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Introduction

The present thesis is devoted to an application of the ideas of complex networks
theory for analysing, modelling, and, finally, optimising different processes that
occur in transportation networks. In particular we will be primarily concerned
with the public transport networks, understanding them as the assembly of all
means of public transport in a given city. Although studies of such networks have
a long standing tradition and are the subject of different applied mathematical and
technological disciplines, the novelty of our approach is that for the first time a
complex network theory is used for such analysis.

A network is a set of items which we will call nodes with connections between
them, which we will call links. Network is a central notion of our time and the ex-
plosion of interest to networks is a social and cultural phenomenon which arrived
at the end of last century [3, 38, 89, 39, 113, 21, 10, 114]. In mathematical liter-
ature the term ’graph’ is used and the graph theory constitutes a part of discrete
mathematics [17]. A typical example of graph is given in Fig. 1.

1
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Figure 1: A graph of N = 4 vertices that are connected by M = 7 edges. Vertices
1, 2, and 3 have degree three (k1 = k2 = k3 = 3), vertex 4 has degree five (k4 = 5).

Systems, which have the form of network are numerous: these are the internet,
www, neural networks, metabolic networks, transportation networks, wood webs,
distribution networks (such as blood vessels or postal delivery routes), social net-
works of communication between people, networks of citation between papers

7
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and many, many others. Physicists started the empirical and theoretical analysis
of networks only very recently, seminal papers are dated by late 1990th. From an
analysis of single small graphs and properties of individual vertices or edges (see
Fig. 1.1) the task of the research shifted to consideration of statistical properties
of graphs (networks). This change in the task caused also a change in the way
of analysis. The breakthrough and the ”birth of network science” occurred due
to new technologies, both are due to computers: www allowed for comparatively
easy access to databases on different networks whereas computer power allowed
for their detailed statistical analysis (which would have been simply impossible
without computers for majority of networks of interest). To denote such objects
and the type of question one is interested in the term complex networks often is
used.

It appeared [10, 11, 12, 13], that the most important natural and man-made net-
works have a special structure, which is characterized by a fat-tail distribution of
the number of node links and drastically differs from the classical random graphs,
studied before by mathematicians [14, 15]. As a rule, these networks are not static,
but they evolve and one cannot understand their structure without understanding
the principles of their evolution.

The main motivation of our research was an expectation that applying con-
cepts and ideas of complex network science to the public transport networks will
result in a better understanding of their structure, their functioning, in particular
their robustness to targeted attacks and random failures. In turn this will allow for
an effective modelling of this networks and their optimisations. A certain novelty
of our studies is that for the first time we have analysed a public transportation
system of a city as a whole (previously only certain sub-networks of public trans-
port were considered [16, 17, 18]); another particular feature of an empirical part
of our analysis is considerably large database (before much smaller cities were
considered [19, 20]; last but not least one should mention the specific features of
public transport networks that were for the first time analysed in our studies (in
particular, we were interested in their vulnerability and resilience under attacks,
in their specific features such as generalized assortativities, centralities, harness
- see below for more details and definitions). Such a comprehensive analysis al-
lowed us to offer public transport networks models: such networks were never
modeled before our study. Moreover, the majority of current models of complex
networks consider network growth in terms of nodes, the novelty of one of our
models consists in its growth in terms of chains. The main results of the thesis
are published in: [21, 22, 23, 24, 25, 26, 27, 28, 29]. They were reported at the
following meetings: COST ACTION P-10 Physics of Risk (Vilnius, Lithuania,
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13-16 May 2006); MECO32 Conference of the Middle European Cooperation in
Statistical Physics, (Ladek Zdroj, Poland, 16-18 April 2007); ANet07 Conference
on Applications of Networks (Krakow, Poland, 1-5 Nov 2007); MECO33 Con-
ference of the Middle European Cooperation in Statistical Physics( Wels, Austria,
13-17 Apr 2008); AGSOE, DY, DPG Meeting (Dresden, Germany, 23-27 Mar
2009); Statistical Physics and Low Dimensional Systems (Nancy, France, 13-15
May 2009); Statistical Physics: Modern Trends and Applications (Lviv, Ukraine,
23-25 June 2009); MECO35 Conference of the Middle European Cooperation in
Statistical Physics(Pont-´-Mousson, France, 15-19 Apr 2010); AGSOE, DY, DPG
Meeting (Regensburg, Germany, 21 - 26 Mar 2010); MECO36 Conference of the
Middle European Cooperation in Statistical Physics(Lviv, Ukraine, 5-7 Apr 2011)

The set-up of the thesis is the following. In the chapter 1 we give a sketch
of the evolution of the networks science, introduce some complex network mod-
els, review some of the previous studies about network vulnerability, about public
transport networks and their optimisation. Chapter 2 is devoted to an empirical
analysis of public transport networks. There, we will introduce different repre-
sentations for the networks and define different observables in terms of which
an analysis will be performed. Different public transport network models will
be introduced and analysed in Chapter 3. Some of them will allow for analytic
solutions, the other will be considered by numerical simulations. We will show
that such models correctly describe essential features of the public transport net-
works. In Chapter 4 we present results about public transport network vulnerabil-
ity and resilience. In particular, this will allow to elaborate criteria to determine
network stability prior to an attack as well as will allow us to find certain corre-
lation between the theoretical predictions for idealized networks with data for the
real-world networks. Chapter 5 deals with network optimisation, conclusions and
outlook are collected in the last chapter.





Chapter 1

Review of previous work

In this chapter we will give a brief sketch of the previous work relevant for our
studies. In particular we will shortly describe how the science of complex net-
works emerged, introduce some complex network models, review studies of pub-
lic transport networks by means of complex networks theory and some of the
previous studies about network vulnerability and their optimisation. Some of the
features presented below were the subject of review papers [66, 48].

1.1 Emergence of complex network science

1.1.1 How all began

Very often the starting point of the graph theory is attributed to Leonard Euler
because of his famous solution of the Seven bridges problem in Königsberg (or
rather by proving it to be unsolvable). The graph shown in Fig. 1 is the oldest one
in graph theory: its edges correspond to bridges which joined Kneipenhoff island
in Königsberg with the mainland. Leonard Euler translated the problem of finding
a continuous nonintersecing path along all bridges onto the graph in Fig. 1 and
gave rise to the graph theory. Sometimes the beginning of the theory is attributed
to Francis Guthrie, who, colouring a map of the counties of England, posed the
four color problem which asks if it is possible to color, using only four colors, any
map of countries in such a way as to prevent two bordering countries from having
the same color. Trying to solve this problem, mathematicians invented many fun-
damental graph theoretic terms and concepts. Many outstanding mathematicians
contributed to the field which resulted in the creation of the graph theory, which

11



12 CHAPTER 1. REVIEW OF PREVIOUS WORK

Figure 1.1: Leonard Euler (1707 – 1783) [119]. In 1736 he published a paper
Solutio problematis ad geometriam situs pertinentis which was the earliest appli-
cation of graph theory in topology.

is one of the pillars of discrete mathematics [17].

Perhaps the first physical application of graph ideas was discovered by Gus-
tav Kirchhoff with the circuit laws for calculating voltage and current in electric
circuits. In XXth century, graph theory became widely applied in many differ-
ent fields. An obvious example being sociology, where empirical studies belong
to the basic tools to establish interrelations between members of a society. The
representation of these relations in the form of graphs enables to quantify them.
Two spectacular examples of such studies have been performed in the late 60ies
and early 70ies of the last century. In 1967 S. Milgram published the results of
an experiment in which he sent small packets to supposedly randomly selected
individuals in the USA with the task of passing it on by mail to an aquaintance
thought to be nearer to a given target person such that the packet will finally reach
that target through a chain of aquaintances. From the history of those few packets
that reached their target Milgram concluded that on average there is a distance of
six steps (six intermediate acquaintances) between any two members of society.
This phenomenon known also as ”six degrees of separation” was a precursor of
the small world effect discovered for many networks afterwards [114] (see section
1.2.2). The second example is given by a study performed by M. Granovetter, who
introduced the concept of ’strong and weak ties’ in social networks. His claim of
the importance of weak ties is based on a study in which he inquired ’white collar’
workers about how and through whom they found their job. The paper in which
he published the results of his thesis that mainly the weak ties (side contacts in the

aa0682
Typewritten Text
Fig 1.1 has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the Lanchester Library, Coventry University

aa0682
Typewritten Text



1.1. EMERGENCE OF COMPLEX NETWORK SCIENCE 13

Figure 1.2: Francis Guthrie (1831 – 1899) [120]. In 1852 he formulated the Four
Colour Problem, which remained one of the most famous unsolved problems in
mathematics for more than a century, until it was eventually proven in 1976 using
a controversial computer-aided proof.

network of acquaintances) allow to find a new job, has become one of the most
cited papers in economic sociology [58]. Being applied by sociologists, the graph
theory also evolved due to their contributions and many terms in the theory stem
from their sociological applications (see e.g. ’betweenness’, explained below).

The object which was intensively studied in graph theory and which is directly
related to complex networks is the classical random graph, called also the Erdös-
Rényi random graph. It was suggested and studied at the end of 1950ies by Paul
Erdös and Alfréd Rényi [42] (see also [16]). We will give the definition of this
graph and discuss some of its properties in section 1.2.1. Here we just mention,
that it consists of N vertices which are randomly connected by M edges and that
random graph theory studies properties of such graphs which arise in the limit
N → ∞.

Subsequently, graph theory was used and evolved in the frames of informatics,
cybernetics and biology. Physicists appeared on the stage only at the end of 1990,
when many real world and man-made networks were analysed [44, 2, 69, 79] and
it appeared that their properties have nothing to do with the properties of classical
random graphs, which was almost the only object of random graph theory for
almost 40 years! The complex networks were found to be small worlds with short
distance between nodes, high level of correlations and self-organization. They
demonstrated extremely high robustness if their nodes were removed at random
[29, 92], however one observed their vulnerability to targeted attacks. Certain of

aa0682
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14 CHAPTER 1. REVIEW OF PREVIOUS WORK

Figure 1.3: Gustav Robert Kirchhoff (1824 – 1887) [121]. In 1845 he published
circuit laws (Kirchhoff’s laws) starting application of graphs in physics.

their properties were governed by scaling laws, which would signal non-trivial
correlations present in their structure [7]. In the rest of this section we present the
main observables which are typically used to quantify network behaviour.

1.1.2 Network characteristics

We will use in the rest of this thesis the terms node and link both when speaking
about simple graphs and their complex ensembles, networks. The node degree
tells how many links are attached to the node (see Fig. 1). Links may be undi-
rected, as in Fig. 1 or directed (coming in or out of the node, then one speaks about
in-degree and out-degree, correspondingly). The complete information about a
network is contained in its adjacency matrix Â. For a network of N nodes (here,
we will be mainly speaking about a network which does not contain multiple links
or loops), Â is a square N ×N matrix, with elements ai j equal 1 if there is a link
from node i to node j or zero, otherwise. For undirected networks ai j = a ji and
aii = 0. Then, for the degree ki of the node i one gets:

ki = ∑
j

ai j. (1.1)

Here, and below the sum spans all N nodes of the network.
To give a measure of the ’linear size’ of a network, the notions of the mean,

⟨ℓ⟩ and maximal, ℓmax, shortest path are useful. For a connected network of N

aa0682
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1.1. EMERGENCE OF COMPLEX NETWORK SCIENCE 15

Figure 1.4: Paul Erdös (1913 – 1996) [122]. With about 500 coauthors he pro-
vides a perfect example of a collaboration network. It is estimated that 90% of
the world’s active mathematicians have an Erdös number (distance from him in
coauthorship) smaller than 8.

nodes, the mean shortest path is defined by

⟨ℓ⟩= 2
N(N −1) ∑

i> j
ℓi, j, (1.2)

where ℓi, j is the length of the shortest path between nodes ℓi, j. Here and below,
we refer to Fig. 1.6, where examples are given. Correspondingly, the maximal
shortest path is the largest one of all ℓi, j for a given network. Note that the length
of the shortest path ℓ between nodes i and j equals to the minimal power of the
adjacency matrix with a non-zero {i j} element [17, 39]:

f or all m < l (Âm)i j = 0 , (Âℓ)i j ̸= 0 , (1.3)

and non-zero element (Âℓ)i j is the number of paths of length ℓ between i and j.
Whereas the mean shortest path length is a parameter characterising the net-

work as a whole and is a global characteristic, the clustering coefficient defined
below is a local value, it characterises a given node. For a node m, the clustering
coefficient Cm is a relation between the actual number of links between adjacent
nodes, Em, and the maximal possible number of such links (see Fig. 1.6):

Cm =
2Em

km(km −1)
, Cm ≤ 1. (1.4)

To derive (1.4), note that for the node of degree km the maximal number of links
between its nearest neighbours is km(km − 1)/2. The clustering coefficient of a
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16 CHAPTER 1. REVIEW OF PREVIOUS WORK

Figure 1.5: Alfréd Rényi ((1921 – 1970) [123]. Together with Paul Erdös he
suggested in 1959 a classical random graph.

network C is defined as an average of all Cm of constituting nodes. Again, C can
be calculated via the adjacency matrix as [39]:

C =
1
9

∑i(Â3)ii

∑i̸= j(Â2)i j
. (1.5)

The clustering coefficient indicates, how many of the nearest neighbors of a
given node are also nearest neighbours of each other. It quantifies a tendency of
cliques (a groups of interconnected nodes) to be formed. From the definition (1.5)
it follows, that the clustering coefficient of any node of a tree, that is of a graph
without loops of any length, is zero. On the other hand, the clustering coefficient
of each node of a fully connected network ( a complete graph) is equal to one.
C gives the probability that there is a link between two randomly chosen nearest
neighbours of a given node, therefore it contains information about loops of length
three present in a network. Presence of loops is a specific form of correlations in
networks. Typically, real-world networks are highly correlated and often possess
values of the mean clustering coefficient close to 1.

One more characteristic of a node is its betweenness centrality. It shows how
important is the node to maintain connections in the network and tells how many
shortest paths go through a given node. This notion was first introduced in so-
ciology, where individuals (nodes) with higher betweenness centrality possess a
central role in the communication between the other nodes of the graph. Between-
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1.1. EMERGENCE OF COMPLEX NETWORK SCIENCE 17

Figure 1.6: A graph of N = 5 nodes and M = 5 links (shown by red solid lines). It
is characterized by the maximal shortest path length lmax = 2 and the mean short-
est path length ⟨ℓ⟩ = 3/2. To calculate the clustering coefficient of the node m
(an open circle, km = 4) we divide the actual number of links between its near-
est neighbours, Em = 1, by the maximal possible number of links between them
km(km −1)/2 (other possible links are shown by dashed lines) and get Cm = 1/6.
Applying equation 1.6 it is straightforward to show that the betweenness centrality
of the node m equals CB(m) = 5

ness centrality CB(m) of a node m is defined as

CB(m) = ∑
i̸=m̸= j

σ(i,m, j)
σ(i, j)

, (1.6)

where σ(i, j) is a the number of shortest paths between nodes i and j, and σ(i,m, j)
is the number of shortest paths between i and j that go through node m. CB(m) is
also called ’load’ or ’betweenness’ of a node.

A central notion in network theory is the node degree distribution P(k). It
defines the probability that a given node i has degree ki = k. As has been worked
out recently, networks which are characterized by different P(k) demonstrate very
different behaviour, a situation which might resemble to the different universality
classes in the theory of critical phenomena [105, 36]. Several examples of node
degree distributions, most frequently accounted, are shown in Fig. 1.7. These are:
the Poisson distribution:

P(k) = e−⟨k⟩ ⟨k⟩k

k!
, (1.7)

an exponential distribution:
P(k)∼ e−k/⟨k⟩, (1.8)
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Figure 1.7: Node degree distributions P(k) in log-log scale. From left to right:
Poisson distribution P(k) = e−⟨k⟩ ⟨k⟩k

k! , exponential distribution P(k)∼ e−k/⟨k⟩, and
a power law distribution P(k)∼ 1/kγ.

and a power law distribution:

P(k)∼ 1/kγ, k ̸= 0. (1.9)

Although all functions P(k) above decay for large k, a special feature of distri-
butions (1.7) and (1.8) is that they contain a typical scale. It is either the location
of the maximum for the Poisson distribution, or the characteristic decay length
for the exponential one. On contrary, a power-law distribution (1.9) does not con-
tain such a scale. Networks with a node degree distribution, such as (1.9), are
called scale-free networks. And it is these scale free distributions which are often
encountered in complex real world networks.

One more principle difference between the above distributions is that whereas
all moments of P(k) exist for (1.7), (1.8), it is not the case for the scale-free
distribution. Indeed for P(k) in the form of equation (1.9), the moments

Mn =
∞

∑
k=0

knP(k) with m ≥ γ−1 (1.10)

diverge. The scale-free distribution allows for nodes with very high degree (hubs),
which are ruled out in practice in finite networks with an exponential or Poissonian
decay of the distribution (1.7), (1.8). It is their presence which manifests in the
behaviour of moments (1.10) and leads to many other specific features of scale-
free networks, as we will see below.
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1.2 Complex network models
There exists a number of models that help us to explain different phenomena us-
ing complex network theory. In this section we will describe three of these mod-
els, those that mostly make up our understanding of complex networks. Those
are the classical Erdös-Rényi random graph (as was mentioned above it can not
describe real-world networks), the Watts-Strogatz small-world network and the
Barabási-Albert scale-free network. The last one is an example of a growing net-
work model, and it turns out that some exactly solved models of growing networks
have power-law node degree distributions.

1.2.1 Erdös-Rényi random graph
This type of networks is a classical example of an equilibrium network with a fixed
number of nodes N. There exist two models of the Erdös-Rényi random graph.
In the first model M links are randomly and independently distributed between
pairs of nodes from N nodes; in the second one there is a fixed probability to
exist for a link between any two nodes. Further it has been shown that for both
models when M → 0, N → ∞, the distribution of the node degree k is governed
by a Poisson distribution (1.7), with mean degree value: ⟨k⟩= 2M/N for the first
model and ⟨k⟩ = mN for the second one. A lot of characteristics can be obtained
analytically for N → ∞ [42, 16]. The mean shortest path length (1.2) and the
clustering coefficient (1.4) values are:

⟨ℓ⟩ ∼ ln(N)/ln(k), C ∼ k/N. (1.11)

To generate an Erdös-Rényi random graph the following algorithm is usually
used. Let us take N isolated nodes and then we consecutively add links that are
connecting random pairs of the nodes. Within this process at the beginning the
graph is a set of small disconnected components. They are growing and at some
point we will get ”giant” cluster of connected nodes and their number will be a
finite fraction of N even in the limit N → ∞. It is important to mention that a giant
cluster emerges only when the generation probability m of having a link between
two nodes reaches a critical treshhold mc. The giant cluster will appear in a similar
way as drops of water are condensed in an oversaturated steam. As a result of this
phase transition process the fraction of connected nodes that belongs to the giant
cluster can be given as [35]

G = 1− 1
⟨k⟩

∞

∑
n=1

nn−1

n!
(⟨k⟩e−⟨k⟩)n, ⟨k⟩= mN. (1.12)
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As we see, the fraction of connected nodes monotonously grows when increasing
the mean degree ⟨k⟩.

1.2.2 Watts-Strogatz small-world model

Usually complex network models are generated on computers - as numeric real-
izations of graphs. However the idea of small-world network model appeared far
before it became possible to make such calculations on computers. It is easy to
get an idea of small-world just checking your acquaintances, and then acquain-
tances of your acquaintances (those that do not know you, personally) and so on.
It is enough to observe a short chain of such acquaintances to understand that any-
one of us can build quite short chains to connect some randomly chosen person
(prime-minister for example). In that meaning our world is small, and that fact
gave name for the model - small-world.

A computer model of small-world networks was introduced by Watts and Stro-
gatz [112]. It can be described as follows. Let us consider one-dimensional closed
chain of N nodes as on Fig. (1.8). At the beginning each node is connected with

a)

m = 0 m = 1 m 

c)b)

Figure 1.8: Watts-Strogatz rewiring algorithm [112], shows transformation of the
regular chain a) into small-world graph b) and then into random graph c). Param-
eter m define the probability of rewiring links.

k neighbours, where k is an even positive number. Then with some probability
m each link randomly changes one of its connecting nodes. This procedure is
called rewiring. From Fig. 1.8 one can see that small-world graph generates with
small values of probability of rewiring m, when node degree distribution follows
Poisson law (1.7).



