
 Coventry University

MASTER OF PHILOSOPHY

The procedural generation of Vitruvian architecture

Noghani, Jeremy

Award date:
2015

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of this thesis for personal non-commercial research or study
            • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Dec. 2022

https://pureportal.coventry.ac.uk/en/studentthesis/the-procedural-generation-of-vitruvian-architecture(7a1e1a86-c5c2-465c-9567-0905ea75d211).html




2 
 

  





4 
 

ACKNOWLEDGEMENTS 
 

I would like to thank my partner and my family for providing continued emotional 
support and assistance throughout my entire academic journey at Coventry 
University. 

I would also like to thank my work colleague, Dr Eike Anderson, for providing 
valuable input on the subject of historical accuracy, and for contributing his 
knowledge to the VAST 2012 journal paper. 

Finally, I would like to thank my supervisor, Dr Fotis Liarokapis, for providing 
academic contributions towards the project at every stage, for offering constant 
encouragement, and for demonstrating unwavering patience and understanding. 

  



5 
 

TABLE OF CONTENTS 
 

Abstract .................................................................................................................................... 3 

Acknowledgements ................................................................................................................ 4 

Table of Contents .................................................................................................................... 5 

List of Figures .......................................................................................................................... 7 

List of Grammar Definitions ................................................................................................. 8 

List of Tables ........................................................................................................................... 8 

Glossary ................................................................................................................................... 8 

1 Introduction ................................................................................................................... 10 

1.1 Introduction ........................................................................................................... 10 

1.2 Aims and Objectives ............................................................................................ 11 

1.3 Assumptions and Limitations ............................................................................. 12 

1.4 Breakdown of the Thesis ..................................................................................... 13 

2 Literature Review ......................................................................................................... 16 

2.1 Introduction ........................................................................................................... 16 

2.2 History of Procedural Generation ...................................................................... 17 

2.2.1 Fractals ........................................................................................................... 17 

2.2.2 L-Systems ....................................................................................................... 19 

2.2.3 Perlin Noise ................................................................................................... 20 

2.2.4 Tile-based Systems ....................................................................................... 21 

2.2.5 Voxels ............................................................................................................. 21 

2.3 Procedural Generation of Urban Environments .............................................. 23 

2.3.1 Photogrammetry ........................................................................................... 23 

2.3.2 L-Systems ....................................................................................................... 24 

2.3.3 Geometric Primitives.................................................................................... 25 

2.3.4 Shape and split grammars ........................................................................... 26 

2.4 Comparison of Techniques ................................................................................. 28 

2.4.1 Realism ........................................................................................................... 28 

2.4.2 Efficiency ........................................................................................................ 29 

2.4.3 Limitations ..................................................................................................... 29 



6 
 

2.4.4 Our Work ....................................................................................................... 32 

3 Implementation ............................................................................................................. 34 

3.1 Language and Graphics Library Decisions ....................................................... 34 

3.2 Generation Engine ................................................................................................ 35 

3.2.1 Siting Settlements ......................................................................................... 35 

3.2.2 Outer Walls .................................................................................................... 41 

3.2.3 Roads .............................................................................................................. 43 

3.2.4 Building Locations ........................................................................................ 44 

3.2.5 Building Generation ..................................................................................... 48 

3.3 Rendering Engine ................................................................................................. 67 

3.3.1 Creating the DirectX City File ..................................................................... 67 

3.3.2 Lights, Camera, Skybox ............................................................................... 71 

4 Results ............................................................................................................................ 72 

4.1 City Position .......................................................................................................... 72 

4.2 City Layout ............................................................................................................ 76 

4.3 Building Generation ............................................................................................. 79 

4.4 Application Efficiency and Limitations ............................................................. 89 

5 Conclusion and Evaluation ......................................................................................... 91 

5.1 Conclusions ........................................................................................................... 91 

5.1.1 City Position .................................................................................................. 91 

5.1.2 City Layout .................................................................................................... 92 

5.1.3 Building Generation ..................................................................................... 94 

5.1.4 Application Efficiency and Limitations ..................................................... 97 

5.2 Discussion .............................................................................................................. 97 

