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Abstract 

Ageing is associated with a decline in skeletal muscle strength and power resulting in impaired in vivo 

locomotory and respiratory muscle function. It has been suggested that obesity in can exacerbate the 

reduction in skeletal muscle contractile function, though findings in older humans are equivocal. 

Ageing and obesity are associated with a significant decline in muscle quality in isolated skeletal 

muscles, though the capacity for producing and sustaining power, both concentrically and 

eccentrically, in isolated male and female locomotory and respiratory skeletal muscles is poorly 

understood. This is primarily due to the usage of contractility modes, such as isometric and isovelocity 

contractions, in isolated skeletal muscles poorly replicating in vivo contractile function. The work loop 

technique better replicates the in vivo contractile function of skeletal muscles by accounting for the 

power production during muscle shortening, and the passive forces during lengthening, thus providing 

a better model for examining isolated skeletal muscle contractile function. Using the work loop 

technique, this thesis examines the muscle-specific, sex-based differences in skeletal muscle ageing at 

multiple ages using males and females mouse skeletal muscles, and examines the effect of dietary-

induced obesity in old age has on muscle function. The present work also outlines the differences in 

isometric force, concentric power across a range of contractile speeds and changes in eccentric power 

with increasing age. Between each study, absolute performance and performance normalised to 

muscle mass is calculated to provide an indication of changes in muscle quality. Finally, the ability of 

isolated muscles to withstand fatigue with age and obesity is determined. The results indicate that 

absolute concentric and eccentric power output and isometric force are well maintained with 

increasing age, with absolute power usually greater in males than females. When power output is 

normalised to muscle mass, there are few sex-based differences in the age-related decline in power 

output, though normalised performance in the oldest animals is worse for males than females. 

Furthermore, acute eccentric power output is well maintained with age, and older locomotor muscles 

are more fatigue resistant when fatigued eccentrically compared to young counterparts. Obesity in 

old age, however, does not further worsen locomotory performance normalised to muscle mass, nor 
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fatigue resistance, but is deleterious to diaphragmatic power. Increasing age results in greater body 

mass, with larger muscles of poorer quality. When considered in vivo, larger muscles of poorer quality 

contribute to an already elevated body mass and consequently may impair acute and sustained 

locomotor and respiratory function in vivo, where muscles of poorer quality are required to work 

against a greater bodily inertia. Although there is some evidence that obesity may accelerate the age-

related decline in function, this was not uniform across all of the muscles assessed. As such, the 

functional impairments seen in the sarcopenic-obese populations is largely the result of weakened 

muscles moving and controlling a greater muscle mass. 
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Glossary of Terminology 

Absolute isometric force 
The absolute force produced by a muscle at a constant length. 

 
Absolute power output 
The maximal power produced by a muscle, but is not corrected for muscle mass, muscle cross-

sectional area or body mass. 

 
Cross-bridge kinetics 
The interaction between actin and myosin during binding and detachment, and the resultant force 

production, is termed cross-bridge kinetics. Interchangeably known as cross-bridge cycling in the 

literature. 

 
Eccentric muscular activity 
Muscle activation during lengthening, via which work is absorbed by the muscle. 

 
Fatigue resistance 
The ability for skeletal muscles to maintain force or power during repeated bouts of concentric or 

eccentric muscle activity over an extended period of time. Also known as muscular endurance. 

 
Isometric stress 
Force produced per unit of muscle cross-sectional area. Provides an alternative measure of muscle 

quality. 

 
Last stimulation to half relaxation (LSHR) 
The time taken for an isolated muscle to reach half the peak isometric force following the last electrical 

stimulus. Also known as relaxation time. 

 
Maximal strength 
The maximal force produced against an external load in one single attempt. 

 
Maximal torque 
The maximal force produced around the rotational axis of a joint over a fixed distance and speed/rate. 
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Muscle quality 
The amount of force or power produced relative to the size of the skeletal muscle, muscle quality 

defines the overall effect of changes in normalised contractile performance, namely isometric stress 

and normalised power output. 

 
Normalised power output 
The power output of the muscle, in milliwatts, is corrected to the muscle mass of a skeletal muscle to 

provide an alternative measure of performance relative to skeletal muscle size, or muscle quality. 

 
Net work 
The active work produced minus the passive work absorbed. 

 
Obesity 
Excessive fat accumulation that poses a risk to health. In humans, obesity is indicated by a body mass 

index (BMI=mass [kg]/height2 [m2]) ≥30. In animals, obesity is indicated by a Lee Index of Obesity 

(LIO=∛(mass [g])/(NAL [cm]) x 1000) ≥300 in 28-day old mice. 

 
Tetanus 
A sustained isometric muscular contraction in response to a high-frequency stimulation of an isolated 

skeletal muscle. A tetanus is characterised by the interaction between the maximal isometric force, 

and the time or rate of muscle activation and relaxation. 

 
Time to half-peak tetanus (THPT) 
The time taken for an isolated muscle to reach half the peak isometric force following the first 

electrical stimulus. Also known as activation time. 

 
Work loop 
The work loop technique measures the amount of work a muscle produces during concentric or 

eccentric sinusoidal wavelength changes, where the muscle is stimulated to produced force during 

shortening or lengthening. From work, power output can be calculated in absolute terms and 

normalised to muscle mass. 
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Chapter 1 - Introduction and Review of the Literature 

1.1 - General Introduction and Thesis Outline 

The life expectancy of the global population is rapidly increasing, with the World Health Organisation 

projecting a 200% rise in adults aged over 60 years living in our world between the years of 1970 and 

2025 (Palus et al., 2017). However, the number of co-morbidities associated with ageing is also 

expected to increase (Ethgen et al., 2017), leading to a reduced quality of life and an excessive financial 

strain on healthcare providers (Caley and Sidhu, 2011). One important factor catalysing the age-

associated increase in health risk is the age-related decline in muscle performance (Rosenberg, 1989). 

Poor muscle performance in older adults leads to a reduced capacity to perform tasks of daily living, 

increased fall risk and a sedentary lifestyle, thus causing susceptibility to health implications that arise 

from an inactive lifestyle (Faghri et al., 2015). Skeletal muscle ageing is traditionally characterised as 

the progressive decline in skeletal muscle mass and contractile function with increasing age, leading 

to a loss of strength and power, which are critical for activities of daily living (Rosenberg, 1989). An 

age-related reduction in muscular strength has been shown to be a precursor for several co-

morbidities including diabetes, coronary heart disease and overall mortality (Chen et al., 2013; dos 

Santos et al., 2017). Increasing evidence shows that an age-related decline in strength and power, 

rather than the loss of muscle mass, are the key determinants of increased mortality and poor quality 

of life in older adults (dos Santos et al., 2017). In the literature, an age-related decline in contractile 

function without prevalent atrophy is described as dynapenia (Clark and Manini, 2008), whilst the 

combination of a low muscle mass and poor contractile function is described as sarcopenia 

(Rosenberg, 1989). A reduction in muscle mass typically begins after 50 years of age through to the 

end of life, though reductions can occur as early as 25 years of age (Lexell, 1995). The prevalence of 

sarcopenia, in Europe alone, is expected to increase by 72% by as soon as 2045 (Ethgen et al., 2017). 

It is of importance to better understand the age-related decline in skeletal muscle contractile function 

to better improve morbidity and health-related outcomes. 
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An increase in age is also associated with an elevated body mass, which largely arises from increased 

storage of adipose tissue (Miard and Picard, 2008; Barzilai et al., 2012). The incidence of obesity in 

older adults is increasing (Bowman et al., 2017; Hamer and O’Donovan, 2017), with the prevalence of 

obesity doubling since 1980 in over 70 countries, with over 2 billion worldwide classified as obese 

(GBD 2015 Obesity Collaborators et al., 2017). Of this population, the greatest incidence of obesity is 

found in women aged 60-64 years and men aged 50-54 years old (GBD 2015 Obesity Collaborators et 

al., 2017). The synergistic effects of ageing and obesity can further exacerbate the prevalence of pre-

existing comorbidities such as type 2 diabetes, cardiovascular diseases, metabolic syndrome, cancer, 

and has been proposed to exacerbate the age-related decline in muscle function (Chuang et al., 2016; 

Bowman et al., 2017; Tallis et al., 2018). In the case of the latter, a low muscle mass and high fat mass 

may result in further limitations in locomotory and respiratory function, when compared to adults 

exhibiting only low muscle mass or high fat mass, due to a combination of an elevated bodily inertia 

and weaker skeletal muscles limiting normal physical functioning (Rolland et al., 2009). The link 

between ageing and obesity in relation to skeletal muscle contractile function, however, is presently 

unclear. 

 

Given the importance of ageing and obesity in relation to musculoskeletal health, in vivo studies 

examining the age-related and obesity-induced changes in maximal force, power and fatigue 

resistance have been undertaken in humans (Doherty, 2003; Fragala et al., 2015). Assessments of 

isolated skeletal muscle have also been used to assess direct changes in muscle function with 

increasing age and following an obesogenic diet (Ballak et al., 2014; Tallis et al., 2018). In vitro studies 

offer an important advantage over in vivo assessments of muscle function, such as removal of any 

central nervous system effects, examination of specific skeletal muscles and a direct measure of 

muscle quality (muscle performance relative to tissue size). Although such studies have provided a 

valuable insight into specific muscle changes with increasing age the current body of literature is 

limited as little work has examined the sex-specific differences of isolated muscle performance across 
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multiple time points of an animal’s life. Moreover, the majority of work has compared the isometric 

and concentric contractile properties of ageing skeletal muscle, with work examining eccentric muscle 

activity and obesity in old age lacking and ambiguous. There is a distinct lack of work that has 

measured the change in power output of isolated muscles with age, an important contractile property 

governing locomotory and respiratory function in vivo (Dickinson et al., 2000), with much of the 

literature measuring age-related and obesity-related changes in isometric force production of isolated 

skeletal muscles (Pagala et al., 1998; Moran et al., 2005; Ballak et al., 2014; Tallis et al., 2018). 

Measures of isometric force have poor functional relevance to in vivo contractile dynamics otherwise 

examined via the work loop (WL) technique (James et al., 1996). The present body of work uses the 

WL technique to better replicate the in vivo function of power producing skeletal muscles in ageing, 

obesity, and during eccentric muscle activity.  

 

To address these important gaps in knowledge, the following three experimental studies have been 

conducted: 

 

The Sex-Based Differences in the Age-Related Changes in Isolated Locomotory (Soleus & EDL) and 

Respiratory (Diaphragm) Skeletal Muscle Contractile Function of CD-1 Mice. 

Only one study to date has examined the age-related changes in skeletal muscle power output using 

the WL technique (Tallis et al., 2014). The first study aims to further the findings of Tallis et al. (2014) 

by determining the changes in muscle function and morphology of animals aged 3, 10, 30, 52 and 78 

weeks of age to better identify the age-related onset of muscle atrophy of specific skeletal muscle. 

Each age was specifically chosen to represent a corresponding period in the human life span and is 

described in detail in section 3.1. The age-related changes in isometric properties, WL power and 

fatigue resistance are compared for a relatively slow (soleus) and fast (EDL) locomotory muscle 

phenotype, under voluntary control, in comparison with the diaphragm, a core muscle primarily under 

involuntary activation to maintain respiration. Moreover, this study also determines whether the age-
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related decline in muscle function is significantly different between sexes. Evidence from in vivo 

studies suggests that the loss of absolute force and power, and force and power normalised to body 

mass, occurs faster in males than females in humans, though little is known as to what extent sex 

influences muscle mechanics at an isolated muscle level. Assessing the age, sex, and muscle-specific 

changes in morphology and function could further improve our understanding of the ageing process 

which can aid in the development of treatments and physical activity regimens which can offset the 

ageing process and enhance our quality of life. 

 

The Effect of Increasing Age on The Concentric and Eccentric Contractile Properties of Isolated 

Mouse Soleus and Extensor Digitorum Longus Muscles 

The aim of this study was to assess the age-related and muscle-specific responses to acute and 

sustained eccentric muscle activity and determine how this compares to concentric muscle activity. 

This was achieved by reciprocating the muscle length change and stimulation parameters which 

typically elicit maximal concentric power output, but during eccentric activity also, where the 

intention was to not deliberately cause contraction-induced injury upon the skeletal muscle as per 

previous studies. The WL model was used to examine whether soleus or EDL muscles are fatigued or 

damaged during repeated concentric and eccentric muscle activity, and whether these effects alter 

between young (10 weeks) and old (78 weeks) animals during the recovery of concentric power, and 

whether acute eccentric power changed with age for either skeletal muscle. 

 

The Effects of Dietary-Induced Obesity on the Contractile Properties of Isolated Soleus, EDL & 

Diaphragm Skeletal Muscles from Aged CD-1 Mice  

In comparison to the literature investigating age-related changes in isolated skeletal muscle function, 

there is a dearth of literature investigating the effects of obesity on isolated skeletal muscle function, 

with no work to date utilising older (~78 weeks old) skeletal muscles. Therefore, the aim of this study 

was to determine whether dietary-induced obesity in older animals significantly affected isolated 
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skeletal muscle function when compared to age-matched control animals fed a comparatively low-fat 

diet and whether any changes in muscle morphology and function were muscle-specific. By examining 

dietary-induced obesity in old age, an understanding on whether the quality of the skeletal muscle 

(i.e. force and power relative to muscle mass) was poorer in old obese skeletal muscles, and whether 

this will have a likely effect on in vivo locomotory and respiratory function. 

 

A schematic of the thesis outline is shown in Figure 1.1. 
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Figure 1.1 - A schematic outlining the chapters and contents of the thesis. 

Introduction

•General introduction

•Skeletal muscle ageing

•Eccentric muscle activity and ageing

•Sarcopenic obesity and skeletal muscle function

•Mehcnaisms of skeletal muscle ageing

•Testing the mechanical properties of isolated skeletal muscles

Aims
&

Hypothesis

•Specific aims and hypotheses for each study

Methods

•Overview of animal care and dissection protocol

•Experimental set-up

•Isometric muscle properties

•The work loop technique

•Fatigue and recovery protocol

Study 1
(Ageing)

•The sex-based differences in the age-related changes in isolated 
locomotory (soleus & EDL) and respiratory (diaphragm) skeletal muscle 
contractile function across the lifespan of CD-1 mice

Study 2
(Eccentric)

•The effect of increasing age on the concentric and eccentric contractile 
properties of isolated mouse soleus and extensor digitorum longus 
muscles

Study 3
(Obesity)

•The effects of age and dietary-induced obesity on the contractile function 
of isolated locomotory and respiratory skeletal muscles

Conclusion & 
Future Work

•Outline of the key findings and implications of the thesis

•List of limitations and potential future projects
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1.2 - Skeletal Muscle Ageing 

1.2.1 - Changes in Skeletal Muscle Function with Age 

As of 2017, it has been estimated that of the 66 million people in the United Kingdom, approximately 

12 million of this population are aged 65 years or over (Office for National Statistics, 2018). The UK life 

expectancy is predicted to rise to 79.1 years for men and 82.8 years for women respectively, with a 

forecast that the number of individuals in the UK aged over 65 will increase to 17.3 million by 2035 

(Office for National Statistics, 2018). With an increasing number of people over the age of 65, it is 

more important to understand the ageing process of skeletal muscle and how contractile function is 

altered. Skeletal muscle ageing is associated with debilitating factors in older adults such as reduced 

mobility (Marcus et al., 2012), elevated fall risk (Muir et al., 2010), reduced ability to perform activities 

of daily living (Janssen et al., 2002), and as a consequence, a reduction in quality of life (Verlaan et al., 

2017) and an increase in mortality rates (Ethgen et al., 2017). 

 

An age-related reduction in skeletal muscle mass and function is commonly referred to in the 

literature as sarcopenia (Rosenberg, 1989). More specifically, sarcopenia is defined as the reduction 

in muscle mass, strength and a slowing of muscle contractile speed that occurs as a result of the ageing 

process (Rosenberg, 1997). Consequently, acute force, power and the ability of skeletal muscles to 

withstand fatigue are reduced in older, sarcopenic adults (Christie et al., 2011). It is expected that by 

2045 the number of adults aged 65 – 100 years old with sarcopenia will rise by 72.4% due to increased 

life expectancy (Ethgen et al., 2017). Whilst evidence has traditionally shown a relationship between 

muscle size and muscle performance (Cruz-Jentoft et al., 2010), work has shown that the age-related 

loss of contractile function occurs faster than the loss of muscle mass (Delmonico et al., 2009) or even 

without prevalent muscular atrophy (Manini and Clark, 2012). The loss of force and power with age 

without muscular atrophy is known as dynapenia (Clark and Manini, 2008). Sarcopenia is the most 

commonly used term to describe skeletal muscle ageing, however, this term is generally misused when 
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describing age-related changes in skeletal muscle form and function. Dynapenia precedes sarcopenia, 

with substantial changes in contractile function occurring before the loss of muscle mass (Clark and 

Manini, 2008). However, it is currently unclear whether this differs substantially between males and 

females, and whether this occurs in a muscle-specific manner. This area of investigation is particularly 

important given that Lexell (1995) reported that muscle mass peaks as early as 25 years of age, with a 

40% decline in muscle area between the ages of 20 and 80. However as age-related loss of strength 

and power is not attributable to a loss of muscle mass (Lynch et al., 1999) this indicates that 

mechanisms other than muscle wasting must explain this earlier reduction in muscle function. From a 

functional perspective, it is reported that dynapenia, more so than sarcopenia, has a much greater 

impact on normal activities of daily living in older adults (Iwamura and Kanauchi, 2017). 

 

This section will identify previous work investigating changes in skeletal muscle contractile function 

and morphology with age, both in vivo and in vitro, and will review the key mechanisms which 

contribute to reduced muscular performance with increasing age. 

1.2.2 - The Effect of Age on Muscle Function In Vivo 

1.2.2.1 - Strength & Power 

A decrement in the strength and power output of skeletal muscle has been identified to occur as an 

inescapable result of the ageing process (Reid and Fielding, 2012). These measures of muscle 

performance are distinctly different and as such, it is important to first distinguish between the two. 

Muscular strength is defined as the maximum amount of static (isometric) force, where force is 

produced at a constant muscle length. Alternatively, strength is known as the dynamic force, or 

torque, a muscle can produce against an external load during a given movement (McMaster et al., 

2014). Muscular power is defined as the product of the force produced by a muscle multiplied by the 

velocity at which the muscle changes length (Power = Force x Velocity; Reid and Fielding, 2012). More 

simply, this indicates the rate at which work is performed (Rodgers and Cavanagh, 1984). 
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Changes in muscular strength and power are affected differently with increasing age, where the 

quantification of age-related changes in muscular power is more difficult to obtain than muscular 

strength (Earles et al., 2001; Macaluso and De Vito, 2004). Assessment of muscular power is 

particularly important considering the greater functional need for power production versus static 

force production in everyday living such as locomotion, stair ascent and sit-to-stand movements 

(Foldvari et al., 2000). Foldvari et al. (2000) assessed the relationships between muscle power and 

muscle strength in relation to their contributions to the self-reported functional status of older (mean 

age 74.8 ± 5.0 years) community-dwelling women. Peak power was computed as the product of force 

and velocity during chest press, upper back, leg press and hip abductor one repetition maximum test. 

Peak power was significantly better at predicting functional status and dependency compared to 

strength, thus highlighting the importance of measuring muscular power as opposed to muscular 

strength. Despite the associated difficulties, power output of the lower extremities has been 

successfully measured during isokinetic (i.e. isovelocity) contractions at varying angular velocities. 

Vertical jumps (Grassi et al., 1991; Ferretti et al., 1994; De Vito et al., 1998) and sit-to-stand using force 

platforms (Gray and Paulson, 2014) have also been utilised to measure instantaneous muscular power 

in older adults. 

 

By measuring these performance parameters in tandem with measurements of muscle morphology, 

the age-related declines in in vivo muscular function have been well documented. Table S1.1 outlines 

a selection of the studies that have investigated the effects of increasing age on muscular strength 

and power, the ability for skeletal muscles to withstand fatigue and, where reported, measures of 

muscle morphology.  

 

There is a wealth of evidence that demonstrates a significant reduction in muscular strength with 

advancing age (Table S1.1). This reduction occurs in muscles of both the upper and lower extremities 

and is typically accompanied by a decline in muscle mass and muscle cross-sectional area (CSA) in the 
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oldest old adults (i.e. sarcopenia). Whilst several studies demonstrate a reduction in muscle size in line 

with strength (Young et al., 1984, 1985; Overend et al., 1992), other studies demonstrated a greater 

decline in muscular strength than muscle size with age in males and females (Frontera et al., 2000; 

Klein et al., 2001; Delmonico et al., 2009). It is difficult to identify when the onset of sarcopenia occurs 

due to the variety of experimental approaches and the ages of the participants used, nor has any 

longitudinal study examined changes in muscle mass and function from adulthood to old age of a 

single cohort. Based on the evidence in table S1.1 where studies have examined muscle CSA, an age-

related reduction in muscle CSA is typically observed by the 7th decade (Young et al., 1984, 1985; Reed 

et al., 1991; Overend et al., 1992; Frontera et al., 2000; Bazzucchi et al., 2005; Delmonico et al., 2009). 

Lauretani et al. (2003) reported little change in calf CSA for men and women up to 65 years of age, 

with a 10.2% and 4.9% reduction for men and women respectively aged 75-84 years, compared to 

participants aged 65-74 years. This is supported by Frontera et al. (2000) who reported a reduction in 

thigh muscle, leg extensor and leg flexor muscles by 14.7%, 16.1% and 14.9% respectively in a 12-year 

follow-up of men initially aged 65 years old. Irrespective of changes in muscle mass with age, a greater 

loss of muscle strength over size would indicate that muscle mass alone is not a good predictor of 

muscle function (Newman et al., 2006). 

 

As with muscular strength, there is an age-related decline in muscular power (Skelton et al., 1994; 

Metter et al., 1997; De Vito et al., 1998; Lauretani et al., 2003; Macaluso and De Vito, 2003; Pojednic 

et al., 2012; Edwén et al., 2014). When compared to strength though, the loss of power exceeds that 

of strength in older adults (Skelton et al., 1994; Metter et al., 1997; Lauretani et al., 2003; Macaluso 

and De Vito, 2003; Edwén et al., 2014). For example, Metter et al. (1997) reported strength and power 

output 34% and 42% in men, and 32% and 46% respectively from the 20th decade to the 80th decade 

of life. Lauretani et al. (2003) observed a greater magnitude in decline between adults of the same 

age groups. The authors reported a decline of 60% and 57% in knee extensor torque for males and 

females respectively, compared with a 74% and 76% decline in knee extensor power output, with 
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Skelton et al. (1994) and Macaluso and De Vito, (2003) reporting similar findings for the musculature 

of the legs. A reduction in power before strength poses a concerning limitation to in vivo locomotory 

capacity in older adults due to the requirements of power rather than strength for locomotory 

function (Dickinson et al., 2000). 

 

Evidence indicates that the loss of strength in males is greater than that of females in absolute terms 

(Reed et al., 1991; Skelton et al., 1994; Lauretani et al., 2003; Delmonico et al., 2009; Edwén et al., 

2014). When measuring sex differences from a cross-sectional methodological approach, some studies 

demonstrate equal losses in absolute strength (Reed et al., 1991; Lindle et al., 1997; Lauretani et al., 

2003) and power (Metter et al., 1997; Lauretani et al., 2003), between males and females with age. 

Others show that the loss of strength (Metter et al., 1997; Lynch et al., 1999; Hughes et al., 2001; 

Delmonico et al., 2009; Dey et al., 2009) and power (Skelton et al., 1994; Edwén et al., 2014) occurs 

faster in males than females with advancing age. However, the rate of loss of force and power varies 

between studies. For example, Hughes et al. (2001) found that men experienced a 12% loss in elbow 

extensor and flexor strength per decade compared to a 2% loss per decade in women. Edwén et al. 

(2014) found that for males the loss of power and force normalised to body mass occurred at a rate 

of 0.44W.Kg-1 and 0.07N.Kg-1 per year respectively whilst the loss of power and force normalised to 

body mass for females declined by 0.29W.Kg-1 and 0.04N.Kg-1 per year, respectively. Work by Edwén 

et al. (2014) also shows that the in vivo loss of power occurs faster than the loss of strength and it is 

proposed that the magnitude of loss is greater for men (Skelton et al., 1994; Edwén et al., 2014). 

Human work supports that ageing is concurrent with a decline in the force generating capacity of the 

muscle. However, there is further evidence to support that ageing is associated with a reduction in 

the shortening velocity (V0) of skeletal muscles (Raj et al., 2010), with the loss again faster in men than 

women (Edwén et al., 2014). An age-related down and leftward shift (Figure 1.2.1) in the force-velocity 

relationship contributes to the faster rate of decline in muscle power output (Raj et al., 2010), given 

that power is the product of force multiplied by shortening velocity.  
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Figure 1.2.1 - Ageing results in a downward and leftward shift in the force-velocity relationship (arrow 

1) and a downward and leftward shift in the power-velocity relationship (arrow 2) in old adults (OA) 

compared to young adults (YA) (Raj et al., 2010). 

 

Whilst absolute measures of strength and power are interesting, given that loss of contractility and 

functional capabilities exceed that which can be explained by reductions in muscle mass, it is 

important to assess muscle contractility in terms of muscle quality as opposed to muscle strength and 

size as independent variables. Muscle quality describes the total amount of force a muscle can 

generate per quantity of tissue (Lynch et al., 1999), though few studies have measured this property 

of muscular function in an ageing model (Lindle et al., 1997; Lynch et al., 1999). The importance of 

measuring muscle quality, and the limitations to measuring muscle quality in vivo, is explained in detail 

in section 1.6.1.3. Few in vivo studies assessing muscle quality measure the force a muscle produces 

in relation to muscle CSA as determined by computed tomography (CT) scans or magnetic resonance 

imaging (MRI) scans (McGregor et al., 2014). Alternatively, muscle quality can be determined by 

calculating force relative to muscle mass as determined by dual x-ray absorptiometry scanning (Cruz-

Jentoft et al., 2010). Whilst ageing research typically represents force and power in absolute 

measures, it is becoming more common to represent strength and power relative to muscle CSA as a 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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measure of muscle quality (Fragala et al., 2015). Older adults who can maintain the same amount of 

force for a smaller muscle volume/quantity would be described as having good muscle quality, which 

allows for the more efficient functioning during everyday living as such muscle can produce the same 

force but has lower mass and inertia than a muscle of lower quality. A decline in muscle quality has 

been shown to occur in line with ageing (Lindle et al., 1997; Lynch et al., 1999) and appears to occur 

in a muscle-specific manner (Lynch et al., 1999). When considering muscle quality and sex-based 

differences, the age-related decline in strength relative to muscle size occurs equally between men 

and women (Janssen et al., 2000; Silva et al., 2010). Doherty (2003) theorises that the loss of absolute 

force and power is faster for men than women because males start from a higher baseline at a younger 

age. Men generally experience greater declines in muscle CSA than women with advancing age, with 

a potential associated reduction in muscle quality (Hughes et al., 2001) which may explain the greater 

reduction in power compared to women. However, this greater decline in power is likely due to male 

skeletal muscles being morphologically larger in terms of muscle CSA (Behan et al., 2018). 

 

The loss of skeletal muscle force and power does not occur in locomotor muscles only, where the 

decline in contractile performance occurs uniformly for all skeletal muscles in the human body. The 

diaphragm is a key regulator of respiratory function and, like locomotor muscles, is prone to an age-

related reduction in contractile function (Polkey et al., 1997). Diaphragm function is a significant 

contributor to the uptake and distribution of oxygen, where limited pulmonary function due to 

reduced diaphragm contractile function may predispose older adults to be at greater risk of ventilatory 

failure (Sharma and Goodwin, 2006). Diaphragm force production in humans has been shown to 

decline with age, with a 13-25% reduction in diaphragm force production in older adults (Tolep et al., 

1995; Polkey et al., 1997), though there is a no evidence examining changes in diaphragmatic power 

in humans with age. 
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1.2.3 - Effects of Age on Muscular Endurance In Vivo 

Whilst the age-related decline in muscular strength and power is well documented, findings in relation 

to the age-related decline in muscular endurance in humans are somewhat equivocal (Table S1.1). 

Muscular endurance can be defined as the ability of skeletal muscles to maintain force during 

repeated static activations or torque/power during sustained dynamic muscular contractions for an 

extended period of time (Kell et al., 2001; Deschenes, 2004). Fatigue resistance is an important 

biomechanical parameter as normal everyday living requires skeletal muscles to be able to withstand 

fatigue in order to maintain locomotory and respiratory function (Dickinson et al., 2000).  

 

Whilst some studies have demonstrated an age-related decline in muscle endurance (Davies et al., 

1986; Sunnerhagen et al., 2000; Izquierdo et al., 2001) and poorer fatigue resistance for males than 

females (Davies et al., 1986; Hicks and McCartney, 1996), some have shown no differences (Klein et 

al., 1988; Bäckman et al., 1995; Bemben et al., 1996; Lindström et al., 1997) or even an age-related 

increase in muscle endurance (Hicks and McCartney, 1996; Bilodeau et al., 2001; Bazzucchi et al., 

2005). Discrepancies typically arise due to the different protocols used to measure fatigue (Deschenes, 

2004), as well as the different ages, sex and muscle groups assessed. 

1.2.4 - Dynapenia 

Largely, the results outlined in the previous discussion have been attributed to sarcopenia. However, 

it is becoming increasingly common to consider that some of the age-related declines in muscle 

performance and associated loss of strength and power is independent of muscle wasting (Morley et 

al., 2001). This has resulted in the more recent usage of the term dynapenia, literally meaning loss of 

power. This relatively new concept, first described by Clark and Manini (2008), should not replace the 

current understanding of sarcopenia, but should instead be used to supplement current knowledge. 

In humans, the loss of contractile function without prevalent atrophy has been well documented. 

Work by Delmonico et al. (2009) reported that the loss of strength over a 5-year period was on average 
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four times faster than the loss of muscle mass, irrespective of whether an adult gained or lost weight 

(Figure 1.2.2). This was coupled with significant declines in muscle quality and significant increases in 

intramuscular fat for men and women. Little evidence exists as to the age that sarcopenia and 

dynapenia begin and whether this differs between muscles and sex. 

 

Figure 1.2.2 - The age-related decline in knee extensor strength (dashed) and quadricep femoris muscle 

mass measured by computed tomography in a 5-year longitudinal study. An increase in muscle mass 

(right panel) does not prevent loss of muscle strength indicating loss of muscle quality with age. (Data 

from Delmonico et al., 2009. Figure produced by Manini and Clark, 2012). 

 

It is clear from the evidence presented that muscular ageing is a highly complex issue. There is robust 

evidence supporting both sarcopenia and dynapenia as key mechanisms for the age-related loss of 

muscle force via reduced contractile mass for the former and in the absence of reduced muscular 

atrophy for the latter (Seene and Kaasik, 2012). The magnitude of the effect of sarcopenia and 

dynapenia can be affected by several mitigating factors including sex, the age of the population 

assessed, the location and mechanical role of the skeletal muscle assessed, the predominant fibre type 

of the muscle, muscle recruitment and ageing of the central nervous system. These factors are covered 
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in detail in section 1.6.1, though all can be better controlled for via use of an isolated muscle model 

for examining muscle ageing. 

1.2.5 - Examining Ageing Using Isolated Skeletal Muscle 

As with in vivo assessments of muscle contractility, there is an abundance of literature which has 

investigated the effects of ageing on the contractile function of isolated skeletal muscles in vitro. The 

value of isolated muscle studies is explored in greater depth in section 1.6.1. In brief, in vitro testing 

can be used to test isolated muscles to determine the muscle-specific effects in response to a stimulus, 

in this instance ageing and obesity. This is important given skeletal muscles of different muscle fibre 

types and contractility modes are affected to different extents and are affected by age and obesity in 

separate ways as discussed in sections 1.2.5, 1.3.2, and 1.4.3 respectively. Prior in vitro research has 

typically employed isometric (constant length), isotonic (constant force) or isovelocity (constant 

velocity) contractions to assess strength and power in a young age group against an old age group, 

though such contractions poorly replicate in vivo muscle function (James et al., 1996). 

 

When assessing muscle contractility and ageing in vitro, the soleus and EDL are the two most 

commonly assessed muscles, primarily due to their differing phenotype compositions and ease of 

isolation for use. When comparing the percentage of the different myosin heavy chain (MHC) 

isoforms, the soleus is predominantly composed of slower, less forceful type I fibre type (53.6% type 

I; 31.2% type IIA; 15.2% type IIX in 90-day old young adult C57BL/6 mice; Agbulut et al., 2003) whilst 

the composition of the EDL is predominantly the faster and more forceful type IIB fibre type (3.9% 

type I; 9.3% type IIX; 86.8% type IIB in 90 day old young adult C57BL/6 mice; Agbulut et al., 2003). The 

composition of the diaphragm is more mixed to cope with its mechanical role during respiration, 

where slow-twitch fibre recruitment is important for continual diaphragm activity during steady-state 

breathing, and recruitment of fast-twitch fibres for forceful expiration during exercise (15.6% type I; 
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6.2% type IIB, 34.6X type IIX, 43.6% type IIA in 90-day old young adult C57BL/6 mice; Agbulut et al., 

2003). 

 

Muscles with a greater proportion of type I fibres will tend to have greater muscular endurance but 

generate less force (Costill et al., 1976; Fink et al., 1977; Saltin et al., 1977) whilst muscles that possess 

a greater proportion of type IIA/X/B will produce more force per unit of muscle cross-sectional area 

(CSA) and power output relative to muscle mass, but will fatigue much more rapidly (Costill et al., 

1976). With these characteristics in mind, the soleus is important in maintaining posture and balance 

(Eston et al., 1995) hence enhanced fatigue resistance is valuable in the successful completion of tasks 

in this muscle. On the other hand, the EDL is important for movements of the ankle via dorsiflexion, 

which contributes to the power required for locomotory activities such as running and jumping 

(Brockett and Chapman, 2016). Therefore, from an ageing perspective, it is interesting to assess these 

two locomotory muscles as each may respond differently to the ageing process, thus allowing for a 

closer assessment of whether muscle ageing is dependent on alterations of particular fibre types that 

would contribute significantly to the decline in muscular performance. In addition to examining the 

age-related changes in locomotory muscle function, examining the diaphragm provides an insight into 

the effects of ageing on respiratory muscle function. An impairment in the ability to uptake oxygen 

could contribute to other aspects of age-related diseases, such as impaired exercise capacity and 

substrate metabolism, and as such understanding the age-related decline in diaphragm contractile 

function could provide an insight into how the ability of this muscle to generate force and power is 

affected with age. In general, it is expected that muscles composed of primarily fast-twitch muscle 

fibres age faster than those composed of predominantly slow-twitch fibres, as characterised by a 

reduction force, mass, fibre type distribution (i.e. fast-to-slow transition) and smaller muscles CSA 

(Ballak et al., 2014), though differences in methodological approach, animal strain, contraction type 

and ages examined means this is not always the case. 
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The remainder of this section shall compare the age-related changes in contractile function for single 

muscle fibres and whole skeletal muscles for the soleus, EDL and diaphragm, with an overview of the 

fatigue resistance of whole isolated skeletal muscles. 

 1.2.5.1 - Single Muscle Fibre Experiments of Locomotory Skeletal Muscles 

Single muscle fibre testing can be used to assess age-related changes in contractile function, however, 

the evidence supporting an age-related decline in single fibre contractile function is equivocal. Ageing 

studies of single muscle fibres report a reduction in isometric force and stress (force/muscle cross-

sectional area) of the soleus (Thompson and Brown, 1999; González et al., 2000) and EDL (González et 

al., 2000) with increasing age, whilst others reported no change in force or stress with increasing age 

for single soleus fibres (Kim and Thompson, 2012) or single EDL fibres (Brooks and Faulkner, 1994) 

(Table S1.2). González et al. (2000) also reported no age-related atrophy of the EDL despite a decline 

in force and stress, highlighting reduced mechanical performance as a reason for the decline in 

isometric stress. In addition to an age-related reduction in the force-generating capacity of single 

muscle fibres, measures of V0 show equally equivocal findings, with Thompson and Brown (1999) and 

González et al. (2000) showing a significant slowing of V0 of soleus and EDL fibres with age, whilst Kim 

and Thompson (2012) found no change in V0 for rat soleus with age. However, absolute power 

declined significantly from young rats to aged rats, with an increase in absolute power from adult to 

aged rats (Kim and Thompson, 2012). Power normalised to fibre size also remained unchanged. This 

study is the first to demonstrate, at a single fibre level, that absolute measures of force and power are 

lost to a greater extent than normalised measures. Moreover, changes in absolute and normalised 

measures of force and power vary with age. Inconsistencies in these findings can be attributed to the 

rodent model used and the ages examined. 

1.2.5.2 - Whole Muscle Experiments of Locomotory Skeletal Muscles 

Whole muscle studies are beneficial for considering the age-related changes of contractile function as 

it allows for consideration of all contractile and non-contractile properties of the muscles, allowing for 
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a more relevant comparison to in vivo muscle function. Section 1.6.3.1 provides a more detailed 

discussion of the advantages and disadvantages of single fibre and whole muscle testing. Table S1.2 

outlines the current work to date which has investigated the age-related changes in rodent skeletal 

muscle performance, for both isometric and dynamic muscular contractions of the soleus, EDL and 

diaphragm in situ and in vitro. In situ studies involve investigators anesthetising an animal and 

exposing a specific, intact muscle, which is stimulated with single or repeated stimuli isometrically or 

during shortening (Call and Lowe, 2016). As for in vitro investigations, the whole muscle is isolated 

from an animal with stimulations provided externally. Greater details of these methodological 

approaches are provided in section 1.6.  

 

In general, as with human studies of ageing, as animals age the force and power output of the isolated 

skeletal muscle declines, though the magnitude of the effect is specific to the muscle and the 

contractile parameter examined. The proposed age-related reduction in force is ambiguous, with 

some reporting a reduction in both absolute force and isometric stress (force/muscle CSA) (Brooks 

and Faulkner, 1988; Phillips et al., 1991; Kadhiresan et al., 1996) whilst others report no change in 

either measure (Rice et al., 2005; Kim and Thompson, 2012). Moreover, other authors have reported 

a decline in absolute force with no change in isometric stress (Pagala et al., 1998; Lynch et al., 2001; 

Graber et al., 2015), whilst Tallis et al. (2014) reported a reduction in isometric stress, but no change 

in absolute measures of isometric force. The effects are likely to be muscle specific, with EDL absolute 

force and stress surprisingly better maintained with age than for the soleus (Lynch et al., 2001; Moran 

et al., 2005), which is surprising given the notion that faster fibres are more prone to muscular ageing 

(Miljkovic et al., 2015). Sex may also play an influencing factor, with isolated EDL force and stress 

better maintained for males than females with advancing age (Chan and Head, 2010) despite in vivo 

evidence demonstrating otherwise (Reed et al., 1991; Skelton et al., 1994; Lauretani et al., 2003; 

Delmonico et al., 2009; Edwén et al., 2014). Further work is required to better elucidate the sex-based 

differences in skeletal muscle function at an isolated muscle level. 
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Few studies have examined the effect of ageing on muscle power output. Generally, the literature 

demonstrates a reduction in absolute power and power normalised to muscle mass with advancing 

age (Brooks and Faulkner, 1991; Lynch et al., 2001; Tallis et al., 2014). Only Kim and Thompson (2012) 

reported a reduction in absolute power but maintenance of power relative to fibre size, though this 

may be due to the single soleus fibres being assessed compared to whole muscles as in previous 

studies, and usage of a different method to determine muscular power (Table S1.2). The effect of 

ageing on force and power is likely to be muscle specific and dependent on the contractile type. The 

loss of power exceeds the loss of strength in human studies of ageing (Metter et al., 1997; Krivickas et 

al., 2001; Raj et al., 2010), however, the opposite is true of isolated EDL and diaphragm skeletal 

muscles (Tallis et al., 2014). The loss of absolute and normalised power was greater in the soleus than 

EDL (Lynch et al., 2001) which is contradictory to research examining isometric force where soleus 

force is well maintained compared to the EDL (Table S1.2). However, the power producing capabilities 

of EDL are better maintained than diaphragm with increasing age (Tallis et al., 2014) indicating that 

the anatomical location and function of the muscle may play a role in the ageing response. 

 

The studies of in vitro and in situ ageing show beyond doubt that ageing typically corresponds with a 

reduction in contractile function of whole locomotory skeletal muscles (Table S1.2), indicating that a 

reduction in contractile performance is not primarily due to deterioration of the central nervous 

system or neuromuscular junctions. A reduction in performance is largely mirrored by a decline in 

muscle mass and muscle CSA for the soleus (Brooks and Faulkner, 1988; Brown and Hasser, 1996; 

Pagala et al., 1998; Lynch et al., 2001) and the EDL (Gutmann and Carlson, 1976; Brooks and Faulkner, 

1988; Pagala et al., 1998; Lynch et al., 2001; Graber et al., 2015). However this is not always the case, 

with instances of a reduction in contractile performance, but not muscle mass in the earlier stages of 

an animals life (Phillips et al., 1991; Brown and Hasser, 1996; Criswell et al., 1997, 2003; Thompson 

and Brown, 1999; Moran et al., 2005; Chan and Head, 2010; Kayani et al., 2010; Tallis et al., 2014).  
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1.2.5.3 - Respiratory Muscle (Diaphragm) 

Despite a number of studies examining the contractile performance of the diaphragm in a young age 

group (Syme and Stevens, 1989; Yan et al., 1993; Van Lunteren and Moyer, 1996; Ameredes et al., 

2000), the age-related changes in diaphragm contractility have been less extensively explored in vitro 

in comparison to locomotory muscles (Table S1.2). Unlike studies of locomotory skeletal muscles, 

studies of the diaphragm consistently report an age-related reduction in isometric stress (Zhang and 

Kelsen, 1990; Criswell et al., 1997, 2003; Greising et al., 2013; Tallis et al., 2014; Elliott et al., 2016) 

with only Lynch et al. (1997) reporting no changes in isometric stress and normalised power output of 

diaphragm strips from young to old age. Results from an isolated muscle model provide further 

support for a reduction in respiratory function and resultant respiratory problems in later life of older 

adults (Tolep et al., 1995; Polkey et al., 1997). 

1.2.5.4 - Fatigue Resistance of Isolated Muscles 

There are a limited number of studies that have investigated muscular endurance in an in vitro model 

(Table S1.2). Generally, an increase in age results in a maintenance of fatigue resistance (Pagala et al., 

1998; González and Delbono, 2001; Criswell et al., 2003) or even an increase with age (Pagala et al., 

1998; Chan and Head, 2010), with only Tallis et al. (2014) reporting an age-related decline in the ability 

to withstand fatigue. Interestingly, studies which have observed a maintained or enhanced fatigue 

resistance in older skeletal muscles, the absolute force (Pagala et al., 1998) and stress (Criswell et al., 

2003; Chan and Head, 2010) declines with age, which may provide an insight into the age-related 

changes in fibre-type composition of the skeletal muscle, where a fast-to-slow fibre shift results in 

weaker but more fatigue resistant skeletal muscles. Ageing has been shown to cause skeletal muscle 

fibres to shift to a more oxidative fibre type with advancing age (Alnaqeeb and Goldspink, 1987) with 

slower type I fibres being more fatigue resistant but less forceful than type II fibres, which have lower 

fatigue resistance but generate greater force. A further issue to consider is that a reduction in maximal 

isometric force in animals and humans may mean that the muscle is working closer to its maximal 
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force generating capacity during prolonged movement and as such it is likely to be difficult to maintain 

for prolonged periods, and in turn partially explains reduced endurance in older adults. The lack of 

consensus as to what defines fatigue resistance at the muscular level also makes comparisons 

between studies difficult due to the different methodologies employed and each author’s 

interpretation as to what constitutes a significant reduction in fatigue resistance. 

 

Due to the variety of methodological approaches employed in terms of muscles assessed (e.g. 

isometric, isovelocity and WL), animals examined, test temperature and age points used to determine 

young, adult, old populations, it is difficult to draw direct comparisons between studies. Such 

experimental approaches provide the main source of ambiguity when analysing the results of the age-

related decline in muscle performance in sections 1.2.5.2, 1.2.5.3 & 1.2.5.4. Additionally, there is a 

surprising lack of work which has used more than three time points in an animals’ lifespan, with many 

typically using two (young vs. old) age groups (Table S1.2). Further work is also required to examine 

the age-related changes in muscle function whereby the mode of contraction employed in vitro more 

closely replicates the dynamic activation patterns found during typical in vivo muscle activation, as 

opposed to “iso” contractile parameters. The WL technique has been previously used to provide a 

better examination of how skeletal muscle power is affected by age between locomotory and 

respiratory skeletal muscles in their ability to produce and sustain maximal concentric power during 

cyclic length changes (Tallis et al., 2014). A detailed overview of the WL technique is provided in 

section 1.6.5.4. 

1.2.6 - Assessment of Muscular Performance Using the Work Loop Technique 

In the body of work by Tallis et al. (2014), absolute isometric force, isometric stress and power output 

normalised to muscle mass was assessed in isolated EDL and diaphragm from female CD-1 mice aged 

3, 10, 30 and 50 weeks of age. By utilising the WL technique, Tallis et al. (2014) determined the age-

related changes in contractile performance whilst more closely replicating real-world locomotory 
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function. Additionally, the in vivo physiological conditions were replicated in vitro, particularly by 

utilising a test temperature of 37°C, a much more physiologically relevant test temperature than the 

typical 20-25°C previously used (Table S1.2). The importance of test temperature in relation to muscle 

mechanics is discussed in greater detail section 1.6.4. One significant finding from this study was that 

the loss of isometric force (or strength) occurred faster than the loss of power. Secondly, the age-

related decline in stress and power occurred with a concomitant increase in muscle mass and body 

mass with age, with each morphological measure peaking at 50 weeks of age. Additionally, the 

distribution of power relative to body mass in the 50-week old group indicated that the older, heavier 

animals may have poorer in vivo muscle performance due to the added load of the moving limb, and 

therefore may further limit locomotory capacity. Tallis et al. (2014) found muscle-specific differences 

in fatigue resistance during repeated WL’s with the greatest fatigue resistance typically occurring at 

3-weeks, for both EDL and soleus, and reduced by 50-weeks of age, likely due to older muscles 

producing less positive work as the fatigue protocol progressed, when compared to other ages, and 

greater negative, or eccentric, work through re-lengthening as fatigue progressed.  

 

The work by Tallis et al. (2014) highlights a number of areas that have yet to be fully explored using 

the WL technique as the basis for investigation. One obvious area for investigation is the effect ageing 

has on the soleus to generate power. Previous isometric studies typically demonstrate that the soleus 

was more prone to a loss of absolute force and isometric stress than the EDL (Lynch et al., 2001; Moran 

et al., 2005). Given the importance of the soleus during in vivo locomotion (Eston et al., 1995), an 

investigation into how acute and sustained power changes with age is warranted. The animals in Tallis 

et al. (2014) underwent no decline in muscle mass in the early stages of ageing despite a decline in 

muscle function, though many studies report significant reductions in locomotory muscle mass and 

function at much older ages (Gutmann and Carlson, 1976; Brooks and Faulkner, 1988; Kadhiresan et 

al., 1996; Pagala et al., 1998; Lynch et al., 2001). The inclusion of animals older than 50 weeks of age 

may provide information on how WL power output and fatigue resistance is affected in older age and 
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whether changes are due to a reduction in muscle mass. Only one study to date has examined the 

contractile properties of whole isolated soleus and EDL with increasing age for males and females 

(Chan and Head, 2010), however, this study employs isometric contractions which are a poor indicator 

of in vivo contractile function (James et al., 1996). Therefore, further work is required to better 

understand the sex-based differences in power output of isolated skeletal muscles with increasing 

age. Finally, ageing is associated with a slowing of V0 and consequential shift in the force-velocity curve 

(Krivickas et al., 2001; Raj et al., 2010). Previous work using the WL has examined how contractile 

speed, or cycle frequency, affects power production, thus creating a power output-cycle frequency 

curve (Altringham and Young, 1991; James et al., 2011). Applying this methodological approach to an 

ageing model could help determine whether changes in WL power are predominantly due to a change 

in optimal contractile velocity as a result of the slowing of muscle fibres, or whether a reduction in 

power is largely attributable to a reduction in the force-generating capacity of the muscle. 
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1.3 - Eccentric Muscle Activity and Ageing 

During in vivo locomotion, skeletal muscles perform different roles in relation to their mechanical role, 

including eccentric activity (Dickinson et al., 2000) with such a muscle activity affected by ageing 

(Hortobágyi et al., 1995). Far less data examining ageing in relation to eccentric muscle function is 

available compared to the existing data examining age-related changes in force and power derived 

from isometric and concentric contractions (LaStayo et al., 2003). Muscles that are active during 

lengthening are said to be acting eccentrically (LaStayo et al., 2003). This type of muscle activity occurs 

to either decelerate a body in motion or to store mechanical energy in preparation for the next 

concentric contraction (LaStayo et al., 2003). As muscles work as antagonistic pairs, eccentric 

contractions occur frequently during normal locomotion (Dickinson et al., 2000), dynamic balance 

(Lindstedt et al., 2002), stair descent (Andriacchi et al., 1980; McFadyen and Winter, 1988) and during 

the transition from standing to sitting (Lovering and Brooks, 2014). Age-associated changes in the 

ability to perform eccentric activities ultimately contribute to the inability to perform everyday 

activities of daily living and may relate to an increased fall risk in older adults (LaStayo et al., 2003). To 

accomplish these movements, eccentric muscle activity produces much higher forces compared to 

concentric contractions (Lindstedt et al., 2001; Herzog, 2014). Eccentric activities can cause muscle 

fibre damage (Fridén and Lieber, 2001; Vissing et al., 2008), leading to reduced muscular strength 

(Faulkner et al., 1993) and delayed onset of muscle soreness (Byrne et al., 2004). Given the potential 

for these debilitating factors to affect muscle performance and the regular occurrence of eccentric 

activity in activities of daily living, it is important to understand how ageing affects eccentric muscle 

activity. 

