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ABSTRACT 
 

Can a single, cohesive framework be designed for the purpose of converting any set 

of historical, architectural descriptions into a digitally modelled format? 

To address and exemplify this question, this study provides a set of novel and 

technical methods capable of converting a set of architectural writings – namely, 

Vitruvius’ De Architectura – into an understandable set of procedural and 

grammatical rules that could then be incorporated into an application, providing a 

navigable digital model of a prototypical Roman city.  

Different approaches were taken for the various elements of the generated city. A 

weighted formula was designed for the purpose of citing a city location upon a 

heightmap, incorporating factors like the distance to the nearest body of water and 

the gradient of the land. Three methods of situating generic structures within a city 

were proposed, including a probability distribution method that assigned buildings 

to districted allotments with a flexible degree of randomness. 

For the generation of the building architecture, a novel formal grammar syntax was 

devised, capable of describing shapes in a deterministic and technical fashion. The 

grammar made use of superscripts preceding symbols for the purpose of notating 

conditional rules, and superscripts and subscripts following symbols for the purpose 

of adding attributes to said symbols. In this way, architecture was described using 

grammar rules in a way that would be impractical or outright impossible through 

the use of traditional grammar syntax. 

The results produced by the application were deemed to be reasonably accurate. 

Slight discrepancies could be found between the architecture produced by the 

application and the architecture described by Vitruvius, but this was attributed more 

to the inaccuracies that arise from the transcription process than to errors caused by 

the grammars themselves. 

The formal grammar syntax devised for the purpose of describing architecture was 

deemed to be effective for its purpose. Some cases of ambiguity and inconsistency 

were acknowledged, and suggestions were made for future improvement, but the 

syntax was largely considered to be suitable for its intended purpose of describing 

historical architecture in a technical and legible manner.  
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Centuriation – The Roman method of surveying the land and dividing it into a 

regular grid. 

Cloister – An open space, surrounded by covered galleries. 

Colonia – A designation for a Roman city of particular importance. 

Colonnade – A row of columns. 

Corinthian order – One of the classical orders of Roman columns. Notable for its 

ornate, leaf-adorned capital. 

CR – City Radius. 

De Architectura – “On Architecture” or “Ten Books on Architecture”. This is the 

architectural manual written by Vitruvius. 

DFC – Distance From city Centre. This is a measurement from a building’s 

centrepoint to the designated city centrepoint. 

Diastylos – A style of intercolumniation where columns are three diameters apart. 

Doric order – One of the classical orders of Roman columns. Notable for its plain 

capital, and its relatively thick diameter. 

Eustylos – A style of intercolumniation where columns are two-and-a-quarter 

diameters apart. 

Forum – An open gathering space at the centre of a Roman city. 

Insula – An apartment building or block.  

Ionic order – One of the classical orders of Roman columns. Notable for the use of a 

capital that features a volute, a spiral pattern. 

Orchestra – The low floor of a theatre or amphitheatre, usually containing seats for 

the senators and nobles. 

Portico – The front porch of a building, usually featuring a colonnade. 

Pycnostylos– A style of intercolumniation where columns are one-and-a-half 

diameters apart. 

Systylos– A style of intercolumniation where columns are two diameters apart. 

Triclinium – The formal dining room of a Roman house. 
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1 INTRODUCTION 
 

1.1 INTRODUCTION 

 

Procedural generation, the algorithmic generation of digital content, is a subject of 

increasing importance in the field of computer graphics. When a digital asset cannot 

be reasonably created manually, either due to the asset’s complexity or due to a 

limiting time factor, then procedural techniques are employed. 

Urban environments are one type of content where this is often the case. When a 

large number of varied building models are needed to fill a digital space, then shape 

grammars, split grammars, or Lindenmayer Systems may be employed to instantly 

fill the area with procedural content. 

In the field of historical preservation, procedural techniques are often employed for 

the purpose of digitally recreating artefacts and architecture. Incomplete information 

retrieved from Photogrammetry and LiDAR data may require extrapolation via 

procedural techniques to form a complete digital model. Additionally, if there are 

not enough physical remains for a photogrammetric analysis, then models may be 

created based upon the writings of modern archaeologists, or historians of the era. 

There is therefore a need for a defined formal grammar that can be utilised for the 

purpose of converting the guidelines and measurements laid out by historians into a 

standardised, mathematical notation, which can then be readily modelled and 

rendered procedurally by a program. There have been previous attempts in the field 

of procedural generation to convert recorded historical data into shape grammars, 

most notably by Mueller et al. (Mueller, et al., 2006) and by Yong et al. (Yong, et al., 

2012). However, the focus has typically remained on the underlying procedural 

techniques themselves, rather than the formation and implementation of the shape 

grammars. 

Therefore, the purpose of this thesis is to document the process of converting 

historical writing into descriptive formal grammars, and to then document the 

process of rendering the grammars as digital models within a computer application. 

The writings of Roman scholar Vitruvius are used to both test the system, and to 

illustrate its results. In particular, the architectural manual known as De 

Architectura, or Ten Books on Architecture, is the predominant focus of the study. 

Throughout the thesis, we collectively refer to this assortment of grammars and 

methodologies as a framework. We aim to design the framework with De 
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Architectura specifically in mind, but also pay consideration to the broader 

possibilities of what may be required by a future user or developer of such a 

framework.  

With this context in mind, we attempt to address an overarching question: can a 

single, cohesive framework be designed for the purpose of converting any set of 

historical, architectural descriptions into a digitally modelled format? 

 

1.2 AIMS AND OBJECTIVES 

 

The primary aim of this research is to provide a novel method of adapting technical 

descriptions of architecture into sets of grammatical rules and procedural techniques 

for the purpose of procedurally generating digital models. The methods by which 

these rule-sets can be implemented into a computer application, collectively labelled 

as our framework, are to be explained in detail. 

The secondary aim of the study is to create a historically accurate digital 

representation of Vitruvian Greco-Roman architecture using the aforementioned 

grammar framework. The completed digital model can then be rendered, navigated, 

and measured in order to provide a testable analysis of the grammar rules’ technical 

accuracy. 

In order for these aims to be successfully fulfilled, a set of specific objectives must 

first be described. 

The first objective is to provide a set of procedural methods, functions, or techniques 

that are capable of describing various details of an urban environment. These details 

include the location and size of a city, the road structure, and the location of various 

buildings within the city limits. 

The second objective is to provide a method of defining the building architecture 

itself, in the form of a formal, context-free grammar. There are several criteria that 

the grammar must meet in order for the grammar to be considered suitable. 

1. The grammar must be specific and precise. 

2. The grammar must be flexible enough to encompass a wide variety of 

architecture. 

3. The grammar must be free of ambiguity in order to make certain that the 

output results are deterministic. 

4. The grammar ought to be comprehensible on a human level. This not only 

ensures that architectural rules can be properly written in the first place, but 
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also ensures that the rules can be read, understood, and adapted by others if 

needed. 

The third objective is to use the constructed grammar framework to interpret the 

various architectural instructions written by Vitruvius, or other Roman historians 

and scholars where appropriate. Numerous pieces of Roman architecture must be 

converted into grammar rule-sets in order to create an abstract mapping of a 

prototypical Roman city. 

The fourth objective is to describe the process of converting the procedural rules and 

grammar framework into a digitally modelled city. This creates two desired pieces of 

output: a digital city model file, and an encapsulating application that demonstrates 

the modelled city in a navigable and intuitive fashion. 

The success of the system is tested by comparing the modelled, rendered results with 

technical drawings of Vitruvius’ rules, and with real-world examples of the applied 

architecture. If the dimensions of the procedurally generated models and the 

historical examples can be said to be reasonably similar, then the implemented 

formal grammar can be described as historically accurate. If there are notable 

differences between the rendered results and the selected examples, then an analysis 

can be made of what caused the discrepancy. 

Similarly, the chosen methods of siting a city and distributing the buildings can be 

tested by drawing comparisons between the output results and comparable historical 

measurements. In the instance of an inconsistency, a descriptive analysis can be 

made to assess exactly what caused the model to deviate from the historical record. 

To gauge whether the overarching research question has successfully been answered, 

we must make an honest assessment of the extent to which the above aims and 

objectives have been fulfilled. If the aims have been met, as evidenced by a complete 

and cohesive framework, and by a functional model of a Vitruvian city, then it 

would be reasonable to suggest that the underlying framework has been successfully 

designed and implemented. 

 

1.3 ASSUMPTIONS AND LIMITATIONS 

 

It ought to be noted that the framework, the application, and the grammars 

described within this thesis are not intended to be all-encompassing solutions to the 

problems currently being faced in the field of procedural generation. To clarify this, 

and to properly contextualize the thesis, we have created a list of assumptions and 

limitations, detailing what lies inside and outside of the project’s scope. 
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1. The subject matter of this thesis is architecture and elements of digital city 

models that directly pertain to architecture. Consequently, little attention is 

paid to the procedural generation of natural features, grass textures, and 

other superfluous elements of the landscape. Nonetheless, the procedural 

generation of these features is referenced under section 2.2, History of 

Procedural Generation, for the purpose of comprehensiveness. 

2. We do not address the possibility of using intelligent agents to populate the 

digital city model. Although interesting in its own right, such an inclusion 

would not contribute to our outlined aims and objectives. 

3. We examine previous contributions to the field of procedurally generated 

architecture in section 2.3, and provide a further critical analysis in section 

2.4, culminating with a direct comparison in Table 1. We made the effort to be 

as thorough as possible, but we must acknowledge the possibility that a few 

notable contributors to the field have been unintentionally excluded. 

4. Particular sections of Vitruvius’ De Architectura are given limited attention, 

or are not addressed at all within the context of this thesis. These instances 

are denoted in their relevant sections throughout the thesis, but a further 

elaboration of the missed content can be found under section 5.3, Project 

Limitations.  

5. The Implementation section of this thesis serves to document the process by 

which Vitruvius’ rules are adapted into a digitally modelled format. Due to 

the nature of the research question, many subsections under this header can 

be read as both a methodology of our attempts to adapt a set of rules, and as 

a demonstration of the results. This is particularly the case with section 3.2.5, 

where defining the shape grammars of various structures functions as a 

demonstration of the shape grammar’s success whilst still being just one stage 

of the architecture digitization process. 

 

1.4 BREAKDOWN OF THE THESIS 

 

Chapter 2 illustrates the background, which has been split into several sub-sections. 

The first section, History of Procedural Generation, covers the broad scope of 

procedural techniques, from the early roots of Leibniz’s fractal-like shapes, to the 

more modern applications. This paints a background of the context behind digital 

city generation, and gives an overview of some of the procedural techniques that are 

referenced throughout the project. 

Section 2.3, Procedural Generation of Urban Environments, is a more in-depth 

examination of some of the techniques that have been used for the creation of digital 
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cities. Particular attention has been given to attempts to procedurally recreate 

historical architecture. 

Section 2.4, the final part of the Literature Review, is a comparison of the techniques 

covered under the aforementioned Procedural Generation of Urban Environments 

subsection. The realism, efficiency, and limitations of each technique are discussed, 

and current gaps in the field are highlighted and evaluated. 

Chapter 3, the Implementation section, is a detailed and technical explanation of how 

the procedural rules were devised, and how the proposed application was created. 

Due to the broadness of the application, it has been split into multiple subsections. 

Section 3.1, Language and Graphics Library Decisions, explains the technical 

considerations that had to be made prior to the development of the application. 

Reasons are given for the choice of programming language and graphical library. 

Section 3.2, Generation Engine, explains the methods used to adapt the writings of 

Vitruvius into procedural rules. Sections 3.2.1 through 3.2.4 systematically explain 

the procedural methods employed to adapt the various aspects of a Vitruvian city 

into digital form. Section 3.2.5 contains an account of the thought process behind the 

development of our proposed novel shape grammar syntax for the procedural 

generation of the historical architecture itself, followed by descriptions of our 

attempts to convert several archetypical Vitruvian structures into this syntax. 

Section 3.3, Rendering Engine, describes the process of developing the application 

that encapsulated the procedural rules outlined in section 3.2. The steps taken to 

produce a DirectX model file from raw vertex data are described, and a brief 

explanation is given of the aesthetic and navigation development choices for the 

application itself.  

Chapter 4, Results, demonstrates the output of the application. Sets of specialised 

renderings have been made in order to illustrate the various aspects of the project, 

and where possible technical comparisons are made to architectural drawings or 

real-life photographs. 

Chapter 5, Conclusion and Evaluation, provides an overview of the observations, 

conclusions, and analyses that can be drawn from the data and rendered images in 

the Results section. We also offer a discussion of what has and has not been achieved 

within the confines of the project, and the potential for future work is discussed. 

The final chapter, the Appendix, provides several pieces of code that we consider to 

be integral to the application. Section 7.1 contains CityMain.cpp, the “main” C++ 

code file that handled various aspects of the generation and rendering process. 

Section 7.2 contains BuildCity.cpp, the implemented form of the building shape 
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grammars described in section 3.2.5. Sections XFilePart1.txt7.3 and 7.4 are two key 

pieces of .X format code that are used in the creation of digital model files, as 

explained in section 3.3.1.  
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2 LITERATURE REVIEW 
 

2.1 INTRODUCTION 

 

As technology has evolved over the past century, there has been an increasing desire 

to push the boundaries of computer graphics, resulting in the production of 

increasingly complex digital models and renderings. The expansion of the special 

effects, film, videogame, and computer-aided design industries has contributed to a 

rising demand for a high level of realism in the field of computer graphics, especially 

with regard to three-dimensional (3D) digital models. 

Traditionally, these digital models would be created manually, often programmed or 

sculpted on a polygon-by-polygon basis. However, as the complexity of models has 

increased, the scale of production grew proportionally. Consequently, the creation of 

high-quality digital assets now requires the skills of a team of modelling artists, 

texture artists, and animators. This is both costly and time-intensive, and as such 

there is a high barrier of entry for new companies attempting to break into any 

market that requires digital model assets.  

Virtual buildings and cities are no exception to this problem. The creation of 

modelled cities has been an important and challenging aspect of creative industries. 

However, manual generation of large urban environments is time-consuming and 

tedious work, due to the repetitive yet varied nature of buildings and street layouts 

(Groenewegen, et al., 2009). As such, manually crafting a detailed replica of a city 

may require hundreds of man-hours of work. 

One solution to this artistic and economic barrier is the use of procedural modelling 

techniques. In the past, procedural generation has been used for the purpose of 

automating the production of textures (Rhoades, et al., 1992), for the creation of trees 

and other self-similar structures (Oppenheimer, 1986), and for the creation of 

heightmaps that can be rendered as landscapes. More recently, combinations of 

procedural modelling techniques have been used for the purposes of creating 

populated, dynamic digital worlds. For these reasons, procedural techniques are 

often employed that make use of programmed rules to design aspects of cities 

automatically. The purpose of a procedurally generated environment is vital to how 

it is designed, and as a result the scope, detail, and interactivity of cities vary 

between projects. 
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2.2 HISTORY OF PROCEDURAL GENERATION 

 

2.2.1 FRACTALS 

 

In the 17th century, mathematician Gottfried Leibniz documented his thoughts on 

self-similar and recursive shapes, which he labelled “fractional exponents” (Trochet, 

2009) (Mandelbrot, 1982) . Two centuries later, other scholars like Karl Weierstrass 

and Georg Cantor extended Leibniz’s work by producing branching and self-similar 

data sets that closely resemble what would later be classified as fractals (Trochet, 

2009). 

In 1904, dissatisfied with the abstract and “purely analytic” representations of 

fractals produced by his predecessors, Swedish mathematician Helge von Koch 

geometrically constructed a von Koch curve, and consequently the Koch snowflake 

(Koch, 1904) (Addison, 1997). The Koch curve was significant for demonstrating that 

non-tangential functions could be rendered using “elementary geometry”, which 

helped bring together the geometric and analytic areas of mathematics that were 

traditionally kept separate (Trochet, 2009). 

In 1918, German mathematician Felix Hausdorff devised a key concept that extended 

the previous definition of dimensions in the context of topology and set theory, His 

work consequently led to the concept of fractal sets that exist in non-integer 

dimensions (Hausdorff, 1972) 

At the same time Haudorff came up with his concept, two French mathematicians, 

Gaston Julia and Pierre Fatou, independently arrived at very similar results. They 

both studied the mapping of complex numbers and iterative functions, which led to 

the idea of attractors and repellors – points that attract and repel other points within 

a dynamical system (Lesmoir-Gordon, et al., 2000). Due to the limitations in 

technology, both Fatou and Julia could only produce what they could draw by hand. 

In 1967, Benoit Mandelbrot wrote an essay, “How Long Is the Coast of Britain? 

Statistical Self-Similarity and Fractional Dimension” (Mandelbrot, 1967). In this 

Figure 1: Progression of an iteratively-drawn Koch snowflake 
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paper he linked the ideas proposed by previous mathematicians with the 

measurements of coastlines, and proposed that the abstract concept of self-similar 

shapes and more observable natural phenomenon like coastline lengths were not so 

different. 

However, it was not until later in the 20th century where the term ‘fractal’ was 

coined by Mandelbrot. Using computer simulations, Mandelbrot managed to render 

self-similar patterns in ways that were impossible for Fatou and Julia (Mandelbrot, 

1982). By making use of the advances in graphics rendering technology, Mandelbrot 

was able to produce visual representations of sets, which helped form his 

Mandelbrot set and its accompanying fractal image. The fractal shape is created by 

parsing a complex number through a formula, and changing the rendering output if 

the result remains bounded . 

 

The Mandelbrot set is self-similar when magnified up to a certain point. Tan Lie 

proved it was “asymptotically similar to Julia sets near any point on its boundary” 

(Lesmoir-Gordon, et al., 2000). 

Today, nearly all fractal studies are all computer-based due to the complex nature of 

the shapes involved (Pickover, 2009). The groundwork laid by fractal 

mathematicians has proved to be of utmost importance in the field of computer 

graphics and procedural generation. 

 

 

 

 

Figure 2: Example of a fractal representation of the Mandelbrot set. (Wikimedia Commons) 
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2.2.2 L-SYSTEMS 

 

In 1968, Biologist A. Lindenmayer devised the formal grammar known as L-systems 

for the purpose of documenting the growth and interaction of cellular organisms, 

such as bacteria and algae (Lindenmayer, 1968). The system functions by taking an 

initial object, known as an axiom (ω), and recursively rewriting variable elements (V) 

through the use of a set of rules, known as productions (P). This results in an 

increasingly complex hierarchical structure. 

If certain elements or symbols of an L-system are represented with graphical 

substitutes, such as lines or polygons, then self-similar diagrams or models can be 

created. Due to this capability, L-systems have found frequent use in the field of 

computer graphics, where they are often employed for the purpose of generating 

self-similar natural features, such as trees, rivers, or terrain (Prusinkiewicz & 

LindenMayer, 1990). The hierarchal nature of L-systems makes them well suited to 

organic features, which appear to grow increasingly complex as the level of detail is 

increased (Lluch, et al., 2003). 

L-systems have also been used for the creation of virtual roads (Parish & Muller, 

2001). The self-similar, branching, interconnected nature of roads makes them 

comparable to plants (Lynch, 1960), and consequently a lot of the same production 

rules can be applied to both. However, aside from this exception, L-systems have 

found limited application in the creation of man-made structures (Mueller, et al., 

2006). 

 

 

 

 

Figure 3: Three trees that have been produced using L-systems. A modified dragon curve has been 

used to define the spread of the branches. (Wikimedia Commons) 
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2.2.3 PERLIN NOISE 

 

In 1982, Ken Perlin developed an algorithm capable of efficiently rendering semi-

random textures with a seemingly natural appearance. The algorithm, which has 

since been named Perlin noise, was designed for the purpose of creating digital 

assets for the film Tron, but has since found use in a variety of graphics and 

modelling applications.  

The algorithm works by generating a set of data points with randomly-assigned 

values based upon a seeded number. New data points are then created between the 

existing ones, and assigned interpolated values in order to create a smooth gradient. 

When these values are plotted upon a two-dimensional plane, a blotched noise effect 

is created. By repeating the algorithm at different levels of detail and merging the 

results, a fractal-like pattern emerges. By utilising different kinds of interpolation, 

and by placing weighted emphasis on different levels of detail, a range of effects can 

be created (Perlin, 1985). 

Perlin noise has found practical applications in the field of procedural generation for 

the purpose of creating textures for clouds, landscapes, rocks and minerals, and 

other self-similar natural features. It is also often used in order to generate 

heightmaps for three-dimensional landscapes (Schpok, et al., 2003), and for the 

creation of disturbed water surfaces. 

Comparable techniques have been employed for the generation of similar natural 

features. For example, midpoint displacement is an algorithm which alters the height 

of a point on a line in a hierarchal fashion, creating mountain-like silhouettes 

(Fournier, et al., 1982). When this is applied in two dimensions, such as through a 

diamond-square algorithm (Miller, 1986), an image or model is produced that is 

comparable to real-life terrain. 
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2.2.4 TILE-BASED SYSTEMS 

 

In the commercial videogames industry, one of the most common methods of 

designing, storing, and rendering digital environments is through the use of tiles. A 

set of two-dimensional bitmap images is created by an artist. These images are then 

duplicated and positioned on a larger two-dimensional plane, and the position of 

each tile is recorded. In this way, a seemingly large bitmap can be generated from a 

handful of small images and a two-dimensional array of data. 

Massively multiplayer online roleplaying games (MMORPGs) frequently make use 

of tile systems in conjunction with heightmap data and procedural techniques in 

order to efficiently produce varied large-scale environments for players to explore. 

By making use of probability distribution maps, the environments can be designed to 

ensure that the terrain is realistic, and that the maps are playable. 

 

 

2.2.5 VOXELS 

 

Voxel structures are comparable to tile systems, in so much that they represent a 

digital environment by reducing a complex scene down to a repeatable, uniform 

grid. However where tile systems are traditionally represented as two-dimensional 

(2D) bitmaps, voxels are represented on a 3D, volumetric grid. Voxels are distinct 

from traditional 3D polygons in that the coordinates of each voxel node are not 

recorded individually, but are instead determined from the node’s relative 

placement in the voxel data set. 

 

Figure 4: On the left is an example of a set of tiles designed for a two-dimensional game. On 

the right is an example of a scene produced with the tiles. Note that the same tile can be used 

repeatedly in order to minimise memory usage. (Opengameart.org) 

aa0682
Typewritten Text
This image has been removed



22 

 

Recently, voxels have been used for the purpose of rendering natural geography. The 

primary advantage of voxels over traditional 2D height maps is that voxels are 

capable of representing caves, overhanging structures, and other natural features 

that would otherwise be difficult to represent (Cui, et al., 2011).  

In conjunction with image data, voxels have been used for the purpose of creating 

photorealistic reconstructions of scenery (Seitz & Dyer, 1997). By utilizing silhouette 

and stereoscopic data from multiple cameras, voxels can also be used for the purpose 

of recording and displaying human movements, as a form of motion-capture 

(Cheung, et al., 2000). 

Voxels are actively used in the field of medicine for the purpose of quickly rendering 

three-dimensional sets of data. This includes the displaying of MRI data (Bullmore, 

et al., 1999) 

Recently, voxels have been of increased interest in the field of commercial 

videogames, thanks in part to the success of the game Minecraft. The game made use 

of voxels in conjunction with procedural techniques to create large, navigable 

landscapes, often featuring natural geographical features and small urban structures. 
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2.3 PROCEDURAL GENERATION OF URBAN ENVIRONMENTS 

 

2.3.1 PHOTOGRAMMETRY 

 

To gather information on the local architecture and street layout, various methods 

have been used in the past.  LiDAR (Light Detection and Ranging) data is collected 

by using devices capable of sending and receiving laser pulses, to receive an 

approximate layout of an area in 3D. Laycock and Day, (Laycock & Day, 2003) 

outlined a method of using LiDAR data to quickly map a set of buildings. The 

authors also noted the flaws associated with this method, such as the inability to map 

the structure of a building’s roof, but methods were proposed to automatically fill in 

the missing areas. 

Photogrammetry, the method of retrieving geometric data from an image, is also 

used extensively. By utilising photographs taken at different angles, a textured 

virtual model can be drawn without the need for a traditional 3D artist (Kim, et al., 

2000). This method has been explored and refined extensively, to the point that some 

researchers can successfully map a series of photographs of buildings to virtual 

models without the need for pre-planning (Pollefeys, et al., 2003). 

R. G. Laycock et al. (Laycock, et al., 2008) later took these two methods a step further 

by focusing on reconstructing historical sites. The authors detail how they made use 

of LiDAR data and scanned town plans in order to automatically create digital 

footprints of building positions and shapes, which then had high-detail 

photographed textures applied. Where the data was missing, such as for roofs and 

damaged buildings, the areas could be filled in either through the use of procedural 

methods or through manual modelling. By repeating this process for both ancient 

and modern architecture in the same locale, researchers managed to create a 4D 

interactive program; the user could advance through time to watch how the 

architecture within a city had progressed. 

The latest work in the field of historical recreation attempts to make the results as 

realistic as possible in order to make the user experience immersive. As a result, 

much of the latest research is in the department of accurate light scattering 

(Goncalves, et al., 2009) (Gutierrez, et al., 2008), and detail (Remondino, et al., 2009). 
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2.3.2 L-SYSTEMS 

 

Muller and Parish (Parish & Muller, 2001) proposed a city generation program that 

made use of self-sensitive L-systems to automatically lay out a set of streets and 

generate virtual architecture. The encompassing application, CityEngine, was 

notable for making use of a procedural method that was typically reserved for 

natural phenomena, and successfully applying it to large-scale urban environments. 

The application would start by taking a 2D height map, along with accompanying 

data on the desired city’s vegetation, water boundaries, population density, road 

design, and so on. Road generation was then accomplished by creating branching 

paths that conformed to both “global goals” and “local constraints”. Global goals 

would include steering the road system towards populous areas or away from 

undesirable terrain. Local constraints involved the checking of nearby roads and 

allotments to ensure that every new road section would be suitable within the 

confines of the application; roads could be snapped together to form junctions, if two 

road sections were to otherwise intersect or converge. 

Buildings were generated by taking the allotments created during the road 

generation stage, and forming 3D architecture based on the underlying “footprint”. 

L-systems could be recursively applied to the building geometry, causing the model 

to scale, translate, and subdivide, creating increasingly complex structures. 

 

Figure 5: An urban area of Kyoto, Japan that has been mapped from airborne LiDAR data into a 

digital model. (Susaki, 2013) 
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To add detail to building facades, each building face was split into a smaller grid, so 

that textures could be layered and applied according to what would be appropriate 

within each grid cell. The final system, CityEngine, was notable for being able to 

design large urban areas from scratch whilst still allowing for a high level of user 

customisation, including importing custom models and textures, or the writing of 

user-designed L-systems. 

 

 

2.3.3 GEOMETRIC PRIMITIVES 

 

Greuter et al. described a set of methods that allowed for the procedural generation 

of a ‘pseudo-infinite’ digital environment. The completed application, titled 

Undiscovered City, was capable of generating architecture on-the-fly, and of being 

navigated in real-time (Greuter, et al., 2003). 

The application functioned by first laying out a uniform grid of roads, designed to be 

representative of dense, planned urban cities like New York. The square blocks 

between roads could then be allocated a hashed building seed, based upon the 

block’s coordinates within the grid. The use of a hash function (i.e. taking the input 

of the grid coordinates and assigning a separate, fixed-length output) ensured that 

the assigned seeds would be random from the view of the user, but deterministic as 

long as the hash value is known. 

 

Figure 6: A screenshot of the CityEngine software. (Wikipedia.org) 
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With a building seed allocated, the geometry for each lot would then be generated. 

The application determined the height, width, and style of the building from the 

assigned seed. A floor plan would then be created by combining geometric 

primitives. By extruding this combined shape upwards, a three dimensional building 

section would be formed. A full building would then be generated by combining 

multiple building sections, with the higher levels being composed of fewer 

primitives than the lower levels. 

To ensure that the application could be run in real-time, a specialised method of 

geometry culling was implemented. The technique, referred to as View Frustum 

Filling, functioned by only generating and rendering the buildings within the current 

cone of view. Memory was only allocated as needed, and consequently the 

application could efficiently and selectively render only what was needed of the 

large urban area. Additionally, a caching system was implemented to allow 

previously-generated geometry to be reallocated quickly, reducing the rendering 

times significantly under particular circumstances. 

 

2.3.4 SHAPE AND SPLIT GRAMMARS 

 

Alexander et al. (Alexander, et al., 1977) proposed a set of patterns that accurately 

described many types of structures, including buildings and road layouts. However, 

due to the non-formalised nature of these patterns, the language has proven difficult 

to transcribe directly into virtual environments.  

George Stiny and James Gips devised a similar concept that they labelled as shape 

grammars (Stiny, 1975) (Stiny, 1980). That is, a set of formal production rules that 

specify how geometric shapes are created and transformed. The grammar is 

comparable to L-systems, in that the system iteratively replaces elements in order to 

form more complex and intricate patterns. However, whereas L-systems are 

expressed in a language of symbols or letters, shape grammars involve the direct 

manipulation of geometric primitives. 

Shape grammars were successfully used in the analysis of modern and historical 

architecture (Flemming, 1987) (Downing & Flemming, 1981), and were later used to 

help define basic rules of how buildings could be generated in computer graphics.  

Later, Wonka et al. (Wonka, et al., 2003) devised a variation on shape grammars for 

use in the construction of building facades, which they named split grammars. They 

proposed that, rather than assigning grammars on a per-object basis, a database of 

grammar rules ought to be used. This would result in an increase in the variety of 
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possible facades that can be created and a reduction in the amount of memory 

required, as well as allowing for the creation of large numbers of buildings in a 

relatively short time. 

The split grammars themselves function by starting with an initial element, and then 

swapping shapes iteratively until a set of terminal shapes are displayed. The 

resulting set of shapes is then repeated horizontally and vertically within a set of 

parameters, creating an entire building façade. Contextual clues and control 

grammars are utilised in order to create variation in a logical, architecturally-sound 

manner, as well as to facilitate features like doorways. 

More recently, shape grammars have been extended through the use of context-

sensitive shape rules (Mueller, et al., 2006). Building on Wonka’s previous work, 

Mueller et al. devised a system whereby 3D primitives are scaled and rotated semi-

stochastically, and then assembled within a set bounded area. Occlusion query 

testing and “snap lines” are used in order to test for the intersection of the shapes, 

ensuring that building primitives fit together in a way that properly facilitates 

repeating façade textures. 

Mueller et al. demonstrated the success of split grammars and context-sensitive 

shape rules with a procedurally-generated recreation of Pompeii (Muller, et al., 

2005). 

 

 

 

 

 

Figure 7: A rendering of the virtual Pompeii model created through the use of split grammars 

(Muller, et al., 2005). 
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2.4 COMPARISON OF TECHNIQUES 

 

It ought to be noted that the procedural methods employed for the purpose of city 

recreation and the methods employed for creating unique virtual cities from scratch 

should not be directly compared, but judged individually according to their purpose. 

City recreations are often created with historical accuracy as the explicit primary 

purpose, even if this requires time-consuming manual alterations or a lack of 

optimisation. By contrast, virtual architecture that is based on formal rules but not on 

any particular existing structure may be generated with aesthetics or user experience 

given precedence over architectural accuracy. Consequently, the criticisms and 

observations made in this section of the literature review are not intended to 

demonstrate one method’s superiority or deprecation, but to highlight the relative 

differences between the demonstrated techniques. 

 

2.4.1 REALISM 

 

Laycock and Day, (Laycock & Day, 2003) noted that traditional methods of 

constructing 3D urban models from aerial and street-level photographs produced 

results that were fairly realistic, if impractical on large-scale projects. When 3D 

models created from LiDAR data are combined with textures gathered from 

accompanying photographs, the results are often considered to be close to 

photorealistic.  

Muller and Parish’s CityEngine makes effective use of L-Systems to generate a 

variety of street layouts and buildings within a set of constraints (Parish & Muller, 

2001). The application has been effectively used to recreate a variety of real-life 

structures and urban environments, and in that respect the underlying techniques 

can be considered a realistic method of procedural city generation. 