5.2.1 First Objective ............................................................................................... 97 

5.2.2 Second Objective ........................................................................................... 98 

5.2.3 Third and Fourth Objectives ....................................................................... 99 

5.3 Project Limitations .............................................................................................. 100 

5.4 Project Contributions ......................................................................................... 101 

5.5 Future Work ........................................................................................................ 102 

6 Bibliography ................................................................................................................ 103 



file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271428
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271429
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271430
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271431
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271432
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271433
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271434
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271435
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271436
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271437
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271438
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271439
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271440
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271441
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271442
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271443
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271444
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271445
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271446
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271447
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271448
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271449
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271450
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271451
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271452
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271453
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271454
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271455
file:///C:/Users/Jeremy/Dropbox/Public/ThesisFinal.docx%23_Toc395271456


file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272031
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272032
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272033
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272034
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272035
file:///C:/Users/Jeremy/Dropbox/Public/VitruvianArchitecture.docx%23_Toc395272036














15 
 

grammars described in section 3.2.5. Sections XFilePart1.txt7.3 and 7.4 are two key 
pieces of .X format code that are used in the creation of digital model files, as 
explained in section 3.3.1.  
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2 LITERATURE REVIEW 
 

2.1 INTRODUCTION 
 

As technology has evolved over the past century, there has been an increasing desire 
to push the boundaries of computer graphics, resulting in the production of 
increasingly complex digital models and renderings. The expansion of the special 
effects, film, videogame, and computer-aided design industries has contributed to a 
rising demand for a high level of realism in the field of computer graphics, especially 
with regard to three-dimensional (3D) digital models. 

Traditionally, these digital models would be created manually, often programmed or 
sculpted on a polygon-by-polygon basis. However, as the complexity of models has 
increased, the scale of production grew proportionally. Consequently, the creation of 
high-quality digital assets now requires the skills of a team of modelling artists, 
texture artists, and animators. This is both costly and time-intensive, and as such 
there is a high barrier of entry for new companies attempting to break into any 
market that requires digital model assets.  

Virtual buildings and cities are no exception to this problem. The creation of 
modelled cities has been an important and challenging aspect of creative industries. 
However, manual generation of large urban environments is time-consuming and 
tedious work, due to the repetitive yet varied nature of buildings and street layouts 
(Groenewegen, et al., 2009). As such, manually crafting a detailed replica of a city 
may require hundreds of man-hours of work. 

One solution to this artistic and economic barrier is the use of procedural modelling 
techniques. In the past, procedural generation has been used for the purpose of 
automating the production of textures (Rhoades, et al., 1992), for the creation of trees 
and other self-similar structures (Oppenheimer, 1986), and for the creation of 
heightmaps that can be rendered as landscapes. More recently, combinations of 
procedural modelling techniques have been used for the purposes of creating 
populated, dynamic digital worlds. For these reasons, procedural techniques are 
often employed that make use of programmed rules to design aspects of cities 
automatically. The purpose of a procedurally generated environment is vital to how 
it is designed, and as a result the scope, detail, and interactivity of cities vary 
between projects. 
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2.2.3 PERLIN NOISE 
 

In 1982, Ken Perlin developed an algorithm capable of efficiently rendering semi-
random textures with a seemingly natural appearance. The algorithm, which has 
since been named Perlin noise, was designed for the purpose of creating digital 
assets for the film Tron, but has since found use in a variety of graphics and 
modelling applications.  

The algorithm works by generating a set of data points with randomly-assigned 
values based upon a seeded number. New data points are then created between the 
existing ones, and assigned interpolated values in order to create a smooth gradient. 
When these values are plotted upon a two-dimensional plane, a blotched noise effect 
is created. By repeating the algorithm at different levels of detail and merging the 
results, a fractal-like pattern emerges. By utilising different kinds of interpolation, 
and by placing weighted emphasis on different levels of detail, a range of effects can 
be created (Perlin, 1985). 

Perlin noise has found practical applications in the field of procedural generation for 
the purpose of creating textures for clouds, landscapes, rocks and minerals, and 
other self-similar natural features. It is also often used in order to generate 
heightmaps for three-dimensional landscapes (Schpok, et al., 2003), and for the 
creation of disturbed water surfaces. 

