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ABSTRACT Passive radio frequency (RF) sensing and monitoring of human daily activities in elderly 
care homes is an emerging topic. Micro-Doppler radars are an appealing solution considering their non-
intrusiveness, deep penetration, and high-distance range. Unsupervised activity recognition using Doppler 
radar data has not received attention, in spite of its importance in case of unlabelled or poorly labelled 
activities in real scenarios. This study proposes two unsupervised feature extraction methods for the purpose 
of human activity monitoring using Doppler-streams. These include a local Discrete Cosine Transform 
(DCT)-based feature extraction method and a local entropy-based feature extraction method. In addition, 
a novel application of Convolutional Variational Autoencoder (CVAE) feature extraction is employed for 
the first time for Doppler radar data. The three feature extraction architectures are compared with the previ-
ously used Convolutional Autoencoder (CAE) and linear feature extraction based on Principal Component 
Analysis (PCA) and 2DPCA. Unsupervised clustering is performed using K-Means and K-Medoids. The 
results show the superiority of DCT-based method, entropy-based method, and CVAE features compared to 
CAE, PCA, and 2DPCA, with more than 5%-20% average accuracy. In regards to computation time, the two 
proposed methods are noticeably much faster than the existing CVAE. Furthermore, for high-dimensional 
data visualisation, three manifold learning techniques are considered. The methods are compared for the 
projection of raw data as well as the encoded CVAE features. All three methods show an improved 
visualisation ability when applied to the encoded CVAE features. 

INDEX TERMS Activity recognition, data visualization, Doppler radar, health and safety, DCT analysis, 
unsupervised learning. 

I. INTRODUCTION The demand for human activity detection and monitor-
Human activity recognition for smart healthcare is an emerg- ing has rapidly increased over the past years. A number 
ing topic. It is becoming even more prominent with the com- of devices are proposed including cameras, wearable tech-
plications of ageing population worldwide. The population nologies, infrared sensors, and radars. These devices are 
aged 65+ in the UK was 11.8 million in 2016, while this expected to provide daily monitoring of elderly people’s 
number is projected to grow to 20.4 million by 2041 [1]. activities and vital signs. Hence, this will provide peace of 
Chronic and long-term conditions are well-known to increase mind for their relatives regarding the physical health and 
with age. It is reported that 29% of those aged 60-64 had a mental health of the care home residents. Cameras are often 
chronic condition, while the percentage grows to 50% for seen as an obvious and traditional solution for capturing 
elderly populations aged 75 or over. The implications of observable data including human activities for subsequent 
ageing with chronic conditions prevent elderly people from recognition [2]–[4]. Video-depth cameras are capable of 
independent living. Thus, they are dependent on social care obtaining extremely high-resolution data, which can con-
services such as living in care homes. tribute to the detailed analysis of daily human activities. Nev-

ertheless, camera devices suffer from intrusiveness, which is 
The associate editor coordinating the review of this manuscript and highly undesirable in the contexts of residential environment. 

approving it for publication was Donato Impedovo . The modern healthcare is concerned with the privacy and 
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dignity of patients. Therefore, vision-based solutions are not 
recommended in smart care homes. 

Wearable sensor technologies are an effective solution for 
smart healthcare applications as they provide a combina-
tion of human activity recognition and vital signs detection 
[5]–[8]. Wearable sensors have the ability to capture small 
fractions of the body such as the movement of fingers [9]. 
Additionally, wearable sensing technologies can detect phys-
iological signals such as heart rate and speech patterns [10]. 
However, the disadvantages and challenges of this technology 
are not to be under-rated. Wearable sensors are known to 
have poor battery life [11]. As they are ‘‘wearable’’, elderly 
populations may easily forget to wear the device or feel 
uncomfortable wearing it [12]. 

Infrared sensors utilize human’s body temperature dis-
tinguished from the lower ambient temperature in order to 
capture and detect human activities. Most IR sensors obtain 
ultra low-resolution data, where a subject identification is 
avoided. Thus, IR devices represent an attractive solution 
to be deployed in care homes and hospitals. Current stud-
ies reveal significant recognition rates (>90%) for activi-
ties including standing, sitting, walking, falling, and others 
[13]–[15]. Contrarily to their advantages, IR devices suffer 
from a relatively low detection distance. It can be inferred 
in a recent dataset [16] that the performance drops with 
distance growth, although not significantly. As IR sensors 
are low-resolution capturing devices, they lack sensitivity 
towards small fractions of the human body, which prevents 
more specific activities detection. 

Passive Micro-Doppler radars are an appealing solu-
tion for human activity recognition. That is due to their 
non-intrusiveness, high distance range, deep penetration, and 
reliable accuracy rates [17]–[19]. In addition, the passive 
radar uses the existing radio bursts in the environment. 
It avoids to bring extra RF source to aggravate the increasing 
electromagnetic interference in the residential environment. 
While passive Micro-Doppler radars traditionally have appli-
cations in human activity recognition [17], they have also 
been deployed for vitals sign monitoring such as respiration 
[20]. In addition to their applications, the devices have been 
used for gait patterns analysis [21]. 

Micro-Doppler radars have been extensively used for activ-
ity recognition with a focus on healthcare purposes [20], [23], 
[24]. Currently, majority of studies are based on pipelines, 
which are totally supervised or consist of a combination 
of unsupervised and supervised approaches. In most cases, 
the pipelines are based on unsupervised feature extraction 
methods, such as conventional PCA and Singular Value 
Decomposition (SVD) techniques. That is usually followed 
by a supervised classification method, such as Support Vec-
tor Machine (SVM) and k-Nearest Neighbours (k-NN) [25], 
[26]. In the pursuit of a more accurately measured covariance 
matrix from PCA, variations of PCA have been used for 
Micro-Doppler data. In [27], the authors applied L1 norm 
PCA opposed to standard PCA and achieved improved testing 
accuracies. Furthermore, 2DPCA has been compared with 

standard PCA for Doppler radar data [28]. Considering the 
fact that 2DPCA accepts 2D image matrices as an input, 
the dependencies of the pixels are retained. The results of 
that work revealed improved recognition rates for 2DPCA 
by more than 10%. Furthermore, unsupervised PCA has 
been combined with supervised Linear Discriminant Anal-
ysis (LDA) and shallow neural networks (SNN) [29]. The 
proposed architecture in that work was the first to use a 
3D-signal representation by retaining the matrix dependen-
cies. Results reveal better performance than conventional 
PCA and 2DPCA for Doppler radar data. 

In a pilot study, the Doppler-Radar-2018 dataset was 
used. The work employed Hidden Markov Models (HMM) 
in order to extract activity information from each Doppler 
sequence [23]. The output of the HMM training was clus-
tered using K-Means and K-Medoids. The Kullback-Leibler 
(KL) log-likelihood with K-Medoids for clustering obtained 
the highest accuracy. HMM is a supervised framework that 
requires the labels and generates log-likelihood values as 
a measure of similarity of a candidate sample to each of 
the classes. Therefore, log-likelihood values can be used for 
decision making directly and the idea of using them as a 
feature and applying unsupervised methods such as K-Means 
for clustering them is not the best analysis pipeline. HMM 
was also used in another previous work [30], for classifica-
tion of extracted physical features where 72% accuracy was 
achieved. 

Another group of supervised techniques are based on 
deep learning approaches. These methods require more data 
for learning their objective functions. Recently, Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs) architectures have been used. Furthermore, 
CAE was used for feature extraction for Doppler radar data 
[31]. That was followed by classification based on a super-
vised framework by fine-tuning and a Softmax classifier. 
In these techniques, feature extraction from data streams 
are performed automatically with minimum user required 
settings [32]. 

