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Marta Fernández, Member, IEEE, and William G. Scanlon, Fellow, IEEE 

Abstract—In this paper, we investigate the potential enhance­
ments in signal reliability which can be achieved by using a 
millimeter-wave distributed antenna system (DAS) within an 
indoor environment. To achieve this, we measured the signal 
power simultaneously received at 9 ceiling mounted access point 
(AP) locations likely to be used in future indoor DAS deployments 
while a mobile user imitated making a voice call on a hypothetical 
user equipment. Key metrics, associated with the performance of 
multiple antenna systems, such as the cross correlation coefficient 
(CCC) and channel power imbalance (CPI) are determined. 
It was found that line-of-sight (LOS) and quasi-LOS (QLOS) 
links with the APs typically led to higher CCC values than 
the non-LOS (NLOS) cases. Similarly, LOS and QLOS links 
typically produced higher CPI values between APs than the 
NLOS case. To enable the reproduction of our results, we 
have successfully employed autoregressive moving average and 
autoregressive integrated moving average modeling to the CCC 
and CPI time series. The performance improvement that can be 
achieved using a DAS instead of a single AP was evaluated using 
three commonly deployed diversity combining schemes, namely, 
selection combining, equal gain combining and maximal ratio 
combining along with three AP selection mechanisms, namely, 
per-sample random AP selection, one-shot AP selection and per-
sample optimal AP selection. Finally, we have provided some 
useful insights into the influence of differing AP numbers on the 
diversity gain when considering the aforementioned AP selection 
methods. 

Index Terms—Autoregressive integrated moving average 
(ARIMA) modeling, autoregressive moving average (ARMA) 
modeling, channel measurement, channel power imbalance, dis­
tributed antenna system, diversity gain, millimeter wave, time 
series analysis. 
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M Illimeter wave (mmWave) technologies are emerging 
as strong candidates to meet the high data rate de­

mands of fifth generation (5G) applications, such as real-time 
streaming of ultra-high-definition (UHD) video and delivering 
augmented and virtual reality [1], [2]. This is partially driven 
by the abundant availability of mmWave spectrum in the 
unlicensed frequency bands that exist globally between 57­
66 GHz [3]. Compared to competing microwave frequency 
bands, among the many favorable system attributes which can 
be attained (related to the shorter wavelength), include smaller 
antenna size, lower inter-cell interference [4] and the potential 
for improved security (e.g., preventing eavesdropping due to 
the higher propagation losses [5], [6]). 

Although the use of mmWave frequencies may provide 
many benefits, such as those listed above, it will also equally 
present as many challenges. One of these relates to the 
increased susceptibility to blocking and shadowing caused 
by obstacles which reside in the local environment [7]. This 
is especially true for dense, indoor small cell deployments. 
For example, in [8] it was demonstrated that for a human 
body intersecting the line-of-sight (LOS) path of an indoor 
60 GHz point-to-point link, signal attenuations in the range 
of 20–40 dB can be induced. In [9] it was found that when 
a user moved from LOS to non-LOS (NLOS) relative to an 
indoor access point (AP) operating at 60 GHz, human body 
shadowing caused a 20 dB attenuation in the received signal 
power for both hallway and office environments. It was also 
discovered in [10] that when a mobile human intersected the 
mmWave LOS path, the received power could deteriorate by 
as much as 40 dB. Similarly, it was observed in [11] that, 
compared to 60 GHz wireless links with no obstructions, 
movements by multiple mobile users could cause sudden drops 
in the received signal of up to 40–50 dB. Meanwhile, in [12], 
the wireless link between a 60 GHz user equipment (UE) and a 
wall mounted AP was studied. It was observed that compared 
to LOS, under NLOS conditions, the received signal power 
can deteriorate by as much as 30 dB depending on the UE 
usage scenario. 

One possible approach which can be used to mitigate signal 
deteriorations related to blocking and shadowing in mmWave 
small cell deployments is the use of a distributed antenna sys­
tem (DAS) [13]. With this objective in mind, an indoor DAS 
system operating at 60 GHz was investigated in [14]. Various 
switched diversity techniques were considered to assess their 

mailto:w.scanlon@ieee.org
mailto:dez010@gmail.com
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Fig. 1. Floor plan of the indoor mmWave measurement scenario environment along with a snapshot of the user imitating voice call (left) and an example 
60 GHz ceiling-mounted AP (right). It should be noted that AP5 (in the green dashed box) represents the target AP (Section III). 

effectiveness for improving the overall performance. It was 
found in [14] that employing switch-and-examine combining 
can provide up to 9.1 dB of diversity gain. Nonetheless, 
the key metrics widely used in the analysis of diversity-
based systems [15]–[17] and closely related to the diversity 
performance were omitted, namely the cross correlation [18] 
and the channel power imbalance (CPI) [19] between the 
signals observed at the different AP locations. 

To the best of the author’s knowledge, no empirically 
driven study of the cross correlation and CPI of the received 
signal strength (RSS) experienced in indoor DASs operating 
at 60 GHz has appeared in the open literature. To address 
this issue and the shortcomings of [14], for the first time, we 
present the results of a series of experiments undertaken to 
characterize and provide new insights into the cross corre­
lation and CPI encountered in indoor mmWave DASs. This 
has been achieved using a purposely developed measurement 
system which allowed simultaneous sampling of the received 
signal power at 9 ceiling mounted locations, using purposely 
developed 60 GHz receivers (RXs). Using this setup, we 
have been able to compute the localized cross correlation 
coefficient (CCC) [20], [21] and CPI of the RSS across the 
mmWave DAS, while considering the signal transmitted from 
a mobile user who imitated making a voice call with a custom 
60 GHz transmitter (TX), emulating a UE. More importantly 
though, building upon a detailed statistical analysis of our 
results, we have been able to model the time evolution of 
the localized CCC and CPI using an autoregressive moving 
average (ARMA) model and an autoregressive integrated mov­
ing average (ARIMA) model, respectively. Subsequently, we 
reconstruct the empirical CCC and CPI time series via in-
sample forecast. Furthermore, we discuss and compare the per­
formances of different linear diversity combining techniques, 
i.e., selection combining (SC), equal-gain combining (EGC) 
and maximal-ratio combining (MRC), while also considering 
three AP selection mechanisms which will see deployment 
in future mmWave DASs, namely per-sample random AP 
selection [22], one-shot AP selection [23], and per-sample AP 