Comparable techniques have been employed for the generation of similar natural 
features. For example, midpoint displacement is an algorithm which alters the height 
of a point on a line in a hierarchal fashion, creating mountain-like silhouettes 
(Fournier, et al., 1982). When this is applied in two dimensions, such as through a 
diamond-square algorithm (Miller, 1986), an image or model is produced that is 
comparable to real-life terrain. 
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Recently, voxels have been used for the purpose of rendering natural geography. The 
primary advantage of voxels over traditional 2D height maps is that voxels are 
capable of representing caves, overhanging structures, and other natural features 
that would otherwise be difficult to represent (Cui, et al., 2011).  

In conjunction with image data, voxels have been used for the purpose of creating 
photorealistic reconstructions of scenery (Seitz & Dyer, 1997). By utilizing silhouette 
and stereoscopic data from multiple cameras, voxels can also be used for the purpose 
of recording and displaying human movements, as a form of motion-capture 
(Cheung, et al., 2000). 

Voxels are actively used in the field of medicine for the purpose of quickly rendering 
three-dimensional sets of data. This includes the displaying of MRI data (Bullmore, 
et al., 1999) 

Recently, voxels have been of increased interest in the field of commercial 
videogames, thanks in part to the success of the game Minecraft. The game made use 
of voxels in conjunction with procedural techniques to create large, navigable 
landscapes, often featuring natural geographical features and small urban structures. 
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With a building seed allocated, the geometry for each lot would then be generated. 
The application determined the height, width, and style of the building from the 
assigned seed. A floor plan would then be created by combining geometric 
primitives. By extruding this combined shape upwards, a three dimensional building 
section would be formed. A full building would then be generated by combining 
multiple building sections, with the higher levels being composed of fewer 
primitives than the lower levels. 

To ensure that the application could be run in real-time, a specialised method of 
geometry culling was implemented. The technique, referred to as View Frustum 
Filling, functioned by only generating and rendering the buildings within the current 
cone of view. Memory was only allocated as needed, and consequently the 
application could efficiently and selectively render only what was needed of the 
large urban area. Additionally, a caching system was implemented to allow 
previously-generated geometry to be reallocated quickly, reducing the rendering 
times significantly under particular circumstances. 

 

2.3.4 SHAPE AND SPLIT GRAMMARS 
 

Alexander et al. (Alexander, et al., 1977) proposed a set of patterns that accurately 
described many types of structures, including buildings and road layouts. However, 
due to the non-formalised nature of these patterns, the language has proven difficult 
to transcribe directly into virtual environments.  

George Stiny and James Gips devised a similar concept that they labelled as shape 
grammars (Stiny, 1975) (Stiny, 1980). That is, a set of formal production rules that 
specify how geometric shapes are created and transformed. The grammar is 
comparable to L-systems, in that the system iteratively replaces elements in order to 
form more complex and intricate patterns. However, whereas L-systems are 
expressed in a language of symbols or letters, shape grammars involve the direct 
manipulation of geometric primitives. 

Shape grammars were successfully used in the analysis of modern and historical 
architecture (Flemming, 1987) (Downing & Flemming, 1981), and were later used to 
help define basic rules of how buildings could be generated in computer graphics.  

Later, Wonka et al. (Wonka, et al., 2003) devised a variation on shape grammars for 
use in the construction of building facades, which they named split grammars. They 
proposed that, rather than assigning grammars on a per-object basis, a database of 
grammar rules ought to be used. This would result in an increase in the variety of 
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Generation technique Advantages Disadvantages 
Photogrammetry When effectively setup and 

applied, photogrammetry is 
perhaps one of the most 
accurate methods of mapping 
real-life architecture into a 
digital format. 

Photogrammetric techniques 
alone are often not enough for 
generating cities when data is 
missing; other procedural 
techniques have to be 
employed. If no physical data 
is available at all, then the 
potential for photogrammetry 
is severely limited. 
 

L-Systems L-Systems are effective at 
producing dynamic, organic 
road structures and building 
layouts. The CityEngine 
application is a versatile tool 
with strong customisation 
capabilities. 
 

Since each building type 
requires its own set of 
production rules, a varied 
CityEngine city can be time-
consuming to create. L-
Systems alone are of 
questionable use for the 
purpose of historical 
recreation. 
 

