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Abstract: Detection and measurement of abrupt changes in a process can provide us with important 
tools for decision making in systems management. In particular, it can be utilised to predict the 

onset of a sudden event such as a rare, extreme event which causes the abrupt dynamical change 

in the system. Here, we investigate the prediction capability of information theory by focusing on 

how sensitive information-geometric theory (information length diagnostics) and entropy-based 

information theoretical method (information flow) are to abrupt changes. To this end, we utilise 

a non-autonomous Kramer equation by including a sudden perturbation to the system to mimic 

the onset of a sudden event and calculate time-dependent probability density functions (PDFs) and 

various statistical quantities with the help of numerical simulations. We show that information length 

diagnostics predict the onset of a sudden event better than the information flow. Furthermore, it is 

explicitly shown that the information flow like any other entropy-based measures has limitations in 

measuring perturbations which do not affect entropy. 
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1. Introduction 

Even if occurring very infrequently, rare or extreme events can mediate large transport 
with significant impact. Examples would include the sudden outbreak of devastating 
infectious diseases, solar flares, extreme weather conditions, flood, forest fire, sudden 
stock market crash, flow sensor failure, bursty gene expression and protein productions. 
The resulting large transports can be either beneficial (e.g., promoting mixing and air 
circulations by atmospheric jets or removing toxins) or harmful. For instances, tornadoes 
cause a lot of damage; in magnetic fusion, plasma confinement is hampered by intermittent 
transport of particles and energy from hot plasma core to the colder plasma boundaries. 

Given the damage that these events can cause, finding good statistical methods to 
predict their sudden onset, or abrupt changes in the system dynamics is a critical issue. 
For instance, there are different types of plasma disruptions in fusion plasmas [1] and 
the current guidance for the minimum required warning time for successful disruption 
mitigation on ITER is about 30 ms [2]. Increasing the warning time by the early detection 
of a sudden event will greatly help ensuring a sufficient time for a control strategy to 
minimise harmful effects. 

Obviously, the whole mark of the onset of a sudden event is an abrupt dynamical 
change in the system or data over time—time-variability/large fluctuation, whose proper 
description requires non-stationary statistical measures such as time-dependent probability 
density functions (PDFs). By using time-dependent PDFs, we can quantify how the 
“information” unfolds in time through information geometry. The latter refers to the 
application of the techniques of differential geometry in probability and statistics by using 
differential geometry to define the metric [3–6] (a notion of length). The main purpose of 
this paper is to examine the capability of the information-geometric theory proposed in a 
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series of recent works [7–12] in predicting the onset of a sudden event and compare it with 
one of the entropy-based information theoretical measures [13–15]. 

In nutshell, the information length [7,8] measures the evolution of a system in terms 
of a dimensionless distance which represents the total number of different statistical states 
that are accessed by the system (see Section 2.2). The larger time-variability, the more 
abrupt change in the information length; in a statistically stationary state, the information 
length does not change in time. In fact, the recent work [6] has demonstrated the capability 
of the information length in the early prediction of transitions in fusion plasmas. 

In this paper, we mimic the onset of a sudden event by including a sudden perturba
tion to the system and calculate time-dependent PDFs and various statistical quantities 
including information length and one of the entropy-based information-theoretical measure 
(information flow) [16,17]. The latter measures the directional information flow between 
two variables. This is more sensitive than mutual information which measures the correla
tion between the variables. The point we want to make is that this information flow like 
any other entropy-based measures depends solely on entropy, and thus it cannot pick up 
the onset of a sudden event which does not affect entropy, for instance, such as the mean 
value (recall, the entropy is independent of the local arrangement of the probability [3] as 
well as the mean value). 

We should note that there are many other information theoretical measures [3,13–15,17–26] 
that have been used to understand different aspects of complexity, emergent behaviours, etc 
in non-equilibrium systems. However, the main purpose of this paper is not to provide an 
exhaustive exploration of these methods, but to point out the possible limitation of the entropy-
based information measurements in predicting sudden events. Additionally, our intention is 
not on modelling the appearance of rare, extreme events (that are nonlinear, non-Gaussian) 
themselves, but on testing the predictability of information theoretical measures on the onset of 
such sudden events. 

Specifically, to gain a key insight, we utilise an analytically solvable model—a non-
autonomous Kramers equation (for the two variables, x1 and x2)—which enables us to 
derive exact PDFs and analytical expressions for various statistical measures including 
entropy, information length and information flow, which are then simulated for a wide 
range of different parameters. This model is the generalisation of the Kramers equation 
in [27] where non-autonomy is introduced by an impulse. The latter is included either in 
the strength of stochastic noise or by an external impulse input which models a sudden 
perturbation to the system. Examples are shown in Figure 1; panel (a) shows the phase 
portrait of x1 and x2 without any impulse, where blue dots are generated by sample 
stochastic simulations using the Cholesky decomposition [28]. Panel (b) shows the case 
where an impulse causes the perturbation in the covariance matrix S while panel (c) is the 
case where the sudden perturbations affect both covariance matrix S and the mean value 
hxi. 

The paper is organised as follows: Section 2 introduces a non-autonomous linear system 
of equations and provides key statistical properties including the information length and 
information flow. In Section 3, we  present  the  analysis  of  the  non-autonomous  Kramers  
equation and our main theoretical results, referring readers to Appendices A and B for the 
detailed steps involved in the derivations. In Section 4 (and also Appendix C), we present 
simulation results; Section 5 contains our concluding remarks. 

To help readers, in the following, we summarise our notations. R is the set of real 
numbers. x 2 Rn represents a column vector x of real numbers of dimension n, A 2 Rn⇥n 

represents a real matrix of dimension n ⇥ n (bold-face letters are used to represent vectors 
and matrices), tr(A) corresponds to the trace of the matrix A. |A|, AT and A-1 are the 
determinant, transpose and inverse of matrix A, respectively. ∂t is used for the partial 
derivative with respect to the variable t. Finally, the average of a random vector x is 
denoted by hxi, the angular brackets representing the average. 
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(a) Process without abrupt events. (b) Process with an abrupt change in S(t). (c) Process with abrupt changes in hx(t)i 
and S(t). 

