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ABSTRACT

This thesis presents the development of an efficient and adaptable simulation model for
characterization and estimation of MIMO-HF channel subjected to impairments, such as
multipath fading, system non-linearity and non-Gaussian noise. Under channel
characterization and modelling, this thesis proposes the extension of conventional
Watterson model for SISO to MIMO-HF channel incorporating the associated spatial
correlation and the non-linearity of the system. The novelty of the developed model lies
in the capability of its impulse response to emulate nearly the practical HF channel by
incorporating the cited adverse channel impairments. This thesis proposes the modelling
of MIMO-HF channel through the computationally efficient IIR /AR filter approach
instead of conventional FIR filter. The generic and the versatile features of IIR filter-
based approach for modelling the HF channel impairments have been demonstrated by its

application to both SISO and MIMO-HF systems.

Within the purview of channel estimation for improved reliability and enhanced data rate
of the MIMO-HF communication link, this thesis proposes a novel PF based channel
estimation technique for HF communication links subjected to multipath fading and
system non-linearity. The PF based channel estimation algorithm proposed in thesis for
MIMO-HF is shown to closely approximate the impulse response of the channel induced
by the channel impairments. The improved channel estimation facilitates the effective
utilization of system resources to ensure enhanced capacity and reliability of HF links.
Although one can conceive an idea of invoking the PF concept devoid of EKF, this thesis
attempts to adopt a unified approach wherein PF and EKF schemes are combined to
realize better posterior density functions, thereby improving the accuracy in channel
estimation. The advantageous and desirable features derived by invoking the proposed PF
formulation over the conventional RLS have also been addressed. This thesis also
addresses the effects of spatial correlation, system non-linearity and the non-Gaussian
noise on the proposed PF based channel estimation algorithm. The expected improvement
in the receiver performance in lieu of improved channel estimation algorithms, as well as
replacement of conventional SISO with MIMO, is validated through the performance

parameters such as capacity and reliability.

XX



CHAPTER 1
INTRODUCTION

1.1 Introduction and Motivation

For several decades now, HF ionospheric radio has been a reasonably simple and
effective mode of communication for range spanning from less than 100 miles (the upper
limit of the range of VHF and UHF Line-of-Sight radio) to many thousands of miles
(world-wide). HF radio has been particularly useful where cable communication is
impractical if not impossible: for communication with aircraft, ships, and other mobile

units as well as for communication with temporary and remote ground stations.

Despite the introduction of satellite services, interest remains in HF data
communications, due largely to its cost advantage and freedom from ‘third party’
controlled equipment’s. Compared to satellite radio communication, the HF ionospheric
radio communication is superior under disaster conditions. For the reasons of efficiency
and reliability, HF ionospheric radio can be a backup to the more vulnerable satellite
radio. It is imperative that reliability is an important performance attribute of HF

ionospheric radio communication.

HF communication systems continue to thrive even in an era of ever increasing demand
for higher data rates. This goal is predominantly challenging for systems that have both
power and bandwidth limitations as well insistence on realization of the system
performance with an affordable computational complexities. For the realization of higher
data rate, the conventional Single Input Single Output (SISO) communication has
limitations of requirement of wider bandwidth or higher order modulation types. Hence,
there is need for a new technology that does not insist on higher bandwidth for a given
data rate. Multiple antenna systems fetch a significant enhancement to data rate and
system capacity. Multiple antenna systems, typically known as Multiple Input Multiple
Output (MIMO) systems, are designed to improve communication performance

significantly. To achieve robustness in the communication system, various diversity



techniques are used. These include time diversity (different time slots and channel
coding), frequency diversity (different channel frequency band, spread spectrum, and
Orthogonal Frequency Division Multiplexing (OFDM)), and also spatial diversity.
Spatial diversity requires the use of multiple antennas at the transmitter or the receiver
end. Multiple antenna technology can also be used to increase the data rate (spatial
multiplexing) instead of improving robustness. The MIMO systems rely on architectures
such as spatial multiplexing, transmit diversity and beam-forming to enhance the quality
of transmission, data rates and received signal gain as well as reduced interference. In
practice, these techniques are used separately or in combination depending on the channel
condition. The promise of higher data rates with increased spectral efficiency makes
MIMO attractive especially in HF communications where systems operate in rich

multipath environments.

MIMO technology has been a broad topic of research for the past few decades. Research
by Winters, Paulraj, Telatar, and Foschini [Winters 1994, Foschini 1998, Telatar 1999,
Paulraj 2004] has shown the potential of MIMO systems in improving the robustness,
directive gain, reduction of the probability of interception and enhanced throughput using
combination of diversity and multiplexing techniques. Both diversity and multiplexing
techniques are of specific relevance to many non-commercial bands, apart from
commercial bands, of frequency. Some non-commercial applications that are of direct
relevance to government agencies are Disaster Communication and Tactical
Communication scenarios. In general the main objectives of MIMO technology are:
- To provide improved reliability of communication links
- To offer increased capacity and coverage compared to conventional single
antenna
- To enhance the capability of ad-hoc network compared to existing
conventional systems
Primarily, research in MIMO systems is focused on short- range communication within
the VHF, UHF and SHF bands. Only little research has been conducted towards
exploiting MIMO technology for long-range communication in HF band [Gunashekar

2009, Stangeways 2006]. The multipath fading associated with a rich scattering



environment forms an essential channel characteristic feature requirement to exploit the
MIMO technique. Due to limitation of conventional SISO HF communication in terms of
coverage and capacity in the presence of multipath, MIMO technology finds its

application in HF communication to enhance the existing capabilities.

The understanding of HF channel propagation is important in the design, deployment and
management of the resources (Bandwidth, power, and system computation) to achieve a
reliable system performance (date rate, BER, SNR). For providing a realistic MIMO-HF
system performance in the design process, channel characterization and a model that can
accurately describe the propagation (transmission) medium are essential. Characterization
of the HF channel requires both the measurements based on performance parameters as
well as simulations that precede the measurement. Channel simulations are used to verify
the validity of the designed communication system performances in the laboratory by
incorporating channel impairments (such as delay, attenuation, multipath fading, and
system non-linear effect and non-Gaussian noise scenario) of a practical HF
communication channel. For the design and performance optimization of HF
communication systems, accurate and realistic MIMO-HF channel modelling with
multipath fading phenomenon associated with HF channel parameters (delay spread,
Doppler spread ) along with non-linearity of the HF system as well as non-Gaussian

noise are crucial. They are applicable to both SISO and MIMO systems.

Various approaches for characterizing and modelling the HF channel are available in
the literature. Among them, Watterson model is considered to be more prominent
because of its simplicity and analytical nature. The pioneer work of Watterson
[Watterson 1970] has been considered a practical way of representing the HF channel
model and it is specifically referred to as Watterson model. This model assumes the
amplitude variation of the channel to follow a Rayleigh distribution. Further, the
Doppler spread on each of its multipath is assumed to exhibit Gaussian power spectrum.
In brief, the representation of the Watterson channel model can be visualized as an ideal
tapped delay line, where at each tap and delay line, signal gets multiplied with tap-gain

function that is accumulated recursively. The tap-gain functions are filtered to produce a



Gaussian Doppler spread in the power spectrum of multipath propagation. The tap-gain
function to characterize the channel parameter can be realized either by Finite Impulse
Response (FIR) filter or Infinite Impulse Response (IIR) filter. The guaranteed accuracy
and computational efficiency of channel characterization depend on whether it involves
FIR or IIR. The FIR approximation of a channel model often requires a large number of
tap coefficients, and the order of the filter increases with the increased sampling
frequency (bandwidth) of the signal. It is well known that IIR filters can capture the
system dynamics (time variants, Doppler spread) with fewer parameters (tap
coefficients and order of filter) as compared to FIR filters [Radenkovic 2003]. The
analytical response of channel modelling using IIR/Auto Regressive (AR) filter has
better approximation for a wide range of Doppler spectrum with minimum order of
filter and hardware resources [Baddour 2005]. The IIR configuration has a relative
advantage of smaller silicon chip area and lower power consumption compared to FIR.
This is attributed to the sufficiency of lower order of IIR configuration to retain the
optimal accuracy and therefore has become a more preferred choice for hardware

implementation of channel simulators.

The channel parameters that characterize the channel conditions have an effect on the
transmission of the data. The effects of channel conditions on the transmitted data must
be estimated to recover the transmitted information correctly. Often, the estimation of
channel parameters is based on an approximate underlying channel model for the radio
wave propagation. Channel estimation is a challenging task in receiver design since the
accuracy of the channel estimation technique plays a major role in evaluating the
performance of the system. The role of channel estimation is directed to counter the
effects of variation of statistical channel parameters (such as delay spread, Doppler

spread) for achieving an acceptable system performance, as specified by the designers.

Channel estimation based on supervised methods of signal detection algorithms requires
the knowledge of channel impulse response, which is usually estimated by using the
known training (mid-amble) symbols in the middle of the transmission burst. In general,

there are two types of estimation approaches: Classical and Bayesian. In the classical



estimation, the vector (received time samples) to be estimated is viewed as
deterministic, but unknown. In Bayesian estimation, the estimate is determined based
on the Probability Density Function (PDF) of the received samples.

Several supervised channel estimation techniques based on adaptive filters, including
Least-Mean-Square (LMS), Extended Kalman Filter (EKF) and Recursive-Least-Square
(RLS) [Haykin.1996] are almost linear tracking methods. These linear methods cannot
perfectly track or estimate the HF channel associated with non-linearity and non-
Gaussian noise. To deal with both the non-linearity as well as non-Gaussian noise,
Particle Filtering (PF) [Gordon 1993] is emerging as a powerful method for sequential
signal processing, with a wide range of applications in science and engineering [Djuric
2003]. PF is a Sequential Monte Carlo (SMC) methodology [Wang 2004], where the
basic idea is the recursive computation of relevant probability distributions using the
concept of important sampling and approximation of probability distributions with

discrete random measures.

The overall performance of HF system depends significantly on the effective utilization
of resources. The critical utilization of resources depends on the choice of channel
estimation technique and the estimation technique must prevail even under adverse
channel conditions such as system non-linearity, time varying multipath fading and non-
Gaussian noise environments. In view of these considerations and the inability of the
conventional estimation techniques to fulfil the requirements of the context, an alternative
approach to develop adaptive channel estimation technique for the HF channel invoking
the principle of Bayesian forecasting will be of practical importance. Channel estimation
based on PF is an ideal choice to deal with the system non-linearity and non-Gaussian
noise scenarios [Bergman 1999, Arulampalam 2002, and Doucet 1998]. Reported
research in [Haykin 2004] revealed that the PF can offer performance improvement of the

MIMO wireless channel above that of the UHF band.

In the design of reliable and high data rate HF communication systems, the following

aspects demand further research on:



Channel Characterization and Modelling:

It necessary to benchmark the performance of designed HF communication system in
practical scenario by subjecting the system for various channel impairments. To
emulated the practical HF channel impairment in laboratory following feature are
necessary,

e Computationally efficient simulation module for HF channel characterization and
modelling that is valid for both SISO as well as MIMO configurations.

e Impulse response (Transfer function) of the channel model which can emulate
near practical HF channel by incorporating channel impairments comprising
multipath fading, system non-linearity and non-Gaussian noise.

Channel Estimation:

To mitigate the effect of channel impairments in the receiver, channel estimation
technique is employed to estimate the effects of channel impairments. These channel
impairment information is utilize by subsequent module in receiver to recovery the
transmitted symbols. The following feature is required for channel estimation is
necessary,

e Extension of channel estimation algorithms from conventional SISO to MIMO
system to take advantage of potential benefits, such as diversity and multiplexing
gain , as well as to counter the effects of rich multipath HF environment for the
improved reliability and enhanced data rate.

e HF channel estimation algorithms that can deal with the non-linearity of the

system, channel impairments as well as non-Gaussian noise scenario.

The focus of the proposed thesis is to address and resolve the research issues listed under

both channel characterization and channel estimation.

The goal of computationally efficient approach for HF channel characterization and
modelling is realized through the application of the IIR Filter/AR approach to model the
HF channel impairments instead of conventional FIR filter. The generic and the versatile
features of the IIR filter based approach for modelling the HF channel impairments have

been demonstrated by its application to both SISO and MIMO-HF system.
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Mathematical models of the statistical parameters of the HF channel such as delay spread,
Doppler spread, attenuation and frequency shift have been developed and realized
through computationally efficient schemes to emulate near practical HF channel. The
developed mathematical models have been proved to be applicable to both SISO and

MIMO system configurations.

For enhanced reliability of the HF communication link, this thesis analyses the channel
estimation algorithm with the joint application of MIMO and PF techniques to counter
the channel impairments. The thesis also substantiates the utility of MIMO approach in
the realization of higher data rate of the system as well.

Similar to MIMO serving the stated twin objectives of both enhanced reliability and
higher data rate, this thesis demonstrates the objectives of PF in not only ensuring
increased reliability but also its capability to deal with system non- linearity and non -
Gaussian noise scenario. Although one can invoke the PF concept devoid of EKF, this
thesis attempts a unified approach wherein PF and EKF schemes have been combined to
realize better posterior density functions resulting in improved channel estimation. The
expected improvement in the receiver performance in lieu of improved channel
estimation algorithms as well as replacement of conventional SISO with MIMO systems
evaluated through the system parameters like data rate and reliability have also been

analysed in this thesis.

1.1.1 Objectives of the Thesis

Channel characterisation and modelling play important role in the realization of desired
system performance of MIMO-HF systems. In particular, it is always desirable that
channel characterisation and modelling should closely approximate the practical MIMO-
HF channel. Channel simulator/modelling are an effective tool to analyse the effects of

hostile channel parameters on the system performance in laboratory.

An efficient and adaptive channel estimation technique that can prevail over the
commonly prevalent non-linearity of system, time varying multipath fading and non-

Gaussian noise environments in a HF channel is an important need for effective



utilization of resources as well as in the design of a HF communication system featured
with reliability and high data rate. Another research aspect of equal significance is the
requirement to develop efficient adaptive (recursive) techniques for channel estimation to
mitigate the imperfections in the transmission caused by both the non-linearity of system

and time-varying HF channel to enhance the capacity and the reliability of a HF link.

From the above research perspectives, this thesis addresses the following questions:

(1) Given an SISO-HF channel model, what are the modifications necessary for
its extension to a MIMO-HF configuration?

(2) Given such an enhanced HF channel model which can cater for both SISO and
MIMO configurations, can the developed model be imparted the capability to
handle the adverse scenario such as multipath fading, system induced non-
linearity and non- Gaussian noise?

(3) Can the channel model thus developed be used in a real-time channel
estimation algorithm and will such an algorithm enhance the capacity and

reliability even in the presence of realistic interference?

This thesis envisages to address the answers to the above listed research questions

through the realization of the following objectives:

1. To analyse an appropriate scheme for incorporating the short term multipath
parameters in the characterisation and modelling of MIMO-HF channel
associated with the non-linearity of system, non-Gaussian noise and spatial
correlation

2. To explore the feasibility of extending the existing Watterson SISO-HF channel
model to MIMO-HF channel model

3. To propose and validate the computationally efficient HF channel modelling

applicable to both SISO and MIMO configurations



4. To develop and implement a PF based robust channel estimation technique for
effective utilization of system resources leading to the enhanced capacity as well
as reliability of HF links under adverse channel impairment catering to both the
SISO and MIMO configurations

5. To analyse the feasibility of applying the developed PF based channel estimation

technique from the perspective of real time applications to MIMO-HF channel

1.2 Organization and Outline of the Thesis

A succinct description of the organization of the chapters of the thesis is as follows.

In chapter 2, an introduction and review of HF channel characterisation and estimation
followed by MIMO principles are presented. Chapter 3 discusses a survey on non-linear
filtering technique followed by sub-optimal non-filtering that serves as basis for Particle
Filtering. Chapter 4 presents a computationally efficient approach for modelling the HF
channel with both SISO and MIMO configurations. An analysis of the effects of small
scale fading, system induced non-linearity and non-Gaussian noise on Particle filtering
based channel estimation algorithm is discussed in chapter 5. A summary and assessment

of the research findings of the thesis are presented in chapter 6.



CHAPTER 2

INTRODUCTION TO MIMO SYSTEMS FOR HF CHANNEL
COMMUNICATION

Wireless systems continue to strive for ever increasing higher data rates. This goal is
predominantly challenging for systems that have both power and bandwidth limitations
as well insistence on realization of the system performance with an affordable
computational complexities. As conventional communication has limitation in using
more bandwidth or higher order modulation types, there is need for new technology.
Multiple antenna systems give a significant enhancement to data rate and channel
capacity. Multiple antenna systems are typically known as Multiple Input Multiple
Output (MIMO) systems and are designed to improve communication performance
significantly. To achieve robustness in the communication system, different diversity
techniques are used. These include time diversity (different timeslots and channel
coding), frequency diversity (different channel frequency band, spread spectrum, and
Orthogonal Frequency Division multiplexing), and also spatial diversity. Spatial diversity
requires the use of multiple antennas at the transmitter or the receiver end. Multiple
antenna technology can also be used to increase the data rate (spatial multiplexing)
instead of improving robustness. The MIMO system relies on techniques such as spatial
multiplexing, transmit diversity and beam-forming to enhance the quality of transmission,
data rates and received signal gain as well as to reduce interference. In practice, these
techniques are used separately or in combination depending on the channel condition.
The promise of higher data rates with increased spectral efficiency makes MIMO
especially attractive in wireless communications where systems operate in rich multipath

environments

The research community has extracted the inherent potential benefits of MIMO in various
aspects for wireless communications in both civilian and commercial systems through the
pioneering contributions of [Foschini 1996], [Paulraj 2003] and [Telatar 1999]. MIMO
technology has promised to enhanced capacity and reliable communication links for
future wireless communication systems. Perhaps even more striking feature of MIMO is

that just a few years after its invention, the technology seems to have poised for its
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applications is large-scale standards-driven commercial wireless products and networks
such as broadband wireless access systems, Wireless Local Area Network (WLAN),

Third/Forth generation (3G/4G) networks and beyond.

HF data rates are currently too low to support reliable video or other data-intensive
communication because of low bandwidth allocations and challenging propagation
conditions. While recent efforts [Daniels 2013, Scheible 2014] have resulted in new
waveforms designed for wider bandwidths and higher data rates, the highest rates are
achievable only in the most favourable conditions. These conditions cannot prevail
consistently due to the inherent variability of the HF channel. Further, enhancing data
rates with HF through bandwidth expansion is increasingly difficult given the scarcity of
acquirable HF spectrum as well as the challenges in forcing a change in international

spectrum policy.

While prior work in academic and non-academic (commercial) research has suggested
that HF sky-wave channels can support MIMO processing [Gunashekar 2009,
Strangeways 2006, Tomei 2013, and Scheible 2014], prior experimental studies have
made impractical assumptions for tactical communications [Ndao 2011]. For example,
[Ndao 2011] has assumed antennas that are spatially separated by many wavelengths
(tens of meters) at both the transmitter and receiver. A flexible tactical HF MIMO
solution cannot afford this separation of antennas. [Daniels 2013] demonstrated the
feasibility of MIMO-HF in a small-array configuration for Near-Vertical Incidence Sky-
wave (NVIS) links. Future HF MIMO systems will exploit both diversity and spatial
multiplexing through smart adaptive processing. Due to the limitation of conventional HF
SISO communication in terms of coverage and capacity in the presence of multipath,
MIMO technology finds itself as an alternative to enhance the existing capabilities of HF

communication.

Channel characterisation and modelling play important role in the realization of desired
system performance of MIMO-HF systems. In particular, it is always desirable that

channel characterisation and modelling should closely approximate the practical MIMO-
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HF channel. Channel simulator is an effective tool to analyse the effect of hostile channel
parameters on the system performance in laboratory.

Channel estimation is a critical subsystem of a receiver block to counter the effect of
channel impairment on the receiver performance. Channel estimation is a challenging
task in receiver design since the accuracy of the channel estimation technique plays major
role in evaluating the performance of a system. Basically, the HF channel is not only
time-variant but also dynamic in nature and is also subjected to multipath propagation,
mobility, local scattering of environment and static or dynamic change in the locations of
transmitter and receiver. Because of the inherent varying nature of HF channel,
transmitted signals are more likely to be subjected to detrimental effects before reaching
to the receiver. The role of channel estimation is directed to counter the effects of
variation of statistical channel parameters (such as means, variance, delay spread,
Doppler spread) for achieving the acceptable system performance as specified by the

designers.

In this chapter three topics are discussed. An introduction to HF channel and implications
of characterization of HF channel is presented. This is followed by a discussion on
MIMO concept as applicable to HF communication and signal processing to achieve both
capacity gain and reliability. The review of HF channel characterization and estimation is

the third topic of significance for this chapter.

2.1 HF Communications

Radio frequency range spanning 3 to 30 MHz is classified as High Frequency (HF) or
shortwave or sky-wave communication for long distance communication. HF
communication offers lower reliability and band limited data transmission compared to
other wireless communication usually meant for medium and long range communication.
When compared to other wireless communication such as satellite and terrestrial
communication, HF communication is not vulnerable to Electronic Counter Measure
(ECM) and destruction since it does not need huge infrastructure as compared to
cellular mobile; Intermediary infrastructure is not required between the transmitter and

receiver . Due to this advantageous feature, HF communication becomes the preferred
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mode during emergency scenario, natural calamities/disaster and other unpredicted

situation applications [NTIA 1998].

The phenomenon of refraction of HF radio waves from the ionosphere is referred as sky-
wave propagation or communication. Suitability of ionospheric portion of spectrum for
medium and long communication varies greatly with a complex combination of

following factors [Harris Co. 1996, NTIA 1998]:

- Sunlight/darkness at site of transceiver
- Transmitter/receiver proximity

- Season

- Sunspot cycle

- Solar activity

- Polar aurora

In addition, other factors that affect the given HF communication are

- Maximum Usable Frequency (MUF)
- Lowest Usable High Frequency (LUF) and a

- Frequency of Optimum Transmission (FOT)

The impact of HF radio propagation on channel characterization, application of HF
communication, inherent benefits of HF technology and challenges in HF communication

are discussed in the next section.

2.1.1 Relevance of HF Radio Propagation on Channel Characterization

The characterization of a communication channel depends on radio propagation
phenomena. The characteristics of HF channel model to be invoked in subsequent chapter
are based on the short-term fading and dispersive effect of the HF sky-wave path. This
effect is modelled as tapped delay line model for HF channel by [Watterson 1970]. The
various propagation phenomena [Cannon 2002, Harris Co.1996] that define the channel

characteristics discussed in detail in subsequent sections are:
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e Jonospheric physics

e Radio Wave absorption anomalies
¢ Radio noise in HF band

e Propagation modes

e Short term loss factors

e Dispersive characteristics

I. Ionosphere

The structure of the ionosphere, its different layers, height of layers and ion density
within the layers, constitute the essential parameters to define the HF sky-wave
propagation [Watterson 1970, Cannon 2002, and Harris Co0.1996]. This sub-section is
meant to summarize ionospheric characteristics that affect HF sky-wave propagation.
Figure 2.1 shows the phenomena of radio propagation. There are two modes of
propagation namely ground wave and sky-wave propagation. Ground wave has four
components such as direct, surface, reflected from the earth and refraction due to
atmosphere [Harris Co0.1996]. Sky waves travel Beyond Line-Of-Sight (BLOS). At
certain frequencies, sky-waves act as repeater such that radio waves are refracted/bent,
returning to earth hundreds or thousands of miles away depending on density of
ionisation of the layer, frequency, angle at which wave enters the layers, time duration
and atmospheric conditions. The medium for sky-wave is the ionosphere. The
distribution of ionospheric medium is classified into various regions as shown in the

Figure 2.2.

D region exists between 30 to 55 miles (48 to 88 Kms) above the earth only during day-
time with less reflection of HF radio wave. The D region has the ability to refract signals
at low frequencies. High frequencies pass through it with only partial attenuation. The
major limiting factor in this region is the lower limit on the achievable LUF. This
shortcoming is attributed to ionic collisions that eventually lead to absorption of sky-
wave. The absorption is proportional to the amount of ionization of D layer. Higher the
ionization, greater will be the energy loss suffered by the radio waves as they pass

through the D layer. Absorption is thus most pronounced at mid-day. D layer absorption
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increases rapidly following a large solar flare, disrupting HF communications for up to
several hours. Since the absorption factor is inversely proportional to square of operating
frequency [Harris Co.1996], there is a lower limit below which sky-wave propagation

ceases to be effective.

E region ranges from 60 to 90 miles (96 to 144 Kms) above the earth only during day-
time. The E region has the ability to refract signals at high frequencies (up to about 20
MHz) than refracted by the D region. The absorption in E region is relatively less when
compared to D region. Reflection of sky-wave in this layer is due to the scattering
phenomena caused by irregularities in ion density due to turbulence and from meteor
trails leading to sporadic propagation characteristics. A sporadic E layer can greatly
increase the radio wave frequencies that the E layer is able to reflect. However, it can also
be pose a problem, as it may prevent such frequencies from reaching the F layer which

supports propagation to a greater range in a single hop than does the E region.
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Figure 2.1 : Propagation paths
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Figure 2.2 : Regions of the ionosphere

F region is sub-divided into F1 and F2 regions. F1 region exists during day-time at a
height of about 90 to 155 miles (144 to 250 Kms) above the earth. During night time this
F1 region gets merges with F2 region. F2 region operates from about 155 to 375 miles
(250 to 603 Kms) during night-time and extends to 400 miles during the day. In general F
region provides the refraction necessary to bend the radio wave back to earth for long
distance communication. This refraction process (refractive index) is a function of ion
density and frequency. F2 region sets an upper limit on the operating frequency (MUF),
with the frequency below MUF getting reflected to earth. For frequencies above MUF,

HF radio waves will penetrate the F layer and is not reflected back to earth.

II. Natural Phenomena

Natural Phenomena cause inconsistent propagation and are usually associated with high
absorption. The time and duration of the high absorption cannot be predicted apriori.
The duration of high absorption can last for few minutes to days during which time, the
sky-wave path is rendered unusable. This effect depends on the geographical location.

Some of the natural phenomena which lead to the high absorption are highlighted below.
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Solar Activity

Solar Activity is due to the variation of ionized regions caused by Sun’s intensity or solar
disturbance. The variations which significantly affect the HF sky-wave propagation are:
the eleven-year cyclic sunspot activity, solar eruption/flares, and particle radiation. The
impact of ionic density variation that changes the parameters such as MUF, D and E
regions’ absorption, and LUF. A long term effect of ionic density variation includes the

long term path loss.

Sudden Ionospheric Disturbances (SID)

SID occurs in D and E regions during day-time due to solar eruption. Its impact results in
attenuation/absorption of signal and hence complete loss of link in communication. The
SID is treated as long-term power fading. Usually it lasts anywhere from ten minutes to

several hours and is relatively steady.

Magnetic Storms

The effect of magnetic storms is similar to that of SID effect. Magnetic storms are caused
by particle radiation from the sun. The significant impact of magnetic storms on the
ionospheric channel is long term power fading which may last for several days. The
magnetic storm has two fold effects, namely reduction in ion density of F2 layer which

reduces the MUF and the increased absorption in D and E regions.

III. Radio Noise

In all radio communications, the limiting factor is the ability to receive weak signals
against the background noise. This background noise is ambient noise generated by
external environment, which is characteristic of the HF band. In effect, this noise is
embedded along the received signal via the antenna along with the wanted signals, which

limit the performance of receiver.

The ambient noise environment is classified into two parts namely irreducible residual

ambient noise which is constant in any particular location, and incidental noise from
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man-made sources. The combination of these two noises determines the minimum usable

signal level. A detailed discussion of radio noise is presented in chapter 4.

IV. Propagation Path or Mode

Radio Path

The HF radio path is established either by ground wave or sky-wave via reflections from
layers in ionosphere. Diffused scattering from atmosphere (such as troposcatter or meteor
scatter) can also lead to HF radio path. HF signals reaching a given receiver may arrive
by any of the several paths, as shown in Figure 2.3. A signal which undergoes a single
reflection is called a “one-hop” signal. A “two-hop” signal would imply that it undergoes
two reflections between the ground and the ionospheric layer. Likewise, a “multihop”
signal undergoes multiple reflections. The layer at which the reflection occurs is usually

indicated, also, as “one-hop E” , “two-hop F”, and so on.

F LAYER
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Figure 2.3 :Various paths by which a sky-wave signal might be received
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Figure 2.4 : Signal paths for a fixed frequency with varying angles of incidence

Figure 2.4 shows how radio waves may reach a receiver via several paths through one
layer. The radio signal reaches the receiver via two or more paths (multipath propagation)
through a single or multiple ionospheric layers by multi-hop between ionosphere and
earth. The various angles at which radio signal strikes the layer are represented by dark
lines and designated as rays 1 through 6.When the angle is relatively low with respect to
the horizon (ray 1), there is only a slight penetration of the layer and the propagation path
is long. When the angle of incidence is increased (rays 2 and 3), the rays penetrate deeper
into the layer but the range of these rays decreases. When a certain angle is reached (ray
3), the penetration of the layer and angle of refraction are such that the ray is first
returned to Earth at a minimal distance from the transmitter. However, that ray 3 still
manages to reach the receiving site on its second refraction (called a hop) from the
ionospheric layer. As the angle is increased still more (rays 4 and 5), the radio signal
penetrates the central area of maximum ionization of the layer. These rays are refracted
rather slowly and are eventually returned to Earth at great distances. As the angle
approaches vertical incidence (ray 6), the ray is not returned at all, but passes through the

layer.
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The signal dispersion in a multipath propagation is due to:
e Multiple hop
e Multilayer propagation
e Paths with low and high angle

e Ordinary and extraordinary rays from one or more paths

For HF channel model, reflecting sky-wave is considered for analysis via multiple path or
modes and reflection mechanism. Here mode refers to resolvable path of the signal
between transmitter and receiver. Normally, this mode is modelled as tapped delay filter
[Finite Impulse Response (FIR) or Infinite Impulse Response (IIR)] for channel
characterization. The co-efficient of tap delay filter controls the channel parameters such
as number of modes or paths, time delay between the modes, time spread and relative

amplitude of the signal.

Loss Factors

For HF propagation the medium path attenuation is caused by beam spreading,
absorption in the D, E and F1 layers. Also, absorption due to ground reflections during
multiple hop paths results in long term loss factor having both daily variation and a
seasonal variation. This long term medium loss exhibits under log-normal distribution.
The long term medium loss is not considered in modelling the path loss and it is usually
considered in the analysis of link budget.

Slight variation in path distance with a mode or between the modes is referred to as
fading and it causes short term loss. This loss is accommodated in the channel model

either as Rayleigh or Rician distribution.

Doppler Shift
Doppler shift is the variation in the carrier frequency of the HF wave subjected to ionic
density variations. It occurs due to turbulence in the F2 or sporadic E reflecting layer.

The Doppler shift in HF channel shows a typical variation of 1 to 5 Hz.
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Delay Spread

Delay spread occurs due to multiple copies of transmitted signal received at the receiver
and it is a function of the power received via different ionospheric paths of different path
lengths. The time delay difference between the various copies received is referred as
delay spread. This effect is an important parameter for HF channel model and it
stimulates various single or multiple hops. The typical delay spread varies from 1 to 5
msec.

A detailed description of characterization of HF channel is covered in chapter 4.

2.1.2 Inherent Benefits of HF Technology

I. Long range communications capability
HF radio can communicate over long distances involving thousands of miles. It can also
be used for purposes of emergency communication. HF communication provides access
to points outside of the communication network area. HF communication systems do not
rely on land-based infrastructure, such as land-line telephone, cellular and satellite
communication. During disaster in an area or in situations warranting emergency
operations, HF communication is the only alternative means of long range

communication.

II. No requirement of infrastructure and low cost of ownership

HF radio communication network does not require major infrastructure. It may require
fewer infrastructures compared to telephone land lines, cellular telephone and satellite
telephones. Typically HF radio user requires devices such as radio and associated
antennas. This is sufficient to communicate in the midst of an emergency situation. In
setting up a HF communication facility within the geographical boundary of a
country/region or locality, consideration must be given for installing the repeater or
critical emergency contact points at appropriate places to increase the range of
communication. For the scenario that involves the communication outside the country,
appropriate treaty or license agreement between the two nations is required to have an

uninterrupted communication between the HF radio users. Apart from the lesser
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infrastructure requirement, HF communication provides economically viable solution for
emergency wireless communication valid for the lifetime as compared to other modes of
communication, since it involves only one time initial investment rather than the periodic

equipment rental cost and cost involved in making a call.