Unsupervised learning is yet a minimally researched topic 
for Doppler radar based applications. The advantage of unsu-
pervised methods compared to supervised techniques is that 
they do not require labeling data. This usually influences 
the accuracy of unsupervised methods compared to super-
vised techniques. That is because in the absence of labels, 
the learning is only guided based on the input variables, their 
variations and characteristics. That does not necessarily help 
to learn the decision rules correctly. However, the models 
can be updated faster compared to the supervised strategies. 
Hence, the learning capacity of the latter are limited due to 
labeling requirement for any new coming data. In practi-
cal settings, usually recognition of few activities is critical 
such as a fall or immobility. In future, such activities can 
be labelled and recognized among the clustered activities. 
However, this work is only focused on unsupervised activ-
ity clustering of Doppler radar data and the latter prob-
lem is not addressed in this paper. It will be considered 
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for future studies. In addition, unsupervised learning usually information, two local patching and feature extraction 
requires the use of techniques for estimating the number of methods are proposed in this paper. To retain the unsu-
clusters. This is due to the fact that subjects conduct a broad pervised scenario and evaluate the features, the Dunn’s 
number of activities in a real world scenario. As such, embed- index is used. It is used as a criterion for evaluation of 
ding all activities in a pre-collected dataset for supervised the activity clustering results, using the locally extracted 
frameworks is problematic. features. That also helped to choose the first proposed 
Unsupervised learning methods can be categorised into feature extraction method’s parameters such as the local 

two groups of manual or automated feature extraction strate- patch size and location. The first proposed method uses 
gies. In rule-based systems, specially those strategies based 2D DCT to extract features from local patches of the 
on hand-crafted features, prior knowledge about the experi- 2D images. The second proposed method is based on 
mental system and environment are important [33]. Besides entropy of the local patches. The average testing results 
that, careful selection of the feature extraction technique showcase 5%-10% improvement by using the proposed 
and manual selection of some parameters depending on the techniques for different scenarios compared to the pre-
setup rules are required. For example, the signal strength and vious methods. To the best of our knowledge, such 
angle of measurement can influence filtering window size unsupervised algorithms have not been used for human 
and scaling or choice of basis function in spatio-temporal activity recognition using Doppler radar data. 
feature extraction techniques. On the other hand, in auto- • Comprehensive study of unsupervised learning for 
mated feature extraction approaches such as CAEs, such prior Doppler radar data: This work is a pioneering study 
settings are not required. The embedded objective function concerning unsupervised learning for Doppler radar 
and optimization removes the need for manual settings [34], data. Based on a comprehensive study, four different 
[35]. Nevertheless, the computational time for automated metrics are used to estimate the number of clusters in 
feature extraction approaches is more expensive compared to the unsupervised framework. That is useful in real sce-
manual feature extraction. narios, where the number of activities can be high and 
In this paper, the Doppler-Radar-2018 dataset, that recognizing few of them among all clustered activities 

was used previously in [23], is considered. An is required. Additionally in this paper, four groups of 
unsupervised framework is developed despite labels avail- unsupervised feature extraction strategies are compared: 
ability. As explained earlier, the importance of the designed the proposed methods based on (1) local 2D DCT and 
framework is the applicability to projects with poor labeling (2) local entropy are compared by (3) architectures using 
scenarios. For this aim, four groups of unsupervised feature deep CVAE and CAE, where the former has not been 
extraction strategies are considered: (1) frequency-domain used previously for Doppler radar data, and (4) previous 
analysis based on 2D DCT (2) entropy analysis (3) convolu- methods using PCA and 2DPCA. The extracted features 
tional filtering strategies based on CVAE and CAE (4) unsu- are clustered with K-Means and K-Medoids. The pro-
pervised PCA analysis including 1D and 2D analysis. For posed methods based on local DCT and local entropy, 
DCT and entropy feature extraction methods, two methods and CVAE achieved around 5%-20% higher average 
are proposed. The extracted features are clustered into differ- testing accuracy in comparison with CAE, PCA, and 
ent activity groups based on unsupervised clustering strate- 2DPCA. The proposed methods for feature extraction 
gies using K-Means and K-Medoids. In order to evaluate the along with CVAE encoded features can be useful for 
results, the known labels are utilised only at the result evalu- unsupervised cases or semi-supervised cases with poor 
ation step. Leave-one-subject-out cross validation (LOOCV) labeling. 
is used so that, the built models are tested on unseen data • High-dimensional data visualisation enhancement: 
of one subject. Due to the fact that in unlabelled conditions Manifold learning methods for high-dimensional data 
the number of classes is unknown, four unsupervised metrics, visualisation are considered in this study. Doppler radar 
namely Elbow, Silhouette, Davies-Bouldin and Dunn’s index dataset can benefit in regards to activities data visu-
are used. alisation. This can reveal similarities between certain 
The contributions of the study to the research community activity groups. The manifold learning methods are 

are the following: known to provide good separation between the classes 
• Two proposed unsupervised feature extraction meth- [36]. In this study, CVAE encoded data have been 
ods for Doppler radar data: The Doppler radar data in used for data visualisation improvement. For the first 
this study has high dimensionality. When reshaped into time for Doppler radar data, in this research the mani-
2D maps, there are different distinguished patterns for fold learning methods’ performance over raw data and 
each activity. On the other hand, the high dimensionality encoded data using CVAE is employed to illustrate 
leads to an ill-posed problem and over-fitting. Therefore, any improvement for the sake of visualisation. The 
feature extraction from 2D image maps is employed. three methods for high-dimensional data visualisation 
For this aim, the local areas with low level of variation t-Distributed Stochastic Neighbour Embedding (t-SNE), 
and insignificant information can be cancelled out from Multidimensional Scaling (MDS) and Locally Linear 
the analysis. In order to extract the most meaningful Embedding (LLE) are compared in the two scenarios. 
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Initially, the methods are used to transform the raw data 
Dn×6400 to a 2-dimensional space. Secondly, the trans-
formation is performed on the encoded features by 
CVAE data Dn×50. Comparison of the results reveal 
better separations of the clusters using the three meth-
ods, when CVAE encoding is used. This showcases the 
strength of CVAE for data separation. Hence, CVAE 
encoded features can be used in manifold learning for 
visualisation purposes. 

The rest of the paper is organized as follows: In Section II 
the methods including the database description, number of 
clusters estimation and the proposed approaches for feature 
extraction and clustering are described. Additionally, three 
methods for data visualisation are defined. The results for 
unsupervised feature extraction and clustering are shown in 
Section III. Then, data visualisation techniques are com-
pared by transforming the raw data as well as the CVAE 
encoded data. Section IV critically evaluates the main find-
ings of the study, including the proposed architectures for 
unsupervised learning and the manifold learning methods 
for high-dimensional data visualisation. Finally, Section V 
concludes the study with the most valuable outcomes. 

II. METHODOLOGY 
The unsupervised framework in this study consists of a num-
ber of steps as illustrated in Fig. 1. The first step is to divide 
data into train and test. Five different activities are recorded 
by Doppler radar. The number of clusters K is estimated 
using four metrics. Since the raw data are in high-dimension, 
unsupervised feature extraction methods are employed to 
reduce the feature space dimension. The feature extraction 
is followed by clustering and recognition using K-Means 
and K-Medoids. Comparison of the proposed two methods 
for feature extraction - local DCT-based method and local 
entropy-based method is performed with conventional meth-
ods based on CVAE, CAE, PCA, and 2DPCA. The existing 
CVAE method has not been deployed in previous Doppler 
radar studies. 