1.2. COMPLEX NETWORK MODELS 21

The Watts-Strogatz model provides an intuitive image for real-world networks,
which have neither completely regular topology, nor are completely random. Back
to Fig. 1.8: for the case of a regular lattice, when m = 0 for large values of N (in
particular when N ≫ k ≫ lnk ≫ 1, to consider a connected graph) the mean short-
est path length behaves as ⟨ℓ⟩ ∼N/2k and the clustering coefficient takes the value
C = 3/4. However from another point of view, for a completely irregular lattice
with m = 1 (random graph in other words, see section 1.2.1) those characteristics
follow equations 1.11. Comparing the characteristics for m = 0 and m = 1 one can
see that the regular lattice is a strongly correlated (clustered) ”big-world”, where
the mean shortest path length grows with N linearly, while the irregular network
is the weak correlated small-world (C ∼ k/N ≪ 1), where ⟨ℓ⟩ grows with N as
logarithm. Watts and Strogatz find that the small-world effect (sudden decrease of
the mean shortest path length) is observed already for small values of m, while on
a local level this transition is nearly imperceptible (the clustering coefficient value
C stay large, as for a regular lattice). In current literature the term small-world is
used for networks where the mean shortest path length increases slower than any
positive power of N [39]. Note that the linear size of the d-dimensional regular
lattice grows as N1/d .

1.2.3 Barabási-Albert scale-free network
It is observed that many important real-world networks have node degree distribu-
tions which exhibit exponential decay (1.8) or power law behaviour (1.9). Because
of strong correlations systems governed by a power law do not have any scale of
characteristic changes. The main difference between these and random graphs is
that with its distribution (1.7), the tail of node degree distribution of the random
graph decreases much more faster than for a scale-free network.

Both exponential and power law decay of the degree distribution can be mod-
eled by assuming a non equilibrium growth process of the network by which in
consecutive time steps nodes and links are added to an existing network [39]. If
the added nodes are arbitrarily linked to any of the existing nodes an exponential
tail results, however, if the probability to connect to a given existing node is a
linear function of its degree one can show that the resulting degree distribution
develops a power law tail.

An algorithm of generation of scale-free networks was proposed by Albert and
Barabási [7, 8, 9]. It is based on two concepts that are common for most networks.
The first is growth and the second one is preferential attachment. It is important
to mention that similar ideas were known earlier in the context of power-law dis-
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tributions. For example the idea of cumulative advantage [94] was proposed by
Price in 1976, and in the Simon model even earlier [102]. The Barabási-Albert
model uses the following algorithm: let us have some small number of connected
nodes (n0) and at each time step we add a new node with n ≤ n0 links connected
to the already existing nodes. Following the idea of preferential attachment the
probability of connecting a new node to an already existing node i depends on the
degree ki of the node i:

Π(ki) =
ki

∑ j k j
. (1.13)

In (1.13) we are summing over all nodes. As Π is proportional to the first power of
ki, this procedure is sometimes called linear preferential attachment. Both numer-
ical simulations and analytical solutions of Barabási-Albert model [7, 9, 73, 37]
result in power asymptotic of node degree distribution (1.9) with the exponent
value γ = 3.

More general γ can be produced if we imply initial preferential parameter a

Π(ki) =
ki +a

∑ j(k j +a)
. (1.14)

1.3 Previous studies of public transport networks
While general interest in complex networks was growing very fast, one particular
type of networks, which are used everyday, public transport networks (PTN) was
analysed in details only recently [46, 100]. PTN are an example of transportation
networks, and have general common characteristics of those: evolutionary dynam-
ics, optimisation, two-dimensionality. However topological characteristics of the
PTN were less known than for example such characteristics of airports networks
that also belong to transportation networks [5, 61, 62, 11, 76, 77, 59]. Railway
networks can be mentioned in the same context [98] and networks of electricity
[5, 33, 4] as well.

In some studies specific subsets of PTN were analysed, for example the Boston
subway network [81, 74, 75, 97], the Vienna subway network [97] or bus networks
of three cities in China [116]. However each separate type of public transport (bus
network, subway or trams network) is not a closed system: these are only sub-
networks of a wider city transport system, or as we called it PTN. To understand
and describe public transport characteristics one need to analyse complete PTN,
not separate specific parts. And really it turns out that network characteristics ob-
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tained when analysing separately subway network and network ”subway + buses”
differ a lot. That was shown for Boston in studies [74, 75].

Complete PTN were analysed in studies [46, 100]. In the first one [46] PTN of
Berlin, Paris and Düesseldorf were considered, in the second one [100], – public
transport systems of 22 polish cities. Study [46] is concerned on scale-free char-
acteristics of PTN. It is shown that for mentioned cities power-law node degree
distribution is common. Also power-law was observed for some other character-
istics that describe the intensity of movement in PTN. However there were not
enough statistical data to make clear conclusions. In study [100] a conclusion
was made that node degree distributions for PTN can have both exponential and
power-law behaviour, depending on the topology of the network representation
chosen. At the same time were analysed other PTN characteristics (clustering
coefficient, betweenness centrality, assortativity).

1.4 Network attack vulnerability and percolation phe-
nomenon

The question of resilience or vulnerability of a complex network [43, 106] against
failure of its parts has, beside purely academic interest, a whole range of impor-
tant practical implications. In what follows such failure will be called an attack. In
practice, the origin of the attack and its scenario may differ to large extent, ranging
from random failure, when a node or a link in a network is removed at random to a
targeted destruction, when the most influential network constituents are removed
according to their operating characteristics. The notion of attack vulnerability of
complex networks originates from studies of computer networks and was coined
to denote the decrease of network performance as caused by the removal of ei-
ther nodes or links. The behavior of a complex network under attack has been
observed to drastically differ from that of regular lattices. Early evidence of this
fact was found in particular for real world networks that show scale-free behav-
ior: the world wide web and the internet [2, 107], as well as metabolic [69], food
web [104], and protein [70] networks. It appeared that these networks display
a high degree of robustness against random failure. However, if the scenario is
changed towards targeted attacks, the same networks may appear to be especially
vulnerable [29, 23].

Essential progress towards a theoretical description of the attack vulnerabil-
ity of complex networks is due to the application of the tools and concepts of
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percolation phenomena. On a lattice percolation occurs e.g. when at a given con-
centration of bonds a spanning cluster appears. This concentration cperc which is
determined by an appropriate ensemble average in the thermodynamic limit is the
so-called percolation threshold and is in general lattice dependent. On a general
network the corresponding phenomenon is the emergence of a giant connected
component (GCC) i.e. a connected subnetwork which in the limit of an infinite
network contains a finite fraction of the network. For a random graph where given
vertices are linked at random this threshold can be shown to be reached at one
bond per vertex [42]. However the distribution p(k) of the degrees k of vertices
in a random graph is Poissonian. A more general criterion applicable to networks
with given degree distribution p(k) but otherwise random linking between ver-
tices has been proposed by Molloy and Reed [29, 23, 83]. For such equilibrium
networks a GCC can be shown to be present if

⟨k(k−2)⟩ ≥ 0 (1.15)

with the appropriate ensemble average ⟨. . .⟩ over networks with given degree dis-
tribution. Defining the Molloy-Reed parameter as the ratio of the first two mo-
ments of the degree distribution

κ(k) ≡ ⟨k2⟩/⟨k⟩ (1.16)

the percolation threshold can then be determined as

κ(k) = 2 at cperc. (1.17)

Taken that for scale-free networks the degree distribution obeys power law scaling

p(k)∼ k−γ (1.18)

one finds that the second moment ⟨k2⟩ diverges for γ < 3. Thus, the value γ = 3
separates two different regimes for the percolation on equilibrium scale free net-
works [29]. Moreover the values γ = 2 and γ = 4 are further boundaries [31]. In-
deed, for infinite equilibrium scale-free networks if γ< 2 the distribution has no fi-
nite average ⟨k⟩, for γ< 3 a GCC is found to exist at any concentration of removed
sites (the network appears to be extremely robust to random removal of nodes and
has no percolation threshold with respect to a dilution of its nodes), κ(k) (1.16)
remains finite for γ > 3 and finally when γ > 4 network percolation and other
properties are expected to be similar to those of exponentially decaying networks.
Therefore, the observed transitions for real-world systems [2, 107, 69, 104, 70]
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from the theoretical standpoint may be seen as finite-size effects or resulting from
essential degree-degree correlations. The tolerance of scale-free networks to in-
tentional attacks (when the highest degree nodes are removed) was studied in [30].
It was shown that even networks with γ< 3 may be sensitive to intentional attacks.

Obviously, the above theoretical results apply to ideal complex networks and
for ensemble averages and may be confirmed within certain accuracy when ap-
plied to different individual real-world networks. Not only finite-size effects are
the origin of this discrepancy [71]. Furthermore, even networks of similar type
(e.g. of similar node degree distribution and size) may be characterized by a large
variety of other characteristics. While some of them may have no impact on the
percolation properties [117], others do modify their behavior under attack, as em-
pirically revealed in study [65] for two different real-world scale-free networks
(computer and collaboration networks). Therefore, an empirical analysis of the
behavior of different real-world networks under attack appears timely and will al-
low not only to elaborate scenarios for possible defence mechanisms of operating
networks but also to create strategies of network constructions, that are robust to
attacks of various types.

1.5 Optimisation
As far as public transport networks plays a very important part in the economy
of a city and the everyday lives of many of its inhabitants a number of studies
have been done on their optimisation [28]. Here we are interested in a mathe-
matical approach. The usual approach is to optimise either the average overall
travelling time for customers, or the average travel cost, which can be defined in
various ways. To simplify the problem most of studies are concerned with the
bus networks, however these represent general characteristics of PTN of other
kinds. Another simplification approach is to use simple geometric configurations
to model the PTN. Most described are systems with rectangular routeing (along a
rectangular grid) [41, 109, 45, 84] and polar routeing (along ring and radial roads)
which was introduced by Smeed and Haight [103, 64, 85, 110, 22, 26].

Analytical mathematical approaches on PTN optimisation in general are at-
tempts to simplify urban areas and their networks by using simple geometric bus
configurations and travel demand functions as to facilitate the use of simple for-
mulae to determine optimum routes, headways, fleet sizes, shapes, number of
units and so on. Of course a real PTN system is more complex, and such simpli-
fication of a complex problem usually results in a model that is so far from reality
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that their use at operational level is doubtful [1, 84]. However such models are
useful in understanding the various relationships within the geographical layout
of a PTN at the conceptual level. In our approach we focus on finding the optimal
setup of routes in a radial system for a given investment level.



Chapter 2

Empirical analysis

In this chapter we will present results of the empirical analysis of the PTN of
14 major cities of the world. To this end, we will introduce different network
representations (different ”spaces”), introduce more observables in terms of which
network properties will be analysed, and find the values of these observables for
each PTN under consideration. Some of the results presented here were published
in [47, 49].

2.1 Description of the database

The choice for the selection of fourteen major cities (see Table 2.1) [124, 125] is
motivated by the idea to collect network samples from cities of different geograph-
ical, cultural, and economical background. Apart from the systematic analysis ex-
plained above this choice also extends to PTN of much larger size as compared to
previous work [46, 100] which considered PTN of typically hundreds of stations.

All PTN analysed within this study are either operated by a single operator
or by a small number of operators with a coordinated schedule, as e.g. expressed
by a central website from which our data were obtained. Rather than artificially
dividing these centrally organized networks into subnetworks of different means
of transport like bus and metro or in an ’urban’ and a ’sub-urban’ part we treat
each full PTN as an entity.

27
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City N R S Type
Berlin 2992 211 29.4 BSTU
Dallas 5366 117 59.9 B
Düsseldorf 1494 124 28.5 BST
Hamburg 8084 708 25.5 BFSTU
Hong Kong 2024 321 39.6 B
Istanbul 4043 414 31.7 BST
London 10937 922 34.2 BST
Los Angeles 44629 1881 52.9 B
Moscow 3569 679 22.2 BEST
Paris 3728 251 38.2 BS
Rome 3961 681 26.8 BT
Saõ Paolo 7215 997 58.3 B
Sydney 1978 596 16.3 B
Taipei 5311 389 70.5 B

Table 2.1: Cities analysed in this study. N: number of PTN stations; R: number
of PTN routes; S: mean route length (mean number of stations per route). Types
of transport taken into account: Bus, Electric trolleybus, Ferry, Subway, Tram,
Urban train.

2.2 PT network topology
A straightforward representation of a PT map in the form of a graph represents
every station by a node while the edges correspond to the links that exist between
stations due to the PT routes servicing them (see e.g. Figs. 2.1, 2.2a).

Let us first introduce a simple graph to represent this situation, see Fig. 2.2b.
In the following we will refer to this graph as the L-space graph [100] or simply
as L-space. This graph represents each station by a node, a link between nodes
indicates that there is at least one route that services the two corresponding stations
consecutively. No multiple links are allowed. In the analysis of PTN, this L-space
representation has been used in studies of Refs. [74, 46, 100, 6, 116].

A somewhat different concept is that of a bipartite graph which was proven
useful in the analysis of cooperation networks [89, 60]. In this representation
called B-space both routes and stations are represented by nodes [118, 47, 27].
Each route node is linked to all station nodes that it services. No direct links
between nodes of same type occur (see Fig. 2.2c). Obviously, in B-space the
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Figure 2.1: One of the networks we analyse in this study. The Los Angeles PTN
consists of R = 1881 routes and N = 44629 stations, some of them are shown in
this map.

neighbors of a given route node are all stations that it services while the neighbors
of a given station node are all routes that service it.

There are two one-mode projections of the bipartite graph of B-space. The
projection to the set of station nodes is the so-called P-space graph, Fig. 2.2d. The
complementary projection to route nodes leads to the C-space graph, Fig. 2.2e,
of route nodes where any two route nodes are neighbors if they share a common
station.

The P-space graph representation [98, 100] has proven particularly useful in
the analysis of PTN [98, 97, 100, 47, 116]. The nodes of this graph are stations
and they are linked if they are serviced by at least one common route. In this
way the neighbors of a P-space node are all stations that can be reached without
changing means of transport and each route gives rise to a complete P-subgraph,
see Fig. 2.2d.

It is worthwhile to note the real world significance of these seemingly abstract
’spaces’. To give an example, the average length of a shortest path ⟨ℓL⟩ in an L-
space graph is the average number of stops one has to pass to travel between any
two stations. When represented in P- space, the mean shortest path ⟨ℓP⟩ counts
the average number of changes one has to do to travel between two stations while
the corresponding mean C- space path length ⟨ℓC⟩ counts the average number
of changes needed to pass between any two routes. As another example let us
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a b

c d

e

Figure 2.2: a: a simple public transport map. Stations A-F are serviced by routes
No 1 (shaded orange), No 2 (white), and No 3 (dark blue). b: L-space graph. c:
B-space bipartite graph. Route nodes are shown as squares. d: P-space graph, the
complete sub-graph corresponding to route No 1 is highlighted (shaded orange).
e: C-space graph of routes.

note the node degree k: for the L-space graph the node degree of a station is the
number of other stations within one stop distance; in the bipartite B-space graph
the degree of a station is the number of routes servicing it, while the degree of
a route is the number of its stations; in the P-space graph the degree of kP of a
station is the number of stations reachable without changing the route; whereas in
the C-space graph the degree kC of a route is the number of other routes one can
transfer to.

Table 2.2 lists some of the PTN characteristics we have obtained for the cities
under consideration using publicly available data from the web pages of local
transport organizations [124, 125]. To limit the data presented, this and further
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tables are restricted to the basic results discussed within this thesis. The interested
reader may find supplementary material in [48].

2.3 Local network properties
Let us first examine the properties of the PTN determined by the immediate neigh-
borhood of the nodes as measured by its size, its interconnectedness and the cor-
relations within this neighborhood. To this end we will recall some network char-
acteristics that were already mentioned in section 1.1.2.

2.3.1 Neighborhood size (node degree)
The size of the neighborhood of a node as given by its degree often indicates
its importance e.g. as a hub within the network. In large networks created by
randomly connecting nodes, hubs are rare while in real networks they are often
found with much higher probability. Formally this is measured by the behavior
of the tail of the node degree distribution. Denoting by p(k) the normalized node
degree distribution, the mean node degree k is given by the average

⟨k⟩=
kmax

∑
k=1

p(k)k =
2M
N

. (2.1)

Here, M is the number of links and N the number of edges of the graph while
kmax stands for the maximal node degree. For the finite size Erdös-Rényi [42, 16]
random graph the node degree distribution p(k) is binomial, which in the infinite
case becomes a Poisson distribution (1.7).

As was mentioned in section 1.2.3 the higher organization of real world net-
works usually leads to slower decaying distributions. Typical classes of such net-
works have either exponential or power law tails. Both exponential and power law
decay of the degree distribution can be modeled by assuming a non equilibrium
growth process of the network [39]. As far as PTN obviously are evolving net-
works, their evolution may be expected to follow similar mechanisms. However,
scale-free networks have also been shown to arise when minimizing both the effort
for communication and the cost for maintaining connections [52, 56]. Moreover,
this kind of optimisation was shown to lead to small world properties [82] and to
explain the appearance of power laws in a general context [53]. Therefore, scale-
free behavior in PTN could also be related to obvious objectives to optimise their
operation.
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Figure 2.3: a: Node degree distributions of PTN of several cities in L-space. b:
Cumulative node degree distribution in P-space. c: Cumulative node degree dis-
tribution in C-space. Berlin (circles, k̂L = 1.24, k̂P = 39.7), Düsseldorf (squares,
k̂L = 1.43, k̂P = 58.8), Hong Kong (stars, k̂L = 2.50, k̂P = 125.1).

Figs. 2.3 and 2.4 show the node degree distributions for PTN of several cities
in L-, P-, and C-spaces. Note, that the monotonously decreasing curves displayed
for the P- and C-spaces are cumulative distributions defined as:

P(k) =
kmax

∑
q=k

p(q). (2.2)

The data for L- and P-spaces in Fig. 2.3a,b is shown in log-linear plots together
with fits to an exponential decay (1.8). The latter distributions are nicely described
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Figure 2.4: a: Node degree distributions of the PTN of several cities in L-space.
b: Cumulative node degree distributions in P-space. c: Cumulative node degree
distribution in C-space. London (circles, γL = 4.48, γP = 3.89), Los Angeles
(stars, γL = 4.85, γP = 3.92), Paris (squares, γL = 2.62, γP = 3.70).

by an exponential decay. As far as the L-space data is concerned, we find evidence
for an exponential decay for about half of the cities analysed, while the other part
rather follow a power law decay (1.9), see Table 2.3.

Figs. 2.4a,b show the corresponding plots for three other cities on a log-log
scale. Here, these plots are shown together with fits to a power law (1.9). Numer-
ical values of the fit parameters k̂ and γ for different cities are given in Table 2.3.
Here, values in parentheses indicate a less reliable fit. In the case when none of
equations (1.8), (1.9) lead to reliable data, both fit parameters are given in paren-
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City γL k̂L γP k̂P
Berlin (4.30) 1.24 (5.85) 39.7
Dallas 5.49 (0.78) (4.67) 64.2
Düsseldorf 3.76 (1.43) (4.62) (58.8)
Hamburg (4.74) 1.46 4.38 (60.7)
Hong Kong (2.99) 2.50 (4.40) 125.1
Istanbul 4.04 (1.13) (2.70) 86.7
London 4.48 (1.44) 3.89 (143.3)
Los Angeles 4.85 (1.52) 3.92 (201.0)
Moscow (3.22) (2.15) (2.91) 50.0
Paris 2.62 (3.30) 3.70 (100.0)
Rome (3.95) 1.71 (5.02) 54.8
Saõ Paolo 2.72 (4.20) (4.06) 225.0
Sydney (4.03) 1.88 (5.66) 38.7
Taipei (3.74) 1.75 (5.16) 201.0

Table 2.3: Parameters of the PTN node degree distributions fit to an exponential
(1.8) and power law (1.9) behavior. Bracketed values indicate less reliable fits.
Subscripts refer to L- and P-spaces [125].

theses in the table. The typical range of data points which could be fitted was
of the order of 90 % or more for L- and P-spaces. The value of the fit parame-
ters was considered to be reliable if the absolute value of the Pearson correlation
coefficient exceeded RL = 0.984 and RP = 0.990 in L and P-spaces, correspond-
ingly. Exceptions from this rule are the L-space fits for the PTN of Paris, Rome
(RL ≃ 0.97, but 97 % of data points are covered), and London (with 72 % of data
points covered and RL ≃ 0.985). For P-space, exceptions are the PTN of Paris
(RP = 0.993) and Saõ Paolo (RP = 0.999), where the fit covered only ∼ 60 %
of data points. Note, that for L-space the fit was done for the plain node degree
distribution p(k), whereas for P-space the parameters γP or k̂P were determined
by fitting the cumulative distribution (2.2).