2.1.3 Challenges in HF Communication

The performance of HF communication is widely dependent on how best the system is
designed to mitigate the effects of channel propagation. For example to compensate the
free space losses and attenuation in various ionosphere layers, an appropriate choice of
antenna gain and increase in transmitted power are required. Apart from this, appropriate
choice of the signalling waveform is required to a greater extent to compensate effect of
radio channel distortion such as multipath, Doppler effect and other distortions. The
signalling waveform includes the modulation techniques, error-correction code,
interleaving, and other related issues. In the initial phase of a HF system design, channel
simulator or characterization is required to analyse the system performance. The complex
ionosphere channel is a considerable challenge for the designer to assess HF radio system
and the designer’s success depends on a good understanding of the multipath as well as

Doppler characteristics.

Next section explains the concept of MIMO as applicable to HF communication and

signal processing to achieve both capacity gain and reliability of communication link.

2.2 Principles of MIMO

Main objective for any wireless communication system design is to achieve considerable
improvement in power as well as spectral efficiency relative to existing communication
system. The limitation in achieving better power and spectral efficiency mainly depends
on the characteristics of the wireless channel. Although there is considerable
improvement in both power and spectral efficiency by various predecessor technologies,
such as TDMA, FDMA, CDMA and to OFDMA. MIMO technology involves space-time
coding and the constellation (modulation) process provides significant improvement in

spectral efficiency, reliability and quality of links [Foschini 1998]. Initially, smart
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antennas technology was employed in multiple antennas at the receiver to exploit the
receive diversity. Later on, this technology has been extended to MIMO concept where
both transmit and receive antennas exploit the advantage of both space and time diversity
gain, and the linear increase in channel capacity with number of antennas without
increasing the power and bandwidth. The importance of MIMO technology can be
attributed to its ability to deal with multipath scenario, which hitherto was considered as
an undesirable feature in conventional systems. MIMO system under rich scattering
environment the individual channels realised between respective transmitters and receiver
virtually constitute independently fading channels. The spectral efficiencies associated
with MIMO channels are based on the premise that rich scattering environment provides
independent transmission paths between individual transmit and receive antennas.
Research of Jack Winters [Winters 1994] is considered as pioneering in MIMO
technology, which describes  ways of sending data from multiple users over same
frequency/time channel using multiple antenna technique both at transmitter and receiver.
Thereafter, several  academicians, scientists and engineers have made significant
contribution in the field of MIMO technology [Winters 1994, Tarokh 1999, Foschini
1998, Gunashekar 2009, and Paulraj 2003]. From the functionality perspective, MIMO
technology can be configured into three categories such as Precoding, Spatial
Multiplexing (SM) and Diversity coding [Gesbert 2003, Naguib 1998]. The concept of

MIMO communications systems are addressed in the next section.

2.3 MIMO Communication Systems

A basic block diagram of a MIMO wireless with M transmit antenna (TX;, ------ TXwm)
and N receive antennas (RX;, ----- , RXy) is depicted in Figure 2.5. A data stream of L,
information bits b(l) is de-multiplexed into M independent sub-streams at the
transmitter. Each sub-stream data is mapped using a modulation scheme (BPSK, QPSK,
M-QAM, etc.) to form transmits symbols. These mapped symbols are encoded into M
dimensional STC across the transmit antenna at k the interval to form transmitted s(k)
symbols. These symbols s(k), are transmitted across the MIMO fading channel H (k) and
is also subjected to AWGN n(k) , where [ and k represents the bit and symbol period

index respectively.
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On the receiver side, the signal r(k)received across N antennas is processed for

demodulation and is decoded to estimate the bit b(I) using MIMO receiver signal

processing block.

5,(K) TX | \(_ RX riky >
Mapping > MIMO
S +T. MxN PROC?LSSING
Input Bits pace 1ime channel + (n rk)
N Coding S(k) (k]) DETECTION
b(1))
Sm(k (k)
P TXwu RX x
Figure 2.5: Basic diagram of a wireless MIMO system
Under the assumption of symbol-synchronization and ideal timing, general MIMO
system can be represented using Equation (2.1)
r(k) = \/% H(k)s(k) + n(k) (2.1)
Where,
r(k) = [ry(k), rp(k), ... ... v (k)]T  is the vector of received symbols.
s(k) = [s1(k), sy(k), ... ... ... sy(K)]T  denotes transmitted symbols  with

normalized average energy E[|s;|?] =1
E; the total energy of symbol transmitted, which is independent of the number of
transmit antennas,

H (k) represents the M xN MIMO channel at respective symbol index k, given

as follows
hi1(k)  hyp(k) ... hyy(k)
k) = | oK) R (k) -y how () 2.2)
han (K)o (k) B ()

h,m correspond to the complex channel gain between transmit antenna m and

receive antenna n
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n(k) = [ny(k), ny(k), ... ... ... nyy(kK)]Tis the vector of independent and
identically distributed (i.i.d) of complex additive white Gaussian noise sample
with variance Nj.

If quasi-static channel is assumed for transmission, it would mean that channel H = H (k)

1s constant over a whole burst

R = \/% HS+ N , (2.3)
Where,
R is received symbol of dimension N x K,

S is transmitted symbol of dimension M x K, and

N is noise sample of dimension N x K.

2.4 Capacity of Multiple Antenna Systems

The analysis of channel capacity in multiple antennas proves the enhanced spectral
efficiency capability of a MIMO system. An inspiration for capacity analysis of multiple
antenna systems can be derived through the research of [Foschini 1996 and Telatar 1999].
The Figure 2.6 shows different configuration modes of a multiple antenna system. This
section facilitates a review on the capacity analysis of various MIMO configurations and

it amply shows that there is dramatic increase in capacity by using MIMO technology.

/

SISO Tx Rx
/

/

SIMO | Tx /1| Rx
1

MISO X :T Rx
T /

MIMO | Tx T o Rx

Figure 2.6: Different modes of multiple antenna configurations
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2.4.1 Capacity for Single-Input Single-Output (SISO) Channel

The channel capacity or spectral efficiency Cg;so , of a SISO communication system for
power constraint AWGN channel is defined as the maximum achievable error free
transmission data rate [Shannon 1948]
Csiso = B.log,(1 + p) bps (2.4a)
Capacity for given RF channel of bandwidth B is given as
Csiso = B.log,(1 + p) bps/Hz (2.4b)
Where,

p = Es / N, denotes the Signal to Noise Ratio (SNR) of the wireless system,
B is bandwidth of the signal in Hz.

2.4.2 Capacity for Single-Input Multiple-Output (SIMO) Channel

With N receive antennas, the average signal power at the receiver is N2 times the

individual power. There is an N- fold increase in Noise power also. Overall increase in

SNR given as
The increase in SNR is N times the SNR of SISO channel is given as
N2E
SNR ~ == N. 2.5
siMo = T p (2.5)

Thus, the channel capacity Cg;pyo for this SIMO system for given bandwidth is
approximately equal to

Csimo = B.log,(1+ N.p) bps/Hz (2.6)

2.4.3 Capacity for Multiple-Input Single-Output (MISO) Channel

With M transmit antennas, the signal power is divided into M transmitter branches.
Signal is coherently added to result in an M-fold increase in SNR as compared to SISO.
But noise power is same as in the SISO case because of the single receiver antenna. Thus,
the overall increase in SNR is approximately given as

M2

SNRMISO =~ = Mp (27)
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Thus, the channel capacity of MISO channel for given bandwidth is approximately equal

to

Cyiso = log,(1+ M.p) bps/Hz (2.8)
2.4.4 Capacity for MIMO Channels

The derivation of MIMO channel capacity bound has significance in defining the
effective throughput and it is still an active research area of interest. There are many
research publications only devoted only for capacity analysis and performance limits for
various MIMO channel configurations. The two most widely used approaches, based on
deterministic and random channel assumption are summarized in this section [Foschini

1996, Telatar 1999, Paulraj 2003, Biglieri 1998 and Marzetta 1999].

a) Deterministic MIMO Channel

The generalized capacity of deterministic MIMO channel is defined by Equation (2.9)
[Telatar 1999]

C =f I(s;7) bps/Hz (2.9)
Where,

r’ is received symbol

‘s’ is transmitted symbols

f(s) is the probability density function (pdf) of s and

I(s; ) is the mutual information between s and r, which can be expressed as

I(s;r) =H(r) — H(r|s) (2.10)
where,

H(r) is the differential entropy of r and

H(r|s) means the conditional differential entropy of r given that s is known.
Mutual Information (MI) is a measure of uncertainty about one random variable(s) given
the knowledge of another variable(r) over noisy channel. High mutual information
indicates a large reduction in uncertainty; low mutual information indicates a small
reduction; and zero mutual information between two random variables means the

variables are independent. However, MI is a measure ideally suited for analysing
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communication channels to find the dependence of the received signal (r) and transmitted

signal (s) over the noisy channel for given bandwidth.

Since the vectors s and n are independent, Equation (2.10) simplifies to

I(s;r) =H(r) — H(n) (2.11)

The maximization of the mutual information I(s;7r) implies maximizing differential
entropy H(r), which occurs when s is a Zero Mean Circularly Symmetric Complex
Gaussian (ZMCSCG). The distribution of I(s;r) is completely characterized by its

covariance matrix R, . The differential entropies H(r) and H(n) given in [Paulraj 2003]

are

E
H(r) = log, det(meR,,) = log, det (ne (NOIN + MSHRSSHHD bps/Hz

(2.12)
and
H(n) = log, det(meNyly) bps/Hz (2.13)
Therefore, the MIMO channel capacity can be evaluated through [Telatar 1999]
C = 1/78%log, det (Iy + 2 HRy H) bps/Hz (2.14)

Where Tr(Rgss) = M limits the transmitted symbol energy.

det(.) denotes determinant of matrix

Tr(.) denotes trace of matrix
The capacity C in Equation (2.14) is often referred to as the error-free spectral efficiency
or the data rate per unit bandwidth that can be sustained reliably over the MIMO channel.
If CSI is not known at the transmitter, then capacity for independent equi-powered

transmitted signal is given as
C =log, det (IN + %HHH) bps/Hz (2.15)

After performing Eigen decomposition on HH" , the Equation (2.15) can be expressed

as

C =3, log, (1 +£2,) bps/Hz (2.16)
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Where,

1. s the rank of the channel and

Ai(i =1,2,..........7,) are the positive Eigen values of HH " .

Equation (2.16) expresses the capacity of the MIMO channel as the sum of the capacities

of r. SISO channels, each having the gain A; and a transmit energy of % .

Further, if the elements of H satisfy both ||Hl-‘ j”2 = 1 and full-rank MIMO channel of
M = N =1, , then capacity of the MIMO channel is

C=Mlog,(1+p) bps/Hz (2.17)
The MIMO capacity for above case is therefore M times the scalar SISO channel
capacity. All the above mentioned capacity values can be improved if the channel or

some of its statistics parameters are known at the transmitter side [Foschini 1996].

b) Random MIMO Channel

Random MIMO channel H means randomly time-varying channel capacity. This channel
capacity is given by its time average. Two capacity values calculated for a random
MIMO channel are based on ergodic and outage channel capacity [Cho 2010]. The
ergodic capacity is given as

C = E [log, det (Iy + ZHR;HY)|  bps/Hz 2.18)
Where

E(.) denotes expectation
The outage capacity quantifies the capacity that will be guaranteed with an assured level
of reliability. For a chosen ¢ % -outage probability, outage capacity C,,.s is defined as
the information rate that is guaranteed for (100 - € ) % of the channel realizations. It
means P(C < Cyyry) = € % [Cho 2010, Biglieri 1998].
Figure 2.7 shows the 10%-outage capacity values for random MIMO-HF fading channels
with M = N and no CSI at the transmitter side. Water-filling capacity structure has been
assumed for the simulation results. As it can be noticed from the Figure 2.7, the capacity

increases reasonably with the number of transmit antennas.
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10%-outage capacity of random MIMO HF channels with M = N
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Figure 2.7: 10%-outage capacity of random MIMO channels with M =N

2.5 Space-Time Coding (STC) Techniques

The effective utilization of MIMO capacity to achieve the theoretical bound depends on
the STC technique employed. The STC technique performs coding in both space and time
domains. Because of this, STC technique utilizes the correlation between signal
transmitted from various antennas at different time periods [Vucetic 2003, Alamouti
1998]. The advantage of STC is that it provides both transmit diversity gain and power
gain over spatially uncoded system for the same bandwidth.
In reference to Figure 2.5, STC technique does show how the information bits b(l) are
mapped into the transmitted symbol S. Assuming L. = L,, data bits are mapped using a
modulation scheme (example — BPSK, QPSK, M-QAM) having constellation of B points
leads to data symbols d(n),
Where,

L. is number of coded transmitted bits

Ly, is number of uncoded transmitted bits
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n ranges from 1 to N, = Lc/q and

q = log, B , represents the modulation order.
B is number of points of a constellation
These N, symbols are processed by a space time coder which adds redundant parity

symbols of MK — N, resulting in M X K transmitted symbols S. The effective data rate

of the channel is Ly / K= qNC/ K = qrs, where 15 = NC/ i the spatial code rate and K

1s number time index in the frame.

If any forward error coding technique of rate r, is used before symbol mapper i.e.,

L. =Ly/r; and N, = L./(qr;) ,then the effective data rate is expressed as

Lo _ LpTe _ GNcTe _
== =qnT (2.19)
The spatial rate r; varies from O (infinite coding diversity) to M (full multiplexing) based
on the choice of STC scheme. The following subsections show the structures and benefits

of the most commonly used STC techniques.

2.5.1 Spatial Multiplexing

Spatial Multiplexing (SM) technique processes different information of data in the
parallel streams by transmitting simultaneously over M transmit antennas by exploiting
multipath. The receiver processes the M spatial streams signal to recover the transmitted
information. The optimal detection is quite complex and several sub-optimal low-
complexity detectors ranging from zero forcing to complex soft aposteriori probability
detection can be implemented to recover the transmitted data. Higher capacity gain can
be achieved based on the radio frequency conditions and users’ proximity to the base
station. With increase in data rate at short distance, both spectral and power efficiency
can be achieved significantly.

Basic block diagram of an uncoded SM system commonly known as Vertical Bell Labs
Layered Space Time (V-BLAST) is shown in Figure 2.8. The information bits are
mapped to a constellation mapper (QPSK, QAM) resulting in symbols s. and these

symbols are streamed into M parallel sub-streams. These parallel streams are transmitted
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independently at a spatial rate of ; = M. The effective signalling rate due to this symbol

transformation is gM bits per symbol transmission period, where, g is modulation order.

s MOD + Y RX1 + .| DEMAP |n _
» TX, DEMOD d ”
MxN MIMO SM
Input Bits | Mapper e Channel DETECTION
—> > E
Sm
»| MOD + RX N+ DEMAP |1y
TX u DEMOD

Figure 2.8 : Diagram of an uncoded N xM spatial multiplexing MIMO system

2.5.2 Space-Time Block Codes

The space-time coding scheme by [Tarokh 1999], is essentially a jointly design of
coding, modulation scheme, transmit and receive diversity. This scheme can be operated
on the block of input symbols commonly referred as Space-Time Block Codes (STBC) or
operate on one input symbol at a time (like Traditional Trellis Code Modulation) is

referred as Space — Time Trellis Code (STTC).

Initially STBC scheme is proposed by [Alamouti 1998] where the coding scheme is
designed to achieve transmit diversity with two transmit and a receive antennas. Later on,
this scheme was modified by [Tarokh 1999] to improve both the capacity and diversity
performance and it is known as STBC. For example, in a 2x2 antenna STBC structure,

the transmitted symbol stream is divided into pairs s = [s;, s] that are mapped into a 2x2

matrix S 4, which is defined as

_ (51 —S;
Sy = (52 5! ) (2.20)

The first and second columns of S, represents the symbols transmitted at t; and t, time
index. The row index represents the antenna space. The signals at the receiver antenna for

symbol time indices 1 and 2 are given by Equation (2.21)
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y = [Z] 2.21)

Tl == \/% h1$1 + \/% thz + Tll (222)
Es * Es *
rz :\/; h1$2 + \/; hzsl + nz (223)

and h; and h, are the complex channel coefficients (gains) between respective transmit

Where,

and receive antennas. The channel is assumed as quasi-static over period of symbol
transmission.
The relationship between the received vector y, channel matrix H,z noise vector n and

transmitted symbols s can be expressed as system Equation (2.24),

_ B [ h [51] nl] _ e
Y= \/: [hz —h;] 5,0 T lngl =7 Herrs +1 (2.24)
where s = [s1 S2]T,
n=[n nz]"
H,yr is the effective channel matrix that is orthogonal, there by
H‘fffHeff = Rl L.

Ifz = Hfffy, then

z= |2k} s+ 7 (2.25)

Where.

71 is a vector of noise samples having zero-mean and with covariance value

defined as E{fifi} = ||h||2N,I,. Therefore Equation (2.25) can be simplified as
zi= |2 RlE Ls; + 7, i=12, (2.26)

Equation (2.26) can be considered as two individual detection tasks to estimate the

symbols. The received SNR value 1 corresponds to each symbol is given by,
2
n= @ (2.27)
If E(||h||2) = 2, the SNR at detection will be n=p,
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Where p = % is the SNR of the STBC system and is also referred as the SNR per

0
transmitted symbol for the Alamouti scheme [Tarokh 1999, Durgin 2003].

Further, the Alamouti Scheme can be extended to higher MIMO antenna configurations
using Orthogonal Space Time Block Coding (OSTBC). An example of such coding
scheme, which can achieve a diversity gain on M X N for M=4 orthogonal code structure
is given in Equation (2.28) with spatial rate of r; =1 [Su 2003, Gesbert 2003]

S22 51 S4  TS3
Sstec = [s3 —s4 51 s, (2.28)

2.5.3 Space-Time Trellis Codes

Space — Time Trellis Code (STTC) techniques are effectively a joint design of FEC,
modulation scheme, transmit and receive diversity to mitigate the effects of fading for
multi-antenna system [Tarokh 1999]. Figure 2.9 shows Trellis structure with QPSK, 4
state STTC for M=2 transmit antennas. Each Trellis state node has ‘A’ groups of
symbols to transmit, where A is modulation symbols or constellation size. These codes
are designed to maximize the coding gain and diversity gain which in turn depends on
Trellis structure and number of receive antennas. Maximum Likelihood (ML) sequence
estimation based on Viterbi decoder is used to decode the transmitted frame at the

receiver.
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3
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Figure 2. 9: Trellis diagram for a QPSK, 4-state STTC code with M = 2
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2.6 Need of MIMO Approach for HF Communication

Basically the MIMO concept is limited to the UHF band and above by exploiting the rich
scattering effects. Primarily the MIMO technology is used to improve spectral efficiency
and reliability of communication system [Paulraj 2004, Foschini 1998, and Telatar 1999].
HF propagation is prone to fading as a consequence of multipath effects and provides rich
scattering environment. The application of MIMO for HF would be an ideal choice to
exploit the effect of fading in useable form to improve the capacity and reliability of HF
system. The efforts of the past research pertaining to the topic with a focus on exploiting
MIMO technique within the HF bands have been rather limited. In open literature, the
limited contributions are evident through [Ndao 2009, Strangeways 2007, Xu 2004,
Gunashekar 2007, Brine 2010, Alvarez 2011, Daniels 2013, Scheible 2014, and Fabrizio
2000].

The non-ideal characteristics of ionospheric channels such as severe linear distortion; fast
channel time variations, propagation effects, the high interference levels and severe
fading impose constraints on the achievable high-data-rate of transfer over HF channel
[Eleftheriou 1987, Clark 1989]. The increase in demand for higher capacity and reliable
adaptive links for HF channel [Clark 1989, Eleftheriou 1987, and Brine 2010] has
motivated the researchers to investigate the time, frequency and spatial dimensions of
signal transmission. Thus, signal transmission with multi-dimensional approach has
emerged as a powerful paradigm to meet these demands. MIMO communication systems
offer significant capacity gain compared to conventional SISO systems by exploiting the
spatial dimension [Gunashekar 2007]. MIMO communication is an emerging technology
offering significant promise for high data rates and mobility required for the next

generation HF communication systems.

The next section presents a Review of HF channel characterization and estimation.
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2.7 Review of HF Channel Characterization and Estimation

The understanding of radio propagation is important in the design, deployment and
management of the resources (Bandwidth, power, and system computation) to achieve
the reliable system performance (Date rate, BER, SNR). For providing the realistic
system performance in the design process, channel models that can be accurately
described, the propagation channels are essential. The propagation of radio channel

describes the nature of the environment.

Radio propagation is heavily site-specific and can vary significantly depending on the
terrain, velocity of the mobile terminal, frequency of operation, interference sources, and
other dynamic factors. Accurate characterization of the radio channel through key
parameters (such as multipath fading parameters: delay spread, Doppler spread, etc.) and
a mathematical model are important for predicting signal coverage, achievable data
throughput, specific performance attributes of alternative signalling and reception
estimation schemes, analysis of interference from different sources of the systems, and

for determining the optimum location for installing the base station.

The essence of propagation of the radio channel plays important role in the design of any
wireless communication system. Achieving the near ideal system performance depends
upon the available resources (such as bandwidth, power). For higher system performance,
one needs to pay for the computational complexities. The system performance depends
on the dynamics of channel parameters which determine the magnitude of computational
complexities. In addition, channel characterization plays vital role in both network
planning as well as mitigation of radio interference. In general, characterization of
channel is broadly classified into large-scale and Small-scale fading channel [Sklar
1997a]. The small-scale characterization is usually invoked to improve the receiver
designs and to combat the impairment attributed to multipath environment. The
parameters that are under the purview of small scale characterization include delay
spread, angular spread, coherence bandwidth, Doppler spread, and correlation properties.
The significance of large-scale characteristics plays its role in analysis of geographical

coverage as well as interference of commissioned communication system.
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Channel estimation is a critical component of a receiver block to counter the effect of
channel impairment on the receiver performance. Channel estimation is a highly
challenging task in receiver design since the accuracy of the channel estimation technique
plays a major role in evaluating the performance of a radio system. Basically, the HF
channel is highly dynamic in nature and is also subjected to time, multipath propagation,
mobility, local scattering environment and static or dynamic change in the locations of
transmitter and receiver. Because of the inherent varying nature of HF channel,
transmitted signals are more likely to be subjected to detrimental effect before reaching to
the receiver. The role of channel estimation is directly related to counter the effect of
variation of statistical channel parameters (such as means, variance, delay spread,
Doppler spread) so as to ensure that acceptable system performance is achieved as

specified by the designers.

Both HF channel characterization and estimation are active research areas with the
expectation for near-zero or minimal error rate to facilitate enhanced acceptability of the
complete transceiver system. In this chapter, a review of channel characteristics and
estimation pertaining to HF channel is presented with a view to highlight the novelties
and the limitation of the techniques that are already being widely used. An attempt has
been made to bring out the contributions of the proposed thesis to overcome some of the
significant shortcoming of the existing techniques related to HF channel characterization

and estimation.

This chapter presents a review on channel characterization and estimation technique for
HF channel. An introduction to HF channel characterization and its literature review will
be discussed. This will be followed by a review on channel estimation techniques with

emphasis on HF channel.

2.7.1 HF Channel Characterization

The sky-wave HF channel characterization is important to evaluate the performance of a
communication system prior to its deployment. Channel characterization enables the user
or designer to predict signal coverage, achievable data rate and quality of link, which in

turn leads to adaptive selection of various transmitter parameters such as power level,
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modulation index, coding rate, preamble structure to compensate the undesired
attributes of  small-scale channel impairments. Channel characterization is used mainly
in laboratory to analyse signalling waveform integrity such as feed-forward error,
modulation, interleaver, preamble structure, synchronization, channel estimation and
other associated blocks needed to realize transceiver system [Sklar 1997a, 1997b]. The
feasibility of successful utilization of a given waveform integrity depends on the channel

parameters defining the channel characteristics.

The typical characteristic feature of a HF sky-wave communication channel is that it is
highly noisy. Combination of anisotropic and inhomogeneous dispersive nature of HF
channel leads to both deterministic as well as stochastic parameters of ionospheric
channel and subjected to both slow and fast fading in various latitudes [Cannon 2002]. It
is difficult to model exactly the ionospheric nature of HF channel. In general asymptotic
and numerical methods are employed in modelling the significant channel parameters to
realize the ionospheric HF channel characteristic. Consideration of multipath propagation
effects is a must and constitutes one of the significant features of characterization of
channel. The replicas of the transmitted signal at receiver after undergoing multiple
reflections from the various ionospheric layers associated with sky-wave propagation are

referred to as multipath effects.

The effectiveness of the analysis of complex nature of ionospheric channel
characterization hinges on the level of invoking the depth of underlying principles of
small scale channel impairments of radio propagation. The characteristic and behaviour
of the channel determine the quality of communication systems. The assessment of this
quality is subjective in due consideration of the degree of the dynamic nature of the
channel. Models of the signal distortions caused by the ionosphere are important
because they facilitate the design and testing of radio system via their
incorporation in channel characterization. The review presented in this chapter is aimed

to address the characterization of ionospheric channel.
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I. HF Channel Model and Review

Various ways of modelling the HF channel are available in the literature. Among them,
Watterson model is considered as more prominent because of its simplicity and analytical
nature. The pioneering work of Watterson [Watterson 1970] is a practical way of
representing the HF channel model and it is specifically referred to as “Watterson
model”. This model assumes the amplitude variation of channel to follow a Rayleigh
distribution and the Doppler spread on each of its multipath has Gaussian power
spectrum. Watterson model does not assume a particular type of distribution for the delay
spread. In brief, representation of Watterson channel model can be visualized as an ideal
tapped delay line, where at each tap and delay line, signal gets multiplied with tap-gain
function G;(t) and accumulated recursively. Each tap-gain function is defined [Watterson
1970] as

Gi(t) = Gia(exp(jrvit) + Gy ()exp(jmvyyt) (2.29)
Where,
Subscripts a and b represent the two possible magneto-ionic components.

v, denotes Doppler shifts,

Tilde sign (~) indicates that the G terms are sampled functions of two independent
complex Gaussian ergodic random processes, each with zero mean values as well as
independent real and imaginary components with equal RMS values. Such complex
sequences exhibit Rayleigh fading. The tap-gain functions are filtered to produce a

Gaussian Doppler spread in the power spectrum of multipath propagation.

In Clarke’s model of representing a wireless channel, wide-sense stationary isotropic
scattering signal is generated using a single correlated sequence of Rayleigh distribution
[Clarke 1968]. Practically scattering encountered in the environment is non-isotropic in
nature which affects the second order statistics of the channel and this constitutes the
primary reason for not invoking the Clarke’s model for HF channel analysis. Emulating
the equivalent fading scenarios is an essential feature for channel characterization and
this necessitates an input in the form of complex Gaussian sequences. The cross-

correlation operation on the complex Gaussian sequence exhibits the Rayleigh
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distribution. In the literature, a number of different algorithms have been proposed for the
generation of correlated Rayleigh random variates ([Young 2000, Loo 1991, H oher
1992, Verdin 1993, and Pop 2001]). The most popular among these channels to simulate
generate random variates is based on:

=  Sum-of-Sinusoids

= White Noise Filtering method

= Inverse Discrete Fourier Transform (IDFT) algorithm.

[Pop 2001] which has addressed the modelling of the sum-of-sinusoids algorithm that
encountered abnormal variation in stochastic behaviour and also shows that classical
Jakes simulator [Jeruchim 1992] generates the fading signal which is not wide sense
stationary. Subsequently [Zheng 2002] and [Zheng 2003], have analysed the stationarity
problem of sum-of-sinusoids to maintain accuracy of the correlation statics. Channel
modelling based on IDFT technique has high quality and accuracy in generating the
fading coefficient [Young 2000]. IDFT requires all input samples to generate the channel
characteristics with single Fast Fourier Transform [FFT] operation. This in turn would in
effect imply that IDFT algorithm is not suited for real time processing. Also, the memory
requirement and intensive computation for generation of large number of variates are

rather high and hence this technique is not feasible in general.

On the other hand, white noise filtering method is realized generally either by Finite
Impulse Response (FIR) Filter or Infinite Impulse Response (IIR) Filter. This method
guarantees accuracy and computational efficiency of channel characterization based on
FIR or IIR selection. FIR approximation of a channel model often requires a large
number tap coefficients, and the order of the filter increases with the increase of the
sampling frequency of signal. It is well known that IIR filters can capture the system
dynamics with fewer parameters (tap coefficients and order of Filter) as compared with
FIR filters [Radenkovic 2003]. In [Delmas 2000], it is discussed that realistic radio
channels often exhibit long tails of weak leading and trailing terms in its impulse
response. In the case of FIR filters, this leads to channel under-modelling effects and
degradation of modelling performance. IIR or AutoRegressive (AR) channel

representation can reduce the effect of modelling errors.
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Practically, narrow-band filter is used to characterize the Doppler spectrum of the
channel modelling with a very sharp roll off and infinite attenuation in stop-band region.
To realize this specification of narrowband filter, it is impractical to have a FIR filter with
large number of taps. But for same specification, IIR filter would need lesser number of
taps and has an advantage of ease of implementation. It requires fewer hardware
resources in term of silicon space, storage and computation time compared to a FIR filter.
Feedback structure of All-pole or Auto-Regressive (AR) or IIR filter allows steeper
Doppler frequency roll offs and cater for smooth flat response under irrational magnitude
response with minimum order compared to a FIR filter [Komninakis 2003, Baddour 2005
and Alimohammad 2007]. Analytic response of channel modelling using AR filter has
better approximation for wide range of Doppler spectrum with minimum order of filter
and hardware resources [Baddour 2005]. IIR configuration has relative merit of smaller
chip (ASIC) area and lower power consumption compared to that of FIR. This is
attributed to the sufficiency of lower order of IIR configuration to retain the optimal
accuracy and therefore has become a more preferred choice for hardware
implementations of channel simulators [Malik 2009, Alimohammad 2007 and
Alimohammad 2012]. Initially application of the AR model was for Kalman based
channel estimation technique to predict both short and long range dynamics of fading
channel [Eyceoz 1998, Wu 2000]. Later AR model technique has been extended by [Wu
2000, Zhang 2000] to realize channel simulator. It is found that [Zhang 2000] and
[Colman 1997] use low order AR process to realize the correlation statistics of channel.
The realized accuracy of correlation statistics falls short to ensure the desired channel
response. This can be attributed to the numerical instability of statistical parameters
resulting in its failure to model statistical parameter of channel. This has restricted the
scope of applicability of AR models. [Baddour 2005] has demonstrated the simple AR
modelling structure with correlated narrowband Rayleigh variates and also considering
non-isotropic Rayleigh random process. [Baddour 2005] also addresses numerical

stability problems of [Colman 1997, Zhang 2000].

Numerous HF channel simulators have been developed based on the Watterson HF

channel model [Watterson 1970, Mastrangelo 1997]. In current literature, the HF channel
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modelling is based on FIR Filter [Watterson 1970, Mastrangelo 1997]. The limitation of
such a model is its inability to accurately represent the important statistical
characteristics of the channel both in the frequency and the time domain. With
various critical analysis of work of various authors, it is found that work pertaining to
modelling of channel HF channel is only based on FIR filters. It is essential to address
AR approach for accurately generate band-limited Gaussian random processes to
characterize the HF channel. This thesis proposes to extend the application of [Baddour
2005] to characterize Doppler spectrum of HF channel. Thus far, in all the research work
pertaining to modelling of HF channel, only the Single Input Single Output (SISO)

scenario has been considered.

Most of the application of MIMO Communication is predominantly centred around the
ultra-high frequency band (3.1- 10.6 GHz) to provide significant improvement in
capacity without increasing the bandwidth. Inherently desired feature of highly rich
scattering feature for MIMO application is found in ionospheric HF channel [Gunasheker
2007, Abbasi 2009]. In the literature, there have only limited attempts to explore the
concept of MIMO to HF channel despite knowing the potential advantages of MIMO. In
order to improve the through capacity and reliability of HF link, it is essential to
characterize the MIMO-HF channel. Modelling of MIMO-HF channel is an important
entity in the channel characterization. There seems to be no research in open literature to
model MIMO-HF channel and, therefore, one of the contributions of this thesis is to

address the modelling of a HF channel.