selection [23]. 
The remainder of this paper is organized as follows. The 

custom 60 GHz measurement system and measurement sce­
narios are described in Section II. Section III discusses the 
cross correlation and CPI of the RSS, while the ARMA and 
ARIMA modeling approaches as well as related statistical tests 
are explained in Section IV. Additionally, in-sample forecast 
results obtained using the ARMA and ARIMA models are 
also provided. The localized diversity gain for different AP 
numbers as well as various AP selection mechanisms are 
presented and extensively discussed in Section V. Finally, the 
conclusions are summarized in Section VI. 

II. MEASUREMENT SET-UP AND SCENARIOS 

A. Measurement set-up 

To emulate a realistic indoor mmWave DAS, a custom 
60 GHz wireless channel measurement system was developed 
using the HMC6000LP711E TX1 and HMC6001LP711E RX2 

modules manufactured by Analog Devices. Both units fea­
tured an identical linearly-polarized antenna-in-package with 
+7.5 dBi gain. Prior to the experiments, the antenna radiation 
pattern was measured in the anechoic chamber, located on the 
ground floor of the Institute of Electronics, Communications 
and Information Technology (ECIT) at Queen’s University, 
Belfast, U.K. (further details can be found in [24]). The 
measured half power beam width (HPBW) of the antenna 
is approximately 120◦ in both the azimuth and elevation3. 
To imitate a hypothetical 60 GHz UE, the TX module was 
fixed to the inside of a compact acrylonitrile butadiene styrene 
(ABS) enclosure (80 mm × 80 mm × 20 mm) and configured 
to transmit a continuous wave signal centered at 60.05 GHz 
with an Equivalent Isotropically Radiated Power (EIRP) of 
+10.9 dBm. 

1https://www.analog.com/media/en/technical-documentation/data­
sheets/hmc6000.pdf (visited on 13/11/2020) 

2https://www.analog.com/media/en/technical-documentation/data­
sheets/hmc6001.pdf (visited on 13/11/2020) 

3The measured antenna radiation patterns at 60 GHz can be found in [24]. 
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The RX module was connected to a field programmable gate 
array (FPGA) based Red Pitaya data acquisition platform4 to 
emulate a mmWave AP (as seen on the right hand side of 
Figure 1). The 49 MHz intermediate frequency (IF) signal 
output of the RX module was low pass filtered (with a 3 dB 
cutoff frequency at 50 MHz) to provide the function of anti-
aliasing and then sampled using a 14-bit, 125 Msps analog­
to-digital converter (ADC) within the Red Pitaya platform. 
The FPGA unit was programmed to provide custom digital 
signal down conversion and the signal further filtered with a 
3 dB bandwidth of 86.4 kHz. This implementation provided 
an effective channel sampling frequency of 96 kHz. The RSS 
was stored locally on the Red Pitaya platform and after the 
experiments was transferred to a desktop PC. During post-
processing, the RSS was downsampled by applying an averag­
ing window of 48 consecutive samples to improve the signal 
to noise ratio (SNR) performance, resulting in an effective 
sampling rate of 2 kHz. Although not shown due to brevity, 
to verify the integrity of our collected RSS samples, we also 
conducted a study of the noise floor. Through our analysis, 
it was found that over 95% of the collected RSS data was 
between 15 and 60 dB greater than the noise floor for the 
paths AB and BA, respectively. Additionally, the probability 
that a collected RSS sample was below the noise floor was 
evaluated and found to be less than 0.02%. 

B. Measurement scenarios 

The measurements were conducted in an open office area 
(10.62 m × 12.23 m), located on the 1st floor of the ECIT 
Institute at Queen’s University Belfast, U.K. The floor plan is 
shown in Figure 1. The indoor office area consists of several 
metal studded dry walls with a metal tiled floor covered 
with polypropylene fiber, rubber backed carpet tiles, metal 
ceiling with mineral fiber tiles as well as recessed louvered 
luminaries suspended 2.70 m above the floor level. Also 
present are a number of metal cabinets, PCs, chairs, desks 
and soft partitions. During the measurements, 9 RX boards 
were mounted on the ceiling at the points indicated by the red 
circles in Figure 1. These positions were chosen to emulate 
mmWave APs operating within a realistic indoor mmWave 
DAS. The RXs were positioned so that the antenna boresight 
was facing downwards, i.e., towards the floor level. 

During the experiments, a test user (an adult male of height 
of 1.72 m and mass 75 kg) imitated making a voice call, while 
holding the TX at his right ear. The TX antenna was oriented 
such that its boresight was facing outwards and away from the 
user’s head. To ensure that any shadowing experienced in the 
experiments was the result of user-induced effects and signal 
obstruction within the test environment, the office area was 
unoccupied during the measurement process. Two trajectories 
were considered which involved the user walking along a 
straight line in two opposite directions, namely path AB and 
BA, indicated using the blue line in Figure 1. The length of 
the path AB was 9 m, while the average walking speed of the 
user was determined to be 1 m/s. 

