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Abstract 

 

Muscarinic acetylcholine receptors (mAChRs) are G-protein coupled receptors that mediate 

various actions of Acetylcholine (ACh) in the central nervous system and peripheral nervous 

system. In mammals, five distinct mAChR subtypes (M1-M5) have been recognised with the M2 

subtype being predominantly present in the heart.  The mAChR antagonists are routinely used 

for the treatment of various pathophysiological conditions including respiratory conditions. 

However, it has been postulated that mAChR antagonists may increase morbidity and mortality 

in chronic obstructive pulmonary disorder (COPD) and asthma patients with underlying 

cardiovascular disease, raising concerns regarding the cardiovascular safety of these agents. The 

current study was therefore undertaken to investigate the effects of individual mAChR 

antagonists in the setting of myocardial ischaemia reperfusion injury and oxidative stress models. 

We also investigated whether the inhibition of the mitochondrial permeability transition pore 

(MPTP) with cyclosporine-A (CsA) in the presence and absence of individual mAChR 

antagonists provided protection against ischaemia reperfusion injury. Furthermore, we also 

aimed to investigate the intracellular signalling pathway associated with mAChRs antagonists 

mediated myocardial injury under the stress conditions. 

Langendorff results showed that the non-selective M1-M3 mAChR antagonist, ipratropium 

bromide, the M2 mAChR antagonist, AF-DX 116 and the M3 mAChR antagonist, DAU 5884 

significantly increased the infarct size to risk ratio of the heart in conditions of ischaemia and 

reperfusion. Detrimental effects of AF-DX 116 and DAU 5884 were abrogated by co-treatment 

of these drugs with mAChR agonist, acetylcholine (ACh) and/or CsA. Cell viability data of 

isolated cardiac myocytes revealed that AF-DX 116 and DAU 5884 caused a concentration 
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dependent decrease in the viability of cardiac myocytes as well as causing a reduction in the time 

taken to depolarisation and hypercontracture under oxidative stress. AF-DX 116 and DAU 5884 

significantly increased the levels of p-SAPK/JNK and decreased the levels of p-Akt and p-ERK. 

In addition, ACh and CsA showed to activate p-Akt and p-ERK.  

To conclude, the data suggest that AF-DX 116 and DAU 5884 caused cardiotoxicity at cellular, 

tissue and protein level in conditions of ischaemia reperfusion injury and oxidative stress. 

Furthermore, inhibition of the mitochondrial transition pore with CsA protected against the AF-

DX 116 and DAU 5884 induced injury via activation of the pro-survival proteins, p-Akt and p-

ERK. 
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Chapter One: General Introduction 

1.1       Chronic Obstructive Pulmonary Disease 

Chronic obstructive pulmonary disease (COPD) is characterised by chronic inflammation in the 

airways and lung parenchyma (Huiart et al. 2005). It is a term for a collection of airway diseases 

such as chronic bronchitis, emphysema and chronic obstructive airways disease. Its clinical 

symptoms include shortness of breath, excessive coughing, sputum production and frequent 

chest infections (Vestbo and Lange 2014).  

In addition to the airflow obstruction, there is increasing evidence that COPD is also responsible 

for other systemic pathologies including cardiovascular diseases (CVD) (Macnee et al. 2008, 

Maclay et al. 2007). The common risk factors for both the conditions include smoking, sedentary 

lifestyle, advanced age and poor diet (Maclay et al. 2007).  Huiart et al. (2005) showed in a study 

that among COPD patients, CVD was an important cause of hospitalisation and death. The 

occurrence of hospitalisation for CVD was higher than that for COPD itself. Although the exact 

mechanism for the increase in risk of CVD in COPD patients is not entirely understood, there are 

proposed hypotheses about systemic inflammation being involved. Systemic inflammation is 

caused as a result of chronic activation of innate immune system and excessive release of pro-

inflammatory cytokines such as interleukins and tumour necrosis factor from immune cells 

including macrophages, monocytes, B lymphocytes, T lymphocytes and mast cells (Lacy and 

Stow 2011).  

An increase in systemic inflammatory response has been linked with acute cardiovascular events 

as it is potentially involved in atherosclerosis development (Clayton et al. 2008). Studies have 

also shown that there is an increase in systemic inflammation in COPD patients activating 

circulating leukocytes (Wouters 2005). The direct “spillover” of lung inflammation to the 
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systemic circulation caused by hyperinflation of lungs, tissue hypoxia, muscle dysfunction and 

bone marrow stimulation is a possible reason for the origin of the systemic inflammatory 

response in COPD patients (Macnee et al. 2008). In addition, activated peripheral blood 

neutrophils release reactive oxygen species (ROS), have increased expression of adhesive 

molecules and extracellular proteolysis. These are common factors in atherosclerosis 

pathogenesis and are also observed in COPD patients. In addition, it has been reported that in 

COPD patients circulating monocytes release increased levels of matrix metalloproteinase-9 

(MMP9) which is also involved in atherosclerosis progression and plaque rupture (Aldonyte et 

al. 2003). Changes in arterial stiffness have also been considered as a potential mechanism to 

link between COPD and CVD. Central arterial stiffness has been shown to predict cardiovascular 

mortality, and is calculated using aortic pulse wave velocity (PWV), and an increased arterial 

stiffness has also been found in COPD patients (Sabit et al. 2007).  

COPD patients are subjected to sustained hypoxia such as in a severe disease state, respiratory 

failure or intermittent hypoxia such as during exacerbations and exercise (Macnee et al. 2008). 

Hypoxia has been shown to increase systemic inflammation, oxidative stress, cause up-

regulation of adhesive cell molecules and induce hemodynamic stress, factors that influence 

atherogenesis (Lattimore et al. 2005, Ichikawa et al. 1997). Acute hypoxia has also been shown 

to induce hemodynamic stress increasing heart rate and cardiac index (Thomson et al. 2006). 

These effects could be relevant for COPD patients who are subjected to acute and intermittent 

hypoxia during exacerbations and exertion.  
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1.1.2  COPD treatment 

Although there is no definite cure for COPD, treatment mainly aims to treat the symptoms, 

reduce the risk factors, manage COPD and associated illnesses and finally delay its progression 

(Rabe et al. 2007, Vestbo and Lange 2014). The most important measures that have been shown 

to reduce COPD mortality are cigarette smoking cessation and providing supplemental oxygen to 

the patients (Drummond et al. 2008). Studies have shown that COPD mortality can be reduced 

by 18% by cigarette smoking cessation (Decramer et al. 2012). 

Inhaled bronchodilator therapy is the most important medication used in the management of 

COPD (Decramer et al. 2012). The two main types of bronchodilators are β2 agonists and 

anticholinergics. Both these types exist in short-acting and long-acting forms and are used to 

reduce the exacerbations associated with COPD.  

As COPD is characterised by airway inflammation and bronchoconstriction, there are increased 

levels of ACh in the respiratory tract, and the vagal tone is believed to be the single reversible 

component, anticholinergics constitute a reasonable bronchodilator therapy. Various studies have 

shown an improved function and exercise tolerance in COPD patients being treated with 

anticholinergics (Crockett 2000, Halpin 2001). Anticholinergics block the cholinergic tone and 

relax the smooth muscle in the airways. Anticholinergics have shown to have a greater response 

in COPD patients than β2 agonists (Barnes 1999, Cooper and Tashkin 2005). 

The medicinal smoke of burning roots and stems of the Solanaceae plants releases an aerosol of 

potent alkaloids such as atropine. For many centuries, inhalation of this smoke has been used to 

treat respiratory disorders worldwide (Chapman et al. 2006). It was in the early 18
th

 century that 

atropine was first used to treat asthma in Britain in the form of a pipe tobacco (Gandevia 1975). 

Since then, atropine based agents have been commonly used to treat respiratory disorders. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692120/#b22-copd-2-33
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However, due to its poor absorption across the oral mucosa and via the gastrointestinal tract and 

the adverse side effects associated with it including; dry mouth, dizziness, hallucinations, nausea 

and tachycardia led to a decline in its usage in 1930’s (Chapman et al. 2006). 

Following studies recognised that the inhibition of cholinergic system could provide an 

alternative therapeutic approach to improve airflow thus reviving an interest in the use of 

anticholinergics (Gandevia 1975, Barnes 1986). The airway smooth muscle consists of M2 and 

M3 muscarinic acetylcholine receptor (mAChR) subtypes but the latter are mainly involved in 

bronchial and tracheal smooth muscle contraction (Van Nieuwstadt et al. 1997). This is shown in 

diverse species, including humans, by the functional affinities of various subtype selective 

antagonists (Roffel et al. 1990, Ten Berge et al. 1993). However, a minor role of M2 subtype has 

also been shown to mediate airway smooth muscle contraction in peripheral airways 

(Struckmann et al. 2003).  

Increased release of ACh and abnormal mAChR expression either via increased levels of M1 and 

M3 subtypes, or M2 subtype dysfunction by C8
+
T lymphocytes induced by viral infection, have 

been shown to explain the cholinergic-induced bronchoconstriction in asthmatic patients 

(Amrani and Panettieri 2002). The anticholinergics used to manage airway inflammation block 

the mAChRs and thereby inhibit ACh mediated reflex cholinergic bronchoconstriction (Scullion 

2007).  

Ipratropium bromide (Atrovent) is a short acting non-selective antagonist of M1-M3 receptors, 

which is commonly used as a therapy for COPD (Restrepo 2007). Ipratropium inhibits vagally-

mediated reflexes by antagonising the action of ACh at bronchial mAChRs in the lungs which 

causes smooth muscle relaxation and bronchodilation, thereby facilitating airflow and alleviating 

exacerbations of COPD (Tranfa et al. 1995) and also improves pulmonary function (Restrepo 
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2007). Furthermore, it also inhibits the ACh-induced guanyl cyclase stimulation thereby 

reducing the cyclic guanosine monophosphate (cGMP) which acts as a mediator for 

bronchoconstriction (Pakes et al. 1980).   

Iptratropium was introduced in 1974 and provided anticholinergic effects while avoiding the 

adverse side effects of atropine (Chapman 1993).  It is administered by oral inhalation either via 

an aerosol inhaler or nebulizer. Pharmacokinetic studies have shown that following inhalation of 

a 2mg dose of ipratropium, only 7% of the dose is absorbed into the systemic circulation either 

from lungs or gastrointestinal tract (Boehringer Ingelheim 1987). Studies have also shown that 

oral inhalation of ipratropium bromide via a nebulizer starts to work within 15-30 minutes of 

administration but may take up to 90 minutes for maximal bronchodilation in COPD patients 

(Rebuck et al. 1987, Karpal et al. 1990). Furthermore, its duration of action is about 6 hours 

(Karpal 1993).  

Another inhaled anticholinergic used for the treatment of COPD is tiotropium bromide 

monohydrate. Tiotropium is a long-acting agent and displays a higher affinity for mAChRs than 

ipratropium (Haddad et al. 1994). Although tiotropium binds to M1-M3 subtypes, its dissociation 

from the M2 subtype is much faster thereby resulting in more selective antagonism of M1 and M3 

mAChRs and also its prolonged pharmacologic activity provides bronchodilation for up to 24 

hours (Barnes 2001). Clinical trials have revealed that COPD patients taking tiotropium once 

daily or ipratropium four times daily for one year improved the quality of life amongst patients 

but tiotropium also increased the  forced expiratory volume (FEV1) (Vincken et al. 2002).   

Tiotropium is quickly absorbed into the systemic circulation with a peak plasma concentration 

within 5 minutes of administration and has a terminal half-life of 5-6 days (Barnes 2000). It is 

delivered by inhalation via a device specifically developed for COPD patients known as the 
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Spiriva
®
 HandiHaler

®
 (Boehringer Ingelheim Pharmaceuticals 2014). Since its approval in 2002, 

more than 8 million patients have used inhaled tiotropium worldwide with net sales of roughly 

US$2.4 billion in 2007 (Singh et al. 2008). 

1.1.3  Side effects associated with ipratropium and tiotropium 

Despite its clinical usefulness, studies have reported cardiovascular risks associated with COPD 

patients with underlying ischaemic heart disease (IHD) being treated with anticholinergic 

therapies (Singh et al. 2008, Ogale et al. 2010). Singh and colleagues found in their meta-

analysis that patients assigned to randomized inhaled anticholinergics showed an increased risk 

for myocardial infarctions, and cardiovascular death (Singh et al. 2008). Similarly, observational 

studies have also found an increased correlation between anticholinergic use and cardiovascular 

events (Macie et al. 2008) and cardiovascular-related mortality (Lee et al. 2008). In addition, 

Ogale and colleagues identified increased risk of cardiovascular events including heart failure, 

acute coronary syndrome and dysrhythmia in patients exposed to anticholinergic treatment 

within 6 months of initiating therapy (Ogale et al. 2010). Furthermore, Shaik et al. (2012) has 

shown that ipratropium causes scrambling of the erythrocyte membrane and cell shrinkage which 

leads to apoptosis. The study reveals that ipratropium triggered cell death potentially via an 

increase in cytosolic calcium activity due to non-selective cation channels activation which has 

previously been shown to be activated by oxidative stress (Brand et al. 2003). 

1.2  Coronary Heart Disease 
 

Coronary heart disease (CHD) is set to be the leading cause for morbidity and mortality within 

the developing world by 2020 (Kloner and Rezkalla 2004). It is characterised by the narrowing 

or blockage of the coronary arteries, caused mostly by atherosclerosis. Atherosclerosis is a 

progressive condition that affects arterial blood vessels that can manifest into coronary artery 
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occlusion resulting in myocardial infarction. Atherosclerosis occurs as a result of the progressive 

development of atherosclerotic plaques that protrude into the lumen of the coronary arteries 

resulting in the obstruction of blood flow (Ross 1999). Plaque formation is a gradual process that 

can occur primarily due to a range of insults on the vascular endothelium including the 

accumulation of low density lipoproteins (LDL) or ‘’bad’’ cholesterol carriers. Vascular insults 

are implicated due to smoking, obesity, hyperlipidaemia, hypertension, diabetes and genetic 

predisposition (Altman 2003). These factors can lead to endothelial damage and dysfunction. 

Furthermore, certain white blood cells such as monocytes and T cells become activated and enter 

the artery’s wall transforming into foam cells. Over time, accumulation of LDL, foam cells, 

calcium, smooth muscle cells and cell debris leads to hardening (also known as furring) and 

narrowing of the arteries. This leads to the formation of atherosclerotic plaque or atheroma 

(Libby et al. 2002) which results in insufficient supply of blood to the myocardium in a process 

referred to as ischaemia. 

Myocardial ischaemia is the inability of the myocardium to receive oxygen and nutrient supply 

with respect to demand (Asano et al. 2003). Under normal conditions the myocardium respires 

aerobically to produce energy in the form of ATP, which permits it to pump blood around the 

body. However, during myocardial ischaemia the tissues respire anaerobically to produce ATP 

via glycolysis (Das and Harris 1990). Anaerobic respiration also leads to the production of lactic 

acid and hydrogen ions (H
+
) which decrease the pH leading to acidosis (Dennis et al. 1991). The 

increased levels of H
+ 

in the cell activates the Na
+
/H

+
 exchanger (NHE) for the removal of H

+
 

from the cell (Karmazyn and Moffat 1993). This increases intracellular Na
+
 concentrations which 

in itself are linked to mitochondrial damage and cell swelling (Takeo and Tanonaka, 2004). 
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Sustained ischaemia can have detrimental effects which includes: cell swelling, oxidative 

phosphorylation disruption, ATP depletion, disruption of the Na
+
/K

+
 and Ca

2+
 pumps, 

intracellular pH decrease, reversible and irreversible myocyte damage and free radical mediated 

injury (Graham et al. 2004, Braunwald and Kloner 1985). 

Reperfusion is the restoration of blood flow to the myocardium after an episode of ischaemia. 

Reperfusion is a vital process to salvage the myocardial tissue as it removes the lactic acid from 

the tissue and also restores pH levels. Although reperfusion is critical to salvage reversibly 

damaged myocytes, it has also been shown to have deleterious effects on the myocardium, thus it 

is termed lethal reperfusion injury (Yellon and Baxter 2000, Braunwald and Kloner 1985). 

Lethal reperfusion injury can lead to the development of arrhythmias, myocardial stunning, and 

reversible and irreversible cell damage (Bolli et al. 1999). Although the mechanism involved in 

reperfusion injury remains to be fully understood, various contributors have been proposed 

including oxygen derived free radicals, cell swelling, calcium overload, myocardial 

haemorrhage, necrosis and apoptosis. 

1.2.1  Oxygen derived free radicals 

The re-introduction of oxygenated blood to the ischaemic myocardium leads to the generation of 

injurious oxygen derived free radicals (Bolli et al. 1989). Free radicals are generated by the 

mitochondria and exist within cells. They are catabolised by scavengers such as superoxide 

dismutase and glutathionine peroxidase (Forde and Fitzgerald 1997). In the non-ischaemic 

myocardium these free radical scavengers limit free radical dependent injury via their antioxidant 

abilities whereas during ischaemia reperfusion the levels of free radicals such as superoxide 

anion (O2
-
) and hydroxyl radical reach peak levels (Zweier et al. 1987). In addition, during 
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respiratory burst activated neutrophils can utilise nicotinamide adenine dinucleotide phosphate 

(NADPH) to reduce oxygen producing oxygen free radicals such as O2- (Segal 2005).  

 Studies have shown that reoxygenation leads to a profound increase in the levels of oxygen 

derived free radicals which mediate functional injury to the myocardium and also impaired 

contractile function in isolated heart (Zweier 1988, Bolli et al. 1989). Free radicals have been 

shown to generate lipid peroxides, which can lead to the disruption of membrane integrity, 

inhibition of membrane enzymes and structural changes (Forde et al. 1999). The use of free 

radical scavengers has been shown to decrease free radical dependent injury of the myocardium 

in different models (Jolly et al. 1984, Stewart et al. 1983). The administration of antioxidants 

such as superoxide dismutase and catalase, have shown to minimise free radical injury in the 

ischaemia reperfusion model of myocardium in dog (Jolly et al. 1984). Bognar et al. 2006 

showed that a modified superoxide dismutase, HO-3538, decreased the release of reactive 

oxygen species and also limited the opening of the mitochondrial permeability transition pore 

thereby preventing the release of pro-apoptotic proteins such as cytochrome c.  

1.2.2             Calcium overload 
 

Myocardial contractility is primarily controlled by calcium cycling into and out of the cytoplasm 

of cardiac myocytes as well as calcium sensitivity of various proteins in cardiac myocytes. 

Calcium enters the cardiac myocyte cytoplasm from the extracellular space mainly through L-

type calcium channels which triggers calcium ions (Ca
2+

) release from the ryanodine receptors 

(RyR) in the sarcoplasmic reticulum, in a process called calcium-induced calcium release 

(CICR) (Treinys and Jurevicius 2008). Ca
2+

 binds to troponin C which is part of a troponin 

complex that together with tropomyosin affects the interaction between actin and myosin leading 
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to the development of myocardial contraction (Kobayashi et al. 2008). The interaction between 

troponin C and Ca
2+

 is a critical step of calcium induced control of myocardial contractility. 

Under normal conditions, Ca
2+

 is removed from the cytoplasm to the outside of the cell by a 

sodium–calcium (Na
+
/Ca

2+
) exchanger (Sher et al. 2008). The Na

+
/Ca

2+
 exchanger uses energy 

that is stored in the electrochemical gradient of sodium by allowing Na
+ 

to flow down its 

concentration gradient across the plasma membrane into the cell in exchange for the Ca
2+

. The 

Na
+
/Ca

2+
 exchanger imports 3 Na

+ 
in to the cell and exports one Ca

2+
 outside the cell and can 

efficiently transport up to 5000 Ca
2+

  per second (Carafoli et al. 2001). The Na
+
/Ca

2+
 exchanger 

requires an active Na
+
/K

+ 
ATPase which keeps the internal sodium levels low. A plasma 

membrane calcium ATPase can also aid in the removal of cytoplasmic Ca
2+

 to the outside 

(Oceandy et al. 2007). The regulation of Ca
2+ 

in a normal cardiac myocyte is shown in figure 1.1. 

Reperfusion to the ischaemic myocardium has been shown to cause an accumulation of 

intracellular Ca
2+

 leading to calcium overload (Duchen 2000, Valverde et al. 2008). Ischaemia 

reperfusion injury reduces the activity of the sarcolemmal Na
+
/K

+
 ATPase and activates the 

Na
+
/Ca

2+
 exchanger activity in a reverse mode allowing Ca

2+ 
entry into the cell (Dhalla et al. 

2007). Furthermore, ischaemia reperfusion also adversely effects the Ca
2+ 

proteins in the 

sarcoplasmic reticulum and sarcolemma including sarcoplasmic reticulum Ca
2+

-ATPase and L-

type calcium channels thereby contributing to the an intracellular Ca
2+ 

overload (Dhalla et al. 

2007).  

Calcium overload is also believed to activate enzymes such as proteases, lipases and nucleases 

which can induce electrical and structural damage to the cell membrane and sarcolemmal 

membrane (Atsma et al. 1995, Yoshida et al. 1993). Calcium overload also leads to the opening 
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of the ATP-sensitive potassium (KATP) channel and mitochondrial permeability transition pore 

(MPTP) therefore activating apoptosis (Makazan et al. 2007, Minezaki et al. 1994).  

Ischaemia reperfusion mediated calcium overload can also lead to the hypercontracture of 

cardiac myocytes (Rodríguez-Sinovas et al. 2007). This can cause abrupt shortening of cell 

length accompanied by cytoarchitectural disorganisation leading to cytoskeletal damage. 

Hypercontracture of cardiac myocyte can result in cell necrosis and is referred to as contraction 

band necrosis (Rodríguez-Sinovas et al. 2007).  

 

  

Figure 1.1:  Calcium entry and exit from a normal cardiac myocyte (Marin-Garcia 2010).                

■ = Calcium, Ica, L = L-type calcium channel, SERCA = Sarco/Endoplasmic reticulum Ca
2+

 ATPase. 
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1.2.3      Apoptosis 

 
Apoptosis is a natural energy dependent cell death process that prevents an inflammatory 

response by disposing of cells that are not required in an organism (Czerski and Nunez 2004). It 

is important to mention that apoptosis differs from necrosis which is the death of living cells and 

tissue. The latter is generally detrimental to an organism whereas apoptosis benefits an organism 

in many ways. Apoptosis can be stimulated in response to different factors, which may either be 

regulated by extrinsic or intrinsic signals. Extrinsic signals move across the plasma membrane or 

go through signal transduction to result in apoptosis. The extrinsic signals include toxins, 

hormones, growth factors, nitric oxide and cytokines (Borutaite et al. 2003). In contrast, the 

intrinsic signals include cellular stress that initiate intracellular apoptotic signaling that commits 

a cell to perform “suicide”.  

There have been numerous studies that relate apoptosis with ischaemia reperfusion injury. It is 

not entirely clear whether apoptosis is initiated in ischaemia, reperfusion or both. Chakrabarti et 

al (1997) proposed that apoptosis was activated in isolated rat hearts during brief ischaemia 

without reperfusion. However, some research has also demonstrated that apoptosis is activated 

during ischaemia and accelerates during reperfusion (Gottlieb and Engler 1999). Although there 

is a controversy regarding when exactly apoptosis occurs, the past research provides strong 

evidence to relate apoptosis with the ischaemia reperfusion injury.  

There are two main apoptotic pathways called the extrinsic and the intrinsic pathways. The 

extrinsic pathway is also called the death receptor pathway. It involves an apoptotic stimulus to 

activate the extracellular death receptor such as Fas and Tumour necrosis factor receptor-1 

(TNFR1) (Borutaite et al. 2003). A protein known as Fas ligand (FasL) binds to its receptor (Fas) 
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and results in oligomerisation (Caulfield and Latham 2014). Apoptosis is initiated as the death 

receptor is activated, which causes an association of the receptor with Fas associated death 

domain (FADD) protein. FADD then binds to pro-caspase 8 through the proteins death effector 

domain (DED). The complex then activates caspase 8 which binds to caspase 3 initiating 

apoptosis (Kelley et al. 2010, Caulfield and Latham 2014). Caspase 3 leads to various 

biochemical and morphological changes characteristic of apoptosis by cleaving various death 

substrates. Death inducing signalling complex (DISC) is the term given to the complex of Fas, 

FADD and caspase 8. The process of the extrinsic apoptotic pathway is summarised in Figure 

1.2. 
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Figure 1.2: Extrinsic apoptotic pathway (Rieux-Laucat et al. 2003). DISC = Death inducing 

signalling complex (DISC), FADD = Fas associated death domain, FasL = Fas ligand 

 

The other apoptotic pathway is the intrinsic or mitochondrial pathway that occurs in response to 

various intracellular stress signals (Lopez et al. 2006). These include DNA damage, hypoxia, 

nutrient deprivation, oncogenes, and survival factor deprivation. The Bcl-2 family of proteins 

play a key role in this pathway to regulate the mitochondrial membrane permeability (Lopez et 

al. 2006). Protein 53 (p53) plays a critical role in the activation of the intrinsic pathway. It is a 

tumour suppressor and has been termed as “guardian of the genome” as it conserves stability and 

prevents gene mutations (Ashkenazi 2002). Cellular stress such as DNA damage is detected by 

p53 and if the damage is non-repairable, it commits to apoptosis. 

This item has been removed due to 3rd party copyright. The unabridged version of the 
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The Bcl-2 proteins are essential in the intrinsic pathway and they consist of both anti-apoptotic 

and pro-apoptotic members. The pro-apoptotic members include multi-domain BH 1-3 proteins 

such as Bax, Bak and Bok and the BH-3 only proteins such as Bid, Bad and p53 upregulated 

modulator of apoptosis (PUMA). Whereas, the anti-apoptotic members include Bcl-2, Bcl-XL 

and Mc1-1which exhibit BH1-4 homology domains (Kim et al. 2006). Upon the reception of a 

stress signal, the pro-apoptotic proteins are activated and the anti-apoptotic proteins are 

inactivated. The expression of pro-apoptotic proteins leads to the destabilisation of the 

mitochondrial membrane and initiates cytochrome c release which binds to adaptor protease 

activating factor-1 (Apaf-1) forming apoptosome (Chang et al. 2003). Apoptosome functions to 

regulate the catalytic activity of caspase 9, which in turn activates the main downstream effector 

caspase, such as caspase 3, that play a vital role in regulation of cellular apoptosis. Other intra-

mitochondrial proteins such as second mitochondria-derived activator of caspases (SMAC) and 

apoptosis inducing factor (AIF), which act on caspases (caspase 3) and execute apoptotic cell 

death machinery are also released (Chang et al. 2003). Namura et al. (1998) showed increased 

levels of activated caspase 3 with peak at between 30-60 minutes of reperfusion in a cerebral 

model of ischaemia reperfusion injury. Opposingly, anti-apoptotic protein overexpression results 

in inhibition of cytochrome c release and therefore supports survival (Majno and Joris 1995). 

The process of intrinsic apoptotic pathway is summarised in figure 1.3. 
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Figure 1.3: Chemotherapy/radiotherapy-induced intrinsic apoptotic pathway (Ashkenazi 2002). 

Apaf-1 = adaptor protease activating factor-1, SMAC = Second mitochondria-derived activator of 

caspases, PUMA = p53 upregulated modulator of apoptosis, Bcl-2 = Anti-apoptotic members of the 

Bcl-2 family of proteins, Bak = Pro-apoptotic members of the Bcl-2 family of proteins. 
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1.2.4       Necrosis 
 

Necrosis is an energy independent cell death process during which the cells swell, and the 

plasma membrane collapses followed by the lysis of cellular organelles (Proskuryakov et al. 

2002). Necrosis can be caused by various factors including infections, toxins and trauma that 

lead to an unregulated cell component digestion (Proskuryakov et al. 2003). The cell membrane 

integrity of the necrotic cells is lost and there is an uncontrolled release of cell death products 

into the intracellular space which triggers an inflammatory response in the surrounding tissue 

(Kasper and Zaleznik 2001). This prevents the leukocytes i.e. phagocytes, from carrying out 

phagocytosis and eliminating the dead cells. It is therefore important to remove necrotic tissue in 

clinical conditions by a process known as debridement as untreated necrosis leads to a build-up 

of decompsoing dead tissue and cell debris at the site of cell death such as in gangrene (Kasper 

and Zaleznik 2001). The structural cellular differences between apoptosis and necrosis are 

summarised in figure 1.4. 

 

Necrosis is the predominant form of cell death in ischaemia which leads to oxygen and glucose 

depletion. It results in death of endothelial and non-proliferating cells (Proskuryakov et al. 2002). 

Wang et al. (2008) showed that IR causes cell death via necrosis of isolated cells from rat 

skeletal muscle. Necrosis does not only take place in pathological conditions but also during 

some normal physiological processes. For example, necrosis is involved in the follicular 

maturation in the process of oogenesis and also during small intestine renewal (Mayhew et al. 

1999, Murdoch et al. 1999). 
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Figure 1.4: Cellular structural differences between the progression of the processes of apoptosis 

and necrosis. Necrosis results in irreversible cell injury characterised by dense clumping, 

disruption to cell organelles and membrane breakdown (Adapted from Hendricks 2002). 

 

1.2.5       Autophagy 

Autophagy is a catabolic process that results in the degradation of intracellular organelles and 

cytoplasmic contents (Yang and Klionsky 2010). Nutrient deprivation usually activates the 

process but it has also been linked with physiological and pathological processes such as cellular 

differentiation, cell development, stress and cancer (Levine and Kroemer 2008). As opposed to 

apoptosis and necrosis, it is an energy producing process and provides an alternative source of 

energy under stress conditions such as DNA damage, nutrient deprivation and build-up of ROS 

(Klionsky 2007). The key regulator of autophagy is the mammalian target of rapamycin (mTOR) 
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kinase. During nutrient deficiency it functions as a pro-survival mechanism but uncontrolled or 

excessive autophagy can lead to cell death.   

1.3 Myocardial injury signaling pathways 

Mitogen activated protein kinases (MAPK) have been implicated as important signaling cascades 

involved in cardiac cell death in response to ischaemia-reperfusion (IR) injury (Abe et al. 2000, 

Yue et al. 2000, Lips et al. 2004). Activation of extracellular signal regulated kinase (ERK 1/2) 

has been shown to provide myocardial protection against IR injury in mice (Das et al. 2009), rat 

cardiac myocytes (Wang et al. 2012), and in rabbit hearts (Yang et al. 2011). ERK 1/2  have also 

been identified as central components of the reperfusion injury salvage kinase (RISK) pathway 

which has been shown to protect myocardium from IR injury (Hausenloy and Yellon 2004). 