The grid network employed by Greuter et al. (Greuter, et al., 2003) for use in the 

Undiscovered City application cannot reasonably be considered realistic; the road 

structure has been described as artificial and overly homogenous (Kelly & McCabe, 

2006). Additionally, the pseudo-infinite nature of the cities, although impressive 

from a technical standpoint, is not rooted in any real-world practicality. Nonetheless, 

the buildings generated by the application are both varied and aesthetically 

appealing. 

Instant Architecture, the split grammar procedural city engine designed by Wonka et 

al. (Wonka, et al., 2003), appears to be capable of producing buildings of a fairly 
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realistic and varied nature. Some building facades appear to be unnaturally uniform, 

but more recent work with split grammars has attempted to address this issue. 

 

2.4.2 EFFICIENCY 

 

Traditional photogrammetric techniques cannot be considered efficient under any 

capacity. Due to the specialised equipment and skills involved, the process of 

digitally capturing architecture is often restricted to those in the relevant academic 

fields. Additionally, the high level of detail associated with LiDAR scans often 

results in models being unsuitable for real-time applications until optimisations have 

been made. 

Aside from the initial delay during the generation of a virtual city, Muller and 

Parish’s CityEngine can be considered to be efficient. The application appears 

capable of generating cities on a large scale without difficulty, and appropriate level-

of-detail checks are performed to ensure that the application remains useable even 

when a large number of assets are required to be displayed simultaneously. 

The Undiscovered City application is notably efficient. Through the implementation 

of a culling technique known as View Frustum Filling, the authors have been able to 

ensure that the virtual environment is capable of being generated and navigated with 

relative speed on a range of delivery platforms (Greuter, et al., 2003). 

Instant Architecture is reasonably efficient, and tests have shown that the application 

is capable of creating dozens of buildings that conform to the split grammar 

algorithms in seconds (Kelly & McCabe, 2006). 

 

2.4.3 LIMITATIONS 

 

Traditional methods of capturing model and texture data from LiDAR and 

photograph imagery is typically regarded as an arduous process that is difficult to 

apply to large-scale settings, such as for entire cities. Although recent efforts have 

been made to make aerial and street-level imagery more readily-available, such as 

through Google’s satellite and Street View images, errors can be made when 

attempts are made to automatically map the data to a 3D model. The skill and time of 

an artist is therefore often required in order to ensure that the final model is accurate.  
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Both CityEngine and Instant Architecture suffer from the issue of repeating textures 

and models. Since the variety within the applications is dependent upon the 

underlying algorithms – L-systems and split grammars for CityEngine and Instant 

Architecture respectively – the generated cities are limited by the number and 

complexity of the input algorithms and source files. If a particularly varied city is 

required, then the work of an artist or seasoned program user is a necessity. 

Similarly, the geometric primitive system underlying Undiscovered City is restricted 

by the number of textures and the complexity of the implemented shape-combining 

heuristic. Unlike CityEngine, Undiscovered City provides no immediately accessible 

method of adjusting the building heuristic, and so the application is limited in its 

versatility.  



31 

 

 

Generation technique Advantages Disadvantages 

Photogrammetry When effectively setup and 

applied, photogrammetry is 

perhaps one of the most 

accurate methods of mapping 

real-life architecture into a 

digital format. 

Photogrammetric techniques 

alone are often not enough for 

generating cities when data is 

missing; other procedural 

techniques have to be 

employed. If no physical data 

is available at all, then the 

potential for photogrammetry 

is severely limited. 

 

L-Systems L-Systems are effective at 

producing dynamic, organic 

road structures and building 

layouts. The CityEngine 

application is a versatile tool 

with strong customisation 

capabilities. 

 

Since each building type 

requires its own set of 

production rules, a varied 

CityEngine city can be time-

consuming to create. L-

Systems alone are of 

questionable use for the 

purpose of historical 

recreation. 

 

Geometric Primitives Buildings produced through 

the use of combined 

geometric primitives are 

visually interesting and 

varied. The Undiscovered 

City application is notably 

efficient, and is capable of 

producing cities of a 

particularly large size. 

 

The buildings and roads that 

can be produced through this 

method are of questionable 

realism. The customisation 

options are restricted, and 

consequently the application 

has limited versatility. 

Shape and split 

grammars 

Modern split grammar 

techniques are capable of 

producing architecture that is 

realistic and varied. The 

techniques have been 

effectively used for the 

purpose of digitally recreating 

historic cities. 

The realism and variety of 

buildings produced with 

shape and split grammars are 

dependent upon the 

complexity of the underlying 

production rules. Split 

grammar applications like 

Instant Architecture require a 

high level of expertise to be 

effectively used.  

 
 

Table 1: A simplified comparison of the relative advantages and disadvantages of various city generation 

techniques. 
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2.4.4 OUR WORK 

 

It would be simplistic to suggest that a single obvious gap remains unfilled in the 

field of urban procedural generation. Over recent years, numerous projects have 

been created to fulfil a variety of purposes, and many applications are malleable 

enough to suit needs outside of their original intended purpose. 

Nonetheless, there is a particular niche that we believe to be underrepresented in the 

field: the adaptation of theoretical or written descriptions of historical architecture 

into digital model format. Vitruvius’ De Architectura is one of the earliest and most 

notable examples of architecture in this written, descriptive format. 

Photogrammetric techniques, perhaps the most widely used methods of adapting 

historical sites into digital geometry, remain unsuitable for the purpose of capturing 

written descriptions of architecture. Photogrammetry and LiDAR can only be 

effectively applied where some visual depiction of the architecture already exists. For 

a work like De Architectura, photogrammetry could only be used to capture 

comparative real-life examples of the described architecture. As demonstrated in 

Table 1, capturing the digital models of the descriptions themselves would be 

impossible through such methods. 

The methods of combining geometric primitives, as exemplified in Greuter et al.’s 

Undiscovered City application, are also unsuitable for use in the adaption of 

architectural descriptions. These methods are well designed for the purpose of 

producing a large number of buildings with architectural variations, but they lack 

the precision and deterministic reliability necessary for the production of historical 

structures.  

Techniques that create geometry from rules and grammars, such as Muller and 

Parish’s CityEngine and Wonka et al.’s Instant Architecture, have been proven to be 

capable of describing historic architecture with some degree of success. It can be 

argued that the L-Systems and split grammars that underlie the respective 

applications are flexible enough to encompass a variety of scenarios, including the 

purpose of adapting written descriptions of architecture. 

However, procedural rules and grammars typically remain confined to the context 

under which the original applications were made. If a particularly specific or 

customised scenario is desired, then a large amount of time would have to be spent 

deconstructing the application and repurposing it to suit the user’s needs. It may be 

possible to construct a Vitruvian city using an application like CityEngine or Instant 

Architecture, but whether such an act would be practical or feasible with the tools 

presented by the authors is disputable. 
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We believe this to be an issue of specialisation. CityEngine has been designed to 

replicate sprawling, semi-stochastic, modern cityscapes, and the focus of Instant 

Architecture lies with producing variations from pre-established facades and 

architectural shapes. Neither was designed with the digital transcription of 

descriptive rules in mind. 

Therefore, a relatively unexplored research gap exists: there is a lack of a framework 

that facilitates the simple adaption of historic writings into viewable, navigable 

digital models. Such a framework would be of particular use in the field of historic 

recreation for the purpose of creating digital replicas of historic structures that do not 

exist in any physical format. A Vitruvian city would be one such example of this; 

although Vitruvian-inspired cities exist in the real world, there are none that 

unwaveringly conform to every rule laid out by Vitruvius himself. 

We do not propose to fill this research gap with an all-encompassing application, but 

we do aim to describe the implementation process for such a framework, to 

document and analyse the results produced by the project, and to note any issues 

encountered in the development process. 
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3 IMPLEMENTATION 
 

3.1 LANGUAGE AND GRAPHICS LIBRARY DECISIONS 

 

It was quickly decided in the planning process to use a low-level graphics library, 

such as OpenGL or Direct3D, rather than a higher level game engine, such as Unreal 

or Unity. This decision was based on the fact that the proposed application would 

require a large number of primitive shapes to be drawn, and so access to low-level 

drawing calls was deemed a necessity. Although a fully featured game engine lends 

itself well to rapid prototyping in many respects, the inclusion of extraneous features 

such as AI, animation, and audio support would only serve to bloat the application 

and hinder development. 

A decision therefore had to be between the two most notable graphics libraries, 

OpenGL and Direct3D. Although other low-level graphics libraries exist, such as 

AMD’s Mantle and 3dfx’s Glide, OpenGL and Direct3D are considered to be the 

industry standard for use in games development and graphics rendering. 

Consequently, the libraries are very well documented, frequently updated, and 

highly capable.  

OpenGL 2.1 was initially chosen for use in this project due to its cross-platform 

capabilities and the open nature of its license. However, problems were encountered 

during the programming of the application, and the switch was made to DirectX 9.0. 

DirectX does not contain any features that make it better suited to procedural 

generation, but in our scenario it did allow for a swifter development time, simply 

due to the nature of the documentation and the design of the rendering workflow. 

C++ was chosen as the programming language to be used in the development of the 

engine. There were several reasons for this. 

1. C++ is immediately compatible with both DirectX 9 and OpenGL; no time 

would be wasted on searching for and implementing wrapping libraries.  

2. C++ is considered to be the industry standard for many comparable games 

and simulation applications. This ensures that the final application will be 

portable and sharable. 

3. C++ is a versatile and powerful language that is well-suited to tasks like 

procedural generation and graphics rendering. Direct access to memory 

management ensures that RAM and CPU usage can be closely monitored. 
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3.2 GENERATION ENGINE 

3.2.1 SITING SETTLEMENTS 

 

The first asset to be generated in the project was the terrain that the urban structures 

could rest upon. The process of generating the terrain was straightforward, and 

comparable to the methods employed to generate terrain by Musgrave et al. 

(Musgrave, et al., 1989) or Ken Perlin himself (Perlin, 1985). 

A 256 by 256 pixel Perlin noise image was generated in image editing software 

GIMP. The image was then used as a heightmap; rendered geometry was created by 

systematically drawing polygons for each pixel on the noise image, at heights 

corresponding to the darkness of the current pixel. A simple grass texture was 

assigned for the purpose of aesthetics and clarity, and an arbitrary waterline was 

assigned to create unbuildable and unnavigable areas of the heightmap. 

The scale of the heightmap must be considered at this stage. For the purpose of our 

framework, we decided upon a scale of one pixel representing one hundred squared 

meters of tangible land. A single landscape would therefore measure 2560 meters on 

all four sides, and have a total area of 6.5536 square kilometres. Despite this, we still 

made calculations on a per-pixel basis. A single heightmap would have 65536 pixel-

sized “points”, each immediately adjacent to four “neighbouring points”, that could 

be directly measured. 

With these considerations made, a point must be chosen upon which to place the 

virtual settlement. A starting point could be decided by randomly selecting points 

until a free place is found, but this could result in cities positioned somewhat 

unrealistically, crudely, and possibly unbelievably in relation to the surrounding 

landscape. Instead, a more systematic approach must be taken. Three methods were 

proposed. 

 

3.2.1.1 Method 1: Centremost Point Selection 

 

The simplest solution would be to select the centremost point of the map. This would 

allow for a large potential city size, without fear of reaching the map’s border. If the 

centremost point is unusable (i.e. the gradient of the terrain is too steep, or it is in a 

body of water), then a neighbouring point ought to be chosen. If this too is 

unavailable, then the check can be performed in an outwards spiral, until an 
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available point is found. There are many ways of performing this check, but a quick 

and crude method can be created through the use of two incrementing variables. 

 

Check whether point (X midpoint, Y midpoint) is available 

Else, until an available point is found: 

{ 

Increase Degrees by 1. 

Increase Distance by 1. 

 

Check whether point [Distance*sin(Degrees) , 

Distance*cos(Degrees)] is available. 

} 

 

 

Although simple to implement, a clear issue with this method is that it is unrealistic. 

Assuming that the heightmap is randomly generated to some extent, it is unlikely 

that a potential Roman settler would choose the centremost point to start 

construction, as there is no geographical reason for choosing this location. This may 

be particularly noticeable if a city is generated far from a river, coast, or hilltop, as 

these are features that both Vitruvius and Roman settlers considered to be of great 

importance (Vitruvius I, 4) 

 

3.2.1.2 Method 2: Factor Formula 

 

An alternative proposed solution is a formula that can be called upon for each point 

of the map at the start of a program in order to determine where the “ideal point” for 

a city centre would be. Determining where an “ideal” position would be is somewhat 

 

Figure 8: A mock-up example of the centremost point selection. The algorithm spirals outward 

until an available building point is found. 



37 

 

subjective, but by selecting key factors that are used in the decision-making process 

of siting an urban area in real life, we are able to make a fairly accurate assessment 

within the program. 

There are a vast number of factors that are taken into account when choosing a site 

for an urban area, both in historical and modern contexts. However, it would be 

inefficient to incorporate factors that lie outside the scope of the generated 

heightmap. For example, Vitruvius recommended that a city should not be built 

downwind of a stagnant marsh (Vitruvius I, 4, 6), but no data on marshlands or wind 

direction exists in the heightmap. We did not consider the addition of such factors to 

be a practical use of time within the parameters of the project, and so these minor 

elements had to be excluded so that the more important factors could be 

implemented. 

A key factor, both in modern and historical contexts, is the height of the land. 

Building at the lowest point of a valley is commonly seen as poor practise by urban 

planners, due to the increased vulnerability to natural disasters. Additionally, 

historical towns are frequently sited upon hills, as the height provides a natural 

advantage over potential invaders. The height of the current point being calculated 

(H) must therefore be incorporated into the formula. 

As an extension of this, the gradient of the slope the point rests on (G) must be 

considered. If a point is particularly high, but rests on a steep slope (i.e. the point is 

on the tip of a mountain), then it is safe to assume that the land would be somewhat 

difficult to build on. For the sake of calculations, the gradient ought to be calculated 

as a scalar field, where 0 would denote a flat surface, and 1 would denote a 45 degree 

slope. 

The distance to the nearest body of water (either a river, lake, or sea) is also a key 

factor (Vitruvius I, 7). In historical cities, having immediate access to fresh water 

from rivers would often be seen as a necessity, and having access to the coast would 

provide potential for trade. Access to fresh water is seen as less of a necessity in 

modern cities due to technological advances in water filtering and transport, but 

access to the coast is still seen as beneficial when possible, again due to the increased 

potential for foreign trade. Therefore, the distance to the nearest body of water (Wd) 

must also be incorporated into the formula. 

Another vital factor is the distance to the nearest road. In both historical and modern 

contexts, it is unusual for a city to be created in an isolated spot, with no form of road 

access to nearby urban areas. It is far more likely for a new settlement to be 

positioned upon an existing road, as this provides easier access for construction and 

trade. Therefore, the distance to the nearest road (Rd) must also be considered. If no 

road exists on the map, then this value must default at 0. 
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The distance from the centre of the map (Cd) must also be considered. Unlike the 

other factors that were included for the sake of historical accuracy, this factor was 

added for purpose of keeping the sited location practical and sensible within the 

context of the application. A city sited on the edge of the heightmap may be 

aesthetically unpleasing, limited in its utility, or in a worst case scenario, unusable 

due to graphical glitches. By favouring central map locations, application-specific 

problems can be avoided. 

One final factor that must be considered is the maximum height of the map (MH). 

The sole purpose of this factor is to give the point height (H) relativity. If a map is 

generated between 1000 and 1020 meters above sea level, for example, then the other 

factors would immediately become irrelevant due to the large numbers being used. 

However, by incorporating a relative measurement, the height factor can be scaled 

down to a practical level. 

Using all these factors, a simple formula can be derived where the Point Value (PV) 

for every integer coordinate on the heightmap can be calculated. The point on the 

heightmap with the lowest Point Value can be viewed as an “ideal” place to site a 

settlement, and is flagged by the program. 

 

PV = Cd + Wd + Rd + [G*(MH-H)] 

 

 
 

Although potentially effective, a notable problem with this solution is that all of the 

factors are considered in equal measurements. This may cause issues in scenarios 

where a particular factor needs to be disregarded or given a disproportionate 

amount of precedence. 

 

Figure 9: A mock-up example of the factor formula method. The red point denotes the point on 

the map with the lowest PV value. A cyan-blue point, denoting an arbitrary point, has also 

been included for the purpose of comparison. 
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3.2.1.3 Method 3: Weighted Factors 

 

To solve the problem of particular factors possessing too much or too little influence, 

a weighting system can be used. The simplest way of accomplishing this is to 

incorporate a set of “weight” variables that can be defined by the user, and that 

directly affect their corresponding factor. 

For every point on the heightmap, a Point Value ought to be calculated, where 

distance from the centre (Cd), distance from the nearest body of water (Wd), distance 

from the nearest road (Rd), the gradient of the slope (G), height (H), and maximum 

height (MH) are calculated according to the heightmap, and where centre weight 

(Cw), water weight (Ww), road weight (Rw), gradient weight (Gw), and height 

weight (Hw) are defined by the user. As with Method 2, the PV with the lowest value 

would be the starting centre point of the city. 

The final formula would therefore be: 

 

PV = (Cd*Cw) + (Wd*Ww) + (Rd*Rw) + {[Gw*G]*[Hw*(MH-H)]} 

 

 

The unit of measurement for the formula is irrelevant; as long as the same unit is 

used for Cd, Wd, Rd, Mh, and H, then it does not matter whether the chosen unit is 

meters, pixels, or an arbitrary unit used solely for the purpose of the program. 

Similarly, the weighting limit does not matter, as long as it is consistent within the 

formula. The reason for this is that the point with the lowest PV would be the same, 

 

Figure 10: A mock-up example of the weighted factors method with a particular set of 

weightings applied. The red point denotes the point on the map with the lowest PV value. A 

cyan-blue point, denoting an arbitrary point, has also been included for the purpose of 

comparison. 
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regardless of what units are used. If values wish to be compared across multiple 

applications, however, then unit consistency would be a requirement, but this is not 

necessary for our current needs. 

On the off-chance that multiple points on the heightmap share the lowest PV, a 

simple test can be performed to see which point ought to be given priority. For the 

purposes of this application, in the case of a tied PV, the point with the lowest Cd 

value is selected as the starting point of the settlement. It should be noted that the 

chances of this occurring are particularly small, especially if the values are stored as 

floating points (as opposed to integers), and so this was not considered to be a major 

concern. 

A major advantage of incorporating this weighting system is versatility. If the user 

wishes to build as close to the centremost point as possible (as in Method 1), then this 

can be calculated within the formula by placing a weighting value of 0 on every 

factor but Cw. This would result in the following result. 

 

PV = (Cd*1) + (Wd*0) + (Rd*0) + {[0*G]*[0*(MH-H)]} 

PV = Cd 

 

Similarly, if the user desires a “realistic” application where the distance to the 

centremost point is ignored, then Cw can simply be set to 0, and the other weight 

values to 1. 

 

PV = (Cd*0) + (Wd*1) + (Rd*1) + {[1*G]*[1*(MH-H)]} 

PV = Wd + Rd + [G*(MH-H)] 

 

As stated in section 3.2.1.2, certain elements that are not discernible from a 

heightmap alone have had to be ignored. Factors like vegetation, minerals, wind 

direction, and soil quality have not been taken into account, and this could 

potentially reduce the accuracy of the program if a truly realistic solution is desired. 

However, the ability to weight a set of factors ought to allow cities to be sited within 

a perceivable degree of realism, once the parameters have been adjusted to suit the 

scenario. 

A final note ought to be made here with regards to the possibility of inadequate 

results being produced by unusual heightmaps or weighted values. For example, a 

heightmap with exceptionally high mountains towards the outer edge may result in 

a city being located at the very edge of the map, potentially causing structures within 
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the city walls to not be rendered. The limitations of our proposed formula are 

examined in greater detail and expanded upon in sections 4.1 and 5.1.1. 

 

 

3.2.2 OUTER WALLS 

 

Once the city centre has been decided, the next logical step is to mark the city limits 

and the buildable area that it encompasses. For a Roman city, this would frequently 

take the form of a city wall. 

When taken literally, Vitruvius proposes that cities ought to be octagonal in shape 

(De Architectura I, 5-7). However, this was considered to be unsuitable for the 

application as “Vitruvius’ scheme for an eight-sided town with a radiating plan was 

utopian and had no tangible impact on town planning practice in the Roman 

Empire” (Hebbert & Jankovic, 2009 ). Additionally, the use of an octagonal perimeter 

is not considered to be “central to Vitruvius’ architectural theory” (Paden, 2001). 

Therefore, for the purposes of practicality, and in accordance to the historical record 

of many Roman cities, a 5-sided outer wall was chosen as the default shape of the 

surrounding perimeter. 

Vitruvius did not specify the ideal size of a Roman city. However, from the 

archaeological record we can observe that the circumference of a newly founded city 

typically lay between two and four kilometres. From this, we can infer that the 

perimeter of the pentagonal wall ought to be between approximately 1.869 and 3.744 

kilometres. 

Vitruvius specified that the distance between the towers along a city’s wall ought to 

be a maximum of one bowshot’s length. In order to convert this measurement to a 

modern and implementable equivalent, the Roman military manual Epitoma Rei 

militaris was consulted. Author Vegetius stated that archers ought to train to fire 

their bows at 600 feet (Vegetius, ~390), or approximately 182 meters. However, this 

again deviates from the archaeological record, in which the towers on a city’s wall 

were rarely placed more than 60 meters apart. It is possible that Vitruvius was not 

being entirely literal with his specified distance, or that he was taking the possibility 

of untrained bowmen into account when devising the measurement. Nonetheless, 

we chose to implement Vitruvius’ measure for the purposes of consistency and 

aesthetic beauty. 

Other specifications are also given. Vitruvius specified that the “thickness of the wall 

should … be such that armed men meeting on top of it may pass one another 
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without interference”, and that “the towers themselves must be either round or 

polygonal” in shape (De Architectura I, 5). 

With this information together, we are able mark out a precise pentagonal shape that 

encompasses the buildable interior of the city. The tower locations can then be 

flagged, and the structure is ready to be rendered when appropriate. 
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3.2.3 ROADS 

 

With the city boundaries marked, the city interior can be generated. However, before 

the building structures can be designated and created, the city must be effectively 

divided into allotments or insulae through the creation of a cellular road system. We 

considered the possibility of generating the insulae first and designating roads in the 

surrounding regions, but this was considered inappropriate due to the lack of control 

that this order of generation offers over road parameters. Therefore, a road 

generation system had to be set up that first laid out the road structure, and then 

designated allotments to appropriate places on the roadside. Several existing 

methods were examined. 

One method of generating roads that produces consistently natural-looking results is 

the use of L-systems, as initially described by Lindenmayer (Lindenmayer, 1968), 

and later effectively implemented into procedural city application CityEngine by 

Parish and Muller (Parish & Muller, 2001). L-systems are capable of creating 

branching, context-sensitive, and semi-stochastic lines (Stava, et al., 2010), which 

make them well-suited to the generation of roads with a rural or organic structural 

appearance. 

An alternative type of road generation is the use of a grid structure, such as the one 

described in the Undiscovered City application (Greuter, et al., 2003). Although less 

flexible and less complex, this method of procedurally generating roads consistently 

produces straight, orthogonal pathways, effectively producing a gridded pattern. 

The Roman method of dividing a city into grid-structured, square allotments – a 

process known as centuriation – is a distinctive and influential feature of Roman 

cities (Romano, 2003). Due to the similarities between the method adopted by 

Greuter et al. and the pattern of centuriation found in the archeological record, a 

road system similar to the one described by Greuter et al. was adopted for the 

purposes of this project. 

Much like the method used to determine the dimensions of the city walls (3.2.2 Outer 

Walls), Vitruvius’ De architectura was used for the purpose of calculating the 

dimensions of the roads within the application. In the instances where there were 

inconsistencies or gaps in Vitruvius’ description, the archaeological record was 

consulted. 

Vitruvius did not specify the width of Roman streets. However, Roman law dating 

back to 100 B.C. specified that “Roman street width was fixed at a minimum of 4.5 

meters [with] elevated sidewalks on both sides” (Mateo-Babiano & Ieda, 2005). From 

the archaeological record, we can determine that the width of significant 
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thoroughfares, including sidewalks, typically measured between 5 and 7 meters 

(Muller, et al., 2005). Vitruvius did not specify how large a city block or insula ought 

to be, but again the historical record can be consulted to gain a figure of 

approximately 73 meters squared. 

Put together, this information allows for a detailed and historically accurate grid of 

Roman roads to be created, within the confines of the city walls. Sidewalks can be 

generated alongside each of the calculated roads, and the neighbouring empty 

allotments are ready to be assigned building structures. 

 

3.2.4 BUILDING LOCATIONS 

 

The next stage is to flag the location of important structures, starting with one of the 

centremost and most significant Roman structures: the forum. In towns located close 

to water with a harbour, Vitruvius suggests that the forum should be situated closer 

to that side of town, whereas otherwise the forum should be at the absolute centre of 

town (De Architectura I, 7). The settlement’s communal areas with public buildings, 

including civic, religious and recreational buildings are located in close proximity to 

the forum (De Architectura I, 7; De Architectura V). In Roman cities the forum 

played a central role in the location of communal facilities, i.e. they were usually 

located at the forum itself as this created the focus for the settlement, or along the 

major axes of the town. 

To apply this to the application, the grid square closest to the centre point is marked 

as the forum. The grid squares surrounding this are marked as the basilica, and local 

government. The grid square furthest from the centre point, but still within the 

bounds of the pentagon is marked as the theatre or amphitheatre. 

The main sacred site of a city with temples for the highest deities and the protectors 

of the settlement should be at its highest point of elevation (De Architectura III and 

IV), easily reachable from the forum or the main roadways. In most settlements, the 

location of this temple district will be adjacent to the forum (in case the settlement is 

a colonia, this is referred to as capitol). 

Vitruvius makes suggestions as to where the temples dedicated to different deities 

should be located. A temple to Mercury, god of trade and travel, should be in or 

alongside the forum of the settlement. A temple to Apollo, god of light and healing, 

should be adjacent to the theatre of the settlement if one exists. Temples to Venus, 

goddess of love, Ceres, goddess of agriculture, Vulcan, god of fire, and Mars, god of 

war, should be located outside of the city walls. 
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From this, we can infer that a temple ought to be situated immediately adjacent to 

the forum in our application. Additionally, temples may be flagged to appear on the 

outskirts, or completely outside the city walls, or on the highest heightmap point. 

 

The remaining squares on the grid can be considered to be generic or non-specialised 

structures. We have chosen to classify the generic structures into three groups, in a 

similar manner to the classification system outlined by Lechner et al. (Lechner, et al., 

2004). The three building types are as follows. 

1. Residential buildings. This would consist of one and two-story houses, 

terraces, and villas. 

2. Governmental buildings. This would encompass those of a bureaucratic 

purpose, such as the basilica, as well as those designed to serve the public, 

such as the prison. 

3. Religious and commercial structures. This includes smaller temples, shrines, 

shops, bathhouses, and other structures designed for the purposes of 

entertainment. 

With the building types defined, a method must be devised for assigning these three 

types of structures to the appropriate grid square. Three methods were proposed and 

implemented. 

 

 

 

 

 

Figure 11: An example of the above Vitruvian rules applied to a city grid. In this instance, the red 

square denotes the forum at the centre of the city. The blue squares represent temples. In this 

case, there is one temple adjacent to the forum, and one outside the city walls. The green squares 

represent notable governmental buildings, such as the basilica. The yellow square on the city 

limits represents the theatre or amphitheatre. 
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3.2.4.1 Method 1: Random Selection 

 

The simplest method of assignment would be to generate a random number for each 

remaining grid square, and to select a building type according to the number chosen. 

In this way, a fairly even distribution of the three building types will appear across 

the entire city area. 

The method of generating random numbers ought to be addressed at this stage. For 

our application, a pseudo-random number derived from a linear congruential 

generator was used, with a seed value linked to time. By rights, this method should 

only produce pseudo-random numbers, not “true” random numbers, but in the 

context of our application we believe that this distinction to be irrelevant. Pseudo-

randomness proved to be more than sufficient. 

A basic pseudocode implementation of the first building assignment method can be 

seen below. 

For each remaining free square: 

 Generate random number R between 1 and 3 

 If R == 1: Assign Residential 

 If R == 2: Assign Religious 

 If R == 3: Assign Governmental 

 

The immediate problem that becomes apparent with this method is a lack of order, 

and consequently a lack of realism. Although it is possible for residential, religious, 

and governmental buildings to be built alongside each other, as is often the case with 

naturally developed settlements, such a layout would be unlikely in a pre-planned 

Vitruvian city. 

 

3.2.4.2 Method 2: Sectioned Districts 

 

An alternative method would be to section the city into districts. Dividing the total 

number of free squares by three results in a value indicative of the number of 

residential and religious structures needed to be built, denoted in the pseudocode 

below by the “NResidential” and “NReligious” variable counters. These counters are 

iteratively decremented and checked during the building designation section. The 

remaining space can then be attributed to commercial structures, resulting in three 

equally sized and homogenous districts. 

NResidential = Total free squares / 3 

NReligious = Total free squares / 3 
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Choose a random free square: 

 Assign Residential 

 NResidential = NResidential – 1 

 Spiral outward and repeat until NResidential == 0 

 

Choose a random free square: 

 Assign Religious 

 NReligious = NReligious – 1 

Spiral outward and repeat until NReligious == 0 

 

For each remaining free square: 

 Assign Governmental 

 

Although more realistic than the purely random method 1, method 2 suffers from 

being overly rigid. Without the use of ‘fuzzing’ – the use of randomness to create 

deviations in a pattern – the produced results may appear unnatural. 

 

3.2.4.3 Method 3: Probability Distribution 

 

A third method makes use of probability distribution in order to group together 

buildings in a semi-stochastic manner. One psuedocode implementation can be seen 

below, although it ought to be noted that there are other ways that this could have 

been implemented, such as through the use of Perlin noise. Variable “DFC” is used 

to refer to the distance of a building from the city centre. Variable “CityRadius” 

refers to the radius of a city at its widest point. As such, DFC divided by CityRadius 

would equal one at the outmost edge of the city, and would approach zero as we 

progress towards the center. Variables “ResP” and “GovP” are used to measure the 

probability of a residential or governmental building appearing on a particular grid 

square. 

For each remaining free square: 

 ResP = (DFC/CityRadius)^2 

 GovP = ((CityRadius-DFC)/CityRadius-GovernmentalN 

 

 Generate random number R between 0 and 1 

 If R < GovP: Assign Governmental 

 Else, if R > ResP: Assign Residential 

 Else, Assign Religious 
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3.2.5 BUILDING GENERATION 

 

3.2.5.1 Defining our Shape Grammar 

 

At this stage, the application has a list of what building must be created for a series 

of grid squares upon a heightmap. However, no definitions have been made for how 

each building ought to be constructed. It would be trivial to design archetypal 

examples of such buildings in modelling software, and to simply import the objects 

into the application, but such an approach would not be procedural; since the explicit 

purpose of this application was to create a variety of structures on-the-fly, an 

alternative approach had to be taken. 

It was quickly decided that a formal grammar ought to be used to define the overall 

architecture of each type of building, not unlike the shape and split grammars 

employed by Mueller, Pascal, Wonka, and other researchers in the field (Mueller, et 

al., 2006). When properly designed and implemented, formal grammars allow for 

clear, precise, and deterministic definitions of procedurally created shapes (Table 1).  

In the language of a context-free formal grammar, a simple, multi-storied building 

with a roof could be described in the following manner: 

 

Figure 12: Examples of the three proposed methods of assigning building locations. Methods 1, 2, 

and 3 are on the left, centre, and right respectively.  The red square marks the centremost point of 

the city (i.e. the forum), and the yellow squares indicate a special buildings, such as the coliseum 

or temple. The light, medium, and dark grey squares represent residential structures, religious 

structures, and governmental structures respectively. 
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Where B represents the entire building object, F represents a single floor of the 

building, W represents the four walls of a particular floor, and R represents the roof. 