1.3.1 - In Vivo Studies of Eccentric Muscle Activity 

Compared to the numerous studies investigating changes in isometric and concentric muscle function 

with increasing age in older adults (Table S1.1), a comparatively smaller quantity of literature has 

investigated changes in eccentric muscle function (Table S1.3). This is due to the perceived high risk 
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associated with the high forces produced during eccentric muscle activity and the potential to cause 

damage (LaStayo et al., 2003). Nevertheless, the studies which have assessed the effects of age on 

eccentric muscle function demonstrated a mixture of findings, with some showing that function is well 

preserved whilst others reported an age-related decline in eccentric function (Table S1.3).  

1.3.1.1 - Changes in Eccentric Force and Torque 

Whilst in some cases eccentric torque and force is well maintained with advancing age (Poulin et al., 

1992; Hortobágyi et al., 1995; Porter et al., 1997; Horstmann et al., 1999; Klass et al., 2005) or even 

increased (Phillips et al., 1998), other studies showed an age-related decline in torque (Vandervoort 

et al., 1990; Lindle et al., 1997; Pousson et al., 2001; Christou and Carlton, 2002; Delbaere et al., 2003; 

Perry et al., 2007) (Table S1.3). The discrepancies in results are likely due to differences in 

experimental approaches such as the angular velocity at which eccentric torque was measured, and 

the muscle groups assessed. For example, many studies examining eccentric torque use a slow and 

fast angular velocity, though the angular velocity in each study that depicts a fast and slow velocity 

differs between each study (Table S1.3).  An unfamiliarity with producing eccentric force at fast 

angular velocities may further mask the age-related changes in eccentric torque. In cases where 

eccentric force was compared to concentric force, the magnitude of the decline in force in older adults 

was largely greater for isometric and concentric contractions compared to eccentric actions 

(Vandervoort et al., 1990; Porter et al., 1997; Pousson et al., 2001; Klass et al., 2005). This would 

indicate that age-related changes in muscle function are specific to the type of muscle action 

performed (Roig et al., 2010). Furthermore, males lose eccentric force to a greater extent than females 

(Lindle et al., 1997; Christou and Carlton, 2002) and in some cases was preserved for females 

compared to males (Klass et al., 2005). However, this is not always the case with some studies showing 

no effect for sex (Pousson et al., 2001; Delbaere et al., 2003), with no differences in eccentric torque 

in older males and females (Pousson et al., 2001; Christou and Carlton, 2002; Delbaere et al., 2003). 
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A distinct lack of studies has examined eccentric muscle activity in relation to muscle quality. As 

previously discussed, preservation of muscle quality is key for normal locomotory function. 

Understanding how the quality of a skeletal muscle is affected in relation to eccentric muscle activity 

can provide a unique insight into the ability to perform and maintain eccentric muscle activity in older 

adults. 

1.3.1.2 - Repeated Eccentric Muscular Activity 

Many activities of everyday living require periods of sustained eccentric activity rather than single 

eccentric activation to successfully execute a required activity. As such, examining the fatigue 

response and consequential ability to recover force and power is important. 

 

Investigations into the age-related alterations in sustained eccentric muscle activity are greatly under-

researched. This is largely due to the negative association between prolonged bouts of eccentric work 

and increased susceptibility to skeletal muscle damage (LaStayo et al., 2003; Lovering and Brooks, 

2014), muscle soreness, and pain (Lovering and Brooks, 2014). This is despite the potential benefits of 

eccentric exercise in older adults for maintaining or improving muscle function (Narici et al., 2014; 

Douglas et al., 2017). Nevertheless, of the research to have examined the age-related ability to 

withstand the fatiguing effects of eccentric muscle actions, studies have typically examined eccentric 

exercise of specific limbs followed by recovery of eccentric force in the days following (Clarkson and 

Dedrick, 1988; Chen et al., 2011). Very little work has measured the time-course of eccentric fatigue 

in older adults, whereby the rate in decline in eccentric force is compared to younger counterparts. 

Only Baudry et al. (2007) have measured the age-related changes in eccentric torque during an 

eccentric fatigue protocol. Torque during eccentric fatigue was maintained to a better extent than 

concentric torque for the younger participants. Older participants fatigued faster than younger adults 

during both concentric and eccentric fatigue, with concentric torque declining by 40.9% for younger 

adults and 50.2% for older adults (P<0.05) and eccentric torque by 27.1% and 42.1% (P<0.01) for young 
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and old adults respectively. However, there were no differences between contraction types for older 

adults. 

 

No study has examined the age-related changes in eccentric power output with increasing age in 

humans. Moreover, eccentric torque has been measured as opposed to power, with power being of 

greater relevance for whole body locomotion than torque as explained in sections 1.2 & 1.6. The 

dearth in literature is largely due to the practicality of performing such experiments, as participants 

would have to perform plyometric actions which are associated with muscle damage in older 

participants that could cause unnecessary mobility limitations (Lovering and Brooks, 2014). One of the 

main limitations to these studies is the measurements of concentric fatigue in vivo as discussed in 

section 1.2.1, in that the elevated body mass at the same relative intensity may mask the true fatiguing 

effects on older, heavier adults. Moreover, the CNS may mask the time-course of fatigue, especially 

considering that Baudry et al. (2007) proposed that differences in fatigue were due to neuronal 

propagation. 

1.3.2 - Animal Models 

1.3.2.1 - In Situ 

Investigators assessing eccentric muscle activity in situ firstly anesthetise an animal and expose a 

specific, intact muscle. Next, single or repeated isovelocity muscle actions are performed through 

lengthening of the muscle with activation occurring through stimulation of the supplying nerve (Call 

and Lowe, 2016). Many studies assessing age-related changes in eccentric muscle activity in situ 

purposefully caused contraction-induced injury to understand the mechanisms of damage and 

healing. As lengthening velocity has no effect on the force deficit following eccentric muscle activity 

(Lynch and Faulkner, 1998), research typically utilise large muscle length changes to ensure 

contraction-induced muscular damage occurs. In general, at smaller length changes (i.e. below 20% of 

muscle fibre length) there is no impairment in consequent recovery of force with age (Brooks et al., 
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1995; Brooks and Faulkner, 1996) though this is not always the case, where Lynch et al. (2001) 

observed a significant reduction in old (26 months), but not young (6 months), rat EDL isometric force 

production following single eccentric muscle activations at 10% strain (see section 3.5.4.1 regarding 

strain) from optimal length (L0). However, no differences in measures of isometric force were found 

using 5% strain between age groups (Lynch et al., 2001), highlighting the importance strain magnitude 

has on eccentric force production, damage, and recovery of force (Choi, 2016). Usage of an in situ 

approach is advantageous as the recovery of muscle fibres and contractile function can be monitored 

in the weeks and months following injury. However, the CNS may mask the maximal eccentric force a 

muscle may produce, nor have in situ studies reported maximal eccentric force production or changes 

in eccentric force over time. 

1.3.2.2 - In Vitro 

In a subgroup of animals used by Brooks and Faulkner (1996), single permeabilised fibre experiments 

of the EDL from young and old rats were performed, where length changes of 5%, 10% and 20% from 

L0 were imposed on each preparation. A strain of 5% caused no reduction in isometric force for either 

age group, though deficits increased significantly with increasing strain and to a greater deficit at 10% 

and 20% strain in older EDL fibres but not young fibres, which may indicate greater resistance to 

stretch as a mechanism of muscular damage. Lynch et al. (2008) reported similar findings in the 

assessment of single fibres from young (6 months) and old (26 months) male rats, in that there were 

no differences in isometric force from baseline or in old EDL fibres following single lengthening muscle 

actions by 5% of mean muscle fibre length (Lf), whilst at 10% and 20% of Lf the force deficit of older 

fibres was 9.0% and 20.2% lower respectively than baseline whilst young fibres declined by 5% and 

14.9%.  

 

In one regard, damaging eccentric muscle studies are advantageous as such protocols using large 

strains are reproducible for ensuring damage occurs (Call and Lowe, 2016). One limitation to previous 
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in vitro work is that replicating in vivo eccentric muscle activity through isovelocity activation is a poor 

estimate of in vivo muscle function as discussed in detail in section 1.6. Additionally, activities of daily 

living in older adults involving eccentric muscle activity can be performed without undue damage 

(Lovering and Brooks, 2014). Despite identifying that smaller strains of 5-20% of Lf are less damaging 

to skeletal muscles during eccentric activity (Brooks et al., 1995; Brooks and Faulkner, 1996; Lynch et 

al., 2008), the fatiguing effects of eccentric muscle activity in older skeletal muscles using these smaller 

strains is still poorly understood as these previous investigations use single lengthening muscle 

actions.  

1.3.2.3 - Eccentric Activity and The Work Loop Technique 

Implementing the WL technique can better address the limitations to measuring eccentric function 

via isovelocity lengthening actions given that repeated cyclical activity performed during the WL 

protocols are a better estimate of the dynamic pattern of activation observed during in vivo muscular 

activity (Tallis et al., 2013, 2014, 2017). Furthermore, the WL technique allows for an assessment of 

the relative decline in eccentric power over time, allowing for a better understanding of the time-

course of fatigue and potential for damage at a muscular level. The latter point is particularly pertinent 

as many previous studies have deliberately caused damage to skeletal muscles via repeated eccentric 

muscle activity, with no study to date examining the potential fatiguing effects of sustained eccentric 

muscle activity. 

 

To date, no work has used the WL technique to examine the effects of age on eccentric fatigue of 

isolated skeletal muscles. Whilst Stevens (1996) and Choi and Widrick (2009) explored some of the 

responses during and following eccentric WL’s in young mice, each study used large strains (±20%-

±25% of Lf) which caused the muscle to be deliberately damaged. Work investigating the concentric 

power output of young (James et al., 1996) and older (Tallis et al., 2014) mouse skeletal muscles using 

the WL found that maximal power output typically occurred at a strain of 0.10 (±5% of L0). Moreover, 
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recovery of force and power is unaffected following concentric fatigue using a strain of 0.10 compared 

to control values (Choi and Widrick, 2009). As muscles work as agonist-antagonistic pairs in vivo, a 

comparison of the response to eccentric muscle activity which reciprocates the optimal strain for 

concentric power production could provide a valuable insight into the nature of eccentric power 

production of isolated muscles without undue damage. Single fibre work reported no differences in 

force deficit during lengthening contractions at 5% of Lf during single isovelocity contractions (Brooks 

and Faulkner, 1996; Lynch et al., 2008), though the combined effects of smaller strains during 

eccentric muscle activity and older skeletal muscles have yet to be explored in a WL model. 

Furthermore, the muscle-specific changes in eccentric muscle function have not been examined. 

1.3.3 - Mechanisms of Muscular Damage and Fatigue Following Eccentric Activity 

The time-course for muscular damage can be identified in a two-stage model. The first stage is the 

initial damage stage caused by the shear stress of eccentric muscle activity causing micro-damage to 

the skeletal muscles (Close et al., 2005). This is attributed to damage to sarcomeres and connective 

tissue, as well as excitation-contraction coupling disruption (Close et al., 2005; Gault and Willems, 

2013). In the second stage, the damage caused by the shear forces are amplified in the 3-4 days 

following damage during the healing process causing a secondary reduction in force. This secondary 

loss of muscular function is largely due to inflammation and reactive oxygen species production 

limiting the healing process (Close et al., 2005). Isolated muscle models are limited by the inability to 

examine the healing process in the days following damage. However, the initial damage stage is still 

important given that force declines and remains depressed following bouts of eccentric activity in 

older skeletal muscles (Zerba et al., 1990; Brooks and Faulkner, 1996; Chan and Head, 2010). In 

consideration of this limitation of in vitro studies, only the initial stages of muscle injury, and why older 

muscles appear to be more susceptible to damage during this stage, shall be discussed. 
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1.3.3.1 - Sarcomere Damage 

One of the primary explanations for a reduction in contractile function is overstretching of the muscles 

and high forces produced during eccentric muscular actions causing disruption of myofibrils (Gault 

and Willems, 2013). Stretch-induced damage of muscle fibres beyond optimal length is known as the 

popping-sarcomere hypothesis (Morgan, 1990). Early work by Katz (1939) using frog sartorius muscles 

showed that muscles yield and elongate at a high force and contractile velocity. This leads to a 

rightward shift in the force-length curve (see section 1.6.2) meaning myofibrils within the muscle no 

longer contract and are noncompliant thus producing passive force. This notion led to the belief that 

rapid, high force stretches cause some muscle fibres to be permanently stretched and potentially 

damaged. The earliest evidence suggesting structural damage of the contractile proteins following 

eccentric muscle activity demonstrated a broadening of Z lines and disruption of sarcomeres following 

repetitive stair descent in humans (Fridén et al., 1981). During single active stretches of skeletal 

muscles, most actin and myosin filaments reinterdigitate to their normal resting state during muscle 

relaxation and are therefore undamaged (Allen, 2001). In isolated muscle models, older skeletal 

muscles undergoing maximal eccentric activity typically resulted in a 40% reduction in isometric force 

production (Zerba et al., 1990; Brooks et al., 1995; McBride et al., 1995; Brooks and Faulkner, 1996; 

Chan and Head, 2010) which is largely explained by sarcomere damage. It has also been shown that 

connective tissue is able to withstand the myofibrillar stress associated with eccentric activity 

(McHugh, 2003) and therefore greater muscle stiffness may actually serve as a protective mechanism 

against contraction-induced damage (Kovanen et al., 1984), much like an increased muscular collagen 

content and stiffness following a period of high-force resistance training (Mackey et al., 2004).  

1.3.3.2 - Excitation-Contraction Coupling Disruption 

Work in humans has shown that exercise-induced muscle damage can lead to dilation of the 

sarcoplasmic reticulum (SR) and T-tubules which may in part disrupt the excitation-contraction 

coupling process and impair force production (Byrd, 1992; McCutcheon et al., 1992). Warren et al. 
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(1993) were the first to utilise isolated muscles to examine the contribution of excitation-contraction 

coupling failure on impaired contractile function following eccentric muscle activity. Following 

eccentric stretching, 50mM of caffeine was added to the buffer solution to determine if caffeine could 

elicit a more forceful contractile response, with failure to do so indicating structural damage is of 

greater importance. Following ten eccentric, twenty eccentric and twenty isometric activations, 

isometric force declined by 20.0±2.3%, 42.6±4.2% and 3.9±2.4% of the previously obtained maximal 

force respectively. Direct application of caffeine was able to significantly recover force by an average 

of 118.4±8.6% of the post-injury force measure in the twenty eccentric contractions group, which was 

significantly greater than the other groups. These results indicated that damage as a result of 

prolonged eccentric muscle activity was due to impaired release of SR Ca2+, though this was not due 

to sarcolemma injury due to change in resting membrane potentials of damaged fibres. Warren et al. 

(2001) also report that 57-75% of the reduction in isolated muscle force 0 to 3 days following in vivo 

damage protocols in young mice was attributable to excitation-contraction coupling failure in EDL with 

the remainder attributable to physical disruption of the musculature. 

 

In ageing skeletal muscles, excitation-contraction uncoupling is a significant contributor to a reduction 

in muscular force and power output (Renganathan et al., 1997). Despite this, it is still unclear as to 

why older skeletal muscles are more prone to single damaging bouts of eccentric activity, thus further 

work is required to determine whether older muscles are more susceptible to damage using more 

realistic length changes in an isolated muscle model, and the consequent recovery in contractile 

performance. 

 

 

 

 

 



34 
 

1.4 - Obesity and Muscle Function 

The prevalence of obesity is quickly becoming epidemic, with the incidence of obesity has doubled in 

over 70 countries, resulting in over 2 billion individuals classified as obese (GBD 2015 Obesity 

Collaborators, 2017). Of this population, the greatest prevalence of obesity is found in adults aged 60-

64 years for women and for men aged 50-54 years (GBD 2015 Obesity Collaborators, 2017). Coupling 

the increased proportion of people who are overweight or obese with the increased life expectancy 

of humans, it is becoming increasingly important to understand the implications of obesity in the 

elderly on health and the associated risk factors that could further impair skeletal muscle function.  

1.4.1 - The Effect of Obesity in Older Adults on Muscular Function In Vivo 

It is expected that obesity in older adults may further reduce the ability to generate force and power. 

This notion of sarcopenic obesity has been proposed as an additional comorbidity to sarcopenia in 

that the addition of obesity in old age further reduces skeletal muscle performance and increases the 

risk of developing associated comorbidities such as type 2 diabetes, and further increases all-cause 

mortality rates (Stenholm et al., 2009; Cheng et al., 2016). Functional capacity is also affected in old 

obese adults, where older obese adults are at a greater risk of falls and developing fractures (Himes 

and Reynolds, 2012; Huo et al., 2016), have a lower gait velocity (Huo et al., 2016), have greater frailty 

and a reduced ability to complete activities of daily living (Hirani et al., 2017). The consequences of 

elevated fall risk and reduced functional capacity can significantly impact on quality of life. In 

comparison to sarcopenia and obesity in adult populations, investigations into how muscle strength, 

power, quality and fatigue resistance responds in sarcopenic obese populations are distinctly lacking, 

despite evidence of impaired functional capabilities in this specific population. 

 

The studies of table S1.4 show that unlike sarcopenia and dynapenia, obesity in older adults has a 

variable effect on skeletal muscle strength and power. Compared with studies of younger obese 

populations (Maffiuletti et al., 2013), studies of old obese populations demonstrate a reduction in 
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muscular strength (Hilton et al., 2008; Stenholm et al., 2009; Huo et al., 2016) whilst others report no 

change (Miyatake et al., 2000; Zoico et al., 2004) or a muscle-specific increase in muscular strength 

(Rolland et al., 2004) as seen in studies of obesity in young adults (Tomlinson et al., 2016). Differences 

may arise due to the muscle group examined. Postural muscles are loaded via an increased fat mass 

whilst there is little loading on non-weight bearing muscles, such as those in the upper body. As such, 

it is unsurprising to see that there is no change (Miyatake et al., 2000; Rolland et al., 2004), or a 

reduction (Huo et al., 2016) in hand grip strength of old obese adults compared to the increases in 

absolute strength of old obese adults of the lower musculature (Rolland et al., 2004; Stenholm et al., 

2009; Tomlinson et al., 2014).  

 

The work which observed no differences or increases in muscle function typically compared 

overweight or obese populations which may explain the lack of differences in muscular strength 

(Miyatake et al., 2000; Zoico et al., 2004). Rolland et al. (2004) found that maximal isometric knee 

extensor and elbow extensor strength was higher than in the old lean group. This was coupled with a 

significantly greater fat mass, fat-free mass, and leg and arm skeletal muscle mass in the old obese 

populations compared to normal weight and lean. There was no indication however of the quantity 

of intramuscular adipose tissue (IMAT) within the skeletal muscle, which may affect muscle quality 

had strength been reported relative to muscle size. 

 

Only one study to date has examined the effect of obesity on muscle power in older adults (Hilton et 

al., 2008). In their study, maximal isometric strength and torque of plantar flexors and dorsiflexors 

were significantly lower in obese older adults compared to overweight older adults. When assessing 

absolute power, however, the magnitude of the difference between the overweight and obese groups 

was greater than that for muscular strength, indicating that as with ageing, the loss of absolute power 

is greater than that of strength. Moreover, muscle quality was significantly affected, with power 

relative to muscle volume also significantly worse in the obese group. The quantity of IMAT was 
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significantly higher in the old obese group, but no differences were observed in muscle and adipose 

tissue volume. This would indicate that the increased non-contractile mass may impair force 

production in older obese populations without affecting muscle size, meaning dynapenic obesity may 

be a significant contributor. This is particularly pertinent given that the ages of the adults in Hilton et 

al. (2008) are much younger than in other studies of obesity in older adults. Moreover, dynapenia has 

been shown to affect skeletal muscle mass and contractile function much sooner than sarcopenia, and 

therefore obesity may exacerbate mechanisms of dynapenia (Hilton et al., 2008), but not sarcopenia 

(Stenholm et al., 2009; Huo et al., 2016). 

1.4.2 - The Effect of Obesity on Muscular Endurance 

Previous work in young mammals (Thomas et al., 2014; Matsakas et al., 2015) and fish (Seebacher et 

al., 2017) has been performed to examine how obesity affects the ability to sustain locomotory 

function, though as with human studies, no work has been performed in old obese animals. In a young 

mouse population (7-10 weeks) provision of a high-fat diet (HFD) for 3-6 weeks was enough to 

significantly impair time to exhaustion during exhaustive treadmill running (Thomas et al., 2014) and 

distance covered during treadmill running (Matsakas et al., 2015). Whilst an in vivo animal model of 

examining locomotory function is valuable for providing an insight into how obesity negatively impacts 

on the ability to sustain locomotory function, it is difficult to discern whether changes in exercise 

capacity is a result of muscular fatigue, neural fatigue or limited respiratory and oxidative capacity as 

a result of a HFD, hence the requirement for in vitro analysis. 

 

It appears that in ageing, the added influence of obesity may not further exacerbate absolute force of 

skeletal muscles, though does reduce muscle quality (Hilton et al., 2008) and locomotory function 

(Stenholm et al., 2009; Yang et al., 2015; Hirani et al., 2017) and tolerance to exercise in obese animals 

(Thomas et al., 2014; Matsakas et al., 2015). As with studies of ageing, difficulties arise in directly 

comparing results due to different ages assessed, determinants of body composition cut-offs and 
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muscle groups assessed. Adopting an in vitro approach can be beneficial for observing the muscle-

specific effects of obesity on absolute and relative muscle force and power, and fatigue resistance to 

sustained activity without the elevated body mass affecting the rate of fatigue. 

 

No previous study has examined the effects of obesity in older adults on the ability to withstand 

fatigue at a muscular level. Some work has demonstrated reduced functional capacity such as gait 

velocity (Huo et al., 2016) though no work has determined the ability for muscle of old obese adults 

to withstand the fatiguing effects of sustained bouts of muscle activity as has been done in studies of 

sarcopenia in older adults (Table S1.1). 

1.4.3 - Isolated Skeletal Muscle Performance 

It is difficult to directly compare the studies which have examined the effects of obesity on isolated 

skeletal muscle contractile performance. Much like with studies of skeletal muscle ageing, examining 

obesity in isolated muscle models is challenging given the differences in methodological approach, 

contractility mode, test temperature, diet duration and composition profoundly alter the outcome of 

a dietary protocol (Tallis et al., 2018). An extensive overview of the effects of obesity on skeletal 

muscle contractile function can be found in Tallis et al. (2018). In brief, HFD’s in rodents generally 

cause a significant increase in muscle mass via the ectopic accumulation of fat (Ayre and Hulbert, 1996; 

Shortreed et al., 2009; Thomas et al., 2014; Ciapaite et al., 2015; Matsakas et al., 2015; Eshima et al., 

2017), although the consequent effect on contractile function is muscle-specific and is dependent on 

several factors. Some studies have shown a reduction in tetanus stress for the soleus (Ciapaite et al., 

2015) and EDL (Matsakas and Patel, 2009; Eshima et al., 2017; Tallis et al., 2017). However, this is not 

always the case, particularly in studies comparing soleus and EDL contractile function, with Ciapaite 

et al. (2015) reporting reduced soleus tetanus stress and prolonged relaxation time following a HFD, 

but no effect for the EDL. By contrast, Tallis et al. (2017) reported directly opposing findings, with little 

effect of obesity on soleus absolute force and power producing capabilities, but a significant reduction 
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in EDL tetanus stress and power. This indicates that obesity is likely to have a greater effect on the 

quality of the contractile tissue rather than the absolute production of force and power, and may be 

related to the in vivo mechanical role and anatomical location of the skeletal muscle (Tallis et al., 

2018). 

 

Tallis et al. (2017) also observed a significant reduction in diaphragm isometric stress and power 

output as a result of an obesogenic diet, though the ability to withstand fatigue was unaffected.  The 

impairment in diaphragm isometric stress is likely to explain the reduced power output. From a 

functional perspective, the blunted diaphragm function is likely to contribute to other co-morbidities 

of obesity that further promotes a negative cycle of obesity (Parameswaran et al., 2006). 

 

To date, only one study has observed the effects of obesity on the contractile properties of skeletal 

muscles isolated from older animals (Bott et al., 2017). At 20 weeks of age, twitch and tetanic isometric 

stress of the soleus and EDL isolated from male C57BL/6J mice was examined in vitro, with the same 

parameters tested following 13 weeks of a HFD and compared to age-matched controls. Whilst there 

was significant age-related atrophy of the soleus, this did not result in reduced twitch or tetanic force 

or stress. A HFD caused significant soleus hypertrophy, likely due to a loading effect of the elevated 

fat mass, though this did not corroborate with an improvement in soleus contractile function. As for 

the EDL, there were no age-related or dietary-induced changes in isometric stress compared to 

baseline or between groups, though twitch activation and relaxation times were significantly 

prolonged compared to baseline. However, a HFD promoted significant atrophy of type IIx and type 

IIb fibre CSA compared to age-matched controls, though ageing did not result in atrophy of the EDL 

fibres compared to baseline. 

 

No study has examined the effects of dietary-induced obesity on the contractile performance of 

skeletal muscles in an old age group. The animals in Bott et al., (2017) are considerably young in the 
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lifespan of the C57BL/6 mouse, nor is an age-related reduction in contractile performance observed. 

Therefore, the study does not truly examine the synergistic effects of ageing and obesity. Considering 

that obesity exacerbates the age-related reduction of muscle quality in vivo, an examination of the 

direct effects of ageing and obesity on a muscular level is warranted. 
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1.5 - Mechanisms Causing Impaired Skeletal Muscle Contractile Function in Old Age 

It is well established that as humans age, a loss of muscle mass occurs leading to a decline in muscle 

force and power (Rosenberg, 1989). However, other causes of muscular ageing, including central and 

peripheral nervous control, intrinsic muscle properties, hormonal status and dietary implications 

contribute to the decline in muscle performance with age (Doherty, 2003). The aforementioned 

causes which contribute to an age-related decline in skeletal muscle contractile function also share 

similar mechanistic pathways as obesity models, leading to poorer contractile function (Miljkovic et 

al., 2015; Pérez et al., 2016; Tallis et al., 2018) and generally affect skeletal muscles composed of 

predominantly fast-twitch muscle fibres more so than predominantly slow-twitch muscles (Seene and 

Kaasik, 2012; Miljkovic et al., 2015). This section shall examine the main mechanisms that contribute 

to the age-related decline in skeletal muscle contractile function, with reference to the mechanism 

that exacerbates ageing in obesity models. Figure 1.5.1 displays the contributing mechanisms that 

relate to a decline in muscle contractility, from the perspective of both sarcopenia and dynapenia. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5.1 - Overview of the interacting mechanisms which contribute to loss of muscle mass 

(sarcopenia) and muscle strength and power (dynapenia) in older adults (Seene and Kaasik, 2012). 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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1.5.1 - Denervation 

It has been demonstrated that an increase in age results in a significant decline in the number of motor 

units supplying a muscle (Carlson, 2004). Electromyography recordings have shown a 25% decline in 

the number of functional motor units in small aged muscles of the hand and foot of those over the 

age of 60 (Stålberg and Fawcett, 1982). However, this decline in the number of motor units is 

counteracted by an increase in the size of the motor units in an attempt to maintain function. As older 

muscle fibres denervate, motor units remodel primarily through reinnervation to maintain axon 

supply to the muscle fibres (Carlson, 2004). However, the state of denervation-reinnervation results 

in net denervation and therefore loss of motor units and innervated muscle fibres (Deschenes, 2004). 

It is considered that the age-related loss of alpha-motoneurons that supply type II muscle fibres result 

in fibres which are incapable of activation and therefore a loss of function (Hashizume et al., 1988; 

Lexell and Downham, 1992). In comparison, the motor unit area and number of type I fibres remain 

largely unaffected by age in human biopsy samples (Lexell, 1995) and rat gastrocnemius muscle 

(Kadhiresan et al., 1996). In the latter case, however, whilst motor unit number decreased, the 

number of fibres per motor unit area increased 3-fold (Kadhiresan et al., 1996). 

 

Whilst denervation is an important cause of musculoskeletal ageing and the consequential loss of 

function in humans (Carlson, 2004), isolation of muscle from animals prior to testing, allows for the 

direct measurement of ageing and obesity on skeletal muscle function independent of the effects 

denervation may have on the force and power production of a muscle. 

1.5.2 - Muscle Mass & Fibre Type Composition 

The age-related loss in skeletal muscle mass is largely attributable to a reduction in fibre number and 

a reduction in fibre cross-sectional area (Deschenes, 2004; Degens, 2007). In humans, muscle mass 

has been shown to peak at 25 years of age (Lexell, 1995), with a small (10%) loss of muscle mass by 

the 5th decade and a more rapid loss of muscle mass beyond this to the 8th decade of life (Lexell, 1995; 
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Deschenes, 2004). A number of causes have been attributed to this age-related loss of muscle mass 

and size, including decreased protein synthesis, muscle disuse atrophy mechanisms and hormonal 

factors (Deschenes, 2004; Degens, 2007). 

 

A reduction in the synthesis of myofibrillar proteins, with age and obesity, would explain the age-

related loss in muscle function and mass (Navarro et al., 2001). Both ageing and obesity have been 

described as causing a state of chronic inflammation, resulting in impaired muscle protein synthesis 

(Akhmedov and Berdeaux, 2013; Tallis et al., 2018). Ageing, obesity, and their synergism leads to an 

upregulation of proinflammatory cytokines such as tumour necrosis factor alpha (TNF-α) and 

interleukin-6 (IL-6). Whilst upregulation of IL-6 can be beneficial to the muscle by initiating myoblast 

proliferation in the process of skeletal muscle regeneration, particularly following injury (Otis et al., 

2014), maintaining a chronic state of inflammation can impair this process. For skeletal muscles to 

regenerate to maintain mass and therefore function, muscles must undergo a series of molecular 

events to promote tissue growth. Satellite cells are non-specialised stem cells found in a quiescent 

state between myofibre plasmalemma and basal lamina of the skeletal muscle (Mauro, 1961; 

Yablonka-Reuveni, 2011). Once stimulated, satellite cells proliferate and differentiate to form new 

myonuclei through the fusion of nuclei to form new skeletal muscle fibres (Verdijk et al., 2014). With 

advancing age, satellite cell number and performance declines in a muscle-specific manner (Shefer et 

al., 2006), where a reduction in the quantity or quality of satellite cells can limit myogenesis as new 

myonuclei cannot form, therefore leading reduced muscle mass (Le Grand and Rudnicki, 2007). An 

excessive body fatness results in an increase in adipose tissue accumulation, the site from which 

proinflammatory cytokines are secreted from (Hilton et al., 2008). Therefore, there is an association 

between the quantity of subcutaneous fat and levels of circulating proinflammatory cytokines (Pinho 

et al., 2017) meaning obesity in old age can further impair the muscle regeneration process at all 

stages of the regeneration cycle, from satellite cell proliferation through to differentiation and growth 

due to the elevation of circulating proinflammatory cytokines (Akhmedov and Berdeaux, 2013). One 



43 
 

example is an impairment in leptin release (Akhmedov and Berdeaux, 2013). Myogenic differentiation 

of proliferated satellite cells can be impaired by an increase in circulating TNF-α levels in old and obese 

individuals (Sishi et al., 2011; Pérez et al., 2016). Upregulation of TNF-α and another proinflammatory 

cytokine, interleukin 1 alpha, can also limit the growth of myoblasts, once differentiated, by inhibiting 

the activation of mechanistic target of rapamycin (mTOR) (Sishi et al., 2011), an important anabolic 

pathway in the process of muscle growth (McCarthy and Esser, 2010). Despite the importance of 

proinflammatory cytokines for homeostatic maintenance of skeletal muscle, maintaining chronically 

elevated circulatory proinflammatory cytokines can be detrimental to muscle mass maintenance in 

old and obese populations. For example, increased circulation of TNF-α in mice expressing the TNF-α 

gene resulted in inhibited myoblast proliferation leading to significant atrophy of the gastrocnemius, 

soleus and plantaris muscles (Langen et al., 2006). Moreover, local delivery of IL-6 for 14 days in young 

rats resulted in significantly impaired gastrocnemius growth, likely due to impaired satellite cell 

proliferation though this was not tested (Bodell et al., 2009).  

 

Maintaining a healthy balance of protein catabolism and synthesis is an important factor for muscle 

quality and quantity. Balagopal et al. (1997) reported a progressive age-related decline in myosin 

heavy chain synthesis; this is likely to reduce the muscle's ability to remodel contractile protein and is 

expected to contribute to the age-induced loss of muscle mass and strength. Welle et al. (1993) 

reported a one-third reduction in quadriceps strength between young and old subjects. This was 

consistent with a 21% reduction in muscle mass and was further supported by evidence highlighting 

a reduction in myofibrillar protein synthesis between young and old populations. An age-related 

reduction in mitochondrial protein synthesis may also contribute to a decrease in muscle mass and 

oxidative capacity (Rooyackers et al., 1996).  

 

Ageing is associated with a fast-to-slow shifting in fibre types, where type IIb fibres transition 

progressively towards a more oxidative fibre type (Deschenes, 2004). Whilst ageing skeletal muscle 
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fibres typically demonstrate a shift towards a more oxidative fibre type (Larsson, 1978; Klitgaard et 

al., 1990; Coggan et al., 1992), there is evidence to suggest obesity causes a shift to a faster fibre type 

in animals (Tallis et al., 2018). The shift to a faster fibre type may partially explain the reduced fatigue 

resistance of human musculature given that fast twitch muscle fibres are less fatigue resistant. 

Moreover, fast twitch fibres have a reduced oxidative capacity due to fewer mitochondria available to 

oxidise fats, which may in part account for the continued accumulation of IMAT and subcutaneous fat. 

Rodent studies are somewhat more equivocal, with some showing no change in fibre type following 

dietary-induced obesity (Turner et al., 2007; de Wilde et al., 2008, 2009; Shortreed et al., 2009) despite 

a reduction in contractile function (Tallis et al., 2017), and others showing a muscle-specific (Trajcevski 

et al., 2013) and sex-specific (DeNies et al., 2014) shift to faster fibre types. The difference in results 

between human and rodent studies are likely due to experimental design, where controlling for diet 

and energy intake is more difficult in human than animal models (DeNies et al., 2014). Little work has 

examined the alteration in skeletal muscle morphology, in terms of fibre type quantity and 

distribution, and the consequence this may have in old and obese skeletal muscles 

1.5.3 - Changes in Excitation-Contraction Coupling and Ca2+ Handling 

A muscular contraction is initiated by the release of Ca2+ from the sarcoplasmic reticulum (SR) which 

then binds to troponin-C to cause actin binding sites to be exposed to allow cross-bridge cycling and 

force production. The process via which Ca2+ is released is called excitation-contraction coupling 

(Ashley et al., 1991). The age-related impairment of Ca2+ release from the SR of the muscle was first 

demonstrated by Delbono et al. (1995) where ageing caused a significant reduction in Ca2+ release 

from fast fibres of human quadriceps due to dihydropyridine-ryanodine receptor (DHPR) uncoupling. 

Similar findings have been observed in ageing rat soleus and EDL (Renganathan et al., 1997) and ageing 

mouse flexor digitorum brevis muscles (Wang et al., 2000) due to an increase in dysfunctional DHPR 

and ryanodine receptors. Given the recent evidence of reduced muscle quality independent of muscle 

wasting, impaired Ca2+ handling could be a significant contributor to the reduction in muscle quality 
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(Moran et al., 2005; Chan and Head, 2010; Tallis et al., 2014) due to an impaired Ca2+ release reducing 

Ca2+ availability for contractile proteins and consequently lead to a reduction in force and power. 

Impaired SR Ca2+ release could be muscle-specific, with Larsson and Salviati (1989) reporting a 

decrease in SR function and Ca2+ availability for single EDL fibres of 23-24-month-old rats, though no 

change in SR Ca2+ availability and Ca2+ pump activity was observed for the soleus. By contrast, 

Narayanan et al. (1996) found that Ca2+ uptake by the SR was significantly impaired in the soleus 

compared to the predominantly fast-twitch gastrocnemius, with impaired activation and relaxation 

times for the soleus. Impaired Ca2+ handling is not only likely to reduce the force-generating capacity 

of the skeletal muscles (Berchtold et al., 2000), but is also likely to contribute to the age-related 

increase in activation and relaxation time of skeletal muscles (Xu and Narayanan, 1998; Tallis et al., 

2014). The protein sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is an important regulator of 

Ca2+ resequestration into the SR and, therefore an age-related reduction in the activity of SERCA may 

have significant consequences for muscle contraction-relaxation dynamics. Work by Tallis et al. (2014) 

reported a significant reduction in SERCA activity, fatigue resistance and prolonged relaxation time for 

the EDL by 50 weeks of age. Interestingly though, the preservation of the quantity of SERCA mRNA 

implies that the activity of SERCA rather than quantity is most problematic during early ageing. The 

normal ageing process leads to excitation-contraction uncoupling through various mechanisms such 

as DRHP-RYR uncoupling and dysfunctional Ca2+ handling proteins such as SERCA. In an obesity model, 

Ca2+ handling can also be significantly impaired, which may help to explain the reduced force and 

power output of skeletal muscles and increased fatigability of isolated muscles (Bruton et al., 2002; 

Schilder et al., 2011; Funai et al., 2013; Ciapaite et al., 2015).  

 

Force and power may be reduced in muscles isolated from obese animals due to a reduction of the 

TnT-3 isoform in some muscles (Schilder et al., 2011). TnT-3 is the fastest isoform of troponin available 

for Ca2+ to interact with in the initiation of the cross-bridge cycle (Perry, 1998). A reduction in TnT-3 

would reduce Ca2 sensitivity at a molecular level and as such may explain the reduced force-generating 
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capacity of faster skeletal muscle. For example, Funai et al. (2013) reported significantly reduced 

SERCA activity following a HFD protocol. Not only is reduced SERCA activity consistent with impaired 

force as shown in SERCA1-null mice (Pan et al., 2003) and grip strength in HFD mice (Funai et al., 2013), 

but it may also explain the prolonged activation time in obese skeletal muscles, particularly the soleus 

(Tallis et al., 2017). As relaxation time during a WL fatigue protocol can increase with each contraction 

(Josephson, 1985; James et al., 1996), a further inability to reuptake Ca2+ prior to the next contraction 

may explain the reduced fatigue resistance in the HFD soleus in Tallis et al. (2017), which may be 

exacerbated in old obese skeletal muscles. The combination of obesity in old age may further 

exacerbate dysfunctional excitation-contraction coupling and further impair force, power and fatigue 

resistance. 

1.5.4 - Increased Connective Tissue and Intramuscular Fat 

One mechanism attributed to skeletal muscle ageing is an increase in the non-contractile tissues, such 

as adipose tissue or collagen, within the skeletal muscle (Marcus et al., 2010, 2012). An increase in 

non-contractile tissues within the skeletal muscles could increase muscle stiffness resulting in an 

unfavourable passive length-tension relationship. For example, Alnaqeeb et al. (1984) found a 

significant age-related increase in muscle stiffness of aged rat soleus and EDL muscles, due to an 

increase in thickness of the endomysium and perimysium and a greater total muscle collagen content. 

 

Much like the mechanisms of sarcopenia and dynapenia, the mechanisms that describe the process 

of accumulation of lipids within skeletal muscles and consequent reduction in contractile function is 

multi-faceted, with various interlinking pathways. This section shall briefly summarise the mechanism 

of skeletal muscle fat accumulation and how ageing influences the storage of fat within skeletal 

muscles. 
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Obesity can be characterised by the excessive accumulation of lipids in non-adipose tissues, including 

skeletal muscles, in a phenomenon known as ectopic fat accumulation (van Herpen and Schrauwen-

Hinderling, 2008), largely due to increased circulating lipids in obese individuals resulting in increased 

fatty acid uptake by skeletal muscles (Goodpaster and Wolf, 2004). In obese populations, when the 

adipocytes within adipose tissue reach their capacity to store lipids, fat storage consequently occurs 

ectopically in organs such as skeletal muscles. This process of lipid uptake and storage in skeletal 

muscles is known as myosteatosis (Miljkovic and Zmuda, 2010).  Myosteatosis has two pathways 

which result in the ectopic accumulation of fat. In the first pathway, lipids accumulate between the 

muscle fibres and are stored as intermuscular adipose tissue (Goodpaster et al., 2000). Intermuscular 

adipose tissue is unlikely to significantly alter skeletal muscle mass due to fat accumulating 

extracellularly between myofibres as opposed to within the muscle fibres (Sinha et al., 2002, Boesch 

et al., 2006, Lee et al., 2012). The alternate pathway for myosteatosis is the accumulation of fat within 

the skeletal muscle fibres, known as intramuscular adipose tissue (IMAT) (Addison et al., 2014) which 

will increase whole skeletal muscle mass and ultimately impair contractile function and muscle quality 

(Fragala et al., 2015, Tallis et al., 2018). 

 

Increased muscular fat could be a key contributor to age-related changes in skeletal muscle function. 

Whilst obesity has been identified as a key factor associated with ectopic accumulation of fat within 

skeletal muscles (Yang et al., 2014), disuse can also result in fat accumulation, with a 4-week period 

of limb immobilisation in young healthy adults resulting in significant IMAT accumulation (Manini et 

al., 2007). The key consideration in relation to skeletal muscle function is that an age-related increase 

in muscle non-contractile tissues usually results in greater skeletal muscle mass and CSA, thus reducing 

force generation per unit of muscle CSA and therefore reducing overall muscle quality. This has been 

shown to be the case in young, dietary-induced obese skeletal muscles (Ciapaite et al., 2015; Matsakas 

et al., 2015; Bott et al., 2017; Tallis et al., 2017) but has yet to be proven in older skeletal muscles. 
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Obesity may exacerbate the reduction in muscle quality in older populations given that ageing is 

associated with increases in non-contractile tissue mass. In previous work, computational modelling 

of the human gastrocnemius has been performed to estimate the contribution of increased IMAT to 

muscle quality and contractile performance of the computer-generated muscle belly in sarcopenic 

obese skeletal muscles (Rahemi et al., 2015). In this work, gastrocnemius was modelled at differing 

quantities of IMAT, from 0% (control), 10% and 20% of total muscle belly volume. Isometric properties 

such as force and stress were simulated to provide an overview of how fat accumulation affects muscle 

contractile performance. Results indicated increasing levels of IMAT reduced muscle force and muscle 

quality due to increased muscle stiffness, with increased fat accumulation exacerbating the effect. 

However, no study to date has utilised biological tissue to examine the relationship between 

advancing age, increased IMAT and the effects on muscle force and quality. 

1.5.5 - The Circulatory System 

Chronic disuse of skeletal muscles and long periods of sedentary behaviour can impair cardiovascular 

function and therefore blood flow to working muscles during rest and exercise (Mechling and Netz 

2009; Martini et al., 2017). However, the literature investigating muscle blood supply is conflicting, 

with many studies showing no change in muscle capillarisation with age (Aniansson et al., 1981; 

Grimby et al., 1982; Denis et al., 1986; Jakobsson et al., 1990; Chilibeck et al., 1997; Kano et al., 2002) 

and others showing a decline (Coggan et al., 1992; Frontera et al., 2000). Coggan et al. (1992) observed 

a ~25% reduction in capillary density in old men and women, with no sex differences observed. Sex-

based differences became apparent when comparing capillary:fibre ratios due to the smaller fibre CSA 

of older females in this study. Human literature which has reported no overall changes in capillary 

density suggest that loss of capillary density with age could, in fact, be specific to fast-twitch muscle 

fibres (Proctor et al., 1995; Kano and Sakuma, 2013). The fact there is greater evidence to support the 

maintenance of capillary density could indicate the body’s desire to maintain homeostasis, as Möller 

and Sylvén (1981) reported where a slight increase in muscle myoglobin content was observed. 
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1.6 - Testing the Mechanical Performance of Isolated Skeletal Muscle 

Isolated skeletal muscle methodologies offer several advantages over in vivo methods of assessing 

muscular contractility. This section will consider the value of an isolated muscle approach and outline 

the principle methodological approaches used for examining skeletal muscle contractility in the age-

related changes in skeletal muscle function. 

1.6.1 - Why Use Animals to Assess the Effects of Age on Muscle Performance? 

To ascertain the contractile properties of skeletal muscles in models other than in vivo, it is common 

to utilise the muscles from animals rather than humans, particularly mammals such as mice, rats and 

hamsters (James et al., 1995, 1996; Tallis et al., 2012, 2013, 2014, 2017). The following section outlines 

many of the advantages of mammalian models for assessing muscle function compared to a human 

cohort in the examination of skeletal muscle ageing. 

1.6.1.1 - Isolation of Specific Muscles 

When considering in vivo assessments of muscle contractility in an older population, it is common to 

either test muscles of the lower body, such as the knee extensors and knee flexors, or those of the 

upper body, including elbow flexors, elbow extensors and forearm muscles recruited during hand grip 

dynamometry (Macaluso and De Vito, 2004). The key limitation here is that these are typically muscle 

groups of varying muscular phenotype. The quadricep femoris, for example, consists of four smaller 

muscles, the rectus femoris, vastus lateralis, vastus medialis and the vastus intermedius (Kary, 2010). 

In terms of muscle composition, the rectus femoris has a tendency for a greater proportion of fast-

twitch muscle whilst the vastus medialis has a greater proportion of slow-twitch than fast-twitch 

muscle fibres (Jennekens et al., 1971; Johnson et al., 1973; Garrett et al., 1984). As a result, it would 

be difficult to identify the fibre type specific effects of ageing and obesity, especially considering that 

ageing and obesity affects skeletal muscles in a muscle-specific manner (Table S1.1 - S1.4). 
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1.6.1.2 - Central Inhibition 

In vivo assessments of muscle function rely upon voluntary activation of specific muscles. However, 

as muscle activation is under nervous control, the mechanisms which affect muscle contractility could 

be masked by the nervous system. For example, force inhibition could be due to poor functioning of 

the central nervous system (CNS), such as ineffective summation and propagation of nervous impulses 

prior to a contraction. Another mechanism is the protective neural mechanisms in place to protect 

the muscle from contraction-induced damage (St Clair Gibson et al., 2001). Whilst this is good in vivo 

to prevent muscular damage, central inhibition limits the potential for skeletal muscles to reach their 

maximal force or power generating capacity that may be altered with ageing of the CNS. This means 

that determining whether in vivo changes in muscle performance are attributed to changes in neural 

control or skeletal muscle performance is difficult. By isolating a specific muscle in vitro, there is no 

control from the central nervous system as externally delivered electrical stimulations are 

manipulated and controlled by the investigator. Furthermore, any limitations to muscle contractility 

can be deduced as being intrinsic to the muscle and not through central inhibition. 