Figure 1. Stochastic simulation of a process with and without abrupt changes that are discussed in this work. 

2. Preliminaries 

In this section we introduce a non-autonomous linear system of equations and provide 
useful statistical properties including the information length and information flow. 

2.1. Statistical Properties of Linear Non-Autonomous Stochastic Processes 

A linear non-autonomous process is given by 

ẋ(t) = Ax(t) + Bu(t) + G(t), (1) 

where A and B are n ⇥ n and n ⇥ 1 constant real matrices, respectively; u(t) is a (bounded 
smooth) external input, G 2 Rn is a Gaussian stochastic noise given by a n dimensional 
vector of d-correlated Gaussian noises Gi (i = 1, 2, ...n), with the following statistical 
property 

hGi(t)i = 0, hGi(t)Gj(t1)i = 2Dij(t)d(t - t1), Dij(t) = Dji(t), 8i, j = 1, . . . , n. (2) 

Here the angular brackets denote the average over Gi. By assuming an initial Gaussian 
probability density function (PDF), the PDF remains Gaussian for all time. Thus, the 
following holds. 

Proposition 1 (Joint probability). The value of the joint PDF of system (1)-(2) at any time t is 
given by 

1 - 1
2 (x-hx(t)i)T S-1(x-hx(t)i)p(x; t) =  e , (3)p

det(2pS) 

where 

tZ
hx(t)i = eAthx(0)i + eA(t-t)Bu(t)dt, (4)

0 
t

ATt 
Z

S(t) = eAt
D

dx(0)dx(0)T
E

e + 2 eA(t-t)DeAT (t-t)dt, (5)
0 

and D 2 Rn⇥n is the matrix with its elements Dij(t). Here, hx(t)i is the mean value of x(t) while 
S is the covariance matrix. 

We recall that in Proposition 1, the computation of the exponential matrix eAt can be 
done by using the following result [29] 

eAt =L -1
h
(sI - A) -1

i 
. (6) 

Here, L -1 stands for the inverse Laplace transform of the complex variable s. 
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2.2. Information Length (IL) 
Given its joint PDF p(x; t), we define the information length (IL) L of system (1) as 

follows 
Z t 

s
Z • 

⇥
∂t1 p(x; t1)

⇤2 Z t p
L(t) =  dt1 dx = dt1 E , (7)

0 -• p(x; t1) 0 

h i2 
∂t1 

p(x;t1)R •where E = -• dx is the square of the information velocity. p(x;t1) p
It is important to note that the dimension of 1/ E ⌘ t is time which gives a dynamical p

time unit for information change. Therefore, integrating E between time 0 and t gives 
the total information change in that time interval. In other words, L quantifies the number 
of statistical different states that the system passes through in time from an initial p(x; 0) to 
a final p(x; t) [7]. Note that t was shown to provide a universal bound on the timescale of 
transient dynamical fluctuations, independent of the physical constraints on the stochastic 
dynamics or their function [30]. 

For the case of a linear stochastic process like (1), the following results can be used to 
obtain the value of IL. 

Theorem 1 (Information Length [27]). The information length of the joint PDF of system (1) 
and (2) is given by 

tZ q
L(t) =  dt1 E (t1), (8)

0 

1 E(t1) =  
⇣

∂t1 hx(t1)iT 
⌘

S-1(∂t1 hx(t1)i
)
+ tr

⇣
(S-1∂t1 S)

2
⌘ 

. (9)
2 

To calculate Equation (9), we recall that hx(t)i and S(t) can be found from Equations. 
(4) and (5), respectively. Specifically for ∂thx(t)i we have 

∂thx(t)i = Ahx(t)i + Bu(t). (10) 

Definition 1 (Em from marginal PDFs). For a n-th order linear process (1) with n random 
variables x 2 Rn = [x1, x2, .  .  . ,  xn]T, it is useful to introduce Em(t) as follows 

n n n )2(∂thxii)2 (∂tSxixiEm(t) = Â Ei(t) = Â + Â 2S2 , (11) 
i=1 i=1 Sxixi i=1 xixi 

where Ei is calculated from a marginal PDF p(xi; t) of xi. Note that E in Equation (9) is identical 
to Em in Equation (11) when the n random variables are independent. 

By utilising E = Em for independent variables, we can introduce 

E(t)- Em(t), (12) 

as a measure of correlation (see §4.2.5). 

2.3. Information Flow (IF) 
Information flow (IF), or also usually called information transfer, is one of the useful 

information-theory measure that has been studied for causality (causation), uncertainty 
propagation and predictability transfer [22,23]. It also give us insight into the degree of 
interconnection among states of the system [16,17]. [16] considered a system of two Brown
ian particles with coordinates x = (x1, x2) interacting with two independent thermal baths 
at temperatures T1 and T2, respectively, subject to a potential H(x), which are described by 
the Langevin equations 

0 = -∂xi H(x)- Gi ẋi(t) + ui(t) + hi(t), 
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hhi(t)hj(t1)i = 2GiTidijd(t - t1), i, j = 1, 2, (13) 

where Gi are the damping constants, which characterise the coupling of the particles to 
their baths/environments (with the temperature Ti), dij is the Kronecker symbol and ui(t) 
is a bounded input. The information flows T from 2 ! 1 and 1 ! 2 are then given by (see 
[16]): 

1 
Z

T2!1 = 
G1 

Px1 (x1; t)
dxP(x; t)

⇥
∂x1 H(x) + T1∂x1 ln P(x; t)

⇤
∂x1 ln ,

P(x; t) 
(14) 