To break down the production rules in detail: our starting symbol, the building 

object B, is rewritten into the non-terminal floor object F, and the terminal roof R. 

The floor object is then rewritten into a set of walls and another floor, or into another 

set of walls with no additional floor. The final result would therefore be a building 

with at least one floor, each containing four walls, and a roof. 

 

However, there are several problems that immediately become apparent with a 

grammar this simple. The most immediate is that this is a non-deterministic 

representation of the building. By having two unclarified definitions of the 

production rule for symbol F, we are unable to say how many floors a completed 

building will contain; the production rule “𝐹  →   𝑊, 𝐹” can run zero, one, two, or 

more times. 

This problem can be addressed by adopting a deterministic context-free grammar. If, 

for example, it is known that the production rules were run in a strictly linear 

fashion, then we would be able to say with certainty that “𝐹  →   𝑊, 𝐹” would run 

Non − Terminals  =   {𝐵, 𝐹} 

Terminals  =   {𝑊, 𝑅} 

Start Symbol  =   𝐵 

 

𝐵  →   𝐹, 𝑅 

𝐹  →   𝑊, 𝐹 

𝐹  →   𝑊  

Grammar Definition 1: Simple building 

 

 

 

Figure 13: An exploded visual representation of Grammar Definition 1 (left), and a completed 

visual representation with an example façade (right). 
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exactly once, and “𝐹  →   𝑊” would run immediately afterwards. The building 

would therefore have two floors, and there would be no room for ambiguity. 

However, simply adding a running order to the grammar would be a cumbersome 

way of defining more complex structures; the grammatical definition of a single 

building could potentially become hundreds of lines long. 

An alternative solution would be to add comparisons to the production rules. A 

simple method of doing this has been outlined in Grammar Definition 2. The method 

of adding superscripts and subscripts to split grammars as described by Stephen 

Mann (Huang, et al., 2009) served as a foundation for our adopted syntax. 

 

A superscript before the symbol denotes a condition that must be fulfilled for the 

production rule to take effect. A superscript after the symbol denotes an inheritable 

attribute that is assigned to that particular symbol. 

In this case, a Building B with the attribute of flo number of floors is used as the 

starting symbol. As per the first production rule, the symbol is rewritten into a Floor 

F with the same value for attribute flo, and a terminal roof R. 

Unlike in Grammar Definition 1, the second production rule now has a condition 

that determines whether the rule is run; symbol F’s attribute flo must be higher than 

one. If the condition is fulfilled, then a set of walls W is created, as well as another 

floor F with an attribute flo that is equal to the preceding symbol F’s flo, minus one. 

If the second production rule’s condition was not fulfilled, then the third production 

rule is run. Symbol F is rewritten into a set of walls W, and the grammar comes to an 

end.  

This adapted grammar would allow for a deterministic amount of floors, based 

entirely on what value is attributed to starting symbol B’s flo attribute. If, for 

example, a value of 3 was used for B’s flo, then the production rules from Grammar 

Definition 1 would run in the following order: 

Non − Terminals  =   {𝐵, 𝐹} 

Terminals  =   {𝑊, 𝑅} 

Start Symbol  =   𝐵 

 

  𝐁  
𝑓𝑙𝑜 → 𝐅  

𝑓𝑙𝑜, 𝐑  
   

  

  𝐅  
𝑓𝑙𝑜 → 𝐖, 𝐅  

𝑓𝑙𝑜−1  
 𝑓𝑙𝑜 > 1  

𝐅  
𝑓𝑙𝑜 → 𝐖 

  

Grammar Definition 2: Simple building with conditions and attributes 
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  𝐁  
3 → 𝐅  

3, 𝐑  
   

  

  𝐅  
3 → 𝐖, 𝐅  

3−1  
3 > 1  

  𝐅  
2 → 𝐖, 𝐅  

2−1  
2 > 1  

𝐅  
1 → 𝐖 

  

In this instance it can be seen that the second production rule would run twice, with 

the attributed flo value decrementing by one each time. On the third run, the 

condition for the second production rule would not be fulfilled, and so the program 

would instead run the third production rule. In this way, if the grammar were run 

with B’s initial flo value at 3, a total of three floors would be created. 

It ought to be noted that, despite the use of an unorthodox notation, this style of 

grammar would still be considered context-free, as well as syntaxically and 

semantically correct. A more standardised form of notation could be created by 

expanding the condition for every possibility (in this case, an expansion of flo if the 

attribute is equal to one, two, three etc.), but if the boundaries of a condition are not 

known, then the list of production rules might tend towards infinity. The use of a 

condition therefore keeps the grammar concise and readable. 

This solution effectively addresses the issue of ambiguity within standardised formal 

grammars. However, another problem is still present: it would be difficult to 

describe architecture with any degree of accuracy or specificity without further 

context of what the symbols geometrically represent. 

To continue with our example, we could state that wall object W represents four 

adjoining rectangular polygons, and that roof R represents a single plane that rests 

on top. This might be enough information for a human to understand the intended 

meaning of the grammar, but it is insufficient for an application because key 

information is missing: the size of each object, and each object’s location in space. To 

fulfil this criterion, additional attributes have to be created. 

Grammar Definition 3: Simple building with expanded attributes 

Non − Terminals  =   {𝐵, 𝐹} 

Terminals  =   {𝑊, 𝑅} 

Start Symbol  =   𝐵 

 

  𝐁 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐅 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐑 𝑥,𝑦+ℎ,𝑧 
𝑤,ℎ,𝑑   

  

  𝐅 𝑥,𝑦,𝑧 
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐅 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑   

 𝑦+1 < ℎ  

𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑  
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There are now six attributes for every symbol. Attributes w and d represent the 

relative width and depth of the corresponding object. Attribute h is similar, but for 

the purpose of concise notation it remains static; the h attribute represents the total 

number of floors on the building, similar to the no longer used attribute flo. 

Attributes x, y, and z represent the relative position of the corresponding object 

within three-dimensional Euclidian space. The second production rule has also been 

altered slightly to better accommodate the new geometric approach; whereas 

attribute flo decremented towards zero, attribute y increments towards the value of h. 

 

We can now manually assign the position and the dimensions of the building. In this 

example, we will specify an x, y, and z value of zero, indicating that the building is 

being created on the point of origin. We will assign w and d a value of 5, indicating 

that the building is 5 units wide and long, and we will assign h a value of 3, 

indicating that there will be 3 floors. 

  𝐁 0,0,0
5,3,5 →  𝐅 0,0,0

5,3,5, 𝐑 0,0+3,0 
5,3,5   

  

  𝐅 0,0,0 
5,3,5 →  𝐖 0,0,0

5,3,5, 𝐅 0,0+1,0
5,3,5   

 0+1 < 3  

  𝐅 0,1,0 
5,3,5 →  𝐖 0,1,0

5,3,5, 𝐅 0,1+1,0
5,3,5   

 1+1 < 3  

𝐅 0,2,0
5,3,5 →  𝐖  0,2,0

5,3,5 
 

 

Figure 14: A visual depiction of building B as defined by Grammar Definition 3, with new 

attributes x, y, z, w, d, and h added. 
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With these attributes assigned, a building is produced on point (0,0,0), and within the 

boundaries of (5,3,5).  

 

Despite the additional clarity, the new attributes and production rules still do not 

offer enough information for a programmed implementation. For example, although 

we know that  𝐖 0,0,0
5,3,5 represents a set of four walls with a width and depth of 5 

units, we do not know how each wall ought to be represented in terms of triangular 

or quadrilateral polygons. Therefore, for a truly specific grammar, another layer of 

production rules could be implemented.  

Grammar Definition 4: Simple building with polygonal symbol 

Non − Terminals  =   {𝐵, 𝐹, 𝑊, 𝑅} 

Terminals  =   {𝑃} 

Start Symbol  =   𝐵 

 

  𝐁 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 → 𝐅 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐑 𝑥,𝑦+ℎ,𝑧 
𝑤,ℎ,𝑑   

  

  𝐅 𝑥,𝑦,𝑧 
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐅 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑   

 𝑦+1 < ℎ  

𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑  

𝐖 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐏 𝑥+𝑤,𝑦+1,𝑧,𝑥,𝑦+1,𝑧

𝑥,𝑦,𝑧,𝑥+𝑤,𝑦,𝑧 
 

→  𝐏 𝑥+𝑤,𝑦+1,𝑧+𝑑,𝑥,𝑦+1,𝑧+𝑑
𝑥,𝑦,𝑧+𝑑,𝑥+𝑤,𝑦,𝑧+𝑑 

 

→  𝐏 𝑥,𝑦+1,𝑧+𝑑,𝑥,𝑦+1,𝑧
𝑥,𝑦,𝑧,𝑥,𝑦,𝑧+𝑑 

 

→  𝐏 𝑥+𝑤,𝑦+1,𝑧+𝑑,𝑥+𝑤,𝑦+1,𝑧
𝑥+𝑤,𝑦,𝑧,𝑥+𝑤,𝑦,𝑧+𝑑 

 

𝐑 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐏 𝑥+𝑤,𝑦,𝑧+𝑑,𝑥,𝑦,𝑧+𝑑

𝑥,𝑦,𝑧,𝑥+𝑤,𝑦,𝑧 
 

  

 

Figure 15: A visual depiction of each stage of the production rules. Roof R is produced first, and 

then the floors are called recursively, filling in the building B from y=0 through to y=2. 
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In this definition, a new terminal symbol P has been added, representing a 

quadrilateral polygon within Euclidian space. It has 12 attributes, representing the x, 

y, and z coordinates for each of the polygon’s four vertices (i.e. 𝐏 𝑥3,𝑦3,𝑧3,𝑥4,𝑦4,𝑧4
𝑥1,𝑦1,𝑧1,𝑥2,𝑦2,𝑧2 

). 

To accommodate for this change, terminal symbols W and R have been changed into 

non-terminals. The two symbols have received their own production rules that create 

sets of terminal P symbols, generating polygonal representations of the building 

elements. 

Despite the additional clarity, it was decided upon to not use the polygonal level of 

detail for the remainder of the grammar definitions within this thesis. This decision 

was made for the purpose of legibility. As the complexity of modelled buildings 

increases, the complexity and length of the notation must also increase. An especially 

detailed structure may require several pages of rules, which would make the 

grammar fairly incomprehensible. We must aim to strike a balance between technical 

detail and user legibility. 

Therefore, our grammar definitions will take the form laid out by Grammar 

Definition 3. Conditional statements for a production rule are notated as a 

superscript on the left-hand side. Attributes of a symbol are notated as subscripts 

and superscripts to the right of the defined symbol. The attributes of a non-terminal 

symbol are inherited by any called production symbols, which allows for a hierarchy 

of geometric shapes to be constructed. 

With these rules laid out, we can proceed to start defining Vitruvian architecture. 

 

3.2.5.2 Temple 

 

The first building to be defined using the novel shape grammar syntax, and the 

building to be described in the greatest depth, was the Roman temple. This structure 

was chosen first due to its immediate recognisability, its prevalence across a large 

number of Roman settlements, and its integral significance in everyday Roman life. 

Additionally, the structure features certain elements, such as columns and a typical 

slanted roof, which can be reused across multiple other types of buildings. 

Vitruvius covered the architectural design of Roman temples in extensive detail. Two 

books are devoted to the construction process (De Architectura III and IV), with the 

majority of the text focussing on the different orders of columns, the proportions of 

the various architectural elements, and the considerations that must be made for the 

different styles of temple building.  
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Several features are prevalent across the majority of temples described by Vitruvius. 

The structures frequently feature a central building with an encompassing wall, 

called a cella. A colonnade would usually be found at the front portico of the 

building, four or six columns across, and one to four columns deep. The temple 

would often be oriented such that the main door of the cella faces eastwards or 

towards the forum, or if that is not feasible, facing the passing road. 

However, a large number of variations are possible in temple construction. Vitruvius 

acknowledges that the dimensions of the architectural elements can differ 

significantly, depending on the local style, the deity the temple is dedicated to, and 

the personal preferences of the architect. For example, temples can be built with or 

without a podium; they can feature steps on all four sides or just the front; and they 

can feature prominently-displayed altars or no altars at all. Vitruvius even describes 

peculiarities like circular temples, which often contained no internal cella (De 

Architectura IV, 8). 

When we came across cases of possible variation, we attempted to conform to 

Vitruvius’ recommended standard. If no such recommendation existed or if key 

information was missing, then we attempted to make an educated guess based upon 

the context of the surrounding information. 

Ironically, many of the temples that Vitruvius cites for the purpose of illustrative 

example, such as his comparisons to the three temples of Fortuna (De Architectura 

III, 2, 3), no longer exist. When a key measurement is not provided in De 

Architectura, we therefore had to draw estimates based on archaeological record, or 

on existing temples that appear to conform to the Vitruvian ideal.  

 

Podium 

The raised supporting foundation of the temple, known as the base or podium, 

consists of a simple platform that acts as a floor for the cella and colonnades, and two 

additional platform structures that function as bannisters to the stairs. Temple 

podiums frequently feature top surfaces that extrude outward from the base, but 

Vitruvius make no mention of the ideal level of protrusion for these details. 

Nonetheless, we can estimate the dimensions of the protruding sections from 

examples in the archaeological record. 

Geometrically, we can consider the podium to consist of three cuboids, with three 

flatter and wider cuboids resting on top. Vitruvius explicitly stated that “the length 

of a temple must be twice its width” (De Architectura IV, 4), and since the temple’s 

podium runs across the entirety of the temple’s dimensions, this rule also applies 
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here (Figure 13). We are not told of the ratio between the length of the bannisters and 

the rest of the podium, but this can be estimated from the given dimensions of the 

cella and stairway. 

 

Stairway  

The stairway that lies at the front of the temple simply consists of a series of steps. 

Vitruvius noted that the step depth ought to be between 1.5 and 2 feet, that the step 

height ought to be between 0.75 and 0.83 feet, and that the steps ought to be 

consistent in size (De Architectura III, 4). From these measurements, we can infer a 

step depth to height ratio of approximately 2 to 1, and so this was the ratio adopted 

for use in the application. By placing two rectangular polygons together in this ratio, 

a single step can be created that, when replicated and translated, create the entire 

stairway (Figure 14). 

Interestingly, Vitruvius noted that the number of steps in front of a temple ought to 

be odd, since that would ensure that “the right foot, which begins the ascent, will be 

that which first alights on the landing of the temple” (De Architectura III, 4). This is 

simple to account for in the application by adjusting the height of every step until the 

requirement has been reached. 

One additional note is that some temples featured altars at the base of the stairway. 

Although the size, shape, and detail of the altar varied between temples, the overall 

structure could be geometrically represented as one smaller cuboid resting upon a 

larger one. Due to the level of variety among altars and the lack of information on 

their measurements in Vitruvius’ writings, the stairway altar was not adapted into 

the application. 

 

 

Figure 16: The relative proportions of a temple cella podium, without and with the top layer. 
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Cella 

The cella is the inner room of a temple, often housing a statue of a deity or a plinth 

for the purpose of votive offerings. They varied in size and shape – Vitruvius 

acknowledged and described variations where there may be multiple cella rooms or 

no surrounding walls at all (De Architectura IV, 8) – but they typically consisted of a 

single rectangular room with a single entranceway. 

Vitruvius described the outer cella wall as being “in length, one fourth more than the 

breadth” (De Architectura IV, 4). He did not specify the ideal thickness of the cella 

wall, but acknowledged that the thickness “must depend on the magnitude of the 

work”. To adapt this description, we created a “wall width” variable that adjusted in 

accordance to the temple’s length. As such, the wall thickness, and the perceived 

structural integrity, increases relative to the temple size. 

Vitruvius specified the dimensions of the front doorway through relative 

comparisons. He wrote that, if we assume the height of the cella to be 3.5 units, then 

the height of the doorway ought to be 2.5 units. Additionally, if we assume the 

doorway height to be 12 units, we can define the doorway width as being 5.5 units 

(De Architectura IV, 6). Put together, we can therefore state that the ratio of the door 

width to door height to cella height is approximately 2.29:5:7 (Figure 15). This ratio 

can then be used to calculate the in-application dimensions of the doorway, as long 

one dimension is already known. 

Breaking this information down into geometric primitives, we can consider the cella 

to consist of three cuboids that encompass the rear and sides of the structure, and an 

additional three cuboids that fit the aforementioned dimensions to form the front. An 

additional specially-textured cuboid can be used to represent the door itself, if 

desired. 

 

Figure 17: The temple stairway and altar. 
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Columns 

Although columns were a notable feature of all Roman temples, the layout and form 

of the structures varied between buildings. Factors like the size and dimensions of 

the temple, the purpose of the temple, the time period, and the local style, all dictated 

how the columns would be laid out and shaped. 

Vitruvius did not voice a preference on the recommended number of columns upon 

a temple’s floor plan, but instead defined a set of possibilities for how columns could 

be arranged relative to the cella, and listed a set of examples (De Architectura III, 2). 

He made note of how the columns upon the portico could be tetrastyle, hexastyle, or 

octastyle, depending on whether there were four, six, or eight columns across the 

temple’s front. He also noted that the columns that flanked the cella could be single 

or double placed, and that the columns at the rear could either mirror the front of the 

temple or be a simple single-line colonnade. 

Vitruvius also outlined a set of classifications for defining the distance between 

columns, relative to the column width. He specified that intercolumniation could be 

pycnostylos (that is, the columns are placed one-and-a-half base diameters apart), 

systylos (two diameters apart), eustylos (two-and-a-quarter diameters apart), 

diastylos (three diameters apart), or araeostylos (more than three diameters apart). 

Vitruvius lamented that the tighter styles of intercolumniation, despite being 

common at the time, were flawed as they did not allow matrons to “pass the 

intercolumniations arm in arm”. He proposed that the eustylos standard was 

preferable, due to its “respect of convenience … beauty, and strength” (De 

Architectura III, 3). Consequently, this was the style chosen for the intercolumniation 

 

Figure 18: The relative proportions of a temple cella doorway. 
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of the generated temple colonnades; the columns in the application are positioned 

two-and-a-quarter diameters apart. 

With these considerations in mind, and using the measurements imposed by the 

boundaries of the insula and the other temple elements, we decided that a double-

ranked tetrastyle colonnade would be most appropriate for the front portico of the 

temple. 

With the column positions sited, the column geometry is ready to be defined. 

Vitruvius wrote at length of the proportions of Roman columns, and made 

particularly explicit note of the relative dimensions of the Ionic order. He stated that 

the diameter at the base of an Ionic column is equal to one seventh of the column 

height, and the diameter at the top of the column is equal to three quarters of the 

diameter at the bottom. Additionally, the column base height is equal to half the 

diameter at the bottom of the column, and the whole column height should equal 

one third of the temple width (De Architectura III, 5). The specificity of these rules 

makes them convenient for our implementation; as long as one element is known – in 

this case, the temple width – the other measurements can be calculated. 

An important consideration at this stage was the amount of detail to contain in the 

procedurally generated column geometry. If a particularly accurate representation of 

Roman column geometry were desired, then a large number of polygons would be 

needed to achieve the necessary level of detail. This would result in a complex and 

potentially more lifelike model, but it could reduce the functionality of the 

application if a large number of columns are to be displayed on-screen 

simultaneously. Conversely, a column object with a low number of polygons would 

help to ensure that the application can run in real-time, but it may not be complex 

enough to reflect the defined Vitruvian measurements. 

A compromise must therefore be reached. After experimenting with various setups, 

we settled on a geometrically simple structure, featuring a shaft of 8 rectangular 

polygons (or 16 triangular polygons), and a total polygon count of 76. The grooves in 

the shaft can simply be represented through the use of a texture. 
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Figure 19: Four potential levels of detail for a column of the Doric or Corinthian order. The 

second column image was the one implemented into our application. 



61 

 

Grammar Definition 5: Roman Temple 

Non − Terminals  =   {
𝑆 − 𝑆𝑖𝑑𝑒, 𝑆𝑡 − 𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦, 𝑃 − 𝑃𝑜𝑑𝑖𝑢𝑚,

𝐴 − 𝐴𝑙𝑡𝑎𝑟, 𝐶𝑒 − 𝐶𝑒𝑙𝑙𝑎, 𝐶𝑛 − 𝐶𝑜𝑙𝑜𝑛𝑛𝑎𝑑𝑒, 𝑇 − 𝑇𝑒𝑚𝑝𝑙𝑒
} 

Terminals  =   {
𝐺 −  𝐺𝑟𝑜𝑢𝑛𝑑, 𝐶𝑜 − 𝐶𝑜𝑙𝑢𝑚𝑛, 𝑅 − 𝑅𝑜𝑜𝑓,

𝑆 − 𝑆𝑡𝑒𝑝, 𝐵 − 𝐵𝑙𝑜𝑐𝑘, 𝐷 − 𝐷𝑜𝑜𝑟
} 

Start Symbol  =   𝑇 − 𝑇𝑒𝑚𝑝𝑙𝑒 

 

 

𝐓 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐏 𝑥,𝑦−2,𝑧

𝑤,2,𝑑 , 𝐑 𝑥+1,𝑦,𝑧+2
𝑤−2,ℎ,𝑑 , 𝐒𝐭 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐂𝐞 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐆 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑  

  𝐒𝐭 
  𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 →  𝐒 𝑥,𝑦,𝑧+𝑑
𝑤,0.2,0.4 … 𝐒 𝑥,𝑦+ℎ,𝑧

𝑤,0.2,0.4 , (𝐀 𝑥+4,𝑦,𝑧+0.5
𝑤,ℎ,𝑑 ) 

𝐏 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐁 𝑥,𝑦,𝑧

1,2,3 , 𝐁 𝑤−1,𝑦,𝑧
1,2,3 , 𝐁 𝑥,𝑦,3

𝑤,2,𝑑−3  

𝐀 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐁 𝑥,𝑦,𝑧

2,1,1 , 𝐁 𝑥+0.25,𝑦+1,𝑧+0.25
1.5,1,0.5  

𝐂𝐞 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐁 𝑥,𝑦,𝑧

1,ℎ,𝑑 , 𝐁 𝑤−1,𝑦,𝑧
1,ℎ,𝑑 , 𝐁 𝑥,𝑦,𝑑−1

𝑤,ℎ,1 , 𝐁 𝑥,𝑦,𝑧
4,ℎ,1 , 𝐁 𝑥+6,𝑦,𝑧

4,ℎ,1 , 

→ (𝐃 𝑥+4,𝑦,𝑧+0.5
𝑤,ℎ,𝑑 ), 𝐂𝐧 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐂𝐧 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐂𝐧 𝑥,𝑦,𝑧+𝑑

𝑤,ℎ,𝑑  

  𝐂𝐧 
  𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 →  𝐂𝐨 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 … 𝐂𝐨 𝑥+𝑤,𝑦,𝑧

𝑤,ℎ,𝑑  

 

 
Having completed the architecture of the temple, we can now implement grammars 

for the remaining structures. By making use of a hierarchy of elements for one 

structure, we are now able to reuse desired elements for the remaining buildings. For 

example, the columns of the temple require little adjustment to be applied to a 

forum; only the grammar implementation needs to be altered. 

 

3.2.5.3 Forum 

 

Roman forums, the central squares that functioned as open-air gathering places, 

were an integral feature of Roman settlements. Although they were not buildings in 

the traditional sense, forums were still composed of a set of typical building 

elements, and so they could be defined through the same set of grammatical rules as 

the other architectural structures in this project. 

Vitruvius noted that Greek forums were typically close-set, double-width colonnades 

encompassing square platforms, but he asserted that this was an inappropriate 

setting for Roman cities where the forum was occasionally used for public displays 

like gladiator shows (De Architectura V, 1). He instead proposed that Roman forums 

ought to have a width that is two thirds of its length, and that the surrounding 

colonnade ought to be widely spaced and two floors tall. 
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The geometry involved in the procedural rendering of a forum is simple, as the most 

important feature tends to be the communal space itself. Nonetheless, a problem 

became apparent when attempting to define the forum’s dimensions within the 

allotted insula: the entrance of the neighbouring temple encroached on the forum’s 

space. Vitruvius made no mention of the influence that a neighbouring temple can 

have on the dimensions of a forum, but did specify that a neighbouring basilica or 

market hall ought to take up one third of a forum’s floor space; the colonnade can 

occupy the remaining oblong area (De Architectura V, 1). By treating the temple as a 

basilica, the dimensions could be adjusted to ensure that the forum colonnade and 

the temple entranceway could cohabit without causing overlapped geometry. 

 

Grammar Definition 6: Roman Forum 

Non − Terminals  =   {𝐶𝑑 − 𝐶𝑜𝑙𝑜𝑛𝑛𝑎𝑑𝑒} 

Terminals  =   {𝐺 −  𝐺𝑟𝑜𝑢𝑛𝑑, 𝐶 − 𝐶𝑜𝑙𝑢𝑚𝑛} 

Start Symbol  =   𝐹 − 𝐹𝑜𝑟𝑢𝑚 

 

 

𝐅 𝑥,𝑦,𝑧
𝑤,2,𝑑 →  𝐂𝐝 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐂𝐝 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐂𝐝 𝑥,𝑦,𝑧+𝑑

𝑤,ℎ,𝑑 , 𝐂𝐝 𝑥+𝑤,𝑦,𝑧+𝑑
𝑤,ℎ,𝑑 , 𝐆 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑  

  𝐂𝐝 𝑥,𝑦,𝑧 
𝑤,ℎ,𝑑 → 

 𝑦+1 < ℎ  𝐂 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 … 𝐂 𝑥+𝑤,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐂𝐝 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑  

 

 

3.2.5.4 Theatre 

 

Early Roman theatres were timber structures; it was only during the time of 

Vitruvius that permanent structures became increasingly popular, with architecture 

based upon earlier Greek examples. The traditional Roman theatre consisted of a 

stage area, which was often a covered building, and an inner seating area that 

formed a semi-circle. The outside would often consist of tall, rounded archways, 

with columns adjacent to or embedded in the outer wall. 

Vitruvius defined the angle formed by the semi-circular section of the theatre by 

noting that four equilateral triangles, each with points on the centre of the orchestra 

and perimeter of the theatre, could fit within the theatre’s arc (De Architectura V, 6). 

Taken literally, this would imply that the semi-circular section of Roman theatres 

ought to form a 240 degree arc. Vitruvius contrasted this with Greek theatres, where 

he compared the angle to that of three squares, or 270 degrees. This appears 

consistent with the archaeological record. Although the specific angle varies, many 
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Roman theatres, such as the theatre at Bosra, Syria, appear to have an orchestra angle 

of close to 240 degrees, whereas Greek theatres such as the one in Epidaurus, Greece, 

are notably more arced (De Malsche, et al., 1983). 

Vitruvius also offered measurements for the staging area. For example, he specified 

that, “the length of the scene must be double the diameter of the orchestra,” and that, 

“the height of the podium, or pedestal … is a twelfth part of the diameter of the 

orchestra” (De Architectura V, 6). Vitruvius acknowledged that it would be inevitable 

that each theatre would be built with slightly different dimensions due to restrictions 

of circumstance, but he repeatedly stressed the importance of symmetry for the 

purposes of aesthetic beauty and good acoustics. 

Many of the elements for the theatre, such as the columns and seating area, can be 

borrowed from the architectural elements used in the construction of the temple. One 

element that is new to our shape grammars is the archway, which must be 

repeatedly called at various angles and at two to three heights in order to form the 

outer wall of the theatre structure.  

 

Grammar Definition 7: Theatre 

Non − Terminals  =   {𝑆𝑡 − 𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦, 𝑆 − 𝑆𝑖𝑑𝑒, 𝑇 − 𝑇ℎ𝑒𝑎𝑡𝑟𝑒} 

Terminals  =   {𝐴 − 𝐴𝑟𝑐ℎ𝑤𝑎𝑦, 𝐶 − 𝐶𝑜𝑙𝑢𝑚𝑛, 𝑆𝑒 − 𝑆𝑡𝑒𝑝, 𝑆𝑎 − 𝑆𝑡𝑎𝑔𝑒} 

Start Symbol  =   𝑇 − 𝑇ℎ𝑒𝑎𝑡𝑟𝑒 

 

  𝐓 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐒 𝑥,𝑦,𝑧

𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒
 , 

  𝐒𝐚 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑  

  𝐒 𝑥,𝑦,𝑧 
𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒

→  𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒+30

, 𝐀𝐫 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐂 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑   
 𝑎𝑛𝑔𝑙𝑒 < 240 , 𝐒𝐭 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑  

→  𝐀𝐫 𝑥,𝑦+ℎ,𝑧
𝑤,ℎ,𝑑 , 𝐂 𝑥,𝑦+ℎ,𝑧

𝑤,ℎ,𝑑  

  𝐒𝐭 
  𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 →  𝐒𝐞 𝑥,𝑦,𝑧+𝑑
𝑤,0.2,0.4 … 𝐒𝐞 𝑥,𝑦+ℎ,𝑧

𝑤,0.2,0.4  

 

3.2.5.5 Amphitheatre 

 

At the time of Vitruvius’ writing, amphitheatres were considered to be something of 

a novelty, not a prevalent piece or architecture (De Architectura I, 7). However, 

enough details have been left through public record and archaeological remains for 

us to gather accurate proportions of a typical structure. Amphitheatres vary in shape 

and size, but always took the form of a fully-enclosed seating and stairway area. 

Some were designed to rest upon hillsides, where others stood as monumental, 

vaulted structures. For the purposes of this project, only the latter type was chosen to 
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be implemented. Vitruvius states that the outer length to width ratio of the 

amphitheatre ought to be 1.2:1, but that the inner ratio ought to be 1.5:1, creating a 

notable oval shape. Aside from the difference in structure shape and the lack of a 

separate staging area, the physical differences between theatres and amphitheatres 

are minor. This allows for many of the same production rules to be borrowed from 

the theatre grammar. 

 

Grammar Definition 8: Amphitheatre 

Non − Terminals  =   {
𝑆𝑡 − 𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦, 𝑆 − 𝑆𝑖𝑑𝑒,

 𝐴 − 𝐴𝑚𝑝ℎ𝑖𝑡ℎ𝑒𝑎𝑡𝑟𝑒
} 

Terminals  =   {𝐶 − 𝐶𝑜𝑙𝑢𝑚𝑛, 𝑆𝑒 − 𝑆𝑡𝑒𝑝, 𝐴𝑟 − 𝐴𝑟𝑐ℎ𝑤𝑎𝑦} 

Start Symbol  =   𝐴 − 𝐴𝑚𝑝ℎ𝑖𝑡ℎ𝑒𝑎𝑡𝑟𝑒 

 

  𝐀 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐒 𝑥,𝑦,𝑧

𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒
  

  

  𝐒 𝑥,𝑦,𝑧 
𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒

→  𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑎𝑛𝑔𝑙𝑒+30

, 𝐀𝐫 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐂 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑   
 𝑎𝑛𝑔𝑙𝑒 < 360 , 𝐒𝐭 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 

→  𝐀𝐫 𝑥,𝑦+ℎ,𝑧
𝑤,ℎ,𝑑 , 𝐂 𝑥,𝑦+ℎ,𝑧

𝑤,ℎ,𝑑  

  𝐒𝐭 
  𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 →  𝐒𝐞 𝑥,𝑦,𝑧+𝑑
𝑤,0.2,0.4 … 𝐒𝐞 𝑥,𝑦+ℎ,𝑧

𝑤,0.2,0.4  

 

 

3.2.5.6 Governmental Building 

 

A governmental building grammar was designed, both to fulfil the requirements for 

a basilica, the extravagant Roman public court building, and to serve the generation 

of the numerous “generic” governmental buildings that a town is likely to contain. 

Vitruvius explicitly described the measurements of a basilica. Most notably, he 

commented that, “The columns of basilica are to be of a height equal to the breadth 

of the portico, and the width of the portico one-third of the space in the middle”, and 

that “The portico … is twenty feet wide … The height of the columns, including the 

capitals, is fifty feet” (De Architectura V, 1). Put together, this provides enough 

information to form our shape grammar, borrowing elements from the previously 

defined temple where necessary. 