While the node degree distribution of almost half of the cities in the L-space
representation display a power law decay (1.9), this is in general not the case for
the P-space. However, the data for the PTN of Hamburg, London, Los Angeles,
and Paris (see Fig. 2.4b) give first evidence of power law behavior of P(k) even in
the P-space representation. Previous results concerning node-degree distributions
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of PTN in L- and P-spaces [100, 116] seemed to indicate that in general the
degree distribution may be power-law like in L-space but never in P-space. This
was interpreted [100] as being due to strongly correlated connections between
stations in L-space and nearly randomly linked routes, as also expressed by a low
clustering coefficient in C-space, see below. Our present study, which includes a
much less homogeneous selection of cities (study [100] was exclusively based on
Polish cities) shows that almost any combination of different distributions in L-
and P-spaces may occur. We note that even within the small sub-group formed
by Hamburg, Los Angeles, London and Paris there is no alignment to ’typical
behaviour’.

In C-space the decay of the node degree distribution is exponential or faster, as
one can see from the plots in Figs. 2.3c and 2.4c. From the cities presented there,
only the PTN of Berlin, London, and Los Angeles are governed by an exponential
decay.

For most cities that show a power law degree distribution in L-space the corre-
sponding exponent γL is γL ∼ 4. Also the exponents found for the PTN of Polish
cities of similar size N also lie in this region: γL = 3.77 for Kraków (with num-
ber of stations N = 940), γL = 3.9 for Łódź (N = 1023), γL = 3.44 for Warsaw
(N = 1530) [100]. According to the general classification of scale-free networks
[38] this indicates that in many respect these networks are expected to behave sim-
ilar to those with exponential node degree distribution. Prominent exceptions to
this rule are the PTN of Paris (γL = 2.62) and Saõ-Paolo (γL = 2.72). Note, that
values of γL in the range 2.5÷ 3.0 were recently reported for the bus networks
of three cities in China: Beijing (N = 3938), Shanghai (N = 2063), and Nanjing
(N = 1150) [116].

A conclusion from our survey of the various degree distributions is that they
appear much more diverse than expected and that with respect to these there is no
simple division of the PTN at hand into two or even three classes.

2.3.2 Clustering

While the node degree counts the neighbors of a node, the connectivity within its
neighborhood may be quantified in terms of the so called clustering coefficient.
The latter is defined in section 1.2.1 1.4 (Ci =

2yi
ki(ki−1) for ki ≥ 2, where yi is the

number of links between the ki nearest neighbors of the node i). Ci ≡ 0 for ki =
0,1. The clustering coefficient of a node may also be defined as the probability of
any two of its randomly chosen neighbors to be connected. For the mean value of



2.3. LOCAL NETWORK PROPERTIES 37

the clustering coefficient of an Erdös-Rényi random graph one finds 1.11 (⟨C⟩ER =
⟨k⟩
N = 2M

N2 ).
In Table 2.2 we give the values of the mean clustering coefficient in L-, P-,

and C-spaces. The highest absolute values of the clustering coefficient are found
in P-space, where their range is given by ⟨CP⟩ = 0.7÷ 0.9 (c.f. with ⟨CL⟩ =
0.02÷ 0.1). This is not surprising since in P-space each route gives rise to a
fully connected (complete) subgraph between all of its stations. In order to make
numbers comparable we normalize the mean clustering coefficient by that of a
random graph (1.11) of the same size:

c = N2⟨C⟩/(2M). (2.3)

In L- and P-representations we find the mean clustering coefficient to be larger
by orders of magnitude relative to the random graph. This difference is less pro-
nounced in C-space indicating a lower degree of organization in these graphs.
Most prominently, we find the values to vary strongly within the sample of the 14
cities.

In P-space the clustering coefficient of a node is strongly correlated with the
node degree. All stations i belonging to the complete subgraph of a single route
have Ci = 1, while Ci generally decreases if i belongs to more than one route.
Averaging the P-space clustering coefficient over all nodes with given degree k
we confirm that it decays as function of k according to a power law

⟨CP(k)⟩ ∼ k−β. (2.4)

Within a simple model of networks with star-like topology this exponent is found
to be β = 1 [100]. In transport networks, this behavior has been observed before
for the Indian railway network [98] as well as for Polish PTN [100]. In our case,
the values of the exponent β for the networks studied range from 0.65 (Saõ Paolo)
to 0.96 (Los Angeles) again showing significant diversity within our sample.

These obvious differences in the locally observable structure may be assumed
to reflect a strong diversity within the concepts according to which various PTN
are structured. Comparing the division between weak and strongly clustered PTN
we find no alignment with the different classes of degree distributions adding to
the idea of an individual profile of each city’s PTN with respect to the various
network characteristics.
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2.3.3 Generalized assortativities
To describe correlations between the properties of neighboring nodes in a network
the notion of assortativity was introduced. This quantity measures the correlation
between the node degrees of neighboring nodes in terms of the mean Pearson
correlation coefficient [88, 90]. Here, we propose to generalize this concept to
measure also the correlations between the values of other node characteristics
(other observables). For any link i let Xi and Yi be the values of the observable at
the two nodes connected by this link. Then the correlation coefficient is given by:

r =
M−1 ∑i XiYi − [M−1 ∑i

1
2(Xi +Yi)]

2

M−1 ∑i
1
2(X

2
i +Y 2

i )− [M−1 ∑i
1
2(Xi +Yi)]2

(2.5)

where summation is performed with respect to the M links of the network. Taking
Xi and Yi to be the node degrees equation (2.5) is equivalent to the usual formula
for the assortativity of a network [88]. Here, we will call this special case the
degree assortativity r(1). It is although possible to investigate generalized assorta-
tivities for a number of other network characteristics, however obtained results not
always are interesting to discuss. Here, besides the assortativity r(1), we discuss
the behavior of the generalized assortativity r(2) for the number z of next nearest
neighbors. The numerical values of the assortativities r(1) and r(2) of all PTN are
listed in Table 2.4 for the L-, P- and C-spaces. With respect to the values of the
standard node degree assortativity r(1)L in L-space, we find two groups of cities.
The first one is characterized by values r(1)L = 0.1÷0.3. Although these values are
still small they signal a finite preference for assortative mixing. That is, links tend
to connect nodes of similar degree. In the second group of cities these values are
very small r(1)L = −0.02÷0.08 showing no preference in linkage between nodes
with respect to node degrees. PTN of both large and medium sizes are present in
each of the groups. This indicates the absence of correlations between network
size and degree assortativity r(1)L in L-space. Measuring the same quantity in the
P- and C-spaces, we observe different behavior. In P-space almost all cities are
characterized by very small (positive or negative) values of r(1)P with the exception
of the PTN of Istanbul (r(1)P =−0.12) and Los Angeles (r(1)P = 0.12). On the con-
trary, in C-space PTN demonstrate clear assortative mixing with r(1)C = 0.1÷0.5.
An exception is the PTN of Paris with r(1)C = 0.06.

As we have seen above, all PTN demonstrate assortative (r(1) > 0) or neutral
(r(1) ∼ 0) mixing with respect to the node degree (first nearest neighbors num-
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City r(1)L r(2)L r(1)P r(2)P r(1)C r(2)C

Berlin 0.158 0.616 0.065 0.441 0.086 0.318
Dallas 0.150 0.712 0.154 0.728 0.290 0.550
Düsseldorf 0.083 0.650 0.041 0.494 0.244 0.180
Hamburg 0.297 0.697 0.087 0.551 0.246 0.605
Hong Kong 0.205 0.632 -0.067 0.238 0.131 0.087
Istanbul 0.176 0.726 -0.124 0.378 0.282 0.505
London 0.221 0.589 0.090 0.470 0.395 0.620
Los Angeles 0.240 0.728 0.124 0.500 0.465 0.753
Moscow 0.002 0.312 -0.041 0.296 0.208 0.011
Paris 0.064 0.344 -0.010 0.258 0.060 -0.008
Rome 0.237 0.719 0.044 0.525 0.384 0.619
Saõ Paolo -0.018 0.437 -0.047 0.266 0.211 0.418
Sydney 0.154 0.642 0.077 0.608 0.458 0.424
Taipei 0.270 0.721 0.009 0.328 0.100 0.041

Table 2.4: Nearest neighbor and next nearest neighbor assortativities r(1) and r(2)

in different spaces for the whole PTN.

ber) k. Defining an assortativity r(2) with respect to the number z of second next
nearest neighbors we explore the correlation of a wider environment of adjacent
nodes. Due to the fact that in this case the two connected nodes share at least
part of this environment (the first nearest neighbors of a node form part of the
second nearest neighbors of the adjacent node) one may expect the assortativity
r(2) to be non-negative. The results for r(2) shown in Table 2.4 appear to confirm
this assumption. In all the spaces considered, we find that all PTN that belong
to the group of neutral mixing with respect to k also belong to the same group
with respect to the second nearest neighbors. For those PTN that display signifi-
cant nearest neighbors assortativity r(1) we find that the second nearest neighbor
assortativity r(2) is in general even stronger in line with the above reasoning.

From the above observations on assortativity within our sample of PTN we
note further evidence for diversity ranging from indefinite to clearly pronounced
assortativities r(1)L and r(1)C which appear uncorrelated with other properties of the
network such as the size or the specific behavior of e.g. the degree distribution.



40 CHAPTER 2. EMPIRICAL ANALYSIS

2.4 Global characteristics

2.4.1 Shortest paths
As was mentioned in section 1.1.2 let ℓi, j be the length of a shortest path between
sites i and j in a given graph. Note, that ℓi, j is well-defined only if the nodes i and
j belong to the same connected component of the graph. In the following we will
restrict considerations to the largest (so-called giant) connected component, GCC.
Denoting the path length distribution within the GCC as Π(ℓ), the mean shortest
path is

⟨ℓ⟩=
ℓmax

∑
ℓ=1

Π(ℓ)ℓ, (2.6)

where ℓmax is the maximal shortest path length found within the GCC. In general,
the shortest path length distributions obtained in L-, P-, and C-spaces that we
have analysed [48] are nicely described by an asymmetric unimodal distribution
[100]:

Π(ℓ) = Aℓexp(−Bℓ2 +Cℓ), (2.7)

where A,B, and C are parameters. However, additional structures may lead to
deviations from this behavior as can be seen from Fig. 2.5, which shows the mean
shortest path length distribution in L-space PL(ℓ) for Los Angeles. One observes a
second local maximum on the right shoulder of the distribution. Qualitatively this
behavior may be explained by assuming that the PTN consists of more than one
community. For the simple case of one large community and a second smaller one
at some distance this situation will result in short intra-community paths which
will give rise to a global maximum and a set of longer paths that connect the larger
to the smaller community resulting in additional local maxima. Such a situation
definitely appears to be present in the case of the Los Angeles PTN, see Fig. 2.1.

Of particular interest is the mean shortest path length between nodes of given
degrees k and q, ℓ(k,q). As has been shown in [67], this relation can be approxi-
mated by

ℓ(k,q) = A−B log(kq). (2.8)

For random networks the coefficients A and B can be calculated exactly [55]. A
rather good agreement with equation (2.8) was found for the majority of the L-
space graphs of Polish PTN analysed in [100]. Within our study which includes
PTN of much larger size, we do not observe a similar alignment for all cities. The
suggested logarithmic dependence (2.8) does occur also for the L-space graphs of
larger cities, however, with a much more pronounced scattering of data for large



2.4. GLOBAL CHARACTERISTICS 41

0 50 100 150 200
0

5

10

15

20

25

30

35

50 100 150
0,0

0,2

0,4

0,6

0,8

1,0

p(
l),

 x
1

0
-3

lp(
l),

 x
10

-3

l

Figure 2.5: Shortest path length distribution in L-space, PL(ℓ), for the PTN of Los
Angeles.

values of the product kq. In Fig. 2.6 we plot the mean path ℓL(k,q) for the L-space
graphs of the PTN of Berlin, Hong Kong, Rome, and Taipei, where the relation
(2.8) is observed with better accuracy. Note, however, that due to the scatter of
data a logarithmic dependence frequently is indistinguishable from a power law
with a small exponent.

The dependency of the average path length on the degrees of both end nodes
of the path may be reduced to a dependency on the degree of a single end node.
We define ℓ(k), the mean shortest path between any node of degree k and other
nodes of the network. For the majority of the cities analysed the dependence of
the mean path ℓL(k) on the node degree k in L-space can be approximated by a
power law

ℓL(k)∼ k−αL . (2.9)

We find that the value of the exponent varies in the range αL = 0.17÷0.27. It is
instructive to compare this result with results obtained in [40] for the same charac-
teristics calculated for correlated growing networks. For deterministic scale-free
networks ℓ(k) was found to be characterized by a logarithmic law with power-law
corrections, whereas for stochastic scale-free networks ℓ(k) was shown to follow
a logarithmic behaviour. Furthermore, networks with an exponential node-degree
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Figure 2.6: Mean L-space paths ℓL(k,q) as function of kq for the PTN of Berlin
(stars), Hong Kong (circles), Rome (triangles), and Taipei (squares).

distribution displayed a linear law ℓ(k) ∼ a− bk. Obviously, the small values of
the exponent αL found for the PTN in our study do not exclude a logarithmic
law, however the linear dependence can be ruled out. Note, that within our sam-
ple of PTN one finds both scale-free and exponential node degree distributions.
However, an essential difference between the construction principles of PTN and
of the graphs of [40] is that the latter are so-called ’citation graphs’ (where new
connections do not emerge between already existing nodes), whereas there is no
such restriction for PTN.

In P-space, the shortest path length ℓi, j gives the minimal number of routes
required to be used in order to reach site j starting from the site i. The higher
the node degree, the easier it is to access other routes in the network. Therefore,
also in P-space one expects a decrease of ℓP(k) when k increases. Apart from an
expected decrease we find a tendency to a power-law decay with small powers,
sometimes almost indistinguishable from a logarithmic behavior. The value of
the exponent αP varies in the interval αP = 0.09 (for Sydney) to αP = 0.17 (for
Dallas) and is centered around αP = 0.12÷0.13. The mean path ℓP(k,q) is found
to decrease as a function of kq also in P-space, but with much more pronounced
scattering than in L-space.

Concluding we note that the mean lengths of the shortest paths as function of
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the end node degrees show no special structure within the sample of PTN studied.
In general the observed behavior does not significantly deviate from the logarith-
mic behavior that is expected for random graphs.

2.4.2 Betweenness centrality
To measure the importance of a given node with respect to different properties of a
graph a number of so-called ’centrality measures’ have been introduced quite long
time ago in social sciences. In particular, the closeness centrality CC( j) (Sabidussi
1966, [96])

CC( j) =
1

∑t∈N ℓ( j, t)
, (2.10)

the graph centrality CG( j) (Hage and Halary 1995, [63])

CG( j) =
1

maxt∈N ℓ( j, t)
, (2.11)

the stress centrality CS( j) (Shimbel 1953, [99])

CS( j) = ∑
s ̸= j ̸=t∈N

σst( j), (2.12)

and finally the most important betweenness centrality CB( j) which measures the
importance of a node with respect to the connectivity between other nodes of the
network and was already mentioned in section 1.1.2 1.6

CB( j) = ∑
s̸= j ̸=t∈N

σst( j)
σst

.

It was introduced by Freeman in 1977 [54]. In equations (2.10-2.12, 1.6), ℓ( j, t)
is the length of a shortest path between the nodes j, t that belong to the network
N , σst is the number of shortest paths between the two nodes s, t ∈ N , and σst( j)
is the number of shortest paths between nodes s and t that go through the node j.
A reliable algorithm to calculate betweenness centrality was proposed by Brandes
[18] (all other centralities can be calculated within this algorithm). Numerical
values of the mean betweenness centrality (1.6) are given in Table 2.2 for the L-,
P- and C-space graphs.

The betweenness centrality (1.6) of a given node measures the share of the
shortest paths between nodes that this node mediates. It is obvious that a node
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Figure 2.7: Mean betweenness centrality ⟨CB(k)⟩ - degree k correlations for the
PTN of Paris in (a) L-, (b) C-, (c) P-, and (d) B-spaces.

with a high degree has a higher probability to be part of any path connecting
other nodes. This relation between CB and the node degree may be quantified
by plotting the mean betweenness centrality ⟨CB(k)⟩ averaged among nodes with
degree k as function of k. In Fig. 2.7 we present the corresponding results for the
PTN of Paris in L-, C- and P-, and B-spaces. Especially well expressed is the
betweenness-degree correlation in L-space (Fig. 2.7a) and with somewhat less
precision in C-space (Fig. 2.7b). In both cases there is a clear tendency to a power
law ⟨CB(k)⟩ ∼ kη with an exponent η = 2÷3.

In the plots for both B- and P-spaces we observe the occurrence of two
regimes which correspond to small and large degrees k. This separation how-
ever has a different origin in each of these cases. In the B-space representation,
the network consists of nodes of two types, route nodes and station nodes. Typ-
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ically, station nodes are connected only to a low number of routes while there
is a minimal number of stations per route. One may thus identify the low degree
behavior as describing the betweenness of station nodes, while the high degree be-
havior corresponds to that of route nodes. In the overlap region of the two regimes
one may observe that when having the same degree station nodes have a higher
betweenness than route nodes.

In the P-space representation on the other hand, the occurrence of two regimes
is a feature of this representation. Stations that are part of only a single route and
thus within the P-graph belong only to the complete subgraph corresponding to
this route (recall Fig. 2.2d) are not part of any shortest P-space path between
other nodes and have a betweenness centrality of CB = 0. The decreasing con-
tribution of these stations to the average ⟨CB(k)⟩ leads a steep slope in the low
degree regime. For degrees higher than the maximal route length these stations
do no longer contribute and the slope rather describes the correlation between the
degree and finite mean betweenness values. Instead of a steep slope in the low
degree regime the study [100] observes a saturation; this may be due to the exclu-
sion of the zero-betweenness nodes from the average. Very similar betweenness –
degree relations as shown in Fig. 2.7 are found for most of the other cities in our
sample with slightly varying quality of expression. We emphasize however, that
this uniformity of the correlation between the degrees of the nodes and their re-
spective betweenness is strictly speaking valid only for the average value ⟨CB(k)⟩.
When analysing the importance of individual nodes e.g. with respect to the vul-
nerability of the network against failure or attack the betweenness centrality turns
out to be a much more sensitive measure than the node degree, see Ref. [51] and
chapter 4.

2.4.3 Harness
Besides the local and global properties of networks described above which can be
defined in any type of network, there are some characteristics that are unique for
PTN and networks with similar construction principles. Specific effects may be
observed for networks on which a set of walks or paths is defined. A particularly
striking example is the fact that as far as the routes share the same grid of streets
and tracks often a number of routes will proceed in parallel along shorter or longer
sequences of stations. Similar phenomena are observed in networks built with
space consuming links such as cables [34], vessels [25], pipes [68], neurons [115],
etc. In the present case this behavior may be easily worked out on the basis of
sequences of stations serviced by each route. To quantify this behavior we use the
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Figure 2.8: s-cumulative harness distribution Pc(r, ŝ) as function of r for fixed ŝ.
Log-log for a) Istanbul and b) Taipei ŝ= 2,5,8,11,14. c) Log-log for Los Angeles
ŝ = 2,4,6,8,10 and d) log-lin for Los Angeles ŝ = 22,24,26,28,30.

recently introduced notion of network harness [47]. It is described by the harness
distribution P(r,s): the number of sequences of s consecutive stations that are
serviced by r parallel routes.

