
 Coventry University

DOCTOR OF PHILOSOPHY

Novel approaches to radiotherapy planning and scheduling in the NHS

Kapamara, Truword

Award date:
2010

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of this thesis for personal non-commercial research or study
            • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://pureportal.coventry.ac.uk/en/studentthesis/novel-approaches-to-radiotherapy-planning-and-scheduling-in-the-nhs(a25c3954-070f-4e68-a82f-e62e243ae63e).html


Novel approaches to radiotherapy
planning and scheduling in the

NHS

Truword Kapamara
MSc Advanced Computing Science

March 2010

A thesis submitted in partial fulfilment of requirements of Coventry University for the

degree of Doctor of Philosophy.

Control Theory and Applications Centre

Coventry University



Summary

The main subject matter of this thesis concerns radiotherapy patient scheduling
subproblems formulated as four separate shop scheduling problem models (i.e.
hybrid flowshop, flowshop, mixed shop and multiple identical parallel machine
scheduling problems) based on the characteristics of the intricate real-life treat-
ment processes observed at the Arden Cancer Centre in Coventry, UK. Insight
into these processes was gained by developing and using a novel discrete-event
simulation (DES) model of the four units of the radiotherapy department. By
typifying the subproblems as well-known scheduling problem models, it was in-
tended that methods amenable to them such as heuristics be used in the study.

Four novel constructive heuristics based on priority dispatching rules and
strategies adapted from some established algorithms have been developed and
implemented using the C++ programming language. Further, these heuristics
were incorporated into the DES model to create schedules of appointments for
the patients generated daily. The effectiveness and efficiency of the constructive
heuristics have been tested using the following performance criteria: minimising
i) average waiting time to the start of treatment, and ii) average percentage of
patients late for their treatment, and iii) the amount of overtime slots used for
the patients received in a given period of time. The coordinated constructive
heuristics and the DES model have also been tested using possible alternative
pathways patients can follow in the treatment unit. The aim of these tests was
to compare the efficiency of the radiotherapy department’s current pathway to
other possible pathways. Further, strategies for using maximum allowed breaches
of targeted due dates, reserved slots for critical treatments and overtime slots was
also included in the heuristics.

The results of several tests showed that the heuristics created schedules of
appointments whose average waiting times for emergency, palliative and radical
treatments improved by about 50%, 34% and 41%, respectively, compared to the
historical data. However, their major slack was evidenced by the fact that about
13% of the patients needing palliative treatment were expected to be late for
treatment compared to about 1% of those requiring radical treatment.
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Cancer is a class of chronic diseases characterised by uncontrolled growth
and metastasis of invasive and malignant abnormal cells to different parts of the
human body (Altman and Sarg 2000:56). By about 2000, many people in the
UK were diagnosed with this pernicious disease and about 120,000 died from
it each year (Department of Health 2000). Since the early 1900s, several cancer
treatments have been developed and used effectively. One of these is radiotherapy,
an essential mode of treatment involving the use of ionising radiation to treat
cancers. Most importantly, the total therapeutic radiation dose is usually divided
into small portions (called fractions) that are delivered daily over a period of
time to maximise the destruction of the injurious cells while minimising damage
to healthy tissue. In addition, 40% of those cured of cancers in UK were treated
by radiotherapy (Royal College of Radiologists 2003).

This chapter introduces the prolonged waiting times issues in radiotherapy
departments in the UK and other countries, the elaborate treatment processes
conducted in the radiotherapy department at the Arden Cancer Centre at the
University Hospitals Coventry and Warwickshire National Health Service (NHS)
Trust which was the main collaborator in this study, complexities of scheduling
radiotherapy patients and the methods that can be used to tackle healthcare
related problems such as minimising radiotherapy patient waiting times are also
emphasised. The objectives of this study and the outline of this thesis are also
stated at the end of this chapter.

1



1. Introduction

1.1 Patient waiting time issues

In the UK, radiotherapy patient waiting time (or delay) is defined as the difference
between the date when the decision to treat by radiotherapy is made and the date
of delivering the first fraction of the entire radiotherapy course for the patient
(Department of Health 2000). More crucially, radiotherapy waiting times are
measured in consecutive days including bank holidays and weekends.

Lately, the demand for radiotherapy has risen with the growth of the inci-
dences of cancer. Disparities between the demand for radiotherapy and the ca-
pacity of the available limited equipment and human resources affect the patient
waiting times. Most studies on retrospective data on the treatment of cancers
reported the following conclusions that the delays: i) allow cancerous cells to
proliferate (Mackillop 2007), ii) increase local recurrence of the diseases (Huang
et al. 2003), iii) increase tumour volume (Jensen et al. 2007), and iv) lower sur-
vival rates of the patients (Richards et al. 1999, Do et al. 2000, O’Rourke and
Edwards 2000, Seel and Foroudi 2002). Hence, cancer centres worldwide endeav-
our to obtain as short as reasonably achievable delays.

In 1993, the Joint Council for Clinical Oncologists (JCCO) proposed wait-
ing time targets for the most common treatments (i.e. emergency, palliative,
and radical treatments) delivered in radiotherapy departments in the UK. Emer-
gency treatments are critical treatments for relieving intense pain. Palliative
treatment concerns alleviating pain or symptoms without necessarily curing the
disease. Emergency treatments are palliative treatments that are more criti-
cal. Radical treatments are meant to cure the cancers. Most studies and audits
have revealed that radiotherapy waiting times have recently worsened in sev-
eral countries (Mackillop et al. 1996, Royal College of Radiologists 1998, Spur-
geon et al. 2000, Ash et al. 2004, Lim et al. 2005, Summers and Williams 2005,
Mackillop 2007, Drinkwater and Williams 2008). The UK fares badly in the
comparison of radiotherapy waiting times and survival rates in the developed
countries (Spurgeon et al. 2000).

In recent years, there has been a marked increase in efforts to tackle the issue
of prolonged patient waiting times in radiotherapy departments in the UK. Ra-
diotherapy departments wish to deliver fast and high quality service to cancer pa-
tients using their limited resources. However, like many other healthcare systems,
they are characterised by disparities between capacity and fluctuating demand,
elaborate patient flow processes and scarce resources. Furthermore, various ways
of booking radiotherapy patients are being used in various radiotherapy depart-
ments. At the Arden Cancer Centre, the current booking system involves senior
radiographers manually creating and amending various appointments for the pa-
tients until they obtain the most suitable schedule of the appointments. Thus,
the senior radiographers that could be helping with the treatment procedures and
enhancing patient care, spend time some of their time booking appointments for
patients. In addition, in this manner of booking patients, mistakes are committed
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1. Introduction

and it can be difficult to compensate for the ‘unused slots’ on the machines to be
used by the patients as reported in (Haylock et al. 2005).

1.2 Treatment processes

The treatment processes normally conducted in most radiotherapy departments
in the UK can be described as three-step processes. Figure 1.1 illustrates the
three major steps followed by patients during their treatment. The first step in-
volves procedures for staging the patient’s cancer after referral to a cancer centre
by their General Practitioner (GP). In this step, the advancement of the cancer
is determined using imaging equipment. The second step involves creating treat-
ment plans of the radiation to be received by the patient. The images obtained
in the first step are used to create these treatment plans which are either complex
or simple depending on the calculations of the intensity of the radiation beams
prescribed by the doctor. Further accuracy verification of each treatment plan is
also conducted in this second step before the treatment plans are forwarded to
the next division of the radiotherapy department for the procedures of the third
step to be performed. These procedures involve the delivery of the prescribed
fractions to the patient on treatment machines such as the linear accelerators
(linacs) over several consecutive days.

After
GP

referral

Stage
the

cancer

Create
• Complex treat-

ment plans, or
• Simple treat-

ment plans

Deliver
the

fractions

Figure 1.1: A high level flowchart illustrating major steps of radiotherapy fol-
lowed in the UK

1.3 Complexities of booking patients

There are aspects of the steps of the treatment process in Figure 1.1 which com-
plicate the manner in which radiotherapy patients can be booked or scheduled
on available times or dates. These complexities are due to the intricacy of the
procedures in the steps shown in Figure 1.1 such as uncertainty of patient arrival,
constraints enforced by the Arden Cancer Centre’s work practices, scarcity of hu-
man resources as doctors, radiographers and technicians, and lack of diagnostic
(i.e. imaging equipment) and treatment equipment such as linacs.
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The foremost aspect of radiotherapy that complicates the booking of patients
in departments in the UK is the waiting time targets proposed by the JCCO.
Booking appointments taking into consideration the deadlines suggested by the
JCCO can be worsened by any delays in the submission of patient information
to the senior radiographers that book the appointments. Furthermore, in the
first step of staging cancers, the availability of the patient’s doctor is a major
constraint that impacts patient waiting times. According to the work practices
of the Arden Cancer Centre, if the doctor is not immediately available, then the
patient’s staging procedures can be delayed by a number of days.

The arrival of patients after referral to the centre by their GP is uncertain.
Different numbers of patients requiring the three treatments (i.e. emergency,
palliative and radical) can arrive at the centre in different proportions on a given
date. For example, at the Arden Cancer Centre, the arrival of patients requiring
emergency treatments was infrequent. There are multiple identical machines of
certain treatment machine types (i.e. high and low energy linacs), while there
are also single machines of some treatment machine types. This contributes to
the complexity of the scheduling of patients depending on which type of the
treatment machine was prescribed by the doctor (i.e. the one with multiple
identical machines available or on the single machine).

The scarcity of human resources also contributes to the complexity of the
booking of patients. Each machine in the department has to be driven by a
specified compliment of staff. Thus, the shortage of staff can lead to circumstances
whereby some machines that are not fully booked are shutdown to avail their
staff on the fully booked machines. In addition, the aforementioned impact of
unavailability of doctors further complicates the booking of appointments and
thus, impact the resulting waiting times obtained.

1.4 Solving healthcare problems

Many researchers have used various methods to solve different healthcare prob-
lems. Computer simulation and modelling has been one of the most common
operational research (OR) techniques applied to healthcare problems as shown
by the taxonomy of these problems in (Jun et al. 1999). Other OR methods
from the theory of scheduling have been used to tackle healthcare problems. An
example of healthcare problems solved by such methods include the notorious
nurse rostering problem (Cheang et al. 2003).

1.4.1 Simulation and modelling

Computer simulation and modelling is a problem solving methodology that in-
volves mimicking a real-life system over a period of time. There are many com-
puter simulation software for solving healthcare problems and one of them is
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Simul8 (Simul8 Corporation 2009). These techniques have been used to solve a
wide variety of healthcare problems in various departments at hospitals as shown
by the studies reviewed in (Jun et al. 1999). Some of the benefits of using simula-
tion and modelling on healthcare problems include the ability to assess the impact
of changes in the flow of patients, examine resources requirements, investigate
complex relationships among the different model variables, identify bottlenecks
in complex models and most importantly, to understand a given system.

Although notable research on healthcare problems has been carried out using
simulation and modelling techniques, the paucity of papers on problems impacting
radiotherapy departments is noticeable. Some of the simulation and modelling
studies that have been conducted on all the processes in radiotherapy issues are in
(Proctor 2003, Proctor et al. 2007, Hoogeland 2008). In this thesis, simulation and
modelling techniques were employed to help in understanding every part of the
treatment process through collecting data, building a model and experimenting
with different scenarios considered as cost effective options for the Arden Cancer
Centre.

1.4.2 Scheduling

There are many OR optimisation methods for solving intrinsically complex prob-
lems. These include exact enumerative, heuristic or approximation and meta-
heuristic methods. Exact enumerative methods such as dynamic programming
and branch-and-bound algorithms create solutions by listing schedules and elimi-
nate the non-optimal schedules. Heuristics can produce good solutions using min-
imal computational effort although they cannot guarantee near-optimal schedules.
Metaheuristics are optimisation algorithms that use frameworks inspired by sci-
ence and nature.

In the literature, some studies focused on solving the scheduling of patients
in the last step (i.e. delivery of fractions) shown in Figure 1.1 using heuristics,
metaheuristics and other methods (Petrovic et al. 2006, Petrovic and Leite-Rocha
2008, Petrovic et al. 2009). The use of scheduling techniques on radiotherapy
scheduling problem has not been as intense as the studies on other healthcare
problems such as the aforementioned nurse rostering problem.

Much research has been conducted in the area of scheduling and, in this con-
text, it provides a motivation to use some of these scheduling techniques as start-
ing points for the development of the radiotherapy scheduling methods. Baldwin
(2006) suggested that cancer clinics can be likened to manufacturing industries so
that production scheduling techniques that solved some of the scheduling prob-
lems can be applied to some of the cancer clinic’s problems. In this thesis, new
constructive heuristics based approach to scheduling patients in the steps that
they follow in their treatment process of an archetypical radiotherapy department
in the UK such as the Arden Cancer Centre were introduced. The heuristics are
intended to reduce the waiting times, percentage of late patients and the amount
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of overtime accumulated by department. By providing each patient’s schedule of
appointments on the machines and facilities in his or her treatment regime, the
heuristics are intended to enable radiotherapy departments to provide to patients
more information about their treatment upon the receipt of the referral forms.
This may help to improve the management of patients flow in the radiother-
apy process and minimise the cancelations or patients not attending treatment
procedures for their regime.

1.5 Objectives of the research

This research is focused on examining the elaborate treatment processes used
in radiotherapy (especially at the Arden Cancer Centre) and the scheduling of
radiotherapy patients. The main objectives of this study are as follows:

1. to examine, understand and document the treatment processes followed in
the radiotherapy department,

2. to develop a discrete-event simulation (DES) model of the radiotherapy
department at the Arden Cancer Centre to be used to analyse the existing
treatment system using various ‘what-if’ scenarios which do not involve the
need for huge capital outlays, such as: analysing the existing system when
the number of staff is reduced, staff can work for extended working hours,
and the patients can be attended to even when their doctor is not available
in the radiotherapy department,

3. to gather essential information which characterises the treatment processes
and can be used to formulate radiotherapy patient scheduling problems that
can be identified in the different parts of the entire treatment process,

4. to develop novel constructive heuristics that solve the radiotherapy patient
scheduling problem formulated using waiting times as one of the key per-
formance measures of the schedules of patient appointments generated,

5. to develop a new software tool that can be deployed in the radiotherapy
department at the Arden Cancer Centre for scheduling the radiotherapy
patients

1.6 Thesis outline

This thesis comprises ten chapters. Chapter 2 covers an overview of cancers and
their treatments while also emphasising the issues exacerbating the waiting times
problem in the UK which include i) staff and equipment provision, and ii) the
clinical effects of prolonged waiting times.
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Chapter 3 provides an in-depth description of the treatment processes con-
ducted in the radiotherapy department at the Arden Cancer Centre, a cancer
centre at the University Hospitals Coventry and Warwickshire NHS Trust, dur-
ing the period between September 2006 and December 2008. It comprises sepa-
rate flowcharts of the processes followed in the planning, physics, pretreatment
and treatment units. A flowchart which is a combination of all the other four
flowcharts is used to ‘walk-through’ the paths followed by patients of certain
pathological conditions from the time of submission of a radiotherapy request
form to the delivery of their last fraction.

Research studies on radiotherapy, cancer-related and other healthcare prob-
lems, conducted using simulation and modelling, and the theory of scheduling
techniques are reviewed in Chapter 4. For the simulation and modelling ap-
proaches, most papers focused on DES techniques compared to other techniques
such as agent-based simulation and others, while for the scheduling theory, the
methods considered ranged from exact enumerative methods to meta-heuristics.

Chapter 5 discusses DES models developed in this study to understand the
radiotherapy treatment processes at the Arden Cancer Centre using the seven
steps of model building suggested in the literature.

In Chapter 6, four radiotherapy patient scheduling problems are formulated
for the four units involved in the treatment of cancer patients in the depart-
ment. These problems are i) hybrid two stage flowshop, ii) two machine flowshop,
iii) mixed shop scheduling, and iv) parallel identical machine scheduling problems
for the planning, physics, pretreatment and treatment units respectively.

Chapter 7 discusses the novel constructive heuristics proposed to solve the
aforementioned four subproblems using a basic framework that involves reordering
an input sequence of patients using priority dispatching rules and then scheduling
each patient’s appointments using various strategies.

In Chapter 8, the results of the computational tests conducted using the sim-
ulation model of the department with the heuristics integrated to it are analysed.
Four different alternative pathways that can be adapted by the radiotherapy
department for patients in the treatment unit are compared based on their per-
formances and the quality of schedules of appointments generated for patients in
a given period.

Finally, concluding remarks for the thesis are given in Chapter 9 together with
directions of future research work on radiotherapy patient scheduling problems.
The thesis comprises an extensive list of refereneces, which covers many relevant
books, internet websites and papers. Glossaries of key terms and mathematical
symbols appear after the concluding remarks to provide the meaning of common
words, abbreviations, and acronyms used in the text.
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Chapter 2

Cancer and its treatments

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Cancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.4 Radiotherapy . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Waiting times in radiotherapy . . . . . . . . . . . . . 13

2.4.2 Effects of long waiting times . . . . . . . . . . . . . . 14

2.4.3 Staff and equipment issues . . . . . . . . . . . . . . . 15

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction

In the early 1900s, surgery was the only way of treating cancers. Later on,
radiotherapy evolved to become an effective treatment mode in the late 1930s,
on the back of Wilhelm Conrad Röntgen’s discovery of x-rays in 1895. Similarly,
another treatment mode termed chemotherapy was developed and used to cure
cancers since the mid-1900s.

This chapter discusses cancers, their treatments and other issues about ra-
diotherapy using examples from the radiotherapy department at Arden Cancer
Centre at the University Hospitals Coventry and Warwickshire National Health
Service (NHS) Trust in Coventry, UK. The problems prevalent in radiotherapy
departments in general in the UK are also introduced.

The next Section introduces the cancers treated at the Arden Cancer Centre.
Section 2.3 discusses cancer treatments including radiotherapy. In Section 2.4,
the radiotherapy problems (i.e. particularly in the UK) are also discussed. Lastly,
Section 2.5 gives the concluding remarks.
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2. Cancer and its treatments

2.2 Cancers

Cancers are generally classified into five groups, namely: i) carcinoma, ii) sar-
coma, iii) myeloma, iv) lymphoma, and v) leukemia, depending on the presumed
origin of the abnormal cells. Carcinomas originate from tissues of organs and
make up between 80–90% of the cancers while sarcomas are from bone or con-
nective tissues. Myeloma are cancers from the bone marrow while lymphomas
are from the lymphatic system. Leukemia are cancers from blood cells. However,
cancer centres in the UK normally further classify these cancers into various can-
cer categories. In Table 2.1, the 15 cancers that are diagnosed and treated at the
Arden Cancer Centre are defined.

2.3 Treatments

In the UK, about 49% of all the cancers cured are treated by surgery, 40% are
treated by radiotherapy while the rest are treated by chemotherapy (Royal College
of Radiologists 2003, National Radiotherapy Advisory Group 2007a). Surgery
involves the removal of the tumour by a surgeon using cutting instruments while
radiotherapy involves using measured doses of ionising radiation to treat cancers
(The Christie 2008). The doses of ionising radiation are usually administered in
small doses (i.e. fractions) over a specified period of consecutive days to minimise
damage to healthy tissue and organs. Chemotherapy involves the treatment of
cancer with cytotoxic drugs that target and destroy fast reproducing cells.

In the recent years, these modes of treatment have been used independently
or in combination to maximise eradication of the cancerous cells. Normally,
radiotherapy or chemotherapy can be administered before or after surgery. When
given before surgery (i.e. pre-operative treatment), the main aim is to reduce the
tumour size so that surgery is more effective. Similarly, when given after surgery
(i.e. post-operative treatment), the aim is to ensure that residual tumour from
the targeted tumour volume is completely destroyed and lessen possibilities of
recurrence.

When radiotherapy or chemotherapy is delivered with a curative intent (i.e.
to cure the cancer), the treatment strategy or scheme used is termed radical treat-
ment. Radical radiotherapy or chemotherapy is intended to destroy the abnormal
cells. It can be pre-operative (i.e. neoadjuvant), post-operative (i.e. adjuvant) or
just an independent treatment. Treatment which is non-radical and is delivered
to alleviate pain and increase life expectancy is called palliative treatment. At the
Arden Cancer Centre, these treatments (see Table 2.2) are used to describe and
triage patients treated by either radiotherapy or chemotherapy. The treatments
described in Table 2.2 were extended by the Joint Council of Clinical Oncology
(1993) to include emergency treatments. Emergency treatments intend to quickly
relieve a patient of pain, bleeding, or other conditions normally prevalent in can-
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Table 2.1: Cancers treated at the Arden Cancer Centre and their descriptions

Cancer category Description

Benign mild and non-progressive tumours (Wikipedia 2009a)
Gynaecological malignant growth from the female reproductive system (Cancer

Research UK 2008f)
Skin tumour growths on the skin
Breast uncontrolled growth of breast cells (BreastCancer.Org 2008)
Head and neck tumours affecting the head and neck region
Soft tissue and bone tumours affecting bone and soft connective tissue
Central nervous system (CNS) malignant growths in the central nervous system
Lympho-reticular tumours of the lymphatic and reticular systems
Unknown primary cancers whose origin cannot be located (Cancer Research UK

2008e)
Digestive system tumours in the gastrointestinal system (e.g. stomach cancer)
Male genital tumours affecting male reproductive system (e.g. prostate can-

cer)
Unspecified unspecified tumours in organs
Endocrine gland tumours in the endocrine system (e.g. thyroid gland)
Respiratory tumours in the respiratory system (e.g. lung cancers)
Urinary tumours of the urinary system (e.g. kidney cancers)
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cer patients: a) spinal cord compression, b) vena caval obstruction, and c) airway
obstruction. Hence, as defined in Table 2.2, emergency treatments are palliative.

Table 2.2: Treatments delivered in radiotherapy and chemotherapy

Treatment
scheme

Description

Adjuvant An additive treatment given after surgery to remove all
detectable tumour growths, although there are chances
of tumour recurrence (Wikipedia 2008)

Palliative Treatment given to control or prevent symptoms of a
disease

Radical Treatment given to eradicate tumours and prolong sur-
vival

Work practices at cancer centres in the UK differ. At the Arden Cancer Cen-
tre, patients are classified using categories shown in Table 2.3. Patients requiring
the most immediate (i.e. within 24 hours) palliative treatment are classified as
Urgent, while those requiring palliative treatment within 48 hours are Emergency
patients. Some pre-operative radical treatments, are given high precedence for
the patients to meet their already booked surgery dates. These patients are cat-
egorised as Priority patients. Historical data obtained from the Arden Cancer
Centre shows that most (i.e. about 88%) of the patients treated were categorised
as Standard patients as shown in Table 2.4. These patients required either pal-
liative or radical treatment. Finally, the patients that normally require radical
treatment and are allowed to choose dates they preferred to visit the department
to be treated are Elective patients.

Table 2.3: Patient categories used at the Arden Cancer Centre

Category Brief description

Urgent require palliative treatment within 24 hours
Emergency require palliative treatment within 48 hours
Priority for radical radiotherapy before a specific surgery date
Standard either palliative, radical or adjuvant radiotherapy required
Elective mostly radical or adjuvant radiotherapy required
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Table 2.4: A break down of the proportions of the Arden Cancer Centre patient
categories

Category Percentage of patients (%)

Urgent 1.3
Emergency 0.7

Priority 0.3
Standard 88.3
Elective 9.4

2.4 Radiotherapy

The use of radiotherapy has grown worldwide as reported in (Delaney et al. 2005).
In the UK, by circa 2015, a rise in demand for radiotherapy of about 20% is ex-
pected due to the changes in the demographics, ageing population susceptible to
cancers and the growth of cancer incidences which results in the delivery of more
fractions (see Table 2.5) (Royal College of Radiologists 2000, Royal College of
Radiologists 2003, Ash et al. 2004, Dodwell and Crellin 2006, National Radiother-
apy Advisory Group 2006a, National Radiotherapy Advisory Group 2007a, Na-
tional Radiotherapy Advisory Group 2007b). Hence, it is imperative that radio-
therapy departments such as the Arden Cancer Centre be able to predict their
future waiting times performances using their current resources and make neces-
sary contingency plans for their radiotherapy capacity to meet the expected rise
in demand.

Table 2.5: Expected growth of total cancer incidences between 2005 and 2016
adapted from (National Radiotherapy Advisory Group 2007b:2)

2010/11 2015/16
Total population 3% 5%

Total incidence of cancer 8% 16%
Total fractions to be delivered 8% 17%

Radiotherapy capacity is the amount of time that a machine is available to
treat patients. It can be affected by staff shortages and lack of equipment. De-
mand for radiotherapy is measured using the total number of fractions delivered
in a given period of time (Royal College of Radiologists 2000). The National Ra-
diotherapy Advisory Group (2007a) predicted that demand for radiotherapy will
be greater than the current capacity and encouraged all radiotherapy departments
in the UK to maximally use existing equipment. The direct relationship between
equipment provision (i.e. capacity) and the number of cancer patients treated
within a specified time, reported in (Royal College of Radiologists 2000, Royal
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College of Radiologists 2003) means that when capacity is less than the growing
demand, patient waiting times are protracted (Dodwell and Crellin 2006:107).

2.4.1 Waiting times in radiotherapy

There are different definitions of waiting times in radiotherapy worldwide as dis-
cussed in (León et al. 2003, Lim et al. 2005). In the UK, waiting time is de-
fined as difference between the date of cancer diagnosis and the date when the
first treatment fraction is delivered (Department of Health 2000, Department of
Health 2001). It is measured in consecutive days including weekends and bank
holidays. In this study, radiotherapy waiting time has been defined as the time
difference between the date when the decision to treat by radiotherapy is made
and the date when the first fraction is delivered.

For the past two decades, waiting time has been adopted as a yardstick for the
quality of service cancer centres provide in the UK. Hence, the JCCO proposed
waiting time targets for emergency, palliative and radical treatments shown in
Table 2.6 in its efforts to reduce the waiting times to be as short as reasonably
possible. However, despite the efforts by the JCCO, an audit on waiting times
conducted 12 years ago revealed that waiting times were much worse than the
JCCO targets (Royal College of Radiologists 1998:7).

Radiotherapy waiting times have been shown to be worsening in other coun-
tries including Canada, Australia and New Zealand (Mackillop et al. 1996, Spur-
geon et al. 2000, Mackillop 2007). However, according to Spurgeon et al. (2000),
the UK fares badly in the comparison of waiting times and survival rates in the
developed countries. Ash et al. (2004) re-audited the waiting times based on the
JCCO targets. They showed that waiting times had degenerated between 1998
and 2003 for each treatment as summarised in Table 2.7.

More patients waited longer than the recommended JCCO targets maximum
allowed waiting times for radical, palliative, and post-operative treatments be-
tween 1998 and 2005. However, Table 2.7 shows improvements between 2005 and
2007. Even in the recent years, reducing the waiting times to the proposed tar-
gets has proved to be difficult to achieve as manifested by the results of re-audits
in (Summers and Williams 2005, Drinkwater and Williams 2008). According to
Drinkwater and Williams (2008), the percentage of patients who failed to meet
the JCCO targets for radical and palliative treatments were generally the same as
those for 1998 (see Table 2.8). For emergency treatments, more patients did not
meet the JCCO target in 2007. Such improvements (i.e. for palliative and radical
treatments) have been was attributed to the availability of more equipment and
expertise in the radiotherapy departments.
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Table 2.6: JCCO waiting time targets adapted from (Joint Council of Clinical
Oncology 1993:6)

Standard
JCCO targets (in days)

Emergency Palliative Radical

Good practice 1 2 14
Maximum accept-
able

2 14 28

Table 2.7: Comparison of the results of waiting times audits conducted in 1998,
2003 and 2005 using percentages of patients waiting longer than the JCCO tar-
gets; adapted from (Summers and Williams 2005)

Treatments 1998 (%) 2003 (%) 2005 (%)

Radical 32 72 53
Palliative 25 60 33
Post-operative 39 62 57

2.4.2 Effects of long waiting times

It is important to discuss the impact of protracted waiting times on the survival
rate, tumour recurrence rate, cure of cancer or any psychological distress to pa-
tients. Delays in commencing radiotherapy can permit the proliferation of the
abnormal cells and affect outcomes of radical or adjuvant treatment (Mackillop
2007). For example, a review of treatment delays for head and neck cancers
showed that for patients being treated with postoperative treatments, a delay
of 6 weeks in starting treatment led to an increase in local recurrence by about
2.6 times (Huang et al. 2003). They affirmed the associations between delay and
the risk of recurrence in carcinomas of the head and neck and breast cancers.
Additionally, longer waiting times were also associated with an increase in the
tumour volume doubling in (Jensen et al. 2007) and by examining the correlation
between long waiting times and survival rates worldwide, it was found that long
waiting times lowered the survival rates (Richards et al. 1999, Do et al. 2000).

Table 2.8: Comparison of the 1998 and 2007 audit results using percentages
of patients that did not meet the JCCO targets; adapted from (Drinkwater and
Williams 2008)

Treatments 1998 (%) 2007 (%)

Emergency 8 86
Radical 32 32
Palliative 25 22
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Do et al. (2000) showed that the likelihood of death increased by 2% per day
and that 3 additional days wait resulted in 6% decrease in survival rate. Seel
and Foroudi (2002) reviewed research on direct and indirect effects of prolonged
waiting times in radiotherapy. For breast cancers, the studies showed that delays
of more than 6 months had significant impact on local control and the overall sur-
vival. For gliomas showed a reduction in survival with each increase in waiting
times in radiotherapy. For oesophageal cancers, Seel and Foroudi (2002) showed
that waiting times more than 40 days between surgery and post-operative radio-
therapy were related to poor survival. It was found that 21% of some lung cancer
tumour growths became incurable due to the long waiting times for radiotherapy
(O’Rourke and Edwards 2000).

On the contrary, some researchers did not find correlations between long wait-
ing times and tumour control or survival (León et al. 2003). For laryngeal tumour
growths, studies on retrospective data did not reveal any effect of treatment de-
lays for waiting times between 9 and 180 days with a median of 43 days examined.
Therefore, although fewer studies such as in (León et al. 2003)did not demon-
strate significant associations between long waiting times and tumour control,
survival rates, recurrence or tumour proliferation, most of the papers on the
effects of protracted waiting times asserted that indirectly, long delays caused
increased psychological distress to patients and their families (Dische 2000, León
et al. 2003).

2.4.3 Staff and equipment issues

Radiotherapy staff includes doctors, radiographers, specialist nurses, physics tech-
nicians and physicists. Doctors decide the mode of treatment, prescribe the treat-
ment regime and also examine the patients. Radiographers work on machines
such as the computed axial tomography (CT) scanners and linear accelerators
(linacs) to treat cancers. Specialist nurses provide essential nursing care to pa-
tients before and during treatment while physics technicians provide technical
support services such as commissioning, decommissioning, calibration, repair and
maintenance of machines. Physicists are responsible for optimising and checking
complex treatment plans.

Equipment

At the Arden Cancer Centre, the radiotherapy department has a complement
of machines shown in Table 2.9. The simulator, integrated brachytherapy unit
(IBU) and CT scanner are for staging cancers by taking images used to create
treatment plans. Machines such as the deep X-ray (DXR), betatron, high dose
rate (HDR) and linacs are for delivering the ionising radiation. The high energy
(HE) and low energy (LE) linacs produce 25 MeV and 6 MeV beams, respectively.
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LE linacs are preferred for superficial tumours while the HE linacs are for the
more profound cases.

Table 2.9: Machines and facilities used in the department at the Arden Cancer
Centre

Machine or facility Quantity Description

Linacs 5 Machines for the acceleration of electron
beams normally between 4 and 25 MeV
(Wikipedia 2009b)

CT Scanner 1 Produces 3D images of cancers by taking
images from several different angles

Simulator 1 Used to take radiographs of the lesion
and verify that the treatment plan is cor-
rect prior to administering the ionising ra-
diation (National Radiotherapy Advisory
Group 2007a)

DXR 1 X-ray machine specifically designed to pro-
duce more penetrating X-rays compared
to diagnostic machines like the simulator
(Pervan et al. 1995:264)

Betatron 1 Treatment machine that produces high en-
ergy X-ray beams for treating special can-
cers

IBU 1 Integrated brachytherapy unit for imaging
tumour volumes

HDR 1 High dose rate for brachytherapy
Mould room 1 A room where masks and shields used in

treatment are made
Planning computers 3 Computers for the virtual outlining and

planning required for complex treatment
plans by doctors

Staff

In the UK, the achievement of the waiting time targets has reportedly been
affected by the shortage of staff in radiotherapy departments (Moore 2004).
Most radiotherapy departments in England have showed high staff vacancy rates
(National Radiotherapy Advisory Group 2006b:12). In particular, the radiother-
apy department at Arden Cancer Centre typically has doctors whose availability
is very limited; a doctor works up to about 4 hours a week as shown in Table
2.10. For example, doctor numbered 7 can only examine patients on a Thursday
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between 1.00pm and 5.00pm in the week. The entire staff complement in the
department is illustrated in Table 2.11. Treatment unit radiographers are shared
amongst the seven machines. Due to the shortage of physics technicians, work in
the mould room and complex treatment plan calculations had to be alternated
judiciously.

Table 2.10: A roster of the doctors, represented using numbers 1–12 as anonyms

Day Morning
(9.00am–1.00pm)

Afternoon
(1.00pm–5.00pm)

Monday 5 1
Tuesday 10 8
Wednesday 3 (9.00am–11.00am)

4 (11.00am–1.30pm)
6

Thursday 12 (9.00am–10.00am)
2 (10.00am–12.30pm)

7

Friday 9 11

Table 2.11: Staff complements for the radiotherapy department

Staff Quantity

Doctors 12
CT scanner and simulator radiographers 5
Treatment unit radiographers 25
Pretreatment radiographers 3
Physicists 11
Dosimetry technicians 7
Engineering technicians 6
Special nurses 3

2.5 Concluding remarks

This chapter has given an overview of cancer and its treatment in the UK. The
3 principal modes of cancer treatment have been briefly discussed as well as
the types of treatments. The problem of long waiting times and their effects
were also discussed. Radiotherapy waiting time was defined as the difference
between the date when the decision to treat by radiotherapy is made and the date
when the first fraction is delivered. Performance of radiotherapy departments in
the UK was analysed using the percentages of patients who waited longer than
targeted waiting times for each treatment (i.e. emergency, palliative and radical
treatments).
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The current booking systems of the departments may be inadequate as demon-
strated by the results of the waiting time audits conducted within the last decade.
Due to the low staffing and equipment provision issues in radiotherapy depart-
ments, it is imperative that existing capacity be fully utilised. Therefore, the rest
of this thesis focuses on gaining insight into radiotherapy treatment processes
using discrete-event simulation models and developing algorithms that can be
used to book appointments for all procedures in order to meet the targets for
radiotherapy departments in the UK.
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Radiotherapy processes
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3.1 Introduction

In this chapter, the treatment processes conducted in the radiotherapy depart-
ment at the Arden Cancer Centre are discussed. When the ionising radiation is
delivered from a source at a distance from the patient’s body, the process is called
teletherapy. At times, radioactive seeds are inserted next to the tumour to de-
stroy it, a method called brachytherapy (BT). The other method called unsealed
sources therapy (UST) involves administering the ionising radiation by ingestion
or injection in the form of soluble radioisotopes.

After a patient is referred to the department by a GP, the treatment process
is commenced by a multi-disciplinary meeting of doctors who recommend the
most appropriate treatment mode. If radiotherapy is recommended, the patient’s
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doctor completes a request form which can either be a radiotherapy booking form,
radionuclide therapy request form, or radiotherapy physics form for teletherapy,
UST or BT, respectively. The completed form is then forwarded to a booking
desk for further action.

The next Sections discuss the three treatment processes conducted in the
department. Teletherapy processes are described in Section 3.2. A discussion of
the BT processes follows in Section 3.3. Section 3.4 discusses the UST processes.
In each Section, a formal model of the corresponding process using flowcharts
is given. Finally, concluding remarks on the treatment processes are given in
Section 3.5.

3.2 Teletherapy

Teletherapy, also called external beam therapy (EBT), comprises intricate proce-
dures conducted in four units of the radiotherapy department. These four units
include: i) planning, ii) physics, iii) pretreatment, and iv) treatment units. In the
planning unit, the tumour volume (i.e. tumour growth to be targeted by radia-
tion) is imaged using various machines. The images acquired from the machines
are then used in the physics and/or pretreatment units for dosimetry calculations,
and accuracy checks and verifications. Finally, the verified dose calculations are
delivered in the treatment unit through a scheme called fractionation, which aims
for maximum tumour eradication while minimising negative side effects of the ra-
diation. Fractionation can be defined as the division of the total therapeutic dose
of radiation into small doses (i.e. fractions) to be administered over a period of
days or weeks (The Free Dictionary 2009).

In the planning unit, there is a desk, manned by a radiographer, where the
booking of appointments for the planning and treatment procedures based on
the submitted forms is done. A completed form has details about the patient’s
treatment which include: i) planning unit machine or facility, ii) treatment ma-
chine, and iii) treatment plan complexity, to be used. The radiographer uses the
details on the form to manually create and amend schedules of appointments for
the procedures to be conducted on the machines and/or facility in the planning
and treatment units.

3.2.1 Planning unit

The process of imaging the tumour volume, also called staging, provides indi-
cations of the advancement of the cancer. In radiotherapy, accurate staging is
critical because treatment is directly related to tumour stage. The tumour vol-
ume is imaged using a simulator or computed axial tomography (CT) scanner in
the planning unit. The simulator, such as the one shown in Figure 3.1, takes ra-
diographs used to line-up a patient for treatment. The CT scanner (i.e. shown in
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Figure 3.2) takes images from different angles and builds a 3-dimensional image
of the tumour volume.

Figure 3.1: A patient on a simulator. Taken from
CancerHelp UK, the patient information website of Can-
cer Research UK: www.cancerhelp.org.uk (Cancer Re-
search UK 2008c)

Figure 3.2: A patient on a CT scanner. Taken from
CancerHelp UK, the patient information website of Can-
cer Research UK: www.cancerhelp.org.uk (Cancer Re-
search UK 2008b)

Some patients may require a mask for immobilisation during the planning and
treatment procedures. These patients can be the infirm or those with cancers
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close to delicate organs who need a mask or shield to immobilise them so that
staging/treatment can be done with precision. Masks and shields are made in the
mould room. At the Arden Cancer Centre, this room has a single couch where
patients were supported and materials such as wax or gypsum used to create an
impression of their head, chest, or limbs. Figures 3.3 (a) and (b) show a perspex
shield, and mask being moulded using gypsum.

(a) (b)

Figure 3.3: Shield and mask made in the mould room; (a) adapted from (North
of England Cancer Network 2008); and, (b) Taken from CancerHelp UK, the
patient information website of Cancer Research UK: www.cancerhelp.org.uk

(Cancer Research UK 2008a)

Normally, when a patient visited the radiotherapy department for the planning
unit appointments, if they required a shield or mask, they visited the mould room
first where their shields or masks were made. The patient would have been booked
for that procedure at a time when their doctor was available in the department.
Upon completing the mould room procedure, the patient visited either the CT
scanner or simulator (i.e. depending on the planning unit machine recommended
by the doctor for the imaging procedure). For example, head and neck cancer
patients usually require masks and they follow the route 1→ 2→ 3→ 4→ 5→ 6
in Figure 3.4, since they usually visit the CT scanner. For other cancers, the
patients may not require masks and they take the route 1 → 4 → 7 → 8 if the
imaging procedure has to be conducted on the simulator. Generally, Figure 3.4
shows that the machines or facilities visited by the patient in the planning unit
depend on whether a mask is required and the type of machine to be used to
stage the cancer.