To create the simpler, generic governmental building structure from the basilica, the 

only changes to be made were to reduce the structure’s dimensions, and to remove 

the more superfluous elements of the basilica, such as the double-height columns 
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and the portico. This can be performed semi-randomly, producing a range of 

structures that still resemble a public building. 

 

Grammar Definition 9: Governmental Building 

Non − Terminals  =   {𝑊 − 𝑊𝑎𝑙𝑙𝑠, 𝑆 − 𝑆𝑖𝑑𝑒, 𝐹 − 𝐹𝑙𝑜𝑜𝑟, 𝐺 − 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑎𝑙} 

Terminals  =   {𝐷 − 𝐷𝑜𝑜𝑟𝑤𝑎𝑦, 𝑊𝑖 − 𝑊𝑖𝑛𝑑𝑜𝑤, 𝑅 − 𝑅𝑜𝑜𝑓, 𝐶 − 𝐶𝑜𝑙𝑢𝑚𝑛𝑠} 

Start Symbol  =   𝐺 − 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡𝑎𝑙 

 

  𝐆 𝑥+𝑟𝑎𝑛𝑑(0,3),𝑦,𝑧+𝑟𝑎𝑛𝑑(0,3)
𝑤+𝑟𝑎𝑛𝑑(0,3),𝑟𝑎𝑛𝑑(1,3),𝑑+𝑟𝑎𝑛𝑑(0,3)

→  𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐑 𝑥,𝑦+ℎ,𝑧 

𝑤,ℎ,𝑑   
  

  𝐅 𝑥,𝑦,𝑧 
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐅 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑   

 𝑦+1 < ℎ  

𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑  

𝐖 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐒 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐒 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐒 𝑥,𝑦,𝑧+𝑑

𝑤,ℎ,𝑑 , 𝐒 𝑥+𝑤,𝑦,𝑧+𝑑
𝑤,ℎ,𝑑  

  𝐒 
 𝑟𝑎𝑛𝑑(0,10)==1  𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 →  𝐃 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑  

𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐖𝐢 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , (𝐂 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 ) 

 

3.2.5.7 Villa 

 

Both the Roman villas owned by nobles and the town-houses of the lower classes are 

formed of previously-defined architectural elements; we only need to know the 

dimensions and the layout of the needed elements. 

Vitruvius documented the size and style considerations for the interior of villas 

extensively, and made note of the differences between villa rustica, country houses, 

and villa urbana, suburban residences (De Architectura VI, 1-8). He noted that the 

atrium, the villa’s internal courtyard, can lie between thirty and eighty feet in length, 

and that the atrium’s width and the size of the neighbouring rooms must be adjusted 

to accommodate this large potential length deviation. He also offered measurements 

for various rooms, such as, “the cloister is transversely one third part longer than 

across”, and “the length of a triclinium is to be double its breadth”. Vitruvius stops 

short of explicitly defining the size of the villa’s perimeter, but we can draw 

estimates based on the given information. 

In the same way that generic governmental buildings can be formed by resizing and 

simplifying the architecture of the basilica, we are able to create humbler residential 

structures by removing the villa’s atrium and adjusting the building size with some 

degree of randomness. 
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Grammar Definition 10: Villa 

Non − Terminals  =   {𝑊 − 𝑊𝑎𝑙𝑙𝑠, 𝑆 − 𝑆𝑖𝑑𝑒, 𝐹 − 𝐹𝑙𝑜𝑜𝑟, 𝑉 − 𝑉𝑖𝑙𝑙𝑎} 

Terminals  =   {𝐷 − 𝐷𝑜𝑜𝑟𝑤𝑎𝑦, 𝑊𝑖 − 𝑊𝑖𝑛𝑑𝑜𝑤, 𝑅 − 𝑅𝑜𝑜𝑓, 𝐴 − 𝐴𝑡𝑟𝑖𝑢𝑚} 

Start Symbol  =   𝑉 − 𝑉𝑖𝑙𝑙𝑎 

 

  𝐕 𝑥+𝑟𝑎𝑛𝑑(0,3),𝑦,𝑧+𝑟𝑎𝑛𝑑(0,3)
𝑤+𝑟𝑎𝑛𝑑(0,3),𝑟𝑎𝑛𝑑(1,2),𝑑+𝑟𝑎𝑛𝑑(0,3)

→  𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐑 𝑥,𝑦+ℎ,𝑧 

𝑤,ℎ,𝑑 , ( 𝐀 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 ) 

  

  𝐅 𝑥,𝑦,𝑧 
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐅 𝑥,𝑦+1,𝑧
𝑤,ℎ,𝑑   

 𝑦+1 < ℎ  

𝐅 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑  

𝐖 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐒 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 , 𝐒 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,𝑑 , 𝐒 𝑥,𝑦,𝑧+𝑑

𝑤,ℎ,𝑑 , 𝐒 𝑥+𝑤,𝑦,𝑧+𝑑
𝑤,ℎ,𝑑  

  𝐒 
 𝑟𝑎𝑛𝑑(0,10)==1  𝑥,𝑦,𝑧

𝑤,ℎ,𝑑 →  𝐃 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑  

𝐒 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐖𝐢 𝑥,𝑦,𝑧

𝑤,ℎ,𝑑  

𝐀 𝑥,𝑦,𝑧
𝑤,ℎ,𝑑 →  𝐖 𝑥,𝑦,𝑧

1,ℎ,𝑑 , 𝐖 𝑥,𝑦,𝑧
𝑤,ℎ,1 , 𝐖 𝑥,𝑦,𝑧+𝑑

1,ℎ,𝑑 , 𝐖 𝑥+𝑤,𝑦,𝑧
𝑤,ℎ,1  
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3.3 RENDERING ENGINE 

 

3.3.1 CREATING THE DIRECTX CITY FILE 

 

Converting the formal shape grammars defined in section 3.2.5 into C++ code 

requires a simple, but methodical process. Each unique symbol in each of the formal 

grammars is assigned a function. Accompanying symbol attributes – the superscripts 

and subscripts following each symbol – are latched to the corresponding function 

through appropriately typed function parameters. Conditions – the superscripts 

preceding a symbol – are implemented through conditional “if” statements 

contained within the function bodies, or an appropriate loop or switch-case 

statement where necessary. As such, just as the non-terminal symbols called other 

symbols in the defined grammars, the architectural functions call other functions in 

the programming code. A hierarchy has been created. 

However, the functions representing terminal symbols must make note of the 

geometry that they represent. This involves taking the function parameters, and 

parsing the values to a set of arrays that represent vertex points, polygon points, and 

texture references. 

It would be entirely possible to use the data created in the generation process to 

render polygons directly to the screen, as the data is essentially stored in a set of 

vertex, polygon, and texture arrays. However, the decision was made to write the 

data to a DirectX (.x) file, which could then be read and output to the screen. The 

reason for this is twofold. 

First, the implemented method of storing and retrieving data from a custom vertex 

array is likely to be less efficient than Microsoft's implemented method. Rather than 

spending time experimenting to find an optimal way of reading a vertex array, it 

would be more prudent to rely on a tried and tested method. 

Second, storing the data in a widely-accepted model file format allows for the 

possibility of exporting or sharing the model. If the user desires the model file for a 

game, animation, or their own simulation, then passing on the .x file along with the 

necessary textures is a simple process. 

DirectX files were chosen over other model file types (such as .3DS, .MAX, or .C4D), 

primarily due to the unencrypted, text encoded nature of the file format. The Object 

file type (.obj) is another commonly-used file type that uses unencrypted, text 

encoded data, and so it was considered for this application. The difference between 

the two file types is marginal, in terms of both implementation and efficiency. The 
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decision to use the DirectX file type over the Object file type was therefore made out 

of convenience, as the DirectX 9 framework more readily supports the 

implementation of .x meshes over .obj meshes. 

An important choice at this stage of the application was whether it would be more 

beneficial to write to a single mesh containing the entire city, or write to multiple 

meshes that contain each building. Multiple meshes can either be written to within a 

single DirectX file (in the form of multiple frames), or spread across multiple files. 

Table 2 demonstrates the comparative advantages of the use of single or multiple 

meshes in this scenario, with respect to application efficiency, the generated model 

file size, and the potential for culled geometry.  
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At a glance, it appears that writing to multiple meshes is the logical choice as this 

would be an easier to implement. Additionally, the ability to transform each building 

on its own matrix at any point in the rendering stage, not just the city generation 

stage, could allow for a lot more possibilities. However, efficiency is an important 

factor, especially when we consider that this application could potentially reach 

100,000+ polygons in size, and must be able to run in real-time. If multiple meshes 

 Single Mesh Multiple Meshes 

Efficiency Even with a large number of 

textures, reading a single mesh file 

is an efficient process. The only 

issue is the possibility of a stack 

overflow when writing large 

quantities of data, but taking care 

when allocating and deallocating 

memory would prevent this. 

Generally, multiple meshes 

require multiple parses of the 

same texture, and may use 

multiple swaps of the z-buffer. At 

its extreme (such as in a city with 

over one thousand buildings), this 

could cause efficiency issues. 

File Size A single file or mesh is more 

portable than multiple meshes. 

However, the model file is likely to 

be larger in size. 

If similar buildings are repeated, it 

may be possible to reuse the same 

model mesh or model frame for 

multiple buildings. This may or 

may not decrease the RAM usage, 

but it would significantly decrease 

the size of the model files used. 

Culling Since every building is a part of a 

single object, cities must be culled 

on a per-polygon basis. This is not 

necessarily less efficient, but it 

does require more forethought to 

implement effectively. 

Since each building has its own 

frame or object, buildings can be 

culled on a per-building basis. 

Further culling parameters may be 

necessary, but this would be a 

simple process. 

 

Table 2: A comparison of the relative advantages and disadvantages of using a single mesh or multiple 

meshes within a DirectX application. 
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would require multiple checks or multiple swaps on the Z-buffer, where a single 

mesh would only require one, then this could become an important, difficult-to-fix 

issue in the later stages of programming.  

Having established that we would be writing to a single mesh contained in a single 

DirectX file, a method had to be established of exporting the virtual city data. For the 

sake of speed, ease of use, and readability, two text files were created that contained 

sets of information that would be persistent across multiple runs of the application. 

The first (named "XFilePart1.txt" in this application) contains a list of headers, 

structures, and templates, and a standard frame transformation matrix. The purpose 

of this file is to reduce the amount of redundant code; these elements are likely to be 

identical between the different .x files created for different cities, and hard-coding the 

lines into the application itself would  

The second file (named "XFilePart2.txt") contains a list of the textures used in the 

application, along with a set of normal that are frequently referenced by the mesh 

geometry. The purpose of this file is to allow for quick alterations of the currently 

used texture, without having to recompile the code. For example, changing the name 

of “brick.jpg” to “redbrick.png” would successfully alter the texture used for the 

walls, assuming that the relevant file is present in the correct directory. 

A chronological list of the model-writing process follows. 

1. Create and name a new .x file - in this case, we named it "CityModel.x". 

2. Parse the contents of XFilePart1.txt, line by line, to CityModel.x via a simple 

loop. 

3. Parse every vertex point that was generated to CityModel.x, again via a 

simple loop. 

4. Parse every polygon that was generated to CityModel.x. A loop very similar 

to the loop in step 3 is used.  

5. Parse the contents of XFilePart2.txt to CityModel.x. 

6. Parse the normal direction of every vertex to CityModel.x. 

7. Parse the mesh coordinates of every polygon to CityModel.x (in this case, 

(0,0) to (1,1) was parsed, unless specifically stated otherwise). 

8. Save and close the file. 

 

The result of this is a fairly large unencoded file (20,614 KB for a 200 building city) 

containing a single model file of all the entire generated architecture, including the 

necessary texture and normal map data. The vertex, polygon, and texture arrays that 

we used for the city generation can then be dropped; their purpose has been fulfilled, 

and now the arrays only take up memory space with no reason. The newly-created 

DirectX model file can then be loaded into the program, and rendered through 

drawing calls native to the DirectX graphics library. 
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3.3.2 LIGHTS, CAMERA, SKYBOX 

 

A simple two light set-up was created, consisting of a neutral-toned ambient light, 

and a brighter, diffuse and specular-enabled directional light. A conventional skybox 

was also created for the purpose of encouraging an immersive experience. 

In order to allow the user to navigate the city, a moveable camera was set up. The 

mouse was linked to the camera’s rotation, and the A, S, D, and W keys were linked 

to the camera’s relative position. Together, this provides a first-person navigation 

experience that many people who play videogames would find familiar. 

In addition, two navigational modes were set up to allow for the viewing of the city 

from two perspectives: an eye-level mode, and a free-roaming mode. When in eye-

level mode, the camera’s Y-axis is linked to the terrain’s Y-axis at the camera’s 

current position. In this way, the camera can navigate up and down hills, and is 

restricted from floating away from the floor; the user is given the experience of a 

civilian. When in free-roaming mode, the camera is not bound to the floor, and the 

user can fly into the sky by using the A, S, D, and W keys. This allows the user to see 

the city from a bird’s eye view, if desired. 

The M and the N keys were dedicated to the purpose of switching between the two 

modes. 
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4 RESULTS 
 

4.1 CITY POSITION 

 

To test the effectiveness of the implemented city positioning algorithm, the three 

discussed positioning methods of section 3.3.1 were applied to a selection of 

heightmaps. The heightmaps were created by generating Perlin noise in image 

editing software GIMP, and then making manual adjustments to achieve the desired 

output. 

The three heightmaps were designed for the explicit purpose of demonstrating each 

city positioning method’s advantages and disadvantages, as well as showing 

situations where the methods produce near-identical results. 

The first heightmap is a relatively flat surface. There is no land below the water line, 

and therefore no out of bounds areas. There are hills – the highest point lies towards 

the top-right of the map – but the gradients across the map can be considered to be 

reasonably shallow.  

The second heightmap tested features a lake at the centre, caused by a set of vertices 

that dip below the water line. Consequently, the centremost points of the map are 

considered to be out of bounds. The rest of the map is fairly flat. 

The third heightmap features two corners that dip below the waterline, and two 

corners that are quite raised, creating a slope. Consequently, the majority of the map 

is on a steep gradient, and large parts might be considered unusable.  

 

In order to demonstrate the various results that could be produced by the weighed 

factor formula (section 3.2.1.3), two variations of the method were used: one where 

there is an emphasis on the centremost point of the map, and one where there is an 

 

Figure 20: The three heightmaps that were used in the testing of the city position algorithm. The 

darkest areas on the second and third image lie underwater. 
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emphasis on the highest point of the map. The weighted factor formula was also 

used for the purpose of notating the four tested city placement algorithms, 

demonstrated as follows. 

Method 1: Centremost point selection 

PV = (Cd*1) + (Wd*0) + (Rd*0) + {[0*G]*[0*(MH-H)]} 

PV = Cd 

 

Method 2: Factor formula (unweighted) 

PV = (Cd*1) + (Wd*1) + (Rd*1) + {[1*G]*[1*(MH-H)]} 

PV = Cd + Wd + Rd + [G * (MH – H)] 

 

Method 3: Weighted factor formula (center) 

PV = (Cd*2) + (Wd*1) + (Rd*1) + {[1*G]*[1*(MH-H)]} 

PV = Cd*2 + Wd + Rd + [G * (MH – H)] 

 

Method 4: Weighted factor formula (height) 

PV = (Cd*1) + (Wd*1) + (Rd*1) + {[1*G]*[2*(MH-H)]} 

PV = Cd + Wd + Rd + {G * [2*(MH-H)]} 

 

Where PV represents the Point Value that is measured on every integer coordinate 

upon a heightmap, Cd represents the distance to the centre of the map, Wd 

represents the distance to the nearest body of water, Rd represents the distance to the 

nearest road, G represents the gradient of the land at the current point, MH 

represents the maximum height upon the heightmap, and H represents the height at 

the current coordinate. 

When implemented into the heightmaps shown in Figure 17, the formulae produced 

cities upon a range of locations. The sited locations can be seen visually upon the 

relevant heightmaps in Figure 18, or in tabulated coordinate form in Table 3. 
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In order to retrieve an accurate reading of the measure of dispersion between 

coordinates, a method of calculating the variance had to be devised. Various 

measures were considered, such as the Standard Distance Deviation or the 

Mahalonobis Distance, but due to the low number of sampled points involved these 

methods were not considered appropriate. We therefore decided to simply measure 

the Euclidian distance from each coordinate to the mean point upon each heightmap, 

and calculate a dispersion value by finding the average of these distances. 

  

 

Figure 21: The four city citing methods upon the three heightmaps.  

 Heightmap 1 Heightmap 2 Heightmap 3 

Method 1: Centremost 

point selection 

128, 128 81, 128 128, 128 

Method 2: Factor 

formula 

141, 121 81, 139 140, 65 

Method 3: Weighted 

factors (centre) 

132, 124 80, 136 137, 100 

Method 4: Weighted 

factors (height) 

163, 111 42, 146 201, 40 

Mean coordinates 141, 121 73, 137.25 151.5, 83.25 

 

Table 3: The coordinates of the centremost city points upon the three heightmaps. 
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Put mathematically, we would say that the level of dispersion can be written as: 

1

𝑛
∑‖𝒛𝑖 − 𝒄‖

𝑛

𝑖=1

 

 

Where 𝒛𝑖 is defined as every measured coordinate (i.e. 𝒛𝑖 = {𝒙𝑖, 𝒚𝑖}), and 𝒄 is defined 

as the central or mean point. Calculating the distance from each point to the central 

point is a simple matter of gathering the Euclidian distance through use of the 

Pythagorean Theorem. 

‖𝒛𝑖 − 𝒄‖ =  √(𝑥𝑖 − 𝑐1)2 + (𝑦𝑖 − 𝑐2)2 

 

The results of these measurements can be seen in Table 4. 

 

 

 

 

  

 Heightmap 1 Heightmap 2 Heightmap 3 

Method 1: Centremost 

point selection 

14.76 13.62 50.55 

Method 2: Factor 

formula 

0 10.15 21.57 

Method 3: Weighted 

factors (centre) 

9.49 9.09 22.15 

Method 4: Weighted 

factors (height) 

24.17 30.29 65.73 

Mean distance (level of 

dispersion) 

12.11 15.79 40 

 

Table 4: The distance from each sited location to the mean point upon each heightmap, and the 

calculated level of dispersion. 
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4.2 CITY LAYOUT 

 

It was decided that, in order to receive an accurate picture of the generated city’s 

layout, renderings had to be made that clearly demonstrate the distribution of 

residential, governmental, and religious buildings. Traditional screenshots were 

deemed unsuitable for this analysis, as discerning the various types of buildings 

from an overhead view was considered to be difficult. Therefore, specialised 

renderings had to be created. 

The rendering process was as follows. First, all extraneous models were removed. 

This involved the removal of the skybox, ground, water, road, and trees from the 

rendering pipeline. The buildings were stripped of their textures, and instead were 

assigned a coloured material according to their designated building type. The 

colours red, blue, and green were used to designate residential, governmental, and 

religious buildings respectively, and black was assigned to any remaining structures. 

Directional lighting was turned off, and the camera was adjusted to a top-down, 

orthographic perspective, allowing for a clear bird’s eye view of the scene. 

For consistency, a set of constants were put in place. The same flat terrain was used 

for each rendering. The city size was kept consistent (a CitySize value of 200, 

indicating a city circumference of approximately 3770 meters). The same set of key 

structures – namely, the forum, central temple, and amphitheatre – was used in all 

the renderings. Where randomness was required, we generated time-seeded pseudo-

random numbers, as explained in section 3.2.4.1. 

With these parameters in place, three renderings were produced, utilising the three 

proposed methods described section 3.2.4, Building Locations. That is, the first 

rendering demonstrates the use of a simple random number generator to 

stochastically assign the three types of generic building types to allotments. The 

second rendering demonstrates the use of sectioned districts to create “groups” of 

similarly structured buildings. The third rendering demonstrates the use of 

probability distribution in order to create an organic, semi-random set of districts. 

The three renderings were combined into a single image and labelled in Figure 19. 
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Figure 22: The three special renderings that demonstrate the building layout of a generated city. 
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Figure 23: A top-down rendering of a similarly sized city, without any of the special rendering 

effects applied. 

 

Figure 24: An overhead, regular rendering of the city. 
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4.3 BUILDING GENERATION 

 

In order to gauge the historical accuracy of the procedurally generated architecture 

in a meaningful manner, we produced rendered images of the models which could 

then be compared to illustrators’ interpretations of Vitruvius’ writings, and to 

architectural drawings and photographs of comparable real-life structures. This 

would allow for an assessment of the degree to which the generated architecture 

adhered to Vitruvius’ measurements whilst also allowing us to assess the degree to 

which the digital models deviate from real life. 

Out of all the buildings described in section 3.2.5, Building Generation, the temple 

was selected to be the primary focus of our comparison. There were a number of 

reasons that facilitated this decision. 

The first was that Vitruvius paid a disproportionately large amount of attention to 

temples, dedicating two whole books to the dimensions of the structures. This level 

of attention was reflected in our implementation by way of a particularly detailed 

analysis of the structures (section 3.2.5.2), and it was decided that this standard 

ought to be maintained through the results stage for the purpose of consistency. 

The second reason was that, as a result of modern preservation and reconstruction 

efforts, many Roman temples remain relatively unchanged, at least superficially so, 

from their architectural state at the time of construction. This made our attempts to 

obtain adequate photographs of the structures fairly straight-forward. By contrast, 

the number of other Roman buildings that have been preserved in a near-pristine 

state is relatively small, and as such we assessed that attempting to procure 

measurable photographs of these structures could prove to be an issue. 

An additional consideration was that we believed Roman temples to be a more 

consistent representation of Vitruvian ideals than other architectural structures. A 

residential building may be subject to stylistic deviations at the hands of architects 

and builders, for example, and therefore may risk not conforming to the Vitruvian 

ideal. However, this is a speculative notion that deserves further study. 

Renderings were made of the modelled temple from various angles in both an 

orthographic viewpoint, and in a more natural perspective (Figure 22). We also 

produced renderings of the other buildings described through our shape grammars 

(Figure 23). 

For technical illustrations of the temple architecture described in De Architectura, 

various translations and editions were consulted. A version illustrated under the 

direction of Herbert Langford Warren (Vitruvius & Morgan, 1914) was selected to be 
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the primary source of comparison images, due to the book’s comprehensive 

collection of clean, well-annotated technical diagrams (Figure 24). For the purpose of 

a close and meaningful comparison, we selected images from the book that conform 

to our choice of temple structure (i.e. single front-facing portico, tetrastyle layout, 

Doric order) wherever possible. 

When selecting real-life examples of Vitruvian architecture for the purpose of 

comparison, we deliberately sought out temples that were in a relatively complete 

and undamaged condition 

The first temple selected was the Maison Carrée in Nîmes, France, a structure notable 

for being a particularly well-preserved example of Vitruvian architecture (Jones, 

2000). Originally built in 16 BC, the structure has been reconstructed and restored 

several times. It features six Corinthian columns across its portico, and twenty 

columns embedded in the cella walls. The temple measures 26.42 meters by 13.54 

meters 

The second temple to be selected was the Temple of Portunus, also known as the 

Temple of Fortuna Virilis, in Rome, Italy. It is notably smaller than the Maison 

Carrée, with a podium only measuring 19 meters by 10.5 meters. It features four 

Ionic columns across its portico. 

Other Vitruvian temples were considered for the purpose of comparison, such as the 

harbour temple at Ulpia Traiana or the temple of Jupiter Stator at Rome, but the 

structures were deemed inappropriate for comparison due to their state of decay or 

ruin. 

For both the Maison Carrée and the Temple of Portunus, photographs were drawn 

from the Wikimedia Commons depository (Figure 25, Figure 27), and architectural 

illustrations were drawn from Fletcher’s A History of Architecture on the 

Comparative Method (Figure 26, Figure 28). These image sources were selected due 

to their visual clarity and technical accuracy. 

With the image sources selected for both our rendered temple and for the 

comparison examples, we were able to make a set of measurements. First, the most 

immediately observable features of the assessed temple structures were documented: 

the style of the portico colonnade and the order of the columns. Next, by drawing 

from direct measurements of the necessary diagrams, sets of comparative ratios were 

measured with regards to the dimensions of the podium, columns, and cella for each 

temple. 

Consistency was ensured by maintaining the same standards and restrictions for all 

measures. For example, we measured the podium dimensions from and to the very 
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ends of the architectural elements, bannisters included, and we measured the cella 

dimensions along the outer perimeter of the cella wall. The full list of observed 

measurements can be found in Table 5.  
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Figure 25: Four orthographic and two perspective renderings of the Vitruvian temple. 
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Figure 26: Renderings of an amphitheatre, a villa, and a governmental building. 
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Figure 27: A compilation of Warren’s various technical diagrams (Vitruvius & Morgan, 1914). 
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Figure 28: Photograph of Maison Carrée from Wikimedia Commons. 

 

Figure 29: Architectural illustration of Maison Carrée (Fletcher, 1921). 
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Figure 30: Photograph of the Temple of Portunus from Wikipedia Commons. 

 

Figure 31: Architectural illustration of the Temple of Portunus (Fletcher, 1921). 
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 Rendered 

temple 

Warren’s 

Vitruvian 

illustrations 

Maison Carrée Temple of 

Portunus 

Portico 

colonnade 

style 

Tetrastyle Tetrastyle/ 

Hexastyle 

Hexastyle Tetrastyle 

Column style Doric Doric/Ionic Corinthian Ionic 

 

Podium width 

to length ratio 

1:2.02 1:2.00 1:1.95 1:1.81 

Temple height 

to podium 

width ratio 

(roof 

excluded) 

1:1.03 1:1.21 1:1.11 1:1.06 

Cella length to 

podium length 

ratio 

1:1.99 1:1.61 1:1.99 1:1.98 

Cella doorway 

height to cella 

height ratio 

1:1.36 1:1.29 1:1.26 1:1.26 

Column shaft 

height to full 

height ratio 

1:1.12 1:1.07 1:1.25 1:1.13 

Column 

diameter to 

shaft height 

ratio 

1:6.33 1:6.30 1:7.38 1:7.65 

 

Table 5: Comparison of the features and measurements of the various Vitruvian temples. 
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Figure 32: Overlay comparison of Warren’s drawings with the rendered output. 
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4.4 APPLICATION EFFICIENCY AND LIMITATIONS 

 

For the purpose of ensuring that the application is usable in real-time across a range 

of scenarios, the number of buildings, the number of polygons, and the average 

framerate of the application were measured across a range of city sizes.  

To ensure consistent and meaningful results, a number of constants were put in 

place. The same terrain was used throughout. To minimize frame rate fluctuations, 

the frame rate was measured over a period of five seconds, and the mean result was 

calculated. To avoid discrepancies caused by a moving viewpoint, the camera was 

placed in the same fixed position overlooking the city across all test runs. 

Despite these measures, it ought to be noted that there is still a degree of variation in 

the performance results due to the stochastic nature of the building generation 

process. We considered limiting the application to the production of a single type of 

building during the generation of the city, but such a measure would not accurately 

reflect the nature of the application. 

“CitySize” was an arbitrary value that was used within the application for the 

purpose of calculating the city’s radius. An approximate measure of 1 CitySize unit 

to 3 meters can be drawn, based upon the previously calculated measurements of 

road and insula dimensions (section 3.2.3). 

The test was performed on a Toshiba laptop with a 2.3GHz processor, 6 GB of RAM, 

and a GeForce graphics card. 

 

 

 

CitySize 

City 
Radius 

(Meters) 

Number 
of 

Buildings 

Number of 
Polygons 

(triangles) 
FPS (Frames 
Per Second) 

100 300 99 87970 208 

125 375 104 93610 201 

150 450 110 101952 192 

175 525 144 138146 185 

200 600 197 173660 176 

225 675 248 217226 164 

250 750 293 257074 150 

 

Table 6: The measured building count, polygon count, and framerate measurement at regularly 

positioned CitySize intervals. 
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The largest city that could be generated by the application had a CitySize value of 

350, representing a city radius of 1050 meters and generating around 440 buildings. 

At larger values, the application stalled and crashed. We believe that this crash 

originates from a stack overflow in one of the arrays used for the purpose of storing 

building vertex data. 

The smallest possible city that could be generated had a CitySize value of 1, although 

this resulted in clear object overlapping and graphical errors. The smallest realistic 

city that could be generated without causing graphical errors had a CitySize value of 

approximately 50, representing a city with a radius of 150 meters. 

From archaeological record, we know that newly-founded Roman cities had a 

circumference of approximately 2 to 4 kilometres. This equates to a radius of 318 to 

637 meters, or a CitySize value of approximately 106 to 212.3 units, well within the 

application boundary limits of 50 to 350.  
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5 CONCLUSION AND EVALUATION 
 

5.1 CONCLUSIONS 

 

The underlying purpose of this project was to provide a set of novel methods capable 

of converting architectural elements into sets of formal rules, which could then be 

adapted into a procedurally generated digital city model. Vitruvius’ De Architectura 

was chosen as the exemplary test case. Section 0, Implementation, detailed the 

methodology used to formulate the various rules and grammars. A particular focus 

was placed on the use of a unique formal grammar for the purpose of describing the 

architectural shapes themselves. 

In section 4, Results, the output of the application was recorded and measured 

within four subsections. For the purposes of clarity and consistency, the same 

subsections have been adopted in the following conclusion section; the output data is 

broken down section by section and analysed, and appropriate conclusions are 

drawn. 

 

5.1.1 CITY POSITION 

 

In section 3.2.1, various methods of positioning a city upon a basic landscape were 

discussed, and an adjustable formula was devised. In section 4.1, four variations of 

the formula were implemented across three heightmaps, providing a set of 

coordinates that demonstrated how the Vitruvian city could be positioned in a range 

of scenarios. A visual rendering of the siting methods upon each of the heightmaps 

can be seen in Figure 18. 

With the sited points measured, the variance for each map was calculated by 

measuring the average Euclidian distance from the mean point to each of the sited 

city location’s coordinates (Table 4). 

We can draw observations about each siting method from the visual data in Figure 

18, and from the coordinate data in Table 3. 

Method 1, the centremost point selection method, sited cities in the very centre of the 

256 by 256 map for two out of the three heightmaps. The exception, heightmap 2, 

featured an inaccessible centre area, and consequently the method chose a point 

adjacent to this area. 
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Method 2, the unweighted factor formula, and method 3, the factor formula 

weighted to the map’s centre, produced fairly similar results. The two methods 

deviated most on heightmap 3, where the high point towards the northeast of the 

map caused method 2’s sited location to weigh further in that direction. 

Method 4, the factor formula weighted to height, appeared to produce sited locations 

near to the maps’ highest points, with comparative disregard of the maps’ 

centremost points. This is most apparent on heightmap 3, where method 4’s siting 

location lies quite close to the map’s northeast border. 

We can also draw several conclusions from the data presented on Table 4. The most 

immediately observable facts are that heightmap 3, the landscape that consisted of a 

large slope, featured the greatest level of dispersion (an average distance from centre 

of 40 units), and that heightmap 1, the relatively flat surface, featured the smallest 

level of dispersion (an average distance from centre of 12.11 units). These results 

were likely brought about due to the discrepancy in the weighting of the height 

variable. Methods 2 and 4 in particular tended to have sited locations that skewed 

towards height, causing large levels of divergence on the third heightmap. 

The implication of these results is that, under the chosen method of implementation, 

a flatter landscape produces more consistent results, regardless of which siting 

method is adopted. If we were to use a landscape that were entirely flat, all four of 

the city siting methods tested would have sited locations at the very centre of the 

map, providing an average dispersion level of zero. Conversely, terrain that is 

inconsistently mountainous is likely to yield a greater range of results, and so the 

design of the citing formula becomes of greater importance. 

From these results, there appears to be no doubt that the weighted factor formula is 

the “best” of the three proposed city positioning formulae. The optional weighting 

allows for a large amount of variety, to the point where all reasonable user needs can 

be accounted for. Due to the scope of this project, we are unable to perform an 

assessment of what weighting would produce results closest to the historical record, 

but this is certainly something that could be explored through further studies. 