2.7.2 HF Channel Estimation

In order to improve the performance of HF communication system in term of reliability
and effective data rate, channel parameters have to be monitored periodically. One of the
significant challenges in HF communication is that channel is highly dynamic nature both
in time and frequency. The data transmission through the HF channel is highly influenced
by the various layers within the ionosphere. The ionosphere medium which is anisotropic,
inhomogeneous, time and space variant. These severe physical constraint cause distortion

and dispersion of transmitted signals both in time and frequency domains [Arikan 2004].
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Before transmitting the information from transmitter end, snapshot of channel response is
necessary. Knowing the channel response in advance, adaptive resource allocation can be
scheduled between the various subsystems of communication. Adaptive resources such as
coding, modulation rate, power level, preamble scheme can be adjusted to the prevalent
channel conditions which lead to better utilization of the radio resources. Channel
estimation or prediction of the Channel State Information (CSI) is a crucial integral part
of the communication system for the extraction of the channel parameter. Channel
estimation/prediction of the rapidly HF channel fading enables to improve the link
reliability and capacity throughput [Ekman 2002, Johnson 1997] thereby amply

demonstrating the utility of channel estimation/prediction.

Performance of channel estimation algorithms is related to the extraction of the statistical
information of small scale propagation channel. Different techniques [Clark 1989,

Tugnait 2000] have been proposed to exploit these statistics for better channel estimates.

Channel estimation, along with most synchronization procedures, is itself a major and
historical topic of research in the realm of HF communications system. As such,
innumerable novel channel estimators have already been proposed and a relative
comparison of various estimators has been performed can be found in literature. One of
the obvious reasons for such an activity surrounding channel estimation is that there does
not exist a universal measure of performance to rate a given channel estimation with
respect to the other. Instead, several different selection criteria such as computational
complexity, Mean Square Error (MSE) of the estimate, robustness against outage channel
environment, and an optimal processing memory requirement have to be factored into the

decision process of selection of a channel estimator.

I. Review on HF Channel Estimation Methods

Channel estimation of ionospheric propagation is typically very costly in either time or
memory or both. Most of the practical available channel estimation schemes are based on
either Least Mean Square (LMS) algorithm or one of the Kalman based Recursive Least

Square (RLS) algorithms as means for estimating the HF link. A Kalman filter assumes
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that the channel performs a degree-1 Markov process on the signal [Clark 1989,
Eleftheriou 1987, Boroujeny 1996], which is a valid assumption for both time invariant
and random-walk channels. Thus, Kalman filter is optimum for either of the two channel
conditions, in sense that it can give the minimum MSE in the adaptive adjustment of the
receiver. Normally HF channel cannot be modelled as degree-1 Markov process, and
computer-simulation tests, in fact, have confirmed that the conventional Kalman filter,
together with its more previous developments is not optimum for a typical HF channel
[Clark 1989, Eleftheriou 1987, and Boroujeny 1996]. Further the Kalman filter is limited
to Gaussian stationary process. [Liu 2002] improved the channel estimate by applying

tracking techniques using Kalman filtering.

Initial work for improving the channel estimate by applying tracking techniques were
performed using Kalman filtering [Liu 2002]. Kalman-based systems necessarily require
a state model of the HF channel system. These systems modelled the channel with a static
AR process and additive channel noise with a Gaussian distribution. [Komninakis 2002]
has shown that low-order AR model based channel representation is prone to error at high
SNRs. In effect a model mismatch occurs between the AR channel model and the actual
channel itself. In order to overcome this deficiency, it becomes a necessity to increase the
order (and necessarily the overall complexity) of the state Equation. Realistically HF
channel is subjected to the conditions of system non-linearity, non-stationary fading and
non-Gaussian noise. This was demonstrated by channel sounding measurements of
typical HF environments [Clark 1989, Eleftheriou 1987, and Boroujeny 1996] and it

becomes almost a must to replace the Kalman filter with PF [ Arulampalam 2002].

A significant challenge to engineers and scientists is to find efficient methods for on-line,
real-time estimation and prediction of the dynamic parameters of the systems from the
sequential observations. Most of dynamical systems in applications such as HF
communication systems and navigation are non-linear and non-Gaussian. However, there
seems to be no effective algorithm with a universal appeal to treat non-linear and non-
Gaussian system. Recently, researchers have begun to concentrate on a new class of

filtering methods based on the Sequential Monte Carlo (SMC) approach.
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Particle Filtering (PF) is a class of sequential Monte Carlo methodology used for

Bayesian filtering. Discrete approximation of any probability density consists of weights

. AN
and states {Wt(l), xlgl)} ,
i=1

where
wis weight
x1s state
tis time instants

N is the number of particle, vary from i =1,.... N .

These states with associated weights are used to form an approximated Probability
Density Function (PDF) in a structured approach [Arulampalam 2002]. In filtering
context, the dynamics of the particles represent a particular state. These particles are
propagated over time through Monte Carlo simulation to obtain new particles and their
weights. The importance of particle filter will be felt when an analytical form cannot be

realized for the required posterior PDF of system.

The basic principle of PF lies in the recursive computation of appropriate probability
distributions using the concepts of importance sampling and approximation of probability
distributions with discrete random measures. PF has drawn attention of many researchers
in various fields including those in signal processing, statistics, and econometrics. This
interest stems from its potential to cope with non-linear and /or non-Gaussian scenario
[Djuri’c 2003, Hoang 2013]. Based on the ideas of sequential importance sampling and
the use of Bayesian theory, PF is predominantly useful in dealing with non-linear and
non-Gaussian problems. The underlying principle of the PF is the approximation of
relevant distributions with random measures composed of particles (samples from the

space of the unknowns) and their associated weights

The overall performance of HF channel has significant dependence on effective
utilization of resources. The critical utilization of resources depends on the choice of
channel estimation technique and the estimation technique must prevail even under

adverse channel conditions such as system non-linearity, time varying multipath fading
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and non-Gaussian noise environments. In view of these considerations and the inability
of the conventional estimation techniques to fulfil the requirements of the context, an
alternative approach to develop adaptive channel estimation technique for the HF channel
invoking the principle of Bayesian forecasting will be of practical importance and
relevance. Channel estimation based on Particle Filtering is an ideal choice to deal with
non-linear and non-Gaussian scenarios [Bergman 1999, Arulampalam 2002, Hoang 2013
and Doucet 1998]. Reported research in [Haykin 2004] revealed the performance
improvement of PF for MIMO wireless channel above UHF band. This thesis investigate
channel estimation techniques based on PF for time varying HF channel to mitigate the
effect of channel impairment along with non-linear and non-Gaussian noise conditions.
The thesis also addresses the application of PF based estimation technique applicable to
MIMO-HF channel, also which seems to have not been attempted in open literature thus
far. Although one can conceive an idea of invoking the PF concept of devoid of Extended
Kalman Filter (EKF), this thesis attempts to adopt a unified approach wherein PF and
EKF schemes have been combined to realize better posterior density functions. The
expected improvement in the receiver performance evaluated through the system

parameters like data rate and reliability is also addressed in this thesis.

2.8 Conclusion

This chapter is intended to facilitate a review of topics, namely HF channel, MIMO and
the characterization as well as the estimation for MIMO-HF channel. Under HF
communication, the importance of the HF ionosphere medium for the radio
communication is highlighted. The significant effects on the HF radio waves exerted by
various layers in ionosphere are also discussed with requisite details. The most important
effects, such as absorption factor, scattering phenomenon, limit in useable operation
frequency, radio noise, path loss, Doppler shift, delay spread and other statistical
parameters related to characterization have been reviewed rather concisely. The
characterization of HF channel to include the effects of the above cited parameters and
the role of HF channel characterization in the design of HF system are highlighted.

Inherent benefit of HF technology is its utility in long range communication with reduced

infrastructure requirement and low cost compared to other wireless systems. Finally, the
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significant challenge in HF communication is that the performance of the HF
communication system is widely dependent on the technique to mitigate the effects of
channel on the signal waveform. Hence signal waveform is a prominent deciding factor
in the HF communication system design which (signal waveform) depends on the

characterization of HF channel itself.

MIMO constitutes the second topic of this chapter. Under it, the principles of MIMO and
its potential capability to enhance the performance of a communication system are
addressed. The various configuration modes of MIMO to improve reliability and capacity
such as Precoding, spatial multiplexing and diversity coding have been discussed. The
precoding technique is used to enhance the reliability and to improve capacity along with
MIMO technique. Spatial multiplexing and diversity coding address the throughput and
diversity enhancement respectively. Capacity analysis for multiple antenna system based
on deterministic and random channels is described for MIMO system to emphasize the
capacity enhancement with varying number of transmit and receive antennas. Under
space-time coding, three structures/techniques such as SM, STBC and STTC are
discussed. SM is used to achieve higher capacity gain when there is user’s proximity to
the base station, thereby both spectral and power efficiency can be achieved significantly.
The structure of STTC has an advantage of full coding gain over STBC. However in
both STTC and STBC, there is full diversity gain. The disadvantage of STTC is that it is
extremely hard to design and generally requires encoders and decoders of high
complexities. Finally the reasoning for extending the MIMO technology for the present
HF communication is highlighted in view of its imminent potential to offer significant

improvement in terms of both capacity and reliability.

The last topic of this chapter is a review on HF channel characterization and estimation
for MIMO communication. The channel characterization of a HF communication which
is an important and topic of hot pursuit of research has a significant role with the
expectation for near zero or minimal error rate in performance quantification of a
complete transceiver. A realistic and robust channel characterization shall consider the

channel impairments of various geographical terrains like urban, suburban, rural and
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hilly. The limitations associated in the application of FIR channel model and its
inadequacy to represent the dynamic characteristics of the channel parameters has been
highlighted. Through literature survey featured with requisite details and relevance of it
to address the realistic scenario elicited earlier, this chapter brings out the need to pursue
the AR model in the characterization of the HF channel model with both SISO and

MIMO configurations.

Over the past few decades, the extended Kalman filter has become a standard and widely
used technique in varied engineering disciplines involving estimation algorithm for non-
linear systems. However, recently, novel and more accurate non-linear filters have been
proposed as more accurate alternatives to the extended Kalman filter within the
framework of state and parameter estimation. Like most new algorithms, probably the
non-linear filtering methods are not widely known or well understood and therefore their
application has been rather limited. In the past, most of the research on HF channel
estimation has been rather limited to linear and Gaussian noise scenario even though the
realistic scenario would comprise both the non-linear and non-Gaussian noise. In this
thesis, relevance and application of PF, which is a recent class of the non-linear filtering
algorithms 1is investigated for its advantageous feature to handle the HF channel
estimation under non-linear and non-Gaussian scenario. For the intended purpose for
better posterior density function, this thesis also attempts to unify the applications of both
extended Kalman and PF even though the two are differently motivated and still derived

under the framework of recursive Bayesian filtering.
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CHAPTER 3

NON- LINEAR FILTERING: RECURSIVE BAYESIAN ESTIMATION

Estimation of the parameter/state of the non-linear stochastic process of any dynamical
system is considered as a non-linear filtering problem. These classes of non-linear
processes in general are very widely common in integrated navigation, radio
communication, radar/sonar surveillance, and satellite orbit/attitude estimation. To be
more specific, channel estimation of non-linearity of system along with HF channel
impairments is of particular interest to this thesis. A greater emphasis of this thesis is the
estimation of system non-linearity along with HF channel associated with frequency non-
selective dispersive characteristics. Since this thesis contemplates the channel
characterization of HF channel with MIMO antenna replacing the conventional SISO,
space-time coding also needs to be incorporated. The MIMO-HF channel is usually
subjected to channel impairments, system induced non-linearity and/or non-Gaussian
noise. The characterization of HF channel subjected to system induced non-linearity and
non-Gaussian conditions is not a routine as well as straight forward task. It calls for more
innovative estimation and prediction techniques to characterize the dynamic systems
from the sequential observation (received signals). In general recursive Bayesian (RB)
approach is considered as the best method to address the optimal non-linear filtering
[Djuric 2003]. The Novelty of RB estimation lies in the determination of the Probability
Density Function (PDF) of the state vector which completely describes the non-linear
system based on available measurement. Kalman filter provides optimal closed form
solution only for linear system with Gaussian process and noise. RB based optimal
solution for non-linear filtering is not an easy task since it requires infinite dimensional
processes. For practical aspect the exact formulation of an optimal solution for non-linear
filtering is considered as not a prudent choice. Rather than an exact formulation, an
approximation to the optimal solution to non-linear filtering is a reality. From a
modelling view point, approximation to the optimal solution to non-linear filtering can be
realized through the following:
1. Analytical approximation non-linear filter,

2. Direct numerical approximation non-linear filter
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3. Sampling-based non-linear filter

4. Gaussian mixture non-linear filter

5. Simulation-based non-linear filter
Among the above 5 categories of approximation to optimal solution of non-linear
filtering, analytical approximation approach is widely used in practical applications.
Extended Kalman filter is a class of analytical approximate non-linear filter. Extended
Kalman analytically approximated with only the first order Taylor series expansion is
featured with narrow region of stability. In view of such a narrow region of stability, it is
unable to handle completely the system dynamics that are usually non-linear [Gelb 1974].
Thus, the purpose of this chapter is to carry out research on non-linear filtering
techniques which perform better than conventional extended Kalman Filter. This chapter
presents a brief introduction to Recursive Bayesian Estimation (RBE) to deal with the
non-linear filtering techniques. It is pertinent to point out that the subsequent chapters
invoke extensively the recursive Bayesian techniques. RBE is  followed by the
discussion on sub-optimal non-filtering technique which serves as a fundamental basis
for PF. The novel studies on optimal solution to non-linear filtering pursued through PF

constitute the main focus of this chapter.

3.1 Recursive Bayesian Estimation

The Bayesian approach of estimating the state x;, for given measurement Y, =
{y1, V2, e e, ¥ic} is to derive the Posterior Distribution/Density Function (PDF)

p(xy| Yi) for x, conditional on the measurement Y. Optimal estimation is obtained if the

density p(xi|Y;) is known. Otherwise the conditional expectation of x; with Y, is
calculated and is given in Equation (3.1)

X = EQe|Yi) = [ xep Geel Vi) doxye (3.1
The Equation (3.1) can be extended to estimate the PDF of the state p(xi|Yy) instead of
state x;, only. Therefore evaluation of the conditional PDF p(x;|Y) plays vital role in
filtering theory.

The posterior density of the state xj, is calculated based on Baye's theorem which states:

p(x|y) o« p(x)p(y|x) (3.2)
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One of the difficulties in evaluating the p(x;|Y,) is computational intensive operations
involved in higher dimensional integration of Equation (3.1). This can be avoided by

using sequential scheme which means

Py, X9 5 e Xp | Vi) o (g, X, e v X | Ve )Pkl x) (3.3)
The marginally integrating out xq, X5, ... v oo, Xp—q g1VES
PO Yie) oc pCege|Yie—1) p(ielxie) (3.4)

Applying Markov process, the Equation (3.4) leads to

P (g, Xp—1Yie—1) = PO 1 Vi) Ol 24—1) (3.5
Where, xj_;can be integrated to give an Equation for p(xj|Yy_;) in terms of
p(xx_1|Yk—1). Therefore the densities of the interest are updated recursively to either take
account of a new observation or to consider an estimate of the future state of the system
leads to probability prediction or the Chapman-Kolmogorov equation and update
equation following while the probability prediction equation or the Chapman-
Kolmogorov equation is represented as

Pl Yie—1) = [ 2 (el 21D (=1 [Vie—1) d X4 (3.6)
The update equation is represented by

P (x| Yie—1) = e el )p Cege [ Y- 1) (3.7)

Where ¢, is the normalizing factor defined as

Cr = (fp(yklxk)p(xklyk—l)dxk)_l (3.8)
A Recursive Bayesian Estimation Algorithm for the filtering problem is formulated
through the above prediction and correction equations and is illustrated in Figure 3.1. By
invoking Bayesian Formula, update Equations (3.7) takes the compact form given by

Equation (3.9).

PWklxi)p Cek|Yie—1) (3.9)

Y.) =
p(xkl k) PVilYi-1)
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Figure 3.1: Prediction and update stages for the recursive Bayesian estimation

3.2  Analytical Approximations in Non-Linear Filtering

The solution to the recursive Bayesian estimation discussed in previous section consists
of a set of three integral equations which is computed recursively. There are various
classes of problems for which these equations are tractable. One such important class of
problem is where state and observation equations are linear and their noise distribution is
Gaussian. In such a case, Equations (3.6) - (3.7) can be solved based on the Kalman filter
[Kalman 1960]. For other class of problems involving non-linear state and observation
equations associated with non-Gaussian noise distribution, generally it is difficult to
derive recursive relationship either in closed-form or numerically. Thus, generally

approximate filtering solutions are needed to be evaluated to analyse the same.

Extended Kalman Filter (EKF) is considered as first approximate non-linear filter that
linearizes the system and observation equations with the assumption of a priori
distribution as Gaussian. The EKF uses the Kalman filter method to obtain estimates of
mean and covariance of state equation. By using EKF, state estimation is approximated
for the conditional mean and variances which leads to two sources of inaccuracy
[Arulampalam 2002, Haykin 1996]. The first source of inaccuracy is the linearization of
the non-linear system dynamic at each time step. The second source of inaccuracy is due

to the assumption of Gaussian distribution for non-linear system while estimating mean
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and covariance, that results in-correct value of state estimation. Thus non-linearities in
the system model result in non-Gaussian posterior and prior distributions at each time
index, and the calculated mean and covariance matrix will be approximations to the true
quantities. The solutions to the problems associated with the above non-linearities have
been addressed by various scientists and engineers [Athans 1968] based on truncating the
higher order terms (from second order) in the expansion of system equation. [Julier
1995, 1997] has discussed Unscented Kalman Filter (UKF), which is an effective method
for non-linear state estimation compared to EKF. These techniques are called as Sigma

Point Filters (SPFs) and belong to the simulation based non-linear filters.

Most of non-linear filtering method (EKF, UKF) are based on local linearization of the
non-linear system equations or local approximation of the probability density of the state
variable. These methods are considered as effective algorithms for dealing with both non-
linear and non-Gaussian system. The Gaussian Sum Filter (GSF) is also the extension of
EKF used for non-linear and/or non-Gaussian filtering problem, which approximates the
a-posterior density function by linear weighted sum Gaussian densities [Alspach 1972].
GSF is reasonably suitable for posterior functions of multimodal densities and requires
heavy computational load to model accurately the non-Gaussian density [Fearnhead

1998].

The other approach to deal with the non-linear and non-Gaussian filtering is to evaluate
the posterior density at the sequence of grid points prescribed in the sample space [Bucy
1970], or approximate the posterior density by splines or by step functions [Kramer
1988]. The advantages of the above approximation are that they simplify the process of
integration involved in the recursive Bayesian solution. But computational load increases
exponentially as the dimension increases and calculation at each grid point of distribution

1s non-trivial [Sorenson 1971].

More recently, much attention is given to new class of non-linear/non-Gaussian filtering
methods based on sequential Monte Carlo approach [Arulampalam 2002, Gordon 1993,

Doucet 1998, and Hoang 2013]. The sequential Monte Carlo is based on simulation
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method that uses the Monte Carlo simulation in order to solve on-line estimation and
prediction problems. The sequential Monte Carlo approach is also referred as the
bootstrap filtering [Gordon 1993] or the condensation algorithm [Cormick 2000] or the
particle filtering [Carpenter 1999]. The flexible nature of the Monte Carlo simulation
renders more adaptive feature to estimate the state [Arulampalam 2002, Ristic 2004].
This thesis proposes research on the channel estimation based on PF with extended
Kalman filter as proposal distribution for dealing with non-linear and non-Gaussian

system, which is discussed in chapter 5.

The most commonly used the Extended Kalman Filter (EKF) based on analytical
approximated non-linear filter along with non-linear least square estimation are discussed

in the next section.

3.2.1 Non-Linear Least-Squares Estimation

Consider the following continuous discrete non-linear equations,
x(t) = f(x,t) + w(t) (3.10)
Vi = h(xg, k) + v (3.11)
Where, x;, € R™isthe nx1 state vector,
Vi € R™isthe mx1 observation vector.
f (x, t) is the non-linear continuous function of the state
h(xy, t) is discrete non-linear function
w(t) € R? isthe gx1 state noise process vector and
vV € R isthesx1 additive measurement noise vector.
Noise vectors are assumed to be zero-mean Gaussian processes
Elw®wT(s)] = 8(t —)Q®), E[vev]] = 6kjRy (3.12)
The basic principle of the least-squares method is to optimally estimate the state which
minimizes the sum of the squares of the residues. The residue is denoted as
Ok = Y — h(x, k) (3.13)
Where,

vy referred as the actual observations or true observations.
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If the nominal trajectory of the system is X, then the measurement function h(xy, k)

can be approximated by using the Taylor-series expansion

h(x,) = h(Xy) + Z—: (xx — Xx) + higher order term (3.14)

X=Xk
Where, h(X}) is the estimated value of the observation at the value X, and the gradient
matrix Hy, also known as the Jacobian matrix and is defined as

Sh
Hk = [a

If one assumes that the current estimates of the state x. are denoted by

fk] (3.15)

Xe = (X100 Xoer eon e y Xnel T (3.16)
Then the current estimate is related to the estimates X, by an unknown set of corrections
Ax

X = x.+ Ax (3.17)
If correction component Ax is sufficiently small, then it is possible to solve for an
approximation to the updated x. with an improved estimate of X, using Equation (3.17).
With this assumption, the function h(Xy, k) can be linearized about x,,

h(x;) = h(x.) + HAx (3.18)

After the correction of measurement residue Ax it can be linearly approximated by

Ay = yp —h(Z) = yx — h(x;) — HAx (3.19)
Where,
Ax = X, — x. is the differential correction, and
The residual before the correction is defined as

Ay. = yr — h(xc) (3.20)
The implication of the weighted least-squares estimation is to minimize the weighted sum

of the squares of the measurement residues given by the cost function J .
1 1 o o
J =28y WAy = Z[yx — hEI" Wy, — h(£)] (3.21)
Where, Wis a m Xm symmetric weighting matrix used to weight the relative

importance of each measurement. The strategy for determining the differential

corrections Ax is to select the particular corrections that lead to the minimum sum of
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squares of the linearly predicted residuals J,. The measurement residues can be
approximated in terms of Ay, by using Equation (3.19), and the cost function is rewritten
by

Jp = 5 [Ay. — HAX]"W[Ay, — HAx] (3.22)
The minimization of J, in Equation (3.22) is equivalent to the minimization of ] in
Equation (3.21). For the minimization of J, , the following conditions should be satisfied

Necessary Condition
81y

Varlp = 500 = HTWHAx — HTWVy, =0 (3.23)
Sufficient Condition
52) , .
V2. = Mxi(;:xj = HTWH > 0, (postive definite) (3.24)

From the necessary condition, the normal equation can be obtained

HTWHAx = HTWVy, (3.25)
Finally, the explicit solution for solving the weighted least-squares problem applicable
for solving Ax is represented by

Ax = (HTWH) *HTW Ay, (3.26)

Because of the non-linearities in the non-linear function, this process of non-linear
estimation must be iterated until the solution converges, i.e., Ax approaches zero.
The complete non-linear least-squares algorithm is summarized in Figure 3.2. To begin
with the algorithm, an initial guess Ax of the current estimates is required. A stopping
condition with an accuracy dependent tolerance for the minimization of J is given by

6] — Ui_]i—ll £

. Wi (3.27)

Where i is the iteration number and ¢ is a prescribed small value. If the judgment criterion
in Equation (3.27) is not satisfied, the update procedure is iterated with the new estimate

as the current estimate until the process converges.
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Figure 3.2: Non-linear least square differential correction
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3.2.2 Extended Kalman Filter

This section discusses the concept of EKF from the Bayesian perspective for the
development of algorithms to estimate the state vectors invoking the concept highlighted
n [Frost 1971]. Discrete-time non-linear equations can be of the form
Xks1 = [ (X Wi, k) (3.28)
Vi1 = hQxp, k) + vy (3.29)
Where,

X, € R" is the nx1 state vector,

Yi € R" is the mx1 observation vector.

wy € R4 isthe gx1 state noise process vector and

v, € R'is the s x1 additive measurement noise vector.

f (x, wy, k) is the non-linear discrete function of the state

h(xy, t) is discrete non-linear function of the observation

Further it is assumed that the noise vectors are zero-mean Gaussian processes and
Ew,w!|=6,Q0, EVv'|=6,R,, Elv,w!|=0, vk, ; (3.30)

The EKF provides the minimum variance estimate of the state based on statistical
information about the dynamic system model (Equations 3.28 and 3.29) and observations

(Equations 3.29). Given a system model and initial state and covariance values, the EKF

propagates the first two moments (mean and covariance) of the distribution of x,

recursively. Then, along with imperfect measurements (in the presence of noise), the
EKF updates the estimates of the state vector and the covariance vector. The update is
done through the Kalman gain matrix, K , which comes from minimizing the weighted
scalar sum of the diagonal elements of the covariance matrix. Thus, the EKF method has
a distinctive predictor-corrector structure, which is similar to the recursive Bayesian

relationships stated in Equations (3.6) ~ (3.7).
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The EKF is based on the analytical Taylor series expansion of the non-linear systems and

observation equations about the current estimated value x, . Thus, for non-linear models,
the predicted state estimate and covariance are approximated by [Shalom 2001]

R =1(%,.k) (3.31)

P, =EPE +Q, (3.32)
Where,

F, is the Jacobian matrix of f evaluated aboutX, .
The update equations are written as

Xt = X1 + KU (3.33)

Pk++1 =P _Kk+1Pl:+v—1KkT+l (3.34)
Where,

v, 18 the innovative vector, which is equal to the difference between the actual

and the predicted observations, and is given by

Vit = Yierr — Vi = Yin _h(ﬁgﬂ’k +1) (3.35)
The covariance of the innovation vector is evaluated as

Pl =PI +Ry, (3.36)
Where,

P.”|is the output covariance.

The Kalman gain K, is computed by

, —1
Ky = P/fh (PI:II) (3.37)
Where,
P, is the cross-correlation matrix predicted between X, and ¥,

The PDF in the Bayesian recursion are related to the optimal terms in the EKF algorithms

given in [Arulampalam 2002]

p(x, 1Y, )=N(x;:%,,P, ) (3.38)
P(Xpy 1Y, )= N(Xp3 %50, P ) (3.39)
~ N(Xk+1;f(§(k)7FkPkaT +Qy ) (3.40)
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P(Xk+1 | Yk+l): N(Xp 3 X401 Pyy )

(3.41)

~ .o - vy T
~ N(X 13 Xt T K1Vt Pt = Kt P K (3.42)

Where N(x; m, P ) denotes a Gaussian density with argument x , meanm , and covariance

P . The recursive Bayesian relations of the predictor-corrector structure for the EKF can

be represented by the block diagram shown in Figure. 3.3. The specific algorithm of the

EKF formulated in terms of the innovation vector v, and covariance terms P" is

summarized in Table 3.1.

It is pertinent to note that in the EKF algorithm, the state distribution is approximated

through the first-order linearization of the non-linear functions by a Gaussian random

variable. These approximations can introduce large errors in the true mean and

covariance.

Initial mean estimate X

Initial error covariance P,

]

Prediction
e Compute a priori state
X.EH = f(xi; * k)
e Compute a priori error covariance
_ 7
P =EPE +Q,

(+1

k=k+1

Measurements

Measurement Update
e Compute Kalman gain

- T T —1
K k+1 — Pk+lHk+1 (Hk+lpk+lHk+1 +R k+1 )
e Update state estimate with measurement
X =X T K (Yk+| _h(X;H’k + 1))
e Update the a posteriori error covariance

P =(I_Kk+1H .

k+1 k+1

Figure 3.3:Diagram of predictor-corrector form of the extended Kalman filter
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Table 3.1 Extended Kalman Filter Algorithms

Initialization:

State Propagation:

)A(;H :f(ﬁk’k)
P =FkPkaT +Q,

Observation Propagation:

5’;+1 = h(il;rl’k + 1)
Pl =H,, P H[, +R,,

k+1

P =P H

k+1

Update:

Kk+1
P+

k+1

=p»
=P -K, P"K'
T Ykl k417 k+17 N k+1

(pr,)"
k+1

A+ a-
Xk+l _Xk+l +K1<+]Dk+]

where (-) denotes a “propagated” value, (+) denotes a “updated” value

Q, = System model error matrix, R, = Measurement error matrix
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3.3  Principles of Particle Filtering

Approximated Gaussian filtering discussed in previous section is efficient for
linearization of non-linear systems. EKF is one class of approximated Gaussian filtering
discussed in previous section. The other categories of it include the Iterated Extended
Kalman Filter (IEKF), the Gaussian Mixture Filter (GMF), and the Sigma Point Filter
(SPFs) [Julier 1995, Ito 2000]. But most of practical communication systems are
dynamical in nature and are associated with both non-linear and non-Gaussian noise. The
state estimation techniques under non-linear and non-Gaussian noise scenario pose
challenges for the scientists and engineers in their pursuit for an optimal and efficient
method for real time estimation and prediction of dynamical system from the sequential
observations. To date, there is no algorithm which can be branded as “universally
effective” for dealing non-linear and non-Gaussian systems. However, recently there is
lot interest and attention towards a new class of filtering method based on the sequential
Monte Carlo (SMC) approach under the class of simulation-based filter [Doucet 1998].
Initially SMC method has been introduced in fields of physics, statistics and automatic
control. Later this approach found its application in almost all fields of engineering.
Earlier implementation of SMC was based on simple plain Sequential Importance
Sampling (SIS) step which constitutes basic form of SMC filters. The practical utilization
of resampling technique in SMC led to the major contribution for non-linear and non-
Gaussian class of filtering [Gordon 1993]. The SMC approach is commonly known as
Bootstrap filtering [Gordon 1993], the Condensation algorithm [Cormick 2000], and the
PF [Carpenter 1999]. The flexible nature of the Monte Carlo simulation finds it
application in target tracking system [Arulampalam 2002, Ristic 2004].

34 Optimal Recursive Bayesian Estimation
Considering the non-linear state space model, the objective is to estimate the posterior

probability density for the state based on the observation,
Xier1 = f (e, Wi, k) (3.43)
Yievr = h(x, k) + vp (3.44)
Where,

x, € R™ is the state vector,
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¥, € R™ is the observation vector,

f (x, wy, k) is the non-linear discrete function of the state

h(xy, t) is discrete non-linear function of the observation

W, € R andv « € R™ are the process and measurement noises respectively.
Let X = (X0, X1, v ver e , X)) and Y = (7o, Vi, eee ven e ,¥x) be the vectors of states and
observations up to time step k. If there is an assumption that w, and v, are both

independent and have known density distributions, .then the state of the system is a

Markov process

p(Xi) = p(xo) [Ti=1 pCxilxi—1) (3.45)
and the measurements Y}, are conditionally independent given the states X,
p(Yel Xi0) = TTiZs p(ilx) (3.46)

Obviously the size of these expressions grows as time evolves if we were to calculate
everything from initial time k=0. To estimate the a-posterior in real time, one needs k
samples to determine the estimation at time k +1.

The following recursive equations are used [Doucet2000]

p(x1lYi) = [ pCrsrlxi) pCelYi) dxy (3.47)

P Vi1l Xk+ 1) X1 1Yk)

P(Xkt1lYis1) =

PYies11Ye)
(3.43)
The initial a posterior density p(xy|yo) is obtained by
D (%o |V0) = p(Volx0)p(x0)
P (¥o)
(3.49)

The Equation (3.47) is called the time update equation (or prediction) and the second
Equation (3.48) is called the measurement update equation. The likelihood probability
density p(yx|xx) in Equation (3.48) is computed by the a-priori measurement noise
density p(vy) and the measurement Equation (3.44). And similarly, the state transition
density p(xx41|x;) in Equation (3.47) is calculated by using the a priori process noise

density p(wy) as well as the dynamic equation (Equation (3.43)).
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Depending upon the characteristics of the system, there are different methods of
estimating p(xi| Yy) because closed form solution for p(x,| Yy) are intractable due to
the integration in Equation (3.47). In general there are three different cases of filtering,
namely linear-Gaussian, non-linear Gaussian, and non-linear/non-Gaussian. For the
linear-Gaussian case where both system dynamic as well as measurement equations are
linear, it’s a-prior initial state and noise sequence are Gaussian. In this case, the Bayesian
estimation Equations (3.47) and (3.48) lead to Kalman filtering approach. For second
case where system equations are non-linear with Gaussian distribution assumption,
solution is provided by sub-optimal recursive approach. Finally for non-linear and non-
Gaussian case, the solution for optimal Bayesian equations is solved by SMC approach.
PF derived within a unified frame-work of the sequential importance sampling algorithm

is discussed in subsequent sections.