1 
Z Px2 (x2; t)

T1!2 = dxP(x; t)
⇥
∂x2 H(x) + T2∂x2 ln P(x; t)

⇤
∂x2 ln . (15)

G2 P(x; t) 

To appreciate the physical meaning of IF, it is useful to recall that Equations (14) and (15)) 
can also be expressed in terms of entropy S or mutual information I (see Equations (17) 
and (23) in [16]), for instance, as follows: 

 

T2!1 = ∂tS[x1(t)]- ∂t1 S[x1(t + t1)|x2(t)]
  , (16)  
t1!0 

where S[x1(t + t1)|x2(t)] denotes the entropy of x1(t + t1) at time t + t1 conditioned by 
x2(t) at the earlier time t. From (16), we can see that IF represents the rate of change in 
the marginal entropy of x1 minus that of the conditional entropy of x1, x2 being frozen 
between the time (t, t + t1). In other words, T2!1 is that part of the entropy change of x1 

(between t and t + t1), which exists due to fluctuations of x2 [16]. 
Several important remarks are in order. First, IF T2!1 and T1!2 can be both negative 

and positive; a negative T2!1 means that x2 acts to reduce the marginal entropy of x1 

(S1). This is different from the case of transfer entropy which is non-negative [31]. Second, 
the causality is inferred only from the absolute value of IF [23]. Third, the advantage 
of Equation (14) over Equation (16) would be that Equation (14) can be calculated using 
the equal-time joint/marginal PDFs without needing two-point time PDFs, which will be 
especially useful in the analysis of actual (experimental or observational) data. Finally, 
although it is not immediately clear from either Equations. (15) or (16), we will show in 
§3 that IF depends only on the (equal-time) covariance matrix. This is similar to other 
causality measures such as the classical Granger causality [32] and transfer entropy [31] 
which quantify the improvement of the predictability of one variable by the knowledge of 
the value of another variable in the past and at present. This means these entropy-based 
measures do not pick up the onset of a sudden event which does not affect the covariance 
matrix (variance), for instance, such as the mean value. 

3. Non-Autonomous Kramers Equation 

To demonstrate how IF and IL can be used in the prediction of abrupt changes in 
system dynamics, we focus on the non-autonomous Kramers equation, as noted in §1. 
Recall that the original (autonomous) Kramers equation describes the Brownian motion in a 
potential, for instance, as a model for reaction kinetics [33]. By including a time-dependent 
external input u(t), we generalise this to the following non-autonomous model for the two 
stochastic variables x = [x1, x2]T 

" 
0 

# " 
0
# " 

0 
#

1 ẋ(t) =  x(t) +  u(t) +  . (17)-w2 -g 1 x(t) 

Here, x is a short correlated Gaussian noise with a zero mean hxi = 0 and the strength D 
with the following property 

hx(t)x(t0)i = 2D(t)d(t - t0). (18) 
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In this paper, we consider a time-dependent D(t) to incorporate a sudden perturbation in 
D as follows ◆2✓

t-t1,0b - aD(t) = D0 + p e . (19)
|a| p 

Here, the second term on RHS is an impulse function which takes a non-zero value for a 
short time interval a around t = t1,0; b = {0, 1} is used to cover the two cases without and 
with the impulse. 

Furthermore, we are interested in the case where u(t) is as well an impulse like 
function given by 

◆2✓
t-t2,0d - c u(t) =  p e . (20)

|c| p 

Here, the impulse is localised around t = t2,0 with the width c; again d = {0, 1} is used to 
cover the two cases without and with the impulse. To find IL and IF for system (17)-(18), 
we use Proposition 1 and calculate the expressions for 

" 
Sx1 x1 Sx1 x2 

# 
S(t) =  and hx(t)i = [hx1(t)i, hx2(t)i]T , (21)Sx2 x1 Sx2 x2 

using Equations (19)–(20), as shown in Appendix A. 
Equation (21) then determines the form of the joint PDF p(x; t) in Equation (3) for the 

two variables i = 1, 2. On the other hand, the marginal PDFs of x1 and x2 for Equations 
(17)–(18) are given by 

(x-hxi)2 (x2-hx2i)21 - 1 -2Sx1 x1 2Sx2 x2Px1 (x1; t) =  e , Px2 (x2; t) =  e . (22)p
2pSx1 x1 

p
2pSx2 x2 

From these PDFs, we can easily obtain the entropy based on the joint and marginal 
PDFs, respectively, as follows 

Z 1 i
S(t) = - dxp(x; t) ln p(x; t) =  

h
1 + ln ((2p)2|S|) , (23)

2 

Sx1 (t) = -
Z 

dx1 p(x1; t) ln p(x1; t) =  
1 ⇥

1 + ln (2pSx1 x1 )
⇤
, (24)

2 

Sx2 (t) = -
Z 

dx2 p(x2; t) ln p(x2; t) =  
1 ⇥

1 + ln (2pSx2 x2 )
⇤
. (25)

2 

3.1. Information Length for Equation (17) 
We now use Proposition 1 (Equation (3) for (17)) and Theorem 1. Since the covariance 

matrix S as well as the mean values hx(t)i (see Appendix A) for the joint PDF involve 
many terms including special (error) functions, it requires a long algebra and numerical 
simulations (integrations) to calculate Equations (9) and (8), respectively. The following 
thus summarise the main steps only. First, we can show that E(t) for the linear non-
autonomous stochastic process (1) can be rewritten as 

1 E (t)=hxiTATS-1Ahxi+uBTS-1Bu+hxiTAT S-1Bu+uBTS-1Ahxi+ tr
⇣
(S-1∂t1 S)

2
⌘ 

. (26)
2 

We can then show that for Equation (17), Equation (26) becomes 

1 ⇣ ⌘✓ ⇣ ⌘◆! 
E (t)= hx2i2Sx2 x2 + ghx2i+w 2hx1i+u 2hx2iSx1 x2 +Sx1 x1 ghx2i+w 2hx1i+u|S| 

