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ABSTRACT 

Field experiments were carried out between 2015 and 2016 spring cropping seasons at the 

Royal Agricultural University farm, Cirencester, Gloucestershire, England (51° 42' 33.6" N 

1° 59' 40.7" W) to evaluate spring faba bean cultivars in mixture with wheat towards 

improving sustainable production of home-grown forage for livestock. The four drilling 

patterns and two faba bean cultivars were evaluated against their corresponding sole crops of 

wheat and bean in a randomised complete block design replicated four times. The density of 

bi-crops was decided by substituting half the density of sole crops with additional crop. The 

cropping seasons significantly affected the treatments responses. Bi-cropping system 

significantly outperformed sole cropping system on various plant performances metrics 

across the two years. Bi-cropping increased land productivity up to 50% over sole cropping 

in 2015 with no land productivity advantage in 2016. Bi-cropping showed a significant 

increase in the Chlorophyll Concentration Index (CCI) over sole cropping system. Leaf Area 

Index (LAI), Intercepted Photosynthetic Active Radiation (IPAR) and Radiation Use 

Efficiency (RUE) were significantly higher in bi-cropping over sole cropping system by 

71.4%, 14.8 and 35.7% respectively. Bi-cropping significantly outperformed sole cropping 

by 49.8% whilst giving better weed control, demonstrating its potential to counteract 

herbicide use. Sole bean had the lowest weed control effect compared to sole wheat. Dry 

matter yield and crude protein were significantly higher in bi-cropping than sole cropping. 

Bean N yield and wheat N harvest index was significantly higher in bi-cropping than sole 

cropping. Cropping system did not significantly affect bean crude protein.  Fuego was more 

vulnerable to field biotic stress infestation than Maris Bead. Drilling patterns significantly 

influenced resource-use in bi-cropping systems. Alternate rows significantly influenced 

higher resource-use and land productivity over broadcast bi-cropping. Alternate rows 

arranged as 2x2 spatial configuration had the highest productivity in bi-cropping over other 

drilling patterns treatments. The seasonal variability significantly determined the performance 

of the 1x1 alternate rows treatment. The 3x3 reduced the productivity of bi-cropping. 

Contrasting bean morphological traits distinguished their ecological services on IPAR and 

weed control in the system. Fuego beans had higher wheat crude protein and N uptake than 

Maris Bead. Maris Bead had higher bean seed crude protein than Fuego. The 2015 growing 

season showed improved competitiveness of bi-crops on resource-use than in 2016 growing 

season. Bi-cropping treatments showed potential to mitigate greenhouse gas emissions and 

reduce use of synthetic fertilisers. 
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CHAPTER 1 

 1.1 General introduction 

The increased demand for sustainable home-grown forage highlights the opportunity for low 

input bi-cropping systems and thus the importance of appropriately chosen faba bean 

cultivars and spatial arrangements thus creating an opportunity which will be explored in this 

study.  

The current increasing global human population, urbanisation and income growth are the 

major factors which have influenced the increase in meat consumption. These factors are also 

expected to increase growth in the meat market and the production of protein-rich feeds for 

livestock (FAO, 2013; de Visser et al., 2014).  

In the United Kingdom and other European countries there is a growing interest in the 

promotion of increased production of home-grown protein-rich forage to sustain the domestic 

demand for beef and milk (Anil et al., 1998). This stems from growing social, economic and 

environmental concerns regarding the importation of protein-rich feed materials from South 

America and the United States (European parliament, 2011; Hauslings, 2011). 

Dependence on sole grass forage declining, in line with  the growing competition on the 

grassland for the production of feed, food, biofuels and biodiversity, resulted in  

modifications to the feed production paradigm – moving from grass dependence to wholecrop 

cereal based forages such as wheat, maize and barley (Lüscher et al., 2014; Powell, 2008).  

Wholecrop cereal based forage has the capacity to supply high amounts of energy-rich forage 

diets but contain low amounts of protein (Baghdadi et al., 2016; Sadeghpour et al., 2013). 

Low protein concentration in wholecrop cereal forage has been supplemented with costly 

protein-rich feed materials to balance the diet and sustain desirable levels of milk and beef 

production (Anil et al., 1998).       

The production of wholecrop cereal based forage for ruminants has relied mostly on 

conventional and monoculture farming systems using synthetic fertilizers and herbicides for 

greater forage dry matter yields and weed control (Motavalli et al., 2013; Tilman et al., 2011; 

Mousavi and Eskandari, 2011). The use of agrochemicals and intensive soil tillage has 

consequently resulted in on-site and off-site environmental externalities at the expense of 

obtaining greater wholecrop cereal forage dry matter yield (Altieri et al., 2017). Increased 
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cost of production is one of the negative economic implications associated with wholecrop 

cereal forage production in these systems (Keady et al., 2002).  

Organic based production systems were designed to produce optimum quantities of food of 

high nutritional quality by excluding all agricultural production practices detrimental to the 

environment and wildlife, such as the use of agrochemicals, to attain sustainability. It 

encourages biodiversity, biological cycles and soil biological activities (Röös, et al., 2018; 

Seufert and Ramankutty, 2017; Soil Association, 2002). Pest control can be achieved by 

using appropriate cropping techniques, biological control and natural pesticides (mainly 

extracts from plants). Weed control is managed by appropriate rotations, mechanical 

cultivations, seeding timing, mulching and transplanting (Lutman et al., 2013).  However, 

there are some potential disadvantages such as limited soil nitrogen bioavailability, along 

with greater weed competition can lead to forage dry matter yield penalties and low cereal 

grain protein concentration (Bilsborrow et al., 2013; Ponisio et al., 2015; Gallandt, 2014). 

Requirements for additional labour and excessive cultivations as a method of weed control 

can also lead to soil compaction. The high carbon-to-nitrogen ratio for wholecrop cereals 

residues can slow the release of nitrogen to the system due to immobilisation, which may 

contribute to limit nitrogen availability (Jensen et al., 2015. Therefore, the amount of soil 

nitrogen lost through plants’ uptake can be higher than it can be replenished biologically 

(David et al., 2005).  This shows that the high demand for high quality forage cannot be met 

by wholecrop cereals alone due to the challenges involved with the production of these crops 

organically.  This suggests that organically produced wholecrop cereal based feed for 

ruminants requires supplementation with protein-rich feed materials for a nutritionally 

balanced feed diet (Anil et al., 1998). Alternative strategies have to be sought for organic 

farmers to combat the problem of low protein content of wholecrop cereal based forages.  

Such strategies must include systems that will sustain soil fertility, provide a balance between 

nitrogen fixing and nitrogen demanding crops and improve protein content of cereals whilst 

producing high quality feed to meet the annual requirements of livestock enterprise.   

Since land is limited, the integration of cereals and grain legumes as bi-cropping is 

considered a potential alternative sustainable production strategy able to boost home-grown 

protein rich forage for livestock in low-N input production systems (Baghdadi et al., 2016; 

Sadeghpour et al., 2014; Eskandari et al., 2009; Bulson et al., 1997). This can improve 

nitrogen availability by balancing nitrogen exports from the system through biological 
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nitrogen fixation by the legume bi-crop; improve forage dry matter yields through improved 

use of growth resources; improve the nutrition quality of cereal forage crops due to non-

proportional competition for mineral and other plant growth.  This system may also help 

livestock farmers to access low cost home-grown feeds of higher protein quality and reduce 

dependence on high cost non-forage feed materials (Askew, 2016; Pecetti and Piano, 2000). 

The reduction in pests and diseases result may not only lower production costs than those 

associated with herbicides and insecticides but also less environmental pollution (Mousavi 

and Eskandari, 2011).   Ruminants fed with protein-rich feed retain more energy than those 

fed with low quality fodder (Poppi and McLennant, 2014). This may be attributed to 

increased feed intake, which is easy to chew with less resistance, increased breakdown of 

particles into smaller particles, which help to enhance digestion rate and clearance from the 

rumen than low quality fodder (Giordano et al., 2014). Protein-rich feed diets can produce 

less methane than carbohydrates rich feeds per unit of feed intake (Sauvant and Giger-

Reverdin, 2009).  According to Van Dorland et al. (2007), this can be due to modification of 

fermentation patterns in the rumen towards propionate, which in turn is a hydrogen carrier 

and thus minimises the amount of methane produced.  

Recent statistics indicate that increased faba bean production levels led to increased domestic 

use and potential opportunities for export (Askew, 2016; PGRO, 2017).  The steady increase 

in domestic utilization and exports demonstrates the reliability and future prospects of faba 

bean in the livestock value chain. Jensen et al. (2010), Kopke and Nemecek (2010) reported 

that the faba bean has unique biological attributes which make it a suitable candidate for 

home-grown protein because of its capacity to biologically fix higher nitrogen amounts in the 

soil and  higher concentrations of grain crude protein (Kopke and Nemecek, 2010).   The faba 

bean adapts to a wide range of climatic and edaphic environmental conditions and is very 

compatible with cereal/legume crop mixtures (Jensen et al., 2010).  Faba beans in 

cereal/legumes crop mixtures can potentially facilitate various ecological services ranging 

from protein enhancement in wholecrop cereal based forage to enhanced ecological 

sustainability (Ghanbari-Bonjar and Lee, 2003; Strydhorst et al., 2008; Jensen et al., 2010; 

Chapagain, 2014).   

The management of plant interaction in cereal/legume crop mixtures is crucial to maximise 

growth and productivity. Enhanced benefits are expected from bi-cropping systems when 

interspecific competition between bi-crops is minimised and interspecific co-operation is 
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maximised with use of limited environmental resources (Geno and Geno, 2001). The choice 

of crop varieties, sowing densities and spatial arrangements are some of the determining 

factors for a functional and performing bi-cropping system (Naudin et al., 2010; Dordas and 

Lithourgidis, 2011).       

Currently, the choice of faba bean cultivars suitable for bi-cropping systems in low-N 

environment remains underdetermined.  Farmers’ choice of legume cultivars for bi-cropping 

systems has been based on the historical performance in sole cropping systems (O’Leary and 

Smith, 1999). Additionally, the botany of legumes and cereals differ which further challenges 

the selection of the appropriate cultivar (Tsubo et al., 2004). The differences in morphology 

(straw height or leaf architecture) and growth rates (slowness and earliness of ripening) traits 

among the legume cultivars can determine the productivity of low input bi-cropping systems, 

influenced by the way limited environmental resources are utilised (Taylor and Cormack, 

2002; Belel et al., 2014).   

The most commonly practiced bi-crop spatial arrangements include; a complete mixture of 

bi-crop species within the same row; alternate rows of each crop species; alternate blocks of 

two or more pure bi-crops species; and drilling rows of pure species at right angles to each 

other (Musa et al., 2010).  Spring faba beans and wheat have similar maturity groups 

(Yahuza, 2011b; Klimek-Kopyra et al., 2015). Therefore the spatial rather than temporal 

manipulation of crop combinations due to synchronised maturity dates is the only option for 

the efficient and optimum use of limited environmental resources in spring bi-cropping 

systems (Martin and Snaydon, 1982).   

The work on cereal/faba bean bi-cropping for forage production in the UK is not new. 

Previously, similar bi-cropping studies in low input environments have demonstrated its 

potential in the reduction of importation of protein-rich concentrates feed materials (Bulson et 

al., 1997; Ghanbari-Bonjar, 2000, Ghanbari-Bonjar and Lee, 2002; Ghanbari-Bonjar and Lee, 

2003; Pristeri et al., 2006). The present study was therefore undertaken to address the 

knowledge gap in the productivity of spring wheat/faba bean bi-cropping as whole forage for 

organic based livestock systems by assessing the effects of different drilling patterns and 

contrasting faba bean cultivar combinations.    

Currently, inadequate scientific knowledge regarding the choice of suitable faba bean 

cultivars for a specific drilling pattern for low input spring bi-cropping systems may be 
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answered through this study towards improving sustainable production of home-grown 

protein-rich fodder for livestock production. The study builds  on the outcomes of previous 

bi-cropping studies within the UK where the bi-crops’ spatial arrangement in alternate rows 

maintained the one wheat row to  one legume row (1:1) overtime as an initial solution to 

promote large scale bi-cropping systems under modern mechanised farming systems (Bulson 

et al., 1997).   However, the (1:1) spatial arrangement is not a one size bi-cropping practice to 

fit all faba bean cultivars because newly released faba bean cultivars may have different 

morphological and growth rates traits. Therefore the modification of alternate row spatial 

arrangements in the form of (1:1), (2:2) and (3:3) will not change the concept of alternate row 

drilling, originally designated to accommodate bi-cropping under for large scale 

mechanisation (Bulson et al. (1997), but rather explore further undiscovered opportunities for 

improving large scale bi-cropping for sustainable home-grown and high quality fodder 

production.   

1.2 Research goal 

Based on the above background, a study aimed at improving sustainable production of home-

grown forage for livestock through evaluation of the potential of field bean (Vicia faba L.) 

and wheat (Triticum aestivum L.) variety mixtures as a potential bi-crop opportunity was 

proposed. 

1.3 Study objectives  

(i) To determine the effects of bean growth characteristics on crop canopy growth, light 

interception and weed suppression when sown as a bi-crop in wheat/bean bi-

cropping systems.  

(ii) To measure the effects of the spatial arrangement of wheat and beans bi-crop mixtures 

on resource-use efficiency, canopy growth and disease incidence in wheat/bean 

bi-cropping systems.  

(iii) To determine the effects of spatial arrangements of wheat and faba beans bi-crop 

mixtures on biological yields; relative yield quality; and system productivity. 

1.4 Study hypothesis 

Crop growth habits  
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H0: Faba bean growth habits can significantly influence ecological spatial interspecific 

competition on the use of limited growth resources when sown as bi-crops in 

wheat/faba bean bi-cropping system. 

H1: Faba bean growth habits can significantly influence ecological spatial interspecific 

complementarity on efficient use of limited growth resources when sown as bi-crops 

in wheat/faba bean bi-cropping systems.  

Drilling Patterns (spatial arrangements) 

H0: Different drilling patterns can influence ecological spatial interspecific competition on 

the use of growth resources resulting in decreased productivity of wheat/faba bean bi-

cropping systems. 

H1: Different drilling patterns can influence ecological spatial interspecific 

complementarity on efficient use of limited growth resources resulting in improved 

productivity of wheat/faba bean bi-cropping systems.   

1.5 Conceptual framework 

The conceptual framework (Figure 1.1) was designed in line with the production principles 

and species interactions in bi-cropping systems as described by Vandermeer (1989) and 

Zhang and Li (2003). The scenario H1 hypothesizes the likelihood of ecological interspecific 

complementarity and facilitation occurrence between species components reflected in the 

dependent variable as a result of positive interaction between independent variables.   

The scenario H0 hypothesizes the likelihood occurrence of interspecific ecological 

competition between species components in bi-cropping systems reflected in the dependent 

variable as a result of negative interaction between independent variables. The larger 

phenological, morphological and physiological differences between bi-crops result in better 

use of growth resources.     

1.6 Outline of the thesis  

Chapter Two: Bi-cropping systems in temperate and tropical climates; management of bi-

cropping systems, consequences of modern agricultural practices in the temperate on 

the environment; strengths and weaknesses of bi-cropping systems; drivers which led 

to promote home-grown protein-rich forage and problems associated with feed 
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importation into the UK and other EU countries; the weaknesses and strengths of bi-

cropping systems towards developing sustainable feed production systems; and 

biological strengths of faba bean on influencing feed quality and ecological 

sustainability of production systems.  

Chapter Three: Outlines the materials and methods used for field and laboratory studies. It 

shows different kinds of equipment which supported data collection.   It describes the 

statistical model and statistical software used in carryout statistical data analysis.     

Chapter Four: Results for 2015 core experiment, presented in tables and graphs. Results 

represent different sectors of studies such as yield and components, weed studies, 

solar radiation, fodder quality, nitrogen uptake studies, competition indices, biological 

efficiency of the systems.  

Chapter Five: Results for 2016 core experiment, presented in tables and graphs. Results 

represent different sectors of studies such as yield and components, weed studies, 

solar radiation, fodder quality, nitrogen uptake studies, competition indices, biological 

efficiency of the systems,  

Chapter Six:  Combined results for two cropping seasons showing the treatments responses 

between cropping seasons.   

Chapter Seven: Assessed underground bean root studies. It outlines the introduction, study 

justification, materials and methods, results, discussion and conclusion.   

Chapter Eight: Modelled the GHG mitigation potential of bi-cropping treatments. It outlines 

the introduction, justification, materials and methods, results, discussions and 

conclusion.    

Chapter Nine: discusses the findings for the two cropping seasons to understand bi-cropping 

systems with regards to current context towards sustainable production of feed and 

livestock productivity.     

Chapter Ten: Conclusions, limitations and recommendations. 
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Study conceptual framework 

 

 

 

 

 

 

a. Four drilling patterns 
 

1. 1x1 (wheat/ bean) 
2. 2x2 (wheat/ bean) 
3. 3x3 (wheat/ bean)  
4. Broadcast (wheat/ bean) 
     

b. Bean cultivars 

1. Fuego  (Tall straw)    

2. Maris Bead   (Short straw) 

 

c. Sole wheat and bean 
H1 

H0 

1=Productivity DM yield (+)  

2=Fodder quality (+)  

3=N2 fixation (wheat chlorophyll) (+) 

4=Plant height (+). 

5=LER, RCC, A (+) 

6=Biotic stress (pests & diseases,    

     Soil water, weeds) (+) 

7=GHG emission mitigation (+) 

 

Figure 1.1: Conceptual diagram showing effects of study factors interaction on bi-cropping performance   

 

1=Productivity DM yield (-)  

2=Fodder quality (-)  

3=N2 fixation (wheat chlorophyll) (-)  

4=Plant height (-/+). 

5=LER, RCC, A (-) 

6=Biotic stress (pests & diseases,    

    Soil water, weeds) (-) 

7=GHG emission mitigation (-) 

 

 

Ecological  

Scenarios 

Independent  
Variable 

1 = Growth Habits of Faba Bean Bi-Crops Can      
      Influence Spatial Interspecific Competition    
      For Growth Resources in Crop Mixtures and  
      Reduce The System Productivity.  
 
2 = Drilling Patterns of Wheat and Faba Beans in                
      Bi-Crop   Mixture Can Influence Spatial     
      Interspecific   Competition for Growth   
      Resources and Reduce the System  
      Productivity. 

Dependent 
Variable 

 (-) = positive effect  (+) = positive effect 

1 = Growth Habits of Faba Bean Bi-Crops   
      Can Facilitate Spatial Interspecific   
      Complementarity for Growth   
      Resources in Crop Mixtures And     
      Improve The System Productivity. 
 
2 = Drilling Patterns of Wheat and Faba  
      Bean in Bi-Crop Mixture Can Facilitate     
      Spatial Interspecific Complementarity   
      And Improve The System Productivity.  
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Chapter 2 

Literature review 

2.1 Population growth and feed production systems       

Current increases in human population have exerted much pressure on the limited land for the 

production of feed and food (Salter, 2017; Charles et al., 2010).  Global per capita meat 

consumption is expected to increase proportional to the increasing human population (de 

Visser et al., 2014; FAO, 2013).  Consequently, the market growth for meat due to the rise in 

population, urbanisation and income growth will directly increase the demand for protein-rich 

feed materials in the livestock production systems (De Haan et al., 2010; de Visser et al., 

2014). Feed production in modern agriculture threatens the sustainability of agricultural 

production systems (Fritz, 2014; FAO, 2013).  Modern agricultural production systems rely 

on conventional farming and monocropping systems of genetically identical plants (Mousavi 

and Eskandari, 2011). Such systems depend mostly on the use of agricultural chemical 

fertilizers and pesticides for higher crop yield and crop protection against field pests 

respectively (Mousavi and Eskandari, 2011). Conventional agriculture production systems 

have the capacity of producing higher yield per unit area and satisfying food security and 

nutritional demands for the increasing human population (Mousavi and Eskandari, 2011). 

However, over-reliance on use of agrochemicals in conventional production systems has 

caused serious on-site and off-site environmental externalities (Altieri et al., 2017). Soil 

tillage has resulted in environmental degradation in the form of soil erosion, destruction of 

natural habitats and loss of biodiversity (Motavalli et al., 2013; Altieri et al., 2011).  

Therefore, establishing sustainable agricultural production systems remains an important 

option for sustainable feed production (Grethe et al., 2011).      

2.2 Protein shortage, importation and the environmental   

The European Union (EU) livestock sector remains the largest in the world (EUROSTAT, 

2012). It has been reported the largest importer of agricultural products such as feeds 

worldwide (Sawyer, 2006). Livestock based products are the major sources of protein for EU 

citizens (Anonymous, 2017). Livestock industry is important on the livelihoods and national 

economies of the EU countries. However, the protein deficit illustrated in Table 2.1 and 

Figure 1.0 was reported the major constraint across the livestock value chain (Hauling, 2011). 

The world-trade agreements contributed to this deficit of 70% in the EU because it promoted 
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the imports of grain legumes into the EU which lowered the European production despite its 

increased consumption (Lüscher et al., 2014). This also limited technology development for 

protein crops and made protein production unattractive for the EU farmers. High demand for 

protein-rich soya meal by monogastrics contributed to higher importations because they 

produce higher meat productivity per unit of feed than ruminants (Blue et al., 2013).  The 

importation of protein-rich soya to address the protein gap for both monogastrics and 

ruminants was associated with some limitations such as high costs, inconsistent availability 

and enhanced deforestation in producing countries (de Visser, 2013; Schrader and de Visser, 

2014; Lessen et al., 2011). Additionally, they were largely genetically modified (GM) in 

nature which was against the cultural values of the EU citizens (de Visser et al., 2014).  

Table 2.1: The European Union (EU) protein production (MT) 

Sources: Schrader and de Visser (2014). 

 

Some materials have been removed due to 3rd party copyright. The unabridged version can 
be viewed in Lancester Library - Coventry University.
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Source: de Visser et al., (2014). 

Figure 2.1: Import data for soya bean and soya bean meal and value per ton of meal imported.   

2.3 Domestic protein production for self-sufficiency      

In EU countries, the disadvantages of out-sourcing protein-rich feed materials outweighed its 

advantages because it was associated with risks such as high costs of dependence and the 

shortage of feed imports put the economic viability of the EU domestic meat production at 

risk (European Parliament, 2011). As a result, a Parliament motion was formally proposed 

calling for investing more efforts in plant breeding, research and development, and extension 

to increase home production of protein-rich feed materials (European Parliament, 2011; 

Hauling, 2011). However, addressing the aspects of sustainability of production systems and 

land shortage are key factors to the successful achievement of protein self-sufficiency in the 

EU.  Currently, feed production practices are driven by intensive soil tillage and the use of 

agrochemicals substituting for higher value functional ecosystem services (Altieri et al., 

2017).  As no more land is available for growing crops, increasing the area of protein-rich 

sole crops can reduce the production of carbohydrates crops (Jones et al., 2014; Alexandratos 

and Bruins, 2012). Moreover, the production of grain legume crops in crop rotation under 

organic, may result in low and unstable yields because they are susceptibility to water stress, 

competing weakly against the weeds (Bedoussac et al., 2017). Spatial crop diversification of 

cereal and grain legumes crop mixtures under minimum tillage without agrochemicals, could 

be the possible intervention which may address land shortage problems and provide multiple 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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ecosystem services (Kremen and Miles, 2012) include: increased biodiversity; improved soil 

quality; improved nutrient management; improved water holding capacity; improved weed, 

pest and disease control; reduction of global warming potential; resilient to climate change; 

improved fodder yield, stability and quality (Dobermann and Nelson, 2013; FAO, 2014).   

Additionally, the domestic production of GM-free protein forage crops under low input 

production systems, may help to enhanced widespread adoption and utilisation across the EU 

livestock feed industry due to government restrictive approaches towards GM crops (de 

Visser et al., (2014).  Also, on cultural aspect, it can increase the interest in local feed 

systems among the EU citizens and increase market demand for GM-free feed supply chain 

(Martinez et al., 2010). Protein self-sufficiency cannot be sustained under organic based 

production systems because of higher incidences of weeds which limit nitrogen 

bioavailability to the crop (Corre-Hellou and Crozat, 2005). Organic based production 

systems are limited to soil nitrogen as a result dry matter yield and protein concentration 

cannot be attained at optimum (Andrew et al., 2003; Jensen et al., 2015)     

 2.4 Bi-cropping: potential protein production system and environmental sustainability 

Bi-cropping is an agronomic practice which involves the simultaneous growing of two crops 

on the same piece of land (Ofori and Stern, 1987).  It has, and continues to be a major part of 

traditional farming systems in the developing continents including Africa, Asia and Latina 

America (Walker et al., 2011). About 50 to 80% of rainfed crops are sown as bi-crops in 

most parts of developing world (Wang et al., 2014). Bi-cropping practices have contributed 

greatly to Chinese crop production considering that the country contains 22% of the world’s 

population with only 9% available arable land (Tong, 1994).  In recent years, its’ practise has 

been limited in industrialized nations due to the challenges of weed control and herbicide use 

in conventional farming systems (Crew and People, 2004). Annual bi-crop mixtures are 

currently rare in the EU cropping systems except for animal feed (Anil et al., 1998). 

Nevertheless, numerous ecological service benefits from bi-cropping systems have renewed 

interest in cereal/legume mixtures preferably in low-N input environments (Malezieux et al., 

2009). In developing countries, bi-cropping is influenced by higher levels of subsistence 

agriculture which is mostly practiced in low-input and low-yield farming systems under 

fragmented small landholdings (Ngwira et al., 2012). Bi-cropping in developing countries is 

practised as a strategy to mitigate against crop failure and market fluctuations; meet food 
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preference and demands; protect and improve soil quality, and increase income 

(Rusinamhodzi et al., 2012).   

In developed countries, bi-cropping is a sustainable and efficient practice for improved 

fodder production (Table 2.2) (Anil et al., 1998). It is also being practised as a remedial 

intervention to counteract the use of external non-renewable inputs and improve overall farm 

sustainability after cereal/legume crop rotations (Clement, et al., 1996; Lithourgidis et al., 

2011). Crop mixtures in agricultural system attempt to mimic the natural ecosystems which 

can potentially address the challenges associated with organic systems in developed nations 

(Walker et al., 2011). In developed nations such as the EU, livestock industry plays a bigger 

role of economic growths and livelihoods of citizens (Häusling, 2011).  Therefore, bi-

cropping systems may help in the improvement of fodder quality and balance livestock feed 

(Eskandari et al., 2009). In the UK the use of cereal based crude protein feed is of primary 

importance because non-forage protein feed supplements are costly (Anil et al., 1998).  

Therefore, the integration of cereals forage crops containing low protein contents with grain 

legumes with higher protein content can make a low cost intervention of balanced protein 

supply (Eskandari et al., 2009).  

The higher level of mechanisation practiced in developed countries necessitates the need to 

restrict the number of bi-crops in mixed cropping systems to two (cereal and legume) which 

may help in the designing of suitable mechanised planters for large scale bi-cropping 

systems. This explains why the term ‘bi-cropping’ is consistently used in this research. 

Contrary to developing countries under smallholder farming, more than two crops mixtures 

are sown in the same production unit to achieve food security and insurance against crop 

failure; hence the term ‘intercropping’ applies.  If bi-cropping is becomes an integral part of 

modern production system in developed countries, mechanisation may play a significant role 

in future mechanised farming systems (Bulson et al., 1997). The implementation of 

mechanized bi-cropping is viable in developed countries (Tisdall and Adem, 1990). However, 

wide adoption can be promoted if benefits are assessed by a wider suite of metrics, and via 

wider ‘systems thinking’ through the enactment of schemes, such as payment for ecosystem 

services (Swinton et al., 2007). 
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Table 2.2: Examples of annual crop mixtures in temperate regions and their relative 

ultimate goal of production  
Temperate 

region 
Crop mixtures Purpose Reference 

UK Triticale/lupins (Lupinus albus) Forage Azo et al.(2012) 

UK Maize/kale (Brassica oleracea) Forage Anil et al. (1996) 

UK Wheat Triticum aestivum)/white clover 

(Trifolium repens) 

Forage Balsdon et al. (1997) 

Canada Triticale/peas (Pisum stivum) Forage Berkenkamp and Meeres (1987) 

Turkey Barley/vetch(Vicia sativa) Hay Yasar and Ugur (2003) 

USA Maize/soybean (Glycine max) Forage Sawyer (2006) 

Spain Maize/soybean  Forage Reta Sánchez et al.  (2010) 

USA Wheat/pea Forage Machado (2009) 

Australia Wheat/peas Forage Jacobs and Ward (2013)  

Bulgaria Clover /grass  Forage Viliana (2016) 

USA  Maize (Zea mays)/beans (Lablab spp.)   Forage Armstrong et al. (2008) 

Globally, different crop families can be mixed in bi-cropping systems, not necessarily 

poaceae and fabaceae crop families (Aziz et al., 2015). Such crop mixtures can include 

annual and perennial crops species (Table 2.3).  The poaceae and fabaceae crop families are 

the most dominant crop mixtures in global cropping systems. For instance; in Latin America, 

small-holder farmers grow 70-90% of beans with maize (Francis, 1989). In Africa 98% of 

cowpeas are sown as bi-crops with cereal and 90% of beans in Colombia are also sown as bi-

crops with cereals (Francis, 1989). In the UK, before the demise of bi-cropping in 1940s, 

mixtures of oats (Avena sativa), barley (Hordeum vulgare) with vetch (Vicia sativa) were 

commonly grown for forage (Anil et al., 1998).  Agroforestry (a form of bi-cropping) which 

involves the integration of leguminous plant species with cereals, has increased over a billion 

hectares (Zomer et al., 2009).   
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Table 2.3: Bi-cropping systems in different parts of the world 

Country      Component crops Reference 

United Kingdom Wheat Faba bean Gooding et al. (2007) 

Malawi Maize Gliricidia Akinnifesi et al.(2010) 

Uganda Coffee Banana Asten et al. (2011) 

Ethiopia Tef Sunflower Bayu et al. (2007) 

Bangladesh Wheat Chickpea, Lentil Das et al. (2011) 

Iran Barley Annual Medic Esmaeili et al. (2011) 

India Soybean Pigeon Pea Ghosh et al. (2006) 

Kenya Sorghum Cowpea Karanja et al. (2014) 

China Wheat Maize Gao and Wu (2014) 

Iran Canola Faba Bean Gharineh and Moosavi (2010) 

Bi-cropping, as a planned crop biodiversity, involves intentionally introducing bi-crops in 

space and time which in turn provides long term ecological sustainability and productivity of 

the cropping systems (Jensen et al., 2010; Kopke and Nemecek, 2010).  The bi-crops in the 

same field are neither necessarily sown at the same time nor harvested at the same time, but 

are grown simultaneously for a majority of their growing periods (Lithourgidis et al., 2011).  

Maximum ecological benefits from bi-cropping systems are expected when bi-crop species 

are from heterogeneous rather than homogenous crop families e.g. poaceae and fabacaea 

mixtures (Malezieux et al., 2009). One of the component crops in mixture is either sown 

mainly for food or cash while the other providing other facilitation beneficial services such as 

weed suppression, N2 fixation, soil fertility and moisture retention (Willey, 1979). An 

effective bi-cropping system is assessed by its ability to produce greater total yield on a piece 

of land and uses ecological resources more efficiently than would be used when each crop 

was sown in monoculture system (Inal et al., 2007). 

The appropriate management of intra and interspecific competition for above and 

belowground resources is a major concern in bi-crop mixtures for the maximisation of crop 

growth and productivity (Brooker et al., 2015; Zhang and Li, 2003).  The replacement (or 

substitutive) and additive designs were developed to understand the competition and 

complementarity in bi-cropping studies through management of plant sowing densities 
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(Snaydon, 1994).  The replacement design, involves the reduction of bi-crops plant density to 

one half of their respective sole crop densities while the total relative density of 100% is 

maintained in the habitat (de Wit and van den Bergh, 1965). In additive designs, the total 

relative density of bi-crop species in mixtures can exceed 100% with the main reason to 

induce a most productive bi-cropping system (Snaydon, 1991). Both designs are used in bi-

cropping field research in different regions of world depending on the objective of a 

particular study (Table 2.4a). However, a review by Raseduzzaman and Jensen et al. (2017) 

revealed that about 72% of bi-cropping experiments use replacement designs with only 28% 

use additive bi-cropping experiments because replacement designs give more stable yields 

than additive designs. 

Table 2.4: Examples of cereal/legume bi-cropping designs used across different parts of 

the world 

Country 
Bi-crop 

design 

Bi-crop 

components 
Bi-crop 

arrangements 
References 

Malawi Replacement Cereal-legume Temporal Akinnifesi et al. (2010) 

South Africa Additive Cereal-legume Temporal Chimonyo et al. (2016) 

UK Replacement Cereal-legume Spatial Eskandari and Ghanbari-Bonjar 

(2010) 

Malawi Additive Cereal-legume temporal Ngwira et al. (2012) 

Nigeria Replacement Cereal-legume Spatial Oseni and Aliyu (2010) 

Iran Additive Cereal-legume Spatial Reza et al. (2011) 

Sweden Additive Cereal-legume Spatial Stoltz and Nadeau (2014) 

China Replacement Cereal-cereal Temporal Wang et al. (2015) 

Serbia Additive Cereal-cereal Temporal Dolijanović et al. (2013) 

 

Bi-cropping research has not received so much attention compared to sole cropping because 

of limited methods for statistical analysis of combined yields of both bi-crops and sole crops; 

and also researchers face challenge to understand the processes and mechanisms which 

underpins a functional bi-cropping and the good it delivers (Brooker et al., 2015).   

According to Singh (1983), a measure of bi-cropping advantage against sole cropping can 

either be short term (a single season) or long term (over number of years).  In bi-cropping 

systems yield of component crops are not simply added or compared directly with each other; 

different methods have to be used (Willey, 1979). There are many different methods for 

assessing output yield advantages from intercrops yields as detailed by Willey (1979). The 
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first method compares the component yields against their respective sole crop yield for every 

crop in the mixture and adds the ratios together. Another possible method compares the land 

area needed to obtain similar component yields in sole and intercrops (Reddy, 1990).  

However, the indices for assessing the efficacy of bi-cropping systems are grouped in two 

categories based on the functions they perform. The Land Equivalent Ratio (LER) and its 

related Relative Yield Total (RYT) verifies the effectiveness of bi-cropping systems on 

biological use of environmental resources compared to sole cropping systems (Mead and 

Willey, 1980).  The LER greater than 1.0 shows that benefits of bi-cropping systems are more 

than growing the same bi-crops in sole cropping systems. The LER less than 1.0 shows less 

benefit of bi-cropping systems than sole cropping systems. The partial land equivalent ratios 

(L) (de Wit, 1960), the aggressivity coefficient (A) (McGilchrist, 1965); the relative 

crowding coefficient (K) proposed by Hall (1974); and Competitive Ratio (CR) (Willey and 

Rao, 1980) have been developed to describe the competition and possible economic 

advantages of bi-cropping systems (Ghosh, 2004).  The LER is widely used because it shows 

the patterns of competition outcomes in a bi-cropping system (Bedoussac and Justes, 2011) 

while other indices are limited to assess the productivity of bi-cropping system (Bedoussac 

and Justes, 2011).     

2.5 Categories of bi-cropping 

The categories of bi-cropping systems practiced in different parts of the world are 

summarised in Table 2.5 according to Andrew and Kassam (1979) and Vandermeer (1989). 

 

 

 

 

 

 

 

 

 



  

18 

 

Table 2.5 bCategories of bi-cropping systems practiced in different parts of the world. 

Bi-cropping systems  Description 

Row bi-cropping  It is the simultaneous growing of two crops within the same 

row.  

Strip bi-cropping  It is the simultaneous growing of two crops in different strips 

permitting independent cultivation of each crop but narrow 

enough for the crops to interact agronomically. It allows 

different crop management practices to different crops. This 

category of bi-cropping can be used in agroforestry systems as 

alley cropping where annual crop are grown in between two 

adjacent of tree hedge rows or shrubs (Rao et al., 1997);   

Relay bi-cropping It is the growing of two crops together, in which different species 

share the same area for part of their life cycle. Usually, the second 

crop is planted after the first crop has attained its physiological 

maturity but before it is ready for harvest. This system is mostly 

practised in areas where the growing season is too short to permit the 

cultivation of two crops in sequence (Flesch, 1994); 

Mixed bi-cropping  It is the simultaneous growing of two crops in no distinct row 

arrangements. This type of bi-cropping can be used to classify the 

grass-legume mixtures in pastures used in intensive livestock 

husbandry (Sinoquet and Cruz, 1993).   

  

2.6 Advantages of bi-cropping 

The advantage of bi-cropping system is derived from the “competitive interference principle” 

(Vandermeer, 1989), where the interspecific competition between bi-crop component species 

is less than the intraspecific competition in sole cropping systems (Vandermeer, 1989).  A 

large body of literature reported more advantages of bi-cropping systems than sole cropping 

systems (Jensen, 2006). The component crops species in bi-cropping systems often causes 

yield advantages due to increased capture and efficient use of biophysical resources as 

compared to sole cropping systems (Sadeghpour et al., 2011; Gao et al., 2014).  Greater 

advantages of bi-cropping systems over mono-cropping systems results because of 

morphological, physiological and phenological differences between bi-crops on rooting and 

canopy architectural characteristics; and nutrient requirements (Vandermeer, 1989; 

Lithourgidis et al., 2011).  The advantages of bi-cropping systems are influenced by 

interspecific complementarity and niche differentiation effects as summarised in Table 2.6 

below.      
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Table 2.6: Advantages of bi-cropping sytems over sole cropping systems 
Bi-cropping benefit Crop combinations Region Results References 

Light interception Durum wheat-winter pea France Bi-cropping intercepted solar radiation 10% greater than sole 
cropping. 

Bedoussac and Justes (2011) 

 Maize-cowpea Iran Bi-cropping intercepted greater solar radiation than sole maize. Ghanbari-Bonjar et al. (2010) 

 Maize/legume Greece Bi-cropping intercepted greater solar radiation than sole cropping. Bilalis et al. (2010) 

 Wheat/pea Canada Bi-cropping increased radiation use efficiency than sole wheat. Szumigalski and van Acker (2008) 

 Maize/soybean Kenya Bi-cropping intercepted solar radiation 84.5% greater than sole 
soybean. 

Matusso et al. (2014). 

Nutrient use efficiency and 

availability 

Maize/faba bean China Bi-cropping enhanced phosphorus recovery over sole cropping   Xia et al. (2013) 

 Wheat/faba bean UK Bi-cropping improved nutrient uptake than sole cropping.   Eskandari and  Ghanbari-Bonjar, 2010; 

Bulson et al. (1997) 

 Barley –pea Scotland Bi-cropping reduced nitrate leaching 5.67 times higher than sole 
cropping.  

Pappa et al. (2011) 

 Pea/barley   Denmark Pea bi-crops increased 40-80% N fixation over sole pea. Hauggaard-Nielsen et al. (2001b) 

 Multiple Multiple Higher residual soil nitrogen content of 15% realised from annual bi-

crops habitats with 156% from perennial leguminous bi-crops 
habitats as Faidherbia albida than respective sole cropping. 

Garrity et al. (2010); Li et al. (2013) 

Climate change mitigation   Barley/pea Scotland Bi-cropping reduced NO2 emissions by 30% over sole barley crop. Pappa et al. (2011) 

Weed control Barley/chickpea Iran Bi-cropping reduced weed density and its biomass by 66% and 90% 
over sole cropping.   

Hamzei and Seyedi (2015) 

 Pea/false flax Germany Higher weed suppression in bi-cropping weeds over sole pea by 63% 
and 52% in 2003 and 2004 respectively. 

Saucke and  Ackermann (2006) 

 Wheat/faba bean UK Bi-cropping provided higher weed suppression than sole crops in 
additive series. 

Bulson et al. (1997) 

Disease control Various crop mixtures Various Populations of natural enemies of pests were higher in the bi-

cropping systems compared to sole cropping in 53% of studies, and 

Lithourgidis et al. (2011 
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lower in 9%. Data from a review of 2009 field studies 

 Spring barley/Faba bean/lupin Denmark Bi-cropping reduced brown spot disease on lupin by 80% over sole 
cropping 

Hauggaard-Nielsen et al. (2008) 

Yield advantages Maize/faba bean China Bi-cropping increased total grain yield by 24.8% over sole cropping.  Xia et al. (2013 ) 

 Faba bean/triticale Greece Bi-cropping increased forage dry matter yield by 37% over sole 
cropping.   

Dordas and Lithourgidis (2011) 

 Barley/faba bean Ethiopia Bi-cropping increased productivity and profitability over sole 
cropping. 

Legesse et al. (2015) 

 Maize/ Potato (Solanum 

tuberosum L.) 

 Ethiopia Bi-cropping in additive series increased yield, LER and MAI over 

sole cropping.  

Bantie et al. (2015) 

Yield quality Maize/legume Iran Bi-cropping increased crude protein yield than sole cropping. Javanmard et al. (2009) 

 Oat-faba bean Greece Bi-cropping provided higher total dry matter and protein yields than 
those of faba bean sole crops in 50:50 sowing ratio in additive series. 

Dhima et al. (2014) 

 Corn/soybean Malaysia Forage quality in terms of crude protein improved in bi-cropping 
(13.7%) than sole corn (10.8%) 

Baghdadi et al. (2016) 

 Barley/faba bean; Annual 

medic/Barley 

Canada; 
Iran 

Higher protein yields have reported in bi-cropping than sole 
cropping. 

Strydhorst et al.  (2008) 

Runoff quality Sorghum-cowpea Burkina 
Faso 

Bi-cropping reduced run-off by 20-30% and 45-55% compared with 

sorghum and cowpea sole crops, respectively; soil loss was reduced 

with bi-cropping by more than 50%. 

Zougmore et al. (2000) 
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2.7 Ecological principles of bi-cropping systems 

Competition and facilitation/complementarity ecological concepts determine the outcome of 

species interactions in bi-cropping systems (Vanadermeer, 1989). These principles embrace 

the concepts of ecology, agronomy and plant protection (Brooker et al., 2015). The 

‘competition’ concept is an ecological situation in which one organism can negatively affect 

the environment for another organism through allelopathy and competition (Trinder et al. 

2013).  The ‘Facilitation’ concept is an ecological situation in which one organism may 

positively affect the environment for another organism and such ecological examples include: 

mutualism and complementarity (Brooker et al., 2015). Nitrogen fixation in cereal/legume 

crop mixture is a typical example of facilitation concept.   

2.8 Crop species interaction in bi-cropping systems 

Competition and complementarity/facilitation are the most important ecological interactions 

that occur in bi-cropping systems (Gebru, 2015).  Competition is a negative interspecific 

interaction which occurs when a shared available growth resource is in limited supply 

(Jensen, 2006). Interspecific competition and complementarity take place simultaneously in 

many bi-cropping systems (Geno and Geno, 2001). According to Vandermeer (1989) 

obtaining the net LER >1 in bi-cropping systems means that complementarity facilitation is 

contributing more to species interaction than the competitive interference. Similarly, a net 

LER <1 means that interspecific competition effects dominates over complementarity 

facilitation effects.  However, competition can improve biological nitrogen fixation in 

cereal/legume crop mixtures (Hauggaard-Nielsen et al., 2008; Fujita et al., 1992). Ecologists 

differentiated competition as ‘intra-specific competition’ which occurs between crop species 

of the same family of plants and the negative impacts are severe because of identical resource 

needs and niches (Yoda et al., 1963; Beets, 1982) and ‘inter-specific competition’ takes place 

between dissimilar crop species in a habitat (Beets 1982; Park et al., 2003). According to 

Willey (1979) three competitive relationships which take place between crop components in 

bi-cropping systems include: ‘mutual inhibition’ a competitive relationship where the actual 

yield of each crop species is less than expected; ‘mutualism’ a competitive relationship where 

the yield of each species is greater than expected; and ‘compensation’ a competitive 

relationship where the yield of one crop is less than expected, but the yield of the other 

crops(s) and total yield of bi-crop are greater than expected.    
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On the other hand, complementarity facilitation interaction contributes more than competition 

interference in the bi-cropping habitat towards improving land use efficiency (Geno and 

Geno, 2001). Temporal and spatial complementarities are the key features of bi-cropping 

habitats because they are responsible for the improvement of yield gains and ecological 

services benefits (Willey, 1979; Jensen, 1996).  Complementarity facilitation benefit is 

widely reported especially on its significant impact on nutrient-poor soils in agroecosystems 

(Hauggaard-Nielsen et al., 2005). Similarly, phosphorus liberalisation for plant uptake from 

insoluble P complexes with Calcium (Ca2+), Aluminium (Al3+) and Iron (Fe3+) is achieved 

with complementarity facilitation (Maliha et al., 2004). The temporal complementarity effect, 

distinguishes the growth patterns between bi-crops in time which directly influence crops’ 

environmental use at different times (Gebru, 2015). The spatial complementarity effect on 

below and aboveground morphological differences on root patterns and canopy architecture 

may facilitate better use of available resources in bi-cropping systems. The crop components 

may ably exploit the soil layers or canopy heights at different times in the same bi-cropping 

habitat (Gebru, 2015).  In a moisture limiting environment, bi-crops species with different 

root systems may minimise the degree of competition for water (Francis, 1989). Spatial 

complementarity effects in bi-cropping systems may improve water use over sole cropping 

systems through increased water availability and increased water partitioning into the 

economical part of the crop (Willey, 1990). Benefits of symbiotic interaction, mediated by 

Vesicular Arbuscular Mycorrhiza (VAM) fungi in association with roots of bi-crops can 

improve exploration of immobile phosphorus and soil moisture for plant use due to spatial 

complementarity effects (Dakora, 2003).  Physiological differences between bi-crops can 

facilitate improved biological nitrogen fixation due to differences in nutrient requirements 

(Jensen, 1996).  The trait complementarity effects in tropical crop mixture system termed as 

‘three sisters’ comprising of maize (Zea mays), beans (Phaseolus vulgaris) and squash 

(Cucurbita spp) has been reported by Postma and Lynch (2012).  The squash acts as 

groundcover during the early season, reducing competition with early-season weeds and 

water losses by evaporation. The subsequent growth of maize and beans maintains canopy 

humidity during the later season and maximizes the utilization of solar radiation.   
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2.9 Challenges for bi-cropping systems 

There is lack of practical management options for using agrochemicals, irrigation and 

harvesting in bi-cropping systems (Anil et al., 1998). The advanced mechanisation designed 

for monocropping systems cannot be used efficiently in bi-cropping systems (Gebru, 2015).  

Excretion of toxic substances by one of the component bi-crops as a territorial defensive 

mechanism for limited growth resources can negatively affects optimum performance of the 

companion bi-crop (Muller, 1996).  Reduction in yield may occur in bi-cropping systems due 

to intense competition (Thole, 2007). Due to the challenges of evaluating bi-cropping 

experiments, the number of crop scientist to investing in bi-cropping research to improve the 

system is limited (Parkhurst and Francis, 1986).   

2.10 Aspects for consideration in bi-cropping systems 

The choice of bi-crops with different maturity dates may provide interspecific 

complementarity benefits and subsequent higher yields opportunities due to distinct 

differences in growing periods and demands for growth resources (Dong et al., 2018). This 

may separate the maximum demand periods for nutrients, water, and aerial space between bi-

crops (Jensen, 2005). Reddy and Reddi (2007) reported the peak light demand for maize at 60 

days after planting while at the same time the green gram (Phaseolus aureus) bi-crop beans 

was ready for harvesting in maize/green gram bi-cropping system. Li et al. (2011) reported an 

effective decreasing in soil mineral nitrogen accumulation and increasing crop nitrogen use 

efficiency in wheat/faba bean and maize/faba bean mixtures with different maturity dates. 

The selection of suitable crop varieties for bi-cropping systems may help in the reduction of 

the competition between bi-crops not only by spatial arrangement, but also by their ability to 

exploit soil growth resources (Seran and Brintha, 2010). The mixture of cereals and legumes 

could be more valuable because the component crops can utilize different sources of nitrogen 

(Jensen, 1996).  However, certain bi-crop combinations can have negative effects on the yield 

of the bi-crops.  For instance, Mucuna (Mucuna utilis) can reduce maize yields when sown as 

a bi-crop while cowpeas (Vigna sinensis) and green gram (Phaseolus aureus) had much less 

effect on maize when sown as bi-crops (Agboola and Fayemi, 1971).  The time of planting 

may influence the performance of bi-crops in mixture. In Ghana, sowing maize and soybean  

bi-crops at the same resulted in significantly higher values for leaf area index (LAI), crop 

growth rate (CGR) and net assimilation rate (NAR) compared to delayed planting treatments 
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(Addo-Quaye et al., 2011). The seed rate or sowing density can determine the performance of 

bi-cropping system. Sowing full seed rate of each bi-crop may result in intense overcrowding 

hence competition (Seran and Brintha, 2010).  Morgado and Willey (2003) reported a 

reduction in maize dry matter yield of individual maize bi-crop plant with increased plant 

population of the bean bi-crops.  Bulson et al. (1997) reported significant increase in nitrogen 

content of the wheat grain and whole plant biomass with increased bean bi-crop density 

which was reflected in significant increase in grain protein at harvest. However, the total N 

accumulated by the wheat, decreased with increased bean density due to a reduction wheat 

biomass. 

2.11 Cereal/grain legume bi-cropping systems 

Cereal/grain legume crop mixtures is the most commonly practised among the annual crops. 

It is the most efficient and successful crop mixture (Francis, 1989). Its greater efficiency is 

attributed to resource use complementarity in the utilisation of different sources of nitrogen 

by bi-crop components in mixture (Jensen, 1996; Bedoussac and Jutes, 2011). It offers 

various ecological facilitation services especially under low-N environments which 

contribute to successful performance of bi-cropping systems (Altieri, 1999).  The provisions 

of multiple ecological services under low-N environments, makes it more attractive and 

suitable for organic farming systems where use of agrochemicals is strictly forbidden (Jensen, 

1996; Hauggaard-Nielsen et al., 2008). The grain legume bi-crop remains the backbone crop 

for the successful organic farming production systems because it satisfies the nutrition, 

economic and environmental sustainability concerns (Malezieux et al., 2009; Gomiero et al., 

2011). In the temperate regions, the cereal/grain legume crop mixture in low input systems 

has the potential to increase protein-rich fodder and sustainability of agroecosystems (Anil et 

al., 1998). The potential grain legumes evaluated under low N-input in temperate regions in 

combination with small grains cereals crops (wheat/barley/oats) include: faba bean (Vicia 

faba L.; Tosti and Guiducci, 2010; Dordas and Lithourgidis, 2011; Dhima et al., 2014; 

Chapagain, 2014; Agegnehu et al., 2006; Ghanbari-Bonjar, 2000); pea (Pisum sativum; 

Ghaley et al., 2005; Subedi, 1997);  lentil, (Lens culinaris L.; Dusa, 2009) and lupin (Lupinus 

albus L.; Azo et al 2012).  

  



  

25 

 

 

2.12 Significance of grain legume bi-crops 

2.12.1 Nitrogen effects on bi-cropping systems 

Nitrogen is the most important macronutrient for most crops (Hauggaard-Nielsen et al., 

2009). Inorganic nitrogen fertiliser application to the cereal bi-crop in cereal/grain legume bi-

cropping system particularly during early growth stages can strongly affect species 

complementarity resulting in reduced amount of N fixed, reduced legume yield and increase 

cereal yield (Molaaldoila et al., 2017). Late nitrogen application may have no effect on 

overall symbiotic nitrogen fixation and yield of the legumes but can increase protein 

accumulation of the cereal crop (Stark and Tindall, 1992; Zebarth et al., 2007; Bedoussac et 

al., 2014). Highest cereal fodder dry matter and lowest cereal crude protein yields can result 

at higher rates of nitrogen while contrasting results can occurred with no nitrogen fertilizer 

application (Zebarth et al., 2007).  The cereal crude protein yield reduction at higher nitrogen 

rates was influenced by the dilution effect on the nitrogen in the cereal (Foster and Malhi, 

2013). Reduction in biological nitrogen fixation potential of the grain legume bi-crop with 

application of higher rates of nitrogen rates has been widely reported (Stern, 1993; Hauggard-

Nielsen et al., 2009; Sarr et al., 2015). However, inorganic nitrogen application up to 100 

kgN ha-1 was recommended to sustain productivity in wheat/faba bean bi-cropping systems 

(Ghanbari-Bonjar and Lee, 2002).   

The overall efficiency of the cereal/legume bi-cropping system depends on low levels of soil 

nitrogen, an edaphic condition which favour higher fixation of atmospheric N2 by the legume 

bi-crop and reduced competition for soil nitrogen with the cereal component (Hauggaard-

Nielsen et al., 2008). The productivity of bi-cropping systems with regard to yield advantage 

is greater under low input (Ghambari-Bonjar, 2000; Jensen et al., 2010).  Studies by Rao et 

al. (1987) reported comparable yields between unfertilised cereal bi-crops and fertilised sole 

cereal crop. Application of inorganic fertiliser to the cereal bi-crop may depress the yield of 

the component legume bi-crops (Ananthi et al., 2017; Corre-Hellou et al., 2011). Similar 

findings were reported by Ghanbari-Bonjar (2000) as shown in Table 2.7.  A review by 

Hiebsch and McCollum (1987) showed that 472 bi-cropping field experiments had greater 

advantage when the cereal bi-crops were under low input than if optimum nitrogen was 

applied.       
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Table 2.7: The effect of nitrogen rates and cropping system on percentage of bean total     

                   dry weight. 

Source: Ghanbari-Bonjar (2000). 