Similar to the node-degree distributions, we observe non-vanishing harness
distributions P(r,s) > 0 even for long sequences s and high numbers of routes
r. This is what we call a ”strong” harness effect (examples are Sao Paolo, Hong
Kong, Istanbul, Los Angeles, Rome, Sydney, Taipei, Moscow, London; some of
them are shown in Fig. 2.8). For other PTN the maximal values of s and r with
P(r,s) > 0 were found to be smaller than 10 (Berlin, Paris, Dallas, Duesseldorf,
Hamburg) - this we call a ”weak” harness effect (Fig. 2.9). It is important to note
that the division into these two classes does not correlate with neither the average
number of routes R in the PTN nor their average length S (Table 2.1).
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Another result is that similar to the node-degree distributions we observe that
the harness distribution P(r,s) for some of the cities (Sao Paolo, Hong-Kong, Is-
tanbul, Los Angeles, Rome, Sydney) may be described by a power law (1.9),
P(r,s)∼ r−γs , for fixed s, whereas the PTN of other cities (Taipei, Moscow, Lon-
don) are better described by an exponential decay (1.8), P(r,s)∼ e−r/r̂s , for fixed
s. We illustrate this behavior in Figs. 2.8a,b showing the harness distribution for
Istanbul and for Taipei. Obviously by such a criterium we can separate into dif-
ferent groups only those PTN that have ”strong” harness effect, because for the
others there is not enough data to be fitted. In some cases (e.g. for Rome and
Los Angeles) there is a crossover between regimes (1.8) and (1.9) at larger s as
shown in the case of Los Angeles (Fig. 2.8c). Here, one can see that for small
values of s the results are better described by a power law (1.9). With increasing s
a tendency to an exponential decay (1.8) appears (Fig. 2.8d). This is less obvious
for other cities analysed, however in all cases the harness distribution P(r,s) as
function of r decays faster for longer sequence lengths and while also attaining a
more pronounced curvature.

Note that in Fig. 2.8 we plot s-cumulative distributions Pc(r, ŝ) where a se-
quence with maximal length s = 9 will be counted once as a sequence of length
ŝ = 9 and twice as a sequence of length ŝ = 8 etc:

Pc(r, ŝ) =
S

∑
s=ŝ

(s+1− ŝ)P(r,s) (2.13)

It may be surprising that these curves e.g. for Taipei (Fig. 2.8b) intersect for low
values of r. We will discuss this effect below.

For PTN for which the harness distribution follows a power law (1.9) the cor-
responding exponents γs are found in the range of γs = 2 ÷ 4. For those dis-
tributions with an exponential decay the scale r̂s (see eq.(1.8)) varies in the range
r̂s = 1.5÷4. The power laws observed for the behavior of P(r,s) indicate a certain
level of organization and planning which may be driven by the need to minimize
the costs of infrastructure and secondly by the fact that points of interest tend to
be clustered in certain locations of a city. Note that this effect may be seen as a
result of the strong interdependence of the evolutions of both the city and its PTN.
It may also be seen as a result of geographical or topological circumstances (see
next section). We want to emphasize that the harness effect is a feature of the net-
work given in terms of its routes but it is invisible in any of the complex network
representations of public transport networks presented so far, such as L-space, P-
space or B-space. It is possible, that the notion of harness may be useful also for
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the description of other networks with similar properties. On the one hand, the
harness distribution is closely related to distributions of flow and load on the net-
work. On the other hand, in the situation of space-consuming links (such as tracks,
cables, neurons, pipes, vessels) the information about the harness behavior may
be important with respect to the spatial optimisation of networks. A generaliza-
tion may be readily formulated to account for real-world networks in which links
(such as cables) are organized in parallel over a certain spatial distance. While for
the PTN this distance is simply measured by the length of a sequence of stations, a
more general measure would be the length of the contour along which these links
proceed in parallel.

For the cities observed no correlation appears to occur between the harness
distribution behavior and other well-known network characteristics that were anal-
ysed, as for example the node-degree distribution of PTN.
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Figure 2.9: s-cumulative harness distribution Pc(r, ŝ) as function of r for fixed ŝ
for Paris (ŝ = 2÷8). Pc(r, ŝ) = 0 if ŝ > 2 for r > 7 and if ŝ > 7 even for r > 2.

However, the extent to which harness properties are expressed may obviously
play a role for the attack vulnerability of a PTN. Interestingly, a particular corre-
lation was found between harness effect and the vulnerability, since our investiga-
tions of network vulnerability (see chapter 4) show that the Paris PTN is most re-
silient to any type of random or directed attacks (in terms of percolation concepts)
among all analysed PTN. At the same time it exhibits the ”weakest” behavior with
respect to the harness effect (Fig. 2.9). One may expect such a result: routes that
do not share the same streets are more resilient. However, for other cities no ap-
parent correlation between the harness effect behavior and their vulnerability has
been found so far.

It should be emphasized that with respect to network optimisation the har-
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ness property may at first seem completely counter-intuitive: Why should a route
that is e.g. added to the network follow the path of previous, already existing
routes, instead of exploring yet unserviced nearby areas? We may name at least
two possible reasons for this empirically confirmed harness behavior: The first is
the minimization of the cost for infrastructure which is most evident for means of
transport that need tracks but relevant also with respect to maintaining e.g. bus
stops. Other, more operation related reasons are those of interconnectivity min-
imizing the effort needed to change from one route to the other and of system
redundancy, ensuring a higher transport frequency on important segments of the
routes.

As noted above the interesting question to answer is: are there any structural
evolution purposes behind this effect, or can it be found just as well within simple
random scenarios.

Related unexpected behavior of the routes concerning their geographical em-
bedding is observed and discussed in the following section.

2.4.4 Geographical embedding
So far, we have discussed the properties of PTN without reference to their geo-
graphical embedding. The fact that this subject has so far been left aside also by
previous studies of PTN with respect to their complex network behavior, is due
mainly to the lack of easily accessible data on the locations of stations and routes.
Note, however, a study on the fractal dimension of railway networks, [15]. For
the present work we have been able to obtain such data for stations of the Berlin
PTN as well as for those of the metro subnetwork of Paris. For the Berlin network
the positions of the stations were extracted in an automated way from interactive
maps provided on the web-pages of the operator [126] which (invisibly) contain
the geographical coordinates of the stations. For the Metro network of Paris these
coordinates were retrieved by hand using a free web based map service [127].

The question we pose here is, what is the distance R (↕) between initial and
final stations of a passenger’s journey travelling for ℓ stops on a single route? For
routes optimising the time of passenger travel a naive consideration might lead to
the expectation of distance growing linearly with path length ℓ at least on larger
scales. Surprisingly, the empirical data show quite a different behavior (see Fig.
2.10). For all means of transport analysed within the Berlin PTN as well as for the
metro network the dependence of the mean square distance ⟨R 2(ℓ)⟩ on ℓ is well
described by a power law

⟨R 2(ℓ)⟩ ∼ ℓ2ν (2.14)
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simulated city (•). and b) for the Paris metro network.

with an exponent ν that is significantly smaller than one. For most transport routes
this exponent appears to be near to ν= 3/4, which is the well known self-avoiding
walk (or Flory-) exponent in two dimensions [91] corresponding to a fractal di-
mension of D ∼ 1.33. For the different Berlin subnetworks we find exponents
ranging from ν = 0.82 for the bus routes to ν = 0.9 and 0.96 for the subway
and tram routes. The s-bahn data is distorted due to a ring structure within this
sub-network. The Paris metro data supports an exponent of ν = 0.82 when ex-
cluding the short distance contributions. For comparison, the fractal dimensions
D of some regional railway networks (not individual routes) reported in study [15]
are of the order D ∼ 1.5÷1.8.

Self-avoiding walks, apart from observing the constraint of non-self-inter-
section evolve randomly. The fact that PT routes at least within the present sample
appear to display the same scaling symmetry is quite unexpected. In particular,
this behavior seems to be at odds with the requirement of minimizing passengers
travelling time between origin to destination. The latter argument, however, ig-
nores the time passengers spend walking to the initial and from the final stations.
Including these, one understands the need for the routes to cover larger areas by
meandering through neighborhoods. Given the requirements for a PTN to cover
a metropolitan area with a limited number of routes while simultaneously offer-
ing fast transport across the city one may speculate that routes scaling like SAWs
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may present an optimal solution. Further research on this subject is presented in
chapter 3.

2.5 Conclusions
In this chapter we intended to present a systematic survey of statistical properties
of PTN based on the data for cities of so far unexplored network size. Especially
helpful in our analysis was the use of different network representations (different
spaces, introduced in section 2.2). Whereas former PTN studies used some of
these, here within a systematic approach we calculate PTN characteristics as they
show up in all L-, P-, C-, and B-spaces.

The networks under consideration appear to be strongly correlated small-world
structures with high values of clustering coefficients and comparatively low mean
shortest path values. Standard network characteristics that we find in these vari-
ous representations correspond to features a passenger is interested in when using
public transport. For example, any two stops in Paris are on the average separated
by ⟨ℓL⟩ − 1 = 5.4 stations (with a maximal value of 27) and to travel between
them one should do ⟨ℓP⟩−1 = 1.7 changes on average. The power-law node de-
gree distributions observed for many networks in L- and for some in P-space give
strong evidence of correlations within these networks. However, for the properties
of degree distributions as well as for features of these networks, such as cluster-
ing, assortativity and others we find considerable diversity in their expression. Re-
cent work on urban street networks found classifications that discriminate between
properties of different classes of city organization. For the present sample of PTN
however, we conclude that there is no simple division of the PTN we studied into
well defined groups as e.g. seen for street and canal networks [24, 111] where a
division into a few groups was found (however analysing only small areas of city
maps). This result is far from obvious: one might have expected that networks all
set up in large urban areas and serving an almost identical purpose would turn out
to display strongly aligned properties. However, this diversity is an empirical fact
and one that would remain hidden if we had restricted our observations to only a
handful of measurements.

Beyond traditional network characteristics there are specific features unique
for PTN and networks with similar construction principles that we have addressed.
In particular, public transport routes are often found to proceed in parallel for a
sequence of stations. While the very fact that several routes should follow the
same path may seem counter-intuitive (why should a route retrace another’s path
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instead of exploring nearby unserviced areas?), we have quantified this behavior
in terms of the harness distribution and given possible explanations noting costs
of infrastructure, and operational advantages such as system redundancy. The har-
ness concept may also be useful for a quantitative description of other embedded
networks with real space links such as cables, pipes, or neurons etc.

Moreover, our analysis of the geographical data for Berlin and Paris reveals a
self-avoiding walk scaling of PTN routes a fact strongly supported by the empiri-
cal study which again appears to be counter-intuitive (should a line not be straight
to minimize time of travel). We give possible explanation speculating that this
shape of the routes may result from an optimisation with respect to total passen-
ger travelling time, area coverage and costs of operation.

With the results of the above empirical analysis at hand, we are in the position
to proceed further and analyse PTN properties by introducing different models.



Chapter 3

Public transport network models

In this chapter we will further analyse different properties of PTN introducing
models that may reproduce some of their characteristics behaviour. A particular
feature of the models considered below is that opposite to the majority of complex
network models, where a network grows by adding individual nodes, in our case
the growth is in terms of PT lines - which are sequences (chains) of nodes. Be-
ing motivated by the results of the empirical analysis of several real-world PTN
presented in chapter 2, we will mainly use random walks to describe such chains.
In the most general case (section 3.1) we will consider mutually interacting self-
avoiding walks in 2d. However, being the most realistic, such a model does not
allow for an analytic solution. Therefore, we will first consider and solve ana-
lytically a 1d model (section 3.2). In this case we will be primarily interested in
description of the PTN harness effect. The latter property will be discussed within
the model of non-interacting walks in 2d again in section 3.3. Some of the results
presented in this chapter were published in papers Refs. [49, 50, 12].

3.1 Mutually interacting self-avoiding walks in 2d

3.1.1 Motivation and description of the model

Having at hand the above described wealth of empirical data and analysis with
respect to typical scenarios found in a variety of real-world PTN we feel in the
position to propose a model that may capture the characteristic features of these
networks. In view of the diversity found in our sample, it would be in vein to try
to construct a model that quantitatively reproduces the data of a given city. The

53
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aim of the present model is to show that a few simple rules and a low number
of parameters suffice to generate PTN that display profiles which with respect
to most observables that are within the range of those found in real world PTN.
Nonetheless it should be capable of discriminating between some of the various
scenarios observed.

Essential basic properties of PTN that we intend to implement or reproduce
within our model are the following: a) the model is to be based on routes and
stations and allows for L- P- C- and B-space representations; b) the model should
be embedded in two dimensions and reproduce the SAW (self-avoiding walk)
scaling behavior of the routes; c) the model should be able to generate realistic
degree distributions; d) the model must generate realistic harness distributions.

If we were only to reproduce the degree distribution of the network, standard
models such as random networks [39, 86] or preferential attachment type models
[7, 8, 5, 80, 87, 78, 95] would suffice. The evolution of such networks however
is based on the attachment of nodes. For the description of PTN the concept of
routes as finite sequences of stations is essential [66, 6, 47, 50] and allows for the
representation with respect to the spaces defined above. Moreover, taking a route
as the essential element of PTN growth allows to account for the bipartite structure
of this network [97, 118, 27, 60]. Therefore, the growth dynamics in terms of
routes will be a central ingredient of our model. Another obvious requirement is
the embedding of this model in two-dimensional space. To simplify matters we
will restrict the model to a two-dimensional grid, in particular to square lattice.
Both the observations of power law degree distributions as well as the occurrence
of the corresponding harness distributions described above indicate a preference
of routes to service common stations (i.e. an attraction between routes).

Let us describe our model in more detail. As noticed above, a route will be
modeled as a sequence of stations that are adjacent nodes on a two-dimensional
square lattice. Following the observation of SAW scaling symmetry for the geo-
graphical embedding we choose each PTN route to be a self-avoiding walk. To
incorporate all the above features the model is set up as follows. A model PTN
consists of R routes each with S stations constructed on a possibly periodic X ×X
square lattice. The dynamics of the route generation adheres to the following
rules:

• 1. Construct the first route as a SAW of S lattice sites.

• 2. Construct the R−1 subsequent routes as SAWs with the following pref-
erential attachment rules:
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a) choose a terminal station at x⃗0 with probability

p ∼ k⃗x0 +a/X2; (3.1)

b) choose any subsequent station x⃗ of the route with probability

p ∼ k⃗x +b. (3.2)

In (3.1), (3.2) k⃗x is the number of times the lattice site x⃗ has been visited before
(the number of routes that pass through x⃗). Note, that to ensure the SAW property
any route that intersects itself is discarded and its construction is restarted with
step 2a).

3.1.2 Global topology of model PTN
Let us first investigate the global topology of this model as function of its param-
eters. We first fix both the number of routes R and the number of stations S per
route as well as the size of the lattice X . This leaves us with essentially two pa-
rameters a and b, from equations (3.1), (3.2). Dependencies on R and S will be
studied below.

For the real-world PTN as studied in the previous sections, almost all stations
belong to a single component, GCC, with the possible exception of a very small
number of routes. Within the network however we often observe the harness ef-
fect of several routes proceeding in parallel for a sequence of stations. Let us first
investigate from a global point of view which parameters a and b reproduce real-
istic maps of PTN. In Fig. 3.1 we show simulated PTN on lattices 300×300 for
R = 1024, S = 64 and different values of the parameters a and b. Each route is
represented by a continuous line tracing the path along its sequence of stations.
For representation purposes, parallel routes are shown slightly shifted. Thus, the
line thickness and intensity of colors indicate the density of the routes.

The parameter a quantifies the possibility to start a new route outside the ex-
isting network. For vanishing a = 0 the resulting network always consists of a
single connected component, while for finite values of a a few or many discon-
nected components may occur. The results for a = 0 and varying b parameters are
independent of the lattice size X provided X is sufficiently large to accommodate
the network without boundary effects. Parameter b governs the evolution of each
single subsequent route. If a = 0 and b = 0 the only allowed sites according to
equations (3.1), (3.2) are those of the first SAW route as far as the choice is re-
stricted to sites x with a finite number kx of previous visits. The shape variation
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Figure 3.1: PTN maps of different simulated cities of size 300× 300 with R =
1024 routes of S = 64 stations each (color online). First column: a = 0, b =
0.1÷ 0.5. Second column: b = 0.5, a = 15÷ 500. Increasing b the routes cover
more and more area. Increasing a leads to a breakup of the network.



3.1. MUTUALLY INTERACTING SELF-AVOIDING WALKS IN 2D 57

of the simulated PTN as b is increased for fixed a = 0 is shown in the first row of
Fig. 3.1. For small values of b = 0÷ 0.1 almost all routes of the simulated PTN
follow the same path with only a few deviations. Shifting b to b = 0.2 the area
covered by the routes increases while the majority of the routes are concentrated
on a small number of paths. Further shifting b to b = 0.5 and beyond we find a
wider distributed coverage with the central part of the network remaining the most
densely covered area. This is due to the non-equilibrium growth process described
by equations (3.1), (3.2).

When introducing a finite a parameter, new routes may be started anywhere
on the lattice which results in a lattice size dependency. To partly compensate for
this, the impact of a is normalized by X2 in (3.1). The variation of the simulated
PTN maps for increasing a and fixed b = 0.5 is shown in the second column of
Fig. 3.1. For a < 15 one observes the formation of a single large cluster with
only a few individual routes occurring outside this cluster. Slightly increasing a
beyond a= 15 one finds a sharp transition to a situation with several (two or more)
clusters. For much larger values of a the number of clusters further increases and
the situation becomes more and more homogeneous: the routes tend to cover all
available lattice space area.

3.1.3 Statistical characteristics of model PTN
From the above qualitative investigation we conclude that realistic PTN maps are
obtained for small or vanishing a and b ≥ 0.5. In the following we will fix a = 0
and X large enough as discussed above.

To quantitatively investigate the behavior of the simulated networks as func-
tion of the remaining parameters including R and S let us now compare their
statistical characteristics with those we have empirically obtained for real-world
networks. In Table 3.1 we have chosen to list the same characteristics of the sim-
ulated PTN as selected for the real-world networks in Table 2.2. To provide for
additional checks of the correlations between simulated and real-world networks,
we present the characteristics in all L-, P-, and C-spaces. Let us note that our
choice of the underlying grid to be a square lattice limits the number of near-
est neighbors of a given station in L-space to kL ≤ 4. Moreover, as far as no
direct links between these neighbors occur, the clustering coefficient in L-space
vanishes, cL = 0. Nonetheless, as we discuss below, both characteristics display
nontrivial behavior similar to real-world networks when measured for P- and C-
spaces.

As noted above we choose a vanishing parameter a = 0 and b = 0.5 and
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Figure 3.2: Cumulative node degree distributions P(k) (2.1) for several simulated
PTN in (a) P- and (b) C-spaces. R = 256, S = 16 (◦), R = 256, S = 32 (•),
R= 512, S= 16 (△), R= 512, S= 32 (N), R= 1024, S= 16 (▽), R= 1024, S= 32
(H).

for comparison b = 5.0. The data shown in the Table was obtained for simu-
lated PTN of different numbers of routes, R = 256, 512, 1024 and route lengths
S = 16, 32, 64. In the range of parameters covered in the Table we observe only
weak changes of the various characteristics. Natural trends are that with the in-
crease of the number of routes R the maximal and mean shortest path length in-
creases in all spaces. This is most pronounced in L-space, while it is weakest in
C-space. A similar increase is observed in L-space when increasing the number
of stations S per route. Choosing the values of R in the range R = 256÷ 1024
and S = 16, S = 32 the average and maximal values of the characteristics studied
here are found within the ranges seen for real-world PTN, see Table 2.2. More
detailed information is contained in the distributions of these characteristics and
their correlations.

Let us examine the node degree distributions of some selected PTN. As ex-
plained above, the L-space degrees are restricted by the geometry of the underly-
ing square lattice. Thus we may observe non-trivial distributions only in P-, C-,
and B-spaces. The cumulative node degree distributions in P-space are shown in
Fig. 3.2a. All these distributions display two regions each governed by an expo-
nential decay with a separate scale. Note, that increasing both S and R leads to
an increase of the ranges over which these regions extend. This is in line with
the results for real world PTN found in previous studies [100, 116] as well as in
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Figure 3.3: s-cumulative harness distributions Pc(r, ŝ) for the simulated PTN with
R = 256, S = 32. a: a = 0, b = 0.2, s = 2(�), 4(◦), 6(△), 11(▽), 16(♢). b: a = 0,
b = 1.0, s = 2(�), 3(◦), 4(△), 5(▽), 6(♢), 7(▹). Compare with plots in Fig. 2.8
for the real-world networks.

section 2.3.1. Within the parameter ranges chosen here the current model does not
seem to attain a power law node degree distribution in P-space.