4https://pavel-demin.github.io/red-pitaya-notes/ (visited on 13/11/2020) 

III. CROSS CORRELATION AND CHANNEL POWER
 
IMBALANCE
 

After acquiring the raw RSS data, AP5 was selected as 
the target base station in the DAS since its overall mean was 
observed to be the highest for both paths AB and BA. Aiming 
to fully capture the temporal behavior of the CCCs between 
various AP pairs, the localized CCC, introduced in [20], was 
adopted in this work. This was obtained by computing the 
CCC using a moving window of length N applied to the RSS 
data. An exploratory analysis of the data performed using the 
Kolmogorov-Smirnov (K-S) test indicated that the localized 
RSS observed at each of the APs was non-Gaussian in all 
cases. Consequently, the Spearman’s rank-order correlation 
coefficient, was employed to calculate the localized CCCs 
between the RSS observed at different AP locations. The 
Spearman’s rank-order correlation is a nonparametric mea­
sure of the monotonic relationship which exists between two 
variables in the ordinal form [25]. The localized CCCs were 
calculated as the sampled Spearman’s rank-order correlation 
coefficient at the time instant t, denoted as rS (t), which can 
be written as 

NN 
6 [RXij (t) − RXik (t)]

2 

i=1 rS (t) = 1 − , (j  (1)= k)
N(N2 − 1) 

where Xij (t) and Xik(t) are the corresponding RSS values 
of the ith sample at the time instant t, observed at the 
AP indexes of j and k, respectively. In (1), RXij (t) and 

(t) represent the ranks within the RSS vectors Xij (t)RXik 

and Xik(t), respectively. In this study, three different values 
of N , (i.e., 400, 1, 000 and 4, 000, or equivalently 0.2 s, 0.5 s 
and 2 s), were initially selected to investigate the impact of 
differing window sizes upon the CCC. For convenience, in the 
sequel, we refer to these three moving windows as short-term, 
medium-term and long-term, respectively. 

As an example, the empirical probability density functions 
(PDFs) of the short, medium and long-term CCCs between 
AP5 and AP9 for paths AB and BA are presented in Figure 
2. Also included in Figure 2 are theoretical plots for the 
best fitting Gaussian distributions. Compared to the medium-
term and long-term cases, it can be seen from Figures 2(a) 
and 2(d) that the Gaussian distribution provided a better fit 
for the short-term CCCs. This may be attributed to the fact 
that as N increases, the number of wavelengths (distance) 
contained within the averaging window also increases and 
hence the signal propagation scenario can change significantly. 
The quantile-quantile (Q-Q) plots of the empirical short-term 
rS (t) and the corresponding Gaussian distribution fits are 
shown in Figures 3(a) and 3(b), respectively. Although slight 
fat-tailed (path AB) and thin-tailed (path BA) artifacts can be 
observed in Figures 3(a) and 3(b), the majority of the empirical 
short-term rS (t)’s quantiles show a good match with those of 
the Gaussian fits. Therefore, N was selected to be equal to 
400 for all of the ensuing statistical analysis presented below. 

Similar behavior to that described above, was also observed 
for other AP pairs. Therefore, the mean and standard deviation 
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Fig. 2. Empirical PDFs of rS (t) between AP5 and AP9 along with the corresponding Gaussian distribution fits: (a) short-term rS (t) of the path AB, (b) 
medium-term rS (t) of the path AB, (c) long-term rS (t) of the path AB, (d) short-term rS (t) of the path BA, (e) medium-term rS (t) of the path BA, (f) 
long-term rS (t) of the path BA. 

Fig. 3. Q-Q plots of short-term rS (t) and the corresponding Gaussian distribution fits between AP5 and AP9: (a) short-term rS (t) of the path AB, (b) 
short-term rS (t) of the path BA. 

of rS (t), denoted as µrS and σrS , were obtained based on 
the corresponding best fitting Gaussian distributions. In the 
interest of brevity, the values of µrS and σrS for all of the 
AP pairs are not shown. To summarize, it was found that 
µrS ranged from −0.04 to 0.05, while σrS was found to lie 
between 0.10 to 0.19 for all AP pairs. From these results, 
it can be concluded that the distribution of rS (t) can be 
approximated using a Gaussian distribution with µ = 0 and 
σ ranging from 0.1 to 0.2. When comparing the statistics of 
rS (t) between different AP pairs for both mobile paths, the 
µrS and σrS values were typically found to be higher for the 
path AB (−0.04 ≤ µrS ≤ 0.05 and 0.10 ≤ σrS ≤ 0.19) 

(QLOS) conditions. Conversely, as shown in Figure 1, the UE 
antenna boresight was facing towards the metal cabinets for the 
majority of the path BA leading to QLOS/NLOS conditions 
between the UE and APs. Consequently, the observed CCC 
values between different AP pairs are generally higher with a 
wider spread because of the existence of LOS/QLOS paths, 
while under the NLOS conditions, the increased multipath 
tends to assist decorrelation and hence prompts lower CCC 
values with a smaller spread. 

As with the computation of the localized CCC, the corre­
sponding localized CPI at the time instant t and denoted C(t), 
can be expressed as 

than those of the path BA (−0.04 ≤ µrS ≤ 0.03 and 0.10 ≤ 
σrS ≤ 0.16). A possible reason for this is that with the user 

     
     

  N 
 

Xij (t)/Ni=1 N
C(t) = 20 · log10imitating making a voice call, the UE antenna boresight was 

facing outwards away from the user’s head and towards the 
majority of the APs. As a result, the wireless links between the 
UE and APs were more likely to experience LOS/Quasi-LOS 

i=1     
(2)  N 

i=1 Xij (t)
20 · log10  N 

     
Xik(t)/N 

= . 
Xik(t)i=1 
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With N = 400, the resultant PDFs of the localized CPI time 
series for different AP pairs were observed to be multimodal, 
thus the corresponding median of C(t), denoted as mC , was 
estimated, along with the minimum and maximum values of 
C(t), denoted as Cmin and Cmax. Comparing the statistics of 
C(t) for the paths AB and BA, the mC and Cmax values were 
typically observed to be higher for the path AB. For instance, 
considering the pairing of AP5 and AP9, it was found that 
mC = 7.0 dB, Cmin = 0.0 dB and Cmax = 22.6 dB for the path 
AB, while mC = 6.0 dB, Cmin = 0.0 dB and Cmax = 13.6 dB 
for the path BA. This further verifies our observations for the 
channel conditions under both mobile paths. More significant 
power imbalance between the AP pairs can be observed for the 
path AB due to the existence of the LOS/QLOS links between 
the UE and the majority of APs. This situation means that the 
signal received at the APs is sensitive to the user location 
on the walk path and the relative orientation of the UE. This 
phenomenon appeared to have less of an influence for the 
path BA, as the increased multipath contribution tended to 
homogenize the signal received at the APs under QLOS/NLOS 
circumstances. 