3.5  Particle Filtering

In SMC techniques filtering is achieved by recursively generating a set of weighted
samples of the state variables. Each sampled particle has some degree of information
about the observation state. The weighted samples form an estimate of the desired
posterior distribution. For every time instant, the samples are more and more likely to
drift away from the real state implying that their corresponding weight tends to zero. To
avoid this, normally the sample with smaller weight will be discarded and those with
larger weight will be multiplied and considered. Therefore the implementation of the PF
consists of three operations.

1) Generation of particle (Sampling step)

2) Particle weight computation (Importance step)

3) Resampling

The first two steps form the Sequential Importance Sampling (SIS) algorithm. The SIS

filter along with the resampling is termed as the generic particle filter.
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3.5.1 Sequential Importance Sampling

The discrete-time non-linear model equation is of the form

Xy =f(X, k) +w, (3.50)

Yi =h(X,, k) +v, (3.51)
Where the process w, and measurement noises v, are assumed to be independent with
known densities

Wi~ Py () Ve~ Py () (3.52)

For the Markov process, the state distribution function is expressed by

plx )= s [T s ) 35

Where p(xo) is prior distribution of the state at timek =0. The observations are

conditionally independent given the states
k
p(Y1X)=[Tply; 1x;) (3.54)
i=1

Posterior is represented as total PDF because the model is non-linear and non-Gaussian.
Total PDF is evaluated by recursive Monte Carlo simulation. The recursive equation for

the estimation of PDF is given by

Pl 17, )= PO X YD X ) ey, ) (3.55)
P(Yk |Yk—1)
_ P(Yk |Xk)P(Xk le_l)p(Xk_] 1Y, ) (3.56)
P(Yk |Yk—1)

The particle filter utilizes the discrete version of large number of samples to estimate the
density function. Let {Xg)}; be the sample drawn from the posterior density. Then the

expression for the estimate of the posterior is

& |
PX 1Y) = ﬁZé(Xk -x{) (3.57)
i=l1

Where,
5(X, )is the Dirac delta function.

65



All the samples collected by the posterior density are drawn and selectively considered
such that weighted sum is equal to unity. In order to satisfy the law of total probability,
the estimate has to multiplied byl1/ N .

These estimates can be used to calculate different moments of the posterior. For example

the expectation and covariance are given as

x=E{x}= pr(x)dx
= I%id}( —x(i))xdx

i=1

L ()

= Z]“x (3.58)

P~ I%gé‘(x - x(i))5(x —%)5(x —x) dx

:Li(x(i) Y O (3.59)
N i=1

Since the posterior is unknown, sample has to be drawn from known probability density

q(X, 1Y, ). Bayes’s rule provides
a(Xi 1Y, ) = Q(Xk I X0 Yo )q(Xk—l | Yk) (3.60)
= CI(Xk I X Y )CI(X/H | Yk—l) (3.61)
To estimate the posterior, these samples are associated with so called important weight

Wl(ci) _ P(X(g)) | Yk) p(yk ng))p(xg) I ngzl)w(i)
CI(Xkl |Yk)

g 1xhy )

Ck
(3.62)

Where,

Cr = p(Yk—l )/P(Yk)

Only the relative relationship between the weights is important and ¢, can therefore be

neglected. Hence the weight equation can be written as

i) P(}’k ngf))p(xg) | X@l)

(i) —
Wi = W4 ; ; (3.63)
q(xﬁ) I chll’Yk)
Efficient choice to draw the sample from the state propagation density is
Q(Xk |Xk—l’Yk)=Q(Xk ka—l) (3.64)
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Then, the corresponding weight update equation becomes
W) =w® ply, 1x1) (3.65)
The new estimate of the posterior p(X,1Y,) for the sample drawn from
q(x 1 X Y ) along with the importance weights is given by
N
pX 1Y) =Y w0s(x, - x () (3.66)
i=1

Where,

W) = (3.67)

N
(/)
w
2o

Then, the estimated mean valueX; and covariance P, are computed in terms of the

current state x, and the importance weights W,Si)

N . .
;= Efx}=Y wix{) (3.68)
i=1
P = {x, — Bl T - B (3.69)
N
STty (U oS | (3.70)

3.5.2 Resampling

The weights of most of the samples drawn will be almost zero as time evolves [Carpenter
1999] signifying that they do not contribute much to the posterior estimation. Basically
the estimate in the region of interest is not accurate as most of the samples may not
contribute significantly. This phenomenon is known as degeneracy problem in the SIS
particle filter [Arulampalam 2002]. Next section discusses the methods to ascertain the

occurrence of degeneracy and an effective way of resolving the degeneracy.
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i. Effective Sample Size

Effective sample size is a method to measure how well the samples are distributed across
the region of interest. Comparison of the covariance of the set of samples drawn from the
posterior with that obtained through the method of importance sampling provides
measurement of the sampling efficiency. This in turn will provide the expression for the
effective sample size. Effective sample size can be estimated by [Bergman 1999]

. 1
NS wOT

i

(3.71)

If all the sample weights are equal, the effective sample size will be N. Lower threshold
is chosen for effective sample size when the samples are widely spread. Normally the

threshold is fixed as N, = 2N /3. When the samples depart away from the state, their

weights decrease and are referred as degeneracy [Arulampalam 2002]. There by the

effective sample size decreases eventually leading to N <Ng,. At this situation among a
new set of N samples drawn from {X ,Ei)}, samples with associated weight nearing zero

have to be replaced and such a replacement is from resampling of the chosen distribution.
The probability of finding such replacement for degeneracy samples with X ,Ei) is W,Ei).
Now the new set of samples is drawn from the estimate of the posterior and all the
weights should therefore be set to 1/N. This means that only the samples with higher
weights will be considered leading to the cluster of samples concentrated in the

interesting region. The flow for replacement of degeneracy samples is described in Figure

3.4.
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T
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Y L A
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N Particles {x_f__"-]’] \}

Figure 3.4: Systematic diagram for generic Particle filtering

ii. Resampling Algorithms

Resampling technique is a method to mitigate the effects of the degeneracy sample. The
basic principle of resampling technique is to eliminate particles with lesser weights and to

concentrate on particles with large weights. The following section describes three

resampling algorithms.
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Simple Random Resampling

In this method, N independent and identical distributed (i.i.d) random variables are
generated from the uniform distribution. They are sorted in ascending order and
compared with cumulative sum of normalized weights [Ristic 2004]. Initially the
threshold is calculated based on cumulative sum of the normalized weights in any order.
Then for the each index i (i=1 to N)

1. Uniform random number u,between 0 and 1, u, = U[0, 1] is drawn
2. Search algorithm (binary search) is used to identify the position of u, within the

thresholds

3. Theresampled index is set according to the index of the location of u;

This technique although simple is not computationally efficient. The discussion of

computationally efficient techniques is to follow.

Residual Resampling (RR)

The principles of this technique are as follows
1. ;= [Nv—v,fi)J copies ofng),i =1 -, n, are retained where v_v,fi) is the
renormalized weight of w,(f). Let N, =N — Zsi
i=1
2. N, samples i.i.d drawn from xﬁ’,{ with probabilities proportional to Nv—v,fi) —;
i=1 ---, N are obtained
3. The summation weight is reset to 1 implying W,Ei) =1/Nfori=1, ---, N,

The residual resampling is superior over the random resampling since it also provides

reduced variation in the estimates [Liu 1998, Bergman 1999].
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Systematic Resampling (SR)

This efficient technique uses a minimum variance method [Liu 1998] in which uniform

distribution U [a, b] is utilized on the interval [a, b]. In this method each value u; is

independently drawn by using the following scheme

u, ~ U[0,1/N]

i

The systematic resampling algorithm is described in Table 3.2.

Table 3.2 Systematic Resampling Algorithm

1. Initialization at time i =1
- Set ¢, =0

2. Fori=2, ---, N

- Construct ¢; =c¢;_; +w,

3. Setl=1

4. Draw a starting point
- u, ~U[0,1/N]

5. For j=1, ---, N

- Construct u; =u, +(j—-1)/N
- While u; >¢;

¢ =i+l

- Otherwise
* assign sample: X‘,f = xﬁc
* assign weight: w,{ =1/N
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3.6  Generic Particle Filter Algorithm

The concept discussed in section 3.5 is considered as a motivation of how particle filter
works. Table 3.3 illustrates the algorithmic summary of the particle filter or SIS with
resampling stage. Choice of the proposal or importance distribution is a most critical
design issue while implementing the particle filter. The Figure 3.4 shows the overall
procedure for the generic PF algorithms.

The initial samples are drawn from the prior distribution and the corresponding weights
are calculated from the measurement. For the each iteration the samples are drawn from
the selected importance distribution. Accordingly their weight is updated from the

selected proposal distribution of the drawn samples.

Table 3.3 Generic Particle Filter (PF) Algorithm

e [Initialization: at time k =0

1. Fori=1 ---, N
- Sampling from the prior xg) ~ p(xo)
2. Fori=1 ---, N,

- Calculate W(()i) = P(Yo | Xg))

N
- Calculate the total weight w, = z w(()’)

1

- Normalize w(()i) = w;lw(()i)

e Prediction and Update: For each time k > 1
1. Fori=1, ---, N,
- Sample xg) ~ q(xk |X§<i21’Yk)
- Calculate the importance weights

o ply x5

(i) —
wy =wi q(xg) | ngka)
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N
2. Calculate the total weight w, =Y W,({l)

1

3. Fori=1 ---, N,
- Normalize w,(f) = w}lw,(f)
4. If (Neﬁr <N, ), then Choose either (a) or (b)
- (a) Apply resampling algorithm
o) [{xg), ,(f) }lNl} = Resample(RR, SR) [{xg),w,(f) }INI}
- (b) Apply resampling algorithm
o Set the weights, w\) =1/N

3.6.1 Sequential Importance Resampling Particle Filtering

Sequential Importance Resampling (SIR) approach is proposed by [Gordon 1993] and it
is special case of SIS algorithm. The SIR algorithm can be derived from the SIS
algorithm by an appropriate choice of the importance density and the resampling step.
The optimal proposal distribution which minimizes the variance on the importance

weight is given by [Doucet 2000, Liu 1998]
Q(Xk I X 10 Vi ) = P(Xk I X 1o Vi ) (3.74)
But sampling from this proposal distribution is impractical for arbitrary densities. Thus

efficient choice of the importance density is the transition prior density
a(x; 1 X oo Yia ) = P(xe T X0 ) (3.75)
The sample is drawn from this proposal in the form of
x < plx, 1x)) (3.76)
The procedure for generating a sample xg) is achieved by
= First generating a process noise sample V@l ~p, (V,H) where p, is the pdf of

the noise v,_,
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= Then, substituting the samples x,@l and ngl into the dynamic system function,
1.e., xg) = f(xgzl,vgzl).
The update equation for the weights is given by

P(Xk ka—l)
Q(Xk |Xk—1’YI:k)

Wy &« Wk—lp(Yk IXk) (3.77)

For this particular choice of the importance density in Equation (3.75), the corresponding
weight update equation becomes

w) o wl?, ply, 1x1) (3.78)
It is noted that since resampling in the SIR algorithm is applied at every time step, the
prior weights are all equal to w,gi_) , =1/ N . Thus the update weight is given by

w,(f) oc p(yk ng)) (3.79)
The SIR PF algorithm is illustrated in Table 3.4.

Table 3.4 SIR Particle Filter Algorithm

e [Initialization: at time k =0
1. Fori=1 ---, N

- Sampling from the prior Xg) ~ p(xo)
2. Fori=1 ---, N,

i

- Calculate w(()i) = p(}’o | Xg))

N
- Calculate the total weight w; = Zw(()’)

1

- Normalize w(()i) = w;lw(()i)
e Prediction and Update: For each time k > 1
1. Fori=1 ---, N,
- Sample xg) ~ p(xk |X§21)
- Calculate the importance weights

w,Ei) = p(yk ng))
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N
2. Calculate the total weight w, =Y W,({l)

3. Fori=1 ---, N,
- Normalize w,(f) =wr lw,(f)

4. Apply resampling algorithm

- [RtE ] = resamoreri 5w [}

1=

3.6.2 Improving Particle Filters

The resampling is helpful to minimize the effect of degeneracy. But all particles with
higher weights will not contribute to any additional information resulting in a form of
undesirable redundancy. This is usually referred to as sample impoverishment [Freitas
1998]. To mitigate the effect of particle degeneracy and sample impoverishment, various
variants of particle filter algorithm have been proposed. These variants or methods in

general are classified into the following categories

= Choice of Proposal Distribution
In this method choosing an optimal importance density involves maximizing the effective

sample size Neff. In turn the optimal density function minimizes the variance of the

weight v_v,gi) [Doucet 2000]. But evaluating optimal important density involves multi-

dimensional integral which is not tractable in real time application.

= Local Linearization
In this method the optimal importance density can be approximated by incorporating the
current measurement through a bank of standard non-linear filters [Doucet 2000, Merwe

2000]. This technique performs better than SIR filters.
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= Regularization
Regularization is a technique to mitigate the sample impoverishment. A modified PF
algorithm in which resampling process is performed based on kernel-based density
estimation can be potential solution to mitigate the effect of the sample impoverish

[Carlin 1992].

=  Markov Chain Monte Carlo (MCMC)
This method is relatively a simple way to generate the samples from any probability
distribution. It is also potential solution for sample impoverishment in resampling step as

well as regularization scheme [Freitas 1999].

= Rao-Blackwellization
Some models for characterizing a system may have linear dynamic and can be estimated
using a conventional Kalman filter. The combination of Kalman filter with particle filter
will reduce the number of particles needed to obtain a given level of performance and
also reduce the variance of Monto Carlo (MC) estimate [Nordlund 2002]. Specific

description of above methods is discussed in the following sections

3.6.3 Local Linearization Particle Filter

The sample degeneracy of SIS algorithm is due to the increase in variance of the
importance weight over a time. To reduce the sample degeneracy, the optimal importance
density can be approximated by incorporating the most current measurement through a
bank of the standard non-linear filter such as Extended Kalman filter (EKF) or unscented
Kalman filter [Doucet 2000, Merwe 2000]. The importance of the process is to ensure
that neither the likelihood of the sample lies in one of the tails of the prior distribution nor
it is too much narrow due to small measurement. The Figure 3.5 illustrates how to
incorporate the current observation into the proposal distribution and move the samples to

the regions of high likelihood.
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Figure 3.5: Concept for moving samples to regions of high likelihood

The underlying principle of the concept illustrated in Figure 3.5 is to use a separate non-
linear filter like, EKF (i), where individual particle index i in order to generate and

propagate a Gaussian importance distribution
axV 1%y, )= NEO,BO) (3.80)
Where %", and ls,fi)are estimates of the mean and covariance computed from EKF (i) at

time k using measurementy, . The proposed particle filter is generally referred to as the

Local Linearization Particle Filter (LLPF) and is also called the Extended Kalman
Particle Filter (EKPF) [Doucet 2000].

The local linearization method for approximation of the importance density propagates
the particles towards the likelihood function, and subsequently the LLPF performs better
than the SIR filter. The additional computational burden of using such an importance
density is often offset by reduction in the required number of samples to achieve a level
of performance. The Table 3.5 summarizes the generic algorithm of the LLPF. In this
thesis, the available general framework of EKPF is invoked to derive the state estimation
for MIMO-HF channel with non-linear characteristics as well as Gaussian and non-

Gaussian noise distribution.
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Table 3.5 Local Linearization Particle Filter (LLPF)

e [Initialization: at time k=0

1. Fori=1, ---, N,sampling from the prior Xg) ~ p(xo)

2. For each i=1, .-, N, Calculate the weight w(()i):p(yolxg)) and
0 __ v

normalize Wy’ = 5
(/)
ZWO

=

e Prediction and Update: For each time k > 1

1. Fori=1 ---, N,run{ EKF}

[202,. B |- Excr (), B0

2. Fori=1, ---, N,draw asample from importance density

- N5, B

3. Foreach i=1, ---, N, calculate w,(f) = p(y X ng))v?,gi)l and normalize the
(i)

. . —() _ Wk
importance weights w;"" = —
ZW]EI)
J=1
(i)

4. If resampling (Neﬁf < Nth) then, set the weights w,”, =1/N and resample

with {x¢, w0}

e Output: the set of samples used to approximate the posterior distribution

1 plxe 1Y) Zwk( )
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3.7 Extended Kalman Particle Filter

In this method the proposal distribution is approximated to the optimal importance
distribution by incorporating the most current measurement y; through a bank of EKPF
[Merwe 2000]. This method relies on the first order Taylor series expansion of the
likelihood and transition distribution as well as a Gaussian assumption on all the random
variables. EKF approximates the optimal mean square error estimator of the system state
by calculating the conditional mean of the state for all the given observations. EKF is a
recursive method of propagating the Gaussian approximation of the posterior distribution
through time and combining it at each time step with the new observation. The Table 3.6

summarizes the generic algorithm of the EKPF.

Table 3.6 Extended Kalman Particle Filter (EKPF) Algorithm

e [Initialization: at time k=0

1. Fori=1, ---, N, sampling from the prior Xg) ~ p(xo)
2. For each i=1, ---, N, Calculate the weight w(()i) = p(yo ng)) and normalize
. (i)
V_V(gl): Nw0

e Prediction and Update: For each time k > 1

1. Fori=1, ---, N,update the particles with the EKF
igj&—l = f(chi) )
Pl =R o
K4 =l “Y[ Bl () +r, ]
&) =% + K] (Yk_ ( Kik- 1))
B = B, - K HY R
2. Fori=1 ---, N,draw asample from importance density

0 - WA 80)
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3. For each i=1 ---, N, calculate w,(j): p(yk ng))v’vlgi_)l and normalize the

() _ "k

importance weights w;’ =

4. If resampling (Neﬁ <N,h) then, set the weights W,Ei)l =1/N and resample with
")

e Output: the set of samples used to approximate the posterior distribution

Lop(x 1Y) Zwk slx, —x)

N
2. %, =E(x,1Y,) Zwk(

3.8 Conclusion

HF channel characterization is a non-linear stochastic process associated with frequency
non-selective dispersive feature. This chapter is intended as a framework for chapter 5
that deals with HF channel estimation. A framework for formulating the mathematical
equation to analyse non-linear state model and estimate the parameter/state of the non-

linear stochastic process has been highlighted in this chapter.

Recursive Bayesian (RB) techniques which as considered as the best method to address
the optimal non-linear filtering have been discussed. Novelty of RB lies in estimating the
PDF of the state vector which describes characteristic of non-linear system based on
available measurement. Though RB is optimal solution for non-linear filtering
application, it involves the evaluation of the integrals of higher dimensions. Due to this
complexity, an alternative approximated optimal solution is considered for practical
application. Various approximated techniques have been discussed in this chapter. EKF,
which is an example of analytical approximation techniques, has been formulated and
discussed to address non-linear filtering. More recently much attention is being placed on
new class of non-linear/non-Gaussian filtering methods based on Sequential Monte Carlo

(SMC) approach. The SMC is based on simulation method that uses the Monte Carlo
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simulation in order to solve on-line estimation and prediction problems have been
highlighted. The concepts of SMC and resampling techniques which form the basis for
invoking the Particle filtering to address non-linear and non-Gaussian class of filtering
have been discussed in depth. Various aspects, such as the effect of particle degeneracy
and sample impoverishment are addressed in this chapter. This chapter also highlights the
significance of a combination of local linearization particle filter (sample impoverishment
technique) and EKF in mitigating the effects of particle degeneracy. The mathematical
formulation presented in this chapter will be of specific relevance for the performance
analysis of HF channel estimation under non-linear and non-Gaussian noise dealt in

chapter 5.
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CHAPTER 4

ANALYTICAL MODELLING AND SIMULATION OF MIMO-HF CHANNEL

HF sky-wave is the medium of transmission in ionosphere through which long haul
transmission is achieved with a low cost infrastructure. The refraction of HF waves in
the ionized medium combined with ground reflection is responsible for propagation of
signal over greater distances. In this process of propagation, the HF communication
system exhibits low Signal to Noise Ratio (SNR), subjected to slow fading at mid-
latitudes and fast fading at high and equatorial latitudes. Initially very low data rate
approximately 75 bps was available for HF user. Gradually the data rates have increased
significantly to 9.6 kpbs and beyond in a 3 kHz channel bandwidth due to advent of low
cost digital signal processing. However, major limitation factor in the design of high data
rate digital communication system for HF channel is coherence bandwidth which is
typically estimated to be few kilohertz. Using wider channel bandwidth there is a
considerable increase in data rate up to 64 kpbs [Cannon 2002] [Ndao 2011]. However,
with reliability also a factor, the achievable data rate turns around 16kpbs. The
performance parameters of HF channel discussed above are not competitive with
pertinent system applications operating in VHF/UHF and higher band communication. A
first realization of the HF system based on multiple antenna technology was by [Perrine
2005]. It was based on Single Input Multiple Output (SIMO) realizing a data rate of 30
kpbs in 9 kHz bandwidth. The developed HF system was tested over a 800 km link
involving a four-channel receiving system. Later [Ndao 2011] simulated to demonstrate
transmission of higher data rate of 80 kbps in a 9 kHz bandwidth and [Ndao 2013]
demonstrated date rate 24.09 kbps in a 4.2 kHz bandwidth based on MIMO technology

with polarization diversity.

The performance of sky-wave HF communication systems is dependent on its waveform
design that is supposed to compensate propagation channel distortion effects such as path
loss, multipath fading and Doppler effects. From HF environment perspective, channel is
characterized as multipath time-varying environment that produces both time and

frequency dispersion. The source of multipath is the reflections of signals from different
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layers in the ionosphere which lead to multi-hop propagation. Hence the received signal
contains several echoes or modes separated in time by few milliseconds (time/delay
spread). The source of frequency (Doppler) shift and frequency spread is the fading
encountered by each mode is due to the inherent nature of the ionospheric reflection. In
general, BER, throughput and link reliability are some of performance metrics to evaluate
a HF system. To validate the system performance, HF channel model or simulator is
required to meet the compliance specific to the existing standards. Hence HF channel
model /simulator is required to assess the performance metrics of the system. In view of
the above mentioned complexities, ionospheric (HF) channel poses considerable
challenge to the designers of new digital ionospheric radio systems. Their eventual
success critically hinges on a good understanding of the radio-channel multipath and
Doppler characteristics. Therefore modelling, measurement and characterization of the
HF channel analyse its multipath and Doppler characteristics constitute a research

initiative for the development of digital ionospheric communication systems.

Common methods used to evaluate the performance of HF communication system are
based on theoretical analyses and experiential measurements. The available HF models
[Proakis 1989, Rappaport 1996] derived through the theoretical analysis are not amenable
from practical perspective. A primitive model for HF channel analysis consists of a single
path with no fading or slow Rayleigh fading with relatively more emphasis on
incorporating the time-spread (multipath) distortion and/or frequency-spread (fading)
distortion. Although the above model is simplistic, it is surely not a realistic one since
ionosphere exhibits non-stationary (time variant) features. The ionospheric environment
to which an experimental measurement is subjected will not conform to the above
simplistic model. The analysis of stationary ionosphere performed over various snap
shots of time durations can still be helpful in arriving at the possible bounds for the
variation of channel parameters. This calls for the development a HF channel simulator.
The cumulative performance analysis of a stationary HF channel carried over
considerable time duration through such a simulator has a reasonably good potential to

closely approximate even a non-stationary HF channel. This chapter is aimed at the
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development of a mathematical HF channel model applicable to both SISO and MIMO

systems to analyse the practical scenario.

4.1 HF SISO Channel Model

The characteristic of HF signal varies as it propagates from the transmit antenna to the
receive antenna. The characteristics depend upon the distance between the two antennas,
the path(s) of the signal (refraction from the ionosphere layers), environment (building
and other objections) around the path, mobility of Tx, mobility of Rx, and also mobility
of channel as well as the climatic changes (summer/rain). Further the refractive and
absorptive characteristics of the ionospheric layers depend strongly on radio frequency,
latitude, and time of day, season, and the solar activity. Thus the profile of received
signal can be obtained from that of transmitted signal if the model of transmission
medium is available. This model of medium is referred as channel model. Further, the
power profile of the received signal can be obtained by convolving the power profile of
transmitted signal with impulse response of the given channel as follows.

y(8) = h(t) * x(t) + n(t) 4.1
Where,

y(t) is received signal

x(t) is transmitted signal

h(t) is time varying impulse response of the channel

n(t) is noise

t is variation in time.
The frequency response of Equation (4.1) is given as,

Y(f) =H().X(f) + N(f) (4.2)

Where,

H(f) is channel response in frequency

X(f) is the frequency response of transmit signal

N(f) is the frequency response of Noise

Y(f) is frequency response of received signal.
The basic components required to characterize the channel model are path loss,

shadowing, and multipath. The first two components are referred as large scale
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propagation where as multipath is small scale propagation. The scope of this thesis is to
deal with small scale propagation (multipath fading) [Sklar 1997a, b].
e Path loss means reduction in power density of propagating signal. The difference

between Tx power and Rx power is referred as path or transmission loss.

HF signal propagated over ionospheric paths undergo energy losses before arriving at the
receiver. Larger part of these energy losses is due to absorption in both the ionosphere
and lower atmospheric levels. The two other types of losses which also significantly
affect the ionospheric propagation of radio waves are ground reflection loss and free

space loss.

Ground Reflection Loss
When propagation is accomplished via multihop refraction, RF energy is lost each time
the radio wave is reflected from the Earth's surface. The amount of energy loss depends
on the frequency of the wave, the angle of incidence, ground irregularities, and the

electrical conductivity at the point of reflection.

Free space Loss

Normally, the major loss of energy is because of the spreading out (divergence) of the
wavefront as it travels away from the transmitter. As the distance increases, the area of
the wavefront spreads out, much like the beam of a flashlight. This means the amount of
energy contained within any unit of area on the wavefront will decrease as distance
increases. By the time the energy arrives at the receiving antenna, the wavefront is so
widely spread, that only a very small fraction of the wavefront is incident on the
receiving antenna.

The free space loss is given by

Lo(dB) = 32.4 + 201log1o fuuz + 2010810 dicm (4.3)

where, L, is the free-space path loss, measured in decibels, fy;, operating frequency in

MHz and dy,, is distance of separation between the transmitter and receiver in km.
The combined effects of absorption, ground reflection loss, and free space loss account

for most of the energy losses of radio transmissions propagated by the ionosphere.
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The thick dotted line in Figure 4.1 shows the received power as a function of the distance

from the transmitter.

o Shadowing quantifies the loss of transmitted signal
When a radio wave encounters an obstacle, its wave is reflected /scattered or absorbed,
causing a shadow beyond the obstacle. However, some waves does enter the shadow area
because of diffraction. This effect is referred as shadowing. Diffraction is the ability of
radio waves to propagate around sharp corners and bends around obstacles. For a given
diameter of obstruction, the effect of diffraction is more pronounced for a radio wave

with smaller wavelength and hence a larger attenuation of the received signal.

The dotted line in Figure 4.1 shows the received power as a function of the distance from

the transmitter which includes both path loss and shadowing effects.

e Multipath fading

Of many adverse effects of ionospheric propagation, elimination of signal fading is one
of the most difficult task due to its unpredictable nature. Fading is the fluctuation of the
signal amplitude. It is caused by several ionospheric phenomena such as ionic
movements, rotation of the axes of the polarization ellipses and ionospheric absorption. It
is difficult to obtain a signal of constant amplitude, and at times the signal will “fade out”
when the amplitude of the incoming signal drops below the minimum detection level of
the receiver. The variations in amplitude and phase of the received signal are called the

multipath fading.

The types of fading can be broadly classified into the categories of multipath fading and
single-path fading. In the extreme case of heavily disturbed ionospheric conditions,
fading due to scintillation will occur and this can be regarded as an extreme case of
multipath fading. Fading is a frequency selective phenomenon. The ionic movements in

ionosphere which cause the fading induce relatively greater phase shift at a higher

86



frequency than at a lower frequency [Davies 1965].The relatively larger phase shift leads

to faster fading.

Multipath fading occurs when there is more than one path for the signal to traverse
between the transmitter and the receiver. Mostly it occurs when the Line of Sight (LoS)
path is not available. Multiple paths also referred to as modes, can be generated within
the ionospheric propagation channel by a combination of reflections at different layers of
the ionosphere and multi-hop. Scattering of the signal by ionospheric irregularities can
also contribute to multipath fading. Due to the differences in length of the different paths,
the waves arriving at the receiver will have different phases. The differing phase amongst
the multipath can lead to either constructive or destructive interference. Large scale
irregularities within the ionosphere, such as a travelling ionospheric disturbance, have a
behaviour that is time dependent, and therefore the interference behaviour varies with
time. As a result, the total signal at the receiver, which is obtained by super-imposition of

the signals from the different paths, displays the characteristic of fading over time.

The three components of the channel response are highlighted in Figure 4.1. The thick
dashed line represents the path loss. The lognormal shadowing change of the total loss is
shown by the thin dashed line. Finally the multipath results in variations shown by the
solid thick line. The variation in received signal due to multipath is a function of the

frequency.

The following terms are used to characterize the multipath fading.

- Delay spread
The maximum delay after which the power profile of the received signal at the receiver
becomes negligible is referred as maximum delay spread Tp,q,. A large t,,,, indicates a
highly dispersive channel. For HF channel the delay spread values varies from Ims to 5

ms.
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- Coherence time
If the transmitter, receiver, or even the other objects in the channel dynamic, the channel
characteristics change. The time period for which the channel characteristics can be
assumed to be constant even though Tx, Rx and channel environment vary is referred as

coherence time (At), Measurement of coherence time is based on auto-correlation

function. The value of coherence time for HF channel varies from 1 to 10 sec.
- Coherence bandwidth

For every channel parameter in the time domain, there is a corresponding (analogous)
parameter in the frequency domain. The Fourier transform of the delay spread shows the
frequency dependence of the channel characteristics. The frequency bandwidth over
which the channel characteristics remain same is called coherence band-width. This also
can be obtained based on autocorrelation function of delay spread. The coherence
bandwidth is inversely related to the delay spread. The larger the delay spread means less

is the coherence bandwidth and the channel is said to become more frequency selective.

- Doppler spread
The delay spread profile gives the statistical power distribution of the channel over time
for a signal transmitted at a particular instant. Similarly, Doppler power spectrum gives
the statistical power distribution of the channel for a signal transmitted at a particular
frequency f. While the delay spread profile is caused by multipath whereas the Doppler
spectrum/spread is caused by motion of the intermediate objects in the channel.

The Doppler power spectrum is nonzero for (f —f,.f+1, ) ,

Where,
f,, 1s the maximum Doppler spread.
The coherence time is the reciprocal of Doppler spread,
Coherence Time ~ 1/Doppler Spread
Thus, if the transmitter, receiver, or the intermediate objects shift very fast, it implies the
Doppler spread is large and the coherence time is small implying that the channel

changes fast. This effect is referred as fast fading.
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The relationship of all the channel parameter discussed above is illustrated in Figure 4.2.
The subsequent section describes the characterization and modelling of HF channel based

on above multipath parameter discussed.

These Images have been removed

Figure 4.1: Path loss, shadowing, and Multipath [Rappaport 1996]

Figure 4.2 : Relationships among the channel correlation functions
and power density functions [Sklar 1997al]
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4.1.1 HF Channel Characterization and Modelling

Ionosphere is an anisotropic, inhomogeneous, temporally and spatially dispersive,
random time-varying channel which is non-stationary both in time and frequency.
Ionospheric HF channel is typically characterized by multipath propagation and fading.
Due to the anisotropic nature, electromagnetic wave entering into ionosphere region splits
into two modes referred as ordinary and extraordinary. These two modes are orthogonal
to each other and they recombine at the exit of the ionosphere. The signals from the
transmitter propagate through these modes or paths to the receiver via single/multiple
reflections from the E and F layers of the ionosphere. Since the transmission times over
these paths or modes are different for different transmitted signals, the signal at the
receivers may consist of several multipath components spread in time over an interval of
several milliseconds resulting in variation of amplitude, phase and polarization of the
signal received. The variation in height of ionospheric layers may increase or decrease
with time and thereby contributing to different frequency (Doppler) shifts on each of the
multipath components. The turbulence nature of ionosphere causes each component to
exhibit differing Doppler spread (fading) and a resultant fading of the composite received
signal. The cumulative effect of above may produce multiplicative signal distortion both

in time and frequency [ITU-R 2000, Watterson 1970].