1.6.1.3 - Muscle Quality 

Muscle quality is defined as force or power production of a skeletal muscle relative to the size of the 

tissue (Fragala et al., 2015). Measuring quality is important as during early ageing and obesity, skeletal 

muscles that are older or obese are larger but of a lower quality (i.e. less force per unit of CSA or lower 

power per unit of muscle mass), which has the same or lower absolute force or power as younger, 

leaner skeletal muscles (Tallis et al., 2014, 2017, 2018). Ageing and obesity is associated with an 

elevated body mass, but poorer power output relative to the muscle size without a reduction in 

absolute force or power. (Tallis et al., 2014; 2017). One consequence of this is having to transport a 

larger body mass, which is concomitant with increasing age and obesity (Woo, 2016), despite 

producing the same amount of absolute force or power, and would be compounded further by 

reduced muscle quality. Another consequence is that the larger muscles will contribute further to the 
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elevated body mass and therefore increase the required force to overcome a greater bodily inertia 

(Tallis et al., 2017, 2018). Measuring muscle quality in vivo is difficult due to the method of measuring 

muscle size, where previous studies have estimated muscle volume via computed tomography scans 

(Blimkie et al., 1990), MRI (Hilton et al., 2008) and ultrasound scans (Choi et al., 2016). By isolating a 

skeletal muscle, muscle quality can be more accurately assessed as the whole muscle can be weighed, 

and therefore contractile performance can be expressed relative to whole muscle mass as opposed to 

muscle CSA (Tallis et al., 2014, 2017). Expressing force or power relative to muscle CSA is beneficial as 

it can provide an indication of hypertrophy or atrophy. Moreover, normalising performance to muscle 

CSA allows for comparisons to previous studies which have used the same approach for normalising 

contractile performance. However, such an approach does not consider the replacement of contractile 

proteins with non-contractile mass and connective tissues with increasing age and obesity in rodents 

(Tallis et al., 2018) and humans (Addison et al., 2014; Fragala et al., 2015). By expressing power relative 

to whole muscle mass and relative to muscle CSA, a more comprehensive overview in the changes in 

muscle quality with age and obesity can be determined. 

1.6.1.4 - Examining Fatigue Resistance In Vivo 

Several limitations arise when considering the examination of skeletal muscle fatigue resistance in 

vivo. Human studies of examining fatigue in old age usually employ a variety of methodological 

approaches, such as the protocols used to determine the ability of a muscle to withstand fatigue, the 

duration of the fatigue protocol and the muscle groups tested (Deschenes, 2004). As such, making 

comparisons between studies is difficult (Table S1.1). Human studies of muscular endurance are also 

limited by the fact that fatigue resistance of the muscle cannot be accurately measured in vivo. Older 

adults, who tend to have an elevated body mass and poorer muscle quality than younger counterparts, 

would have to overcome a greater force to overcome the inertia of the moving limb and as such are 

likely to appear to fatigue faster irrespective of exercise intensity. By using an isolated muscle model, 

a standardised approach can be used to allow for better comparisons between studies and between 
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different conditions within a study. Moreover, any changes in fatigue resistance are due to changes at 

the skeletal muscle level as the central nervous system has been isolated, thus eradicating the central 

fatigue effect. 

1.6.1.5 - Nutritional Profile 

From a nutritional perspective, particularly in relation to chapter 6 (sarcopenic obesity), the diets 

provided to mice can be more closely controlled in comparison to humans. During any exercise and 

health studies involving humans, it is common for researchers to ensure their participants consume 

the same standardised diet to ensure each participant consumes equal calories and macronutrient 

quantities which could otherwise impact upon results through metabolism of macronutrients (Ziogas 

and Thomas, 1998). Despite employing an appropriate methodological approach prior to exercise 

testing, it is difficult to determine and control the chronic nutritional profile of a volunteer, nor is it 

always possible to ensure the correct quantities of macronutrients are consumed. During research 

where in vitro techniques are employed, a consistent lab diet is provided to the animals which contains 

the same relative quantities of calories, macronutrients and micronutrients. Whilst the amount of 

food that animals eat cannot easily be controlled for, the nutritional profile is consistent for all mice 

thus reducing the potential impact diet may have on muscle function during in vitro muscle 

investigations. 

1.6.2 - Testing Skeletal Muscle Contractility In Situ 

The assessment of skeletal muscle contractility in situ involves the isolation of specific muscles whilst 

conserving the tendon origin, nerves, and blood supply in the organism (Croes and von Bartheld, 

2007). Testing in situ is beneficial to those who wish to understand the integrated mechanisms that 

contribute to the contractile properties of specific skeletal muscles. Moreover, measurements of 

muscle contractility can be made over days and weeks in the same animal. During in situ protocols, 

the animal is first anaesthetised, then the target muscle and the nerve controlling this is surgically 

exposed, and an electrode capable of electrical stimulations is attached (MacIntosh et al., 2011; Hakim 
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et al., 2013). Care is taken not to sever any of the blood supply to the muscle to ensure the supply of 

oxygenated blood is maintained to prevent the build-up of an anoxic core (Croes and von Bartheld, 

2007). One end of the limb muscle is attached to a force transducer to allow for measurements of 

force produced during a muscular contraction whilst the leg is stabilised. The exposed muscle is kept 

warm at a physiologically relevant temperature of 37°C by placing the animal on an animal heating 

platform to ensure the circulating blood does not cool during experimentation (MacIntosh et al., 

2011). Furthermore, the muscle is submerged in either oxygenated Krebs-Henseleit solution which 

mimics blood plasma (Brown & Hasser, 1996) or mineral oil (Degens and Alway, 2003; Kung et al., 

2014) where either substance is warmed and maintained at 37°C to prevent heat loss (MacIntosh et 

al., 2011). When an electrical stimulation is provided to a single nerve via the electrode, a specific 

muscle is therefore activated and consequently contracts to allow for the measurement of force. 

Whilst in situ testing offers many benefits, it is still difficult to truly isolate the contributing 

mechanisms that can otherwise affect force production during muscular contractions as the nerves 

remain intact. Moreover, typical anaesthetics used have been shown to significantly impair muscle 

contractile function (Ingalls et al., 1996). Should the degree of anaesthesia vary between or within 

experiments then the magnitude of the effects on the muscle’s performance will consequently be 

affected. As such, in vitro methods of assessing muscle contractility have been utilised to remove the 

influence of the CNS during a muscular contraction to allow for a closer assessment of the mechanical 

properties of isolated skeletal muscles. 

1.6.3 - Testing Skeletal Muscle Contractility In Vitro  

Studies which investigate biological matter outside of their normal context in an externally controlled 

environment are said to be in vitro investigations. In the case of skeletal muscles, this is usually 

performed using whole muscle (Moorwood et al., 2013; Tallis et al., 2015), fibre bundles (Park et al., 

2012) or single fibres (Squire, 1997).  
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In brief, an animal with a set of predetermined desirable properties (e.g. specific age) is selected and 

humanely sacrificed. A specific muscle is then isolated and prepared for assessment of its mechanical 

properties. In the case of a mammalian muscle, the isolated muscle would be placed in a chamber of 

circulating, oxygenated, Krebs-Henseleit solution (Table S1.2). Mechanical properties are then 

examined using a variety of contractile methods.  

1.6.3.1 - Comparing Whole Muscle Testing Against Single Fibre Testing 

Once isolated from an organism, muscles can be prepared further to assess muscle bundles or single 

muscle fibres (Brooks and Faulkner, 1994; Thompson and Brown, 1999; González et al., 2000; Kim and 

Thompson, 2012, 2013). Assessing bundles of muscles or single, intact fibres can be beneficial to 

further isolate mechanisms that contribute to a muscular contraction and can allow for fibres of 

consistent fibre type to be used along with the removal of the effects of connective tissue. Initially, 

muscles are isolated, trimmed and, in the case of single fibres, are chemically skinned using a 

glycerinated skinning solution (Stienen, 2000). Single fibres are teased away from the prepared 

bundle, mounted on the testing apparatus and assessed for their mechanical properties (Thompson, 

1999; Thompson and Brown, 1999). This method of testing skeletal muscle can be particularly 

advantageous for quantifying the actomyosin cross-bridge interactions (Brooks and Faulkner, 1994). 

As this type of testing occurs in a Ca2+ controlled environment (Thompson and Brown, 1999), changes 

in force production at the cross-bridge level can be determined without the influence of Ca2+ release 

and reuptake, which can limit force production (Metzger and Moss, 1987).  

 

The diffusion pathway for oxygen is much smaller when single fibres and bundles are used due to a 

smaller quantity of tissue being assessed. As such, this prolongs the quality of the muscle for many 

hours, once isolated (González et al., 2000). Larger muscles are at a greater risk of developing an 

anoxic core due to the greater diffusion pathway (Barclay, 2005), hence in whole muscle experiments 

muscles from mice are usually used, rather than rats. 
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Single fibre experiments are not, however, without their limitations. One of the main aims of this 

thesis is to simulate in vivo conditions to allow for a functional comparison between results found in 

vitro and in vivo. Using single muscle fibres is not representative of in vivo function as the majority of 

the contractile mass is removed for analysis, therefore the whole muscle is not stimulated as would 

be the case in vivo. Moreover, fat and collagen accumulation and within skeletal muscles occurs within 

the muscle belly, so removal of this by isolating single fibres may not provide an appropriate appraisal 

of the influence of obesity on mechanical function due to the removal of connective tissue which 

affects contractile function (Tallis et al., 2017). To simulate the muscular actions found in vivo using 

isolated muscles, it is, therefore, more appropriate to utilise whole skeletal muscles as opposed to 

single fibres or bundles of fibres.  

1.6.4 - Simulating In Vivo Conditions Using Isolated Muscles 

Many experiments, where in vitro analysis of skeletal muscles have been used, have failed to closely 

replicate in vivo conditions, particularly in the case of experimental temperature. Arguably the most 

important external factor to be controlled, test temperature has previously been shown to have the 

greatest and most significant impact on the ability of muscles to perform work (James, 2013). In many 

early studies, a temperature of ~25°C has been typically used to prolong the time-course over which 

the muscle is viable, once removed from the animal, as metabolism is reduced at these temperatures 

(Lüttgau and Oetliker, 1968; Allen et al., 2008). However, usage of such a low temperature in 

comparison to a temperature more indicative of in vivo conditions has been shown to significantly 

impair contractile function. For example, the examination of the iliotibialis isolated from the frog 

Xenopus tropicalis revealed a negligible effect on the force-generating capacity of the muscle at 24°C 

and 32°C. However, there was a significant increase in power output and in the ability to sustain power 

output at 32°C than at 24°C (James et al., 2012). Inorganic phosphate accumulation during fatigue is a 

significant contributor to local muscular fatigue, impairing force during fatigue via a reduction in SR 

CA2+ release and myofibrillar calcium sensitivity (Allen et al., 2008; Fitts, 2008). Increased fatigue 
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resistance with increased test temperature is likely due to the increased test temperature enhancing 

force production and suppressing the force depression caused by high inorganic phosphate 

concentrations (Coupland et al., 2001; Debold et al., 2004). The core body temperature in mice 

(McLaren, 1961) and humans is ~37°C (Mackowiak et al., 1992), and as such previous work 

investigating ageing, where a test temperature of ~25°C has been used (Table S1.2) may not be 

assessing the true maximal contractile performance. To allow for a more realistic simulation of in vivo 

muscle action, more recent work utilising mouse skeletal muscle has typically utilised a temperature 

of 37°C (James et al., 1996; Tallis et al., 2012, 2013, 2014, 2017). It is also important to note that whilst 

‘warmer is better’ is a useful generalisation, hyperthermia will damage the contractile proteins and 

cellular processes due to reactive oxygen species accumulation (Allen et al., 2008) and as such tissue 

viability is likely to deteriorate more rapidly compared to cooler test temperatures. 

1.6.5 - Measuring Contractile Parameters of Whole Isolated Skeletal Muscle 

There are various modes via which skeletal muscles can be activated, all of which have been examined 

in whole isolated skeletal muscles. These modes of muscular activity must be critically analysed to 

determine the most appropriate mode of assessing muscular function which can closely replicate in 

vivo muscular function. 

 

Typically, assessments of isolated muscle contractility have been conducted via isometric, isovelocity 

and isotonic modes of contraction under concentric and eccentric conditions. 

1.6.5.1 - Isometric Muscular Contractions. 

Isometric muscular activity is where force is generated via stimulation of the muscle whilst held at a 

constant length, with fascicle shortening and an increase in pennation angle occurring as a result 

(Kawakami et al., 1998). Isometric contractions are used primarily to determine the absolute force 

production of a skeletal muscle and the quality of the skeletal muscle (force per unit of muscle CSA). 

During in vitro experiments investigating muscle contractility, it is commonplace to perform isometric 
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twitch and tetanus contractions to not only determine maximal muscle force production but to 

optimise muscle length and stimulation parameters prior to commencing further assessments (James 

et al., 1996; Tallis et al., 2012, 2013, 2014, 2017) (Chapter 3). 

1.6.5.1.1 - The Twitch Response 

An isometric twitch contraction is a contractile response that is elicited from a single stimulation 

(Figure 1.6.1) (MacIntosh et al., 2006). The small period of time between the stimulation and force 

generation is known as the electromechanical delay (latency period) (Hufschmidt, 1985) and occurs 

due to sequential biochemical events required to cause muscle activation. When considering a twitch 

response, only a single stimulation occurs resulting in a small release of Ca2+ from SR. As a result, only 

a small amount of actin binding sites are freed so cross-bridge formations are limited, consequently 

force production is small. A multitude of factors can influence the magnitude of the twitch response, 

including the rate of Ca2+ release, troponin saturation with Ca2+
 and the resultant speed of the cross-

bridge cycle. The aforementioned factors are greatly influenced by muscle fibre type (Figure 1.6.1), 

and temperature (MacIntosh et al., 2006). 
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Figure 1.6.1 - The effect of muscle fibre type on time (ms) to the achievement of peak force and full 

relaxation during an isometric twitch. In a predominantly fast-twitch muscle (solid line) peak force and 

consequent relaxation is achieved much faster than in a slow twitch muscle (dashed line). (Adapted 

from Matthews, 2003). 

 

 

The length of the muscle can greatly influence the resultant isometric response. A force-length curve 

can be produced to determine the optimal length of the muscle to evoke maximal twitch force. 

Gordon et al. (1966) were the first to describe the force-length relationship in isolated frog skeletal 

muscle fibres. If a muscle is too short, the muscle has less available actin binding sites for myosin due 

to overlapping actin filaments resulting in reduced cross-bridge formation to produce force 

(Matthews, 2003) (Figure 1.6.2 A&B). Conversely, if a muscle is overstretched whilst determining the 

optimal length, the overlap between thin (primarily actin) and thick (primarily myosin) filaments 

decreases leading to reduced cross-bridge formation (Figure 1.6.2D). A continual increase in length 

leads to no overlap of thick and thin filaments and therefore no active force development (Figure 

1.6.2E). Therefore, peak force occurs at an optimal muscle fibre length (Figure 1.6.2C) (Silverthorn, 

2013).  
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Figure 1.6.2 - The force-length relationship and the effect on sarcomere length in a crimped (A & B), 

optimal (C) and overstretched (D & E) state. (Based on Gordon et al., 1966; adapted by Silverthorn, 

2013). 

1.6.5.1.2 - The Tetanus Response 

A tetanus response is achieved via a series of stimulations that result in a much greater amount of 

force production than a twitch contraction. Performing an isometric tetanus in vitro can determine 

the maximal amount of force a muscle can produce whilst held at a constant length. However, during 

a tetanus, muscles can be activated maximally or submaximally in vitro by altering the rate at which 

stimulations are provided to a muscle (Vassilakos et al., 2009; Tallis et al., 2012). The interaction 

between stimulation frequency and force generation is known as the force-frequency relationship and 

is a useful measure of how electrical activity in vivo affects muscle recruitment and therefore force 

production. Stimulation frequency is altered to promote a greater tetanic response until peak force is 

achieved or can be lowered to promote a submaximal contraction. Submaximal contractions occur as 

Some materials have been removed due to 3rd party copyright. The unabridged version can be 
viewed in Lancester Library - Coventry University.
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the muscle partially relaxes before the next stimulation as the stimulations are not close enough 

together. This type of tetanus is also known as an unfused tetanus response. In terms of contractile 

mechanics, the unfused nature of the stimulations indicates the reuptake of some Ca2+ to the SR prior 

to the next stimulation. This causes a lower net concentration of Ca2+ to be present in the muscle 

myoplasm and subsequently exposed actin binding sites. As a result, the total force production is 

lower. 

 

To maximally activate muscles in vitro, each single stimulation occurs close to the previous stimulation 

not allowing time for the muscle to relax. This is known as a fused tetanus response (Figure 1.6.3). In 

mechanical terms, the greatest possible amount of Ca2+ is released so more cross-bridges can form. 

The stimulation frequencies used to elicit a maximal tetanic response are muscle specific, with the 

amount of force produced dependent on the concentration of Ca2+ released from SR. This likely varies 

due to fibre type and muscle function, with the Ca2+ release and reuptake faster in predominantly fast-

twitch skeletal muscles than predominantly slow-twitch skeletal muscles. 
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Figure 1.6.3 - A comparison of the force produced in a typical single twitch and fused tetanus response. 

Each black triangle represents a single stimulation and the dashed line represents the maximal force 

for each response. (Adapted from Silverthorn, 2013). 

 

The rate of Ca2+ release and uptake from the SR determines the speed of activation and relaxation of 

a muscle. The time to half-peak tetanus (THPT) and last stimulus to half relaxation (LSHR) can be 

determined using isometrics assessments. These measures are important for indicating activation and 

relaxation kinetics, or the ability to release and reuptake Ca2+, which have significant consequences 

for the power producing capabilities of skeletal muscle, with faster release and reuptake resulting in 

a greater, more rapid force response. Muscle fibre type is the key limiting factor to activation and 

relaxation dynamics of skeletal muscle, with type II fibres demonstrating faster activation and 

relaxation dynamics than the slower type I fibres (Tallis et al., 2012, 2013, 2014). 

 

By measuring the maximal amount of force produced during twitch and tetanus muscular 

contractions, it is possible to calculate the stress (force divided by cross-sectional area) of a muscle. 
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Muscle stress is an indicator of the quality of the isolated muscle. Whilst direct measurement of force 

allows for an assessment of absolute isometric force, stress considers the physiological cross-sectional 

area (PCSA) of the muscle, which can be derived from muscle length, muscle mass and an assumed 

muscle density. 

 

Use of isometric assessments has greatly contributed to our understanding of the contractile function 

of skeletal muscles in vitro. However, this method is limited when considering its application and 

validity in relation to in vivo contractile mechanics. Isometric contractions do occur during human 

locomotion; however, many skeletal muscles perform work and in turn generate power via a range of 

cyclical length changes. In order to perform work, a muscle must undergo passive re-lengthening 

following shortening in preparation for the subsequent contraction to follow. James et al. (1996) 

determined that usage of isometrics as a method of testing underestimated likely force production 

and activation and relaxation kinetics during cyclical length changes when compared to force kinetics 

obtained using the WL technique. 

1.6.5.2 - Isotonic Testing 

An important measure in muscle mechanics is muscle shortening velocity and how this impacts on 

force generation. One way of measuring shortening velocity is via usage of isotonic (constant force) 

muscle contractions to assess the force-velocity relationship. The force-velocity relationship describes 

the relationship between the speed at which a muscle can shorten and the resultant force it can 

generate and vice versa (Askew and Marsh, 1998). From a methodological perspective, the muscle is 

initially optimised in terms of length and stimulation frequency via isometric contractions until the 

force generated is constant and maximal (F0). From here, after-loaded shortening contractions can be 

implemented to determine the force-velocity relationship (Marsh and Bennett, 1986; Askew and 

Marsh, 1998). This involves stimulating the muscle with isometric tetani using a specific stimulation 

frequency thus controlling the amount of force that can be generated. Once the desired force is 
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generated, this is “clamped” and the muscle is then allowed to shorten against this resistive force. The 

shortening velocity is then recorded. This protocol is then repeated at differing predetermined loads 

to generate a scatter plot of force against velocity. The force-velocity relationship of a muscle can then 

be expressed via fitting a line to the data via a method such as Hill's (1938) equation. This is expressed 

as follows (Equation 1.6.1):  

 

(𝐹 + 𝑎)(𝑉 + 𝐵) = (𝐹0 + 𝑎)𝑏 

 

Where: F is the tension (or load) in the muscle, V is velocity of a contraction, F0 is the maximum 

isometric tension (or load) generated in the muscle, a is coefficient of shortening heat, b = 

a. V0/F0, where V0 is the maximum velocity, when F = 0.  

Equation 1.6.1 - Hill's (1938) equation for calculating the force-velocity relationship of skeletal muscles. 

 

Hill’s equation generates a hyperbolic curve (Figure 1.6.4). The most important aspects of the force-

velocity curve are the curvature of the line and the muscles maximum shortening velocity (Vmax) 

(Barclay and Lichtwark, 2007). Figure 1.6.4 also shows that velocity is inversely proportional to force, 

or as velocity decreases, force increases and vice versa. In relation to the sliding filament theory, if 

velocity is too great, force generation is impaired as the filaments slide over one another too quickly 

for many cross bridges to be formed. 
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Figure 1.6.4 - The typical force-velocity relationship of fast-twitch glycolytic fibres from the iliofibularis 

muscle of the lizard Sceloporus occidentalis. (Marsh and Bennett, 1986; Adapted by Askew and Marsh, 

1998). 

 

For each data point, force can be multiplied by velocity to determine power output so that the 

relationship between contractile velocity and power can be determined. From figure 1.6.5, the 

inverted U-shaped traces indicate the force at which power is maximal. By factoring in these as a 

whole component, force generation and the speed at which the muscle contracts for the given amount 

of force must be optimal to elicit maximal power. 

 

 

 

 

 

 

 

Some materials have been removed due to 3rd party copyright. 
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Figure 1.6.5 - Example of a force-power output curve for the EDL (A) and soleus (C) isolated from male 

C57BL/6 mice. Power is calculated as the product of force (mN) at a given percentage of maximal force 

production (P0) and the maximal shortening velocity of the muscle at a % of P0 (Graber et al., 2015). 

Whilst force-velocity (Figure 1.6.4) and force-power output (Figure 1.6.5) relationships give us useful 

information about the intrinsic mechanical properties of muscle they are generated under artificial 

experimental conditions that do not simulate likely in vivo conditions. The muscle must re-lengthen 

prior to the next contraction, with re-lengthening requiring mechanical energy input, or negative work 

(Abbott et al., 1952), that is not considered during isotonic testing. When considering power output, 

isotonic testing overestimates measures of power, with power obtained via isotonic testing double 

that obtained via the work loop technique. James et al. (1996) suggested a set of conditions that must 

occur for this to be possible. The muscle must first activate and relax instantaneously prior to the next 

cyclical contraction. The mechanics of Ca2+ release and uptake instantly limit this as a condition. A 

muscle must also be able to maintain optimal velocity and force during shortening for maximal power 

Some materials have been removed due to 3rd party copyright. The unabridged version 
can be viewed in Lancester Library - Coventry University.
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output to be obtained each time. However, as previously highlighted, this is simply not achievable in 

vivo due to the varying velocities and forces generated during cyclical movement. 

1.6.5.3 - Isovelocity Testing 

Isovelocity testing is another means of assessing the force-velocity relationship of skeletal muscle 

Whilst isotonic testing measures velocity at a known, clamped force, isovelocity testing involves 

measuring force production at a known and constant rate of shortening or lengthening. One way is to 

utilise the slack-test method (Edman, 1979), where the muscle is shortened without an added load, 

otherwise known as maximal unloaded shortening velocity. Another method is the step-release 

protocol, where the muscle is initially activated through an isometric tetanus stimulation until peak 

force is achieved when at this point the muscle is shortened to a new length resulting in a rapid 

decrease in muscle length and force. This is then followed by shortening at a constant known velocity 

which allows for force generation to be maintained at the lower level of force reached at the end of 

the rapid shortening (Lou et al., 2002). Whilst isovelocity testing has contributed to our pool of 

knowledge regarding muscle contractility, like isotonic testing, this mode of contraction does not 

consider the contributing dynamic conditions under which muscles normally operate in vivo. 

 

These ‘iso’ forms of testing have allowed for a greater understanding of the underlying characteristics 

that predominantly affects the mechanical properties of skeletal muscle and the mechanisms under 

which they operate, namely length, force and velocity. These methods of assessing muscles have been 

utilised to better understand the effects of ageing (chapter 4 & 5) and obesity (chapter 6) on isolated 

skeletal muscle contractility. Whilst these ‘iso’ methods have demonstrated the relationship between 

these mechanical characteristics and improved our understanding of how these relationships affect 

muscle contractility and human movement, they poorly contextualise the actual mechanical 

relationships found during in vivo function. Whilst indeed some muscles do operate under these 

conditions, such as isometric activity of the muscles involved in maintaining posture and stabilisation 
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whilst standing (De Troyer, 1983; Loram et al., 2004), dynamic changes in force, length and velocity 

must be considered in tandem during human movement (Josephson, 1985; Dickinson et al., 2000).  

 

More recently, the work loop (WL) technique has been employed as a means of more closely 

replicating in vivo conditions when assessing muscle contractility in vitro. This method addresses the 

main drawbacks found with ‘iso’ modes of contractions and can more accurately simulate the 

physiological conditions found in vivo. 

1.6.5.4 - The Work Loop Technique 

This thesis primarily employs the WL technique as the method of better understanding the mechanics 

of skeletal muscle in relation to in vivo contractility. As muscles work in antagonistic pairs, they must 

undergo cyclical length changes at a range of speeds and muscle lengths in order to produce work for 

locomotory actions (such as walking, running and swimming; (Dickinson et al., 2000) and respiratory 

motions (diaphragm contraction during inhalation and relaxation during exhalation). Because of this 

technique, it is possible to quantify the net amount of work (the total net energy generated during 

muscular contractions) and therefore power that is produced by individual muscles when undergoing 

active length changes. 

 

The first studies to have utilised the WL technique as a means of simulating cyclical length changes 

was through the investigation of asynchronous flight muscles of insects (Machin and Pringle, 1959, 

1960; Machin et al., 1962). This work was further enhanced by Josephson (1985) who added phasic 

stimulation to produce synchronous muscular contractions i.e. one phase of stimulation producing 

one full WL cycle. 

 

The WL method works by delivering length changes in conjunction with phasic electrical stimulation. 

This involves a pattern of muscle lengthening from the optimal length, shortening and re-lengthening 
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back to the optimal starting length (Figure 1.6.6). This alteration in length is known as a change in 

strain, which is optimised to maximise net work when the power producing ability of the muscle is of 

interest. Many WL studies have used sinusoidal length changes, either to simulate in vivo length 

change or as a convenient strain pattern when in vivo strain is unknown. As discussed, muscles in vivo 

undergo varying complex length changes. For example, when the isolated semimembranosus muscle 

from the toad Bufo americanus was activated cyclically, the proximal and distal end of the muscle 

strained in opposite directions for up to 34% of the WL cycle, indicating that the adjacent muscle 

segments operate differently in mechanical terms by working at different regions of their force-length 

and force-velocity relationships (Askew et al., 1997; Ahn et al., 2003). Sine waves have been identified 

as a good, easy to implement, generalisation of muscle length changes found in vivo (James et al., 

1995, 1996) whilst being able to offer a direct comparison between different muscles due to the same 

mode of action. During these length change cycles, external electrical stimuli can be provided just as 

the muscle reaches its maximal length, ensuring that the muscle is fully activated at its greatest length 

and that the stimulation occurs through some of the muscle shortening phase to generate positive 

work (Figure 1.6.6). This is then followed by a period of largely passive re-lengthening where no stimuli 

are provided. 
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Figure 1.6.6 - Changes in muscle strain with the implementation of sine waves (A). Changes in force 

during WL cycles. Black horizontal dashes indicate periods of electrical stimulation, where the 

stimulation occurs as the muscle reaches its greatest length and is maintained during muscle 

shortening. This is accompanied by a rapid increase in force and a respective decline during muscle 

shortening and consequential lengthening (B). The changes in muscle power output during WL cycles 

in relation to force and length changes (C). (Adapted from Askew et al., 1997). 

 

By plotting muscle strain (length change of the muscle ÷ initial length) against force (or stress), a 

concentric, anticlockwise WL trace can be formed (Figure 1.6.7) (Josephson, 1985, 1993). The area 

within this WL is the net work of the length change cycle and is the sum of the active, positive work 

and the passive, negative work. 
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Figure 1.6.7 - Example of a concentric WL generating net positive work (A). Sinusoidal length changes 

are imposed on a muscle (L), with stimulation periods (S) optimised to stimulate through shortening. 

Force production (F) is plotted against muscle length to form a WL. The arrow indicates the direction 

of the WL. Length 0.0mm indicates starting muscle length. Shaded areas represent the positive (C) and 

negative work produced (B), with each calculated as force x length during shortening (positive) and 

lengthening (negative). Net work is then defined as the positive work minus the negative work, or the 

area within the loop (A). (Choi and Widrick, 2009). 

 

As the net work (Joules) and the length change duration (s) is known, dividing work done by the time 

taken can provide a value for power (J.s-1 or Watts) (Josephson, 1993). This can be normalised to 

muscle mass, thus quantifying the amount of power generated per quantity of tissue (Watts.kg-1) or 

to body mass to provide an indication of power relative to animal size. Changes in cycle frequency (CF) 

essentially alter the shortening velocity and hence force and work production. So as per the force-

velocity relationship, net work is inversely proportional to CF. When CF and net work are multiplied, 

power output is determined and the relationship between CF and power output can be plotted, 

following an inverted-U trend, or more simply, a power output-cycle frequency curve (PO-CF; Figure 

1.6.8). Whilst construction of PO-CF curves has been performed in mammalian skeletal muscle such 

as the diaphragm, EDL and soleus (Altringham and Young, 1991; James et al., 2011), no work to date 

A B C 
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has produced a PO-CF curve in relation to ageing and obesity. This could be valuable considering the 

possibility for the optimal CF to shift to elicit maximal power output in response to each experimental 

condition. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6.8 - Example of a power output-cycle frequency curve for the soleus and EDL isolated from 

the Djungarian hamster, Phodopus sungorus, during control conditions and daily hibernation (torpor). 

Power is expressed relative to muscle mass, using cycle frequencies ranging from 1Hz to 10Hz for soleus 

and 2Hz to 15Hz for EDL (James et al., 2011). 

1.6.5.5 - Assessment of Muscular Fatigue 

Isometric contractions have been employed, not only to measure isometric force and stress but also, 

to measure the ability of the muscle to withstand fatigue during repeated isometric contractions. This 

is achieved by subjecting an isolated preparation to repeated contractions with short periods of rest 

between each period of stimulation, with measurement of the rate of fatigue or time-course of fatigue 

(Zhang and Kelsen, 1990; González and Delbono, 2001) or time to decline to 50% of the pre-fatigue 

maximal isometric force (Pagala et al., 1998). However, as identified by Tallis et al. (2014) measuring 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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fatigue resistance via repeated isometric contractions is a poor indicator of dynamic skeletal muscle 

action in vivo (Josephson, 1985). To counteract this, recent work has assessed the fatigue resistance 

of isolated muscles using the WL technique (Tallis et al., 2012, 2013, 2014, 2017). Work by Askew et 

al. (1997) utilised mouse soleus muscle to assess the effects of cycle frequency on fatigue 

development during repeated WL cycles. The most notable changes during the fatigue protocol was a 

reduction in force over time, a slowing in muscle relaxation and a change in the force-velocity 

relationship. These changes in the mechanical properties with fatigue were identified by changes in 

the WL shapes, coupled with an increase in negative work and decrease in positive work, at different 

cycle numbers (Figure 1.6.9). 

 

In terms of the WL shape, the most distinguishable change is the reduction in the area of the WL and 

thus decreased net work, during the onset of fatigue (Figure 1.6.9). This reduction in net work can be 

attributed to a lower peak force and the ability to maintain force during muscle shortening. As fatigue 

develops, a figure of eight shaped WL may eventually develop, whereby during part of the cycle 

positive work is produced and in another part of the cycle negative work. Fatigue beyond this will 

generate fully negative WLs as the muscle will generate greater force through lengthening than 

shortening whilst undergoing the same length change cycle. 

Figure 1.6.9 - Changes in the WL shape of the mouse soleus muscle in a series of WLs at cycle 

frequencies 2Hz (A) and 6Hz (B) (Askew et al., 1997). 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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1.6.6 - Methodological Approach of This Thesis 

Whilst all the ‘iso’ parameters described have provided a valuable insight into how skeletal muscles 

contract, usage of the WL technique is currently the most reproducible in vitro technique to gain 

insight into in vivo performance of skeletal muscle in mammals. A combination of isometric muscle 

contractions and the WL technique shall be utilised in the present thesis. Isometrics, whilst limited in 

their in vivo application, allows for comparisons to previous studies examining age-related changes in 

isometric force and stress. 

 

In this thesis, the soleus, EDL and diaphragm shall be assessed due to the two locomotory muscles 

having been the most commonly assessed muscles used in in vitro muscle contractility work and these 

muscles being of differing phenotype; predominantly slow and fast-twitch respectively (Tallis et al., 

2012, 2013, 2017). As for the diaphragm, this is utilised to represent the effects age and obesity may 

have on muscles of different anatomical location and function (Tallis et al., 2014). With the above 

methods being employed, an understanding of the contractile properties of specific muscles can be 

performed to identify changes in skeletal muscle contractile function, and the influence of co-

morbidities, and how this may relate to whole body muscle performance.  
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Chapter 2 - Research Questions and Hypotheses  

The rationale for each study is provided in brief in section 1.1 of the introduction, with a more detailed 

discussion of each study rationale in the introduction and each corresponding chapter. Below, a series 

of research questions and hypotheses are provided for each experimental chapter. 

 

Study 1 (Chapter 4) - The Sex-Based Differences in the Age-Related Changes in Isolated Locomotory 

(Soleus & EDL) and Respiratory (Diaphragm) Contractile Function of CD-1 Mice. 

 

This study sought to address the following questions: 

1. Are the age-related changes in the contractile performance of isolated skeletal muscle-specific 

and sex-specific? 

2. Does ageing result in a shift in the optimal velocity for producing power and to what extent 

does ageing cause a decline in power? 

3. When does the muscle-specific and sex-specific onset of dynapenia and sarcopenia occur? 

4. Does the loss of absolute force and power exceed the loss of relative force (stress, force per 

unit of muscle cross-sectional area) and power (power relative to muscle mass and body size)? 

5. To what extent does dynapenia (loss of contractile performance) and sarcopenia (loss of 

contractile performance along with a reduction in muscle mass) contribute to the skeletal 

muscle ageing process, and how is this affected by sex and the muscle examined?  

6. Does the decline in isometric stress occur to a greater magnitude than that of muscle power, 

and does this change with increasing age? 

7. What is the effect of increasing age on the fatigue resistance of isolated soleus, EDL and 

diaphragm muscles for males and females? 

Hypotheses 

1. As with human and animal models of muscular ageing, it is expected that younger males will 

produce greater absolute and normalised force and power than females. However, the loss of 



75 
 

absolute force and power from peak maturity and onwards will occur at a faster rate for males 

than females, with a faster and earlier decline for the EDL compared with the soleus and 

diaphragm due to greater atrophy of fast-twitch fibres with age, and a shift from a fast-to-

slow twitch phenotype. 

2. A shift towards a slower cycle frequency for optimal power output is expected for EDL due to 

a fast-to-slow shift in muscle fibre type that is more likely to occur for the EDL than with the 

soleus and diaphragm due to composing of predominantly fast-twitch muscle fibres. 

3. As EDL muscle mass increased in the study by 50 weeks of age in the study by Tallis et al. 

(2014) by 50 weeks of age for isolated EDL, a loss of muscle mass is still unlikely by 78nweeks 

of age for soleus and EDL. This is due to muscle atrophy not typically occurring until the final 

25% of an animal’s lifespan, with a 50% mortality rate for 78-week-old CD-1 mice. Should there 

be a loss of muscle mass, the loss is expected to be greater for males than female skeletal 

muscles due to males typically having greater muscle mass, so there is greater scope for mass 

to be lost. 

4. It is expected that absolute performance to be better maintained in old age rather than muscle 

quality due to intrinsic mechanisms, such as excitation-contraction coupling and increased 

non-contractile mass contributing to a decline in quality rather than a loss of absolute function 

due to age-related increases in whole muscle mass (Tallis et al., 2014). 

5. As with Tallis et al. (2014), it is expected that the age-related loss of isometric stress will occur 

to a greater magnitude than the loss of normalised WL power output. 

6. The loss of muscle function will occur before the loss of muscle mass for all muscles of both 

sexes in the first instance, with the magnitude of the decline likely to occur greatest for the 

EDL of males. By 78 weeks of age, a loss of muscle mass may have occurred, which will 

consequently lead to an acceleration in the decline of force and power. 

7. The effect of age on fatigue will be muscle specific. Generally, older muscles will be less fatigue 

resistant than younger muscles when normalised to muscle mass, though sex-differences may 
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not be apparent given the current evidence examining sex-based differences in muscle fatigue 

of isolated skeletal muscles (Chan & Head, 2010). Moreover, the EDL will be most susceptible 

to an age-related change in fatigue resistance compared with soleus and diaphragm. 

 

Study 2 (Chapter 5) - The Effect of Increasing Age on the Concentric and Eccentric Contractile 

Properties of Isolated Mouse Soleus and Extensor Digitorum Longus Muscles. 

 

This study sought to answer the following questions 

1. Does increasing age affect the absolute eccentric power and eccentric power normalised to 

muscle mass of isolated locomotory muscles? 

2. is there a difference in the time-course of fatigue during repeated concentric and eccentric 

work loops, and are the difference muscle-specific and age-specific? 

3. Does sustained concentric and eccentric activity impair the consequent ability to recover 

concentric power in older skeletal muscles? 

Hypotheses 

1. Absolute and normalised eccentric power will not change with age, though concentric power 

will be significantly lower for the soleus and EDL. 

2. Older skeletal muscles are likely to fatigue faster during concentric and eccentric fatigue than 

younger skeletal muscles. 

3. Older skeletal muscles will not recover power as rapidly as younger animals, with concentric 

power following sustained eccentric activity likely to remain depressed to a greater extent 

than young skeletal muscles during recovery. Previous work has reported that older skeletal 

muscles are more susceptible to contraction-induced damage during repeated lengthening 

protocols. As such, recovery following sustained eccentric work loops is likely to be more 

impaired in older skeletal muscles 
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Study 3 (Chapter 6) - The Effects of Age and Dietary-Induced Obesity on the Contractile Function of 

Isolated Locomotory and Respiratory Skeletal Muscles. 

To answer the following questions 

1. To what extent does dietary-induced obesity affect the morphology of older animals? 

2. Does a high-fat diet cause a reduction in absolute measures of force and power, and muscle 

quality compared to control animals? 

3. Will a high-fat diet result in a reduced fatigue resistance for older isolated skeletal muscles? 

Hypotheses 

1. Consumption of a high-fat diet will result in significantly greater body mass, fat mass, and 

muscle mass compared to age-matched control animals.  

2. A high-fat diet will cause a significant reduction in absolute and relative mechanical 

performance in a muscle-specific manner, with force of faster muscles impaired to a greater 

extent due to the mechanistic similarities between ageing and obesity that results in poorer 

contractile function in faster skeletal muscles. 

3. Fatigue resistance of slower muscles is likely to be impaired to the greatest extent than faster 

muscles as with younger studies of obesity. 
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Chapter 3 - General Methods 

3.1 - Animals 

The ethical committee at Coventry University approved the use of animals for use in these projects. 

White male and female mice (strain CD-1, Charles River Harlan Laboratories, UK) were purchased at 

ages 3-9 weeks and kept in-house to mature at Coventry University.  Each sex was divided into single-

sex cages of 8-10 based on their target age for each experimental group. Each cage was exposed to 

12-hour light-dark cycles at 50% humidity and an ambient temperature of 25°C without access to 

running wheels. All mice were provided with a standard lab chow diet (SDS Rat and Mouse No.1 

Maintenance, LBS Biotech, Hookwood, UK) (SDS RM-1 M). Mice had access to food and water ad 

libitum throughout the duration of the studies. A qualified vet examined the animals at regular 

intervals and those that were deemed unhealthy were removed. Unhealthy animals were identified 

by visually apparent symptoms such as unusual growths/tumours or dragging of the hind limbs. If 

upon sacrifice internal complications such as growths were identified, then the animal was discarded, 

and the muscle not utilised for experimentation. The exact numbers excluded in each study are 

provided in each respective chapter. 

 

Many previous studies examining age-related changes in skeletal muscle contractile performance 

typically utilise inbred strains, such as the C57BL/6J mouse and the F344 rat (Table S1.2). Using inbred 

strains for such purposes are useful as each animal is genetically homogenous, so the consistency of 

the genetic background is greater than that of outbred strains, such as the CD-1 mouse. However, the 

CD-1 strain was selected as studies have found that the CD-1 strain is outbred enough to display a 

genetic heterogeneity similar to those found in humans (Rice and O’Brien, 1980; Aldinger et al., 2009), 

with the aim of the thesis to replicate in vivo conditions found in humans as closely as possible. Further 

to this, Miller and Nadon (2000) suggest that the outbred strains, such as the CD-1, are better suited 

to ageing studies than inbred strains due to a greater longevity and fewer health complications. 
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For study one, mice were aged to 3, 10, 30, 52, and 78 weeks prior to experimentation. In study two, 

mice were aged to 10 weeks and 78 weeks whilst in study three mice aged to 79 weeks of age. No 

data exists to depict the representative ages of CD-1 mice to humans, however, Flurkey et al. (2007) 

mapped the representative ages of the inbred C57BL/6J strain to humans and as such the 

representative ages are used as a proxy for the CD-1 mouse. For study one, a 3-week age group, 

representing adolescence in humans, was included to demonstrate the rate of ageing from a young 

age group to what has been deemed as peak sexual maturity at 10 weeks of age, with this age group 

representing adulthood in humans (Tallis et al., 2014). A 30-week old age group, representing the start 

of middle-aged humans, was used to determine whether there was a linear decline in contractile 

performance between 10 weeks and 52 weeks of age. A 30-week-old age group was only included for 

males as data already exists for females, with little changes in contractile performance observed (Tallis 

et al., 2014). Whilst a 50-week old age group was used in Tallis et al. (2014) a 52-week (12-month) old 

age group was used in study one to represent a mature adult population. Beyond these age groups, a 

78-week (18-month) old male and female group were used to represent an older population, where a 

50% mortality rate for female CD-1 mice occurs at 78 weeks of age (Navarro et al., 2002). Many studies 

having previously utilised a 20-24-month age group to represent a very old population when 

investigating muscle contractility in vitro (Thompson and Brown, 1999; González et al., 2000; González 

and Delbono, 2001; Lynch et al., 2001; Moran et al., 2005; Chan and Head, 2010; Graber et al., 2015). 

The current work attempted to replicate this by using a 24-month-old age group. However, by 2 years 

of age, the majority of the animals had died, with only 4 female mice and no male mice surviving. 

  

Once animals had reached their target age in all studies, each age group was utilised within 14 days 

to minimise the effect of the age group being used continuing to age. The 3-week age group were 

used within 7 days of arrival to the animal unit.  
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3.2 - Skeletal Muscle Dissection and Preparation 

Mice were sacrificed by cervical dislocation and then weighed to determine body mass (BM) (1475 MP 

8-2, Sartorius, Göttingen, Germany). For study three, nasoanal length (NAL) and body circumference 

were quickly recorded following sacrifice to later calculate Body Mass Index (BMI) and Lee Index of 

Obesity (LIO), common non-invasive measures of obesity in rodents (Bernardis and Patterson, 1968; 

Sjögren et al., 2001). The soleus and EDL were utilised to determine whether the effects of age and 

obesity differed between locomotory muscles of different fibre type and function (soleus 53.6% type 

I, 31.2% type IIA, 15.2% type IIX; EDL 3.9% type I; 9.3% type IIX; 86.8% type IIB in 90 day old adult 

C57BL6/J mice; (Agbulut et al., 2003). In chapters 4 and 6, the diaphragm was also used to determine 

whether this respiratory muscle is affected in a different manner by age and obesity.  

3.2.1 - Soleus and EDL Dissection 

Following cervical dislocation, the hind limbs were skinned and removed. The limb with the required 

muscle was pinned out whilst submerged in fresh and frequently changed (once every 5 minutes) 

refrigerated (~4oC) oxygenated (95% O2: 5% CO2) Krebs-Henseleit solution of composition (mM) NaCl 

118; KCl 4.75; MgSO4 1.18; NaHCO3 24.8; KH2PO4 1.18; glucose 10; CaCl 2.54; pH 7.55 at room 

temperature (James et al., 2005). The EDL or soleus from the right hindlimb was used to examine 

skeletal muscle contractility whilst the EDL or soleus from the left limb was rapidly removed, dabbed 

on tissue paper, flash frozen in liquid nitrogen and kept in a -80⁰C freezer (Forma 900 Series, Thermo 

Scientific, Ohio, USA). The EDL and soleus isolated for contractility measures were isolated with the 

tendon still attached at the distal end and the tendon and a small piece of bone left attached at the 

proximal end of the muscle. The distal tendon was then wrapped with an aluminium foil T-clip as close 

to the muscle as possible (Figure 3.1) (Tallis et al., 2012, 2013, 2014).   
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Figure 3.1 - A diagram which displays an isolated locomotory muscle (soleus) which has been clipped 

and is ready for the isometric and WL protocol. The bone at the proximal end and the clip at the distal 

end are placed into crocodile clips in the rig. This muscle is approximately 9mm long. 

3.2.2 - Diaphragm Dissection 

As with the locomotory muscles, following cervical dislocation the animal was skinned with the entire 

thoracic cavity removed, ensuring that the diaphragm and ribs connecting to it were intact and 

undamaged. Following removal of the internal organs and the skin, the ribs and diaphragm were 

pinned out so that the diaphragm sheet was above the sternum. In this position, a portion of the 

diaphragm no wider than two ribs was isolated from the right-hand side with ribs attached at one end 

and an aluminium foil clip was placed around the central costal tendon (Tallis et al., 2014) (Figure 3.2). 

Extra care was taken to ensure that the muscle fibres of the diaphragm were equally aligned in the 

clip and that all the fibres were under the same amount of tension due to the implications of the force-
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length relationship (Gordon et al., 1966). The left-hand portion of the diaphragm was snap frozen in 

liquid nitrogen and stored in a -80oC freezer for later biochemical analysis. 

 

Figure 3.2 - A clipped segment of diaphragm with the clip wrapped around the central tendon. 

 

Once the target muscle had been isolated and placed into the rig, the white gonadal adipose tissue 

from around the pelvic region of the mouse was removed in its entirety, placed in a weighing boat and 

weighed on an electronic balance (B204-S, Mettler-Toledo, Zurich, Switzerland). The gonadal fat pad 

mass (FPM) (g) was recorded, with the fat pad and remaining carcass then safely discarded. Isolation 

and weighing of gonadal FPM was only performed in study three. 
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3.3 - Experimental Set-Up 

Mechanical performance of skeletal muscle was assessed using a custom-built system (Figure 3.3) 

whereby stimulation parameters and length were altered to determine maximal isometric force 

production as well as dynamic power output via the WL technique. Following dissection, the muscle 

was placed in a bath with circulated oxygenated Krebs-Henseleit solution maintained at 37±0.2°C. 

Crocodile clips were used to attach the muscle, via the aluminium t-foil clips or bone, to a force 

transducer (UF1, Pioden Controls Ltd., UK) at one end and a motor arm (V201, Ling Dynamic Systems, 

UK) at the other. The position of the motor arm, and therefore muscle length, was detected via a 

Linear Variable Displacement Transformer (LVDT) (DFG5.0, Solarton Metrology, Bognor Regis, UK). 

The force produced by the muscle was measured by the force transducer. The signals from the force 

transducer and LVDT were delivered via a custom-built rig box, where the signals were processed and 

amplified, to a digital storage oscilloscope (2211, Tektronix, Marlow, UK) to provide a rapid visual 

representation of force production and length changes. This information was also delivered to the PC, 

via a data acquisition board (KPCI3108, Keithley Instruments, Ohio, USA), which ran the custom 

written Testpoint software (Testpoint, CEC, Massachusetts, USA) which controlled the stimulation and 

length change parameters delivered to the muscle. The experimental length and stimulation variables, 

including stimulation frequency, length change cycle frequency (CF), strain and stimulation burst 

duration, were changed by the user via Testpoint software. The length and stimulation parameters 

used were muscle-specific; greater detail of this, in relation to each experiment, is explained in later 

chapters. Testpoint also provided the calculated net total work done for each WL in microjoules (µJ). 

