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throughout reperfusion in the presence and absence of the PI3K 
inhibitor Wortmannin (5 nM). 
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Figure 5.2. Infarct size to Risk ratio (%) in non-treated control and 2-
Cl-IBMECA treated ischaemic reperfused hearts. Isolated perfused rat 
hearts where subjected to 35 minutes of ischaemia and 120 minutes of 
reperfusion where the A3 adenosine receptor 2-Cl-IB-MECA (100 nM) 
was administered throughout reperfusion in the presence and absence of 
the PI3K inhibitor Wortmannin (100 nM).  
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Figure 5.3. Infarct size to Risk ratio (%) in non-treated control and 2-
Cl-IBMECA treated ischaemic reperfused hearts. Isolated perfused rat 
hearts where subjected to 35 minutes of ischaemia and 120 minutes of 
reperfusion where the A3 adenosine receptor 2-Cl-IB-MECA (100 nM) 
was administered throughout reperfusion in the presence and absence of 
the mTOR inhibitor Rapamycin (2 nM).  
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Figure 5.4.a. Assessment of Apoptosis in adult rat cardiomyocytes 
subjected to 24 hours reoxygenation (Normoxia) or 6 hours hypoxia and 
18 hours of reoxygenation (Hyp/Reox). Assessment of PI3K/Akt cell 
survival pathway in 2-CL-IB-MECa mediated cardioprotection. The 
A3AR agonist 2-CL-IB-MECA (1 nM) was administered at 
reoxygenation in the presence and absence of the PI3K inhibitor 
Wortmannin (5 nM).  
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Figure 5.4.b. Assessment of necrosis in adult rat cardiomyocytes 
subjected to 24 hours reoxygenation (Normoxia) or 6 hours hypoxia and 
18 hours of reoxygenation (Hyp/Reox). Assessment of PI3K/Akt cell 
survival pathway in 2-CL-IB-MECA mediated cardioprotection. The 
A3AR agonist 2-CL-IB-MECA (1 nM) was administered at 
reoxygenation in the presence and absence of the PI3K inhibitor 
Wortmannin (5 nM).  
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Figure 5.5.a. Assessment of apoptosis in isolated adult rat 
cardiomyocytes subjected to 24 hours oxygenation (Normoxia) or 6 
hours hypoxia and 18 hours of reoxygenation (Hyp/Reox). Assessment 
of PI3k/Akt cell survival pathway in 2-CL-IB-MECA mediated 
cardioprotection. The A3AR agonist 2-CL-IB-MECA (100 nM) was 
administered at reoxygenation in the presence and absence of the PI3K 
inhibitor Wortmannin (100 nM).  
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Figure 5.5.b. Assessment of necrosis in isolated adult rat 
cardiomyocytes subjected to 24 hours oxygenation (Normoxia) or 6 
hours hypoxia and 18 hours of reoxygenation (Hyp/Reox). Assessment 
of PI3k-Akt cell survival pathway in 2-CL-IB-MECA mediated 
cardioprotection. The A3AR agonist 2-CL-IB-MECA (100 nM) was 
administered at reoxygenation in the presence and absence of the PI3K 
inhibitor Wortmannin (100 nM).  
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Figure 5.6.a. Assessment of apoptosis in isolated adult rat 
cardiomyocytes subjected to 24 hours oxygenation or 6 hours hypoxia 
and 18 hours of reoxygenation. Assessment of PI3K – AKT - p70S6 
cell survival pathway in 2-CL-IB-MECA mediated cardioprotection. 
The A3AR agonist 2-CL-IB-MECA (100 nM) was administered at 
reoxygenation in the presence and absence of the mTOR inhibitor 
Rapamycin (2 nM).  
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Figure 5.6.b. Assessment of necrosis in isolated adult rat 
cardiomyocytes subjected to 24 hours oxygenation or 6 hours hypoxia 
and 18 hours of reoxygenation. Assessment of PI3K – AKT - p70S6 
cell survival pathway in 2-CL-IB-MECA mediated cardioprotection. 
The A3AR agonist 2-CL-IB-MECA (100 nM) was administered at 
reoxygenation in the presence and absence of the mTOR inhibitor 
Rapamycin (2 nM).  

148 

 
 
 

 



21 

Figure 5.7. Assessment of Akt phosphorylation in isolated hearts to 
subjected 60 minutes perfusion (basal), 35 minutes of ischaemia 
followed by 5, 10 or 20 minutes of reperfusion in the presence and 
absence (Con) of the A3 Agonist 2-CL-IB-MECA (1 nM) (MECA).  
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Figure 5.8.a. Assessment of AKT (ser 473) phosphorylation in isolated 
hearts to subjected to 60 minutes perfusion (Basal) or 35 minutes 
ischaemia followed by 5, 10 or 20 minutes of reperfusion in non-treated 
control and 2-CL-IB-MECA treated hearts. The A3 agonist 2-CL-IB-
MECA (100 nM) (MECA) was administered at reperfusion in presence 
and absence of the PI3K inhibitor Wortmannin (100 nM) (Wort).  
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Figure 5.8.b. Comparison of AKT (ser 473) phosphorylation in isolated 
hearts subjected to 60 minutes perfusion (Basal) or 35 minutes 
ischaemia followed by 10 minutes of reperfusion in non-treated control 
and 2-CL-IB-MECA treated hearts. The A3 agonist 2-CL-IB-MECA 
(100 nM) (MECA) was administered at reperfusion in presence and 
absence of the PI3K inhibitor Wortmannin (100 nM) (Wort).  
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Figure 5.9.a. Assessment of p70S6 kinase phosphorylation in isolated 
hearts to subjected 60 minutes of perfusion (basal) or 35 minutes of 
ischaemia followed by 5, 10 or 20 minutes of reperfusion in non-treated 
control (Con) and 2-CL-IB-MECA hearts. The A3 agonist 2-CL-IB-
MECA (100 nM) (MECA) was administered in the presence and 
absence of the p70S6 (Thr 389) kinase mTOR inhibitor Rapamycin (2 nM) 
(Rap).  
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Figure 5.9.b. Comparison of p70S6 kinase phosphorylation in isolated 
hearts to subjected 60 minutes of perfusion (basal) or 35 minutes of 
ischaemia followed by 5, 10 or 20 minutes of reperfusion in non-treated  
control (Con) and 2-CL-IB-MECA hearts. The A3 agonist 2-CL-IB-
MECA (100 nM) (MECA) was administered in the presence and 
absence of the p70S6 (Thr 389) kinase/mTOR inhibitor Rapamycin (2 nM) 
(Rap).  
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Figure 5.10. Assessment of BAD (ser136) phosphorylation in isolated 
hearts to subjected 60 minutes of perfusion (basal) or 35 minutes of 
ischaemia followed by 5, 10 or 20 of reperfusion in non-treated control  
(Con) and A3 agonist 2-CL-IB-MECA (100nM) (MECA) treated 
hearts. 2-CL-IB-MECA was administered at the onset of reperfusion. 
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Figure 5.11. Cleaved-caspase 3 activity in isolated adult rat cardiac 
myocytes subjected to 24 hours oxygenation (Normoxia) or  6 hours of  
hypoxia followed by 18 hours of reoxygenation. The A3 agonist 2-CL-
IB-MECA (1 nM) was administered throughout reoxygenation in the 
presence and absence of the PI3 kinase inhibitor Wortmannin (100 
nM). 
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Figure 5.12. Cleaved-caspase 3 activity in isolated adult rat cardiac 
myocytes subjected to 24 hours oxygenation (Normoxia) or 6 hours of 
hypoxia followed by 18 hours of reoxygenation. The A3 agonist 2-CL-
IB-MECA (10 nM) was administered at the onset of reoxygenation in 
the presence and absence of the PI3 kinase inhibitor Wortmannin (5 
nM).  
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Figure 5.13. Cleaved-caspase 3 activity in isolated adult rat cardiac 
myocytes subjected to 24 hours of oxygenation or 6 hours of hypoxia 
followed by 18 hours of reoxygenation. The A3 agonist 2-CL-IB-
MECA (100 nM) was administered at the onset of reoxygenation in the 
presence and absence of the PI3 kinase inhibitor Wortmannin (100 
nM).  
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Figure 5.14. Representative graph from the FACS flow cytometer FL-1 
channel showing mean fluorescence of cleaved-caspase 3 in isolated 
adult rat cardiac myocytes subjected 24 hours oxygenation (Normoxia), 
6 hours of hypoxia followed by 18 hours of reoxygenation (Hyp/Reox). 
The A3 agonist 2-CL-IB-MECA (1 nM) (Meca) was administered at the 
onset of reoxygenation in the presence of the PI3 kinase inhibitor 
Wortmannin (5 nM) (Wort). The graph shows the changes in the 
expression of cleaved-caspase 3. Hypoxia/reoxygenation resulted in a 
significant increase in the expression of cleaved-caspase 3 that was 
reversed by the administration of 2-CL-IB-MECA at the onset of 
reoxygenation. 
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Figure 6.1. Infarct size to Risk ratio (%) in non-treated control and 2-
Cl-IBMECA (1 nM) treated ischaemic reperfused hearts. Isolated 
perfused rat hearts where subjected to 35 minutes of ischaemia and 120 
minutes of reperfusion where the A3 adenosine receptor 2-Cl-IB-
MECA (1 nM) was administered at 15 minutes after reperfusion in the 
presence and absence of the PI3K inhibitor Wortmannin (100 nM).  
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Figure 6.2. Infarct size to Risk ratio (%) in non-treated control and 2-
Cl-IBMECA (1 nM) treated ischaemic reperfused hearts. Isolated 
perfused rat hearts where subjected to 35 minutes of ischaemia and 120 
minutes of reperfusion where the A3 adenosine receptor 2-Cl-IB-
MECA (1 nM) was administered at 30 minutes after reperfusion in the 
presence and absence of the PI3K inhibitor Wortmannin (100 nM). 
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Figure 6.3.a. Assessment of apoptosis in isolated adult rat 
cardiomyocytes subjected to 24 hours oxygenation (Normoxia) or 6 
hours hypoxia and 18 hours of reoxygenation. Assessment of the PI3k / 
Akt cell survival pathway in 2-CLIB-MECA mediated 
cardioprotection. The A3AR agonist 2-CL-IB-MECA (10 nM) added 15 
minutes post-reperfusion in the presence and absence of the PI3K 
inhibitor Wortmannin (100 nM). Results are shown as Mean ± SEM 
and are expressed as a percentage of the total cells counted.  
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Figure 6.3.b. Assessment of necrosis in isolated adult rat 
cardiomyocytes subjected to 24 hours oxygenation (Normoxia) or 6 
hours hypoxia and 18 hours of reoxygenation. Assessment of the PI3k / 
Akt cell survival pathway in 2-CLIB-MECA mediated 
cardioprotection. The A3AR agonist 2-CL-IB-MECA (10 nM) added 15 
minutes post-reperfusion in the presence and absence of the PI3K 
inhibitor Wortmannin (100 nM).  
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Figure 6.4.a. Assessment of apoptosis in isolated adult rat 
cardiomyocytes subjected to 24 hours oxygenation (Normoxia) or 6 
hours hypoxia and 18 hours of reoxygenation. Assessment of the PI3K 
/ Akt cell survival pathway in 2-CL-IB-MECA mediated 
cardioprotection. The A3AR agonist 2-CL-IB-MECA (10 nM) was 
added at 30 minutes post-reperfusion in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM).  
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Figure 6.4.b. Assessment of necrosis in isolated adult rat 
cardiomyocytes subjected to 24 hours oxygenation (Normoxia) or 6 
hours hypoxia and 18 hours of reoxygenation. Assessment of the PI3K 
/ Akt cell survival pathway in 2-CL-IB-MECA mediated 
cardioprotection. The A3AR agonist 2-CL-IB-MECA (10 nM) was 
added at 30 minutes post-reperfusion in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM).  
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Figure 6.5.a. Assessment of AKT (ser473) phosphorylation in isolated 
hearts subjected to 60 minutes perfusion (basal) or  35 minutes of 
ischaemia followed by 20, 25, 35 minutes of reperfusion in the 
presence and absence of the A3 Agonist 2-CL-IB-MECA (1 nM) 
(MECA). The A3 Agonist 2-CL-IB-MECA (1 nM) was administered 15 
minutes post-reperfusion in the presence and absence of the PI3K 
inhibitor Wortmannin (100 nM) (Wort).  
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Figure 6.5.b. Comparison of AKT (ser473) phosphorylation in isolated 
hearts subjected to 35  ischaemia followed by 25 minutes of reperfusion 
in the presence and absence of the A3 Agonist 2-CL-IB-MECA (1 nM) 
(MECA). The A3 Agonist 2-CL-IB-MECA (1 nM) was administered 15 
minutes post-reperfusion in the presence and absence of the PI3K 
inhibitor Wortmannin (100 nM) (Wort).  
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Figure 6.6.a. Assessment of Akt phosphorylation in isolated hearts 
subjected 60 minutes perfusion (basal) or 35 minutes of ischaemia 
followed by 35, 40 or 50 minutes of reperfusion in the presence and 
absence of the A3 Agonist 2-CL-IB-MECA (1 nM) (MECA). The PI3K 
inhibitor Wortmannin (100 nM) (Wort) was administered at reperfusion 
in the presence and absence of the A3AR agonist 2-CL-IB-MECA (1 
nM).  
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Figure 6.6.b. Comparison  of Akt phosphorylation in isolated hearts 
subjected 60 minutes perfusion (basal) or 35 minutes of ischaemia 
followed by 40 minutes of reperfusion in the presence and absence of 
the A3 Agonist 2-CL-IB-MECA (1 nM) (MECA). The PI3K inhibitor 
Wortmannin (100 nM) (Wort) was administered at reperfusion in the 
presence and absence of the A3AR agonist 2-CL-IB-MECA (1 nM).  
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Figure 6.7. Cleaved-caspase 3 activity in isolated adult rat cardiac 
myocytes subjected to 24 hours oxygenation (Normoxia) or 6 hours of 
hypoxia followed by 18 hours of reoxygenation (Hyp/Reox). The A3 
agonist 2-CL-IB-MECA (10 nM) was administered 15 minutes after the 
onset of reoxygenation in the presence and absence of the PI3K 
inhibitor Wortmannin.  
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Figure 6.8. Cleaved-caspase 3 activity in isolated adult rat cardiac 
myocytes subjected to 6 hours of hypoxia followed by 18 hours of 
reoxygenation The A3 agonist 2-CL-IB-MECA (10 nM) was 
administered 30 minutes after the onset of reoxygenation in the 
presence and absence of the PI3K inhibitor Wortmannin administered 
at the onset of reperfusion.  
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List of Abbreviations 
2-CL-IB-MECA A3 adenosine receptor agonist 
8(SPT)  A1 adenosine receptor antagonist 
A1AR   A1 adenosine receptor subtype 
A2aAR  A2a adenosine receptor subtype 
A2bAR  A2b adenosine receptor subtype 
A3AR   A3 adenosine receptor subtype 
ADP   Adenosine Di Phosphate 
AIF   Apoptosis Inducing Factor 
AKT   Cellular AKT 
AMP    Adenosine Monophospahte 
APAF1  Apoptosis Protease Activating Factor 1  
ARC   Apoptosis Repressor caspase Recruitment Domain 
ATP    Adenosine Triphosphate 
BAD   BCL 2 family pro-apoptotic protein 
BAK   BCL 2 family pro-apoptotic protein 
BAX   BCL 2 family pro-apoptotic protein 
BCL2   B-cell leukemia/lymphoma 2 
BCLxl  Bcl-2-like 1 protein 
BID    BCL 2 family pro-apoptotic protein 
BIM   BCL 2 family pro-apoptotic protein 
BSA    Bovine Serum Albumin 
CABG  Coronary Artery Bypass Grafting 
CASPASE   Cysteine Aspartate Albumin 
CCPA  A1 Adenosine Receptor Agonist 
CF   Coronary Flow 
DAG   Diacetylglycerol 
DED   Death Effector Domain 
DNA   Deoxyribosenucleic Acid 
DPCPX  A1 adenosine receptor antagonist 
ERK   Extracellular Regulated Kinase 
eNOS   Endothelial Nitric Oxide Synthase 
FACS   Fluorescent Assisted Cell Sorting 
FADD  Fas Associated Death Domain 
FASL   FAS Ligand 
FLIP   FADD Like Inhibitory Proteins 
G-Protein  G-protein regulatory protein 
GFR   Growth Factor Receptor 
GRB   Growth Factor Receptor Binding Protein 
H2O2   Hydrogen Peroxide 
HRK   BCL 2 family pro-apoptotic protein 
IAP   Inhibitor of Apoptosis protein 
I-CAM  Cell Adhesion Molecule 
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IAP 1   Inhibitor of Apoptosis 1 
IAP 2   Inhibitor of Apoptosis 2 
KATP   ATP sensitive potassium channel 
KO   Knock Out 
LVDP  Left Ventricular Developed Pressure 
MAPK  Mitogen activated protein kinase 
MECA  A3 Agonist 
MEK1/2  Mitogen Extracellular Kinase 1/2 
mPTP   Mitochondrial permeability transition pore 
MRS 1191  A3 adenosine receptor antagonist 
MRS 1523  A3 adenosine receptor antagonist 
mTOR  Mammalian Target of Rapamycin 
NECA  Non-Specific Adenosine Receptor Agonist 
NF-κb  Nuclear factor κB 
NIX   BCL 2 family pro-apoptotic protein 
NO   Nitric Oxide 
NOXA  Proapoptotic member of Bcl 2 family 
P70S6K  70S ribosomal protein 
PAF   Platelet Activating Factor 
PDK1   phosphoinositide-dependant kinase 1 
PKA   Protein Kinase A 
PKC   Protein Kinase C 
PARP   Poly (ADP ribose) polymerase 
PD98059  MEK 1 inhibitor 
PI3K   Phosphatidylinositol 3 kinase 
PLC   Phospholipase C 
PLD   Phospholipase D 
PTEN   Phosphatase and tensin homologue 
PUMA  p53 upregulated modulator or apoptosis 
RAF   MAP kinase kinase kinase 
RISK   Reperfusion injury Salvage kinase pathway 
ROS   Reactive Oxygen Species 
SEM   Standard Error of the MEAN 
SER   Serine 
SMAC/DIABLO Second mitochondrial activator of caspases 
SOS   Ras Guanine Exchange Factor 
TYR   Tyrosine 
UO126  MEK1/2 Inhibitor 
UV   Ultraviolet 
VDAC  Voltage dependant anion channel 
WORT  Wortmannin 
WT   Wild type 
XIAP   Linked inhibitor of apoptosis protein 



27 

ABSTRACT 
Activation of A3 adenosine receptors has been shown to protect the myocardium from 

ischaemia reperfusion injury in a number of animal models. The PI3K - AKT and 

MEK1/2 - ERK1/2 cell survival pathways have been shown to play a critical role in 

regulating myocardial ischaemia reperfusion injury. In this study we investigated 

whether the A3 adenosine receptor agonist 2-CL-IB-MECA protects the myocardium 

from ischaemia reperfusion injury, when administered at reperfusion or post 

reperfusion and whether the protection involved the PI3K – AKT or MEK 1/2 – 

ERK1/2 cell survival pathways. In the Langendorff model of ischaemia reperfusion 

injury isolated perfused rat hearts underwent 35 minutes of ischaemia and 120 

minutes of reperfusion.   Administration of 2-CL-IB-MECA (1nM) at reperfusion 

significantly decreased infarct size to risk ratio compared to non-treated  ischeamic 

reperfused control hearts. This protection was abolished in the presence of the PI3K 

inhibitor Wortmannin or MEK1/2 inhibitor UO126. Western blot analysis determined 

that administration of 2-CL-IB-MECA (1 nM) upregulated ERK1/2 phosphorylation. 

In the adult rat cardiac myocyte model of hypoxia/reoxygenation cells underwent 6 

hours of hypoxia and 18 hours of reoxygenation. Administration of 2-CL-IB-MECA 

(1 nM) at the onset of reoxygenation significantly decreased cellular apoptosis and 

necrosis. Administration of 2-CL-IB-MECA (1nM) in the presence of the 

Wortmannin or UO126 significantly reversed this anti-apoptotic effect and anti-

necrotic effect. 

     

Our data further showed that 2-CL-IB-MECA protects myocytes subjected to 

hypoxia/reoxygenation injury via decreasing cleaved-caspase 3 activity that was 

abolished in presence of the PI3K inhibitor but not in the presence of the MEK1/2 

inhibitor UO126.  

 

Administration of 2-CL-IB-MECA (100nM) at the onset of reperfusion also 

significantly decreased infarct size to risk ratio in the ischaemic reperfused rat heart 

compared to controls that was reversed in the presence of Wortmannin or Rapamycin.  

This protection was associated with an increase in PI3K-AKT / p70S6K / BAD 

phosphorylation. 2-CL-IB-MECA (100nM) administered at reoxygenation also 

significantly protected adult rat cardiac myocytes from hypoxia/reoxygenation injury 
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in an anti-apoptotic and anti-necrotic manner. This anti-apoptotic/necrotic effect of 2-

CL-IB-MECA was abolished in the presence Wortmannin. Furthermore, that this 

protection afforded by 2-CL-IB-MECA (100nM) when administered at reoxygenation 

was associated with a decrease in cleaved caspase 3 activity that was abolished in the 

presence of the Wortmannin  

 

Interestingly, postponing the administration of 2-CL-IB-MECA to 15 or 30 minutes 

after the onset of reperfusion significantly protected the isolated perfused rat heart 

from ischaemia reperfusion injury in a Wortmannin and UO126 sensitive manner. 

This protection was associated with an increase in AKT and ERK1/2 phosphorylation. 

 

Administration of the A3 agonist 2-CL-IB-MECA 15 or 30 minutes after the onset of 

reoxygenation significantly protected isolated adult rat cardiac myocytes subjected to 

6 hours of hypoxia and 18 hours of reoxygenation from injury in an anti-

apoptotic/necrotic manner. This anti-apoptotic was abolished upon PI3K inhibition 

with Wortmannin or MEK1/2 inhibition with UO126. The anti-necrotic effect of 2-

CL-IB-MECA when administered 15 or 30 minutes post-reperfusion was not 

abolished in the presence of the inhibitors. Delaying the administration of 2-CL-IB-

MECA to 15 or 30 minutes after reoxygenation was associated with a decrease in 

cleaved-caspase 3 activity that was abolished in the presence of Wortmannin but not 

in the presence of the MEK 1/2inhibitor UO126.  

 

Collectively, we have demonstrated for the first time that administration of 2-CL-IB-

MECA at the onset of reperfusion protects the ischaemic reperfused rat myocardium 

from lethal ischaemia reperfusion injury in a PI3K and MEK1/2 sensitive manner. 

Delaying the administration of 2-CL-IB-MECA to 15 or 30 minutes after the onset of 

reperfusion of reoxygenation also significantly protects the  isolated perfused rat heart 

from ischaemia reperfusion injury and the adult rat cardiac myocyte from 

hypoxia/reoxygenation injury in an anti apoptotic / necrotic manner. Furthermore, that 

this protection is associated with recruitment of the PI3K-AKT and MEK1/2 – 

ERK1/2 cell survival pathways. 
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Chapter 1: Literature Review 

 
1.0. Ischaemic Heart disease 
 

Coronary heart disease is set to be the leading cause for increased morbidity and 

mortality within the developing world by 2020 (Lopez and Murray. 1997; Goldberg et 

al., 2004; Kloner and Rezkalla. 2004). Currently, significant primary interventions 

have evolved against atherosclerosis, hypertension, and hyperlipidaemia all working 

to limit the onset of coronary artery occlusion and hence injury to the myocardium. 

Although these interventions are necessary to limit the onset of myocardial infarction 

there is still an imperative need to develop robust secondary interventions that may be 

applied after the onset of ischaemia to decrease myocardial injury (Yellon et al., 

2000). 

 

From a clinical perspective patients often present to primary care services after the 

onset of ischaemia (heart attack) and rarely before an ischaemic insult. Research has 

historically focussed on preconditioning the myocardium with pharmacological agents 

that are cardioprotective when given before the onset of ischaemia but in a clinical 

setting these would be no use because it is seldomly possible to predict when someone 

is going to have a heart attack. Therefore, pharmacological agents administered before 

an ischaemic episode would rarely be used in a clinical setting. Pharmacological 

agents being administered during ischaemia and reperfusion would be of more clinical 

significance whereby agents can be administered to suspected heart attack patients 

presenting with angina symptoms and / or showing ST elevation on a 

electrocardiogram although not all heart attack patients show ST elevation. 

Furthermore, cardioprotective agents could also be used to limit the manifestations of 
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ischaemia reperfusion injury when administered as an adjunctive therapy during 

coronary artery bypass grafting or during thrombolytic therapy (Maddock et al., 

2002). 

 

1.1.1 Atherosclerosis 

Atherosclerosis is a progressive inflammatory disease that affects arterial blood 

vessels that can manifest into coronary artery occlusion resulting in myocardial 

infarction.  Atherosclerosis occurs as a result of the development of atherosclerotic 

plaques that protrude into the lumen of the coronary arteries resulting in the 

obstruction of blood flow (Ross. 1999). Plaque formation is a gradual process that can 

occur primarily due to a range of insults on the vascular endothelium as well the 

accumulation white blood cells and lipoproteins. Vascular insults are implicated due 

to smoking, obesity, hyperlipidaemia, hypertension, diabetes and genetic 

predisposition (Altman. 2003).  

 

These factors can lead to endothelial damage and dysfunction. Over time the plaque 

recruits platelets, macrophages, smooth muscle cells, lipids like cholesterol leading to 

hardening (also known as furring) and narrowing of the arteries leading to the 

insufficient supply of blood to the myocardium a process referred to as ischaemia. 

Therefore, understanding the mechanisms involved during a heart attack is imperative 

and further developing pharmacological therapies to ameliorate myocardial injury 

remains to be achieved.  
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1.1.2. Ischaemia 

The inability of the myocardium to meet oxygen and nutrient supply with respect to 

demand is referred to as myocardial ischaemia (Asano et al., 2003). At rest residual 

flow may be sufficient to the demand but upon exertion the demand for nutrient rich 

blood may not be met. As the myocardium is unable to meet oxygen demand the 

ischaemic tissue reverts from aerobic to anaerobic respiration as a means of 

generating energy. This process involves the conversion of glucose to lactic acid to 

yield energy leading to lactic acid accumulation in the ischaemic zone (Solani and 

Harris. 2005). Sustained ischaemia can have deleterious consequences leading to 

irreversible damage to myocytes.   

 

Prolonged ischaemia has profound effects on the intracellular milieu including: 

morphological changes - cell swelling (Lichtig and Brooks. 1974), disruption of 

oxidative phosphorylation, adenosine tri-phosphate (ATP) depletion, collapse of the 

ATP dependant Na+/K+ and Ca2+ pumps, decrease in intracellular pH, reversible and 

irreversible myocyte damage (Graham et al., 2004), development of the calcium and 

oxygen paradox (Braunwald and Kloner. 1985) and free radical mediated injury 

(Wall. 2000).  

 

Soon after the onset of myocardial ischaemia, ATP levels normally maintained by 

mitochondria quickly become depleted in the ischaemic region having profound 

effects on intracellular moieties (Kang et al., 2000). For instance, ATP is required by 

ion pumps like the Na+/K+-ATPase pump to maintain intracellular ion concentrations. 

Consequently, ATP depletion leads to a failure of ATP dependant ion pumps leading 

to an influx of Na+ and Ca2+ ions due to the Na+/Ca+ exchanger (NCE) operating in a 
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reverse mode. This increase in Ca2+ ions leads to calcium overload (Inserte et al., 

2004). 

 

ATP is rapidly degraded to adenosine monophosphate (AMP) and adenosine during 

ischaemia (Jeroudi et al., 1994). Adenosine is further degraded leading to the 

formation of free radicals (Figure.1.1). Free radicals released by neutrophils have also 

been shown to further hasten myocardial injury (discussed later).  

                 

Figure 1.1 Shows the mechanisms involved in ATP degradation and superoxide 
radical O2• and OH • radical generation. 

 

Prolonged myocardial ischaemia leads to myocardial injury where the cardiac 

myocytes are non-reversibly (myocardial necrosis) damaged, referred to as 

myocardial infarction (Braunwald and Kloner. 1985). Myocardial ischaemia is 

reversible by thrombolytic therapy, angioplasty or CABG. The restoration of 

myocardial blood flow is referred to as reperfusion. 
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1.1.3. Reperfusion 

A number of techniques have been developed to reperfuse the previously ischaemic 

myocardium including thrombolysis, percutaneous transluminol coronary angioplasty 

and coronary artery bypass graft (CABG). Reperfusion although crucial to salvaging 

reversibly damaged myocytes paradoxically has been shown to have deleterious 

consequences and therefore has been referred to as lethal reperfusion injury (Van der 

Vusse et al., 1985; Yellon et al., 2000). Reperfusion has been referred to as a double-

edged sword in the context where without reperfusion, tissue salvage cannot take 

place but with reperfusion paradoxically hastening the cellular injury process referred 

to as lethal reperfusion injury (Braunwald and Kloner. 1985; Zhao et al., 2002). 

 

Lethal reperfusion injury can lead to the development of reperfusion-induced 

arrhythmias, enzyme release, myocardial stunning, reversible myocardial stunning, 

reversible and irreversible cell damage (Bolli et al., 1999; Yellon et al., 2000). The 

mechanisms underlying lethal reperfusion injury remain to be fully elucidated but a 

number of proposed contributors have been put forward.  

 

Reperfusion injury by removal of coronary artery occlusion results in a number of 

physiological events including development of: oxygen derived free radicals,  no 

reflow phenomenon, cell swelling, neutrophil recruitment, calcium overload, 

apoptosis, necrosis, myocardial haemorrhage that could possibly contribute to 

reperfusion injury, these shall be discussed in turn. 
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1.1.4. Oxygen derived free radicals 

The re-introduction of oxygenated blood to the ischaemic myocardium leads to the 

generation of injurious oxygen derived free radicals (Bolli et al., 1989) (Figure 2). 

Free radicals exist within cells and are generally generated by mitochondria. These 

are quickly catalysed by free radical scavengers like superoxide dismutase and 

glutathionine peroxidase (Van der Vuess et al., 1985, Forde et al., 1997).  In the non-

ischaemic myocardium endogenous free radical scavengers exist and via their 

antioxidant abilities limit free radical dependant injury. During ischaemia/reperfusion 

these antioxidant enzymes become overpowered and unable to limit free radical 

dependant cellular injury.   Initially proposed by Hearse et al., (1973) free radical 

levels were quantified by Zweier et al., (1987) who showed free radical levels to peak 

during myocardial reperfusion.  Reoxygenation of the ischaemic myocardium results 

in the development of oxygen derived free radical like superoxide anion (O2-) and the 

hydroxyl radical. Other potential sources of free radical generation include 

neutrophils and the displacement of electrons from mitochondria. These radicals can 

interact with superoxide dismutase to form hydrogen peroxide H2O2, but H2O2 can 

interact with O2- and generate highly reactive hydroxyl free radicals. 

 

 

 

Figure 1.2. Oxygen derived free radical generation (adapted from Wall. 2000). 
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Although free radical generation is seen in the ischaemic myocardium due to ATP 

degradation, at reperfusion the source of free radical generation is oxygen and nitric 

oxide (NO). In a number of studies free radicals have been shown to contribute to 

reperfusion injury (Van den Hoek et al., 1996; Simpson et al., 1987; Zweier et al., 

1988). Studies have shown that reoxygenation leads to a highly significant increase in 

oxygen derived free radicals and mediate functional injury to the myocardium as well 

as impaired contractile function in the isolated heart (Zweier. 1988; Bolli et al., 1989). 

Zweier (1988) measured superoxide derived free radicals in the reperfused heart 

concluding that free radical concentrations peaked within the first minute of 

reperfusion, and that administration of recombinant superoxide dismutase improved 

post ischaemic contractile function as well as decreasing free radical concentrations in 

the rabbit.   

 

These radicals can attack numerous targets ranging from the endothelium, smooth 

muscle and damage DNA leading to apoptosis and disruption of mitochondrial ATP 

synthesis. Free radicals have also been shown to generate lipid peroxides that can lead 

to disruption of membrane integrity, inhibition of membrane enzymes and structural 

changes (Forde et al., 1999). Jolly et al., (1984) have shown that the administration of 

the antioxidants superoxide dismutase and catalase decrease free radical dependant 

injury in the ischaemic reperfused myocardium in the dog. Studies have shown the 

beneficial effects of using free radical scavengers in reducing reperfusion injury in the 

canine model of hypothermic global ischaemia (Stewart et al., 1983).   

 

Interestingly, Bognar et al., (2006) have shown HO-3538, a modified superoxide 

dismutase and mitochondrial permeability transition inhibitor to significantly decrease 
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the release of reactive oxygen species in the micro-environment. They also show HO-

3538 to limit the opening of the mitochondrial permeability transition pore thereby 

preventing the release of mitochondrial pro-apoptotic proteins like cytochrome c. 

They also showed in the ischaemic reperfused rat heart that the administration of HO-

3538 significantly decreased the degree of myocardial infarction. To date no study has 

shown antioxidants to mediate cardioprotection in the human heart. 