A. DATASET DESCRIPTION 

The Doppler-spectogram dataset is collected in the University 
of Bristol laboratory. The laboratory experiment layout is 
shown in Fig. 2 (a 7 m × 5 m room). The radio source 
used in this experiment is an Energy Harvesting transmitter 
(TX91501 POWERCASTER) working on 915 MHz ISM 
band with 30 dBm DSSS signal. The passive radar is a 
two-channel software defined radio (SDR), which is built 
on two synchronized NI USRP 2920s. Both channels are 
connected with directional antennas. The reference channel 
is 1 m apart from the transmitter, while the surveillance 
channel is pointed to the subject. The Cross-Ambiguity Func-
tion (CAF) which is the Fourier of cross-correlated reference 
and surveillance signals is used to 2D range-Doppler plot. 
From each range-Doppler plot, the range column which con-
tains the detected subject is extracted to form up the Doppler 

FIGURE 1. Flowchart, describing the overall analysis framework of the 
paper. 

FIGURE 2. Experimental layout. 

spectrogram. More details can be found in Section 3 in [20] 
or Section III in [23]. 

Four participants (one female and three male) volunteered 
for capturing activities. This dataset consists of five activities: 
(1) walking, (2) running, (3) jumping, (4) turning, and (5) 
standing. Each activity is repeated 10 times by each subject. 
There exist 40 samples for each activity or 200 samples 
totally. 

A pre-processed Doppler radar dataset is used in this study. 
The total number of features per sample is 6400 = (2 direc-
tions × 100 Doppler bins × 32 time index). Furthermore, the 
Doppler radar data is normalized, which corresponds to the 
fact that all features are represented by real values in the range 
of (0, 1). Considering the 3-dimensionality of the Doppler 
radar data, it is then vectorized 2 × 100 × 32, which results 
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FIGURE 3. Example of an 80 × 80 = 6400 image for each activity: (1) walking, (2) running, (3) jumping, (4) turning, and (5) standing. 

in 6400. In order to transform it to 2D maps, 80×80 reshaping 
is applied. The reason for converting the vectorized Doppler 
radar data into 2D maps, is to apply image analysis strategies 
for quantification of local variation and patterns in the image. 
Fig. 3 is the micro Doppler signature for human activities. 

The Python libraries used for data pre-processing are pan-
das (version 1.0.5) and numpy (version 1.19.1). In terms 
of machine learning for feature extraction and clustering, 
scikit-learn (version 0.22.2) and scikit-learn-extra (version 
0.1.0b2) modules are applied. The CAE and CVAE are imple-
mented and run with Keras (version 2.2.4) and Tensorflow 
(version 2.2.0). The visualisation results are implemented 
with matplotlib (version 3.2.2). 

B. NUMBER OF CLASSES ESTIMATION 

Considering the unsupervised scenario in this study, the num-
ber of classes/clusters is unknown. In order to estimate the 
correct number, a number of techniques are applied including 
Elbow method, Silhouette analysis, Davies-Bouldin score 
and Dunn’s index using K-Means clustering. 

1) ELBOW METHOD 

The Elbow method is a heuristic technique for clusters num-
ber estimation [37], [38]. The overall goal for the method 
is to maximize the inter-class variability and minimize the 
intra-class variability. In this study, the data samples are 
denoted as D = D1, D2, . . . , Dn. The number of clus-
ters is K and their centroids are given by ω1, ω2, . . . , ωK . 
The distortion J is used to measure the effectiveness of the 
method: X1 

n K 
J (K , ω) = (min(Di − ωj)2) (1) 

n j=1 
i=1 

In this study, the candidate numbers of clusters K = 
2, 3, . . . , 10 are selected for K-Means clustering, which is 
described later in this section. The Elbow method computes 
the sum of squared errors for the data samples in each cluster. 
As the number of clusters increases, J becomes smaller. How-
ever, the best value of J is the point, where a further increase 
to the number of clusters does not change the within-cluster 
sum of squares significantly. However, a further increase 
would result in over-clustering. The decrease trend of J 
is noticeable before reaching the actual number of clusters 
K and becomes smoother afterwards. The Elbow method 
is a visualisation tool, and the graph shows a noticeable 

FIGURE 4. An Elbow test used to determine the number of clusters K . 

decline when the curve approaches the actual K . Therefore, 
the decline becomes smoother after exceeding K . Fig. 4 
illustrates the Elbow test for this data. 

As it can be observed, the selected number of clusters 
K = 5, which is the actual number of clusters for this study. 
However, detection of this bend point is ambiguous in some 
cases. Therefore, additional techniques are considered in this 
study. 

2) SILHOUETTE ANALYSIS 

Silhouette analysis is one of the most commonly used tech-
niques for number of clusters estimation [39]. The method is 
given as: 

Silhouette = 
1 

n 

nX 

i=1 

b(Di) − a(Di) 
max{a(Di), b(Di)} 

(2) 

where a(Di) is the average distance between data point Di and 
the remaining data points in its own cluster. The minimum 
average distance between data point Di and all other clusters 
is denoted with b(Di). The Silhouette coefficient aims to show 
the suitability for data point Di to belong to a particular 
cluster. The score is within the range of (−1, 1), where a 
lower value refers to overlapping clusters. On the other hand, 
a higher value suggests well-separated clusters. 

3) DAVIES-BOULDIN INDEX 

The Davies-Bouldin index is a clusters estimation method 
concerned with identifying clusters, which are distinct from 
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each other [40]. The measure is given by: 

K1 X 1(Ci) + 1(Cj)Davies = max (3)
K i6=j λ(ωi, ωj)i=1 

nP 
where 1(Ci) = ||Di − ωi||2, which is the distance 

Di∈Ci 
between each Doppler sequence and the centroid of the cor-
responding cluster. The distance between cluster centroids 
is given by λ(ωi, ωj) = ||ωi − ωj||2. Then, the term for 
maximization is computing the ratio of within-cluster to 
between-cluster distances for the ith and the jth clusters. This 
is computed for all combinations of cluster i and other clus-
ters. Then, the maximum value is found for each i. Among 
all combinations of clusters, the closest clusters with largest 
spreads have the maximum ratio. That is the worst scenario. 
The desire is to minimize the overall average of the worst 
scenario ratios. Therefore, unlike previous methods, a smaller 
value for Davies index is desirable. 

4) DUNN’s INDEX 

Dunn’s index is one of the most popular and oldest techniques 
in the literature [41] for number of clusters estimation. The 
overall aim is to minimize the intra-cluster distance and 
maximize the inter-cluster distance. It is given by: 

Dunn = 
min λ(ωi, ωj)

1≤i<j≤K 

max 1(Ck )
1≤k≤K 

(4) 

where λ(ωi, ωj) is the distance between clusters Ci and 
Cj. The intra-cluster distance of a single cluster is given 
by 1(Ck ). The minimization in the numerator finds the 
Euclidean distance of the two closest clusters. On the other 
hand, the maximisation in the denominator, finds the 
Euclidean distance of the samples to the centroid of the 
cluster with the highest dispersion. Therefore, for optimum 
cluster number, the numerator will be the maximum value 
among all other candidate number of clusters, while the 
denominator will be the lowest, resulting a peak over the 
heuristic search. 

Similarly to the Elbow method implementation, a can-
didate set of clusters is given K = 2, 3, . . . , 10 for 
K-Means. The heatmap in Fig. 5 shows the results for each 
heuristic technique. It is important to note that the value for 
the inverse of Davies index is used. Hence, the highest values 
corresponding to the darkest colors show the best fit for the 
clusters. The selected number of clusters is K = 5 for all 
methods. 