1 
✓

+ 2S2 
⇣
(∂tSx2 x2 )(∂tSx1 x1 )+(∂tSx1 x2 )

2
⌘
+2Sx1 x1 (∂tSx1 x2 )

(
Sx2 x2 (∂tSx1 x2 )x1 x2 

)2 )2
⌘

-

|

2

S

S

|2 

x1 x2 (∂tSx2 x2 )
)
+S2 (∂tSx2 x2 +4Sx2 x2 Sx1 x2 (∂tSx1 x2 )(∂tSx1 x1 )+S2 (∂tSx1 x1 . (27)x1 x1 x2 x2 
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By using hx1i, hx2i, Sx1 x1 , Sx1 x2 and Sx2 x2 given in Appendix A, we calculate (27). 
Finally, to calculate IL in Equation (8), we perform the numerical integration of 

p
E (t) over 

time for the chosen parameters and initial conditions. Results are presented in § 4. 

3.2. Information Flow for Equation (17) 
To find the information flow for Equation (17), we compare it with Equation (13) 

∂x1 H(x) ∂x2 H(x) 2 T2 = -x2(t), =gx2(t) + w x1(t)- u(t), T1 = 0, = D(t). (28)
G1 G2 G2 

After some algebra using Equation (28) in Equations (14) and (15), we can show (see 
Appendix B for derivation) 

S2 
2 Sx1 x2 x1 x2T1!2 = -w - D , (29)

Sx2 x2 |S|Sx2 x2 

1 d
T2!1 = ln Sx1 x1 . (30)

2 dt 

It is important to note that unlike (27), Equations (29) and (30) depend only on the covari
ance matrix S, being independent of the mean values, as noted in §1. 

4. Simulations 

In this section, we present simulation results that show how IF and IL capture abrupt 
changes in the system dynamics of the Kramers equation. To this end, we designed 
four simulation experimental scenarios, which are summarised in Table 1. The different 
scenarios were chosen depending on whether D(t) and u(t) (defined in Equations (19) 
and/or (20), respectively) include(s) an impulse function (that is, whether b = 0 or 1 and 
d = 0 or 1), which caused the abrupt changes in the values of S(t) and hxi, respectively. 
Specifically, Case 1 was without any impulse (b = d = 0); Cases 2 and 3 were when the 
impulse was included in D and u(t) (b = 1, d = 0 and b = 0, d = 1), respectively; Case 4 
was with both impulses (b = d = 1). As noted at the end of §4, IL and IF in Equation (27) 
and Equations (29)-(30) clearly reveal that IF was not affected by the change in the mean 
values. This means, IF took the same value in both Cases 1 and 3; it also took the same 
value in both Cases 2 and 4. This is highlighted in Table 1 by the purple colour. 

For Cases 1–4 in Table 1, we fixed the value of w to be w = 1 and varied g to explore 
different scenarios of no damping g = 0, underdamping g < 2w, critically damping 
g = 2w and over damping g > 2w. Furthermore, we fixed the values of the initial 
covariance matrix as follows #" 

0.01 0S(0) =  . (31)0 0.01 

The initial mean values were fixed as hx(0)i = [-0.5, 0.7]T for all Cases. 
In addition, we performed the stochastic simulations for Cases 1–4 by using a Cholesky 

decomposition to generate random numbers [28] according to the Gaussian statistics 
x ⇠ N(hxi, S), specified by the values of S and hxii (i = 1, 2) given in Appendix A. 
Simulated random trajectories are shown in blue dots in the phase portrait of x1 and x2 in 
Figures 2-7 of the following subsections. 
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Table 1: A summary of the simulated scenarios of abrupt changes in S(t) and hxi in the 
Kramers equation. Case 1 is without any impulse; Cases 2 and 3 are when the impulse is 
used for D(t) and u(t), respectively; Case 4 is with both impulses. We emphasise that IF is 
affected only by changes in D(t) while IL is affected both by D(t) and u(t). For each case, 
we fix the value of w as w = 1 and vary g to explore different scenarios of no damping 
g = 0, underdamping g < 2w, critically damping g = 2w and over damping g > 2w. 

Cases 

D(t) 
u(t) 

D(t) = 0.001 
u(t) = 0 

D(t) = 0.001 + 1 
p|0.1| exp - (t-4)2 

(0.1)2 

! 

u(t) = 0 

D(t) = 0.001 

u(t) =  1 
p|0.1| exp - (t-4)2 

(0.1)2 

! 
D(t) = 0.001 + 1 

p|0.1| exp - (t-4)2 

(0.1)2 

! 

u(t) =  1 
p|0.1| exp - (t-4)2 

(0.1)2 

! 

1 2 3 4 

Underdamped Undamped Critically damped Overdamped 

g = 0 g < 2w g = 2w g > 2w 

Parameters 

Changing 
g while fixing 
w 

IF IL 

4.1. Information Flow Simulation Results 

As noted in Section 2.3, we recall that IF is used to measure a directional information 
flow in terms of its entropy and that IF is either positive or negative unlike transfer entropy. 
In our experimental simulations, we were interested in how sensitive IF was to abrupt 
changes. The time-evolutions of IF T1!2, T2!1, joint S(t) and marginal Sx1 (t), Sx2 (t) 
entropies in Equations (23)-(25), and the phase portrait of x1 vs x2 are shown in Figures 2 
and 3. We used the same initial condition S(0) given by Equation (31) and w = 1 while 
varying the value of g. As noted above, random trajectories from stochastic simulations 
(using a Cholesky decomposition to generate the random number [28]) were overplotted 
in blue dots in the phase portraits. Specifically, Figures 2 and 3 are for Case 1 and Case 2, 
respectively (with b = 0 and b = 1 in (19), respectively). The exact value of D(t) is shown 
in Table 1 and as a blue dotted line in all panels of Figures 2 and 3 (using the y-axis on the 
right of each panel). 