ROS have also been shown to damage the vascular endothelium by modifying 

proteins and membrane lipids as well as affecting the function of endothelial cells and 

their ability to vasodilate in response to endothelial derived relaxation factor and NO 

(Gin et al., 2007).  

 

ROS generation although viewed as injurious has now been shown to play a role in 

protecting the ischaemic myocardium. Ischaemic preconditioning (IP) has been shown 

to be a trigger for ROS generation, whereby brief periods of ischaemia and 

reperfusion (IP) before index ischaemia reduced ROS generation compared to the 

control group (Kevin et al., 2005). ROS generation may have profound deleterious 

consequences within the myocardium; IP may activate cardioprotective mechanisms 

and limit injury (Kevin et al., 2005).  

 

A range of publications support the role of free radicals in ischaemia reperfusion 

injury and further the cardioprotective role of free radical scavengers in limiting 

myocardial injury. Despite the ability of free radical scavengers to limit myocardial 

injury in animal models they still need to be translated into human clinical models.  
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1.1.5. Myocardial Stunning 

The stunned myocardium has been defined as reversible post-ischaemic myocardial 

contractile dysfunction that is reversible over-time providing perfusion is not hindered 

(Bolli, 1990). There are two main theories which have been proposed to explain 

myocardial stunning. The first theory suggests that injury is mediated by free radicals 

and the second, that the stunning is mediated by calcium overload, both acting to 

disrupt cell contractility.   

 

1.1.6. No-Reflow Phenomenon 

The no-reflow phenomenon is described as the lack of coronary flow to previously 

ischaemic tissue upon reperfusion. No-reflow is thought to occur as a result of 

microvascular damage like endothelial swelling, plugging of capillaries, haemorrhage, 

microvascular compression due to swelling and contracture of myocytes (Braunwald 

and Kloner 1985; Rezkalla and Kloner. 2002).  

 

1.1.7. Calcium Overload 

The re-introduction of blood into the myocardium at reperfusion has been shown to 

lead to calcium overload. Calcium in the perfusate has been shown to lead to the 

development of cellular contracture (Vaselle. 2004). Calcium overload may also 

contribute to the development of free radicals adding to the injury process. Elevated 

levels of calcium have also been shown to activate proteases and phospholipases that 

can mediate damage of the sarcolemma (Barry. 1987).  Reperfusion mediated calcium 

overload had also been shown to lead to the development of hypercontracture where 

myofibrils are considerably shortened leading to cytoskeletal damage.  

Hypercontracture has been shown to be the preliminary cause of cardiomyocyte 
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necrosis and is referred to as contraction band necrosis (Piper et al., 2003).  Shine et 

al., (1983) have shown that reperfusion with reduced calcium in the perfusate to 

ameliorate the effects of calcium overload which supports further a role of calcium in 

ischaemia reperfusion injury. 

 

Ankarcrona et al. (1995) showed neurones subjected to extreme calcium overload, 

results in neuronal necrosis whereas lower levels of calcium overload results in 

neuronal apoptosis. During myocardial ischaemia ATP levels are depleted and the 

levels of inorganic phosphate and cytosolic Ca2+ rise significantly (Duchen. 2000).   

 

1.2.0. Cell Death 

Cell death is part of the body’s innate mechanism of removing cells no longer 

required whether in response to injury or cells that are senescent. Cell death has been 

shown to be divided into two separate distinct pathways referred to as necrosis and 

apoptosis. Necrosis is an ATP-independant process occurring in response to cellular 

injury (Braunwald and Kloner. 1985; Piper and Gracia-Dorado. 1999). Cellular 

necrosis can occur in response to cellular stressors like myocardial ischaemia, 

reperfusion, heat and infection. These stressors can lead to either cellular necrosis or 

apoptosis depending on the level of injury and the environmental conditions.  

 

1.2.1. a. Necrosis 

Cellular necrosis results in swelling of organelles like mitochondria leading to the 

release of cytochrome c and further leading to the rupture of the cell membrane 

releasing the intracellular content into the extra cellular space (Braunwald and Kloner, 

1985).  Historically necrosis has been viewed as a passive accidental process but 
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recent studies have suggested that cellular necrosis is an active form of cell death that 

is regulated (Henriquez et al., 2008). 

 

1.2.1.b. Apoptosis 

Apoptosis also known as programmed cell death has been the focus of much attention 

in past decade. Apoptosis is a highly ordered sequence of events leading to cell death.  

Characteristic of apoptotic cell death is chromatin condensation, nucleosomal ladders 

of DNA fragments (200 base pairs), cellular shrinkage, endonucleolytic digestion of 

cellular DNA but not mitochondrial DNA and is an energy-dependant process 

(Gublins et al., 2000; Gottlieb et al., 1994).  

 

Apoptotic cell death is initiated in response to many different stimuli like ROS, 

hydrogen peroxide, heat shock, specific receptor molecules like tumour necrosis 

factor receptor and necrosis. Apoptosis is inhibited by endogenous proteins like 

apoptosis repressor with caspase recruitment domain (ARC), and inhibitor of 

apoptosis (IAP) and FADD (Fas-Associated Death Domain) - FADD like inhibitory 

proteins (FLIP) (Gustafsson et al., 2004; Stephanou et al., 2001) . These proteins have 

been shown to bind and inactivate caspases limiting apoptotic cell death.  

 

Apoptosis has been shown in numerous studies to play an active role in ischaemia 

reperfusion injury, although there has been significant controversy as to whether 

apoptosis is activated during ischaemia, reperfusion or both (Gottlieb et al., 1994; 

Bailik et al., 1999). Studies have shown apoptosis to be active after the onset of index 

ischaemia and to be accelerated during reperfusion (Chakrabarti et al., 1997; Black et 

al., 1998; Borutaite et al., 2003).  Gottlieb et al., (1994) have shown cardiomyocytes 
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to die by apoptosis only after ischaemia followed by reperfusion and that apoptosis 

did not occur during a period of sustained ischaemia.  Controversy still remains as to 

whether apoptosis occurs at ischaemia or reperfusion, but it is feasible that apoptosis 

occurs at reperfusion because during ischaemia there is a period of depletion of high-

energy phosphates like ATP as well as nutrients like glucose and oxygen therefore the 

reintroduction of coronary blood flow (reperfusion) consisting of glucose, essential 

amino acids and oxygen may initiate apoptosis.   

 

There are several key players in apoptosis including caspases, mitochondria, and the 

sarcoplasmic reticulum (Borutaite et al., 2003). Caspases are cytokine-dependant 

proteases that have been shown to cleave structural proteins in the nucleus and 

cytoplasm (Nicholson et al., 1997) initiating the apoptotic process. Caspases become 

active by the binding of specific ligands to their respective receptors triggering 

apoptosis.  

 

There are two main pathways that regulate apoptosis that are referred to as the 

intrinsic and extrinsic pathways. The death receptor pathway (extrinsic) involves the 

activation of death receptor located on the extracellular surface of the cell by 

apoptotic stimuli. The death receptors are closely related to the tumour necrosis factor 

gene super family and play divergent regulatory roles apart from regulating apoptosis. 

Activation of the death receptor can result in the initiation of the apoptosis processes 

resulting in receptor association with the adaptor protein FADD (Fas associated death 

domain). FADD has a death effector domain (DED) that associates with pro-caspase 

8. The formation of the FADD-pro-caspase 8 complex results in the immediate 

cleavage of pro-caspase 8 to active caspase 8. Activated caspase 8 can bind to pro-
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caspase 3 resulting in activation of caspase-3 and execution of cellular apoptosis.  

Caspase 3 results in cleavage of various death substrates leading to a range of 

biochemical and morphological changes characteristic of apoptosis (Figure.1.3).  
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The intrinsic death pathway is regulated by the mitochondrial activity in response to 

GPCR’s stimulated in response to environmental stress like hypoxia, oxidants, 

nutrient deprivation and DNA damage leading to the release of cytochrome c and 

intra-mitochondrial proteins like apoptosis inducing factor (AIF), second 

mitochondria-derived activator of caspases (SMAC/DIABLO) and endonuclease G 

(Borutaite et al., 2003; Regula et al., 2004). These factors act on effector caspases like 

caspase 3 and execute the apoptotic cell death machinery.  

 

The intrinsic death pathway also involves the Bcl-2 family of proteins that can 

promote or suppress apoptosis. Members of the Bcl-2 family that promote apoptosis 

include Bax, Bak, Bad, Bim, Nix and Hrk and members that inhibit apoptosis are Bcl-

2 and BclxL (Korsmeyer. 1993; Yin et al., 1994; Regula et al., 2004). Proteins like 

Bak and Bax are required to make the mitochondrial membrane permeable to release 

molecules like cytochrome c, SMAC and AIF (Cheng at al., 2003).  

 

Several studies have shown caspase 3 to mediate a pivotal role in the regulation of 

cellular apoptosis. In the cerebral model of ischaemia reperfusion injury Namura et 

al., (1998) have shown increased levels of cleaved (activated) caspase 3 following 

reperfusion with levels peaking between 30 – 60 minutes of reperfusion. Black and 

colleagues (1998) showed by immunohistochemical staining elevated levels of 

caspase 3 in the risk region in the left ventricle of the ischaemic reperfused rat heart.   

 

Cytochrome c has been implicated in many studies as an initiator of apoptosis in the 

ischaemic reperfused heart (Honda et al., 2005). Cytochrome c has been shown to 

disassociate from mitochondria in response to cellular stresses like ROS and calcium 
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overload. Cytochrome c released into the cytoplasm in response to the cell death 

signals has been shown to activate apoptosis by binding to Apaf-1 (apoptotic protease 

activating factor 1) that binds to ATP and caspase 9 and undergoes apoptosome 

formation (Lundberg and Szweda. 2004). The apoptosome becomes the caspase 

activation complex that can activate caspase 3 as an end effector of the intrinsic 

pathway (Gottlieb et al., 1994; Bernardi et al., 1999).  

 

Cytochrome c is released by mitochondria by two mechanisms 1) pore formation 

(Gross et al., 1998; Haunstetter and Izumo. 1998; Antonsson et al., 2000) and 2) 

through the mitochondrial permeability transition pore (MPTP) (Halestrap et al., 

2004; Hausenloy et al., 2002; 2004).  During cellular stress cellular Bcl-2 homologues 

Bid, Bak and Bax have been shown to oligomerise and form a pore in the outer 

mitochondrial membrane. Bid has been shown to translocate to mitochondria and 

release cytochrome c.   

 

The MPTP is formed between the inner and the outer mitochondrial membrane and 

has been shown to be composed of three main subunits, cyclophilin D, voltage 

dependant anion channel (VDAC) and adenine nucleotide (Halestrap et al., 2004). 

The MPTP has also been implicated in cytochrome c release. Under normal 

conditions the MPTP remains closed and mitochondrial permeability transition is 

thought to occur in response to cellular stresses like calcium overload and oxidative 

stress.  

 

Investigations by Weiss et al., (2003) and Halestrap et al., (2004) have shown 

mitochondrial permeability transition to occur at reperfusion, where the MPTP is 
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primed during ischaemia. Opening of the MPTP results in MPT (mitochondrial 

permeability transition) leading to subsequent matrix swelling, depression of the 

membrane potential and initiation of cell death via cytochrome c release. 

  

Research over the past decade has shown that apoptosis is a key player in the 

development of myocardial infarction in the ischaemic reperfused myocardium. 

Therefore, it is crucial that we understand the potential mechanisms that activate or 

inactive cellular apoptosis. Agents like caspase inhibitors have been shown to protect 

the ischaemic reperfused myocardium from reperfusion injury when administered at 

the onset of reperfusion (Mocanu et al., 2000).  

 

Despite recent advances in our understanding of the mechanisms involved in the cell 

death our understanding is still unclear.  Therefore, it seems feasible to further 

research the cell death machinery to understand the potential mechanisms involved 

and to identify potential targets to promote cell survival. 

 

1.3.0 Adenosine Receptors 

To date four adenosine receptors have been identified and cloned and characterised as 

A1, A2a, A2b and A3 (Tucker and Linden. 1993; Fredholm et al., 2001). Adenosine 

receptors have been shown to be expressed within the cardiovascular system 

including the coronary artery, pulmonary artery, aorta and smooth muscle cells, mast 

cells and more importantly cardiac myocytes (Auchampach and Bolli. 1999). 

Adenosine receptors belong to the superfamily of G protein coupled receptors 

(GPCR) exerting a dynamic range of responses and have been classified upon their 

stimulatory or inhibitory actions on adenylate cyclase and on selectivity of agonists 
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and antagonists (Fredholm et al., 2001; Mubagwa and Fleming. 2001; Klinger et al., 

2002).   

 

Adenosine A1 receptors have been shown to be coupled to pertussis toxin sensitive Gi 

and Go proteins, inhibiting adenylate cyclase activity, activating phospholipase C and 

opening KATP channels (Ababe and Mustafa. 1993; Auchampach and Gross. 1993; 

Fredholm et al., 2000; Germack and Dickenson. 2004). Adenosine A2 receptors have 

been shown to couple to Gs proteins, stimulating adenylate cyclase (Germack and 

Dickenson. 2004). Adenosine A3 receptor (A3AR) inhibits adenylate cyclase similarly 

to the A1 receptors. A3AR also couple to Gi and Go proteins and possibly Gq as 

characterised by Palmer et al., (1995). A3AR activation has been implicated to 

activate phospholipase C and D (Abbracchio et al., 1995; Germack and Dickenson. 

2004; Headrick and Peart.2005) See Figure 1.4.a. 
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Figure 1.4.a Cell signalling pathways involved in A3AR mediated 
cardioprotection. (Headrick and Peart. 2005)  

 

1.3.1. Adenosine 

Adenosine released from cells interacts with sarcolemmal membrane adenosine 

receptors.  Having a short half-life, adenosine exerts its physiological effects in an 

autocoid manner. The purine nucleoside adenosine has long been implicated to play a 

regulatory role within the heart. Adenosine has been shown to exist within all tissues 

of the mammalian body were it has been shown to regulate key physiological 

processes like regulating heart rate and vasculature tone (Tabrizchi and Bedi. 2001). 

Although the key role of adenosine is to undergo phosphorylation by adenosine kinase 
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to form adenosine mono phosphate (AMP) and further phosphorylation to generate 

adenosine tri-phosphate (ATP) the universal energy molecule  (Figure 1.4.a) (Mullane 

and Bullough. 1995). Adenosine has also been shown to exert other effects 

independent of energy regulatory processes including upregulation cell growth and 

differentiation by activating cellular signalling pathways (Mubagwa and Flameng. 

2001; Schulte and Fredholm. 2003; Fitz. 2007).  Other effects of adenosine include 

the regulation of heart rate, hypotension, coronary blood flow, bronchoconstriction 

and mast cell degranulation (Fredholm et al.,2000; 2005)  

 

Adenosine receptors are widely expressed but expression can be species dependant 

(Liden at el., 1993; Salvatore et al., 1993; Dixon et al., 1996).  In the rat adenosine A1 

receptor has been shown to widely expressed in the brain, heart, aorta, liver, kidney, 

eye and bladder (Dixon et al., 1996).  The same group have shown A3AR to be widely 

expressed in the heart, central nervous system, lung uterus and testis. A2A were also 

shown to be expressed in the lung, brain and uterus although the A2B mRNA was also 

expressed in the jejunum and colon.  

 

During conditions of cellular stress adenosine levels rise significantly above basal 

levels and have been shown to play a pivotal role in terms of improving tolerance to 

ischaemia during periods of ischaemic injury by limiting necrosis and apoptosis (Van 

Wylen. 1994; Vinten-Johanson et al., 1995). The key processes involved in the 

formation and metabolism of adenosine are summarised in figure 1.4.b.    Deussen et 

al., (1999) have shown elevated levels of adenosine in hearts perfused with lower 

levels of oxygen, supporting adenosine elevation during periods of hypoxia.   
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Figure 1.4.b. Shows the pathways involved in the formation and metabolism of 

adenosine (Adapted from Mullane and Bullough. 1995). 

 

Adenosine plays a direct role in the cardiovascular system regulating blood flow 

through the vascular system via activating adenosine receptors. The assessment of 

individual receptor effect on the cardiovascular system was determined by using 

receptor specific agonists. Activation of A1 adenosine receptors with the A1AR 

agonist cyclopentyladenosine (CPA) has been shown to decrease blood pressure and 

cardiac output after systemic administration in hypertensive rats (Webb et al., 1990; 

Monopoli et al., 1998). Activation of A1 adenosine receptors is generally associated 

with the regulation of heart rate where the administration of A1AR agonists decreases 

heart rate. Hoffman et al., (1997) showed the administration of the A1AR agonist N6-

cyclopentyladenosine to significantly decrease heart rate in mammalian embryos. This 

group also showed A2a and A2b adenosine receptor agonists to have no effect on heart 

rates. Furthermore, they showed that the activation of A3ARs mildly decreased heart 

rate in mammalian embryos. A2a and A2b adenosine receptor activation has been 

shown to mediate coronary artery blood flow regulating vasodilation (Trochu et al., 

2003; Hinschen et al., 2003).  
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Activation of A3 receptors with different A3 adenosine receptor agonists has been 

shown to cause different haemodynamic effects in different species. Lasley et al., 

(1999) reported IB-MECA and CL-IB-MECA to have no effect on cardiac function in 

the rat and rabbit and both where seen to have no effect on coronary flow in the 

rabbit. IB-MECA was seen to increase coronary flow in the rat heart. This increase in 

coronary flow was completely blocked by the A2a antagonist Sch-58261 suggesting 

IB-MECA-mediated increases in coronary flow were mediated by activation of A2a 

adenosine receptors. 2-CL-IB-MECA at concentrations below 50nM was seen to have 

no effect on coronary flow in the rat heart, but when the concentration was increased 

to 100 nM coronary flow increased by 18%. Maddock et al., (2002) have also 

reported 2-CL-IB-MECA to cause vasodilation and increase coronary flow at the 100 

nM concentration although at lower concentrations were seen to have little effect on 

coronary flow.   

 

1.4.1. Ischaemic Preconditioning  

Ischaemic preconditioning (I/P) is a non-pharmacological mechanistic approach 

defined as brief cycles of ischaemia reperfusion before the index of index ischaemia 

that has been shown to reduce myocardial ischaemia/reperfusion injury (Murray et al., 

1986).  This group showed that four cycles of 5 minutes ischaemia before 40 minutes 

index ischaemia significantly reduced infarct size in the canine model of ischaemia 

reperfusion injury.  Subsequently, ischaemic preconditioning has been shown in a 

number of models to confer cardioprotection via reduction of infarct size in the swine 

(Schott et al., 1990), and rabbit (Liu et al., 1991).  
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Studies by Thourani et al., 1999 showed that ischaemic preconditioning resulted in 

preservation of post ischaemic endothelial function as well as a decrease in neutrophil 

medicated injury. IP has also been associated with reducing the energy demands 

during an ischaemic insult as well as reduced calcium overload (Jennings et al., 2001). 

Attenuation of neutrophil dependant injury and apoptosis by ischaemic 

preconditioning was also seen by Nakamura and colleagues (2000) in the ischaemic 

reperfused rat heart.  

 

Ischaemic preconditioning is thought to protect against the ischaemic reperfused 

myocardium via endogenous preformed agents released locally like adenosine, 

bradykinin, opioids and catecholamines that act on cell surface G protein coupled 

receptors (Cohen at al., 2000). Activation of these receptors has been shown to 

activate intracellular signalling pathways promoting cell survival and inhibiting 

apoptosis. The exact signalling pathways via which ischaemic preconditioning confers 

protection remain elusive although research has implicated protein kinase C  and 

tyrosine kinase to be key mediatory kinases (Ytrehus et al., 1994; Vahlhaus et al., 

1998). Yellon and colleagues (2002; 2003; 2004) have recently shown IP to confer 

myocardial protection from ischaemia reperfusion injury via recruitment of the PI3K-

AKT and the MEK1/2 – ERK1/2 cell survival pathways where inhibition of these 

pathways abolished IP dependant cardioprotection.  Interestingly Solenkova et al 

(2006) have shown ischaemic preconditioning to protect the heart via the release of 

endogenous adenosine in rabbit ischaemic reperfused heart.  

 

Further research after the discovery of IP and its ability to protect the ischaemic heart 

led to the discovery of a second window of protection that exists between 24-96 hours 
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after the initial preconditioning stimulus (Marber et al., 1993). Although the signalling 

pathways involved in delayed preconditioning are different to IP and  involve protein 

kinase C, nitric oxide and cyclooxygenase 2 (Bolli. 2000; Guo et al., 2000). 

 

1.4.2. Pharmacological Preconditioning 

Administration of pharmacological agents before index ischaemia has also been 

shown to induce cardioprotection a phenomenon referred to as pharmacological 

preconditioning.  (Yellon and Downey. 2003). Acetylcholine and opioid receptor 

agonists have been shown to trigger a preconditioned like cardioprotective effect 

when administered prior to myocardial ischaemia and reperfusion.  Downey and 

colleagues (2006) have shown administration of acetylcholine 30 minutes before 

ischaemia significantly reduced myocardial infarction in isolated rabbit hearts. In the 

same study they showed the protection involved recruitment of MEK1/2 – ERK 1/2 

and PI3K – AKT cell survival pathway.  

 

Lasley et al., (1995) have shown pharmacological preconditioning with adenosine and 

adenosine analogues improved post ischaemic ventricular dysfunction where this 

protection was lost by co-administration of A1AR antagonist in the rat and rabbit. 

Pharmacological preconditioning with A3AR agonists has been shown mediate 

cardioprotection in the rat (DeJonge et al., 2002; Hochhauser et al., 2007), mice (Zhao 

and Kukreja. 2002) and rabbit (Kodani et al., 2001; Tracey et al., 1997). Germack and 

Dickenson. (2005) showed preconditioning with adenosine (AR agonist), CPA (A1AR 

agonist) or the A3 adenosine receptor agonist 2-CL-IB-MECA significantly protected 

neonatal rat cardiac myocytes from hypoxia reoxygenation injury. Pharmacological 

preconditioning with A1AR agonists has also been shown to mediate cardioprotection 
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in the rat (Hochhauser et al., 2007; DeJonge et al., 2002) and rabbit (Hill et al., 1998). 

Preconditioning hearts with adenosine analogues has been shown to be 

cardioprotective. Safran et al., (2001) have shown administration of A1AR agonist 2-

chloro-N6-cyclopentyl-adenosine (CCPA) or A3AR agonist CL-IB-MECA prior to 

hypoxia significantly attenuated rat myocyte injury where the protection was 

abrogated by pre-treatment with A1 and A3 antagonist DPCPX and MRS 1523, 

respectively.  Studies by Tracey et al., (1997) have shown that preconditioning with 

the A3AR agonist IB-MECA attenuated ischaemia reperfusion injury in the rabbit 

heart. This group later showed that the protection mediated by the A3AR agonist CB-

MECA involved activation of KATP channels where protection was blocked by KATP 

channel antagonist glibenclamide (Tracey et al., 1998).   

 

In the human atrial model of ischaemia reperfusion injury pharmacological 

preconditioning with A1AR and A3AR agonists has been shown to limit reperfusion 

injury (Carr et al., 1997). Pharmacological preconditioning with A2aAR agonists has 

also been shown to protect chick ventricular myocytes from hypoxia/reoxygenation 

injury (Stickler et al., 1996).  

 

1.4.3. Ischaemic Postconditioning 

Recent studies by Zhao et al., (2003) saw the introduction of another cardioprotective 

mechanism referred to as ischaemic postconditioning. Postconditioning is a 

mechanism defined as brief periods of coronary artery occlusion followed reperfusion 

at the onset of reperfusion. Zhao et al., (2000) showed that 3 cycles of 30s reperfusion 

and 30s occlusion at the onset of reperfusion significantly attenuated the development 

of infarction compared controls receiving no intervention. Furthermore, they 
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concluded that postconditioning resulted in a decrease in neutrophil adherence in the 

at risk area accompanied by a reduction in p-selectin expression.  

 

Other studies have shown that postconditioning can only protect the ischaemic heart 

where the period of coronary artery occlusion is less than 45 minutes in the conscious 

rat (Tang et al., 2006).  Kin and colleagues (2004) showed that postconditioning can 

only protect the ischaemic heart when applied within the first minute of reperfusion 

where the protection was abolished if postconditioning was applied after 1 minute. 

Their study also showed that postconditioning protected against ischaemia reperfusion 

injury via decreased creatine kinase and oxidant release in response to injury. Halcos 

and colleagues (2004) investigated the additive effects of IP with ischaemic 

postconditioning concluding that there was no additive effect of combining IP with 

ischaemic postconditioning in the canine model of ischaemia reperfusion injury.  

 

Although ischaemic postconditioning is a powerful mechanism for protecting the 

ischaemic heart the intracellular signalling pathways that mediate this protection 

remain to be elucidated (Zhao and Vinten-Jonahson. 2006). Zatta et al., (2006) have 

shown postconditioning to mediate cardio protection via increasing protein kinase C ε 

expression and inhibiting the translocation of protein kinase C δ.  Interestingly, Kin et 

al. (2005) reported that postconditioning protects the ischaemic heart via the delayed 

washout of intravascular adenosine in the mouse. They further showed that 

administration of the non-specific adenosine receptor antagonist 8-SPT abolished the 

cardioprotective effect of postconditioning implicating a role for adenosine receptors 

in mediating cardioprotection. The role of adenosine receptors in ischaemic 

postconditioning was also implicated by Yang and colleagues., (2005) in the rabbit.  
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Darling and colleagues (2005) have shown postconditioning exerted its 

cardioprotective effects via upregulation of the MEK1/2 – ERK1/2 cell survival 

pathway, where the protection was blocked by the MEK1/2 inhibitor PD98059, these 

results were also seen by Yang et al., (2004). They further determined that 

postconditioning protects via enhancing nitric oxide bioavailability and opening of 

mitochondrial KATP channels and that protection was independent of the PI3K-AKT 

cell survival pathway. As shown in Figure 1.4.c Yellon and colleagues (2004) have 

shown in the isolated perfused rat heart that ischaemic postconditioning protects the 

ischaemic myocardium via recruitment of the PI3K – AKT-eNOS, p70S6K cell 

survival pathway. These contradictory results may be explained by the use of different 

inhibitors and animal models used although the exact role remains elusive.   
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Figure 1.4.c. Schematic representation of the key mediators involved in 
ischaemic postconditioning mediated cardioprotection. (Adapted from Tsang et 
al., 2004). 
 

Argaud et al. (2005) recently showed that postconditioning mediates protection via 

inhibiting opening of the mPTP in the open chest rabbit.  Collectively, these data 

suggest that both ischaemic preconditioning and postconditioning protect the 

ischaemic myocardium from ischaemia reperfusion injury via recruitment of similar 

cell survival signalling pathways (Yellon and Hausenloy. 2006). Further intense 

research is required to establish the poorly characterised mechanisms involved in 

ischaemic postconditioning.  

 

Research has shown that that ischaemic preconditioning or postconditioning can 

significantly protect the ischaemic reperfused myocardium from ischaemia 

reperfusion injury in a number of animal models.  Many of the problems faced by 

researchers include the lack of translation of findings from laboratory experiments to 
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clinical settings. Ischaemic postconditioning has opened an exciting and promising 

paradigm for researchers where its application seems feasible in reducing ischaemia 

reperfusion injury in the human heart. A pilot study carried out by Laskey and 

colleagues (2005) has shown that that postconditioning can protect the failing human 

heart from ischaemia reperfusion injury. They showed that postconditioning reduced 

ischaemic injury and improved blood perfusion in the myocardium.  

 

Another study by Staat et al., (2005) showed ischaemic postconditioning to reduce 

infarct size by 36% in patients admitted for coronary angioplasty. These preliminary 

studies show promise for application of ischaemic postconditioning in the clinical 

setting. Clinicians may consider using ischaemic postconditioning because its 

practicality  as an adjunct therapy during revascularisation procedures like  coronary 

artery bypass grafting or coronary angioplasty (Kloner and Rezkalla. 2006). 

 

1.5.0. Cardioprotection via activation of Adenosine receptors at 
reperfusion.  
 

Adenosine has been implicated to protect the myocardium from ischaemia reperfusion 

injury in numerous studies. The classic investigation by Zhao et al., (1993) 

demonstrated that blockade of adenosine A1,  A2 and  A3 adenosine receptor 

antagonist 8-(p-sulfophenyl)-theophylline (8-SPT) at reperfusion limited endogenous 

adenosine mediated cardioprotection signifying the role of endogenous adenosine 

mediated cardioprotection. Similar findings have also been proposed by Toombs et 

al., (1992) who have shown blockade of adenosine receptors with the non-specific 

adenosine receptor antagonist 8-p-sulfophenyl theophylline (8-SPT) to significantly 
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increase infarct size by 24% compared to non-treated ischaemic perfused hearts 

indicating that endogenous adenosine plays a role in limiting infarct development.      

 

Ely  et al., (1985) showed treatment with  exogenous adenosine before and during 

ischaemia and reperfusion significantly improved post-ischaemic dysfunction by 

sustaining ATP levels. Olfasson et el., (1987) showed that intracoronary 

administration of exogenous adenosine at reperfusion attenuated infarct size in the 

dog and this effect was mediated by decreased neutrophil infiltration and stagnation of 

capillaries. Norton et al., (1991) have shown intravenous administration of adenosine 

5 minutes before reperfusion significantly attenuated myocardial infarction. 

 

Zhao et al., (2001) showed administration of adenosine at reperfusion significantly 

limited infarct development in the dog. Furthermore, they concluded attenuation of 

ischaemia reperfusion injury by adenosine was mediated by upregulation of the anti 

apoptotic protein Bcl-2 and down regulation of the pro apoptotic protein Bax, 

accompanied by a significant decrease in necrotic and apoptotic components of cell 

death in the myocardium. In isolated myocytes upregulation of Bcl-2 had been 

attributed to inhibit cellular apoptosis (Hockenbrey et al., 1993; Knudson and 

Korsmeyer. 1997; Kirshenbaum and De Moissac. 1997).  Other investigators have 

shown the protective effects of adenosine in the dog and rabbit model of ischaemia 

reperfusion injury (Pitarys II et al., 1991; Thornton et al., 1992; Sekili et al., 1995). 

  

Notably, many investigators have shown protection with adenosine either by 

preconditioning or administration at reperfusion although Heide et al., (1996) failed to 

observe any protection when adenosine was administered at reperfusion in the canine 
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myocardium.  Goto et al., (1991) also did not observe any protection when adenosine 

was administered either before coronary artery occlusion of at reperfusion in the 

rabbit model of ischaemia reperfusion injury.  Earlier studies focussed on the role of 

A1AR in terms of cardioprotection primarily due to the lack of characterisation of 

A3ARs. Studies by numerous investigators have shown A1AR mediated protection 

(Yao and Gross. 1993; Liang and Jacobson. 1998).  

 

Studies conducted by Maddock et al., (2002) using the highly specific A3AR agonist 

IB-MECA have shown that it protects the myocardium from ischaemia reperfusion 

injury when administered at reperfusion and furthermore limiting myocardial stunning 

in the guinea pig. They also showed protection was abolished in the presence of the 

A3AR antagonist MRS1191. Maddock et al., (2003) have also shown that the 

concomitant administration of 2-Cl-IBMECA (A3AR agonist) at reperfusion in the 

isolated perfused rat heart and in cardiomyocyte model of ischaemia reperfusion 

injury to be cardioprotective. In the same study they also showed that the protection 

was mediated in an anti-apoptotic and anti-necrotic manner where the protection was 

lost by the  blockade of A3ARs with  MRS-1191 (A3AR antagonist).  

 

Jordan et al. (1999) have shown that administration of the A3AR agonist CL-IB-

MECA at reperfusion significantly attenuated neutrophil mediated reperfusion injury 

in the rabbit heart and pre-treatment significantly decreased neutrophil adherence to 

the endothelium, this anti neutrophil adherence was blocked by the A3AR antagonist 

MRS-1220.  
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Stimulation of A3ARs has been shown to be pro and anti-apoptotic whereby several 

studies have shown stimulation with micro molar concentrations of A3AR agonist can 

further enhance cell death (Shneyvays et al., 1998; Brambilla et al., 2000; Maddock et 

al., 2002) whereas nanomolar concentrations can mediate cytoprotection (Gao et al., 

2001; Maddock et al., 2002). Contrary to this a recent study by Park et al., (2006) has 

shown IB-MECA at a concentration of 1 µM to protect the ischaemic perfused rat 

myocardium from ischaemia reperfusion injury when administered at the onset of 

reperfusion. They also showed that the protection was abolished in the presence of the 

A3 antagonist MRS 1334 and the mitochondrial permeability transition pore opener 

atractyloside. Previously Maddock et al., (2002) and Brambilla et al., (2000) have 

shown that at micro molar concentrations the A3 agonists fail to protect the ischaemic 

myocardium therefore presenting contradictory results. 

