDL and SOL 

muscles 

 

At the group level treatment of EDL and SOL muscles with sodium bicarbonate 

solution (~ 32mM [HCO3
-]) did not enhance TLIM60 compared to CON. Moreover, the % of 

maximal control PO produced by EDL and SOL was not different between treatments 

(Figures 6.3 and 6.4). However, muscle performance varied quite considerably. Of the 8 

paired EDL muscles TLIM60 was greater in CON on 4 occasions, twice for NaHCO3 with the 

remaining two pairs equal. Of the 8 paired SOL muscles TLIM60 was greater in NaHCO3 on 5 

occasions and on 3 occasions for CON. Such individual variability in the direct fatigability of 
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skeletal muscle might contribute to the equivocal results seen during in vivo research in 

humans (Requena et al. 2005, McNaughton, Siegler, and Midgley 2008, Price and Simons 

2010, studies 2 and 4, chapters 5 and 7, respectively). Furthermore, it should also be noted 

that due to the acute effects of NaHCO3 (Figures 6.1 and 6.2) this would cause initial power 

(and force) to be higher such that in absolute terms NaHCO3 treated muscles would be 

producing higher power for longer.  

 

The lack of ergogenic benefit in whole group data is similar to those of Broch-Lips et 

al. (2007) who demonstrated no ergogenic effect, using a treatment of ~ 40 mM [HCO3
-], on 

either SOL or EDL during ~ 3 to 5 mins continual isometric tetanic stimulations of isolated rat 

muscle. The protocol adopted by Broch-Lips et al. (2007) was used to mimic the 1-7 minute 

window in which NaHCO3 is deemed to be most effective (Linderman and Fahey 1991; 

Linderman and Gosselink 1994, Broch-Lips et al. 2007). The lack of ergogenic effect was 

noted despite a considerably greater [HCO3
-] than used in the present study (40 mM vs. 32 

mM, respectively) and a concomitant higher pH (7.60 vs. 7.56, respectively). Similarly, 

Lindinger et al. (1990) demonstrated that increasing the perfusate concentration to ~ 29 mM 

[HCO3
-] (by additional NaHCO3) had no effect on force production compared to CON (~ 21 

mM [HCO3
-]) during intense isometric stimulation in isolated rat hindlimb. 

 

6.6.4 Practical implications of acute power output results 

 

The improvements of acute power output in the present study (EDL = 7.0 ± 4.8 %, 

SOL = 3.6 ± 1.8 %) are similar in magnitude to previous research in humans which 

demonstrated that 0.3 g.kg-1 NaHCO3 (~32 mM [HCO3
-]) exhibited mean increases in peak 

power of 10.8% (McNaughton 1992) and 5.7% (McNaughton, Ford, and Newbold 1997) 

compared to CON and PLA during 60 s maximal cycling. The present study suggests that 

increases in PO in mammals appear to be due to greater force development throughout 

muscle shortening. Therefore, the results of the present study give the best indication to date 
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that NaHCO3 has direct peripheral effects on the acute power output of both fast and slow 

twitch skeletal muscle. This has important training and performance implications for those 

individuals undertaking high-intensity physical activity of ~ 60 seconds where enhanced 

acute power output is likely to contribute to performance improvement. Indeed, 

supplementation with NaHCO3 during training may result in positive physiological 

adaptations beyond training alone. Thomas et al. (2007) demonstrated that regular short 

term high-intensity exercise in rats (5 sessions per week for 5 weeks) conducted with 

NaHCO3 supplementation resulted in significantly larger increases in monocarboxylate 

transporter 4 (MCT4) abundance and citrate synthase activity than PLA (training) and CON. 

Interestingly, this was only observed in SOL with no changes in EDL. Similarly, Bishop et al. 

(2010) demonstrated that 5 weeks of interval training in rats conducted with NaHCO3 

supplementation was associated with greater improvements in both mitochondrial mass and 

mitochondrial respiration in SOL than PLA (training) and CON. This contributed to a 52% 

increase in time to exhaustion (TLIM) compared to PLA. Furthermore, Edge, Bishop, and 

Goodman (2006) demonstrated that high-intensity training in humans was associated with 

greater improvement in TLIM (164 vs. 123%) and lactate threshold (26 vs. 15%) with NaHCO3 

supplementation compared to PLA. Therefore, using NaHCO3 may promote both 

enhancements in acute power output and/or positive muscle specific physiological 

adaptations that are likely to enhance both acute and endurance performance. Interestingly, 

no research has previously examined the efficacy of NaHCO3 on physical performance pre 

and post-training, something we have addressed in study 4 (chapter 7).  

 

6.6.5 Practical implications of fatigue results 

 

Treatment of EDL and SOL muscles with sodium bicarbonate solution (~ 32 mM 

[HCO3
-]) did not enhance TLIM60 compared to CON. Moreover, the percentage of maximal 

control PO produced by EDL and SOL was not different between treatments. However, 

individual muscle performance varied quite considerably. For example there was a trend for 
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TLIM60 in the EDL CON trial to be 8% longer than NaHCO3 (i.e. EDL fatigued faster during 

treatment than CON). Of the 8 paired EDL muscles TLIM60 was greater in CON than NaHCO3 

on 4 occasions (50%) with two pairs equal. In contrast the trend for SOL at TLIM60 was 13% 

greater for NaHCO3 than CON. Of the 8 paired SOL muscles TLIM60 was greater in NaHCO3 

on 5 occasions (63%).  Such variability of performance with NaHCO3 has been previously 

reported in humans during TLIM trials in both running (Price and Simons 2010) and cycling 

(Saunders et al. 2011, studies 2 and 4, chapters 5 and 7, respectively). This led the authors 

to suggest that humans are either ‘responders’ or ‘non-responders’ to NaHCO3 

supplementation. The results of the present study suggest that such a classification might be 

appropriate at a skeletal muscle level. 

 

6.6.6 Muscle fibre distribution 

  

In terms of application to human performance the final key practical implication based 

on the results of the present study relates to muscle fibre type distribution. As noted 

previously NaHCO3 facilitated increases in acute PO for both EDL and SOL. However, the 

benefit observed in EDL was ~ 100% greater than in SOL (7.0 % vs. 3.6%). Therefore, 

humans with a greater distribution of (predominantly) type II fibres (FT), such as in EDL, may 

be more likely to see ergogenic benefit with NaHCO3 during high-intensity exercise of short 

duration (i.e. ~ 60 seconds) where the ability to produce high acute PO is likely to be 

important to performance. Although ergogenic benefit was also observed in SOL, those 

individuals who have a greater percentage of type I fibres (ST) such as in SOL are likely to 

see less ergogenic benefit during high-intensity exercise of short duration (i.e. ~ 60 

seconds). Therefore, whilst having an appropriate morphology for a particular sporting event 

is nothing new the in vitro results of the present study suggest that different muscle fibre 

types respond in different ways to NaHCO3 supplementation. As such, an individual’s overall 

muscular fibre type distribution might not only impact on their athletic performance but also 

the extent to which NaHCO3 might facilitate further performance improvement.   
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The individual variation in muscular distribution raises implications for researchers 

when recruiting human volunteers for studies evaluating NaHCO3. Often the homogeneity of 

a sample population is assumed if baseline respiratory and metabolic data are similar 

between participants. However, the present data suggests that muscle fibre type distribution 

in combination with the chosen exercise protocol may also play a role in whether ergogenic 

benefit is observed. In highly aerobic performance trials (i.e. ~ 85% aerobic ATP; Gastin et 

al. 1995) such as TLIM at 100% of maximal power output (~ 4 to 8 minutes; MacLaren and 

Morgan 1985) individuals with a greater proportion of ST fibres, such as in SOL, may be 

more likely to see ergogenic benefit with NaHCO3 than those individuals with a greater 

proportion of FT fibres. Similarly, those individuals with a greater proportion of FT fibres are 

more likely to see ergogenic benefit with NaHCO3 in short performance trials of ~ 60 

seconds where anaerobic metabolism (~ 50% anaerobic ATP; Gastin et al. 1995) is more 

predominant. Although analysing the fibre type distribution of human participants may be 

impractical, researchers should ensure homogeneity of volunteers (if that is required in the 

sample population) is not solely decided on similar respiratory and metabolic data in 

combination with a similar range of power output to body mass ratios. For example, 

researchers could consider incorporating detailed somatotyping into participant recruitment. 

As an individual’s somatotype is a useful shorthand depiction of overall physique, in terms of 

body shape and composition independent of body size (Carter et al. 2005), including such 

preliminary analysis might reduce the variation in performance offering greater reliability of 

the collected data.  

 

One of the limitations of the present study is that we have only evaluated the effects 

of NaHCO3 on maximally (predominantly anaerobic type activity) stimulated skeletal muscle. 

Further work on the effects of NaHCO3 on submaximally stimulated muscle, as has been 

considered in other ergogenic aids often used by humans to enhance physical performance 

(Tallis et al. 2012), is warranted. 
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In summary, isolated mouse EDL and SOL muscles incubated at 37°C in ~ 32 mM 

[HCO3
-] generated greater maximal acute PO during cyclical contractions than CON muscles 

incubated in ~ 25 mM [HCO3
-]. The elevated PO was due to greater force production 

throughout shortening. The ergogenic effect in EDL was double that of SOL. These results 

present the best indication to date that NaHCO3 might have direct peripheral effects on 

mammalian skeletal muscle. Such results have potentially important implications for human 

exercise performance and training. Although significant differences were not observed in 

whole group data, the fatigability of muscle performance was variable suggesting, at the 

muscular level at least, that there may be inter-individual differences in response to NaHCO3 

supplementation. Such responses also differed between SOL and EDL and potentially will 

also differ between other muscles of differing muscle fibre composition. The overall results 

suggest that mammalian morphology and associated muscle fibre distribution might impact 

on the efficacy of NaHCO3 as an ergogenic aid. 
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Chapter 7 – The effects of 6 weeks high-intensity training on the efficacy of sodium 

bicarbonate (NaHCO3) as an ergogenic aid 

 

7.1 Abstract 

 

This study evaluated the effects of 6 weeks high-intensity cycling training on the 

efficacy of sodium bicarbonate (NaHCO3) as an ergogenic aid. Ten healthy, non-cycling 

trained males (age 24.3 ± 5.8 years, height 179 ± 6 cm, pre-training body mass 81.0 ± 15.8 

kg, WPEAK 247 ± 30 W, V̇O2PEAK 43 ± 9 ml.kg-1.min-1) performed a graded incremental 

exercise test, two familiarisation trials and two experimental trials before undertaking 6 

weeks high-intensity cycling training. Experimental trials, which were repeated post-training 

after a further incremental test were counterbalanced and consisted of cycling to volitional 

exhaustion at 100% WPEAK (TLIM) 60 mins after ingesting either 0.3 g.kg-1 body mass sodium 

bicarbonate (NaHCO3) or 0.1 g.kg-1 body mass sodium chloride (NaCl; PLA). Training 

consisted of three sessions per week including; (1) repeated short sprints (6, 8 and 10 s), (2) 

repeated longer duration sprints (30 s), both with a load equivalent to 7.5% body mass and 

(3) one bout of TLIM at 100% WPEAK. Training was completed 3 times per week with at least 

one rest day between sessions. Due to severe gastro-intestinal discomfort in 2 participants 

and to avoid clear bias of results they were removed from the main analysis. At the group 

level, pre-training TLIM was 10% greater with NaHCO3 than PLA (P = 0.06, ES = 0.4, benefit 

to harm odds ratio (OR) = 571). Post-training WPEAK increased by 12 ± 7% (279 ± 30 W) 

although subsequent group level TLIM was no greater than daily variation for NaHCO3 

compared to PLA (6%; P = 0.38, ES = 0.3, OR = 17).  Some individual variation was 

observed for pre and post-training TLIM performance between treatments although this was 

less marked than in studies 2 and 3. At the group level, based on the recommended benefit 

to harm odds-ratio of > 66, NaHCO3 would be recommended for TLIM at 100% WPEAK before 

but not after 6 weeks high-intensity training. However, due to individual variation an 

individualised approach should be considered in an applied setting. In summary, at a group 
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level 6 weeks high-intensity cycling training reduces the effectiveness of NaHCO3 in 

previously non-cycling trained males. Although the exact mechanisms remain to be 

elucidated, such changes in efficacy are likely due to, at least in part, training induced 

changes in intracellular buffering capacity. 

 

7.2 Introduction 

 

Substantial ionic and metabolic changes are observed in skeletal muscle following 

several weeks of repeated high-intensity sprint training (MacDougall et al. 1998, 

Burgomaster et al. 2005, Burgomaster, Heigenhauser, and Gibala 2006, Edge et al. 2006, 

Burgomaster et al. 2008). Suzuki et al. (2004) reported that mean power output (MPO) and 

peak power output (PPO) increased by ~ 9% and ~ 7%, respectively, after training consisting 

of single or double bouts of WAnT sprints, twice a week for 8 weeks. Similarly, MacDougall 

et al. (1998) reported significant increases in Wingate (WAnT) PPO (~ 23%) and TWD (~ 

5%) after 7 weeks of repeated sprint training. The training, which consisted of increasing 

repeated WAnT (4 to 10 reps) interspersed with decreasing short recovery periods (4 to 2.5 

mins), was performed three times per week and also improved V̇O2MAX by ~ 7%. MacDougall 

et al. (1998) also reported significant increases in both glycolytic and oxidative enzymes 

leading the authors to suggest that increased PPO might have been due to increased 

maximal glycolytic enzyme activity and Na+-K+ pump activity. Interestingly, as little as 6 

sessions over 2 weeks of high-intensity interval training can also induce significant metabolic 

benefits leading to improved exercise performance (Little et al. 2010). 