When a patient was shown to the simulator or CT scanner room, radiographers
normally waited for the doctor to see the patient. The doctor explained the
impending planning and treatment procedures to the patient. The patient had to
accede to radiotherapy otherwise the process would be terminated. If the patient
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Figure 3.4: A flowchart of the procedures conducted in the planning unit

assented to continue with the procedures, radiographers prepared the patient on
the machine and conducted the scan (i.e. on a CT scanner) or simulation (i.e.
on a simulator). Some cancers required extra involvement of doctors, especially
when radiographers needed to tattoo the lesion or other parts like the head, neck,
limbs, or torso. A good example of such planning procedures were for most breast
cancers.

For some patients, after the doctor had consulted them, some simulator
procedures took considerable processing time when radiographers intermittently
stopped the machine to reposition the patient on the machine until the process
was completed satisfactorily. The machine line-up procedures (see procedure 10
in Figure 3.4) were usually included on the simulator schedule of appointments,
although they were conducted on the linacs. These procedures were for patients
who were deemed too large for the simulator or CT scanner. For such patients,
the radiographers usually identified a free linac for the procedure or wait until
4.30pm when treatment procedures were over.

As shown in Figure 3.4, the routines in the planning unit involved doctor
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consultations. It was mandatory that the doctor had to be available for each pro-
cedure in the planning unit. The amount of time the doctor spent with a patient
on a given procedure was uncertain. Most doctors examined their patients before
the commencement of the planning procedure and instructed the radiographers
on how they had to image the lesion. The output of the planning unit operations
were digital images, required for treatment plan outlining and planning, and/or
dosimetry calculations. At times, some patients visited the machines and/or fa-
cility when their doctor was absent. Such practices were recommended by the
Joint Council of Clinical Oncology (1993) to fast-track the treatment of the most
critical patients (i.e. patients requiring treatment of conditions like spinal cord
compression, vena caval and airway obstruction, normally prevalent in radiother-
apy departments).

For some patients, the treatment plans calculated and verified in the physics
and or pretreatment units had to be ‘checked’ in the planning unit before the pa-
tient commenced (and/or even during) their treatment. These procedures were
normally conducted on the simulator in the absence of the patient’s doctor and
termed ‘treatment plan verification checks’. Such procedures were meant to im-
prove the accuracy of the treatment plans. Some patients had to visit the sim-
ulator for the plan verification several times. These subsequent visits helped in
verifying if the moulded mask still fitted properly (i.e. if the patient required a
mask and it had been made before), tattoos of the lesion had not been washed off,
or simply preparing the patient for further treatment. Historical records from the
department showed that some patients revisited the planning unit for the ‘treat-
ment plan verification checks’ more than twice or thrice in their treatment regime.

3.2.2 Physics unit

The digital images obtained from the planning unit were used in the physics
unit to generate treatment plans normally through two operations: i) outlining
and planning, and ii) dosimetry calculations and accuracy checks. Outlining
and planning involved determining the most appropriate angle and intensity of
radiation beams to treat the cancer. Only treatment plans requiring complex
calculations were handled in the physics unit. For example, most breast and/or
CNS cancers required complex outlining and planning procedures, calculations
and accuracy checks.

Firstly, the physics unit technicians performed the outlining and planning op-
eration using the digital images obtained from the planning unit. This operation
involved finding perfect radiation beam angles illustrated in Figure 3.5. Upon
completion, the patient’s doctor checked their outlining and planning output (i.e.
Figure 3.5), approved and signed it, if it was satisfactory. The technicians then
proceeded to do the dosimetry calculations. When the doctor was unavailable,
the outlining and planning plans were shelved until the doctor was available to
approve and sign them.

24



3. Radiotherapy processes

Figure 3.5: Image of the configuration of radiation beams. Taken from
CancerHelp UK, the patient information website of Cancer Research UK:
www.cancerhelp.org.uk (Cancer Research UK 2008d)

Recently, the department’s planning unit has been equipped with a computer
system that enables doctors to create the outlining and planning plans themselves
as soon as the digital images have been obtained from the simulator or CT scan-
ner. This has been termed ‘virtual outlining and planning’. In this case, after
the doctor has created the ‘virtual outlining and planning’, he or she forwarded
the output to the physics unit for the dosimetry calculations and accuracy checks
only. However, some doctors had busy schedules for their days in the depart-
ment and did not find time to do the ‘virtual outlining and planning’. Thus, they
normally recommended the digital images to be sent straight to the physics unit.
The procedures performed in the physics unit are illustrated by the flowchart in
Figure 3.6.

When the technicians completed the second operation (numbered 4 in Figure
3.6), physicists or radiotherapy scientists checked for errors in the treatment plans.
This was done twice by different physicists sequentially (see procedures 5 and 6 in
Figure 3.6). Upon completing the accuracy checks, the physicists forwarded the
treatment plans to the pretreatment unit. There were four workstations used by
four technicians in the physics unit office. All four technicians were involved in
each of the procedures (i.e. 2 and 4 in Figure 3.6). Notably at the centre, the four
technicians involved in generating the treatment plans were also involved in the
moulding of shields and masks in the mould room. Hence, the technicians could
only do one of the three procedures: 1 moulding masks and shields in the mould
room, 2 creating outlining and planning plans, or 3 dosimetry calculations, at a
time. Mould room procedures had higher precedence than the other procedures
since they physically involved the patient. Therefore, outlining and planning, and
dosimetry calculations had to be performed when the mould room was vacant.
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Figure 3.6: A flowchart of the procedures performed in the physics unit

3.2.3 Pretreatment unit

The pretreatment unit can be described as an interface between the preparation
for treatment and the actual treatment. Digital images for the patients that
do not require complex calculations are forwarded straight from the planning
unit. Simple dosimetry calculations and accuracy checks are performed in the
pretreatment unit. Only one calculation and check is performed on treatment
plans created in the physics unit. This calculation ensures that the treatment
plans are precise so that positive effects of the radiation are realised on the patient.

At the Arden Cancer Centre, the pretreatment unit comprises an office with
3 desks for 3 radiographers that work on the simple dosimetry calculations and
accuracy checks of treatment plans. The images forwarded from the planning unit
normally require simple calculations and accuracy checks to create treatment
plans. For example, patients requiring critical treatments such as emergency
treatment, have their treatment plans created in the pretreatment unit after the
planning unit procedures.

Radiographers performed the calculations on the three desks in the pretreat-
ment unit. Figure 3.7 shows the flowchart of the procedures performed in the
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Figure 3.7: A flowchart of the pretreatment unit procedures

pretreatment unit. Each procedure was performed by a different radiographer
(i.e. procedures 1, 3 and 4 in Figure 3.7). For the treatment plans requiring
simple calculations and accuracy checks, each procedure had to be performed by
a different radiographer to enhance the likelihood of error detection. Treatment
plans created in the physics unit were considered complex and had only one calcu-
lation and accuracy check procedure performed on them (i.e. procedure 1) before
they were forwarded to the treatment unit.

3.2.4 Treatment unit

The ultimate procedures of the EBT processes are conducted in the treatment
unit. These include: a final accuracy check on all the treatment plans and the
actual delivery of the fractions. The final accuracy check is performed prior to the
delivery of the fractions by a radiographer in the treatment unit. As discussed
in Chapter 2, the machine complement in the department at the Arden Cancer
Centre comprised HE and LE linacs, DXR and a betatron.

A flowchart of the procedures conducted by radiographers in the treatment
unit is shown in Figure 3.8. When patients attended their treatment unit appoint-
ment for the first time, radiographers explained the treatment unit routines in
what is termed the radiographer session (i.e. procedure 5 in Figure 3.8). This was
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a short session meant to familiarise the patient with the staff and the treatment
unit procedures to be performed during the course of their treatment.
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Figure 3.8: A flowchart of the treatment unit procedures

Fractions are delivered daily except for weekends and bank holidays when
the radiotherapy department is closed. Figure 3.9 shows a patient in a posi-
tion for receiving treatment on a linac. After receiving several such fractions,
some patients require on-treatment review (OTR) sessions (see procedure 9 in
Figure 3.8). These OTRs were conducted by specialists on the patients to mon-
itor treatment effectiveness. In addition, some patients required treatment plan
verification checks to verify their treatment plans on the simulator before the com-
mencement of, or during, their treatments. Such patients, also termed ‘phased
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treatment patients’, normally had their total dose divided into multiple phases.
Each phase comprised several fractions prescribed by their doctor. Before com-
pleting a phase, the patient had to undergo a plan verification check on the
simulator in preparation for the next phase. Historical data obtained from the
radiotherapy department between 2005 and 2007 showed that some patients had
up to 3 phases in their treatment courses.

Figure 3.9: A patient on an Elekta Synergy(R) linac. Image taken from Elekta
website www.elekta.com (Elekta AB 2009)

The OTRs can best be described as processes parallel to the radiotherapy
treatment. The appointments for these procedures depended on the appoint-
ments booked for treatment created in the planning unit. Depending on the
cancer, the OTRs were conducted by specialists mostly working part-time in the
department. For example, head and neck cancers were reviewed before the last
fraction by a dietician on Wednesdays (between 9.00am and 5.00pm). Other
OTRs were conducted by the patient’s doctor or volunteer radiographers (i.e.
staff from the MacMillan Cancer Support). These were booked for Mondays,
Thursdays, and Fridays although at least one MacMillan radiographer was avail-
able everyday. A specialist nurse reviewed patients diagnosed with CNS cancers
weekly on Tuesdays before their fractionation scheme is over. Similarly, breast
cancer patients also meet a breast care nurse weekly on Tuesdays.

3.2.5 Appointment scheduling practices

The radiographer manning the EBT booking desk in the planning unit, considered
several factors when manually creating the schedules of appointments for the
planning and treatment unit procedures for the patients. In most cases, the
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doctors brought the completed request forms for their patients on the day of
week they were working in the department. Using the details in the forms, the
radiographer created appointment slots for the planning unit procedures first
before contacting the patient to inform him or her the appointments. Elective
patients were allowed to suggest alternative dates of appointments if they did not
concur with those created by the radiographer.

The treatment procedures were booked on the day the patient attended and
completed the planning unit procedures. Hence, patients did not know their
treatment dates until they attended the planning procedures. The manner in
which the treatment unit procedures were booked was similar to the planning
unit procedures. Notably, the booking desk is manned mostly by senior radiog-
raphers, when the information on the forms was vague, they used their expertise
to determine the patient’s pathways. The following is a list of some of the factors
radiographers considered:

1. Whether or not the patient was to have first definitive treatment, the first
clinical intervention intended to palliate or cure a patient’s disease (NHS
2008).

2. Category 1 cancers. These included conditions such as: i) spinal cord
compression (emergency treatment) ii) vena caval obstruction (emergency
treatment) iii) airway obstruction (emergency treatment) iv) head and neck
cancers v) cervix cancers vi) lung cancers, and vii) bladder cancers.

3. Category 2 cancers. In the radiotherapy department, the cancers included
were all the cancers in Table 2.1 except the Category 1 cancers.

4. Doctor availability which included the day of the week and times when the
doctor was in the radiotherapy department.

5. Date of referral by the GP to the radiotherapy department.

6. Decision to treat date, the date when radiotherapy was recommended to
palliate or cure the patient.

7. Treatment type (either emergency, palliative, radical or adjuvant).

3.2.6 Limitations caused by the work practices

The following list gives some of the practices and restrictions considered when
booking patients for the planning and treatment procedures.

• The department is open 5 days (Monday through Friday) although the
historical data showed a few emergency treatments done on Saturdays and
Sundays. The department restricts its activities to a 5 day working week
due to the difficulties in securing manpower and other resources beforehand
for the weekend shifts
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• Category 1 cancer patients commence their treatment on Mondays while
Category 2 cancer patients can start treatment on any other day of the
week (i.e. Monday to Friday).

• Doctors availability in the department is very limited as discussed in the
previous chapter (see Table 2.10).

• The department infrequently required services of specialists such as lan-
guage interpreters for interpretation to non-English speaking patients. The
appointments for a patient could be affected if one such specialist could not
be secured.

• The department uses JCCO targets discussed in the previous chapters (see
Table 2.6).

• Planning or treatment appointment interruptions were normally a result of
machine breakdowns, ambulance failure to collect patients, patients not at-
tending (for example, due to bad weather or holidays), or treatment plans
not ready. Formally, the radiotherapy department had no maximum al-
lowable interruptions restriction, but booking staff allowed a maximum of
two interruptions for radical treatments and none for palliative or adjuvant.
Normally, when a machine broke down during working hours, the patients
in the queue are asked to wait and be treated on other machines or are
re-booked on another appointment dates

• Machine availability was affected by service and maintenance dates. The
DXR was normally taken out of service for maintenance on Tuesdays, the
second week of each month. Similarly, the simulator was serviced and main-
tained on Thursdays, the third week of each month. There were normally
three service and maintenance dates for the contractors, on Thursdays in
the third week of June, September and November. The CT scanner was
taken out of service for maintenance on the last week of each month on
Wednesdays. The contractor’s service and maintenance dates for the CT
scanner were in June, September and November. The HDR was taken out of
service for maintenance in the first or second week after every three months
beginning in January. Table 3.1 depicts a sample of the machines schedule
for weekly and monthly service and maintenance obtained in 2007. The
column, representing Fridays, was shaded to denote the day on which the
linac had its monthly service and maintenance. All the unshaded cells with
the machine names were weekly service and maintenance dates. The low
energy (LE) and high energy (HE) linacs were shutdown after 2.00pm for
weekly services and for the whole day for the monthly services.

• The department is also closed on bank holidays.
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Table 3.1: A sample of the maintenance and service dates for the linacs used in
2007
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• Number of radiographers made available on the machines is limited ac-
cording to the minimum (min.) and maximum (max.) staff requirements
shown in Table 3.2. When there is shortage of staff in the department, some
machines such as the DXR are at times closed for some time

Table 3.2: Staff requirements by the machines/facilites in the department.

Machine or facility
Staffing levels
Min. Max.

CT scanner
2 3Simulator

Mould room
Pretreatment 3 ≥ 3
Physics planning 4 ≥ 4
Linac

3 4
Betatron
DXR 2 3

Staff requirements

Each machine or facility has a range of the number of staff that can drive it
(see Table 3.2). The CT scanner, simulator and mould room require at least two
radiographers. Similarly, at least three radiographers are required to care for the
patients and operate the linacs.

A normal working day for the planning unit machines and facility (i.e. the
mould room) commences at 9.00am and ends at 5.00pm. All the radiographers
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work from 9.00am to 5:00pm every working day. However, due to late patient ar-
rivals, longer processing times and/or unavailability of doctors, the daily schedule
may require staff to work overtime to finish patients queued for the day. Normally,
the overtime period is between 5.00pm and 8.00pm. However, the department
does not work during the early hours of the morning like some radiotherapy de-
partments reported in (White et al. 2007, Calman et al. 2008).

Work in the physics unit commences at 9.00am and terminates at 5.00pm. The
technicians and physicists also work from 9.00am to 5.00pm. In the pretreatment
unit, radiographers work on the treatment plans from 9.00am to 5.00pm. In the
treatment unit, although radiographers start work at 9.00 and finish at 5.00pm,
the delivery of fractions actually commences at 9.20am and terminates at 4.20pm
from Monday to Friday. The first 20 minutes are for preparing the machines for
the day. The final 40 minutes are for shutting down and preparing the treatment
plans for the patients to be treated the following day.

3.3 Brachytherapy

Placing sealed radioactive seeds into, or next to the tumour volume to maximise
its destruction is a process called brachytherapy (Royal College of Radiologists
2007). It is normally used as an additive to either chemotherapy or EBT. Unlike
EBT, the radiation is delivered once (i.e. not in fractions). However, the method
is uncommon at the Arden Cancer Centre, with less than 100 patients treated an-
nually, according to the historical data. In most cases, the patients that undergo
BT have gynaecological cancers (i.e. an estimated 80–90% of the BT patients)
and the rest comprise of cancers such as respiratory and oesophageal cancers.

The entire process flowchart for BT procedures is shown in Figure 3.10. For
example, respiratory and gynaecological cancer patients usually have the appli-
cator inserted in the HDR room (i.e. procedure 4 in Figure 3.10) and endoscopy
department (i.e. procedure 3 in Figure 3.10), respectively. Some cervical cancer
patients are admitted into the hospital and an applicator inserted next to the
lesion in the operating theatre (i.e. procedure 2 in Figure 3.10).

Once the applicator is inserted, the tumour volume is imaged (i.e. in a similar
way imaging is done in EBT) on an integrated brachytherapy unit (IBU) to
obtain digital images that are then used to create treatment plans (i.e. procedure
5 in Figure 3.10). Normally, a physicist and technician work on the treatment
plans which can either be generic or specific depending on the complexity of the
cancer. If generic treatment plans are required, procedures 6 and 8 are performed.
Otherwise, procedure 9 is performed before the doctor approves and signs them.
Generic treatment plans are normally created for gynaecological cancers which
are prevalently treated in the department.

When the treatment plan has been checked for errors, the doctor approves it
and the patient then receives treatment on the HDR machine as illustrated in
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Figure 3.10: A flowchart of the brachytherapy procedures

Figures 3.11 (a) and (b). Some patients whose treatment involves iodine radioac-
tive seeds are decontaminated before being discharged by admitting them into
a decontamination ward for approximately 2 hours (i.e. procedure 13 in Figure
3.10). Most gynaecological cancer patients (i.e. who had not gone through the
theatre) are treated on Tuesdays and Thursdays while patients who had the ap-
plicator inserted in the theatre are treated on Tuesdays only. Respiratory cancers
are treated on Fridays because of staff shortages while oesophageal cancers are
treated on Thursdays when the doctor of the patients is available to oversee the
procedures.
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(a) (b)

Figure 3.11: A patient on the HDR machine; Images (a) and (b) taken from
the WellSpring Oncology website www.wellspringoncology.org (WellSpring
Oncology 2009)

3.4 Unsealed sources therapy

When ionising radiation is ingested or injected in the form of soluble radioisotopes
such as iodine (131I), phosphorus (32P ), strontium (89Sr), samarium (153Sm), and
yttrium (90Y ), the process is called UST. It is used to deliver the first definitive
treatment for the conditions in Table 3.3. However, unlike BT and EBT, UST
does not involve intricate routines. Figure 3.12 shows the flowchart of the pro-
cedures for dispensing the UST radioisotopes normally performed by a physicist
and/or technician. Upon receipt of the booking request form, staff order radioiso-
topes to be used (i.e. procedure 1 in Figure 3.12). UST is bespoke and hence,
quantities of the radioisotopes are ordered per patient. The treatment dates
must coincide with doctor availability times because the doctor must monitor the
treatment. However, if the patient is urgent and the doctor cannot be available,
treatment can be expedited by bypassing the doctor.

To treat the cancers in Table 3.3, the following had to be considered. The 131I

liquid is delivered on two week standing orders every Wednesday for thyrotoxicosis
or thyroid cancers. At most, 6 thyrotoxicosis (7 if there is an urgent case) patients
are treated the following day, Thursday. Thyroid cancers are treated on Fridays
because they are admitted into a decontamination ward (i.e. procedure 7 in
Figure 3.12) for at most two hours. Thereafter, they are admitted into other wards
and eventually discharged on Monday. The department has 2 decontamination
wards and thus, up to 2 thyroid cancer patients can be treated each week.

The 153Sm and 89Sr radioisotopes were given as intravenous injections to
soothe pain in the bones for prostate cancers. The doctor performed the injection
procedure. Similarly, polycythemic cancer patients are also given an injection of
the 32P radioisotope by the doctor. These radioisotopes are ordered five days
in advance of the treatment date. In addition, due to the unavailability of the
doctors, the doctor must be booked ten days in advance of the treatment date. It
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Table 3.3: Cancers and the radioisotopes used to treat them by UST in the
department

Cancer Radioisotope Description

Thyrotoxicosis 131I the thyroid gland producing excess
hormones which affect the body
(MedInfo 2004)

Thyroid 131I cancer of the thyroid gland
Prostate 89Sr or 153Sm cancer of the prostate gland
Thrombocytosis 32P excess platelets in the blood caused

by disease (Wikipedia 2009d)
Thrombocythemia 32P excess platelets are produced caus-

ing blood clotting (Merck c. 2009)
Polycythemia 32P increase of red blood cells in the

body (Wikipedia 2009c)

takes about 30 minutes to prepare and dispense the soluble radioisotope for each
patient (i.e. for procedure 3 in Figure 3.12). Historical data showed that the 131I

radioisotope was the most commonly used radioisotope while 153Sm was barely
used by the department.
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Figure 3.12: A flowchart of the UST procedures

3.5 Tracing the patient pathways

Since patients take different treatment pathways in the radiotherapy department,
the procedures for EBT discussed in this chapter can all be incorporated into in
a single flowchart shown in Figure 3.13. The following are examples of pathways
that can be taken by patients requiring emergency and radical treatments.

3.5.1 Emergency treatment: spinal cord compression

Most patients needing emergency treatment (e.g. spinal cord compression) are
forwarded to the planning unit for imaging of the cancers on the CT scanner.
Assuming that no mask or shield was needed and using Figure 3.13, the pathway
for such patients is as follows. After decision points 1, 5 and 6, procedure 7 is
performed. Most patients do not need multiple visits to the CT scanner and thus
after decision point 11 and 13, the digital images obtained from procedure 7 are
forwarded to the pretreatment unit for procedure 14, 22 and 23 (i.e. for simple
treatment plans).
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Patients requiring emergency treatment usually do not need plan verification
checks. Therefore, procedures 25, 28 and 29 are performed because the patients
would be receiving the first and only fraction (because emergency treatments
normally require a single fraction). In this case, no OTRs and plan checks (i.e.
decision points 31 and 32 respectively) are needed. The patient is then discharged
(i.e. terminal step 34) after receiving his or her only fraction. This pathway
can be denoted using the numbered steps in Figure 3.13 as: 1 → 5 → 6 →
7 → 11 → 13 → 14 → 21 → 22 → 23 → 24 → 25 → 26 → 28 → 29 →
31→ 32→ 33→ 34

3.5.2 Radical treatment: head and neck cancers

Head and neck cancer patients require a mask for immobilisation during the
planning and treatment procedures. Hence, they must visit the mould room first
before visiting the other machines in the planning unit (i.e. steps 1, 2, 3 and 5 in
Figure 3.13). Images of tumour growth are taken on the CT scanner when their
doctor is available. Therefore, according to Figure 3.13, from decision point 5,
the path comprises steps 6 and 7 for the CT scan to be performed. In most cases,
patients do not require multiple scans or simulations (i.e. procedures 7 or 9), so
the digital images obtained after procedure 7 are forwarded to the physics unit
for complex dosimetry calculations.

Assuming the doctor did not do virtual outlining and planning using the
images from the CT scanner, procedures 16, 18, 19 and 20 are performed to
ensure that the complex treatment plans are created. After the accuracy checks
performed by the physicist in procedure 20, the complex treatment plans are then
forwarded to the pretreatment unit for a single calculation and accuracy check.
In this case, only procedure 14 is performed. Normally, before these patients
undergo treatment in the treatment unit, the treatment plans are verified on the
simulator. Therefore, the steps followed after procedure 14 include: 21, 24, 9, 12
and 27.

After decision point 27, the further accuracy checks of the treatment plans
(i.e. procedure 25) are performed because the plan verification checks performed
on the simulator had been performed before the first fraction was delivered. Upon
completion of procedure 25, the ultimate procedures of delivering the fractions
sequentially over the prescribed period of time are then performed. For example,
if 10 fractions had been prescribed for a head and neck patient, the subsequent
pathway can be traced as follows. Procedures 26, 28, 29, 31, 32 and 33 are
performed for the first of the ten fractions. Thereafter, the steps 26 → 29 →
31 → 32 → 33 are repeated 7 times (i.e. up to the 8th fraction) and finally,
the steps 26 → 29 → 31 → 30 → 26 → 28 → 29 → 31 → 32 → 33 → 34
are performed for the OTR performed before the completion of the prescribed
fractions.
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Figure 3.13: A flowchart of all EBT procedures (i.e. combination of Figures
3.4, 3.6–3.8)

39



3. Radiotherapy processes

3.6 Concluding remarks

In this chapter, the intricacy of the 3 treatment processes: external beam therapy
(EBT), brachytherapy (BT) and unsealed sources therapy (UST), has been shown
using process flowcharts. The EBT process comprises procedures performed in
four units (i.e. planning, physics, pretreatment and treatment units) of the radio-
therapy department at the Arden Cancer Centre while those for the BT and UST
processes are conducted in the physics unit only. The most crucial resource whose
availability in the departments is limited is the doctor. Their limited availability
in the department (i.e. as discussed in Chapter 2) can be considered a major
constraint to the booking of appointments for the patients.

The problem in the radiotherapy departments can be subdivided into four
separate subproblems representing the four units (i.e. planning, physics, pre-
treatment and treatment units). Although the EBT is the most commonly used
treatment process, the scope of any study of the radiotherapy issues should in-
clude the BT and UST processes as well since they all share the same resources
(i.e. doctors and physicists). To gain insight into the flow of patients, the devel-
opment of discrete-event simulation models can be considered crucial. Developing
the models helps in determining patient arrival patterns, processing times on ma-
chines, cancer diagnoses, treatment type distributions and many other attributes
of patient flow in the department. The next chapters should dwell on the devel-
opment such models in order to understand the processes better.
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Operational research and
healthcare problems
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4.1 Introduction

Most healthcare problems involve many constraints due to the complex and elab-
orate processes that patients undergo, as explained in Chapter 3. Most of these
problems concern the delivery high quality service using limited resources in the
shortest time reasonably achievable. Many researchers have applied various ap-
proaches to different healthcare problems. Amongst these approaches, are various
operational research techniques that have been used to solve healthcare problems
for the past 50 years.
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Some of the healthcare problems considered in the literature include staff
scheduling, outpatient and inpatient appointment scheduling, distribution of med-
ical supplies within wards and/or departments, allocation of beds, scheduling of
operating room theatres for surgical procedures, designing medical facilities, de-
termining the extent of the spread of infectious diseases and many others.

There is a noticeable paucity of papers on tackling the radiotherapy patient
flow management problems using operational research techniques. Most of the
literature on radiotherapy related problems has been on the actual planning and
treatment of patients such as in (Haas 1999). Literature on the radiotherapy pa-
tient flow problems focused on: a) audits of waiting times, b) effects of delays to
cancer control and survival rates, and c) equipment provision. Managing patient
flow in radiotherapy can be difficult due the constraints and elaborate treatment
processes presented in Chapter 3. However, researchers have also adapted some
operational research techniques which have been used to solve other hard prob-
lems to tackle healthcare problems. In this chapter, literature on some of the
techniques that have been used and/or can potentially be used to solve radio-
therapy and other healthcare problems are reviewed.

This chapter is organised as follows. Section 4.2 reviews literature on the ap-
plication of simulation and modelling techniques to tackle healthcare problems.
This is followed by Section 4.3 which reviews studies which applied the theory of
scheduling techniques such as exact methods, heuristics and optimisation algo-
rithms on healthcare problems. Lastly, Section 4.4 gives the concluding remarks.

4.2 Simulation and modelling

Computer simulation and modelling is one of the most commonly used operational
research technique applied to healthcare problems. It can be defined as a problem
solving methodology that involves mimicking a real-life system over a period
of time (Pidd 2004). Simulation models can be continuous, discrete-event, or
combined (i.e. both discrete and continuous). The distinction between these
models as well as the advantages and disadvantages of using them are explained in
(Banks et al. 1996, Banks 1998, Law and Kelton 2000, Fishman 2001, Pidd 2004).
A continuous simulation has been defined as the modelling of systems in which
the state variables change continuously over time (Banks et al. 1996, Law and
Kelton 2000, Pidd 2004).

In combined models, state variables may change discretely, continuously, or
continuously with discrete events superimposed (Alan and Pritsker 1998). Com-
pared to discrete or continuous simulations, there are not many studies that used
combined simulations. An example of such simulations is the model to project the
supply and demand for primary healthcare in Indiana, United States from 1970
through to 2000 in (Standridge et al. 1977). However, the most commonly used
simulation and modelling technique in studies of healthcare systems is discrete-
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event simulation (DES). It is the modelling of systems in which the state variable
changes only at a discrete set of points in time (Banks et al. 1996).

In recent years, DES has been applied widely to healthcare problems. There
are many benefits of using DES in studying healthcare systems. DES allows the
end user to assess the efficiency of existing healthcare systems and designing new
systems. In addition, DES can be used to forecast the impact of changes in the
flow of patients, examine resources requirements, investigate complex relation-
ships among the different model variables, identify bottlenecks in complex mod-
els and, most importantly, to understand a given system. Some of these health-
care problems were based on outpatient clinics, emergency departments, surgical
centres, pharmacies, orthopedics departments, radiology units, radiotherapy and
chemotherapy departments. Although there are challenges associated with sim-
ulation modelling in healthcare systems discussed by Lowery (1996b), DES has
been described as an effective tool in the search for more efficient health care
systems (Proctor 1996).

Even though most papers on simulation and modelling in healthcare may in-
volve the use of DES, it does have its demerits. As a result, other simulation
approaches are growing in popularity for healthcare modelling. Jun et al. (1999)
presented a review of the future directions of DES in healthcare that involve use
of soft systems methodologies (SSM) (Avison and Fitzgerald 2003:469). Several
papers have reported the combination of DES and SSM or data mining to improve
the acceptance of the outcomes, understanding, full engagement and ownership of
simulation models in healthcare (Lehaney 1996b, Lehaney 1996a, Lehaney et al.
1999, Lehaney and Paul 1999, Brailsford et al. 2006, Sachdeva et al. 2007, Ce-
glowski et al. 2007, Eldabi et al. 2007). Another approach that has recently gained
popularity in healthcare modelling is system dynamics (SD) modelling. Brails-
ford (2008) gave a succinct introduction of SD modelling based on the compari-
son of DES and SD in (Lane 2000, Morecroft and Robinson 2005, Morecroft and
Robinson 2006). Further, when implementation problems were encountered using
DES to study outpatient phlebotomy and specimen collection centres, Rohleder
et al. (2007) used additional SD modelling. One key demerit of DES reported in
these papers is that its data requirements are higher than for approaches such as
SD.

4.2.1 Developing simulation models

The development and evaluation of a simulation model involves some key steps
that have been discussed in (Lowery 1996b, Banks et al. 1996, Lowery 1998,
Fishman 2001, Law and McComas 2001). These include: 1) problem formulation,
2) conceptual model building, 3) data collection, 4) model building, 5) verification
and validation, 6) experimental design, and 7) documentation and reporting. For
decades, these steps have been used to develop simulation models to understand
and solve various healthcare problems.
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Although all these seven steps are important in the development of simu-
lation models, step 5) is crucial because it involves ensuring that the model is
an accurate representation of the real system. Verification entails debugging the
computer program used to develop the simulation model while validation involves
calibrating the model through an iterative process of comparing the behaviour
of the model to the real world system and improvements being made for any
discrepancies (Banks et al. 1996:399).

There is an extensive literature on validation of simulation models which in-
cludes (Kleijnen 1999, Cheng 2006, Martis 2006). Law and Kelton (2000) argued
that the method of verifying and validating a model depends on the aims of mod-
elling the system. For example, understanding the behaviour of a system is one
valuable outcome of simulation modelling even if the model built is not accurate
(Robinson 2001). Therefore, in this case, the model developed may not be as
accurate as when a DES is being developed for some other purposes.

Some of the methods of verifying and validating simulation models suggested
include: a) animation, b) historical data validation, c) face validity tests, d) com-
parison to other models, e) internal validity, f) extreme conditions tests, g) Turing
tests, h) traces, and i) statistical techniques (Sargent 1999, Sargent 2000, Sargent
2004). Balci et al. (2000) provided a guidance to developing and executing a
plan to verification, validation and accreditation of simulation models. Statisti-
cal techniques are normally used to demonstrate the validity of simulation models.
However, some researchers argue that even if these formal statistical techniques
lead to the conclusion that a model is not accurate, the model may still be valid
for the purposes for which it was developed (Lowery 1996b). For example, in the
studies by Werker et al. (2009) model validation was performed by modelling pro-
cessing times with real data, and by checking that the model outputs reasonably
match actual system outputs in consultation with hospital system experts.

In the experimental design step, alternative scenarios (i.e. ‘what-if’ analysis)
to be simulated and the ‘warm-up’ and result collection periods of the models are
determined. A warm-up (i.e. transient) period is the time taken to remove the
initialisation bias from the simulation models while results collection period is the
time interval during which output data from the simulation model is obtained.
Estimates of the transient and results collection periods for simulation model are
important for assuring the accuracy of the performance of the simulation model.

There have been several studies on determining these key issues for a simu-
lation model. Hoad et al. (2008) reviewed literature on the research conducted
to date on determining the warm-up period of a simulation model. In their dis-
cussion of procedures for estimating the transient period, the simple graphical
method (Robinson 2004) was one of the simplest methods which involved visual
inspection and human judgement of the time-series output collected after running
the simulation model. Other studies on determining initial transient period in-
clude (Robinson 2007). In a similar study, Hoad et al. (2007) described methods
of estimating how many replications should be run to achieve required accuracy
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for a DES model output. They developed an algorithm that was demonstrably
efficient for automating the selection of replication runs. However, most studies
reported in literature have used simple methods such as the rule of thumb (Law
and McComas 1991) or simple graphical method.

4.2.2 Cancer-related problems

There have been very few papers on DES studies on patient flow management
in a radiotherapy or chemotherapy departments. A key paper on a DES study
of the Arden Cancer Centre radiotherapy department reported in (Proctor 2003,
Proctor et al. 2007) used Simul8 (Simul8 Corporation 2009) models to evaluate
the effects of the factors identified as the bottlenecks for the EBT process. These
papers compared performances of the department on ‘what-if’ scenarios such as
additional treatment machines and/or doctors. Offord (2002) also developed a
DES model of a radiotherapy department in Plymouth, UK using Simul8 and
presented results of several such scenario tests. The models developed in these
studies did not include the BT and UST processes discussed in Chapter 3.

The results of these studies showed that changes to working hours of the
machines enabled more patients to be treated but had implications to staffing
requirements as emphasized in the study on work patterns viable for radiother-
apy departments in (Routsis et al. 2006). A model of the radiotherapy depart-
ment of a hospital in Eindhoven, Netherlands developed using software called
Enterprise Dynamics (Incontrol Simulation Solutions 2009) was used to find the
impact of various ways of allocating patients to the linacs in (Hoogeland 2008).
The notable difference in the studies by (Proctor 2003, Proctor et al. 2007) and
(Hoogeland 2008) is the number of doctors involved and their availability in the
departments. The doctors in (Hoogeland 2008) were available from 8.00am to
8.00pm compared to the staffing levels at the Arden Cancer Centre discussed in
Chapter 2. Further, Hoogeland (2008) focused on the allocation of patients to
linacs using the department’s existing human and machine resources. Scenarios
that explore the use of existing resources only can be considered cost-effective. It
is imperative that studies on radiotherapy issues consider such scenarios.

To illustrate how models can represent the elaborate processes of treatment
planning, Werker et al. (2009) recently developed a DES model for procedures in
the planning, physics and pretreatment units for the EBT process using simula-
tion software called Arena (Kelton et al. 2007). One of their findings was that
reducing the variability and length of doctor-related delays contributed most to
improving the planning times (i.e. amount of time taken to prepare a treatment
plan). They considered 3 of the 4 units of a typical radiotherapy department in
the UK (i.e. as discussed in Chapter 3) and left out one crucial unit of the EBT
process where patient flow can be impeded. Therefore, although they demonstra-
bly reduced the overall waiting times, further improvements on waiting times can
be achieved when the treatment unit is also considered.
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It is noticeable that the DES studies on radiotherapy patient flow problems
discussed did not include other treatment processes such as the BT and UST.
This can be attributed to the fact that not many patients are treated by these
processes. However, a DES study which includes all these processes can show a
closer reflection of how the availability of the resources affects the waiting times.
DES studies on the radiotherapy patient flow management issues can take inspi-
ration from other DES studies on other departments such as the chemotherapy
department.

DES has been used meritedly to study problems in chemotherapy depart-
ments and other cancer related issues. For example, a study in (Baesler and
Sepúlveda 2001, Baesler and Sepúlveda 2006) combined a DES model and a multi-
objective metaheuristic algorithm called the genetic algorithm (GA) to find the
best resource combinations for the chemotherapy department of a cancer treat-
ment centre. When compared to the existing scenario, the DES and GA used
by Baesler and Sepúlveda (2001) improved the objective functions by 18–25%.
Instead of using DES for ‘what-if’ analysis, the GA was used to find the best
allocation of the existing resources.

(Sepúlveda et al. 1999) examined the use of DES to improve the processes of
a cancer centre to analyse the patient flow and the impact of alternative floor
layouts of a new building using various scheduling approaches. They concluded
that the DES model developed justified relocation to other facilities and also
identified scheduling methods which increased patient throughput by 30%. One
demerit of such an approach is the huge computational effort needed by the
scheduling method incorporated into the DES model. Baesler and Sepúlveda
(2001) did not report the amount of time the DES model with the GA ran before
results were obtained.

Some DES studies were performed to help analysts understand treatment pro-
cesses. These include: the comparison of three colorectal cancer screening strate-
gies in (Tafazzoli et al. 2005) and decision making in healthcare management in
(Baldwin et al. 1999). They affirmed that DES can be useful for understanding
healthcare problems and the collection of data for the problem being studied.

4.2.3 Other healthcare problems

Since the 1950s, DES has been used to investigate the challenges of schedul-
ing appointments in healthcare departments. Healthcare providers endeavour
to ensure that the patients flow is unimpeded in their systems. Most healthcare
providers tend to solve their problems by using additional resources (Haraden and
Resar 2004). This can imply more costs that some departments cannot afford.
Therefore, simple and easily implementable endeavours should be considered by
healthcare departments (Proudlove et al. 2007).

The earliest studies on appointment scheduling aimed at reducing patient
waiting times are in (Bailey 1952, Bailey and Welch 1952). They developed a
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scheduling rule which produced encouraging patient flow and admission results
for an outpatient clinic. Scheduling of appointments involves assigning slots on
the schedules to incoming requests (Guo et al. 2004). It is integral to the overall
management of patient flow. Guo et al. (2004) used DES models developed using
the software called Arena (Kelton et al. 2007) and tested the impact of several
scheduling rules on patient flow and utilisation of resources. More studies on DES
and appointment scheduling rules are in (Ho and Lau 1992, Ho and Lau 1999,
Wijewickrama and Takakuwa 2005, Wijewickrama and Takakuwa 2008).