 

Over expression of the A3 adenosine receptors in mice has shown to protect 

ischaemic-perfused hearts, preserving ischaemic ATP levels and also decreasing heart 

rate when compared to wild type (Cross et al., 2002).  Ge et al., (2006) showed 

preconditioning with the A3 agonist 2-CL-IB-MECA to limit infarct development in 

the ischaemic reperfused mouse but failed to protect in A3 adenosine receptor gene 

knock out mouse. In the rat brain model of ischaemia reperfusion injury cerebral 

infarction was significantly increased in A3 adenosine receptor knock out rats 

compared to wild type (Chen et al., 2006). This group further showed that 

preconditioning with the A3 agonist 2-CL-IB-MECA confers significant cerebral 

protection  in the ischaemic reperfused rat brain but failed to protect in A3 adenosine 

receptor gene knock out rats. Comparatively, Harrison et al., 2002 have shown A3 

adenosine receptor gene knock out mice to generate an ischaemia tolerant phenotype 
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that does not affect myocardial energy metabolism or pH. The exact mechanisms 

generating this phenotype currently are unclear, but are thought to be as a role of 

cellular compensatory changes.  

 

Stimulation of A2AR with their respective analogues has been shown to mediate 

protection from ischaemia and reperfusion injury.  Maddock et al., (2003) have shown 

A2a receptor activation at reperfusion with A2a agonist CGS-216680 confers 

cardioprotection these findings were similar to Lasley et al., (2001); Xu et al., (2001); 

and Jordan et al., (1997). More recently, Philipp et al., (2006) showed that 

administration of the non-selective but A2b potent adenosine agonist 5'-(N-

ethylcarboxamido)adenosine (NECA) 5 minutes before to 1 hour after reperfusion 

attenuated infarct development that was abolished in the presence of the A2b 

adenosine receptor antagonist or the PI3K inhibitor Wortmannin in the rabbit. 

 

Activation of A3AR has shown to confer cardioprotection in many different models of 

myocardial ischaemia reperfusion injury. Stimulation of A3AR has been shown to 

have: anti cancer properties (Fishman et al., 2001); a role in cerebro-protection (Von 

Lubitz et al., 2001); anti apoptotic/necrotic properties (Maddock et al., 2003); inhibit 

apoptotic cell death in ischaemic reperfused brain (Abbracchio et al., 1999), ability to 

inhibit A3 antagonist dependant apoptosis in HL-60 Leukemic and U-937 cell lines 

(Yoa et al., 1997). Recent studies in the feline lung have also shown A3 agonists to 

protect the lung against ischaemia reperfusion injury (Matot et al., 2005). 

 

1.6.0 Administration of cardioprotective agents post-reperfusion  
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Previous studies have shown pharmacological and non-pharmacological approaches 

can protect the myocardium from ischaemia reperfusion injury, but it remains to be 

established whether postponing the administration of pharmacological agents after the 

onset of reperfusion can protect the ischaemic reperfused myocardium. Interestingly, 

Von Lubitz et al., (2001) have shown postponing the administration of the A3 agonist 

IB-MECA 20 minutes after reperfusion significantly protected the mice brain 

subjected to ischaemia/reperfusion. Although this group did not determine the 

pathways that may be involved in IB-MECAs mediated protection.   Zhang et al., 

(2002) showed nitrobenzylthioinosine an equilibrative nucleoside transporter subtype 

1 inhibitor to protect rat neurones from forebrain ischaemia when administered before 

ischaemia by increasing post ischaemic levels of adenosine, suggesting post 

ischaemic increase in adenosine levels mediate protection. Jonassen et al., (2000) 

showed that administration of hormone insulin 15 minutes after the onset of 

reperfusion resulted in loss of protection seen when administered at reperfusion in the 

rat. Recently, Bolli and colleagues (2006) have showed administration of cytokine 

therapies 4 hours after reperfusion to limit left ventricular modelling and improve left 

ventricular performance by promoting cardiac regeneration in the mouse.  

 

More interestingly Armstrong et al., (2001) showed caspase inhibitors when 

administered 1 hour after reperfusion could still reduce infarct development in the rat 

heart. Dambrova et al., (2002) showed that administration of the novel guanidine 

ME10092 5 minutes after the initiation of reperfusion significantly attenuated 

reperfusion induced ST elevation and cardiac arrhythmias in the rat. This group did 

not further determine the pathways that may be involved in ME10092 mediated 

cardioprotection. 
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The A2a agonist administered at reperfusion is shown to reduce infarct size but 

delaying administration 5 minutes after reperfusion abolishes its protective effect in 

the rat (Boucher et al., 2004).  

 

Collectively, research to date has shown adenosine to confer cardioprotection when 

administered at reperfusion or when administered prior to an ischaemic insult. The A3 

adenosine receptor agonist 2-CL-IB-MECA has previously been shown to limit 

infarct development in the ischaemic reperfused heart in a number of different 

species. To date no study has shown the intracellular signalling pathways that mediate 

2-CL-IB-MECA mediated cardioprotection when administered at reperfusion or post-

reperfusion at nanomolar concentrations. The aim of the current study was to 

determine whether the A3 agonist 2-CL-IB-MECA mediated cardioprotection in the 

Langendorff perfused rat heart or adult rat cardiac myocyte from 

reperfusion/reoxygenation injury by recruiting the PI3K -AKT or MEK1/2 - ERK1/2 

pro-survival pathways.  

 

1.7.1. Mitogen Activated Protein Kinases  

Mitogen activated protein kinases (MAPK) are a family of kinases that can respond to 

extracellular stimuli. MAPKs are serine and threonine kinases that have been shown 

to regulate cell growth cell differentiation and cell death. They can be activated 

following receptor tyrosine kinase activation or following Gi, Go, Gq and Gs coupled 

receptor stimulation (Pearson et al., 2001).  Activation of MAPK has been shown to 

activate a range of cell signalling pathways leading a dynamic range of responses 

(Lowes et al., 2002). GFRs and G proteins stimulated by growth factors and survival 

factors have been shown to be coupled to mitogen activated protein kinases (MAPK) 
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(Koch et al., 1997; Abe et al., 2000). Activation of the MAPK kinase cascade has 

been demonstrated to occur in response to growth factors, cytokines, and 

neurotransmitters and transmit survival signals.  

 

Cellular responses occur after receptor ligand interaction followed by a sequence of 

events involving adaptor proteins growth factor receptor binding protein (GRB) and 

Ras guanine exchange factor (SOS)  that via Ras can activate Raf (MAP kinase kinase 

kinase) the first of three MAPK module. Phosphorylated Raf can further activate 

downstream MAPK (extracellular signal regulated kinase) ERK1/2. Phosphorylation 

of ERK1/2 at Thr 202 and Tyr 204 residues transforms ERK1/2 to its active form. 

ERK1/2 can activate transcription of proteins by phosphorylating c-Myc and other 

transcription factors like p70S6K upregulating protein expression (Wechsler et al., 

1994).  

 

Punn et al. (2000) have show have shown an increase in ERK1/2 during simulated 

ischaemia that is further upregulated at the onset of reperfusion in cardiac myocytes. 

Activation of ERK1/2 following has also been shown to protect cardiomyocytes from 

oxidative stress following cyclooxygenase-2 induction (Adderley et al., 1999). 

Schulte et al. (2002) have also characterised the effect of adenosine receptor agonists 

and show upregulation of extra-cellular regulated kinase (ERK1/2) in Chinese 

hamster ovary cells (CHO) expressing the human A3AR. 

 

 A number of growth factors have been implicated to be cardioprotective via 

recruitment of the MEK 1/2 – ERK1/2 signalling cascades including cardiotrophin-1 
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(Sheng et al., 1997),  Transforming growth factor β1 (Baxter et al., 2001) and 

Urocortin (Schulman et al., 2002) (review Yellon & Baxter., 1999). 

 

Graham et al. (2001) have shown a dose and time-dependant phosphorylation of 

ERK1/2 with the A3AR agonist IB-MECA in Chinese hamster ovary cells expressing 

the human A3AR. Upregulation of ERK1/2 was sensitive to pertussis toxin (Gi/o 

inhibitor), PD98059 (MEK 1 inhibitor). Germack and Dickenson., (2004) have 

characterised the activation of ERK 1/2 by adenosine and adenosine analogues in 

newborn cardiomyocytes. They characterised both time and dose dependant ERK 1/2 

phosphorylation with adenosine and A1, A2a and A3 receptor analogues. Analogues 

were seen to increase ERK 1/2 activation but not to the same degree as seen with 

adenosine. This is thought to be as a direct consequence of adenosine and its ability to 

stimulate all adenosine receptor subtypes while individual receptor specific agonists 

exerted their effect respective to its affinity to a specific adenosine receptor subtype.  

 

P38 and JNK (stress activated protein kinase) are members of the MAPK superfamily 

of kinases that is responsive to stressful stimuli. Including heat shock, UV radiation, 

osmotic shock and have been shown to play a role in cell death and cell survival. 

Mackay et al., (1999) have shown inhibition of p38 to protect cardiac myocytes from 

ischaemia. Inhibition of p38 has also been shown to inhibit apoptosis and improve 

contractile function after myocardial ischaemia reperfusion (Ma et al., 1999). Kaiser 

et al., (2005) have interestingly shown inhibition of p38 to reduce myocardial injury 

following infarction in the mouse although this protection was not seen in the swine. 

JNKs play a role in regulating apoptosis in cardiomyocytes and many other cell types. 

Disagreement remains as to whether JNK are anti or pro apoptotic although Kaiser et 
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al., (2005) have shown genetic inhibition or activation of JNK to protect the 

myocardium from ischaemia reperfusion injury.  

 

1.7.2. Phosphatidylinositol-3-Kinase 

The phosphatidylinositol-3-kinase (PI3K) is a serine/threonine kinase that plays a 

significant role regulating cell growth, differentiation and survival (Ban et al., 2008). 

PI3K become activated by the binding of growth factors to GFRs. Stimulation of 

GFRs is coupled to PI3K via phosphorylation of its terminal residues. PI3K 

phosphorylation leads to the subsequent phosphorylation of AKT via cell signalling 

cascade leading to the dual phosphorylation of its ser473 and thr308 residues by 

phosphate-dependant kinase-1 (PDK 1) (Ban et al., 2008).  

 

AKT (Protein kinase B) in its active form can modulate cell survival via recruitment 

of numerous downstream effector proteins phosphorylating forkhead transcription 

factors, eNOS (endothelial nitric oxide synthase), and the pro-apoptotic protein 

belonging to the Bcl 2 (B cell lymphoma/leukaemia 2) family BAD (Bcl-2/Bcl-XL-

associated death promoter). BAD in its phosphorylated form binds to 14-3-3- proteins 

therefore BADs ability to associate to Bcl-2 and Bcl-xl is diminished preventing BAD 

dependant apoptosis initiation (Hausenloy and Yellon. 2004). Furthermore, AKT can 

activate numerous effector proteins like glycogen synthase kinase 3β (GSK3β) and 

stimulate glycogen synthesis as well as proteins involved in cell proliferation and 

growth (Hausenloy and Yellon., 2004; Park et al., 2006). 

 

In the context of myocardial ischaemia and reperfusion Punn et al. (2000) used a 

cardiac myocyte model of simulated ischaemia and reperfusion to characterise AKT 
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expression. They have also shown that during ischaemia p-AKT (ser 473) is not 

expressed and expression is enhanced by reperfusion. The PI3K inhibitor Wortmannin 

abrogated AKT phosphorylation at reperfusion.  

 

Gao et el., (2001) have shown that activation of A3AR protects mast cells from UV 

light induced apoptosis by a mechanism involving protein kinase B (AKT).  

Furthermore, they showed the A3AR antagonist MRS1523 abrogated A3AR mediated 

phosphorylation of AKT. Hence, implicating that A3AR mediated protection is via the 

Gi – PI3K – AKT cell survival-signalling pathway. Studies by Kennedy et al., (1999) 

further support the role of AKT in cell survival. They showed AKT activation to 

inhibit cell death by preventing cytochrome c release from mitochondria. They further 

determined that AKT activation could maintain mitochondrial integrity by inhibiting 

cytochrome c release.  

 

Activation of adenosine receptors by NECA (non selective adenosine agonist) was 

shown to upregulate phosphorylation of AKT. The PI3K inhibitor Wortmannin or 

LY294002 and abrogated phosphorylation of AKT by by NECA (Yang et al., 2004). 

They also showed phosphorylation of PI3K was sensitive to the Gi/o inhibitor 

pertussis toxin. Implicating a role for Gi/o- PI3K dependant phosphorylation of AKT. 

This group have also shown that activation of A3AR by NECA was shown to increase 

phosphorylation of the stress activated MAPK p38 and ERK 1/2 in a time and dose-

dependant manner. Kis et al., (2003) have shown up regulation of PDK-1 – PI3K - 

AKT cell survival pathway in a rabbit model of ischaemic preconditioning, where the 

PI3K inhibitor Wortmannin abolisged the protection.  
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A number of growth factors have been implicated to be cardioprotective via 

recruitment of the PI3K - AKT  or MEK 1/2 – ERK1/2 cascades including insulin 

growth factor (IGF-1) (Parrizas et al., 1997), Insulin (Johansen et al., 2003) 

Transforming growth factor β1 (Baxter et al., 2001) and Urocortin (Schulman et al., 

2002) (review Yellon & Baxter., 1999). 

 

Hausenloy et al. (2004) have recently proposed cross talk between the PI3K and the 

ERK1/2 during early reperfusion. In this novel study they propose that blockade of 

the PI3K activity using the PI3K inhibitor Wortmannin upregulated ERK1/2 

phosphorylation and blockade of ERK1/2 pathway  using PD98059 upregulated AKT 

phosphorylation. They further demonstrated that blockade of either PI3K or MEK1/2 

abrogated the protective effect of infarct reduction by ischaemic preconditioning. 

 

Collectively these data clearly demonstrate that adenosine released during myocardial 

ischaemia and reperfusion plays a putative role in the activation of adenosine receptor 

dependant cell survival signalling pathways (Haq et al., 1998; Sommerchild & 

Kirkeboen., 2000). Numerous studies in cell lines and rat cardiomyocytes have 

provided evidence of adenosine and its ability of activate AKT and ERK1/2 via 

adenosine receptors. Furthermore, studies have characterised adenosine and adenosine 

analogues to activate these pathways in a dose and time dependant manner.    

 

A range of growth factors have been shown to up regulate downstream effector 

kinases mediating cardioprotection. Studies have shown preconditioning the 

myocardium before an ischaemic insult or administrating exogenous agents during 

ischaemia or at reperfusion via adenosine receptor stimulation can ameliorate 
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ischaemia reperfusion injury. Collectively from existing studies it seems feasible that 

activation of A3AR at reperfusion by the A3AR agonist 2-Cl-IBMECA can protect the 

myocardium from ischaemia reperfusion injury and subsequently that this protection 

be via recruitment of cell survival kinases PI3K-AKT and or MEK 1/2– ERK 1/2.   

 

Extensive research over the years has seen publication of numerous publications 

entailing pharmacological and non-pharmacological experimental interventions that 

can protect the ischaemic reperfused myocardium. The development of 

pharmacological agents to be administered in a clinical setting to limit ischaemia 

reperfusion injury in humans is a near reality. Continued research in the field of 

cardiovascular research and development of agents that could potentially lead to an 

agent that would one day be used in a clinical setting (Bolli et al., 2004).  
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1.8. Aims and Objectives 

1. To determine whether the A3AR agonist 2-CL-IB-MECA when administered 

at reperfusion or post-reperfusion protects the myocardium from ischaemia 

reperfusion injury via the PI3K-AKT or MEK1/2-ERK1/2 survival pathway in 

the isolated perfused rat heart. 

2. To elucidate the status of the cell survival pathway proteins AKT, ERK1/2, 

P70S6K, BAD in non-treated control ischaemic reperfused and 2-CL-IB-

MECA treated hearts when 2-CL-IB-MECA was administered at reperfusion 

or post-reperfusion in the presence and absence of their respective inhibitors 

by western blot analysis.  

3. To determine whether the administration of 2-CL-IB-MECA at reoxygenation 

or post-reoxygenation can attenuate caspase 3, apoptosis and necrosis in an 

adult rat cardiomyocyte model of hypoxia/reoxygenation injury. To determine 

the role of the PI3K/AKT and MEK1/2 – ERK1/2 pathway in 2-CL-IB-MECA 

mediated cytoprotection.  
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Chapter 2. Materials and Methods 

2.1.1. Materials 
 
Bovine serum albumin, Tri-phenyltetrazolium (TTC) (reacts with tetrazolium salts to 

form a formazan pigment indicating dead tissue) and Evans blue (used to delineate the 

risk area) were purchased from Sigma Chemical Co (Poole, UK). 2-CL-IB-MECA (1-

[2-Chloro-6-[[(3-iodophenyl) methyl] amino]-9H-purin-9- yl]-1-deoxy-N-methyl-b-

D-ribofuranuronamide) (Highly specific and selective A3 adenosine receptor 

Agonist), U0126 (Potent and selective non-competitive inhibitor of MAP kinase 

kinase.), Wortmannin (cell permeable and selective phosphatidylinositol 3’kinase 

inhibitor), Rapamycin (selectively inhibits the phosphorylation and activation mTOR) 

were purchased from Tocris (Bristol, UK).  

 

Phospho-specific ERK1/ERK2 (Thr202/Tyr204), Pospho-specific Akt (Ser473), Cleaved-

Caspase 3 (Asp175) (5A1E), Phospho-p70 S6 Kinase (Thr389), BAD Ser136, BAD 

Ser112) were purchased from New England Biolabs (Hitchin, UK), Antibodies to β-

actin were purchased from Abcam (Cambridge, UK). Vybrant Apoptosis assay kits 

#10 was purchased from Invitrogen (Paisley, UK).  

 
2.1.2. Animals 
 
Male Sprague Dawley rats (body weight 250 - 350 g) were used in these studies. All 

procedures were in accordance with UK Home Office guidelines on the Animals 

(Scientific Procedures) Act 1986. Animals were either purchased from Charles River, 

UK or bred in house at the institutional animal house and had free access to standard 

pelleted diet and water.  
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2.2. Langendorff Perfusion- Isolated rat heart preparation 

Animals were sacrificed by cerebral dislocation. The rat heart was quickly excised 

and placed into ice-cold Krebs Heinsleit buffer. The aortic arch was cut away and the 

aorta was cannulated. The heart was retrogradely perfused on the Langendorff 

apparatus with Krebs Heinsleit bicarbonate buffer (NaCl 118.5 mM, NaHCO3 25.0 

mM, KCl 4.8 mM, MgSO4 1.2 mM, KH2PO4 1.2 mM, CaCl2 1.7 mM, and glucose 12 

mM) gassed with 95% O2 and 5 % CO2. The temperature was constantly monitored 

by inserting a thermo-probe in the pulmonary artery and maintained at 37 °C ± 0.5. 

The left atrium was cut away and a latex balloon was inserted into the left ventricle 

and inflated to give an end diastolic pressure of 8 to 10 mmHg, to measure left 

ventricular developed pressure (LVDP). The latex balloon was attached to a cannula 

connected to a physiological pressure transducer and a bridge amp connected to a 

Power lab (AD Instruments. Oxfordshire). Heart rate (HR) was measured by inserting 

an electrocardiogram probe onto the heart and the electrical activity was recorded 

using a Bioamp (AD Instruments. Oxfordshire). Coronary flow (CF) was measured by 

collecting the perfusate for one minute at regular time intervals. Haemodynamic 

variables were recorded at regular intervals using the data acquisition software Scope 

4. Haemodynamic data were analysed statistically using the statistical package SPSS 

12. 

 

Hearts were allowed to stabilise for 20 minutes after which regional ischaemia was 

induced by ligating the anterior descending left coronary artery (LAD). Ligation was 

achieved by inserting a hooked 6-0 silk suture under the left coronary artery to form a 

snare and passing the ends of the threads through a pipette tip. Ischaemia was 

achieved by tightening of the threads and by placing the second pipette tip into the 



73 

first. Reperfusion was achieved by releasing the threads and by releasing the tips. 

Myocardial blanching and changes in ECG confirmed ischaemia. 

 

Reperfusion Studies : At the onset of reperfusion hearts were concomitantly infused 

with either a) normal buffer (control) b) A3R agonist 2-Cl-IB-MECA (1 nM) c) A3R 

agonist 2-Cl-IB-MECA (100 nM), d) A3R agonist 2-Cl-IB-MECA (1 nM,100 nM) in 

the presence of cell signalling cascade inhibitors, PI3K inhibitor – Wortmannin (5 

nM, 100 nM), MEK 1/2 inhibitor UO126 (10 µM), mTOR inhibitor – Rapamycin (2 

nM) Figure 2.1.a.  2-CL-IB-MECA was used at two different concentrations as 

previously Germack and Dickenson (2004; 2005) have shown 2-CL-IB-MECA to 

activate ERK1/2 and AKT in a dose dependant manner. Therefore, we used different 

concentrations to determine whether a higher concentration of 2-CL-IB-MECA was 

more cardioprotective when administered at reperfusion.  

 

 

 

Figure 2.1.a. Diagram shows experimental protocol for isolated perfused rat 
hearts subjected to 20 minutes of stabilisation, 35 minutes of ischaemia and 120 

minutes of reperfusion where drugs were administered at the onset of 
reperfusion.  

 
Post-Reperfusion Studies: Hearts were concomitantly infused with either a) 2-CL-

IB-MECA (1nM) 15 or 30 minutes after the onset of reperfusion b) 2-CL-IB-MECA 

(1nM) in the presence of the PI3K inhibitor Wortmannin (100nM) or MEK1/2 

inhibitor UO126 (10µM) from 15 or 30 minutes post reperfusion (see figure 2.1.b).  

 

Drug 
Administration 

Stabilisation        Ischaemia            Reperfusion 
 (20 minutes)       (35 minutes)          (120 minutes) 
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Figure 2.1.b. Diagram shows experimental protocol for isolated perfused rat 
hearts subjected to 20 minutes of stabilisation, 35 minutes of ischaemia and 120 
minutes of reperfusion where drugs were administered 15 or 30 minutes after 

reperfusion. 
 

At the end of reperfusion the left coronary artery was re-ligated and the heart was 

infused with 1ml of 0.25% Evans blue, this was to delineate the risk area (figure 

2.1.c) .  

 

Figure 2.1.c. Photograph of an isolated rat heart perfused with Evans blue 

The hearts were removed from the apparatus weighed and quickly frozen at -20°C. 

Once frozen the hearts were transversely sliced into 2mm thick slices and incubated at 

37°C  in 8ml of phosphate buffer 2 (100mM NaH2PO4) and 2ml phosphate buffer 1 

(100mM NaH2PO4.2H2O)  containing 0.1g tri-phenyltetrazolium powder.  The slices 

were then placed into 10% formalin for a minimum of four hours in order to enhance 

the contrast between the viable and non-viable areas (figure 2.1.d) 

Drug 
Administration 

Stabilisation     Ischaemia            Reperfusion 
(20 minutes)                (35 minutes)                                 (120 minutes) 
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Figure 2.1.d. Representative photograph of an isolated rat heart slices perfused 
with Evans blue and TTC stained. The viable tissue is stained blue, risk tissue 

pink and infarct tissue pale/white. 
 

The slices were then placed between two clear Perspex sheets and squeezed together 

using bulldog clips. The slices were traced onto an OHP film using different colours 

for viable, risk and infarct tissue. Risk tissue stained pink/red and the infarct tissue 

stained pale/white.  Infarct to risk ratio was determined by tracing around the acetate 

sheet using the Summasketch II tablet and areas were determined using the NIH 

Image software.  

 

2.3. Data Acquisition Equipment 

Physiological pressure transducer (AD Instruments), connected to a bridge Amp 

(AD Instruments), PowerLab (AD Instruments), Scope 4  software (AD 

Instruments) for recording haemodynamic data, Quantity One Software was used 

for densitometric analysis of Western blots.  
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2.4.1. Myocyte Isolation 

Animals were sacrificed by cerebral dislocation. Sprague Dawley rat hearts were 

quickly excised and placed into ice-cold modified Krebs Heinsleit buffer. The aortic 

arch was cut away and the aorta was cannulated to the cannula. The heart was as 

mentioned above retrogradely perfused on the Langendorff apparatus with modified 

Krebs Heinsleit bicarbonate buffer (NaCl 116.0 mM, NaHCO3 25.0 mM, KCl 5.4 

mM, MgSO4 .7.H2O 0.4 mM, CaCl2 1.7 mM, and glucose 10 mM, taurine 20 mM, 

pyruvate 5 mM and Na2HPO4.12H20 0.9 mM) at a speed of 10 ml/min. HPLC grade 

water was used for all solutions. The buffer was oxygenated for 30 minutes with 95% 

O2 and 5% CO2  (BOC Gases) after which the buffer was heated to 37°C and the pH 

was corrected to pH 7.4 with NaOH. 

 

Hearts were perfused for 5 minutes with Krebs buffer containing calcium (1.7mM) 

followed by 5 minutes of perfusion with calcium-free Krebs Heinsleit buffer. Upon 

perfusion with calcium free buffer the heart ceased contraction and turned pale in 

colour and shiny on the exterior. The hearts underwent a final 5 minute perfusion 

cycle with modified Krebs Heinsleit digestion buffer containing BSA 0.5%, 

Worthingtons Type II Collagenase 0.075%, CaCl2 4.4 µM pH adjusted to pH 7.4 with 

NaOH. During perfusion with Collagenase the effluent was collected and reused.  

 

After perfusion with the digestion buffer the heart was removed from the cannula and 

the atriums were cut off. The ventricles were placed into a small beaker and gently the 

tissue was teased apart and further cut into smaller pieces with a clean pair of scissors. 

The tissue was incubated with 15 ml of fresh digestion buffer pre-heated to 37 °C for 

10 minutes. The digestion buffer was aspirated and was passed through a nylon mesh 
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into a sterile 50 ml falcon tube. The remaining tissue was removed from the mesh and 

placed into the beaker with fresh digestion buffer. The tissue was placed again into 

the orbital shaker at a speed of 150 rpm for 20 minutes. The buffer previously 

removed was centrifuged (Jouan HS centrifuge) at 400 rpm for 2 minutes. The 

supernatant was removed using a sterile pipette and the pellet was redistributed in 25 

mls of freshly prepared restoration buffer (NaCl 116 mM, NaHCO3 25 mM, KCl 5.4 

mM, MgSO4.7.H2O 0.4 mM, glucose 10 mM, taurine 20 mM, pyruvate 5 mM 

Na2HPO4.12H20 0.9 mM, 1% BSA and 1% Pen-Strep).  All processes were carried 

out in the laminar flow cabinet to reduce the risk of infection. 

 

The cells in suspension were placed into the incubator at 37 °C and received 5 doses 

of 58 µl of 100 mM CaCl2. The cells were placed into a 90 mm Petri dish and 

incubated overnight. Cells retrieved from the second isolation also underwent the 

same protocol. Figure 2.1.e shows a photograph of isolated adult rat cardiac myocyte.  

 

 

Figure 2.1.e. Photograph shows an isolated adult rat cardiac myocyte  

(Hein et al., 2006) 
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2.4.2. Exclusion Criteria 

To ensure reproducibility of experiments the following exclusion criteria was applied: 

• Myocytes showing less then 65 % viability were disregarded 

• Myocytes not exhibiting clear striations were also disregarded 

 

2.4.3. Hypoxia and Reoxygenation Protocol 

The next day cells underwent 6 hours of hypoxia followed by 18 hours of 

reoxygenation. The cells were retrieved from the incubator and transferred to a falcon 

tube. The cells were centrifuged at 500 rpm for 5 minutes and the supernatant was 

carefully pipetted out. The cells were redistributed in restoration buffer and 1 ml 

aliquots were taken for the normoxic group. The cells were then centrifuged at 500 

rpm for 5 minutes and the supernatant was removed. The cells were incubated in 15 

mls of hypoxic buffer (12 mM KCL, 0.49 mM MgCl2, 0.9 mM CaCl2, 4 mM HEPES, 

10 mM Deoxyglucose and 20 mM lactate and placed into a hypoxic chamber pre-

heated at 37 °C. The air in the chamber was removed by a suction pump and replaced 

the 5% CO2 balanced in Argon. After 6 hours of hypoxia the cells were removed from 

the chamber and centrifuged at 500 rpm for 5 minutes. The supernatant was removed 

and replaced with 24 ml of restoration buffer. The pellet was redistributed and 1ml 

aliquots were pipetted into a 24 well sterile plate. While the cells were being 

centrifuged the A3 agonist 2-Cl-IB-MECA (1 nM, 10 nM, 100 nM) and cell signalling 

pathway inhibitors (Wortmannin 5 nM, 100 nM; Rapamycin 2 nM; UO126 10 µM) 

were defrosted and aliquotted into the appropriate wells in the 24 well plate as 

described in figure 2.1.f. Cells were also aliquotted for the normoxic group, unstained 

group and the vehicle control group.  
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Figure 2.1.f. Protocol for FACS analysis of isolated adult rat cardiac myocytes 
subjected to 6 hours of hypoxia and 18 hours reoxygenation. The A3AR agonist 
2-CL-IB-MECA was administered at reoxygenation or post-reoxygenation in the 
presence or absence of the PI3K inhibitor Wortmannin or the MEK1/2 inhibitor 
UO126.  
 

Where agonists and inhibitors were added together the inhibitor was added 1 minute 

prior to adding the agonist.  Once the cell suspension was added to each well the 

suspension was pipetted twice to ensure the drugs are fully distributed.  Cells were 

reoxygenated in the incubator for 18 hours before undergoing Fluorescence Activated 

Cell Sorting Analysis (FACS) for assessment of cellular apoptosis, Cleaved-caspase-3 

activity and necrosis.  
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2.5.0. Preparation for Fluorescence Activated Cell Sorting Analysis - 

Cell Death 

Adult rat cardiomyocytes were exposed to 6 hours of hypoxia followed by 18 hours of 

reoxygenation after which the myocytes were labelled with fluorochromes purchased 

from Invitrogen (Paisley, UK).  SYTOX green dye binds to cellular nucleic acids in 

necrotic cells and is also impermeable to live and early apoptotic cells. Apoptotic 

myocytes were measured using Annexin V Allophycocyanin that has high affinity for 

phosphatidylserine (PS) exposed on the outer membrane of apoptotic cells. Resazurin 

C12 is reduced by viable cells. Cells were analysed by flow cytometric analysis using 

the FACS Calibur™ flow Cytometer.  

 

To prepare the cells for FACS analysis the cells need to undergo a set of processes.         

1 x Annexin V buffer was prepared from 5x stock by diluting 4 ml 5X Annexin V (50 

mM HEPES, 700mM NaCL, 12.5 mM CaCL2, pH 7.4) with 16 ml ddH20. 

Fluorchromes were prepared as follows: 50 µM C12 resazurin (component B) was 

prepared by adding l µl of 1 mM C12 resazurin stock into 19 µl ddH20, 1 µM Sytox 

Green  stain (component C) was prepared by adding 5 µl of 10 µM Sytox Green  stain 

into 45µl 1X Annexin V buffer. Eppendorffs containing cells were wrapped in foil to 

prevent loss of fluorescence.  Eppendorffs were labelled and the cell suspensions were 

transferred from the 24 well plates to their respective Eppendorffs.  

 

Eppendorffs were centrifuged at 500 rpm for 5 minutes, supernatant was removed and 

the cells were washed by resuspending with 300 µl Annexin V buffer to remove non-

attached fluorochromes. Cells were centrifuged again at 500 rpm for 5 minutes. The 

supernatant was removed followed by the addition of 100 µl Annexin buffer. The 
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pellet was resuspended followed by the addition of 1 µl Component B, 1 µl 

Component C and 5µl Component A.  Once the components were added the 

Eppendorffs were wrapped in foil and incubated at 37 °C for 15 min.   

 

Finally, 400 µl Annexin V buffer added the Eppendorffs preparing the cells for 

analysis on the FACS Calibur flow cytometer. The fluorochromes were chosen 

because they have different excitation and emission wavelengths their emission peaks 

did not overlap. Therefore, the cell population were analysed on the FL-2 and FL-4 

channels suitable for the different fluorochromes. 

 

 The software was setup to count 10,000 events. Quadrants were plotted as the 

different fluorochromes would bind specifically to live, apoptotic and necrotic cell 

populations. The protocol was carried out according to the manufacturer’s instructions 

(Invitrogen. Paisley). 

 

2.6.0. Preparation for FACS Analysis – cleaved-caspase 3  

To determine the activity of cleaved caspase 3 in adult rat myocytes, cells underwent 

hypoxia/reoxygenation protocol as above. At the end of reoxygenation cells were 

transferred from the 24 well plates into labelled Eppendorffs. Cells were centrifuged 

at 1200 rpm for 2min. The supernatant was aspirated and the pellet was resuspended 

in 250 µl phosphate buffered saline. Then the cells were fixed by the addition of 

250µl of 6 % formaldehyde to give a final formaldehyde concentration of 3%. This 

was done in order to fix the cell and prevent further cellular activities. The cells were 
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placed into the incubator for 10 minutes at 37 °C and immediately after the 

Eppendorffs were placed on ice for 1 minute.  

 

The Eppendorffs were centrifuged at 1200 rpm for 2 minutes after which the 

supernatant was aspirated and the cells were permeabilised in order to allow the 

antibody to enter the cell by resuspending the cells in ice-cold methanol (90%).  Cells 

were incubated on ice for 30 minutes and then centrifuged at 1200 rpm for 2 minutes. 