 

2.12.2 Nitrogen transfer between legumes and cereals in bi-cropping systems   

In cereal/grain legume bi-cropping systems, nitrogen transfer to the non-legume companion 

crop species is facilitated by improved soil fertility; biological nitrogen transfer through root 

exudates and root connections between  the donor (N2-fixing plant) and a receiver (non N2-

fixing plant) (Aminifar and Ghanbari, 2014; Johansen and Jensen, 1996).   Direct and indirect 

N transfers are the two main pathways through which N is transferred between bi-crop plants 

determining the benefit of bi-cropping system (Dwivedi et al., 2015).  The direct N-transfer 

involves the activities of mycorrhizae and their hyphal network connecting the donor and 

receiver plants, known as common mycorrhizal networks (CMN) (Newman, 1988).  The 

process involves extension of the hyphae from the roots of mycorrhizal plants to the roots of 

non-mycorrhizal species in a bi-cropping habitat (He et al. 2003).  The indirect N-transfer 

however, is related to the release of soluble nitrogen in the form of ammonia (NH4
+) and 

nitrates (NO3
-) from the legumes to the soil and subsequent movement to the roots of receiver 

cereal plants through mass flow or diffusion mechanisms (San-nai and Ming-pu, 2000).  

Nitrogen inter-plant N transfer can occur within the same cropping season (Chapagain, 2014). 

However, the extent to which this is true is still a subject of intense debate (Francis, 1989) 

because much evidence has been reported to occur on mixed grass/legume swards because of 

their long time co-existence in the field and closer root proximity than most bi-cropping 

Some materials have been removed due to 3rd party copyright. The unabridged version 
can be viewed in Lancester Library - Coventry University.
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systems whose root close proximity is determined by component crop densities (Giller et al., 

1991; Fujita et al., 1996) and spatial arrangements. According to Høgh-Jensen and 

Schjoerring (2000), direct nitrogen transfer on cereal/grain legumes is evident under 

controlled studies.   

Nitrogen transfer in cereal/grain legumes mixtures is more evident and successful in poor 

soils and low input agroecosystem environments (Hauggaard-Nielsen et al., 2005; Brooker et 

al., 2015; Dwivedi et al., 2015). The greater facilitation of nitrogen transfer by grain legumes 

in such environmental conditions elucidates the significance of crop diversification of 

modern farming systems as a global response to the challenges of future agriculture (Altieri 

1999; Malézieux et al., 2009).  Grain legumes are globally considered backbone of organic 

agricultural and food systems for their ability to reclaim degraded ecological services in 

agroecosystems (Kopke and Nemecek, 2010; Jensen et al., 2010). Low input cereal/grain 

legume bi-cropping systems can potentially increase cereal grain protein (Table 2.8) over sole 

cereal cropping systems (Mariotti et al., 2011). Crude protein enhancement in cereal bi-crops 

under low input cereal/legume mixtures is driven by low competitiveness of the grain legume 

for mineral soil nitrogen in the system compared to the monocropped cereal. Additionally, 

interspecific competition for light, water and other nutrients restrict biomass production for 

the cereal bi-crops compared to sole crops (Gooding et al., 2007). Inorganic nitrogen 

fertilizer application, may reduce wheat grain crude protein content due to dilution effects. 

Applied nitrogen fertiliser end up in a greater accumulation of cereal dry matter, vegetative 

biomass and grain yield without necessarily being translated into improved wheat grain 

protein content (Lemaire and Gastal, 1997). Grain legumes assimilate more of its total fixed 

N2 to the grain justifying why they contain higher grain crude protein content (Hauggaard-

Nielson et al., 2006). If the grain legume over-dominates the cereal bi-crop in mixture, it 

makes the systems less advantageous on enhanced N2 fixation and transfer to the cereal bi-

crop (Jensen, 1996).   
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Table 2.8: The effect of barley/grain legume crop mixtures on crude protein 

concentration comapred to barley sole cropping.      

 

Source: Strydhorst et al. (2008). 

 

2.13 Faba bean (Vicia faba L.) 

Faba bean (Vicia faba L.) also known as broad bean and horse bean belongs to the genus of 

Vicia of the leguminoseae within the popilunoideae sub-family (Singh et al., 2010).  It is one 

of the earliest domesticated food legume crops in the world (Osman et al., 2010).  The Far 

East is believed to be its origin before spread to Europe, along the coast of North Africa to 

Spain, along the Nile River to Ethiopia (secondary centre of origin), and to India from 

Mesopotamia (Long et al. 1989). It is the commonly cultivated among the five species of the 

genus Vicia (Duc, 1997). It is cultivated for human consumption in developing countries 

because of its protein quantity (25-37%) and quality (Table 2.9; Rubiales, 2010).  These 

attributes make it a suitable substitute for meat and skimmed-milk. It is a source of livestock 

and poultry feed in developed countries (Table 2.9; Flores et al., 2012). The trend of 

cereal/faba bean research and purpose over time in developed regions is shown in Table 2.10. 

Antinutritional factors are commonly associated with pulses (Norton et al., 1985). 

Oligosaccharides, tannins, and vicine-convicine are the major elements of concern in faba 

bean (Norton et al., 1985). Oligosaccharides contribute to gases accumulation in the 

alimentary canal, tannins impart a bitter flavour to the seed, and vicine-convicine aglycone 

derivatives inflict the rare genetic disorder favism (Crepon et al., 2010).  The 

oligosaccharides, tannin and vicine-convicine are mainly concentrated within mature seeds, 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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the seed coat, and cotyledons of the developing seed respectively.  To date, faba bean in 

Europe ranks second in area and production after pea (Baddeley et al., 2013). It is a very 

promising protein value crop compared to other grain legumes (Strydhorst et al., 2008; 

Jensen et al., 2010; Multari et al., 2015). The suitability of faba bean for bi-cropping systems 

was verified by multi-locational agronomic exploratory field experiment replicated across 

Europe between 2003 and 2005 (Table 2.11) (Pristeri et al., 2006).           

Table 2.9: The distribution of cereal/faba bean production systems and its utilisation in 

different regions of the world 
Crop combination Country Utilisation Reference 

Wheat /Faba bean   Egypt Food   Abdel-Wahab and Elmanzalawy (2016) 

Wheat/Faba bean Ethiopia Food Agegnehu et al. (2008) 

Wheat and field beans UK Forage   Bulson et al. (1997) 

Durum wheat/faba bean Italy Forage De Stefanis et al. (2017) 

Faba bean/oat/wheat Greece Forage Dordas and Lithourgidis, (2011) 

Wheat or maize/Faba bean  China Forage Fan et al. (2006) 

Wheat/Faba bean Ethiopia Food Fikadu et al. (2017) 

Wheat /Field bean Denmark Forage  Ghaley et al. (2005) 

Wheat /Faba bean UK Forage  Ghanbari-Bonjar and Lee (2002) 

Barley/Faba bean   Denmark Forage  Knudsen et al. (2004) 

Barley/Faba bean Ethiopia Food Legesse  et al. (2015) 

Faba bean/Maize China Forage and food Mei et al. (2012) 

Faba bean/lupin Canada Forage Strydhorst et al.  (2008) 

Wheat /Faba bean   Morocco Food Wahbi et al. (2016) 
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Table 2.10: The trend of cereal/faba bean research and purpose over time in developed 

countries 

Cropping system Country Purpose Author 

Maize/faba bean USA Forage Murphy et al.  (1984) 

Wheat/faba bean Canada Forage Berkenkamp and Meeres (1987) 

Oats/faba bean Canada Forage Berkenkamp and Meeres (1987) 

Burley/faba bean Canada Forage Jedel and Helm (1993) 

Wheat/faba bean UK forage Bulson et al. (1997) 

Wheat/faba bean UK forage Ghanbari-Bonjar and Lee (2003) 

Wheat/faba bean UK Forage Eskandari and Ghanbari-Bonjar  (2010) 

Maize/faba bean Sweden Forage Stoltz and Nandeau (2014) 

Oat/faba bean Greece Forage Dhima et al. (2014) 

Barley/faba bean Italy Forage Mariotti et al. (2015) 

 
Table 2.11: Grain yield (g m-2) and LER of faba bean and wheat in additive, 

replacement series and sole crop (SC) in UK 2003-2005 

                        Grain Yield (g m-2) LER yield 

Treatments Faba bean wheat 

Faba bean 

PLER 

Wheat      

PLER 

Total  

LER 

Spring sowing     

F100 W100 123±37 179±7 0.58 0.86 1.44 

F50 W50 98±17 172±10 0.46 0.83 1.29 

Sole  crop 211±13 208±10    

Winter sowing     

F50W50 275±67 96±10 0.82 0.46 1.28 

Sole crop 336±38 210±38    

Source: Pristeri et al. (2006). F50W50 stands for a 50:50 sowing ratios of faba bean and wheat in a replacement series. 

F100W100 stands for a 1:1 sowing ratios of faba bean and wheat in an additive series. PLER, Partial Land Equivalent 

Ratio; LER, Land Equivalent Ratio   

2.13.1 Strengths of faba bean in bi-cropping systems 

Previously, pea, common vetch and lupin were the common legume bi-crop components with 

wheat, barley and oat in cereal/legume bi-cropping systems (Berkenkamp and Meeres, 1987; 
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Caballero et al., 1995; Lithourgidis et al., 2007; Hauggaard-Nielsen et al., 2007; Bedoussac 

and Justes, 2011). Recent cereal/faba bean bi-cropping studies, proved faba bean a superior 

bi-crop legume compared to peas mainly due to its wide adaption to cereal-growing areas of 

the world (Robertson, 1996), tolerance to broomrape Orobanche crenata, a parasitic weed 

(Robertson 1996) and Aphanomyces, a soil borne disease (Jensen et al., 2010), higher grain 

protein and tall stem strength advantage (Ghanbari-Bonjar and Lee, 2003; Strydhorst et al., 

2008; Lithourgidis and Dordas, 2010; Jensen et al., 2010).  

Faba bean can facilitate ecological sustainability of agroecosystems, offer nutritional values 

(foods and feeds) and economic benefits (Kopke and Nemecek, 2010). It is adapted to a wide 

range of climatic and edaphic diversity (Jensen et al., 2010).   It can potentially fix up to 648 

kg N/ha, more than other grain legumes as demonstrated in Figure 2.2 (Briggs et al., 2005) 

and this is one of the fundamental agronomic advantages which makes it suitable for organic 

farming systems. About 96% of its total Nitrogen fixed comes from Biological Nitrogen 

Fixation activity (Peoples et al., 2009). A wide range of N2 fixed (15 to 648 kg N ha-1) is a 

result of variations in environmental conditions; genotype types and methods of evaluating 

Nitrogen fixation (Kopke, 1987). The overall grain yield of faba bean shows a high 

correlation with nitrogen fixation (Kopke and Nemecek, 2010).  Because of its higher N2 

fixation capacities, fertilization of a cereal following faba bean can be significantly reduced 

up to 30-50 kg N ha-1 without yield loss compared to a cereal-cereal rotation (Prew and Dyke, 

1979; Kopke and Nemecek, 2010). It can tolerate to soil mineral nitrogen levels up to 20 kg 

N ha-1 before the negative effects can impact on its growth and physiological performance 

(Mwengi, 2011). The substantial amount of nitrogen available in the bean seed influences its 

tolerance to soil nitrogen during early growth stages (Richards and Soper, 1982).  It may 

facilitate higher biological weed suppression in bi-cropping systems than sole bean cropping 

systems which can result in complete reduction on reliance on herbicide use (Ghanbari-

Bonjar, 2000; Chapagain, 2014).  Most of the livestock production systems have for a long 

time depend heavily on off-farm purchase of protein feed concentrates (Kopke and Nemecek, 

2010; Anil et al., 1998). Faba bean in crop mixture can facilitate cereal grain protein quality 

and make it potential for higher market value (Gooding et al., 2007). Faba bean as a bi-crop 

in low input system, with substantial amounts of crude grain protein, can help to counteract 
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external sources of protein rich feeds and reduce expenditures associated with importation 

(Hauggaard-Nielsen, 2006; Anil et al., 1998).  

 

2.14 Sustainability of bi-cropping systems 

FAO (2014) defined sustainable agriculture as the ability of the agroecosystem to maintain 

productivity in spite of major disturbances that are caused by intense or large perturbation.   

Modern agriculture practices are accountable for the negative environmental externalities 

such as soil erosion; environmental pollution; loss of natural habitat and biodiversity; and 

overall loss of ecological services in agroecosystems (Horrigan et al., 2002).  Bi-cropping, in 

low input environments in interaction with indirectly associated biodiversity shown in Figure 

2.3 form major attributes which increase the complexity of bi-cropping system to performing 

sustainable ecological services outside the mandate of food production (Malézieux et al., 

2009; Altieri, 1999). Such ecological services which are in line with sustainability include: 

minimise use of external non-renewable inputs for crop production, improves soil fertility 

through decomposition, nutrient recycling and biological nitrogen fixation (Jensen et al., 

2010); improves resilience and stability of agricultural systems against environmental 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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degradation (Altieri et al., 2015); improves soil buffer against extreme soil pH and nutrient 

availability (Dordas and Lithourgidis, 2011);  weed suppression (Hauggaard-Nielsen et al., 

2007) facilitates biological control against pests and diseases (Trenbath, 1993); increase 

microbial diversity for enhanced the facilitation of water and nutrient transfer by vesicular 

arbuscular mycorrhizae (He et al., 2003). Bi-cropping system at food system level, may 

sustainably offer improved protein important for human health and livestock feed 

(Tharanathan and Mahadevamma, 2003). At production system level, bi-cropping systems is 

low input due to high N2 fixation by the beans bi-crops and may contribute towards 

mitigating greenhouse gases emissions (Lemke et al., 2007). At cropping system level, bi-

cropping systems, due to crop diversification can sustainably contribute towards breaking the 

life cycles of pest and diseases and also help to balance the deficit in plant protein production 

in many areas of the world, including Europe (Jensen et al., 2010). 
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(Number of cultivated species) 

 

Source: Malézieux et al. (2009) 

Figure 2.3: Relationship between planned biodiversity (plant species introduced and 

cultivated intentionally by the farmer) and associated biodiversity (species that colonise the 

agroecosytem). 

 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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2.15 Spatial arrangements  

Spatial arrangement and sowing density are the main factors which may influence yield and 

quality of bi-crops in mixture (Aziz et al., 2015). Reducing interspecific competition is one of 

the major concerns to realise advantages of bi-cropping systems (Baidoo et al., 2012).  

Spatial arrangement through manipulation of row orientation of bi-crops is one way of 

reducing interspecific competition by promoting resource complementarity which allows bi-

crop components to acquire limited resources from different spaces, at different times or 

utilize different forms of the resources (Bulson et al., 1997) resulting in increased dry matter 

yield (Bedoussac et al., 2015).  The alternate row spatial arrangement is suitable to attain 

ecological spatial interspecific complementarity for bi-crops with similar maturity groups 

such as spring crops (Martin and Snaydon, 1982; Klimek-Kopyra et al., 2015). Complete 

mixing of the crop species within the rows, alternate rows of pure crop species, alternate 

blocks of two or more rows of pure crop species or even cross-drilling rows of pure crop 

species at right angles to each other are the commonly practiced spatial arrangements in bi-

cropping systems (Musa et al., 2010).  However different crop combinations may perform 

differently to a given similar spatial arrangement due to differences in crop morpho-

physiological plant characteristics (Musa et al., 2010).  Lauk and Lauk (2008) and 

Aynehband et al. (2010), reported better performance of barley/peas, oats/peas and 

maize/amaranth bi-crop mixtures for within row spatial arrangement.  On the other hand, 

Martin and Snaydon (1982) and Dubey et al. (1995) reported highest yield performance of 

barley/beans and sorghum/soybean bi-cropping systems for alternate row spatial 

arrangement. Langat et al. (2006) and Megawer et al. (2010) reported better performance of 

2:2 alternate rows for sorghum/groundnuts and barley/lupin crop mixtures respectively. 

Spatial arrangement may help to achieve spatial complementarity for bi-crop mixtures with 

synchronised peak demand for nutrients, water and solar radiation (Klimek-Kopyra et al., 

2015). The facilitation variability effects of different spatial arrangements for different bi-

crop combinations is summarised in Table 2.12.  
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Table 2.12:  The influence of geometrical row configurations on bi-cropping systems’           

performance 
Bi-cropping system Country Row configuration Outcome Reference 

Barley /annual medic   Iran 1:1 Improved forage yield and quality Sadeghpour et al. (2013) 

Barley /annual medic   Iran 6:6 Reduced forage yield and quality Sadeghpour et al. (2013) 

Barley/faba bean Ethiopia 1:1 Increased bean seed  than Legesse et al. (2015) 

Barley/faba bean Ethiopia 3:3 Reduced bean seed yield Legesse et al. (2015) 

Barley/Lupin Egypt 1:1 Induced competition Megawer et al. (2010) 

Barley/Lupin Egypt 2:2 Induced complementarity Megawer et al. (2010) 

Barley/pea Canada 1:1 Increased productivity by 50% Chapagain and Riseman (2014) 

Barley/pea Canada 1:1 Improved soil nutrient balances Chapagain and Riseman (2014) 

Maize/cowpea Nigeria 1:1 Highest total maize grain  Iderawumi  (2014) 

Maize/groundnuts Srilanka 2:2 Higher LER over sole crop Sutharsa and Srikrishnah (2015) 

Maize/haricot bean Ethiopia 1:1 Higher grain maize yield  Hirpa  (2014) 

Maize/Soybean   China 1:3 Improved silage quality Htet at al.(2016) 

Sorghum/ cowpea   India 2:2 Higher protein forage and yield Mishra et al. (1997) 

Sorghum/groundnuts Kenya 2:2 Improved productivity (LER=2.1) Langat et al. (2006) 

Maize/groundnuts Ghana 1:1 Increased productivity Konlan et al. (2013) 

Wheat/faba bean Iran 1:1 Reduced soil temperature Eskandari & Ghanbari-Bonjar, (2009) 

Wheat/faba bean UK 1:1 Increased LER (1.27) Ghanbari-Bonjar (2000) 

Wheat/Gram Pakistan 10:10 Reduced wheat grain yield Munir et al. (2004) 

Wheat/Gram Pakistan 4:4 Increased wheat grain Munir et al. (2004) 

Wheat/Lentil Bangladesh 1:1 Increased LER (1.17) Akter et al. (2004) 

 
 

2.16 Bi-cropping in the United Kingdom (UK) 

The wholecrop cereals grown for forage are important in the rations of ruminants in the UK 

because they can supply high proportions of energy-rich forage in their diets (Anil et al., 

1998). Unfortunately, they contain lower crude protein contents (Sadeghpour et al. 2013; 

Anil et al., 1998).  The problems associated with the importation of protein-rich feed 

materials from South America and the United States of America raised an interest to invest in 
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the cereal/grain legume bi-cropping system as a strategy to achieve sustainable home-grown 

protein supply (Hauslings, 2011).   

Previously, cereal/legumes bi-cropping systems were traditionally practiced in the UK over 

the past 50 years ago (Crew and Peoples, 2004). During that time, most of the European 

cropping systems sustained as much as 50% of the soil nitrogen facilitated by biological 

fixation capacities of legume bi-crops (Peoples et al., 2009). The introduction of combined 

harvesters and the differences in maturity dates between cereal and legume bi-crops in 

mixture led to the demise of the practice (Bulson et al., 1997; Yahuza, 2011b).  Recently, the 

availability of early maturing bean varieties may allow simultaneous harvesting of both the 

cereal and legume bi-crops which  can either be separated using cleaning equipment or be fed 

to livestock as a mixture (Bulson et al., 1997).  

Faba bean was considered a potential grain legume bi-crop based on its strength on protein 

quality and quantity; and its sustainability attributes through multiple ecological services 

delivery (Jensen et al., 2010).  In view of these attributes, faba bean as a bi-crop remains the 

backbone for the successful performance and productivity of low input bi-cropping systems. 

The biological strengths of faba bean can potentially contribute to increase local on-farm 

protein production and reduce the out sourcing of protein purchases (Anil et al., 1998).  

The domestic demand and utilisation of faba bean is increasing in the UK (Askew, 2016). 

The domestic use of faba bean as livestock feed in the UK has increased by 265% (Askew, 

2016). Major drivers to such an increased growth include: increased domestic demand for use 

in feed formulations because of its relatively low prices as compared to soymeal and rape 

meal availability of market opportunities for export within the EU and other countries outside 

Europe for human consumption (Askew, 2016).  Between 2015 and 2016, the UK  exported 

224 Kt volumes of faba bean due to  increased production levels and its relative production 

area (Figure 2.5) supported by the Common Agricultural Policy reflected in the CAP Reform 

of 2014- 2020 (Askew, 2016; PGRO, 2016).   According to PGRO (2017), the faba bean has 

potential markets in Scotland and Norway for de-hulled feed beans for fish feed; North Africa 

and Egypt for human consumption while domestic bean demand is potentially dominated by 

the ruminant compound feed millers.  
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Beans are grown for their high protein concentrations while wheat is a valuable cash crop. 

Therefore, their combination in a production system can improve fodder quality, yield and 

economic benefits (Fradgley et al., 2013).  Both the spring wheat and beans crops have 

similar maturity period and they can be harvested together and either separated using a seed 

dresser or used as a mixed livestock feed (Gooding and Davies, 1997). Alternatively, bi-crops 

can be used for whole crop silage depending on the crop varieties used in bi-cropping 

(Ghanbari-Bonjar and Lee, 2002).    

The benefit of bi-cropping system is greater when the growth duration between the bi-crops 

differ widely suggesting a temporal facilitation effect than when the bi-crops synchronise 

their duration period to maturity (Yahuza, 2011b). The success of any given bi-cropping 

system largely depends on whether or not the component crops can be simultaneously 

managed agronomically (Vandermeer, 1989).  The spring wheat and faba beans bi-crops can 

be managed largely depending on the interspecific spatial facilitation effects than temporal 

facilitation effect because their sowing dates cannot be staggered. In cereal/legume cropping 

systems where bi-crops have synchronised maturity dates, the spatial arrangement in the form 

of row orientation remains the only agronomic practice which can favourably counteract the 

interspecific competition (Martin and Snaydon, 1982).  Studies by Ennin et al., (2002) 

demonstrated low productivity of bi-cropping systems due to similarity in maturity dates 

Figure 2.4: Faba bean production (000’s tonnes) trend in the UK between 2009 and 2016 

Source: PRGO (2016 & 2017) 
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resulting in increased inter and intraspecific competition for growth resources.  Spatial 

arrangement (spatial effect) can also influence positive or negative ecological interspecific 

competition under different environmental conditions and determine the ultimate productivity 

of crop mixtures. According to Musa et al., (2010) there is little information on the planting 

arrangements of the various combinations of small grains and legumes and the literature is 

inconclusive as to the most efficient arrangement.   

In the UK, for the past 28 years ago (1982-2010) cereal/faba bean bi-cropping research was 

consistently evaluated using the 1x1 alternate row spatial arrangement (Table 2.13) as a 

system design to respond to problems associated with compatibility of mechanisation at large 

scale bi-cropping systems (Bulson et al., 1997).  With the burgeoning thrust to promote local 

production of protein crops under low input bi-cropping systems (Anil et al., 1998), the 

availability of early maturing spring faba bean varieties require further assessment to 

establish suitable information about their suitability in bi-cropping systems based on their 

morphological and growth rates traits (Bedoussac et al., 2014). The bean cultivars currently 

on the market were selected based on their performance under sole bean cropping systems 

(Davis and Woolley, 1993) regardless of their differences in morphology and growth traits. 

Despite the 1x1 alternate rows spatial arrangement provide an opportunity to accommodate 

mechanisation in bi-cropping systems, further evaluation of alternate rows is indispensable to 

accommodate morphological and growth traits heterogeneity of released bean cultivars. 

Spatial manipulation is the only available option to determine interspecific complementarity 

for spring wheat and beans.  According to Haymes and Lee (1999) the 1x1 alternate row 

spatial arrangements was intended to provide a solution to cross drilling bi-cropping practise 

which was mostly practised by commercial farmers. In this practice (cross drilling), the bi-

crops were sown without a definite inter row spacing which made it difficult to understand 

competitive interactions between the crop components in their crop mixtures. The alternate 

rows spatial arrangement were introduced as a better agronomic approach to standardize 

interrow distances to better understand and evaluate the interactions between crop 

components in a wheat/faba bean bi-cropping systems. According to Bulson et al. (1997), the 

aim of introducing alternate rows in bi-cropping systems was to reduce interspecific crop 

competition and facilitate the convenience of using combined harvesters in bi-cropping 

systems. Recent wheat/faba bean bi-cropping studies by Yahuza (2012) the 1x1 alternate row 
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spatial arrangements were maintained. Therefore, various spatial drilling options against the 

commonly practiced 1x1 alternate row spatial arrangement need to be evaluated to improve 

fodder productivity in wheat/faba bean bi-cropping systems.  This knowledge gap led to the 

development of this study aimed at evaluating faba bean cultivars with heterogeneous 

morphological and growth rate traits at different spatial drilling patterns in wheat based bi-

cropping system.      

Table 2.13: The trend of wheat/faba bean bi-cropping research under single row 

alternate spatial arrangement in the UK 

Bi-cropping system Country Research focus Reference 

Barley/ Faba bean UK Improving productivity of wheat/faba 

bean bi-cropping system.  

Martin and Snaydon (1982) 

Wheat/ Faba bean UK Sowing densities and practical 

compliance of bi-cropping system     

under mechanisation. 

Bulson et al. (1997) 

Wheat/ Faba bean UK Resource competition between       

autumn   and spring bi-cropping systems. 

Haymes and Lee (1999) 

Wheat/ Faba bean UK Effect of harvest time on forage 

yield and quality. 

Ghanbari-Bonjar and Lee (2002) 

Wheat/ Faba bean UK 
Effects of different planting patterns. 

Eskandari and Ghanbari-Bonjar 

(2010) 

Wheat/faba bean UK Improving productivity of wheat/bean   

bi-cropping systems. 

Yahuza (2012) 
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Chapter 3 

MATERIAL AND METHODS 

The methodologies used in the present study were consistent between experiments; and are 

combined in this chapter to avoid repetitions.   

3.1. Experimental site 

Field experiments were carried out during 2015 and 2016 spring cropping seasons under 

rainfed conditions at the Royal Agricultural University farm (51° 42' 33.6" N 1° 59' 40.7" W) 

in Gloucestershire, England. Two sites (A and B) were utilised during the 2 year study 

period.  The physiochemical soil properties of the experimental sites are presented in Table 

3.1.    

Table 3.1: Initial physiochemical soil properties* of top soil profile (0-20 cm) of the 

experimental sites during 2015 and 2016 spring cropping seasons 

Soil properties 

    Spring cropping seasons 

Site A 

2015 

Site B 

                   2016 

Chemical characteristics   

pH 1:2.5 (soil: water  ratio) 7.8 7.6 

Extractable Phosphorus (mg l-1) 13.3 17.0 

Organic matter (%) 4.6 3.6 

Total Nitrogen (%) 0.43 0.39 

Organic carbon (%)  2.6 2.1 

   

Physical composition   

Sand (%) 20.0 21.0 

Silt (%) 38.0 37.0 

Clay (%) 42.0 42.0 

Textual class Clay Clay 

*Analyses conducted at Royal Agricultural University laboratory 

3.1.1. Meteorological conditions 

Meteorological data for the study sites was collected from the Royal Agricultural University 

(RAU) Meteorological station (NGR SP 42 004 011). The meteorological measurements for 

2015 and 2016 spring cropping seasons were reported in comparison against the 10-year 

average (Figures 3.1 and 3.2; Appendix 1.1 & 1.2).   
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Between the months of January and August, the mean air temperatures for 2015, 2016 and 

10-year average were 10.3 oC, 10.6 oC and 10.2 oC respectively (Figure 3.1).  In April, 2016, 

the monthly mean temperature was relatively lower which resulted in delayed sowing until 

May, 2016 when the optimum mean temperature conducive for sowing was attained. The 

monthly mean temperatures in April, 2015 and the 10-year average period were relatively 

higher, which resulted in timely sowing within the normal sowing window in the month of 

April (Figure 3.1).   

The 10-year average period had the seasonal mean precipitation of 513 mm with the standard 

deviation mean 152.  The 2016 cropping season received the total seasonal precipitation of 

618 mm which was higher than the 2015 cropping season (438 mm) and the 10 year average 

(513 mm). However, the precipitation values for the 2015 cropping season (438 mm) was 

below the 2016 cropping season and the 10-year average (Figure 3.2). The total seasonal 

precipitation for 2016 did not occur by chance or erroneously because similar seasonal 

precipitation events occurred four times in the past (2007, 2008, 2012 and 2014). The total 

season precipitation for the 2015 cropping season was relatively lower than the 10-year 

average which also occurred in six years (2005, 2006, 2009, 2010, 2011 and 2013). The 

differences in seasonal precipitation between cropping seasons had a direct implication on 

soil conditions, crop establishment, crop growth and development (Figure 3.2)    

The seasonal variation for mean soil temperature trends for 2015, 2016 and 7-year average 

were different at all soil depths (Figure 3.3).  Within the sowing soil depth of 10 cm and 

during the sowing window in the month of April; the monthly mean temperatures for 2015 

cropping season and the 7-year average were relatively warmer than 2016 cropping season 

(Figure 3.3). The differences in monthly mean soil temperatures between cropping seasons 

(2015 and 2016) determined their respective sowing dates.  The mean soil temperatures 

increased with increasing number of days after sowing (DAS) at all soil depths and declined 

between the months of July and August across the cropping seasons.    
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Figure 3.1: Average air temperatures during spring 2015 and 2016 crop seasons in 

comparison with the 10-year average. Royal Agricultural University meteorological 

station (NGR SP 42 004 011) 
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Figure 3.2: Amount of precipitation (mm) shown in histogram during January-August, 2015 

and 2016 crop seasons in comparison with the 10-year trend. Royal Agricultural University 

meteorological station (NGR SP 42 004 011) 
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Figure 3.3: Soil temperatures at 10 cm, 30 cm, 50 cm and 100 cm soil depths for experimental 

sites during 2005 to 2016 cropping seasons. Royal Agricultural Meteorological station site (NGR 

SP 42 004 011) 

 

3.2. Experimental design and treatments  

For both spring cropping seasons, field trials followed a completely randomised block design 

with four replications (Figure 3.4 and 3.5). The experiments were not sown in autumn in 

order to maintain spring data consistency, which can easily necessitate across season analysis 

than if cropping seasons were different. The total experimental area of 1056 m2 was equally 

divided into four replications/blocks each measuring 264 m2. Each block was further divided 

into eleven (11) equal parts each measuring 24 m2 forming experimental units where 
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treatments combinations were allocated and fully randomised to minimise variations within 

each experimental unit and maximise variation between replications (Gomez and Gomez, 

1984). The study evaluated four different spatial arrangements inform of drilling patterns and 

two different spring faba bean cultivars bi-crops against three corresponding  sole crops 

(thus: two bean cultivars and one sole wheat crop).  Therefore the treatment structure of the 

study was: 4 Blocks x (4 drilling patterns x 2 bi-crop bean cultivars + 3 sole crops)   

 

Plot no. 1 2 3 4 5 6 7 8 9 10 11 

Block 1 

Wheat           

Fuego              

3x3 

Sole 

Fuego 

Wheat      

M Bead     

1x1 

Wheat           

M Bead              

3x3 

Wheat      

Fuego     

1x1 

sole 

wheat 

Wheat      

M Bead 

Broadcast 

Wheat      

M Bead     

2x2 

Wheat      

Fuego 

Broadcast 

Wheat      

Fuego     

2x2 

Sole           

M Bead 

Trt no. 5 8 2 6 1 7 11 4 10 3 9 

 
Plot no. 12 13 14 15 16 17 18 19 20 21 22 

Block 2 

Wheat           

M Bead              

3x3 

Wheat      

M Bead     

2x2 

Sole                

M Bead 

Sole 

Fuego 

Wheat      

Fuego     

2x2 

Wheat           

Fuego              

3x3 

Wheat      

M Bead 

Broadcast 

Wheat      

Fuego 

Broadcast 

Wheat      

M Bead     

1x1 

Wheat      

Fuego     

1x1 

sole wheat 

Trt no 6 4 9 8 3 5 11 10 2 1 7 

 
Plot no. 23 24 25 26 27 28 29 30 31 32 33 

Block 3 

Wheat             

M Bead     

1x1 

sole 

wheat 

Wheat           

M Bead              

3x3 

Wheat      

Fuego     

2x2 

Wheat           

Fuego              

3x3 

Wheat      

Fuego     

1x1 

Sole 

Fuego 

Wheat      

M Bead 

Broadcast 

Sole            

M Bead 

Wheat      

Fuego 

Broadcast 

Wheat      

M Bead     

2x2 

Trt no 2 7 6 3 5 1 8 11 9 10 4 

 
Plot no. 34 35 36 37 38 39 40 41 42 43 44 

Block 4 

Wheat              

M Bead     

1x1 

Wheat      

M Bead 

Broadcast 

Wheat           

Fuego              

3x3 

Wheat      

Fuego     

2x2 

Wheat           

M Bead              

3x3 

Wheat      

M Bead     

2x2 

Wheat      

Fuego     

1x1 

Sole            

M Bead 

Sole         

Fuego 

sole 
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Wheat      
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Trt no. 2 11 5 3 6 4 1 9 8 7 10 

 Trt no. = treatment number 

 

Figure 3.4: Field trials design and treatments randomisation for 2015 cropping season 
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Trt no. = treatment number 

Colour codes:        Treatment description 

  =     Broadcast 

  =     1 x 1 -  Drilling pattern 

  =     2 x 2 -  Drilling pattern 

  =     3 x 3 -  Drilling pattern 

 =     Sole crops (wheat and beans) 

 

Figure 3.5: Field trials design and treatments randomisation for 2016 cropping season 

3.2.1. Details of experimental treatments  

3.2.1.1. Drilling patterns 

Four different drilling patterns are elaborated below and   in Appendix 2.0.  

 1x1 drilling pattern:  one row of spring wheat alternated with one rows of spring faba 

bean   
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 2x2 drilling patterns:  two rows of spring wheat alternated with two rows of spring 

beans. 

 3x3 drilling patterns:  three rows of spring wheat alternated with three rows of spring 

beans. 

 Broadcast: Bean bi-crops were randomly sown over the precisely drilled wheat crop. 

This mimic commercial farmers as commonly practiced in Scotland 

3.2.1.2. Spring bean cultivars 

Two spring faba bean cultivars with two contrasting growth habits and morphological 

characteristics were selected for evaluation. The spring bean cultivars were Fuego and Maris 

Bead whose details are described the Table 3.2 below. 

Table 3.2: Description of spring faba bean cultivars 
Spring  bean  Hilum 

colour 

Shortness 

of straw 

Earliness of 

ripening 

Protein 

content 

(%DM) 

Yield as %control   

(5.39 t ha-1)  

5 year mean 

Year of 

release 

  

Fuego bean  Pale 6 7 27.5 99 2005   

Maris Bead  Black 4 6 29.0 83 1964 
  

A scale of 1-9, a high value indicates that the variety shows the character to a high degree.  Source: PGRO 

(2017). 

  

3.2.1.3. Sole crops 

The sole crops of beans and wheat were included as controls for comparison against their 

companion bi-crops’ performance on various parametric assessments and also assisted in 

assessing the efficiency of bi-cropping treatment combinations.   Spring wheat cv. Paragon 

was used in the experiment.   

Varietal choice   

Fuego, a spring bean variety released in 2005, has taller growth habits and matures early 

compared to Maris Bead. It has a mean protein content of 28.0%, with a white hilum an 

indication of the suitability of the bean for human consumption and export. It has relatively 

bigger seed size than to Maris Bead, paled coloured (Plate 1.0) with low level of bruchid 

beetle infestation in storage (PGRO, 2015). Faba bean seed was supplied by the PGRO. 
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Maris Bead, spring bean variety released in 1964, has relatively shorter straw height and 

matures later than Fuego. It has a mean protein content of 29.0%, small seeded (Plate 3.0) 

with a black hilum an indication of the suitability of the bean for feed formulation or 

livestock feeding for domestic sales and export (PGRO, 2015).  Paragon, a spring wheat 

variety (Plate 3.0) was chosen for the following traits; taller height (87 cm) with stiff straw, 

good standability, relatively high and stable protein content of 13.9% which  does not change 

with untreated trials (NABIM 2014); its dual end use which include milling and baking 

purposes (AHDB, 2015); ability to withstand early season environmental stress (NABIM 

2014). Its fast growth rate and height advantage, gives good compatibility in mixture with 

legumes (Kankanen et al., 2001).   

 

Plate 1: Physical characteristics of spring bean and wheat seeds 

Sowing date  

Grain yield and other characteristics of wheat and bean both in sole and bi-crops can be   

influenced by variations in sowing dates (Hayward, 1990). In this study, the sowing dates 

were influenced by each seasonal weather characteristics. The extent to which precipitation 

stops in the month of March between the two seasons, determined the time taken for soil to 

dry to obtain the right soil moisture ideal for sowing in subsequent months of April and May. 

The sowing dates for 2015 and 2016 cropping seasons were 09/04/2015 and 02/05/2016 

respectively.   

Sowing density  

Sowing density (weight of seeds drilled per unit area) can influence the crop performance and 

final crop yield (Dehdashti and Riahinia, 2008). Both high and low seed rates can have 
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negative and positive implications on the final crop performance (Hayward, 1990).  Optimum 

sowing density is ideal because it may increases crop yield due to availability of 

environmental resources (Gooding et al., 2002). However higher densities does not usually 

increase crop performance and yields because it influence inter and intraspecific competition 

for soil moisture, light and N. It also reduces individual plant growth and the production of 

tillers in wheat (Gooding and Davies, 1997). 

Seed rates are determined by soil types, climatic conditions and crop cultivars (AHDB, 

2015). According to Lithourgidis et al., (2006), spring wheat has low tillering ability than 

winter wheat hence to produce optimum number of wheat competitive plants and compensate 

low tillering potential, a higher seed rate of 500 seeds m-2 is ideal.  Lampkin et al., (2011) 

reported that most UK organic growers use >400 seeds m-2 of spring wheat under organic 

farming systems because germination is assumed neither predictable nor consistent due to 

variations in the seed bed conditions and lack of seed dressing.   

In this study, in both experimental growing seasons, the spring wheat and bean seeds with a 

mean germination above 90 percent (Appendix 8.1, 8.2, 8.3 and 8.4) were sown at the 

recommended plant density of 400 wheat seeds m-2 and 40 bean seeds m-2 respectively. This 

translated into 220 kg/ha for Paragon wheat variety, 283 kg/ha for Fuego bean cultivar and 

195 kg/ha for Maris Bead bean cultivar.  The sowing density of sole and bi-cropped 

treatments followed the replacement design (Snaydon, 1991) where the density of bi-cropped 

treatments of each spring crop was reduced to one half of their respective spring sole crop 

densities. In replacement designs, the total relative density of 100% is held constant while the 

relative proportion of each species is varied based on the recommended density (De Wit and 

van den Bergh, 1965). This differs from the additive designs where total relative density of 

crop species in mixtures can exceed 100%. The main reason of such a design is to induce a 

most productive bi-cropping system (Fukai and Trenbath, 1993; Snaydon, 1991). 

Replacement (or substitutive) designs have been universally considered the only valid type of 

experimental design used in studies of plant competition because it eliminates most problems 

of additive designs (Harper, 1977). Despite other studies like Bulson et al. (1997) used 

additive design with a uniform spatial arrangement, considering the factors involved in this 

study, varying densities (in additive design) could have masked the effects of drilling 
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patterns. This explains why the recommended density of both crops in a replacement design 

was used.   

Plot size, row spacing and sowing depth 

Each experimental plot was 2 metres wide and 12 metres long (24.0 m2). The plot width of 2 

metres was deliberately designed in order to fit the width of the plot drill (Plate 2a). Spring 

wheat and beans in their respective sole experimental units were drilled at the inter-row 

spacing of 15 cm and 30 cm respectively. Bi-crop experimental units of spring beans and 

wheat in mixtures were sown at the standard inter-row spacing of 15 cm apart.  Spring wheat 

crop in sole and bi-crop plots was sown using a Winstersteiger Precision Seed Drill (Plate 

2a).  Spring beans in sole and bi-crop experimental units were hand sown because the 

Winstersteiger Precision Seed Drill was not designed to simultaneously drill wheat and bean 

seeds.  The approach to drill wheat in sole and alternate rows experimental units differed. 

Sole wheat experimental units were drilled with all the driller’s pipes inserted in the soil in all 

the rows (Plate 1a). For beans bi-crops, alternate rows were blocked with a bucket to leave 

empty rows for hand sowing beans (Plate 1d).   

The success of seed germination and crop emergence depends on the sowing depth among 

other factors (Nsowah, 1986). Shallower and very deeper sowing depth may prevent 

negatively affect germination resulting in low crop establishment and reduced final crop yield 

(Calvino and Sandras, 1999).   In this study, wheat was drilled at the uniform average depth 

of 2.5 cm which was within the recommended sowing depth of 2-4 cm (AHDB, 2016) and 

the sowing depth varies depending on the  soil type and soil conditions (AHDB, 2016). The 

beans seeds were hand sown at an average uniform sowing depth of 5 cm irrespective of the 

cropping systems i.e. sole bean or bi-cropping system.  In order to establish a better seed-bed 

contact with the seeds for better germination and reduce the risk of birds eating the sown 

seed, a roller had run over the site soon after seed sowing. 
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3.3. Aboveground assessments 

3.3.1 Developmental stages  

The timing for wheat plant sampling and final harvest was guided by the decimal code 

growth stages (GS) defined by Zadoks et al. (1974) in Appendix 3.1. Timing for bean plant 

sampling and final harvest was guided by the bean growth stages (GS) reported by PGRO 

(2015) in Appendix 3.2.  Details of the dates and development stages for each crop 

assessment are presented in Tables 3.3 & 3.4. All agronomic assessments were conducted in 

the inner rows of each experimental unit, excluding the outer rows which did represent the 

inner plant population due to external influences (Gomez et al., 1984). 

 

 

Plate 1 a. Winstersteiger Precision Seed Drill 

 Plate 2 Electric fence unit 

Plate 1 b. Sole wheat drilling Plate 1 d. Alternate rows drilling 
Plate 1 c. Drilling instructions 

Some materials have been removed 
due to 3rd party copyright. The 
unabridged version can be viewed in 
Lancester Library - Coventry University.

Some materials have been 
removed due to 3rd party 
copyright. The unabridged version 
can be viewed in Lancester Library 
- Coventry University.

Some materials have been removed due to 3rd party copyright. The unabridged version 
can be viewed in Lancester Library - Coventry University.
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Table 3.3: Growth stages for aboveground crop assessments during 2015     spring 

cropping season 

      Assessments 
Approximate crop growth stage (GS) 

Wheat Beans 

Crop establishment (plants m-2) On/or before GS15 On/or before GS101 

Wheat tillers  count (tillers m-2) On/or before GS21 - 

Weed biomass (g m-2) On/or before GS31, GS69 and GS92 
On/or before GS201, 

GS207 and GS410 

Wheat leaf chlorophyll (CCI) On/or before GS32, GS71, and GS83   - 

IPAR (%) and LAI 

 

On/or before GS69, GS71, GS83 and GS89 

 

On/or before GS103, 

GS105, GS201, GS204,  

GS205 and  GS207 

Wheat biomass and final 

biological harvest (t ha-1) 
On/or before GS21, GS31, GS69 and GS92 - 

Bean biomass and final 

biological harvest (t ha-1) 
- 

On/or before GS103, 

GS201, GS207 and 

GS410 

Wheat plant height (cm) On/or before GS69 and GS87 - 

Bean plant height (cm) - 
On/or before GS201 

and GS209 

IPAR, intercepted photosynthetic active radiation; CCI, chlorophyll concentration index; LAI, leaf area index. 
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Table 3.4: Dates and growth stages for above and belowground crop assessments during 

2016 spring cropping season 

      Assessments 
Approximate crop growth stage (GS) 

Wheat Beans 

Crop establishment (plants m-2) On/or before GS21 On/or before GS101 

Wheat tiller count  (tillers m-2) On/or before GS25 - 

Weed biomass (g m-2) On/or before GS35 and  GS69 
On/or before GS105 and 

GS207 

Wheat chlorophyll (CCI) 
On/or before GS 31, GS44, 

GS69, GS77 and GS80 
- 

IPAR (%) and LAI 
On/or before GS35, GS40, 

GS69, GS75 and GS80 

On/or before GS103, 

GS105, GS205, GS206  

and  GS207 

Underground bean assessments  - On/or before GS207 

Wheat biomass (t ha-1) 
On/or before GS21, GS35, 

GS69 and GS92 
- 

Bean biomass (t ha-1) - 

On/or before GS103, 

GS105, GS207 and 

GS410 

Wheat plant height (cm) On/or before GS92 - 

Bean plant height (cm) - On/or before GS204 

IPAR, intercepted photosynthetic active radiation; CCI, chlorophyll concentration index; LAI, leaf area index. 

3.3.2. Assessments 

3.3.2.1 Plant establishments 

The numbers of emerged plants were recorded from a randomly placed 1 m2 quadrant area 

replicated twice within the central part of every experimental unit at GS15 and GS21.   

3.3.2.2 Wheat tiller numbers 
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The total numbers of wheat tillers were recorded from a randomly placed 1 m2 quadrant 

replicated twice within the central part of every experimental unit at GS21 and GS29.   

3.3.2.3 Growth assessments  

Four growth destructive analysis (GDA) (Ciampitti, 2012) assessments were conducted 

during vegetative, flowering, physiological maturity and at final harvest. The harvest of 

aboveground plant materials was done using a pair of scissors or secateurs which was suitable 

at experimental plot level. Harvested plant materials were determined from the central part of 

an experimental using a 1 m2 quadrant replicated twice. The number of random plant 

sampling replications was restricted to two because the quadrant was large enough to 

accommodate simultaneous plant sampling of both crops throughout the crop growth cycle 

and perform other canopy assessment such PAR and LAI against the limited plot size of 12m 

x 2 m. Plant sampling in 100% sown sole crops and the 50:50 sown bi-crop mixture 

experimental units were conducted the same.  The harvested aboveground plant samples 

comprised of wheat, beans and weeds were quickly put inside well labelled air tight sealed 

plastic bags to reduce moisture loss before subsequent processing in the laboratory. At every 

stage of aboveground plant harvesting, wheat and beans were separated into their component 

crops for bi-cropping experimental treatments. The sampled wheat, beans and weeds plants 

were separated and recorded their respective fresh weights using a digital weighing balance.  

Dry weights were recorded after oven dried aboveground plant samples for 48 hours at a 

constant temperature of 65 oC.  

3.3.2.4 Weed assessments 

Weed dry matter (g m-2) and weed smothering efficiency (%)  (WSE)  were the two 

experimental variables used to assess the efficacy of cropping systems on biological weed 

control.  

Weed dry matter (g m-2) was assessed as described in section 3.3.2.3 above.   

Weed smothering efficiency (WSE) was calculated according to Choudhary et al. (2014):  

 

 
X 100 

                 WSE (%) = 
Mdw – Bdw 

          Mdw 

Where; Mdw = Dry weight of weeds in the sole crop plot (g m-2), Bdw = Dry weight of    

weeds in bi-crop plots (g m-2). 
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3.3.2.5 Plant height 

Wheat plant height of the main wheat shoot was measured in centimetres using a calibrated 

two metre ruler from the ground level to the tips of the wheat ear (AHDB, 2015).  Ten 

representative wheat plants were randomly measured and averaged to get the mean plant 

height for each experimental unit.  Similarly, ten representative bean plants were randomly 

measured from the ground level to the end growing point of the plant (Nadeem et al., 2015).    

Measured bean plants were averaged to get the mean bean plant height for each experimental 

unit. Wheat and bean plants were assessed at GS92 and GS204 respectively when no further 

plant took place.   

3.3.2.6 Field pests and disease assessments 

Black bean aphids (Aphis fabae) and Ascochyta bright (Ascochyta fabae) biotic stresses were 

assessed at GS 201 and GS207 respectively. Their incidence was calculated by using the 

number of infected plants (m-2), expressed as a percentage of the total number of plants from 

1.0 m2 quadrant (Hailu et al., 2014; ICARDA, 1986). 

Faba bean rust disease (Uromyces viciae-fabae) severity assessment method in the field was 

adopted from Khare et al. (1993); using a scale of 1-9, where 1 meant no pustules visible and 

9 meant pustules extensive on leaves, petioles and stems, and killing leaves and other plants.  

These scores were then converted to percentage severity according to Chongo et al. (1999): 

The number of affected bean plants was randomly assessed from 1.0 m-2 within the central 

part of every experimental unit.                

 

The experimental sites in both seasons were fenced at GS15 with an electric fence against the 

rabbits which were feeding fed on the young wheat plants (Plate 2.0) 

3.3.2.7 Leaf chlorophyll content   

Nitrogen is a structural element of chlorophyll and protein molecules (Tucker, 2004).   

Assessing chlorophyll in the wheat bi-crops gives an indication of legumes’ nitrogen 

facilitation in cereal bi-crops. The chlorophyll content in the wheat bi-crop leaves reported as 
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Chlorophyll Concentration Index (CCI) was determined with non-plant destructive method 

using a hand held chlorophyll meter (Model CCM 200 Plus, Opti-Sciences Inc., New 

Hampshire, USA). Ten representative wheat plants from each experimental unit were 

measured.  The wheat flag leaf and the 3rd leaf were consistently measured from each of the 

selected wheat plants to eliminate the sources of variation which could occur due to 

differences in measurements.  The readings were automatically recorded, stored and averaged 

to generate one mean reading for each experimental unit (Mohsin et al., 2011).  

3.3.2.8 Leaf Area Index (LAI) determination 

The LAI is an important variable for analysing the interactions between crop species and the 

atmosphere, estimating the amount of radiation intercepted by crop canopy; estimating the 

photosynthetic activity of cropping systems and guides on how to optimise dry matter 

production (Confalonieri et al., 2013).  The SunScan canopy analysis system device (Delta-T, 

Burwell, and Cambridge, UK) which does not involve plant destruction was used to 

determine LAI. The readings were consistently measured between 10.00 am and 2.00 pm 

British Local Time (BLT). The SunScan probe, 1 m long was placed under the crop canopies 

at standard height of 7.5 cm from the soil surface at five representative points of each 

experimental unit (Figure 3.6).   

3.3.2.9 Photosynthetic active radiation (PAR) determination 

PAR describes the spectral range of solar radiation from 400 to 700 nm in which   

photosynthetic organisms are able to use light and facilitate photosynthesis (McCree, 1972 

and Figure 3.7).  Measuring PAR in agronomic studies helps to understand the influence of 

amount and quality of PAR absorption by crop canopies on photosynthesis and the 

productivity of cropping systems (Yahuza, 2011a).  PAR was determined by using the 

SunScan canopy analysis system device (Delta-T, Burwell, and Cambridge, UK). The system 

had a single quantum sensor (the bean fraction) and a linear sensor (the SunScan probe, 1 m 

long with 64 photodiodes equally spaced along its length) for measuring PAR above and 

beneath plant canopies, respectively (Figure 3.6). The PAR which transmitted through the 

crop canopies was measured with linear sensor (the SunScan probe) at a standard height of 

7.5 cm from the soil surface to avoid sources of errors that could occur due to different 

heights. Five representative points were randomly selected for PAR measurement in each 
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experimental unit.  Readings were taken between 10.00 am and 2.00 pm British Local Time 

(BLT).   The PAR intercepted was calculated by measuring both incident and transmitted 

light through the canopy simultaneously (Matusso et al. (2014). Intercepted PAR is the 

amount of the incident that was not transmitted through the canopy. The PAR intercepted was 

calculated according to Goudriaan (1988) and Campiglia et al. (2014): where the subscript i 

designated intercepted PAR; subscript a and b designates PAR readings measured above and 

below the plant canopy respectively.   

 

 

                

Figure 3.6: Direct PAR and indirect LAI measurement with the SunScan canopy analysis 

system device (Delta-T Devices, Cambridge, UK)               

 

Source: Koning (1994). 

Figure 3.7: Solar radiation spectrum showing where PAR and photosynthesis takes place 

 

X 100         % PARi    = 
(PARa – PARb)  

   PARa 

Some materials have been removed due to 3rd party copyright. The unabridged version 
can be viewed in Lancester Library - Coventry University.

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.
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3.3.2.10 Radiation use efficiency (RUE) 

The RUE measures the ability of the crop to produce dry matter per unit of radiation 

intercepted or absorbed (Monteith, 1972; Awal and Ikeda, 2003). Assessing the radiation use 

efficiency for each bi-crop is difficulty due to canopy intermingling. In bi-cropping systems, 

if the canopy is either horizontally or vertically stratified, it worthwhile to use intercepted 

radiation and biomass to calculate RUE value for each of the component crops compared 

with sole crops (Marshall and Willey, 1983; Yahuza, 2011b).  

On the other hand, if the canopy is not stratified completely, it would be better to calculate 

RUE value for the whole bi-cropping system by dividing the total biomass of both 

components by the total amounts of radiation intercepted by the complete system (Azam-Ali 

and Squire, 2002). 

Since the canopy structure for the wheat/faba bean bi-cropping system do not show compete 

stratification, that would not necessitate the computation of the RUE for each crop (Hongo, 

1995; Haymes and Lee, 1999), the computation of the total RUE for the whole bi-cropping 

systems may be more valid, by dividing the total biomass of both components crops by the 

total radiation intercepted by the complete bi-cropping systems (Azam-Ali and Squire, 2002). 

 3.3.2.11 Final biological harvest   

Final harvest was determined from a randomly placed 1 m2 quadrant area replicated twice 

with the central part of each experimental plot. The field experiments were hand harvested 

using a pair of scissors or secateurs. Wheat was harvested when the spikelets changed to 

straw-coloured and 80% of the grains of the spike were in the hard-dough stage (Chapagain, 

2014). The beans were harvested when the stems and pods turned black with seeds dry 

(PGRO, 2016).  All the harvested wheat plant materials were separated into ears and straw by 

cutting off ear at the peduncle to determine the total number of ears harvested per unit area. 