Ho and Lau (1992) evaluated nine scheduling rules that reduced client waiting
time and server idle time. They extended their work to evaluate 50 scheduling
rules via simulation. Similarly, Wijewickrama and Takakuwa (2005) aimed at
reducing patient waiting time and evaluated the performance of the appointment
scheduling rules under different environmental conditions. Further, they studied
appointment systems used in out-patient departments by incorporating appoint-
ment rules and patient characteristics in a multi-facility system (Wijewickrama
and Takakuwa 2008). The appointment scheduling rules examined in these stud-
ies were simple compared to the optimisation algorithm used in (Baesler and
Sepúlveda 2001). Kopach et al. (2007) published an appointment scheduling ap-
proach using DES models. They investigated the effects of patient throughput,
no-shows, and continuity care using open access appointment scheduling. They
defined open access as an approach that involves patients seeing their doctors
a day or two after making an appointment in order to limit long-term patient
bookings.

The following survey demonstrates the application of DES to many healthcare
problems. DES models were used in making substantive decisions on clinic sizes
and staffing in (Isken et al. 1999). Studies that aimed at increasing efficiency to
maximise the utilisation of staff include (Centeno et al. 2000). A major impeded
reported was the lack of data from the hospitals. DES studies have also mostly
included ancillary units such as the radiology departments and other imaging
units. Examples of such studies on the diagnostic units include (Ramakrishnan
et al. 2004, Patrick and Puterman 2007, Ramis et al. 2008). In these papers, the
use of scheduling rules to better the booking of appointments for the patients in
the diagnostic units was not included. One of their aims was to develop models
that were helpful in understanding the scope of the problem in the imaging units.

The management of the capacities of bed provisions, emergency rooms, sur-
gical theatre rooms and other resources is another challenging healthcare prob-
lem whose popularity has grown recently. Lowery (1996a) used a DES model
to design an appointment scheduling system to control hospital bed occupancy.
Baesler et al. (2003) used DES model to estimate the maximum possible demand
increment in an emergency room of a private hospital and determined the number
of resources (e.g. number of doctors) required by the hospital. Ballard and Kuhl
(2006) used a DES model to introduce a methodology for determining the max-
imum capacity of a surgical suite. The DES model calculated hospital efficiency

47



4. Operational research and healthcare problems

and showed that the surgical suite’s utilisation was better than when traditional
utilisation measures were used.

Ramis et al. (2001) also developed a DES model of a surgical unit to evaluate
different alternatives of its operations to maximise patient throughput. For ac-
cident and emergency (A&E) departments, Gunal and Pidd (2006) developed a
DES model to investigate the impact of various ‘what-if’ scenarios of the amount
of time patients wait for treatment. Further, Gunal and Pidd (2007) also used
models of the A&E, out-patient and in-patient departments of a hospital to re-
duce patient waiting times. The studies in (Gunal and Pidd 2006, Gunal and
Pidd 2007) did not include appointment scheduling rules to prioritise the pa-
tients. Prioritisation of patients can be useful in dealing with cases where the
arrival of patients requiring critical treatments is uncertain as substantiated in
(Lim et al. 2005).

Studies related to controlling bed occupancy involved the studies on length
of stay in hospitals. A DES model was developed to examine and evaluate the
alternative configurations to reduce the length of stay in an A&E department
(Samaha and Armel 2003). Changes to the way of allocating beds to patients
were recommended. Scheduling methods can be used before exploring alterna-
tives such as purchasing more beds or building additional facilities. For a surgical
department, a DES model was used to aid capacity planning decisions (VanBerkel
and Blake 2007). Analysis of the DES model results showed the impact of redis-
tributing beds between sites and length of stay. A DES study of a renal unit was
conducted to estimate the demand for renal replacement therapy in England by
2010 (Roderick et al. 2004). It was found that demand for renal replacement by
elderly patients can increase to about 1,000 per million population.

Davies (2007) reported the use of lean methodologies (Womack and Jones
2003, Drew et al. 2004) and a DES model to compare the performance of two pro-
posed lean methodologies using patient throughput and cost-effectiveness achieved.
Medeiros et al. (2008) developed and implemented an approach to patient flow in
an emergency department. They used a DES model to evaluate the performance
of the emergency department. The DES model provided a detailed view of the
system under different conditions.

DES has been successfully used to determine the best policies and strategies
for a healthcare department. Using a DES model developed using Simul8 (Simul8
Corporation 2009), Katsaliaki and Brailsford (2007) determined the ordering poli-
cies which reduced wastes and shortages, increased service levels, improved safety
procedures and reduced costs in blood inventory system management for a typi-
cal UK hospital. To investigate policies that can effectively reduce appointment
delays and patient no-shows, Giachetti (2008) used a DES model. The most ef-
fective policy involved segregating habitual no-show patients and double-booking
them when they made appointments. In a system where new patients continually
arrive, identifying and segregating no-show patients can be difficult.

DES models have also been applied to infectious disease epidemiology studies.
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For example, Hughes et al. (2006) described a DES model of tuberculosis (TB)
and the human immunodeficiency virus (HIV) disease parameterised to show the
epidemics in Zimbabwe. In a further study, Mellor et al. (2007) used the DES
model in (Hughes et al. 2006) to evaluate new strategies for improved detection
of TB cases in high HIV prevalence scenarios.

This survey on DES studies has shown that many healthcare problems studied
had different objectives. DES can be used to gain insight into aspects of the
problem being studied. Its merits include the ability to conduct ‘what-if’ analyses.
For patient flow management issues, it is important to find different configurations
of resources (e.g. machines or human) that improve waiting times. However, an
appointment scheduling approach can help address cases such as when to treat
patients requiring critical treatments, a key issue yet to be address by studies on
patient flow management as suggested by (Jun et al. 1999).

4.2.4 Other simulation approaches

Healthcare problems have been studied using other simulation approaches such
as queuing theory and Monte Carlo simulations. Another key study paper on
radiotherapy patient flow using analytical queuing models derived from queuing
theory (Dickof et al. 1999, Thomas 2003) predicted the effects of the changes on
capacity and demand, and patient waiting times. After testing the queuing mod-
els, Dickof et al. (1999) concluded that: 1) extended hours can be expensive for a
radiotherapy department, 2) management for the departments must use flexible
treatment systems to accommodate fluctuations in patients, 3) decentralisation
of the booking of patient appointments was essential, and 4) bottlenecks should
be avoided to optimise patient throughput.

They affirmed that such models can provide insight into the operations of a
radiotherapy department. It can be inferred that fluctuations of patient arrivals
certainly affect the booking of appointments. In addition, the decentralised book-
ing of appointments means that not many people can tamper with the created
schedules of appointments. This is akin to the practices at the Arden Cancer
Centre where the booking of appointments is handled in the planning unit only.

Doswell and Pegler (1990) proposed a mathematical model for examining
patient flows to plan for expansions of a radiotherapy department. Similarly,
Thomsen and Nørrevang (2009) reported a model for managing effectively the
capacity of a radiotherapy department with differentiated waiting times. These
models improved the booking process and derived prospective waiting times on a
daily basis. Such prospective waiting times can be useful in developing strategies
for booking patients requiring different treatments. Further, some radiotherapy
departments use the Basic Treatment Equivalent (BTE) model to predict the
amount of time a patient can spend on linacs and also estimate the workload
(Burnet et al. 2001, Griffiths et al. 2002). Models such as the BTE are for the
treatment unit only and do not address the issues in other units such as the
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planning, physics and pretreatment unit described in Chapter 3.
(Ekaette et al. 2007) studied the uncertainties in cancer staging and radiation

treatment decisions in the radiotherapy process for postoperative breast cancer
patients using a Monte Carlo simulation approach. The probability of errors
in staging and treatment for post-surgery breast cancer patients was small, but
not trivial. Therefore, accurate staging of cancers is essential. A simulation
and modelling study of the length of stay in hospitals for heart failure patients
using a Markov model is in (Shaw and Marshall 2007). They showed that Markov
models can accurately model the flow of heart failure patients. Such use of Markov
models to solve healthcare problems has been discussed in (McClean and Millard
2007). Sherlaw-Johnson et al. (2007) developed analytical tools for monitoring
occurrence infections acquired by patients during hospital stays. They monitored
the infected wounds against the length of stay.

Simulation techniques on infectious diseases epidemiology problems are also
in (Barth-Jones et al. 2000, Shechter et al. 2004). Barth-Jones et al. (2000)
used Monte Carlo simulation tests to analyse the HIV vaccine effects and trial
designs. Similarly, Shechter et al. (2004) used Monte Carlo simulation of a cohort
of HIV positive patients to explicitly model two components of HIV progression:
adherence and the acquisition of resistance. These models provided an insight
into several therapeutic decisions regarding HIV care.

Cayirli and Veral (2003) comprehensively reviewed the appointment schedul-
ing techniques for outpatient departments. In further work, Cayirli et al. (2006)
used simulation models to assess ambulatory healthcare performance and the
interactions between appointment scheduling and patient characteristics. Essen-
tially, they concluded that patient sequencing has a greater effect on ambulatory
healthcare than the choice of an appointment rule. The sequence of patients
should be reordered so that those needing critical treatments are always at the
head of the sequence.

Patient classification in appointment scheduling systems was assessed in
(Cayirli et al. 2008) as further work to the study in (Cayirli et al. 2006). They in-
vestigated ways of improving appointment systems by incorporating approaches
to patient classification and compared them to the commonly used first-come,
first-serve (FCFS) appointment method. The FCFS can be considered a bench-
mark rule for comparing different rules that ensure patients requiring critical
treatments are treated first. A model developed for an Ear, Nose and Throat
outpatient department was used to examine various appointment schedules and
evaluate their effects on the department (Harper and Gamlin 2003). This model
identified critical factors that influenced patient waiting times and queues in the
department.
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4.2.5 Simulation software

The market has myriad of simulation software. Some of the software used in the
studies discussed were Arena (Kelton et al. 2007) and Simul8 (Simul8 Corporation
2009). An extensive survey of DES software and the problem areas can be used, as
well as the benefits and drawbacks of the software is in (Swain 2005). The frontiers
of simulation software and how they can help several industries are discussed in
(Swain 2007). Most DES software provide visual simulations, by allowing the
user to create iconic representations of the real system under investigation by
drawing objects on the screen, that are very beneficial especially in healthcare
(Swisher et al. 2001). DES software such as Arena and Simul8, are easy to use
and support the simulation of stochastic processes (Pidd 2004).

4.3 Scheduling

The theory of scheduling has been used to solve a class of problems that are
combinatorial in nature and prevalent in production or manufacturing systems.
The study of scheduling in production systems led to the conception of different
models of the production scheduling problems and various methods to solve them.
These problems include: i) job shop problems (JSP) and flow shop problems
(FSP) discussed in (Baker 1974, French 1982, Morton and Pentico 1993, Sule
1997, Pinedo 2002) and other studies, ii) open shop problems (OSP) derived
from the FSP as discussed in (Gonzalez and Sahni 1976, Chen and Strusevich
1993, Strusevich 1998, Błażewicz et al. 2001, Prins 2008), iii) group shop problems
(GSP) derived from the JSP and FSP as discussed in (Blum 2002, Sampels et al.
2002, Liu et al. 2005), iv) single machine problems, v) parallel machine problems,
and vi) mixed shop scheduling problems, whose investigation was initiated by
Masuda et al. (1985). Many production scheduling problems have been solved by
first likening them to these shop scheduling problems. Scheduling was defined in
(Lopez and Roubellat 2008) as follows:

“Scheduling is the organisation over time of the execution of a set
of tasks, taking into account time constraints (deadlines, precedence
constraints, etc) and capability and capacity constraints on resources
required for the tasks”

These shop scheduling problem models can be defined as follows. A JSP
involves a finite set of jobs (n) that undergo operations on a finite set of machines
(m) but all jobs not necessarily following the same route. Conversely, in FSP all
jobs follow the same route while in an OSP, jobs do not have a defined point of
entry into the system. Among the variants of FSPs investigated in the literature,
there are hybrid flow shop (HFS) problems which consist of a series of production
stages, each of which has several parallel machines (Chen 1995, Linn and Zhang
1999, Low et al. 2008). In this case, some of the production stages may have
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one machine but at least one stage should have multiple machines (Linn and
Zhang 1999). Furthermore, a job can go through one or more of the production
stages. In the radiotherapy departments, the patients can be considered as the
jobs and the movement of patients in the units typified as these shop scheduling
problems.

Among the variants of HFSs investigated for the past two decades, is the
two-stage HFS discussed in (Gupta and Tunc 1991, Oğuz et al. 1997, Oğuz et al.
2003). A GSP is a generalisation of the JSP and OSP (Sampels et al. 2002).
It has been shown in (Gonzalez and Sahni 1976, Lenstra et al. 1977) that these
problems belong to a class of problems that are considered to be intrinsically
difficult to solve. A single machine problem is the simplest form of a JSP. Most
complicated JSPs are often decomposed into single machine problems (Pinedo
and Chao 1999, Pinedo 2005). Parallel machine problems involve a number of
machines that can be identical and can process arriving jobs. If the machines are
identical, an arriving job can be processed on any one of the available machines.
There are various algorithms developed to solve these problems as discussed in
(French 1982, Pinedo and Chao 1999, Pinedo 2002, Pinedo 2005, Kravchenko and
Werner 2007, Kravchenko and Werner 2009).

Mixed shop scheduling problems involves different subsets of the arriving jobs
being processed as in a FSP or JSP and the other can be processed as in an
OSP (Masuda et al. 1985, Ishii et al. 1987, Shakhlevich et al. 2000). Another
shop scheduling problem that has been studied over the past decade is multi-
resource shop scheduling problems. Multi-resource shop scheduling problems
involve situations in which an operation may need several resources (that are
usually chosen from a given set) to be processed (Dauzère-Pérès et al. 1998).
Some scheduling problems have been inspired by parallel processing in comput-
ing systems whereby tasks can be processed on multiple processors at the same
time (Drozdowski 1996). This has been termed multiprocessor task scheduling
(Oğuz et al. 2003, Oğuz et al. 2004).

The study of problems from manufacturing and other industrial sectors re-
sulted in the conception of other shop scheduling problem models from the ones
listed earlier. A good example is the multi-processor scheduling problems that
were derived from computing systems. Therefore, a healthcare problem which in-
volves the movement of patients among several human and/or machine resources
can be used to derive more such problem models if patients can be likened to
jobs.

The shop scheduling problems have been shown to be non-deterministic poly-
nomial time (NP) hard problems. In computational complexity theory, NP-hard
is a class of problems that do not have a polynomial time algorithm (Papadimitriou
and Steiglitz 1982, Pinedo 2002, Pinedo 2005). Many methods in the literature
have been applied to these NP-hard problems and their time complexity reported
in (Brucker and Knust 2009). Some well-known NP-hard problems such as the
traveling salesman problem (Lawler et al. 1985) and others in (Papadimitriou and
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Steiglitz 1982) have been solved using several approaches that can be classified
as: a) exact enumerative methods, b) heuristics or approximation methods, and
c) metaheuristics.

Typifying healthcare scheduling problems

In recent years, researchers have attempted to solve healthcare scheduling prob-
lems by representing or typifying them by using shop scheduling models in order
to apply methods that have previously been successfully used in the manufactur-
ing sector. It was suggested that For example, one of the first papers to propose
the modelling of cancer clinic problems as the shop scheduling models was by
(Baldwin 2006). In his analysis of the problems of minimising waiting lists, pa-
tient lateness for treatment and maximising the utilisation of therapy machines,
Baldwin (2006) suggested that cancer clinics can be likened to manufacturing
industries so that some of the techniques used successfully to solve the aforemen-
tioned problems can be employed on them.

This suggestion was also accentuated by a study in (Bertrand and de Vries
2005) which compared production control in manufacturing industries to health-
care and concluded that production concepts were applicable to healthcare. It is
worth noting that in the literature, some well-known healthcare problems such
as nurse rostering (Burke et al. 1998, Cheang et al. 2003) have been investigated
using production scheduling techniques. Therefore, patient flow management in
radiotherapy departments can be solved using methods amenable to the shop
scheduling problem models.

Papers that suggested likening radiotherapy patient flow management prob-
lems to the shop scheduling models of the manufacturing sector were published
in the mid-2000s. It is important to survey some of the approaches used to solve
such problems prior to this period. In the 1970s and 1980s when radiotherapy
was gaining popularity as one of the most effective ways of treating cancers, there
was more emphasis on automating radiotherapy departments as evidenced by the
study reported in (Ragan 1989) to balancing the workload of radiotherapists.
Ragan (1989) also emphasised the need to automate the scheduling of physicians,
pretreatment and treatment appointments for radiotherapy facilities to achieve
efficiencies similar to manufacturing industries.

The work by Ragan (1989) was later affirmed in the early 1990s in (Junor 1993,
Larsson 1993). Junor (1993) described the main objectives of each radiotherapy
department and succinctly stated that the radiotherapy patient scheduling prob-
lems in the UK must aim to improve: i) treatment service quality, ii) patient sat-
isfaction, and iii) staff morale. Like Ragan (1989), Larsson (1993) also reported
an initiative to automate the scheduling of patients in a radiotherapy facility us-
ing spreadsheets on a personal computer in order to maximise the efficient use of
equipment and staff.

The initiative by Larsson (1993) was about a scheduling system endeavoured
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to meet the following key criteria: a) cost-effectiveness, b) implementable in a
reasonable time frame, c) robust and self maintaining, d) user friendly, e) pa-
tient throughput, and f) adaptive. Larsson (1993) also acknowledged the need
to allow plans for contingencies such as changes in fluctuating staffing levels, pa-
tient numbers, fractionation patterns, and unplanned machine down times for the
scheduling system to be more robust. These key factors can be useful in devel-
oping automated scheduling systems for radiotherapy departments or clinics.

The papers by (Ragan 1989, Junor 1993, Larsson 1993) can be considered as
key publications on the scheduling of radiotherapy patients. They identified main
objectives of the problem although some of them cannot be quantified. Further,
Larsson (1993) even asserted the need to plan for contingencies such as change
of fractionation patterns and patient numbers which were discussed in Chapter
2. However, to be able to develop an approach amenable to the radiotherapy
patient scheduling problem, the intricate treatment processes discussed in Chap-
ter 3 should be understood in order to successfully characterise the movement of
patients as jobs in a typical manufacturing problems. Besides understanding the
treatment processes, the methods that have been used in studies on scheduling
problems should also be identified and examined.

4.3.1 Methods for solving scheduling problems

Optimisation methods classified as either exact enumerative, heuristic or approxi-
mation, or metaheuristic have been investigated and applied to several scheduling
problems. Exact enumerative methods list possible schedules and then elimi-
nate non-optimal schedules from the list to leave the optimal ones only (French
1982:87). Examples of these methods include dynamic programming and branch
and bound (BB) algorithms. Dynamic programming was proposed by Bellman
in the 1950s to solve mathematical allocation problems and it involves solving a
complex problem by breaking it down into smaller simpler decision steps.

The BB algorithm was proposed by Land and Doig in the 1960s and like
dynamic programming, it involves listing candidate solutions (i.e. those that
satisfy the constraints in the model under investigation) and then eliminating the
non-optimal ones using upper and lower bounds of the objective function. A BB
algorithm uses a tree search approach that works by searching through all the
candidate solutions, eliminates the non-optimal solutions and outputs the optimal
solution that provides the best objective function value. When the problem being
analysed is not NP-hard in the strong sense (Papadimitriou and Steiglitz 1982),
it is possible to solve it exactly (Błażewicz et al. 2001:64). It has been shown that
these exact enumerative methods cannot be applied to large instances of NP-hard
problems (Morton and Pentico 1993). Large instances of JSPs can involve more
jobs or machines. If the radiotherapy scheduling problem is typified as a JSP, the
more patients received and machines visited as discussed in Chapter 3, the larger
the size of the scheduling problem. Hence, exact methods cannot be amenable to
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such large problems as discussed in the literature.
Heuristic or approximation methods are normally applied to difficult schedul-

ing problems. They can find good solutions or near optimal solutions but they are
not guaranteed to succeed all the time. Furthermore, these methods are used on
large NP-hard problems that normally cannot be solved using exact enumerative
methods. A formal definition of these methods was given as follows:

“A heuristic is a technique which seeks good (i.e. near-optimal)
solutions at a reasonable computational cost without being able to
guarantee either feasible or optimality, or even in many cases to state
how close to optimality a particular feasible solution is.” (Reeves and
Beasley 1995)

Metaheuristics are optimisation algorithms that combine heuristic methods
in a higher level framework aimed at efficiently and effectively exploring a solu-
tion space by taking inspiration from science and nature. These metaheuristics
include: a) simulated annealing (SA) (Kirkpatrick et al. 1983), b) tabu search
(TS) (Glover 1986), c) genetic algorithms, and d) ant colony optimization (ACO)
(Dorigo and Stützle 2004).

“A metaheuristic is formally defined as an iterative generation pro-
cess which guides a subordinate heuristic by combining intelligently
different concepts for exploring and exploiting the search space, learn-
ing strategies are used to structure information in order to find effi-
ciently near-optimal solutions ” (Osman and Laporte 1996)

4.3.2 Application of exact enumerative methods

There are some key papers that demonstrate the growing application of meth-
ods to solve patient flow management in radiotherapy departments worldwide.
Mixed integer programming (MIP) optimisation models have recently been used
to solve a radiotherapy patient scheduling problem in the treatment unit at the
General Hospital of Cosenza in Italy (Conforti et al. 2008). The MIP models were
aimed at reducing the waiting times of patients and produced results which were
better than what radiographers achieved. When compared to the EBT process
described in Chapter 3, the scope of the problem studied in (Conforti et al. 2008)
included fewer constraints for a treatment unit in the department at the Arden
Cancer Centre. Further, the MIP models considered only the first fraction with-
out including the rest of the fraction prescribed for the patient. In this case, the
size of the problem was reduced so that the use of the MIP models was possible.
The fewer constraints considered imply that the problem investigated was not
closer to the real-life problem in radiotherapy departments.

Further work on the study in (Conforti et al. 2008) which involved the use
of a block scheduling strategy was reported in (Conforti, Guerriero and Guido
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2009). An integer linear optimization model and a non-block scheduling strategy
was used. A block scheduling strategy was defined as splitting the workday
into a fixed number of time blocks/slots, which usually have the same duration.
Hence, the non-block scheduling strategy involved using uncertain processing
times for each patient. Patients were not assumed to have the same processing
times on the linacs. The non-block scheduling strategy was more efficient than
block scheduling because the use of uniform appointment blocks/slots in block
scheduling poorly represented the real-life workload at radiotherapy department
because treatments can take either more or less time than the assigned block/slot
time (Conforti, Guerriero and Guido 2009, Conforti, Guerriero, Guido and Veltri
2009). Non-block scheduling strategy can make the schedule of appointments as
compact as possible. Although these MIP models produced encouraging results,
the constraints considered were too few for a typical UK radiotherapy department.

The 3 treatment processes have presented different challenging problems for
researchers. The problem of determining where to place radionuclide seeds in
order to deliver sufficient radiation that maximises the destruction of the tumour
while minimising damage to the surrounding normal tissue for BT patients was
also investigated using MIP models (Lee and Zaider 2004). They outlined ap-
proaches to ensure that the problem was solvable using the BB algorithms used
to solve similar problems. This involved ensuring that the size of the problem
had to be small as suggested in (Morton and Pentico 1993).

4.3.3 Application of heuristics

Heuristics can be used to produce good solutions for several scheduling problems
in the literature. Although heuristics do not guarantee near-optimal solutions, the
computational effort required to produce the good solutions is minimal compared
to metaheuristics and exact enumerative algorithms. More about the different
heuristics in the literature are, for example given in (Baker 1974, French 1982,
Sule 1997, Morton and Pentico 1993, Pinedo and Chao 1999, Pinedo 2002, Pinedo
2005).

Haylock et al. (2005) reported the evaluation of a custom-built electronic
scheduling system developed by IMS (IMS 2009) to improve the efficient use of
radiotherapy machines. The scheduling system reduced the mean waiting time
from 45 days down to 18 days and hence, the number of cancellations of appoint-
ments by the patients was reduced. However, they did not describe in detail
the methods used to compensate for the ‘unused slots’ in the treatment appoint-
ment schedules of the scheduling system. Therefore, it can be surmised that the
study by Haylock et al. (2005) involved the automation of a radiotherapy de-
partment’s system and did not include scheduling strategies to create or amend
appointments.

Another scheduling system was developed and connected to the central infor-
mation management system for patient treatment by heavy ion radiotherapy in
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Japan (Toyama et al. 2002). Like Haylock et al. (2005), Toyama et al. (2002)
did not give details of how the schedule for each patient was generated. However,
the latter reported that after the implementation, the system was simultane-
ously useful in saving time to generate treatment schedules and informing staff
about the most up-to-date treatment schedules. It was understood by staff at
the Arden Cancer Centre that an automated system can be as good as manual
systems. Hence, radiotherapy departments need intelligent systems that involve
strategies inspired by the scheduling theory in the booking/scheduling patient
appointments.

Another study which focused on the treatment unit of a radiotherapy de-
partment but using a different scheduling method was reported in (Petrovic
et al. 2006). It concerned two algorithms for generating schedules of appoint-
ments for linacs for a real-life problem. The first algorithm generated schedules
of patients forward from the earliest feasible start date while the other booked
the patient appointments backward from the latest feasible start date (i.e. the
due date determined using the JCCO waiting time targets). The results of tests
reported in (Petrovic et al. 2006) conducted using real-life data showed improved
performance for the patients requiring either palliative (by the first algorithm) or
radical (by the second algorithm) treatments. The algorithms included a step that
reordered a sequence of patients received on a given day using priority dispatch-
ing rules. This study did not include procedures done in the planning, physics
and pretreatment units which also affect the overall waiting times for patients.

The two algorithms developed in (Petrovic et al. 2006) can be used to inspire
more research on the problem using heuristics or approximation methods. More
crucially, it compared the performances of the algorithms on palliative and radical
treatments. Most radiotherapy departments in the UK report their performance
based on the average waiting times for each treatment (i.e. emergency, palliative
and radical) obtained over a given period of time (i.e. annually). In (Conforti
et al. 2008), no such comparisons were made based on the treatments needed by
radiotherapy patients. Each algorithm involved two stages; the first concerned
the prioritisation of patients and the other applied the aforementioned strategies
to schedule the patients. Petrovic et al. (2006) characterised the problem as a par-
allel machine scheduling problem but did not a problem classification suggested
in (Graham et al. 1979) to state the characteristics of the problem. Using this
classification, the number of HE and/or LE linacs in the machine environment
would have been stated.

The following is a survey of studies involving the use of heuristics on some
of the scheduling problems. A binary integer programming (BIP) model of a
health examination centre was developed and solved using a heuristic algorithm
in (Chern et al. 2008). A BIP model has variables that are either 0 or 1. An
increase in the number of resources considered (i.e. doctors and examinees) re-
sulted in more constraints being formulated. The BIP models became difficult to
solve exactly and hence, a heuristic algorithm was proposed to minimise patient
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(i.e. examinee) waiting time, and doctor idle time. Constructive greedy heuris-
tics and a tabu search algorithm were developed and used in a decision support
system to allocate resources in (Oddi and Cesta 2000). Heuristics can be used to
create initial solutions for optimisation algorithms such as the tabu search. These
heuristics can be based on established algorithms applied to scheduling problems
in (Johnson 1954, Moore 1968, Baker 1974, Lawler 1977, French 1982, Nawaz
et al. 1983, Kanet and Zhou 1993, Morton and Pentico 1993, Sule 1997, Alvarez-
Valdes et al. 2004). For example, the Moore’s algorithm (Moore 1968, French
1982) was proposed to minimise the number of tardy jobs for single machine
scheduling problems.

Liu and MacCarthy (1991) proposed several heuristics to solve the single ma-
chine sequencing problem with ready times in order to minimise the mean com-
pletion time or the sum of the completion times. Johnson (1954) investigated
the 2-machine FSP to minimise the maximum flow time (stated as n/2/F/Fmax)
and developed the Johnson’s algorithm for solving the problem. Nawaz et al.
(1983) proposed a heuristic that produced near-optimal solutions for a 3-machine
FSP (stated as n/3/F/Fmax) aimed at minimising makespan. This heuristics (i.e.
Johnson’s algorithm) was reportedly used by Oğuz et al. (1997) in their Heuris-
tic H1 for the two-stage flowshop problem. Framinan et al. (2004) reviewed
some heuristics that have been applied to a permutation FSPs. Several effec-
tive and efficient heuristics were proposed and applied to variants of the OSPs.
Some of the studies on the application of heuristics to OSPs include (Chen and
Strusevich 1993, Strusevich 1998, Mosheiov and Oron 2008, Prins 2008).

The discussion on heuristics should begin with their simplest form, priority
dispatching rules (PDR), which involve jobs being assigned priority and the one
with the highest priority scheduled first. Examples of PDRs are the Earliest Due
Date (EDD), Shortest Processing Time (SPT), and several others, extensively
discussed in (Baker 1974, French 1982, Morton and Pentico 1993, Pinedo 2002).
In a study on methods amenable to JSPs, Jain and Meeran (1999) concluded
that most PDRs produced reasonably good solutions more suitable to be used
as initial solutions for other algorithms. A combination of these PDRs produces
what have been termed composite PDRs. Researchers have conducted several
tests on the applications of PDRs to JSP, FSP and OSP to find the quality
of solutions obtained using various objectives in (Baker and Kanet 1983, Baker
1984, Vepsalainen and Morton 1987, Raghu and Rajendran 1993, Holthaus 1997,
Holthaus and Rajendran 1997b, Holthaus and Rajendran 1997a, Holthaus and
Ziegler 1997).

Holthaus and Rajendran (1997b) proposed a PDR termed the work-in-next-
queue (WINQ) rule, for allocating jobs to the machine with least number of jobs in
its queue and found that it reduced the waiting time of jobs by using shop floor in-
formation about the machine for subsequent operations of jobs. Composite PDRs
which include the WINQ rule were efficient for performance criteria such as min-
imising mean flowtime and tardiness (Holthaus 1997). Therefore, Mohanasun-
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daram et al. (2002) proposed and compared several composite PDRs to solve a dy-
namic JSP and other such studies include (Raghu and Rajendran 1993, Holthaus
and Rajendran 1997b, Dominic et al. 2004). The PDRs such as EDD, SPT and
WINQ can be used in constructive algorithms to prioritise jobs in the same way as
Petrovic et al. (2006) used the EDD and other ways of prioritising patients. Fur-
ther, the WINQ can be applied on a parallel machine environment to determine
the machine with the least number of jobs awaiting processing. Using the defini-
tions of the shop scheduling problem models, such parallel machine environments
can be found in the pretreatment unit, where 3 similar desks are available for
calculations and accuracy checks, and the treatment unit as discussed in Chapter
3 and (Petrovic et al. 2006).

The first-come-first-serve (FCFS) rule is a simple scheduling rule that has been
used in various manufacturing, healthcare or other systems as a useful benchmark.
Vermeulen et al. (2009) studied the problem of scheduling patients in a diagnostic
unit using a parameterised algorithm and compared it to the FCFS rule. Another
example involves the use of local search and constructive heuristics to solve a
surgery loading problem (Hans et al. 2008) and comparing the results to those
obtained using the FCFS rule.

4.3.4 Application of metaheuristics

There has been an increased application of optimisation algorithms on healthcare
problems. Algorithms such as those in (Petrovic et al. 2006) can be useful in pro-
viding initial solutions for adapting metaheuristics to the radiotherapy scheduling
problem. Adapting metaheuristics to schedule radiotherapy patients can be one
of the frontiers of solving this scheduling problem. Many healthcare problems
including the nurse rostering problem have been studied using these optimisation
methods.

The greedy randomised adaptive search procedure (GRASP) was developed
by Feo and Resende (Feo and Resende 1995, Resende 1999, Pitsoulis and Resende
2002, Resende and Ribeiro 2003) and has been successfully applied to several pro-
duction scheduling problems. In (Petrovic and Leite-Rocha 2008), GRASP was
used to further improve the schedules of appointments generated by constructive
heuristic algorithms. GRASP improved some of the schedules generated but for
about 40% and 20% of the schedules, GRASP failed to improve and worsened
the considered objective function respectively. This can be attributed to the lack
of a better prioritisation method for sorting patients in the GRASP. In (Petrovic
et al. 2006), the EDD rule was used to prioritise patients which did not require
emergency treatment. However, the GRASP in (Petrovic and Leite-Rocha 2008)
can pave the way for research on other metaheuristics for the radiotherapy patient
scheduling problem although only the treatment unit was considered.

In radiotherapy, the GA proposed by Holland in 1975 (Goldberg 1989) and
inspired by the theory of evolution (Holland 1994), has been mostly used to op-
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timise the treatment planning as investigated in (Haas 1999). An automated
scheduling system based on GAs for scheduling of patients with different therapy
needs to a limited number of treatment machines was proposed in (Podgorelec
and Kokol 1997). The GA produced performed better than benchmark methods
and it was suggested it can be adjusted for use on similar complex problems.
Similarly, an optimisation framework called the diagnostic process optimisation
(DIAPRO) based on evolutionary algorithms was proposed to optimise diagnos-
tic unit processes (Podgorelec and Kokol 2001). The DIAPRO improved each
of the considered objectives. For the nurse rostering problem, GAs combined
with heuristics were used and the nurse schedules obtained were of good quality
compared to those produced by human experts (Moz and Pato 2007).

Petrovic et al. (2009) presented a multi-objective GA for scheduling radio-
therapy patients in the four units of the radiotherapy department at the Arden
Cancer Centre using objectives: 1) minimisation of the average waiting times, and
2) minimisation of the average tardiness of the patients that needed emergency,
palliative and radical treatments. The GA reduced the average waiting times
and tardiness by 35% and 20%, respectively using two scenarios of expediting the
approval of treatment plans in the physics unit by doctors. The computational
efficiency of the GA was not reported. Most of the patients requiring emergency
treatments did not meet their waiting time targets because the GA did not in-
clude prioritisation of patients received. It can be concluded that the use of
optimisation algorithms like GA or GRASP in (Petrovic and Leite-Rocha 2008)
does not guarantee improved results in all cases.

Some metaheuristics such as simulated annealing (SA) and tabu search (TS)
have been applied to some healthcare problems but not the radiotherapy schedul-
ing problem. Seminal ideas of the TS algorithm were proposed by Hansen
(1986) and further developed into a framework by Glover (1986). The struc-
ture and technical aspects of the TS algorithm are in (Glover 1989, Glover
et al. 1993, Dammeyer and Voß 1993, Glover and Laguna 1995, Glover and
Laguna 1997). A hybrid TS algorithms was proposed for the nurse rostering
system for a Belgian hospital (Burke et al. 1998) and produced high quality
schedules of nurses compared to manually created ones. Another application of
the TS algorithm to a nurse rostering problem is in (Beddoe and Petrovic 2003).
In some hospitals the TS algorithm has been used to solve problems of distribut-
ing supplies using minimal human (i.e. porters) and equipment (i.e. carriers or
trolleys) resources (Michelon et al. 1994). Further, the TS algorithm has been
shown to be efficient on dynamic scheduling problems compared to the SA and
GA (Liu et al. 2005).

The SA algorithm was proposed in the 1980s using ideas used in the 1950s to
simulate the cooling of material in a heat bath (i.e. annealing). Kirkpatrick et al.
(1983) refined these ideas and developed the SA algorithm for solving optimisation
problems by searching a large solution space. Some of the technical aspects of SA
are in (Kirkpatrick et al. 1983, Dowsland 1995). Examples of its adaptation to
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healthcare problems include the scheduling of physicians or patients in (Winands
et al. 2005, Vermeulen et al. 2006). In (Vermeulen et al. 2006), the SA aimed to
create the schedules of appointments in response to the changes in the uncertain
arrival of patients at the hospital.

4.4 Concluding remarks

This chapter has reviewed studies based on discrete-event simulation (DES) and
production scheduling methods. The dearth of papers on studies on radiotherapy-
related problems is noticeable. DES has been shown to help in understanding
the problem being studied only. For the radiotherapy problems, the DES studies
focused on the EBT process only. The other treatment processes, UST and
BT, which require crucial resources (i.e. doctors) were not included. These
papers focused on ‘what-if’ analysis of several scenarios which can be deemed
not cost-effective. Such scenarios include testing the DES models with additional
equipment or other key resources such as doctors. This thesis has been founded
on the fact that most of the resources used in the radiotherapy department at the
Arden Cancer Centre are expensive. Hence, In this context, the scenarios tested
had to involve the use of current machine and/or human resources only.

Some of the few papers that reported the application of scheduling methods
focused on the treatment unit of a typical UK radiotherapy department only.
MIP models were formulated for a problem which did not consider most of the
constraints found in a real-life radiotherapy department discussed in Chapter 3.
Hence, the problem solved can be considered not close to a typical real-life UK
radiotherapy scheduling problem. Two-stage constructive heuristics developed
for a problem identified in the treatment unit had strategies that minimised the
objective function for each type of treatment (i.e. palliative and radical). The
use of a genetic algorithms on a problem which considered all the four units of
the department resulted in improvements of the performance criteria although
their computational efficiency was worse than expected. It is essential that the
four units of the department be considered when formulating the radiotherapy
scheduling problem to be solved using methods that require less computational
effort. Further, more constraints have to be considered for the problem to closely
represent real-life radiotherapy scheduling problems.

It can be argued that by focussing solely on the EBT process, the problem
is less closer to a real-world radiotherapy department problem. However, it is
crucial that the DES study of the department be used to reveal to what extent
the BT and UST processes affect the interaction of the entities in the radiotherapy
department. Since not many patients are treated by the BT and UST processes,
it can be fairly concluded that such studies of scheduling patients focus on the
EBT process.
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5.1 Introduction

This chapter discusses the development of DES models of the department based
on the processes in Chapter 3. The aims of the DES study include: to assess the
efficiency of the existing systems and conduct tests on several ‘what-if’ scenarios,
understand the treatment processes and identify where the flow of patients is
impeded. The flowcharts in Figures 3.4, 3.6–3.8, 3.10 and 3.12 in Chapter 3 were
used as conceptual models of the existing system in the department. Data were
collected from the department through interviews, observations and analysis of
several retrospective records of patients. The models were developed using Simul8
(Simul8 Corporation 2009), an easy to use computer simulation software that can
visually represent the real-life treatment processes.

The rest of this chapter is organised as follows. Section 5.2 discusses the
scope of the problem in the department. In this discussion, the objectives of
the development of the department’s simulation models and its assumptions are
stated. Section 5.3 describes the data collected from the department. The models
built based on the procedures for the four units of the department are in Section
5.4. Section 5.5 discusses the verification and validation of the model for all the
3 treatment processes. This is followed by a discussion of the tests and analysis
of the ‘what-if’ scenarios conducted using the developed models in Section 5.6.
Lastly, Section 5.7 gives the concluding remarks.

5.2 Problem statement

The department’s waiting times for palliative and radical treatments were worse
than the JCCO recommended targets according to data collected between 2005
and 2007 as shown in Figure 5.1 which compares the average waiting times for
EBT to the JCCO targets in (Joint Council of Clinical Oncology 1993). The
average waiting times for palliative and radical treatments were worse than the
JCCO targets by about 2 and 15 days respectively. For the UST processes, it
took an average of 61.5 days for patients to be treated after diagnosis as shown
in Figure 5.2. For the EBT process, Figures 5.3 and 5.4 show waiting times for
patients that needed radical and palliative treatments, respectively.