This was achieved by the programme plotting force produced against change in length during 

muscular lengthening and shortening resulting in a plot of a WL, where the area of the plot 

corresponds to the calculated net work performed (Josephson, 1985). Force and length data were 

sampled at a rate of 10 kHz. The starting length of the muscle was manually changed, with an 

alteration in the distance between the force transducer and the motor arm changing the physical 
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length of the muscle in the bath. Peristaltic pumps either side of the rig maintained the flow of the 

oxygenated Krebs-Henseleit solution into the bath. The Krebs-Henseleit solution was kept at a 

physiologically relevant temperature (37.0±0.2°C) where a reservoir of ~500ml of the solution was 

placed into a heater/cooler bath (Grant LTD6G, Grant Instruments Ltd., Shepreth, UK) in order to keep 

the temperature within the aforementioned range. At any one time, ~30ml of the solution was in 

circulation around the system and in the muscle bath. This temperature was used as it is reported that 

the temperature of mouse muscles in vivo is ~37°C (Mackowiak et al., 1992). The temperature of the 

Krebs-Henseleit solution in the bath was constantly measured with a digital thermometer (Checktemp 

C, Harvard Apparatus, UK), with the temperature of the water bath adjusted accordingly to maintain 

the temperature range. The muscle was electrically stimulated via parallel platinum electrodes in 

contact with the solution with stimulation amplitude (12V-18V) altered by a benchtop power supply 

(PL320, Thurlby Thandar Instruments, Huntingdon, UK). Each stimulation signal from the computer 

caused the relay to switch to open, allowing the power supply to deliver an electrical stimulus. 
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Figure 3.3 - A schematic of the experimental set-up.
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3.4 - Calibration of Equipment 

It is important that the equipment was calibrated at regular intervals to ensure that the force, length 

and work being recorded were the true values and not due to a recording error because of 

uncalibrated equipment. The two components of the experimental set-up which were calibrated were 

the force transducer and the LVDT. 

3.4.1 - Calibration of the Force Transducer 

 The force transducer was calibrated regularly by hanging known weights from it. Once the weights 

were applied, the magnitude of the force was measured on the oscilloscope and the data plotted as 

per Figure 3.4. Masses ranged from 2g to 10g and was performed in a random order. Calculating the 

slope and the intercept of this data allowed for the calculation of the force transducer calibration (in 

mN.V-1). 

 

 

 

 

 

 

 

 

 

Figure 3.4 - The output for the calibration of the force transducer. x intercept = the force produced by 

the known masses (dependent variable); y = the voltage recorded on the oscilloscope (independent 

variable). 
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3.4.2 - Calibration for Length Changes from L0 

An item (usually a small screw) was placed into the crocodile clip attached to the motor arm to act as 

a referent point. A strain which elicited an expected length change was input into Testpoint and 

performed continual sinusoidal wavelength changes whilst measuring the total number of units the 

object moved from the initial starting position via an eyepiece graticule fitted to a microscope (a). This 

represented the total length change value from L0. The magnitude of the sinusoidal wavelength 

change was measured on the oscilloscope in Volts (b). This represents the voltage change which occurs 

during the sinusoidal waveforms and is equivalent to the physical length change from L0. A physical 

measurement of the item in the motor arm (c) was then made in millimetres and measured as units 

under the eyepiece graticule (d). The equation to calculate the length calibration is as follows 

(Equation 3.4): 

[(c/d) * a]/b = length calibration; mm/V, 

Where - a = units moved on graticule during sinusoidal waveforms; b = delta voltage of sinusoidal 

wavelength changes; c = physical length of the object measured; d = length of the object derived from 

the graticule. 

Equation 3.1 - The equation used to calibrate the experimental set-up in terms of the length calibration 

value to ensure accurate muscle length measurements were achieved.
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3.5 - Mechanical Measurements of In Vitro Skeletal Muscle Performance 

Once the muscle was placed in the rig and attached to the crocodile clips, the muscle underwent a 10-

minute equilibration period to allow for the muscle to adapt to the new environment. In the case of 

these studies, the muscle preparations then underwent a series of both isometric and dynamic (WL) 

assessments during concentric (Chapters 4, 5 & 6) and eccentric (Chapter 5) muscular activity.  

3.5.1 - Twitch Stimulations 

Following 10 minutes of stabilisation of the preparation, muscles were stimulated to produce a series 

of twitch responses. Firstly, muscle length was gradually increased by physically lengthening the 

muscle by changing the distance between the crocodile clips. Twitch stimulations were performed at 

each new length until twitch force plateaued despite an increase in length. Next, stimulation voltage 

(typically 12-16V for soleus, 10-16V for diaphragm and 14-18V for EDL; whereas a pulse width of 1.2ms 

and stimulation amplitude of 160mA was fixed) was increased until the highest twitch force was 

achieved. Again, this was determined as the point where twitch force plateaued/decreased despite 

an increase in stimulation amplitude. Should force decrease following an increase in the physical 

length or stimulation amplitude, the length was returned to the previous length or stimulation value 

which elicited the higher amount of twitch force. The maximal twitch force was then recorded. 

3.5.2 - Measuring Muscle Length (L0) 

Once physical length and stimulation amplitude were optimised for the EDL and soleus, muscle length 

was measured using an eyepiece graticule attached to a dissection microscope and was defined as L0. 

The mean muscle fibre length was calculated as 75% and 85% of the measurement obtained via the 

eyepiece graticule for the EDL and soleus respectively, as measured and determined by James et al. 

(1995). For the diaphragm, the muscle was measured directly using the eyepiece graticule as no 

estimation exists, for the fibre:muscle length ratio, due to different sections of the diaphragm being 

taken for each dissection (Tallis et al., 2014).  
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3.5.3 - Tetanus Stimulations 

Once maximal twitch force was determined, tetanus stimulations were then provided to the muscle 

to determine maximal tetanic force. These were performed using the muscle length and stimulation 

parameters that previously elicited maximal twitch force. The stimulation frequency, or the rate at 

which electrical stimulations were delivered to the muscles, was altered until maximal force was 

produced. This typically ranged from 120-140Hz for the soleus and diaphragm, and 200-220Hz for the 

EDL. The duration of the electrical stimulation, or burst duration, was 350ms for soleus, 250ms for 

diaphragm and 250ms for EDL, as per previous research (Tallis et al., 2012, 2013, 2014, 2017). These 

remained unchanged during the assessment of tetanic force. 5 minutes of rest were imposed between 

each tetanus stimulation to allow for sufficient recovery of the muscle prior to the next burst of 

stimulation (Tallis et al., 2013, 2014). Once peak isometric force was determined, a final tetanus 

stimulation, using the first stimulation frequency tested, was performed prior to the WL protocol to 

monitor changes in performance over time. Using the trace of isometric force from tetanus 

stimulations on the oscilloscope, measurements of peak tetanic force, activation time (THPT) and 

relaxation time (LSHR) were performed (James et al., 2004; Seebacher and James, 2008; Tallis et al., 

2012, 2014; Higgins et al., 2013; James, 2013). These are common measures used to assess the speed 

of activation and relaxation, and therefore indicate rates of Ca2+ release and subsequent uptake by 

the SR (Tallis et al., 2013, 2014) and can also provide an indication into cross-bridge efficiency during 

muscle activation and relaxation.  

3.5.4 - The Work Loop Protocol 

Once the isometric properties of the muscle had been optimised, a 5-minute rest was imposed before 

the assessment of muscular power using the WL technique. This technique measures the ability of 

specific isolated muscles to generate force whilst undergoing cyclic length changes (Josephson, 1985; 

James et al., 1996) and as a result, calculates the power output of the muscle. Testpoint can derive 

average net work due to the ability to utilise instantaneous force and velocity values to calculate work. 
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As per section 1.6.5.4, this technique considers both the passive and active properties of the muscle 

during cyclical muscular contractions or the positive and negative work produced during a contraction 

(Josephson, 1985). The muscle was held at the previously determined L0 with the stimulation 

amplitude and frequency parameters derived from the isometric contractions employed. Each muscle 

was subjected to four sinusoidal length changes per set of WL measurement, with a 5-minute rest 

period imposed between each set of WL’s to ensure sufficient recovery (Tallis et al., 2014, 2017). 

Length changes were performed via the motor arm, where electrical stimulations were initiated 

before the muscle was at its greatest length and ceased before its shortest length during a WL (James 

et al., 1996). In this work, a range of speeds of contraction, known as cycle frequencies (CF) was 

assessed for each muscle to determine the effect age and obesity had on muscle mechanics at faster 

and slower speeds of contraction. Each stimulation variable and its implication on contractile 

properties, net work and WL shape is outlined below. 

3.5.4.1 - Strain 

Strain is defined as the change in length during cyclical contractions from the L0 determined during 

twitch contractions. The value for strain and the resulting total length change was determined by the 

value input into the Testpoint software. In relation to the WL, the skeletal muscle initially passively 

lengthens from L0 to its maximal length. Just prior to the muscle reaching its maximal length, electrical 

stimulation is delivered to the muscle for a specific burst duration. The timing at which the electrical 

stimulation is provided prior to the muscle reaching its maximal length is defined as the phase, which 

is discussed in greater detail in section 3.5.4.3. The electrical stimulation continues to be delivered 

during muscular shortening, ceasing prior to the muscle reaching its shortest length, before being re-

lengthened back to L0 (Figure 1.6.7). As an example, a strain of 0.10, or ±5% length change from L0, 

infers the muscle will increase in length from L0 by 5%, shortens by 5% back to L0 and shortens a further 

5% from L0 to its shortest length, and then re-lengthens by 5% back to the predetermined L0. The strain 

was altered to ensure maximal net work was achieved at a given cycle frequency. 
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3.5.4.2 - Burst Duration (ms) 

The time period during which a muscle is actively stimulated during shortening by the parallel platinum 

electrodes is known as the burst duration. This period of electrical stimulation causes the release of 

Ca2+ from the SR and initiates the formation of cross-bridges. Like strain, it is important to achieve an 

optimal burst duration to ensure maximal Ca2+ release during muscle shortening for maximal force 

development and thus work. Under-stimulation due to a small burst duration will reduce force 

production. Likewise, over-stimulation of the muscle would result in the muscle being stimulated 

during muscle re-lengthening, resulting in greater eccentric work due to greater resistance to muscle 

re-lengthening as the muscle is too active during lengthening, therefore increasing negative work thus 

reducing net work. All changes in burst duration were implemented to ensure optimal force 

production during muscle shortening in order for maximal net work to be achieved. In relation to WL 

shapes, burst duration was reduced if the WL shape resembled an “infinity” sign (Figure 3.5A) or if the 

shape sloped downwards during muscle re-lengthening (Figure 3.5B). Burst duration was increased if 

the shape sloped downwards during shortening (Figure 3.5C). Typical burst durations for each muscle 

at 10 weeks of age are provided in table 3.1.  
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Figure 3.5 - Typical concentric WL shapes if a muscle has been over stimulated due to burst duration 

being too large (A & B) or under stimulated due to burst duration being too small (C). The expected WL 

shape for a concentric contraction is provided in figure 1.6.7. 

3.5.4.3 - Phase (ms) 

To ensure that the muscles were active during shortening, a negative value for phase (ms) was used 

to initiate the electrical stimulation at a set time before the muscle reached its maximal length. For 

example, a phase shift of -10ms for soleus ensured that stimulation began 10ms prior to the muscle 

reaching its greatest length. The stimulation would consequently be provided throughout the 

shortening phase just prior to the muscle reaching its’ shortest length to reduce negative work. Other 

phase shift durations were -5ms for diaphragm and -2ms for EDL; these durations ensured that the 

muscle was active at the start of the muscle shortening in order to achieve maximal net work, and 

have been used in previous work (Tallis et al., 2012, 2013, 2014). Stimulation starts before the muscle 

starts to shorten to account for the latency period during which the electrical stimulation causes a 

cascade of events, during activation, throughout the skeletal muscle resulting in Ca2+ release and 

consequent force production. As such, although electrical stimulation starts during muscle 

lengthening, negative work is minimised. 
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3.5.4.4 - Cycle Frequency (Hz) 

The rate at which each muscle undergoes sinusoidal length changes during the WL technique is 

determined by the CF. The soleus, EDL and diaphragm produce peak power at different optimal 

shortening velocities due to variation in fibre phenotypes. As a result, each muscle generates greater 

power at an optimal CF where the actin and myosin filaments bind at a contraction speed where the 

optimal velocity of shortening occurs. Lower CF’s result in greater net work due to greater cross-bridge 

formations but cause the muscles to contract at a slower speed resulting in reduced power output as 

power output = CF × work per cycle. By contrast, higher CF’s cause the muscles to contract at faster 

speeds, but net work is lower due to fewer cross-bridge formations. It is therefore important to 

identify and use the optimal CF to generate the true maximal power output of a skeletal muscle. Prior 

in vitro research has shown that Vmax is reduced in older age groups (Thompson and Brown, 1999; Kim 

and Thompson, 2013), whilst some demonstrate no change with age (Brooks and Faulkner, 1988, 

1994; Kim and Thompson, 2012). Therefore, a range of CF’s was used to determine whether the CF 

that elicited maximal power output changed with age and obesity and if there was an overall shift 

towards a slower, optimal CF with age and obesity. Some work utilising the WL technique has 

previously assessed mouse muscle power output across a range of CF’s (James et al., 1995, 1996, 2011; 

Askew and Marsh, 1998) allowing for the formation of a parabolic power output-cycle frequency (PO-

CF) curve where power output was plotted against CF for each muscle (Figure 3.7) though no work 

has investigated this in relation to increasing age or obesity.  

 

In previous research, power output was greatest using CF’s of 5Hz, 7Hz and 10Hz and typically using 

burst durations of 65ms, 55ms and 50ms for soleus, diaphragm and EDL respectively with a strain of 

0.10 usually eliciting maximal power output in each muscle using the aforementioned parameters 

(Altringham and Young, 1991; James et al., 1995, 2004; Tallis et al., 2012, 2013, 2014). These 

parameters are optimal in a young age group and were subject to change in older age groups. These 

CF’s with their constituent parameters were used first to optimise the muscle to determine the 
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maximal power output of the muscle. On some occasions, the strain and burst duration were altered 

slightly based on the WL shapes as previously mentioned in order to ensure maximal net work was 

achieved at each CF.  

 

Muscles then underwent WL’s across a range of CF’s as outlined in table 3.1, with burst duration and 

strain altered at each CF to elicit maximal WL net work. The general trend was that as the CF 

decreased, optimal strain and burst duration increased and vice versa (James et al., 1996). As for the 

first CF’s (5Hz, 7Hz & 10Hz), burst duration and strain were altered based on WL shape to ensure 

maximal net work. The order in which each CF was tested was determined at random using an online 

number generator. This was employed to remove an order effect for each muscle. The only exception 

was for the slowest CF’s (2Hz, 3Hz and 4Hz for soleus, diaphragm and EDL respectively) which were 

used last as the slow speeds, with longer burst durations, may damage the fibres of the muscles. 

 

Due to the build-up of an anoxic core over time (Barclay, 2005), drops in performance are observed in 

skeletal muscles tested in vitro. For example, Tallis et al. (2014) observed an average 13.8% and 15.4% 

decline from the maximal power output obtained in the EDL and diaphragm respectively over a time-

course of 180 minutes from the start of the WL protocol. Therefore, in chapters 4 and 6, control WL 

stimulations were performed every 2-3 sets of WLs, to monitor the changes in tissue viability over 

time. A control set of WLs’ was performed using the parameters that elicited the greatest net work at 

CF 5Hz, 7Hz and 10Hz for the soleus, diaphragm and EDL respectively every 2-3 CF’s once maximal net 

work had been achieved for each CF. This also allowed for later corrections to be made in order to 

show the true maximal net work at each CF that may otherwise be masked by the decline in muscle 

quality. This has been performed in previous work as a means of measuring changes in muscle quality 

over time (James et al., 1996; Tallis et al., 2014).  The correction factor is described in greater detail in 

section 3.6.
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Table 3.1 - The burst durations and strains typically used for each muscle at each cycle frequency which elicited maximal net work during the WL protocol. 

Where a CF is not tested for a muscle a dash (-) represents this. These values are only typical values used for a young (aged 10 weeks) age group. Based on 

WL shapes, these values were subject to change at other age groups. A greater description of the parameters employed for the older age groups is provided 

in chapter 4. 

 

 

                                      Cycle Frequency (Hz)   

Muscle Parameter 2 3 4 5 6 7 8 10 12 14 16 

Soleus Burst Duration (ms) 245 150 92 65 52 35 24 11 - - - 

 Strain  0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 - - - 

EDL Burst Duration (ms)  - - 110 - 75 - 65 50 32 24 16 

 Strain - - 0.13 - 0.12 - 0.11 0.10 0.09 0.08 0.07 

Diaphragm Burst Duration (ms) - 180 140 92 78 55 48 24 15 - - 

 Strain - 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 - - 
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3.5.4.5 - Fatigue Protocol 

Following the final control set of WLs’, a 10-minute rest was implemented to allow for the muscle to 

recover. Following the 10-minute rest, muscles underwent 50 consecutive WL’s to assess the fatigue 

resistance of muscles using the stimulation and length change parameters which were utilised as 

controls. As the muscles fatigue, the net work from the WL declines over time due to a reduced ability 

to generate force during muscle shortening and increased eccentric work during muscle re-

lengthening (Vassilakos et al., 2009). The net work for every second WL was recorded until the 50th 

WL. Tallis et al. (2013, 2014) have utilised this protocol to investigate the fatigability of isolated soleus, 

EDL, and diaphragm muscles, and the ability of the muscle to recover from a continuous period of 

sustained work. 

3.5.4.6 - Recovery Protocol 

For the recovery element of the protocol, each muscle underwent 30 minutes of recovery immediately 

after the fatigue run, with four WL’s performed after 10, 20 and 30 minutes of recovery respectively. 

These time points were used to map the rate of recovery for each muscle (Tallis et al., 2014). Following 

the final WL, the muscle was removed from the bath for weighing and freezing. Frozen tissue samples 

were stored for any future biochemical analyses. 

3.5 - Tissue Mass Measurements and Dimension Calculations 

Following experimentation, the muscle was taken from the bath, and the tendons were then removed 

ensuring the muscle was left intact. The muscle was blotted on absorbent paper, to remove any excess 

Krebs-Henseleit solution, and placed on an electronic balance (Mettler-Toledo B204-S, Zurich, 

Switzerland) to determine the wet muscle mass of the muscle to the nearest 0.00001g. The muscle 

was then placed in a labelled Eppendorf tube and frozen in liquid nitrogen. Mean muscle cross-

sectional area was calculated from the mean fibre length (muscle sample length for diaphragm) at 

optimal isometric force generation, muscle mass and assumed muscle density of 1060kg.m-3 (Méndez 
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and Keys, 1960). Using muscle density, muscle CSA (m2) was calculated as muscle mass divided by the 

product of muscle density and mean muscle fibre length. Absolute force (mN) was calculated as the 

product of force (V) and the force calibration value, calculated in section 3.4.1 (mN/V). Isometric stress 

(kN.m2) was calculated as absolute force divided by mean muscle cross-sectional area. As the third WL 

tended to provide the greatest net work at each CF, this value was used to calculate PO. Therefore, 

the net work from the third WL was used to represent the true capacity of the muscle to produce 

power. Absolute power output (mW) was calculated as the product of maximal net work calculated 

by the Testpoint system and CF, with power output normalised to muscle mass (W.kg-1) calculated as 

absolute power divided by the muscle mass. 

 

The total duration of the experiment, from the point of cervical dislocation to the final set of WLs’ of 

the recovery period, was ~190 minutes in length for the studies in chapters 4 & 6, and ~105 minutes 

in length for the study of chapter 5. 
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3.6 - Correction Factor 

Control WL contractions were performed at regular intervals to monitor the rate of decline of work 

performed over time (chapter 4 & 6). The quality of a dissected muscle will decline mainly due to the 

build-up of an anoxic core in the muscle (Barclay, 2005). It is therefore important to correct the work 

completed at each CF to gain a true representation of the maximal power output of the muscle at 

each CF. To calculate the rate of decline and constituent corrected work, the control contraction which 

elicited the greatest work represented 100%. From this, the changes in muscle performance were 

calculated as a percentage between each control, assuming a linear change in performance between 

each control. The work performed at each CF was then divided by the calculated percentage and 

multiplied by 100 to determine the actual work performed. For example, if the muscle quality declined 

from 100% by 4% over 4 WL runs muscle quality between each control was assumed to have declined 

by 1% per contraction. By the fourth contraction, the work performed is 96% of the true value. So, the 

work done at that CF is divided by 96 and then multiplied by 100 giving the true work done at that CF. 

A comparison of an uncorrected and corrected power output x CF curve is provided in figure 3.6. 
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Figure 3.6 - A power output-cycle frequency curve for soleus muscle (n=8). This highlights the effect of 

correcting the net work at each cycle frequency over time to present the true power output of the 

muscle. Blue circles represent the uncorrected power output whilst the red squares show the true 

power output at each CF following correction. No correction was performed at 5Hz as this was the 

control CF and is, therefore, only blue in colour. 

3.7 - Statistical Analyses 

Due to the different methodological approached used for each experimental chapter, the details of 

the statistical analyses used are provided in detail for each experimental chapter. 
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Chapter 4 - The Sex-Based Differences in the Age-Related Changes in Isolated 

Locomotory (Soleus & EDL) and Respiratory (Diaphragm) Skeletal Muscle 

Contractile Function of CD-1 Mice. 
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4.1 - Abstract 

In isolated skeletal muscles, little is currently known about the sex-based, muscle-specific occurrence 

of sarcopenia and dynapenia, and the consequential effects on contractile performance. The present 

study uses the work loop technique to examine the ageing related changes in skeletal muscle 

contractile performance of isolated soleus, EDL and diaphragm for males and females at various time 

points of the animal lifespan. Measurements of animal morphology, absolute and normalised force, 

absolute and normalised power across a range of contractile velocities, fatigue resistance and 

recovery were compared in male and female mice aged 3, 10, 30 (male only), 52, and 78 weeks old. 

Ageing results in increased body mass, soleus & EDL muscle mass and absolute force and power of 

locomotor muscles up to 52 weeks of age, where males were heavier and more powerful than females. 

The loss of muscle quality exceeded the loss of muscle mass, where isometric stress and normalised 

power peaked at 10 weeks and progressively declined with age to similar levels for males and females. 

By 78 weeks of age, however, muscle quality was significantly worse for males than females for all 

skeletal muscles. Ageing did not cause a shift towards a slower contractile velocity to maintain power 

output. Poorer fatigue resistance was only observed in female diaphragm, whilst recovery of power 

for soleus and EDL was unaffected by age whereas EDL recovery was more variable. Acute and 

sustained in vivo locomotor performance is likely to be poorer in males than females due to muscles 

of poorer quality working against a greater bodily inertia than in females. 
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4.2 - Introduction 

Studies of musculoskeletal form and function in humans demonstrate an age-related reduction in 

strength (Young et al., 1984, 1985; Overend et al., 1992; Goodpaster et al., 2001) and power (Skelton 

et al., 1994; Lauretani et al., 2003; Pojednic et al., 2012; Edwén et al., 2014), with the loss of power 

exceeding that of strength (Metter et al., 1997; Krivickas et al., 2001; Raj et al., 2010) and the loss of 

absolute force and power, and force and power relative to body mass and muscle volume, occurring 

to a greater magnitude for males than females (Skelton et al., 1994; Edwén et al., 2014). The age-

related reduction in contractile performance is associated with poorer locomotory capabilities, 

independence, greater all-cause mortality and a lower quality of life (Bassey et al., 1992; Horner et al., 

2011; Volaklis et al., 2015; Tsekoura et al., 2017; Celis-Morales et al., 2018). Coupled with the ever-

increasing financial burden on public health services in the treatment of age-related muscle disorders 

and their co-morbidities (Sousa et al., 2016), there are a number of factors that provide motivation 

for furthering our understanding of the age-related changes in skeletal muscle morphology and 

contractile function to improve quality of life for the older population. 

 

Studies of skeletal muscle ageing are extensive in the assessment of in vivo human skeletal muscle 

contractile function in males and females (Table S1.1), with studies of isolated skeletal muscle 

contractile function using young and old rodents largely reciprocating findings of in vivo research 

(Table S1.2). Whilst human studies of skeletal muscle ageing have been valuable in furthering our 

understanding of age-related changes in skeletal muscle contractile function, there are several 

limitations to utilising such an approach. Firstly, there is a dearth of literature that has examined 

changes in muscle quality, which describes contractile performance relative to tissue mass, in 

comparison to studies of absolute changes in strength and power (McGregor et al., 2014). Measuring 

muscle quality is important as ageing is associated with an increase in intramuscular adipose tissue, 

consequently increasing muscle mass and overall body mass (Marcus et al., 2010; Addison et al., 
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2014). These larger muscles produce the same or lower absolute force for an increased mass, thus 

increasing the effort to overcome a larger bodily inertia, potentially contributing to increased fatigue, 

and elevating the overall metabolic cost of maintaining a larger skeletal muscle mass (Fragala et al., 

2015). Measuring muscle quality of specific skeletal muscles is also difficult due to the difficulties of 

accurately measuring muscle quality in vivo (Fragala et al., 2015; Tallis et al., 2018), and as such the 

muscle-specific nature of skeletal muscle ageing is poorly understood in humans. Of the studies to 

have measured the age-related changes in skeletal muscle quality, such work expresses force relative 

to muscle CSA (Cruz-Jentoft et al., 2010; McGregor et al., 2014) or body mass (Edwén et al., 2014), 

with the loss of function exceeding that of muscle size (Clark and Manini, 2008). Measuring whole 

muscle mass, however, is a more accurate method of assessing muscle quality (Tallis et al., 2018). 

Another limitation is that denervation of muscle fibres occurs with increasing age also, contributing to 

a reduction in contractile performance, and consequently may mask the ageing effect at the skeletal 

muscle level (Carlson, 2004). 

 

By utilising an isolated muscle approach, the confounding effects of examining ageing in humans can 

be overcome. However, previous studies of isolated skeletal muscle ageing are also flawed in their 

methodological approach. Most notably, there is a significant dearth in the literature examining age-

related changes in power output (Tallis et al., 2014). Determining power output from isometric and 

isovelocity contractions is a poor indicator of in vivo muscle function, where dynamic activation of 

muscles during power production is required for locomotion and respiration rather than static 

strength (Dickinson et al., 2000). Usage of the WL technique provides a more accurate replication of 

in vivo muscle function (Josephson, 1985; James et al., 1996) though only one study to date has 

examined the age-related changes in isolated skeletal muscle contractile function using the WL 

technique (Tallis et al., 2014). There is also a distinct lack of studies examining sex-based differences 

in isolated contractile function, with only one study to date which ahs compared the age-related 

changes in isometric force of isolated male and female EDL muscles (Chan and Head, 2010). Finally, 
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no study to date has measured age-related changes in power output across a range of cycle 

frequencies (CF’s).  

 

Ageing is associated with a downward and leftward shift in the force-velocity relationship (Raj et al., 

2010) but does not cause a leftward shift in the force-power curves with increasing age (Graber et al., 

2015). Tallis et al. (2014) used a fixed CF in the examination of WL power output for isolated EDL and 

diaphragm, despite it being possible for a shift towards a slower contractile velocity with increasing 

age in order to maintain optimal power output. Construction of a power output-cycle frequency (PO-

CF) curve (James et al., 2011) can aid in determining whether there is a downward and leftward shift 

in the PO-CF curve with increasing age and whether the optimal CF required to elicit maximal power 

is altered by age. As the speed of contraction is fixed, maximal shortening velocities of skeletal muscles 

cannot affect the power produced and therefore a leftward shift in the PO-CF will be due to fibre-type 

shifting towards a more oxidative state (James et al., 2011). 

 

The current study furthers the work conducted by Chan & Head (2010) and Tallis et al. (2014), in which 

it is the first to simultaneously consider the age-related changes in absolute and normalised force and 

power to determine changes in muscle quality, the muscle-specific responses to ageing, the 

interaction between power output and contraction velocity, and whether sex has a significant 

influence on mechanical performance of isolated muscles at multiple ages. An examination of the 

predominantly slow-twitch soleus morphology and contractile performance was performed, in 

addition to the predominantly fast-twitch EDL and the diaphragm (respiratory muscle of a mixed 

phenotype), to compare the age-related changes of this locomotory skeletal muscle with another 

locomotor muscle as is common with in vitro ageing research (Table S1.2). The in vivo anatomical 

location, function and fibre composition means it is likely that these skeletal muscles will age at 

different speeds compared to one another.  
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It is expected that with increasing age beyond peak physiological maturity (i.e. 10 weeks), the loss of 

muscle quality shall exceed that of absolute force and power as with human studies of ageing due to 

a maintenance of muscle mass but a poorer contractile tissue quality. Ageing is likely to result in a 

downward shift in the PO-CF curves normalised to muscle mass in line with an age-related decline in 

muscle quality. The effects of ageing will be muscle-specific, with the soleus and diaphragm likely to 

be affected by ageing to a lesser extent than the EDL due to their in vivo mechanical roles and fibre 

type profile. 
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4.3 - Methods 

A more detailed account of the methodological approach is provided in chapter 3. 

4.3.1 - Animal Information 

White male and female CD-1 mice were purchased at aged 3-9 weeks old and allowed to mature in-

house at Coventry University. At 9-10 weeks, male mice were later housed in groups of 3-4 to minimise 

the fighting that was observed due to the inability to maintain a colony hierarchy in each cage. Female 

mice housing remained unchanged throughout. The only exception was for mice aged 3 weeks, which 

were used within one week upon arrival at Coventry University. All other groups were allowed to 

mature to the following ages prior to experimentation: 10 weeks, 30 weeks (males only), 52 weeks 

and 78 weeks (1.5 years). A justification for use of these age groups is provided in section 3.1.  

10 animals in total were excluded due to illness. Upon sacrifice, certain ailments were identified, 

including cancerous growths, typically around the gonadal area near the hind limbs (n=6), extremely 

swollen and inflamed livers (n=3) and severe malnourishment (n=1). 

4.3.2 - Muscle Isolation and Preparation 

Once the animals had reached their target age, mice were selected and were sacrificed by cervical 

dislocation and weighed to determine body mass (BM). At room temperature (~22°C), the segment of 

animal that contained the target muscle was skinned, rapidly isolated and placed in chilled (~5°C), 

oxygenated (95% O2, 5% CO2) Krebs-Henseleit solution.  

 

A single muscle from each single mouse was utilised for muscle mechanics. The target muscles from 

the right hindlimb were prepared for mechanics measurements. Aluminium foil T-clips were wrapped 

around the distal tendon of each locomotory muscle to avoid tendon slippage during muscular 

contractions (Tallis et al., 2014). A small piece of bone was left at the proximal end of the muscle to 

allow for the muscle to be anchored in the experimental rig. Whole diaphragm muscle was removed 
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from the animal, with only the ventral segment of the costal diaphragm used to assess mechanical 

performance. Aluminium foil T-clips were wrapped around the central tendon with two ribs at the 

opposing end of the diaphragm segment left intact to anchor the muscle in the rig. Once dissected, 

muscles were placed in a flow-through chamber filled with oxygenated Krebs-Henseleit solution 

heated to and maintained at 37±0.2oC. 

4.3.3 - Isometric Contractions 

All muscles underwent a series of twitch activations in order to optimise muscle length (L0) and 

stimulation amplitude, as per sections 3.5.1 and 3.5.2. The physical length and stimulation amplitude 

(14-20V for EDL, 12-17V for soleus and 12-18V for diaphragm; stimulation current 160mA, 1.2ms pulse 

width) were altered until maximal isometric twitch force was achieved. The physical length at which 

peak twitch force was achieved was defined as L0. The stimulation amplitude required to achieve peak 

twitch force for all muscles was unaffected by age (P>0.67) and sex (P>0.92). The maximal tetanic 

force was measured by subjecting the EDL and diaphragm to a 250ms burst of electrical stimulation 

and the soleus to a 350ms burst of electrical stimulation. The frequency at which the stimulations 

were provided was altered until peak tetanic force was achieved. This was typically 120-140Hz for 

soleus, 120-150Hz for diaphragm and 200-220Hz for EDL. The duration of muscle activation and 

relaxation was measured as time to half peak tetanus (THPT) and last stimulus to half tetanus 

relaxation (LSHR) respectively. 5-minutes of rest were imposed between each tetanic stimulation in 

order to allow for sufficient recovery. 

4.3.4 - Work Loop Protocol 

Each muscle was held at the previously determined L0 and the stimulation amplitude and frequency 

that resulted in maximal tetanic force were implemented. Using the WL, sinusoidal length changes 

were implemented to examine power output across a range of contractile velocities (cycle 

frequencies), outlined in detail in section 3.5.4. Initially, a cycle frequency of 10Hz for EDL, 7Hz for 

diaphragm and 5Hz for soleus was used as these cycle frequencies typically elicited maximal power 
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output in previous research for locomotory (James et al., 1995, Tallis et al., 2014) and respiratory 

(Altringham & Young, 1991; Tallis et al., 2014) skeletal muscles. A strain of 0.10 (±5% length change 

from L0) was typically used for all muscles at the aforementioned cycle frequencies, with phasic bursts 

of electrical stimulation provided per sinewave for durations of 50ms, 55ms and 65ms to the EDL, 

diaphragm and soleus respectively. Each work loop was performed every 5-minutes to allow for 

sufficient recovery. Net work was determined across a range of cycle frequencies in order to produce 

a power output-cycle frequency curve (PO-CF) (James et al., 1995, 1996, 2011; Askew and Marsh, 

1998). Cycle frequencies utilised ranged from 4-16Hz for EDL, 3-12Hz for diaphragm and 2-10Hz for 

soleus and the order in which each CF was tested in was selected at random. Length change and 

stimulation variables were altered via the Testpoint software at each cycle frequency until peak net 

work was achieved. Generally, as cycle frequency increased, strain and burst duration decreased and 

vice versa, with strain and burst duration altered to elicit maximal power output at a given CF. Whilst 

burst duration to elicit maximal power did not change with age, 52 week and 78-week-old muscles 

tended to require a smaller strain at each CF. For example, a ±5% length change from L0 (strain 0.10) 

at 5Hz was optimal for 10-week-old soleus, but occasionally a ±4% (strain 0.08) length change from L0 

was optimal for 52 week and 78-week-old soleus. Control sets of WLs using the parameters that 

elicited maximal net work for the first cycle frequencies (10Hz, 7Hz and 5Hz) were performed after 

every three cycle frequencies and following the final cycle frequency to monitor each muscles ability 

to produce power over time. Following the final control stimulation, each muscle underwent 10-

minutes of rest prior to the fatigue run. 

4.3.5 - Fatigue Resistance and Recovery 

In order to determine the fatigue resistance of each muscle, 50 consecutive WL cycle were provided 

to each muscle using parameters implemented during the control stimulations (I.e. 5Hz, 7Hz and 10Hz 

for soleus, diaphragm and EDL respectively). The net work of every second WL was recorded until a 
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significant decline and plateaux in net work had occurred or until net negative work was produced 

(Tallis et al., 2014). 

 

The ability of each muscle to recover from the fatigue run was monitored for 30-minutes immediately 

following the fatigue run. Every 10-minutes, one set of WL cycles were provided to each muscle and 

net work was recorded. This was directly compared to the pre-fatigue maximal power output. 

 

On average, the experimental protocol for each muscle was ~190 minutes from the moment of cervical 

dislocation to the final WL performed 30-minutes after the fatigue run. Tissue viability declined by an 

average of 14% for all muscles prior to the fatigue run and is in keeping with previous research of 

isolated skeletal muscles of similar length (Tallis et al., 2012, 2013, 2014). Section 3.6 describes the 

process for correcting the change in quality, that is mainly attributed to the build-up of an anoxic core 

(Barclay, 2005). 

 

At the end of the experiment, the muscle was detached from the rig, tendons and excessive fluid 

removed, then weighed in order to calculate isometric stress (kN.m2) and normalised muscle power 

(W.kg-1). Section 3.5 describes the calculation of force, stress and WL power output. 

4.3.6 - Statistical Analyses 

All data are presented as mean ± S.E.M calculated in Excel (Excel 2016, Microsoft, Washington, USA). 

The level of significance was set at P<0.05 for all analyses. Tests for homogeneity of variance were 

conducted on all data to determine parametric or non-parametric analysis. All data were analysed in 

SPSS (SPPS, v22.0, Chicago, IL, USA) and was analysed using a two-factor analysis of variance (ANOVA) 

with sex and age set as the fixed factors. Independent variables included animal and muscle 

morphology (body mass, soleus and EDL muscle mass, muscle length & muscle CSA) and isometric 

properties for each muscle (absolute twitch and tetanus force, twitch and tetanic stress, THTP, LSHR). 
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A three-factor ANOVA was used to determine significant changes in soleus & EDL absolute power 

output, and normalised WL power output for all muscles. Absolute and normalised power were set as 

the dependent variables, whilst, sex, age and cycle frequency set as the fixed factors. For all two-factor 

and three-factor ANOVA’s, differences between sex and age groups were examined by single-factor 

ANOVA’s when an interaction was observed to examine main effects. To calculate the magnitude of 

differences in absolute and normalised power output for age and sex, the percentage decline in power 

output for each cycle frequency was combined and an average calculated to provide mean percentage 

decline for each muscle at each age group. 

 

Muscle fatigue and recovery of power were examined using a repeated measures three-factor ANOVA 

to determine if sex, age and time affected the maintenance in muscle power during repeated WLs 

over time and whether the muscles were able to recover WL power 30 minutes following the fatigue 

protocol. Should a main effect for age or sex be observed for the analyses of fatigue, a single factor 

ANOVA was run for each muscle of each sex to determine whether age affected time to reach 50% of 

pre-fatigue maximum and whether this was affected by sex. 

 

For all ANOVA’s, Tukey’s post hoc analyses were used should significant differences be present. 

 

The truncated product method (Zaykin et al., 2002) was used to analyse the distribution of P-values 

to provide a P-value for each group of multiple hypothesis tests to assess whether these values were 

biased via multiple hypothesis testing. The truncated product method P-value was <0.001, 

demonstrating that the results were not biased based on multiple hypothesis testing. 

4.3.7 - Interpretation of Figures 

To visually demonstrate age-related and sex-based differences in animal morphology and contractile 

parameters, a common symbols approach, using the English alphabet has been adopted; an approach 
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based on the figures within Tallis et al. (2014). Males are represented by the blue letters whilst females 

are represented by green figures. Should a letter of a single colour match another letter of the same 

colour within a figure, this indicates a significant (P<0.05) age-related difference. For example, in figure 

4.1A, there is a blue letter “a” at 3 weeks and 10 weeks of age, indicating a significant difference in 

body mass for males at these ages. Should there not be a common symbol between ages, then no 

significant (P>0.05) difference were observed. For example, in figure 4.1A, there are no matching 

letters for both males (blue) or females (green) at 52 weeks and 78 weeks of age, indicating no further 

increase in body mass is observed with age in this case. 

 

Black ovals and the “%” symbols are used to represent sex-based differences in a particular parameter 

at a given age. For example, in figure 4.1A, there are 2 black ovals around the data points at 3 weeks 

and 10 weeks of age, indicating males were significantly heavier than females at this age, but no 

differences were found at any other ages. Likewise, for figure 4.5B, the % symbol next to 10 weeks in 

the key indicates female EDL generated significantly greater absolute power at 10 weeks when 

compared with males. 
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4.4 - Results 

4.4.1 - Animal Morphology 

Ageing resulted in a significant increase in mean animal body mass (Figure 4.1A; P<0.001), where 

males were significantly heavier than females (P<0.001), and a sex*age interaction observed 

(P=0.001). Peak body mass occurred at 52 weeks of age for males and females. Males were 35% and 

21% heavier than females at 3 and 10 weeks of age respectively (P<0.001), but not at 52 or 78 weeks 

of age (P>0.30). No differences in male body mass were observed between 30, 52 and 78 weeks of 

age (P>0.81), though female body mass tended to be lower by 8% at 78 weeks of age compared with 

52-week-old animals (P=0.06). 

 

Figure 4.1 demonstrates age-related changes in soleus (B) and EDL (C) muscle mass. For soleus, muscle 

mass significantly increased with age (Figure 4.1B; P<0.001), peaking at 52 weeks of age. No 

differences in muscle mass were observed between 30 weeks and 52 weeks for males (P=0.91) nor 

between 52 weeks and 78 weeks for either sex (P>0.28). Male soleus muscle mass was significantly 

heavier in males than females (P=0.002). Male soleus muscle mass was 55% heavier than females at 

3 weeks of age (P=0.001), but no differences were observed at all other ages (P>0.12). EDL muscle 

mass was also significantly altered by age (P<0.001), where ageing caused an increase in EDL muscle 

mass, peaking at 52 weeks of age. Whilst no further decline was observed in males from 52 weeks to 

78 weeks (P=0.18), 78-week-old female EDL muscle mass was 15% lower than at 52 weeks (P=0.004). 

Male EDL muscle mass was significantly heavier than females (P<0.001), where male EDL muscle mass 

at 3 weeks, 52 weeks, and 78 weeks was 41%, 25% and 31% heavier than females respectively 

(P<0.002). No difference in EDL muscle mass was found between males and females at 10 weeks of 

age (P>0.10). 
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Muscle length was significantly affected by age for both soleus and EDL (P<0.001 in both cases), 

though there was no effect for sex for either muscle (P>0.09 in both cases). A sex*age interaction was 

found for the EDL (P=0.003) but not the soleus. Muscle length was smallest at 3 weeks of age for both 

soleus and EDL for both sexes (P<0.001). No differences in muscle length were found between all 

remaining ages for both muscles and sexes (P>0.07). 

 

No such comparisons of diaphragm muscle mass or muscle length can be made due to different 

sections of the costal diaphragm from each animal used for each preparation. 
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Figure 4.1 - Age-related changes in animal body mass (A), and soleus (B) and EDL (C) muscle mass, for 

males and female CD-1 mice aged 3, 10, 30 (male only), 52 and 78 weeks old. Values presented as 

mean ± S.E.M. Significant differences (P<0.05) between age groups are indicated by common symbols; 

blue symbols for males and green symbols for females. Black ovals represent significant (P<0.05) sex-

based differences in body mass and muscle mass at each age group. 

 



115 
 

4.4.2 - Twitch and Tetanus Force and Stress 

Ageing resulted in significant reductions in twitch force and twitch stress for all muscles (Figure 4.2 A-

E; P<0.001), with soleus and EDL twitch force significantly greater in males than females (Figure 4.2 

A&B; P<0.008), though no differences in twitch stress was observed between males and females for 

all skeletal muscles (Figure 4.2 C-E; P>0.48). Maximal twitch force peaked at either 30 weeks or 52 

weeks of age for males and females but did not decline further with age (P<0.08). Maximal twitch 

stress peaked at 10 weeks of age for all muscles of both sexes, declining significantly with age for male 

soleus and EDL (P<0.001), and for female diaphragm (P<0.01). There was no sex*age interaction for 

EDL twitch force or twitch stress (Figure 4.2D; P>0.16) nor diaphragm twitch stress (Figure 4.2E; 

P=0.49). However, there was a significant sex*age interaction for soleus twitch force (Figure 4.2A; 

P=0.05) and twitch stress (Figure 4.2C; P=0.002). Males produced greater twitch force at 3 weeks of 

age for EDL (Figure 4.2B; 71%; P=0.004) and 10 weeks for soleus (Figure 4.2A; 38%; P=0.004). 

 

Tetanus force was significantly affected by age for soleus and EDL (Figure 4.3 A&C; P<0.001), though 

there were no sex-based differences in soleus and EDL tetanus force (Figure 4.3 A&C; P>0.20). There 

was no sex*age interaction for the EDL or soleus tetanus force (Figure 4.3 A&C P>0.06). Soleus tetanus 

force peaked at 30 weeks for males and declined significantly by 29% by 78 weeks of age (P=0.001) 

whereas female soleus tetanus force peaked at 78 weeks of age. Peak tetanus force for the EDL 

occurred at 10 weeks for females and 52 weeks for males and declined significantly by 78 weeks of 

age for both sexes (P<0.001). 

 

Tetanus stress was significantly affected by age for all skeletal muscles (Figure 4.3 B, D&E; P<0.001). 

Sex-based differences were observed for the EDL (Figure 4.3D; P=0.02), but not for the soleus or 

diaphragm (Figure 4.3 B&E; P>0.10). A sex*age interaction was observed for the soleus (Figure 4.3; 

P=0.02) but not for the EDL or diaphragm (Figure 4.3; P>0.52). Tetanus stress peaked at 10 weeks of 

age for all muscles, declining significantly by 78 weeks of age (P<0.0.001). There was no significant 
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reduction in tetanus stress from 52 weeks to 78 weeks for all skeletal muscles of both sexes (P>0.23 

in all cases).
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Figure 4.2 - Age-related changes in twitch force and stress for soleus (A & B), EDL, (C & D) and 

diaphragm (E) for males and female CD-1 mice aged 3, 10, 30 (male only), 52 and 78 weeks old. Values 

presented as mean ± S.E.M.  Significant differences (P<0.05) between age groups are indicated by a 

common symbol; blue symbols for males and green symbols for females. Black ovals represent 

significant (P<0.05) sex-based differences in body mass and muscle mass at each age group.                                                
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Figure 4.3 - Age-related changes in tetanus force and stress for soleus (A & B), EDL, (C & D) and 

diaphragm (E) for males and female CD-1 mice aged 3, 10, 30 (male only), 52 and 78 weeks old. Values 

presented as mean ± S.E.M.  Significant differences (P<0.05) between age groups are indicated by a 

common symbol; blue symbols for males and green symbols for females. Black ovals represent 

significant (P<0.05) sex-based differences in body mass and muscle mass at each age group. 
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4.4.3 - Activation and Relaxation 

Time to half-peak tetanus (THPT) was significantly affected by age for soleus (Figure 4.4A; P=0.001), 

Ageing did not significantly affect EDL or diaphragm activation time (Figure 4.4 C&E; P>0.06). 

Activation was significantly faster in male soleus and EDL (Figure 4.4 A&C; P<0.004), but no differences 

were observed for diaphragm (Figure 4.4E; P=0.15). A sex*age interaction was observed for EDL and 

diaphragm (Figure 4.4 C&E; P<0.04), but not soleus (Figure 4.4A; P=0.32). Male soleus activation was 

significantly faster than female soleus at 10, 52 and 78 weeks (by 17%, 14% and 12% respectively; 

Table 4.1; P<0.05). Male EDL activation was faster at 3 and 10 weeks than females (by 16% and 32% 

respectively; Table 4.1; P<0.03). For male soleus, activation time was only slower between 10 weeks 

and 78 weeks (by 20%) (Table 4.1; P=0.04), with no differences found between all other ages (Table 

4.1; P>0.09 in all cases). Female soleus was fastest at 3 weeks and was significantly faster than at 52 

and 78 weeks (by 26% and 30% respectively; Table 4.1; P<0.04). 

 

Last stimulus to half relaxation (LSHR) was significantly affected by age for EDL and diaphragm (Figure 

4.4 D&F; P<0.02 in each case) but not for soleus (Figure 4.4B; P=0.12). Relaxation time for male soleus 

was faster than females (Figure 4.4B; P=0.008) but was not different for EDL and diaphragm (Figure 

4.4 D&F; P>0.62). No sex*age interaction was observed for all skeletal muscles (Figure 4.4 B, D&F; 

P>0.18). Relaxation times for the male soleus tended to be faster in 3-week-old soleus than females 

(Figure 4.4B; P=0.07) but not at all other ages (Figure 4.4B; P>0.23). Relaxation time of 78-week male 

soleus was significantly slower than 10 weeks (by 32%; Table 4.1; P=0.01) and tended to be lower 

between 52 weeks and 78 weeks (Table 4.1; P=0.06), though no other differences were observed at 

all other ages for male EDL (Table 4.1; P>0.16). Female EDL relaxation was fastest at 10 weeks and was 

significantly lower by 78 weeks (by 42%; Table 4.1; P=0.003), but not compared to 3 weeks and 52 

weeks (Table 4.1; P>0.42). No age-related differences in diaphragm relaxation were observed for 

males (Table 4.1; P>0.65). Female diaphragm relaxation was fastest at 3 weeks and was significantly 



120 
 

slower at 10 weeks (by 26%; Table 4.1; P<0.05), 52 weeks (by 27%; Table 4.1; P=0.04) and 78 weeks 

(by 53%; Table 4.1; P<0.001). Moreover, relaxation was significantly slower at 78 weeks than 10 weeks 

(by 21%; Table 4.1; P<0.05) and tended to be slower than at 52 weeks (by 20%; Table 4.1; P=0.06). 
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Figure 4.4 - Age-related changes in activation (THPT) and relaxation (LSHR) times for soleus (A & B), 

EDL, (C & D) and diaphragm (E & F) for males and female CD-1 mice aged 3, 10, 30 (male only), 52 and 

78 weeks old. Values presented as mean ± S.E.M.  Significant differences (P<0.05) between age groups 

are indicated by common symbols; blue symbols for males and green symbols for females. The ‘&’ 

symbol indicates any statistical tendencies (P≤0.08). Black ovals represent significant (P<0.05) sex-

based differences in body mass and muscle mass at each age group. 
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4.4.4 - Absolute Power Output and Power Output Normalised to Muscle Mass 

Absolute power was significantly affected by age for soleus and EDL (Figure 4.5 A-D; P<0.001). 