  

Differences in participant training status across studies might help to explain why 

research evaluating the efficacy of extracellular buffers, such as sodium bicarbonate 

(NaHCO3), demonstrate equivocal results (Requena et al. 2005, McNaughton, Siegler, and 

Midgley 2008, Peart, Siegler and Vince 2012). For example, Aschenbach et al. (2000) 

suggested that the highly trained wrestlers in their study might already possess a high 
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intracellular buffering capacity which left little opportunity for enhanced extracellular buffering 

to be effective. In addition to high levels of physical fitness, Linderman et al. (1992) 

suggested that their highly trained cyclists might have also been able to tolerate exercise 

discomfort better than untrained individuals contributing to why no ergogenic benefit was 

observed with NaHCO3. Moreover, a recent meta-analysis demonstrated that the mean 

effect of NaHCO3 on exercise performance in untrained individuals was 227% greater (ES 

0.59 vs. 0.18) than in trained individuals (Peart, Siegler, and Vince 2012). However, it should 

be acknowledged that ergogenic benefit with NaHCO3 supplementation has been reported in 

trained runners (Goldfinch, McNaughton, and Davies 1988, Bird, Wiles, and Robbins 1995) 

and cyclists (Driller et al. 2012a,b). 

 

Although extracellular buffering systems (such as [HCO3
-]) play a key role during 

exercise, the intracellular buffering capacity is crucial during high-intensity exercise 

(Parkhouse and McKenzie 1984, Parkhouse et al. 1985). Parkhouse et al. (1985) reported 

that highly trained runners (800 m) and rowers had significantly greater overall buffering 

capacity (+47%) and levels of carnosine (+53%), than highly trained marathon runners and 

untrained controls, respectively. It was speculated that such adaptations were the result of 

repetitive high-intensity exercise. This improved buffer capacity is supported by Suzuki et al. 

(2004) who reported a 113% increase in intramuscular carnosine concentration after 8 

weeks cycling training consisting of single or double bouts of WAnT sprints, twice a week for 

8 weeks. Therefore, it appears that intracellular buffers, such as carnosine, play an important 

role in the homeostasis of muscle cells during high-intensity exercise (Derave et al. 2010). 

Moreover, high-intensity training induced increases in carnosine have been implicated in 

performance improvement in untrained (Suzuki et al. 2004) and trained (Derave et al. 2007) 

participants. 

 

Although a number of studies have examined the effects of NaHCO3 ingestion during 

high-intensity training on a variety of physiological and performance parameters (Edge, 
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Bishop, and Goodman 2006, Thomas et al. 2007, Bishop et al. 2010), no studies have 

reported the efficacy of NaHCO3 supplementation after an improvement in training status. 

Such an investigation is important as it would experimentally address issues raised from 

previous studies (Aschenbach 2000) and might reduce the equivocal nature of results in this 

body of research.  Furthermore, by comparing the efficacy of NaHCO3 before and after 

training in the same population we reduce the possible error from genetic differences in 

comparing populations from different studies. Moreover, it is important for training studies to 

address specific physiological adaptations which might explain training induced changes in 

physical performance (Noakes 2000). As an individual’s training status might affect 

responses to NaHCO3 during exercise (Linderman et al. 1992, Aschenbach et al. 2000) we 

evaluated the efficacy of NaHCO3 on exercise capacity in non-cycling trained males before 

and after 6 weeks high-intensity cycling training. We hypothesised that 6 weeks high-

intensity cycling training would alter the efficacy of NaHCO3 in enhancing exercise capacity. 

More specifically, we hypothesise that pre-training, NaHCO3 ingestion will enhance 

performance time (TLIM) at 100% WPEAK in untrained males. In contrast, after 6 weeks high-

intensity cycling training we suggest that NaHCO3 will not enhance performance time (TLIM) 

at 100% WPEAK. 

 

7.3 Methods 

7.3.1 Participants 

 

Ten healthy, non-cycling trained males (age 24.3 ± 5.8 years, height 179 ± 6 cm, pre-

training; body mass 81.0 ± 15.8 kg, V̇O2PEAK 43 ± 9 ml.kg-1.min-1,WPEAK 247 ± 30 W) 

volunteered for this study which had received University Ethics Committee approval. All 

participants were recreationally active undertaking 2 to 3 exercise sessions per week in a 

range of sports (e.g. football, rugby, swimming, badminton and/or running). None were 

specifically cycling trained.  
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7.3.2 Study design 

 

Initially, participants visited the laboratory on 5 occasions prior to 6 weeks high-

intensity cycling training. The first 5 sessions included an initial graded incremental exercise 

test (section 3.6.1) to determine V̇O2PEAK and peak mean minute power (WPEAK), two 

familiarisation and two experimental trials. The familiarisation and experimental trials 

consisted of cycling to volitional exhaustion at a constant load equivalent to 100% WPEAK at 

70 rev.min-1 (TLIM; section 3.6.2). The training period consisted of 6 weeks high-intensity 

cycling (3 sessions per week) each interspersed by one full rest day (i.e. training on Monday, 

Wednesday, Friday; Burgomaster et al. 2008, Little et al. 2010). On completion of the 

training participants completed a second incremental test to determine post-training V̇O2PEAK 

and WPEAK and two experimental trials at post-training 100% WPEAK. The post-training trials 

were identical to the pre-training trials as previously described. Participant screening and 

pre-experimental procedures are outlined in section 3.2. Figure 7.1 provides a visual 

schematic of the study design.  

 

 

Figure 7.1 Overview of experimental design for study 4 (Max = graded incremental test, 

FAM = familiarisation trial, EXP = experimental trial, T(n) = training week (x 3 sessions per 

week). For T1 to T6, increasing/decreasing bars represent increase/decrease of training 

load. 

 

7.3.3 Pre-training and post-training exercise protocols 
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On the first visit to the laboratory participants completed a graded incremental 

exercise test to determine V̇O2PEAK and WPEAK as described in section 3.6.1. Based on the 

results from study 1 (chapter 4) participants subsequently undertook two familiarisation trials 

at 100% WPEAK. The bias between familiarisation trials (n=8) was 12 s / 4% which was lower 

than both the differences in T1 and T2 (24 s / 11%) and T2 and T3 (16 s / 6%) reported in 

study 1 (chapter 4). The lower bias observed in the present study is likely due to the highly 

motivated participants who were all very experienced with the TLIM protocol. On the fourth 

and fifth visits, participants cycled to volitional exhaustion at a constant load equivalent to 

100% WPEAK (TLIM) at 70 rev.min-1, 60 mins after consuming either 0.3 g.kg-1 body mass 

NaHCO3 or 0.1 g.kg-1 body mass NaCl (PLA) as described in section 3.6.2. Section 3.7 

describes the treatment administration in more detail. 

 

After five minutes seated resting heart rate (HR, section 3.3.4), perceived readiness 

to exercise (PRE; Nurmekivi et al. 2001, section 10.3), abdominal discomfort (AD) and gut 

fullness (GF; Price, Moss, and Rance 2003, section 3.4.2) were recorded. Blood samples 

were then taken for blood lactate concentration ([BLa]), pH, base excess (BE) and 

bicarbonate ion concentration ([HCO3
-]). Blood was collected and analysed as outlined in 

sections 3.5.1 and 3.5.2. After baseline measurements were completed the participant 

consumed the NaHCO3 or PLA drink within the first 5 mins of the 60 mins pre-exercise 

period (Price and Simons 2010). Participants remained seated throughout and were allowed 

to consume water ad libitum to minimise gastrointestinal (GI) discomfort. The mean volume 

of water consumed was monitored and estimated at ~ 350 ml. Perceived readiness to 

exercise (PRE), AD and GF were recorded at 30 mins and 60 mins following ingestion. At 60 

mins following ingestion HR was recorded and further blood samples taken for BLa and pH. 

 

Forty-five minutes after ingestion, participants started breathing into the breath-by-

breath gas collection system as previously indicated (section 3.3.3). Baseline data was 

averaged over the last sixty seconds of the pre-exercise period and for the last ten seconds 
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of exercise. Expired gas was measured for V̇E and calculated for V̇O2 and RER, respectively. 

Upon completion of baseline data collection, the participant completed the TLIM test at 100% 

WPEAK as described in section 3.6.2.  Ratings of perceived exertion (RPE; 6-20 scale) (Borg, 

1982) for local RPE (RPEL), representing the exercising muscles, and overall RPE (RPEO), 

reflective of cardiovascular strain were recorded as described in section 3.4.1. Abdominal 

discomfort, GF and HR were recorded and blood samples taken for BLa, pH, BE and [HCO3
-

] immediately post-exercise. Final blood samples were taken 5 minutes post-exercise. Upon 

completion of the test, the participant was encouraged to cycle for 5 minutes at 70 W to 

warm down and avoid syncope.  

 
7.3.4 Six weeks high-intensity training protocol 

 
The 6-week training programme was based on several principles of training, 

including overload, progression and specificity as described by Baechle and Earle (2008). 

Table 7.1 provides an overview of the training programme which was tapered in the final 

weeks to minimise possible effects of overtraining, as per previous research (Burgomaster et 

al. 2005, Edge, Bishop, and Goodman 2006).  Participants completed eighteen supervised 

training sessions performed on a cycle ergometer (Monark 824E Ergomedic, Monark, 

Varberg, Sweden). Over the course of the training period participants were asked to 

continue with normal diet, activity and usual training commitments. Most sessions (>95%) 

were completed in pairs to encourage intra and inter session competition and attendance. 

Overall session adherence was 100%. Participants completed each training session 

separated by one or more full days (i.e. Monday, Wednesday and Friday). The first session 

was undertaken ~ 3 days after the final pre-training experimental trial. Prior to all sessions 

participants warmed up by cycling at 70 rev.min-1 for 4 mins at 50% WPEAK, 1 min at 75% 

WPEAK and then 2 mins at 70 W. This warm up was consistent with that used in the pre-

training experimental TLIM trials.  The resistance set for 100% WPEAK was calculated from the 

initial incremental test (section 3.6.1). 
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Table 7.1 Summary of 6 week high-intensity cycling training programme 

  Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

Session 1 (Overload / Progression) 
      

No. sets 2 2 2 2 2 2 

No. sprints per set 10 10 10 10 10 10 

Duration (s) 6 8 10 10 8 6 

Between bout recovery (s) 30 30 30 30 30 30 

Between set recovery (s) 300 300 300 300 300 300 
 
Session 2 (Specificity / Overload / 
Progression) 

      
No. sets 1 1 1 1 1 1 

No. bouts per set 1 1 1 1 1 1 

Duration (s) TLIM TLIM TLIM TLIM TLIM TLIM 
 
Session 3 (Overload / Progression) 

      
No. sets 1 1 1 1 1 1 

No. bouts per set 3 4 5 5 4 3 

Duration (s) 30 30 30 30 30 30 

Between bout recovery (s) 300 300 300 300 300 300 
Note: TLIM = time to volitional exhaustion at 100% WPEAK 

 

Session 1 (aims: overload, progression, taper) involved two bouts of ten short sprints 

against a load of 7.5% body mass which was established prior to week 1 and week 4 (i.e. 

mid way through training). Recovery between sprints was kept constant at 30 s and between 

bouts at 300 s. Sprint duration increased from 6 s to 8 s to 10 s (weeks 1, 2 and 3 

respectively) and decreased from 10 s to 8 s to 6 s (weeks 4, 5 and 6 respectively). Session 

3 (aims: overload, progression, taper) involved 30 s sprints against a load of 7.5% body 

mass, calculated as noted above. The number of sprints increased from 3 to 4 to 5 (weeks 1, 

2 and 3, respectively) and decreased from 5 to 4 to 3 (weeks 4, 5 and 6 respectively). At the 

end of each third session (i.e. every Friday) participants were told their peak power output 

(PPO) and mean power output (MPO) for each sprint. For both sessions 1 and 3, a taper 

was incorporated to minimise possible negative effects of overtraining.  
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Session 2 (aims: overload, progression and specificity) involved completing one TLIM 

bout at pre-training 100% WPEAK as per experimental trials. In contrast to experimental trials, 

for TLIM sessions during training participants were allowed to see the clock and were told 

their times from week 2 onwards to enhance motivation and intra and inter participant 

competition. Indeed, anecdotal feedback from participants suggested that the competitive 

element during training was very beneficial both from a psychological (goal setting, 

alleviating boredom, achievement, adherence) as well as physiological (increased 

time/power for similar perceived effort, quicker recovery between bouts/sets) perspectives. 

On successful completion of the training programme participants performed the post-training 

incremental test and final two experimental trials after 2 to 3 full days rest. Ratings of 

perceived exertion (RPE 6-20, Borg, 1982) for RPEL and RPEO (Robertson et al. 1986, 

Swank and Robertson 1989) were recorded at the end of every training session to provide 

an indication of training intensity. 