4.1.1. Case 1—Constant D(t) and u(t) = 0 

We started with Case 1 which had no perturbation (constant D(t) = D0 = 0.001 and 
u(t) = 0) and examined the effects of the system parameters g on IF. First, with no damping 
g = 0 (Figure 2a), Sx1 , Sx2 and S all increased monotonically in time from a negative value 
(a less disordered state) to a positive value (more disordered state) due to the stochastic 
noise. On the other hand, T1!2 and T2!1 showed similar behaviours but with opposite 
sign, making T2!1 + T1!2 ⇡ 0. The opposite sign of T1!2 and T2!1 suggests that x2 acted 
to increase the marginal entropy of x1 (by transferring the stochasticity fed into x2 by x) 
while x1 decreased the marginal entropy of x2 (by providing a restoring/inertial force 
causing the harmonic oscillations). The fact that T2!1 + T1!2 ⇡ 0 can be corroborated by 
the similarity between the marginal entropies Sx1 and Sx2 . 

Second, in the underdamped case with 0 < g < 2w shown in Figure 2b, the phase 
portrait exhibited the behaviour of an underdamped harmonic oscillator. The role of the 
damping g 6= 0 was to bring the system to an equilibrium in the long time limit where 
PDFs were stationary and Sx1 , Sx2 and S took constant values 

1 
✓

2Dp 
◆ 

1 
✓

2Dp 
◆ ✓

2Dp 
◆

lim Sx1 (t) =  ln , lim Sx2 (t) =  ln , lim S(t) = ln ,
t!• 2 gw2 t!• 2 g t!• gw 

as can be shown by using (A7) in (23)-(25). Specifically, in Equation (5), the first term in 
RHS (which depended on S(0)) vanisheed as t ! • while the second term in RHS (which 
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depended on D(t)) determined the value of limt!• S(t) which for g = 1 was as follows 
(see Equation A7) #" 

0.001 0S(t ! •) =  . (32)0 0.001 

The reason why Sx1 , Sx2 and S overall decreased in time is because the equilibrium had a 
narrower PDF (Sx1 x2 (t ! •) = 0.001, Sx2 x2 (t ! •) = 0.001) (see Equation (32)) than the 
initial PDF (Sx1 x1 (0) = Sx2 x2 (0) = 0.01). Consequently, 

lim T1!2(t) =  lim T2!1(t) = 0. 
t!• t!• 

Third, in the critical/overdamped case g ? 2w in Figures 2c-2d, we observed a much 

faster decrease in Sx2 than Sx1 as g damps x2 quickly (recall that dx1 = x2 and see (17)).dt 
Consequently, there was a faster and higher transient in T1!2 compared with T2!1 for 
larger g, fluctuations in x1 having a greater effect on the rate of change in the marginal 
entropy Sx2 . It is worth emphasising that our results for g 6= 0 above (e.g., the decrease 
in entropies) involved the narrowing of a PDF over time. In particular, T1!2 and T2!1 

for a constant D(t) = 0.001 were caused by the change in S(t) from its initial value S(0) 
to the equilibrium value in Equation (32) due to D(t) = 0.001. For a much larger D(t), 
Equation (32) took a larger value than Sx1 x1 (0) =  Sx2 x2 (0), and PDFs became broaden 
over time, entropies increasing in time, for instance. As a result, T2!1  0 while T1!2 > 0. 
Appendix C explores how different values of the constant D(t) affect IF. Finally, we note 
that in the phase portrait plots, the stochastic trajectories shown in blue dots generated by 
x ⇠ N(hxi, S) remained near the trajectories of the mean values. 

4.1.2. Case 2—Perturbation in D(t) and u(t) = 0 

To study how sensitive IF was to a sudden perturbation in D(t) (therefore in S(t)), we 
included an impulse function localised around t = 4 (see Table 1) in D(t), which is shown 
in blue dotted line using the right y axis on Figure 3. As before, Figure 3 shows results for 
the undamped, underdamped, critically damped and over damped cases, respectively. 

First, in Figure 3a for g = 0, we observed that in a sharp contract to Figure 2a, 
the impulse rendered large fluctuations in the simulated trajectory x ⇠ N(hxi, S), with 
significant deviation from the mean trajectory hx(t)i. On the other hand, such an abrupt 
change in S(t) led to a rapid increase in Sx1 , Sx2 , S, T1!2 and T2!1 followed by oscillations. 
The amplitude of these oscillations slowly decreased in time, the oscillation frequency set 
by w (as expected for no-damping). 

Second, in the underdamped case 0 < g < 2w shown in 3b, T1!2 and T2!1 exhibited 
some oscillations before reaching the equilibrium, as can also be seen from the phase 
portrait behaviour. Since the damping was still small, there was rather a long transient. It 
is interesting to notice that T1!2 and T2!1 flipped their signs (e.g., T2!1 < 0 to T2!1 > 0 
around t = 4 as t increased) due to a sudden increase in D (S). This can be understood 
since the perturbation applied to x2 increased marginal entropy Sx1 while x1 decreased the 
marginal entropy Sx2 . As a result, around the time t = 4 where D was maximum, the sign 
of IF became opposite to that without the perturbation shown in Figure 2b. Third, for the 
case g ? 2w shown in Figures 3c and 3d, the sign of T1!2 and T2!1 behaved similarly to 
the underdamped case 3b). Overall, Figure 3 shows that |T1!2| and |T2!1| exhibited their 
peaks around t = 4. However, a close examination of the cases with g 6= 0 revealed that the 
peak of |T1!2| and |T2!1| appeared after the peak of the impulse (in blue dotted line). That 
is, the peaks of |T1!2| and |T2!1| proceeded (not preceded) the actual impulse peak. This 
will be compared with the case of IL in the next section where the peak of the information 
length diagnostics E tended to precede the impulse peak, predicting the abrupt changes 
earlier than IF. Furthermore, IF was independent of external perturbations in hxi. 