Bean pods were separated from the straw by hand to determine the total number of pods 

harvested per unit area.  Both wheat and bean plant samples were oven dried at a constant 

temperature of 105 oC overnight to determine the dry weight. Wheat ears and bean pods were 

hand threshed and the extracted grain was weighted to obtain total grain weights and yield 

which was corrected to 15% grain moisture content. Thousand grain weight (TGW) was 

recorded after an automatic grain feeder and counter determined the number (Farm-tec, 
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Scunthorpe). Harvest index (HI) was determined as the ratio of economical yield to biological 

yield   (Wnuk, 2013). 

3.3.2.12 Plant N content   

To determine the N content, all the plant samples were course milled and then sub sampled 

and further micro-milled (0.5 mm sieve) (Cyclotec 1093 Sample Mill) to obtain a sample 

with fine particle size distribution. A sub sample of 25 mg (±0.05 mg) of the ground material 

plus 50 mg of tungsten oxide were placed into aluminium boats and weighed on a five 

decimal place analytical balance. Encapsulate samples were then analyse on an Elemental 

Cube CNS auto analyser (Eelemental Analysen systemse GmbH). Total N uptake 

calculations for wheat, beans and weeds were computed according to Mahama et al. (2016). 

(a) N uptake in the plant tissues (crops and weeds): 

 

 

Where: N uptake is measured in kilograms per hectare (Kg N ha-1), DMaboveground indicates 

aboveground dry matter (kg ha-1), and [N] DM is the N concentration (%) in dry matter.  

   (b) N uptake in the grain:  

 

 

Where: grain N uptake is measured in kilograms per hectare (Kg N ha-1), Yield indicates 

grain yield (kg ha-1), and [Grain N] indicates grain N concentration (%). 

 (c)  Nitrogen harvest index 

 

 

 (d) Grain crude protein  

Grain nitrogen values were converted to crude protein content by multiplying grain N% by  

5.7 for wheat (Osborne, 1907) and 6.25 for beans (Magomya et al., 2014).  Nitrogen yield 

was obtained by multiplying the crude protein content by dry matter yield (Mariotti et al., 

    N uptake          = DMaboveground X 

[N]DM 

100 

    Grain N uptake            =  Yield X 

[Grain N] 

100 

    Nitrogen harvest index =  

Grain N uptake 

Grain N + Straw N uptake 

X 100 
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2006).  This measured of how much N was taken up by the crop and also how much nitrogen 

was removed from the field with harvest (Dordas and Lithourgidis, 2011). 

3.4 Biological efficiency assessments 

3.4.1 Land Equivalent Ratio (LER) 

The LER measures the effective use of environmental resources in bi-cropping systems 

compared to sole cropping systems. It measures the production efficiency of different 

systems by converting the production in terms of land acreage. It can be used both for 

replacement and additive series of bi-cropping systems. It was calculated according to Mead 

and Willey (1980).   

The LER values for two intercrop species in proportional replacement design were calculated 

as: LER = (PLER wheat + PLER beans), where PLER wheat = (Ywb/Yws), and PLER beans = 

(Ybb/Ybs) where Yws and Ybs are the yields of wheat and beans as sole crops  respectively, and 

Ywb  and Ybb  are the yields of wheat and beans as bi-crops respectively. PLER is the partial 

equivalent ratio of each crop in mixture.  The value of unity (1.0) is the critical value in 

assessing crop mixtures. When the LER is greater than 1.0 indicates that bi-cropping systems 

favours the growth and yield of the cultivars; LER equal to 1.0 indicates no advantage of bi-

cropping systems. When LER is lower than 1.0 the bi-cropping system negatively affects the 

growth and yield of the plants grown in mixtures (Dhima et al., 2007).   

3.4.2 Land savings   

Assessing the advantages of crop mixtures in terms of land savings is one of the major 

purposes of bi-cropping systems in addition to LER which was described by Mead and 

Willey (1980). Land savings in crop mixtures was calculated using the formula described by 

Willey (1985).  % Land savings = 100-1 / LER x 100. The productivity coefficient of 25% 

was established as the minimum value in assessing per cent land saving in crop mixtures 

(Adetiloye et al., 1983).   

3.5 Competition indices  

The competitive behaviour of component crops in bi-cropping systems was determined by 

Relative Crowding Coefficient (RCC or K) and aggressivity (A) which are suitable in a 50:50 

replacement designs.   
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3.5.1 The Relative Crowding Coefficient (RCC or K) 

The RCC or K measures the relative dominance of one crop species over the other in a bi-

crop mixture as proposed by de Wit (1960) which was calculated as follows:  

K = (Kwheat x Kbeans), where Kwheat = Ywb / (Ysw – Ywb), and Kbeans = Ybb / (Ysb –Ybb), where Y 

represent crop yield per unit area; Ysw and Ysb are the yields of wheat and beans as sole crops 

respectively, and Ywb and Ybb are the yields of wheat and beans as bi-crops respectively.  

The bi-crop component in mixture with a higher coefficient (K) is considered to be dominant 

over the other. If the product of the two coefficients (K) is greater than 1.0, there is a yield 

advantage whereas if K obtained in the system equals to 1.0, there is no yield advantage, and 

if K in the system is less than 1.0, there is a yield disadvantage (Dhima et al., 2007). 

3.5.2 Aggressivity (A) 

Aggressivity is a measure of competitive relationships between two crops in bi-cropping 

systems (Willey, 1979). The calculations were determined according to Dhima et al. (2007) 

based on the following formula: Awheat = (Ywb/Ysw) – (Ybb/Ysb) and Abean = (Ybb/Ysb) – 

(Ywb/Ysw), where Y represent crop yield per unit area; Ysw and Ysb are the yields of wheat and 

beans as sole crops respectively, and Ywb and Ybb are the yields of wheat and beans as bi-crops 

respectively. If Awheat = 0, both crops are equally competitive, if Awheat is positive, then the 

wheat bi-crop is dominant over bean bi-crop and if Awheat is negative, then the wheat bi-crop 

is weak and the bean bi-crop is dominant. For any other situation, both crops will have the 

same numerical value, but the sign of the dominant species will be positive and that of 

dominated negative. The greater the numerical value, the bigger the differences between 

actual and expected yields.  

3.6 Soil assessments 

3.6.1 Soil chemical analysis 

3.6.1.1 Field sampling 

Before sowing, soil samples were sampled at the depth of 0-20 cm using a soil auger at ten 

randomly selected sampling points within each block in a W sampling pattern.   The soil 

samples for each block were bulked up in a plastic bucket, mixed thoroughly and obtained a 



  

61 

 

 

composite sample for each block. The composite soil samples were placed in sealed labelled 

bags and transferred to the laboratory. In the laboratory, each composite soil sample was sub 

sampled, air dried, sieved, and passed through a <2 mm Laboratory Test Sieve 

(ENDECOTTES Ltd) for physiochemical analysis according to the British system of soil 

classification (MAFF, 1988). Sub soil samples for the determination of total soil nitrogen and 

total soil organic carbon using an Elemental Cube CNS auto analyser (Eelemental Analysen 

systemse GmbH) were further milled and sieved through   0.5 mm sieve.    

3.6.1.2 Soil pH 

The soil pH was measured in water (1: 2.5; soil to water ratio).  A 20 g of sieved (<2 mm) air 

dried soil replicated three times was put into 100 ml pre-labelled plastic bottles, 50 ml of 

deionised water was added and shaken gently for 15 minutes at a speed of 120 oscillations 

per minute using a shaker unit (Gerhardt Germany) and allowed the soil solution to settle.  A 

pH electrode of the Soil pH Digital pH Meter was immersed in the soil solution, swirling a 

couple of times before allowing the pH to stabilise before taking readings (Faithfull, 2002). 

Before pH measurements, calibration of the pH Digital meter (Omega Engineering, USA) 

was performed according to manufacturer’s instructions using buffers of pH 10.0 and 4.0 to 

cover the pH range of the soil samples. 

3.6.1.3 Soil phosphorus 

Soil phosphorus (P) was determined using the Olsen Method (Olsen et al., 1954).  From each 

composite sample, three analytical samples of 5 g of (± 0.05 g) of sieved (<2 mm) air-dry soil 

were weighed and transferred into pre-labelled 150 ml shaking bottles.  About 1 g of 

powdered charcoal and 100 ml of sodium bicarbonate (NaHCO3) reagent at pH 8.5, was 

added to the bottles and shaken vigorously using a shaker unit (Gerhardt, German) for 15 

minutes at an oscillation speed of 120 per minute and allowed to settle for 15 minutes after 

shaking.  The soil solution was filtered through a Whiteman No 2 filter paper.  From the 

extraction, 5 ml was pipetted into 100 ml of conical flask slowly adding 1 ml of 1.5 M 

sulphuric acid. When the frothing ceased from releasing carbon dioxide, 20 ml of ammonium 

molybdate (1.2% m/v) ascorbic acid solution was added and allowed to stand for 30 minutes.  

Working standard solutions of 0.25, 0.5,1,2,3,4,5 and 6 ug P ml-1 were used to obtain P 

equivalent ug P ml-1 of the samples and two blanks were used as controls. Eventually, the 
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absorbance of the samples, standards and blanks were measured using a spectrophotometer 

(Cecil Instruments Ltd., UK) at the wavelength of 880 nm. 

3.6.2 Physical soil analysis 

3.6.2.1 Soil texture 

Soil texture was determined following the Bouyoucos Hydrometer method (Bouyoucos, 

1962). From each composite sample, three analytical samples of 50 g (± 0.05) of sieved (<2 

mm) air-dry soil were placed into 250 ml shaking bottles. 100 ml of Calgon solution was 

added and shaken for 400 minutes. The solutions were transferred into 1000 ml measuring 

cylinders and diluted to 1000 ml with deionised water. The top of the 1000 ml cylinder was 

further sealed with parafilm to prevent water spillage when the cylinder was being frequently 

inverted upside down. The cylinder was inverted for 20 times; placed on the bench and timed 

immediately with a stop watch.  A hydrometer was inserted into each cylinder without 

disturbing the solution approximately 20 seconds prior to taking a reading; then removed and 

rinsed immediately. Readings were taken at 40 seconds, 4 minutes, 37 minutes and 2 hours. 

To correct the readings for temperature and density, readings were calibrated against the 

hydrometer in the Calgon-water control solution and subtracted from all the readings. The 

percentage of sand, silt and clay fractions was plotted on the texture triangle chat in Appendix 

4.0 to determine the texture class (MAFF, 1988).    

3.7 Statistical analysis   

Statistical analyses were carried out on all the data collected using the general analysis of 

variance (ANOVA) model in Genstat (15th Edition version VSN International Ltd, Hemel, 

Hempstead, U.K) to establish differences between cropping system, drilling patterns and bean 

cultivars. Significant main effects and their interactions were separated by Standard Error of 

Difference of means (SED) tests at P<0.05.  The results of the ANOVA (Gomez and Gomez, 

1984) were reported quoting treatment means degrees of freedom (df), Standard Error of 

Difference (SED) and the p-value (significant level of P<0.05). Analytical results were 

presented in tables and graphs.  Significant differences between and among treatment means 

at P<0.05; P<0.01 and P<0.001 were respectively denoted by:  *, **, and *** while ns 

denoted non-statistical differences at P<0.05. In each column values with the same letter are 

not statistically different at P<0.05. The data sets for weed dry weights and weed nitrogen 
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uptake were subjected to square root transformation using the formula √(x+0.5) as suggested 

by Gomez and Gomez (1984) to normalize their distribution and conform to the assumptions 

underlying the ANOVA.    
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Chapter 4 

RESULTS FOR 2015   CORE EXPERIMENT 

4.1   Wheat  

4.1.1 Crop establishment  

Cropping systems had a greater (P<0.001) effect on wheat establishment (Table 4.1.), and the 

sole cropping system (313 plants m-2) had a higher number of established wheat plants than 

the bi-cropping system (160 plants m-2).  The drilling patterns and the bean cultivars did not 

affect the number of established wheat plants.    

Table 4.1: The Effects of cropping systems, drilling patterns and spring bean cultivars 

on spring wheat establishment (plants m-2) and the number of tillers (tillers m-2) in 2015 

cropping season 

Treatments 
Mix-

proportion 

Wheat establishment 

(Plants m-2) 

Wheat tillers 

(Tillers m-2) 

Drilling patterns   

    

1x1 50:50 150 199b 

2x2 50:50 153  193b 

3x3 50:50 158  223a 

Broadcast 50:50 177 233a 

SED (3 df) - 22.140ns 13.25*** 

P-value - 0.134 0.001 

    

Cropping systems   

Bi-crop mean 50:50 160b 212b 

Sole crop 100 313a 420a 

SED (1 df) - 19.170*** 11.43*** 

P-value -  ns *** 
 

         0.001  ns *** 
 

            0.001  ns *** 
 

    

Bean cultivars    

Fuego 50:50 161 216 

Maris Bead 50:50 157 208 

SED (1 df) - 20.210ns 12.50ns 

P-value -  ns *** 
 

           0.723  ns *** 
 

            0.251  ns *** 
 

Values with the same letter in each parameter are not significantly different at P<0.05, *=P<0.05, **=P<0.01, 

***=P< 0.001, and ns= not significant at (P<0.05); SED, standard error of difference of means; df, degrees of 

freedom. 

 

4.1.2. Number of wheat tillers 

Cropping systems had a greater (P<0.001) effect on the number of wheat tillers at GS 21 

(Table 4.1), and the sole cropping system (420) had a higher number of tillers than the bi-

cropping system (212). The number of tillers was (P<0.001) affected by drilling patterns, and 
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the highest number of tillers were achieved in the 3x3 (223) and broadcast (233) while the 

lowest was achieved with the 1x1 (199) and 2x2 (193) bi-cropping treatments.   

4.1.3 Chlorophyll Concentration Index (CCI)  

The CCI was (P<0.001) affected by cropping systems, and the bi-cropping system (19.10) 

increased CCI than the sole cropping system (6.70) by 184.6% revealing the advantage of bi-

cropping systems than sole wheat cropping systems. (Table 4.2).      

The drilling patterns had a greater (P<0.001) effect on CCI, and the alternate rows bi-

cropping treatments (20.60) increased CCI than broadcast bi-cropping treatment (14.32) by 

43.8% (Table 4.2: Figure 4.1).    

Across the drilling patterns, the influence of the bean cultivars did not affect CCI.    

Table 4.2: The effects of cropping systems, drilling patterns and bean cultivars on mean 

chlorophyll content (CCI) on the wheat leaf in 2015 cropping season 
Treatments Mix-proportion Chlorophyll content (CCI) 

Drilling patterns  

1x1 50:50 20.63a 

2x2 50:50 20.70a 

3x3 50:50 20.62a 

Broadcast 50:50 14.32b 

SED (3 df) - 0.467*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean 50:50 19.10a 

Sole crop 100 6.70b 

SED (1 df) - 0.405*** 

P-value - <0.001 

   

Bean 

cultivars 
 

 

Fuego 50:50 19.09 

Maris Bead 50:50 19.10 

SED (1 df) - 0.427ns 

P-value - 0.886 
Values with the same letter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.001; ns= 

not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom; CCI, 

chlorophyll concentration index.     
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Figure 4.1: The effects of drilling patterns x bean cultivars interactions on mean chlorophyll 

content in wheat leaf in 2015 cropping season 

4.1.4. Leaf Area Index (LAI) 

Cropping systems had a greater (P<0.001) effect on LAI, and bi-cropping systems (1.89) 

increased LAI than sole cropping systems (1.74) by 8.3%. The bean sole cropping system 

(2.11) increased LAI than the sole wheat cropping system (1.38) by 52.8%. (Table 4.3).     

The LAI was (P<0.001) affected by drilling patterns (Table 4.3), and the alternate rows bi-

cropping treatments (1.99) increased LAI than broadcast bi-cropping treatments (1.63) by 

22.0%. The 2x2 alternate row bi-cropping treatments (2.03) had the highest LAI over other 

drilling patterns (1.85).    

Across the drilling patterns, the bean cultivars had a greater (P<0.001) effect on LAI, and 

Fuego (1.92) increased LAI than Maris Bead (1.83) by 4.9% (Table 4.3a).    

 

Error bars representing average LSD (P≤0.05)  
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Table 4.3: The effects of cropping system, drilling patterns and bean cultivars on mean 

leaf area index (LAI) in 2015 cropping season 
Treatments Mix-proportions LAI 

Drilling patterns  

1x1 50:50 1.95b 

2x2 50:50 2.03a 

3x3 50:50 1.97b 

Broadcast 50:50 1.63c 

SED (3 df) - 0.047*** 

P-value - <0.001 

Cropping  systems  

Bi-crop mean               50:50 1.89b 

Sole crop (wheat)               100 1.38c 

Sole crop (beans)               100 2.11a 

SED (1 df)                   - 0.035*** 

P-value                   - <0.001 

Bean cultivars   

Fuego               50:50 1.92a 

Maris Bead               50:50 1.83b 

SED (1 df)                    - 0.058*** 

P-value                    - <0.001 
Values with the same letter are not significantly different at P< 0.05; *=P<0.05; **=P<0.01; ***=P<0.001; SED, 

standard error of difference of means; df, degrees of freedom; LAI, Leaf area Index.   

 

4.1.5.1 Intercepted Photosynthetic Active Radiation (IPAR) 

The IPAR was (P<0.001) affected by cropping systems (Table 4.4). It was difficult to 

determine how much of the IPAR was used by each of the component bi-crops. As such, 

IPAR was determined from both crops which formed the bi-cropping system. Bi-cropping 

systems had higher IPAR (70.42%) than sole cropping systems (wheat and beans). The sole 

bean cropping system (68.0%) outperformed the sole wheat cropping system (58.90%) on 

IPAR by 15.5% (Table 4.4 and Figure 4.2a).    

The IPAR was (P<0.001) affected by the drilling patterns (Table 4.4). The alternate rows 

(71.5%) had the highest IPAR than broadcast bi-cropping treatments (64.6%). Among the 

drilling patterns, the highest and lowest IPAR resulted from the 2x2 (74.51%) and the 

broadcast (64.6%) bi-cropping treatments respectively. The trend of drilling patterns 

performance on IPAR was 2x2>3x3>1x1>broadcast>sole wheat (Table 4.4).  The IPAR was 

(P<0.05) affected by the bean cultivars, and Fuego had higher IPAR (72.10%) than Maris 

Bead (68.70%) by 4.9%.  
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Table 4.4: The effects of cropping systems, drilling patterns and bean cultivars on mean 

per cent IPAR in 2015 cropping season 
Treatments Mix-proportion IPAR (%) 

 

Drilling patterns 

 

1x1 50:50 70.30c 

2x2 50:50 74.51a 

3x3 50:50 72.30b 

Broadcast 50:50 64.60d 

SED (3 df) - 0.956*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean                          50:50 70.42a 

Sole crop (wheat)                          100 58.90 c 

Sole crop (bean)                          100 68.00b 

SED (1 df)                               - 0.861*** 

P-value                               - <0.001 

   

Bean cultivars   

Fuego                           50:50 72.10a 

Maris Bead                           50:50 68.70b 

SED (1 df) - 1.170*** 

P-value - <0.001 
Values with the same letter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.001; SED, 

standard error of the difference; df, degrees of freedom; IPAR, Intercepted Photosynthetic Active Radiation.   
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Figure 4.2a: Mean per cent intercepted photosynthetic active radiation influenced by the bean   

cultivars bi-crops x drilling patterns in 2015 cropping season 

Error bars representing average LSD (P≤0.05)  
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4.1.5.2 The effects of time on IPAR 

The time of IPAR measurements had a greater (P<0.001) effect on the IPAR across cropping 

systems (Figure 4.2b). The maximum IPAR (74.6%) occurred at 100 days after sowing 

(DAS) with steady reduction of 69.3% at 111 DAS and 68.5% at 124 DAS.  

The bi-cropping system had the higher IPAR of 75.4% between 92-100 DAS before the 

IPAR ability reduced by 8.2% and 10.9% at 111 and 124 DAS respectively. During the same 

period (92-100 DAS) the sole wheat cropping system lost 22% IPAR to soil.  Across the 

growing season, 17% of the total incident solar radiation was lost under the sole wheat 

cropping system which predicted subsequent low biomass production.  

The sole bean cropping system increased IPAR than bi-cropping and sole wheat cropping 

systems after 100 DAS due to differences in growth development stages between bean and 

wheat crops. During early growth stages (92 DAS), the sole bean cropping system had lower 

IPAR (57.1%) which was 16.8% lower than the bi-cropping systems (66.7%).   The sole bean 

cropping system (75.9%) and the bi-cropping system (75.4%) had equal IPAR interception at 

100 DAS (Figure 4.2b).  
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Figure 4.2b: The effects of time (DAS) on IPAR (%) for different cropping systems in spring   

2015. 

Error bars representing average LSD (P≤0.05)  
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4.1.5.3 Total radiation use efficiency (RUE) 

The total RUE was (P<0.01) affected by cropping systems (Table 4.5). The bi-cropping 

system (0.721 g MJ-1 m-2) increased total RUE than sole cropping system (0.423 g MJ-1 m-2).  

The bi-cropping system was 70.4% more efficient than the sole cropping on the conversion of 

each unit of light intercepted into dry matter production.   

Table 4.5: The effects of cropping systems, drilling patterns and bean cultivars on total 

radiation use efficiency (g MJ-1 m-2) in 2015 cropping season 
Treatments Mix-proportion Total radiation use efficiency (g MJ-1 m-2) 

 

Drilling patterns 
  

1x1 50:50 0.758 

2x2 50:50 0.700 

3x3 50:50 0.729 

Broadcast 50:50 0.698 

SED (3 df) - 0.083ns 

P-value - 0.790 

   

Cropping systems   

Bi-crop mean 50:50 0.721a 

Sole crop 100 0.423b 

SED (1 df) - 0.071*** 

P-value - <0.001 

   

Bean cultivars   

Fuego 50:50 0.742 

Maris Bead 50:50 0.700 

SED (1 df) - 0.075ns 

P-value - 0.609 
Values with the same letter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.001;                   

ns= not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom; RUE, 

radiation use efficiency. 

 

4.1.6 Dry matter accumulation   

The wheat dry matter accumulation was (P<0.001) affected cropping systems only at 42 DAS 

and 92 DAS, and the sole wheat cropping system had higher wheat dry matter accumulation 

than the bi-cropping system (Table 4.6).  

The wheat dry matter accumulation was (P<0.01) was affected by the drilling patterns x bean 

cultivars interactions (Figure 4.3). 
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4.1.7 The effects of time (DAS) on wheat dry matter accumulation across the cropping 

season 

There was (P<0.001) effect of time (DAS) on wheat dry matter accumulation (Figure 4.4). 

The sole wheat cropping system yielded higher dry matter than the bi-cropping system across 

the season. Both cropping systems gave the highest wheat dry matter between 40 and 60 DAS 

with significant reduction between 60 and 92 DAS. The wheat dry matter accumulation was 

not affected between 92 and final harvest (141DAS).   

Table 4.6: The effects of cropping systems, drilling patterns and bean cultivars                  

on wheat dry matter yield (t ha-1) at different times of the 2015 cropping season 

  Wheat dry matter      (t ha-1) 

Treatments Mix-proportion DAS 

 

Drilling patterns 
42 60 92 141 

      

1x1 50:50 0.216 5.08 4.18 5.33 

2x2 50:50 0.218 4.42 4.57 4.84 

3x3 50:50 0.251 4.48 3.98 4.42 

Broadcast 50:50 0.251 5.89 4.40 4.89 

SED (3 df) - 0.043ns 0.727ns 0.388ns 0.392ns 

P-value - 0.623 0.427 0.601 0.263 

      

Cropping systems     

Bi-crop mean 50:50 0.234 4.97 4.28 4.87 

Sole crop 100 0.458 5.48 4.71 5.26 

SED (1 df) - 0.037*** 0.629ns 0.414*** 0.340ns 

P-value - <0.001 0.071 <0.001 0.068 

      

Bean cultivars      

Fuego 50:50 0.227 5.06 4.31 4.93 

Maris Bead 50:50 0.242 4.88 4.25 4.81 

SED (1 df) - 0.039ns 0.663ns 0.409ns 0.358ns 

P-value - 0.558 0.687 0.867 0.576 
Values with the same letter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.00; ns= 

not significant at (P<0.05); SED, standard error of difference of means; df, degrees of freedom; DAS, days after 

sowing. 
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Figure 4.3: The interaction effects of drilling patterns x bean cultivars on wheat dry matter 

yield (t ha-1) in 2015 cropping season 

 

Figure 4.4: The effects of time (DAS) on wheat dry matter yield (t ha-1) on two different 

cropping systems in spring 2015 

 

Error bars representing average LSD (P≤0.05)  
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4.2 Bean 

4.2.1 Plant establishment 

Cropping systems had a greater (P<0.001) effect the number of bean plants established per 

metre square at GS103 (Table 4.7). The sole cropping system (27.88 plants m-2) had a higher 

number of bean plants established than the bi-cropping systems (15.48 plants m-2).   

The number of bean plants established was (P<0.001) affected by drilling patterns.  The 

alternate rows bi-cropping treatments had the highest (15.75 plants m-2) number of bean 

plants established than broadcast bi-cropping treatment (13.31 plants m-2). Among the 

alternate rows, the 3x3 alternate row bi-cropping treatments had significantly higher number 

of bean plants established per square metre compared to 1x1 and 2x2 alternate row bi-

cropping treatments.   

The bean cultivars had a greater (P<0.001) effect on the number of bean plants established. 

Maris Bead (17.00 plants m-2) outperformed Fuego (13.28 plants m-2) on the number of 

established bean plants.  

Table 4.7: The Effects of cropping systems, drilling patterns and spring bean cultivars 

on spring bean establishment (plants m-2) in 2015 cropping season 
Treatments Mix-proportion Bean plant  establishment  (plants m-2) 

Drilling patterns  

1x1 50:50 13.56b 

2x2 50:50 14.50b 

3x3 50:50 19.19a 

Broadcast 50:50 13.31b 

SED (3 df) - 1.184*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean 50:50 15.48b 

Sole crop 100 27.88a 

SED (1 df) - 0.936*** 

P-value - <0.001 

   

Bean cultivars   

Fuego 50:50 13.28b 

Maris Bead 50:50 17.00a 

SED (1 df) - 1.324*** 

P-value - <0.001 
Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P<0.001; ns=not significant at P<0.05; SED, standard error of difference of means; df, degrees of freedom. 
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4.2.2 Bean dry matter yield 

The bean dry matter yield was (P<0.001) affected by time of sampling across the cropping 

season (Table 4.8; Figure 4.5). The bean dry matter yield increased with time except at 92 

DAS possibly in part due to prolonged dry weather conditions 15th June, 2015 and 27th June, 

2015. The cropping systems had a greater (P<0.001) effect on bean dry matter yield. The sole 

cropping system consistently outperformed the bi-cropping system across the season (Table 

4.8; Figure 4.5).  The drilling patterns had a greater (P<0.001) effect on bean dry matter yield 

(Table 4.8). The alternate row bi-cropping treatments had higher bean dry matter yield than 

broadcast bi-cropping treatments. The 2x2 alternate row bi-cropping treatment gave the 

highest bean dry matter yield at 60 and 92 DAS.  The bean dry matter yield was (P<0.01) 

affected by the bean cultivars at 42 and 92 DAS. Fuego out yielded Maris Bead on bean dry 

matter yield.   

Table 4.8:  The effects of cropping systems, drilling patterns and bean cultivars on 

spring bean dry matter yield (t ha-1) at different times of the 2015 cropping season 
  Bean dry matter      (t ha-1) 

Treatments Mix-proportion DAS 

 42 60 92 144 

Drilling patterns      

1x1 50:50 0.056b 2.04b 1.28b 1.93a 

2x2 50:50 0.069a 2.68a 1.55a 1.83a 

3x3 50:50 0.063a 2.09b 1.16c 1.71a 

Broadcast 50:50 0.023c 0.71c 0.82d 1.03b 

SED (3 df) - 0.006*** 0.360*** 0.221*** 0.196*** 

P-value - <0.001 <0.001 <0.001 <0.001 

Cropping systems     

Bi-crop mean 50:50 0.053b 1.88b 1.20b 1.62b 

Sole crop 100 0.098a 3.72a 2.70a 4.56a 

SED (1 df) - 0.004*** 0.284*** 0.174*** 0.154*** 

P-value - <0.001 <0.001 <0.001 <0.001 

Bean cultivars      

Fuego 50:50 0.062a 1.87 1.31a 1.68 

Maris Bead 50:50 0.044b 1.89 1.09b 1.57 

SED (1 df) - 0.007*** 0.402ns 0.247* 0.219ns 

P-value - <0.001 0.583 0.142 0.966 
Values with the same letter under each parameter are not significantly different at P< 0.05; *=P<0.05; 

**=P<0.01; ***=P<0.001; ns= not significant at P<0.05; SED, standard error of difference of means; df, 

degrees of freedom; DAS, days after sowing. 



  

75 

 

 

  

Figure 4.5: Mean bean dry matter yield (t ha-1) as influenced by time (DAS) during 2015 spring 

cropping season 

4.3 Weed biomass  

4.3.1 Effects of cropping systems, drilling patterns and bean cultivars on transformed 

mean weed dry weight (g m-2) and weed nitrogen uptake (kgN ha-1) at 56 DAS in 2015  

seasons 

The results on weed dry weight are presented in Table 4.9a. Cropping systems had a greater 

(P<0.001) effect on transformed weed dry matter at 56 DAS.  Bi-cropping systems (1.90 g m-

2) had lower weed dry weight than sole cropping systems (3.12 g m-2). Bi-cropping systems 

had a greater weed suppression potential of 64.2% over sole cropping systems.  During the 

early vegetative growth stage (56 DAS) the drilling patterns and the bean cultivars had no 

effect on transformed weed dry weight (Table 4.9a & 4.9b). The weed flora identified at the 

site at 56 DAS are summarised in Table 4.9c. Transformed weed nitrogen uptake was 

(P<0.05) effected by cropping systems (Table 4.9a). Sole cropping systems (1.47 kgN ha-1) 

had higher transformed weed nitrogen uptake than bi-cropping systems (1.24 kgN ha-1) by 

18.5%. The sole wheat cropping system had lower (0.89 kgN ha-1) transformed weed nitrogen 

uptake than sole bean cropping (2.08 kgN ha-1).       
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Table 4.9a: The effects of drilling patterns and bean cultivars on transformed weed dry 

weight (g m-2) and weed nitrogen uptake (kgN ha-1) at 65 DAS in 2015 spring seasons. 
Treatments Mix-

proportion 

Weed dry weight  

(g m
-2

) 

Weed shoot N uptake 

(kgN ha-1) 

Drilling patterns     

1x1 50:50 1.55[2.54] 1.02 [1.09] 

2x2 50:50 2.20[5.22] 1.44 [2.22] 

3x3 50:50 1.96[3.96] 1.28 [1.71] 

Broadcast 50:50 1.89[4.48] 1.23 [1.89] 

SED (3 df)  - 0.328ns 0.214ns 

P-value - 0.609 0.620 

   

Cropping systems   

Bi-crop mean  50:50 1.90
c
[4.05] 1.24

c
[1.87] 

Sole crop (wheat) 100 2.55
b
[8.00] 0.86

b
[0.78] 

Sole crop (beans) 100 3.12
a
[11.10] 2.08a[4.78] 

SED (1 df) - 0.243** 0.158* 

P-value - 0.007 0.007 

Bean cultivars     

Fuego 50:50 1.83[3.83] 1.20[1.63] 

Maris Bead 50:50 1.97[4.27] 1.29[1.83] 

SED (1 df)  - 0.402ns 0.262ns 

P-value - 0.310 0.332 
Values with the same letter under each parameter are not significantly different at P< 0.05; *=P<0.05; **=P< 0.0; ***=P<0.001; ns = not 

significant at P<0.05; SED, standard error of the difference of means; Data was subjected to square root √(x+0.5) transformation and figures 
in parenthesis are the means of original values; df, degrees of freedom 
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Table 4.9b: The effects of drilling patterns and bean cultivars on weed smothering 

efficiency (%) at 65 DAS in 2015 spring seasons 
Treatments                   Mix-proportion Weed smothering efficiency (%) 

Drilling patterns  

1x1 50:50 76.60 

2x2 50:50 68.2 

3x3 50:50 61.90 

Broadcast 50:50 77.00 

Bi-crop mean 50:50 70.90 

SED (3 df) - 8.120ns 

P-value - 0.218 

Bean cultivars  

Fuego 50:50 73.90a 

Maris Bead 50:50 68.00b 

SED (1 df) - 5.740* 

P-value - 0.042 
Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; 

**=P<0.01; ***=P<0.001; ns= not significant at P<0.05; SED, standard error of the difference; df, degrees 

of freedom; DAS, days after sowing. 

 

Table 4.9c:  Botanical classification of weed species identified at the study site at 56 DAS 

in 2015 cropping season  
Common name Category Scientific name Family Genus 

Bindweed Broad leaf Convolvulus arvensis (L.) Convolvulaceae Convolvulus 

Black Mustard Broad leaf Brassica nigra (L.) Brassicaceae Brassica 

Common orache Broad leaf Atriplex patula (L.) Aamaranthaceae Atriplex 

Prickly sow thistle Broad leaf Sonchus asper (L.) Hill Asteraceae Sonchus 

Cow parsley Broad leaf Anthriscus sylvestris (L.) Hoffm Apiaceae Anthriscus 

Creeping thistle Broad leaf Cirsium arvense (L.) Scop. Asterraceae Cirsium 

Fool's Parsley Broad leaf Aethusa cynapium (L.) Apiaceae Aethusa 

Rape seed Broad leaf Brassica napus (L.) Brassicaceae Brassica 

 

4.3.2 The Effects of cropping systems, drilling patterns and bean cultivars on 

transformed mean weed dry weights (g m-2) and weed nitrogen uptake (kgN ha-1) at 87 

DAS in 2015  seasons 

Cropping systems had a greater (P<0.001) effect on the transformed weed dry matter and 

nitrogen accumulation at 87 DAS (Table 4.10a).  Bi-cropping systems (2.88 g m-2) had lower 

transformed weed dry weight than sole cropping systems (5.54 g m-2) by 69.7%.  The sole 

wheat cropping system (4.24 g m-2) had significantly lower transformed weed dry weight 

compared to the sole bean cropping system (5.54 g m-2).  The drilling patterns had a greater 

(P<0.001) effect on the transformed weed dry matter weight (Table 4.10a). The alternate row 
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bi-cropping treatments (2.57 g m-2) had lower weed dry matter than broadcast bi-cropping 

treatments (3.84 m-2) by 49.2%. Similarly the alternate row bi-cropping treatments (74.3%) 

had a higher WSE than broadcast bi-cropping treatments (42.8%) (Table 4.10 b). The bean 

cultivars had no effect on transformed weed dry weights.   

The weed N uptake was (P<0.001) affected by cropping systems and drilling patterns (Table 

4.10a).  The sole cropping system had higher weed N uptake than the bi-cropping system by 

69.3%. The sole bean cropping system had 26.2% higher transformed weed nitrogen uptake 

than the sole wheat cropping system. The alternate row treatments (1.29 kgN ha-1) had 

(P<0.001) lower transformed weed N uptake than broadcast bi-cropping treatments (1.92 kgN 

ha-1) by 48.0%. The 2x2 alternate row treatments had the lowest transformed weed N uptake 

compared to other drilling patterns.  The lower transformed weed N accumulation values 

meant better weed suppression than higher values. The weed flora identified at the 

experimental site were summarised in Table 4.10c.   

Table 4.10a: The effects of drilling patterns and bean cultivars on transformed weed 

dry weight  (g m-2) and weed nitrogen uptake (kgN ha-1) at 87 DAS in 2015 spring 

seasons   
Treatments Mix-proportion Weed dry weight (g m

-2
) Weed shoot N uptake (kgN ha-1) 

Drilling patterns     

1x1 50:50 2.59
b
[6.91] 1.26c[1.65] 

2x2 50:50 2.35
b
[5.61] 1.17d[1.39] 

3x3 50:50 2.78
b
[7.88] 1.45b[2.18] 

Broadcast 50:50 3.84
a
[15.13] 1.92a[3.80] 

SED (3 df)  - 0.2486*** 0.143*** 

P-value - 0.002 <0.001 

Cropping systems   

Bi-crop mean  50:50 2.88
c
[8.88] 1.45

c
[2.18] 

Sole crop (wheat) 100 4.24
b
[18.42] 2.17

b
[4.76] 

Sole crop (beans) 100 5.54
a
[30.88] 2.74

a
[7.63] 

SED (1 df)   0.184*** 0.106*** 

P-value  <0.001 <0.001 

Bean cultivars     

Fuego 50:50 2.99[9.58] 1.49[2.39] 

Maris Bead 50:50 2.78[8.18] 1.41[2.13] 

SED (1 df)  - 0.3044ns 0.175ns 

P-value - 0.089 0.819 

Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P<0.001; ns=not significant at P<0.05; SED, standard error of the difference of means; [ ] Data was subjected to square 

root √(x+0.5) transformation and figures in parenthesis are the means of original values; df, degrees of freedom. 
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Table 4.10b: The effects of drilling patterns and bean cultivars on weed smothering 

efficiency (%) at 87 DAS in 2015 spring seasons 

Treatments             Mix-proportion Weed smothering efficiency (%) 

Drilling patterns  

1x1 50:50 73.90a 

2x2 50:50 79.10a 

3x3 50:50 70.00b 

Broadcast 50:50 42.80c 

Bi-crop mean 50:50 66.50 

SED (3 df) - 6.740*** 

P-value - <0.001 

Bean cultivars  

Fuego 50:50 64.10 

Maris Bead 50:50 68.80 

SED (1 df) - 4.770ns 

P-value - 0.340 
Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; 

**=P< 0.01; ***=P< 0.001; ns= not significant at P<0.05; SED, standard error of the difference; df, 

degrees of freedom. 

 

 

Table 4.10c: Botanical classification of weed species identified at the study site during 

2015 spring cropping season at 87 DAS 
Common name Category Scientific name Family Genus 

Bind  weed Broad leaf Convolvulus arvensis (L.) Convolvulaceae Convolvulus 

Common orache Broad leaf Atriplex patula (L.) Aamaranthaceae Atriplex 

Nipple worth Broad leaf Lapsana communis (L.) Asteraceae Lapsana 

Prickly sow thistle Broad leaf Sonchus asper (L.) Hill Asteraceae Sonchus 

Creeping thistle Broad leaf Cirsium arvense (L.) Scop. Asterraceae Cirsium 

Fool's Parsley Broad leaf Aethusa cynapium (L.) Apiaceae Aethusa 

Rape seed Broad leaf Brassica napus (L.) Brassicaceae Brassica 

 

4.4 Plant heights (cm) 

4.4.1 Wheat plant height   

The wheat plant height was (P<0.001) affected by cropping systems (Table 4.11). The bi-

cropping systems (72.65 cm) increased wheat plant heights than the sole cropping systems 

(56.15 cm) with a mean difference of 16.50 cm between cropping systems (Table 4.11).  
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The wheat plant height was (P<0.001) affected by drilling patterns (P<0.001) (Table 4.11). 

The effect of drilling patterns on wheat plant height in descending order was: 2x2 > 3x3 > 

1x1 > broadcast> sole wheat. However, among the alternate rows, the 1x1 and 3x3 treatments 

had the shortest plant height and had significantly (P>0.05) similar plant heights.  The bean 

cultivars did not affect wheat plant height.   

Table 4.11: Mean wheat plant height (cm) as affected by cropping systems, drilling 

patterns and bean cultivars during 2015 
Treatments Mix-proportion Wheat plant height (cm)   

Drilling patterns   
 

1x1 50:50 73.89b 

2x2 50:50 75.53a 

3x3 50:50 74.36b 

Broadcast 50:50 66.91c 

SED (3 df)  - 0.841*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean  50:50 72.65a 

Sole crop 100 56.15b 

SED (1 df)  - 0.693*** 

P-value - <0.001 

     

Bean cultivars    

Fuego 50:50 72.98 

Maris Bead 50:50 72.37 

SED (1 df)  - 0.746ns 

P-value - 0.611 
Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P< 0.001; ns= not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom. 

4.4.2 Bean plant heights  

The bean plant heights was (P<0.001) affected by cropping systems (Table 4.12).  The sole 

cropping system (77.81 cm) increased bean plant height than the bi-cropping system (75.52 

cm) by 3.0%.    

The bean plant height was (P<0.001) affected by the drilling patterns (Table 4.12). The tallest 

and shortest bean plant heights were recorded from the 2x2 alternate row bi-cropping 

treatments (77.40 cm) and broadcast bi-cropping treatments (73.30 cm) respectively.  The 

1x1 (76.08 cm) and the 3x3 (75.66 cm) treatments had the shortest bean plant heights than 
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other alternate rows treatments.  However, bean plant heights for the 2x2 alternate row bi-

cropping treatment (77.40 cm) and sole bean cropping systems (77.81 cm) were similar an 

indication of interspecific complementarity.    

Maris Bead (77.04 cm) had a taller (P<0.001) bean plant height than Fuego (74.93 cm) by 

20.2% (Table 4.12).    

Table 4.12: Mean bean plant height (cm) affected by cropping systems, drilling patterns 

and bean cultivars in 2015 cropping season 
Treatments Mix-proportion Bean plant height (cm)   

Drilling patterns   
 

1x1 50:50 76.08b  

2x2 50:50 77.40a 

3x3 50:50 75.66b 

Broadcast 50:50 73.30c 

SED (P<0.05) - 0.648*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean  50:50 75.52b 

Sole crop 100 77.81a 

SED (P<0.05) - 0.480* 

P-value - 0.024 

     

Bean cultivars    

Fuego 50:50 74.93a 

Maris Bead 50:50 77.04b 

SED (P<0.05) - 0.697*** 

P-value - <0.001 
Values with the same letter under each parameter are not significantly different at P< 0.05; *=P< 0.05; **=P< 0.01; 

***=P< 0.001; ns= not significant at P<0.05; SED, standard error of the difference of means. 

4.5 Field pests and diseases 

4.5.1 Black bean aphid (Aphis fabae)  

The distribution of the Black bean aphid (Aphis fabae) on the bean plants at GS 207 was 

(P<0.001) affected cropping systems, drilling patterns and the bean cultivars (Table 4.13).  

The bi-cropping system (4.74%) reduced pest incidence than the sole cropping system (6.5%) 

by 37.1%.  
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The drilling patterns had a greater (P<0.001) effect on the incidence of the Black bean aphid 

(Aphis fabae) irrespective of the bean cultivars bi-crops.  The lowest and highest incidence 

was recorded from broadcast (1.98%) and alternate row (5.67%) bi-cropping treatments 

respectively. Among the alternate rows, the highest and lowest incidence was recorded from 

the 1x1 (4.74%), and 3x3 (6.45%) respectively.  The 2x2 (5.82%) had the moderate 

incidence. 

The bean cultivars (P<0.05) affected the Black bean aphid incidence irrespective of the 

cropping system and drilling patterns (Table 4.13), and Fuego (5.86%) had the highest 

incidence than Maris Bead (4.33%).  

Table 4.13: The effects of drilling patterns and bean cultivars on transformed black 

bean aphid (Aphis fabae) incidence (%) during bean flowering stage (GS 207) at 55 days 

after sowing in 2015 cropping season 

      Treatments 
Mix-proportions Black bean aphid incidence 

(%) 

Drilling    patterns   

1x1 50:50 4.74c [27.60] 

2x2 50:50 5.82b [37.10] 

3x3 50:50 6.45a [42.60] 

Broadcast 50:50 1.98d [7.90] 

SED (3 df) - 0.097* 

P-value - 0.011 

   

Cropping systems   

Bi-crop mean 50:50 4.74b [28.80] 

Sole crop 100 6.50a [45.50] 

SED (1 df) -  0.019*** 

P-value - <0.001 

   

Bean cultivars   

Fuego 50:50 5.86a [36.60] 

M Bead 50:50 4.33b [21.10] 

SED (1 df) - 0.015** 

P-value - 0.003 
Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; 

**=P<0.01;***=P<0.001; ns= not significant at P<0.05; SED, standard error of the difference of 

means; df, degrees of freedom. Data was subjected to square root √(x+0.5) transformation and figures in 

parenthesis are the means of original values.  
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4.5.2 Ascochyta blight (Ascochyta fabae) disease incidence   

Cropping systems had no effect (P>0.05) on transformed Ascochyta blight disease incidence 

(Table 4.14). The drilling patterns had a greater (P<0.001) effect on transformed Ascochyta 

blight disease incidence on the bean plants in both sole and bi-cropping systems (Table 4.14). 

The highest and lowest transformed disease incidence of 1.31% and 0.96% was recorded 

from the 1x1 alternate row and broadcast bi-cropping treatments respectively. The 2x2 

(1.11%) and the 3x3 (1.17%) alternate row bi-cropping treatments had statistically similar 

reaction to the disease.    

Ascochyta blight disease incidence was (P<0.001) affected by the bean cultivars.  Fuego 

(1.31%) had higher transformed disease incidence than Maris Bead (0.91%) (Figure 4.6).  By 

increasing the number of rows to crop ratio increased the disease incidence for Fuego while 

at the same time reduced the disease incidence for Maris Bead (Figure 4.6). 

Table 4.14:  The effects of cropping systems, drilling patterns and bean cultivars on 

transformed mean Ascochyta blight disease incidence (%) at 125 days after sowing in 

2015 cropping season 

Treatments Mix-proportions 
Ascochyta blight disease incidence 

(%) 

Drilling    patterns   

1x1 50:50 1.31a [27.5] 

2x2 50:50 1.17b [19.7] 

3x3 50:50 1.11b [18.3] 

Broadcast 50:50 0.96c [10.3] 

SED (3 df) - 0.097** 

P-value - 0.005 

Cropping systems   

Bi-crop mean 50:50 1.14 [19.0] 

Sole crop 100 1.07 [18.6] 

SED (1 df) - 0.076ns 

P-value - 0.914 

Bean cultivars   

Fuego 50:50 1.31a [25.3] 

M Bead 50:50 0.91b [12.7] 

SED (1 df) - 0.108*** 

P-value - <0.001 
Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; **=P< 

0.01;***=P<0.001; ns= not significant at P<0.05; SED, standard error of the difference of means; df, degrees 

of freedom. [ ] Data was subjected to square root √(x+0.5) transformation and figures in parenthesis are the 

means of original values 
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Figure 4.6: The interaction effects of drilling patterns and bean cultivars on mean Ascochyta 

blight disease incidence (%) at 125 days after sowing in 2015 cropping season. 

4.6 Grain yield and components 

4.6.1 Wheat 

4.6.1.1 Total grain yield   

Cropping systems, drilling patterns, bean cultivars and their interactions had no effect on total 

wheat grain yield. The overall wheat grain yield of 2.35 t ha-1 was obtained. Similarly, main 

experimental factors did not affect the total ear weight, 1000 seed weight, and total biomass 

except on wheat straw yield (Table 4.15).      

4.6.1.2 Wheat straw yield 

Wheat straw yield was (P<0.05) was affected by cropping systems (Table 4.15), and the  sole 

cropping system (2.9 t ha-1) had higher straw yield than the bi-cropping system (2.5 t ha-1) by 

16%. The influence of drilling patterns and bean cultivars had no effect on wheat straw yield. 

 

 

 

Error bars representing average LSD (P≤0.05)  
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4.6.1.3 Wheat harvest index (HI) 

The wheat HI was (P<0.01) affected by cropping systems (Table 4.15). The bi-cropping 

system (43%) outperformed the sole cropping system (38%) by 13.1% higher.  The drilling 

patterns, bean cultivars and their interaction had no effect on HI. 
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Table 4.15:  The effects of cropping systems, drilling patterns and bean cultivars on mean wheat yield and components during 2015 

cropping season 

Treatments Mix-proportion Wheat yield components      

  

Total wheat  

ear weight  

(t ha-1) 

Total wheat 

straw yield 

(t ha-1) 

Total wheat 

grain yield 

(t ha-1) 

1000 seed 

weight  

(g) 

Total wheat 

biomass yield   

(t ha-1) 

Wheat harvest 

index  

(%) 

Drilling patterns              

1x1 50:50 3.0 2.6 2.4 40.4 5.6 43 

2x2 50:50 3.1 2.5 2.4 41.5 5.6 43 

3x3 50:50 2.8 2.3 2.2 42.6 5.1 43 

Broadcast 50:50 2.8 2.6 2.2 41.7 5.4 41 

SED (3 df) - 0.197ns 0.210ns 0.167ns 1.455ns 0.332ns 2.2ns 

P-value - 0.230 0.100 0.138 0.483 0.422 0.841 

Cropping systems 

 

 

 

   

Bi-crop mean 50:50 2.9 2.5
b
 2.3 41.5 5.4 43

a
 

Sole crop 100 2.7 2.9
a
 2.1 40.3 5.6 38

b
 

SED (1 df) - 0.171ns 0.182* 0.144ns 1.675ns 0.287ns 1.9** 

P-value - 0.306 0.022 0.203 0.377 0.382 0.008 

Bean cultivars              

Fuego 50:50 2.9 2.5 2.3 42.4 5.4 0.43 

Maris Bead 50:50 2.9 2.4 2.3 40.7 5.3 0.43 

SED (1 df) - 0.179ns 0.192ns 0.152ns 1.529ns 0.303ns 2.0ns 

P-value - 0.880 0.262 0.713 0.084 0.111 0.244 
Values with the same letter under each parameter are not significantly different at P< 0.05; *=P< 0.05; **=P< 0.01; ***=P< 0.001; ns= not significant at P<0.05; SED, standard error 

of the difference of means; df, degrees of freedom.  The total biomass was calculated as the sum of total ear weight and total straw yield (t ha-1). 
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4.6.2 Bean  

4.6.2.1 Bean seed yield   

The bean seed yield was (P<0.001) affected by cropping systems (Table 4.16). The sole 

cropping system (2.7 t ha-1) increased bean seed yield than the bi-cropping system (0.814 t 

ha-1).  The bean seed yield was (P<0.001) affected by the drilling patterns. The alternate rows 

bi-cropping treatments (0.937 t ha-1) outperformed broadcast bi-cropping treatments (0.447 t 

ha-1) by 52.2%.  The 2x 2 alternate rows bi-cropping treatments had significantly the highest 

bean yield compared to other drilling patterns.  

4.6.2.2 The 100 bean seed weight  

There was (P<0.001) effect of cropping systems on 100 bean seed weight (Table 4.16). The 

sole cropping system had higher (56.9 g) bean seed weight than the bi-cropping system (48.6 

g).  The drilling patterns did not affect (P>0.05) the 100 bean seed weight. The bean cultivars 

(P<0.001) had an effect on the 100 bean seed weight, and Maris Bead (67.1 g) had higher 100 

bean seed weight than Fuego (45.5 g) by 47.4%.   

4.6.2.3 Bean straw yield   

The bean straw yield was (P<0.001) affected by cropping systems. The sole cropping system 

had higher straw yield of 1.3 t ha-1 while the bi-cropping system had a lower yield of 0.494 t 

ha-1.  The drilling patterns and bean cultivars as independent factors did not affect the straw 

yield (Table 4.16).  

4.6.2.4 Total Bean biomass yield   

The total bean biomass yield was (P<0.001) affected by cropping systems (Table 4.16). The 

sole cropping system (4.8 t ha-1) increased total bean yield than the bi-cropping systems (1.5 t 

ha-1).  The drilling patterns had a greater (P<0.001) effect on the total biomass yield, and the 

alternate row bi-cropping treatments (1.7 t ha-1) had higher total bean biomass yield than 

broadcast bi-cropping treatment (0.9 t ha-1).  

Bean harvest index 

The bean HI was (P<0.001) affected by the bean cultivars, and Fuego had higher HI over 

Maris Bead (Table 4.16).   
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Table 4.16:  The effects of cropping systems, drilling patterns and bean cultivars on mean bean yield and components during 2015 

cropping season 

Treatments 
Mix-

proportion 

Total bean 

Pod yield 

(t  ha-1) 

Total bean  

straw yield 

(t  ha-1) 

 

Total bean  

seed yield 

(t  ha-1) 

100 bean seed 

weight  

(g) 

Total bean biomass 

yield  

(t  ha-1) 

Bean harvest 

index 

(%) 

Drilling 

patterns 

       

1x1 50:50 1.3a 0.491 0.970a 59.1 1.8a 53 

2x2 50:50 1.2a 0.587 0.977a  54.5 1.8a 52 

3x3 50:50 1.1a 0.522 0.863a  59.3 1.6a 51 

Broadcast 50:50 0.6b 0.377 0.447b  54.5 0.9b 50 

SED (3 df ) - 0.165*** 0.084ns 0.119*** 3.490ns 0.218*** 2.4ns 

P-value - <0.001 0.102 <0.001 0.313 <0.001 0.586 

        

Cropping systems       

Bi-crop mean 50:50 1.1a 0.494b 0.814b 56.8a 1.5a 52 

Sole crop 100 3.4b 1.3a 2.7a 48.6b 4.8b 55 

SED (1 df) - 0.131*** 0.067*** 0.094*** 2.760 ** 0.172*** 3.9ns 

P-value - <0.001 <0.001 <0.001 0.004 <0.001 0.085 

        

Bean cultivars       

Fuego 50:50 1.1 0.490 0.826 67.1a 1.5 53 

Maris Bead 50:50 1.0 0.498 0.802 46.5b 1.5 50 

SED (1 df) - 0.185ns 0.094ns 0.133ns 3.900 *** 0.244ns 2.7*** 

P-value - 0.678 0.051 0.892 <0.001 0.234 0.002 
Values with the same letter under each parameter are not significantly different at P< 0.05; *=P< 0.05; **=P< 0.01; ***=P< 0.001; ns= not significant at P<0.05; SED, standard error of the difference of 

means; df, degrees of freedom.  Total bean biomass was calculated as the sum of total pod and straw yields. 
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4.7 Biological efficiency of cropping systems    

4.7.1 Partial land equivalent ratio (PLER) for wheat 

The PLERw were not affected by the drilling patterns and bean cultivars (Table 4.17). 