C. FEATURE EXTRACTION METHODS 

Traditionally, researchers rely on the empirical knowledge 
for the human activity recognition using micro-Doppler 
signatures. The typical examples include average torso 
velocity, period or duration of the activity cycle, upper 
and lower envelope variances in [25], [42]. The empirical 
knowledge presents intuitive relation between the Doppler 
signature and feature, however, it is not suitable for 

FIGURE 5. Silhouette score, Davies score and Dunn’s index used to 
determine the number of clusters K . 

the datasets with uncontrolled or unknown conditions. 
Later on, the data-driven micro-Doppler recognition 
approaches are proposed and proven excellent performance in 
[43]–[45]. These approaches treat the micro-Doppler plots 
as time-spectrogram and range-Doppler time points clus-
ter respectively. In this work, we will explore two new 
local DCT-based and local entropy-based methods as well 
as convolutional filter-based and variation-based projection 
methods for feature extraction. The two new methods and 
convolutional filter-based strategies are superior in terms 
of accuracy. While the convolutional strategy is superior in 
accuracy, the training time of the new methods is considerably 
less than the convolutional strategy. 

1) THE PROPOSED LOCAL DCT-BASED METHOD 

The first proposed method for feature extraction is based on 
applying 2D DCT on local areas of the 2D map of Doppler 
radar data. In general, 2D DCT is used to transform 2D 
images from the spatial domain to the frequency domain 
[46]. The sharp changes or smooth variations in the images 
correspond to high frequencies or low frequencies in DCT 
domain respectively. In fact, the frequency information of the 
images is sorted by DCT transform. The DCT coefficient in 
the top-left corner of the output 2D DCT matrix corresponds 
to the lowest frequency of zero and the frequencies increase 
toward the bottom-right corner. Depending on the type of 
images, the higher energies appear in different coefficients. 
The most valuable information is usually in small fractions 
of the DCT images. Therefore, DCT allows selection of a 
limited number of features that reduces the dimension of 
the feature space. The method has been used previously 
for extracting features from micro-Doppler radar for human 
activity recognition [47]. The mathematical notation of DCT 
is given as: 

u−1v−12 XX π (2i+1)p π (2j+1)q
F[p, q] =√ apaq f [i, j]cos cos 

uv 2u 2v 
i=0 j=0 

(5) 
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FIGURE 6. Flowchart of the proposed local DCT-based method. 

where, F[p, q] values are the DCT coefficients at row p and 
column q. In addition, f [i, j] is the element in row i and 
column j of the image matrix, where u = 80 and v = 80, 
and 0 ≤ p ≤ u − 1 and 0 ≤ q ≤ v − 1. Moreover, ap = √

1 if
2 

p = 0 and it is 1 otherwise. Similarly, aq = √
1 if q = 0 and 
2 

its value is 1 otherwise. 
Considering the local variations of the original 80 × 80 

images, in this paper, a systematic search algorithm is pro-
posed in order to find the best strategy for applying 2D DCT. 
This includes applying DCT on different local areas of the 
80 × 80 2D maps, using various patch sizes. The aim is to 
identify the optimum patch size giving the best clustering 
results. As illustrated in Fig. 6, first the 2D images are divided 
into various square shape local patches of different sizes. The 
square-sized local patches are non-overlapping. Four sizes of 
local patches are considered - 10×10, 20×20, 40×40 and the 
original 80 × 80 2D map. Second, each patch is divided into 
3 × 3 sub-patches. Third, 2D DCT is applied to each local 
sub-patch and the resulting 2D map of the DC coefficient’s 
amplitude is used for feature selection. Third, six coefficients 
are extracted according to a zig-zag pattern from the top-left 
corner of each sub-patch, allowing to extract features from all 
local areas of the Doppler profiles. Finally, the six features 
from each of the nine sub-patches are concatenated to form 
a feature vector of size 9 × 6 = 54. This generates 54 
features for each local patch. Then, the activities are clustered 
using the 54 features of each patch and the Dunn’s index 
is computed. The highest Dunn’s index discovers the most 
optimum local patch for the 2D DCT analysis. 

The reason for using the Dunn’s index in this algorithm is 
that it describes the quality of the resulting clusters. It quanti-
fies an easily interpretable metric based on the worst clusters 
of a clustering scenario. As shown in (4), in its numera-
tor there is the minimum between-cluster distance and the 
denominator is the maximum within-cluster distance. Then, 
a high Dunn’s index shows a good clustering quality. The 
use of Dunn’s criterion rather than clustering accuracy allows 
parameter selection for the unsupervised framework. 

2) THE PROPOSED LOCAL ENTROPY-BASED METHOD 

Considering the 80 × 80 images, a texture analysis method 
based on entropy is proposed to quantify the patterns of 
different activities profiles. Entropy is a statistical measure of 
randomness and is formulated based on Shannon’s equation 

FIGURE 7. The three patching strategies for entropy analysis. 

[48] as follows: 
bX 

H (ρ) = − ρi log(ρi) (6) 
i=1 

where ρi is the normalized histogram counts. It is calculated 
based on the histogram of the image. b is the total number of 
histogram bins. 

Depending on the variations of colors in local image area, 
the entropy can change. If most pixels in an image are similar 
with a low level of variations, the entropy will be small. 
On the other hand, if the level of color variation is high in 
an image, the entropy increases. Therefore, depending on 
the location of the analysis window, the entropy value can 
change. Since the patterns and color intensities vary for differ-
ent activities, a careful selection of local patches can generate 
different entropy values suitable for discrimination of the 
activities. Based on the observed changes in Fig. 3, three 
patching strategies are considered so that, the selected image 
areas for entropy analysis are narrowed down systematically. 
The three local patchings strategies are illustrated in Fig. 7. 
Then, similar to the local DCT-based analysis, the Dunn’s 
index is used to evaluate the quality of the clustering results 
based on the entropy features. That allows identifying the 
best patching strategy. The steps of the proposed method are 
outlined in Fig. 8. 

3) CONVOLUTION FILTER-BASED METHODS 

In this section, a description of CAE is provided by con-
sidering its drawbacks. Then, CVAE is introduced, which 
overcomes the drawbacks of the previous architecture. 

a: CONVOLUTIONAL AUTOENCODER (CAE) 
Autoencoders (AEs) are unsupervised neural networks, 
which can be used for feature extraction. Their architecture 
consists of two components: an encoder and a decoder [49]. 
AEs are commonly used for data denoising [50], anomaly 
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FIGURE 8. Flowchart of the proposed local entropy-based method. 

detection [51] and image generation [52]. The encoder learns 
the latent attributes of the input data x and transforms it to 
a lower dimensionality representation z. On the other hand, 
the decoder aims to reconstruct x given z. The implementation 
of CAE only contains a reconstruction loss, which needs to 
be minimized. 

In regards to disadvantages of the discussed architecture, 
the CAE learns local parameters for each data point. This 
avoids any statistical strength to be shared across all data 
points. Hence, this may result in overfitting due to the inabil-
ity of the model to generalise. In addition, the CAE architec-
ture includes only a reconstruction loss and it lacks any reg-
ularisation term as seen in CVAEs. This leads to data points 
of the same group/class to be given different representations, 
which are often meaningless. 