 

A stationary start was chosen for sessions 1 and 3 as it facilitates higher peak power 

in anaerobic sprint tests compared to rolling starts (Coleman, Hale, and Hamley 1985) and 

affords greater consistency with participants starting with the same pedal position (Lavender 

and Bird 1989). A stationary start was also employed for training session 2 which has 

previously been used in evaluating high-intensity cycling in a laboratory setting with active 

but not specifically cycling trained males, similar to the present study (Wittekind, 

Micklewright and Beneke 2011). This starting procedure is consistent with the familiarisation 

and performance tests in studies 1 (chapter 4) and 2 (chapter 5), respectively. 

 

7.3.5 Statistical analysis 

 

Statistical analysis was completed using SPSS (IBM v17 and 20, Chicago, USA). 

Statistical significance, normality and homogeneity of variance/sphericity of data was 

assessed / adjusted as outlined in section 3.8. All cardiorespiratory, perceptual and blood 
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variables were analysed by 3-way (training status * treatment * time) repeated measures 

ANOVA. Where significance was achieved for main effects pairwise comparisons (least 

significant difference; LSD) were undertaken. LSD comparisons were chosen as they are the 

most powerful when analysing 3 levels/groups (Maxwell and Delaney 2004, Cardinal and 

Aitken 2006, Howell 2007). For interactions, Tukeys’ post hoc analysis was undertaken by 

calculating the difference required between means for significance at the level of P < 0.05 

(Vincent 1999). The time points considered for HR and blood variables were pre-ingestion (-

60), pre-exercise (0), immediately post-exercise and five minutes post-exercise. Respiratory 

data (V̇O2, V̇E and RER) was considered at rest and during the final 10 s of exercise. Values 

for RPEL and RPEO were analysed at 1 min, 2 mins, and 3 mins during exercise and at 

volitional exhaustion. AD and GF were analysed pre-ingestion, 30 mins post-ingestion, pre-

exercise and post-exercise. Finally, PRE was analysed pre-ingestion, 30 mins post-ingestion 

and pre-exercise. 

 

Correlation coefficients (Spearman’s ρ and Pearson’s r for non-parametric and 

parametric data, respectively) and effect sizes (ES) are reported where appropriate. For 

ANOVA, ES are reported as the partial η2 value and for between trial comparisons ES was 

calculated using the difference in means divided by the pooled SD of the compared trials.  

Magnitude based inferences are presented where appropriate (section 3.8.1; Hopkins et al. 

2009). Odds ratios are also presented for TLIM data where > 66 represents the recommended 

benefit: harm threshold (section 3.8.1). 

 

7.4 Results 

 
 Two of the ten participants suffered severe gastrointestinal (GI) distress (6 or 7 on 

11-point Likert scale) during one of their NaHCO3 trials (one pre-training, one post-training) 

which contributed to large decreases in TLIM performance when compared to PLA (-29% and 

-33%, respectively). Table 7.2 demonstrates that the relationship between differences in TLIM 
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between treatments and quantity of NaHCO3 consumed changes substantially between n=8 

and n=10 despite no difference in NaHCO3 absolute load in any sub-group (P = 0.82). Figure 

7.2 demonstrates that these performance outliers were outside of 95% limits of agreement. 

Therefore, these participants were removed from the main analysis to avoid presenting 

biased results (Saunders et al. 2011). 

    

 

 

Figure 7.2 Bland-Altman plots for pre-training (top) and post-training (bottom) 100% WPEAK 

TLIM between NaHCO3 and PLA (n=10). Dotted lines represent limits of agreement (± 1.96 

SDs; 95% confidence) and solid line is mean bias between trials. Dotted circles represent 

significant performance outliers. 

-150

-100

-50

0

50

100

150

200 250 300 350 400 450 500

D
iff

er
en

ce
 in

 p
re

-tr
ai

ni
ng

  T
LI

M
 (s

) 

Mean pre-training TLIM (s) 

-200

-150

-100

-50

0

50

100

150

200 250 300 350 400

D
iff

er
en

ce
 in

 p
os

t-t
ra

in
in

g 
T L

IM
 

Mean post-training TLIM (s) 



152 
 

It should be noted that other participants did suffer similar GI distress or had lowered 

TLIM with NaHCO3 compared to PLA. However, such results were not as extreme reactions or 

outliers and were therefore included in the analysis. After removing the two participants from 

the analysis WPEAK and V̇O2PEAK values recorded during the initial incremental test remained 

similar for the group (n=8; 249 ± 34 W and 46 ± 8 ml.kg-1.min-1, n=10; 247 ± 30 W and 43 ± 9 

ml.kg-1.min-1). There was no significant difference (P = 0.28) in 100% WPEAK between the 

present study (249 ± 34 W) and study 2 (228 ± 37 W). 

 
Table 7.2 Correlation data for differences in TLIM between treatments and absolute quantity 

of NaHCO3 consumed (n=8 and n=10) pre and post-training. 

 

n = 8 Mean Diff TLIM (s) r P NaHCO3 (g) 
Pre-training 34 0.70 0.055 22.8 ± 3.8 
Post-training 18 0.70 0.052 23.1 ± 3.7 

    
 

n = 10 Mean Diff TLIM (s) r P NaHCO3 (g) 
Pre-training 17 -0.19 0.60 24.3 ± 4.7 
Post-training -1 0.08 0.83 24.6 ± 4.6 

 

Table 7.3 Summary of pre and post-training incremental test data (n=8) 

 
Pre Post %  change (± SE) P ES 

Body Mass (kg) 76.0 ± 12.6 77.2 ±  12.2 1.5 ± 1.8 0.15 0.1 

BMI 23.7 ± 3.0 24.0 ±  2.8 1.5 ± 1.8 0.20 0.1 

WPEAK (Watts) 249 ±  34 279 ±  30 12 ± 7 0.009 * 0.9 

V̇O2 (l.min-1) 3.43 ±  0.42 4.00 ±  0.55 17 ± 10 0.02 * 1.2 

V̇O2 (ml.kg-1.min-1) 46 ±  9 52 ±  7 14 ± 11 0.02 * 0.8 

V̇E (l.min-1) 137 ±  22 144 ±  23 5 ± 16 0.45 0.3 

RER 1.12 ± 0.07 1.08 ± 0.09 -4 ± 8 0.37 0.5 

Pre-exercise HR (bpm-1) 71 ± 8 61 ±  13 -14 ± 9 0.02 * 0.9 

Final HR (bpm-1) 188 ± 6 186 ±  10 # -1 ± 2 0.62 0.2 

Post-ex BLa (mmol.l-1) 11.3 ±  1.5 12.1 ±  2.9 7 ± 17 0.48 0.3 

5 mins Post BLa (mmol.l-1) 10.6 ±  1.5 10.6 ±  2.8 0.4 ± 18 0.97 0.02 

RPEO 20.0 ± 0.0 19.3 ± 1.2 -4 ± 4 0.11 0.9 

Note: # n=7,* P < 0.05 
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7.4.1 Preliminary tests 

 

Table 7.3 outlines the physiological results from the incremental test for V̇O2PEAK and 

WPEAK before and after training (n=8). After 6 weeks high-intensity training WPEAK increased 

by 12 ± 7 % (ES = 0.9). In support of this change, both absolute V̇O2 (l.min-1) and relative 

V̇O2 (ml.kg-1.min-1) improved by 17 ± 10 % (ES = 1.2) and 14 ± 11 % (ES = 0.8) respectively. 

Interestingly, there was a 14 ± 9 % reduction in resting HR (Table 7.3). The data outlined in 

table 7.3 demonstrate that participants reached the criteria for a valid peak oxygen uptake 

test as outlined by Bird and Davison (1997). 

 

7.4.2 Efficacy of NaHCO3 ingestion pre and post 6 weeks high-intensity cycle training 

 

 Tables 7.4 and 7.5 show performance data and benefit to harm odds ratios of PLA 

and NaHCO3 treatments for both n=8 and n=10 pre and post 6 weeks high intensity training. 

 

Table 7.4 Performance time (TLIM) for n=8 and n=10 pre and post 6 weeks training 

Training PLA TLIM (s) NaHCO3 TLIM (s) TLIM Diff (s) % Change P ES 
Pre (n=8) 331 ± 76 365 ± 106 34 ± 31 10 ± 9% 0.06 0.37 
Post (n=8) 290 ± 47 308 ± 56 18 ± 37 6 ± 13% 0.38 0.34 
Pre (n=10) 343 ± 73 360 ± 104 17 ± 41 5% ± 12% 0.36 0.20 
Post (n=10) 310 ± 72 309 ± 50 -1 ± 51 -1% ± 15% 0.95 0.03 

Note:  TLIM = ± SD, TLIM Diff / % Change = ± SE 

 
 
Table 7.5 Probability of beneficial, trivial or harmful outcomes (TLIM) for n=8 and n=10 pre 

and post 6 weeks high-intensity training based on smallest worthwhile change (SWC) 

Training SWC Beneficial Trivial Harmful 
Benefit: Harm 

Odds Ratio 
Pre (n=8) 2.7% 32.6% 67.3% 0.1% 571 
Post (n=8) 2.2% 12.4% 86.8% 0.8% 17 
Pre (n=10) 2.5% 7.9% 91.7% 0.4% 24 
Post (n=10) 2.0% 3.5% 92.2% 4.4% 0.8 
Note:  SWC based on pre and post incremental test for WPEAK 
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Pre-training (n=8), TLIM was 10% greater with NaHCO3 than PLA which equates to a 

32.6% chance of beneficial change and a benefit to harm odds-ratio of 571. Post-training 

(n=8) TLIM was 6% greater with NaHCO3 than PLA although this was not significant. In 

contrast to pre-training this equated to a 12.4% chance of beneficial change and a benefit to 

harm odds-ratio of 17. Pre-training (n=10), TLIM was 5% greater with NaHCO3 than PLA 

although this was not significant. This equated to an 8% chance of beneficial change and a 

benefit to harm odds-ratio of 24. Post-training (n=10) TLIM was 1% lower with NaHCO3 than 

PLA which equated to a benefit to harm odds-ratio of 0.8 (Tables 7.4, 7.5). For n=8, 

traditional statistical analysis suggests that there was no order effect pre-training (P = 0.48) 

or post-training (P = 0.18) for TLIM at 100% WPEAK. However, post-training the final TLIM trial 

was 8% lower (ES = 0.5) than the penultimate TLIM trial regardless of treatment (ES = 0.1 for 

pre-training). The reason is unclear but might be due to a reduction in motivation and/or 

increase in fatigue perception based on the knowledge that it was the last trial after an 

intensive training program. 

 

7.4.3 Abdominal discomfort (AD) and gut fullness (GF) 

 

 Although there were no interactions for AD, there was a main effect for treatment (P 

= 0.019, ES = 0.6) demonstrating that AD was greater for NaHCO3 than PLA by 1.2 units 

(1.9 ± 2.3 vs. 0.7 ± 0.9). However, overall AD was low (1.3 ± 1.8). There were no main 

effects or interactions for GF (P > 0.05) with treatments exhibiting almost identical GF scores 

(NaHCO3: 2.2 ± 2.0 and PLA: 2.0 ± 1.9). The main effect for time and interaction for 

treatment * time approached significance (P = 0.087 and P = 0.081, respectively). Similarly 

to AD, overall GF was low (2.1 ± 1.9). 

  

7.4.4 Ratings of perceived exertion (RPE) 

7.4.4.i Local (RPEL) 
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 There was a treatment * training status * time interaction for RPEL (P = 0.05; ES = 

0.3). After 2 mins exercise pre-training RPEL was lower for NaHCO3 vs. PLA (14.4 ± 1.4 vs. 

15.3 ± 1.5, respectively; P < 0.01) but similar post-training (16.0 ± 1.1 vs. 16.1 ± 1.6, 

respectively, Figure 7.3). Despite similar RPEL ratings after 1 min and at the end of exercise, 

RPEL after 2 mins and 3 mins was lower pre compared to post-training (14.8 ± 1.5 vs. 16.1 ± 

1.3 and 16.4 ± 1.4 vs. 17.4 ± 1.1 for 2 mins and 3 mins, respectively; P < 0.01).  

 

7.4.4.ii Overall (RPEO) 

 

 There were significant main effects for training status (P = 0.001, ES = 0.8) and time 

(P < 0.001, ES = 1.0) with the training status * time interaction approaching significance (P = 

0.065, ES = 0.3). Overall, RPEO was lower pre-training (13.4 ± 3.4) compared to post-

training (14.7 ± 3.4). As expected, RPEO increased over time with mean values of 11.1 ± 0.6, 

13.3 ± 1.0, 14.7 ± 1.0 and 17.3 ± 0.4 after 1, 2 and 3 min and at the end of exercise, 

respectively. 