 

5.1.2 CITY LAYOUT 

 

Section 3.2.4, Building Locations, describes the methodology used for assigning the 

key structures of a Vitruvian city, and then outlines three potential methods for 

designating the remaining ‘generic’ structures. Section 4.2 demonstrates the results of 

this methodology by providing a set of three specialised renderings. 
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From the rendered images in Figure 19 and Figure 20, we can immediately draw an 

observation: regardless of the building location method used, certain structures 

remain consistently placed. The forum and its adjacent buildings – indicated on the 

specialised renderings by the five central black buildings – are consistently assigned 

to the same grid squares towards the centre of the city. The amphitheatre – the black 

ring – consistently lies towards the outside of the city, but within the confines of the 

walls. These results are in keeping with the methods used to assign the key 

structures, as described in the introductory paragraphs of section 3.2.4. This is also in 

keeping with the locations suggested by Vitruvius (De Architectura I, 7; De 

Architectura V). 

We can also observe the differences in the building dispersion between the three 

rendered methods of Figure 19. The first rendering, depicting the random method 

described in section 3.2.4.1, is visibly lacking in order; any apparent patterns of 

grouping can be attributed to the nature of randomness. The second rendering, 

depicting the sectioned districts of section 3.2.4.2, shows the three types of building 

types allocated to three equally-sized districts. The third rendering, depicting the 

probability distribution method described in section 3.2.4.3, follows the predicted 

pattern of having mostly governmental buildings towards the centre, and mostly 

residential buildings towards the outer edge. Exceptions can be noted, such as the 

two outlying governmental buildings towards the top-right of the image, but again, 

this can be attributed to the nature of randomness. 

It would be simplistic to say that the probability distribution method produces the 

“best” results, as there are likely to be cases in which the other two proposed 

methods produce results more befitting of a user’s needs. However, for the purposes 

of our Vitruvian city scenario, the probability distribution method appeared to 

produce results closest to what we may expect a Roman city to look like. By that 

measure, the probability distribution method of building placement can be 

considered the most apt for our framework. 

Also of note are the dimensions of the city wall. In section 3.2.2, we asserted that the 

pentagonal wall surrounding a Roman city ought to have a perimeter between 

approximately 1869 and 3744 metres. We also asserted that the spacing between the 

towers upon a city wall ought to be by approximately 182 meters by Vitruvius’ 

measurements, but closer to 60 meters when going by historical record. 

Using the conversion rate calculated in section 4.4, we can assert that the city in the 

rendered example has a circumference of approximately 3770 metres. From this, we 

can infer that the rendered pentagonal wall has a perimeter of 3527 metres, within 

the typical measurements gathered from historical record. Since we can count 20 

towers upon the city wall in the rendered examples, each positioned regularly apart, 
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we can calculate the distance from any tower centre point to an adjacent tower centre 

point to be approximately 176 meters. 

We believe this measurement to be as close to the Vitruvian ideal as possible within 

the given outer wall dimensions. If an additional tower were positioned on each side 

of the pentagonal wall, totalling 25 towers, then there would be a gap of 

approximately 141 meters between towers. If there were one fewer towers on each 

side, totalling 15 towers, then the gap would be approximately 235 meters. 

Consequently, although there is a small deviation between the current measurement 

and Vitruvius’ recommendation, this is the smallest possible deviation attainable 

without altering the dimensions of the outer wall. As such, the implemented method 

of situating the outer wall’s towers functions exactly as intended. 

Despite this, a possible limitation can be observed when the city is viewed from 

overhead, as with Figure 20. It is immediately apparent that the city blocks, as 

defined in section 3.2.3, are homogenous squares, each only consisting of a small 

number of architectural structures. Without further studies, it is difficult to assess 

whether this peculiarity is a result of an error in the implementation, or whether it 

derives from a misinterpretation of Vitruvius’ rules, or whether the application is 

functioning exactly as intended and this is how Vitruvius intended for an ideal city 

to be designed. 

 

5.1.3 BUILDING GENERATION 

 

Section 4.3 contains large amounts of rendered output, demonstrating the 

architecture produced by the grammars outlined in section 3.2.5. A large number of 

rendered images of the generated Vitruvian temple are included, along with several 

images of other notable pieces of generated architecture. Additionally, the rendered 

images of the temple are compared to diagrams of the Temple of Portunus, Maison 

Carrée, and an illustrator’s interpretation of Vitruvius’ rules, allowing us to make an 

analysis of the success of the rendered architecture itself. 

Table 5 consists of a set of measurements, detailing the relative ratios of various 

architectural elements on each of the four tested temples. We will address the 

gathered data on a row-by-row basis. 

First, we made note of the column style and portico layout for each temple. Our 

temple, as described in section 3.2.5.2, can be described as tetrastyle and Doric. This 

contrasts with Maison Carrée and the Temple of Portunus, which can be described as 

hexastyle and Corinthian, and tetrastyle and Ionic respectively. Since Warren’s 



95 

 

illustrations are based on the descriptions in De Architectura, the illustrations cover a 

variety of temple and column styles, so this was noted accordingly. 

Next, the podium width to length ratio was measured. Vitruvius recommended that 

a temple ought to have a length twice its width (De Architectura IV, 4), and Warren’s 

illustrations proved to be perfect in this regard. The other measured temples, 

including the rendered temple, also delivered values very close to the one-to-two 

ratio. 

The temple height to podium width ratio provides a measure for how ‘squashed’ a 

temple appears, when viewed from the front. The rendered temple provided the 

smallest ratio, indicating that it was the ‘thinnest’ of the measured temples, albeit 

only a little more so than the Temple of Portunus. Warren’s illustrated temples 

proved to be the widest, although it ought to be noted that we received varying 

ratios depending on which of Warren’s illustrations was used; the illustrator 

appeared to draw podiums of varying heights and thicknesses, depending on the 

context of the drawing.  

The cella length to podium length ratio provides a measure of exactly how much of 

the podium is covered up by the cella chamber. The rendered temple, Maison Carrée, 

and the Temple of Portunus provided nearly identical results in this measure, all 

indicating that they had a podium nearly twice the length of the cella. Warren’s 

illustrations deviated significantly. We believe this to be because Warren tended to 

exclude or shorten the illustrated stairway and bannisters when unnecessary, 

creating illustrated temples that could appear too short when measured out of 

context. 

The cella doorway height to cella height demonstrates the relative height of the cella 

entranceway. The two real-life temples provided identical ratios for this measure, 

and the value gathered from Warren’s illustrations was also quite similar. However, 

the rendered temples’ ratio does not match the others. We believe that the source of 

this discrepancy stems from an erroneous interpretation of Vitruvius’ writings. In the 

cella subsection of section 3.2.5.2, we asserted that the ratio of the cella doorway 

height to the entire cella height ought to be approximately 2.5 parts to 3.5 parts, 

giving a cella doorway height to cella height ratio of 1:1.4. This value was derived 

from a misunderstanding of which architectural parts were included in Vitruvius’ 

measurements. With the proper elements included, we can expect to reach a value 

much closer to the 1:1.26 ratio produced by the real-life temples. Amusingly, we are 

not the first readers of Vitruvius to make this mistake; one scholar made note of 

having difficulty deciphering exactly what was included in Vitruvius’ 2.5 to 3.5 ratio 

(Brenders, 2014). 
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The column shaft height to full column height ratio indicates how much of the 

column is taken up by the base and capital. The temples all offered fairly different 

values for this measure, but this was to be expected since three types of column 

orders were involved. However, there is a small discrepancy between the rendered 

temple and Warren’s illustrations, which should not be the case since the two are of 

the same Doric order. We attribute this discrepancy to our inclusion of the square 

column base, which was described as optional by Vitruvius. If it is excluded, we 

would expect the discrepancy in the ratio between the two to become negligible. 

The column diameter to shaft height ratio gives an approximate value of a column’s 

relative thickness. Again, the measured ratios differ due to the different types of 

columns measured. As one would expect, the Ionic and Corinthian columns of the 

Temple of Portunus and Maison Carrée had larger ratios, indicating skinnier shafts 

than the stockier Doric columns of the rendered temple and Warren’s illustrations. 

The two Doric temples gave very similar measurements, indicating that the rendered 

temple’s Doric columns are at least accurate in this regard. 

Put together, a picture is formed of the overall accuracy of the rendered temple, and 

by extension the accuracy of our proposed shape grammar syntax. Discrepancies 

exist between the measurements derived from our renderings and the measurements 

drawn from Warren’s drawings, but many of these discrepancies are small enough to 

be dismissed as negligible mistakes made during the measuring process, or 

differences stemming from subtle ornate details in the measured images. 

The overlayed comparison of one Warren’s illustrations over the rendered output 

provides evidence of this (Figure 29); even though the silhouettes of the two images 

differ, there is a striking similarity between the two, and the significant architectural 

elements, such as the column dimensions and intercolumniation space, align 

perfectly. In this regard, the shape grammar must be considered to be successful. 
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5.1.4 APPLICATION EFFICIENCY AND LIMITATIONS 

 

In section 4.4, measurements were provided of the number of buildings generated by 

the application across a set of city sizes, along with accompanying polygon counts 

and framerate readings. The application was demonstrated to be capable of 

producing cities within the measurements typically found in the historical record; a 

city radius between 150 and 1050 meters could be generated by the application, 

effectively encompassing the radius of a newly-founded Roman city which typically 

measured between 318 to 637 meters. 

Also of note is the fact that the application proved capable of maintaining a high 

framerate, even when large numbers of polygons were on-screen. With 293 buildings 

totalling 257074 polygons in a single environment, the application maintained a 

framerate of 150 frames per second (Table 6). A high framerate is not considered to 

be the sole indicator that a simulation is capable of running in real-time, but given 

how the running application proved responsive to navigational commands under the 

most strenuous of tests, we assert that this application meets the criteria for a real-

time simulation. 

 

5.2 DISCUSSION 

 

In the Aims and Objectives section, we outlined a set of criteria for the purpose of 

ensuring that the designed formal grammar would be usable and appropriate. With 

the context of the implemented models and statistical results, we can make an 

assessment on the degree to which the criteria were met, and consequently we can 

judge the success of our overarching framework. 

 

5.2.1 FIRST OBJECTIVE 

 

The first objective was to provide a set of procedural methods, functions, or 

techniques for the purpose of describing the various elements of the urban 

environment. 

This was accomplished to a high level of detail. A large portion of our 

implementation section described the process behind the choice of various formulae 

and techniques. Particular attention was paid to the positioning of the city upon a 

given heightmap, and the allocation of building allotments within the city 
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boundaries. The results of this, and the surrounding discussion of what methods 

were the most successful, were documented under the City Position and City Layout 

subsections. 

 

5.2.2 SECOND OBJECTIVE 

 

The second objective laid out a set of criteria that we aimed to adhere to in order to 

produce a usable and deterministic shape grammar syntax. 

We proposed that the grammar must be specific and precise. This target has been 

met, as demonstrated through the results of Table 5. The images of our rendered 

temple and the illustrator’s interpretation of Vitruvian architecture are remarkably 

similar. We identified discrepancies between the two, but these are likely to have 

stemmed from mistakes in the measuring process, not errors stemming from the 

shape grammar itself. For all practical intents and purposes, we discovered that the 

production rules written for the Vitruvian temple created rendered results that 

matched the prototypical structures with a desirable level of precision. 

We proposed that the grammar must be flexible enough to encompass a wide variety 

of architecture. This criterion was effectively demonstrated through the range of 

architectural elements that were produced with the grammar rules. For example, the 

grammar proved capable of defining the curved surfaces of columns, the repeating 

nature of windows, and the semi-stochastic nature of building dimensions without 

difficulty. The grammar was not used to define certain details, such as the leaves 

upon a Corinthian capital, but we do not consider this to be a limitation of the 

grammar as much as a limitation on our time to implement such details. We did not 

observe any significant restrictions of the grammar’s capabilities within the scope of 

this project. 

We proposed that the grammar must be free of ambiguity in order to ensure that the 

output results are deterministic. This criterion was sufficiently met, as demonstrated 

by the fact that, where desired, implemented grammars were capable of returning 

the same model data on multiple runs of the application. Some may argue that the 

implementation of randomness in some of the architecture implies that some of the 

grammars are non-deterministic by definition, but this is not wholly accurate. There 

is a clear distinction between a formal grammar that is non-deterministic due to 

ambiguity arising from multiple unclarified derivations, and a formal grammar that 

is non-deterministic due to derivations being selected through a randomly generated 

number. We observed no ambiguities that arose from the grammar syntax itself, and 

consequently we consider our proposed grammar to be effectively deterministic. 
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We proposed that the grammar ought to be comprehensible on a human level. This 

criterion is open to some degree of subjectivity. Although we believe the system of 

superscript and subscript attachments to symbols to be legible once explained, it is 

undeniable that the grammar rules become harder to read and interpret as they grow 

in size. User tests would be one effective way of measuring whether or not the 

grammar syntax is comprehensible, both from the perspective of an industry 

professional, and from the perspective of a layperson. 

With these criteria in mind, we believe the shape grammar syntax proposed and 

defined in section 3.2.5 to be novel, functional, and purposeful. Additionally, we 

believe the other procedural methods defined in this thesis to be integral to the 

success of the application, even if not wholly novel or noteworthy in their own right. 

Consequently, we consider the application to be a cohesive collection of successfully 

implemented grammars, capable of procedurally generating a digital Vitruvian city 

with a strong degree of accuracy and detail. 

 

5.2.3 THIRD AND FOURTH OBJECTIVES 

 

The third objective required the demonstrated use of our grammar framework to 

interpret the various architectural instructions written by Vitruvius. The fourth 

objective was to describe the process of converting the procedural rules and 

grammar framework into a digitally modelled city. 

These objectives can perhaps both be considered fulfilled through the documented 

implementation itself. Section 3.2.5 extensively details the process by which 

descriptive rules were adapted into formal grammar rulesets. Section 7.2, 

BuildCity.cpp, stands as a demonstration of the way in which these rules were 

adapted into programmed code. 

We began this thesis by asking whether a framework could be designed for the 

purpose of converting a set of historical, architectural descriptions into a digital, 

modelled format. It would be presumptuous to consider this thesis a unified take on 

the question, especially considering the vastness and diversity of architectural 

writings available. However, we believe that the subject has been explored to a 

degree that we feel comfortable asserting that we have developed such a framework 

successfully. 
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5.3 PROJECT LIMITATIONS 

 

Although many of the sections on architecture were covered in depth, some areas of 

Vitruvius’ De Architectura were not touched upon within the scope of the project. 

In some cases, the material was deemed irrelevant because it had little to do with 

architecture. For example, book IX of De Architectura covers a variety of subjects, 

from wrestling, to Pythagorean mathematics, to astronomy. Although the book is of 

academic significance, it only has a tenuous link to the construction of Roman cities, 

and as such the material had no place in the scope of this project. 

Other sections of De Architectura were relevant to the subject of architecture, but 

ignored due to their specificity or detail. These sections would require a significant 

degree of attention and time to be thoroughly and accurately implemented. For 

example, in book VI Vitruvius details the considerations that must be made for the 

choice of building materials in the construction of a house, with regards to the local 

climate and culture. This is entirely related to the subject of architecture, and the 

material described could theoretically be incorporated into a virtual building by way 

of selectively applied custom textures. However, designing and implementing 

functions for the purpose of generating or selecting textures would be a time-

consuming task that could detract from the attention given to the architecture itself. 

Section 4.4, Application Efficiency and Limitations, listed the limitations that were 

reached with the developed application itself. Most notably, the application was 

incapable of generating cities with a city radius above 1050 meters or below 150 

meters. Although this was acceptable for the purpose of the application, it can 

certainly be considered a limitation of the program. 

Some of the procedural methods implemented in this project were entirely 

appropriate within the context of Vitruvian cities, but would be of limited use if 

applied to other scenarios. For example, in section 3.2.3 a method of defining the 

gridded road system was described. This was a simple solution that was befitting of 

the specifications laid out by Vitruvius, and allowed for a certain degree of historical 

accuracy. However, the solution would be unsuitable if, for example, a user wished 

to recreate a city with a radial road system. This does not demonstrate a failure of the 

application, but it does indicate that some of the described methods have not been 

designed with flexibility or universal purpose in mind. In this regard, the system can 

be considered limited.  

One other limitation of the project that we encountered is that of user fallibility. In 

section 5.1.3, we explained one situation in which a grammar production rule 

worked as intended, but the produced results were inconsistent with what was 
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desired. This was attributed to a misinterpretation of the writings on which the 

grammar rule was based. This does not demonstrate a limitation of the grammar 

system, but it can be viewed as a limitation of our chosen implementation pipeline; if 

a more automated or systematic method of inputting grammar rules were adopted, it 

is possible that the chance of an error arising would be minimised. 

 

5.4 PROJECT CONTRIBUTIONS 

 

Having established what aims have been fulfilled within the context of this thesis, we 

can directly address what we believe to have been contributed to the academic body 

of knowledge. 

The largest contribution from this thesis is the overarching framework. This takes the 

form of a set of techniques and methodologies that were utilized in the process of 

adapting historical descriptions into digital models. 

Perhaps the most significant part of this framework is the novel shape grammar. The 

grammar format, as described in section 3.2.5, is designed to be human-readable and 

writeable. As such, the rules pertaining to the various Roman structures can be 

appropriated, modified, and implemented into a separate modelling or rendering 

application with relative ease. 

Additionally, the rules of the shape grammar have been clarified to the point where 

we believe that, with little effort, a person could describe all manner of architecture 

by following the methodology presented in this thesis. This may prove to be of 

particular use to historians wishing to document the shape of a structure in a 

deterministic fashion, or for architects wishing to describe a structure in a format that 

can be understood by a programmer versed in procedural generation. 

Finally, we have contributed a digital model of a Vitruvian city. Although it would 

probably be inaccurate to say that this is the first digital model of a Vitruvian city, we 

feel confident asserting that this is the first to have been created wholly through 

procedural methods. The city model is in a format capable of being easily converted 

and read by a variety of applications and, as demonstrated through our application, 

it can be navigated on a pedestrian level. The model itself may be of academic 

significance to historians, architects, and other scholars wishing to see or utilise a 3D 

representation of Vitruvian architecture.  
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5.5 FUTURE WORK 

 

The project has the potential to be expanded upon in several regards. 

First, the study into the adaptation of Vitruvius’ writing into procedural grammars 

could be furthered. Vitruvian structures that were not considered to be in the scope 

of this project, such as aqueducts and harbours, have the potential to be written with 

the designed shape grammar syntax, and then generated as digital models. Some 

areas, such as Vitruvius’ description of columns, are detailed and complex enough to 

warrant entire further studies in themselves. With enough detail, an entire 

procedural map of Vitruvius’ work could be created, which could prove to be of 

great historical and academic significance. 

Second, the comparison of the rendered output to the underlying grammars and 

rules, as described in section 4, could be furthered. Out of all the generated 

architecture, only the Vitruvian temple was thoroughly analysed and compared. By 

providing thorough comparisons of the other pieces of architecture, a greater 

measurement of the application’s overall accuracy could be drawn, and consequently 

the success of the project could be more thoroughly evaluated. 

Finally, the formal grammar syntax described in section 3.2.5 has the potential to be 

refined and expanded upon, to the point where it could be considered a viable 

method of describing a variety of architectural structures within the fields of historic 

recreation, architectural design, and urban planning. Feedback from user testing 

would be fundamental in the identification of areas where the grammar syntax needs 

adjustment. Improvements could then be made to create a full grammar system that 

is robust and flexible enough to accommodate for every potential use case. 

With enough improvements, the grammar syntax may even be versatile enough to 

describe all manner of two and three dimensional geometric shapes in a clear and 

unambiguous way, not just architectural forms. Such a shape grammar would not be 

the first of its kind, but we believe it would be novel in its design, format, and 

underlying purpose. The grammar’s unique attributes would ensure that it fulfils a 

necessary and currently unfilled niche in the field of procedural generation. 
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7 APPENDIX 
 

Sections 7.1 and 7.2 are copies of the two most significant code files used in the 

development of the application: CityMain.cpp, the “main” file that handled the 

building allocation, road generation, and rendering process; and BuildCity.cpp, 

which contained the implemented shape grammars. 

Sections 7.3 and 7.4 are copies of XFilePart1.txt and XFilePart2.txt, the two files that 

were used in process of exporting the virtual city data to a .x model file. 

For a comprehensive copy of the code files used, along with the accompanying 

textures, assets, and a compiled version of the application, please see 

www.sketchylogic.com/romancity. 

For a video of the application running, please see 

https://www.youtube.com/watch?v=OmZBYUujDyY 
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7.1 CITYMAIN.CPP 
 

//Necessary includes 

#include "d3dApp.h" 

#include "DirectInput.h" 

#include "BuildCity.h" 

#include <crtdbg.h> 

#include "GfxStats.h" 

#include <list> 

#include <ctime> 

#include "Terrain.h" 

#include "Camera.h" 

#include "Water.h" 

#include "Sky.h" 

#include "Vertex.h" 

 

using namespace std; 

 

//Set up a prototype object structure that contains a mesh and the 

necessary textures. 

struct Object3D 

{ 

 Object3D() 

 { 

  mesh = 0; 

 } 

 ~Object3D() 

 { 

  ReleaseCOM(mesh); 

  for(UINT i = 0; i < textures.size(); ++i) 

   ReleaseCOM(textures[i]); 

 } 

 

 ID3DXMesh* mesh; 

 std::vector<Mtrl> mtrls; 

 std::vector<IDirect3DTexture9*> textures; 

 AABB box; 

}; 

 

//Set up the necessary build functions and D3D-specific rendering 

objects. 

class RomanCity : public D3DApp 

{ 

public: 

 RomanCity(HINSTANCE hInstance, std::string winCaption, 

D3DDEVTYPE devType, DWORD requestedVP); 

 ~RomanCity(); 

 

 bool checkDeviceCaps(); 

 void onLostDevice(); 

 void onResetDevice(); 

 void updateScene(float dt); 

 void drawScene(); 

 void drawObject(Object3D& obj, const D3DXMATRIX& toWorld); 

  

 void buildTrees(); 

 void MakeAnXFile(); 

 void buildRoads(); 

 void buildCity(); 
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 void buildFX(); 

private: 

 GfxStats* mGfxStats; 

 Terrain*  mTerrain; 

 Water*    mWater; 

 float mTime; 

   

 Sky* mSky; 

 ID3DXMesh* mSceneMesh; 

 D3DXMATRIX mSceneWorld; 

 D3DXMATRIX mSceneWorldInv; 

  

 Object3D mRome; 

 D3DXMATRIX mRomeWorld; 

 Object3D mTrees[4]; 

 static const int NUM_TREES = 30; 

 D3DXMATRIX mTreeWorlds[NUM_TREES]; 

 Object3D mBuildings[4]; 

 static const int NUM_BUILDS = 30; 

 D3DXMATRIX mBuildWorlds[NUM_BUILDS]; 

 

 std::vector<Mtrl> mSceneMtrls; 

 std::vector<IDirect3DTexture9*> mSceneTextures; 

 

 IDirect3DTexture9* mSceneNormalMaps[7]; 

 

 IDirect3DTexture9* mWhiteTex; 

 

 ID3DXEffect* mFX; 

 D3DXHANDLE   mhTech; 

 D3DXHANDLE   mhWVP; 

 D3DXHANDLE   mhWorldInv; 

 D3DXHANDLE   mhEyePosW; 

 D3DXHANDLE   mhWorld; 

 D3DXHANDLE   mhTex; 

 D3DXHANDLE   mhMtrl; 

 D3DXHANDLE   mhLight; 

 D3DXHANDLE   mhNormalMap; 

 

 DirLight mLight; 

 

 bool mFreeCamera; 

}; 

 

 

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance, 

       PSTR cmdLine, int showCmd) 

{ 

 #if defined(DEBUG) | defined(_DEBUG) 

  _CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | 

_CRTDBG_LEAK_CHECK_DF ); 

 #endif 

 

 srand(time(0)); 

 

 // Set up camera and viewpoint 

 Camera camera; 

 gCamera = &camera; 

 

 RomanCity app(hInstance, "Roman City", D3DDEVTYPE_HAL, 

D3DCREATE_HARDWARE_VERTEXPROCESSING); 
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 gd3dApp = &app; 

 

 DirectInput di(DISCL_NONEXCLUSIVE|DISCL_FOREGROUND, 

DISCL_NONEXCLUSIVE|DISCL_FOREGROUND); 

 gDInput = &di; 

 

    return gd3dApp->run(); 

} 

 

 

RomanCity::RomanCity(HINSTANCE hInstance, std::string winCaption, 

D3DDEVTYPE devType, DWORD requestedVP) 

: D3DApp(hInstance, winCaption, devType, requestedVP) 

{ 

 

 InitAllVertexDeclarations(); 

 

 mGfxStats = new GfxStats(); 

 

 SetCurrentDirectory("Art/"); 

 

 mFreeCamera = 0; 

 

 //Set up skybox 

 mSky = new Sky("newsky.dds", 10000.0f); 

  

 //Set up terrain, with appropriate textures 

 mTerrain = new Terrain(513, 513, 4.0f, 4.0f,  

  "coastMountain5132.raw", "newgrass.jpg", "dirt.dds",  

  "cobble3.jpg", "blendnew.png", 0.65f, 0.0f); 

  

 //Set up and move the water as appropriate 

 D3DXMATRIX waterWorld; 

 D3DXMatrixTranslation(&waterWorld, 0.0f, 50.0f, 0.0f); 

  

 //Set up lighting 

 mLight.dirW = D3DXVECTOR3(0.0f, -2.0f, -1.0f); 

 D3DXVec3Normalize(&mLight.dirW, &mLight.dirW); 

 

 mLight.ambient = D3DXCOLOR(0.4f, 0.4f, 0.4f, 1.0f); 

 mLight.diffuse = D3DXCOLOR(0.8f, 0.8f, 0.8f, 1.0f); 

 mLight.spec    = D3DXCOLOR(0.6f, 0.6f, 0.6f, 1.0f); 

 

 Mtrl waterMtrl; 

 waterMtrl.ambient   = D3DXCOLOR(0.26f, 0.23f, 0.3f, 0.90f); 

 waterMtrl.diffuse   = D3DXCOLOR(0.26f, 0.23f, 0.3f, 0.90f); 

 waterMtrl.spec      = 1.0f*WHITE; 

 waterMtrl.specPower = 64.0f; 

 

 Water::InitInfo waterInitInfo; 

 waterInitInfo.dirLight = mLight; 

 waterInitInfo.mtrl     = waterMtrl; 

 waterInitInfo.vertRows         = 128; 

 waterInitInfo.vertCols         = 128; 

 waterInitInfo.dx               = 10.0f; 

 waterInitInfo.dz               = 10.0f; 

 waterInitInfo.waveMapFilename0 = "wave0.dds"; 

 waterInitInfo.waveMapFilename1 = "wave1.dds"; 

 waterInitInfo.waveMapVelocity0 = D3DXVECTOR2(0.05f, 0.08f); 

 waterInitInfo.waveMapVelocity1 = D3DXVECTOR2(-0.02f, 0.1f); 

 waterInitInfo.texScale = 32.0f; 
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 waterInitInfo.toWorld = waterWorld; 

  

 mWater = new Water(waterInitInfo); 

 mWater->setEnvMap(mSky->getEnvMap()); 

  

 //Call the functions to generate the appropriate tree, road, 

and building models 

 buildTrees(); 

 //buildRoads(); 

 buildCity();  

 

 // Initialize camera. 

 gCamera->pos().y = 3.0f; 

 gCamera->pos().z = -10.0f; 

 gCamera->setSpeed(10.0f); 

 mGfxStats->addVertices(mSceneMesh->GetNumVertices()); 

 mGfxStats->addTriangles(mSceneMesh->GetNumFaces()); 

 mGfxStats->addVertices(mSky->getNumVertices()); 

 mGfxStats->addTriangles(mSky->getNumTriangles()); 

 

 buildFX(); 

 

 onResetDevice(); 

} 

 

RomanCity::~RomanCity() 

{ 

 delete mGfxStats; 

 delete mSky; 

  

 ReleaseCOM(mFX); 

 

 ReleaseCOM(mSceneMesh); 

 for(UINT i = 0; i < mSceneTextures.size(); ++i) 

  ReleaseCOM(mSceneTextures[i]); 

 

 ReleaseCOM(mWhiteTex); 

 ReleaseCOM(mSceneNormalMaps[0]); 

 ReleaseCOM(mSceneNormalMaps[1]); 

  

 delete mTerrain; 

 delete mWater; 

 

 DestroyAllVertexDeclarations(); 

} 

 

//Function that checks for proper shader support 

bool RomanCity::checkDeviceCaps() 

{ 

 D3DCAPS9 caps; 

 HR(gd3dDevice->GetDeviceCaps(&caps)); 

 

 if( caps.VertexShaderVersion < D3DVS_VERSION(2, 0) ) 

  return false; 

 

 if( caps.PixelShaderVersion < D3DPS_VERSION(2, 0) ) 

  return false; 

 

 return true; 

} 
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void RomanCity::onLostDevice() 

{ 

 mGfxStats->onLostDevice(); 

 mTerrain->onLostDevice(); 

 mWater->onLostDevice(); 

 mSky->onLostDevice(); 

 HR(mFX->OnLostDevice()); 

} 

 

void RomanCity::onResetDevice() 

{ 

 mGfxStats->onResetDevice(); 

 mSky->onResetDevice(); 

 mTerrain->onResetDevice(); 

 mWater->onResetDevice(); 

 HR(mFX->OnResetDevice()); 

 

 float w = (float)md3dPP.BackBufferWidth; 

 float h = (float)md3dPP.BackBufferHeight; 

 gCamera->setLens(D3DX_PI * 0.25f, w/h, 1.0f, 5000.0f); 

} 

 

//Update loop - this is called every tick 

void RomanCity::updateScene(float dt) 

{ 

 //Update stats as necessary. This is used for calculating 

framerates, poly counts etc. 

 mTime += dt; 

 mGfxStats->update(dt); 

 gDInput->poll(); 

 

 //Check key inputs and change camera mode if necessary 

 if( gDInput->keyDown(DIK_N) ) 

  mFreeCamera = false; 

 if( gDInput->keyDown(DIK_M) ) 

  mFreeCamera = true; 

 

 if( mFreeCamera ) 

 { 

  gCamera->update(dt, 0, 0); 

 } 

 else 

 { 

  gCamera->update(dt, mTerrain, 2.3f); 

 } 

 

 static float time = 0.0f; 

 time += dt; 

 mLight.dirW.x =  2.0f; 

 mLight.dirW.z =  3.0f; 

 mLight.dirW.y =  -1.0f; 

  

 mWater->update(dt); 

 

 D3DXVec3Normalize(&mLight.dirW, &mLight.dirW); 

} 

 

void RomanCity::drawScene() 

{ 

 HR(gd3dDevice->BeginScene()); 
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 mSky->draw(); 

  

 HR(mFX->SetValue(mhLight, &mLight, sizeof(DirLight))); 

 HR(mFX->SetMatrix(mhWVP, &(mSceneWorld*gCamera->viewProj()))); 

 HR(mFX->SetValue(mhEyePosW, &gCamera->pos(), 

sizeof(D3DXVECTOR3))); 

  

 UINT numPasses = 0; 

 HR(mFX->Begin(&numPasses, 0)); 

 HR(mFX->BeginPass(0)); 

  

 for(UINT j = 0; j < mSceneMtrls.size(); ++j) 

 { 

  HR(mFX->SetValue(mhMtrl, &mSceneMtrls[j], sizeof(Mtrl))); 

  

  // Apply textures when available. Otherwise, use plain 

white. 

  if(mSceneTextures[j] != 0) 

  { 

   HR(mFX->SetTexture(mhTex, mSceneTextures[j])); 

  } 

 

  else 

  { 

   HR(mFX->SetTexture(mhTex, mWhiteTex)); 

  } 

  

  HR(mFX->SetTexture(mhNormalMap, mSceneNormalMaps[j])); 

 

  HR(mFX->CommitChanges()); 

  HR(mSceneMesh->DrawSubset(j)); 

 } 

  

 //Use alpha mask for trees 

 HR(gd3dDevice->SetRenderState(D3DRS_ALPHATESTENABLE, true)); 

 HR(gd3dDevice->SetRenderState(D3DRS_ALPHAFUNC, 

D3DCMP_GREATEREQUAL)); 

 HR(gd3dDevice->SetRenderState(D3DRS_ALPHAREF, 200)); 

 

 // Draw the trees: NUM_TREES/4 of each of the four types. 

 for(int i = 0; i < NUM_TREES; ++i) 

 { 

  if( i < NUM_TREES/4 ) 

   drawObject(mTrees[0], mTreeWorlds[i]); 

  else if( i < 2*NUM_TREES/4 ) 

   drawObject(mTrees[1], mTreeWorlds[i]); 

  else if( i < 3*NUM_TREES/4 ) 

   drawObject(mTrees[2], mTreeWorlds[i]); 

  else 

   drawObject(mTrees[3], mTreeWorlds[i]); 

 } 

 

 HR(gd3dDevice->SetRenderState(D3DRS_ALPHATESTENABLE, false)); 

  

 mTerrain->draw(); 

 

 //Draw water last due to alpha blending 

 mWater->draw(); 

  

 HR(mFX->EndPass()); 

 HR(mFX->End()); 
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 mGfxStats->display(); 

 

 HR(gd3dDevice->EndScene()); 

 

 HR(gd3dDevice->Present(0, 0, 0, 0)); 

} 

 

void RomanCity::buildFX() 

{ 

//Get the FX from the appropriate .fx file. 