However, the wheat PLER were above 0.5 indicated the advantage of bi-cropping systems 

than sole cropping systems. The PLER were compared against 0.5 because bi-crop species in 

mixture were sown at half density of the sole crop species (Bedoussac and Justes, 2010).  The 

PLER value above 0.5 it indicates the advantage of the bi-cropping system over the sole 

cropping system and vice versa.   

PLER for bean cultivars 

The PLERb were (P<0.05) affected by the drilling patterns (Table 4.17).  The PLERb values 

were less than 0.50 which indicated that the bean bi-crops were dominated by the wheat bi-

crop on growth resource acquisition.  The PLER value above 0.5 indicated that the bi-crops 

in mixture produced more than a sole crop and vice versa.  The alternate row bi-cropping 

treatments (0.38) had higher PLERb than broadcast bi-cropping treatments (0.19).  However, 

among the alternate rows, the PLERb decreased with increasing number of rows.  

4.7.2 Land equivalent ratio (LER)  

Across the bean cultivars, the drilling patterns had a greater (P<0.01) effected on LER (Table 

4.17).  The LER values for the bi-crops were above 1.0 which indicated the advantage of bi-

cropping systems over sole cropping systems on environmental resources use efficiency. The 

alternate row bi-cropping treatments (1.58) had higher LER than broadcast bi-cropping 

treatment (1.29).  Across the drilling patterns and the bean cultivars, the overall LER for bi-

cropping treatments was 1.50. The highest (1.64) and lowest (1.4) LER was recorded from 

the 2x2 and the 3x3 alternate row bi-cropping treatments respectively. The LER decreased 

with increased number of rows among the alternate row treatments.  The alternate rows bi-

cropping treatments (33.6%) showed higher land saving advantage than broadcast bi-

cropping treatment (22.5%) over sole cropping   (Table 4.17). According to Adetiloye et al. 

(1983), 25% is the minimum productivity coefficient value to validate land saving advantage 

in bi-cropping systems. The 2x2 alternate row bi-cropping treatments (38.8%) had higher 

land saving advantages compared to other drilling pattern treatments (33.0%).    
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Table 4.17: Biological efficiency of bi-cropping on nitrogen use efficiency influenced 

cropping systems, drilling patterns and bean cultivars, in 2015 cropping season 

  
Partial Land Equivalent 

Ratio (PLERN) 

Total Land Equivalent 

Ratio (LERN) 

Land 

savings (%) 

Treatments 
Mix-

proportion (%) 

Wheat               

(PLERwheat) 

Bean                            

(PLERbean) (PLERwheat+PLERbean) 

 

Drilling patterns      

Sole crop 100 0.50 0.50 1.00  - 

1x1 50:50 1.21 0.40 a 1.61a 37.8 

2x2 50:50 1.25 0.39 a 1.64 a 38.8 

3x3 50:50 1.14 0.36 a 1.49 b 33.1 

Broadcast 50:50 1.10 0.19 b 1.29 c 22.5 

SED (3 df) - 0.055 ns 0.071** 0.085** - 

P-value - 0.061 0.023 0.002  

      

Bean cultivars      

Fuego 50:50 1.19 0.34 1.11 - 

Maris Bead        50:50 1.15 0.32 1.05 - 

SED (1 df)        - 0.081ns 0.0498ns 0.0620ns - 

P-value        - 0.382 0.795 0.433  
Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01;           

***=P<0.001;  ns= not significant at P<0.05; SED, standard error of the difference; PLERN,  partial land equivalent ratio for 

nitrogen;  LERN,  land equivalent ratio for nitrogen;  PLERwheat  and PLERbeans  partial land equivalent ratio for wheat and beans.  

 

4.8. Competition indices 

4.8.1 Aggressivity (A) 

The competitive ability of the component crops in bi-cropping system is determined by its 

aggressivity value. Results in Table 4.18 showed positive signs for the wheat bi-crops and a 

negative signs for the bean bi-crops which indicated that the wheat dominated the bean in bi-

cropping systems.  The alternate rows bi-cropping treatments had higher aggressivity value 

than broadcast bi-cropping treatment. Among the alternate rows bi-cropping treatments, the 

highest (0.759) and lowest (0.652) aggressivity values under the wheat/Fuego bi-cropping 

system was recorded from the 2x2 and the 3x3 treatments respectively. Similarly, the highest 

(818) and lowest (0.673) aggressivity values under the wheat/Maris Bead bi-cropping system 

was recorded from the 2x2 and the 3x3 alternate row bi-cropping treatments respectively.  

However, the low aggressivity values for the 1x1 and the 3x3 alternate row bi-cropping 

treatments were consistent with the wheat and bean plant heights results in Tables 4.11 and 

4.12 which showed negative interactions between bi-crops. The lowest aggressivity values 

indicated a sign of negative interspecific interactions. Highest aggressivity values indicated 
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better interspecific complementarity on resource use efficiency (McGilchrist, 1965; Bakar et 

al., 2014; Choudhary 2014; Gosh et al., 2006).   

Table 4.18:  Aggressivity (A) as influenced by drilling patterns and faba bean cultivars 

in a wheat/bean based bi-cropping systems in 2015 cropping season 

Treatments 

Aggressivity (A) System Aggressivity (A) 

Wheat  

(Aw1) 

Fuego 

(AFG) 

Wheat 

(Aw2) 

Maris Bead 

(AMB) 

Wheat 

(Aw1+Aw2)/2 

Legume 

(Afg+Amb)/2 

Drilling patterns       

1x1 0.729 -0. 729 0.754 -0.754 0.742 -0.742 

2x2 0.759 -0.759 0.818 -0.818 0.789 -0.789 

3x3 0.652 -0.652 0.673 -0.673 0.663 -0.663 

Broadcast 0.547 -0.547 0.600 -0.600 0.537 -0.537 

Broadcast: Direct sowing of bean bi-crops, randomly over precisely drilled wheat row. A
FG

 and A
MB

 are 

Aggressivity indices for Fuego and Maris Bead bean cultivars in mixture with wheat (Aw)   

  

4.8.2 Relative Crowding Coefficient (RCC or K)   

The Relative Crowding Coefficient measures the relative dominance of one bi-crop species 

over the other in bi-cropping system to determine inter and intraspecific competition between 

them (De Wit, 1960).  The results in Table 4.19 showed that the partial K coefficient values 

of wheat were consistently higher than the partial K coefficient values for the beans. If the 

coefficient K derived from the product of bi-crop components species (wheat*beans) is 

greater than unitary value of 1.0, it shows that all bi-cropping treatments combinations 

irrespective of the drilling patterns and the bean cultivars had positive yield advantage over 

sole cropping. Despite that the values were above the unitary value of 1.0, the highest product 

K coefficient values were obtained from 1x1 under wheat/Fuego bi-cropping (18.20) and 

from the 2x2 under wheat/Maris Bead bi-cropping (26.95) which showed great advantage of 

bi-cropping systems over sole cropping systems.  Similarly, broadcast bi-cropping treatment 

had the lowest product K coefficients values of 12.12 and 6.35 for wheat/Fuego and 

wheat/Maris Bead bi-cropping systems respectively. The alternate row bi-cropping treatments 

had a higher product K coefficient value over broadcast and indication relative bi-cropping 

benefits of alternate rows than broadcast compared to sole cropping.   
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Table 4.19: Relative Crowding Coefficient (K) of wheat/bean bi-cropping systems as 

influenced by drilling patterns and faba bean cultivars in 2015 cropping season 
                       Relative Crowding Coefficient (K) 

Drilling 

patterns 

Wheat 

(Kw1) 

Fuego 

(KFG) 

System 

(Kw1*KFG) 

Wheat 

(Kw2) 

Maris Bead 

(KMB) 

System 

(Kw2*KMB) 

1x1 7.121 2.557 18.205 8.813 1.980 17.449 

2x2 4.607 3.137 14.451 9.564 2.791 26.695 

3x3 7.887 1.578 12.449 4.011 2.425 9.727 

Broadcast 14.853 0.816 12.120 3.906 1.628 6.359 

Broadcast: Direct sowing of bean bi-crops, randomly over precisely drilled wheat row. KFG and KMB are 

relative crowding coefficients of crop Fuego and Maris Bead bean cultivars bi-cropped with wheat (Kw).      

 

4.9 Forage quality 

4.9.1 Wheat crude protein content  

4.9.1.1 Crude protein content  

Cropping systems had a greater (P<0.001) effect on crude protein content in wheat grain and 

straw (Table 4.20). The highest wheat grain and straw crude protein content of 96.01 g kg-1 

DM and 24.8 g kg-1 DM were respectively recorded from bi-cropping systems. The lowest 

wheat grain and straw crude protein content of 86.06 g kg-1 DM and 18.8 g kg-1 DM were 

respectively obtained from sole cropping systems. The crude protein content gain in the 

wheat grain and straw over sole wheat due to the effect of bi-cropping system was 11.5% and 

31.9% respectively. 

The drilling patterns, the bean cultivars and their interactions had no effect wheat the crude 

protein content levels (Table 4.20). 

4.9.1.2 Protein yield 

The wheat grain and straw protein yield was (P<0.01) affected by cropping systems (Table 

4.20). The highest wheat grain, straw and total biomass yields of 227.0 kg ha-1, 62.6 kg ha-1 

and 289.3 kg ha-1 were respectively recorded from bi-cropping systems. The lowest wheat 

grain and straw protein yield of 188.0 kg ha-1, 55.1 kg ha-1 and 243.1 kg ha-1 were 

respectively obtained from sole cropping systems. The wheat/bean bi-cropping system 
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outperformed the sole cropping system on wheat grain, straw and total biomass by 13.6%, 

20.7% and 19.0% respectively. The cropping systems had no effect on wheat protein yield 

harvest index. 

Both the drilling patterns and bean cultivars did not affect wheat protein yield for grain, 

straw, total biomass and harvest index. 
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Table 4.20:  Wheat crude protein content (g kg-1 DM) and protein yield (kg ha-1) adjusted at 15% moisture      

content, for fodder production influenced by cropping systems, drilling   patterns and bean cultivars, in 2015. 

Treatments 
Mix-

proportion 

Wheat crude protein content 

(g kg
-1

 DM) 

Wheat protein yield  

(kg ha-1) 

Drilling    patterns  
Wheat  

straw 

Wheat   

grain 

 Wheat  

Straw 

Wheat   

grain 

Total 

Biomass 

HI  

(%) 

1x1 50:50 25.36 94.04  65.8 232.5 298.3 78 

2x2 50:50 25.11 96.62  64.4 240.2 304.6 79 

3x3 50:50 24.48 96.24  55.4 216.5 271.6 80 

Broadcast 50:50 24.50 97.14  64.6 219.1 283.7 77 

SED (3 df) - 1.891ns 3.142ns  7.93ns 14.39ns 19.02ns 1.90ns 

P-value - 0.920 0.644  0.369 0.170 0.176 0.456 

Cropping systems    
 

   

Bi-crop mean 50:50 24.86 96.01  62.6 a 227.0a 289.3a 78 

Sole crop 100 18.79 86.06  55.1b 188.0b 243.1b 77 

SED (1 df) - 1.638*** 2.721***  6.86*** 12.46** 16.47** 1.65ns 

P-value - <0.001 <0.001  <0.001 0.005 0.009 0.511 

Bean cultivars          

Fuego 50:50 24.16 95.92  62.7 228.9 291.6 78 

Maris Bead 50:50 25.56 96.11  62.4 225.2 287.7 78 

SED (1 df) - 1.726ns 2.860ns  7.23ns 13.14ns 17.36ns 1.74ns 

P-value - 0.212 0.919  0.954 0.664 0.724 0.751 

Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P< 0.001.  ns= not significant at P<0.05; 

SED, standard error of the difference of means; df, degrees of freedom; N, nitrogen; HI, harvest index 
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4.9.2 Beans crude protein 

4.9.2.1 Crude protein content 

Cropping systems did not affect bean crude protein content in the bean straw and grain (Table 

4.21).  

The bean crude protein content was (P<0.05) affected by the drilling patterns on only in the 

bean seed (Table 4.21). The highest bean seed crude protein content values of 279.2 g kg-1 

DM and 275.3 kg-1 DM were obtained from the 2x2 alternate rows and broadcast bi-cropping 

treatments respectively.  The lower bean crude protein content values of 266.0 g kg-1 DM and 

268.3 g kg-1 DM were obtained from the 1x1 and 3x3 alternate row bi-cropping treatments 

(Table 4.21).    

The bean seed crude protein content was (P<0.001) affected by the bean cultivars (Table 

4.21).  The highest and lowest bean seed protein content of 282.9 g kg-1 DM and 261.5 g kg-1 

DM resulted from Maris Bead and Fuego cultivars respectively.   

4.9.2.2 Protein yield  

There was a highly (P<0.001) effect of cropping systems on bean protein yield for bean 

straw, seed and total biomass (Table 4.21). The highest bean protein yield in straw (89.7 kg 

ha-1), bean seed (817.0 kg ha-1) and total biomass (727.0 kg ha-1) were obtained from sole 

cropping systems. The lowest bean protein yield in the bean straw (35.0 kg ha-1) bean seed 

(241.0 kg ha-1) and total bean biomass (276.0 kg ha-1) were obtained from bi-cropping 

systems. 

The bean straw protein yield was not effected by drilling patterns. The bean seed protein 

yield was (P<0.05) affected by the drilling patterns. Similarly, total bean biomass protein 

yield was (P<0.01) affected by the drilling patterns (Table 4.21). On both variables, the 

alternate row bi-cropping treatments outperformed broadcast bi-cropping treatments.    

The bean cultivars had no effects on protein yield for bean seed, straw and total bean biomass 

(Table 4.21b).  The experimental factors did not affect the bean protein yield harvest index 

(Table 4.21).   
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Table 4.21:  Bean crude protein content (g kg-1 DM) and protein yield (kg ha-1) adjusted at 15% moisture  content                                      

for fodder production influenced by cropping systems, drilling   patterns and bean cultivars, in 2015 cropping season 

Treatments 
Mix-

proportion 

Bean crude protein content 

(g kg
-1

 DM) 

Bean protein yield  

(kg ha-1) 

Drilling    patterns  
Bean  

straw 

Bean   

seed 

 Bean  

Straw 

Bean   

seed 

Total 

biomass 

HI  

(%) 

1x1 50:50 65.70 266.00b  32.1 291.0a 324.0a 88 

2x2 50:50 76.80 279.20a  44.6 271.0a 315.0a 85 

3x3 50:50 73.10 268.20b  38.6 269.0a 307.0a 85 

Broadcast 50:50 68.20 275.30a  42.6 133.0b 175.6b 84 

SED (3 df) - 5.33ns 5.82*  8.31ns 43.30** 43.11** 3.10ns 

P-value - 0.184 0.046  0.121 0.008 0.007 0.624 

Cropping systems    
    

Bi-crop mean 50:50 70.90 272.20  35.0b 241.0b 276.0b 86 

Sole crop 100 68.10 271.50  89.7a 727.0a 817.0a 88 

SED (1 df) - 4.210ns 4.6ns  6.57*** 34.30*** 37.30*** 2.45ns 

P-value - 0.512 0.884  <0.001 <0.001 <0.001 0.248 

Bean cultivars          

Fuego 50:50 74.00 261.50
b
  36.7 216.0 252.7 85 

Maris Bead 50:50 67.90 282.9
a
  33.2 255.0 258.2 86 

SED (1 df) - 7.530ns 6.500***  9.29ns 48.5ns 52.7ns 3.47ns 

P-value - 0.130 <0.001  0.201 0.422 0.332 0.969 

Values with the same letter under each parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P< 0.001.  ns= not significant at P<0.05; 

SED, standard error of the difference of means; df, degrees of freedom; N, nitrogen; HI, harvest index; DM, dry matter. 
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4.10 N uptake  

4.10.1 Wheat N uptake 

Cropping systems had a greater (P<0.001) effect of on N uptake in the wheat grain and total 

wheat biomass (Table 4.22a). The bi-cropping systems (40.44 kgN ha-1) outperformed the 

sole cropping system (34.73 kgN ha-1) on wheat grain N uptake by 16.4% demonstrating the 

advantage of bi-cropping systems over sole cropping systems.  Similarly, the bi-cropping 

system (53.19 kgN ha-1) outperformed the sole cropping system (47.24 kgN ha-1) on total 

biomass N uptake by 12.5%. 

Both the drilling patterns and bean cultivars did not affect N uptake in the wheat grain and 

total wheat biomass (Table 4.22a). 

Table 4.22a: The effects of cropping systems, drilling patterns and bean cultivars on 

wheat nitrogen yield (kgN ha-1) in 2015 spring cropping seasons 

Treatments 
Mix-

proportion 

Total straw N 

yield 

(kgN ha
-1

) 

Total grain N 

yield  

(kgN ha
-1

) 

Total biomass N     

Yield  

(kgN ha
-1

) 

Wheat N 

harvest 

index (%) 

Drilling patterns 

  

        

1x1 50:50 13.22 41.59 54.80 75 

2x2 50:50 13.42 43.05 56.47 76 

3x3 50:50 11.49 39.01 50.50 77 

Broadcast 50:50 12.85 38.13 50.98 74 

SED (3 df) - 1.738ns 2.396ns 3.484ns 4.4ns 

P-value - 0.531 0.068 0.126 0.552 

Cropping systems 
    

Bi-crop mean 50:50 12.74 40.44
a
 53.19

a
 76 

Sole crop 100 12.51 34.73
b
 47.24

b
 74 

SED (1 df) - 1.505ns 2.075** 3.017* 3.8ns 

P-value - 0.878 0.011 0.050 0.280 

Bean cultivars         
 

Fuego 50:50 12.34 41.07 53.41 76 

Maris Bead 50:50 13.15 39.82 52.97 75 

SED (1 df) - 1.586ns 2.187ns 3.181ns 4.0ns 

P-value - 0.432 0.378 0.828 0.194 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; **=P<0.01; 

***=P< 0.001; ns= not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom; N, 

nitrogen.   
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4.10.2 Bean N uptake 

Cropping systems had a greater (P<0.001) effect on N uptake in the bean straw, seed and 

total bean biomass (Table 4.22b).  The sole cropping system increased N uptake than the bi-

cropping system in the bean seed and total bean dry matter. The sole cropping system had 

higher N uptake of 16.2 kgN ha-1, 123.4 kgN ha-1 and 139.5 kgN ha-1 for bean straw, seed and 

total biomass respectively. The bi-cropping system had a lower N uptake values of 6.2 kgN 

ha-1; 39.8 kgN ha-1 and 46.0 kgN ha-1 for bean straw, seed and total biomass respectively.     

The drilling patterns had a greater (P<0.001) effect on N uptake by the bean (Table 4.22b). 

The alternate rows (45.6 kgN ha-1) outperformed broadcast bi-cropping treatments (23.2 kgN 

ha-1) on bean seed N uptake.  Similarly, the alternate rows bi-cropping treatments (52.3 kgN 

ha-1) outperformed broadcast bi-cropping treatment (26.9 kgN ha-1) on N uptake in the total 

bean biomass.  Even though the drilling patterns had no effect, the trend of N uptake 

gradually reduced with increasing number of rows.   

The bean cultivars did not affect the N uptake by the bean plants.   
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Table 4.22b: The effects of cropping systems, drilling patterns and bean cultivars on 

bean nitrogen yield (kgN ha-1) in 2015 spring cropping seasons 

Treatments 
Mix-

proportion 

Total straw N 

yield 

(kgN ha
-1

) 

Total seed N 

yield  

(kgN ha
-1

) 

Total biomass N     

Yield  

(kgN ha
-1

) 

N harvest 

index (%) 

 Drilling patterns          

1x1 50:50 5.75 48.90
a
 54.65

a
 88 

2x2 50:50 7.69 44.00
a
 51.69

a
 85 

3x3 50:50 6.90 43.90
a
 50.80

a
 86 

Broadcast 50:50 4.44 22.40
b
 26.84

b
 84 

SED (3 df) - 1.600ns 8.490* 9.140* 3.110ns 

P-value  0.221 0.020 0.018 0.511 

Cropping systems     

Bi-crop mean 50:50 6.20
b
 39.80

b
 46.00

b
 86 

Sole crop 100 16.12
a
 123.40

a
 139.52

a
 88 

SED (1 df) - 1.265*** 6.720*** 7.230*** 2.400ns 

 P-value   <0.001 <0.001 <0.001 0.380 

Bean cultivars       

Fuego 50:50 6.59 42.20 48.79 86 

Maris Bead 50:50 5.81 37.40 43.21 85 

SED (1 df) - 1.788ns 9.500ns 10.220ns 3.4ns 

P-value  0.445 0.576 0.623 0.883 

Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P<0.001; ns= not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom; N, 

nitrogen.   
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Chapter 5 

RESULTS FOR 2016: CORE EXPERIMENT 

5.1   Wheat  

5.1.1 Crop establishment 

The number of established wheat plants was (P<0.001) affected by cropping systems, and the 

sole cropping system (447 plants m-2) had the highest number of establishment wheat plants 

than the bi-cropping system (224 plants m-2) (Table 5.1). The drilling patterns and bean 

cultivars did not affect the number of established wheat plants.    

Table 5.1: The Effects of cropping systems, drilling patterns and spring bean cultivars 

on spring wheat establishment (plants m-2) and the number of tillers (tillers m-2) in 2016 

Treatments 
Mix-

proportion 

Wheat establishment 

(Plants m-2) 

Wheat tillers 

(Tillers m-2) 

Drilling patterns   

1x1 50:50 203 277 

2x2 50:50 213 297 

3x3 50:50 253 306 

Broadcast 50:50 232 307 

SED (3 df) - 21.330ns 18.230ns 

P-value - 0.831 0.531 

Cropping systems   

Bi-crop mean 50:50 224 297 

Sole crop 100 447 305 

SED (1 df) - 18.470*** 15.790ns 

P-value - <0.001 0.598 

Bean cultivars   

Fuego 50:50 227 300 

Maris Bead 50:50 224 293 

SED (1 df) - 19.470ns 16.640ns 

P-value - 0.171 0.179 
Values with the same letter are not significantly different at P< 0.05; *=P<0.05; **=P<0.01; ***=P< 0.001; 

ns = not significant at P<0.05; SED, standard error of difference of means; df, degrees of freedom. 
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5.1.2. Number of wheat tillers 

The number of wheat tillers was not affected by cropping systems, drilling patterns and bean 

cultivars (Table 5.1).  

5.1.3. Chlorophyll Concentration Index (CCI)  

CCI in the wheat leaf was (P<0.001) affected by cropping systems, and bi-cropping systems 

(23.2 CCI) increased CCI than sole cropping systems (11.9 CCI) by 48.7% (Table 5.2).  

CCI was (P<0.001) affected by drilling patterns, and the alternate rows bi-cropping 

treatments (24.4 CCI) had higher CCI than broadcast bi-cropping treatments (19.2 CCI) by 

27.2% (Table 5.2).  Among the alternate row bi-cropping treatments, the 3x3 alternate row 

bi-cropping treatments significantly the lowest CCI values compared to others.  The bean 

cultivars had no effects on the CCI on the wheat leaves.    

Table 5.2: The effects of cropping systems, drilling patterns and bean cultivars on mean 

chlorophyll content (CCI) on the wheat leaf in 2016 cropping season 

Treatments Mix-proportion Chlorophyll content (CCI) 

Drilling patterns   

1x1 50:50 24.7a 

2x2 50:50 24.9a 

3x3 50:50 23.7b 

Broadcast 50:50 19.2c 

SED (3 df) - 0.385*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean 50:50 23.2a 

Sole crop 100 11.9b 

SED (1 df) - 0.365*** 

P-value - <0.001 

   

Bean cultivars   

Fuego 50:50 22.9 

Maris Bead 50:50 23.4 

SED (1 df) - 0.788ns 

P-value - 0.056 
Values with the same letter under the same parameter are not significantly different at P<0.05; 

*=P<0.05; **=P< 0.01;***=P< 0.001; ns = not significant at P<0.05; SED, standard error of the 

difference of means; df, degrees of freedom; CCI, chlorophyll concentration index.     
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5.1.4. Leaf Area Index (LAI) 

LAI was (P<0.001) affected by cropping systems, and the bi-cropping system increased LAI 

over the sole cropping by 14.6% showing its advantage sole cropping system. LAI in the 

bean sole cropping system (3.56) was higher than in the sole wheat cropping system (2.30) by 

54.7% (Table 5.3).     

The drilling patterns showed a greater (P<0.001) effect LAI (Table 5.3).  The alternate row 

bi-cropping treatments increased LAI than broadcast bi-cropping treatments by 23.4%.  

Among alternate rows, the 3x3 had significantly the lowest LAI compared to other alternate 

row bi-cropping treatments.   

LAI was (P<0.001) affected by the bean cultivars, and Fuego increased LAI than Maris Bead 

bean by 5.4% (Table 5.3).     

Table 5.3: The effects of cropping systems, drilling patterns and bean cultivars                                      

on mean leaf area index (LAI) in 2016 cropping season 
Treatments Mix-proportion Leaf area index (LAI) 

Drilling patterns 
 

1x1 50:50 3.62a 

2x2 50:50 3.60a 

3x3 50:50 3.37b 

Broadcast 50:50 2.86c 

SED (3 df) - 0.069*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean 50:50 3.36b 

Sole crop (wheat) 100 2.30c 

Sole crop (beans) 100 3.56a 

SED (1 df) - 0.051*** 

P-value - <0.001 

   

Bean cultivars   

Fuego 50:50 3.66 a 

Maris Bead 50:50 3.47b 

SED (1 df) - 0.0848*** 

P-value - <0.001 
Values with the same letter under the same parameter are not significantly different at P<0.05; 

*=P<0.05; **=P< 0.01; ***=P<0.001; SED, standard error of difference of means; df, degrees of freedom; LAI, 

Leaf area Index 
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5.1.5. Intercepted Photosynthetic Active Radiation (IPAR) 

Cropping systems had a greater (P<0.001) effect of on IPAR (Table 5.4).  It is difficult to 

determine how much of the IPAR was intercepted by each of the component crop. Instead, 

IPAR was determined based on the total crop canopy from each experimental plot. The bi-

cropping systems had higher IPAR (82.3%) than the sole cropping system (75.35%).  

Between the sole cropping systems, the sole bean cropping system had higher IPAR (77.5%) 

than the sole wheat cropping system (73.2%) by 5.8%.    

The drilling patterns had a greater (P<0.001) effect on IPAR (Table 5.4).  The alternate row 

bi-cropping treatments (85.5%) had higher IPAR than the broadcast bi-cropping treatments 

(75.5%). Among the drilling patterns treatments, the 2x2 alternate rows bi-cropping treatment 

(86.8%) had the highest IPAR than other drilling patterns (81.8%) which include; the 1x1, 

3x3 and broadcast.  Among the alternate rows treatments, the 1x1 and 3x3 bi-cropping 

treatments had lower IPAR compared to the 2x2 alternate row treatments (Table 5.4).     

There was (P<0.001) effect of the bean cultivars on IPAR (Table 5.4), and Maris Bead had 

higher IPAR (83.1%) than Fuego (81.5%).      

Table 5.4: The effects of cropping systems, drilling patterns and bean cultivars on mean 

per cent intercepted photosynthetic active radiation (IPAR) in 2016 cropping season 
Treatments Mix-proportion IPAR (%) 

Drilling patterns  

1x1 50:50 85.0b 

2x2 50:50 86.8a 

3x3 50:50 84.9b 

Broadcast 50:50 75.5c 

SED (1 df) - 0.628*** 

P-value - <0.001 

Cropping systems  

Bi-crop mean                           50:50 82.3a 

Sole crop (wheat)                           100 73.2c 

Sole crop (beans)                           100 77.5b 

SED (1 df)                              - 0.395*** 

P-value                              -  <0.001 

Bean cultivars  

Fuego 50:50 81.5b 

Maris Bead 50:50 83.1a 

SED (1 df) - 0.769*** 

P-value - <0.001 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P<0.001; SED, standard error of the difference; df, degrees of freedom; IPAR, Intercepted Photosynthetic Active 

Radiation.   
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The effects of time (DAS) on IPAR 

The days after sowing had a greater (P<0.001) effect on IPAR.  An annual IPAR of 81.1% of 

the total annual incident was recorded across cropping systems, drilling patterns and bean 

cultivars (Figure 5.1). Higher IPAR for the bi-cropping system occurred between 51 and 73 

DAS which declined between 78 and 98 DAS. The maximum IPAR for the sole wheat 

cropping system occurred during booting stage at 57 DAS afterwards the canopy became less 

dense allowing more PAR to the soil surface. The sole bean cropping system initially had 

lowest IPAR than the sole wheat cropping system. It had equal IPAR with bi-cropping at 73 

DAS before reached its maximum IPAR at 78 DAS. Similarly, the sole wheat cropping 

system had equal IPAR with the bi-cropping system only between 50 and 57 DAS afterwards 

the sole wheat canopy (at booting stage) became less dense allowing more PAR to the soil 

surface. However, at 51 DAS the bi-cropping system had 27.6% PAR than the sole bean 

cropping systems revealing the advantage of bi-cropping systems and the weakness of sole 

bean cropping systems on light interception during early stages of growth.  

 

Figure 5.1: The effects of time (DAS) on IPAR (%) for different cropping systems in spring 2016 
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5.1.6. Total radiation use efficiency (RUE) 

Cropping systems had a greater (P<0.05) effect on total RUE.  The bi-cropping system had a 

higher total RUE value of 0.668 g MJ-1 m-2 compared to 0.600 g MJ-1 m-2 from the sole 

cropping system by 11.3% (Table 5.5).  

 

The drilling patterns had a greater (P<0.001) effect on total radiation use efficiency (Table 

5.5). The 3x3 alternate row treatment (0.560 g MJ-1 m-2) reduced total radiation use efficiency 

compared to other drilling pattern (0.704 g MJ-1 m-2) by 25.7%.   

 

Total RUE was (P<0.001) affected by the bean cultivars (Table 5.5). Fuego had a higher total 

RUE value (0.739 g MJ-1 m-2) than Maris Bead (0.597 g MJ-1 m-2) by 23.7%.   

 

Table 5.5: The effects of cropping systems, drilling patterns and bean cultivars on total 

radiation use efficiency (g MJ-1 m-2) in 2016 cropping season 

Treatments Mix-proportion 
Total radiation use efficiency   

(g MJ-1 m-2) 

Drilling patterns   

1x1 50:50 0.693
a
 

2x2 50:50 0.741
a
 

3x3 50:50 0.560
b
 

Broadcast 50:50 0.678
a
 

SED (3 df) -    0.091*** 

P-value - <0.001 

   

Cropping systems   

Bi-crop mean 50:50 0.668
a
 

Sole crop 100 0.600
b
 

SED (1 df) - 0.050*  

P-value - 0.046 

    

Bean cultivars   

Fuego 50:50 0.739
a
 

Maris Bead 50:50 0.597
b
 

SED (1 df) - 0.083* 

P-value - 0.031 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; 

**=P< 0.01; ***=P< 0.001; SED, standard error of the difference of means; df, degrees of freedom; RUE, 

radiation use efficiency. 
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5.1.7. Dry matter accumulation   

5.1.7.1. Wheat 

The wheat dry matter yield across the DAS was (P<0.001) affected by cropping systems 

(Table 5.6). The sole cropping system accumulated increased amount of wheat dry matter 

yield than the bi-cropping system across the DAS (Table 5.6; Figure 5.2). 

 

The drilling patterns and the bean cultivars as independent factors had no effect on wheat dry 

matter yield differences. 

 

Table 5.6: The effects of cropping systems, drilling patterns and bean cultivars on wheat 

dry matter yield (t ha-1) at different times of the 2016 cropping season 
  Wheat dry matter      (t ha-1) 

Treatments Mix-proportion DAS 

 42 51 73 121 

Drilling patterns      

1x1 50:50 0.765 1.61 4.12 4.53 

2x2 50:50 0.751 1.42 3.85 4.24 

3x3 50:50 0.680 1.57 3.66 4.10 

Broadcast 50:50 0.808 1.61 4.46 4.69 

SED (3 df) - 0.113ns 0.122ns 0.452ns 0.427ns 

P-value - 0.130 0.099 0.511 0.061 

Cropping systems     

Bi-crop mean 50:50 0.751b 1.54b 4.02b 4.38b 

Sole crop 100 1.502a 3.11a 10.46a 10.17a 

SED (1 df) - 0.097*** 0.106*** 0.392*** 0.370*** 

P-value - <0.001 <0.001 <0.001 <0.001 

Bean cultivars      

Fuego 50:50 0.791 1.59 3.86 4.55 

Maris Bead 50:50 0.750 1.55 4.08 4.24 

SED (1 df) - 0.103ns 0.112ns 0.413ns 0.390ns 

P-value - 0.540 0.815 0.423 0.055 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05;         

**=P<0.01;   ***=P<0.001; ns= not significant at P<0.05; SED, standard error of difference of means; df, degrees 
of freedom; DAS, days after sowing. 
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Figure 5.2: The effects of time (DAS) on wheat dry matter yield (t ha-1) by two different 

cropping systems in 2016 cropping season 

 

5.2 Bean performance 

5.2.1 Plant establishment 

Cropping systems had a greater (P<0.001) effect on the number of bean plants established at 

GS103 (Table 5.7), and the sole cropping system had a higher (38.09 plant m-2) number of 

established bean plants than the bi-cropping system (15.95 plants m-2).    

The drilling patterns had a greater (P<0.001) effect on the number of established bean plants 

at GS103 (Table 5.7). The highest and lowest number of bean plants established was recorded 

from the 3x3 and (1x1 & 2x2) respectively.    
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Table 5.7: The Effects of cropping systems, drilling patterns and spring bean cultivars 

on spring bean establishment (plants m-2) in 2016 cropping season 

Treatments Mix-proportion 
Bean plant  establishment    

(plants m-2) 

Drilling patterns  

1x1 50:50 14.88c 

2x2 50:50 14.50c 

3x3 50:50 18.30a 

Broadcast 50:50 16.30b 

SED (3 df)                - 2.309** 

P-value                - 0.002 

Cropping systems  

Bi-crop mean               50:50 15.95b 

Sole crop               100 38.09a 

SED (1 df)                 - 1.825*** 

P-value                 - <0.001 

Bean cultivars   

Fuego               50:50 36.94 

Maris Bead               50:50 39.25 

SED (1 df)                  - 2.581ns 

P-value                  - 0.108 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P<0.05; 

**=P<0.01; ***=P<0.001; ns= not significant at P<0.05; SED, standard error of difference of means; df, 
degrees of freedom. 

 

5.2.2 Bean dry matter yield 

The bean dry matter yield at different DAS was (P<0.001) affected by cropping systems 

(Table 5.8). The higher bean dry matter yield of 0.61 t ha-1 and 5.60 t ha-1 from the sole 

cropping system than 0.25 t ha-1 and 2.72 ha-1 from the bi-cropping system was recorded at 

42 and 121 DAS respectively.   

The bean dry matter accumulation was (P<0.01) affected by drilling patterns at 42 and 121 

DAS (Table 5.8). At 42 DAS, the 2x2 alternate row treatments (0.32 t ha-1) influenced 

highest bean dry matter yield compared to for other drilling patterns (0.22 t ha-1).  Broadcast 

bi-cropping treatment had the lowest bean dry matter yield of 0.17 t ha-1 compared to other 

drilling patterns. Among the alternate row treatments, the bean dry matter yield for the 1x1 

and the 3x3 treatments was lower compared to the 2x2 alternate row bi-cropping treatments.  
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At 122 DAS, the alternate row bi-cropping treatments (2.85 t ha-1) had higher bean dry matter 

yield than broadcast treatment (1.77 t ha-1) by 62.5%.   

 

The bean cultivars had no effect on the bean dry matter yield.   

 

Table 5.8:  The effects of cropping systems drilling patterns and bean cultivars on mean 

bean dry matter yield (t ha-1) at different DAS, for forage production, spring 2016 

Treatments Mix-proportion 

Bean dry matter (t ha-1) 

DAS 

 
42 51 73 121 

Drilling patterns      

1x1  50:50  0.26b 0.57 1.73 2.74a 

2x2  50:50  0.32a 0.52 2.24 2.85a 

3x3  50:50  0.24b 0.58 1.91 3.04a 

Broadcast  50:50  0.17c 0.38 1.38 1.77b 

SED (3 df)      - 0.031*** 0.094ns 0.370ns 0.360** 

P-value     - <0.001 0.146 0.174 0.009 

Cropping systems 
     Bi-crop mean  50:50  0.25b 0.51 1.97 2.72b 

Sole crop  100  0.61a 1.47 5.29 5.60a 

SED (1 df)    -  0.024*** 0.074*** 0.297*** 0.28*** 

P-value - <0.001 <0.001 <0.001 <0.001 

      
    

Bean cultivars     
    

Fuego  50:50  0.25 0.56 1.82 2.43 

Maris Bead  50:50  0.24 0.46 1.81 2.76 

SED (1 df)      -  0.034ns 0.105ns 0.421ns 0.404ns 

P-value     - 0.137 0.294 0.363 0.230 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; **P<0.01; 

***P<0.001; ns = not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom; 

DAS, days after sowing.   

 

5.3 Weeds 

5.3.1 Weed biomass 

Transformed weed dry weight (g m-2) and weed nitrogen uptake (kg ha-1) at 51 DAS  

At 51 DAS, weed dry matter accumulation was (P<0.001) affected by cropping systems 

(Table 5.9a). Sole cropping systems (wheat and beans) had the highest transformed weed dry 

weights (3.91 g m-2) than bi-cropping systems (2.34 g m-2). Between the sole cropping 
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systems, the sole bean cropping system (5.18 g m-2) had the highest transformed weed dry 

weight than the sole wheat cropping system (2.65 g m-2).        

Transformed weed dry weight was (P<0.001) affected by drilling patterns (Table 5.9a). The 

alternate row bi-cropping treatments (2.13 g m-2) outperformed broadcast treatment (2.95 g 

m-2) by 38.2% on the reduction of transformed weed dry weights. However, the alternate row 

bi-cropping treatments had (>0.05) similar effect on transformed dry weight.  

Transformed weed nitrogen uptake was (<0.001) affected by cropping systems (Table 5.9a). 

The sole cropping systems (2.06 kgN ha-1) had the highest transformed weed nitrogen uptake 

(1.23 kgN ha-1) than bi-cropping systems. The capacity of the bi-cropping system to 

minimised nitrogen loss from the system through weeds was 67.4% higher than the sole 

cropping system (Table 5.9a).  

Transformed weed nitrogen uptake was (<0.001) affected by drilling patterns (Table 5.9a). 

The alternate rows bi-cropping treatments (1.1 kgN ha-1) had the higher capacity than 

broadcast bi-cropping treatment (1.56 kgN ha-1) on reducing nitrogen loss from the system 

through weeds by 41.8%.   
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Table 5.9a: The effects of drilling patterns and bean cultivars on transformed weed dry 

weight (g m-2) and weed nitrogen uptake (kg ha-1)  at 51 DAS in 2016 cropping seasons 
Treatments Mix-

proportion 

Weed dry weight  

(g m-2) 

Weed shoot N uptake  

(kg ha-1) 

Drilling patterns     

1x1 50:50 2.04
b
 [4.36] 1.08b[1.25] 

2x2 50:50 2.09
b
 [4.52] 1.02b[1.26] 

3x3 50:50 2.27
b
 [5.28] 1.20b[1.49] 

Broadcast 50:50 2.95
a
 [9.24] 1.56a[2.66] 

SED (3 df) -  0.2224* 0.126*** 

P-value -           0.041                   <0.001 

 

Cropping systems 

  

Bi-crop mean  50:50 2.34
c
 [5.85] 1.23

c
[1.52] 

Sole crop (wheat) 100 2.65
b
[7.07] 1.39

b
[1.97] 

Sole crop (beans) 100 5.18
a
 [27.24] 2.73

a
[7.69] 

SED (1 df) - 0.164*** 0.093*** 

P-value -          <0.001                    <0.001 

 

Bean cultivars 

    

Fuego 50:50 2.46[6.35] 1.30[1.81] 

Maris Bead 50:50 2.22[5.35] 1.17[1.52] 

SED (1 df) -  0.2724ns 0.155ns 

P-value            -          0.993                     0.098 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; **=P< 0.01; 

***=P< 0.001; ns= not significant at P< 0.05; SED, standard error of the difference of means; DAS, days after sowing.    

[ ] Data was subjected to square root √(x+0.5) transformation and figures in parenthesis are the means of original values; 

df, degrees of freedom. 

Transformed mean weed dry weight (g m-2) and weed N uptake (kg ha-1) at 73 DAS 

At 73 DAS, transformed weed dry weight was (P<0.001) affected by cropping systems 

(Table 5.9b).  Sole cropping systems (3.89 g m-2) higher transformed weed dry weights than 

bi-cropping systems (3.01 g m-2).  

The drilling patterns had a greater (P<0.001) effect on transformed weed dry weight (Table 

5.9b). The alternate row bi-cropping treatments (2.33 g m-2) outperformed the broadcast bi-

cropping treatment (5.03 g m-2) by 115.8% on the ability to reduce transformed weed dry 

weights in production system. Despite alternate rows were not different statistically, the 3x3 

alternate row bi-crop treatments had relatively lower effect than other alternate rows.   

Transformed weed N uptake was (P<0.001) affected by cropping systems (Table 5.9b). The 

sole cropping system had highest transformed weed N uptake (1.9 kgN ha-1) than the bi-
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cropping system (1.5 kgN ha-1). Bi-cropping systems showed higher abilities to minimise N 

loss through weeds than sole cropping by 26.6%. Between the sole cropping systems, the sole 

bean cropping system had the highest transformed weed N uptake (2.19 kgN ha-1) than the 

sole wheat cropping system (1.70 kgN ha-1).   

The drilling patterns had a greater (P<0.001) effect on transformed weed N uptake (Table 

5.9b). The alternate rows reduced (1.1 kgN ha-1) transformed weed N uptake than broadcast 

bi-cropping treatment (2.5 kgN ha-1).  The weed species identified on the study site are 

summarised in Table 5.9c. 

Table5.9b: The effects of drilling patterns and bean cultivars on transformed weed dry 

weight (g m-2) and weed nitrogen uptake (kg ha-1) at 73 DAS in 2016 cropping season 

Treatments 
Mix-

proportion 

weed dry weight 

(g m-2) 

Weed shoot N uptake 

(kg ha-1) 

 

Drilling patterns 

   

1x1 50:50 2.11
c
[5.00] 1.05b[1.24] 

2x2 50:50 2.22
bc

[5.07] 1.11b[1.30] 

3x3 50:50 2.67
b
[7.30] 1.34b[1.86] 

Broadcast 50:50 5.03
a
[27.13] 2.51a[6.83] 

SED (3 df) - 0.489*** 0.249*** 

P-value -                <0.001            <0.001 

    

Cropping systems   

Bi-crop mean  50:50 3.01
c
[11.12] 1.50

c
[3.16] 

Sole crop (wheat) 100 3.42
b
[12.22] 1.70

b
[3.00] 

Sole crop (beans) 100 4.36
a
[20.75] 2.19

a
[5.37] 

SED (1 df) -  0.362** 0.185** 

P-value -                 0.005             0.016 

      

Bean cultivars     

Fuego 50:50 3.07[11.68] 1.54[3.25] 

Maris Bead 50:50 2.94[10.57] 1.47[3.39] 

SED (1 df)  - 0.598ns 0.306ns 

P-value -                 0.375            0.323 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; 

**=P<0.01; ***=P<0.001; ns= not significant at P<0.05; SED, standard error of the difference of means; DAS, 

days after sowing.  [ ] Data was subjected to square root √(x+0.5) transformation and figures in parenthesis are the 

means of original values; df, degrees of freedom. 
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Table 5.9c: Botanical classification of weed species identifies at the study site during 

2016 spring cropping season 
Common name Weed type Scientific name                 Family Genus 

Black bind weed Broad leaf Convolvulus arvensis (L.) Convolvulaceae Convolvulus 

Common orache Broad leaf Atriplex patula (L.) Aamaranthaceae Atriplex 

Nipplewort Broad leaf Lapsana communis (L.) Asteraceae Lapsana 

Smooth sow thistle Broad leaf Sonchus oleraceus (L.)  Asteraceae Sonchus 

Fool's Parsley Broad leaf Aethusa cynapium (L.) Apiaceae Aethusa 

Oilseed rape  Broad leaf Brassica napus (L.) Brassicaceae Brassica 

 

5.3.1 Weed smothering efficiency (WSE) (%) 

Results in Table 5.10, showed no effect of the drilling patterns on WSE at 73 DAS (Table 

5.10). At 51 DAS, the alternate rows bi-cropping treatments (82.9%) outperformed (P<0.01) 

broadcast (66.9%) by 23% on WSE.  The bean cultivars had a greater (P<0.001) effect on 

WSE. At 51 DAS, Maris Bead (80.6%) had higher WSE than Fuego (76.8) by 4.9%. At 73 

DAS, Fuego had higher WSE effect (82.0%) than Maris Bead (75.3%) by 8.8% (Table 5.10). 

Table 5.10: The effects of drilling patterns and bean cultivars on weed smothering 

efficiency (%) at 51 and 73 DAS in 2016 cropping season 

Treatments Mix-proportion Weed smothering efficiency (%) 

Drilling patterns 51 DAS 73 DAS 

   

1x1 50:50 84.1a 78.1 

2x2 50:50 83.1a 78.1 

3x3 50:50 80.5a 81.9 

Broadcast 50:50 66.9b 76.5 

Bi-crop mean 50:50 78.7 78.6 

SED (3 df) - 4.600 ** 5.650ns 

P-value - 0.004 0.798 

    

Bean cultivars   

Fuego 50:50 76.8b 82.0a 

Maris Bead 50:50 80.6a 75.3b 

SED (1 df) - 3.250* 4.000* 

P-value - 0.027 0.048 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; 

**=P<0.01; ***=P<0.001.  ns= not significant at P<0.05; SED, standard error of the difference; DAS, days 

after sowing.   
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5.4 Plant heights  

5.4.1 Wheat plant height   

The wheat plant height was (P<0.001) affected by cropping systems (Table 5.11). The wheat 

plants in bi-cropping systems (93.29 cm) were taller than wheat plants (89.21 cm) in sole 

cropping systems by 4.5%.    
 

The wheat plant height was (P<0.001) affected the drilling patterns (Table 5.11).  The 3x3 

alternate row bi-cropping treatments had the tallest wheat plant height (100.00 cm) compared 

to other drilling patterns treatments (91.0 cm) by 9.9 cm. The wheat plant height for the 1x1 

(90.46 cm), 2x2 (91.62) and broadcast treatment (90.68 cm). 

The bean cultivars did affect the plant height for the wheat bi-crops. The wheat plant height 

was (P<0.01) affected by the drilling patterns x bean cultivars (Figure 5.3). 

Table 5.11:  Mean wheat plant height (cm) as affected by cropping systems, drilling 

patterns and bean cultivars in 2016 cropping season 
Treatments Mix-proportion Wheat plant height (cm)   

Drilling patterns    

1x1 50:50 90.46a 

2x2 50:50 91.62a 

3x3 50:50 100.00b 

Broadcast 50:50 90.68a 

SED (3 df) -  2.237*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean  50:50 93.29a 

Sole crop 100 89.21b 

SED (1 df) - 1.937* 

P-value - 0.037 

     

Bean cultivars    

Fuego 50:50 92.56 

Maris Bead 50:50 94.01 

SED (1 df) - 2.042ns 

P-value - 0.262 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; 

**=P<0.01; ***=P< 0.001; ns= not significant at (P<0.05); SED, standard error of the difference of means; df, 

degrees of freedom. 
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5.4.2 Bean plant heights  

The bean plant height was (P<0.001) affected by cropping systems (Table 5.12).  The sole 

cropping system (133.02 cm) increased plant height compared to the bi-cropping system 

(119.03 cm) by 11.7%.   
 

The drilling patterns had a greater (P<0.001) effect on bean plant height (Table 5.12).  The 

3x3 alternate row bi-cropping treatment (126.09 cm) had the tallest plant height. The 1x1 

alternate row bi-cropping treatments (107.27 cm) had the shortest plant height.  The effect of 

drilling patterns on bean plant height occurred in the following descending order was: 3x3> 

2x2> broadcast> 1x1. 

There was (P<0.05) effect of the bean cultivars on bean plant heights (Table 5.12). Maris 

Bead (122.37 cm) was taller than Fuego (115.69 cm) by 5.4%. 

Table 5.12: Mean bean plant height (cm) as affected by cropping systems, drilling 

patterns and bean cultivars in 2016 cropping season 
Treatments Mix-proportion Bean plant height (cm)   

Drilling patterns    

1x1 50:50 107.27c 

2x2 50:50 120.53b 

3x3 50:50 126.09a 

Broadcast 50:50 122.23b 

SED (3 df) - 2.638*** 

P-value - <0.001 

   

Cropping systems  

Bi-crop mean  50:50 119.03b 

Sole crop 100 133.02a 

SED (1 df) - 2.086*** 

P-value - <0.001 

     

Bean cultivars    

Fuego 50:50 115.69b 

Maris Bead 50:50 122.37a 

SED (1 df) -  2.949** 

P-value                       - 0.002 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P<0.001; SED, standard error of the difference of means; df, degrees of freedom. 
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5.5 Field pests and diseases 

5.5.1 Faba bean rust disease (Uromyces viciae-fabae) severity (%)  

Faba bean rust disease severity was (P<0.01) affected by the drilling patterns during the 

reproductive growth stage of faba beans (Table 5.13).  The 1x1 (68.5%) and the 3x3 (70.0%) 

alternate row bi-cropping treatments had (P<0.01) high disease severity. The 2x2 alternate 

row (57.5%) and broadcast bi-cropping treatments (60.3%) had (P<0.01) low percentage 

disease severity.  The disease severity for the 1x1 (68.5%) was equal to the sole bean 

cropping systems (67.0%).    

The bean cultivars had a greater (P<0.001) effect on the disease severity (Table 5.12), and 

Fuego (84.7%) had the highest disease severity than Maris Bead (44.6%).    

Table 5.13: The effects of cropping systems, drilling patterns and bean cultivars on the 

severity (%) of faba bean rust (Uromyces viciae-fabae) at 205 DAS during spring, 2016. 
Treatments Mix-proportion Faba bean rust severity (%) 

Drilling patterns    

1x1 50:50 68.5a 

2x2 50:50 57.5b 

3x3 50:50 70.0a 

Broadcast 50:50 60.3b 

SED (3 df) - 4.320** 

P-value - 0.019 

Cropping systems  

Bi-crop mean  50:50 64.7 

Sole crop 100 67.0 

SED (1 df) - 3.410ns 

P-value - 0.393 

Bean cultivars    

Fuego 50:50 84.7a 

Maris Bead 50:50 44.6b 

SED (1 df) -  4.830*** 

P-value                       - <0.001 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.0; 

***=P<0.001; ns=not significant at (P<0.05); SED, standard error of the difference of means; df, degrees of freedom. 
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5.6 Grain yield and components 

5.6.1 Wheat yield 

5.6.1.1 Total grain weight   

The wheat total grain yield was (P<0.001) affected by cropping systems (Table 5.14). The 

sole cropping system (4.0 t ha-1) had higher wheat grain yield than the bi-cropping system 

(1.7 t ha-1) by 2.3 times higher. The drilling patterns and bean cultivars had no effect on 

wheat grain yield.   

 

5.6.1.2 1000 seed weight 

The seed index or 1000 wheat seed weight was (P<0.05) affected by cropping systems (Table 

5.14). The sole cropping system (35.9 g) was 4.9% higher than the bi-cropping system on 

influencing 1000 wheat seed weight.  The drilling pattern (P<0.01) effected 1000 the wheat 

seed weight. The 3x3 alternate row treatments (32.5 g) had the lowest 1000 wheat seed 

weight compared to other drilling patterns.   

5.6.1.3 Wheat straw yield 

The wheat straw yield was (P<0.001) affected by cropping systems (Table 5.14). The sole 

cropping system (5.6 t ha-1) had 2.0 times higher wheat straw yield than the bi-cropping 

system (2.7 t ha-1). The drilling patterns and bean cultivars did not affect the wheat straw 

yield.   

 

5.6.1.4. Total wheat biomass yield 

The total wheat biomass yield was (P<0.001) affected by cropping systems (Table 5.14). The 

sole cropping system (7.6 t ha-1) had higher total wheat biomass yield than the bi-cropping 

system (4.8 t ha-1).  The drilling patterns and bean cultivars had no effect on total biomass 

yield.   