IV. ARMA AND ARIMA MODELING 

Having established some of the statistical properties of the 
key parameters associated with the performance of multiple 
antenna systems (i.e. CCC and CPI), in this section we in­
vestigate time series tools such as ARMA and ARIMA which 
can be used as a basis to model and simulate our empirical 
results. Prior to the model fitting, an augmented Dickey-Fuller 
(ADF) test [26] was used to check the stationarity properties 
of the localized CCC and CPI time series data. The p–values 
of the ADF test for the CCC time series obtained from the 
measurement data were found to be significantly less than 
1%, implying that the ADF test rejected the null hypothesis 
that a unit root existed in the univariate time series and thus 
we can conclude that the localized CCC time series data 
was stationary or trend-stationary. Turning our attention to the 
localized CPI time series, here, the p–values of the ADF test 
were observed to be notably higher than 5%, suggesting that 
a unit root was present in the tested time series, and therefore 
the obtained localized CPI time series data was considered 
to be non-stationary. As a consequence, i.e. the stationarity 
of the localized CCC time series and non-stationarity of CPI 
time series, ARMA and ARIMA models were adopted to 
model and reconstruct the localized CCC and CPI time series, 
respectively. 

Considering the mixture of an autoregressive (AR) process 
of p-th order, AR(p), and a moving average (MA) process of 
q-th order, MA(q), an ordinary ARMA(p, q) process [27] can 
be expressed as 

p qN N 
1 − φiL

i xt = 1 + θiL
i εt + c, (3) 

i=1 i=1 

where L represents the lag operator, e.g., xt−i = Lixt, and it 
can be seen from (3) that the output xt not only depends on 
the previous p inputs of itself, but also relies on the previous 
q inputs of a zero-mean Gaussian white noise process εt 

(often referred to as residuals). In (3), {φ1, φ2, ..., φp} and 
{θ1, θ2, ..., θq} are coefficients that weight previous samples 
of the AR and MA processes, respectively. Additionally, c 
represents a constant term, usually estimated as the mean value 
of xt, i.e., µxt . The ARMA model is a suitable choice for the 
characterization of a wide-sense/weakly stationary stochastic 
process [27], but nevertheless, in real life some empirical 
time series data show evidence of non-stationarity. In order 
to model a stochastic process which exhibits non-stationarity, 
a more generalized model, referred to as an ARIMA model, 
is typically used. An ARIMA(p, d, q) process [27] can be 
defined as 

p qN N 
1 − φiL

i (1 − L)d xt = 1 + θiL
i εt + c, (4) 

i=1 i=1 

where d is the degree of differencing. Comparing (3) with (4), 
the key difference between an ARMA and ARIMA process is 
the introduction of an additional differencing step (d) which is 
applied ahead to eliminate the non-stationarity property within 
the time series data. Clearly, when d = 0, an ARIMA(p, d, q) 
process naturally degenerates to an ARMA(p, q) one. 

As discussed in the previous section, the values of µrS were 
close to 0 for all the AP pairs, thus the value of c was set 
to 0 for the ARMA model fits. Following the instructions in 
[28] and using the ADF test, an ARIMA(0, d, 0) process 
was initially applied to the localized CPI time series and it 
was found that the residuals of the time series’ second-order 
differencing, i.e., d = 2, were stationary or trend-stationary. 
Accordingly, d was selected to be 2 for the ARIMA model 
fits presented afterwards. Moreover, the value of c was also 
set to 0 for the ARIMA model since a constant is normally to 
be included when d ≤ 1 but not for higher differencing orders 
[28]. 

There are many approaches available to select appropriate 
values for the orders p and q. The maximum likelihood estima­
tion (MLE) based second-order Akaike Information Criterion 
(AICc) is often used due to its ability to take into account 
the trade-off between the goodness of fit and number of pa­
rameters used by the candidate model [29]. As shown in [30], 
the optimal model order can be determined by comparing the 
AICc values of various order selections. Although the AICc 

can effectively avoid the problem of overfitting [29], it does 
not always guarantee that the residuals obtained after ARMA 
or ARIMA modeling are in fact a white noise process. The 
residual’s randomness can be examined by visually checking 
the autocorrelation function (ACF) and partial ACF (PACF) of 
the residuals against different confidence intervals (CIs) [31]. √ 
The 95% and√99% CIs can be approximated by ±1.96/ n 
and ±2.576/ n (here n denotes the size of the test sample), 
respectively. An alternative approach to assess the randomness 
of the residuals is to apply the Ljung-Box test, which is 
calculated using the Q statistic [32]. The Q statistic of a test 
sample of size n is defined as 

KN ρ̂2 
kQ = n(n + 2) , (5) 

n − k 
k=1 
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Fig. 4. Normalized ACF and PACF for the residuals of corresponding ARMA and ARIMA models for the short-term rS (t) and C(t) between AP5 and 
AP9: (a) ACF of ARMA(9, 1) residuals for the path AB, (b) PACF of ARMA(9, 1) residuals for the path AB, (c) ACF of ARIMA(6, 2, 14) residuals for 
the path BA, (d) PACF of ARIMA(6, 2, 14) residuals for the path BA. 

where K is the number of lags to be tested and ρ̂k is the 
sample autocorrelation at the corresponding lag of k. It is 
known from [32] that the Q statistic asymptotically follows a 
chi-squared distribution with K degrees of freedom, i.e., χ2 

K , 
and under the ARMA/ARIMA residual test, the degrees of 
freedom should be adjusted with the orders of the correspond­
ing model, e.g., in [33] it was suggested that for an ARMA(p, 
q) or an ARIMA(p, d, q) model, the degree of freedom should 
be modified to K − p − q. Therefore, in this work, we tested 
the residuals after ARMA and ARIMA model fitting with a 
χ2 distribution with (K − p − q) degrees of freedom at both 
CIs of 95% and 99%. After selecting the values of p and q, the 
corresponding AR and MA coefficients were estimated based 
on the combination of conditional sum of squares and MLE 
(CSS-MLE) method, in which the speed and accuracy of the 
coefficients’ computation can be optimally balanced [27]. 