Figure 4.3 shows an example of power spectra of multipath component of received signal
transmitted over the HF channel associated with four paths. The four paths in Figure 4.3
refer to one —hop E mode (1E), one-hop F mode (1F), two-hop F mode (2F), and a
mixed mode (e.g. 1E ~ 1F). While two magneto-ionic (joint effect of atmospheric
ionization and the earth's magnetic field upon the propagation of electromagnetic waves)
components labelled as ‘a’ and ‘b’ in the 1E mode have the same frequency spreads, their
frequency shifts are different and resolvable. For the other three modes, both the spreads
and shifts of the magneto-ionic components are essentially the same and they appear as
single entity. Hence the simulator designed to characterize the HF channel in terms of
short-multiplicative distortion (short term fading) would consider the parameters such as

the signal losses, time-spread and frequency spread. Moreover these parameters are
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subjected to daily and seasonal changes. Geographical location also has the impact on

these parameters.

This 1mage has been removed

Figure 4.3: Power spectra of multipath component over ionospheric channel [ITU-R 2000]

For modelling the HF channel, it is necessary to characterize the statistical behaviour of
ionospheric channel by investigating the joint statistics of transmitted and received band-
limited signal. Modelling should also incorporate the parameters of ionospheric channel
such as coherence channel bandwidth, Doppler and multipath spread of signals. In order
to model the HF channel, the correlation and covariance functions of linear time varying
channel impulse response will be exploited to represent the near practical HF channel.
The modelling of the channel is achieved through characterizing filter impulse response
to meet requirement of the HF channel response by incorporating the multipath fading
parameters based on certain assumptions for practical implementation. Either FIR or IIR

filter can be used to characterize the HF channel.
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n(t)

x(t)
g(fc, t) y(t)

Figure 4.4: Generic model for multipath fading channel

Figure 4.4 shows the generic model of multipath channel. Where signal x(t) is
transmitted over a multipath channel. For discrete multipath propagation, the equivalent
base-band channel response g(z,t) can be defined as a function of two variables t and z.
The variable 7 is considered to represent the effect of the channel delay and 7 represents

the time instant. The received signal y(t)is represented as

y() = Xiz1 (T, Dx(t — ) + n(d) (4.4)
where,

n(t)is noise.
Due to the random nature of g(z,7), the channel effects can be characterized by four

important factors: the multipath delay spread, 7, , the coherence time, At , the coherence

bandwidth, Af , and finally the Doppler spread, f,. The distortion of the signal x(z)

transmitted through the HF channel can be correlated with the given information about

these factors.

The detail discussion of characterisation of channel response g(z,t) in term of tap-gain

function is presented in Appendix L.

The Figure 4.5 shows the generation of tap-gain functions. The each tap —gain function is
generated by passing White Gaussian Noise (WGN) through a filter (FIR or IIR) whose
spectrum response (Gaussian shape) that replicates the impulse response of the HF
channel. The cut-off frequency of the filter corresponds to the delay shift (Doppler shift).

The separation of tap represents the delay spread of the channel.
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Figure 4. 5: Generation of tap—gain function

4.1.2 Implementation of Tap-Gain Function

The generation of tap-gain function can be achieved based on white noise filtering
method. This method can generally be realized either by FIR or IIR Filter. The
guaranteed accuracy and computational efficiency of channel characterization based
White Noise Filtering method also depends on whether it involves FIR or IIR. FIR
approximation of a channel model often requires a large number tap coefficients, and the
order of the filter increases with the increased sampling frequency (bandwidth) of signal.
It is well known that IIR filters can capture the system dynamics with fewer parameters
(tap coefficients and order of filter) as compared with FIR filters [Radenkovic 2003]. In
[Delmas 2000], it is discussed that realistic radio channels often exhibit long tails of weak
leading and trailing terms in its impulse response. In the case of FIR filters, this leads to
channel under-modelling effects and degradation of modelling performance. IIR or
AutoRegressive (AR) channel representation can reduce the effect of modelling errors. In
the reported literature on HF channel characterization, the channel modelling invoked
FIR concept [Wheatley 2000]. To overcome the above referred under- modelling effects,

in this thesis IIR is used in modelling the HF channel.

Practically narrowband filter is used to characterize the Doppler spectrum of the channel

modelling with a very sharp roll off and infinite attenuation in stop-band region. To
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realize this specification of narrowband filter, it is impractical to have a FIR filter even
with large number of taps. But for same specification, IIR filter would need lesser
number of taps and is has an advantage of ease of implementation. It requires fewer
hardware resources in term of silicon space, storage and computation time compared to a
FIR filter. Feedback structure of All-pole or Auto-Regressive (AR) or IIR filter allows
steeper Doppler frequency roll offs and retains smooth flat magnitude response with
minimum order compared to a FIR filter [Komninakis 2003, Baddour 2005]. Analytic
response of channel modelling using AR filter has better approximation for wide range of
Doppler Spectrum with minimum order of filter and hardware resources [Baddour 2005].
IIR configuration has relative advantage of smaller chip area and lower power
consumption compared to that of FIR. This is attributed to the sufficiency of lower order
of IIR configuration to retain the optimal accuracy and therefore has become a more
preferred choice for hardware implementations of channel simulators [Malik 2009].
Initially application of the AR model was for Kalman based channel estimation technique
to predict both short and long range dynamics of fading channel [Eyceoz 1998, Wu
2000]. Later AR model technique has been extended by [Wu 2000, Zhang 2000] to
realize channel simulator. It is found that [Zhang 2000] and [Colman 1997] use low order
AR process to realize the correlation statistics of channel. The realized accuracy of
correlation statistics falls short to ensure the desired channel response. This can be
attributed to the numerical instability of statistical parameters resulting in its failure to
model statistical parameter of channel. This has restricted the scope of applicability of
AR models. [Baddour 2005] has demonstrated the simple AR modelling structure with
correlated narrowband Rayleigh variates as well as considering non-isotropic Rayleigh
random process. [Baddour 2005] also addresses numerical stability problems of [Colman
1997, Zhang 2000] thereby enhancing the scope of applicability of AR models. HF
channel does not exhibit an ideal Rayleigh fading. It approximates more closely to
Gaussian random process. This thesis extends the research of [Baddour 2005] to consider
HF channel exhibiting Gaussian distribution. The next section discusses the modelling of
the tap-gain function based on AR model (IIR filtering approach) for Gaussian shape

spectrum for HF channel has also been considered.
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4.2 Autoregressive Modelling of Band-Limited Random Processes.

Auto-Regressive (AR) models are commonly used to approximate discrete-time random
processes [Kay 1988]. This is due to the simplicity with which their parameters can be
computed and due to their correlation matching property. A complex AR process of order
p (AR(p)) can be generated via the time domain recursion
hln] = —¥k-1 axhln — k] + win] (4.5)

Where,

w(nlis a complex white Gaussian noise process with uncorrelated real and
imaginary components has zero mean.

h[n]is the simulator output.
The AR model parameters consist of the filter coefficients {a,, a,, ... ... a, } and the

variance ag of the driving noise process w[n]. The corresponding Power Spectral

Density (PSD) of the AR(p) process has the rational form [Baddour 2005]

Snn(f) =

op

- 7
|1+ XF agexp(—j2nfk)|

(4.6)

Although the Doppler spectrum models proposed for radio communication are not
rational, an arbitrary spectrum can be closely approximated by an AR model of
sufficiently large order. The basic relationship between the desired model
AutoCorrelation Function (ACF) Ry, [k] and the AR(p) parameters are given by [Kay
1988]

P
- z amth[k —m];k = 1
th[k] = P m=t
— Z amRpplk —m] + of k=0
m=1
“4.7)

fork=12,........., p
In matrix form ,

tha = - (488.)
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Where

Rpp[0] Rpnl—1] Rppl—p + 1]
R — Rpp[1] Rp,[0] Rpp[—p + 2]
hh :
Runl—p + 1] Rppl—p + 2] Rpp 0]
a=[ay,ay, ... .. a,]”
v = [Rpn[1] Rpnl2] th[P]]T
(4.8b)
and
05 = Rup[0] + Xp-y ax Run[—K] (4.9)

Given the desired ACF sequence, the AR filter coefficients can thus be determined by
solving the set of p Yule—Walker equations in (4.8a). These equations can in principle be

solved efficiently by the Levinson—Durbin recursion in O(pz). Since R,, 1s an

autocorrelation matrix, it is positive semi-definite and can be shown to be singular only if
the process is purely harmonic and consists of p — 1 or fewer sinusoids [Haykin 1996].
In all other cases, the inverse R+ exists and the Yule-Walker equations are guaranteed
to have the unique solution given as
a=—Rp, + D) v (4.10)

Where,

a AR fading filter coefficients

I'is a p x p identity matrix and

€ # 0 is a suitable diagonal matrix parameter that renders (Rp, + &) non-
singular and invertible.

The generated AR( p ) process has the ACF [Kay 1988]

P Runlk],0<k<p
ol = {— Sies QB [k = m], k> p R

That is, the simulated process has the attractive property that its sampled ACF perfectly
matches the desired sampled ACF up to lag p.
This section has addressed the generation of tap-gain function G of Figure 4.5 in term of

‘a’ AR filter coefficients. The next section considers HF noise.
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4.3 HF Noise

To achieve reliable communication, the minimum signal level required (to operate above
the noise) is a function of the ambient noise level. This is the usual constraint on all
communication systems. Depending upon whether the channel is operating at frequencies
which are lower or higher than the HF band (3-30 MHz), there will be a difference in the
ambient noise source and level. At frequencies above the HF band, the ambient noise is
generally a function of the receiver noise temperature or other noise associated with the
receiver system. At frequencies in/lower than the HF band, communication is limited by
external noise sources. This creates a severe problem for the HF communicator as the
external noise sources, levels, and statistics, vary greatly depending on environment
(rural Vs. urban), time of day, location of mid-path (latitude and longitude), and
frequency of operation. Therefore, the HF channel models must include a provision for
adding noise as appropriate and desired, to the signal when using the model for
simulation. However, the noise sources are not included as an inherent feature of the in
conventional channel model. The noise sources, such as Gaussian or impulsive, are
external to the channel model. Due to the variation in external noise with respect to level,
statistics, and frequency, the pre-programmed (determined) noise sources are added to the
signal, independent of HF channel multipath fading. External noise sources which affect
HF circuits may be classified into two general categories namely random and impulsive

as shown in Table 4.1.

Table 4.1Classification of Noise in HF channel

Type Atmospheric Sources Equipment Sources
Random ® Distant Lighting ® Intrinsic Receiver Noise
®  Cosmic

®  RF Interference

Impulsive | ® Tocal Lightning = Power
® Man-Made

®  RF Interference
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In general, with currently available receiver [Mastrangelo 1997], the main noise
contributors are atmospheric (in rural areas), and both atmospheric and manmade in
urban areas. In these areas the main contributions are from lightning, both impulsive and
random, and usually greatly exceed any cosmic or equipment thermal noise. The above

noise can be modelled either as additive Gaussian or non-Gaussian noise model.

4.3.1 Gaussian Noise Model

The Gaussian distribution represents a cornerstone model in statistic and engineering.
Apart from the mathematical simplicity of the model, the central limit theorem has given
Gaussian distribution a privileged place through the history of statistics. This important
theorem explains with just theoretical augments, the appearance of Gaussian statistics in

real life. A simple formulation of it follows

Theorem 1 (Central Limit Theorem) Let X,,X,,....be as sequence of i.i.d. random

variables with zero mean and variance o . Then, as N — % the normalized sum

1 N
Sy=—7—=> X, (4.12)
N

converges almost to a zero- mean Gaussian variable with the same variance as X, .

Conceptually, the central limit theorem explains the Gaussian nature of process generated
from the superposition of many small and independent effects. This is the example case
for the thermal noise, which are generated as the superposition of a large number of

random independent interactions at the molecular level.

Intimately linked to the Gaussian model are the linear estimation methods. For example,
given a set of i.i.d. Gaussian samples, it is a known fact that the optimal estimator of
location is the sample mean. Traditionally, the central limit theorem has been a
theoretical basis that favours the use of linear methods even in the conditions in which

the non-Gaussian nature of the underlying process is evident.
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The field of communications has not escaped to the “pervasiveness” of the Gaussian
model. Although many significant processes found in communications are distinctly non-
Gaussian, a large number of practical communication systems still exist with the
“Gaussian (and liner)” assumption. A serious concern is that, in general, a system
designed under the Gaussian assumption will show drastic performance degradations
when the noise statistics depart to (even slightly) heavier-tailed (rapid decaying) models.
This is well known for the linear estimators like the sample means, whose performance
decreases from optimal in the Gaussian model, to significantly poor in the presence of

impulsive contamination.

4.3.2 Non-Gaussian Models

The impulsive nature of the noise processes commonly found in wireless communication
has been repeatedly noticed for more than 30 years. Non-Gaussian impulsive noise can
arise in radio signals from any of a variety of impulsive sources (Local Lightning, Man-
Made, RF Interference, and Power) as well as from certain instances of multipath
propagation and multi-user. In order to model these processes, a wide variety of
distributions with heavier-than-Gaussian tail (decay) have been proposed as viable
alternatives to the Gaussian distribution. Mainly these models are based on distributions
which, like the zero-mean Gaussian, are symmetric around zero. Usually, the usefulness
of these models is determined by the trade-off between fidelity and complexity. On one
hand, fidelity stands for more precise and efficient signal processing algorithms, while
the complexity issue stands for simpler models from which more tractable (estimation)
algorithms can be derived.
Although some practical processes might be better modelled by asymmetric
distributions, this thesis concentrates only on symmetric models for following reasons.
(1) A large number of important noise and interference processes found in wireless
communications are symmetric
(2) Asymmetric models may lead to a significant increase in the computational

complexity of the associated signal processing
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(3) Estimating the location of an asymmetric distribution requires either a priori
information about the process or a subjective methodology to determine the
“centre” of the distribution.

The most credited statistical- physical models for electromagnetic radio noise have been
proposed by Middleton [Wang 2004]. Middleton proposed class A, B, and C models
addressing cases where noise bandwidth is less or greater that the receiver bandwidth, or
a linear combination of both, respectively. These models have direct physical
interpretation and have been found to provide good fits to a variety of noise and
interference measurements, including atmospheric noise. A simplified distribution
commonly used in the modelling of impulsive noise is the Gaussian mixture or
contaminated Gaussian, defined by an £ —contamination density function of the form
fG)= A= ¢&)f(x) + € fe(x), (4.13)

Where both f,, and f, are zero-mean Gaussian densities with variances ag and ¢2
respectively. Gaussian mixture models have been popular in communications mainly
because of their mathematical tractability and their ease of conceptual interpretation. The
parameter ¢ can be interpreted as the amount of contamination allowed in the model.
Since f(x) is the sum of two Gaussian densities, it is easy to generate pseudo random

Gaussian —mixture noise for computer simulation studies.

4.3.3 Non-linearity Distortion

Non-linear distortions in the transmitter produce inter-modulation components, some of
which may fall in the frequency band of the signal. Such non-linear distortion
components are similar to additive transmitter distortions. Like additive transmitter
distortion, the non-linear components of the signals in (transmitter, channel and receiver)
undergo the fading phenomenon. However the signal in the transmitter undergoes
negligible fading as with an additive channel. The signal in the channel and the signal in
the receiver undergo significant non-linear distortions like a multiplicative channel. If
the non-linear distortions introduced by the transmitter module can be generated at a
suitably low level relative to the input signal (say < -30 dB), which is usually the case,
then distortion caused by the transmitter is unlikely to affect the system performance,

and therefore, can be ignored.
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The Bit-Error-Rate (BER) performance of a system with respect to receiver non-linear
distortions depends not only on the amount of the non-linearity in the receiver but also on
the type of multiplexing that is used. Frequency-multiplexed systems are far more
susceptible to receiver non-linear distortions than single-pulse-train systems or
concentrically multiplexed multiple-pulse-train systems [Watterson 1979]. In this thesis,
the emphasis and interest are on non-linear distortion introduced by system. Figure 4.6
shows the system non-linearity with channel model. All physical devices have some
degree of non-linearity and thus distort the signal transformation process. The elements
of a linear equivalent circuit are derived from small variations about the DC operating
point. Thus linearity of “small signal” means that the development is limited to the first
order derivative. Likewise, a non-linear equivalent circuit can be defined by higher order

derivatives.

System non-linearities are mainly due to Power Amplifiers (PA). PAs located at an access
point of a downlink channel often operate close to saturation in order to achieve power
efficiency. The models employed in the description of PAs are either static (memory less)
or dynamic (models with memory). The non-linearity is due to power amplifier stage
either transmitter or repeater. Some of non-linear models frequently used for simulation
[Aseeri 2001, Jantunrn 2004]
r' (k) = tanh(r(k)) (4.14a)
7' (k)= r(k)+0.2r*(k)—0.17> (k) (4.14b)
Equation (4.14a) corresponds to the non-linearity introduced due to saturation of

amplifiers used in the transmission systems and Equation (4.14b) corresponds to the

random non-linear distortion.

r(k) r' (k)

s(k) o
—> Channel »  Non-Linearity |—»

Figure 4.6: System non-linearity with channel model
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4.4 AR Modelling for MIMO-HF Channel

In general, characterization and channel modelling, noise and non-linear distortion of
SISO-HF channel discussed in the earlier sections of this chapter are applicable to MIMO
channel. However, certain degree of signal correlation normally exists due to the multiple
antennas at the transmitters and receivers. This correlation is a complicated function of
the scattering environment and the antenna spacing [Kermoal 2002, Spirent 2011]. With a
realistic assumption more de-correlated the signals between the antennas, the greater
spectral advantage is obtained [Gunashekar 2007, Kermoal 2002]. The antenna spacing
for MIMO 1is proportional to the wavelength (typically tens of meters at HF band)
[Daniels 2013]. As a consequence, rich scattering environment such that the channel
gains become independent and identically distributed (uncorrelated) is a distinct
possibility. In such a scenario [Scheible 2014], each of the MIMO sub-channels can be
described by the SISO characterization. A discussion on the AR modelling for
characterization of MIMO-HF fading channel is presented in this section without spatial

correlation effects. In subsequent section the spatial MIMO channel model is presented.

Figure 4.7 shows a typical MIMO communication system with M; transmit antennas and
N, receiver antennas. The Space-Time (S-T) modem at the transmitter (Tx) encodes
incoming bit stream using Alamouti’s codes [Alamouti 1998]. The information bits are
modulated and the signal is mapped across space and time (M, transmit antennas).
Thereafter, the S-T modem at the receiver (Rx) processes the received signal, which is
subjected to time-varying HF fading channel. In addition, the received signal also
experiences Inter Symbol Interference (ISI) under additive Gaussian / non-Gaussian
noise. The received signal will be decoded on each of the N; receiver antennas according

h " receiver at the

to the transmitter’s signaling strategy. The observed signal from it
discrete time index k is

n=Y R Ds)+ wh, i=1 N, (4.15)

Where s,i is the transmitted symbol at the time index k ,

7 is the delay variable

h;c'J (k,T) is the channel impulse response between j* transmitter and it"

102



receiver of MIMO channel with correlated Rayleigh processes whose Doppler
spectrum 1is characterized by Gaussian shape [Watterson 1970 and Mastrangelo

1997].

Transmit Antenna Armray Receive Antenna Array

J L
Sk ¥,
Tx k Rx
Space -Time 2 2 Space -Time
‘ Modem . . Modem o .
Input Bit Stream sy . . tput Bit Stream dy
C——>> (Encoder . . (Demodulator, >
Modulator) Decoder)
M, N,

Figure 4.7: MIMO communication system

For simplicity hfc’j (k,T) is written as h;'c’j . For each time instance k, the (M; x N,) time-
varying channel parameters have to be estimated with the following auto-correlation

function
R3] = £ (1 ] = exp[2 i 700 @19

And normalized spectrum for each A,/is given as

Sk(f)=;exp[— I ] 4.17)

(2m)1/2f5) 2(fy )2
Where superscript * denotes the complex conjugate,

fdl'] is the Doppler frequency shift for path between the ;™ transmitter and i

receiver,

T is the duration of each symbol.
In this thesis an Auto-Regressive (AR) modelling approach is considered for the
generation of correlated Rayleigh processes whose Doppler spectrum is characterized by
Gaussian shape [Watterson 1970, Mastrangelo 1997]. The analysis of [Baddour 2005]
that treats the U shaped Doppler spectrum is extended to deal with the Gaussian shape of

the Doppler spread of the HF channel. The implementation model for channel estimation

hfc’j can be approximated by following the AR process of order L:
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e~ Sl + g (4.13)
Where a; j; is I™ coefficient between j* transmitter and i receiver and n; jk 18 zero-
mean identical independent distribution (i.e.) complex Gaussian processes with variance
given by

E[ngjniic] = 02k (4.19)
The procedure outlined in [Baddour 2005] has been adopted for the optimum selection of

AR channel model parameters from correlation functions R,il‘j . The additive noise (w
Equation (4.15)) can be modeled either as a complex-Gaussian distribution p(z) =
N(z:0, O'MZ,) with argument z, zero mean, and variance 0'12, or as the Middleton class-A
noise model. This latter model has been used to model the impulsive noise commonly
generated in wireless environment [Middleton 1977 and Wang 2004]. The probability
density function of the noise model is given by
p(z) = (1 —€)N(z:0,0%) + € N(z:0,0%) (4.20)

Where 0 < & < 1. The first component (1 — € )N(z:0,02) represents the ambient
background noise with probability (1 — € ) , while € N(z: 0,62) denotes the presence of
an impulsive component occurring with probabilitye. In order to maintain a constant
noise variance o2 for a particular SNR, the parameters €, noise variance ¢ and o2 are
varied such that

02 = (1—€)o? + eo? 4.21)
Finally in Equation (4.21), if o7 =0, then noise model reverts to the Gaussian
distribution.
Equation (4.15) can be written in a matrix form for flat fading as

1, = Hps, + wy (4.22)

Where 13, is the received matrix

Hj, is the channel matrix

Sk 1s the transmitted symbol with time index k

Wy, is the matrix with i.i.d. AWGN elements with variance g.2.

An equal Doppler shift between transmitter and receiver’s elements in MIMO system is

assumed 1i.e. fdl'] = f,;.With these assumption matrix coefficients of the AR model of
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Equation (4.18) can be replaced by scalar coefficients. The time-varying channel matrix
can be described as

H, = aHp_1 + Ny, (4.23)
Where N, is a matrix with i.i.d. Gaussian noise elements with variance o2,

a is an AR coefficient modeled for HF fading channel.
Further, the Equations (4.22) and (4.23) can also be extended to frequency selective
channel. In order to parameterize Equation (4.23), for time lag (t), the autocorrelation of
the channel fading process of Equation (4.16) is:

E[hihix_p] = exp(=2(nfr0)D) 1, (4.24)
Where, I is the identity matrix

T 1is the time lag

fp denotes the Doppler frequency (shift).
The Doppler shift is given by

fo =< fe (4.25)
where, v is the vehicle speed or ionospheric variation
c is the speed of light
fc 1s the carrier frequency
Substituting Equation (4.22) in Equation (4.23) for time lag 7 = {0, Ty} yields
a’+ g2=11=0 (4.26)
a = exp(—2 (nfpT)?), T =T, 4.27)

where, 1 /T is the sampling rate.
S

For example, if the normalized desired fading rate is fpTy = 0.01, then o = 0.998, and
o2 =3.94x10".

A final comment that illustrates the suitability of the channel model is in order. By
projecting Equation (4.23) for 1 time steps into the future, the expected value of a future
channel state conditioned on the current value is given by

E[hgs olhi] = a®hy (4.28)

For o value near unity, then hy ) = hy, i.e., the best guess about a future estimate is
the current estimate. This is precisely what is assumed by sending periodic training codes

over the wireless channel; once the channel has been estimated; it is assumed to remain
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approximately constant until the next set of training data is sent. Significant changes over

longer periods of time are expected. For M, = N, =1, the MIMO configuration reduces to

conventional SISO channel.

4.5 Spatial MIMO Channel Model

Modelling MIMO channel involves representation of a fading channel between
transmitter and receiver array antennas with appropriate spatial correlation between
elements of antenna arrays. Multiple antenna or MIMO system is usually expressed as an
M; x N, combination, where M, is the number of antennas at the transmitter, and N, is the
number of antennas at the receiver. The MIMO channel H which describes the transfer
function (impulse response) between the receiver (Rx) and the transmitter (Tx) can be

expressed as,

H =

h11 e th]
: : (4.29)

hN1 ) hNM
Where, hy), is the complex transmission coefficient from antenna at the M™ transmitter

th .
to N antenna at the receiver.

In a realistic fading environment, the signals at the transmitter and receiver antenna
elements are correlated. Extensive measurements [Spirent 2011] have shown that the
correlation is not constant, but varies significantly over a geographic area or mode of HF
wave propagation. The correlation between antenna elements is a mathematical function
related to the geometrical configuration of the local scattering and is a function of the
Angular Spread (AS) of signal, Angle of Arrival (AoA), and the Direction of Travel
(DoT).

It is assumed that all antenna elements in the two arrays have the same polarization and
the same radiation pattern. The spatial complex correlation coefficient between antennas

m, and m, at the transmitter (Tx) is given

Pﬁfi,mz = (hmln; hmzn) (4.30)
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Where, (a,b) denotes the correlation coefficient between ‘a’ and 'b’. From Equation
(4.30), it is assumed that the spatial correlation coefficient of antennas at the Tx is
independent of the antennas at the receiver. By the reciprocity theorem of antenna, the
n elements at the Rx illuminate the same surrounding scatters and, therefore, also
generate the same Power Azimuth Spectrum (PAS) at the Tx [Kermoal 2002]. The
spatial complex correlation coefficient observed at the Rx is similarly defined in Equation
(4.31) and assumed to be independent of m.
Pring, = (Mnym Ponym) (4.31)

Given Equations (4.30) and (4.31), one can define the following symmetrical complex

correlation matrices at the transmitter and receiver of the MIMO system.

[pI¥ - pl%
_PMji “ Puim
pfx . pRx
Ree=| : =~ i (4.32)
PRE 0 PAN

Spatial correlation matrix of the MIMO channel is the Kronecker product of the spatial
correlation matrices at the Tx and the Rx and is defined as,

R =Rpry ® Rpx (4.33)

Where, ® represents the Kronecker product.

4.5.1 Generation of Correlated Channel Coefficients

Correlated channel coefficients h,,, are generated from zero-mean complex independent
identically distributed (i.i.d.) random variables a,,, shaped by the desired Doppler

spectrum such that

A=Ca (4.34)
Whel‘e, ANMxl = [h’ll’ hlz, ....th, h’Nl' ’h'NM] and
Anmx1 = (@1, 2, v oo oo, ayy]. The symmetrical mapping matrix C results from the

standard Cholesky factorization of the matrix R = CCTprovided that C is non-singular.
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The Kronecker product assumes that the individual cross terms are identical. This is not
always a reasonable assumption. For instance, it assumes the correlation between receive
antennas n; and n, measured at antenna m, is identical to the correlation measured at
antenna m,, and likewise, the correlation between transmit antennas mjand m,
measured at antenna m,, is identical to the correlation measured at antenna n,. For a 2x2
MIMO configuration, the Kronecker product is of the form:

E(hy1hiz) = E(hy1h3,)" = (4.35a)

E(hy1h31) = E(hi2h3,)" = B (4.35b)
For the purpose of simulation studies of this thesis, the above assumption is assumed to
be valid. However, this assumption is not accurate for many conditions, including
realistic antennas with pattern variations, branch imbalance between ports, and
polarization effects. In these cases, a full correlation matrix with unique individual terms
is required. Until recently, spatial correlation statistics of practical MIMO-HF antenna
configurations were not available [Daniels 2013]. The values of o and B can be selected
to represent different types of channels, and often real values in the range from 0-1 to
capture the spatial correlation between the antenna arrays at the transmitter and the

receiver of the MIMO system. One example set of values is shown in Table 4.2 [Spirent

2011].

Table 4.2 Correlation Scenarios

Low Correlation Medium Correlation | High correlation

o p o B o B

0 0 0.3 0.9 0.9 0.9

4.6 Simulation Results and Analysis

The simulation results and analysis for characterizing the MIMO-HF channel based on
the short term fading associated to HF channel is discussed in subsequent section.
Modelling of tap-gain function to characterize channel parameter is implemented based

on the AR structure. The comparison in generation of tap-gain function with FIR
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structure, in terms of complexity and advantage is also highlighted in subsequent sub-

sections.

4.6.1 HF Channel Characterization Simulation Result and Analysis

In this section, simulation results are presented for HF channel characterization. The

following channel parameters have been considered to characterize the HF channel.

o Doppler Spread : 1 to 10Hz, shift in frequency 0 to +2Hz.

o Multipath : 3 Path various 1 to 5ms, with two Magneto-ionic
Component

o Sampling frequency : 300 Hz

o Tap-Gain generation : IIR compared with FIR

o Auto Regressive : Designed for Doppler spread having Gaussian spectrum

required for HF channel.
o Channel noise : Gaussian and non-Gaussian
o Channel variation : Linear and system non-linearity.

o Antenna configuration : SISO and MIMO (2x2,4x4)

In discrete stationary channel model illustrated Figure Al.1 with three taps, G,(t)

represents uncorrelated tap-gain function which is modelled for Doppler spread of
Gaussian shape. The simulation results of auto-correlation for the corresponding tap-gain
function of SISO channel is shown in Figures 4.8- 4.10. Equation (A1.12) has been
invoked to simulate the tap-gain functions. In the simulation, the observation period of
ACF was 5 sec. From the results shown in Figures 4.8- 4.10, it is noticed that the three
multipath represented through the 3 tap-gain functions exhibit uncorrelated properties.
From the Figures 4.8-4.10, it is observed that as observation time increases, the auto-
correlation decreases and nearly approaches zero after an elapsed time. The difference in
time corresponding to the peak value and a-prior set value (say 0.707 of the peak value)
of ACF corresponds to the delay spread of the observation signal. The ACF for the

composite channel response from the all the multipath is illustrated in Figure 4.11.
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Figure 4.9: ACF for the G,(t) (a) Amplitude (b) Phase
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Tap Gain Autocorrelation function for third path
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Figure 4.11: ACF for channel response G;(t) + G,(t) + G;(t) , (a) Amplitude (b) Phase

Figures 4.12 illustrate the two dimensional ACF for first multipath. The corresponding

results for the composite (all 3 multipath) are shown in Figure 4.13.
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2D Tap Gain Autocorrelation function for first path
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Figure 4. 12: 2D ACF for the G4(t)

2D Tap Gain Autocorrelation function for output of channel(composite signal)
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Figure 4.13: 2D ACF for channel response G{(t) + G»(t) + G3(t)
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From Figure 4.14, it is evident that cross-correlation between any two paths is small

(around 0.1) and Figure 4.15 illustrates the 2D cross-correlation between two paths.
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Figure 4.14: Cross correlation between G;(t) and G,(t)
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Figure 4.15: 2D Cross correlation between G (t) and G,(t)
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Figure 4.16 illustrates the simulated Power Spectral Density (PSD) of ACF for single
path shown in Figure 4.9. The simulated PSD is also compared with the tap-gain
spectrum obtained through the Equation (A1.16). From Figure 4.18, it is evident that both
simulated PSD and the tap-gain spectrum through Equation (A1.16) correlate very well
over an amplitude range of about 55 dB. The tap-gain spectrum exhibits parabolic
variation because of the logarithmic ordinate. The frequency span between the peak value
and the -3 dB point of PSD or tap-gain spectrum corresponds to Doppler spread
introduced by the HF channel.

Power Spectrum Density of Tap Gain
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Figure 4.16 : PSD of tap-gain function with single path

Figure 4.17 illustrates PSD of ACF for single path of Figure 4.16 having two-magneto-
ionic components. The simulated PSD for this scenario is also compared with the tap-
gain spectrum obtained through the Equation (Al.16). From the results depicted in
Figure 4.17, it is observed that both the simulated PSD and the tap-gain spectrum

correlate well over an amplitude range of 55 dB. The spectral peaks corresponding to the
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Figure 4.17: PSD of Tap

Figure 4.18 illustrates the comparison of amplitude variation between linear and system

non-linear with fading channel over a time period, three path losses of the three multipath

being 0 dB, -4 dB, -7dB. The Doppler

spread is 4Hz. The general inference from the

tends to give rise increased fluctuations in the
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peak amplitudes.



Linear and Non-Linear HF Channel Amplitude plot for three Multipath for SISO Config.
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Figure 4.18: Comparison of Amplitude variation between Linear and system
non-linearity with channel impairments for three Multipath for SISO Config.