The average waiting time for patients that required palliative treatment was
15.5 days and for those that needed radical treatment was 42.4 days. There were
some patients whose treatment was prolonged by more than 100 days as shown in
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Figure 5.4. For patients that required radical treatment, the mode of their waiting
times was 28 days. Some of these patients had to wait for up to 200 days according
to the data collected between 2005 and 2007. The department endeavours to
manage the movement of patients through its four units to improve objectives
stated in (Junor 1993). Objectives like improving staff morale or patient goodwill
cannot be quantified. Improvement of cost-efficiency has to involve more data
gathering to determine the financial implications of using some of the resources in
the model. Waiting times for each of the treatment can be considered a yardstick
for the quality of service. The shorter the average waiting times, the better the
quality of service. Therefore, the problem at the department is about reducing
the average waiting times to the levels targeted by the JCCO.
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Figure 5.1: Average waiting times obtained from data collected
between 2005 and 2007
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Figure 5.2: A plot of the waiting times obtained from retro-
spective UST data
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Figure 5.3: A plot of the waiting times for patients
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Figure 5.4: A plot of the waiting times for patients that
needed palliative treatment collected between 2005 and
2007

5.2.1 Objectives of the models

The objectives of the DES study of the department are as follows.

a) To gain insight into the inherent complexities of the interactions of resources
(i.e. machines, doctors, physicists, patients, and dosimetry technicians) in the
treatment processes.

b) To analyse the performance of the existing treatment system under several
scenarios like reduced staff, extended working hours, and no permitted doctor
bypasses in the planning and physics units. Doctor bypasses can be consid-
ered as fast-tracks for patients to be simulated, scanned or have their plans
approved even when the doctor is absent.

c) To determine the scope of the radiotherapy scheduling problem to be formu-
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lated in this study by gathering essential information about the treatment
processes given percentages of the total number of patients treated through
the 3 processes (i.e. BT, UST and EBT). 2%, 8% and 90% of the patients
were treated through the BT, UST and EBT respectively.

d) To develop DES models for generating patient details to be used in the schedul-
ing method proposed.

5.2.2 Assumptions of the models

Some assumptions were made about some of the work practices of the department
due to the paucity of data on some procedures. Some of the critical assumptions
made are as follows.

a) It was assumed booking request forms arrive at 9.00am on the day when the
doctor was available in the department. In the real-world, these forms arrive
at anytime of the day. Historical data collected did not include arrival times
of the forms in the planning unit for each doctor.

b) It was assumed that there were no delays between the time when the decision
to treat by radiotherapy was made and submission of booking request forms
to the planning unit.

c) It was assumed that the department was closed at weekends although historical
data had some patients treated on Saturdays and Sundays.

d) It was assumed that patients visited the simulator only for plan verification
checks at the end of each treatment phase. Some patients revisited either the
simulator or CT scan during treatment.

e) Historical data collected between September 2005 and January 2007, used
to develop the model had no clearly classified records for patients requiring
emergency treatment. Therefore, it was assumed that no patients needing
emergency treatment were received.

f) It was assumed that patients undergoing treatment were punctual for their
visits. It was deemed not essential to model the early and late arrival for
appointments pattern shown in Figures 5.5 and 5.6. About 85% arrived early
while 15% were late for treatment visits. About 70% and 30% were early and
late respectively, for the planning unit procedures.
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Figure 5.6: Percentage of patients in time or late for their plan-
ning appointments

5.3 Data collection

In this study, data were collected from the department’s computer database sys-
tem, by observing and interviewing radiographers, physicists, technicians, and
other personnel in the planning, physics, pretreatment and treatment units. Data
taken from the computer database system was for patient records from September
2005 to January 2007 and February 2008 to May 2008.

5.3.1 Data on doctors

Observations revealed that doctors are crucial for procedures performed in the
planning and physics units (as illustrated in Figures 3.4 and 3.6). Doctors were
sometimes bypassed in the treatment processes. About 75% of the patients were
seen by their own doctor before the planning procedures while 25% had their
procedures performed in the absence of their doctors (see Table 5.1). Notably,
those examined in the absence of their doctor were possibly seen after normal
working hours or by a locum doctor.

The time taken by the doctor seeing a patient ranged from less than a minute
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Table 5.1: Doctors’ presence or absence for the planning procedures

Cancer Doctor present (%) Doctor absent (%)

Benign 100.0 0.0
Breast 98.0 2.0
CNS 75.9 24.1
Digestive system 72.0 28.0
Endocrine gland 89.5 10.5
Gynaecological 60.9 39.1
Head and neck 53.1 46.9
Lympho-reticular 60.6 39.4
Male genital 34.8 65.2
Respiratory 70.4 29.6
Skin 100.0 0.0
Soft tissue and bone 66.7 33.3
Unknown primary 93.3 6.7
Unspecified or other 92.3 7.7
Urinary 43.3 56.7
Overall 74.6 25.4

to about eleven minutes as shown in Figure 5.7. The mean and mode of these
times are 2.9 and 2.0 minutes respectively. It can be concluded that most of the
doctor-patient consultations prior to procedures in the planning unit were less
than 5 minutes long. Table 5.2 lists the percentages of the patients allocated to
each of the 12 doctors by cancer diagnosis. Each cancer diagnosis has a doctor
or doctors that was allocated most patients. For example, for head and neck
cancers, doctors represented by anonyms 1 and 5 were responsible for most of
these patients, 32 and 60%, respectively.

5.3.2 Data on processing times for treatment machines

HE and LE linacs have lower processing times. They normally have more pa-
tients to treat in a day compared to the other machines and/or facilities. The
DXR and betatron are less busy than the linacs as discussed in Chapter 3. The
best fitting probability distributions chosen from up to 32 distributions (i.e. in-
cluding continuous and discrete probability distributions), not selected a priori,
were used to model the processing times obtained from the data collected from
each machine. These distributions were obtained using Stat::Fit (Geer Mountain
Software Corporation 2009), a statistical toolbox which tests for goodness of fit
by comparing input data to fitted distributions. These tests make the hypothesis
that the fit is good and ranks all distributions based on Chi Squared, Kolmogorov-
Smirnov and Anderson Darling tests and gives an indication of their acceptance
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Table 5.2: A distribution of the percentage of patients seen by each doctor 1–12 classified using cancer diagnosis

Cancer 1 2 3 4 5 6 7 8 9 10 11 12

Benign 0.0 0.0 3.1 17.7 2.4 40.2 0.0 6.1 0.0 17.9 12.2 0.0
Breast 12.6 0.2 0.0 20.6 17.7 0.2 0.0 8.8 3.1 0.0 36.6 0.2
CNS 0.0 0.0 0.8 7.0 0.0 86.7 0.8 0.0 0.0 3.9 0.8 0.0
Digestive system 1.0 1.0 0.0 0.6 14.5 4.5 0.7 14.2 0.0 1.0 27.9 35.0
Endocrine gland 0.0 0.0 3.3 6.7 35.0 51.7 0.0 0.0 1.7 0.0 1.7 0.0
Gynaecological 0.0 0.0 0.0 36.2 0.0 7.9 0.0 0.0 0.0 55.9 0.0 0.0
Head and neck 31.8 0.0 0.0 0.4 59.5 0.0 0.0 0.0 7.1 1.2 0.0 0.0
Lympho-reticular 0.5 0.0 28.2 41.2 0.5 4.8 1.0 0.5 0.0 3.4 19.6 0.5
Male genital 21.0 11.6 19.3 11.8 0.2 0.0 4.6 28.5 0.0 0.2 3.1 0.0
Respiratory 0.6 15.4 25.4 0.0 0.0 0.2 3.2 0.0 0.0 49.2 0.2 5.8
Skin 13.0 0.0 0.0 3.2 1.6 56.1 13.4 5.7 0.0 3.0 4.1 0.0
Soft tissue and bone 0.0 3.6 0.0 0.0 3.6 7.1 0.0 0.0 0.0 10.7 75.0 0.0
Unknown primary 4.7 14.8 7.0 7.8 11.7 13.3 6.3 3.9 0.8 13.3 11.7 4.7
Unspecified or other 2.9 14.7 8.8 2.9 0.0 23.5 5.9 2.9 0.0 32.4 2.9 2.9
Urinary 26.1 11.3 11.3 16.2 0.0 0.0 0.7 31.7 0.0 2.8 0.0 0.0
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Figure 5.7: A plot of the amount of time the doctors consulted their patients
(in minutes)

as a good representation of the input data. An example of fitted distributions for
the processing times of HE linacs is illustrated in Figure 5.8. Weibull distribution
was ranked highest and selected as the best fitting distribution. Figures 5.9–5.13
show these probability distributions selected to estimate the processing times of
the machines and facility.

Figure 5.8: A screenshot of the list of automatically fitted probability
distributions from Stat::Fit

The use of fitted probability distributions to estimate the processing times for
the machines can help in quickly building DES models. However, using raw em-
pirical data instead of distributions ensures that the DES model uses processing
times that are much closer to real-life. This can be substantiated by the fact that
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some of the plots shown in Figures 5.9–5.13 do not cover the frequencies of some
of the processing times from the historical data.
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Figure 5.9: A Lognormal distribution plot of the processing
times for LE linacs
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HE linacs processing times
Mean: 14.0
Mode: 10.3
Standard deviation: 4.6
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Pearson VI (8, 0, 1.5, 0)
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Figure 5.10: A Weibull distribution plot of the processing times
for HE linacs

5.3.3 Data on processing times for other resources

The time taken to perform some of the procedures was estimated based on data
obtain through interviewing staff. For example, the time spent by technicians
on the first procedure done in the physics unit (i.e. outlining and planning) was
estimated this way. Table 5.3 shows a list of the probability distributions (all
parameters are given in minutes) used to estimate the amount of time patients
spent on some of the machines and facilities for these procedures. Parameters of
the uniform distributions listed in Table 5.3 are the lower and upper bounds of
the time spent performing the procedure.

5.3.4 Data on time between treatment procedures

Doctors delayed submitting booking request forms of about 70% of the patients
by about a day after the decision to treat was made as shown in Figure 5.14.
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Simulator processing times
Mean: 31.6
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Figure 5.11: A Weibull distribution plot of the processing times
for the simulator
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CT scanner processing times
Mean: 20.9
Mode: 16.4
Standard deviation: 6.3
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Figure 5.12: A Pearson VI distribution plot of the processing
times for the CT scanner
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Mould room processing times
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Figure 5.13: A Pearson VI distribution plot of the processing
times for the mould room

Some patients experienced delays of up to 22 days before their appointments were
booked. Hence, for a patient requiring palliative treatment whose request form
was delayed by 10 days, there was only 4 days left before the JCCO targeted
due date for treatment. Radiographers had to book appointments for all the
procedures within the 4 days for the patient to meet the JCCO targeted waiting
time for palliative treatments.
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Table 5.3: Probability distributions for the amount of time patients spent on
machines and facilities

Procedure Probability distribution

Outlining and planning (physics unit) Uniform (25, 30) minutes
Complex dosimetry calculations and
checks (physics unit)

Uniform (45, 60) minutes

Pretreatment dose calculations and checks Uniform (25, 30) minutes
Final dose calculations and checks (treat-
ment unit)

Uniform (25, 30) minutes

Initial radiographer session Average (5) minutes
Isotope delivery (UST) Uniform (12, 15) minutes
Decontamination Fixed (120) minutes
Applicator insertion in the operating the-
atre (BT)

Normal (45, 15) minutes

Applicator insertion in the physics unit
(BT)

Uniform (5, 7) minutes

Bronchoscopy (BT) Uniform (25, 30) minutes
Endoscopy (BT) Uniform (25, 30) minutes
Imaging tumour on IBU (BT) Uniform (25, 30) minutes
BT treatment planning Uniform (25, 30) minutes
BT plan checks Uniform (30, 45) minutes
Treating on HDR (BT) Uniform (15, 20) minutes
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Figure 5.14: A plot of the delays in submission of request forms to the planning
unit by the doctors

The processing times estimated using probability distributions as discussed
in Section 5.3.2 can be considered as some of the crucial parameters for the
model. Parameters considered the most sensitive included the amount of time
that elapsed between consecutive procedures between booking of appointments
and planning unit procedures (i.e. simulation, scanning or mask moulding), pro-
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cedures in the planning and physics units, and those performed in the physics and
pretreatment units. Using some of the data collected, several probability distri-
butions were tested to determine the ones that would achieve the desired results
(i.e. waiting times closer to the historical data). The probability distributions
shown in Tables 5.4 and 5.5 were obtained in this process. Some of these probabil-
ity distributions were used to estimate the amount of time that elapsed between
procedures performed in different units. For example, the Triangular distribu-
tion (see Table 5.4) was used to estimate the amount of time some patients that
required radical treatment had to wait between submission of a booking request
form and staging of their cancers on the simulator.

Table 5.4: Time that elapsed between appointment booking to the completion
of the planning unit procedures

Treatment Urgency Machine or facility Distribution

Palliative

Urgent
CT scanner

Fixed (10) minutesSimulator
Mould room

Non-urgent
CT scanner Exponential (8.4) days
Simulator Exponential (8.6) days
Mould room Fixed (10) minutes

Radical

Urgent
CT scanner Pearson V (1.1, 9.7) days
Simulator Triangular (0, 0, 31) days
Mould room Fixed (10) minutes

Non-urgent
CT scanner Exponential (21.8) days
Simulator Uniform (0, 37) days
Mould room Exponential (21.8) days

Table 5.5: Time that elapsed between planning and physics or pretreatment
units procedures

Treatment Urgency Distribution

Palliative
Urgent Fixed (10) minutes

Non-urgent Exponential (8.3) days

Radical
Urgent Beta (1.3, 2.7, 0, 46) days

Non-urgent Exponential (11.7) days

5.3.5 Data on cancer diagnosis and patient categories

Breast cancers are the most commonly treated cancers in the department while
about 1% of the total number of patients that come through the department
are treated for soft tissue and bone, and unspecified or other cancers. Figure
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5.15 illustrates the distribution of all the 15 cancers treated in the department.
Over 10% of the patients are treated for male genital, respiratory or skin related
cancers.
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Figure 5.15: A plot of the distribution of cancers treated

For patients treated through the UST process, the most prevalent diagnosis
were thrombotoxicosis, thyroid and prostate cancers. More than 60% of the pa-
tients that were treated by the UST processes were diagnosed of thrombotoxico-
sis. The rest comprised patients diagnosed with thyroid, thrombocytosis, throm-
bocythaemia, polycythaemia and the prostate cancers. Similarly, for patients
treated through the BT treatment system, about 60% had gynaecological can-
cers while about 25% and 7% had been diagnosed with cervix and oesophageal
cancers respectively.

In Table 5.6, the proportions of the patients who required treatments such
as adjuvant, palliative, radical are shown. Cancers classified as digestive system,
respiratory, unknown primary, unspecified or other and urinary had the more
percentages of patients that needed palliative treatment compared to the rest that
had more patients requiring radical treatment. More crucially, the percentages of
the patients who received each of the JCCO treatments are shown in Table 5.7.
About 67% and 31% of the patients received radical and palliative treatment
respectively. New data (i.e. collected in 2008) showed that about 2% of the
total patients required emergency treatment. Hence, it can be surmised that
the request forms submitted on most days comprised mostly patients requiring
radical treatment. Prioritisation of the list of received patients was imperative as
discussed in (Lim et al. 2005).
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Table 5.6: Percentages of the total patients by cancer diagnosis and treatment

Diagnosis Adjuvant None Palliative Radical

Benign 0.0 0.0 33.3 66.7
Breast 0.1 0.4 23.2 76.3
CNS 0.0 0.0 19.2 80.8
Digestive system 0.0 0.0 53.0 47.0
Endocrine gland 0.0 5.0 25.0 70.0
Gynaecological 0.0 0.0 24.1 75.9
Head and neck 0.0 1.6 3.6 94.7
Lympho-reticular 0.0 1.0 34.0 65.1
Male genital 0.0 1.6 42.7 55.7
Respiratory 1.7 0.7 73.7 24.0
Skin 0.0 0.7 5.7 93.6
Soft tissue and bone 0.0 3.6 35.7 60.7
Unknown primary 0.0 0.0 83.6 16.4
Unspecified or other 0.0 0.0 87.9 12.1
Urinary 0.0 1.4 57.5 41.1

Table 5.7: Percentages of patients treated per treatment

Treatment Percentage of
patients (%)

Emergency 2.0
Palliative 31.0
Radical 67.0

Patients data from 2005–2007 were classified as urgent or non-urgent. In this
case, the urgency was different from the Urgent treatments that have to be de-
livered within 24 hours as explained earlier. The department determined the
urgency of each cancer case even though the patient required radical treatment
within 28 days as recommended by the JCCO. Table 5.8 shows the percentages of
urgent versus non-urgent patients for each cancer diagnosis. Besides determining
the percentage of urgent or non-urgent patients, it was important to extrapo-
late the percentages of patients treated as in or out-patients. Table 5.9 gives a
breakdown of the percentage of in and out-patients for each cancer diagnosis.
Generally, about 11% of the patients treated in the department were in-patients
while the rest were out-patients.
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Table 5.8: Percentages of the patients by cancer diagnosis and categorisation of
whether their treatments were urgent or not

Cancer diagnosis Urgent (%) Non-urgent (%)

Benign 0.0 100.0
Breast 2.0 98.0
CNS 8.2 91.8
Digestive system 4.7 95.3
Endocrine gland 25.0 75.0
Gynaecological 3.5 96.5
Head and neck 2.9 97.1
Lympho-reticular 8.5 91.5
Male genital 5.9 94.1
Respiratory 5.9 94.1
Skin 1.9 98.1
Soft tissue and bone 3.6 96.4
Unknown primary 22.2 77.8
Unspecified or other 15.2 84.8
Urinary 10.0 90.0

Table 5.9: Percentage of patients treated as in or out-patients per cancer diag-
nosis

Cancer diagnosis In-patients (%) Out-patients (%)

Benign 3.7 96.3
Breast 3.8 96.2
CNS 22.0 78.0
Digestive system 16.3 83.7
Endocrine gland 73.7 26.3
Gynaecological 10.0 90.0
Head and neck 5.7 94.3
Lympho-reticular 27.7 72.3
Male genital 9.6 90.4
Respiratory 14.0 86.0
Skin 1.8 98.2
Soft tissue and bone 28.6 71.4
Unknown primary 39.8 60.2
Unspecified or other 17.7 82.3
Urinary 15.6 84.4
Overall 11.0 89.0
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Figure 5.16: Fitted distributions for the arrival of request forms
in the planning unit
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Figure 5.17: Negative binomial distribution used to estimate
patient arrivals

5.3.6 Data on patient arrival patterns

The pattern of arrival of request forms in the planning unit was estimated using
fitted probability distributions obtained using Stat::Fit as described earlier. A
Negative Binomial distribution was considered the best fitting distribution as
shown in Figure 5.16. A plot of the distribution used for the model is illustrated
in Figure 5.17. The minimum and maximum number of request forms received
in the planning unit in a given day was 0 and 29, respectively.

5.3.7 Data on machines and facilities usage

Doctors and/or radiographers in the planning unit determined the machines to be
visited by each patient. The percentage of patients with different cancer diagnosis
that used either the mould room, CT scanner and/or simulator are listed in Table
5.10. Most of the patients diagnosed with head and neck, male genital and urinary
cancers visited the CT scanner. The rest visited the simulator. Therefore, the
simulator was generally busy compared to the CT scanner.

In Table 5.11, the HDR was commonly used to treat gynaecological cancers
while most patients diagnosed with the other cancers were treated on one of the 3
HE linacs referred to as HE3. The DXR machine was generally used to treat skin
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Table 5.10: Percentage of patients per cancer diagnosis that visited the planning
unit resources. All the values are in (%)

Cancer diagnosis Mould room CT scanner Simulator

Benign 33.3 0.0 66.7
Breast 3.3 10.5 86.2
CNS 52.2 1.2 46.6
Digestive system 8.2 30.7 61.1
Endocrine gland 44.1 14.7 41.2
Gynaecological 4.5 35.6 59.9
Head and neck 38.6 45.2 16.2
Lympho-reticular 22.6 9.7 67.7
Male genital 2.8 53.1 44.2
Respiratory 8.7 22.9 68.4
Skin 19.2 0.4 80.4
Soft tissue and bone 16.1 25.8 58.1
Unknown primary 20.5 8.3 71.2
Unspecified or other 10.8 5.4 83.8
Urinary 3.5 51.0 45.5

and benign cancers. The distribution of patients on the 8 machines shows that
some machines were used to treat more patients than others. It can be concluded
that most doctors prescribed certain types of machines than others.

5.3.8 Data on treatment plan complexity

Treatment plan complexity can be used to determine the pathway followed by
a patient in the physics and pretreatment units. Data collected was classified
using four levels of complexity of the treatment plans generated for the patients.
For some cancer diagnoses including soft tissue and bone, and unspecified or
other cancers, the data had no treatment plan complexity levels marked as shown
in Table 5.12. About 75% of the treatment plans created in the department
were simple. This implies most of these plans were created in the pretreatment
unit. Less than 1% had complex treatment plans created for their treatment
while the other 24% had intermediate or ‘none’ treatment plans created by the
radiographers. It was assumed that patients whose treatment plan complexity
was complex or intermediate visited the physics unit. This implies that less than
15% of the total patients were expected to have their treatment plans created in
the physics unit.
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Table 5.11: Percentage of patients per cancer diagnosis treated on the treatment machines. LE1 and LE2 represent the
2 LE linacs while HE1, HE2, HE3 represent the 3 HE linacs. All the values are in (%)

Diagnosis Betatron DXR LE1 LE2 HE1 HE2 HE3 HDR

Benign 0.0 16.6 0.0 0.0 66.7 0.0 16.7 0.0
Breast 0.0 0.3 14.1 42.0 7.4 5.0 31.2 0.0
CNS 0.0 1.3 9.2 27.6 10.5 17.2 34.2 0.0
Digestive system 0.0 0.0 25.4 11.2 8.2 16.4 34.9 3.9
Endocrine gland 0.0 0.0 0.0 28.6 21.4 7.1 42.9 0.0
Gynaecological 0.0 0.0 19.8 1.1 6.1 11.4 13.7 47.9
Head and neck 0.0 3.2 8.7 38.9 6.4 22.2 20.6 0.0
Lympho-reticular 2.9 2.9 15.3 22.6 10.3 12.4 33.6 0.0
Male genital 0.0 0.0 37.1 9.7 5.2 8.5 39.5 0.0
Respiratory 0.0 2.5 17.6 32.0 4.9 13.3 29.1 0.6
Skin 0.0 85.8 6.7 1.4 1.9 1.1 3.1 0.0
Soft tissue and bone 0.0 0.0 12.5 25.0 0.0 6.2 56.3 0.0
Unknown primary 0.0 0.0 16.3 17.4 9.3 7.0 50.0 0.0
Unspecified or other 0.0 11.1 33.3 22.2 3.7 7.4 14.8 7.5
Urinary 0.0 0.0 39.3 8.9 1.8 11.6 36.6 1.8
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Table 5.12: Percentage of patients per cancer diagnosis and treatment plan
complexity levels. All the values are in (%)

Cancer diagnosis Complex Intermediate None Simple

Benign 0.0 0.0 100.0 0.0
Breast 0.2 3.5 0.7 95.6
CNS 1.7 63.8 1.7 32.8
Digestive system 2.1 46.9 2.0 49.0
Endocrine gland 0.0 33.3 33.3 33.4
Gynaecological 4.6 38.6 0.0 56.8
Head and neck 0.0 29.2 12.5 58.3
Lympho-reticular 3.3 6.7 83.3 6.7
Male genital 0.0 33.3 66.7 0.0
Respiratory 3.3 6.7 83.3 6.7
Skin 0.0 0.0 100.0 0.0
Soft tissue and bone – – – –
Unknown primary 0.0 33.3 0.0 66.7
Unspecified or other – – – –
Urinary 0.0 33.3 0.0 66.7
Overall 0.7 13.1 11.8 74.4

5.3.9 Data on prescribed fractions

Data showed that some patients went through up to 3 treatment cycles (i.e.
treatment phases) as shown in Table 5.13. About 93% of the patients had no
prescribed treatment phases. Once their prescribed fractions were completed,
they were then discharged. For the rest, about 3%, 4% and 1% had 1, 2 and
3 additional treatment phases respectively, recommended by the doctor in their
treatment regime. Modelling the prescription of fractions to patients for each
patient suffering from any of the 15 cancers diagnosis involved using distributions
shown in Figures A.1–A.15 in Appendix A. Some patients were prescribed up to
30 fractions for their treatment regime.

5.3.10 Data on treatment processes used

The EBT process was the most commonly used method of treating patients as
shown in Table 5.14. About 4 and 6% of the patients needed treatment through
BT and UST. Some cancer diagnosis like head and neck, lympho-reticular, skin,
soft tissue and bone, and unknown primary cancers, were never treated using UST
or BT as shown in Table 5.14. This data was essential in generating patients who
follow 3 different pathways which correspond to the 3 treatment processes in the
DES model.
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Table 5.13: Percentage of patients (%) for different prescribed treatment phases
per cancer diagnosis

Cancer diagnosis 0 1 2 3

Benign 100.0 0.0 0.0 0.0
Breast 99.7 0.0 0.3 0.0
CNS 85.0 8.7 6.3 0.0
Digestive system 94.7 1.8 3.5 0.0
Endocrine gland 65.0 10.0 20.0 5.0
Gynaecological 82.9 4.7 12.4 0.0
Head and neck 41.1 25.4 26.6 6.9
Lympho-reticular 95.2 1.9 2.9 0.0
Male genital 95.8 1.4 2.8 0.0
Respiratory 98.7 0.9 0.4 0.0
Skin 99.1 0.0 0.2 0.7
Soft tissue and bone 82.1 3.6 14.3 0.0
Unknown primary 95.3 0.0 3.1 1.6
Unspecified or other 97.0 3.0 0.0 0.0
Urinary 91.5 2.1 5.7 0.7
Overall 93.0 2.7 3.7 0.6

Table 5.14: A distribution of patients treated by the 3 treatment processes

Cancer diagnosis EBT (%) UST (%) BT (%)

Benign 4.4 95.6 0.0
Breast 99.8 0.2 0.0
CNS 98.8 1.2 0.0
Digestive system 97.2 0.4 2.4
Endocrine gland 28.3 71.7 0.0
Gynaecological 52.3 0.4 47.4
Head and neck 100.0 0.0 0.0
Lympho-reticular 100.0 0.0 0.0
Male genital 98.0 2.0 0.0
Respiratory 99.5 0.0 0.5
Skin 100.0 0.0 0.0
Soft tissue and bone 100.0 0.0 0.0
Unknown primary 100.0 0.0 0.0
Unspecified or other 89.3 3.6 7.1
Urinary 98.3 0.0 1.7
Overall 90.6 5.6 3.8
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5.3.11 Data on radioisotopes

Since treatment by UST involved administering soluble radioisotopes (i.e. 131I,
32P , 89Sr and 153Sm), the data showed the distribution of the patients treated
by them as illustrated in Table 5.15. Radioisotope 131I was prevalently used to
treat most of the cancers while the other 3 were used rarely. 32P was only used
on patients that had benign and unspecified cancers while 89Sr and 153Sm were
used to treat male genital related cancers.

Table 5.15: Percentage of patients treated by the four UST isotopes. All values
are in (%)

Cancer diagnosis 131I 32P 89Sr 153Sm

Benign 96.0 4.0 0.0 0.0
Breast 100.0 0.0 0.0 0.0
CNS 100.0 0.0 0.0 0.0
Digestive system 100.0 0.0 0.0 0.0
Endocrine gland 100.0 0.0 0.0 0.0
Gynaecological 100.0 0.0 0.0 0.0
Head and neck 0.0 0.0 0.0 0.0
Lympho-reticular 0.0 0.0 0.0 0.0
Male genital 0.0 0.0 72.7 27.3
Respiratory 0.0 0.0 0.0 0.0
Skin 0.0 0.0 0.0 0.0
Soft tissue and bone 0.0 0.0 0.0 0.0
Unknown primary 0.0 0.0 0.0 0.0
Unspecified or other 0.0 100.0 0.0 0.0
Urinary 0.0 0.0 0.0 0.0

5.4 Building the models

The process flowcharts discussed in Chapter 3 were considered as the conceptual
models of the units. The four units were first separately modelled using Figures
3.4 and 3.6–3.8 for the EBT process. The flowcharts in Figures 3.10 and 3.12
were used to developed separate models for the UST and BT processes. All
the separate models were incorporated into the final simulation model of the
department. The simulation software chosen for building the models was Simul8
(Simul8 Corporation 2009).

83



5. Simulation models

5.4.1 Using Simul8

Simul8 allows the user to create a visual representation of the real-life system
being modelled using the following objects: a) work item, b) entry point, c) work
centre, d) resources, e) storage bin, and f) exit point. Work items represent
entities to be processed (e.g. patients). An entry point is defined as the point
where work items are created and ‘pushed’ into the model. Work centres are the
entities, like machines, which process work items. Resources are entities needed
to operate work centres (e.g. radiographers for driving a simulator). Storage
bins represent the points work items queue until a work centre is ready to process
them. Finally, an exit point is the point where work items that no longer required
to be processed are deemed complete and leave the model. These objects were
fundamental to the creation of the separate DES models using Simul8.

5.4.2 Planning unit model

The DES model of the planning unit comprised five key entities: doctors (i.e. 13
doctor entities), booking desk, mould room, simulator and CT scanner as shown
in Figure 5.18. These were connected in such a way that the patients would first
visit doctor entities before proceeding to the machines. For 12 of the 13 work
centres representing the doctors, the shift patterns of each doctor were defined
so that patients would be examined during the doctor’s shift only. The 13th work
centre (i.e. with 0 minutes processing time) represented a bypass entity used by
patients that had their procedures performed in the absence of their doctors.

The receipt of request forms generated at the entry point was modelled on the
EBT booking desk. The bookings were estimated using the probability distribu-
tions listed in Table 5.4. After the completion of the simulator or CT scanner
procedures, patients exit the planning unit model. As a separate model, the
planning unit DES model can mimic the pathways taken in the planning unit.
However, the use of resources (especially radiographers) was not accurately rep-
resented. In the real-life department, radiographers are versatile; they can work
in any of the 3 units: planning unit, pretreatment and treatment unit. Hence, it
was essential to incorporate all the separate models into one.

5.4.3 Physics unit model

The main entities included in the DES model in Figure 5.19 were the mould
room, technicians workstations, physicists and doctors. Like the planning unit
model, 13 doctor work centres were also included. The 13th doctor work centre
was for treatment plans approved in the absence of the doctor. As shown in
the physics unit DES model, after dosimetry calculations, two physicists checked
the calculations for accuracy sequentially. After ‘Physicist 3’ completes the last
verification checks, the treatment plan exits the physics unit.
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Figure 5.18: A screenshot of the simulation model of the planning unit
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Figure 5.19: A screenshot of the simulation model of the physics unit procedures for EBT
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UST and BT procedures were modelled as shown in Figures 5.20 and 5.21
respectively. Four key entities were included in the DES model for the UST
process: doctors, 131I, 32P , and 89Sr and 153Sm radioisotopes. As explained
in the previous chapter, the ‘Iodine 131’ work centre was connected to the two
decontamination wards (i.e. ‘Decontamination Ward 1’ and ‘Decontamination
Ward 2’). In Figure 5.21, the main entities included the IBU, HDR, applicator
insertion methods (i.e. theatre, bronchoscopy, endoscopy and the BT room),
treatment plan creation, verification and checking of treatment plans, doctors and
the two decontamination wards. The decontamination wards shown in Figures
5.20 and 5.21 were shared between patients treated by UST using the iodine
radioisotope, 131I and those treated by BT.

5.4.4 Pretreatment unit model

Since each radiographer performed one calculation and checks to verify the accu-
racy of a treatment plan, the entities representing the desks were interconnected
as shown in Figure 5.22. These entities represented the 3 different radiographers
(i.e. staff resources) that worked on the treatment plans: ‘Radiographer 1’, ‘Ra-
diographer 2’ and ‘Radiographer 3’. Each desk entity is connected to the other
two desk entities and the exit point to represent all the possible routes that a
treatment plan can follow after a procedures on the desk was completed. Such
a configuration of the desk entities shows that a treatment plan had no definite
starting and ending point for its procedures. Further, the configuration of desks
conforms to the definition of the open shop environment discussed in Chapter 4.

5.4.5 Treatment unit model

The DES model of the treatment unit in Figure 5.23 shows entities for the ma-
chines and workstations where further verifications of the dosimetry calculations
were performed. These workstations were connected to each treatment machine
so that upon completion of these further calculation checks, the patient proceeded
with the actual fraction delivery. The interconnections of the machines modelled
cases where patients can be swapped from one machine to the other during their
treatment (i.e. for the HE and LE linacs).
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Figure 5.20: A screenshot of the simulation model of the UST procedures
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Figure 5.21: A screenshot of the simulation model of BT procedures
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Figure 5.22: A screenshot of the simulation model of the pretreatment unit
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Figure 5.23: A model of the treatment unit procedures showing entities representing low energy linacs, DXR and the
betatron
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5.5 Model verification and validation

Verification can be described as the process of checking that the model is behaving
as it is supposed to do. Validation involves checking that the model is behaving
as the real system behaves. Some of the methods of verifying and validating
simulation models suggested in the literature include animations, historical val-
idation, face validity and statistical tests. In simulation, the main aim is to to
construct a model that appears reasonable on its ‘face’ to users and others who
are knowledgeable about the real-world system being investigated (Banks 2005).
If these users or experts feel that the DES model is adequate, then it has face va-
lidity. In this study, the DES models in Figures 5.18–5.23 were incorporated into
one simulation model representing the processes conducted in the radiotherapy
department at the Arden Cancer Centre. This simulation model was run using
different scenarios described later in this chapter.

Transient and results collection periods

When the simulation model for the department was run, it was imperative to
determine the appropriate transient and results collection periods. The transient
period is the amount of time the model runs before the system reaches steady
state. The results collection period is the amount of time the simulation model
was run after the transient period where the results are being collected. A sim-
ple graphical method of examining the trend of the utilisations of some of the
machines over a period of time was used to determine the transient and results
collection period (i.e. in months).

There are more efficient methods of determining the transient and results
collection periods for a simulation model discussed in (Robinson 2004, Robinson
2007). The model was run several times using different number of months for the
transient and results collection periods as shown in Figure 5.24. Since the trend
of the utilisations of the CT scanner, simulator and HE1 generally tended to be
steady after about 12 months, the results collection period was determined to be
12 months. In Figure 5.25, after about 12 months, the utilisations of some the
machines tended to be stationary although for the LE1 linac, the utilisations did
not seem to stabilise after 12 months. This can be attributed to the difference in
the amount of patients that visited the two LE linacs. LE1 was visited generally
used to treat less patients than LE2. The transient period for the DES models
of the department was also set to 12 months.

Statistical tests for validation

Statistical tests such as the two-sample Kolmogorov-Smirnov test, Ansari-Bradley
test, and Wilcoxon ranksum test were used to validate the DES model. The
null hypothesis of the two-sample Kolmogorov-Smirnov test is that two data
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Figure 5.24: Utilisation of the CT scanner, simulator and linac
HE1

1 2 3 4 6 8 10 12 15 18 21 24
10

20

30

40

50

60

70

80

Length of warm-up period (in months)

U
ti

li
sa

ti
o
n

(%
)

 

 
CT scanner Simulator Linac LE1 Linac LE2

Figure 5.25: Utilisation of some of the machines using different
transient periods

samples are from the same continuous distribution while the Ansari-Bradley test
has the null hypothesis that two samples come from the same distribution against
the alternative hypothesis that they come from different distributions that have
the same median and shape. Wilcoxon ranksum tests the null hypothesis that
two samples are from the same distributions with equal medians, against the
alternative that they do not have equal medians. These statistical tests were
chosen to determine how reasonably close the results of the model can be to the
historical data.

Some of the results of the tests on the waiting times obtained from the model
(i.e. 10 runs) and historical data are shown in Table 5.16. The two-sample
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Kolmogorov-Smirnov test rejected the null hypothesis for all the 10 runs. Eight
of the 10 Ansari-Bradley tests rejected the null hypothesis. This implies that for
eight times, the test accepted the alternative that each of the two samples were
from distributions with the same median and shape. Similarly, eight out of 10
times, the Wilcoxon ranksum test did not reject the null hypothesis that the two
samples were from the same distribution with equal median. Therefore, two of the
statistical tests (i.e. Ansari-Bradley and Wilcoxon ranksum tests) showed that
the two samples (i.e. waiting times from the model and the historical data) were
reasonably close with respect to their equal medians and shape of the distributions
although the Kolmogorov-Smirnov test rejected that they can be from the same
continuous distribution.

Table 5.16: Results of 3 statistical tests between real-life data and the model
for 10 different runs

Run Ansari-Bradley Wilcoxon rank sum Kolmogorov-
Smirnov

1 rejected not rejected (p = 0.16) rejected
2 rejected not rejected (p = 0.12) rejected
3 rejected not rejected (p = 0.16) rejected
4 rejected rejected rejected
5 rejected not rejected (p = 0.13) rejected
6 rejected not rejected (p = 0.26) rejected
7 not rejected (p = 0.06) not rejected (p = 0.05) rejected
8 rejected rejected rejected
9 rejected not rejected (p = 0.23) rejected
10 not rejected (p = 0.07) not rejected (p = 0.20) rejected

Other verification and validation tests

In some cases, statistical tests can be inconclusive (Pidd 2004, Banks 2005) and
thus, other methods of validating models can be used. Observing the DES model
animations affirmed that the work items (i.e. patients) followed the correct path-
ways. For example, patients requiring the treatments (i.e. palliative and radical)
were traced to verify their pathways after each procedure.To further ascertain
how reasonably close the model was to the real-life system, the distributions dis-
cussed in Sections 5.3.1–5.3.10 were obtained from the model and compared to
other data obtained in 2003 used in (Proctor 2003) and 2008.

The flowcharts discussed in Chapter 3 were used to trace and verify the move-
ment of patients from the entry point to the exit points. A face validity test was
performed by a senior radiographer. The radiographer was asked to inspect the
model inputs and outputs (i.e. waiting time results obtained by the model versus
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those from historical data) and observe the animated patient flows. The DES
model was confirmed to be reasonably close to the real-life treatment processes
based on the closeness of the waiting times obtained by the model and the queues
for machines observed. The waiting times results of the DES model used in these
tests were for the EBT processes only. These are plotted in Figures 5.26, 5.27
and 5.28. In Figure 5.26, waiting times for all the treatments (i.e. palliative and
radical) are compared while Figure 5.27 shows the comparison of waiting times
for palliative treatments only. Figure 5.28 shows the comparison of the waiting
times for radical treatments for historical data and those obtained after running
the DES model.
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Figure 5.26: Comparison of the historical data and waiting
times obtained from run 7 (in Table 5.16) of the model
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Figure 5.27: Comparison of the waiting times for palliative
treatments from the historical data and run 7 (in Table 5.16) of
the model

The historical data had no records of the dates when patients for BT had their
procedures performed. An average of 7.3 days waiting time for these patients was
obtained from the model. Results for the UST waiting times were not close to
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the historical data as shown in Figure 5.29. The average waiting time for UST
patients was about 44 days compared to 61.4 days from the historical data. The
historical data obtained in 2007 and 2008 as well as that used for the study in
(Proctor 2003) was used in the validation of the DES models.
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Figure 5.28: Comparison of the waiting times for radical treat-
ments from the historical data and run 7 (in Table 5.16) of the
model
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Figure 5.29: Comparison of the waiting times for the UST
process obtained from the historical data and model

5.6 Scenario tests

A simulation model is a tool that decision makers use to assess the impact of
various changes in the system. The following ‘what-if’ scenarios were designed
to confirm the impact of various changes to the DES model of the department.
Such scenarios included: 1) extended working hours for the machines and facil-
ities, 2) enforcing doctor presence for the planning and physics unit procedures,
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3) reduced and increased staffing levels of radiographers, and 4) machine break-
downs. One of the aims of the DES study was to focus on the ‘what-if’ scenarios
that can be considered cost-effective (i.e. implementable without the need for
capital outlays). Therefore, determining the performance of the model when
additional machines were made available was not included in the scenario tests.