Entropy 2021, 23, 694 10 of 24 

=0.00 
0.5 2 0.5 2 2 

0 

-0.5 
0 1 0 1 1 

-1 

-0.5 0 -0.5 00 -1.5 

-2
 
-1
 -1 -1 -1 -1 

0 50 100 0 50 100 0 50 100 

0.1 2 0 2 
1 

0.51 1 

0.05 -0.05 
0 

0 0 
-0.5 

0 -1 -0.1 -1 -1 
0 50 100 0 50 100 -0.5 0 0.5 1 

(a) Undamped. 

(b) Underdamped. 

(c) Critically damped. 

(d) Overdamped. 
Figure 2. Graph for T1!2(t) and T2!1(t) using w = 1, hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) = Sx2 x2 (0) = 0.01 and Sx1 x2 (0) =  
Sx2 x1 (0) = 0 for various values of g. Finally D(t) = 0.001 and u(t) = 0. 
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Figure 3. Graph for T1!2(t) and T2!1(t) using w = 1, hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) = Sx2 x2 (0) = 0.01 and Sx1 x2 (0) =  

1Sx2 x1 (0) = 0 for various values of g. Finally D(t) = 0.001 + p exp(-(t - 4)2/(0.1)2) and u(t) = 0. 
p|0.1| 
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4.2. Information Length Diagnostics Simulation Results 

In this subsection, we investigated how sensitive information length diagnostics (L, 
E ) were to the abrupt changes in the system dynamics. In contrast to IF, IL was capable 
of detecting changes in both mean values (u(t)) and S (D(t)), as can be inferred from 
Equation (9). We considered the four Cases 1–4 in Table 1 in Figures 4 to 7, respectively. 
In each case, we present the results of L, E , Ex1 , Ex2 , E - Em and the phase portrait of x1 

vs x2 (where the stochastic simulations are shown in blue dots). As before, we used the 
same initial conditions S(0) in Equation (31) and the same parameter values (w = 1) while 
varying g for undamped, underdamped, critically damped and overdamped cases. The 
initial mean values are fixed as hx(0)i = [-0.5, 0.7]T for all Cases. 

It is worth noting that (the unperturbed) Case 1 in Table 1 corresponded to the usual 
Kramers equation, previously studied in [27]. We nevertheless show results for Case 1 
below to be able to compare with Cases 2–4 as well as show new results such as Ex1 , Ex2 , 
and E - Em that might be useful for understanding the correlation between variables. Note 
that in the following, E - Em plots are not discussed in each Case, but instead discussed 
separately in Section 4.2.5. 

4.2.1. Case 1—Constant D(t) and u(t) = 0 

In this unperturbed case, our main focus here was on the effects of g on L, E and the 
marginal information velocities Ex1 and Ex2 . 

First, for the undamped case g = 0 shown in Figure 4a, harmonic oscillations (e.g., 
seen in the phase portrait) appeared in Ex1 and Ex2 , their oscillation frequency determined 
by w. We recall that Ex1 and Ex2 are calculated from the marginal PDF of x1 and x2, 
respectively. Because of the absence of damping, E (t) decreased but never reached 0. The 
finite value of E(t) is due to ∂tS(t) 6= 0 and ∂thxi 6= 0 as the PDF p(x; t) evolved according 
to (3). 

When 0 < g < 2w in Figure 4b, a non-zero damping led to limt!• E (t) =  0, as 
the PDF reached its equilibrium value while L converged to a finite value. It is worth 
highlighting that non-zero E , Ex1 and Ex2 signified transient behaviour far from equilibrium. 
Finally, in Figures 4c and 4d for g ? 2w, we observed that a higher value of g led to the 
shorter duration of transients and larger fluctuations in E . 

4.2.2. Case 2—Perturbation in D(t) and u(t) = 0 

Figure 5 shows the effect of an impulse like function in D(t) (see (19)), which then 
led to an abrupt change in the covariance of the system PDF p(x; t) given by (3). Since IL 

depended on the value of 1
2 tr
⇣
(S-1∂t1 S)

2
⌘

(see Equation (9)), this abrupt change in S had 

a considerable impact on E (t). 
For the case g = 0 shown in Figure 5a, the amplitude of E and L was seen to be 

increased around the time of the impulse peak. The phase portrait clearly shows the 
increase in the uncertainty (more scattered data). The values of Ex1 and Ex2 were also seen 
to increase due to the perturbation. 

For 0 < g < 2w, the oscillations in Ex1 and Ex2 were much less pronounced due to 
damping (see Figure 5b). This behaviour prevailed also for g ? 2w shown in Figures 5c 
and 5d. Interestingly, a close examination revealed that the maxima in E and Ex2 proceeded 
the peaks of the impulse (in blue dotted line), as alluded at the end of Section 4.1.2. This 
was seen more clearly for larger g in Figures 5c to 5d where the maxima in E , Ex1 and Ex2 

all preceded the impulse peaks. These results demonstrate that the information diagnostics 
predicted the onset of a sudden event earlier than the information flow. 

4.2.3. Case 3—Constant D(t) and Perturbation in u(t) 
Figure 6 shows results for a constant D(t) and an impulse-like external input u(t) (see 

(20)) which caused an abrupt change in hx(t)i. u(t) is shown in a red dotted line using the 
right y axis. 
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When g = 0, Figure 6a shows how the perturbation changed the dynamics of hx(t)i 
while S(t) remained unchanged in the phase portrait plot. When a non-zero damping was 
included in Figures 6b to 6d, E , Ex1 and Ex2 approached zero as t ! •. The phase portrait 
in Figures 6b to 6d shows how the perturbation changed the trajectory temporarily. 