Interestingly, the inhibition of p38 MAPK has been shown to reduce myocardial IR injury in 

mice (Gao et al. 2001) and inhibition of c-Jun NH (2)-terminal protein kinase (JNK) has been 

shown to protect myocardium against IR injury in rats (Chambers et al. 2012).  

Furthermore, the phosphatidylinositol-3-kinase (PI3K) has also been shown to be involved as an 

important cellular mediator in response to IR injury. Signalling via PI3K and subsequent 

activation of Akt has been shown to protect against IR injury (Fujio et al. 2000). Akt has also 

been identified as a central component of the RISK pathway, which provides protection to the 

myocardium against the IR injury (Hausenloy and Yellon 2004). The activation of Akt has been 

demonstrated to activate mitochondrial Raf-1 (Majewski et al. 1999) which phosphorylates and 

inactivates the pro-apoptotic factor, BAD (Wang et al. 1996). 

1.3.1  Mitogen Activated Protein Kinases 
 

MAPK mediate various cellular processes including cellular growth, movement, proliferation 

and apoptosis (Raman et al. 2007, Lowes et al. 2002). MAPK are serine and threonine kinases 
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which can be activated by G protein-coupled receptors (GPRCs) and also by tyrosine kinases 

(Pearson et al. 2001). A signal such as a growth factor, cytokine or neurotransmitter activates 

MAPK via binding to its protein tyrosine kinase receptor. Epidermal growth factor receptor 

(EGFR) and the platelet-derived growth factor receptor (PDGFR) are the best-known receptors 

of the MAPK but G-proteins are also involved in the activation process (Cantrell 2003).  

Binding of a ligand to EGF receptor induces receptor oligomerization which results in 

juxtaposition of the cytoplasmic and catalytic domains which allows activation of the kinase 

activity and transphosphorylation (Schlessinger 2000). Adaptor proteins such as Grb2 recognise 

sequence homology (SH2) domains such as Shc, which recruits guanine nucleotide exchange 

factors (GEFs) like SOS-1 to the cell membrane (Schlessinger 2000). The GEF interacts with 

Ras protein to induce a conformational change and the exchange of GDP for GTP, activating 

Ras. Raf is then recruited via binding to the switch I domain of Ras and also by lipid binding to 

the cell membrane (Marais et al. 1995).  

Raf is a member of a family of serine/threonine kinases that includes Raf-1, A-Raf and B-Raf. 

Raf is the best-characterised Ras effector and its activation stimulates a signalling cascade by 

phosphorylation of MAPK (Liebmann 2001). MAPK in turn phosphorylates and activates 

downstream proteins including ERK1 and ERK2. Phosphorylation of ERK1/2 at Thr202 and 

Tyr204 residues transforms ERK1/2 to its active form (Butch and Guan 1996). ERK1 and ERK2 

phosphorylate and activate various nuclear transcription factors and kinases including Elk-1, c-

Ets1, c-Ets2, p90RSK1, MNK1, MNK2, and other proteins. Many of the targets of MAPK/ERK 

have been implicated in Ras induced cell transformation (Liebmann 2001). 

Other member of the MAPK superfamily include JNK/SAPK (c-Jun NH (2)-terminal protein 

Kinase/stress-activated protein kinase) which is actively involved in cell differentiation, growth, 
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cell survival and death. JNK/SAPK is activated in response to environmental stresses including 

heat shock, UV radiation, osmotic shock, inflammatory cytokines, growth factors and GPCR 

agonists (Nishina et al. 2004). A variety of environmental stimuli impact the small GTPases of 

the Rho family (Rho, Rac, Cdc42), that leads to the activation of membrane protein components 

such as MEKKs, ASK1, TAK1/AB1 or MLK3. These protein kinases then phosphorylate and 

activate MKK4/7, which mediates the activation of the JNK/SAPK family members (Wada et al. 

2004). There are three isoforms of JNK/SAPK family which include: JNK1, JNK2 and JNK3. 

Upon activation, JNK/SAPK may translocate to the nucleus and regulate the activity of various 

transcription factors such as c-Jun, ATF-2, SMAD4, p53 and Elk1 (Wada et al. 2004). 

Furthermore, mAChRs have been shown to signal via MAPK in various studies. The M1 receptor 

has been reported to activate MAPK via a pathway involving pertussis toxin-insensitive Gq or 

pertussis toxin-sensitive Go G-proteins, protein kinase C (PKC) and Raf but independent of Ras 

(Hawes et al. 1995, Van Biesen et al. 1996). Some studies have also implicated βγ-subunits in 

Ras-dependent activation of MAPKs by M1 receptor (Crespo et al. 1994). The M2 subtype has 

been shown to activate MAPKs via release of βγ-subunits from pertussis toxin-sensitive G-

proteins with subsequent tyrosine phosphorylation of Shc, leading to the activation of Ras 

(Winitz et al. 1993, Koch et al. 1994).   

1.3.2        Phosphatidylinositol-3-Kinase  
 

The phosphatidylinositol-3-kinase (PI3K) is a serine/threonine kinase that is involved in the 

regulation of cell proliferation, growth and survival (Engelman et al. 2006). Receptor tyrosine 

kinases such as cytokines, growth factors and GPCRs bind to their receptors and activate PI3K. 

The activated PI3K induces the conversion of phosphatidylinositol (3,4)-bisphosphate (PIP2) 

lipids to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) which subsequently lead to the 
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phosphorylation and activation of Akt (Protein kinase B, PKB) and its upstream activator PDK1 

(Alessi et al. 1997).  

Akt and PIP3 bind at the plasma membrane and lead to the phosphorylation of Thr308 by PDK1 

that partially activates Akt. This phosphorylates and inactivates proline-rich Akt substrate of 40 

(PRAS40) and tuberous sclerosis protein 2 (TSC2) and subsequently activates mTORC1 which 

phosphorylates Akt at Ser473 to fully activate it (Sarbassov et al. 2005, Vander Haar et al. 2007). 

Fully activated Akt can lead to the phosphorylation of substrates in the cytoplasm and the 

nucleus. It can modulate cell survival via recruitment of numerous downstream effector proteins 

phosphorylating forkhead transcription factors, eNOS (endothelial nitric oxide synthase), and the 

pro-apoptotic protein of the Bcl 2 (B cell lymphoma/leukaemia 2) family BAD (Bcl-2/Bcl-XL-

associated death promoter). BAD in its phosphorylated form binds to 14-3-3- proteins therefore 

BAD’s ability to associate to Bcl-2 and Bcl-xl is diminished preventing BAD dependent 

apoptosis initiation (Hausenloy and Yellon. 2004). Akt also inhibits the pro-apoptotic forkhead 

box O (FoxO) transcription factors and contributes to cell survival (Zhang et al. 2011). 

Furthermore, Akt can activate numerous effector proteins like glycogen synthase kinase 3 

(GSK3) and stimulate glycogen synthesis as well as proteins involved in cell proliferation and 

growth (Hausenloy and Yellon 2004; Park et al. 2006). Akt in its active state is involved in 

mediation of other cellular fucntions such as angiogenesis, metabolism, growth and proliferation 

(Engelman et al. 2006). 
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1.3.3  G protein coupled receptors  

G protein coupled receptors (GPCRs) also known as seven-transmembrane domain receptors 

represent the largest family of membrane proteins in the human genome that are involved in the 

activation of signal transduction pathways and cellular responses (Kobilka 2007). GPCRs consist 

of seven hydrophobic transmembrane segments, with an extracellular amino terminus and an 

intracellular carboxyl terminus (Kobilka 2007). GPCRs are activated by a spectrum of 

structurally diverse ligands including hormones, neurotransmitters and odour molecules 

(Trzaskowski et al. 2012).  

GPCRs associate with heterotrimeric guanine nucleotide-binding proteins (G-proteins). G-

protein is a trimer consisting of α, β and a γ sbunit that are tethered at the surface of the 

membrane by covalently attached lipid molecules. When a ligand binds to the GPCR, it causes a 

conformational change in the GPCR and activates the G-protein thereby exchanging its bound 

GDP for a GTP (Wettschureck and Offermanns 2005). The Gα subunit with the attached GTP 

becomes activated and dissociates from the Gβα complex to affect intracellular signaling proteins 

such as enzymes that act as second messengers to regulate a cellular response. The Gβα complex 

also diffuses along the inner membrane surface to activate proteins such as ion channels.  

The different classes of G-proteins consist of different types of α subnuits which regulate 

specific signal transduction pathways. The main signal transduction pathways involving G-

proteins include the cyclic adenosine monophosphate (cAMP) signal pathway and the 

phosphatidylinositol signal pathway (Wettschureck and Offermanns 2005).  

The Gα subunit has intrinsic GTPase activity that hydrolysis GTP to cause re-association of 

inactive Gα subunit bound to GDP to the Gβα complex which can again bind to a GPCR and await 

activation. The process of G-protein mediated signal transduction is shown in figure 1.5. 
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Figure 1.5: G-protein mediated signal transduction (Rasmussen et al. 2011). 

 

1.4  Muscarinic Receptors  

Muscarinic acetylcholine receptors (mAChRs) mediate various actions of ACh in the central 

nervous system (CNS) and peripheral nervous system (Van Koppen and Kaiser 2003). mAChRs 

belong to metabotropic family of receptors that use G- proteins to initiate signal transduction. 

mAChRs regulate secondary messenger pathways via an ion channel and enzyme activation 

coupled to the G-proteins. In mammals, five distinct mAChR subtypes (M1-M5) have been 

recognised (Bonner 1989, Hulme et al. 1990, Caulfiled and Birdsall 1998) with each subtype 

being the product of a different gene. The M1, M3 and M5 receptor subtypes preferentially couple 

to the pertussis toxin-insensitive Gαq/11, Gα13, Gα14, and Gα16 subtypes of G protein that leads to 

the activation of phospholipase C (PLC), phospholipase A2 (PLA2), phospholipase D (PLD), 

tyrosine kinase and calcium influx while M2 and M4 subtypes preferentially couple to Gi and Go 

This item has been removed due to 3rd party copyright. The unabridged version of the thesis can be viewed in 
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proteins which lead to the inhibition of adenylyl cyclase (AC) (Caulfield1993). Table 1 

summarises the distribution, function and mechanism of action of mAChRs.  

Table 1: Summary of muscarinic receptor distribution, function and mechanism of action (Adapted 

from Sellin et al. 2008). 

 
 

1.4.1  M1 receptors 

The M1 mAChRs are members of the G-proteins coupled receptor (GPCR) family and mediate 

metabotropic functions of ACh in the central nervous system. They are mainly present in the 

brain with high expression levels in the cerebral cortex and hippocampus and are involved in 

various important processes such as cognition and memory (McKinney and Coyle 1991, Ladner 

and Lee 1998).  In the airways, these receptors are localised to parasympathetic ganglia and are 

involved in slow ganglionic transmission (Celli 2004). The M1 receptors thereby enhance 

cholinergic reflex bronchoconstriction. The M1 subtype mAChR is bound to the pertussis toxin-

insensitive Gq proteins and signal via activation of phospholipase C (PLC) (Caulfield 1993). 

This item has been removed due to 3rd party copyright. The unabridged version of the thesis can be viewed in the 
Lanchester Library Coventry University.



51 
 

They are involved in various cellular processes including control of seizures and maintaining 

cognitive processes such as memory and learning (Marino et al. 1998). Furthermore, activation 

of M1 receptor has been shown to decrease harmful β-amyloid peptide secretion thereby 

providing a therapeutic target for Alzheimer’s disease (Eglen 2005). It is encoded by human 

gene CHRM1 and is localised within chromosome at 11q13 (Bonner et al. 1991).  

 

1.4.2  M2 receptors 

The M2 receptors belong to the GPCR family and are bound to the Gi proteins and their 

activation leads to the inhibition of adenylyl cyclase (AC) (Caulfield1993). They are 

predominantly present in the heart where they are involved in decreasing cardiac beat and 

reduced atrial contractility (Wess et al. 1990, Brown and Taylor 1996). The βα subunits of the G 

protein coupled to the M2 receptor opens K
+ 

channels in the heart causing an outward K
+ 

current 

thereby reducing the heart rate (Boron and Boulpaep 2005). The M2 receptors are present on the 

cholinergic nerve endings and their antagonism results in an increased release of ACh and 

thereby bronchoconstriction to cholinergic nerve stimulation (Celli 2004). It is encoded by 

human gene CHRM2 and is localised within chromosome at 7q35-q36 (Bonner et al. 1991).  

 

1.4.3  M3 receptors 

The M3 mAChRs are bound to the Gq proteins and mediate cellular processes via activation of 

phosphoinositide phospholipase C (PLC) (Caulfield 1993). These receptors are predominantly 

present in the smooth muscles, lungs, endocrine glands, exocrine glands and brain (Lin et al. 

1997, Weiner et al. 1990). The activation of the M3 receptors is mainly involved in smooth 

muscle contraction of the airways which leads to bronchoconstriction (Eglen et al. 1996). The 

http://www.tocris.com/pharmacologicalBrowser.php?ItemId=5062
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M3 receptor is thereby an important therapeutic target to treat pulmonary obstructions such as 

COPD. Furthermore, these receptors are also present on β cells of the pancreas and may also be 

involved in regulation of glucose homeostasis and insulin release (Gautam et al. 2006, Weston-

Green et al. 2006). The M3 is encoded by the human gene CHRM3 and its chromosomal location 

is 1q43 (Bonner et al. 1991). 

1.4.4  Adenylyl Cyclase 

Adenylyl cyclase (AC) is an enzyme located in the plasma membrane of cells that plays an 

important role in the regulation of various cellular signaling pathways. AC catalyses the 

transformation of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) 

which is released into the cytoplasm and acts as a second messenger (Zhang et al. 1997). cAMP 

relays extracellular signals to intracellular effectors and initiates a signaling cascade which can 

activate other protein kinases thereby opening ion channels or exposing the active sites of other 

regulatory proteins (Zhang et al. 1997).  

The even numbered mAChRs have been shown to couple with and inhibit AC activity 

(Baumgold 1992). Furthermore, Parker et al. 1991 showed that the Gαi subtype attached to 

mAChRs is responsible for this response. The regulation of AC activity by mAChRs can be 

regulated via calcium and protein kinase mechanisms (Jansonn et al. 1991, Baumgold 1992). 

Protein Kinase A (PKA) is one of the major targets of cAMP (Gerits et al. 2008). It is a 

serine/threonine protein kinase that consists of two regulatory and two catalytic subunits in its 

inactive form. Each regulatory unit consist of two binding sites for cAMP and upon its binding, 

the PKA holoenzyme dissociates releasing the two catalytic subunits which possess the protein 

kinase activity (Skålhegg and Tasken 2000). Apart from PKA, phosphodiesterases (PDE) are 

also a target for cAMP and they catalyse the conversion of cAMP to AMP (Houslay 2006) 
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thereby comprising a feedback mechanism that can turn off the cAMP/PKA pathway (Gerits et 

al. 2008). Figure 1.6 summarises the mechanism of AC signal transduction.   

mAChR can also couple to AC via a calcium regulation mechanism in which cAMP could be 

produced via  calcium/calmodulin sensitive (type I and type III) or insensitive (type II, IV, V and 

VI) adenylyl cyclases. The coupling of mAChRs to AC depends on the type of cell line they are 

expressed in. However, studies in various cell types have shown that cAMP accumulation occurs 

via mAChR mediated phosphodiesterase inhibition (Meeker and Harden 1982). Interestingly, the 

odd numbered mAChRs i.e. M1 and M5 have also been shown to weakly stimulate AC activity in 

a few studies (Stein et al. 1988, Ashkenazi et al. 1989).  

Figure 1.6: Adenylyl cyclase signal transduction mechanism (adapted from Moran et al. 2012). 

GDP = Guanosine diphosphate, GTP = Guanosine triphosphate, ATP = Adenosine triphosphate, 

cAMP = Cyclic Adenosine 3',5'-monophosphate, AMP = Adenosine monophosphate. 
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1.4.5        Phospholipase C 
 

PLC is a class of enzyme that plays an important role in transmembrane signaling. PLC results in 

hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-triphosphate 

(IP3) and diacylglycerol (DAG) as secondary messengers upon an extracellular stimulus such as 

a growth factor, hormone or a neurotransmitter (Singer et al. 1997). The secondary messenger 

IP3 is released into the cytosol where it binds to IP3 receptors, particularly the calcium channels 

in smooth endoplasmic reticulum. This consequently increases the calcium levels in the cytosol 

which regulates an intracellular cascade (Alberts et al. 2002). The other secondary messenger 

DAG remains bound to the membrane and is involved in the activation of protein kinase C 

(PKC) which in turn phosphorylates different enzymes resulting in altered cellular activity 

(Alberts et al. 2002). Figure 1.7 demonstrates the role of PLC in calcium release from 

cytoplasmic storage. 

 

There are various forms of PLCs which have been recognized and different subunits of G-protein 

activate them. These include PLCβ, PLCγ, PLCδ and PLCε (Smrcka et al. 1991, Taylor et al. 

1991). The activation of PLC by ACh via odd numbered mAChRs has been well documented 

(Lambert et al. 1992). In the M1 subtype PIP2 is broken down by the PLCβ1 via Gq/11 α 

subunits whereas PLCβ and PLCγ are involved in the M5 subtype (Berstein et al. 1992, Sawaki et 

al. 1993). The activation of PLCγ has been shown to be by phosphorylation of the tyrosine 

kinase via the M5 mAChRs. The M5 mAChRs mediates influx of calcium activating voltage-

independent calcium channels, consequently phosphorylating the tyrosine kinase (Gusovsky et 

al. 1993).  

However, studies have also shown that the even numbered mAChRs can weakly stimulate PLC 
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via Gα2 and Gαi3, PTX-sensitive G-proteins (Ashkenazi et al. 1989, Dell’Acqua et al. 1993). 

 

 
 

Figure 1.7:  The Role of Phospholipase C in release of Calcium from cytoplasmic storage (Marr and 

Acorn 2007). PIP2 = phosphatidylinositol 4, 5-bisphosphate, IP3 = inositol 1,4,5-triphosphate, DAG 

= diacylglycerol. 

 

1.5 Acetylcholine 

ACh is the primary neurotransmitter of the parasympathetic nervous system (PNS) and is formed 

by the enzyme choline acetyl transferase (ChAT) in the nerve endings (Gosens et al. 2006). 

Choline is co-transported with sodium into the cytoplasm of the cholinergic neuron via an 

energy-dependent carrier system from the extra-cellular fluid (Siegel et al. 1999). The uptake of 

choline is a rate-limiting step where the enzyme choline acetyltransferase catalyses the formation 
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of ACh in the cytosol from choline and acetyl coenzyme A (CoA) (Parsons et al. 1987). The 

acetyl CoA is derived from the mitochondria and is produced by the Krebs cycle (Siegel et al. 

1999). 

The ACh is then packaged into storage vesicles via active transport coupled to the efflux of 

protons (Parsons et al. 1987). Upon membrane depolarisation the pre-synaptic voltage-sensitive 

calcium channels open and cause an increase in the levels of intracellular calcium which 

promotes the fusion of synaptic vesicles with the cell membrane (Varoqui et al. 1996). This 

causes the release of ACh from the synaptic vesicles which could bind to postsynaptic receptors 

such as muscarinic and nicotinic receptors or the cholinergic nerve terminals (Racke and 

Matthiesen 2004). Once released, the functional effects of ACh are terminated by its degradation 

by the enzyme acetylcholinesterase (AChE) in the synaptic cleft to non-active choline (Gwilt et 

al. 2007).  

ACh and ChAT have been shown to be present in various non-neuronal and immune system cells 

including endothelial cells, smooth muscle cells, lymphocytes and macrophages (Wessler et al. 

1999). ACh has been linked to the regulation of basic cellular processes including proliferation, 

cell differentiation, cytoskeleton organization and transport of ions and water via paracrine and 

autocrine mechanisms (Wessler et al. 2003). Unlike neuronal cells, the non-neuronal ACh is 

released via active transport mediated by organic cation transporters and its inhibition or reduced 

levels have been linked with pathogenesis of certain diseases such as cystic fibrosis (Wessler et 

al. 2007).   

ACh is the most important neurotransmitter of the parasympathetic nervous system and acts to 

stimulate the contraction of the smooth muscle in the airways and is also involved in mucus 
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secretion (Gosens et al. 2006). In addition, ACh is suggested to play a key role in airway 

remodeling regulation during chronic airway inflammation (Gosens et al. 2005). 

1.5.1  Clinical relevance of mAChRs 

 
The mAChR agonists or antagonists have been approved for use of various pathophysiological 

conditions including gastrointestinal disorders, urinary bladder disorders and respiratory diseases 

(Wess et al. 2007). However, their clinical usefulness has been limited due to the side effects 

associated with these agents which result in non-selective activation or blockade of certain or all 

mAChRs. The orthosteric binding sites for ligands have a highly conserved amino acid sequence 

within the five subtypes, and therefore this has become a hindrance in the development of 

subtype-selective agents (Hulme et al. 2003). However, the potential clinical usefulness of 

mAChRs is vast and their involvement in some conditions will be summarised below. 

1.5.2           Alzheimer’s disease and cognitive impairments 
 

Studies have shown that mAChRs play significant roles in facilitating cognitive functions 

(Hasselmo 2006). Acetylcholinesterase inhibitors that increase brain ACh levels are important 

pharmacotherapy agents for Alzheimer’s disease (Lleo et al. 2006).  There is pharmacological 

evidence that has demonstrated the cognition-enhancing effects of ACh mediated by the M1 

mAChR (Messer 2002, Fisher et al. 2003). Marino et al. (1998) showed in hippocampal 

pyramidal cells that the M1 mAChR potentiates N-Methyl-D-aspartate (NMDA) receptor 

currents. As NMDA receptor activity is crucial in mechanisms such as learning and memory, M1 

mAChR may exert their cognition-enhancing effects via potentiating NMDA receptor currents 

(Marino et al. 1998). In addition, the M1 mAChR subtype is the largest population in higher 

brain areas, which are critically involved in cognitive processes (Levey 1993).  
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Studies have also shown that the activation of M1 receptor signalling pathway may inhibit the 

deposition of -amyloid peptide, which is an important pathological feature of Alzheimer’s 

disease (Eglen 2005). There has been a great effort in developing selective M1 agonists to 

manage Alzheimer’s disease. Despite the cognition enhancing effects observed with these 

agents, the majority of clinical trials involving compounds such as alvameline, milameline, 

xanomeline, have either been discontinued or are on hold. This is either because of the adverse 

side effects associated with these compounds or due to the lack of efficacy in patients with 

dementia (Eglen 2005). The major obstacle in progression in this field has been that these 

compounds do not exhibit M1 receptor selectivity in vivo. This leads to non-selective mAChR 

mediated side effects thereby limiting the drug dose and subsequently preventing therapeutic 

effect. 

 

1.5.3         Overactive bladder 

 
Overactive bladder (OAB) is a chronic and debilitating disease that gives rise to urinary 

symptoms of frequency, urgency and urges incontinence, which contributes to a significant 

impairment to a patient’s quality of life (Chapple 2000). The symptoms of OAB are linked to 

involuntary contractions of the detrusor muscle during bladder filling. mAChR antagonists are 

used as the pharmacological therapy for the treatment of OAB. ACh induced stimulation of post-

ganglionic mAChRs is involved in both normal and involuntary bladder contraction (Andersson 

1993). The smooth muscles in the human urinary bladder consist of the M2 and M3 subtypes of 

which the M2 has the predominant population (Wang et al. 1995). However, both the subtypes 

have been shown to mediate bladder contraction (Hegde and Eglen 1999).  

Activation of M3 subtype by ACh leads to hydrolysis of phosphoinositol, accumulation of 

intracellular calcium and subsequently contraction of smooth muscle (Chapple 2000). Whereas 
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the activation of M2 results in the inhibition of adenylate cyclase which causes smooth muscle 

contraction by indirect inhibition of sympathetically (-adrenoreceptor)-mediated augmentation 

of cAMP levels and bladder relaxation (Hegde et al. 1997). Therefore, during micturition, the M3 

subtype activation induces direct smooth muscle contraction whereas the activation of M2 

subtype reverses sympathetically mediated smooth muscle relaxation, the end result being more 

efficient voiding of urine (Hegde and Eglen 1999). 

One of the pharmacologic agents used in the treatment of OAB is Oxybutynin, which is a potent 

mAChR antagonist selective for the M1 and the M3 receptor subtypes (Nilvebrant and Sparf 

1986). Oxybutynin has been shown to competitively inhibit carbachol and ACh induced 

contractions of isolated urinary bladder from various species (Waldeck et al. 1997). It has also 

been shown to evoke contraction of guinea pig and human detrusor muscle (Yono et al. 1999, 

Tonini et al. 1987). Although Oxybutynin has been shown to be clinically effective, it causes 

adverse side effects including dry mouth, constipation, drowsiness and blurred vision (Chapple 

2000). This often leads to poor patient compliance, treatment discontinuation or dose reduction 

to a level of minimal clinical benefit.  

However, there has been more success using Tolterodine, which was developed using a 

functional approach to achieve bladder selectivity rather than mAChR subtype selectivity 

(Chapple 2000). Tolterodine is a potent competitive muscarinic receptor antagonist (M1-M5) that 

has been shown to have equivalent therapeutic efficacy to oxybutynin, but improved tolerability 

(Nilvebrant et al. 2000). Its equivalent therapeutic efficacy at the recommended dosage allows 

long-term treatment, as there is lower incidence and severity of dry mouth, less need for dosage 

reduction and fewer treatment withdrawals (Chapple 2000). 
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1.5.4              Irritable bowel syndrome 
 

Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterised by unexplained 

abdominal pain, discomfort and bloating in association with altered bowel habits (Andresen and 

Camilleri 2006). The pathophysiology of IBS depends on a number of factors including 

abnormal gastrointestinal motor function, visceral hypersensitivity, psychological factors, 

autonomic dysfunction and mucosal inflammation (Andresen and Camilleri 2006, Houghton et 

al. 2005). There is a considerable burden of illness associated with IBS as studies have shown 

that IBS patients have reported lower quality of life, missed more days off work and consume 

more health service resources (Akehurst 1999).  

Traditional therapy for IBS ranges from modifications in diet to pharmacological intervention 

and is often unsatisfactory. The most common drugs used are the antispasmodics of which the 

muscarinic antagonist agents are an important example (Houghton et al. 1997). Zamifenacin, a 

selective M3 subtype antagonist has been shown to reduce distal colonic motility in patients with 

IBS. It also did not provide atropine-like side effects that are usually associated with such drugs, 

thereby showing greater gut selectivity than conventional anticholinergics (Houghton et al. 

1997).  

1.6        Mitochondrial permeability transition pore  

 
Mitochondria play important roles in cell survival and death. In healthy cardiac myocytes they 

provide ATP via oxidative phosphorylation to meet the high energy demand of the heart 

(Halestrap et al. 2004).  It consists of a non-specific pore known as the mitochondrial 

permeability transition pore (MPTP). MPTP is formed between the inner and outer 

mitochondrial membranes from a complex of the adenine nucleotide translocase (ANT), 

cyclophilin-D (CyP-D) and the voltage-dependent anion channel (VDAC) (Halestrap et al., 
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2002). In addition, it also consists of translocator protein (TSPO) of 18kDa which was previously 

known as peripheral benzodiazepine receptor (Fan et al. 2014). TSPO is localised in the outer 

mitochondrial membrane and is believed to play an important role in mitochondrial cholesterol 

transport. 

Normally, the inner mitochondrial membrane is only permeable to a few ions and metabolites. 

Whereas under stress, the inner membrane permeability barrier is disrupted as the MPTP opens 

and allows free passage of molecules of < 1.5 kDa in size (Crompton 1999). This can have 

deleterious effects as solutes with a small molecular weight exert a colloidal osmotic pressure by 

moving across the membrane, resulting in the swelling of the mitochondria and eventual outer 

membrane rupture releasing pro-apoptotic factors such as cytochrome c in to the inter-membrane 

space that play a critical role in apoptotic cell death (Halestrap et al. 2004).  

MPTP opening also allows permeability to protons which results in uncoupling of oxidative 

phosphorylation (Halestrap et al. 2004). This causes ATP synthase to begin hydrolysing ATP 

which creates an energy deficit when ATP is required to fuel activity of ion pumps such as 

Na
+
/Ca

2+
 exchanger to remove extra calcium and consequently leads to ATP depletion. This in 

turn can activate degradative enzymes such as phospholipases and proteases and also disrupt 

ionic and metabolic homeostasis (Halestrap et al. 2002). These effects can lead to irreversible 

cell damage and eventually result in necrotic death. Key factors responsible for the opening of 

the MPTP include adenine nucleotide depletion, calcium overload, oxidative stress and 

mitochondrial depolarization (Halestrap et al. 2004). 

These factors are similar to those during post-ischaemic reperfusion and there is growing 

evidence that MPTP opening plays an important role in the transition from reversible to 
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irreversible reperfusion injury. Opening of the MPTP has been shown to be a critical determinant 

of cell death in the setting of ischaemia reperfusion injury (Hausenloy et al. 2003). The MPTP is 

considered to be open in the first few minutes of reperfusion in the setting of ischaemia 

reperfusion injury (Griffiths and Halestrap 1995, Di Lisa et al. 2001). Studies suggest that 

procedures including inhibition of the MPTP opening or an increase in the subsequent pore 

closure can reduce reperfusion injury (Halestrap et al. 2004). This may be either via 

pharmacological agents directly inhibiting MPTP opening or through an indirect effect 

associated with a decrease in the factors responsible for MPTP opening such as oxidative stress 

and calcium overload. Pharmacological inhibition of the MPTP opening has been shown to 

reduce myocardial injury in ischaemia reperfusion models to protect the heart. Cyclosporine-A 

(CSA), an immunosuppressant, and Sanglifehrin-A, have been shown to protect the myocardium 

from ischaemia reperfusion injury and oxidative stress (Hausenloy et al. 2002, Hausenloy et al. 

2003). Clinical trials with treatment of patients with CSA for coronary thrombosis treatment 

have also shown improved recovery (Piot et al. 2008). 