Absolute power output increased with age and peaked at 30 weeks of age for male soleus whilst 

absolute power output peaked at 52 weeks for female soleus and the EDL of both sexes. By 78 weeks 

of age, power output declined significantly for both soleus and EDL of both sexes (P<0.001), with the 

greatest decline in absolute power occurring for male soleus (Table 4.1). Male soleus and EDL 

generated greater absolute power than females (Figure 4.5 A-D; P<0.001). For male soleus, power 

output was significantly greater than females at 3 weeks (by 93%), 10 weeks (by 24%) and 52 weeks 

(by 17%), (Table 4.1; P<0.001 in all cases) but not at 78 weeks (P=0.96). For male EDL, absolute power 

output was significantly greater than female EDL at 3 weeks (by 45%), 52 weeks (by 26%) and 78 weeks 

(by 22%), whilst mean absolute power for females was greater than males at 10 weeks (by 10%) (Table 

4.1; P<0.001 in all cases). A significant sex*age interaction was observed for both muscles (Figure 4.5 

A-D; P<0.001). CF significantly affected power output (Figure 4.5 A-D; P<0.001), though no sex*CF 

interaction was found for soleus and EDL (Figure 4.5 A-D; P>0.11) inferring sex did not influence CF 

required for power. An age*CF interaction was observed for soleus (Figure 4.5 A&B; P<0.001) but not 

for EDL (Figure 4.5 C&D; P>0.16), nor was a sex*age*CF interaction observed for both soleus and EDL 

(Figure 4.5 A-D; P>0.86). The age*CF effect is due to absolute power at 10Hz being similar as opposed 

to a change in the optimal CF for maximal power output.  
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Figure 4.5 - Age-related and sex-based differences in maximal absolute WL power across a range of 

cycle frequencies for soleus (SOL) (A & B) and EDL (C & D) isolated from 3, 10, 30 (males only) 52 and 

78-week-old male and female CD-1 mice. Values presented as mean ± S.E.M. Significant differences 

(P<0.05) between age groups are indicated by common symbols; blue symbols for males and green 

symbols for females. The ‘%’ symbol next to an age group indicates significantly (P<0.05) greater WL 

power output compared to the opposite sex at that given age. 
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Power output normalised to muscle mass was affected by age for soleus, EDL and diaphragm (Figure 

4.6 A-F; P<0.001). Normalised power output peaked at 10 weeks of age for all skeletal muscles, with 

the exception of male EDL which peaked at 52 weeks of age. From the age at which peak normalised 

power output occurred, further increases in age resulted in significant declines in normalised power 

output for all muscles of each sex (P<0.001). In addition, there were significant effects for sex on 

normalised power output for all skeletal muscles (Figure 4.6 A-F; P<0.02 in all cases). A sex*age 

interaction was observed for all skeletal muscles (Figure 4.6 A-F; P<0.001). For male soleus, normalised 

power was greater than females at 3 weeks (by 22%; Table 4.1;  P<0.001), 10 weeks (by 11%; Table 

4.1; P<0.001) and 52 weeks (by 7%; Table 4.1; P=0.02), whilst normalised soleus power for females 

was greater than male at 78 weeks (by 11%; Table 4.1; P=-0.001). Female EDL normalised power 

output was significantly greater at 10 weeks and 78 weeks than males (by 17% and 7% respectively; 

Table 4.1; P<0.04) but no differences were found at 3 weeks and 52 weeks (Table 4.1; P>0.59). Male 

diaphragm normalised power was significantly greater than females at 3 weeks only (by 13%; P=0.02), 

whilst female diaphragm normalised power was significantly greater at 10 weeks (by 10%; P=0.02) and 

78 weeks (by 23%; P<0.001), but not at 52 weeks (P=0.06). CF significantly affected power output for 

all skeletal muscles (Figure 4.6 A-F; P<0.001 for all). A sex*CF interaction was not observed for all 

skeletal muscles (Figure 4.6 A-F; P>0.15). An age*CF interaction was found for soleus (Figure 4.6 A&B; 

P<0.001) but not EDL or diaphragm (Figure 4.6 C-F; P>0.46), nor was a sex*age*CF interaction 

observed for all muscles (Figure 4.6 A-F; P>0.43). The age*CF interaction was due to soleus normalised 

power at 10Hz being similar between all ages, as opposed to a leftward shift in the PO-CF curve from 

peak power. 
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Figure 4.6 - Age-related and sex-based differences in maximal WL power normalised to muscle mass 

across a range of cycle frequencies for soleus (SOL) (A & B), EDL (C & D) and diaphragm (DIA) (E & F) 

isolated from 3, 10, 30 (males only) 52 and 78-week-old male and female CD-1 mice. Values presented 

as mean ± S.E.M. Significant differences (P<0.05) between age groups are indicated by common 

symbols; blue symbols for males and green symbols for females. The ‘%’ symbol next to an age group 

indicates significantly (P<0.05) greater WL power output compared to the opposite sex at that given 

age.
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                                           Age 

                    Male  Female 

 3 weeks 10 weeks 30 weeks 52 weeks 78 weeks  3 weeks 10 weeks 52 weeks 78 weeks 

                                                                                          Combined 

Body Mass (g) -56%* -25%* -3% Max -1%  -68%* -40%* Max -8%† 

                                                                                        Soleus 

Muscle Mass (mg) -62%* -34%* -6% Max -13%  -73%* -33%* Max -10% 

Muscle Length (mm) -25%* 0% Max -2% -4%  -27% -2% Max -1% 

Muscle CSA (m2) -50%* -36%* -7% Max -11%  -62%* -33%* Max -9% 

Twitch Force (mN) -65%* -10% Max -7% -31%†  -58%* -17% Max -11% 

Twitch Stress (kN.m2) -49%* Max -23%* -34%* -46%*  -12% Max -19% -21% 

Tetanus Force (mN) -63%* -15% Max -12% -29%*  -72%* -9% -1% Max 

Tetanus Stress (kN.m2) -44%* Max -18%* -33%* -41%*  -45%* Max -27% -18%* 

THPT (ms) 2% Max 6% 13% 20%*  Max 15% 26%* 30%* 

LSHR (ms) Max 18% 16% 2% 23%  3% 11% Max 14% 

Absolute Power (mW) -71%* -26%* Max -10%* -41%*  -80%* -21%* Max -23%* 

Norm. Power (W.kg-1) -34%* Max -7% -20%* -41%*  -39%* Max -15%* -27%* 

                                                                                     EDL  

Muscle Mass (mg) -59%* -34%* -22%* Max -10%  -63%* -22%* Max -15%* 

Muscle Length (mm) -19%* Max -1% -3% -6%  -26%* -4% -2% Max 

Muscle CSA (m2) -50%* -36%* -24%* Max -7%  -52%* -21%* Max -16%* 

Twitch Force (mN) -52%* -11% -10% Max -22%  -67%* -2% Max -18% 

Twitch Stress (kN.m2) -33%* Max -13% -28%* -38%*  -44%* Max -20%* -20%† 

Tetanus Force (mN) -50%* -14% -10% Max -30%*  -56%* Max -3% -27%* 

Tetanus Stress (kN.m2) -25%* Max -11% -26% -42%  -28%* Max -23%* -30%* 

THPT (ms) 21% Max 19% 40%* 31%*  19% 21% 16% Max 
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Table 4.1 - Percentage differences in animal morphology, isometric properties and WL power output from the age at which the maximal measurement for 

each variable occurs. Values presented as mean. A * denotes significant (P<0.05) differences from the “Max” value. For time to half-peak tetanus (THPT) and 

last stimulus to half relaxation (LSHR), the “Max” value represents the age at which muscle activation and relaxation were fastest.

LSHR (ms) 10% Max 13% 5% 32%*  7% Max 16% 42%* 

Absolute Power (mW) -61%* -35%* -29%* Max -34%*  -66% -10% Max -31% 

Norm. Power (W.kg-1) -7% -2% -8% Max -26%*  -19%* Max -14%* -30%* 

                                                                                      Diaphragm 

Twitch Stress (kN.m2) -20% Max -4% -24%* -8%  -19% Max -31%* -23%* 

Tetanus Stress (kN.m2) -23%* Max -13% -36%* -29%*  -24%* Max -31%* -33%* 

THPT (ms) Max 18% 21% 19% 23%†  3% Max 13% 1% 

LSHR (ms) Max 2% 14% 11% 15%  Max 26%* 27%* 53%* 

Norm. Power (W.kg-1) -5% Max -1% -25%* -41%*  -23%* Max -27%* -34%* 
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4.4.5 - Fatigue Resistance 

Muscle power output during repetitive WL activation was significantly affected by age for soleus, EDL 

and diaphragm (Figure 4.7 A-F; P<0.001). Female soleus was more fatigue resistant than males (Figure 

4.7 A&B; P=0.002) but no sex-based differences were observed for EDL and diaphragm (Figure 4.7 C-

F; P>0.36 for both). A sex*age interaction was observed for EDL and diaphragm (Figure 4.7 C-F; 

P<0.009) but not for soleus (Figure 4.7 A&B; P=0.50). 

 

Female soleus fatigability was not significantly affected by age (Figure 4.7B; P=0.09). For male soleus 

fatigue resistance at 3 weeks of age was significantly greater than all other ages (Figure 4.7A; P<0.03). 

No other differences were observed between the other age groups (Figure 4.7A; P=1.00). 10-week-

old females were more fatigue resistant (i.e. took longer to reach 50% of pre-fatigue maximum) than 

10-week male soleus (Figure 4.7 A&B; P=0.01), but no effect for 78-week female soleus to be more 

resistant to fatigue than males (Figure 4.7 A&B; P=0.07). No differences were observed between male 

and female soleus fatigue resistance at 3 weeks and 52 weeks (Figure 4.7 A&B; P>0.28). 

 

There was no effect for age on the ability of female EDL to sustain WL power (Figure 4.7D; P=0.19). 

For male EDL, fatigue resistance was greatest at 3 weeks of age compared to all other ages (Figure 

4.7C; P<0.05). 10-week-old male EDL was more fatigue resistant than 52-week-old EDL (Figure 4.7C; 

P<0.001), but not compared with 30-week and 78-week EDL (Figure 4.7C; P>0.19). 30-week-old male 

EDL was not more fatigue resistant than 52-week-old EDL and 78-week-old EDL (Figure 4.7C; P>0.07), 

with no difference between 52 weeks and 78-week-old male EDL (Figure 4.7C; P=0.44).  

 

Male diaphragm fatigue resistance was not significantly affected by increasing age (Figure 4.7E; 

P=0.20). Female diaphragm was more resistant to fatigue at 3 weeks than at 52 and 78 weeks (Figure 

4.7F; P<0.02), but not compared with 10-week female diaphragm (Figure 4.7F; P=0.21). At 10 weeks, 
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female diaphragm had greater fatigue resistance than at 52 and 78 weeks (Figure 4.7F; P<0.04), 

though no difference was found from 52 weeks to 78 weeks (Figure 4.7F; P=1.00). 
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Figure 4.7 - The effect of age and sex on the ability to sustain power for male and female soleus (SOL) 

(A & B), EDL (C & D), and diaphragm (DIA) (E & F) at 3, 10, 30 (males only) 52 and 78 weeks of age. 

Values presented as mean ± S.E.M. Significant differences (P<0.05) between age groups are indicated 

by common symbols; blue symbols for males and green symbols for females. The ‘%’ symbol next to an 

age group indicates significantly (P<0.05) greater fatigue resistance compared to the opposite sex at 

that given age. 
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4.4.6 - Recovery of Power 

There was a significant effect of age on the recovery of power for EDL and diaphragm (Figure 4.8 A-F; 

P<0.03), but not soleus (P>0.09). There was a significant effect for sex on power recovery for soleus 

and EDL (Figure 4.8 A-D; P<0.05) but not for diaphragm (Figure 4.8 E&F; P=0.22). A significant sex*age 

interaction was observed for all skeletal muscles (Figure 4.8 A-F; P<0.004), but no interaction was 

observed for sex*time, age*time, or sex*age*time (Figure 4.8 A-F; P>0.34 for all). 

 

The power output recovered for male and female soleus ranged from 90% to 97% of the pre-fatigue 

maximum by the 30th minute and was not different than that of the pre-fatigue maximum for all 

muscles of all ages for males and females (P>0.43), nor were there any differences between each age 

group for males and females (P>0.15). Additionally, power output recovery was not different than at 

10 minutes and 20 minutes post-fatigue protocol for males and females of all muscles (P>0.12). 

Recovery of power by 30 minutes for males was greater than females at 3 weeks and 78 weeks of age 

(Figure 4.8 A&B; P=0.008 for both), with no difference between either sex at 10 weeks and 52 weeks 

(Figure 4.8 A&B; P=0.51). 

 

For male and female EDL, power output recovery ranged from 39% to 82% of the pre-fatigue maximal 

power output after 30 minutes of recovery. For male EDL, peak recovery of power occurred at 3 weeks 

of age and was greater than at all other ages. (P<0.006). Increasing age was associated with a decline 

in the ability to recover power, with 30-week-old EDL exhibiting the poorest capacity to recover power 

after 30 minutes. There was a significant recovery in power over time for 3 week and 10-week-old 

male EDL (Figure 4.8C; P<0.001), but not at all other ages (Figure 4.8C; P>0.14). For female EDL, 

recovery of power was greatest at 78 weeks of age and was significantly greater than 10 weeks and 

52-week-old EDL (Figure 4.8D; P<0.003) but was not different compared to 3-week-old EDL (P=0.10).  

10-week-old EDL had the poorest capacity to recover power following fatigue but was not different 

compared to 52-week-old EDL (P=0.53). Significant recovery in power over time occurred at 3 weeks 
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and 52 weeks (Figure 4.8D; P<0.03), but not at 10 weeks and 78 weeks (Figure 4.8D; P>0.09). Males 

were able to recover greater power relative to the pre-fatigue maximal power than females at 3 

weeks, 10 weeks and 52 weeks (Figure 4.8 C&D; P<0.05), and females to a greater extent than males 

at 78 weeks (Figure 4.8 C&D; P=0.001). 

 

Recovery of male and female diaphragm power output after 30 minutes of recovery ranged from 88% 

to 95% of the pre-fatigue maximal power output. Recovery of power for 3-week-old male diaphragm 

was significantly greater than all other ages (Figure 4.8E; P<0.001), with no further differences 

between all other age groups (Figure 4.8E; P>0.90). Additionally, age did not affect the recovery of 

power for female diaphragm after 30 minutes (Figure 4.8F; P=0.76). 
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Figure 4.8 - The effect of age and sex on the ability to recover power for male and female soleus (SOL) 

(A & B), EDL (C & D), and diaphragm (DIA) (E & F) at 3, 10, 30 (males only) 52 and 78 weeks of age. 

Values presented as mean ± S.E.M. Significant differences (P<0.05) between age groups are indicated 

by common symbols; blue symbols for males and green symbols for females. The ‘%’ symbol next to an 

age group indicates significantly (P<0.05) greater fatigue resistance compared to the opposite sex at 

that given age. Dashed lines between time points represent significant (P<0.05) recovery of power from 

10 minutes to 30 minutes for that muscle at a specific age. 
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4.5 - Discussion 

The present study provides a comprehensive examination of the sex-based differences in the maximal 

force production and WL power output of isolated locomotory and respiratory skeletal muscles, 

building largely upon the work conducted by Chan and Head (2010) and Tallis et al. (2014). In general, 

ageing resulted in a decline in isometric stress and normalised WL power from peak maturity whilst 

absolute force and absolute power improved with age up to 52 weeks, declining significantly by 78 

weeks of age, without prevalent atrophy for all muscles. Between 10 weeks and 52 weeks of age, there 

were few sex-based differences in terms of isometric force and stress. However, absolute soleus and 

EDL power were greater in males than females. By 78 weeks of age, females produced greater stress 

and power normalised to muscle mass, indicating better quality of female skeletal muscles in old age. 

Irrespective of the muscle measured, the greatest decline in isometric stress occurred between 10 and 

52 weeks, with the greatest loss of normalised power occurring between 52 and 78 weeks. 

Examinations of the power output-cycle frequency (PO-CF) curves demonstrated no leftward shift in 

absolute and normalised PO-CF curves. Ageing did, however, cause a significant reduction in 

normalised power output at slow cycle frequencies, but not fast cycle frequencies. The age-associated 

loss of normalised power and a general maintenance in fatigue resistance, combined with an increase 

and maintenance of body mass, will cause motions requiring both explosive, controlled and sustained 

power to be more difficult to perform in vivo. Examples include rising from a chair and stabilisation of 

the lower musculature during a fall. 

4.5.1 - Comparison of Absolute and Normalised Force & Power Output 

During maturation, 3-week-old male body mass (Figure 4.1A), and soleus and EDL muscle mass (Figure 

4.1 B&C), was greater in males than females. When this is related to mechanical performance, male 

locomotor muscles generated greater absolute and normalised power than females, with no 

differences in absolute force or stress, whilst male diaphragm was more powerful than females. The 

sex-based differences in body mass, muscle mass and power output are likely to be related to 
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hormonal differences during maturation, where increased circulating testosterone is associated with 

increased muscle mass in males (Sheffield-Moore, 2000; Faigenbaum, 2008). For example, males 

experience a ten-fold increase in circulating testosterone levels leading to increased muscle mass and 

body mass, whilst increased oestrogen in females during maturation is associated with a markedly 

smaller increase in body mass, but greater body fat deposition in humans (Beunen and Malina, 1988; 

Round et al., 1999).  

 

Previous work examining age-related changes in absolute force and isometric stress reports that the 

decline in stress typically exceeds that of force (Phillips et al., 1991; Moran et al., 2005; Chan and Head, 

2010; Tallis et al., 2014). However, this is not always the case, where there are instances of the loss of 

force exceeding that of stress (Brooks and Faulkner, 1991; Brown and Hasser, 1996). In these 

instances, very old animals (>24 months) are usually examined, where muscle atrophy has typically 

occurred and does not typically occur until the final 20% of an animal’s lifespan (Brown and Hasser, 

1996; Chan and Head, 2010). Therefore, the loss of force in these studies is likely to be due to a 

reduction in muscle mass. Studies that have reported an age-related decline in isometric contractile 

function without prevalent atrophy demonstrates that isometric force is better maintained than 

isometric stress for soleus (Moran et al., 2005) and EDL muscles (Chan and Head, 2010; Tallis et al., 

2014) for mice not within the final 20% of their lifespan. Muscle mass peaked at 52 weeks of age for 

male and female soleus and EDL, with a significant decline in muscle mass occurring for female EDL 

only. Peak absolute force and power increased with age and peaked at the age at which peak muscle 

mass occurred. The loss of isometric stress and normalised power output occurred from 10 weeks of 

age for all skeletal muscles, similar to findings of previous studies where the muscle quality exceeded 

that of absolute performance (Moran et al., 2005; Chan and Head, 2010; Tallis et al., 2017). The decline 

in isometric stress exceeds that of normalised power from 10 weeks to 52 weeks of age for all muscles 

(Table 4.1) consistent with previous isolated muscle work examining 50-week-old EDL and diaphragm 

(Tallis et al., 2014), but contradictory to studies of human ageing where loss of absolute power 
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typically exceeds strength (Skelton et al., 1994; Metter et al., 1997; Deschenes, 2004). From 52 weeks 

to 78 weeks of age, however, the loss of muscular power exceeds that of isometric stress and can be 

attributed to the decline in absolute power output. 

 

Tallis et al. (2014) examined the age-related changes in contractile performance of isolated female 

EDL and diaphragm, however, the effect of age on soleus power output remained unsolved. It is 

understood that ageing is more likely to affect skeletal muscle composed of predominantly fast-twitch 

muscle fibres are predisposed to a greater loss of contractile function due to a fast-to-slow shift in 

fibre type (Larsson, 1978; Klitgaard et al., 1990; Coggan et al., 1992). Therefore isometric stress of the 

EDL declines to a greater extent than the soleus with increasing age (Brooks and Faulkner 1988; Brown 

and Hasser, 1996; Lynch et al., 2001; Graber et al., 2015), though this is not always the case (Moran 

et al., 2005; Rice et al., 2005). By 78 weeks of age, the reduction in absolute and normalised force and 

power was greater for female EDL than soleus (Table 4.1). However, the decline in absolute force and 

isometric stress for males was similar to that of the EDL, though the decline in absolute and normalised 

power output was greater for male soleus than EDL (Table 4.1). In further consideration of the sex-

based differences in contractile performance, Chan and Head (2010) reported a significant reduction 

in mouse EDL absolute force production for females but not for males, whilst isometric stress declines 

equally between each sex irrespective of prevalent muscle atrophy. The present work differs to the 

findings of Chan and Head (2010), whereby soleus and EDL absolute force and stress is not different 

between males and females by 78 weeks of age, but the magnitude of the decline from the age which 

elicited maximal force production is greater in males than females. By 78 weeks of age soleus and EDL 

isometric stress is significantly lower in males than females by 78 weeks of age, as is normalised power 

for all skeletal muscles. Isometric stress of the diaphragm was not different between each sex, but 

normalised power output was greater in females than males with increasing age. The magnitude of 

the decline in diaphragm stress and normalised power was similar between each sex, however. 
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As the loss of muscle quality occurs before the loss of absolute force and power and in a sex-specific 

manner, the reduction in normalised performance can be attributed to a reduction in hormonal 

factors such as testosterone and oestrogen (Lowe et al., 2010). Ageing is associated with increased 

intramuscular adipose tissue, non-contractile elements such as collagen, and increased stiffness of 

non-contractile elements such as the extracellular matrix (McGregor et al., 2014) where the combined 

effect is likely to result in greater negative work production in older skeletal muscles (Tallis et al., 

2014). Altered muscle architecture, such as a greater decline in fascicle length in older male skeletal 

muscles than females (Kubo et al., 2003) could alter the length over which muscle can produce force 

and power in males, and could, therefore, contribute to the significantly lower muscle quality and 

accelerated decline in absolute force and power in males. 

 

Maintenance of absolute force and power for soleus and EDL up to 52 weeks of age would indicate 

that factors intrinsic to the muscle fibre, such as inefficient actin-myosin cross-bridge kinetics (Lowe 

et al., 2002) and excitation-contraction coupling (Renganathan et al., 1997; Berchtold et al., 2000) 

does not alter the force generating capacity of locomotor skeletal muscles. By 78 weeks of age, 

however, these factors may account for a reduction in absolute contractile performance and 

contribute further to the decline in muscle quality. Activation and relaxation times for the soleus and 

EDL in this muscle were not significantly different from 10 weeks to 52 weeks of age, though soleus 

activation and EDL relaxation times were significantly slower by 78 weeks of age (Figure 4.4 A-D). At 

the single fiber level, where excitation-contraction coupling and connective tissues are eliminated, 

ageing causes a significant reduction in isometric stress and fiber CSA for single soleus and EDL fibers 

(Brooks and Faulkner, 1994; Thompson and Brown, 1999), with reduced isometric stress of single 

fibres occurring without fibre atrophy (González et al., 2000; Kim and Thompson, 2013).  

 

At the cross-bridge level, ageing causes a 30% dissociation of myosin heads in the strong-binding state, 

leading to a 20% reduction in isometric force (Lowe et al., 2002). During muscle shortening in a 
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concentric contraction, the opportunities for actin-myosin binding sites to form are lower than that 

during an isometric contraction (MacIntosh et al., 2006). Should the level of myosin head dissociation 

be affected to the same extent during muscle shortening as during an isometric contraction, where 

force production is lower for the former compared to the latter, then poorer cross-bridge kinetics may 

explain the accelerated loss of power compared to force from 52 weeks to 78 weeks of age. 

4.5.2 - Effects of Age and Sex on Absolute and Normalised PO-CF Curves 

Whilst Tallis et al. (2014) reported age-related declines in maximal power outputs at a fixed cycle 

frequency, the relationship between contractile velocity and WL power output was not explored. The 

present results show that there was no leftward shift in either the absolute or normalised PO-CF 

curves for all muscles with increasing age. Graber et al. (2015) reported similar findings, in that 

absolute soleus and EDL power exhibited a downward, but not leftward shift, in the force-power 

curve. These results indicated that fibre shifting towards a more oxidative fibre composition is unlikely 

to have a significant effect on the contractile velocity that elicits maximal power output as with 

previous isolated muscle work (Lynch et al., 2001). 

4.5.3 - Effects of Age and Sex on Fatigue Resistance 

In humans, older adults performing activities of daily living tend to be more fatigued (Mueller-Schotte 

et al., 2016), though when examining muscular fatigue specifically findings are more ambiguous with 

some reporting a decline in fatigue resistance (Davies et al., 1986; Sunnerhagen et al., 2000; Izquierdo 

et al., 2001) that is greater in males than females (Davies et al., 1986; Hicks and McCartney, 1996) 

whilst others report no age-related or sex-based differences in muscular fatigue (Hicks and McCartney, 

1996; Bilodeau et al., 2001; Bazzucchi et al., 2005). In humans, the age-related decline in fatigue 

resistance is largely attributable to increased central fatigability due to deterioration of the CNS 

(Carlson, 2004). The present work, where the CNS is removed, examines the ability for isolated 

muscles to sustain power, rather than sustained isometric force as in previous animal studies (Brown 

and Hasser, 1996; González and Delbono, 2001; Chan and Head, 2010), reveals that only male EDL and 
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female diaphragm were susceptible to age-related changes in fatigue resistance (Figure 4.7 C&F). For 

male EDL, whilst there was an age-related decline in fatigue resistance, however, there was no 

difference between 10-week-old EDL and 78-week-old EDL, where isometric stress (Figure 4.3C) and 

normalised power (Figure 4.6C) was greatest and poorest respectively. For female diaphragm the age-

related decline in fatigue resistance was linear. The maintenance of fatigue resistance with increasing 

age for male and female soleus is due to the fibre composition of the soleus, which is primarily 

composed of the more fatigue resistant slow-twitch muscle fibres (Agbulut et al., 2003; Tallis et al., 

2013). These results indicate that fatigue resistance at the muscular level is unlikely to be the main 

contributor to peripheral factors which govern fatigue resistance (Westerblad and Allen, 2002). 

4.5.4 - The Effects of Sex and Age on the Ability to Recover from Fatigue 

The recovery of power following the fatigue protocol is sex-specific and muscle-specific (Figure 4.8 A-

F). In general, isolated soleus and diaphragm skeletal muscles were able to recover, and maintain, the 

level of power recovered over the course of the recovery protocol for all ages. For EDL, 3-week and 

10-week-old male EDL, and 3-week and 52-week-old female EDL, recovered power over time. 

Recovery of power for male soleus and EDL was greater than that of females despite no sex-based 

differences in fatigue resistance for these muscles. However, the recovery of power between ages for 

each skeletal muscle was more variable for males than for females, where ageing had no effect on 

female soleus and diaphragm to recovery power. A similar pattern was found for male diaphragm, 

though recovery at 3 weeks of age was significantly greater than at all other ages. Female EDL and 

diaphragm each followed a similar pattern of recovery to the findings of Tallis et al. (2014), where 

recovery was greatest at 3 weeks, poorest at 30 weeks, and then improving with increasing age. The 

pattern of recovery for male EDL reciprocates that of the pattern of fatigue, though the age-related 

differences in soleus recovery are interesting given ageing did not affect the fatigue resistance for this 

muscle. By contrast, female EDL had the poorest recovery at 10 weeks and the greatest recovery at 

78 weeks of age.  
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Little work has examined the acute ability to recover force and power following a fatiguing protocol 

in humans and in isolated muscle models, though of the work to have examined it, recovery of 

contractile function is equivocal, and could be related to the contractility mode used to induce fatigue 

and examine recovery. In rodents, González and Delbono (2001) reported no effect for age in the time 

to recover isometric stress, and the level to which stress recovered to for single soleus and EDL fibres 

fatigued via repeated isometric contractions. By contrast, Tallis et al. (2014) reported that whilst age 

did not affect the recovery of power for diaphragm, EDL muscles were affected by age in a fashion 

similar to the present findings. The recovery of power, therefore, relates to the proportion of oxidative 

fibres within the skeletal muscles, where those with a greater proportion of type I fibres not only has 

a better fatigue resistance but also better recovery, though this is not true for all skeletal muscles. 

Whilst the aforementioned statement can apply well to the soleus and female EDL, the same cannot 

be said of the male EDL and female diaphragm. Somewhat paradoxically, ageing caused a significant 

reduction in fatigue resistance for female diaphragm, however, ageing did not inhibit the recovery of 

power. As for male EDL, where fibre shifting is most associated, a reduction in the recovery of power 

with age is mirrored by an inability for older muscles to withstand fatigue. 

4.5.5 - In Vivo Implications 

Based on these results, it is expected that larger males will be less capable of completing acute tasks 

requiring explosive power, such as moving from a sit-to-stand position, than older females. In humans, 

Visser et al. (2002) demonstrated that lower extremity performance is associated with greater fat 

infiltration into skeletal muscles for both men and women. By 78 weeks of age, absolute and 

normalised contractile performance is significantly worse compared to all other ages. However, 

muscle quality is poorer in males than females. This is coupled with EDL muscle mass and animal body 

mass being significantly greater males than for females. The resultant effect is that older males have 

larger muscles that are contributing to an already elevated body mass but are of poorer quality. 
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Therefore, the effort of overcoming a greater limb mass and bodily inertia will be greater in males, 

reducing overall locomotor function and a poorer ability to complete activities of daily living. 

 

Despite muscular fatigue of locomotor muscles being largely unaffected by age, activities of daily living 

requiring periods of sustained power are still more likely to give rise to poorer fatigue resistance in 

older adults. Fatigue resistance in this instance is represented as a relative percentage of the pre-

fatigue maximal power output. As older soleus and EDL muscles produce lower isometric stress and 

normalised power, fatigue resistance in absolute terms is likely to be lower, and consequently reduce 

fatigue resistance in older adults due to weaker muscles transporting a greater bodily inertia (Pagala 

et al., 1998). As a note, relative changes in power output over time rather than absolute changes in 

power output over time is reported as older muscles would start at a lower power output and 

therefore may appear less fatigue resistant. 
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4.6 - Conclusion 

The present study provides a comprehensive overview of the changes in the absolute and normalised 

force and power and fatigue resistance of isolated mouse soleus, EDL and diaphragm for males and 

females at multiple time points. Males mature to a faster extent than females in terms of animal 

morphology, muscle mass and greater absolute and normalised WL power, and remain more powerful 

in absolute terms than females with increasing age. The loss of muscle quality, however, occurs 

equally between males and females with increasing age, though muscle quality of male skeletal 

muscles is significantly worse than females by 78 weeks of age. In addition to examining the force and 

power output of these skeletal muscles, fatigue resistance does not follow the expected pattern of 

fatigue as demonstrated in previous work using the WL technique. This highlights the complexities 

surrounding the examination of the muscle fatigue response. In lieu of an absence of skeletal muscle 

atrophy, the skeletal muscle ageing process may follow a two-step process, where in the first instance 

a decline in muscle quality could be related to increased non-contractile elements within the skeletal 

muscle. At the point where absolute force and power declines with age, impaired cross-bridge kinetics 

is likely to be a key contributor to a reduction in absolute performance and muscle quality, though a 

reduction in fibre CSA may also be a contributor. As there was an absence of a shift in the PO-CF curves 

and increase in fatigue resistance with older age, fibre type shifting may not be a key mechanism that 

elicits a reduction in contractile performance at the skeletal muscle level. In vivo contractile function 

is likely to be more limited in older men than women due to the need for larger muscles of poorer 

quality to overcome a greater bodily inertia. 
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Chapter 5 - The Effect of Increasing Age on the Concentric and Eccentric 

Contractile Properties of Isolated Mouse Soleus and Extensor Digitorum 

Longus Muscles 

Modified from publication in The Journals of Gerontology, Series A. Biological Sciences and Medical 

Sciences. 

Hill, C., James, R. S., Cox, V. M. & Tallis, J. (2018) The Effect of Increasing Age on the Concentric and 

Eccentric Contractile properties of Isolated Mouse Soleus and Extensor Digitorum longus Muscles. The 

Journals of Gerontology, Series A. Biological Sciences and Medical Sciences. DOI: 

10.1093/gerona/glx243. 
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5.1 - Abstract 

There is currently a limited amount of literature investigating the age-related changes in eccentric 

muscle function in vitro despite the regular occurrence during locomotion in older adults. The present 

study uniquely uses a strain of 0.10, which is more applicable to in vivo muscle length changes, in the 

comparison of the age and muscle-specific changes of acute and sustained concentric and eccentric 

power and recovery. Whole soleus or EDL muscles were isolated from 10-week and 78-week old mice, 

and acute and sustained concentric and eccentric WL power assessed. Despite an age-related increase 

in body and muscle mass, peak absolute concentric and eccentric power for both muscles was 

unaffected by age. Peak concentric power normalised to muscle mass declined significantly for each 

muscle, whilst peak normalised eccentric power declined only for soleus. Fatigue resistance and 

recovery for the soleus did not differ between age or contraction type. Older EDL was less resistant to 

concentric fatigue but was more fatigue resistant to sustained eccentric activity than young EDL. We 

have shown that eccentric function is better maintained for older soleus and EDL than concentric 

function. A greater bodily inertia is likely to further reduce in vivo locomotor performance in older 

animals, with a greater effect for concentric function in vivo. 
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5.2 - Introduction 

The age-related decline in force (Lauretani et al., 2003), power (Reid and Fielding, 2012) and fatigue 

resistance (Sunnerhagen et al., 2000) have been associated with reduced mobility, quality of life and 

greater mortality in older adults (Rizzoli et al., 2013). In vitro (Ballak et al., 2014) and in situ (Warren 

et al., 2001) studies that allow for the examination of contractile and morphological characteristics of 

muscle have been valuable in allowing the examination of the muscle and fibre type specific ageing 

response (Pagala et al., 1998; Lauretani et al., 2003; Ballak et al., 2014). Given that ageing has been 

shown to affect neural recruitment (Hepple and Rice, 2016), assessment of isolated muscle 

performance can be made, independent of the central nervous system and motivational effects, 

allowing true maximal force and power output to be measured. Furthermore, an isolated skeletal 

muscle approach allows for an accurate measurement of performance relative to muscle size (muscle 

quality). Assessments of muscle quality using in vivo methodologies may be confounded by 

complications in accurately measuring lean tissue mass and intramuscular adipose tissue mass 

(Fragala et al., 2015). Finally, the effects of muscle endurance cannot be accurately determined in vivo 

given the likely elevation in body mass in older adults. Therefore, larger, older adults would have to 

generate greater force to overcome a greater inertia of the moving limb (Tallis et al., 2017). 

 

Previous isolated muscle work has demonstrated that increasing age is associated with a significant 

decline in peak absolute force and isometric stress (force relative to muscle cross-sectional area) 

(Moran et al., 2005; Chan and Head, 2010; Graber et al., 2015), and concentric power output (Tallis et 

al., 2014). Moreover, Tallis et al. (2014) indicated that at the skeletal muscle level, fatigue resistance 

is age and muscle-specific, rationalising previous ambiguous findings examining the effects of ageing 

on fatigue (Pagala et al., 1998; González and Delbono, 2001; Chan and Head, 2010). By contrast, there 

is limited evidence that examine age-related changes in eccentric power in isolated muscle models, 

especially given the important role of eccentric activity in older adults during locomotion and everyday 
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tasks such as balance, moving from a standing to seated position and stair descent (Dickinson et al., 

2000; LaStayo et al., 2003) without undue damage or fatigue (Lovering and Brooks, 2014). 

 

A small number of in vitro and in situ studies have assessed the effects of age on contraction-induced 

damage caused by eccentric muscle activity, whereby muscles are activated during substantial 

increases in muscle length. Such studies have demonstrated that skeletal muscles in older rodents are 

more susceptible to contraction-induced damage (Zerba et al., 1990; Brooks and Faulkner, 1994, 1996; 

Chan and Head, 2010), but produce the same (Brooks and Faulkner, 1996) or greater force (Brooks 

and Faulkner, 1994) than younger animals. The strains used in previous animal models are 

substantially greater than those that would occur in vivo (Hoyt et al., 2005; Butterfield, 2006), ranging 

from 20% to 50% of mean fibre length (Brooks and Faulkner, 1996; Chan and Head, 2010; Lovering 

and Brooks, 2014), and as such further work is needed to establish the effect of eccentric muscle 

activity using smaller strains that more closely approximates the in vivo function of skeletal muscle. 

Additionally, these studies fail to consider the maximal eccentric power, or eccentric power during 

sustained activity, which is important given that eccentric force and power is well maintained in older 

adults, but this hasn’t been confirmed in an isolated muscle model.  

 

The present study uses the work loop (WL) technique to better replicate in vivo contractile dynamics 

to examine the age-related changes in muscle power output (Josephson, 1985; James et al., 1996; 

Choi and Widrick, 2009). Ageing affects isometric force production (Brooks and Faulkner, 1994; 

González and Delbono, 2001; Lowe et al., 2002; Moran et al., 2005; Chan and Head, 2010; Ballak et 

al., 2014; Graber et al., 2015) and eccentric force production during isovelocity lengthening of skeletal 

muscles (Zerba et al., 1990; Phillips et al., 1991; Brooks and Faulkner, 1994, 1996; Chan and Head, 

2010), however these contraction types rarely occur in vivo (James et al., 1996; Lynch et al., 2001). 

Estimation of muscle power derived from isokinetic assessments of muscular strength assumes that 

the muscle activates and relaxes instantaneously, and fails to consider dynamic muscle length changes 
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(James et al., 1996). As such, isometric and isovelocity methods have been shown to poorly estimate 

muscle power compared with the WL technique (James et al., 1996; Lynch et al., 2001). By using 

sinusoidal waveforms and stimulation parameters that more closely replicate in vivo conditions, the 

WL technique considers the muscle force production during dynamic activity, by considering 

simultaneous changes in force, muscle length and activation level (Josephson, 1985; James et al., 

1995, 1996). Previous studies that have used the WL typically use strains of 0.10 (±5% of optimal length 

derived from isometric contractions; section 3.5.4.1) to ascertain maximal WL power of isolated 

mouse soleus and EDL (James et al., 1995; Askew et al., 1997; Tallis et al., 2013, 2014). The current 

work uniquely assesses the age-related changes in peak and sustained concentric and eccentric power 

using a strain that is more representative of the agonist-antagonist co-activation of skeletal muscles 

in vivo (Hoyt et al., 2005; Butterfield, 2006; Hortobágyi and DeVita, 2006). 

 

The aim of this study was to examine the age-related changes in concentric and eccentric muscle 

function of mouse soleus (predominantly slow-twitch) and EDL (predominantly fast-twitch) using 

parameters that better represent in vivo dynamic muscle activity, as these muscles are commonly 

examined for their contractile properties in isolated muscle models. Another aim was to determine 

whether utilising more common length change parameters leads to an age-related change in fatigue 

resistance and subsequent recovery of muscle power following a protocol of repeated maximal 

concentric and eccentric activation. Furthermore, the present work looked to establish differences 

between the absolute performance and performance normalised to muscle size derived from 

isometric contractions and acute measures of concentric and eccentric power, with the absolute 

performance providing insight into the real-world function of the muscle and the normalised measures 

providing valuable information with respect to changes in muscle quality.  
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5.3 - Methods 

A more detailed overview of the methodological approach is provided in chapter 3. 

5.3.1 - Animal Information 

Female CD-1 mice were purchased at 8 weeks of age (Charles River, Harlow, UK) and allowed to 

mature in-house at Coventry University. Mice were aged to either 10 weeks (n=40) and 78 weeks 

(n=40) to represent young and old animals respectively. A justification for the usage of 10-week-old 

and 78-week-old animals is provided in section 3.1. Each age group was further split into: Young 

Concentric (YC), Young Eccentric (YE), Old Concentric (OC) and Old Eccentric (OE) and underwent 

either the repeated concentric (YC & OC) or eccentric (YE & OE) protocol (n=10 per muscle per 

protocol). There were no animals excluded from this study due to health complications. 

 

Following sacrifice, animals were weighed to determine body mass, with whole soleus or EDL rapidly 

isolated from the right hindlimb and aluminium foil t-clips were wrapped around the distal tendons of 

each preparation to prevent tendon slippage during the experimental protocol. At the proximal end, 

a small piece of bone was left intact to allow for attachment to the mechanics' rig. Once prepared, 

each muscle was placed into the flow-through chamber filled with continually circulated, oxygenated 

(95% O2; 5% CO2) Krebs-Henseleit solution heated to and maintained at 37°C. 

5.3.2 - Isometric Contractions 

All preparations were optimised for length and stimulation parameters (14-18V for EDL, 12-16V for 

soleus; fixed stimulation amplitude of 160mA and pulse width of 1.2ms) through a series of isometric 

twitch contractions, with each parameter individually altered until peak twitch force was attained. The 

maximal isometric force was measured by the provision of tetanic stimulations to the preparation. 

The EDL received a 250ms burst of electrical stimulation and the soleus a 350ms burst of electrical 

stimulation. The frequency at which the stimulations were provided was altered until peak isometric 
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force was achieved. This was typically 200-220Hz for EDL and 120-140Hz for soleus for both ages. The 

duration of muscle activation and relaxation were measured as time to half-peak tetanus (THPT) and 

last stimulus to half tetanus relaxation (LSHR) respectively. A rest period of 5-minutes was imposed 

between each tetanic stimulation to allow for sufficient recovery. 

5.3.3 - Assessment of Concentric Work Loop Power Output 

Each muscle was held at the previously determined L0 and the stimulation amplitude and stimulation 

frequency that resulted in maximal isometric force were implemented. In the first instance, maximal 

concentric power output for all experimental groups was determined. 

 

A cycle frequency of 5Hz for soleus and 10Hz for EDL was used as these cycle frequencies typically 

elicited maximal concentric power output in young (James et al., 1995; Askew et al., 1997; Tallis et al., 

2013, 2014, 2017) and old mice (Tallis et al., 2014). Phasic bursts of electrical stimulation were 

provided during muscle shortening for durations initially of 50ms and 65ms to the soleus and EDL 

respectively. The strain (typically 0.08 – 0.10 for all muscles and ages) and burst duration for each 

muscle was altered to ensure maximal concentric power output was achieved (Askew et al., 1997). 

Each set of WLs was performed every 5-minutes to allow for sufficient recovery until peak power 

output was achieved. 

5.3.4 - Assessment of Eccentric Work Loop Power Output 

Eccentric power was not initially assessed for the YE and OE groups as optimisation of the muscle to 

achieve maximal eccentric power output may damage the muscle. Instead, the second WL of the 

eccentric fatigue protocol was taken to calculate eccentric PO. 

5.3.5 - Repeated Concentric and Eccentric Work Loop Protocols 

The ability to sustain power during repeated concentric and eccentric muscle activity for each 

experimental group was determined by imposing fifty consecutive WL’s on each muscle. For the YC 



150 
 

and OC groups, the strain and stimulation parameters which elicited maximal concentric power output 

were maintained.  

 

For the YE and OE groups, a cycle frequency of 5Hz and 10Hz was maintained for soleus and EDL 

respectively. A strain of -0.10 was used for all muscles to ensure the muscle passively shortened, 

followed by stimulation through lengthening. A stimulation phase shift of -10ms and -5ms for the 

soleus and EDL muscles respectively was maintained to ensure the stimulation was provided before 

the shortest muscle length. A burst duration of 72ms and 55ms was used for the soleus and EDL 

respectively to ensure the muscle was sufficiently stimulated throughout the lengthening phase.  

 

Time to fatigue of the experimental groups was measured as the time taken for power to drop to 50% 

of the maximum concentric or eccentric PO. 

5.3.6 - Recovery Protocol 

The ability of each muscle to recover concentric power following the concentric and eccentric 

protocols was monitored for 30-minutes. The YC and OC groups were stimulated every 10-minutes as 

performed in previous work (Tallis et al., 2013, 2014), whilst the YE and OE groups were stimulated 

every 5-minutes to more closely examine recovery, given no work has examined the recovery of work 

loop power following sustained eccentric muscle activity. The recovery of concentric power output 

after 30-minutes was expressed as a percentage relative to the pre-protocol maximal concentric 

power output for each group. 

5.3.7 - Reassessment of Maximal Isometric Force and Stress 

Following 5-minutes recovery after the final WL of the recovery protocol, maximal absolute force and 

isometric stress was reassessed in the YE and OE groups as a further means of assessing potential 

contraction-induced damage, with the severity of the damage determined by the magnitude of the 

deficit in force and stress compared to pre-fatigue measurements (Zerba et al., 1990; Choi and 
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Widrick, 2009). This was not performed with muscles of the YC and OC groups as repeated concentric 

WL’s do not significantly impair the recovery of power in the soleus and EDL following the same fatigue 

protocol used in previous studies (Tallis et al., 2013, 2014). 

 

Each experiment lasted for approximately 105 minutes from the moment of cervical dislocation 

through to the final stimulation. Following the experiment, the muscles were removed from the rig, 

tendons removed, the muscle lightly blotted on tissue paper, and then weighed to determine muscle 

mass to allow for normalisation of force (kN.m-2) and power (W.kg-1). 

5.3.8 - Statistical Analyses 

All data are presented as the mean ± standard error of mean (S.E.M). All data were normally 

distributed and showed homogeneity of variance, so parametric analyses were employed. The data 

for animal and muscle morphology, isometric contractile properties, maximal concentric and eccentric 

WL force and power were pooled for age for each muscle and analysed using independent samples T-

Tests (Excel 2016, Microsoft).  

 

A two-factor analysis of variance (ANOVA) was performed in SPSS (SPSS, IL, USA) to determine if 

repeated WL’s caused a significant reduction in muscle power output and whether this was age-

specific. Independent samples T-test were used to determine significant differences in time to fatigue 

between each age group for both soleus and EDL. 

 

Recovery was assessed by a two-factor ANOVA with power and age as the main factors. An 

independent samples t-test was used to determine whether there was a significant difference 

between age groups in power output normalised to muscle mass after 30-minutes of recovery. 
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A repeated measures ANOVA was used to determine whether post-fatigue maximal absolute force 

and isometric stress of the muscles that underwent the eccentric protocol were significantly affected 

by age. Level of significance was set at P<0.05 for all analyses. 

 

The truncated product method (Zaykin et al., 2002) was used to analyse the distribution of P-values 

to provide a P-value for each group of multiple hypothesis tests to assess whether these values were 

biased via multiple hypothesis testing. The truncated product method P-value was <0.001, 

demonstrating that the results were not biased based on multiple hypothesis testing. 
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5.4 - Results 

5.4.1 - Morphological and Isometric Contractile Properties 

Ageing resulted in a significant increase in animal body mass (56%), soleus and EDL muscle mass (30% 

and 12% respectively) and CSA (32% and 9% respectively) with no change in muscle length (Table 5.1). 

Maximal isometric stress (absolute force divided by muscle cross-sectional area) for the 10-week old 

soleus and EDL are in line with previously reported values for the CD-1 strain (Table 5.2): 189kN.m-2 to 

267kN.m-2 for soleus (Tallis et al., 2012, 2013), 250kN.m-2 to 300kN.m-2 for EDL (James et al., 2005; 

Tallis et al., 2012, 2014). There was a significant age-related reduction in maximal isometric twitch and 

tetanus stress for both muscles, whilst absolute twitch and tetanus force declined significantly for the 

EDL only (Table 5.2). THPT was significantly longer for older soleus but not older EDL whilst LSHR was 

significantly prolonged for older EDL but not for soleus (Table 5.2). 
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Table 5.1 - Comparisons of pooled animal and muscle morphological measurements for each group.  

Values presented as mean ± S.E.M. 

* denotes significant (P<0.05) difference between age groups. 

Animal morphology; n=40 per age. Muscle morphology; n=20 per muscle per age. 

CSA = cross-sectional area. 

 

 

 

Animal Morphology Young (10 weeks)  Old (78 weeks) 

Body mass (g) 29.7 ± 0.5  46.4 ± 2.0* 

Muscle Morphology Soleus  EDL 

 Young Old  Young Old 

Muscle length (mm) 9.4 ± 0.1 9.3 ± 0.1  9.0 ± 0.1 9.2 ± 0.1 

Muscle mass (mg) 7.6 ± 0.3 9.9 ± 0.3*  10.9 ± 0.3 12.0 ± 0.3* 

Muscle CSA (m2) 7.65x10-7 ± 2.76x10-8 1.01x10-6 ± 3.16x10-8*  1.14x10-6 ± 2.59x10-8 1.24x10-6 ± 2.98x10-8* 
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Table 5.2 - Pooled isometric and work loop contractile properties of young (10 weeks) and old (78 weeks) soleus and EDL muscles. 

Values presented as mean ± S.E.M. 

* denotes significant (P<0.05) differences between each age group. 

n=20 for all muscles and ages except for where † is placed, indicating n=10 per muscle per age. 

PO = Power output. Stress = force ÷ muscle cross-sectional area. 