 ID3DXBuffer* errors = 0; 

 HR(D3DXCreateEffectFromFile(gd3dDevice, "NormalMap.fx",  

  0, 0, D3DXSHADER_DEBUG, 0, &mFX, &errors)); 

 if( errors ) 

  MessageBox(0, (char*)errors->GetBufferPointer(), 0, 0); 

 

 mhTech       = mFX->GetTechniqueByName("NormalMapTech"); 

 mhWVP        = mFX->GetParameterByName(0, "gWVP"); 

 mhWorldInv   = mFX->GetParameterByName(0, "gWorldInv"); 

 mhMtrl       = mFX->GetParameterByName(0, "gMtrl"); 

 mhLight      = mFX->GetParameterByName(0, "gLight"); 

 mhEyePosW    = mFX->GetParameterByName(0, "gEyePosW"); 

 mhWorld      = mFX->GetParameterByName(0, "gWorld"); 

 mhTex        = mFX->GetParameterByName(0, "gTex"); 

 mhNormalMap  = mFX->GetParameterByName(0, "gNormalMap"); 

 

 HR(mFX->SetMatrix(mhWorldInv, &mSceneWorldInv)); 

 HR(mFX->SetTechnique(mhTech)); 

} 

 

 

void RomanCity::drawObject(Object3D& obj, const D3DXMATRIX& toWorld) 

{ 

 //Use AABB to transform the object, and draw if visible 

  

 AABB box; 

 obj.box.xform(toWorld, box); 

 

 if( gCamera->isVisible( box ) ) 

 { 

  HR(mFX->SetMatrix(mhWVP, &(toWorld*gCamera-

>viewProj()))); 

  D3DXMATRIX worldInvTrans; 

  D3DXMatrixInverse(&worldInvTrans, 0, &toWorld); 

  D3DXMatrixTranspose(&worldInvTrans, &worldInvTrans); 

  HR(mFX->SetMatrix(mhWorldInv, &worldInvTrans)); 

  HR(mFX->SetMatrix(mhWorld, &toWorld)); 

 

  for(UINT j = 0; j < obj.mtrls.size(); ++j) 

  { 

   HR(mFX->SetValue(mhMtrl, &obj.mtrls[j], 

sizeof(Mtrl))); 

   

   if(obj.textures[j] != 0) 

   { 

    HR(mFX->SetTexture(mhTex, obj.textures[j])); 

   } 

 

   else 

   { 
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    HR(mFX->SetTexture(mhTex, mWhiteTex)); 

   } 

   

   HR(mFX->CommitChanges()); 

   HR(obj.mesh->DrawSubset(j)); 

  } 

 } 

 HR(mFX->SetMatrix(mhWorldInv, &mSceneWorldInv)); 

} 

 

//City generation function 

void RomanCity::MakeAnXFile() 

{ 

 //VARIABLE DEFINITION 

 BuildCity NewCity; 

  

 int numcount; 

 double squaret; 

 numcount = 0; 

  

 float td = 5; //city road detail 

 float rl = 0.2; //road height 

 int citysize = 200; //This is the variable used for adjusting 

the entire city circumference. 

  

 //Add the most significant central structures 

 NewCity.AddTemple(2,4,1.7+(mTerrain->getHeight(5, 5))); 

 NewCity.AddForum(0,-20,2.2+(mTerrain->getHeight(0, -20))); 

 NewCity.AddWall(citysize+20,mTerrain->getHeight(0, 0)); 

 NewCity.AddAmphitheater(100,-104,(mTerrain-

>getHeight(55,64)),14); 

 

 //Add Paving 

 for (int i = -citysize; i < citysize; i = i+td){ 

  for (int j = -citysize; j < citysize; j= j+td){ 

   squaret = (i+5)*(i+5)+(j+5)*(j+5); 

   if (sqrt(squaret) < citysize) 

   { 

    //AddPoly(i+td,rl+(mTerrain->getHeight(i+td, 

-j)),j,i,rl+(mTerrain->getHeight(i, -j)),j,i+td,rl+(mTerrain-

>getHeight(i+td, -j-td)),j+td,i,rl+(mTerrain->getHeight(i, -j-

td)),j+td,0,1,0); 

   } 

  } 

 } 

 

 D3DXMATRIX S, T; 

 int v; 

 v=0; 

 float treeScale = GetRandomFloat(0.15f, 0.25f); 

 

 //Add buildings 

 for (int i = -citysize; i < citysize; i= i+20){ 

  for (int j = -citysize; j < citysize; j= j+20){ 

   if ((i == 0 && j == 0)||(i == 0 && j == -20)||(i > 

60 && j < -80)){ 

    //Unavailable land well outside the city 

walls. Do nothing 

   } else { 

    squaret = (i+5)*(i+5)+(j+5)*(j+5); 

    if (sqrt(squaret) < (citysize*0.8)) 
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    { 

     //Generate the appropriate building 

type for each grid square. 

     int buildtype = rand()%7; 

     int tempwi = rand()%4; 

     tempwi = 3; 

     int tempzi = rand()%4; 

     tempzi = 3; 

     float heighest = mTerrain-

>getHeight(i,-j); 

     if (mTerrain->getHeight(i+tempwi+4,-j-

tempzi-4) > heighest) { heighest = mTerrain->getHeight(i+tempwi+4,-j-

tempzi-4);} 

     if (mTerrain->getHeight(i+tempwi+4,-j) 

> heighest) { heighest = mTerrain->getHeight(i+tempwi+4,-j);} 

     if (mTerrain->getHeight(i,-j-tempzi-4) 

> heighest) { heighest = mTerrain->getHeight(i,-j-tempzi-4);} 

     switch(buildtype) 

     { 

     case 0: 

      NewCity.AddBuilding(i,j,tempwi + 

4,tempzi + 4,rand()%2 + 1, 1.7+heighest,rand()%2); 

      break; 

     case 1: 

      NewCity.AddBuilding(i,j,tempwi + 

4,tempzi + 4,rand()%2 + 1, 1.7+heighest,rand()%2); 

      break; 

     case 2: 

     

 NewCity.AddCourtyard(i,j,5,5,1.7+heighest); 

      treeScale = GetRandomFloat(0.1f, 

0.15f); 

      D3DXMatrixTranslation(&T, (i+5), 

(mTerrain->getHeight(i+5,-j-5)), (-j-5));  

      D3DXMatrixScaling(&S, treeScale, 

treeScale, treeScale); 

      mTreeWorlds[v] = S*T; 

      v++; 

     

 NewCity.AddBuilding(i+10,j,2,7,1,1.7+heighest+0.02,0); 

      break; 

     case 3: 

      NewCity.AddBuilding(i,j,4,7,2, 

1.7+heighest,0); 

     

 NewCity.AddBuilding(i+8,j+4,2,3,1, 1.7+heighest,1); 

      break; 

     case 4: 

     

 NewCity.AddBuilding(i+2,j+4,5,2,1, 1.7+heighest,1); 

      NewCity.AddBuilding(i+4,j,3,6,1, 

1.7+heighest+0.01,0); 

      break; 

     case 5: 

     

 NewCity.AddBuilding(i+2,j+2,2,4,1, 1.7+heighest,1); 

     

 NewCity.AddBuilding(i+6,j+4,2,5,2, 1.7+heighest+0.01,0); 

      break; 

     case 6: 
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 NewCity.AddCourtyard(i+4,j,5,4,1.7+heighest); 

      NewCity.AddBuilding(i,j+8,5,2,1, 

1.7+heighest+0.01,1); 

      break; 

     } 

    } 

   } 

  } 

 } 

  

 NewCity.MakeAnX("build2.x"); 

} 

 

//Road set-up 

void RomanCity::buildRoads() 

{ 

 const int widearea = 1000; 

 int ** RoadPointArray; 

 

 RoadPointArray = new int*[widearea]; 

 for(int i = 0; i < widearea; i++) 

 { 

  RoadPointArray[i] = new int[widearea]; 

 } 

 

 for(int i = 0; i < widearea; i++) 

 { 

  for(int j = 0; j < widearea; j++) 

  { 

   RoadPointArray[i][j] = 0; 

  } 

 } 

 

 const int totalroads = 10; 

 int secwidth = 10; //REALLY IMPORTANT VARIABLE 

 const float roadheight = 3; 

 const float roadwidth = 0.2; 

 

 int currroad = 0; 

 //int RoadPointArray[widearea][widearea]; 

 int RoadJoinArray[totalroads][4]; 

  

 BuildCity NewCity; 

 

 int Areacheck = 2; 

  

 double degra = 0.0174532925199433; 

 

 const int MinRoadDist = 2; 

 const int MaxRoadDist = 22; 

 const int Roadvar = 2; 

  

 int inpx1,inpx2,inpz1,inpz2; 

 inpx1 = 0; 

 inpz1 = 0; 

 inpx2 = 0; 

 inpz2 = 0; 

 

 //For every road 

 for (int r = 0; r < totalroads; r++){ 
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  //Assign the start and end points 

  if (r==0) { 

   inpx1 = 500; 

   inpz1 = 500; 

  } else { 

   do{ 

    int temppoint = rand()%r; 

    inpx1 = RoadJoinArray[temppoint][2]; 

    inpz1 = RoadJoinArray[temppoint][3]; 

   } while (RoadPointArray[inpx1][inpz1] > 3); 

  } 

  int ranang = (rand()%360); 

  //OR 

  ranang = 90*(rand()%4); 

  int ranndist = MinRoadDist+(rand()%Roadvar); 

  inpx2 = floor(inpx1+ranndist*sin(degra*ranang)); 

  inpz2 = floor(inpz1+ranndist*cos(degra*ranang)); 

   

  //If the end node is free 

   if (RoadPointArray[inpx2][inpz2] < 4){ 

    //Check all nearby nodes 

    for (int i = 0; i < Areacheck; i++){ 

     for (int j = 0; j < Areacheck; j++){ 

      if (RoadPointArray[inpx2-

(Areacheck/2)+i][inpz2-(Areacheck/2)+j] > 0){ 

       if (RoadPointArray[inpx2-

(Areacheck/2)+i][inpz2-(Areacheck/2)+j] > 3){ 

        //Abort! Too many 

roads at this node. 

        r = r-1; 

       } else { 

        //Change end node to 

match cross roads 

        inpx2 = (inpx2-

(Areacheck/2)+i); 

        inpz2 = (inpz2-

(Areacheck/2)+j); 

       } 

      } 

     } 

    } 

    //Add to the road arrays 

    RoadPointArray[inpx1][inpz1] += 1; 

    RoadPointArray[inpx2][inpz2] += 1; 

    RoadJoinArray[r][0] = inpx1; 

    RoadJoinArray[r][1] = inpz1; 

    RoadJoinArray[r][2] = inpx2; 

    RoadJoinArray[r][3] = inpz2; 

     

    //Now we do the actual point calculation. 

    //Move to centre. A little crude. 

    inpx1 -=500; 

    inpz1-=500; 

    inpz2-=500; 

    inpx2-=500; 

 

    //Use trigonometry to adjust road position 

    if ((inpx2-inpx1) == 0){inpx1-=1;} 

    if ((inpz2-inpz1) == 0){inpz1-=1;} 

    float gradz = (inpx2-inpx1)/(inpz2-inpz1); 

    float gradx = (inpz2-inpz1)/(inpx2-inpx1); 
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    float newang = atan(double ((inpx2-

inpx1)/(inpz2-inpz1))); 

 

    float tempx1 = inpx1-

(((roadwidth)*cos(newang))-((roadwidth)*sin(newang))); 

    float tempz1 = inpz1-

(((roadwidth)*sin(newang))+((roadwidth)*cos(newang))); 

    float tempx2 = 

inpx1+(((roadwidth)*cos(newang))-((roadwidth)*sin(newang))); 

    float tempz2 = 

inpz1+(((roadwidth)*sin(newang))+((roadwidth)*cos(newang))); 

    float tempx3 = inpx2-

(((roadwidth)*cos(newang))-((roadwidth)*sin(newang))); 

    float tempz3 = inpz2-

(((roadwidth)*sin(newang))+((roadwidth)*cos(newang))); 

    float tempx4 = 

inpx2+(((roadwidth)*cos(newang))-((roadwidth)*sin(newang))); 

    float tempz4 = 

inpz2+(((roadwidth)*sin(newang))+((roadwidth)*cos(newang))); 

 

   

 NewCity.AddPoly(secwidth*tempx1,roadheight+(mTerrain-

>getHeight(-secwidth*tempx1, 

secwidth*tempz1)),secwidth*tempz1,secwidth*tempx3,roadheight+(mTerrai

n->getHeight(-

secwidth*tempx3,secwidth*tempz3)),secwidth*tempz3,secwidth*tempx2,roa

dheight+(mTerrain->getHeight(-secwidth*tempx2, 

secwidth*tempz2)),secwidth*tempz2,secwidth*tempx4,roadheight+(mTerrai

n->getHeight(-secwidth*tempx4, 

secwidth*tempz4)),secwidth*tempz4,0,1,0); 

   

 NewCity.AddPoly(secwidth*tempx1,roadheight+(mTerrain-

>getHeight(-secwidth*tempx1, 

secwidth*tempz1)),secwidth*tempz1,secwidth*tempx2,roadheight+(mTerrai

n->getHeight(-

secwidth*tempx2,secwidth*tempz2)),secwidth*tempz2,secwidth*tempx3,roa

dheight+(mTerrain->getHeight(-secwidth*tempx3, 

secwidth*tempz3)),secwidth*tempz3,secwidth*tempx4,roadheight+(mTerrai

n->getHeight(-secwidth*tempx4, 

secwidth*tempz4)),secwidth*tempz4,0,1,0); 

   } else { 

   // r = r-1; 

   } 

  //} 

 } 

 NewCity.MakeAnX("build2.x"); 

} 

 

void RomanCity::buildCity() 

{ 

 //Write an XFile for the whole city. Remove this if the file 

has already been created, or if procedural generation is unwanted. 

 MakeAnXFile(); 

 

 D3DXMATRIX T, Ry; 

 ID3DXMesh* tempMesh = 0; 

 

 //We apply the city mesh to a temporary area to calculate the 

normals. 
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 LoadXFile("build1.x", &mBuildings[0].mesh, mBuildings[0].mtrls, 

mBuildings[0].textures); 

 LoadXFile("build2.x",&tempMesh, mSceneMtrls, mSceneTextures); 

 

 D3DXMatrixRotationY(&Ry, D3DX_PI); 

 D3DXMatrixTranslation(&T, 0.0f, 0.0f, 0.0f); 

 mBuildWorlds[0] = Ry*T; 

 mBuildWorlds[1] = Ry*T; 

 D3DXMatrixRotationY(&Ry, D3DX_PI); 

 D3DXMatrixTranslation(&T, 0.0f, 0.0f, 0.0f); 

 mRomeWorld = Ry*T; 

 

 //Get vertex decleration adn set up mesh in appropriate format. 

 //Clone mesh, apply vertex elements, set to output mesh, then 

release. 

 D3DVERTEXELEMENT9 elems[MAX_FVF_DECL_SIZE]; 

 UINT numElems = 0; 

 HR(NMapVertex::Decl->GetDeclaration(elems, &numElems)); 

  

 ID3DXMesh* clonedTempMesh = 0; 

 HR(tempMesh->CloneMesh(D3DXMESH_32BIT | D3DXMESH_MANAGED, 

elems, gd3dDevice, &clonedTempMesh)); 

  

 HR(D3DXComputeTangentFrameEx( 

   clonedTempMesh, 

   D3DDECLUSAGE_TEXCOORD, 0, 

      D3DDECLUSAGE_BINORMAL, 0, 

   D3DDECLUSAGE_TANGENT, 0, 

      D3DDECLUSAGE_NORMAL, 0, 

      0, 

      0, 

   0.01f, 0.25f, 0.01f, 

   &mSceneMesh, 

   0)); 

 

 ReleaseCOM(tempMesh); 

 ReleaseCOM(clonedTempMesh); 

 

 D3DXMatrixIdentity(&mSceneWorld); 

 D3DXMatrixIdentity(&mSceneWorldInv); 

  

 HR(D3DXCreateTextureFromFile(gd3dDevice, "scratches.bmp", 

&mSceneNormalMaps[0])); 

 HR(D3DXCreateTextureFromFile(gd3dDevice, "newbrick.bmp", 

&mSceneNormalMaps[1])); 

 HR(D3DXCreateTextureFromFile(gd3dDevice, "col3.bmp", 

&mSceneNormalMaps[2])); 

 HR(D3DXCreateTextureFromFile(gd3dDevice, "scratches.bmp", 

&mSceneNormalMaps[3])); 

 HR(D3DXCreateTextureFromFile(gd3dDevice, "whitetex.dds", 

&mSceneNormalMaps[4])); 

 HR(D3DXCreateTextureFromFile(gd3dDevice, "scratches.bmp", 

&mSceneNormalMaps[5])); 

 HR(D3DXCreateTextureFromFile(gd3dDevice, "cobblenorm3.jpg", 

&mSceneNormalMaps[6])); 

 

 HR(D3DXCreateTextureFromFile(gd3dDevice, "whitetex.dds", 

&mWhiteTex)); 

} 

 

void RomanCity::buildTrees() 
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{ 

 //Loading 4 tree meshes. 

 LoadXFile("tree0.x", &mTrees[0].mesh, mTrees[0].mtrls, 

mTrees[0].textures); 

 LoadXFile("tree1.x", &mTrees[1].mesh, mTrees[1].mtrls, 

mTrees[1].textures); 

 LoadXFile("tree2.x", &mTrees[2].mesh, mTrees[2].mtrls, 

mTrees[2].textures); 

 LoadXFile("tree3.x", &mTrees[3].mesh, mTrees[3].mtrls, 

mTrees[3].textures); 

 

 for(int i = 0; i < 4; ++i) 

 { 

  VertexPNT* v = 0; 

  HR(mTrees[i].mesh->LockVertexBuffer(0, (void**)&v)); 

  HR(D3DXComputeBoundingBox(&v->pos, mTrees[i].mesh-

>GetNumVertices(), 

   mTrees[i].mesh->GetNumBytesPerVertex(),  

   &mTrees[i].box.minPt, &mTrees[i].box.maxPt)); 

  HR(mTrees[i].mesh->UnlockVertexBuffer()); 

 } 

  

 //Tree set-up. Transform, scale, and randomized as needed. 

 int w = (int)(mTerrain->getWidth() * 0.8f); 

 int d = (int)(mTerrain->getDepth() * 0.8f); 

 D3DXMATRIX S, T; 

 for(int i = 0; i < NUM_TREES; ++i) 

 { 

  float x = (float)((rand() % w) - (w*0.5f)); 

  float z = (float)((rand() % d) - (d*0.5f)); 

 

  float y = mTerrain->getHeight(x, z) - 0.5f;  

   

  float treeScale = GetRandomFloat(0.15f, 0.25f); 

 

  D3DXMatrixTranslation(&T, x, y, z);  

  D3DXMatrixScaling(&S, treeScale, treeScale, treeScale); 

  mTreeWorlds[i] = S*T; 

 

  D3DXMatrixTranslation(&T, 0, 40, 0);  

  D3DXMatrixScaling(&S, 2, 2, 2); 

 

  //Generate trees within an appropriate height range. 

  if(x > -120.0f && x < 120.0f && z > -120.0f && z < 

120.0f) 

  { 

   --i;  

  } 

 } 

} 
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7.2 BUILDCITY.CPP 
 

#include "BuildCity.h" 

#include "math.h" 

#include <stdio.h> 

#include <stdlib.h> 

#include <ctime> 

#include <iostream> 

#include <fstream> 

 

using namespace std; 

 

BuildCity::BuildCity(void) 

{ 

 const int rows = 4000000; 

 const int cols = 3; 

 

 //Declaration, allocation, and initialization of arrays 

 CurrentMat = new int[rows]; 

 NormDir = new int[rows]; 

 

 PointArray = new double*[rows]; 

 PolyArray = new int*[rows]; 

 for(int i = 0; i < rows; i++) 

 { 

  PointArray[i] = new double[cols]; 

  PolyArray[i] = new int[cols]; 

 } 

 

 for(int i = 0; i < rows; i++) 

 { 

  CurrentMat[i] = 0; 

  NormDir[i] = 0; 

  for(int j = 0; j < cols; j++) 

  { 

   PointArray[i][j] = 0; 

   PolyArray[i][j] = 0; 

  } 

 } 

  

 //Default values for variables used in generation process 

 degra = 0.0174532925199433; 

 Secwidth = 2; 

 winheight = 1.3; 

 winwidth = 0.6; 

 floorheight = 4; 

 numcount = 0; 

 srand(time(0)); 

 Pointcount = 0; 

 Polycount = 0; 

 CurrTex = 0; 

 numcount = 0; 

} 

 

void BuildCity::DeallocateAll(void) 

{ 

 for(int i=0; i<4000000; i++) 

        delete [] PointArray[i]; 

 delete[] PointArray; 

 for(int i=0; i<4000000; i++) 
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        delete [] PolyArray[i]; 

 delete[] PolyArray; 

 delete [] CurrentMat; 

    delete [] NormDir; 

} 

 

BuildCity::~BuildCity(void) 

{ 

} 

 

//Function used for the purpose of rotating a set of points around an 

axis a certain number of degrees. 

void BuildCity::RotatePoints(double& x1, double& z1, double centerx, 

double centerz, double ang){ 

 float z2,x2; 

 x2 = ((x1-centerx)*cos(degra*ang))-((z1-

centerz)*sin(degra*ang))+centerx; 

 z2 = ((x1-centerx)*sin(degra*ang))+((z1-

centerz)*cos(degra*ang))+centerz; 

 x1 = x2; 

 z1 = z2; 

} 

 

//Add a polygon to the mesh. This is the lowest level in the "tree" 

of generation. 

void BuildCity::AddPoly(double x1, double y1, double z1, double x2, 

double y2, double z2, double x3, double y3, double z3, double x4, 

double y4, double z4, double normx, double normy, double normz){ 

 PointArray[Pointcount][0] = x2; 

 PointArray[Pointcount][2] = y2; 

 PointArray[Pointcount][1] = z2; 

 Pointcount++; 

 PointArray[Pointcount][0] = x1; 

 PointArray[Pointcount][2] = y1; 

 PointArray[Pointcount][1] = z1; 

 Pointcount++; 

 PointArray[Pointcount][0] = x3; 

 PointArray[Pointcount][2] = y3; 

 PointArray[Pointcount][1] = z3; 

 Pointcount++; 

 PointArray[Pointcount][0] = x4; 

 PointArray[Pointcount][2] = y4; 

 PointArray[Pointcount][1] = z4; 

 Pointcount++; 

 if (normx == 1){ 

  NormDir[Polycount] = 0; 

 } 

 if (normx == -1){ 

  NormDir[Polycount] = 1; 

 } 

 if (normy == 1){ 

  NormDir[Polycount] = 2; 

 } 

 if (normy == -1){ 

  NormDir[Polycount] = 3; 

 } 

 if (normz == 1){ 

  NormDir[Polycount] = 4; 

 } 

 if (normz == -1){ 

  NormDir[Polycount] = 5; 
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 } 

 if (normy == 0.5){ 

  if (normz == 0.5){ 

   NormDir[Polycount] = 6; 

  } else { 

   NormDir[Polycount] = 7; 

  } 

 } 

 if (normx == 0.5){ 

  if (normz == 0.5){ 

   NormDir[Polycount] = 8; 

  } else { 

   NormDir[Polycount] = 9; 

  } 

 } 

 if (normx == -0.5){ 

  if (normz == 0.5){ 

   NormDir[Polycount] = 10; 

  } else { 

   NormDir[Polycount] = 11; 

  } 

 } 

 CurrentMat[Polycount] = CurrTex; 

 Polycount++; 

} 

 

//Define a basic 4-sided object 

void BuildCity::AddBox(double x1, double y1, double z1, double x2, 

double y2, double z2){ 

 CurrTex = 1; 

 AddPoly(x1,y2,z1, x2,y2,z1, x1,y1,z1, x2,y1,z1, 0,0,-1); 

 AddPoly(x1,y1,z2, x2,y1,z2, x1,y2,z2, x2,y2,z2, 0,0,1); 

 AddPoly(x1,y2,z2, x1,y2,z1, x1,y1,z2, x1,y1,z1, -1,0,0); 

 AddPoly(x2,y2,z1, x2,y2,z2, x2,y1,z1, x2,y1,z2, 1,0,0); 

} 

 

//Defining a rotated 4-sided object 

void BuildCity::AddRotatedCube(double x1, double y1, double z1, 

double x2, double y2, double z2, double ang){ 

 RotatePoints(x1,z1,x1,z1,ang); 

 RotatePoints(x2,z2,x1,z1,ang); 

 AddPoly(x1,y2,z1, x2,y2,z1, x1,y1,z1, x2,y1,z1, 0,0,-1); 

 AddPoly(x1,y1,z2, x2,y1,z2, x1,y2,z2, x2,y2,z2, 0,0,1); 

 AddPoly(x1,y2,z2, x1,y2,z1, x1,y1,z2, x1,y1,z1, -1,0,0); 

 AddPoly(x2,y2,z1, x2,y2,z2, x2,y1,z1, x2,y1,z2, 1,0,0); 

 

 AddPoly(x1,y1,z1, x2,y1,z1, x1,y1,z2, x2,y1,z2, 0,-1,0); 

 AddPoly(x1,y2,z2, x2,y2,z2, x1,y2,z1, x2,y2,z1, 0,1,0); 

} 

 

//Similar to above, but without defaulted textures. 

void BuildCity::AddBlankCube(double x1, double y1, double z1, double 

x2, double y2, double z2){ 

 AddPoly(x1,y2,z1, x2,y2,z1, x1,y1,z1, x2,y1,z1, 0,0,-1); 

 AddPoly(x1,y1,z2, x2,y1,z2, x1,y2,z2, x2,y2,z2, 0,0,1); 

 AddPoly(x1,y2,z2, x1,y2,z1, x1,y1,z2, x1,y1,z1, -1,0,0); 

 AddPoly(x2,y2,z1, x2,y2,z2, x2,y1,z1, x2,y1,z2, 1,0,0); 

 

 AddPoly(x1,y1,z1, x2,y1,z1, x1,y1,z2, x2,y1,z2, 0,-1,0); 

 AddPoly(x1,y2,z2, x2,y2,z2, x1,y2,z1, x2,y2,z1, 0,1,0); 

} 
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//As above, but with a top and bottom - a full cuboid shape. 

void BuildCity::AddCube(double x1, double y1, double z1, double x2, 

double y2, double z2){ 

 CurrTex = 4; 

 AddBox(x1,y1,z1, x2,y2,z2); 

 AddPoly(x1,y1,z1, x2,y1,z1, x1,y1,z2, x2,y1,z2, 0,-1,0); 

 AddPoly(x1,y2,z2, x2,y2,z2, x1,y2,z1, x2,y2,z1, 0,1,0); 

} 

 

//Arch object 

void BuildCity::AddArch(double x1, double height, double z1, double 

height2, double ang){ 

 double 

x2,z2,x3,z3,x4,z4,x5,z5,x6,z6,x7,z7,x8,z8,x9,z9,x10,z10,x11,z11,x12,z

12,x13,z13,x14,z14,x15,z15,x16,z16; 

 float ww; 

 float nx,nz; 

 if (ang == 90){nx = 0,nz = 1;} else {if (ang == 0) {nx = -1,nz 

= 0;} else {if (ang == 0) {nx = 1,nz = 0;} else {nx = 0,nz = -1;}}} 

 ww = 1; 

 x2 = x1+(Secwidth)/6; x8 = x1; x9 = x1+(Secwidth)/6; 

 x3 = x1+(Secwidth)*2/6; x10 = x1+(Secwidth)*2/6; 

 x4 = x1+(Secwidth)*3/6; x11 = x1+(Secwidth)*3/6; 

 x5 = x1+(Secwidth)*4/6; x14 = x1+(Secwidth)*4/6; 

 x6 = x1+(Secwidth)*5/6; x15 = x1+(Secwidth)*5/6; 

 x7 = x1+Secwidth;       x16 = x1+Secwidth; 

 z1 = z1;z2 = z1;z3 = z1;z4 = z1;z5 = z1;z6 = z1;z7 = z1; 

 z8 = z1-ww;z9 = z1-ww;z10 = z1-ww;z12 = z1-ww;z13 = z1-ww;z14 = 

z1-ww;z15 = z1-ww;z16 = z1-ww;z11 = z1-ww; 

 RotatePoints(x1,z1,x1,z1,ang); RotatePoints(x8,z8,x1,z1,ang); 

 RotatePoints(x2,z2,x1,z1,ang); RotatePoints(x9,z9,x1,z1,ang); 

 RotatePoints(x3,z3,x1,z1,ang); RotatePoints(x10,z10,x1,z1,ang); 

 RotatePoints(x4,z4,x1,z1,ang); RotatePoints(x11,z11,x1,z1,ang); 

 RotatePoints(x5,z5,x1,z1,ang); RotatePoints(x12,z12,x1,z1,ang); 

 RotatePoints(x6,z6,x1,z1,ang); RotatePoints(x13,z13,x1,z1,ang); 

 RotatePoints(x7,z7,x1,z1,ang); RotatePoints(x14,z14,x1,z1,ang); 

 RotatePoints(x15,z15,x1,z1,ang); 

RotatePoints(x16,z16,x1,z1,ang); 

 

 AddPoly(  x1,height,z1,x2,height,z2,x1,height2,z1, 

x2,height2,z2, nx,0,nz); 

 AddPoly( x6,height,z6,x7,height,z7,  

x6,height2,z6,x7,height2,z7,nx,0,nz); 

 

 AddPoly(x9,height,z9, x8,height,z8, 

x9,height2,z9,x8,height2,z8,  -nx,0,-nz); 

 AddPoly(x16,height,z16,x15,height,z15, x16,height2,z16, 

x15,height2,z15,   -nx,0,-nz); 

 CurrTex = 5; 

   //Arch 

 AddPoly(x2,height2,z2, x2,height+(height2-height)*4/6,z2, 

x3,height2,z3, x3,height+(height2-height)*5/6,z3,  nx,0,nz); 

 AddPoly(x3,height2,z3, x3,height+(height2-height)*5/6,z3, 

x4,height2,z4, x4,height+(height2-height)*7/8,z4,  nx,0,nz); 

 AddPoly(x4,height2,z4, x4,height+(height2-height)*7/8,z4, 

x5,height2,z5, x5,height+(height2-height)*5/6,z5,  nx,0,nz); 