1.7       Biomarkers of myocardial injury 
 

CVD is one of the leading causes of morbidity and mortality in developed countries and its 

prevention is a public health priority (Pearson et al. 2002). To aid clinical assessment in 

identifying patients at risk for CVD additional tools are being examined including biomarkers 

(Ramachandran 2006). Biomarkers help to identify high-risk individuals, accurately diagnose 

disease conditions and effectively prognosticate and treat patients with disease (Ramachandran 

2006). Biomarkers can indicate various characteristics of a disease including genetic 
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susceptibility, genetic responses to particular exposures, clinical disease markers, and response to 

the therapy (Ramachandran 2006).  

 A biomarker can be easily measured in a bio-sample such as blood, urine or tissue test. It can 

also be obtained from a patient via a recording of, for example, blood pressure or ECG, and it 

may also be obtained by an imaging test such as an echocardiogram or a CT scan.  

The timing of the sample collection is important as many cardiac biomarkers are known to have 

limited half-life (Walker 2006) and various factors including patient age, food consumption, and 

physical activity can alter the expression levels of traditional clinical biomarkers (Baetz and 

Mengeling 1971). Furthermore, many cardiac biomarkers are not specific to the heart only and 

their expression level may be difficult to detect (Naraoka et al. 2005). Some of the biomarkers 

that are clinically being used include troponins, creatine kinase and natriuretic peptide and will 

be discussed in the following section. 

1.7.1 Clinical cardiac biomarkers 

Cardiac troponin I (cTnI) and cardiac troponin T (cTnT) are involved in muscle contraction in 

skeletal and cardiac muscle (Scolletta et al. 2012). cTnI is cardiac muscle specific whereas cTnT 

is also expressed in injured skeletal muscles (Wallace et al. 2004). They are specific and 

sensitive standard biomarkers used to diagnose acute myocardial infarction and identify the risk 

for patients with acute coronary syndromes (Thygesen et al. 2007). They are released into the 

blood circulation and the extent of elevated serum cTnI and cTnT levels echo the magnitude of 

myocardial cell injury (Collinson et al. 2001). However, cardiac injury may not be linked with 

alterations of serum troponins where cardiac muscle cell membrane disruption is not altered 

(Jaffe et al. 2000, Thomas et al. 1999). In addition, drug-induced dysrythmias, valvular disease, 
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altered ion homeostasis and contractile dysfunction do not increase serum troponin levels 

(Wallace et al. 2004). Furthermore, during the first few hours of onset of myocardial infarction 

the troponin assays are found to be less sensitive due to their slow release from the damaged 

cardiac cells which usually peaks after 6-12 hours of the injury (Panteghini et al. 1999).  

Creatine kinase isoenzyme MB (CK-MB) is also considered to mediate cardiac injury (Scolletta 

et al. 2012). CK-MB transfers the phosphate from creatine phosphate to ADP to form ATP. The 

MB isoenzyme form is primarily found in the myocardium, however, small quantities are also 

found in skeletal muscles thereby making them not a very selective indicator for myocardial 

injury (Antman and Braunwald 2001). CK-MB have a short time window of serum elevation and 

have lower specificity for cardiac tissue than troponins (Scolletta et al. 2012). 

Another biomarker considered for the diagnosis of heart failure is the B-type natriuretic peptide 

(BNP) which is a hormone mainly synthesized by cardiac ventricular myocytes in response to 

pressure overload and volume expansion during myocardial stress or heart failure overload 

(Maisel et al. 2008, Vanderheyden et al. 2004). BNP release is directly correlated with the 

degree of ventricular wall tension (Luchner et al. 1998) but various studies have shown that it is 

not sensitive enough to be used in the diagnostic screening as its levels have been shown to vary 

quite considerably depending on the physiological state of the patients (Nousiainen et al. 2002).  

1.7.2 Micro RNA 

 

MicroRNAs (miRNAs) are a class of small non-coding RNAs that mediate post-transcriptional 

gene silencing (Li 2000). They are generally regarded as negative regulators of gene expression 

that inhibit translation and/or promote messenger RNA (mRNA) degradation by base pairing to 

complementary sequences within protein-coding mRNA transcripts (Kiriakidou et al. 2007). 
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This regulation is complex as one miRNA may target various mRNAs whereas one mRNA itself 

can be regulated by several miRNAs which can cause difficulties in comparing results from a 

single tissue with an entire organ/body (Thum et al. 2008). As miRNAs are able to regulate gene 

expression, they have been found to play important regulatory roles in various biological 

processes such as apoptosis, cell differentiation and cell proliferation (Quiat and Olson 2013). 

miRNAs have been shown to be important gene expression regulators in heart development, 

function and cardiac pathologies which has been provided by Dicer knockout studies (Bernstein 

et al. 2003, Wienholds et al. 2003). Dicer is an endonuclease in the miRNA biogenesis pathway 

required to process miRNAs in the heart (Chen et al. 2008). Dicer knockout mice hearts have 

shown dilated cardiomyopathy and heart failure (Chen et al. 2008). In addition, reduced levels of 

Dicer protein have also been reported in human failing hearts which suggest miRNAs 

involvement in dilated cardiomyopathies and heart failure in human patients (Chen et al. 2008). 

Knockout of individual miRNAs such as miRNA-1 and miRNA-2 has also been shown to lead to 

embryonic lethality with defects in heart morphogenesis in mouse heart (Zhao et al. 2007). 

1.7.3  miRNAs as biomarkers 

Changes in miRNA expression have been found to be involved in cardiomyopathies such as 

acute myocardial infarction (AMI) and have been reported by various studies. Wang et al. (2010) 

showed that miRNA-208a, miRNA-499, miRNA-1 and miRNA-133a could be detected within a 

few hours of the onset of symptoms in plasma samples of AMI patients when compared to 

control subjects. In addition, miRNA-208a expression was detected at an earlier stage than cTnI 

and miRNA-208a was detected in all AMI patients whereas cTnI was detected in 85% of the 

AMI patients. Another study by Kuwabare et al. (2011) showed increased serum levels of 
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miRNA-1 and miRNA-133a in AMI patients and also that elevated levels of miRNA-133a 

mainly originate from the injured myocardium. Furthermore, Adachi et al. (2010) showed 

significant elevated expression levels of miRNA-499 in the AMI patients.  

In addition to AMI, the expression of miRNAs has also been studied in heart failure patients by 

various groups. Corsten et al. (2010) showed a significant increase in miRNA-499 levels in acute 

heart failure patients. Another study by Voellenkle and colleagues (2010) investigated the 

miRNA expression pattern of peripheral blood mononuclear cells derived from chronic heart 

failure patients and showed down-regulation in the levels of miRNA-107, miRNA-139 and 

miRNA-142-5p (Voellenkle et al. 2010). Moreover, miRNA-142-3p and miRNA-29b levels 

were increased in heart failure patients with non-ischaemic dilated cardiomyopathy whereas 

miRNA-125b and miRNA-497 were decreased in patients with ischaemic cardiomyopathy 

(Voellenkle et al. 2010). 

These studies clearly show the potential role of miRNAs in cardiac injury and circulating 

miRNAs have been proposed as biomarkers for cardiovascular diseases (Ai et al. 2010). 

miRNAs are stable in various body fluids such as blood plasma and serum (Mitchell et al. 2008), 

urine (Dimov et al. 2009), saliva (Michael et al. 2010), amniotic fluid and pleural fluid (Gilad et 

al. 2008). Secreted miRNAs are protected from degradation by ribonucleases, RNA-binding 

proteins and lipid vehicles (Valadi et al. 2007). In addition, miRNAs are specific and their levels 

can be easily assessed making them attractive diagnostic biomarkers (Mitchell et al. 2008). They 

can be highly effective in early diagnosis of cardiovascular diseases and their usefulness may 

extend to the pre-operative outcome prediction in patients undergoing cardiac surgery thereby 

enhancing the ability of clinicians to optimally manage patients. 
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Hypotheses  

1) Treatment with selective mAChR antagonists, telenzepine dihydrochloride, AF-DX 116 

and DAU 5884 will have detrimental effects on the heart and cause an increase in the 

infarct size to risk ratio in the setting of myocardial ischaemia reperfusion injury. 

2) Telenzepine dihydrochloride, AF-DX 116 and DAU 5884 treatment will cause a decrease 

in number of viable cardiac myoctes undergoing hypoxia and reoxygenation.  

3) Telenzepine dihydrochloride, AF-DX 116 and DAU 5884 treatment will result in 

premature opening of the MPTP under conditions of oxidative stress. 

4) The natural mAChR agonist ACh and MPTP blocker CsA will protect the heart against 

ischaemia reperfusion injury and inhibit MPTP opening under conditions of oxidative 

stress.  

5) Investigating the effects of individual mAChR antagonists on signalling proteins such as 

Akt, ERK 1/2 and SAPK/JNK will provide a better understanding of the mechanism 

involved in mAChR antagonist mediated injury. 
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Chapter Two  Methods 

2.1.1 Animals 

Male Sprague-Dawley rats (300 ± 50 g body weight) were provided by the institutional animal 

house or purchased from Charles River, (Margate, UK) and had free access to standard pelleted 

diet and water. All procedures were carried out according to Home Office Guidance on the 

Operation of the Animals Act of 1986 (Stationary office, London, U.K). 

 2.1.2 Materials 

AF-DX 116 {11-[2-[(Diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-

b][1,4]benzodiazepin-6-one}, cyclosporine A, DAU 584 hydrochloride {8-Methyl-8-azabicyclo-

3-endo[3.2.1]oct-3-yl-1,4-dihydro-2-oxo-3(2H)-quinazolinecarboxylic acid ester hydrochloride}, 

ipratropium bromide {3-[3-Hydroxy-1-oxo-2-phenylpropoxy]-8-methyl-8-[1-methylethyl]-8-

azoniabicyclo[3.2.1]octane bromide}, telenzepine dihydrochloride {4,9-Dihydro-3-methyl-4-[(4-

methyl-1-piperazinyl)acetyl]-10H-thieno[3,4-b][1,5]benzodiazepin-10-one dihydrochloride}and 

acetylcholine chloride [2-(Acetyloxy)-N,N,N-trimethylethanaminium chloride] were purchased 

from Tocris Bioscience (Bristol, UK).  

AF-DX 116, DAU 5884 hydrochloride and ACh chloride were dissolved in di-methyl sulfoxide 

(DMSO) whereas ipratropium bromide and telenzepine dihydrochloride were dissolved in water. 

CsA was dissolved in ethanol, ensuring that the final concentration of ethanol was less than 

0.01% during the experiments (Shanmuganathan et al. 2005). The dissolved drugs were 

aliquotted and stored at -20
0
C. All the reagents used to prepare the buffers for the Langendorff 
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experiments and myocyte isolations were purchased from Fisher Scientific (Loughborough, 

U.K).  

Phospho-specific Akt (Ser473), total Akt, Phospho-specific ERK1/ERK2 (Thr202/Tyr204), Total 

ERK1/2, Phospho-specific SAPK/JNK (Thr183
 
/Tyr185), total SAPK/JNK, and GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase) were purchased from Cell Signalling (U.K). The 

polyacrylamide reagents and precast gradient gels (4–15% Tris-Glycine, 4-15% acrylamide) 

were purchased from Bio-rad (Hemel Hempstead, UK). MTT [(3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] was purchased from Sigma-Aldrich Company (Gillingham, UK).  

RNAlater and mirVana
TM 

miRNA Isolation Kit were purchased from Ambion (UK). TaqMan® 

MicroRNA Reverse Transcription Kit, SYBRG® Green PCR Master Mix and SYBR®Green 

RT-PCR Reagents Kit, U6 snRNA and miRNA specific primer sets were purchased from Life 

Technologies (UK). Tetramethyl rhodamine methyl ester (TMRM) was purchased from 

Molecular Probes (UK). 

2.2 Isolated perfused heart preparation 

Rats were sacrificed by cervical dislocation and the hearts were immediately placed in ice-cold 

Krebs Henseleit buffer (KHB) (NaCl 118.5mM, NaHCO3 25.0mM, KCl 4.8mM, MgSO4 1.2mM, 

KH2PO4 1.2mM, CaCl2 1.7mM and glucose 12mM). The hearts were cannulated and perfused on 

the Langendorff perfusion system at a constant pressure, and the temperature was maintained at 

37.5°C. The hearts were perfused and stabilised with KHB which was oxygenated with 95% 

oxygen and 5% carbon dioxide (pH 7.4) (Maddock et al.2002). The left atrium was cut away and 

a latex balloon was inserted into the left ventricle and inflated up to 8-10 mmHg to measure left 

ventricular developed pressure (LVDP). The latex balloon was attached to a cannula connected 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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to a physiological pressure transducer and a bridge amp connected to a Power lab device (AD 

Instruments, UK). Heart rate (HR) was calculated via analysis of a one-minute period of the 

represented electrocardiogram trace using a Bioamp amplifier (AD Instruments, UK). Coronary 

flow (CF) was measured by collecting the perfusate for one minute at regular time intervals. In 

order to induce ischaemia a surgical needle was inserted under the left main coronary artery and 

passed through a small plastic tube to form a snare. Tightening the snare induced ischaemia and 

releasing the thread induced reperfusion. At the end of reperfusion the coronary artery was 

religated and perfused with 1ml of 0.25% of Evans blue in saline to delineate the viable tissue.  

 

                                

       Figure 2.1: Ischaemic heart infused with Evans blue 

At the end of the experiment the heart was weighed and frozen at -20°C overnight. The frozen 

hearts were transversely sliced into 2mm thick slices and incubated in triphenyl tetrazolium 

chloride [TTC (1% phosphate buffer)] at 37 °C for 15 minutes. The heart slices were placed into 
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10% formalin for 4 hours. This protocol stains the viable tissue blue, red for risk and pale for 

infarct areas.  

The heart slices were traced onto acetate sheet using different colours for viable, risk and infarct 

tissue. Using an image processor and analysis program (ImageTool), total infarct area and total 

risk area were determined by tracing around the acetate sheet. The infarct size to risk ratio (%) 

was calculated by the following formula: 

Infarct size to risk ratio (%) = total infarct size/total area at risk*100  

  
Figure 2.2: Photograph of an isolated rat heart slices stained with Evans blue. The viable tissue is 

stained blue, risk tissue is stained red/pink and infarct tissue is stained pale/white.  

 

Experimental Protocol 

Hearts were stabilised for 20 minutes and subjected to 35 minutes of ischaemia followed by 

reperfusion for 120 minutes. Haemodynamic variables were recorded at regular 5 min intervals 

during stabilisation and ischaemia and every 15 min post-reperfusion. The drugs were 
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administered at the onset and throughout reperfusion. Figure 2.2 demonstrates the experimental 

protocol for Langendorff studies. 

  

Figure 2.3: Experimental protocol for Langendorff studies 

 

2.3.1 Isolation of cardiac myocytes 

Adult (3-4 months old) male Sprague-Dawley rats were sacrificed and the hearts were mounted 

on a modified constant flow (14ml/min) Langendorff apparatus and were isolated by collagenase 

digestion as previously described (Maddock et al. 2002). Isolated hearts were initially perfused 

with calcium free KHB buffer (NaCl 116.0mM, NaHCO3 25.0mM , KCl 5.4mM, MgSO4 ·7H2O 

0.4mM, glucose10mM, taurine 20mM, pyruvate 5mM and Na2HPO4·12H20 0.9 mM, pH = 7.4) 

which resulted in the cessation of heart to contraction. The buffer was oxygenated with 95 % 

oxygen and 5 % carbon dioxide at 37 C. The hearts were then perfused for 5 minutes with 

modified Krebs Henseleit digestion buffer (0.075% Worthingtons Type II Collagenase, 4.4 M 

CaCl2, pH 7.4) and the effluent was collected and reused.  

The atria were then trimmed away and the ventricles underwent mechanical and enzymatic 

digestion and incubated with fresh calcium free KH digestion buffer for 10 minutes on an orbital 

Stabilisation   Ischaemia   Reperfusion 

   (20 min)   (35 min)     (120 min) 

 

 

 
Drug administration 



73 
 

shaker. The digestion buffer was aspirated and passed through a nylon mesh and the filtrate was 

collected and centrifuged at 400 rpm for 2 minutes. The supernatants were removed using a 

sterile pipette and the pellet was resuspendend in 25ml freshly prepared restoration buffer 

(116mM NaCl, 25.0mM NaHCO3, 5.4mM KCl, 0.4mM MgSO4 .7.H2O, 10mM glucose, 20mM 

taurine, 5mM pyruvate 0.9mM Na2HPO4.12H2O, 1% BSA and 1% Pen-Strep, pH 7.4). 

The calcium concentration was gradually brought to 1.25mM and the cells were incubated 

overnight in the restoration buffer (37
o
C, 5% CO2). The viability of the cells was assessed by 

counting the number of live cardiac myocytes by visualising under a light microscope and the 

cell isolation yielding a viability of 65 % or more was used in the studies.  

2.3.2 MTT assay 

Cardiac myocytes were counted using a haemocytometer and suspended in Esumi ischaemic 

buffer (KCL 12nM, MgCl2 0.49mM , HEPES 4mM, deoxyglucose 10 mM, sodium lactate 

20mM,  37°C and pH = 6.2) to give 1 x 10
4
 cells/ml. The cells were placed in a petri dish and 

incubated at 37°C with conditions of 5% CO2 <1% O2 using a Galaxy 48R CO2 incubator (New 

Brunswick, Eppendorf, Stevenage, UK). Myocytes were incubated in hypoxic conditions for 2 

hours. To initiate re-oxygenation, the cells were centrifuged and re-suspended in restoration 

buffer. The cells were randomly assigned to drug treatment groups and placed in a 96 well plate. 

After 2 hours of re-oxygenation, the cells were treated with 20 µl of 3-(4, 5-Dimethylthiazol-2-

yl)-2, 5-Diphenyltetrazolium bromide (MTT) (5mg/ml in PBS) and incubated in the dark for 

another 2 hours. Lysis buffer (20 % SDS in 50 % N-N-dimethylformamide) was then added to 

all the groups and incubated at 37 °C in the dark overnight. The plate was analysed to record the 
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mean absorbance using an Anthos labtec instruments plate reader at 450nm. The percentage of 

cell viability was calculated using the relationship: 

% of cell viability = mean absorbance of drug-treated sample/ mean absorbance of control *100 

2.4 MPTP oxidative stress model protocol 

Cardiac myocytes isolated as in 2.3.1, were plated onto laminin (Sigma) coated glass cover slips 

for 2 hours. The adhered myocytes were incubated in microscopy buffer (modified Krebs-

Ringer’s buffer with 10mM HEPES 1.2 µM CaCl2) containing 3 μM tetramethylrhodamine 

methyl ester (TMRM) for 15 minutes. Cells were washed with microscopy buffer (KH buffer 

supplemented with 10mM HEPES and 1.2μM CaCl2, pH 7.4) and then incubated with or without 

the drugs for a further 10 minutes. Plates of cells were randomly assigned to one of the drug 

treatment groups. To view and analyse myocytes, cover-slips were placed on the stage of a Zeiss 

510 CLSM confocal microscope equipped with 20x objective lens (NA 1.3) and a heated stage. 

A 585-nm long pass filter allowed detection of TMRM when viewing the cells. Recording and 

analysis was facilitated by use of the Zeiss software package, LSM 2.8. Laser stimulation via 

543-nm emission line of helium-neon (HeNe) laser was used to induce oxidative stress. Prior to 

laser stimulation, the cationic TMRM selectively localises in the negatively charged inner-

membrane of the mitochondrion in a membrane potential-dependent manner. Laser stimulation 

initiates photodecomposition of TMRM thus generating mitochondrial reactive oxygen species, 

leading to disruption of the mitochondrial membrane and opening of the mitochondrial 

permeability transition pore. Depolarisation was measured as the time at which the TMRM 

started to become evenly distributed throughout the cell and is indicative of the initiation of the 
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MPTP opening. Subsequent hypercontracture of myocytes occurs shortly afterwards due to ATP 

depletion. The time to both depolarisation and hypercontracture were recorded. 

2.5 Western blot 

2.5.1  Tissue preparation 

As mentioned in section 2.2, isolated rat hearts underwent ischaemia for 35 minutes and 

reperfusion for 20 minutes in the presence and absence of drug treatment. At the end of the 

experiment the hearts were stained with 0.25% Evans blue. The hearts were removed and the risk 

area was immediately excised and the tissue was freeze clamped in liquid nitrogen. The tissue 

was stored at –80C until required. 

Being cautious not to allow the tissue to thaw approximately 50 mg of the tissue was used for 

protein extraction by placing it in sterile Eppendorff tubes containing cold (2-4C) lysis buffer 

(100mM NaCl, 10mM TRIS, 1mM ethylenediaminetetraacetic acid, (pH 8.0), 2 mM Sodium 

Pyrophosphate, 2 mM Sodium Fluoride, 2 mM ß-Glycerophosphate and complete protease 

inhibitor cocktail, (Roche, U.K) on ice. The samples were homogenised using an IKA 

Labortechnik T25 homogeniser. The homogenised sample was then centrifuged (Jouan HS 

centrifuge) at 11,000 rpm at 4C. The supernatant containing the protein suspension was 

aliquoted into sterile Eppendorff tubes and the supernatant protein concentration was measured 

using spectrophotometry at 280nM using the NanoDrop spectrophotometer (NanoDrop 

Technology, Delaware, USA). 100µl of the supernatants was removed and added to newly 

labelled Eppendorff tubes and was diluted with 100µl of Sample Buffer (Tris 100mM (pH 6.8), 

DTT 200mM, SDS 2 %, Bromophenol blue 0.2 % and glycerol 20 %) followed by heating for 10 
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minutes at 90
o
C and finally centrifuged at 11,000rpm for 30 seconds. Samples were stored at       

-20
o
C until required.  

 

2.5.2              Gel electrophoresis 

The Bio-Rad Ready Gel precast gradient gels (4–15% Tris-Glycine, 4-15% acrylamide) (Bio-

Rad, UK) were placed in the Mini-Protean II system and locked into place. The inner chamber of 

the 2 gels, was filled with approximately 125ml running buffer (glycine 14.42 g/l, SDS 1.0 g/l, 

Tris 3.0 g/l) and the combs removed. 60µg of protein containing sample buffer was loaded into 

each well. The outside chamber of the system was filled with approximately 400ml running 

buffer. Protein markers biotinylated protein ladder and dual protein ladder (Bio Rad, UK, Cell 

Signalling Technologies, UK) were assigned to 2 of the 12 available wells. The gel was run at 

130V for 90 minutes using the PowerPac 300 (Bio-Rad, UK). 

2.5.3  Transfer 

After gel electrophoresis separation, the gel was transferred to The Hybond-P Polyvinyl 

Difluoride (PVDF) membrane. The PVDF membrane was part of a Trans-Blot Turbo transfer 

pack (Bio-Rad, UK). Each pack contained Whatman filter paper and a PVDF membrane all pre-

soaked in transfer buffer (glycine 14.4g/L, tris 3g/L, 30% methanol). The Trans-Blot Turbo 

modules were assembled as per the manufactures instructions and transferred for 7 minutes at 

1.3A, 25V. The Trans-Blot Turbo modules were disassembled; polyacrylamide gels discarded 

and PVDF membrane cut to size and placed in 15ml Blocking buffer (5% Milk in Tris Buffered 

Saline with 1% Tween-20 (TBS/T)) on an orbital shaker for 1 hour. 
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2.5.4  Antibody incubation 

The membrane was then washed three times for 5 minutes in 15ml TBST. The membrane was 

then incubated with the antibody buffer (5% milk in TBST) with primary antibody of interest 

(Cell Signalling Technologies, UK) diluted 1:1000 for overnight (16 hours) on an orbital shaker. 

The membrane was washed three times for 5 minutes with 15ml TBST and incubated with 

secondary antibody diluted 1:10,000 with an anti-rabbit antibody HRP linked IgG (Cell 

Signalling, U.K) and HRP linked anti-biotin (Cell Signalling, U.K), for 1 hour at room 

temperature. The membrane was again washed three times with 15ml TBST. 

2.5.5  Detection of proteins 

A 1:1 mix of Super Signal West Femto (Pierce Biotechnologies, UK), an enhanced 

chemiluminescent (ECL), was placed on the membrane with even distribution. The membranes 

were exposed using a ChemiDoc XRS imager (Bio-Rad, UK), and the bands were detected and 

analysed using Quantity One software (v4.5.2).  

2.6  miRNA analysis 

Isolated left ventricular tissue was stored in RNAlater and stored at -20 ºC. The miRNA was 

extracted using the mirVana
TM

 miRNA Isolation Kit (Ambion, Applied Biosystems, Austin, 

Texas, USA) according to the manufacturer’s instructions. Total RNA quantity was determined 

using spectrophotometry (Nanodrop Technology, Delaware, USA) and purity assessed by using 

the Bioanalyser RNA 6000 Nano (Agilent 2100 Bioanalyser, Agilent Technologies, UK). The 

absorbance was measured at 260nm and 280nm to determine the RNA integrity number (RIN) 
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which ensures RNA quality. Reverse transcription (RT) of RNA to cDNA was performed with 

MicroRNA Reverse Transcription Kit. 

 The cDNA was synthesised from 2000ng total RNA in a 20 μl reaction volume where RT PCR 

specific primers for U6 snRNA, rno-miR-1, rno-miR-27a, rno-miR-133a and rno-miR-133b were 

used. The PCR reaction was performed with the following setup: 16 °C for 30 min, 42 °C for 30 

min and 85 °C for 5 minutes.  

Real time PCR was performed using a 7500 HT Real Time PCR sequence detection system 

(Applied Biosystems, UK) with SYBR Green PCR Master Mix with 100ng/μl cDNA synthesised 

above as template in a 20 μl reaction volume using the specific primers mentioned in the RT 

PCR reaction. The U6 snRNA was used as an internal reference gene. A non-template control 

was included in all experiments. The 7500 Fast Real Time PCR sequence detection software 

SDS version 1.4 (Applied Biosystems, UK) monitored the amplification of DNA in real time by 

optics and imaging system via the binding of SYBR Green fluorescent dye to double-stranded 

DNA. The real time PCR was performed with the following profile: 50 °C for 2 min and 95 °C 

for 10 min, followed by 40 cycles with 95 °C for 15 s and 60 °C for 1 min. 

2.7.1  Statistical analysis 

All values were expressed as mean  SEM (Standard Error of the Mean). Infarct size, cell 

viability, band densities, depolarisation and hypercontracture time were analysed using SPSS 12 

one-way analysis of variance (ANOVA) with Fishers Protected Least Significant Difference test 

for multiple comparisons. Differences were considered significant at P<0.05. Haemodynamics 

were analysed using the SPSS 12 two-way ANOVA for each time point. Differences were 
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considered significant at P values < 0.05 and were represented as; *p<0.05, **p<0.01, 

***p<0.001. 

2.7.2  miRNA data calculation and analysis 

Data was analysed with the comparative cycle threshold (CT) method (Sandhu 2010).  The 

relative amount of miRNAs were calculated with the CT values of miR-1, miR-27a, miR-133a 

and miR-133b miRNA in relation to the CT values of U6 snRNA in the sample by the formula 

X0/R0=2
CTR-CTX

, where X0 is the original amount of target miRNA, R0 is the original amount of 

U6 snRNA, CTR is the CT value for U6 snRNA, and CTX is the CT value for the target miRNA. 

miRNA data was statistically analysed using SPSS 12 t-test where differences were considered 

significant at P-values < 0.05.  

 

 

 

 

 

 

 

 

 

 

 



80 
 

Chapter Three: Investigation into the effects of ipratropium 

bromide and telenzepine dihydrochloride on heart 

undergoing ischaemia reperfusion injury and cardiac 

myocytes undergoing oxidative stress 
 

3.1 Introduction 

COPD is a collective term for airway diseases such as chronic bronchitis, emphysema and 

chronic obstructive airways disease. It is characterised by chronic inflammation in the airways 

and lung parenchyma which causes the airways to become narrow (Huiart et al. 2005).  

Surprisingly, despite COPD being the fourth largest cause of mortality worldwide, studies have 

shown that more COPD patients in the UK and USA die from cardiovascular diseases and lung 

cancer rather than respiratory failure (Maclay et al. 2007). These statistics are supported by other 

evidences such as in the Towards a Revolution in COPD Health (TORCH) study, 27% of deaths 

amongst COPD patients were due to cardiovascular disease (Calverley et al. 2007). The risk 

factors and pathophysiology of association of COPD with cardiovascular diseases has been 

mentioned in section 1.1.  

The non-selective M1-M3 antagonist, ipratropium bromide is used in the management and 

treatment of pulmonary conditions such as COPD (Restrepo 2007) and controversially the long-

term use of such anticholinergics has been shown to increase the risk of cardiovascular related 

death, myocardial infarction or stroke in COPD patients with underlying heart conditions raising 

concerns over the safety profile of these anticholinergics (Singh et al. 2008, Ogale et al. 2010). It 

is therefore imperative to understand the cardiac safety of such anticholinergics at a basic science 

level of pre-clinical research in the setting of ischaemia reperfusion injury. This pilot study 

aimed to investigate the effects of ipratropium bromide in the whole heart model of ischaemia 
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reperfusion injury and its effects on cardiac myocytes undergoing oxidative stress via a 

hypoxia/re-oxygenation protocol. In addition, the effects of Telenzepine dihydrochloride, an M1 

mAchR antagonist, on myocardium in similar conditions as mentioned above were also 

investigated.  

3.2 Methods 

3.2.1 Isolated perfused heart preparation 

Sprague-Dawley rats were sacrificed and the hearts were dissected as described in section 2.2. 

The hearts were mounted on the Langendorff system and perfused with KH buffer. LVDP, HR 

and CF were measured and recorded at regular intervals. The same procedure was followed as 

mentioned in sectioned 2.2 to calculate the percentage of infarct to risk ratio. 

3.2.2 Langendorff protocol 

The hearts were stabilised for 20 minutes and subjected to 35 minutes of ischaemia followed by 

reperfusion for 120 minutes. Haemodynamic variables were recorded at regular 5 min intervals 

during stabilisation and ischaemia and every 15 min post-reperfusion. The drugs were 

administered at the onset and throughout reperfusion.  