 

Figure 7.3 Localised rating of perceived exertion (RPEL) after 1, 2,and 3 mins and at the end 

of TLIM with NaHCO3 and PLA, pre and post-training (Error bars omitted for clarity). # NaHCO3 

< PLA pre-training (P < 0.01), * Pre-training < Post-training (P < 0.01). 
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7.4.5 Perceived readiness to exercise (PRE) 

 

 There were no main effects or interactions for PRE. Similar values for PRE were 

recorded 30 mins post ingestion (Pre-training: 8 ± 2 vs. 6 ± 2; Post-training: 7 ± 2 vs. 6 ± 3) 

and pre-exercise (Pre-training: 8 ± 2 vs. 6 ± 2; Post-training: 7 ± 2 vs. 6 ± 3) for PLA 

compared to NaHCO3, respectively, both pre and post-training. 

 

7.4.6 Heart rate (HR) 

  

There were main effects for treatment (P = 0.017, ES = 0.6) and time (P < 0.001, ES 

= 1.0) for HR. Overall, ingestion of NaHCO3 resulted in a higher mean HR than PLA (110 ± 

48 vs. 105 ± 47 bpm-1). The training status * Time (P = 0.058, ES = 0.3) and treatment * time 

(P = 0.058, ES = 0.3) interactions approached significance. As these interactions were close 

to significance, post-hoc Tukey calculations were carried out for illustrative purposes. At the 

end of exercise HR was higher pre-training (184 ± 8 bpm-1) than post-training (177 ± 9 bpm-1; 

P < 0.05) and HR was higher pre-exercise (71 ± 10 vs. 64 ± 9 bpm-1) and 5 mins post-

exercise (115 ± 10 vs. 108 ± 9 bpm-1) for NaHCO3 compared to PLA, respectively (P < 0.05).  

 

7.4.7 Respiratory data 

 

 There was a main effect for time for V̇O2 (P < 0.001, ES = 1.0) but there were no 

further main effects or interactions. Oxygen consumption at rest (0.42 ± 0.04, 0.44 ± 0.08, 

0.47 ± 0.08 and 0.47 ± 0.11 l.min-1) and at the end of exercise (4.15 ± 0.37, 4.20 ± 0.57, 4.09 

± 0.90 and 4.15 ± 0.50 l.min-1) were similar for pre-training PLA and NaHCO3 and post-

training PLA and NaHCO3 trials, respectively. There was a main effect for time for V̇E (P < 

0.001, ES = 1.0) and the training status * time interaction approached significance (P = 

0.085, ES = 0.4). A separate t-test revealed that V̇E at exhaustion was lower post-training 

compared to pre-training (137.2 ± 21.2 vs. 149.0 ± 13.8 l.min-1; P = 0.02, ES = 0.7). 
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Additionally, there was a treatment * time interaction for RER (P = 0.003, ES = 0.8). In 

general RER was greater in the post-training NaHCO3 trial (1.14 ± 0.12) than both pre and 

post-training PLA trials (1.08 ± 0.10, 1.10 ± 0.13; P < 0.05) but not the pre-training NaHCO3 

trial (1.11 ± 0.10; Figure 7.4). 

 

Figure 7.4 Post-exercise (TLIM) respiratory exchange ratio (RER) for NaHCO3 and PLA 

treatments, pre and post-training. * P < 0.05 compared to all PLA trials. 

 

7.4.8 Blood data 

7.4.8.i Blood Lactate (BLa) concentration 

 

 There were main effects for training status (P = 0.005, ES = 0.7), treatment (P = 

0.001, ES = 0.8) and time (P < 0.001, ES = 1.0) for BLa. Additionally, there were training 

status * time (P = 0.01, ES = 0.6) and treatment * time (P < 0.001, ES = 0.8) interactions for 

BLa. Although there was no difference in BLa pre-ingestion (1.0 ± 0.5 vs. 0.8 ± 0.2 mmol.l-1) 

or pre-exercise (1.0 ± 0.5 vs. 0.8 ± 0.3 mmol.l-1), BLa was greater (P < 0.05) at the end of 

exercise (14.7 ± 3.3 vs. 12.1 ± 2.7 mmol.l-1) and 5 mins post-exercise (13.0 ± 3.0 vs. 10.7 ± 

2.8 mmol.l-1; Figure 7.4) pre compared to post-training, respectively. Similarly, although 

comparable at rest and pre-exercise BLa was greater (P < 0.01) for NaHCO3 compared to 

PLA at the end of exercise (15.2 ± 3.3 vs. 11.6 ± 2.0 mmol.l-1) and 5 mins post-exercise 
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(13.3 ± 3.2 vs. 10.5 ± 2.2 mmol.l-1; Figure 7.5). Interestingly, pre-training there was a 

significant correlation between the difference in BLa and the % difference in TLIM between 

treatments at the end of exercise (r = 0.84, r2 = 0.70, P = 0.01). The correlation between the 

difference in BLa and the % difference in TLIM between treatments 5 mins post-exercise 

approached significance (r = 0.67, r2 = 0.45, P = 0.07). No significant correlations for 

differences in BLa and % difference in TLIM between treatments were observed post-training 

(both P > 0.3). 

  

Figure 7.5 Blood lactate at pre-ingestion, pre-exercise, at the end of exercise and 5 mins 

post-exercise after NaHCO3 or PLA, pre and post 6 weeks high intensity training. * Pre-

training > post-training (P < 0.05), # NaHCO3 > PLA (P < 0.01). 

 

7.4.8.ii pH 

 

There were significant interactions for treatment * time (P < 0.001, ES = 0.7) and 
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0.02 vs. 7.42 ± 0.02) pH was 0.07 ± 0.02 units greater for NaHCO3 compared to PLA pre-

exercise (7.48 ± 0.02 vs. 7.41 ± 0.02), 0.09 ± 0.02 units greater post-exercise (7.31 ± 0.04 

vs. 7.22 ± 0.05) and 0.08 ± 0.03 units greater 5 mins post-exercise (7.33 ± 0.04 vs. 7.25 ± 
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0.06; P < 0.01, Figure 7.6). Despite being similar pre-ingestion, pre-exercise and post-

exercise, pH at 5 mins post-exercise was greater post-training (7.30 ± 0.07) compared to 

pre-training (7.28 ± 0.06; P < 0.05). 

 

Figure 7.6 Blood pH over time for NaHCO3 and PLA treatments. * NaHCO3 > PLA (P < 

0.01). 

 

7.4.8.iii Base excess (BE) 

 

There were significant treatment * time (P < 0.001, ES = 0.8, Table 7.6) and training 

status * time (P = 0.005, ES = 0.5) interactions for BE. Despite being similar pre-ingestion, 

pre-exercise and at the end of exercise, BE at 5 mins post-exercise was greater (P < 0.05) 

post-training (-9.4 ± 4.4 mmol.l-1) compared to pre-training (-11.5 ± 3.5 mmol.l-1). 

 

Table 7.6 Summary of treatment * time interaction for BE and [HCO3
-] 

Variable Treatment 
Pre-

Ingest Pre-Ex End-Ex 
5 mins 
post Ex 

BE (mmol.l-1) NaHCO3 0.8 ± 1.9 7.6 ± 1.3 * -8.6 ± 2.7 * -7.9 ± 3.1 * 

 PLA 0.4 ± 1.5 -0.4 ± 1.7 -14.5 ± 2.8 -13.0 ± 3.2 
[HCO3

- ](mmol.l-1) NaHCO3 24.0 ± 2.2 31.8 ± 1.6 * 16.3 ± 2.2 * 16.7 ± 2.7 * 

 PLA 24.0 ± 1.7 23.5 ± 1.9 11.9 ± 2.3 12.6 ± 2.4 
Note: * P < 0.01 for NaHCO3 compared to PLA 
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7.4.8.iv Bicarbonate Ion Concentration ([HCO3
-]) 

 

There were significant treatment * time (P < 0.001, ES = 0.9) and training status * 

time (P = 0.003, ES = 0.5) interactions for [HCO3
-]. Blood [HCO3

-] was greater (P < 0.01) for 

NaHCO3 compared to PLA pre-exercise, at the end of exercise and 5 mins post-exercise 

(Table 7.6). Additionally, blood [HCO3
-] 5 mins post-exercise was greater (P < 0.05) post-

training (15.7 ± 3.3 mmol.l-1) compared to pre-training (13.6 ± 2.9 mmol.l-1). 

 

7.5 Training responses 

7.5.1 Ratings of perceived exertion (RPE) 

 

 Post-exercise RPEL and RPEO followed a similar pattern throughout the 6-week high-

intensity cycling training program for session 1 (Figure 7.7). Mean scores of 18.7 ± 1.8 and 

16.7 ± 2.6 were noted for RPEL and RPEO, respectively, over the 6 week period. Between 

weeks 2 to 5 (i.e. hardest training), RPEL was 19.4 ± 1.0. Between weeks 2 to 5, RPEO was 

17.5 ± 2. RPEL was lowest at week 6 (17.0 ± 2.2) which was significantly lower than weeks 

2-5 inclusive (all P < 0.02). RPEO was also lowest at week 6 (14.0 ± 1.3) which was 

significantly lower than weeks 2, 3, 4 (P < 0.01) and 5 (P < 0.02) suggesting the tapering 

process, at least from a perceptual perspective, had the desired effect. Differences between 

week 1 and week 6 approached significance (P = 0.056; Figure 7.7). Post-exercise RPEL 

after session 2 was not different during training (all comparisons P > 0.05). Mean post-

exercise RPEL was 19.9 ± 0.3. Post-exercise RPEO was consistently lower than RPEL with a 

mean score of 17.2 ± 2.6 over the 6 weeks training period. RPEO peaked at week 5 (18.1 ± 

2.6) which was significantly higher (P = 0.03) than week 1 (16.1 ± 3.4). No further 

differences in RPEO were recorded (Figure 7.8). There were no differences in post-exercise 

RPEL (19.8 ± 0.6) or RPEO (16.8 ± 2.5) throughout the 6 weeks training period for session 

3(all comparisons P > 0.05; Figure 7.9). 
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7.5.2 Exercise capacity (TLIM) 

 

Table 7.7 shows each participant’s TLIM (session 2) for each week of the 6 weeks 

training program. Although there were no differences in TLIM between weeks 4, 5 and 6, TLIM 

was lower in weeks 1 (P = 0.036, P = 0.017 and P = 0.038) and 2 (P = 0.038, P = 0.031 and 

P = 0.042) when compared to weeks 4, 5 and 6, respectively. Additionally, TLIM for week 3 

was lower than weeks 5 (P = 0.024) and 6 (P = 0.028), respectively. TLIM improved in a linear 

fashion with a mean improvement from week 1 of 149%. Although there was linear 

improvement over the 6 weeks, 5 out of 8 participants (63%) recorded their highest TLIM in 

week 5, the remainder in week 6 (Table 7.7, Figure 7.10). 

 

Table 7.7 Participant’s TLIM (s) during 6 weeks high-intensity training (Note: % = highest TLIM 

in week 5 or 6 as a % improvement in relation to TLIM week 1; Bold represents highest TLIM). 

 
Training Week 

 
Participant 1 2 3 4 5 6 % 

1 314 359 392 438 406 500 59% 

2 487 631 791 981 1097 1345 176% 

3 383 340 370 434 629 541 164% 

4 342 310 268 289 376 323 110% 

5 310 422 603 484 899 692 290% 

6 380 562 606 683 485 784 106% 

7 365 374 382 428 518 423 142% 

8 328 368 269 421 482 371 147% 

Mean 364 421 460 520 612 622 149% 

SD 57 114 187 216 256 331 48% 
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Figure 7.7 Post-exercise RPEL and RPEO for session 1 throughout training 

 

Figure 7.8 Post-exercise RPEL and RPEO for session 2 throughout training 

 

 

Figure 7.9 Post-exercise RPEL and RPEO for session 3 throughout training 
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Figure 7.10 Mean ± SD performance time (TLIM; session 2) throughout training. * Weeks 1 

and 2 < than weeks 4, 5 and 6 (P < 0.05), # Week 3 < than weeks 5 and 6 (P < 0.03). 

 

7.5.3 Power output 

 

The greatest peak power output (PPO) within a training session for weeks 1 to 6 was 

recorded during the first 30 s (Wingate) sprint, regardless of the number of subsequent 

sprints. However, there was no difference over the 6 weeks (P = 0.25) with a mean 

(corrected) PPO for sprint 1 of 1176 ± 279 W (Figure 7.11). Overall mean PPO was 1056 ± 

260 W. Regardless of the number of 30 s sprints, PPO reduced over time during each 

training session 3. Large effect sizes (partial η2 values) were associated with these changes 

(Table 7.8). Interestingly the lowest PPO occurred on the final 30 s sprint for weeks 1, 2, 5 

and 6 but on the penultimate sprint for weeks 3 and 4 (i.e. when training load was highest). 

 

As for PPO, the greatest mean power output (MPO) for weeks 1 to 6 inclusive was 

recorded during the first 30 s (Wingate) sprint, regardless of number of subsequent 

repetitions. Similarly, there was no difference over the 6 weeks (P = 0.24) with a mean MPO 

of 630 ± 115 W (Figure 7.12). Overall mean MPO was 570 ± 113 W. As for PPO, MPO 

reduced over time during training session 3. Similarly, partial η2 values demonstrate that 
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these changes were large (Table 7.8). With the exception of week 3 (penultimate) the lowest 

MPO for all weeks was recorded in the final sprint. 