Comparing the C-space node degree distributions for real-world and simulated
PTN (Figs. 2.3 and 3.2, correspondingly) one again finds a definite tendency to an
exponential behavior with two different scales in both cases. As can be expected
we observe that the scale of the exponential decay increases with the number of
routes R while it decreases with the number of stations per route S.

s-cumulative harness distributions Pc(r, ŝ) for two simulated networks with dif-
ferent values of the parameter b (b = 0.2, b = 1.0) are shown in Fig. 3.3. These
appear to reproduce the harness behavior of real world networks as given in Fig.
2.8. Both exponential and scale-free behavior as observed for the real-world PTN
is found. A prominent feature demonstrated by Fig. 3.3 is that one can tune the
decay behavior by changing the parameter b. For small values of b the probability
of a route to proceed in parallel with other routes is high. Thus for small b the
P(r,s) distribution shows a high probability for the formation of ‘hubs’ of parallel
routes as reflected by its power-law decay distribution. For larger b such hubs are
suppressed as shown by the exponential decay of their distribution.

Summarizing, the comparison of the statistical characteristics of real world
networks with those of simulated ones one can definitely state that the model pro-
posed above captures many essential features of real world PTN. This is especially
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evident if one includes into the the comparison different network representations
(different spaces) as performed above.

However it is interesting to investigate if some of characteristics have such
behaviour results mainly from the chain structure and thus can be represented in
a much simpler model. In particular further we will try to represent the harness
effect in one-dimensional space.

3.2 Modelling in 1d: analytic results and simulation
Let us first investigate a network model with routes placed randomly in one di-
mensional space. Although being very simple this model can mimic a harness
effect and as we will see below, it allows an analytical solution. The model is
formulated in the following way:

Figure 3.4: R = 2 routes given as simple sequences of S = 15 consecutive sites
are placed at random on a line with N sites.

The left terminals of R routes of length S are placed at random on a line with
N sites, with periodic boundary conditions. E.g. in Fig. 3.4 we show two routes of
length S = 15 with left terminals at x = 0 and x =−8. We define the route density
as ρ = R/N routes per site.

The distribution of left-terminals on a given site, e.g. site x will be Px(r): the
probability that r routes have their left-terminal on site x

Px(r) = (R)r · ( 1
N
)r · (1− 1

N
)R−r, (3.3)

where the first term counts the number of ways to select r of R routes, the second
term is the probability that the r left terminals lie on site x and the third term
is the probability that no left terminal of an unselected route lies on site x. In
other words, by definition Px(r) is a binomial distribution. For N → ∞, but fixed
ρ = R/N this distribution has the limiting behavior of a Poisson distribution:

Px(r)≈ e−ρ · ρr

r!
. (3.4)
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Let us now calculate the probability that there is a sequence of maximal length
s and maximal width r of r routes in parallel between sites x = 0 and x = s. This
implies that at least one of the r routes starts at x = 0 and at least one of the routes
ends at x = s− 1. The latter route then starts at x = −(S− s) ≡ −s̄ (Fig. 3.4).
The other r−2 routes may start anywhere in between −s̄ ≤ x ≤ 0. We denote the
number of routes starting at x = 0 as r0, those starting at x < 0 as r−x.

In the limit R ≫ r and N ≫ s̄ we may consider P0(r0), P1(r1), ... ,Ps̄(rs̄) as
independent probabilities (this is not true for small systems, however, as we see
later the correlation between these probabilities is negligible for the cases studied
here. The overall probability to find a sequence of length s and width r starting at
x = 0 is then the sum over all combinations leading to the result:

P0(r,s) =
(r)

∑
{ri},r0≥1, rs̄≥1

P(r0) ·P(r1) · ... ·P(rs̄) =

=
(r)

∑
{ri}, r0≥1, rs̄≥1

e−s̄ρ · ρr0

r0!
· ρr1

r1!
· ... · ρrs̄

rs̄!
= (3.5)

= e−s̄ρ ·ρr ·
(r)

∑
{ri}, r0≥1, rs̄≥1

1
r0! · r1! · ... · rs̄!

,

where ∑(r)
{ri} denotes a sum over {ri} with r = r0 + r1 + ...+ rs̄.

Now, without the conditions r0 ≥ 1 and rs̄ ≥ 1 this sum can be derived from:

(s̄+1)r = (1+1+1+ ...+1)r =
(r)

∑
{ri}

r!
r0! · r1! · ... · rs̄!

. (3.6)

The sum with these conditions however can be written as:

(r)

∑
{ri}, r0≥1, rs̄≥1

1
r0! · r1! · ... · rs̄!

=
(r)

∑
{ri}

1
r0! · r1! · ... · rs̄!

−

−
(r)

∑
{ri}, r0=0

1
r0! · r1! · ... · rs̄!

−
(r)

∑
{ri}, rs̄=0

1
r0! · r1! · ... · rs̄!

+ (3.7)

+
(r)

∑
{ri}, r0=0, rs̄=0

1
r0! · r1! · ... · rs̄!

=
(s̄+1)r

r!
−2

(s̄)r

r!
+

(s̄)r

r!
.
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Thus:

P0(r,s) = e(−s̄·ρ) ·ρr · [(s̄+1)r −2(s̄)r +(s̄−1)r]/r!. (3.8)

With this formula we count sequences that start at x = 0. To receive the overall
probability this is to be multiplied by N.

P(r,s) = N · e(−s̄·ρ) ·ρr · [(s̄+1)r −2(s̄)r +(s̄−1)r]/r!. (3.9)

Simple arithmetic allows us to calculate the s-cumulative distributions Pc(r, ŝ),
see equation(2.13).

As mentioned above, the probabilities we use are appropriate for infinite sys-
tems. To test their validity for finite cases we performed some simple simulations.
It turns out that the average results fit this formula with very good accuracy even
for small N, for example N = 10 and of course for any larger values of N (Fig.
3.5a). For a large range of parameters R, S, N the behavior of P(r,s) looks similar
to what is shown in Fig. 3.5b. For high overall density ρ ·S we observe that curves
for different s intersect at small r as for some real-world PTN. In one dimension,
this effect has the following explanation: when the space is overcrowded one will
in general find more than two routes to overlap for small sequences of stations.

This model has three parameters: the number of routes R, the route length
S and the number of sites N. As is obvious from equation 3.9 the harness dis-
tribution P(r,s) for all r and s is close to a Poisson decay (1.7) for any set of
parameters. Therefore PTN with an exponential behavior of the harness distribu-
tion P(r,s) may be compared with the results of the one-dimensional approach.
As an example we compare the normalized harness distribution for Moscow and
the one-dimensional set of lines (Fig. 3.5c,d), where the number of routes R and
the route length S were chosen to match those of the Moscow PTN (S set to the
average route length).

However, the quantitative results for all observed PTN are several orders of
magnitude higher than the result obtained with equation 3.9 in one dimension for
the same R and S (for any N). Furthermore, PTN that show a power law behav-
ior (1.9) are even qualitatively different from the random 1D approach. Another
difference is that the harness distribution curves for different s are very similar
in shape and both slope and curvature vary much less than for the PTN harness
distributions. We will propose possible explanation for this difference further.

In the following we test a two-dimensional model with the simple simulations.
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Figure 3.5: s-cumulative harness distribution Pc(r, ŝ) as function of r for fixed ŝ.
Log-lin scale. a) Comparing the analytical solution and numerical simulations
for N = 10000, R = 1000, S=10; b) for analytical solution for N = 10000, R =
2000, S=20; c,d) comparing the analytical solution with empirical results for the
Moscow PTN (Ran = RMoscow = 679, San = S̄Moscow = 22, N = 5250) for different
s normalized by Pc(2,s).

3.3 Non-interacting walks in 2d

It is obvious that simply throwing random lines parallel to the axis’ of a 2d square
lattice with periodic boundary conditions will lead to the original 1d problem: If
the lattice has X ×X sites one would get 2X independent one-dimensional sys-
tems. However, it is not a priory clear what results one will find for more general
sets of walks on a 2d square lattice.

To work this out, we implemented the following simulations. We work on a 2d
X ×X square lattice with periodic boundary conditions. On this lattice we chose a
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Figure 3.6: s-cumulative harness distribution Pc(r, ŝ) as function of r for fixed ŝ
(ŝ= 2÷8), for R= 500, S = 30, X = 50. Routes are generated as: a)RW b)NRRW
c)SAW. P(r,s) = 0 if s > 2 for r > 11 and if s > 7 even for r > 2.

set of R walks each of length S (number of steps plus 1). The routes are built either
as random walks (RW), non-reversal random walks (NRRW) that cannot reverse
the previous step, or self-avoiding random walks (SAW), that may not intersect
themselves.

These models have three parameters: the number of routes R, the route length
S and the lattice size X . We choose the first two parameters to match those of
different real PTN.

Let us summarize here some of the main features of the harness distribution
Pc(r, ŝ) of these models. Besides the finding that the harness effect is ”weak”,
some similarity between the the harness effects seen in the three models is ob-
served (Fig 3.6a,b,c). Curvature and slope evolve in a similar way. Also intersec-
tions between the curves for different s are found to occur at lower values of r in
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all cases. Differences are that the RW-generated networks demonstrate a ”weaker”
harness effect, while NRRW- and SAW-generated networks result in harness dis-
tributions Pc(r, ŝ) of similar order of magnitude.
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Figure 3.7: Situations observed for the r- and s-cumulative harness distribution
Pcc(r̂, ŝ) at r̂ = 2, ŝ = 2 as function of lattice size X . For all three of models
with R = RHamburg, S = S̄Hamburg. The empirical value of Pcc(2,2) for Hamburg is
shown for comparison.

It turns out that for fixed R and S, increasing the lattice size X , the harness
distributions P(r,s), for all fixed r < R and s < S show non-monotonous behavior
(Fig. 3.7). As function of X it first increases, and then after reaching a maximum
it starts to decrease. Comparing with the empirical values found for real PTN
we observe, that for some PTN the empirical values even for small r and s are
significantly larger than the maximum that could be obtained with RW. For NRRW
or SAW the empirical values are within the observed range, however only for a
small interval of X .

This proves numerically the not surprising observation, that with any of the
proposed random or quasi-random walks only a very ”weak” harness effect may
be obtained. In turn, this strongly indicates that for most of the observed cities the
harness effect must have a structural background, that is not to be modeled by any
of the random approaches taken here.

3.4 Conclusions
The main purpose of this chapter was to introduce some models that allow further
analysis of PTN. This was done both in 2d and 1d embedding spaces. A partic-
ular feature of the models considered is that opposite to the majority of complex
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network models, where a network grows due to adding separate nodes, in our case
the grows is in terms of PT lines - which are sequences (chains) of nodes.

First we have considered a model of mutually interacting self-avoiding walks
in 2d. The network growth model that we developed captures both special features
of PTN as well as generating profiles of network characteristics in the various rep-
resentations which are in line with those found for real world PTN. By varying
only a single parameter one may e.g. discriminate between scale-free and expo-
nential harness distributions, both of which are observed in real cities. The method
used, a non equilibrium growth model in terms of attractive self-avoiding walks
on a square lattice may further be extended to study the effects of geographical
constraints e.g. coast-lines, rivers and bridges or disorder.

However, being the most realistic, the above model does not allow for an an-
alytic solution. Therefore, we have further considered and solved analytically a
1d model. In this case we were interested in description of the PTN harness. The
latter property was discussed within the model of non-interacting walks in 2d as
well. While in one dimension an analytic treatment was successful, the two di-
mensional case was studied by simulations showing that the empirical results for
real PTN deviate significantly from those expected for randomly placed routes.
Here, the main conclusions may be summarized as follows:

• A one dimensional model for harness distributions was solved analytically.

• Exponentially decaying harness distributions may be reproduced by the 1d
approach.

• Simple random placement of RW, SAW or NRRW on a two dimensional
square lattice results in weak harness distributions; in the RW case, much
weaker than for real PTN.

• The s-cumulative distributions for different s intersect at low values of r for
all models for combinatorial reasons.

• A model of mutually interacting SAWs reproduces many of the empirically
observed features of harness distributions in spite of the morphology of the
networks which is visibly different from that of real PTN.





Chapter 4

Public transport network
vulnerability and resilience

This chapter presents on about public transport network vulnerability and re-
silience. In particular, we elaborate several criteria to determine network stability
and test the theoretical predictions derived for different idealized networks us-
ing data for the real-world networks. First we will define ways in which PTN
constituents are removed (we will call these attack strategies) and the observables
that will be used to monitor the network properties. Then we perform attack simu-
lations in different PTN representations (different spaces introduced in chapter 2)
and analyse correlations between PTN properties prior to the attack and its robust-
ness. Some of the results presented in this chapter were published in [13, 51, 14].

4.1 Observables and attack strategies

In the following we mostly consider the removal of nodes. Along the lines of the
lattice site percolation problem the removal of a node implies the removal of all
links that this node contributed to the network. Thus, in terms of the PTN this
interrupts all routes that pass through the corresponding station splitting any such
route into two independent parts. No ’detour’ links will be inserted to reconnect
these routes. This may reflect e.g. an instance where a tram or subway station
becomes blocked. When the links are removed nonetheless the corresponding
neighbouring nodes survive.

Let us take the L-space representation to introduce the observables we will
use to quantify the PTN behavior under attack. Keep in mind however, that in our

69
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analysis presented in section 4.3 we will also deal with the P-space. There are two
intrinsically connected questions that naturally arise when one wants to describe
quantitatively how a certain network changes when its nodes are removed.

The first is how to choose the ’order-parameter’ variable that signals the quan-
titative change in the network behavior (i.e. the break down of the network), the
second is how to locate the value of concentration of removed nodes at which this
change occurs. As we have mentioned in the chapter 1, in a theoretical description
a useful quantity is the GCC: its disappearance can be associated with a network
breakdown. Strictly speaking, the GCC is well-defined only in the N → ∞ limit,
therefore in practice dealing with a network of finite size N it is substituted by
the size of the largest connected component. We will use in the following its
normalized value defined by:

S = N1/N, (4.1)

with N and N1 respectively being number of nodes of the network and of its largest
component correspondingly. By definition (4.1), a largest component is always
present in a network of non-zero size. A useful quantity to measure network
connectivity is the mean shortest path defined in chapter 1, equation 1.2 (⟨ℓ⟩ =

2
N(N−1) ∑i> j ℓ(i, j), where ℓ(i, j) is the length of a shortest path from node i to
j and the sum spans all pairs i, j of sites of the network). However, ⟨ℓ⟩ is ill-
defined for a disconnected network. Alternatively, one can suitably define the
mean inverse shortest path length [65] by:

⟨ℓ−1⟩= 2
N(N −1) ∑

i> j
ℓ−1(i, j), (4.2)

with ℓ−1(i, j) = 0 if nodes i, j are disconnected. As one can see, equation (4.2)
is well-defined even for a disconnected network and as such can be used to trace
changes of network behavior under attack. To give an example, we show in Fig.
4.1 how the largest component fraction S, (equation 4.1) and the mean inverse
shortest path length ⟨ℓ−1⟩, (equation 4.2), change upon random removal of nodes
in each of fourteen PTN selected for our study. More precisely, we measure these
quantities as functions of the fraction of removed nodes c starting from the unper-
turbed network (c = 0) and eliminating at random step-by-step 1 % of the nodes
up to c = 1. In what follows below we will call this scenario a random scenario.

Note, that in Fig. 4.1 we display the result of a specific random attack. We
have however verified that random permutations do not influence the results to
extents that were visible on the scale of Fig. 4.1. This question will be further
investigated in more detail within the discussion of Fig. 4.7 below.
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Figure 4.1: L-space. Random scenario. Size of the largest cluster S a) and an
average inverse mean shortest path length ⟨ℓ−1⟩ b) as functions of a fraction of
removed nodes c normalized by their values at c = 0.

Already this first attack attempt brings about interesting (and in part unex-
pected) PTN features. Namely:
(i) different PTN react on random removal of their nodes in different ways, that
range from rapid abrupt breakdown (Dallas) to a slow almost linear decrease
(Paris);
(ii) although qualitatively similar, the observed impact of the attack differs de-
pending on which variable is used as indicator, either S or ⟨ℓ−1⟩. Ordering the
PTN by their vulnerability, this order may thus differ depending on the applied
indicator;
(iii) up to c = 1, there is no general ’percolation threshold’ concentration of re-
moved nodes c at which S (or ⟨ℓ−1⟩) vanishes that would hold for all PTN. Rather
for some individual PTN one observes various values of c at which these PTN
show abrupt changes of their properties.

Figs. 4.1a,b display how the different PTN react on a random removal of their
nodes. Obviously, the question immediately arises how this behavior changes if
one removes the nodes not at random, but following a given order or scheme (we
call this the scenario of the attack). As we have mentioned in chapter 1, a number
of different attack scenarios have been proposed [2, 23, 65, 7, 8, 20, 57, 61, 62, 13].
These are generally based on the intuitive assumption that the largest impact on a
network is caused by the removal of its most ’important’ nodes. A number of indi-
cators have been developed in particular in applications of graph theory for social
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science to measure the importance of a node. Besides the node degree k j, which
is equivalent to the number of nearest neighbors z1( j) of a given node j, differ-
ent centralities have been introduced for this purpose. In particular, the closeness
CC( j), graph CG( j), stress CS( j), and betweenness centralities CB( j) of a node
j that were mentioned in chapter 2 (equations 2.10-2.12, 1.6). Alternatively, one
may measure the importance of a given node j by the number of its second nearest
neighbors z2( j) or its clustering coefficient C( j) mentioned in chapter 1 (equation
1.4 - C( j) = 2E j

k j(k j−1) - the ratio of the number of links E j between the k j nearest
neighbors of j and the maximal possible number of mutual links between them).

Removing important nodes according to lists prepared in the order of decreas-
ing node degrees k, centralities (equations 2.10-2.12, 1.6), number of their second
nearest neighbors z2, and increasing clustering coefficient C defines seven differ-
ent attack scenarios. Those scenarios can be either implemented according to lists
prepared for the initial PTN before the attacks (we will indicate the corresponding
scenario by a superscript i, e.g. C i

B) or by lists rebuilt by recalculating the order
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of the remaining nodes after each step. Together, this leads to fourteen different
attack scenarios. In addition, we will keep the above described random scenario
(denoted further as RV) and add one scenario more, removing a randomly chosen
neighbor of a randomly chosen node (RN). The latter scenario appears to be ef-
fective for immunization problems [32] and it is based on the fact, that in this way
nodes with a high number of neighbors will be selected with higher probability.
Note that in this scenario only a neighbor node is removed and not the initially
chosen one.

All together, this defines sixteen different scenarios to attack a network and
we apply these to all fourteen PTN that form our database. A typical result for
a single PTN is displayed in Fig. 4.2. Here, we show how the largest connected
component size S of the Paris PTN changes under the influence of the above de-
scribed attack scenarios. Already from this plot one may discriminate between
the most effective scenarios that result in a fast decrease of the largest component
size (those governed by betweenness and stress centralities, node degree, and next
nearest neighbors number – see the Figure) and the least harmful ones (those gov-
erned by clustering coefficient, graph and closeness centralities and random offer
scenario). In the following, instead of displaying the results of all attacks for all
different PTN we will focus on the results of the most effective scenarios compar-
ing them with those of random failure as introduced by the random scenario. As
outlined in the introduction, we make use of different PTN representations (dif-
ferent ’spaces’ of Fig. 2.2). In the following section, we present the analysis of
PTN resilience in the L-space representation.