The supernatant was removed and the cells were washed in 200 µl incubation buffer 

(0.5% BSA in PBS stored @ 4°C), this step was repeated once. The Eppendorffs were 

centrifuged at 1200 rpm for 2 minutes followed by the removal of the supernatant. 

The cells were blocked by the addition of 100µl of incubation buffer for 10 minutes at 

room temperature. The cleaved-caspase-3 ASP175 (5A1) rabbit monoclonal primary 

antibody (New England Biolabs. Hitchin) was added to the blocking buffer to give a 

dilution factor of 1:100 and incubated at room temperature for 60 minutes.  

 

The Eppendorffs were centrifuged again at 1200 rpm for 2 minutes followed by the 

removal of supernatant and again the cells were washed twice in incubation buffer as 

before.  The cells were resuspended in 200 µl of incubation buffer containing the 

Alexa Fluor® 488 secondary antibody (Invitrogen) to give a dilution factor of 1:1000.  

The samples were covered in foil and allowed to incubate for 30 minutes a room 

temperature. The cells were centrifuged at 1200 rpm for 2 minutes and then washed in 

incubation buffer. The cells were centrifuged at 1200 rpm and the supernatant was 

removed.  
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Finally, the cells were resuspended in 500 µl of phosphate buffered saline and 

analysed on the flow cytometer on the FL-1 channel. Alexa Flour 488 is excited on 

FL-1 at 495 nM and emits at 519 nM. Histograms were plotted for each of the groups 

showing the mean fluorescence for 10,000 cell counts, indicating cleaved-caspase 3 

activity. The protocol was carried out according to the manufacturer’s instructions 

(New England Biolabs. Hitchin).  

 

2.7. Tissue preparation for Western Blotting 

Isolated rat hearts underwent ischaemia and reperfusion for a specified time period 

where 2-CL-IB-MECA was administered at reperfusion, 15 or 30 minutes post-

reperfusion in the presence and absence of the PI3K inhibitor Wortmannin or 

MEK1/2 inhibitor UO126 or mTOR/p70S6 kinase inhibitor Rapamycin (See figure 

2.1.g.)   

 

At the end of the specified reperfusion period hearts were infused with 0.5ml 0.25% 

Evans Blue. This was to delineate the non-risk area staining blue and the risk area 

staining pink/red. Hearts were removed from the apparatus and the risk area was 

quickly excised using a sterile scalpel. The tissue was freeze clamped in liquid 

nitrogen using a Wollenberger freeze clamp pre cooled in liquid nitrogen.  The tissue 

was wrapped in silver foil, labelled and stored at –80°C. 
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Figure 3.1.g. Protocol  used to isolate heart tissue for western blot analysis (con’d) 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.g. Protocol  used to isolate heart tissue for western blot analysis 

(con’d) 
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Figure 2.1.g. Protocol used to isolate heart tissue for western blot analysis  
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2.8. Western blotting 

Briefly, 50 mg of frozen ventricular tissue was isolated and homogenised in 250 µl of 

suspension buffer (NaCl 100 mM, Tris 10 mM (pH 7.6), EDTA 1 mM (pH 8), 

Sodium pyrophosphate 2 mM, sodium fluoride 2 mM, β-glycerophospahte 2 mM, 

PMSF 0.1 mg/ml, aprotinin and leupeptin 0.1 µg/ml) using a IKA Labortechnik T25 

homogeniser. Samples were centrifuged using a Jouan centrifuge (5 min; 11000 rpm). 

The supernatant was further diluted in 2 x sample buffer (Tris 100mM (pH 6.8), DTT 

200mM, SDS 2 %, Bromophenol blue 0.2 % and glycerol 20 %) and heated to 95 °C. 

Protein concentrations were estimated using BCA protein assay reagent (Pierce). 

 

A total protein of 40 µg for each sample was separated on a 12.5% SDS-PAGE gel  

using a BioRad mini protean II system (1 hour at 200V) and transferred to a Hybond 

Poly vinyl difluude membrane (Amershem Biosciences, UK) using a BioRad trans 

blot system (1h at 100V in 25 mM Tris, 192 mM Glycine and 20 % methanol.  After 

the completion of transfer the membrane was washed and blocked for 1 hour using 

blocking buffer (15ml TBST, 1.25g Marvel). Blots were washed and were incubated 

with primary rabbit polyclonal antibody (phospho-ERK1/2 Thr202/Thr204), Akt (Ser 

473), P70S6 kinase (Thr 389), BAD (Ser136) or BAD (Ser 112) and subsequently 

probed with horseradish peroxidise conjugated anti-rabbit antibody. 

 

 Equal loading was confirmed by ponceau S staining of membranes. All antibodies 

were purchased from New England Biolabs, UK. Proteins were detected by enhanced 

chemoluminesence  ECL Plus (Amersham Biosciences). Blots were exposed to 

Hyperfilm ECL (Amersham, Buckinghamshire, UK) and developed using Kodak 

developing/fixing solution (Sigma, Poole. UK). Equal loading and transfer efficiency 



87 

was assessed by Ponceau S staining prior to primary antibody application. Figure 

2.1.h shows a western blot following autoradiography. The blot shows the molecular 

marker and ERK1/2.  Following Autoradiography blots were stripped and probed with 

β-actin to confirm equal loading. Films were scanned and densitometry was assessed 

using the NIH Image J (v1.33) software. 

 

Fig 2.1.h. Illustration of a western blot probed for phosphoERK1/2 with a 
biotinylated molecular marker. 

 

 

2.9. Statistical Analysis 

All values were expressed as mean ± SEM (Standard Error of the Mean). Infarct size, 

band densities, cell populations were analysed using SPSS 12 one-way ANOVA with 

Fishers Protected Least Significant Difference test for multiple comparisons. 

Differences were considered significant at P<0.05. 

 

Haemodynamics where analysed by statistical analysis using the statistical package 

SPSS version 13. Data were analysed using a two way ANOVA. 
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Chapter 3:  2-CL-IB-MECA protects the myocardium from 
ischaemia reperfusion injury via MEK 1/2 – ERK 1/2 cell survival 
pathway. 
 
 
3.1.0. Haemodynamics Data Analysis 

Haemodynamic data including heart rate, left ventricular developed pressure and 

coronary flow were collected for all experimental groups. Administration of the A3 

agonist 2-Cl-IB-MECA (1nM) in the presence and absence of cell signalling pathway 

inhibitors (U0126, Wortmannin and Rapamycin) was seen to have no significant 

effect on the haemodynamics measured when analysed statistically (Fig 3.1.1, 3.1.2, 

3.1.3).   

 

 

Figure 3.1.1. The chart shows the changes in left ventricular developed pressure 
in isolated rat hearts subjected to 35 minutes of ischaemia and 120 minutes 
reperfusion. The A3AR agonist 2-CL-IB-MECA was administered at reperfusion 
the presence and absence of the PI3K inhibitor Wortmannin or the MEK1/2 
inhibitor UO126. Results are expressed as mean of the stabilisation period ± 
SEM.  
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Figure 3.1.2. The chart shows the changes in Coronary flow in isolated rat hearts 
subjected to 35 minutes of ischaemia and 120 minutes reperfusion. The A3AR 
agonist 2-CL-IB-MECA was administered at reperfusion the presence and 
absence of the PI3K inhibitor Wortmannin or the MEK1/2 inhibitor UO126. 
Results are expressed as mean of the stabilisation period ± SEM.  
 

 

Figure 3.1.3. The chart shows the changes in heart rate in isolated rat hearts 
subjected to 35 minutes of ischaemia and 120 minutes reperfusion. The A3AR 
agonist 2-CL-IB-MECA was administered at reperfusion the presence and 
absence of the PI3K inhibitor Wortmannin or the MEK1/2 inhibitor UO126. 
Results are expressed as mean of the stabilisation period ± SEM.  
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3.2.0. Results - Infarct Size to Risk Ratio Analysis 

3.2.1. Effect of the A3 adenosine receptor agonist 2-CL-IB-MECA 
when administered at reperfusion in the rat myocardial model of 
ischaemia reperfusion injury.  
 

In this study we investigated whether the MEK1/2 – ERK1/2 cell survival pathway is 

involved in protecting the myocardium from ischaemia reperfusion injury when 2-CL-

IB-MECA (1nM) was administered throughout reperfusion.  

 

Dimethyl sulphoxide was used as a vehicle to dissolve the A3AR agonist 2-CL-IB-

MECA and the inhibitors UO126, Wortmannin and Rapamycin used in the studies. 

Studies were carried out to determine the effect of dimethyl sulphoxide (final 

concentration 0.01%) on infarct size to risk ratio (%) in the isolated perfused rat heart. 

Our studies are in accordance with previous studies which showed the solvent to have 

no significant effect on infarct size to risk ratio (%) compared to control hearts (data 

not shown (Kis et al., 2003). 

 

Isolated perfused rat hearts underwent 35 minutes of ischaemia followed by 120 

minutes of reperfusion where the A3 agonist 2-CL-IB-MECA (1 nM) was 

administered throughout the reperfusion period. The study showed that the 

administration of the highly specific A3AR agonist 2-Cl-IBMECA (1 nM) throughout 

the reperfusion period significantly decreased infarct size to risk ratio compared to the 

non-treated control group (32 ±  4% 2-CL-IB-MECA vs. 65 ± 2 % control hearts 

P<0.01) , a reduction by  51 % Figure.3.2.a.  
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** P<0.01 2-CL-IB-MECA vs. Control.  

Results are shown as mean ± SEM from 6-9 individual experiments. 
 
Figure 3.2.a. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA treated ischaemic reperfused hearts. Isolated perfused rat hearts 
where subjected to 35 minutes of ischaemia and 120 minutes of reperfusion 
where the A3 adenosine receptor 2-Cl-IB-MECA (1 nM) was administered 
throughout reperfusion.  
 
 
3.3.2. Role of the MEK1/2 – ERK1/2 cell survival pathway in 2-CL-
IB-MECA mediated protection when administered at reperfusion in 
the isolated perfused rat heart.   
 

As mentioned earlier numerous studies have shown that the administration of 

pharmacological agents at reperfusion to upregulate the MEK 1/2 – ERK 1/2 cell 

survival signalling pathway conferring cardioprotection Hausenloy and Yellon. 2004).   

 

To determine whether the protection afforded by the A3AR agonist 2-Cl-IBMECA (1 

nM) when administered throughout reperfusion was associated with enhanced 

MEK1/2 – ERK1/2 activity isolated perfused rat hearts undergoing 35 minutes of 

ischaemia and 120 minutes of reperfusion were perfused with 2-CL-IBMECA (1 nM) 
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in the presence and absence of the MEK1/2 inhibitor UO126 (10 µM) throughout 

reperfusion.  Administration of 2-CL-IB-MECA (1 nM) in the presence MEK 1/2  

inhibitor UO126 (10 µM) significantly abrogated the protection afforded by 2-CL-IB-

MECA (1 nM) when administered alone at reperfusion (32 ± 4% 2-CL-IB-MECA vs. 

59 ± 9 % UO126 + 2-CL-IB-MECA P<0.05) (Figure.3.2.b). 

 

Administration of UO126 (10 µM) alone throughout reperfusion had no significant 

effect on infarct size compared to control (55 ± 8 % UO126 vs. 65 ± 2 % Control 

P>0.05) (Figure.3.2.b). The data suggest that MEK 1/2 – ERK 1/2 dependant 

signalling pathways are involved in 2-CL-IB-MECA (1 nM) mediated 

cardioprotection when administered at reperfusion. 

 
**P<0.01 2-CL-IB-MECA vs. Control *P<0.05 UO126, UO126+2-CL-IB-MECA 

vs. 2-CL-IB-MECA. Results are shown as mean ± SEM. 
 
Figure 3.2.b. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-IB-
MECA ischaemic reperfused hearts. Isolated perfused rat hearts where 
subjected to 35 minutes of ischaemia and 120 minutes of reperfusion were the A3 
adenosine receptor 2-Cl-IB-MECA (1 nM) was administered throughout 
reperfusion in the presence and absence of the MEK 1/2 inhibitor UO126 (10 
µM)  
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3.3.0. Role of p70S6 kinase in 2-CL-IB-MECA mediated protection 
when administered at reperfusion. 
 

A number of studies have shown the p70S6K to be a downstream effector protein of 

the MEK 1/2 – ERK 1/2 cell survival pathway. Upregulation of p70S6K activity leads 

to the increase in protein translation that may be involved in protection. 

 

To determine whether the protection afforded by 2-CL-IB-MECA (1 nM) when 

administered at reperfusion involved the recruitment of p70S6K,  isolated perfused rat 

hearts undergoing 35 minutes of ischaemia and 120 minutes of reperfusion were 

perfused with 2-CL-IBMECA (1 nM) in the presence and absence of the mTOR 

inhibitor Rapamycin (2 nM) throughout reperfusion.  

 

The protection afforded by the A3 agonist 2-CL-IB-MECA (1 nM) when administered 

at reperfusion was not abolished in the presence of the mTOR inhibitor Rapamycin (2 

nM) (32 ± 4 2-Cl-IB-MECA % vs. 34 ± 10 % 2-CL-IB-MECA + Rapamycin, P>0.05) 

(Figure 3.3). Administration of Rapamycin (2 nM) alone throughout reperfusion had 

no significant effect on infarct size to risk ratio (%) compared to control (59 ± 2% vs. 

65 ± 2 % respectively, P>0.05) (Figure 3.3). 
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**P<0.01 2-CL-IB-MECA, Rapamycin+ 2-CL-IB-MECA vs. Control.  

Results are shown as Mean ± SEM. 
 
Figure 3.3. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA (1 nM) treated hearts. Isolated perfused rat hearts were subjected to 
35 minutes of ischaemia and 120 minutes of reperfusion where the A3 adenosine 
receptor 2-Cl-IB-MECA (1 nM) was administered throughout reperfusion in the 
presence and absence of the mTOR inhibitor Rapamycin (2 nM).  
 
 
3.4.0. Isolated adult rat cardiomyocyte model of hypoxia 
reoxygenation injury.   
 

3.4.1. Effect of 2-CL-IB-MECA when administered at reoxygenation 
in adult rat cardiomyocytes subjected to hypoxia reoxygenation.  
 

Isolated adult rat cardiac myocytes were subjected to different protocols as described 

in figure 2.1.e. Isolated cells were either allowed to reoxygenate for 24 hours 

(normoxic group) or exposed to 6 hours of hypoxia followed by 18 hours of 

reoxygenation (Hyp/Reox group) in the presence and absence of the A3AR agonist 2-

CL-IB-MECA or cell signalling pathway inhibitors that were administered either at 

reoxygenation or post-reoxygenation. At the end of reoxygenation the myocytes were 
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assessed on the flow cytometer to determine the percentage of live, apoptotic and 

necrotic cells.   

 

Isolated adult rat cardiac myocytes subjected to 6 hours of hypoxia followed by 18 

hours of reoxygenation resulted in a 320% increase in the number of apoptotic cells 

compared to the non-hypoxic normoxic group (42 ± 5 % Hyp/Reox vs. 13 ± 1% 

Normoxia, P<0.001) (Figure 3.4.a). Isolated adult rat cardiac myocytes subjected to 6 

hours of hypoxia followed by 18 hours of reoxygenation also resulted in a 310% 

increase in the number of necrotic cells compared to the non-hypoxic normoxic group 

(32 ± 2% Hyp/Reox vs. 11 ± 2 % Normoxia, P<0.001) (Figure 3.4.a).   

 

***P<0.001 Hyp/Reox vs. Normoxia. 
 
Figure 3.4.a. Assessment of apoptosis and necrosis in isolated adult rat 
cardiomyocytes subjected to 24 hours of oxygenation (Normoxia) or 6 hours 
hypoxia and 18 hours of reoxygenation (hyp/reox). Results are shown as Mean ± 
SEM and are expressed as a percentage of 10,000 cells counted from 9 individual 
experiments.  
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To ascertain the role of A3ARs in limiting the deleterious consequences of 

reoxygenation injury adult rat cardiac myocytes were subjected to 6 hours of hypoxia 

and 18 hours of reoxygenation where the A3AR agonist 2-Cl-IB-MECA (1 nM, 10 

nM, 100 nM) was administered throughout the reoxygenation period.  Different doses 

of 2-CL-IB-MECA were administered at reperfusion to determine whether increasing 

the dose increased 2-CL-IB-MECA’s cytoprotective effect. 

 

Administration of the A3 agonist 2-Cl-IB-MECA (1 nM) throughout reoxygenation 

significantly decreased the percentage of apoptotic myocytes compared to the 

Hyp/Reox group (26 ± 6% 2-CL-IB-MECA vs. 42 ± 5 % Hyp/Reox, P<0.001) (Figure 

3.4.a). Administration of the A3 agonist 2-Cl-IB-MECA (1nM) throughout 

reperfusion also significantly decreased the percentage of necrotic myocytes 

compared to the Hyp/Reox group (16 ± 4 % 2-CL-IBMECA vs. 32 ± 2 % Hyp/Reox, 

P<0.001) (Figure 3.4.b).  At higher concentrations of the A3AR agonist 2-Cl-IB-

MECA (10 nM and 100 nM) myocytes were significantly protected from 

reoxygenation injury in an anti-apoptotic and anti-necrotic manner. Administration of 

2-CL-IB-MECA (10 nM) throughout reoxygenation significantly decreased the 

number apoptotic myocytes compared to the Hyp/Reox group (26 ± 8% 2-CL-

IBMECA vs. 42 ± 5 % Hyp/Reox, P<0.001) Figure 3.4.b. Administration of 2-CL-IB-

MECA (10nM) throughout reoxygenation significantly decreased the number of 

necrotic myocytes compared to the Hyp/Reox group (17 ± 6% 2-CL-IB-MECA vs. 32 

± 2 Hyp/Reox, P<0.001) (Figure 3.4.b). Administration of 2-CL-IB-MECA (100 nM) 

throughout reoxygenation significantly decreased the number of apoptotic cells 

compared to the Hyp/Reox group (19 ± 3 % 2-CL-IB-MECA vs. 42 ± 5% Hyp/Reox 

P<0.001) (Figure 3.4.b). Furthermore, administration of 2-CL-IB-MECA (100 nM) 
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throughout reoxygenation significantly decreased the number of necrotic cells 

compared to the Hyp/Reox group (23 ± 2 % 2-CL-IB-MECA vs. 32 ± 2 % Hyp/Reox, 

P<0.001) (Figure 3.4.b).  Characterisation of the effect of the A3 agonist at different 

concentrations 2-CL-IB-MECA (1 nM, 10 nM, 100 nM) in attenuating hypoxia 

reoxygenation injury showed all the concentrations to be cardioprotective. 

Furthermore, that there was no dose response relationship observed between the 

different concentrations of 2-CL-IBMECA in protecting myocytes from hypoxia 

reoxygenation injury when administered at reoxygenation (P>0.05) (Figure 3.4.b).  

 

Previous studies have shown concentrations of 2-CL-IB-MECA greater then 10 nM 

cause vasodilation in the Langendorff isolated perfused rat heart model  that were not 

seen at the 1 or 10 nM concentration (Maddock et al., 2003). Therefore 2-CL-IB-

MECA was used at the 1 nM concentration in all experiments unless stated.  
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*** P<0.001  Hyp/Reox, 2-CL-IB-MECA (1nM, 10nM, 100nM)  vs. Normoxia. 
#P<0.001 2-CL-IB-MECA (1nM, 10nM, 100nM) vs. Hyp/Reox. 

 
Figure 3.4.b. Assessment of apoptosis and necrosis in isolated adult rat 
cardiomyocytes subjected to 6 hours hypoxia and 18 hours of reoxygenation. The 
A3AR agonist 2-CL-IB-MECA (1 nM; 10 nM; 100 nM) was added at the onset of 
reoxygenation. Results are shown as Mean ± SEM and are expressed as a 
percentage of 10,000 cells counted from 9 individual experiments.  
 
3.5.0. The role of MEK 1/2 – ERK 1/2 cell survival pathway in 2-CL-
IB-MECA mediated cardioprotection in adult rat cardiomyocytes 
subjected to 6h hypoxia and 18h reoxygenation.  
 

Administration of the A3 adenosine receptor agonist 2-Cl-IB-MECA (1 nM) at 

reoxygenation significantly decreased the number of apoptotic and necrotic myocytes 

compared to the non-treated Hyp/Reox group (Figure 3.4.b). To determine which 

mechanisms were involved in 2-CL-IB-MECA (1 nM) mediated cardioprotection we 

assessed the role of the MEK 1/2 – ERK 1/2 cell survival pathway using the MEK1/2 

inhibitor UO126 (10 µM). Isolated myocytes were subjected to 6 hours of hypoxia 

followed by 18 hours of reoxygenation and were incubated with the A3 agonist 2-CL-
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IB-MECA (1 nM)  in the presence and absence of the MEK 1/2 inhibitor UO126 (10 

µM) throughout the reoxygenation period. 

 

Administration of the A3 agonist 2-CL-IB-MECA (1 nM) throughout reoxygenation 

in the presence of the MEK 1/2 inhibitor UO126 (10 µM) significantly abolished the 

anti-apoptotic effect of 2-CL-IB-MECA (1 nM) compared to when administered alone 

throughout reoxygenation (38 ± 4 % 2-CL-IB-MECA + UO126 vs. 26 ± 6 % 2-CL-

IB-MECA, P<0.05) (Figure 3.5.a  and 3.6). Administration of the A3 agonist 2-CL-

IB-MECA (1 nM) throughout reoxygenation in the presence of the MEK 1/2 inhibitor 

UO126 (10µM) also significantly abolished the anti-necrotic effect of 2-CL-IB-

MECA (1nM) compared to when administered alone throughout reoxygenation (25 ± 

3 % 2-CL-IB-MECA + UO126 vs. 16 ± 4 % 2-CL-IB-MECA, P<0.05) (Figure 3.5.b 

and 3.6.)  

 

Administration of UO126 (10 µM) alone throughout reoxygenation had no significant 

effect on cellular apoptosis when compared to the Hyp/Reox group (42 ± 6 % UO126 

vs. 42 ± 5 % Hyp/Reox, P>0.05) (Figure 3.5.a). Administration of UO126 (10 µM) 

alone throughout reoxygenation was seen to significantly decrease the number of cells 

dying by cellular necrosis when compared to the Hyp/Reox group (23 ± 3 % UO126 

vs. 32 ± 2 % Hyp/Reox P<0.01) (Figure 3.5. b).  

 

Figure 3.6 shows representative scatter graphs of isolated adult rat cardiac myocytes 

analysed by flow cytometry. The scatter graphs show myocytes that are normoxic or 

have undergone 6 hours of hypoxia and 18 hours of reoxygenation. Furthermore, the 

graphs show hypoxic reoxygenated rat cardiac myocytes where the A3 agonist 2-CL-
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IB-MECA (1 nM) was administered at the onset of reoxygenation in the presence and 

absence of the MEK 1/2  inhibitor UO126 (10 µM).   

 

 
***P<0.001 Hyp/Reox, 2-CL-IB-MECA, UO126 +  2-CL-IB-MECA, UO126 vs. 

Normoxia. £ P<0.001  2-CL-IB-MECA vs. Hyp/Reox. * P<0.05 UO126+ 2-CL-IB-
MECA vs. 2-CL-IB-MECA. 

 
Figure 3.5.a. Assessment of Apoptosis in isolated adult rat cardiomyocytes 
subjected to 6 hours hypoxia and 18 hours of reoxygenation. Assessing the role of 
the MEK1/2 – ERK1/2 cell survival pathway in 2-CL-IB-MECA mediated 
cardioprotection. The A3AR agonist 2-CL-IB-MECA (1 nM) was administered at 
reoxygenation in the presence and absence of the MEK 1/2 inhibitor UO126 (10 
µM). Results are shown as Mean ± SEM and are expressed as a percentage of 
10,000 counted from nine individual experiments.  
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***P<0.001 Hyp/Reox, 2-CL-IB-MECA, UO126+ 2-CL-IB-MECA, UO126 vs. 
Normoxia. *P<0.05 UO126 + 2-CL-IB-MECA  vs. 2-CL-IB-MECA **P<0.01 

UO126 vs. Hyp/Reox £P<0.001  2-CL-IB-MECA vs. Hyp/Reox. 
 
Figure 3.5.b. Assessment of necrosis in isolated adult rat cardiomyocytes 
subjected to 6 hours hypoxia and 18 hours of reoxygenation. Assessing the role of 
the MEK1/2 – ERK1/2 cell survival pathway in 2-CL-IB-MECA mediated 
cardioprotection. The A3AR agonist 2-CL-IB-MECA (1 nM) was administered at 
reoxygenation in the presence and absence of the MEK 1/2 inhibitor UO126 (10 
µM). Results are shown as Mean ± SEM and are expressed as a percentage of 
10,000 counted from nine individual experiments.  

0 

5 

10 

15 

20 

25 

30 

35 

40 

%
 T

ot
al

 C
el

l P
op

ul
at

io
n 

 

NORMOXIA HYP/REOX 2-CL-IB-MECA 
 

UO126 + 
2-CL-IB-MECA  

UO126 
 

*** 

*** 
£ 

*** 
* 

*** 
£ 
** 

HYP / REOX 

16 % 
11 % 

9 % 



102 

 

 

Necrosis 

Apoptosis Live 

Quad Events Gated                   
(%)

UL 396 6.4
UR 887 14.4
LL 4057 65.9
LR 815 13.2

Quad Events Gated                   
(%)

UL 75 1.0
UR 1920 24.7
LL 1473*** 19.0
LR 4299 55.4

HYPOX/REOX NORMOXIA 

Quad Events Gated                   
(%)

UL 310 3.8
UR 1934 23.7
LL 4893# 60.1
LR 1010 12.4

Quad Events Gated                   
(%)

UL 113 1.4
UR 2449 29.4
LL 1363* 16.4
LR 4407 52.9

2-CL-IBMECA (1nM) 2-CL-IBMECA (1nM) 
 + UO126 (10µM) 

Apoptosis Live 

* P<0.05  2-CL-IB-MECA+ UO126 vs. 2-CL-IB-MECA (t-test).  #P<0.001  2-
CL-IB-MECA  vs. Hyp / Reox. ***P<0.001 Hyp/Reox vs. Normoxia. 

 
Figure 3.6. Representative scatter graphs from the FACS flow cytometer 
showing isolated adult rat cardiomyocytes subjected to Normoxia or 6 hours 
of hypoxia followed by 18 hours of reoxygenation. The A3 adenosine receptor 
agonist 2-Cl-IB-MECA (1 nM) was administered at reoxygenation in the 
presence and absence of the MEK1/2 inhibitor UO126 (10 µM). Myocytes 
were treated with fluorochromes specific for apoptosis (Lower Right), 
necrosis (Upper Right) and Live cells (Lower left +Upper Left) (10µM).  
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3.6.0. Effect of 2-CL-IB-MECA when administered at reperfusion on 
ERK 1/2 phosphorylation during different time intervals after 
reperfusion in perfused rat hearts. 
 

In order to investigate whether the ERK 1/2 are activated by 2-CL-IB-MECA (1 nM) 

isolated perfused rat heart underwent 35 minutes of ischaemia reperfusion for 5, 10 or 

20 minutes of reperfusion where the A3 agonist 2-CL-IB-MECA was administered at 

the onset of reperfusion. In the control group hearts underwent 35 minutes of 

ischaemia and 5, 10 or 20 minutes of reperfusion. Basal ERK1/2 activity was assessed 

by perfusing hearts for 60 minutes.  

 

 

Administration of the A3 agonist 2-Cl-IB-MECA (1 nM) at reperfusion significantly 

upregulated the phosphorylation of ERK1 in rat hearts subjected to 35 minutes of 

ischaemia and 5 minutes (P<0.05), 10 minutes (P<0.01) and 20 minutes (P<0.001) of 

reperfusion compared to their respective time matched controls (Figure 3.7.a, 3.7.b).  

 

This upregulation of ERK1 phosphorylation by 2-CL-IB-MECA (1 nM) after 10 

minutes of reperfusion was significantly abrogated by the co-administration of the 

MEK1/2 inhibitor UO126 (10 µM) (P<0.01) (Figure 3.7.a, 3.7.b). Administration of 

UO126 (10 µM) alone at reperfusion significantly decreased ERK1 phosphorylation 

compared to time matched controls P<0.001 (Figure 3.7.a, 3.7.b).  
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* P<0.05 MECA 5 minutes Reperfusion vs. Control 5 minutes Reperfusion. 

**P<0.01 MECA 10 minutes reperfusion vs. Control 10 minutes Reperfusion. 
*** P<0.001 MECA 10 minutes reperfusion vs. Control 20 minutes Reperfusion. 

$ P<0.001UO126+MECA, UO126 vs. MECA 10 minutes Reperfusion.  
# P<0.001 UO126 vs. Control 10 minutes reperfusion. 

 
Figure 3.7.a. Assessment of ERK 1 phosphorylation in isolated hearts subjected 
60 minutes of perfusion, 35 minutes of ischaemia followed by 5, 10 or 20 minutes 
of reperfusion in the presence (MECA) and absence (control) of the A3 Agonist 
2-CL-IB-MECA (1 nM) (MECA). The A3AR agonist 2-CL-IB-MECA (1 nM) 
was administered at reperfusion in the presence and absence of MEK 1/2 
inhibitor UO126 (10µM). Results are shown as Mean ± SEM three individual 
experiments.  
 

 

 

 

 

 

 

 

 

0% 

50% 

100% 

150% 

200% 

250% 

300% 

350% 
Fo

ld
 In

cr
ea

se
 p

-E
R

K
 (1

%
 o

f b
as

al
) 

Basal Con  
5' Rep 

Con  
10' Rep 

Con  
20' Rep 

MECA  
5' Rep 

MECA  
10' Rep 

MECA  
20' Rep 

UO126+ 
MECA  

10' Rep 

UO126+ 
10' Rep 

** 

*** 

 
$ 

# 
$ 

* 

Ischaemia / Reperfusion 

p-ERK 1 
p-ERK 2 



105 

 

** P<0.01 MECA 10 minutes Reperfusion vs. Control 10 minutes Reperfusion. 
*** P<0.001 UO126 +MECA vs. MECA 10 minutes Reperfusion. 

# P<0.001 UO126 vs. Control 10 minutes reperfusion. 
 
 
Figure 3.7.b. Comparison of ERK 1 phosphorylation in isolated hearts subjected 
60 minutes perfusion (Basal), 35 minutes of ischaemia followed by 10 minutes of 
reperfusion in the presence (Meca) and absence (Con) of the A3 Agonist 2-CL-
IB-MECA (1 nM) (MECA) was administered at reperfusion in the presence and 
absence of MEK 1/2 inhibitor UO126 (10µM). Graph shows percentage change 
in ERK1 phosphorylation in ischaemic reperfused hearts following different 
treatments. Results are shown as Mean ± SEM three individual experiments.  
 
 
Administration of the A3 agonist 2-Cl-IB-MECA (1 nM) at reperfusion significantly 

up regulated the phosphorylation of ERK2 after 10 minutes of reperfusion compared 

to non-treated time matched control hearts P<0.01 (Figure 3.8.a, 3.8.b). This 

upregulation of ERK2 phosphorylation by 2-CL-IB-MECA (1nM) after 10 minutes of 

reperfusion was significantly abrogated by the co-administration of the MEK1/2 

inhibitor UO126 (10 µM) P<0.001 (Figure 3.8.a., 3.8.b). Administration of UO126 

(10 µM) alone at the onset of reperfusion reduced ERK2 phosphorylation compared 
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to time matched controls but failed to reach statistical significance (P>0.05) (Figure 

3.8.a, 3.8.b).  

 

** P<0.01 MECA 10 minutes reprfusion vs. Control 10 minutes Reperfusion. 
***P<0.001 UO126 + MECA vs. MECA 10 minutes Reperfusion. 

 
Figure 3.8.a. Assessment of ERK2 phosphorylation in isolated hearts subjected 
60 minutes of perfusion, 35 minutes of ischaemia followed by 5, 10 or 20 minutes 
of reperfusion in the presence  (Meca) and absence (Con) of the A3 Agonist 2-CL-
IB-MECA (1 nM) (MECA). The A3AR agonist 2-CL-IB-MECA (1 nM) was 
administered at reperfusion in the presence and absence of MEK 1/2 inhibitor 
UO126 (10µM). Results are shown as Mean ± SEM three individual experiments. 
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** P<0.01 MECA 10 minutes reperfusion vs. Control 10 minutes Reperfusion. 
*** P<0.001 UO126 +MECA vs. MECA 10 minutes Reperfusion. 

 
Figure 3.8.b. Assessment of ERK2 phosphorylation in isolated hearts subjected 
60 minutes perfusion (Basal), 35 minutes of ischaemia followed by 10 minutes of 
reperfusion where the A3 Agonist 2-CL-IB-MECA (1 nM) was administered at 
reperfusion in the presence (MECA) and absence (Con) of MEK 1/2 inhibitor 
UO126 (10µM). Graph shows percentage change in ERK2 phosphorylation in 
ischaemic reperfused hearts following different treatments. Results are shown as 
Mean ± SEM three individual experiments.  
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3.7.1. BAD (Ser112) phosphorylation during different time intervals 
post reperfusion  
 
Administration of the A3 agonist 2-Cl-IB-MECA (1 nM) at reperfusion significantly 

up-regulated the phosphorylation of BAD (Ser112) after 5 minutes, 10 minutes and 20 

minutes of reperfusion compared to time matched controls, P<0.01 (Figure 3.9).    