 

Table 7.8 P and partial η2 values for differences in PPO and MPO across sprints during 

session 3 

 

Training Week # 

 
1 2 3 4 5 6 

PPO       
P 0.003 < 0.001 < 0.001 0.003 < 0.001 < 0.001 

Partial η2 0.57 0.69 0.65 0.63 0.61 0.73 

MPO       
P < 0.001 0.004 < 0.001 0.009 < 0.001 0.001 

Partial η2 0.82 0.64 0.66 0.54 0.81 0.63 
Note: # The number of sprints for weeks 1 to 6 was 4, 5, 6, 6, 5, and 4, respectively. 

 

 

Figure 7.11 Peak power output (PPO) from first 30 s Wingate sprint for weeks 1 to 6 
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Figure 7.12 Mean power output (MPO) from first 30 s Wingate sprint for weeks 1 to 6 

 

7.6 Discussion 

 

This study evaluated the effects of 6 weeks high-intensity cycling training in non-

cycling trained males on the efficacy of sodium bicarbonate (NaHCO3) as an ergogenic aid. 

NaHCO3 ingestion led to severe gastro-intestinal (GI) discomfort in 2 participants (1 x pre-

training and 1 x post-training), something that is well reported in the literature evaluating the 

effects of NaHCO3 on exercise performance (Cameron et al. 2010, Saunders et al. 2011). 

Indeed, Saunders et al. (2011) found that when participants who suffered GI distress 

(n=4/21) were removed from the analysis, NaHCO3 was shown to enhance total work done 

by 5% whereas whole group data did not show a significant difference. Based on NaHCO3 

ingestion leading to obvious outliers (Figure 7.1) the majority of results were analysed for 

n=8. However, for illustrative purposes key comparisons between n=8 and n=10 are 

discussed where appropriate. 

 

Before training (n=8), TLIM was 10% greater with NaHCO3 ingestion compared to PLA 
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100% WPEAK in study 2 (chapter 5). This response was observed despite no statistically 

significant difference (P = 0.28) in 100% WPEAK between the present study (249 ± 34 W) and 

study 2 (228 ± 37 W). However, with an effect size of 0.58, ~ 3 times the smallest worthwhile 

effect (Hopkins 2004), it is likely there was a moderate difference in WPEAK between studies. 

It is unclear as to whether this difference in WPEAK contributed to the greater difference in TLIM 

performance between NaHCO3 compared to PLA at 100% WPEAK in study 2. Regardless, 

both improvements in TLIM are comfortably more than the 6% / 16 s daily variation in TLIM 

reported in study 1 (chapter 4) and are thus likely to be biologically significant. More simply, 

NaHCO3 demonstrated biologically important benefits at 100% WPEAK in both study 2 and 4. 

After 6 weeks high intensity training post-training (n=8) TLIM was no greater than daily 

variation for NaHCO3 compared with PLA. Therefore at the group level, based on being 

greater than the recommended benefit to harm odds-ratio of > 66 and considering daily 

variation of TLIM performance in our laboratory, NaHCO3 ingestion would be recommended 

for TLIM at 100% WPEAK before but not after 6 weeks high-intensity training (Table 7.5., 

Hopkins 2007, Hopkins et al. 2009).  Interestingly, when considering the n=10 population, 

pre-training TLIM was 5% greater with NaHCO3 than PLA and post-training TLIM was 1% lower 

with NaHCO3 than PLA. Although the absolute figures change quite dramatically after 

removing the participants who suffered extreme GI discomfort, there remains a general trend 

suggesting that the efficacy of NaHCO3 is likely compromised with an improvement in 

training status (Tables 7.4 and 7.5). 

 

It is important to acknowledge that some individual variation in TLIM performance was 

observed between treatments pre and post-training although this was less marked than in 

studies 2 and 3. For example, there was no difference between treatments for pre-training 

TLIM for 4 participants. However, post-training TLIM was greater than daily variation after 

NaHCO3 for 1 participant, greater after PLA in 2 participants with no difference between 

treatments in the final participant.  In contrast for the remaining 4 participants, TLIM was 

greater with NaHCO3 both pre and post-training. Finally, pre-training 4/8 participants 
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improved TLIM with NaHCO3 supplementation in contrast to 5/8 post-training. However, it 

should be acknowledged that in the 5/8 participants whose pattern of exercise capacity was 

similar pre and post training, there was actually a mean reduction in TLIM of -5% 

demonstrating that post-training, the efficacy of NaHCO3 was reduced in this sub-group. The 

variation in TLIM performance between treatments pre and post-training is likely to be, at least 

in part, related to differential training responses between individuals (Suzuki et al. 2004, 

Bishop et al. 2008). In summary, it is important to remember that group level data does not 

necessarily represent individual responses. Therefore, although group level data is in 

accordance with our original hypothesis an individualised approach should be considered in 

an applied setting. 

  

As high-intensity exercise progresses the intracellular buffering capacity is eventually 

exceeded stimulating the extracellular buffering mechanisms to modulate increases in 

lactate and H+ which diffuse into the blood (Matson and Tran 1993). Carnosine is an 

intracellular buffer which has been suggested to play an important role in the homeostasis of 

muscle cells during high-intensity exercise (Derave et al. 2010). Indeed, individuals who 

have undertaken repetitive high-intensity training are reported to possess greater levels of 

intracellular carnosine than those who have undertaken extended endurance training or 

untrained healthy controls (Parkhouse et al. 1985). Furthermore, sprint training in previously 

untrained but healthy males, similar to the present study, reported a mean increase in 

carnosine of 113% (range: 37% to 241%) which the authors implicated as key to greater PO 

during subsequent WAnT sprinting (Suzuki et al. 2004). It appears likely that intramuscular 

carnosine content increased as much, if not more, as reported by Suzuki et al. (2004) due to 

the greater specificity and training load employed in the present study. Therefore, it is 

plausible that increases in intracellular carnosine have played a direct role in reducing the 

efficacy of NaHCO3. After training induced augmented intracellular buffering, during TLIM 

there would be less diffusion of H+ into the extracellular fluid and thus less extracellular 

buffering required. Indeed, in the present study although post-exercise pH (7.27 ± 0.07 vs. 
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7.26 ± 0.06, ES = 0.2), BE (-11.0 ± 3.9 vs. -12.1 ± 4.2 mmol.l-1, ES = 0.3) and [HCO3
-] (14.6 

± 2.8 vs. 13.5 ± 3.4 mmol.l-1, ES = 0.4) were not reported to be statistically different post 

versus pre-training respectively, effect size analysis suggest H+ buffering/regulation was 

augmented during exercise. Similarly, pH (7.30 ± 0.07 vs. 7.28 ± 0.06, ES = 0.3), BE (-9.4 ± 

4.4 vs. -11.5 ± 3.5 mmol.l-1, ES = 0.5) and [HCO3
-] (15.7± 3.3 vs. 13.6 ± 2.9 mmol.l-1, ES = 

0.7) were all greater post-training compared to pre-training 5-mins post exercise. Therefore, 

although not measured in the present study it would appear likely that training induced 

increases in intramuscular carnosine, to at least some extent, have reduced the demand for 

extracellular buffering of H+ during exercise and might have contributed to better recovery of 

acid-base homeostasis post-exercise. 

 

Although training induced augmented levels of carnosine might reduce the need for 

extracellular buffering during TLIM it might not be the only adaptive mechanism providing H+ 

regulation post-training. Juel (1998) reported that activity of the Na+/H+ exchanger in rat 

muscle was elevated after 6 weeks of high-intensity treadmill training but unchanged after 

endurance training. Therefore, in the present study it is possible that training induced 

increases in the Na+/H+ exchanger facilitated greater H+ regulation (i.e. clearance) post-

exercise. However, Harmer et al. (2000) reported that 7 weeks sprint training in humans, 

similar to the present study, might reduce H+ production and/or removal during exercise. 

However, in contrast to Harmer et al. (2000) the present study did not compare physiological 

responses post-training at the same relative level to that of pre-training and therefore, this 

might have masked improved H+ regulation until during post-exercise recovery as 

demonstrated by better recovery of acid-base homeostasis 5 mins post-exercise post-

training. In summary, although increases in intracellular carnosine likely contributed to the 

reduction in efficacy of NaHCO3, improved H+ buffering and/or regulation might also occur 

due to up-regulation of the Na+/H+ exchanger and thus also contribute to the reduction in 

efficacy of NaHCO3. 
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The difference in BLa between NaHCO3 and PLA at the end of TLIM both pre (17.0 ± 

2.9 vs. 12.5 ± 1.6 mmol.l-1) and post-training (13.4 ± 2.6 vs. 10.8 ± 2.2 mmol.l-1) is consistent 

with previous research which proposed that performance improvement might not occur 

unless a difference of > 2 mmol.l-1 BLa is observed when using NaHCO3 administration 

(Ibanez et al 1995). However, similar to results for TLIM at 110% and 120% WPEAK in study 2 

(chapter 5), despite BLa being ≥ 2 mmol.l-1 at the end of exercise post-training, group level 

TLIM at 100% WPEAK after NaHCO3 ingestion was no greater than daily variation. Moreover, 

the significant correlation between the difference in BLa and the % difference in TLIM 

between treatments at the end of exercise pre-training was not observed post-training. Such 

variability is in accordance with data from study 2 (chapter 5) where a significant correlation 

was reported for the difference in TLIM and difference in BLa between treatments at the end 

of exercise at 110% WPEAK but not at 100% and 120% WPEAK. Data from the present study 

provide further evidence that differential responses in BLa are not necessarily reliable 

indicators of differences in TLIM performance when comparing NaHCO3 and PLA. 

 

 In the present study BLa was lower post-training at the end of TLIM (12.1 ± 2.7 vs. 

14.7 ± 3.3 mmol.l-1) and 5-mins post (10.7 ± 2.8 vs. 13.0 ± 3.0 mmol.l-1). Although not 

measured directly in the present study it seems plausible that, to at least some extent, 

enhanced lactate handling has taken place during post-training TLIM, most likely due to 

training induced up-regulation of monocarboxylate transporters (MCT) isoforms MCT1 

and/or MCT4. Indeed, MCT1 and MCT4, appear crucial to blood lactate transport through 

their facilitative role in a cell-to-cell lactate shuttle (Thomas et al. 2005). High-intensity 

training has been shown to increase both MCT1 and MCT4 expression in rats although this 

was specific to soleus muscle. Interestingly, increases in MCT4 were greatest when 

NaHCO3 was consumed before training (Thomas et al. 2007). The effects of high-intensity 

training on MCT1 and MCT4 expression in humans have also been examined (Pilegaard et 

al. 1999, Bishop et al. 2008). Pilegaard et al. (1999) reported that MCT1 and MCT4 were 

70% and 33% higher, respectively, in trained compared to untrained muscle after high-
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intensity knee extensor exercise. Thomas et al. (2005) found that endurance trained 

participants had significantly greater MCT1 (49%) than less trained participants. Moreover, 

MCT1 expression was negatively correlated with BLa concentration after supramaximal 

exercise suggesting MCT1 might augment tolerance to fatigue. Although MCT4 was not 

reported to be statistically different between groups (29% increase for trained compared to 

untrained individuals), there was an extremely large effect size (not published) of 2.5 for 

differences in MCT4 (3.5 for MCT1) suggesting differences in MCT4 might also predispose 

trained individuals to higher levels of fatigue tolerance from intracellular mechanisms. Indeed 

MCT4 expression was also negatively correlated with BLa concentration after supramaximal 

exercise (Thomas et al. 2005).  It should also be acknowledged that Bishop et al. (2008) 

reported no change in MCT1 or MCT4 concentration after high-intensity cycling interval 

training. Nevertheless, the authors reported changes (expressed relative to pre-training 

values) of 96 ± 12% for MCT1 and 119 ± 21% for MCT4 demonstrating significant individual 

variation, especially in MCT4. Moreover, the timing of the biopsy (immediately post-exercise) 

and exercise protocol might have influenced these results (Bishop et al. 2007, Bishop et al. 

2008). Interestingly, Juel (2006) suggests that 6-8 weeks high-intensity training is sufficient 

to substantially increase sarcolemma bound proteins such as MCT1 and MCT4, with further 

training having no effect. Nevertheless, despite probable increases in both MCT1 and MCT4 

and hence lower BLa post-exercise and 5 minutes post-exercise compared to pre-training 

(and > 2 mmol.l-1 for NaHCO3 compared to PLA) at a group level NaHCO3 did not enhance 

TLIM beyond daily variation post-training. These data demonstrate that despite enhanced 

lactate handling post-training differential responses in BLa remain a poor predictor of 

differences in TLIM performance when comparing NaHCO3 and PLA. It should be 

remembered that MCTs also play a crucial role in pH regulation during high-intensity 

exercise. By facilitating lactate-H+ co-transport across the plasma membrane, MCTs reduce 

intracellular acid-base stress and theoretically provide more opportunity for extracellular H+ 

buffering. With augmented buffering capacity after NaHCO3 ingestion this might prevent 

deleterious changes in pH for longer and thus enhance exercise capacity. However, at a 
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group level this was not evident in the present study. This might be related to differential 

responses to training, not only in MCTs (Bishop et al. 2008) and carnosine (Suzuki et al. 