A relative comparison of the influence of Gaussian and non-Gaussian noise on HF
channel is illustrated in Figures 4.19 to 4.21. The noise PSD is shown Figure 4.19. It is

pertinent to point out that noise PSD is independent of its distribution function.
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Noise Power Spectral Density
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Figure 4.19: Noise power spectral density

The histogram for Gaussian and non-Gaussian noise distribution is shown in Figure 4.20.
The results depicted in Figure 4.19 conforms the PDF of Gaussian function. Non-
Gaussian distribution is simulated through a mixture of two Gaussian functions with
identical zero mean and varying variance. Non-Gaussian distribution leads to asymmetry
in the histogram. From the results of the Figure 4.21, it is easy to observe the impulsive
nature of the amplitude variation introduced by non-Gaussian noise resulting in severe

impairment in the estimation of desired signal.
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Histogram for Gaussian mixture noise
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Figure 4.20: Histogram for Gaussian and non-Gaussian noise
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Figure 4.21 : Variation of Gaussian and non-Gaussian noise
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For MIMO 2x2 configuration with flat fading is illustrated and it can be extended for
higher configuration and frequency selectivity. The channel coefficient for 2x2 MIMO
for single path is given as follows
h h
H,, { o 01} (4.36)
th hll

Where,

H, p, represents the channel matrix between Tx and Rx antennas, For 2x2

Configuration, the indices for both Tx and Rx vary from O to 1.

h rx Tepresents the individual elements of the channel matrix or the

coefficients of the channel matrix.

The amplitude fluctuations of the channel coefficients of 2X2 MIMO channel are
depicted in Figure 4.22. The simulation results shown in Figure 4.22 are based on the
parameters used to simulate the results in Figure 4.8

Channel variation for each co-efficient

Amplitude
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Figure 4.22: Channel variation for 2x2 MIMO configuration

Figure 4.23 illustrates the ACF of the 4 channel coefficients of 2X2 MIMO channel. The
delay spread encountered by the 4 channel coefficients between Tx and Rx is almost the

same and is around 40 msec.
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2x2 MIMO channel ACF for a path (Amplitude)
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Figure 4.23 : ACF of Tap-gain function (Channel coefficient) for 2x2 MIMO .
The uncorrelated characteristics of the generated channel coefficients of 2X2 MIMO

channel are shown in Figure 4.24 implying the presence of rich multipath scattering

scenario.
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Figure 4.24 : Cross -correlation for 2x2 MIMO channel coefficient
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Power Spectral Density for 2x2 MIMO channel (H) Tap gain
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Figure 4.25: PSD for 2x2 MIMO channel with Doppler spread of 4 Hz
The PSD of 2x2 MIMO channel with a Doppler spread of 4 Hz for the all coefficients is

shown in Figure 4.25. The PSD is derived through Fourier transform the ACF of the

channel coefficients of Figure 4.23.
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4.6.2 Complexity Analysis in Generation of Tap-Gain Function

The following section demonstrates the signification of AR (IIR) model over FIR model

in terms of complexity of implementation . The following parameters are considered for

the simulation of tap-gain functions of HF channel.

Doppler spread (fy)
Sampling frequency (F)
Tap-gain generation
No. of tap-gains

Order of AR

Order or length FIR

: 1- 10Hz

: 300 Hz and 4000Hz

: AR and FIR method.

: 1 (can be generalized for any number)

: Between 7 to 11

: N =Ceil(K_qual *Fs/(f, *2))+1,[Wheatley 2000]

where K_qual is the shape quality it consider to be 1.4 (larger the constant, the better the

Order of IIR

match).

A2 —1)]
log,, T
: N =Cell

[ Proakis 1997]

f
2*log1{;]
— d -

Where Anin is stopband gain, £=0.3 to 0.5
passband  gain, f  stop band frequency &

f. =f,+5 is considered for the simulation

Table 4.3 shows the various test cases for which ACF and PSD for HF channel Tap-gain

function is analysed for AR and FIR channel models.

Table 4.3 Test Case Simulation for ACF And PSD for Tap-Gain Function

Test Case Doppler Spread (Hz) Sampling Frequency (Hz)
A 10 300
B 1 300
C 10 4000
D 1 4000
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Test Case A
Figures 4.26 and 4.27 illustrate the ACF and PSD for tap-gain function generated using
AR (IIR) and FIR model for a path with Doppler spread 10 Hz and sampling frequency

300 Hz Tap Gain Autocorrelation function generation comparison
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Figure 4.26: ACF of tap-gain function generated using AR and FIR
with Doppler spread 10 Hz and sampling frequency 300 Hz
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Figure 4.27: PSD of tap-gain function generated using AR and FIR models with
Doppler spread 10 Hz and sampling frequency 300 Hz
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Channel Variation compute using AR and FIR model
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Figure 4.28: Channel variation for the tap-gain function generated using
AR and FIR model with Doppler spread 10 Hz and sampling frequency

Test Case B

The ACF and PSD of the HF channel modelled through AR and FIR with a Doppler
spread of 1 Hz and Sampling frequency 300 Hz are shown in Figures 4.29 and 4.30. The
corresponding amplitude variations of the HF channel modelled through AR and FIR are

shown in Figure 4.31.

Tap Gain Autocorrelation function generation comparison
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Figure 4.29: ACF of tap-gain function generated using AR and FIR with Doppler spread 1 Hz and
sampling frequency 300 Hz
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PSD of HF Channel Response compute using AR and FIR model
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Figure 4.30: PSD of tap-gain function generated using AR and FIR with
Doppler spread 1 Hz and sampling frequency 300 Hz
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Figure 4.31: Channel variation for the tap-gain function generated using AR and FIR
with Doppler spread 1 Hz and sampling frequency 300 Hz
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The well-known FIR model for the modelling of HF channel has been invoked to channel

modelling using AR (IIR). To characterize the HF channel associated with Doppler

spread of 10 Hz and sampled at 300 Hz, the order of the tap-gain function for AR is
found to be 9 while it is 226 for FIR. However, when the Doppler spread was reduced to
1 Hz with other parameters unaltered, the AR model showed no change in the order of
Tap-gain function while FIR showed a significant variation from 226 to 24. It implies
that FIR model would necessitate a rapid reconfiguration of the sources to cater the
dynamic conditions of the channel represented through Doppler spread variations. The
further advantage of reduced order of tap-gain functions required for the case IIR for the

identical channel conditions is illustrated through relatively smaller delay as shown in
Figures 4.28 and 4.31.

Test Cases C and D

From the results illustrated in Figures 4.32 to 4.37, it is noticed that simulated tap-gain
functions using AR and FIR models show insignificant difference between them. The
same results indicate that FIR model introduces a delay in generating the steady state tap-

gain function. The referred delay is attributed to the increased order of FIR for the
channel response.
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Figure 4.32 : Channel variations for the tap-gain function generated using AR and FIR with Doppler
spread 10 Hz and sampling frequency 4000 Hz
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Tap Gain Autocorrelation function generation comparison
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Figure 4.33: ACF of tap-gain function generated using AR and FIR with
Doppler spread 10 Hz and sampling frequency 4000 Hz

To generate the HF channel response (for a Doppler spread 10 Hz and sampling
frequency 4000 Hz) the order of AR model is 11 whereas the order for FIR is 301 with
only the change of Doppler spread from 10 Hz to 1 Hz, for channel response the order for
AR model remained at 9 while the order for FIR there was a significant increase in its

order from 301 to 3001.

PSD of HF Channel Response compute using AR and FIR model
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Figure 4.34: PSD of Tap-gain function generated using AR and FIR with Doppler
Spread 10 Hz and Sampling frequency 4000 Hz
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Channel Variation compute using AR and FIR model
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Figure 4.35 : Channel variation for the tap-gain function generated using AR and
FIR with Doppler spread 1 Hz and sampling frequency 4000 Hz
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Figure 4.36 : ACF of tap-gain function generated using AR and FIR with Doppler
spread 1 Hz and sampling frequency 4000 Hz

128



From Figures 4.32 and 4.35, it is seen that for higher sampling frequency the
generated using AR model shows smooth response and fast roll-off compared to the
FIR model (Figure 4.32 and 4.35).

MATLAB Filter Design and Analysis Tools (FDAT) have been used to carry out a
comparative analysis of complexities involved in characterizing HF channel using AR
and FIR models. This involves importing respective filter coefficients to the FDAT.

Table 4.4 illustrates the relative comparison between the AR and FIR filter for generation
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Figure 4.37 : PSD of tap-gain function generated using AR and FIR with Doppler
spread 1 Hz and sampling frequency 4000 Hz

of a single tap-gain function for one sample.

Table 4.4 Test Case Comparison Simulation for Tap-Gain Function
Test case Doppler Sampling frequency FIR order IR order
spread (Hz) (Hz)
A 10 300 24 9
B 1 300 226 9
C 10 4000 301 11
D 1 4000 3001 9
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Figure 4.38 depicts the comparison of computational complexities involved in the

characterization of HF channel invoking AR and FIR models with FDAT for the test

cases B discussed earlier. In particular, Figure 4.38 dwells the relative complexities in

terms algebraic operations and memory storage (states). It is evident that AR modelling

exhibits greater advantage over FIR in terms complexities from the point of computation

as well as memory utilization.
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Figure 4.38 : Comparison of relative complexities for generating a sample for tap-gain functions for test case B.

Figure 4.39 is analogous to Figure 4.38 except it is generated for test case C (Higher

sampling frequency). Even in case of higher sampling frequency, AR modelling exhibits

its lower computational burden compares to FIR.
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Figure 4.39 :Comparison of relative complexities for generating a sample for tap-gain

function for test case C
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In order to highlight the difference in the requirement of order of the filter (for AR and
FIR) to generate tap-gain functions, extensive simulations have been carried out for
various combinations of Doppler spread and sampling frequencies. Figure 4.40 shows

the comparison of the order of AR and FIR filter required to generate tap-gain function.

With the span of sampling frequencies extending from 300 Hz to 4000 Hz AR model
requires an order of 11 to realize the specified channel parameters (Doppler spread of 1 to
10 Hz). The order of the filter varies from 3 to 11 only. For the identical scenario, the
order of FIR varies from 24 to 3001 which surely is a much wider variation compared to
AR model. It is pertinent to point that the increasing order of the filter is directly related
to the complexities in hardware implementation. From the results of Figure 4.40 (a), it
can be inferred that the AR model requires only 3 to 11 Multiplication-Accumulation
Computation (MAC) compared 24 to 3001 MAC required by FIR. From Figure 4.40 (b),
it is evident that swing in order of the filter with FIR is rather wide to meet the varying
Doppler spread. The relatively narrow swing in the order of the filter with AR allows a
flexibility to freeze a slightly higher filter order without undue implementation burden
and yet satisfying a rather varying Doppler spread. The same cannot be said in case of

FIR

The results of Figure 4.40 specifically pertain to a single tap-gain function of SISO. In
case of SISO, the order of computations with both AR and FIR models will increase
linearly with change in number of multipath. In a typical HF channel scenario [Watterson
1970], 3 multipath is considered to be sufficient for SISO. When MIMO replaces SISO
for the channel characterization, the above discussed generation of tap-gain function of
SISO has to be repeated for every individual channel coefficient of MIMO channel. For
each channel coefficient, the tap-gain function need to generate as module. In general the

MAC required implementing the tap-gain function for MIMO channel is given as

MACpmo = 2™ ™R x (No. of Multipath) x (Order of AR or FIR) (4.37)
Considering the an example for MIMO 2x2, multipath path = 3, order of AR =11 and
order of FIR = 301 (for Doppler spread =5 Hz and sampling frequency = 2000 Hz)
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e MAC required for AR = 132 (Multiply and Adder)
e Time to compute for AR-> 66 msec
e MAC required for FIR> 3612
e Time to compute for sequential AR—> 1806 msec.
It is observed from the results of the above example; there is an advantage with AR

model in terms of resources utilization and computation time.

Table 4.5 shows the comparison of computational complexity (MAC) in evaluating the
tap-gain function for SISO using the FIR and AR models. It is evident that AR model
exhibits least computation complexity for varying parameters such as Doppler spread and

sampling frequency.

Table 4.5 Comparison of MAC between FIR and AR Models to Evaluate Tap-Gain Function for
SISO Configuration

SISO (FIR) SISO (AR)
Sampling Doppler spread | Single Three Single Three
frequency in Hz in Hz tap Multipath tap Multipath

10 24 72 11 33

6 39 117 7 21
300 2 114 342 4 12

1 226 678 3 9

10 166 498 11 33

6 276 828 7 21
2200 2 826 2478 4 12

1 1651 4953 3 9

10 301 903 11 33

6 501 1503 7 21
4000 2 1501 4503 4 12

1 3001 9003 3 9

132
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Figure 4.40: (a) AR (b) FIR order of filter for computing for various
Doppler spread and sampling frequency
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Table 4.6 is analogous to table 4.4 except that it is for MIMO configuration. Even with
MIMO configuration also, AR model continues to have lower MAC requirements

compared to FIR.

Table 4.6 MAC Comparison between FIR and AR to Evaluate Tap-Gain Function for MIMO

Configuration
2x2 MIMO (FIR) 2x2 MIMO (AR)
Sampling Doppler Single Three Single Three
frequency in Hz spread in Hz path multipath path multipath

10 96 288 44 132

300 6 156 468 28 84

2 456 1368 16 48

1 904 2712 12 36
10 664 1992 44 132

6 1104 3312 28 84

2200 2 3304 9912 16 48

1 6604 19812 12 36
10 1204 3612 44 132

6 2004 6012 28 84

4000 2 6004 18012 16 48

1 12004 36012 12 36

4.7 Conclusion

The random and unpredictable nature and the absence of definitive statistical
characterization of various HF channel parameters have resulted in continued demand for
improvement of channel model. The designer would desire a near real-time channel
simulator to have fair statistical knowledge of channel conditions. SNR, Doppler spread
and delay spread are the three significant channel parameters to characterize the Omni
presence of multipath fading in a HF channel. Realistically, characterization of HF
channel can be accomplished only through snapshot observations of desired parameters
to retain the inherent random behavior of the channel. The accuracy of the HF system
performance such as BER, throughput and link reliability depends upon the how well the

system parameters have been captured through snapshot observations.

This chapter presents an analytical model to characterize the multipath fading

phenomenon of HF channel associated with non-Gaussian noise and system non-
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linearity. The presented analytical model is aimed to consider the collective impairment
of the realistic HF channel due to non-linearity of the systems, multipath fading effects
and non-Gaussian noise. In the proposed channel characterization scheme, Watterson
channel model has been invoked to impart non-linear and random time varying features
to capture both the time and frequency dispersion. The multipath fading phenomenon is
modeled through multiple tap-gain functions to realize time dispersive nature of the
channel. Each tap-gain function represents a multipath associated with a differing delay
and gain. To capture the frequency dispersive nature of the channel, the tap-gain has

been modeled so as to realize Gaussian Doppler power spectral function.

The non-stationary characteristics of the HF channel have been analyzed through the
cumulative simulation invoking multiple snap shot observations of the channel. Each
snap shot channel analysis represents the stationary nature of the channel. The cumulative
simulation through stationary ionosphere channel performed over various snap shots of
observations can still be helpful in arriving at the possible bounds for the variation of
channel parameters. This in turn has a reasonably good potential to closely approximate
even a non-stationary HF channel. Through extensive simulations, the feasibility of
analysis of non-stationary HF channel has been demonstrated. The characterization of
channel parameter through tap-gain function has been realized invoking White noise
filtering method using FIR or AR models. This chapter also substantiates that the
requirement of lower filter order by AR model does not result in any significant deviation

in the characterization of the channel.

Practically, a narrowband filter is used to characterize the Doppler spectrum of the
channel modelling with a very sharp roll off and infinite attenuation in stop-band region.
To realize this specification of narrowband filter, it is impractical to have a FIR filter
even with large number of taps. But for same specification, IIR filter would need lesser
number of taps and thus has an advantage of ease of implementation The simulation
studies on HF channel characterization presented in this chapter reveal that the change in

Doppler spread has minor variation in change of order of the AR model. Further the
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effect of change in the order of AR model is independent of the sampling frequency. The

same is not true with the FIR model.

The effectiveness in selecting the FIR or AR depends on the parameters such as
computation complexity, implementation time, dynamic memory allocation resource and
resource dependency on dynamic range in selection of Doppler frequency and sampling
frequency. With all these parameters, the simulation study of this chapter proves that

AR is an ideal choice to characterize the given parameters of a HF channel.

Finally, the computational complexity involved in generating the AR function for
different Doppler spread and sampling is demonstrated and its complexity varies

exponentially with the selection MIMO configuration also discussed.

MIMO is an enabling technology in order to meet the growing demands for higher
capacity and more reliable transmissions over harsh HF channels. The channel model
needed in the development of a MIMO-HF system has to represent the signal dispersion
in the three dimensions namely, angular, delay and Doppler domain, representing phase,
time and frequency, respectively, and it appeared to be not available in open literature.
This chapter proposes the formulation of an analytical model for the MIMO-HF channel.
The validity of the proposed model to characterize the MIMO-HF channel has been
established through extensive numerical simulations. The desirable feature of reduced
computational complexities associated with the AR model in the characterization of HF
channel has been established through an extensive simulation exercise involving varying
combinations of channel parameters and sampling frequency with both SISO and MIMO

configurations.
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CHAPTER 5

MIMO-HF CHANNEL ESTIMATION BASED ON PARTICLE FILTERING

In a MIMO-HF system, the channel parameter estimation is crucial for the process of
detection of the originally transmitted signal/data [Alvarez 2011]. Varieties of
equalization and signal detection techniques have been developed for MIMO
systems. The applicability of a particular signal detection technique is developed to suit a
specific mode of MIMO operation, namely diversity or spatial multiplexing or combined.
Regardless of the mode of MIMO system operation, most of the
equalization/detection schemes require knowledge of the Channel State Information
(CSD to recover the original transmitted signal. With the usual assumptions associated
with the channel estimation techniques, such as linearity, time invariance and near flat
fading, it is more realistic to look for an efficient method of approximating the channel as
closely as to the ideal one between the transmitter and receiver. Estimation of CSI is an
essential component of the receiver design. Further, the efficiency of CSI estimation can
affect the performance of the system in two different ways. It can introduce a channel
estimation error leading to increased BER, which in turn affects the channel capacity.
Also, the dedicated fractional bandwidth of the system for the transmission of pilots or
training symbols is dependent on both the channel condition as well as the invoked CSI

estimation technique.

The channel parameters that characterize the channel conditions will have effect on the
transmission of the data. The effects of channel conditions on the transmitted data must
be estimated in order to recover the transmitted information correctly. Often, the
estimation of channel parameters is based on an approximate underlying channel model
for the radio wave propagation. The receiver can precisely recover the transmitted
data/information as long as it can keep track of the varying channel models. Earlier
chapter 4 presented a detailed discussion on channel models for both SISO and MIMO-

HF communication system.

There are the three main strategies for the design of channel estimation algorithms:
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(1) Supervised or training (Pilot) based methods: A set of known information
symbols are sent over the channel so that the receiver can estimate the channel.

(2) Blind techniques: The channel parameters are recovered from the statistical
properties of the received information symbols up to some kind of ambiguity. A
reduced number of training symbols is usually still needed to obtain an estimate.

(3) Semi-Blind channel estimation: A training matrix is used to allow a first
estimate, which is improved using statistical properties of the received signal or

information from already detected symbols.

Channel estimation based on supervised method for signal detection algorithms require
the knowledge of channel impulse response, which is usually estimated by using the
known training (mid-amble) symbols in the middle of the transmission burst. In HF
environment the channel is time-variant, which makes the estimation task more difficult.
In any communication wireless system and its derivatives, the time period between the
transmission bursts is so long that the channel changes significantly from burst to burst
and thus a separate channel estimation is needed for each individual burst. On the other
hand, the channel effects during the short burst period are assumed to exhibit lesser
variation, hence it is reasonable to assume block fading channel characteristics implying
that the channel is assumed to be time-invariant during the burst, but is changing between
the bursts.

In channel estimation theory, there are two general types of estimation approaches:

1) Classical estimation, and

2) Bayesian estimation.

In the classical estimation, the vector (received time samples) to be estimated is
viewed as deterministic but unknown . The estimate is determined based on the
Probability Density Function (PDF) of the received samples. In Bayesian estimation, the
unknown vector is regarded as a random vector and prior information such as the mean,
variance, and a priori PDF is used to determine the estimate.

Several pilot symbols assisted channel estimation schemes such as linear least squares
(LS), Minimum Mean-Square-Error (MMSE) scaled LS and relaxed MMSE have been
introduced in [Bazzi 2010] for providing the MIMO receivers with the CSI for large
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diversity and multiplexing gains. Other channel estimation methods are based on the
adaptive filters including Least-Mean-Square (LMS), Extended Kalman Filter (EKF) and
Recursive-Least-Square (RLS) [Haykin 1996]. Because the channel estimation
methods based on adaptive filters are almost linear tracking methods, these linear
methods cannot track or estimate non-linear introduced by system and non-Gaussian-
noised wireless channel perfectly. As a result, Particle Filtering (PF) [Gordon 1993] is
emerging as a powerful method for sequential signal processing with a wide range of
applications in science and engineering [Djuric 2003]. PF is a Sequential Monte Carlo
(SMC) methodology [Wang 2004] where the basic idea is the recursive computation of
relevant probability distributions using the concept of important sampling and

approximation of probability distributions with discrete random measures.

A channel estimation method using PF for MIMO systems is presented in [Huber 2003].
The method uses PF to track channel under the assumption that the receiver has precise
knowledge of the realization of the fading AR channel [Haykin 1996]. A channel
tracking method using PF is proposed in [Chin 2002].

Accurate knowledge (or good estimate) of the underlying channel is essential for
mitigating the effect of multipath and fading. If the channel estimates are not reliable, the
performance of algorithms such as equalization and detection at the receivers degrade
significantly. The overall performance of HF system has significant dependence on
effective utilization of resources. The critical utilization of resources depends on the
choice of channel estimation technique and the estimation technique must prevail even
under adverse channel conditions such as non-linear, time varying and non-Gaussian
noise environments. In view of these considerations and the inability of the conventional
estimation techniques to fulfil the requirements of the context, an alternative approach to
develop adaptive channel estimation technique for the HF channel invoking the principle
of Bayesian forecasting will be of practical importance and relevance. Channel estimation
based on PF is an ideal choice to deal with non-linear and non-Gaussian scenarios
[Bergman 1999, Arulampalam 2002, and Doucet 1998]. Reported research in [Haykin

2004] revealed the performance improvement of PF for MIMO wireless channel above
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UHF band. This chapter investigates channel estimation technique based on PF for time
varying HF channel to counter the effect of channel impairment along with non-linear
and non-Gaussian noise conditions. The chapter also addresses the application PF based
estimation technique applicable to MIMO-HF channel also which seems to have not been
attempted in open literature thus far. Although one can conceive an idea of invoking the
PF concept of devoid of EKF, this chapter attempts to adopt a unified approach wherein
PF and EKF schemes have been combined to realize better posterior density functions.
The expected improvement in the receiver performance evaluated through the system
parameters like data rate and reliability is also addressed in this chapter.

In this chapter both classical and Bayesian approaches to estimate the channel impulse
response are presented. Recursive Least Squares (RLS) channel estimator is derived
based on classical supervised methods are discussed. PF which falls under supervised
Bayesian approach are discussed. However, the main emphasis of this chapter is on PF
technique which falls under supervised Bayesian approach, which improves estimation
accuracy by exploiting some prior knowledge of channel vector and even under adverse
channel conditions such as non-linear, time varying and non-Gaussian noise

environments.

5.1 Recursive Least Squares (RLS) Estimation

A simplified MIMO communication system with M, transmits antennas and N, receiver

antennas to represent the channel estimation block is shown in Figure 5.1.

The Space-Time (S-T) modem at the transmitter (Tx) encodes incoming bit stream b,

using Alamouti’s code. The information bits are modulated and signal is mapped for

space and time across M, transmit antennas is represented as vector s, of dimension M,
.Thereafter, the S-T modem at the receiver (Rx) processes the received signal y, of
vector dimension N, which is subjected to time-varying ionospheric (HF) fading channel
represented by matrix H; of dimensions N, x M,. The received signal will be decoded on

each of the N, receiver antennas according to the transmitter’s signalling strategy and

A

estimated information bit f)tis recovered based on the channel estimation H, and

detection process.
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Figure 5.1: Simplified block diagram of MIMO-HF system to illustrate channel estimation scheme

The received signal at time instant t is represented as

Ye = Hese + 1y (5.1
Where,

y; 1s the received signal vector

H; is the channel matrix

s; stands for the transmitted signal vector

n; denotes the noise vector
Recursive Least Squares (RLS) is an adaptive filter technique based on weighted linear
least squares. RLS recursively finds the filter coefficients that minimize the cost function

relating to the input signals. The cost function (C,) is defined as weighted average of

error squares and is represented at the time instant t as follows,
t

Co= ) 2 ¥llyy = Hesill?

k=1
= Vi1 A [k — Hesi)® (v — Hesi)] (5.2)
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Where,

A is the forgetting factor (which assigns exponentially lesser weight to older error
samples)

superscript H denotes the conjugate transpose operator.

k represent delay time index

A

The objective of channel estimation H, is to minimize the Euclidian cost function

t
|| v, —H ,sk||2. Therefore gradient of cost function of Equation (5.2) is calculated with

respect to channel matrix and is given as

%VH( C, = ik"k [(yk ~Hs, )ka ]: 0, (5-3)
k=1

Where,
H, is estimate of H, .

Equation (5.3) is evaluated for I:It as,

H, = (Zt“ Ay st j{i N—ksksfj (5.4)

k=1 k=1
t
Let P = (Z?ﬁ‘ksksfj
k=1
Qt = Pt_1
t
R, :(Zx_kYksfj
k=1
H =R Q, (5.5)

The Equation (5.5) is solved iteratively as follows

_ H
P, =AP_, +s.s,",

R, =AR_, +y,s/

t 0

(5.6)

Where Q, is calculated iteratively by using the matrix inversion lemma [Karami2006]
and can be written as
Q =1'Q _x_le—lslSIle—l

t t-1

. 5.7
1+217s"Q, s, 7
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As can be seen from Equation (5.7), the RLS algorithm assigns more weight to the
current observations due to the forgetting factor A. The RLS algorithm is also featured
with faster convergence. The RLS algorithm is also very useful in applications where the
environment varies randomly [Apolindrio 2009] and is thus an appropriate choice for

algorithms for HF channel estimation.

5.2  MIMO Channel Estimation based on Particle Filtering

MIMO transceivers operating in a fading channel with M; transmit and N;
receives antennas are depicted in Figure 5.2. The incoming data stream b is encoded
multiplexed and transmitted across the wireless (HF) channel. The channel decoder, the
predictor module and filter that collectively implement the channel-estimation algorithm
iteratively process the received signal y;. The role of the receiver is to produce an
estimate of the transmitted symbols s (t). The receiver performs the estimation of the

transmitted sequence in the presence of an unknown channel parameter.

The state space representation of base-band communications model for a fading channel
[Djuric 2003] can be written as:
xe = fe(xe—1,Ut)
Ve = Hese + vy, (5.8)
Where, y; denotes the discrete time signal, received at the receiver at time instant t.
X, is the state of the system comprising vectors of transmitted symbols s;
H, is coefficient of fading channel of dimension N, x M;
Further for simplicity the column vector h; and matrix H, of dimension N; x M is related
through h; = Vec (H,)
f¢+ 1s a known function which transforms the information bits x; to the symbol s;
s; is the transmitted symbol of dimension M;x 1
u; and v, are additive channel noise
The state of the system varies in time according to a known function f;. It describes a

Markov process driven by the additive channel noise u; and v;.
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From the received signal y,, the channel is estimated or the transmitted symbols are

detected sequentially. This implies obtaining estimates of p(hg, S¢ |Vo.r), where yo.; =

Vo, Y1, Y2 oor oo Vel

Data (b))

Channel

Encoder

Transmitter
Channel v, =H,s, + Noise(u,,v,)
rx ! rx : N,
‘ ‘ ‘ rx’’
Receiver [ Y1 Yy, y f" ]
Yi
A\ 4
Y ¥ heje—1
Channel Predictor
Decoder Je L Module
b
t ht lt-1 Y. Z i
N
he

Figure 5.2: Proposed structure for HF channel estimation with multiple antennas
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The signal y, of Equation (5.8) can be rewritten as

Ve = xche + vy, (5.9)
Where x; forms state sequence, which consists of transmitted symbol s, and transition
vector F (function of f;(t) )
vy, forms observation sequence. Each state of y; is represented by the previous M channel
coefficients (h;)
An important objective of the recursive estimation of Equation (5.9) is to infuse a level of
confidence in accepting the validity of the channel coefficient h; at time t, taking the past
values of the given the data, y;.. up to time instant t. Thus recursive estimation demands
the probability density function (pdf) p(h¢, X¢ |Vo.t)
Since the channel estimation essentially involves the estimation of the coefficient 4, the
pdf can be represented with a compact notation of p(h; |yo.r). It is assumed that the
initial pdf is of the form p(hy|y,) = p(hy).The pdf p(h;|y;..) may be obtained
recursively in two stages, namely the prediction and the update.
The prediction stage involves using the system Equations (5.8) and (5.9) with the
assumption that pdf p(h;_; |y;.t—1) at time ¢—1 is available. The update state h, will

evolve over time t via the Chapman—Kolmogorov equation

Py )= [ Pk )pCh |y, ), (5.10)

Where p(h; |h:—1) describes how the state density y; evolves with time t, and is defined

by the state Equation (5.8). When the current observation y; becomes available, prior pdf

of Equation (5.10) gets updated through Bayes’ rule resulting in
p( )’;|h, )p( ht|yt71 )

[ p(y|n (R |y, ),

Where p(y; |h;) is the likelihood of receiving the observation y,, given the state h;. The

p(hly, )= (5.11)

denominator term in Equation (5.11) is necessary in order to keep the new estimate of the
posterior properly normalized such that [p(h¢ly)dh, = 1, for all t. From the
distribution function of Equation (5.11), channel estimate flt can be obtained. In order to
recursively evaluate the updates, the technique of importance sampling, is utilized, which
is a general Monte Carlo (MC) method for sequential MC filters [Djuric 2003,
Arulampalam 2002].
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The concept of importance sampling is to represent the required posterior density

function by a set of weighted particles:
L
p( |y, )= D w8(h, ~hy ) (5.12)
1=1

Where L is the number of particles
d(+) denotes the Dirac delta function

h! is the state of particle at time t.

The weights w are normalized such that at each time t.

L

Sl =1, (5.122)

I=1
As the number of particles increases to the larger value, the approximation in Equation
(5.12a) converges to the true posterior pdf.

Proposal distribution ¢(.) is a known distribution from way new particles are drawn and
is given by

h, ~q(h\h_,y,) (5.13)

In order to increase the sampling efficiency, extended Kalman filter is taken as the

proposal distribution [Lee 2005].

Following the selection of the particles from Equation (5.13), the weights w!' for
[=1..... L at time t are sequentially updated as follows [Djuric 2003],

. PO R PR
W =W
qlhy b, y,)

(5.14)

t

To monitor the degeneracy of weight or sample impoverishment, a measure called the
effective sample size N o 18 adopted as defined in [Doucet 1998],
~ 1

Ne}.’i‘ = L
> (w)?
=1

A

Whenever N, is below a predefined threshold NT (typically NT = 2/3 L), a re-sampling

(5.15)

procedure is performed. In particular, particles with low weights are discarded to form a

subset of particles {hf}. New particles {h!} are generated by re-sampling with
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replacement particles from the subset {h?} with probability Pr(h/ =h/ )=w! to keep
the parameter L. constant. Now, the weights must be normalized by resetting them to
w! =1/L. In a sequential filtering framework, the re-sampling procedure is almost
inevitable. Re-sampling also introduces increased random variation into the estimation
procedure. The channel estimation algorithm using PF can be succinctly summarized as
follows.
For time steps t, t+ 1, t + 2...
i) Starting from posterior estimate p(.) for time t — 1, the mean and variance of
posterior density function N(m

- P_;) withmean m,_, and variance P_, .

i1) The prior distribution is updated and then prediction is performed.