 AddPoly(x5,height2,z5, x5,height+(height2-height)*5/6,z5, 

x6,height2,z6, x6,height+(height2-height)*4/6,z6,  nx,0,nz); 

   //Opposite arch 
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 AddPoly(x9,height+(height2-height)*4/6,z9,x9,height2,z9,   

x10,height+(height2-height)*5/6,z10, x10,height2,z10, -nx,0,-nz); 

 AddPoly( x10,height+(height2-height)*5/6,z10,x10,height2,z10, 

x11,height+(height2-height)*7/8,z11,  x11,height2,z11, -nx,0,-nz); 

 AddPoly( x11,height+(height2-height)*7/8,z11, 

x11,height2,z11,x14,height+(height2-height)*5/6,z14,x14,height2,z14,   

-nx,0,-nz); 

 AddPoly(x14,height+(height2-height)*5/6,z14, x14,height2,z14,  

x15,height+(height2-height)*4/6,z15,x15,height2,z15,  -nx,0,-nz); 

   //Inner arch 

 AddPoly(x2,height+(height2-

height)*4/6,z2,x2,height,z2,x9,height+(height2-

height)*4/6,z9,x9,height,z9,0,-1,0); 

 AddPoly(x3,height+(height2-height)*5/6,z3,x2,height+(height2-

height)*4/6,z2,x10,height+(height2-

height)*5/6,z10,x9,height+(height2-height)*4/6,z9,0,-1,0); 

 AddPoly(x4,height+(height2-height)*7/8,z4,x3,height+(height2-

height)*5/6,z3,x11,height+(height2-

height)*7/8,z11,x10,height+(height2-height)*5/6,z10,0,-1,0); 

 AddPoly(x5,height+(height2-height)*5/6,z5,x4,height+(height2-

height)*7/8,z4,x14,height+(height2-

height)*5/6,z14,x11,height+(height2-height)*7/8,z11,0,-1,0); 

 AddPoly(x6,height+(height2-height)*4/6,z6,x5,height+(height2-

height)*5/6,z5,x15,height+(height2-

height)*4/6,z15,x14,height+(height2-height)*5/6,z14,0,-1,0); 

 AddPoly(x6,height,z6,x6,height+(height2-

height)*4/6,z6,x15,height,z15,x15,height+(height2-height)*4/6,z15,0,-

1,0); 

 

} 

 

//Roof objects 

void BuildCity::AddRoof(double x1, double y1, double z1, double x2, 

double y2, double z2) { 

 y2+=0.5; 

 AddCube(x1-0.4,y1-0.2,z1-0.4,x2+0.4,y1+0.1,z2+0.4); 

 AddPoly(x1,y1,z1,(x1+(x2-x1)/2),y2,z1,(x1+(x2-

x1)/2),y1,z1,x2,y1,z1,0,0,-1); 

 AddPoly((x1+(x2-x1)/2),y2,z2,x1,y1,z2,x2,y1,z2,(x1+(x2-

x1)/2),y1,z2,0,0,1); 

 CurrTex = 1; 

 AddPoly((x1+(x2-x1)/2),y2-0.6,z1,x1+0.8,y1,z1,(x1+(x2-

x1)/2),y2,z1-0.2,x1,y1,z1-0.2,0,0,-1); 

 AddPoly(x2,y1,z1-0.2,x2-0.8,y1,z1,(x1+(x2-x1)/2),y2,z1-

0.2,(x1+(x2-x1)/2),y2-0.6,z1,0,0,-1); 

 AddPoly(x1+0.8,y1,z2,(x1+(x2-x1)/2),y2-

0.6,z2,x1,y1,z2+0.2,(x1+(x2-x1)/2),y2,z2+0.2,0,0,1); 

 AddPoly(x2-0.8,y1,z2,x2,y1,z2+0.2,(x1+(x2-x1)/2),y2-

0.6,z2,(x1+(x2-x1)/2),y2,z2+0.2,0,0,1); 

 CurrTex = 3; 

 AddPoly(x1,y1,z2+0.2, (x1+(x2-x1)/2),y2,z2+0.2, x1,y1,z1-0.2, 

(x1+(x2-x1)/2),y2,z1-0.2,  -1,0,0); 

 AddPoly((x1+(x2-x1)/2),y2,z2+0.2, x2,y1,z2+0.2, (x1+(x2-

x1)/2),y2,z1-0.2, x2,y1,z1-0.2,  0,0.5,-0.5); 

} 

 

void BuildCity::AddRoof2(double x1, double y1, double z1, double x2, 

double y2, double z2) { 

 y2+=0.5; 

 AddCube(x1-0.4,y1-0.2,z1-0.4,x2+0.4,y1+0.1,z2+0.4); 
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 AddPoly(x1,y2,(z1+(z2-z1)/2),x1,y1,z1,x1,y1,z2,x1,y1,(z1+(z2-

z1)/2),-1,0,0); 

 AddPoly(x2,y1,z1,x2,y2,(z1+(z2-z1)/2),x2,y1,(z1+(z2-

z1)/2),x2,y1,z2,1,0,0); 

 CurrTex = 1; 

 AddPoly(x1,y1,z1+0.8,x1,y2-0.6,(z1+(z2-z1)/2),x1-0.2,y1,z1,x1-

0.2,y2,(z1+(z2-z1)/2),-1,0,0); 

 AddPoly(x1,y1,z2-0.8,x1-0.2,y1,z2,x1,y2-0.6,(z1+(z2-z1)/2),x1-

0.2,y2,(z1+(z2-z1)/2),-1,0,0); 

 AddPoly(x2,y2-0.6,(z1+(z2-

z1)/2),x2,y1,z1+0.8,x2+0.2,y2,(z1+(z2-z1)/2),x2+0.2,y1,z1,1,0,0); 

 AddPoly(x2+0.2,y1,z2,x2,y1,z2-0.8,x2+0.2,y2,(z1+(z2-

z1)/2),x2,y2-0.6,(z1+(z2-z1)/2),1,0,0); 

 CurrTex = 3; 

 AddPoly( x2+0.2,y2,(z1+(z2-z1)/2),x2+0.2,y1,z1,  x1-

0.2,y2,(z1+(z2-z1)/2),x1-0.2,y1,z1,  0,0.5,-0.5); 

 AddPoly( x2+0.2,y1,z2, x2+0.2,y2,(z1+(z2-z1)/2),x1-0.2,y1,z2, 

x1-0.2,y2,(z1+(z2-z1)/2),  -1,0,0); 

} 

 

//Basic a hollow cylinder, used for columns 

void BuildCity::AddCylinder(double x1, double y1, double z1, double 

radius, double radius2, double y2) 

{ 

 AddPoly(x1-radius2,y2,z1+radius2/2, x1-radius2,y2,z1-radius2/2, 

x1-radius,y1,z1+radius/2, x1-radius,y1,z1-radius/2, -1,0,0); 

 AddPoly(x1+radius2,y2,z1-radius2/2, x1+radius2,y2,z1+radius2/2, 

x1+radius,y1,z1-radius/2, x1+radius,y1,z1+radius/2, 1,0,0); 

 AddPoly(x1-radius2/2,y2,z1-radius2, x1+radius2/2,y2,z1-radius2, 

x1-radius/2,y1,z1-radius, x1+radius/2,y1,z1-radius, 0,0,-1); 

 AddPoly( x1+radius2/2,y2,z1+radius2,x1-radius2/2,y2,z1+radius2, 

x1+radius/2,y1,z1+radius,x1-radius/2,y1,z1+radius,  0,0,1); 

 AddPoly(x1-radius2/2,y2,z1+radius2, x1-radius2,y2,z1+radius2/2, 

x1-radius/2,y1,z1+radius, x1-radius,y1,z1+radius/2, -0.5,0,0.5); 

 AddPoly( x1+radius2,y2,z1+radius2/2, 

x1+radius2/2,y2,z1+radius2,x1+radius,y1,z1+radius/2,x1+radius/2,y1,z1

+radius,   0.5,0,0.5); 

 AddPoly( x1-radius2,y2,z1-radius2/2,x1-radius2/2,y2,z1-

radius2,x1-radius,y1,z1-radius/2,x1-radius/2,y1,z1-radius,   -0.5,0,-

0.5); 

 AddPoly(x1+radius2/2,y2,z1-radius2, x1+radius2,y2,z1-radius2/2, 

x1+radius/2,y1,z1-radius, x1+radius,y1,z1-radius/2, 0.5,0,-0.5); 

  

} 

 

//Basic column 

void BuildCity::AddColumn(double x1, double y1, double z1, double 

radius, double y2) 

{ 

 radius = 0.3; 

 radius = radius+0.2; 

 CurrTex = 5; 

 AddBlankCube(x1-radius-0.2,y1,z1-radius-

0.2,x1+radius+0.2,y1+0.2,z1+radius+0.2); 

 AddBlankCube(x1-radius-0.2,y2-0.2,z1-radius-

0.2,x1+radius+0.2,y2-0,z1+radius+0.2); 

 

 CurrTex = 2; 

 AddCylinder(x1,y1,z1,radius,radius-0.15,y2-0.2); 

 CurrTex = 5; 

 AddCylinder(x1,y1+0.2,z1,radius+0.1,radius+0.2,y1+0.3); 
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 AddCylinder(x1,y1+0.3,z1,radius+0.2,radius,y1+0.4); 

 

 AddCylinder(x1,y2-0.4,z1,radius,radius,y2-0.2); 

 AddCylinder(x1,y2-0.6,z1,radius-0.2,radius,y2-0.4); 

} 

 

//Window objects 

void BuildCity::AddWindowx(double x1, double y1, double z1, double 

y2){ 

 CurrTex = 1; 

 AddPoly(x1,y1+winheight,z1,  x1+Secwidth,y1+winheight,z1, 

x1,y1,z1, x1+Secwidth,y1,z1,0,0,-1); 

 AddPoly(x1,y2,z1,  x1+Secwidth,y2,z1, x1,y2-winheight,z1, 

x1+Secwidth,y2-winheight,z1,0,0,-1); 

 AddPoly(x1,y2-winheight,z1,  x1+winwidth,y2-winheight,z1, 

x1,y1+winheight,z1, x1+winwidth,y1+winheight,z1,0,0,-1); 

 AddPoly(x1+Secwidth-winwidth,y2-winheight,z1,  x1+Secwidth,y2-

winheight,z1, x1+Secwidth-winwidth,y1+winheight,z1, 

x1+Secwidth,y1+winheight,z1,0,0,-1); 

 

 CurrTex = 4; 

 AddPoly(x1+winwidth,y2-winheight,z1+(winwidth/2),x1+Secwidth-

winwidth,y2-winheight,z1+(winwidth/2), 

x1+winwidth,y1+winheight,z1+(winwidth/2), x1+Secwidth-

winwidth,y1+winheight,z1+(winwidth/2), 0,0,-1); 

 

 CurrTex = 1; 

 AddPoly( x1+Secwidth-winwidth,y2-winheight,z1+(winwidth/2),  

x1+Secwidth-winwidth,y2-winheight,z1, x1+Secwidth-

winwidth,y1+winheight,z1+(winwidth/2),x1+Secwidth-

winwidth,y1+winheight,z1,-1,0,0); 

 AddPoly( x1+winwidth,y1+winheight,z1, x1+winwidth,y2-

winheight,z1,   

x1+winwidth,y1+winheight,z1+(winwidth/2),x1+winwidth,y2-

winheight,z1+(winwidth/2),1,0,0); 

} 

 

void BuildCity::AddWindowz(double x1, double y1, double z1, double 

y2){ 

   

 CurrTex = 1; 

 AddPoly(x1,y1+winheight,z1,  x1,y1+winheight,z1+Secwidth, 

x1,y1,z1, x1,y1,z1+Secwidth,1,0,0); 

 AddPoly(x1,y2,z1,  x1,y2,z1+Secwidth, x1,y2-winheight,z1, 

x1,y2-winheight,z1+Secwidth,1,0,0); 

 AddPoly(x1,y2-winheight,z1,  x1,y2-winheight,z1+winwidth, 

x1,y1+winheight,z1, x1,y1+winheight,z1+winwidth,1,0,0); 

 AddPoly(x1,y2-winheight,z1+Secwidth-winwidth,  x1,y2-

winheight,z1+Secwidth, x1,y1+winheight,z1+Secwidth-winwidth, 

x1,y1+winheight,z1+Secwidth,1,0,0); 

 CurrTex = 4; 

 AddPoly(x1-(winwidth/2),y2-winheight,z1+winwidth,x1-

(winwidth/2),y2-winheight,z1+Secwidth-winwidth, x1-

(winwidth/2),y1+winheight,z1+winwidth, x1-

(winwidth/2),y1+winheight,z1+Secwidth-winwidth, 1,0,0); 

 CurrTex = 1; 

 AddPoly( x1-(winwidth/2),y2-winheight,z1+Secwidth-winwidth,  

x1,y2-winheight,z1+Secwidth-winwidth, x1-

(winwidth/2),y1+winheight,z1+Secwidth-

winwidth,x1,y1+winheight,z1+Secwidth-winwidth,1,0,0); 
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 AddPoly( x1,y1+winheight,z1+winwidth, x1,y2-

winheight,z1+winwidth,   x1-(winwidth/2),y1+winheight,z1+winwidth,x1-

(winwidth/2),y2-winheight,z1+winwidth,-1,0,0); 

} 

 

void BuildCity::AddWindowz2(double x1, double y1, double z1, double 

y2){ 

 //AddPoly(x1,y2,z2, x1,y2,z1, x1,y1,z2, x1,y1,z1, -1,0,0); 

  

 CurrTex = 1; 

 AddPoly( x1,y1+winheight,z1+Secwidth, 

x1,y1+winheight,z1,x1,y1,z1+Secwidth,  x1,y1,z1,-1,0,0); 

 AddPoly(x1,y2,z1+Secwidth, x1,y2,z1,x1,y2-

winheight,z1+Secwidth,  x1,y2-winheight,z1, -1,0,0); 

 

 AddPoly(x1,y1+winheight,z1, x1,y1+winheight,z1+winwidth,x1,y2-

winheight,z1,  x1,y2-winheight,z1+winwidth, -1,0,0); 

 AddPoly(x1,y1+winheight,z1+Secwidth-winwidth, 

x1,y1+winheight,z1+Secwidth,x1,y2-winheight,z1+Secwidth-winwidth,  

x1,y2-winheight,z1+Secwidth, -1,0,0); 

 CurrTex = 4; 

 AddPoly( x1+(winwidth/2),y1+winheight,z1+winwidth, 

x1+(winwidth/2),y1+winheight,z1+Secwidth-winwidth,x1+(winwidth/2),y2-

winheight,z1+winwidth,x1+(winwidth/2),y2-winheight,z1+Secwidth-

winwidth, -1,0,0); 

 CurrTex = 1; 

 

 AddPoly( x1+(winwidth/2),y2-winheight,z1+winwidth,  x1,y2-

winheight,z1+winwidth, 

x1+(winwidth/2),y1+winheight,z1+winwidth,x1,y1+winheight,z1+winwidth,

-1,0,0); 

 AddPoly(x1,y2-winheight,z1+Secwidth-winwidth, 

x1+(winwidth/2),y2-winheight,z1+Secwidth-

winwidth,x1,y1+winheight,z1+Secwidth-

winwidth,x1+(winwidth/2),y1+winheight,z1+Secwidth-winwidth,1,0,0); 

 

 //AddPoly( x1+winwidth,y1+winheight,z1, x1+winwidth,y2-

winheight,z1,   

x1+winwidth,y1+winheight,z1+(winwidth/2),x1+winwidth,y2-

winheight,z1+(winwidth/2),-1,0,0); 

} 

 

void BuildCity::AddWindowx2(double x1, double y1, double z1, double 

y2){ 

 CurrTex = 1; 

 AddPoly(x1,y1,z1, x1+Secwidth,y1,z1,x1,y1+winheight,z1,  

x1+Secwidth,y1+winheight,z1, 0,0,1); 

 AddPoly(x1,y2-winheight,z1, x1+Secwidth,y2-

winheight,z1,x1,y2,z1,  x1+Secwidth,y2,z1, 0,0,1); 

 AddPoly(x1,y1+winheight,z1, x1+winwidth,y1+winheight,z1,x1,y2-

winheight,z1,  x1+winwidth,y2-winheight,z1, 0,0,1); 

 AddPoly(x1+Secwidth-winwidth,y1+winheight,z1, 

x1+Secwidth,y1+winheight,z1,x1+Secwidth-winwidth,y2-winheight,z1,  

x1+Secwidth,y2-winheight,z1, 0,0,1); 

 

 CurrTex = 4; 

 AddPoly(x1+winwidth,y1+winheight,z1-(winwidth/2), x1+Secwidth-

winwidth,y1+winheight,z1-(winwidth/2), x1+winwidth,y2-winheight,z1-

(winwidth/2),x1+Secwidth-winwidth,y2-winheight,z1-(winwidth/2), 

0,0,1); 

 CurrTex = 1; 
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 AddPoly( x1+winwidth,y2-winheight,z1-(winwidth/2),  

x1+winwidth,y2-winheight,z1, x1+winwidth,y1+winheight,z1-

(winwidth/2),x1+winwidth,y1+winheight,z1,1,0,0); 

 AddPoly( x1+Secwidth-winwidth,y1+winheight,z1,x1+Secwidth-

winwidth,y2-winheight,z1,   x1+Secwidth-winwidth,y1+winheight,z1-

(winwidth/2),x1+Secwidth-winwidth,y2-winheight,z1-(winwidth/2),-

1,0,0); 

} 

 

//Forum object 

void BuildCity::AddForum(double xvalue, double zvalue, float Yheight) 

{ 

 AddCube(xvalue-0.4,Yheight-5,zvalue-0.4,xvalue+14+0.4,Yheight-

1.5,zvalue+14+0.4); 

 AddColumn(xvalue,Yheight-1.5,zvalue,0.5,Yheight+5.5); 

 AddColumn(xvalue+4,Yheight-1.5,zvalue,0.5,Yheight+5.5); 

 AddColumn(xvalue+10,Yheight-1.5,zvalue,0.5,Yheight+5.5); 

 AddColumn(xvalue+14,Yheight-1.5,zvalue,0.5,Yheight+5.5); 

 AddColumn(xvalue,Yheight-1.5,zvalue+14,0.5,Yheight+5.5); 

 AddColumn(xvalue+4,Yheight-1.5,zvalue+14,0.5,Yheight+5.5); 

 AddColumn(xvalue+10,Yheight-1.5,zvalue+14,0.5,Yheight+5.5); 

 AddColumn(xvalue+14,Yheight-1.5,zvalue+14,0.5,Yheight+5.5); 

 AddColumn(xvalue,Yheight-1.5,zvalue+4,0.5,Yheight+5.5); 

 AddColumn(xvalue,Yheight-1.5,zvalue+10,0.5,Yheight+5.5); 

 AddColumn(xvalue+14,Yheight-1.5,zvalue+4,0.5,Yheight+5.5); 

 AddColumn(xvalue+14,Yheight-1.5,zvalue+10,0.5,Yheight+5.5); 

} 

 

//Temple object 

void BuildCity::AddTemple(float cx, float cz, float Yheight) 

{ 

 Yheight = Yheight+1; 

 

 //Cella 

 CurrTex = 1; 

 AddBox(cx+0,Yheight,cz+3.33,cx+1,Yheight+7,cz+13.33); 

 AddBox(cx+9,Yheight,cz+3.33,cx+10,Yheight+7,cz+13.33); 

 AddBox(cx+1,Yheight,cz+12.33,cx+9,Yheight+7,cz+13.33); 

 AddBox(cx+1,Yheight,cz+3.33,cx+4,Yheight+7,cz+4.33); 

 AddBox(cx+6,Yheight,cz+3.33,cx+9,Yheight+7,cz+4.33); 

  

 AddBox(cx+4,Yheight+5,cz+3.33,cx+6,Yheight+7,cz+4.33); 

  

 AddCube(cx-0.2,Yheight+6.9,cz-4,cx+10.2,Yheight+8.6,cz+13.33); 

  

 AddColumn(cx+0,Yheight,cz-3.33,0.5,Yheight+7); 

 AddColumn(cx+3.33,Yheight,cz+3.33,0.5,Yheight+7); 

 AddColumn(cx+10,Yheight,cz-3.33,0.5,Yheight+7); 

 AddColumn(cx+6.66,Yheight,cz+3.33,0.5,Yheight+7); 

 AddColumn(cx+0,Yheight,cz,0.5,Yheight+7); 

 AddColumn(cx+10,Yheight,cz,0.5,Yheight+7); 

 AddColumn(cx+0,Yheight,cz+3.33,0.5,Yheight+7); 

 AddColumn(cx+0,Yheight,cz+6.66,0.5,Yheight+7); 

 AddColumn(cx+0,Yheight,cz+10.0,0.5,Yheight+7); 

 AddColumn(cx+0,Yheight,cz+13.33,0.5,Yheight+7); 

  

 AddColumn(cx+3.33,Yheight,cz-3.33,0.5,Yheight+7); 

 AddColumn(cx+6.66,Yheight,cz-3.33,0.5,Yheight+7); 

 AddColumn(cx+3.33,Yheight,cz+13.33,0.5,Yheight+7); 

 AddColumn(cx+6.66,Yheight,cz+13.33,0.5,Yheight+7); 
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 AddColumn(cx+10,Yheight,cz+3.33,0.5,Yheight+7); 

 AddColumn(cx+10,Yheight,cz+6.66,0.5,Yheight+7); 

 AddColumn(cx+10,Yheight,cz+10.0,0.5,Yheight+7); 

 AddColumn(cx+10,Yheight,cz+13.33,0.5,Yheight+7); 

 

 //Podium 

 CurrTex = 5; 

 AddBlankCube(cx-0.4,Yheight-2.5,cz-4,cx+10.4,Yheight-

0.5,cz+14.4); 

 AddBlankCube(cx-0.6,Yheight-0.5,cz-4,cx+10.6,Yheight,cz+14.6); 

 AddBlankCube(cx-0.4,Yheight-2.5,cz-8,cx+2,Yheight-0.5,cz-4); 

 AddBlankCube(cx+8,Yheight-2.5,cz-8,cx+10.4,Yheight-0.5,cz-4); 

 AddBlankCube(cx-0.6,Yheight-0.5,cz-8.4,cx+2.2,Yheight,cz-4); 

 AddBlankCube(cx+7.8,Yheight-0.5,cz-8.4,cx+10.6,Yheight,cz-4); 

  

 //Stairs 

 for (int ii = 0; ii < 9; ii++){ 

  CurrTex = 5; 

 AddBlankCube(cx+2,Yheight-(0.8+(ii*0.2)),cz-

(4.5+(ii*0.4)),cx+8,Yheight-(0.4+(ii*0.2)),cz-(3.5+(ii*0.4))); 

 } 

  

 AddRoof(cx-0.3,Yheight+8.6,cz-4,cx+10.3,Yheight+11,cz+13.3); 

} 

//City wall tower object 

void BuildCity::AddTower(double x1, double y1, double z1, double 

radius, double y2) 

{ 

 y2 = y2-0.4; 

 double radius2 = radius-2.0; 

 AddPoly(x1-radius2/2,y2,z1-radius2,x1-radius2,y2,z1-

radius2/2,x1,y2,z1,x1-radius2,y2,z1+radius2/2,0,1,0); 

 AddPoly(x1+radius2,y2,z1-radius2/2,x1+radius2/2,y2,z1-

radius2,x1,y2,z1,x1-radius2/2,y2,z1-radius2,0,1,0); 

 AddPoly(x1-radius2,y2,z1+radius2/2,x1-

radius2/2,y2,z1+radius2,x1,y2,z1,x1+radius2/2,y2,z1+radius2,0,1,0); 

 AddPoly(x1+radius2/2,y2,z1+radius2,x1+radius2,y2,z1+radius2/2,x

1,y2,z1,x1+radius2,y2,z1-radius2/2,0,1,0); 

 

 AddPoly(x1-radius2,y2,z1+radius2/2, x1-radius2,y2,z1-radius2/2, 

x1-radius,y1,z1+radius/2, x1-radius,y1,z1-radius/2, -1,0,0); 

 AddPoly(x1+radius2,y2,z1-radius2/2, x1+radius2,y2,z1+radius2/2, 

x1+radius,y1,z1-radius/2, x1+radius,y1,z1+radius/2, 1,0,0); 

 AddPoly(x1-radius2/2,y2,z1-radius2, x1+radius2/2,y2,z1-radius2, 

x1-radius/2,y1,z1-radius, x1+radius/2,y1,z1-radius, 0,0,-1); 

 AddPoly( x1+radius2/2,y2,z1+radius2,x1-radius2/2,y2,z1+radius2, 

x1+radius/2,y1,z1+radius,x1-radius/2,y1,z1+radius,  0,0,1); 

  

 AddPoly(x1-radius2/2,y2,z1+radius2, x1-radius2,y2,z1+radius2/2, 

x1-radius/2,y1,z1+radius, x1-radius,y1,z1+radius/2, -0.5,0,0.5); 

 AddPoly( x1+radius2,y2,z1+radius2/2, 

x1+radius2/2,y2,z1+radius2,x1+radius,y1,z1+radius/2,x1+radius/2,y1,z1

+radius,   0.5,0,0.5); 

 AddPoly( x1-radius2,y2,z1-radius2/2,x1-radius2/2,y2,z1-

radius2,x1-radius,y1,z1-radius/2,x1-radius/2,y1,z1-radius,   -0.5,0,-

0.5); 

 AddPoly(x1+radius2/2,y2,z1-radius2, x1+radius2,y2,z1-radius2/2, 

x1+radius/2,y1,z1-radius, x1+radius,y1,z1-radius/2, 0.5,0,-0.5); 

} 

 

//City wall object 
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void BuildCity::AddWall(double radius, double height) 

{ 

 double x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5; 

 double v = 0; 

 float ww = 3; 

 double heighttemp, heighttemp2; 

 for (int i=0; i<5; i++){ 

  v = 72*i; 

  x1 = radius*sin(degra*v); 

  z1 = radius*cos(degra*v); 

  v+=72; 

  x2 = radius*sin(degra*v); 

  z2 = radius*cos(degra*v); 

  v = 72*i; 

  x3 = (radius+ww)*sin(degra*v); 

  z3 = (radius+ww)*cos(degra*v); 

  v+=72; 

  x4 = (radius+ww)*sin(degra*v); 

  z4 = (radius+ww)*cos(degra*v); 

  heighttemp = height; 

  heighttemp2 = height; 

  if (i == 2) { 

   heighttemp2 = height-5; 

  } 

  if (i == 3) { 

   heighttemp = height-5; 

   heighttemp2 = height-30; 

  } 

  if (i == 4) { 

   heighttemp = height-30; 

   heighttemp2 = height-20; 

  } 

  if (i == 0) { 

   heighttemp = height-20; 

  } 

  CurrTex = 1; 

  AddTower(x1,heighttemp,z1,8,heighttemp+25); 

  CurrTex = 0; 

  AddPoly(x1,heighttemp-10,z1,x1,heighttemp+20,z1, 

x2,heighttemp2-10,z2, x2,heighttemp2+20,z2,  -1,0,0); 

  AddPoly(x1,heighttemp+20,z1,x3,heighttemp+20,z3, 

x2,heighttemp2+20,z2, x4,heighttemp2+20,z4,  0,-1,0); 

  AddPoly(x3,heighttemp+20,z3,x3,heighttemp-10,z3, 

x4,heighttemp2+20,z4, x4,heighttemp2-10,z4,  -1,0,0); 

 

 } 

} 

 

//Amphitheater object 

void BuildCity::AddAmphitheater(double centerx, double centerz, 

double height, double radius) 

{ 

 double height2 = height+5; 

 int sides = 30; 

 float ang = 360/sides; 

 double x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5; 

 double v = 0; 

 float ww = 3; 

 //Calculate x and z positions for current side 

 for (int i=0; i<sides; i++){ 

  v = ang*i; 
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  x1 = radius*sin(degra*v); 

  z1 = radius*cos(degra*v); 

  v+=ang; 

  x2 = radius*sin(degra*v); 

  z2 = radius*cos(degra*v); 

  v = ang*i; 

  x3 = (radius+ww)*sin(degra*v); 

  z3 = (radius+ww)*cos(degra*v); 

  v+=ang; 

  x4 = (radius+ww)*sin(degra*v); 

  z4 = (radius+ww)*cos(degra*v); 

  AddColumn(centerx+x3, height, 

centerz+z3,0.4,height2+0.2); 

  AddColumn(centerx+x3, height2, 

centerz+z3,0.4,height2+(height2-height)-0.2); 

  CurrTex = 5; 

  //Top! 

  AddPoly(centerx+x1,height2+(height2-

height),centerz+z1,centerx+x3,height2+(height2-height),centerz+z3, 

centerx+x2,height2+(height2-height),centerz+z2, 

centerx+x4,height2+(height2-height),centerz+z4,  0,-1,0); 

   

  //Repeat for two floors - we do arches here 

  for (int j=0; j<2;j++){ 

   float diff = (height2-height); 

   //Change the height based on the floor. This is 

messy, but it works. 

   if (j==1){ 

    height = height2; 

    height2 = height2+diff; 

   } 

   //Facing up 

  

 AddPoly(centerx+x1,height+0.4,centerz+z1,centerx+x3,height+0.4,

centerz+z3, centerx+x2,height+0.4,centerz+z2, 

centerx+x4,height+0.4,centerz+z4,  0,1,0); 

    

   //Outer 

   AddPoly(centerx+(x3+(x4-

x3)/6),height+0.4,centerz+(z3+(z4-z3)/6),centerx+(x3+(x4-

x3)/6),height,centerz+(z3+(z4-z3)/6), centerx+(x3+(x4-

x3)*5/6),height+0.4,centerz+(z3+(z4-z3)*5/6), centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6),  -1,0,0); 

  

 //AddPoly(centerx+x3,height2,centerz+z3,centerx+x3,height,cente

rz+z3, centerx+x4,height2,centerz+z4, centerx+x4,height,centerz+z4,  

1,0,0); 

  

 AddPoly(centerx+x3,height2,centerz+z3,centerx+x3,height,centerz

+z3, centerx+(x3+(x4-x3)/6),height2,centerz+(z3+(z4-z3)/6), 

centerx+(x3+(x4-x3)/6),height,centerz+(z3+(z4-z3)/6),  -1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*5/6),height2,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6), 

centerx+x4,height2,centerz+z4, centerx+x4,height,centerz+z4,  -

1,0,0); 

   //Arch 

   AddPoly(centerx+(x3+(x4-

x3)/6),height2,centerz+(z3+(z4-z3)/6), centerx+(x3+(x4-

x3)/6),height+(height2-height)*4/6,centerz+(z3+(z4-z3)/6), 

centerx+(x3+(x4-x3)*2/6),height2,centerz+(z3+(z4-z3)*2/6), 
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centerx+(x3+(x4-x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*2/6),  -1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*2/6),height2,centerz+(z3+(z4-z3)*2/6), centerx+(x3+(x4-

x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-z3)*2/6), 

centerx+(x3+(x4-x3)*3/6),height2,centerz+(z3+(z4-z3)*3/6), 

centerx+(x3+(x4-x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-

z3)*3/6),  -1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*3/6),height2,centerz+(z3+(z4-z3)*3/6), centerx+(x3+(x4-

x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-z3)*3/6), 

centerx+(x3+(x4-x3)*4/6),height2,centerz+(z3+(z4-z3)*4/6), 

centerx+(x3+(x4-x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*4/6),  -1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*4/6),height2,centerz+(z3+(z4-z3)*4/6), centerx+(x3+(x4-

x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-z3)*4/6), 

centerx+(x3+(x4-x3)*5/6),height2,centerz+(z3+(z4-z3)*5/6), 

centerx+(x3+(x4-x3)*5/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)*5/6),  -1,0,0); 

   //Inner arch 

   AddPoly(centerx+(x3+(x4-x3)/6),height+(height2-

height)*4/6,centerz+(z3+(z4-z3)/6),centerx+(x3+(x4-

x3)/6),height,centerz+(z3+(z4-z3)/6),centerx+(x1+(x2-

x1)/6),height+(height2-height)*4/6,centerz+(z1+(z2-

z1)/6),centerx+(x1+(x2-x1)/6),height,centerz+(z1+(z2-z1)/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-x3)*2/6),height+(height2-

height)*5/6,centerz+(z3+(z4-z3)*2/6),centerx+(x3+(x4-

x3)/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)/6),centerx+(x1+(x2-x1)*2/6),height+(height2-

height)*5/6,centerz+(z1+(z2-z1)*2/6),centerx+(x1+(x2-

x1)/6),height+(height2-height)*4/6,centerz+(z1+(z2-z1)/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-x3)*3/6),height+(height2-

height)*8/9,centerz+(z3+(z4-z3)*3/6),centerx+(x3+(x4-

x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*2/6),centerx+(x1+(x2-x1)*3/6),height+(height2-

height)*8/9,centerz+(z1+(z2-z1)*3/6),centerx+(x1+(x2-

x1)*2/6),height+(height2-height)*5/6,centerz+(z1+(z2-z1)*2/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-x3)*4/6),height+(height2-

height)*5/6,centerz+(z3+(z4-z3)*4/6),centerx+(x3+(x4-

x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-

z3)*3/6),centerx+(x1+(x2-x1)*4/6),height+(height2-

height)*5/6,centerz+(z1+(z2-z1)*4/6),centerx+(x1+(x2-

x1)*3/6),height+(height2-height)*8/9,centerz+(z1+(z2-z1)*3/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-x3)*5/6),height+(height2-

height)*4/6,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*4/6),centerx+(x1+(x2-x1)*5/6),height+(height2-

height)*4/6,centerz+(z1+(z2-z1)*5/6),centerx+(x1+(x2-

x1)*4/6),height+(height2-height)*5/6,centerz+(z1+(z2-z1)*4/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*5/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)*5/6),centerx+(x1+(x2-x1)*5/6),height,centerz+(z1+(z2-

z1)*5/6),centerx+(x1+(x2-x1)*5/6),height+(height2-

height)*4/6,centerz+(z1+(z2-z1)*5/6),1,0,0); 

 

   if (j==1){ 

    height2 = height2-diff; 

    height = height2-diff; 

   } 
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  } 

  float stairwidth = 0.8; 

  float stairheight = 0.3; 

  int repeats = 10; 

  float stairtop = 5; 

  float height3 = height2 + (height2-height); 

  //Inner - use for stairs! 