2004) but possibly differences in specific isoforms of carbonic anhydrase (CAIV and CAXIV) 

which facilitates the hydration/dehydration reaction between CO2, HCO3
-, and H+ in vivo 

(Messonier et al. 2007). Moreover, with augmented intracellular carnosine and/or up-

regulation of the Na+/H+ exchanger likely to play key roles, it is not clear what role, if any, 

augmented MCTs affect the efficacy of NaHCO3. 

 

After 6 weeks high-intensity training participants improved V̇O2PEAK by 14 ± 11 % (46 

to 52 ml.kg-1.min-1). Therefore, although in absolute terms there were no changes in V̇O2 at 

the end of TLIM pre and post-training it would appear that participants had become more 

economical users of oxygen. This is supported by McKenna et al. (1997) who suggested that 

the major energetic adaptation of repeated WAnT training with limited recovery appears to 

be enhanced aerobic metabolism. In accordance with McKenna et al. (1997) MacDougall et 

al. (1998) found that 7 weeks of repeated sprint training similar to the present study 

increased V̇O2MAX by ~ 7%. Moreover, oxidative enzymes citrate synthase and succinate 

dehydrogenase increased by ~ 36% and ~ 65%, respectively and glycolytic enzymes PFK 

and hexokinase increased by ~ 49% and ~ 56%, respectively. Indeed, MacDougall et al. 

(1998) suggest that increased activity of PFK might accelerate glycolytic flux during 

maximum sprint efforts which might explain, at least in part, why participants in the present 

study improved TLIM during training and V̇O2PEAK post-training. Indeed, in the context of the 

present study training induced increases in oxidative enzymes are likely to have facilitated 

greater intracellular lactate oxidation during post-training TLIM. Therefore, in addition to up-

regulation of MCT1 and/or MCT4 this supports the lower BLa values recorded post-training. 

In contrast, Suzuki et al. (2004) reported no change in V̇O2PEAK after repeated high-intensity 

sprint training which is most likely due to the differences in training protocols adopted. 

Combined, these results would seem to suggest that there is a threshold of both training 

stimulus and recovery time required to stimulate oxidative and glycolytic enzymatic changes 
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during training (MacDougall et al. 1998, Suzuki et al. 2004, Burgomaster et al. 2005). It 

appears highly likely that the training stimulus in the present study was sufficient to stimulate 

similar positive enzymatic changes although the precise extent of such changes is unclear. 

Similarly for augmented MCT abundance, it is not clear what role that, if any, enzymatic 

changes play in the reduction in efficacy of NaHCO3 post-training. 

 

Although overall AD (i.e. over all trials pre and post training) was low (1.3 ± 1.8), 6% 

(8 out of 128) of AD ratings were ≥ 6 units (range 6.0 to 8.0). Interestingly, the highest rating 

of AD (8.0) was noted prior to NaHCO3 ingestion which decreased at 30 mins post ingestion 

(6.0), pre-exercise (6.0) and at the end of exercise (0.0). It is unclear why AD was so high 

before NaHCO3 ingestion for this participant. However, despite such high ratings of AD prior 

to exercise, TLIM (post-training) was 8% (22 s) greater for NaHCO3 compared to PLA in this 

participant. Similarly, although overall GF was low (2.1 ± 1.9), 9% (11 out of 128) of GF 

ratings were ≥ 6.0 units (range 6.0 to 7.0). This was largely due to a different participant who 

registered a 5.0 or 6.0 for GF at every time point regardless of treatment. Interestingly, the 

participant who registered a GF score of 7.0 units 30 mins prior to both NaHCO3 trials 

improved TLIM compared to PLA by 22% and 25%, pre and post-training, respectively. 

Similar to previous research (Price and Simons 2010) and data from study 2 (chapter 5), GI 

distress does not always negatively influence performance. However, one limitation of the 

present study is that the AD and GF scales have not been experimentally validated. 

Therefore, it is plausible that a more sensitive tool might present slightly different results. 

 

 Although similar after 1 min, 3 mins and at the end of exercise NaHCO3 attenuated 

RPEL to a greater extent than PLA after 2 mins during TLIM, pre-training. In contrast there 

was no difference in RPEL at any time point post-training. The difference in RPEL after 2 

mins is almost identical to that reported for 100% TLIM in study 2 (chapter 5) where after 1 

and 2 mins RPEL was attenuated. This suggests that NaHCO3 plays some contributory role 

in modulating RPEL during the early stages of high-intensity exercise at 100% WPEAK. An 
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explanatory mechanism is yet to be reported but it could be that pre-exercise alkalosis 

attenuates the stress response (i.e. specific heat shock proteins such as HSP72) and 

subsequent afferent neural feedback during exercise and concomitantly facilitates the 

attenuation of RPEL. Peart et al. (2011) found that 0.3 g.kg-1 NaHCO3 significantly attenuated 

the HSP72 response 30 mins after exercise when compared with NaCl ingestion (increases 

of 5% and 42% of HSP72, respectively). Nevertheless, no performance benefit was 

observed although the 4 mins ‘all-out’ protocol used is likely to have been a contributory 

factor (Peart et al. 2011, Vanhatalo et al. 2010). It is unclear why modulation of RPEL was 

observed pre but not post-training. It could be that training induced changes somehow 

dampens any NaHCO3-HSP72 modulation of RPEL. Contrastingly NaHCO3 might attenuate 

HSP72 post-training to a similar or even larger extent/rate post-training but inhibition of 

and/or superseded afferent feedback signals prevent this translating into a reduction in 

RPEL. However, this is speculative and further research on the role of NaHCO3 ingestion in 

modulation of RPEL is warranted. 

  

 Pre-training RPEO for TLIM was lower when compared to post-training for all time 

points and for both treatments. However, it is important to remember that post-training 

participants were cycling at a greater absolute WPEAK which is likely to contribute to 

increased effort perception post-training (pre-training TLIM was 89 ± 8% of post-training TLIM; 

range: 74% to 98%). Ideally, participants would have repeated the TLIM experimental trials at 

the pre-training 100% WPEAK to allow further comparison. Unfortunately, due to time and 

logistics this was not possible. Our observation that RPEL was greater than RPEO at each 

time point is consistent with previous research (Hetzler et al. 1991) demonstrating that RPEL 

comprises a greater proportion of overall effort perception in cycle exercise in previously 

untrained males (Hetzler et al. 1991, Hampson et al. 2001). 

 

In the present study NaHCO3 treatment resulted in an overall increase in HR of 5 

bpm-1 compared to PLA. Although there was no difference pre-ingestion, pre-exercise HR 
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increased by 7 bpm-1 after NaHCO3 ingestion compared to PLA. Heart rate remained 

similarly elevated at volitional exhaustion and 5 mins post-exercise. The effect of NaHCO3 

ingestion on HR pre-exercise and at volitional exhaustion in the present study is almost 

identical to that reported in study 2 (chapter 5). The mechanism for why NaHCO3 ingestion 

causes elevation of HR prior to exercise and why HR remains elevated during and after 

exercise is as yet unconfirmed. This might be related to differential responses during 

digestion which lead to increased blood flow (presumably predominantly to the GI tract) and 

HR after NaHCO3 ingestion compared to PLA. Anecdotal evidence suggests there are more 

incidents of diarrhoea and general toilet visits after NaHCO3 ingestion which might increase 

HR through more pre-exercise general low level activity (i.e. no significant increase in BLa). 

Alternatively, there might be some mild dehydration for those who suffer diarrhoea despite 

being able to drink water ad libitum. However, such suggestions are speculative. 

 

One of the principles of successful physical training is specificity (Baechle and Earle 

2008). Based on this and on the results from study 2 (chapter 5), we included 100% WPEAK 

TLIM (session 2) as part of the training program. Mean TLIM improved by 71% over 6 weeks. 

However the mean improvement based on participants longest compared to shortest TLIM 

over the 6 weeks was 149% (range: 59% to 290%) due to 5 out of 8 participants recording 

their highest TLIM in week 5 rather than week 6. This might be due to general transient 

training fatigue between week 5 and 6. Indeed, it appears unlikely that overtraining played 

any significant role as participants recorded a mean increase in WPEAK of 12 ± 7% after 

completing training. The large (149%) increase in TLIM during training is similar to the 123% 

improvement in 100% WPEAK TLIM recorded by Edge, Bishop, and Goodman (2006). It seems 

logical that incorporation of specific training in the present study is, at least in part, why 

improvements in 100% TLIM in the present study were higher than recorded by Edge, Bishop, 

and Goodman (2006). 
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In summary, 6 weeks high-intensity cycling training reduces the effectiveness of 

NaHCO3 in enhancing maximal cycling capacity in previously non-cycling trained males. 

More research is required to elucidate the mechanisms underpinning this change in efficacy. 

The most plausible explanations include; training induced changes in intracellular buffering 

capacity, with augmented carnosine likely to play some role and up-regulation of the Na+/H+ 

exchanger. Further research using the biopsy technique to ratify these results (including 

analysing changes in carnosine, the Na+/H+ exchanger and possibly MCT1/4) is warranted 

as is a cross sectional study (i.e. variety of basal training statuses) evaluating the effects of 

an increase in training status on the efficacy of NaHCO3 ingestion. Particular attention 

should focus on the impact of effort perception during exercise and how each of the above 

mechanisms might attenuate RPEL during high-intensity exercise. Finally, although group 

level data is in accordance with our original hypothesis an individualised approach should be 

considered in an applied setting. 
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Chapter 8 – General conclusion 

 

8.1 Summary 

  

By evaluating the efficacy of NaHCO3 as an ergogenic aid from both whole body (in vivo) 

and isolated muscle (in vitro) perspectives this thesis has presented new and in-depth 

evidence in relation to the effects of NaHCO3 on whole body and isolated muscle 

performance. The following is a summary of the unique and key findings of this thesis: 

 

1. Before experimental data collection, two familiarisation sessions are required to 

adequately familiarise human participants undertaking cycling exercise capacity tests 

(chapter 4). 

 

2. NaHCO3 improved cycling exercise capacity (TLIM) in humans at 100% WPEAK but not 

110% or 120% WPEAK. By evaluating the efficacy of NaHCO3 over this range of exercise 

intensities in the same population we are the first to demonstrate that the ‘responder’, 

‘non-responder’ classification for NaHCO3 ingestion is too simplistic (chapter 5). 

 

3. NaHCO3 had a significantly greater effect when TLIM was longer than 5 mins whereas no 

difference between treatments was observed when TLIM was less than 5 mins for 

continuous work tests (chapter 5). This has challenged the traditional 1 to 7 minute 

window for exercise duration proposed for when NaHCO3 might be effective. 

 

4. NaHCO3 ingestion attenuated RPEL compared to PLA after 1 min and 2 mins of exercise 

during the 100% WPEAK trial only (chapter 5). The attenuation of RPEL after 2 mins after 

NaHCO3 ingestion was also found to be a repeatable response in non-cycling trained 

males (chapter 7). 
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5. In contrast to Ibanez et al. (1995) we have demonstrated that a difference of ≥ 2 mmol.l-1 

in BLa at the end of exercise of does not necessarily correlate to greater exercise 

capacity after NaHCO3 ingestion (chapters 5 and 7). 

 

6. In isolated mouse muscle acute PO was on average 7.0 % greater for NaHCO3 treated 

EDL muscles and 3.6 % greater for NaHCO3 treated SOL muscles when compared to 

CON. The acute effects of NaHCO3 on EDL were significantly greater than on SOL 

(chapter 6).  

 

7. Increases in acute PO in isolated mouse muscle were due to greater force production 

throughout shortening. These results present the best indication to date that NaHCO3 

has direct peripheral effects on mammalian skeletal muscle resulting in increased acute 

power output (chapter 6). 

 

8. NaHCO3 treatment did not alter the pattern of fatigue during dynamic work loop 

simulation in isolated mouse muscle.  However the fatigability of muscle performance 

was variable suggesting, that there might be inter-individual differences in response to 

NaHCO3 supplementation at the muscle level (chapter 6). 

 

9. During 60 mins recovery NaHCO3 treated muscle demonstrated a poorer mean recovery 

than CON after 10 minutes for EDL only. Overall, recovery of PO was significantly 

greater in SOL (91 ± 8%) compared to EDL (59 ± 26 %). Importantly, both EDL (~ 80%) 

and SOL (~ 90%) muscles recovered almost completely within one hour of fatiguing 

exercise, regardless of treatment (chapter 6). 

 

10. An improvement in training status after 6 weeks high-intensity cycling training in non-

cycling trained males nullifies the efficacy of sodium bicarbonate (NaHCO3) as an 

ergogenic aid (chapter 7). 
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11. NaHCO3 ingestion attenuated RPEL compared to PLA after 2 mins of exercise during 

100% WPEAK cycling. However, after 6 weeks high-intensity cycling training there were no 

differences in RPEL between treatments (chapter 7). 

 

8.2 Overall efficacy of NaHCO3 

  

We have examined the efficacy of NaHCO3 as an ergogenic aid in humans at 

different exercise intensities (chapter 5) and after an improvement in training status (chapter 

7). In study 2 (chapter 5) we demonstrated that TLIM for all exercise intensities (n=10) was 

9% greater for NaHCO3 compared to CON and in study 4 (chapter 7) we demonstrated that 

6 weeks high intensity cycling training in untrained males nullifies the ergogenic benefit 

observed pre-training. Figure 8.1 presents the overall efficacy (n=18) of NaHCO3 as an 

ergogenic aid for all trials completed at 100% WPEAK in this thesis inclusive (n=52) and 

exclusive (n=36) of 100% WPEAK post-training trials (i.e. excluding training effects).  