N(mt—l’Pt—l) _)N(ﬁ/l[’Q[)

(5.16)
Where estimated mean, m, = m,_, (5.17)
The variance of update with the process noise variance of o
R =P_ +0]1 (5.18)
The updated variance with the measurement noise of variance o,
Q =R +0o.1 (5.19)
u, = N(0,02) is process noise.
v, = N(0,02) is measurement noise.
1i1) Posterior estimate for time t:
N(m,,Q,)—> N(m,,F)
Where,m, =m, +R,Q; [h, —(h,_, +m, )] (5.20)
The posterior variance is obtained through P, = R,Q; o} (5.21)

The limiting behaviour of the recurrence relations of Equations (5.16) through (5.19) can
be modified using convergence results as shown below.

A
o K=RO K (5.22)
P —>P=Ko.

o _ali+a/a-1)

_ 5.23
> 1= (5.23)
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a2 (5.24)
(o}

u

& denotes rate of adaptation and takes the value 0< &£ <1.

iv) Once m,and P, are found out, the channel estimation #,is performed using the
method of importance sampling to predict the state density p(ht| Yo.)s DY
propagating particles € =1, ..., L, from time t —1 to t using Equations (5.20)
and (5.21),

' =n' | +u +n (5.25)

Where 4/ =N(m,, P, ), n,l = noise variance.

5.3  Performance Comparison for MIMO-HF Channel Estimation under Non-
Linear and Non-Gaussian Conditions

Achieving reliable communication over HF channels is known to be challenging
particularly due to the hostile propagation medium. To tackle this problem, diversity
techniques were shown to be promising. This section demonstrates through simulation
results the benefits of diversity strategies when applied to MIMO. The performance gains
in terms of capacity and Mean Square Symbol Error Rate (SER) are quantified using
MIMO configuration in evaluating the channel estimation algorithm. MIMO-HF
communication system adopted for performance analysis in this section is shown in

Figure 5.3.
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Figure 5.3: shows the system model adopted for performance analysis

The system consists of M, transmits antennas with both base-band signal processing and

front end transmitter. In base-band signal processing the information bit stream by at
time k instant of bandwidth W, is encoded to symbol based on modulator selection In this
thesis Binary or Quadrature Phase Shift Keying (BPSK/QPSK) is adopted for simulation.
Then Space-Time (S-T) modem at the transmitter (Tx) encodes incoming symbol stream
my, to STBC using Alamouti’s codes [Alamouti 1998] to represent as si. These symbols
streams are further processed in front end transmitted for up-converting to desired
transmitted frequency (3-30 MHz) and power level. Front end transmitter module
consists of up-converter and high power amplifier module. For simulation purposes the
front end module can be used or intermediate frequency of base-band signal without
operating at high frequency and high power amplifier module is sufficient to realize the
system. The impairment effects can comprise of:
i.  Sensitivity
ii.  Image rejection due to I/Q imbalance,
iii.  Non-linear distortion due to power amplifier at the transmitter as well as Low
Noise Amplifier (LNA) and mixer at the receiver
iv.  Phase noise originating from random fluctuations or instability of the

oscillators
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For the purpose of simulation, the signal that is processed at the base band frequency at
the transmitter block is subjected the HF channel model along with the collective
impairments cited above. Therefore the resulting signal is considered to have been
subjected to both the multipath fading channel and the cited impairments.

At the base-band receiver after processing at front end receiver N, block, the signal is
down converted to IF which is same as operating frequency of transmitted signal.
Thereafter, the S-T modem at the receiver (Rx) processes the received signal which is
subjected to time-varying ionosphere fading along with Inter Symbol Interference (ISI)
effect. The received signal will be decoded on each of the N,. receiver antennas according

h

to the signalling strategy of transmitters. The observed signal from i*"* receiver at the

discrete time index k is
ri = Z?/[:tl hfc'j(k,r)s,i + wi, i=1,....N, (5.26a)
Let xi= Z;i‘l hfc'j(k, ‘L')S,{
rf = tanh(x,‘;) + wi, (5.26b)
ri = xL+0.2 (x,‘()z — O.1(x,i)3 + wi, (5.26¢)
Where,
S,{ is the transmitted symbol in the time index k& ,
T is the delay variable,

h,’ (k,T) is the channel impulse response between j‘* transmitter and i*"

receiver of MIMO channel with correlated Rayleigh processes whose Doppler spectrum
is characterized by Gaussian Shape [Watterson 1970, Mastrangelo 1997].
W,l; represent noise factor either Gaussian or non-Gaussian

A model adopted for the simulation to evaluate the performance of complete base-band
system is shown in Figure 5.4. The model consists of the following blocks,

o Channel simulation block

o Base-band transmitter simulation block

o Non-linear system impairment

o Base-band receiver simulation block

o Performance metric
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The following section presents a detailed discussion about the individual blocks adopted
for simulation

i Channel Simulation Block !

i L kT
E AWGN Noise | .| AR HF Channel BESS

i |
SR )

! Baseband Transmitter Simulation Block
; Input Bit | oPsK sym l m,| STBC Encoding
|

Stream by g formation

Linear and Non Linear
System Impairments
(Equation 5.26b, 5.26¢)

Received|Signal

Baseband Receiver Simulation Block

i =

Equalization and Sym. - 4 Channel Estimation [ Recelved Signal |
Detection RLS / PF |

s} |

: i, — i
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|

|

|

A

Estimated Bit b,

Figure 5. 4: Simulation Model for Performance Evaluation of Channel Estimation
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5.3.1 Channel Simulation Block

In this block channel model is characterized based on HF fading channel parameters as
discussed in chapter 4. The channel simulation consists of two blocks namely AWGN
generation and AR channel filter. The input to AR channel filter is random time-varying
AWGN subjected to AR HF channel model. The AR filter model is realized to
characterize HF channel in terms of delay spread and Doppler spread based on the
selection of parameters required for simulation. The output of this block is represented by
the signal hfc'j (k,7) that is multiplicative with modulated signal S,{ to introduce the HF

channel impairments (multipath fading).

5.3.2 Noise Simulation Block

The additive noise ( W,i( of Equation (5.26a)) can be modelled either as a complex-
Gaussian distribution p(z) = N(z:0,62) with argument z, zero mean, and variance o7,
or as the Middleton class-A noise model [Wang 2004]. This latter model has been used to
model the impulsive noise commonly generated in wireless environment [Wang 2004].
The probability density function of the noise model of [Wang 2004] is given by:

p(z) = (1 —&)N(z:0,06%) + eN(z:0,0%) (5.27)
Where 0 < ¢ < 1. The first component (1 — &)N(z:0,0Z) represents the ambient
background noise with probability (1 — &), while eN(z:0,02) denotes the presence of
an impulsive component occurring with probability €. In order to maintain a constant
noise variance o2 for a particular Signal to Noise Ratio (SNR), the parameters €, noise
variance ¢ and o are varied such that

02 = (1—¢)of + e0? (5.28)
If 07 =0, then noise model represented through Equation (5.28) reverts to the usual

Gaussian distribution.
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5.3.3 Transmitter Simulation Block

From either a data or image file, the bit sequence by is generated by the information
source in the form of binary bit which contains information to be communicated. After
the encoding and Digital modulation (BPSK/QPSK), the bit sequence becomes the
symbol stream (m;). Modulation is the process that converts bit sequences to symbols,
which are more amenable for transmission. Different modulation schemes enable trade-
off between BER and rate of transmission. Modulation schemes supported in this
simulation are BPSK and QPSK. The modulated symbols m, are further processed in
STBC encoder [Alamouti 1998] based on the antenna configuration to represent symbols
s,{. In the simulation either 2x2 or 4x4 MIMO configuration is considered. The signal s,{
which is subjected to multiplicative fading channel variations where the amplitude and

phase are modified according to the random time varying phenomenon of HF channel

parameter and the resulting signal are represented as x.
5.3.4 Non-Linear System Impairment

The signal x,l{ is subjected to either linear or non-linear impairment of front end (RF

block) of Transceiver system. For the non-linear scenario, the signal x,i{ is model through
Equations (5.26b) and (5.26c) before its passage through noise block detailed under
section 5.3.2. The non-linear model of impairments caused by RF (front end) module is
characterized according to the parameters such as level of non-linear distortion, phase

noise and sensitivity which are required to analyse the performance of the system.

5.3.5 Base-band Receiver Simulation Block

The goal of base-band receiver blocks is the recovery the transmitted information bit (by).
With the received signal at the receiver as input ri , initial channel estimation is

performed to know the impairment caused by HF channel on the transmitted symbol (sy).
Channel estimation fl;'c'j (k,7) parameter is used by equalization block to perform the
inverse operation of channel impairments to recover the symbol §,i where j is the index

for receiver antenna. The detected symbol §,{ is performed by STBC decoder and QPSK
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decoder to obtainm, . The estimated decoded mapper symbol 7, is converted to

estimated information bit by,.

5.3.6 Performance Metrics

To evaluate the validity of simulation of individual system blocks of Figure 5.3, and also
to evaluate the performance of complete system against various impairments occurred
during transmission of signal, key and appropriate performance metrics have been
identified. The identified performance metrics facilitate the evaluation of the system
performance under near practical conditions. The following system performance
parameters have been considered in the simulation study.

- Channel variance

- Symbol Error Rate (SER)

- Capacity and Reliability

The choice of the identified metrics is conforming to the main emphasis (focus) of this
thesis. In this thesis, the focus is mainly on channel characterization (analysis of
impairments) and estimation (recovery of transmitted signal). The effectiveness of
channel estimation algorithm with the consideration of channel impairments is measured
through SER or BER. The SER defines mean square difference between encoder mapper

symbols m, and estimated symbols M, before mapper decoder. Whereas BER defines

mean square difference between information bits b;, and estimated information bits by,.

Channel variance is a measure of the accuracy of the channel estimation algorithm.
Channel variance is a measure of the variance between channel model signal h;('] (k,7)

and the estimated channel signal iAl,ic’j (k, 7).

Channel capacity defines the maximum data rate of transmission over a given channel.

Capacity depends on the channel parameters and is given as

C= E{logz det(]N + ﬁHRSSH " ﬂ
bps/Hz (5.29)
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Where
E (.) denotes Expectation
pis referred as signal to noise ratio (SNR)
M is transmit antennas and N is receive antenna

H represents the channel matrix of dimension NXM at time index k.

R, is auto- covariance of symbol transmitted s,i
det (.) denotes determinant of matrix.
Superscript H represents Hermitian transpose

Iy 1is unity matrix of order N
As mentioned in Equation (5.29), the channel capacity depends on channel h,ic‘j (k,7) and
accuracy of estimated channel ﬁ,i(’j (k, 7). If channel is estimated exactly or it’s near
equivalence, the estimated symbol §/ will be same as transmitted symbols/. Hence
auto-correlation factor R increases. Also with known channel matrix H, the capacity C

increases.

The term “reliability” refers to the degree of uninterrupted operation of communication
links available to user during the course of signal transmission. This reliability of
communication link depends on the accuracy and effectiveness of the chosen algorithms
for various communication blocks in the receiver. Channel estimation algorithm is one
such critical subsystem of a receiver block to counter the effect of channel impairments
on the receiver performance. The development of channel estimation algorithms is a
challenging task in the receiver design since the accuracy of the channel estimation
technique plays a major role in determining both the capacity and reliability of
communication link (system).

The above mentioned performance metrics (Channel variance, SER, Capacity and

Reliability) are evaluated under on various conditions as discussed below.
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Table 5. 1 Performance Metrics Evaluated under Various Conditions and
Configurations.

Channel impairments Linear

Channel  impairments and front end (RF) system [ Non-linear

impairments

Fading Slow and fast,

Noise Gaussian and non-Gaussian
Antenna configuration SISO and MIMO

MIMO configuration 2x2 and 4x4

The simulation study is also based on the following assumptions.
= Channel variation is quasi stationary during training period.
= Boundary detection is known

= Time and frequency synchronization is ideal

5.3.7 Input Parameters for Simulation Study

- Channel Model
i) HF Channel with three independent multipath using AR Filter of order 3
i1) Coefficient of the AR Filter is modeled as HF fading
ii1) Power attenuation of 3 paths are 0, - 8, -10 dB respectively.

iv) Doppler spreads: 0.1 to 10 Hz

- Noise Model

For the noise model, ¢ = 0.1, = 100 in Equation (5.28)

- Channel Estimation Algorithms
RLS and PF-EKF with particle length of 30.
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- MIMO Encoding Space Time Block Code (STBC) Matrix:
For 2x2 MIMO configurations, STBC matrix is

s, —8,
|5 2
Ayo —{ % }
Sy, 5

Where s, and s, are QPSK symbol. Symbols [ s,

(5.30)

s, ] are transmitted over two antennas

at time slot t; and Symbols [ — s; sf ] are transmitted over two antennas at time slot t,.

STBC matrix for 4x4 MIMO configurations is

* *
St =8 S T8
* *
N —S N S
_ | P2 1 2 1
Apu = " ” (5.31)
* ES

Where, s1,S,,53 and s, are QPSK symbols. The symbols [s; s, s3 s,] are transmitted
over four antennas at time slot t;, similarly symbols of other columns are transmitted in
respective time slots tp, t3 and t.

- Non-linear System Impairment:

The Non-Linear (NL) system impairment is modelled as

1 =tanh( x; )+ w; (5.32a)
ri=x +0.2(x; )* —0.1(x} )* +wi (5.32b)
- Spatial correlation Matrix:
Spatial correlation matrix for 2x2 and 4x4 MIMO is
[l «a 1 p

Ryxz = [a* 1] ® [ﬁ* 1] (5.33a)

1 a2 g4 4 1 pYP B B

179 1 /9 g*%/9 1/9* 1 ,31/9 [;4/9
R4x4 = a * 1/9* ® ﬁ % 1/9* 1/9 (533b)

at/d a 1 ql/° 34/9 I 1 B /

at a4-/9* al/g* 1 ﬁ* ﬂ4/9* ﬂl/g* 1

Where, @ represents the Kronecker product,

a, B are the spatial correlation, * is complex conjugate
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5.4  Simulation Results and Analysis

5.4.1 Effect of Doppler Spread on HF Channel Model

The Time- amplitude spectrum of a HF channel with SISO configuration under a Doppler
spread of 2 Hz with a sampling rate of 100 Hz The results of Figure 5.5a illustrates
normally encountered deep fading at random time intervals with a fading rate (

fpT, =0.02) and deep fading being observed at 2.7s ,5.8s ,7.2s , 11.6s and 18s.

Doppler faded channel realization (Fade rate =0.02)
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Figure 5.5(a):A typical Doppler faded channel realization at fade rate 0.02

Whereas amplitude spectrum with fading rate of 0.05 is shown in Figure 5.5b which
corresponds to a Doppler spread of 5 Hz. As can be expected, one notices the rapidity in

amplitude variations.
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Doppler faded channel realization (Fade rate =0.05)
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Figure 5.5 (b). A typical Doppler faded channel realization at fade rate 0.05

The time- amplitude spectrum of a HF channel with 2x2 MIMO configuration under a
Doppler spread of 2 Hz with a sampling rate of 100 Hz is shown in Figure 5.6a with

fading rate ( f,7, =0.02). The results of Figure 5.6a illustrate the uncorrelated feature

of random deep fading associated with 4 independent channel coefficients that

characterize a rich scattering environment usually associated with HF channel.
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Doppler faded channel realization fade rate =0.02
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Figure 5.6(a): A typical Doppler faded channel realization for 2x2 MIMO at fade rate 0.02

Doppler faded channel realization for fade rate =0.05
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Figure 5.6 (b): A typical Doppler faded channel realization for 2x2 MIMO at fade rate 0.05
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The influence of higher Doppler spread on amplitude spectrum of 2x2 MIMO is
illustrated in Figure 5.6b. As was observed with SISO, the higher Doppler spread
increase the rate of rapidity in deep fading as inferred through Figure 5.6b.

5.4.2 Capacity Analysis for MIMO Configuration

Simulations were also carried out to perform relative comparison of capacity of an ideal
HF channel versus HF channel undergoing fading. Both SISO and MIMO configurations
have been considered in the simulations. Figures 5.7 (a) and (b) depict performance

comparison for fading rates of (f,T,=0.01) and (f,T, =0.04) respectively. The

relative performance difference between ideal and fading HF channel increase with
increase in number of antennas in MIMO. The results of Figure 5.7 b indicate that with
higher Doppler, the degradation in capacity of HF channel with SISO and MIMO is more
pronounced. Also in MIMO configurations, the degradation of channel capacity is more

with higher SNR scenario.

35 T
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—— 2x2
S0 —— 4x4
—+&— Shannon SISO
25 4 Shannon 2x2 |7|/lE
—H&— Shannon 4x4

20

15

Capacity bit/sec/Hz

10

(¢)]

SNR in dB

Figure 5.7 (a) : Capacity comparison between ideal Shannon capacity and HF
fading channel for fading rate( /,7, = 0.01)
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Figure 5.7(b) : Capacity comparison between ideal Shannon capacity and

HF fading channel for fading rate ( /,7, = 0.04)

5.4.3 Analysis of Influence of Linear Channel Impairments on HF Channel
Estimation.

Extensive simulation studies have been carried out to analyse the influence of channel
impairments on the performance of HF communication system. In this section, the
performance improvement (BER, MSE and channel capacity) realized through various
MIMO configurations such as 4x4, 2x2 has also compared with the SISO for a chosen
HF channel model are presented. For the simulation results of this section, channel
estimation error is analysed with error variance between the estimated channel matrix and
simulated channel matrix as a performance parameter. Estimated symbol is obtained
based on the estimated channel with zero force equalizer. The bit error probabilities have

been estimated with a data symbol length of 2000 (4000 bits).
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A. Simulation studies have been carried out on the BER performance realized
through the SISO HF channel invoking the RLS as well as PF-EKF. The obtained
simulated BER performance of the SISO HF channel has been compared with that
published in [Eleftheriou 1987]. As can be seen from the results of the Table 5.2,
it is evident that both the RLS and PF-EKF algorithms show improved
performance relative to the method employed in [Eleftheriou 1987]. In this
comparison, 40000 data bits were considered as employed in [Eleftheriou 1987].
However, even with reduced data bits of 4000, the simulation results continue to

exhibit better performance relative to [Eleftheriou 1987].

Table 5.2 BER performance comparison with [Eleftheriou 1987] against simulated result
under Doppler spread of 0.15, 0.5 and 1.1 Hz for SISO HF multipath channel

Doppler SNR BER
Spread Hz | dB Ref [Eleftheriou 1987] | RLS PF-EKF
5 0.8500 0.07158 0.0552
11 10 0.7375 0.02837 0.0219
' 15 0.6625 0.00420 0.0033
20 0.6250 0.00135 0.0010
5 0.6250 0.06250 0.0459
05 10 0.4000 0.01005 0.0063
' 15 0.2500 0.00192 0.0012
20 0.1375 0.00072 0.0005
5 0.325 0.01416 0.0051
015 10 0.0775 0.00335 0.0012
15 0.0550 0.00064 0.0002
20 0.0325 0.00024 0.0001

B. The channel estimation Mean Square Error (MSE) of the SISO HF channel with
varying Doppler spreads has been studied employing RLS and PF-EKF. The relative
comparison of the MSE between the RLS and PF-EKF has been depicted in Figure 5.8,
for SNR ranging from 0 to 25 dB. From the results shown in Figure 5.8, it is easy to infer
that PF-EKF bears superior performance compared to RLS. Further, as one would expect,

MSE decreases with lesser Doppler spread.
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Channel Estimation Error for diff. doppler spread under Guassian Noise
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Figure 5.8 :MSE vs SNR for channel estimation under different Doppler
spread for Gaussian noise HF channel
C. Simulation studies were conducted to analyze the performance of MIMO with

different configurations of transmitter and receiver antennas. Figure 5.9 illustrate the
relative comparison of MSE of MIMO and SISO configuration under Gaussian noise. In
the simulation, the Doppler spread of 1.1 Hz has been assumed. From the results of
Figure 5.9, it can be seen that MIMO configuration exhibits lower MSE compared to
SISO. Further, MSE obtained through PF-EKF is lower compared to that of RLS

algorithm.
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Changel Estimation Error comparison for various MIMO config under HF channel with Guassian Noise
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Figure 5.9: Channel estimated MSE vs. SNR for various MIMO configurations

D. Even with the non-Gaussian noise model, it can be seen that MIMO configuration
exhibits lower MSE compared to SISO as shown in the results of Figure 5.10. Further,
MSE obtained through PF-EKF is lower compared to that of RLS algorithm.

Chary']el Estimation Error comparison for various MIMO config under HF channel with Non-Guassian Noise
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Figure 5.10: Channel estimated MSE vs. SNR for various MIMO configurations under
non-Gaussian noise

165



The results on MSE illustrated in Figures 5.9 and 5.10 reveal that PF-EKF algorithm
performs better than RLS. For higher MIMO configurations, there is an improvement in
MSE. Comparison of MSE results of PF-EKF with RLS for 4x4 antenna configurations
indicate a gain improvement of on average of 2-3 dB for Gaussian noise condition.
Similarly for non-Gaussian scenario, the corresponding gain improvement is about 1-3
dB. It is pertinent to point that the above data on gain improvement of PF-EKF refers to
low SNR (below 7dB).

E. In addition to the MSE performance, the symbol error rate is also computed for
various MIMO configurations as well as SISO. The BER results are plotted in Figures
5.11 and 5.12 for Gaussian noise and non-Gaussian noise conditions respectively. The
results of Figures 5.11 and 5.12 clearly demonstrate that MIMO configurations have
desirable feature of lower BER relative to SISO. Also, the PF-EKF algorithm yields

better performance than the RLS.

Syrra Error Rate comparison for various MIMO config under HF channel with Guassian Noise
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Figure 5.11: BER vs. SNR for various MIMO configurations under Gaussian noise
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Sym Error Rate comparison for various MIMO config under HF channel with Non-Guassian Noise
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Figure 5.12: BER vs. SNR for various MIMO configurations under non-Gaussian noise

F. From the Figures 5.11 and 5.12, it is seen that PF-EKF algorithm performs better

than RLS for both Gaussian and non-Gaussian noise conditions. There is an improvement

in BER with higher MIMO configuration. This is to be expected due to diversity factor in

STBC. A gain improvement of 0.8-1dB gain is noticed in the PF-EKF relative to RLS for

4x4 antenna configurations under Gaussian noise channel.

configuration (2x2), the corresponding improvement in the gain is of the order of 0.2 to

0.5 dB gain for Gaussian noise scenario. For non-Gaussian noise scenario the gain

improvement is of the order of 0.5 to 0.8dB at lower SNR using PF- EKF.

G. A relative comparison of the Estimated Channel response obtained through the

RLS and PF-EKF algorithms depicted in Figure 5.13 is for:

Normalized Doppler spread 1.1 Hz
Order of AR model 3

SNR =10 dB

Noise distribution: Gaussian noise.
Number of data bits=4000
Multipath=3
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Channel Estimation comparision between ERLS and PF-EKF
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Figure 5.13: Comparison of channel estimation based RLS and PF-EKF

It is found that Pr-EKr estimates the channel states more accurately compared to KLS.

The variance of estimated channel state by RLS is 4.67E-05. The corresponding variance

through PF-EKF is 2.79E-05 and thereby proving the better performance of PF-EKF.

H. The HF channel capacity estimated for 2x2 MIMO configurations is compared with

an ideal Shannon channel capacity is shown in table II. In these simulations, Doppler

spread of 1.1 Hz with 3 multipath has been assumed for the modeling of the simulated

HF channel.

C= logz(det[ML HH" + Iy, j]bps/ Hz

T

(5.34)

Where, p the signal to noise ratio, H is the measured channel matrix, H? is the conjugate

transpose of this matrix.

Table 5.3 Capacity Comparison between RLS and PF-EKF for 2x2 MIMO

SNR Capacity bit/sec/Hz

dB Ideal Shannon 2x2 MIMO | RLS PF-EKF
0 2.0 1.7807 1.8113

5 4.1147 3.7391 3.76480
10 6.9188 6.32733 6.3491
15 10.055 8.91599 8.94696
20 13.3164 12.73805 12.74209
25 16.61875 15.76779 15.77185
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The results illustrated in Table 5.3 clearly spell out the influence of the channel
estimation on the channel capacity. From Table 5.3, it is evident that the PF-EKF exhibits
a better channel estimation performance than the RLS algorithm for all MIMO

configurations.

5.4.4 Analysis of Influence of System Non-Linearity with Channel Impairments on
HF Channel Estimation

The simulation results presented in this section are extensions of those discussed in
section 5.5.3 to demonstrate the capability of channel estimation based PF algorithm to
deal with non-linear system and non-Gaussian noise channel impairments. The influence
of channel impairments which exhibit non-linear and non-Gaussian nature on HF channel
characterization is compared with the corresponding linear channel impairments. In all
the simulation results presented in this section, the following parameters have been
assumed: Doppler spread of 5 Hz; fade rate 0.05; Number of multipath = 3.

A. The variance performance HF channel estimation based on EKF -PF and RLS
algorithms for 2x2 MIMO under various scenarios (Linear channel with Gaussian as well
as non-Gaussian Noise, system non-linearity with Gaussian and non-Gaussian noise) is
presented in Figures 5.14a to 5.14d.

Figure 5.14a shows the channel estimation variance for linear channel denoted as
Channel L with Gaussian noise represented as Noise G. From the results of Figure 5.14a,
it 1s inferred that EKF-PF exhibits superior performance compared to RLS with a gain

improvement of 2 to 3 dB.
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Figure 5.14 (a) and (b): Channel estimation error variance for 2x2 MIMO under various conditions

The relative comparison of effect of Gaussian and non-Gaussian noise on a linear HF
channel is the primary emphasis of Figure 5.14b. A comparison of the results of Figures
5.14a and 5.14b shows that under non-Gaussian (NG) noise condition, there is slight
reduction in variance relative to Gaussian noise scenario. This is so for both the cases of
EKF- PF and RLS algorithms. However, the above mentioned relative degradation with
EKF-PF is very small but for the RLS algorithm, variance of channel estimation is
degraded in the range of 0.01 to 0.5. This observation appears much more valid for lower
SNR (less than 15 dB).

The variance of channel estimation for system non-linearity with HF channel (Channel
NL) with Gaussian noise (Noise G) is the focus of Figure 5.14c. Compared to the results
of Figure 5.14a, there is less reduction in variance that can be attributed to the system
non-linearity of the HF channel. For lower SNR (< 10 dB), the steepness in the variance
curve is evident. The difference in variance with linear and non -linear channel
conditions is of the order of 0.01. For higher SNR, one notices a flattening in the variance
curve due to contribution of non-linearity of the channel implying the dominance of non-

linearity in the higher power of operation.
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Figure 5.14d depicts the scenario of system non-linearity with HF channel (Channel NL)
associated with non-Gaussian (Noise NG). A relative comparison of the results of Figure
5.14c and Figure 5.14d reveals degradation in variance of 0.01 to 0.6 due to non-

Gaussian noise.
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(c) System induced non-linear channel and Gaussian noise (b) System induced non-linear channel and NG noise

Figure 5.14 (c¢) and (d): Channel estimation error variance for 2x2 MIMO under various conditions

From the discussions on the results illustrated in the Figures 5.14 a to d, it is seen that the
performance of EKP-PF based HF channel estimation is better than that based on RLS.
This is true in all the scenarios considered in Figure 5.14 and EKPF- PF shows a
minimum gain improvement of 2 to 3 dB implying the extended operation of the link
without recharging of the battery system. Also even in the presence of non-linearity in
system with channel impairments, EKPF- PF algorithm shows consistently better

performance over that of RLS suggesting the enhanced reliability of the HF link.

B. Relative performance improvements derived in lieu of adaptation of MIMO have
been analysed through extensive simulation studies. The results of Figure 5.15 are

intended to highlight the superior performance of MIMO over conventional SISO under
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varying HF channel conditions. Like in the previous subsection, the simulation studies
have covered system linearity and non-linearity along with HF channel impairments
associated with Gaussian as well as non- Gaussian noise of HF system. In Figure 5.15(a),
variation of channel estimation variance as a function of SNR is shown for linear HF
channel with Gaussian noise in the system. The results of Figure 5.15a indicate that
higher MIMO configuration tend to reduce the channel estimation error because of the
diversity gain feature of MIMO. The channel estimation with EKF-PF algorithm has an
additional gain advantage of 2 to 4 dB over RLS. .
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Figure 5.15 (a): Channel estimation error variance comparison for MIMO
configuration under channel linear and Gaussian noise
Figure 5.15 (b) is analogous to Figure 5.15a, except that it encompasses non-Gaussian
noise instead of Gaussian noise. The introduction of non-Gaussian in general degrades
the estimation performance compared to Gaussian scenario. MIMO configuration
continues to show relatively improved performance over SISO. The earlier remark on
superior performance of EKF-PF over RLS also holds good even when non-Gaussian

noise is considered in the simulation.
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Figure 5.16 (b): Channel estimation error variance comparison for MIMO configuration
under channel linear and Non-Gaussian noise

The analysis of influence of non-linearity in system with channel impairments on the
channel estimation algorithm is one of the significant aspects of this research. In that
sense, Figure 5.15 (c¢) is similar to Figure 5.15(a) except that it considers system non-
linearity with channel impairments instead of linear channel conditions. The result of
Figure 5.15c indicates that there is degradation in the performance of channel estimation
algorithm under system non-linear conditions. The results of Figure 5.15¢ also suggest
that RLS algorithm is not very effective to handle system non-linearity with channel
conditions. However, channel estimation variance with EKF-PF algorithm is much lower

relative to RLS even under system induced non-linearity with HF channel conditions.
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Figure 5.17 (c): Channel estimation error variance comparison for MIMO configuration
under channel impairment with system induced non-linearity and Gaussian noise

The scenario of both the system non-linearity with channel impairments and non-
Gaussian noise associated with HF system is by far the most severe conditions, to which
the developed channel estimation algorithms have been subjected in their performance
evaluation. The results of Figure 5.15 (d) depict such a scenario. The general trend of
EKF-PF outperforming RLS continues to hold good. MIMO configurations exhibit

improved performance over SISO.
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Figure 5.18 (d): Channel estimation error variance comparison for MIMO configuration under channel
impairment with system induced non-linearity and Gaussian noise

C. In many of the discussions covered earlier in this chapter, the advantage of EKF-
PF over RLS has been consistently emphasized with relevant illustrations wherever
possible. The results of Figure 5.16 are meant to exclusively highlight the significance of
PF algorithm in channel estimation techniques under non-linear and non-Gaussian
conditions. From the results of simulation depicted in Figure 5.16, it is evident that at low
SNR EKF-PF has gain advantage around 2 to 3.5 dB. For higher SNR, additional 1.5 to 2

dB gain advantage is achieved.
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Figure 5.19: Channel estimation error variance comparison between PF and RLS for SISO
and MIMO configuration under system non-linear and non-Gaussian noise conditions

D. The effect of non-linear channel conditions on the variance of channel estimation
algorithms has been a topic of special emphasis in the discussions dealt in previous
paragraphs. In continuation of the above, some typical simulation studies have also been
performed to analyse the influence of specific type of non-linearity of the channel on the
channel estimation algorithms. In particular the following two specific types of non-linear
functions have been considered in the comparative analysis. The first type of non-linear
function belongs to tan hyperbolic class such as 7} = tanh(x,‘;) + wi while the second
category considers the 3" order polynomial 7{ = x} + O.Z(x,‘;)2 — 0.1(x,"€)3 + wi. The
results of Figure 5.17 infer the assumption that tan-hyperbolic type of non-linearity of HF

channel may subject the HF system to a severe distortion of higher magnitude, compared

to the 3™ order polynomial type of non-linearity.
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Figure 5.20: Effect of non- linearity in Channel estimation on 2x2 MIMO with Gaussian
noise conditions

5.4.5 Analysis the Effect of MIMO Spatial Correlation on Channel Estimation

This section analyses the impact of spatial correlation of MIMO configuration on the
performance of PF based channel estimation technique. As an example, spatial
correlation for 2x2 MIMO is considered for the analysis. However, such an analysis can
be extended to higher configuration of MIMO as well. The spatial correlation matrix for

2x2 MIMO configurations is given in Equation (5.33a). It is re-written as

1 B a af

11« 1 1 B 1 af" «a
Roxz = | . 1]®[ﬁ* 1]—la* w8 1§ (5.35)

a'f a* B 1

Where @ is Kronecker product. In Equation (5.35) a and [ are the spatial correlation co-
efficient’s whose values are given in Table 4.2. For the analysis, the values of a and

are chosen to cover the three scenarios namely low, mid and high correlation of the
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MIMO configuration. The effects of spatial correlation factors on the performance of the
proposed channel estimation algorithm are illustrated through the simulation results of
Figures 5.18 and 5.19. The simulation results of Figure 5.18 refer to the HF channel
associated with channel impairment in the form of linear fading and the Gaussian noise.
The results in Figure 5.19 correspond to the linear fading of the channel associated with
the non-linearity of the system as well as non-Gaussian noise. As expected, high values

of spatial correlation factors degrade the BER performance (Figures 5.18 and 5.19).
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Figure 5.21: Effect of spatial correlation on channel estimation for linear HF channel with
Gaussian noise
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Figure 5.22 : Effect of spatial correlation on channel estimation for system non-linearity
with non-Gaussian noise

5.4.6 Feasibility of Channel Estimation based on PF for Real Time MIMO-HF
Channel

The improved performance of the proposed PF based channel estimation scheme over
conventional estimation techniques using RLS has been substantiated for both SISO and
MIMO configurations. However, it is necessary to examine the feasibility of invoking the
proposed PF based channel estimation algorithms for real time applications of MIMO-HF
channel since the adoption of PF for channel estimation in real-time systems is hampered
by their computational complexity. The use of large number of particles and non-linear
functions in PF algorithms increase their computational complexity and execution time.
This sub section facilitates a snap shot view of the expected computational requirements
of PF based channel estimation algorithms for its implementation on a proven hardware.