  CurrTex = 1; 

  AddPoly(centerx+x1,height3-(stairheight)-

stairtop,centerz+z1,centerx+x1,height3,centerz+z1, 

centerx+x2,height3-(stairheight)-stairtop,centerz+z2, 

centerx+x2,height3,centerz+z2,  -1,0,0); 

  CurrTex = 5; 

  for (int j=0; j<repeats;j++){ 

   v = ang*i; 

   x1 = (radius-(stairwidth*j))*sin(degra*v); 

   z1 = (radius-(stairwidth*j))*cos(degra*v); 

   v+=ang; 

   x2 = (radius-(stairwidth*j))*sin(degra*v); 

   z2 = (radius-(stairwidth*j))*cos(degra*v); 

   v = ang*i; 

   x3 = (radius-(stairwidth*(j+1)))*sin(degra*v); 

   z3 = (radius-(stairwidth*(j+1)))*cos(degra*v); 

   v+=ang; 

   x4 = (radius-(stairwidth*(j+1)))*sin(degra*v); 

   z4 = (radius-(stairwidth*(j+1)))*cos(degra*v); 

   AddPoly(centerx+x3,height3-(stairheight*(j+1))-

stairtop,centerz+z3,centerx+x1,height3-(stairheight*(j+1))-

stairtop,centerz+z1, centerx+x4,height3-(stairheight*(j+1))-

stairtop,centerz+z4, centerx+x2,height3-(stairheight*(j+1))-

stairtop,centerz+z2,  0,-1,0); 

   if (j !=0){ 

    AddPoly(centerx+x1,height3-

(stairheight*(j+1))-stairtop,centerz+z1,centerx+x1,height3-

(stairheight*j)-stairtop,centerz+z1, centerx+x2,height3-

(stairheight*(j+1))-stairtop,centerz+z2, centerx+x2,height3-

(stairheight*j)-stairtop,centerz+z2,  -1,0,0); 

   } 

   if (j ==(repeats-1)){ 

   

 AddPoly(centerx+x3,height,centerz+z3,centerx+x3,height3-

(stairheight*(j+1))-stairtop,centerz+z3, 

centerx+x4,height,centerz+z4, centerx+x4,height3-(stairheight*(j+1))-

stairtop,centerz+z4,  -1,0,0); 

   } 

  } 

 } 

} 

 

//Theater object 

void BuildCity::AddTheater(double centerx, double centerz, double 

height, double radius) 

{ 

 double height2 = height+5; 

 int sides = 30; 

 float ang = 360/sides; 

 double x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5; 

 double v = 0; 

 float ww = 3; 

 //Calculate x and z positions for current side 

 for (int i=0; i<sides/2; i++){ 
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  v = ang*i; 

  x1 = radius*sin(degra*v); 

  z1 = radius*cos(degra*v); 

  v+=ang; 

  x2 = radius*sin(degra*v); 

  z2 = radius*cos(degra*v); 

  v = ang*i; 

  x3 = (radius+ww)*sin(degra*v); 

  z3 = (radius+ww)*cos(degra*v); 

  v+=ang; 

  x4 = (radius+ww)*sin(degra*v); 

  z4 = (radius+ww)*cos(degra*v); 

  AddColumn(centerx+x3, height, 

centerz+z3,0.4,height2+0.2); 

  AddColumn(centerx+x3, height2, 

centerz+z3,0.4,height2+(height2-height)-0.2); 

  CurrTex = 5; 

  //Top! 

  AddPoly(centerx+x1,height2+(height2-

height),centerz+z1,centerx+x3,height2+(height2-height),centerz+z3, 

centerx+x2,height2+(height2-height),centerz+z2, 

centerx+x4,height2+(height2-height),centerz+z4,  0,-1,0); 

   

  //Repeat for two floors - we do arches here 

  for (int j=0; j<2;j++){ 

   float diff = (height2-height); 

   //Change the height based on the floor. This is 

messy, but it works. 

   if (j==1){ 

    height = height2; 

    height2 = height2+diff; 

   } 

   //Facing up 

  

 AddPoly(centerx+x1,height+0.4,centerz+z1,centerx+x3,height+0.4,

centerz+z3, centerx+x2,height+0.4,centerz+z2, 

centerx+x4,height+0.4,centerz+z4,  0,1,0); 

    

   //Outer 

   AddPoly(centerx+(x3+(x4-

x3)/6),height+0.4,centerz+(z3+(z4-z3)/6),centerx+(x3+(x4-

x3)/6),height,centerz+(z3+(z4-z3)/6), centerx+(x3+(x4-

x3)*5/6),height+0.4,centerz+(z3+(z4-z3)*5/6), centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6),  -1,0,0); 

  

 //AddPoly(centerx+x3,height2,centerz+z3,centerx+x3,height,cente

rz+z3, centerx+x4,height2,centerz+z4, centerx+x4,height,centerz+z4,  

1,0,0); 

  

 AddPoly(centerx+x3,height2,centerz+z3,centerx+x3,height,centerz

+z3, centerx+(x3+(x4-x3)/6),height2,centerz+(z3+(z4-z3)/6), 

centerx+(x3+(x4-x3)/6),height,centerz+(z3+(z4-z3)/6),  -1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*5/6),height2,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6), 

centerx+x4,height2,centerz+z4, centerx+x4,height,centerz+z4,  -

1,0,0); 

   //Arch 

   AddPoly(centerx+(x3+(x4-

x3)/6),height2,centerz+(z3+(z4-z3)/6), centerx+(x3+(x4-

x3)/6),height+(height2-height)*4/6,centerz+(z3+(z4-z3)/6), 
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centerx+(x3+(x4-x3)*2/6),height2,centerz+(z3+(z4-z3)*2/6), 

centerx+(x3+(x4-x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*2/6),  -1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*2/6),height2,centerz+(z3+(z4-z3)*2/6), centerx+(x3+(x4-

x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-z3)*2/6), 

centerx+(x3+(x4-x3)*3/6),height2,centerz+(z3+(z4-z3)*3/6), 

centerx+(x3+(x4-x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-

z3)*3/6),  -1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*3/6),height2,centerz+(z3+(z4-z3)*3/6), centerx+(x3+(x4-

x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-z3)*3/6), 

centerx+(x3+(x4-x3)*4/6),height2,centerz+(z3+(z4-z3)*4/6), 

centerx+(x3+(x4-x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*4/6),  -1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*4/6),height2,centerz+(z3+(z4-z3)*4/6), centerx+(x3+(x4-

x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-z3)*4/6), 

centerx+(x3+(x4-x3)*5/6),height2,centerz+(z3+(z4-z3)*5/6), 

centerx+(x3+(x4-x3)*5/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)*5/6),  -1,0,0); 

   //Inner arch 

   AddPoly(centerx+(x3+(x4-x3)/6),height+(height2-

height)*4/6,centerz+(z3+(z4-z3)/6),centerx+(x3+(x4-

x3)/6),height,centerz+(z3+(z4-z3)/6),centerx+(x1+(x2-

x1)/6),height+(height2-height)*4/6,centerz+(z1+(z2-

z1)/6),centerx+(x1+(x2-x1)/6),height,centerz+(z1+(z2-z1)/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-x3)*2/6),height+(height2-

height)*5/6,centerz+(z3+(z4-z3)*2/6),centerx+(x3+(x4-

x3)/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)/6),centerx+(x1+(x2-x1)*2/6),height+(height2-

height)*5/6,centerz+(z1+(z2-z1)*2/6),centerx+(x1+(x2-

x1)/6),height+(height2-height)*4/6,centerz+(z1+(z2-z1)/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-x3)*3/6),height+(height2-

height)*8/9,centerz+(z3+(z4-z3)*3/6),centerx+(x3+(x4-

x3)*2/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*2/6),centerx+(x1+(x2-x1)*3/6),height+(height2-

height)*8/9,centerz+(z1+(z2-z1)*3/6),centerx+(x1+(x2-

x1)*2/6),height+(height2-height)*5/6,centerz+(z1+(z2-z1)*2/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-x3)*4/6),height+(height2-

height)*5/6,centerz+(z3+(z4-z3)*4/6),centerx+(x3+(x4-

x3)*3/6),height+(height2-height)*8/9,centerz+(z3+(z4-

z3)*3/6),centerx+(x1+(x2-x1)*4/6),height+(height2-

height)*5/6,centerz+(z1+(z2-z1)*4/6),centerx+(x1+(x2-

x1)*3/6),height+(height2-height)*8/9,centerz+(z1+(z2-z1)*3/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-x3)*5/6),height+(height2-

height)*4/6,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*4/6),height+(height2-height)*5/6,centerz+(z3+(z4-

z3)*4/6),centerx+(x1+(x2-x1)*5/6),height+(height2-

height)*4/6,centerz+(z1+(z2-z1)*5/6),centerx+(x1+(x2-

x1)*4/6),height+(height2-height)*5/6,centerz+(z1+(z2-z1)*4/6),1,0,0); 

   AddPoly(centerx+(x3+(x4-

x3)*5/6),height,centerz+(z3+(z4-z3)*5/6),centerx+(x3+(x4-

x3)*5/6),height+(height2-height)*4/6,centerz+(z3+(z4-

z3)*5/6),centerx+(x1+(x2-x1)*5/6),height,centerz+(z1+(z2-

z1)*5/6),centerx+(x1+(x2-x1)*5/6),height+(height2-

height)*4/6,centerz+(z1+(z2-z1)*5/6),1,0,0); 

 

   if (j==1){ 

    height2 = height2-diff; 

    height = height2-diff; 
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   } 

  } 

  float stairwidth = 0.8; 

  float stairheight = 0.3; 

  int repeats = 10; 

  float stairtop = 5; 

  float height3 = height2 + (height2-height); 

  //Inner - use for stairs! 

  CurrTex = 1; 

  AddPoly(centerx+x1,height3-(stairheight)-

stairtop,centerz+z1,centerx+x1,height3,centerz+z1, 

centerx+x2,height3-(stairheight)-stairtop,centerz+z2, 

centerx+x2,height3,centerz+z2,  -1,0,0); 

  CurrTex = 5; 

  for (int j=0; j<repeats;j++){ 

   v = ang*i; 

   x1 = (radius-(stairwidth*j))*sin(degra*v); 

   z1 = (radius-(stairwidth*j))*cos(degra*v); 

   v+=ang; 

   x2 = (radius-(stairwidth*j))*sin(degra*v); 

   z2 = (radius-(stairwidth*j))*cos(degra*v); 

   v = ang*i; 

   x3 = (radius-(stairwidth*(j+1)))*sin(degra*v); 

   z3 = (radius-(stairwidth*(j+1)))*cos(degra*v); 

   v+=ang; 

   x4 = (radius-(stairwidth*(j+1)))*sin(degra*v); 

   z4 = (radius-(stairwidth*(j+1)))*cos(degra*v); 

   AddPoly(centerx+x3,height3-(stairheight*(j+1))-

stairtop,centerz+z3,centerx+x1,height3-(stairheight*(j+1))-

stairtop,centerz+z1, centerx+x4,height3-(stairheight*(j+1))-

stairtop,centerz+z4, centerx+x2,height3-(stairheight*(j+1))-

stairtop,centerz+z2,  0,-1,0); 

   if (j !=0){ 

    AddPoly(centerx+x1,height3-

(stairheight*(j+1))-stairtop,centerz+z1,centerx+x1,height3-

(stairheight*j)-stairtop,centerz+z1, centerx+x2,height3-

(stairheight*(j+1))-stairtop,centerz+z2, centerx+x2,height3-

(stairheight*j)-stairtop,centerz+z2,  -1,0,0); 

   } 

   if (j ==(repeats-1)){ 

   

 AddPoly(centerx+x3,height,centerz+z3,centerx+x3,height3-

(stairheight*(j+1))-stairtop,centerz+z3, 

centerx+x4,height,centerz+z4, centerx+x4,height3-(stairheight*(j+1))-

stairtop,centerz+z4,  -1,0,0); 

   } 

  } 

 } 

} 

 

//Courtyard, for use in villa objects 

void BuildCity::AddCourtyard(double centerx, double centerz, int 

xrows, int zrows, float landy) 

{ 

 CurrTex = 1; 

 AddBlankCube(centerx-0.2,-8+landy,centerz-

0.2,centerx+(xrows*Secwidth)+0.2,-

1+landy,centerz+(zrows*Secwidth)+0.2); 

 AddRoof2(centerx,-

1.5+landy+floorheight,centerz,centerx+(Secwidth*xrows),landy+floorhei

ght-1,centerz+(Secwidth)); 
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 AddRoof2(centerx,-

1.5+landy+floorheight,centerz+(Secwidth*zrows)-

Secwidth,centerx+(Secwidth*xrows),landy+floorheight-

1,centerz+(Secwidth*zrows)); 

 AddRoof(centerx+0.01,-

1.5+landy+floorheight+0.01,centerz+Secwidth,centerx+Secwidth+0.01,lan

dy+floorheight-1,centerz+(Secwidth*zrows)-Secwidth); 

 AddRoof(centerx+(Secwidth*xrows)-Secwidth+0.01,-

1.5+landy+floorheight+0.01,centerz+Secwidth,centerx+(Secwidth*xrows)+

0.01,landy+floorheight-1,centerz+(Secwidth*zrows)-Secwidth); 

 CurrTex = 5; 

 for (int i = 1; i < xrows+1; i++){ 

  AddArch(centerx+(Secwidth*i),-1.5+landy,centerz,-

1.5+landy+floorheight,180); 

 } 

 for (int i = 0; i < xrows; i++){ 

  AddArch(centerx+(Secwidth*i),-

1.5+landy,centerz+(Secwidth*zrows),-1.5+landy+floorheight,0); 

 } 

 for (int i = 0; i < zrows; i++){ 

  AddArch(centerx,-1.5+landy,centerz+(Secwidth*i),-

1.5+landy+floorheight,90); 

 } 

 for (int i = 1; i < zrows+1; i++){ 

  AddArch(centerx+(Secwidth*xrows),-

1.5+landy,centerz+(Secwidth*i),-1.5+landy+floorheight,270); 

 } 

} 

 

//Generic, governmental insula 

void BuildCity::AddBuilding(double centerx, double centerz, int 

xrows, int zrows, int hrows, float landy, int rooftype) 

{ 

 CurrTex = 5; 

 AddBlankCube(centerx-0.2,-8+landy,centerz-

0.2,centerx+(xrows*Secwidth)+0.2,-

1+landy,centerz+(zrows*Secwidth)+0.2); 

 for (int i = 0; i < xrows; i++){ 

  for (int j = 0; j < hrows; j++){ 

   if (j==0){ 

    int rano = rand()%6; 

    //CurrTex = 1; 

    if (rano == 0) { 

     CurrTex = 2; 

     AddArch(centerx+(xrows*Secwidth)-

(Secwidth*i)-Secwidth,floorheight*j-

1.5+landy,centerz+(zrows*Secwidth),floorheight*j+floorheight-

1.5+landy,0); 

     CurrTex = 1; 

     AddBlankCube(centerx+(xrows*Secwidth)-

(Secwidth*i)-Secwidth,floorheight*j-

4.0+landy,centerz+(zrows*Secwidth)-Secwidth,centerx+(xrows*Secwidth)-

(Secwidth*i),floorheight*j-

1.5+landy,centerz+(zrows*Secwidth)+(Secwidth*0.3)); 

    

 AddBlankCube(centerx+(xrows*Secwidth)+0.01-(Secwidth*i)-

Secwidth,floorheight*j-4.0+landy,centerz+0.01+(zrows*Secwidth)-

Secwidth,centerx+(xrows*Secwidth)+0.01-(Secwidth*i),floorheight*j-

1.9+landy,centerz+0.01+(zrows*Secwidth)+(Secwidth*0.6)); 

     AddBlankCube(centerx+(xrows*Secwidth)-

0.01-(Secwidth*i)-Secwidth,floorheight*j-4.0+landy,centerz-
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0.01+(zrows*Secwidth)-Secwidth,centerx+(xrows*Secwidth)-0.01-

(Secwidth*i),floorheight*j-2.3+landy,centerz-

0.01+(zrows*Secwidth)+(Secwidth*0.9)); 

     AddBlankCube(centerx+(xrows*Secwidth)-

0.02-(Secwidth*i)-Secwidth,floorheight*j-4.0+landy,centerz-

0.02+(zrows*Secwidth)-Secwidth,centerx+(xrows*Secwidth)-0.02-

(Secwidth*i),floorheight*j-2.7+landy,centerz-

0.02+(zrows*Secwidth)+(Secwidth*1.2)); 

    

 AddWindowx(centerx+(Secwidth*i),floorheight*j-

1.5+landy,centerz,floorheight*j+floorheight-1.5+landy); 

    } else { 

    

 AddWindowx(centerx+(Secwidth*i),floorheight*j-

1.5+landy,centerz,floorheight*j+floorheight-1.5+landy); 

     AddWindowx2(centerx+(xrows*Secwidth)-

(Secwidth*i)-Secwidth,floorheight*j-

1.5+landy,centerz+(zrows*Secwidth),floorheight*j+floorheight-

1.5+landy); 

    } 

 

   } else { 

   AddWindowx(centerx+(Secwidth*i),floorheight*j-

1.5+landy,centerz,floorheight*j+floorheight-1.5+landy); 

   AddWindowx2(centerx+(xrows*Secwidth)-(Secwidth*i)-

Secwidth,floorheight*j-

1.5+landy,centerz+(zrows*Secwidth),floorheight*j+floorheight-

1.5+landy); 

   } 

  } 

 } 

 for (int i = 0; i < zrows; i++){ 

  for (int j = 0; j < hrows; j++){ 

   AddWindowz(centerx+(xrows*Secwidth),floorheight*j-

1.5+landy,centerz+(Secwidth*i),floorheight*j+floorheight-1.5+landy); 

   AddWindowz2(centerx,floorheight*j-

1.5+landy,centerz+(Secwidth*i),floorheight*j+floorheight-1.5+landy); 

  } 

 } 

 if (rooftype == 1){ 

  AddRoof2(centerx,floorheight*hrows-

1.5+landy,centerz,centerx+(xrows*Secwidth),floorheight*hrows+0.5+land

y,centerz+(zrows*Secwidth)); 

 } else { 

  AddRoof(centerx,floorheight*hrows-

1.5+landy,centerz,centerx+(xrows*Secwidth),floorheight*hrows+0.5+land

y,centerz+(zrows*Secwidth)); 

 }  

} 

 

double BuildCity::ReturnPoint(int p1, int p2) 

{ 

 return PointArray[p1][p2]; 

} 

int BuildCity::ReturnPoly(int p1, int p2) 

{ 

 return PolyArray[p1][p2]; 

} 

int BuildCity::ReturnCurrMat(int p1) 

{ 

 return CurrentMat[p1]; 
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} 

int BuildCity::ReturnNorm(int p1) 

{ 

 return NormDir[p1]; 

} 

int BuildCity::ReturnPointCount(void) 

{ 

 return Pointcount; 

} 

int BuildCity::ReturnPolyCount(void) 

{ 

 return Polycount; 

} 

 

//Once the city has been generated and stored in the arrays, stream 

the data into a .x file 

void BuildCity::MakeAnX(string filename) 

{ 

 //Set up input/output files 

 //SetCurrentDirectory("Art/"); 

 string line; 

 ofstream myfile; 

 myfile.open (filename); 

 ifstream opfile ("XFilePart1.txt"); 

 

 //Output the contents of example.txt 

 if (opfile.is_open()) 

 { 

  while ( opfile.good() ) 

  { 

   getline (opfile,line); 

   myfile << line << endl; 

  } 

  opfile.close(); 

 } 

 

 //Output Pointcount 

  myfile << Pointcount << ";" << endl; 

   

 for (int i = 0; i<Pointcount;i++) 

 { 

  myfile << fixed << PointArray[i][0] <<  ";" << 

PointArray[i][1] << ";" << PointArray[i][2] << ";"; 

 

  myfile << endl; 

 } 

 myfile << Polycount << ";"<< endl; 

 for (int i = 0; i < Polycount; i++) 

 { 

  myfile << "4;" << numcount << ","; 

  numcount++; 

  myfile << numcount << ","; 

  numcount++; 

  myfile << numcount << ","; 

  numcount++; 

  myfile << numcount << ";," << endl; 

  numcount++; 

 } 

 myfile << "MeshMaterialList {" << endl; 

 myfile << "7;" << endl; //NUMBER OF MATERIALS 

 myfile << Polycount << ";" << endl; 
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 for (int i = 0; i < Polycount; i++) 

 { 

  myfile << CurrentMat[i]; 

  if (i == Polycount-1) { 

   myfile << ";;" << endl; 

  } else { 

   myfile << "," << endl; 

  } 

 } 

 

 ifstream opfile2 ("XFilePart2.txt"); 

 if (opfile2.is_open()) 

 { 

  while ( opfile2.good() ) 

  { 

   getline (opfile2,line); 

   myfile << line << endl; 

  } 

  opfile2.close(); 

 } 

 

 myfile << Polycount << ";" << endl; 

 for (int i = 0; i < Polycount; i++) 

 { 

  myfile << "4;" << NormDir[i] << "," << NormDir[i] << "," 

<< NormDir[i] << "," << NormDir[i] << ";"; 

 

  if (i == Polycount-1){ 

   myfile << ";" << endl; 

  } else { 

   myfile << "," << endl; 

  } 

  numcount++; 

   

 } 

 

 myfile << "}" << endl; 

 myfile << "MeshTextureCoords {" << endl; 

 myfile << Pointcount << ";" << endl; 

 for (int i= 0;  i< Pointcount; i=i+4){ 

  myfile << "0.0000;0.0000;" << endl; 

  myfile << "0.0000;1.0000;" << endl; 

  myfile << "1.0000;1.0000;" << endl; 

  myfile << "1.0000;0.0000;"; 

  if (i == Pointcount-1){ 

    myfile << ";" << endl; 

  } else { 

    myfile << endl; 

  } 

 } 

 myfile << "}" << endl << "}" << endl << "}"; 

 myfile.close(); 

 

 DeallocateAll(); 

}  
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7.3 XFILEPART1.TXT 

 

xof 0302txt 0032 

Header { 

 1; 

 0; 

 1; 

} 

template Header { 

 <3D82AB43-62DA-11cf-AB39-0020AF71E433> 

 WORD major; 

 WORD minor; 

 DWORD flags; 

} 

 

template Vector { 

 <3D82AB5E-62DA-11cf-AB39-0020AF71E433> 

 FLOAT x; 

 FLOAT y; 

 FLOAT z; 

} 

 

template Coords2d { 

 <F6F23F44-7686-11cf-8F52-0040333594A3> 

 FLOAT u; 

 FLOAT v; 

} 

 

template Matrix4x4 { 

 <F6F23F45-7686-11cf-8F52-0040333594A3> 

 array FLOAT matrix[16]; 

} 

 

template ColorRGBA { 

 <35FF44E0-6C7C-11cf-8F52-0040333594A3> 

 FLOAT red; 

 FLOAT green; 

 FLOAT blue; 

 FLOAT alpha; 

} 

 

template ColorRGB { 

 <D3E16E81-7835-11cf-8F52-0040333594A3> 

 FLOAT red; 

 FLOAT green; 

 FLOAT blue; 

} 

 

template TextureFilename { 

 <A42790E1-7810-11cf-8F52-0040333594A3> 

 STRING filename; 

} 

 

template Material { 

 <3D82AB4D-62DA-11cf-AB39-0020AF71E433> 

 ColorRGBA faceColor; 

 FLOAT power; 

 ColorRGB specularColor; 

 ColorRGB emissiveColor; 
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 [...] 

} 

 

template MeshFace { 

 <3D82AB5F-62DA-11cf-AB39-0020AF71E433> 

 DWORD nFaceVertexIndices; 

 array DWORD faceVertexIndices[nFaceVertexIndices]; 

} 

 

template MeshTextureCoords { 

 <F6F23F40-7686-11cf-8F52-0040333594A3> 

 DWORD nTextureCoords; 

 array Coords2d textureCoords[nTextureCoords]; 

} 

 

template MeshMaterialList { 

 <F6F23F42-7686-11cf-8F52-0040333594A3> 

 DWORD nMaterials; 

 DWORD nFaceIndexes; 

 array DWORD faceIndexes[nFaceIndexes]; 

 [Material] 

} 

 

template MeshNormals { 

 <F6F23F43-7686-11cf-8F52-0040333594A3> 

 DWORD nNormals; 

 array Vector normals[nNormals]; 

 DWORD nFaceNormals; 

 array MeshFace faceNormals[nFaceNormals]; 

} 

 

template Mesh { 

 <3D82AB44-62DA-11cf-AB39-0020AF71E433> 

 DWORD nVertices; 

 array Vector vertices[nVertices]; 

 DWORD nFaces; 

 array MeshFace faces[nFaces]; 

 [...] 

} 

 

template FrameTransformMatrix { 

 <F6F23F41-7686-11cf-8F52-0040333594A3> 

 Matrix4x4 frameMatrix; 

} 

 

template Frame { 

 <3D82AB46-62DA-11cf-AB39-0020AF71E433> 

 [...] 

} 

template FloatKeys { 

 <10DD46A9-775B-11cf-8F52-0040333594A3> 

 DWORD nValues; 

 array FLOAT values[nValues]; 

} 

 

template TimedFloatKeys { 

 <F406B180-7B3B-11cf-8F52-0040333594A3> 

 DWORD time; 

 FloatKeys tfkeys; 

} 
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template AnimationKey { 

 <10DD46A8-775B-11cf-8F52-0040333594A3> 

 DWORD keyType; 

 DWORD nKeys; 

 array TimedFloatKeys keys[nKeys]; 

} 

 

template AnimationOptions { 

 <E2BF56C0-840F-11cf-8F52-0040333594A3> 

 DWORD openclosed; 

 DWORD positionquality; 

} 

 

template Animation { 

 <3D82AB4F-62DA-11cf-AB39-0020AF71E433> 

 [...] 

} 

 

template AnimationSet { 

 <3D82AB50-62DA-11cf-AB39-0020AF71E433> 

 [Animation] 

} 

 

template XSkinMeshHeader { 

 <3cf169ce-ff7c-44ab-93c0-f78f62d172e2> 

 WORD nMaxSkinWeightsPerVertex; 

 WORD nMaxSkinWeightsPerFace; 

 WORD nBones; 

} 

 

template VertexDuplicationIndices { 

 <b8d65549-d7c9-4995-89cf-53a9a8b031e3> 

 DWORD nIndices; 

 DWORD nOriginalVertices; 

 array DWORD indices[nIndices]; 

} 

 

template SkinWeights { 

 <6f0d123b-bad2-4167-a0d0-80224f25fabb> 

 STRING transformNodeName; 

 DWORD nWeights; 

 array DWORD vertexIndices[nWeights]; 

 array FLOAT weights[nWeights]; 

 Matrix4x4 matrixOffset; 

} 

 

Frame polySurface12 { 

   FrameTransformMatrix { 

1.000000,0.000000,0.000000,0.000000, 

0.000000,-0.000000,-1.000000,0.000000, 

0.000000,1.000000,-0.000000,0.000000, 

0.000000,0.000000,0.000000,1.000000;; 

 } 

Mesh polySurface121 { 
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7.4 XFILEPART2.TXT 

 

//City Wall 

Material { 

 1.000000;1.000000;1.000000;1.000000;; 

25.000000; 

 1.000000;1.000000;1.000000;; 

 0.200000;0.200000;0.200000;; 

TextureFilename { 

"newwall.png"; 

} 

 } 

 //Bricks 

Material { 

 1.000000;1.000000;1.000000;1.000000;; 

25.000000; 

 1.000000;1.000000;1.000000;; 

 0.200000;0.200000;0.200000;; 

TextureFilename { 

"stone.dds"; 

} 

 } 

 //Columns 

Material { 

 1.000000;1.000000;1.000000;1.000000;; 

25.000000; 

 1.000000;1.000000;1.000000;; 

 0.200000;0.200000;0.200000;; 

TextureFilename { 

"stone.dds"; 

} 

 } 

 //Roof 

Material { 

 1.000000;1.000000;1.000000;1.000000;; 

25.000000; 

 1.000000;1.000000;1.000000;; 

 0.200000;0.200000;0.200000;; 

TextureFilename { 

"roof2.jpg"; 

} 

 } 

 //Window 

Material { 

 1.000000;1.000000;1.000000;0.500000;; 

20.000000; 

 1.000000;1.000000;1.000000;; 

 0.200000;0.200000;0.200000;; 

TextureFilename { 

"window1.bmp"; 

} 

 } 

  //Granite 

Material { 

 1.000000;1.000000;1.000000;1.000000;; 

2.000000; 

 1.000000;1.000000;1.000000;; 

 0.200000;0.200000;0.200000;; 

TextureFilename { 



148 

 

"stone.dds"; 

} 

 } 

  //Floor 

Material { 

 1.000000;1.000000;1.000000;1.000000;; 

2.000000; 

 1.000000;1.000000;1.000000;; 

 0.200000;0.200000;0.200000;; 

TextureFilename { 

"stone.dds"; 

} 

 } 

} 

 

 MeshNormals { 

 12; 

1.00000;0.000000;0.000000;, 

-1.000000;0.000000;0.000000;, 

0.000000;0.000000;1.000000;, 

0.000000;0.000000;-1.000000;, 

0.000000;1.000000;0.000000;, 

0.000000;-1.000000;0.000000;, 

0.000000;0.500000;0.500000;, 

0.000000;-0.500000;0.500000;, 

0.500000;0.500000;0.000000;, 

0.500000;-0.500000;0.000000;, 

-0.500000;0.500000;0.000000;, 

-0.500000;-0.500000;0.000000;; 
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