 

Figure 8.1 The overall efficacy of NaHCO3 compared to PLA at 100% WPEAK exclusive (top) 

and inclusive (bottom) of post-training TLIM trials. * NaHCO3 > PLA (P = 0.002; Wilcoxon test) 
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The overall efficacy of NaHCO3 compared to PLA at 100% WPEAK inclusive of all trials 

was 38 s / 12% (ES = 0.4, P = 0.002). When considering 100% WPEAK exclusive of post-

training trials efficacy of NaHCO3 increased to 47 s / 14% (ES = 0.4, P = 0.002, Figure 8.1).  

This further demonstrates that 6 weeks high intensity training significantly reduced the 

efficacy of NaHCO3.  

 

In summary, NaHCO3 is an effective ergogenic aid, most likely observed at 100% 

WPEAK in non-cycling specific trained healthy males (chapter 5). However, the efficacy of 

NaHCO3 is variable at other exercise intensities (chapter 5) and likely diminishes after an 

improvement in training status (chapter 7). Interestingly, there was no difference in TLIM at 

100% WPEAK in study 2 (chapter 5) compared to pre-training TLIM at 100% WPEAK study 4 

(chapter 7; 18 s, 5%, P = 0.93, ES = 0.1) demonstrating repeatability at 100% WPEAK in 

untrained males after NaHCO3 ingestion.  

 

8.2.1 Responders / non responders classification 

 

As described in section 8.1 and study 2 (chapter 5) the responder / non-responder 

classification for human performance after NaHCO3 ingestion is too simplistic.  Further 

support for this can be found in study 4 (chapter 7) when evaluating data from participants 

who completed both NaHCO3 studies. We found that the only participant in study 2 who 

improved TLIM after NaHCO3 ingestion at all exercise intensities did not improve TLIM at 100% 

WPEAK pre or post 6 weeks high intensity training (study 4). In fact, post-training TLIM was 17% 

(52 s) lower after NaHCO3 compared to PLA. A difference in training status appears unlikely 

for the change in efficacy of NaHCO3 as the initial V̇O2PEAK of this participant was very similar 

between studies (40 and 44 ml.kg-1.min-1 for studies 2 and 4, respectively). Additionally, in 

examining data from the three other participants who completed both studies there is no 

evidence to support the responder / non-responder classification. Indeed, one of the 

participants who was removed from the analysis in study 4, due to GI distress and 
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subsequent dramatic performance reduction, improved TLIM at 100% WPEAK by 26% (73 s) 

and by 16% (21 s) at 120% WPEAK after NaHCO3 ingestion. There was no difference at 110% 

WPEAK (- 9 s / - 4%; study 2, chapter 5).  Interestingly, there was considerable inter-individual 

variation noted for isolated EDL and SOL during fatiguing exercise. Therefore, in contrast to 

whole body performance, the responder / non-responder classification for isolated mouse 

EDL and SOL muscle undergoing cyclical length changes might be appropriate. 

 

8.3 Perceptual responses 

8.3.1 Ratings of perceived exertion (RPE) 

  

We have demonstrated that NaHCO3 ingestion attenuates RPEL during the early 

stages of high intensity exercise at 100% WPEAK compared to PLA in non-cycling trained 

males. Specifically, RPEL was attenuated after 2 mins exercise compared to PLA (chapters 

5 and 7). Interestingly, the attenuation of RPEL after 2 mins exercise was not observed after 

an improvement in training status. This data demonstrates that in non-cycling trained males 

the attenuation of RPEL at 100% WPEAK is a repeatable perceptual response. However, this 

response does not occur after an improvement in training status, the mechanisms for which 

are, at present, unclear. It is possible that RPEL was attenuated at 100% WPEAK (and not at 

110% and 120% WPEAK) because the associated biochemical and physiological changes 

occurred at a rate that produced neuro-physiological feedback that facilitated attenuated 

RPEL. An explanatory mechanism is yet to be fully elucidated but might be linked to the 

attenuation of perceived exertion by endogenous opioids (Sgherza et al. 2002), which in 

itself is likely driven by exercise intensity. Indeed Sgherza et al. (2002) reported that an 

exercise intensity threshold of ~ 60-75% V̇O2MAX is required to stimulate the release of 

endogenous opioids. Therefore, it is plausible that the same holds true with increasing 

exercise intensity. In other words, although endogenous opioids might still be released 

beyond a certain exercise intensity threshold, for example ~ 100% V̇O2MAX, above this 

threshold the associated changes in neuro-physiological feedback might prevent the 
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attenuation of RPEL. Similarly it could be that pre-exercise alkalosis attenuates the stress 

response (i.e. specific heat shock proteins such as HSP72) during exercise (Peart et al. 

2011) and concomitantly facilitates the attenuation of RPEL.  The reason(s) why RPEL was 

not attenuated after NaHCO3 ingestion during TLIM at 100% WPEAK after an improvement in 

training status are unclear. However, this might be due to general increased tolerance of 

discomfort during exercise which dampens any pre-training benefits of NaHCO3 on RPEL 

responses. Clearly, more research on the effects of NaHCO3 and RPEL responses is 

warranted. 

 

8.3.2 Abdominal discomfort (AD) and gut fullness (GF) 

 

Reports of GI discomfort after NaHCO3 ingestion are well reported in the literature 

(Cameron et al. 2010, Price and Simons 2010, Carr et al. 2011). Based on an eleven point 

(0-10) Likert scale (sections 10.1 and 10.2), overall ratings (n=18; n=10 from study 2 plus 

n=8 from study 4) of AD after NaHCO3 ingestion 30 mins before exercise and immediately 

before exercise were 3.0 ± 2.3 and 2.5 ± 2.1, respectively. Similarly, overall ratings (n=18) 

for GF 30 mins before exercise and immediately before exercise were 2.9 ± 2.1 and 2.5 ± 

1.9, respectively. This summary data supports the individual data reported in study 2 

(chapter 5) and study 4 (chapter 7) that ratings of AD and GF were mild after NaHCO3 

ingestion. Nonetheless, as reported in study 4 two participants suffered such severe GI 

discomfort that their cycling performance was detrimentally affected. By removing these 

participants from the final analysis the overall view of the efficacy of NaHCO3 changed quite 

dramatically. A change in efficacy of NaHCO3 has been observed previously when 

participants who suffer severe GI distress are removed from the overall analysis (Saunders 

et al. 2011). Nevertheless the trend for NaHCO3 being effective before but not after an 

improvement in training status remained (Table 7.5).  
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There were medium to large positive correlations (both 0.70) for the difference in TLIM 

between NaHCO3 and PLA and the absolute load of NaHCO3 consumed both pre and post-

training when analysing n=8 (study 4, chapter 7).  However, this relationship disappeared for 

n=10 (Table 7.2). Based on the premise that heavier participants ingest a larger absolute 

load and appeared to suffer greater AD (the body mass of the two participants that suffered 

extreme GI distress (chapter 7) were 15% and 35% higher than the mean cohort body mass 

of 81 kg) we explored whether the absolute load of NaHCO3 (i.e. effect of body mass) was 

related to AD and GF for n=18 and n=20 (i.e. with and without the participants who were 

removed from the analysis in study 4). For n=18 the correlation between NaHCO3 load and 

AD pre-exercise was low and not significant (ρ = 0.25, P = 0.099). For n=18 the correlation 

between absolute NaHCO3 load and AD 30 mins pre-exercise was also low but approached 

significance (ρ = 0.28, P = 0.064). In contrast, for n=20 there was a higher (albeit still low) 

and significant correlation (ρ = 0.35, P = 0.012) between absolute NaHCO3 load and AD pre-

exercise (Figure 8.2).   

 

Figure 8.2 Correlation between pre-exercise abdominal discomfort (AD) and absolute 

NaHCO3 load (g) (n=20) 
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For n=20 the correlation between absolute NaHCO3 load and AD 30 mins pre-

exercise was also low and approached significance (ρ = 0.28, P = 0.052).  Therefore, higher 

AD appears to be related to higher body mass which might subsequently impact on TLIM 

(Table 7.2). No significant correlations between NaHCO3 and GF were observed for n=18 or 

n=20. 

 

Based on the premise that AD appears more likely in heavier individuals, we 

evaluated the differences in AD from participants under/equal to 78 kg and participants over 

78 kg (78 kg is mean human body mass for NaHCO3 studies) for n=18 and n=20.  When 

comparing participants under/equal to 78 kg and participants over 78 kg, there were no 

significant differences in AD 30 mins pre-exercise or pre-exercise for n=18 (P = 0.15, P = 

0.25) or n=20 (P = 0.13, P = 0.09), respectively,  However effect sizes of 0.5 and 0.5 (n=20) 

and 0.4 and 0.3 (n=18) for differences in AD 30 mins pre-exercise and pre-exercise, 

respectively, suggest there was a small effect of body mass increasing AD at both time 

intervals for those participants with more than 78 kg body mass. Therefore for individuals 

over ~ 78 kg a staggered or chronic loading regime rather than an acute dose might be 

beneficial in reducing GI discomfort (section 2.3.10) and potentially increase the chance of 

improving TLIM (Table 7.2). In contrast, for those with a body mass of less than 78 kg  it 

appears a dose of 0.3 g.kg-1
 body mass of NaHCO3 (up to a threshold of ~ 23 g) is likely to 

minimise GI discomfort and increase probability of enhancing TLIM at 100% WPEAK. 

 

Interestingly, one of the participants who was removed from the analysis in study 4 

(chapter 7) had also previously completed study 2 (chapter 5). This participant reported 

greater AD in study 4 than study 2 (6.2 ± 1.2 and 2.7 ± 1.1, respectively) where in study 2 

TLIM improved by 28% at 100% WPEAK and 16% at 120% WPEAK. The greater ratings of AD 

were associated with an increase in body mass of ~ 8% between study 2 and 4. However, 

as the body mass of this participant was more than 100 kg on both occasions it is not clear 

why AD was reported to be so different between studies. It is possible that the participant 
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became more comfortable in reporting significant AD in study 4 compared to study 2 

although this would not explain differences in performance between studies. It is also 

plausible that the threshold of absolute NaHCO3 which increases the probability of AD is 

higher than ~ 23 g in some individuals. 

 

It is possible that over time participants might develop improved tolerance for acute 

NaHCO3 ingestion. In study 2 (chapter 5) we observed that the one participant who did not 

improve at 100% WPEAK (-10% with NaHCO3) suffered from GI distress in all NaHCO3 trials. 

However, GI distress did not prevent improvement in exercise capacity at 120% WPEAK 

(+16%) which occurred during the last trial and was accompanied by lower AD and GF 

ratings than reported at 100% and 110% WPEAK. Additionally, one participant who improved 

only at 100% WPEAK (+9%) did so in the last NaHCO3 trial. Despite recording mid-high AD 

(6.0) after 30 mins, in line with the 110% and 120% NaHCO3 trials (8.0 and 6.0), AD dropped 

substantially pre-exercise (2.0 vs. 6.0). Such results suggest that over time improved GI 

tolerance to acute NaHCO3 ingestion might have contributed to improvements in exercise 

capacity in those individuals. 

 

It is important to acknowledge that GI distress does not always negatively impact 

performance (Price and Simons 2010). As reported in study 2 (chapter 5) one participant 

who reported mid-high (6.0) AD 30 mins pre-exercise and immediately pre-exercise had the 

highest increase in TLIM (+38%) at 100% WPEAK with NaHCO3. In study 4 (chapter 7), the 

highest rating of AD (8.0) was noted prior to NaHCO3 ingestion which decreased at 30 mins 

post ingestion (6.0), pre-exercise (6.0) and at end of exercise (0). Although it is unclear why 

AD was so high before NaHCO3 ingestion for this participant, TLIM (post-training) was 8% (22 

s) greater for NaHCO3 compared to PLA. Furthermore, one participant who vomited ~ 30 

mins after NaHCO3 ingestion before their post-training 100% WPEAK trial improved TLIM by 

11% compared to PLA. This was despite AD ratings of 6.0, 30 mins prior, immediately prior 

and immediately post-exercise. It should be noted that this participant was asked on multiple 
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occasions whether he wanted to continue and was insistent on completing the trial. The 

increased TLIM performance with NaHCO3 in this participant was consistent with pre-training 

performance (+21%) where AD was lower (4.0) but remained at this level 30 mins prior, 

immediately prior and immediately post-exercise. It should also be pointed out that a 

decrement in performance with NaHCO3 can also occur without any associated GI 

discomfort. A different participant reported having no AD or GF during any trials (i.e. ratings 

of 0) but TLIM for NaHCO3 was -6% and -19% compared to PLA pre and post-training, 

respectively. In summary, there is no consistent pattern between the efficacy of NaHCO3 

and ratings of AD and GF. 