The hearts were randomly assigned to the following groups: a) hearts perfused with KH buffer 

alone without ischaemia (control); b) hearts perfused with KH buffer alone with 35 minutes of 

ischaemia and 120 minutes of reperfusion; c) hearts perfused with ipratropium bromide at a 

concentration range of 0.001µM-1µM; d) hearts perfused with telenzepine dihydrochloride at a 

concentration range of 0.001µM-1µM. The exact administration dosage of ipratropium bromide 

to the patient varies; but is usually administered at a range of 40µg-500µg (Boehringer Ingelheim 

1987). As the bioavailability of ipratropium bromide in humans is only 7%, we used a wide 

concentration range of 0.001µM-1µM for ipratropium bromide and telenzepine dihydrochloride 
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in our study to block mAChRs at clinically relevant concentrations. Telenzepine dihydrochloride 

is a selective M1 mAChR antagonist with a Ki value of 0.94 nM. 

 

3.2.3  MTT analysis of cell viability 

Adult (3-4 months old) male Sprague-Dawley rats were sacrificed and the hearts were mounted 

on a Langendorff apparatus as mentioned in section 2.3.1 to isolate cardiac myocytes. The 

procedure mentioned in 2.3.2 was followed for the isolated cardiac myocytes to undergo hypoxia 

and re-oxegenation. The drugs were administered at the start of re-oxygenation. The cells were 

randomly assigned to the following treatment groups: a) Cells under normoxic conditions not 

undergoing hypoxia and re-oxygenation; b) Cells undergoing hypoxia for 2 hours and 2 hours of 

re-oxygenation; c) Cells treated with ipratropium bromide for 2 hours at a concentration range of 

0.01µM-1µM administered at the onset of re-oxygenation following 2 hours of hypoxia; d) Cells 

treated with telenzepine dihydrochloride for 2 hours at a concentration range of 0.01µM-1µM 

administered at the onset of re-oxygenation following 2 hours of hypoxia. The % cell viability of 

samples was calculated as mentioned in section 2.3.2. 

3.2.4  Statistical analysis 

All values were expressed as mean  SEM. Infarct size and cell viability were tested for group 

differences using one way ANOVA with Fishers post hoc tests using SPSS 12. Haemodynamics 

were assessed for statistical difference using two way ANOVA with Fishers post hoc tests using 

SPSS 12. Differences were considered significant at P≤0.05. 
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3.3 Results 

3.3.1  The effects of ipratropium bromide on the infarct size from the 

Langendorff experiments under normoxic conditions 

Whole heart Langendorff model was used to calculate the infarct size to risk ratio under 

normoxic conditions. The infarct size was calculated as mentioned in section 2.2. The hearts 

were perfused with KH buffer and ipratropium bromide (0.001µM-1µM) for 175 minutes. The 

results showed that the administration of ipratropium bromide had no significant effect on the 

infarct size as compared with the normoxic control (Figure 3.1). 

Figure 3.1: The effects of no drug treatment (control) and ipratropium bromide (0.001µM-1µM) on 

the infarct size as a percentage of area at risk. Results are expressed as mean ± SEM (n=6). 

 

3.3.2  The effects of ipratropium bromide on the infarct size from the 

Langendorff experiments undergoing ischaemia reperfusion injury 

The hearts were subjected to 35 minutes of ischaemia and 120 minutes of reperfusion as 

mentioned in section 2.2. Ipratropium bromide (0.001µM-1µM) was administered at the onset of 
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reperfusion. The results (figure 3.2) showed that ipratropium bromide (0.01µM-1µM) 

significantly increased the infarct size to risk ratio of the myocardium in a dose dependent 

manner as compared to the IR control [57 ± 2.1% (ipratropium, 0.01µM) vs. 47 ± 2.1% (control), 

p<0.05, 61 ± 2.49% (ipratropium, 0.1µM) vs. 47 ± 2.1 % (control), p<0.01, 67 ± 3.94 % 

(ipratropium, 1µM) vs. 47 ± 2.1 % (control), p<0.001]. The results are shown in Table 3.1.  

Table 3.1: The effect of ipratropium bromide (0.001µM-1µM) on the infarct size to risk ratio as 

compared to the IR control and the relative SEM values (n=6). 

    

 

 
Figure 3.2: The effects of no drug treatment (IR control) and ipratropium bromide (0.001µM-1µM) 

on the infarct size to risk ratio in the whole heart Langendorff model of ischaemia reperfusion 

injury. Results are expressed as mean ± SEM (n=6). *p<0.05, **p<0.01 and ***p<0.001. 

 

 

Group Control 0.001µM 0.01µM 0.1µM 1µM

Infarct size (%) 47 50.75 57 61 67

SEM 2.1 2.59 2.1 2.49 3.94
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3.3.3  The effects of ipratropium bromide on the viability of isolated cardiac 

myoctes under normoxic conditions 

Cardiac myocytes were isolated following the protocol mentioned in section 2.3.1 and were 

incubated with MTT in the dark for 2 hours to assess the cell viability. The reduction of MTT to 

formazan by mitochondrial dehydrogenase and corresponding colour change was indicative of 

the relative changes in myocytes survival and determined the cell viability. Prior to MTT 

incubation, the myocytes used for the normoxic control were treated without any drug and kept 

under normoxic conditions for 4 hours in 6 wells of a 96 well flat-bottomed microtitre plate. The 

other wells were used for the myocytes being treated with the desired concentrations of 

ipratropium bromide (0.01µM-1µM) and incubated for 4 hours.  The results (figure 3.3) showed 

that the cardiac myocytes being treated with ipratropium bromide (0.01µM-1µM) did not show 

any significant change in cell viability under normoxic conditions. 

Figure 3.3: MTT analysis showing cell viability of cardiac myocytes under normoxic 

conditions in response to increasing concentrations of ipratropium bromide (0.01µM-1µM). 

Results are expressed as mean ± SEM (n=4). 
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3.3.4  The effects of ipratropium bromide on the viability of isolated cardiac 

myoctes under hypoxia and re-oxygenation 

The effects of the increasing concentration of ipratropium bromide (0.01µM-1µM) on cardiac 

myocytes undergoing 2 hours of hypoxia and 2 hours of re-oxygenation were investigated. Drugs 

were added at the onset of re-oxygenation. As demonstrated in figure 3.4, the results showed that 

ipratropium bromide (1µM) resulted in a significant reduction in the number of viable cells when 

compared to the control i.e. myocytes not treated with drug and undergoing hypoxia and re-

oxygenation (64.27 ± 5.71 % vs. 100 ± 0%, p<0.001). 

Figure 3.4: MTT analysis showing cell viability of cardiac myocytes undergoing 2 hours of hypoxia 

and 2 hours of re-oxygenation in response to increasing concentrations of ipratropium bromide 

(0.01µM-1µM). Drugs were added at the onset of re-oxygenation. Results are expressed as mean ± 

SEM (n=4). ***p<0.001 vs. Control. 

 

3.3.5  The effects of ipratropium bromide on the haemodynamics of the heart  

The haemodynamics including the LVDP, HR and CF of the hearts from the Langendorff model 

were recorded and measured. LVDP was calculated as the difference between the systolic 
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pressure and the diastolic pressure and presented as a percentage of mean stabilisation. The 

effects of ipratropium bromide (0.01µM-1µM) treatment on the LVDP are shown in figure 3.5. 

The results showed that the ipratropium (0.01µM-1µM) treatment did not cause a significant 

change in the LVDP as compared to the untreated control.   

Figure 3.5: The effects of ipratropium bromide (0.01µM-1µM) on LVDP as a percentage of mean 

stabilisation in rat hearts subjected to 20 minutes of stabilisation, 35 minutes of ischaemia and 120 

minutes of reperfusion. Results are expressed as mean ± SEM (n=6). 

The effects of ipratropium bromide (0.01µM-1µM) treatment on the HR are shown in figure 3.6. 

The results showed that the ipratropium (0.01µM-1µM) treatment did not cause a significant 

change in the HR as compared to the untreated control undergoing 20 minutes of stabilisation, 35 

minutes of ischaemia and 120 minutes of reperfusion.   
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Figure 3.6: The effects of ipratropium bromide (0.01µM-1µM) on heart rate as a percentage of 

mean stabilisation in rat hearts subjected to 20 minutes of stabilisation, 35 minutes of ischaemia 

and 120 minutes of reperfusion. Results are expressed as mean ± SEM (n=6). 

CF was recorded by collecting the effluent for 1 minute at regular intervals; data presented are 

calculated, corrected for the heart weight and plotted as a percentage of mean stabilisation. The 

effects of ipratropium bromide (0.01µM-1µM) treatment on the coronary flow are shown in 

figure 3.7. Ipratropium (0.01µM-1µM) treatment did not cause a significant change in the 

coronary flow as compared to the untreated control undergoing 20 minutes of stabilisation, 35 

minutes of ischaemia and 120 minutes of reperfusion.   
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 Figure 3.7: The effects of ipratropium bromide (0.01µM-1µM) on coronary flow as a percentage of 

mean stabilisation in rat hearts subjected to 20 minutes of stabilisation, 35 minutes of ischaemia 

and 120 minutes of reperfusion. Results are expressed as mean ± SEM (n=6). 

 

3.3.6  The effects of telenzepine dihydrochloride on the infarct size from the 

Langendorff experiments undergoing ischaemia reperfusion injury 

The results from the Langendorff model of ischaemia reperfusion injury (3.3.2) showed that the 

non-selective M1-M3 mAChR antagonist ipratropium significantly increased myocardial injury 

when subjected to the conditions of ischaemia reperfusion injury. It therefore became imperative 

to investigate the involvement of individual mAChR subtypes in drug mediated injury by 

blocking specific mAChRs. We thereby investigated the effects of a potent M1 mAChR 

antagonist, telenzepine dihyrochloride on the whole heart from the Langendorff model of 

ischaemia reperfusion injury. The hearts were subjected to 20 minutes of stabilisation, 35 

minutes of ischaemia and 120 minutes of reperfusion with the addition of the drug at the onset of 

reperfusion. The results showed that the telenzepine dihydrochloride (0.001µM-1µM) did not 



90 
 

significantly change the infarct size to risk ratio of the myocardium as compared to the IR 

control as shown in figure 3.8. 

 
Figure 3.8: The effects of no drug treatment (IR control) and telenzepine dihydrochloride 

(0.001µM-1µM) on the infarct size to risk ratio in the whole heart Langendorff model of ischaemia 

reperfusion injury. Results are expressed as mean ± SEM (n=6).  

 

3.3.7  The effects of telenzepine dihydrochloride on the viability of isolated 

cardiac myoctes under hypoxia and re-oxygenation 

The results from the cell death assay of MTT (3.3.4) showed that the non-selective M1-M3 

mAChR antagonist ipratropium significantly decreased the cell viability of cardiac myocytes in 

conditions of hypoxia and re-oxygenation. We therefore investigated the effects of M1 mAChR 

antagonist telenzepine dihydrochloride on isolated cardiac myocytes undergoing hypoxia and re-

oxygenation. The results showed that telenzepine dihydrochloride did not cause a significant 

change in the cell viability of cardiac myocytes (figure 3.9).  
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Figure 3.9: MTT analysis showing cell viability of cardiac myocytes undergoing 2 hours of hypoxia 

and 2 hours of re-oxygenation in response to increasing concentrations of telenzepine 

dihydrochloride (0.01µM-1µM). Drugs were added at the onset of re-oxygenation. Results are 

expressed as mean ± SEM (n=4).  

 

3.4 Discussion 

Ipratropium bromide is a non-selective M1-M3 mAChR antagonist which is used as an 

anticholinergic bronchodilator and a widely administered therapy for COPD (Restrepo 2007). 

The antagonist action of ipratropium on mAChRs inhibits acetylcholine induced vagally-

mediated reflexes leading to smooth muscle relaxation which facilitates airflow and alleviates 

bronchospasm (Restrepo 2007, Tranfa et al. 1995). Despite its clinical usefulness, the long-term 

use of this anticholinergic has been shown to increase the risk of cardiovascular death, 

myocardial infarction or stroke in COPD patients with underlying heart conditions raising 

concerns over the safety profile of these anticholinergics (Singh et al. 2008, Ogale et al. 2010).  

We therefore performed this pilot study to investigate the effects of ipratropium bromide on pre-

clinical heart models under normoxic conditions and also in the setting of myocardial ischaemia 
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reperfusion injury using a Langendorff model. We also tested the effects of ipratropium on 

isolated cardiac myocytes using our MTT cell death assay under normoxic conditions and under 

oxidative stress.  

The results showed that the administration of ipratropium bromide under normoxic conditions 

has no significant effect on the heart. The findings were supported by the results from the MTT 

cell death assay which also showed that ipratropium did not decrease the cell viability in the 

isolated cardiac myocytes under normoxic conditions. However, ipratropium bromide 

significantly increased the infarct size of the heart under conditions of ischaemia and reperfusion. 

These cardiotoxic effects were also observed using MTT cell death assay which showed that 

ipratropium (1µM) significantly decreased cell viability of cardiac myocytes undergoing hypoxia 

and re-oxygenation. Ischaemia and reperfusion injury have previously been shown to cause 

inflammation in various models which may lead to tissue necrosis (Bell and Yellon 2001, De 

Perrot et al. 2003, Ng et al. 2005). In addition, previous studies have shown that reperfusion 

injury mainly occurs within the first 10-15 minutes of reperfusion which is also the time-frame 

for the opening of the MPTP (Halestrap et al. 2004, Hausenloy et al. 2005).  Studies have also 

shown that ACh is endogenously released in rat heart in the absence of neuronal activity and also 

during ischaemia in rabbit ventricles (Brown et al. 1982, Kawada et al. 2009). As ACh is well 

recognised to protect the myocardium against various cellular insults including ischaemia 

reperfusion injury (De Sarno et al. 2003, Yang et al. 2005), we can therefore postulate that the 

non-selective blockade of the M1-M3 mAChR by ipratropium could either have a direct necrotic 

effect on the myocardium via inhibiting endogenous levels of ACh or could be involved in the 

opening of the MPTP, or both. Additional studies have been under taken in our laboratory which 
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revealed that ipratropium exacerbates myocardial ischaemia reperfusion injury via apoptotic and 

necrotic associated pathways (Harvey et al. 2014).  

To understand the involvement of individual mAChRs in the injury implicated by ipratropium, 

we also investigated the effects of inhibiting the specific M1 mAChR by telenzepine 

dihydrochloride in the same models. Results showed that the administration of telenzepine 

dihydrochloride did not have any significant effect on the heart undergoing ischaemia and 

reperfusion in the Langendorff studies. Furthermore, blocking the M1 mAChR did not show a 

significant effect on the cell viability of the cardiac myocytes. Studies have shown that the M2 

mAChRs and not M1 are predominantly present in the heart of various mammalian species and 

its activation is involved with the negative chronotropic and inotropic effects (Hulme et al. 1990, 

Caulfiled 1993). Although in vitro and in vivo studies have shown that a small population of the 

M1 mAChR may exist in the mammalian heart (Leck et al. 1988, Brehm et al. 1992) their 

function is not entirely known.   

To conclude, this pilot study has shown that the non-selective M1-M3 antagonist, ipratropium 

bromide exacerbates myocardial injury in the setting of ischaemia reperfusion injury and reduces 

cell viability of isolated cardiac myocytes. We have also eliminated the possibility of the 

involvement of the M1 mAChR associated with cardiac injury in these models. This pilot study 

has laid a platform to build on to the current findings and investigate other remaining mAChRs 

i.e. M2 and M3 subtypes to clearly understand the mechanism involved in exacerbation of 

myocardial injury by using mAChR antagonists, such as ipratropium bromide. 
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Chapter Four: The M2 muscarinic acetylcholine receptor 

antagonist, AF-DX 116 exacerbates myocardial injury via 

activation of SAPK/JNK pathway 

4.1 Introduction 

The mAChRs activation by acetylcholine mediates various actions in the central and peripheral 

nervous system (CNS and PNS, respectively) (Van Koppen and Kaiser 2003).  Five distinct 

mAChR subtypes have been identified and characterised (M1-M5). The mAChRs belong to the G 

protein coupled receptor (GPCR) family and comprise seven transmembrane helices (TM1-7) 

linked by three extracellular and three intracellular loops (Lanzafame et al. 2003).  These 

receptors couple to heterotrimeric guanine nucleotide-binding proteins (G proteins) and initiate 

signal transduction. The M1-M5 receptor subtypes have been pharmacologically characterised 

and studies have identified important physiological functions of the individual subtypes in the 

CNS and PNS (Hamilton et al.2001; Zhang et al. 2002). 

The M2 receptor subtype is predominantly present in the heart of various mammalian species 

including humans and its activation is involved with the negative chronotropic and inotropic 

effects (Hulme et al. 1990, Caulfiled 1993). The M1, M3 and M5 receptor subtypes preferentially 

couple to the pertussis toxin-insensitive Gαq/11 and Gα13 subtype of G proteins leading to the 

activation of phospholipase C (PLC) and phospholipase D (PLD), while M2 and M4 subtypes 

preferentially couple to Gi and Go proteins, which lead to inhibition of adenylyl cyclase (AC) 

(Caulfield 1993).  

Muscarinic agonists and antagonists have been identified as potential novel agents for the 

treatment of various conditions including glaucoma, smooth-muscle disorders and 

gastrointestinal, respiratory and urinary diseases (Wess et al. 2007). However, non-selective 
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inhibition of multiple or all mAChRs associated with mAChR  antagonists  cause various side 

effects including dry mouth, constipation, drowsiness and blurred vision (Chapple 2000) and has 

limited the clinical use of these agents (Hulme et al. 2003). 

As mentioned in the previous chapter that mAChRs such as ipratropium bromide, a non-selective 

M1-M3 antagonist is currently being used in the management and treatment of pulmonary 

conditions such as COPD and asthma (Restrepo 2007). Ipratropium bromide results in 

bronchodilation and facilitates airflow thereby alleviating exacerbations of COPD (Tranfa et al. 

1995) and improves pulmonary function (Restrepo 2007). Despite its clinical benefits, long-term 

use of such anticholinergics has been shown to have adverse cardiovascular outcomes including 

myocardial infarction (MI), cardiovascular related death and stroke in COPD patients with 

underlying cardiovascular co-morbidities (Singh et al. 2008). According to a national study of 

COPD by the Healthcare Commission there are over a million individuals in the UK with COPD 

and over 25,000 deaths occur each year. Numerous clinical studies have indicated an increased 

cardiovascular risk associated with COPD patients having underlying ischaemic heart disease 

(IHD) that are receiving anti-cholinergic therapy (Anthonisen et al. 2002, Wedzicha et al. 2008). 

Although COPD in itself is responsible for systemic pathologies including IHD (Macnee et al. 

2008), the use of mAChR antagonists by patients with underlying heart disease is suggested to 

further exacerbate myocardial injury. Since IHD, COPD and asthma are likely to co-exist in 

patients, it is imperative to assess the efficacy and toxicity of such compounds and potential 

beneficial effects of adjunct therapies in diseased or stressed conditions such as ischaemia-

reperfusion (Gharanei et al. 2012). It may also be noted that people over 65 years of age are 

more prone to develop IHD and patients with pre-existing heart diseases are usually excluded or 

underrepresented in clinical trials, which aim to identify the efficacy and side effects of 
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treatments.  

Studies have also shown that expression of specific non-coding single stranded RNA molecules 

called microRNAs (miRNAs ) have been associated with various types of heart disease including 

arrhythmia, hypertrophy and heart failure (Divakaran and Mann 2008, Yang et al. 2007). The 

miRNAs have also been suggested to alter key signalling elements during ischaemia reperfusion 

injury. Cardiac muscle and apoptosis specific miRNAs miR-1, miR-27a, miR-133a and miR-

133b have been shown to be expressed in cardiac myocytes and are involved in development of 

the cardiac muscle structure and heart diseases and myocardial injury (Ye et al. 2010, Yeh et al. 

2012).  

In the previous chapter we have already shown that ipratropium exacerbates myocardial 

ischaemia reperfusion injury and also reduces cell viability in isolated cardiac myocytes. 

Furthermore, we showed that inhibiting the M1 mAChR by telenzepine dihydrochloride did not 

have any significant effect on the myocardium in the same models. As the M2 subtype is 

predominantly present in the mammalian heart (Roffel et al. 1987), this study therefore aims to 

determine the effects of M2 mAChR antagonist AF-DX 116 in the absence and presence of 

mAChR agonist ACh in a whole heart Langendorff model of ischaemia-reperfusion and also the 

cell viability of cardiac myocytes undergoing hypoxia and re-oxygenation. In addition, the 

effects of these compounds on cell signalling protein kinases such as p-Akt, p-ERK 1/2, and p-

SAPK/JNK are investigated. The expression levels of specific cardiac miRNAs miR-1, miR-27a, 

miR-133a and miR-133b with the treatment of M2 antagonist following ischaemia-reperfusion 

injury are also assessed. 
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4.2 Methods 

4.2.1 Isolated perfused heart preparation 

Sprague-Dawley rats were sacrificed (n=6) and the hearts were dissected as described in section 

in section 2.2. The hearts were mounted on the Langendorff system and perfused with KH 

buffer. LVDP, HR and CF were measured and recorded at regular intervals. The same procedure 

was followed as mentioned in sectioned 2.2 to calculate the percentage of infarct to risk ratio. 

4.2.2 Langendorff protocol 

The hearts were stabilised for 20 minutes and subjected to 35 minutes of ischaemia followed by 

reperfusion for 120 minutes. Haemodynamic variables were recorded at regular 5 min intervals 

during stabilisation and ischaemia and every 15 min post-reperfusion. The drugs were 

administered at the onset and throughout reperfusion.  

The hearts were randomly assigned to the following groups: a) hearts perfused with KH buffer 

alone with 35 minutes of ischaemia and 120 minutes of reperfusion (control); b) hearts perfused 

with AF-DX 116 at a concentration range of 0.001µM-3µM; c) hearts perfused with ACh 

(0.1µM); d) hearts perfused with co-administration of AF-DX 116 (1µM) and ACh (0.1µM). AF-

DX 116 is a selective M2 mAChR antagonist with a Ki value of 64nM for human recombinant 

M2 muscarinic receptors (Hammer et al. 1986). ACh is the natural mAChR agonist for the M1-

M5 subtypes (Qin et al. 2011).  

The exact administration dosage of ipratropium bromide to the patient varies; but is usually 

administered at a range of 40µg-500µg (Boehringer Ingelheim 1987). As ipratropium bromide is 

a non-selective M1-M3 mAChR antagonist with bioavailability of only 7% in humans, we aimed 
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to use a wide concentration range of 0.001µM-3µM for AF-DX 116 in our study to block the M2 

mAChR at clinically relevant comcentrations. 

 

4.2.3 MTT analysis of cell viability 

Adult (3-4 months old) male Sprague-Dawley rats were sacrificed (n=4) and the hearts were 

mounted on a Langendorff apparatus as mentioned in section 2.3.1 to isolate cardiac myocytes. 

The procedure mentioned in 2.3.2 was followed for the isolated cardiac myocytes to undergo 

hypoxia and re-oxygenation. The drugs were administered at the start of re-oxygenation. The 

cells were randomly assigned to the following treatment groups: a) Cells not treated with drug, 

and undergoing hypoxia for 2 hours and 2 hours of re-oxygenation (control); b) Cells treated 

with AF-DX 116 at a concentration range of 0.003µM-3µM administered at the onset of re-

oxygenation following 2 hours of hypoxia; c) Cells treated with ACh (0.1µM) for 2 hours at a 

concentration range of 0.01µM-1µM administered at the onset of re-oxygenation following 2 

hours of hypoxia; d) Cells treated with the co-administration of AF-DX 116 (1µM) with ACh 

(0.1µM). The % cell viability of samples was calculated as mentioned in section 2.3.2. 

 

4.2.4 Western blot analysis of the isolated perfused heart tissue following drug 

treatment 

 

Western blot analyses were carried out as described in section 2.5. The samples were randomly 

assigned to the following experimental groups: a) hearts perfused with KH buffer alone with 35 

minutes of ischaemia and 120 minutes of reperfusion (control); b) hearts perfused with AF-DX 

116 (1µM); c) hearts perfused with CsA (0.2µM); d) hearts perfused with co-administration of 

AF-DX 116 (1µM) and CsA (0.2µM). After separation, the proteins were transferred onto the 
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PVDF membrane and probed for the phosphorylated and the total form of Akt (Ser473), Erk 1/2 

(Thr202/ Tyr204) and SAPK/JNK (Thr183/Tyr185). The relative changes in the phosphorylated 

protein levels were calculated and corrected for differences in protein loading as established by 

probing for total form of Akt, ERK1/2 and SAPK/JNK 20 minutes into the reperfusion phase. 

 

4.2.5 Evaluation of miRNA of the isolated perfused heart tissue following drug 

treatment 

 

The miRNAs were isolated as described in section 2.6. Briefly, approximately 50 mg of the heart 

tissue that had previously been frozen in RNALater was homogenised using the mirVana™ 

miRNA Isolation kit (Ambion, Applied Biosystems, Austin, Texas, USA). The isolated RNA 

concentration and quality was assessed using spectrophotometry (NanoDrop Technology, 

Delaware, USA) and Agilent 2100 Bioanalyser (Agilent Technologies).  

Following successful isolation, mature miRNAs expression patterns were quantified by reverse 

transcription followed by qPCR as described in section 2.6 by using the primers miR-1, miR-

27a, miR-133a, and miR-133b. These miRNAs were investigated in drug treated hearts i.e. AF-

DX 116 (1µM) versus the control. 

 

4.2.6 Statistical analysis 

All values were expressed as mean  SEM. Infarct size and cell viability were tested for group 

differences using one way ANOVA with Fishers post hoc tests using SPSS 12. Haemodynamics 

were assessed for statistical difference using two way ANOVA with Fishers post hoc tests using 
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SPSS 12. Fold changes in the miRNA study were assessed for statistical difference using t-test. 

Differences were considered significant at P≤0.05. 

4.3 Results 

4.3.1  The effects of AF-DX 116 on the infarct size from the Langendorff 

experiments undergoing ischaemia reperfusion injury 

Whole hearts undergoing ischaemia and reperfusion were used to calculate the infarct size to risk 

ratio from the Langendorff model. The hearts were treated with a M2 mAChR antagonist, AF-DX 

116 (0.001µM-3µM) which was added at the onset of reperfusion. The infarct size was 

calculated as mentioned in section 2.1. The results (figure 4.1) showed that AF-DX 116 (0.1µM-

3µM) increased the infract size in a dose dependent manner as compared to the untreated control 

[54 ± 1.65% (AF-DX 116, 0.1µM) vs. 47 ± 2.1% (control), p<0.05, 56 ± 1.89% (AF-DX 116, 

0.3µM) vs. 47 ± 2.1 % (control), p<0.001, 63 ± 1.13% (AF-DX 116, 1µM) vs. 47 ± 2.1% 

(control), p<0.001, 58 ± 1.65% (AF-DX 116, 3µM) vs. 47 ± 2.1 % (control), p<0.001]. The data 

are shown in table 4.1. 

Table 4.1: The effect of AF-DX 116 (0.001µM-3µM) on the infarct size to risk ratio as compared to 

the IR control and the relative SEM values (n=6). 

  

Group Control 0.001µM 0.003µM 0.01µM 0.03µM 0.1µM 0.3µM 1μM 3μM

Infarct size (%) 47 48.5 49.7 51 52.5 54 56.1667 63.19 58

SEM 2.1 0.84 1.01 1.17 1.09 1.65 1.89 1.13 1.65
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 Figure 4.1: The effects of no drug treatment (IR control) and AF-DX 116 (0.001µM-3µM) on the 

infarct size to risk ratio in the whole heart Langendorff model of ischaemia reperfusion injury. 

Results are expressed as mean ± SEM (n=6). *p<0.05, and ***p<0.001 vs. Control. 

 

4.3.2  The effects of AF-DX 116 ± ACh on the infarct size from the Langendorff 

experiments undergoing ischaemia reperfusion injury 

 ACh is a natural mAChR agonist that has been shown to provide protection against various 

cellular insults including myocardial ischaemia reperfusion injury (Yang et al. 2005). We 

therefore investigated the effects of ACh (0.1µM) and its co-administration with AF-DX 116 

(1µM) on hearts undergoing ischaemia reperfuion injury. The results (figure 4.2) showed that 

ACh (0.1µM) significantly reduced the infarct size in comparison to the control [39 ± 2.11 % 

(ACh, 0.1µM) vs. 47 ± 2.09 % (control), p<0.01]. Interestingly, the observed increase in infarct 

size due to AF-DX 116 treatment (1μM) was significantly attenuated when co-administered with 

ACh (0.1µM) [50 ± 1.72 % (ACh, 0.1µM)  vs. 63.1 ± 1.13 % (AF-DX 116, 1μM), p<0.01].  
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Figure 4.2: The effects of no drug treatment (control), AF-DX 116 (1µM), ACh (0.1µM), and co-

administration of AF-DX 116 (1µM) and ACh (0.1µM) on infarct size to risk ratio in the whole 

heart Langendorff model of ischaemia reperfusion injury. Results are expressed as mean ± SEM 

(n=6). **p<0.01 and ***p<0.001 vs. Control, ###p<0.001 vs. AF-DX 116 (1μM), and ^^p<0.01 vs. 

ACh (0.1µM). 

 

4.3.3  The effects of AF-DX 116 ± ACh on the haemodynamics of the heart  

The haemodynamics including the LVDP, HR and CF of the hearts from the Langendorff model 

were recorded and measured. LVDP was calculated as the difference between systolic pressure 

and the diastolic pressure and presented as a percentage of mean stabilisation. The effects of AF-

DX 116 (1µM) ± ACh (0.1µM) treatment on the LVDP are shown in figure 4.3. The results 

showed that the AF-DX 116 (1µM), ACh (0.1µM) and co-administration of AF-DX 116 (1µM) 

with ACh (0.1µM) treatment did not cause a significant change in the LVDP as compared to the 

untreated control.    
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Figure 4.3: The effects of AF-DX 116 (1µM), ACh (0.1µM), and co-administration of AF-DX 116 

(1µM) with ACh (0.1µM) on LVDP as a percentage of mean stabilisation in rat hearts subjected to 

20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were 

added at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

The effects of AF-DX 116 (1µM) ± ACh (0.1µM) treatment on the HR are shown in figure 4.4. 