 
** P<0.01 MECA 5,10,20 minutes reperfusion vs. Control 5,10,20 minutes 

reperfusion . #P<0.01 MECA 5,10,20 minutes reperfusion vs. Basal. 
 

Figure 3.9. Assessment of BAD (Ser 112) phosphorylation  in isolated hearts 
subjected to 60 minutes of perfusion (Basal) or hearts subjected to  35 minutes 
ischaemia followed by 5, 10 or 20 minutes of reperfusion in the presence and 
absence (con) of the A3 Agonist 2-CL-IB-MECA (1 nM) (MECA). Results are 
shown as Mean ± SEM three individual experiments. 
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3.8.0 Effect of 2-CL-IB-MECA when administered at reoxygenation 
on cleaved-caspase 3 activity in isolated rat cardiomyocytes subjected 
to 6 hours of hypoxia and 18 hours of reoxygenation 
 

Isolated adult rat cardiomyocytes subjected to 6 hours of hypoxia followed by 18 

hours of reoxygenation resulted in a 181% increase in cleaved-caspase 3 activity 

compared to the normoxic group (281 ± 39% Hyp/Reox vs. 100 ± 27 % Normoxia 

P<0.001) (Figure 3.10).  Administration of the A3 agonist 2-Cl-IB-MECA (1 nM) 

throughout reoxygenation significantly decreased cleaved-caspase 3 activity 

compared to the Hyp/Reox group (116 ± 32 % 2-CL-IB-MECA (1nM) vs. 281 ± 39 % 

Hyp/Reox P<0.001) (Figure 3.10). 2-CL-IB-MECA (10 nM) administered at 

reoxygenation was also seen to significantly decrease cleaved-caspase 3 activity 

compared to the Hyp/Reox group (101 ± 22 % 2-CL-IB-MECA (10 nM) vs. 281 ± 39 

% Hyp/Reox P<0.001) (Figure 3.10).  2-CL-IB-MECA (100 nM) administered at 

reoxygenation was also seen to significantly decrease cleaved-caspase 3 activity 

compared to the Hyp/Reox group (127 ± 16 % 2-CL-IB-MECA (100 nM) vs. 281 ± 

39 % Hyp/Reox P<0.001) (Figure 3.10).   

 

There was no dose response relationship by administering different doses of 2-CL-IB-

MECA (1 nM, 10 nM, 100 nM) on decreasing cleaved-caspase 3 activity when 

administered at reoxygenation in adult rat cardiomyocytes subjected to 6 hours of 

hypoxia and 18 hours of reoxygenation (P>0.05) (Figure 3.10). The data suggest that 

the cardioprotective effects of 2-CL-IB-MECA are via anti-apoptotic mechanisms. 
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*** P<0.001 Hyp/Reox vs. Normoxia. # P <0.001  2-CL-IB-MECA 
1nM,10nM,100nM vs. Hyp/Reox. Mean ± SEM of 5 individual experiments. 
 
Figure 3.10. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 24 hours of oxygenation (Normoxia) or 6 hours of hypoxia followed 
by 18 hours of reoxygenation (Hyp/Reox). The A3 agonist 2-CL-IB-MECA (1 
nM, 10 nM, 100 nM) was administered at the onset of reoxygenation.  
 
3.8.1. Role of MEK1/2-ERK1/2 cell survival pathway in cleaved-
caspase 3 activity upon administration of 2-CL-IB-MECA at 
reoxygenation in isolated adult rat cardiomyocytes subjected to 6 
hours of hypoxia and 18 hours of reoxygenation. 
 

Administration of 2-CL-IB-MECA (1 nM) at reoxygenation significantly reduced 

cleaved-caspase 3 activity compared to isolated adult rat cardiomyocytes subjected to 

6 hours of hypoxia and 18 hours of reoxygenation P<0.001, (Figure 3.10). To 

determine whether the decrease in cleaved-caspase 3 activity by 2-C-IB-MECA 

(1nM) involved the MEK1/2 – ERK1/2 cell survival pathway the MEK1/2 inhibitor 

UO126 was used. Isolated adult rat cardiac myocytes were subjected to 6 hours of 

hypoxia and 18 hours of reoxygenation where the A3 agonist 2-CL-IB-MECA (1 nM) 

was administered at reoxygenation in the presence and absence of the MEK 1/2  

inhibitor UO126 (10 µM).  
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Administration of the A3 agonist 2-CL-IB-MECA (1nM) in the presence of the 

MEK1/2 inhibitor UO126 (10 µM) throughout reoxygenation failed to block the 

decrease in cleaved-caspase 3 activity afforded when 2-CL-IB-MECA (1 nM) was 

administered alone at reoxygenation (107 ± 0.2% 2-CL-IB-MECA + UO126 vs. 116 ± 

32 % 2-CL-IB-MECA P>0.05) (Figure 3.11). UO126 (10 µM) when administered 

alone throughout reoxygenation had no significant effect on cleaved-caspase 3 

activity compared to the Hyp/Reox group (204 ± 32% UO126 vs. 281 ± 39% 

Hyp/Reox P>0.05) (Figure 3.11). Administration of UO126 with 2-CL-IB-MECA at 

reoxygenation significantly reduced cleaved-caspase 3 activity compared to when 

UO126 was administered alone at reoxygenation.  

*** P<0.001 Hyp/Reox vs. Normoxia.  
$ P<0.001  2-CL-IB-MECA, UO126+ 2-CL-IB-MECA vs. Hyp/Reox.  

Mean ± SEM of 5 individual experiments. 
 

Figure 3.11. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 6 hours of hypoxia followed by 18 hours of reoxygenation. The A3 
agonist 2-CL-IB-MECA (1 nM) was administered at the onset of reoxygenation 
in the presence and absence (Hyp/Reox) of the MEK1/2 inhibitor UO126 (10 
µM).  
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3.9. Conclusion 
 
In conclusion we have presented novel data showing activation of A3ARs at 

reperfusion protects the isolated perfused rat heart from ischaemia reperfusion injury 

in a UO126  (MEK 1/2 inhibitor) sensitibe manner. The protection afforded by 2-CL-

IB- MECA was associatated with an increase in ERK1/2 at different time point post 

reperfusion that was abolished in the presence of the MEK1/2 inhibitor UO126. 

Administration of 2-CL-IB-MECA throughout reoxygenation significantly decreased 

apoptosis and necrosis in adult rat cardiac myocytes subjected to 

hypoxia/reoxygenation injury in a UO126 sensitive manner. Furthermore, 2-CL-IB-

MECA when administered at significantly decreased cleaved caspase 3 activity 

although this was not abolished by the MEK1/2 inhibitor UO126.   
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Chapter 4: Postponing the administration of 2-CL-IB-MECA 
protects the myocardium from ischaemia reperfusion injury via 
MEK1/2-ERK1/2 cell survival pathway 
 
4.1. Results-Infarct size to risk ratio analysis 

Isolated rat hearts underwent 35 minutes of ischaemia and 120 minutes of reperfusion 

were the A3 agonist 2-CL-IB-MECA (1 nM) administration was postponed to 15, 30 

and 60 minutes into the reperfusion period. Delayed administration of 2-CL-IB-

MECA (1 nM) 15 minutes into reperfusion significantly protected the myocardium 

from ischaemic reperfusion injury compared to controls (22 ± 4% 2-CL-IB-MECA-

Post 15 vs. 65 ± 2% Control P<0.01) Figure 4.1. Delaying the administration of 2-CL-

IB-MECA (1 nM) to 30 minutes after the onset of reperfusion still significantly 

protected the myocardium from ischaemia reperfusion injury compared to controls 

(30 ± 7 % 2-CL-IB-MECA Post 30  vs. 65 ± 2% Control P<0.01) Figure 4.1. 

Postponing the administration of 2-CL-IB-MECA (1 nM) 60 minutes after the 

initiation of reperfusion abolished 2-CL-IB-MECA dependant cardioprotection seen 

when administered at reperfusion or at 15 and 30 minutes after reperfusion (60 ± 9 % 

2-CL-IB-MECA Post 60 vs. 65 ± 2 Control P>0.05) Figure 4.1. 
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**P<0.01  2-CL-IB-MECA at reperfusion, 15 or 30, min Post-R vs. Control. 
Results are expressed as Mean ± SEM for 4 – 9 different experiments. 

 
Figure 4.1. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA (1nM) treated ischaemic reperfused hearts. Isolated perfused rat 
hearts where subjected to 35 minutes of ischaemia and 120 minutes of 
reperfusion where the A3 adenosine receptor 2-Cl-IB-MECA (1 nM) was 
administered at reperfusion or 15 minutes (15 min Post-R) 30 minutes (30 min 
Post-R) or 60 minutes (60 min Post-R)   after reperfusion.  
 
 
4.2.1. Administration of the A3 agonist 2-CL-IB-MECA 15 minutes 
post reperfusion protects the ischaemic myocardium via the 
MEK1/2–ERK 1/2 cell survival pathway.  
 
We have previously shown that the administration of 2-CL-IB-MECA (1 nM) at 

reperfusion protects the ischaemic reperfused myocardium from reperfusion injury via 

recruitment of the MEK1/2 - ERK1/2 cell survival pathway. We assessed the 

involvement of the MEK1/2 - ERK1/2 pathway when the A3 agonist 2-CL-IB-MECA 

was administered 15 minutes after the onset of reperfusion in the presence and 

absence of the MEK1/2 inhibitor UO126 (10 µM).  
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Administration of the A3 agonist 2-CL-IB-MECA (1 nM) 15 minutes post-reperfusion 

in the presence of MEK1/2 inhibitor UO126 (10 µM) abolished 2-CL-IB-MECA (1 

nM) dependant cardioprotection (22 ± 4 % 2-CL-IB-MECA vs. 50 ± 11 % 2-CL-IB-

MECA + UO126 P<0.05) Figure.4.2. The MEK1/2 inhibitor UO126 (10 µM) when 

administered alone had no significant effect on the development of infarction 

compared to control (50 ± 12 UO126 vs. 65± 2% Control P>0.05) Figure.4.2. 

 

** P<0.01 2-CL-IB-MECA vs. Control. * P<0.05 UO126 +  2-CL-IB-MECA, 
UO126 vs. 2-CL-IB-MECA at 15 minutes post-reperfusion. Mean ± SEM. 

 
Figure 4.2. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA (1 nM) treated ischaemic reperfused hearts. Isolated perfused rat 
hearts were subjected to 35 minutes of ischaemia and 120 minutes of reperfusion 
where the A3 adenosine receptor 2-Cl-IB-MECA (1 nM) was administered at 15 
minutes after reperfusion in the presence and absence of the MEK1/2 inhibitor 
UO126 (10 µM).  
 
Previously, we have shown that the administration of the A3 agonist 2-CL-IB-MECA 

(1 nM) protects the ischaemic myocardium via recruitment of the MEK1/2-ERK1/2 

cell survival pathway when administered at reperfusion or 15 minutes post 

reperfusion. To determine if the protection afforded by 2-CL-IB-MECA (1 nM) when 
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administered 30 minutes post reperfusion is via recruitment of the MEK1/2-ERK1/2 

pathway we used the MEK1/2 inhibitor UO126 (10 µM).  

 
4.2.2. Administration of the A3 agonist 2-CL-IB-MECA 30 minutes 
post reperfusion protects the ischaemic myocardium via the MEK1/2 
– ERK 1/2 cell survival pathway.  
 
Administration of the A3 agonist 2-CL-IB-MECA (1 nM) 30 minutes post-reperfusion 

in the presence of MEK1/2 inhibitor UO126 (10 µM) abolished 2-CL-IB-MECA (1 

nM) dependant cardioprotection (62 ± 18 % 2-CL-IB-MECA + UO106 vs. 30 ± 7% 

2-CL-IB-MECA 30 minutes Post R  P<0.05) Figure 4.3. The MEK1/2 inhibitor 

UO126 (10 µM) when administered alone had no significant effect on the 

development infarct size to risk ratio (%) compared to control (50 ± 12 UO126 vs. 65 

± 2% Control P>0.05) Figure.4.3. 

* P<0.05 UO126+ 2-CL-IB-MECA vs. 2-CL-IB-MECA at 15 minutes post-
reperfusion. ** P<0.01  2-CL-IB-MECA  vs. Control. Mean ± SEM. 

 
Figure 4.3. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA (1 nM) treated ischemic reperfused hearts. Isolated perfused rat hearts 
where subjected to 35 minutes of ischaemia and 120 minutes of reperfusion 
where the A3 adenosine receptor 2-Cl-IB-MECA (1 nM) was administered at 30 
minutes after reperfusion in the presence and absence of the MEK1/2 inhibitor 
UO126 (10 µM).  
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4.3.1. Postponing the administration of 2-CL-IB-MECA 15 minutes 
after the onset of reoxygenation protects isolated adult rat 
cardiomyocytes subjected to 6 hours of hypoxia followed by 18 hours 
of reoxygenation from reoxygenation injury via MEK1/2- 
ERK1/2 cell survival pathway. 
 

In the previous section we showed that the A3 adenosine receptor agonist 2-CL-IB-

MECA (1 nM) to protect the isolated perfused rat heart from ischaemia reperfusion 

injury when administered 15 minutes post reperfusion. In this section we determined 

whether the A3 agonist 2-CL-IB-MECA when administered 15 minutes after the onset 

of reoxygenation in isolated adult rat cardiac myocytes subjected to 6 hours of 

hypoxia and 18 hours of reoxygenation.   Postponing the administration of the A3 

agonist 2-CL-IB-MECA (1 nM) failed to protect isolated adult rat cardiac myocytes 

for hypoxia/reoxygenation injury (data not shown). Interestingly, postponing the 

administration of the A3 agonist 2-CL-IB-MECA (10 nM) to 15 minutes after 

reoxygenation significantly decreased the number of apoptotic (18 ± 1 % 2-CL-IB-

MECA Post-15 vs. 42 ± 5 % Hyp/Reox P<0.001) Figure 4.4.a. Postponing the 

administration of the A3 agonist 2-CL-IB-MECA (10 nM) to 15 minutes after 

reoxygenation significantly decreased the number of necrotic cells (21 ± 1 % 2-CL-

IB-MECA Post 15 vs. 32 ± 2 % Hyp/Reox P<0.001) Figure 4.4.b.   

 

The anti-apoptotic effect of 2-CL-IB-MECA (10 nM) when administered 15 minutes 

after the onset of reoxygenation was significantly abolished in the presence of the 

MEK1/2 inhibitor UO126 (10 µM) (18 ± 1 % 2-CL-IB-MECA Post-15 vs. 41 ± 8 % 

2-CL-IB-MECA + UO126 P<0.05) Figure 4.4.a. Interestingly, the anti-necrotic effect 

of 2-CL-IB-MECA (10 nM) when administered 15 minutes after the onset of 

reoxygenation was not significantly abolished in the presence of the MEK1/2 
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inhibitor UO126 (10 µM) (21 ± 1% 2-CL-IB-MECA vs. 24 ± 4 % 2-CL-IB-MECA + 

UO126, P>0.05) Figure 4.4.b.   

 

UO126 (10 µM) when administered alone at reoxygenation had no significant effect 

of cellular apoptosis when compared to the Hyp/Reox group (42 ± 4 % UO126 vs. 42 

± 5 % Hyp/Reox P>0.05) Figure 4.4.a. UO126 (10 µM) when administered alone at 

reoxygenation was seen to significantly decrease the number of cells dying by cellular 

necrosis when compared the Hyp/Reox group (23 ± 3 % UO126 vs. 32 ± 2% 

Hyp/Reox P<0.05) Figure 4.4.b. 

 

 
***P<0.001 Hyp/Reox, 2-CL-IB-MECA + UO126, UO126 vs. Normoxia.  

£ P<0.001  2-CL-IB-MECA vs. Hyp/Reox.  
* P<0.05  2-CL-IB-MECA + UO126 vs. 2-CL-IB-MECA. 

Figure 4.4.a. Assessment of apoptosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation (Hyp/Reox). Assessing the role of the MEK1/2 – ERK1/2 cell 
survival pathway in 2-CL-IB-MECA mediated cardioprotection. The A3AR 
agonist 2-Cl-IB-MECA (10 nM) was administered 15 minutes after the onset of 
reoxygenation in the presence and absence of the MEK 1/2 inhibitor UO126 (10 
µM). Results are shown as Mean ± SEM and are expressed as a percentage of 
10,000 total cells counted.  
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***P<0.001 Hyp/Reox, 2-CL-IB-MECA, 2-CL-IB-MECA+UO126, UO126 vs. 

Normoxia. £ P<0.001  2-CL-IB-MECA + UO126 vs. Hyp/Reox.  
* P<0.05 UO126 vs. Hyp/Reox.  

 
Figure 4.4.b. Assessment of necrosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation (Hyp/Reox). Assessing the role of the MEK1/2 – ERK1/2 cell 
survival pathway in 2-CL-IB-MECA mediated cardioprotection. The A3AR 
agonist 2-Cl-IB-MECA (10 nM) was administered 15 minutes after the onset of 
reoxygenation in the presence and absence of the MEK 1/2 inhibitor UO126 (10 
µM). Results are shown as Mean ± SEM and are expressed as a percentage of 
10,000 total cells counted.  
 
4.3.2. Postponing the administration of 2-CL-IB-MECA 30 minutes 
after the onset of reperfusion protects isolated adult rat 
cardiomyocytes subjected to 6 hours of hypoxia followed by 18 hours 
of reoxygenation from reoxygenation injury via MEK1/2- 
ERK1/2 cell survival pathway. 
 
 
Postponing the administration of the A3 agonist 2-CL-IB-MECA (10 nM) to 30 

minutes after reoxygenation significantly decreased the number of apoptotic cells 

compared to the Hyp/Reox group (29 ± 3 % 2-CL-IB-MECA Post-30 vs. 42 ± 5 % 

Hyp/Reox P<0.01) Figure 4.5.a. Postponing the administration of the A3 agonist 2-
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CL-IB-MECA (10 nM) to 30 minutes after reoxygenation significantly decreased the 

number of necrotic cells compared to the Hyp/Reox group (23 ± 3 % 2-CL-IB-MECA 

vs. 32 ± 2 % Hyp/Reox P<0.05) Figure 4.5.b. This anti-apoptotic effect of 2-CL-IB-

MECA (10 nM) when administered 30 minutes after the onset of reoxygenation  was 

significantly abolished in the presence of the MEK1/2 inhibitor UO126 (10 µM) (29 ± 

3 % 2-CL-IB-MECA Post-30 vs. 46 ± 5 % 2-CL-IB-MECA Post-30 + UO126 

P<0.05) Figure 4.5.a. Interestingly as previously shown, the anti-necrotic effect of 2-

CL-IB-MECA (10 nM) when administered 30 minutes after the onset of 

reoxygenation was not significantly abolished in the presence of the MEK1/2 

inhibitor UO126 (23 ± 3 % 2-CL-IB-MECA Post-30 vs. 32 ± 3 % 2-CL-IB-MECA 

Post-30 + UO126 P>0.05) Figure 4.5.b.   

 

The MEK1/2 inhibitor UO126 (10 µM) when administered alone at reoxygenation 

had no significant effect of cellular apoptosis when compared to the Hyp/Reox group 

(42 ± 6 UO126 vs. 42 ± 5 Hyp/Reox, P>0.05) Figure 4.5.a. UO126 (10 µM) when 

administered alone at reoxygenation was seen to significantly decrease the number of 

cells dying by cellular necrosis when compared to the hypoxic reoxygenated group 

(23 ± 3 % UO126 vs. 32 ±  2% Hyp/Reox, P<0.05) Figure 4.5.b. 
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***P<0.001 Hyp/Reox, 2-CL-IB-MECA, 2-CL-IB-MECA+UO126, UO126 vs. 

Normoxia. *P<0.05  2-CL-IB-MECA  vs. Hyp/Reox. # P<0.05  2-CL-IB-
MECA+UO126, UO126 vs. 2-CL-IB-MECA. 

 
Figure 4.5.a. Assessment of apoptosis in isolated adult rat cardiomyocytes 
subjected to 24 hours of oxygenation (Normoxia) or 6 hours hypoxia and 18 
hours of reoxygenation (Hyp/Reox). Assessing the role of the MEK1/2 – ERK1/2 
cell survival pathway in 2-CL-IB-MECA mediated cardioprotection. The A3AR 
agonist 2-Cl-IB-MECA (10 nM) was administered 30 minutes after the onset of 
reoxygenation in the presence and absence of the MEK 1/2 inhibitor UO126 (10 
µM). Results are shown as Mean ± SEM and are expressed as a percentage of 
10,000 total cells counted.  
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***P<0.001 Hyp/Reox, 2-CL-IB-MECA, 2-CL-IB-MECA+UO126, UO126 vs. 
Normoxia. *P<0.05  2-CL-IB-MECA, UO126 vs. Hyp/Reox. 

 
Figure 4.5.b. Assessment of necrosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation (Hyp/Reox). Assessing the role of the MEK1/2 – ERK1/2 cell 
survival pathway in 2-CL-IB-MECA mediated cardioprotection. The A3AR 
agonist 2-Cl-IB-MECA (10 nM) was administered 30 minutes after the onset of 
reoxygenation in the presence and absence of the MEK 1/2 inhibitor UO126 (10 
µM). Results are shown as Mean ± SEM and are expressed as a percentage of 
10,000 total cells counted.  
 
4.4.1. ERK 1/2 phosphorylation in 2-CL-IB-MECA mediated 
cardioprotection when administered 15 minutes post-reperfusion. 
 

In the isolated perfused rat heart model of ischaemia reperfusion injury we showed 

that the postponing the administration of the A3 agonist 2-Cl-IB-MECA (1 nM) to 15 

minutes or 30 minutes after the onset of reperfusion protected the heart from 

ischaemia reperfusion injury.  We further showed that this protection was abolished in 

the presence of the MEK 1/2 inhibitor UO126 (10 µM). In the isolated rat 

cardiomyocyte model of hypoxia reoxygenation injury we have shown that the 

delayed administration of 2-CL-IB-MECA (1 nM) 15 and 30 minutes post 
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reoxygenation confers cardioprotection that was abolished by the MEK 1/2 inhibitor 

UO126 (10 µM). 

 

To determine the role of the MEK 1/2 – ERK 1/2 cell survival pathway in 2-CL-IB-

MECA dependant cardioprotection hearts were treated with 2-CL-IB-MECA (1 nM) 

in the presence of the MEK 1/2 inhibitor UO126 (10 µM) at various time intervals 

post-reperfusion. 

 

In control hearts ERK 1/2 phosphorylation was observed at 20, 25 and 35 minutes of 

reperfusion. Administration of 2-CL-IB-MECA (1 nM) after 15 minutes of 

reperfusion significantly up-regulated the phosphorylation of ERK 1/2 with maximal 

phosphorylation of ERK 1/2  after 25 minutes of reperfusion compared to time 

matched control, (P<0.05) Figure 4.6.a,b. 

 

The increase in ERK1/2 phosphorylation by the administration of the A3 agonist 2-

CL-IB-MECA (1 nM) 15 minutes post reperfusion was significantly abolished in the 

presence of MEK1/2 inhibitor U0126 (10 µM) P<0.05, Figure.5.6. The administration 

of the MEK 1/2 inhibitor UO126 (10 µM) alone had no significant effect on ERK 1/2 

phosphorylation compared to time matched controls (P>0.05), Figure 4.6.a, b.  
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* P<0.05 MECA 25, 35 minutes reperfusion vs. Time matched controls. # P<0.05 
MECA + UO126 vs. MECA 25 minutes Reperfusion. **P<0.01 Con 35, MECA 

25, MECA 35 minutes reperfusion vs. Basal. 
 
Figure 4.6.a. Assessment of ERK 1/2 phosphorylation in isolated hearts subjected 
to 60 minutes perfusion (basal), 35 minutes of ischaemia followed by 20, 25 or 35 
minutes of reperfusion in non-treated control and 2-CL-IB-MECA treated 
hearts (1 nM) (MECA). The A3AR agonist 2-CL-IB-MECA (1 nM) was 
administered 15 minutes post- reperfusion in the presence and absence of the 
MEK 1/2 inhibitor UO126 (10 µM). Results are shown as Mean ± SEM of three 
individual experiments.  
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* P<0.05 MECA 25 vs. Time matched controls. # P<0.05 vs. MECA 25 minutes 
Reperfusion. **P<0.01 MECA 25 vs. Basal. 

 
Figure 4.6.b. Assessment of ERK 1/2 phosphorylation in isolated hearts 
subjected to 35 minutes of ischaemia followed by 25 minutes of reperfusion in 
non-treated control and 2-CL-IB-MECA treated hearts (1 nM) (MECA). The 
A3AR agonist 2-CL-IB-MECA (1 nM) was administered 15 minutes post- 
reperfusion in the presence and absence of the MEK 1/2 inhibitor UO126 (10 
µM). Results are shown as Mean ± SEM of three individual experiments.  
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4.4.2. Role of MEK 1/2 – ERK 1/2 signalling pathway in 2-CL-IB-
MECA mediated cardioprotection when administered 30 minutes 
post reperfusion. 
 
 
Previously, we showed that 2-CL-IB-MECA (1nM) protects the ischaemic reperfused 

rat heart when administered 30 minutes post reperfusion in a MEK 1/2 – ERK 1/2 

sensitive manner. To elucidate the cardioprotective cell signalling pathways involved 

in 2-CL-IB-MECA (1 nM) mediated cardioprotection when administered 30 minutes 

post reperfusion it was necessary to determine the phosphorylation status of ERK1/2 

in heart tissues at various time points post reperfusion. Hearts were treated with 2-CL-

IB-MECA (1 nM) in the presence and absence of the MEK 1/2  inhibitor U0126 (10 

µM).  

 

In control hearts ERK 1/2 phosphorylation was observed at 35, 40 and 45 minutes of 

reperfusion. Administration of the A3AR agonist 2-CL-IB-MECA (1nM) significantly 

up regulated the phosphorylation of ERK with maximal phosphorylation of ERK 1/2  

at 35 minutes of reperfusion compared to time matched controls, where the A3 agonist 

was  perfused 30 minutes post reperfusion (P<0.01), Figure. 4.7.a,b.  

 

The increase in ERK1/2 phosphorylation after 40 minutes of reperfusion by 2-Cl-IB-

MECA (1 nM) when administered 30 minutes after reperfusion was significantly 

abolished in the presence of the MEK1/2 inhibitor U0126 (10 µM) P<0.01, Figure 

4.7.a, b. UO126 when administered alone at reperfusion significantly blocked ERK1/2 

phosphorylation compared to the time matched control and basal groups P<0.01 

(Figure 4.7.a, b). 
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** P<0.01 MECA 35, 40, 50 minutes reperfusion, UO126 35minutes reperfusion 
vs. Basal.  ## P<0.01 MECA 35, 40 50 minutes reperfusion vs. 35, 40, 50 minute  

controls.  $ P<0.01 UO126+ 2-CL-IB-MECA, UO126 vs. MECA 40 minutes 
Reperfusion and Basal. 

 
Figure 4.7a. Assessment of ERK 1/2 phosphorylation in isolated hearts subjected 
to 60 minutes perfusion (basal), 35 minutes ischaemia followed by 35, 40 or 50 
minutes of reperfusion in non-treated control and 2-CL-IB-MECA (1 nM) 
(MECA) treated hearts. The A3AR agonist 2-CL-IB-MECA (1 nM) was 
administered after 30 minutes post reperfusion in the presence and absence of 
the MEK 1/2 inhibitor UO126 (10 µM). Results are shown as Mean ± SEM of 
three individual experiments.  
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** P<0.01 MECA 40 minutes reperfusion, UO126 vs. Basal.  

 ## P<0.01 MECA 40 minutes reperfusion, UO126 40 minutes reperfusion vs. 
Time matched controls.   

$ P<0.01 MECA 40 minutes reperfusion + UO126, UO126 vs. MECA 40 minutes 
Reperfusion and Basal. 

 
 
Figure 4.7.b. Assessment of ERK 1/2 phosphorylation in isolated hearts 
subjected to 60 minutes perfusion (basal), 35 minutes ischaemia followed by 40 
minutes of reperfusion in non-treated control and 2-CL-IB-MECA (1 nM) 
(MECA) treated hearts. The A3AR agonist 2-CL-IB-MECA (1 nM) was 
administered after 30 minutes post reperfusion in the presence and absence of 
the MEK 1/2 inhibitor UO126 (10 µM). Results are shown as Mean ± SEM of 
three individual experiments.  
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4.5.1. Role of MEK1/2-ERK1/2 cell survival pathway in cleaved-
caspase 3 activity upon administration of 2-CL-IB-MECA (10 nM) 15 
minutes post-reoxygenation in isolated adult rat cardiomyocytes 
subjected to 6 hours of hypoxia and 18 hours of reoxygenation. 
 
To determine whether delaying the administration of 2-CL-IB-MECA (10 nM) 15 

minutes post-reoxygenation could still decrease cleaved-caspase 3 activity adult rat 

cardiac myocytes were subjected to 6 hours of hypoxia and 18 hours of reoxygenation 

where 2-CL-IB-MECA (10 nM) was administered 15 minutes post reoxygenation.   

Administration of 2-CL-IB-MECA (10 nM) 15 minutes post reoxygenation 

significantly decreased cleaved-caspase 3 activity compared to the Hyp/Reox group 

(110 ± 14 % 2-CL-IB-MECA Post-15 vs. 281 ± 31 % Hyp/Reox P<0.001) Figure 5.8. 

 

To determine whether the decrease in cleaved-caspase 3 activity by 2-CL-IB-MECA 

(10 nM) when administered 15 minutes after the onset of reoxygenation was via the 

MEK 1/2 –  ERK 1/2 cell survival pathway isolated adult rat cardiomyocytes where 

subjected to 6 hours of hypoxia and 18 hours of reoxygenation where the A3AR 

agonist 2-CL-IB-MECA (10 nM) was administered at 15 minutes post reperfusion in 

the presence and absence of the MEK 1/2 inhibitor UO126 (10 µM).  

 

Administration of 2-CL-IB-MECA (10 nM) 15 minutes post reoxygenation  in the 

presence of the MEK 1/2 inhibitor UO126 (10 µM) failed to abolish the decrease in 

cleaved-caspase 3 seen when 2-CL-IB-MECA was administered alone 15 minutes 

post reperfusion (110 ± 14 % 2-CL-IB-MECA Post-15 vs. 164 ± 61 % 2-CL-IB-

MECA Post-15 + UO126  P>0.05), Figure 4.8.  Administration of the MEK 1/2 

inhibitor UO126 (10 µM) at reoxygenation had no significant effect on cleaved-



130 

caspase 3 activity compared to the Hyp/Reox group (204 ± 32 % UO126 vs. 281 ± 39 

% Hyp/Reox P>0.05), (Figure 4.8). 

 

 

 
***P<0.001 Hyp/Reox, UO126 vs. Normoxia.  

$ P<0.001  2-CL-IB-MECA vs. Hyp/Reox.  
Mean ± SEM of 5 individual experiments. 

 
Figure 4.8. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 24 hours oxygenation (Normoxia)  or 6 hours of hypoxia followed by 
18 hours of reoxygenation (Hyp/Reox). The A3 agonist 2-CL-IB-MECA (10 nM) 
was administered 15 minutes post-reoxygenation in the presence and absence of 
the MEK 1/2 inhibitor UO126.  
 
 
4.5.2. Role of MEK1/2-ERK1/2 cell survival pathway in cleaved-
caspase 3 activity upon administration of 2-CL-IB-MECA (10nM) 30 
minutes post reoxygenation in isolated adult rat cardiomyocytes 
subjected to 6 hours of hypoxia and 18 hours of reoxygenation. 
 
 
To further assess whether postponing the administration of 2-CL-IB-MECA (10 nM) 

30 minutes after the onset of reoxygenation could still decrease cleaved-caspase 3 

activity isolated adult rat cardiac myocytes were subjected to 6 hours of hypoxia and 

0 

50 

100 

150 

200 

250 

300 

350 

C
le

av
ed

-c
as

pa
se

 3
 a

ct
iv

ity
  

  
(%

 o
f N

or
m

ox
ia

) 

 

Hyp/Reo 

Normoxia UO126  UO126  + 
2-Cl-IB-MECA 
  15min Post-R 

Hyp/Reox 2-CL-IB-MECA  
15min Post-R 

*** 
 

$ 

*** 
 

 171 % 

 54 % 

 40 % 

 80 % 



131 

18 hours of reoxygenation where the A3 adenosine receptor agonist 2-CL-IB-MECA 

(10 nM) was administered 30 minutes after the onset of reoxygenation.  

 

Administration of 2-Cl-IB-MECA (10 nM) 30 minutes after the onset of 

reoxygenation significantly reduced cleaved-caspase 3 activity compared to the 

Hyp/Reox group (165 ± 16 % 2-CL-IB-MECA Post-30 vs. 281 ± 39 % Hyp/Reox  

P<0.001) Figure 4.9.  