 

8.3.3 Relationship between abdominal discomfort (AD) and RPEL 

 

 When considering n=18, there were moderate significant correlations for AD pre-

exercise after NaHCO3 ingestion and RPEL after 1 minute (ρ = 0.43, P = 0.003, Figure 8.3) 

and 2 minutes during TLIM (ρ = 0.40, P = 0.005, Figure 8.4).  

 

Figure 8.3 Correlation between RPEL and pre-exercise abdominal discomfort (AD) after 

NaHCO3 ingestion after 1 minute during TLIM (n=18) 
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Figure 8.4 Correlation between RPEL and pre-exercise abdominal discomfort (AD) after 

NaHCO3 ingestion after 2 minutes during TLIM (n=18) 
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they have GI discomfort, many presume they have ingested NaHCO3. As such participants 

might become ‘more’ motivated (or physiologically able) to tolerate the discomfort associated 

with TLIM trials during NaHCO3 trials compared to PLA trials. Interestingly, PRE for the 

participant who vomited ~ 30 mins after NaHCO3 ingestion reduced from 9.0 pre-ingestion to 

3.0 pre-exercise. However, as previously mentioned TLIM improved by 11% compared to 

PLA. A similar trend was observed in this participant pre-training (although no vomiting 

occurred) in that PRE dropped from 8.0 pre-ingestion to 4.0 pre-exercise yet TLIM improved 

by 21% compared to PLA. Changes in PRE due to time can be discounted as PRE remained 

high (8.0 to 9.0) at all time points prior to PLA trials for this participant. Therefore, despite 

suffering GI discomfort and an associated large reduction in PRE, TLIM cycling performance, 

at an individual level at least, can still improve with NaHCO3 ingestion. The mechanism(s) for 

this are yet to be elucidated but an increase in subconscious motivation based on GI 

symptoms (i.e. placebo effect), despite reported lower PRE, can’t be discounted. As 

demonstrated in study 3 (chapter 6) this improved performance might be facilitated by 

augmented PO / capacity for work after NaHCO3 ingestion. 

 

8.4 What does the isolated muscle data tell us? 

 

The isolated muscle model has allowed us to examine the effects of NaHCO3 on 

skeletal muscle exercise capacity and acute PO without the possible influence of central 

fatigue, differences in motivation or mood and the inherent complexity (i.e. interaction of 

mixed muscle groups, complex muscle activation patterns) that constitutes locomotion. The 

data from this approach has provided important supporting mechanistic evidence for the 

acute ergogenic effect (i.e. increased acute PO) observed in humans (McNaughton 1992a, 

McNaughton, Ford, and Newbold 1997). The increases in acute PO in isolated skeletal 

muscle were due to greater force production throughout shortening.  Similar to the variation 

in whole body data presented in study 2 (chapter 5) for TLIM at 110% and 120% WPEAK, the 

fatigability of isolated muscle performance was variable with NaHCO3. Therefore, in contrast 
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to whole body exercise performance, this suggests that at an isolated muscle level the 

‘responders’, ‘non-responders’ classification might be appropriate. Importantly, regardless of 

treatment isolated muscles recovered almost completely within 60 minutes demonstrating 

fatigue rather than damage was the main reason for performance decreases during the 

fatigue protocol. Therefore, in those isolated muscles whose fatigability was improved with 

NaHCO3, this did not appear to increase muscle damage (Figure 6.5). 

 

8.5 Future work 

 

The work presented in this thesis has examined the effects of NaHCO3 on whole 

body and isolated skeletal muscle performance. As described in section 8.1 we have 

presented several novel findings that add to this body of research. However, in light of these 

findings a number of additional questions have been raised which warrant further 

examination. They are as follows: 

 

1. We demonstrated that NaHCO3 ingestion attenuates RPEL after 2 mins exercise 

compared to PLA (chapters 5 and 7) although this was not observed after an 

improvement in training status (chapter 7). Further work should consider the possible 

mechanisms for why NaHCO3 ingestion attenuates RPEL after 2 mins exercise. An 

explanatory mechanism is yet to be fully elucidated but might be linked to the attenuation 

of perceived exertion by endogenous opioids (Sgherza et al. 2002) and/or by the rate of 

change in pH during initial stages of exercise (Lavender and Bird 1989, Price, Moss, and 

Rance 2003).  Further research should also consider why an improvement in training 

status changes the attenuation of RPEL in untrained males and whether AD dampens 

attenuation of RPEL. 

 

2. We evaluated the effects of NaHCO3 on maximally stimulated mouse skeletal muscle 

(chapter 6). However, in order to address the efficacy of NaHCO3 on exercise of longer 
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duration, further work should evaluate the effects of NaHCO3 on submaximally 

stimulated mouse skeletal muscle. This approach has been considered in other 

ergogenic aids often used by humans to enhance physical performance (Tallis et al. 

2012).  Furthermore, in order to complement the human training study it would be 

beneficial to examine the efficacy of NaHCO3 after an improvement in training status at 

an isolated muscle level. 

 

3. We have provided exploratory evidence for a possible absolute threshold (rather than by 

body mass) of acute NaHCO3 ingestion that optimises the chance of TLIM improvement 

whilst minimising GI distress (Table 7.2). Based on this data and analysis of overall data 

(section 8.3.2) this appears to be ~ 23g NaHCO3. Further research should establish 

whether such a threshold exists and how/if this might be adjusted based on a person’s 

somatotype. One particular area of focus could be to examine the effects of NaHCO3 on 

performance based on the operational muscle mass of a specific sport. For example, 

research should be carried out using cycling that evaluates whether acute NaHCO3 

ingestion modelled on lower body muscle mass is more beneficial than total body mass 

and whether an optimal maximum dosage exists. 

 

4. Future work should consider whether an improvement in TLIM after NaHCO3 ingestion 

despite a reduction in PRE and concomitant increase in GI distress is repeatable, and if 

so what are the likely mechanisms that facilitate performance improvement in these 

circumstances. The possible effects of psychological factors such as intrinsic motivation 

and goal orientation (section 8.6.2) require consideration. Such further work should also 

incorporate different populations (i.e. untrained females, trained males and females) to 

establish whether such responses are population(s) specific. 

 

5. More research is required to elucidate the mechanisms underpinning why an 

improvement in training status changes the efficacy of NaHCO3. Based on the research 
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to date and the results presented in this thesis, training induced changes in intracellular 

buffering capacity (e.g. carnosine, Suzuki et al. 2004), training induced up-regulation of 

MCT1 and MCT4 (Pilegaard et al. 1999, Thomas et al. 2007) and possibly greater 

attenuation of the HSP72 response (Peart et al. 2011) are areas that require further 

research. Research utilising the muscle biopsy technique would appear to be 

fundamental in furthering this particular area of research. It would also be worthwhile 

evaluating the minimum training improvement required to alter the efficacy of NaHCO3 as 

this might help to elucidate the mechanisms behind such a change in efficacy. 

 

6. Due to the well reported possible negative GI side effects of NaHCO3 ingestion, further 

research is warranted on other compounds that increase bioavailability of [HCO3
-] 

without such side effects. Recent research has demonstrated that ingestion of calcium 

lactate increased [HCO3
-] compared to CON and PLA. Subsequently, TLIM and total work 

done at 100% WMAX were 20% and 17% greater, respectively, than CON and PLA 

combined, the latter two not differing from each other.  Moreover, such improvements 

were observed with no GI distress (Morris et al. 2011).  Similarly, Heil, Jacobson, and 

Howe (2012) demonstrated that a new proprietary blend of ingredients called ‘Alka-Myte’ 

which purports to increase buffering capacity generated 3.1% greater PO compared to 

PLA against respective pre-intervention baseline trials during 60 s of upper body 

ergometry. This improvement in PO was reported with very minimal side effects, none of 

which were reported to have negatively affected participants. 

 

7. Currently, there appears to be a lack of research examining the effects of NaHCO3 on 

exercise performance with respect to the possible role of the brain/central nervous 

system. For example, Nakashima et al. (1996) demonstrated that infusion of NaHCO3 

increased cerebral blood flow, possibly from arterial dilation in response to CO2, and 

Parham and Pasieka (1996) found that adding NaHCO3 to lidocaine (widely used 

anaesthetic) reduced the associated pain of injection by ~ 27% against lidocaine only. 
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Although neither of these studies evaluated exercise performance we believe this 

demonstrates value in further examining how, if at all, NaHCO3 might influence exercise 

performance from a neuro-physiological respective. Indeed, although some research has 

been completed (Hunter et al. 2009) Wu et al. (2009) agree that more research is 

required on the effects of alkalosis on neuromuscular function. 

 

8.6 Limitations 

8.6.1. General limitations 

 

Perhaps the greatest limitation of the research within this thesis is that we have 

considered exercise induced fatigue largely from a metabolite accumulation perspective. 

Skeletal muscle fatigue as a result of high-intensity exercise is extremely complex and multi-

factorial (Artioli et al. 2010, Debold 2012). Therefore, although clearly novel and relevant 

research findings have been made from both in vivo and in vitro models these should always 

be considered to be part of a far greater and more complex model than in isolation. More 

simply, factors outside of the possible physiological and biochemical contributors to fatigue 

should be considered. For example psychological factors such as intrinsic motivation, 

anxiety and mood can have a significant impact on fatigue and perception of fatigue. 

 

8.6.2. Experimental limitations 

 

 Although great care and attention has gone into this research, as always there are 

some experimental limitations that have been observed in hindsight. They are as follows: 

 

1. Although the Likert scales (or very similar versions) used for AD, GF and PRE (chapters 

5 and 7) have been used in previous research (Price, Moss, and Rance, 2003, Nurmekivi 

et al. 2001, Price and Cripps 2012) the reliability and validity of these scales have not 

been experimentally determined. In particular the PRE scale used in this thesis was 
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adapted from a similar scale originally used in middle distance running (Nurmekivi et al. 

2001). Therefore, it is plausible that a scale specifically designed to evaluate perceived 

readiness for high-intensity exercise and/or a scale that evaluates perceived readiness to 

exercise pre and post exercise after a nutritional intervention might be more suitable. 

  

2. In study 2 (chapter 5), participants completed the achievement goal questionnaire (AGQ; 

Conroy, Elliot, and Hofer 2003) at the end of the study. Although this data still provides a 

useful understanding of goal orientated approaches that participants might use it would 

have been worthwhile to have issued the AGQ prior to experimental trials and mid-way 

through experimental trials. This would have allowed us to gain a more reliable view of 

participants goal orientated approaches and also to evaluate whether these changed 

throughout the study. Similarly, using the AGQ during the training study might have been 

useful to examine whether goal orientated approaches changed pre and post-training 

(especially considering the ‘competition’ that was promoted during training sessions) and 

whether this had any impact on the efficacy of NaHCO3. 

 

8.7 Practical implications 

 

 There are a number of practical implications that can be derived from this thesis. 

They are as follows: 

 

1. Moderately but non cycling specific trained individuals are more likely to benefit from 

NaHCO3 ingestion for high-intensity events and/or training that last between 5 to 10 

minutes rather than 1 to 7 minutes as previously proposed. Specific events might include 

5 km time trials in cycling or 2 km rowing races. However, as seen below this might also 

depend on an individual’s muscle fibre type distribution. 
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2. As it is often impractical to analyse an individual’s muscle fibre type distribution, 

individuals might benefit from understanding their somatotype and how this might 

influence exercise performance after ingestion of NaHCO3. For example, mesomorphs 

who generally possess a greater proportion of (predominantly) type II fibres (FT), such 

as in EDL, might be more likely to see ergogenic benefit with NaHCO3 during high-

intensity exercise of short duration (i.e. ~ 1 to 4 minutes) where the ability to produce 

high acute PO is likely to be important to performance. However, ectomorphs who 

generally possess a greater proportion of ST fibres, such as in SOL, might be more likely 

to see ergogenic benefit with NaHCO3 in events of longer duration. 

 

3. Although GI distress after NaHCO3 ingestion is uncomfortable, those who suffer such 

symptoms should not assume that exercise capacity will always be detrimentally 

affected, even if self perception of readiness to exercise reduces. Therefore, where 

NaHCO3 ingestion is incorporated into physical training, individuals and coaches alike 

should base decisions largely on performance data rather than anecdotal feedback. 
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Chapter 10 – Appendices 

 

10.1 Abdominal discomfort (AD) Likert scale 

 
 

0 Completely comfortable 
 

1      
 

2  Fairly comfortable 
 

3      
 

4  Slight discomfort 
 

5      
 

6  Moderately discomfort 
 

7     
 

8   Extreme discomfort 
 

9      
 

10  Unbearable pain 
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10.2 Gut fullness (GF) Likert scale 

 
 

0 Empty 
 

1      
 

2  Slightly Full 
 

3      
 

4  Fairly Full 
 

5      
 

6  Moderately Full 
 

7     
 

8   Uncomfortably Full 
 

9      
 

10  Bloated 
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10.3 Perceived readiness to exercise (PRE) Likert scale 

 
 
10  Completely ready to exercise 
 
 
9 
 
 
8  Largely ready to exercise 
 
 
7 
 
 
6  Moderately ready to exercise 
 
 
5   
 
 
4  Somewhat ready to exercise 
 
 
3   
 
 
2  Hardly ready to exercise 
 
 
1   
 
 
0  Not at all ready to exercise  
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