4.2 Results in L-space

The L-space representation of a PTN is a graph that represents each station by a
node, a link between nodes indicates that there is at least one route that services the
two corresponding stations consecutively. No multiple links are allowed (see Fig.
2.2b). Therefore, attacks in the L-space correspond to situations, in which given
public transport stations cease to operate for all means of traffic that go through
them. Note however, that in this representation, the removal of a station node does
not otherwise interfere with the operation of a route that includes this station. It
rather splits this route into two (operating) pieces. An alternative situation will be
considered in the forthcoming section.
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4.2.1 Choice of the ’order-parameter’ variable

In order to answer some of the questions raised in section 4.1, let us return to
Fig. 4.2, where the impact on the largest component size S of the PTN of Paris
is shown for sixteen different attack scenarios as function of the fraction of re-
moved nodes. As we have already remarked, for this PTN the most influential are
the scenarios where nodes are removed according to lists ordered by CB, k, CS,
ki, C i

B, C i
S (we list the characteristics in a decreasing order of effectiveness of the

corresponding scenario). For a small value of c (c < 0.07) these scenarios cause
practically indistinguishable impact on S with a linear behavior S ∼ (1− c). As
c increases, deviations from the linear behavior arise and the impact of different
scenarios start to vary. In particular, there appear differences between the role
played by the nodes with highest value of k and highest betweenness centrality
CB. Whereas the first quantity is a local one, i.e. it is calculated from properties
of the immediate environment of each node, the second one is global. Moreover,
the k-based strategy aims to remove a maximal number of edges whereas the CB-
based strategy aims to cut as many shortest paths as possible. In addition, there
arise differences between the ’initial’ and ’recalculated’ scenarios, suggesting that
the network structure changes as important nodes are removed. Similar behavior
of S(c) is observed for all PTN included in this study, with certain peculiarities in
the order of effectiveness of different attack scenarios. Note however, that the dif-
ference between ’initial’ and ’recalculated’ scenarios is less evident for strategies
based on local characteristics, as e.g. the node degree or the number of second
nearest neighbors (c.f. curves for k, ki and z2, zi

2, respectively). This difference
between initial and recalculated characteristics is however more pronounced for
the centrality-based scenarios.

Now let us return to some of the observations of section 4.1. Namely, we noted
that the observed impact of an attack may differ depending on which observable is
used as the ’order-parameter’ variable (c.f. Fig. 4.1 where this is shown for the RV
attack scenario taking either S or ⟨ℓ−1⟩ as ’order-parameter’). Similar differences
we observe also in the case of the other scenarios. For the sake of uniqueness in
the following we will use the value of S to measure the effectiveness of a given at-
tack. This choice is motivated by several reasons: (i) in an infinite network limit S
defines an order parameter of the classical percolation problem [43, 106]; (ii) dif-
ferences between network resilience as judged e.g. by the behavior of S or by that
of ⟨ℓ−1⟩ are not significant enough to be a subject of special analysis (at least not
for the PTN we consider); (iii) considering S naturally leads to other useful char-
acteristics that allow to estimate the PTN operating ability and its segmentation.
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Figure 4.3: L-space. Recalculated highest degree scenario. a) behavior of the
maximal shortest path ℓmax for the PTN of Paris and London. Note the character-
istic peaks that occur at c = 0.13 (Paris) and c = 0.06 (London). b) Size of largest
connected cluster S as function of a fraction of removed nodes for the same net-
works. The arrows indicate the values of c at which the peak for ℓmax appears.

Let us stop to elaborate the latter point in more detail.

4.2.2 Segmentation concentration
As we have already emphasized, there is no well defined ’percolation threshold’
concentration of removed nodes cperc at which S (or ⟨ℓ−1⟩) vanishes (see Figs. 4.1,
4.2) which could serve as evidence of a break down of the largest PTN component
and hence of the loss of operating ability (another obvious difference between the
largest cluster S of a network as considered here and the spanning cluster on a
lattice is that below the percolation threshold a spanning cluster is absent while
there is always some largest cluster, however its relative size may vanish in the
infinite network limit.). It is possible to use the behavior of maximal shortest path
length ℓmax as a possible indicator of the network break down. This is based on
the observation, that as the concentration of removed nodes c increases, the value
of ℓmax for different PTN displays similar typical behavior: initial growth and
then an abrupt decrease when a certain threshold is reached (see e.g. Fig. 4.3 a
where this value is shown for the recalculated highest degree attack scenario of
the PTN of Paris and London). Obviously, removing the nodes initially increases
the path lengths as deviations from the original shortest paths need to be taken
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into account. Further removing nodes then at some point leads to the breakup of
the network into smaller components on which the paths are naturally limited by
the size of these components which explains the sudden decrease of their lengths.
For comparison, in Fig. 4.3 b we show how the value of S changes under the
recalculated highest degree scenario for the above PTN.

However, being certainly useful for many instances of the PTN analysed, the
above ℓmax-based criterion cannot serve as an universal tool to determine the re-
gion of c, where the network stops to operate. One of the reasons is that for
certain PTN (as well as for certain attack scenarios) we have found that ℓmax does
not show a pronounced maximum, but rather shows several maxima at different
values of c. Therefore, to devise a criterion which may be equally well used for
any of the networks we decided to define characteristic concentration of removed
nodes cs at which the size of the largest component S decreases to one half of its
initial value. This characteristic concentration allows us to compare the effective
robustness of different PTN or of the same PTN when different attack scenarios
are applied. In what follows below, we will call this concentration the segmenta-
tion concentration cs, with the obvious condition:

S(cs) =
1
2

S(c = 0). (4.3)

In Fig. 4.4 we plot the size of the largest connected component S for different
PTN as function of the fraction of removed nodes c for the random vertex scenario
(RV) in L-space. The choice of the lowest S value S = 1/2 in this figure enables
one to find the value cs as the crossing point of S(c) with the horizontal axis. The
values of cs obtained for this scenario are given in the last column of Table 4.1.
Note that the PTN under consideration react on random attack in many different
ways: some of them slowly decrease without any abrupt changes in S (like PTN
of Paris, Moscow, Sydney) while others are characterized by rather fast decay of
S (Dallas, Los Angeles, Istanbul).

4.2.3 Numerical estimates
Now, applying these attacks according to the sixteen scenarios described above
we are in the position to discriminate them by their degree of destruction and to
single out those with the highest impact on each of the PTN considered. To this
end, for each PTN we give in Table 4.1 the segmentation concentration cs for
the five most harmful attack scenarios. The obtained values of cs are given in
increasing order. Near each value we denote the scenario that was implemented.
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Figure 4.4: L-space. Random scenario. Size of the largest cluster S normalized
by its value at c = 0 as function of a fraction of removed nodes. From this figure
it is easy to define the fraction of nodes cs which satisfies equation 4.3.

Our analysis reveals the most harmful scenarios as those targeted at nodes with the
highest values of either the node degree k, the betweenness centrality CB, the next
nearest neighbor number z2, or the stress centrality CS recalculated after each step
of the attack. While the least harmful are those targeted at nodes with the highest
values of either the initial graph centrality C i

G, or the clustering coefficient Ci, C
(either initial or recalculated after each step), or random vertex scenario (RV).

4.2.4 Correlations

Molloy-Reed parameter κ

It is instructive to observe correlations between the characteristics of unperturbed
PTN (see Table 2.2) and their robustness to attacks. Such correlations may allow
for an a priory estimate of the resilience of a network with respect to attacks. As
discussed in the chapter 1, percolation theory for uncorrelated networks predicts
that the value of the Molloy-Reed parameter κ(k), (equation 1.16), can be used to
measure the distance to the percolation point κ(k) = 2. We may therefore expect
that networks with a higher value of κ(k) show higher resilience. To this end let
us first compare the values of cs for certain scenarios with the value of κ(k) for the
unperturbed PTN. Before doing this let us note that for an uncorrelated network
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City cs cs cs cs cs cs
Berlin .060 CB .065 ki .065 CS .070 k .075 z2 .220 RV
Dallas .025 ki .030 k .030 CB .045 z2 .055 zi

2 .090 RV
Düsseldorf .075 CB .080 k .080 ki .095 CS .105 z2 .240 RV
Hamburg .040 CB .040 CC .045 CS .045 ki .060 z2 .150 RV
Hong Kong .030 CB .040 CC .050 zi

2 .060 CS .090 ki .300 RV
Istanbul .025 CS .030 CC .030 CB .035 ki .035 k .140 RV
London .055 k .060 ki .065 CB .075 CC .085 z2 .175 RV
Los Angeles .040 k .060 ki .065 z2 .075 CB .100 zi

2 .130 RV
Moscow .070 CB .085 CS .085 k .085 ki .100 CC .350 RV
Paris .105 CB .120 k .125 CS .130 ki .140 Ci

B .375 RV
Rome .050 CB .060 CC .065 k .065 ki .085 CS .215 RV
Saõ Paolo .040 k .040 ki .045 CB .060 CS .060 Ci

S .320 RV
Sydney .040 CB .040 CC .065 CS .075 ki .085 CG,k .350 RV
Taipei .105 CB .105 CG .115 k .120 ki .120 CC .240 RV

Table 4.1: Segmentation concentration cs for different attack scenarios applied
to different PTN. For each city, the Table displays the results of the five most
destructive attack scenarios ordered by increasing values of cs. The scenario is
indicated after corresponding value of cs. The scenarios are abbreviated by the
name of the characteristics used to prepare the lists of removed nodes (see section
4.1 for detailed explanation). In the last column the value of cs for the random
scenario (RV) is shown.

the value of κ(k) can be equally represented by the ratio between the mean next
neighbour number z1 of a node (which is by definition equal to the mean node
degree ⟨k⟩) and the mean second nearest neighbour number z2:

κ(z) = z2/z1. (4.4)

Indeed, given that for a network (see e.g. [3, 38, 89, 39])

z2 = ⟨k2⟩−⟨k⟩, (4.5)

one may rewrite equation 1.16 (κ(k) ≡ ⟨k2⟩/⟨k⟩) as:

κ(z) = 1 at cperc. (4.6)

The relation κ(k) = κ(z)+1 holds only approximately for the real-world networks
we consider in our study, as one can see, e.g., from the Table 2.2. In Fig. 4.5a
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Figure 4.5: L-space. Correlations between the ratio κ, (equations 1.16, 4.4) and
segmentation concentration cs. Open circles: κ(k) = ⟨k2⟩/⟨k⟩, filled circles: κ(z) =
z2/z1. The lines serve as guides to observe the tendency of cs to increase for
higher values of κ. a. Random scenario. Most out-of-range are the points cs =
0.35, κ(z) = 2.54, κ(k) = 4.37 (Sydney) and cs = 0.35, κ(z) = 6.25, κ(k) = 7.91
(Moscow). b. Recalculated node-degree scenario. Two PTN are out of range:
cs = 0.04, κ(z) = 4.17, κ(k) = 5.95 (Saõ Paolo) and cs = 0.08, κ(z) = 6.25, κ(k) =
7.91 (Moscow).

we compare both quantities κ(k), κ(z) for unperturbed PTN with the corresponding
segmentation concentration cs for the random attack scenario. Within the expected
scatter of data one can definitely observe a general tendency of cs to increase with
both κ(k) and κ(z): the higher the value of κ for an unperturbed network, the more
robust it is to random removal of its vertices. This conclusion, however with a
more pronounced scatter of data even holds if one repeats the same analysis for
the case of the scenario based on recalculated node degrees, as shown in Fig. 4.5b.
Again, one observes cs to increase with increasing κ. For the betweenness-based
attack scenarios the data is however more scattered and a prediction based on the
a priori calculated ratios is unreliable.

Node-degree distribution decay exponent γ

Another useful observation concerns the correlation between the PTN attack re-
silience and the node-degree distribution exponent γ (1.9). As we have shown in
chapter 2 some of the PTN under consideration are scale-free: their node-degree
distributions have been fitted to a power-law decay (1.9) with the exponents shown
in Table 2.3. Others are characterized rather by an exponential decay, but up to
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Figure 4.6: L-space. Correlations between the node-degree distribution exponent
γ and segmentation concentration cs. Filled circles: scale-free PTN, open circles:
PTN with less pronounced power-law decay. Solid lines serve as guides to observe
the tendency of cs to decay with an increase of γ. a. Random scenario. Most out
of range are the points at cs = 0.24, γ = (5.16) (Taipei) and at cs = 0.35, γ = 4.03
(Sydney). b. Recalculated node-degree scenario. Most out of range are the points
at cs = 0.04, γ = 2.72 (Sao Paolo) and at cs = 0.115, γ = (5.16) (Taipei).

a certain accuracy they can also be approximated by a power-law behavior (then,
the corresponding exponent is shown in Table 2.3 in brackets). In Fig. 4.6a we
show the correlation between the fitted node-degree distribution exponent γ and
cs for the random attack scenario. Filled circles correspond to scale-free PTN,
open circles correspond to the PTN where the scale-free behavior is less pro-
nounced. It is interesting to observe, that even if we include the PTN which are
better described by the exponential decay of the node-degree distributions, there
is a notable tendency to find PTN with smaller values of γ to be more resilient as
indicated by larger values of cs. This tendency is again confirmed if one considers
the recalculated node degree attack scenario, as shown in Fig. 4.6b.

The above observed correlation between the exponent γ that characterizes the
unperturbed network (i.e. a PTN at c = 0) and the segmentation concentration
cs at which however the PTN is still to a large part unperturbed indicates that
some global properties of the node-degree distribution may remain essentially un-
changed when the nodes are removed (i.e. a scale-free distribution remains scale-
free as c increases, 0 < c < cs). To check that assumption for the RV scenario, we
analysed the averaged cumulative node degree distributions for each of the PTN



4.2. RESULTS IN L-SPACE 81

with 3 %, 5 %, and 10 % of removed nodes. The cumulative distribution P(k) is
defined in terms of the node-degree distribution p(q) (1.9) as:

P(k) =
kmax

∑
q=k

p(q), (4.7)

with kmax the maximal node degree in the given PTN. Typical results of this anal-
ysis are shown in Fig. 4.7, for the PTN of Paris. We compare the cumulative node
degree distribution P(k) of the unperturbed PTN with that of the PTN where a
given fraction c part of the nodes (c = 0.03, 0.05, and 0.1, correspondingly) was
removed according to the random attack scenario (RV). For each of the concen-
trations of the removed nodes, P(k) was averaged over 2000 repeated attacks.

In the first plot, Fig. 4.7a, we compare the three resulting average distributions
(for c = 0.03, 0.05, and 0.1) with the original one (c = 0). One clearly sees that
there is no qualitative or even quantitative (change of exponent) change of the
distributions for any of the three cases. Indeed, if one has a large set of nodes
with a given node-degree distribution any sufficiently large random subset of these
nodes should have the same distribution; in particular this holds if one averages
these subset distributions over many instances. The above argument seems to
ignore the change of degrees in the subset due to cutting off those vertices not
remaining in the set. However, due to the random choice of the removed nodes
the share of lost degree will on the average be proportional to the degree of each
vertex: the higher its degree the more probable it is that one of its neighbors is
chosen to be removed and this probability is proportional to its degree. Thus, the
sum of degrees in the remaining subset is lower; but the degree distribution P(k)
is effectively transformed to P′(ck) = nP(k) where c is the probability of any node
being removed and P′(k) is the distribution in the remaining subset of nodes, n a
normalization. For an exponential distribution this transformation shifts the scale.
However, a scale free distribution keeps its exponent under such a transformation.

In the other three plots, Figs. 4.7b-d we show for each amount of removed
nodes the average cumulative distribution together with statistical errors calcu-
lated as the standard deviation within the ensemble of the 2000 instances gener-
ated in the sample. Even on the logarithmic scale these are very small for all but
the very high degrees where on the average fluctuations of small numbers of often
less than one node for a given degree occur.
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Figure 4.7: L-space. Average cumulative node degree distributions for Paris PTN
for the random attack scenario. Comparison of the initial distribution (red curve,
c = 0) with those of the PTN with c = 0.03, c = 0.05, c = 0.1 (a). Average
cumulative node degree distribution together with statistical errors for c = 0.03
(b), c = 0.05 (c), c = 0.1 (d).

4.2.5 Comparison of node- and link-targeted attacks
In this subsection we observe link-targeted attacks in L-space and compare the
results with those for node-targeted attacks.

As mentioned before, when a link is removed the neighbouring node survives.
So in link-targeted attacks all nodes survive to the end, however the giant con-
nected component (GCC) decays in a similar way as for node-targeted scenarios.
As in the latter case we study the resilience of the L-space PTN graphs to attacks
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Figure 4.8: L-space. Size of the largest cluster S as functions of a fraction of
removed nodes c normalized by their values at c = 0. a. For random link-targeted
scenario. b. For recalculated link-degree attack scenario.

performed following five different scenarios. Scenarios are designed analog to the
most important scenarios for the node-targeted case. We try to remove the most
’important’ links. Taking into account results of node-targeted attacks two main
indicators were chosen for these attack scenarios: the link degree k(l) and the link
betweenness centrality CB(l). The link degree k(l) of the link between nodes i and
j equal sum of neighbouring nodes degrees ki and k j minus two (corresponding
input of i j link into this sum).

k(l)i j = ki + k j −2. (4.8)

So for a link in a simple graph with two vertices (smallest possible component
containing a link) the link degree will be zero, k(l) = 0, while for any link in the
connected graph with more than two vertices the link degree will be at least one,
k(l) > 1. The link betweenness centrality CB(l) j measures the importance of a
link j with respect to the connectivity between the nodes of the network. The link
betweenness centrality is defined as

CB(l) j = ∑
s ̸=t∈N

σst( j)
σst

, (4.9)

where σst is the number of shortest paths between the two nodes s, t ∈ N ,
that belong to the network N , and σst( j) is the number of shortest paths between
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Figure 4.9: L-space. Largest component size of the PTN as function of the frac-
tion of removed links for different attack scenarios. Each curve corresponds to a
different scenario as indicated in the legend. Lists of removed links were prepared
according to their degree k(l) and betweenness CB(l) centrality. A superscript i
refers to lists prepared for the initial PTN before the attack; RL and RV denote the
removal of a random link and removal of random node respectively. a. For PTN
of Dallas. b. For PTN of Paris.

nodes s and t that go through the link j. The most reliable algorithm to calculate
the link (edge) betweenness centralities was proposed by Brandes [19].

Removing important links according to lists prepared in the order of decreas-
ing link degrees k(l) and link betweenness centralities (equations 4.8-4.9) defines
two different attack scenarios. Those scenarios can be either implemented ac-
cording to lists prepared for the initial PTN before the attacks (we will indicate
the corresponding scenario by a superscript i, e.g. CB(l)i) or by lists rebuilt by re-
calculating the order of the remaining links after each step. Together, this leads to
four different attack scenarios. In addition, we will use the random link removal
scenario (denoted further as RL). All together, this defines five different scenarios
to attack network links and we apply these to thirteen PTN that form our database
(all except Los Angeles).

In Fig. 4.8 a we show the change of the size of the largest cluster S under
random link-targeted attacks (RL). If one compares this behavior with that ob-
served for the random node removal scenario (RV) (see Fig. 4.1) one sees, that
for most PTN that have strong resilience to random node-targeted attacks random
link removal is even less effective. On the other hand, for PTN with weak re-
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silience there seems to be no significant difference. And in the same way as for
random node attacks (RV) random link attacks (RL) lead to changes of the largest
connected component S that range from an abrupt breakdown (Dallas) to a slow
smooth decrease (Paris). Even slower than for random node removal - removing
a link does not necessary lead to removing a node from the largest cluster, while
removing a node from the completely connected network decreases it at least by
one node. The value of S(cs) defined by the condition (4.3) is given in the Table
4.2.