 

To determine whether the decrease in cleaved-caspase 3 activity by 2-CL-IB-MECA 

(10 nM) when administered 30 minutes after the onset of reoxygenation was via the 

MEK1/2 – ERK1/2 cell survival pathway isolated adult rat cardiomyocytes were 

subjected to 6 hours of hypoxia and 18 hours of reoxygenation where the A3AR 

agonist 2-CL-IB-MECA (10 nM) was administered at 30 minutes post reperfusion in 

the presence and absence of the MEK1/2 inhibitor UO126 (10 µM).  

 

Administration of 2-CL-IB-MECA (10nM) 30 minutes after the onset of 

reoxygenation  in the presence of the MEK 1/2 inhibitor UO126 (10 µM) failed to 

abolish the decrease in cleaved-caspase 3 compared to when the A3 agonist 2-CL-IB-

MECA (10 nM) was administered alone 30 minutes after the onset reoxygenation 

(165 ± 16 % 2-CL-IB-MECA Post-30 vs. 179 ± 10 % 2-CL-IB-MECA Post-30 + 

UO126 P>0.05) Figure 5.9. Administration of the MEK1/2 inhibitor UO126 (10 µM) 

alone at reoxygenation had no significant effect on cleaved-caspase 3 activity 

compared to the control Hyp/Reox group (204 ± 32 % UO126 vs. 281 ± 39 % 

Hyp/Reox P>0.05), Figure 4.9. 
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***P<0.001 Hyp/Reox, 2-CL-IB-MECA, UO126 +  2-CL-IB-MECA, UO126 vs. 

Normoxia. $ P<0.001  2-CL-IB-MECA, UO125 +  2-CL-IB-MECA vs. Hyp/Reox.  
Mean ± SEM of 5 individual experiments. 

 
Figure 4.9. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 24 hours oxygenation (Normoxia)  or 6 hours of hypoxia followed by 
18 hours of reoxygenation (Hyp/Reox). The A3 agonist 2-CL-IB-MECA (10 nM) 
was administered 30 minutes post-reoxygenation in the presence and absence of 
the MEK1/2 inhibitor UO126 (10 µM). 
 
4.6. Conclusion 
 
In conclusion activation of A3ARs with 2-CL-IB-MECA 15 or 30 minutes after the 

onset of reperfusion significantly reduced infarct size to risk ratio compared to non-

treated hearts.  This protection was abolished by the co-administreation of the 

MEK1/2 inhibitor UO126. Activation of A3ARs 15 or 30 minutes post-reperfusion 

was associated with an increase in ERK1/2 that was abolished in the presence of hte 

MEK1/2 inhibitor UO126.  Activation of A3ARs 15 or 30 minutes post-reoxygenation 

significantly decreased cell death in an anti-apoptotic and anti-necrotic manner. The 

anti-apoptotic effect was abolished in the presence of the MEK1/2 inhibitor UO126, 

but did not block teh anti-necrotic effect. Activation of A3ARs 15 or 30 minutes post 
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Reoxygenation was associated with a decrease in cleaved caspase 3 activity that was 

not blocked by the MEK1/2 inhibitor UO126.   
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Chapter 5: 2-CL-IB-MECA protects the myocardium from 

ischaemia reperfusion injury via PI3K-AKT cell survival pathway 

 
 
5.1.1. Protection afforded by A3AR agonist 2-CL-IB-MECA at 
reperfusion is mediated via PI3K - AKT activity in the isolated 
perfused rat heart 
 

As previously shown in chapter 3 administration of the A3 agonist 2-CL-IB-MECA (1 

nM) throughout reperfusion significantly decreased infarct size to risk ratio (%) 

compared to non treated controls (65 ± 2 % control hearts vs. 32 ±  4% 2-CL-IB-

MECA  P<0.01) Figure.3.1. 

 

To determine whether the protection afforded by the A3AR agonist 2-Cl-IB-MECA 

(1nM) when administered throughout reperfusion was mediated via PI3K - AKT 

activity, we used the PI3K inhibitor Wortmannin (5 nM).  Administration of 2-CL-IB-

MECA (1nM) in the presence of the PI3K inhibitor Wortmannin (5 nM) significantly 

abolished the protection afforded by 2-CL-IB-MECA (1 nM) in comparison to when 

administered alone throughout reperfusion (68 ± 12% 2-CL-IB-MECA + Wortmannin 

vs. 32 ± 4% 2-CL-IB-MECA P<0.05) Figure.5.1. 

 

Wortmannin when administered alone throughout reperfusion had no significant 

effect on infarct size to risk ratio (%) compared to non treated control hearts (65 ± 12 

% Wortmannin vs. 65 ± 2 % control P>0.05. Figure.5.1).  
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*P<0.05  2-CL-IB-MECA  vs. Control.  $P<0.05   2-CL-IB-MECA +Wortmannin 

vs. 2-CL-IB-MECA. Results are shown as Mean ± SEM. 
 
Figure 5.1. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA treated ischaemic reperfused hearts. Isolated perfused rat hearts 
where subjected to 35 minutes of ischaemia and 120 minutes of reperfusion 
where the A3 adenosine receptor 2-Cl-IB-MECA (1 nM) was administered 
throughout reperfusion in the presence and absence of the PI3K inhibitor 
Wortmannin (5 nM).  
 
 
Studies by Germack and Dickenson (2004) have shown there to be a dose response 

relationship between 2-CL-B-MECA concentration and PI3K-AKT activity. 

Therefore, we next assessed whether a higher concentration of the A3 agonist 2-CL-

IB-MECA could protect the ischaemic reperfused myocardium when administered at 

reperfusion.  The administration of 2-Cl-IB-MECA (100 nM) at reperfusion 

significantly protects the myocardium from ischaemia reperfusion injury compared to 

non treated controls (23 ± 8 % 2-CL-IB-MECA vs. 62 ± 2% control P<0.01) Figure 

5.2.  

 

To determine whether the protection afforded by the A3AR agonist 2-Cl-IB-MECA 

(100nM) when administered throughout reperfusion was mediated PI3K - AKT 
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activity, we used the PI3K inhibitor Wortmannin (100 nM).  Administration of 2-CL-

IB-MECA (100 nM) in the presence of the PI3K inhibitor Wortmannin (100 nM) 

significantly abrogated the protection afforded by 2-CL-IB-MECA (100 nM) when 

administered alone throughout reperfusion (68 ± 5% 2-CL-IB-MECA + Wortmannin 

vs. 23 ± 8 % 2-CL-IB-MECA P<0.01) Figure.5.2. 

 

Administration of Wortmannin (100 nM) throughout reperfusion had no significant 

effect on infarct size to risk ratio (%) compared to controls (49.5 ± 10% Wortmannin 

vs. 65 ± 2% P>0.05) Figure.5.2.  

 

**P<0.01  2-CL-IB-MECA vs. Control.  $ P<0.01 Wortmannin +  2-CL-IB-
MECA vs. 2-CL-IB-MECA.  

Results are shown as Mean ± SEM. 
 
Figure 5.2. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA treated ischaemic reperfused hearts. Isolated perfused rat hearts 
where subjected to 35 minutes of ischaemia and 120 minutes of reperfusion 
where the A3 adenosine receptor 2-Cl-IB-MECA (100 nM) was administered 
throughout reperfusion in the presence and absence of the PI3K inhibitor 
Wortmannin (100 nM).  
 

0 

10 

20 

30 

40 

50 

60 

70 

80 

In
fa

rc
t S

iz
e 

to
 R

is
k 

R
at

io
 (%

) 

 

Control WORTMANNIN 
 

WORTMANNIN   
+ 2-CL-IB- 

MECA  

2-CL-IB-MECA 
 

** 

$ 



137 

5.1.2. Protection afforded by A3AR agonist 2-Cl-IB-MECA at 
reperfusion is mediated via PI3K – AKT/ p70S6 kinase activity in the 
isolated perfused rat heart 
 

We have shown that 2-CL-IB-MECA at 100nM protects the myocardium from 

ischaemia reperfusion injury via the PI3K – AKT survival pathway. In order to further 

understand the possible mechanisms via which 2-CL-IB-MECA confers 

cardioprotection we assessed the role of the downstream translational kinase p70S6.  

 

To determine to role of p70S6 kinase in 2-CL-IB-MECA (100 nM) mediated 

cardioprotection when administered throughout reperfusion we used the mTOR 

inhibitor Rapamycin (2 nM).  Administration of 2-CL-IB-MECA (100 nM) in the 

presence of the mTOR inhibitor Rapamycin (2 nM) throughout reperfusion 

significantly abolished 2-CL-IB-MECA (100 nM) mediated cardioprotection 

compared when administered alone at reperfusion (55 ± 5% 2-CL-IB-MECA + 

Rapamycin vs. 23 ± 8 % 2-CL-IB-MECA P<0.01) Figure.5.3. 

 

Rapamycin (2 nM) when administered alone throughout reperfusion had no 

significant effect on infarct size to risk ratio (%) compared to non treated control 

hearts (59 ± 2% vs. 65 ± 2% P>0.05) Figure.5.3.  
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**P<0.01  2-CL-IB-MECA vs. Control. $ P<0.01 Rapamycin +  2-CL-IB-MECA 

vs. 2-CL-IB-MECA. Results are shown as Mean ± SEM. 
 
Figure 5.3. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA treated ischaemic reperfused hearts. Isolated perfused rat hearts 
where subjected to 35 minutes of ischaemia and 120 minutes of reperfusion 
where the A3 adenosine receptor 2-Cl-IB-MECA (100 nM) was administered 
throughout reperfusion in the presence and absence of the mTOR inhibitor 
Rapamycin (2 nM).  
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5.2.1. The role of PI3K-AKT cell survival pathway in A3AR agonist 
2-CL-IB-MECA (1nM) cardioprotection in adult rat cardiomyocytes 
subjected to 6 hours hypoxia and 18 hours reoxygenation.  
 

Previously in chapter 3, we showed the administration of 2-CL-IB-MECA (1 nM) 

throughout reoxygenation significantly protected adult rat cardiac myocytes from 

hypoxia/reoxygenation injury in an anti apoptotic/necrotic manner.  

 

To elucidate the anti-apoptotic and anti-necrotic mechanisms of 2-CL-IB-MECA (1 

nM) when administered at reoxygenation we assessed the role of the PI3K-AKT cell 

survival pathway using the PI3K inhibitor Wortmannin (5 nM). Isolated myocytes 

were subjected to 6 hours of hypoxia followed by 18 hours of reoxygenation where 

the A3 agonist 2-CL-IB-MECA (1 nM) was administered at the onset of 

reoxygenation in the presence and absence of PI3K inhibitor Wortmannin (5 nM).  

 

Administration of the A3 agonist 2-CL-IB-MECA (1 nM) in the presence of the PI3K 

inhibitor Wortmannin (5 nM) significantly abolished the anti apoptotic effect of 2-

CL-IB-MECA (1 nM) compared to when administered alone throughout 

reoxygenation (37 ± 6 % 2-CL-IB-MECA + Wortmannin vs. 26 ± 6 % 2-CL-IB-

MECA, P<0.05) Figure 5.4.a.  

 

Administration of 2-CL-IB-MECA (1 nM) in the presence of the PI3K inhibitor 

Wortmannin (5 nM) also significantly abolished the anti-necrotic effect of 2-CL-IB-

MECA (1 nM) when administered alone throughout reoxygenation (28 ± 3 % 2-CL-

IB-MECA + Wortmannin vs. 16 ± 4 % 2-CL-IB-MECA, P<0.05), Figure 5.4.b. 
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Wortmannin (5 nM) alone had no significant effect of cellular apoptosis when 

compared to the Hyp/Reox group (36 ± 5% Wortmannin vs. 42 ± 5 % Hyp/Reox, 

P>0.05) Figure 5.4.a. Wortmannin (5 nM) when administered alone throughout 

reoxygenation was seen to have a significant effect on reducing cellular necrosis when 

compared to the Hyp/Reox group (22 ± 3% Wortmannin vs. 32 ± 2 % Hyp/Reox. 

P<0.05) Figure 5.4. b.   

 

 

***P<0.001 Hyp/Reox, 2-CL-IB-MECA, Wortmannin +  2-CL-IB-MECA, 
Wortmannin vs. Normoxia.  

£ P<0.001  2-CL-IB-MECA  vs. Hyp/Reox. *P<0.05 Wortmannin +  2-CL-IB-
MECA vs. 2-CL-IB-MECA. 

 
Figure 5.4.a. Assessment of Apoptosis in adult rat cardiomyocytes subjected to  
24 hours reoxygenation (Normoxia) or 6 hours hypoxia and 18 hours of 
reoxygenation(Hyp/Reox). Assessment of PI3K/Akt cell survival pathway in 2-
CL-IB-MECa mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA (1 
nM) was administered at reoxygenation in the presence and absence of the PI3K 
inhibitor Wortmannin (5 nM). Results are shown as Mean ± SEM and are 
expressed as a percentage of 10,000 cells counted.  
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 ***P<0.001 Hyp/Reox. Wortmannin +  2-CL-IB-MECA , Wortmannin vs. 
Normoxia. £ P<0.001 Wortmannin vs. Hyp/Reox. * P<0.05 Wortmannin +  2-CL-

IB-MECA vs. 2-CL-IB-MECA. 
 
Figure 5.4.b. Assessment of necrosis in adult rat cardiomyocytes subjected to  24 
hours reoxygenation (Normoxia) or 6 hours hypoxia and 18 hours of 
reoxygenation(Hyp/Reox). Assessment of PI3K/Akt cell survival pathway in 2-
CL-IB-MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA (1 
nM) was administered at reoxygenation in the presence and absence of the PI3K 
inhibitor Wortmannin (5 nM). Results are shown as Mean ± SEM and are 
expressed as a percentage of 10,000 cells counted.  
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5.2.2. The role of PI3K-AKT cell survival pathway in A3AR agonist 
2-CL-IB-MECA (100 nM) cardioprotection in adult rat 
cardiomyocytes subjected to 6 hours hypoxia and 18 hours 
reoxygenation.  
 

We further assessed whether 2-Cl-IB-MECA (100 nM) protects isolated adult rat 

cardiomyocytes from hypoxia/reoxygenation injury via anti apoptotic/necrotic 

mechanisms. Furthermore, whether cytoprotection was dependant upon recruitment of 

the PI3K-AKT survival pathway.  

 

To elucidate the anti-apoptotic and anti-necrotic mechanisms of 2-CL-IB-MECA (100 

nM) when administered at reoxygenation, we assessed the role of the PI3K-AKT cell 

survival pathway using the PI3K inhibitor Wortmannin (100 nM). Isolated myocytes 

were subjected to 6 hours of hypoxia followed by 18 hours of reoxygenation and were 

incubated with the A3 agonist 2-CL-IB-MECA (100 nM) in the presence and absence 

of PI3K inhibitor Wortmannin (100 nM).   

 

Administration of the A3 agonist 2-CL-IB-MECA (100 nM) in the presence of the 

PI3K inhibitor Wortmannin (100 nM) significantly abolished the anti-apoptotic effect 

of 2-CL-IB-MECA (100 nM) when administered alone throughout reoxygenation (40 

± 9 % 2-CL-IB-MECA + Wortmannin vs. 19 ± 3 % 2-CL-IB-MECA P<0.05) Figure 

5.5.a.  

 

Administration of 2-CL-IB-MECA (100 nM) in the presence of the PI3K inhibitor 

Wortmannin (100 nM) throughout reoxygenation also significantly abolished the anti-

necrotic effect of 2-CL-IB-MECA (100 nM) when administered alone throughout 
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reoxygenation (32 ± 2 % 2-CL-IB-MECA + Wortmannin vs. 23 ± 3 % 2-CL-IB-

MECA P<0.05) Figure 5.5.b. 

 

Administration of Wortmannin (100 nM) alone throughout reoxygenation had no 

significant effect on cellular apoptosis in adult rat cardiac myocytes exposed to 6 

hours of hypoxia and 18 hours of reoxygenation compared to non treated Hyp/Reox 

group (34 ± 6 % Wortmannin vs. 42 ± 5 % Hyp/Reox, P>0.05) Figure 5.5.a. 

Administration of Wortmannin (100 nM) throughout reoxygenation had no significant 

effect on cellular necrosis compared to the non treated Hyp/Reox group (35 ± 5 % 

Wortmannin vs. 32 ± 2 % Hyp/Reox. P>0.05) Figure 5.5.b. 
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**P<0.01 Hyp/Reox, 2-CL-IB-MECA, Wortmannin+  2-CL-IB-MECA, 

Wortmannin  vs. Normoxia. £ P<0.01  2-CL-IB-MECA  vs. Hyp/Reox. * P<0.05 
Wortmannin +  2-CL-IB-MECA vs. 2-CL-IB-MECA. 

 
Figure 5.5.a. Assessment of apoptosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation (Hyp/Reox). Assessment of PI3k/Akt cell survival pathway in 2-
CL-IB-MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA 
(100 nM) was administered at reoxygenation in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM). Results are shown as Mean ± SEM and 
are expressed as a percentage 10,000 cells counted.  
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**P<0.01 Hyp/Reox, 2-CL-IB-MECA, Wortmannin +  2-CL-IB-MECA, 

Wortmannin  vs. Normoxia. £ P<0.01 2-CL-IB-MECA vs. Hyp/Reox. * P<0.05 
Wortmannin +  2-CL-IB-MECA vs. 2-CL-IB-MECA. 

 
Figure 5.5.b. Assessment of necrosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation (Hyp/Reox). Assessment of PI3k-Akt cell survival pathway in 2-
CL-IB-MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA 
(100 nM) was administered at reoxygenation in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM). Results are shown as Mean ± SEM and 
are expressed as a percentage 10,000 cells counted.  
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5.3.1 The role of PI3K-AKT-p70S6 kinase cell survival pathway in A3 
adenosine receptor cardioprotection in adult rat cardiomyocytes 
subjected to 6 hours hypoxia and 18 hours reoxygenation.  
 

In the isolated perfused rat heart we have shown that the protection afforded by 2-CL-

IB-MECA (100 nM) when administered at reperfusion was significantly abolished in 

the presence of the mTOR inhibitor Rapamycin ( 2nM) Figure 6.3.    

 

To elucidate the anti-apoptotic and anti-necrotic mechanisms of 2-CL-IB-MECA 

(100nM) when administered at reoxygenation we assessed the role of the PI3K – 

AKT - p70S6K cell survival pathway using the mTOR inhibitor Rapamycin (2nM). 

Isolated myocytes were subjected to 6 hours of hypoxia followed by 18 hours of 

reoxygenation where the A3 agonist 2-CL-IB-MECA (100 nM) was administered in 

the presence and absence of mTOR/p70S6 kinase inhibitor Rapamycin (2 nM).   

 

Administration of the A3 agonist 2-CL-IB-MECA (100 nM) in the presence of the 

p70S6 kinase inhibitor Rapamycin (2 nM) significantly abolished the anti-apoptotic 

effect of 2-CL-IB-MECA (100 nM) compared to when administered alone (41 ± 8 % 

2-CL-IB-MECA + Rapamycin vs. 19 ± 3% 2-CL-IB-MECA P<0.01) Figure 5.6.a.  

 

Administration of the A3 agonist 2-CL-IB-MECA (100 nM) in the presence of the 

p70S6 kinase inhibitor Rapamycin (2 nM) also significantly abolished the anti-

necrotic effect of 2-CL-IB-MECA (100 nM) compared to when administered alone 

(33 ± 4 % 2-CL-IB-MECA + Rapamycin vs. 23 ± 3 % 2-CL-IB-MECA P<0.05) 

Figure 5.6.b. 
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Administration of Rapamycin (2 nM) alone throughout reoxygenation had no 

significant effect on cellular apoptosis compared to the non-treated Hyp/Reox group 

(41 ± 7 % Rapamycin vs. 42 ± 5 % Hyp/Reox P>0.05) Figure 5.6.a.  Administration 

of Rapamycin (2 nM) alone throughout reoxygenation had no significant effect on 

cellular necrosis compared to the Hyp/Reox group (32 ± 4 % Rapamycin vs.32 ± 2% 

Hyp/Reox. P>0.05) Figure 5.6.b. 

 
***P<0.001 Hyp/Reox, 2-CL-IB-MECA, Rapamycin +  2-CL-IB-MECA, 

Rapamycin vs. Normoxia. **P<0.01  2-CL-IB-MECA vs. Hyp/Reox. * P<0.05 
Rapamycin +  2-CL-IB-MECA vs. 2-CL-IB-MECA. 

 
Figure 5.6.a. Assessment of apoptosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation or 6 hours hypoxia and 18 hours of 
reoxygenation. Assessment of PI3K – AKT - p70S6 cell survival pathway in 2-
CL-IB-MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA 
(100 nM) was administered at reoxygenation in the presence and absence of the 
p70S6 kinase inhibitor Rapamycin (2 nM). Results are shown as Mean ± SEM 
and are expressed as a percentage 10,000 cells counted.  
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***P<0.001 Hyp/Reox, 2-CL-IB-MECA, Rapamycin +  2-CL-IB-MECA, 

Rapamycin vs. Normoxia. **P<0.01  2-CL-IB-MECA vs. Hyp/Reox. * P<0.05 
Rapamycin +  2-CL-IB-MECA vs. 2-CL-IB-MECA. 

 
Figure 5.6.b. Assessment of necrosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation or 6 hours hypoxia and 18 hours of 
reoxygenation. Assessment of PI3K – AKT - p70S6 cell survival pathway in 2-
CL-IB-MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA 
(100 nM) was administered at reoxygenation in the presence and absence of the 
mTOR inhibitor Rapamycin (2 nM). Results are shown as Mean ± SEM and are 
expressed as a percentage 10,000 cells counted.  
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5.4.1. Effect of 2-CL-IB-MECA (1nM) when administered at 
reperfusion on AKT phosphorylation during different time intervals 
post reperfusion 
 
Recruitment of the PI3K - AKT intracellular signalling pathway has been shown to 

promote cell survival by inhibiting cellular apoptosis. A range of cell survival factors 

like Urocortin, Insulin and cytokines have been shown to recruit the PI3K - AKT 

intracellular signalling pathway promoting cell survival.   

 

Previously, we have shown that the protection afforded by the A3 adenosine receptor 

agonist 2-CL-IB-MECA (1 nM) when administered at reperfusion was abolished by 

the co-administration of the PI3K inhibitor Wortmannin (5 nM) in the isolated heart 

model of ischaemia reperfusion injury (Figure 5.1). Therefore we assessed the 

phosphorylation status of phospho-AKT (Ser 473) that is phosphorylated by PI3K at 

various time intervals post reperfusion in the presence and absence of the A3 agonist 

2-CL-IB-MECA (1 nM).  

 

Phosphorylation of AKT (Ser 473) was observed in non treated control and 2-CL-IB-

MECA (1 nM) treated ischaemic reperfused hearts.  Reperfusion of the ischaemic 

heart significantly increased the phosphorylation of AKT (ser 473) at 5, 10 and 20 

minutes of reperfusion compared to the non-ischaemic group (basal) (P<0.01 for all 

time points) Figure 5.7. AKT (ser 473) phosphorylation was also observed in 2-CL-IB-

MECA (1 nM) treated hearts at 5 and 10 minutes of reperfusion compared to the non-

ischaemic group (basal) (P<0.01 for both time points) Figure 5.7. 
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Administration of the A3 agonist 2-CL-IB-MECA (1 nM) for 5, 10 and 20 minutes of 

reperfusion significantly decreased the phosphorylation of AKT (Ser 473) compared to 

their respective time matched control hearts (P<0.01 for all time points) (Figure 5.7). 

 
** P<0.01 Control 5, 10, 20 minutes reperfusion, MECA 5, 10 minutes 

reperfusion vs. Basal. *** P<0.001 MECA 5 minutes reperfusion vs. Control 5 
minutes Reperfusion. £ P<0.01 MECA 10 minutes reperfusion vs. Control 10 

minutes Reperfusion. # P<0.001 MECA 20 minutes reperfusion vs. Control 20 
minutes reperfusion. 

 
Figure 5.7. Assessment of Akt phosphorylation in isolated hearts to subjected 60 
minutes perfusion (basal), 35 minutes of ischaemia followed by 5, 10 or 20 
minutes of reperfusion in the presence and absence (Con) of the A3 Agonist 2-
CL-IB-MECA (1 nM) (MECA). Results are shown as Mean ± SEM of three 
individual experiments.  
 
 

2-CL-IB-MECA (1 nM) when administered at reperfusion was shown to down 

regulate AKT (ser473) phosphorylation compared to time matched controls, indicating 

that 2-CL-IB-MECA (1 nM) mediated cardioprotection is independent of the PI3K-

AKT pathway at this concentration. Although in the isolated perfused rat heart model 

the PI3K inhibitor Wortmannin (5 nM) was seen to abolish the protection afforded by 

2-CL-IB-MECA (1 nM) when administered at reperfusion. 
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5.4.2. Effect of 2-CL-IB-MECA (100 nM) when administered at 
reperfusion on AKT phosphorylation during different time intervals 
post reperfusion.  
 

We showed that 2-CL-IB-MECA (100 nM) can protect the myocardium from 

ischaemia reperfusion injury in the isolated perfused rat heart where the protection 

was abolished in the presence of the PI3K inhibitor Wortmannin (100 nM) Figure 5.2. 

To understand the signalling pathways involved in 2-CL-IB-MECA (100 nM) 

mediated cardioprotection when administered at reperfusion it was necessary to look 

at the phosphorylation status of AKT (ser473) at different time points during reperfusion 

in the presence and absence of the PI3K inhibitor Wortmannin (100 nM).  

 

Phosphorylation of AKT (ser473) was observed in non-treated control and 2-CL-IB-

MECA (100 nM) treated hearts.  Reperfusion of the ischaemic heart in the presence of 

the A3 agonist 2-CL-IB-MECA (100 nM) significantly increased phosphorylation of 

AKT (ser473) at 5 minutes (P<0.001), 10 minutes (P<0.001) and 20 minutes (P<0.05) of 

reperfusion compared to time matched non-treated control hearts (Figure 5.8.a,b).  

 

Upregulation of AKT (ser473) phosphorylation by the A3 agonist 2-CL-IB-MECA (100 

nM) after 10 minutes of reperfusion was significantly abolished in the presence of the 

PI3K inhibitor Wortmannin (100 nM) P<0.001 (Figure 5.8.a,b). Administration of 

Wortmannin (100 nM) at the onset of reperfusion alone had no significant effect of 

AKT (ser473) phosphorylation compared to time matched non-treated control hearts 

(P>0.05) Figure 5.8.a,b. 
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** P<0.01  Control control minutes reperfusion, 5, 10, 20 minutes reperfusion 
MECA vs. Basal. £ P<0.01 MECA 5, 10, 20 minutes reperfusion vs. controls  5, 
10, 20 minutes reperfusion respectively *** P<0.001 Wortmannin + 2-CL-IB-

MECA vs. 2-Cl-IB-MECA 10 minutes Reperfusion. 
 
Figure 5.8.a. Assessment of AKT (ser 473) phosphorylation in isolated hearts to 
subjected to 60 minutes perfusion (Basal) or 35 minutes ischaemia followed by 5, 
10 or 20 minutes of reperfusion in non-treated control and 2-CL-IB-MECA 
treated hearts. The A3 agonist 2-CL-IB-MECA (100 nM) (MECA) was 
administered at reperfusion in presence and absence of the PI3K inhibitor 
Wortmannin (100 nM) (Wort). Results are shown as Mean ± SEM of three 
individual experiments.  
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** P<0.01 MECA 10 minutes reperfusion vs. Basal. *** P<0.001 MECA 10 
minutes reperfusion vs. Control 10 minutes reperfusion.  $ P<0.001Wort+MECA 

10 minutes reperfusion vs. 2-Cl-IB-MECA 10 minutes Reperfusion. 
 
Figure 5.8.b. Comparison of AKT (ser 473) phosphorylation in isolated hearts to 
subjected to 60 minutes perfusion (Basal) or 35 minutes ischaemia followed by  
10 minutes of reperfusion in non-treated control and 2-CL-IB-MECA treated 
hearts. The A3 agonist 2-CL-IB-MECA (100 nM) (MECA) was administered at 
reperfusion in presence and absence of the PI3K inhibitor Wortmannin (100 
nM) (Wort). Results are shown as Mean ± SEM of three individual experiments.  
 

5.4.3. Effect of 2-CL-IB-MECA (100 nM) when administered at 
reperfusion on p70S6 phosphorylation during different time intervals 
post reperfusion  
 
Previously we have shown that activation of A3 adenosine receptors with the A3 

agonist 2-CL-IB-MECA (100 nM) protects the myocardium from ischaemia 

reperfusion injury in the isolated perfused rat heart. The protection afforded by the A3 

agonist 2-CL-IB-MECA (100 nM) was abolished in the presence of the mTOR 

inhibitor Rapamycin (2 nM) Figure 5.3. 
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To understand the role of p70S6 kinase in 2-CL-IB-MECA (100 nM) mediated 

cardioprotection it was necessary to harvest tissue that had been treated with 2-CL-IB-

MECA (100 nM) in the presence and absence of the mTOR inhibitor Rapamycin (2 

nM) at various time points post reperfusion. 

 

Phosphorylated p70S6 kinase (Thr 389) was seen in all tissues and time points assessed. 

Administration of 2-CL-IB-MECA (100 nM) at the onset of reperfusion was seen to 

significantly upregulate the phosphorylation of p70S6 (Thr389) kinase after 5 minutes 

(P<0.01), 10 minutes (P<0.01) and 20 minutes (P<0.05) of reperfusion compared to 

their time matched non-treated controls hearts (Figure 5.9.a,b).   

 

Administration of the 2-CL-IB-MECA (100 nM) in the presence of the mTOR 

inhibitor Rapamycin (2 nM) for 10 minutes of reperfusion significantly abolished 2-

CL-IB-MECA (100 nM) dependant phosphorylation of p70S6 (Thr 389) kinase 

compared to 2-CL-IB-MECA (100 nM) when administered alone for 10 minutes of 

reperfusion (P<0.05), Figure 5.9.a,b. 
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** P<0.01 MECA 5, 10, 20 minutes reperfusion vs. Basal. #P<0.01 MECA 5, 10, 
20 minutes reperfusion vs. control 5, 10, 20 minutes reperfusion respectively. * 

P<0.05 MECA 20 minutes reperfusion vs.control 20 minutes reperfusion. $ 
P<0.05 Rapamycin +  2-CL-IB-MECA vs. 2-Cl-IB-MECA 10 minutes of 

Reperfusion. 
 
Figure 5.9.a. Assessment of p70S6 kinase phosphorylation in isolated hearts to 
subjected 60 minutes of perfusion (basal) or 35 minutes of ischaemia followed by 
5, 10 or 20 minutes of reperfusion in non-treated control (Con) and 2-CL-IB-
MECA hearts. The A3 agonist 2-CL-IB-MECA (100 nM) (MECA) was 
administered in the presence and absence of the mTOR inhibitor Rapamycin (2 
nM) (Rap). Results are shown as Mean ± SEM of three individual experiments.  
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** P<0.01 MECA 10 minutes reperfusion vs. Basal. & P<0.01 MECA 10 minutes 
reperfusion vs. Control 10 minutes reperfusion. * P<0.05 Rapamycin +  2-CL-IB-

MECA vs. 2-Cl-IB-MECA 10 minutes of Reperfusion. 
 
Figure 5.9.b. Comparison of p70S6 kinase phosphorylation in isolated hearts to 
subjected 60 minutes of perfusion (basal) or 35 minutes of ischaemia followed by 
5, 10 or 20 minutes of reperfusion in non-treated control (Con) and 2-CL-IB-
MECA hearts. The A3 agonist 2-CL-IB-MECA (100 nM) (MECA) was 
administered in the presence and absence of the mTOR inhibitor Rapamycin (2 
nM) (Rap). Results are shown as Mean ± SEM of three individual experiments.  
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5.5.0. Effect of 2-CL-IB-MECA (100nM) when administered at 
reperfusion on BAD (ser136) phosphorylation during different time 
intervals post reperfusion.  
 
Another downstream target of the PI3K-AKT survival pathway is pro-apoptotic 

protein BAD. Activation of BAD by PI3K – AKT cell survival pathway can attenuate 

cellular apoptosis by promoting its association with 14-3-3 proteins abolishing the 

apoptotic effect. 

 

Phosphorylation of BAD (ser136) was observed in all tissues and time points assessed. 

The phosphorylation of BAD (ser136) was significantly decreased after 10 minutes of 

reperfusion compared to the non ischaemic basal group (P<0.01) Figure 5.10. 

Administration of 2-Cl-IB-MECA (100 nM) for the first 10 minutes of reperfusion 

significantly upregulated the phosphorylation of BAD (ser136) compared to time 

matched control group (P<0.01) Figure 5.10. 
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** P<0.01 Control 10, 20 minutes reperfusion vs. Basal. $ P<0.01 MECA 10, 20 

minutes reperfusion vs. Control 10, 20 minutes reperfusion repectively. 
 