 Soleus  EDL 

Contractile Measure Young Old % change vs. young  Young Old % change vs. young 

Maximal twitch force (mN) 28 ± 1 28 ± 1 1%  64 ± 2 56 ± 3 -12%* 

Maximal tetanus force (mN) 212 ± 9 224 ± 6 6%  376 ± 12 331 ± 15 -12%* 

Maximal twitch stress (kN.m2) 37 ± 2 29 ± 1 -23%*  57 ± 2 45 ± 2 -20%* 

Maximal tetanus stress (kN.m2) 280 ± 10 225 ± 7 -20%*  332 ± 9 269 ± 13 -19%* 

Time to half peak tetanus (ms) 34 ± 1 39 ± 1 13%*  15 ± 1 16 ± 1 9% 

Last stimulus to half relaxation (ms) 44 ± 2 48 ± 2 9%  13 ± 1 16 ± 1 29%* 

Maximal concentric PO (mW) 237 ± 12 246 ± 12 4%  1066 ± 43 1007 ± 57 -6% 

Maximal concentric PO (W.kg-1 muscle mass) 31 ± 1 25 ± 1 -21%*  99 ± 5 83 ± 4 -16%* 

Peak concentric force (mN) 86 ±6 80 ± 4 -7%  198 ±10 152 ±7 -23%* 

Maximal eccentric PO (mW)† -1038 ± 53 -1052 ± 48 -1%  -2682 ± 150 -2990 ± 214 -10% 

Maximal eccentric PO (W.kg-1 muscle mass)† -146 ± 10 -115 ± 6 27%*  -260 ± 21 -253 ± 17 3% 

Peak eccentric force (mN)† 294 ± 15 298 ± 9 1%  485 ± 17 484 ± 19 0.3% 
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5.4.2 - Maximal Concentric and Eccentric Work Loop Power Output and Peak Force 

Power normalised to muscle mass for 10-week old animals are similar to previously reported values 

for the soleus, ranging from 31.7W.kg-1 to 33.0W.kg-1 for the soleus (Tallis et al., 2012, 2013),: 

59.8W.kg-1 to 99.0W.kg-1 for EDL (James et al., 2005; Tallis et al., 2012, 2014) (Table 5.2). Absolute 

concentric and eccentric power output generated by soleus and EDL was not significantly affected by 

age (P>0.24 for all) though when normalised to muscle mass, the maximal concentric power of both 

the soleus and EDL was significantly lower in the OC groups by 21% and 16% for soleus and EDL 

respectively (Table 5.2). Maximal eccentric power output normalised to muscle mass was not 

significantly altered by age for the EDL (P>0.77) but declined significantly for older soleus by 27% 

(Table 5.2). 

 

Peak concentric force of the OC EDL was 23% lower than the peak concentric force achieved by the YC 

EDL muscles (Table 5.2; P<0.002), though there were no differences in peak concentric force for young 

and old soleus (Table 5.2, P>0.41). Likewise, there were no significant differences in the peak eccentric 

force achieved both muscles of each age (Table 5.2, P>0.84 for both). 
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5.4.3 - Fatigue Resistance to Repeated Concentric and Eccentric Contractions 

Fifty consecutive concentric contractions resulted in significant reductions in relative power over time 

for both muscles (Figure 5.1 A&B; P<0.001). Age did not affect fatigue of soleus (Figure 5.1A; P=0.87). 

Typical WL shapes showed that the YC soleus had slightly more pronounced negative work in the early 

part of re-lengthening than OC soleus as demonstrated by increased passive force through re-

lengthening back to L0 with each WL, though this has a negligible effect on fatigue resistance (Figure 

5.2 C&D). No differences in concentric fatigue were observed for the first 1.2 seconds for the EDL but 

fatigued significantly faster thereafter compared to the YC EDL group, with a 10% decrease in time to 

50% of pre-protocol maximum power (Figure 5.1B; P<0.05). Negative work of the OC EDL was greater 

than YC EDL during the re-lengthening phase of the WL as shown by an increase in passive force 

through re-lengthening from the shortest muscle length with each WL, and therefore had poorer 

fatigue resistance (Figure 5.2 A&B). 

 

Fifty repeated eccentric WL’s did not elicit a significant reduction in relative power output over time 

for YE or OE soleus (Figure 5.1C; P=0.88). WL shapes indicated OE soleus have smaller WL areas at WL 

2 due to absorbing less net work than YE soleus. By WL 18, YE soleus produces slightly less force during 

muscle lengthening, but this has no impact on muscle fatigability (Figure 5.3 C&D). By contrast, the 

EDL was unable to sustain eccentric power over time for both the YE and OE groups (Figure 5.1D; 

P<0.05). The muscles of the YE EDL lost power significantly faster than the OE EDL group (Figure 5.1D; 

P<0.001), with a 29% difference in the time to 50% of relative maximum PO. Positive work during the 

re-shortening phase of the WL is likely to be greater for the OE EDL than the YE EDL due to a downward 

shift in the right-hand portion of the YE EDL WL shape (Figure 5.3 A&B). 
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Figure 5.1 - Time-course of sustained power production of young (     ) and old (     ) skeletal muscles 

relative to the pre-protocol maximum concentric power during fifty repeated concentric contractions 

(A, soleus; B, EDL), and eccentric power relative to the maximum eccentric power during fifty repeated 

eccentric muscle actions (C, soleus; D, EDL). Values presented as mean ± S.E.M. * significant differences 

between age groups for time to fatigue.  
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Figure 5.2 - Effect of age on typical WL shapes following concentric fatigue for the YC and OC EDL (A & 

B) and YC and OC soleus (C & D). Figures plotted as force against strain (%L0). WLs 2, 10, and 18 of the 

fatigue protocol are shown for each group. WLs to be interpreted in the anti-clockwise (right-to-left) 

direction from L0, indicated by a downwards arrow for each figure. 
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Figure 5.3 - Effect of age on typical WL shapes following eccentric fatigue at 10Hz cycle frequency for 

YE EDL (A) and soleus (C) and OE EDL (B) and soleus (D). Figures plotted as force against strain (%L0). 

WLs 2, 10, and 18 of the fatigue protocol are shown for each group. WLs to be interpreted in the 

clockwise (left-to-right) direction from L0, indicated by a downwards arrow for each figure. 
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5.4.4 - Recovery of Concentric Power 

There was no significant difference in recovery of concentric power between young and old soleus 

following the concentric protocol (P=0.38), nor in recovery over time (Figure 5.4A; P=0.47). There was 

a tendency for age to affect recovery of power for YE and OE soleus (P=0.08) but there was a significant 

recovery over time (Figure 5.4C; P<0.001). The soleus from each age had almost fully recovered by 30-

minutes (YE 98±2%; OE 98±1%). 

 

The EDL of the OC group recovered concentric power to a greater magnitude than the YC group 

following the concentric protocol (Figure 5.4B; P=0.03, 59±4% vs. 43±5% respectively after 30-

minutes), with significant recovery over time (P=0.03), though there was no age*time interaction 

(P=0.96). OE EDL had a significantly higher relative power output than YE EDL following the eccentric 

protocol (P<0.001), with a significant reduction in YE EDL relative power output over time (Figure 4D; 

P<0.001). There was a tendency for an interaction between age and time indicating a potential for 

older EDL to lose less power during the recovery period (P=0.08). 
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Figure 5.4 - Time-course of recovery of concentric power output relative to the pre-protocol maximum 

power for young (     ) and old (     ) skeletal muscles every 10-minutes following repeated concentric 

contractions (A, soleus; B, EDL) and every 5-minutes following repeated eccentric muscle activity (C, 

soleus; D, EDL). Values presented as mean ± S.E.M. * significant difference between age groups at each 

time point. 
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5.4.5 - Recovery of Absolute Force and Isometric Stress 

Maximal absolute force and isometric stress of the soleus remained unchanged for both ages (Figure 

5.5 A&B; P>0.36 for both). Absolute force and isometric stress declined significantly for the EDL, but 

to a greater magnitude in YE EDL, with force declining by 59% and 40% for YE and OE EDL respectively 

and stress by 57% and 38% for YE and OE EDL respectively (Figure 5.5A&B; P<0.001 for all).  

 

 

Figure 5.5 - Age-related changes in maximal absolute force (A) and maximal isometric stress (B) prior 

to fatigue (SOL-Pre & EDL-Pre, n=20 for both muscles and ages). Absolute force (A) and isometric stress 

(B) were reassessed following the final WL of the recovery protocol in the YE & OE groups (SOL-Post & 

EDL-Post; n=10 for both muscles and ages). Values presented as mean ± S.E.M. * significant (P<0.05) 

changes in maximal absolute force or isometric stress with age. • significant (P<0.05) reductions in pre 

vs. post assessments of maximal absolute force or isometric stress. Stress = force ÷ muscle cross-

sectional area. 
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5.5 - Discussion 

The present work is the first to compare the age and muscle-specific changes in acute and sustained 

concentric and eccentric power output by utilising the WL technique as a better representation of 

real-world muscle function. An age-related reduction in acute and sustained concentric power output 

for the EDL did not mirror those observed for eccentric muscle activity, which was largely unaffected 

for the older skeletal muscles. A reduction in OE soleus power output normalised to muscle mass was 

observed, which is likely to be detrimental to in vivo locomotion. Moreover, age did not affect the 

ability of the soleus to sustain concentric and eccentric power. The most significant finding pertains 

to the ability of older EDL to better withstand the damaging effects of a sustained bout of eccentric 

muscle activity than younger EDL, using a strain that better replicates in vivo muscle activity. 

Consequently, the reduction in eccentric contraction-induced force and power loss following 

sustained eccentric activity of the older EDL may indicate a reduced susceptibility to eccentric muscle 

damage with increasing age. 

5.5.1 - Age-Related Changes in Skeletal Muscle Contractility 

Similar to previous work examining the effect of ageing on isolated skeletal muscle (Phillips et al., 

1991; Chan and Head, 2010; Tallis et al., 2014), these results infer that substantial muscle ageing can 

occur without the muscle wasting that defines sarcopenia. The reduction in stress and normalised 

concentric power indicate an age-related reduction in muscle quality. A loss in muscle quality is not 

consistent for all contraction types as eccentric power normalised to muscle mass was well maintained 

in old EDL, though normalised eccentric power for the soleus declined with age. This muscle-specific 

reduction in acute eccentric power may partially explain the ambiguity surrounding eccentric 

contractile properties in older human populations, where some have reported an age-related decline 

in eccentric force of lower limbs (Lindle et al., 1997; Delbaere et al., 2003) whilst others report no 

change (Poulin et al., 1992; Perry et al., 2007). 
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The age-related decline in muscle function may relate to an increase in dysfunctional Ca2+ handling 

proteins particularly given the age-related increase in soleus activation time and EDL relaxation time 

(Table 5.2). Previous literature has observed an age-related dysfunction in sarco(endo)plasmic 

reticulum Ca2+-ATPase (SERCA) activity in slow-twitch (Lamboley et al., 2016) and fast-twitch (Tallis et 

al., 2014) muscle fibres, likely causing leakage of sarcoplasmic reticulum (SR) Ca2+ from ryanodine 

receptors into the cytoplasm (Andersson et al., 2011). Excitation-contraction uncoupling and reduced 

SERCA activity could explain why normalised concentric and eccentric power declines to a greater 

magnitude in older soleus than EDL (Table 5.2) given that slow-twitch fibres experience greater 

excitation-contraction uncoupling than fast-twitch fibres (Ryan and Ohlendieck, 2004).  

 

Increasing age has been shown to have an effect on the interaction of the contractile proteins needed 

for cross-bridge formation (Lowe et al., 2002). Single fibre experiments, independent of calcium 

kinetics and non-contractile elements, demonstrate significant reductions in isometric force 

production with age, resulting in fewer actin-myosin binding sites maintaining a strong-binding 

structure (Lowe et al., 2002). By contrast, eccentric force production of single permeabilised EDL fibres 

of 27-month-old mice has been shown to be significantly higher than those of younger animals but 

was not different in whole muscles (Brooks and Faulkner, 1994). Peak eccentric force was unaffected 

by age but was significantly lower for older EDL during eccentric WL’s (Table 5.2), indicating age-

related alterations in cross-bridge kinetics are likely to be dependent on the mode of muscle activity. 

Additionally, intramyocellular lipid accumulation occurs with progressive ageing (Goodpaster et al., 

2001) which have been further associated with a reduction in muscle quality during concentric WLs 

(Tallis et al., 2017). The relationship between obesity and eccentric muscle activity, in young and old 

skeletal muscles, has yet to be explored. 
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5.5.2 - Fatigue Response During Repeated Concentric Activity 

There was no difference in concentric fatigue resistance between soleus muscles from young and old 

mice (Figure 5.1A) though this was not the case for older EDL (Figure 5.1C). WL shapes indicate older 

EDL produced more negative work during muscle re-lengthening as the fatigue protocol progressed 

compared with YC EDL (Figure 5.2A&B). Relaxation time increases with each WL (Askew et al., 1997; 

Tallis et al., 2013, 2014) indicating that Ca2+ has not been fully reabsorbed by the SR prior to the next 

contraction, therefore the muscle is still partially active through re-lengthening resulting in the 

progressive absorption of negative work leading to increased fatigability that is more pronounced in 

older EDL. Whilst there is a lack of evidence observing sustained concentric power using mammalian 

tissues, it appears 78-week old EDL muscles are able to sustain concentric power for a longer period 

than the 50-week old animals during the same fatigue protocol (Tallis et al., 2014). Whilst absolute 

power is well maintained, it is expected that the older individuals will fatigue faster in vivo when 

working at the same relative intensities due to an elevated body mass (Pagala et al., 1998). 

5.5.3 - Fatigue Response During Repeated Eccentric Activity 

The fatigue response to the eccentric protocol was age and muscle-specific. For soleus muscle, the 

reduction in power during sustained eccentric activity was not significantly affected by age, and as 

such there was very little difference in the WL shapes (Figure 5.3 C&D). As the maximal eccentric 

power of the older group was substantially lower, this would result in a reduced amount of relative 

power over the duration of the fatiguing protocol (Figure 5.1C).  

 

Conversely, sustained power following the eccentric protocol was significantly reduced in young EDL 

compared to old EDL (Figure 5.1D), despite maximal eccentric power production being unaffected by 

age (Table 5.2). Typical WL shapes indicated that the force produced during lengthening decreased 

much more in young EDL than old EDL, over the series of WL’s (Figure 5.3A).  
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Repeated eccentric activity may work to sustain locomotor performance in vivo given the elevated 

body mass. Older muscles generated the same concentric and eccentric absolute power output and 

peak WL force, yet body mass of older mice increased by 56%. Therefore, the older mice would have 

to generate greater power to overcome the bodily inertia during locomotion or braking motions at 

the same speed as younger mice (Tallis et al., 2014). 

5.5.4 - Recovery of Concentric Power 

Recovery of concentric power (Figure 5.4 A&C), and recovery of absolute force and isometric stress 

(Figure 5.5 A&B) of the soleus following repeated concentric and eccentric activity was unaffected by 

age. Given that there was no age-related change in fatigue resistance of the soleus following each 

protocol, the consequent ability to recover concentric power indicates no undue damage or fatigue. 

 

By contrast, the recovery of the EDL of the older age group was significantly greater following the 

concentric protocol when compared to the young group (Figure 5.4B). This is likely due to the ability 

of slower muscles to recover faster following repetitive stimulation (Tallis et al., 2013), which would 

also explain the near full recovery of the soleus for both ages and contraction types. Tallis et al. (2014) 

observed no differences between the 10-week and 50-week old EDL in the recovery of concentric 

power, with the OC EDL group of this study recovering to a greater extent than the 50-week old 

animals. 

 

The current study used a smaller strain as a closer representation of length changes which occur more 

regularly in vivo (Hoyt et al., 2005; Butterfield, 2006), although this smaller strain may have still caused 

damage in the EDL for both ages as demonstrated by a consistent reduction in post eccentric protocol 

power (Figure 5.4D) and reduced absolute force and isometric stress (Figures 5.5 A&B). Given that 

high eccentric force is associated with greater muscle damage (Lovering and Brooks, 2014), this may 

account for the difference in recovery observed between the EDL and soleus. Interestingly, recovery 
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of the young EDL was impaired to a greater extent, following the eccentric protocol, than the older 

EDL (Figure 5.4D), which could be due to greater structural damage in the younger group. An age-

related increase in structural damage of the skeletal muscles has been previously attributed to greater 

impairment of contractile function following eccentric muscle activity in older EDL. Zerba et al. (1990) 

found that the tetanic force deficit following 75 lengthening actions at a total mean fibre length 

change of 25% was significantly greater in older mouse EDL muscles compared to young and adult 

mice. Additionally, the relative loss of isometric force following single stretches of single permeabilised 

of 27-34-month-old rat EDL fibres was greater than that of 5-6-month-old rats at a strain of 10% and 

20% of mean fibre length, but was not different at 5% (Brooks and Faulkner, 1996), highlighting that 

larger strains are required to significantly damage older muscles during acute and sustained eccentric 

activity. 
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5.6 - Conclusion 

This study demonstrates that ageing is not uniform for all contraction types and muscles, which may 

have complex consequences for in vivo locomotor function in older adults. The loss of force and power 

relative to muscle size in the present study, as opposed to the apparent reductions in absolute force 

and power as observed in humans, appears to be the greatest factor in alterations of contractile 

function in this study, offering further support to the dynapenic mechanism of muscle ageing. The 

observed general reduction in muscle quality, coupled with an age-related increase in body mass 

observed in the present study, could be a key factor in the reduced locomotor function of older adults. 

However, older EDL muscles are capable of withstanding repeated eccentric muscle activity to a 

greater extent than younger muscles and appear to sustain less damage than younger EDL muscles. 

This could be important for exercise prescription, where eccentric exercises can be incorporated into 

training regimens to improve eccentric muscular function. Thus, locomotor capabilities and physical 

activity levels could be increased and overall quality of life improved. 
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Chapter 6 - The Effects of Dietary-Induced Obesity on the Contractile 

Properties of Isolated Soleus, EDL & Diaphragm Skeletal Muscles from Aged 

CD-1 Mice 
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6.1 - Abstract 

Ageing and obesity independently have been shown to significantly impair isolated muscle contractile 

properties, though their synergistic effects are poorly understood. We uniquely examined the effects 

of 9 weeks of a high-fat diet (HFD) on isometric force, work loop (WL) power across a range of 

contractile velocities and fatigability of 79-week old soleus, extensor digitorum longus (EDL) and 

diaphragm compared with age-matched lean controls. The dietary intervention resulted in a 

significant increase in body mass and gonadal fat pad mass compared to the control group. Despite 

increased muscle mass for HFD soleus and EDL, absolute isometric force, isometric stress (force/CSA), 

WL power normalised to muscle mass and fatigability were unchanged, although absolute WL power 

was significantly greater. Obesity did not cause an alteration in the contractile velocity that elicited 

maximal power output. In the obese group, normalised diaphragm power was significantly reduced, 

with a tendency for reduced isometric stress and fatigability was unchanged. HFD soleus isolated from 

larger animals produced lower maximal power output and may impair balance in older, larger adults. 

The increase in absolute power is smaller than the magnitude of weight gain, meaning in vivo 

locomotor function is likely to be impaired in old obese adults. An obesity-induced reduction in the 

function of the diaphragm will likely impair in vivo respiratory function. 
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6.2 - Introduction 

Ageing is associated with poorer muscular strength and power compounding in reduced locomotory 

function and quality of life (dos Santos et al., 2017). It is suggested that ageing with obesity may 

exacerbate these effects (Tallis et al., 2018). A growing body of evidence has indicated that obesity 

may significantly impair skeletal muscle function in young adults (Miyatake et al., 2000; Garcia-

Vicencio et al., 2016; Tomlinson et al., 2016), however, the synergistic effects of ageing and obesity 

on muscle function are poorly understood. The impact of obesity on the muscle function of older 

adults is equivocal, with evidence demonstrating either no change (Miyatake et al., 2000; Zoico et al., 

2004) or an increase in absolute force of the lower leg musculature (Rolland et al., 2004; Tomlinson et 

al., 2014), whilst others have shown a reduction in plantar flexor and dorsiflexor absolute force and 

power and force relative to body mass (Tomlinson et al., 2014). A recent review has indicated that 

assessing the effect of obesity using an isolated muscle model can help further our understanding of 

obesity effects on contractile performance (Tallis et al., 2018). Such models have been used regularly 

to examine skeletal muscle ageing and more recently obesity effects, however, the present work is 

the first to examine the interaction between obesity and old age on isolated muscle contractile 

function. 

 

Changes in muscle function may be related to an elevated body mass or contractility at the muscular 

level, or indeed a combination of the two, though it is difficult to ascertain which factor has the 

greatest influence in whole-body examinations. Evidence indicates that independently both obesity 

and ageing cause a reduction in muscle quality (force or power relative to muscle size), which 

consequently results in larger muscles of lower quality (Fragala et al., 2015; Tallis et al., 2017). For 

obese individuals particularly, such effects may contribute to an already elevated body mass for the 

same, or lower, mechanical work (Tallis et al., 2017). Measures of muscle quality are difficult to 

ascertain in vivo, with absolute changes in strength and power commonly reported for old obese 
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adults (Miyatake et al., 2000; Rolland et al., 2004; Zoico et al., 2004; Stenholm et al., 2009; Tomlinson 

et al., 2014). Whilst work has normalised contractile performance to body mass (Tomlinson et al., 

2014) and muscle volume (Hilton et al., 2008), these approaches fail to consider whole tissue mass 

that can be otherwise obtained via in vitro examinations of whole skeletal muscles (Tallis et al., 2018). 

 

Mechanistically, the age-related decline in muscle function has been attributed to impaired calcium 

handling, reduced protein synthesis, reduced contractile mass, impaired cross-bridge kinetics, a shift 

in fibre type composition, greater lipid accumulation and chronic inflammation (Miljkovic et al., 2015) 

where a similar mechanistic responses to ageing are shared with obesity (Akhmedov and Berdeaux, 

2013; Funai et al., 2013; DeNies et al., 2014). As a consequence, isometric stress (force relative to 

muscle cross-sectional area) and power normalised to muscle mass is impaired in aged (Moran et al., 

2005; Chan and Head, 2010; Tallis et al., 2014; Graber et al., 2015; Hill et al., 2017) and young obese 

(Ciapaite et al., 2015; Matsakas et al., 2015; Bott et al., 2017; Tallis et al., 2017) isolated skeletal 

muscles. Such mechanisms form the basis for an obesity-associated, muscle-specific reduction in 

isolated muscle contractile performance in old, obese mammalian muscles. To date, only one study 

has examined ageing and dietary-induced obesity on isolated skeletal muscle function, using 33-week-

old C57BL/6J mice (Bott et al., 2017). There were no age-related changes in peak isometric stress 

indicating that this study does not fully consider the effects of both old age and obesity as animals in 

this study were relatively young in terms of total lifespan for this strain, with a mortality rate of 50% 

at 28 months (121 weeks) of age (Flurkey et al., 2007). 

 

This study aims to determine whether obesity in old age impairs isolated muscle contractile 

performance by examining the effect of 9 weeks high-fat diet (HFD) consumption on isometric force, 

WL power output, and fatigue resistance of isolated mouse soleus, EDL and diaphragm muscle 

compared to age-matched controls. The aim was to determine whether obesity further worsened 

skeletal muscle contractile performance in old age. Previous isolated muscle studies examining ageing 
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and obesity independently typically examine isometric force (Moran et al., 2005; Ciapaite et al., 2015; 

Graber et al., 2015; Matsakas et al., 2015; Bott et al., 2017), whereas the WL technique considers the 

interactions between force production during shortening, the force-velocity relationship, and the 

passive work required to lengthen the muscle, providing a better representation of in vivo muscle 

function (Josephson, 1985; James et al., 1996). It is proposed that dietary-induced obesity will cause 

a muscle-specific acceleration of the deleterious effects of the muscle ageing process, such as a 

muscle-specific reduction in isometric stress, WL power output normalised to muscle mass and fatigue 

resistance, given the similar mechanistic adaptations of skeletal muscles to ageing and obesity. 
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6.3 - Methods 

A comprehensive overview of the methodological approach for this study is provided in chapter 3. 

6.3.1 - Animal Diet 

A number of studies have investigated the effects of a high-fat diet (HFD) on animal and muscle 

morphology for a variety of durations. These have been outlined in table S1.5. In all cases, each study 

compared a HFD against a low-fat diet (LFD) sometimes referred to as a control. The age at the start 

of feeding, the feeding duration, changes in body composition and muscle morphology are reported 

in table S1.5 where measured. In previous studies, there is a heavy reliance on the inbred C57BL/6J 

mouse strain which is more susceptible to the obesity-promoting effects of a HFD (Lee et al., 1995; 

Surwit et al., 1997; Alexander et al., 2006). When investigating the physiological effects of dietary-

induced obesity, usage of the C57BL/6J strain lacks a full representation of a heterogeneous 

population further vindicating the future usage of the CD-1 strain (Gao et al., 2015).  

 

In addition to the high carbohydrate standard lab chow provided to all mice, animals in the HFD group 

were also provided with free ad libitum access to husked sunflower seeds (Advanced Protocol PicoLab, 

Fort Worth, USA) which formed the dietary source for the HFD. The sunflower seeds were provided 

to the HFD group in a self-selected, forage style diet to comply with Home Office regulations. A 

comparison of the nutritional value of the standard lab chow (SDS RM-1 M) diet and the sunflower 

seeds is provided in table 6.1.  
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 SDS RM-1 

Maintenance 

Advanced Protocol PicoLab Natural 

Sunflower 

Calories provided by:   

Protein (%) 17.49 17.95 

Fat (%) 7.42 63.66 

Carbohydrates (%) 75.09 18.39 

Gross energy (Kcal.g) 3.52 5.24 

Digestible energy (Kcal.g) 2.57 3.80 

Fatty acids content:   

Saturated (%) 0.51 2.61 

Monounsaturated (%) 0.88 5.36 

Table 6.1 - A nutritional comparison of the standard lab diet and sunflower seeds, which was provided 

in conjunction with the former to the obesity group. Both analyses assumed 10.0% moisture content 

of each diet (Tallis et al., 2017). 

Sunflower seeds provide a much greater percentage of calories through fat than carbohydrates 

(63.66% fat vs. 18.39% carbohydrates) whilst the majority of calories provided by the standard chow 

is through carbohydrates (7.42% fat vs. 75.09% carbohydrates), with calories provided by protein 

similar so protein availability is not a limiting factor during muscle protein synthesis for both groups 

(Table 6.1). 

6.3.2 - Animal Information 

60 female mice (strain CD-1, Charles River, UK) were purchased at 9 weeks old and matured in-house 

in groups of 8-10 at Coventry University without access to running wheels. Based on previous work 

investigating obesity in mouse models, a 9-week HFD protocol was used in this study. Feeding 

durations around this period of time have been shown to promote increased adipose tissue 
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accumulation (Lin et al., 2000; de Wilde et al., 2009; Tallis et al., 2017) and as such ensured that there 

was a significant change in body mass and adipose accumulation in the present study. Access to 

standard lab chow and water was provided ad libitum until 68 weeks of age, at which mice were 

divided into cages of 10 and assigned to either a control (n=30) or high-fat diet (HFD; n=30) group, 

ensuring each group was matched for body mass (Control - 49.8±1.2g; HFD - 49.8±1.3g; mean ± SEM; 

P=0.99). No animals were excluded from this study due to health complications.  

 

Animals were allowed to adapt to their new groups for 2 weeks, with each dietary protocol 

commencing at 70 weeks of age for a duration of 9 weeks. The control group was maintained on a diet 

of the standard lab chow whilst animals in the HFD group were provided with a self-selected forage 

diet consisting of husked sunflower seeds in addition to the standard chow. Both the HFD group and 

the control group had ad libitum access to the prescribed diet(s) and water throughout each feeding 

protocol. A justification for usage of a 79-week-old age group is provided in section 3.1. 

6.3.3 - Assessment of Body Composition 

It was important to quantify the amounts of adipose gained by the obese animals during feeding of 

the HFD and following completion of the dietary protocol. Mice aged 68 weeks had baseline measures 

of body circumference made around the lower abdominal region, with NAL and BM took in order to 

provide an estimate of body composition prior to feeding. Once the 9-week feeding regime had 

commenced, the aforementioned measures were taken every 2 weeks for each group to map the 

change in body composition during a HFD or control diet. Body circumference was measured in 

millimetres using a textiles tape measure wrapped around the mid-region beneath the thorax of the 

mouse. Nasoanal length (NAL) (cm) was measured from snout to anus using a set of digital callipers 

(Fisher Scientific™ 3417, Fisher Scientific, Loughborough, UK), whilst body mass (BM) (g) was assessed 

to 1 d.p. using a digital balance (PPS2102, Fisher Scientific, Loughborough, UK). These values were 
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then used to calculate the Body Mass Index (BMI) of the animal and Lee Index of Obesity (LIO). The 

BMI of the animal was calculated as follows (Equation 6.1):  

𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 =
𝐵𝑀[𝑔]

(𝑁𝐴𝐿[𝑐𝑚]2)
/100 

Equation 6.1 - The equation used to calculate the Body Mass Index of a rodent (Sjögren et al., 2001). 

 

The LIO value was multiplied by 1000 as per previous research (Bernardis and Patterson, 1968; 

Bernardis, 1970; Bernardis et al., 1978; Kanarek and Marks-Kaufman, 1979; Novelli et al., 2007; 

Malafaia et al., 2013). The equation for LIO is as follows (Equation 6.2): 

𝐿𝑒𝑒 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑂𝑏𝑒𝑠𝑖𝑡𝑦 =
√𝐵𝑀[𝑔]3

𝑁𝐴𝐿[𝑐𝑚]
𝑥 1000 

Equation 6.2 - The equation used to calculate the Lee Index of Obesity of a rodent (Bernardis and 

Patterson, 1968). 

 

A value less than 300 for LIO is considered “normal” with anything greater than this classified as 

“obese” (Bernardis, 1970) for a 28-day old age group. No data exists to determine what is considered 

“normal” and “obese” in terms of LIO or BMI in an aged mouse population. Despite this, usage of the 

LIO is a useful tool as it allows for the estimation of rodent body composition in vivo with a high degree 

of accuracy when compared against total body fat (Rogers and Webb, 1980). As this project involves 

the sacrifice of mice, it was possible to assess body composition via in vitro methods, therefore 

cadaver analysis was also used by dissecting gonadal fat pads and weighing them. 

6.3.4 - Muscle Preparation 

At 79 weeks of age, animals were sacrificed and weighed to determine BM, NAL and body 

circumference around the abdomen. BM and NAL were used to calculate BMI (Equation 6.1) and LIO 



179 
 

(Equation 6.2) for each individual. Gonadal fat pad mass (FPM) was dissected and weighed to 

determine the differences in fat accumulation in response to each diet.  

 

Whole EDL or soleus (n=10 per muscle per group) was dissected from the left hind limb and rapidly 

frozen in liquid nitrogen. The soleus and EDL of the right hind limb were isolated, and the proximal 

tendon secured via aluminium foil T-clips and a piece of bone left at the distal tendon. A ventral 

segment of the costal diaphragm (n=10 per group) was isolated from the left-hand portion of the rib 

cage and frozen in liquid nitrogen, with the right-hand portion prepared with an aluminium foil T-clips 

wrapped around the central tendon of the diaphragm segment and the two ribs anchoring the muscle 

left intact. 

 

Each muscle was placed in a flow-through chamber circulated with oxygenated Krebs-Henseleit 

solution maintained at 37±0.2oC.  

6.3.5 - Assessment of Isometric Force 

Muscle length and stimulation parameters (12-16V for soleus and diaphragm, 14-18V for EDL; 

stimulation amplitude 160mA and pulse width 1.2ms) were altered until maximal twitch force was 

achieved. Using these parameters, the maximal tetanic force was measured by subjecting the muscles 

to trains of electrical stimuli (250ms for EDL and diaphragm, 350ms for soleus) with stimulation 

frequency (120-140Hz for soleus and diaphragm, 200-220Hz for EDL) adjusted until peak tetanic force 

was achieved. Time to half peak tetanus (THPT) and last stimulus to half tetanus relaxation (LSHR) 

were measured as indicators of muscle activation and relaxation respectively. A 5-minutes rest period 

was imposed between each tetanic stimulation in order to allow for sufficient recovery. All muscles 

followed this process of isometric measures prior to WL protocol. 
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6.3.6 - Assessment of Work Loop Power 

Initially, a cycle frequency (CF) of 10Hz for EDL, 7Hz for diaphragm and 5Hz for soleus was used as 

these CF’s typically elicited maximal power output in previous research for 78-week old locomotor 

(Hill et al., 2017) and young respiratory (Tallis et al., 2014, 2017) skeletal muscles. At these CF’s, phasic 

bursts of electrical stimulation were provided for durations of 50ms, 55ms and 65ms to the EDL, 

diaphragm and soleus respectively. Stimulation duration and strain was altered on an individual basis 

to ensure maximal WL power. 

 

PO was determined across a range of CF’s in order to produce a power output-cycle frequency curve 

(PO-CF) (James et al., 2011). The CF denotes the rate at which a WL is performed. Production of a PO-

CF curve determined if there was a shift in optimal CF to produce power following a HFD, and whether 

power output changed at fast and slow CF’s. The CF’s tested ranged from 2-10Hz for soleus, 4-18Hz 

for EDL, and 3-12Hz for diaphragm and were selected at random. Strain (length change amplitude) 

and burst duration (electrical stimulus duration) were altered at each CF for each muscle to ensure 

peak net work production. For the other CF’s, as CF increased, strain and burst duration increased 

also, and vice versa. 

 

Control sets of WLs were performed using the parameters that elicited maximal net work (soleus, 5Hz; 

EDL, 10Hz; diaphragm, 7Hz) every 3 to 4 sets of WLs and following examination of net work for the 

final CF of each muscle, to monitor changes in net work over the course of the experiment. Any 

variation in net work was due to an impairment in force production. Therefore, the power produced 

by each muscle at each CF prior to the fatigue run was corrected to the control run that yielded the 

greatest net work, assuming that alterations in power production were linear over time (James et al., 

2011). 
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6.3.7 - Fatigability and Recovery 

Each muscle underwent 10-minutes of rest prior to the fatigue run. To determine fatigability, each 

muscle was subjected to fifty consecutive WLs using the optimised stimulation parameters at 5Hz, 7Hz 

and 10Hz for soleus, EDL & diaphragm respectively. The net work of every second WL was plotted 

against time until each muscle produced <50% of the pre-fatigue maximal PO. This method has been 

used previously to examine muscle fatigability (Tallis et al., 2014, 2017; Hill et al., 2017). 

 

The ability of each muscle to recover from fatigue was monitored for 30-minutes immediately 

following the fatigue run. Every 10-minutes, one set of four WL cycles were performed and net work 

was recorded and compared to the pre-fatigue maximal power output (Tallis et al., 2014; Hill et al., 

2017). 

 

The experimental protocol for each muscle was ~190 minutes from the moment of cervical dislocation 

to the final WL performed 30-minutes after the fatigue run. Muscle performance prior to the fatigue 

run declined by 10±2% (S.E.M), indicating that the quality of all muscle preparations was well 

maintained throughout the experimental protocol as with similar studies utilising this methodological 

approach (James et al., 1996). 

 

Following the experiment, each muscle was removed from the mechanics' rig, with the tendons 

removed and the muscle blotted with tissue prior to being weighed. This allowed for force (kN.m-2) 

and power (W.kg-1) to be normalised to muscle mass. 

6.3.8 - Statistical Analysis of Data 

All data are presented as the mean ± S.E.M. The level of significance was set at P<0.05 for all analyses. 

Initial tests for normality and homogeneity were performed to determine the appropriate statistical 

analyses. Differences in animal anthropometrics and isometric properties between the control and 
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HFD groups were measured using an independent Student’s t-test. Comparisons of the absolute and 

normalised PO-CF data was assessed using two-way analysis of variance (ANOVA) using SPSS (IBM 

SPSS, IL, USA), with diet and CF as factors. 

 

Repeated measures two-way ANOVAs were performed to determine if the fatigue protocol induced a 

significant reduction in muscle power output and whether this was affected by diet. Independent 

samples T-test were used to determine significant differences in time taken to reach <50% of the pre-

fatigue maximal power output for all muscles of each dietary group. Recovery was assessed by a two-

factor ANOVA with time and diet as the factors. An independent samples t-test was used to determine 

whether there was a significant difference between diet groups in power output normalised to muscle 

mass after 30-minutes of recovery.  

 

The truncated product method (Zaykin et al., 2002) was used to analyse the distribution of P-values 

to provide a P-value for each group of multiple hypothesis tests to assess whether these values were 

biased via multiple hypothesis testing. The truncated product method P-value was <0.001, 

demonstrating that the results were not biased based on multiple hypothesis testing. 

 

 

 

 

 

 

 

 

 

 



183 
 

6.4 - Results 

6.4.1 - Animal and Muscle Morphology 

The HFD diet group had 24% greater BM, 21% greater body circumference and 119% greater FPM than 

the control group (Table 6.2, P<0.0001 in all cases). Furthermore, the HFD group nasoanal length, LIO 

and BMI was 2%, 5% and 13% greater respectively (Table 6.3, P<0.04 in all cases). The HFD group had 

16% greater soleus mass and 18% greater EDL mass (Table 6.3, P<0.04 in both cases), though soleus 

and EDL muscle length was not significantly different between each group (Table 6.3, P>0.30 in both 

cases). The same comparisons of muscle morphology and contractile performance cannot be made 

for the diaphragm as only a section of this muscle was used in the examination of contractile 

performance, with weighing of whole diaphragm not viable due to the requirement of ribs being intact 

to the diaphragm segment required for testing. The FPM of the HFD group accounted for a greater 

percentage of the total BM than the control group (Table 6.2, P<0.001). However, when soleus and 

EDL muscle mass was expressed as a ratio to animal BM, there were no significant differences between 

the control and HFD groups for either muscle (Table 6.3, P>0.66). 
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Table 6.2 - The effects of 9-weeks of a high-fat diet on animal anthropometrics. 

 

 

 

 

 

 

 

 

 

Values presented as mean ± S.E.M; n=30 control; n=30 high-fat diet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Control High-Fat Diet P-Value 

Body Mass (g) 47.2±3.0 58.6±3.6 <0.001 

Nasoanal Length (cm) 11.8±0.2 12.4±0.2 <0.001 

Body Circumference (cm) 8.4±0.4 10.6±0.6 <0.001 

Body Mass Index (kg.m2) 0.34±0.01 0.38±0.02 <0.001 

Lee Index of Obesity 305±5 313±5 0.04 

Fat Pad Mass (g) 3.6±0.9 7.9±1.2 <0.001 

Fat Pad Mass:Body Mass (%) 7.0±0.8 12.8±0.8 <0.001 
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Table 6.3 - The effects of 9-weeks of a high-fat diet on the muscle-specific morphology. 

Values presented as mean ± S.E.M; n=10 per muscle per group. Data not presented for diaphragm as morphological comparisons cannot be made due 

to different sections of the diaphragm isolated during each preparation.

         Soleus            EDL 

Control High-Fat Diet P-Value  Control High-Fat Diet P-Value 

Muscle Mass (mg) 9.4±0.5 11.0±0.6 0.04  10.6±0.6 12.6±0.5 0.014 

Muscle Length (mm) 9.3±0.1 9.5±0.2 0.30  9.1±0.2 9.1±0.2 0.76 

Muscle CSA (m2) 1.0x10-6±4.5x10-8 1.1x10-6±3.9x10-8 0.05  1.1x10-6±5.9x10-8 1.3x10-6±4.2x10-8 0.02 

Muscle Mass:Body Mass (%) 0.52±0.04 0.55±0.03 0.67  0.45±0.04 0.45±0.02 0.98 
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6.4.2 - Isometric Properties 

Absolute tetanus force was unaffected by diet for the soleus and EDL (Figure 6.1 A&C, P>0.21). 

Maximal tetanus stress was not significantly affected by diet for the soleus or EDL (Figure 6.1 B&D, 

P>0.63). Whilst there no significant difference between the control and HFD diaphragm in terms of 

maximal tetanic stress, the effect size was 0.78, indicating a moderate effect of diet on diaphragm 

tetanus stress (Figure 6.1E; P=0.084). Measures of absolute force and isometric stress for the control 

soleus and EDL were slightly lower than values reported in our previous work, where absolute force 

was 224mN and 331mN for the soleus and EDL respectively, and maximal isometric stress was 

225kN.m2 and 269kN.m2 for soleus and EDL respectively (Hill et al., 2017; Chapter 5). There were no 

significant differences between the control and HFD group in tetanus activation and relaxation times 

(Table 6.4, P>0.12 for all measures and muscles). 

 

Table 6.4 - The effect of 9 weeks of HFD on isometric activation (THPT) and relaxation (LSHR) of isolated 

mouse soleus, EDL and diaphragm. 

 THPT (ms)  LSHR (ms) 

 Control HFD  Control HFD 

Soleus 37.6±2.3 40.1±2.2  52.3±3.2 48.0±1.9 

EDL 16.0±1.1 16.3±0.9  17.4±1.2 17.6±1.1 

Diaphragm 24.4±1.0 26.5±1.2  25.0±1.0 26.8±0.8 

Values presented as mean ± S.E.M. n=10 for each muscle of each group. THPT, time to half-peak 

tetanus; LSHR, last stimulus to half-tetanus relaxation. 
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Figure 6.1 - The effect of 9-week high-fat diet (HFD) on the maximal isometric force (A and C) and 

maximal isometric stress (B, D and E) of isolated mouse soleus (A and B), EDL (C and D) and diaphragm 

(E). n=10 per muscle per group. • denotes a statistical tendency (P=0.084; ES=0.78). Values presented 

as mean ± S.E.M. 
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6.4.3 - Work Loop Power Output 

The absolute power output of the soleus and EDL was significantly higher in the HFD group than the 

control group, increasing on average by 12.5% and 15.0% respectively (Figure 6.2 A&C, P<0.04 in each 

case). Whilst there was a significant effect for CF in the soleus (Figure 6.2A, P<0.001), this was not the 

case in the EDL (Figure 6.2C, P>0.16). The effect of CF on the soleus is due to significantly (P=0.01) 

lower power output at 10Hz compared to all other cycle frequencies. There was no diet*CF interaction 

for either muscle (P=1.00). When power was normalised to muscle mass, differences were not 

apparent between control and HFD soleus and EDL (Figure 6.2 B&D, P>0.62 for both muscles). 

Measures of absolute power and normalised power for the control soleus and EDL were slightly lower 

than values reported in our previous work, where absolute power CF of 5Hz and 10Hz was 246mW 

and 1007mW for the soleus and EDL respectively, and maximal WL power at the aforementioned CF’s 

was 25W.kg-1 and  83W.kg-1 for soleus and EDL respectively (Hill et al., 2017, Chapter 5). In contrast to 

the locomotory muscles, power normalised to muscle mass for the diaphragm in the HFD group was 

significantly lower by an average of 27% across all CF’s compared to the control group (Figure 6.2E, 

P<0.001 in each case). CF had a significant effect on normalised and power output for all groups (Figure 

6.2 B, D&E, P<0.05 in all cases). There was no interaction between diet & CF for all muscles indicating 

no alteration in the shape of the normalised PO-CF curves between each group (Figure 6.2 B, D&E, 

P=1.00 in all cases). There was no relationship between body mass and maximal normalised power 

output for control soleus, EDL and diaphragm (Figure 6.3A, C&E, r2<0.39, P>0.07 in all cases). Obese 

soleus isolated from animals that were heavier in terms of body mass had a significantly lower power 

output normalised to muscle mass (Figure 6.3B, r2=0.568, P=0.012). By contrast, there was no 

significant relationship between maximal normalised WL power and body mass for the HFD EDL or 

diaphragm (Figure 6.3D & F, r2<32, P<0.08). 
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Figure 6.2 - The effect of 9-week HFD on the maximal normalised power output (A, C and E) and 

absolute work loop power output (B and D) of isolated mouse soleus (A and B), EDL (C and D) and 

diaphragm (E) for the control (     ) or HFD (     ) groups. n=10 per muscle per group. Values presented 

as mean ± S.E.M. * indicates significant differences between each group. 
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Figure 6.3 - The relationship between whole animal body mass and normalized work loop power for 

control (A, C, E) and HFD (B, D, F) soleus (A & B), EDL (C & D) and diaphragm (E & F) experimental 

groups. N=10 per muscle per group. Figure 3 B: the lines represent a first-order polynomial fitted to the 

data using a least squares regression and the 95% confidence limits of this line. 
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6.4.4 - Diaphragm Work Loop Shapes 

As there were no differences in maximal WL power normalised to muscle mass between control and 

HFD soleus and EDL (Figure 6.2 A&B), WL shapes were not examined for these muscles.  

 

Maximal WL power output normalised to muscle mass occurred at 7Hz for the diaphragm of the 

control and HFD groups (Figure 6.2C). The typical WL shapes at this cycle frequency indicate that peak 

force production was not significantly affected by diet (Control - 65.5±6.0mN; HFD – 58.7±5.1mN, 

P>0.54), however, force during muscle shortening was typically lower for the HFD diaphragm (Figure 

6.4). Additionally, the passive work during lengthening and re-lengthening appears to be greater for 

the HFD diaphragm than the control, increasing the negative work and consequently decreasing the 

net work (Figure 6.4). 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 - The effect of obesity on 79-week-old diaphragm muscle net work following a control (solid) 

or HFD (dashed) at a cycle frequency of 7Hz, where peak power output was elicited. Figures plotted as 

force against strain (%L0). The third WL of the set of four WL stimulations is shown for each group. WLs 

to be interpreted in the anticlockwise direction (right-to-left) from 0 of L0. 
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6.4.5 - Fatigue Resistance and Recovery 

Fifty consecutive WL cycles resulted in a significant reduction in PO, over time for all muscles (Figure 

6.5 A, C&E; P<0.0001). However, diet did not significantly affect the time-course of fatigue for each 

muscle (Figure 6.5 A, C&E; P>0.29), nor time to reach 50% of the pre-fatigue maximum for all muscles 

(Figure 6.5 A, C&E; P>0.39). 

 

Whilst diet did not significantly impair the ability of soleus and EDL to recover from the fatigue 

protocol (Figure 6.5 B&D; P>0.27), diet significantly reduced the recovery of power for the diaphragm 

from HFD individuals when compared to controls (Figure 6.5F; P=0.01) where power was significantly 

different after 30 minutes of recovery (Figure 6.5F; P=0.02). There was no time effect on the recovery 

of power for all three muscles (P>0.17), nor was a diet*time interaction observed (P>0.37). 
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Figure 6.5 - The effect of 9 weeks of a HFD on the fatigue resistance (A, C & E) and recovery of power 

(B, D & F) of maximally stimulated mouse soleus (A & B), EDL (C & D) and diaphragm (E & F)) for the 

control and HFD groups. Values presented as mean ± S.E.M. A * denotes a significant (P<0.05) 

difference in recovery of power at a given time point 
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6.5 - Discussion 

The present results indicate that at the muscle level obesity in old age significantly impairs respiratory, 

but not locomotory, isolated skeletal muscle function. Obesity significantly reduced normalised 

diaphragm power output of old mice following a HFD in comparison to age-matched control animals, 

which is likely to be related to impaired force generation during muscle shortening and increased 

passive work through lengthening. By contrast, absolute power output for the HFD soleus and EDL 

improved compared to age-matched controls, however, there was no change in muscle quality 

(force/power relative to muscle size). When power is correlated with body mass, however, the soleus 

isolated from old obese animals produced significantly lower maximal power output, with a tendency 

for a similar pattern in old obese diaphragm muscles. Results from younger models of obesity 

investigating isolated muscle performance indicate a reduction in muscle quality for soleus, EDL and 

diaphragm (Ciapaite et al., 2015; Matsakas et al., 2015; Tallis et al., 2017), though only a reduction in 

quality was observed for old obese diaphragm. As such, there is likely to be differing consequences 

for old obese adults during locomotion and respiration. 

6.5.1 - Effects of Ageing & Obesity on Animal and Muscle Morphology 

Provision of a calorie-rich diet resulted in the excessive accumulation of gonadal fat and elevated 

skeletal muscle mass, where an elevated FPM contributed to the greatest difference in body mass 

between the two groups rather than skeletal muscle mass (Table 6.2 & Table 6.3). The increase in 

soleus and EDL muscle mass is likely, in part, due to the ectopic accumulation of fat within the muscle 

(Addison et al., 2014), although the added load upon the locomotor skeletal muscles in the HFD group 

may stimulate a hypertrophic effect (Maffiuletti et al., 2013). Bott et al. (2017) reported a hypertrophic 

effect of 33-week-old C57BL/6J soleus type I, type IIa, type IIx and type IIb fibre CSA in line with an 

elevated body mass for their HFD group compared to baseline measures and the age-matched control 

group, which is unsurprising given the postural position of the soleus, though it is interesting to note 
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the comparative fibre atrophy of the non-weight bearing EDL in their study following an obesogenic 

diet. 