It was found that the AICc scores of the fitted ARMA 
model converged for the observed CCC time series across 
all the measurement scenarios when the order of the AR 
process was larger than 5. Thus, different ARMA(p, q) models 
with p ≥ 5 were investigated. It was observed that for the 
majority of the CCC time series obtained for the path AB, 
the residuals series of ARMA(9, 1) passed the Ljung-Box test 
across all the required number of lags K ranging from 20 
to 40. Similarly, most of the CCC time series for the path 
BA were successfully modeled using an ARMA(5, 1) process. 
Since there existed more APs experiencing LOS conditions 
for the path AB as opposed to path BA, it is unsurprising that 

strong autocorrelation of the CCCs for path AB was noticed 
for a longer time lag, thus resulting in a larger AR order. It is 
noted that the residuals of a small number of AP pairs (< 10% 
overall) failed the Ljung-Box test at both CIs. 

Now considering the collected CPI time series, the mini­
mum AICc scores of the fitted ARIMA model were obtained 
when the values of p and q did not exceed 10 and 20, 
respectively. Therefore, we explored ARIMA models with 
p ≤ 10 and q ≤ 20 for the localized CPI time series data. 
It was found that the p and q values of the optimal ARIMA 
model fit varied, depending on which AP pair was being 
considered. It is worth remarking that the residual time series 
of some AP pairs (≈ 50% overall) failed the Ljung-Box test 
at both CIs across the number of lags K ranging from 30 
to 40 (recall that the degree of freedom for the Ljung-Box 
test, i.e., K − p − q, has to be positive). Moreover, it was 
observed that approximately 30% of the AP pairs failed the 
Ljung-Box test at the CI of 95% for most lags K between 30 
and 40 but passed at the CI of 99%. To provide some further 
insights into the residual diagnostics, an example of the first 
200-lag normalized ACF and PACF of the residuals obtained 
for the rS (t) and C(t) between AP5 and AP9 are provided in 
Figure 4. The corresponding estimated 95% and 99% CIs are 
also shown. Although the autocorrelations of a few time lags 
appear to be consequential, the normalized ACF and PACF of 
most time lags still lay within the CIs in Figure 4. Additionally, 
comparing the normalized ACF and PACF plots in Figures 4(a) 
and 4(b) with Figures 4(c) and 4(d), it is clear that the residuals 
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TABLE I
 
ARMA COEFFICIENTS AND THE VARIANCE OF THE RESIDUALS FOR THE CCCS BETWEEN AP5 AND AP9 FOR PATHS AB AND BA
 

Path ARMA Filter Coefficients 
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 θ1 var(εt) 

AB 2.039 −1.252 0.062 0.312 −0.237 0.132 −0.087 0.052 −0.022 −0.005 2.2×10−5 

BA 2.870 −3.339 2.075 −0.720 0.114 −0.173 2.0×10−6 

Fig. 5. Empirical and in-sample forecast CCC and CPI time series (first 10,000 samples) between AP5 and AP9 along with the expanded section between 
the sample index of 4,000 and 4,100: (a) CCCs of the path AB, (b) CPI of the path BA. 

TABLE II still observed from the expanded section. Therefore, several 
SELECTED ACCURACY MEASURES FOR THE ARMA AND ARIMA commonly used accuracy measures were employed to quantify 

MODELS IN-SAMPLE FORECAST OF THE SHORT-TERM rS (t) AND C(t) the in-sample forecast errors. The accuracy measures are now BETWEEN AP5 AND AP9 FOR PATHS AB AND BA 
discussed below. 

Path MAE RMSE MPE MASE 

rS (t) 
AB 1.1×10−3 4.7×10−3 0.25% 0.37 
BA 9.1×10−4 1.5×10−3 −0.07% 0.39 

C(t) 
AB 3.4×10−3 4.5×10−3 0.03% 0.21 
BA 3.2×10−3 4.1×10−3 0.02% 0.18 

after the ARIMA fitting exhibit stronger autocorrelations than 
those after the ARMA fitting. Hence more AP pairs were 

Let h(t) and ĥ(t) denote the empirical and in-sample 
forecast data at the time instant t, respectively, then the mean 
absolute error (MAE) can be defined as 

n 
h(t) − ĥ(t)t=1 

MAE = , (6) 
n 

where n represents the sample number of the empirical and 
in-sample forecast data. 