Figure 5.10. Assessment of BAD (ser136) phosphorylation in isolated hearts to 
subjected 60 minutes of perfusion (basal) or 35 minutes of ischaemia followed by 
5, 10 or 20 of reperfusion in non-treated control (Con) and A3 agonist 2-CL-IB-
MECA (100nM) (MECA) treated hearts. 2-CL-IB-MECA was administered at 
the onset of reperfusion. Results are shown as Mean ± SE of three individual 
experiments.  
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5.6.1. Effect of 2-CL-IB-MECA on cleaved-caspase 3 activity and the 
role of the PI3K – AKT cell  survival pathway. 
 

To determine the role of the PI3K-AKT cell survival pathway on cleaved-caspase 3 in 

2-CL-IB-MECA (1 nM) medicated cardioprotection, isolated adult rat cardiac 

myocytes underwent 6 hours of hypoxia and 18 hours of reoxygenation where the A3 

agonist 2-CL-IB-MECA (1 nM) was administered in the presence and absence of 

PI3K inhibitor Wortmannin (5 nM) throughout reoxygenation. 

 

Administration of 2-CL-IB-MECA (1 nM) throughout reoxygenation significantly 

decreased cleaved-caspase 3 activity that was significantly abolished in the presence 

of the PI3K inhibitor Wortmannin (5 nM) (116 ± 32 % 2-CL-IB-MECA vs. 207 ± 15 

% 2-CL-IB-MECA + Wortmannin P<0.05) Figure 5.11 and Figure 5.14. 

Administration of Wortmannin (5nM) throughout reoxygenation alone had no 

significant effect of cleaved-caspase 3 activity compared to the non-treated Hyp/Reox 

group (199 ± 40 % Wortmannin vs. 281 ± 39 % P>0.05) Figure 5.11 and Figure 5.14.  

 

Figure 5.14 shows a representative scatter graph from the FACS flow cytometer 

showing the difference in cleaved-caspase 3 activity in normoxic myocytes as well as 

myocytes that have undergone 6 hours of hypoxia and 18 hours of reoxygenation 

where the A3 agonist 2-CL-IB-MECA (1 nM) was administered throughout 

reoxygenation in the presence and absence of the PI3K inhibitor Wortmannin (5 nM). 
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***P<0.001 Hyp/Reox, Wortmannin +  2-CL-IB-MECA, Wortmannin vs. 
Normoxia. £ P<0.001  2-CL-IB-MECA vs. Hyp/Reox. * P<0.05 Wortmannin +  2-

CL-IB-MECA vs. 2-CL-IB-MECA. Mean ± SEM of 5 individual experiments. 
 
Figure 5.11. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 24 hours oxygenation (Normoxia) or  6 hours of hypoxia followed by 
18 hours of reoxygenation. The A3 agonist 2-CL-IB-MECA (1 nM) was 
administered throughout reoxygenation in the presence and absence of the PI3 
kinase inhibitor Wortmannin (100 nM).  
 

5.6.2. Effect of 2-CL-IB-MECA (10 nM) on cleaved-caspase 3 activity 
and the role of the PI3K – AKT cell survival pathway. 
 

To determine the role of the PI3K-AKT cell survival pathway on cleaved-caspase 3 in 

2-CL-IB-MECA (10 nM) medicated cardioprotection, isolated adult rat cardiac 

myocytes underwent 6 hours of hypoxia and 18 hours of reoxygenation where the A3 

agonist 2-CL-IB-MECA (10 nM) was administered in the presence and absence PI3K 

inhibitor Wortmannin (5 nM) throughout reoxygenation. 

Administration of 2-CL-IB-MECA (10 nM) throughout reoxygenation significantly 

decreased caspase 3 activity compared to the non-treated Hyp/Reox group (101 ± 

22% 2-CL-IB-MECA vs. 281 ± 32 % Hyp/Reox  P<0.001) Figure 5.12.  
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Administration of 2-CL-IB-MECA (10 nM) throughout reoxygenation in the presence 

of the PI3K inhibitor Wortmannin (5 nM) was seen to significantly abolish the A3 

agonist dependant decrease in cleaved-caspase 3 activity compared to when 

administered alone throughout reoxygenation (174 ± 19 % 2-CL-IB-MECA + 

Wortmannin vs.101 ± 32 % 2-CL-IB-MECA P<0.05) Figure 5.12. Administration of 

Wortmannin (5 nM) throughout reoxygenation alone had no significant effect on 

cleaved-caspase 3 activity compared to the non-treated Hyp/Reox group (199 ± 40 % 

Wortmannin vs. 281 ± 39 % P>0.05) Figure 5.12.  

 

***P<0.001 Hyp/Reox, Wortmannin +  2-CL-IB-MECA , Wortmannin vs. 
Normoxia. £ P<0.001 2-CL-IB-MECA vs. Hyp/Reox. * P<0.05 Wortmannin +  2-

CL-IB-MECA vs. 2-CL-IB-MECA. Mean ± SEM of 5 individual experiments. 
 

Figure 5.12. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours of hypoxia followed by 
18 hours of reoxygenation. The A3 agonist 2-CL-IB-MECA (10 nM) was 
administered at the onset of reoxygenation in the presence and absence of the 
PI3 kinase inhibitor Wortmannin (5 nM). 
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5.6.3. Effect of 2-CL-IB-MECA (100 nM) on cleaved-caspase 3 
activity and the role of the PI3K – AKT cell survival pathway. 
 

Administration of 2-CL-IB-MECA (100 nM) throughout reoxygenation was also seen 

to significantly decrease cleaved-caspase 3 activity compared to the non-treated 

Hyp/Reox group (127 ± 16 % 2-CL-IB-MECA vs. 281 ± 39 % Hyp/Reox P<0.001) 

Figure 5.13.  

 

Administration of 2-CL-IB-MECA (100 nM) throughout reoxygenation in the 

presence of the PI3K inhibitor Wortmannin (100 nM) was seen to significantly 

abolish the decrease in cleaved-caspase 3 activity compared to when 2-CL-IB-MECA 

(100 nM) was administered alone throughout reoxygenation (186 ± 31 % 2-CL-IB-

MECA + Wortmannin vs. 127 ± 16 % 2-CL-IB-MECA P<0.05) Figure.5.13. 

 

Previous studies have used the PI3K inhibitor Wortmannin at the concentration of 5 

nM and 100 nM. The concentration of Wortmannin was increased to 100 nM when 

the concentration of 2-CL-IB-MECA was increased above 1 nM (Young et al., 2000; 

Jonassen et al., 2001; Park et al., 2006). 
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***P<0.001 Hyp/Reox vs. Normoxia. £P<0.001  2-CL-IB-MECA  vs. Hyp/Reox.  
* P<0.05 Wortmannin +  2-CL-IB-MECA vs. 2-CL-IB-MECA.  

Mean ± SEM of 5 individual experiments. 
 
Figure 5.13. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 24 hours of oxygenation or 6 hours of hypoxia followed by 18 hours 
of reoxygenation. The A3 agonist 2-CL-IB-MECA (100 nM) was administered at 
the onset of reoxygenation in the presence and absence of the PI3 kinase 
inhibitor Wortmannin (100 nM).  
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Figure 5.14. Representative graph from the FACS flow cytometer FL-1 channel 
showing mean fluorescence of cleaved-caspase 3 in isolated adult rat cardiac 
myocytes subjected 24 hours oxygenation (Normoxia), 6 hours of hypoxia 
followed by 18 hours of reoxygenation (Hyp/Reox). The A3 agonist 2-CL-IB-
MECA (1 nM) (Meca) was administered at the onset of reoxygenation in the 
presence of the PI3 kinase inhibitor Wortmannin (5 nM) (Wort). The graph 
shows the changes in the expression of cleaved-caspase 3. Hypoxia/reoxygenation 
resulted in a significant increase in the expression of cleaved-caspase 3 that was 
reversed by the administration of 2-CL-IB-MECA at the onset of reoxygenation. 
 
5.7 Conclusion 
 
In conclusion activation of A3ARs at the onset of reperfusion with 2-CL-IB-MECA (1 

nM or 100 nM) significantly decreased infarct size to risk ratio compared to non-

treated controls where the protection was abolished by the PI3K inhibitor 

Wortmannin (5 nM or 100nM) or the mTOR  inhibitor Rapamaycin (2 nM).  

 
Administration of 2-CL-IB-MECA (1 nM or 100 nM) at reoxygeantion significantly 

decreased apoptosis and necrosis that was abolished in the presence of the PI3K 

inhibitor Wortmannin or the mTOR inhibitor Rapamycin (2 nM).    

 

Administration of of 2-CL-IB-MECA (1 nM) was associated with a decrease in AKT 

phosphorylation compared to time matched controls. Administration of 2-CL-IB-

Normoxia 
Hyp/Reox 

MECA   
MECA  + Wort  
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MECA (100 nM) was associated with an increase in AKT and P70S6K 

phosphorylation compared to their time matched controls that was abolished in the 

presence of their respective inhibitors.  Activation of A3ARs at reperfusion by 2-CL-

IB-MECA (100nM) was associated with increased phosphorylation of BAD.  

 

Isolated cardiac myocytes were subjected to hypoxia/reoxygenation injury resulting in 

a significant increase in cleaved capsase 3 activity that was abolished by the presence 

of the A3AR agonist 2-CL-IB-MECA (1 nM or 100 nM). This cytoprotective anti-

cleaved caspase 3 activity was abolished by the co-administration of the PI3K 

inhibitor Wortmannin (5 nM or 100nM). 
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Chapter 6. Postponing the administration of 2-CL-IB-MECA 

protects the myocardium from ischaemia reperfusion injury via 

PI3K-AKT cell survival pathway 

 
6.1.0. Results-Infarct size to Risk Ratio Analysis 

We have previously shown in chapter 4,  that the administration of 2-CL-IB-MECA 

(1nM)  15 minutes and 30 minutes post reperfusion to protect the ischaemic 

myocardium from reperfusion injury. To determine whether this protection was 

dependant on recruitment of PI3K/AKT cell survival pathway isolated perfused rat 

hearts underwent 35 minutes of ischaemia and 120 minutes of reperfusion where the 

A3 agonist 2-CL-IB-MECA (1nM) was administered 15 minutes or 30 minutes after 

the onset of reperfusion in the presence or absence of the PI3K inhibitor Wortmannin 

 

6.1.1. Administration of the A3 agonist 2-CL-IB-MECA 15 minutes 
post reperfusion protects the ischaemic myocardium via the PI3K-
AKT cell survival pathway.  
 

Postponing the administration of the A3 agonist 2-CL-IB-MECA (1nM) to 15 minutes 

after the onset of reperfusion significantly protected the ischaemic reperfused 

myocardium. To elucidate the intracellular signalling pathways via which this 

protection was being mediated hearts were perfused with 2-CL-IB-MECA (1 nM) in 

the presence and absence of the PI3K inhibitor Wortmannin (100 nM) 15 minutes 

after the start of reperfusion.  

 

Administration of the A3 agonist 2-CL-IB-MECA (1 nM) in the presence of the PI3K 

inhibitor Wortmannin (100 nM) 15 minutes after the onset of reperfusion significantly 

abolished the protection of 2-CL-IB-MECA (1 nM) when administered alone at 
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reperfusion (51 ± 9 % 2-CL-IB-MECA Post-15 + Wortmannin  vs. 22 ± 4 % 2-CL-

IB-MECA Post-15, P<0.05) Figure 6.1.   

 

Wortmannin (100 nM) alone had no significant effect of the development of infarct 

size to risk ratio in the ischaemic reperfused myocardium compared to control (50 ± 

10 % Wortmannin vs. 65 ± 2 Control, P>0.05) Figure 6.1. 

 
** P<0.01  2-CL-IB-MECA  vs. Control. $ P<0.01 Wortmannin +  2-CL-IB-

MECA vs. 2-CL-IB-MECA at 15 minutes Post-Rep. Mean ± SEM. 
 
Figure 6.1. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA (1 nM) treated ischaemic reperfused hearts. Isolated perfused rat 
hearts where subjected to 35 minutes of ischaemia and 120 minutes of 
reperfusion where the A3 adenosine receptor 2-Cl-IB-MECA (1 nM) was 
administered at 15 minutes after reperfusion in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM).  
 
6.1.2. Administration of the A3 agonist 2-CL-IB-MECA 30 minutes 
post reperfusion protects the ischaemic myocardium via the PI3K-
AKT cell survival pathway.  
 
 
Administration of A3 agonist 2-CL-IB-MECA (1 nM) when administered at 

reperfusion or 15 minutes post reperfusion was seen to protect the ischaemic 
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myocardium from ischaemia reperfusion injury via recruitment of the PI3K pathway.  

To determine whether the protection afforded by 2-CL-IB-MECA (1 nM) when 

administered 30 minutes after the onset of reperfusion was via recruitment of the 

PI3K-AKT pathway 2-CL-IB-MECA (1 nM) was administered at reperfusion in the 

presence of the PI3K inhibitor Wortmannin (100 nM).  Administration of 2-CL-IB-

MECA (1 nM) 30 minutes after the onset of reperfusion in the presence of the PI3K 

inhibitor Wortmannin (100 nM) significantly abolished the protection when 2-CL-IB-

MECA (1 nM) was administered alone 30 minutes post reperfusion (54.0 ± 2 % 2-

CL-IB-MECA Post-30 + Wortmannin vs. 30 ±7 % 2-CL-IB-MECA Post-30 P<0.05) 

Figure 6.2.    

 

Wortmannin (100 nM) alone had no significant effect on the development of infarct 

size to risk ratio in the ischaemic reperfused myocardium compared to control (50 ± 

10 % Wortmannin vs. 65 ± 2 Control, P>0.05) Figure 6.2. 
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** P<0.01  2-CL-IB-MECA vs. Control. * P<0.05 Wortmannin +  2-CL-IB-

MECA vs. 2-CL-IB-MECA at 30 minutes Post-Rep.  
Mean ± SEM. 

Figure 6.2. Infarct size to Risk ratio (%) in non-treated control and 2-Cl-
IBMECA (1 nM) treated ischaemic reperfused hearts. Isolated perfused rat 
hearts where subjected to 35 minutes of ischaemia and 120 minutes of 
reperfusion where the A3 adenosine receptor 2-Cl-IB-MECA (1 nM) was 
administered at 30 minutes after reperfusion in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM).  
 
6.2.1. Postponing the administration of 2-CL-IB-MECA 15 minutes 
post reoxygenation protects isolated adult rat cardiomyocytes 
subjected to 6 hours of hypoxia followed by 18 hours of 
reoxygenation from reoxygenation injury via the PI3K-AKT cell 
survival pathway. 
 

To further determine the cardioprotective role of the A3 agonist 2-CL-IB-MECA 

when administered 15 minutes post reperfusion isolated adult rat cardiomyocytes 

when subjected to 6 hours of ischaemia followed by 18 hours of reoxygenation. 2-CL-

IB-MECA (10 nM) was administered 15 minutes after the initiation of reoxygenation 

in the presence of the PI3K inhibitor Wortmannin (100 nM).  
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In previous experiments we used 2-CL-IB-MECA at a concentration of 1 nM to 

initiate protection, but when this concentration was used at 15 and 30 minutes post 

reperfusion it failed to induce protection, however protection was seen when the 

concentration was increased 10 nM. Furthermore, the protection observed with 2-Cl-

IB-MECA (10 nM) was not blocked by Wortmannin at 5 nM, but was blocked by 

Wortmannin at 100 nM concentration (data not shown). 

 
Postponing the administration of the A3 agonist 2-CL-IB-MECA (10 nM) to 15 

minutes post reoxygenation significantly decreased the number of apoptotic myocytes 

compared to the Hyp/Reox group (18 ± 1% 2-CL-IB-MECA Post-15 vs. 42 ± 5 % 

Hyp/Reox P<0.05) Figure 6.3a.  

 
Postponing the administration of the A3 agonist 2-CL-IB-MECA (10 nM) to 15 

minutes post reoxygenation significantly decreased the number of necrotic myocytes 

compared to the Hyp/Reox group (21± 1% 2-CL-IB-MECA Post-15 vs. 32 ± 2 % 

Hyp/Reox P<0.05) Figure 6.3.b. 

 

Administration of 2-CL-IB-MECA (10 nM) 15 minutes post reperfusion in the 

presence of the PI3K inhibitor Wortmannin (100 nM) significantly abolished the anti-

apoptotic effect compared to when 2-CL-IB-MECA (10 nM) was administered alone 

15 minutes post reperfusion (18 ± 1% 2-CL-IB-MECA Post 15 vs. 32 ± 2 % 2-CL-IB-

MECA Post 15 + Wortmannin P<0.05) Figure 6.3.a. Furthermore, the anti-necrotic 

effect of 2-CL-IB-MECA (10 nM) when administered alone 15 minutes post 

reperfusion was partially abolished in the presence of the PI3K inhibitor Wortmannin 

(100 nM), but did not reach statistical significance (21 ± 1 % 2-CL-IB-MECA Post 15 

vs. 28 ± 4 % 2-CL-IB-MECA Post 15 + Wortmannin P>0.05) Figure 6.3.b.  
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Administration of Wortmannin (100 nM) alone throughout reoxygenation had no 

significant effect on myocyte apoptosis compared to the Hyp/Reox group (34 ± 6 % 

Wortmannin vs. 42 ± 5% Hyp/Reox P>0.05) Figure 6.3.a. Administration of 

Wortmannin (100 nM) alone throughout reoxygenation had no significant effect on 

myocyte necrosis compared to the Hyp/Reox group (35 ± 5 % Wortmannin vs. 32 ± 2 

% Hyp/Reox P>0.05) Figure 6.3.b. 

 

 

  
***P<0.001 Hyp/Reox, 2-CL-IB-MECA, Wortmannin + 2-CL-IB-MECA, 

Wortmannin  vs. Normoxia. *P<0.05 2-CL-IB-MECA  vs. Hyp/Reox. £ P<0.05 2-
CL-IB-MECA + Wortmannin, Wortmannin vs. 2-CL-IB-MECA. 

 
Figure 6.3.a. Assessment of apoptosis in isolated adult rat cardiomyocytes 
subjected to  24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation. Assessment of the PI3k / Akt cell survival pathway in 2-CLIB-
MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA (10 nM) 
added 15 minutes post-reperfusion in the presence and absence of the PI3K 
inhibitor Wortmannin (100 nM). Results are shown as Mean ± SEM and are 
expressed as a percentage of the total cells counted.  
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***P<0.001 Hyp/Reox, 2-CL-IB-MECA at 15 minutes post-rep vs. Normoxia. 

*P<0.05 2-CL-IB-MECA at 15 minutes post-rep vs. Hyp/Reox. £ P<0.05 
Wortmannin  vs. 2-CL-IB-MECA. 

 
Figure 6.3.b. Assessment of necrosis in isolated adult rat cardiomyocytes 
subjected to  24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation. Assessment of the PI3k / Akt cell survival pathway in 2-CLIB-
MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA (10 nM) 
added 15 minutes post-reperfusion in the presence and absence of the PI3K 
inhibitor Wortmannin (100 nM). Results are shown as Mean ± SEM and are 
expressed as a percentage of the total cells counted.  
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6.2.2. Postponing the administration of 2-CL-IB-MECA 30 minutes 
post reoxygenation protects isolated adult rat cardiomyocytes 
subjected to 6 hours of hypoxia followed by 18 hours of 
reoxygenation from reoxygenation injury via the PI3K - AKT cell 
survival pathway. 
 
 
Postponing the administration of the A3 agonist 2-CL-IB-MECA (10 nM) to 30 

minutes post reoxygenation significantly decreased the number of apoptotic cells 

compared to the non-treated Hyp/Reox group (29 ± 3% 2-CL-IB-MECA Post 30 vs. 

42 ± 5 % Hyp/Reox P<0.01) Figure 6.4.a. Postponing the administration of the A3 

agonist 2-CL-IB-MECA (10 nM) to 30 minutes post reoxygenation also significantly 

decreased the number of necrotic cells compared to the non-treated Hyp/Reox group 

(23 ± 3% 2-CL-IB-MECA Post-30 vs. 32 ± 2 % Hyp/Reox P<0.05) Figure 6.4.b.   

 

Administration of 2-CL-IB-MECA (10 nM) 30 minutes post reperfusion significantly 

decreased cellular apoptosis that was abolished in the presence of the  PI3K inhibitor 

Wortmannin (100 nM) (29 ± 3% 2-CL-IB-MECA Post-30 vs. 39 ± 5 % 2-CL-IB-

MECA Post-30 + Wortmannin P<0.05) Figure 6.4.a. Furthermore, the anti-necrotic 

effect of 2-CL-IB-MECA (10 nM) when administered 30 minutes post reperfusion 

was partially abolished in the presence of the PI3K inhibitor Wortmannin (100 nM), 

but did not reach statistical significance (23 ± 3 %2-CL-IB-MECA Post-30 vs. 28 ± 2 

% 2-CL-IB-MECA Post 30 + Wortmannin P>0.05) Figure 6.4.b. 

 

Administration of Wortmannin (100 nM) alone throughout reoxygenation had no 

significant effect on myocyte apoptosis compared to the Hyp/Reox group (34 ± 6 % 

Wortmannin vs. 42 ± 5% Hyp/Reox P>0.05) Figure 6.4.a. Administration of 

Wortmannin (100 nM) alone throughout reoxygenation had no significant effect on 
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myocyte necrosis compared to the Hyp/Reox group (35 ± 5 % Wortmannin vs. 32 ± 2 

% Hyp/Reox P>0.05) Figure 6.4.b. 

 

 
***P<0.001 Hyp/Reox, 2-CL-IB-MECA at 15 minutes post-rep, 2-CL-IB-

MECA+Wortmannin, Wortmannin  vs. Normoxia.*P<0.05 2-CL-IB-MECA at 
30 minutes post-rep vs. Hyp/Reox. £ P<0.05 2-CL-IB-MECA + Wortmannin vs. 

2-CL-IB-MECA. 
 
Figure 6.4.a. Assessment of apoptosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation. Assessment of the PI3K / Akt cell survival pathway in 2-CL-
IB-MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA (10 
nM) was added at 30 minutes post-reperfusion in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM). Results are shown as Mean ± SEM and 
are expressed as a percentage of 10,000cells counted.  
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***P<0.001 Hyp/Reox, 2-CL-IB-MECA, 2-CL-IB-MECA + Wortmannin, 

Wortmannin vs. Normoxia. *P<0.05 2-CL-IB-MECA vs. Hyp/Reox. 
 
Figure 6.4.b. Assessment of necrosis in isolated adult rat cardiomyocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours hypoxia and 18 hours 
of reoxygenation. Assessment of the PI3K / Akt cell survival pathway in 2-CL-
IB-MECA mediated cardioprotection. The A3AR agonist 2-CL-IB-MECA (10 
nM) was added at 30 minutes post-reperfusion in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM). Results are shown as Mean ± SEM and 
are expressed as a percentage of 10,000cells counted.  
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6.3.1. Role of AKT in 2-CL-IB-MECA mediated cardioprotection 
when administered 15 minutes post reperfusion. 
 

Having determined that 2-CL-IB-MECA (1 nM) protects the isolated perfused rat 

heart from ischaemia reperfusion injury when administered 15 minutes after the onset 

of reperfusion via the PI3K-AKT pathway it was important to examine the effect of 

the A3 agonist and the PI3K inhibitor Wortmannin (100 nM) on AKT (ser 473) 

phosphorylation.  Hearts were harvested 20, 25 and 35 minutes after reperfusion 

where the A3 agonist 2-CL-IB-MECA (1 nM) was administered 15 minutes after the 

onset of reperfusion.  

 

In control hearts AKT (ser 473) phosphorylation was observed at 20, 25 and 35 minutes 

of reperfusion. Administration of 2-CL-IB-MECA (1 nM) significantly up regulated 

the phosphorylation of AKT(ser 473) with maximal phosphorylation of AKT(ser 473) at 25 

minutes of reperfusion compared to time matched non-treated control, where A3 

agonist 2-CL-IB-MECA (1 nM) was  perfused after 15 minutes of reperfusion 

P<0.001 (Figure. 6.4..a,b). Despite the presence of 2-CL-IB-MECA (1nM) tissues 

harvested at 35 minutes of reperfusion did not show a further increase in AKT 

phosphorylation although there was a significant increase compared to its time 

matched non-treated control (P<0.001) (Figure 6.5.a,b).  

 

Administration of 2-CL-IB-MECA (1 nM) 15 minutes post-reperfusion upregulated 

AKT (ser 473) phosphorylation after 25 minutes of reperfusion that was significantly 

abolished in the presence of PI3K inhibitor Wortmannin (100 nM) (P<0.001) Figure 

6.5.a,b. Administration of the PI3K inhibitor Wortmannin (100 nM) alone for 25 



177 

minutes of reperfusion significantly decreased AKT (ser 473) phosphorylation compared 

to the time matched non-treated control group (P<0.01) (Figure 6.5.a,b). 

 

 

 

*P<0.05 MECA 20, 35 vs. Control 20, 35. ***P<0.001Wort+MECA 25, WORT 
25 vs. MECA 25 minutes post reperfusion. **P<0.01 Control 25,35, MECA 
20,25, WORT+MECA 25 vs. basal. a P<0.001 WORT+ MECA, WORT vs. 
control 25 minutes of reperfusion.  

 
 
Figure 6.5.a. Assessment of AKT (ser473) phosphorylation in isolated hearts 
subjected to 60 minutes perfusion (basal) or  35 minutes of ischaemia followed by 
20, 25, 35 minutes of reperfusion in the presence and absence of the A3 Agonist 2-
CL-IB-MECA (1 nM) (MECA). The A3 Agonist 2-CL-IB-MECA (1 nM) was 
administered 15 minutes post-reperfusion in the presence and absence of the 
PI3K inhibitor Wortmannin (100 nM) (Wort). Results are shown as Mean ± 
SEM of three individual experiments. 
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**P<0.01  Con 25, MECA 25, WORT+MECA 25 vs. basal. *** P<0.001 MECA 
25, WORT+MECA 25, WORT 25 vs. control 25 minutes of reperfusion. 

#P<0.001 WORT+MECA 25, WORT vs. MECA 25 minutes post reperfusion 
 
Figure 6.5.b. Comparison of AKT (ser473) phosphorylation in isolated hearts 
subjected to 35  ischaemia followed by 25 minutes of reperfusion in the presence 
and absence of the A3 Agonist 2-CL-IB-MECA (1 nM) (MECA). The A3 Agonist 
2-CL-IB-MECA (1 nM) was administered 15 minutes post-reperfusion in the 
presence and absence of the PI3K inhibitor Wortmannin (100 nM) (Wort). 
Results are shown as Mean ± SEM of three individual experiments.  
 

6.3.2 Role of PI3K-AKT signalling pathway in 2-CL-IB-MECA 
mediated cardioprotection when administered 30 minutes post 
reperfusion. 
 
Previously, we have shown that 2-CL-IB-MECA (1nM) when administered 30 

minutes post reperfusion can limit the development of infarction in the ischaemic 

reperfused heart where the protection was blocked by the presence of the PI3K 

inhibitor Wortmannin (100 nM).  

 

To determine whether this protection afforded by 2-CL-IB-MECA (1 nM) when 

administered 30 minutes post reperfusion is via the PI3K –AKT cell survival pathway 
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heart tissues treated with 2-CL-IB-MECA (1 nM) in the presence and absence of the 

PI3K inhibitor Wortmannin (100 nM) at various time points post reperfusion.  

 

In control hearts AKT (ser473) phosphorylation was observed at 35, 40 and 50 minutes 

of reperfusion. Administration of 2-CL-IB-MECA (1 nM) 30 minutes after the onset 

of reperfusion significantly up regulated the phosphorylation of AKT (ser473) at 40 

minutes of reperfusion compared to time matched controls. (P<0.05) (Figure 6.6.a). 

Administration of 2-CL-IB-MECA (1 nM) 30 minutes after the onset of reperfusion in 

the presence of the PI3K inhibitor Wortmannin (100 nM) abolished the increase in 

AKT (ser473) phosphorylation by 2-Cl-IB-MECA after 40 minutes of reperfusion 

(P<0.05) (Figure 6.6.a,b).  

 

Administration of 2-CL-IB-MECA (1 nM) 30 minutes after reperfusion showed 

significant down regulation of AKT(ser473)  phosphorylation  after 50 minutes of 

reperfusion compared to time matched controls (P<0.05) Figure 6.6.a,b.   
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*P<0.05 MECA 35, 40, 50 vs.  Control 35, 40, 50 respectively. $ P<0.05 
WORT+MECA 40 vs. MECA 40 minutes post reperfusion. ** P<0.01 Con 50, 

MECA 35, 40, 50, WORT+MECA 40 vs. Basal. 
 
Figure 6.6.a. Assessment of Akt phosphorylation in isolated hearts subjected 60 
minutes perfusion (basal) or 35 minutes of ischaemia followed by 35, 40 or 50 
minutes of reperfusion in the presence and absence  (cont) of the A3 Agonist 2-
CL-IB-MECA (1 nM) (MECA). The PI3K inhibitor Wortmannin (100 nM) 
(Wort) was administered at reperfusion in the presence and absence of the A3AR 
agonist 2-CL-IB-MECA (1 nM). Results are shown as Mean ± SEM of three 
individual experiments.  
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*P<0.05 MECA 40 vs. Control 40. $ P<0.05 WORT+ MECA vs. MECA 40 
minutes post reperfusion. £ P<0.01 MECA 40, WORT+MECA vs. Basal. 

 
Figure 6.6.b. Comparison  of Akt phosphorylation in isolated hearts subjected 60 
minutes perfusion (basal) or 35 minutes of ischaemia followed by 40 minutes of 
reperfusion in the presence and absence (con) of the A3 Agonist 2-CL-IB-MECA 
(1 nM) (MECA). The PI3K inhibitor Wortmannin (100 nM) (Wort) was 
administered at reperfusion in the presence and absence of the A3AR agonist 2-
CL-IB-MECA (1 nM). Results are shown as Mean ± SEM of three individual 
experiments.  
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6.4.1. Effect of 2-CL-IB-MECA (10 nM) when administered 15 
minutes post reoxygenation on cleaved-caspase 3 activity in isolated 
adult rat cardiomyocytes. 
 

We have shown that the A3 agonist 2-CL-IB-MECA (1 nM; 10 nM; 100 nM) 

significantly decreased cleaved-caspase 3 activity when administered at reperfusion in 

the presence of the PI3K inhibitor Wortmannin (100 nM). To determine whether 2-

CL-IB-MECA (10nM) when administered 15 minutes after the onset of reoxygenation 

could still confer protection via decreasing cleaved-caspase 3 activity isolated adult 

rat cardiac myocytes subjected to 6 hours of hypoxia and 18 hours of reoxygenation 

where the A3 agonist was administered 15 minutes after the onset of reoxygenation.  

Furthermore, to determine whether this protection was via recruitment of the PI3K –

AKT cell survival pathway 2-CL-IB-MECA (10 nM) was administered 15 minutes 

after the onset of reoxygenation in the presence and absence of the PI3K inhibitor 

Wortmannin (100 nM). 

 

Administration of 2-CL-IB-MECA (10 nM) 15 minutes after the onset of  

reoxygenation significantly decreased cleaved-caspase 3 activity compared to the 

non-treated Hyp/Reox group (117 ± 14% 2-CL-IB-MECA Post-15 vs. 281 ± 39 % 

Hyp/Reox P<0.001) (Figure 6.7). 

 

Administration of 2-CL-IB-MECA (10 nM) decreased cleaved-caspase 3 activity 

when administered 15 minutes after the onset of reoxygenation that was significantly 

abolished in the presence of the PI3K inhibitor Wortmannin (100nM) (117 ± 14% 2-

CL-IB-MECA Post-15 vs. 267 ± 66% 2-Cl-IB-MECA Post-15 + Wortmannin 

P<0.05) (Figure 6.7). 
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Administration of Wortmannin (100 nM) alone throughout reoxygenation resulted in 

a significant decrease in cleaved-caspase 3 activity compared to the Hyp/Reox group 

(190 ± 9 % Wortmannin vs. 281 ± 39 % Hyp/Reox P<0.05) (Figure 6.7). 

 

 

 

*** P<0.001 Hyp/Reox, Wortmannin + 2-CL-IB-MECA, Wortmannin vs. 
Normoxia. £ P<0.001 2-CL-IB-MECA vs. Hyp/Reox. *P<0.05 Wortmannin+2-

CL-IB-MECA, Wortmannin  vs. 2-CL-IB-MECA 15 minutes Post-
Reoxygenation. 

 
Figure 6.7. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 24 hours oxygenation (Normoxia) or 6 hours of hypoxia followed by 
18 hours of reoxygenation (Hyp/Reox). The A3 agonist 2-CL-IB-MECA (10 nM) 
was administered 15 minutes after the onset of reoxygenation in the presence and 
absence of the PI3K inhibitor Wortmannin. Mean ± SEM of 5 individual 
experiments. 
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6.4.2. Effect of 2-CL-IB-MECA when administered 30 minutes post 
reoxygenation on cleaved-caspase 3 activity in isolated adult rat 
cardiomyocytes. 
 