6.5.2 - Effect of Obesity on Isometric Force and Work Loop Power 

The increased absolute power output of the soleus (Figure 6.2A) aligns with previous in vivo work 

demonstrating an increased  maximal force of “antigravity”, weight-bearing muscles in older obese 

adults (Miyatake et al., 2000; Rolland et al., 2004; Zoico et al., 2004; Stenholm et al., 2009; Tomlinson 

et al., 2016), which is unsurprising given the added load of the fat free mass acting as a training 

stimulus on postural muscles (Garcia-Vicencio et al., 2016). However, the increase in absolute power 

for the EDL of the HFD group (Figure 6.2C) is surprising given in vivo work demonstrates little change 

in absolute force for non-weight-bearing skeletal muscles of old obese adults, and may consequently 

be an effect of the CNS (Rolland et al., 2004; Tomlinson et al., 2016). The increased absolute power 

may seem to be a positive response to obesity, however, in vivo locomotor performance is likely to be 

impaired due to the elevated muscle mass and fat-free mass contributing further to an already 

elevated body mass. Furthermore, the magnitude of the increase in body mass (24%) is not 

reciprocated by a similarly proportioned increase in absolute power for the soleus (13%) and EDL 

(15%), meaning the ability to overcome a greater bodily inertia will require greater muscular effort. It 

has been shown that, for the soleus, despite unchanged isometric stress and an increase in absolute 

power output and maintenance of normalised WL power in the HFD group, there is a negative 

association between animal body mass and maximal normalised WL power which is not evident for 

the EDL (Figure 6.3 A&B). This muscle-specific effect for the soleus would mean locomotor capabilities, 

active stabilisation at the ankle (James et al., 1995) and postural control in older obese adults may be 

significantly impacted, leading to a functional incapacity to perform activities of daily living that are 

compounded by a poorer gait, slower speed of performing activities, and lower fatigue resistance 

(Hirani et al., 2017). For example, older adults with a BMI greater than 30 are at greater risk of 
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experiencing a fall (Mitchell et al., 2014) whilst those with a BMI greater than 35 are more frail than 

leaner, but not underweight (i.e. BMI<20), older adults (Hubbard et al., 2010). 

 

By contrast, a HFD in older animals caused a significant reduction in diaphragm power output relative 

to muscle mass compared to age-matched controls (Figure 6.2E). It is likely that, as with locomotor 

muscle, fat is likely to be stored ectopically within the diaphragm, increasing the non-contractile mass 

and work required to lengthen the muscle. However, unlike locomotor muscles, adipose tissue loading 

on the diaphragm is unlikely to induce a hypertrophic effect given that adipose tissue accumulates in 

the thoracic cavity of obese adults and as such increases respiratory resistance (Sharp et al., 1986; 

Lazarus et al., 1997). In terms of the WL, a greater non-contractile mass and lower tissue compliance 

would amplify the work required (negative work) to lengthen the muscle, and would, therefore, 

decrease maximal net work and power output (Josephson, 1985). The impairment in power output 

does not appear to be limited by the ability for old, obese diaphragm to produce peak force during 

cyclical work but instead, maintenance of force during shortening is lower, with a tendency for greater 

eccentric (i.e. negative) work during re-lengthening compared to control animals (Figure 6.4). 

Consequently, it is plausible that a reduced capacity for old obese diaphragm to generate power to be 

a contributor to the increased metabolic and cardiovascular disease risk in old obese adults (Chuang 

et al., 2016). 

6.5.3 - Fatigability and Recovery 

Obesity did not cause a significant reduction in the ability to sustain power output over repeated WLs 

for old obese soleus, EDL or diaphragm (Figure 6.5 A, C&E), nor for locomotor muscles to recover from 

the fatigue protocol (Figure 6.5 B&D) as found with young obese female mice (DeNies et al., 2014). It 

should be noted that whilst the pattern of fatigue appears the same for both the control and HFD 

diaphragm, each data set is plotted as a percentage of the pre-fatigue maximal power. Power 

normalised to muscle mass is significantly lower in the HFD group, so it should be considered that 
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power output at 100% for the HFD group to be significantly lower due to a lower starting normalised 

power, and therefore would be likely to fatigue faster in vivo when working against a comparable load 

to the control diaphragm. Recovery of old obese diaphragm is significantly impaired (Figure 6.5F) 

despite no change in the fatigue response, and as such requires further investigation. The added load 

of an increased bodily inertia in older adults could be a significant contributor towards reduced 

muscular endurance in older adults (Izquierdo et al., 2001). It is expected that the added muscle mass 

and fat-free mass in old obese adults is likely to further contribute to a reduction in fatigue resistance 

when working at the same relative intensities due to isolated skeletal muscles fatiguing at the same 

rate with no change in muscle quality (Tallis et al., 2017). As such, it is more likely the increased 

demand placed on the muscle due to an elevated body mass, rather than the ability of the skeletal 

muscle to withstand fatigue, may potentially explain the reduction in whole animal exercise tolerance 

following a HFD (Matsakas et al., 2015) and slower gait velocity in old obese adults (Huo et al., 2016). 

6.5.4 - Comparisons of Contractile Performance between Young and Old Models of Obesity 

Whilst obesity studies in young rodents share similar characteristics with the present study, such as 

inducing obesity via diet, and comparing the soleus and EDL to represent phenotypic differences, 

comparisons are difficult due to the different methodological approaches including feeding duration 

and diet composition, a lack of classification of what is considered obese for rodent models, and 

different test temperature for isolated skeletal muscles (Tallis et al., 2018). 

 

For soleus, absolute force, isometric stress, and absolute and normalised power output remain 

unchanged or even improve following an obesogenic diet in young mice (Bott et al., 2017; Tallis et al., 

2017) which does not differ to the current findings. The EDL response, however, is more ambiguous 

with previous studies reporting a reduction in force and stress in young obese EDL (Matsakas et al., 

2015), whereas others report no change in isometric stress (Ciapaite et al., 2015; Bott et al., 2017). 

The diaphragm appears to be affected by obesity irrespective of age (Tallis et al., 2017). It is possible 
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that obesity has a phenotypic effect on skeletal muscle fibres, where the contractile function of type 

II and IIa/x fibres are affected to a greater extent than type I fibres, which may explain the muscle-

specific differences in young and old obese contractile performance. With age, muscle composed of 

predominantly fast-twitch muscle fibres experience shifting towards a slow-twitch composition, which 

consequently may be less affected by obesity than fast-twitch fibres, hence no change in muscle 

quality for old EDL and soleus. To date, no study has examined the effects of obesity on single fibre 

contractile function to determine whether obesity has a phenotypic response. 
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6.6 - Conclusion 

Absolute force and power, muscle quality, and fatigability of locomotor muscles are well maintained 

following a HFD in old animals. By contrast muscle quality of old obese diaphragm is significantly lower 

compared to lean, age-matched counterparts. These findings differ to that of young obese skeletal 

muscles, where both force and power normalised to muscle mass generally declines for EDL and 

diaphragm, though soleus muscle quality is well maintained irrespective of age. An elevated body 

mass in old obese adults is likely to act as a training stimulus on the soleus and EDL, as demonstrated 

by an increase in the absolute power for the locomotor muscles. Particularly for the soleus, where a 

larger body mass correlated with poorer normalised power output, an increased bodily inertia will 

mean acute and sustained in vivo locomotor performance is likely to be substantially affected due to 

a larger limb mass and body mass creating a greater work demand on the skeletal muscle. The elevated 

fat mass loaded on the diaphragm in vivo could be a plausible contributor to a reduction in muscle 

quality as found in vitro. This may potentially elevate respiratory disease risk and further contribute 

to the negative cycle of obesity. 
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Chapter 7 - General Conclusions 

The current findings from the thesis have provided a detailed account of the age-related changes in 

animal and muscle morphology, and the contractile properties of isolated locomotor and respiratory 

skeletal muscles, considering the confounding effects of sex, mode of muscle activity (isometric, 

concentric and eccentric), and dietary-induced obesity.  

 

A summary of the key findings from the thesis are detailed below: 

 

1. 3-week males are morphologically larger in terms of body mass and skeletal muscle size and 

have more powerful muscles than age-matched female counterparts. The sex-based 

differences in skeletal muscle size and function at this age are likely to be related to hormonal 

differences (Chapter 4). 

 

2. In the first instance, the loss of muscle isometric stress exceeds that of the loss of normalised 

power up to the age of 52 weeks of age. By 78 weeks of age, however, the loss of normalised 

power exceeds the loss of isometric stress. The loss of normalised contractile performance 

occurs to a greater extent for males than for females, with the loss of performance occurring 

to a greater extent for soleus and diaphragm (Chapter 4). 

 

3. Absolute tetanic force and absolute power output are well maintained until 30 and 52 weeks 

of age for soleus and EDL, and in some cases increased, with absolute power greater in males 

than females but not differently so in terms of absolute force. A significant reduction in 

absolute force and power occurs from 52 weeks to 78 weeks of age for all muscles. The 

reduction in absolute force and power from the maximal occurs to a similar magnitude to that 

of normalised contractile performance. (Chapter 4). 
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4. Unlike Tallis et al. (2014) a clear pattern of fatigue is not present in this study. Whilst the 

greatest fatigue resistance occurred at 3 weeks of age for all skeletal muscles, only male EDL 

and female diaphragm underwent any further reductions the ability to sustain concentric 

power. Moreover, there are few instances of any sex-based differences in the fatigue 

response (Chapter 4). 

 

5. Absolute eccentric power output and eccentric power output normalised to muscle mass of 

isolated soleus and EDL is relatively well maintained in 78-week-old animals versus 10-week-

old animals compared to the age-related decline in concentric power when utilising a strain 

amplitude that more closely aligns to in vivo muscle strains. As muscles produce the same, or 

lower, eccentric power output, but are larger, fall risk in older adults may in part be related to 

a decreased ability to overcome an increased bodily inertia (Chapter 5). 

 

6. Changes in eccentric power during sustained eccentric muscle activity and the ability to 

recover concentric power was muscle specific. There were no age-related changes in eccentric 

power over time for the soleus and was highly resistant to the fatiguing effects of sustained 

eccentric activity. By contrast, 78-week-old EDL was able to sustain eccentric power for a 

longer time period than 10-week-old EDL, and consequently recover greater concentric 

power. Eccentric activity could be a useful integration into an exercise regimen for older adults 

(Chapter 5). 

 

7. Consumption of a HFD in old age may cause an ectopic accumulation of fat, though this does 

not translate to reduced contractile performance of locomotor muscles. The added load of an 

elevated body mass, due to an increased fat mass, may instead act as a training stimulus on 

the load on the muscles and as such a hypertrophic effect may be present for old obese soleus 

and EDL  (Chapter 6). 
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8. Dietary-induced obesity in old age causes a significant increase in absolute power of isolated 

soleus and EDL, but this did not translate to improved absolute force, performance normalised 

to muscle mass or altered fatigue resistance, despite a significantly greater body mass. This is 

likely to transpose to poorer in vivo locomotor performance given that a HFD leads to greater 

adiposity leads to greater body mass for the same power output (Chapter 6). 

 

9. As with younger models of obesity, obesity in old mice has a significantly detrimental effect 

on diaphragm muscle quality that is linked to reduced force during muscle shortening. 

Therefore, poorer diaphragmatic power could be a limitation of fat oxidation and therefore 

contribute further to the negative cycle of obesity (Chapter 6). 

 

The results from this thesis demonstrate that skeletal muscle ageing is not a uniform, single factor 

process, where the sex of an animal, the skeletal muscle examined, and the mode of muscle activity 

has a significant impact on the age-related changes in isolated skeletal muscle contractile 

performance. Additionally, changes in contractile function are dependent on whether force or power 

is expressed in absolute terms or normalised to muscle mass. The comprehensive analysis of the 

morphological and contractile properties of isolated skeletal muscles allows for targeting specific 

muscle at a specific age for both males and females in the exploration of therapeutic strategies that 

can sustain or improve muscle function with increasing age. 

 

In general, ageing results in a greater loss of muscle quality (i.e. isometric stress and normalised 

concentric power output) compared to a relative maintenance, and even improvement, of absolute 

force and power. The loss of muscle quality occurs without a significant decline in muscle mass with 

increasing age, indicating that dynapenia rather than sarcopenia remains a key determinant of poorer 

skeletal muscle function in CD-1 mice at 50% of their expected lifespan (Navarro et al., 2002; Clark and 

Manini, 2008). Whilst previous work has confirmed that ageing causes a decline in muscle quality 
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without prevalent atrophy (Chan and Head, 2010; Tallis et al., 2014) the present work is the first to 

demonstrate the sex-based differences, muscle-specific responses, contraction mode-specific, and the 

influence of obesity, on skeletal muscle power output across a range of cycle frequencies using the 

WL technique (Josephson, 1985). 

 

In humans, comparing contractile performance, specifically muscle quality, between sexes is 

methodologically difficult, and ultimately fails to capture the muscle-specific nature of skeletal muscle 

ageing (Edwén et al., 2014; Fragala et al., 2015). When considering all contractile parameters in 

tandem, males are more prone to a decline in contractile function than females, with the decline in 

contractile performance for male soleus most greatly affected compared with all other muscles. When 

examining isometric contractions, ageing causes a decline in isometric force and stress, though there 

are relatively few differences between males and females for all skeletal muscles, that is, until 78 

weeks of age where male soleus and EDL produces lower isometric stress than females. When 

considering power output, however, males are more powerful than females in absolute terms, 

therefore there is a greater capacity for a loss of absolute power (Doherty, 2003). The loss of absolute 

power output occurs to a greater extent for the soleus than the EDL, though the decline in power 

tends to occur between 52 weeks and 78 weeks of age for both muscles of each sex, whilst normalised 

power declines progressively from 10 weeks of age for all muscles. Whilst males are more powerful in 

absolute terms than females, as soleus and EDL muscle mass is generally greater than females in old 

age, there are relatively few sex-based differences in normalised power output between 10 weeks and 

52 weeks of age for all muscles. Only by 78 weeks of age do female skeletal muscles produce 

significantly greater normalised power than males. As for the diaphragm, ageing caused a progressive 

decline in normalised power output for males and females, though female diaphragm is more 

powerful.  
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The current results demonstrate that the loss of isometric stress occurs before the loss of normalised 

concentric power output from 10 weeks to 52 weeks of age, atypical of in vivo conditions where the 

loss of power exceeds the loss of strength with increasing age (Skelton et al., 1994; Metter et al., 1997; 

Deschenes, 2004). Only between 52 weeks and 78 weeks of age does the loss of normalised power 

exceed that of isometric stress, primarily due to a greater decline absolute concentric power 

compared to isometric force. In vivo locomotor function is not solely dependent on isometric and 

concentric contractile function, with eccentric muscle activity a fundamental requirement for 

successful completion of activities of daily living. Unlike previous studies examining eccentric activity 

through isovelocity lengthening protocols, where skeletal muscles are deliberately damaged (Call and 

Lowe, 2016), the present work demonstrates that ageing does not diminish EDL normalised eccentric 

power output when activated eccentrically via the WL technique. As with chapter 4, ageing caused a 

significant decline in isometric stress and normalised concentric power for the soleus and EDL, though 

there was a significant decline in normalised eccentric power output for the soleus. It is worth noting 

that the differences in absolute force and absolute power of the female soleus, and EDL absolute 

force, is similar to that in chapter 5. However, female EDL absolute power was approximately 24% 

lower in study 4 compared with chapter 5 and may be related to the genetic heterogeneity of the CD-

1 mouse strain. 

 

One hypothesis for an age-related reduction in contractile function is that elevated adiposity in old 

age leads to a decline in muscle quality. By inducing obesity via 9 weeks of a HFD, the present thesis 

shows that obesity in old age does not further reduce isometric stress or normalised power output of 

isolated locomotor muscles. When body mass and normalised power output was correlated, soleus 

power output isolated from heavier animals were significantly less powerful than leaner counterparts. 

Old obese diaphragm, however, had a tendency to generate lower isometric stress and generated 

significantly lower power output at all cycle frequencies. The greater decline in diaphragm contractile 
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function with ageing and obesity may, therefore, be a significant contributor to greater respiratory 

disease risk on old obese adults (Chuang et al., 2016).  

 

Ageing resulted in a significant increase in body mass, with an obesogenic diet in old age causing 

significant adiposity as demonstrated by an elevated body mass and gonadal fat mass compared to 

the control animals. Concentric and eccentric absolute power was well preserved with increasing age 

for the soleus and EDL, with absolute power increasing with age up to 52 weeks of age. In absolute 

terms, older adults would generate greater absolute power to overcome the increased bodily inertia 

to maintain locomotor function. However, in the oldest group (i.e. 78 weeks old), absolute concentric 

power output declines significantly with age with no reduction in body mass. As a consequence, it is 

expected that locomotor performance would be most inhibited by this age. However, normalised 

concentric power, and normalised eccentric power declines with increasing age. In the case of the 

former, larger muscles of poorer quality adds to an already elevated body mass and will consequently 

limit acute and sustained concentric power in vivo, limiting tasks such as stair ascent and moving from 

a stand-to-sit position (Tallis et al., 2018). As for eccentric muscle activity, the generation of power is 

limited for soleus, but not EDL, and coupled with an elevated body mass, may contribute to an inability 

to stabilise the lower musculature and maintain balance. Activities requiring sustained eccentric 

muscle activity, however, may result in better fatigue resistance in vivo. Whilst obesity had little 

impact on the quality of isolated soleus and EDL, an obesogenic diet exacerbated the decline in muscle 

quality of the diaphragm, which can further inhibit respiratory function and further contribute to the 

negative cycle of obesity. 

 

Ageing is associated with greater fall risk and all-cause mortality in older adults (McPhee et al., 2016), 

largely due to muscle weakness and reduced muscular endurance in older adults (Schwendner et al., 

1997; Wang et al., 2016). In addition to a greater number of falls in older adults, females over the age 

of 60 are more likely to experience a fall compared to males (Gale et al., 2016). In the present study, 
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the quality of locomotor skeletal muscle in terms of normalised WL power is lost to a much greater 

extent for males than females, with mean normalised soleus and EDL power output significantly lower 

in males than females at 78 weeks of age. However, absolute power is significantly greater in 78-week-

old male EDL muscle compared to females. As a broad application for both sexes, the loss of tissue 

quality occurs before the loss of muscle mass and is compounded by an increase in body mass. As the 

quality of soleus and EDL reduced with age, with either a maintenance or decline in fatigue resistance, 

a combination of an elevated bodily inertia and muscle mass and a reduction in contractile function 

means locomotor function is likely to be further inhibited. The magnitude of the effect may be greater 

in males than females, where males have a greater muscle mass but lower muscle quality than females 

so would have to generate greater power to overcome a greater bodily inertia. The maintenance in 

absolute power is likely to be a key in maintaining locomotor performance in light of a reduction in 

muscle quality. 

 

Fatigue resistance in each study was determined by reporting the change in power output normalised 

to muscle mass as a percentage of the pre-fatigue maximal power output over time, with the time 

taken to reach 50% of the pre-fatigue maximal power output as a measure of fatigue resistance (Tallis 

et al., 2014, 2017). One point of note was that as muscle mass increases with age (Figure 4.1 B&C; 

Table 5.1) and following the consumption of a high-fat diet (Table 6.2), the increased muscle mass is 

likely to contribute further to an increased bodily inertia, and therefore decrease in vivo fatigue 

resistance at the muscular level, even with no alteration at the muscular level in terms of fatigue 

resistance. Little is known, however, to what extent an increase in whole muscle mass relates to the 

fatigue resistance of a muscle at the muscular level, as it is expected that a greater bodily inertia can 

contribute to poorer fatigue resistance in older and obese adults (Tallis et al., 2018). Therefore, for 

each study, muscle mass was correlated against time to reach 50% of the pre-fatigue maximal power 

output during concentric fatigue to determine whether there was a relationship between increased 

muscle mass and poorer fatigue resistance. The diaphragm was not examined for each study due to 
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different segments of the diaphragm taken for each preparation so comparisons between 

preparations are difficult to make. The correlation analyses are presented in table 7.1. To increase 

statistical power, common age groups were pooled. Therefore, 10-week-old and 78-week-old animals 

from chapter five, and 78-week-old animals from chapter six were pooled with the muscles isolated 

from 10 week and 78-week-old female animals in chapter four. 
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Table 7.1 - The relationship between muscle mass and time to 50% fatigue. 

 

 

Group 

Male 

Soleus  EDL 

r2 P-Value r2 P-Value 

3 weeks 0.04 0.65 0.75 0.005 

10 weeks 0.20 0.19 <0.01 0.84 

30 weeks 0.02 0.72 0.24 0.22 

52 weeks 0.08 0.49 0.02 0.75 

78 weeks 0.40 0.09 0.13 0.39 

 

 

Group 

Female 

Soleus  EDL 

r2 P-Value r2 P-Value 

3 weeks <0.01 0.98 <0.01 0.83 

10 weeks• 0.10 0.39 0.28 0.13 

52 weeks 0.15 0.27 0.03 0.66 

78 weeks* 0.03 0.36 0.04 0.31 

 

 

Group 

Obese Females 

Soleus  EDL 

r2 P-Value r2 P-Value 

High-fat Diet 0.04 0.60 0.08 0.42 

N = 8-10 per muscle per group. 

A * indicates n = 28-30 per muscle per group. 

A • indicates n = 20 per muscle per group. 
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The correlation analyses revealed that, generally, that there was no relationship between muscle size 

and the ability to withstand the fatiguing effects of sustained concentric activity at the muscular level 

(Table 7.1). Even with an increase in muscle mass following a HFD in 78-week-old soleus and EDL, no 

relationship was observed between muscle mass and fatigue resistance (Table 7.1). Only one instance 

was observed where there was a significant relationship between muscle mass and fatigue resistance 

(Table 7.1). 3-week-old male EDL exhibited a significant relationship between muscle mass and fatigue 

resistance, where larger muscles exhibited poorer resistance to fatigue (Table 7.1). Despite this, no 

significant differences in fatigue resistance were observed between 3-week-old male and female EDL 

fatigue resistance, with 3-week old male EDL more fatigue resistant than all other ages despite this 

association.  

 

An increased muscle mass is therefore unlikely to alter fatigue resistance at the muscular level, with 

increased appendicular limb fat mass and body mass, contributing to a greater bodily inertia, more 

likely to contribute to the poorer fatigue resistance exhibited in larger and older adults more so than 

the contractile properties at the muscular level (Izquierdo et al., 2001; Huo et al., 2016). This is 

particularly pertinent where gonadal fat pad mass accounted for a significantly greater proportion of 

animal body mass following a HFD compared with controls (Table 6.2), though no differences between 

muscle mass to body mass ratio was observed for either muscle following a HFD (Table 6.3). 

 

The quality of the diaphragm declines linearly with age to equal magnitudes between males and 

females, though female diaphragm is more powerful than male diaphragm between 10 weeks and 78 

weeks of age (chapter 4). This progressive decline in power occurs faster in the early stages and later 

stages of ageing compared to soleus and EDL. As a consequence, cardiorespiratory function is more 

likely to be impaired earlier than the reduction in locomotor muscle quality. This may ultimately 

contribute significantly to the increased cardiorespiratory disease risk that is associated with a 

reduction in diaphragm contractile function in older adults (Polkey et al., 1997; Criswell et al., 2003). 
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Chapter 8 - Limitations and Future Work 

There are a number of considerations to make given the context of the findings of this thesis. 

Interpretation of these results is limited by several factors, which in turn provide unique opportunities 

for further studies. The limitations of the thesis are outlined below. 

 

This thesis provides a simplified approach to assessing dynamic muscle activity that occurs in vivo. A 

sinusoidal waveform was used as an approximation of the otherwise complex cyclical length change 

patterns that occur during in vivo locomotion (Dickinson et al., 2000). In reality, fibre recruitment and 

length change waveform are likely to be manipulated throughout the activity in vivo (Wakeling and 

Rozitis, 2005). During locomotion, the pattern of activation is likely to frequently change to maximise 

positive work and minimise negative work during concentric activity, and vice versa during eccentric 

activity, to maximise the muscle’s ability to sustain power output for longer durations. 

 

Whilst reporting isometric stress and normalised WL power provides a measure of muscle quality, the 

reduction in stress with ageing is likely to be primarily caused by a reduction in the performance of 

contractile tissues rather than the increase in non-contractile mass (Tallis et al., 2017). In older 

muscles, it is expected that a smaller proportion of the muscle mass is contractile proteins due to a 

greater non-contractile mass, such as increased intramuscular fat deposition, meaning the density of 

the muscle is likely to decrease. As we assumed a constant muscle density with age, the muscle CSA 

may be underestimated in the older skeletal muscles due to an overestimated muscle density (Tallis 

et al., 2014). This may mean that the isometric stress is likely to be an overestimate in older muscles, 

meaning the magnitude of the decline in normalised force may be greater than reported. It would be 

useful in future studies to analyse skeletal muscle protein and contractile protein across a similar age 

range and normalise contractile function to lean tissue mass. Doing so shall provide a valuable insight 

into the underpinning mechanisms for observed changes in contractile function relative to the 

increase in muscle mass in older animals. 
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A 9-week HFD was used to induce a significant gain in weight and adipose tissue in mice. It is 

recognised that during normal feeding habits in humans, it is not common for older adults to become 

obese in a short duration via a HFD. Obesity in older adults is generally a transient process over many 

years of poor dietary choices and leading a sedentary lifestyle. Examining the impact obesity has on 

skeletal muscle function during feeding over a larger proportion of an animal’s lifespan, and provided 

at a younger age, would provide a more relatable scenario to human dietary habits.   

 

In light of the findings from the thesis, a number of future potential studies can be performed to 

further our understanding of the effects of age and obesity on skeletal muscle, and potential strategies 

that can be used to negate their negative effects on muscle contractility. 

 

• What are the actual in vivo implications related to a greater bodily inertia and poorer muscle 

quality? Biomechanical analyses and a battery of functional tests, such as treadmill running, 

gait analysis and grip strength, comparing leaner and larger humans or rodents can provide a 

useful insight into the impact body size, or appendicular limb fat mass has on biomechanical 

factors and the ability to complete functional tasks. 

 

• How does ageing and obesity in old age affect the cross-bridge kinetics of single muscle fibres? 

Ageing and obesity is associated with an increase in intramuscular adipose tissue and may 

increase muscle stiffness. By removing the muscle belly and non-contractile elements, an 

examination of the contractile properties of single fibres of isolated skeletal muscles can be 

made. Many studies have examined single fibre contractile function with increasing age, but 

generally, use isometric contractions to examine isometric force and stress (Brooks and 

Faulkner, 1994; Thompson and Brown, 1999; González et al., 2000; Kim and Thompson, 2012, 

2013; Kung et al., 2014). Moreover, no study to date has examined the impact obesity has on 

force or power production of single fibres in either young or old obesity models. Usage of the 
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WL technique to examine changes in absolute and normalised power during ageing and 

obesity can provide a unique insight into the consequential effects on contractile performance 

at the cross-bridge level, independent of the muscle belly and Ca2+ kinetics. 

 

• What impact will a prolonged HFD have on in vivo locomotor performance and in vitro skeletal 

muscle contractile function? Many studies examining the effects of obesity on skeletal muscle 

contractile performance use relatively short HFD protocols which rarely exceed 10 weeks 

(Shortreed et al., 2009; Thomas et al., 2014; Ciapaite et al., 2015; Matsakas et al., 2015; Bott 

et al., 2017; Eshima et al., 2017). Work by DeNies et al. (2014) shows that a prolonged feeding 

duration of 52 weeks significantly alters animal morphology and skeletal muscle morphology 

and composition in a muscle-specific and sex-specific manner. However, the corresponding 

alterations in skeletal muscle contractile function in response to the chronic provision of a 

HFD has yet to be explored.  

 

• Can calorie restriction prolong skeletal muscle function? Emerging evidence in primates 

(Colman et al., 2014; Pifferi et al., 2018) and rodents (Heilbronn and Ravussin, 2003) have 

demonstrated that following a regimen of a reduced calorific intake can prolong animal and 

human lifespan. The impact of calorie restriction, in both a control and obesity group, on 

muscle morphology and skeletal muscle contractile function have yet to be explored. 

 

• Acceleration of muscular atrophy during limb disuse. Human studies report significant muscle 

atrophy and consequent reductions in contractile performance during periods of bed rest, 

immobilisation, hindlimb unloading and spaceflight (Gao et al., 2018). In older adults, physical 

inactivity due to poorer locomotory capabilities, and hospitalisation as a result of illness and 

debilitation, can accelerate the ageing process due to a lack of skeletal muscle usage. These 

open a number of interesting areas of study; firstly, quantifying the acceleration of the muscle-
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specific loss of muscle quality following limb immobilisation in a young and old rodent model, 

and determining to what extent training and other therapeutic strategies following limb 

immobilisation can restore skeletal muscle function. 

 

• Serum 25-hydroxyvitamin D [25 (OH) D], more commonly known as vitamin D, has been shown 

to be a deficient vitamin in US and UK adults, with the vitamin crucial for normal physiological 

process, including regulation of muscle mass and function (Forrest and Stuhldreher, 2011; 

Girgis et al., 2013).  Evidence in humans has demonstrated vitamin D deficiency is associated 

with reduced skeletal muscle force production, power output and balance and fall risk (Girgis 

et al., 2013), with muscle strength, but not muscle mass or power, affected by vitamin D 

supplementation in humans (Beaudart et al., 2014). However, measures of force and power 

of isolated skeletal muscle have rarely been performed (Girgis et al., 2013). Those which have 

performed such work report reduced tricep surae force in vitamin D deficient chicks (Pleasure 

et al., 1979), significantly lower diaphragm isometric force, but not EDL force, in dietary-

induced vitamin D deficient mice (Ray et al., 2013), whilst Schubert and DeLuca (2010) report 

no effect of vitamin D deficiency on isolated rat soleus force production. No work to date has 

examined the effect of vitamin D deficiency on the contractile properties of isolated skeletal 

muscles of older animals, or whether vitamin D provision can have an impact on isolated 

muscle contractile function in both young and old skeletal muscles, whether this is via a diet 

rich in vitamin D or through UV ray exposure. 
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Appendix 

Author Participant Information Muscle 

Assessed 

Protocol Change in 

Performance? 

Comments 

Muscular Strength 

Larsson et al. 

(1979) 

114 M (11 – 70 years) 

 

Quadriceps MI & MD strength tested through knee-

extensor activity 

Muscle biopsies (n=51, 22 – 65 years) 

Yes Isometric and dynamic strength increased to 

3rd decade, sustained through to the 5th and 

continued to decline with increasing age. 

Murray et al. 

(1980) 

72 M (20 – 86 years)  

Three age groups of 24 (20 – 35 

years, 50 – 65 years, 70 – 86 

years) 

KF & KE MI and MD strength measured at three 

joint positions (35°, 45° and 60°) at a 

speed of 36°s-1. Isometric contractions 

sustained for 5 seconds. 

Yes MI strength 55-65% ↓in oldest vs. youngest. 

MD strength 45-65% ↓ in oldest vs youngest 

Young et al. 

(1984) 

50 healthy females in their 20’s 

(n=25) and 70’s (n=25) 

Quadriceps MMV isometric strength; CSA measured 

via ultrasound imaging at mid-thigh. 

Yes Strength 35% and CSA 33% ↓in old than 

young, (P<0.001 for both). 
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Young et al. 

(1985) 

24 healthy males in their 20’s 

(n=12) and 70’s (n=12) 

Quadriceps MMV isometric strength; CSA measured 

via ultrasound imaging at mid-thigh. 

Yes Strength 39% and CSA 29% ↓ in old than 

young (P<0.001 for both). 

Murray et al. 

(1985) 

72 F (20-86 years)  

Three age groups of 24 (20-35 

years, 42 – 61 years, 70 – 86 

years) 

KF & KE MI and MD strength measured at three 

joint positions (35°, 45° and 60°) at a 

speed of 36°s-1. Isometric contractions 

sustained for 5 seconds. 

Yes Strength 63% ↓ in oldest vs youngest 

 

Viitasalo et al. 

(1985) 

338 M (131 aged 32.9±1.4 yrs.; 

138 aged 53.1±1.5 yrs.; 119 

aged 72.7±1.4 yrs.) 

HG, EF, KE, 

TF, TE 

MI strength for all muscles Yes KE ↓ 47% from youngest to oldest. 

HG ↓ 42% youngest to oldest 

TE ↓ 42% youngest to oldest 

TF ↓ 35% youngest to oldest 

EF ↓ 35% youngest to oldest. 

Kallman et al. 

(1990) 

Cross sectional:847 participants 

in 7 age groups, 20’s (20-29) to 

80’s (80-89) 

Longitudinal: 342 participants 

HG HG strength with hand held 

dynamometer  

Yes Cross-sectional: 

Peak in 30’s, but not different vs 20’s and 

40’s 

Strength ↓ 37% in 80’s vs. 30’s, accelerates 
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from 30’s to 70’s assessed on 

average 9 years after initial 

assessment. 

with age from 40’s 

Longitudinal: 

30’s strength ↑ 0.33±0.23 kg.yr after 8.5 

years. 

Strength ↓ 40’s to 80’s (-0.31±0.12 kg.yr vs. 

1.27±0.21 kg.yr) 

 

HG strength signif. correlates with MM (r2 = 

0.16) but correlates stronger with age (r2 = 

0.38) 

Reed et al. 

(1991) 

296 M & F: 

Middle aged – (33 M & 45 F, 

55-64 yrs) 

Young-old – (74 M & 87 F, 65-

KF, KE, EF, 

EE, ankle 

dorsiflexor  

MI strength for all muscles in right and 

left limb 

Yes Signif. ↓ strength for all muscles with age 

for M & F. 

F strength ↓ more than M strength for all 

muscles. 

Arm muscle circumference & area ↓ with 
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74 yrs) 

Old-old – 26 M & 31 F, 75+ yrs) 

age in M but not F 

MQ ↓with age for all muscles but no effect 

for gender 

Overend et al. 

(1992) 

13 young M (24.4 yrs) 

12 elderly M (70.7 yrs) 

KF, KE KE MI at 60° and KF MI at 30° with MD 

strength at 0°s-1 & 120°s-1
, thus creating 

four test groups 

Yes KE MD at 120°s-1 and 0°s-1↓ 32.4% and 

24.0% in young to old respectively 

KF MD at 120°s-1 and 0°s-1↓ 32.0% and 

24.3% in young to old respectively 

KE MI at 120°s-1 and 0°s-1↓ 31.5% and 23.6% 

in young to old respectively 

KF MI at 120°s-1 and 0°s-1↓ 30.6% and 22.3% 

in young to old respectively 

 

Rate of strength loss ↑ than rate of CSA loss 

in elderly 

Strength/CSA ↔ at 0°s-1 for KE & KF, ↓ 
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significantly in elderly at 120°s-1 in KE & KF in 

elderly 

Skelton et al. 

(1994) 

50 M & 50 F 

n=5 per gender per group every 

½ decade (65-69, 70-74, 75-79, 

80-84 & 85-89 years of age) 

KE, EF, HG MI strength for all muscles Yes BM – M heavier than F, though significant 

negative correlation with age for both (m- 

r=-0.39; F – r=-0.47). 

No effect for gender on changes in strength 

with 

M strength ↑ than F for all ages. 

Loss of strength by 1-2% per year. 

Bäckman et al. 

(1995) 

128 M & F 

63 F aged 17-70 years 

65 M aged 17- 70 years  

EF, KE, KF, 

DF, HF, HA, 

MI strength via dynamometry Yes F absolute strength 65-70% of strength 

achieved by men. 

↔ when strength normalised to BM 

Strength peaked at 17-18 years, generally 

↔ to 40 years, ↓ by 60 years. 



248 
 

Lindle et al. 

(1997) 

346 M & 308 F aged 20-92 

years 

KE MI & MD strength at 0, 30 and 180°s-1 Yes MI and MD strength ↑in M vs. F at all ages 

and velocities. (P<0.001) 

MI & MD strength ↓ with inc. age in M & F 

Onset of decline typical occurs in 40’s for M 

& F 

Metter et al. 

(1997) 

Longitudinal analysis of M 

(n=837) & F (n=106) at every 

decade between 20-80 years 

Cross-sectional analysis of M 

(n=993) and F (n=184) at every 

decade between 20-80 years 

HG Longitudinal - HG strength using a 

handheld dynamometer measured 

every 1-2 years for average of 9.6 years 

for M and 3.9 years for F. 

Cross-sectional – As above but single 

examination at each decade 

Yes Longitudinal - ↓ from 20-80 years in M 

(P<0.001) but not for F 

Cross-sectional - HG strength ↓ significantly 

after 39.8 years for M and 44 years for F 

(p<0.001). 

Significant 34% and 32% ↓ in strength for M 

and F from 20-80 years (P<0.01). 

Lynch et al. 

(1999) 

364 M & 339 F aged 19-93 

years 

Muscle mass in 224 M & 278 F 

KF, KE, EF & 

EE 

MD force measured in KF & KE at 45°s-1 

& KF & KE at 30°S-1 

Corrected to MM 

Yes 30% ↓ in EF & EE strength vs. KF & KE for all 

ages and genders. 

M arm and leg MQ ↓ at similar rate with age 
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F arm MQ ↓ 20% faster than leg MQ with 

age 

Arm MQ ↓ 28% and 20% with age in M & F 

respectively 

Leg MQ ↓ 40% for both M & F with age  

Frontera et al. 

(2000) 

12 M (65.4 ± 4.2 years) 

assessed, 9 of which assessed 

after 12 years 

KF, KE, EF & 

EE 

MD force measured in 1985-86; 

reassessed in 1997-98 

CSA of thigh, all thigh muscles, 

quadriceps femoris and flexor muscles 

taken via tomography 

Muscle biopsies taken from vastus 

lateralis  

Yes Strength 20-30% ↓ KE & EF (P<0.05) 

CSA ↓ in thigh (12.5%), thigh muscles 

(14.7%) quadriceps femoris (16.1%) and 

flexor muscles (14.9%) (P<0.05 in all cases) 

 

Klein et al. 

(2001) 

22 young M (22.6±2.7 yrs) 

13 old M (81.0±6.5 yrs) 

EE, EF MVC during isometric contraction Yes EF & EE ↓ 27% & 33% in old vs. young 

respectively 

Magnitude of decline in each muscle ↔ 
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EF & EE PCSA ↓ 19% and 28% in old vs. 

young respectively  

EF & EE strength/PCSA ↓ in old vs. young 

Lauretani et al. 

(2003) 

469 M & 561 F (20-85+ years) 

(20-29 youngest, 85+ oldest) 

KE, HG Maximal torque from knee extension 

HG strength with hand held 

dynamometer 

Yes M torque - ↓ 60% in oldest vs. youngest 

group 

F torque - ↓ 57% in oldest vs. youngest 

group 

M HG – ↓ 55% in oldest vs. youngest group 

F HG - ↓ 59% in oldest vs. youngest group 

Bazzucchi et 

al. (2005) 

12 M 

6 young (28.3±4.8 yrs) 

6 old (71.3±0.8 yrs) 

All participants had similar 

absolute force. 

EF MI and MD EF strength during a MVC. 

Torque-velocity measures at 13, 30 60 

90 120 and 150°s-1 

Muscle CSA measured via MRI scan 

Yes and No ↔ in isometric MVC absolute force, MVC 

force relative to BMI, or MCV relative to 

muscle CSA 

↔ in muscle CSA with age 

Torque-velocity ↓ from 60-150°s-1 with age 
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Delmonico et 

al. (2009) 

813 M (73.6±2.8 yrs) & 865 F 

(73.2±2.89 yrs) 

KE MD strength measured at baseline and 

in a 5-year follow up 

Yes M & F ↓ 16.1±20.6% and 13.4±23.0% 

respectively. 

Thigh CSA for M & F ↓ 4.9±7.4% and 

3.2±7.9% respectively. 

MQ for M & F ↓ 13.1±20.4% and 

11.1±23.8% respectively. 

Loss of strength greater than loss of muscle 

CSA 

Dey et al. 

(2009) 

38 M & 49 F (75 years for both) HG, KE, EF MI HG strength, EF strength and KE 

strength measured at baseline (75 

years) and after 5 years (80 years) 

Body composition determined via 

bioelectrical impedance  

 

 

Yes ↓ in M & F for all muscle groups (P<0.001). 

Rate of decline faster in M than F. 

Fat-free mass ↓in M & F, but more so in M 

(P<0.001) 

Body fat percentage ↑in M (P<0.05), F ↔. 

   Muscular Power   



252 
 

(Bassey et al., 

1992) 

     

Skelton et al. 

(1994) 

50 M & 50 F 

n=5 per gender per group every 

½ decade (65-69, 70-74, 75-79, 

80-84 & 85-89 years of age) 

Lower 

muscle 

groups 

Absolute PO (W) and relative PO (W.Kg-1 

BM) calculated from leg extension 

Yes PO M vs F - greater in M than F (P<0.01) 

though rate of loss in PO (W) ↑ in M 

(P=0.002) 

Loss of PO greater than loss of strength in M 

(P=0.0001) but not F (P=0.08), with PO 

declining by 3.5% per year. 

Metter et al. 

(1997) 

As above Upper body Longitudinal - HG strength using a 

handheld dynamometer measured 

every 1-2 years for average of 9.6 years 

for M and 3.9 years for F. 

Cross-sectional – As above but single 

examination at each decade 

Yes Power peaked in the 30’s and 50’s for males 

and females respectively and significantly 

(P<0.001) declined with age. 

When expressed as a percentage of power 

for 20 year olds, power significantly 

(P<0.001) declined by 42% from 20’s to 80’s 
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Upper body arm crank; maximal effort 

for 10-15 seconds at 4 separate loads 

with 30 seconds rest between each load  

years of age in men and by 46% in women, 

though not significantly (P=0.33) 

De Vito et al. 

(1998) 

52 F (62.2 ± 6.6 years) Lower leg 

muscle 

groups 

PPO calculated from CMJ and SJ on 

force platform 

 

N/A When correlated against age, negative 

correlations between absolute (W) (P<0.001 

for CMJ & SJ) and relative (W.Kg BM) (P<0.05 

for CMF & SJ) PO. 

Lauretani et al. 

(2003) 

As above Lower body 

muscle 

groups 

PPO calculated from leg extension 

Calf CSA 

Yes M PO – 74% ↓ in oldest vs. youngest group 

F PO – 76% ↓ in oldest vs. youngest group 

M CSA – 31% ↓ in oldest vs. youngest group 

F CSA – 15% ↓ in oldest vs. youngest group 

Macaluso and 

De Vito (2003) 

20 M 

10 young (22.8±5.7 years) 

10 old (69.5±2.4 years) 

Lower body 

muscle 

groups 

PPO (Watts) calculated from isometric 

force and velocity during leg press at 

different loads, with optimal load used 

to calculated power 

Yes PPO ↓ by 61% for old vs. young* 

Peak force ↓ 52% lower for old vs. young* 

Optimal velocity ↓21% for old vs. young* 
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Loss of power ↑ than loss of strength, with 

22.1% difference when expressed as a ratio* 

Pojednic et al. 

(2012) 

79 M & F 

25 middle-aged adults (MH; 

47.2±4.5 years) 

28 older healthy adults (OH; 

73.6±3.5 years) 

26 older mobility limited adults 

(OML; 77.9±4.3 years) 

KE and lower 

leg muscles 

MVC during leg extension to produced 

torque 

Maximal contraction velocity at 40% of 

1RM during unilateral leg extension 

Muscle CSA measured via CT scan 

PPO measured at 180°s-1 

Torque and PO normalised to CSA 

Yes MH – absolute and normalised torque, but 

not velocity, associated with absolute and 

normalised PO. 

OH – both force and power significantly 

associated with PO 

OML – velocity, but not absolute and 

normalised torque, associated with absolute 

and normalised power. 

Mobility limitations likely due to contraction 

velocity and not power. 

Edwén et al. 

(2014) 

127 M & 188 F 

107 young (18-34 years) 

Lower leg 

muscle 

groups 

PPO (W. Kg BM) calculated from 

bilateral CMJ on a force platform 

Yes M PPO – ↓ 0.44 W.Kg-1 per year 

F PPO - ↓ 0.29 W.Kg-1 per year 

PPO M vs. F - greater in M than F (P<0.001)  
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54 middle-aged (35-55 years) 

154 old (65-81 years) 

Force at PPO (FPpeak) and velocity at 

PPO measured (VPpeak) 

M FPpeak - ↓ 0.07 N.Kg per year 

F FPpeak - ↓ 0.04 N.Kg per year. 

FPpeak M vs. F - greater in M than women 

(P<0.001) 

M VPpeak - ↓ 0.02 m.s-1 per year 

F VPpeak - ↓ 0.01 m.s-1 per year 

VPpeak M vs. F - greater in M than F 

(P=0.002) 

Fatigue Resistance 

Davies et al. 

(1986) 

32 M and 19 F 

12 young M (21.5±2.4 yrs) 

8 young F (21.9±2.2 yrs) 

20 old M (69.7±2.8 yrs) 

11 old F (68.5±2.9 yrs) 

Triceps surae 20Hz train of stimulation for 300ms at 

every second for 2 minutes. 

Force plotted over the time course 

Yes Signif. Age-related ↓ in fatigue for M & F 

(P<0.01 for both) 

Old M had signif. ↓ fatigue resistance than F 

(P<0.01). ↔ for young M and F. 
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Klein et al. 

(1988) 

17 M 

10 young (19-32 years) 

7 old (64-69 years) 

Triceps surae 20Hz train of stimulation for 300ms 

every second for 10 minutes. 

Force plotted over the time course 

No Signif. decline in force for both groups 

(P<0.01). 

↔ in fatigue resistance for age. 

Bäckman et al. 

(1995) 

As above As above Sustained isometric contractions until 

RPE reached 17. 

No Endurance peaked at 20-29 years for M and 

40-49 years for F but did not decline with age 

Hicks and 

McCartney 

(1996) 

56 control M & F 

14 old F (65±2.5 yrs) 

21 older F (73±3.5 yrs) 

13 old M (64±2.04 yrs) 

6 older M (72±2.89 yrs) 

EF, DF Intermittent isometric contractions (5s 

active, 2s rest) for 3 mins. 

Fatigue defined as loss of torque vs pre-

fatigue maximum 

Yes M signif ↓ fatigue resistance than F for both 

EF and DF. 

Older group signif. ↑ fatigue resistance than 

old group for both EF and DF. 

Lindström et 

al. (1997) 

38 M & F 

22 young: 

 - 14 M (28±5 years) 

 - 8 F (28±7 years) 

KE 100 repeated KE contractions at 90°s-1
 

of dominant limb 

Split into two phases for analyses: 

  - first 40 contractions = fatigue phase 

  - last 30 contractions = endurance level 

Yes and No ↓ in peak torque and endurance level with 

age. 

↔ for fatigue relative to peak torque or 

fatigue rate during the fatigue phase. 
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16 old: 

  - 8 M (73±2 years) 

  - 8 F (73±4 years) 

Bilodeau et al. 

(2001) 

10 young (5 M, 5 F; 25.5±2.7 

yrs) 

11 old (7 M, 4 F; 76.3±5.8 yrs)  

EF Maximal isometric EF until torque ↓ 

50% of prefatigued MVC for 5s. 

Yes Time to 50% of prefatigued MVC signif. ↑ in 

old than young (P<0.05). 

F signif ↑ time to fatigue than M (P<0.05) 

Bazzucchi et 

al. (2005) 

As above EF Continual, maximal isometric 

contraction at 30%, 50% & 80% MVC 

until torque ↓ by 10% for 3 s 

Time to maintain contraction measured. 

Yes Endurance time signif. ↑ in old than young 

at 50% and 80% MVC (P<0.05 in both cases). 

↔ at 30% MVC 

Table S1.1 - In vivo assessments of muscle strength, power and fatigue resistance in cross-sectional and longitudinal ageing studies. 

Abbreviations as follows: males =M, females = F; knee extensors = KE; knee flexors = KF; elbow flexors = EF; elbow extensors = EE; dorsiflexors = DF; trunk 

extension = TE; trunk flexors = TF; hand grip = HG; mean maximal voluntary = MMV; maximal voluntary contraction =  MVC; maximal isometric = MI; maximal 

dynamic = MD; muscle quality = MQ; peak power output = PPO; cross-sectional area = CSA; physiological cross-sectional area = PCSA; one rep maximum = 

1RM; countermovement jump = CMJ; squat jump = SJ; rating of perceived exertion = RPE; . 
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Author Animal  

Information 

Muscle Tested Protocol Change in Performance Comments 

Isometric Testing 

Gutmann 

and Carlson 

(1976) 

Male rats (Wistar): 

Young (3 months; 

n=7) and aged (24 

months; n=7). 