5.6.1.5 Wheat Harvest index (HI) 

The wheat harvest HI was (P<0.05) affected by cropping systems (Table 5.14). The wheat 

cropping system (53%) had higher HI than the bi-cropping system (35%).    
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Table 5.14:  The effects of cropping systems, drilling patterns and bean cultivars on mean wheat yield (t ha-1) and components during 

2016 cropping season 

Treatments Mix-proportion 
Total wheat ear 

weight 

(t ha-1) 

Total wheat 

straw yield 

(t ha-1) 

Total wheat 

grain yield 

(t ha-1) 

1000 seed 

weight 

(g) 

Total wheat  

biomass  

yield (t ha-1) 

Harvest  

index 

(%) 

 

Drilling patterns 

       

1x1 50:50 2.2 2.8 1.6 34.8a 5.0 32 

2x2 50:50 2.3 2.5 1.7 34.1a 4.8 35 

3x3 50:50 2.2 2.7 1.6 32.5b 4.9 33 

Broadcast 50:50 2.1 2.9 1.7 35.4a 5.0 34 

SED (3 df) - 0.116ns 0.191ns 0.151ns 0.922** 0.266ns 2.0ns 

P-value - 0.729 0.074 0.891 0.002 0.091 0.175 

Cropping systems        

Bi-crop mean 50:50 2.1 2.7b 1.7b 34.2b 4.8b 35b 

Sole crop 100 2.0 5.6a 4.0a 35.9a 7.6a 53a 

SED (1 df) - 0.141ns 0.166*** 0.131*** 0.799* 0.230*** 1.8* 

P-value - 0.241 <0.001 <0.001 0.037 <0.001 0.047 

Bean cultivars 
       

Fuego 50:50 2.2 2.78 1.68 34.4 4.9 34 

Maris Bead 50:50 2.1 2.75 1.59 34.0 4.8 33 

SED (1 df) - 0.148ns 0.175ns 0.138ns 0.842ns 0.243ns 1.9ns 

P-value - 0.135 0.825 0.075 0.494 0.094 0.075 

Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P<0.05; **=P< 0.01; ***=P< 0.001; ns= significant at P>0.05; SED, standard 

error of the difference of means; df, degrees of freedom. The total biomass was calculated as the sum of total ear weight and total straw yield (t ha-1). 
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5.6.2 Bean yield 

5.6.2.1 Total bean seed yield   

The total bean yield was (P<0.01) affected by cropping systems (Table 5.15). The highest and 

lowest total bean seed yield of 1.3 t ha-1 and 1.01 t ha-1 resulted from sole cropping and bi-

cropping systems respectively.   

 

The total bean yield was (P<0.05) affected by drilling patterns (Table 5.15). The alternate 

row bi-crop treatments (1.17 t ha-1) had higher influenced higher yield than broadcast bi-

cropping treatment (0.86 t ha-1) by 35.6%.    

 

The bean cultivars had no effect on bean yield (Table 5.15). The faba bean rust disease 

outbreak during pod filling might have partly contributed to this outcome.    

 

5.6.2.2 100 bean seed weight  

The cropping systems and drilling patterns had no effect on 100 seed weights (Table 5.15).   

The bean cultivars had a greater (P<0.001) effect on 100 bean seed weight (Table 5.15).    

Fuego (35.1g) had a higher 100 bean seed weight than Maris Bead (29.9 g) by 17.3%.   

5.6.2.3 Bean straw yield   

The bean straw yield was (P<0.001) affected by cropping systems (Table 5.15). The highest 

and lowest bean straw yield of 4.30 t ha-1 and 1.61 t ha-1 resulted from sole and bi-cropping 

systems respectively.  

The bean straw yield was (P<0.05) affected by the drilling patterns (Table 5.15). The 

alternate row bi-cropping treatments (1.82 t ha-1) had higher bean straw yield than broadcast 

bi-cropping treatment (0.96 t ha-1) by 1.89 times higher.     

5.6.2.4 Total Bean biomass yield   

Cropping systems had a greater (P<0.001) effect on bean total biomass yield (Table 5.15).  

The sole cropping system influenced higher total bean biomass yield of 5.60 t ha-1 than 2.60 t 

ha-1 recorded from the bi-cropping system. 
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The total bean biomass yield was (P<0.01) affected by the drilling patterns (Table 5.15).  The 

alternate row bi-cropping treatments (2.99 t ha-1) had higher total bean biomass yield than 

broadcast bi-cropping treatment (1.83 t ha-1).      

The total bean biomass yield was (P<0.01) affected by the bean cultivars, and Maris Bead 

(2.89 t ha-1) had higher total bean biomass yield than Fuego bean cultivar (2.50 t ha-1) (Table 

5.15).  

5.6.2.5 Harvest index (HI) 

Bean HI was (P<0.001) affected by cropping systems (Table 5.15). The bi-cropping (42%) 

outperformed the sole bean cropping system (24%) on HI by 75%.  
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Table 5.15: The effects of cropping systems, drilling patterns and bean cultivars on bean yield and components (t ha-1) for forage 

production, 2016 spring season 

Treatments Mix-proportion 

Total bean 

straw yield 

(t  ha-1) 

Total bean 

seed yield 

(t  ha-1) 

100bean               

seed weight 

(g) 

Total bean 

biomass yield 

(t  ha-1) 

Bean harvest  

index 

(%) 

Drilling patterns       

1x1  50:50 1.76a 1.09a 32.2 2.86a 43 

2x2  50:50 1.80a 1.28a 32.2 3.08a 46 

3x3  50:50 1.90a 1.13a 32.9 3.04a 40 

Broadcast  50:50 0.96b 0.86b 32.7 1.83b 44 

SED (3 df)  - 0.269** 0.102** 0.785ns 0.270** 4.3ns 

P-value - 0.003 0.002 0.772 <0.001 0.337 

 

Cropping systems  

 

 

   

Bi-crop mean  50:50 1.61b 1.01b 32.5 2.60b 42a 

Sole crop  100 4.30a 1.30a 32.8 5.60a 24b 

SED (1 df)  - 0.212*** 0.080* 0.620ns 0.213*** 3.4*** 

P-value - <0.001 0.014 0.655 <0.001 <0.001 

 

Bean cultivars  

      

Fuego  50:50 1.51 1.01 35.1 2.50b 42 

Maris Bead  50:50 1.71 1.19 29.9 2.89a 43 

SED (1 df)  - 0.300ns 0.114ns 0.877*** 0.302* 4.8ns 

P-value - 0.181 0.051 <0.001 0.044 0.494 

Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.001; ns= significant at P<0.05; SED, standard 

error of the difference of means; df, degrees of freedom.     
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5.7 Biological efficiency of cropping systems    

5.7.1 Partial land equivalent ratios (PLER) for bi-crops  

The PLERw and PLERb were not affected by the drilling patterns and bean cultivars (Table 

5.16). The PLERw and PLERb were compared against 0.5 because each crop species in bi-

cropping systems was sown at half of the sole crops densities (Bedoussac and Justes, 2010).  

The PLER value above 0.5 indicates the advantage of crop mixtures. If the PLER is equal to 

or below 0.5 indicates the disadvantage of bi-cropping systems.   

5.7.2 Land equivalent ratio (LER) of bi-crops 

The LER values for bi-cropping system in Table 5.16 were not significantly different from 

each other (Table 5.16). Across the drilling patterns and bean cultivars, the LER of 1.079 

from bi-cropping treatment combinations showed no advantage of bi-cropping systems 

because it was equal to the unitary value of 1.0. The land saving advantage indicative values 

in bi-cropping systems were below the minimum productivity coefficient value of 25% which 

indicated no advantage of bi-cropping systems possibly due to bean disease effects.  The 

drilling patterns x bean cultivar interaction (P<0.01) affected LER (Figure 5.3). 

Table 5.16:  Biological efficiency of bi-cropping on nitrogen use efficiency influenced 

cropping systems, drilling patterns and bean cultivars, in 2016 cropping season 

  
Partial Land Equivalent 

Ratio (PLERN) 

Total Land Equivalent 

Ratio (LERN) 

Land 

savings (%) 

Treatments 
Mix-proportion 

(%) 

Wheat               

(PLERwheat 

Bean                            

(PLERbean) 

                                   

(PLERwheat+PLERbean) 

 

Drilling patterns     

Sole crop 100 0.500 0.500 1.00  - 

1x1 50:50 0.557 0.537  1.09 8.5 

2x2 50:50 0.570 0.472  1.04 4.0 

3x3 50:50 0.582 0.512  1.09 8.6 

Broadcast 50:50 0.540 0.559  1.09 9.0 

SED (3 df) - 0.380ns 0.079ns 0.087ns 7.5 

 P-value - 0.723 0.723 0.902 - 

      

Bean cultivars      

Fuego 50:50 0.561 0.548 1.109 - 

Maris Bead 50:50 0.563 0.492 1.055 - 

SED (1 df) - 0.027ns 0.056ns 0.0879ns - 

P-value - 0.938 0.329 0.395  
Values with the same letter under the same parameter are not significantly different at P<0.05; ns=not significant at P<0.05; SED, standard error 

of the difference; df, degrees of freedom; PLERN,  partial land equivalent ratio for nitrogen;  LERN,  land equivalent ratio for nitrogen;  PLERwheat  

and PLERbeans  partial land equivalent ratio for wheat and beans.  
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Figure 5.3: The effects of drilling pattern x bean cultivar interaction between on LER in 2016 

spring cropping season 

5.8. Competition indices 

5.8.1 Aggressivity (A) 

The results showed positive signs for the wheat bi-crops and a negative signs for the bean bi-

crops which ecologically meant that the wheat bi-crops dominated the bean bi-crops in bi-

cropping system on resource acquisition (Table 5.17).  Among the alternate row bi-cropping 

treatments, the highest (0.059) and lowest (0.018) aggressivity values in the wheat/Fuego bi-

cropping system was recorded from  the 3x3 and the 2x2 bi-crop treatments respectively. The 

highest (0.167) and lowest (0.127) aggressivity values in wheat/Maris Bead bi-cropping 

system was recorded from  the 2x2 and 1x1 alternate row bi-cropping treatments respectively. 

The wheat/Maris Bead had the higher aggressivity values than wheat/Fuego bi-cropping 

systems.  The aggressivity values across the bean cultivars showed highest and lowest mean 

values from the 2x2 and the 3x3 alternate row bi-cropping treatments respectively. However, 

the 3x3 and the 1x1 alternate row bi-cropping treatments had almost similar aggressivity 

values.  

 

Error bars representing average LSD (P≤0.05)  

 

0 
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Table 5.17: Aggressivity (A) as influenced by drilling patterns and faba bean cultivars 

in a wheat/bean based bi-cropping systems in 2016 

Treatments 

Aggressivity (A) System Aggressivity (A) 

Wheat 

(Aw1) 

Fuego 

(AFG) 

Wheat 

(Aw2) 

Maris Bead 

(AMB) 

Wheat 

(Aw1+Aw2)/2 

Legume 

(Afg+Amb)/2 

Drilling patterns       

1x1 0.028  -0.028  0.127  -0.127  0.049  -0.049  

2x2 0.018  -0.018  0.167  -0.167  0.075  -0.075  

3x3 0.052  -0.052  0.147  -0.147  0.047  -0.047  

Broadcast 0.174  -0.174  0.238  -0.238  0.206  -0.206  

Broadcast: Direct sowing of bean seeds randomly   over precisely drilled wheat rows. A
FG

 and A
MB

 are Aggressivity indices 

for Fuego and Maris Bead bean cultivars in mixture with wheat (Aw)   

 

5.8.2 Relative Crowding Coefficient (RCC or K)   

The results in Table 5.18 showed that the partial K coefficient values for wheat were 

consistently higher than the partial K coefficient values for the beans. If the product K 

coefficient derived from the product of the bi-crop components (wheat*beans) is greater or 

lower than 1.0 it demonstrates yield advantage and disadvantage respectively.  The product K 

coefficient values for the 1x1 and 2x2 alternate row treatments in wheat/Fuego bi-cropping 

system were equal to 1.0 which indicated no yield advantage. The product K coefficient 

values for the 3x3 and broadcast bi-cropping treatments were below 1.0 an indication of yield 

disadvantage. Similarly, the product K coefficients values for alternate row bi-cropping 

treatments were above 1.0 than broadcast bi-cropping treatments in wheat/Maris Bead bi-

cropping system. This imply that in alternate rows bi-cropping treatments higher yield 

advantage was expected while yield disadvantages was expected in broadcast treatments.  

   

Table 5.18: Relative Crowding Coefficient (K) of wheat/bean bi-cropping systems as 

influenced by drilling patterns and faba bean cultivars in 2016 
  Treatment                                           Relative Crowding Coefficient (K) 

Drilling patterns 

Wheat 

(Kw1) 

Fuego 

(KFG) 

System 

(Kw1*KFG) 

Wheat 

(Kw2) 

Maris Bead 

(KMB) 

System 

(Kw2*KMB) 

1x1 1.108 0.989 1.095 1.049 1.769 1.856 

2x2 1.057 0.984 1.040 1.682 0.852 1.432 

3x3 1.081 0.876 0.947 1.687 0.947 1.563 

Broadcast 1.073 0.523 0.562 1.228 0.456 0.559 

Broadcast: Direct sowing of bean seeds over precisely drilled wheat rows. KFG and KMB are relative crowding coefficients of 

crop Fuego and Maris Bead bean cultivars bi-cropped with wheat (Kw). 
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5.9 Forage quality 

5.9.1 Wheat performance on crude protein content  

5.9.1.1 Crude protein content 

The crude protein in the wheat straw and grain was (P<0.001) affected by cropping systems 

(Table 5.19). The highest and lowest mean wheat grain crude protein content of 134.5 g kg-1 

DM and 106.0 g kg-1 DM was recorded from bi-cropping and sole cropping systems 

respectively. Similarly, the highest and lowest wheat straw crude protein content of 39.26 g 

kg-1 DM and 29.25 g kg-1 DM was recorded from bi-cropping and sole cropping systems 

respectively.  

The drilling patterns did not influence the crude protein content in the wheat straw and grain 

(Table 5.19).   

The wheat crude protein content was (P<0.05) affected by the bean cultivars only in the 

wheat straw, and Fuego (40.99 g kg-1 DM) increased wheat straw crude protein content than 

Maris Bead (37.53 g kg-1 DM) (Table 5.19).      
 

5. 9.1.2 Protein yield 

Cropping systems had a greater (P<0.001) effect on protein yield in the wheat grain, straw 

and total wheat biomass (Table 5.19). The sole cropping system increased protein yield than 

the bi-cropping system in the wheat grain, straw and total biomass.  

 

The protein yield harvest index was (P<0.05) affected by cropping systems (Table 5.19).  The 

sole cropping system (72%) had higher protein yield harvest index than the bi-cropping 

system (68%).      

The drilling patterns did not affect the protein yield for wheat straw, grain and total wheat 

biomass (Table 5.19).  However, the wheat protein harvest index was (P<0.05) was affected 

by the drilling patterns. The 2x2 and broadcast bi-cropping treatments had higher wheat 

protein harvest index than the 1x1 and the 3x3 bi-cropping treatments.    

The bean cultivars did not affect protein yield for wheat straw, grain, total biomass and 

harvest index. 
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Table 5.19:  Wheat crude protein content (g kg-1 DM) and protein yield (kg ha-1)adjusted at 15% moisture content, for fodder       

production influenced by cropping systems, drilling patterns and bean cultivars, in 2016 cropping season. 

Treatments Mix-proportion  Crude protein content 

(g kg
-1

 DM) 

 Wheat protein yield                                                                          

(kg ha-1) 

Drilling patterns  Straw grain Straw Grain              total biomass   HI (%) 

1x1 50:50 
 

40.72 134.0 115.5 225.3 340.8 65b 
 

2x2 50:50 
 

37.15 132.8 95.4 225.1 320.5 70a  

3x3 50:50 
 

41.02 140.3 111.2 235.0 346.2 67 b  

Broadcast 50:50 
 

38.15 145.1 101.9 271.9 373.8 71a  

SED (3 df) - 
 

2.119ns 10.150ns 7.03ns 31.56ns 33.70ns 2.41*  

P-value -  0.172 0.303 0.184 0.251 0.312 0.032  

Cropping systems 
   

     

Bi-crop mean 50:50 
 39.26

a
 134.5

a
 106.0b 238.2b 344.2b 68b  

Sole crop 100 
 

29.25
b
 106.0

b
 164.2a 431.7a 595.9a 72a  

SED (1 df) - 
 

2.119*** 11.710** 6.08*** 27.33*** 29.19*** 2.09*  

P-value -  <0.001 0.003 <0.001 <0.001 <0.001 0.015  

Bean cultivars              

Fuego 50:50  40.99
a
 133.4 108.8 236.9 345.7 68  

Maris Bead 50:50  37.53
b
 142.7 103.2 241.8 345.0 69  

SED (1 df) -  2.234* 10.690ns 6.41ns 28.81ns 30.76ns 2.20ns  

P-value -  0.023 0.105 0.115 0.181 0.790 0.535  

Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P<0.05; **=P<0.01; ***=P<0.001; ns= not significant at P<0.05; SED, 

standard error of the difference of means; df, degrees of freedom; DM, dry matter; HI, harvest index. 
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5.9.2 Beans performance on crude protein 

5.9.2.1 Crude protein content 

The results in Table 5.20 showed that the cropping systems, drilling patterns, bean cultivars 

and their interactions had no effect on bean crude protein content (g kg-1DM).   

5.9.2.2 Protein yield 

Cropping systems had a greater (P<0.001) effect on the bean protein yield for bean straw, 

seed, total biomass and harvest index (Table 5.20). The highest bean protein yield values for 

bean straw (139.6 kg ha-1), bean seed (356.0 kg ha-1) and total bean biomass (496.0 kg ha-1) 

were obtained from sole cropping systems.  The lowest bean protein yield values for bean 

straw (51.0 kg ha-1), bean seed (306.0 kg ha-1) and total bean biomass (357.0 kg ha-1) were 

obtained from bi-cropping systems.  

However, cropping systems had a highly (P<0.001) effect on bean protein yield harvest index 

(Table 5.20). The bi-cropping system (85%) had higher bean protein yield harvest index than 

the sole bean cropping system (71%) by 19.7%.    
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Table 5.20: Bean crude protein content (g kg-1 DM) and protein yield (kg ha-1)adjusted at 15% moisture content, for fodder production 

influenced by cropping systems, drilling patterns and bean cultivars, in 2016. 

Treatments 
Mix-proportion 

Bean crude protein content 

( g kg
-1

 DM) 

Bean protein yield     

(kg ha-1) 

 Drilling patterns Bean Straw Bean seed Bean Straw Bean seed Total biomass HI (%) 

        

1x1 50:50 32.19 280.8 56.3 308.0 365.0b 84 

2x2 50:50 30.38 271.6 55.0 351.0 406.0a 86 

3x3 50:50 30.45 279.6 58.5 320.0 378.0ba 84 

Broadcast 50:50 34.97 277.7 35.7 245.0 281.0c 87 

SED (3 df) - 2.623ns 7.470ns 13.86ns 38.60ns 38.33* 3.03ns 

P-value - 0.280 0.620 0.347 0.075 0.022 0.769 

Cropping systems 
  

    

Bi-crop mean 50:50 32.2 277.4 51.4b 306.0b 357.0b 85a 

Sole crop 100 32.3 273.7 139.6a 356.0a 496.0a 71b 

SED (1 df) - 2.073ns 5.910ns 10.96*** 30.50*** 30.30*** 2.39*** 

P-value - 0.851 0.528 <0.001 <0.001 <0.001 <0.001 

Bean cultivars           

Fuego 50:50 31.27 276.0 47.6 280.0 328.0 85 

M Bead 50:50 32.73 278.9 55.1 332.0 378.0 85 

SED (1df ) - 2.932ns 8.350ns 15.49ns 43.20ns 42.9ns 3.39ns 

P-value - 0.484 0.856 0.750 0.186 0.113 0.964 
Values with the same letter under the same parameter are not significantly different at P<0.05; ns=not significant at P>0.05; SED, standard error of the difference of means; df, degrees of 

freedom; DM, dry matter; HI, harvest index. 
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5.10 N uptake  

5.10.1 Wheat N uptake 

The N uptake in the wheat straw, grain and total wheat biomass was (P<0.001) affected by 

cropping systems (Table 5.21a).  The bi-cropping system outperformed the sole cropping 

system on wheat grain N uptake. However, the wheat N uptake harvest index was (P<0.05) 

affected by cropping systems, and the bi-cropping system outperformed the sole cropping 

system on wheat N harvest index by 16% (Table 5.21a). 

 

The drilling patterns and bean cultivars did not affect N uptake in wheat plant tissues. 

 

Table 5.21a: The effects of cropping systems, drilling patterns and bean cultivars on 

wheat nitrogen yield (kgN ha-1) in 2016 spring cropping seasons 

Treatments Mix-

proportion 

Wheat Straw 

N yield 

(kgN ha
-1

) 

Wheat Grain 

N yield  

(kgN ha
-1

) 

Wheat Total        

N Yield  

(kgN ha
-1

) 

Wheat N 

harvest 

index (%) 

  

Drilling patterns 

  

        

1x1 50:50 27.2 35.3 62.5 56 

2x2 50:50 23.1 36.4 59.6 61 

3x3 50:50 26.2 37.9 64.1 59 

Broadcast 50:50 27.7 38.8 66.1 58 

SED (3 df) - 3.81
ns

 3.00
ns

 5.33
ns

 3.0
ns

 

P-value - 0.477 0.367 0.305 0.280 

  

   

 

Cropping systems 

   

 

Bi-crop mean 50:50 26.0
b
 37.1

a
 63.1

b
 58

a
 

Sole crop 100 69.6
a
 31.4

b
 101.0

a
 31

b
 

SED (1 df) - 3.30*** 2.19** 3.84*** 2.5*** 

P-value - <0.001 0.008 <0.001 <0.001 

            

Bean cultivars           

Fuego 50:50 26.1 37.7 63.8 59 

Maris Bead 50:50 26.0 36.6 62.6 58 

SED (1 df) - 3.48ns 2.70ns 4.80ns 2.4ns 

P-value - 0.980 0.460 0.656 0.716 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P<0.001; ns= not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom.   
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5.10.2 Bean N uptake 

The effects of cropping systems   

Bean seed  

N uptake in the bean seed was (P<0.05) affected by cropping systems (Table 5.21b). The sole 

cropping system (56.60 kgN ha-1) had higher N uptake in the bean seed than the bi-cropping 

systems (49.40 kgN ha-1). 

Bean straw   

N uptake in the bean straw was (P<0.001) affected by cropping systems (Table 5.21b).  The 

sole cropping system accumulated higher N (24.30 kgN ha-1) in the bean straw than the bi-

cropping system (8.40 kgN ha-1).   

Total bean N uptake   

N accumulation in total bean biomass was (P<0.001) affected by cropping systems (Table 

5.21b).  The sole cropping system (80.0 kgN ha-1) accumulated higher N than the bi-cropping 

system (57.8 kgN ha-1).  

Bean N harvest index   

The cropping systems had a greater (P<0.001) effect on the bean N harvest index 

(Table5.21b).  The bi-cropping system (85%) had higher N harvest index than the sole 

cropping system (68%).  

The effects of drilling patterns on N uptake   

Bean seed  

The drilling patterns had a greater (P<0.001) effect on N accumulation in the bean seed 

(Table 5.21b). The alternate row treatments (53.3 kgN ha-1) accumulated more N in the bean 

seed than broadcast bi-cropping treatment (37.6 kgN ha-1). The 2x2 alternate row bi-cropping 

treatments had the highest bean N uptake compared to other drilling pattern treatments.  

Among the alternate rows, the 1x1 and 3x3 alternate row treatments had the lowest bean N 

uptake compared to the 2x2 alternate row bi-cropping treatments. 

Bean straw  

The bean straw N uptake was (P<0.001) affected by the drilling patterns (Table 5.21b). The 

alternate row bi-cropping treatments (9.5 kgN ha-1) accumulated more N in the bean straw N 

than broadcast bi-cropping treatments (4.9 kgN ha-1).   

Total bean biomass   
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N uptake in the total bean biomass was (P<0.01) affected by the drilling patterns (Table 

5.21b). The alternate rows bi-cropping treatments (62.8 kgN ha-1) outperformed broadcast bi-

cropping treatments (42 kgN ha-1) on N uptake in the total bean biomass. The 2x2 alternate 

row treatment (69.0 kgN ha-1) had the highest N accumulation than other drilling patterns 

treatments (53.8 kgN ha-1). Among the alternate rows, the 1x1 treatment (58.4 kgN ha-1) had 

the accumulated the lowest amount on N in the bean biomass compared to other alternate 

rows bi-cropping treatment (65.1 kgN ha-1)     

The effects of bean cultivars on N uptake   

N uptake in the bean seed and total bean biomass was (P<0.05) effected by the bean cultivars 

(Table 5.21b).  Maris Bead (44.3 kgN ha-1) accumulated more N in the bean seed than Fuego 

bean (54.5 kgN ha-1). Similarly, Maris Bead (63.5 kgN ha-1) accumulated more N in the total 

bean biomass than Fuego (52.1 kgN ha-1).     

Table 6.21b. The effects of cropping systems, drilling patterns and bean cultivars on 

bean nitrogen yield (kgN ha-1) in 2016 spring cropping seasons. 

Treatments  

Mix-

proportion  

Bean straw 

N uptake 

(kg N ha-1) 

Bean grain 

N uptake        

(kg N ha-1) 

Total  bean 

N uptake 

(kg N ha-1) 

Bean N 

harvest index 

(%) 

   

Drilling patterns 

   

    

1x1  50:50  8.7a 49.7b 58.4c 84 

2x2  50:50  9.9a 59.0a 69.0a 85 

3x3  50:50  9.9a 51.2b 61.2b 83 

Broadcast  50:50  4.9b 37.6c 42.0d 87 

SED (3 df)    - 1.773** 6.780* 6.790** 2.8ns 

P-value    - 0.030 0.039 0.006 0.614 

Cropping systems 
  

  

Bi-crop mean  50:50  8.4b 49.4b 57.8b 

Sole crop  100  24.3a 56.6a 80.0a 68b 

SED (1 df)    -  1.402*** 5.430* 5.370*** 2.2*** 

P-value    -  <0.001 0.019 <0.001 <0.001 

Bean cultivars         

Fuego  50:50  7.8 44.3b 52.1b 84 

Maris Bead  50:50  8.9 54.5a 63.5a 85 

SED (1 df)    -  1.982ns 7.680* 7.600* 3.0ns 

P-value   - 0.155 0.012 0.050 0.621 

Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P<0.001; ns= not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom; N, 

nitrogen 
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Chapter 6 

THE YEARS X TREATMENTS INTERACTIONS FOR CORE EXPERIMENTS (2015 AND 2016) 

6.1 Chlorophyll Concentration Index (CCI) 

The combined analysis of variance revealed that CCI was (P<0.001) affected by cropping 

seasons (Appendix 6.1; Table 6.1).  The 2016 cropping season had increased CCI values than 

in the 2015 cropping season. The cropping system x year interactions had a greater (P<0.001) 

effects on CCI in wheat plants within and between cropping seasons. The bi-cropping system 

increased CCI than the sole cropping system in both seasons. The 2016 cropping season 

increased CCI than the 2015 cropping season by was 36.7%.   

The drilling patterns x year interactions had a greater (P<0.001) effect on CCI (Table 6.1: 

Figure 6.1). The drilling patterns in the 2016 cropping season increased CCI than in the 2015 

cropping season by 21.5%. In both seasons, the alternate rows increased CCI than broadcast 

bi-cropping treatment. In 2016 cropping season, the 1x1 and the 2x2 alternate rows increased 

CCI than the 3x3 alternate row treatments.    

Table 6.1: The effects of cropping systems, drilling patterns and bean cultivars on mean 

chlorophyll content (CCI) in wheat leaf in 2015 and 2016 cropping seasons 
Treatments Mix-proportion CCI  

Drilling patterns 2015 2016 Mean 

1x1 50:50 20.6a 24.7a 22.7 

2x2 50:50 20.7a 25.0a 22.8 

3x3 50:50 20.6a 23.7b 22.1 

Broadcast 50:50 14.3b 19.2c 16.7 

SED (3 df) - 0.467*** 0.422***  

P-value - <0.001 <0.001  

Cropping systems     

Bi-crop mean 50:50 19.0a 23.1a 21.1 

Sole crop 100 6.6b 11.9b 9.3  

SED (1 df) - 0.399*** 0.365*** 0.276 

P-value - <0.001 <0.001  

Bean cultivars     

Fuego 50:50 19.0 22.9 20.9 

Maris Bead 50:50 19.1 23.4 21.2 

SED (1 df) - 0.421ns 0.385ns 0.411 

P-value - 0.886 0.056  
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; 

**=P< 0.01; ***=P< 0.001; ns= not significant at P< 0.05; SED, standard error of the difference; df, degrees of 

freedom; CCI, Chlorophyll concentration index.     
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Figure 6.1: The effects of drilling patterns x bean cultivars interactions on chlorophyll content 

across two cropping seasons (2015 and 2016) 

6.2 Leaf Area Index (LAI) 

LAI was (P<0.001) affected by cropping seasons (Appendix 5.1; Table 6.2). There was 

increased LAI in the 2016 cropping season than in the 2015 cropping season by 71.4%.  The 

cropping system x year interaction had a greater (P<0.001) effect on LAI (Table 6.2). The bi-

cropping system increased LAI than the sole cropping system in both cropping seasons.   

LAI was (P<0.001) affected by the drilling pattern x year interaction (Table 6.2). The drilling 

patterns in the 2016 cropping season increased LAI than in the 2015 by 77.6%. The alternate 

rows increased LAI than broadcast in the 2016 season than in the 2015 season.  The 2x2 

alternate row bi-cropping treatments had the highest LAI than other drilling patterns 

treatments in both cropping seasons.  Among alternate rows, the LAI was reduced in the 1x1 

alternate row treatments only in the 2015 cropping season.  LAI was reduced in the 3x3 

alternate row treatments in both cropping seasons.  

LAI was (P<0.001) affected the bean cultivar x year interaction (Table 6.2). The bean 

cultivars increased LAI in the 2016 than in the 2015 cropping seasons. Fuego increased LAI 

than Maris Bead in both seasons, irrespective of the seasonal variations.  

Error bars representing average LSD (P≤0.05)  

 

Error bars representing average LSD (P<0.05)  

 

0 
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Table 6.2: The effects of cropping systems, drilling patterns and bean cultivars on mean 

Leaf Area Index (LAI) in 2015 and 2016 spring seasons 
Treatments Mix-proportion LAI  

Drilling patterns 2015 2016 Mean 

     

1x1 50:50 1.95b 3.62a 2.78 

2x2 50:50 2.03a 3.60a 2.83 

3x3 50:50 1.97b 3.37b 2.67 

Broadcast 50:50 1.62c 2.86c 2.23 

SED (3 df) - 0.047*** 0.069***   

P-value - <0.001 <0.001  

     

Cropping systems    

Bi-crop mean 50:50 1.89b 3.36b 2.63 

Sole crop (wheat) 100 1.38c 2.30c 1.84 

Sole crop (beans) 100 2.11a 3.56a 2.50 

SED (1 df) - 0.035*** 0.051***  

P-value - <0.001 <0.001  

     

Bean cultivars     

Fuego 50:50 1.92a 3.66 a 2.79 

Maris Bead 50:50 1.83b 3.47b 2.66 

SED (1 df) - 0.058*** 0.0848***  

P-value - <0.001 <0.001  
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; 

**=P< 0.01; ***=P<0.001; SED, standard error of difference of means; df, degrees of freedom; LAI, Leaf 

area Index. 
 

6.3 Intercepted photosynthetic active radiation (IPAR) 

The combined analysis of variance revealed that IPAR was (P<0.001) affected by the 

cropping seasons (Appendix 5.1). The increased IPAR was recorded in the 2016 cropping 

seasons than in the 2015 cropping season.  IPAR was (P<0.001) affected by the cropping 

system x year interaction (Table 6.3).  In both seasons, bi-cropping systems outperformed 

sole cropping systems with a higher IPAR recorded in 2016 over 2015 cropping season.   

The drilling patterns x year interaction had a greater (P<0.001) effect on IPAR (Table 6.3).  

During the 2016 cropping season the drilling patterns increased IPAR than in the 2015 

cropping season by 17.9%.  In both seasons, the 2x2 alternate rows bi-cropping treatments 

had the highest IPAR with the lowest recorded from broadcast bi-cropping treatment.    

IPAR was (P<0.001) affected by the bean cultivar x year interaction (Table 6.3). Fuego 

increased IPAR than Maris Bead in the 2015 cropping season. Maris Bead increased IPAR 

than Fuego in the 2016 cropping season.  
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Table 6.3: The effects of cropping systems, drilling patterns and bean cultivars on mean 

Intercepted photosynthetic active radiation (IPAR) in 2015 and 2016 spring seasons 
Treatments Mix-proportion IPAR (%)  

Drilling patterns 

 

2015 2016 Mean 

     

1x1 50:50 70.30c 85.00b 77.23 

2x2 50:50 74.51a 86.80a 80.29 

3x3 50:50 72.30b 84.90b 78.79 

Broadcast 50:50 64.60d 75.50c 68.08 

SED (3 df) - 0.956*** 0.628*** - 

P-value - <0.001 <0.001 - 

     

Cropping systems    

Bi-crop mean 50:50 70.42a 82.30a 76.20 

Sole crop (wheat) 100 58.90 c 73.20c 66.32 

Sole crop (beans) 100 68.00b 77.50b 74.13 

SED (1 df) - 0.861*** 0.395*** - 

P-value - <0.001 <0.001 - 

     

Bean cultivars     

Fuego 50:50 72.1`0a 81.5b 76.80 

Maris Bead 50:50 68.70b 83.1a 75.91 

SED (1 df) - 1.170*** 0.769*** - 

P-value - <0.001 <0.001 - 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; 

**=P< 0.01; ***=P<0.001; SED, standard error of the difference; df, degrees of freedom; IPAR, Intercepted 

Photosynthetic Active Radiation.   

 

6.4 Plant heights 

6.4.1 Wheat plant height 

The combined analysis of variance in Appendix 5.1 showed that cropping seasons had a 

greater (P<0.001) effect on wheat plant height.  During the 2016 cropping season, wheat 

plant heights were taller than in the 2015 cropping season by 41.6% (Table 6.4). The 

cropping system x year interaction had a greater (P<0.001) effect on wheat plant height 

(Table 6.4).  Bi-cropping systems increased wheat plant heights than sole cropping systems in 

both cropping seasons.   

The drilling patterns x year interactions had a greater (P<0.001) effect on the wheat plant 

height (Table 6.4).  The drilling patterns increased wheat plant heights in the 2016 season 

than in the 2015 cropping seasons by 28.2%. In both cropping seasons, the alternate row bi-

cropping treatments increased wheat plant heights than broadcast bi-cropping treatments. The 

1x1 and the 3x3 alternate row bi-cropping treatments had shorter wheat plant height in the 
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2015 than the 2x2 alternate row treatments. During the 2016 season, the 3x3 alternate row 

treatments had taller wheat plant height than the 1x1 and 2x2 alternate row treatments. In 

both season, the 2x2 alternate rows bi-cropping treatments had an optimum wheat plant 

height due to better use of limited resources in the bi-cropping system.  

Table 6.4: The effects of cropping systems, drilling patterns and bean cultivars on mean 

wheat plant height (cm) in 2015 and 2016 spring cropping seasons 
Treatments 

 

Mix-proportion 

 

Wheat plant heights (cm) 
Mean 

2015 2016 

Drilling patterns 
    1x1 50:50 73.89b 90.46a 84.26 

2x2 50:50 75.53a 91.62a 85.97 

3x3 50:50 74.36b 100.00b 88.97 

Broadcast 50:50 66.91c 90.68a 81.10 

SED (3 df) - 0.841*** 2.237*** - 

P-value - <0.001 <0.001 - 

  
    

Cropping 

systems     

Bi-crop mean 50:50 72.65a 93.29a 85.08 

Sole crop 100 56.15b 89.21b 76.83 

SED (1 df) - 0.693*** 1.937* - 

P-value - <0.001 0.037 - 

  
    

Bean cultivars 
    

Fuego 50:50 72.98 92.56 85.04 

Maris Bead 50:50 72.37 94.01 85.11 

SED (1 df) - 0.746ns 2.042ns - 

P-value - 0.611 0.267 - 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; 

**=P<0.01;***=P<0.001; ns= not significant at P<0.05; SED, standard error of the difference; df, degrees of freedom; 

IPAR, Intercepted Photosynthetic Active Radiation.   

 

6.4.2 Bean plant height 

A combined analysis of variance showed that cropping seasons had a greater (P<0.001) effect 

on bean plant heights (Appendix 5.1). The bean plant heights in the 2016 cropping season 

were 64.3% taller than in 2015 cropping seasons. The bean plant heights was (P<0.001) 

affected the cropping system x year interaction (Table 6.5). In both seasons, the sole cropping 

system increased the bean plant heights than the bi-cropping system.    

The drilling patterns x year interactions had greater (P<0.001) effect on the bean plant height.  

During the 2016 cropping season the drilling patterns increased bean plant height than in the 



 

137 

 

2015 cropping season by 57.6% (Table 6.5). During the 2015 cropping season, the 1x1 and 

the 3x3 alternate row bi-cropping treatments had shorter bean plant heights compared to other 

alternate rows treatments. During the 2016 cropping season, the 1x1alternate row treatment 

had the shortest bean plant height while the 3x3 alternate row treatment had the tallest bean 

plant heights compared to the 2x2 alternate rows bi-cropping treatment. The 2x2 alternate 

row bi-cropping treatment did not affect the bean plant height due to spatial interspecific 

complementarity effects on better use of environmental resources.  

The bean cultivar x year interactions had no effect on bean plant heights (Table 6.5).    

Table 6.5: The effects of cropping systems, drilling patterns and bean cultivars on mean 

bean plant height (cm) in 2015 and 2016 cropping seasons 

Treatments Mix-proportion 
Bean plant height (cm) 

Mean 
2015 2016 

Drilling patterns      

1x1 50:50 76.08b  107.27d 92.48 

2x2 50:50 77.04a 120.53b 98.93 

3x3 50:50 75.66b 126.09a 100.23 

Broadcast 50:50 73.30c 122.23c 98.09 

SED (3 df)  - 0.648*** 2.638*** - 

P-value - <0.001 <0.001 - 

     

Cropping systems    

Bi-crop mean  50:50 75.52b 119.03b 97.43 

Sole crop 100 77.81a 133.02a 104.79 

SED (1 df)  - 0.480* 2.086*** - 

 P-value  - 0.024 <0.001 - 

Bean cultivars      

Fuego 50:50 74.93b 115.69b 95.27 

Maris Bead 50:50 77.04a 122.37a 99.59 

SED (1 df)  - 0.697*** 2.949 * - 

P-value - <0.001 0.002 - 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; **=P< 0.01; 

***=P< 0.001; SED, standard error of the difference of mean; df, degrees of freedom. 

6.5a Weed dry weights 

The combined analysis of variance showed that cropping seasons had no effect on the 

transformed weed dry weight indicating that seasonal effects were consistent between 

cropping seasons (Appendix 5.1). Across the cropping seasons, cropping system had a greater 

(P<0.001) effect on weed dry weight (Table 6.6a).  The sole cropping system (4.02 g m-2) 

accumulated 58.8% higher transformed weed dry weights than the bi-cropping system (2.53 g 
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m-2).  Across the cropping seasons, drilling patterns had a greater (P<0.001) effect on 

transformed weed dry weights (Table 6.6a). The broadcast bi-cropping treatment (3.61 g m-2) 

accumulated 61.4% higher transformed weed dry weight than the alternate rows bi-cropping 

treatments (2.23 g m-2). However, the transformed weed dry weights was (P<0.001) affected 

by the drilling patterns x year interaction (Appendix 5.1; Table 6.6a).  In the 2015 cropping 

season, the effect of drilling patterns on transformed weed dry weights only occurred at 87 

DAS while in the 2016 cropping season, the effects of drilling patterns on transformed weed 

dry weights occurred both at 51 DAS and 73 DAS (Appendix 5.1; Table 6.6a).   

Table 6.6a: The effects of drilling patterns and bean cultivars on transformed weed dry 

weight (g m-2) at different times of the cropping season in 2015 and 2016 
    Weed dry weight (g m

-2
)     

Treatments 

Mix-

proportion 

      56 DAS         51 DAS 

      2015              2016 

  87 DAS       73DAS 

  2015           2016  

Across seasons 

mean 

Drilling pattern       

1x1 50:50 1.55[2.54] 2.04
b
 [4.36] 2.59

b
[6.91] 2.11

b
[5.00] 2.07

b
[4.70] 

2x2 50:50 2.20[5.22] 2.09
b
 [4.52] 2.35

b
[5.61] 2.22

b
[5.07] 2.22

b
[5.10] 

3x3 50:50 1.96[3.96] 2.27
b
 [5.28] 2.78

b
[7.88] 2.67

b
[7.30] 2.42

b
[6.10] 

Broadcast 50:50 1.89[4.48] 2.95
a
 [9.24] 3.84

a
[15.13] 5.03

a
[27.13] 3.61

a
[13.99] 

SED (3 df)  -    0.328ns    0.224*  0.248** 0.489***    0.255* 

P-value -    0.609    0.041  0.002 <0.001    0.036 

Cropping systems      

Bi-crop mean  50:50 1.90
c
[4.05] 2.34

c
 [5.85] 2.88

c
[8.88] 3.01

c
[11.12] 2.53

c
[7.48] 

Sole crop (wheat) 100 2.55
b
[8.00] 2.65

b
[7.07] 4.24

b
[18.42] 3.42

b
[12.22] 3.33

b
[9.88] 

Sole crop (beans) 100 3.12
a
[11.10] 5.18

a
  [27.24] 5.54

a
[30.88] 4.36

a
[20.75] 4.71

a
[22.47] 

SED (1 df)  -  0.243**   0.164***  0.184***  0.362**   0.279*** 

P-value   0.007   <0.001  <0.001  0.005  <0.001 

Bean cultivars        

Fuego 50:50 1.83[3.83] 2.46[6.35] 2.99[9.58] 3.07[11.68] 2.59[7.86] 

Maris Bead 50:50 1.97[4.27] 2.22[5.35] 2.78[8.18] 2.94[10.57] 2.48[7.09] 

SED (1 df)  -    0.402ns     0.272ns    0.304ns   0.598ns     0.312ns 

P-value -    0.310     0.993    0.089   0.375     0.188 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; **=P< 0.01; ***=P< 

0.001; ns= not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom; DAS, days after sowing.  

[ ] Data was subjected to square root √(x+0.5) transformation and figures in parenthesis are the means of original values. 

6.5b Weed smothering efficiency (WSE) 

WSE was (P<0.001) affected by cropping seasons (Appendix 5.1; Table 6.6b). The effect of 

the cropping seasons on WSE occurred only at 87 DAS in the 2015 season. During the 2016 

season, the effect of the seasons on WSE occurred at 51 DAS (Table 6.6b). WSE was 

(P<0.05) affected by drilling patterns x year (Table 6.6b). During the 2015 cropping season, 
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the alternate rows had higher WSE effect than broadcast bi-cropping treatment. During the 

same season the 3x3 alternate row bi-cropping treatments had reduced effect on WSE 

compared to 1x1 and 2x2 alternate rows bi-cropping treatments. During the 2016 cropping 

season, the alternate rows outperformed broadcast treatment on WSE (Table 6.6b).  The bean 

cultivar x year interaction had no effect on WSE (Appendix 5.1).     

Table 6.6b:  The effects of drilling patterns and bean cultivars on weed smothering 

efficiency (%) at different times of the season (DAS) in 2015 and 2016 spring seasons 

 

  Weed smothering efficiency (%)  

Treatments Mix-proportion 56 DAS     51 DAS 87 DAS        73 DAS Mean 

Drilling patterns 2015 2016 2015 2016  

1x1 50:50 76.6 84.1a 73.9a 78.1 76.0 

2x2 50:50 68.2 83.1a 79.1a 78.1 78.6 

3x3 50:50 61.9 80.5a 70.0b 81.9 76.0 

Broadcast 50:50 77.0 66.9b 42.8c 76.5 59.6 

Bi-crop mean        50:50 70.9 78.7 66.5 78.6 72.6 

SED (3 df) - 8.120ns 4.600** 6.740*** 5.650ns - 

P-value - 0.218 0.004 <0.001 0.798  

Bean cultivars      

Fuego 50:50 73.9a 76.8b 64.1 82.0a 73.1 

Maris Bead 50:50 68.0b 80.6a 68.8 75.3b 72.0 

SED (1 df) - 5.740* 3.250* 4.770ns 4.000* - 

P-value - 0.042 0.027 0.400 0.048 - 

Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P<0.05; **=P<0.01; 

***=P<0.001.  ns= not significant at P<0.05; SED, standard error of the difference; df, degrees of freedom; DAS, days after 

sowing 

 

6.5c Weed N uptake   

The combined analysis of variance showed that the cropping seasons had no effect on 

transformed weed N uptake (Appendix 5.1). Across the cropping seasons, cropping systems 

had a greater (P<0.001) effect on transformed weed N uptake (Table 6.7). Across the seasons, 

the sole cropping system had the highest (1.98 kgN ha-1) transformed weed N accumulation 
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compared to the bi-cropping system (1.36 kgN ha-1).  Across the cropping seasons, the sole 

wheat cropping system (1.53 kgN ha-1) outperformed the sole bean cropping system (2.44 

kgN ha-1) on reducing weed N uptake from the production system. 

Across the cropping seasons, the transformed weed N uptake was (P<0.05) affected by the 

drilling patterns (Table 6.7). The alternate rows bi-cropping treatments (1.2 kgN ha-1) 

outperformed broadcast bi-cropping treatment (1.8 kgN ha-1) by minimising N loss from the 

production system through weeds by 49.1%. However, the effect of the alternate rows bi-

cropping treatments on transformed weed N uptake was similar. Across the cropping seasons 

the bean cultivars had no effects on transformed mean weed N uptake. 

The transformed weed N uptake was (P<0.05) affected by the drilling patterns x year 

interactions (Table 6.7). During the 2015 season, the effect of drilling patterns on transformed 

weed N uptake was observed only at 87 DAS while in 2016 season it was observed at both 51 

and 73 DAS. During the same season, the 2x2 alternate rows treatments (1.17 kgN ha-1) had 

the lowest transformed weed N uptake compared to the 1x1 (1.26 kgN ha-1) and the 3x3 (1.45 

kgN ha-1) alternate row bi-cropping treatments. During the 2016 cropping season, the 

alternate rows bi-cropping treatments had higher transformed weed N uptake than broadcast 

bi-cropping treatment both at 51 and 73 DAS. 
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Table 6.7:  Effects of cropping systems, drilling patterns and bean cultivars on 

transformed  aboveground  shoot weed N uptake (kgN ha-1) at 51 and 73 DAS; in 2015 

and 2016 spring seasons 
           Shoot weed N uptake (kgN ha-1)   

Treatment   Mix-proportion 

56 DAS         51 DAS  87 DAS        73 DAS Across 

seasons mean  2015  2016   2015   2016 

Drilling patterns      

1x1 50:50 1.02 [1.09] 1.08b[1.25] 1.26c[1.65] 1.05b[1.24] 1.11b[1.30] 

2x2 50:50 1.44 [2.22] 1.02b[1.26] 1.17d[1.39] 1.11b[1.30]  1.20b [1.54] 

3x3 50:50 1.28 [1.71] 1.20b[1.49] 1.45b[2.18] 1.34b[1.86]  1.32b [1.81] 

Broadcast 50:50 1.23 [1.89] 1.56a[2.66] 1.92a[3.80] 2.51a[6.83]  1.81a [3.80] 

SED (3 df) - 0.214ns 0.126***  0.143*** 0.249    0.151* 

P-value - 0.620  <0.001 <0.001 <0.001    0.050 

       

Cropping systems      

Bi-crop mean 50:50 1.24c[1.87] 1.23c[1.56] 1.45c[2.18] 1.50c[3.16]   1.36c[3.16] 

Sole crop (wheat)   100 0.86b[0.78] 1.39b[1.97] 2.17b[4.76] 1.70b[3.00] 1.53b[2.63] 

Sole crop (beans)   100 2.08a[4.78] 2.73a[7.69] 2.74a[7.63] 2.19a[5.37] 2.44a[6.37] 

SED (1 df) - 0.158** 0.093*** 0.106*** 0.185    0.079*** 

P-value - 0.007 <0.001 <0.001 0.016    <0.001 

Bean cultivars       

Fuego 50:50 1.20[1.63] 1.30[1.81] 1.49[2.39] 1.54[3.25] 1.38[2.20] 

Maris Bead 50:50 1.29[1.83] 1.17[1.52] 1.41[2.13] 1.47[3.39] 1.34[2.02] 

SED (1 df) - 0.262ns 0.155ns  0.175ns  0.306ns    0.1847ns 

P-value - 0.332 0.098  0.819  0.323    0.708 

Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; 

***=P<0.001.  ns= not significant at P< 0.05; SED, standard error of the difference of means; df, degrees of freedom; [ ] DAS, days 

after sowing.  Data was subjected to square root √(x+0.5) transformation and figures in parenthesis are the means of original values. 

 

6.7 Grain yield and components 

6.7.1 Wheat performance 

Cropping systems 

The combined analysis of variance showed that cropping seasons had a greater (P<0.001) 

effect on wheat yield (Appendix 5.2). The wheat grain yield was 29.5% higher in the 2016 

than in the 2015 copping season. The straw yield was 53.7% higher in the 2016 than in the 

2015 season.  

The wheat yield and harvest index was (P<0.001) affected by the cropping system x year 

interactions (Table 6.8; Appendix 5.2). In both years, the sole cropping system outperformed 

the bi-cropping system on wheat yield and components. In 2015 cropping season, the bi-



 

142 

 

cropping system had higher harvest index than the sole cropping system. In the 2016 

cropping season, the sole cropping system had higher harvest index than the bi-cropping 

system.   

Drilling patterns 

The combined analysis of variance showed that cropping seasons had a greater (P<0.001) 

effect of drilling patterns on wheat growth and development (Appendix 5.2). However, the 

drilling patterns x year interactions had no effect wheat grain yield and its components (Table 

6.8). 
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Table 6.8: The effects of cropping systems, drilling patterns and bean cultivars on wheat yield and components (t ha-1) for forage 

production in 2015 and 2016 spring seasons 

Treatments 

Mix-

proportion 

Total wheat ear yield  

(t ha-1)   

Total wheat straw 

yield 

(t ha-1)   

Total wheat grain 

yield 

(t ha-1) 

1000 seed 

weight 

(g) 

Total wheat 

biomass yield  

(t ha-1) 

 Wheat harvest 

 index 

(%) 

Drilling patterns 

  

2015 2016 

Mea

n 2015 2016 Mean 2015 2016 

M

ea

n  2015 2016 mean  2015 2016 mean 2015 2016 Mean 

                        
        

1x1 50:50 3.0 2.2 2.6 2.6 2.8 2.7 2.4 1.6 2.0 40.4 34.8
a

 37.6 5.6 5.0 5.3 43 32 37 

2x2 50:50 3.1 2.3 2.6 2.5 2.5 2.5 2.4 1.7 2.0 41.5 34.1
a

 37.9 5.6 4.8 5.2 43 35 39 

3x3 50:50 2.8 2.2 2.5 2.3 2.7 2.5 2.2 1.6 1.9 42.6 32.5
b

 37.5 5.1 4.9 5.0 43 33 38 

Broadcast 50:50 2.8 2.1 2.5 2.6 2.9 2.7 2.2 1.7 1.9 41.7 35.4
a

 38.5 5.4 5.0 5.2 41 34 37 

SED (3 df) - 0.197ns 0.116ns - 0.210ns 0.191ns - 0.167ns 0.151ns - 1.455ns 0.922** - 0.332ns 0.266ns - 2.2ns 2.0ns - 

P-value - 0.230 0.729 - 0.100 0.074 - 0.138 0.891 - 0.483 0.002 - 0.422 0.091 - 0.841 0.175 - 

  
 

                 

Cropping systems                   

Bi-crop mean 50:50 2.9 2.1 2.5 2.5b 2.7 b
 

 2.6 b
 
 2.3 1.7 b

 

 2.0 41.5 34.2 b
 

 37.9 5.4 4.8 b
 

 
 

5.1b 43
a

 35 b
 

 39 

Sole crop 100 2.7 2.0 2.4 2.9
a

 5.6
a

 4.2
a
 2.1 4.0

a

 3.1 40.3 35.9
a

 38.1 5.6 7.6
a

 6.6a 38
b

 53
a

 45 

SED (1 df) - 0.171ns 0.141ns - 0.182* 0.166*** - 0.144ns 0.131*** - 1.675ns 0.799* - 0.287ns 0.230*** - 1.9** 1.8* - 

P-value - 0.306 0.241 - 0.022 <0.001 - 0.203 <0.001 - 0.377 0.037 - 0.382 <0.001 - 0.008 0.047 - 

                                 

Bean cultivars                                

Fuego 50:50 2.9 2.2 2.6 2.5 2.78 2.6 2.3 1.68 2.0 42.4 34.4 38.5 5.4 4.9 5.1 43 34 38 

Maris Bead 50:50 2.9 2.1 2.5 2.4 2.75 2.6 2.3 1.59 1.9 40.7 34.0 37.5 5.3 4.8 5.0 43 33 38 

SED (1 df) - 0.179ns 0.148ns - 0.192ns 0.175ns - 0.152ns 0.138ns - 1.529ns 0.842ns - 0.303ns 0.243ns - 2.0ns 1.9ns - 

P-value  0.880 0.135 - 0.262 0.825 - 0.713 0.075 - 0.084 0.494 - 0.111 0.094 - 0.244 0.075 - 

Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.001; ns= not significant at P< 0.05; SED, standard error of the difference of means; df, degrees 

of freedom. Total biomass yield was calculated as the sum of total straw and total ear yields (t ha-1). 
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6.7.2 Bean performance 

Cropping systems effect 

The combined analysis of variance showed that the cropping seasons had a greater (P<0.001) 

effect on the performance of the bean crop yield and its components (Appendix 5.2). The 

2016 cropping season had higher bean straw and total bean biomass yield over the 2015 

cropping season.  The 2015 cropping season had higher bean seed yield over the 2016 

cropping season (Table 6.9). The cropping system x year interactions had a greater (P<0.001) 

effect on the bean straw, seed and total bean biomass yield (Table 6.9). In both cropping 

seasons, the sole cropping system out yielded the bi-cropping system by 165%, 107% and 

106% for bean straw, seed and total biomass yield respectively.      

Drilling patterns effect   

The combined analysis of variance showed that the cropping seasons had a greater (P<0.001) 

effect on the performance of the drilling patterns (Appendix 5.2). The drilling patterns in the 

2016 season resulted in improved bean growth and development than in the 2015 cropping 

season. The alternate row treatments outperformed the broadcast bi-cropping treatments on 

bean seed and straw yields in both seasons.   