In this work, a deep CAE is used with three hidden layers 
for the encoder and decoder as illustrated in Fig. 9. As it can 
be seen, the shape of the input data x is 2 × 100 × 32 and the 
retained number of latent variables z is 50. The structure of 
the encoder is symmetric to the decoder’s structure. In regards 
to the hidden layers, the first convolutional layer in the 
encoder and the third convolutional layer in the decoder have 
256 filters with size 2 × 3. The stride for these two layers is 
(1, 2) referring to height and width. The second convolutional 
layer in the encoder and the decoder have 128 filters with 
size 1 × 3 and the stride is of shape (1, 2). Considering the 
third layer in the encoder and the first layer in the decoder, 
they have 64 filters with size 1 × 3. Their stride is of shape 
(2, 1). The robustness of CAE is validated in Section III. The 
convolutional layers used for this architecture incorporate a 
ReLU activation function. The decoder’s task is to reconstruct 
x given z, which is evaluated with the reconstruction loss. 
Based on this architecture, the encoded features z are used 
for clustering the activities. 

b: CONVOLUTIONAL VARIATIONAL AUTOENCODER (CVAE) 
CVAEs are generative models defined in [53], which are 
commonly used for dimensionality reduction [54], data aug-
mentation [55], and reinforcement learning [56]. Considering 
Doppler radar data, CVAEs have been used for synthetic 
data generation [57]. CVAEs contain two main modules: 
an encoder, referred to as recognition model or inference 
model, and a decoder, also defined as generative model 
[58]. The purpose of the encoder is to learn the stochas-
tic mappings of the observed input space x with a rather 

complicated distribution and transform it from its original 
high-dimensional space (6400 dimensions in this case) into 
a much lower latent representation z with a relatively simple 
distribution. Then, the output of the recognition model z is 
the input of the decoder. The decoder aims to reconstruct 
the original input x from the reduced latent information. 
In a traditional autoencoder, the latent representation consists 
of single-valued outputs for each feature. CVAEs assume 
that the dimensions of z cannot be interpreted with simple 
variables. Instead, CVAEs introduce a probability distribu-
tion for the samples of z, which is commonly a Gaussian 
distribution [59]. The use of a single reconstruction error in 
encoder-decoders might result in encoding some meaningless 
content. That results in overfitting and therefore the latent 
space should be regularised. Contrarily to CAE, in the CVAE 
architecture, the loss function includes a reconstruction term 
and a ‘‘regularisation’’ term. The latter term is developed 
by enforcing the probabilistic distribution of the encoded 
space to be close to a Standard Normal distribution. This 
is expressed as the Kullback-Leibler (KL) divergence. The 
KL divergence quantifies the divergence of the latent space 
distribution, denoted as qθ (z|x) in (7) and the standard normal 
distribution p(z): 

li = −Ez∼qθ (z|xi)[logpφ (xi|z)] + KL(qθ (z|xi)||p(z)) (7) 

where pφ(xi|z) describes the generative probability of the 
reconstructed output given the encoded variable z. The dis-
tribution of the encoded variable z given the input xi is 
denoted as qθ (z|xi). In addition, θ and φ are parameters of 
the distribution. 

The architecture of the developed CVAE model is illus-
trated in Fig. 10. Similar to the CAE architecture, the input 
for CVAE is of shape (2 × 100 × 32) corresponding to 
height, width, and depth. The ReLU activation function is 
also used similarly. The structure of the encoder is again 
symmetric to the decoder’s structure. The first convolutional 
layer in the encoder and the second convolutional layer in the 
decoder have 128 filters with size 1 × 3. Their stride is of 
shape (1, 2) corresponding to height and width. The second 
layer in the encoder and the first layer in the decoder have 
64 filters with size 1 × 3. Their stride is of shape (2, 2). 
The encoding part does not forward the direct latent values 
to the decoder. Instead, mean µφ and variance log σ 2x vec-φ 
tors of the latent features are its output. These parameters 
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FIGURE 9. The CAE architecture. 

FIGURE 10. The CVAE architecture. 

are enforced to be close to a standard normal distribution, 
which is measured by the regularisation term. Finally, both 
µφ and log σ 2x are sampled to produce the compressed latent φ 
space representation z with the specified number of features. 
Considering the latent representation z, the decoder aims to 
reconstruct x. The effectiveness of this operation is evaluated 
with the reconstruction loss. 

4) VARIATION-BASED PROJECTION TECHNIQUES 

a: PRINCIPAL COMPONENTS ANALYSIS (PCA) 
1D-PCA is known to be one of the most common linear 
techniques for unsupervised feature extraction [60]. PCA 
finds the directions of main variations of data in the orig-
inal high dimensional space, and projects data along those 
directions into a smaller sub-space. Based on this linear 
projection, the dimensionality of data is reduced. In this 
paper, the Doppler radar data with 6400 variables are used 
for PCA analysis. Based on a weighted linear combination 
of these features, the main directions of variations of data 
are calculated. In this paper, the s number of the first few 
eigen vectors, explaining 95% of data variations, is used to 
transform the original high dimensional data Dn×mWm×s = 
Zn×s. The first principal component (PC1) usually retains the 
highest variance, which allows a smaller number of PCs to be 
selected. 

b: 2D PRINCIPAL COMPONENTS ANALYSIS (2DPCA) 
PCA requires the 2D image matrix to be transformed to a 1D 
image vector. This often leads to a high-dimensional image 
vector. Therefore, the size of the covariance matrix V is 
extremely large. Logically, it becomes difficult to evaluate the 
covariance matrix considering the small number of training 
examples. 2-dimensional PCA proposed in [61] allows the 
covariance matrix to be calculated on the 2D images of size 
80 × 80. Hence, this corresponds to its smaller size, which 
has two main advantages. Less computation time is required 
and the covariance matrix is more accurately evaluated. 

The covariance matrix is given by: X1 
n

V = (Xi − X)T (Xi − X) (8) 
n 
i=1 P

where n is the number of training samples and X = 1 n
i=1 Xin 

is the average training image. It also has the size 80 × 80. 
More specifically, 2DPCA computes the covariance matrix 

only for the row or column dimension only. That is because 
the initiall data is not vectorized to include all features. Con-
sidering the 80×80 2D images in this study, only the columns 
are used for computing the covariance matrix. This process is 
followed by eigen decomposition of the covariance matrix. 
PCs retaining most of the variance are then selected. Similar 
to PCA, the first PC retains most of the variance. 

D. CLUSTERING METHODS 

Two clustering methods are used for grouping the data sam-
ples. Both of the methods are distance-based: K-Means and 
K-Medoids. 

1) K-MEANS 

K-Means clustering is one of the most commonly used tech-
niques for unsupervised learning [62]. The K-Means method 
considers the number of groups or clusters K is known and it 
aims to group the data points based on their distances. In this 
work, the Euclidean distance is used. The overall goal for the 
clustering method is to group the data points D1, D2, . . . , Dn 
in clusters by minimizing the intra-cluster distances. Intu-
itively, the distances between data points from different clus-
ters should be maximized. During training, K-Means outputs 
the cluster centres ωk , where k = 1, 2, . . . , K , or also 
known as centroids. The assignment of a new data point 
to one of the clusters is such that, the sum of the squared 
distances between the data point and all cluster centroids 
ω1, ω2, . . . , ωk are computed. Then, the sample is assigned 
to the cluster, where the corresponding distance is minimum. 
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The objective function for K-Means, which specifies the 
sum of squared distances of each data point Di to cluster k , 
is defined as follows: 

n KX X 
J = rik ||Di − ωk ||

2 (9) 
i=1 k=1 

where rik is a binary function indicating the assignment of 
data point Di to cluster k . If Di is assigned to cluster k , 
the binary indicator rik = 1, and 0 otherwise: (

1, if k = arg minj ||Di − ωj||2 
rik = (10)

0, otherwise 

The overall aim is to minimize the J for values rik and ωk . 
The procedure can be achieved by iterative optimization 
with respect to rik and ωk . In the first phase, the ωk is 
fixed, while the goal is to optimize rik . The same notion is 
applied to the second step as rik is fixed and the focus is 
on the optimization of ωk . The entire process correspond-
ing to Expectation-Maximization algorithm is repeated until 
convergence. 