City cs cs cs cs cs cs
Berlin 0.22 k(l) 0.26 k(l)i 0.30 CB(l) 0.33 CB(l)i 0.34 RL 0.22 RV
Dallas 0.08 k(l) 0.10 k(l)i 0.10 RL 0.11 CB(l) 0.18 CB(l)i 0.09 RV
Düsseldorf 0.24 k(l) 0.30 k(l)i 0.32 CB(l)i 0.33 CB(l) 0.33 RL 0.24 RV
Hamburg 0.14 CB(l)i 0.18 RL 0.20 CB(l) 0.22 k(l)i 0.23 k(l) 0.15 RV
Hong Kong 0.36 CB(l)i 0.42 k(l)i 0.44 k(l) 0.48 CB(l) 0.51 RL 0.30 RV
Istanbul 0.13 k(l) 0.14 CB(l)i 0.15 CB(l) 0.15 k(l)i 0.15 RL 0.14 RV
London 0.21 k(l) 0.23 k(l)i 0.24 CB(l) 0.26 RL 0.27 CB(l)i 0.18 RV
Moscow 0.41 k(l) 0.43 CB(l)i 0.45 k(l)i 0.53 CB(l) 0.54 RL 0.35 RV
Paris 0.49 k(l) 0.55 CB(l)i 0.56 k(l)i 0.61 CB(l) 0.61 RL 0.38 RV
Rome 0.29 k(l)i 0.30 k(l) 0.30 CB(l)i 0.33 RL 0.36 CB(l) 0.22 RV
Saõ Paolo 0.35 k(l) 0.35 k(l)i 0.35 CB(l)i 0.50 CB(l) 0.50 RL 0.32 RV
Sydney 0.19 CB(l)i 0.35 k(l)i 0.38 k(l) 0.49 RL 0.53 CB(l) 0.35 RV
Taipei 0.37 k(l) 0.37 CB(l)i 0.38 k(l)i 0.39 CB(l) 0.41 RL 0.24 RV

Table 4.2: L-space. Segmentation concentration cs for different link-target attack
scenarios applied to different PTN. For each city, the Table displays the results
of the five attack scenarios ordered by increasing values of cs. The scenario is
indicated after the corresponding value of cs. The scenarios are abbreviated by
the name of the characteristics used to prepare the lists of removed nodes (as
explained above). In the last column the value of cs for the random vertex scenario
(RV) is shown.

Typical results for a single PTN under different types of link-targeted attacks
are displayed in Fig. 4.9. Here, we show how the largest connected compo-
nent size S of the Dallas (a) and Paris (b) PTN change under the influence of the
above described attack scenarios. As one can see, for the PTN of Dallas there
is no significant difference between the effectiveness of most scenarios including
the random one. That vulnerable behavior of the Dallas PTN under link-targeted
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Figure 4.10: L-space. Correlations between the mean degree value ⟨kL⟩ and seg-
mentation concentration cs for link-targeted attacks. Solid lines serve as guides to
observe the tendency of cs to increase for higher values of ⟨kL⟩. a. Random link-
targeted scenario. No points definitely out of range. b. Recalculated link-degree
scenario. Again no points definitely out of range.

attacks is the same as under random vertex removal approach. For Paris the situ-
ation is different. The main observation is that the random vertex attack is more
effective than any link-targeted attack from the beginning, until breakdown and
further, and only after the maximal cluster attains less than 40% of its initial size
the recalculated link degree (k(l)) targeted scenario starts to be more harmful.
Comparing just link-targeted scenarios one can see that they mostly have sim-
ilar behavior, only the recalculated degree scenario line initially decays slower,
however become more effective near to the breakdown.

To further detail the situation, similar as in subsection 4.2.3, we summarize in
Table 4.2 the outcome of five attack scenarios for all cities and compare those with
the random vertex removal scenario. Several conclusions can be made from those
results. We can see that the segmentation concentration cS values are of the same
order for all types of link-targeted attacks. The most effective attack scenario for
the majority of the observed PTN is the recalculated link degree (k(l)) scenario.
In Fig. 4.8 b we plot its behavior for all analysed PTN. However the difference
between the most effective and the less harmful scenarios usually is insignificant.
’Initial’ and ’recalculated’ scenarios behavior is very similar either for degree-
targeted or betweenness centrality-targeted attacks. However often the ’initial’
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approach occurs to be more effective. It is interesting to mention that for three
PTN (Hamburg, Istanbul, Sydney) which are not very resilient against any kind
of attacks (however not for PTN of Dallas, which is least), most efficient is the
scenario of removing links with initial highest values of the betweenness centrality
CB(l)i. The last observation from Table 4.2 is that all link-targeted scenarios are of
the same order, or less effective than the scenario of random vertex removal (RV),
which is given in the last column for comparison. Only the scenario of removing
links with initial highest values of the betweenness centrality CB(l)i for PTN of
Sydney occurs to be significantly more effective than the RV scenario.

To conclude this subsection, we ask the question if a simple criterion can be
found that allows to predict a priori the PTN vulnerability under the link-targeted
attacks. Namely, given the general PTN characteristics (see Table 2.2) can one
forecast resilience against such attacks? It seems that such a criterion does exist
and is even more simple than for node-targeted attacks. As follows from Table 4.2
all links occur to be of the same importance in the majority of the observed PTN.
If ’quality’ is unimportant then the only difference between PTN is in ’quantity’.
The normalized quantity of links is their density and it is represented by the mean
node degree value ⟨kL⟩. In support of the above reasoning, in Fig. 4.10 we plot
cs as function of ⟨kL⟩ for attacks based on the random removal of links (a) and
highest recalculated degree of the link scenario (b). There, for both cases, within
the expected scatter of data one observes a clear evidence of the decrease of cs with
⟨kL⟩, i.e. networks with smaller mean node degree ⟨kL⟩ break down at smaller
values of c and are thus more vulnerable to link-targeted attacks.

It is worthwhile to note here, that the order of the PTN according to their
vulnerability under link-targeted attacks is similar to that for the node-targeted
scenarios, there are just few light shifts.

4.3 Results in P-space
Let us complement the L-space analysis performed above by observing the reac-
tion of PTN graphs under attack when one observes them in another representa-
tion. In particular, we will investigate P-space graphs.

First let us recall that in this representation each node corresponds to a PTN
station, i.e. it has the same interpretation as in the L-space. However, the interpre-
tation of a link differs from that in the L-space: now all station-nodes that belong
to the same route are connected and thus each route enters the P-space network as
a complete subgraph. This results in the main peculiarity of the interpretation of
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Figure 4.11: P-space. Random scenario. (a) size of the largest cluster S and (b)
the average inverse mean shortest path length ⟨ℓ−1⟩ as functions of the fraction of
removed nodes c normalized by their values at c = 0.

the behavior under attacks of these graphs. Consider as an example the P-space
graph of Fig. 2.2d and compare it to the original PTN map, Fig. 2.2a. Whereas
the removal of station node C in the map (Fig. 2.2a) disconnects the nodes A and
B, the removal of the same node in the P-space (Fig. 2.2d) keeps nodes A and B
connected, as far as they still belong to the same route. Therefore, the removal of
nodes in P-space, performed either in a random way or according to certain lists,
has a different interpretation in comparison to that occurring in the L-space. An
interpretation of the removal of nodes in P-space is the following: if a node is re-
moved, the corresponding stop of the route is canceled while the route otherwise
keeps operating. If in the above example the station-node C is removed, route No
2 still keeps operating and station-node B can be reached from D, only without
stopping at C (e.g. the bus takes a shortcut). In this way, as we will see below,
the removal of nodes in P-space allows us to gain additional insight into the PTN
structure.

4.3.1 Numerical estimates

As in the case of the L-space representation, we study the resilience of the P-space
PTN graphs to attacks performed following the sixteen different scenarios defined
in section 4.1. In Fig. 4.11 we show the change of the size of the largest cluster
S (a) and the average inverse mean shortest path length ⟨ℓ−1⟩ (b) under random
attacks (RV). If one compares this behavior with that observed for the RV scenario
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Figure 4.12: P-space, size of the largest cluster S at a: highest degree scenario
(recalculated), b: highest betweenness scenario (recalculated).

City cs cs cs cs cs cs
Berlin .155 CB .175 CC .215 CS .285 Ci .290 C i

B .490 RV
Dallas .065 CB .075 CC .095 CS .115 C .130 Ci .490 RV
Düsseldorf .160 CB .185 CS .255 CC .295 Ci .300 ki .495 RV
Hamburg .050 CC .065 CB .145 CG .170 C .175 C i

C .490 RV
Hong Kong .285 CB .295 CS .335 CC .365 C .380 Ci .505 RV
Istanbul .060 CC .060 CB .060 Ci

B .115 C i
C .175 C .500 RV

London .155 CB .205 CC .305 CG .330 C .350 Ci .495 RV
Los Angeles .065 CB .095 CC .145 CS .145 C i

B .150 C .480 RV
Moscow .175 CB .255 CC .285 CS .345 C .395 i,C i

S .495 RV
Paris .115 CB .165 CS .215 CC .235 C i

B .240 C,Ci .500 RV
Rome .135 CC .160 CB .225 CG .285 CS .305 C .495 RV
Saõ Paolo .205 CB,CC .240 CS .355 CG .365 C .390 Ci .500 RV
Sydney .075 CC .085 CB .105 CS .225 C .240 Ci .510 RV
Taipei .290 CB .320 CS .370 CC .430 CG .440 k,C i

S .495 RV

Table 4.3: Segmentation concentration cs for different attack scenarios applied to
different PTN in P-space. For each city, the Table shows the five most effective
attack scenarios ordered by increasing values of cs. The scenario is indicated
after corresponding value of cs. The scenarios are abbreviated by the name of
the characteristics used to prepare the lists of removed nodes (see section 4.1 for
detailed explanation). In the last column the value of cs for the random scenario
(RV) is shown.
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in L-space (see Fig. 4.1) one sees, that all PTN under consideration react in a
much more homogeneous way. In L-space random attacks lead to changes of the
largest connected component S that range from an abrupt breakdown (Dallas) to a
slow smooth decrease (Paris). In P-space one observes for the same scenario only
a decrease of S which corresponds to the number of removed nodes. No break-
down of this cluster occurs in this scenario. The value of S(cs) defined by the
condition (4.3) is given in the last column of Table 4.3. It is worth to note, that the
behavior of the mean inverse shortest path length ⟨ℓ−1⟩ as function of the fraction
c of disabled nodes is also qualitatively different between the two RV scenarios in
L- (Fig. 4.1b) and P- (Fig. 4.11b) spaces. In L-space ⟨ℓ−1⟩ decreases in general
faster than linearly indicating an increase of the path length between the nodes
as well as partitioning of the network. In P-space ⟨ℓ−1⟩ remains for a large part
unperturbed as the nodes of the complete subgraph remain essentially connected
and the shortest path length remains almost unchanged until only a small fraction
of the network remains.

To further detail the situation, similar as in section 4.2, we summarize in Table
4.3 the outcome of the five most harmful attack scenarios and compare those with
the random attack scenario. As it follows from the Table and as is further sup-
ported by Fig. 4.12, the betweenness-targeted scenarios appear to be the most
harmful. Following this observation let us investigate the role of the highest
betweenness nodes: above all these are the nodes (and not the highest-k hubs)
that control the PTN behavior under attack. The P-space degrees of these high-
betweenness nodes do not essentially differ from those of the hubs, therefore they
cannot be easily distinguished from the other nodes during attacks according to
highest-k scenario. To support this assumption, let us recall that in the P-space
representation each route enters the overall network as a complete subgraph, with
all nodes interconnected. Removing nodes from a complete graph does not lead to
any segmentation. The decrease of the normalized size of this graph will be given
by the exact formula S = 1− c (which is - almost - reproduced by the RV sce-
nario, c.f. Fig. 4.11a). Under such circumstances a special role is played by those
nodes that join different complete graphs (different routes). The removal of such
nodes will separate different complete routes and as a result may lead to network
segmentation. Naturally, being between different complete subgraphs such nodes
are characterized by high centrality indices, as observed above. Moreover, as far
as their direct neighbors belong to different complete graphs, these neighbors are
not connected between each other resulting in a lower value of the clustering co-
efficient C. From Table 4.3 one sees that attacks based on choosing nodes with
low-C values are very effective in P-space.
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Figure 4.13: P-space. Correlations between the mean shortest path length ⟨ℓP⟩
and segmentation concentration cs in the highest betweenness centrality scenario.
The line serves as a guide to observe the tendency of cs to decrease with increasing
⟨ℓP⟩.

4.3.2 Correlations

To conclude this section, we ask the question if a simple criterion can be found
that allows to predict a priori the P-space PTN vulnerability. Namely, given the
general PTN characteristics (see Table 2.2) can one forecast resilience against at-
tacks in P-space? The answer is given by the observation that the networks with
low mean shortest path length ⟨ℓP⟩ are the best connected in P-space and hence
may be expected to be less vulnerable. Indeed, on the one hand, for the above
example of a complete graph (a single PTN route) ⟨ℓP⟩ = 1 and it is extremely
robust to P-space attacks. On the other hand, a high value of ⟨ℓP⟩ indicates nu-
merous intermediate nodes between different routes. As we have checked above,
the targeted removal of such nodes leads to rapid network segmentation. In sup-
port of the above reasoning, in Fig. 4.13 we plot cs as function of ⟨ℓP⟩ for attacks
based on the highest betweenness centrality scenario. There, within the expected
scatter of data one observes a clear evidence of the decrease of cs with ⟨ℓP⟩, i.e.
networks with higher mean path length break down at smaller values of c and are
thus more vulnerable.

It is worth to note here, that in P-space it is only the RV attack that has very
similar impact on all PTN (see Fig. 4.11). As we have just observed, similar to the
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L-space also in P-space the PTN manifest different levels of robustness against
attacks targeted at the most important nodes. However, the order of vulnerability
changes if one compares the outcome of the L-space and P-space attacks. This
means that PTN that were vulnerable in the L-space may appear to be robust
against attacks in P-space. From Table 4.3 we see that the PTN that are most
stable against highest CB-targeted attacks in P-space are the PTN of Hong Kong,
Saõ Paolo, and Moscow, with cs = 0.285, 0.205, and 0.175, correspondingly.
When attacked in L-space, the PTN of Moscow keeps its robustness: cs = 0.07
during CB-targeted attack, which displays one of highest cs values for the L-space,
see Table 4.1. This is however not the case for the PTN of Hong Kong and Saõ
Paolo. In L-space, these belong to the most vulnerable PTN.

4.4 Conclusions
In this chapter, we have studied the behavior of city PTN under attacks. In our
analysis we have examined PTN of fourteen major cities of the world. The prin-
cipal motivation behind this study was to observe the behavior under attack of a
sample of networks that were constructed for the same purpose, to compare these
with available analytical results for percolation of complex networks, and possibly
to derive some conclusions about correlations between PTN characteristics calcu-
lated a priory and the resilience to attacks. Furthermore, the resilience behavior of
a network against different attack scenarios gives additional insight into the net-
work architecture, discovering structures on different scales. This approach has
also been termed the ’tomography’ of a network [117].

In our study we have also attempted to compare our results with the predic-
tions of percolation theory on networks. Due to the sizes of these systems which
are far from the thermodynamic limit and the rather small sample of networks
no quantitative comparison appeared possible. However, qualitative predictions
about the location of segmentation thresholds and thus the vulnerability could be
verified. Although our study was not primarily motivated by applications, some
of the results and methods developed within this study may be useful for planning
and risk assessment of PTN. Our analysis has identified PTN structures which are
especially vulnerable and others, which are particulary resilient against attacks.
Further investigation of other relevant network properties may reveal mechanisms
behind this structural resilience. Furthermore we note that the methods developed
here also allow to identify minimal strategies to obstruct the operation of the PTN
of a city e.g. for the purposes of industrial action and possibly achieve a successful
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end of a social conflict.
To analyse PTN resilience we have applied different attack scenarios, either

node or link targeted, that range from random failure to targeted destruction, when
the most influential network nodes are removed according to their operating char-
acteristics. To choose the most influential nodes, we have used different graph
theoretical indicators and determined in such a way the most effective attack sce-
narios. Our work shows that even within a sample of networks all created for the
same purpose one observes essential diversity with respect to their behavior under
attacks of various scenarios. Results of our analysis show that PTN demonstrate
a rich variety of behavior under attacks, that range from smooth decay to abrupt
change.

Concerning random scenarios we have also verified a self-averaging effect
that results in a suppression of deviations between different random scenarios and
a stability of the network degree distribution against moderate impact of random
attacks.

As shown in this work, the impact of attacks may be measured by different
quantities. As a criterion that is well defined and easily reproducible we choose
to define the segmentation concentration cs to correspond to the situation where
the largest remaining cluster contains one half of the original nodes of the net-
work. Let us note as well, that definitely not all of the PTN analysed demonstrate
scale-free behavior in P-space (and even less in L-space). Nevertheless, in spite
of the diversity of behavior we clearly see common tendencies in their reaction
to attacks. In particular, this enabled us to propose criteria that allow an a priori
estimate of PTN robustness. In L-space resilience to node-targeted attacks is indi-
cated by a high value of the Molloy-Reed parameter κ, (equations 1.9, 4.4) or by a
small value of the exponent γ, if a power law is observed for the PTN node degree
distribution, resilience to link-targeted attacks in L-space is indicated by a high
value of the mean node degree ⟨kL⟩ and in P-space high resilience is indicated by
a small mean shortest path length ⟨ℓP⟩.





Chapter 5

Optimisation of public transport
networks

For obvious reasons, optimisation is very important issue, in particular for pub-
lic transport networks. Quite number of works have been published in this field,
however many of these are rather concerned with traffic jams, schedules, logistics,
etc. Here we study another interesting question. Given a city that extends over
a circular area with an overall constant population, can the topology of the pub-
lic transport network (including trams, buses and other kinds of public transport
operating in the city) be optimised and in what way. This approach is quite dif-
ferent from the usual problem of optimising transport between a set of given sites
leading to a combinatorial problem [93, 108, 84]. We will be looking at simple
topologies, having more or less only one input parameter - the number of buses NB
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Figure 5.1: London tube network routes representation in GPS coordinates.
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running on this network. This number is essentially determined by the amount the
’city’ is willing to invest. The aim is to optimise either the average travelling time
of all citizens, or their mean velocity, while travelling. We will consider mainly
different regular radial models. While it is often possible to find an analytic solu-
tion for these and they are quite common in real world scenarios. They are found
in particular for metro networks of the large cities e.g. London tube network (see
Fig. 5.1).

5.1 Hail and Ride
In the so-called hail-and-ride system buses will stop anywhere along designated
segments of their route when indicated by a potential passenger [128].

ro
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2
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u
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4

Sector covered by
route #1

Figure 5.2: City interpretation. Each radius represents route. Sector between red
lines is covered with one route. Each point of the circle represents one passenger.

Let us take that the city area covers a circle with the radius r > 0 as shown
in Fig. 5.2. It will represent the city. Per unit area of the circle area we assume
one inhabitant. Thus the density of the population is regular. We further simplify
the situation by assuming that each inhabitant needs to travel to the center of the
circle only. There is only one way for the habitant to do that: to walk to the nearest
bus route and catch the next bus. The bus routes are represented by regular radii
(with equal angles between them). Thus, if we have NR > 1 routes, then the angle
between them will be 2α = 2π/NR. There are no stations, and the bus will stop
anywhere along the route. Because of this we will further assume that the bus
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spends no time when stopping. Therefore the fastest way for the passenger to
get to the bus is to walk to the nearest route along a line that is perpendicular
to the route. In this very simple case we ignore the fact, that actually it maybe
better for the passenger not to take the perpendicular but a more ”center-directed”
way. However it turns out that in our model this strategy leads to very small
improvement, such that our approximation does not influence our qualitative and
quantitative results. We will show this in detail in section 5.2.

Let us implement NB > 0 buses running on this system servicing each route
on a regular basis. Then at each route point (potential stopping point) the time
between the two consecutive buses will be

tb2b =
2rNR

NBVB
, (5.1)

where VB is the bus velocity. Further let us assume that there is no known schedule.
Therefore in a first approximation the average waiting time for any passenger will
be

twaiting =
rNR

NBVB
. (5.2)

Here we will not take into account that actually this is the minimal average wait-
ing time. Which may be increased by any bus delay. However this induces no
qualitative changes as shown in section 5.2.

Let us denote by Vw the walking velocity, and by k =VB/Vw the velocity ratio.
In this simple case the inhabitants are not allowed to walk directly to the center,

even if it may be the fastest way to get there.
In such a system with the above limitations the time that passenger i spends

travelling to the center of the city is

ti = twalking + twaiting + tbus, (5.3)

where
twalking =

yi

Vw
, (5.4)

twaiting =
rNR

NBVB
(5.5)

and
tbus =

xi

VB
. (5.6)
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route

passenger

Figure 5.3: Half of the sector between routes bounded by one route, and the cor-
responding sector boundary. The sector angle is α = π/NR
.

With this the average travelling time will be

T =
1

Nsites
∑

Nsites

ti. (5.7)

Because of the regular geometry of the routes the average time Tcircle over the
complete area of the circle is equal to the average time Tα over the sector with
angle α = π

NR
. See Fig. 5.3.

For such a sector we may look for the integral of all travelling time averaged
over this sector.

∑ ti =
∫ ∫

sector
[

y
Vw

+
rNR

NBVB
+

x
VB

]dxdy (5.8)

However, it is easier to solve this in polar coordinates.