A single run of the simulation model showed excessive patient queuing on the
treatment machines (especially the HE and LE linacs). This can be attributed to
the proportions of the patients that visited linacs HE3 and LE2 as shown in Table
5.11. Queues also intermittently formed on the work centres representing the 12
doctors in the planning and physics units (i.e. on the simulator, CT scanner and
physics outline and planning). Such queues were unavoidable due to the limited
availability of the doctors in the department (see Table 2.10).

Table 5.17: Average waiting time results from the historical data and the model
(for 10 runs)

Data Palliative Radical All

Developed model 17.3 42.7 33.1
Historical 15.5 42.4 32.3

The DES model was run 10 times in order to improve the accuracy of the
results collected. Each run used different random number seeds automatically
generated by the Simul8 software in order to increase variability and haphazard-
ness of events in the model. The results of the average waiting times at 95%
confidence intervals produced after each run were compared to those obtained
from the historical data as shown in Table 5.17. Average waiting times for radi-
cal treatments were worse from the historical data by about 0.7%. Considering
all the patients treated, the average waiting times from the model were worse
by less than a day to the historical data. For palliative treatments, the average
waiting times from the model were worse from historical data by about 10%.
More patients requiring radical treatments were generated and they occupied the
treatment capacity. When patients requiring palliative treatment were generated,
there was insufficient capacity to fast-track their treatment although they had the
highest priority in the queues.

5.6.1 Scenario 1: Extended working hours

Working hours were extended for the resources (i.e. both human and machines
excluding the doctors) in the department to 8.00pm excluding weekends. The
model with these extended working hours (i.e. scenario 1 model) was also run
10 times with different random number seeds for the same transient and results
collection periods. A comparison of the average waiting time results obtained
from the scenario 1 model are shown in Figure 5.30. A noticeable reduction
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in the average waiting time for patients who had radical treatment by up to 3
days was evident. For all patients treated, the average waiting times marginally
improved but for palliative treatments, the results were generally the same.

Since about 67% of the patients treated needed radical treatment, the model
had more patients requiring radical treatment at any time during the runs. Hence,
more working hours for the machines and radiographers implied that more of
these patients (i.e. needing radical treatment) were treated. Most patients that
required palliative treatments had to wait longer before commencing treatment.
It can be concluded that patients that need radical treatment are most likely to
benefit from extension of working hours than patients requiring palliative treat-
ment. Results in Figure 5.30 affirm the need to develop appointment scheduling
rules that prioritise as well as reduce the patients requiring radical treatment
from occupying most of the immediate appointments.
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Figure 5.30: A comparison of the average waiting times from the
developed model and scenario 1 model

5.6.2 Scenario 2: Enforcing doctor presence

The doctor availability times in the department (see Table 2.10) were discussed
in Chapter 2. These doctors are only available once a week and if a patient was
not examined on the day the doctor was available, then he or she had to wait
for at least 7 days to be seen by the doctor. About 25% of the patients had
their planning unit procedures completed in the absence of their doctors (see
Table 5.1). The presence of doctors for the planning unit procedures is crucial
in the treatment process. It was understood by the staff at the Arden Cancer
Centre that the presence of the doctor during planning enhances the quality of

98



5. Simulation models

the service of the department. Therefore, the developed model was tested after
enforcing the doctor’s presence requirement.

Enforcing doctor presence for the procedures resulted in queues of patients
forming on the machines and mould room. Skipping the doctor requirement re-
sulted in less queuing of patients. Most importantly, as shown in Figure 5.31, the
average waiting times of the patients requiring palliative treatment worsened by
about 12% while those for patients requiring radical treatment also worsened by
about 6%. For all patients, the average waiting time worsened by 7%. It can be
concluded that if the department wishes to ensure that the planning unit proce-
dures were performed in the presence of the doctor only, then the work centres
representing doctors can be considered bottlenecks of the treatment processes.
Since the department endeavours to deliver improved service quality, enforced
doctor presence for the planning unit procedures and reduced waiting times can
be considered as the key requirements in future studies of the EBT processes.
Such key requirements ensure that the department addresses the waiting times
issues using its existing resources (i.e. complement of doctors).
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Figure 5.31: A comparison of the average waiting times from the
developed model and scenario 2 model

5.6.3 Reduced and increased staff (Scenarios 3 and 4)

As discussed earlier, the staffing levels of all the human resources involved in the
treatment processes are essential. In particular, radiographers are involved in 3 of
the four units where the various planning or treatment procedures are conducted.
Hence, it was crucial to find the performance of the department if the number of
radiographers available in each of the units was reduced or increased. Tests with
reduced staffing levels (i.e. Scenario 3) involved a scenario whereby radiographer
staffing levels in the planning, pretreatment, and treatment units were all reduced
by one from the existing staffing levels. For increased staffing levels (i.e. Scenario
4), the tests involved adding two or three extra radiographers to each pool of
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radiographers available for each unit. The modified simulation model was again
run 10 times using the same transient and results collection periods.

Extra radiographers in the system marginally improved some of the results
obtained as shown in Table 5.18. The most noticeable improvement was for the
average waiting times of patients that needed radical treatment. An increase of
radiographers improved the results by about 2 days. Furthermore, the average
waiting times of all patients that visited the department improved by about 1 day
while the results of patients that required palliative treatment was generally the
same as the developed model. Reducing existing staffing levels of radiographers
marginally worsened the average waiting times of all treatments. Some entities
which needed radiographers to operate them (i.e. CT scanner, simulator, linacs,
DXR and others) stopped working until the minimum number of radiographers
required to operate them were available.

The ‘what-if’ scenarios such as adding extra radiographers can help when
making decisions on the number of additional staff (i.e. radiographers) required
by the department. Tests on such scenarios have to demonstrate the minimum
number of additional radiographers that improves the performance of the de-
partment. In this case, adding extra radiographers was conducted to show the
sensitivity of adding extra radiographers to a department that has low staffing
levels.

Table 5.18: Comparison of the average waiting times from the developed model,
and Scenario 3 and 4 models

Treatment Developed model Scenario 3 Scenario 4

All 33.1 33.5 32.5
Palliative 17.3 17.4 17.3
Radical 42.7 43.0 40.4

5.6.4 Scenario 5: Machine breakdowns

Each machine in the department had to be serviced and maintained according
to a schedule created by the planning unit. However, there can be cases when
machines breakdown while patients were waiting to be treated. Such machine
breakdowns can impede patient flow mostly in the treatment unit. To test the
performance of the developed model under such disturbances, the Simul8 software
was set to mimic the machine breakdowns for linacs only (i.e. HE and LE linacs).
The times between the machine breakdowns for the 5 linacs were set as follows:
1) HE1 was set to a fixed distribution of 10.3 days, 2) HE2 was 22.4 days, 3) HE3
was 4.4 days, 4) LE1 was 5.2 days, and 5) LE2 was 4.7 days. The time to repair
the machines was estimated to be a fixed 2 hours.

The average waiting times obtained for patients requiring radical treatment
were worse by about a day compared to the developed model as shown in Table
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5.19 while the result for patients requiring palliative treatment was generally
the same. Generally, the results for scenario 5 marginally worsened from those
obtained from the developed model. Scenario 5 tested machine breakdowns which
affect the linacs for about 2 hours of the day only. Machine breakdowns that affect
the machines over several days can adversely impact the waiting times of patients
to be treated. The developed model did not consider the planned machine service
and maintenance dates from the schedule. These can impact the waiting times
because some of the machines can be out of service for an entire day or weekend
as discussed in Chapter 3.

Table 5.19: Comparison of the average waiting times obtained from the devel-
oped model and Scenario 5 models

Treatment Developed model Scenario 5

All 33.1 34.3
Palliative 17.3 17.4
Radical 42.7 43.8

5.7 Concluding remarks

A DES model of the department was built based on 6 separate models of the EBT,
UST and BT processes using Simul8. Waiting time was the performance criterion
considered in the analysis of results from 5 different scenarios. Stringently en-
forcing doctor presence for some procedures showed noticeable worsening of the
performance measure while the other scenarios tested showed marginal changes.
It was understood that staff at the Arden Cancer Centre staff consider doctor
presence as essential for good service quality delivery. Enforcing their presence
for the procedures can be considered as a key constraint. Results for palliative
treatments showed that prioritising patients where queues were formed was an in-
adequate way of improving the results. More strategies which make more capacity
available when patients needing critical treatments arrive are essential.

This DES study focused on ‘what-if’ scenario tests on the EBT processes.
Sharing crucial resources such as doctors withn the BT and UST models did
not inhibit the interactions of the entities in the EBT model. However, insight
into the treatment processes gained from developing the models can be used
to formulate radiotherapy scheduling problems (i.e. for each of the four units)
and propose methods of solving them. These methods should include strategies
of making radiotherapy capacity available for the uncertain arrival of patients
needing critical treatments.
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Radiotherapy scheduling problem
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6.1 Introduction

In this chapter, the radiotherapy scheduling problem is formulated based on the
characteristics of the treatment processes explained in Chapters 3 and 5. It was
shown that the performance of the department (i.e. EBT process only) can be
affected by the limited doctor availability, staff shortages and extended working
hours. Historical data shows that the BT and UST processes have waiting time
issues which the department has to address. However, the department is mainly
interested in improving the waiting times of the EBT process whose common
waiting times problem was investigated in (Petrovic et al. 2006, Conforti et al.
2008, Conforti, Guerriero and Guido 2009, Conforti, Guerriero, Guido and Veltri
2009, Petrovic and Leite-Rocha 2008, Petrovic et al. 2009).

This chapter is organised as follows: in Section 6.2, the notation used in
the formulation of the problem is listed followed by Section 6.3 which states the
assumptions, constraints and objectives of the problem. Section 6.4 defines the
radiotherapy scheduling problem experienced in the radiotherapy department at
the Arden Cancer Centre. Lastly, Section 6.5 gives the concluding remarks.

6.2 Notation

Data

H : scheduling horizon given in days
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nd : total number of new patients arriving on day d, d = 1, 2, . . . , H

N : total number of patients for a given horizon H , where

N =
H

∑

d=1

nd (6.1)

δj : number of days patient j’s request form was delayed before it was submitted
to the planning unit, j = 1, 2, . . . , N

aj : date when decision to treat patient j is made, j = 1, 2, . . . , N

r1
j : release date for the planning unit procedures for patient j determined using

Equation 6.2, j = 1, 2, . . . , N

r1
j = aj + δj (6.2)

r2
j : release date for the physics unit procedures for patient j, r2

j ≥ r1
j , j =

1, 2, . . . , N

r3
j : release date for the pretreatment unit procedures for patient j, r3

j ≥ r2
j ,

j = 1, 2, . . . , N

r4
j : release date for the treatment unit procedures for patient j, r4

j ≥ r3
j , j =

1, 2, . . . , N

hj : number of treatment phases prescribed by a doctor for patient j, hj ≥ 1,
j = 1, 2, . . . , N

h : treatment phase, h ≥ 0. In this case, h = 0 represents the phase before the
actual treatment starts on the treatment machines, h = 0, 1, 2, . . . , hj

fjh : number of fractions prescribed by a doctor for patient j in treatment phase
h, j = 1, 2, . . . , N , h = 0, 1, 2, . . . , hj

fjh =

{

0 if h = 0
≥ 1 otherwise

(6.3)

TOTALj : the total number of fractions prescribed by the doctor for patient j

determined using Equation 6.4, j = 1, 2, . . . , N

TOTALj =
hj

∑

h=0

fjh (6.4)

G : set of treatment machines and facilities, |G| = 7
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I : set of planning machines and facilities, |I| = 3

J : set of desks in the pretreatment unit, |J | = 3

K : set of desks in the physics unit, |K| = 1

M : set of all machine and facility resources, M = G ∪ I ∪ J ∪K. Hence,

|M | = |G|+ |I|+ |J |+ |K| = 14 (6.5)

ck : capacity of machine or facility k for each day specified as number of slots,
k ∈M

ok : number of overtime slots made available on a given machine or facility k,
where k ∈M

sk : slot on a machine or facility k for each day sk = 1, 2, . . . , ck, ck +1, . . . , ck +ok

l : doctor, l = 1, 2, . . . 13, l = 13 represents a locum doctor who works only when
ok > 0

G
type
j : set of treatment machines of the type chosen by doctor l, j = 1, 2, . . . , N

Sd : list of newly arrived patients for day d, |Sd| = nd, d = 1, 2, . . . , H

S1
d : list of patients, that arrived in the department on day d, for the planning

unit procedures, S1
d = Sd, d = 1, 2, . . . , H

S2
d : list of patients, that arrived in the department on day d, for the physics unit

procedures, S2
d ⊆ Sd, d = 1, 2, . . . , H

S3
d : list of patients, that arrived in the department on day d, for the pretreatment

unit procedures, S3
d = Sd, d = 1, 2, . . . , H

S4
d : list of patients, that arrived in the department on day d, for the treatment

unit procedures, S4
d = Sd, d = 1, 2, . . . , H

tj : targeted waiting time for patient j as set by the JCCO shown in Table 2.6
in Chapter 2

D
jcco
j : JCCO target due date for patient j, j = 1, 2, . . . , N

D
jcco
j = aj + tj (6.6)

D1
j : due date for the planning unit for patient j, D1

j ≤ D
jcco
j , j = 1, 2, . . . , N

(determined using Algorithm B.1 in Appendix B)
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D2
j : due date for the physics unit for patient j, D2

j ≤ D
jcco
j , j = 1, 2, . . . , N

(determined using Algorithm B.2 in Appendix B)

D3
j : due date for the pretreatment unit for patient j, D3

j ≤ D
jcco
j , j = 1, 2, . . . , N

(determined using Algorithm B.3 in Appendix B)

D4
j : due date for the first definitive treatment for patient j, D4

j ≤ D
jcco
j , j =

1, 2, . . . , N (determined using Algorithm B.4 in Appendix B)

i : operation. Hereafter, each procedure involved in the EBT processes has been
termed an operation

pjk : processing time on machine or facility k on patient j, j = 1, 2, . . . , N , k ∈M

pjk = |sk| (6.7)

where |sk| denotes the size of slot sk on facility or machine k

ujk : penalty for performing an operation for patient j on machine k after normal
working hours (i.e. using slots ck + 1, ck + 2, . . . , (ck + ok)

ujk =

{

pjk if ck < sk ≤ (ck + ok)
0 otherwise

(6.8)

where j = 1, 2, . . . , N , k ∈M

Decision variables

Cijhk : the completion date of operation i for patient j in treatment phase h on
machine k, j = 1, 2, . . . , N , h = 0, 1, 2, . . . , hj, k ∈M

Parameters

µj : threshold of the time difference between completion of pretreatment and the
JCCO due date target (in days)

υ1,j : threshold of the tolerated tardiness for patients requiring emergency treat-
ment in the treatment unit

υ2,j : threshold of the tolerated tardiness for patients requiring palliative treat-
ment in the treatment unit

υ3,j : threshold of tolerated tardiness for patients requiring radical treatment in
the treatment unit

ω : threshold of the tolerated tardiness for patients in the planning unit
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Performance measures

Lj : lateness of patient j, defined as the difference between the completion of the
first fraction of the prescribed fractions on machine k and the JCCO due
date, given in days

Lj = C1j1k −D
jcco
j (6.9)

where j = 1, 2, . . . , N , k ∈ G

Tj : tardiness of patient j, j = 1, 2, . . . , N

Tj = max{0, Lj} (6.10)

T : mean tardiness of the N patients given in Equation 6.11

T =
1

N
(

N
∑

j=1

Tj) (6.11)

η : number of patients that do not meet their JCCO due date

η =
N

∑

j=1

xj (6.12)

where xj is defined as follows:

xj =

{

0 if Tj = 0
1 otherwise

(6.13)

RWj : waiting time for patient j, that is the time difference between the date of
completing the first fraction in the treatment unit and the date when the
decision to treat by radiotherapy was made

RWj = C1j1k − aj (6.14)

where i = 1, h = 1, j = 1, 2, . . . , N , k ∈ G

RW : average waiting time of N patients processed within H

RW =
1

N
(

N
∑

j=1

RWj) (6.15)

where j = 1, 2, . . . , N
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RW
1

: average waiting time of the patients requiring emergency treatment deter-
mined using Equation 6.16, where A is a set of patients requiring emergency
treatment

RW
1

=
1

|A|
(
∑

j∈A

RWj) (6.16)

RW
2

: average waiting time of the patients requiring palliative treatment deter-
mined using Equation 6.17, where B is a set of patients requiring palliative
treatment

RW
2

=
1

|B|
(
∑

j∈B

RWj) (6.17)

RW
3

: average waiting time of the patients requiring radical treatment deter-
mined using Equation 6.18, where C is a set of patients requiring radical
treatment

RW
1

=
1

|C|
(
∑

j∈C

RWj) (6.18)

Uj : total penalty for overtime required for patient j, j = 1, 2, . . . , N

Uj =
∑

k∈M

ujk (6.19)

U : total overtime for N patients

U =
N

∑

j=1

Uj (6.20)

6.3 Assumptions, constraints and objectives

The following assumptions, constraints and objectives of the radiotherapy
scheduling problem were derived based on the insight into the simulation models
discussed in Chapter 5.

Assumptions

(i) All appointments are scheduled daily at 9.00am.

(ii) There is no separation time between operations for two consecutive patients
or treatment plans. Hence, the operations on the next patient can be started
as soon as the one for the current patient has been completed.
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(iii) The processing times (i.e. for each operation) for each machine considered
are shown in Table 6.1. These processing times were suggested based on the
averages obtained from the data collected. This assumption was based on
the block scheduling approach that was reported in (Conforti et al. 2008).

(iv) There are no revisits on the planning unit machines before the patient
proceeds to the next unit (either the physics or pretreatment unit). A
patient visits a planning machine or facility at most once.

Constraints

(v) A patient’s schedule of appointments for the procedures to be done in any
of the four units cannot be altered once scheduled.

(vi) Machines and/or facilities are continuously available from Monday through
Friday from 9.00am to 5.00pm except for weekends, planned machine break-
down times, bank holidays and days when overtime is considered.

(vii) Machines are under periodic service and maintenance according to a prede-
termined maintenance plan. During the maintenance period, the machines
cannot be used for either planning or treatment.

(viii) Each doctor only examines the patient during the first five minutes of their
procedures on the planning machines or facility. For example, if a patient
takes up to 30 minutes on the simulator, the doctor must be available in
the first 5 minutes.

(ix) The doctor takes up to 5 minutes to approve and sign the initial outlining
and planning calculations completed by the technicians. Generally, in the
physics unit, doctors are presumed to take the same amount of time as they
take examining a patient in the operations in the planning unit.

(x) Each doctor is available in the radiotherapy department at specified time
periods per week (see Table 2.10).

(xi) If a patient must have more than one procedure in the planning unit (if
the patient has to visit the mould room before going to the CT scanner or
simulator), all the procedures must be completed on the same day.

(xii) Treatment plan checks that are conducted in-between treatment phases
must be done at most 3 fractions prior to the completion of each treatment
phase.

(xiii) Some cancer cases, especially a) head and neck, b) gynaecological, c) res-
piratory, and d) urinary, must start treatment on Mondays.
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(xiv) Precedence constraints are to be followed for patients that need to visit the
mould room and either the simulator or CT scanner. Patients that require
a mask must always visit the mould room before going to the planning
machines (either the simulator or CT scanner).

(xv) Two consecutive fractions for a patient must be separated by up to one day,
apart for cases when the treatment machine has been scheduled for service
and maintenance.

Table 6.1: Sizes of slots for the machines and facilities

Unit Resource Slot size (in minutes)

Planning

Simulators 30
CT scanners 20
Mould rooms 20
Doctors 5

Physics Physics desks 75
Pretreatment Pretreatment desks 30

Treatment

High energy linacs 15
Low energy linacs 12
DXRs 15
Betatrons 110

Objectives

The foremost objective is to create schedules of appointments for all the opera-
tions for the N patients received within the period H . The created schedules of
appointments should aim:

• to minimise the average waiting times: RW
1
, RW

2
, RW

3
and RW ,

• to minimise the average percentage of patients that do not meet their JCCO
due dates, and

• to minimise the total overtime penalty, U .

In this thesis, the main aim was to minimise RW
1
, RW

2
, RW

3
and RW , and the

other objectives were used in the analysis of the performance of the approaches
proposed to solve the radiotherapy scheduling problems. The percentage of pa-
tients that fail to meet their JCCO targeted due dates has been widely used to
analyse the performance of radiotherapy departments in the UK. Tables 2.7 and
2.8 shows such results reported in waiting times audits. Further, the total over-
time penalty also helps in determining the extent of the use of additional capacity
requirements for the proposed scheduling approaches.
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6.4 Problem definition

This research concerns a radiotherapy scheduling problem which is essentially a
complex real-world problem. The problem was divided into four subproblems
denoting each unit of the radiotherapy department (i.e. planning, physics, pre-
treatment and treatment units) which were termed: Subproblem 1, Subproblem
2, Subproblem 3, and Subproblem 4, respectively. In general, the entire radiother-
apy scheduling problem considered nd newly arriving patients to be scheduled.
Details of the nd patients are released on day d as list Sd, where |Sd| = nd. The
size of the list is uncertain and the pathways of the patients are predetermined by
the doctor and included in the details. Each patient j goes through 3 or 4 units,
beginning and ending in the planning and treatment units, respectively, visiting
machines or facilities k, k ∈M to meet assigned due dates (i.e. D1

j , D2
j , D3

j , D4
j ,

and D
jcco
j ).

Graham notation

Scheduling problems can be analysed using a three field notation (i.e. α|β|γ)
proposed in (Graham et al. 1979). The classification of scheduling problems in
this thesis has been founded on the Graham notation which comprises symbols
defined as follows. α describes the machine and facility environment consid-
ered by characterising them as the well-known shop scheduling problem models
such as single machine, parallel machines, open shop and others. Graham et al.
(1979) described the machine environment as α = α1α2 where α1 is a set of shop
scheduling problem models described in Chapter 4 including the symbol ◦ for
single machine environments. α2 represents the number of the machines involved
where α2 = ◦ means the number of machines varies.

The second field, β denotes the characteristics of the jobs that are processed
in the system. This involves patient data which includes number of operations,
processing times, release dates (e.g. r1

j ), due dates (e.g. D1
j ), treatment required

and others. Graham et al. (1979) denoted this field as β ⊂ {β1, . . . , β6}, where
β1 ∈ {pmtn, ◦} means that there is preemption of jobs (i.e. β1 = pmtn) or no
preemption was permitted (i.e. β1 = ◦). β2 ∈ {res, res1, ◦} denoted there are
limited resources used (i.e. β2 = res), single resource (i.e. β2 = res1) or no
resource constraints are considered (i.e. β2 = ◦). β3 ∈ {prec, tree, ◦} denotes
that there were precedence relations between jobs (i.e. β3 = prec) derived from
an acyclic graph. β3 = tree denotes that the acyclic graph was a rooted tree and
β3 = ◦ means that there were no precedence relations. β4 ∈ {rj, ◦} denotes that
release dates differ for the jobs (i.e. β4 = rj) or that release dates are zero (i.e.
β4 = ◦). β5 ∈ {mj ≤ m, ◦} denotes that there is a constant upper bound on the
number of operations to be performed (i.e. β5 = mj ≤ m) or no such bound is
specified (i.e. β5 = ◦). β6 ∈ {pij, p ≤ pij ≤ p, ◦} denotes that each operation has
unit processing time (i.e. β6 = pij), there are constant lower and upper bounds
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on pij (i.e. β6 = p ≤ pij ≤ p), or no such bounds exist (i.e. β6 = ◦).
The last field, γ denotes the optimality criteria chosen for the problem. For

example, some of the shop scheduling problems discussed in Chapter 4 involved
minimising the maximum completion time of jobs (i.e. denoted as Cmax). In this
case, Cmax was the optimality criterion and γ = Cmax.

Subproblem 1

The planning unit comprises 4 resources (i.e. both human and machine resources).
The CT scanner, simulator, mould room and doctors are considered in such a
way that the scheduling problem in the planning unit can be described as a
dynamic (i.e. sequences of patients arriving every day), flexible multi-resource
two-stage hybrid flowshop (HFS) problem. Multiple resources (i.e. doctor and
machine) are required for each operation in the planning unit. For example, for
the mould room, CT scanner and simulator, a doctor has to be available for the
first 5 minutes (i.e. estimated processing time for each doctor) of each operation
performed on each patient. Of the nd patients, some may not visit the first stage
of the planning unit according to their pathways as prescribed by their doctors
but all the patients visit a machine in the second stage of the planning unit.
Normally, the first stage of the problem involves the mould room which patients
had to visit before going to the other planning unit machines.

The second stage involved the two parallel unrelated alternative planning
machines, the CT scanner and simulator. Figure 6.1 illustrates the configuration
of the machines and possible patient pathways for Subproblem 1 in the planning
unit. Only the machines and facility, without the doctor resources are shown.
Some patients do not visit the mould room but just the CT scanner or simulator
only as shown by the arrows labelled (a) or (d) respectively. Patients that require
a mask from the mould room can then visit either the CT scanner or simulator
but not both in the second stage (i.e. pathways labelled (b) and (c) respectively).

The machine on which an operation is performed is predetermined by the
doctor but the number of patients in the sequence of patients to be scheduled,
S1

d is uncertain. Subproblem 1 can be described as a dynamic and flexible multi-
resource two-stage HFS denoted as FSm1,m2, where m1 = 1 and m2 = 2, where
m1 and m2 denote the number of machines and/or facilities in the first and second
stages, respectively. The main objective of this FS1,2 problem was to minimise
the number of late patients with respect to due date D1

j while also minimising
the flowtime of each patient in the planning unit.

Subproblem 1 classification

The first field, α = α1α2 of the Graham notation (Graham et al. 1979) can be
denoted as follows.
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CT scanner

Mould room

Simulator

FIRST STAGE SECOND STAGE

Patients that visit the machine (CT scanner) only

Patients that visit the machines (mould room) and (CT scanner), in that order

Patients that visit the machines (mould room) and (simulator), in that order

Patients that visit the machine (simulator) only

(a)

(b)

(c)

(d)

Figure 6.1: An illustration of the patient pathways in the planning unit

α1 = FS1,2 is a two-stage hybrid flowshop problem in which the first stage
comprises a single machine and the second stage has 2 unrelated parallel
machines.

α2 = 3 because Subproblem 1 comprises three machines only.

The second field β = β1, . . . , β6 defines the patient characteristics in Subproblem
1 as follows.

β1 = ◦. No preemption is allowed in the operations performed on each patient
j on any machine.

β2 = res1. Only one doctor resource (either the patient doctor or the locum
doctor) is used on each operation.

β3 = ◦. No precedence relations exist between patients to be processed.

β4 = r1
j . Release dates for the patients are the same and r1

j 6= 0.

β5 = 2. A maximum of 2 operations should be done on each patient in the two
stages of the planning unit.

β6 = ◦. The machines and facility have different processing times, where k ∈ I.

Lastly, the field represented by γ describes the objective function of Subproblem
1, denoted by X to represent the objectives of minimising the number of late
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patients with respect to due date D1
j and flowtime of each patient in the planning

unit. Hence, Subproblem 1 can be stated as FS1,2|res1, r1
j , 2|X, where the second

field β denotes that a resource (i.e. res1) is required on the machines whose
processing times vary and only two operations must be performed.

Subproblem 2

In the physics unit, the procedures conducted by the technicians involve, first,
creating the outlining and planning plans (i.e. the first calculation). After the
doctor approves the outlining and planning plans, the second complex calculation
is performed. Figure 6.2 shows the configuration of the physics facilities that are
involved in the generation of complex treatment plans for the patients. Digital
images arriving from the planning unit (i.e. arrow labelled (a)) are used to
create outlining and planning plans on the physics desks (i.e. the area where the
four technicians perform the operations as depicted in Figure 5.19). Treatment
plans awaiting the doctor’s approval take the pathway labelled (b). When the
doctor has approved them, the treatment plans take the pathway labelled (c) for
the technicians to perform the final operation, the complex calculations, on the
physics desk before exiting the physics unit.

physics desk doctor

Treatment plans to have first physics calculation on (physics desk)

Treatment plans for doctor’s approval and signature on (doctor)

Treatment plans requiring second physics calculation on (physics desk)

Treatment plans whose phyiscs procedures have been completed

(a)

(b)

(c)

(d)

Figure 6.2: An illustration of the patient pathways in the physics unit

Subproblem 2 can be described as a flowshop problem that involves two fa-
cilities or resources (i.e. the physics desk and doctor). There are |S2

d| treatment
plans, where |S2

d | ≤ nd and two resources (i.e. physics desk and doctor) are avail-
able to process the treatment plans. Each treatment plan has to be processed on
these two resources in the same order: physics desk then doctor and then physics
desk again, as shown in Figure 6.2. The two operations conducted on facility 1
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have the same processing times. The resource (i.e. doctor) operations depend on
the availability of doctor l in the department.

The main objective of Subproblem 2 is minimising the number of treatment
plans that do not meet their D2

j due date and their flowtime in the physics unit.

Subproblem 2 classification

Subproblem 2 can be described using the classification scheme by Graham et al.
(1979) as follows.

The first field about the physics desk and doctor resource configuration α =
α1α2 can be denoted as:

α1 = F denoting that the use of the two facilities (i.e. the desk and doctor
resource) represents a flowshop machine environment.

α2 = 2 because there are only two facilities involved in this unit.

The second field β = β1, . . . , β6 defines the treatment plan characteristics in
Subproblem 3 as follows.

β1 = ◦. No preemption is allowed in the operations of the treatment plans.

β2 = res1. Only one doctor resource is used and each treatment plan was
allocated one doctor resource.

β3 = ◦. No precedence relations exist between treatment plans to be processed.

β4 = r2
j . Release dates for the treatment plans can vary.

β5 = 3. A maximum of 3 operations should be done on each treatment plan.
One by the doctor and two on the physics desk.

β6 = ◦. The desk and doctor have different processing times pjk, where k ∈ J

and pjk 6= 1.

Lastly, the field represented by γ describes the objective function of Subproblem 2
which has been denoted by X to represent minimising of the number of treatment
plans that fail to meet the due date D2

j while also minimising the flowtime of each
treatment plan in the physics unit. Therefore, Subproblem 2 can be denoted by
F |res1, r2

j , 3|X, where the second field β denotes that a resource (i.e. res1) is
required on the machines whose processing times vary and only 3 operations must
be performed.
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Subproblem 3

Subproblem 3 for the pretreatment unit involves 3 desks. Each operation for each
treatment plan must be performed on a different desk if the three calculations are
required. If a treatment plan has been worked on in the physics unit, it requires a
single operation which is performed on one of the desks. As previously discussed
in Chapter 4, in open shop scheduling problems (OSP), the routes taken by jobs
(i.e. patients) are immaterial but each job has to be processed on each machine
once.

The configuration of the 3 desks and some of the possible pathways that
treatment plans for the patients can take in the pretreatment unit are shown in
Figure 6.3. The arrows represent some of the possible pathways taken by the
treatment plans for each patient. Treatment plans whose digital images had been
forwarded from the planning unit can take possible pathways with arrows labelled
(a), (b), (c) or (d) before exiting the pretreatment unit. In these pathways, the
treatment plans have operations performed on each of the 3 desks in a typical
OSP manner. The arrow labelled (e) is for one of the possible pathways taken
by treatment plans received from the physics unit. As discussed previously, only
a single operation is performed on them. In this case, the pathways shows that
the treatment plan received from physics unit can be processed on desk 3 and
then exits the pretreatment unit. As shown in Table 6.1, it is imperative to note
that the processing times of these desks are all equal. In addition, the treatment
plans can be divided into two groups according to the number of operations to
be performed on the desks: i) those that require a single operation, and ii) those
that require three operations.

Subproblem 3 can be described as comprising two problems. The first problem
involves the treatment plans that require one calculation and can be described
as a multiple parallel machine (i.e. desks) scheduling problem involving three
identical desks. The second problem concerns treatment plans that have to be
processed once on each of the three desks using any route possible as in an
open shop problem. Therefore, Subproblem 3 has characteristics of mixed shop
scheduling problems.

There are |S3
d | treatment plans, where |S3

d | = nd that arrived on date d. The
|S3

d | treatment plans can be split into two sets of treatment plans, according to
the number of operations to be performed on the plans. One set of treatment
plans are to be processed as in a multiple parallel desk scheduling problem. The
other set comprises treatment plans that are to be processed as in an open shop.
Each treatment plan for patient j has a maximum of 3 operations performed on
each of the |J | desks.

The main objective of the problem is to minimise the number of treatment
plans that fail to meet the due date D3

j while also minimising the flowtime of
each plan in the pretreatment unit.
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desk 2

desk 1 desk 3

Some of the possible treatment plan pathways

desk 2 then desk 3 and then desk 1

desk 1 then desk 3 and then desk 2

desk 3 then desk 1 and then desk 2

desk 1 then desk 2 and then desk 3

desk 3 only

(b)
(a)

(c)
(d)
(e)

Figure 6.3: Patient pathways followed in the pretreatment unit

Subproblem 3 classification

Again, using the classification scheme by Graham et al. (1979), Subproblem 3
can be described as follows.

The first field about the pretreatment desk configuration α = α1α2 can be
denoted as:

α1 = X , where X denotes a mixed scheduling problem which involves two
problems: parallel machine and open shop scheduling problems.

α2 = 3 because the number of pretreatment desks in Subproblem 3 is constant.

The second field β = β1, . . . , β6 defines the treatment plan characteristics in
Subproblem 3 as follows.

β1 = ◦. No preemption is allowed in the operations of the treatment plans on
any of the pretreatment desks.

β2 = ◦. No resource constraints are considered.
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β3 = ◦. No precedence relations exist between treatment plans to be processed
on the desks.

β4 = r3
j . Release dates for the treatment plans can vary.

β5 = 3. A maximum of 3 operations can be done on a given treatment plan.

β6 = pjk. All the desks have the same processing time pjk, where k ∈ J but
pjk 6= 1.

The last field γ describes the objective function of Subproblem3 which has been
denoted by X to represent the minimising of the number of treatment plans that
fail to meet the due date D3

j while also minimising the flowtime of each plan in
the pretreatment unit.

Hence, using the notation α|β|γ, Subproblem 3 can be described as
X |r3

j , 3, pjk|X, where the second field β denotes that all the desks have the same
processing times (i.e. pjk) and only 3 operations must be performed.

Subproblem 4

In the treatment unit, the patient j visits and/or revisits a treatment machine (i.e.
k ∈ G) over several consecutive days. On each visit to the department, patient
j has to be treated on the same machine. This machine must be of the machine
type prescribed by the patient’s doctor l. Therefore, when booking appointments
for a patient, if there are more than one machines of the type prescribed by the
doctor, only one machine should be used to treat the patient. This implies that
all the prescribed fractions (i.e. TOTALj) for patient j must be received on that
same machine.

The main objectives include minimising: the amount of time each patient
takes from arrival in the unit to the time when the first fraction is to be done,
amount of overtime accumulated by the machines and the number of patients
that fail to meet their JCCO waiting time targets.

Subproblem 4 classification

Subproblem 4 can be analysed using the α|β|γ classification scheme as follows.
The first field about treatment machines environment α = α1α2 can be denoted
as:

α1 = P describes that the machines of the type chosen by doctor l considered
are multiple identical parallel machines,

α2 = ◦ because the number of machines of the type chosen by the doctor varies.
For example, α2 = 3, α2 = 2 and α2 = 1 for high energy linacs, low energy
linacs, and DXR or betatron, respectively,
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The second field β = β1, . . . , β6 defines the patient characteristics in Subproblem
4 as follows.

β1 = ◦. No preemption is allowed in the treatment of patients on any of the
machines

β2 = ◦. Unlike Subproblem 1 which involves the constraint that a doctor re-
source must be available for the procedures in the planning unit, Subprob-
lem 4 does not involve the requirement of any resource as a constraint.

β3 = ◦. No precedence relation exist between patients being treated on the
machines of the chosen machine type.

β4 = r4
j . Release dates for the patients can be different.

β5 = ◦. No upper bound on the number of fractions prescribed to the patients.

β6 = pjk. The processing times (pjk of the machines of a given type are always
the same.

The last field γ describes the objective functions of the subproblem. It can be
stated as follows.

Let X represent the objectives of Subproblem 4 which have been stated as i) min-
imising the amount of time each patient j takes from arrival in the unit to
the time when the first fraction is to be done, ii) minimising the amount
of overtime accumulated by the machines, and iii) minimising the num-
ber of patients that fail to meet their JCCO waiting time targets. Hence,
Subproblem 4 can be described as P |r4

j , pjk|X.

6.5 Concluding remarks

This chapter has formulated four radiotherapy scheduling problems prevalent in
departments in the UK and termed them: Subproblem 1, Subproblem 2, Sub-
problem 3 and Subproblem 4 for the planning, physics, pretreatment and treat-
ment units, respectively. The subproblems have been characterised using the
shop scheduling problem models considered intrinsically hard to solve by many
researchers. Such models include the flexible two-stage hybrid flow shop, flow-
shop, mixed shop and parallel machine scheduling problems. One key aspect of
the subproblems is that the processing times for the machines and/or facilities
involved were estimated using averages of processing times reported in Chapter
5. This implies that the problems formulated are deterministic. Although in the
real-world processing times for patients on a given machine vary, these deter-
ministic problems can be considered as germinal ideas for future research on the
subproblems.
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It is imperative that scheduling methods be proposed with the aim to min-
imise the average waiting time for each treatment, the criterion normally used
to measure performances of departments in the UK. However, other objectives
have been included in order to help in the analysis and further improvement of
the proposed approaches. Such objectives have also been used to compare the
performances of radiotherapy departments in the waiting times audits conducted
between 2000 and 2008 as discussed in Chapter 4.
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Chapter 7

Constructive heuristics for
radiotherapy scheduling
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7.1 Introduction

Constructive heuristics can be defined as algorithms that can build up an approx-
imate solution from the data provided in the problem to be solved using simple
rules which determine the processing order of the arriving jobs (French 1982).
In its entirety, the radiotherapy scheduling problem considered in this study is
an intrinsically hard problem since it comprises four subproblems that can be
typified as some of the complex scheduling problems treated in the literature.
Therefore, approximate methods discussed in Section 4.3.3 can be proposed for
the subproblems stated in Chapter 6.