The proposed feasibility study has been dealt through the well-known preamble symbol
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and data symbol. The channel estimation is performed through block computations and
these computations are performed during one preamble period. For real time applications,
these block computations should be completed within the preamble period. For HF
communication MIL STD 118-110 B each symbol period is 0.41 ms (Baud rate is 2400
bps). 16 or 32 symbols are used for preamble. While most stages in the particle filter
algorithm can be parallelized, the resampling stage cannot be easily parallelized
[Velmurugan 2007]. Parallelizing the various stages in the particle filter algorithm leads
to faster execution time and efficient hardware architectures. [Miao 2011, El-Halym
2012] have proposed efficient hardware architectures for PF with minimum computation
time (less than 6.8 psec). As shown in Table 5.4, the preamble periods for 24 and 272
symbols are 9.84 msec and 14 msec respectively. These values have been arrived at by
considering the MIL-STD 188-110C. According to it, the HF data waveforms use single
contiguous bandwidths from 3 kHz to 24 kHz with baud rate 2.4 kbps to 19.2 kpbs.
Number of preamble (mini-probe) symbol varies from 24 to 272 [Appendix D of MIL-
STD 188-110C]. [El-Halym 2012] required 93cycles @ 74MHz = 1.25 psec for an
iteration of PF (with 64 particles). For 24 symbols, the computation time is 30 psec
which is far less than the allowed preamble period of 9.84 msec. Whereas [Miao 2011]
requires 684 cycles @ 100MHz = 6.82 psec for an iteration of PF (with 1000 particles)

with computation time of 0.163 msec for 24 symbols.

Even for the case of 272 symbols in a preamble period, the expected computation time of
14 msec 1s still lower than the allowable preamble period of 1.85 msec. Since the
computation time of PF (T.) is much lower than that required for preamble period (T, )
Tc < Tp. This implies that the computations for PF based channel estimation can be
completed well before the arrival of the next preamble or data. Therefore it can be
concluded that the proposed PF based channel estimation algorithm is applicable for real
time HF channel estimation also. The Table 5.4 depicts the finer details involved in

various time estimates.
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Table 5. 4 : Feasibility of PF Applicable for Real-Time HF Channel Estimation

Description

Preamble period (Tp)

Computation time (T.) available from|

literature

e For3kHzB.W,
2400 symbols per

second

Symbol Period = 0.41

msec

e For 24 symbols

24 *#0.41 = 9.84 msec
272*%041 = 111.5

msec

[El-Halym 2012] required 93cycle @
74MHz = 1.25us to compute an|
iteration of PF.

For 24 symbols it requires 30usec.

For 272 symbols it requires 0.34msec

e For24KHz B. W,
19200 symbols per
second

e Symbol Period =
52.08 usec

e For 272 symbols
272 *52.08 = 14

msec

[Miao 2011] requires 684 cycles @
100MHz =6.82 pus to compute an|

iteration of PF.

For 24 symbols it requires 0.163 msec.

For 272 symbols it requires 1.85 msec

5.5 Conclusion

Channel estimation is an important technique especially in HF communication system
where the channel conditions change over time, usually caused by transmitter and/or
receiver being in movement and rapid variation of ions in ionospheric layers. HF
communication is adversely affected by the multipath interference resulting from
reflection significantly from ionospheric layers and surroundings environments. The HF
system needs an accurate estimate of the time-varying HF channel to ensure both the
reliability and high data rate at the receiver. It is important to estimate the channel as
close to the true channel as possible since the estimation has a direct impact on the
performance of the receivers. Furthermore, MIMO-HF systems have been credited with
potential to provide services such as data communication, voice, and video with high

Quality of Service (QoS) in rich scattering environment. It is a real challenge in practical

181




MIMO systems, where the quality of data recovery is as important as attaining a high
data throughput. The knowledge of the impulse response of HF propagation channels in
the estimator is an aid in acquiring important information for testing, designing or

planning HF communication systems.

This chapter presents both classical and Bayesian approaches to estimate the channel
impulse response. Under classical supervised approach, RLS based HF channel estimator
is discussed. PF, which falls under supervised Bayesian approach, has been analysed for
its performance under adverse conditions, such as system non-linear, channel time-

varying and non-Gaussian noise environments.

A performance analysis of MIMO based HF channel estimation invoking PF algorithm
constitutes a key contribution of this chapter as well as the thesis. The proposed PF based
analysis has been demonstrated to show an improved performance in comparison to that
obtained with RLS algorithm. The noteworthy feature of this chapter is the treatment of
system non-linearity with channel impairments and non-Gaussian noise scenario in
estimating the HF channel estimation. Also, the influences of MIMO configurations on
the performance of HF channel have also been investigated. The advantage of MIMO
over classical SISO to enhance the channel capacity has been reiterated through extensive
simulation studies. The performance of various MIMO configurations has been compared
with that of SISO also. This chapter convincingly substantiates the benefit of
incorporating dynamic Bayesian modelling technique for use in estimating a rapidly

changing MIMO-HF wireless channel.

It is inferred from the simulation studies, that the performance of the channel estimation
with the PF technique is superior to the RLS technique and other techniques with
affordable computational complexity even in low SNR. The results presented in this
chapter indicate that the PF techniques can be handled with a better trade-off between
computational complexities and desirable performance suitable for HF communication
system. The results derived out of the simulation studies indicate that the PF based HF

channel estimation algorithm out performs the other algorithm like RLS in Gaussian
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noise conditions. In the past, the prior algorithms have been found unable to treat either
the system non-linearity with channel impairment or non-Gaussian noise condition. On
the contrary, the proposed PF technique is demonstrated to successfully deal with these
scenarios with affordable additional computations. The simulation results of the MIMO
based HF channel with PF technique confirm that there is degradation in the channel
performance under non-linear and non-Gaussian noise conditions and the degradation is
relatively small. The simulation results conclusively suggest that the RLS based channel
estimation algorithm is not very effective to handle system induced non-linearity
conditions. However, channel estimation variance with EKF-PF algorithm is much lower
relative to RLS, even under non-linearity conditions. The simulation studies indicate that
under low SNR, EKF-PF has gain advantage around 2 to 3.5 dB over RLS. For higher
SNR, additional 1.5 to 2 dB gain advantage is achievable. Further it is evident that
feasibility of real time hardware implementation of PF for HF channel estimation is

possible.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter is intended to facilitate recapitulation of succinct summary, inferences, and
technical conclusions derived out of research study of this thesis. The potential scope for
further research to extend simulation as well as analytical studies of this thesis is also

highlighted.

6.1 Summary

In the past decade, MIMO technology has witnessed exciting developments in the
wireless communication systems. Building upon the promising MIMO technology for HF
transmission, this thesis proposes a computationally efficient approach for HF channel
characterization and modelling based on Watterson HF channel model. This approach is
valid for both SISO as well as MIMO configurations in HF channels environments. The
modelling of channel characterization closely emulates the impulse response (transfer
function) of a practical HF channel, by incorporating channel impairments comprising

multipath fading, non- Gaussian noise and system non-linearity.

The channel parameters that characterize the channel conditions will have effect on the
transmission of the data. The effects of channel conditions on the transmitted data must
be estimated to recover the transmitted information correctly. The significance of channel
estimation is to mitigate the effects of variation of statistical channel parameters for
achieving the acceptable system performance at the receiver as specified by the
designers. Over the past three decades, the RLS has become a standard technique in all
branches of engineering disciplines and related applications that need estimation
algorithms. However, recently, the novel and more accurate non-linear filters have been
proposed as more accurate alternatives to the EKF within the framework of state and
parameter estimation. Like most new algorithms, the new filtering methods are probably
not widely known or understood and their application has been rather limited. In this
thesis, non-linear filtering algorithm is invoked through PF for channel estimation. A

study encompassing the application as well as the utility of PF for supervised channel
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estimation has been undertaken and pursued to its logical conclusion. Under the
framework of recursive Bayesian filtering, EKF with PF based efficient channel
estimation algorithms have been developed in this thesis to address the commonly
prevalent system non-linearity with channel impairments and non-Gaussian noise, which

was hitherto not possible.

6.2 Conclusion

The conclusive observations, inferences, implicit and explicit novelties of research

findings of this thesis are enlisted in this section.

6.2.1 Characterization and Modelling of HF Channel

The significant conclusive observations pertaining to the Characterisation and Modelling
of
HF channel are as follows,
e In the proposed HF channel characterization scheme, system non-linear and
random time-varying features have been imparted to the conventional Watterson

channel model to capture both the time and frequency dispersion of a HF channel.

e The limitations associated in the application of FIR in modelling the HF channel
and its inadequacy to represent the dynamic characteristics of the channel

parameters have been analysed.

e This thesis demonstrates that HF channel modelled through IIR/AR filter can
capture the dynamic characteristics of the channel with reduced computational

complexity compared to FIR.

e Computational complexity involved in generating the AR function for different
Doppler spreads and sampling frequencies is analysed. It is shown that
computational complexity varies exponentially with the selected configuration of

MIMO.
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6.2.2 HF Channel Estimation

Under the topic “HF channel estimation”, following are the salient research findings of

the thesis.

A noteworthy feature of this thesis is the ability of the EKF and PF based channel
estimation algorithm to consider the adverse effects of multipath fading, system
non-linearity and non-Gaussian noise scenario.

It is inferred from the simulation studies, that the performance of the channel
estimation with the PF technique is superior to the RLS technique with affordable
computational complexity even in low SNR condition.

The simulation results conclusively suggest that RLS based channel estimation
algorithm is not very effective to handle system induced non- linear conditions.
Variance of EKF-PF based channel estimation algorithm is much lower relative to
RLS even under system induced non-linear conditions.

The simulation studies indicate that under low SNR (5 to 15 dB), the channel
estimation algorithm invoking EKF with PF has advantage of improvement in
gain (2 to 3.5 dB) over the RLS algorithm.

For higher SNR, the corresponding improvement in gain is 1.5 to 2 dB.

6.2.3 Contributions

The contributions of this thesis to the broad topic of modelling, characterization and

estimation of HF channel can be summarized as follows:

A generic framework to extend the concept of HF channel modelling,
characterization and estimation techniques applicable to conventional SISO has
been proposed for the emerging MIMO technology.

The computational complexity and accuracy in the simulation of AR/IIR based
HF channel model have been compared with the FIR based model.

Methods of modelling HF channel to characterize the effects of system non-
linearity with channel impairments and non-Gaussian noise have been proposed

and validated.
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e The channel estimation algorithms which can mitigate the effects of the multipath
fading non-Gaussian noise the system induced non-linearity with channel
impairments have been proposed and analysed for their functionality.

e The relative improvement in the overall performance of the HF communication
system in lieu of adaptation of MIMO over SISO has been investigated through

numerous analytical and simulation studies.

6.3 Future Work

As was stated in the earlier sections, a comprehensive analysis of channel
characterization and estimation of HF channel with multiple antenna system has been
presented. Viewed in totality, the research presented in this thesis is an incremental
contribution in the overall developmental efforts to enhance the reliability and data
handling capacity for HF system within the framework of MIMO-HF channel

characterization and estimation.

6.3.1 Channel Characterization

The accuracy of the simulation model developed in this thesis is limited by the accuracy
of the underlying mathematical model and the associated assumptions. The developed
model for channel characterization, at best, provides merely a partial description of the
system being modeled since, only certain aspects (such as short term fading effects that
include time and frequency dispersive of the system, system induced non-linearity and
non-Gaussian noise) have been considered. In order to develop a more accurate
simulation model, it is recommended that the field measurements of the environment
being modeled should also consider the following:

e Multidimensional (space, time, and frequency) characterization of HF propagation
including time delay, angle of arrival, angle of departure profiles and time
variance of the HF channel.

e Characterization that would deal with the effect of the interference of the

environment.

187



Analysis of climatic variations, mainly the effect of fading due to rain and other
scintillations that are important in characterising the HF channel.
Multidimensional analysis and modeling of multipath propagation for the

waveform design of MIMO-HF or MIMO-OFDM HF system.

6.3.2 HF Channel Estimation

The research study presented in this thesis pertaining to the improved channel estimation

algorithm for HF channel invokes recursive Bayesian technique that encompasses PF

instead of conventional Kalman Filter. Any novelty aimed at reducing the computational

burden as well as enhanced accuracy of PF based estimation algorithms can further

supplement the analytical work of this thesis. The following aspects can be considered for

further research,

The PF based channel estimation algorithm can be further improved to deal with
the higher degree of dynamics with narrow process or observation noise variance.
In such a scenario, the particles set quickly collapses to one single point in the
state space, leading to the severe performance degradation of the filtering
performance. The kernel particle filter that invokes mean shift to allocate particles
more efficiently and which also uses importance sampling to maintain fair
samples from the posterior density function can be explored. It may be pertinent
to point out that kernel method is a parametric model, whereas the PF belongs to
the class of non-parametric estimation model. Non-parametric model requires
relatively more accurate information on system and measurement.

Particle generation and weight computation are computationally the most
intensive steps in PF based channel estimation algorithms. The main challenges
for accelerating the speed of execution of the algorithm lie not only in the
reduction of the number of the operations but also in exploiting operational
concurrency between the particle generation and weight computation steps.
Further studies on architectural features of hardware to optimize the speed of
computation through parallelization as well as recursion can be a significant
contribution towards the development of a highly efficient real time HF

communication system.
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APPENDIX - 1
This appendix discusses the mathematical formulation to relate the channel impulse

response and the tap-gain function. It deals with the characterisation of the channel
parameters (both in time and frequency domain) to capture the HF channel impairments
in the form of impulse response g(z,t). These impulse responses are modelled as tap-
delay filters. Each tap-delay is characterised to capture the channel impairment referred
as tap-gain function. The summations of individual tap-gain function constitute the
impulse response of channel. The variations channel parameters (Doppler, delay spread)

are modelled as tap-gain function.

A.1.1 Characterization of Channel Impulse Response g(z,t) in term of Tap-Gain
Function

Ionospheric HF channel is non-stationary both in frequency and time. For scenarios
comprising band-limited channel and impulse response g(z,t) of the channel for a short
time duration, the HF channel can be assumed to be merely stationary and accordingly it
can be modelled [Watterson 1970]. A discrete stationary model of a HF channel is
illustrated in Figure Al.1. The input signal x(t) whose propagation through a HF
channel is of interest is fed to an ideal delay line and with finite number of taps along
with adjustable delays. The signal at each tap is modulated in amplitude and phase by a
suitable base-band tap-gain function G;(t) which represents the fading effect on the
signal for particular paths. Several delayed and modulated signals are summed with
additive noise (Gaussian, atmospheric, man-made) and interference (unwanted signals) to
form the output signal y(t). Each tap corresponds to ‘a’” path and is used to model

multipath components that are resolvable in time.
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Figure Al. 1: Channel model
The channel model shown in Figure A1.1 is generic one for any wireless communication.
The mathematical description of channel model illustrated in Figure A1.1 is as follows,

The time varying channel response G(t,t) and its frequency response H(f,t) of the

model can be represented as

H(f,t) = Xizq exp(—j2rt;f)Gi(t) (Al.1)
Where,

i is the index for a tap or path,

7;1s time delay on the it path,
n is the total number of paths.
Statistical description for random process G;(t) and H(f,t) is as follows,
The channel response, G(z,t), is characterized in [Watterson 1970] as a wide sense-
stationary complex-valued random process with the tap-gain auto-correlation function,
Ci(11,75,At) = E[G{ (11,1)G;(T,,t + At)] (A1.2)
In most radio communication media, the attenuation and phase shift of the channel

associated with the signal delay 7, are uncorrelated with another signal delay rz,. Then it

follows from Equation (A1.2) that,
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E[G] (11, t)Gi(1,, t + At)] = Ci(ty — T2, At) .6(11 — T3) (A1.3)
Let t'=1,—7,
Then Equation (A1.3) can re-written as,
Ci(t',At) = E[G{ (1, t)G;(T,, t + At)] (Al.4)
Where,
E denotes expected or mean value
* denotes a complex conjugate
For Ar=0, the resulting autocorrelation function, C;(t") = C;(z',0) is referred as the
multipath intensity profile of the channel. The range of values of delay r over which

C;(7") = 0 is called the multipath delay spread of the channel and is denoted by 7, .

To simplify Equation (A1.4), the tap-gain correlation function is modified as follows,

C;(At) = E[G; (t)G;(t + At)] (A1.5)
Fourier transform of the tap-gain correlation function (Equation A1.5) is,
F[C;(AD)] = vi(v) (AL.6)

Where,
F denotes the Fourier transform

Since Fourier transform will not change the wide sense stationary properties of the
channel. Considering the frequency response of channel Equation (A1.1), then correlation
function of the channel referred as the spaced frequency correlation function
R(Af, At) of the channel can defined as

R(Af,At) = E[H*(f,O)H(f + Af ,t + At)] (A1.7)
Equation (A1.7) can also be represented by Fourier transform of tap-gain correlation
function (Multipath profile), C;(z’, At) of Equation (A1.4) with respect to t since tap-
gain functions are uncorrelated. Equation (A1.7) is written as

R(Af,At) = Y-, exp(—j2rt;Af)C;(At) (A1.8)
Based on some practical measurements [Watterson 1970], it has been noticed that the
relation between the coherence bandwidth Af, and the multipath delay spread AT, can

be approximated by,

1
Af, = —

T
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In order to illustrate the effects of the time variation of the channel, function s(t,v)is
defined as the Double Fourier transform of R(Af,Ar)with respect to the variables At
and Af . The function s(t, v) is referred as channel scatter function. The channel scatter

function is given as [Watterson 1970]
s(t,v) = X1 6(r — v (v) (A1.9)

Where,

6 (7) is the Dirac delta function.

v;(v) and s(t,v) are power-ratio density functions;

v; is the ratio of the output power per unit frequency offset over the it"
path to the channel input power

s(t,v) is the ratio of the channel output power per unit frequency offset

per unit time delay to the channel input power.

Scatter function s(t,v) describes the relation between the time variation and the Doppler

effects of channel. With T = 0 the function s(v) = s(0,v) is referred as the Doppler
power spectrum of the channel. The range of values of v over which s(v # 0) is called
the Doppler spread of the channel, f;. The reciprocal of f; is a measure of coherence

time factor At, of the channel,

1

At, ~ (A1.10)

d
Normally the tap-gain function for HF channel is considered to be an independent zero-
mean complex-Gaussian function with Rayleigh amplitude and uniform phase density
functions. The spectrum of tap-gain function will be of Gaussian shape. Even for single
tap or path, two magneto-ionic components such as signal at low — ray, two Gaussian

spectrums are considered [ITU-R 2000, Watterson 1970]. The tap-gain spectrum of two

magneto-ionic components is illustrated in Figure A1.2.
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Figure Al. 2 : Tap-gain spectrums in channel model

The six parameters of Gaussian spectrums of tap-gain function are:

= Power ratios of the two magneto-ionic components C;,(0) and Cg;;(0)

= Frequency shifts vy, and Vsip ;

= Frequency spreads 20y, and 2oy, .
The subscripts ‘a’ and ‘b’ are meant to identify the magneto-ionic components. The
subscript s denotes a specific channel model (particular channel parameter).
If the frequency shifts and spreads of the two magneto-ionic components are equal, they
appear as one component and hence single Gaussian function is sufficient for the tap-gain
spectrum. When separate taps are used, the two magneto-ionic components in the high
ray are modelled through two different tap-gain Gaussian spectra.
For a HF channel that is band-limited and whose impulse response is of interest only with

short time duration, the independent tap-gain functions can be defined as

Gsi(t) = Gsia (t)exp(jznvsiat) + Gsib (t)exp(jznvsibt) (Al.l 1)
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Where,

Ggiq(t) and Gg(t) are two independent complex (bivariate) Gaussian
stationary ergodic random processes, with zero-mean values and independent
quadrature components with equal rms values and identical spectrums. Specifically,

Gsiq(t) is defined in terms of its real and imaginary components by
Gsia(t) = gsia(t) + jg;ia (t) (A1~12)
Where gg;,(t) and ggi ,(t) are independent real Gaussian processes, and are

represented with the following single-time joint density function

2
] 1 g?ia +g;ia
P8 9%) = sy | - (ALY

In Equation (A1.13), C

sia

(0) is the autocorrelation of Equation (A1.12) at At =0and

defines the ratio of the channel output power delivered by the magneto-ionic

component to the channel input power.

Further, the Fourier spectra of g4, (t) and ggi ,(t) are equal implying,

F{E[gsia(Dsia(t + ADT} = F{E[gl,,(©)gl,(t + 20)]} (AL.14)

Because g4, (t) and ggia(t) are independent , Gg;,(t) has a spectrum that is the

sum of the identical spectrums of gg;,(t) and ggia(t) and it has even symmetry
about v=0. Therefore, exp(j2mvg,t) factor has been included with Gg;,(t) in Equation
(A1.11) to provide the desired frequency shift vg;, for this magneto-ionic component.
With the ‘a’ subscript replaced by ‘b°, Equations (A1.12)-(A1.14) also apply for the

other magneto-ionic components.
The tap-gain correlation function defined in Equation (A1.14) can be written as

Csi(At) = Csia(O)exp[—ZTTZO'SZia(At)Z +j27TvsiaAt] +
Csip(0)exp[—2m202, (At)? + j2mvg;, At] (A1.15)
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and the corresponding tap-gain spectrum is

() = Csia(0) I (v - vsm) l Csip (0) [ (v - vsm)
2m) 204, 0% @) oy Tgiv
(A1.16)
Where
Csi = Csia(0) + C5(0) (A1.17)

Figure.A1.2 depicts a typical tap-gain correlation function.
In view of the earlier stated assumption pertaining to near stationary feature of the HF
channel, other than a Gaussian-scattering model, no additional statistical descriptions are
necessary for modelling HF channel. It can be seen that the HF channel model involves
three assumptions:

1) Gaussian-scattering hypothesis (each tap-gain function is a complex Gaussian

process)
2) Independence hypothesis (each tap-gain function is independent)
3) Gaussian-spectrum hypothesis (each tap-gain spectrum in general is the sum of

two Gaussian functions of frequency vy;, and vg;;)

The establishment of the validity and appropriateness of the three assumptions stated
above is also verification of the accuracy of the HF channel model. = Propagation
measurements and analyses of HF channel is aimed to test the validity of these
three assumption and to determine the practical bandwidth limitations of the model
for typical channels. Because the discrete paths in the model only approximate the
resolvable ionospheric model components with nonzero time spreads, the model,
strictly speaking, can be valid only over an arbitrarily small band-width.
Practically, however, it can be considered to be valid over a larger bandwidth B.
Bandwidth B is inversely proportional to time spread ¢ of the resolvable ionospheric

components represented by each tap.

208



APPENDIX -2

This appendix highlights the comparison of simulation results on statistical parameters of
HF channel obtained through open source channel simulators and the simulation model of
HF channel proposed in this thesis. In view of the scope of the open source channel
simulators, the comparison is limited to SISO configuration and the emphasis is on the
Watterson model. In addition, this appendix presents a comparative analysis of
atmospheric noise model appropriate for HF channel based on the analyses proposed by
Middleton and Hall [Wadsworth 1999]. The atmospheric noise models of Middleton and
Hall can be treated as derivatives of CCIR-322 model.

A2.1 Comparison of results on channel characteristics derived through the open

source channel simulator and the simulation model of HF channel of this thesis

Following are the some of the available open source SISO-HF channel simulators.

- Pathsim

- lonospheric Simulator V1.6

- Linsim
The modelling of channel in these channel simulators is based on the Watterson HF
channel model. In this model, the ionospheric layers are assumed as fast moving
reflecting media. The effect of these layers on reflected HF waves can be modelled by
modulating the HF signal by a bivariate complex random process of Gaussian amplitude
distribution resulting in modulated signal of Gaussian shape. Another effect of the
simulated HF channel is to introduce the effect of multipath through delayed versions of

transmitted signals arriving at the receiver.
The input to these simulators is the audio file. For analysis purpose, Linsim and Pathsim
simulators are considered as reference to compare and validate the results obtained

through the analysis presented in this thesis.

Screenshots of the three open source HF channel simulators are shown in Figures A2.1 to
A2.3.
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Figure A2. 2: Screenshot of PathSim HF channel simulator
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Figure A2. 3: Screen shot of ionospheric simulator

The channel parameters considered for the simulation of HF channel are:
e Doppler spread = 4Hz
e Multipath = 3 paths ; 0 ms, 3,ms , Sms
e Noise = 10dB (Gaussian type)
e Input signal: QPSK modulated signal

The PSD of the impulse response of HF channel is simulated through simulators Linsim
and Pathsim. The correlation between the simulation results of PSD obtained with
Linsim and the simulation of Watterson model as proposed in the thesis is depicted in
Figure A2.4. As can be seen from the results of Figure A2.4, there is a good agreement
between the results derived through Linsim and the model proposed in this thesis. This
in turn validates the analysis presented in the thesis. A similar comparison pertaining to

ACF is shown in Figure A2.5
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Figure A2. 4: PSD of HF channel impulse response: Linsim simulator Vs proposed channel
simulator model
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Figure A2. 5: ACF of HF channel impulse response: Linsim simulator Vs proposed channel
simulator model
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Figure A2. 6: PSD of HF channel impulse response: PathSim simulator Vs proposed
channel simulator model
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Figure A2. 7: ACF of HF channel impulse response: PathSim simulator Vs proposed
channel simulator model
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The Figures A2.6 and A2.7 show the comparison of the simulated results on PSD and
ACF derived through the simulator Pathsim and the model of HF channel proposed in
this thesis, The difference in the peaks of the curves pertaining to ACF can be attributed to

the lack of precise information on order of Filters used in the open source simulators.

A.1.1 PSD and ACF for recorded HF signal

To facilitate a better appreciation about the statistical nature of real signal in a HF
channel, data on real signals available in open literature is considered and its statistical
parameters are also displayed. A data model commonly used by amateurs that employs
FSK to modulate data in AX.25 frames at 300bps is considered. This is most commonly
used for Automatic Packet Reporting System (APRS) [Lui 2011]. The statistical
parameters PSD and ACF of sounding data‘hfpacket.mp3’ are plotted in Figures A2.8
and A2.9.
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Figure A2. 8: PSD of recorded received HF channel signal
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Figure A2. 9: ACF of recorded received HF channel signal

Another data model normally referred to as “lonospheric Research Sounders and Over
the Horizon Radars” is also studied. Ionosphere sounders are used to measure the
channel state of the lonosphere and provide important data which can be used to examine
HF propagation [Lui 2011]. The statistical parameters (PSD and ACF) of sounding data
‘iono-othrl.mp3’ are plotted in Figures A2.10 and A2.11.
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Figure A2. 10: PSD of recorded received HF channel signal
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Figure A2. 11: ACF of recorded received HF channel signal

Referring back to the results in Figure 4.16, one can say that the statistical property of
PSD of signal derived through simulation model of HF channel of this thesis resembles
Gaussian spectral shape. The results in Figure 4.16 are based on a synthetic data. The
results of open source simulators derived through real (recorded) data also exhibit

Gaussian spectral shape as shown in Figures A2.4 and A2.6.

A.2 Comparison of Noise Models of Middleton and Hall

The determination of performance of a HF communication system is based on the
availability of statistical properties of both the desired signal and the noise processes.
System performance is highly dependent on the detailed statistical characteristics of
signal, the noise and the signal-to-noise ratio. The performance of a receiver depends on
the optimal detector. An assumption of Gaussian distribution of noise is very common in
an optimal detector. Based on this assumption, Probability of Bit error rate (P,) is derived
which is one of the important parameters in the assessment of the system performance of
the communication link. However the HF atmospheric noise is non-Gaussian and this

necessitates an alternate analysis of noise parameter. Usually CCIR-322 model is invoked

216



for the simulation of HF atmospheric noise. CCIR-322 model comprises the graphical
and empirical models based on observations of HF atmospheric noise at numerous
worldwide receive sites recorded over the period of many years.
CCIR-322 noise model is represented as

nt) = V(t)cos(w.t + @(t)) (A2.1)
Where,

V(t) is voltage envelope whose the probability density function is a one-sided
with two

parameters

@(t) is phase which is uniformly distributed between 0 and 2.

w. 1s centre frequency.

n(t) is noise
[Lemmon 2001, Wadsworth 1999] have demonstrated that the CCIR 322 noise model can
be approximated by a random process through a class of non-Gaussian random processes
known as Spherically-Invariant Random Processes (SIRPs). Several models of HF
atmospheric noise have been proposed by researchers [Wadsworth 1999] which have
been considered as alternatives to CCIR-322. Following are the alternative atmospheric
noise models.

e Middleton’s canonical statistical-physical model of electromagnetic interference
e Shinde and Gupta’s model of HF impulsive atmospheric noise

e Hall’s model of impulsive phenomena

In subsequent subsection, Middleton and Halls models of HF atmospheric noise models

are described to deal with non-Gaussian distribution of noise.

A.2.1 Middleton Model

A simplified distribution commonly used in the modelling of impulsive noise is the
Gaussian mixture or contaminated Gaussian, defined by ae& —contamination density

function of the form [Wang 2004]
f) =0 - af,(x) + gfc(x), (A2.2)
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Where both f, and f, are zero-mean Gaussian densities with variances GZ and o’

respectively. Gaussian mixture models have been popular in communications mainly
because of their mathematical tractability and their ease of conceptual interpretation. The
parameter & can be interpreted as the amount of contamination allowed in the model.
Since f(x) is the sum of two Gaussian densities, it is easy to generate a noise with

pseudo random Gaussian—mixture for simulation studies. Figure A2.12 shows the PDF of

noise based on Middleton model.
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Figure A2. 12: PDF of noise generated through Middleton model
A2.2 Hall Model

In Hall model, it is assumed that the phase @(t) is uniformly distributed and the
PDF, p,, (V) of the voltage envelope V(t) of Equation (A2.1) is given as [Lemmon 2001]

(6 —Dy° v

pU(V) = (VZ +'y2)(6+1)/2,

(A2.3)
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Where 6 and y are free parameters (with the constraint that 8 > 1, so that p,, (V) is

normalised).

The cumulative probability P(V), is

6-1
PV)=1- —L—=, (A2.4)

W2y z

Rearranging the Equation (A2.4), V(P) can be represented by

1 1/2
vp) =y (m = 1) ) (A2.5)

Where P is the cumulative probability of a random variable uniformly distributed
between 0 and 1. The Figure A2.13 shows the PDF of noise generated based on Hall
model. It is evident that phase @(t) follows uniform distribution and envelope V (t) is a

one-sided with two parameters (y and 0) and resultant noise n(t) is whose distribution is
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Ficure A2. 13: PDF of noise generated through Hall model
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A comparison of PDF of atmospheric noise derived through Middleton and Hall models
is shown in Figure A2.14. In this comparison, &€ = 0.4 for Middleton model: and 8 =
60,y =5 for Hall model have been assumed. To get a good correlation between these

two models, a particular combination of respective parameters is needed.
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Figure A2. 14: PDF of noise generated through Middleton and Hall models

With different values of parameters for Middleton and Hall models of atmospheric noise,
the variance and mean of noise distribution will vary but the resultant distribution is
always Gaussian. The advantage for using Middleton model is to relate the probabilities
of bit error and signal to noise ratio. The probability distribution of the instantaneous
value of the received noise envelope is required to be known while formulating the
probability of bit error (P,). The required probability distribution can be obtained through
model developed by Middleton model [Lemmon 1997].
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