∑ ti =
∫ α

0

∫ r

0
[
ρsinφ

Vw
+

rNR

NBVB
+

ρcosφ
VB

]ρdρdφ =

r3
∫ α

0
[
sinφ
3Vw

+
NR

2NBVB
+

cosφ
3VB

]dφ = (5.9)

r3

Vw
(
1
3
− cosα

3
+

π
2NBk

+
sinα
3k

).

With this, the travelling time averaged over the sector (and therefore over the
whole circle) will be



5.1. HAIL AND RIDE 99

T =
2NR

πr2 · r3

Vw
(
1
3
−

cos π
NR

3
+

π
2NBk

+
sin π

NR

3k
) =

2r
πVw

(
NR

3
−

NRcos π
NR

3︸ ︷︷ ︸+ πNR

2NBk︸ ︷︷ ︸+
NRsin π

NR

3k︸ ︷︷ ︸). (5.10)

walking waiting bus

From this equation we see that the average travelling time depends linearly on
the radius of the city. While the number of routes, the number of buses and the
velocity ratio enter in a non-linear form.

Let us make the assumption that the number of routes NR is much larger than
π (much more than three in other words). Then, in good approximation we can
assume that sin π

NR
≈ π

NR
and cos π

NR
≈ 1− π2

2N2
R
. Then

T =
2r
Vw

(
π

6NR
+

NR

2NBk
+

1
3k

). (5.11)

Our goal is to minimize the average travelling time as far as possible for any
given number of buses (level of investment). The velocity ratio is more or less
fixed. So we can treat all other variables in this formula as constants. Therefore
the only dependency is on the number of routes. For minimal T the first derivative
should be equal to zero T (NR)

′ = 0. Then

1
2NBk

=
π

6N2
R
. (5.12)
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Figure 5.4: The optimal number of routes NRo as a function of the number of buses
NB. The velocity ratio is fixed as k = 10. The plot is shown in a log-log scale.
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time spent in the bus tbus

From this condition we find that the minimal average travelling time for fixed
velocity ratio and for given number of buses occurs for the following number of
routes

NR =

√
πNBk

3
. (5.13)

This is the optimal number of routes NRo for this model. As we can see it does
not depend on the city size (radius r) at all. Its dependence on the number of buses
shown on Fig. 5.4.

Now, if we insert NRo into equation (5.10), and assume that k = 10, Vw = 1,
VB = 10 and r = 5000 we find the following behavior of the optimal average
travelling time as function of the number of buses.

To(NB) =
2r
Vw

(
π
√

3
6
√

πNBk
+

√
πNBk

2NBk
√

3
+

1
3k

) =

2r
3VB

(

√
3πk

2
√

NB︸ ︷︷ ︸+
√

3πk
2
√

NB︸ ︷︷ ︸+ 1︸︷︷︸). (5.14)

walking waiting bus



5.2. HAIL AND RIDE WITH COMPLICATIONS 101

To(NB) =
2r

3VB
+

2r
√

3πk
3VB

√
NB

. (5.15)

As one can see from Fig. 5.5a beyond some point further increasing the number
of buses (and therefore number of routes) is not a very efficient strategy. In other
words there is some value beyond which it doesn’t make sense to invest more into
a public transport network of this topology. Fig. 5.5b shows how the individual
components of the mean travelling time behave. From that plot and from the equa-
tion 5.14 it turns out that at the optimal point the mean walking time is equal to
the mean waiting time, while the time spent in the bus doesn’t depend on number
of buses NB.

tbus =
2r

3VB
. (5.16)

twalking = twaiting =
2r
√

3πk
3VB

√
NB

. (5.17)

To(NB) = tbus(r,VB)+2twaiting(r,VB,Vw,NB). (5.18)

Thus we conclude that the optimal mean travelling time To(NB) is reduced by
increasing the number NB of buses, however this reduction follows the inverse
square root ofNB.

To(NB) = A+BN
− 1

2
B . (5.19)

5.2 Hail and Ride with complications
As noted above we have neglected so far two potentially perturbing factors: first
the possibility of the passenger walking not perpendicular way to the route, but
rather center-directed and secondly possible bus delays. Let us implement those.

Let us first treat the case where a passenger takes an alternative center-directed
path, increasing the walking distance (see Fig. 5.6). Let us denote the length of
the alternative path qy = y, where q = 1 is the walking coefficient. Then, for this
passenger the distance taken by bus decreases by y

√
q2 −1.

Now look at Fig. 5.7. Let us take that the expected average time interval
between the buses is tb2b = 5 and at each time interval one passenger arrives to
the route. If buses arrive on time like on Fig. 5.7a then the average waiting
time will be texpected = (0.5+ 1.5+ ...+ 4.5) ∗ 2/10 = 2.5, exactly one half of
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the time interval between the buses, as it should be. However if a bus delays
for 2 time intervals (like on Fig. 5.7b) then the average waiting time increases
tdelays = (0.5+1.5+ ...+6.5+0.5+1.5+2.5)/10 = 2.9. Actually it can increase
up to the factor of two, when tdelays = tb2b. So let us take that 1≤ z≤ 2 is the delay
factor.

Taking into account those complications the passenger travelling time (equa-
tion 5.3) will be

ti =
qyi

Vw
+

zrNR

NBVB
+

xi − yi
√

q2 −1
VB

(5.20)

and therefore

∑ ti =
∫ α

0

∫ r

0
[
qρsinφ

Vw
+

zrNR

NBVB
+

ρcosφ−ρsinφ
√

q2 −1
VB

]ρdρdφ =

r3

Vw
(
q
3
− qcosα

3
+

zπ
2NBk

+
sinα+

√
q2 −1(cosα−1)

3k
). (5.21)

So then taking the same approximations as above the average travelling time
will be

T =
2r
Vw

(
πq

6NR︸︷︷︸+
zNR

2NBk︸ ︷︷ ︸+
1
3k

− π
√

q2 −1
6kNR︸ ︷︷ ︸). (5.22)

walking waiting bus

qy

y
√

q2
−1

Figure 5.6: Half of the sector between two routes bounded with one route, and
its corresponding sector boundary. Sector angle α = π/NR. The perpendicular
footpath is denoted by y, the alternative footpath by qy and the route interval
reduction by y

√
q2 −1.

aa0682
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time
bus #1 bus #2 bus #3

passengers

time
bus #1 bus #2 delays bus #3

passengers

a b

Figure 5.7: Time line. Red points represent instances when three consecutive
buses arrive at the same point of the route. At the centre of each time interval one
passenger arrives to that point. a) all buses arrive as expected b) bus 2 is delayed
by 2 time intervals.

As follows from equation 5.22 tbus in this case also depends in a similar way
as before on the number of routes NR even after simplification.

T =
r

3VB
(
π(kq−

√
q2 −1)

NR
+

3zNR

NB
+2). (5.23)

Taking T (NR)
′ = 0 for the optimal choise of NR we find

3z
NB

=
π(kq−

√
q2 −1)

N2
R

(5.24)

and therefore the optimal number of routes

NRo(NB) =

√
πNB(kq−

√
q2 −1)

3z
, (5.25)

and average optimal travelling time

To(NB) =
2r

3VB
+

2r
√

3π(kq−
√

q2 −1)z

3VB
√

NB
. (5.26)

Comparing to previous results we see no qualitative changes. The optimal mean

travelling time To(NB) linearly depends on N
− 1

2
B , and the optimal number of routes

NR depends on number of buses NB as a square root. Still twalking ≈ twaiting and
tbus ≈ 2r

3VB
. Looking on quantitative outcomes we see that due to delays the optimal

waiting and walking time increase with the factor of 1 ≤√
z ≤ 1.41. Our walking

coefficient q instead should decrease travelling time. Let us look for the minimum
of the next expression (the term in brackets in equation 5.25)

f (q) = kq−
√

q2 −1 (5.27)
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f ′(q) = k− 1√
q2 −1

When f ′(q) = 0 our walking coefficient is q =
√

k2+1
k . Then our expression gives√

k2 +1−1/k. For the bus to walking speed ratio k= 10 this decreases the optimal
walking and waiting time by a factor of 1.0025. That is definitely factor which
can be ignored.

5.3 Routes with regular stations

Figure 5.8: Half of the sector between routes with implemented stations.

Now let us to turn to the case of routes with the stations. The distance between
stations is regular and equal. The number of stations NS is an additional variable
(Fig. 5.6). In this case integration gives us integrals we cannot solve analytically,
therefore we chose to use computer simulations of this model. This allows us to
refine the model:
a) if it is overall faster for a passenger to walk not to the nearest station, but to
the next one - he takes that way. However it is expected that such situation would
occur rarely - due to the results observed in previous section;
b)Some passengers living near to the center of the city will walk directly there;
c) each passenger lives at a given lattice node. For our simulations we used a
lattice with a unit grid of X =

√
πr2/2NR/500;

d) at each station the bus waits for some regular time tboarding.
Thus we have four fixed parameters: tboarding = 30, Vw = 1, VB = 10 and there-

fore k = 10. And we have four parameters to play with: NB in the range [20,1200],
NR in the range [10,550], NS in the range [5, 275] and r in the range [5000, 50000].



5.3. ROUTES WITH REGULAR STATIONS 105

NS

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0  200  400  600  800  1000  1200

5
10
15
20
25
30
35
40
45
50

NS

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0  200  400  600  800  1000  1200

5
10
15
20
25
30
35
40
45
50

NB NB

Figure 5.9: The optimal number of stations NSo as a function of the number of
buses NB, while the number of routes NR is optimal. Different lines represent
different chosen radii r. On the first plot the optimal values are searched as to
minimise the average overall time T , while on the second plot we maximise the
average overall velocity V .

For this model we also check how the overall average ’velocity’ V behaves. While

we define the travelling velocity of a passenger as vi =
√

x2
i + y2

i /ti, it is not ac-
tually the velocity of passenger movement along his trajectory, but the average
velocity of a hypothetical movement along the straight line to the center.

From these simulations we find a set of optimal pairs NRo and NSo for different
combinations of NB and r.

 5
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 30

 0  10  20  30  40  50  60

N
S

r

Figure 5.10: The maximal optimal number of stations NSo as a function of the
radius of the city r, while the number of routes NR is optimal. Optimal values are
searched as to minimise the average overall time T
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On Fig. 5.9 we see how the optimal number of stations NSo changes with the
number of buses, while the number of routes NR is optimal for the current NB. Dif-
ferent lines represent different chosen radii r. On the first plot the optimal values
are searched as to minimise the average overall time T , while on the second plot
we maximise the average overall velocity V . There is no significant difference.
Increasing the number of buses NB the optimal number of stations NSo increase.
But only up to some value. After this it becomes inefficient to further increase the
number of stations. Perhaps, because loosing boarding time on each station has
a stronger effect than decreasing slightly the walking time. The maximal optimal
number of stations NSo increases linearly with the size of the city as shown on Fig.
5.10.

NSo A+Br (5.28)

In Fig. 5.11 we show how the optimal number of routes NRo changes as func-
tion of the number of buses, while the number of stations NS is optimal for the
given NB. Different lines represent different chosen radii r. On the first plot the
optimal values are found by minimising the average overall time T , while in the
second plot we maximise the average overall velocity V . On the first plot one
can see that the original no-station solution fits the simulated results quite well.
It again turns out that the optimal number of routes NRo does not depend on the
radius r at all, and increases almost as the square root of the number of buses NB.
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Figure 5.11: The optimal number of routes NRo as a function of the number of
buses NB, while the number of stations NS is optimal. Different lines represent
different chosen radii r. On the first plot the optimal values are searched as to
minimise the average overall time T , while on the second plot we maximise the
average overall velocity V .
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Figure 5.12: Optimal average overall time To and optimal average overall velocity
Vo as a functions of the number of buses NB, while the number of routes NR and
the number of stations NS are optimal. Different lines represent different chosen
radii r. On the first plot the optimal values are searched as to minimise the average
overall time T , while on the second plot we maximise the average overall velocity
V .

In Fig. 5.12 we represent the behavior of the optimised variables, optimal
overall mean time To, and optimal overall mean velocity Vo, as functions of the
number of buses NB. The number of stations NS and the number of routes NR are
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Figure 5.13: Optimal average overall time To and its components twalking, twaiting,
tbus and tboarding as a functions of the number of buses NB, while the number of
routes NR and the number of stations NS are optimal. Radius r is taken as 5000.
Solid and dashed lines represent simulation results for model with stations, while
lines of crosses and squares represent results for hail and ride case.
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Figure 5.14: The average overall optimal time To and the average overall optimal
velocity Vo as a functions of the cost function C(NB,r), while the number of routes
NR and the number of stations NS are optimal. Different lines represent different
chosen radii r. On the first plot the optimal values are searched as to minimise the
average overall time T , while on the second plot we maximise the average overall
velocity V .

always chosen as the optimal ones for current number of buses NB. Different lines
represent different chosen radii r. As one can see from both plots, the effect of
increasing the number of buses becomes weaker for larger NB. The slope of the
lines become smaller and smaller. The smaller the city is, the faster this happens.

Let us look how the time components behave when we implement stations. In
Fig. 5.13 the optimal mean travelling time To and its components twalking, twaiting,
tbus and tboarding are shown as a functions of the number of buses NB, while the
number of routes NR and the number of stations NS are optimal. For comparisonn
we also show the corresponding optimal mean travelling time and its components
for the hail and ride system. The radius r is fixed to 5000 for both cases. As we
can see tboarding increases a bit for small values of NB exactly at those values where
the optimal number of stations NSo increases. It linearly depends on the optimal
number of stations NSo.

tboarding ∼ A+BNSo. (5.29)

The time spent in the bus tbus is exactly fitted by the bus time for the hail and ride
case. So we can conclude that

tbus ∼
2r

3VB
. (5.30)
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The average waiting time twaiting is also well reproduced by the hail and ride result.

twaiting ∼
r
√

π
VB

√
3NB

. (5.31)

The average walking time twalking again behaves in the same way as for the hail
and ride case, and so in the same way as twaiting, however its values increase sig-
nificantly, due to the fact that most passengers cannot take the shortest footpath to
the route, but need to take a footpath that leads directly to the station.

twalking ∼ A+Btwaiting. (5.32)

Therefore the overall mean travelling value increases in comparison to the hail
and ride case, however its behavior follows the same dependance as before.

To(NB)∼ A+BN
− 1

2
B . (5.33)

Another observation from Fig. 5.12 is that for small cities it is much more
expensive to sustain such bus network at all. In our model the number of buses NB
represents the investment into the public transport. While the circle area represents
the number of inhabitants. Then we can say that the ratio

C = NB/r2 (5.34)

(with some price coefficient) represents, how much each inhabitant should pay for
such kind of bus network. Let us call this the cost function. Fig. 5.14 shows how
the average overall time T , and the average overall velocity V depend on the cost
function C(NB,r). The number of stations NS and the number of routes NR are
optimal for the given NB. Different lines represent different chosen radii r. On
the first plot the optimal values are determined as to minimize the average overall
time T , while on the second plot they are determined to maximize the average
overall velocity V . These demonstrate that it is very expensive per inhabitant of
a small city to have a transport network at all. On the other hand for big city it
is comparatively cheap to have a well equipped network and even operate a very
efficient number of buses.

5.4 Conclusions
The main conclusions from this part of our work are the following:
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- For the described radially structured public transport network there exist an
optimal number of routes NRo as function of the number of buses NB and the
relation is given by NRo ∼

√
NB . It can be found analytically for the simpler

case of a hail and ride system and the result fits perfectly our simulated results for
more complicated cases. This optimal number of routes NRo does not depend on
the size of the city. Perhaps this observation may be related to the radial geometry,
or, maybe, just due to two-dimensional space.

- For the described radially structured public transport network there exist an
optimal number of stations NSo as function of the number of buses NB. It grows
linearly with the radius r of the city and depends only weakly on the number of
buses NB. It seems that for any fixed radius there is always a maximal optimal
number of stations, whatever the other parameters are.

- If the mean travelling time To(NB) is optimal (and therefore number of routes
NR is optimal) - then for hail and ride case, the average waiting time is equal to the
average walking time twaiting = twalking. For the case of fixed stations along routes
these times are proportional to each other.

- Optimising either the average travelling time or the mean velocity we find a
limit to the effective investment costs (implying more buses in other words). A
reason for this is that the optimal travelling time depends on the number of buses

NB as To(NB) ∼ A+BN
− 1

2
B , where A and B are constant, for fixed radius r and

velocities.
- Finally we observe that for this kind of public network there is an inverse

dependency between the size of the city (or number of inhabitants) and the price
that should be paid by each inhabitant for an optimal transportation network.



Conclusions

In this study, we have performed a comprehensive analysis of public transport net-
works (PTN) combining tools of complex network theory, computer modelling,
and analytical calculations. We have started from an empirical analysis of the
PTN of 14 major cities of the world and have determined their principal char-
acteristics in terms of the complex network theory. With these data at hand, we
proceeded with PTN modelling. In both approaches we were interested in PTN
characteristics as well as in particular phenomena which might take place on PTN
(attack vulnerability being the most prominent example). Especially helpful in
our analysis was the use of different network representations (different spaces, in-
troduced in section 2.2). Whereas former PTN studies used some of these, here
within a systematic approach we calculate PTN characteristics as they show up in
all L-, P-, C-, and B-spaces. Detailed conclusions of our studies are given at the
end of each of the thesis chapters. Summarizing them we can make the following
statements.

Our empirical analysis gives strong evidence, that the networks under consid-
eration appear to be strongly correlated small-world structures with high values
of clustering coefficients and comparatively low mean shortest path values. Stan-
dard network characteristics that we find correspond to features a passenger is
interested in when using public transport (they are summarized in table 2.2). Be-
yond traditional network characteristics there are specific features unique for PTN
and networks with similar construction principles that we have addressed. In par-
ticular, public transport routes are often found to proceed in parallel for a sequence
of stations. We have quantified this behavior in terms of the harness distribution.
The harness concept may be also be useful for a quantitative description of other
embedded networks with real space links such as cables, pipes, or neurons etc.
Moreover, our analysis of the geographical data for Berlin and Paris reveals a
self-avoiding walk scaling of PTN routes.

We further have introduced several PTN models. This was done both in 2d
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and 1d embedding spaces. A particular feature of the models considered is that
opposite to the majority of complex network models, where a network grows due
to adding separate nodes, in our case the growth is in terms of public transport
lines. In particular, our model of mutually interacting self-avoiding walks in 2d
captures both special features of PTN as well as generating profiles of network
characteristics in the various representations. The method used, a non equilibrium
growth model in terms of attractive self-avoiding walks on a square lattice may
further be extended to study the effects of geographical constraints e.g. coast-
lines, rivers and bridges or disorder.

We continued our analysis by studying the behavior of a PTN under attacks.
Similar to other real-world and model complex networks, the PTN manifest very
different behaviour under attacks of different scenarios. With some notable ex-
ceptions they appear to be robust to random attacks but more vulnerable to attacks
targeted at nodes with particular importance as measured by the values of certain
characteristics (the most significant being the first and second neighbour numbers,
as well as the betweenness and stress centralities). The observed difference be-
tween attack scenarios based on the initial and the recalculated distributions shows
that the network structure changes essentially during the attack sequence. This is
necessarily to be taken into account in the construction of efficient strategies for
the protection of these network. In our study we have also attempted to compare
our results with the predictions of percolation theory on networks. Due to the
sizes of these systems which are far from the thermodynamic limit and the rather
small sample of networks no quantitative comparison appeared possible. How-
ever, qualitative predictions about the location of segmentation thresholds and
thus the vulnerability could be verified. In particular, this enabled us to propose
criteria that allow an a priori estimate of PTN robustness.

In the concluding part of our analysis we have considered PTN optimisation.
The majority of studies of this issue are concerned with dynamical processes that
occur on networks (traffic jams, schedules, logistics, etc). The purpose of our
study was to analyse the optimisation of topology of PTN for a given simple city
model, optimising either the average travelling time of all citizens, or their mean
velocity, while travelling. In particular, for the model we considered it follows that
optimising either the average travelling time or mean velocity there seems to be a
limit on the effective investment costs. Moreover, it has been observed that there
is an inverse dependence between the size of the ’city’ (or number of inhabitants)
and the price that should be paid for the transportation network.
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