2) K-MEDOIDS 

K-Medoids is a clustering method based on distances anal-
ysis, which has shown better performance for noisy and 
problematic data than K-Means [63]. Similar to K-Means, 
this method considers the number of groupings or clusters K 
is known initially and K < n, where n is the number of data 
points. In contrast, K-Medoids considers a data sample for the 
centroid or the medoid, which is not the case for K-Means. In 
the first step of K-Medoids, the algorithm aims to find a data 
point Di in a cluster C(i) = k that is in minimum distance to 
the remaining observations in the cluster D0 i. This distance is 
denoted as ||Di −Di0 ||2 and the minimisation is shown in (11): 

nX 
i∗ = arg min ||Di − Di0 ||

2 (11)k 
i:C(i)=k Ci0=k 

Then, the output index i∗ 
k is used to find a new centroid or 

medoid, defined as ωk = Di∗ , k = 1, 2, . . . , K for all 
k 

clusters. 
The second step of the method is to minimise the total error 

by re-assigning each data sample to the closest centroid. The 
clusters centroids are given ω1, ω2, . . . , ωK . 

C(i) = arg min ||Di − ωk ||
2 (12) 

1≤k≤K 

Finally, step 1 and step 2 are iterated until the algorithm 
converges to the optimum centroids. 

E. VISUALISATION TECHNIQUES FOR 
HIGH-DIMENSIONAL DATA 

In this paragraph, three widely-known techniques for man-
ifold learning are defined. The focus is on transforming 
the very high-dimensional space in this dataset (Dn×m = 
Dn×6400) to a 2-dimensional space. Manifold learning meth-
ods are known to map closely correlated data samples in 

similar positions, while the gap in the low dimensional space 
increases if the samples are non-similar. Hence, comparison 
measures will be extracted from this analysis, which can be 
useful for projects concerned about high-dimensional data 
visualisation. 

1) T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING 
(T-SNE) 

T-SNE is a non-linear dimensionality reduction method, 
which has gained attention for its superior ability to visu-
alise high-dimensional data by transforming it to a two or 
three-dimensional space [64]. This method assigns each data 
point in a low-dimensional location by aiming to preserve 
the significance of the original information. Unlike linear 
techniques such as PCA and SVD, t-SNE aims to keep similar 
data points in close locations in the low-dimensional space. 
The superiority of t-SNE in comparison with other dimen-
sionality reduction methods is the ability to preserve the local 
structure of the data as well as global information such as 
clusters. T-SNE has been recently compared with PCA for 
visualisation where the former achieved better visualisation 
[65]. The steps for the t-SNE transformation are described 
below: 

1) The Doppler sequences D1, D2, . . . , Dn are initially in 
their original 6400-dimensional space. T-SNE begins 
with determining the similarity between the data sam-
ples. This is performed by computing their distances. 
Euclidean distances are used in this study. 

2) The Euclidean distances are converted to probabilities 
describing normal distributions so that, similar data 
samples have close values. On the other hand, dissim-
ilar points have distinct similarity values. The simi-
larity scores are calculated for each data points pair 
Dij, where a similarity matrix is obtained based on 
probabilities pij. 

3) The data samples are projected in a random order to the 
low dimensional space first. This results in a mismatch 
with cluster patterns of data in the original domain 
initially. The aim for t-SNE is to re-position the data 
samples in the new low dimensional space, such that the 
same clustering patterns of the high-dimensional space 
to be preserved. 

4) Then, the Euclidean distances between the data 
samples are calculated in the lower dimensional 
space. Similarly, the distances are converted to a 
t-Distribution (e.g. qij for the two data points Di and 
Dj). t-Distribution is similar to normal distribution, but 
with taller tails. The taller tails of t-Distribution prevent 
dissimilar data points to be positioned in close locations 
of the lower dimensional space. The samples in lower 
dimension are re-positioned using these probabilities 
resembling distances. The re-positioning is performed 
based on the two probabilities q of low dimension and 
p of high dimension. 

5) t-SNE uses KL divergence to optimise the similarity 
of the distributions described by q to those described 
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by p. This can be interpreted as a constant comparison 
of the samples distances in the lower-dimension to 
their distances in the original high-dimension. Then, 
re-positioning will be improved iteratively, as the sim-
ilarity matrix of probabilities q is optimized using the 
original similarity matrix p. 

2) MULTIDIMENSIONAL SCALING (MDS) 

MDS is a non-linear dimensionality reduction technique. 
It can be used for visualization of high dimensional data 
in low dimensional space. It preserves the actual distances 
of original samples in the low dimensional space. MDS 
considers dissimilarities of sample pairs contrary to other 
methods, which are concerned with similarities. Given the set 
of observation D1, D2, . . . , Dn ∈ Rm , dij is the dissimilarities 
e.g. the Euclidean distance of two samples Di and Dj so that, 
dij = ||Di − Dj||2. MDS seeks z1, z2, . . . , zn ∈ Rk , so that 
k < m. A so called stress function is minimized for this aim 
[66]–[68]: 

nX 
Stress(z1,...,zn) = (dij − ||zi − zj||)2 (13) 

i6=j 

where ||zi − zj|| is the Euclidean distance between zi and zj. 
Then the pairwise distances are preserved in the lower 
dimensional representation. A gradient descent algorithm is 
used to minimize the stress function and find the compo-
nents in the low dimension [68]. MDS transformation is 
monotone increasing with the increasing dissimilarities. The 
same notion is applied to growing similarities data, which 
decreases the transformation. Hence, similar object pairs are 
positioned closely in the transformed space, while objects 
with dissimilarity are distinguished with larger distances. 

3) LOCALLY LINEAR EMBEDDING (LLE) 

LLE is a non-linear dimensionality reduction method pro-
posed in [69]. The method is concerned with preserving the 
global structure of the data based on an underlying manifold. 
The data are represented by n real-valued vectors XEi in a high 
dimension m. i is the index of a sample. Each data point XEi, is a 
member of a neighbourhood. Each neighbourhood consists 
of similar data points. Similar data points are expected to 
lie on a close locally linear patch of the smooth manifold. 
The p nearest neighbours for each data point are defined by 
measuring the Euclidean distances. The local geometry of 
the patches can be characterised by linear coefficients. These 
linear coefficients are used to reconstruct each data point from 
its neighbours. The reconstruction loss is defined by: 

n pX X 
�(W ) = ||XEi − WijXEj||2 (14) 

i=1 j=1 

where Wij are the weights defined for data points recon-
struction using the corresponding neighbours. The number of 
samples is given as n, while the number of neighbours is p. 
The computed weights Wij correspond to the contribution of 
a data point XEj for reconstructing XEi. In order to ensure that XEi 

is reconstructed only by its neighbours, the weight function 
Wij = 0, if a sample XEj does not belong to the same class. 
Another constraint to the reconstruction loss is that the sum 

pP 
of the weight matrix’s rows should be one, Wij = 1. 

j=1 
This sum-to-one constraint makes the weights invariant to 
translation of the data points and their neighbors. The weights 
are also invariant to rotation and scaling. The minimisation 
of the loss function, allows computation of the weights W . 
They characterize the intrinsic geometric properties of each 
neighborhood. 

Using the weights, Wij, it is possible to project each 
high-dimensional data point XEi to vector YEi of the lower 
representation based on another reconstruction cost function. 
Having the Wij fix, the aim is to minimise the embedded 
cost function to optimise the low d-dimensional coordinates 
(d < m): 

n nX X 
8(Y ) = ||YEi − WijYEj||2 (15) 

i=1 j=1 

III. EVALUATION AND RESULTS 
In this section, the results obtained using the four 
groups of unsupervised feature extraction techniques are 
presented. These include the two proposed methods, 
namely, local DCT-based method and local entropy-based 
method. In addition, the existing convolutional filter-based, 
and variational-based projection methods are used for 
comparison. 

For local DCT-based method, local entropy-based method, 
and 2DPCA, the inputs are n reshaped images of size 80×80. 
In the case of CAE and CVAE, the inputs are n number of 3D 
cubes of size 2 × 100 × 32. While for PCA, the input data 
is Dn × 6400. In the case of PCA and 2DPCA, the selected 
number of eigen vectors preserves 95% of the data variance. 