The motivation for proposing constructive heuristics to solve the four sub-
problems are as follows.

• The shop scheduling problem models used to formulate the subproblems in
Chapter 6 have been shown to be NP-hard (Drozdowski 1996, Oğuz et al.
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1997, Oğuz et al. 2004, Low et al. 2008, Brucker and Knust 2009). When
more constraints from the work practices of the department are introduced,
the subproblems become more difficult to solve using methods such as exact
enumerative methods as discussed in Chapter 4. Therefore, approximate
methods such as heuristics can be considered to obtain good schedules of
appointments on the machines.

• It is essential to quickly create good schedules of appointments for the
nd patients received. Approximate methods such as heuristics have been
shown to be computationally efficient compared to some of the optimisation
methods such as TS and GAs whose application on healthcare problems
is growing. The approaches to the subproblem were preferred to be less
computationally intensive so that the schedules of appointments can be
created in the shortest time possible.

• The schedules of all the appointments (i.e. from planning to the treatment
unit) were to be created so that patients would be informed about when
they were to visit the department prior to the first visit for the planning
operations. Heuristics were considered in order to quickly generate good
schedules of appointments and hence, simplify the booking of appointments.
The senior radiographers would then concentrate more on caring and treat-
ing the patients than creating or amending appointments.

• Approximate methods such as the heuristics are useful in the development
of hybridised metaheuristics such as those proposed in (Burke et al. 1998,
Petrovic and Leite-Rocha 2008). The constructive heuristics proposed can
be used to generate initial solutions for the optimisation algorithms in future
research.

The rest of the chapter is organised as follows. Section 7.2 discusses the
four constructive heuristics developed for each subproblem representing each of
the four units in the department. This includes the time complexities and in-
terconnecting these four heuristics into one. Section 7.3 discusses the possible
alternative pathways suggested for the treatment unit. Lastly, Section 7.4 gives
the concluding remarks.

7.2 Proposed heuristics

Four constructive heuristics were developed for the four subproblems discussed
in Chapter 6. The heuristic algorithms were based on the following framework.

1. Input and reorder sequence S of patients using priority dispatching rules.

2. Given the reordered S, find the schedules of appointments for the patients.
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Such a framework can be considered as a two-stage constructive heuristic algo-
rithm involve prioritising patients using PDRs and strategies to build the sched-
ules of appointments for the patients in S inspired by established algorithms like
those in (Moore 1968, Petrovic et al. 2006).

Four heuristic algorithms were developed and termed Heuristic H1, Heuristic
H2, Heuristic H3 and Heuristic H4 for Subproblem 1, Subproblem 2, Subproblem
3 and Subproblem 4 respectively. In Heuristic H1 included strategies for mak-
ing radiotherapy capacity available on the next immediate dates the doctor is
available in the department for patients needing critical treatments. Heuristic H2
had a ‘greedy’ strategy for scheduling treatment plans on the immediately avail-
able slots. Heuristic H3 also comprised a strategy for fast-tracking and delaying
patients requiring critical (i.e. emergency and palliative) and radical treatments
respectively. Lastly, Heuristic H4 included a strategy that scheduled first patients
whose earliest start date, C1j1k was below the JCCO due date and those who had
the earliest start dates that did not comply with the JCCO due dates by more
than the threshold of tolerated tardiness for their treatment (i.e. parameters in
Section 6.2). Those whose earliest start dates did not meet the JCCO due dates
by days within the threshold of tolerated tardiness were then scheduled last.

7.2.1 Heuristic H1

It was imperative to synchronise doctor availability with each operation on the
machines or facility in the planning unit since doctors have to be available to
oversee the staging of the cancers in the planning unit. The doctor is scheduled
to examine the patient in the first minutes (i.e. the processing time of each
doctor) of the machine or facility’s processing time. A good feasible schedule
of the appointments for the planning unit resources (i.e. doctors, machines and
facilities) that can be generated in the planning unit is exemplified in Table 7.1.

In Table 7.1, patient 1 is to be examined by the doctor in the mould room
during slot 1 while the mask or shell is being cast. The doctor then leaves at the
end of slot 1 but the technicians in the mould room continue moulding the mask
until the end of slot 4. In this case, the same doctor oversees the taking of images
for patient 2 on the CT scanner during slot 2 before going to the simulator room
to examine patient 1 as the images are being taken by the radiographers.

The constructive heuristic algorithm developed to obtain such feasible sched-
ules in Table 7.1, was termed Heuristic H1 and is given in Algorithm 7.1. The
first step of the Heuristic H1 involved reordering the input sequence of patients
S1

d , using composite PDRs developed using the information about each patient
as follows.

• Most urgent patient category (MUPC) prioritised using the patient cate-
gories (see Table 2.3). The category of patients that need the most imme-
diate treatment had higher priority. Hence, the Arden Cancer categories
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X
X
X
X
X
X
X
X
X
X
X
X

Resources
Slots

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Doctor 1 2 1 4 3 3 6

Mould 1 3 6

Simulator 1

Scanner 2 4 3

Table 7.1: Example of a feasible schedule of appointments for the operations to
be conducted in the planning unit

can be listed by the priorities assigned to the categories as follows: Urgent,
Emergency, Priority, Standard, and Elective. The Urgent patient category
had the highest priority and Elective had the least priority. In Table 2.4,
most of the patients in the department were classified as Standard and Elec-
tive patients. These patients needed palliative or radical treatment. It was
essential to further reorder the sequence of patients using the most urgent
(i.e. critical) treatment (MUT) rule (see Table 2.2).

• Most number of units (i.e. steps) to be visited in the entire radiotherapy
process (MNSRP). Some patients have to visit 3 or 4 units depending on
the complexity of their treatment plans. Those to visit more units had the
highest priority to those patients that visited less units.

• Most number of operations in the planning unit (MNOP). Patients consid-
ered to have the most number of operations to be completed in the planning
unit (i.e. those who needed masks) had the highest priority.

• Least slack (LS). Slack for each patient j was calculated as the difference
between the release date and due date for the planning unit procedures:
slack=D1

j − r1
j . For patients that had the submission of their request forms

delayed (that is, δj > 0), the slack can be small depending on the value of
δj.

The PDRs were applied to the sequence of patients in the order: MUPC fol-
lowed by MUT, MNSRP, MNOP and LS. In the second stage, a ‘scattering’ strat-
egy was employed to schedule the patients on the machines. It aimed to ensure
some slots on the schedule of the machines and doctors were available for the
uncertain arrival of patients requiring critical treatments such as emergency and
palliative treatments. It involved obtaining an initial date when the doctor for
patient j was available for the planning unit operations starting from the release
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Input: S1
d

Output: planning unit schedule, S2
d and S3

d

1: S2
d ← ∅ and S3

d ← ∅
2: Reorder sequence S1

d using the PDRs for the planning unit
3: Let k = 1 (mould room), k = 2 (CT scanner) and k = 3 (simulator)
4: for patient j in position 1 to nd in S1

d do
5: Take the date d1, obtained using obtained using ScatterDoctorDates in

Algorithm 7.2 and let i← 1
6: if j requires a mask from the mould room then
7: Starting from date d1, find the first available coinciding doctor and mould

room slots and determine the completion date C1j01 using DoctorAnd-
MachineSlots in Algorithm 7.3 and set i← i + 1

8: Starting from the date C1j01, find the first available slot sk, k ∈ {2, 3}
when doctor l is available and let date d2 be the completion date C2j0k

using the DoctorAndMachineSlots procedure
9: while C1j01 6= d2 do {All operations done on the same date}

10: d1 ← d2 and i← 1
11: Starting from date d1, find the first available slot when doctor l can

be in the mould room and determine the completion date C1j01 using
the DoctorAndMachineSlots procedure and set i← i + 1

12: Starting from the date C1j01, find the first available slot sk, k ∈ {2, 3}
when doctor l is available and let date d2 be the completion date C2j0k

using the DoctorAndMachineSlots procedure
13: end while
14: If C2j0k−D1

j > ω, k ∈ {2, 3}, starting from r1
j and using l = 13, schedule

the operations to be performed on j using OvertimeBookings in Algo-
rithm 7.4. Otherwise, schedule j on slot s1 and the corresponding slot
for doctor l on the date C1j01 and also schedule j on the slot for the
doctor l coinciding with sk on the date C2j0k, k ∈ {2, 3}

15: else
16: Set i← i + 1 and starting from date d1, determine the first available slot

for doctor l, sk and the completion date C1j0k, where k ∈ {2, 3} using
the DoctorAndMachineSlots procedure

17: If C1j0k−D1
j > ω, k ∈ {2, 3}, starting from r1

j and using l = 13, schedule
the operations to be performed on j using the OvertimeBookings proce-
dure. Otherwise, schedule j on the slot for the doctor l coinciding with
sk on the date C2j0k, k ∈ {2, 3}

18: end if
19: If j requires complex plans, then S2

d ← S2
d∪{j} and r2

j ← C2j0k, k ∈ {2, 3}.
Otherwise, S3

d ← S3
d ∪ {j} and r3

j ← C2j0k, k ∈ {2, 3}
20: end for

Algorithm 7.1: Constructive heuristic H1 for Subproblem 1
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date, r1
j for the search of available slots to schedule the appointments as shown

in the ScatterDoctorDates procedure in Algorithm 7.2.
ScatterDoctorDates determined the number of dates the doctor is available

in the department between r1
j and D

jcco
j using details in Table 2.10. Since each

doctor was available on one day of the week, patients with 2 or less number
of dates their doctor can be available before the due date were assigned r1

j as
the initial planning date. For the others, the initial planning date was deter-
mined by skipping some immediate dates when the doctor can be available in the
department. This strategy was inspired by the just-in-time (JIT) and as-soon-as-
possible (ASAP) algorithms in (Petrovic et al. 2006). Patients with fewer number
of days their doctor is available before the JCCO due date should be considered
for immediate planning unit appointments (i.e. ASAP) whilst those with the
maximum possible (e.g. 5 days) number of days their doctor is available should
be considered later but before their JCCO due dates (i.e. JIT).

Input: r1
j , D

jcco
j , doctor l

Output: date when doctor l is available
1: Take the first date after r1

j when doctor l is available
2: Let x← 1 {x is a counter of dates when doctor l is available}
3: while the date is on or before D

jcco
j do

4: x← x + 1
5: Advance date to the next date the doctor is supposed to be available
6: end while
7: if x ≤ 2 then
8: return r1

j

9: else if x = 3 then
10: return date after skipping 1 date the doctor is available from r1

j

11: else
12: return date after skipping 2 dates the doctor is available from r1

j

13: end if

Algorithm 7.2: ScatterDoctorDates procedure for determining the initial date
when the doctor is available

For each patient in the reordered sequence, an initial planning date was de-
termined using ScatterDoctorDates. If the patient required a mask for their
operations, starting from the initial planning date, slots for the doctor and the
mould room were determined using a procedure called DoctorAndMachineSlots
shown in Algorithm 7.3. Then, the mould room slot was the starting date used
to determine available slots on the simulator or CT scanner. The first stage in-
volving the mould room was not considered for patients who did not require a
mask since it was assumed that the processing times for the doctor and mould
room were all zero.
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Input: k ∈ I, date d when doctor l is available
Output: slot for doctor l, sk and completion date of the operation

1: Set correspond=false
2: while correspond =false do
3: On the date d, find the first available slot when l is available
4: if a slot for doctor l is available then
5: Using the date d, find the first available slot sk for the machine or facility

k which corresponds to the determined slot for doctor l

6: if sk is obtained then
7: correspond =true
8: return Slot when doctor l is available, sk and the date when these

slots are available
9: else

10: Advance the date d to the next date the doctor l is available
11: end if
12: else
13: Advance the date d to the next date the doctor l is available
14: end if
15: end while

Algorithm 7.3: DoctorAndMachineSlots procedure for finding machine and the
corresponding doctor slots

Use of overtime slots in Heuristic H1 was considered if the difference between
completion date on the simulator or CT scanner and the due date for the planning
unit operations was greater than the threshold of tolerated tardiness in the plan-
ning unit (i.e. parameter ω) as shown in Algorithm 7.1. Otherwise, the patient’s
doctor and machine and/or mould room slots were added to the appointments
schedule. This is shown in the procedure called OvertimeBookings in Algorithm
7.4 used to find the date, slot for the doctor l and the corresponding slots on the
machines and/or facility using the chosen number of overtime slots for planning
unit machines and facility (ok).

7.2.2 Heuristic H2

An example of a feasible schedule of operations conducted in the physics unit is
shown in Table 7.2. The first slots (i.e. slots 1–7) on the physics desk schedule
are booked for patient 3’s first calculation (or outlining and planning operation)
and the doctor l is expected to approve and sign the plans in slot 8. As the
doctor examines the plan for patient 3, the physics technicians can start working
on the outlining and planning of patient 6’s treatment plan (i.e. slots 8–14).
Upon completing the creation of the treatment plans for patient 6, the physics
technicians immediately start working on the second operation of the approved
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Input: locum doctor l = 13, j

Output: planning unit schedule for j

1: Let d1 ← r1
j

2: Let k = 1 (mould room), k = 2 (CT scanner) and k = 3 (simulator) and
i← 1

3: if j must have mask in the mould room then
4: Consider ck +ok slots for k = 1 and starting from date d1, obtain coinciding

doctor and mould room slots using the DoctorAndMachineSlots procedure
on completion date C1j01 and set i← i + 1

5: Using date C1j01, consider ck + ok slots for k ∈ {2, 3} to obtain coincid-
ing doctor and machine slots on completion date C2j0k, k ∈ {2, 3} using
DoctorAndMachineSlots procedure. Let d2 ← C2j0k, k ∈ {2, 3}

6: while C1j01 6= d2 do
7: d1 ← d2 and i← 1
8: Starting from date d, determine the coinciding slots for doctor l and the

mould room considering ck + ok slots using the DoctorAndMachineSlots
procedure on completion date C1j01 and set i← i + 1

9: Using date C1j01 and considering ck + ok slots, obtain the coinciding
doctor and machines slots on completion date C2j0k, k ∈ {2, 3} using the
DoctorAndMachineSlots procedure. Let d2 ← C2j0k, k ∈ {2, 3}

10: end while
11: Schedule j on slot s1 and the slot for doctor l on the date C1j01 and also

schedule j on the slot for the doctor l coinciding with sk, on the completion
date C2j0k, k ∈ {2, 3}

12: else
13: Set i← i+1 and starting from date d1, consider ck +ok slots and determine

coinciding doctor and machine slots on completion date C2j0k, k ∈ {2, 3}
using the DoctorAndMachineSlots procedure

14: Schedule j on slot sk, k ∈ {2, 3} and the slot for doctor l on the date C2j0k

15: end if
16: r3

j ← C2j0k, k ∈ {2, 3}

Algorithm 7.4: OvertimeBookings procedure for scheduling patients on over-
time slots in the planning unit

outlining and planning calculations for patient 3’s treatment plans (i.e. from slot
15 onwards).

The flowtime of treatment plans in the physics unit is affected by the difference
between r2

j and the next day the doctor is available. For example, if the first
calculation (or outlining and planning procedures) for a treatment plan whose
doctor is available on date d is done on the same date d but no doctor available
slot can be found on date d for the plan’s approval by the doctor, the treatment
plan will be delayed by a week (i.e. according to Table 2.10). Therefore, a
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X
X
X
X
X
X
X
X
X
X
X
X

Resource
Slots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Doctor 3 6
Desk 3 6 3

Table 7.2: An example of a feasible good physics unit schedule of appointments

PDR termed the Least Doctor Delay (LDD), defined as the least number of days
that elapse between the release date for the physics unit, r2

j and the next date
immediately after r2

j on which doctor l is available in the department, was used
to prioritise treatment plans.

The PDRs used in Heuristic H2 (see Algorithm 7.5) included LDD, MUPC,
and MUT, in that order. Using the reordered sequence S2

d of treatment plans,
Heuristic H2 schedules each treatment plan on the physics desk beginning from
the head of the sequence. It starts from the release date for the physics unit
r2

j and searches for the first available slot sk for the desk. It determines if the
available slot sk coincides with any slot scheduled for a patient for the mould
room operation. If the slots on the mould room that coincide with the slot sk,
where k ∈ K are free, then the heuristics finds the first available doctor slot after
slot sk (k ∈ K) when the doctor is available. For the final operation, Algorithm
7.5 uses the found doctor slot to determine the slot on the physics unit desk if
the mould room is free on that slot. The first and second operations, and the
doctor slot are scheduled for the treatment plan on the physics unit desk. If the
mould room is not free, Algorithm 7.5 searches the next immediate working day
until an available slot is obtained.

7.2.3 Heuristic H3

An example of a feasible schedule of appointments for the pretreatment unit desks
is shown in Table 7.3. In this schedule, the first slot is for the first calculation,
the second is for the second calculation and the third is for the last calculation.
The slots shown in Table 7.3 are not just over a single day but can be over several
days. The order of processing the operations for treatment plan for patient 1 is
as follows: Desk 1→Desk 3→Desk 2. The treatment plan for patients 2 and 4
undergo dosimetry calculations and accuracy checks on the desks in the following
order, Desk 2→Desk 3→Desk 1 and Desk 3→Desk 1→Desk 2, respectively. For
patients 3, 5, and 6, their calculations were done in the physics unit and hence,
a single calculation was performed on Desk 2, Desk 1 and Desk 3 respectively.

Heuristic H3 in Algorithm 7.6 schedules treatment plans whose patients re-
quire immediate treatment on the earliest available slots on the desks. The first
stage of the heuristic involves reordering the sequence of patients using the PDRs:
Least Number of Pretreatment Operations (LNPO) to be performed, MUPC,
MUT, and LS, in that order. The LS rule was defined using a priority index
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Input: S2
d

Output: physics unit schedule
1: Reorder treatment plans in S2

d using the PDRs for the physics unit
2: for treatment plan j in position 1 to |S2

d | do
3: i← 1{first operation}
4: Starting from the release date r2

j , find the first available slot sk and com-
pletion date C1j0k for the desk, k ∈ K. Let date d1 be C1j0k

5: Determine if the mould room is free during the slot sk on the date d1

6: while i ≤ 2 do
7: if the mould room is free then
8: if i = 1 then
9: i← 2{second operation}

10: Starting from the date d1, find the first available slot for doctor l on
date d2

11: Starting from the date d2, take the first available slot sk after the
slot for doctor l and determine completion date C2j0k

12: Determine if the mould room is free during the slot sk on date C2j0k

13: else
14: Schedule treatment plan for patient j on slot sk for the first operation

on date C1j0k and slot sk for the second operation on the desk, k ∈ K

on date C2j0k, and slot for doctor l on the date d2

15: i← 3{exit while loop}
16: end if
17: else
18: Advance date di to the next date
19: Starting from the date di, take the first available slot for the operation

i on the desk, k ∈ K and set the completion date Cij0k to date di

20: Determine if the mould room is free during the slot sk on the date di

21: end if
22: end while
23: end for

Algorithm 7.5: Constructive heuristic H2 for Subproblem 2

determined the difference between the JCCO determined due date and the com-
pletion date of the last operation for the pretreatment unit (i.e. D

jcco
j − Cij0k,

where i ∈ {1, 3}) for complex and simple plans.
The first stage reorders the treatment plans received so that those in sequence

S2
d are processed first and then followed by the treatment plans in the sequence

S3
d . Treatment plans processed in the physics unit, where they can be delayed due

to the unavailability of the doctors were processed first (i.e. in Algorithm 7.6) to
ensure their flowtime in the pretreatment is minimised. Heuristic H3 considers
two sets, the set of all pretreatment desks J and another set κ which keeps track of
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Desks Slots

Desk 1 1 4 5 2

Desk 2 2 3 4 1

Desk 3 4 1 2 6

Table 7.3: An illustration of a good feasible schedule of appointment slots for
patients

the desks whose slots have been scheduled for treatment plan operations. For each
calculation to be performed on the treatment plan in sequence S3

d , the number of
desks that can possibly be used to perform the calculation is determined using
the difference between the two aforementioned sets, J − κ.

After a desk with the shortest amount of work on its schedule has been de-
termined, the first available slot is determined and the desk added to the set
κ. Determining the desk with the least amount of work on its schedule involved
using a heuristic termed the Least Work In Queue (LWINQ) given in Algorithm
7.7 inspired by the study in (Holthaus and Rajendran 1997b). LWINQ employs
a supplied set of pretreatment desks E and date to find the desk that has the
earliest available slot. Heuristic H3 then schedules an operation for the treatment
plan on this desk and the determined available slot.

Treatment plans for the patients that require critical (i.e. emergency) treat-
ment need 3 operations in the pretreatment unit. This means that on a given
date when an emergency patient arrives, there should be some free slots available
on the pretreatment desks to accommodate them. Heuristic H3 employs a strat-
egy of delaying some of the patients requiring non-critical treatments (i.e. those
requiring radical treatment). In this strategy, treatment plans whose JCCO due
date for treatment is more than µj days away from the determined completion
date for the last operation are scheduled in such a way that each operation is
processed on consecutive working days as shown in Steps 15 to 25 in Algorithm
7.6.

7.2.4 Heuristic H4

The first stage of the Heuristic H4 shown in Algorithm 7.8 involves reordering
the sequence of patients S4

d using the PDRs: MUPC, MUT, Least Number of
Prescribed Treatment Phases (LNPTP), Least Number of Prescribed Fractions
(LNPF), and Earliest Treatment Due Date (ETDD), in that order. When the
rules LNPTP and LNPF are combined, the total number of fractions, TOTALj ,
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Input: S2
d and S3

d

Output: pretreatment unit schedule
1: Reorder S2

d ∪ S3
d using PDRs for the pretreatment unit

2: for patient j in position 1 to |S2
d ∪ S3

d | do
3: i← 1{first operation}
4: if j ∈ S2

d then {1 operation needed}
5: Starting from r3

j , find the first available slot sk on desk k on completion
date C1j0k, k ∈ J using the LWINQ heuristic in Algorithm 7.7 and
schedule the treatment plan for patient j on this slot sk

6: else {3 operations needed}
7: κ← ∅{let κ be an empty set of desks}
8: Starting from r3

j , find the first available slot sk on desk k on completion
date C1j0k, k ∈ J using the LWINQ heuristic

9: Schedule treatment plan for patient j on the slot sk on completion date
C1j0k, k ∈ J and set κ← κ ∪ {k}

10: Set i← 2 and let date di be C1j0k, k ∈ J

11: while i ≤ 3 do
12: Starting from di, find the first available desk k, k ∈ J − κ and slot

sk for operation i using the LWINQ heuristic such that sk, k ∈ J for
operation i is after sk, k ∈ κ for operation i − 1 and set di ← Cij0k,
k ∈ J

13: Schedule patient j on the corresponding slot sk, k ∈ J

14: κ← κ ∪ {k}
15: if j ∈ C and D

jcco
j − C3j0k ≥ µj then {scattering strategy}

16: Delete j from the current schedule
17: Set i← 0
18: Set di ← r3

j and κ← ∅
19: for i = 1 to 3 do
20: Set di ← di−1

21: Starting from di, find the first available desk k and slot sk on
completion date C1j0k, k ∈ J − κ and set di ← C1j0k such that
date di for operation i is after date di−1 for operation i − 1 (i.e.
di − di−1 ≥ 1, ∀i ≥ 1) using the LWINQ heuristic

22: Schedule patient j on the corresponding slot sk, k ∈ J − κ

23: κ← κ ∪ {k}
24: end for
25: end if
26: i← i + 1
27: di ← di−1

28: end while
29: end if
30: end for

Algorithm 7.6: Constructive heuristic H3 for Subproblem 3
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Input: date d and E {Let E be any set of pretreatment desks}
Output: k, sk and date when k is available

1: Choose a desk k from the set E

2: Starting from the input date d, find the date d1 when the first slot sk is
available

3: k1 ← k{Let k1 be a desk}
4: E ← E − {k}
5: for each desk k ∈ E do
6: Starting from the input date d, find the date d2 when the first slot is

available on k

7: If d1 > d2, set d1 ← d2 and also k1 ← k

8: end for
9: return d1, slot sk1 for desk k1

Algorithm 7.7: LWINQ heuristic for finding the first available desk k on a given
date

are considered. The patient with the least TOTALj has the highest priority. Since
the fractions have to be delivered over several consecutive days, LNPF can be
considered to be a processing time (i.e. in days) based PDR similar to the SPT.
The performance of SPT in minimising mean flowtime and tardiness has been
shown by several researchers in (Baker 1974, French 1982, Baker 1984, Raghu and
Rajendran 1993, Holthaus and Rajendran 1997b, Holthaus and Rajendran 1997a,
Holthaus 1997, Sule 1997, Mohanasundaram et al. 2002, Pinedo 2002, Rajendran
and Alicke 2007).

For the LNPF rule, the processing time for each patient j can be considered
to be greater than or equal to TOTALj , because weekends and bank holidays are
not considered. Figure 7.1 shows a possible worst-case scenario where most of
the slots on a given machine k have been already booked and are unavailable (i.e.
the shaded boxes) and only one slot is left available on each of the six consecutive
dates. Sequence S4

(d−2) has two patients j and j + 1 whose release date in the
treatment unit is d− 2, TOTALj and TOTAL(j+1) are 4 and 2, respectively and

the D
jcco
j and D

jcco
(j+1) are on the same date d− 1. Using the LNPF rule to reorder

sequence S4
(d−2), gives a sequence with patient j + 1 at the head followed by j

to obtain Schedule2 while using the FCFS rule gives a sequence with patient j

followed by j + 1 that produces Schedule1 shown in Table 7.4.
The schedules of appointments shown in Figures 7.2 and 7.3 produced the

mean waiting times (i.e. MWT defined in Equation 7.1) to the start of treatment
for the patients j and j + 1 in Table 7.4. Schedule2 obtained using the LNPF
rule produced the best result of 1.0 compared to the 2.0 produced by the FCFS
rule. Therefore, the use of the LNPF rule minimised MWT for Schedule2 shown
in Figure 7.3. Another measure also used to compare Schedule1 and Schedule2
in Table 7.4 is T . The two schedules, Schedule1 and Schedule2, produced 1.5 and
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Input: S4
d

Output: treatment schedule
1: Reorder the sequence S4

d using PDRs for the treatment unit
2: R← ∅ and h← 1 {let R be a set of ‘retained’ patients}
3: for patient j in position 1 to |S4

d | do
4: If j requires initial plan verification, then starting from date r4

j , find the
first available slot sk on completion date C1j1k, k ∈ I on the simulator and
set r4

j ← C1j1k

5: Starting from date r4
j , determine the first available slot sk on completion

date C1j1k, k ∈ G
type
j using EarliestTreatmentStart in Algorithm 7.9

6: if j ∈ (A ∪B) then {needs emergency or palliative treatment}
7: if j ∈ A and C1j1k −D4

j > υ1,j then
8: Starting from r4

j , determine the first available slot sk on completion

date C1j1k, k ∈ G
type
j considering overtime slots ck +1, ck+2, . . . , ck+ok

and using the EarliestTreatmentStart procedure
9: end if

10: if j ∈ B and C1j1k −D4
j > υ2,j then

11: Starting from r4
j , determine the first available slot sk on completion

date C1j1k, k ∈ G
type
j considering overtime slots ck +1, ck+2, . . . , ck+ok

and using the EarliestTreatmentStart procedure
12: end if
13: else
14: if C1j1k −D4

j > υ3,j then
15: r4

j ← D4
j + υ3,j

16: Starting from r4
j , determine the first available slot sk on completion

date C1j1k, k ∈ G
type
j considering overtime slots ck +1, ck+2, . . . , ck+ok

and using the EarliestTreatmentStart procedure
17: else
18: R← R ∪ {j}
19: end if
20: end if
21: If j 6∈ R, schedule the TOTALj fractions on the determined slots
22: end for
23: for j in position 1 to |R| do
24: Starting from r4

j , determine the first available slot sk on completion date

C1j1k, k ∈ G
type
j considering overtime slots ck + 1, ck + 2, . . . , ck + ok and

using the EarliestTreatmentStart procedure
25: Schedule the TOTALj fractions on the determined slots
26: end for

Algorithm 7.8: Constructive heuristic H4 for Subproblem 4
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Input: set of identical machines G
type
j , date d

Output: k and C1j1k, k ∈ G
type
j

1: for each k ∈ G
type
j do

2: h← 1{first treatment phase}
3: i← 1{first fraction}
4: while i ≤TOTALj and h ≤ hj do
5: Determine the first available slot sk, k ∈ G

type
j on date d and denote this

date as di

6: if there is no available slot sk then
7: i← 1 and advance d to the next working day
8: else
9: If i = 1 and h = 1, set the completion date C1j1k to di and advance d

to the next working day
10: i← i + 1
11: If i > fjh, increment h (i.e. h← h + 1)
12: end if
13: end while
14: end for
15: Find the machine k with treatment start date d1 in the set Gtype

16: return machine k and the first fraction date d1

Algorithm 7.9: EarliestTreatmentStart procedure for finding the machine with
the earliest treatment start date

d d+1 d+2 d+3d-1d-2

1

last
slot

Figure 7.1: An illustration of how the LNPF rule re-
sembles the SPT rule using slots on a given machine.
Shaded boxes depict already booked slots

0.5, respectively. Schedule2 also produced the best result for T .

MWT =
1

N

N
∑

j=1

(C1j1k − r4
j ) (7.1)
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Table 7.4: A comparison of the results obtained for Schedule1 and Schedule2
illustrating the performances of the LNPF and FCFS rules

Objective Schedule1 Schedule2

Tj 0 1.0

Tj+1 3.0 0

C1j1k − r4
j 0 2.0

C1(j+1)1k − r4
j+1 4.0 0

T 1.5 0.5∗

MWT 2.0 1.0∗

∗ denotes the best result

Heuristic H4 was developed based on the Moore’s algorithm for solving a
single machine scheduling problem whose objective was to minimise the number
of tardy jobs as explained in (Moore 1968, French 1982). The strategy used by
Heuristic H4 involved categorising patients in S4

d into 3 sets: 1) patients that meet
their JCCO due date, 2) patients that cannot meet their JCCO due date by the
threshold of tolerated tardiness for their treatment, and 3) patients that cannot
meet their JCCO deadlines by the number of days that do not the threshold of
tolerated tardiness for their treatment. Hence, Heuristic H4 employs a set, R, of
‘retained’ patients from the set of patients described in category 3. These patients
are kept in a sequence that has to be scheduled later in the Steps 23 to 26 in
Algorithm 7.8. If a patient requires an initial plan verification procedure on the
simulator in the planning unit, the first available slot on this machine is obtained
and the date on which this slot is available becomes the new release date for the
treatment unit.

Heuristic H4 also employs the procedure termed EarliestTreatmentStart shown
in Algorithm 7.9 to find the treatment machine k with the earliest treatment
start date. EarliestTreatmentStart uses a set, G

type
j , of treatment machines of

the same machine type as prescribed by the doctor in the request form. When
G

type
j = 1, Subproblem 4 can be considered as a single machine problem. Other-

wise, Subproblem 4 is a parallel identical machines problem. When |Gtype
j | > 1,

EarliestTreatmentStart chooses a treatment machine k and starting from a sup-
plied date, it searches for the first available slot (i.e. within a given range of
slots) on each date. If there are no slots available, the procedure restarts its
search for available slots on the machine beginning from the next working date
after the date that had no available slots. Upon determining the treatment start
dates and slots for each machine in the set G

type
j , EarliestTreatmentStart then

compares the treatment start dates to determine the machine k with the earliest
start date and slot.
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d d+1 d+2 d+3d-1d-2

1

last
slot j j+1

j

j

j

j+1

Figure 7.2: An illustration of how patients j and j + 1
can be scheduled on a machine using to the FCFS rule

d d+1 d+2 d+3d-1d-2

1

last
slot j+1

j+1

j

j

j

j

Figure 7.3: An illustration of how patients j and j + 1
can be scheduled on a machine using the LNPF rule

Using the machine k and start date determined by the EarliestTreatmentStart
procedure, Heuristic H4 determines if the patient j’s completion date for the first
fraction complies with the set treatment unit due date. If the patient j requires
emergency treatment and the completion date for the first fraction exceeds the
treatment unit due date by a number of days greater than υ1,j, a parameter
denoting the maximum allowable number of days the patient can exceed the
treatment unit due date, EarliestTreatmentStart is used again to determine the
earliest start date by considering overtime slots on the machines. Similarly, if the
patient j requires palliative treatment, a parameter υ2,j is used to determine if
EarliestTreatmentStart has to restart its search for the earliest start date using
the overtime slots.

The most important part of Heuristic H4 deals with the patient j which
requires radical treatment. If completion date for the first fraction determined
using EarliestTreatmentStart in Step 5 of the Algorithm 7.8 exceeds the treatment
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unit due date by a number greater than υ3,j, Heuristic H4 updates the release
date for the patient to D4

j + υ3,j and restarts the search for the slots for the
fractions by the EarliestTreatmentStart from this date. This strategy helps to
minimise the T for these patients to values closer to υ3,j. In particular, if patients
requiring radical treatments are allowed to use a given number of overtime slots,
some of these patients can have starting dates closer to D4

j + υ3,j.
If patient j does not meet the due date D4

j by days less than υ3,j, the patient
j is added to the set, R, of ‘retained’ patients. These ‘retained’ patients are the
last to be scheduled as illustrated in Algorithm 7.8. The main purpose of this
strategy was to reduce the number of days the appointments generated by the
algorithm for patients that exceeded their due dates for the treatment unit by
υ3,j to a value closer to υ3,j. Furthermore, by ‘retaining’ some of the patients, the
strategy aims to make some slots available for the next patient in the sequence
since the ‘retained’ patients would already have missed their due dates.

7.2.5 Combined four heuristics

The four heuristic algorithms, Heuristic H1, Heuristic H2, Heuristic H3 and
Heuristic H4 were interconnected into the framework in Figure 7.4. A sequence
S, where S = S1

d , is input into the system which begins with Heuristic H1 which
generates two sequences of patients requiring treatment plans for the physics
or pretreatment unit. Those requiring complex treatment plans are input into
Heuristic H2. The sequence input into Heuristic H2 is also input into Heuris-
tic H3 including the sequence of patients that needed simple treatment plans.
Lastly, Heuristic H4 uses a sequence of patients which is the same as the input
sequence. The results of the average waiting times, total overtime accrued on the
machines and percentage of late patients are then collected from the schedules of
appointments generated.

7.2.6 Time complexity of heuristics

The Heuristic H1 in Algorithm 7.1 takes as input a sequence of nd patients.
When S1

d is not ordered according to the planning unit composite rule, Step
2 in Algorithm 7.1 has to deal with the worst-case scenario. This step can be
implemented using established sorting algorithms such as bubble sort, merge sort,
quick sort and others for each PDR. Hence, the worst-case time complexity for
Step 2 is of O(n2) as demonstrated in the analysis of the time complexity of
bubble sort and merge sort algorithms (Johnsonbaugh and Schaefer 2004).

One of the major steps in Heuristic H1 is Step 4 which is governed by the
value of |S1

d |. Assuming that |S1
d | = n, Step 4 is executed (n + 1) times. The

other loops in the steps between Step 5 and 19 do not depend on the size n of the
input sequence. Hence, for each patient j in the sequence, the Steps 5 to 19 may
be executed a different number of times, but most of these steps are executed
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Input S

Heuristic H1

Complex? Heuristic H2

Heuristic H3

Heuristic H4

End

No

Yes

Figure 7.4: A flowchart illustrating how the four heuristic algorithms were
combined

once for each patient j selected in Step 4. Therefore, the total time needed to
run these steps can be given as a function of n, f(n) as shown in Equation 7.2.
In the worst case, f(n) =O(n) and thus, for Algorithm 7.1, the time complexity
is O(n2) because of the highest order terms given by Step 2 for the sorting of the
input sequence.

f(n) = (n + 1) + b1 + b2 + b3 + . . . + bn

= n + (1 + b1 + b2 + b3 + . . . + bn)

≤ bn (7.2)

where b1, b2, b3, . . . , bn are constants representing the amount of time it takes to
execute a step in the algorithm and b is a constant such that:

n + (1 + b1 + b2 + b3 + . . . + bn) ≤ bn (7.3)
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Like Heuristic H1, Heuristic H2 consists of just one sorting operation per-
formed in Step 1 in Algorithm 7.5. All the other operations performed in the
steps between Step 3 and 22 can be executed in a maximum of bn time units as
shown in Equation 7.2. Therefore, the time complexity of the Heuristic H2 can
also be expressed as O(n2). Similarly, in Algorithm 7.6 the major steps for the
Heuristic H3 include the Step 3 in which O(n2) comparisons are made. The other
steps including the loops are executed in bn times, where b is a constant. Hence,
the time complexity of the Heuristic H3 can also be stated as O(n2). The Heuris-
tic H4 has one sorting operation done on the sequence S4

d in Step 1 in Algorithm
7.8. In the other steps, the sequence of patients (for example, R) is not resorted.
Thus, the time complexity of the Heuristic H4 can also be estimated as O(n2).

7.3 Alternative pathways

When the constraint that ensures a patient receives fractions on the same treat-
ment machine is ignored, the machine environment is changed such that Subprob-
lem 4 can be a typified as a different scheduling problem. The main motivation of
ignoring this constraint involves determining the performance of the department
with respect to the objectives such as average waiting time for patients received
in a given period of time and the maximum number of times in the schedule of
appointments that a patient has to be switched to different machines. Hence, it
is necessary to examine some of the alternative pathways that can further com-
plicate Subproblem 4. In this case, four alternative pathways were investigated
which included:

1. Alternative pathway 1 (AP1): involves a scenario whereby it was presumed
the doctor prescribed a specific treatment machine. The patient’s appoint-
ments had to be scheduled on the available slots on this machine only.

2. Alternative pathway 2 (AP2): a scenario whereby the doctor prescribed the
type of machine to be used to treat the patient. The patient’s appointments
were scheduled on several different machines of the same type.

3. Alternative pathway (AP3): same as AP1 but the patient was first sched-
uled on the specific machine prescribed by the doctor and other machines
(i.e. of the same type) were considered only when the doctor prescribed
machine was fully booked on a given date.

4. Alternative pathway (AP4): current scenario used at Arden Cancer Centre.
Like AP2; however, the doctor prescribes the type of treatment machine and
the patient’s appointments for all the TOTALj fractions must be scheduled
on one machine of this type.

In AP1, it was assumed that the doctor prescribed a specific treatment ma-
chine for a patient in the request forms. For example, the doctor may prescribe
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machine 1

machine 2

machine 3

machine 4

machine 5

machine 6
machine 7

Pathways (1), (2) and (3) involve patients receiving 
consecutive fractions on different machines

Pathways (4), (5), (6) and (7) involve patients receiving
all fractions on the same machine

(1)

(2)

(3)

(4)

(5) (6)

(7)

Figure 7.5: Possible patient pathways for AP2 which resemble an m-machine
job shop, where 1 ≤ m ≤ 3

HE linac 3 (i.e. HE3) for the treatment of patient j, meaning that all the frac-
tions for j must be delivered on HE3. The procedure EarliestTreatmentStart in
Algorithm 7.9 would then take as input the set G

type
j = {HE3} whose cardinality

(i.e. |Gtype
j |) is always 1. In pathway AP1, Subproblem 4 can be considered as a

single machine scheduling problem.
The second alternative pathway (i.e. AP2) considered involves a scenario

whereby the doctor prescribed a treatment machine type, as is the current work
practice at the Arden Cancer Centre, but with the constraint that all the fractions
be delivered on the same machine relaxed. Thus, the patients can be switched on
various treatment machines (i.e. of the specified machine type) to improve the
quality of the schedules created with respect to the aforementioned performance
measures. For example, if the doctor for patient j prescribed a HE linac for
treatment, j can receive 6 of his or her fractions in the following pathway: HE3→
HE3 → HE1 → HE2 → HE3 → HE1. Figure 7.5 shows some of the pathways
that can be taken by the patients when they are permitted to have consecutive
fractions on different machines using different arrows.