The results showed that the AF-DX 116 (1µM), ACh (0.1µM) and co-administration of AF-DX 

116 (1µM) with ACh (0.1µM) treatment did not cause a significant change in the HR as 

compared to the untreated control.    
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Figure 4.4: The effects of AF-DX 116 (1µM), ACh (0.1µM), and co-administration of AF-DX 116 

(1µM) with ACh (0.1µM) on heart rate as a percentage of mean stabilisation in rat hearts subjected 

to 20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were 

added at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

CF was recorded by collecting the effluent for 1 minute at regular intervals; data presented are 

calculated, corrected for the heart weight and plotted as a percentage of mean stabilisation. The 

effects of AF-DX 116 (1µM) ± ACh (0.1µM) treatment on the CF are shown in figure 4.5. The 

results showed that the AF-DX 116 (1µM), ACh (0.1µM) and co-administration of AF-DX 116 

(1µM) with ACh (0.1µM) treatment did not cause a significant change in the CF as compared to 

the untreated control.    
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 Figure 4.5: The effects of AF-DX 116 (1µM), ACh (0.1µM), and co-administration of AF-DX 116 

(1µM) with ACh (0.1µM) on CF as a percentage of mean stabilisation in rat hearts subjected to 20 

minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were added 

at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

 

4.3.4  The effects of AF-DX 116 on the viability of isolated cardiac myoctes 

under hypoxia and re-oxygenation 

Cardiac myocytes were isolated following the protocol described in section 2.3.1 and were 

incubated with MTT in the dark for 2 hours to assess the cell viability. The reduction of MTT to 

formazan by mitochondrial dehydrogenase and the corresponding colour change was indicative 

of the relative changes in myocyte survival and enabled to determine the cell viability. The 

effects of the increasing concentration of AF-DX 116 (0.03µM-3µM) on cardiac myocytes 

undergoing 2 hours of hypoxia and 2 hours of re-oxygenation were investigated which was 

added at the onset of re-oxygenation. The results (figure 4.6) showed that AF-DX 116 (1µM and 
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3µM) significantly reduced the cell viability as compared to the control [70.5 ± 6.69% (AF-DX 

116, 1µM) vs. 100 ± 0% (control), p<0.05, 67.5 ± 5.48% (AF-DX 116, 3µM) vs. 100 ± 0 % 

(control), p<0.05]. The data are shown in table 4.2. Although AF-DX 116 was solubilised in 

DMSO but due to time constraint a vehicle control with DMSO was not performed. 

Table 4.2:  The effect of AF-DX 116 (0.003µM-3µM) on the cell viability of cardiac myocytes 

undergoing hypoxia and re-oxygenation and the relative SEM values (n=4). 

 

 Figure 4.6: MTT analysis showing cell viability of cardiac myocytes undergoing 2 hours of hypoxia 

and 2 hours of re-oxygenation in response to increasing concentrations of AF-DX 116 (0.03µM-

3µM). Drugs were added at the onset of re-oxygenation. Results are expressed as mean ± SEM 

(n=4). *p<0.05 vs. Control. 

 

Group Control 0.003µM 0.01µM 0.03µM 0.1µM 0.3µM 1µM 3µM

Cell Viability (%) 100 98 95 98 82 81 70.5 67.5

SEM 0 4.64 5.63 5.2 4.04 4.98 6.69 5.48
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4.3.5  The effects of AF-DX 116 ± ACh on the viability of isolated cardiac 

myoctes under hypoxia and re-oxygenation 

As the M2 mAChR antagonist, AF-DX 116 (1µM and 3µM) was shown to decrease the cell 

viability of cardiac myocytes (section 4.3.4), we investigated the effects of the natural mAChR 

agonist, ACh on the cardiac myocytes undergoing hypoxia and re-oxygenation. The results 

(figure 4.7) showed that treatment with ACh (0.1µM) alone did not significantly change the 

viability of cardiac myocytes. However, co-administration of AF-DX 116 (1µM) with ACh 

(100nM) abrogated the damage caused by AF-DX 116 (1µM) [82 ± 3.55% (AF-DX 116, 1µM 

and ACh, 0.1µM) vs. 70.5 ± 6.69% (AF-DX 116), p<0.05]. The data are shown in table 4.3. 

Although ACh was solubilised in DMSO but due to time constraint a vehicle control was not 

performed. 

Table 4.3:  The effect of AF-DX 116 (1µM), ACh (0.1µM) and co-administration of AF-DX 116 

(1µM) with ACh (0.1µM) on the cell viability of cardiac myocytes undergoing hypoxia and re-

oxygenation and the relative SEM values (n=4). 

   

 

Group Control AF-DX 116 (1µM) ACh (0.1µM) AFDX (1µM) + ACh (0.1µM)

Cell Viability (%) 100 70.5 92 82

SEM 0 6.69 3.16 3.55



108 
 

Figure 4.7: MTT analysis showing cell viability of cardiac myocytes in response to the treatment of 

AF-DX 116 (1µM), ACh (0.1µM) and co-administration of AF-DX 116 (1µM) with ACh (0.1µM). 

Drugs were added at the onset of re-oxygenation. Results are expressed as mean ± SEM (n=4). 

*p<0.05 vs. Control and #p<0.05 vs. AF-DX 116 (1µM).  

 

4.3.6  The effects of AF-DX 116 treatment on the levels of signalling proteins as 

assessed by western blot analysis 

To understand  the molecular signalling mechanism via which AF-DX 116 has shown to 

exacerbate myocardial ischaemia reperfusion injury (section 4.3.1) and decreased cell viability of 

cardiac myocytes undergoing hypoxia and re-oxygenation (section 4.3.4), we performed western 

blot analysis. The effect of drug treatment on the levels of phosphorylated Akt, ERK and 

SAPK/JNK at 20 minutes into the reperfusion phase was investigated.  

Results showed that that AF-DX 116 (0.1µM, 1µM, 3µM) did not reveal any significant change 

in the levels of phosphorylated Akt as compared to the control (figure 4.8). However, 
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administration of ACh (0.1µM) at 20 minutes into reperfusion caused a significant increase in p-

Akt levels as compared to the control [205 ± 18.5 % (ACh, 0.1µM) vs. 100 ± 0% (control), 

p<0.05]. 

Figure 4.8: The effects of AF-DX 116 (0.1µM, 1µM, 3µM), ACh (0.1µM), and co-administration of 

AF-DX 116 (1µM) with ACh (0.1µM) on the levels of phosphorylated Akt at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05 vs. Control, ###p<0.001 vs. 

ACh (0.1µM). 

In addition, results also showed that AF-DX 116 (1µM, 3µM) did not reveal any significant 

change in the levels of phosphorylated ERK 1/2 as compared to the control (figure 4.9). 

However, administration of ACh (0.1µM) at 20 minutes into reperfusion caused a significant 

increase in p-ERK 1/2 levels as compared to the control [173.8 ± 6.12 % (ACh, 0.1µM) vs. 100 

± 0 % (control), p<0.05]. 
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Figure 4.9: The effects of AF-DX 116 (1µM, 3µM), ACh (0.1µM), and co-administration of AF-DX 

116 (1µM) with ACh (0.1µM) on the levels of phosphorylated ERK 1/2 at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05 vs. Control, ##p<0.01 vs. 

ACh (0.1µM). 

 

As represented in figure 4.10, western blot analyses also showed that AF-DX 116 (1µM, 3µM) 

significantly increased p-SAPK/JNK levels as compared to the control [171.9 ± 7 % (AF-DX 

116, 1µM) vs. 100 ± 0 % (control), p<0.001, 160.1 ± 3.4 % (AF-DX 116, 3µM) vs. 100 ± 0 % 

(control), p<0.001]. In addition, ACh (0.1µM) significantly reduced p-SAPK/JNK levels as 

compared to the control [72.9 ± 13% (ACh, 0.1µM) vs. 100 ± 0 % (control), p<0.05]. 

Furthermore, the co-administration of AF-DX 116 (1µM) with ACh (0.1µM) significantly 

reduced p-SAPK/JNK levels as compared to the increased levels observed by AF-DX 116 (1µM) 

alone [132.7 ± 11.9 % (AF-DX 116, 1µM and ACh, 0.1µM) vs. 171.9 ± 7 % (AF-DX 116), 

p<0.05]. The data are shown in table 4.4. 
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Table 4.4: The effect of AF-DX 116 (0.1µM, 1µM, 3µM), ACh (0.1µM) and co-administration of 

AF-DX 116 (1µM) with ACh (0.1µM) on the levels of phosphorylated SAPK/JNK at 20 minutes into 

the reperfusion phase and the relative SEM values. 

  
 

 Figure 4.10: The effects of AF-DX 116 (0.1µM, 1µM, 3µM), ACh (0.1µM), and co-administration of 

AF-DX 116 (1µM) with ACh (0.1µM) on the levels of phosphorylated SAPK/JNK at 20 minutes into 

the reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05, and ***p<0.001 vs. 

Control. ##p<0.01 vs.AFDX (1µM). 

 

 

 

Group Control AFDX (0.1µM) AFDX (1µM) AFDX (3µM) ACh (0.1µM) AFDX (1µM) + ACh (0.1µM)

p-SAPK/JNK/Total SAPK/JNK (%) 100 123.6 171.9 160.1 72.9 132.722

SEM 0 6.12 7 3.4 13 11.9
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4.3.7  The effect of AF-DX 116 on cardiac specific microRNAs 

Cardiac muscle and apoptosis specific miRNAs; miR-1, miR-27a, miR-133a and miR-133b have 

been shown to be expressed in cardiac myocytes and also involved in the development of the 

cardiac muscle structure, heart diseases and myocardial injury (Ye et al. 2010, Yeh et al. 2012). 

The expression levels of specific miRNAs normalised to U6 snRNA on hearts treated with AF-

DX 116 were investigated. Results (figure 4.11) showed that AF-DX 116 (1µM) treatment 

significantly reduced the miR-1 levels as compared to the untreated control [0.11 ± 0.06 (AF-DX 

116, 1μM) vs. 0.37 ± 0.1 (control), p<0.05, figure 4.11].  

Figure 4.11: The effect of AF-DX 116 (1μM) on the expression levels of miR-1 normalised to U6 

snRNA on rat heart following 20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes 

of reperfusion. Results are expressed as mean ± SEM (n=3). *p< 0.05 vs. Control.  

 

The results from the miRNA analysis also showed that AF-DX 116 (1µM) treatment did not lead 

to any significant change in expression levels of miR-27 and miR-133a (figure 4.12 and figure 
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4.13, respectively). However, AF-DX 116 (1µM) treatment significantly reduced the expression 

levels of miR133b as compared to the control [0.11 ± 0.08 (AF-DX 116, 1μM) vs. 0.28 ± 0.1 

(control), p < 0.05, figure 4.14)].  

Figure 4.12: The effect of AF-DX 116 (1μM) on the expression levels of miR-27a normalised to U6 

snRNA on rat heart following 20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes 

of reperfusion. Results are expressed as mean ± SEM (n=3).  
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 Figure 4.13: The effect of AF-DX 116 (1μM) on the expression levels of miR-133a normalised to U6 

snRNA on rat heart following 20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes 

of reperfusion. Results are expressed as mean ± SEM (n=3). 

 Figure 4.14: Effect of AF-DX 116 (1μM) on the expression levels of miR-133b normalised to U6 

snRNA on rat heart following 20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes 

of reperfusion. Results are expressed as mean ± SEM (n=3). 
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4.4 Discussion 

Due to the common use of non-selective muscarinic antagonists to treat various clinical 

conditions and their associated side effects, it is imperative to undertake a complete 

cardiovascular safety profile of selective muscarinic antagonists in pre-clinical and clinical 

settings. The results from this chapter thereby provide essential findings which can help to start 

to understand the effect of M2 muscarinic antagonism in the setting of I/R and the associated 

molecular mechanisms involved specifically with M2 subtype inhibition.  

The current study indicates that the M2 mAChR antagonist AF-DX 116 significantly exacerbates 

myocardial injury in a dose dependent manner in ex vivo conditions of simulated ischaemia- 

reperfusion (figure 4.1). This observation was further supported by the reduction of cell viability 

of isolated cardiac myocytes upon AF-DX 116 treatment (figure 4.6). Furthermore, AF-DX 116 

(1µM and 3µM) also activated the SAPK/JNK members of the MAPK family (figure 4.10). 

Studies have shown that JNK is activated in response to environmental stresses including heat 

shock, UV radiation, osmotic shock and inflammatory cytokines (Nishina et al. 2004). 

Myocardial ischaemia-reperfusion has also been shown to activate JNK resulting in apoptosis 

(Yin et al. 1997). Our findings confirm that blocking the M2 subtype resulted in increased levels 

of SAPK/JNK, which plays integral role in cell death. Our models of ischaemia-reperfusion and 

hypoxia/re-oxygenation have shown to replicate the model of environmental stress to the heart 

and AF-DX 116 treatment has resulted in an increased phosphorylation of SAPK/JNK. To our 

knowledge, this is the first study to show the detrimental effects of the M2 mAChR antagonist, 

AF-DX 116, in the setting of myocardial ischaemia- reperfusion injury via activating 

SAPK/JNK.  
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The differential miRNA expression profile of AF-DX 116 treatment on hearts undergoing 

ischaemia reperfusion injury was also investigated. miRNAs have been shown to be important 

gene expression regulators in heart development, function and cardiac pathologies (Bernstein et 

al. 2003, Wienholds et al. 2003). This has led to identification of miRNAs as biomarkers for 

cardiovascular diseases and myocardial injury (Ai et al. 2010).  

miR-1 is preferentially expressed in adult cardiac myocytes and skeletal muscle and has been 

shown to be involved in heart disease (Ye et al. 2010). Bostjancic et al. (2010) revealed a 

significant down-regulation of miR-1 during myocardial infarction in humans. Our results 

showed that hearts treated with AF-DX 116 (1µM) during reperfusion significantly decreased the 

expression levels of miR-1 below the levels of the control (figure 4.11). The data therefore 

supports the literature from previous findings that miR-1 is down regulated in conditions of 

myocardial infarction.  

Our results also showed that hearts treated with AF-DX 116 (1µM) during reperfusion 

significantly decreased the expression levels of miR-133b below the levels of the control (figure 

4.14). The data supports previous studies which have shown miR-133b to be significantly down-

regulated in infarcted tissue in patients with myocardial infarction as compared to healthy adult 

hearts (Bostjancic et al. 2010). Results also showed that AF-DX 116 treatment did not alter the 

expression levels of miR-27a and 133-a. Our findings therefore suggest that alteration in miR-1 

and miR-133b expression play important regulatory roles in AF-DX 116 mediated injury. As 

alteration in miRNA expression in cardiac injury has also been well documented previously 

(Callis and Wang 2008, Kukreja et al. 2011), it makes them ideal potential biomarkers for 

cardiovascular disease and in particular for ischaemia-reperfusion injury. 
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In this study we also demonstrated that the mAChR agonist, ACh administered at the onset of 

reperfusion protected the heart from the damage caused by ischaemia- reperfusion injury and 

also reversed the AF-DX 116 induced damage to the myocardium (figure 4.2). The 

cytoprotective properties of ACh have been well documented (Critz et al. 2005, Li et al. 2011) 

and the resulting activation of muscarinic receptors has shown to provide protection against 

various cellular insults (De Sarno et al. 2003) including conditions of myocardial ischaemia-

reperfusion (Yang et al. 2005). ACh has been shown to reduce the infarct size in rats during 

ischaemia reperfusion injury (Richard et al. 1995). Our results confirm previous studies that have 

also shown the myocardial protective effects of ACh during ischaemia reperfusion injury. 

The effects of AF-DX 116 and ACh treatment on Akt and ERK signalling pathways were also 

investigated. A cascade of pro-survival kinases termed the RISK pathway which comprises of 

Akt and ERK has become an interesting target for post-conditioning. The activation of these 

kinases at the onset of reperfusion has been shown to reduce myocardial reperfusion injury 

(Hausenloy et al. 2005). Our results showed that treatment with ACh significantly increased Akt 

and ERK levels, thereby activating the RISK pathway to reduce the myocardial ischaemia 

reperfusion injury. Our data therefore supports the literature from previous findings that 

activation of Akt and ERK reduces myocardial reperfusion injury. Our results also showed that 

treatment with AF-DX 116 did not cause any significant change in the levels of Akt and ERK. 

Interestingly, co-administration of AF-DX 116 with ACh significantly inhibited the levels of Akt 

and ERK which were observed by treatment of ACh alone. As ACh has been previously shown 

to be released endogenously in rat heart in the absence of neuronal activity (Brown et al. 1982), 

AF-DX 116 could therefore be inhibiting endogenous levels of ACh acting on the M2 subtype. 
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4.5 Conclusion 

This is the first study to show that AF-DX 116 significantly exacerbates myocardial ischaemia- 

reperfusion injury via activating SAPK/JNK and down-regulating the expression levels of miR-1 

and miR-133b. On the other hand, exogenous ACh has been shown to reduce this injury by 

activating the pro-survival kinases Akt and ERK 1/2 and down-regulating levels of SAPK/JNK. 

Activation of Akt and ERK 1/2 has been shown to protect the cardiac myocytes against 

ischaemia- reperfusion injury (Fujio et al. 2000) and our results confirm previous findings. 

Interestingly, co-administration of AF-DX116 with ACh reversed the myocardial injury. This 

could be because of ACh activating other mAChRs in the heart and providing a cardio-protective 

effect.  Co-administration of AF-DX 116 with ACh reversed the myocardial injury potentially 

enhancing the ACh associated endogenous protective mechanism of AF-DX 116 induced injury. 

Further studies are therefore required for other specific mAChR subtypes in the setting of 

myocardial ischaemia reperfusion to determine whether they contribute to the cardiac side effects 

associated with muscarinic antagonists. This would help to understand the molecular mechanism 

of the adverse side effects for clinically used non-selective mAChR antagonists in more detail. 
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Chapter 5 Inhibition of the mitochondrial permeability 

transition pore with CsA prevents AF-DX 116-induced 

cardiac injury in conditions of ischaemia reperfusion injury 

5.1 Introduction 

Mitochondria play important regulatory roles in cell survival and death. The main function of 

mitochondria is to provide ATP via oxidative phosphorylation to meet high energy demands of 

the heart (Halestrap et al. 2004). However, within the mitochondria a mechanism exists which 

upon activation actively induce apoptotic and necrotic cell death. This is mediated by the 

opening of the MPTP which remains closed under normal physiological conditions but can open 

under cellular stress (Halestrap et al. 2004). MPTP is formed between the inner and outer 

mitochondrial membranes from a complex of the ANT, Cyp-D and the VDAC.  

Under normal physiological conditions, the inner mitochondrial membrane is impermeable to all 

but a few ions and metabolites, but in stress, MPTP can open allowing free passage of molecules 

< 1.5 kDa in size, disrupting the permeability barrier of the inner membrane (Crompton 1999). 

This can have deleterious effects as small molecular weight solutes can move across the 

membrane freely, exerting a colloidal osmotic pressure that causes swelling of the mitochondria 

and eventual rupture of the outer membrane, releasing pro-apoptotic factors such as cytochrome 

c to the inter-membrane space (Halestrap et al. 2004). Opening of the MPTP also allows 

permeability to protons, which results in uncoupling of oxidative phosphorylation and, 

consequently, ATP depletion. This in turn can disrupt ionic and metabolic homeostasis and 

activate degradative enzymes such as phospholipases, nucleases and proteases (Halestrap et al. 

2002). These changes can cause irreversible damage to the cell and eventually result in necrotic 

death. In addition, reperfusion results in the generation of ROS which can interact with and 
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damage various mitochondrial proteins including electron transfer chain components, and cause 

lipid peroxidation (Kroemer 2003). 

The opening of the MPTP is a critical determinant of cell death in the setting of ischaemia-

reperfusion injury (Crompton et al. 1999). It is believed to open in the first few minutes of 

reperfusion (Griffiths and Halestrap 1995). The factors responsible for increasing its opening 

include ATP depletion, oxidant stress, and high mitochondrial calcium and inorganic phosphate 

load (Hausenloy et al. 2003). These factors are similar as those during post-ischaemic 

reperfusion and there is growing evidence that MPTP opening plays an important role in the 

transition from reversible to irreversible reperfusion injury. Opening of the MPTP has been 

shown to be a critical determinant of cell death in the setting of ischaemia reperfusion injury 

(Hausenloy et al. 2003).  

Studies suggest that procedures including inhibition of the MPTP opening or an increase in 

subsequent pore closure reduce reperfusion injury (Halestrap et al. 2004). This may be either via 

pharmacological agents directly inhibiting MPTP opening or through an indirect effect 

associated with a decrease in the factors responsible for MPTP opening such as oxidative stress 

and calcium overload. Pharmacological inhibition of the MPTP opening has been shown to 

reduce myocardial injury in ischaemia reperfusion heart models to protect the heart (Hausenloy 

et al. 2002). CsA, an immunosuppressant, has been shown to protect the myocardium from 

ischaemia reperfusion injury and oxidative stress via inhibition of the MPTP (Hausenloy et al. 

2002, Hausenloy et al. 2003). CsA binds to Cyp-D and causes a conformational change in its 

morphology preventing it from binding to ANT thereby inhibiting MPTP opening (Tanveer et al. 

1996).  
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We have shown in the previous chapter that the M2 antagonist, AF-DX 116 exacerbates 

myocardial ischaemia-reperfusion injury via activating SAPK/JNK protein kinase and down-

regulating the expression levels of miR-1 and miR-133b. The aim of this study was to investigate 

the effect of AF-DX 116 on MPTP activity using isolated cardiac myocytes subjected to 

oxidative stress.  In addition, the effects of CsA will also be investigated in the isolated perfused 

rat heart calculating the infarct size, its effect on cell viability of cardiac myocytes undergoing 

hypoxia/re-oxygenation and also its effect on the MPTP. Finally, we will evaluate the effects of 

CsA in the absence and presence of AF-DX 116 on survival proteins such as Akt, ERK 1/2, and 

stress activated protein, SAPK/JNK. 

5.2 Methods 

5.2.1 Isolated perfused heart preparation 

Sprague-Dawley rats were sacrificed (n=6) and the hearts were dissected as described in section 

2.2. The hearts were mounted on the Langendorff system and perfused with KH buffer. LVDP, 

HR and CF were measured and recorded at regular intervals. The same procedure was followed 

as mentioned in sectioned 2.2 to calculate the percentage of infarct to risk ratio. 

5.2.2 Langendorff protocol 

The hearts were stabilised for 20 minutes and subjected to 35 minutes of ischaemia followed by 

reperfusion for 120 minutes. Haemodynamic variables were recorded at regular 5 min intervals 

during stabilisation and ischaemia and every 15 min post-reperfusion. The drugs were 

administered at the onset and throughout reperfusion.  

The hearts were randomly assigned to the following groups: a) hearts perfused with KH buffer 

alone with 30 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion 
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(control); b) hearts perfused with AF-DX 116 (1µM); c) hearts perfused with CsA (0.2µM); d) 

hearts perfused with co-administration of AF-DX 116 (1µM) and CsA (0.2µM). CsA has been 

previously shown to inhibit MPTP opening at a concentration of 0.2µM (Gharanei et al. 2014), 

hence we used the same concentration with AF-DX 116 (1µM) to investigate CsA induced 

protection against mAChR antagonist mediated injury.  

5.2.3 MTT analysis of cell viability 

Adult (3-4 months old) male Sprague-Dawley rats were sacrificed (n=4) and the hearts were 

mounted on a Langendorff apparatus as described in section 2.3.1 to isolate cardiac myocytes. 

The procedure described in 2.3.2 was followed for the isolated cardiac myocytes to undergo 

hypoxia and re-oxygenation. The drugs were administered at the start of re-oxygenation. The 

cells were randomly assigned to the following treatment groups: a) Cells not treated with drug, 

and undergoing hypoxia for 2 hours and 2 hours of re-oxygenation (control); b) Cells treated 

with AF-DX 116 (1µM) administered at the onset of re-oxygenation following 2 hours of 

hypoxia; c) Cells treated with CsA (0.2µM) for 2 hours administered at the onset of re-

oxygenation following 2 hours of hypoxia; d) Cells treated with the co-administration of AF-DX 

116 (1µM) with CsA (0.2µM). The % cell viability of samples was calculated as mentioned in 

section 2.3.2. 

5.2.4 Protocol to analyse MPTP opening 

 
The protocol mentioned in section 2.4 was followed to measure the MPTP opening. Briefly, 

cardiac myocytes were isolated as mentioned in section 2.3.1. The viability of the cells was 

assessed by visualising the cells under a light microscope and the cell isolation yielding a 

viability of 65 % or more was used in the studies. The cardiac myocytes were plated onto glass 

cover slips coated with laminin to allow cell adhesion and incubated in microscopy buffer 
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containing TMRM (3µM). In this assay, TMRM localises in the negatively charged inner-

membrane of the mitochondrion in a membrane potential-dependent manner where fluorescence 

is autoquenched (Perry et al. 2011).  TMRM-loaded myocytes were then continuously 

illuminated at 543 nm which results in photo-sensitisation of TMRM generating ROS. 

Accumulation of ROS induces opening of the MPTP. The opening of the MPTP allows TMRM 

to leave the mitochondria and dequench in the cytosol causing depolarisation which is observed 

as an increase in fluorescence and reflects the opening of the MPTP (Hausenloy et al. 2004, 

Storey et al. 2013). An image showing a view of TMRM-loaded ventricular myocytes under a 

confocal microscope is shown in figure 5.1. 

Sustained opening of the MPTP can lead to hypercontracture i.e. sustained shortening and 

stiffening of the cardiac myocytes which can lead to necrotic cell death (Piper et al. 2004). 

Reperfusion-induced hypercontracture can occur via two distinct mechanisms; calcium overload 

or reduced levels of cytosolic ATP (Abdallah et al. 2010). The latter is a calcium-independent 

mechanism and is also known as rigor contracture. Rigor contracture occurs when cytosolic ATP 

concentration is reduced to a low (<100 μM) but non-zero level (Altschuld et al. 1985, Nichols 

and Lederer 1990). It is believed to be caused by activation of actin-myosin interactions along 

actin filaments at which rigor bonds are already formed at some of their various crossbridge sites 

(Piper et al. 2006). Studies have shown that strategies reducing the time to hypercontracture 

protect the cardiac myocytes from various myocardial insults including ischaemia reperfusion 

injury (Gharanei et al. 2012). 

The cells were then incubated in the absence or presence of drugs for 10 minutes before being 

placed on the confocal microscope. Cells were randomly assigned to the following drug 

treatment groups: a) Cells not treated with drug (control); b) Cells treated with AF-DX 116 
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(1µM); c) Cells treated CsA (0.2µM); d) Cells treated with a combination of AF-DX 116 (1µM) 

with CsA (0.2µM).  

The cells were viewed under a Zeiss 510 CLSM confocal microscope equipped with 20x 

objective lens (NA 1.3) and a heated stage. A 585-nm long pass filter allowed detection of 

TMRM. Laser stimulation via the 543-nm emission line of a HeNe laser was used to induce 

oxidative stress. Recording and analysis was facilitated by use of the Zeiss software package, 

LSM 2.8. The time of cells to undergo both, depolarisation and hypercontracture was recorded.  

Figure 5.1: Image showing TMRM-loaded ventricular myocytes view under a confocal microscope 

at magnification x40 

 

5.2.5 Western blot analysis of the isolated perfused heart tissue following drug 

treatment 
 

Western blot analyses were carried out as mentioned in section 2.5. The samples were randomly 

assigned to the following experimental groups: a) hearts perfused with KH buffer alone with 35 
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minutes of ischaemia and 120 minutes of reperfusion (control); b) hearts perfused with AF-DX 

116 at a concentration range of 0.1µM-3µM; c) hearts perfused with ACh (0.1µM); d) hearts 

perfused with co-administration of AF-DX 116 (1µM) and ACh (0.1µM). After separation, the 

proteins were transferred onto the PVDF membrane and probed for the phosphorylated and the 

total form of Akt (Ser473), ERK 1/2 (Thr202/ Tyr204) and SAPK/JNK (Thr183/Tyr185). The relative 

changes in the phosphorylated protein levels were calculated and corrected for differences in 

protein loading as established by probing for total form of Akt, ERK1/2 and SAPK/JNK into 20 

minutes of reperfusion phase. 

 

5.2.6 Statistical analysis 

All values were expressed as mean  SEM. Infarct size and cell viability were tested for group 

differences using one way ANOVA with Fishers post hoc tests using SPSS 12. Haemodynamics 

were assessed for statistical difference using two way ANOVA with Fishers post hoc tests using 

SPSS 12. The time taken to depolarisation and hypercontracture were tested for group 

differences using one way ANOVA with Fishers post hoc tests using SPSS 12. Differences were 

considered significant at P≤0.05. 

 

5.3 Results 

5.3.1  The effects of CsA ± AF-DX 116 on the infarct size from the Langendorff 

experiments undergoing ischaemia reperfusion injury 

The effects of CsA in the absence and presence of AF-DX 116 on the infarct size of the hearts 

following ischaemia reperfusion injury were investigated. The results (figure 5.2) showed that 

hearts treated with CsA (0.2µM) had a significantly smaller infarct size as compared to the 
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untreated control [36.5 ± 1.99% (CsA, 0.2µM) vs. 47 ± 2.1% (control), p<0.001]. Also, as 

previously mentioned in section 4.3.1, AF-DX 116 (1µM) significantly increased infarct size as 

compared to the control [63.19 ± 1.13% (AF-DX 116, 1µM) vs. 47 ± 2.1 % (control), p<0.001]. 

Interestingly, the co-administration of CsA (0.2µM) with AF-DX 116 (1µM) abrogated the AF-

DX 116 induced myocardial injury [51 ± 2.28% (AF-DX 116, 1µM and CsA, 0.2µM) vs. 63.19 

± 1.13% (AF-DX 116), p<0.01]. Although CsA was dissolved in ethanol but due to time 

constraint a vehicle control with ethanol was not performed. The data are shown in table 5.1.  

Table 5.1: The effect of AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on the infarct size to risk ratio as compared to the control and the relative 

SEM values (n=6). 