Leave-one-subject-out cross validation (LOOCV) is used 
to avoid over-fitting. As listed in Section II, four participants 
are included in the data. The four participants correspond to 
the four folds. The models are trained on three subjects data. 
Then, they are validated on unseen data from the remaining 
subject, which is not used for building the models. This is 
repeated for all four subjects. Hence, Ztr = 150 × m is the 
training matrix and Zts = 50 × m is the matrix for testing, 
where the number of features m varies for different models. 

In addition to the activities clustering results, the three 
manifold learning methods t-SNE, MDS and LLE are com-
pared in two scenarios. In the first scenario, they are used 
to transform the raw data features to a 2-dimensional space. 
Since CVAE encoded features obtained the most accurate 
clustering results, in the second visualization scenario, they 
are used for projection into a 2-dimensional space. 

True labels are only used for model evaluation and illustra-
tion purposes. The order of the predicted labels by clustering 
is not necessarily consistent with the actual labels order. 
Therefore, the clustering accuracy is estimated by finding the 
best-matching pairs of clusters labels and true labels. Based 
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FIGURE 11. (a) Illustration of the 40 × 40 local patches in the Doppler 
spectogram. The optimum patch for feature extraction is ticked in green 
color and (b) The corresponding Dunn’s index for the four 40 × 40 local 
patches. 

TABLE 1. Average and standard deviations of testing accuracies based on 
K-Means and K-Medoids using DCT features from the raw data 80 × 80 
single patch and those from the selected 40 × 40 local patch features 
over 4 rounds of LOOCV. 

on this, the predicted labels by clustering are matched to their 
corresponding actual true labels. As such, a regular accuracy 
score function is used for calculating the accuracy. 

A. LOCAL DCT-BASED ANALYSIS RESULTS 

The proposed local DCT-based method extracts 
non-overlapping square-sized patches from the original 
80 × 80 2D map for analysis. Dunn’s index is used for 
validating the method, which showed the highest values for 
the 40 × 40 local patches. In Fig. 11a, the four possible 
non-overlapping patch locations for this size are illustrated. 
Then, each 40 × 40 patch is divided into 3 × 3 sub-patches as 
was shown in Fig. 6 previously. Next, six DCT coefficients of 
the top-left zig-zag pattern are selected from each sub-patch 
yielding a total of 9 × 6 = 54 DCT coefficients for each 
40 × 40 patch. The features are then used for clustering. 
The resulting Dunn’s indices are visualized and compared 
in Fig. 11b. As observed, the 40 × 40 patch in the top-left 
corner of the 2D image is found as the best location in terms 
of Dunn’s index for DCT analysis. That shows the lower order 
frequencies coefficients are related to detection of activities. 

In addition, DCT is applied on the original 80 × 80 image 
so that, 54 DCT coefficients were selected similarly and used 
for clustering. The results are compared with the proposed 
local patching strategy. Table 1 presents the average testing 
accuracies of the DCT analysis over the 4-subjects LOOCV 
for the original image and the selected local patch. 

B. ENTROPY ANALYSIS RESULTS 

For the entropy analysis, the three patching strategies 
depicted in Fig. 7 are considered. The first two strategies 
resulted into 2-dimensional features, while the last patch-
ing strategy resulted into 10-dimensional feature vectors. 

FIGURE 12. Illustration of the Dunn’s index for the three patching 
strategies used for feature extraction based on entropy analysis. 

FIGURE 13. (a) CAE and (b) CVAE robustness evaluation using Dunn’s 
index. 

The results of the Dunn’s indexes were computed using the 
K-Means clustering and presented in Fig. 12. As can be 
seen, the last patching strategy obtained the highest Dunn’s 
index and therefore, it was selected for analysis. This result 
was expected, because the last strategy considers a higher 
number (10) of smaller patches. This represents local patterns 
variations better compared to the other two strategies. The 
other two strategies consider a fewer number (2) of larger 
local areas, which leads to poorer entropy computation. 

C. CAE AND CVAE ROBUSTNESS EVALUATION 

The two deep NN architectures CAE and CVAE are evalu-
ated addressing two criteria: 1) the number of hidden layers; 
and 2) the number of extracted features as latent dimension. 
In regards to the number of hidden layers, two, three, and 
four hidden layers are considered. The latent dimension is 
incorporated with the number of data samples in this study. 
The considered latent features are 50, 100, 150, and 200. 
Since the study is unsupervised, the true labels are seen as 
unknown. Hence, Dunn’s index is selected for measuring the 
wellness of clusters separation. Fig. 13 reveals the Dunn’s 
index for each experiment for CAE and CVAE. 

Based on the results presented in Fig. 13a, three hid-
den layers with 50 extracted features are selected for CAE. 
In regards to the CVAE architecture, two hidden layers 
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FIGURE 14. Confusion matrices for comparison between local 
DCT-Based+K-Means and local DCT-Based+K-Medoids for different 
subjects. 

with 50 extracted features are selected based on the results 
presented in Fig. 13b. 

D. COMPARISON OF THE AVERAGE TRAINING AND 
TESTING ACCURACIES FOR K-MEANS AND K-MEDOIDS 
USING ALL FEATURE EXTRACTION TECHNIQUES 

The average training and testing accuracies with stan-
dard deviations over 4-subjects LOOCV for K-Means 
and K-Medoids using all feature extraction methods are 
illustrated in Table 2 and Table 3. 

As it can be observed, the two superior architectures are the 
local DCT-based frequency features extracted from the local 
patches and CVAE encoded features. After that, the local 
entropy analysis achieved the best results. K-Medoids has 
better performance than K-Means using the local DCT-based 
coefficient features. On the other hand, CVAE encoded fea-
tures are better incorporated with K-Means. The results of 
the K-Means and K-Medoids are very similar in the case 
of local entropy-based features. In addition, CAE, PCA and 
2DPCA have worse performance, while 2DPCA shows a 
minor improvement to PCA for K-Medoids. 

In order to evaluate the two superior architectures’ per-
formance for different activity groups, confusion matrices 
for K-Means and K-Medoids are visualised. The following 
matrices in Fig. 14 consider the proposed local DCT-based 
method over 4-subjects LOOCV for K-Means (Fig. 14a) and 
K-Medoids (Fig. 14b). 

The confusion matrices for the CVAE encoded features 
with K-Means clustering and K-Medoids clustering are visu-
alised in Fig. 15a and Fig. 15b respectively. 

Both feature extraction strategies results show confusion 
of some activities. Further analysis of the results will be 
presented in the discussion section. 

E. VISUALISATION RESULTS 

Visualization of the raw data and CVAE encoded features 
are performed using t-SNE, MDS and LLE methods. Here, 
the actual data labels are used to map the samples. Ini-
tially, the original data Dn×m, where m = 6400, is trans-
formed and visualised in a 2-dimensional space as shown 
in Fig. 16. As illustrated, t-SNE performs reasonable 

FIGURE 15. Confusion matrices for CVAE encoded features using 
K-Means (a) and K-Medoids (b) for different subjects. 

separability between the classes, while there are some 
overlapping clusters in the case of MDS and LLE. 

In order to perform comparison, the second scenario of 
data visualisation is concerned by transforming the encoded 
data Dn×50 using t-SNE, MDS and LLE to a 2-dimensional 
space as seen in Fig. 17. Considering the illustration, all 
three methods showcase improvements in terms of cluster 
separability. However, there is still overlapping between the 
clusters. Since dimension reduction from 50 encoded features 
into only two features is a significant reduction in the number 
of features, no accurate clustering is expected using these two 
dimensional features. This is tested by applying K-Means and 
K-Medoids on the two t-SNE features. The average testing 
accuracies are 42% and 45% for K-Means and K-Medoids 
respectively. Hence, these manifold learning methods are 
good for visualisation, but are not necessarily accurate for 
clustering. 