Administration of 2-CL-IB-MECA (10 nM) 30 minutes after the onset of 

reoxygenation significantly decreased caspase 3 activity in isolated adult rat cardiac 

myocytes subjected to 6 hours of hypoxia and 18 hours of reoxygenation compared to 

the non-treated Hyp/Reox group (165 ± 16% 2-CL-IB-MECA Post-30 vs. 281 ± 39 % 

Hyp/Reox P<0.001) (Figure 6.8). 

 

To determine whether the decrease in cleaved-caspase 3 by 2-CL-IB-MECA (10 nM) 

when administered 30 minutes after reoxygenation was via the PI3K – AKT cell 

survival pathway we used the PI3K inhibitor Wortmannin (100 nM). Administration 

of 2-CL-IB-MECA (10 nM) 30 minutes after the onset of reoxygenation in the 

presence of the PI3K inhibitor Wortmannin (100 nM) significantly abolished the 

decrease in cleaved-caspase 3 compared with when 2-CL-IB-MECA (10 nM) was 

administered alone 30 minutes after reoxygenation (165 ± 16 % 2-CL-IB-MECA 

Post-30 vs. 239 ± 35 % 2-CL-IB-MECA Post-30 + Wortmannin P<0.05) (Figure 6.8).  

 

Administration of Wortmannin (100 nM) alone throughout reoxygenation resulted in 

a significant decrease in cleaved-caspase 3 activity compared to the Hyp/Reox group 

(190 ± 9 % Wortmannin  vs. 281 ± 39 % Hyp/Reox P<0.05) (Figure 6.8). 
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***P<0.001 Hyp/Reox, Wortmannin + 2-CL-IB-MECA, Wortmannin vs. 

Normoxia. £ P<0.001 2-CL-IB-MECA vs. Hyp/Reox. * P<0.05 Wortmannin + 2-
CL-IB-MECA vs. 2-CL-IB-MECA 30 minutes Post-Reoxygenation. 

 
Figure 6.8. Cleaved-caspase 3 activity in isolated adult rat cardiac myocytes 
subjected to 6 hours of hypoxia followed by 18 hours of reoxygenation The A3 
agonist 2-CL-IB-MECA (10 nM) was administered 30 minutes after the onset of 
reoxygenation in the presence and absence of the PI3K inhibitor Wortmannin 
administered at the onset of reperfusion.  Mean ± SEM of 5 individual 
experiments. 
 
6.5. Conclusion 

To conclude administration of of 2-CL-IB-MECA (1 nM) 15 or 30 minutes post-

reperfusion significantly decreased infarct size to risk ratio compared to non-treated 

controls. This protection was abolished by the co-administration of the PI3K inhibitor 

Wortmannin.  Administration of 2-CL-IB-MECA (1 nM) 15 or 30 minutes was 

associated with an increase in AKT phosphorylation compared to time matched 

controls. This increase in AKT was abolished in the presence of the PI3K inhibitor 

Wortmannin. 

 

Activation of A3ARs 15 or 30 minutes post-reoxygenation significantly decreased 

apoptosis and necrosis in hte isolated cardiac model of hypoxia/Reoxygenation injury. 
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This anti-apoptotic effect was abolished by the presence of Wortmannin. The anti-

apoptotic effect of 2-CL-IB-MECA was not abolished by Wortmannin.  

 

Delaying the administration of 2-CL-IB-MECA to 15 or 30 minutes after the onset of 

reoxygenation significantly decreased cleaved caspase 3 activity that was abolished in 

the presence of Wortmannin in the cardiac myocyte model of hypoxia/reoxygenation 

injury. 
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7. General Discussion 

Ischaemic heart disease is a leading factor in the development of myocardial 

infarction in the world today. To reduce the burden of ischaemic heart disease related 

events on the National Health Service the health service has adopted a policy to 

prevent the development of ischaemic heart disease by identifying high risk patients 

and treating them early on (Skinner et al., 2007). Despite these changes in clinical 

practice a large number of patients still suffer from the deleterious consequences of 

ischaemic heart disease.  In the clinical setting patients are often admitted on the 

development of angina or after suffering a myocardial infarction where blood 

troponin and creatine kinase levels are assessed to confirm a diagnosis of myocardial 

infarction as well an ECG reading showing ST segment depression (Pasternak et al., 

1988; Collinson and Gaze. 2007). Although some patients who are suffering from a 

heart attack may not exhibit ST segment depression on ECG analysis.  Depending on 

the nature and extent of injury patients undergo thrombolytic therapy, primary 

angioplasty or coronary artery bypass grafting to restore blood flow to the ischaemic 

region. 

 

Restoration of coronary flow to the ischaemic myocardium remains the only 

mechanism of salvaging reversibly damaged cardiac myocytes, but itself can further 

hasten the injury process (Braunwald and Kloner. 1985). It is of utmost importance to 

elucidate the mechanisms that may be attributed to hastening the injury process to 

identify potential targets when developing cardioprotective agents. Therefore there is 

an imperative need for the development of pharmacological agents that can be used as 

adjunct therapies to limit ischaemia reperfusion injury to be administered in a clinical 

setting. Recent advances in molecular pharmacology have led to increased 
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understanding of cellular signalling processes that mediate myocardial ischaemia 

reperfusion injury. A multitude of studies have shown endogenous and exogenous 

agents to mediate ischaemia reperfusion injury, some having detrimental effects and 

others having innate cardioprotective abilities (Hausenloy and Yellon. 2004).  

 

Adenosine levels increase in the ischaemic myocardium due to insufficient 

availability of oxygen and nutrients to maintain oxidative phosphorylation (Van 

Wylen et al., 1994; Vinten-Johansen et al., 1995; Deussen et al., 1999).  Studies have 

shown that administration of exogenous adenosine at reperfusion can protect the 

ischaemic reperfused myocardium from reperfusion injury and was dependant upon 

adenosine receptor activation (Olfasson et al., 1987; Norton et al., 1991; Toombs et 

al., 1992; Zhao et al., 1993; 2001; Jordan et al.,1999). Numerous studies have also 

shown preconditioning with the A3AR agonist 2-CL-IB-MECA to mediate 

cardioprotection in a number of different models (Olfasson et al., 1987; Norton et al., 

1991; Germack and Dickenson. 2005). 2-CL-IB-MECA has also been shown to 

mediate cardioprotection by delayed preconditioning (Zhao et al., 2002; 2003; Tokano 

et al., 2001) 

 

More recently, studies showed that ischaemic postconditioning protects the 

myocardium from ischaemia reperfusion injury where the protective abilities were 

attributed to the delayed washout of endogenous adenosine that activated adenosine 

receptors, inhibition of these receptors abolished protection (Kerendi et al., 2005). 

Adenosine analogues have been developed to show increased affinity to adenosine 

receptor subtypes to determine individual adenosine receptor subtype contribution to 

physiological processes (Tucker and Linden. 1993; Fredholm et al., 2001). 
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Our data showed that activation of A3 adenosine receptors at reperfusion with 2-Cl-

IB-MECA significantly attenuated myocardial infarction development in the risk 

zone. These findings are consistent with previous studies by Maddock et al., (2003), 

who showed that activation of A3 adenosine receptors protected the ischaemic 

reperfused rat heart against ischaemia/reperfusion injury when administered at 

reperfusion. Studies by Park et al., (2006) have also shown protection with 2-CL-IB-

MECA when administered 5 minutes before reperfusion till the end of reperfusion in 

the isolated perfused rat heart.  

 

Cellular injury results in activation of the immune response and results in the 

migration of neutrophils and mast cells to the site of injury were they release 

intracellular components like bradykinin and histamine initiating the inflammatory 

response.  A3AR activation results in inhibiting neutrophil accumulation and limiting 

immune cell dependant cardiac injury as shown by Jordan et al., (1999). 

 

The protection associated with A3ARs activation by 2-CL-IB-MECA can be directly 

attributed to A3AR activation and not other receptor subtypes. Ge et al., (2006) 

interestingly showed that cardioprotection associated with 2-CL-IB-MECA is directly 

attributed to A3AR activation in wild type mice, as 2-CL-IB-MECA failed to induce 

protection in the ischaemic reperfused heart in A3AR knock out mice. This study 

further supports our theory that 2-CL-IB-MECA protects by directly acting on 

A3ARs.  

 

Previous studies have implicated activation of A3ARs to be both pro and anti-

apoptotic. In this study we used 2-CL-IB-MECA at a concentration of 1 nM – 100 nM 
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which have previously been shown to be anti-apoptotic. Previously, Maddock et al., 

(2002) showed protection in isolated rat cardiomyocytes exposed to 

hypoxia/reoxygenation with nanomolar concentrations of 2-CL-IB-MECA (1-30nM) 

but concentrations above >30nM failed to attenuate injury in myocytes or the isolated 

rat heart.  Our study showed 2-CL-IB-MECA to protect cardiac myocytes at the 

concentration of 100 nM previously shown by Maddock et al., (2002) to be not 

protective. These contradictory results may be explained as a result of the use of 

highly specific fluorochromes not available before. Abbaracchio et al., (2000) 

previously showed 2-CL-IB-MECA when administered at micro-molar concentrations 

reduced cell number in naïve Chinese hamster ovary cells transfected with the human 

A3AR compared to parent cells not expressing the A3AR. Although, the reduction in 

cell number was reversed by the A3AR antagonist MRS1191 (Brambilla et al., 2000), 

attributing high A3 agonist concentrations to cellular apoptosis.  Shneyvays et al., 

(1998) have also shown IB-MECA used at >10µM induced apoptosis in neonatal 

cardiomyocytes, induced DNA breaks and morphological changes attributed to 

apoptosis. Although, the same group later showed activation of A3ARs with 

nanomolar concentration of 2-CL-IB-MECA attenuated myocyte injury in myocytes 

exposed to hypoxic injury reversed by the AR antagonist MRS1523. They also 

showed that the A3 agonist delayed the onset of irreversible injury as well as delaying 

the collapse of mitochondrial membrane potential (Safran et al., 2001).   

 

Our study further demonstrated that postponing the administration of 2-CL-IB-MECA 

15 minutes or 30 minutes after reperfusion still conferred cardioprotection via infarct 

size reduction in the isolated perfused rat heart. Postponing the administration of 

cardioprotective agents after the onset of reperfusion is a novel hypothesis and 
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therefore has not been extensively studied. Von Lubitz et al., (2001) interestingly 

showed IB-MECA when administered 20 minutes after reperfusion to attenuate 

infarct development in the mice brain subjected to ischaemia/reperfusion. Further, 

they conclude that the post ischaemic treatment resulted in improved neuronal 

preservation, decreased intensity of reactive gliosis and a significant reduction in 

microglial infiltration.  

 

These findings cardioprotective effects of post ischaemic administration of caspase 

inhibitors were supported by the findings of Armstrong et al., (2001). Al-Rajaibi et 

al., (2006) have also shown delaying the administration of caspase inhibitors to 15, 30 

or 60 minutes after the onset of reperfusion to protect the isolated perfused rat from 

ischaemia reperfusion injury and protect adult rat cardiac myocytes from 

hypoxia/reoxygenation injury.  Jin et al., (2003) have shown chymase inhibitor 

administration 24 hours after myocardial infarction significantly improved survival 

rates in Syrian hamsters.  

 

This study furthered showed activation of A3ARs with 2-CL-IB-MECA when 

administered at reoxygenation attenuated apoptosis and necrosis in isolated adult rat 

cardiomyocytes compared to the non-treated group. These results are in accordance 

with Maddock et al., (2002) who showed 2-Cl-IB-MECA administration at 

reoxygenation attenuated apoptosis and necrosis and also that the cytoprotection was 

abolished by the A3AR antagonist MRS1191.  

 

Rivo et al., (2004) support these findings as in the feline lung model of ischaemia 

reperfusion injury they showed administration of IB-MECA at reperfusion 
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significantly reduced injury as seen by a reduction in apoptosis. The administration of 

the A3AR antagonist MRS 1191 abolished this protective effect. Liang and Jacobson. 

(1998) have also shown 2-CL-IB-MECA to protect chick cardiac myocytes from 

ischaemic injury.  

 

Despite the knowledge that activation of A3ARs can reduce injury in response to 

myocardial ischaemia/reperfusion very little is known about the intracellular 

signalling pathways that may be involved in mediating this protection.  

 

The literature shows programmed cell death (apoptosis) to be a key component in 

ischaemia reperfusion injury. Therefore, ligands or growth factors that can target 

apoptosis may afford an opportunity in limiting the consequences of ischaemia 

reperfusion injury. Innate anti-apoptotic intracellular signalling pathways have been 

shown to play a role in regulating apoptosis (Kunapuli et al., 2001; Buja. 2005).  

 

Previous studies have shown that adenosine receptors differentially activate cell 

signalling pathways. Stimulation of A1ARs has been shown to mediate 

cardioprotection via Gi dependant activation of phospholipase C (Parsons et al., 2000; 

Lee et al., 2001; Germack and Dickenson. 2005). A3AR stimulation has been shown 

to increase DAG formation via phospholipase D activation dependant on Rho A 

kinase phosphorylation (Parsons et al., 2000; Lee et al., 2001). Downstream cell 

signalling pathways activated in response to 2-CL-IB-MECA have been identified in 

numerous models of myocardial injury (Headrick and Peart. 2005). Activation of 

A3ARs has also been shown to modulate the actions of mitogen activated protein 

kinases like ERK1/2 and PI3K in neonatal rat cardiomyocytes (Germack and 
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Dickenson. 2004; 2005).  Previously A3AR dependant protection has also been shown 

to act on downstream effectors like KATP channels as well as promoting NF-κB 

binding to nuclear proteins (Tracey et al.,1998; Zhao and Kukreja. 2002).  

  

The PI3K - AKT signalling cascade has been well studied with reference to its role in 

ischaemia reperfusion injury. AKT the downstream target of PI3K can activate a 

number of downstream targets including eNOS, p70S6K, BAD and PKC (Cross et al., 

2000; Park et al., 2006). The MEK1/2 – ERK1/2 survival pathway has been shown to 

play a role in cell survival, growth and differentiation. In the context of cell survival 

phosphorylation of ERK 1/2 can activate downstream targets like p70S6 kinase, BAD 

mediating cardioprotection Mocanu et al., 2002; Germack and Dickenson. 2004, 

2005; Bose et al., 2005). The exact cellular mechanisms via which A3ARs mediate 

protection in the ischaemic reperfused myocardium remain unclear as studies have 

shown different pathway are activated in response to acute and delayed A3AR 

mediated cardioprotection.   

 

Administration of 2-CL-IB-MECA at reperfusion/reoxygenation decreases infarction 

and cell death via upregulation of MEK 1/2 – ERK 1/2, where inhibition of MEK 1/2 

with UO126 abolished these protective effects.  These results are comparable to those 

of Matot et al., (2006) who showed 2-CL-IB-MECA in the in-vivo feline lung model 

of ischaemia reperfusion injury to limit infarction via upregulation of ERK 1/2. In 

dose response studies in neonatal myocytes Germack and Dickenson (2004) have 

shown 2-CL-IB-MECA to upregulate phosphorylation of ERK1/2 at 1 nM 

concentration. Our data further show that 2-CL-IB-MECA (1nM) mediated 

myocardial protection is independent of p70S6K activity as the mTOR inhibitor 
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Rapamycin did not attenuate protection. Park et al., (2006) recently showed that 

Rapamycin when administered at reperfusion failed to abolish 2-CL-IB-MECA (1 

µM) mediated protection indicating A3 agonist protection is independent of p70S6 

kinase at these concentrations. Interestingly, administration of 2-CL-IBMECA (100 

nM) at reperfusion was seen to significantly increase the phosphorylation of P70S6 

kinase. In light of our findings and the current literature it seems that 2-CL-IB-MECA 

does not activate p70S kinase at 1 nM concentrations and at 1µM as Park et al. (2006) 

did not observe p70S6K phosphorylation with 2-CL-IB-MECA at 1 μM 

concentration. 

 

Cleaved-caspase 3 activity was also seen to be reduced in response to A3AR 

activation in adult rat cardiomyocytes subjected to hypoxia/reoxygenation injury. This 

protective effect was not abolished by the MEK 1/2 inhibitor UO126 indicating 2-CL-

IB-MECA mediated protection is independent of the MEK1/2 – ERK 1/2 survival 

pathway. In contrast Germack and Dickenson (2005) showed preconditioning with 2-

CL-IB-MECA reverses caspase 3 activity in neonatal myocytes subjected to 

hypoxia/reoxygenation injury in a MEK 1/2 - ERK 1/2 dependant pathway. These 

contradictory results may be explained as the latter experiments were conducted in 

neonatal cardiac myocytes whereas our study used fully differentiated adult rat 

cardiac myocytes. Furthermore, the protection seen by Germack and Dickenson 

(2005) was attributed to pharmacological preconditioning with the A3 agonist whereas  

in our study the A3 agonist was added at the onset of reoxygenation. Our findings 

regarding capsase 3 need to be interpretated cautiously as we measured the level of 

cleaved caspase 3 and not caspase 3 itself.  The survival pathways that mediate 

protection may be dependant upon the time of administration and the model used. 
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Post-reperfusion activation of A3ARs was also seen to decrease cleaved-caspase 3 

activity but was not blocked by the MEK 1/2 inhibitor UO126 implying that cleaved-

caspase 3 activity is independent of the MEK 1/2-ERK1/2 cell survival pathway.   

 

This is the first study to show activation of A3ARs post reperfusion protects the 

isolated perfused rat heart and adult rat cardiac myocyte from ischaemic injury via the  

MEK 1/2  – ERK 1/2 cell survival pathway. These results indicate the alternative 

pathways are activated in decreasing cleaved-caspase 3 like the PI3K/AKT survival 

pathway.  

 

The A3 adenosine receptor agonist 2-CL-IB-MECA (1 nM) was shown to upregulate 

the phosphorylation of BAD (ser112) via the MEK 1/2 – ERK 1/2 survival pathway 

whereas 2-CL-IB-MECA (100 nM) was shown to phosphorylate BAD (ser136) via the 

PI3K-AKT survival pathway. Phosphorylation of the pro-apoptotic protein BAD is 

deemed cardioprotective as phosphorylation upregulates BAD’s association with 14-

3-3- proteins attenuating apoptosis by decreasing caspase 3 activity. Insulin when 

administered at reperfusion has been shown to activate the PI3K-AKT/BAD cell 

survival pathway (Jonassen et al., 2000).  

 

Furthermore, our data showed 2-CL-IB-MECA (100 nM) when administered at 

reperfusion significantly decreased cleaved-caspase 3 activity in a Wortmannin 

sensitive manner in accordance with the findings of Germack and Dickenson., (2005) 

who showed preconditioning with 2-CL-IB-MECA (100 nM) to decrease caspase 3 

activity in a Wortmannin sensitive manner. These data demonstrate that 2-CL-IB-

MECA can activate pro-survival kinases when administered at reperfusion protecting 
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the myocardium/cardiomyocyte from ischaemia reperfusion / hypoxia reoxygenation 

injury.  Protection was also associated with a decrease in cleaved-caspase 3 activity in 

cardiomyocytes reversed in the presence of Wortmannin. Further studies are required 

to determine the exact role of AKT phosphorylation and its effect on cleaved-caspase 

3 activity when the A3 agonist 2-CL-IB-MECA is administered at reperfusion or post 

reperfusion. 

 

Postponing the administration of 2-CL-IB-MECA 15 to 30 minutes after reperfusion 

significantly attenuated myocardial infarction. Protection was abolished in the 

presence of the MEK1/2 inhibitor UO126. Stimulation of the A3ARs 15 and 30 

minutes post reperfusion limited hypoxia/reoxygenation injury in cardiac myocytes in 

an anti-apoptotic/necrotic manner. The anti-apoptotic potential was reversed upon 

inhibition of MEK 1/2 with UO126. Delayed administration of 2-CL-IB-MECA was 

accompanied by an increase in ERK 1/2 phosphorylation that was reversed in the 

presence of the MEK 1/2 inhibitor UO126.  Therefore the protection was dependant 

upon MEK 1/2 activation as inhibition of MEK1/2 abolished protection. Our findings 

are comparable with those of Von Lubitz et al., (1994; 2001) who have shown 

administration of 2-CL-IB-MECA when administered at reperfusion or 25 minutes 

post reperfusion protects against cerebral ischaemia reperfusion injury. 

 

 2-Cl-IB-MECA when administered at reoxygenation to isolated cardiac myocytes 

significantly decrease cleaved-caspase 3 activity compared to the non-treated group. 

The PI3K inhibitor Wortmannin reversed this process of cleaved-caspase 3 decrease 

by the A3AR agonist 2-CL-IB-MECA. These data imply that 2-CL-IB-MECA (1 nM) 

when administered at low concentrations at reperfusion/reoxygenation activates PI3K 
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and down regulates cleaved-caspase 3 activity without activating AKT. 

Administration of the PI3K inhibitor Wortmannin (100 nM) alone at reoxygenation 

significantly decreased cleaved-caspase 3 activity compared to the Hyp/Reox group. 

These findings are similar to those of Debiais et al., (2004) who showed that apoptosis 

induced by low serum concentrations in osteoblasts was reversed by administration of 

fibroblast growth factor 2 (FGF-2) and that the protection was abolished by the PI3K 

inhibitor Wortmannin although FGF-2 failed to induce AKT phosphorylation. They 

further show that FGF-2 induced protection as a result of inhibition of caspase 2 and 

caspase 3 activity.   

 

Wildmann et al., (1998) have shown caspases to be linked to the degradation of 

cellular proteins like AKT and ERK1 during cellular injury and caspase inhibitors to 

block the apoptotic signal by blocking the activity of caspases leading to an increase 

in these pro-survival proteins may provide an explanation for our findings. 

 

Our findings are comparative with those of Germack and Dickenson (2004) who 

showed a dose-dependent increase in AKT phosphorylation in naïve unstressed rat 

cardiac myocytes. They showed 2-CL-IB-MECA at the 1nM concentration to down 

regulate AKT phosphorylation whereas higher concentrations significantly increased 

AKT phosphorylation compared to non treated naive cardiac myocytes.   Therefore, 

this study supports our results showing 2-CL-IB-MECA (1 nM) protects cardiac 

myocytes from hypoxia reoxygenation injury when administered at reoxygenation in a 

PI3K dependant pathway independent of AKT induction.  
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Higher concentrations of 2-CL-IB-MECA (100nM) when administered at reperfusion 

were shown to still limit myocardial infarction development. In the cardiomyocyte 

model the A3 agonist was shown to significantly decrease apoptosis and necrosis in 

myocytes subjected to hypoxia and reoxygenation. The anti-infarct and anti-

apoptotic/necrotic ability of 2-CL-IB-MECA were abolished by the PI3K inhibitor 

Wortmannin or the p70S6K inhibitor Rapamycin. Western blot analysis revealed 2-

CL-IB-MECA (100nM) when administered at reperfusion upregulated AKT, p70S6K 

and BAD phosphorylation and were inhibited, with their respective inhibitors 

abolishing protection. Although, it should be noted that when 2-CL-IB-MECA (1 nM) 

was administered at lower concentration at reperfusion in the isolated perfused rat 

heart the mTOR Rapamycin failed to block the protection (Figure 6.3). 

 

AKT when activated phosphorylates a number of downstream targets including 

p70S6K that regulates translation.  Insulin has been shown to activate the PI3K-AKT / 

p70S6K / BAD pathway when administered at reperfusion, limiting myocardial 

infarction (Jonassen et al., 2001). This group further show inhibition of PI3K by 

Wortmannin or p70S6K by Rapamycin abolished insulin dependant protection. The 

findings of the study are in accordance with Park et al., (2006) who have shown 

infarct sparing effects with IB-MECA (1 µM) in the isolated rat heart associated with 

increased phosphorylation of AKT and showed that the protection was lost upon PI3K 

inhibition with Wortmannin. Our studies showed that 2-CL-IB-MECA (1 nM) when 

administered at low concentrations did not activate p70S6K but when 2-CL-IB-

MECA was administered at the 100nM concentration p70S6K was activated. 

Therefore, it seems possible that 2-CL-IB-MECA activated p70S6K in a dose-

dependant manner.  
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The A3 agonist 2-CL-IB-MECA administered 15 minutes post 

reperfusion/reoxygenation significantly limited infarct development in the ischaemic 

reperfused myocardium and cell death (apoptosis and necrosis) in adult rat cardiac 

myocytes subjected to hypoxia/reoxygenation. The protection was associated with 

recruitment of the PI3K – AKT survival pathway where the administration of 2-Cl-

IB-MECA (1 nM) upregulated the phosphorylation of AKT compared to control 

hearts. The critical role of PI3K for 2-CL-IB-MECA cardioprotection when 

administered 15 minutes after reperfusion was determined by using the PI3K inhibitor 

Wortmannin. Wortmannin abolished protection implicating PI3K activity being 

necessary to salvage the myocardium when administered 15 minutes post reperfusion. 

2-CL-IB-MECA when administered 15 minutes post reperfusion significantly 

attenuated myocyte apoptosis and necrosis where the PI3K inhibitor Wortmannin 

abolished this cytoprotection. The A3 agonist was also seen to decrease the activities 

of cleaved-caspase 3 in isolated cardiomyocytes that were reversed by Wortmannin 

indicating PI3K activity to be critical for A3 agonist dependant cardioprotection. 

Postponing the administration of 2-CL-IB-MECA to 30 minutes post reperfusion was 

still capable of attenuating myocardial infarction in the isolated rat heart in a 

Wortmannin sensitive manner where 2-CL-IB-MECA upregulated the 

phosphorylation of AKT 

 

Previous studies have shown preconditioning with 2-CL-IB-MECA to protect 

neonatal rat cardiac myocytes from hypoxia/reoxygenation injury via the PI3K-

AKT/caspase 3 survival pathway. Park et al (2006) have shown the administration of 

2-CL-IB-MECA at reperfusion to protect the isolated perfused rat heart from 

ischaemia reperfusion injury where the protection was abolished in the presence of the 
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PI3K inhibitor Wortmannin. The data collectively show that 2-CL-IB-MECA can 

attenuate infarct development when administered at reperfusion, 15 or 30 minutes 

post reperfusion.  

 

Further experiments are required to determine the role of cellular crosstalk for 

example, if the PI3K pathway is inhibited then would there be activation of the 

MEK1/2 cell survival pathway and vice versa. 

 

Mitochondria play a fundamental role in regulating cellular energetics as well as 

being an end effector of the cell death machinery. Griffiths et al., (1993;1995) showed 

that during myocardial ischaemia the mPTP remains closed and that it opens within 

the first few minutes of reperfusion and furthermore administration of Cyclosporin A 

(a mPTP inhibitor) deemed cardioprotective. This group showed that Cyclosporin A 

administration significantly improved left ventricular function in comparison to non 

treated ischemic reperfused hearts and was seen to reduce mitochondrial damage 

induced by calcium overload. Another mPTP inhibitor Sangliferin A has also been 

shown to protect the isolated ischaemic reperfused rat heart from reperfusion injury 

via improving left ventricular developed pressure after reperfusion and significantly 

reducing LDH release, an indicator of necrotic damage (Clarke et al., 2002).  

 

Yellon and colleagues recently showed mPTP to be functional target in the human 

myocardium. Interestingly this group showed the mPTP inhibitors Cyclosporine A 

and Sangliferin A administered to human atrial tissue subjected to hypoxia and 

reoxygenation resulted in significant improvement in cardiac function and improved 
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cell survival. In another set of experiments they show the mPTP inhibitors to delay 

the opening of mPTP in response to stress conditions (Shanmuganathan et al., 2005). 

 

More recently, Park et al., (2006) showed the infarct sparing ability of 2-CL-IB-

MECA to be abolished in the presence of the mPTP opener atractyloside implying 

cardioprotection associated with 2-CL-IB-MECA is dependant on closing the mPTP. 

They further showed in isolated mitochondria that Ca2+ induced swelling was 

reversed by the administration of 2-CL-IB-MECA. Their data implicates 2-CL-IB-

MECA dependant cardioprotection to closure of the mPTP. 2-CL-IB-MECA related 

mPTP closure may be associated the activation of the pro-cell survival signalling 

pathways. Activation of the PI3K and or MEK1/2 can phosphorylate downstream 

targets like BAD and BIM preventing their association with Bcl-xl proteins that are 

initiators of cellular apoptosis. Ischaemic postconditioning has been shown to confer 

cardioprotection in a number of studies. Recently postconditioning has been shown to 

inhibit the opening of the mPTP via upregulation of the reperfusion injury salvage 

kinases (Kin et al., 2005).  

 

In light of the current literature and the data from the current study we hypothesise 

cardioprotection associated with delayed activation of A3ARs in the ischaemic 

reperfused myocardium could involve upregulation of survival kinases. 

  

A large number of studies have ligands and growth factors to protect the ischaemic 

reperfused myocardium. Despite an urgent need for the development of adjunctive 

therapies to limit the deleterious consequences of ischaemia reperfusion injury studies 

have failed to translate laboratory findings into a clinical setting. Therefore, further 
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studies are required to identify novel targets for ischaemia reperfusion injury as well 

their translation into a clinical environment. 
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Chapter 8. Further Investigations and Limitations. 

Our Langendorff studies were carried out in the in vivo model. Further studies are 

required in an ex vivo model to determine whether the protection is still observed in 

the live animal model. This would allow us to determine whether the effect of 2-CL-

IB-MECA is dependant on blood factors as our model was a blood free model.  

 

Delaying the activation of A3ARs with 2-CL-IB-MECA (1 nM) to 60 minutes after 

the onset of reperfusion failed to protect the Langendorff perfused rat heart from 

ischaemia reperfusion injury. Therefore, further studies are required to determine 

whether higher concentration of 2-CL-IB-MECA when administered 60 minutes after 

the onset of reperfusion can protect the ischaemic reperfused heart.  

 

A number of other cell survival pathways have been shown to be involved in 

mediating cell survival. Therefore, further studies are required to determine the role of 

other cell signalling cascades like p38 and PKC that may be activated by the A3 

Agonist 2-CL-IB-MECA mediating cardioprotection 

 

New A3AR agonists that are more potent and selective for the A3AR have been 

reported in the literature. Therefore, further studies are required to determine if these 

agonists are more cardioprotective then 2-CL-IB-MECA.  

 

Previous studies have reported 2-CL-IB-MECA to activate AKT and ERK1/2 in a 

dose and time dependant manner and also to be pro and anti-apoptotic. Therefore, 

further studies are required to determine the threshold required for AKT and ERK1/2 

activation by 2-CL-IB-MECA to observe cytoprotection. 
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Our studies determined 2-CL-IB-MECA to phosphorylate p70S6 kinase at the 100 

nM concentration but not at the 1 nM concentration. Therefore, further studies are 

required to determine if 2-CL-IB-MECA activated P70S6k in a dose dependant 

manner.  

 

2-CL-IB-MECA when administered after 15 or 30 minutes after the onset of 

reperfusion activated ERK1/2 and AKT. Further studies are required to identify 

whether this protection involves recruitment of p70S6k and BAD.  

 

The current study determined 2-CL-IB-MECA to upregulate BAD phosphorylation in 

2-CL-IB-MECA mediated cardioprotection. To determine whether the increase in 

BAD phosphorylation was via the PI3k/AKT or MEK1/2-ERK1/2 survival pathway 

western blot analysis is required assessing BAD phosphorylation when 2-CL-IB-

MECA is administered at reperfusion of post-reperfusion in the presence and absence 

of the PI3K inhibitor Wortmannin or MEK1/2 inhibitor UO126.  

 

Previous studies have determined 2-CL-IB-MECA to delay the opening of the MPTP 

when administered at reperfusion. Further studies are required are to determine if 2-

CL-IB-MECA when administered 15 or 30 minutes after the onset of reperfusion 

delays the opening of the mitochondrial permeability transition pore.  

 

To determine the activity of caspase 3 in the studies we assessed the activity of 

active/cleaved caspase 3. Activation of caspase-3 requires protelytic processing of its 

inactive zymogen into cleaved / activated p16 and p12 fragments. We used the 

cleaved caspase 3  antibody that detects endogenous levels of  cleaved caspase-3. This 
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antibody does not recognise full length caspase 3 nor other caspases. The data 

regarding caspase 3 activity needs to be interpretated cautiously as the antibody only 

detects the cleaved form of caspase-3 and is not a direct measure of caspase 3 itself. 

Further studies are required to validate our findings. We propose using a flurogenic 

substrate N-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin to assess the activity 

of capsase 3. Caspase 3 activity can be measured by measuring the generation of the 

flurogenic cleavage product methylcoumaride on the spectrophotometer. Furthermore, 

positive and negative controls should be used to validate our findings. 

 

Although, the study identified the cell signalling pathways involved in 2-CL-IB-

MECA when administered at reperfusion or post-reperfusion there are limitations of 

out findings. The experimental models used in our studies where simulated models of 

ischaemia/reperfusion injury. To accurately determine the role of 2-CL-IB-MECA in 

mediating cardioprotection in vivo models of ischaemia reperfusion injury should be 

used. This will allow us to take into account the effect of the vasculature and blood 

factors in the ischaemic reperfused heart. Furthermore, to determine whether 2-CL-

IB-MECA protects the heart via recruitment of pro-survival kinases MEK1/2 and 

PI3K. 
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