  

Group Control AFDX (1μM) CsA (0.2µM) CsA (0.2µM) + AFDX (1μM)

Infarct size (%) 47 63.19 36.5 51

SEM 2.1 1.13 1.99 2.28
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 Figure 5.2: The effects of no drug treatment (control), AF-DX 116 (1µM), CsA (0.2µM), and co-

administration of AF-DX 116 (1µM) with CsA (0.2µM) on infarct size to risk ratio in the whole 

heart Langendorff model of ischaemia reperfusion injury. Results are expressed as mean ± SEM 

(n=6). ***p<0.001 vs. Control. ##p<0.01 and  ###p<0.001 vs. AF-DX 116 (1μM). 

 

5.3.2  The effects of CsA ± AFDX 116 on the haemodynamics of the heart  

The haemodynamics including the LVDP, HR and CF of the hearts from the Langendorff model 

were recorded and measured. LVDP was calculated as the difference between the systolic 

pressure and the diastolic pressure and presented as a percentage of mean stabilisation. The 

effects of CsA (0.2µM) ± AF-DX 116 (1µM) treatment on the LVDP are shown in figure 5.3. 

The results showed that the AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 

116 (1µM) with CsA (0.2µM) treatment did not cause a significant change in the LVDP as 

compared to the untreated control.    
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 Figure 5.3: The effects of AF-DX 116 (1µM), CsA (0.2µM), and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on LVDP as a percentage of mean stabilisation in rat hearts subjected to 

20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were 

added at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

The effects of AF-DX 116 (1µM) ± CsA (0.2µM) treatment on the heart rate are shown in figure 

5.4. The results showed that the AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-

DX 116 (1µM) with CsA (0.2µM) treatment did not cause a significant change in the heart rate 

as compared to the untreated control.    
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Figure 5.4: The effects of AF-DX 116 (1µM), CsA (0.2µM), and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on heart rate as a percentage of mean stabilisation in rat hearts subjected 

to 20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were 

added at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

CF was recorded by collecting the effluent for 1 minute at regular intervals; data presented are 

calculated, corrected for the heart weight and plotted as a percentage of mean stabilisation. The 

effects of AF-DX 116 (1µM) ± CsA (0.2µM) treatment on the CF are shown in figure 5.5. The 

results showed that the AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) treatment did not cause a significant change in the CF as compared to 

the untreated control.    
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 Figure 5.5: The effects of AF-DX 116 (1µM), CsA (0.2µM), and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on CF as a percentage of mean stabilisation in rat hearts subjected to 20 

minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were added 

at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

 

5.3.3  The effects of CsA on the viability of isolated cardiac myoctes under 

hypoxia and re-oxygenation 

Cardiac myocytes were isolated following the protocol mentioned in section 2.3.1 and were 

incubated with MTT in the dark for 2 hours to assess the cell viability. The reduction of MTT to 

formazan by mitochondrial dehydrogenase and corresponding colour change was indicative of 

the relative changes in myocytes survival and determined the cell viability. Figure 5.6 shows the 

effects of CsA (0.2µM) in the absence and presence of AF-DX 116 (1µM) on cardiac myocytes 

undergoing 2 hours of hypoxia and 2 hours of re-oxygenation. Drugs were added at the onset of 

re-oxygenation. As previously discussed in section 4.3.4, AF-DX 116 (1µM) significantly 

reduced the cell viability as compared to the control [70.5 ± 6.69% (AF-DX 116, 1µM) vs. 100 ± 

0% (control), p<0.05]. Treatment with CsA (0.2µM) alone did not significantly change the 
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viability of cardiac myocytes. However, co-administration of CsA (0.2µM) with AF-DX 116 

(1µM) abrogated the damage caused by AF-DX 116 (1µM) [83.35 ± 4% (AF-DX 116, 1µM and 

CsA, 0.2µM) vs. 70.5 ± 6.69% (AF-DX 116), p<0.05]. The data are shown in table 5.2.  

Table 5.2:  The effect of AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on the cell viability of cardiac myocytes undergoing hypoxia and re-

oxygenation and the relative SEM values (n=4). 

 

 

  

 Figure 5.6: MTT analysis showing cell viability of cardiac myocytes in response to the treatment of 

AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 (1µM) with CsA (0.2µM). 

Drugs were added at the onset of re-oxygenation. Results are expressed as mean ± SEM (n=4). 

*p<0.05 vs. Control and #p<0.05 vs. AF-DX 116 (1µM).  

 

 

Group Control AFDX (1μM) CsA (0.2µM) CsA (0.2µM) + AFDX (1μM)

Cell Viability (%) 100 70.5 97.7 83.35

SEM 0 6.69 4.16 4
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5.3.4  The effects of drug treatment on laser-induced oxidative stress in cardiac 

myocytes  

Laser induced oxidative stress initiates mitochondrial depolarisation which indicates MPTP 

opening. Laser stimulation initiates photodecomposition of TMRM thus generating 

mitochondrial reactive oxygen species, leading to disruption of the mitochondrial membrane. 

Depolarisation begins as a wave of increased cytosolic TMRM at one end of the cell and 

propagates throughout the cell (Hausenloy et al. 2003). Continued oxidative stress leads to 

hypercontracture of the cell which signifies ATP depletion.   

The effects of drug treatment on laser-induced oxidative stress in cardiac myocytes were 

investigated. The results (figure 5.7) showed that AF-DX 116 (1µM) significantly reduced the 

depolarisation time as compared to the control [191.8 ± 12 sec (AF-DX 116, 1µM) vs. 250.5 ± 

12.62 sec (control), p<0.001]. Our results also showed that CsA (0.2µM) treatment alone 

significantly increased the depolarisation time as compared to the control [317.5 ±13.27 sec 

(CsA, 0.2µM) vs. 250.5 ± 12.62 sec (control), p<0.001]. Co-administration of CsA (0.2µM) with 

AF-DX 116 (1µM) significantly increased the time to depolarisation as compared to AF-DX 116 

(1µM) alone [255.5 ± 16.07 sec (AF-DX 116, 1µM and CsA, 0.2µM) vs. 191.8 ± 12.04 sec (AF-

DX 116), p<0.01]. The data are shown in table 5.3. 

Table 5.3:  The effect of AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on depolarisation time in isolated rat cardiac myocytes in an oxidative 

stress model. Results are expressed as mean ± SEM (n=6). 

 

Group Control AFDX (1µM) CsA (0.2µM) AFDX (1µM) + CsA (0.2µM)

Mean depolarisation time (sec) 250.5 191.8 317.5 255.5

SEM 12.62 12.04 13.27 16.07
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Figure 5.7: The effects of AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on depolarisation time in isolated rat cardiac myocytes in an oxidative 

stress model. Results are expressed as mean ± SEM (n=6). ***p<0.001 vs. control, ##p<0.01 and ### 

= p<0.001 vs. AF-DX 116 (1μM).   

AF-DX 116 (1µM) treatment of adult rat cardiac myocytes also significantly reduced the 

hypercontracture time as compared to the control (figure 5.8).  Furthermore, CsA (0.2µM) 

treatment alone significantly increased the hypercontracture time as compared to the control 

(Table 5.4). Co-administration of CsA (0.2µM) with AF-DX 116 (1µM) significantly increased 

the time to hypercontracture as compared to AF-DX 116 (1µM) alone. The data are shown in 

table 5.4. 
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Table 5.4:  The effect of AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on hypercontracture time in isolated rat cardiac myocytes in an oxidative 

stress model. Results are expressed as mean ± SEM (n=6).

 

 

 Figure 5.8: The effects of AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on hypercontracture time in isolated rat cardiac myocytes in an oxidative 

stress model. Results are expressed as mean ± SEM (n=6). ***p<0.001 vs. control, ### = p<0.001 vs. 

AF-DX 116 (1μM). 

 

5.3.5  The effects of CsA ± AF-DX 116 on the levels of signalling proteins as 

assessed by western blot analysis 

To understand the molecular signalling mechanism via which CsA (0.2µM) was shown to reduce 

myocardial ischaemia reperfusion injury (section 5.3.1) we performed western blot analysis. The 

effects of CsA (0.2µM), in the absence and presence of AF-DX 116 (1µM), on the levels of 

Group Control AFDX (1µM) CsA (0.2µM) AFDX (1µM) + CsA (0.2µM)

Mean hypercontracture time (sec) 741.67 553.83 873.33 724

SEM 21.48 25.15 22.94 33.94
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phosphorylated Akt, ERK and SAPK/JNK at 20 minutes into the reperfusion phase were 

investigated.  

The results (figure 5.9) showed that AF-DX 116 (1µM) did not lead to any significant change in 

the levels of phosphorylated Akt as compared to the control. However, administration of CsA 

(0.2µM) at 20 minutes into reperfusion caused a significant increase in p-Akt levels as compared 

to the control [150.9 ± 17.5 % (CsA, 0.2µM) vs. 100 ± 0% (control), p<0.01]. Furthermore, the 

co-administration of CsA (0.2µM) with AF-DX 116 (1µM) led to significantly reduced p-Akt 

levels as compared to the (increased) levels observed with CsA (0.2µM) treatment alone [129.7 

± 7.2 % (CsA, 0.2µM + AF-DX 116, 1µM) vs. 150.9 ± 17.5 % (CsA, 0.2µM) p<0.01]. 

 Figure 5.9: The effects of AF-DX 116 (1µM), CsA (0.2µM), and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on the levels of phosphorylated Akt at 20 minutes into the reperfusion 

phase. Results are expressed as mean ± SEM (n=3). *p<0.05 vs. Control, #p<0.05 vs. CsA (0.2µM). 
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In addition, the results (figure 5.10) also showed that AF-DX 116 (1µM) did not lead to any 

significant change in the levels of phosphorylated ERK 1/2 as compared to the control. However, 

administration of CsA (0.2µM) at 20 minutes into reperfusion caused a significant increase in p-

ERK 1/2 levels as compared to the control [160.5 ± 10.7 % (CsA, 0.2µM) vs. 100 ± 0 % 

(control), p<0.01]. 

Figure 5.10: The effects of AF-DX 116 (1µM), CsA (0.2µM), and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on the levels of phosphorylated ERK 1/2 at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.01 vs. Control. 

 

As also observed in section 4.3.6, AF-DX 116 (1µM) led to significantly increased p-SAPK/JNK 

levels as compared to the control [171.9 ± 7% (AF-DX 116, 1µM) vs. 100 ± 0% (control) 

p<0.05]. In addition, results (figure 5.11) showed that CsA (0.2µM) led to significantly reduced 

p-SAPK/JNK levels as compared to the control [66.6 ± 6.1 % (CsA, 0.2µM) vs. 100 ± 0% 

(control) p<0.01]. Furthermore, the co-administration of AF-DX 116 (1µM) with CsA (0.2µM) 
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led to significantly reduced p-SAPK/JNK levels as compared to the (increased) levels observed 

by AF-DX 116 (1µM) alone [89.76 ± 4.09 % (CsA, 0.2µM + AF-DX 116, 1µM) vs. 171.9 ± 7% 

(AF-DX 116, 1µM) p<0.01]. The data are shown in table 5.5. 

Table 5.5:  The effect of AF-DX 116 (1µM), CsA (0.2µM) and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on expression levels of p-SAPK/JNK. Results are expressed as mean ± 

SEM (n=3). 

  

 

Figure 5.11: The effects of AF-DX 116 (1µM), CsA (0.2µM), and co-administration of AF-DX 116 

(1µM) with CsA (0.2µM) on the levels of phosphorylated SAPK/JNK at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). **p<0.01 vs. Control, ##p<0.01 

vs.AFDX (1µM). 

 

Group Control AFDX (1µM) CsA (200nM) AFDX (1µM) + CsA (200nM)

p-SAPK/JNK/Total SAPK/JNK (%) 100 171.9 66.63 89.76

SEM 0 7 6.15 4.09
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5.4 Discussion 

We have shown in the previous chapter that inhibiting the M2 mAChR by AF-DX 116 

exacerbates myocardial ischaemia- reperfusion injury via activating SAPK/JNK and down-

regulating the expression levels of miR-1 and miR-133b. Mitochondrial dysfunction has been 

shown to be an underlying cause of ischaemia-reperfusion injury (Crompton et al. 1999). It is 

involved in mediating lethal permeability changes to initiate cell death and has also been shown 

to be involved in drug induced myocardial injury by our lab (Gharanei et al. 2013). We therefore 

investigated the effect of AF-DX 116 on MPTP in isolated rat cardiac myocytes.  

The current study indicates that the M2 muscarinic receptor antagonist AF-DX 116 significantly 

exacerbates myocardial injury in ex vivo conditions of oxidative stress by premature opening of 

the MPTP. AF-DX 116 led to significantly reduced depolarisation and hypercontracture time of 

isolated cardiac myocytes resulting in cell death. As previously discussed in section 4.4, and also 

shown in this study (5.3.1), AF-DX 116 exacerbates myocardial ischaemia reperfusion injury. 

The current study indicates a novel mechanism for AF-DX 116 induced cardiotoxicity in stress 

conditions. We postulate that these observations suggest a central role of MPTP in AF-DX 116 

induced toxicity in our models of ischaemia reperfusion injury. 

Opening of the MPTP is known to be involved in various pathological conditions including 

ischaemia reperfusion injury (Yellon and Hausenloy 2007). MPTP remain closed during 

ischaemia and has been shown to open during early minutes of reperfusion when conditions that 

increase the probability of its opening prevail such as high mitochondrial calcium, build-up of 

ROS and inorganic phosphate load (Griffiths and Halestrap 1995, Di Lisa et al. 2001). These 

conditions disrupt the osmotic barrier between the mitochondria and the cytosol and upon MPTP 

opening, allow free passage of molecules smaller than 1.5KDa in size (Halestrap and Pasdois 
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2009, Yellon and Hausenloy 2007). This initiates a colloidal osmotic pressure on the 

mitochondrial membrane which leads to cell swelling and eventual rupture of the outer 

mitochondrial membrane releasing pro-apoptotic factors such as cytochrome c in the inter-

membrane space (Halestrap et al. 2004). MPTP opening also allows permeability to protons, 

which results in uncoupling of oxidative phosphorylation and consequently, ATP depletion. This 

in turn can activate degradative enzymes such as phospholipases and proteases and also disrupt 

ionic and metabolic homeostasis (Halestrap et al. 2002). These effects can lead to irreversible 

cell damage and eventually resulting in necrotic death. 

We have also demonstrated that the MPTP blocker CsA, protected the heart from the damage 

caused by ischaemia reperfusion injury alone in the Langendorff studies. CsA has been 

previously shown to reduce infarction in ischaemic reperfusion heart models thereby protecting 

the myocardium (Crompton et al. 1988, Griffiths and Halestrap 1993, Shanmuganathan et al. 

2005). Interestingly, our data demonstrates that the co-administration of CsA with AF-DX116 

abrogated the injury inflicted by AF-DX 116 during ischaemia reperfusion injury. The protective 

effects of CsA were further confirmed by the findings of the laser induced oxidative stress 

model. The results showed that CsA alone delayed the depolarisation and hypercontracture time 

of cardiac myocytes and also reversed the injury induced by AF-DX 116.  

 CsA binds with high affinity to Cyp-D, initiating a conformational change in Cyp-D 

morphology (Tanveer et al. 1996), thereby inhibiting the binding of Cyp-D to ANT and 

preventing subsequent MPTP opening (Basso et al. 2005). CsA has also been shown to 

significantly reduce infarct size in a coronary occlusion model of reperfusion injury (Hausenloy 
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et al. 2002).Taken together, these data strongly support that CsA is an effective means of 

inhibiting reperfusion injury by direct inhibition of the MPTP.  

The current study also demonstrates that CsA activates pro-survival kinases Akt and ERK1/2 and 

inhibits stress activated protein, SAPK/JNK, to protect myocardium against ischaemia 

reperfusion injury. Phosphorylation of Akt and ERK1/2 is known to be integral to the 

reperfusion injury salvage kinase pathway that converges on the MPTP (Davidson et al. 2006, 

Hausenloy and Yellon 2007). Ischaemic and pharmacological pre-conditioning is found to 

protect the heart by phosphorylation of Akt and ERK 1/2 (Hausenloy et al. 2005, Hu et al. 2008). 

Studies have also shown that CsA is involved in the activation of pro-survival proteins such as 

Akt and ERK. Han et al. (2010) showed that CsA enhances keratinocyte survival from removal 

of UVB radiation via Akt activation in HaCaT mice cells. Furthermore, Yang et al. (2003) 

studied the effect of CsA preconditioning in ischaemic rat kidneys and showed that CsA 

significantly increased ERK expression and decreased stress activated protein, JNK. CsA has 

also been shown to significantly inhibit activation of stress protein kinase, SAPK1 in human 

peripheral blood mononuclear cells (Kreideweiss et al. 1999).  

Taken together, this study provides the first evidence that AF-DX 116 induced cardiotoxicity is 

due to the opening of the MPTP in the setting of ischaemia reperfusion injury. The collective 

findings of the previous chapter and present study have provided a detailed understanding of the 

molecular mechanism involved in AF-DX 116 induced injury to the myocardium. We have also 

shown that CsA has not only protected the myocardium from the injury but has also reversed the 

damage mediated by AF-DX 116. Non-selective mAChR antagonists, such as ipratropium 

bromide are routinely used to treat respiratory conditions such as COPD; however, such 
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antagonists have been shown to exhibit severe cardiovascular risks. As the association between 

COPD and cardiovascular disease has been discussed in detail in section 1.1, these findings 

about CsA may demonstrate a potential adjunctive therapy route for such patients who may have 

underlying ischaemic heart disease. Such claims would of course warrant further investigations. 
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Chapter Six: The M3 muscarinic acetylcholine receptor 

antagonist, DAU 5884 exacerbates myocardial injury via 

activation of SAPK/JNK pathway 

 

6.1 Introduction 

We have previously shown (Chapter 4 and 5) that the inhibition of the M2 mAChR by AF-DX 

116 reveals cardiotoxic effects on the myocardium in the setting of ischaemia reperfusion injury. 

We also provided a detailed analysis of the signalling pathway proteins involved in the 

exacerbation of such an injury. As ipratropium bromide is a non-selective M1-M3 mAChR 

antagonist, it is important to study the involvement of each M1-M3 mAChR specifically. We 

have previously discussed the effects of M1 and M2 mAChRs in the setting of ischaemia 

reperfusion injury but the role of the M3 mAChR in such an injury is not known.  

The M3 mAChR plays an important role in airway function by promoting increased tension and 

thereby airway narrowing in response to ACh (Roffel et al. 1990). Furthermore, M3 mAChR 

have also been shown to be involved in the regulation of mucous secretion in submucosal glands 

(Rogers 2001) and in chemotactic mediator release in alveolar macrophages (Sato et al. 1998). 

The activation of the M3 receptors is mainly involved in smooth muscle contraction of the 

airways which leads to bronchoconstriction (Eglen et al. 1996), and is therefore an important 

therapeutic target to treat pulmonary obstructions such as COPD.  

Despite the M2 subtype being the major population of mAChRs in the heart, there is evidence 

that the M3 subtype is also present.  The M3 mAChR has been shown to be present in dog atrium 

(Shi et al. 1999; Wang et al. 1999) and also in adult rat cardiomyocytes (Ponicke et al. 2003). 

Molecular evidence suggests that M3 mAChRs are present in human myocytes. Hellgren et al. 
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(2000) and Oberhauser et al. (2001) independently showed that despite the abundant presence of 

M2 receptors, there was also an evidence of mRNA for the M3 receptors in the left and right atria, 

and right ventricles of human hearts. In addition, Wang et al. (2001) also revealed the expression 

of the M3 gene and localisation of the M3 receptor protein in the cytoplasmic membrane of the 

human atria and ventricles.   

The M3 mAChRs play an important role in the regulation and maintenance of cardiac function 

(Liu et al. 2001, Yue et al. 2006). Studies have shown that the cardiac M3 receptors are involved 

in the regulation of heart rate and cardiac repolarisation (Yang et al. 2005), modulation of 

inotropic effects (Nishimaru et al. 2000), regulation of cell-to-cell communication (Yue et al. 

2006) and in generation and maintenance of atrial fibrillation (Dobrev et al. 2002).  

To understand the involvement of individual M3 mAChR in ischaemia reperfusion injury, we 

investigated the effects of M3 mAChR antagonist DAU 5884 hydrochloride in the absence and 

presence of mAChR agonist ACh in a whole heart Langendorff model of ischaemia-reperfusion 

and also the cell viability of cardiac myocytes undergoing hypoxia and re-oxygenation. In 

addition, the effects of DAU 5884 on cell signalling protein kinases such as p-Akt, p-ERK 1/2, 

and p-SAPK/JNK were also investigated. 

6.2 Methods 

6.2.1 Isolated perfused heart preparation 

Sprague-Dawley rats were sacrificed and the hearts were dissected as described in section 2.2. 

The hearts were mounted on the Langendorff system and perfused with KH buffer. LVDP, HR 

and CF were measured and recorded at regular intervals. The same procedure was followed as 

mentioned in sectioned 2.2 to calculate the percentage of infarct to risk ratio. 
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6.2.2 Langendorff protocol 

The hearts were stabilised for 20 minutes and subjected to 35 minutes of ischaemia followed by 

reperfusion for 120 minutes. Haemodynamic variables were recorded at regular 5 min intervals 

during stabilisation and ischaemia and every 15 min post-reperfusion. The drugs were 

administered at the onset of, and throughout reperfusion.  

The hearts were randomly assigned to the following groups: a) hearts perfused with KH buffer 

alone with 35 minutes of ischaemia and 120 minutes of reperfusion (control); b) hearts perfused 

with DAU 5884 hydrochloride at a concentration range of 0.001µM-3µM; c) hearts perfused 

with ACh (0.1µM); d) hearts perfused with co-administration of DAU 5884 (1µM) and ACh 

(0.1µM). DAU 5884 is a selective M3 mAChR antagonist (Gosens et al. 2003). 

The exact administration dosage of ipratropium bromide to the patient varies; but is usually 

administered at a range of 40µg-500µg (Boehringer Ingelheim 1987). As ipratropium bromide is 

a non-selective M1-M3 mAChR antagonist with bioavailability of only 7% in humans, we aimed 

to use a wide concentration range of 0.001µM-3µM for DAU 5884 in our study to block the M3 

mAChR at clinically relevant concentrations. 

 

6.2.3 MTT analysis of cell viability 

Adult (3-4 months old) male Sprague-Dawley rats were sacrificed (n=4) and the hearts were 

mounted on a Langendorff apparatus as mentioned in section 2.3.1 to isolate cardiac myocytes. 

The procedure mentioned in 2.3.2 was followed for the isolated cardiac myocytes to undergo 

hypoxia and re-oxygenation. The drugs were administered at the start of re-oxygenation. The 

cells were randomly assigned to the following treatment groups: a) Cells not treated with drug, 

and undergoing hypoxia for 2 hours and 2 hours of re-oxygenation (control); b) Cells treated 
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with DAU 5884 at a concentration range of 0.003µM-3µM administered at the onset of re-

oxygenation following 2 hours of hypoxia; c) Cells treated with ACh (0.1µM) for 2 hours at a 

concentration range of 0.01µM-1µM administered at the onset of re-oxygenation following 2 

hours of hypoxia; d) Cells treated with the co-administration of DAU 5884 (1µM) with ACh 

(0.1µM). The % cell viability of samples was calculated as described in section 2.3.2. 

 

6.2.4 Western blot analysis of the isolated perfused heart tissue following drug 

treatment 

 

Western blot analyses were carried out as mentioned in section 2.5. The samples were randomly 

assigned in the following experimental groups: a) hearts perfused with KH buffer alone with 35 

minutes of ischaemia and 120 minutes of reperfusion (control); b) hearts perfused with DAU 

5884 (1µM); c) hearts perfused with ACh (0.1µM); d) hearts perfused with co-administration of 

DAU 5884 (1µM) and ACh (0.1µM). After separation, the proteins were transferred onto the 

PVDF membrane and probed for the phosphorylated and the total form of Akt (Ser473), ERK 1/2 

(Thr202/ Tyr204) and SAPK/JNK (Thr183/Tyr185). The relative changes in the phosphorylated 

protein levels were calculated and corrected for differences in protein loading as established by 

probing for total form of Akt, ERK 1/2 and SAPK/JNK into 20 minutes of reperfusion phase. 

6.2.5 Statistical analysis 

All values were expressed as mean  SEM. Infarct size and cell viability were tested for group 

differences using one way ANOVA with Fishers post hoc tests using SPSS 12. Haemodynamics 

were assessed for statistical difference using two way ANOVA with Fishers post hoc tests using 

SPSS 12. Differences were considered significant at P≤0.05. 
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6.3 Results 

6.3.1  The effects of DAU 5884 on the infarct size from the Langendorff 

experiments undergoing ischaemia reperfusion injury 

Whole hearts undergoing ischaemia and reperfusion were used to calculate the infarct size to risk 

ratio from the Langendorff model. The hearts were treated with a M3 mAChR antagonist, DAU 

5884 (0.001µM-3µM) which was added at the onset of reperfusion. The infarct size was 

calculated as described in section 2.2. The results as shown in figure 6.1 showed that DAU 5884 

(0.1µM-3µM) led to increased infract size in a dose dependent manner as compared to the 

untreated control [57.5 ± 1.28 % (DAU 5884, 0.1µM) vs. 47.21 ± 2.1 % (control) p<0.01, 59.1 ± 

1.78 % (DAU 5884, 0.3µM) vs. 47.21 ± 2.1 % (control) p<0.001, 67.8 ± 1.61 % (DAU 5884, 

1µM) vs. 47.21 ± 2.1 % (control) p<0.001, 61.5 ± 1.59 % (DAU 5884, 3µM) vs. 47.21 ± 2.1 % 

(control) p<0.01]. The data are shown in table 6.1. 

Table 6.1: The effect of DAU 5884 (0.001µM-3µM) on the infarct size to risk ratio as compared to 

the IR control and the relative SEM values (n=6). 

 

Group Control 0.001µM 0.003µM 0.01µM 0.03µM 0.1µM 0.3µM 1μM 3μM

Infarct size (%) 47 49.7 50.83 51.67 54 57.5 59.16 67.83 61.5

SEM 2.1 1.28 1.05 1.05 0.98 1.28 1.78 1.61 1.59
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 Figure 6.1: The effects of no drug treatment (IR control) and DAU 5884 (0.001µM-3µM) on the 

infarct size to risk ratio in the whole heart Langendorff model of ischaemia reperfusion injury. 

Results are expressed as mean ± SEM (n=6). *p<0.05, and ***p<0.001 vs. Control. 

 

6.3.2  The effects of DAU 5884 ± ACh on the infarct size from the Langendorff 

experiments undergoing ischaemia reperfusion injury 

ACh is a natural mAChR agonist that has been shown to provide protection against various 

cellular insults including myocardial ischaemia reperfusion injury (Yang et al. 2005). We 

therefore investigated the effects of ACh (0.1µM) and its co-administration with the M3 

antagonist, DAU 5884 hydrochloride (1µM) on hearts undergoing ischaemia reperfuion injury. 

The results (figure 6.2) showed that ACh (0.1µM) significantly reduced the infarct size in 

comparison to the control [39 ± 2.11 % (ACh, 0.1µM) vs. 47 ± 2.09 % (control), p<0.01]. 

Interestingly, the observed increase in infarct size due to DAU 5884 treatment (1μM) was 
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significantly attenuated when co-administered with ACh (0.1µM) [53 ± 1.72 % (ACh, 0.1µM)  

vs. 67.8 ± 1.61 % (DAU 5884, 1μM), p<0.01].  

 Figure 6.2: The effects of no drug treatment (control), DAU 5884 (1µM), ACh (0.1µM), and co-

administration of DAU 5884 (1µM) and ACh (0.1µM) on infarct size to risk ratio in the whole heart 

Langendorff model of ischaemia reperfusion injury. Results are expressed as mean ± SEM (n=6). 

**p<0.01 and ***p<0.001 vs. Control, ##P<0.01 and ###p<0.001 vs. AF-DX 116 (1μM).  

 

6.3.3  The effects of DAU 5884 ± ACh on the haemodynamics of the heart  

The haemodynamics including the LVDP, HR and CF of the hearts from the Langendorff model 

were recorded and measured. LVDP was calculated as the difference between the systolic 

pressure and the diastolic pressure and presented as a percentage of mean stabilisation. The 

effects of DAU 5884 (1µM) ± ACh (0.1µM) treatment on the LVDP are shown in figure 6.3. 

The results showed that the DAU 5884 (1µM), ACh (0.1µM) and co-administration of DAU 
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5884 (1µM) with ACh (0.1µM) treatment did not cause a significant change in the LVDP as 

compared to the untreated control.    

 Figure 6.3: The effects of DAU 5884 (1µM), ACh (0.1µM), and co-administration of DAU 5884 

(1µM) with ACh (0.1µM) on LVDP as a percentage of mean stabilisation in rat hearts subjected to 

20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were 

added at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

The effects of DAU 5884 (1µM) ± ACh (0.1µM) treatment on the HR are shown in figure 6.4. 

The results showed that the DAU 5884 (1µM), ACh (0.1µM) and co-administration of DAU 

5884 (1µM) with ACh (0.1µM) treatment did not cause a significant change in the heart rate as 

compared to the untreated control.    



150 
 

 Figure 6.4: The effects of DAU 5884 (1µM), ACh (0.1µM), and co-administration of DAU 5884 

(1µM) with ACh (0.1µM) on HR as a percentage of mean stabilisation in rat hearts subjected to 20 

minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were added 

at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

 

CF was recorded by collecting the effluent for 1 minute at regular intervals; data presented are 

calculated, corrected for the heart weight, and plotted as a percentage of mean stabilisation. The 

effects of DAU 5884 (1µM) ± ACh (0.1µM) treatment on the coronary flow are shown in figure 

6.5. The results showed that the DAU 5884 (1µM), ACh (0.1µM) and co-administration of DAU 

5884 (1µM) with ACh (0.1µM) treatment did not cause a significant change in the coronary flow 

as compared to the untreated control.    
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 Figure 6.5: The effects of DAU 5884 (1µM), ACh (0.1µM), and co-administration of DAU 5884 

(1µM) with ACh (0.1µM) on CF as a percentage of mean stabilisation in rat hearts subjected to 20 

minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were added 

at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

 

6.3.4  The effects of DAU 5884 on the viability of isolated cardiac myoctes under 

hypoxia and re-oxygenation 

Cardiac myocytes were isolated following the protocol mentioned in section 2.3.1 and were 

incubated with MTT in the dark for 2 hours to assess the cell viability. The reduction of MTT to 

formazan by mitochondrial dehydrogenase and corresponding colour change was indicative of 

the relative changes in myocytes survival and demonstrated the cell viability. The effects of the 

increasing concentration of DAU 5884 (0.03µM-3µM) on cardiac myocytes undergoing 2 hours 

of hypoxia and 2 hours of re-oxygenation were investigated. The DAU 5884 was added at the 

onset of re-oxygenation. The results (figure 6.6) showed that DAU 5884 (1µM and 3µM) led to 
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significantly reduced cell viability as compared to the control [75.32 ± 6.33 % (DAU 5884, 

1µM) vs. 100 ± 0% (control) p<0.05, 73.27 ± 5.69 % (DAU 5884, 3µM) vs. 100 ± 0% (control) 

p<0.05]. The data are shown in table 6.2. Although DAU 5884 was solubilised in DMSO but due 

to time constraint a vehicle control was not performed. 