The root-mean-square error (RMSE) between the empirical 
h(t) and in-sample forecast ĥ(t) can be defined as 

observed to fail the Ljung-Box test after the ARIMA modeling 
for the CPI time series. Nonetheless, the models still provided 
a very good fit to the data as demonstrated in the sequel. 2 

n 
h(t) − ĥ(t)t=1Due to space limitations, we do not report the ARMA and 

ARIMA coefficients for the CCCs and CPI of all AP pairs. RMSE = . (7) 
n 

However, an example of the ARMA coefficients along with The mean percentage error (MPE) is defined as the com-
the variance of the residuals for the CCCs of AP5 and AP9 puted average of percentage errors by the forecast samples of 
for both paths are presented in Table I. To further validate a model differing from observed values, and can be expressed 
the ARMA and ARIMA model fitting, using the empirical as
rS (t) and C(t) data as well as the corresponding ARMA and h(t) − ĥ(t)

. (8)
h(t) 

Nn
nC(t) time series data, or so-called in-sample forecast time t=1

series, were reconstructed. An example of the first 10,000 

ARIMA coefficients as inputs, the fitted short-term rS (t) and 100%
MPE = 

The mean absolute scaled error (MASE), which is deter-
empirical and in-sample forecast CCC and CPI time series data 
between AP5 and AP9 is presented in Figure 5. An expanded 

mined by the MAE of the forecast divided by the MAE of the 
in-sample one-step naive forecast [34], is given as 

section between the sample indexes of 4,000 and 4,100 is also 
provided. From Figures 5(a) to 5(b), it can be seen that the in-
sample forecast CCCs and CPI typically achieved an excellent MASE = 

n 
h(t) − ĥ(t)n − 1 t=1 

nmatch with the empirical CCCs and CPI (even if the residual 
, (9)n |h(t) − h(t − 1)|t=2 

series failed the Ljung-Box test at both CIs, such as the case a MASE value of larger than one implies that the actual in-
in Figure 5(b)). Nevertheless, some slight forecast errors were sample forecast performs worse than a simple naive forecast, 
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Fig. 6. The RSS of the first 400 samples (equivalently 0.2 s) at AP5 and AP9 along with the SC output, EGC output, and MRC output: (a) path AB, (b) 
path BA. 

while a value of MASE less than one indicates that the in-
sample forecast outperforms the naive forecast. The selected 
accuracy measures for the ARMA and ARIMA models in-
sample forecast of the short-term rS (t) and C(t) between 
AP5 and AP9 for both mobile paths are presented in Table 
II. It can be clearly seen from Table II that compared to
the empirical observations for rS (t) and C(t), the in-sample
forecast achieved a very high accuracy, e.g., in the case of the
C(t) time series estimation, the MPE of the paths AB and
BA was only 0.03% and 0.02%, respectively. Furthermore,
the MASE of the in-sample forecast of rS (t) was 0.37 and
0.39 for the paths AB and BA, indicating that the ARMA(9,
1) and ARMA(5, 1) models provided a much better in-sample
forecasting performance than the naive forecast, thus verifying
the feasibility of our ARMA modeling approach.

V. DIVERSITY GAIN 

Three types of diversity combining technique, namely SC, 
EGC, and MRC, were considered to combine the signal 
received at the APs forming the mmWave DAS. SC is a 
switched combining technique that selects the AP with the 
highest RSS at each sample interval [35]. For an M -AP DAS 
which utilizes SC, the signal envelope at the output, LSC(i), 
can be written as 

LSC(i) = max X1(i), X2(i), · · · , XM (i) , (10) 

where XM (i) is the signal envelope of the ith sample at the 
M th AP of the DAS. 

EGC considers the case where the channel gains of different 
APs are equal. Following this, an equal-gain combiner simply 
assigns an equal weight to the signal envelope observed at each 
AP [35], thus the instantaneous sample output of an M -AP 
EGC DAS can be written as 

X1(i) + X2(i) + · · · + XM (i)
LEGC(i) = √ . (11)

M 

Unlike the EGC approach, MRC is performed by weighting 
the sampled signal of each AP with respect to its own instan­
taneous SNR. If we assume the noise is uncorrelated with 

the received signal at each AP location and the noise power 
is equal to unity for all the utilized APs, the instantaneous 
sample output of an M -AP MRC DAS can be expressed as 

LMRC(i) = X2(i) + X2(i) + · · · + X2 (i). (12)1 2 M 

An important performance metric in the context of diversity 
combining is diversity gain. For a macro diversity system such 
as a DAS, it is defined as the difference between the signal 
level of a target AP and that received at the output of the 
DAS for a given signal reliability [36]. Following the studies 
conducted in [18] and [36], in this work the diversity gain 
was evaluated at a signal reliability of 90%. Similar to the 
computation of the localized CCC and CPI, we computed the 
localized diversity gain by considering a moving window of 
length N applied to the recorded data. Within each window, 
we combined the raw RSS from the relevant APs on a sample 
by sample basis using the appropriate combining scheme. For 
each realization of the moving window, we then calculated the 
diversity gain as described above. This process was repeated 
as the window of length N was moved across the recorded 
data to obtain the localized diversity gain time series. To keep 
our analysis of the localized diversity gain consistent with that 
for the localized CCC and CPI, N was set equal to 400. 

To visually check the improvement associated with the use 
of each of the combining techniques, an example of the output 
from a dual-AP DAS (AP5 and AP9), considering the first 
400 samples, is shown in Figure 6. It can be seen from Figure 
6(a) and Figure 6(b) that, for both mobile paths, when one of 
the APs suffered from deep fading caused by shadowing and 
blocking, the other AP typically experienced better channel 
conditions thus offering the opportunity to exploit the spatial 
diversity offered by the mmWave DAS. The corresponding 
empirical cumulative distribution functions (CDFs), which 
illustrate the improvement in the signal reliability achieved 
using a dual-AP indoor DAS, are provided in Figure 7. It 
can be seen from Figure 7(a) and Figure 7(b) that, compared 
to using only the target AP, the dual-AP DAS significantly 
improved the received signal reliability performance for both 
paths, e.g., the localized EGC gains were 6.7 dB and 11.3 dB 
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(a) (b)

Fig. 7. Empirical CDFs of the 60 GHz indoor macro diversity system considering the first 400 samples (equivalently 0.2 s) of the RSS at AP5 and AP9: (a) 
path AB, (b) path BA. Note that all CDFs are relative to the mean of the first 400 samples of the RSS at AP5. 

for the paths AB and BA, respectively. It is also interesting 
to note that for the first 400 samples (equivalently 0.2 s), the 
values of the localized diversity gains for path BA were found 
to be larger than those for path AB, e.g., the localized SC 
gain was 10.2 dB for the path BA, while the localized SC 
gain was only 5.9 dB for the path AB. A possible reason for 
this can be deduced from Figure 1. More precisely, when the 
user started moving along the path BA, the distance between 
the UE and AP9 was much smaller than that between the UE 
and AP5, meaning that the RSS values at AP9 were generally 
larger than those at AP5 (see Figure 7(b)). 