Bean cultivars effect   

The bean cultivar x year interactions had significant effect only on harvest index, 100 bean 

seed weight and total bean biomass.  Fuego had higher harvest index than Maris Bead in the 

2015 cropping season. In both cropping seasons, Fuego had higher 100 seed weight than 

Maris Bead. Maris Bead had higher total biomass than Fuego in the 2016 cropping season.     
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Table 6.9: The effects of cropping systems, drilling patterns and bean cultivars on bean seed yield and its components (t ha-1) in 2015 

and 2016 spring seasons 

Treatments Mix-proportion 

Total bean Pod  

yield 

(t  ha-1) 

 

Total bean  straw  

yield 

(t  ha-1) 

  
Total bean seed  

yield 

(t  ha-1) 

  
100 bean seed  

weight  

(g) 

  
Total bean biomass 

yield  

(t  ha-1) 

 

 

Bean harvest index 

(%) 

 

Drilling patterns 2015 2016 Mean 2015 2016 

Mea

n 2015 2016 Mean 2015 2016 

Mea

n 2015 2016 mean 2015 2016 mean 

1x1 50:50 1.3a -  0.491 1.76a 1.12 0.970a 1.09a 1.030 59.1 32.2 45.7 1.8a 2.86a 2.3 53 43 47 

2x2 50:50 1.2a -  0.587 1.80a 1.20 0.977a 1.28a 1.129 54.5 32.2 43.4 1.8a 3.08a 2.4 52 46 47 

3x3 50:50 1.1a -  0.522 1.90a 1.20 0.863a 1.13a 0.997 59.3 32.9 45.0 1.6a 3.04a 2.3 51 40 46 

Broadcast 50:50 0.6b -  0.377 0.96b 0.70 0.447b 0.86b 0.654 54.5 32.7 44.0 0.9b 1.83b 2.3 50 44 47 

SED (3 df ) - 0.165*** -  0.084ns 0.269** - 0.119*** 0.102** - 3.490ns 0.785ns - 0.218*** 0.270*** - 2.4ns 4.3ns - 

P-value - <0.001 -  0.102 0.003 - <0.001 0.002 - 0.313 0.772 - <0.001 <0.001 - 0.586 0.337 - 

Cropping systems 

                  

Bi-crop mean 50:50 1.1a -  0.494b 1.61b 1.05 0.814b 1.01b 0.985 56.8a 32.5 44.5 1.5b 2.60b 2.0 52 42a 47 

Sole crop 100 3.4b -  1.3a 4.30a 2.79  2.7a 1.30a 2.044 48.6b 32.8 42.6 4.8a 5.60a 5.2 55 24b 40 

SED (1 df ) - 0.131*** -  0.067*** 0.212*** - 0.094*** 0.080* - 2.760**  0.620ns - 0.172*** 0.213*** - 3.9ns 3.4*** - 

P-value - <0.001 -  <0.001 <0.001 - <0.001 0.014 - 0.004 0.655 - <0.001 <0.001 - 0.085 <0.001 - 

Bean cultivars 
 

                  

Fuego 50:50 1.1 -  0.490 1.51 1.00 0.826 1.01 0.984 67.1a 35.1a 50.8 1.5 2.50b 2.0 53a 42 49 

Maris Bead 50:50 1.0 -  0.498 1.71 1.11 0.802 1.19 0.986 46.5b 29.9b 38.3 1.5 2.89a 2.2 50b 43 46 

SED (1 df ) - 0.185ns -  0.094ns 0.300ns - 0.133ns 0.114ns - 3.900*** 0.877*** - 0.244ns 0.302* - 2.7** 4.8ns - 

P-value - 0.678 -  0.051 0.181 - 0.892 0.051 - <0.001 <0.001 - 0.234 0.044 - 0.002 0.494 - 

Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; **=P< 0.01; ***=P< 0.001; ns=not significant at P<0.05; SED, standard error of the difference of means; df, degrees of freedom.  In 2015, total 

bean biomass was calculated as the sum of total pod and straw yields (t/ha); In 2016, total bean biomass was calculated as the sum of total bean straw and total grain yields (t/ha). 
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6.8 Biological efficiency of bi-cropping systems 

6.8.1 Land Equivalent Ratio (LER) 

The combined analysis of variance showed that the LER was (P<0.001) affected by cropping 

seasons (Appendix 5.2).  The LER of 1.50 in the 2015 cropping season was higher than the 

LER of 1.08 in the 2016 cropping season (Table 6.10). The LER in the 2015 showed the 

advantage of the bi-cropping system over the sole cropping system because it was above the 

unitary value of 1.0. The LER in the 2016 cropping season showed no advantage of bi-

cropping systems was because it was below the unitary value of 1.0.  

The drilling patterns x bean cultivar interaction had a greater (P<0.001) effect on the LER 

(Figure 6.2). Fuego had higher LER above the unitary value of 1.0 than Maris Bead under the 

same 2x2 alternate row bi-cropping treatment.  The faba bean rust disease outbreak in the 

2016 cropping might have contributed to the outcome of LER differences between the bean 

cultivars.   

   

Figure 6.2: The Drilling patterns x bean cultivar interactions on mean LER across two spring 

experimental cropping seasons (2015 and 2016) 
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Table 6.10: Land equivalent ratio (LER) of bi-cropping compared to sole cropping for 2015 and 2016 cropping seasons influenced by 

cropping systems, drilling patterns and bean cultivars in 2015 and 2016 cropping seasons 

  Partial Land Equivalent Ratio 

(PLERN) 
 

Total Land Equivalent 

Ratio (LERN) 
 

Land saving (%) 

Treatments 
Mix-

proportion 

Wheat               

(PLERwheat) 

Bean                            

(PLERbean) 

Wheat               

(PLERwheat) 

Bean                            

(PLERbean)  (PLERbean+ PLERwheat)  -  

Drilling patterns 2015 2015 2016 2016  

 

2015 2016 mean 2015 2016 

Sole crop 100 0.500 0.500c 0.500 0.500  1.000d 1.000 1.000 - - 

1x1 50:50 1.205 0.404 a 0.557 0.537  1.609a 1.094 1.351 37.8 8.5 

2x2 50:50 1.248 0.387 a 0.570 0.472  1.635 a 1.042 1.333 38.8 4.0 

3x3 50:50 1.136 0.359 a 0.582 0.512  1.495 b 1.095 1.290 33.1 8.6 

Broadcast 50:50 1.102 0.189 b 0.540 0.559  1.291 c 1.099 1.215 22.5 9.0 

Bi-crop mean 50:50 1.173 0.335 0.562 0.520  1.507 1.082 1.297 33.6 7.5 

SED (3 df) - 0.055 ns 0.071 ** 0.038ns 0.168ns  0.085 ** 0.087ns - - - 

P-value - 0.061 0.023 0.723 0.723  0.002 0.902 - - - 

Bean cultivars           

Fuego 50:50 1.190 0.341 0.561 0.548  1.109 1.109 1.328 - - 

Maris Bead 50:50 1.155 0.328 0.563 0.492  1.055 1.055 1.267 - - 

SED (1 df) - 0.081ns 0.0498ns 0.027ns 0.056ns  0.062ns 0.062ns - - - 

P-value - 0.382 0.795 0.938 0.329  0.433 0.395 -   
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.001.  ns= not significant at P<0.05; 

SED, standard error of the difference of means; df, degrees of freedom;  LER
N 

, land equivalent ratio for nitrogen; PLER
N 

, partial equivalent ratio for nitrogen.   
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6.9 Competition indices 

6.9.1 Aggressivity (A) 

Across the cropping seasons the aggressivity values for the wheat bi-crops had positive signs 

while the bean bi-crops had negative signs (Table 6.11). The positive signs meant that the 

wheat bi-crops acquired more resources than the faba bean bi-crops from the same production 

system. In both cropping seasons, aggressivity values were greater from the 2x2 alternate row 

bi-cropping treatments than other alternate rows in both cropping systems. The greater the 

aggressivity numerical value, the bigger the differences between actual and expected yields 

as a result of efficient utilisation of ecological resources (Wahla et al., 2009).   

The lower aggressivity values in both cropping seasons for both cropping systems were 

obtained from the 1x1 and 3x3 alternate rows bi-cropping treatments. The lower aggressivity 

values indicated the likelihood of interspecific competition for available resources (Mariotti 

et al., 2009).  

In general, the results have shown higher aggressivity values in the 2015 than in the 2016 

cropping season (Table 6.11). This demonstrated the advantage of bi-cropping systems under 

dry conditions (Semere and Froud-Williams, 2001). 

Table 6.11: Aggressivity (A) of wheat and beans in a bi-cropping system affected by 

drilling patterns and bean cultivars in 2015 and 2016 cropping seasons 
 Aggressivity (A) System Aggressivity (A) 

Drilling 

patterns 

Wheat 

(Aw1) 

Fuego 

(AFG) 

Wheat 

(Aw2) 

Maris Bead 

(AMB) 

Wheat 

(Aw1+Aw2)/2 

Legume 

(Afg+Amb)/2 

 Spring 2015   

1x1 0.729 -0.729 0.754 -0.754 0.742 -0.742 

2x2 0.759 -0.759 0.818 -0.818 0.789 -0.789 

3x3 0.652 -0.652 0.673 -0.673 0.663 -0.663 

Broadcast 0.547 -0.547 0.600 -0.600 0.537 -0.537 

 Spring 2016  

1x1 0.028 -0.028 0.127 -0.127 0.049 -0.049 

2x2 0.018 -0.018 0.167 -0.167 0.075 -0.075 

3x3 0.052 -0.052 0.147 -0.147 0.047 -0.047 

Broadcast 0.174 -0.174 0.238 -0.238 0.206 -0.206 

AFG and AMB are Aggressivity indices for Fuego and Maris Bead bean cultivars in mixture with wheat (Aw).  
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6.9.2 Relative Crowding Coefficient (K) 

In both cropping seasons, the product K coefficient values for the wheat was greater than the 

beans which is an indication of the cereals’ competitive ability over the legumes crops (Table 

6.12).  In 2015, product K coefficient values for both cropping systems were above the 

unitary value of 1.0 indicating the advantage of bi-cropping systems over sole cropping 

systems (Table 6.12).   

During the 2016 season, the 1x1 and 2x2 alternate rows in wheat/Fuego bean showed no 

advantage of crop mixture because the product K coefficient values were equal to unitary 

value of 1.0. Under the same cropping system, the 3x3 and broadcast showed disadvantage of 

crop mixture because the product K coefficient values were below the unitary value of 1.0 

(Table 6.12).  During the 2016 season, under wheat/Maris Bead bi-cropping systems, all 

alternate row treatments had their product K coefficient values above the unitary value of 1.0 

showing advantage of crop mixtures. Under the same cropping system, the broadcast bi-

cropping treatments had the product K coefficient values below the unitary value of 1.0 

indicating the disadvantage of crop mixtures.  The relative crowding coefficient values above 

and below unitary value of 1.0 indicates the advantage and disadvantage of bi-cropping 

systems respectively over sole cropping systems.   

Table 6 .12:  Relative Crowding Coefficient (K) of wheat/bean bi-cropping systems as 

influenced by drilling patterns and bean cultivars in 2015 and 2016 cropping seasons 
 Relative Crowding Coefficient (K) 

Drilling 

patterns 

Wheat 

(Kw1) 

Fuego 

(KFG) 

Fuego 

(Kw1*KFG) 

Wheat 

(Kw2) 

Maris Bead 

(KMB) 

Maris Bead 

(Kw2*KMB) 

   Spring 2015    

1x1 7.189 0.761 5.472 9.955 0.556 5.537 

2x2 8.535 0.597 5.094 7.807 0.489 3.819 

3x3 16.719 0.700 11.710 7.077 0.473 3.347 

Broadcast 6.694 0.204 1.366 6.910 0.222 1.534 

 Spring 2016  

1x1 1.108 0.989 1.095 1.049 1.769 1.856 

2x2 1.057 0.984 1.040 1.682 0.852 1.432 

3x3 1.081 0.876 0.947 1.687 0.947 1.563 

Broadcast 1.073 0.523 0.562 1.228 0.456 0.559 

KFG and KMB are relative crowding coefficients of crop Fuego and Maris Bead bean cultivars bi-cropped with wheat 

(Kw). 
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6.10 Forage quality 

 6.10.1 Wheat crude protein content 

Wheat straw   

The combined analysis of variance showed that wheat crude protein content in the straw was 

(P<0.001) affected by cropping seasons (Appendix 5.3). The crude protein content in wheat 

straw in the 2016 cropping season was 44.9% higher than in the 2015 cropping season. In 

both cropping seasons, bi-cropping systems had higher wheat straw crude protein content 

than sole cropping systems (Table 6.13).   

The bean cultivars x year interaction (P>0.05) did not affect wheat straw crude protein 

content. However, in the 2016 season, Fuego outperformed (P<0.05) Maris Bead by 9% on 

crude protein content in wheat straw (Table 6.13). 

Wheat grain 

The combined analysis of variance showed that cropping seasons had a greater (P<0.001) 

effect on the wheat grain crude protein content (Appendix 5.3). The 2016 cropping season 

had 32.1% higher wheat grain crude protein content than in the 2015 cropping season.  In 

both cropping seasons, bi-cropping systems had significantly higher wheat grain crude 

protein content than sole cropping systems   (Table 6.13).   

Both the year x drilling patterns and year x bean cultivar interactions had no effect on crude 

protein content in the wheat grain (Table 6.13).  

6.10.2 Wheat protein yield  

The wheat protein yield was (P<0.001) affected by cropping seasons (Appendix 5.3). The 

seasonal effect in the 2016 cropping season resulted in higher protein yield in the straw, grain 

and total biomass than in the 2015 cropping season. The cropping system x year interactions 

had a greater (P<0.001) effect on wheat straw, grain and total biomass protein yield (Table 

6.13).  In the 2015 cropping season, the sole cropping systems had higher protein yield than 

in the 2016 cropping season. During the 2016 season bi-cropping systems had higher protein 

yield than sole cropping systems for all the yield components.  The drilling patterns x year 

interaction had no effect on wheat straw protein yield.  However, the seasonal effect for the 

drilling patterns was higher in the 2016 than in the 2015 cropping season except for grain 

protein yield.    
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Table 6.13:   The effects of drilling patterns and bean cultivars on mean wheat crude protein content (g kg-1 DM) and protein yield (kg 

ha-1) adjusted at 15% moisture content for fodder production, in 2015 and 2016 spring seasons. 

 Wheat grain crude protein content (g kg
-1

 DM) Protein yield (kg ha-1) 

 Straw Straw Grain Grain      Wheat straw    Wheat grain Total biomass HI (%) 

Drilling patterns 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 

1x1 50:50 25.4 40.7 94.0 134.0 65.8 115.5 232.5 225.3 298.3 340.8 78 65b 

2x2 50:50 25.1 37.2 96.6 132.8 64.4 95.4 240.2 225.1 304.6 320.5 79 70a 

3x3 50:50 25.5 41.0 96.2 140.3 55.4 111.2 216.5 235.0 271.6 346.2 80 67 b 

Broadcast 50:50 25.4 38.2 97.1 145.1 64.6 101.9 219.1 271.9 283.7 373.8 77 71a 

SED (3 df) - 1.891ns 2.119ns 3.142ns 10.150ns 7.93ns 7.03ns 14.39ns 31.56ns 19.02ns 33.70ns 1.90ns 2.41* 

P-value - 0.920 0.172 0.644 0.303 0.369 0.184 0.170 0.251 0.176 0.312 0.456 0.032 

Cropping systems 

 
 

 
 

        

Bi-crop mean 50:50 24.8
a
 39.3

a
 96.0

a
 134.5

a
 62.6 a 106.0b 227.0a 238.2b 289.3a 344.2b 78 68b 

Sole crop 100 18.8
b
 23.9

b
 86.1

b
 106.0

b
 55.1b 164.2a 188.0b 431.7a 243.1b 595.9a 77 72a 

SED (1 df) - 1.638*** 2.119*** 2.74*** 11.710** 6.86*** 6.08*** 12.46** 27.33*** 16.47** 29.19*** 1.65ns 2.09* 

P-value - <0.001 <0.001 <0.001 0.003 <0.001 <0.001 0.005 <0.001 0.009 <0.001 0.511 0.015 

Bean cultivars                   

Fuego 50:50 24.2 40.9
a
 95.9 133.4 62.7 108.8 228.9 236.9  291.6 345.7 78 68 

Maris Bead 50:50 25.6 37.5
b
 96.10 142.70 62.4 103.2 225.2 241.8 287.7 345.0 78 69 

SED (1 df) - 1.726ns 2.234* 2.860ns 10.690ns 7.23ns 6.41ns 13.14ns 28.81ns 17.36ns 30.76ns 1.74ns 2.20ns 

P-value - 0.212 0.023 0.919 0.105 0.954 0.115 0.664 0.181 0.724 0.790 0.751 0.535 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.001; ns= not significant at P<0.05; SED, standard error of the 

difference of means; df, degrees of freedom; DM, dry matter; HI, harvest index. 
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6.10.3 Bean crude protein content   

The combined analysis of variance showed that the cropping seasons did not affect (P>0.05) 

the bean crude protein content (Appendix 5.4).  

Both the drilling pattern x year interactions; and the cropping systems x year interactions had 

no effect on bean crude protein content in the bean straw and grain (Table 6.14).   

The bean seed crude protein content was (P<0.05) affected the bean cultivar x year 

interaction. Maris Bead had 8.1% higher bean seed crude protein content than Fuego in the 

2015 cropping season.     

6.10.4 Bean protein yield 

Bean straw protein yield 

The combined analysis of variance showed that the cropping seasons had a greater (P<0.001) 

effect on the bean straw protein yield (Appendix 5.4). In the 2016 cropping season the bean 

straw protein yield was 53.1% higher than in 2015 cropping season (Table 6.14).  However, 

the bean straw protein yield was (P<0.001) affected by the cropping system x year 

interaction. The sole cropping system had higher bean straw protein yield than the bi-

cropping system in the 2016 season (Table 6.14).  Both the drilling patterns x year 

interactions; and the bean cultivars x year interactions had no effect (P>0.05) on bean straw 

protein yield.  However, the drilling patterns in 2016 cropping season had 301.1% higher 

seasonal effects than in 2015 cropping season on bean straw protein yield (Table 6.14).  The 

bean cultivars x year interactions had no effects on bean straw protein yield. 

Bean seed protein yield 

The bean seed protein yield was (P<0.001) affected by cropping seasons (Appendix 5.4). The 

bean seed protein yield was 46.2% higher in the 2015 than 2016 cropping season despite 

having good weather conditions in the 2016 cropping season. The bean seed protein yield 

was (P<0.001) affected by the cropping systems x year interactions (Table 6.14). The bean 

seed protein yield was higher in sole cropping systems than bi-cropping systems in both 

cropping seasons. The bean seed protein yield was (P<0.001) affected by the drilling patterns 

x year interactions (Table 6.14). The seasonal effect for drilling patterns was 26.9% higher in 

the 2016 than 2015 cropping season on bean seed protein yield. The alternate rows had 
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59.6% higher bean seed protein yield in the 2015 than 2016 cropping season.  The bean 

cultivar x year interactions had no effect bean seed protein yield.  

Bean protein yield harvest index 

The combined analysis of variance revealed that cropping seasons had a greater (P<0.001) 

effect on the protein yield harvest index (Appendix 5.4). Bi-cropping systems outperformed 

sole cropping systems on protein harvest index in the 2016 cropping season. The 2015 

cropping season had no effect on protein yield harvest index.           
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Table 6.14: The effects of cropping systems drilling, patterns and bean cultivars on mean bean crude protein content (g kg-1 DM) and 

protein yield (kg ha-1) adjusted at 15% moisture content for fodder production in 2015 and 2016 spring seasons. 

 

Bean crude protein content         

(g kg
-1

 DM) 

 Protein yield  

(kg ha-1) 

Treatments      Mix- proportion                    Bean straw Bean seed 

 

Bean straw Bean seed Total biomass HI (%) 

Drilling patterns 

  

2015 2016 2015 2016 

   

2015 2016 

  

2015 2016 

  

2015 2016 

 

2015 2016 

1x1 50:50 65.7 32.19 266.0b 280.8  32.1 56.3 291.0a 308.0 324.0a 365.0b 88 84 

2x2 50:50 76.8 30.38 279.2a 271.6  44.6 55.0 271.0a 351.0 315.0a 406.0a 85 86 

3x3 50:50 73.1 30.45 268.2b 279.6  38.6 58.5 269.0a 320.0 307.0a 378.0ba 85 84 

Broadcast 50:50 68.2 34.97 275.3a 277.7  42.6 35.7 133.0b 245.0 175.6b 281.0c 84 87 

SED (3 df)   - 5.33ns 2.62ns 5.82* 7.47ns  8.31ns 13.86ns 43.30** 38.60ns 43.11** 38.33* 3.10ns 3.03ns 

P-value   - 0.184 0.280 0.046 0.620  0.121 0.347 0.008 0.075 0.007 0.022 0.624 0.769 

Cropping systems               

Bi-crop mean 50:50 70.9 32.00 272.2 277.4  35.0b 51.4b 241.0b 306.0b 276.0b 357.0b 86 85a 

Sole crop 100 68.1 32.39 271.5 273.7  89.7a 139.6a 727.0a 356.0a 817.0a 496.0a 88 71b 

SED (1 df)        - 4.21ns 2.00ns 4.60ns 5.90ns  6.57*** 10.96*** 34.30*** 30.50*** 37.30*** 30.30*** 2.45ns 2.39*** 

P-value        - 0.512 0.851 0.884 0.528  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.248 <0.001 

Bean cultivars                          

Fuego 50:50 74.0 31.27 261.5
b
 276.0  36.7 47.6 216.0 280.0 252.7 328.0 85 85 

Maris Bead 50:50 67.9 32.73 282.9
a
 278.9  33.2 55.1 225.0 332.0 258.2 378.0 86 85 

SED (1 df) - 7.53ns 2.93ns 6.50*** 8.35ns  9.29ns 15.49ns 48.5ns 43.20ns 52.7ns 42.9ns 3.47ns 3.39ns 

P-value - 0.130 0.484 <0.001 0.856  0.201 0.750 0.422 0.186 0.332 0.113 0.969 0.964 

Values with the same letter under the same parameter are not significantly different at P<0.05; *=P< 0.05; **=P< 0.01; ***=P< 0.001; ns= not significant at P<0.05; SED, standard error 

of the difference of means; df, degrees of freedom; HI, harvest index.   
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6.11 N uptake   

6.11.1 Wheat N uptake 

The combined analysis of variance showed that the cropping seasons had a greater (P<0.001) 

effect on the wheat N uptake (Appendix 5.5). Higher N uptake in the wheat straw was 

recorded in the 2016 than 2015 cropping season.  However, higher N uptake in the wheat 

grain was recorded in the 2015 than 2016 cropping season (Table 6.15). The cropping system 

x year interactions had a greater (P<0.001) effect on N uptake in the wheat straw and grain 

(Table 6.15). Bi-cropping systems outperformed the sole cropping systems on N uptake in the 

wheat grain in both cropping seasons.  The N uptake in sole wheat cropping systems was 

higher than in bi-cropping systems only in the 2016 cropping season in the wheat straw and 

total wheat biomass.  

The drilling pattern x year interaction did not affect (P>0.05) N uptake in the wheat plant.   

The bean cultivar x year interactions did not affect (P>0.05) N uptake in the wheat plant.     
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Table 6.15:   The effects of cropping systems, drilling patterns and bean cultivars on wheat nitrogen yield  (kgN ha-1) in 2015 and 2016 

spring seasons 

Treatments 

Mix-

proportion 

Wheat Straw N 

yield (kgN ha
-1

)   

Wheat Grain N 

yield (kgN ha
-1

)   

Wheat Total N     

Yield (kgN ha
-1

) 
Wheat N harvest index (%) 

Drilling patterns 2015 2016 Mean 2015 2016 Mean 2015 2016 

Mea

n  2015 2016 mean 

1x1 50:50 13.2 27.2 20.1 41.5 35.3 38.4 54.8 62.5 58.6 75 56 66 

2x2 50:50 13.4 23.1 18.2 43.0 36.4 39.5 56.4 59.6 57.7 76 61 69 

3x3 50:50 11.4 26.2 18.8 39.0 37.9 38.4 50.5 64.1 57.2 77 59 68 

Broadcast 50:50 12.8 27.7 20.5 38.1 38.8 38.4 50.9 66.1 59.5 74 58 67 

SED (3 df) - 1.73ns 3.81ns - 2.39ns 3.00ns - 3.48ns 5.33ns - 4.4ns 3.0ns - 

P-value - 0.531 0.477 - 0.068 0.367 - 0.126 0.305 - 0.522 0.280 - 

Cropping systems 
            

Bi-crop mean 50:50 12.7 26.0
b
 19.4 40.4

a
 37.1

a
 38.7 53.1

a
 63.1

b
 58.3 76 58

a
 67

a
 

Sole crop 100 12.5 69.6
a
 41.0 34.7

b
 31.4

b
 33.1

 
 47.2

b
 101.0

a
 93.1 74 31

b
 52

b
 

SED (1 df) - 1.50ns 3.30*** - 2.07** 2.19** - 3.01* 4.61*** - 3.8ns 2.3*** - 

P-value - 0.878 <0.001 - 0.011 0.008 - 0.050 <0.001 - 0.280 <0.001 - 

Bean cultivars                    
 

    

Fuego 50:50 12.3 26.1 19.2 41.0 37.7 39.4 53.4 63.8 58.7 76 59 67 

Maris Bead 50:50 13.1 26.0 19.6 39.8 36.6 38.2 52.9 62.6 57.8 75 58 66 

SED (1 df) - 1.58ns 3.48ns - 2.10ns 2.18ns - 3.18ns 4.80ns - 4.0ns 2.4ns - 

P-value - 0.432 0.980 - 0.378 0.460 - 0.828 0.656 - 0.194 0.716 - 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P< 0.05; **=P< 0.01; ***=P< 0.001; ns= not significant at P<0.05; SED, standard 

error of the difference of means; df, degrees of freedom; N, nitrogen. 
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6.11.2 Bean N uptake 

The bean N uptake was (P<0.001) affected by cropping seasons (Appendix 5.5). The seasonal 

effect was 46.7% higher in 2016 than 2015 cropping season on N uptake in the bean straw. In 

contrary, the seasonal effect was 35.0% higher in 2015 than 2016 cropping season on N 

uptake in the bean seed. In the 2015 cropping season bean N harvest index was 12.9% higher 

than in 2016 cropping season (Table 6.16). There was a highly (P<0.001) effect of cropping 

system x year interaction on N uptake in the bean plant (Table 6.16). In both cropping 

seasons, the sole cropping system outperformed the bi-cropping system on N uptake in the 

bean straw and grain by 174% and 104% respectively.  Bi-cropping system had higher bean 

N harvest index over the sole cropping system by 23.5% in 2016 season cropping which 

revealed the higher performance of bi-cropping systems for bean seed N uptake than dry 

matter N accumulation. 

The drilling patterns x year interaction had a greater (P<0.01) effect on N uptake in the bean 

straw and seed (Table 6.16). The effect of drilling patterns was higher in the 2016 than 2015 

cropping season by 35.7% and 24.0% on bean straw and grain N uptake respectively. In both 

cropping seasons, the alternate row bi-cropping treatments outperformed broadcast bi-

cropping treatments on bean straw and seed N uptake.  The 2x2 alternate row bi-cropping 

treatments had the highest N uptake in the bean seed compared to other drilling patterns.     

The bean cultivar x year interactions did not affect bean N harvest index.    
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Table 6.16: The effects of cropping systems, drilling patterns and bean cultivars on bean nitrogen yield (kgN ha-1) in 2015 and 2016 

spring seasons                 

Treatments Mix-

proportion 

Bean straw N yield    

(kgN ha
-1

) 

 

Bean Seed N 

yield (kgN ha
-1

) 

 

Bean total N yield 

(kgN ha
-1

) 

 

N harvest index 

(%) 

Drilling patterns 2015 2016 

Mea

n 2015 2016 

Mea

n 2015 2016 Mean 2015 2016 

Mea

n 

1x1 50:50 5.7 8.7
a
 7.2 48.9

a
 49.7

b
 49.3 54.6a 58.4

c
 56.5 88 85 86.2 

2x2 50:50 7.6 9.9
a
 8.8 44.0

a
 59.0

a
 52.1 51.7a 69.0

a
 60.9 85 86 85.1 

3x3 50:50 6.9 9.9
a
 8.4 43.9

a
 51.2

b
 47.6 50.8a 61.2

b
 56.0 86 84 84.7 

Broadcast 50:50 4.4 4.9
b
 4.7 22.4

b
 37.6

c
 27.4 26.8b 42.0

d
 34.4 84 87 85.5 

SED (3 df) - 1.60ns 1.77* - 8.49* 6.78* - 9.14* 6.79** - 3.1ns 2.8ns - 

P-value - 0.221 0.030 - 0.020 0.039 - 0.018 0.006 - 0.511 0.614 - 

Cropping systems 

   

  

        
Bi-crop mean 50:50 6.2

b
 8.42

b
 7.3 39.9

b
 49.4

b
 44.1

 
 46.0

 b
 57.8

b
 51.4

 
 87 85

a
 85.5 

Sole crop 100 16.1
 a
 24.3

a
 20.2 123.4

a
 56.6

a
 90.0

 
 139.5

 a
 81.0

a
 110.3

 
 88 70

b
 78.4 

SED (1 df) - 1.26*** 1.40*** - 6.72*** 5.43* - 7.23*** 5.37*** - 2.4ns 2.2*** - 

P-value - <0.001 <0.001 - <0.001 0.019 - <0.001 <0.001 - 0.380 <0.001 - 

Bean cultivars                    

Fuego 50:50 6.5 7.8 7.2 42.2 44.3
b
 42.6 48.8 52.1

b
 49.8 86 85 85.3 

Maris Bead 50:50 5.8 8.9 7.4 37.4 54.5
a
 45.6 43.2 63.5

a
 53.0 87 86 85.3 

SED (1 df) - 1.78ns 1.98ns - 9.50ns 7.68* - 10.22ns 7.60* - 3.4ns 3.0ns - 

P-value - 0.445 0.155 - 0.576 0.012 - 0.623 0.050 - 0.883 0.621 - 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P<0.05; **=P<0.01; ***=P<0.001; ns= not significant at P<0.05; SED, standard error of the 

difference of means; df, degrees of freedom; N, nitrogen.   
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CHAPTER 7 

Nodulation and morphological root characteristics of faba bean (Vicia faba) varieties 

under sole bean and wheat/bean cropping systems 

7.1 Introduction 

Soil, climatic, crop, biotic and agronomic factors can impair nodulation and limit Biological 

Nitrogen Fixation (BNF) in legume-Rhizobium symbiotic relationships (Ahlam et al., 2014).   

7.1.1 Soil factors 

Physical, chemical and biological soil properties can influence nodulation and BNF in 

leguminous crops (Ferguson et al., 2013). Soil texture can influence water holding capacity 

which can affect the survival of nitrogen fixing microbes, nodulation and BNF (Mohammadi 

et al., 2012). Loam and clay soils can improve BNF through effective nodulation than sandy 

soils. Low water holding capacity plays a bigger role in reducing nodule function and BNF in 

sandy soils (Singh and Shivakuma, 2010). Soil temperatures of 20-30 oC can determine the 

optimum nodule formation and BNF in legume-Rhizobium symbiotic associations (Reddel et 

al., 1985). Higher concentrations of mineral soil nitrogen can inhibit Rhizobium infection, 

nodulation and BNF (Uddin et al., 2008). However different leguminous crops species can 

respond differently to different concentrations of mineral soil nitrogen and its subsequent 

effect on nodulation (Daoui et al., 2010; Anne-Sophie et al., 2002). Waterlogged soil 

conditions can limit aerations in the rhizosphere which can further affect the survival of 

nitrogen-fixing microbes and BNF (Hungria and Vargas, 2000).  Water stress conditions can 

inhibit nodule formation and it can result in nodule decay and inhibited BNF under prolonged 

conditions (Benjamin and Nielsen, 2006).  Saline soil condition with Electrical conductivity 

(EC) of > 4 and Exchangeable Sodium Percentage (ESP) of < 15 can negatively affect 

legume establishment, growth and nodule formation (Kenenil et al., 2010).  The effective 

legume plant growth and BNF via the rhizobia bacterial species takes place at optimal soil pH 

range of 6.0-7.0.  Soil pH below 6.0 is often associated with increased Aluminium and 

Magnesium concentrations which limit the availability of phosphorus and calcium which are 

key nutrient elements for legume growth, nodulation and effective BNF (Waluyo et al., 

2004).    
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7.1.2 Climatic factors 

According to Brockwell et al. (1991), air temperature and light are the two important climatic 

determinants of nodulation and BNF in legumes-Rhizobium symbiotic associations. 

Extremely high and low air temperatures of >35oC and <25oC respectively can negatively 

affect nodulation and BNF under tropical conditions though other symbiotic systems can 

tolerate such extreme air temperature thresholds (Brockwell et al., 1991). The ideal air 

temperature of 15-25 oC favours the optimum growth and nodulation of temperate legume 

crops (Sprent et al., 1983).  Light plays an important role in regulating photosynthesis which 

directly influences nodulation and BNF (Hungria and Vargas, 2000).    

7.1.3 Crop factors 

Genetic variations among grain legumes can influence differences in nodulation and BNF 

capacities (Abaidoo et al., 2007). Reports indicate that the variability among legume varieties 

can differ in influencing nodulation and BNF through their compatibility with the nitrogen-

fixing microbes (Farnia et al., 2005). The phenological and morphological traits of legumes 

can influence the amount of nitrogen biologically fixed. For instance nodulation and N2 

fixation in some grain legume crops starts as early as four weeks until leaf senescence while 

in other legumes, nodulation and N2 fixation stops at pod filling (Griffiths and Lawes, 1977). 

Contrasting root architecture can influence nodulation and BNF (Li et al., 2006).  Finally, it 

has been reported that high-yielding legume varieties require rapid translocation of 

translocates and long period which can affect that rate of nodulation and BNF (Pandey, 

1996). 

7.1.4 Biotic factors  

Biotic factors such as weeds, pests and diseases; and crop competitions can induce stress in 

legume cops which can adversely affect the formation of nodules (Niblack et al., 2006). 

Weeds compete with the crop for light, moisture and nutrients which in turn cause stress on 

the bean plants and impair nodule formation and BNF. Weeds competition can reduce leaf 

area index and photosynthetic efficiency of the legume plants which may result in reduced 

energy for nodule formation and subsequent BNF (Singh et al., 1999). Feeding and sucking 

insects’ pests on the legume forage can deform the leaf size and reduce light interception 

which may reduce the required amount of energy for optimum production of nodules.  

Migratory or sedentary soil pests feeding on the roots of legume such as nematodes in 
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soybean can induce stress on the root which can adversely affect nodule formation and BNF 

(Vincent, 1990).  

7.1.5 Agronomic factors  

Agronomic factors such as sowing date, cropping systems (bi-cropping and sole cropping), 

spatial arrangements, sowing density, irrigation, seed inoculation, pests and disease control; 

and tillage practices can influence the rate of nodulation and BNF in the rhizosphere (Siyeni, 

2016).  

Bi-cropping, as an agronomic factor, can influence the legume-Rhizobium symbiotic 

relationship and its subsequent effect on nodule characteristics and BNF. In cereal/legume 

mixtures, interspecific complementarity due to efficient use of nitrogen (N) sources improves 

nodulation and BNF (Gunes et al., 2007).  Even though interspecific complementarity on N 

use in low input cereal/legume crop mixtures improve nodulation and BNF, factors such as 

plant morphology, spatial arrangements, the density of component bi-crops and competition 

for light can determine  nodulation and BNF (Konlan et al., 2015; Achakzai, 2007; Nambiar 

et al., 1983).   

The two bean cultivars understudy differ in morphology and growth rates traits. It can be 

claimed that these bean varietal differences can determine nodulation and BNF activities in 

cereal/legume mixtures.  Interspecific competition for environmental resources between bi-

crop components can negatively affects nodulation and BNF (Niblack et al., 2006).  The 

drilling patterns which are being evaluated in this study can influence either competition or 

complementarity on resource-use which in turn can directly affect roots performance, 

nodulation and BNF.   Based on the background information, the study was designed to 

achieve the following objectives:  

1. To investigate the influence of cropping systems, drilling patterns and bean cultivars 

on the number of root nodules, their relative colour and contribution to BNF.    

2. To investigate the influence of cropping systems, drilling patterns and bean cultivars 

on bean root growth characteristics such as root length and diameter.    
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7.2 Materials and methods 

This study was conducted within the core experiment in the 2016 cropping season. The 

details of experimental design and treatments are stated in Chapter 3.0 under material and 

methods.  

7.2.1 Study site  

The site location, physiochemical edaphic and meteorological characteristics for 2016 

cropping season are described in Chapter 3 of this thesis.    

7.2.2 Experimental design and treatment description 

The experimental design, study factors, treatments combinations and randomisation were 

exactly similar to the main experiment for 2016 cropping season as explained in Chapter 3 of 

this thesis.   

7.2.3 Root assessments 

According to Lesley et al. (2015) there are three major categories of methods for assessing 

roots in crops which include: Field methods (photographs/drawings, trench, pinboard, 

auger/core, mesorhizotron, and above-ground rhizotron); Container methods (root washing, 

root rating, , horhizotron, minihorhizotron, rhizometer, hydraulic conductance flow meters); 

and Digital imaging methods (image analysing computer, winrhizo, root reader, NMR and X-

ray CT).   

In this study the field method using the trench approach as also described by Schuurman and 

Goedewaagen, (1971) was used in combination with root washing method (Oliveira et al., 

2000). The trench approach in the field was used to initially extract the bean plants from the 

soil depth of 30 cm using the spades without disturbing the entire roots system. The primary 

and lateral roots were targeted for assessments because nodule distribution is mostly found 

within these roots (Plate 4.3). The bean roots and soil were separated with gentle washing 

using tap water with a water gun. The roots were covered in a plastic mesh during washing to 

minimise loss of the root nodules and bean roots (Plate 4.3) before root and nodule 

assessments in the laboratory (Plates 4.4). 

The destructive bean plant sampling was randomly done in the central part of each 

experimental plot using a 1 m2 quadrant area replicated twice.    
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7.2.4 Data collection 

Since two different the bean cultivars were used in the study as bi-crops, assessments were 

conducted at bean flowering growth stage to provide a fair comparison between bean 

cultivars.  The method for assessing beans N2 fixation was adopted from Uaboi-Egbenni 

(2010), Woomer et al. (2011) and Ndukwu et al. (2016). 

7.2.4.1 Total mean number of nodules per bean plant 

The total number of nodules per plant was counted from four randomly selected bean plants 

using a 1 m2 quadrant.  The total numbers of nodules were averaged to get a mean total 

number of nodules per plant for each plot.   

7.2.4.2 Mean number of pink coloured root nodules 

Root nodules were dissected using a razor blade to detect the nodule colour. Nodules with 

leghaemoglobin or pink to red colour indicated effective symbiotic relationship between the 

bean and the micro symbiont which indicated the ability of the bean to fix nitrogen (Ben et 

al., 2002).  The root nodules with white colour indicated ineffective symbiotic relationship 

        Plate 4. Bean roots assessments 

 

  Plate 4.3. Extracted bean root nodules 

 

Plate 4.4. Root nodule assessments 

 

Plate 4.5. Digital calliper 

 

Plate 4.1. 1x1 alternate row treatment Plate 4.2. 3x3 alternate row 

treatment 

Some materials have been 
removed due to 3rd party 
copyright. The unabridged 
version can be viewed in 
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Some materials have been 
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with poor BNF (Ben et al. 2002). Leghaemoblobin can be defined as a plant protein that is 

responsible for the supply of oxygen to the nitrogen fixing bacteria especially in nitrogen 

fixing leguminous plants.  

7.2.4.3 Bean root characteristic - root length and diameter (cm) 

The bean root length was assessed from four randomly selected bean plants from 1 m2 

quadrant area using a ruler in centimetres. The root length measurements were taken from the 

bean primary roots.  The root diameter was measured from the lateral or secondary roots 

using a digital calliper in millimetres (Plate 4.5).   

7.3 Results 

7.3.1 Total number of root nodules 

The analysis of variance (ANOVA) showed that cropping systems had a greater (P<0.05) 

effect on the total number of root nodules (Table 7.1). The sole cropping system had a higher 

(39.0) total number of bean nodules per plant over the bi-cropping system (31.8) by 14.8%. 

The drilling patterns and bean cultivars did not have an effect (P>0.05) on the total number of 

nodules per plant. 

7.3.2 Mean number of effective pink root nodules 

Cropping systems, drilling patterns, bean cultivars and their interactions did not affect 

(P>0.05) the number of effective pink root nodules per plant (Table 7.1).  

7.3.3 Mean proportion (%) of pink root nodules 

The results showed that the mean numbers of white or ineffective nodules were higher than 

pink nodules or effective nodules in bi-cropping systems than sole cropping systems (Table 

7.1).  
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Table 7.1: Total number of nodules, number of pink nodules and the relative proportion 

of pink nodules, influenced by cropping systems, drilling patterns and bean cultivars in 

2016 cropping season. 

Treatments 
Mix-

proportion 

Total nodule 

number 

(Nodules plants-1) 

No. of pink         

nodule 

(Pink nodules plant -1) 

Relative 

proportion of pink 

nodules (%) 

Drilling patterns    

     

1x1 50:50 34.0 14.4 57.4 

2x2 50:50 33.5 14.2 54.6 

3x3 50:50 30.3 10.3 65.1 

Broadcast 50:50 29.4 10.2 60.1 

SED (3 df) - 5.180ns 2.626ns 6.68ns 

P-value - 0.763 0.717 0.446 

     

Cropping systems    

Bi-crop mean 50:50 31.8b 11.5 59.3b 

Sole crop 100 39.0a 12.2 70.2a 

SED (1 df) - 4.090* 2.076ns 5.28*     

P-value - 0.050 0.207 0.044 

     

Bean cultivars     

Fuego 50:50 35.5 12.7 58.6 

Maris Bead 50:50 33.2 11.5 64.4 

SED (1 df) - 5.790ns 2.936ns 7.46ns 

P-value - 0.273 0.765 0.358 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P< 0.05; **=P< 0.01;    

***=P< 0.001; ns = not significant at P<0.05; SED, standard error of difference of means; df, degrees of freedom. 

 

7.3.4 Mean bean root diameter  

The bean root diameter was (P<0.001) affected by cropping systems. The sole bean cropping 

system had 55.5% thicker root diameter (2.24 mm) than the bi-cropping systems (1.44 mm), 

an indication that beans root spatial configuration changed with copping systems (Table 7.2).   

The bean root diameter was (P<0.001) affected by the drilling patterns (Table 7.2). Drilling 

the bi-crops in alternate rows as 2x2 (1.87 mm) and 3x3 (0.99 mm) spatial arrangements had 

the highest and lowest mean diameter respectively. The 1x1 (1.44 mm) alternate row and 

broadcast (1.45 mm) bi-cropping treatments had similar effect on mean bean root diameter.  

The bean root diameter was (P<0.05) affected by the drilling pattern x bean cultivar 

interaction (Figure 7.1). The bean root diameters were only affected at the 2x2 alternate row 

bi-cropping treatments than other drilling patterns treatments. Maris Bead had a higher mean 

root diameter than Fuego under the 2x2 alternate row bi-cropping treatments.  
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Figure 7.1:  The drilling pattern x bean cultivar interaction on the mean bean root diameter 

(mm), during 2016 spring cropping season. 

 

7.3.5 Mean bean length 

Cropping systems had no effect on the root length. The drilling patterns had a greater 

(P<0.01) effect on the bean root length (Table 7.2). Irrespective of the bean cultivars, the 1x1 

(17.7 cm) alternate row bi-cropping treatments had and 3x3 (15.3 cm) longer bean roots 

lengths than the sole bean root length (16.4 cm).  The 1x1 alternate row bi-cropping 

treatments had 7.9% longer roots than the sole bean cropping systems. The 3x3 alternate row 

bi-cropping treatments had 7.2% shorter root length than sole bean cropping systems. The 

2x2 alternate rows bi-cropping treatments (16.2 cm) and the sole bean cropping systems has 

similar root lengths an indication of complementarity on resource-use efficiency.   

The bean cultivars had a greater (P<0.001) effect on the bean root length.  Maris Bead (18.3 

cm) had 24.4% longer root length than Fuego (14.7 cm).  

 

 

Error bars representing average LSD (P≤0.05)  

 

0 
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Table 7.2: The effects of cropping systems, drilling patterns and bean cultivars on the 

mean bean root diameter, and tap root length and root biomass in 2016 cropping season. 

Treatments Mix-proportion 
Root diameter              

(mm) 

Root length                

 (cm) 

Drilling patterns   

1x1 50:50 1.44b 17.70a 

2x2 50:50 1.87a 16.20b 

3x3 50:50 0.99c 15.30d 

Broadcast 50:50 1.45b 16.90b 

SED (3 df) - 0.153*** 0.625** 

P-value - <0.001 0.003 

Cropping systems   

Bi-crop mean 50:50 1.44b 16.50 

Sole crop 100 2.24a 16.40 

SED (1 df) - 0.121*** 0.494ns 

P-value - <0.001 0.889 

Bean cultivars    

Fuego 50:50 1.57 14.70b 

Maris Bead 50:50 1.63 18.30a 

SED (1 df) - 0.171ns 0.699*** 

P-value - 0.184 <0.001 
Values with the same letter under the same parameter are not significantly different at P< 0.05; *=P<0.05; **=P< 0.01; 

***=P< 0.001; ns= not significant at P<0.05; SED, standard error of difference of means; df, degrees of freedom. 
 

7.4 Discussion  

Total number of root nodules   

The increased total number of nodules in sole cropping system than bean bi-crops from this 

study was probably influenced by significant reduction in interspecific interactions and early 

root establishment (Massawe et al., 2016). The reduced number of nodules in bi-cropping 

systems may have been a competitive response of the beans to the competitive effect caused 

by the wheat bi-crop due to over dominance on resource acquisition (Mosses et al., 2010). 

The findings concurred with Muhammad et al. (2012) who reported higher number of 

nodules per plant from mung bean (Vigna radiata L.) in the sole cropping system (9.87) than 

the bi-cropping system (4.98). Studies by Ghosh (2004) demonstrated higher total number of 

groundnuts root nodules in the sole cropping system than the bi-cropping system. Zoumana et 

al. (2012) reported increased number of cowpea nodule numbers in the sole cropping system 

over the bi-cropping system.  The stress conditions experienced by the legumes bi-crops due 

to changes in ecology may contribute to reduction in the number of nodules which may 

consequently impaired BNF (Ghosh, 2004). Bi-cropping systems with taller cereal than 

legume bi-crops have been reported to reduce the number of nodules in bi-cropping systems 
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due to shading effect (Kombiok et al., 2005). One specific example is the study by Wahua 

and Miller (1978) where nodule number in bi-cropping system was reduced by 99% in a 

sorghum/soybeans bi-cropping system.   

Contrary results by Bargaz et al. (2015) reported improved nodulation, nodule number and 

nodule dry weight in the wheat/faba bean bi-cropping systems over the sole bean cropping 

systems signifying the advantage of wheat/faba bean bi-cropping systems. According to 

Agbage et al. (2002), higher nodule number or dry weight in bi-cropping systems over sole 

cropping systems may be a sign of improved nitrogen fixation. Studies by Li et al. (2003) 

reported that such an ecological occurrence indicates facilitative interaction of bi-cropping 

systems. 

Non-significant differences among the drilling patterns on nodules per plant may be 

attributed to interspecific complementarity on resource-use efficiency as a result of the 

replacement design where the population of bi-crops were reduced by half of their population 

in sole cropping (Fradgley et al., 2013). This meant that there was non-limited flow of photo-

assimilates to nodules due to non-limited light interception (Akundu, 2001). The nodule 

formation and numbers in legumes crop is usually influenced by improved light interception 

(Fan et al., 2006). This is because any factors which influence photosynthesis will directly 

influence nitrogen fixing attributes such as nodulation (Akundu, 2001).   

Pink nodules 

The success of grain legumes in cropping system depends on their capacity to form effective 

nitrogen-fixing symbiosis with root-nodule bacteria (Jensen, 1996; Stagnari et al., 2017). In 

situations where the natural N2 fixation is not optimal, inoculation becomes essential to 

ensure that high and effective rhizobial population is available in the rhizosphere of the bean 

plants (Tena et al., 2016).  However, the causes for ineffective nodulation and BNF can vary 

ranging from inadequate amounts of native rhizobia in the soil (Denton et al., 2013) to 

agronomic cultural practices.  Therefore the remedial intervention to address ineffective 

nodulation and BNF in legumes can vary from inoculation (use of inoculants) to improved 

agronomic cultural practices (Sameh et al., 2013).   

This study suggested that cropping systems may have an equal influence on BNF particularly, 

in the study location.  Similarly, faba bean cultivars can be sown at any of the tested drilling 

patterns without negatively affecting their nodulation capacity.  These finding agrees with 
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Murinda and Saxena (1985); Patriquin (1986) who indicated that faba bean does not require 

inoculation because most cultivated soils contain large populations of indigenous rhizobia 

and mycorrhizae particularly of the land which was previously cultivated to faba bean. When 

faba beans are inoculated on soils containing large population of indigenous rhizobia and 

mycorrhizae populations, the inoculant strain may be responsible for a large proportion of the 

nodules (Carter et al., 1994). Therefore, non-significant differences on the number of 

effective nodules may suggest that the study site had large populations of indigenous rhizobia 

and mycorrhizae. This means that any failure for the beans to biologically fix nitrogen at the 

study site may be accounted for agronomic cultural practices such as different drilling 

patterns which are likely to cause stress on the bean plant resulting in reduced nodulation 

capacity. The cereal/legume bi-crop mixtures have shown potential to increase soil fertility 

through a symbiosis of legumes with nodule bacteria (Song, 2007; Mariola et al., 2016).  

Root diameter  

The different responses of faba bean root diameters to different bi-cropping treatment 

combinations demonstrated that belowground spatial interspecific competition and 

complementarity occurred (Mosses et al., 2010). Thinner and longer bean root characteristics 

in the 1x1 alternate rows bi-cropping treatment was due to the belowground interspecific 

competition for soil water (Bargaz et al., 2015). This implies that the bean plants invested 

more energy in the roots system than dry matter production in order to withstand the soil 

water competition by modifying the roots and extend the area of water exploration (Mariotti 

et al., 2009). This finding is in agreement with the shorter bean plant heights results in Tables 

6.4 and 6.5 which also directly responded to soil water stress under the same drilling patterns.  

These findings also concur with Semere and Froud-William (2001) where root competition 

for water stress in cereal/legume bi-cropping system, reduced plant height, leaf area and dry 

matter yield.  Furthermore, Jones et al. (1989) indicated that thinner roots with reduced 

diameter size is an indication of stress and at the same time, it is a coping mechanism to 

improve water use efficient under water stress environments. According to Kotwica et al. 

(1999) the competitive potential of a single legume root is larger than a single cereal plant 

root but because of the larger number of cereals in mixture, their total root pressure on 

legumes is stronger than the pressure of legumes on cereals. Ecologically, this showed that 

the strength of interspecific competition depends on the severity of intraspecific competition, 

which is mostly linked to the participation of the individual components. The narrower and 



 

170 

 

shorter bean root characteristic under the 3x3 alternate row bi-cropping treatments was a sign 

of aboveground resource competition for solar radiation (Tilman, 1988). More energy may 

have been invested in the taller plant height to withstand the completion (Mariotti et al., 

2009) as also shown in Tables 6.4 and 6.5. Thicker root diameter sizes under the 2x2 

alternate row bi-cropping treatments, have shown the likelihood of interspecific 

complementary on efficient use of environmental resources due to lack of spatial antagonistic 

interactions between bi-crop roots (Vandermeer, 1989). This might have contributed to active 

root nodule formation, higher BNF and at a larger scale increases ecosystem nitrogen 

supplies (Fan et al., 2006). This further suggest that the 2x2 treatment may potentially 

contribute to reduce use of non-renewable nitrogen sources, as shown by the larger nodule 

sizes, an  indication of effective nitrogen fixation by the legume bi-crops (Mubarik and 

Sunatmo, 2014; Zhang et al., 2002).   The 2x2 treatment showed to be the bi-crop treatment. 

Bean root length 

Root system is the basis for crop production because it provides access to sufficient nutrients 

and moisture which are conducive for higher crop yield (Liu et al., 2017a). The spatial 

distribution of roots in a production system can be affected by biotic, abiotic factors and 

agronomic practices factors (Bao et al., 2014; Guan et al., 2014). This study discovered that 

modifications of the root distribution in the 1x1 and 3x3 alternate row drilling patterns was a 

response to interspecific competition for water resource and solar radiation respectively 

(Ascehoug et al., 2016), which showed they are less suitability drilling patterns for 

wheat/faba bean bi-cropping system. Their respective longer root length of 7.9% (in 1x1) and 

shorter root length of 6.7% (in 3x3) than the sole bean cropping system provided an evidence 

of root exploration for water and sunlight in the environment. These findings concur with 

Neykova et al. (2011).  According to Jones et al. (1989) root modifications in mixed cropping 

systems is an adaptive mechanism to improve water use efficiency, particularly in the 1x1 

treatments where tightly interwoven root system in the rhizosphere occurred due to closer 

proximity of bi-crops. The modification of the root plasticity in plants occurs to adapt and 

respond to environmental soil moisture stress (Forde, 2009). Beans roots are reported poor 

competitors for water extraction against the wheat roots than they do for above ground solar 

radiation (Yahuza, 2011a).  The longer bean root lengths under the 1x1 treatment 

demonstrated the root struggle to cope up with the water stress conditions. The shorter bean 

roots under the 3x3 treatment signified competitive response to solar radiation because more 
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plant energy was invested in plant height than the root to outcompete the wheat bi-crop for 

light interception (Ascehoug et al., 2016). This is could be true because soil water was not 

limiting than solar radiation in the 2016 cropping season hence shorter bean roots under the 

3x3 treatments (Tilman, 1988; Cahill, 1999).  