Table 6.2:  The effect of DAU 5884 (0.003µM-3µM) on the cell viability of cardiac myocytes 

undergoing hypoxia and re-oxygenation and the relative SEM values (n=4). 

  

 

 Figure 6.6: MTT analysis showing cell viability of cardiac myocytes undergoing 2 hours of hypoxia 

and 2 hours of re-oxygenation in response to increasing concentrations of DAU 5884 (0.03µM-

3µM). Drugs were added at the onset of re-oxygenation. Results are expressed as mean ± SEM 

(n=4). *p<0.05 vs. Control. 

Group Control 0.003µM 0.01µM 0.03µM 0.1µM 0.3µM 1µM 3µM

Cell Viability (%) 100 99.5 100 98.5 83.5 80.3 75.32 73.27

SEM 0 12.65 9.28 8.09 4.31 4.45 6.33 5.69
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6.3.5  The effects of DAU 5884 ± ACh on the viability of isolated cardiac 

myoctes under hypoxia and re-oxygenation 

As the M3 mAChR antagonist, DAU 5884 (1µM and 3µM) was shown to decrease the cell 

viability of cardiac myocytes (section 6.3.4), we investigated the effects of the natural mAChR 

agonist, ACh on the cardiac myocytes undergoing hypoxia and re-oxygenation. The results 

(figure 6.7) showed that treatement with ACh (0.1µM) alone did not significantly change the 

viability of cardiac myocytes (Figure 6.7). However, co-administration of DAU 5884 (1µM) 

with ACh (100nM) abrogated the damage caused by DAU 5884 (1µM) [86.25 ± 7.16 % (DAU 

5884, 1µM + ACh, 0.1 µM) vs. 75.32 ± 6.33% (DAU 5884, 1µM) p<0.05]. The data are shown 

in table 6.3. 

Table 6.3:  The effect of DAU 5884 (1µM), ACh (0.1µM) and co-administration of DAU 5884 (1µM) 

with ACh (0.1µM) on the cell viability of cardiac myocytes undergoing hypoxia and re-oxygenation 

and the relative SEM values (n=4). 

  

Group Control DAU 5884 (1µM) ACh (0.1µM) DAU (1µM) + ACh (0.1µM)

Cell Viability (%) 100 75.32 92.62 86.25

SEM 0 6.33 3.16 7.16
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 Figure 6.7: MTT analysis showing cell viability of cardiac myocytes in response to the treatment of 

DAU 5884 (1µM), ACh (0.1µM) and co-administration of DAU 5884 (1µM) with ACh (0.1µM). 

Drugs were added at the onset of re-oxygenation. Results are expressed as mean ± SEM (n=4). 

*p<0.05 vs. Control and #p<0.05 vs. DAU 5884 (1µM). 

 

6.3.6  The effects of drug treatment on the levels of signalling proteins as 

assessed by western blot analysis 

To understand  the molecular signalling mechanism via which DAU 5884 has shown to 

exacerbate myocardial ischaemia reperfusion injury (section 6.3.1) and decreased cell viability of 

cardiac myocytes undergoing hypoxia and re-oxygenation (section 6.3.4), we performed western 

blot analysis. The effect of drug treatment on the levels of phosphorylated Akt, ERK and 

SAPK/JNK at 20 minutes into the reperfusion phase was investigated.  

Results (figure 6.8) showed that DAU 5884 (1µM, 3µM) led to significantly reduced levels of 

phosphorylated Akt as compared to the control [73.5 ± 5.73 % (DAU 5884, 1µM) vs. 100 ± 0% 

(control), p<0.05, 66.1 ± 3.06 % (DAU 5884, 3µM) vs. 100 ± 0% (control), p<0.01]. However, 

administration of ACh (0.1µM) at 20 minutes into reperfusion caused a significant increase in p-
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Akt levels as compared to the Control [205 ± 18.5 % (ACh, 0.1µM) vs. 100 ± 0% (control), 

p<0.05]. 

Table 6.4: The effect of DAU 5884 (1µM, 3µM), ACh (0.1µM) and co-administration of DAU 5884 

(1µM) with ACh (0.1µM) on the levels of phosphorylated Akt at 20 minutes into the reperfusion 

phase and the relative SEM values. 

  
 

Figure 6.8: The effects of DAU 5884 (1µM, 3µM), ACh (0.1µM), and co-administration of DAU 

5884 (1µM) with ACh (0.1µM) on the levels of phosphorylated Akt at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05 and **p<0.01 vs. Control, 

^^^ p<0.001 vs. ACh (0.1µM). 

In addition, the results (figure 6.9) also showed that the M3 antagonist, DAU 5884 (3µM) led to 

significantly reduced expression levels of phosphorylated ERK 1/2 as compared to the control 

Group Control DAU (3µM) DAU (1µM) ACh (0.1µM) DAU (1µM) + ACh (0.1µM)

p-Akt/Total Akt (%) 100 66.16 73.5 205 88.15

SEM 0 3.06 5.73 18.5 9.62
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[65.22 ± 8.05 % (DAU 5884, 3µM) vs. 100 ± 0% (control), p<0.05]. The administration of ACh 

(0.1µM) at 20 minutes into reperfusion caused a significant increase in p-ERK 1/2 levels as 

compared to the Control [173.8 ± 41.2 % (ACh, 0.1µM) vs. 100 ± 0 % (control), p<0.05]. The 

data are shown in table 6.5. 

Table 6.5: The effect of DAU 5884 (1µM, 3µM), ACh (0.1µM) and co-administration of DAU 5884 

(1µM) with ACh (0.1µM) on the levels of phosphorylated ERK 1/2 at 20 minutes into the 

reperfusion phase and the relative SEM values. 

  

 

 Figure 6.9: The effects of DAU 5884 (1µM, 3µM), ACh (0.1µM), and co-administration of DAU 

5884 (1µM) with ACh (0.1µM) on the levels of phosphorylated ERK 1/2 at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05 vs. Control, # p<0.05 vs. 

DAU 5884 (1µM). 

 

Group Control DAU (3µM) DAU (1µM) ACh (0.1µM) DAU (1µM) + ACh (0.1µM)

p-ERK/Total ERK (%) 100 65.22 81.59 173.8 107.01

SEM 0 8.05 14.73 41.2 12.62
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Western blot analyses also showed that DAU 5884 (1µM, 3µM) led to significantly increased p-

SAPK/JNK levels as compared to the control [131.75 ± 14.73 % (DAU 5884, 1µM) vs. 100 ± 

0% (control), p<0.05, 154.72 ± 8.06 % (DAU 5884, 3µM) vs. 100 ± 0% (control), p<0.01, 

(figure 6.10)]. In addition, ACh (0.1µM) led to significantly reduced p-SAPK/JNK levels as 

compared to the DAU 5884 (1µM) [100.19 ± 11.29 % (ACh, 0.1µM) vs. 131.75 ± 14.73 % 

(DAU 5884, 1µM), p<0.05]. Furthermore, the co-administration of DAU 5884 (1µM) with ACh 

(0.1µM) led to significantly reduced p-SAPK/JNK levels as compared to the increased levels 

observed by DAU 5884 (1µM) alone [95.14 ± 12.62 % (DAU 5884, 1µM + ACh, 0.1µM) vs. 

131.75 ± 14.73% (DAU 5884, 1µM), p<0.05]. The data are shown in table 6.6. 

Table 6.6: The effect of DAU 5884 (1µM, 3µM), ACh (0.1µM) and co-administration of DAU 5884 

(1µM) with ACh (0.1µM) on the levels of phosphorylated SAPK/JNK at 20 minutes into the 

reperfusion phase and the relative SEM values. 

 

 

Group Control DAU (3µM) DAU (1µM) ACh (0.1µM) DAU (1µM) + ACh (0.1µM)

p-SAPK/JNK/ Total SAPK/JNK (%) 100 154.72 131.75 100.19 95.14

SEM 0 8.06 14.73 11.29 12.62
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 Figure 6.10: The effects of DAU 5884 (1µM, 3µM), ACh (0.1µM), and co-administration of DAU 

5884 (1µM) with ACh (0.1µM) on the levels of phosphorylated SAPK/JNK at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05 and **p<0.01 vs. Control, 

# p<0.05 vs. DAU 5884 (1µM). 

 

6.4 Discussion 

The current study indicates that the M3 muscarinic receptor antagonist DAU 5884 significantly 

exacerbates myocardial injury in ex vivo conditions of simulated ischaemia- reperfusion in a dose 

dependent manner. This observation was further confirmed in isolated cardiac myocytes 

revealing a reduction in cell viability upon treatment with increasing concentrations of DAU 

5884 during the re-oxygenation period. Furthermore, DAU 5884 also led to significantly 

decreased expression levels of cell survival proteins, p-Akt and p-ERK1/2 and increased the 

stress activated proteins, SAPK/JNK. Studies have shown that JNK is activated in response to 

environmental stresses including heat shock, UV radiation, osmotic shock and inflammatory 
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cytokines (Nishina et al. 2004).  Evidence in support for activation of SAPK/JNK and its 

association with apoptosis and cell hypertrophy has been derived from various investigations in 

in vitro and in vivo systems. Wang et al. (1998) showed that activation of JNK in neonatal rat 

cardiac myocytes induced characteristic features of hypertrophy and also induced apoptosis.  

Furthermore, myocardial ischaemia-reperfusion has also been shown to activate JNK resulting in 

apoptosis (Yin et al. 1997). Activation of SAPK/JNK has also been shown to result in apoptotic 

death of primary neonatal rat cells (Luo et al. 1998). Kim et al. (2001) also showed that 

activation of SAPK/JNK leads to cell death and its inhibition suppresses cell death in human 

U937 leukaemia cells. Our results are in line with the previous findings suggest a key role of 

SAPK/JNK in the pathophysiology of cardiac injury in response to various conditions, including 

ischaemia and reperfusion injury.  

This study also showed that the M3 mAChR antagonist, DAU 5884 led to significantly decreased 

levels of Akt and ERK 1/2, and increased the ischaemia reperfusion injury and reduced cell 

viability of isolated cardiac myocytes. Roy et al. (2010) showed that inhibition of Akt and    

ERK 1/2 leads to activation of transcription factors that lead to cell cycle arrest and consequently 

apoptosis in human pancreatic cancer cells. Furthermore, Fan et al. (2014) also recently showed 

that the inhibition of Akt and ERK 1/2 leads to apoptotic cell death in in vitro and in vivo human 

lung adenocarcinoma cells. Our findings also suggest the importance of inhibition of Akt and 

ERK 1/2 in exacerbation of myocardial ischaemia reperfusion injury. To our knowledge, this is 

the first study to show the detrimental effects of the M3 mAChR antagonist, DAU 5884, in the 

setting of myocardial ischaemia- reperfusion injury and oxidative stress induced by hypoxia and 

re-oxygenation.  
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In this study we also demonstrated that the mAChR agonist ACh administered at the onset of 

reperfusion protected the heart from the damage caused by ischaemia- reperfusion injury and 

also reversed the DAU 5884-induced damage to the myocardium (Figure 6.2). The protective 

properties of ACh are well documented (Critz et al. 2005, Zang et al. 2007, Li et al. 2011) 

including in conditions of myocardial ischaemia-reperfusion (Richard et al. 1995). ACh has been 

shown to reduce the infarct size in rats during ischaemia reperfusion injury (Richard et al. 1995). 

Our results therefore confirm previous studies that have also shown the myocardial protective 

effects of ACh during ischaemia reperfusion injury.  

This study also showed that ACh protects the myocardium against ischaemia reperfusion injury 

via activation of the cell survival proteins, Akt and ERK 1/2. Akt and ERK 1/2 protein kinases 

are comprised of the RISK pathway which upon activation has been shown to reduce myocardial 

injury (Hausenloy et al. 2005). Our results showed that treatment with ACh significantly 

increased Akt and ERK levels, thereby activating the RISK pathway to reduce the myocardial 

ischaemia reperfusion injury. Our data therefore support the literature from previous findings 

that activation of Akt and ERK reduces myocardial reperfusion injury. 

Interestingly, the co-administration of ACh with DAU 5884 has abrogated the injury observed 

with DAU5884 alone. Endogenous levels of ACh have been shown to be present in primary rat 

cardiac myocytes (Dolezal and Tucek 1983). As DAU 5884 significantly increased the 

myocardial injury in the absence of exogenous ACh, we thereby postulate that DAU 5884 could 

therefore be inhibiting endogenous levels of ACh acting on the M3 subtype.  
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6.5 Conclusion 

To our knowledge, this is the first study to show that the M3 mAChR antagonist, DAU 5884 

significantly exacerbates myocardial ischaemia- reperfusion injury via activating the stress 

activated proteins SAPK/JNK and inhibiting Akt and ERK 1/2 protein kinases. On the other 

hand, exogenous ACh has shown to reduce this injury by activating the pro-survival kinases Akt 

and ERK 1/2 and down-regulating levels of SAPK/JNK. Activation of Akt and ERK 1/2 has 

been shown to protect cardiac myocytes against ischaemia- reperfusion injury (Fujio et al. 2000) 

and our results confirm these previous findings.  
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Chapter Seven: The M3 muscarinic acetylcholine receptor 

antagonist, DAU 5884 exacerbates myocardial injury via 

opening of the mitochondrial permeability transition pore 

7.1 Introduction 

In the previous chapter we showed that the M3 muscarinic receptor antagonist DAU 5884 

significantly exacerbates myocardial injury in ex vivo conditions of simulated ischaemia- 

reperfusion in a dose dependent manner via decreasing expression levels of cell survival 

proteins, p-Akt and p-ERK1/2, and increasing the stress activated proteins, SAPK/JNK. 

Mitochondrial dysfunction has been shown to be an underlying cause of ischaemia-reperfusion 

injury (Crompton et al. 1999). It is involved in mediating lethal permeability changes to initiate 

cell death and has also been shown to be involved in drug induced myocardial injury by our lab 

(Gharanei et al. 2013). As the opening of the MPTP is a critical determinant of cell death in the 

setting of ischaemia-reperfusion injury, the current study therefore investigated the effect of the 

M3 muscarinic receptor antagonist DAU 5884 on the MPTP in isolated rat cardiac myocytes.  

There are various factors that increase the opening probability of the MPTP such as ATP 

depletion, oxidative stress, and high mitochondrial calcium and inorganic phosphate load 

(Hausenloy et al. 2003). These factors are similar to those during post-ischaemic reperfusion and 

there is growing evidence that MPTP opening plays an important role in the transition from 

reversible to irreversible reperfusion injury. Opening of the MPTP has been shown to be a 

critical determinant of cell death in the setting of ischaemia reperfusion injury (Hausenloy et al. 

2003). The role of MPTP in ischaemia reperfusion injury has already been discussed in detail in 

chapter 1.6. 
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Studies suggest that procedures including inhibition of the MPTP opening or increase in 

subsequent pore closure reduce reperfusion injury (Halestrap et al. 2004). This may be either via 

direct pharmacological agents inhibiting MPTP opening or through an indirect effect associated 

with a decrease in the factors responsible for MPTP opening such as oxidative stress and calcium 

overload. Pharmacological inhibition of the MPTP opening has been shown to reduce 

myocardial injury in ischaemia reperfusion heart models to protect the heart (Hausenloy et al. 

2002). We have also previously shown in chapter 5 that the inhibition of the MPTP by reducing 

the depolarisation and hypercontracture time by CsA reduced the ischaemia reperfusion injury. 

Furthermore, the injury caused by the M2 mAChR antagonist, AF-DX 116 was also abrogated. In 

the current study, we therefore aim to investigate the involvement of M3 mAChR antagonist 

DAU 5884 in the presence and absence of the MPTP blocker CsA, on MPTP activity using 

isolated cardiac myocytes subjected to oxidative stress. We will also evaluate the effects of DAU 

5884 in the absence and presence of CsA on signaling proteins including cell survival proteins 

such as Akt, ERK 1/2, and stress activated protein, SAPK/JNK. 

7.2 Methods 

7.2.1 Isolated perfused heart preparation 

Male Sprague-Dawley rats were sacrificed (n=6) and the hearts were dissected as described in 

section 2.2. The hearts were mounted on the Langendorff system and perfused with KH buffer. 

LVDP, HR and CF were measured and recorded at regular intervals. The same procedure was 

followed as mentioned in sectioned 2.2 to calculate the percentage of infarct to risk ratio. 
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7.2.2 Langendorff protocol 

The hearts were stabilised for 20 minutes and subjected to 35 minutes of ischaemia followed by 

reperfusion for 120 minutes. Haemodynamic variables were recorded at regular 5 min intervals 

during stabilisation and ischaemia and every 15 min post-reperfusion. The drugs were 

administered at the onset of, and throughout, reperfusion.  

The hearts were randomly assigned to the following groups: a) hearts perfused with KH buffer 

alone with 30 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion 

(control); b) hearts perfused with DAU 5884 (1µM); c) hearts perfused with CsA (0.2µM); d) 

hearts perfused with co-administration of DAU 5884 (1µM) and CsA (0.2µM). CsA has been 

previously shown to inhibit MPTP opening at a concentration of 0.2µM (Gharanei et al. 2014), 

hence we used the same concentration with DAU 5884 (1µM) to investigate CsA induced 

protection against mAChR antagonist mediated injury. 

7.2.3 MTT analysis of cell viability 

Adult (3-4 months old) male Sprague-Dawley rats were sacrificed (n=4) and the hearts were 

mounted on a Langendorff apparatus as mentioned in section 2.3.1 to isolate cardiac myocytes. 

The procedure mentioned in 2.3.2 was followed for the isolated cardiac myocytes to undergo 

hypoxia and re-oxygenation. The drugs were administered at the start of re-oxygenation. The 

cells were randomly assigned to the following treatment groups: a) Cells not treated with drug 

and undergoing hypoxia for 2 hours and 2 hours of re-oxygenation (control); b) Cells treated 

with DAU 5884 (1µM) administered at the onset of re-oxygenation following 2 hours of 

hypoxia; c) Cells treated with CsA (0.2µM) for 2 hours administered at the onset of re-

oxygenation following 2 hours of hypoxia; d) Cells treated with the co-administration of DAU 
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5884 (1µM) with CsA (0.2µM). The % cell viability of samples was calculated as mentioned in 

section 2.3.2. 

 

7.2.4 Protocol to analyse MPTP opening 

 
The protocol mentioned in section 2.4 was followed to measure the MPTP opening. Briefly, 

cardiac myocytes were isolated as mentioned in section 2.3.1. The viability of the cells was 

assessed by a light microscope and the cell isolation yielding a viability of 65 % or more was 

used in the studies. The cardiac myocytes were plated onto glass cover slips coated with laminin 

to allow cell adhesion and incubated in microscopy buffer containing TMRM. TMRM is 

positively charged and selectively localises in the negatively charged inner-membrane of the 

mitochondrion in a membrane potential-dependent manner (Perry et al. 2011). The cells were 

then incubated in the absence or presence of drugs for 10 minutes before being placed on the 

confocal microscope. Cells were randomly assigned to the following drug treatment groups: a) 

Cells not treated with drug (control); b) Cells treated with DAU 5884 (1µM); c) Cells treated 

CsA (0.2µM); d) Cells treated with a combination of DAU 5884 (1µM) with CsA (0.2µM).  

The cells were viewed under a Zeiss 510 CLSM confocal microscope equipped with 20x 

objective lens (NA 1.3) and a heated stage. A 585-nm long pass filter allowed detection of 

TMRM. Laser stimulation via the 543-nm emission line of a HeNe laser was used to induce 

oxidative stress. Recording and analysis was facilitated by use of the Zeiss software package, 

LSM 2.8. The time of cells to undergo both depolarisation and hypercontracture was recorded. 
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Figure 7.1: Confocal image of an adult rat ventricular myocyte undergoing (a) depolarisation and 

(b) hypercontracture 

 

7.2.5 Western blot analysis of the isolated perfused heart tissue following drug 

treatment 
 

Western blot analyses were carried out as mentioned in section 2.5. The samples were randomly 

assigned in the following experimental groups: a) hearts perfused with KH buffer alone with 35 

minutes of ischaemia and 120 minutes of reperfusion (control); b) hearts perfused with AF-DX 

116 at a concentration range of 0.1µM-3µM; c) hearts perfused with ACh (0.1µM); d) hearts 

perfused with co-administration of AF-DX 116 (1µM) and ACh (0.1µM). After separation, the 

proteins were transferred onto the PVDF membrane and probed for the phosphorylated and the 

total form of Akt (Ser473), ERK 1/2 (Thr202/ Tyr204) and SAPK/JNK (Thr183/Tyr185). The relative 

changes in the phosphorylated protein levels were calculated and corrected for differences in 

protein loading as established by probing for total form of Akt, ERK 1/2 and SAPK/JNK into 20 

minutes of reperfusion phase. 

 

7.2.6 Statistical analysis 

All values were expressed as mean  SEM. Infarct size and cell viability were tested for group 

differences using one way ANOVA with Fishers post hoc tests using SPSS 12. Haemodynamics 

were assessed for statistical difference using two way ANOVA with Fishers post hoc tests using 

SPSS 12. The time taken to depolarisation and hypercontracture were tested for group 
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differences using one way ANOVA with Fishers post hoc tests using SPSS 12. Differences were 

considered significant at P≤0.05. 

 

7.3 Results 

7.3.1  The effects of CsA ± DAU 5884 on the infarct size from the Langendorff 

experiments undergoing ischaemia reperfusion injury 

The effects of DAU 5884, in the absence and presence of the MPTP blocker CsA, on the infarct 

size of the hearts following ischaemia reperfusion injury were investigated. The results (figure 

7.2) showed that hearts treated with CsA (0.2µM) significantly decreased the infarct size as 

compared to the untreated control [36.5 ± 1.99 % (CsA, 0.2µM) vs. 47.21 ± 2.1 % (control) 

p<0.001]. As also mentioned in section 6.3.1, DAU 5884 (1µM) significantly increased the 

infarct size as compared to the control [67.8 ± 1.61 % (DAU 5884, 1µM) vs. 47.21 ± 2.1 % 

(control) p<0.001]. Interestingly, the co-administration of CsA (0.2µM) with DAU 5884 (1µM) 

abrogated the injury observed with DAU 5884 alone [55.5 ± 1.52 % (CsA, 0.2µM, + DAU 5884, 

1µM) vs. 67.8 ± 1.61 % (DAU 5884, 1µM) p<0.01]. The data are shown in table 7.1.  

Table 7.1: The effect of DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 (1µM) 

with CsA (0.2µM) on the infarct size to risk ratio as compared to the control and the relative SEM 

values (n=6). 

  

 

 

Group Control DAU (1µM) CsA (0.2µM) CsA (0.2µM) + DAU (1µM)

Infarct size (%) 47 67.8 36.5 55.5

SEM 2.1 1.61 1.99 1.52
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 Figure 7.2: The effects of no drug treatment (control), DAU 5884 (1µM), CsA (0.2µM), and co-

administration of DAU 5884 (1µM) with CsA (0.2µM) on infarct size to risk ratio in the whole heart 

Langendorff model of ischaemia reperfusion injury. Results are expressed as mean ± SEM (n=6). 

***p<0.001 vs. Control. ##p<0.01 and  ###p<0.001 vs. DAU 5884 (1μM). 

 

7.3.2  The effects of CsA ± DAU 5884 on the haemodynamics of the heart  

The haemodynamics including the LVDP, HR and CF of the hearts from the Langendorff model 

were recorded and measured. LVDP was calculated as the difference between systolic pressure 

and the diastolic pressure and presented as a percentage of mean stabilisation. The effects of CsA 

(0.2µM) ± DAU 5884 (1µM) treatment on the LVDP are shown in figure 7.3. The results 

showed that the DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 (1µM) 

with CsA (0.2µM) treatment did not cause a significant change in the LVDP as compared to the 

untreated control.    
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 Figure 7.3: The effects of DAU 5884 (1µM), CsA (0.2µM), and co-administration of DAU 5884 

(1µM) with CsA (0.2µM) on LVDP as a percentage of mean stabilisation in rat hearts subjected to 

20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were 

added at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

The effects of DAU 5884 (1µM) ± CsA (0.2µM) treatment on the HR are shown in figure 7.4. 

The results showed that the DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 

5884 (1µM) with CsA (0.2µM) treatment did not cause a significant change in the HR as 

compared to the untreated control.    
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 Figure 7.4: The effects of DAU 5884 (1µM), CsA (0.2µM), and co-administration of DAU 5884  

(1µM) with CsA (0.2µM) on HR as a percentage of mean stabilisation in rat hearts subjected to 20 

minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. Drugs were added 

at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

CF was recorded by collecting the effluent for 1 minute at regular intervals; data presented are 

calculated, corrected for the heart weight, and plotted as a percentage of mean stabilisation. The 

effects of DAU 5884 (1µM) ± CsA (0.2µM) treatment on the CF are shown in figure 7.5. The 

results showed that the DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 

(1µM) with CsA (0.2µM) treatment did not cause a significant change in the coronary flow as 

compared to the untreated control.    
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 Figure 7.5: The effects of DAU 5884 (1µM), CsA (0.2µM), and co-administration of DAU 5884 

(1µM) with CsA (0.2µM) on coronary flow as a percentage of mean stabilisation in rat hearts 

subjected to 20 minutes of stabilisation, 35 minutes of ischaemia and 120 minutes of reperfusion. 

Drugs were added at the onset of reperfusion. Results are expressed as mean ± SEM (n=6). 

 

7.3.3  The effects of DAU 5884 ± CsA on the viability of isolated cardiac 

myoctes under hypoxia and re-oxygenation 

The effects of the MPTP blocker CsA, in the presence and absence of the M3 mAChR antagonist 

DAU 5884, on the cardiac myocytes undergoing hypoxia and re-oxygenation were investigated. 

The results showed that the administration of DAU 5884 (1μM) at the onset of re-oxygenation 

led to significantly decreased cell viability as compared to the control [65.78 ± 9.27% (DAU 

5884 1µM) vs. 100 ± 0% (Control)]. Treatment with CsA (0.2µM) alone did not significantly 

change the viability of cardiac myocytes (figure 7.6). However, co-administration of DAU 5884 
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(1µM) with CsA (0.2µM) abrogated the damage caused by DAU 5884 (1µM) alone [79.75 ± 

6.77 % (DAU 5884, 1µM + CsA, 0.2µM) vs. 65.78 ± 9.27 % (DAU 5884, 1µM) p<0.05. The 

data shown are table 7.2. 

Table 7.2:  The effect of DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 (1µM) 

with CsA (0.2µM) on the cell viability of cardiac myocytes undergoing hypoxia and re-oxygenation 

and the relative SEM values (n=4). 

  

 

 Figure 7.6: MTT analysis showing cell viability of cardiac myocytes in response to the treatment of 

DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 (1µM) with CsA (0.2µM). 

Drugs were added at the onset of re-oxygenation. Results are expressed as mean ± SEM (n=4). 

*p<0.05 vs. Control and #p<0.05 and ##p<0.01 vs. DAU 5884 (1µM). 

 

 

 

Group Control DAU (1µM) CsA (0.2µM) DAU (1µM) + CsA (0.2µM)

Cell Viability (%) 100 65.78 97.75 79.75

SEM 0 9.27 4.16 6.77
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7.3.4  The effects of drug treatment on laser-induced oxidative stress in cardiac 

myocytes  

Laser induced oxidative stress initiates mitochondrial depolarisation which indicates MPTP 

opening. Laser stimulation initiates photodecomposition of TMRM thus generating 

mitochondrial reactive oxygen species, leading to disruption of the mitochondrial membrane. 

Depolarisation begins as a wave of increased cytosolic TMRM at one end of the cell and 

propagates throughout the cell (Hausenloy et al; 2003). Continued oxidative stress leads to 

hypercontracture of the cell which signifies ATP depletion.   

The effects of the M3 mAChR antagonist DAU 5884 on laser-induced oxidative stress in cardiac 

myocytes were investigated. The results (figure 7.7) showed that DAU 5884 (1µM) significantly 

reduced the depolarisation time as compared to the control [185.5 ± 12.5 sec (DAU 5884, 1µM) 

vs. 250.5 ± 12.6 sec (control) p<0.001]. Interestingly, CsA (0.2µM) treatment alone led to a 

significantly increased depolarisation time as compared to the control [317.5 ± 13.3 sec (CsA, 

0.2µM) vs. 250.5 ± 12.6 sec (control) p<0.001]. Co-administration of CsA (0.2µM) with DAU 

5884 (1µM) led to a significantly increased time to depolarisation as compared to DAU 5884 

(1µM) alone [250.8 ± 10.1 sec (CsA, 0.2µM + DAU 5884, 1µM) vs. 185.5 ± 12.5 sec (DAU 

5884, 1µM) p<0.01. The data are shown in table 7.3. 

Table 7.3:  The effect of DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 (1µM) 

with CsA (0.2µM) on hypercontracture time in isolated rat cardiac myocytes in an oxidative stress 

model. Results are expressed as mean ± SEM (n=6). 

  

Group Control DAU 5884 (1µM) CsA (0.2µM) DAU (1µM) + CsA (0.2µM)

Mean depolarisation time (sec) 250.5 185.5 317.5 250.8

SEM 12.6 12.5 13.3 10.1
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 Figure 7.7: The effects of DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 

(1µM) with CsA (0.2µM) on depolarisation time in isolated rat cardiac myocytes in an oxidative 

stress model. Results are expressed as mean ± SEM (n=6). ***p<0.001 vs. control, ##p<0.01 and ### 

= p<0.001 vs. DAU 5884 (1μM). 