Even though it has been demonstrated that simply using a 
dual-AP DAS can lead to considerable improvements in the 
signal reliability, it is still useful to explore the potential for 
further enhancements that can be achieved by using an even 
greater number of APs. This is a typical consideration often 
associated with macro diversity systems, and is commonly 
referred to as the base station (BS) or AP selection problem 
[37], [38]. It is especially important at mmWave frequencies 
since a dense deployment of APs is desirable to mitigate the 
effects of high path loss and possible LOS blockages. Another 
factor which must be taken into account when considering 
macro diversity systems such as DAS relates to the additional 
signal processing which must be performed to combine the 
information received at multiple APs. This typically requires 
additional hardware and the burden of handling coordination 
between APs, which can lead to increased power consumption 
[39]. In the sequel, we consider three different AP selection 
mechanisms which have been proposed for use in future 
mmWave DAS deployments [22], [23]. We compare their 
performance in terms of the diversity gain that can be achieved 
when considering different numbers of APs. The AP selection 
mechanisms are now listed as follows: 

•	 Per-sample random AP selection [22]: As the name 
suggests, an AP is selected randomly at each sample 
interval. This is the simplest AP selection mechanism 
because the random AP selection does not require any 
RSS information. For a fixed number of APs (M ), the 

gain, denoted as GRS, can be written as 
U TNN1 

GRS = G(u, t), (13)
UT 

u=1 t=1 

where U represents the number of possible AP pairs forf aa
Ofixed value of M , and U can be calculated as CO = M M 

(here C is the combination operator and O denotes the 
maximum number of APs). Besides, T represents the total 
sample number of the collected localized diversity gain 
time series, i.e., G(u, t). 

•	 One-shot AP selection [23]: One-shot AP selection is 
achieved by persisting with the connections established 
between the UE and APs in the first time slot. During 
the first time slot, the UE simply selects the AP pairs that 
can achieve the maximum localized diversity gain. This 
means the UE will communicate with the same APs for 
the remaining time slots and can not choose other APs. 
This AP selection mechanism is more complex than the 
per-sample random AP selection in terms of the signal 
processing since a computation of CO is required toM 
select the one-shot AP pairs. The mean localized one-shot 
AP selection gain, denoted as GOS, can be expressed as 

TN1 
GOS = arg max G(u, t). (14)

T O
Mu∈[1,C ]t=1 

t=1 

•	 Per-sample optimal AP selection [23]: This is the most 
complex and optimal approach. Under this scheme, opti­
mal matching between the UE and APs is determined 
by choosing the AP pairs that achieve the maximum 
localized diversity gain in each time sample. Under this 
scheme, it is entirely possible that the UE could connect 
to different AP pairs in each sample interval. An overall 
computation of CO · T is needed in order to obtainM 
the per-sample optimal gain performance. The mean 
localized per-sample optimal AP selection gain, denoted 
as GOPT, can be written as 

TN1 
GOPT = arg max G(u, t), (1 ≤ i ≤ T ). (15)

T O
Mu∈[1,C ]t=1mean localized per-sample random AP selection diversity 

t=i 
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Fig. 8. The impact of using increasing numbers of mmWave APs on the 
mean localized diversity gain for the path AB (solid) and BA (dashed): (a) 
per-sample random AP selection, (b) one-shot AP selection, (c) per-sample 
optimal AP selection. 

In this work, the value of O was 9, since 9 mmWave APs 
were deployed in the DAS. Correspondingly, M was varied 
from 2 to 9. Additionally, the values of T were set to be 
16891 and 18079 (i.e. the total number of samples within the 
collected localized diversity gain time series) for the paths AB 
and BA, respectively. The impact of using increasing numbers 
of mmWave APs and different AP selection mechanisms on 
the mean localized diversity gain for the paths AB and BA are 
shown in Figures 8(a) to 8(c). As expected, for a fixed number 
of mmWave APs, the per-sample random AP selection always 
performed worst, while the per-sample optimal AP selection 
provided the best performance for both of the considered mo­
bile paths, e.g., when M = 5, for the path AB, the value of SC 
GRS was only 8.1 dB (Figure 8(a)), while the corresponding 
values of the SC GOS and GOPT were 9.4 dB and 11.1 dB 
(Figure 8(b) and Figure 8(c)), respectively. This observation 
is the result of the per-sample random AP selection simply 

choosing AP pairs randomly while ignoring the instantaneous 
feedback contained within the RSS information. Conversely, 
the per-sample optimal AP selection updates the AP selection 
by choosing the AP pairs with the maximum localized gain 
per sample interval. 

Furthermore, for the one-shot and per-sample optimal AP 
selection mechanisms, the diversity gain improvements were 
observed to ‘saturate’ with the increasing numbers of mmWave 
APs. For instance, for the one-shot AP selection mechanism in 
Figure 8(b), when M is increased from 3 to 6, the EGC GOS 
for the path AB increased from 6.1 dB to 11.7 dB. Meanwhile, 
when M was further increased from 6 to 9, the EGC GOS for 
the path AB only slightly increased from 11.7 dB to 12.3 dB. 
A similar phenomenon was also observed in the per-sample 
optimal AP selection mechanism (Figure 8(c)). This was due 
to the fact that with an increasing number of mmWave APs, 
values of the localized CCC and CPI between different AP 
locations also unavoidably increase, thus providing a ceiling 
for the DAS diversity gain improvements [18]. 