The arrows labelled (1) denote the pathway which involves patients visiting
machine 1 for some fractions then receive more fractions on machine 3 and then
machine 2, before finishing the rest of the prescribed fractions on machine 1
again. Similarly, the pathway denoted by arrows labelled (2) involves patients
visiting machine 3 for some fractions before finishing the rest of the fractions on
machine 2. The arrows labelled (4), (5), (6) and (7) denote the pathways that
involve patients visiting the same machine (i.e. machine 2, machine 6, machine
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7 and machine 4, respectively) for all their prescribed fractions. In this context,
Subproblem 4 becomes a m-machine n-patients JSP which can be classified using
the Graham et al. (1979) classification scheme as follows.

The first field about treatment machine environment α = α1α2 can be denoted
as:

α1 = J denotes that the environment resembles a job shop where a patient j

can have fractions on several machines of the same type chosen by doctor l

α2 = ◦ because the number of machines of the type chosen by the doctor varies.
For example, α2 = 3, α2 = 2 and α2 = 1 for high energy linacs, low energy
linacs, and DXR or betatron, respectively,

In the second field β = β1, . . . , β6 defines the patient characteristics for Subprob-
lem 4 considering AP2 as follows.

β1 = ◦. No preemption is allowed in the treatment of patients on any of the
machines

β2 = ◦. No requirement of any resource as a constraint.

β3 = ◦. No precedence relation exist between patients being treated on the
machines of the chosen machine type.

β4 = r4
j . Release dates for the patients vary.

β5 = ◦. No upper bound on the number of fractions prescribed for the patients
since patients can recirculate on any of the machines.

β6 = ◦. There are no bounds on the processing times but pjk is the same for all
machines of k ∈ G

type
j .

The last field γ describes the objectives (i.e. X) of the subproblem which include
minimising the amount of time each patient j takes from arrival in the unit to
the time when the first fraction is to be done, amount of overtime accrued by the
machines, and the number of patients that fail to meet their JCCO due dates.
Hence, when AP2 is considered, Subproblem 4 can be described as J |r4

j |X.
The problem J |r4

j |X can be solved using a modified Heuristic H4 which in-
cludes the function called EarliestTreatmentStart_AP2 shown in Algorithm 7.10.
EarliestTreatmentStart_AP2 starts the search for a sequence of machines that
give the earliest start date by selecting a machine k for each operation. From the
Steps 1 to 22, the function uses each machine of that type including the one that
would have been used for the previous fraction to search for the first available
slot. EarliestTreatmentStart_AP2 then returns the sequence of machines for all
the TOTALj with their corresponding slots sk and dates which are then used
accordingly in the Heuristic H4.
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Input: set of identical machines G
type
j and date d

Output: a sequence of machines with their available slots and dates

1: Set G
type1

j ← G
type
j {let G

type1

j be a set of the identical machines}

2: for each k ∈ G
type
j do

3: h← 1{first operation or fraction}
4: i← 1{first treatment phase}
5: while i ≤TOTALj and h ≤ hj do

6: Determine the first available slot sk, k ∈ G
type1

j on date d and set di ← d

7: G
type1

j ← G
type1

j − {k}

8: while there is no available slot sk and G
type1

j 6= ∅ do

9: Select a machine k from set G
type1

j

10: Determine the first available slot sk, k ∈ G
type1

j on date d and set
di ← d

11: G
type1

j ← G
type1

j − {k}
12: end while
13: G

type1

j ← G
type
j

14: if there is no available slot sk then
15: Reset i← 1, G

type1

j ← G
type
j and advance d to the next working day

16: else
17: Add machine k, k ∈ G

type
j to the back of the sequence of machines

with available slots on the dates d1, d2, . . . , di

18: If i = 1 and h = 1, set the completion date C1j1k ← d1

19: Advance d to the next working day and increment i to the next fraction
(i.e. i← i + 1)

20: If i > fjh, then increment the treatment phases (i.e. h← h + 1)
21: end if
22: end while
23: Update the set of the sequences of the machines, slots and dates

d1, d2, . . . , dT OT ALj

24: end for
25: From the updated set of machine sequences, find the sequence of machines

with the earliest start date C1j1k, k ∈ G
type
j

26: return sequence of machines with their available slots and dates
d1, d2, . . . , dT OT ALj

, where d1 = C1j1k, k ∈ G
type
j

Algorithm 7.10: EarliestTreatmentStart_AP2 procedure for finding a sequence
of machines with the earliest treatment start date for TOTALj fractions

142



7. Constructive heuristics

When AP1 and AP2 pathways are combined, a case whereby the doctor pre-
scribes a specific treatment machine but the patient is permitted to use other
machines if the prescribed machine is not available can be considered. In such
a case, the first fraction must always be scheduled on the specifically prescribed
machine. Thereafter, the other fractions can be scheduled on other machines of
the same type as the prescribed machine if the prescribed machine has no avail-
able slots. EarliestTreatmentStart_AP3 in Algorithm 7.11 is the heuristic used
to determine the earliest treatment start date, C1j1k, where k is the prescribed
treatment machine. Subproblem 4 with this pathway (i.e. AP3) can also be
classified as a J |r4

j |X problem and also illustrated using Figure 7.5.
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Input: set of identical machines G
type
j , date d and k, where k ∈ G

type
j prescribed

by doctor l

Output: a sequence of machines with their available slots and dates

1: Set G
type1

j ← G
type
j {let G

type1

j be a set of the identical machines}
2: i← 1{first operation}
3: Starting from the date d, determine the first available slot sk on the prescribed

machine k, k ∈ G
type1

j to obtain date di ← C1j1k

4: Add the machine k to the sequence of machines for the TOTALj fractions
5: while i ≤TOTALj and h ≤ hj do
6: i← i + 1
7: Advance date di to the next working day
8: Determine an available slot sk on the prescribed machine k on date di

9: G
type1

j ← G
type1

j − {k}

10: while there is no available slot sk on machine k and G
type1

j 6= ∅ do

11: Select another machine k from set G
type1

j

12: Find the first available slot sk on machine k, k ∈ G
type1

j on date di

13: G
type1

j ← G
type1

j − {k}
14: end while
15: G

type1

j ← G
type
j

16: if there is no available slot sk found on the machines then
17: i← 0 and set k to the prescribed machine k1{Restart from first fraction

using k1}
18: else
19: Add machine k to the back of the sequence of machines with available

slots on the dates d1, d2, . . . , di

20: If i = 1 and h = 1, set the completion date of the first fraction on the
machine k, C1j1k to d1

21: If i > fjh, increment the treatment phases (i.e. h← h + 1)
22: end if
23: end while
24: return sequence of machines with their available slots and dates

d1, d2, . . . , dT OT ALj
, where d1 = C1j1k and k is the prescribed machine

Algorithm 7.11: EarliestTreatmentStart_AP3 for finding the sequence of ma-
chines with the earliest treatment start date
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7.4 Concluding remarks

This chapter has discussed the proposed constructive heuristics for each of the four
Subproblems. The main motive for developing such approximate methods was
to quickly build schedules of appointments for newly arriving patients using less
computational effort. Prioritisation of patients using priority dispatching rules
(PDRs), derived from the data on the request forms submitted by the doctors,
can be useful in ensuring that those requiring critical treatment are at the head
of the reordered list of patients. However, most of the PDRs devised can be
considered as static rules (i.e. not time dependent) while some are dynamic rules
(i.e. dependent on the changes in time).

Scheduling of patients in the reordered lists involved various strategies aimed
at fast-tracking patients needing critical treatments. Some of these strategies
were founded on some of the established algorithms for single and parallel ma-
chine scheduling problems in the literature. Four different pathways for Subprob-
lem 4 were also identified (i.e. including the existing pathway) based on allowing
patients to switch to other machines of the same type as prescribed by the doc-
tors. Tests of the heuristics on such pathways can give indications of which ones
can improve the performance measures. It is imperative to first determine the
performance of the existing pathway (i.e. AP4) with regard to the performance
criteria and also empirically determine values of the parameters in Section 6.2.

It can be noted that the four radiotherapy scheduling problems formulated
can be adapted to any radiotherapy department in the UK because most depart-
ments use similar treatment processes and work practices to the ones discussed
in Chapter 3. Some of the heuristics can be adapted to any such problems. For
example, for a pretreatment unit problem comprising 5 desks where a maximum
of 3 operations (i.e. calculations) have to be conducted, the Heuristic H3 can
be applied. However, for the planning unit problem, as multiple CT scanners
or simulators are added (i.e. more multiple unrelated machines in the second
stage of the two-stage hybrid flowshop), the heuristics may need to be adjusted
accordingly.
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8.1 Introduction

This chapter presents and analyses the results obtained in different tests con-
ducted with the constructive heuristics described in the previous Chapter. In
these tests, the heuristics were incorporated into the DES model of the depart-
ment discussed in Chapter 5 so that details of the patients generated by the model
were input into the scheduling heuristics.

The DES model was also modified to accept the schedules of appointments
generated by heuristics so that the movement of patients can be visually depicted
in the model and assess their viability. Further, the DES model was run for
several multiple runs using different random number seeds and the results of the
performance criteria collected. Using the DES model in this way, different tests
were conducted which included:
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1) evaluating the performance of each of the PDRs in each of the four proposed
constructive heuristics,

2) evaluating the values of the parameters such as: maximum number of days
emergency, palliative and radical treatments were allowed to breach the JCCO
due date, number of days between the completion of pretreatment and the
JCCO due date, and tardiness in the planning unit,

3) finding the number of reserved slots for each treatment, and

4) comparison of various alternative pathways (i.e. AP1–4) using the perfor-
mance criteria.

The tests on the PDRs were based on four different separate DES models for
each of the four units of the department (see Figures 5.18–5.23). Comparisons
of the alternative pathways involves scenarios AP1–4, defined in Chapter 7 using
the same values of empirically determined parameters listed in Section 6.2. Since
increased radiotherapy demand is expected in the next decade, as explained in
Chapter 2, it is imperative that the performance of the heuristics be tested with
increased numbers of newly arriving patients. Such tests involved using new
patient arrival rates increased by 10%, 20% and 40%.

In the next Sections, the results for the tests are presented. Section 8.2 gives
the results of the tests on the PDRs used in the proposed constructive heuristics.
Section 8.3 demonstrates the capacity usage on each machine or facility on each
day, particularly during the transient period. In Section 8.4, different combina-
tions of the values of the parameters used in the tests are presented. Section 8.5
then discusses and analyses the results obtained from different tests conducted us-
ing the combinations of values of the parameters presented in Section 8.4. Section
8.6 compares the performance of the heuristics using different alternative path-
way scenario that can be implemented in the treatment unit. Finally, Section 8.7
gives the concluding remarks.

8.2 Evaluating dispatching rules

DES models of each unit of the department were used to generate the inputs
(i.e. patients) for the four constructive heuristics. Since new PDRs were being
used for each first stage of the constructive heuristics, it was essential to evaluate
their performance with regards to criteria such as average flowtimes, tardiness
and waiting time to first fraction. Therefore, the second stage of heuristics were
stripped out to simplify and minimise their influence on the results.

A stripped version of the Heuristic H1 was incorporated into the DES model
for the planning unit. It was used to test the performance of the PDRs for
prioritising patients in the sequence S1

d , input into Heuristic H1, while minimising
the impact of its ‘scattering’ strategies. It was assumed that no locum doctors
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(i.e. doctor l = 13) examined patients implying that no overtime slots were used.
The arrival rate of patients for each day of the week in the planning unit was
modelled using Poisson distributions whose parameters (i.e. the average number
of patients arriving) were 10, 10, 11, 11, and 7 for Monday through to Friday,
respectively. No transient period was considered to ascertain the performance of
the PDRs without necessarily having to bring the model to a ‘steady’ state when
the DES model was run.

For Heuristic H2 and Heuristic H3, the patient arrival rates were assumed
to be the same as the one used for the planning unit. The DES model for the
physics unit was also set to collect results for a year with the transient period set
to zero. It was assumed that the mould room was always free so that the physics
technicians were always available for the calculations only. The stripped version of
Heuristic H3 did not include the strategy for scheduling patients requiring radical
treatments on separate consecutive working days. It was possible for Heuristic
H3 to generate schedules which had all the 3 appointments on a single day.

Heuristic H4 was stripped-down by making the following changes. The pa-
tients generated had the same arrival date aj. The number of treatment machines
was not changed and they all had a maximum of 30 slots. The strategy involving
the use of the set, R, of ‘retained’ patients was excluded. No initial and other
plan checks during treatment were included. The DES model for the treatment
unit comprised patient arrival rates modelled using Poisson distributions, that
took an average of 24 patients per day, an estimated average number of patients
that visited the treatment unit machines for their fractions. In these tests, only
AP1 was included in Heuristic H4 to ensure that the performance of the PDRs
was not distorted by allowing patients to be switched to other machines.

The mean flowtime and tardiness are given in Tables 8.1 and Table 8.2. Mean
tardiness results were determined by considering due dates assigned to each unit
using Algorithms B.1–B.4 in Appendix B. In Tables 8.1 and 8.2, combined rules:
MUPC and MUT, and MNSRP and MNOP, performed best for Heuristic H1. The
FCFS and LS rules had were the same results because all the patients considered
in these tests arrived at the same time and thus, were assigned the same due
dates. For Heuristic H2, MUPC and MUT, FCFS and LDD produced the best
results for patients requiring palliative, radical and all treatments, respectively.
The closeness of results for FCFS and LDD can be attributed to the fact that
most patients that required treatment plans from the physics unit were assigned
to the same doctor. Protracted mean flowtimes for Heuristic H2 are due to the
long processing time for each operation on the physics unit desk which means
only 7 appointment slots are available per day.

Most of the patients had their pretreatment appointments booked on their
arrival date because the mean flowtimes for Heuristic H3 were less than 1. The
rules MUPC and MUT, and LNPO produced the best mean flowtimes for pal-
liative and radical treatments respectively. For the mean tardiness objective, LS
performed better than the other rules in Heuristic H3. For patients requiring
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8. Analysis of the results

palliative treatment, LS, and MUPC and MUT rules produced the least mean
tardiness of 0.001 days compared to LNPO and FCFS. Finally, for Heuristic H4,
the MUPC and MUT, and LNPTP and LNPF produced the best results, that
is, 38.1 and 39.8 days (i.e. for the MWT objective) for palliative and radical
treatments respectively.
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Table 8.1: Comparison of the PDRs in the heuristics using mean flowtime and MWT (in days)
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H1 5.22 5.05∗ 5.24 - - 5.22 - - Palliative
6.23 6.25 6.20∗ - - 6.24 - - Radical
5.86 5.81∗ 5.85 - - 5.86 - - All

H2 100.46 99.57∗ - 100.43 - - - - Palliative
101.88∗ 102.44 - 101.91 - - - - Radical
101.25∗ 101.26 - 101.25∗ - - - - All

H3 0.20 0.10∗ - - 0.14 0.16 - - Palliative
0.21 0.27 - - 0.13∗ 0.14 - - Radical
0.20 0.20 - - 0.13∗ 0.15 - - All

H4 39.15 38.09∗ - - - - 38.38 41.36 Palliative
40.50 40.88 - - - - 39.83∗ 43.67 Radical
40.04 39.97 - - - - 39.40∗ 43.87 All

∗ denotes the best value for each row
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Table 8.2: Comparison of the PDRs in the four heuristic algorithms using T (in days)
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H1
0.87 0.80∗ 0.87 - - 0.87 - - Palliative
1.25 1.27 1.22∗ - - 1.25 - - Radical
1.11 1.09∗ 1.09∗ - - 1.11 - - All

H2
95.92 95.05∗ - 95.89 - - - - Palliative
97.52∗ 98.06 - 97.55 - - - - Radical
96.83∗ 96.83∗ - 96.83∗ - - - - All

H3
0.03 0.001∗ - - 0.01 0.001∗ - - Palliative
0.03 0.05 - - 0.01 0.002∗ - - Radical
0.03 0.03 - - 0.01 0.001∗ - - All

H4
37.37 36.32∗ - - - - 36.59 39.55 Palliative
38.67 39.15 - - - - 38.11∗ 41.87 Radical
38.29 38.22 - - - - 37.66∗ 41.11 All

∗ denotes the best value for each row
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8. Analysis of the results

8.3 Used capacity in the transient period

It was imperative to determine the extent of capacity usage over the transient
period. The usage of machines and facilities during the transient period can
influence the results obtained during the results collection period. In this case,
the DES model of the entire department with a transient period of 3 months and
results collection period of a year was used. Less days were used for the transient
period due to the heuristics incorporated in the DES model compared to the tests
in Chapter 5. The transient period and results collection period used in the tests
were determined with the help of the Simul8 which issues warnings if it deems a
short or overlong transient period or results collection period were set.

The transient and results collection period included weekends, and service and
maintenance dates for the machines. In Figures 8.1–8.6, the percentages of slots
used on the machines and facilities over the transient period excluding weekends
and/or service and maintenance dates are shown. The average percentage of
used slots per given date were obtained from 10 different runs of the DES model
using different random number seeds. CT scanner capacity utilisation is shown
in Figure 8.1. Utilisations varied between peaks of 18% and lows of about 6%.
Such utilisations of CT scanner capacity can be explained by its low usage for
the 15 cancer diagnosis compared to the simulator as presented in Chapter 5.
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Figure 8.1: A plot of the percentage of capacity used on the CT scanner

Capacity usage on the simulator over the transient period is shown in Figure
8.2. Utilisation of the slots on the simulator during the transient period generally
rises to about 50% with several peaks of between 80 and 90%. Data collected
showed that more patients visited the simulator than the CT scanner. Hence, the
average percentages of slots used on the dates were more than the CT scanner.
Capacity usage of between 80 and 90% in Figure 8.2 can be explained by the
use of overtime appointment slots for some patients when Heuristic H1 failed to
obtain available slots during normal working hours.

For the DXR, capacity usage during the transient period is shown in Figure
8.3. By the end of the transient period, between 30% and 40% of its slots are
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Figure 8.2: A plot of the percentage of capacity used on the simulator

booked. Although it is not the most visited machine as shown in Table 5.11
(i.e. except skin cancers), when results collection starts, the DXR has at least
a third of its slots already booked. From about 0%, the total available slots
used on the LE linacs rises to about 60% with several dates that peak at around
90% as shown in Figure 8.4. The peaks of up to 90% capacity usage represent
some dates for weekly service and maintenance. LE linacs had half their normal
capacity because they were out of service in the afternoon for the maintenance
work.

Usage of capacity on HE linacs generally rises as the transient period pro-
gresses as shown in Figure 8.5. When the transient period terminates, the HE
linacs have about 40% of the slots available for the day while the rest would be
already booked for the patients that arrived earlier. Capacity usage pattern for
LE and HE linacs is similar as shown in Figures 8.4 and 8.5. Like on LE linacs,
the peaks of over 80% usage can be attributed to the weekly service and main-
tenance dates for the HE linacs which had almost half the capacity of a normal
day. The mould room facility was rarely used compared to the CT scanner and
simulator. Hence, in Figure 8.6, between 2 and 8% of the mould room slots were
booked for patients during the transient period.

It can be concluded that when the results collection period commenced, ma-
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Figure 8.3: A plot of the pattern of capacity usage on the DXR during the
transient period
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Figure 8.4: A plot of the pattern of capacity usage on one of the LE linacs

0 %

20 %

40 %

60 %

80 %

1 10 19 28 37 46 55

b
b b b b b

b b b
b b b

b

b

b b b
b
b b b

b
b

b

b b
b b

b

b

b b b
b b

b

b
b

b b b

b

b
b b

b b
b
b b b

b

b

b
b
b b

b

b

b
b b

U
se

d
ca

p
ac

it
y

Transient period (days)
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154



8. Analysis of the results

0 %
1 %
2 %
3 %
4 %
5 %
6 %
7 %
8 %

0 10 20 30 40 50 60

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b

b

b

b

b b

b

b

b

b

b b b

b

b
b

b

b

b

b

b b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
U

se
d

C
ap

ac
it

y

Transient period (days)

Figure 8.6: A plot of the pattern of capacity usage on the mould room

chines such as the linacs (i.e. HE and LE) and the simulator had about 40%
of the slots on their schedule available for bookings. The CT scanner, DXR and
mould room had more slots available for the bookings. Hence, the amount of slots
that can be used to schedule patients on a given date on the machines after the
transient period can be considered reasonable. The transient period was aimed
at eliminating the bias caused by machines having completely available slots on
a given date on their schedules.

8.4 Values of parameters

Parameters used by the heuristics include υ1,j, υ2,j, υ3,j, ω, µj and the number of
reserved and overtime slots (ok) for each of the treatments. υ1,j, υ2,j and υ3,j rep-
resent the maximum allowed number of days the JCCO target can be breached by
a patient requiring either emergency, palliative or radical treatment, respectively.
They were incorporated into Heuristic H4 to determine the members of the set, R

(see Algorithm 7.8). ω was used in Heuristic H1 to determine if a patient had to
be scheduled on overtime slots when the obtained planning date was not within
the planning due date (see Algorithm 7.1). µj was used to spread appointments
of patients requiring radical treatment over three consecutive working days (see
Algorithm 7.6). It was essential that the values of these parameters be determined
empirically, by setting them manually in the heuristics.

8.4.1 Maximum allowed target breach

There is no medically established threshold below which treatment delays are safe
(Mackillop 2007). Hence, the waiting time targets recommended by the JCCO
can be deemed to be short, but reasonably achievable (Joint Council of Clinical
Oncology 1993). Literature on the treatment of various cancers (including those
treated at the Arden Cancer Centre) showed that some studies have reported that
waiting times of within 6 and 8 weeks (i.e. up to 42 and 56 days, respectively)
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for head and neck carcinomas, and breast cancers respectively, had lower local
recurrence rates (Huang et al. 2003, León et al. 2003).

These studies reported positive effects of waiting times longer than the JCCO
targets. It can be deemed that the JCCO targets are much tighter targets. In this
context, a constraint which set the maximum allowed JCCO target breach (i.e.
threshold of tolerated tardiness) was included in Heuristic H4 together with the
strategy which involves the set, R. The purpose of this parameter was to prevent
creating schedules in which a patient may have an unacceptably long waiting time
before the start of treatment. Based on the waiting times more than the JCCO
targets for certain cancers (i.e. treated at the Arden Cancer Centre) reported in
(Huang et al. 2003, León et al. 2003), different combinations of the threshold of
tolerated tardiness for each treatment were proposed, as shown in Table 8.3.

Table 8.3: Proposed maximum allowed JCCO target breaches (in days)

T υ1,j υ2,j υ3,j

1 0 0 0
2 0 3 7
3 0 3 14
4 0 7 14

T refers to combinations of υ1,j, υ2,j and υ3,j

In Table 8.3, T = 2 represents the scenario whereby patients requiring emer-
gency treatments had to strictly adhere to the targeted JCCO waiting time always
(i.e. υ1,j = 0), while 3 and 7 days (i.e. υ2,j = 3 and υ3,j = 7) were set to be the
maximum number of days allowed to breach the waiting time targets for palliative
and radical treatments, respectively.

8.4.2 Reserved slots on treatment machines

The department uses the block/slot approach to create schedules of appointments
for the planning and treatment unit operations. In this study, the size of a slot
for a machine or facility was estimated as the mean time taken to treat a patient
on the machine or facility (see Chapter 6). It takes 15 and 12 minutes (see Table
6.1) to treat a patient on HE and LE linacs, respectively. Hence, the total number
of available slots for booking treatment appointments of the high and low linacs
on a normal working day are 29 and 36 respectively, since work (i.e. clinical
treatments) starts at 9.20am and ends at around 4.30pm. For a machine such as
the DXR whose normal working hours are between 9.20am and 12.40pm, there
were 13 appointment slots on its schedule each day.

In Table 8.4, combinations of reserved slots applied to each of the three types
of treatment machines namely, DXR, high and low energy linacs, for emergency,
palliative and radical treatments are shown. The other machine type, betatron,
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was not included because it was rarely used (see Table 5.11). These combina-
tions of reserved slots were only used in Heuristic H4 to hold a given number of
available slots for the patients that need critical treatments such as emergency
and palliative treatments that may arrive in the following dates.

Table 8.4: Proposed reserved slots on the treatment machines

R
Emergency Palliative Radical

DXR Linacs DXR Linacs DXR
Linacs

High Low

1 0 0 0 0 0 0 0
2 1 1 3 3 9 25 32
3 1 1 3 6 9 22 29
4 1 1 6 6 6 22 29
5 1 1 6 12 6 16 23

R refers to combinations of the number of appointment slots reserved for each
treatment

The allocation of reserved slots involved the use of three blocks of slots for the
three treatments as depicted in Figure 8.7. Each block of slots only comprised a
given number of slots which were not restricted to any particular time of the day.
Patients requiring emergency treatment had access to all the slots on a machine
on a given date. For example, in Figure 8.7, there were 29 slots available for
the emergency treatments. For the patients that require palliative treatment,
Heuristic H4 considered all slots on the machine excluding the number of slots in
the block of slots reserved for emergency treatments, for each given date. Lastly,
patients requiring radical treatment only had access to the number of slots in the
block of slots reserved for radical treatments as illustrated in Figure 8.7.

The motivation of allocating slots available on a machine in this manner was
the fact that 2%, 31% and 67% of all the patients treated in the department
required emergency, palliative and radical treatments, respectively. Tests on Sce-
narios 2–4 in Chapter 5 showed that more patients requiring radical treatments
arrive on each day and they tend to benefit when more capacity is made available.
Therefore, if the available slots on a given date on a treatment machine are not
reserved and or restricted, most of the slots on a given date can all be scheduled
for patients requiring radical treatment.

8.4.3 Number of overtime slots

The practice of extending the working day can allow the machines to be used to
full capacity to meet increased demand for radiotherapy. However, such practices
may negatively impact the quality of service because of increased staff exhaus-
tion and limited availability of other hospital services such as pharmacy, porter-
ing, medical and nursing cover, and transportation during these extended hours.
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Figure 8.7: Reserved slots usage on the treatment machines in Heuristic H4

Generally, anytime outside the usual core working hours of a hospital department
may affect patient care quality because the aforementioned hospital services are
limited or unavailable. In such circumstances, most of the patients have to be
seen and treated during the normal working hours.

Research on the use of overtime hours using data from some cancer cen-
tres showed that extending working days is cheaper than investing in new linacs
(Routsis et al. 2006). It has also been shown that most patients prefer to be
treated between 9.00am and noon; some departments have extended their work-
ing days to include the hours between 7.00am and 9.00am, and/or 5.00pm and
8.00pm to meet the increasing demand for radiotherapy (Calman et al. 2008).
Hence, in this study it was assumed that the use of overtime slots offered a
short-term practical approach to minimise the average waiting times.

The effects of using overtime slots on each treatment machine as well as the
planning unit machines and facility were evaluated for each treatment. In Heuris-
tic H1, overtime slots were used if no available slots were obtained on all the dates
that the doctor would have been available to the department on or before the set
planning due date. Heuristic H4 explores the overtime slots region if the obtained
available treatment start date is greater than the treatment due date by values
more than υ1,j, υ2,j and/or υ3,j for emergency, palliative and radical treatments,
respectively.

As shown in Table 8.5, only patients needing emergency and palliative treat-
ments have been permitted to access some of the overtime slots on a given date on
the treatment machines. The purpose of permitting patients requiring emergency
and palliative treatment to explore the overtime slots region for available slots in
the cases were on a given date, the number of slots of the block of slots for rad-
ical treatments (see Figure 8.7) would have been already fully booked. In those
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cases, if Heuristic H4 is searching for available slots for patient j who requires
emergency treatment and the number of slots of the block of slots reserved for
palliative treatments is also fully booked, then Heuristic H4 explores the overtime
slots region.

In Table 8.5, given a case where O = 2, Heuristic H4 permitted the accrue-
ment of up to nearly thirty minutes of overtime on the treatment machines (i.e.
the DXR, low and high energy linacs). In this case, translating the number of
overtime slots into the time of the day shows that the treatment unit would be
working until about 5.00pm. When O = 3 and O = 4, the machines would be
working until about 5.30pm and 6.30pm, respectively.

Table 8.5: Proposed combinations of the amount of overtime slots for each
treatment

O
Emergency and Palliative

Radical
DXR

Linacs
High Low

1 0 0 0 0
2 2 2 2 0
3 4 4 5 0
4 8 8 10 0

O is the combinations of number of overtime slots

8.5 Tests with parameter values

Using the entire system of the four heuristics, various tests with the parameters
discussed in Section 8.4 were conducted. In these tests, the simulation model of
the department included the number of arriving patients modelled using Poisson
distributions for each of the seven days of the week. Poisson probability distri-
bution was used to model new cancer referral rates in other research studies on
radiotherapy waiting time issues (Thomas et al. 2001).

In the tests conducted, different combinations of the thresholds of tolerated
tardiness for each treatment, reserved slots for the treatment machines and over-
time slots to be used for the different treatments were used. In Tables 8.3, 8.4
and 8.5,

• T denotes combinations of the thresholds of tolerated tardiness from JCCO
targets,

• R denotes combinations of the number of reserved slots for treatment ma-
chines, and

• O denotes combinations of overtime slots for each of the treatments.
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The amount of time between the completion date for pretreatment unit operations
and the JCCO due date for any patient j, µj was set to 7 and the number of
days by which patient j could fail to meet the planning unit due date D1

j , ω was
set to 0. This means that the heuristics had to adhere to the due dates for the
planning unit. Otherwise, patients had to be booked on overtime slots on the
planning unit machines and facility.

In each test, the DES model of the department was run using the same tran-
sient and results collection period used in Section 8.3. Each experiment was
repeated 10 times using a different random number seed for each run to increase
the accuracy of the results and narrow the confidence limits. It was observed that
more than 10 runs were tedious and time consuming since the simulation model
developed can be considered a complex one.

8.5.1 Tests with maximum allowed target breaches

In these tests, the combinations of υ1,j, υ2,j, and υ3,j given in Table 8.3 were used
to obtain the results of the average waiting times, average percentage of patients
that would be late for the start of their treatment and the average penalty accrued
for the use of overtime slots during the period when the DES model and scheduling
system of heuristics was run.

The combination (1, 1, 1) in Table 8.6 meant that Heuristic H4 did not con-
sider maximum allowed time to breach the JCCO targets, no slots were reserved
for each of the treatments and no overtime slots were made available. It produced

the worst average waiting time results by 20% and 3% for RW
1

and RW
2
, respec-

tively. Some dates had patients requiring radical treatment scheduled on all the
available slots. Hence, when those requiring emergency and palliative treatment
arrived, there were no slots available on some immediate dates and consequently,
their waiting times were prolonged. In Table 8.7, combination (1, 1, 1) produced
the worst average percentage of late patients for each treatment since the dif-
ference between the result for those who were late using (1, 1, 1) and the other
combinations was at least about 2% and 3% for emergency and palliative treat-
ments, respectively.

Table 8.6: Average waiting times (with standard deviations) obtained from tests
with combinations of υ1,j, υ2,j, and υ3,j

(T ,R,O) RW
1

RW
2

RW
3

RW

(1,1,1) 1.2† (0.2) 10.0† (0.2) 20.5 (0.1) 16.8†

(2,1,1) 1.0 (0.2) 9.7 (0.2) 20.5 (0.1) 16.6
(3,1,1) 1.0 (0.2) 9.7 (0.2) 20.5 (0.1) 16.6
(4,1,1) 1.0 (0.2) 9.7 (0.2) 20.5 (0.1) 16.6

† denotes the worst results obtained
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Table 8.7: Average percentages (with standard deviations) of late patients ob-
tained from tests with the combinations of υ1,j, υ2,j, and υ3,j

(T ,R,O) Emergency Palliative Radical All

(1,1,1) 25.0† (7.9) 17.0† (2.1) 1.0† (0.5) 7.0†

(2,1,1) 22.9 (8.8) 13.5 (1.6) 1.1 (0.2) 5.5
(3,1,1) 22.9 (8.8) 13.7 (1.8) 1.0 (0.2) 5.5
(4,1,1) 22.9 (8.8) 13.8 (1.9) 1.1 (0.1) 5.6

† denotes the worst results obtained

Patients requiring radical treatment occupied most of the slots on the ma-
chines such that there were no available slots for those requiring palliative treat-
ment that arrived on later dates. The average percentage of the patients for
emergency and palliative treatment were more than 20 and 13%, respectively
compared to 1% for those needing radical treatment. The tests with combina-
tions (2, 1, 1), (3, 1, 1) and (4, 1, 1) produced the same average waiting times (i.e.
for all treatments) which were 20% and 3% better for emergency and palliative
treatments. This implies further changes to T (i.e. T = 3or4) combinations had
the same effect as strictly adhering to JCCO targets for emergency treatment but
allowing patients to breach them by 3 and 7 days for palliative and radical treat-
ments, respectively. Due to the fact that the radiotherapy department receives
between 2500 and 3000 new patients (i.e. considered a large department) in a
year, small increases or reductions in the average waiting times and percentage
of patients for each treatment who were late can be considered to be significant.

Allowing patients to breach the JCCO targets by these values of υ1,j, υ2,j,
and υ3,j enabled Heuristic H4 to ensure that some available slots that would
have been booked for patients needing radical treatment became available for the
patients requiring critical treatments (i.e. emergency and palliative) that arrived
on the later dates. This improved the average percentage of late patients requiring
emergency and palliative treatment by about 2 and 4%, respectively. The use of
parameters υ1,j, υ2,j, and υ3,j also helped to minimise the tardiness of patients
requiring radical treatment to about 7 or 14 days set in Table 8.3. Noticeably,
the high standard deviations of the average percentages of late patients requiring
emergency treatment in Table 8.7 were the result of the small number of patients
scheduled differently depending on the available slots. High percentages of late
patients for emergency treatments can be explained by the fact that most patients
arrived on a Friday when no planning slots were available and hence, they were
late for treatments because no there were no bookings for the weekends allowed.

8.5.2 Tests with reserved slots

The best results for the performance measures (i.e. average waiting times and
percentage of late patients for each treatment) were obtained in the tests using
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combination (2, 1, 1) (see Tables 8.6 and 8.7). This combination had the same
average waiting times for each treatment, as combinations (3, 1, 1) and (4, 1, 1),
but slightly better percentage of patients for palliative treatment who were late
(13.5%). Therefore, further tests which involved the combinations of reserved
slots for each treatment used the values of the parameters υ1,j, υ2,j, and υ3,j

determined when T = 2 (see Table 8.3).
Tests with reserved slots involved using the combinations of reserved slots

given in Table 8.4 and the results shown in Tables 8.8 and 8.9. Introducing the
pattern of reserving slots in Figure 8.7 (i.e. in combinations (2,2,1) and (2,3,1))

marginally increased RW
2

and RW
3

by about 1 and 2%, respectively from the

results obtained in combination (2, 1, 1). No improvements in RW
1

were made
due to the patients received on Fridays when the planning unit machines were
fully booked and had to be booked for treatment on Mondays or Tuesdays. For
combinations (2,2,1) and (2,3,1), the strategy of reserving slots introduced had
the effect of fully booking the patients requiring radical treatment on all the slots
reserved for them on most of the dates during the year. This implies that when
patients needing palliative treatment arrived, they were restricted to the block of
slots reserved for palliative treatments only (see Figure 8.7). If this block of slots
was also fully booked, the arriving patients needing palliative treatments had to
be scheduled on further dates.

Combination (2, 4, 1) improved RW
2

by about 3% to 9.4 days and RW
1

to 0.9

days. Tests with combination (2, 5, 1) obtained good results for RW
1

and RW
2

but RW
3

worsened to 21.5 days. This was a result of reserving more slots for
palliative treatments at the expense of radical treatments as shown in Table 8.4.
The number of slots available for radical treatments was reduced meaning that
fewer patients requiring radical treatment could be scheduled on a machine on a
given date. Tests with combination (2, 4, 1) produced the best average percentage
of the patients who were late results for all the three treatments. The average
percentage of late patients needing radical treatment improved by more than 40%
from the results obtained for combination (2,1,1).

Table 8.8: Average waiting times (with standard deviations) obtained for tests
with reserved slots when T = 2

(T ,R,O) RW
1

RW
2

RW
3

RW

(2,1,1) 1.0 (0.2) 9.7 (0.2) 20.5 (0.1) 16.6
(2,2,1) 1.0 (0.2) 9.8 (0.2) 20.8 (0.04) 16.9
(2,3,1) 1.0 (0.2) 9.8 (0.2) 20.9 (0.04) 17.0
(2,4,1) 0.9∗ (0.2) 9.4∗ (0.2) 20.8 (0.1) 16.8
(2,5,1) 1.0 (0.2) 9.4 (0.1) 21.5 (0.3) 17.2

∗ denotes the best results obtained
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Table 8.9: Average percentages (with standard deviations) of late patients ob-
tained from tests with reserved slots when T = 2

(T ,R,O) Emergency Palliative Radical All

(2,1,1) 22.9 (8.8) 13.5 (1.6) 1.1 (0.2) 5.5
(2,2,1) 22.9 (8.8) 15.5 (2.3) 1.1 (0.2) 6.2
(2,3,1) 22.9 (8.8) 15.4 (1.9) 1.2 (0.2) 6.2
(2,4,1) 22.5∗ (8.8) 13.0∗ (1.6) 0.6∗ (0.2) 5.0∗
(2,5,1) 22.9 (8.8) 13.0 (1.6) 1.1 (0.4) 5.3

∗ denotes the best results obtained

8.5.3 Tests with overtime slots

Tests on the number of overtime slots given in Table 8.5 when T = 2 and R =
4 were conducted and the results are shown in Tables 8.10 and 8.11. These
tests were aimed at finding the minimum amount of time that can be added to
normal working hours of the treatment unit in order to improve the performance

of the heuristics. The results obtained showed a marginal increase in RW
1

to
1.0 days. When overtime slots were used in Heuristic H4, most of the patients
requiring palliative treatment were booked on them before the those patients
needing emergency treatment arrived. The strategy for reserving slots used meant
that most overtime slots were booked for the palliative treatments leaving only
the block of slots reserved for emergencies available (see Figure 8.7). If this block
did not have sufficient slots to cover the number of arriving patients requiring
emergency treatment, Heuristic H4 had to advance its search for available slots
to the next dates.