DAU 5884 (1µM) treatment of adult rat cardiac myocytes also led to a significantly reduced 

hypercontracture time as compared to the control [529 ± 44.7 sec (DAU 5884, 1µM) vs. 741.7 ± 

21.5 sec (control) p<0.001, (figure 7.8)].  Furthermore, CsA (0.2µM) treatment alone led to a 

significantly increased hypercontracture time as compared to the control [873.3 ± 22.9 sec (CsA, 

0.2µM) vs. 741.7 ± 21.5 sec (control) p<0.001]. Co-administration of CsA (0.2µM) with DAU 

5884 (1µM) led to a significantly increased time to hypercontracture as compared to DAU 5884 

(1µM) alone [706 ± 26.2 sec (DAU 5884, 1µM + CsA, 0.2µM) vs. 529 ± 44.7 sec (DAU 5884, 

1µM) p<0.001]. The data are shown in table 7.4. 
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Table 7.4:  The effect of DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 (1µM) 

with CsA (0.2µM) on hypercontracture time in isolated rat cardiac myocytes in an oxidative stress 

model. Results are expressed as mean ± SEM (n=6). 

  

 

 Figure 7.8: The effects of DAU 5884 (1µM), CsA (0.2µM) and co-administration of DAU 5884 

(1µM) with CsA (0.2µM) on hypercontracture time in isolated rat cardiac myocytes in an oxidative 

stress model. Results are expressed as mean ± SEM (n=6). ***p<0.001 vs. control, ### = p<0.001 vs. 

DAU 5884 (1μM). 

 

7.3.5  The effects of drug treatment on the levels of signalling proteins as 

assessed by western blot analysis 

To understand the molecular signalling mechanism via which DAU 5884 exacerbates myocardial 

ischaemia reperfusion injury, and CsA reduced myocardial ischaemia reperfusion injury (section 

7.3.1), we performed western blot analysis. The effect of drug treatment on the levels of 

Group Control DAU 5884 (1µM) CsA (0.2µM) DAU (1µM) + CsA (0.2µM)

Mean hypercontracture time (sec) 741.7 529 873.3 706

SEM 21.5 44.7 22.9 26.2
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phosphorylated Akt, ERK and SAPK/JNK at 20 minutes into the reperfusion phase was 

investigated.  

The results (figure 7.9) showed that DAU 5884 (1µM, 3µM) led to significantly reduced levels 

of phosphorylated Akt as compared to the control [73.5 ± 5.7 sec (DAU 5884, 1µM) vs. 100 ± 0 

sec (control), p<0.05, 66.2 ± 3.1 sec (DAU 5884, 3µM) vs. 100 ± 0 sec (control), p<0.01]. The 

administration of CsA (0.2µM) at 20 minutes into reperfusion caused a significant increase in p-

Akt levels as compared to the Control [150.9 ± 17.5 sec (CsA, 0.2µM) vs. 100 ± 0 sec (control), 

p<0.01]. Furthermore, the co-administration of DAU 5884 (1µM) with CsA (0.2µM) led to 

significantly lower expression than was observed with CsA (0.2µM) alone [63.6 ± 10.3 sec 

(DAU, 1µM + CsA, 0.2µM) vs. 150.9 ± 17.5 sec (CsA, 0.2µM), p<0.001].  

Table 7.5: The effect of DAU 5884 (1µM, 3µM), CsA (0.2µM) and co-administration of DAU 5884 

(1µM) with CsA (0.2µM) on the levels of phosphorylated Akt at 20 minutes into the reperfusion 

phase and the relative SEM values.  

  

 

Group Control DAU 5884 (3µM) DAU 5884 (1µM) CsA (0.2µM)  DAU (1µM)+ CsA(0.2µM)

p-Akt/Total Akt (%) 100 66.2 73.5 150.9 63.6

SEM 0 3.1 5.7 17.5 10.3
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Figure 7.9: The effects of DAU 5884 (1µM, 3 µM), CsA (0.2µM), and co-administration of DAU 

5884 (1µM) with CsA (0.2µM) on the levels of phosphorylated Akt at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05 and **p<0.01 vs. Control, 

###p<0.001 vs. DAU 5884 (1µM), ^^^p<0.001 vs. CsA (0.2µM). 

 

In addition, the results also showed that the M3 antagonist DAU 5884 (3µM) significantly 

reduced the expression levels of phosphorylated ERK 1/2 as compared to the control (figure 

7.10). The administration of CsA (0.2µM) at 20 minutes into reperfusion caused a significant 

increase in p-ERK 1/2 levels as compared to the control [160.5 ± 10.8 % (CsA, 0.2µM) vs. 100 ± 

0 % (Control), p<0.01]. Furthermore, co-administration of DAU 5884 (1µM) with CsA (0.2µM) 

led to significantly lower expression than was observed with CsA (0.2µM) alone [102.3 ± 10.2 

% (DAU, 1µM + CsA, 0.2µM) vs. 160.5 ± 10.8 % (CsA, 0.2µM)]. The data are shown in table 

7.6.  
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Table 7.6: The effect of DAU 5884 (1µM, 3µM), CsA (0.2µM) and co-administration of DAU 5884 

(1µM) with CsA (0.2µM) on the levels of phosphorylated ERK 1/2 at 20 minutes into the 

reperfusion phase and the relative SEM values. 

 

 

 Figure 7.10: The effects of DAU 5884 (1µM, 3µM), CsA (0.2µM), and co-administration of DAU 

5884 (1µM) with CsA (0.2µM) on the levels of phosphorylated ERK 1/2 at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05 and **p<0.001 vs. Control, 

^ p<0.05 vs. CsA (0.2µM). 

Western blot analyses also showed that DAU 5884 (1µM, 3µM) led to significantly increased p-

SAPK/JNK levels as compared to the control [131.7 ± 14.7 % (DAU 5884, 1µM) vs. 100 ± 0 % 

(control), p<0.05, 154.7 ± 8.1 % (DAU 5884, 3µM) vs. 100 ± 0 % (control), p<0.01, figure 

7.11]. In addition, CsA (0.2µM) led to significantly reduced p-SAPK/JNK levels as compared to 

the control [66.6 ± 6.2 % (CsA, 0.2µM) vs. 100 ± 0 % (control), p<0.01]. Furthermore, the co-

Group Control DAU (3µM) DAU (1µM) CsA (0.2µM)  DAU (1µM)+ CsA(0.2µM)

p-ERK/Total ERK (%) 100 65.2 81.6 160.5 102.3

SEM 0 8.1 14.7 10.8 10.2
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administration of DAU 5884 (1µM) with CsA (0.2µM) led to significantly increased p-

SAPK/JNK levels as compared to the decreased levels observed with CsA (0.2µM) alone [103.2 

± 12.3 % (DAU 5884, 1µM + CsA, 0.2µM) vs. 66.6 ± 6.2 % (CsA, 0.2µM), p<0.05]. The data 

are shown in table 7.7. 

Table 7.7: The effect of DAU 5884 (1µM, 3µM), CsA (0.2µM) and co-administration of DAU 5884 

(1µM) with CsA (0.2µM) on the levels of phosphorylated SAPK/JNK at 20 minutes into the 

reperfusion phase and the relative SEM values. 

 

 Figure 7.11: The effects of DAU 5884 (1µM, 3µM), CsA (0.2µM), and co-administration of DAU 

5884 (1µM) with CsA (0.2µM) on the levels of phosphorylated SAPK/JNK at 20 minutes into the 

reperfusion phase. Results are expressed as mean ± SEM (n=3). *p<0.05 and **p<0.001 vs. Control, 

^ p<0.05 vs. CsA (0.2µM). 

 

 

Group Control DAU (3µM) DAU (1µM) DAU (1µM) + CsA (0.2µM) CsA (0.2µM)

p-SAPK/JNK/Total SAPK/JNK (%) 100 154.7 131.7 103.2 66.6

SEM 0 8.1 14.7 12.3 6.2
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7.4 Discussion 

Functional affinities of a variety of subtype selective antagonists in airway tissues from diverse 

species have shown that the M3 receptor is the primary subtype responsible for bronchial and 

tracheal smooth muscle contraction (Roffel et al. 1988, Roffel et al. 1990).  The anticholinergics 

are primarily used as bronchodilators to reverse the action of vagally derived ACh on airway 

smooth muscle contraction in the treatment of COPD. As the inhaled antocholinergics have been 

shown to be associated with a significantly increased risk of cardiovascular death among COPD 

patients (Singh et al. 2008, Macie et al. 2008, Lee et al. 2008) it is imperative to understand the 

molecular mechanism of the M3 receptor antagonist in further detail in conditions of ischaemia-

reperfusion injury.  

The current study indicates that the M3 muscarinic receptor antagonist DAU 5884 significantly 

exacerbates myocardial injury in ex vivo conditions of oxidative stress by premature opening of 

the MPTP. DAU 5884 significantly reduced the depolarisation and hypercontracture time of the 

isolated cardiac myocytes resulting in cell death. As previously discussed in section 6.4 and also 

shown in this study (7.3.1) regarding the increased myocardial ischaemia reperfusion injury 

observed with DAU 5884 treatment, the current study indicates a novel mechanism for DAU 

5884 induced cardiotoxicity in stress conditions. We postulate that these observations indicate a 

central role for the MPTP in DAU 5884 induced toxicity in our models of ischaemia reperfusion 

injury.  

Opening of the MPTP is known to be involved in various pathological conditions including 

ischaemia reperfusion injury (Yellon and Hausenloy 2007). The MPTP remains closed during 

ischaemia and has been shown to open during the early minutes of reperfusion when conditions 

that increase the probability of its opening prevail, such as high mitochondrial calcium, build-up 
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of reactive oxygen species and inorganic phosphate load (Griffiths and Halestrap 1995, Di Lisa 

et al. 2001). These conditions disrupt the osmotic barrier between the mitochondria and the 

cytosol, and upon MPTP opening, allow free passage of molecules smaller than 1.5KDa 

(Halestrap and Pasdois 2009, Yellon and Hausenloy 2007). This initiates a colloidal osmotic 

pressure on the mitochondrial membrane which leads to cell swelling and eventual rupture of the 

outer mitochondrial membrane releasing pro-apoptotic factors such as cytochrome c to the inter-

membrane space (Halestrap et al. 2004). MPTP opening also allows permeability to protons, 

which results in uncoupling of oxidative phosphorylation and consequently ATP depletion. This 

in turn can activate degradative enzymes such as phospholipases and proteases and also disrupt 

ionic and metabolic homeostasis (Halestrap et al. 2002). These effects can lead to irreversible 

cell damage and eventually result in necrotic death.  

We have also demonstrated that the MPTP blocker CsA protected the heart from the damage 

caused by ischaemia reperfusion injury alone in the Langendorff studies. CsA has been 

previously shown to reduce infarction in ischaemic reperfusion heart models thereby protecting 

the myocardium (Crompton et al. 1988, Griffiths and Halestrap 1993, Shanmuganathan et al. 

2005). Interestingly, our data demonstrates that the co-administration of CsA with DAU 5884 

abrogated the injury inflicted by DAU 5884 alone during ischaemia reperfusion injury. The 

protective effects of CsA were further confirmed by the findings of the laser induced oxidative 

stress model. The results showed that CsA alone delayed the depolarisation and hypercontracture 

time of cardiac myocytes and its co-administration with DAU 5884 also reversed the injury 

induced by DAU 5884. 

Furthermore, as also discussed in section 6.4, the current study also shows that CsA activates 

pro-survival kinases Akt and ERK1/2 and inhibits stress activated protein, SAPK/JNK, to protect 
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myocardium against ischaemia reperfusion injury. Phosphorylation of Akt and ERK1/2 is known 

to be integral to the reperfusion injury salvage kinase pathway that converges on the MPTP 

(Davidson et al. 2006, Hausenloy and Yellon 2007). Various studies have shown that the 

activation of Akt and ERK 1/2 protects the heart from ischaemia reperfusion injury (Hausenloy 

et al. 2005, Hu et al. 2008) and have been discussed in detail in sections 4.4, 5.4 and 6.4.  

An apoptotic stimulus causes the pro-apoptotic protein, Bax, to undergo a conformational change 

and translocate to the mitochondria (Yamaguchi and Wang 2001) inducing release of 

cytochrome c either by opening of the MPTP or by forming a pore in the outer mitochondrial 

membrane (Marzo et al. 1998). Studies have shown that activation of Akt prevents apoptosis by 

inhibiting the conformational change required for Bax to translocate to the mitochondria 

(Tsuruta et al. 2002). Akt has also been shown to inhibit release of mitochondrial cytochrome c 

(Kennedy et al. 1999) and as one potential route for its release is via MPTP, it may be postulated 

that Akt may suppress apoptosis via inhibiting the opening of the MPTP.  

Furthermore, the current study also showed that DAU 5884 led to a significantly increase in the 

stress activated signaling proteins SAPK/JNK. Studies have shown that JNK is activated in 

response to environmental stresses including heat shock, UV radiation, osmotic shock and 

inflammatory cytokines (Nishina et al. 2004).  Evidence in support for activation of SAPK/JNK 

and its association with apoptosis and cell hypertrophy has been derived from various 

investigations in in vitro and in vivo systems. Wang et al. (1998) showed that activation of JNK 

in neonatal rat cardiac myocytes induced characteristic features of hypertrophy and also induced 

apoptosis.  Activation of SAPK/JNK has also been shown to result in apoptotic death of primary 

neonatal rat cells (Luo et al. 1998). Furthermore, myocardial ischaemia-reperfusion has also 

been shown to activate JNK resulting in apoptosis (Yin et al. 1997). Activation of JNK has been 
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shown by various studies to promote apoptosis. Luo et al. (1998) showed that dopamine activates 

the JNK pathway, including increases in JNK activity, phosphorylation of c-jun and subsequent 

increases in c-jun protein levels to induce apoptosis in a time and concentration-dependent 

manner in primary neonatal rat cells. The activation of JNK preceded apoptosis and was 

persistently sustained during the process of apoptosis. Using a JNK inhibitor prevented both 

dopamine-induced JNK activation and apoptosis. 

Our results also showed that DAU 5884 led to inhibition of the levels of the cell survival 

signaling proteins Akt and ERK 1/2. Inhibition of Akt and ERK 1/2 has been well documented to 

inhibit cell survival and promote apoptosis. Granado-Serrano et al. (2006) showed that quercetin, 

a common flavonoid induced apoptosis by direct activation of the caspase cascade and inhibiting 

cell survival proteins Akt and ERK 1/2 in human hepatoma HepG2 cells. Ostrakhovitch and 

colleagues (2005) showed that the MEK/ERK pathway plays an important role in down-

regulation of p53 and cell survival, and that inhibition of ERK 1/2 can lead to apoptosis via 

nuclear relocation of apoptosis. Krystal et al. (2002) also demonstrated that inhibition of Akt 

inhibited cell growth and promoted apoptosis in small cell lung cancer cells. 

Taken together, this study provides the first evidence that DAU 5884 induced cardiotoxicity is 

due to the opening of the MPTP in the setting of ischaemia reperfusion injury. The collective 

findings of the previous chapter and the present study has provided a detailed understanding of 

the molecular mechanism involved in  the M3 mAChR antagonist induced injury to the 

myocardium. We have also shown that CsA not only protected the myocardium from the 

ischaemia reperfusion injury but its co-administration with DAU 5884 also prevented the 

damage mediated by DAU 5884 alone. 
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Chapter Eight:  General Discussion 

8.1 Summary of findings 

The non-selective M1-M3 antagonist, ipratropium bromide is widely used in the management and 

treatment of pulmonary conditions such as COPD (Restrepo 2007) but the long-term use of such 

anticholinergics has been shown to increase the risk of cardiovascular death, myocardial 

infarction or stroke in COPD patients with underlying CVDs raising concerns over the safety 

profile of these anticholinergics (Singh et al. 2008, Ogale et al. 2010, Macie et al. 2008). As 

COPD is also responsible for other systemic pathologies, including underlying CVD (Macnee et 

al. 2008, Maclay et al. 2007), it is therefore imperative to ascertain the effect of such 

anticholinergics and the activity of specific anticholinergics in the setting of myocardial 

ischaemia reperfusion.  

The overall aim of this project was to investigate and understand the effects of individual 

mAChR antagonists on the myocardium in the setting of myocardial ischaemia reperfusion and 

on the cardiac myocytes under conditions of oxidative stress. In addition, we also investigated 

the signalling pathway of individual mAChRs antagonists under the conditions of oxidative 

stress.  

Our results showed that ipratropium bromide, a non-selective M1-M3 mAChR antagonist 

significantly increased the infarct size of the Langedorff perfused heart in the setting of 

myocardial ischaemia reperfusion but not under normoxic conditions. Ipratropium bromide also 

decreased the cell viability of cardiac myocytes as revealed by a decrease in MTT reductase 

activity. Harvey et al. (2014) explored the effects of ipratropium bromide on myocardial injury 

in non-clinical models of simulated myocardial ischaemia reperfusion injury. Furthermore, that 
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study also evaluated the involvement of apoptosis and necrosis via flow cytometry. The results 

showed that ipratropium led to a significantly increased infarct size in the isolated perfused rat 

heart and to decreased cell viability in rat ventricular cardiac myocytes, as shown by a decrease 

in MTT reductase activity, in a dose-dependent manner. The results also showed that the 

administration of ipratropium bromide at the onset of re-oxygenation resulted in an increase in 

both apoptotic and necrotic myocyte death. Loss of cardiac myocyte during ischaemia 

reperfusion injury via apoptosis and necrosis has also previously been revealed (Kung et al. 

2011). 

Harvey et al. (2014) also showed that administration of ipratropium at the onset of re-

oxygenation led to increased levels of cleaved caspase-3 in ventricular myocytes following 

hypoxia and re-oxygenation. Caspase-3 is an executioner caspase in the caspase-dependent 

apoptotic signalling cascade (Riedl and Shi 2004). It exists as an inactive pro-caspase dimer or 

zymogen with zero activity and is activated by the initiator caspases such as caspase-8 and 

caspase-9 (McIlwain et al. 2015). In addition, Harvey et al. (2014) also showed that the 

ipratropium induced myocardial injury was abrogated when used in conjunction with an 

irreversible inhibitor of caspase-3 activation, Z-DEVD-FMK. The study thereby indicated that 

ipratropium bromide exacerbated myocardial ischaemia reperfusion injury via apoptotic and 

necrotic associated pathways. Our findings confirm that the non-selective mAChR antagonist 

ipratropium bromide exacerbates myocardial injury following ischaemia reperfusion injury in rat 

hearts and reduces the cell viability of isolated cardiac myocytes via decrease in MTT reductase 

activity in a dose-dependent manner.  
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The M2 mAChR is the predominant subtype present in the mammalian heart but studies have 

shown that M1 and M3 also exist (Hulme et al. 1990, Caulfiled 1993). As ipratropium bromide is 

a non-selective mAChR antagonist, we aimed to investigate the role of individual mAChR 

antagonists in the setting of myocardial ischaemia reperfusion injury. We investigated the effects 

of the M1 mAChR antagonist telenzepine dihydrochloride in the setting of myocardial ischaemia 

reperfusion injury and oxidative stress. The results showed that telenzepine dihydrochloride had 

no significant effect on the heart nor on the cardiac myocytes.  

 

We then investigated the effects of the M2 and M3 mAChR antagonists AF-DX 116 and DAU 

5884, respectively, in the setting of myocardial ischaemia reperfusion injury and oxidative stress. 

Our results did reveal the detrimental effects of administering the M2 mAChR antagonist AF-DX 

116, and the M3 mAChR antagonist DAU 5884, in the setting of simulated myocardial ischaemia 

reperfusion and in conditions of oxidative stress. This study showed that administration of these 

antagonists increased the infarct size in the setting of ischaemia reperfusion injury in a dose 

dependent manner. AF-DX 116 and DAU 5884 also caused a concentration-dependent decrease 

in the viability of cardiac myocytes as revealed by a decrease in MTT reductase activity.  

Furthermore, treatment with AF-DX 116 and DAU 5884 led to a reduction in the time taken to 

depolarisation and hypercontracture of cardiac myocytes using the model of laser induced 

oxidative stress.  

Mitochondrial dysfunction has been shown to be an underlying cause of ischaemia reperfusion 

injury (Crompton et al. 1999). Opening of the MPTP is known to be involved in various 

pathological conditions including ischaemia reperfusion injury (Yellon and Hausenloy 2007). 

Using a laser beam to induce MPTP opening is an established method to track the opening of the 
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MPTP of isolated cardiac myocytes via recording the time taken to depolarisation and 

hypercontracture (Hausenloy et al., 2002, Yellon and Hausenloy, 2007). Gharanei et al. (2013) 

showed that premature opening of the MPTP is involved in mediating lethal permeability 

changes that initiate cell death caused by drug induced myocardial injury. The results of the 

current study have shown that treatment with AF-DX 116 and DAU 5884 reduced the time taken 

to depolarisation and hypercontracture of cardiac myocytes using the model of laser induced 

oxidative stress. Our findings therefore support the published literature that premature opening of 

the MPTP is involved in mediating lethal permeability changes to initiate myocardial damage.  

 

Data obtained from western blot analyses showed that both AF-DX 116 and DAU 5884 caused a 

significant increase in the levels of the stress activated protein SAPK/JNK and also inhibited the 

pro-survival proteins Akt and ERK 1/2. Activation of stress activated protein kinases including 

SAPK/JNK in stress conditions and myocardial ischaemia reperfusion injury have been well 

documented (Yin et al. 1997, Nishina et al. 2004). Evidence in support for activation of 

SAPK/JNK and its association with apoptosis and cell hypertrophy has been derived from 

various investigations in in vitro and in vivo systems. Wang et al. (1998) showed that activation 

of JNK in neonatal rat cardiac myocytes induced characteristic features of hypertrophy and also 

induced apoptosis.  Activation of SAPK/JNK has also been shown to result in apoptotic death of 

primary neonatal rat cells (Luo et al. 1998). Kim et al. (2001) also showed that activation of 

SAPK/JNK leads to cell death and its inhibition suppresses cell death in human U937 leukaemia 

cells. Our results, in line with these earlier findings, suggest a key role for SAPK/JNK in the 

pathophysiology of cardiac injury in response to various stress conditions, including ischaemia 

reperfusion injury. 
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Our results have also shown that administration of the natural mAChR agonist, ACh, 

significantly decreased the infarct size in the setting of myocardial ischaemia reperfusion. In 

addition, ACh treatment increased the time taken to depolarisation and hypercontracture of 

cardiac myocytes using the model of oxidative stress.  

The cytoprotective properties of ACh have been well documented (Critz et al. 2005, Li et al. 

2011) and the resulting activation of muscarinic receptors has been shown to provide protection 

against various cellular insults (De Sarno et al. 2003). ACh has also been shown to provide 

protection against myocardial ischaemia reperfusion injury since it led to reduced infarct size in 

rats (Richard et al. 1995, Yang et al. 2005). ACh has been previously shown to be released 

endogenously in rat heart in the absence of neuronal activity (Brown et al. 1982). Harvey et al. 

(2014) also used an ACh assay kit to confirm the presence of endogenous levels of ACh in vitro. 

Furthermore, ACh was also shown to reduce caspase-3 levels thereby providing myocardial 

protection against hypoxia re-oxygenation partly by a reduction in apoptosis (Harvey et al. 

2014).  

Previous studies have shown that CsA treatment protects the myocardium from ischaemia 

reperfusion injury (Gharanei et al. 2013, Hausenloy et al. 2003, Griffiths and Halestrap, 1993). 

Our results confirm previous findings and show that the administration of the MPTP blocker 

CsA, led to decreased infarct size in rat hearts in the setting of myocardial ischaemia reperfusion 

injury. CsA treatment also increased the time taken to depolarisation and hypercontracture of 

cardiac myocytes using the model of oxidative stress. Interestingly, our data demonstrates that 

CsA also prevents AF-DX 116 and DAU 5884-induced damage to the myocardium during 

ischaemia reperfusion injury. We therefore postulate that these observations suggest a central 
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role for the MPTP in AF-DX 116 and DAU 5884-induced toxicity in our models of ischaemia 

reperfusion injury.  

Furthermore, our results also showed that treatment with ACh and CsA led to activation of the 

pro-survival proteins Akt and ERK 1/2 and to significantly reduced levels of the stress activated 

proteins SAPK/JNK. The activation of Akt and ERK 1/2 has been shown to mediate protection 

against various cellular insults including ischaemia reperfusion injury (Matsui et al. 1999, Yue et 

al. 2000, Hausenloy and Yellon 2004). The activation of the PI3K-Akt or the MEK- ERK 1/2 

has been attributed to inactivate the pro-apoptotic proteins such as BAD and BAX thereby 

preventing apoptosis (Datta et al. 1997, Yamaguchi and Wang 2001). Hausenloy et al. (2005) 

showed that the activation of the RISK pathway comprising of Akt and ERK 1/2 reduces the 

damage to the myocardium from ischaemia reperfusion injury. Our data therefore supports the 

literature from previous findings that activation of Akt and ERK reduces myocardial ischaemia 

reperfusion injury. 

As miRNAs have been identified as biomarkers for cardiovascular diseases and myocardial 

injury (Ai et al. 2010), we investigated the miRNA expression profile of M2 mAChR antagonist 

AF-DX 116 treatment on hearts undergoing ischaemia reperfusion injury. Our results showed 

that AF-DX 116 led to significantly decreased expression levels of miR-1 and miR-133b, below 

the levels of the ischaemia reperfusion control groups. Previous studies have also shown 

decreased levels of miR-1 and miR-133b in infarcted tissue in patients with myocardial 

infarction as compared to healthy adult hearts (Bostjancic et al. 2010). Our findings therefore 

suggest that alterations in miR-1 and miR-133b expression play important regulatory roles in 

AF-DX 116-mediated injury. 
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8.2 Limitations and Future investigations 

Further studies are required to investigate, in an in vivo model, whether the M2 and M3 mAChRs 

antagonists AF-DX 116 and DAU 5884 associated cardiotoxicity is still observed. Furthermore, 

the effects of chronic administration of AF-DX 116 and DAU 5884, alone or with the co-

administration of cardioprotective agents such as CsA, warrants further investigation. Chronic 

treatment in an in vivo model differs significantly from an acute in vitro model, as a chronic in 

vivo model would provide more accurate findings since it would involve other factors which may 

counter the toxic effects of AF-DX 116 and DAU 5884. These factors include blood, hormones, 

neurones, anti-toxins and other organs.  

The results from this study also showed that CsA decreased the infarct size in the Langendorff 

perfused heart and also decreased the time to depolarisation and hypercontracture of cardiac 

myocytes under oxidative stress. Therefore, the results do provide the evidence for a direct 

protective effect of CsA on the MPTP. Previous studies have shown that CsA protects the heart 

from ischaemia reperfusion injury and oxidative stress via inhibition of the MPTP (Hausenloy et 

al. 2002, Hausenloy et al. 2003, Halestrap et al. 2004). CsA binds to Cyp-D and causes a 

conformational change in its morphology preventing it from binding to ANT thereby inhibiting 

MPTP opening (Tanveer et al. 1996). Therefore, further studies using specific Cyp-D blockers 

will provide a more accurate understanding of the drug treatment on the MPTP.   

As previously discussed in chapters 5 and 7 our results showed that AF-DX 116 and DAU 5884 

significantly reduced the time to depolarisation and hypercontracture for isolated cardiac 

myocytes. Oxygen derived free radicals and ATP depletion play an important role in the 

pathophysiology of cardiac myocyte depolarisation and hypercontracture (Bognar et al. 2006, 

Abdallah et al. 2010). We hypothesise that AF-DX 116 and DAU 5884 may be involved in 



191 
 

producing oxygen derived free radicals that may have resulted in premature opening of the 

MPTP thereby releasing pro-apoptotic factors such as cytochrome c. Therefore, free radical 

scavengers such as superoxide dismutase and glutathionine peroxidase could be used in further 

studies to test the involvement of free radicals in AF-DX 116 or DAU 5884 mediated injury.  

Furthermore, we observed that AF-DX 116 and DAU 5884 significantly increased the levels of 

SAPK/JNK and inhibited the expression levels of Akt and ERK 1/2. To investigate whether the 

increase in SAPK/JNK protein levels is a direct effect of AF-DX 116 and DAU 5884, specific 

inhibitors of SAPK/JNK such as CEP-1347/KT-7515 should be used. Furthermore, our results 

have shown that CsA significantly increases levels of Akt and ERK 1/2.  The activation of Akt 

and ERK 1/2 at the onset of reperfusion has been shown to reduce myocardial reperfusion injury 

(Hausenloy et al. 2005, Hu et al. 2008). Our data therefore supports the literature from previous 

findings that activation of Akt and ERK reduces myocardial reperfusion injury. However, to 

ensure that the increase in Akt and ERK 1/2 was a direct effect of CsA, specific inhibitors of Akt 

and ERK 1/2, such as wortmannin and UO126 should be used.  

We have also demonstrated in chapter 4 the changes in the expression levels of certain miRNAs 

(miR-1, miR-27a, miR-133a, and miR-133b) in response to treatment with the M2 mAChR 

antagonist AF-DX 116. Our results showed that AF-DX 116 caused a significant reduction in the 

expression levels of miR-1 and miR-133b.  However, the precise role of these miRNAs in the 

cardiotoxicity of AF-DX 116 is not known. Further studies using specific miRNA inhibitors or 

genetic overexpression can provide a better understanding of their involvement in cardiac injury. 

In addition, due to lack of time and limited availability of mirVana™ miRNA Isolation kit, only 

one concentration of AF-DX 116 (1µM) was used. A variety of concentrations of AF-DX 116, 

ACh and CsA, and combination of AF-DX 116 with CsA, would provide more in-depth findings.  
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 8.3 Conclusion 

To conclude, this is the first study to demonstrate the cardiotoxic effects AF-DX 116 and DAU 

5884 in the setting of myocardial ischaemia reperfusion and oxidative stress. AF-DX 116 and 

DAU 5884 cause an increase in the expression of stress activated protein SAPK/JNK, and inhibit 

the cell survival proteins Akt and ERK 1/2. Moreover, the cardio-toxic effects of these drugs can 

be prevented when co-administered with CsA or the natural mAChR agonist, ACh which inhibit 

the SAPK/JNK and activate Akt and ERK 1/2. 
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