Geometric Primitives Buildings produced through 
the use of combined 
geometric primitives are 
visually interesting and 
varied. The Undiscovered 
City application is notably 
efficient, and is capable of 
producing cities of a 
particularly large size. 
 

The buildings and roads that 
can be produced through this 
method are of questionable 
realism. The customisation 
options are restricted, and 
consequently the application 
has limited versatility. 

Shape and split 
grammars 

Modern split grammar 
techniques are capable of 
producing architecture that is 
realistic and varied. The 
techniques have been 
effectively used for the 
purpose of digitally recreating 
historic cities. 

The realism and variety of 
buildings produced with 
shape and split grammars are 
dependent upon the 
complexity of the underlying 
production rules. Split 
grammar applications like 
Instant Architecture require a 
high level of expertise to be 
effectively used.  
 

 

Table 1: A simplified comparison of the relative advantages and disadvantages of various city generation 
techniques. 
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We believe this to be an issue of specialisation. CityEngine has been designed to 
replicate sprawling, semi-stochastic, modern cityscapes, and the focus of Instant 
Architecture lies with producing variations from pre-established facades and 
architectural shapes. Neither was designed with the digital transcription of 
descriptive rules in mind. 

Therefore, a relatively unexplored research gap exists: there is a lack of a framework 
that facilitates the simple adaption of historic writings into viewable, navigable 
digital models. Such a framework would be of particular use in the field of historic 
recreation for the purpose of creating digital replicas of historic structures that do not 
exist in any physical format. A Vitruvian city would be one such example of this; 
although Vitruvian-inspired cities exist in the real world, there are none that 
unwaveringly conform to every rule laid out by Vitruvius himself. 

We do not propose to fill this research gap with an all-encompassing application, but 
we do aim to describe the implementation process for such a framework, to 
document and analyse the results produced by the project, and to note any issues 
encountered in the development process. 
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subjective, but by selecting key factors that are used in the decision-making process 
of siting an urban area in real life, we are able to make a fairly accurate assessment 
within the program. 

There are a vast number of factors that are taken into account when choosing a site 
for an urban area, both in historical and modern contexts. However, it would be 
inefficient to incorporate factors that lie outside the scope of the generated 
heightmap. For example, Vitruvius recommended that a city should not be built 
downwind of a stagnant marsh (Vitruvius I, 4, 6), but no data on marshlands or wind 
direction exists in the heightmap. We did not consider the addition of such factors to 
be a practical use of time within the parameters of the project, and so these minor 
elements had to be excluded so that the more important factors could be 
implemented. 

A key factor, both in modern and historical contexts, is the height of the land. 
Building at the lowest point of a valley is commonly seen as poor practise by urban 
planners, due to the increased vulnerability to natural disasters. Additionally, 
historical towns are frequently sited upon hills, as the height provides a natural 
advantage over potential invaders. The height of the current point being calculated 
(H) must therefore be incorporated into the formula. 

As an extension of this, the gradient of the slope the point rests on (G) must be 
considered. If a point is particularly high, but rests on a steep slope (i.e. the point is 
on the tip of a mountain), then it is safe to assume that the land would be somewhat 
difficult to build on. For the sake of calculations, the gradient ought to be calculated 
as a scalar field, where 0 would denote a flat surface, and 1 would denote a 45 degree 
slope. 

The distance to the nearest body of water (either a river, lake, or sea) is also a key 
factor (Vitruvius I, 7). In historical cities, having immediate access to fresh water 
from rivers would often be seen as a necessity, and having access to the coast would 
provide potential for trade. Access to fresh water is seen as less of a necessity in 
modern cities due to technological advances in water filtering and transport, but 
access to the coast is still seen as beneficial when possible, again due to the increased 
potential for foreign trade. Therefore, the distance to the nearest body of water (Wd) 
must also be incorporated into the formula. 

Another vital factor is the distance to the nearest road. In both historical and modern 
contexts, it is unusual for a city to be created in an isolated spot, with no form of road 
access to nearby urban areas. It is far more likely for a new settlement to be 
positioned upon an existing road, as this provides easier access for construction and 
trade. Therefore, the distance to the nearest road (Rd) must also be considered. If no 
road exists on the map, then this value must default at 0. 
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