Overall, we observed a very large increase in E , Ex1 and Ex2 (larger increase in Ex2 

than in Ex1 ), their peaks forming a little before or around the impulse peak (shown in red 
dotted line). Besides, the value of L was higher when we had a perturbation on u(t) and a 
constant D(t) than when D(t) was perturbed and u(t) = 0 for g > 0 (see it by comparing 
Figure 5 to Figure 6). Furthermore, Ex2 was the most affected by the changes in u(t) since 
x2 directly depends on u(t). 

Finally, it is important to highlight that our result of a high sensitivity of IL to abrupt 
changes in u(t) was not shared with IF which was insensitive to u(t). 

4.2.4. Case 4—Perturbations in Both D(t) and u(t) 
Case 4 in Table 1 is when we added impulse like functions to both D(t) and u(t) 

(b = 1 and d = 1 in Equations (19) and (20), respectively.). Again, note that u(t) is shown 
in a red dotted line using the right y axis. Overall, the phase portraits in Fig. 7 for the 
undamped, underdamped, critically damped and overdamped scenarios show that the 
perturbations momentarily broadened the width of PDF (3) while causing a large deviation 
of the trajectory of hx(t)i. 

Figure 7a for the undamped case g = 0 shows that the perturbations increased the 
value of L in comparison to Case 3 with g = 0 (See Figure 6a). This is due to the increase 
in S in Case 4 by the impulse in D(t), which increased the uncertainty against which the 
information was measured. 

For non-zero damping in Figures 7b to 7d, we saw a substantial increment in the 
amplitude of Ex2 (similar to Case 2 but smaller than in Case 3). In fact, in all cases of the 
underdamped, critically damped and overdamped scenarios, the overall behaviour was 
close to that observed in Case 2 (see Figure 5) than that in Case 4. It is because the increase 
in mean values due to the impulse u(t) was somewhat compensated by the uncertainty 
increase due to the impulse in D(t). This is a consequence of both impulses that had the 
same form, e.g., taking their maximum values at the same time t = 4 (see Table 1). For 
instance, if Case 4 were considered with the two impulses that were timed differently, 
much larger values of E , Ex1 , Ex2 were expected for Case 4 compared with Case 2. There 
were obviously differences between Case 2 and Case 4, for instance, in the long time limit 
t ! •, L in Case 4 was always bigger than that in Case 3. Finally, similar comments as 
before could be made in regards to the prediction capabilities of the information length 
diagnostics E . 
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(a) Undamped. 

(b) Underdamped. 

(c) Critically damped. 

(d) Overdamped. 
Figure 4. Graph for E (t) and L(t) using w = 1, hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) = Sx2 x2 (0) = 0.01 and Sx1 x2 (0) = Sx2 x1 (0) =  
0 for various values of g. Finally D(t) = 0.001 and u(t) = 0. 
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(a) Undamped. 

(b) Underdamped. 

(c) Critically damped. 

(d) Overdamped. 
Figure 5. Graph for E (t) and L(t) using w = 1, hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) = Sx2 x2 (0) = 0.01 and Sx1 x2 (0) = Sx2 x1 (0) =  
0 for various values of g. Finally D(t) = 0.001 + p 1 exp(-(t - 4)2/(0.1)2) and u(t) = 0. 

p|0.1| 
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(a) Undamped. 

(b) Underdamped. 

(c) Critically damped. 

(d) Overdamped. 
Figure 6. Graph for E (t) and L(t) using w = 1, hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) = Sx2 x2 (0) = 0.01 and Sx1 x2 (0) = Sx2 x1 (0) =  
0 for various values of g. Finally D(t) = 0.001 and u(t) =  p 1 exp(-(t - 4)2/(0.1)2). 

p|0.1| 
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(a) Undamped. 

(b) Underdamped. 

(c) Critically damped. 

(d) Overdamped. 
Figure 7. Graph for E (t) and L(t) using w = 1, hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) = Sx2 x2 (0) = 0.01 and Sx1 x2 (0) = Sx2 x1 (0) =  
0 for various values of g. Finally D(t) = 0.001 + p 1 exp(-(t - 4)2/(0.1)2) and u(t) =  p 1 exp(-(t - 4)2/(0.1)2). 

p|0.1| p|0.1| 
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4.2.5. Interpretation of the E - Em Plots 

We now discuss the plot of E - Em for all Cases 1-4 collectively to point out its 
usefulness. 

First, according to (9), it is clear that E considered the contribution from the non
independent random variables hx1i, hx2i, and its covariance matrix S(t) to the information 
changes in time, while Em was based on the sum of Ei from a marginal PDF of xi (see 
Definition 1). Thus plotting E - Em gave an approximation of the contribution from the 
cross-correlation Sxixj 8i 6= j to E . 

As an example, Figure 8 shows the simulation of a non-perturbed scenario (u(t) = 0 
and D(t) = 0.001) using hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) =  Sx2 x2 (0) = 0.01, Sx1 x2 (0) =  
Sx2 x1 (0) = 0, g = 1 and w = 2 (underdamped). This example permitted us to compare the 
evolution/deformation of the width of p(x; t) (given by Equation (3)) in the x1-x2 plane 
with the value of E - Em over time shown in the right panel of Figure 8. 

Figure 8 when E - Em = 0 (at t = 0, for instance), shows that the shape of p(x; t) was 
a perfect circle (this because Sx1 x2 (t ! 0) = 0). For E - Em 6= 0, the shape of p(x; t) was 
deformed according to the value of E - Em. The simulations suggest that the bigger the 
value of |E - Em| the higher the correlation between the random variables x1 and x2 (p(x; t) 
was highly deformed). 

Figure 8. The value of E - Em give us information about the deformation of p(x; t), affected by the 

cross-correlation Sx1 x2 . The values used here are w = 2, hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) = Sx2 x2 (0) =  
0.01, Sx1 x2 (0) = Sx2 x1 (0) = 0, D(t) = 0.001 and u(t) = 0. 