IV. DISCUSSION 
The local patching strategy incorporated with DCT improved 
the average training and testing accuracies by 10%-15% for 
the two scenarios as seen in Table 1. It has been solely 
validated using an unsupervised metric for the scope of 
this study. As such, the method can be applied for other 
supervised or unsupervised studies with Doppler radar data. 
The local patching strategies can even be improved when 
used in a supervised framework, because the average vali-
dation accuracies allow optimum estimation of the method’s 
parameters. 

The confusion matrices for the architecture local 
DCT-Based+K-Means and local DCT-Based+K-Medoids 
in Fig. 14 reveal that the activities walking (1) and jumping 
(3) are problematic as they are frequently confused. Similarly, 
the CVAE-based architecture in Fig. 15 shows confusion 
between walking (1) and jumping (3). As it can be observed 
from the confusion matrices, the walking (1), jumping (3) 
and standing (5) classes are seen as problematic. More data 
can be collected in order to improve the results with a higher 
number of subjects. Considering the clustering methods, 
local DCT features are better incorporated with K-Medoids. 
On the other hand, the CVAE encoded features are more 
correctly clustered with K-Means. In addition, the results of 
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TABLE 2. Average training accuracies with standard deviations of K-Means and K-Medoids using the five feature extraction methods over 4-subjects 
LOOCV. 

TABLE 3. Average testing accuracies with standard deviations of K-Means and K-Medoids using the five feature extraction methods over 4-subjects 
LOOCV. 

TABLE 4. Total computational time over 600 samples of the four folds for 
the two proposed feature extraction methods as well as CVAE. 

both clustering strategies were similar in the case of local 
entropy-based features. That is due to the lower resolution of 
the entropy features compared to DCT and CVAE techniques. 
In terms of efficiency, K-Means is shown to execute faster 
than K-Medoids [70]. 

Considering the employed feature extraction architectures, 
it can be concluded that the encoded data with CVAE is 
superior in comparison with the proposed local DCT-based 
and local entropy-based feature extraction methods in terms 
of accuracy. On the other hand, the local DCT-based and local 
entropy-based analyses are less complex and more easily 
implemented. The computational time for local DCT-based 
method and local entropy-based method is noticeably smaller 
in comparison with CVAE as seen in Table 4. 

The reason is that, the local DCT-based and local 
entropy-based features are simply derived from the local 
patches. On the other hand, CVAE encoded features are 
mainly the results of convolution of the cubic Doppler images 
of size 2 × 100 × 32 with several filter types. Furthermore, 
the convolutional filters weights of both encoding and decod-
ing structure are learnt based on an optimisation process 
using the objective function, which is computationally more 
complex rather than the other proposed strategies. Then, 
learning the local DCT-based and local entropy-based fea-
tures from new coming datasets will be faster than the CVAE 
features. Given the advantages and disadvantages of each 
strategy, the overall recognition performances of them are 
reasonable and can be applied to other unsupervised project 
scenarios. PCA and CAE are not seen as successful due to 
their limitations. In regards to CAE, the method does not 

include a regularization term, which is prone to producing 
inappropriate representations of the data samples in terms of 
classification. PCA preserves the global structure of the data, 
but fails to retain local dependencies in the lower dimensional 
space. 

Considering the described individual feature extraction 
methods, one possible idea is to fuse the features from differ-
ent strategies. However, there are reasons not to consider that 
for the current dataset. Given the limited number of samples 
in this study compared to the high number of features from 
most techniques, this will increase the dimensionality of the 
feature space. Therefore, it does not improve the accuracy. 
That is tested for the fusion of the local DCT-based features 
and local entropy-based features and no improvement was 
observed. In addition, since the clustering strategies are based 
on computation of the features distance and data fusion might 
require normalization of the heterogeneous feature types, that 
can also influence the clustering results. 

The average training accuracies and average testing accu-
racies report a slightly bigger standard deviation in some 
cases. This is explained by the fact that 4-subject LOOCV 
is applied. As such, in some of the folds, the retained sub-
ject data for testing appears very different from the subjects 
data for training. However, the achieved accuracies are still 
reasonable for an unsupervised framework. That is a positive 
sign for the potential use of such strategies for e-Healthcare 
purposes. 

The three manifold learning methods considered in this 
study can be extremely useful for data visualisation prob-
lems. As seen in Fig. 16, the t-SNE visualisation is better 
in comparison with MDS and LLE. Since the unsupervised 
CVAE-based architecture is known to provide a reasonable 
separation between the clusters, it is compared against the raw 
data. The results show better separation for all three visuali-
sation techniques shown in Fig. 17. It can be concluded that 
the proposed deep CVAE improves the separability between 
the classes, which can boost the visualisation results for dif-
ferent manifold learning methods. For high-dimensional data 
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FIGURE 16. Visualisation of the transformed raw data Dn×6400 using t-SNE, MDS, and LLE. 

FIGURE 17. Visualisation of the transformed encoded data Dn×50 using t-SNE, MDS, and LLE. 

visualisation purposes, the CVAE encoded features can be 
used prior manifold learning. Despite the successful separa-
tion of classes, it can be observed that walking (1) and jump-
ing (3) have overlapping samples. This is also observed in the 
confusion matrices in Section III, where these two activities 
are commonly mis-classified. Additionally, the samples from 
Activity 2 (running) are the most accurately separated from 
the remaining samples from the other activities. This find-
ing is also evident when the manifold learning methods are 
applied on the raw data. 

The achieved results are comparable with the previous 
supervised research framework on the same dataset in [20]. 
In that work, SVD, PCA and physical features are used for 
feature extraction. The average testing results of all three 
feature extraction methods combined with SVM for classifi-
cation was reported to be more than 80% for different sizes of 
the training set. Similar result is observed with the proposed 
unsupervised local DCT-based method, and CVAE, where 
the average testing accuracies are more than 80% for the 
4-subject LOOCV. 

V. CONCLUSION 
This work studies the employment of Doppler radar for 
daily activity recognition using an unsupervised framework. 
The results of this study push the applications of Doppler 
radar data in healthcare one step forward to practice by 
enabling the recognition capability without label or with 

poor labelling. In particular, the analysis architecture includes 
unsupervised feature extraction followed by clustering strate-
gies. Four different categories of unsupervised feature extrac-
tion, namely, digital image frequency analysis based on 
DCT, entropy analysis, convolutional filtering based on deep 
autoencoders architectures CAE and CVAE, and the state of 
the art PCA and 2DPCA techniques, were employed. More 
specifically, two unsupervised methods for extraction of local 
DCT-based and local entropy-based features were proposed. 
The proposed two local patches-based methods for feature 
extraction exhibited an improvement of 5%-10% average 
testing accuracies compared to conventional CAE, PCA, and 
2DPCA. On the other hand, the CVAE encoded features were 
superior with average testing accuracies of 84% and 82% 
for K-Means and K-Medoids respectively. Considering the 
expensive computational time for CVAE, the two proposed 
local DCT-based and local entropy-based methods provide a 
reasonable trade-off between time and accuracy. Regarding 
the unsupervised scenario, that is a positive sign for the 
potential use of these proposed techniques. 

Three manifold learning methods for high-dimensional 
data visualisation are considered in this study - t-SNE, MDS 
and LLE. Visualization of the features using these three 
methods are compared. The results revealed that the clusters 
have a better separation with all three methods when the 
visualisation was performed on the CVAE encoded data. 
Finally, this project can serve as a reasonable application 
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with two proposed unsupervised feature extraction methods 
and a visualisation framework for project scenarios with poor 
labeling for both activity clustering and data visualisation. 
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