Most importantly, from the mean localized diversity gain 
plots provided in Figure 8, we can identify the optimal number 
of APs for each selection mechanism. For instance, for the 
per-sample random AP selection in Figure 8(a), it can be 
observed that up until M = 6, significant improvements in 
the diversity gain are achieved for all the combining schemes. 
Although after this point, improvements in the diversity gain 
were not as significant as subsequent APs were added to the 
system. Similar to the per-sample random AP selection, the 
greatest improvements in the diversity gain for the one-shot 
AP selection were observed for successive additions of the 
APs until M = 6 (Figure 8(b)). After this, the value of 
GOS only marginally increased for both mobile paths, e.g., 
when M increased from 6 to 9, the MRC GOS for the path 
AB only increased from 13.5 dB to 14.8 dB (i.e., a 1.3 dB 
improvement). Considering the extra system complexities in­
troduced by including additional mmWave APs, using 6 APs 
appears to provide the optimal diversity gain performance 
for the one-shot AP selection mechanism. Compared to the 
previous two AP selection mechanisms, as shown in Figure 
8(c), the GOPT converged to its optimal values at a much faster 
rate for both paths AB and BA. This behavior is particularly 
noticeable for the SC and MRC schemes for M > 4. The 
reason for this is that the per-sample optimal AP selection 
evaluates the connections among different AP pairs during 
the sample interval, thus the same favorable AP pairs will 
always be chosen within a specific time and increasing the 
number of mmWave APs simply adds additional ‘noisy’ APs 
to the previously selected ‘optimal’ AP pairs. This can be 
further verified for the EGC technique when M was larger 
than 4. Here the values of GOPT were discovered to actually 
decrease since EGC assigns the same weight to each of the 
APs regardless of the individual link’s quality, e.g., when 
M increased from 4 to 9, the values of GOPT for the path 
AB decreased from 13.1 dB to 12.3 dB. When considering 
the tradeoffs encountered between processing overhead and 
achievable diversity gain, EGC appears to offer the best overall 
performance. Not only did the EGC scheme perform better 
than the SC scheme (see Figure 8(a) to Figure 8(c)), it 
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also requires less processing overhead compared to the MRC 
scheme (due to the fact that in MRC, the weight assigned 
to each AP has to be constantly updated by monitoring the 
simultaneous RSS observed at various AP locations [35]). 

VI. CONCLUSION AND FUTURE WORK 

Prior to the successful deployment of DASs, it is necessary 
to understand many of the factors related to signal propagation 
which can affect system performance. To this end, we have 
empirically studied the signal received from a hypothetical UE 
operating at 60 GHz in an indoor environment by 9 ceiling-
mounted APs. In particular, we characterized a number of the 
key metrics governing the performance of DASs such as the 
cross correlation, channel power imbalance and diversity gain 
using a range of time series tools. Our results have shown 
that the distribution of the CCCs between various AP pairs 
was well described by a Gaussian distribution with µ = 0 and 
σ varying between 0.1 and 0.2. Additionally, when compared 
to NLOS scenarios, the existence of LOS and QLOS signal 
paths produced higher CCCs values with increased spread. 

Applying ARMA models to the CCC time series, it was 
found that processes of order ARMA(9, 1) and ARMA(5, 
1) could be used to satisfactorily model the evolution of the 
CCC for paths AB and BA (representing two opposite mobile 
directions), respectively. Similar to the CCC, the presence of 
LOS and QLOS signal paths induced higher CPI values. As 
the CPI typically displayed non-stationary statistical charac­
teristics, it was necessary to model the CPI process using an 
ARIMA model. For this purpose, it was found that the CPI 
time series could be adequately modeled and predicted using 
an ARIMA(p, 2, d) process, with p ≤ 10 and q ≤ 20. The 
validity of the ARMA and ARIMA models was examined by 
visually checking the ACF and PACF of the acquired residual 
series, using the Ljung-Box test as well as a comparison of 
the CCC and CPI time series in-sample forecast and those of 
the experimental results. Despite failing the Ljung-Box test for 
≈ 50% of the considered cases, the resultant normalized ACF 
and PACF across most time lags was observed to fall within the 
CIs of 95% and 99%. Furthermore, the in-sample forecast (and 
associated error measures) have shown that ARIMA models 
can still be used to provide an adequate prediction of the CPI 
time series evolution. 

Lastly, we considered three diversity combining techniques 
(SC, EGC and MRC) along with three AP selection mecha­
nisms for use in mmWave DAS. It was found that the per-
sample optimal AP selection provided the highest diversity 
gains albeit at the cost of additional computations. Most no­
tably, based on the diversity gain results, it was ascertained that 
utilizing greater numbers of mmWave APs generally provided 
a better performance for the per-sample random AP selection 
mechanism, while the performance improvements beyond a 
certain number of mmWave APs became restricted for the 
one-shot and per-sample optimal AP selection mechanisms. It 
was shown that a 6-AP with one-shot AP selection and 4-AP 
with per-sample optimal AP selection mmWave DAS should 
provide satisfactory diversity gain improvements. Additionally, 
the EGC scheme was observed to provide a better performance 

than the SC scheme, with less complexity compared to the 
MRC scheme. 

Although some promising results have been obtained for the 
use of mmWave DASs, several open research topics remain 
which should be explored in the future work. For example, 
in this work we considered a single mobile user imitating 
a voice call application within an unoccupied indoor office 
environment. In the future, the measurement scenarios could 
be extended to consider other daily UE use cases, e.g., using a 
messaging application or simply considering when the UE is 
carried in a pocket or bag. Further investigations should also 
take into account other factors which could affect the system 
performance such as the presence of other people within the 
indoor environment. Other switched combining techniques, 
e.g., switch-and-stay and switch-and-examine combining [36], 
[40], should be explored and the associated performance 
metrics analyzed for future mmWave DAS deployments. 
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