Tests with combination (2, 4, 2) worsened average waiting times (i.e. by about

1, 4 and 1% for RW
1
, RW

2
and RW

3
, respectively) and percentages of patients

late for each treatment (i.e. about 3% for palliative treatment) as shown in
Tables 8.10 and 8.11. This behaviour of the scheduling heuristics is different from
that observed in Chapter 5 in the scenario tests whereby more capacity added
resulted in improvements in the performance criteria for one of the treatments. It
is essential to determine the necessary number of overtime slots because adding a
few such as just 2 additional slots on each machine resulted in the worsening of the
performance criteria. There are dates when most patients needing emergency or
palliative treatments arrived. When more patients needing palliative treatment
arrived, the strategy of reserving slots enabled these to be booked on most of the
day. Hence, forcing those needing radical treatments to be booked on later dates
and also restricting those for emergency treatment to the block of slots reserved
for them.

The results obtained using combination (2, 4, 4) were slightly better than those
for combination (2, 4, 3) because the average percentage of late patients for pal-
liative and radical treatments improved to 12.9 and 0.6%, respectively. Further,
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Table 8.10: Average waiting times (with standard deviations) obtained from
tests with overtime slots, when T = 2 and R = 4

(T ,R,O) RW
1

RW
2

RW
3

RW

(2,4,1) 0.9∗ (0.2) 9.4 (0.2) 20.8 (0.1) 16.8∗
(2,4,2) 1.0 (0.2) 9.8 (0.2) 21.1 (0.1) 17.2
(2,4,3) 1.0 (0.2) 9.3∗ (0.2) 20.8∗ (0.1) 16.8∗
(2,4,4) 1.0 (0.2) 9.3∗ (0.2) 20.8∗ (0.1) 16.8∗

∗ denotes the best results

Table 8.11: Average percentages (with standard deviations) of late patients
obtained from tests with overtime slots, when T = 2 and R = 4

(T ,R,O) Emergency Palliative Radical All

(2,4,1) 22.5 (8.8) 13.0 (1.6) 0.6 (0.2) 5.0
(2,4,2) 23.8 (7.9) 15.5 (1.9) 1.5 (0.3) 6.4
(2,4,3) 22.9 (8.8) 13.0 (1.7) 0.7 (0.2) 5.0
(2,4,4) 22.9 (8.8) 12.9∗ (1.8) 0.6∗ (0.2) 4.9∗

∗ denotes the best results

for combinations (2,4,3) and (2,4,4), the average waiting times obtained were the
same. In other words, the results can be translated as follows. If the treatment
machines are allowed to continue treating patients until 5.30pm, the average wait-
ing times obtained would be the same as when the working hours are extended to
about 6.30pm. Therefore, given the costs incurred when staff work longer over-
time working hours, combination (2, 4, 3) can be considered to have produced the
best results with respect to the average waiting times for each treatment.

8.5.4 Tests with increased arrival rates

Research studies conducted between 2000 and 2010 reported an expected rise in
cancer incidences by about 20% in the UK due to changes in demographics and
other reasons (Royal College of Radiologists 2003, Ash et al. 2004, Dodwell and
Crellin 2006). Further tests were conducted to ascertain the performance of the
heuristics with increased patient arrival rates. To mimic increased demand, the
DES model had its arrival rates (i.e. parameters of the Poisson distributions)
changed by various percentages. Using some of the expected percentage rises in
cancer incidences given in Table 2.5, increases in arrival rates by 10% and 20%
(i.e. greater than expected in (National Radiotherapy Advisory Group 2007b))
were chosen. To further ascertain the performance of the heuristics, tests with the
40% increase were also performed. Combinations of the values of the parameters
υ1,j, υ2,j, and υ3,j, number of reserved and overtime slots for each treatment were
set to T = 2, R = 4 and O = 3, respectively.
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Generally, as the arrival rates of new patients were increased, RW
1

gradually

worsened by between 10 and 20% (see Tables 8.12 and 8.13 for results). For RW
2
,

the results showed an aspect akin to one observed in Table 8.10 whereby after

an increase of arrival rates by 20%, RW
1

marginally improved to 9.9 days. An
increase in the arrival rates, increased the number of patients requiring emergency
treatments especially those arriving on Fridays. Most of these patients were late
for their treatment due to the limited capacity available on the planning machines
due to the availability of their doctors.

Table 8.12: Average waiting times (with standard deviations) obtained for tests
using increased arrival rates

Increase (%) RW
1

RW
2

RW
3

RW

0 1.0∗ (0.2) 9.3∗ (0.2) 20.8∗ (0.1) 16.8∗
10 1.2 (0.2) 10.1 (0.1) 21.5 (0.4) 17.3
20 1.3 (0.2) 9.9 (0.2) 21.5 (0.3) 17.2
40 1.5 (0.3) 10.4 (0.4) 22.7 (0.3) 18.2

∗ denotes the best result

Table 8.13: Average percentages (with standard deviations) of late patients
obtained for tests using increased arrival rates

Rise (%) Emergency Palliative Radical All

0 22.9∗ (8.8) 13.0∗ (1.7) 0.7∗ (0.2) 5.0∗
10 22.9∗ (5.9) 17.5 (0.5) 2.2 (1.3) 7.6
20 23.6 (6.2) 14.8 (2.0) 1.2 (0.4) 6.2
40 25.2 (5.1) 16.6 (2.0) 4.3 (1.4) 8.8

∗ denotes the best result

After increasing the arrival rates by 20%, RW
2

showed the aforementioned
nonlinear increase effect. The increase in arrival rates resulted in more patients
requiring palliative arriving on some dates such that they were booked on most
of the slots on subsequent dates to the detriment of those needing emergency
and radical treatments. However, after increasing the arrival rates by 20%, such
patients requiring emergency treatment were affected more than those requiring
radical treatments because of the improvement to 1.2% by the average percentage
of late patients for radical treatments.

The result for RW
3

remained the same (i.e. for 10% and 20% increments to
arrival rates. It can be concluded that when more patients requiring palliative
treatment arrive, the heuristics books them on more immediate slots to the detri-
ment of those requiring radical treatments. There were more dates when more
patients needing palliative treatment arrived compared to those needing radical
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treatment. About a quarter of the patients who needed emergency treatment
when arrival rates were adjusted by 40% were late for their treatment. In this
case, there were more late patients that needed radical treatment than in any
other case (i.e. of increased arrival rates) tested. The average waiting times pro-
duced by the heuristics in these tests were all below the targeted JCCO targets.
This implies that even after increasing the arrival rates by 40%, the heuristics
still produced results that can be considered good and within the JCCO targets.

8.6 Tests with pathways

The heuristics were tested using the 3 other pathways: AP1, AP2, and AP3 with
the parameters set to the values determined by the tests with AP4 (i.e. existing
pathway). This means that in these tests, T = 2, R = 4 and O = 3. Figures 8.8
and 8.9 show the results of the tests with the pathways. All the four pathways

obtained RW
1

results within the JCCO target of 2 days. The worst result of 1.6

days for RW
1

was obtained with AP1 while the best result was obtained with

AP4. For RW
2
, AP1 did not meet the JCCO target of 14 days while AP2 and

AP3 had the same result of about 10 days. The best result of about 9.3 days was

obtained with AP4. The best RW
3

was obtained with AP2 while the AP1 had
the worst result. However, AP2–4 had RW

3
results which were within the JCCO

target of 28 days.

AP2 improved RW
3

by nearly 35% from the results obtained with AP4. Since
most of the patients treated in the department needed radical treatment, the
number of slots in the block of slots reserved for radical treatments (see Figure
8.7) are quickly fully booked on most immediate dates on the machines of the type
chosen by the doctor. This restricted most patients requiring palliative treatment
to the number of slots reserved for them and overtime slots only on most of the

machines. Hence, AP4 performed better than AP2 with respect to RW
2

because
the patients requiring radical treatments were booked in a manner that made
slots available on the immediate dates for those requiring palliative treatment.

The pathway scenario AP3 improved the performance of AP1 with respect

to RW , RW
1
, RW

2
and RW

3
. When the machine prescribed by the doctor is

fully booked, the patients are scheduled on other machines of the same type and
thus, making slots that would have been used on later dates available for other
patients that arrive on the next dates. In Figure 8.9, all the four pathways had
relatively large average percentage of patients late for their emergency treatments
due to the patients such treatment who mostly arrived on Fridays as discussed
earlier. The targeted waiting time for those requiring emergency treatment was 2
days but in this case their treatment was expected at least after 3 days. Further,
R = 4, comprised one slot reserved for emergency treatments and thus, on a
Friday, if two or more such patients arrived and the machines were fully booked,
then some of these patients would be late by more than 3 days.
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Figure 8.8: A plot of the average waiting time results obtained
from tests with the four pathways
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Figure 8.9: A plot of the average late patients (%) obtained
from tests with the four pathways

For palliative treatments, AP1 had the worst result with about 40% expected
to be late for treatment. AP3 was marginally better than AP2 for palliative
treatment. For radical treatment, AP4 had the best result of less than 2% AP4
while AP3 had the worst result (i.e about 40%). AP4 had problems with the
uncertain arrival of patients needing palliative treatment. Most of the time when
some of these patients arrived there were fewer slots available to book all of their
appointments within the targeted waiting times. However, for AP2 and AP3,
some of these patients had more slots available on which they were booked for
treatment.

AP1 accumulated the highest number of overtime slots (i.e. converted into
days) compared to the other three pathways as shown in Figure 8.10. It is worth
noting that the overtime incurred in the 3 pathways (i.e. AP2, AP3 and AP4)
was from the planning unit where patients could not meet their planning unit
deadlines and thus, exceeded the values of the parameter ω (which was set to 0)
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and had their appointments scheduled on overtime slots. In the case of AP1, most
of the overtime was from the treatment unit where patients requiring emergency
and palliative treatment made use of the overtime slots. Hence, it can be con-
cluded that the pathways AP2, AP3 and AP4 minimise the use of overtime slots
in the treatment unit and also improve the average waiting time of the patients.
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Figure 8.10: A plot of the average amount of overtime (U) for each of the four
pathways

8.7 Concluding remarks

This chapter discussed results of several tests performed to determine values of
the parameters in Section 6.2 and compare the heuristics using the four pathways
(i.e. AP1–4) of the treatment unit stated in Section 7.3. Tests on the PDRs for
reordering the list of newly arriving patients demonstrated that rules such as the
most urgent patient category (MUPC), most urgent treatment (MUT), least num-
ber of pretreatment operations (LNPO), least doctor delay (LDD), least number
of prescribed treatment phases (LNPTP) and least number of prescribed fractions
(LNPF) produced good results for the mean flowtime and/or mean tardiness ob-
jectives. Using the existing pathway (i.e. AP4), the heuristics improved the aver-
age waiting times of obtained from the historical data discussed in Chapter 5 by
50%, 34% and 41% for the emergency, palliative and radical treatments, respec-
tively. Generally, it can be expected that as more patients arrive, the heuristics
performances worsen. Even after 40% increase in the newly arriving patients (i.e.
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to mimic increased demand), the heuristics produced average waiting times below
the JCCO targets for each treatment.

It can be concluded that the strategy of reserving slots by ensuring that pa-
tients requiring emergency and palliative treatments had access to more slots on
a given date on the machines did not hugely affect average waiting times for
those who requiring radical treatment. This implies that the uncertain arrival
of patients and notably, the fact that the greater proportion of these patients
need radical treatment, poses challenges to strategies of scheduling their appoint-
ments. Therefore, it is essential that further studies consider applying intelligent
algorithms such as the metaheuristics briefly discussed in Chapter 4 to outwit
such aspects of the radiotherapy scheduling problems.
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Chapter 9

Conclusions and suggestions for
further work
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9.1 Summary and conclusions

This thesis was founded on the treatment processes in the radiotherapy depart-
ment at the Arden Cancer Centre located at the University Hospitals Coventry
and Warwickshire NHS Trust, UK. The elaborate steps of the radiotherapy pro-
cess in the UK are conducted in four units which are generally termed: planning,
physics, pretreatment, and treatment units. Insight into the entire radiotherapy
problem was gained by developing and using discrete-event simulation (DES)
models of the radiotherapy department helped to characterise four subproblems
from the four units. Although the DES models helped in identifying bottlenecks
and other issues from the treatment processes, it was imperative to propose an ap-
proach for scheduling newly arriving patients in order to minimise waiting times
and the number of patients expected to fail to meet their targeted due dates.

To solve the entire radiotherapy scheduling problem using the scheduling ap-
proach, four subproblems for each of the four units have been characterised as
shop scheduling problems. These problems have been solved using constructive
heuristics based on two-steps: 1) reordering the list of newly arriving patients
using priority dispatching rules (PDRs), and 2) applying strategies for freeing
slots so that patients requiring critical treatments can be booked on them. These
heuristics have been incorporated into the DES model to schedule patients gen-
erated daily in several tests aimed at minimising the average waiting times for
each treatment, average percentage of patients late for their treatments and the
amount of overtime slots used on the machines. Amongst these tests, it was
imperative to test the performance of the heuristics on the different pathways
patients can follow in the treatment unit.
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The following conclusions can be drawn:

• The entire radiotherapy scheduling problem which includes all the four units
of a typical radiotherapy in the UK was considered.

• As proposed by some researchers, this study has shown that the radio-
therapy scheduling subproblems can be typified as production scheduling
problem models with several unique attributes that enable them to be clas-
sified as intrinsically hard problems. This study has broadened the research
on the radiotherapy scheduling problem by characterising the subproblems
as two-stage hybrid flowshop, flowshop, mixed shop and multiple identical
parallel scheduling problems.

• The new constructive heuristics developed for the subproblems generated
schedules whose average waiting times for emergency, palliative and radical
treatments improved considerably by about 50%, 34% and 41%, respec-
tively, compared to the historical data collected in 2008.

• The constructive heuristics achieved such improvements in the average wait-
ing times, the average percentage of patients late for each treatment were
about 23%, 13% and 1% for emergency, palliative and radical treatments
respectively. Such results for emergency and palliative treatments can be
considered high relative to the number of patients that require these treat-
ments received (i.e. only 2% and 31% for emergency and palliative treat-
ment respectively).

• Strategies for ensuring patients requiring critical treatment are treated
quickly upon arrival at the radiotherapy department are essential. In this
context, the constructive heuristics included strategies for ensuring that
slots were available for patients needing emergency and palliative treat-
ments. These include:

– allowing maximum breaches on the targeted due dates for patients
requiring palliative and radical treatments respectively.

– reserving some slots on the treatment machines for a given day for the
patients requiring emergency and palliative treatments respectively, to
reduce the number of patients requiring radical treatment that can be
booked on a given date for a machine since 67% of the patients received
at the Arden Cancer Centre required radical treatment.

– allowing overtime slots to be used on the treatment machines.

• It has been shown that the list of newly arriving patients can be prioritised
using more composite priority dispatching rules (PDRs) based on the de-
tails on the request forms which include: the least number of pretreatment
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operations, least number of prescribed treatment phases and least number
of prescribed fractions.

• This study has also shown that extent of historical data requirements for
the development of the DES models. Further, unlike other DES studies of
the radiotherapy treatment processes, in this study, the DES models were
for all the treatment processes of a radiotherapy department (i.e. external
beam therapy, brachytherapy and unsealed sources therapy).

• The development of DES models also helped in determining several prob-
ability distributions for estimating uncertain data such as the processing
time of the machines.

9.2 Suggestions for further work

This study has broadened the radiotherapy scheduling problem discussed in the
literature by including all units in a typical radiotherapy department in the
UK. The few papers on the problem from one of the units applied constructive
heuristics and mathematical programming methods. Since the four radiotherapy
scheduling problems from the units have been characterised as shop scheduling
problem models, there are many methods amenable them. There are several OR
optimisation methods that can be used to solve the four subproblems, either sep-
arately or as a whole. To contribute more to the theory and practical aspects of
solving radiotherapy patient scheduling problems, there are directions for further
work that can be suggested.

• The constructive heuristics proposed in this study did not include several
aspects of the real-world radiotherapy scheduling problem such as:

– anticipating that a given patient may fail to attend an appointment,

– elective patient’s preference for being treated in morning, afternoon,
or on certain days of the week, and/or

– rescheduling of the patients that missed appointments.

When these aspects of the real-life problem are included, the subproblems
become more complex. Therefore, it can be suggested that these aspects
be included in one subproblem after the other. Further, this study involved
the use of a DES model to generate newly arriving patients each day using
probability distributions derived from the collected data. It can be noted
that the heuristics proposed generate schedules for patients without the
use of look ahead techniques for anticipating how many patients of each
treatment might arrive in the succeeding days.
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• Future research on the radiotherapy scheduling problem should consider
using actual time rather than slots from the start of the day to the time the
machine is supposed to be shutdown (i.e. for the end of the day or service
and maintenance). The use of actual processing times for the machines and
facilities helps to create more compact schedules compared to the use of slots
which may lead to unused slots. It can be interesting if the radiotherapy
scheduling problem is considered as an economic lot scheduling problem
whose main objective is to minimise waiting times and solved using lot-
sizing techniques. Lot-sizing techniques have been used in manufacturing
to minimise inventory holding costs. In this context, the patient waiting
times can be likened to the inventory holding costs.

• The constructive heuristics used in this study can be considered as an impor-
tant starting point. Frontiers of the research on aspects of the radiotherapy
scheduling problem should consider the application of meta-heuristics that
are computationally efficient to generate the schedules of appointments for
each sequence of patients that is submitted for booking. As a starting point,
the metaheuristics can be applied to each of the four subproblems and then
the entire radiotherapy patient scheduling problem. When considering the
entire problem, it is imperative that the complexity of the problem be re-
duced by including certain assumptions. Depending on the efficiency of the
metaheuristics, it would interesting to determine how much time it takes to
solve large instances of the problem. These instances may involve more pa-
tients arriving daily than expected or more fractions prescribed to patients
diagnosed with particular types of cancers. A comparison of the quality
of schedules obtained by using the meta-heuristics with the constructive
heuristics as a starting point and the results reported in this research will
be important for the radiotherapy patient scheduling problems.
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A Distributions of the fractions

A.1 Prescribed fractions by cancer diagnosis
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Figure A.1: A plot of the number of fractions prescribed to
benign cancer patients

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

10

20

30

40

50

Number of fractions

P
er

ce
n
ta

g
e

o
f
p
a
ti
en

ts
(%

)

Figure A.2: A plot of the number of fractions prescribed to
breast cancer patients
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Figure A.3: A plot of the number of fractions prescribed to
CNS cancer patients
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Figure A.4: A plot of the number of fractions prescribed to
digestive system cancer patients
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Figure A.5: A plot of the number of fractions prescribed to
endocrine gland cancer patients

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

10

20

30

40

50

Number of fractions

P
a
ti
en

ts
(%

)

Figure A.6: A plot of the number of fractions prescribed to
gynaecological cancer patients
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Figure A.7: A plot of the number of fractions prescribed to
head and neck cancer patients
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Figure A.8: A plot of the number of fractions prescribed
lympho-reticular cancer patients
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Figure A.9: A plot of the number of fractions prescribed to
male genital cancer patients
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Figure A.10: A plot of the number of fractions prescribed to
respiratory cancer patients
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Figure A.11: A plot of the number of fractions prescribed skin
cancer patients
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Figure A.12: A plot of the number of fractions prescribed to
soft tissue and bone cancer patients
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Figure A.13: A plot of the number of fractions prescribed to
unspecified or other cancer patients
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Figure A.14: A plot of the number of fractions prescribed to
unknown primary cancer patients
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Figure A.15: A plot of the number of fractions prescribed to
urinary cancer patients
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B Due dates for each unit

B.1 Assigning due dates

Input: j

Output: D1
j

1: if j belongs to the Urgent category then
2: return r1

j

3: else if j belongs to the Emergency category then
4: return r1

j + 1
5: else if j belongs to the Priority category then
6: return the next date the doctor l is available after aj

7: else if j belongs to the Standard or Elective category then
8: if j needs palliative treatment then
9: return the next date the doctor l is available after aj

10: else
11: return the date of the 4th day when the doctor l is available after aj (i.e.

for the Arden Cancer Centre radiotherapy department, D1
j = aj+21days)

12: end if
13: end if

Algorithm B.1: Algorithm for determining the planning unit due date for
patient j

Since, patients categorised as Urgent or Emergency do not need complex treat-
ment plans, they do not visit the physics unit. Therefore, these patient categories
where not included in the procedure which determined physics unit due dates
shown in Algorithm B.2.
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Input: j

Output: D2
j

1: if j belongs to the Priority category then
2: return the next date the doctor l is available after D1

j

3: else if j belongs to the Standard or Elective category then
4: if j needs palliative treatment then
5: return the next date the doctor l is available after D1

j

6: else
7: return the date of the 2th day when the doctor l is available after D1

j

8: end if
9: end if

Algorithm B.2: Algorithm for determining the physics unit due date for patient
j

Input: j

Output: D3
j

1: if j belongs to the Urgent category then
2: return D1

j + 1
3: else if j belongs to the Emergency category then
4: return D1

j + 1
5: else if j belongs to the Priority category then
6: return D2

j + 1 or D1
j + 1 depending on whether the patient required

complex plans or not
7: else if j belongs to the Standard or Elective category then
8: if j needs palliative treatment then
9: return D2

j + 1 or D1
j + 1 depending on whether the patient required

complex plans or not
10: else
11: return D2

j + 3 or D1
j + 3 depending on whether the patient required

complex plans or not
12: end if
13: end if

Algorithm B.3: Algorithm for determining the pretreatment unit due date for
patient j
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Input: j

Output: D4
j

1: if j belongs to the Urgent category then
2: return D

jcco
j

3: else if j belongs to the Emergency category then
4: return D

jcco
j

5: else if j belongs to the Priority category then
6: return D3

j

7: else if j belongs to the Standard or Elective category then
8: return D3

j + 1 (i.e. the next date after pretreatment due date)
9: end if

Algorithm B.4: Algorithm for determining the treatment unit due date for
patient j
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C Arden Scheduler

C.1 Introduction

This chapter discusses the features of the software called Arden Scheduler which
was developed based on the four heuristics discussed in Chapter 7. The software
comprises a booking form which is an electronic form of the request booking
form used in the radiotherapy department at the Arden Cancer Centre. The
Arden Scheduler has two modes in which it generates schedules of appointments:
i) normal, and ii) simulation mode. When in the normal mode, the booking form
is active to be used to capture details on the request forms submitted by the doctor
to the planning unit booking desk. The simulation mode deactivates the booking
form and ensures that the Arden Scheduler is active to simulate the arrival of
request forms (i.e. patients) and creation of the schedules of appointments for
a period of time specified in the simulation mode settings. The software was
developed on a Windows Vista operating system using Java 1.6 and MySQL v5
database software (Oracle Corporation 2010). A database was created using the
MySQL software to hold all the appointments generated by the Arden Scheduler.

In Section C.2, some of the features of the Arden Scheduler in normal and
simulation modes are discussed. Section C.3 then briefly discusses the future
upgrades to the software to be made after a trial by the radiotherapy department
at the Arden Cancer Centre.

C.2 Features of the software

The main interface of the Arden Scheduler is the electronic booking form for
capturing the details of the patients needed by the four heuristics. Figure C.1
is a screenshot of the booking form which is the main interface of the software.
Other features of the software can be accessed using the menus labelled: i) ‘Edit’,
ii) ‘View’, iii) ‘Options’, and iv) ‘Run’.

On the booking form, details of each patient such as the name, number, cancer
diagnosis, treatment, Arden Cancer Centre patient category, targeted due date,
machine to be used in the planning unit, machine to be used in the treatment
unit, prescribed fractions, perceived complexity of the treatment plan (classified
as simple, intermediate and complex in Chapter 5) and the name of their Arden
Cancer Centre doctor can be entered and saved. When the Arden Scheduler
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is running in normal mode, the details of each patients can be added one after
the other into the database system or uploaded from a comma separated values
(CSV) file. Using a command under the ‘Run’ menu, these details are used to
create schedules of appointments the patients. The ‘Run’ menu has commands
for building the schedules of appointments in the normal and simulation mode.
If the software is switched to the simulation mode, the commands for the normal
mode are deactivated and vice versa.

Under the ‘Options’ menu, the mode in which the software runs can be toggled
between normal and simulation mode. In the simulation mode, the electronic
booking form in Figure C.1 and other menus used only in the normal mode are
deactivated.

Different parameters used by the heuristics can be set using the form whose
screenshot is shown in Figure C.2 which is launched from the ‘Options’ menu.
These parameters include the number of overtime slots, reserved slots, alternative
pathways, processing times, maximum JCCO target breaches, treatment plan
verification (i.e. on the simulator) settings and the delays between pretreatment
and treatment unit shown as separate tablets of the form in Figure C.2.

The other settings required by the software are shown in the screenshot in
Figure C.3. The pages of the form in Figure C.3 show that the settings include:
i) the number of machines and facilities available in the radiotherapy department,
ii) maintenance and service dates, iii) bank holidays, iv) doctors, v) working
hours for each machine or facility, and vi) other settings needed by the heuristics.
The form in Figure C.3 is accessed from the ‘Options’ menus. The heuristic
parameters and settings were used in the normal and simulation modes. The
default values of these settings and parameters are the values obtained based on
the data collected from the radiotherapy department.

The form for changing simulation settings can be accessed from the ‘Op-
tions’ menu. On this form, the values of settings such as the probability distribu-
tions of fractions prescribed to patients, radiotherapy (i.e. emergency, palliative
and radical treatments), request form delays, cancer diagnosis, perceived com-
plexities of treatment plans, patient arrival rates and the different options for
simulation runs are input. When in the simulation mode, the values of these
settings can be viewed using graphs and charts such as the pie chart of the per-
centages of the total patients received that each doctor examined shown in Figure
C.5, and the bar chart of the percentage of the total patients prescribed various
numbers of fractions by their doctors, shown in Figure C.6. These graphs and
charts can be accessed from the ‘View’ menu. When the software is run in the
normal mode, such pie charts and bar charts can be plotted for the cumulative
number of patients entered into the system.

The software creates several reports (i.e. text files) with details of waiting
times, machine utilisations and overtime slots usage. Figure C.7 shows a screen-
shot of a text file with details of waiting times obtained after running the software
in the normal mode. Such text files can be created and launched from the com-
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Figure C.1: A screenshot of the Arden Scheduler electronic booking form
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e-Request booking form Submitted on: I~ I 

Patient Information-----------------, rT;:-r~e-::-:at~m-:-e~nt:-d::-:e:-ta:-::il-:-s r---M-ac-h-in_e_s_d_e-ta-ils--.A_d_n_lin~is-t-ra--ti-on-de-t-ai--,ls 

Patient Number: 

Full Name: 

Address: 

Telephone No. 

Sex: 0 Female 6 Male 

Transport required: C) Yes 0 No 

Private patient: 

Patient Status: 

C) Yes 

O ln 

O No 

0 Out Ward: 

Information/Support Radiographer: C) Yes C) No 

Additional information: 

~I 

['0 Save record ~ New record 

Date of decision to treat: L__ __ ____J,~ 
FIRST DEFINITIVE TREATMENT- IQ Yes 

Consultant (Doctor): [-none-

Diagnosis: [-none-

Site to treat: 

C) Pre-Op C) Post-Op Date of surgery: 

Dose: 

Fractionation: L[ --'[Treatment phases: L[1~~·~J 
Concurrent chemo: C) Yes C) No 

JCCO treatment category 

C) Urgent (24 hours) 0 Emergency 0 Palliative C) Radical 

Arden patient category 

e> Urgent 0 Emergency () Priority 6 Standard 0 Elective 

Elective delay Date (ready to treat): 

Reason: 

Two Week Wait: () Yes o, No Date referred: L------'~ 
Target dates e> 62 day @ 31 day 
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Figure C.2: A screenshot of the form for changing settings of heuristic param-
eters used by the Arden Scheduler

Figure C.3: A screenshot of the form for changing the settings of the heuristics
used by the Arden Scheduler

mands under the ‘View’ menu. When the schedules of appointments are created
in the normal or simulation mode, the schedules of appointments can be viewed
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Figure C.4: A screenshot of the form for changing the simulation settings used
by the Arden Scheduler

from the ‘View’ menu using commands for launching a coloured table of the ap-
pointments for scheduled on each slot on each machine. Figure C.8 shows an
example of such a table that has been coloured using five different colours rep-
resenting the Arden Cancer Centre patient categories. This feature should show
the department how the different patient categories are scheduled on the slots of
the machines for a given date. It can be an easy way of visually portraying the
dates when the slots on a machine are fully or nearly-fully booked.

If changes to the created schedule have to be made, the interface for changing
a patient’s appointments for planning, physics, pretreatment or treatment, which
is launched from the ‘Edit’ menu, is shown in Figure C.9. This feature was
included to allow the radiotherapy department to manually create schedules of
appointments to some patients when they deem necessary to do so.
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Figure C.5: A screenshot of the pie charts for the data input as simulation
settings used by the Arden Scheduler
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Figure C.6: A screenshot of the bar charts for the data input as simulation
settings used by the Arden Scheduler
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Figure C.7: An example screenshot of one of the text files created by the Arden
Scheduler
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Figure C.8: An example screenshot of the schedules for a given date created by
the heuristics in the Arden Scheduler

Figure C.9: An example screenshot of one of the forms used to manually edit
schedules created by the Arden Scheduler
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C.3 Future software upgrades

The radiotherapy department at the Arden Cancer Centre will trial the Arden
Scheduler at the end of this project. The main features to be tested include
the creation of schedules of appointments in the normal and simulation mode.
The upload features will be used to load the department’s current schedules of
appointments into the database system from supplied CSV files. Furthermore, the
efficiency of the software will be accessed against the schedules of appointments
created by hand by the radiographers that book patients in the planning unit.
Upgrades to the software should entail all the improvements and suggestions from
the department after the trial.
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Glossary

3D Three dimensional.

ACO Ant colony optimisation.

Adjuvant additive therapy to enhance the effectiveness of another treatment
modality.

A&E Accident & Emergency.

Airway obstruction Blockage of the breathing tubes to the lungs.

Ansari-Bradley test A statistical test which tests if two independent samples
come from the same distribution, against the alternative that they
come from distributions that have the same median and shape but
different variances.

AP1 Alternative pathway 1 scenario.

AP2 Alternative pathway 2 scenario.

AP3 Alternative pathway 3 scenario.

AP4 Alternative pathway 4 scenario.

Bank holiday Public holiday.

BB Branch and bound algorithm.

Betatron Machine that produces high energy X-ray beams used to treat certain
types of cancers.

BIP Binary integer programming.

Brachytherapy Involves inserting radioactive seeds next to tumour inorder to
maximise its destruction.

Bronchoscopy Examination of the passage of air in the lungs using a bron-
choscope.

BT Brachytherapy.
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Cancer Malignant tumours that uncontrollably grow, spread and invade
healthy tissue.

Capacity Hours per unit time that a machine is available for the treatment of
patients.

Carcinoma Cancerous tumours arising in the epithelial tissues of the skin and
mucuous membrane in the glands, bladder, lungs, nerves, glands and
other OARs. Carcinomas make-up 80–90% of all cancers.

Chemotherapy Treatment of cancer using anticancer drugs, highly toxic med-
ications taht destroy cancer cells by interfering with their growth or
preventing their reproduction.

Chi-Squared test A goodness-of-fit test which tests if a sample comes from
a specified distribution, against the alternative that it does not come
from that distribution.

CNS Central nervous system.

CSV Comma separated values.

CT Computed axial tomography.

CT scanner Machine used to take three dimensional images of tumour volume.

Date of booking request The date when the doctor completes a booking re-
quest or logs an electronic request for radiotherapy after agreeing on
a course of radiotherapy that a patient has to take.

Date of decision to treat The date fo the consultation in which the patient
and the oncologist agree the treatment plan for first treatment. It
may be the same date when the booking request is done.

DES Discrete-event simulation.

Dietician Specialist in nutrition.

DoctorAndMachineSlots A procedure for determining finding the corre-
sponding doctor and machine slots for a given operation.

Dosimetry Calculation of the absorbed dose in tissues after exposure to ionis-
ing radiation.

DXR Deep X-Ray machine.

EarliestTreatmentStart A procedure that finds the machine with the earliest
treatment start date for a given set of identical machines.
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EarliestTreatmentStart_AP2 A procedure that finds a sequence of machine
which produces the earliest treatment start date for a given set of
identical machines in the Alternative Pathway 2.

EarliestTreatmentStart_AP3 A procedure that finds a sequence of machine
which produces the earliest treatment start date for a given set of
identical machines in the Alternative Pathway 3.

EBT External beam therapy.

EDD Earliest Due Date.

Endoscopy Examining the inside of the digestive system using an endoscope.

Entity An element in a system that has to be simulated.

ETDD Earliest Treatment Due Date.

FCFS First-come first-serve.

FDT First definitive treatment.

First definitive treatment The first clinical intervention intended to manage
a patient’s disease, condition or injury. In this case,it is meant to
remove or shrink the tumour. Where there is no definitive treatment,
patients receive palliative intervention or palliative care.

Fraction Treatment session attended by patient.

Fractionation Division of the total therapeutic dose of radiation into small
doses to be administered over a period of days or weeks.

Fri Friday.

FSP Flow shop problem.

GA Genetic algorithm.

Glioma Tumour of the brain.

GP General practitioner.

GRASP Greedy randomised adaptive search procedure.

GSP Group shop problem.

HDR High dose rate machine.

HE High energy.
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HFS Hybrid Flow Shop.

High energy linac Linear accelerator that produces 25 MeV electron beams.

HIV Human immunodeficiency virus.

Hormonal therapy Involves using hormones in medical treatment.

Hybrid Flow Shop a shop scheduling problem involving jobs being processed
in a series of production stages, eahc of which has several machines
operating in parallel.

IBU Integrated brachytherapy unit.

IP Integer programming.

JCCO Joint Council of Clinical Oncology.

JSP Job shop problem.

LDD Least doctor delay.

LE Low energy.

Lean Involves removing wastes to add more value to product and work less.

Leukemia Cancerous tumours from blood forming cells.

Linac Linear accelerator.

LNPF Least number of prescribed fractions.

LNPO Least number of pretreatment operations.

LNPTP Least number of prescribed treatment phases.

Locum doctor Is a doctor who replaces a regular doctor when that doctor is
absent.

Lognormal distribution A continuous probability distribution bounded on
the lower side and has 3 parameters: minimum, µ (mean) and σ (stan-
dard deviation).

Low energy linac Linear accelerator that produces 6 MeV electron beams.

LP Linear programming.

LS Least slack.

LWINQ Least Work in Queue heuristic.
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Lymphoma Cancerous tumour orignating in the lymph system.

MacMillan radiographer people working for the MacMillan Cancer Support.

Max. Maximum.

Megavoltage Refers to megavoltage gamma rays, X-rays or electrons that are
capable of penetrating several centimetres of tissue.

Metaheuristics Method of solving complex combinatorial problems using ro-
bust procedures.

Min. Minimum.

Mins Minutes.

MIP Mixed-integer programming.

Mitosis Cell division.

MNOP Most number of operations in the planning unit.

MNSRP Most number of steps in the radiotherapy process.

Mon Monday.

MUPC Most urgent patient category.

MUT Most urgent treatment.

MWT Mean waiting time.

Myeloma Cancerous tumour originating from cells in the bone marrow.

Negative Binomial distribution A discrete probability distribution
bounded on the low side and unbounded on the upper side. Its
parameters include: x (number of trials), p (probability of event) and
k (number of desired events).

Neoadjuvant chemotherapy Treatment given to cancer patients prior to
surgery or radiotherapy.

Neoadjuvant radiotherapy Treatment given to cancer patients prior to
surgery or chemotherapy.

NHS National Health Service.

NRAG National Radiotherapy Advisory Group.

OSP Open shop problem.
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OTR On-treatment review.

Outlining and planning Involves determining the angles and intensity of ra-
diation beams.

Palliative Treatment given to control or prevent symptoms of a disease.

PDR Priority dispatching rule.

Pearson VI distribution A continuous probability distribution which nor-
mally has 4 parameters: minimum, β, p and q.

Phlebotomy Involves opening a vein by surgical incision to remove blood as a
treatment to conditions such as hemochromatosis.

Physicist Generally known as clinical scientist or physics scientist, uses his or
her understanding of mathematics and radiation physics to design, de-
velop and optimise treatment plans for radiotherapy patients. Physics
scientists are also involved in the management of the radiotherapy de-
partment’ infrastructure, especially the treatment machines.

Polycythemia Net increase of red blood cells in the body.

Postoperative radiotherapy Delivering the ionising radiation after a surgical
operation.

Radical Treatment given to eradicate tumours and prolong survival.

Radiographers Deliver radiotherapy treatments and care to patients.

Radioisotope A radioactive isotope of an element.

Radionuclide A radioactive isotope of an element.

Radiotherapy Involves using carefully measured doses of ionising radiation to
treat cancers.

Radiotherapy course Set of fractions prescribed for a patient.

Radiotherapy demand Total number of fractions required per year for a
given population.

RCR Royal College of Radiologists.

SA Simulated annealing.

Sarcoma Cancerous tumour originating in the bone, cartilage, muscle, fibrous
connective tissue or fatty tissue.
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Sat Saturday.

ScatterDoctorDates A procedure for determining an initial date for the plan-
ning unit using r1

j , D
jcco
j , and the patient’s doctor l availability times.

Scheduling Involves allocating scarce resources.

SD Systems dynamics.

Session An attendance for a procedure in the treatment journey for a patient.

Simulator Machine used to take radiographs of the lesion and verify that the
treatment plan is correct prior to administering the ionising radiation.

Spinal cord compression When tumour growths in or near the spine press
the spinal cord and nerves. This results in swelling and reduction in
blood supply to the spinal cord and nerves.

SPT Shortest processing time.

SSM Soft system methodology.

Sun Sunday.

Surgery Removal of tissue using cutting devices in order to treat a disease.

Targeted therapy is a type of medication that blocks the growth of cancer
cells by interfering with specific targeted molecules needed for tumour
growth.

TB Tuberculosis.

Teletherapy Involves delivering the radiation from a source at a distance from
the patient.

Thrombocythemia Disorder in which excess platelets are produced causing
blood clotting or bleeding.

Thrombocytosis Excess platelets in the blood caused by disease.

Thurs Thursday.

Thyrotoxicosis Thyroid gland producing excess hormones and affecting the
body.

TS Tabu search.

Tue Tuesday.
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Tumour Lesion formed by abnormal growth of cells. A tumour can be benign,
pre-malignant, or malignant. A malignant tumour is a cancer.

Tumour volume Malignant tumour growth targeted targeted by cancer treat-
ment modalities.

Two-sample Kolmogorov-Smirnov test A statistical technique which tests
if a sample comes from a specified distribution, against the alternative
that it does not come from that distribution.

UHCW University Hospitals Coventry and Warwickshire.

UK United Kingdom.

Unsealed sources therapy Involves delivering radiation by ingestion or in-
jection of soluble radioisotopes.

UST Unsealed sources therapy.

Vena caval obstruction Blockage of the human heart’s superior vena cava
walls by tumours.

Waiting time Time difference between the date when the decision to treat by
radiotherapy is made and when the first fraction is delivered. Waiting
time is measured in consecutive days and includes weekends and bank
holidays.

Wed Wednesday.

Weibull distribution A continuous probability distribution bounded on the
lower side and has 3 parameters; minimum, α and β, where α > 0 is
the shape parameter and β > 0 is the scale parameter.

Wilcoxon rank sum test A statistical technique used to test if two indepen-
dent samples come from identical continuous distributions with equal
medians, against the alternative that they do not have equal medians.

X-rays Electrically produced penetrating ionising radiation (also called Rönt-
gen rays).
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