In summary, in regard to Cases 1–4, we can remark two characteristics on the be
haviour of E - Em in Figures 4 to 7. First, the value presented more variations when we had 
a perturbation on D(t), for instance when g = 0 there were high oscillations not presented 
when there was a perturbation on u(t) but not on D(t). Second, the higher the value of g 
the less the deformations through time of p(x; t)’s width since E - Em showed less changes 
through time. 

5. Concluding Remarks 

We have investigated the prediction capability of information theory by focusing 
on how sensitive information-geometric theory (information length diagnostics) [7–12] 
and one of the entropy-based information theoretical methods (information flow) [16,17] 
are to abrupt changes. Specifically, we proposed a non-autonomous Kramers equation 
by including sudden perturbations to the system as impulses to mimic the onset of a 
sudden event and calculate time-dependent probability density functions (PDFs) and 
various statistical quantities with the help of numerical simulations. It was explicitly 
shown that the information flow like any other entropy-based measures is insensitive to 
to perturbations which do not affect entropy (such as the mean values). Specifically, the 
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information length diagnostics are very sensitive to both perturbations in the covariance 
S(t) and mean hx(t)i of the process while the information flow only detects perturbations 
in its covariance. Furthermore, we demonstrated that information length diagnostics 
predict the onset of a sudden event earlier than the information flow; the peaks of T1!2 (or 
T2!1) tend to proceed the impulse peak while the peak of information length diagnostics E 
tends to precede the impulse peak. 

We expect that some of the results presented in this work would be useful in different 
engineering applications [34,35] since linear approximations are often useful [36] for control 
engineering applications. For instance, one can develop an information-geometric cost 
function for control design to achieve a guided self-organisation [37,38], instead of using 
entropy as a cost function [39]. Given high variabilities involved in complexity and 
emergent behaviour [13–15], it will be interesting to further extend this work to investigate 
interconnection of the components in a complex system, or causality and also to non-linear, 
non-Gaussian models or real data. 
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Appendix A. Derivations of hxi and S(t) 
After a long algebra, we can show that hx1(t)i and hx2(t)i in 
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hxi = (A1)hx2(t)i 

is given by the following: 
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On the other hand, the covariance matrix S can be shown to have the following 
elements: 
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Besides, it can be proved that 
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Appendix B. Derivation of the Information Flow from the Kramers equation 

We provide the main steps used in the derivation of T2!1 and T1!2 after substituting 
Equations (28) in Equations (14)–(15). For T2!1 we have 
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Z 

dxP(x; t)x2∂x1 
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On the other hand, for T1!2 we have 
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2
Here, we have used the properties hx1i = Sx1 x1 + hx1i2, hx1x2i = Sx1 x2 + hx1ihx2i, 
1Sx1 x2 = Sx2 x1 , and Q(x) = - 2 (x - hxi)TS-1(x - hxi). 
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Appendix C. Effects of Different Constant D(t) on IF 

As noted in Section 4.1, the sign of T1!2 and T2!1 is determined by whether a PDF 
becomes narrower or broaden in time since in Equation (5), the first term in RHS (which 
depends on S(0) in Equation (31)) vanishes as t ! • while the second term in RHS (which 
depends on D(t)) determines the value of limt!• S(t). Specifically, Sx1 x1 (0) = Sx2 x2 (0) =  
0.01 and Sx1 x2 (t ! •) =  D0

2 , Sx2 x2 (t ! •) =  D0 . In this appendix, we look at this in 
gw g 

detail by focusing on Case 1 (see Table 1). 
We start by recalling that in Section 4.1.1, we have discussed the effects of certain fixed 

value D0 for D(t) on IF including the case of no perturbation (Case 1), showing the effects 
of the parameters g. In the following, we present the effect of different values of constant 
D(t) = D0 2 [0, 0.5] on T2!1 and T1!2 in Figure A1. Note that results for D0 � 0.5 
have quite similar behaviours to the case of D0 = 0.5. As before, the different values of g 
are considered to examine undamped, underdamped, critically damped or overdamped 
scenarios. All other parameter values and initial conditions are the same as those used in 
Figure 2. 

Figure A1a shows the evolution of T2!1 and T1!2 for different D0 without damping 
g = 0. As D0 decreases, T1!2 and T2!1 also decrease their amplitude. There is a higher 
peak in the transient in both T1!2 and T2!1 for D0 = 0.5. An interesting behaviour is 
observed when D0 = 0 (the deterministic case without noise x = 0), where T1!2 ⇡ T2!1 ⇡ 
0; the zooming of Figure A1a shows very small-amplitude (O(10-7)) oscillations with the 
angular frequency w. In the underdamped case 0 < g < 2w shown in Fig. A1b, the value 
of D0 determines the sign of T1!2 and T2!1, changing their sign around D0 = Dc where 
0.001 < Dc < 0.1. Specifically, this change in the sign of T1!2 and T2!1 tells us that when 
x2 minimises Sx1 when D0 < Dc while maximising it when D0 > Dc. The opposite holds 
for the effect of x1 on Sx2 . [Note that D0 = 0, IF oscillates forever due to the absence of 
damping while it asymptotically converges for a non-zero D0.] 

Even when g ? 2w (see Figures A1c and A1d), we observe similar behaviours of 
T1!2 and T2!1. In particular, x2 minimises Sx1 when D < Dc while maximising it when 
D0 > Dc, with the opposite effect of x1 on Sx2 . 
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(a) Undamped.	 (b) Underdamped. 

(c) Critically damped. 
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(d) Overdamped. 
Figure A1. Graph for T1!2(t) and T2!1(t) using w = 1, hx(0)i = [-0.5, 0.7]T , Sx1 x1 (0) = Sx2 x2 (0) = 0.01 and Sx1 x2 (0) =  
Sx2 x1 (0) = 0 for various values of g and constant D(t). The value of u(t) does not affect the results. 
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