The comparable bean roots lengths between the 2x2 alternate row bi-cropping treatments and 

the sole cropping system showed interspecific complementarity on resource-use efficiency 

(Mariotti et al., 2009). Despite the alternate rows are reported suitable for bi-cropping small 

grains with legumes (Tofinga and Snaydon, 1992), not all bi-cropping combinations can offer 

similar benefits (Brooker et al., 2015). According to Anil et al. (1998), the sowing ratios of 

bi-crops in addition to specific growing conditions and; cereal/legume crop species can be 

influenced by belowground spatial root interactions.   

Maris Bead had a longer primary root than Fuego, which may made it suitable for spring bi-

cropping under water stress environmental conditions.  Most spring sown faba beans have 

shallower primary root compared to autumn-sown faba beans which make them more 

sensitive to water stress. Spring faba bean responds strongly to water deficits during 

flowering and early pod filling via many physiological effects (Green et al., 1986).  Studies 

by Saxena et al. (1986) showed that alleviating moisture stress in faba bean had a greater 

effect than alleviating nutrient supply constraints. Therefore, identification of relatively deep 

rooted spring faba bean cultivars such as Maris Bead can provide an opportunity for 

successful spring bi-cropping systems for fodder production. 

7.5 Conclusion 

Root characteristics should be considered among other selection criterion for spring bean 

cultivars for wheat/bean low input bi-cropping systems.  Maris Bead had longer primary root 

than Fuego which led to specialised their adaption and performance under different 

environmental conditions.  Non-differences between cropping systems on active nodulation 

of legumes bi-crops suggested that the study area had sufficient indigenous rhizobia 

mycorrhizae population in the soils. Drilling wheat and beans in alternate rows as 1x1 and 

3x3 spatial arrangement can negatively modified bean root, nodule size and can impair BNF 

due interspecific competition. Drilling wheat and beans crop mixtures in 2x2 alternate row 

spatial arrangements can promote spatial root interspecific complementarity on efficient 

resource-use resulting in optimised root sizes, nodulation and possibly BNF activities. 
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CHAPTER 8 

GREENHOUSE GAS EMISSION (GHG) MITIGATION STUDIES IN BI-CROPPING SYSTEMS 

8.1 Introduction 

The use of nitrogen (N) fertilizers in cereal monoculture production systems (Figure 8.1) has 

contributed to undesirable nitrogen related pollution in the environment (Mueller et al., 2014; 

Kim and Dale, 2008; Hawkesford, 2014; FAO, 2013). Imbalances between N applied and N 

uptake by cereal crops contribute to excess N in the environment, with adverse consequences 

for water quality, air quality and climate change (Mueller et al., 2014).  Nitrogenous gases 

such as nitrous oxide (NO2), ammonia and nitric oxide (NO) directly contribute to climate 

change except for nitrate which contaminates ground waters (Pinder et al., 2012; Keeler et 

al., 2012). NO2 has a greater contribution to greenhouse gas (GHG) emission in agriculture 

and it has a global warming potential of 298 times greater than carbon dioxide (CO2). It is 

involved in the destruction of the stratospheric ozone layer (Reay, 2012; Skiba and Rees, 

2014).  The simulation models have predicted that by the year 2100, CO2 concentrations will 

be as high as 500-1000 ppm (IPCC, 2014). Projected increase in CO2 concentrations threaten 

the sustainability of future food and feed production systems through climate change impacts 

(Anselm and Taofeeq, 2010).  

Shifting the current cereal monoculture production systems to low input cereal/legume bi-

cropping systems, which may reduce the need for non-renewable external N sources, could 

be a sustainable crop production strategy to counteract negative impacts of climate change 

(Stagnari et al., 2017). Cereal/legume bi-cropping systems aim to be self-sustaining low-input 

and energy-efficient, which has demonstrated their capacity to achieve the sustainability in 

agricultural systems (Jackson et al., 2007).  Bi-cropping can potentially address major 

challenges associated with modern intensive agricultural practices (Lithourgidis et al., 2011). 

Biological Nitrogen Fixation (BNF) can benefit cereal/legume bi-cropping systems as they 

reduce the need for inorganic nitrogen fertilizer use, leading to significant reduction in GHG 

emissions (Legumes Future, 2014; Stagnari et al., 2017).  BNF has been reported as the 

second most important biochemical process on earth after photosynthesis by considering its 

positive contribution towards achieving sustainability of production systems (Vance et al., 

1988). 
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The idea to assess GHG emissions in wheat/faba bean bi-cropping system was influenced by 

higher BNF capacity of faba bean (Vicia faba L.) as reported in chapter two which is in the 

context of promoting sustainable production of home grown protein crops as endorsed by the 

EU parliament (Häusling, 2011).   

The grain legumes in European agroecosystems has been reported to fix total N amounting to  

225 Gg dominated by pea, faba bean and soya bean as shown in Figure 8.2. (Baddeley et al., 

2013).  

Source: Hawkesford (2014). 

Figure 8.1: Wheat yields (continuous line) and N application rates (bar chart) in Great 

Britain (1942- 2010).  

 

 

 

 

 

 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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Figure 8.2: Calculated quantities of total N fixed (Gg) by grain legume crops in 

European production systems as reported by Baddeley et al. (2013). 

 

This section attempts to estimate the reduction in GHG emission by relying on faba        

bean BNF instead of using nitrogen fertiliser 

There are various methods used for calculating GHG emissions in cropping systems such as 

life cycle assessments (LCA). However, for this study, the methodology by Kopke and 

Thomas (2010) was adopted because it specifically focused on faba bean grain legumes.  

Faba bean yield per hectare was used as one of the factors for calculating and simulating the 

GHG emissions from bi-cropping systems. A yield of 4 t/ha of faba bean grain was reported 

to correspond to 180 kg/ha of symbiotically fixed N or 480 kg CO2e ha-1 yr-1. Based on this 

relationship, the yield data from field experimental plot was converted to hectare basis, which 

further used to calculate and simulate annual GHG emissions in bi-cropping systems. The 

simulated GHG emission value of 175 kg CO2e ha-1 yr-1 generated by Legume Future (2014) 

for Europe was adopted for comparison against our experimentally simulated results because 

it was validated accurate. Most published GHG emission estimates had simply multiplied 

crop area by BNF per unit area. The estimates reported by Legumes Future (2014) re-

analysed existing literature by taking into account variation in crop yields across Europe, a 

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.
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factor which was ignored by previous authors. The carbon dioxide equivalent or CO2e units 

of measure was used for comparisons because it is the standard term for describing different 

GHG emissions in a common unit (IPCC, 2007).  

8.2 Results from field experiments 

8.2.1 Effects of copping systems  

The combined analysis in Appendix 5.5 showed that the cropping seasons had no effect on 

mean GHG emission mitigation.  Therefore, the effects of cropping systems were similar 

across the seasons on influencing the mitigation of GHG emissions. Across the cropping 

seasons, cropping systems had a greater (P<0.001) effect on the mitigation of GHG emissions 

(Table 8.1). The sole cropping system had higher influence over the bi-cropping system. 

8.2.2 The effects of drilling patterns  

The cropping seasons had no effects on the performance of drilling patterns with regard to 

GHG emission mitigation (Appendix 5.5). Across the cropping seasons, the drilling patterns 

had a greater (P<0.001) effect on mitigating GHG emissions (Table 8.1). Across the bean 

cultivars, the alternate row bi-cropping treatments (165.9 kg CO2e ha-1 yr-1) resulted in higher 

GHG emission mitigation values than broadcast bi-cropping treatments (86.6 kg CO2e ha-1 y-

1).    

8.2.3 The effects of bean cultivars  

Across the cropping seasons, the bean cultivars had no effect on mitigation GHG emissions 

(Table 8.1, Appendix 5.5). 
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Table 8.1: Mean carbon dioxide emissions (CO2 equivalent ha-1 yr-1) savings in 

wheat/bean bi-cropping systems influenced by cropping systems, drilling patterns and 

bean in 2015 and 2016 spring seasons 
 

Treatments 

 

 

Mix-

proportion 

  

 Emissions savings 

(kg CO2e ha-1 yr
-1 

) 
Mean 

  

2015 

  

2016 

 

Drilling patterns 
  

  

1x1 50:50 116.4a 212.0a 164.2a 

2x2 50:50 117.2a 216.0a 166.6a 

3x3 50:50 103.6a 229.0a 166.3a 

Broadcast 50:50 53.6b 116.0b 84.8b 

SED (3 df) - 14.28*** 32.30*** 24.24*** 

P-value - <0.001 <0.001 <0.001 

     

Cropping systems     

Bi-crop mean 50:50 97.7b 193.0b 145.3b 

Sole crop 100 321.1a 516.0a 418.5a 

SED (1 df) - 11.29*** 25.50*** 34.28*** 

P-value - <0.001 <0.001 <0.001 

  
   

Bean cultivars 
 

   

Fuego 50:50 99.2 181.0 140.1 

Maris Bead 50:50 96.2 205.0 150.6 

SED (1 df) - 15.97ns 36.10ns 27.10ns 

P-value - 0.892 0.188 0.051 
Values with the same letter under the same parameter are not significantly different at P<0.05; *=P< 0.05; **=P<0.01; ***=P<0.001; 

ns= not significant at P<0.05; SED, standard error of difference of means; df, degrees of freedom; CO2e, carbon dioxide equivalent. 

 

8.3 Discussion 

Effects of cropping systems 

Recent studies have focused on the role of the legumes’ contribution towards reducing GHG 

emissions in agroecosystems and transform agroecosystems into sustainable production units 

(Yadav et al., 2015; Stagnari et al., 2017). Jeuffroy et al. (2013) found that legume crops can 

emit 5-7 times less GHG emissions per unit area compared to other crops. This demonstrated 

that dependence on synthetic N fertilizer sources for cereal production can potentially reduce 

with the inclusion of grain legumes in cereal based production systems (Beaudette et al., 

2010).  
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This study demonstrated that the sole bean cropping system had greater effect than the bi-

cropping system on the GHG emission mitigation potential. The higher effects of the sole 

bean cropping system than the bi-cropping system may be accounted for higher sowing 

density because nitrogen uptake and density are directly related (Sadeghpour et al., 2013). 

However, across the cropping seasons, the sole bean cropping system showed higher effect 

than the simulated mean value of 175 kg CO2e ha-1 yr-1 for faba bean reported for EU 

countries sown under crop rotation systems which was reported by Legumes Future (2014), 

Reckling et al. (2014).  The higher mean effect from this study may suggest the higher 

nitrogen fixation potential of the beans cultivars (Fuego and Maris Bead) than the bean 

cultivars used across EU countries. The smaller mean difference of 28.9 kg CO2e ha-1 y-1 

between this study under bi-cropping systems and the EU reported simulated mean value of 

175 kg CO2e ha-1 y-1 under crop rotation systems may suggested the potential advantage of bi-

cropping to mitigate GHG emissions comparable to crop rotation systems (Kope and 

Nemceek, 2010; Jensen et al., 2010; Rose et al., 2016; Patriquin, 1986).  The interspecific 

competition effects for soil N and complementarity on resource-use, particularly N in bi-

cropping systems may have improved biological nitrogen fixation than in crop rotation 

systems (Akter et al., 2004; Bedoussac and Justes, 2010). This agrees with findings by Pappa 

et al. (2011) study in Eastern Scotland which reported reduced cumulative NO2 emission 

from barley/pea bi-cropping systems.  According to Legume Future (2014), an inclusion of 

grain legumes in European cropping systems may provide a small climate benefit compared 

to importing soybeans to Europe. There are higher chances for the bean to fix more N in bi-

cropping systems than in crop rotation systems. It has been reported that sole bean cropping 

systems in rotation are vulnerable to biotic interferences such as weed, pests and diseases 

which may adversely affect their productivity than in bi-cropping systems (Bedoussac et al., 

2017).   

The drilling patterns 

The alternate row bi-cropping treatments had a greater effect on the mitigation of GHG 

emissions than bi- broadcast bi-cropping treatments which can be attributed to higher light 

interception capacity and its efficient use (Olsen and Weigner, 2007). The regular spatial 

arrangement compared to random distribution of bean bi-crops determined light interception 

capacity and subsequent mitigating effects on GHG emission (Sedghi et al., 2008). The 

nodulation and subsequent biological nitrogen fixation processes in legumes is highly 
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dependent on the energy from solar radiation (Akundu, 2001; Fan et al., 2006).  The regular 

arrangement of bean bi-crops resulted in improved light interception and BNF, hence higher 

GHG mitigation potential.  Irregular spatial distribution of bean bi-crops possibly contributed 

to poor light interception, low BNF hence low GHG mitigation potential (Chapagain, 2014). 

The annual simulated GHG emission mean value per hectare for EU countries differed from 

alternate rows and broadcast bi-cropping treatments by 5.5% and 102.1% respectively 

(Legumes Future, 2014).  The smaller difference for alternate rows showed higher effect than 

broadcast on GHG emission mitigation potential due to their differences in utilising solar 

radiation. Similarly, Chapagain (2014) reported higher GHG emissions mitigation potential 

for the alternate rows (1:1) than broadcast bi-cropping treatments. Findings of this study are 

in agreement with Senbayram et al. (2016) where faba bean showed potential in reducing 

GHG emissions in cereals/bean bi-cropping systems. Alternate row bi-cropping treatments 

displayed great potential to enhance BNF and GHG emission mitigation capacity which may 

lead to significant reduction in the use of external inorganic nitrogen fertiliser sources.   

8.4 Conclusion 

The findings from the study showed that low input wheat/faba bean bi-cropping system has 

demonstrated potential to contribute to mitigate the risks associated with climate change such 

as non-renewable nitrogen fertiliser use, leading to improved environmental sustainability. 

The alternate row spatial arrangement bi-cropping systems provided an opportunity to 

mitigate potentially greater GHG emissions than broadcast bi-cropping production system. 

The bean cultivars, due to complementarity on N use, demonstrated higher BNF abilities 

which contributed to greater mitigation of GHG emission which was also demonstrated by 

Stagnari et al. (2017).   
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CHAPTER 9 

GENERAL DISCUSSION 

 

9.1 Seasonal variability and its effects 

Precipitation and air temperature are the most important meteorological weather elements 

which determine the productivity of rain-fed crop production (Ceglar et al., 2016).  Their 

combined effects under extreme weather events can have serious negative effects on crop 

growth and development (Vining, 1990).  Seasonal variability is an important aspect of field 

experiments because it can determine the response of treatments to contrasting growing 

conditions (Achouri and Gifford, 1984). The 2015 and 2016 spring cropping seasons had 

contrasting meteorological weather conditions which directly resulted in contrasting 

responses of experimental variables. The 2016 cropping season was warmer and wetter 

compared to 2015 and the 10-year average. Warm and wet conditions in 2016 growing 

season might have influenced the outbreak of Faba bean rust disease (Uromyces viciae-

fabae). According to Maalouf et al. (2016), warm and wet environmental conditions favour 

the outbreak of fungal diseases such as Faba bean rust.  Similarly, the outbreaks of black bean 

aphid (Aphis fabae) and Ascochyta blight (Ascochyta fabae) in the 2015 cropping season 

were possibly influenced by the specific seasonal weather conditions.   

The contrasting seasonal weather conditions determined the sowing dates for each cropping 

season.  The total amount of rainfall received at the end of March of each cropping season 

determined the sowing date for the succeeding spring cropping season due to differences in 

the time taken for the clay soils to dry before achieving suitable moisture content for sowing 

the seeds. During the month of March, higher total rainfall amounting to 111.3 mm in the  

2016 season resulted in delayed sowing (02/05/16)  while lower total rainfall amounts of 34.2 

mm in 2015 season resulted timely sowing (09/04/15).  Bi-crops were more competitive in 

the 2015 than 2016 cropping seasons as indicated by the competition indices results (Relative 

Crowding Coefficient and Aggressivity). Similar findings were reported in other studies for 

instance Semere and Froud-Williams (1998) and Tsubo et al., (2005).    

9.2 Chlorophyll Concentration Index (CCI)   

Effects of cropping systems  
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This study demonstrated that bi-cropping can potentially lead to higher CCI in the wheat bi-

crop plants than sole cropping. This may be due to morphological and physiological 

complementarity between the bi-crops on efficient use of resources particularly N (Bedoussac 

et al., 2014). This finding agrees with Koohi et al. (2014); SU et al. (2014) and Ghosh et al. 

(2006). The positive seasonal effects on CCI were higher in the 2016 than 2015 season, due 

to improved weather conditions such as soil water availability and warmer temperature, 

which might have favoured the positive microbial interaction with the beans (Vining, 1990).   

Since inorganic N fertilizer was not applied to the wheat bi-crop plants in bi-cropping 

systems, higher CCI benefits demonstrated the benefit of the cereal/legume bi-cropping 

systems on efficient use of different sources of N between the bi-crops (Bedoussac et al., 

2014; Hauggaard-Nielsen et al., 2009). According to Griffiths and Lawes (1977), BNF in 

faba beans starts between 3 to 4 weeks after emergence. Studies by Vinther and Dahlmann-

Hansen (2005), reported that BNF in faba beans begins as early as 2 weeks after emergence 

with the highest N2 fixation at flowering. This therefore suggested that direct N transfer from 

the legume bi-crop to the non-legume bi-crop (cereal) through common mycorrhizal 

networks (CMN), could be one of the biological mechanisms responsible for increased CCI 

in the wheat bi-crop plants as reported by Aminifar and Ghanbari (2014), Johansen and 

Jensen (1996). Similar innovation has been developed in the UK by PlantWorks in 

Sittingbourne, which produce bio fertiliser containing living Arbuscular Mycorrhizae 

(MA) whose hyphae networks may promote root growth and extend its absorptive 

circumference, which can enhance nutrient transfer and availability in bi-cropping systems. 

He et al. (2009) confirmed direct N transfer in bi-cropping systems using 15N isotopic 

method. According to Chapagain (2014), N fixed by the legume bi-crop component can be 

available for the cereal bi-crop within the same cropping season as also confirmed by higher 

CCI (Table 6.1) in bi-cropping systems over the sole cropping system. Also, higher BNF 

capacity of faba bean might have contributed to higher CCI in bi-cropping systems 

throughout wheat growth stages (Walley et al., 1996).  

The higher CCI in bi-cropping systems may predict subsequent improved cereal fodder 

quality better than sole cropping systems because chlorophyll is an important pigment 

required for photosynthesis and amino acids synthesis (Ghosh et al., 2006). Soil N 

availability has been reported to determine the cereal forage quality in low input production 
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systems (Bilsborrow et al., 2013; López-Bellido et al., 2004). The low CCI in the sole 

cropping system was possibly attributed to low soil N availability, which enhanced 

intraspecific competition for N among the wheat plants sown at two times higher sowing 

density than in the bi-cropping system (Hauggaard-Nielsen and Jensen, 2005). Similar 

findings were reported by Ghosh at al., (2006) in sorghum (Sorghum bicolor)/cowpea 

(Glycine max L.) bi-cropping systems.  The CCI may also play a significant role in detecting 

if the legume bi-crops are fixing atmospheric N2 in the bi-cropping system (Musa et al. 

(2010). According to Midmore (1993) the failure of the legume bi-crop to fix N2 in crop 

mixtures, can convert interspecific complementarity on N use into interspecific competition 

for mineral soil N.  

Effects of drilling patterns  

This study showed higher CCI in alternate rows than in broadcast bi-cropping treatments, due 

to weaker interspecific competition than intra-specific competition as reported by 

Vandermeer (1989). The regular arrangement of the bi-crops might have improved the use of 

environmental resources particularly solar radiation as a result of total ground canopy cover. 

Physical root intermingling between the bi-crops in the rhizosphere may have contributed to 

increased CCI in the wheat bi-crops through direct N transfer as reported by Musa et al. 

(2010), Johansen and Jensen (1996).  The random spatial distribution of the bean bi-crops in 

the broadcast treatment contributed to low CCI, due to poor total canopy ground canopy, 

which may have resulted in poor light interception as reported in other studies by Bastiaans et 

al. (2008), Olsen and Weigner (2007). The beans are vulnerable to weed infestation 

(Hauggaard-Nielsen et al., 2007). Therefore, the broadcast may have stimulated more weed 

growths which might have negatively impaired the beans plants growth and subsequent N 

fixation capacities hence low CCI.    

The higher CCI in the 1x1 and the 2x2 alternate row treatments than in other drilling patterns 

in the 2016 season may have been influenced by complementarity effects on efficient use of 

different N sources between the bi-crops as reported by Bedoussac et al. (2014), Corre-

Hellou et al. (2006) and Jensen (1996). Therefore, improved fodder quality can be expected 

under the 1x1 and 2x2 alternate row treatments than 3x3 alternate treatments during the 2016 

season. According to Musa et al., (2010), physical root intermingling could be the reason for 

higher CCI shown in the 1x1 and 2x2 alternate row treatments. This agrees with Chapagain, 
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(2014) who reported highest rate of N transfer from legume to barley bi-crop in a 1x1 system 

than a mixed treatment.  Zhang et al. (2017) reported that in crop mixtures, close proximity 

between bi-crop plays a significant role in enhancing direct N transfer. This study showed 

low CCI in the 3x3 alternate row treatments due to interspecific competition for aerial 

environmental resources (solar radiation) (Geno and Geno, 2001; Sadeghpour et al., 2014). 

This may have altered the leaf size which reduced light interception capacity hence resulted 

in low CCI.  Polthanee and Trelo-ges (2003) also reported the effects of interspecific 

competition on reduced leaf size and its subsequent effect on environmental resource-use 

such as solar radiation.   

The drilling pattern x bean interaction showed greater performance of Maris Bead than Fuego 

on influencing CCI in the 1x1 alternate row treatments. This was due to tap root advantage 

(Table 7.2) which may have helped to tolerate season soil water fluctuation in the upper soil 

profile than Fuego with superficial root system.  This agrees with Streeter (2003) who 

indicated that soil water availability determines plant growth, nodulation and symbiotic 

biological N2 fixation in leguminous crop. The findings suggest that Maris Bead can 

influence increased CCI under different environmental conditions. 

Effects of bean cultivars  

This study showed that despite the bean cultivar bi-crops differing in morphology and growth 

rate, their influence on CCI was similar in both cropping seasons, due to spatial interspecific 

complementarity on better use of environmental resources between bi-crops particularly N 

(Hauggaard-Nielsen et al., 2008).  This suggests that both the bean cultivars can potentially 

improve the quality of cereal based forage because chlorophyll and N are directly related 

(Tucker, 2004).  

9.3 Leaf Area Index (LAI)  

Effects of cropping systems   

LAI is a canopy index which determines the productivity of bi-cropping systems through 

increased photosynthetic area and greater PAR interception than sole cropping systems (Yin, 

2016; Mansab et al., 2003; Xinyou et al., 2003). This study showed greater LAI in bi-

cropping systems than the sole cropping systems in both cropping seasons. This may have 
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been attributed to lack of niche overlap on environmental resource-use, which resulted in 

greater light interception, photosynthetic processes and dry matter yield (Vandermeer, 2011).   

However, too high LAI may increase leaf fall of the lower leaves due to limited access to 

light and carbon dioxide resulting in impaired photosynthetic processes (Frank and Cleon, 

1992). The advantages of cereal/legume bi-cropping systems over sole cropping systems on 

greater LAI has been attributed to efficient use of solar radiation (Bilalis et al., 2010).  

Therefore, bi-cropping systems may potentially influence higher forage quality through 

increased LAI and greater light interception than sole cropping systems. Wheat/faba bi-

cropping systems are reported to be restricted to areas with low temperatures and ample water 

(Haymes and Lee, 1999). Therefore, improving LAI through planned biodiversity in space 

can improve light interception and sustain forage productivity in such areas. Generally, most 

legumes have low LAI during the early part of the growing season, which result in more light 

wastage (see Figure 5.1), due to poor vegetative ground canopy cover (Parsa and Bagheri, 

2008). Therefore, bi-cropping systems may improve LAI during the early stages of crop 

growth and minimise light wastage than sole cropping systems as similarly reported by Harris 

(1990).  

Effects of drilling patterns 

This study showed greater LAI values in alternate row bi-cropping treatments than in 

broadcast treatment in both cropping seasons due to efficient use of available growth 

resources, which was influenced by the uniform arrangement of rows and bi-crops 

(Vandermeer, 1989). The random spatial distribution of the bean bi-crops in broadcast 

treatment produced inconsistent total ground canopy cover, which resulted in low LAI (Olsen 

and Weigner, 2007). Soil water was more limiting than solar radiation in the 2015 season. 

This led to belowground interspecific competition in the 1x1 and the 3x3 alternate row 

treatments and resulted in reduced LAI.  The effect of belowground competition for soil 

water may have altered the aboveground plant morphology such as LAI, which may affect 

efficient use of environmental resources (Tilman, 1988 and Mariotti et al., 2009). Similar 

findings by Semere and Froud-Williams (2001) reported a reduction in leaf size and 

subsequent LAI due to water stress environmental conditions.  

Solar radiation was more limiting than edaphic based resources in the 2016 cropping season 

and may have influenced interspecific competition for solar radiation in the 3x3 alternate row 
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treatments, hence reduced LAI  as reported by Tilman, (1998) and Mariotti et al. (2009). LAI 

can determine plant growth and development (Lucas et al., 2015) by affecting carbon dioxide 

(CO2) input, solar radiation interception, photosynthesis and biomass accumulation 

(Kandiannan et al., 2009). Improved conditions, such as soil water in the 2016 than 2015 

cropping season as shown in Figure 3.2 and Appendix 1.1 may have stimulated vigorous and 

competitive growth of crop canopies possibly due to greater use of environmental resources 

hence resulted in higher LAI.   

Effects of bean cultivars  

This study showed that Fuego had greater LAI compared to Maris Bead in both cropping 

seasons to due lack of mutual leaf shading and premature loss of the lower bean leaves  

(Frank and Cleon, 1992; wolf, 1972).  Mutual leaf shading is a condition in plant canopies 

where the lower leaves drop down to the ground due to restricted access to light and CO2 by 

the upper leaves (Brintha and Seran, 2009). Even though Maris Bead had planophile leaf 

types with the capacity to influence greater LAI than Fuego, its LAI declined with increased 

crop canopy growth due to mutual leaf shading.   

9.4 Intercepted Photosynthetic Active Radiation (IPAR)  

Effects of cropping systems  

This study showed higher IPAR in bi-cropping systems than sole cropping systems in both 

cropping seasons due to spatial interspecific complementarity effects, which improved 

efficient use of resources (such as water and non N nutrients) than when bi-crops were grown 

separately (Willey, 1990).  Increased performance of bi-cropping systems over sole cropping 

systems occurred possibly because the wheat and the bean bi-crops differed in their vertical 

arrangement of foliage and canopy architecture (Khashayar et al., 2014; Tsubo et al., 2001; 

Willey, 1990; Keating and Carberry, 1993). For example; the combination of the wheat and 

beans bi-crops with mono-foliate and tri-foliate leaf types respectively contributed to improve 

IPAR in bi-cropping systems than sole cropping systems (Baumann et al., 2001).  Ghambari-

Bonjar (2000) also reported higher portion of the incident ray of the solar radiation 

intercepted in bi-cropping systems than sole cropping systems. Studies by Jahansooz et al. 

(2007) in wheat/chickpea mixtures reported higher IPAR in bi-cropping systems than sole 

cropping systems. Bilalis et al. (2010) reported IPAR in maize/legume bi-cropping systems 

than sole cropping systems. According to Fan et al. (2006), higher IPAR improved the 
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productivity of bi-cropping systems through enhanced nodulation and biological N2 fixation. 

Studies by Malezieux et al. (2009) reported increased total biomass yield in bi-cropping 

systems than sole cropping systems due to improved IPAR. The benefits of bi-cropping 

systems on improved IPAR over sole cropping systems have also been reported by Liu et al., 

(2017b) in maize/soybean mixtures and Bedoussac and Justes (2011) in durum wheat/winter 

pea mixtures.  

The greater benefits from bi-cropping systems occur because the photosynthetic active solar 

radiation (PAR) which could have been lost during the early and end of the growing season in 

sole cropping systems can be used efficiently by bi-cropping systems. According to Hay and 

Walker (1989), crop yield is a function of total incoming light (Q) x fraction of crop canopy 

intercepted light (I) x photosynthetic efficiency (E) x harvest index (H).  A similar finding 

was reported by Eskandari and Ghanbari-Bonjar (2010) in wheat/faba bean bi-cropping 

systems. In contrast, Keating and Carberry (1993) concluded that selective breeding enables 

plants to absorb maximum IPAR in pure stands or sole cropping systems rather than in crop 

mixtures. However this research has shown higher IPAR in bi-cropping systems than sole 

cropping systems contradicting Keating and Carberry (1993).  However, improved weather 

conditions such as soil water and air temperature in the 2016 over 2015 cropping season 

improved LAI (Table 6.2) which resulted in greater IPAR in Table 6.3.   

Effects of drilling patterns 

The drilling patterns improved IPAR in the 2016 than in 2015 cropping season as a result of 

better improved growing conditions, such as soil water and warm temperatures (Figures 3.1 

and 3.2), which might have improved canopy development, due to better use of other 

resources such light and non-nitrogen nutrients  (Ceglar et al., 2016; Hook and Gascho, 

1988).  

This study showed greatest IPAR from the 2x2 alternate row treatments in both cropping 

seasons which could result in maximum yields and economical advantage for commercial 

farmers. This was due to weaker interspecific competition than intraspecific competition 

between the bi-crop components (Willey, 1990; Vandermeer, 1989), which resulted in 

efficient partitioning of available resources in space (Willey, 1990; Hinsinger et al., 2011; 

Liu et al., 2017b). This further improved the total canopy ground cover, promoted  more 

IPAR and enhanced the performance of other associated ecological services such as weeds, 
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insects’ pests and disease control (Evers and Bastiaans, 2016; Koocheki et al., 2016). The 

higher performance of the 2x2 alternate row treatments demonstrated the positive relationship 

between plant diversity and ecosystem productivity (Li et al., 2011), which fulfilled the 

competitive exclusive principle that allows indefinite co-existence of the bi-crops in mixture 

as long as their intensity of interaction does not promote niche overlap (Vandermeer, 1970).  

Matusso et al. (2014) also reported highest IPAR and yield benefits from the 2x2 alternate 

rows treatment in maize/soybean bi-cropping system in Kenya which prompted farmers to 

nickname the treatment ‘mbiri’ meaning two in appreciation of the treatment performance 

over their traditional sole cropping system. Mucheru-Muna et al. (2010) reported 40 percent 

higher economic net benefits in the 2x2 alternate row bi-cropping treatments compared to 

traditional crop mixture of beans and maize.  Studies by Jalilian et al. (2013), Sadeghpour et 

al. (2014), Langati et al. (2006) and Long et al. (1999) also reported higher performance of 

the 2x2 alternate row spatial arrangements on yield and LER.   

The production of faba bean in mixtures with wheat in organic production systems, is 

restricted to areas where water is not a limiting environmental factor of production than solar 

radiation (Haymes and Lee, 1999). Therefore, the 2x2 alternate row spatial arrangements 

could be a suitable cultural practice to optimise light management and productivity of spring 

wheat/faba bean bi-cropping systems in such areas. The findings are in agreement with 

Haymes and Lee (1999) and Bulson et al. (1997) who indicated that in wheat/faba bean bi-

cropping systems, spatial rather than temporal complementarity determines the productivity 

mostly due to efficient use of resources including IPAR.  

This study showed low IPAR in the 1x1 and 3x3 alternate row treatments in the 2015 season 

due to the reduction in plant height and leaf sizes (Tables 6.2 and 6.3), which negatively 

affected light interception as a result of belowground competition for soil water. Studies by 

Sobkowicz (2001) confirmed the effect of belowground competition on reduced plant height 

and resource-use efficiency. The lowest IPAR in broadcast was attributed to poor ground 

canopy cover as a results of random spatial distribution of bi-crops, which was also reported 

by Bastiaans et al. (2008).   

Effects of bean cultivars  

This study showed that Fuego intercepted more light than Maris Bead bi-crops in the 2015 

season probably due to the absence of mutual leaf shading, which is a common characteristic 
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of most erectophile leaves (Wolf, 1972; Yunasa et al., 1993 Wang et al., 2007)). The 

erectophile leaves do not drop prematurely before reaching senescence due to their 

geometrical leaf arrangement. The light interception per leaf in erectophile leaves increases 

because more light is intercepted at large solar angles (early in the morning, at noon and late 

in the evening) than planophiles (Yunasa et al., 1993).  Kanton and Dennett (2008) also 

reported higher photosynthetic rates, IPAR and RUE in the erectophile than planophile 

leaves.   

Maris Bead had lower IPAR than Fuego in the 2015 season due to increased loss of the lower 

leaves (Wolf, 1972), which was caused by mutual leaf shading and the higher transpiration 

rate in broader leaves under water stress conditions (Smith and Geller, 2013; Hikosaka and 

Hirose, 1997).  When soil water was not limiting in the 2016 season, Maris Bead had higher 

IPAR than Fuego.  However, their smaller difference of 1.9% in the 2016 season compared to 

4.9% in the 2015 season suggested that mutual leaf shading and premature leaf fall was 

taking place in Maris Bead, which reduced the LAI and IPAR capacity.  Solar radiation 

determines dry matter yield in crops when biotic and abiotic factors are not limiting in a 

production system (Bedoussac and Jutes, 2010). Therefore, the bean cultivar bi-crops with 

higher light interception traits are essentially ideal for low input bi-cropping system 

(Campbell, 1990; Bedoussac et al., 2014).  

The study showed that Fuego had the potential to improve light interception in bi-cropping 

systems irrespective of seasonal variations. Maris Bead with planophile leaves characteristics 

can effectively intercept more light only in the early stages of the crop cycle. Falster and 

Westoby (2003) confirmed that IPAR in plants can be affected both leaf shape and size, 

which are key attributes of the  leaf morphology that affect mutual shading of leaves and light 

absorption of the canopy. Similarly, Hoad et al. (2006) reported that wheat plants with 

planophiles leaves were more effective at light interception and weed suppression, but only 

during the early canopy development rather than at maximum canopy development.  

Similarly, Coll et al. (2012) and Niinemets (2007) reported that plant architecture and canopy 

structure can affect light interception in bi-cropping.    

This drilling pattern x bean cultivar interaction of this study showed higher performance of 

Fuego than Maris Bead on IPAR in the 1x1 alternate row spatial arrangements. This was 

possibly due to its similar plant height to the wheat bi-crop component as also reported by 



 

188 

 

Haymes and Lee (1999) and Wahua and Miller (1978). This study further infer that in 

addition to plant height advantage between the bi-crop components, the erectophile leaf traits 

for Fuego contributed to enhanced higher IPAR as confirmed by Falster and Westoby (2003).   

9.5 Radiation Use Efficiency (RUE)   

Effects of cropping systems  

This study showed higher total RUE in bi-cropping systems than sole cropping systems in 

both cropping seasons due to improved LAI as shown in Table 6.2 and canopy ground cover. 

Research findings by Tsubo et al. (2001) and Liu et al. (2017b attributed higher RUE in bi-

cropping systems than sole cropping systems to complete canopy ground cover, which led to 

maximised light interception. According to Willey (1979) better use of radiation in bi-

cropping systems can be achieved by efficient use rather than greater amounts of intercepted 

solar radiation. Therefore, higher RUE in the wheat/bean bi-cropping system than the sole 

cropping system demonstrated the capacity of the system to improve forage productivity in 

temperate conditions where light is the main determinant environmental resource of crop 

production (Bulson et al., 1997). The differences in morphology, physiology and phenology 

between the bi-crop component crops may have contributed to improved resource-use 

efficiency in bi-cropping systems than the sole cropping systems (Eskandari and Ghanbari-

Bonjar, 2010). For example, the wheat bi-crop may have ensured good early light 

interception while the bean bi-crops ensured later interception hence higher dry matter yield 

(Wikiti et al., 1993). 

Effects of drilling patterns 

This study showed no effect of drilling patterns on RUE in the 2015 season possibly due to 

water stress conditions, which might have reduced plant growth such as LAI in Table 6.2 and 

plant heights in Table 6.5, hence reduced RUE.   Soil water stress conditions can negatively 

affect foliage expansion and light interception hence, a reduction in RUE (Adeboye et al., 

2016) reported. During the 2016 season, the reduction in RUE was only observed in the 3x3 

alternate row treatments as a result of interspecific competition for solar radiation (Geno and 

Geno, 2001). Similar findings in maize/soybean crop mixtures were reported by Liu et al. 

(2017b).   
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Effects of bean cultivars 

Fuego had higher capacity to efficiently convert intercepted solar energy into dry matter 

production than Maris Bead in the 2015 season due to their differences in leaf morphology 

and growth rates (Sinoquet and Caldwell, 1995). Fuego had erectophile leaf type, which may 

have promoted more light penetration into the canopy than Maris Bead. Maris bead with 

planophile leaf type, may have restricted more light penetration into the canopy hence low 

RUE (Wolf, 1972). Fast growing plants such as Fuego have the capacity to start intercepting 

light earlier and efficiently convert into dry matter production than slow growing plants 

(Richards, 2016). Borger et al. (2010) confirmed increased mutual leaf shading in 

planophiles, which resulted in increased premature leaf fall and reduced RUE. Fuego is 

proven a suitable candidate for low input bi-cropping systems because it’s efficient in the 

utilisation of intercepted solar radiation capacity can contribute to improve biological 

nitrogen fixation, crude protein in wheat and mitigate greenhouse emissions (Stagnari et al., 

2017).  

9.6 Dry matter accumulation  

Effects of cropping systems   

This study showed higher dry matter accumulation for both wheat and bean in sole cropping 

systems than their corresponding bi-cropping systems in both cropping seasons due to 

differences in their respective sowing densities (Joliffe et al., 1984). The sowing density for 

sole cropping systems was two times higher than for bi-cropping systems. Reducing the 

sowing density in bi-cropping systems is a strategy to achieve spatial interspecific 

complementarity on resource-use efficiency in replacement designed bi-cropping experiments 

(Snaydon, 1994; Joliffe et al., 1984; Fradgley et al., 2013).  

Although bi-cropping systems had lower wheat and bean dry matter accumulation than sole 

cropping systems, the total dry matter yield from bi-cropping systems was higher than sole 

cropping systems, which demonstrated the advantage of bi-cropping over sole cropping as 

shown in Table 6.10.  Similar findings were reported by Dusa and Stan (2013) for oat/pea, 

Sadeghpour et al. (2013) for barley/annual medic, Pappa et al. (2012) for burley/pea and 

Dhima et al. (2013) for oat/faba bean mixtures. In contrary, Berkenkamp and Meeres, (1987) 

reported higher dry matter accumulation in the sole cropping system than the bi-cropping 
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system in wheat/faba bean crop mixtures because the faba bean bi-crop was more competitive 

than the component wheat bi-crop.   

Effects of drilling patterns   

Wheat DM yield 

This study showed no effects of the drilling patterns on wheat dry matter yield possibly due 

to spatial interspecific complementarity on resource-use efficiency between the bi-crops 

(Vandermeer, 1989). This was achieved by reducing the sowing density of bi-crops by 50% 

of their sole cropping systems to promote access to more nutrients for each plant than in a 

denser sole cropping system (Joliffe et al., 1984).  Also the competition for light may have 

been lowered because the two bi-crops used light in different parts of the canopy at different 

times of the season (Tsubo and Walker, 2002; Fradgley et al., 2013).  

Bean DM yield 

This study demonstrated higher bean dry matter yield in the alternate rows than in broadcast 

treatment due the weaker interspecific competition than intraspecific competition might have 

led to efficient use of environmental resources (Vandermeer, 1989). This was achieved as a 

result of improved light interception (Table 6.3) and improved biological weed control (Table 

6.6), which was influenced by total canopy ground cover than in broadcast treatment (Olsen 

et al., 2012). Studies by Sherwan and Kazhala (2014) in wheat/faba bean bi-cropping system 

reported similar findings.     

The higher bean dry matter accumulation in the 2x2 than in the 3x3 and 1x1 alternate rows 

treatments in the 2015 season was attributed to spatial complementarity due to niche 

differentiation between the bi-crops, which may have resulted in better use of available 

resources (Fargione and Tilman, 2005).  The lower bean dry matter yield in the 1x1 and 3x3 

alternate rows during the 2015 season may have been caused by spatial interspecific 

competition for soil water resources (Ascehoug et al., 2016) which was also evidenced by 

reduced bean plant heights in Table 6.5. In bean production systems, water is reported a 

major yield determinant factor than either solar radiation or plant competition (Siddigue et 

al., 2015; Loss et al., 1997).  Therefore, drilling beans and wheat as 1x1 and 3x3 spatial 

arrangements under water stress environmental conditions can contribute to reduce the bean 

dry matter accumulation. This finding suggests that farmers who are interested in investing in 
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low input wheat/faba bean bi-crop mixture for fodder production are better off sowing 

wheat/bean crop mixtures as 2x2 alternate row arrangements than broadcast bi-cropping for 

higher returns.  Similarly, Chen et al. (2004) reported higher yield when the components bi-

crops of barley and pea were spatially separated in alternate twin rows of each than their 

respective sole crops. 

The bean cultivars had equal effect on both wheat and bean dry matter accumulation which 

showed that irrespective of drilling patterns and seasons they both used environmental 

resources in space more efficiently.   

9.7 Weed suppression   

Effects of cropping systems   

Weed control poses as a serious problem in spring drilled wheat and beans in organic based 

production systems (Liebman and Dyck, 1993; Haymes and Lee, 1999; Baker and Mohler, 

2014). However, bi-cropping systems have been widely reported to perform extra ecological 

services such as weed control besides food production than sole cropping systems (Altieri, 

1999). This study averaged over two years showed higher weed suppression effects in bi-

cropping systems than in sole cropping systems due to complementarity on efficient use of 

environmental resources in space such as solar radiation and N, which are the two major 

environmental resources involved in controlling weeds in bi-cropping systems (Bedoussac et 

al., 2014; Corre-Hellou et al., 2011).  Bi-cropping systems out-competed weed species on the 

acquisition of these resources and left inadequate supply to support weed growth and 

development (Bedoussac et al., 2014). The two ecological mechanisms responsible for 

effective biological weed control in bi-cropping systems over sole cropping systems include: 

(i) effective capturing of growth resources from weeds species; and (ii) efficient conversion 

of unexploited growth resources by weeds into harvestable materials (Khashayar et al., 

2014). The improvement in weed suppression in bi-cropping systems demonstrate their 

capacity to reduce weed seed bank and the return of weed seeds than sole cropping systems 

(Bastiaan et al., 2008). The denser crop canopy ground cover in bi-cropping systems 

provided the shading environmental condition, which reduced weeds germination and growth 

(Corre-Hellou et al., 2011). The capacity of low input bi-cropping systems on the 

improvement of weed control than sole cropping systems through associated ecological 

services has been described as a risk-free and low cost intervention by Röös et al., (2018). 
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Between the sole cropping systems, the sole bean cropping system had poorer weed control 

compared to the sole wheat cropping system during the early growth stage as shown in Figure 

4.2b and Figure 5.1. During this period, the sole bean plants grew slowly with poor 

vegetative canopy ground cover which was unable to filter the solar radiation sufficiently to 

effectively suppress weeds species (Hauggaard-Nielsen et al., 2007). Grain legumes are 

generally reported as weak competitors against weeds species, a trait which makes them 

outcompeted by weed species particularly in early stages of the crop cycle (Smitchger et al., 

2012; Sadeghpour et al., 2014). Caballero and Goicoechea (1995) suggested that growing 

beans in sole cropping systems is not ideal for forage production because of its higher 

vulnerability to weed infestations (Corre-Hellou et al., 2011). This may lower the nutritional 

quality of forage compared to bi-cropping systems.  Higher weed suppression in sole wheat 

cropping system was due to faster growth rate and exploitative root systems of wheat plants 

which may have over dominated the weed species on the acquisition of edaphic based 

environmental resources particularly in early stages of the crop cycle (Li et al., 2011; 

Sadeghpour et al., 2014).  Studies by Banik et al. (2006), Hauggaard-Nielsen et al. (2008) 

and Choudhary et al. (2013) had reported similar findings. Findings of this study suggest that 

low input spring wheat/faba bean bi-cropping systems, is a low cost intervention, which can 

serve as an alternate biological weed control practice to herbicides-use towards improving 

sustainable forage production and environmental quality.   

Effects of drilling patterns   

This study showed more effective weed suppression in alternate row bi-cropping treatments 

than in broadcast bi-cropping treatments as a results of morphological and physiological 

complementarity, which might have led to better use of ecological resources, particularly 

solar radiation and N (Bedoussac et al., 2014). Uniform arrangement of bi-crops and early 

canopy ground cover in alternate rows led to improved light interception and subsequent 

weed smothering efficiency (Olsen et al., 2005; Evers and Bastiaans, 2016). Poor weed 

suppression in broadcast treatment was attributed to inefficient light interception as a result of 

poor total canopy ground cover (Bastiaans et al., 2008). Similar findings were reported by 

Choudhary et al. (2014). Based on this finding, it can be further inferred that the broadcast 

treatment is unsuitable for adoption by organic farmers because it is vulnerable to increase 

weed seed bank and weed seed returns (Bastiaans et al., 2008). The alternate rows bi-
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cropping treatments improves competitiveness of bi-crops which in turn contribute to 

improve weed suppression in (Evers and Bastiaans, 2016).  

Effects of bean cultivars   

This study showed similar effects of the bean cultivar bi-crops on weed suppression across 

the seasons due to greater influence of interspecific complementarity than interspecific 

competition in the production systems, which improved the use of environmental resources 

and subsequently deprived the weed species of light and N availability (Bedoussac et al., 

2014). 

However, the seasonal effect showed higher weed smothering for Fuego than Maris Bead 

during the early stages of the crop cycle (53 DAS) in the 2015 season; and at advanced stages 

of the crop cycle (73 DAS) in the 2016 season. Higher performance of Fuego than Maris 

Bead may be attributed to (i) lack of mutual leaf shading, and (ii) fast growth rate. This might 

have promoted earlier vegetative canopy development resulting in early weed smothering.   

It was also noted that Maris Bead smothered more weeds than Fuego only in the early stages 

of the crop cycle (51 DAS) in the 2016 season. This meant that Maris Bead, influenced by 

broad and horizontal leaf traits, was able to smother more weeds in the early stages of the 

crop cycle when the mutual leaf shading was possibly lower than at advanced stages of the 

crop cycle.  Other studies such as Hoad et al., (2006) have also reported better performance 

of planophile leaves only in the early stages of the crop cycle.  

9.8 Weed N uptake  

Effects of cropping systems   

This study showed high weed N uptake in sole cropping systems than in bi-cropping systems 

as a result of increased weed dry matter (Sadeghpour et al., 2013; Corre-Hellou et al., 2005). 

The lowest weed N uptake in bi-cropping systems than in sole cropping systems was due to 

interspecific complementarity in space which led to better use of N sources (Bedoussac et al., 

2014). However between the sole cropping systems, the sole bean cropping system had 

higher weed N uptake than the sole wheat cropping system due to lack of competition for 

mineral soil N resource between the bean plants and weed species (Corre-Hellou et al., 

2005). The bean plants survived on using biologically fixed N2 while weeds species survived 

on the soil mineral N to meet respective demands for N (Bedoussac and Justes, 2010). The 
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sole wheat cropping system had the lower weed N uptake compared to the sole bean cropping 

system because of its fast growth rate and the ability to acquire disproportionately greater 

share of available resources in early stages of growth over the weed species (Hauggaard-

Nielsen et al., 2001; Li et al., 2011). This demonstrated an advantage of relative growth rate, 

as one of the key plant traits which can help crops to out compete weed species in a 

production system (Aschehoug et al., 2016).    

Effects of drilling patterns systems   

The alternate row bi-cropping treatments influenced lower weed N uptake compared to 

broadcast because of their ability to capture a greater share of available environmental 

resources particularly light and N, which directly affected the growth and survival of weeds 

(Bedoussac et al., 2014).  This was enhanced by the uniform arrangement of bi-crops, which 

promoted early total canopy ground cover, maximised light interception, weed suppression 

and reduced weed N uptake than broadcast. These findings are also in conformity with 

Orcluchukwu and Edensi (2013), Dwivedi et al. (2011), Olsen and Weigner (2007).  

9.9 Plant heights 

Effects of cropping systems  

Wheat plant heights 

This study revealed taller wheat plants in the bi-cropping system than in the sole cropping 

system in both cropping seasons. Taller wheat plants in the bi-cropping system was attributed 

to the shading effect from the bean bi-crop plants, which influenced the wheat bi-crop plants 

to grow taller for light resource capture, regulated by the accumulation of auxins growth 

hormones (Badran, 2011). Similar findings have been reported by Eskandari and Ghanbari 

(2010).  

Bean plant heights 

This study showed taller bean plants in the sole cropping system than in the bi-cropping 

system in both cropping seasons. The shorter bean plants in bi-cropping systems was 

influenced by the strong competitive effect of the wheat bi-crops over the bean bi-crops 

plants as also reported by Dordas and Lithourgidis (2011) in oat/faba bean and Ghanbari-

Bonjar, 2000 in wheat/faba bean crop mixtures.  
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Effects of drilling patterns  

Wheat plant heights 

This study showed taller wheat plants in alternate rows than in broadcast treatment in both 

cropping seasons, which was probably attributed to efficient use of environmental resources 

such as solar radiation and better facilitation of other associated ecological services such as 

biological weed control (Vandermeer, 1989). Shorter wheat plants in broadcast bi-cropping 

treatments in the 2015 cropping season was caused by weeds interference. This is because the 

randomly distributed bean bi-crops in space did not developed a uniform ground canopy 

cover, which is necessary for higher light interception and weed control (Choudhary et al., 

2014).  The beans are weak competitors against weeds due to their slow growth rate during 

the early part of their growth cycle (Hauggaard-Nielsen et al., 2007; Mcdonald, 2003; Mohler 

and Liebman, 1987). Therefore, sowing the beans and wheat in mixtures as broadcast was 

proved less suitable bi-cropping system because of poor use of environmental resources such 

as light and its vulnerability to weed infestation, which may lead to the reduction of quantity 

and quality of forage.  

This study showed that shorter wheat plant heights in the 1x1 and the 3x3 alternate row bi-

cropping treatments in the 2015 season was a direct response to interspecific competition for 

soil water resources, which was more limiting than solar radiation (Tilman, 1988). The taller 

wheat plant height influenced by the 3x3 treatment in the 2016 season, was a direct response 

to the interspecific competition for solar radiation because soil water resource was not 

limiting than solar radiation (Aschehoug et al., 2016; Tilman, 1988).  The plant height 

response to soil water stress in crop mixtures agrees with findings by Semere and Froud-

Williams (2001). Similarly, Sobkowicz (2001) reported a reduction in plant height due to 

competition for soil resources and increased plant height for oats and barley bi-crops due 

competition for light. The 2x2 alternate row bi-cropping treatments influenced optimum 

wheat plant height due to efficient partitioning of below and aboveground growth resources 

as a result spatial niche differentiation between bi-crop components (Vandermeer, 1989).  

The response of plants to limited growth resources via plant height has been clearly 

elaborated by Mariotti et al. (2009) and Aschehoug et al. (2016).  The 1x1 is potential option 

for bi-cropping under optimum environmental conditions, particularly where soil water is not 

limited because it promotes physical root intermingling advantage, which may facilitate 

symbiotic N2 fixation and direct N transfer between the bi-crops to satisfy their N 
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requirements (Voisin et al., 2014).  Similarly, Hongchun et al. (2013) also reported the 

advantage of root connections on nutrient uptake under the 1x1 alternate row treatments in 

cereal/legume mixtures.  

Bean plant heights 

The shorter bean plant heights in the (1x1 and 3x3) alternate rows in the 2015 season and 

taller bean plants in the (3x3) alternate rows in the 2016 season were influenced by 

interspecific competition for limited soil water and solar radiation respectively. The taller and 

shorter bean plant height implied that more plant energy was invested in the plant shoot and 

roots to effectively compete for solar radiation and soil water respectively (Tilman, 1988).  

When water is not limiting, solar radiation becomes the main growth limiting factor for bi-

crop plants, resulting in taller bean plants (Lunagaria and Shekh, 2006; Aschehoug et al., 

2016). The competition between bi-crops in crop mixtures is distant dependent (Sobkowicz 

and Tendziagolska, 2015). Therefore, the bi-crop species root proximity and their relative 

intermingling in the rhizosphere aggravated negative effect particularly on the beans which 

are weak competitors against the wheat on edaphic based resources especially water (Li et al., 

2011). The beans are reported as stronger competitors for light as also confirmed by the 3x3 

treatments while the wheat is reported stronger competitor for soil water resources.  When 

solar radiation is not a growth limiting factor in the environment, soil water becomes the 

main limiting growth factor resulting shorter plant heights (Mariotti et al., 2009).  

The 2x2 alternate row bi-cropping treatments showed optimum bean height due to lack of 

antagonistic interactions on resource-use between bi-crops, influenced by interspecific 

complementarity in space (Vandermeer, 1989).  The 3x3 alternate row treatments have been 

proved unsuitable for forage production because it induces negative interactions in bi-

cropping habitats. Similarly, the 1x1 alternate row bi-cropping treatments can significantly 

reduce the forage productivity under water stress environmental conditions.  

Effects of bean cultivars  

This study showed shorter bean plant heights in the 2015 than 2016 season due to soil water 

stress conditions as shown in Figure 3.2. This highlights the importance of water in bean 

production.  Sobkowicz (2001) reported similar findings in barley and oats in mixture under 

water stress conditions.  This meant that in the 2015 season, the bean plants invested more 
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energy in the roots to compete for water at the expense of aboveground dry matter production 

(Ascehoug et al., 2016).    