Whole EDL. Maximal isometric stimulations in 

vitro. TwtPO, TetPO, TPT, 1/2RT. 

Tested at 36°C. 

TwtPO - ↔ with age. 

TetPO - ↓ in aged vs. young 

TPT - ↔ with age. 

1/2RT - ↑ in aged vs. young. 

MM - ↓ in aged vs. young. 

Brooks and 

Faulkner 

(1988) 

Male mice 

(C57BL/6):  

Young (2-3 months; 

n=11), adult (9-10 

months; n=14) and 

aged (26-27 months; 

n=14). 

Whole Sol, 

EDL. 

Maximal isometric and isotonic 

stimulations in vitro. TetPO, 

TetSPO, activation and relaxation, 

Vmax. Tested at 25°C.  

TetPo – EDL ↓ 73% adult to aged.* 

     - Sol ↓78% adult to aged.* 

TetSPO – EDL ↓ 78% adult to aged.* 

       - ↔ for Sol with age. 

Vmax - ↔ for EDL or Sol with age. 

THPT & LSHR - ↔ EDL with age. 

        - Sol ↑ in adult and aged for both* 

BM - ↑ by 25% from young to 

adult* and then ↓ by 13% in 

aged.* 

MM – EDL ↓ by 13% from adult to 

aged* 

         - Sol ↓ by 20% from adult to 

aged* 
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Zhang and 

Kelsen 

(1990) 

42 golden hamsters: 

Young adult (4.9±0.4 

months; n=15), adult 

(12.8±0.2 months; 

n=13) and aged 

(18.8±0.3 months; 

n=14). 

DIA strips. Maximal isometric stimulations in 

vitro. TetSPO, F-Freq THT, 1/2RT, F-

V relationship 

TetSPO – ↓ in maximum and at all muscle 

fibre lengths with age* 

            - ↔ in fibre length for max TetSPO 

F-Freq - signif. leftward shift from 10-40Hz 

with age (P<0.003). 

             - ↔ with age 50-150Hz (P>0.50). 

THT & 1/2RT - ↑ in aged vs. young and 

adult* 

        - ↔ in young vs. adult. 

F-V - ↓ in velocity at given load with age* 

BM - ↔ with age 

Lung volume - ↑ in adult and aged 

vs. young adult* 

 

Brooks and 

Faulkner 

(1991) 

Male mice 

(C57BL/6): 

Young (2-3 months), 

adult (12-13 months) 

Whole EDL. Maximal isometric stimulations in 

situ. TetPO, TetSPO. Mouse placed 

on heated platform at 35°C. 

TetPO - ↓ in young and aged mice vs adult* 

TetSPO - ↔ with age. 

BM - ↓ in young vs adult and 

aged*. ↔ from adult to aged.  

MM - ↓ in young and aged vs 

adult* 
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and aged (26-27 

months) 

Phillips et al. 

(1991) 

Mice (C57BL/10 or 

tan coat mutation of 

the C57 black 

animal): 

Young (2.5-8 

months; n=12) or 

aged (28-31 months; 

n=8). 

Whole Sol 

from left and 

right hind 

limb. 

Maximal isometric stimulations in 

vitro. TetPO, TetSPO, Activation, 

Relaxation. Tested at 25°C. 

TetPO - ↓ in aged vs. young 

TetSPO - ↓13.3% in aged vs. young 

Activ. - ↔ with age 

Relax. - ↑ in aged vs. young 

↔ in dry muscle mass/unit of 

fibre length 

Brooks and 

Faulkner 

(1994) 

Male mice 

(C57BL/6): 

Adult (12 months) 

and aged (27 

months) 

Single intact 

EDL fibres 

Maximal isometric stimulations in 

vitro. TetSPO, Vmax, a/PO. Tested at 

25°C. 

TetSPO - ↔ with age 

Vmax - ↔ with age 

a/PO - ↔ with age. 

↔ in fibre CSA or sarcomere 

length with age.  
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Brown and 

Hasser 

(1996) 

Male rats (Fischer 

334 x Brown Norway 

hybrids): 

6, 12, 28 and 36 

months old 

Whole Sol, EDL Maximal isometric stimulations in 

situ. Stimulated via nerve and 

direct muscle. TwtPO, TetPO, 

TetSPO, TPT, 1/2RT. Tested at 37°C. 

TwtPO – EDL ↔ with age. 

            - Sol ↓ 31% 6-28 mo., signif diff. by 

38 mo.** 

TetPO – EDL ↔ 6-28 mo., ↓ 48% by 36 mo. 

‡ 

         - Sol ↔ 6-28 mo., ↓ 62% by 36 mo. 

** 

TetSPO – EDL ↔ 6-28 mo., ↓ 30% 6-36 

mo.* 

             - Sol ↔ 6-28 mo., ↓ 31% 6-36 

mo.* 

TPT – EDL ↑ at 28 mo. vs. all ages* 

        - Sol ↓ at 6 mo. vs. all ages* 

1/2RT – EDL ↓ at 28 mo. vs all ages* 

        - Sol ↑ at 6 mo. vs. all ages* 

BM - ↑ 6-12 mo.*, 28 mo. ↑ vs. 6 

& 36 mo.*, 36 mo. ↑ than 6 mo.* 

MM – EDL ↔ with age. 

         - Sol ↓18% 6-36 mo.* 

↔ between direct muscle 

stimulation and nerve stimulation. 
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Kadhiresan 

et al. (1996) 

Rats (Fisher 344): 

Adult (10-12 months; 

n=10) and aged (24-

26 months; n=8). 

Whole medial 

Gas 

Maximal isometric stimulations in 

vitro. TetPO, TetSPO, F-Freq, TPT. 

Tested at 37°C. 

TetPO - ↓ 29% in aged vs. adult* 

TetSPO - ↓ 85% in aged vs. adult* 

F-Freq - ↔ with age. 

TPT - ↔ with age. 

BM - ↔ with age. 

MM - ↓15% in aged vs. adult* 

CSA - ↓ 15% in aged vs. adult* 

L0 - ↔ with age. 

Criswell et 

al. (1997) 

Male rats (Fischer 

344): 

young adult (9 

months; n=12) and 

senescent adult (26 

months; n=13) 

DIA strip Maximal isometric stimulations in 

vitro. TetSPO. Tested at 24±0.5°C 

TetSPO - ↓ 16.4% in young vs. adult* ↔ in BM, MM, BM:MM, total MM 

and L0 with age. 

Lynch et al. 

(1997) 

Mice: 

(C57BL/10ScSn) 

Young (4-6 months, 

n=15) 

DIA strips TetSPo, TPT, 1/2RT, F-Freq. Tested 

at 25°C  

↔ for TetSPo, TPT, 1/2RT, F-Freq from 

young to aged 

N/A 
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Aged (24 months, 

n=7) 

Pagala et al. 

(1998) 

Male mice 

(C57BL/6J): 

Young (3-6 months) 

and old (34-37 

months) 

Whole Sol, EDL Maximal and submaximal 

isometric stimulations in vitro. 

Max and submax tetPo, TetSPO at 

100Hz (max), TetSPO at 30Hz 

(submax). Tested at 20°C 

TetPo - EDL ↓ from young to old‡ 

                       - Sol ↓ from young to old* 

Submax tension - EDL ↓ from young to 

old‡  

               - Sol ↓ from young to old* 

Max tetSPO – EDL & Sol ↔ with age 

Submax tetSPO – EDL & Sol ↔ with age 

Muscle Length - EDL & Sol ↔ with 

age 

MM – EDL ↓16.4% with age* 

        - Sol ↓ 19.5% with age* 

Thompson 

and Brown 

(1999) 

Male rats (Fischer 

344 x Brown Norway 

F1 Hybrid): 

Young adult (12 

months; n=31), adult 

(24 months; n=27) 

Single intact 

Sol fibers 

Maximal isometric stimulations in 

vitro. TetPO, TetSPO, Vmax Tested 

at 15°C 

TetPO – greatest at 12 mo., ↓ 31% by 24 

mo.* and ↓ 50% by 36 mo. vs 12 mo., 24 

mo. vs 37 mo. signif. lower* 

TetSPO – greatest at 12 mo., ↓20% by 24 

mo.* & maintained to 36 mo. with ↓ 32% 

  - 37mo. signif. ↓ vs 12, 24 & 30mo.* 

BM - ↑32% from 12-30 mo.* 

 - ↓by 36 mo vs 30 mo.* 

MM - ↔12-30 mo. 

    - ↓26% by 36-37mo.* 

MM:BM - ↔12-24 mo. 

           - ↓33% 12-37 mo.* 
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older adult (30 

months), 36 months 

(n=19) and 37 

months (n=27). 

Vmax - ↔ 12-24 mo., then ↓ 50% between 

24-30mo. and maintained* 

González et 

al. (2000) 

Mice (DBA and FVB): 

Young (2-6 months; 

n=14), adult (12-14 

months; n=7) and 

aged (20-24 months; 

n=15). 

Single intact 

EDL, Sol fibers 

Maximal isometric stimulations in 

vitro. TwtSPO, TetSPO, TPT, 1/2RT. 

Tested at 20-21°C. 

TwtSPO – EDL ↓ from adult to aged* 

              - Sol ↔ with age. 

TetSPO – EDL ↓ in aged vs young and 

adult* 

             - Sol ↓ in aged vs young and adult* 

TPT – EDL & Sol ↔ with age 

1/2RT – EDL & Sol ↔ with age 

Fiber diameter – EDL ↔ with age 

   - Sol ↓ in aged vs young and 

adult 

CSA – EDL ↔ with age 

        - Sol ↓ in aged vs young and 

adult.  

Lynch et al. 

(2001) 

Male mice (C57BL): 

Aged ~6, ~17, ~24 & 

~ 28 months. 

Whole Sol, EDL Maximal isometric stimulations in 

vitro. TetPO, TetSPO. Tested at 

25°C. 

TetPO – EDL ↓ 36% from 6-28 mo. ‡ 

         - Sol ↓ 15% from 6-28 mo. ‡ 

TetSPO – EDL ↔ 6-24 mo., ↓ 26% 24-28 

BM - ↑ 16% 6-17 mo., ↓ 10% 17-

24 mo. and 32% by 28 mo. ‡ 

MM – EDL ↓ 22% 6-28 mo.‡ 

         - Sol ↓ 16% 6-28 mo.‡ 
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mo.* 

             - Sol ↓ 15% 6-28 mo. 

Criswell et 

al. (2003) 

Male rats (Fischer 

344/Brown Norway 

F1 hybrid): 

Aged 4 and 30 

months 

DIA strips Maximal isometric stimulations in 

vitro. TwtSPO, TetSPO 1/2TPT, 

1/2RT. Tested at 24±0.5°C. 

TwtSPO - ↔ with age. 

TetSPO - ↓ 13% 4-30mo.* 

1/2TPT - ↑ with age* 

1/2RT - ↔ with age. 

BM - ↑ with age* 

MM - ↑ with age* 

MM:BM - ↔ with age 

McArdle et 

al. (2004) 

Male and female 

mice (wild type 

 B6XSJL): 

Adult (10-12 

months) and aged 

(26-28 months) 

Whole EDL Maximal isometric stimulations in 

situ. TwtPO, TetPO, TetSPO, TPT, 

1/2RT. 

TwtPO - ↓ from adult to aged*. 

TwtSPO - ↔ with age. 

TetPO - ↓ 28% from adult to aged* 

TetSPO - ↓ 26% from adult to aged* 

TPT - ↔ with age. 

1/2RT - ↔ with age. 

BM – 13% smaller but ↔ with 

age. 

MM - ↓ 15% from adult to aged* 

BM/MM - ↓ with age* 

Moran et al. 

(2005) 

Female mice 

(C57BL/6J): 

Whole Sol 

from one 

Maximal isometric stimulations in 

vitro. TwtPO, TwtSPO, TetPO, 

TwtPO - ↔ for EDL & Sol with age 

TetPO – EDL ↔ with age 

BM – Affected by age‡ 

 -16, 24 & 28 mo.>4 & 8 mo. 
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~4 mo. (n=7), 8 mo. 

(n=7), 16 mo. (n=8), 

24 mo. (n=5) and 28 

mo. (n=10) 

hindlimb, EDL 

from 

contralateral 

hindlimb 

TetSPO, active stiffness, passive 

stiffness, TPT, 1/2RT. Tested at 

25°C. 

           - Sol ↓ 23% 4-28 mo. 

            - 28 mo. Sol signif. ↓ vs. 4 & 8 mo.* 

            - Sol tetPO vs. age (r=-0.63; P<0.001) 

but no correlation for EDL (r=-.014, P=0.44) 

TetSPO – EDL ↔ with age 

             - Sol ↓ 26% 16 & 28 mo. vs 8 mo. * 

Act. stiffness – EDL ↔ with age 

                         - Sol ↓ 23% 8-28 mo.* 

Pass. stiffness – EDL ↑ 20% 4 & 8-28 mo. * 

                          - Sol ↔ with age 

TPT – EDL & Sol ↔ with age 

1/2RT – EDL ↑ 30% 4-28 mo.* 

        - Sol ↔ with age 

↔ EDL & Sol MM or L0 



267 
 

Rice et al. 

(2005) 

Male rats (Fischer 

344/NNiaHSd; 

F344/N): 

Adult (6 months) and 

aged (24 months) vs. 

male rats (Fischer 

344/NNiaHSd x 

Brown 

Norway/BiNia; 

F344/NXBN): 

Adult (6 months) and 

aged (38 months). 

Whole Sol, EDL Maximal isometric stimulations in 

vitro. TwtPO, TetPO, TetSPO, TPT, 

1/2RT. Tested at 24°C. 

F334/N: 

 - No changes in contractile function for 

EDL & SOL 

F334/NXBN: 

   TwtPO – EDL ↓ ~44% adult to aged* 

                - Sol ~67% adult to aged* 

   TetPO – EDL ↓ ~65% adult to aged* 

               - Sol ↓ ~77% adult to aged* 

   TetSPO – EDL ↓ ~42% adult to aged* 

                - Sol ↓ ~ 65% adult to aged* 

   TPT ↔ EDL and Sol with age 

   1/2RT – EDL ↑ ~24% with age 

            - Sol ↔ with age  

F334/N: 

  BM - ↑ 14% in aged vs. adult* 

  MM – ↔ EDL & Sol with age 

  CSA - ↔ EDL & Sol with age 

  MM:BM - ↔ with age 

F334/NXBN: 

  BM - ↔ with age. 

  MM – EDL ↓ ~38% adult to aged* 

           - Sol ↓ 37% adult to aged* 

  CSA - ↓ adult to aged* 

  MM:BM - ↓ adult to aged* 
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Carter et al. 

(2010) 

Male rats (F344BN): 

Young adults (7-10 

months; n=9) and 

aged (35 months; 

n=9) 

Sol, 

Gastrocnemius

-plantaris 

complex (G-P) 

Maximal twitch and tetanus 

isometric force in situ. TwtPO, 

TetPO, TetSPO, TPT, 1/2RT. Rat 

placed on heated platform at 

37°C.  

TwtPO – Sol ↓ 38% with age. * 

            - G-P ↓ 50% with age* 

TetPO – Sol ↓~67% with age* 

            - G-P ↓ ~61% with age* 

TetSPO – Sol ↓ ~58% with age* 

             - G-P ↓ ~36% with age* 

TPT - Sol ↔ with age. 

       - G-P ↑ with age* 

1/2RT – Sol ↑ 70% with age* 

        - G-P ↑ 51% with age* 

BM - ↔ with age  

MM – Sol ↓35% with age* 

        - GAS ↓ 55% with age* 

Chan and 

Head (2010) 

Male & female mice 

(129/ReJ): 

Adult (2-6 months; 

n=39 M, n=23 F) and 

Whole EDL Maximal isometric stimulations in 

vitro. TetPO, TetSPO, TPT, 1/2RT. 

Tested at ~22-24°C 

TetPo – M ↔ with age. 

            - ♀F↓ 7.2% with age (P=0.0069) 

TetSPO - M ↓ 13% with age• 

             - F ↓ 13% with age (P=0.0016) 

TPT - M ↑ 1.9ms in aged (P=0.0003) 

MM - M ↑ 27% in aged• 

         - F ↔ with age 

CSA - M ↑ 21% in aged• 

        - F ↔ with age 



269 
 

aged (20-22 months; 

n=20 M, n=12 F) 

       - F ↔ with age 

1/2RT - ↔ M or F with age 

Kayani et al. 

(2010) 

Mice (wild type): 

Adult (10-12 months; 

n=8) and aged (26-28 

months, n=8) 

Whole EDL Maximal isometric stimulations in 

situ. TwtPO, TetPO, TPT, 1/2RT. 

TwtPO - ↔ with age. 

TetPO - ↓ in aged vs. adult* 

TPT - ↔ with age 

1/2RT - ↔ with age 

BM - ↔ with age 

MM - ↔ with age 

CSA - ↓ in aged vs. adult* 

Kim and 

Thompson 

(2012) 

Male rats (Fischer 

344 Brown Norway 

F1 hybrid): 

Young (5-12 moths) 

adult (24-31 months) 

and aged (32-40 

months) 

Single Sol 

fibers 

Maximal isometric stimulations in 

vitro. TetPO, TetSPO, Vmax  

TetPO - ↓ young to adult*, ↔ adult to 

aged, ↔ adult to aged 

TetSPO - ↔ with age 

Vmax - ↔ with age 

Diameter - ↓young adult to 

adult*, ↑ adult to aged*, ↔ 

young adult to aged. 
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Kim and 

Thompson 

(2013) 

Male rats (Fischer 

344 Brown Norway 

F1 hybrid): 

Young adult (5-12 

months) adult (24-31 

months) and aged 

(32-37 months). 

N=21 

Single MHC-I 

and MHC-II 

fibers from 

Gas 

Maximal isometric stimulations in 

vitro. TetPO, TetSPO, Vmax. Tested 

at 15°C 

TetPO – MHC-I ↓ 29% young adult to 

adult*, ↓32% young adult to elderly ‡ 

         - MHC-II ↓ 29% and 25% in aged vs. 

young adult‡ and adult‡ respectively. 

TetSPO – MHC-I ↓ 15% young adult to 

aged* 

           - MHC-II ↓ 14% young adult to 

aged* 

Vmax – MHC-I ↔ with age 

         - MHC-II ↓ 32% young adult to aged ‡ 

Diameter – MHC-I ↔ with age 

                  - MHC-II ↓ aged vs. 

young adult* and adult*  

Graber et al. 

(2013) 

Male mice 

(C57BL/6): 

Adult (6-7 months; 

n=20), old (24-26 

months; n=12) and 

Whole EDL Maximal isometric stimulations in 

vitro. TetPO, Tested at 25°C 

TetPO - ↓ 28% from adult to aged ‡ 

         - ↔ adult to old despite 18% ↓ 

           - ↔ old to aged 

           - age and TetPO correlate (r=-0.569; 

P<0.001) 

BM - ↔ with age 
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aged (>28 months; 

n=23) 

Greising et 

al. (2013) 

Mice (Wild type – 

C57BL6 x 129): 

Young (5 months; 

100% survival) and 

aged (23 months; 

~75% survival) 

DIA strips Maximal isometric stimulations in 

vitro. TwtPO, TetSPO, Tested at 

26°C.  

TwtPo - ↓ in aged vs. young* 

TetSPO - ↓ 34% young vs. aged‡ 

BM - ↑23% in old vs. young* 

 

Kung et al. 

(2014) 

Male rats (Brown-

Norway): 

Adult (11-13 months; 

n=19) and aged (36-

37 months; n=12) 

Whole EDL 

and single EDL 

fibers via 

motor unit 

stimulation 

Maximal isometric stimulations in 

situ. TetPO, TetSPO for whole EDL. 

TetPO. Tested at 36°C  

Whole EDL: 

  TetPO - ↓ 65% with age* 

  TetSPO - ↓ 46% with age* 

Single fiber: 

  TetPO - ↔ with age 

 

BM - ↔ with age 

Whole EDL: 

  MM - ↓ 40% with age* 

  L0 - ↓ with age* 

  CSA - ↓ with age* 

Tallis et al. 

(2014) 

Female mice (CD1): 

3, 10, 30 and 50 

Whole EDL, 

DIA strips 

Maximal isometric stimulations in 

vitro. TwtPO, TwtSPO, TetPO, 

TwtPO – EDL ↑3-10 wks. and maintained 

           - DIA ↑3-50 wks. and peaks 

BM - ↑ with age & peak at 50 

wks.** 
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weeks old (n=8 per 

muscle per age) 

TetSPO, THPT, LSHR. Tested at 

37±0.5°C. 

TwtSPO – EDL peak at 10 wks., ↓ 39%, 20% 

and 27% at 3, 30 & 50 wks. respectively**. 

3<30wk* 

              - DIA peak at 10 wks., ↓34% and 

27% at 30 & 50 wks. *. Tendency for 

3>30wk* 

TetPO – EDL ↑ 3-10 wks. and maintained 

           - DIA ↑ 3-10 wks. and maintained 

TetSPO – EDL peak at 10 wks., ↓ 17%, 18% 

and 22% at 3, 30 & 50 wks. respectively* 

3>50wks† 

             - DIA peak at 10 wks., ↓ 10%, 28% 

and 33% at 3, 30 & 50 wks. respectively* 

3>50wks* 

THPT – EDL ↑ 46% at 3 wks. than all ages $ 

MM – EDL peak at 50 weeks and 

smallest at 3 wks. ‡. ↓ 19% and 

13% at 10 & 30wks vs. 50 wks. ‡. 
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          - DIA ↑ 19% at 30 wks. than 10 wks.* 

LSHR – EDL ↑ 32% at 50 wks. than all 

ages* 

          - DIA ↑ at 50 weeks than 3 & 10 

wks.* 

Graber et al. 

(2015) 

Male mice (C57BL/6) 

Adult (5-7 months; 

n=17), old (22-26 

months; n=14) and 

elderly (28-32 

months; n=24). 

Whole EDL, Sol Maximal isometric stimulations in 

vitro. TetPO, TetSPO, force 

normalised to BM (TetBM), 

Activation. Tested at 25°C. 

TetPO – EDL ↓ 22% and 28% in old ‡ and 

elderly* vs. adult 

           - Sol ↔ with age. 

TetSPO – EDL ↔ with age 

             - Sol ↔ with age.  

TetBM – EDL ↓ 20% and 29% in old ‡ and 

elderly ‡ vs. adult 

             - Sol ↓22% old vs. adults*, ↔ 

elderly vs. adult 

Activ. – EDL ↔ adult to old, ↓ 16% and 

BM – EDL group; peak in old, 

↓17% and 13% in adult** and 

elderly * 

       - Sol group; peak in old, ↓33% 

and 27% in adult ‡ and elderly ‡ 

MM - EDL ↓ 25% adult to aged‡  

       - Sol ↔ with age. 

CSA – EDL ↓27% adult to elderly ‡, 

↓17 % adult to old* 

        - Sol ↔ with age. 
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33% elderly vs old* and adult ‡ 

respectively 

           - Sol ↔ with age. 

MM:BM – EDL ↓ 25% and 27% in 

old ‡ and elderly ‡ vs. adult 

                - Sol ↓ 30% old vs. adult† 

Elliott et al. 

(2016) 

Male rats (Fisher 344 

and Brown Norway) 

Fisher 344: 

 - Young (6 months) 

 - Old (24 months) 

Brown Norway: 

 - Young (6 months) 

- Old (32 months) 

 

 

DIA strips Maximal isometric stimulations in 

vitro. TwtSPo, TetSPo, 1/2RT, 

F-freq from 5Hz-100Hz 

Tested at 26°C. 

TwtSPo - ↓ with age* 

 - Fisher 344 ↓ 17% and BN ↓ 14% 

TetSPo - ↓ with age*  

- Fisher 344 ↓ 24% and BN ↓ 13% 

1/2RT - ↔ with age 

F-freq - ↓ with age* 

 - Fisher 344 ↓ >30Hz 

BM - ↔ with age 

Author Animal Info Muscle tested Protocol Change in Performance Comments 
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Power Output 

Brooks and 

Faulkner 

(1991) 

Male mice 

(C57BL/6): 

Young (2-3 months), 

adult (12-13 months) 

and aged (26-27 

months) 

Whole EDL 

 

Maximal isovelocity shortening 

contractions from 105% L0 to 95% 

L0 in situ. Force development 

measured during muscle 

relengthening. PO(Watts), 

PO(w.kg) Mouse placed on 

heated platform at 35°C 

PO (Watts) - ↓30% in young & aged vs 

adult* 

PO (W.kg) - ↓ 20% adult to aged* 

BM - ↓ in young vs adult and 

aged*. ↔ from adult to aged.  

MM - ↓ in young and aged vs 

adult* 

Lynch et al. 

(1997) 

Mice: 

(C57BL/10ScSn) 

Young (4-6 months, 

n=15) 

Aged (24 months, 

n=7) 

DIA strips Normalised power derived from 

isovelocity shortening 

contractions by 10% from 105% 

of mean fiber length. 

↔ in normalised power with age N/A 
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Lynch et al. 

(2001) 

Male mice (C57BL): 

Aged ~6, ~17, ~24 & 

~ 28 months. 

Whole Sol, EDL Maximal isovelocity shortening 

contractions from 105% L0 - 95% 

L0. in vitro. PO(mwatts), PO(w.kg) 

Tested at 25°C. 

PO (mwatts) – EDL ↓31% and 21% 17-24 

mo. & 17-28 mo. respectively ‡ 

                  - Sol ↓ 46% 17-24 mo. ‡ 

PO (w.kg) – EDL ↓24% 17-24 mo. ‡ 

              - Sol ↓36% 17-24 mo. ‡ 

N/A 

Kim and 

Thompson 

(2012) 

Male rats (Fischer 

344 Brown Norway 

F1 hybrid): 

Young (5-12 moths) 

adult (24-31 months) 

and aged (32-40 

months) 

Single Sol 

fibers 

Absolute PO (µN·fiber length 

[FL]·s-1) derived from TetPO, Vmax 

and a/PO. 

Normalised power (kN·m-2·FL·s-1) 

derived from product of tetSPO 

and shortening velocity (FL.s-1) 

Abs. PO - ↓ young adult to aged*, ↓ 

young adult to adult*, ↑ adult to aged* 

Norm. PO - ↔ with age. 

N/A 

Kim and 

Thompson 

(2013) 

Male rats (Fischer 

344 Brown Norway 

F1 hybrid): 

Single MHC-I 

and MHC-II 

Absolute PO (µN·fiber length 

[FL]·s-1) derived from tetPO, Vmax 

and a/PO. 

Abs. PO – MHC-I ↓ 32% and 33% in aged 

vs. young adult ‡ and adult * respectively 

               - MHC-II ↓ 47% and 38% in aged 

N/A 
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Young adult (5-12 

months) adult (24-31 

months) and aged 

(32-37 months). 

N=21 

fibers from 

Gas 

Normalised power (kN·m-2·FL·s-1) 

derived from product of TetSPO 

and shortening velocity (FL.s-1) 

vs. young adult ‡ and adult** respectively 

Norm. PO – MHC-I ↔ with age 

                   - MHC-II ↓ aged vs. young adult 

and adult* 

 

Tallis et al. 

(2014) 

Female mice (CD-1): 

3, 10, 30 and 50 

weeks old (n=8 per 

muscle per age) 

Whole EDL, 

DIA strips 

WL maximal normalised PO to 

muscle mass (w.kg) and body 

mass, PO (w.g) 

PO(w.kg) – EDL peak at 10 wks., ↓ 20% 

and 13% at 3 and 50 wks.* 

                 - DIA peak at 10 wks., ↓ 23% at 

50 wks.** 3wks>50wk * 

PO (w.g) – EDL peak at 10 wks., ↓ 20%, 

19% and 22% at 3, 30 and 50 wks. *. 

            - DIA whole muscle not measured 

N/A 

Graber et al. 

(2015) 

Male mice (C57BL/6) 

Adult (5-7 months; 

n=17), old (22-26 

Whole EDL, Sol Maximal PO derived as force at % 

TetPO x maximum velocity at the 

% TetPO. 

MaxPO – EDL ↓ 40% adult to elderly ‡, ↓ 

21% adult to old‡, ↓ 24% old to elderly * 

N/A 
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months; n=14) and 

elderly (28-32 

months; n=24). 

         - SOL ↓ 28% adult to elderly**, ↔ 

adult to old. 

Author Animal Info Muscle tested Protocol Change in Performance Comments 

Fatigue Resistance 

Brooks and 

Faulkner 

(1991) 

Male mice 

(C57BL/6): 

Young (2-3 months), 

adult (12-13 months) 

and aged (26-27 

months) 

Whole EDL. Repeated isovelocity contractions 

to measure power reduction in 

situ at a stim. freq. of 150Hz, 

Fatigue of adult and old EDL better 

maintained at low train rates (speed of 

contractions) than young EDL. 

N/A 

Brown and 

Hasser 

(1996) 

Male rats (Fischer 

334 x Brown Norway 

hybrids): 

Whole Sol, EDL 5-minutes of repeated tetani: 

SOL - 250ms trains at 100Hz at 75 

trains/min in situ 

Sol - ↔ with age 

EDL - ↑ by 36 months, with force ↓ 42±3% 

N/A 
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6, 12, 28 and 36 

months old 

EDL – 250ms trains at 150Hz at 50 

trains/min 

vs. 60±4%, 58±4% and 65±4% for 6, 12 and 

28 months. 

Pagala et al. 

(1998) 

Male mice 

(C57BL/6J): 

Young (3-6 months) 

and old (34-37 

months) 

Whole Sol and 

EDL 

Repeated tetanic stimulation at 

30Hz for 500ms every 2.5s for 

each muscle and age. 

Fatigue defined as drop below 

50% of pre-fatigue maximal force, 

or until 10-minutes of fatigue 

Sol – ↑ with age* 

        - Time to 50% fatigue young vs. old 

was 482.2±68.9s vs. 1134.0±233.4s. 

        - Less loss of force for old than young 

during fatigue* 

EDL - ↔ with age 

N/A 

González 

and Delbono 

(2001) 

Mice (DBA or FVB) 

Young (2-6 months) 

and old (20-24 

months) 

Single, intact 

Sol and EDL 

fibers 

Two protocols of short intervals 

(SI - 1s) and long intervals (LI, 

3.65s) of repeated tetanic 

stimulations 

350ms trains of stimulation at 

frequency which produced 

maximal TetPo. 

↔ in Sol or EDL fatigue resistance with age 

for both SI and LI protocols 

N/A 
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Brotto et al. 

(2002) 

Mice (B6C3F1J) 

Adult (15 months) 

and old (30 months) 

Whole Sol and 

EDL  

Repeated tetanic stimulations at 

high and low frequency 

SOL – High freq. = 100Hz 

           Low freq. = ~44Hz. 

EDL – High freq. = 140Hz 

           Low freq. = ~21Hz 

300ms trains every 0.8ms for 5 

minutes, alternating between 

high and low every minute 

Sol ↑ fatigue resistance than EDL* 

↔ for Sol or EDL post-fatigue TetPo at high 

freq. 

↓ at low freq. for SOL with age, but ↔ for 

EDL 

Leftward shift in F-Freq. 

relationship for young Sol and EDL. 

Potential protective mechanism 

from damaging effects of fatigue. 

Criswell et 

al. (2003) 

Male rats (Fischer 

344/Brown Norway 

F1 hybrid): 

Aged 4 and 30 

months 

DIA strips Repeated tetanic stimulations at 

30Hz for 250ms every 2s for 30-

minutes 

↔ for DIA fatigue resistance with age N/A 
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Chan and 

Head (2010) 

Male & female mice 

(129/ReJ): 

Adult (2-6 months; 

n=39 M, n=23 F) and 

aged (20-22 months; 

n=20 M, n=12 F) 

Whole EDL Repeated tetanic stimulations at 

100Hz for 1 second every 2s for 

30s. 

F-Freq, as described above, 

reassessed after fatigue 

↑ in fatigue resistance with age for male 

and female EDL 

Greater recovery of TetPO in older EDL 

 - Male – Old, 54.2±1.3%; adult, 

43.8±1.1%* 

 - Female – Old, 49.2±1.2%; adult, 

43.5±0.7%* 

N/A 

Tallis et al. 

(2014) 

Female mice (CD-1): 

3, 10, 30 and 50 

weeks old (n=8 per 

muscle per age) 

Whole EDL, 

DIA strips 

Fifty repeated WL stimulations 

lasting 5s for EDL and 7s for DIA 

at parameters that elicited 

maximal WL PO 

EDL – greatest fatigue resistance at 3 

weeks 

        - ↓ at 50 weeks vs. all other ages‡ 

        - 10 weeks ↓ vs. 3 and 30 weeks* 

DIA – 10 weeks ↓ vs 3 weeks** and 

tendency vs 30 weeks 

       - 50 weeks ↓ than weeks* 

N/A 
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Table S1.2 - Age-related changes in contractile performance of isolated locomotory and respiratory muscle tested under isometric, isovelocity and dynamic 

conditions.  

Abbreviations are as follows: Muscle: soleus = SOL; extensor digitorum longus = EDL; diaphragm = DIA; gastrocnemius = GAS; myosin heavy chain = MHC. 

Isometric measures: twitch contraction = twt; tetanus contraction = tet; absolute force = PO; specific force = SPO; maximal velocity of unloaded shortening = 

Vmax; time to peak twitch force = TPT; half-twitch relaxation time = 1/2RT; time to half-peak tetanus = THPT; last stimulus to half relaxation = LSHR; force-

frequency relationship – F-Freq. Power measures: absolute power output = PO(mwatts); power output normalised to muscle mass = PO(w.kg); power output 

normalised to body mass = PO(W.g-1); mechanical constant to describe force-velocity relationship curvature = a/PO. Comments: body mass = BM; muscle mass 

= MM; cross-sectional area = CSA; muscle mass to body mass ratio = MM:BM. Change in Performance: no significant change = ↔; significantly 

decreased/shorter = ↓; significantly increased/longer = ↑. 

P values where significant differences are observed and reported are denoted by the following symbols - *≤0.05, ** - ≤0.01, $ - ≤0.003, ‡ - ≤0.001,  

• - ≤0.0001.
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Author Participant Information Protocol Change in 

Performance 

Comments 

Vandervoort et al. (1990) 26 young F (20-29 years) and elderly 

F (66-89 years) 

KE and KF eccentric torque 

tested at 45°.s-1 and 90°.s-1 

Yes Age caused KE and KF eccentric strength ↓ by 

35% (P<0.001) but torque was greater in 

eccentric than concentric measures for both 

ages. 

Poulin et al. (1992) 12 young M (23-32 years) and old M 

(60—75 years)  

KE and EE eccentric torque No 2% decline 

Hortobágyi et al. (1995) 60 M (18-80 years) and 30 F (20-74 

years) sedentary but healthy 

Quadricep eccentric 

strength at 1.05, 2.09 & 

3.14rad.°-1 

 

No Eccentric force ↓ 9 N per decade. Regression 

analysis revealed no correlation between 

eccentric strength and fat-free mass. 

Porter et al. (1995) 28 young M (26±3 years) and 25 old 

M (71±7 years) 

27 young F (25±3 years) and 26 old F 

(73±6 years) 

KE eccentric torque 

measured at 90°.s between 

100° to 0° knee flexion. 

Yes Eccentric torque ↓ by 24.9% and 39.3% for M 

and F respectively. 

Loss of concentric torque ↑ than eccentric 

torque (P<0.01). 
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Lindle et al. (1997) 654 M & F aged 20-93 years KE eccentric torque 

measured at 0.52 rad/s and 

3.14 rad/s. 

Yes Absolute torque ↓ at both angular velocities 

(P<0.001), with M producing ↑ torque than F 

across all ages (P<0.001). M lost 19% eccentric 

torque whilst F lost only 11%. 

Porter et al. (1997) 16 young F (27±4 years) and 16 old F 

(67±4 years)  

PF and DF eccentric torque 

measured at 30°/s through a 

range of 20° for PF and 10° 

for DF. 

No Whilst concentric torque ↓ significantly, 

eccentric torque for both PF and DF ↔. 

Phillips et al. (1998) 18 healthy older F (84.7±1.2 years) Adductor pollicis (hand) 

eccentric strength measured 

during MVC 

Yes Eccentric strength ↑ with age (P<0.002) 

Horstmann et al. (1999) 60 sedentary M (20 – 60 years) 

Four groups with mean age 24, 34, 

45 and 55 years of age 

Peak torque of knee and 

ankle measured at 60°.s-1 

and 120°.s-1. 

No ↔ with age at all angular velocities. 
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Pousson et al. (2001) 6 young M (21±2 years) and 6 young 

F (20±2 years) 

4 elderly M (73±6 years) and 6 

elderly F (67±2 years) 

EF eccentric torque 

measured at 60°.s-1 and 

120°.s-1. 

Yes ↓in eccentric torque with age for both 

genders at both angular velocities (P<0.001), 

with ↑ loss in concentric than eccentric 

torque. 

Young M ↑ eccentric torque than F (P=0.0001) 

↔ for gender in older group. 

Christou and Carlton (2002) 12 young M (26.0±2.9 years) and 12 

young F (24.7±2.6 years) 

12 old M (72.6±4.8) and 12 old F 

(74.0±6.3) 

KE eccentric torque 

measured at 25°.s-1 across a 

range of 10° for 200ms. 

Yes Eccentric torque ↓with age for both genders 

(P<0.01). Young M ↑force than F (P<0.01) 

↔in the old group (P=0.213). 

Delbaere et al. (2003) 15 young M (27.5±4.1 years) and 19 

young F (28.1±5.4 years) 

20 adult M (50.5±4.6 years) and 20 

adult F (47.5±4.6 years) 

10 old M (75.9±8.3 years) and 17 old 

F (72.1±8.3 years) 

KE, KF, EF and EE eccentric 

strength measured at 60°.s-1 

and 120°.s-1 from 25° to 

110° for KE and KF and from 

15° to 110° for EF and EE. 

Yes Eccentric strength for all muscles ↓ in old 

group vs. young and adult (P<0.01), ↔ for 

gender. EF & EE eccentric strength is better 

maintained than KF and KE strength (P<0.01). 

The decline in eccentric, concentric and 

isometric strength was similar with age. 
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Klass et al. (2005) 10 young M (25.4±1.0 years) and 10 

young F (25.9±1.4 years) 

10 old M (78.7±1.8 years) and 9 old 

F (74.6±1.9 years) 

DF eccentric torque 

measured at 5, 25, 50, 75 

and 100°.s-1 through a 30° 

range of motion. 

Yes & No Absolute eccentric torque ↓ significantly for 

the M only (10.5%, P<0.05) ↔ for F (P>0.05). 

Loss of isometric and concentric force greater 

than eccentric torque 

Perry et al. (2007) 44 young (29.3±0.6 years) 

44 older fallers (75.9±0.6 years 

34 older non-fallers (76.4±0.8 years) 

Quadricep, Hamstring, DF 

and PF bilateral eccentric 

torque measured at 50°s-1 

and 150°.s-1. 

Yes  Both fallers and non-fallers produced ↓ 

eccentric torque for all muscles and angular 

velocities (P= 0.003-<0.0001) with fallers 

generally weaker than non-fallers (P<0.0001). 

Table S1.3 - An overview of the in vivo studies to have assessed the age-related changes in acute eccentric muscle activity. 
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Author Participant Information Muscle/Motion Protocol Change in 

Performance 

Comments 

 Changes in Strength   

Miyatake et al. 

(2000) 

M & F obese & control (no 

Information of age-matched 

n values) 

- obese = BMI ≥26.4 

Adult (≥40 years˂60 years) 

Old (≥60 years˂80 years 

HG, KE HG strength via hand held 

dynamometer for right and left 

hand 

Torque via leg extension for 

right and left leg 

Yes & No Right & left HG strength – adult ↑ for obese 

vs control for male* and female**, ↔ for old. 

 

Right & left KE strength – adult ↑ for obese vs 

control for male** and female**, ↔ for old. 

↑ fat % for M & F in old vs adult 

 

Rolland et al. 

(2004) 

1443 F 

598 Lean (80.7±4.1 years)  

630 Normal (80.2±3.7 years) 

215 Obese (80.0±3.5 years) 

EE, KE, HG MI MVC for knees and elbow 

HG strength via hand held 

dynamometer 

Yes Obese EE ↑ vs. normal and lean* 

Obese KE ↑ vs. lean, ↔ vs normal* 

↔ in HG strength between groups. 
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BM, BMI, fat mass, fat free mass, leg and arm 

skeletal muscle mass ↑ for obese vs. normal 

and lean 

Zoico et al. 

(2004) 

167 F (71.7±2.4 years) 

Split into normal, 

overweight and obese based 

on BMI 

KE MI MVC for knees No ↔ in strength between all groups 

Hilton et al. 

(2008) 

12 M & F 

6 overweight (4 M, 2F; 

58.0±9.2 years) 

6 obese (4M, 2 F; 58.0±10.0 

years) 

PF, DF MI MVC strength at 0° 

MD torque at 60°s-1 and 120°s-1 

Yes PF – obese 41% ↓ MI vs. overweight 

     - obese 70% and 74% ↓ MD at 60 and 

120°s-1 vs. overweight. 

DF - obese 77% ↓ MI vs. overweight 

     - obese 79% ↓ MD at 60°s-1 vs. overweight, 

↔ at 120°s-1 vs. overweight. 
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IMAT – Obese 55% ↑ vs. overweight 

Muscle and adipose tissue volume - ↔ 

between groups 

Stenholm et 

al. (2009) 

930 adults aged ≥65 years 

split into 4 groups:  

Obesity (n=162 71.9±50.2 

years) 

Low strength (n=239; 

77.7±7.4 years) 

“Both” (n=71; 77.3±6.6 

years) 

“Neither” (n=458; 74.1±6.8 

years) 

KE MI MVC strength of knees Yes Obesity and “neither” groups KE strength ↑ 

vs. low strength and “both” group for M & F at 

baseline* 
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Huo et al. 

(2016) 

680 adults (238 M, 442 F) 

aged ≥75 years split into 4 

groups: 

Sarcopenic (n=284; 81±7 

years) 

Obese (n=109; 85±7 years) 

“Both” (n=96; 78±6 years) 

“Neither” (n=191; 79±7 

years) 

 

HG HG strength measured by hand 

held dynamometer 

Yes & No “Both” group ↓ HG strength vs. obese and 

“neither” group, ↔ vs. sarcopenic 

Changes in Power 

Hilton et al. 

(2008) 

As above 

 

PF, DF Peak absolute PO and PO 

relative to muscle volume 

(W.cm3) at 60°s-1 and 120°s-1 

 

Yes Absolute DF PO – Obese 86% and 83% ↓ at 60 

and 120°s-1 vs. overweight. 

Absolute PF PO – Obese 73% and 77% ↓ at 60 

and 120°s-1 vs. overweight. 
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Relative DF PO – Obese 45% ↓at 120°s-1 vs. 

overweight; ↔ at 60°s-1 vs. overweight. 

Relative PF PO – Obese 77% and 80% ↓ at 60 

and 120°s-1 vs. overweight. 

Table S1.4 - The effects of obesity on the contractile performance of lower limb skeletal muscle groups in sarcopenic obese adults. 
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Author Animal Information Age at Start of Diet Feeding Duration Change in Body Composition Muscle Morphology 

Lin et al. 

(2000) 

Male mice 

(C57BL/6J): 

n=48 (n=6 per feeding 

group) 

3 weeks 1, 8, 15 & 19 

weeks 

Body mass: 

 - Signif. diff. after 2 weeks* 

 - 8 weeks – 11.4% greater than LFD ‡ 

 - 15 weeks – 23.1% greater than LFD ‡ 

 - 19 weeks – 30.5% greater than LFD ‡ 

Epidydimal and perirenal fat mass: 

 - Signif. diff. after 8, 15 and 19 weeks* 

 - Epidydimal fat mass inc. by 144% 

 - Perirenal fat mass inc. by 130% 

Not measured 

Winzell and 

Ahrén 

(2004) 

Female mice 

(C57BL/6J): 

n=~500 (LFD n=240; 

HFD n=259) 

4 weeks 52 weeks First 12 weeks of diet: 

 - LFD – ↑ 0.40 ±0.03 g/week 

 - HFD – ↑ 0.68 ± 0.04 g/week ‡ 

Week 13 onwards: 

 - LFD – ↑ 0.10 ± 0.01 g/week 

 - HFD – ↑ 0.18 ± 0.03 g/week ‡ 

Not measured 
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HFD vs. LFD signif. Diff. after 4 weeks 

de Wilde et 

al. (2008) 

Male mice 

(C57BL/6J): 

n=12 (n=6 per feeding 

group) 

9 weeks 3 weeks Not reported, ↔ vs. LFD post-feeding Not measured 

Shortreed 

et al. 

(2009) 

Male mice (C57Bl6/J): 

N=40 (n=20 per 

feeding group) 

10 weeks 8 weeks Body mass: 

- LFD - ↑ first 4 weeks before stabilising 

- HFD – signif ↑ by 4 weeks and continued to grow. ~ 

40% ↑ in BM by 8 weeks vs pre-diet 

Epidydimal fat mass: 

 - Signif two-fold ↑ in fat mass for HFD group 

↔ in SOL or tibialis 

anterior muscle mass. 

 

de Wilde et 

al. (2009) 

Male mice 

(C57BL/6J): 

n=20 (n=10 per 

feeding group) 

9 weeks – LFD 

12 weeks - HFD 

LFD 3 weeks 

HFD 8 weeks 

BM – HFD ↑ after 4** and 8 weeks ‡ vs. LFD 

Fat mass – Both ↑ 0-8 weeks (LFD ‡; HFD ‡); but HFD ↑ 

after 4** and 8 weeks ‡ vs. LFD 

Lean mass – Both ↑ after 4 weeks (LFD ‡; HFD*) with 

only LFD increasing 0-8 weeks* 

Not measured 
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Anderson 

et al. 

(2008) 

Male mice 

(C57BL/6J): 

n=32 (n=16 per 

feeding group) 

BM ~14g 9 weeks BM of HFD was signif. diff. after 4 weeks of feeding and 

each week after vs. fasting group 

Not measured 

Breslin et 

al. (2010) 

[Study 2] 

Male mice  

(CD-1): 

n=24 (n=12 per 

feeding group) 

Young – 8-10 weeks 

Adult – 19-22 weeks  

12 weeks Young – ↑ 82% from baseline ‡ 

Adult – ↑ 63% from baseline ‡ 

BM was signif. diff. from baseline after 4 weeks in both 

group. * 

Not measured 

DeNies et 

al. (2014) 

Male and female mice 

(C57BL/6J): 

N vale for each 

condition not 

reported. 

3 weeks ~ 52 weeks LFD 39.2g ± 2.7 vs. 56.9g ± 3.4 in HFD ‡ 

(Weights were pooled) 

Signif. ↑ in soleus, 

plantaris and 

gastrocnemius mass 

between LFD and HFD. 

No difference in soleus 

mass for males and 

females. 
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Thomas et 

al. (2014) 

Male mice 

(C57BL6/J): n=24 (12 

per feeding group)  

4 weeks 3 weeks HFD significant ↑ in body mas vs. LFD* 

Significant ↑ in HFD epidydimal fat vs. LFD* 

↔ for SOL, triceps surae 

and tibialis anterior mass 

between HFD and LFD 

group 

Ciapaite et 

al. (2015) 

Male mice 

(C57BL/J6): 

n=48 (n=16 per 

feeding group) 

12 weeks 5 weeks Low fat diet (LFD) - ↔ 

High-fat lard (HFL) 

 - ↑ 25.8g ± 0.3 to 30.2g ± 0.4‡ 

High-fat palm oil (HFP) 

 - ↑ 25.1g ± 0.4 to 31.1g ± 0.6‡ 

EDL – LFD – 10.4 ± 0.4mg 

           HFL - 10.2 ± 0.2mg 

           HFP – 10.8 ± 0.2mg 

SOL – LFD – 7.0 ± 0.2mg 

        - HFL – 7.7 ± 0.2mg* 

        - HFP – 7.8 ± 0.2 mg* 

Gao et al. 

(2015) 

Female mice 

(CD-1): 

n=20 (n=10 per 

feeding group) 

6 weeks 12 weeks LFD – ↑ ~0.4g/week 

HFD - ↑ ~1.4g/week. Sig. diff. at week 3*. 

Not measured 

Table S1.5 - An overview of the effects of different durations of HFD provision to mice on animal body composition and muscle morphology.  

Levels of significance are denoted by the following symbols: * = P<0.05 vs. LFD; ** = P<0.01 vs. LFD; ‡ = p<0.001 vs. LFD. 
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