Maris Bead plants were taller than Fuego in bi-cropping system due to their genetic 

differences (PGRO, 2017).  When Maris Bead was drilled as 3x3 alternate rows spatial 

arrangement in 2016 under ample water availability, its plant height was taller than its 

corresponding sole cropping system. This was attributed to competition for light as 

competitive response to competitive effect induced by the fast growing wheat bi-crop 

component plants (Ascehoug et al., 2016). 

The findings suggest that Maris Bead is not suitable for bi-cropping under the 3x3 alternate 

row spatial arrangement. This agrees with Lateef and Farrg (2014) who indicated that the 

beans with slow growth rate traits like Maris Bead do not respond to intensification than fast 

growing the beans because they are affected by population just as the crowded plants under 

the 3x3 alternate row treatments. This is the reason why Sinoquet and Caldwell (1995) 

suggested that the slow growing or shorter planophile legume bi-crop need to be mixed with 

the eretophile cereal bi-crop component to achieve a productive bi-cropping systems. On 

other hand Kanton and Dennet (2008) suggested that for a productive bi-cropping, the slow 

growing or shorter erectophile legume bi-crop can be combined with the tall cereal bi-crop 

component with erectophile traits.   

9.10 Final yield and components 

Effects of cropping systems   

Wheat yield 

This study showed higher grain and total biomass wheat yield in sole cropping systems than 

in bi-cropping systems in the 2016 cropping season due to higher relative sowing density 

(Joliffe et al., 1984).  The sowing density for the sole cropping system was two times higher 

than that for the bi-cropping system. However, the reduction in the sowing density for the bi-

crops by 50% of their sole cropping systems in replacement designed bi-cropping 

experiments helps to achieve complementarity to improved resource-use (Snaydon, 1994; 

Fradgley et al., 2013). Similar findings in 50:50 replacement designed bi-cropping studies 

were reported by Jamshidi (2011), Jahanzad et al. (2011), Sadeghpour and Jahanzad (2012).  

The study showed higher harvest index of 58% in the bi-cropping system than the sole 

cropping system, which demonstrated the advantage of bi-cropping on wheat grain rather 
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than wheat dry matter. This was due to lack of niche overlap for growth resources which 

resulted in maximised resource consumption (Vandermeer, 2011). Similar findings were 

reported by Ghanbari-Bonjar (2000) and Megawer et al. (2010). Low harvest index in the 

sole cropping system was probably attributed to soil N deficiency as evidenced by CCI values 

in Table 6.1 due to increased intraspecific competition for soil N at 100% sowing density 

(Majumdar et al., 2016).   

Bean yield 

This study showed higher bean straw, seed and total biomass yield in the sole cropping 

system than in the bi-cropping system in both seasons because the sowing density for the sole 

cropping was two times higher than the bi-cropping system as reported by Joliffe et al. (1984) 

and Snaydon (1994).  The lower bean seed yield in bi-cropping systems was affected by the 

reduction in the sowing density, beans vulnerability to weed infestation and weak competitive 

ability against the wheat bi-crops on resource acquisition in crop mixtures (Oskoii et al., 

2015). Similar findings were reported by Herbert et al. (1984), Sadeghpour et al. (2014) and 

Legesse et al. (2015) in corn/soybean, barley/annual medic and barley/faba crop mixtures 

respectively.  The bean yield benefits in bi-cropping systems over sole cropping systems can 

be achieved by the total yield of bi-crops (Willey, 1979). Higher harvest index of 42% in the 

bi-cropping system than in the sole cropping system showed the advantage of bi-cropping on 

the bean seed than bean dry matter yield. This was due to spatial interspecific 

complementarity, which may have contributed to greater utilisation of growth resources 

(Fargione and Tilman, 2005). Bi-cropping systems have been reported to show greater 

efficiencies in converting available resources to harvestable yield, either through greater 

physiological efficiency or changes in dry matter partitioning (Trenbath, 1986).   

Effects of drilling patterns  

Wheat yield 

This study showed no effect of the drilling patterns on wheat final yield due to spatial 

interspecific complementarity by better use of environmental resources caused by the 

reduction in sowing density of bi-crops by half of sole cropping systems (Sadeghpour et al., 

2013; Fradgley et al., 2013).  According to Hauggaard-Nielsen et al. (2008), the reduction in 

sowing density reduced the competition for major resources such as mineral soil N, water and 

solar radiation per plant. However, findings showed lowest 1000 wheat seed weight in the 
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3x3 alternate row treatments due interspecific competition for light as a result of crowdedness 

and vigorous growth of bi-crop plants in the 2016 season under ample soil water availability.  

Bean yield 

This study showed higher bean seed and total biomass yield in alternate rows than in 

broadcast treatment in both seasons attributed to weaker interspecific competition than 

intraspecific competition between the bi-crops (Vandermeer, 1989; Vandermeer, 2011). This 

led to efficient utilisation of available growth resources such as: light, soil water and non N 

resources (Agegnehu et al., 2008). This also promoted effective performance of associated 

ecological services such as: biological N2 fixation and weed control hence higher bean yield 

(Eskandari, 2012). The superior performance of alternate rows than broadcast bi-cropping 

systems was also reported by Olsen and Weigner (2007).  

Effects of bean cultivars   

This study showed similar influence of the bean cultivars on both the wheat and bean yield 

components possibly due to over-dominance of the interspecific complementarity interactions 

over the interspecific competition interactions on resource-use (Geno and Geno, 2001).  This 

occurs when the bi-crops differ physiologically and morphologically and it influences 

resource-use (Jensen et al., 2015).   

Across the seasons, Fuego had the larger bean seed sizes than Maris Bead as a result of their 

genetic differences (PGRO, 2016). Even though soil water was not limiting  in the 2016 

cropping season, the bean seed size for both bean cultivars were reduced compared to the 

2015 cropping season possibly due to the effect of the bean rust disease which  occurred at 

pod filling growth  stage as shown in Appendix 7.1.      

Even though Maris Bead had the higher total bean biomass yield than Fuego in the 2016 

season, Fuego had the higher harvest index than Maris Bead demonstrating better 

performance of Fuego on seed rather than dry matter yield. This finding was consistent with 

higher LAI in Table 6.2, IPAR in Table 6.3 and erectophile leaf type. The leaf angle 

distribution of a plant can determine biomass production (Mooney et al., 1977). This suggests 

that Fuego has potential to biologically fix N2 and use it more efficiently in low input bi-

cropping systems than Maris Bead.  
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9.11 Crude protein 

Wheat crude protein 

Effects of cropping systems   

Crude protein content of forage is one of the most important parameters for assessing the 

quality of forage. This study showed improved wheat crude protein content in bi-cropping 

systems than in sole cropping systems in both seasons.  Averaged over two seasons the crude 

protein content in the beans was 2.4 times greater than that in wheat. Ghambari-Bonjar 

(2000) reported 1.9 times greater crude protein content in the beans than in wheat.  Mariotti et 

al., (2006) reported 2.4 times higher crude protein content in the legumes than in cereals and 

Chapagain (2014) reported 1.9 times higher crude protein in the legume than in cereal. The 

higher wheat crude protein content in bi-cropping systems than in sole cropping systems 

demonstrated the advantage of bi-cropping systems compared to growing sole cropping 

systems for forage production. These findings have demonstrated that wheat/bean bi-

cropping systems can potentially reduce the need for outsourcing protein-rich supplements 

when compared to sole cropping systems. Also, enriched wheat forage quality from bi-

cropping systems can help to achieving a balanced feed for ruminants than sole wheat 

cropping systems (Lithourgidis et al., 2011). Above all, bi-cropping can serve as low cost 

intervention for generating both high quantity and quality forage (Flores et al., 2012).    

Improved wheat crude protein content in bi-cropping systems was influenced by spatial 

interspecific complementarity, which resulted in efficient use of N sources between the bi-

crop species due to reduced sowing density of each bi-crop species by 50% (Bedoussac and 

Jutes, 2010).  According to Jensen (1996), Chalk et al. (2014) and Bedoussac et al. (2014), 

the direct N transfer from the legume bi-crop to the cereal bi-crop might be one of the reasons 

for crude protein improvement in low input bi-cropping systems. Increased wheat crude 

protein in wheat/faba bean bi-cropping studies was also reported by Ghanbari-Bonjar and Lee 

(2003), Lithourgidis and Dordas (2010) and Chapagain (2014). Haq et al. (2018) reported 

higher crude protein in cereal/legume cropping systems compared to sole cereal cropping 

systems. According to Samaan et al. (2006) and Gooding et al. (2007), limited soil N 

availability in low input production systems, such as organic farms, can limit the capacity of 

wheat crops to attain the expected crude protein thresholds in the wheat grain. Improved 

crude protein content in the wheat bi-crops through bi-cropping systems can help to influence 
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the adoption of bi-cropping systems among organic farmers because it can significantly 

reduce the costs of purchasing expensive non-forage feed supplements (Bedoussac et al., 

2014; Gebrehiwot et al., 1996).  

Even though the 2016 cropping season had better weather conditions, such as soil water, it 

influenced lower wheat protein concentration in bi-cropping systems than in the 2015 

cropping season. Reduced wheat protein yield and quality under wet environmental 

conditions was also reported by Wang et al. (2004) and Zeleke et al. (2016).  

Effects of drilling patterns   

This study showed similar effects of drilling patterns treatments on wheat crude protein 

content and N yield, possibly due to spatial interspecific complementarity which promoted 

greater efficiency in the utilisation of growth resources (Jensen, 1996; Sadeghpour et al., 

2013).  However, the high (2x2 drilling pattern) and low (1x1 and 3x3 drilling patterns) 

harvest index for wheat N yields demonstrated the positive and negative ecological 

interspecific interactions on efficiency of resource-use.   

Effects of bean cultivars   

The bean cultivars had similar influence on wheat grain crude protein content in both 

seasons. This was due to their morphological and physiological complementarities with the 

wheat bi-crops, which led to efficient utilisation of environmental resources particularly N 

(Jensen et al., 2015). This finding is in agreement with results in Table 6.3 on CCI and Table 

6.15 on wheat N uptake which further suggested that in a 50:50 replacement design, both 

bean cultivars are capable of improving wheat grain crude protein content.  

However, Fuego influenced higher wheat straw crude protein content than Maris Bead under 

ample soil water conditions in the 2016 cropping season. This was possibly because of two 

reasons: firstly, spatial interspecific complementarity on efficient use of N resources and; 

secondly, the superficial root system of Fuego is reportedly capable of promoting strong 

fungi arbuscular mycorrhizae symbiotic networking, which is responsible for enhancing 

direct N transfer (Jensen et al., 2010).     

Bean crude protein 

Effects of cropping systems 
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This study showed no differences between sole cropping systems and bi-cropping systems on 

bean crude protein content in the bean straw, seed and total bean biomass. Similarly, 

Bedousaac et al. (2014) found no differences between cropping systems on crude protein 

content in spring wheat/faba bean bi-cropping systems. This demonstrated the suitability of 

spring wheat/faba bean bi-cropping systems on improving bean crude protein in low input 

environments.   

This study showed higher N yield in the sole cropping system than the bi-cropping system 

because sowing density for the sole cropping system was two times higher than the bi-

cropping system. The higher sowing density might have influenced higher protein yield, 

which resulted in more N removed from the field during harvest than the bi-cropping system 

(Dordas and Lithourgidis, 2011). However, the higher N yield harvest index for the bi-

cropping system than the sole cropping system, showed the advantage of bi-cropping systems 

over sole cropping systems, due to efficient utilisation of environmental resources, such as N, 

caused by spatial niche differentiation (Corre-Hellou et al., 2006). 

Effects of drilling patterns    

This study showed a similar influence of the drilling patterns on bean crude protein content. 

Morphological and physiological differences between the bi-crops possibly led to spatial 

complementarity on efficient use of different N sources (Hauggaard-Nielsen et al., 2008; 

Corre-Hellou et al., 2006).     

This study showed higher N yield from the alternate row bi-cropping treatments than 

broadcast treatment due to spatial interspecific complementarity effects, which led to 

improved use of growth resources, especially solar radiation (Hauggaard-Niesen et al., 2009). 

Differences in the spatial arrangements of the bi-crops between alternate rows and broadcast 

treatments determined their respective canopy density, light interception capacity and 

subsequent N yield. Higher light interceptions has been reported as a key plant factor 

responsible for enhancing legumes nodule formation and biological N fixation, which may 

have led to greater protein content (Fan et al., 2006; Oluwasemire and Odugbenro, 2014). 

Therefore higher N yield could have been attributed to higher light interception. The 

broadcast treatment proved less suitable for protein production in low input system because 

of poor canopy cover, light interception and weed control, which may limit biological N 

fixation and produce a lower protein content (Hauggaard-Niesen et al., 2001a). Weed 
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infestation has been reported to severely limit the nutrition of grain legumes in organic farms 

(Corre-Hellou and Crozat, 2005). 

Effects of bean cultivars   

This study showed higher bean seed crude protein content in Maris Bead than Fuego in the 

2015 season under water limiting environmental conditions due to the advantage of a taproot 

system (Table 7.2). Moreover, since solar radiation was not limiting in the 2015 season, most 

of the solar radiation intercepted by Maris Bead may have contributed to enhanced biological 

N fixation, hence; higher crude protein content because N2 fixation is directly related to crude 

protein (Carr et al., 2004). As soil water was not limiting in the 2016 season the bean 

cultivars had similar influence on bean seed crude protein possibly due to lack of competition 

for mineral soil N between the bean and wheat bi-crops, which was influenced by reduced 

sowing density of bi-crops (Corre-Hellou et al., 2006).   

9.12 N uptake 

Wheat N uptake 

Effects of cropping systems 

This study showed greater influence of bi-cropping systems on the wheat grain N uptake than 

sole cropping systems in both seasons due to spatial interspecific complementarity, which 

possibly improved the efficient use of N between the bi-crops species (Corre-Hellou et al., 

2006). This meant that low input wheat/faba bean bi-cropping systems can increase N uptake 

in the cereal bi-crops, improve protein quality and making it highly suitable for livestock feed 

and bread making (Gooding et al., 2007).    

Wheat grain N uptake was lower in the 2016 than 2015 season, which may have been caused 

by wet weather conditions (Figure 3.2 and Appendix 1.1). This might have affected N 

availability as similarly reported by Wang et al. (2004).  

This higher N harvest index for the bi-cropping system than the sole cropping system showed 

the advantage of bi-cropping on efficient utilisation of different N pools, due to spatial 

complementarity between the bi-crops (Bedoussac et al., 2015). This finding agreed with the 

CCI results (Table 6.1) which predicted higher wheat N uptake and improved wheat crude 

protein content (Table 6.13) in bi-cropping systems than sole cropping systems. Similar 
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findings were reported by Dordas and Lithourgidis (2011) in wheat/faba bean bi-cropping 

systems. The interspecific competition for mineral soil N in bi-cropping systems may have 

forced the bean bi-crop to actively fix more atmospheric N2 and reduced competition for 

available mineral soil N with the wheat bi-crops (Hauggaard-Nielsen et al., 2008; Latati et 

al., 2016).   

Effects of drilling patterns   

This study showed no effect of drilling patterns on N uptake in the wheat bi-crop plants (e.g. 

straw, grain and total biomass), due to efficient utilisation of different N pools by each plant 

than in sole crops, as a results morphological and physiological complementarity (Naudin et 

al., 2010).   

Effects of bean cultivars    

This study showed similar effects of the bean cultivars on wheat N uptake because of the 

greater influence of spatial interspecific complementarity than interspecific competition on 

efficient use of environmental resources particularly N between the bi-crops (Jensen, 1996).   

Bean N uptake 

Effects of cropping systems  

The sole cropping system had higher N uptake in the bean straw, seed and total biomass than 

the bi-cropping system due to higher sowing density. The sowing density for the sole 

cropping system was two times higher than for the bi-cropping system. This influenced 

higher bean biomass yield which directly resulted in increased N uptake as also reported by 

Stern (1993) and Meng et al. (2013). Higher N uptake in sole cropping systems was similarly 

reported in other 50:50 replacement designed bi-cropping studies by Sadeghpour et al. (2013) 

and Zhang et al. (2015). 

This study showed higher N harvest index for the bi-cropping system than the sole cropping 

system due to improved nitrogen use efficiency as a result of lower interspecific competition 

than intraspecific competition between bi-crops (Naudin et al., 2010).  This agrees with 

various studies (e.g. Bedoussac and Justes, 2010) which have shown higher productivity of 

bi-cropping systems under low input systems.  
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Effects of drilling patterns  

This study showed higher bean N uptake in alternate rows than in broadcast treatments under 

dry weather conditions in the 2015 season. Improved total ground canopy cover, due to 

uniform arrangement of bi-crop spatially, might have improved light interception, weed 

suppression, reduced inter-row evaporation and N fixation, which possibly resulted in higher 

N uptake (Devi et al., 2014; Bastiaans et al., 2008; Fan et al., 2006). A patchy and less dense 

total ground canopy cover in broadcast treatment, may have contributed to poor light 

interception, weed control, water conservation and possibly impaired N fixation, which 

resulted in reduced bean N uptake. Similarly, the over performance of the alternate rows than 

broadcast treatments have been confirmed by Evers and Bastiaans (2016), Musa et al. (2010) 

and Chapagain (2014).  The over performance of the 2x2 alternate row treatments in the 2016 

season, was due to a higher degree of complimentary use of N between the bi-crops 

(Bedoussac et al., 2015;Corre-Hellou et al., 2006). This was probably influenced by their 

niche differentiation (Fargione and Tilman, 2005). Highest IPAR results in Table 6.3 under 

the 2x2 alternate row treatment, could be main environmental factor responsible for higher 

bean N uptake, because biological N2 fixation in legumes depends on solar radiation (Dreccer 

et al., 2000; Fan et al., 2006; Eskandari et al., 2009; Lucas and Hungrian 2014). Better 

growing conditions in the 2016 season, may have contributed to improved use of available 

ecological resources particularly solar radiation because the beans plants are good 

competitors for solar radiation than the wheat plants hence improved N uptake (Hook and 

Gascho, 1988).    

Effects of bean cultivars   

Maris Bead influenced higher N uptake than Fuego in the bean seed and total biomass in the 

2016 season. This was possibly influence by planophile leaf characteristic, which is 

reportedly effective in light interception earlier in the season before reaching maximum 

canopy development (Hoad et al., 2006).  Light interception and nitrogen uptake are directly 

related (Dreccer et al. 2000). The higher cumulative light interception might have contributed 

to lower soil temperatures, reduced evaporation, improve nodulation and biological N 

fixation hence improved N uptake in the bean seed and total biomass (Harris and Natarajani, 

1987; Akunda, 2001; Fan et al., 2006).   
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9.13 Biological efficiency of bi-cropping system    

The LER in the 2015 cropping season was above the unitary value of 1.0, which revealed the 

advantage of bi-cropping systems over sole cropping systems, due to efficient acquisition of 

growth resources between the bi-crops (Rao and Willey, 1980). The LER value of 1.50 

obtained in the 2015 cropping season meant that bi-cropping was 1.5 times advantageous 

over sole cropping. It also meant that 50% of the land in sole cropping system would be 

required to achieve the same yield as in the wheat/faba bean bi-cropping system (Rao and 

Willey, 1980).  

The LER value in the 2016 cropping season was equal to the unitary value of 1.0, which 

showed that the bi-cropping system had no advantage over the sole cropping system (Rao and 

Willey, 1980). The lack of bi-cropping advantage during the 2016 season, was possibly 

caused by the faba bean rust disease Uromyces viciae-fabae outbreak, which infected the 

beans plants at pod filling bean growth stage due to the prevailed warm and wet growing 

conditions, which favour fungal disease outbreak in a disease triangle (Putasso et al., 2012). 

This finding can further infer that biotic stress such as fungal bean diseases can negatively 

affect the biological efficiency of bi-cropping systems.  

The bi-cropping system during the 2015 cropping season showed land saving advantage 

because the mean value of 33.6% was above the minimum threshold value of 25% (Adetiloye 

et al., 1983). During the 2016 season there was no land saving advantage because the mean 

value of 7.5% was lower than the minimum threshold value of 25% (Adetiloye et al., 1983).   

The higher LER for alternate rows than broadcast treatments was driven by morphological, 

physiological and phenological complementarity in space which led to efficient use of growth 

resources such as water, light and non N nutrients (Mead and Willey, 1980). The 2x2 

alternate row treatments influenced relatively higher land use efficiency than other alternate 

rows in the 2015 season, as a result of improved environmental resource-use between the bi-

crops (Abu-Bakar et al., 2014).  However, the biological efficiency of the bi-cropping system 

in the 2015 season was reduced as the number of rows increased beyond the 2x2 alternate 

row spatial arrangements, due to negative interspecific interaction, which may have gradually 

converted interspecific complementarity to interspecific competition (Geno and Geno, 2001). 

These findings agreed with Sadeghpour et al. (2014) who reported reduced productivity of 

barley/annual medic crop mixtures as a result increasing the number of rows.  Similar 
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findings with LER above 1.0 in wheat/faba bean bi-cropping studies were reported by 

Haymes and Lee (1999), Ghambari-Bonjar (2000), Agegnehu et al. (2008), Legesse et al., 

(2015) and Fikadu et al. (2016). The benefits of bi-cropping with LER >1.0 in other 

cereal/legume crop mixtures were also reported in lentil/mustard bi-crop mixtures 

(Konthoujam et. al., 2014), pea/barley bi-crop mixtures (Koohi et al., 2014) and 

sorghum/mung bean bi-crop mixture (Megawe et al., 2010).   

Despite the beans were affected by the disease in 2016 cropping season, the bean cultivar x 

drilling patterns interaction effect revealed the higher LER for Fuego than Maris Bead when 

sown as 2x2 alternate row arrangements. This probably meant that Fuego might have escape 

heavy infestation of the disease due to its fast growth rate. Slow growth rate trait for Maris 

Bead might have coincided with the peak faba bean rust disease infestation while the pods 

were at early filling stage.  This demonstrated the advantage of short and earliness to maturity 

bean cultivars (Fuego) for successful bi-cropping in low input environments compared to tall 

and medium to late maturity bean cultivars (Maris Bead) as reported by Taylor and Cormack 

(2002).   

9.14 Competition indices 

Aggressivity (A) 

This study showed the positive and negative aggressivity values for the wheat and bean bi-

crops respectively in both cropping seasons. This meant that the bean bi-crops were 

dominated by the wheat bi-crops on environmental resource acquisition. In bi-cropping 

systems, this is a common competitive behaviour of the cereal bi-crops over the legumes bi-

crops for soil based resources due to their massive and exploitive root systems (Dhima et al., 

2007). Similar findings in cereal/legume bi-cropping systems in replacement designs were 

reported by Abu-Bakar et al. (2014), Konthoujam et al. (2014), and Oseni (2010).  

The drilling pattern treatment with the lower aggressivity value is a sign of interspecific 

competition for environmental resources. The drilling pattern treatment with the higher 

aggressivity value is a sign of interspecific complementarity as a result of equitable and 

judicious use of environmental resources (Abu-Bakar et al., 2014; Choudhary, 2014; Ghosh 

et al., 2006).  The findings of this study showed the lower aggressivity values from the 1x1 

and 3x3 alternate row bi-cropping treatments, which revealed the occurrence of interspecific 

competition for available resources. These treatments showed their vulnerability to reduce the 
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forage quality. This finding was in agreement with reduced plant heights due to competition 

in Tables 6.4 and 6.5. The 2x2 alternate row bi-cropping treatments had the higher 

aggressivity value, which demonstrated the dominance of interspecific complementarity by 

better use of environmental resources. This treatment showed the potential to improve the 

forage quality (Zhang and Li 2003).  

However, Fuego bean cultivar had relatively the lower aggressivity value compared to Maris 

Bead suggesting that under water stress conditions, Fuego with fast growth rate trait faced 

strong competition for soil water resource due to closer proximity of the bi-crops and 

physical root intermingling. These findings conform to the results in Table 6.5 and as 

reported by Ascehoug et al. (2016). 

Relative Crowding Coefficient (K)   

The Relative Crowding Coefficient measures the relative dominance of one crop species over 

the other in a crop mixture (Ghosh, 2004). The findings of this study showed higher partial K 

coefficient values for the wheat than the beans bi-crop in the bi-cropping habitat.  The higher 

partial K coefficient values for the wheat bi-crops than the beans bi-crops revealed the 

stronger competitive ability of the wheat bi-crop on the exploitation of resources in 

wheat/legume bi-cropping mixture. The similar findings were reported by Dhima et al. 

(2007) and Ghosh (2004).   

The product K coefficient value was greater than the unitary value of 1.0 for all the bi-

cropping treatment combinations in 2015 season, which meant that the bi-cropping system 

was advantageous over the sole cropping system on land saving with regard to efficient 

utilisation of resources.  

However, in the 2016 season, the 1x1 and 2x2 alternate rows in wheat/Fuego bean bi-

cropping system showed no advantage of crop mixtures because the product K coefficient 

values were equal to the unitary value of 1.0. Under the same cropping system (wheat/Fuego 

bean), the 3x3 and broadcast treatments showed disadvantage of the crop mixture because the 

product K coefficients values were less than the unitary value of 1.0, which could be 

attributed to interspecific competition for growth resources (Megawer et al., 2010).   

The aggressivity and relative crowding coefficient values were higher in the 2015 than 2016 

cropping season, which demonstrated the advantage of the bi-cropping system under 
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relatively drier weather conditions as in 2015 season. This finding concurs with Semere 

(1998) in maize/pea bi-cropping where bi-crops were more competitive in the drier than wet 

growing conditions. Tsubo et al. (2005) reported best performance of soybean/maize bi-crops 

during water scarcity periods. Tesfamichael and Reddy (1996) reported greater bi-crop yield 

advantage from a low than medium rainfall areas.  Agegnehu et al. (2006) reported more 

efficient use of resources and greater yield stability under water stress in bi-cropping system 

than sole cropping system. Bi-cropping can improve water use efficiency leading to increased 

use of other environmental resources (Devi et al., 2014; Hook and Gascho, 1988). This can 

partly explain for the better performance of the 2x2 alternate row treatments under water 

stress conditions in the 2015 cropping season. Cereal/legume bi-cropping systems use water 

more efficiently than mono-cropping systems (Willey, 1979).  

9.15 Pests and disease control 

Effects of cropping systems    

The advantage of bi-cropping systems over sole cropping systems on reducing the incidences 

of pests and diseases below economic threshold was demonstrated by a wide range of reports 

including Enikuomehin et al. (2010). This study also showed that bi-cropping systems were 

less affected than sole cropping systems by the Faba bean rust (Uromyces viciae-fabae), 

Ascochyta blight (Ascochyta fabae) and Black bean aphids (Aphis fabae), due to spatial 

interspecific complementarity effects (Dempster and Coaker, 1974). The effective 

performance of the mechanisms which help to reduce pests and diseases in crop mixtures 

were influenced by spatial interspecific complementarity on resource-use efficiency 

(Vandermeer, 1989).   

Effects of drilling patterns   

The 1x1 alternate row treatments was highly affected by Faba bean rust (Uromyces viciae-

fabae) and Ascochyta blight (Ascochyta fabae), due to closer proximity of bi-crop plants, 

which influenced ease transmission of the disease causing inoculum by wind  (ICARDA, 

1986; Khan et al., 2010). 

Effects of bean cultivars   

This study showed that morphological leaf differences between the bean cultivars might have 

influenced the increased infestation and distribution of Faba bean rust (Uromyces viciae-
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fabae), Ascochyta blight (Ascochyta fabae) and Black bean aphids (Aphis fabae) on the bean 

plants. According to Ogenga-Latigo et al. (1993), the electrophile leaf type for Fuego (narrow 

and vertical) influenced higher incidences of pests and disease attacks, due to its capacity to 

intercept more light for long hours throughout the canopy, which probably provided warm 

environmental conditions conducive for pest and disease survival hence higher infections. In 

contrast, planophile leaf types for Maris Bead (broad and horizontal) was associated with 

mutual leaf shading conditions within the canopy, which probably did not favour pests and 

disease survival hence lower infections.    
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CHAPTER 10 

CONCLUSION 

This study was developed with the aim of improving the sustainable production of home-

grown forage for livestock production through evaluation of the potential field bean (Vicia 

faba L.) and wheat (Triticum aestivum L.) variety mixture as a bi-cropping opportunity.   

The results have revealed that bi-cropping systems can improve the yield and crude protein of 

wheat forage over sole cropping systems through improved resource use efficiency. The 

greater improvement in resource use efficiency in bi-cropping systems over sole cropping 

systems was demonstrated by the LER in Table 6.10 which led to the improvement of wheat 

crude protein in Table 6.13 and reduction in biotic stresses in Tables 4.13 & Table 6.6a.     

Generally, drilling wheat and faba beans bi-crops in the alternate row spatial arrangement 

demonstrated the capacity to improve forage dry matter yield production and land 

productivity over broadcast spatial arrangement. Broadcast is a less suitable bi-cropping 

practice for forage production in low input environments because of vulnerability to 

increased weed seed bank and weed seed returns due to poor weed control. 

Drilling wheat and faba beans in mixture as 2x2 alternate row spatial arrangements proved an 

attractive option because this had the highest influence on the productivity of forage 

irrespective of contrasting seasonal characteristics.   

When soil water was limiting  during the 2015 cropping season, the 1x1 alternate row spatial 

arrangement influenced reduced plant heights and light interception due to interspecific 

competition for edaphic resources. The closer spatial proximity between bi-crops and their 

physical root intermingling contributed to an increase in competition for limited soil water 

resources.      

During the 2016 cropping season, when soil water was not limiting, the 1x1 alternate row 

spatial arrangements improved leaf area index, light interception and biological weed control 

which directly influenced improved forage productivity.    

In a spring season with severe outbreaks of fungal diseases, the 1x1 alternate row spatial 

arrangement option can facilitate spreading of fungal diseases such as faba bean rust 

(Uromyces viciae-fabae) and Ascochyta blight (Ascochyta fabae) which can affect forage 

quality due to the closer proximity of bean bi-crop plants.  



 

212 

 

The 3x3 alternate row spatial arrangements is an unattractive bi-cropping option for forage 

production because it is always associated with both below and aboveground interspecific 

competition, irrespective of seasonal characteristics.   

Fuego proved a suitable faba bean candidate over Maris Bead for forage production in low 

input bi-cropping systems because its superior performance does not change with seasonal 

variation. It also used available resources more efficiently than Maris Bead as demonstrated 

by the harvest index in Table 6.9 and Figure 6.2.   However, in a year with high rates of pest 

and disease outbreaks, it is susceptible to higher infestation than Maris Bead.  Maris Bead is 

less suitable for bi-cropping except under the 2x2 alternate row arrangement.   

However, even if Maris Bead had high protein content suitable for livestock feed and its tap 

root system suitable to tolerate water stress conditions, its taller plant height limits its 

suitability for modern large scale mechanised bi-cropping for forage production, which 

favours short bean cultivars due to their compatibility to combined harvesting. 

To conclude, the successful production of forage yield and improved crude protein in spring 

low input wheat/field bean bi-cropping systems depends on appropriate drilling patterns and 

selection of suitable crop varieties among others agronomic management practices as 

schematically described in Figure 10.1. The performance of study factors (beans and drilling 

patterns) on influencing the productivity of forage based bi-cropping systems are summarised 

in Appendix 6.1 & 6.2.  
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Fig. 10.1: A schematic model of a sustainable low input wheat/bean bi-cropping system for     

forage production  
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Limitations of the study 

Economic benefit is one of the primary factors which drive the wider adoption of any 

agricultural technology by farmers. In this study, the economic aspect of bi-cropping system 

for forage production was not assessed due to time limitations. In future, it would be useful to 

involve a student of agricultural economics to generate this useful information to support 

agronomic findings and enhance the wider adoption of bi-cropping systems. 

 

The study was conducted at one site with similar weather conditions and soil type. In future, 

depending on the project budget, it would be better to replicate a similar study at two 

contrasting sites within the Cotswold District to determine the site x treatments interaction 

effects. 

 

To verify crop responses to underground based interspecific competition for growth resources 

through reduced plant heights in Table 6.4 and long and narrow bean root characteristics in 

Table 7.2 under the 1x1 alternate row arrangement, soil water was not assessed due to the 

absence of the Time Domain Reflectrometry (TDR) equipment which directly measures soil 

moisture content. Alternatively, to rectify the problems of mid-season water stress conditions, 

perhaps supplementary irrigation may prove an appropriate remedial intervention.   

 

Recommendations 

There is a need for the continued assessment of newly released faba bean cultivars for their 

suitability for forage production in low input bi-cropping systems using the 2x2 alternate row 

bi-cropping treatments as a standard yard stick.   

 

There is a need to engage stakeholders in popularising wheat/faba bean bi-cropping systems. 

As young farmers are inheriting the management of farms within the UK, they may not have 

the know-how on bi-cropping system and there is a need to sensitise them regarding the 

importance of the systems in relation to its relevance to the modern and future sustainability 

of livestock/crop farming systems. The research institutions may help to extend further 

research from where the university lacks continuity due to limited resources such as time, 

finances and relevant facilities. Policy makers may help to recommend subsidises that may 

help to promote wide spread of bi-cropping systems among organic farms.   
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While Fuego has demonstrated its suitability for spring low input bi-cropping systems, future 

attention needs to examine agronomic practices that can help to reduced biotic stresses in 

collaboration with plant breeders and plant pathologists.  

  

With the prevailing seasonal weather variability, soil water studies in bi-cropping systems 

need to be assessed to better understand impacts on the bean performance and the ultimate 

productivity of bi-cropping systems.    
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APPENDICES   

Appendix 1. Long term meteorological weather conditions 

Appendix 1.1: Long term monthly total precipitation (mm) 2005-2016 at the Royal Agricultural University 

 Cropping seasons/years 

Months 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

January 33.5 20.2 89.7 128.1 68.7 85.3 72.3 59.7 67.2 170.3 93.1 106.8 

February 22.8 32.2 91.3 30.1 56.7 52.6 66.2 29.2 39.1 143.8 51.9 80.7 

March 71.8 79.6 66.1 89.2 25.0 60.5 10.9 24.9 76.8 39.5 34.2 111.3 

April 54.9 26.7 5.6 52.9 37.8 26.9 3.3 126.3 31.5 65.9 13.9 55.0 

May 45.3 102.8 117.1 94.5 49.5 43.0 43.3 50.9 76.6 97.3 71.0 78.9 

June 36.3 12.9 98.3 55.9 44.6 34.6 71.6 175.0 42.5 49.7 41.8 106.1 

July 32.3 68.9 188.3 125.5 98.8 32.1 55.2 99.8 31.5 56.6 56.3 27.1 

August 34.5 36.2 21.3 86.2 72.4 127.2 46.2 112.2 33.3 91.5 75.7 52.1 

September 36.0 79.8 21.3 98.3 21.7 61.4 51.2 73.5 42.3 11.3 62.0 42.8 

October 90.2 69.7 78.2 48.6 72.0 49.3 38.9 98.2 139.2 78.8 48.9 31.0 

November 72.1 95.9 81.9 73.0 168.3 60.1 34.4 147.3 68.3 85.5 106.9 113.6 

December 67.9 116.6 55.6 49.2 54.2 34.3 106.3 165.5 125.9 59.3 109.0 34.8 
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Appendix 1.2: Long term monthly mean air temperature (oC) 2005-2016) at Royal Agricultural University 

 Cropping seasons/years 

Months 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

January 5.5 4.1 6.4 6.2 0.0 1.5 3.8 5.5 3.3 4.7 3.8 5.0 

February 4.2 3.4 6.1 5.1 3.9 3.0 6.0 3.3 2.7 0.0 4.4 4.6 

March 6.9 4.8 7.0 6.5 6.9 6.0 7.4 8.4 3.0 7.2 6.3 5.3 

April 9.1 8.6 11.8 7.9 9.7 9.0 12.3 6.8 7.5 9.9 9.1 7.7 

May 11.0 12.5 12.0 13.2 11.7 11.4 12.3 11.8 10.0 12.1 11.5 12.6 

June 15.3 16.4 15.2 14.1 14.9 15.6 13.7 13.7 13.7 15.4 14.3 15.2 

July 17.1 20.0 15.5 16.0 16.1 16.9 15.5 10.2 18.9 18.0 17.1 16.9 

August 16.7 16.9 14.2 16.0 16.6 15.8 15.3 16.5 17.7 14.7 15.6 17.4 

September 21.4 16.8 14.2 13.6 14.4 13.5 15.4 12.9 14.2 15.7 12.7 16.1 

October 13.2 12.9 11.0 9.4 11.4 10.4 12.7 9.5 12.7 12.7 11.0 10.9 

November 5.5 7.5 6.8 6.8 8.5 2.8 9.4 6.2 5.9 8.4 9.3 6.1 

December 4.3 6.0 4.2 3.5 3.0 -0.2 5.4 4.6 5.4 4.8 9.5 5.6 
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Appendix 2: Spatial arrangements of wheat and beans in bi-cropping 

 

 

 

 

 

3 rows of wheat against 3 rows of beans (3x3) 

2 rows of wheat against 2 rows of beans (2x2) 

1 row of wheat against 1 row of beans (1x1) 

Broadcast  

Every alternate single row meant 

for sowing beans was blocked with 

buckets. The wheat meant for 

those rows were harvested in the 

bucket. 

 

 

Every alternate two rows meant 

for sowing beans was blocked 

with buckets. The wheat meant 

for those rows were harvested in 

the bucket. 

 

 

Every alternate three rows meant 

for sowing beans was blocked 

with buckets. The wheat meant 

for those rows were harvested in 

the bucket. 

 

 

Beans seeds were randomly hand 

sown in orderly drilled wheat 

rows. 

 

 

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in 
Lancester Library - Coventry University.

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in 
Lancester Library - Coventry University.

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in 
Lancester Library - Coventry University.

Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in 
Lancester Library - Coventry University.
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Appendix 3: Crop growth stages 

Appendix 3.1:   Wheat growth stages description 

 

Main stage Description Sub-stage 

0 Germination 0.0-0.9 

1 Main stem leaf production 1.0-1.9 

2 Tiller production 2.0-2.9 

3 Main stem production (stem elongation) 3.0-3.9 

4 Booting 4.0-4.9 

5 Heading 5.0-5.9 

6 Anthesis 6.0-6.9 

7 Grain milk stage 7.0-7.9 

8 Grain dough stage 8.0-8.9 

9 Ripening 9.0-9.9 

Source:  Zadoks et al.  (1974) 
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Appendix 3.2: Faba bean growth stages 

Growth stage Code Definition Description 

Germination 

and emergence 

000 

001 

002 

003 

004 

005 

006 

Dry seed 

Imbibed seed 

Radicle apparent 

Plumule and radicle apparent 

Emergence 

First leaf unfolding 

First leaf unfolded 

 

Vegetative stage      Refer to main stem. Two small scale leaves appear first but the nodes where these occur are not recorded; only nodes where 

the leaf has unfolded are recorded 

 101 

102 

103 

10x 

1n 

First node 

Second node 

Third node 

X node 

N, last recorded node 

 

Reproductive stage Refer to main stem and first flower or first pod apparent at first fertile node (1). Stage for determinate cultivars there is an 

inflorescence at the terminal position as well as other racemes on the stem 

Node 201(1) 

203(1) 

204(1) 

205(1) 

207(1) 

209(1) 

2010(1) 

Flower bud visible 

First open flowers 

First pod set 

Pods fully formed, pods green 

Pod fill, pods green 

Seed rubbery, pods still pliable turning black 

Seed dry and hard, pods dry and black 

(first buds visible and still green) 

(first open flowers on first racemes) 

(first pods visible at first fertile node) 

(pods fully formed but with small immature 

seed  within) 

(seeds at maximum size fill the pod cavity) 

Senescence Pod senescence and seed ripening refer to the whole plant 

 301 

305 

308 

309 

310 

10% pods dry and black 

50% pods dry and black 80% pods dry and black, some upper pods green 

80% pods dry and black, some upper pods green 

90% pods dry and black, most seed dry 

All pods dry and black and seeds hard 

 

Stem senescence refer to the whole plant  

 401 

401 

405 

409 

410 

10% pods dry and black 

10% stem brown/black (or most stem green) 

50% stem brown/black (or 50% stem green) 

90% stem brown/black (or 10% stem green) 

All stems brown/black; all pods dry and black; seed dry  

Source:  PGRO (2015) 
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Appendix 4: Soil textural triangle   

  

 

 Source: http://www.landis.org.uk/services/tools.cfm 

Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry University.

http://www.landis.org.uk/services/tools.cfm
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Appendix 5:  The combined analysis of variance 

 

Appendix 5.1: The combined analysis of variance for growth and performance of wheat/bean bi-cropping system influenced  

by seasons, cropping systems, drilling patterns, bean cultivars and their interaction over two years (2015 and 2016) 

 

Mean squares 

Source of 

variation 

Degrees of 

Freedom 

         Plant heights Weeds 

CCI LAI IPAR Wheat Bean WSE DM N uptake 

CS 1 4937.5*** 2.7073*** 2501.08*** 532.73*** 851.86*** - 43.1817*** 11.5389*** 

DP 3 678.5*** 6.4482*** 2311.18*** 202.32*** 3234.27*** 502.6** 7.383*** 1.8035*** 

B 1 7.1ns 8.6124*** 515.63*** 3.42ns 153.17* 17.9ns 4.7007*** 1.4485*** 

Y 1 820.7*** 95.6360*** 7183.79*** 4296.83*** 15113.32*** 1583.1*** 0.5299ns 0.0042ns 

DP x B 2 10.6** 0.1163ns 46.66* 9.13ns 25.48ns 28.1ns 0.1766ns 0.0628ns 

DP x Y 3 11.3* 0.6480** 163.58*** 99.60** 457.41*** 77.2* 1.1838* 0.3396* 

B x Y 1 4.6ns 1.7357*** 305.67*** 18.17ns 55.47ns 2.5ns 0.1698ns 0.447ns 

DP x B x Y 3 4.1ns 0.2130ns 144.50*** 27.72ns 74.89ns 90.6ns 0.1770ns 0.0721ns 

*, **, and *** show significant differences at P< 0.05, P< 0.01, and P< 0.001 respectively; ns=No significant differences at P>0.05); CS, cropping systems; DP, drilling patterns; 

B, bean cultivars; Y, years (cropping season); LAI, leaf area index; IPAR,. Intercepted Photosynthetic Active Radiation;  WSE, weed smothering efficiency; DM, dry matter; N, 

nitrogen; CCI, chlorophyll concentration index; LER, land equivalent ratio 
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Appendix 5.2:  The combined analysis of variance for growth and performance of wheat/bean bi-cropping system influenced by seasons, 

cropping systems,  drilling patterns, bean cultivars and their interaction over two years (2015 and 2016). 

Mean squares 

Source of 

variation 

Degrees of 

Freedom 

Wheat grain 

yield 

Wheat straw 

yield 

Wheat  

HI 

Bean seed 

yield 

Bean straw 

yield 

Bean seed  

HI 

LER 

CS 1 27.49*** 38.11*** 7.86ns 27.89*** 79.24*** 716.02** - 

DP 3 0.319ns 2.3ns 42.94* 1.77*** 1.94*** 70.73ns 0.058ns 

B 1 0.747ns 0.115ns 8.18ns 0.114ns 0.257ns 9.67ns 0.061ns 

Y 1 13.09*** 30.39*** 895.76*** 8.65*** 55.63*** 2734.45*** 2.816*** 

DP x B 2 0.106ns 0.208ns 7.03ns 0.124ns 0.088ns 113.72ns 0.050* 

DP x Y 3 0.229ns 1.006ns 7.21ns 0.065ns 0.906ns 57.11ns 0.152ns 

B x Y 1 0.007ns 0.0193ns 33.95ns 0.196ns 0.998* 57.83ns 0.003 ns 

DP x B x Y 3 0.137ns 0.142ns 20.28ns 0.201ns 0.595ns 114.76ns 0.066 ns 

*, **, and *** show significant differences at P< 0.05, P< 0.01, and P< 0.001 respectively; ns= No significant differences at P>0.05); CS, cropping systems; DP, drilling patterns; B, bean 

cultivars; Y, years (cropping season); HI, harvest index; LER, Land equivalent ratio.  
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Appendix 5.3: The combined analysis of variance for growth and performance of wheat/bean bi-cropping system  

influenced by seasons, cropping systems, drilling patterns, bean cultivars and their interaction over two years (2015 and 2016). 

 

Mean squares 

Source of 

variation 

Degrees of 

Freedom 

Wheat grain 

CP 

Wheat straw 

CP 

Wheat  grain   

N yield 

Wheat straw  

N yield 

Wheat 

N yield HI 

CS 1 3135.5*** 460.7*** 42458.0*** 4515.1*** 7.97ns 

DP 3 174.7ns 14.7ns 924.0ns 328.4ns 24.22ns 

B 1 361.7ns 16.2ns 6.0ns 114.6ns 1.17 ns 

Y 1 14562.1*** 1773.1*** 60378.0*** 27186.9*** 770.38*** 

DP x B 2 30.8 ns 36.36ns 2384.0ns 11.1ns 23.93ns 

DP x Y 3 103.5ns 14.92ns 3281.0ns 500.6ns 31.81ns 

B x Y 1 333.9ns 92.6 ns 290.0ns 120.1ns 6.21ns 

DP x B x Y 3 121.0ns 16.7ns 1821.0ns 695.0 ns 10.96ns 

*, **, and *** show significant differences at P< 0.05, P< 0.01, and P< 0.001 respectively; ns=No significant differences at P>0.05); CS, cropping systems; DP, 

drilling patterns; B, bean cultivars; Y, years (cropping season); CP, crude protein; HI, Harvest Index.  
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Appendix 5.4: The combined analysis of variance for growth and performance of wheat/bean bi-cropping system  

influenced by seasons, cropping systems, drilling patterns, bean cultivars and their interaction over two years (2015 and 2016). 

 

Mean squares 

Source of 

variation 

Degrees of 

Freedom 

Bean  

Grain CP   

Bean  

Straw CP 

Bean  seed  

N yield 

Bean  straw  

N yield 

Bean  

N yield  HI 

CS 1 72.0ns 19.38ns 1016579.0*** 65669.6*** 416.2** 

DP 3 43.9ns 58.74ns 64335.0*** 1508.8* 5.7ns 

B 1 1504.9** 90.83ns 10487.0ns 240.8ns 1.2ns 

Y 1 254.5ns 14652.52*** 325680.0*** 7049.9*** 643.1*** 

DP x B 2 386.3ns 70.03ns 5867ns 89.5ns 34.0ns 

DP x Y 3 395.4ns 178.65ns 1508ns 209.7ns 29.3ns 

B x Y 1 918.2* 181.28ns 8442ns 486.9ns 1.1ns 

DP x B x Y 3 53.9ns 145.73ns 8943ns 629.0ns 19.3ns 

*, **, and *** show significant differences at P< 0.05, P< 0.01, and P< 0.001 respectively; ns=No significant differences at P>0.05); CS, cropping systems; DP, 

drilling patterns; B, bean cultivars; Y, years (cropping season); CP, crude protein; HI, Harvest Index.  
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Appendix 5.5:  The combined analysis of variance for growth and performance of wheat/bean bi-cropping system influenced  

by seasons, cropping systems, drilling patterns, bean cultivars and their interaction over two years (2015 and 2016). 

 

Mean squares 

Source of 

variation 

Degrees of 

Freedom 

Wheat grain 

N uptake 

Wheat straw 

N uptake 

Wheat 

N HI 

Bean seed 

N uptake 

Bean straw 

N uptake 

Bean 

N HI 

Emissions savings 

(kg CO2e ha-1) 

CS 1 236.14*** 3310.66*** 1515.12*** 27012.7*** 2129.40*** 603.11*** 1539ns 

DP 3 3.84ns 19.51ns 24.48ns 2031.4*** 52.87** 10.95ns 6176ns 

B 1 27.14ns 2.12ns 23.90ns 153.9ns 2.41ns 1.49ns 11132ns 

Y 1 90.83** 4699.80*** 4257.09*** 9495.1*** 178.62*** 763.53*** 1393ns 

DP x B 2 9.85ns 18.85ns 33.37ns 75.5ns 3.46ns 34.17ns 4080ns 

DP x Y 3 71.30ns 26.85ns 10.68ns 160.4ns 4.58ns 29.35ns 2899ns 

B x Y 1 0.05ns 3.07** 3.27ns 497.5ns 32.09ns 18.8ns 19418ns 

DP x B x Y 3 9.42ns 12.08ns 8.08ns 352.1ns 15.16ns 13.57ns 13052ns 

*, **, and *** show significant differences at P< 0.05, P< 0.01, and P< 0.001 respectively; ns=No significant differences at P>0.05); CS, cropping systems; DP, 

drilling patterns; B, bean cultivars; Y, years (cropping season); N, nitrogen; N HI, Nitrogen uptake harvest Index.  
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Appendix 6.1: The positive and negative contribution of drilling patterns on bi-cropping performance.                

Drilling 

patterns 

Positive/strength Negative/weakness 

1 x 1 

Physical root intermingling advantage can help to enhance direct N transfer 

from the donor bi-crop (beans) to recipient bi-crop (wheat) under optimum 

soil water conditions as evidenced by increased CCI and wheat N uptake. 

Prone to serious interspecific competition when edaphic based resources such as water is 

limited as in 2015 season resulting in reduced plant height & IPAR. 

It also influenced thinner and smaller nodule sizes. 

 

Close proximity of bi-crop roots can help to stimulate the bean to improve 

biological N fixation due to greater exploitation of soil mineral N by wheat 

than bean in mixture as evidenced by wheat N uptake. 

It is vulnerable to wide-spread of fungal bean diseases such as Faba bean rust (Uromyces 

viciae-fabae) and Ascochyta blight (Ascochyta fabae) due to closer proximity of bean bi-

crop plants. 

 

Close proximity of bi-crops resulted in higher light interception and 

improved weed control.  

 

All alternate rows treatments provided uniform seed sowing depth, 100% 

seed germination, and uniform utilisation of resources by bi-crops, easier 

and faster harvesting with mechanisation.   

Under soil water stress conditions crop growth and development was limited as in 2015 

season while under optimum soil water conditions crop growth and development improved 

as in 2016 season.   

 

All alternate rows spatial arrangements are time consuming during drilling except if the 

right equipment such as a one pass seeder is used. 

2 x 2 

Promoted spatial interspecific complementarity on resource-use efficiency 

hence; improved spatial root distribution, root nodules sizes and land & 

forage productivity. 
- 

 

 
Interspecific complementarity improved other associated ecological services 

such as weed, insects’ pests and diseases control.   

3 x 3 

It is a type of crop diversification in space for sustainable crop 

intensification. 

 

It is associated with interspecific competition which reduced reduce leaf size, IPAR and 

weed control under soil water stress conditions as in 2015 season.  It can also reduce root 

nodule sizes and affect plant performance. 

 

 

- 

When soil water is not limiting as in 2016 season, overcrowded and vigorous growth of bi-

crop plants competed for light which resulted in the alteration of leaf architecture hence; 

reduced light interception, weed control efficiency and bi-cropping system productivity. 

Broadcast 

It is a type of crop diversification in space for sustainable crop 

intensification.  

 

It is relatively less cost effective and time saving. 

Germination up to 100% of the bean bi-crops is not attainable compared to the wheat bi-

crops because the bean seeds are not placed at the desired soil depth; use of mechanisation 

for field operations such has combined harvesting is sometimes difficult; poor total ground 

canopy cover, poor light interception & high weed seed returns. 



 

281 

 

Appendix 6.2: The impact of the bean cultivars on assessed parameters 

 

 

 

 

 Bean cultivars 

Outcome factor Maris Bead Fuego 

Seed size Small  Large 

Seed establishment Good seed establishment in 

all weather conditions.  

Good seed establishment, except under 

water stress conditions. 

Growth rate Relatively slower.  Relatively faster.   

Root type Tap root system.     Superficial root system.  

Leaf type Planophile.  Erectophile.  

Leaf Area Index Relatively lower due to 

increased mutual shading 

(Table 6.2). 

Relatively high due to reduced mutual 

shading (Table 6.2). 

Plant height Relatively taller.  

(Table 3.2 & 6.5). 

Relatively shorter.  

(Table 3.2 & 6.5). 

Weed smothering 

(Weed control) 

Effective during early part of 

growth cycle   (Table 6.6b).  

Effective throughout the growth cycle 

(Table 6.6b).    

Pest and disease control 

Black bean aphids (Aphis 

fabae) and Faba bean rust 

(Uromyces viciae-fabae) and 

Ascochyta blight (Ascochyta 

fabae) 

Tolerant  

(Tables 4.13; 4.14 & 5.13).  

Susceptible  

(Tables 4.13; 4.14 & 5.13). 

Legume yield (t ha-1) Low (Table 3.2). High (Table 3.2). 

Protein (%) High (Table 3.2). Low (Table 3.2). 
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Appendix 7.1: Faba bean rust (Uromyces viciae-fabae) disease situation in 2016 

cropping season. 

 

 

Faba bean rust (Uromyces viciae-fabae) 
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Appendix 8: Seed germination test 

 

 Appendix 8.1. Seed germination counts and calculations (%) for wheat and beans at the Royal Agricultural University Laboratory. 

Spring crop Crop 

type 

Total 

seed 

planted 

First germination count Second germination count Mean total 

germination 

Germination 

(%) 

    Replicates Replicates   

   1 2 3 4 1 2 3 4   

Paragon wheat Cereal  25 24 24 25 24 25 25 24 24 24.5 98.0 

Fuego legume 20 19 18 20 16 20 18 19 19 19.0 95.0 

Maris Bead legume 20 19 19 19 19 20 20 19 19 19.5 97.5 
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Appendix 8.2: Seed germination results for Maris Bead  

     

 

Appendix 8.3: Seed germination results for Fuego 

     

          

Appendix 8.4: Seed germination results for Paragon wheat  
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